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v̇(0) = ẇ(0) = 0), σ = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.15 Characteristic modest bistable global SIM and SMR in the time domain
for excitation G = 0.34 mm, σ = 0. (a) The global SIM structure with
the unstable and chaos regions (shaded). The orange arrow line indicates
various stages in one SMR cycle. (b) displacement of w, (c) displacement
of v, with initial condition (w(0) = x0, v(0) = v̇(0) = ẇ(0) = 0). The green
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General Introduction

As structures become more sophisticated, large-scale, and the application scenarios more
diverse nowadays, the understanding of vibration phenomena has gradually advanced.
Much effort has been devoted in the past decades to develop structural control methods to
avoid undesired vibrations, satisfy the requirements for structure safety and human health.
Compared with active and semi-active control methods, passive control is widely applied in
conventional structure designs without external power supplies, sophisticated algorithms,
sensors and real-time data-based processors. The Tuned Mass Damper (TMD), as a
part of the passive control method, can engage in relatively large motions by resonating
nearby nature frequency of the Linear Oscillator (LO). The attached mass has been built
relatively large, introducing other resonance peaks in the vicinity of the natural frequency
of the LO to realize ideal vibration mitigation. Moreover, the effectiveness of TMD
drops dramatically when the external excitation frequency shifts away from its natural
frequency.

A nonlinear absorber termed a Nonlinear Energy Sink (NES) offers an alternative
strategy to overcome the limitation of TMD. The NES uses a nonlinear component to
substitute the linear stiffness of the attached system in the TMD. According to the
characteristic of nonlinearity, the NES can be categorized as cubic NES, bistable NES,
vibro-impact NES, rotary NES, track NES, etc. Nonlinearity implies adaptive properties.
So the NES performs a broader absorbing frequency than TMD, and it shows strong
robustness facing the degradation of systems parameters. The NES can dissipate the
energy of LO with high efficiency through damping. This one-way, irreversible energy
transfer mechanism is called the Targeted Energy Transfer (TET), where the LO and NES
oscillate in the same frequency, 1:1 resonance. TET has another form of manifestation
when the LO withstands a modest harmonic excitation: Strongly Modulated Response
(SMR). However, this high-efficiency energy dissipation activation requires an excitation
threshold, above which the SMR can be triggered. And it has been observed that the
negative stiffness helps the bistable NES performs SMR in a lower energy level. A
relative small attached mass is also another advantage for NES. The nonlinearity is a
key component in the NES system. The experimental device consists of two nonlinear
springs: the conical spring or variable pitch springs and two linear springs to realize
a cubic nonlinearity. A tunable cubic and bistable nonlinearity can be constructed by
choosing a proper pre-compression length of linear springs.

Based on the above discussion, the following essential questions are required to be
interpreted:

• How to identify the optimal state for both cubic NES and bistable NES? Which
parameters determine the ceiling of the maximal absorbing efficiency? Whether
the pre-compression length can be adjusted to optimize the device for different
excitations?
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• Since the bistable NES introduce an inevitable chaotic motion, is there a way to
quantitatively predict its emergence? What is the relationship between SMR’s
triggering mechanism and bistable’s topological structure, and whether it can bring
new alternative ideas for optimization?

• A phase trajectory can describe energy pumping motion along with the Slow Invariant
Manifold (SIM) structure. However, there are few descriptions of energy pumping
on the time scale in the current study. How to estimate the motion duration in which
the energy pumping motion occurs, under transient excitation and under harmonic
excitation?

• When the NES is applied, other constraints, such as displacement constraints, bring
in other nonlinear factors, collisions. How does this affect the response of the system?
Are the conventional analytical methods of cubic NES and vibro-impact NES still
describing the two nonlinear coupling cases?

The manuscript consists of the following five chapters to answer the above questions.
The first chapter gives a general introduction to the nonlinear absorber. The wide
application of control methods is presented first. The fundamental concepts, numerical
and analytical tools, are introduced to understand the targeted energy transfer mechanism
further. Then the different configurations of the nonlinear absorber and experimental
construction are compared. The optimal criteria for NES are finally presented.

The second chapter starts with analytical modeling and the analysis of the response
regimes. Then, the optimal states are identified both in the cubic and bistable NES
through alternating response regimes under various energy levels. And the parameters,
which determine the maximal absorbing efficiency, are given. Finally, a tunable nonlinearity
device proves the possibility of transferring the cubic NES into a bistable NES and
absorbing energy at maximal efficiency for the different excitation amplitudes.

In the third chapter, the relationship between the response regimes of bistable NES
and SIM structure is focused on. Firstly, the extra singularity lines and unstable regions
help interpret SMR and chaos trigger mechanism in bistable NES case, with the help of
an adapted complexification method and a simplified chaos trigger model. Secondly, the
categorization of NES and the response evolution at different energies according to the
value of negative stiffness are shown. Finally, the various negative stiffness of bistable
NES cases are tested from the view of experiments and applications.

The fourth chapter develops an estimation of energy pumping time. Firstly, a complex
integration is transferred into an equivalent point corresponding to a descent process of
phase trajectory along with SIM structure during the energy pumping. Secondly, the
robustness of estimation is examined under the various distribution of parameters. This
technology is also extended into harmonic case with adaption of particular integration.
Finally, the experimental results also verify the effectiveness of estimation method.

In the fifth chapter, the cubic NES with the collision is considered. Firstly, a dynamic
model of Vibro-Impact Cubic (VIC) NES is constructed. The conventional analytical tool
of vibro-impact NES and cubic NES proves their availability in this new issue. Secondly,
the length of clearance mainly determines the behaviors of VIC NES. According to the
location of the extra fold line in the SIM structure, three kinds of VIC NES with different
lengths of the cavity are studied combined with response regimes. Then, an experiment
confirms the effect of collision, which is also revealed by numerical simulation.
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Finally, some remarkable conclusions are drawn. The perspectives of future studies
are presented based on current work.
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CHAPTER 1 Literature Review

The first chapter offers a basic comprehension of the general background,
necessary concepts and research method for Nonlinear Energy Sink (NES). The
current vibration control methods are classified. According to the source of
nonlinearity, the applications of the nonlinear absorbers have been discussed. The
core mechanism of NES: Targeted Energy Transfer (TET), is analyzed by the
analytical tools and numerical methods. The various experimental configurations
are presented to realize the efficient vibration mitigation.
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Chapter 1 : Literature Review

1.1 Vibration control methods
Analysis of vibration is an inevitable issue in the engineering field. The generation of
vibrations can be diverse in terms of unbalanced rotating machines, sliding component,
fluid-solid interaction, earthquakes, and even the activity of biological organisms. Some
kind of vibration phenomena can be used to optimize production efficiency.

In the production process, vibration is used for the transport of raw materials, screening,
crushing. In geological exploration and oil extraction, vibration-generated stress waves
for detection and exploration can improve crude oil production [Sun et al., 2020]. In
terms of sustainable energy, the energy generated by the waves can be used to generate
clean energy. In another aspect, unwanted vibrations also result in component fatigue,
system failure under alternating stresses. The vibration of the cutting head in the machine
degrades the surface accuracy of the component. The ground resonance produces serious
damage to the structure of the helicopter. The productivity of the wind turbine system
will be affected and thus reduces the efficiency due to vibration [Rahman et al., 2015].
More generally, earthquakes cause a huge threat to the building construction and people’s
lives.

So it should be emphasized that the effective attenuation of undesirable vibration
is conducive to enhancing machine performance, prolonging the device’s service life and
promoting the safety and comfort of structure. The current trend to classify the vibration
control is identified as passive control, semi-active control and active control, according to
whether the system parameters are adjustable and whether external energy is introduced.
The detailed schematic of three types of control methods is presented in Fig. 1.1.

1.1.1 Passive control
A conventional linear absorber device, which possesses the fixed linear stiffness k2, linear
damping c2 and attached mass m2, is named Tuned Mass Damper (TMD). Frahm firstly
proposed this idea of additional free-to-vibrate mass, which is attached to the Linear
Oscillator (LO) [Frahm, 1911]. The TMD can achieve a resonant out-of-motion by tuning
the mechanical device that connects the attached mass m2 to the LO m1. This resonant
phenomenon can suppress the oscillation of m1 efficiently under the harmonic excitation
fe.

The introduction of an attached mass can cause the mitigation of the resonance peak
and create two resonance peaks in the vicinity of natural frequency ω0 under harmonic
excitation. The frequency-response curve of different damping conditions passes through
the two specific fixed points A and B in Fig. 1.2a. A low TMD damping will lead to
significant amplitude reduction in its natural frequency. But it also causes the huge
resonance peaks on two sides of ω0. The frequencies of two fixed points (ωA and ωB) can be
calculated through the quadratic equation of the system without consideration of damping
force. If the system can be tuned to satisfy the condition (1+ϵ)·(ω2

A+ω2
B) = 2ω2

0, (ϵ means
the mass ratio of attached mass and primary mass, m2/m1), an optimal criterion that
the same dynamic amplification in points A and B can be constructed as Fig. 1.2b shows.
And the two resonance peaks possess the same minimal amplitude. This optimization
technique of TMD is demonstrated [Krenk, 2005 ; Nishihara et Asami, 2002]. Other
optimizations of TMD are addressed under stochastic excitation or seismic excitation to
minimize the mean-square response of main sturcture [Marian et Giaralis, 2014 ; Hoang
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Figure 1.1: Classification of vibration control method (a) passive control (b) semi-active
control (c) active control. fe is external excitation,fa is actuator force [Qiu, 2018]

et al., 2008 ; Parulekar et Reddy, 2009 ; Bakre et Jangid, 2007]. This kind of control
method has been widely used in the area of civil engineering [Xiang et Nishitani, 2014 ; Shi
et al., 2018], mechanical equipment [Cho et al., 2020 ; Lian et al., 2018], manufacturing
process [Yang et al., 2015] owing to its economical cost and convenient maintenance.

1.1.2 Semi-active control
In the TMD case, if the external force shifts its frequency or the frequency of excitation is
not stationary, such as seismic excitation, the suppression effect will decline dramatically.
In another aspect, the internal properties of structure may alter with time. A live
load distribution leads to the decrease in the vibration absorption effect. The semi-
active control provides an alternative way to maintain optimal dynamic performance by
adjusting the stiffness and/or damping properties in real-time like Fig. 1.1b.

Compared to the previous method, semi-active can better adapt to a wider range of
operating conditions and structures. It was proposed in early 1970 to achieve a similar
effect as a fully active control [Karnopp et al., 1974]. Recently, it exists two main methods
to regulate the damping force (1) electrorheological (ER) and (2) magnetorheological
(MR), which are considered as smart fluid materials [Yao et al., 2002 ; Cai et al., 2007].
The fine particles are mixed into low viscosity liquid. These particles form a chain-
like configuration and solidify the suspension liquid when the external magnetic field or
current strength reaches a threshold. After solidification in the liquid state, ER has a yield
stress of 10 kPa, and MR has a yield stress of 100 kPa. When the electric or magnetic
field disappears, the ER, MR will turn back into a liquid state. The time required for
transformation is in the millisecond level and requires only watt-level energy control.

A plane rhombus configuration with pivot joints at the vertices was proposed to realize
the controllable stiffness [Nagarajaiah et Sonmez, 2007]. It consists of four spring elements,
which is controllable by adjusting the aspect ratio of the rhombus configuration through
the linear electromechanical actuator. Other kind of resettable variable stiffness devices
are also studied [Schleiter et Altay, 2022 ; Lin et al., 2015 ; Liu et al., 2008]
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(a) (b)

A B

Figure 1.2: (a) Frequency response of amplitude ratio under various TMD damping
conditions. The red arrow indicates the designs with lower TMD damping values (b)
optimization design of TMD (solid line), classic design (dashed line), larger damping
design (chain line) [Krenk, 2005]

The semi-active control method ensures the reliability of absorbing efficiency with
low requirement of power and modest cost in seismic protection of structure [Symans et
Constantinou, 1999 ; Bitaraf et al., 2010], in aeronautics domain [Hui et al., 2008] and
vehicle suspension system [Yao et al., 2002].

1.1.3 Active control
Another strategy to compensate the natural force and minimize the vibration is to apply
the required external force fa in Fig. 1.1c, which is also named as adaptive/active control.
A sensor, a real-time feedback controller and an actuator are necessary to realize the
active control [Fuller et al., 1996 ; Preumont et Seto, 2008 ; Soong et Costantinou, 2014].

An appropriate active control strategy is crucial to obtain the optimal active control
force. Several categories of this control strategy are widely applied i.e the classical
linear optimal control [Aldemir et al., 2001], fuzzy control [Nomura et al., 2007], H2
and H∞ control [Wang, 2011]. As for the active actuators, they can be hydraulic,
pneumatic and other styles. However, involving extra mechanical energy could increase
the hardware costs and reduce the reliability of the absorber. Those facts restrict its
practical application.

1.2 Nonlinear absorber
The conventional linear vibration absorber possesses lower efficiency under the detuning
effect of TMD and nonstationary excitations. A mistuning effect leads to a poor damping
performance or even worse response. Although the selection of other semi-active or active
control methods can overcome those impacts, it may introduce other problems: increasing
cost, introducing external energy, increasing complexity and reducing reliability. However,
if the nonlinearity is applied in the implemented passive control system, it will be effective
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Figure 1.3: Comparison of absorption capacity on frequency band between TMD and
NES [Gourdon et al., 2007]. The blue line is the response of the NES. The green line is
the response of the TMD. Dotted line is the response of LO without absorber.

for broad frequency bandwidth. At the same time, it maintains the advantage of passive
control: relatively low cost, a simple concept and high reliability.

In the past two decades, the Nonlinear Energy Sink (NES), which substitutes linear
stiffness with nonlinear component, gained a lot of attentions [Vakakis, 2001]. If the
nonlinearity is applied in the TMD, it possesses a non-constant natural frequency. It
interprets the NES can effectively dissipate the vibration energy of the LO over a wider
frequency band range by damping as illustrated in Fig. 1.3. Compared to the linear
absorber, the resonance peak has also been wiped. Non-constant spring rate indicates
that it is insensitive to stiffness degradation, so NES has strong robustness facing against
changes in the underlying structure [Wang et al., 2015 ; Tripathi et al., 2017]. The
mass ratio of TMD is about 10%. Meanwhile, the mass ratio of NES can be 1% while
maintaining good performance of absorbing [Gourc et al., 2015a].

Another significant point of distinction is that the high efficient absorbing for NES only
can be triggered when the vibration amplitude exceeds a critical threshold. When external
excitation exceeds this threshold, the NES will produce irreversible energy transfer from
the LO into NES and dissipate energy by damping [Starosvetsky et Gendelman, 2008 ; Gourc
et al., 2012]. This mechanism is called Targeted Energy Transfer (TET), which is explained
in the following section.

A potential definition of NES can be given: The NES is an absorber that consists of a
nonlinear component and an attached mass to achieve the vibration mitigation. The NES
can connect the primary system through the following two methods as Fig. 1.4 shows. In
the first configuration, the attached mass is connected to the primary system through a
weakly coupling stiffness. On the other side, the attached mass is grounded by the cubic
nonlinearity. In the second configuration, NES is linked to the primary system by the
cubic nonlinearity directly [Lee et al., 2005a]. In this thesis, the primary system is always
referred to as the Linear Oscillator (LO).

The grounded configuration of NES is widely studied [Jiang et al., 2003 ; Malatkar
et Nayfeh, 2007 ; Musienko et al., 2006]. The grounded structures can make some
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(a) (b)

Figure 1.4: Two different installation configurations of NES (a) grounded (b) ungrounded.
The NES systems are marked by the dashed red boxes.

convenience in engineering, especially for rotor systems [Yao et al., 2019]. However,
the requirement of fixed ground is hard to achieve in some other conditions. The two
configurations are compared by Gendelman [Gendelman et Lamarque, 2005]. The second
configuration shows a more efficiency in vibration mitigation with a lower mass ratio. So
in our thesis, the second configuration is addressed.

1.2.1 Different types of NES
To construct the NES, knowledge about the sources of nonlinearity is necessary. It
can originate from geometric nonlinearity, vibro-impact, dry friction or properties of the
material.

• Geometric nonlinearity
The linear stiffness of the spring means that the restoring force is proportional to
the displacement. Nonlinearity means that this condition is not satisfied. The
relationship between force and displacement may be cubic or piecewise. Fig. 1.5a
shows the nonlinear force-displacement relationship comes from the trigonometric
arrangement of two linear springs. The force-displacement relationship is a curve
instead of a straight line (linear).

• Vibro-impact
The velocity of two solids will change suddenly in a very short time when contact
occurs. This change is accompanied by a variation in velocity magnitude and
direction as Fig. 1.5b. The analytical description of the vibro-impact dynamics
is studied and shows the possible application in oscillators with inelastic impact
[Pilipchuk, 2015].

• Dry friction
Considering the friction of the system also introduces nonlinearity. Even the simplest
dry friction can cause discontinuities. This discontinuity of the frictional force can
be described by Coulomb’s law as Fig. 1.5c.
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(b)(a) (c) (d)

Figure 1.5: Sources of nonlinearity (a) geometric nonlinearity achieved by assembling
two springs (b) simplified shock model (c) dry friction (d) material nonlinearity of metal
stretching [Gourc, 2013]

• Material nonlinearity
A classical material nonlinearity appears in the metals. Initially, the metal shows
a linear strain/stress relationship. When at the higher strains the material yields,
the response becomes nonlinear and irreversible as Fig. 1.5d.

Figure. 1.5c shows a simplified friction law. But in reality, the behavior of friction is
very sophisticated. Mastering the friction in the NES design is still a challenge. Moreover,
large-scale deformation often implies a failure of the system. NES designs also make little
use of material nonlinearity. So mastering the nonlinearity to achieve parameter design
mainly relies on the first two kinds of nonlinearities: geometric and impact.

Depending on the source of nonlinearities, various types of NES are realized, for
example, a cubic NES, a Vibro-Impact (VI) NES, rotary NES, track NES [Wang et al.,
2015] and a piecewise NES [Yao et al., 2018] as Fig. 1.6 shows. Among them, the control
of cubic, bistable nonlinearity and impact is the core of this thesis.

1.2.2 Geometric nonlinearity configuration
Cubic nonlinearity contributes significantly to the construction of NES. In the early stage,
Roberson constructed a nonlinear component by means of a spring whose load-deflection
characteristic is the sum of a linear and cubic term [Roberson, 1952].

The conical spring and variable pitch spring can provide desirable cubic nonlinearity
by the proper design of its diameter of the biggest/smallest coils and the pitch distribution
[Qiu et al., 2018b ; Qiu et al., 2019a]. The negative stiffness mechanism is required to
counterbalance the linear terms in nonlinear force-displacement phase to obtain the pure
cubic nonlinearity so-called quasi-zero stiffness mechanism as Fig. 1.7a shows.

Permanent magnets can also form nonlinear restoring forces. The permanent magnet
is connected to the end of a small horizontal beam to provide the repulsive force or
attractive force in the vertical direction, caused by the other fixed magnets [Fang et al.,
2017] as Fig. 1.7b shows. If a tuning piezoelectric beam with a movable tip magnet
substitutes the fixed magnet, a tuned bistable NES is constructed [Fang et al., 2021].
Both vibration suppression and energy harvesting can be simultaneously improved by the
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(c) (d)

(a) (b)

Figure 1.6: Schematic of representation of various NES (a) VI NES [Qiu, 2018] (b) rotary
NES [Saeed et al., 2020] (c) track NES (d) piecewise NES

optimal implementation of the mechanical damping ratio, the resistance of the piezoelectric
element, the thickness of the beam, etc.

A permanent magnet is placed vertically inside a tube as Fig. 1.7c shows. Two magnets
are fixed at both ends of the generator tube housing. By varying the distance between
the bottom and center magnet, magnetic restoring forces are calibrated [Mann et Sims,
2009 ; Saha et al., 2008]. When other magnets are placed symmetrically around the
midpoint of the tube, the center magnet is repelled away from the midpoint and produces
a bistable nonlinearity [Saha et al., 2008]. Another oblique-magnet configuration consists
of two symmetric pairs of oblique magnets to produce vertical direction force without
horizon forces [Robertson et al., 2012].

In the acoustic system, a thin visco-elastic membrane performs much larger amplitude
oscillations than membrane thickness under pressure in the coupling box, as Fig. 1.7d
shows. The nonlinear behaviors can be defined as the ratio of pressure and transversal
displacement of the center of the membrane [Bellet et al., 2010 ; Bellet et al., 2012]. The
nonlinearity of the acoustic membrane depends on the thickness of the film and the square
of the radius.

By analogy with the symmetry membrane structure, a thin rod, such as a piano wire
in Fig. 1.7e, with no pretension, clamped at both of its ends, can also perform a transverse
vibration at its center [McFarland et al., 2005a]. This geometrically nonlinear spring can
achieve a cubic nonlinearity. In [Wierschem et al., 2012], a broadband passive damping
effect responding to impulsive excitations was proved experimentally.

The above studies show several methods to construct the cubic nonlinearity. However,
a pure cubic nonlinearity without other linear stiffness components is still a challenge. So
it’s necessary to consider the dynamic behaviors coupled with both cubic NES and other
stiffness component. An essential type of stiffness perturbation is negative stiffness. It
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(a) (b)

(c) (d) (e)

Figure 1.7: Realization of nonlinearity by (a) spring system [Qiu et al., 2018b] (c)
permanent magnet [Mann et Sims, 2009] (b) magnet coupled to an elastic beam [Fang
et al., 2017] (d) membrance in acoustic system [Bellet et al., 2012] (e) wire [McFarland
et al., 2005a]

can be realized by a larger pre-compression linear spring [Johnson et al., 2013], buckled
beam fixed on a support [Mattei et al., 2016] and the magnetic attraction (repulsion),
[Erturk et Inman, 2011]. The analytical modeling of bistable NES has been carried out
by Menivitch through the complexification-averaging analysis [Manevitch et al., 2014] so
that it can achieve a predictive design of bistable NES for optimal TET. The mechanism
of 1:1 and 1:3 internal resonances is revealed. Romeo identified the rate of overall energy
dissipation of bistable NES under various energy inputs by means of Frequency-Energy
Plots (FEP) [Romeo et al., 2015b]. The experimental bistable NES device, based on the
transverse displacement of the center of a composite bistable plate [Shaw et al., 2013]
is carried out. It shows a greater isolation region and a lower peak response to base
excitation than the equivalent linear system. Increasing the knowledge related to the
bistable NES is another objective in this thesis.

1.2.3 Impact configuration
Another important family of NES is associated with impact. Due to the existence of
assembly errors, there can be clearance between the components, such as loosening joints.
The components then collide with each other in the presence of vibration. When two
objects collide for a short period of time, the instantaneous velocity magnitude and
direction change due to the presence of the recovery factor. This implies a loss of energy.
This useful phenomenon is applied efficiently for energy absorption or harvesting. This
kind of absorber is named Vibro-Impact (VI) NES as Fig. 1.6a shows. The asymptotically
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stable motion of two rigid masses in VI NES dates from the 1980s to provide a basis for
detecting progressive wear in mechanisms [Bapat et al., 1983]. And the experimental
results confirm the parameters influence of mass ratio, coefficient of restitution, and gap
size on the free vibrations [Bapat et Sankar, 1985]. Bapat also developed a general
analytical method to describe multiple stable impacts per period of motion. The model
considered an inclined impact damper with friction and collision on either one or both
sides of the main mass with identical and non-identical coefficients of restitution [Bapat,
1995]. VI NES shows its potential in seismic mitigation of structures [Nucera et al.,
2007]. A three-story shear-frame system, coupled with VI NES to the top floor, was well
protected under seismic excitation [Nucera et al., 2008]. Other applications of VI NES
are presented [Babitsky, 2013].

VI NES is also referred to as an impact damper, and its behaviors under different
energy inputs have been extensively studied [Li et al., 2017c ; Gendelman, 2012]. The
NES ball, which vibrates in a cavity with a pre-designed gap, causes rapid decrease of the
amplitude of the primary mass. Similar to the cubic NES, VI NES can also perform a
TET. The mechanism of TET and its complicated dynamics have been further studied [Lee
et al., 2009] by means of frequency-energy plot.

Inspired by the VI NES concept, other similar NES improvements have been proposed,
such as multiple balls in parallel [Li et al., 2017a]. If multiple balls exist in the cavity
to absorb energy, it’s a so-called particle damper [Lu et al., 2014]. When the excitation
frequency is low, lacking relative motion between the particles and enclosure lead to a low
damping effect. The chaos region, which causes damping performance to degrade, exists
below and above the resonance frequency. When the LO performs a periodic motion near
the resonance frequency of the LO, maximum granular damping is achieved. [Sánchez et
Carlevaro, 2013].

1.3 Dynamic of linear oscillator coupled with NES
The Linear Oscillator (LO) coupled with NES implies several dynamic behaviors, which
can be generally categorised into the following three types:

• (1) Periodic response
The periodic response is a fundamental phenomenon, where the amplitude of LO and
NES is kept constant as Fig. 1.8a shows. The NES is capable of absorbing energy
from the LO by a steady-state vibration. The large amplitude of displacement
between LO and NES is directly related to the efficiency of steady-state energy
absorbing. However, the steady response is might be unstable facing the force
perturbation [Jiang et al., 2003] or even in different initial conditions [Gendelman
et Starosvetsky, 2006].

• (2) Quasi-periodic response
When the amplitude of the system is modulated and presents a periodicity, it is
termed as the quasi-periodic response. Quasi-periodic responses arise from various
nonlinear dynamic systems under a single-frequency excitation. In the close vicinity
of the main resonance system with NES, quasi-periodic oscillation is more obvious
than the steady-state. According to modulation of quasi-periodic response, it can
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be described as weakly (Fig. 1.8b) and strongly (Fig. 1.8c). This strongly quasi-
periodic response is termed as Strongly Modulated Response (SMR). The modulation
of the oscillations is very deep and its amplitude is comparable to the amplitude of
the response itself [Starosvetsky et Gendelman, 2008]. The enormous variation of
SMR in amplitude allows it to be distinguished from steady-state or weak quasi-
periodicity.

• (3) Chaotic response
Chaos is an essential characteristic of a nonlinear system. It can be witnessed not
only in the bistable NES system (Fig. 1.8d) during the transition from an intra-well
oscillation to a cross-well oscillation but also in the VI NES case as a result from
impact. The slight perturbation of system parameters will result in a significant
change of regime from a steady response to chaotic motion [Zang et Chen, 2017].
This process is termed as bifurcation. The bifurcation, route to chaos and dynamic
response regimes with the variation of damping parameters and mass ratio has been
investigated [Li et al., 2017c]. To indicate the occurrence of chaotic motion, the
Lyapunov exponent can be applied as a numerical method [Grinberg et al., 2012]. A
positive exponent means chaos. Melnikov method provides the analytical parameter
boundary to predict and control the chaos [Savadkoohi et al., 2011].

When the LO and NES oscillate at the same frequency, 1:1 resonance, it triggers
an efficient way to dissipate the energy of LO. This efficient energy transfer is referred
to as Targeted Energy Transfer (TET). This process is the mechanism that the energy
of some form is directed from a source (donor) to a receiver (recipient) in a one-way
irreversible fashion, it governs a broad range of physical phenomena [Vakakis et al., 2008].
In the context of NES, TET describes procedures in which the LO’s energy is irreversibly
transferred into NES mass and finally dissipated by the NES damping through resonance
capture. This type of efficient vibration mitigation phenomenon has been observed in
various types of NES, for example, piecewise NES [Lamarque et al., 2011], VI NES [Li
et al., 2017a], bistable NES [Habib et Romeo, 2017].

1.3.1 Hamiltonian system
To realize the effect of TET, damping is necessary to dissipate the energy. However, the
dynamic of TET in weak damping cases can be explained in terms of the periodic orbits
of the Hamiltonian system. The relationship between response regime and energy can
also be illustrated by the frequency-energy plot.

It is found that there exist three kinds of branches in the frequency-energy plot in
Fig. 1.9: (1) two main backbone branches (2) subharmonic branches (3) special branches.

The main backbone branches are marked as S11+ and S11−, which indicate the NES
and LO oscillate in the same dominant frequency. +/- means that NES and LO vibrate
in-phase or out-phase, respectively. The two main backbone branches are divided by
the natural frequency of LO (ω = 1). 1: 1 orbit requires a specific value of the initial
energy level (amplitude of the excitation) to be activated. A more detailed introduction
of excitation threshold can be referred to [Lee et al., 2008]. This concept of threshold
energy is the most important difference compared to the traditional TMD.

The subharmonic branches are the horizontal branches along the main branch. Those
orbits are marked as the tongues curves, which are separated from the main branches

- 16 - PhD Thesis - Zhenhang WU



Chapter 1 : Literature Review

(a) (b)

350 400 450 500 550 600 650

-40

-30

-20

-10

0

10

20

30

40

w
/m
m

(c) (d)

u
/m
m

u
/m
m

u
/m
m

w
/m
m

Figure 1.8: Examples of dynamic behaviors in NES. (a) periodic response, (b) weakly
quasi-periodic response, (c) strongly quasi-periodic response of LO in 2-degrees-of-freedom
NES system under harmonic force, respectively. u represents the absolute displacement of
LO [Grinberg et al., 2012] (d) Chaos motion in 1-degree-of-freedom bistable NES system
under harmonic force [Qiu et al., 2018a]. w is the relative displacement between LO and
NES
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Figure 1.9: Frequency-energy plot of a linear oscillator coupled to a NES [Kerschen et al.,
2007]

in Fig. 1.9. The subharmonic branches S13± mean that the LO oscillates ‘three times
faster’ than the nonlinear attachment. The calculation of subharmonic orbits is carried
out [Lee et al., 2005a]. The horizontal subharmonic orbits locate in a lower energy region
means that LO oscillates in a faster way with respect to NES.

The special branches are marked by black circles in Fig. 1.9. Those special orbits play
the role of connecting the main S11± branches and other subharmonic orbits. Those
moderate energy level orbits are considered as nonlinear beats, which occur in the initial
phase of 1:1 resonance. Those special orbits have been studied analytically using the
complexification-averaging method first introduced by Manevitch [Manevitch, 1999].

Another crucial feature of the branches of the nonlinear Hamiltonian system is frequency-
energy dependence. With increasing energy, the frequency of the oscillator possesses a
higher frequency. Those three kinds of branches correspond to the three types of TET in
a weak damping system: (1) fundamental TET through 1:1 resonance (2) subharmonic
TET through subharmonic orbits (3) TET initiated by nonlinear beats. These three
essential response regimes can be better interpreted by the Wavelet Transform (WT).
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The undamped backbone is superimposing the WT analysis of NES sytem in a transient
response [Lee et al., 2005a]. The initial motion locates on the upper high energy tongues
in Fig. 1.9. It produces an initial nonlinear beat that channels a major portion of energy
to NES in a fast time scale to trigger efficient TET [Kerschen et al., 2005 ; Sigalov et al.,
2012]. The WT shows this nonlinear beat corresponds to vertical special orbits that
connect S11− branch and S11+ branch in Fig. 1.9. Both amplitudes of LO and NES drop
through dissipation of damping. When the nonlinear beat vanishes, the system engages in
1:1 resonance capture. As energy further decreases, the heavy shaded moves down along
the S11+ backbone. In the above three mechanisms of TET, the 1:1 resonance has the
most efficiency to transfer almost 100% instantaneous energy of LO to NES. Meanwhile,
nonlinear beats only achieve 55% [Kerschen et al., 2008].

The overlapping of the WT shaded area and the backbone curve fully illustrate the
underlying hamiltonian system dominating the relatively small damping system dynamics
substantially. So, the Hamiltonian system can be a good reference for the corresponding
system with weak damping through the frequency-energy analysis. Essential orbits, for
example, fundamental 1:1 resonance, subharmonic orbits and the special orbits explain
the features of TET, the states of the system and transitions between different energy
levels.

1.3.2 Nonlinear normal mode

Nonlinear Normal Mode (NNM) can be considered as an extension of linear normal mode.
In nonlinear systems, the modes of the system are related to the energy level and do not
have modal superposition properties. So to overcome this disadvantage in a nonlinear
system, Rosenberg proposed that NNM requires that all material points of the system reach
their extreme values and pass through zero simultaneously and allows all displacements
to be expressed in terms of a single reference displacement [Rosenberg, 1960]. Shaw
and Pierre extend this concept to the damping system that NNM is a two-dimensional
invariant manifold in phase space, so the orbits that start out in the manifold remain in
it for all time [Shaw et Pierre, 1991 ; Shaw et Pierre, 1994].

The relationship between NNMs and backbone curves in frequency-energy plot is
that every point of undamped backbone represents a minimal period of periodic motion
(NNMs) and conserved energy, which contains the potential and kinetic energies.

Another difference from the linear modes is that the nonlinear modes interact via
internal resonance. So the number of nonlinear model modes can exceed the degree of
freedom of the system due to the mode bifurcation [Vakakis, 1997]. More modes are
produced through internal resonance, which is more easily triggered in a higher energy
level.

NNMs of 2-DOFs mass-spring system with cubic nonlinearities are investigated [Jiang
et al., 2005] as well as NNMs of piecewise system with shock absorbers [Mikhlin et
Perepelkin, 2011]. The NNMs of a continual mechanical system are analyzed [Avramov
et Mikhlin, 2010].
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1.4 Analytical methods
Numerous analytical techniques exist to predict the response of NES system. Generally,
the Harmonic Balance Method (HBM) and Multiple Scales Method (MSM) are widely
used to investigate the 1:1 resonance capture so as to guide the design of the NES system.

1.4.1 Perturbation method
An exact analytical solution can be hardly obtained when the system involves nonlinear
components. So, the perturbation method is used to find an approximate solution by
starting from the exact solution of related, simpler problems [Nayfeh et al., 1980 ; Neyfeh
et Balachandran, 1995]. In the perturbation method, a small parameter ϵ, which is always
relative to the mass ratio in NES system, is introduced to express the solution into power
series, like A = A0 + ϵ1A1 + ϵ2A2 + .... The A0 is the known solution to the solvable
problem. A1 and A2 represent the first-order, second-order terms. In the successive term,
a higher power of ϵ results in less important but necessary correcting terms. Usually, only
the first two terms are kept by truncating the higher series.

The HBM is an alternative approximate method to calculate the steady-state response
of a nonlinear system. The initial idea for HBM is that the steady-state response can be
viewed as a quasi-sinusoidal, despite the fact that the nonlinear influence exists in the
system. Compared with the perturbation method, the application of HBM can not only be
restricted in a weakly nonlinear system but also be adapted in a strong nonlinear system.
The potential application of HBM in the NES problem has been implementing [Malatkar
et Nayfeh, 2007]. If the system possesses the cubic nonlinearity, only odd harmonic terms
have been included in the Fourier expansion.

The order of the Fourier expansion terms dominates the accuracy solution in HBM.
A higher order of harmonic terms requires a higher order equation, which leads difficulty
to solve the equation. When the order of expansion is too small, it can converge fast but
causes a relatively large error. So to address this drawback, the Incremental Harmonic
Balance Method (IHBM) has been proposed. And the application of IHBM has been
implemented in cubic nonlinear system [Cheung et al., 1990] to trace the frequency
response curve automatically, as well as the stability of the periodic solution. The
application of IHBM method on the piecewise NES case is also carried out [Wang et al.,
2019].

In nonlinear system’s response, the variety of amplitude is always slower than the
oscillation. So to extract the information of amplitude, the multiple scales method
expands the real time into multiple and independent time scales τk = ϵkτ, k = 0, 1 . . ..
Then those time scales are subsitituded into the equation of system. Different scales with
the same order of small parameter ϵ are extracted to better explore the dynamic behaviors.
The multiple scales method is always introduced by Manevitch variable [Manevitch,
2001]. A single complex variable describes the reduction of variables of displacement and
velocity and decomposes the oscillation of the system into slow envelope modulation and
another fast oscillation part. This method is also accompanied by the Complexification-
Averaging (CX-A) procedure and is also applied in the NES with non-polynomial potential
[Gendelman, 2008] and piecewise system [Lamarque et al., 2011].

When the dynamical flow is considered in the vicinity of a 1:1 resonance manifold,
only the first harmonic is considered in Manevitch variable. However, some NES, such
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as the bistable NES, also contains higher harmonic terms, which is also considered by
D.Bitar [Bitar et al., 2020] into classic Manevitch’s complex variables to improve the
approximation of NES displacement.

1.4.2 Slow invariant manifold
The combination of the multiple scales method and complexification-averaging method
can generate a general equation that describes the variation of motion along the Slow
Invariant Manifold (SIM). In the context of NES, SIM is a topologic structure that
manifests the quantitative relation between NES and LO motion. It represents an intrinsic
characteristic of the system and will not be influenced by external excitations. Every point
in the SIM curve represents a possible periodic solution of LO and NES. It enables to
explain the main dynamic regimes characterizing the nonlinear response of different types
of NESs under either impulsive or harmonic excitation.

According to different characteristics of nonlinearity, various SIM structures exist
in different NES like Fig. 1.10. A classic SIM of cubic NES possesses two singularity
points corresponding to the points of local maximum and minimum. The stability of
the fixed point is evaluated by the introduction of perturbations. The substitution of
perturbation term transfers the equation of the system into matrix form. So the root of
the characteristic equation indicates the stability of the periodic solution. If one of the
roots has no positive part, the fixed point is stable, vice versa. The two singularity points
identify the middle curve as an unstable region, for example the dashed curve part in
Fig. 1.10a.

In a VI NES, the numerical simulation shows the important role of SIM to identify
the period of motion under transient and harmonic periodic force [Li et al., 2016]. The
SIM of VI NES possesses a simpler structure that consists of the left unstable branch and
partial stable region on the right branch in Fig. 1.10b. The lack of an upper singularity
point causes the maximum amplitude of the LO in each SMR cycle to vary. It is seen
that the maximum local amplitude of LO is different every time. Meanwhile, in the cubic
case, the maximum amplitude of the LO in the SMR is always approximately the same.
This response characteristic distinguishes the VI NES from the normal cubic NES.

In a non-smooth system with a piecewise nonlinearity, the SIM structure is presented
in Fig. 1.10c. Similar to the cubic nonlinearity case, the unstable region is located in the
middle of SIM. The simulation result indicates that the slow flow of dynamic behaviors
under the impulse and sinusoidal loading move along the SIM structure [Lamarque et al.,
2011]. When the energy of the system is intensive enough, the energy is dissipated
effectively until it reaches the down singularity point. During this period, both amplitudes
of LO and NES decrease give evidence of TET in a non-smooth nonlinear system.

The rotary NES has a special form of SIM that the left branch maintains all stable, the
right branch of SIM indicates unstable in Fig. 1.10d. Linear stability analysis shows that
the stability is eliminated by a saddle-node bifurcation. During the regime of resonance
capture, the phase trajectory slides down along with the stable branch of the SIM until
the LO amplitude reaches the critical threshold where the resonance capture breaks down.
The phrase trajectory escapes from the SIM. It signifies the end of the regime of TET
[Saeed et al., 2020].

The necessary condition for the existence of TET and SMR can be conducted through
SIM. If damping parameters are too large, the two singularity points disappear. The
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Figure 1.10: (a) SIM structure of cubic NES. The solid curves represent the stable branch,
and the dashed line is the unstable branch [Qiu et al., 2018a] (b) SIM of VI NES: one
stable branch in bold line and two unstable branches in fine line [Li et al., 2017c] (c) SIM
of piecewise NES [Lamarque et al., 2011] (d) SIM of the rotary NES with left stable branch
and right unstable branch [Saeed et al., 2020]. The x-axis represents the information of
LO motion and the y-axis represents the information of NES motion

damping parameter has to satisfy essential conditions to enable a pair of saddle-node
bifurcation to exist [Gourc et al., 2012].

1.4.3 Melnikov method
The Melnikov method can analyze and estimate the occurrence of chaos in a nonlinear
dynamic system by measuring the distance between the stable and unstable manifolds of
the perturbed system [Zhang et al., 2009]. It offers an analytical process to study the
global bifurcation of the system and the transition to chaos.

If the control parameter satisfies the critical condition that the Melnikov function
equals simple zero, a global homoclinic bifurcation occurs, a threshold value of the
parameter for chaos occurrence is obtained. This method stems from the investigation
of proper condition to homoclinic bifurcation, which characterises the dynamic of the
bistable system into chaos regimes [Guckenheimer et Holmes, 2013].

Due to the standard process of Melnikov analysis, it has been applied in various
domains. The threshold values of a homoclinic bifurcation are estimated in parameter
space. Those predictions are verified through numerical simulations [Farshidianfar et
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Saghafi, 2014a ; Farshidianfar et Saghafi, 2014b]. Zhang used an extended Melnikov
method to indicate that the multi-pulse jumping of heteroclinic orbits, which also verified
by the numerical simulation [Zhang et al., 2009]. For the bistable piezoelectric energy
harvest [Stanton et al., 2012], Melnikov theory was derived to find an equivalent damping
condition, dimensionless frequency threshold for which the Melnikov function has simple
zero. It has cautioned that it is more suitable for a weak excitation case. So the Melnikov
method is found and demonstrated to be a useful tool for analysing the appearance of
chaos.

1.5 Numerical methods

1.5.1 Lyapunov exponent
In addition to the Melnikov method, the Lyapunov Exponent (LE) can be used to
quantitatively evaluate chaos behaviors through calculating the average exponential growth
or decay of nearby orbits [Strogatz, 2018]. The definition of the Lyapunov exponent (λLE)
is given:

λLE = lim
d(0)→0,t→∞

1
t

ln
(
d(t)
d(0)

)
(1.1)

where d(t) is the distance in phase space between a given orbit and a test orbit, initially
starting infinitesimally close with initial distance d(0).

For a periodic solution (orbit), λLE reduces to be negative when the calculation time
tends to be infinity. As for a chaotic solution, the Lyapunov characteristic exponents
approaches a positive value as time increases. Further on, only the maximal component
should be considered as an indication of chaos.

For a given ordinary differential equation, Wolf created a toolbox in Matlab to calculate
LEs, where the algorithm employed for determining the exponent was proposed [Wolf
et al., 1985]. In a single DOF system, this method is applied to investigate the low
energy chaotic transition [Romeo et al., 2015a]. The lower and upper energy threshold
can be identified for a different magnitude of harmonic excitation. The result of the lower
threshold shows a good agreement with the Melnikov approximation. The initial velocity
condition of triggering chaotic motion has been verified by LE method [Dekemele et al.,
2019]. Calculation of LE can also guide the design of bistable NES so that the negative
LE of equivalent Duffing oscillator indicates the non-chaotic motion.

In the non-smooth system, the estimation of LEs is not direct. The numerical tools
to handle those discontinuities and plenty of calculation methods are applied [Müller,
1995 ; Stefanski, 2000 ; Stefański et Kapitaniak, 2003 ; De Souza et Caldas, 2004]. Li
proposes an approach to calculate LEs based on the experimental data for VI NES [Li
et al., 2018]. The maximal positive LE decreases gradually in a non-chaotic response
within a limited time. As for the SMR period, the LEs remain steady positive. So the
estimation of LEs can help to distinguish the response regimes of VI NES.

1.5.2 Wavelet transforms
Complex frequency distribution in NES vibration behaviors requires some signal processing
method, such as Wavelet Transforms (WT). WT can extract the frequency distribution
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information of the system response over time.
The concept of WT is proposed by the geophysicist Jean Morlet [Morlet et al., 1982b].

It uses a finite set of wavelets, which are modulated by a Gaussian envelope to compute
the wave propagation using complex functions [Morlet et al., 1982a].

WT is a fundamental technique for non-stationary time-frequency analysis. It applies
variable-size regions, which is named as the windowing technique to detect various frequency
components. For a higher frequency part, small-time intervals are considered, while the
size of the window (time interval) increases for the lower-frequency component. The
characteristics of this variable interval distinguish the Fast Fourier Transform (FFT),
which assesses stationary. The WT extends the ’static’ FFT. Instead of using a fixed
cosine and sine trigonometric function, WT alters simple families of orthogonal functions
to localize frequency and time. The heavy shadow region means the area where the
main frequency components concentrate. And the light shaded region corresponds to a
region with lower WT amplitude. The amplitude of WT is the function of frequency and
time. The signal decomposition technique enables us to deduce the temporal evaluation
of dominant frequency components of signals analyzed. However, signals could be too
small to be analyzed by the particular windows using in the WT.

Lee used the numerical WT to study the time evaluation of harmonic components
over the entire time window of simulation [Lee et al., 2005a]. Kerschen concluded that
the 1:1 resonance capture is responsible for energy pumping by observing the frequency
component distribution in the time domain [Kerschen et al., 2005]. The WT helps
to explain that the NES can tune itself with the aim of engaging in a 1:1 resonance
interaction. Combining with the frequency-energy plot, a transition of two predominant
frequency components also appears as energy decreases. The plot of WT is calculated to
differentiate high and low WT amplitudes [Li et al., 2017d]. The time histories of the
main frequency component of the signals illustrate that the nonlinear beats phenomenon
initiates the energy transition between the NES and LO under transient excitation and
1:1 resonance.

1.6 Experimental tests
The effect of TET and the feasibility of NES has been realized by various experiments
implementations [Gendelman, 2011 ; McFarland et al., 2005b ; Jiang et al., 2003]. McFarland
firstly examines the nonlinear energy pumping by an experimental fixture [McFarland
et al., 2005b]. The NES mass and LO mass are aluminium angle stocks, which move
along a straight air track. Various connecting hardwares and transducers are connecting
to it. The LO is grounded through a linear spring. Meanwhile, a cubic nonlinearity, which
is constructed by a thin rod (piano wire) with no pretension, clamped at both of its ends,
ground the NES mass. A long-stroke electrodynamic shake provides excitation to LO by
a rod, which contacts the force transducer. Broadband, single, brief transient excitations
are achieved by a manual switching arrangement. The experimental device is shown in
Fig. 1.11a. The experiments confirm the analytical prediction of the nonlinear energy
pumping phenomenon at a single fast frequency in the vicinity of the natural frequency
of LO. The NES can dissipate the maximum portion of energy.

For an acoustic system in Fig. 1.11b, the TET also appears between the acoustic
medium and visco-elastic membrane [Bellet et al., 2012 ; Bellet et al., 2010]. The U-
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shape tube, which possesses an adjustable length, is the linear system so that the first
resonance frequency can be tuned by adjusting this length. The sliding system can
produce the pre-stress to the membrane, which is clamped to the supporting device. The
center of the membrane performs a large amplitude oscillation. This displacement of the
membrane center is governed by 1-DOF differential equation. Due to the pre-stress in the
membrane, the nonlinear absorber does not perform a pure cubic nonlinearity but with
a linear stiffness. A loudspeaker and a coupling box provide the acoustic source. This
experimental device constitutes an analogy of a 2-DOFs mechanical spring-mass system.
The experiment concludes that TET exists between a primary acoustic medium and a
nonlinear membrane absorber. By adjusting the membrane radius and pre-stress, the
various acoustic system is tuned on their different resonance frequencies.

The mass-spring mechanism is also presented in Fig. 1.11c [Dekemele et al., 2020].
The mass is restricted and moves along the rail. Two linear springs attach to the NES
and the other end of linear springs moves along a special track with designed curve.
When the mass moves, the mass is pushed back with an equivalent force and provided
by a nonlinear track through rolling bearing connecting to linear springs. Because of the
symmetry of linear springs, the total force in the direction perpendicular to the rail is
counterbalanced. The force parallel to the rail is conserved. This track ensured a purely
cubic nonlinearity characteristic, which was verified by the identification of the NES. This
spring-mass system is installed on a two-frame structure. Effective vibration mitigation
has been observed under a transient impact. The NES engaged in resonance capture
cascade, and the corresponding pumping time prediction technique is verified.

The magnetic force can also construct either cubic or a bistable nonlinearity. The
Magnetic-Strung Nonlinear Energy Sink (MS-NES) [Pennisi et al., 2018] is presented in
Fig. 1.11d. The core component is the string that provides the coupling force between
LO and NES. The function of force and displacement contains a term proportional to
the cube of displacement without considering the higher-order terms and linear stiffness
term. The two additional magnets locate a certain distance away to provide a repulsive
force and balance the linear stiffness of mechanical component. The energy of LO is
transferred into the NES. Then the NES oscillates in the coils and the kinetic energy
of NES is converted into electrical energy by means of an electromagnetic transducer.
The result of the experiment successfully shows that the linear stiffness terms, which can
radically change the response of the system, has been cancelled out. The SMR can be a
valid option for energy absorption, and the bistable configuration shows an advantage to
improve the energy harvesting aspect.

In addition to the damping effect, energy can also be absorbed through collisions such
as Fig. 1.11e. So a VI NES consists of a mass that impacts the two sides and moves freely
in a cavity of LO. An embedded VI NES is installed to the LO [Li et al., 2016 ; Gourc
et al., 2015a]. The ball and the closed cavity is made of the same material of hardened
steel. The NES ball is free to move inside a rigid barrier. The contact-less laser measures
the displacement of LO as well as the displacement of 10 kN electrodynamic shake. The
experimental SMR zone is similar to the numerical simulation. A more realistic model of
impact and friction inside the cylinder should be considered to improve the correspondence
between theoretical and experimental results. The system in 1:1 resonance is judged from
the impact directly.
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（a） (b)

(c) (d)

(e)

Figure 1.11: (a) Leaf springs type of NES [McFarland et al., 2005a] (b) membrane
absorbers in acoustic system [Bellet et al., 2010] (c) realization of track NES design
[Dekemele et al., 2020] (d) mechanical NES with an electric circuit, a coil, and additional
magnets [Pennisi et al., 2018] (e) VI NES [Gourc et al., 2015a]
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1.7 Applications

1.7.1 Vibration mitigation

A direct application for NES in vibration mitigation is chatter control as chatter increases
surface roughness and damages the spindle. A VI NES is embedded in cutting tool of
lathe. The result shows that the VI NES offers a significant vibration mitigation effect
and passively controls the chatter instability in the turning process [Gourc et al., 2015b].
In the aspect of mitigation of vibration in pipes conveying fluid, an enhanced NES system
is implemented on the pipe [Yang et al., 2019] As a result of a strong fluid pipe interaction,
this kind of flow-induced vibration and noise is inevitable. An optimal design can realize
a maximum efficiency of 98%. A similar investigation of global stability analysis of pipes
conveying fluid is carried on under the framework of Lyapunov stability theory [Duan
et al., 2021a ; Duan et al., 2021b].

In the aircraft flying at transonic speeds condition, the structure is prone to instabilities,
for example, Limit Cycle Oscillation (LCO). A potential definition of LCO in the
context of aeroelastic is that the instability causes diverging responses (Note that these are
unstable, oscillatory responses of which amplitude becomes exponentially growing). It is,
however, due to structural or damping nonlinearities that such responses can be limited.
This kind of self-sustaining response is termed as LCO [Lee et al., 2005b].

In the early stage, a wind-tunnel model of 2-DOFs rigid wing model is investigated to
avoid LCO [Lee et al., 2007b]. The role of NES to mitigate aeroelastic instability partially
or even completely is confirmed through passively transferring the energy of the wing to
NES irreversibly. Three main mechanisms for suppressing aeroelastic instability have been
identified through numerical study: recurring burst out and suppression, intermediate
suppression, and complete elimination. Based on the analytical prediction, experiments
validate several aspects of the theory. The introduction of NES induces other branches
that are responsible for the three LO suppression. The interaction strongly with the
aeroelastic modes through 1:1 resonance captures is the key to LCO suppression with the
NES [Lee et al., 2007a].

The interaction of air and panel causes the panel flutter, which is considered as a self-
excitation and maintains a limited amplitude. This kind of panel fatigue may damage the
structure of the flight vehicle, so the NES is attached to laminated panels to investigate
its dynamic behaviors in supersonic airflow. It concludes that a relatively heavy mass is
required to be efficient. It functions in a specific range of nonlinearity coefficients and
degrees of damping. The most effective installation position of a NES is in a region behind
the center line of the panel in the direction of the airflow through the finite element
method [Jian et al., 2021]. The 2-DOFs rigid wing is coupled to two NES, which are
located in the two ends of the wing. The several typical cases with interesting dynamics
are analyzed in detail. 1:1 resonance captures is accompanied by the high efficiency of
TET. It’s also possible to transfer the energy of LO to some specific targets, which is
different to the traditional TET mechanism [Zhang et al., 2017]. The result shows that
the NES could enhance the critical velocity of the freestream under which the vibration of
the wing can be mitigated. A 3-D trapezoidal wing coupled with a NES in hypersonic flow
is investigated [Tian et al., 2019]. In another air-solid interaction condition, a rotary NES
is attached to the square prism model. Various influence parameters (ball mass, NES track
radius, ball friction, and radial clearance between NES track walls and the rotating ball)
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are verified in their roles in vibration mitigation. It demonstrates that NES is amenable
to mitigate flow-induced vibration successfully [Selwanis et al., 2021]. An adaptive and
passive galloping suppression of a suspended linear cable is investigated. The LCO of the
cable due to nonlinear wind loading is effectively eliminated by a lightweight, easy-to-make
attachment [Guo et al., 2017].

The helicopter suffers from ground resonance. This kind of dynamic instability comes
from the coupling of the motion of the blades in the rotational plane and the motion
of the fuselage. So the potential NES is attached on the fuselage and an ungrounded
configuration is performed [Bergeot et al., 2016], where the prediction of steady-state
response regimes is also proposed. Ground resonance instability can be fully suppressed
under the suitable conditions and partially suppressed through the periodic response or
SMR [Bergeot et al., 2017].

A linear piecewise NES is introduced to suppress the vibration rotor and blade, which
is mainly responsible for the failure of the rotating machine [Cao et al., 2020]. A beam
connects LO and NES disk. The one end of other beams is installed to LO, and the other
end is in the hole of the NES disk. The radius of the hole is different, so the beams contact
the NES one by one as the rotation speed becomes faster. It concludes that the vibration
suppression capability of NES for a rotor-blade system, in which the inhibitions of NES
upon the steady resonance of the rotor can reach 93% and 88%.

In the field of civil engineering, the damping of buildings is particularly important
when the system is exposed to natural disasters as well as to fatigue and ageing of its
own structure. A 9-story structure equipped with a NES system has been implemented.
The experiment includes two types of NES: A smooth cubic NES and a single side impact
NES. And the NES is mounted on the 8t/9th floor. The experimental result shows a
strong capability of NES to reduce the global response of the structure due to the blast
loading in a large scale structure. A significant transfer of energy from the lower modes of
the structure to its higher modes is observed [Wierschem et al., 2013]. Another absorbing
capability of track NES, which is installed on the top of the 2-story structure, is also
studied [Wang et al., 2015]. A five-story steel frame coupled with track NES has gained
good protection under five earthquake waves with different frequency spectrums [Lu et al.,
2017]. The ratio of the peak response is reduced up to 50%, while for root mean square
response is up to 80%.

1.7.2 Energy harvesting
Another essential applied field for NES, is the energy harvesting [Harne et Wang, 2013]. It
has been proved that the energy of LO can be pumped into NES with high efficiency over
broadband frequency ranges. So this part of kinetic energy could be useful to convert into
an electrical source and supply some sensors. The possible energy transfer mechanism in
the combination of NES and piezoelectric energy harvest is investigated [Li et al., 2017d].

A spring with bistable nonlinearity and a hardening-type stiffness element provide a
wider bandwidth over which the energy can be harvested. The study also reveals that the
amount of power harvested by a bistable NES device is at most 4/π greater than that of the
tuned linear device provided. The device produces a square wave output under harmonic
excitation. The hardening stiffness system provides the same maximum harvested power
as a linear system, ideally [Ramlan et al., 2010]. And a low amplitude excitation reduces
harvested power [Quinn et al., 2011]. Kremer investigates the performance of energy
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harvesting using NES under harmonic and transient response [Kremer et Liu, 2014].
Experiment shows the capability of energy localization as well as broadband vibration
absorption. An initial energy threshold is required to enable dominated energy to locate
in NES. A nonlinear beat and TET are the symbol of the best energy harvesting. Two
different electromechanical configurations, composed of NES and piezoelectric elements,
are investigated under various parameter influences [Ahmadabadi et Khadem, 2014]. Both
optimal designs have been achieved to maximize the dissipated energy by the NES and
increase the harvested energy by the piezoelectric element.

1.8 Nonlinear spring design
Spring elements are widely used in the engineering sector due to their high reliability,
simplicity and low cost. A common cylinder spring is viewed as a linear spring because
of its constant pitch, cylinder wire, closed and ground end. The compression length of
linear spring is proportional to the force value, so-called linear stiffness.

A nonlinear spring possess a nonlinear load-displacement function, which is also referred
as its strain energy absorption rate [Jutte et Kota, 2008]. The nonlinear spring can
be constructed by designing the geometry characteristic of spring. The generation of
nonlinearity is due to the number of active coils decreases or increases with various
compression or tension. Nowadays, it exists three main parameters to achieve nonlinear
nonlinearity (1) mean diameter, (2) pitch, (3) coil diameter. However, in the current
production process, the third parameter can be hardly realized to be variable. The
control of the first parameter corresponds to the conical spring. The second type of
control parameter corresponds to cylindrical variable pitch spring. Besides them, the
piecewise springs and free-edge spherical shells can also privide a piecewise nonlinearity
and other nonlinearity [Jazar et al., 2007 ; Touzé et Thomas, 2006].

The objective of providing variable spring rates can be achieved by designing a mean
diameter with the constant pitch and constant coil diameter. For the conical spring with
constant pitch, there are two types of spring, solid and telescope. The latter one can be
fully compressed as a plan. The conical springs possess a lower solid height than a normal
spring while maintaining a close spring rate [Paredes et Rodriguez, 2009]. Regardless of
the type of conical spring, the force-displacement curve can be divided into a linear and a
nonlinear part. The point T in Fig. 1.12a is the transition point that separates the linear
and nonlinear regimes.

In the second regime (T-C period), maximum deflexion of the largest coils has been
reached. The end coil has contacted with the ground, and the base coils also start to
collide so that the number of active coils decreases continuously. The variety of active coil
numbers determines the nonlinear force-displacement (F − u) relationship of the second
period.

The detailed description of the above equation is mentioned [Rodriguez et al., 2005].
The accuracy of theoretical prediction was verified by experimental tests [Paredes, 2013].
The conical spring can provide a strong nonlinear force (store more energy) with little
displacement at its maximum compression. The conical spring is characterised by its small
upper coil diameter and large lower coil diameter so that it shows more lateral stability
and avoids buckling greatly [Patil et al., 2015].

The load-displacement relation of variable pitch spring also has two phases in Fig. 1.12b.
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(a) (b)

Figure 1.12: (a) Load-displacement curve of conical spring with constant pitch
corresponding to the compression phase [Paredes et Rodriguez, 2009] (b) F −u relation of
cylindrical variable pitch spring and the pitch distribution in a variable pitch spring [Qiu
et al., 2019a]

In the very beginning, the space between the coil is compressed, but the number of
active springs is constant. So during this period, the restoring force is proportional to
displacement. Due to its variable pitch characteristic, some of the coils will close up (have
contact with other coils) faster than other coils, so the number of active coils decreases
resulting in an increase of spring rate. By designing the pitch, or the center distance
between the coils, particular force-displacement relationship can be constructed. The
main idea of designing the pitch is to divide the nonlinear phase into serval pieces and
calculate the average stiffness of every part. According to that local stiffness, the residual
active coils can be calculated. Technically, the actual force-displacement curve of variable
pitch spring is piecewise. Qiu has proposed asymmetrical distribution of pitch to smooth
and better fit the target force-displacement curve [Qiu et al., 2019a]. While designing the
variable pitch spring, the buckling condition should be avoided [Patil et al., 2014], the
maximum acceptable stress in the spring body [Paredes, 2000], and other constraints, for
example stability of the spring [Trabelsi, 2014], should be taken into consideration.

Both variable pitch spring and conical spring perform a linear stiffness phase, which
prevents them from directly applying to a pure cubic mechanism. Pre-compression
strategies and an extra negative stiffness mechanism should be added to counterbalance
the linear phase and linear component in the nonlinear phase.

1.9 Optimal design for NES
The mistuned NES may result in significant drawbacks, such as a relatively high mass
ratio or a risk of detached resonance tongue that is easily triggered. So to avoid the above
disadvantages, Gourc plots a narrow region of amplitude-frequency F − σ of harmonic
excitation, where the three solutions of fixed points do not exist [Gourc et al., 2014]. An
optimal cubic nonlinearity should satisfy that the target excitation is not located in the
three solutions region to obtain a broadband with no detached resonance tongue. Even a
small mass ratio (1%) can also achieve an efficient performance of vibration mitigation.

In a base-excited viscoelastic isolation system with an attached NES, the criteria
for deriving the optimal parameters is assumed as the smaller value of the maximum
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amplitude of the LO and the narrower frequency band for the region with multiple
solutions. So the optimal parameter of larger cubic nonlinearity, a modest viscoelastic
damping parameter, mass ratio are selected through the amplitude-frequency plot [Huang
et al., 2019]. The role of the damping parameter to attenuate the amplitude of frequency
response has been confirmed numerically.

Another criterion for optimization is the rate of amplitude degradation. For the
optimal mitigation of impulsive response of system through TET, the amplitude of the
impulse should close to a critical value [Vakakis et al., 2008]. Tuan gives a clear insight
to practically design optimal cubic nonlinearity under transient excitation [Nguyen et
Pernot, 2012]. It gives a critical amplitude condition, above which the system leads to the
occurrence of an efficient dissipation of energy. Optimal design criterion can be described
as the initial impulsive amplitude of LO should locate in the vicinity of singularity point
in the SIM structure, so that the cubic nonlinearity value shall be chosen greater than
the optimal value computed for minimal initial energy.

SIM offers us a fundamental basis for the dynamic behavior of NES, and it can also
help us to guide the optimal design. The optimal point is selected in the singularity point
to achieve minimal amplitude of LO under the harmonic force. In the VI-NES, the SIM is
applied to explain the different response regimes [Qiu et al., 2019b ; Qiu et al., 2018a]. The
critical value of the cavity length is obtained. Both analytical prediction of efficient TET
at the resonance frequency and optimal performance to protect the LO are achieved by the
experiment. Based on response regimes, Chavarette applied an optimal control strategy
to transforme chaotic and periodic motions of the nonideal and ideal systems into stable
orbits. The periodic or controlled behaviors possess a less energy consumption of structure
coupled to an essentially nonlinear oscillator than that of chaotic behavior [Chavarette
et al., 2010].

The target of most of NES optimal designs is under transient impulsive or harmonic
excitation. Oliva investigates the performance of the NES under random Gaussian white
noise base excitations in a numerical method [Oliva et al., 2017]. The work contains the
use of statistical linearization techniques and an accurate empirical formulation to guide
the NES optimal parameters. The target of minimizing the dynamic response in terms
of both displacements and accelerations is verified by using Monte Carlo Simulations.
In addition to the excitation uncertainty, the parameter uncertainty of the NES system
should also be considered. So the discontinuities of parallel NESs are considered random
design variables, which are optimized for cases multiple NESs in parallel [Boroson et al.,
2017]. Numerical simulation indicates that a larger number of parallel NESs leads to
efficiency increases.

1.10 Objectives of thesis
The literature review provides the necessary concept to access the Targeted Energy
Transfer (TET) mechanism in Nonlinear Energy Sink (NES). It demonstrates a broader
brand of absorbing frequency than traditional Tuned Mass Damper (TMD). So to design a
NES with an optimal state, absorbing in a maximal efficiency or causing Linear Oscillator
(LO) to possess a minimal amplitude, an optimal design criterion based on response
regimes has to be established. The bistable NES, which is appropriately designed, can
be more efficient than a pure cubic NES. The optimal region for cubic nonlinearity and
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negative stiffness requires to be further revealed. In a real application environment, the
NES involves other nonlinearity, for example, impact, which is inevitable. So a couple of
those characteristics leads to novel type NES, Vibro-Impact Cubic (VIC) NES. It widens
the way for the practical application of NES.

The second chapter focuses on the optimal design of cubic and bistable NES. The
response regime of cubic NES and analytical optimal nonlinearity design are given and
verified by the numerical simulation. Both for cubic and bistable NES, the optimal state
is defined as the moment when the Strongly Modulated Response (SMR) disappears and
turns to be a stable response. The parameters, which governs the ceiling of maximal
efficiency are revealed to guide the NES design. The bistable NES has more complex
behaviors than cubic NES. The relationship between the target excitation and the optimal
cubic nonlinearity parameter is found. Its robustness is also examined. An adjustable
four springs device is tuned to transfer the cubic nonlinearity into bistable nonlinearity.
So it can achieve the optimal design for various target excitations.

The third chapter focuses on the characteristic response regimes of bistable NES, the
intra-well oscillation and chaos. An adapted complex variables method, which considers
the initial equilibrium as the original point, investigates the intra-well oscillation amplitude.
This amplitude can give the threshold of triggering chaos with the simplified circle expansion
model within the separatrix. The impact of negative stiffness is reflected in two main
aspects, (1) changing the Slow Invariant Manifold (SIM) structure (2) introducing attraction
points and chaotic regions. The chaotic region and the unstable region in the SIM
gradually overlap as the negative stiffness increases. The disappearance of response
regimes with increasing absolute negative stiffness value can be explained by the level
of overlap of chaos region and unstable region in the SIM structure. The characteristic
regimes of different negative stiffness designs are observed in the experiments, which
confirms the numerical simulation results.

The fourth chapter aims to estimate the energy pumping time in both transient
response and harmonic excitation. The amplitude decay rate of LO is revealed by the
multiple scales method. The conservative system is considered first to obtain a particular
state integration. Then, the equivalent points are expressed to measure the average decay
rate during the energy pumping time in transient response. The previous two steps are
necessary to perform a semi-analytical method to estimate the energy pumping time
under harmonic excitation. A particular integration term is assumed as a simplified term,
which involves the external excitation term. The simulations under various damping,
harmonic excitation amplitude conditions have confirmed the robustness of prediction.
The semi-analytical method also gives the same level of prediction as to the experimental
results.

The last chapter introduces a novel NES: the impact has been considered into cubic
NES and it turns to be a Vibro-Impact Cubic (VIC) NES. The clearance length can
classify the VIC NES into three types: narrow, modest, large clearance cases, according
to the location of extra singularity line. The response regimes of VIC NES are classified.
When the system does not possess a collision, the cubic nonlinearity mainly governs its
fixed point. Once the impacts occur, the simplified Vibro-Impact (VI) NES model can
describe the stable response of VIC NES well. The VIC NES can be tuned to adapt to
the different energy inputs by changing the length of clearance which is not accessible for
cubic NES. The optimal analytical curve is given and is verified by the numerical and
experimental way.
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CHAPTER 2 Optimization design for
cubic NES and bistable
NES

This chapter mainly concentrates on optimizing cubic Nonlinear Energy Sink
(NES) and bistable NES to find the maximum efficiency point under harmonic
excitation. The dynamic model of cubic NES is also analyzed to obtain the fixed
point of the system. Then the response regimes are presented to find the maximum
efficiency point, where the Strongly Modulated Response (SMR) disappears for
both the cubic and bistable NES. With the help of analytical predictions, the
proper cubic nonlinearity is determined for particular harmonic excitation. Then
experimental device confirmers the optimal design for particular excitation. The
robustness of optimal design is also verified numerically and experimentally.
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2.1 Optimal design criteria for cubic NES

2.1 Optimal design criteria for cubic NES
The basic cubic NES is a fundamental research target. The first objective is to carry out
its dynamic modeling and analytical treatment. By the demonstration of the response
regime under various energy inputs, the optimal criterion of cubic NES is created. The
existing experiment device can turn the cubic NES into bistable NES. So second objective
is to optimize the bistable NES. The cubic NES and bistable NES share some similarities,
for example, the efficient Targeted Energy Transfer (TET). The research approach to the
cubic model facilitates the optimization of the bistable NES. Finally, the experimental
results confirm the optimal designs for various target excitations.

2.1.1 Dynamic modeling
The target system is described schematically in Fig. 2.1, which is also adressed in [Gourc,
2013 ; Gendelman, 2008]. The equation of motion is:

m1ẍ+ k1x+ c1ẋ+ c2(ẋ− ẏ) + k2(x− y)3 = k1xe + c1ẋe

m2ÿ + c2(ẏ − ẋ) + k2(y − x)3 = 0 (2.1)

where m1, c1 and m2, c2, are the mass, damping of Linear Oscillator (LO) and NES,
respectively. k1 is a linear stiffness between LO and base. A cubic nonlinearity k2 connects
the LO and NES. x and y are the absolute displacements of m1 and m2. And the dots
denote differentiation with respect to real time t. The imposed harmonic displacement
excitation is expressed as xe = Gcos(ωt)

Introducing the following variables into Eq. (2.1):

ϵ = m2

m1
, ω2

0 = k1

m1
, K = k2

m2ω2
0
, λ1 = c1

m2ω0
,

λ2 = c2

m2ω0
, F = G

ϵ
,Ω = ω

ω0
, τ = ω0t

(2.2)

The governed equation of the cubic NES system can be reduced to a dimensionless
form:

ẍ+ x+ ϵλ1ẋ+ ϵλ2(ẋ− ẏ) + ϵK(x− y)3 = ϵF cos Ωτ − ϵ2Fλ1Ω sin Ωτ
ϵÿ + ϵλ2(ẏ − ẋ) + ϵK(y − x)3 = 0 (2.3)

Figure 2.1: Schematic of linear oscillator and cubic NES system.
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where the ϵ is the mass ratio and K is the cubic nonlinearity parameter in a dimensionless
form. λ1 and λ2 are the dimensionless damping parameters of LO and NES, respectively.
F is the dimensionless excitation amplitude. And the dots in Eq. (2.3) denote differentiation
with respect to τ time scale. Since the mass ratio ϵ is a small parameter, the term
containing ϵ2 in Eq. (2.3) can be eliminated. So it gives:

ẍ+ x+ ϵλ1ẋ+ ϵλ2(ẋ− ẏ) + ϵK(x− y)3 = ϵF cos Ωτ
ϵÿ + ϵλ2(ẏ − ẋ) + ϵK(y − x)3 = 0 (2.4)

To calculate the fixed point of the system, the barycentric coordinates are introduced
in the following forms:

v = x+ ϵy, w = x− y (2.5)
where v means the mass center of system, w means the relative displacement between LO
and NES. Substituting above expression into Eq. (2.4) gives:

v̈ + ϵλ1
v̇ + ϵẇ

1 + ϵ
+ v + ϵw

1 + ϵ
= ϵF cos Ωτ

ẅ + ϵλ1
v̇ + ϵẇ

1 + ϵ
+ v + ϵw

1 + ϵ
+ λ2(1 + ϵ)ẇ +K(1 + ϵ) = ϵF cos Ωt

(2.6)

Under the assumption of 1:1 resonance, the following Manevitch complex variables are
introduced [Manevitch, 2001]:

ϕ1e
iΩτ = v̇ + iΩv, ϕ2e

iΩτ = ẇ + iΩw (2.7)
The role of Manevitch complex variables is to separate the rapid oscillation part of the

system at frequency Ω and slow modulation of complex amplitude ϕj, j = 1, 2. ϕj means
its conjugate. After the introduction of Manevitch complex variables into Eq. (2.6), only
terms containing eiΩτ are reserved:

ϕ̇1 + iΩ
2 ϕ1 + ϵλ1 (ϕ1 + ϵϕ2)

2(1 + ϵ) − i (ϕ1 + ϵϕ2)
2Ω(1 + ϵ) − ϵF

2 = 0

ϕ̇2 + iΩ
2 ϕ2 + ϵλ1 (ϕ1 + ϵϕ2)

2(1 + ϵ) − i (ϕ1 + εϕ2)
2Ω(1 + ϵ) + λ2(1 + ϵ)ϕ2

2 − 3iK(1 + ϵ)ϕ2
2ϕ2

8Ω3 − ϵF

2 = 0

(2.8)
NES can present a strongly quasi-periodic oscillation, which is termed as Strongly

Modulated Response (SMR). This type of motion can be interpreted by the study of the
fixed point. To obtain the analytical threshold value for SMR, a perturbation method
and the multiple scales method are used with respect to the small parameter ϵ ≈ 1%:

ϕj = ϕj (τ0, τ1, . . .) ,
d
dτ = ∂

∂τ0
+ ϵ

∂

∂τ1
+ · · ·

τk = ϵkτ, k = 0, 1, . . .
(2.9)

When LO and NES oscillate near 1:1 resonance, the frequency term of excitation Ω is
close to the reduced natural frequency of LO. A new detuning parameter σ is defined as:

Ω = 1 + ϵσ (2.10)
Substituting Eq. (2.9) into Eq. (2.8), terms that contain a coefficient of ϵ0 give:
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d
dτ0

ϕ1 = 0
d

dτ0
ϕ2 + 1

2i (ϕ2 − ϕ1) + 1
2ϕ2λ2 − 3

8iKϕ
2
2ϕ2 = 0

(2.11)

Order ϵ1

d
dτ1

ϕ1 + 1
2λ1ϕ1 + 1

2i (ϕ1 − ϕ2) + iσϕ1 − 1
2F = 0

d
dτ1

ϕ2 + 1
2λ1ϕ1 + 1

2ϕ2λ2 + 1
2iσ (ϕ1 + ϕ2) + 1

2i (ϕ1 − ϕ2) − 3
8iK(1 − 3σ)ϕ2

2ϕ2 − 1
2F = 0

(2.12)
To study the stable amplitude of LO and NES, the derivative term is set to zero. The

new variables are introduced into Eq. (2.11) as follows:

ϕ1 (τ1) = N1e
iδ1 , ϕ2 (τ1) = N2e

iδ2 (2.13)

The stable solutions of N1 and N2 are given by N10 and N20 in the ϵ0 order of equation.
The expression that describes the topological structure of the Slow Invariant Manifold
(SIM) of cubic NES system is obtained in the following form:

Z1 = λ2
2Z2 + Z2 − 3K

2 Z2
2 + 9K2

16 Z3
2

Z1 = N2
10, Z2 = N2

20

(2.14)

The position of two extrama of SIM are described as:

Z2,j = N2
2,j = 4

9
2 ∓

√
−3λ2

2 + 1
K

Z1,j = N2
1,j = 8

81
±
√

(1 − 3λ2
2)3 + 9λ2

2 + 1
K

, j = 1, 2

(2.15)

The SIM is shown in the blue curve in Fig. 2.2. It represents the intrinsic property of
the system and its independence with respect to external excitation. The Z2,1 and Z2,2
are the values of Z2 at singularity points, which are marked in red in Fig. 2.2. The Z1,1
and Z1,2 are the values of Z1 at singularity points, respectively. The two singularity points
divide the SIM into two stable branches and an unstable region, which is responsible for
the possible occurrence of energy pumping.

2.1.2 Cubic NES response regimes
This kind of SMR can be analyzed in the order of ϵ. The fixed points of the second equation
of Eq. (2.11) mean the periodic response. When τ0 → 0, the solution of stable branch can
be written as Φ (τ1) = limτ0→∞ ϕ2 (τ0, τ1). When the SMR occurs, the stability of fixed
point chnages. This asymptotic stability of the fixed points can expressed by substituting
the second equation of Eq. (2.11) into the first equation of Eq. (2.12) with respect to time
scale τ1, then it gives:
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Figure 2.2: The SIM structure of cubic NES. Two folded singularity points separate the
SIM into the stable region (blue solid line) and unstable region (dashed line).

∂

∂τ1

[
2i
(

−λ2

2 Φ − i

2Φ + 3iK
8 Φ2Φ

)]

+2i
(
i

2 + σi+ λ1

2

)(
−λ2

2 Φ − i

2Φ + 3iK
8 Φ2Φ

)
− i

2Φ − F

2 = 0
(2.16)

Since the Φ(τ1) is solution of ϕ2 in particular condition τ0 → ∞, the polar form in
Eq. (2.13) is applied in the above equation. The equations that govern the evaluation of
amplitude N2 and phase δ2 are obtained after separation of the real and imaginary parts.

∂N2

∂τ1
= f1 (N2, δ2)

g (N2)
,

∂δ2

∂τ1
= f2 (N2, δ2)

g (N2)
(2.17)

with

f1 (N2, δ2) = −9λ1K
2N5

2 + 24λ1KN
3
2 − 12FKN2

2 cos δ2 − 16 (λ2 + λ1 + λ2
2λ1)

+16F cos δ2 + 16λ2F sin δ2)
f2 (N2, δ2) = (−54K2σ − 27K2)N4

2 + (96Kσ + 12K − 24λ2λ1K)N2
2

+36KFN2 sin δ2 − 12λ2
2 − 32σ − 32σλ2

2 + 16λ2F cos δ2 − 16F sin δ2

N2
g (N2) = 54K2N4

2 − 96KN2
2 + 32 + 32λ2

2
(2.18)

Starosvetsky indicated that it exists two kinds of fixed points (1) ordinary fixed points
(2) folded singularity points in the Eq. (2.17) [Starosvetsky et Gendelman, 2008]. The
first type of fixed points has to satisfy the the condtion f1 = f2 = 0 and g ̸= 0. The
second one corresponds to the condition f1 = f2 = g = 0. The system with f1 = f2 = 0
can be rewritten in the follwing matrix form:
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[
a11 a12
a21 a22

] [
sin δ2
cos δ2

]
=
[
b1
b2

]
(2.19)

with

a11 = 16λ2F, a12 = −12FKN2
2 + 16F, a21 = 36FKN2

2 − 16F
N2

, a22 = 16λ2F

N2

b1 = 9λ1K
2N5

2 − 24λ1KN
3
2 + 16N2

(
λ1 + λ2 + λ2

2λ1
)
,

b2 =
[
27K2N5

2 (1 + 2σ) − 12KN3
2 (1 − 2λ1λ2 + 8σ) + 16N2

(
λ2

2 + 2σλ2
2 + 2σ

)]
/N2

(2.20)
The determinant should not vanish, so that the phase of ordinary points δ2 can be

calculated. As for the singularity point, the determinant of matrix is simplified as det(a) =
8F 2g/N . So when the system of g = 0 and f1 = 0, the f2 condition can be satisfied
automatically. So only f1 = 0 is under the consideration. The expression of f1 contains
the sin(δ2) and cos(δ2) terms, so it can be transfered into a cos form as:

cos(δ2 − η) = b1√
a2

11 + a2
12

, tan(η) = a11

a12
(2.21)

and the δ2 can be solved as:

δ2 = arcsin( a11√
a2

11 + a2
12

) + arccos( b1√
a2

11 + a2
12

) (2.22)

So the expression of singularity points (N2 = N2,j, j = 1, 2) is given:

∆2,j = γj ± arccos
N2,j

(
16λ1 − 24λ1KN

2
2,j + 9λ1K

2N4
2,j + 16λ2 + 16λ1λ

2
2

)
4F
√

9K2N4
2,j − 24KN2

2,j + 16 + 16λ2
2

 (2.23)

with

γj = arcsin
 4λ2√

9K2N4
2,j − 24KN2

2,j + 16 + 16λ2
2

 (2.24)

The expression of (2.23) inside the arccos should be less than or equal to 1. So the
excitation thresholds Gjc are given by:

Gjc = ϵFjc =
εN2,j

(
9λ1K

2N4
2,j − 24λ1KN

2
2,j + 16 (λ1 + λ2 + λ1λ

2
2)
)

4
√

9K2N4
2,j − 24KN2

2,j + 16 + 16λ2
2

, j = 1, 2 (2.25)

The excitation thresholds Gjc divide the response regimes for each level of energy. In
the following numerical simulation, the parameters of cubic NES case are fixed as: ϵ =
0.01, λ1 = 1.67, λ2 = 0.167, K = 1742. As the amplitude of displacement excitation
increases, the three types of dynamic behaviors occur:
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Figure 2.3: Stable response: cubic NES response under low energy input (G = 0.22mm
with initial condition: v(0) = v̇(0) = w(0) = ẇ(0) = 0). Subplots (a) and (b) represent
the time-displacement response of v and w, the red curve is the reconstructed envelope
amplitude (c) reconstructed trajectory projection (blue) in SIM structure (red).

(a) Stable response

When the harmonic excitation is lower than G1c, the efficient energy pumping is
not activated. The response of LO and NES appears to be a periodic response
with constant amplitude as in Fig. 2.3a. The reconstructed envelope is obtained by
solving the complex equation (2.8). The blue trajectory of amplitude rises along
with the SIM over time in Fig. 2.3c. Its final point E is located on the left SIM
stable branch. With the increasing harmonic excitation amplitude, the final stable
position E is closer to the singularity point B, before snap-through. Point A is
located on the left branch with the same Z1 value as singularity point D. Point C
has the same Z1 height as singularity point B but is located on the right branch.

(b) SMR

When the excitation amplitude exceeds the critical value of excitation G1c but is
lower than G2c, a saddle-node bifurcation occurs. The existence of folded singularity
results in the relaxation-type oscillation phenomenon like Fig. 2.4b. The trajectory
of the system in Fig. 2.4c has a snap-through motion between the two stable
branches. A complete SMR cycle consists of a trajectory A− B − C −D − A of 4
steps on the SIM branch. In the first A − B stage, the NES amplitude is low and
TET is not activated. The growth of LO amplitude is observed. The snap-through
motion appears in the second B − C stage. This snap-through motion of phase
trajectory implies a sudden increase of NES amplitude. In the third C − D stage,
the resonance capture results in a fast decrease of LO amplitude. Phase trajectory
moves down along the SIM right branch. After most of LO energy is dissipated, the
trajectory returns to point A in the fourth D − A stage. It also brings a sudden
decrease in NES amplitude. A new SMR cycle starts. The trajectory on the stable
branch for the stage A − B and C − D coincide closely with the backbone of the
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Figure 2.4: SMR: cubic NES response under moderate energy input (G = 0.28mm with
initial condition: v(0) = v̇(0) = w(0) = ẇ(0) = 0). Subplots (a) and (b) represent
the time-displacement response of v and w, the red curve is the reconstructed envelope
amplitude (c) reconstructed trajectory projection (blue) in SIM structure (red).

SIM. So SIM is an efficient tool to describe the SMR motion.

(c) Post stable response
If the excitation amplitude continues to grow and surpasses the upper boundary
G2c of SMR interval, the SMR disappears and an ordinary fixed point E occurs on
the phase portrait of the SIM. The ordinary fixed point corresponds to a periodic
response in Fig. 2.5a. The trajectory of the system in Fig. 2.5c arrives at the final
stable point, E, located on the SIM stable branch, close to the singularity point D
of the right branch.

2.1.3 Efficiency analysis of cubic NES
To better understand the efficiency with which the input energy is absorbed during the
different stages, the energy dissipation ratio is defined in the time interval [τ0, τ ] as:

ELO(τ) =
∫ τ

τ0
ϵλ1ẋ

2dτ
ENES(τ) =

∫ τ
τ0
ϵλ2(ẋ− ẏ)2dτ

rNES = ENES

ENES + ELO

100%
(2.26)

Figure. 2.6 shows that the 3 response stages are divided by the analytical SMR interval
[G1c,G2c]. When the input energy (G < G1c) is too weak to activate the SMR, the average
LO amplitude and maximal LO amplitude coincide and increase linearly as the excitation
amplitude increases. Once the harmonic excitation is strong enough to activate the SMR,
the difference between average and maximal LO amplitude reveals that the amplitude of
the NES is no longer stable. In comparison with the previous stage, the NES possesses
more energy. Even though the external excitation is increasing, the maximal amplitude of
LO remains almost constant. When the excitation amplitude achieves the G2c threshold
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Figure 2.5: Post stable response: cubic NES response under intense energy input (G
= 0.38mm with initial condition: v(0) = v̇(0) = w(0) = ẇ(0) = 0), where SMR just
disappears. Subplots (a) and (b) represent the time-displacement response of v and w, the
red curve is the reconstructed envelope amplitude (c) reconstructed trajectory projection
(blue) in SIM structure (red).

value, the curves of average and maximal LO amplitude coalesce again and NES motion
becomes stable. With a slight increase in excitation amplitude, the system arrives at its
maximum efficiency point and the amplitude of LO is a local minimum. That means that
the full potential of absorbing energy has been explored.

Through the efficiency distribution, the maximal efficiency point and the local lowest
LO amplitude appear when the excitation amplitude is slightly above the threshold G2c.
In this optimal state, the system performs a stable response and phase trajectory is locates
at the singularity point D in the SIM structure.

When the system achieves a stable optimal state, the periodic solution of Eq. (2.8)
can be expressed under the assumption that the derivative is zero.

ϕ̇1 = ϕ̇2 = 0, ϕ1 = ϕ10, ϕ2 = ϕ20 (2.27)
Introducing them into the second equation of (2.8), a more convenient expression is

deduced for the 1:1 resonance condition (Ω = 1):

α3K
2Z3

20 + α2KZ
2
20 + α1Z20 + α0F

2 = 0, Z20 = |ϕ20|2 (2.28)
where

α0 = −1
4

(ε2λ2
1 + 1) (1 + ε)2

(λ2
1 + 1)

α1 = 1
4

(λ2
1λ

2
2 + λ2

1 + 2λ1λ2 + λ2
2) (1 + ε)2

λ2
1 + 1 ,

α2 = −3
8

(1 + ε)2λ2
1

λ2
1 + 1 , α3 = 9

64(1 + ε)2

(2.29)

The above equation manifests the relationship between the excitation amplitude G
(G = ϵF ) and stable NES amplitude in the function of cubic nonlinearity parameter K.
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Figure 2.6: Response of cubic NES under the increasing excitation amplitudes, σ = 0
(a) the maximal amplitude and average amplitude of LO, (b) energy dissipation ratio of
NES. Dotted lines a, b and c in figures represent condition in Fig. 2.3, 2.4 and 2.5.

Once the target excitation amplitude is fixed, the optimal K value can be calculated by
setting critical condition Z20 = Z2,2 into Eq. (2.28). So the optimal K design function is
expressed:

K = − 4
729

1
α0F 2 (16

√
(−3λ2

2 + 1)3
α3 − 108λ2

2α2 − 288λ2
2α3 + 81

√
−3λ2

2 + 1α1

+ 144α2

√
−3λ2

2 + 1 + 192
√

−3λ2
2 + 1α3 + 162α1 + 180α2 + 224α3)

(2.30)

The amplitudes of LO under different cubic nonlinearity parameters K and various
harmonic excitation amplitudes are presented in Fig. 2.7 to check the accuracy of the
predictions. The various cubic nonlinearity parameters are tested under a certain excitation
to find an optimal K value.

The thick red line corresponds to the numerical optimal K design curve. It represents
the projection of the minimal amplitude that LO can have for a certain excitation in
the K − G plane. The thin red and thin dotted blue lines are the maximal and average
amplitudes of LO respectively. The SMR occurs in the region, where these lines do not
coincide. The dotted and dashed thick blue lines represent the analytical optimal K
design with and without correction coefficient ξ respectively.

An obvious trend is observed: a larger imposed excitation amplitudes leads to a smaller
designed cubic nonlinearity parameter. There is a distance between the real and predicted
curves. The distance can be interpreted by the errors between the analytical arrival point
D and real arrival point E in Fig. 2.5c.

Ideally, once the SMR vanishes, the final stable solution should be located at singularity
point D. In fact, the simulation demonstrates that the real final stable point does not
coincide with point D, but is slightly higher on the SIM. The theoretical amplitude
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Figure 2.7: Distribution of the LO amplitude with the variation of excitation amplitudes
G and cubic nonlinearity parameters K under the damping condition λ1 = 1.67, λ2 =
0.167.

threshold Z2,2 may be smaller than the simulated value Z2,a, leading to errors between
the analytical and numerical K −G curves.

The correction coefficient ξ is defined as Z2,a = ξZ2,2 to describe the distance between
the analytical arrival point Z2,2 and simulated arrival point Z2,a. ξ = 1.07 is given by the
measurement in Fig. 2.5 and then it is introduced into Eq. (2.28) to calculate K. The
corrected predicted curve (thick blue dotted line in Fig. 2.7) almost coincides with the
real optimal K −G curve.

The correction coefficient ξ helps improve the accuracy in the prediction of the optimal
K value. If the cubic nonlinearity parameter of the system exceeds the optimal value,
then the response of the system will remain stable. For example, the cubic nonlinearity
parameter must be tuned to 1500 in order to minimise the LO amplitude (5.3mm) under
excitation (G = 0.4mm) (Fig. 2.7). When the K value is extended to 3400, the LO
possesses a minimal stable amplitude of 10.2mm, which is smaller than the average
amplitude of the LO during SMR (10.26mm). Thus, in the K value range [1500, 3400],
cubic NES can achieve a better absorption performance than SMR. A vast range of K
can be chosen. When the system faces uncertainties in the K value, it shows a strong
robustness. The absorption efficiency can be maintained at a relatively high level if the
K value is slightly larger than the optimal value. Even if the K value is lower than the
optimal value, the response is SMR, which is still considered to be highly efficient.

When phase trajectory reaches its ideal maximum efficiency point D in SIM structure,
the system has a periodic response. So the constant amplitude of NES and LO is marked
asN2,2 andN1,2. The response of w can be expressed as w = N2,2cos(τ+δ1) approximately.
In the whole period (τ to τ + 2π), the energy dissipated by NES can be rewritten as:

∫ τ+2π
τ ελ2ẇ

2dτ =
∫ τ+2π

τ ελ2 (−N2,2 sin (τ + δ1))2 dτ = ελ2N
2
2,2π (2.31)
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As for the energy dissipated by the LO, the velocity ẋ, the x can be expressed as
x = v + ϵy, where the ϵ is an extremely small parameter and leads to x ≈ v. So, at
the maximum efficiency point, x is N1,2cos(τ + δ2). Similarly to Eq. (2.31), the energy
dissipated by the LO in the whole period is ελ1N

2
1,2π. So the maximum efficiency point

during one period is

rNES =
λ2N

2
2,2

λ1N2
1,2 + λ2N2

2,2
(2.32)

According to the Eq. (2.15), from a theoretical point of view, the above equation is
finally turned into the following form with N2,2 =

√
Z2,2 and N1,2 =

√
Z1,2, where Z1,2 is

the value of Z1 at singularity point D:

rNES = 9λ2

6λ1λ2
2 − 2λ1

√
−3λ2

2 + 1 + 2λ1 + 9λ2
(2.33)

This equation shows that the ceiling of maximum theoretical efficiency is determined
only by the damping λ1 and λ2. Fig. 2.8a depicts its maximum theoretical efficiency
values for different damping conditions. In fact, the ideal amplitude of NES and LO for
the instant the SMR disappears shows some differences with simulation, which leads to
the error between the analytical maximum efficiency value and the simulated value.

The distribution of parameters ξ in the λ1, λ2 plane can be used to correct predicted
maximum efficiency, shown in Fig. 2.8b. The analytical value Z2,2 produces greater errors
than the simulated value Z2,a in the lower λ1, λ2 values. In contrast, the analytical value
Z2,2 can better describe the arrival point Z2,a for a relatively high damping parameter.
So the maximum efficiency value when considering the correction coefficient ξ can be
rewritten as:

rNES = 9λ2

(4ξ2 − 6ξ)λ1
√

−3λ2 + 1 + (−3ξ2 + 9)λ1λ2
2 + λ1(5ξ2 − 12ξ) + 9(λ1 + λ2)

(2.34)
The distribution of maximum efficiency based on Eq. (2.34) is illustrated in Fig. 2.8c.

It demonstrates that for certain fixed λ1, an optimal damping value λ2 exists to promote
the energy-absorbing performance. Reducing the damping on the preliminary structure
λ1 can enhance the maximum absorbing efficiency value.

The three different damping conditions, labelled in Fig. 2.8c as condition 1, 2 and 3,
are used to verify the analytical prediction of maximum efficiency. The predicted values
for conditions 1, 2 and 3, are obtained directly by Eq. (2.34) with different correction
coefficients ξ = 1.12, 1.06, 1.13 from Fig. 2.8b, are 77%, 71% and 53% respectively. The
direct calculations of maximum efficiency of 76%, 68% and 52%, which are very close
to the predicted values. A simpler way to estimate maximum efficiency value has been
found.

To verify that the maximum absorbing efficiency values are independent of the optimal
cubic nonlinearity parameter design, various simulations are performed in the different
damping environments, as shown in Fig. 2.9. Each point on the excitation-efficiency line
represents the maximum efficiency value achievable for the corresponding optimal cubic
nonlinearity parameter design with correction coefficients from Eq. (2.30). For the brown
line in Fig. 2.9, when excitation amplitude changes from 0.1mm to 1mm, the optimal K
design changes according to Fig. 2.7 but the maximum efficiency value is almost constant.
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Figure 2.8: Maximum efficiency values and correction coefficient ξ in the function of
λ1 and λ2 in case K = 1742 and ϵ = 0.01. (a) ideal maximum efficiency estimated by
Eq. (2.33) (b) correction coefficient ξ distribution (c) maximum efficiency values with ξ
corrected by Eq. (2.34), point 1, 2 and 3 are the 3 conditions to be verified.
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Figure 2.9: Maximum energy dissipation ratio that a best tuned K system for certain
excitation G can achieve under the different damping parameters conditions.

This phenomenon indicates that the maximum ability to absorb energy is independent of
the K design. The cubic nonlinearity parameter design can only adopt a certain excitation
input and its maximum efficiency level is determined by the damping conditions.

According to Eq. (2.33), the cubic nonlinearity parameter K and mass ratio ϵ do
not influence the limit of maximum efficiency. Combining a lower damping of a main
structure λ1 = 0.5 and a relative lower damping of NES system λ2 = 0.33 can improve
the maximal efficiency level to 85%. So, the maximal absorbing efficiency can be enhanced
by selecting the proper damping condition. Because the prerequisite of the above result
is the existence of SMR, the restrict of λ2 < 1/

√
3, and not too high a mass ratio ϵ is still

necessary [Starosvetsky et Gendelman, 2010].

2.2 Experimental study of cubic NES
To obtain the strong nonlinearity, the four springs device is constructed by Qiu [Qiu et al.,
2019a]. The whole system is consists of two nonlinear springs and two linear springs.
According to the characteristic of nonlinearity that is provided by different parts of the
device, the cubic NES device is classified into two parts: (1) conical springs mechanism,
(2) linear springs mechanism

(a) Conical springs mechanism
The conical springs are adapted because of their advantages in anti-buckle at large
deflection. The single conical spring presents a piecewise force-displacement curve
as Fig. 1.12a shows. Once the deflection of spring crosses the transition point, the
nonlinear behaviors start. So to overcome the linear stiffness phase, a symmetrical
connection type is proposed as Fig. 2.10a. The two conical springs are pre-compressed
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Table 2.1: Experimental parameters of NES system
k0 a1 a3 kl l0l lc
187N/m 280N/m 3.4e5N/m3 1100N/m 50mm 14.3mm

at the transition point. When the center mass moves along the axis of conical spring,
the composed force-displacement curve is smooth and no longer piecewise. The new
force-displacement relation is written as:

F = (k0 + a1) · u+ a3 · u3 (2.35)

where k0 are linear phase stiffness. a1 and a3 are the linear stiffness and cubic
nonlinearity value in the nonlinear phase of conical spring. Although it exists the
square term in the combined curve, its contribution can be maintained within a
small value and negligible by optimization of the mean diameters of the biggest and
smallest coils of conical spring [Qiu et al., 2018b].

(b) Linear springs mechanism
The composed force-displacement curve of conical springs contains a linear stiffness
part k0 + a1 that prevents the direct application of two conical springs systems.
To construct a pure cubic nonlinearity without a linear part, a negative stiffness
is implemented through two cylindrical compression springs as Fig. 2.10b. The
cylindrical spring can rotate with the other end fixed. The direction of movement
is perpendicular to its axis. Based on the Taylor expansion, the force-displacement
in the function of pre-compression length (lp) can be expressed as:

F = (−2kl
lp

l0l + 2lc − lp
) · u+ (kl

l0l + 2lc
(l0l + 2lc − lp)3 ) · u3 (2.36)

where l0l and lc are the free lengths of linear spring and connector respectively. kl

is the stiffness of linear spring.

By combining the conical springs and linear springs, the composed system is presented
as Fig. 2.10c and the corresponding force-displacement relationship is obtained:

F = k2u+ k3u
3, k2 =

(
a1 + k0 − 2kl

lp
l0l + 2lc − lp

)
, k3 =

(
a3 + kl

l0l + 2lc
(l0l + 2lc − lp)3

)
(2.37)

The linear stiffness of four springs device k2 can be totally counterbalanced through
tuning the proper pre-compression length lp. To verify the analytical prediction and
optimal design, an adjustable four springs device is constructed and is presented in
Fig. 2.11. The parameter of the four springs system is given in Tab.2.1.

A linear oscillator is connected to a 10kN electrodynamics shaker and is excited by a
harmonic excitation with its natural frequency. The NES mass is embedded through a
track and a four springs device. The latter prived the cubic nonlinearity parameter and
negative stiffness through adjusting pre-compression length of linear springs. The two
contactless displacement sensors are installed vertically to measure absolute displacement
of LO and NES. An accelerometer is also installed to the shaker to measure its acceleration.
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Figure 2.10: Detailed diagram of the NES system: (a) conical springs mechanism, (b)
linear springs mechanism, (c) combining system.

Table 2.2: Environmental parameters of the experiment
Physical parameters m1 m2 c1 c2 k1

5.5kg 0.065kg 5N·s/m 0.5N·s/m 1.145e4N/m
Reduced parameters ϵ λ1 λ2 f0

1.18% 1.69 0.169 7.3Hz

The extra digital oscilloscope and a bandpass filter can correct bias and attenuate high
frequency noise. The LO mass, NES mass and their corresponding damping are presented
in Tab. 2.2. The dimensionless parameters (mass ratio, damping, natural frequency) are
fixed to design the optimal K.

When the length of pre-compression lp is about 14mm, the calculated cubic nonlinearity
value k2 is 6.61e5 N/m3 (K = 4.86e3), the linear part k3 equal to -9 N/m. The value
of linear part is very small compared to the strong nonlinearity (δ = 0). So in this case,
the four springs device is tuned as a cubic NES. The experiment measurement of cubic
nonlinearity value is presented in Fig. 2.12. Although some distributions exist in the
vicinity of zero position, the prediction of force-displacement relationship is close to the
experimental result, especially in a large displacement.

In this parameter condition, the analytical prediction of Eq. (2.25) indicates that this
state is designed for target excitation G = 0.26mm. So the system can have a minimal
stable amplitude. To verify the optimal design for G = 0.26mm, two different excitation
amplitudes G = 0.25mm and G = 0.28mm are examined. As the previous response
regime analysis, if the input amplitude is lower than the critical value, the system still
performs the SMR. So time-displacement response in the blue curve shows a classic SMR in
Fig. 2.13. The LO oscillates in a stable response with minimal amplitude if the excitation
slightly exceeds the target excitation. When G = 0.28mm, the stable response occurs as
the red curve in Fig. 2.13. So an optimal design for the target excitation is achieved in
the cubic NES case.
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Figure 2.11: (a) Detailed view of experimental setup (b) Scheme of system.
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2.3 Optimal design criteria for bistable NES
Through the Eq. (2.37), a large pre-compressed length lp will cause the negative stiffness
becomes significant. It is inappropriate to ignore them in the analytical process. So the
cubic NES will turn into a bistable NES configuration as Fig. 2.14 illustrates.

The introduction of negative stiffness in the experimental device will produce two
equilibrium points, one on either side of the original coordinate. And the dynamic
behavior of bistable NES shows some different features, for example, chaos motion and
intra-well oscillation. The original motion equation has to add the negative stiffness term
k3 in Eq. (2.1), it gives:

m1ẍ+ k1x+ c1ẋ+ c2(ẋ− ẏ) + k2(x− y)3 + k3(x− y) = k1xe + c1ẋe

m2ÿ + c2(ẏ − ẋ) + k2(y − x)3 + k3(y − x) = 0 (2.38)

With the similar treatment procedure in the cubic NES case and a new variable δ =
k3/m2ω

2
0, the systems equations can reproduce a demensionless form:

v̈ + ϵλ1
v̇ + ϵẇ

1 + ϵ
+ v + ϵw

1 + ϵ
= ϵF cos Ωτ

ẅ + ϵλ1
v̇ + ϵẇ

1 + ϵ
+ v + ϵw

1 + ϵ
+ λ2(1 + ϵ)ẇ +K(1 + ϵ)w3 + δ(1 + ϵ)w = ϵF cos Ωt

(2.39)

By appling the complexification-averaging method and multiple scales method, the ϵ0

order of bistable system is extracted as:

d
dτ0

ϕ1 = 0
d

dτ0
ϕ2 + 1

2i (ϕ2 − ϕ1) + 1
2ϕ2λ2 − 3

8iKϕ
2
2ϕ2 − 1

2iδϕ2 = 0
(2.40)

the ϵ1 order

d

dτ1
ϕ1 + 1

2λ1ϕ1 + 1
2i (ϕ1 − ϕ2) + iσϕ1 − 1

2F = 0

d

dτ1
ϕ2 + 1

2λ1ϕ1 + 1
2ϕ2λ2 + 1

2iσ (ϕ1 + ϕ2) + 1
2i (ϕ1 − ϕ2)

− 3
8iK(1 − 3σ)ϕ2

2ϕ2 − 1
2F + 1

2iδ(σ − 1)ϕ2 = 0

(2.41)

Figure 2.14: Schematic of linear oscillator and bistable NES system
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Another aspect of the introduction of the negative stiffness parameter δ is the deformation
of SIM structure, which is expressed:

Z1 = λ2
2Z2 + (δ − 1)2Z2 + 3K

2 (δ − 1)Z2
2 + 9K2

16 Z3
2

Z1 = N2
1 , Z2 = N2

2

(2.42)

with corresponding singularity points

Z2,j = N2
2,j =

4
(
2(1 − δ) ∓

√
(1 − δ)2 − 3λ2

2

)
9K , j = 1, 2 (2.43)

2.3.1 Bistable NES response regimes
When the motion of NES is between two equilibrium, the dynamic transition is rapid and
sweeps out a large stroke due to the negative stiffness. Thus, the viscous damping can
realize a highly efficient energy dissipation. A double-wells restoring force potential can
better manifest the four different response regimes.

The second equation of Eq. (2.38) is equivalent to: ẅ+λ2ẇ+Kw3 + δw = ẍ with the
definition λ2 = ϵλ̂2, ẍ = ϵx̂, u1 = w, u2 = ẇ. It is necessary to consider the acceleration
term and damping term as small perturbations to the Hamiltonian system.{

u̇1 = u2

u̇2 = −δu1 −Ku3
1 + ϵ

(
x̂− λ̂2u2

) (2.44)

The Hamiltonian of system without perturbation (H(u1, u2)) and its potential function
(U(u1, u2)) can be written as:

H (u1, u2) = u2
2

2 + δ
u2

1
2 +K

u4
1

4
U (u1) = δ

u2
1

2 +K
u4

1
4

(2.45)

In the bistable case, the system is characterized by a double-well potential energy
surface. Three equilibrium points exist: (u1, u2) = (0, 0) and (u1, u2) = (±

√
−δ/K, 0).

The K governs the span of two wells 2
√

−δ/K (the distance between two equilibra) and
the depth of well ∆w = −δ2/4K. When the potential energy of the NES is lower than
∆w, it will be trapped in one of the two wells. So K and δ determine the lower boundary
of energy above which bistable NES performs a cross-well oscillation. In contrast to the
influence of K, larger values of |δ| increase the span and depth of the potential well. The
parameters of this bistable NES case are fixed as: ϵ = 0.01, λ1 = 1.67, λ2 = 0.167, K =
1742, δ = -0.44. According to the location of potential energy surface of bistable NES,
its response regimes can be classified in four following stages.

(a) Intra-well oscillation

It exists two attrctor points at w = ±x0 = ±
√

−δ/K in the potential function, where
NES possesses the lowest potential energy and is called potential well. The critical
LO amplitude for NES escaping from the well and chaos occurrence is obtained by
the Melnikov analysis [Qiu et al., 2019a]. When the LO amplitude is lower than the
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critical value, the NES potential energy is in one of the wells. The NES oscillates
around the stable equilibrium (w = x0) as time displacement in Fig. 2.15, it is
termed as intra-well oscillation. Since the cubic nonlinearity parameter is far larger
than that of cubic NES near the stable equilibrium, relatively high efficiency can be
produced for low energy input.
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Figure 2.15: Time-displacement of bistable NES for intra-well oscillation with G =
0.05mm, σ = 0.

(b) Chaotic motion
Once the input energy increases, the trajectory will oscillate between two wells.
So the displacement of NES can cross the two equilibrium with the occurance of
chaos in Fig. 2.16. The chaotic motion is identified by the calculation of Lyapunov
exponents, which is positive [Romeo et al., 2015b]. The chaotic motion possesses
higher energy than intra-well oscillation. In this stage, with increasing energy, 1: 3
subharmonic oscillation is also confirmed and brings a relatively low efficiency.
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Figure 2.16: Time-displacement of bistable NES for chaotic motion with G = 0.08mm, σ
= 0.

(c) SMR
When NES amplitude continues to grow, the cubic nonlinearity parameter has a
larger effect on the response behaviour. In Fig. 2.17, the 1:1 resonance is mixed
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with temporary chaotic motion. In the time domain, the chaotic motion connects
two adjacent cycles of SMR. The boundary of the SMR stage and chaotic motion
stage is hard to identify. With the increasing excitation amplitude, the time interval
of chaotic motion will be compressed.
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Figure 2.17: Time-displacement of bistable NES for SMR stage with G = 0.3mm, σ = 0.

(d) Periodic response

The system reaches a periodic response, and the SMR disappears in Fig. 2.18. The
efficiency of the NES reaches its maximum value between the transition from the
SMR stage to the stable response stage.
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Figure 2.18: Time-displacement of bistable NES for stable response with G = 0.5mm, σ
= 0.

2.3.2 Efficiency analysis of bistable NES
Fig. 2.19 illustrates the performance of bistable NES and its various stages with increasing
excitation. G0c is the boundary of chaos. Due to the mixture of chaos stage and beginning
SMR, the analytical expression G1c can not describe the occurrence of SMR. But the
threshold excitation (G2c) is still helpful for predicting the disappearance of SMR [Qiu
et al., 2018b], which gives:
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Gjc = ϵ
N2,j

4
F1

F2
, j = 1, 2

F1 = 9K2N4
2,jλ1 + 24KN2

2,jδλ1 − 24KN2
2,jλ1 + 16δ2λ1 + 16λ1λ

2
2 − 32δλ1 + 16λ1 + 16λ2

F2 =
√

9K2N4
2,j + 24KN2

2,jδ − 24KN2
2,j + 16λ2

2 + 16(δ2 − 1)2

(2.46)
The response regimes in Fig. 2.19 show the intra-welland inter-well oscillations, which

are divided by G0c. Before it enters the chaos stage, the NES exhibits a small amplitude
response of oscillation around one of the equilibria. In this stage, the LO amplitude
increases almost linearly and the curves of average and maximal LO amplitude coincide.
However, the efficiency decreases rapidly with increasing excitation.

In the second stage, the displacement of NES starts to pass the two equilibria. The
curves of average and maximal LO amplitude separate in Fig. 2.19, and the distance
becomes larger, which means that the amplitude is not constant.

With the introduction of SMR, the distance between the average and maximal LO
amplitude becomes constant. Moreover, the bistable NES performs a higher efficiency
than that of cubic NES because of higher speed, and more significant stroke swept in the
dynamic transition of negative stiffness.

Once the SMR disappears, the curves of the average and maximal LO amplitude
coincide again. The efficiency of the NES reaches its maximum value, where the LO
amplitude starts to increase with the growth of excitation amplitude. It is reasonable to
believe that the energy-absorbing capability is saturated.
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Figure 2.19: Response of bistable NES under the increasing excitation amplitudes, σ =
0 (a) the maximal amplitude and average amplitude of LO for different excitation G
(b) energy dissipation ratio of bistable NES. G0c is the excitation threshold for chaos
occurrence, G2c is the excitation threshold for SMR disappear.

For a given excitation amplitude G, it can be considered an upper threshold of
excitation G2c = G to achieve maximum efficiency. Then, the optimal expression Km
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is determined by solving the first equation of Eq. (2.46):

Km = 2
81 (ε2 (−144δλ2
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(2.47)

where µ2 = δ2 − 3λ2
2 − 2δ + 1

In order to compare the numerical optimal design with the analytical prediction (2.47)
under the given fixed excitation, various cubic nonlinearity parameters K are fully tested,
and the results are presented in Fig. 2.20. The thick red line is the projection of minimal
LO amplitude in the K − G plane. The thick blue line is the analytical prediction of K.
The Fig. 2.20 illustrates an evident tendance that smaller cubic nonlinearity parameter K
can bear larger excitation better. Without introducing the coefficient of correction, ξ, the
analytical prediction can still describe the optimal K −G curve with sufficient accuracy.
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Figure 2.20: Distribution of the optimal design of K of bistable NES with the variation
of harmonic excitation amplitudes G under the damping condition λ1 = 1.67, λ2 = 0.167
and fixed δ = -0.44.

As with the efficiency analysis in the cubic case, the optimal point occurs in the stable
response phase, where the SMR vanishes. The limit efficiency of the optimal point can be
obtained from Eq. (2.32), where the expressions of Z1,2 and Z2,2 are replaced by Eq. (2.43).
The following expression is the estimation of maximum efficiency for bistable NES.
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rbis−NES = 9λ2

2λ1µ(δ − 1 + µ) + 12λ1λ2
2 + 9λ2

(2.48)

where µ2 = δ2 − 3λ2
2 − 2δ + 1.

Eq. (2.48) becomes the same as Eq. (2.33), if δ = 0. Unlike Eq. (2.33), the efficiency of
bistable NES involves the negative stiffness. Without introduction of correction coefficient
ξ, the real arrival point is already close to the folded point Z2,2, which leads to enough
accurate estimation of the maximal efficiency. For example, the predicted value of maximum
efficiency is 78% in Fig. 2.19. The maximum efficiency value obtained by direct calculation
is 75%. So Eq. (2.48) provides a simpler way to to estimate the maximum efficiency of
bistable NES.

2.3.3 Robustness analysis of optimal design
In order to apply the optimal design in practice, it is essential to consider the effect of
uncertainties of design parameters on the system response. This kind of uncertainties may
come from the material properties and assembly errors of the system. The impact of these
uncertainties on the performance of energy absorption, as well as on the reliability and
robustness of the spring NES device are investigated [Braydi et al., 2020]. Under transient
vibrations, the bistable NES has better robustness compared to tuned TMD [Dekemele
et al., 2019].

The value of K is chosen from 1250 to 2750, and δ varies from -0.56 to -0.3. Let
the target harmonic excitation be fixed at G = 0.4mm. According to the optimal cubic
nonlinearity parameter K function Eq. (2.47), an optimal value is obtained (K = 2000, δ
= -0.43), where the system has achieved the maximum efficiency of 75%. In the vicinity
of the optimal design, an obvious dividing line is observed. The efficiency distribution
shows a cut off on both sides of the separatrix (dashed line in Fig. 2.21).

For quantitative analysis of the stiffness uncertainties, the responses of two other
parameters combinations on each side (case A: K = 1750, δ = -0.5 and case B: K = 2200,
δ = -0.41) are also compared with the optimal design, which is presented in Fig. 2.21. In
the left half part of the parameters plane, the designed system performs a SMR such as
case A in Fig. 2.22. Although the LO has an unstable amplitude, it can be considered
as efficient energy-absorbing, and the average efficiency can be 62%. In this region, the
optimal design of the bistable NES shows strong robustness.

If the system parameters are located on the right side of the dividing line, the capacity
to absorb energy is saturated, and the response turns to be a periodic oscillation. The
stable LO amplitude is 5.9mm in case B and it is slightly larger than 5.4mm under
optimal design in Fig. 2.22. In case B, the efficiency of NES is still considerably high.
The system’s efficiency is more sensitive to variation in K. So the contour map of the
efficiency distribution shows a striped form on the right part. In this region, the system’s
periodic response always possesses a higher efficiency than that of SMR. Once the optimal
design is fixed, the chosen K (of the real system) should be slightlys larger than the
calculated value, in order to ensure a stable response. A descent of |δ| also helps stabilise
the response and achieve high efficiency in the vicinity of the optimal design. Our optimal
method allows to determine the minimal but optimal K required for certain excitations.
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2.4 Experimental study of bistable NES
In subsection 2.2, a pure cubic nonlinearity mechanism is constructed and the optimal
design of cubic NES for the target excitation is validated.

In the experiment of cubic NES, two axial compression conical springs and linear
springs are constructed. It demonstrates that the two linear springs can also be pre-
compressed to provide the extra negative stiffness to counterbalance linear stiffness and
achieve bistable nonlinearity. The increasing pre-compression length of linear spring lp
leads the system to possess different values of k3 and k2. So the system can shift from the
cubic NES to the bistable NES and adapt various amplitudes excitations in the optimal
state.

In the perspective of the optimal excitation amplitude G2c that can be absorbed, a
high K value results in a lower G2c and a low |δ| value shows the same effect of decreasing
G2c. However, increasing the pre-compression length leads to an increase in both K and
|δ|. In Fig. 2.23a, the thick blue curve indicates that a bistable NES with higher pre-
compression length can achieve larger G2c. It means the threshold excitation amplitude
G2c is mainly governed by the negative stiffness.

The dash lines in Fig. 2.23b clearly present that the NES can be tuned to absorb
target excitation ranging from [0.26, 0.41]mm based on the environmental parameters
of the experiment. The left red endpoint of this thick curve, where δ almost equals 0,
represents a system possessing pure cubic nonlinearity. The points in the rest of the
curve represent bistable NES designs with higher |δ| values in the more right side. In
the contour plot of Fig. 2.23b, G2c at the same height shows a near-vertical relationship
with the δ axis, which indicates that G2c is more sensitive to changes in negative stiffness.
In other words, adjusting the negative stiffness can more obviously regulate larger target
excitation G2c.

When the lp rises to 17.5mm, the cubic nonlinearity value becomes k2 = 7.1e5 N/m3

and the negative stiffness increases to k3 = -159 N/m. The corresponding reduced
parameters are K = 5.3e3 and δ = -1.2. The parameters of the system are the same with
Tab.2.1. The experimental bistable nonlinearity is realized in Fig. 2.24. Two equilibrium
positions are observed in ± 13mm. Globally, the experimental bistable nonlinearity is
close to the analytical description.

In this condition, the numerical simulation indicates the system is designed for the
target excitation G = 0.37mm as the red point of the bistable case in Fig. 2.23b. So two
excitation cases (0.36mm and 0.40mm), which are selected on each side of 0.37mm, are
examined. In a lower input energy case, the bistable NES still performs the SMR like the
red curve in Fig. 2.25. In the higher excitation amplitude case 0.4mm, which is slightly
larger than the target excitation, the system turns to be a stable response with minimal
amplitude. In practice, it is possible to set the target excitation somewhat smaller than
the actual required excitation to obtain a greater cubic nonlinearity parameter or less
negative stiffness. Since the negative stiffness plays a significant role in the compression
process, the required pre-compression length of the linear spring can be reduced slightly
to regulate the requirements more precisely.
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2.5 Conclusions
The current study investigates the fundamental influence of the design parameters on the
maximum absorbing efficiency limit for the optimization of both cubic and bistable NES.
Based on the response regimes, the optimal point is selected in the transition of SMR
and stable response. The numerical method indicates the feasibility of the nonlinearity
control strategy, and the experiment is realized to obtain the optimal design. Several
main conclusions can be drawn:

1. The emergence of the maximum efficiency point is similar in the response regimes of
both cubic and bistable NES. It appears during the transition from the SMR to the
stable response. The expression of the maximum efficiency is found. The maximum
efficiency level only depends on the damping parameters λ1 and λ2 in cubic case.
The negative stiffness can improve the maximum efficiency level in a bistable NES.

2. The analytical relationship between the optimal cubic nonlinearity parameter value
and a target excitation has been given and verified by simulation for both cubic and
bistable NES. The error between the analytical optimal cubic nonlinearity parameter
designs and the numerical results can be reduced by introducing a correction coefficient
ξ in the cubic case. The bistable NES, meanwhile, does not require such processing.
A proper damping combination is helpful to improve the maximal efficiency level
that the system can achieve.

3. The performances of bistable NES cases, whose parameters are in the vicinity of
optimal combination, are compared to verify their robustness. A slightly larger
value of cubic nonlinearity parameter than the calculated value can help the system
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achieve its target excitation for cubic and bistable NES designs. The experiment
confirms that by adjusting the pre-compression length of linear spring, the force-
displacement curve of four springs device can shift from the cubic NES into a bistable
NES and absorb the various target excitations in the optimal state.
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CHAPTER 3 Identification of chaos
and qualitative analysis
in bistable NES

This chapter focuses on the development of an adapted complex variables method
in the vicinity of equilibrium in bistable Nonlinear Energy Sink (NES). A
simplified chaos trigger model is established to describe the distance between the
stable phase cycle and the pseudo-separatrix. An analytical expression can predict
the excitation threshold for chaos occurrence. The damping parameters boundary
for chaos is identified by the Melnikov analysis. A qualitative analysis method
based on the relative positions between the chaos trigger threshold line and the
Slow Invariant Manifold (SIM) unstable region is proposed. This degeneration
of the response regimes can be interpreted by the qualitative analysis method,
which helps to classify the bistable NES. The experiment confirms the analytical
result of intra-well oscillation in the frequency domain. The characteristic
response regimes of weak, modest and strong bistable NES are identified by the
experimental results.
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Chapter 3 : Identification of chaos and qualitative analysis in bistable NES

3.1 Adapted complex variables method for intra-well
oscillation

There are various dynamic behaviors of bistable NES. In a low energy case, subharmonic
resonances and chaotic cross-well oscillations are excited. In a higher energy case, the
fundamental 1:1 resonance mainly governs the dynamic behavior. If the bistable NES
system is under harmonic excitation input, four typical response regimes at different
energy levels appear in turn: (1) intra-well oscillation, (2) chaotic inter-well oscillation,
(3) Strongly Modulated Response (SMR), (4) stable periodic response, as mentioned in
the previous section.

Intra-well oscillation relates to a low energy motion that is restricted to one of the
potential wells. It will become chaotic with increasing energy. An exact method to
describe the intra-well oscillation is necessary to divide the regimes. There are currently
two effective methods to identify potential chaos oscillation. First, the Lyapunov Exponent
(LE) measures the degree of stochasticity of a trajectory by defining a relative distance
in phase space between a given orbit and a test orbit beginning with a nearby initial
condition. An LE approaching a positive value implies a chaotic orbit [Romeo et al.,
2015a]. However, the LEs are difficult to calculate analytically. The numerical calculation
is also restricted by an infinitesimal initial distance and an infinite time horizon. So a
practical Wolf’s algorithm is applied [Romeo et al., 2015a ; Dekemele et al., 2019]. The
Melnikov method is another of the few analytical ways to obtain an approximate criterion
for chaos. According to the Melnikov theory, the chaos and transverse interaction over the
separatrix in the phase plane occur simultaneously. The threshold values of damping and
other control parameters for the occurrence of homoclinic bifurcation are presented [Al-
Shudeifat et al., 2013 ; Farshidianfar et Saghafi, 2014a]. Both ways can hardly predict
the harmonic excitation amplitude threshold for the occurrence of chaos.

A definition of the amplitude of the NES is necessary to predict the threshold of
harmonic excitation amplitude for chaotic motion. The traditional treatment of w defines
it as the relative distance between Linear Oscillator (LO) and NES. However, the negative
stiffness generates one equilibrium on either side of the origin of the coordinates. The
small oscillation around equilibrium will be described as a large amplitude. The phase
trajectory at a low energy level will not fit alongside a classic SIM structure. It also
generates a massive error in the analytical calculation of NES amplitude. So it is necessary
to consider the position of equilibrium and define the distance between the NES and the
equilibrium point as a relative displacement.

The target bistable system is illustrated in Fig. 2.14. After the substitution of variables,
a dimensionless form of equation is extracted as Eq. (2.39). The system is investigated in
the vicinity of 1:1 resonance where LO and NES oscillate at the identical frequency Ω. Two
adapted complex variables describing the neighbourhood of positive stable equilibrium
point x0 =

√
−δ/K are given by

ϕ1(τ)eiΩτ = d

dτ
v(τ) + iΩ(v(τ) + ϵx0)

ϕ2(τ)eiΩτ = d

dτ
w(τ) + iΩ(w(τ) − x0)

(3.1)

with i =
√

−1 the imaginary unit. A minus sign should be added to before x0 in Eq. (3.1)
in order to study the local dynamics near the negative stable equilibrium −x0. For

PhD Thesis - Zhenhang WU - 65 -



3.1 Adapted complex variables method for intra-well oscillation

the sake of symmetry, only intra-well oscillation on the positive side falls within the
scope of our present considerations. Unlike the definitions of ϕ1 and ϕ2 in the previous
section, the amplitude with respect to the stable equilibrium point on one side (w = x0)
is described here instead of the amplitude with respect to the unstable equilibrium point
(w = 0). In a low energy intra-well oscillation case, the NES vibrates symmetrically near
the positive equilibrium as a center. However, the numerical simulation confirms that the
LO amplitude is also slightly asymmetrical. The center of LO oscillation approximately
locates at −ϵx0. The initial adapted complex variables assumption fits well the simulation
result.

Introducing Eq. (3.1) into Eq. (2.39), and keeping only terms containing eiΩτ yields
the following slow modulated system:

ϕ̇1 + iΩ
2 ϕ1 + ϵλ1 (ϕ1 + ϵϕ2)

2(1 + ϵ) − i (ϕ1 + ϵϕ2)
2Ω(1 + ϵ) − ϵF

2 = 0

ϕ̇2 + iΩ
2 ϕ2 + ϵλ1 (ϕ1 + ϵϕ2)

2(1 + ϵ) − i (ϕ1 + εϕ2)
2Ω(1 + ϵ) + λ2(1 + ϵ)ϕ2

2 − 3iK(1 + ϵ)ϕ2
2ϕ2

8Ω3

−ϵF

2 − iϕ2δ(1 + ϵ)
2Ω − 3iK(1 + ϵ)ϕ2x0

2

2Ω = 0

(3.2)

The stable response of intra-well oscillation corresponds to the fixed point of Eq. (3.2)
when the derivative equals zero, it gives:

ϕ̇1 = ϕ̇2 = 0 ⇒ ϕ1(τ) = ϕ10, ϕ2(τ) = ϕ20 (3.3)

After the substitution of above variables into Eq. (3.2), the analytical amplitude of
the system can be expressed in a more convenient form. Coefficients βi (i = 1..3) are not
given here due to their lengths.

ϕ10 =

iϵϕ20

Ω(1 + ε) − ε2λ1ϕ20

1 + ε
+ εF + iε2λ1FΩ

iΩ + ελ1

1 + ε
− i

Ω(1 + ε)
β3Z

3
20 + β2Z

2
20 + β1Z20 + β0F

2 = 0, Z20 = |ϕ20|2

(3.4)

The small detuning parameter σ is applied to measure how near the excitation frequency
is to the natural frequency of LO. It gives Ω = 1+ϵσ. The stability of intra-well oscillation
is studied by introducing a small perturbation ρj and its complex conjugate ρj, j = 1, 2
into the fixed point equation Eq. (3.2).

ϕ1 = ϕ10 + ρ1, ϕ2 = ϕ20 + ρ2, ϕ1 = ϕ10 + ρ1, ϕ2 = ϕ20 + ρ2 (3.5)

Extracting the perturbation terms gives the characteristic matrix.

ρ̇1
ρ̇2
ρ̇1
ρ̇2

 =


M11 ϵM21 0 0
M21 M22 0 M24

0 0 M11 ϵM21
0 M24 M21 M22



ρ1
ρ2
ρ1
ρ2

 (3.6)
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Figure 3.1: NES amplitude of intra-well oscillation in the frequency domain with system
parameters: ϵ = 0.01, λ1 = 1.67, λ2 = 0.167, K = 1742, δ = -0.44. Blue points indicate
that the solutions of intra-well oscillation are all stable.

where 

M11 = −i(1 + ϵ)
2 − ϵλ1

2(1 + ϵ) + i

2(1 + ϵ)(1 + ϵσ)
M21 = − ϵλ1

2(1 + ϵ) + i

2(1 + ϵ)(1 + ϵσ)

M22 = 3i(1 + ϵ)Kϕ20ϕ20
2(1 + ϵ)(1 + ϵσ) − λ2(1 + ϵ)

2 + iϵ

2(1 + ϵ)(1 + ϵσ)
−i(1 + ϵσ)

2 − ϵ2λ1

2(1 + ϵ) + i(1 + ϵ)(3Kx2
0 + δ)

2(1 + ϵσ)
M24 = 3i(1 + ϵ)Kϕ2

20
8(1 + ϵσ)3

(3.7)

The existence of a root of the characteristic equation with a positive real part implies
the instability of periodic intra-well oscillation, and vice versa. The stability of intra-
well oscillation around equilibrium is deduced and presented in Fig. 3.1 in the frequency
domain. All blue points mean that all the real roots of matrix (3.6) are located in the
left-half complex plane. The motion within the well is naturally stable in our case. |ϕ20|
is lower than the chaos threshold. It ensures that the local dynamics is restricted to
within the well. If the value of |ϕ20| exceeds the chaos threshold, it is beyond the scope
of our present section, and results in truncation in the vicinity of the natural frequency
in Fig. 3.1.

3.1.1 Asymptotic analysis of local SIM
Since the intra-well vibration is away from the unbalance point w = 0. So the conventional
SIM is not applicable in this low energy state. The local SIM structure is reconstructed
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Figure 3.2: Local SIM and local phase trajectory for (a) k3 = -20 N/m (δ = -0.174), (b)
k3 = -100N/m (δ = -0.871). Zoomed insert represents the detailed phase trajectory of
intra-well oscillation defined by Eq. (3.1) in the green frame

by the adapted complex variables method.
The dynamic behavior is considered to involve motion on various times scales. By

substituting Eq. (2.9) into Eq. (3.2), the terms involving the same power of ϵ0, are selected:

∂

∂τ0
ϕ1 = 0,

∂

∂τ0
ϕ2 + 1

2λ2ϕ2 + 1
2i(ϕ2 − ϕ1) − 1

2iδϕ2 − 3
2iKϕ2x0

2 − 3
8iKϕ2ϕ

2
2 = 0

(3.8)

The first equation in Eq. (3.8) indicates that the modulation of ϕ1 is independent of
τ0. Fixed point Φ = limτ0→∞ ϕ2 obeys the algebraic equation:

1
2λ2Φ + 1

2i(Φ − ϕ1) − 1
2iδΦ − 3

2iKΦx0
2 − 3

8iKΦΦ2 = 0 (3.9)

Taking ϕ1 (τ1) = N1e
iδ1 and Φ(τ1) = N2e

iδ2 and then solving the above equation gives:

Z1 =
(
λ2

2 + (δ − 1)
(
δ − 1 + 6Kx2

0 + 3
2KZ2

)
+ 9K2

(
x2

0 + Z2

4

)2)
Z2

Z1 = N2
1 , Z2 = N2

2

(3.10)

An illustration of the modified local SIM is given in Fig. 3.2 under the different negative
stiffnesses where ϵ = 0.01, λ1 = 1.67, λ2 = 0.167, K = 1742.

In a cases of small negative stiffness, the modified SIM possesses a characteristic similar
to the classic cubic SIM curve, which has two singularity points like Fig. 3.2a. Although
most part of the SIM curve is beyond the scope of this application, the zoomed insert part
in the vicinity of point (0,0) shows that the phase trajectory rises along with the SIM.
In a more significant negative stiffness case, in Fig. 3.2b, the modified local SIM becomes
a monotonically increasing curve. The phase trajectory of the zoomed insert part still
oscillates around the SIM, which shows that it is correct for low energy input case.

Unlike the traditional description method, where the phase trajectory has fully separated
itself from the SIM in low energy case, the modified SIM describes intra-well motion more
accurately. This modified local SIM structure is developed based on the adapted complex
variables method and its application scope is restricted to an intra-well oscillation. So,
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the modified SIM is termed as a local SIM that describes its dynamic behaviors with
sufficient accuracy only in a low energy input case. A more significant energy input will
result in its failure.

In order to distinguish two different SIM structures, the SIM structure (Eq. (3.10))
obtained by the method of adapted complex variables is called local SIM. the SIM
structure (Eq. (3.19)) obtained by the classical Manivitch variables is called global SIM.
The former describes the intra-well oscillation at low energy states with more accuracy.
The latter describes SMR and stable periodic motion at high energy states more accurately

3.1.2 Performance verification
The validity of the adapted complex method can be verified by comparing it with numerical
simulations. The difference between amplitudes of w and v calculated by Eq. (3.4), which
is indicated by the red line with red dots at both ends above or below the surface, and
direct numerical calculation (surface) is presented in Fig. 3.3 for the various negative
stiffness cases (k3 = -20N/m and k3 = -100N/m) with system parameters: ϵ = 0.01, λ1
= 1.67, λ2 = 0.167, K = 1742. These parameters were kept constant in the following
numerical simulation.

The adapted method generates errors mainly in the vicinity of σ = 0 in Fig. 3.3. What
can be observed is the growth of accuracy away from natural frequency. The amplitude
of w and v steady rises with the augment of excitation amplitude G, resulting in NES
oscillating in a more significant span and even finally exceeding the potential well. This
kind of error can be understood by the dissatisfying of the initial low energy assumption.

In a weak negative stiffness case, the analytical NES amplitude is always more significant
than the numerical result as in Fig. 3.3a. The LO amplitude shows a good fit result
compared with direct numerical simulation in Fig. 3.3b.

In a more intense |δ| case, the adapted complex variables method generates smaller
NES amplitudes in Fig. 3.3c, where the red lines with red dots are still below the amplitude
surface. As for the accuracy of LO amplitudes calculation, Fig. 3.3d shows the larger
analytical results in the vicinity of σ = 0. The absolute maximum errors of NES amplitude
calculations are 1.2% and 2.5% in low and high |δ| cases, respectively, which are acceptable
for our future study.
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Figure 3.3: Comparison of numerical calculation and analytical result of LO and NES
amplitudes. (a), (b) are the amplitudes of NES and LO in a weak negative stiffness
case, k3 = -20N/m (δ = -0.174). (c), (d) are the amplitudes of NES and LO in a strong
negative stiffness case, k3 = -100N/m (δ = -0.871). The surface is the direct numerical
result from the ODE45 function in Matlab. Red lines with red dots at both ends represent
the difference between the analytical and numerical results
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3.2 Analytical prediction of chaotic motion

3.2.1 Simplified model for chaos occurrence
Chaos always occurs in the transition from intra-well oscillation to inter-well oscillation.
The Melnikov method is one of the few effective methods for finding the necessary
condition for homoclinic bifurcation and predicting chaotic motion. According to [Vakakis
et al., 2008 ; Qiu et al., 2018a], the unperturbed homoclinic orbit of bistable NES that
connects the saddle points is shown as the red curves in Fig. 3.4. Its expression is given
by:

q0
+(τ) = (R · sech(Sτ),−RS · sech(Sτ) tanh(Sτ))
q0

−(τ) = −q0
+(τ) (3.11)

where R =
√

−δ/K, S =
√

−δ. This orbit is also termed as pseudo-separatrix.
The NES oscillates around the attractor (equilibrium) with a small amplitude, and

the circle can describe its corresponding stable phase trajectory with sufficient accuracy
in the low energy input condition. The phase trajectory expands in a circle with the its
center at the attractor point (x0, 0). Its intersection with the pseudo-separatrix can be
considered as a symbol of the occurrence of chaos. The different values of δ result in
the deformation of geometric shapes of pseudo-separatrix, so the trigger conditions are
different as shown in Fig. 3.4. The critical δ value divides the trigger conditions into two
types: (1) with the contact point located on the pseudo-separatrix or (2) with the contact
point located on the extreme right of the pseudo-separatrix.

During the transition from intra-well oscillation to chaotic inter-well oscillation, the
phase trajectory will cross the pseudo-separatrix. The trigger condition can be determined
by calculating the minimum distance between the point on the pseudo-separatrix and the
attractor. The minimal distance D is the minimum radius required for a circle in contact
with the pseudo-separatrix, which leads to the critical condition of triggering chaos. The
D value, as a function of w, can be defined from Eq. (3.12):

D2 =
(
w − 1

2R
√

2
)2

+ S2w2 (R2 − w2)
R2 (3.12)

The local minimum distance, which exists only in the following three positions within
the interval [0, R], are obtained by taking the derivative of w in the above equation and
setting this derivative to zero.

w1,2,3 =

(
−1

4
√

2S + 1
4

√
2S2 + 8

)
R

S
,
R√
2
, R (3.13)

If the negative stiffness |δ| exceeds the critical value (2 −
√

2)2, (critical negative
stiffness k3 = -39.4 N/m in our case), the minimum distance is always equal to (1−

√
2/2)R,

which means that the point on the pseudo-separatrix that is closest to the attractor point
is always located at the extreme right point, as case (b) in Fig. 3.4 shows.

In a case of relatively greater negative stiffness, it is reasonable to consider the distance
between the extreme right point and the attractor as the critical amplitude. If the final
stable NES amplitude |ϕ20| exceeds the critical amplitude |ϕ20c| = (1 −

√
2/2)R, chaotic
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Figure 3.4: Different trigger conditions in (a) small negative stiffness value (k3 = -20N/m,
δ = −0.174), (b) large negative stiffness value (k3 = -100N/m, δ = −0.871). The red line
is the pseudo-separatrix, the blue line is the ideal phase trajectory, the green dot is the
attractor center (x0, 0), and the triangle is the contact point. The radius D gives the
critical NES amplitude for chaos occurrence.

behavior appears. And the amplitudes threshold of NES for chaos occurrence, Za = |ϕ20c|2
can be expressed in Eq. (3.14).

Za =


(1 −

√
2

2 )2R2 |δ| > (2 −
√

2)2

R2S2

4 |δ| ≤ (2 −
√

2)2
(3.14)

3.2.2 Analytical chaos prediction
The assumption is that the intra-well oscillation expands in a circle and intersects the
pseudo-separatrix at critical amplitudes |ϕ20c| in various negative stiffness cases. If the
system’s amplitude increases monotonically before its phase trajectory crosses the pseudo
separatrix, the trigger condition Eq. (3.14) can be substituted for the stable solution
Z20 = Za and G0c = ϵ ·F in the second equation of Eq. (3.4). So the analytical excitation
for chaos occurrence is as follows:

G0c
2 = −ϵ2Za (Z2

aβ3 + Zaβ2 + β1)
β0

(3.15)

A more exact threshold value of excitation calculated by Eq. (3.15) can be compared
with the numerical result. The numerical result is obtained through the calculation of
the Lyapunov exponent. The exponent measures the average exponential growth or
decay of an infinitesimal close state. The definition of Lyapunov exponent is given in
Eq. (1.1). When it turns to be positive, there is a chaotic motion in the response. For a
given ordinary differential equation fo bistable NES system, the calculation of Lyapunov
exponent is numerically determined from Eq. (2.39) with the algorithm described in
Wolf [Wolf et al., 1985] with a Matlab implementation.
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Figure 3.5: (a) Bifurcation of bistable NES (k3 = -50, δ = -0.44) response under variety
of excitation amplitude G, Xaver means the average distance of NES with respect to the
w = 0 position (b) Lyapunov exponent calculation for variety of excitation amplitude G
with condition: ϵ = 0.01, λ1 = 1.67, λ2 = 0.167, K = 1742, σ = 0

Through the Fig. 3.5, before excitation amplitude increases to 0.085 mm, the system
performs a stable intra-well oscillation, the Lyapunov exponent is negative. Once excitation
exceeds the chaos threshold, the exponent turns out to be positive immediately. Even
in the 1: 3 subharmonic stage, the Lyapunov exponent appears to be negative again in
the range of [0.11mm, 0.14mm]. During the SMR stage (G = [0.2mm, 0.43mm]), chaos
motion is mixed with 1:1 resonance, so the Lyapunov exponent is always positive with a
decreasing tendency. When excitation exceeds the threshold, the response of the system
re-turns to be a stable and optimal state. Lyapunov exponent becomes negative again.
The Lyapunov method proves to be efficient enough to determine the chaos threshold.
So the chaos threshold G0c for k3 = -50N/m is selected as 0.085 mm. So the numerical
result of chaos threshold in the function of negative stiffness is marked in the red curve
in Fig. 3.6.

The comparison between numerical predictions and analytical predictions reveals a
gradual decline in excitation threshold for chaos occurrence as negative stiffness weakens
in Fig. 3.6. The more intense negative stiffness results in a deeper well requiring more
energy input to escape from it, which leads to a higher excitation threshold to trigger
chaos.

The analytical prediction values are close to the numerical results for a large range of
negative stiffness in Fig. 3.6. It proves that our analytical method is suitable and accurate
enough. According to the performance verification section, the analytical NES amplitude
is smaller than the numerical amplitude in the strong negative stiffness case. This implies
that the analytical NES amplitude will give a more significant critical trigger excitation.

The accuracy of predictions is changed in strong negative stiffness. The simplified
model is less accurate if the phase trajectory is far away from the attractor. At the
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Figure 3.6: Comparison of analytical chaos predictions with numerical results under
various negative stiffness designs, with condition: ϵ = 0.01, λ1 = 1.67, λ2 = 0.167, K
= 1742, σ = 0

moment when a trajectory passes the pseudo separatrix, it is always at some distance
from the attractor. This distance rises as the value of |δ| increases.

From another point of view, the adapted complex variables method is based on the
stable periodic solution triggering chaos. In a case of much higher negative stiffness,
the instantaneous amplitude of the NES exceeds its final stable amplitude, which is
inconsistent with the initial assumption that it is the final stable phase trajectory (final
periodic solution), rather than the instantaneous amplitude, that triggers the pseudo-
separatrix.

In addition, only one side attractor is under consideration. A greater negative stiffness
makes the phase trajectory deviate from the ideal circle model. When the phase trajectory
passes the mid point between the origin point and the attractor, the other side attractor
in the negative side will increase NES amplitude. The asymmetry of amplitude with
respect to the attractor renders the prediction results invalid. In the vicinity of the
pseudo-separatrix, the intra-well and inter-well subharmonic oscillations are beyond the
descriptive capabilities of the adapted complex variables method. The above potential
interpretation explains the generation of error in the process of application of the adapted
complex variables method in the prediction of chaos.

3.2.3 Damping parameter boundary for chaos
Chaos in bistable NES is a complex behavior. The Melnikov method is one of the few
effective ways to analyze homoclinic bifurcation and detect the occurrence of chaos. It
describes the distance between stable and unstable manifolds of the perturbed system and
can estimate the occurrence of global bifurcation in the parameter space [Guckenheimer
et Holmes, 2013]. The homoclinic bifurcation means the transverse insertion of stable and
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unstable manifolds of a saddle fixed point. It is an obvious symbol of chaotic behaviors.
This pseudo-separatrix distinguishes whether the phase diagram of the system is intra-
well oscillation or inter-well oscillation. When the potential energy arrives to its local
maximum (displacement equals to zero), the center of the phase trajectory shifts from
a center fixed point to a saddle equilibrium, and chaos will occur. This transition is a
result of the change of excitation or the inner system parameters. The homoclinic orbit
breaks and may cross manifolds when the perturbed terms are considered. For simplicity,
the Melnikov function can be expressed and the detailed calculation process can be found
in [Qiu, 2018]:

M (τ0) =
√

2
K

N1πΩ3

ϵ
sin (Ωτ0 + ϕ) sech

(
πΩ

2
√

−δ

)
±4δ

√
−δ

3K
λ2

ϵ
(3.16)

where, N1 is stable LO amplitude (ϕ1 = N1e
iδ1). The condition for traversing the

intersection of stable and unstable manifolds is satisfied when M(τ0) = 0.

∣∣∣∣∣∣
√

2
K

N1πΩ3

ϵ
sech

(
πΩ

2
√

−δ

)∣∣∣∣∣∣ >
∣∣∣∣∣4δ

√
−δ

3K
λ2

ϵ

∣∣∣∣∣ (3.17)

λ2(1) < 3
√

2KN1πΩ3

4δ
√

−δ
sech

(
πΩ

2
√

−δ

)

λ2(2) > −3
√

2KN1πΩ3

4δ
√

−δ
sech

(
πΩ

2
√

−δ

) (3.18)

In other words, with the above equation, the interval of damping parameter λ2 required
to avoid the occurrence of chaos at the critical amplitude N1 can be determined. For
a designed LO amplitude N1 = 3mm, the threshold curves are shown in Fig. 3.7. The
critical value of damping λ2 equals to 0.266, where the critical excitation amplitude G =
0.091mm and the natural frequency ω0 = 7.6Hz. When the damping value crosses the
threshold curves λ2(1) and λ2(2), the Melnikov function changes sign and chaos occurs.
Two different damping cases are chosen to visualize the responses and verify the prediction
of chaos occurring. Both cases are compared with critical curves in Fig. 3.8.

Case 2 corresponds to the point situated above the threshold value, and the black
phase trajectory of w is located around one of the equilibrium points within the pseudo-
separatrix in Fig. 3.8. In this stage, the excitation is considered as low energy. As the
damping parameter decreases to the chaos region, as in case 1, the displacement of NES
crosses the two equilibrium points. The phase trajectory escapes from one potential well
to the other, and the chaotic behaviors are identified in Fig. 3.8.

By setting the different N1 amplitude requirements, the boundary of chaos can vary.
It is clear from the Fig. 3.9 that the region of chaotic behavior between the two surfaces
becomes larger as N1 increases. These conditions provide a domain in the parameter
spaces, where the Melnikov function changes its sign and the possible chaotic behaviors
happen. Meanwhile, the phase trajectory of NES will cross the pseudo-separatrix. According
to the LO amplitude, the result can predict and distinguish the formation of chaos and
can be used for the optimal design of bistable NES systems.
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3.3 Classification and qualitative analysis of response
regimes

The presentation of negative stiffness introduces chaotic motion essentially changing the
response regimes. Two main characteristics are discussed below to interpret the response
regimes in various negative stiffness cases.

First, the pseudo-separatrix governs the low energy behaviors and distinguishes them
from chaotic motion. Low energy restricts the NES to oscillation around the attractor
(
√

−δ/K, 0), and expands in one well with growing energy. If the amplitude of w exceeds
the extreme right point (

√
−2δ/K, 0) of the separatrix, the inter-well chaotic motion

pervades two wells and their vicinity.
Secondly, the classic global SIM branch can better describe the high energy behaviors

of bistable NES. The phase trajectory oscillates around the right branch of the global SIM
when the system shows SMR or stable periodic response. By applying the classic complex
variables ϕ1e

iΩτ = v̇ + iΩv, ϕ2e
iΩτ = ẇ + iΩw into and a multiple scales method, the

traditional global SIM can be extracted as in Eq. (3.19). Here the ϕ1 and ϕ2 represent
the amplitude of LO and NES with respect to the original position v = 0 and w = 0,
respectively.

Z1 = λ2
2Z2 + (δ − 1)2Z2 + 3K

2 (δ − 1)Z2
2 + 9K2

16 Z3
2

Z1 = N2
1 , Z2 = N2

2

(3.19)

with singularity values Z2,j:

Z2,j = N2
2,j =

4
(
2(1 − δ) ∓

√
(1 − δ)2 − 3λ2

2

)
9K , j = 1, 2 (3.20)

PhD Thesis - Zhenhang WU - 77 -



3.3 Classification and qualitative analysis of response regimes

In the SIM plane, there are four characteristic lines worth to emphasize:

1. Line A
This attractor line is located in (Z2 = −δ/K). The phrase trajectory starts from
the attractor line A and oscillates around this axis in the intra-well oscillation stage.

2. Line B
This chaos threshold line is located in (Z2 = −2δ/K). It is deduced from the width
of the pseudo-separatrix. Once the phase trajectory crosses this line, there is a high
possibility to activate chaos. In other words, chaos occurs when the NES amplitude
exceeds

√
−2δ/K based on the previous simplified chaos trigger model.

3. Line C
This singularity line C is located in (Z2 = Z2,1). It divides the classic global SIM
structure into stable and unstable branches. In the cubic NES case, once the phase
trajectory crosses this singularity line, a snap-through motion occurs. However, in
an intensive negative stiffness case, this condition does not ensure the occurrence of
the jumping phenomenon.

4. Line D
This singularity line D is located in (Z2 = Z2,2). If the trajectory reaches line D,
it jumps definitively to the right stable branch of the global SIM even in a bistable
NES with a large |δ| value.

All the four characteristic lines are parallel to the axis Z1. So the Z1, Z2 plane, is
divided into two regions: (1) Chaotic region. It occupies range of Z2 = [0 −2δ/K]. When
the system performs the chaos, phase trajectory will occupy this range. (2) Unstable
region. It occupies range of Z2 = [Z2,1, Z2,2]. This region is associated with the jumping
phenomenon of phase trajectory. It is a temporary region before the system reaches at
its final state.

3.3.1 Weak bistable NES
For a better comprehension of the distribution of the regimes. Its efficiency ratio is defined
as the same with Eq. (2.26)

Initially, a small value of negative stiffness k3 = -20 N/m (δ = -0.17) is introduced in
the following simulation. This bistable NES preserves some original features of the cubic
NES. Fig. 3.10 shows that the whole excitation range has five distinct phases. For each
phase, the typical behavior of the time domain and its phase trajectory are extracted in
Fig. 3.11. The relative positions of four characteristic lines are demonstrated in Fig. 3.12.

When the NES maintains an intra-well oscillation, e.g. case 1 in Fig. 3.11c, this low
energy level motion is trapped in one of the wells. Because the NES vibrates in the vicinity
of equilibrium, the trajectory is quasi-asymmetric around attractor line A. The adapted
complex variables method can describe its behaviors better by the local SIM according
to the previous section.

In the second stage of Fig. 3.10, the chaos motion brings a higher efficiency compared
to previous stage. And the maximal amplitude and avergae amplitude curves separate
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Figure 3.10: (a) Energy dissipation ratio of NES (b) maximal and average LO amplitude
in weak bistable NES case with k3 = -20 N/m (δ = -0.17). The blue line represents
the average amplitude in a given time interval, the green dashed line is the maximal
amplitude. The black dashed lines divide regimes into five stages.

slightly. Increasing energy input causes the NES amplitude to exceed line B and trigger
chaotic motion. However, the small value of δ leads to a significant gap between the chaos
threshold line B and singularity line D. The phase trajectory can neither activate SMR
nor be attracted to the left global SIM branch, but can only expand and take a position
near line B, as in case 2 in Fig. 3.11c.

In the third stage of Fig. 3.10, the LO amplitude increases linearly with increasing
G and the corresponding efficiency maintains a low level, which implies that the TET is
not activated. After the generation and transient expansion of chaos, the time domain
displacement of w is symmetrical to the zero position. The phase trajectory is re-attracted
to the left stable global SIM branch as in case 3 in Fig. 3.11c and rises along the left global
SIM branch. This attraction motion that results from the phase trajectory increasing in
the Z1 direction affects the left stable global SIM branch more quickly than the expansion
of the phase trajectory in Z2 direction in the initial low energy input stage.

In the fourth stage of Fig. 3.10, a complete SMR emerges. TET is activated, so
the NES efficiency arises higher. The separation of the maximal amplitude and average
amplitude curves manifests an unstable amplitude motion: SMR. The phase trajectory of
weak bistable NES moves along with the global SIM structure. However, once the phase
trajectory re-enters the chaos region after the efficient energy dissipation, the motion is
chaotic in case 4 of Fig. 3.11, which is different from the cubic NES case.

In the beginning of fifth stage in Fig. 3.10, the efficiency of NES arrives its maximum.
The system achieves an optimal state, whcih is stable and periodic. The maximal efficiency
of this weak bistable NES in the Fig. 3.10 is about 71%. Due to the large amplitude
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Figure 3.11: Response regimes in weak bistable NES with k3 = -20 N/m (δ = -0.17) (a)
v displacement (b) w displacement (c) phase trajectory of Z2 and Z1. The 5 typical
responses are chosen at various excitations G = 0.04mm, 0.1mm, 0.25mm, 0.35mm,
0.42mm, with same initial condition (w(0) = x0, v(0) = v̇(0) = ẇ(0) = 0), σ = 0.
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Figure 3.12: Characteristic global SIM of weak bistable NES and SMR in the time domain
for exicitation G = 0.35mm, σ = 0. (a) The global SIM structure with unstable and chaos
regions (shaded). Orange arrow line indicates various stages in one SMR cycle. S1 and
S2 are the singularity points whose locations are defined as (Z2,1, Z1,1) and (Z2,2, Z1,2).
(b) displacement of w, and (c) displacement of v with initial condition (w(0) = x0, v(0) =
v̇(0) = ẇ(0) = 0). The green lines divide the SMR into various stages corresponding the
global SIM explanation by orange arrow line.

excitaion, the trajectory easily crosses the global SIM unstable region without rising
along the left stable branch like case 5 of Fig. 3.11c. Chaos triggers the snap-through
motion. The trajectory jumps directly to the right global SIM branch before it crosses the
singularity point S1 : (Z2,1, Z1,1). So the maximal LO amplitude at the jump moment is
lower than that of the cubic SMR stage. This implies that the LO can be protected better
if there is high energy input in a weak bistable NES case. Since the phase trajectory finally
arrives at the right branch of the global SIM without jumping back, it indicates saturation
of the capability of absorbing energy. The final position of the phase trajectory will be
located in a higher position of the right global SIM branch with an excitation of increasing
amplitude. The optimal point ideally occurs at the singularity point S2 : (Z2,2, Z1,2) in
the global SIM structure.

The negative stiffness can not only affect the stage of response regimes, but also
influence the SMR behavior. The time domain of SMR, which is divided by green dashed
lines in Fig. 3.12b shows five different parts of a complete SMR: (1) intra-well oscillation,
(2) chaos expansion, (3) re-attraction to SIM, (4) jumping motion, (5) Targeted Energy
Transfer (TET). Compared with the SMR in the pure cubic case, the SMR starts from the
intra-well oscillation, so the orange arrow line represents a trajectory rising along line A in
Fig. 3.12a. The initial motion is constrained in the well and increases until the trajectory
is re-attracted to the left stable global SIM branch, on which the orange line converges.
As the trajectory crosses the singularity line C, it jumps to the right stable branch of
the SIM, and moves down to the other singularity point S2. 1:1 resonance in this period
produces an intense TET and leads to effective dissipation by the NES. Once the NES
has dissipated most of the energy of the LO, the phase trajectory of the system jumps
back to the chaotic region in the vicinity of attractor line A and waits for the charge of
energy under harmonic excitation.
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Figure 3.13: (a) Energy dissipation ratio of NES (b) maxiaml and average LO amplitude
in modest bistable NES case with k3 = -60N/m (δ = -0.52). The blue line represents
the average amplitude in a given time interval, the green dashed line is the maximal
amplitude. The black dashed lines divide regimes into four stages.

3.3.2 Modest bistable NES
The re-attraction to the global SIM mechanism in a weak bistable system becomes delicate
when the |δ| parameter takes a larger value. The mechanism of this attraction back to
the left global SIM branch is mainly due to the proximity of the chaos threshold line B to
the left global SIM branch. The phase trajectory has a strong possibility of continuing to
expand along with line A and being attracted by the left global SIM branch, rather than
crossing the unstable region and triggering SMR.

If the negative stiffness is intense enough, the chaos trigger line B will be located in
the global SIM unstable region. Therefore, the critical condition for the disappearance
of re-attraction can be determined as the overlap of line B and line C. The condition is
expressed as follows:

Z2,1 =
4(2(1 − δ) −

√
(1 − δ)2 − 3λ2

2)
9K = −2δ

K

δwm = −8
7 + 2

7
√

−7λ2
2 + 9

(3.21)

The damping of the NES system determines the critical value of negative stiffness.
If the negative critical value exceeds the critical value -0.295 (when λ2= 0.167), the re-
attraction to the left global SIM branch mechanism is hardly observable. To better prove
this point, the efficiency distribution for a larger negative stiffness case is presented in
Fig. 3.13 with larger negative stiffness case k3 = -60N/m (δ = -0.52). The efficiency
distribution can be divided into 4 stages in Fig. 3.13 and its characteristic behaviors
under inputs of increasing amplitude excitation are presented in Fig. 3.14.

In the first stage of intra-well oscillation, the NES possesses a high absorbing efficiency.
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Figure 3.14: Response regimes in modest bistable NES with k3 = -60N/m (δ = -0.52)
(a) v displacement (b) w displacement (c) phase trajectory of Z2 and Z1. The 4 typical
responses are chosen at various excitations G = 0.08mm, 0.15mm, 0.34mm, 0.45mm, with
same initial condition (w(0) = x0, v(0) = v̇(0) = ẇ(0) = 0), σ = 0.
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Figure 3.15: Characteristic modest bistable global SIM and SMR in the time domain for
excitation G = 0.34 mm, σ = 0. (a) The global SIM structure with the unstable and
chaos regions (shaded). The orange arrow line indicates various stages in one SMR cycle.
(b) displacement of w, (c) displacement of v, with initial condition (w(0) = x0, v(0) =
v̇(0) = ẇ(0) = 0). The green lines divide the SMR into various stages corresponding to
the global SIM explanation by the orange arrow line.

However, as the excitation amplitude increases, its high efficiency is lost and declines
drastically.

In the second stage in Fig. 3.13, chaos emerges. When |δ| increases, the span and depth
of potential well become larger, so a larger amplitude excitation is necessary to trigger the
chaotic motion. The critical value is G = 0.09mm, while the chaos threshold excitation is G
= 0.03mm in a weak bistable case. This threshold value divides the efficiency distribution
figure into the chaotic and intra-well region in Fig. 3.13, A coexistence of subharmonic
oscillations and chaotic motions can be realised in this stage.

In the third stage, SMR occurs in Fig. 3.13. A greater value of negative stiffness leads
to the fact that the chaos trigger line B is located in the global SIM unstable region and
is close to the singularity line D in Fig. 3.15a,. It can be deduced that SMR is more early
to produce in modest bistable case. As already observed in Fig. 3.13b, the SMR region
starts at G = 0.22mm, which is lower than the SMR trigger excitation G = 0.26mm in
weak bistable NES.

In the fourth stage, the NES system possesses a stable regime again in Fig. 3.13. The
optimal point is generated in this stage. The absorption efficiency of the NES system
decreases with increasing external excitation. The maximal efficiency of this modest
bistable NES in the Fig. 3.13 is about 72.5%.

The influence of the more significant value of |δ| in the global SIM and SMR in the
time domain is illustrated in Fig. 3.15a. The chaotic region will even overlap the global
SIM unstable region partially or entirely if the negative stiffness is increasing. The size
of the overlapping parts of the two areas determines the division of the response regimes.

Only four stages have been retained in Fig. 3.15b, 3.15c: (1) intra-well oscillation,
(2) chaos expansion, (3) jumping motion, (4) TET. For an SMR cycle of the modest
bistable case, the re-attraction to the global SIM part has been completely compressed
and replaced by the chaos expansion.
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Because the extreme right point in phase trajectory of case 2 is close to singularity line
D in Fig. 3.14c, the SMR is trigged by crossing chaotic region and unstable global SIM
region in Z1, Z2 plane instead of reaching at the singularity point S1 : (Z2,1, Z1,1) and then
jumping. It means that the system does not require fully charging the energy to activate
SMR. A lower trigger excitation amplitude results in a lower initial Z1 amplitude, from
which the trajectory moves down along the right stable global SIM branch. This shorter
path helps NES dissipate energy around the optimal point within a shorter time and
higher efficiency. As the case 3 in Fig. 3.14c, the system performs 3 SMR cycles within
600 τ . However, the weak bistable case performs only one complete SMR during the
same time. Chaos provides a much faster way to charge and trigger SMR and accelerate
every SMR circle. More SMRs in a fixed time interval are observed in Fig. 3.14c. That is
why the SMR stage in the modest bistable NES has higher efficiency than that of weak
bistable NES. A more efficient way to dissipate energy is generated.

3.3.3 Strong bistable NES
The chaos threshold line B will approach the SMR boundary line D more closely for
higher negative stiffness. The critical condition is defined as singularity line C is overlap
with attractor line A to ensure the close distance between line B and D in global SIM
structure.

Z2,1 = 4
9

2 − 2δ −
√

(1 − δ)2 − 3λ2
2

K
= − δ

K

δms = −8
5 − 4

5
√

5λ2
2 + 9

(3.22)

In the condition of λ2 = 0.167, the critical δ value that classifies the modest NES and
strong NES is -0.82.

A larger negative stiffness case with k3 = 150 N/m (δ = -1.3) is selected in the strong
bistable NES simulation. The expansion of the chaos regime will disappear in effeciency
distribution Fig. 3.16. The trajectory will cross the singularity line D and directly start to
jump and perform an SMR. Case 2 in Fig. 3.17 shows that the snap-through phenomenon
occurs at the instant when phase trajectory crosses the chaos region, if the distance
between lines B and D is small enough in Fig. 3.18a. The energy dissipation ratio can be
classified into 3 stages: (1) intra-well oscillation, (2) SMR, (3) stable stage.

In the first intra-well stage, the NES system possesses a low efficiency. It implies
that the negative stiffness must be tuned to a modest bistable configuration in order to
maintain high efficiency even at low energy input. Too large or too small a negative
stiffness will lead to a decrease in efficiency. The energy is mainly localized in the LO,
the amplitude of which mainly increases linearly in Fig. 3.16b.

In the second SMR stage, the maximal amplitude and average amplitude curves
separate drastically in a large distance. Meanwhile, in the modest NES case, both curves
separate gradually. It implies that chaos motion is not involved in the SMR stage of strong
bistable NES case. It makes the SMR stage of strong bistable NES performs similar to
an SMR stage of cubic NES, where the chaos can be hardly observed. Compared with
the SMR stage in weak bistable NES case, the duration of energy pumping in Fig. 3.17b
is longer and it has a less absorbing cycle within the same time interval.
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Figure 3.16: (a) Energy dissipation ratio of NES (b) maximal and average LO amplitude
in strong bistable NES case. The blue line represents the average amplitude in a given
time interval, the green dashed line is the maximal amplitude. The black dashed lines
divide regimes into three stages.

In the third stable periodic response stage, the large negative stiffness value increases
the excitation amplitude threshold for SMR disappearance, about G = 0.54mm. Meanwhile,
the excitation amplitude thresholds for SMR disappearance are G = 0.44mm and G
=0.4mm in the modest and weak bistable NES design, respectively. A high |δ| value can
help the system to achieve an optimal state in a higher energy input case. The attractor
line A restricts the motion inside of potential well before it jumps out. The maximal
efficiency of this strong bistable NES in the Fig. 3.16 is about 70.5%.

In the strong bistable NES case, the increasing |δ| results in a simpler form of SMR.
The motion of SMR is either in a potential well or in the right stable global SIM branch.
The chaotic motion becomes weak and transient. Only 3 parts: (1) intra-well oscillation,
(2) snap-through, and (3) TET are classified as in Fig. 3.18b, 3.18c. In the second SMR
stage, once the phase trajectory crosses the chaos trigger line B, the right stable branch
of the global SIM attracts the phase trajectory.

3.3.4 Abnormal bistable NES
If the negative stiffness is extremely large, another critical condition can be achieved,
where the chaos threshold line B coincides with the singularity line D, and the following
equation can be derived:

Z2,2 = 4
9

2 − 2δ +
√

(1 − δ)2 − 3λ2
2

K
= −2δ

K

δsa = −8
7 − 2

7
√

−7λ2
2 + 9

(3.23)
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Figure 3.17: Response regimes in strong bistable NES with k3 = -150 N/m (δ = -1.3)
(a) v displacement (b) w displacement (c) phase trajectory of Z2 and Z1. The 3 typical
responses are chosen at various excitations G = 0.25mm, 0.45mm, 0.55mm, with same
initial condition (w(0) = x0, v(0) = v̇(0) = ẇ(0) = 0), σ = 0
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Figure 3.18: Characteristic strong bistable global SIM and SMR in the time domain for
excitation G = 0.45mm, σ = 0. (a) The global SIM structure with the unstable and
chaos region (shaded). The orange arrow line indicates various stages in one SMR cycle.
(b) displacement of w, (c) displacement of v, with initial condition (w(0) = x0, v(0) =
v̇(0) = ẇ(0) = 0). The green lines divide the SMR into various stages corresponding to
the global SIM explanation indicated by the orange arrow line
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Figure 3.19: (a) Energy dissipation ratio of NES (b) maximal and average LO amplitude
in abnormal bistable NES case. The blue line represents the average amplitude, the green
dashed line is the maximal amplitude. The black dashed lines divide regimes into two
stages.

Solving the above equation gives a critical negative stiffness of δsa = -2, above which,
bistable NES is classified as an abnormal case. In this abnormal case, the simulation of
negative stiffness case k3 = -250 (δ = -2.2) is carried out.

In this case, the trajectory exceeds the chaos threshold and becomes a stable inter-well
oscillation. Because the interaction of chaos threshold line B and the right global SIM
branch, the SMR vanishes. Only two regimes persist in the efficiency distribution and
LO amplitude in Fig. 3.19 : (1) intra-well oscillation, and (2) stable periodic response. In
contrast to the previous model, the SMR stage is compressed and vanishes, leading to a
so-called abnormal bistable NES.

The chaos trigger line B has exceeded on the right side of singularity line D, so the
optimal point (maximum efficiency) is not lying on the singular point S2. The maximal
efficiency that an abnormal NES can achieve is much lower than in previous cases, about
50%.
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Figure 3.20: Response regimes in abnormal bistable NES with k3 = -250 (δ = -2.2) (a)
v displacement, (b) w displacement, (c) phase trajectory of Z2 and Z1. The 2 typical
responses are chosen at various excitations G = 0.5mm, 0.7mm, σ = 0.
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Figure 3.21: Characteristic abnormal bistable global SIM and response in the time
domain at excitation G = 0.65 mm, σ = 0. (a) The global SIM structure with unstable
region (shaded). The orange arrow line indicates various stages in one SMR cycle. (b)
displacement of w; (c) displacement of v. The green lines divide the SMR into various
stages corresponding the global SIM explanation by the orange arrow line.
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3.4 Experimental study
There are two goals for the experimental study: (1) verify the feasibility of the intra-well
adapted complex variables method in the frequency domain. (2) observe the characteristic
response regimes of different bistable NES designs under increasing excitation amplitude
inputs. Various negative stiffnesses were constructed by adjusting the pre-compression
length of the linear spring in the bistable NES. A diagram of the bistable NES is presented
in Fig. 2.10.

3.4.1 Static tests
The bistable nonlinearity is constructed by combining 2 linear springs and 2 conical springs
that mainly provide the bistable force-displacement relationship. The conical spring
presents two phases: (a) linear phase, (b) nonlinear phase during the compression [Qiu
et al., 2018b]. When the coils of a conical spring come into contact with each other due
to compression, a transition step occurs that divides the linear and nonlinear phases. So
the two conical springs are pre-compressed at the transition point to eliminate the linear
phase, as in (a) of Fig. 2.10. The two linear springs, whose role is to counterbalance the
linear stiffness in the nonlinear phase, are installed perpendicular to the conical springs
like (b) in Fig. 2.10. The force-displacement relation of combining system can be expressed
as Eq. (2.37). The detailed parameters and 3 initial pre-compression lengths (lp1 lp2 and
lp3) for 3 different bistable NES cases are presented in Tab. 3.1.

The corresponding static force-displacement figures for each case are presented in
Fig. 3.22. In each case, the theoretical results provide sufficient accuracy to describe the
experimental results and two equilibria (F = 0). The distance between the equilibrium
points becomes greater when lp increases. So it can be concluded that the control strategy
of changing the length of pre-compression to produce desirable bistable nonlinearity is
feasible. However, increasing lp will increase not only the |δ| value but also K value,
which is different from the idea of purely introducing δ and keeping K constant used
in the previous bistable NES classification. However, the negative stiffness δ presents
a more significant role in determining the bistable NES behaviors. The change in pre-
compression length results in a major change in δ values. So the experiment of different
pre-compression length designs can demonstrate the influence of δ.

3.4.2 Dynamic tests for intra-well oscillation
The testing system consisted of a NES embedded with a LO. A 10 kN electrodynamic
shaker provided the excitation at a variable frequency. The absolute displacements of
NES and LO were measured by two laser systems installed vertically. The bandpass

Table 3.1: Experimental parameters of NES system
k0 a1 a3 kl l0l

187N/m 280N/m 3.6e5N/m3 1060N/m 50mm
lc lp1 lp2 lp3
14.5mm 16mm 17.5mm 21mm
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Figure 3.22: Force displacement of different experiment tests with parameters in Tab. 3.3.

Table 3.2: Experimental parameters of system
Physical parameters m1 m2 c1 c2 k1

5.5kg 0.05kg 5N·s/m 0.5N·s/m 1.148e4N/m
Reduced parameters ϵ λ1 λ2 f0

0.91% 2.19 0.22 7.27Hz

filter filtered the high-frequency noise, thus correcting the raw signal and the biases. The
amplitude of excitation was 0.08mm, which was the minimum value that the shaker could
apply. Its frequency was varied from 7Hz to 7.6Hz at a sweep velocity of 0.01Hz/s. The
physical parameters of experiment are summarized in Tab. 3.2. The different negative
stiffnesses caused by various pre-compression lengths are presented in Tab. 3.3.

Fig. 3.23 shows the experimentally obtained frequency response function for the small
amplitude excitation G = 0.08mm, where 3 cases perform intra-well oscillation. The
analytical result was obtained by substituting the reduced parameters in Tab. 3.2 and
3.3 into Eq. (3.4) and resolving the LO amplitude |ϕ10|.

When a natural frequency excitation is applied in LO, the resonance phenomenon
is activated. The LO possesses the largest amplitude, of 7.23Hz, close to the predicted

Table 3.3: Experimental cubic nonlinearity parameters and negative stiffness parameters
case (a) case (b) case (c)

k3(N/m) -71.4 -136.3 -300.1
k2(N/m3) 6.95e5 7.2e5 7.89e5
δ -0.68 -1.31 -2.89
K 6.59e3e5 6.90e3 7.58e3
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Figure 3.23: Experimental and analytical frequency response curve of LO for different
pre-compression length cases at excitation amplitude G = 0.08mm. The parameters of
the 3 cases are presented in Tab. 3.3.
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value of 7.26Hz. In general, the analytical method described the intra-well oscillation
correctly under various δ cases as shown in Fig. 3.23. The analytical amplitude, which is
compared with the experimental result, had the same error distribution under different
negative stiffnesses. On the two sides of the natural frequency, the analytical result was
usually lower than the experimental result. In the vicinity of the natural frequency, the
analytical result had a higher amplitude in Fig. 3.23a,b. This error distribution is the
same as the numerical test of Fig. 3.3d, where the analytical method possesses a larger
result near σ = 0. In the most intensive δ case in Fig. 3.23c, the calculation method gave
a lower analytical result. This confirms the previous conclusion that the adapted complex
variables method leads to minor error in the modest bistable case under small excitation.
This is due to the fact that the negative stiffness value is too large to cause deformation
of the real phase trajectory near the equilibrium point (which does not conform to the
assumption of a circle).

3.4.3 Dynamic tests in various energy levels
The previous section confirms the feasibility of the adapted complex variables method in
the frequency domain. However, the advantage of the bistable NES in absorbing energy is
more apparent in other higher energy levels. In this section, the response of the bistable
NES is investigated experimentally in various energy input levels.

The three different compression cases, having parameters that were identical to those
of the previous intra-well experimental validation, were tested under a frequency sweeping
excitation from 7Hz to 7.6Hz. The same frequency sweeping process with different
excitation amplitudes was repeated to record the responses of the LO and NES.

3.4.3.1 Experiments under case (a) configuration parameters

11 sets of excitation amplitudes, from small to large values: 0.08mm, 0.10mm, 0.12mm,
0.15mm, 0.18mm, 0.21mm, 0.25mm, 0.28mm, 0.32mm, 0.36mm, and 0.4mm, were tested
for case (a). To help distinguish them, the adjacent time-displacement curves are marked
with different colours.

In Fig. 3.24, the black diamond points distinguish the SMR region and resonance peak
(potential risk case), where the amplitude of the LO is enormous, and the efficiency of
absorbing energy fails for the NES.

In the first case (G = 0.08mm), the stable response was the primary behavior. Intra-
well oscillation appeared during the whole frequency domain. The NES oscillated around
the equilibria.

In the vicinity of the natural frequency, 7.26Hz, 1: 3 subharmonic oscillation occurred
first at low energy input (G = 0.1mm) and became more obvious at G = 0.12mm.

After the external excitation reached a threshold (G = 0.18mm), the region of 1: 3
subharmonic resonance broke and expanded to higher and lower frequency sides with
increasing external excitation amplitude. In the neighbourhood of the natural frequency,
the response reverted to a 1: 1 resonance. It also implies that the phase trajectory is
re-attracted to the left branch of global SIM as case 3 in weak bistable NES simulation
of Fig. 3.11c. In the simulation, the system returns from a chaotic motion into periodic
motion with increase of excitation amplitude. In the experiment, the NES system turned
from subharmonic oscillation into periodic motion. This may be because of the property
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of shift-frequency excitation. The 1:3 subharmonic was activated in low frequency. When
the frequency of excitation was tuned to f0, the previous 1:3 subharmonic oscillation
was kept. The stability of subharmonic oscillation was better than the chaos behavior,
which did not occur as predicted by the traditional analysis framework. So characteristic
response of weak bistable NES (re-attraction stage) was observed.

Once G = 0.21mm was applied in case (a), SMR cycles appeared in the frequency
interval [7.27Hz, 7.38Hz], which is marked by two black diamond points. The first
snap-through motion and last jump-back motion of NES define the interval of SMR in
Fig. 3.24b. For the left boundary, at 7.27Hz, the LO always had the maximal amplitude.
For the right boundary, at 7.38Hz, the LO possessed minimal local amplitude after several
cycles of SMR. This indicated the effect of absorbing the energy of the SMR. The chaotic
motion occupied two adjacent efficient TET, which resulted in the augmentation of LO
amplitude in Fig. 3.24a.

The SMR interval expanded to [7.21Hz, 7.47Hz] under greater excitation, G = 0.25mm.
Then G continued to increase to 0.32mm, the interval of SMR became broader [7.15Hz,
7.47Hz]. As G increased from 0.21 to 0.32mm, the left boundary, where SMR appeared,
decreased from 7.23Hz to 7.15Hz, while the right boundary, where SMR vanished, expanded
from 7.38Hz to 7.47Hz accordingly. This demonstrates a broader efficient range for
performing TET for a higher energy input before the resonance peak occurs.

In G = 0.36mm, the duration of amplitude decline of SMR has extended irregularly and
caused a potential risk region near the left interval boundary. Meanwhile, the frequency
range of SMR has achieved the maximum of [7.13Hz, 7.54Hz]. The case (a) design has
the best robustness facing the uncertainty of excitation frequency under G = 0.36mm.
The 1: 3 subharmonic oscillation appeared in the low-frequency region. Then the SMR
occurred in the vicinity of natural frequency. The systems returned to a stable response
if frequency continued to increase.

When G = 0.4mm, the resonance peak appeared between 7.05Hz and 7.25Hz. Within
the resonance interval, the LO amplitude significantly exceeded the other cases, the NES
lost its ability to absorb energy, and the system was at risk. A resonance peak occurred
due to the existence of three solutions in the singularity equation in the low-frequency
region, one of which had a large stable amplitude. However, in the vicinity of the natural
frequency, 7.26Hz, the LO had a stable minimal amplitude of 2.8mm, which represents
the singularity point of the right global SIM branch. So there is a trade-off relationship
between the co-existence of the best performance of NES and the worst resonance peak
at the amplitude of G = 0.4mm for case (a) design. The best design also provided a
possibility of worse behavior at low frequency. So the feasibility of optimal design case
(a) depended on the perturbation of harmonic excitation frequency.

When the excitation increased from 0.08mm to 0.4mm, in the vicinity of natural
frequency of LO, there are five stages that appeared in turn: (1) intra-well oscillation
stage, (2) 1:3 subharmonic oscillation stage, (3) re-attraction stage, (4) SMR, (5) stable
response. Those five stage are marked in Fig. 3.24b with the green dashed boxes. Those
response regimes are similar to the weak bistable NES classification based on the numerical
response regimes.
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Figure 3.24: (a) Frequency response of LO (b) frequency response of NES for case
(a). The amplitudes of excitation are selected as 0.08mm, 0.10mm, 0.12mm, 0.15mm,
0.18mm, 0.21mm, 0.25mm, 0.28mm, 0.32mm, 0.36mm, 0.4mm. The black diamond
distinguishes the SMR region from the resonance peak region. The green boxes indicate
the characteristic regimes.
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3.4.3.2 Experiments under case (b) configuration parameters

Then the pre-compression length was increased to 17.5mm, case (b) possessed larger
negative stiffness |δ| and cubic nonlinearity parameters K. Similarly to case (a), the
system (b) was also used with 12 sets of sweeping frequency excitations of different
amplitudes: 0.08mm, 0.10mm, 0.12mm, 0.15mm, 0.18mm, 0.21mm, 0.25mm, 0.28mm,
0.32mm, 0.36mm, 0.40mm, 0.44mm. Frequency varied from 7Hz to 7.6Hz.

An essential characteristic of case (b) was the extensive range of apparent chaotic
motion, which replaced the subharmonic motion of case (a). A larger depth value of
potential well δ2/4K enhanced the stability of intra-well oscillation.

In the first three cases (0.08mm, 0.10mm, 0.12mm), the system oscillated in one of
the wells over the frequency.

The chaos motion occurred first for G = 0.15mm. A single and weak SMR was also
observed for G = 0.18mm, which is lower than the SMR occurrence threshold of case (a)
(G = 0.21mm) in Fig. 3.25. The SMR was generated near the natural frequency and
divided the chaotic region. The chaos frequency range expanded toward lower and higher
frequency sides as the excitation increased.

For excitation G from 0.21mm to 0.32mm, the frequency interval for SMR occurrence
expanded from a narrow range [7.29Hz, 7.31Hz] to [7.18Hz, 7.47Hz].

When G became 0.36mm, a potential resonance peak also occurred. However, the
frequency range of resonance peak [7.13Hz, 7.18Hz] was narrower than that of case (a).
This tendency was more obvious in the response of NES under G = 0.4mm, where the
resonance peak region was [7.10Hz, 7.23Hz]. This range was narrower than the [7.05Hz,
7.25Hz] of case (a). The resonance peak occurred when the system did not give a stable
response at 7.26Hz. At the same time, the interval in which SMR occurred widened to
[7.23Hz, 7.56Hz].

At the amplitude G = 0.44mm, the first signs of the steady-state response of LO at
the natural frequency of 7.25Hz appeared, where the LO amplitude in Fig. 3.25 tended
to be stable and locally minimal between the SMR and resonance peak. SMR range still
dominated the extensive range [7.25Hz, 7.58Hz] and moved to a higher frequency side. An
effective SMR range was also enhanced in a high energy input case. A larger compression
length can reinforce the amplitude threshold required for the emergence of an optimal
stable periodic response (saturation of absorbing energy).

When the excitation increased from 0.08mm to 0.44mm, in the vicinity of the natural
frequency of LO, there were four stages that appeared in turn: (1) intra-well oscillation
stage, (2) chaotic motion, (3) SMR, (4) stable periodic response (sign appeared). Those
four stages are marked in Fig. 3.25b with the green dashed boxes. The re-attraction stage
disappears as a prediction of the numerical simulation: the overlap of unstable region and
chaos region prevents the phase trajectory jump back to the left global SIM branch. So re-
attraction motion disappeared. The characteristic of modest bistable NES: the expansion
of chaotic motion was observed.

3.4.3.3 Experiments under case (c) configuration parameters

Case (c) could be achieved by continuing to modify the pre-compression length to 21mm.
Case (c) was used with the same amplitude condition as case (b), except for the 0.15mm
and 0.44mm cases. The negative stiffness continued to be enhanced.
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Figure 3.25: (a) Frequency response of LO (b) frequency response of NES for case (b).
The amplitudes of excitation are selected as 0.08mm, 0.10mm, 0.12mm, 0.15mm, 0.18mm,
0.21mm, 0.25mm, 0.28mm, 0.32mm, 0.36mm, 0.40mm, 0.44mm. The black diamond
distinguishes the SMR region from the resonance peak region. The green boxes indicate
the characteristic regimes.
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Neither chaotic motion nor subharmonic motion is observed in Fig. 3.26. It can be
interpreted as a model of strong bistable NES that the narrow distance between trigger
line B and singularity line D causes the phase trajectory to start snap-through motion and
jump to the right branch of the global SIM as soon as it comes out of the well. So, before
the system oscillates around the right branch of the SIM, the chaos motion is replaced by
the 1:1 resonance.

This first SMR appeared at G = 0.18mm, which is the same as case (b) in Fig. 3.26.
The frequency range of SMR increased from [7.18Hz, 7.20Hz] to [7.05Hz, 7.41Hz], as
the excitation amplitude rose from 0.18mm to 0.36mm. The SMR range expanded to a
lower and higher frequency sides. In case (a) and case (b), there was a significant chaotic
motion between the two adjacent SMR cycles. In case (c), this chaotic phenomenon is
not obvious.

The range of potential resonance peak is [7.07Hz, 7.19Hz] for G = 0.4mm. Compared
with the resonance peak in case (b) for G = 0.36mm, the excitation threshold for the
occurrence of resonance increased and its appearance was delayed. The resonance situation
was improved. Although, the stable periodic response (optimal state) is not observed
because of the limitation of the laser displacement sensors. It can be inferred that his
optimal state occurs above excitation amplitude of 0.4mm.

When the excitation increased from 0.08mm to 0.4mm, in the vicinity of the natural
frequency of LO, there were two stages that appeared in turn: (1) intra-well oscillation
stage, (2) SMR, The third stage stable response can be inferred by the numerical simulation.
Those two stages are marked in Fig. 3.26b with the green dashed boxes. The disappearance
of chaotic motion is the characteristic symbol of a strong bistable NES.
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Figure 3.26: (a) Frequency response of LO (b) frequency response of NES for case (c).
The amplitude of excitation are selected as 0.08mm, 0.10mm, 0.12mm, 0.18mm, 0.21mm,
0.25mm, 0.28mm, 0.32mm, 0.36mm, 0.40mm. The black diamond distinguishes the SMR
region and resonance peak region. The green boxes indicate the characteristic regimes.

PhD Thesis - Zhenhang WU - 99 -



3.5 Conclusions

3.5 Conclusions
The study focuses on the qualitative analysis of response regimes in bistable NES. Several
main conclusions can be drawn:

1. The adapted complex variables method, which defines the equilibrium point as an
original coordinate, performs better to approach the dynamic behaviors of intra-
well oscillation. The numerical investigation reveals its natural stability of intra-
well oscillation. This method gives a good fitting result and has been compared
with the numerical results in the frequency domain. The actual phase trajectory of
intra-well oscillates along with the constructed local Slow Invariant Manifold (SIM),
which describes the low energy behaviors better than the classic method. But the
local SIM’s reliability is constrained to intra-well oscillation stage.

2. A simplified model of triggering chaos has showed that the phase trajectory expands
in a circular form with the equilibrium point as the center within the pseudo-
separatrix. Despite being simple, the chosen approach enabled us to predict the
analytical harmonic excitation amplitude for chaos occurrence. The numerical chaos
boundary has proved the reliability of its analytical prediction in weak negative
stiffness cases. The Melnikov method enables the calculation of the critical damping
of the NES for triggering chaos and is validated by numerical simulations.

3. The relative position between the chaos trigger line and the global SIM structure
has been proposed to illustrate the variation of the triggering Strong Modulated
Response (SMR) condition. The variety in relative position of those lines enables us
to explain the disappearence of response stages with larger negative stiffness value
|δ| cases and for various energy levels. On the other hand, the location of chaos
trigger line B in the global SIM structure classifies the bistable NES as a weak,
modest, strong or abnormal bistable NES. A more efficient way to dissipate energy
has been found in the modest bistable case, due to the small distance between the
chaos trigger line and the singularity line in the global SIM structure.

4. The frequency-response experiment of Linear Oscillator (LO) amplitude was carried
out to validate the feasibility of the adapted variables complex method. Good
agreement between the theoretical and experimental results of intra-well oscillation
under different negative stiffnesses was observed. Experiment confirms that the
number of response regimes in the vicinity of LO natural frequency will reduce with
a more significant value of |δ|, which is predicted in the numerical simulation. The
design of a modest bistable NES provides the broadest frequency range of SMR for
the same excitation input and helps to reduce the risk of the resonance peak in the
frequency domain.
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CHAPTER 4 Estimation of energy
pumping time in
bistable NES

This chapter presents a novel method to measure the energy pumping time of
bistable Nonlinear Energy Sink (NES) under a harmonic excitation case based
on a particular integration assumption. An equivalent point in the Slow Invariant
Manifold (SIM) structure can represent the average variation of amplitudes
of Linear Oscillator (LO) and NES during the energy pumping. The strong
robustness of this semi-analytical prediction method under parameter perturbation
is investigated numerically. The parameters influence on the amplitude declining
rate are investigated for both impulsive and harmonic excitation. The validation
of energy pumping time estimation is verified in the experimental test.
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4.1 Estimation of energy pumping time
When the Targeted Energy Transfer (TET) is activated in the bistable Nonlinear Energy
Sink (NES), it results in a decline process of Linear Oscillator (LO) amplitude. The energy
of LO is transferred into NES and dissipated by NES damping through 1:1 resonance. The
energy pumping time is defined as the duration of this decline process.

The bistable NES model is the same as the previous section. With the application
of multiple scales method and complexification-averaging method, the governed equation
can be transfered into several time scales. The first equation in Eq. (2.40) indicates that
the ϕ1 is independent of the τ0 time scale. It can be demonstrated that ϕ1 and ϕ2 evolve
toward an equilibrium state for τ0 → ∞. Setting the derivative with respect to τ0, the
second equation in Eq. (2.40) and the first equation in Eq. (2.41) yield:

1
2i (ϕ2 − ϕ1) + 1

2ϕ2λ2 − 3
8iKϕ

2
2ϕ2 − 1

2iδϕ2 = 0
d

dτ1
ϕ1 + 1

2λ1ϕ1 + 1
2i (ϕ1 − ϕ2) + iσϕ1 − 1

2F = 0
(4.1)

The above equation can only behave on the slow time scale τ1. The complex variables
with polar notation of Eq. (2.13) are substituted in Eq. (4.1). N1 and N2 modulate the
amplitude envelopes of LO and NES. δ1 and δ2 are phases of N1 and N2. By separating
the real and imaginary terms, the following set of equations Eq. (4.2) is obtained after
simple algebraical manipulation.

∂

∂T1
N1 − 1

2N2 sin(δ1 − δ2) + 1
2λ1N1 − 1

2 cos(δ1)F = 0

N1(
∂

∂T1
δ1) + 1

2N1 − 1
2N2 cos(δ1 − δ2) + σN1 + 1

2 sin(δ1)F = 0

(1
2N2 − 1

2δN2 − 3
8KN

3
2 ) sin(δ1 − δ2) + 1

2N2λ2 cos(δ1 − δ2) = 0
1
2N1 + (3

8KN
3
2 + 1

2δN2 − 1
2N2) cos(δ1 − δ2) + 1

2N2λ2 sin(δ1 − δ2) = 0

(4.2)

Resolving the third and fourth equation in Eq. (4.2), the expression of cos(δ1 − δ2)
and sin(δ1 − δ2) can be expressed as

cos(δ1 − δ2) = − 4(3KN2
2 + 4δ − 4)N1

N2((3KZ2 + 4δ − 4)2 + 16λ2
2)

sin(δ1 − δ2) = − 16λ2N1

N2((3KZ2 + 4δ − 4)2 + 16λ2
2)

(4.3)

The above expression satisfies the relation cos(x)2 +sin(x)2 = 1 and shows an intrinsic
property of bistable NES system. Substituting (4.3) into the first two equations in (4.2),
the variation of LO amplitude is presented as follows in Eq. (4.4), with Z1 = N2

1 and
Z2 = N2

2 .

Z1 = Z2((δ + 3
4KZ2 − 1)2 + λ2

2)
∂

∂τ1
Z1(τ1) = −λ2Z2 − λ1Z1 +N1 cos(δ1)F

(4.4)
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The first equation of Eq. (4.4) is also known as the Slow Invariant Manifold (SIM).
Every point in the SIM branch indicates a potential steady response solution, the stability
of which can be determined by applying the perturbation method and observing whether
the roots of its characteristic equation lie on the left half of the complex plane.

The right-hand side of the second equation of Eq. (4.4) indicates that the LO amplitude
is naturally decreasing because its derivation is always negative if there is no external
excitation (F = 0). A Hamiltonian system indicates that Z1 has a derivative of zero and
the LO amplitude remains constant. It results in the energy exchange without dissipation
in the Hamiltonian system. The energy transfer from LO to NES is an inherent property
of the system in the presence of damping. With the existence of the term cos(δ1)F , whose
positivity or negativity is not fixed. This gives rise to a relaxation-type oscillation.

4.1.1 Transient response
For the sake of simplicity, the response of transient excitation (F = 0, v̇(0) ̸= 0) is
considered first. In this case, the right-hand side of the second equation of Eq. (4.4) is
always negative, and the energy localized in LO decreases continuously. The derivation
of Z2 with respect to τ1 is obtained by deriving the SIM function with respect to Z2 and
then combining it with the second equation of Eq. (4.4).

∂

∂τ1
Z2 = −λ1Z1 − λ2Z2

27
16K

2Z2
2 + 3KZ2(δ − 1) + (δ − 1)2 + λ2

2

(4.5)

It is difficult to separate the variables and integrate the Eq. (4.5). However, if the
damping of the LO is neglected (λ1 = 0), the separation of variables leads to a possible
integration, as follows:

C + λ2τ1 = 27
32K

2Z2
2 + 3KZ2(δ − 1) + ln (Z2) ((δ − 1)2 + λ2

2)

τ1,p = I(Z2(1)) − I(Z2(0))
λ2

(4.6)

The right-hand side of the first equation of Eq. (4.6) is marked as I(Z2), describing the
state of the systems. When the initial Z2(0) decreases to Z2(1), the slow time interval, τ1,p,
of this process can be obtained by calculating the state variables I(Z2(0)) and I(Z2(1))
from initial state to end state. This process is visualized with the red dashed line in the
SIM structure in Fig. 4.1.

For the condition that λ1 ̸= 0, the pumping time τ1,p from initial state and end state
can be solved according to the following equation.

∫ τ1,p

0 (− 9
16λ1K

2Z2
2 + 3

2λ1K(1 − δ)Z2)dτ1

−(λ1(1 − δ)2 + λ1λ
2
2 + λ2)τ1 = I(Z2(0)) − I(Z2(1))

(4.7)

While the trajectory descends from Z2(0) to Z2(1), Z2 is the function of τ1, which is
hard to express in an explicit form. However, Z2, which represents the NES amplitude,
is almost constant during the energy pumping. This assumption that Z2 remains constant
during the TET has been verified numerically [Dekemele et al., 2019]. So, in the integration
term in Eq. (4.7), Z2 is assumed to be a constant Z2,c. Z2,c measures the average value
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Figure 4.1: The SIM structure (blue line) and transient phase trajectory (green line),
which describes the descending motion from initial state ([Z2(0), Z1(0)]) to end state
([Z2(1), Z1(1)]). The red dashed line with the arrow means the equivalent ideal slow flow
motion.

of Z2 during TET. It is determined by slow flow dynamics in the undamped condition
λ1 = 0.

Z2,c =
∫ τ1

0 Z2dτ1

τ1,p

=

∫ Z2(0)
Z2(1) (27

16K
2Z2

2 + 3KZ2(δ − 1) + (δ − 1)2 + λ2
2)dZ2

λ2τ1,p

=
[ 9
16K

2Z3
2 + 3

2K(δ − 1)Z2
2 + (δ − 1)2Z2 + λ2

2Z2]|Z2(0)
Z2(1)

λ2τ1,p

(4.8)

Finally, the energy pumping time τ1,p between two states from Z2(0) to Z2(1) is found
by solving the following equation.

τ1,p = I(Z2(0)) − I(Z2(1))

−( 9
16λ1K2Z2

2,c − 3
2λ1K(1 − δ)Z2,c + λ1(1 − δ)2 + λ1λ2

2 + λ2)
(4.9)

4.1.2 Harmonic excitation response
The integration of second equation of Eq. (4.4) involves complex terms in which the
expressions for the phase δ1(τ1) and the amplitude N1(τ1) are hard to describe analytically,
when harmonic excitation F exists. It causes the integral F

∫ τ1,p

0 N1(τ1) cos (δ1(τ1)) d(τ1) to
fail. The termsN1 cos(δ1) represent the real part of ϕ1. From an engineering interpretation
point of view, Re(ϕ1) is considered as amplitude information of LO. Based on this concept,
an essential assumption is proposed as N1(τ1) cos(δ1(τ1)) =

√
Z1. This assumption will

be verified numerically in the following subsection. So the energy dissipation ratio in the
harmonic excitation case is expressed as:
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∂

∂τ1
Z2 = −λ1Z1 − λ2Z2 + F

√
Z1

27
16K

2Z2
2 + 3KZ2(δ − 1) + (δ − 1)2 + λ2

2

(4.10)

Substituting the first equation of Eq. (4.4), the Z1 in the above equation and separating
the special integrals I(Z2(0)) and I(Z2(1)), it gives:

∫ τ1,F

0
(−λ1

Z1

Z2
− λ2 + F

√
Z1

Z2
)dτ1 = I(Z2(0)) − I(Z2(1)) (4.11)

Z1 can be expressed with respect to Z2 according to the SIM function. If Z2(τ1) is
treated as a time variable, it leads to failure to integrate the right side of Eq. (4.10),
However, the case of damping without excitation provides a simpler way to calculate
this hardly-separate integral term, if Z2(τ1) is equal to a constant, Z2,c. The subsequent
numerical calculation results will verify the validity of this hypothesis. Although the
energy pumping time of the transient response and harmonic excitation cases are not the
same, the average value of Z2 is almost identical. (Z2,c, Z1,c) represents the equivalent
point (state) in the amplitude decline process along with the SIM. So the energy pumping
time for the harmonic excitation case τ1,F can be obtained as

τ1,F = Z2,c(I(Z2(0)) − I(Z2(1)))
−λ1Z1,c − λ2Z2,c + F

√
Z1,c

(4.12)

Figure. 4.2 is presented to better understand the calculation procedure of energy
pumping time for a harmonic excitation case. Firstly, the parameters of the system,
for example, ϵ, λ1, λ2 and K and δ, are required for the determination of the geometry
of the SIM. The height of initial state is chosen by the usually maximum absolute value
of Z1 of phase trajectory in a given SMR cycle. Meanwhile, end state is referred to as a
singularity of the right stable branch of the SIM, which is already fixed in the first step
(Z2(1) = Z2,2, Z1(1) = Z1,2). So, in the second step, the difference between initial state
and end state is decided. Z2,c, and special state integral terms I(Z2(0)) and I(Z2(1))
for the transient response case are still the foundation of the estimation of pumping time
with harmonic excitation in the third step. In the fourth step, the average value Z2,c and
Z1,c and the other two state integrals are re-substituted into Eq. (4.12) to finally solve
τ1,F .
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Figure 4.2: Flow diagram of the calculation of energy pumping times for harmonic
excitations

4.2 Influence of parameters on transient response
From Eq. (4.9), it is clear that the energy pumping time depends on the initial position
of the SIM right branch. The pumping time of various energy levels is compared by
both numerical and analytical methods to demonstrate the correctness of the analytical
prediction. When LO is applied by various but sufficiently intensive impulse excitations,
the trajectory has a snap-through motion and immediately jumps to the right stable
branch of the SIM, where NES is governed by 1:1 resonance and vibrates in the vicinity of
the natural frequency of LO. The initial quantitative conditions of Z1 needed to trigger an
efficient dissipation of energy have been discussed [Nguyen et Pernot, 2012]. The influence
of damping λ2, cubic nonlinearity parameter K and negative stiffness δ are considered in
the following subsection in order to optimize the energy dissipation rate. The whole of the
following simulation development is based on parameter sets for ϵ = 0.01, λ1 = 1.67, λ2 =
0.167, δ = −0.44, K = 1742. And the parameters to be studied can be varied.

4.2.1 Influence of initial heights
Figure. 4.3 presents two typical examples of energy pumping from LO to NES. The
Wavelet transform (WT) results show that the dominant frequency equals the natural
frequency of the LO. The NES performs 1:1 resonance occupying the whole TET period.
So the energy pumping time is defined as the moment that the yellow bar disappears,
which means that the trajectory crosses the end state (Z2(1), Z1(1)) in Fig. 4.1.

Considering the variety of initial heights Z1(0), a new variable is proposed to measure
the velocity of descent, which is shown in Fig. 4.4b. The trajectory oscillates and slips
along the right branch; Vτp shows the average velocity of slow flow descent.
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Figure 4.3: Transient TET of different input energies. left: Z1(0) = 1e − 4, right:
Z1(0) = 1.75e− 4 (a) phase trajectory (green) together with SIM (blue), (b) time-domain
displacement of NES, (c) frequency distribution of NES vibration, for ϵ = 0.01, λ1 =
1.67, λ2 = 0.167, δ = −0.44, K = 1742

Vτp = Z1(0) − Z1(1)
τp

(4.13)

The energy pumping time by simulation is presented in line with dots in Fig. 4.4a. As
the initial height Z1(0) increases while the end state ((Z2(1), Z1(1)) = (1.09e-3, 3.052e-
5)) keeps constant, the time that it requires for the system’s trajectory to reach the
end state also rises. The relatively high energy input case simulation always causes a
more significant value than the analytical prediction. The time required to descend is
proportional to the difference between the initial state and end state in Z1 direction,
which explains the phenomenon that the rate of descent remains essentially constant for
different energy inputs in Fig. 4.4b. So it is concluded that the rate of decline of Z1 is
mainly determined by the system parameters and is independent of the impulsive input
energy value (above the threshold energy for triggering the TET).

4.2.2 Influence of damping
The previous subsection briefly revealed that λ2 has an essential impact on Vτp. However,
the modification of λ2 also results in a change of shape of the SIM, which is presented in
Fig. 4.5a. An impact Z1(0) = 1.5e− 4 is assumed to be applied to the system so that this
mid-energy maintains the error of analytical prediction at an acceptable level in different
damping conditions.

As λ2 increases, the end state, moves upwards. This implies that the system possesses
a higher critical LO amplitude when the TET disappears. The path between the initial
height Z1(0) and the end height Z1(1) decreases, which helps systems to terminate TET
in a shorter time. In addition to the shortening of the path, damping affects the duration
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Figure 4.4: Influence of parameters on the energy pumping time and the velocity of
descent. (a, c, e, g) analytical prediction and simulation results, (b, d, f, h) descent rate.
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Figure 4.5: Modification of SIM shape under various (a) λ2 (0.1, 0.2, 0.3) (b) K ([1400,
1600, 1800, 2000]) (c) δ ([-0.05 -0.3 -0.55 -0.8]). Arrow indicates the case with the largest
(absolute) values of corresponding parameters.
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of the TET. According to Eq. (4.4), a higher value of λ2 enhances the rate of descent.
With shorter paths and greater damping value, the energy pumping time is apparently
reduced in Fig. 4.4c, and the average descent rate increases linearly with higher λ2 in
Fig. 4.4d.

Through the second equation of Eq. (4.4), the both parts λ1Z1 and λ2Z2 contribute to
the descent rate. When the Z2c is selected, whose values are almost constant during the
different descent process, about 1.14e-3, for case λ2 = 0.167 and initial state Z1(0) = 1.5e-
4. The corresponding Z1 value in SIM right branch is 3.55e-5. The different contribution
of damping part is calculated that λ1Z1 = 0.6e-4 and λ2Z2 = 1.9e-4. The latter component
governs mainly the decent rate value due to its larger value. To maximise the descent
rate in transient response, increasing the λ2 value can be an alternate and effective way.
However, it also causes the LO optimal design to have a larger stable response amplitude
in harmonic excitation.

4.2.3 Influence of cubic nonlinearity parameter and negative
stiffness

To investigate the role of cubic nonlinearity parameter K and negative stiffness δ, the
energy pumping times and corresponding descent rates are presented in Fig. 4.4(e-h).
The system has the same initial impact as in the previous investigation Z1(0) = 1.5e-
4. Firstly, increasing the value of the cubic nonlinearity parameter and negative stiffness
causes the SIM to change shape in the direction of the arrow in Fig. 4.5b,c. The final state
rises, reaching a larger value of Z1(1), which means a shorter path to cross. So the energy
pumping time is shorter in the case of smaller cubic nonlinearity parameter K. According
to the previous description, the equivalence point is located near the end state, and an
increase in K allows the equivalence point to have a smaller Z1,c, Z2,c. Equation. (4.4)
indicates that the smaller Z1,c, Z2,c values lead to a decrease in instantaneous velocity. So
the decrease in average velocity with increasing K design can be explained.

When the absolute value of δ rises while the value of K remains constant, the final
state, in the SIM structure moves in the direction of a higher Z2(1) value. Meanwhile,
Z1(1) slightly increases while δ varies in Fig. 4.5c. The decrease in the average descent
rate is due to the smaller Z2(1) value of the end state. So, systems with smaller absolute
δ values take a longer time to dissipate energy in Fig. 4.5g. The variation in the descent
rate is almost linearly related to the change in δ in Fig. 4.4h. This feature is not the same
as the quadratic decrease in decay rate as K increases. The analytical prediction shows a
good fit of results in the middle interval of the δ range. In a small negative stiffness case,
the analytical result is larger than the simulated value.

It can be concluded that the energy pumping time depends on the modification of the
SIM shape. The rate of decline of the system is mainly due to the effect of K, δ on the
position of the end state (singularity point) of the SIM, which causes the average Z1, Z2
values to ultimately change the average velocity.
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Figure 4.6: Time-displacement of (a) Z1, (b) w and (c) WT for w. The intervals of energy
pumping time are identified and marked in yellow shaded areas

4.3 Influence of parameters on harmonic excitation
response

4.3.1 Various initial heights
The parameters of a bistable NES for the numerical simulation are classified as modest
ones. The negative stiffness introduces chaos behaviours and the snap-through motion
is triggered by the chaos. The initial height Z1(0) at which the phase trajectory begins
to descend is different and unpredictable for each complete SMR cycle. The various
maximum local values of Z1 are marked with the diamond dots in Fig. 4.6a. These
different Z1 values are used as the initial height Z1(0) of descent to predict the energy
pumping time for each SMR cycle.

The energy pumping process describes how the energy of LO is transferred into NES
and dissipated by the damping. Energy pumping is referred to as the phase trajectory
descends along the righ SIM stable branch and does not include snap-through motion.
So the energy pumping time is counted from the moment the NES amplitude reaches its
maximum and ends when the NES re-enters chaos. In other words, it implies a phase
in which the amplitudes of LO and NES drop simultaneously. The interval of energy
pumping time in each SMR cycle is identified in Fig. 4.6.

Based on the calculation process in the excitation case and initial Z1 value, the
predicted pumping time can be calculated, and is summarized in Tab. 4.1, where the
unit of Z1(0) is 1e-5. τ0,a are the analytical energy pumping times. τ0,s are the simulated
values, which are calculated by time intervals marked in Fig. 4.6b.

Both τ0,a and τ0,s are in the fast time scales τ0. The expression of energy pumping time
gives an estimation in slow time scales τ1. To convert it into fast time scale τ0, a simple
relationship τ1 = ϵτ0 is applied according to the definition in multiple scales method.

Each interval starts with a green dot and ends with a red triangle. Er means the
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Table 4.1: Pumping time estimation for same amplitude input G = 0.3mm
Z1(0)/1e-5 8.22 8.15 7.70 7.73 7.75
τ0,s 70.6 70.7 64.3 64.4 64.7
τ0,a 69.4 68.4 62.6 62.9 63.2
Er(%) 1.73 3.36 2.72 2.38 2.37

Table 4.2: Average pumping time estimation for various energy inputs
G (mm) 0.25 0.275 0.3 0.325 0.35
Z1(0)/1e-5 7.23 8.052 8.04 8.23 8.075
τ0,s 39.1 57.35 68.67 83.42 104.64
τ0,a 39.8 55.42 67.02 87.58 115.56
Er(%) -1.76 3.5 2.46 -4.75 -9.45

relative error between τ0,s and τ0,a. From an intuitive point of view, a higher initial Z1(0)
causes a greater distance to slide down, when the end state Z1(1) is fixed by the same
SIM structure. So a longer energy pumping time is required for the same energy input
level. The analyzed values are smaller than the simulated values. An error of less than
5% between the two values can be accepted. When predicting energy pumping time, this
semi-analytical method is robust with respect to the uncertainty of initial height Z1(0)
caused by chaos.

4.3.2 Various excitation amplitudes
The initial height Z1(0) for each SMR changes as time varies. So, to compare the influence
of energy input levels, the average Z1 value is chosen within a time interval of [0,1000](τ).
The excitation interval is selected in the range [0.25mm,0.35mm] to ensure the occurrence
of SMR, for which the interval of occurrence is numerically [0.22mm, 0.44mm].

For each excitation case, the initial height Z1(0) where each SMR starts to descend is
different. To calculate the average initial height Z1(0), a time interval of response, which
contains 5 complete SMR cycles, is selected. The upper line of Z1(0), τ0,s and τ0,a in
Tab. 4.2 represents the average value of the corresponding parameter in these five SMR
cycles. This method of calculating the mean height and the mean time was also applied
in the study of the relationship between descent rate and negative stiffness.

Although the perturbation exists in the average initial height (average Z1(0) does not
increase for a higher input energy in the second line of the Tab. 4.2), the extension of
the analytical and simulated pumping time shows a strong relationship with increasing
excitation. Increasing the amplitude of the excitation leads both the simulated and
analytical energy pumping times to show an increasing tendency in Tab. 4.2. When the
system is maintained at a low energy input, the error level is perturbed but is acceptable.
However, the analytical result is larger than the simulated value in a high energy case,
G = 0.35mm. In the transient response, the high energy state also leads to a similar
error distribution, i.e., a large analytical value, and a more significant excitation results
in failure of the method. So low or modest energy inputs are necessary to ensure the
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Table 4.3: Pumping time estimation for various negative stiffness cases
k3(N/m3) -25 -50 -75 -100 -125
Z1(0) 8.86 8.04 9.34 1.12 1.04
τ0,s 108.85 68.67 56.82 53.76 37.84
τ0,a 122.5 67.02 58.52 57.74 39.93
Er(%) -11.1 2.46 -2.9 -6.9 -5.23

validation of this method.

4.3.3 Various negative stiffness cases
Five cases with different negative stiffness values are examined further to investigate the
robustness under various negative stiffness designs under the same amplitude excitation
G = 0.3mm. Like various energy input cases, the average energy pumping times, obtained
by numerical and semi-analytical methods, are compared in Tab. 4.3. With the variation
of δ, the perturbation in average initial height Z1(0) becomes more severe. As the |δ|
declines, more time is needed to dissipate the same energy input level. In the transient
response case, the larger value of |δ| causes the deformation of the SIM structure, where
the end state moves to a position with higher value of Z2(1) and Z1(1). So the equivalent
point, which is close to the end state in the SIM structure, has a more significant value.
This variation significantly improves the decline rate, regardless of the initial height Z1(0)
perturbation by Eq. (4.4).

A bigger value of negative results in a faster dissipation ratio also leads to a larger
harmonic excitation amplitude threshold to trigger the SMR. The analytical prediction
is always larger than the simulated value. A more significant error is found in a weak
bistable NES that still conserves some characteristics of a cubic NES, where the snap-
through motion is triggered by crossing the singularity of SIM instead of being triggered
by chaos. The modest bistable NES (k3 = -50N/m or -75N/m) shows the errors below
5% and confirms that this method predicts the energy pumping time more accurately in
the modest bistable NES case.

4.3.4 Validation of assumption
During the TET, Z2,c is almost constant, and it can be observed that the NES amplitude
remains constant in Fig. 4.6 for each energy pumping period. The initial assumption of
N1(τ1) cos(δ1(τ1)) =

√
Z1 is a prerequisite for the semi-analytical method. Acquiring exact

expressions of integrals is challenging, but the two sides of the equation are equivalent in
the integration process. To better demonstrate this point, a numerical example for case
G = 0.3mm (σ = 0) can provide an explanation.

When the initial maximum Z1(0) is equal to 8.15e-5, the distance in the Z1 direction,
between initial states and end state, ∆Z1 is -5.1e-5. The analytical energy pumping time
τ1 = ϵτ0 = 0.684. The positions of the equivalent points are Z1,c = 3.54e-05, Z2,c =
1.14e-3, which is close to the final state. Substituting these parameters into the second
equation of (4.4), the average value of N1(τ1) cos(δ1(τ1)) during the whole TET equals
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5.83e-3, while
√
Z1,c equals 5.95e-3. The approximation produces an error level on the

integral of 2%.
Although the other parameters, for example, excitation amplitude and negative stiffness,

also influence the accuracy of integral, the good agreements between simulation results
and analytical predictions verify the equivalence of integrals. Thus, the following equation
is valid during the energy pumping time.

1
τ1

∫ τ1

0
N1(τ1) cos(δ1(τ1))dτ ≈

√
Z1|Z1=Z1,c (4.14)

4.4 Experimental validation
The experiment set-up is the same as the previous study with adjusting the pre-compression
length to maintain a new modest bistable NES. The parameters of the system are presented
in Tab. 4.4. Since the excitation is provided by 10KN electrodynamic shaker, the frequency
of excitation is in the natural frequency (f0 = 7.27Hz) of the LO.

The system is applied with two low excitations, G = 0.21mm and 0.25mm. In both
cases, the bistable NES starts to perform SMR, which is presented in Fig. 4.7. According
to the previous definition of energy pumping, which counts from the time the NES reaches
its maximal amplitude to when the NES re-enters the chaotic state, the time instants are
also marked in the figure. In the numerical simulation, the start point of Z1(0) is obtained
by the time displacement of LO. However, Z1 is expressed as a real part of complex
variable ϕ1(τ), which cannot be recorded directly. From the perspective of a mechanical
interpretation, the Z1 approximately equals the square of the LO amplitude. So, the
initial Z1(0) in the starting point is selected as the square of maximal LO displacement.

The energy pumping times of both excitation cases are calculated in Tab. 4.5, where
te,p and ta,p are the experimental and analytical energy pumping times. In the lower
energy input case (G = 0.21mm), the analytical prediction time is always shorter than
the experimental observation. This is also the case for the comparison with simulation,
where the analytical value is always lower than the simulated one, for example, G =
0.3mm in Tab. 4.2. The variation of value of the initial height Z1(0) occurs because chaos
motion triggers the snap-through motion, so the maximal LO amplitude is unpredictable
and it is hard to reach the same level for each SMR cycle. The analytical prediction can
estimate the energy pumping time to the same order of magnitude.

In a higher energy input case (G = 0.25mm), in Fig. 4.7c-d, the initial start point
also possesses a higher position than that of lower energy inputs. It also causes a need
for longer pumping time to dissipate energy. The overestimation occurs in the case of
initial height Z1(0) = 4.7e-5. This can be considered as the failure of the analytical
estimation method. In the high energy input cases of harmonic excitation, for example,
G = 0.35mm in Tab. 4.2, a high initial start point causes a larger error. This confirms
that our analytical prediction provides a better fit for the low energy level input. If this

Table 4.4: Experimental parameters of environment
Reduced parameters ϵ λ1 λ2 K δ

0.91% 2.18 0.24 6.65e3 -1.05
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Figure 4.7: Experimental time-displacement result of bistable NES and LO (a) (b) for
excitation G = 0.21mm, (c) (d) for G = 0.25mm. The intervals of energy pumping time
are identified and marked in yellow shaded areas

Table 4.5: Experimental results of energy pumping time in G = 0.21 and 0.25mm cases.
G (mm) 0.21 0.25
Z1(0)/1e-5 2.80 3.0 2.76 2.9 3.44 3.01 4.7 2.88
te,p/s 0.44 0.58 0.44 1.02 1.28 1.00 1.30 0.86
ta,p/s 0.32 0.44 0.29 0.88 1.6 1.02 3.3 0.84

invalid data is excluded, the remaining mean error on the corresponding predicted values
against the experiment is reduced to 4%.

4.5 Conclusions
This study focuses on the adapted method based on the Slow Invariant Manifold (SIM)
structure to predict the energy pumping time of a bistable NES under the transient
impulsive excitation and harmonic excitation. The calculation process has been presented
to examine the robustness of prediction. The factors affecting the rate of amplitude
decrease have been analyzed for the transient and harmonic excitation cases. Several
main conclusions can be drawn:

1. To estimate the duration of energy pumping time in a damping and harmonic
excitation case, the Hamiltonian system is considered first. The equivalent point,
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obtained by a damped, transient impulsive system, is essential for energy pumping
time calculation under harmonic excitation.

2. The influences of parameters (initial state, cubic nonlinearity parameter, negative
stiffness, damping and excitation amplitude) are investigated for both transient
response and harmonic excitation. Due to the chaos behaviours, the robustness
of the semi-analytical method is tested and proved to be strong enough under
parameter perturbation. A larger NES damping λ2, lower cubic nonlinearity parameter
K or larger negative stiffness |δ| enhance the dissipation rate by modifying the
structure of the SIM and the corresponding equivalent point position. Energy input
level does not affect the Linear Oscillator (LO) amplitude decay rate in transient
case.

3. A particular approximation of complex integration offers the possibility to calculate
the energy pumping time for every Strongly Modulated Response (SMR) cycle.
Due to the chaos motion, every initial starting point is different. The numerical and
experimental results prove the robustness of the calculation method with respect
to initial state and excitation. This prediction method shows good potential for
predicting the energy pumping time in a low energy state.
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CHAPTER 5 Targeted energy
transfer in vibro-impact
cubic NES

This chapter mainly investigates the response regimes of a novel Nonlinear
Energy Sink (NES) that couples both nonlinearities: cubic nonlinearity and
impact, and gives the optimal criteria. With the non-smooth condition, the
conventional Multiple Scales Method (MSM) has to be added impact condition.
According to the clearance lengths, three types of Vibro-Impact Cubic (VIC) NES
are described. By identifying the occurrence of the collision, the asymptotic
analysis of the equivalent cubic NES model and Vibro-Impact (VI) NES model can
illustrate the fixed point of VIC NES. The role of clearance length on the response
regimes has been given and offers criteria for the optimal design. Combined with
the simulation results, the experiment result proves the restraint effect of impact
on the emergence of Strongly Modulated Response (SMR).
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5.1 Dynamic modeling

5.1 Dynamic modeling
Most current studies primarily consider the single nonlinear component effect. In fact,
due to manufacturing and assembly errors, cubic NES devices often introduce other
constraints—such as displacement restrictions—which can lead to tight, rigid constraint
collisions. The coupling effect of multiple nonlinearities remains a significant challenge.
The cubic NES involved in the impact effect has been studied for transient response and
is known as Vibro-Impact Cubic (VIC) NES [Wei et al., 2018]. The energy percentage
ceases dramatically while energy percentage of normal optimal NES possesses a longer
time for resonance capture. Even in a low energy input case, which is not intensive
enough to activate the Targeted Energy Transfer (TET) for normal NES, the VIC NES
can still dissipate the energy with a very high efficiency. Farid described the VIC NES as a
Hybrid Cubic Vibro-Impact (HCVI) NES for harmonic excitation [Farid, 2021], applying
a canonical transformation to the Action-Angle (AA) variables to describe the response
regimes in VIC NES. Two types of bifurcations were identified, respectively describing
the impact boundary and critical maximal transient energy level.

So, to model the cubic NES with impact condition, the diagram of VIC NES is
presented in Fig. 5.1. The NES mass m2 is coupled with a cubic nonlinearity k2 and
linear damping c2. The NES mass can only move in the cavity. The clearance length on
each side of the NES is bilateral and equals b. The m1, c1 and k1 are the mass, viscous
damping, and linear stiffness of the Linear Oscillator (LO), respectively. This two-DOFs
system is applied by a harmonic excitation xe = Gcos(wt). The governing equation and
impact condition yield:

m1ẍ+ k1x+ c1ẋ+ c2(ẋ− ẏ) + k2(x− y)3 = k1xe + c1ẋe

m2ÿ + c2(ẏ − ẋ) + k2(y − x)3 = 0
∀|x− y| < b

(5.1)

where x and y represent the absolute displacement of the LO and NES, respectively.
When the impact |x − y| = b occurs, the instant displacements of the LO and NES
remain constant, as does the velocity of LO. However, non-smooth dynamics bring about
a sudden change in the value of the velocity of NES, as well as its direction before and
after impact. This kind of non-smooth behavior entails a loss of energy. The actual
velocity loss is more complex; the specific technical tool required to handle this kind of

Figure 5.1: Diagram of Linear Oscillator (LO) the Vibro-Impact Cubic (VIC) NES system

- 118 - PhD Thesis - Zhenhang WU



Chapter 5 : Targeted energy transfer in vibro-impact cubic NES

inelastic impact is developed [Pilipchuk, 2015] to form closed-form analytical solutions
that automatically satisfy collision conditions with the energy loss. However, these
simplified shock assumptions have been proven effective and useful in many VI NES
problems [Reboucas et al., 2018 ; Li et al., 2017b]. The condition of total momentum
conservation gives the following equations for |x− y| = b:

x+ = x−, ẋ+ + ϵẋ+ = ẏ− + ϵẏ−

y+ = y−, ẋ+ − ϵẋ+ = −r(ẏ− − ϵẏ−) (5.2)

where r is the restitution coefficient (with a value between 0 and 1). The + and –
superscripts represent the system parameter after and before impact. By introducing the
rescaled variables Eq. (5.3) and substituting the new variables v = x+ ϵy and w = x− y,
the corresponding dimensionless equations are expressed in Eq .(5.4).

ϵ = m2

m1
, ω2

0 = k1

m1
, K = k2

m2ω2
0
, λ1 = c1

m2ω0
,

λ2 = c2

m2ω0
, F = G

ϵ
,Ω = ω

ω0
, τ = ω0t

(5.3)

v̈ + ϵλ1
v̇ + ϵẇ

1 + ϵ
+ v + ϵw

1 + ϵ
= ϵF cos Ωτ

ẅ + ϵλ1
v̇ + ϵẇ

1 + ϵ
+ v + ϵw

1 + ϵ
+ λ2(1 + ϵ)ẇ +K(1 + ϵ)w3 = ϵF cos Ωt

∀|w| < b

(5.4)

The cavity limits the displacement of the NES with respect to the LO to no more than b.
Thus, the impact condition for |w| = b can be re-written as

v+ = v−, v̇+ = v̇−

w+ = w−, ẇ+ = −rẇ− (5.5)

The Manivitch complex variables are presented to separate the fast oscillation components
eiΩτ and the slowly invariant amplitude components ϕj(τ), j = 1, 2, where i is the
imaginary unit.

ϕ1(τ)eiΩτ = d

dτ
v(τ) + iΩv(τ)

ϕ2(τ)eiΩτ = d

dτ
w(τ) + iΩw(τ)

(5.6)

To avoid secular terms, only terms with eiΩτ are kept. The slow modulated system is
obtained in Eq. (5.7).

ϕ̇1 + iΩ
2 ϕ1 + ϵλ1 (ϕ1 + ϵϕ2)

2(1 + ϵ) − i (ϕ1 + ϵϕ2)
2Ω(1 + ϵ) − ϵF

2 = 0

ϕ̇2 + iΩ
2 ϕ2 + ϵλ1 (ϕ1 + ϵϕ2)

2(1 + ϵ) − i (ϕ1 + εϕ2)
2Ω(1 + ϵ) + λ2(1 + ϵ)ϕ2

2 − 3iK(1 + ϵ)ϕ2
2ϕ2

8Ω3 − ϵF

2 = 0

∀|Imag(ϕ2e
iτ )| < Ωb

(5.7)
ϕ2 is the conjugate value of ϕ2, while Imag(ϕ2) represents the imaginary part of ϕ2

(i.e. the displacement component). The impact condition at the moment η is expressed
with simple algebraic operations:
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ϕ1(η−) = ϕ1(η+)
ϕ2(η+)ϕ2(η+) − b2

ϕ2(η−)ϕ2(η−) − b2 = r2 (5.8)

By applying the multiple scales method, the solution ϕj = ϕj (τ0, τ1, . . .) is expressed
by the fast time scale τ0 = τ and the slow time scale τ1 = ϵτ . The system of Eq. (5.7) is
now examined for different orders of ϵ.

Order ϵ0:

d
dτ0

ϕ1 = 0
d

dτ0
ϕ2 + 1

2i (ϕ2 − ϕ1) + 1
2ϕ2λ2 − 3

8iKϕ
2
2ϕ2 = 0

∀|Imag(ϕ2e
iτ0)| < Ωb

(5.9)

Order ϵ1:

∂

∂τ1
ϕ1 + i

2 (ϕ1 − ϕ2) + iσϕ1 + λ1

2 ϕ1 − F

2 = 0
∂

∂τ1
ϕ2 + i

2 (ϕ1 − ϕ2) + iσ

2 (ϕ1 + ϕ2) + λ1

2 ϕ1 + λ2

2 ϕ2 − 3iK(1 − 3σ)
8 ϕ2

2ϕ2 − F

2 = 0
(5.10)

In the order ϵ0 equation, ϕ1 is independent of the slow time scale τ0 and the excitation
terms disappears. The new variables ϕ1(τ1) = N1e

iδ1 and ϕ2(τ1) = N2e
iδ2 are introduced

to extract its topological structure, known as Slow Invariant Manifold (SIM), yielding:

Z1 = Z2λ
2
2 + Z2 − 3K

2 Z2
2 + 9K

16 Z
3
2

Z1 = N2
10, Z2 = N2

20

(5.11)

N10 and N20 are the periodic solution of N1 and N2. The two singularity points Z2,j, j =
1, 2 divide the SIM into a left–right stable branch and a middle unstable branch in Fig. 5.2.

When displacement constraints are present, the periodic solutions of the system behave
differently from the unconstrained case. The extra periodic solution is considered to be
introduced by an extra singularity value Z2,e. This kind of singularity is independent of
Z2,j and is determined by the clearance length. Consequently, it is natural to consider
the different Z2,e locations in the SIM structure.

Z2,j = N2
2,j =

4(2 ∓
√

1 − 3λ2
2)

9K , j = 1, 2
Z2,e = N2

2,e = b2
(5.12)
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Figure 5.2: SIM of the VIC NES with three extra singularity lines (red) Z2,e1 = 0.1e-3,
Z2,e2 = 0.5e-3, Z2,e3 = 0.9e-3. The dashed blue line indicates the unstable region and the
solid blue lines indicate the stable branches.

5.2 Response regimes
The location of the extra singularity line in the SIM structure affects the response regimes
significantly. The three different clearance lengths are selected so that the Z2,e1—possessing
a narrow clearance—is located on the left stable branch. In the second case, the Z2,e2
value lies within the interval [Z2,1, Z2,2] and the extra singularity line is located in an
unstable region. If the clearance length has a larger value, e.g. Z2,e3, the extra singularity
line will be located on the right stable SIM branch. The analysis of response regimes is
developed according to this classification.

5.2.1 Narrow clearance case
If the clearance is relatively narrow (b = 10mm), the extra singularity line crosses the
left stable branch at a critical point (Z2,e1, Z1,e1); the latter Z1,e1 is easily obtained by
substituting the Z2,e1 into Eq. (5.11). The simulation parameters are fixed for ϵ =
0.01, λ1 = 1.67, λ2 = 0.167 and K = 1742. The initial conditions for following simulations
are same v(0) = v̇(0) = w(0) = ẇ(0) = 0. In a low energy input case, the final
stable amplitude of the NES is lower than b, which means that the NES oscillates in
the cavity. In Fig. 5.3, the amplitude of both the NES and LO increase monotonically
and ultimately reach a stable amplitude. In the subplot of Fig. 5.3c, the actual phase
trajectory—indicated by the green line—also rises along the left branch SIM monotonically
without coming into contact with the extra singularity line Z2 = Z2,e1.

Before the harmonic excitation amplitude causes the collision, the system behaviors
can be analyzed with the framework of the cubic system. The fixed points of Eq. (5.7) are
expressed as ϕ10, ϕ20. It is assumed that the imaginary part of ϕ20 is assumed to satisfy
the displacement constraint with a low energy input. Solving the expression of ϕ10 in
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Figure 5.3: (a),(b) Time displacement response of v and w for narrow clearance case G
= 0.1mm, σ = 0. The green envelopes represent the reconstructed amplitude, while the
blue curves describe the time response (c) SIM structure. The green line represent the
phase trajectory

the first equation of Eq. (5.7) and re-substituting it into the second equation of Eq. (5.7)
yields the expression of ϕ20. Simple algebraic operations lead to the more convenient
equation, with detune parameter Ω = 1 + ϵσ:

ϕ̇1 = ϕ̇2 = 0,→ ϕ1(τ) = ϕ10, ϕ2(τ) = ϕ20

ϕ10 =

iϵϕ20

Ω(1 + ϵ) − ϵ2λ1ϕ20

1 + ϵ
+ ϵF + iϵ2λ1FΩ

iΩ + ϵλ1

1 + ϵ
− i

Ω(1 + ϵ)
α3K

2Z3
20 + α2KZ

2
20 + α1Z20 + α0F

2 = 0, Z20 = |ϕ20|2

(5.13)

The coefficients α1, α2 and α3 are determined by the system parameters, which are
same as Eq. (2.29) in the second chapter. When the collision occurs, the Z20 reaches
the extra singularity line Z2 = b2. The corresponding threshold excitation Gc can be
calculated with the third equation of Eq. (5.13). The excitation amplitude for impact is
expressed in Eq. (5.14)

Gc = ϵFc = ϵ

√
α3K

2b6 + α2Kb
4 + α1b

2

−α0
(5.14)

Figure. 5.4 presents the analytical threshold excitation (surface) for various clearance
designs, combined with the numerical calculations (red points). The dotted lines connect
the analytical and numerical amplitude threshold and measure their differences.

When the excitation frequency equals the natural frequency of the LO (σ = 0), the
required trigger excitation amplitude increases along with the clearance length design.
A critical point (Z2,e1, Z1,e1) requires a more significant excitation amplitude—whose
frequency is away from σ = 0—to trigger the collision conditions. When the excitation
frequency is in the vicinity of its natural frequency, the resonance phenomenon will
amplify the amplitude of the system, facilitating the collision condition for a low excitation
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Figure 5.4: Analytical and numerical threshold of excitation for different clearance designs.
The surface represents the analytical results. The red points are the numerical results
and the red lines are the distance between numerical results and analytical results.

amplitude. The excitation threshold Gc grows significantly when the frequency is away
from the σ = 0. In the vicinity of σ = 0, the amplitude threshold values predicted by
Eq. (5.14) are located exactly on the surface. The error increases along with the lower
or higher excitation frequency. A bigger clearance design also causes a larger prediction
error (indicated by the longer red dotted line in Fig. 5.4).

It is worth mentioning that all the results resolved in this subsection are restricted to
the case of narrow clearance. In this case, no SMR exists, and the impact’s triggering is
caused by the NES amplitude of a single fixed point exceeding b.

Once the excitation amplitude exceeds the threshold value Gc = 0.17mm for case σ =
0, the impact occurs. In Fig. 5.5, the occurrence of impact divides the response into two
parts. At the beginning, the LO and NES oscillate with a continued increasing amplitude
until the NES comes into contact the barrier. In this period, the reconstructed amplitude
can accurately describe the variation of amplitude. The phase trajectory overlaps with the
SIM branch and rises in the direction of the black arrow. Once the phase trajectory reaches
the critical point (Z2,e1, Z1,e1), it starts oscillating and decreases along an extra singularity
line. At this moment, the reconstructed amplitude cannot fit the time response of NES,
for the reason that the ẇ value can exceed |b| and is not limited by the displacement
constraint. The restitution coefficient r indicates the energy loss during the impact. This
extra energy dissipation process leads to a decrease in the amplitude of the LO, instead of
crossing the critical point (Z2,e1, Z1,e1) in a pure cubic case after the impact occurs. This
discontinuity in velocity can be observed in Fig. 5.5c; quite similar to the pure VI NES,
this discontinuity belongs to the period of two asymmetric impact per cycle.

When the NES oscillates in a small amplitude due to the displacement constraint, the
local stiffness becomes extremely low near the equilibrium. The relatively low velocity
of the NES also reduces the influence of the damping terms. Therefore, it is reasonable
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Figure 5.5: (a), (b) Time displacement response of v and w for narrow clearance case G
= 0.2mm, σ = 0. The green envelopes represent the reconstructed amplitude, while the
blue curves describe the time response (c) velocity of the NES ẇ (d) SIM structure. The
green line represents the phase trajectory. The blue solid/dashed line is a stable/unstable
branch of SIM. The red straight line is the extra-singularity line. Black arrows indicate
the movement of phase trajectory before and after the impact.

to consider the cubic nonlinearity and damping terms c2(ẏ − ẋ) + k2(y − x)3 as a small
perturbation term O(ϵ), being actually similar to a pure VI NES:

m1ẍ+ k1x+ c1ẋ+O(ϵ) = k1xe + c1ẋe

m2ÿ +O(ϵ) = 0
∀|x− y| < b

(5.15)

The following changes in variables are introduced:

ε = m2

m1
, ω0 = k1

m1
, τ = ω0t, λ = c1

m2ω0
, Ω̃ = Ω

ω0
,

F

b
= εG (5.16)

After nondimensionalization, the above equation is simplified with the displacement
transfer into x = Xb, y = Y b.

Ẍ + ελẊ +X = εG sin Ω̃τ
εŸ = 0
∀|X − Y | < 1

(5.17)

The impact condition gives:
X+ = X−, Y+ = Y−, Ẋ+ − Ẏ+ = −R

(
Ẋ− − Ẏ−

)
, Ẋ+ + εẎ+ = Ẋ− + εẎ− (5.18)

In the initial time t = 0, the starting position is assumed to take place in the left side
of the barrier. The solution for this kind of two-impacts-per-cycle regime can be expressed
as follows :

X(t) = e
−
ελ

2 t
(A1 cos ∆t+B1 sin ∆t) + α cos(Ωt+ η) + β sin(Ωt+ η)

Y (t) = C1t+D1, 0 ≤ t ≤ t1

(5.19)
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t1 represents the time of impact on the right side of the barrier, while ∆, α, β are
defined as:

∆ =
√

4 − ϵ2λ2

2 , α = − ΩGλε2

(Ω2 − 1)2 + ε2λ2Ω2
, β = − εG (Ω2 − 1)

(Ω2 − 1)2 + ε2λ2Ω2
(5.20)

To solve the integration constant A1, B1, C1, D1, the expressions given in Eq. (5.19)
are inserted into the half period condition Eq. (5.23) as solutions with two symmetrical
impacts per cycle. The solutions for those integration constants are:

A1 = −2(1 +R) (−α sin (τ0) + β cos τ0) εΩes/I

B1 = −A1(ec+ 1)
es

C1 = −∆
(
2ec+ 1 + e−ελπ/Ω

)
(1 +R) (−α sin (τ0) + β cos τ0)

D1 = −Cπ

2Ω

(5.21)

with
e = e−ϵλπ/(2Ω), s = sin(∆π/Ω), c = cos(∆π/Ω)
I = −ε2λ(1 +R)es+ 2Rε∆e(e− c) − 2∆ε(ec+ 1)
−∆ (1 + e2) + 2∆ec(R − 1) + ∆R (1 + e2)

(5.22)

As with the solutions with two symmetrical impacts per cycle, we can also consider a
half period:

X(0) = X0, X(π/Ω) = −X0, Y (0) = Y0, Y (π/Ω) = −Y0
Ẋ+(0) = Ẋ0, Ẋ+(π/Ω) = −Ẋ0, Ẏ+(0) = Ẏ0, Ẏ+(π/Ω) = −Ẏ0

(5.23)

Re-substituting Eq. (5.21) into the initial condition |X − Y | = 1 yields the expression
of initial time η:

η = arctan b1

a1
± arccos 1√

a12 + b1
2

(5.24)

where a1 and b1 are voluminous and only their appearances are presented.
The η value corresponds to two fixed points, whose stability can be analyzed with the

introduction of perturbation into Eq. (5.19) and by verifying the real part of the roots of
the characteristic equation. The detailed calculation can be found in [Gourc, 2013]. The
analytical solution of the simplified VI NES model for the various excitations case and
for a frequency domain is presented in Fig. 5.6a,b, respectively. The parameters of the
VI NES are the same as those of the VIC NES.

In Fig. 5.6a, the excitation amplitude starts above the impact threshold (16.7mm) to
ensure that the system has a periodic impact solution. In the narrow clearance case, the
weak cubic nonlinearity and damping are neglected. The VIC NES is therefore transferred
into a simpler and pure VI NES, whose analytical treatment has been well established.
When the excitation grows, the analytical amplitude of the simplified model resembles
the actual numerical amplitude. However, the analytical curve differs from the numerical
curve once the G increases to 0.3 mm. A different response regime occurs according to
the classification of Peterka [Peterka, 1996]. In this regime, there are three impacts per
cycle (Fig. 5.7, orange curve), while the more conventional two impacts per cycle (Fig. 5.7,
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Figure 5.6: Comparison between the numerical response and analytical prediction (a) in
growing excitation case for σ = 0 and (b) in the frequency domain for G = 0.25mm

thick blue line) appear in the case of G = 0.25mm. The reason behind a failed analytical
prediction in the form of the hypothetical solution Eq. (5.19) can only represent the regime
of two impacts per cycle.

In the frequency domain, the frequency interval σ = [-1.2 1.2] produces a discontinuous
numerical curve (Fig. 5.6b). According to Fig. 5.4, when b = 10mm, the excitation for
G = 0.25mm can trigger the impact motion from σ = -1 to 1.1. At this stage, the LO
amplitude can be accurately predicted by the stable fixed point obtained from the VI
NES model near σ = 0. The overestimations of analytical results are observed in the σ
<-0.8. The red circled points in Fig. 5.6b are obtained through asymptotic analysis of
the VI NES from Eq. (5.19).

When σ switches from -5 to 0, the regimes shift from the intra-cavity motion into
the impact motion, causing a dramatic increase in LO amplitude. The pure cubic model
dominates the stable analytical solutions that can appropriately fit the numerical results
on both frequency sides of Fig. 5.6b. The stable solutions of the cubic NES indicated by
the square are calculated through the asymptotic analysis of Eq. (5.13), whose stability
can be determined by examining both positive and negative properties of the real part of
the eigenvalue equation roots (once the perturbation is introduced).

On the basis of this discussion, it is feasible to use the VI NES model to calculate
the fixed point of the VIC NES in the impact conditions near σ = 0. This alternative
is possible since the VIC NES numerical solution coincides with the VI NES analytical
solution. When the impact does not appear, the VIC NES performs as a cubic NES.

5.2.2 Modest clearance case
When the clearance length b is larger than the critical value N2,1 = 16.3mm, the extra
singularity line Z2 = Z2,e2 will be located on the unstable SIM branch. In a low energy
input case (e.g. G = 0.2mm in Fig. 5.8), the displacement has no influence on the regime
of the VIC NES and no impact occurs. Therefore, the behavior of the VIC NES is the
same as the pure cubic NES for the same parameters in this stage. As the amplitude
of the LO and NES increase, the green phase trajectory rises along the stable branch
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Figure 5.7: Phase trajectory of NES during one cycle for G = 0.25mm, σ = 0 (two impacts
per cycle) and G = 0.3mm, σ = 0 (three impacts per cycle)

in Fig. 5.8c. The final state of phase trajectory (diamond in Fig. 5.8c) is located at a
higher position before it crosses the intrinsic singularity point (Z2,1, Z1,1) due to its cubic
nonlinearity.

In the pure cubic case, the relaxation-type motion occurs if the amplitude exceeds
the threshold. This excitation threshold can also activate the SMR in VIC NES for the
same system parameters. The typical SMR motion in a VIC NES can be classified in four
stages as shown in Fig. 5.9d:

(1) The phase trajectory rises along with the left SIM branch. It results in both
increases of LO and NES amplitudes. In this stage, the displacement constraint does not
influence the oscillation in the cavity. The behaviors are the same as the cubic case.

(2) Once the phase trajectory crosses the singularity point (Z2,1, Z1,1), it triggers
snap-through motion. The amplitude of NES increase dramatically; meanwhile, the
LO amplitude is almost constant. The duration of this snap-through motion is short.
Compared with the SMR stage of cubic NES, the phase trajectory arrives in the extra-
singularity line Z2 = Z2,e2 instead of the right SIM branch.

(3) Due to the displacement restriction, the phase trajectory oscillates around the extra
singularity line Z2 = Z2,e2. An efficient TET has been activated, so the LO amplitude
decreases during this stage.

(4) After most energy of LO is dissipated. The LO amplitude is reduced. Another
snap-through motion occurs. The phase trajectory jumps back to the left SIM branch,
and it brings a reduction of NES amplitude. Then a new cycle of SMR start.

The threshold of SMR occurrence G1,c has been deduced and given by Eq. (5.25). From
this equation, we can conclude that the SMR trigger conditions are the same for the VIC
NES and the cubic NES. Because both cases share the same fold line N2,1. However, since
the other fold line N2,2 is inaccessible in the modest clearance case, which leads to the
calculation of G2c threshold for SMR disappearance can not fit the VIC NES. And the
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Figure 5.8: (a), (b) Time displacement response of v and w for modest clearance case G
= 0.2mm, σ =0. The green envelopes represent the reconstructed amplitude, while the
blue curves describe the time response (c) velocity of the NES ẇ (d) SIM structure. The
green line represents the phase trajectory. The blue solid/dashed line is a stable/unstable
branch of SIM. The red straight line is the extra-singularity line.
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Figure 5.9: (a),(b) Time displacement response of v and w for modest clearance case G
= 0.25mm, σ = 0. The green envelopes represent the reconstructed amplitude, while the
blue curves describe the time response (c) velocity of the NES ẇ (d) SIM structure. The
green line represents the phase trajectory. The blue solid/dashed line is a stable/unstable
branch of SIM. The red straight line is the extra-singularity line. Black arrows indicate
the movement of phase trajectory before and after the impact.
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Figure 5.10: (a),(b) Time displacement response of v and w for modest clearance case G
= 0.28mm, σ = 0. The green envelopes represent the reconstructed amplitude, while the
blue curves describe the time response (c) velocity of the NES ẇ (d) SIM structure. The
green line represents the phase trajectory. The blue solid/dashed line is a stable/unstable
branch of SIM. The red straight line is the extra-singularity line.

extra singularity value N2,2 = N2,e = b is applied in Eq. (2.25) to obatin the threshold in
Eq. (5.25).
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ϵN2,1

(
16λ1 − 24λ1KN

2
2,1 + 9λ1K

2N4
2,1 + 16λ2 + 16λ1λ

2
2

)
(4
√

9K2N4
2,1 − 24KN2

2,1 + 16 + 16λ2
2)

Ge = ϵFe = ϵb (16λ1 − 24λ1Kb
2 + 9λ1K

2b4 + 16λ2 + 16λ1λ
2
2)

(4
√

9K2b4 − 24Kb2 + 16 + 16λ2
2)

(5.25)

In the cubic NES case, the analytical amplitude threshold calculated in Eq. (2.25)
for the SMR occurs between [0.22mm, 0.35mm]. The numerical thresholds are [0.24mm,
0.41mm]. In the VIC NES, the analytical result indicates that the SMR starts and
ends at [0.22mm, 0.24mm] by Eq. (5.25), while the numerical simulation found that the
SMR appears between [0.24mm, 0.28mm]. Numerical and analytical results both confirm
that the SMR starts in the same amplitude excitation cases for the VIC NES and cubic
NES. The analytical predictions for SMR extinction show some differences with numerical
simulation. The displacement constraint results in the SMR of the VIC NES ending at a
much lower excitation amplitude case.

Figure. 5.10 shows the stable periodic response of the system when the excitation
exceeds the force threshold. The critical force prevents the phase trajectory from jumping
back to the left stable branch and being located at a similar height of singularity point
(Z2,2, Z1,2), having slowly decreased along the extra singularity line Z2 = Z2,e2. In this
critical situation, the LO amplitude possesses the minimal stable amplitude, which can
only be realized in an optimal cubic NES in the larger energy input case. Thus, the
displacement constraint enables the system to enter the optimization state in a lower
excitation amplitude case.
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As in the previous narrow clearance case, the VI model can accurately predict the
fixed point of the VIC NES under impact conditions. In Fig. 5.11a, the system shows a
stable response to impact when the excitation amplitude increases beyond 0.28mm. In
the relatively low energy case, the analytical prediction has a more significant value than
the simulated one. As excitation increases, both results almost overlap.

In the frequency domain (Fig. 5.11b), impact appearance separates the numerical
frequency response into two parts. When the VIC NES performs as a cubic NES, the
numerical amplitude of the VIC NES coincides with the blue square point on both [-5,
-3.2] and [2.8, 5] σ intervals.

Unlike the narrow clearance case, the analytical predictions of pure cubic NES possess
two stable fixed points and one unstable fixed point between the σ = [-3, -1.6] and [1.2,
2.6]. The lower stable LO amplitude branch better describes the numerical simulation
(blue squares in Fig. 5.11b). In this stage, the NES amplitude tends to have a higher value,
which means that more energy of the LO will be transferred into the NES, leading to a
lower LO amplitude. Therefore, the numerical results of the LO amplitude are located on
the lower stable solution branch. The intervals [-3, -1.6] with three fixed points mean that
the NES possesses three potential amplitude cases. The impact is triggered due to the
resonance peak, whose appearance does not strictly follow the criteria for the appearance
of the three fixed points at σ = -1.6. On the other side, that of interval [1.2, 1.6], the
impact is accompanied by a SMR. When the SMR disappears at σ = 1.6, the response
becomes an inter-cavity motion again. According to the best of our knowledge, there is no
effective theoretical tool to predict the threshold of SMR occurrence and disappearance
under non-natural frequency excitation, which means that Eq. (5.25) is only valid for
σ =0. When the frequency is away from the natural frequency, the system still performs
a stable response without impact. The fixed point of this stable periodic response can be
described by the framework of the pure cubic NES model.

The stable analytical branch of the VI NES model (red circles in Fig. 5.11b) also
fits well to the VIC NES numerical results in the vicinity of the natural frequency when
impact occurs. This interval is distinguished by the drastic increase in LO amplitude
between [-1.4, 1]. The overlapping of the maximal and average amplitude curves implies
a stable response of the system. The separation of both curves indicates the occurrence
of a SMR in the frequency interval [1.2, 1.6]. Compared with the pure cubic NES case,
this interval is relatively narrow for SMR occurrence.

5.2.3 Large clearance case
If clearance length b is >N2,2 = 27.4mm, this design can be considered as large clearance
design. In the simulation, b is fixed for 30 mm so that the extra singularity line Z2 = Z2,e3
is located on the right stable SIM branch (Fig. 5.12d). In the lower energy case, the
system performs more like a cubic NES. The phase trajectory rises along the left stable
SIM branch until the excitation amplitude exceeds the threshold G1,c. A large clearance
ensures that the influence of the displacement constraint is validated only for the higher
energy input case.

The SMR starts at G = 0.24mm, the same as previous cases since displacement
constraint has no impact on the SMR occurrence threshold. Figure. 5.12 presents a
classic SMR for G = 0.25mm.

A significant feature of the large clearance case—when compared to the modest case

- 130 - PhD Thesis - Zhenhang WU



Chapter 5 : Targeted energy transfer in vibro-impact cubic NES

G/mm

A
m

p
lit

u
d
e
 o

f 
L
O

/m
m

(a)

Maximal amplitude

Stable response

-5 -4 -3 -2 -1 0 1 2 3 4 5
A

m
p

lit
u

d
e

 o
f 

L
O

/m
m

(b)

VIC mean amplitude

VIC maximal amplitude

Stable solution in Cubic NES

Untable solution in Cubic NES

Stable solution in VI NES

24

22

20

18

16

14

12

10

8

6

4

18

16

14

12

10

8

6

4

2
0.25           0.3         0.35           0.4           0.45          0.5           0.55            0.6 

Figure 5.11: Comparison between the numerical response and analytical prediction (a) in
the growing excitation case for σ = 0 and (b) in the frequency domain for G = 0.35mm
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Figure 5.12: (a),(b) Time displacement response of v and w for large clearance case G =
0.25mm, σ = 0. The green envelopes represent the reconstructed amplitude, while the
blue curves describe the time response (c) velocity of the NES ẇ (d) SIM structure. The
green line represents the phase trajectory. The blue solid/dashed line is a stable/unstable
branch of SIM. The red straight line is the extra-singularity line.
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Figure 5.13: Comparison between the numerical response and analytical prediction (a) in
growing excitation case for σ = 0 and (b) in the frequency domain for G = 0.6mm

(Fig. 5.9)—is that the time required for a complete SMR is shorter. The reduction is
mainly reflected on the much shorter duration of the 1:1 resonance. An obvious turn
point occurs, above which the phase trajectory oscillates along the extra singularity line.
Once the phase trajectory descends and crosses the intersection of the extra singularity
line and the right SIM branch, the phase trajectory is attracted by the right half-branch
of the SIM. In Fig. 5.12d, the direction of the phase trajectory descent changes at the
turning point, from vertical descent to descent along the SIM.

When G = 0.44mm, the stable amplitude of NES exceeds the b, which interprets that
the red triangle line has the some distance to stable response predicted by the VI NES
model in Fig. 5.13a. As excitation increases, the final fixed point is located in the extra
singularity line instead of in a small part of the SIM stable branch. In the high energy
input case, the VI NES model can better predict the fixed point of the VIC NES, so that
the two curves approach each other (Fig. 5.13a).

In the frequency domain, the VI NES model also demonstrates its effectiveness in
predicting the fixed point of the VIC NES for G = 0.6mm in Fig. 5.13. Since excitation
is larger, the system has a greater frequency range for collisions between [-4, 3.4]. On
the lower frequency side of the impact interval, the theoretically predicted values of the
red circled points are smaller than the simulated values. On the higher frequency side,
theoretical prediction values are larger.

In the large clearance case, collision frequency vanished in the range of [-5, -4.2] and
[3.6, 5]. The numerical simulation accurately locates the analytical prediction of the
cubic NES model. The SMR frequency is in the range of [1.8,3.4], where the average
and maximal amplitude curves start to separate in Fig. 5.13b. Compared with Fig. 5.11,
the frequency range of the SMR is more significant in this case. The magnitude of the
external excitation does not affect the frequency range of SMR appearance in subsequent
studies. Thus, the influence on the frequency range variation of SMR appearance can
only be due to the change in clearance length.
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Figure 5.14: Maximal LO amplitude in the frequency domain for the modest clearance
case, b = 22.4mm. (a) 3D view (b) contour map of maximal LO amplitude.

5.3 Frequency domain behaviors and optimal design
In the previous section, the frequency distribution of the system under certain excitation
conditions was discussed. This section focuses on the frequency distribution of the system
under different excitations for modest and large clearance designs.

Figure. 5.14 shows the transform of response regimes along with frequency increase
direction: (1) periodic response without impact, (2) resonance peak, (3) optimal region
and (4) SMR region, (5) periodic response without impact. On both the low and high
frequency sides, the collision is not ensured even in the high excitation amplitude. The
collision boundary comprises the left boundary of the resonance peak and the right side
of the SMR region. Collision on the low frequency side results in a sudden increase of
the maximal LO amplitude. This case, deemed dangerous, is known as resonance peak.
According to its interpretation in the cubic NES system [Gourc et al., 2014], the resonance
peak results from a saddle-node bifurcation where the three solutions of Eq. (2.12) occur.
The optimization interval has a shape akin to a valley and is located in the middle of the
resonance and SMR. As the excitation amplitude increases, the frequency required for
the optimal point (minimal LO amplitude) increases. Theoretically, the LO amplitude at
the optimum point is equal to N1,2 = 4.6mm at the singularity point, regardless of the
amplitude. In the actual numerical simulation, the LO amplitude at the optimum point
increases from 4.6mm to 6.2mm as the excitation amplitude increases from 0.25mm to
0.55mm.

The system does not perform a stable amplitude response during the SMR and possesses
a large instant amplitude. This region has a narrow width in the frequency domain. The
SMR interval shifts to a higher frequency region when a higher excitation amplitude is
applied. As the excitation amplitude is constant, the frequency increase causes the system
to transition directly from the SMR to the stable response without collision, skipping the
stable response phase with collision.

When the clearance is designed to be larger (Fig. 5.15), the same characteristic region
appears while the collision boundary remains the same (as indicated in Fig. 5.14). The
most dangerous case occurs in G = 0.55mm, σ = -0.8, whose LO amplitude is maximal
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Figure 5.15: Maximal LO amplitude in the frequency domain for the large clearance case,
b = 30mm. (a) 3D view (b) contour map of maximal LO amplitude.

(equal to 27.1mm). Under the same condition, the LO reaches 26.1mm in a modest
clearance case. The smaller clearance design slightly reduces the resonance peak. The
optimal region occupies a higher excitation amplitude region, starting from 0.35mm, while
the optimal region in a modest clearance case starts from 0.25mm. The same increasing
frequency behavior can be observed for the optimal region when the excitation increases.
A platform appears in the SMR region, being much wider than that of a modest clearance
case.

The narrow clearance prevents the phase trajectory from crossing the singularity point
(Z2,1, Z1,1) in the SIM structure, so the SMR cannot appear in this case. The SMR
distributions for the modest, large clearance and cubic cases are shown in 5.16; the cubic
NES case is considered as an infinite long clearance case.

The maximal and average LO amplitudes (and their difference) are calculated to
identify the SMR. When the system performs a stable periodic response, both amplitudes
are almost the same. If the error between maximal and average amplitude is larger than
0.15mm, the SMR is identified in this condition. Overall, the area where the SMR appears
expands with increasing clearance length. The obstruction effect of the impact on SMR
emergence is then confirmed. In Fig. 5.16a, the widest frequency interval is σ = [ -0.5,
0.7], when G = 0.265mm. Maximal interval in Fig. 5.16b appears in σ = [-1.1, 1] for G
= 0.31mm. The cubic NES case shows the largest SMR interval σ = [-1.7, 2.2] for G =
0.37mm. As can be seen from the maximal frequency range in which the SMR appears,
the displacement constraint reduces the frequency robustness, narrowing the range where
the SMR appears.

In the higher energy input cases, the SMR appears on the side where σ >0. The
frequency range in which SMR appears on this side remains constant as excitation amplitude
increases. The width ranges from 0.3 (Fig. 5.16a), to 0.9 (Fig. 5.16b), and then to 2.1
(Fig. 5.16c). Even at high energy inputs, the frequency range in which SMR appears is
also limited by the barrier; the smaller the b, the smaller the frequency range.

Although the SMR region is affected by the clearance length, the thresholds at which
SMR appears are all the same, i.e. at G = 0.22mm, σ = 0. This phenomenon is consistent
with our previous observation that b does not affect the threshold for SMR appearance.
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5.3.1 Influence of the restitution coefficient
The restitution coefficient r is only valid when there is a collision in the system. The
collision thresholds in the narrow clearance case and the modest/large clearance cases
where SMR occurs can be seen as the end of the oscillation within the cavity without
collision. Therefore, the restitution coefficient has no effect on the start of the collision
threshold and the start of the SMR threshold. The threshold predictions of Eq. (5.14)
and Eq. (5.25) are still valid for different restitution coefficients. The collisions occur in
the SMR and stable collision stages, so that the restitution coefficient analysis r focuses
on the effects in these two stages.

The modest clearance case b = 22.4mm under excitation G = 0.25mm was selected to
investigate the role of r. In Fig. 5.17a, the displacement of three different cases are almost
the same due to the absence of collision. At τ = 224, the NES amplitudes for the three
cases sharply and simultaneously increase. In the energy pumping period, the three cases
with 0.95, 0.65, and 0.35 coefficients take 295, 239, and 195 times on the τ time scale,
respectively. A higher value of r means more energy loss for every impact, accelerating
the rate of energy dissipation and leading the system amplitude to decrease more rapidly.
This faster amplitude reduction rate is also evident in Fig. 5.17b. A smaller r enables the
system to have more SMR cycles in the same amount of time.

When the system enters the stable impact response (two impacts per cycle), the LO
amplitude is governed by the coefficient A1, B1, α, β in Eq. (5.20). The stable analytical
amplitude is shown as a blue line in Fig. 5.18. As r increases, the stable amplitude rises
slightly. The numerical results (red points in Fig. 5.18) also confirm this tendency. When
r varies from 0.8 to 0.3, the stable amplitude is reduced from 12.3mm to 10.8mm. This
difference cannot be considered as significant when compared to the wide variation range
of r. The system shows low sensitivity to the various values of r.

5.3.2 Clearance design for target excitation
In the previous section, the influence of clearance has on the different response regimes is
presented. Every clearance length design corresponds to a target excitation, under which
the LO possesses minimal amplitude.

To find out the corresponding target excitation, various amplitude input cases are
applied to the different clearance designs. The corresponding results are shown in Fig. 5.19.
The thin red lines and thin dashed blue lines are the maximal and average LO amplitudes,
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respectively. The red and blue diamond-shaped points correspond to the projection of
the local maximal and minimal amplitudes on the b–G plane. The green diamond-shaped
points indicate the excitation threshold of SMR occurrence for various clearance length
designs. The thick blue line A and thick red line B divide the clearance length designs
into three categories, which is classified by singularity value N2,1, N2,2.

If the clearance lengthdesign is b<N2,1 = 16.3mm, the snap-through motion is prevented,
and the SMR cannot be observed in the first five cases. So the green diamond-shaped
points do not appear in the region Fig. 5.19. The maximal amplitude curve and average
amplitude curves are overlapped, which means that the SMR is not triggered. In those
five cases, the response regimes are classified into two types: (1) without impact (2)
with impact. In lower energy levels, the NES oscillates within the cavity. The cubic
nonlinearity prevents NES mass from contacting the barrier. The threshold of excitation
for impact can be calculated by Eq. (5.14). The occurrence of a collision brings about a
sharp drop in amplitude, which can be seen as an optimization point. Local maximal and
minimal amplitude points are always adjacent to each other. Before and after impact,
the LO amplitude increases almost linearly with excitation.

When the clearance length designs are b >N2,1, a modest design is considered. The
distance between the extra singularity line Z2 = Z2,e and the singularity point Z2 = Z2,1
in the SIM structure allows the phase trajectory to feature the snap-through motion.
However, the extra singularity line prevents the phase trajectory to arrive on the right
SIM stable branch. A complete (classic) SMR cannot occur. As the b design increases,
the SMR appears in a widened amplitude range. So the distance between green and blue
diamond-shaped points enlarge as clearance design increases in Fig. 5.19. The threshold at

PhD Thesis - Zhenhang WU - 137 -



5.3 Frequency domain behaviors and optimal design

10 15 20 25 30 35

Clearance length b/mm

0

T
a

rg
e

te
d

 e
x
c
it
a

ti
o

n
 a

m
p

lit
u

d
e

 G
t/m

m

0.1

0.2

0.3

0.4

SMR disappearance threshold

Stable response threshold

N21

N22

Piecewise analytical prediction

Figure 5.20: Optimal clearance designs for various target excitation amplitudes

which SMR appears (as shown by the green diamond-shaped points) remains unchanged.
The system changes from a stable response to a SMR to a stable response with collisions
as excitation amplitude increases. The local minimal amplitude point occurs after the
SMR disappears. A larger displacement constraint can adjust the VIC NES to optimally
adapt to a larger excitation.

Once the clearance is designed to be b >N2,2 = 27.4mm, continuing to increase the
gap length has no effect on the threshold for the appearance and end of the SMR. The
excitation interval for the presence of SMR remains unchanged in the last four cases,
whose clearance lengths are all larger than the critical value N2,2. So the distances between
green and blue diamond-shaped points remain constant as clearance design increases in
Fig. 5.19. In the third category, the clearance design has no influence on the optimal
point, which appears at the singularity point (Z2,2, Z1,2) in the SIM structure. The gap-
enlarging method to increase the amplitude that can be optimally absorbed by the system
thus fails.

The distributions of target excitation for different clearance length b designs are
shown in Fig. 5.20 (blue diamond-shaped points). Three types of clearance design are
distinguished by thick blue and red lines. If the excitation amplitude is below the critical
value G1,c, it can be classified as a low energy input. Therefore, the clearance design
that should make the extra singularity line Z2 = Z2,e is located on the left stable SIM
branch. Collision occurs and the system achieves the optimal state when the system
oscillates in a maximal amplitude and slightly increases its excitation amplitude. The
impact condition for a narrow clearance is derived from Eq. (5.14), which leads to the
optimal curve (dashed green line to the left of the N2,1 line). The optimal clearance length
bo can be solved by setting Gt = ϵFt into Eq. (5.14). The maximal and minimal amplitude
points are very close to each other, with the distance being determined by the step size
of the excitation amplitude in the numerical simulation. In the ideal case, the maximal
and minimal amplitude points are the same and the red and blue diamond-shaped points
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Figure 5.21: Optimal result for (a) target excitation Gt = 0.2mm, σ = 0. The optimal
clearance length for VIC NES is bo = 12.5mm, (b) target excitation Gt = 0.3mm, σ = 0.
The optimal clearance length for VIC NES is bo = 24mm

overlap. Owing to the step size limitation, the red and blue diamond-shaped points
distributed on both sides of the optimal curve validate the optimal design in this case.

If the target excitation is within the interval [G1,c, G2,c], the clearance length b should
be within the interval [N2,1, N2,2]. The clearance length determines the threshold where
the SMR disappears, which is also viewed as an optimal state for the LO. The green dashed
curve is plotted by Eq. (5.25), demonstrating the optimal clearance design once the target
excitation value has been set. When the target excitation nears G1,c, the optimal curve
is flat and sensitive to target excitation. A slight variation in target excitation Gt would
cause the design value of b to increase significantly. When the target excitation nears
G2,c, the analytical prediction will produce a larger design value, causing the system to
perform the SMR. In this design case, the actual optimal clearance should be slightly
smaller than the analytical prediction value. In general, the numerical simulations show a
linear relationship and the analytical values reveal a quadratic term relationship. However,
the analytical solution is still referable to the optimal curve.

If the target excitation exceeds G2,c, adjusting the clearance length would go beyond
adapting the increasing excitation. In other words, if the clearance length is b >N2,2 =
27.4mm, the target excitation that system can absorb remains constant Gt = 0.35mm.
The final point of phases trajectory will be located at singularity point (Z2,2, Z1,2) (optimal
state) in the SIM structure, which is independent of the extra singularity line Z2 = Z2,e

(clearance design). On the right side of Fig. 5.20, the red and blue diamond-shaped points
are aligned horizontally. The horizontal analytical curve coincides with the point where
the SMR ends. Note that the numerical result slightly exceeds the analytical design value.

The results for the different target excitations are presented in Fig. 5.21. The cubic
nonlinearity parameter of the optimal cubic NES is determined using the method proposed
in [Wu et al., 2021], where the final phase trajectory stays in the singularity point of the
SIM.

When Gt = 0.2mm, the cubic NES performs a stable periodic response (amplitude =
10.2mm in Fig. 5.21a), whose phase trajectory is finially located on the SIM left branch
(as in Fig. 5.5c). However, the optimal VIC NES has a smaller final LO amplitude for
the optimal clearance design bo = 12.5mm, about 5.2mm. If the cubic NES is tuned by
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substituting the original K value (1.742e3) with an optimal cubic nonlinearity parameter
K (6.01e3), the system will hold the minimal LO amplitude (about 2.73mm). So in
a low target excitation case (Gt < G1,c), the tuning clearance length can lead to an
obvious vibration mitigation performance. However, the replacement of cubic nonlinearity
parameter can achieve better performance.

In Fig. 5.21b, the target excitation is set to 0.3mm, which is between [G1,c, G2,c]. The
SMR constitutes the principal motion for the original cubic NES. According to Fig. 5.20,
the optimal clearance design bo = 24mm minimizes the LO amplitude to 4.75mm. The
SMR will reappear under the target excitation in a larger clearance design. A clearance
design <bo will increase the final stable LO amplitude. The cubic nonlinearity parameter
of the original cubic NES K must be tuned to 2.61e3 to achieve a minimal amplitude of
4.06 mm. The optimal cubic NES with the replacement of K represents a not-so-obvious
improvement to the optimal VIC NES.

The cubic NES with fixed cubic nonlinearity can only adapt a single target excitation.
If the system is under a smaller excitation, a larger cubic nonlinearity parameter K
is required for optimal energy absorption. In the real mechanical environment, the
replacement of the spring component has a considerable cost and requires a system
redesign. Thus, the VIC NES can provide an alternative approach to adapt a weaker
target excitation without changing its spring components.

5.4 Experimental study
The experimental setup was designed to observe the influence that impact has on the
behavior of the SMR distribution. Harmonic excitation is initially applied to the LO
structure at a specific range of resonance frequency. The threshold value of SMR occurrence
and disappearance and the SMR bandwidth in high energy input cases were recorded.

5.4.1 Vibro-impact cubic NES construction
The pure cubic nonlinearity is achieved with a four springs system, which is tuned to
a specific pre-compression length to avoid the linear stiffness component in the whole
combined force-displacement relationship. The detailed construction process is detailed
[Qiu et al., 2018b]. The NES mass is attached to the track through the four springs
system, so that it can move along the axis of the conical spring. The whole NES system
is connected to the LO, which is embedded on a 10 kN electrodynamic shaker. Two
perpendicular countless laser sensors are used to measure the LO and NES, respectively.
The experimental device is presented in Fig. 5.22.

The two steel screws with galvanised surface are installed in the hole of the track to
stop the relative sliding of the NES into creating displacement constraints (Fig. 5.22b).Due
to the design of the track itself, the distance between each hole is 15 mm. By choosing
different mounting positions for the screws or by adjusting the position of the rails, we can
obtain different clearance configurations. When impact occurs, the side of the NES mass
is in contact with the top of the screw on both sides. The stud of the screw was slightly cut
down to avoid coming into contact with the conical spring coils and screws, thus ensuring
that the impact only occurs between the screws and NES mass. The parameters of the
experimental setup and two types of clearance lengths are given in Tab. 5.1. The b1 and b2
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LO

Laser

NES

(a)

(b)

Figure 5.22: Experimental device (a) construction of the NES and LO (b) realization of
the displacement constraint

Table 5.1: Experimental parameters of the environment
Reduced parameters ϵ λ1 λ2 K r b1 b2

1.2% 1.67 0.167 4.88e3 0.65 11.5mm 17mm

parameters lie within the unstable SIM branch. The restitution coefficient r is measured
by connecting the NES to the ground. All the springs are removed to conserve only the
NES mass. An initial NES velocity is applied, so that the NES—the velocity measuring
instrument—can measure velocity changes before and after the impact. According to its
definition, the average value of r can be calculated through 10 time tests.

5.4.2 Dynamic tests
The amplitude of the harmonic excitation amplitude ranges from 0.18 mm to 0.3 mm,
and the difference between the amplitude of adjacent excitation is 0.02mm. The velocity
of frequency sweep is 0.01 Hz/s. Three different clearance cases (b = 11.5 mm, b = 17
mm and cubic) were chosen to examine the impact effect. The frequency response for the
three clearance cases is shown in Fig. 5.22. The black triangle marks the interval of SMR
appearance. The variety of SMR regions according to the clearance changes in Fig. 5.22
shows the same tendency as the numerical simulation in Fig. 5.16. The adjacent responses
are marked in different colours to distinguish between them.

In a low energy input case (e.g. G = 0.18 mm), the NES behaviors in Fig. 5.22 show
the same SMR extinction. The maximal amplitude occurs at its natural frequency f0
= 7.3Hz for 7.61mm, 7.68mm and 7.71mm, respectively. The frequency response of the
three cases is almost identical, meaning that impact does not occur.

For a higher amplitude excitation G = 0.20 mm, the SMR first occurs in the cubic case
(Fig. 5.22c) for [7.28Hz 7.38Hz]. The SMR range is selected by the complete SMR cycle,
including the increasing amplitude-phase and decreasing phase. There are no obvious
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Figure 5.23: Frequency response of the NES for different clearance case (a) b = 11.5mm
case (b) b = 17mm case (c) Cubic NES case. The excitation amplitudes are ranged as
0.18mm 0.2mm, 0.22mm, 0.24mm, 0.26mm 0.28mm and 0.3mm

SMR behaviors that appear in this energy input case for both VIC NES cases.
If the excitation reaches 0.22 mm, the obvious SMR behavior occurs in both cases

(Fig. 5.22a-b). In case b = 11.5 mm, the SMR appears and reaches its widest frequency
bandwidth for [7.31 Hz 7.41 Hz] at the same time. The SMR range of the cubic NES case
becomes larger than that of the G = 0.20 mm case.

When G = 0.24mm, the SMR range of Fig. 5.22a remains constant, compared with
the previous G = 0.22mm case. In the natural frequency, the response shown in Fig. 5.22a
turns into a periodic response, which is considered as the threshold for SMR disappearance
for case b = 11.5mm. Meanwhile the widest SMR frequency bandwidth in Fig. 5.22b case
also reaches at G = 0.24mm for [7.25Hz, 7.41Hz]. In the cubic NES, the SMR range also
continues to widen until the excitation amplitude equals 0.24 mm, which is where the
cubic NES has the widest SMR bandwidth for [7.147 Hz, 7.473 Hz].

When G = 0.26 mm, the SMR range width remains constant but is located on a
higher frequency side of f0 in (Fig. 5.22a). The SMR disappears at its natural frequency
f0 = 7.3Hz in Fig. 5.22b. Therefore, this case is considered as a threshold for SMR
disappearance for case b = 17mm. The SMR range for cubic NES becomes narrower
compared to the previous lower amplitude energy case.

For the higher amplitude inputs (G = 0.28/ 0.30 mm), the SMR intervals of the three
cases shift to a higher frequency, and a decrease of the SMR range shown in Fig. 5.22a
is observed. In the vicinity of the natural frequency in Fig. 5.22c, the amplitude of the
cubic NES tends to become constant. Thus, the excitation amplitude threshold for SMR
disappearance for cubic case is recorded as 0.28 mm.

5.4.3 Results analysis
For the sake of simplicity, the results of the target phenomena are summarized in Tab. 5.2.
According to the simulation discussed in the previous section, the clearance length b
parameter does not influence SMR occurrence. However, an impact observed in our
experimental setup leads to the higher required excitation amplitude to trigger the SMR.
Our current theoretical tool states that LO and NES amplitudes reach the singularity
point (Z2,1, Z1,1) of the SIM to satisfy the SMR triggering conditions. From the energy
point of view, a loss of energy ensues once the impact occurs, which may prevent the
phase trajectory from fully crossing the singularity line Z2 = Z2,1. The system thus
requires a larger energy (amplitude) excitation to trigger the SMR. This maght explain
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Table 5.2: Effect of clearance length on SMR threshold and distribution.
Case (a) (b) (c)
Threshold for SMR occurrence 0.22mm 0.22mm 0.2mm
Threshold for SMR disappear 0.28mm 0.26mm 0.24mm
Widest SMR interval 0.10Hz 0.16Hz 0.33Hz
SMR interval for G = 0.3mm 0.03Hz 0.106Hz 0.136Hz

the differences in excitation threshold for the SMR. The second row in Tab.5.2 shows
an obvious decline in excitation threshold for SMR disappearance. The LO amplitude
reaches its local minima when the SMR disappears, which is considered to be an optimal
design. By adjusting the clearance length, the VIC NES can be used as an alternative
optimal design. The smaller the clearance length, the narrower the widest range of SMR
frequency occurrence and the smaller the excitation amplitude threshold value of the
SMR disappearance. In the high energy case (G = 0.3mm), the SMR frequency interval
is reduced as the clearance length decreases. Compared with the cubic NES case, the
SMR bandwidth in case (a) is reduced to 25%, and the case (b) is reduced to 78%. The
impact influence on SMR frequency distribution is then essential.

The introduction of impact in the cubic NES damages the robustness of the SMR, as
confirmed by both the numerical and experimental tests. If the cubic NES system is well
tuned, the impact should be avoided. However, if the cubic NES is not well tuned or is
under a weaker excitation amplitude, the displacement constraint (impact) would provide
an alternative approach to tune the NES, in order to meet the target excitation without
modifying the spring components.

5.5 Conclusions
This current work investigates a novel NES with both cubic nonlinearity and impact
conditions using analytical, numerical and experimental methods. According to the
clearance length, the Vibro-Impact Cubic (VIC) NES is naturally classified into narrow,
modest, and large clearance cases. The corresponding response regimes under various
energy input cases were analyzed, leading to the following conclusions:

1. The impact originating from the barrier introduces an extra singularity line in the
Slow Invariant Manifold (SIM) structure. When the system is not impacted, the
characteristics of the VIC NES are determined by the cubic nonlinearity. The impact
threshold is calculated using the asymptotic method. Once the impact occurs, the
ensuing response is closer to the conventional Vibro-Impact (VI) NES. The fixed
point of the VIC NES at different harmonic excitation amplitudes and frequencies
can be accurately predicted using a simplified VI NES model.

2. Some characteristic regions (e.g. the resonance peak, optimal region and Strongly
Modulated Response (SMR) regions) are found in the frequency domain. The
displacement constraint destroys the robustness of the SMR, resulting in a narrower
SMR region. A lower value of the restitution coefficient r accelerates the energy
pumping rate during 1:1 resonance. The fixed point of the system is not sensitive
to the variation of r.
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3. The optimal clearance designs are concentrated. The target excitation must be
smaller than G2,c under the framework of the cubic NES in order to make the
displacement constraint effective and to absorb energy better than the original
design of cubic NES. The piecewise curve of optimal clearance design according
to the target excitation is drawn, validated that a lower target excitation requires a
narrower clearance length to be tuned as an optimal state.

4. Our experiments confirm the effect that different clearance lengths have on reducing
the excitation amplitude threshold for SMR disappearance and on narrowing the
SMR frequency interval, which is also obtained by numerical simulation. The
target excitation can be adapted optimally by modifying the clearance length. The
robustness of the SMR is reduced under the perturbation of the frequency domain
for a narrower clearance length.
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Conclusions and
Perspectives

This thesis is dedicated to passive vibration control via a Nonlinear Energy Sink (NES).
NES improves the vibration mitigation effect against the broader frequency excitations,
avoiding the occurrence of other resonance peaks, as well as a smaller additional mass,
compared to conventional linear absorber. The research contents, no matter analytical,
numerical or experimental, are closely focused on the questions proposed in the introduction
in order to better understand, design and optimize NES. The responses are almost positive
as follows:

• The optimal state is referred to as a stable periodic response after the Strongly
Modulated Response (SMR) disappears because of extern energy input saturation
both for cubic NES and bistable NES. The damping condition mainly determines
the maximal absorbing efficiency in cubic NES. But the bistable NES can overcome
this limitation and improve maximal efficiency by introducing the negative stiffness.
The experiment proves the feasibility of a tunable cubic nonlinearity strategy for
various excitation amplitudes.

• The emergence of chaos and SMR behaviors can be predicted by observing the
relative position of trigger lines and unstable regions of SIM. A modest bistable
NES design can bring a SMR over the wide frequency range.

• The novel method shows strong robustness to estimate the energy pumping time
under the damping, excitation amplitude and cubic nonlinearity distribution. This
method can also be extended to the harmonic case.

• The existence of collision compromises the robustness of SMR. The conventional
analytical method still possesses the feasibility to describe the response regimes of
Vibro Impact Cubic (VIC) NES.

Developed around them, the work of this thesis is structured in five chapters. The first
chapter introduces a state of the art of nonlinear absorber. The necessary numerical and
analytical tools are presented to access to this thesis. The various sources of nonlinearity
classify the NES into two main branches: geometrical nonlinearity configuration and
impact configuration, which are the core of our study. The construct method of nonlinearity
is presented as well as the presentation of the NES experiment. The final subsection offers
the optimal design criteria for NES.

In the second chapter, both response regimes of cubic and bistable NES under various
energy levels are manifested. The optimal states for both cubic and bistable NES are
identified as a stable periodic motion when the excitation amplitude exceeds the threshold
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G2c. The phase trajectory of the system will eventually arrive at the singularity point of
the right stable branch of the Slow Invariant Manifold (SIM). So the maximal efficiency
value is extracted as a function of systems parameters. The numerical simulation results
in a non-overlap phenomenon of final location of phase trajectory and singularity point.
The error of maximal efficiency estimation can be overcome by introducing a correction
coefficient in cubic NES. Meanwhile, in the bistable NES, there is no such requirement.
The expression of maximal efficiency value indicates that the ceiling of absorption efficiency
is independent of the cubic nonlinearity design but is a function of linear oscillator
damping and NES damping for cubic NES. Due to the expression for maximum efficiency
containing the negative stiffness (δ) in the bistable case, it can have a higher efficiency
than cubic NES. The expression of optimal design is given analytically and is verified
numerically. The numerical tests show its strong robustness for a higher cubic nonlinearity
parameter K design. By adjusting a pre-compression length, the experimental device can
realize a tunable negative and cubic nonlinearity parameter to achieve the optimal design
facing different excitation amplitudes.

In chapter three, a detailed categorization of bistable NES is addressed. Conventional
Manivitch variables can hardly describe the intra-well oscillation of bistable NES. So an
adapted complex variables with consideration of equilibria is introduced. The local SIM
can describe well this low energy stage. As the excitation amplitude increases, the phase
trajectory will expand in the shape of a circle inside the pseudo-separatrix in the phase
plane. So a simplified trigger model is proposed to predict the occurrence of chaos when
the phase trajectory crosses the pseudo-separatrix. And Melnikov method also provides
a parameter boundary to control the occurrence of chaos motion. The trigger mechanism
of chaos and SMR is established by identifying the chaos trigger lines to analyze the
response regime qualitatively. In the aim to evaluate the weight of the negative stiffness
compared to the cubic nonlinearity parameter, four different categories of bistable NES
are presented: weak, modest, strong and abnormal bistable NES. Their classification
is mainly related to the overlapping of SIM unstable region and chaos region in SIM
structure. Weak bistable NES still behaviors like a cubic NES. Modest bistable NES can
more easily trigger the SMR. Few chaos motions in strong bistable NES are observed,
and SMR almost disappears in abnormal bistable NES. A frequency sweep test shows
the broadest range of SMR for a modest bistable NES case. The characteristic response
regimes of weak, modest and strong bistable NES are observed in the experiment as the
numerical predictions.

In the fourth chapter, a method to estimate the energy pumping time, which defines a
process of phase trajectory descent along with the right branch of SIM, has been studied.
The expression is abstracted through the multiple scales method. The Hamiltonian
system is a foundation for calculating the equivalent point for a damping system under a
transient impulsive excitation. In the harmonic excitation case, a particular integration is
proposed to describe the descent process for SMR. A procedure for estimating the energy
time is introduced. Robustness of calculation is well verified under different parameter
perturbations and for both transient and harmonic excitations. It has been found that
a more significant NES damping, a more considerable value of negative stiffness or a
smaller value of cubic nonlinearity parameter K accelerate the descent process in SMR.
The experimental results also show the feasibility of this estimation method in a low
energy input case.

In the fifth chapter, a cubic NES with a collision is studied to approach a realistic
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environment better. The dynamic modeling has been re-written to adapt to the non-
smooth condition. The length of clearance mainly determines the behaviors of this
novel configuration. If the clearance is narrow, the requirements for SMR emergence
are disrupted. So no SMR is observed in this case. The asymptotic analysis gives
the harmonic excitation amplitude threshold to predict the collision occurrence. Better
vibration mitigation is found compared with cubic NES in this case. VIC NES performs
the same as cubic NES for a modest clearance case when the collision does not appear.
However, the collision seems not to affect the excitation threshold of SMR occurrence,
which appears simultaneously with impact. A larger clearance does not affect the SMR
disappearance significantly. Generally, the collision reduces the distribution area of SMR
and leads to the SMR disappearing in a lower amplitude excitation, compared with pure
cubic NES. The conventional asymptotic analysis of Vibro-Impact (VI) NES and cubic
NES can describe the different regimes of VIC NES with enough accuracy. By designing
the length of clearance, VIC NES can adapt various amplitude excitations, which offers
the possibility of reforming cubic NES without changing the cubic nonlinearity parameter.
The experimental results prove that the collision corrupts the robustness of SMR. The
narrower the clearance length, the more limited the frequency range for SMR appearrance.

Following this work, several points of research can be considered:

• Theoretical research

– SMR is a high efficient energy dissipation method, whose threshold of emergence
and disappearance can be well predicted by the existing analytical method.
However, NES performs over a wide frequency range, where the trigger mechanism
of SMR still requires a more careful study for the wider excitation frequency
σ ̸= 0 cases.

– SMR in modest bistable NES involves the chaos motion. This stage lacks an
accurate description. So the prediction of SMR emergence is still a challenge,
far less prediction in other frequency conditions.

– The current main system is replaced by a simplified mass block. In the actual
damping design, the main system may have a variety of vibration modes, and
the damping effect of NES in other modes is worth discussing.

– A design criteria under the random excitation of seismic activity can be further
studied. The possibility of using deep learning techniques to predict and design
system parameters is also worth investigating.

– As bistable NES can lower the threshold of SMR excitation, tri-stable or multi-
stable structures should also achieve this effect, and the specific activation
process and the corresponding response regimes deserve in-depth study.

• Experimental research

– Since control of the pre-compression length of linear spring can adapt different
amplitude excitations (or different energy levels), an active control method by
applying a linear actuator to control pre-compression length can be further
studied.
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– The excited experimental device requires four springs to construct a nonlinear
spring. The possibility of substituting certain linear spings with magnetic
components can be considered.

• Application

– With the existence of cubic nonlinearity, a better vibration mitigation performance
can be achieved by coupling with other nonlinearity requires further study.

– Considering the practical application of NES, the vibration mitigation effect
of NES is worth considering when the direction of excitation deviates from the
direction of design tolerance or under the influence of NES installation location
error.
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APPENDIX A Frequency-energy
analysis

The Hamilton system reveals the main feature of a nonlinear system. The backbone
branches indicate the periodic solutions of the conservative system in the Frequency-
Energy Plot (FEP). At first, the backbone of in-phase (S11+) and out-phase (S11-) 1:1
resonance are sought. The influences of cubic nonlinearity parameter and negative stiffness
on the deformation of the backbone are presented for bistable Nonlinear Energy Sink
(NES). Then, the critical energy level of Strongly Modulated Response (SMR) occurrence
and its simplified estimation is presented for the cubic NES case.

A.1 Dynamic modeling

The target system is described schematically in Fig. A.1. The Linear Oscillator (LO) m1
is excited harmonically through the linear stiffness k1 and connected with NES mass m2
by a cubic nonlinearity value k2 and linear stiffness k3. The c1 and c2 are the damping
of LO and NES respectively. x and y are the absolute displacement of m1 and m2. The
motion equation is:

m1ẍ+ k1x+ c1ẋ+ c2(ẋ− ẏ) + k2(x− y)3 + k3(x− y) = k1xe + c1ẋe

m2ÿ + c2(ẏ − ẋ) + k2(y − x)3 + k3(y − x) = 0 (A.1)

The harmonic excitation is expressed as xe = Gcos(ωt). If the linear stiffness value k3
is shifted to be zero or negative, equation. (A.1) can describe the pure cubic and bistable

Figure A.1: Schematic of linear oscillator and NES system
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NES. By introducing the variables:

ϵ = m2

m1
, ω2

0 = k1

m1
, K = k2

m2ω2
0
, δ = k3

m2ω2
0

λ1 = c1

m2ω0
, λ2 = c2

m2ω0
, F = G

ϵ
,Ω = ω

ω0
, τ = ω0t

(A.2)

the equations of motion can be rewritten as:

ẍ+ x+ ϵλ1ẋ+ ϵλ2(ẋ− ẏ) + ϵK(x− y)3 + ϵδ(x− y) = ϵF cos Ωτ − ϵ2Fλ1Ω sin Ωτ
ϵÿ + ϵλ2(ẏ − ẋ) + ϵK(y − x)3 + ϵδ(y − x) = 0

(A.3)
Since ϵ is a small parameter, the term containing ϵ2 in Eq. A.3 can be ignored in the
following deduction.

To study the features of in-phase (S11+) and out-of-phase (S11-) 1:1 resonance, the
frequency-energy plot depicts the main backbone branch of these synchronous period
orbits. Initially, by assuming λ1 = λ2 = 0, F = 0, Eq. (A.3) is converted into the
Hamiltonian version. Then the complex variables ψ1e

iΩτ = ẋ+ iΩx and ψ2e
iΩτ = ẏ+ iΩy

where i2 = −1 are introduced into Eq. (A.3). This complexification approach is also
applied [Lee et al., 2005a]. The ψj, j = 1, 2 represents the ’slow’ complex part variation
of amplitude, ψ̄j, j = 1, 2 is the corresponding conjugate complex and the Ω is the ’fast’
oscillation of frequency. By averaging over the fast frequency, it gives:

ψ̇1 − iδε (ψ1 − ψ2)
2Ω − iψ1

Ω + iΩψ1

2 + 3iKε
8Ω3

(
ψ2

2ψ̄2 − ψ2
1ψ̄1

+ψ2
1ψ̄2 − ψ2

2ψ̄1 − 2ψ1ψ2ψ̄2 + 2ψ1ψ̄1ψ2
)

= 0

ψ̇2 + iδε (ψ1 − ψ2)
2Ω + iΩψ2ε

2 + 3iKε
8Ω3

(
−ψ2

2ψ̄2 + ψ2
1ψ̄1

−ψ2
1ψ̄2 + ψ2

2ψ̄1 + 2ψ1ψ2ψ̄2 − 2ψ1ψ̄1ψ2
)

= 0

(A.4)

To study the evolution of amplitude, the polar forms ψ1 = A1e
iΘ1 and ψ2 = A2e

iΘ2 are
substituted. The A1, A2, Θ1 and Θ2 represent the slow evolution of amplitudes and phases
of 1:1 resonance of LO and NES. Obviously, on the periodic solution branch S11±, the
condition Θ1 = Θ2 is trivially satisfied according to [Romeo et al., 2015b]. Then Eq. (A.5)
is obtained in the following forms:

ΩA1

2 − ϵδ (A1 − A2) + A1

2Ω − 3
8
Kε (A1 − A2)3

Ω3 = 0
ΩA2ϵ

2 + ϵδ (A1 − A2)
2Ω + 3

8
Kϵ (A1 − A2)3

Ω3 = 0
(A.5)

The approximate responses x(τ) = (A1/Ω)cos(Ωτ) and y(τ) = (A2/Ω)cos(Ωτ) can be
obtained by solving the above amplitude equation (Eq. (A.5)). The amplitude of x(τ)
and y(τ) are given by: Y (Ω) = A1/Ω and V (Ω) = A2/Ω respectively where:

A1 = 2
3

Ω3
√
K (Ω2ε+ Ω2 − 1) (Ω4 − Ω2δε− Ω2δ − Ω2 + δ)

√
3ε

K (Ω2ε+ Ω2 − 1)2

A2 = −2
3

√
3
√
K (Ω2ε+ Ω2 − 1) (Ω4 − Ω2δε− Ω2δ − Ω2 + δ)Ω (Ω2 − 1)

K (Ω2ε+ Ω2 − 1)2

(A.6)
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Figure A.2: Frequency-energy plot for the different cubic nonlinearity parameters K,
ϵ = 0.01, δ = −0.44, (K values are selected as 1000, 2000, 3000 and 4000 respectively,
following the direction of the arrow). Zoomed insert represents detailed curve trends in
the region in the red frame, near the frequency 1

.

The conservative energy of the system follows:

E(Ω) = 1
2εδ(V − Y )2 + 1

4εK(V − Y )4 + 1
2Y

2 (A.7)

Combining the expression of Y and V , Eq. (A.7) leads to Fig. A.2 and A.3 under the
influence of K and δ. The curve is divided into two branches by the forbidden zone [Lee
et al., 2008], where the ratio of two real positive amplitudes becomes negative. The S11−
exists only the upper branch (Ω > 1) and the S11+ exists for Ω <

√
1/(1 + ε). The

saddle points on the S11− can be calculated by deriving the conservative system energy
with respect to Ω, ˙E(Ω) = 0. The two real roots correspond to the frequency of Ω1 and
Ω2 of saddle point 1 and point 2, and their energy levels E1 = E(Ω1), E2 = E(Ω2) (see
Fig. A.4). The energy interval [E1, E2] plays an essential role in Targeted Energy Transfer
(TET) mechanism on the S11− branch. And the optimal TET energy region corresponds
to the interval [E1, E2] in the detailed frequency-energy plot in Fig.A.4.

Fig. A.2 shows the influence of increasing K values on the energy level of saddle point
2. A lower K can adapt to the higher energy level for efficient TET. An interesting
phenomenon is that the ratio of energy interval E1/E2 is almost constant in Fig. A.2,
which shows the parallel translation of the upper S11− branch on the logarithmic axis
with the variation of K.

Increasing negative stiffness results in extending the distance between the saddle points
[E1, E2] in Fig. A.3. It improves the performance of energy transfer for relatively high
energy input. Hence, K and δ can be tailored to absorb certain input energies.
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Figure A.3: Frequency-energy plot for the different linear negative stiffnesses δ (ϵ = 0.01,
K = 1742, δ value is selected as 0, -0.2, -0.4 and -0.6 respectively, following the direction
of the arrow). Zoomed plot represents detailed curve trends in the region marked in red
frame, near the frequency 1

A.2 Influence of damping and cubic nonlinearity on
conservative energy

The saddle points on the S11− can be calculated by deriving the conservative system
energy with respect to Ω, ˙E(Ω) = 0. The two real roots correspond to the frequency of
Ω1 and Ω2 of saddle point 1 and point 2, and their energy levels E1 = E(Ω1), E2 = E(Ω2)
(see Fig. A.4). The energy interval [E1, E2] plays an essential role in TET mechanism
on the S11− branch. And the optimal TET energy region corresponds to the interval
[E1, E2] in the detailed of frequency-energy plot in Fig.A.4.

To describe the conservative energy E(Ω) in a cubic non-conservative system, the
critical energy level (G = 0.22mm and G = 0.38mm) before the SMR occurs and after it
disappears are presented with zero initial condition in Fig. A.4. The system parameters
for the simulation are selected as ϵ = 0.01, K = 1742, λ1 = 1.67, λ2 = 0.167. Those
parameters are also fixed for the simulation in following section.

The energy level when SMR appears (blue line) almost coincides with the saddle point
(ω1, E1), and the energy level when SMR disappears (red line) is close to the endpoints of
the upper branch energy level E1. The conservative energy level when SMR disappears
(red line in Fig. A.4) is much lower than that when SMR occurs. This shows that energy
has been dissipated through the SMR mechanism even if the input energy continues to
increase from blue line state to red line state.

The influence of the damping parameter on the conservative energy in the systems is
analyzed in Fig. A.5. The red curve is the SMR interval, which is an unstable region. Its
stability is confirmed by Floquet theory. Under the various damping parameters, the level
of conservative energy necessary to trigger the SMR is almost constant, about 5.7×10−5J .
For the energy level for SMR to disappear, the λ2 have a more significant impact on the
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Figure A.4: Energy range of intensive energy exchange in cubic NES case. The black
curve is the backbone of the frequency-energy relation, the blue line is the threshold
energy for SMR appearance (G = 0.22mm), and the red line is the threshold energy (G
= 0.38mm) for SMR disappearance. Both critical energy levels are simulated in a zero
initial condition.

determination of the critical value, the curve groups with the same λ2 result in similar
local minima.

To explain why the trigger conservative energy level is the same under different
damping conditions, a ’weak damping’ assumption is proposed, where λ2 tends to be
zeros. On the SIM, the ratio of the amplitude of LO and NES at the singularity point
[Z2,1, Z1,1] is 1.5. The exsitence of the small parameter ϵ results in the conservative energy
is mainly governed the amplitude of LO, so it becomes E ≈ 1

2Y
2 = 8

81K
. The trigger energy

level is determined mainly by the cubic nonlinearity parameter K.
In order to verify the correctness of this approximation, the critical energy levels

calculated using the different methods are compared in Tab. A.1. The first column is the
energy level at the saddle point (E1, ω1). The stable amplitude of LO and NES before the
SMR appears is calculated using the numerical method that forms the second column.
The third column is the predicted trigger energy level. In the same cubic nonlinearity
condition, the three critical trigger energy levels are practically the same, which confirms
that this approximation 8

81K
is correct and is determined mainly by K.

It can be clearly observed that the conservative energy when SMR starts to occur is the
same as the energy level of a saddle point in Fig. A.6, which shows the frequency-energy
relationship for different cubic nonlinearity parameters. This means that the conservative
energy threshold at the saddle point (E1, ω1) can be considered as an indication that SMR
occurs. It is difficult to obtain an analytical expression for the energy level at the saddle
point based on the previous discussion. However, the simulations of different damping
parameters and different cubic nonlinearity parameters in Fig. A.5 and A.6 reveal that the
SMR always happens when the system’s conservative energy achieves its critical value.
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Figure A.5: Variety of the conservative energy in the different damping systems (ϵ =
0.01, K = 1742). The blue curve is calculated by stable solution, the red curve is calculated
by unstable amplitude, the black dashed line represents the energy level 5.7 × 10−5J

Table A.1: The comparison of SMR occurs energy level in different cubic nonlinearity
parameters K cases

K Energy level in saddle point/J Calculated trigger energy level/J 8
81K

2613 3.82e-5 3.81e-5 3.83e-5
1742 5.73e-5 5.71e-5 5.67e-5
871 1.15e-4 1.15e-4 1.15e-4

This critical energy level is determined mainly by the cubic nonlinearity parameter K
without considering the damping condition. This can help us predict the occurrences of
SMR without having precise knowledge of the damping parameters in cubic NES case.

The conservative system shows the inherent properties of the non-conservative system.
An increase in cubic nonlinearity parameter leads the frequency-energy backbone of the
conservative system to move to a lower energy level. This movement implies that the
corresponding NES system can sustain a lower optimal energy input in a non-conservative
system. The negative stiffness acts as the opposite of cubic nonlinearity parameter. Before
the SMR occurs, the conservative energy level of the cubic NES system is always located at
the saddle point of the S11− branch. The cubic nonlinearity parameter mainly determines
this critical energy level. So this saddle point can be considered as an indication that SMR
occurs.
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Glossary of principle
abbreviation

AA: Action-Angle
CX-A: Complexification-averaging
DOF: Degree Of Freedom
ER: Electrorheological
FEP: Frequency Energy Plot
FFT: Fast Fourier Transform
HBM: Harmonic Balance Method
HCVI NES: Hybrid Cubic Vibro-Impact Nonlinear Energy Sink
IHBM: Incremental Harmonic Balance Method
LCO: Limit Cycle Oscillation
LE: Lyapunov exponent
LNM Linear Normal Mode
LO: Linear Oscillator
LPT: Limiting Phase Trajectory
MR: Magnetorheological
MS NES: Magnetic-Strung Nonlinear Energy Sink
MSM: Multiple Scales Method
NES: Nonlinear Energy Sink
NNM: Nonlinear Normal Mode
ODE: Ordinary Differential Equation
SIM: Slow Invariant Manifold
SMR: Strongly Modulated Response
TET: Targeted Energy Transfer
TMD: Tuned Mass Damper
VI NES: Vibro-Impact Nonlinear Energy Sink
VIC NES: Vibro-Impact Cubic Nonlinear Energy Sink
WT: Wavelet Transforms
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