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Title

Contributions to modulation recognition for cooperative MIMO systems

Abstract

With the increasing development of wireless communication systems, algorithms and

techniques for multiple-input multiple-output (MIMO) signal interception have recently

received significant attention. Modulation recognition represents an essential step in the

signal interception process. It has attracted considerable interest on the part of the mili-

tary in many applications, such as, communication intelligence, electronic support mea-

sures and spectrum surveillance. Within the context of cognitive radio, recent and rapid

developments in software defined radio have given modulation recognition greater im-

portance in civil applications. Furthermore, cooperative communication based on relay

nodes has gained much attention since it can ensure better controlled transmission qua-

lity and improved access coverage. Thus, the concept of relaying has been put into the

standard specifications of mobile broadband communication systems, such as worldwide

interoperability for microwave access (WiMAX) and long-term evolution-advanced (LTE-

A).

The aim of this thesis is to design modulation recognition algorithms for cooperative

MIMO systems based on a pattern recognition approach. First, we propose a modulation

recognition algorithm for cooperative MIMO systems over uncorrelated channels with

perfect channel state information (CSI). Then, we study the utility of MIMO multi-relay

networks for modulation recognition over spatially-correlated channels with imperfect

CSI. In this work, the expression of the ergodic capacity for the proposed transmission

system has also been derived in order to evaluate its performance in the presence of spa-

tial correlation and imperfect CSI. Finally, we design an algorithm of superposed modu-

lations recognition dedicated to two-way relaying channel. Simulations are provided to

assess the efficiency of the proposed algorithms using the average probability of correct

recognition.

Keywords : Cognitive radio, cooperative MIMO systems, modulation recognition, pat-

tern recognition approach, relaying channels.

©2016 Wassim BEN CHIKHA ii



Titre

Contributions à la reconnaissance de modulation

pour les systèmes MIMO coopératifs

Suite au développement progressif des systèmes de communication sans fil, les al-

gorithmes et techniques d’interception des communications MIMO ont récemment reçu

une attention particulière. La reconnaissance de la modulation constitue une étape es-

sentielle dans le processus d’interception du signal. Elle a donc suscité un intérêt im-

portant pour les systèmes militaires dans de nombreuses applications telles que la com-

munication des renseignements, les mesures de soutien électronique et la surveillance

du spectre. Dans le contexte de la radio cognitive, les développements récents et rapides

dans la radio logicielle ont donné une plus grande importance à la reconnaissance de mo-

dulation pour les applications civiles. En outre, la communication coopérative basée sur

des nœuds relais a gagné une grande attention puisqu’elle peut assurer une qualité de

transmission mieux contrôlée et une couverture d’accès améliorée. Ainsi, le concept de

relayage a été pris en considération dans les spécifications du standard des systèmes de

communication mobile à large bande, tels que WiMAX et LTE-A.

L’objectif de cette thèse est de concevoir des algorithmes de reconnaissance de mo-

dulation pour les systèmes MIMO coopératifs basés sur l’approche de reconnaissance de

forme. D’abord, nous proposons un algorithme de reconnaissance de modulation pour

les systèmes MIMO coopératifs dans le cas où les canaux sont non corrélés avec CSI par-

fait. Ensuite, nous étudions l’utilité de l’utilisation de plusieurs relais dans la reconnais-

sance de la modulation pour le cas où les canaux sont spatialement corrélés avec CSI

imparfait. Dans ce travail, nous dérivons également l’expression de la capacité ergodique

du système de transmission proposé afin d’évaluer sa performance à la présence de la

corrélation spatiale et du CSI imparfait. Enfin, nous concevons un algorithme de recon-

naissance des modulations superposées dédié pour un canal bidirectionnel à relais. Les

simulations sont fournies pour évaluer l’efficacité des algorithmes proposés en utilisant

la probabilité moyenne pour une reconnaissance correcte.

Mots-clés : Radio cognitive, systèmes MIMO coopératifs, reconnaissance de modula-

tion, approche de reconnaissance de forme, canaux de relayage.
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List of mathematical notations and operations

Here, we introduce the notations adopted in this thesis.

E {.} Expectation operator.

(̄·) Conjugate operation of matrix or vector.

(·)T Transpose operation of matrix or vector.

(·)H Hermitian conjugate transpose of matrix or vector.

(·)−1 Inverse operation.

(·)† Pseudoinverse operation of the matrix argument.

tr(·) Trace of a square matrix.

IN Identity matrix of order N.

CM×N Set of M×N matrices over the field of complex numbers.

C N
(
x, y

)
Circularly symmetric complex Gaussian distribution with mean x and covariance y .

(.)pq The (p, q)th entry in the pth row and the q th column of the matrix argument.

(.)p The pth row of the matrix argument.

(.):, q The qth column of the matrix argument.

Var(.) Variance.

‖.‖ Euclidean norm of the vector argument.

|.| Absolute value of the scalar argument.

d.e Ceiling function.

ℜ (.) Real part of complex number.
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MATHEMATICAL NOTATIONS, OPERATIONS AND ABBREVIATIONS

ℑ (.) Imaginary part of complex number.

a ¿ b a is much smaller than b.

a ' b a is approximately equal to b.

a → b a tends to b.

⊗ Kronecker product.

I0(.) Zero-order modified Bessel function of the first kind.

Γ (.) Gamma function.

loga(.) Logarithm of the scalar argument using the base a ∈R+.

Pr(.) The probability.

Pr(.|.) The conditional probability.

card(.) The cardinality of a set.

exp(.) Exponential function.

b.c Integer part of the scalar argument.

argmax
x

f (x) Maximising argument of the function f (x).

O (.) The complexity order of an algorithm.

©2016 Wassim BEN CHIKHA xii



MATHEMATICAL NOTATIONS, OPERATIONS AND ABBREVIATIONS

List of notations

Cop oth-order cumulant.

dSu R Distance between the source Su ,u = 1,2 and R.

dSu R Distance between the sources S1 and S2.

Hn Number of hidden neurons in the multilayer perceptron classifier.

K Rician fading parameter.

L Number of relay nodes.

LC Code length.

m Nakagami fading parameter.

Mop oth-order moment.

NAS Number of antennas at the source node.

NAR Number of antennas at the relay node.

NAD Number of antennas at the destination node.

Ns Number of symbols.

N Number of symbols at each antenna.

ND Number of samples in the training data set.

NF Number of selected features.

Nepochs Number of epochs to train the training data in the multilayer perceptron classifier.

Ntr ees Number of trees to grow in the random forests classifier.

NRF Number of random features to be considered in the random forests classifier at each node.

Pra Average probability of correct recognition.

Pre Probability of correct recognition for a modulation Mi .

Ps Total transmit power at the source node.

Pr Total transmit power at the relay node.

Rc Coding rate.

T Number of the generated training subsets in the Bagging classifier.

Ts Symbol duration.

δ Path-loss exponent.

γn Postprocessing SNR per symbol of the nth stream.

γ̄ Postprocessing SNR per symbol of the nth stream.

ρs Source power control factor.

ρr Relay power control factor.
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ρHi, RX Receive correlation coefficient, c = {SR, SD, RD}.

ρHi, TX Transmit correlation coefficient, c = {SR, SD, RD}.

σ2
c Gaussian noise variance, c = {SR, SD, RD}.

Θd Considered set of modulation schemes, d = 1, . . . ,5.

Fl Beamforming matrix at the l th relay node, l = 1. . .L.

Hc Matrix of the c MIMO channel, c = {SR, SD, RD}.

nc Noise vector, c = {SR, SD, RD}.

P Precoding matrix at the source node.

RHc, RX Receiver correlation matrix, c = {SR, SD, RD}.

RHc, TX Transmitter correlation matrix, c = {SR, SD, RD}.
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List of abbreviations

AF Amplify-and-forward.

ANN Artificial neural network.

ASK Amplitude shift keying.

AUC Area under the curve ROC.

AWGN Additive white Gaussian noise.

BM Beamforming matrix.

CEG-noise power Channel-error-generated noise power.

CR Cognitive radio.

CSI Channel state information.

DAC Digital analog converter.

DNF Denoise-and-forward.

ESM Electronic support measures.

GA&IT Genetic algorithm and information theory.

HOC Higher order cumulants.

HOM Higher order moments.

HOS Higher order statistics.

i.i.d. Independent and identically distributed.

LOS Line of Sight.

LTE-A Long term evolution-advanced.

MIMO Multiple-input multiple-output.

MMSE Minimum mean square error.

MLP Multilayer perceptron.

NBD Naive Bayes using discretization.

NLOS Non Line of Sight.

OFDM Orthogonal frequency division multiplexing.

OSTBC Orthogonal space-time block codes.

PCA Principal component analysis.

PDF Probability distribution function.

PLNC Physical-layer network coding.

PSK Phase shift keying.
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PM Precoding matrix.

QAM Quadrature amplitude modulation.

Q-OSTBC Quasi-Orthogonal space-time block codes.

TWRC Two-way relay channel.

RFC Random forests classifier.

ROC Receiver operating characteristic.

RPROP Resilient backpropagation.

RZF Regularized zero forcing.

SISO Single-input single-output.

SNR Signal-to-noise ratio.

SM Spatial multiplexing.

STBC Space-time block codes.

STC Space-time coding.

TAN Tree augmented naive Bayes.

V-BLAST Vertical Bell Laboratories Layered Space-Time.

WiMAX Worldwide interoperability for microwave access.

ZF Zero forcing.

ZF-RZF Zero forcing-Regularized zero forcing.
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Chapter 1
General Introduction
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1.1 Context and Motivations

Recently, wireless technology has received considerable attention since it can offer

higher transmission rates with less error. Multiple-input multiple-output (MIMO) wire-

less technology is one of the most promising technologies that can be implemented to

significantly enhance the throughput and robustness of wireless networks through the

use of multiple antennas. In fact, this technology has been introduced as a means of en-

hancing the reliability of the received signal through the spatial diversity technique [1–3].

That is why it has been adopted by various wireless standards, including IEEE 802.11n,

IEEE 802.16e, and 3GPP LTE [4] after being pioneered by Foschini [5]. However, due to

the need of complex transceiver circuitry and the large power consumption at the circuit

level caused by signal processing, MIMO communication has not received much atten-

tion as a viable technology for energy-limited wireless sensor networks. In addition, the

implementation of multiple antennas at a small node may not be feasible due to physi-

cal limitations [6]. To overcome this problem, a cooperative communication concept has

been proposed to achieve MIMO capability in single-input single-output (SISO) networks

1
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[7–11]. Note that the cooperative MIMO system has attracted a great interest in recent

technologies because an essential rate gain and an improvement of the diversity order are

achieved [12,13]. Also, the concept of relaying is supported by the standard specifications

of the mobile broadband communication systems, such as worldwide interoperability for

microwave access (WiMAX) and long-term evolution-advanced (LTE-A) [14]. For practi-

cal cooperative MIMO systems, the effect of spatial correlation has to be considered since

the diversity, the multiplexing, and the capacity gains can be directly influenced by spa-

tial correlation effects due to insufficient spacing between antenna elements and/or the

existence of scatterers in the propagation environment [15]. In addition, it is usually diffi-

cult to obtain perfect channel state information (CSI) available at all nodes (source, relays

and destination) in practical applications. In fact, an imperfect CSI may occur because of

errors introduced by channel estimation, reciprocity mismatch, quantization, and delay

[16].

Moreover, recognition of communication parameters has gained a great deal of at-

tention. It presents an intermediate step between signal identification and signal deco-

ding/demodulation. Modulation recognition of an identified signal represents an essen-

tial task for an intelligent receiver and plays an important role in demodulating the in-

tercepted signals for many communication systems. In fact, a misrecognition of the mo-

dulation scheme results in significant performance degradation since the modulation re-

cognition is performed prior to data demodulation. For this reason, it has found applica-

tions in various military and civilian communication systems, including communication

intelligence, electronic support measures, spectrum surveillance, software-defined radio

and cognitive radios [17–19]. In the literature, several modulation recognition techniques

have been first proposed for SISO systems [18]. These techniques typically fall into two

categories. The first is based on a decision-theoretic approach. It is a probabilistic solu-

tion based on certain hypotheses and requires prior knowledge of probability functions

[18, 20]. The second category is based on a pattern recognition approach. It involves ex-

tracting key features from the received signal [21–23]. Furthermore, various modulation

recognition algorithms have been proposed for MIMO systems [17, 24–26]. To the best of

our knowledge, no previous work has addressed the problem of modulation recognition

in the context of cooperative MIMO systems. Therefore, addressing the problem of modu-

lation recognition for cooperative MIMO systems is essential and of critical importance.
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In addition, network coding (NC) has been regarded in wireless networks such as ad

hoc and wireless sensor networks to enhance the available throughput [27], energy ef-

ficiency [28], and robustness [29]. NC can decrease the bandwidth assigned to the re-

lay transmission and hence increase the spectral efficiency of cooperative communica-

tions. Recently, the physical-layer network coding (PLNC) has attracted a great interest in

the cooperative networks community since the transmission times at the multiple access

phase are reduced to one single time [30]. In fact, PLNC enables the source nodes to send

signals simultaneously to the relay node. The relay node maps the superposed signals and

thereafter forwards the resulting signal to the destinations. In this context, a two-way re-

lay channel (TWRC) can be considered where two source nodes communicate with each

other with the help of a single relay node. For each transmission, the sources can vary the

modulation scheme and the modulation order depending on the applications and their

requirements. Hence, each source requires knowing the modulation type and order used

by the other source to demodulate the received signal. A necessary requirement for en-

suring correct data reception at the destinations is the perfect recognition of the sources

modulations schemes and orders.

The aim of this thesis is to propose algorithms to recognize modulations used in broad-

band technologies such as LTE-A and WiMAX under cooperative MIMO systems, taking

into account previous discussed constraints.

1.2 Key contributions

Based on the previously discussed problems and motivations, the main contributions

of this dissertation are summarized as follows :

v A low-complexity modulation recognition algorithm is introduced for MIMO re-

laying broadcast channels with a direct link. In this work, we assume that the chan-

nels are uncorrelated with perfect CSI. Simulation results show that the proposed

algorithm with the aid of a relay node can offer SNR gain compared to the non-

cooperative one. We also show that J48 and Bayesian network classifiers allow for

better monitoring of the intercepted signals in broadband technologies with redu-

ced complexity.

v An algorithm for modulation recognition is designed for spatially-correlated MIMO
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relaying broadcast channels using multi-relay nodes with a direct link under imper-

fect CSI. Here, the ergodic capacity of the proposed transmission system is derived

to quantify the effect of imperfect CSI and spatial correlation. Simulation results

show that the recognition performance degradation caused by both spatially cor-

related channels and channel estimation errors can be removed by means of a re-

laying scheme.

v An algorithm for modulation recognition dedicated to two-way relaying MIMO sys-

tems with PLNC is proposed. In contrast to the existing approaches in the literature,

where a single M-ary modulation is identified, the proposed recognition algorithm

has to recognize a pair of unknown sources modulations from the superposed sym-

bols in the presence of PLNC. Simulations are provided to assess the accuracy of

the proposed algorithm through the average probability of correct recognition for

different modulation scheme pairs. It is shown that the algorithm achieves high mo-

dulation recognition in an acceptable signal-to-noise ratio (SNR) range at different

relay positions.

1.3 Thesis organisation

The outline of the contents of this thesis is as follows :

Chapter 2 provides an overview of the theory relevant to this thesis. It covers the prin-

ciples of the promising MIMO technology and subsequently reviews previous works in the

literature dealing with modulation recognition algorithms for SISO and MIMO systems.

Furthermore, the main characteristics of cooperative communications are highlighted.

Chapter 3 introduces a novel modulation recognition algorithm for cooperative MIMO

systems over uncorrelated channels with perfect CSI. The performance of the proposed

algorithm is assessed through Monte-Carlo simulations in terms of the probability of cor-

rect recognition and the time complexity. The superiority of the proposed algorithm com-

pared to earlier relevant works is clearly demonstrated through intensive simulations.

Chapter 4 proposes a new modulation recognition algorithm dedicated for coope-

rative MIMO systems over spatially-correlated channels with imperfect SD and RD CSI.

First, the ergodic capacity of the proposed transmission system is derived and verified

through simulations. Second, the sensitivity of the proposed modulation recognition al-
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gorithm is investigated under spatially-correlated channels in the presence of imperfect

CSI. Finally, the increasing effect of the relay nodes on modulation recognition is evalua-

ted through Monte-Carlo simulations.

Chapter 5 focuses on the recognition of superposed modulations in two-way relay

MIMO systems with PLNC. The effectiveness of the proposed algorithm is evaluated through

the probability of correct recognition at different relay positions. As a result, high recog-

nition performance is achieved at an acceptable SNR range.

Chapter 6 presents a summary of the most important conclusions drawn from this

thesis, and suggests several research paths in which further research could be carried out.
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Chapter 2
Literature Review
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2.1 Introduction

This chapter presents an introduction to the fields of research in wireless communica-

tion systems, and the techniques on which the contents of this thesis are based on. First,

we detail the entities of MIMO systems. Second, modulation recognition for SISO and

MIMO systems is reviewed. In fact, some of the recently published algorithms are briefly

described. Finally, cooperative MIMO systems are presented, which cover the topics of

the MIMO relaying broadcast network and the TWRC.
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2.2 MIMO systems

Recently, MIMO systems have received a lot of attention since a rate gain can be achie-

ved over wireless links. In general, a MIMO wireless communication system consists of

three entities : the source (i.e., multiple antennas transmitter), the propagation environ-

ment, and the destination (i.e., multiple antennas receiver). The characteristics of these

entities are described respectively in subsections 2.2.1, 2.2.2 and 2.2.3.

2.2.1 Source entity

The source is the entity that converts the information message to be transmitted into

electromagnetic waves. A MIMO source is divided into three main blocks : the modulator,

the space-time encoder or the spatial multiplexer and the radio frequency (RF) device.

These blocks are presented in Figure 2.1.

Input binary 
sequence

Theoretical source

Modulator

Space-time
 encoder 

or 
Spatial 

multiplexer

RF

RF

1

NAS

FIGURE 2.1 – Architecture of a MIMO source

Initially, the message to be transmitted is represented by a binary stream. This stream

is first modulated into symbols using the modulator. Thereafter, a space-time encoder is

used to divide the symbol stream into NAS sample streams. Finally, an RF device performs

the conversion of each sample into electromagnetic waves.

2.2.1.1 Modulator

The modulator is the element of the communication system that adapts the bitstream

to the propagation channel, the required error rate and the available bandwidth. It maps
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the digital information to appropriate signal waveforms. Modulation schemes are classi-

fied in several categories : with or without memory, linear or not. In our study, we consider

linear modulation schemes without memory.

Mathematically, a linear modulation schemes without memory converts a block of

Bkc = l og2(M) bits into a symbol s belonging to a constellation M with M = 2Bkc complex

elements. The throughput of the bandwidth is directly related to the number of bits per

block. Indeed, increasing Bkc will improve the throughput, but it will also increase the

probability of error in the demodulation phase.

In the present work, we focus on modulation schemes used by broadband techno-

logies, which include M−ary amplitude shift keying (M−ASK), M−ary phase shift keying

(M−PSK) and M−ary quadratic amplitude modulated (M−QAM) [31].

M-ASK modulation : This digital amplitude modulation encodes a block of Bkc bits into

a real symbol s, in which the phase ϕ (s) belongs to the set {0, π} and the modulus |s|
belongs to a set composed by 2Bkc−1 elements. A M−ASK symbol is expressed mathemati-

cally as [31]

s = d × (2v −1−M) , (2.1)

where v ∈ [1, . . . ,M] and 2×d is the distance between two adjacent amplitudes. Generally,

the assignment of a block with Bkc bits into a ASK symbol is performed by a Gray code

technique. Using this technique, the bit representation changes by only one bit between

adjacent constellation points. This ensures the minimization of errors in the demodula-

tion phase since only one bit will be erroneous when the constellation point is decoded

by the adjacent one.
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(a) Constellation of 4−ASK
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(b) Constellation of 8−ASK

FIGURE 2.2 – Examples of constellations ASK with unit average symbol power (E
{|s|2} = 1)

As seen in Figure 2.2, 4−ASK encodes a block of Bkc = 2 bits into symbol belonging to

a constellation M = {−3d , −d , d , 3d}, while 8−ASK encodes a block of Bkc = 3 bits into
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symbol belonging to a constellation M = {−7d , −5d , −3d , −d , d , 3d , 5d , 7d}.

M-PSK modulation : This modulation scheme works by assigning a unique phase with

a unitary module to each symbol s presented in the baseband waveform. An M−PSK sym-

bol can be represented mathematically by [31]

s = exp

(
2 jπ(v −1)

M

)
(2.2)

where v ∈ [0, . . . , M−1]. For instance, a 2−PSK, which is also called a binary phase shift

keying (BPSK), uses two opposite phases (see Figure 2.3a). As in ASK modulation, the as-

signment of a block with Bkc bits into a PSK symbol is generally performed by a Gray code

technique.

Figure 2.3b presents the constellation of 4−PSK (also called quadrature phase shift

keying (QPSK)). Here, QPSK encodes a block of Bkc = 2 bits into symbol belonging to a

constellation M =
{
1, exp

(
j π2

)
, exp

(
jπ

)
, exp

(− j π2
)}

.
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FIGURE 2.3 – Examples of PSK constellations with unit average symbol power (E
{|s|2} = 1)

Noting that there are variants of the M−PSK modulation introducing a constant phase

shift to facilitate synchronization at the reception.

M−QAM modulation : Whereas PSK (ASK) only exploits the space of phases (ampli-

tudes) to distinguish between symbols, QAM uses both the space of phases and the am-

plitudes jointly to optimize the bandwidth. A modulation M−QAM encodes a block of
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Bkc bits into a complex symbol belonging to a constellation M . For even values of Bkc,

the constellations are square, while for odd values of Bkc the constellations have a cross

shape and are hence called cross constellations. Figure 2.4a shows the constellation of

16−QAM which encodes a block of Bkc = 4 bits into complex symbol. The modulation

scheme 32−QAM encodes a block of Bkc = 5 bits into complex symbol belonging to a cross

constellation as seen in Figure 2.4b.
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FIGURE 2.4 – Examples of QAM constellations with E
{|s|2} = 1

2.2.1.2 Space-time encoder

Space-time encoder is the entity that converts the symbols into NAS sample stream,

where NAS is the number of the source antennas. Its purpose is to distribute information

in the time-space domain in order to improve the throughput and/or robustness of a wi-

reless transmission. Thus, they are useful for MIMO wireless systems to combat multipath

fading and decrease the error probability. Since the pioneering work of Alamouti [2], this

research area has received a lot of attention. Many space-time coding (STC) are designed

for MIMO systems and implemented in several standards. An overview is provided in [32].

These codes fall into two main categories : space-time trellis codes (STTC) [33] and space-

time block codes (STBC) [32]. In the current research, we focus on STBC codes because

they are simpler to implement than STTC codes and thus are most commonly used. In-

deed, MIMO-STBC wireless communication systems have been recently standardized in

IEEE 802.16e and IEEE 802.11n and appear as a good technology for the next generation

of wireless applications [34].

©2016 Wassim BEN CHIKHA 11



2.2. MIMO SYSTEMS

The main idea of STBC is to exploit the channel diversity through an appropriate en-

coding of the data streams into structured blocks. It has a coding rate Rc = Ns/LC which

indicates that a block of Ns symbols are transmitted over LC time slots. Mathematically, a

space-time coding, denoted C , encodes a block of Ns symbols, denoted s =
[
s1, . . . , sNs

]T

in a space-time block C (s) of size NAS ×LC. The columns of this block correspond to the

temporal dimension, while the lines correspond to the spatial dimension. For a linear

code, each element of C (s) is a linear combination of real and imaginary parts of symbols

sn , n = 1. . .Ns . Given the fact that s̃ =
[ℜ(

sT
)

, ℑ(
sT

)]T
a vector of size 2Ns ×1 obtained by

vertically concatenating the real and imaginary parts of s, the block C (s) can be generally

expressed as

C (s) =
[
B1 (s̃) . . .BLC (s̃)

]︸ ︷︷ ︸}space

time

(2.3)

=
Ns∑

n=1

(
Enℜ (sn)+ j Jnℑ (sn)

)
, (2.4)

where En and Jn , are two matrices of size NAS×LC and Blc , 1 ≤ lc ≤ LC, are matrices of size

NAS×2Ns correspond to the coding matrices, which depend only on the STBC used at the

source node, where the first equation (2.3) corresponds to a temporal description of the

coding while the second equation (2.4) corresponds to a symbol oriented description.

The linear block codes are numerous and divided into several subcategories. Spatial

multiplexing, orthogonal codes [2, 35] and quasi-orthogonal codes [36] are being discus-

sed in more details in the following paragraphs.

Spatial Multiplexing : The spatial multiplexing (SM) is not a space-time coding since it

does not exploits the redundancy in the time domain (i.e., does not achieve space–time

diversity). Nevertheless, for practical considerations, it is often considered as STBC [32].

SM favors the increase of the throughput with a coding rate of Rc = NAS. This spa-

tial encoding simultaneously transmits Ns symbols via the NAS = Ns source antennas. The

transmitted blocks, C(s), have a length of NAS×1 and can be expressed in terms of signals

to be transmitted as
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C(s) = s =


s1

...

sNs

 . (2.5)

The coding matrix B1 is written as

B1 =
[
INAS j INAS

]
,

where INAS denotes the identity matrix of size NAS ×NAS .

It is well known that the optimum decoding of SM is very computationally expensive

when the order M of the modulation M is high and/or the number of the source antennas

NAS is large. Several techniques have been proposed in the literature to reduce the com-

plexity of decoding, such as zero forcing (ZF), minimizing the mean square error (MMSE),

vertical Bell laboratories layered space-time (V-BLAST) and sphere decoding (SD) [32].

Orthogonal Codes : The orthogonal codes (OSTBC) offer a dual benefit : first, they help

to increase the robustness of wireless transmission by exploiting the spatial and temporal

spatio-temporal redundancy. Secondly, they facilitate the implementation of the optimal

decoder. The block matrix of an OSTBC code fulfills the following criterion of orthogona-

lity [35]

C(s)C(s)H = λ

(
Ns∑

n=1
|sn |2

)
INAS , (2.6)

where λ is a real coefficient and INAS denotes the identity matrix with dimension NAS ×
NAS. Note that the criterion of orthogonality contributes to decoupling the decoding with

respect to the transmitted symbols Ns.

These codes were originally proposed by Alamouti [2] for systems consisting of two

transmitting antennas. In fact, the Alamouti code encodes a block of two symbols s =

[s1, s2]T into a matrix C(s) defined by

C (s) = [B1 (s̃) B2 (s̃)] =

 s1 −s2

s2 s1

 , (2.7)
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where the two coding matrices B1 and B2 are given, respectively, by

B1 =

 1 0 j 0

0 1 0 j

 , B2 =

 0 −1 0 j

0 0 − j 0

 . (2.8)

In Equation (2.7), one can see that two symbols are transmitted over two consecutive time

intervals. Indeed, s1 and s2 will be transmitted in the first time slot, from antennas 1 and

2, respectively. −s2 and s1 will be sent in the second time slot from antennas 1 and 2 res-

pectively. Therefore, the Alamouti is a full rate code. The orthogonal property of this code

can be shown in Equation (2.9).

CH
:,1C:,2 =

(
s1 s2

) −s2

s1

 = −s1s2 + s2s1 = 0. (2.9)

Thereafter, Tarokh et al. designed OSTBC codes for systems which used more than two

transmit antennas (i.e., NAS ≥ 2 ) [35]. The major drawback of these codes resides in their

coding rate. Indeed, they have a coding rate strictly less than the unity. In the following,

Rc OSTBC NAS notation has been used to represent different codes. An orthogonal code

using a coding rate of 1/2 with three transmit antennas 1/2OSTBC3 can be described as

[35]

C (s) =


s1 −s2 −s3 −s4 s1 −s2 −s3 −s4

s2 s1 s4 −s3 s2 s1 s4 −s3

s3 −s4 s1 s2 s3 −s4 s1 s2

 . (2.10)

Quasi-orthogonal Codes : The Quasi-Orthogonal codes (Q-OSTBC) allow to achieve co-

ding rates higher than the rate of OSTBC codes for systems which employed greater than

two transmit antennas (i.e., NAS > 2). Most Q-OSTBC codes, which are presented in the

literature, encode four symbols (i.e., Ns = 4) in a matrix C(s) of size 4× 4 [36–38]. These

codes are obtained by concatenating several orthogonal codes, so that the coding matrix

C(s) satisfies the following criterion

C(s)C(s)H =
Ns∑

n=1
|sn |2

 I2 λD(1)M

λD(2)M I2

 , (2.11)
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whereλ is a coefficient less than one (i.e.,λ< 1), M represents a permutation matrix of size

2×2, D(1) and D(2) are two diagonal matrices of size 2×2 containing elements belonging

to {−1, 1}. Like OSTBC, Q-OSTBC can be used to reduce the complexity of decoding.

Jafarkhani proposes in [36] a Q-OSTBC code with a unitary coding rate for NAS = 4

defined as

C(s) =



s1 −s2 −s3 s4

s2 s1 −s4 −s3

s3 −s4 s1 −s2

s4 s3 s2 s1

 . (2.12)

Furthermore, Tirkkonen et al. introduced a Q-OSTBC with a unitary coding rate for

NAS = 4 described as [37]

C(s) =



s1 s2 s3 s4

s2 −s1 s1 −s3

s3 s4 s2 s2

s4 −s3 s4 −s1

 . (2.13)

2.2.1.3 Radio-frequency (RF) device

At the output of the encoder, the symbol stream is partitioned into NAS blocks. The

RF device is the entity that converts each block to an electromagnetic wave. Figure 2.5

illustrates the general architecture of this device.

X

Antenna
fc

RF device

Emission
filter

Samples

Waveform

FIGURE 2.5 – Architecture of RF device

At the input of the RF device, the samples are clocked by a clock whose frequency

is fs = 1
Ts

, where Ts denotes the symbol duration. To limit the bandwidth of the signal, a

low-pass filter, called an emission filter, is applied to the signal. At the output of this filter,

the signal is transposed into the frequency domain to respect the allocation rules of the
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propagation channel. This operation is performed by multiplying the signal by a carrier

frequency fc as shown in Figure 2.5. Finally, the signal is transmitted as an electromagne-

tic wave in the propagation environment.

2.2.1.4 MIMO Precoding

Precoding is a paradigm that exploits the CSI at the source node in order to match the

transmission to the instantaneous channel conditions [39,40]. Applying a precoding stra-

tegy at the source node before transmitting the signal can reduce the performance loss

caused by channel fading and interference. In the literature, linear and non-linear preco-

ding strategies have been proposed [41]. In practice, linear precoding methods are more

feasible due to their lower complexity compared to non-linear methods. Figure 2.6 gives

a simple illustration of a MIMO system with linear precoding. Note that linear precoding

methods include ZF and RZF.

1

N
AD

Destination

1

NAS

Source

x

H

s1

s2

sN

Linear
Precoder

P
s

FIGURE 2.6 – Schematic diagram of a MIMO system with a linear precoder

Zero-Forcing Precoding : The ZF precoder is designed to completely force all interfe-

rence terms to zero at the destination node, i.e., zero-force the interference. It is well stu-

died in the literature through performance measures such as fairness and throughput un-

der the assumptions of both total and per antenna power constraints [42]. This method is

also referred to as "channel inversion" [43].

By using the MoorePenrose pseudoinverse [44] of the channel matrix H, the ZF preco-

ding matrix is given by

PZF = H† = HH (
HHH)−1

. (2.14)

Note that the required computational time of matrix inversion in the ZF precoder is
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high. On the other hand, ZF causes a noise increase when it is employed at the destination

node. An additional term is added to equation (2.14) to give a regularized ZF, which can

be expressed as [45]

PRZF = HH (
HHH +αI

)−1
. (2.15)

where α is a regularization parameter.

2.2.2 Propagation Environment

The NAS electromagnetic waves generated by the source node propagate in an envi-

ronment before being received by multiple destination antennas. During the propagation,

two phenomena are involved. First, the waves undergo various modifications related to

their interaction with the environment. Depending on the geometry and material of the

objects, these modifications are essentially of three types : reflection, diffraction and scat-

tering [46] as displayed in Figure 2.7.

Reflection Scattering Diffraction

FIGURE 2.7 – Effects of radio wave propagation

Second, the received signals are degraded by the superposition of extraneous signals

with the useful signal. These signals, called noise, are added to the received signal at each

antenna.

Throughout this manuscript, we use the term "communication channel" to designate

the set that is composed by the RF device of both the source and destination nodes and

the propagation environment.

Assuming that the RF operations are performed perfectly, the received signals y (τ) =[
y1 (τ) , . . . , yNAD (τ)

]T at the time instant τ are expressed in the baseband as

y (τ) = g (τ)+n (τ) , (2.16)
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where g (τ) depends on the propagation environment and the transmitted signals x(τ),

and n (τ) models the additive noise (see Figure 2.8). In the following, we present these two

terms, i.e., g (τ) and n (τ).
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NAS
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S
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FIGURE 2.8 – Diagram of a MIMO system with NAS transmit antennas and NAD receive antennas

2.2.2.1 Fading Channels

In wireless communication systems, Surrounding objects like buildings, houses, moun-

tains and trees cause reflection, diffraction, scattering and shadowing of the transmitted

signals and provoke multipath propagation. The multipath phenomenon causes the ar-

rival of transmitted signals to the destination node with different amplitudes, different

phase angles and at different times. The signal fading, which represents the amplitude

fluctuation of the received signal, is caused by the time variant or the frequency selective

characteristics of the multipath channel. As shown in Figure 2.9, one can distinguish bet-

ween two categories of components. The line of sight (LOS) components represent the

strongest components. They are directly transmitted from the source to the destination

without any reflection, while other components are reflected. They are referred to as scat-

tering components or non-line of sight (NLOS). In a LOS environment (Figure 2.9a), the

probability density function of the received signal follows a Rician distribution, while a

Rayleigh distribution is followed in a NLOS environment (Figure 2.9b).
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Base Station

Scatters

LOS

Scatters

Scatters

Mobile Destination

(a) LOS environment

Scatters

Scatters

Base Station

Mobile Destination

Scatters

(b) NLOS environment

FIGURE 2.9 – Propagation of a signal in a wireless environment, with and without LOS

Assuming that the bandwidth of the transmitted signal is sufficiently smaller than the

channel coherence band to neglect inter-symbol interference (ISI) and that the transmis-

sion time is lower than the channel coherence time, the characteristics of the commu-

nication channel do not depend on neither the frequency nor the time. Thus, the chan-

nel is known as a frequency-flat and time-invariant channel. Under this assumption, the

samples g(τ) =
[
g1(τ), ···, gnr (τ)

]T are expressed in terms of the transmitted samples x(τ)

as

g(τ) = Hx(τ) =


h11 · · · h1NAS

...
. . .

...

hNAD1 · · · hNADNAS




x1 (τ)
...

xNAS (τ)

 , (2.17)

where H is an NAD ×NAS matrix with hd s the path gain between the destination antenna

d and the source antenna s.

In the following, we give a mathematical description for different typical channel mo-

dels which will be considered throughout the thesis.

Rayleigh Fading : The most widely employed fading model in the literature is Rayleigh

fading. It is often used to model propagation paths consisting of NLOS component. Here,

the channel fading amplitude distribution hd s can be expressed as

p (hd s) =
2hd s

Ω
exp

(
−h2

d s

Ω

)
, hd s ≥ 0, (2.18)

whereΩ = E
{
h2

d s

}
is the average power.
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Rician Fading : In contrast to Rayleigh fading, Rician fading provides a good fit for mul-

tipath fading channels with a LOS path and many random weaker components. The chan-

nel fading amplitude is distributed according to

p (hd s) =
2
(
1+n2

)
exp

(−n2
)

hd s

Ω
exp

(
−

(
1+n2

)
h2

d s

Ω

)
I0

2nhd s

√
1+n2

Ω

 , hd s ≥ 0, (2.19)

where n denotes the fading parameter, which ranges from 0 to ∞, and is related to the

Rician K factor by K = n2 which corresponding to the ratio of the power of the LOS com-

ponent to the average power of the scattered component. I0(·) represents the zero-order

modified Bessel function of the first kind.

Nakagami-m Fading : Nakagami-m fading model was shown to fit the experimental

propagation data better than that of Rayleigh, Rician, and log-normal distributions [47].

In fact, this distribution is more flexible since it contains the one-sided Gaussian distribu-

tion (m = 0.5), the Rayleigh distribution (m = 1), and the uniform distribution on the unit

circle (m →∞) as extreme cases. Thus, Nakagami distributions can model fading condi-

tions that are more or less severe than those of Rayleigh [48]. It often gives the best fit to

landmobile [47,49] and indoor-mobile [50] multipath propagation, as well as scintillating

ionospheric radio links [51].

The channel fading amplitude distribution is given by

p (hd s) =
2mmh2m−1

d s

ΩmΓ (m)
exp

(
−mh2

d s

Ω

)
, hd s ≥ 0, (2.20)

where Γ(.) expresses the Gamma function (i.e., Γ (m) =
∫ ∞

0 t m−1 exp(−t )d t ) and m re-

presents the fading parameter, which ranges from 1/2 to ∞. In the case when m = 1,

Nakagami-m distribution can be reduced to Rayleigh distribution. In addition, Nakagami-

m distribution can closely approximate the Rician distribution using a one-to-one map-

ping between the m parameter and the K parameter [52]. This mapping is given by

K =

p
m2 −m

m −
p

m2 −m
, m ≥ 1, (2.21)

or
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m =
(K+1)2

2K+1
, K ≥ 0. (2.22)

Spatially-Correlated MIMO Channel : Realistic MIMO channels present spatial corre-

lation due to the clustering of scatterers in the propagation environment. Generally, this

correlation has a negative effect on capacity and error rate performance [15, 53]. There-

fore, the performance evaluation of practical MIMO systems requires considering rea-

listically correlated channels. Various analytical models for simulating correlated MIMO

channels can be found in the literature. In this thesis, we adopt the Kronecker model [15],

which assumes that spatial transmitter and receiver correlations are separable into two

correlation matrices as follows :

H = R1/2
Rx Hw R1/2

Tx , (2.23)

where RTx and RRx represent the transmitter and the receiver correlation matrices, respec-

tively. Hw is a full rank gain matrix which the entries are independent, identically distri-

buted (i.i.d.) and follow a circularly symmetric complex Gaussian distribution with zero-

mean and unit variance. Under this model, the total correlation of the channel RH can

be expressed as the Kronecker product (i.e., ⊗) of the correlation matrices RTx and RRx as

follows :

RH = RTx ⊗RRx. (2.24)

The fading correlation at the source and at the destination can be described by the

exponential correlation model presented in [54]. In this case, the components of the cor-

relation matrix R are given by

(R)pq =

 ρq−p , p ≤ q

(R)qp , p > q
,
∣∣ρ∣∣< 1, (2.25)

where ρ represents the complex correlation coefficient of neighboring transmit branches

and (R)pq denotes the (p, q)th entry in the pth row and the q th column of R. The two ma-

trices RRx and RTx are defined by the receive correlation coefficients ρRx and the transmit

correlation coefficients ρTx, respectively. It is noteworthy that this correlation model is

physically reasonable in the sense that the correlation between neighboring channels is
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higher than that between distant channels.

Imperfect Channel Estimation Model : Assuming perfect CSI is untenable in practice

to determine theoretically real performance. Note that this is a crucial assumption since

poor CSI quality can greatly degrade the performance of all precoding techniques. Thus,

the source has to know the CSI of the downlink channel by feedback signaling from the

uplink. In practical systems, it is relatively difficult to obtain perfect CSI available at all

nodes. For this reason, a great deal of research has been carried out to assess the impact

of imperfect CSI on the system’s behavior. An overview of this research area is provided in

[55].

Imperfect CSI may arise due to errors caused by channel estimation, reciprocity mis-

match, quantization, and delay [16, 56]. It can be modeled as a complex Gaussian distri-

buted. Thus, the channel estimate can be expressed as [16]

Ĥ = H+eΩ, (2.26)

where Ω is a matrix independent of H, whose entries are i.i.d. zero-mean circularly sym-

metric complex Gaussian variables with unit variance and e is the estimation error va-

riances of channel.

2.2.2.2 Additive Noise

In communication systems, noise is normally modeled as additive white Gaussian

noise (AWGN). It is considered as a common noise model for numerical and analytical

analysis since it can approximate many noise sources. It is additive, so it is added to the

signal ; it is white, meaning that the power for all frequencies is identical within the band-

width of the system and it is Gaussian, meaning that their real and imaginary values follow

a Gaussian distribution. One way to characterize the noise level is to calculate the SNR.

Given the fact that the average power of the noise at each antenna isσ2
n , the SNR is defined

as [57]

SNR = 10log10

(
NAS

σ2
x

σ2
n

)
(2.27)

where σ2
x denotes the average power of samples at each source antenna.

©2016 Wassim BEN CHIKHA 22



2.2. MIMO SYSTEMS

2.2.3 Destination entity

RF

RF
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Space-time
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Output binary  

sequence

FIGURE 2.10 – Architecture of a MIMO destination

The destination is the entity that converts the NAS received waves into a binary stream.

Its architecture is shown in Figure 2.10. Here, the destination employs the decoder, or spa-

tial demultiplexer and the demodulator to recover the transmitted binary information.

Therefore, the estimation of the transmitted binary information requires a prior know-

ledge of the number of the source antennas (NAS), the noise variance (σ2
n), the coding

(C ), the channel matrix (H), and the modulation (M ) as depicted in Figure 2.11.

Identification
 of the number 

of source 
antennas

Recognition
of the coding

Recognition
of the modulation

Estimation  
of the noise 

variance

Estimation  
of the channel

Received signals

Communication parameters

NAS

NAS

H

HNAS

FIGURE 2.11 – Estimation of the transmitted bitstream

Many estimation algorithms of the number of the source antennas NAS have been de-
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veloped in literature [58–63]. Also, several approaches have been proposed for the recog-

nition of the coding [64–66] and other algorithms for estimating the channel matrix are

also available [67–69]. In the last few decades, there has been great interest in modulation

recognition for SISO and MIMO communications systems [24, 26, 70, 71].

The current work is focusing on modulation recognition for cooperative MIMO com-

munication systems. Therefore, in the following, we present a brief summary of the exis-

ting work on modulation recognition for SISO and MIMO systems.

2.3 Modulation Recognition for SISO and MIMO Systems

2.3.1 Modulation Recognition for SISO Systems

Most of the existing algorithms for modulation recognition assume that the source

employs a single antenna. These algorithms can be divided into two categories. The first

one is based on a decision-theoretic approach. It represents a probabilistic solution ba-

sed on a priori knowledge of probability functions and certain hypotheses [18, 20]. This

approach presents three weaknesses : high computational complexity, difficulties in for-

ming the right hypothesis, and the need for careful analyses to set the correct threshold

values. The second category is based on the pattern recognition approach. It is easier to

implement and reaches a quasi-optimal performance if the proper features set is chosen.

This approach is decomposed into two subsystems. The first subsystem is the features ex-

traction. It involves extracting some basic characteristics of the received signal [21–23,72].

Nevertheless, choosing an adequate feature set is an issue since there are many tech-

niques used to extract the signal features necessary for digital modulation recognition.

These techniques include cyclostationarity signatures [23], wavelets transforms [73], hi-

gher order statistics [22] and spectral based features set [21]. The second subsystem is the

classifier subsystem, which is responsible of classifying the received signals based on the

extracted features.

Nandi et al. proposed a modulation recognizer using several key features based on

the instantaneous amplitude, the instantaneous phase and the instantaneous frequency

of the intercepted signal [74]. The modulation schemes that can be classified by this re-

cognizer are the 2−ASK, 4−ASK, 2−PSK, 4−PSK, 2−FSK, and 4-FSK digital modulation

schemes. The classifier structure used in this work is a single hidden layer artificial neural
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network (ANN) with 4-node input layer, 25 node hidden layer and 7 node output layer. It

was shown that the ANN algorithm is more efficient than the decision theoretic algorithm

where it achieves over 96% detection rate for an SNR of 15 dB.

Hong et al. investigated the use of wavelet transform to discriminate between QAM,

PSK and FSK signals [75]. Their proposal consists of extracting the transient characteris-

tics of a digital modulation signal using the wavelet transform and applying the distinct

pattern in the wavelet transform domain for simple recognition. They claimed that the

percentage of correct recognition is about 97% for SNR greater than 5 dB using 50 obser-

vation symbols.

A low complexity method based on elementary fourth-order cumulants is introduced

by Swami et al. [76]. The purpose of this method is to recognize several digital modula-

tion schemes in a hierarchical manner. By deriving the expressions for the variance of the

estimates of the cumulants, classification thresholds were developed. Furthermore, the

statistics employed by the classifier can be recursively updated. Their proposed approach

is robust due to the resistance offered by the higher order statistics (HOS) to additive co-

lored Gaussian noise and a natural robustness to constellation rotation and phase jitter.

Wong et al. [21] extended the work proposed by Nandi et al. [74], where a resilient

backpropagation (RPROP) is used as a training algorithm for multi-layer ANN classifier,

which enhances the performance and epoch times by a large margin. Moreover, additio-

nal modulation schemes were included (e.g., V29, V32, 16−QAM and 64−QAM), and an

extra features set based on the HOS of the signal was investigated. To select the best fea-

ture subset from the combined statistical and spectral features sets, the authors employed

a genetic algorithm (GA). RPROP ANN classifier achieves about 99% recognition perfor-

mance on most SNR levels using only six features selected by GA.

2.3.2 Modulation Recognition for MIMO Systems

Various modulation identification algorithms have been proposed for MIMO systems

[17, 24, 25, 58, 77] and references therein.

For uncorrelated MIMO systems, two likelihood based modulation classifiers have

been proposed by Choqueuse et. al [78]. The first classifier is named the average like-

lihood ratio test (ALRT). This approach is optimal in the Bayesian sense but requires

the knowledge of the CSI. The second classifier is named the hybrid likelihood ratio test
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(HLRT). It approximates the ALRT by replacing the channel matrix with its estimate. Here,

two steps are performed to estimate the channel by using an independent component

analysis and a phase correction algorithm, respectively. At a SNR of 5 dB, the two classi-

fiers perform well since they have the ability to perfectly recognize 2−PSK, 4−PSK, 16-PSK

and 16−QAM modulations.

Hassan et al. [26] studied blind digital modulation recognition for spatially-correlated

MIMO systems in the non-cooperative context, based on the use of an ANN classifier.

However, this classifier has a complicated network structure, needs a long training time

and has a low speed of convergence. Besides, the proposed zero forcing digital modula-

tion recognition (ZF-DMI) algorithm is sensitive to channel estimation errors and suffers

from rapid performance degradation when the variance of the channel estimation error

becomes greater than or equal to 0.1.

Even many works have been carried out in the last years, the optimal modulation re-

cognition algorithm never achieved. Indeed, some algorithms demand high SNR to per-

form well, or require some prior information, while others are too complex to be used

in online applications such as modulation recognition for CR. Recently, there has been

a great deal of research on cooperative MIMO systems and all previous works, however,

did not consider modulation recognition in this context. Indeed, cooperative communi-

cations with the aid of relay nodes have garnered significant interest [9, 10, 79–81].

2.4 Cooperative MIMO Systems

A cooperative MIMO system is an extension of the MIMO system described in Section

(2.2) [80, 82, 83]. As shown in Figure 2.12, the transmission of data signals from the source

(S) node to the destination (D) node is aided by L−relay (Rl, l = 1, 2, ..., L) nodes. Thus, Rl

can offer a spatial multiplexing gain, even if S does not have multiple source antennas, as

long as D has multiple antennas [84]. Here, HSD, HSRl , and HRlD, l = 1, 2, ..., L, denote the

channels.
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FIGURE 2.12 – Cooperative MIMO system using L-relay nodes

To achieve cooperative diversity, various cooperation strategies with different relaying

techniques have been proposed [79]. The most popular forwarding modes are the amplify-

and-forward (AF, also known as “non-regenerative”) [79,85,86] and the decode-and-forward

(DF) [87, 88]. The term “non-regenerative” implies that the relay does not regenerate (de-

code) the signal, but it does not necessarily mean a linear weighting (amplification) at the

relay. Indeed, other strategies like quantize-and-forward can also fit into the category of

non-regenerative relaying. In the AF mode, the relay nodes simply amplify the received

signals prior to retransmitting them, while in the DF mode, the relay nodes decode the re-

ceived signals and then transmit them to the destination node. AF mode is of a particular

interest due to its low complexity compared to the DF [89, 90]. In fact, this mode only re-

quires the multiplication of the received signal with an amplification factor, whereas the

DF mode requires decoding the received signal at the relay node before the retransmis-

sion to the destination node.

In recent years, MIMO relaying broadcast networks have attracted a great deal of at-

tention from both academic and industrial communities. This communication strategy

assumes that information source is transmitted via two independent channels : (i) relay

channel consisting of backward channel (i.e., SR links) and forward channel (i.e., RD links)

and (ii) direct channel (i.e., SD link). Ignoring the direct link is reasonable in some scena-

rios, such as; where the distance between the source and destination is very large, causing

significant link loss and absorption of the source signal. Practically, this consideration is
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not always true. Indeed, cooperative systems based on relaying with direct link [11, 91]

can improve the transmission performance, where spatial diversity is improved and the

coverage of wireless networks is extended. In MIMO relaying broadcast networks, linear

transmission strategies have been well investigated [11, 92–94]. In [11], a linear transmis-

sion strategy is used to design the linear precoding matrix (PM) at S and the beamforming

matrix (BM) at each R. Specifically, a regularized zero forcing (RZF) [95] and a zero forcing-

RZF (ZF-RZF) [11] are respectively employed to the backward channel and forward chan-

nel to ensure a good performance.

Moreover, the use of the PLNC scheme can be used to improve the throughput per-

formance of wireless relaying networks [30]. In the literature, two relaying strategies of

PLNC are generally used, namely the denoise-and-forward (DNF) [96] strategy and the

AF [97] strategy. When using the AF strategy, the relay node simply amplifies the received

signals before forwarding them to the destinations. Despite the latter method is easy to

implement, it suffers from noise amplification and signal attenuation [98]. In contrast, the

DNF strategy can reduce the effect of noise amplification and hence achieve better perfor-

mance compared to the AF method [99]. In chapter 5, we will consider a TWRC where two

source nodes S1 and S2 communicate with each other using a relay node R (See Figure

2.13). For each transmission, S1 and S2 can diversify the modulation depending on the

applications according to their requirement. Noting that S1 (S2) requires the recognition

of the the modulation used by S2 (S1) to demodulate the received signal. Thus, a perfect

recognition of the sources modulations schemes and orders is mandatory to guarantee a

correct data reception at the destinations.

First phase

Second phase

Relay

Source
#1

Source 
#2

FIGURE 2.13 – Two-way MIMO relay channels
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2.5 Conclusion

This chapter presented a historical overview of the most related work in the fields

of MIMO systems, modulation recognition for SISO and MIMO systems and coopera-

tive MIMO networks. Although this literature review showed that significant progress has

been made in all these fields of research, none of them address the issue of modulation

recognition in cooperative MIMO systems.

The purpose of this dissertation is to address the challenges in existing work and move

forward the state of the art. To achieve this goal while considering the earlier discus-

sed constrains, the next chapter is discussing the modulation recognition for cooperative

MIMO system over uncorrelated channels with perfect CSI.
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Modulation recognition for cooperative

MIMO systems over uncorrelated

channels with perfect CSI
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3.2. INTRODUCTION

3.1 Introduction

As already mentioned in Chapter 2, the bitstream of a digital communication is adap-

ted to the transmission channel through the modulation process. The modulation must

be adapted to the required performance, the available bandwidth, and the characteristics

of the propagation channel. There are a variety of modulation schemes and knowledge of

this parameter is essential for the reception to select the appropriate demodulator at the

destination node and, hence, recover the transmitted bitstream. Currently, modulation

recognition is an issue that has a significant literature in the context of SISO and MIMO

communications. To the best of our knowledge, its extension to the cooperative context is

a recent topic.

In this chapter, we introduce an algorithm for modulation recognition designed for

cooperative MIMO systems over uncorrelated channels with perfect CSI. The goal is to

recognize different modulation schemes supported by broadband technologies that in-

clude M−PSK and M−QAM signals.

The remainder of this chapter is organized as follows : Section 3.2 describes the system

model. We present in Section 3.3 the proposed modulation recognition algorithm. Section

3.4 is dedicated to the performance analysis of the proposed algorithm. Finally, Section

3.5 concludes the chapter and summarizes the key findings.

3.2 System Model and Preliminaries

In this chapter, the considered transmission system is a MIMO relaying broadcast

channel with one source (S), relay (R) and destination (D) nodes as depicted in Figure

3.1. Here, we assume that S, R and D are equipped with NAS, NAR and NAD antennas,

respectively. A two-time-slot protocol is used to transmit data from S to D via the di-

rect link SD and the cooperative one SR-RD. When S implements SM, the requirements

{NAD ≥ NAS, NAR ≥ NAS} must be satisfied if D and R are to support all the NAS independent

substreams simultaneously. Here, we assume that NAS = NAR = NAD = NA for the sake of

simplicity. We also assume that a non-regenerative and half-duplex relaying scheme ap-

plied at R to process and forward the received signals [79].
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FIGURE 3.1 – MIMO relaying broadcast network with source, relay and destination nodes using
two-time-slot protocol

3.2.1 Source Node Precoding Design based on RZF

During the first time slot (see Figure 3.1a), we use spatial multiplexing (SM) to transmit

multiple data stream. Thus, the coding rate Rc = NAS = NA because the code length LC = 1

and Ns = NA, i.e., x =
[
s1, s2, . . . ,sNA

]T.

Next, a RZF precoder [45] is applied to the data vector x =
[
x1, x2, . . . , xNA

]T.

The RZF is defined by a linear precoding matrix P as

P = HH
SD

(
HSDHH

SD +α1INA

)−1
, (3.1)

where HSD ∈ CNA×NA is the full rank gain matrix of the SD MIMO channel and α1 is equal

to the ratio of total noise variance to the total transmit power (i.e, α1 = NAσ
2
SD/Ps) [45].

The entries of HSD follow a circularly symmetric complex Gaussian distribution with zero-

mean and unit variance. Thereafter, S will broadcast the NA precoded data streams to R

and D simultaneously.
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Here, the received signal vectors at D and R, respectively, can be expressed as

ySD =
[

ySD1, ySD2, . . . , ySDNA

]T

= ρsHSDPx+nSD,
(3.2)

ySR =
[

ySR1, ySR2, . . . , ySRNA

]T

= ρsHSRPx+nSR,
(3.3)

where ρs =
√

Ps/tr
(
PPH

)
is the source power control factor. HSR ∈ CNA×NA is the full rank

gain matrix of the SR MIMO channel. The entries of HSR follow a circularly symmetric

complex Gaussian distribution with zero-mean and unit variance. Each nc = {
[
nc1,nc2, . . . ,ncNA

]T ∼
C N

(
0,σ2

c INA

)
, c = SD, SR}, is a vector corresponds to the additive zero-mean spatially-

white circularly complex Gaussian noise with variance σ2
c .

3.2.2 Relay Node Beamforming Design Based on ZF-RZF

During the second time slot (see Figure 3.1b), R forwards the received signal vector to

D after applying a linear beamforming matrix F, based on ZF-RZF filter [11], given by

F = HH
RD

(
HRDHH

RD +α2INA

)−1 (
PHHH

SRHSRP
)−1

PHHH
SR, (3.4)

where HRD ∈CNA×NA is the full rank gain matrix of the RD MIMO channel andα2 is equal to

the ratio of total noise variance to the total transmit power (i.e, α2 = NAσ
2
RD/Pr ) [45]. The

entries of HRD follow a circularly symmetric complex Gaussian distribution with zero-

mean and unit variance. Therefore, the received signal vector at D can be expressed as

yRD =
[

yRD1, yRD2, . . . , yRDNA

]T

= ρrρsHRDFHSRPx+ρr HRDFnSR +nRD,
(3.5)

where ρr =
√

Pr /tr
(
ρ2

s FHSRPPHHH
SRFH +σ2

RDFFH
)

is the relay power control factor and

nRD ∼ C N
(
0,σ2

RDINA

)
is a vector corresponds to the additive zero-mean spatially-white

circularly complex Gaussian noise with variances σ2
RD.
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3.2.3 Destination Node Combining

The destination receives two representations of the data vector x ; ySD (3.2) and yRD

(3.5) through SD and SR-RD, respectively. In order to maximize the combined SNR at D,

the received signal vector yD can be expressed as

yD =
[
yD1,yD2, . . . ,yDNA

]T

= ySD +yRD.
(3.6)

In the following, to implement the classifier, features must be extracted for each signal

yD to provide a basis for discriminating between the modulation schemes.

3.3 Modulation Recognition Algorithm

Our proposal is based on pattern recognition to distinguish among different modula-

tion schemes. This approach is generally divided into two subsystems : the features ex-

traction subsystem and the classifier subsystem. In the following, we describe the details

of the extraction of discriminating features and the classifiers.

3.3.1 Features Extraction

Extraction of discriminating features is of prime importance in modulation recogni-

tion algorithms. It is necessary to extract key features that enable the algorithm to cor-

rectly recognize the source modulation from the received signal yD. The HOS, which in-

cludes the higher order moments (HOM) and the higher order cumulants (HOC) of a re-

ceived signal, are the most adopted features giving higher modulation recognition accu-

racies in SISO and MIMO systems [18, 26, 76, 100]. In this work, based on [18], we employ

the features with a combination of HOM and HOC up to order eight since they can discri-

minate the different modulation schemes. We report in Table 3.1 some HOM and HOC up

to order eight to see how they can distinguish between several modulation schemes.
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TABLE 3.1 – Some theoretical moments and cumulants values for several modulation schemes
(unit-variance signal constellations with equiprobable symbols) [18]

2−PSK 4−PSK 8−PSK 16−QAM 64−QAM

M40 1 1 0 -0.68 -0.619

M42 1 1 1 1.32 1.38

C40 -2 1 0 -0.68 -0.619

C42 -2 -1 -1 -0.68 -0.619

M60 1 0 0 0 0

M61 1 1 0 -1.32 -1.298

M63 1 1 1 1.96 2.22

C60 16 0 0 0 0

C61 16 -4 0 2.08 1.7972

C63 16 4 4 2.08 1.7972

M80 1 1 1 2.20 1.91

M82 1 1 0 -2.48 -2.75

C80 -272 -34 1 -13.9808 -11.5022

C82 -272 34 0 -13.9808 -11.5022

Let y(a)
D =

(
y (a)

D1 , · · · , y (a)
DN

)
be the received sequence at the ath antenna with size of N

symbols. The oth-order HOM of y(a)
D is defined as [101]

Mop

(
y(a)

D

)
= E

{(
y(a)

D

)o−p (
y(a)

D

)p
}

, a = 1, . . . ,NA. (3.7)

The HOMs can be estimated as follows :

Mop

(
y(a)

D

)
=

1

N

N∑
n=1

(
y (a)

Dn

)o−p (
y (a)

Dn

)p
. (3.8)
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Accordingly, the second-order HOM can be expressed as

M20 = E

{(
y(a)

D

)2
}

or M21 = E

{∣∣∣y(a)
D

∣∣∣2
}

(3.9)

The oth-order HOC of the zero-mean signal y(a)
D is given by

Cop

(
y(a)

D

)
= Cum

y(a)
D , . . . ,y(a)

D︸ ︷︷ ︸
(o−p) terms

, y (a)
D , . . . , y (a)

D︸ ︷︷ ︸
(p) terms

 . (3.10)

Using the above equation (3.10), C20 and C21 are written as

C20

(
y(a)

D

)
= Cum

[
y(a)

D ,y(a)
D

]
, C21

(
y(a)

D

)
= Cum

[
y(a)

D , y (a)
D

]
. (3.11)

It is worth noting that the HOC can be derived in terms of HOMs. In fact, the oth-order

HOC is expressed as functions of equal and lower ordered HOMs as

Cum
[

y(a)
D1 , . . . ,y(a)

Do

]
=

∑
Ψ

(−1)β−1 (
β−1

)
!
∏

z∈Ψ
E

{ ∏
i∈z

y(a)
Di

}
, (3.12)

where Ψ runs through the list of all partitions of 1, . . . , o, z runs through the list of all

blocks of the partition Ψ and β denotes the cardinality of the partition Ψ.

Assuming o = 3, the available set of indices is (1, 2, 3) and four distinct types of parti-

tioning can be obtained for that set : {(1) , (2) , (3)} leading to β = 3, {(1) , (2, 3)} leading to

β = 2, {(2) , (1, 3)} leading to β = 2, {(3) , (1, 2)} leading to β = 2, {(1, 2, 3)} leading to β = 1.

Hence,

Cum
[

y(a)
D1 ,y(a)

D1 ,y(a)
D3

]
= (−1)1−1 (1−1)!E

{
y(a)

D1y(a)
D2y(a)

D3

}
+ (−1)2−1 (2−1)!E

{
y(a)

D1

}
E
{

y(a)
D2y(a)

D3

}
+ (−1)2−1 (2−1)!E

{
y(a)

D2

}
E
{

y(a)
D1y(a)

D3

}
+ (−1)2−1 (2−1)!E

{
y(a)

D3

}
E
{

y(a)
D1y(a)

D2

}
+ (−1)3−1 (3−1)!E

{
y(a)

D1

}
E
{

y(a)
D2

}
E
{

y(a)
D3

}
= E

{
y(a)

D1y(a)
D2y(a)

D3

}
−E

{
y(a)

D1

}
E
{

y(a)
D2y(a)

D3

}
−E

{
y(a)

D2

}
E
{

y(a)
D1y(a)

D3

}
−E

{
y(a)

D3

}
E
{

y(a)
D1y(a)

D2

}
+2E

{
y(a)

D1

}
E
{

y(a)
D2

}
E
{

y(a)
D3

}

(3.13)

By following the same manner, one can express the HOC up to eighth order in terms

of HOMs.
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For example, C40, C60 and C80 are defined, respectively, as

C40 = M40 −3(M20)2 , (3.14)

C60 = M60 −15M20M40 +30(M20)3 , (3.15)

C80 = M80 −35(M40)2 −630(M20)4 +420(M20)2 M40. (3.16)

In order to mitigate the effect of the increase in the cumulants’ magnitude with their

order, we raise each cumulant to the power of 2/o [102].

3.3.2 Classifiers

The modulation recognition problem can be seen as a pattern recognition problem,

where modulation schemes can be recognized through features extraction. Here, we de-

note byΘ1 =
{
Mi , i = 1, ..., µ1

}
the considered set of modulation schemes, where µ1 is the

cardinality of Θ1. Typically, classifiers include two processing steps : training and testing.

Before triggering the training step, it is recommended to select the best subset from the

combined HOM and HOC features set in order to obtain a good prediction for all sample

sets. For this, we apply the principal component analysis (PCA) technique since it can re-

duce and equalize the original dimensionality of the features set [103]. In fact, the PCA

technique builds a low-dimensional representation of data (extracted features) that des-

cribes as much of the variance in that data as possible. This technique is also known as a

"linear transformation" in which the components of data are transformed into orthogo-

nal components and then the resulting orthogonal components are ordered so that those

with the largest variation come first. This moves as much of the variance as possible into

the first few components. Thus, the remaining components are highly correlated and may

be eliminated with minimal loss of information. Therefore, the selected subset contains

the orthogonal components with the largest variance. In this study, only ten orthogonal

components (i.e., NF = 10) among twenty eight are selected for both training and testing.

After that, the training process is launched. It involves building a classifier from a training

database. After training, the test step is triggered to recognize the modulation scheme of

each unknown signal based on the classifier already built. We illustrate the modulation
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recognition of an unknown received signal in Figure 3.2.

Begin

Extraction of HOM and HOC

HOM and HOC set selection using PCA technique

TestTraining

Training
samples

End

R
ecognition

ofm
odula

tion
type

FIGURE 3.2 – Modulation recognition of an unknown received signal

In this work, we carry out a comparative study of the decision tree (J48) with the mul-

tilayer perceptron (MLP), the naive Bayes using discretization (NBD), the tree augmented

naive Bayes (TAN) and the classifiers.

In the following, we briefly describe the J48, MLP, NBD and TAN classifiers.

3.3.2.1 J48 classifier

A decision tree is a decision support tool that uses a tree graph of decisions and their

possible consequences. It is an excellent tool for helping to decide between several courses

of action. In our work, we use C4.5 decision tree. In fact, C4.5 creates a model based on a

tree structure [104]. In the tree, nodes and branches correspond to features and possible

values connecting features, respectively. A leaf that symbolizes the class, terminates a set

of nodes and branches. Thus, tracing the path of nodes and branches to the terminating

leaf leads to determining the class of an instance. J48 algorithm is an implementation of

the C4.5.
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3.3.2.2 MLP classifier

Many researchers have focused on ANN to develop high performance modulation

classifiers for various M−ary shift keying linear modulation schemes [21, 26]. Besides,

many ANN models have been developed, of which the MLP network is the most widely

used. Here, the proposed classifier is a MLP using the RPROP introduced in [105], known

by its high performance on pattern recognition problems. MLP is composed of an input

layer, one or more hidden layers and an output layer, where each neuron in a layer is

connected to all the neurons in the next layer. The addition of this hidden layer allows the

network to model the functions of complex nonlinear decision between any input and

output space. However, ANN approaches suffer from complex network structure, long

training times and low convergence speeds.

3.3.2.3 Bayesian Networks

Bayesian network is a graphical probabilistic model that includes a directed acyclic

graph of nodes and links, and a set of conditional probability tables [106]. In fact, nodes

correspond to classes or features, whereas links correspond to relationships between nodes.

The weight of each link is defined in the conditional probability tables based on the Baye-

sian theorem [107]. Here, a learner attempts to construct a classifier based on a given set

of training examples with class labels. Let E =
(

f1, f2, . . . , fNF

)
an example where fi is the

value of the feature Fi, i = 1. . .NF. Assuming that C represents the class variable (corres-

ponding to the modulation scheme). We denote by c the value that C takes and c(E) the

class of E. The Bayesian classifier represented by a Bayesian network is given by

c (E) = arg max
c∈C

(
Pr(c)Pr(E | c)

)
, (3.17)

where Pr(c) is the probability of c, and Pr(E | c) denotes the conditional probability of E

given c.

Naive Bayes using Discretization (NBD) : Naive Bayes is the simplest form of Bayesian

networks, in which only the class node directly points to all features (conditional inde-

pendence assumption).

Under this assumption, the resulting classifier is given by
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c (E) = arg max
c∈C

(
Pr(c)

NF∏
i =1

Pr
(

fi | c
))

. (3.18)

Because the continuous features have a large value range, the probability cannot be

estimated from the frequency distribution. Thus, we apply the Fayyad and Irani discreti-

zation method [108] to transform continuous features into discrete features.

Tree Augmented Naive Bayes (TAN) : TAN is an extended tree-like naive Bayes [109].

In this case, the class node directly points to all features and a feature can have only one

parent from another feature. Here, the tree is formed by calculating the maximum weight

spanning tree using the Chow-Liu algorithm [110]. Over naive Bayes, this latter algorithm

allows to efficiently find the best TAN, and hence leads to considerable improvement.

3.3.2.4 Time complexities of J48, MLP, NBD and TAN classifiers

The time complexities of J48, MLP, NBD and TAN classifiers are given in Table 3.2,

where ND is the size of the training data, NF is the number of selected features, Hn is the

number of hidden neurons and Nepochs is the number of epochs to train the training data.

TABLE 3.2 – Time complexities of J48, MLP, NBD and TAN classifiers

Classifiers Time complexities

J48 O
(
(ND ·N2

F

)
MLP O

(
Hn ·Nepochs ·ND ·NF

)
TAN O

(
ND ·N2

F

)
NBD O (ND ·NF)

3.3.3 Metric for evaluating the effectiveness of classifiers

The efficiency indicators used in the evaluation of classifiers applications are nume-

rous. However, most of them are built based on the two-class confusion matrix as shown

in Table 3.3.
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TABLE 3.3 – Two-class confusion matrix

hhhhhhhhhhhhhhhhhhActual Class
Predicted Class

Ms Mq 6=s

Ms True Positive (TP) False Negative (FN)

Mq 6=s False Positive (FP) True Negative (TN)

Note that s, q = 1, . . . ,card(Θ1) where Θ1 is the considered set of modulation schemes

and Mi is the modulation of the index i .

TP : Ms is correctly recognized,

FN : Ms is recognized as Mq 6=s ,

FP : Mq 6=s is recognized as Ms,

TN : Mq 6=s is correctly recognized.

Through Table 3.3, we can extract various accuracy measures. We summarize some of

these metrics in Table 3.4.

TABLE 3.4 – Accuracy measures derived from the two-class confusion matrix

Indicators Definition

Sensitivity TP
TP+FN

Specificity TN
TN+FP

False Positive Rate FP
TN+FP

False Negative Rate FN
TP+FN

Accuracy TP+TN
TP+TN+FP+FN

Global Error Rate FP+FN
TP+TN+FP+FN

Precision TP
TP+FP

An effective method of evaluating the recognition performance is to plot the receiver

operating characteristic (ROC) curve (sensitivity against 1-specificity) [111]. The interpre-

tation of the ROC curve for Ms modulation is shown in Figure 3.3.
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FIGURE 3.3 – Interpretation of the ROC curve for Ms modulation

By computing the area under the curve ROC (AUC) [112], we can compare multiple

classifiers. In fact, the most efficient classifier is the one that has the largest AUC.

3.4 Results and Discussion

In this section, we evaluate the performance of the proposed modulation recogni-

tion algorithm for cooperative MIMO system with NA = 4. The set of modulation schemes

is Θ1 = {2−PSK, 4−PSK, 8−PSK, 16−QAM, 64−QAM and 256−QAM}. Let the training

set contains 200 realizations of test MIMO signals with N×NA symbols for each modula-

tion type, where N is the number of symbols at each antenna. Unless otherwise mentio-

ned, N is set to 512 i.i.d. symbols, all channels are subject to Rayleigh fading and V-BLAST

is used as a spatial multiplexing technique. The test set consists of 6000 Monte Carlo trials

in total (Ntot al = 6000), i.e., 1000 Monte Carlo trials for each modulation scheme. For each

trial, NA test signals are considered where each signal consists of N i.i.d. symbols. For all

the simulations, the source messages and the channels matrices are randomly generated.

The features set is formed by calculating the combined HOM and HOC of the equalized si-

gnals (i.e., yD). Then, features subset selection was performed to implement the classifier.

Here, we use the data mining tool Weka [113] to carry out a comparative study between

J48, MLP, NBD and TAN. After training the classifier using the selected features set, the

NA destination antennas cooperate to make a better decision for each test trial i.e., each

NA test signals. In fact, the modulation that receives the majority of votes is considered

©2016 Wassim BEN CHIKHA 42



3.4. RESULTS AND DISCUSSION

the estimated modulation. In the case where no modulation has the majority number of

votes, the trial is considered to be misrecognized. Here, the average probability of correct

recognition in percentage can be expressed as

Pra =

∑
Mi∈Θ1

NMi

Ntot al
×100, (3.19)

where NMi is equal to the number of trials for which the modulation Mi ∈Θ1 is correctly

recognized. We assume that the SNRs for sub-channels SD and RD are equal (i.e., SNR =

SNRSD = SNRRD). However, the SNR for sub-channel SR (i.e., SNRSR) can be different. In

this work, we evaluate the performance of the proposed algorithm in the case where all

channels (i.e., SR RD and SD) follow Rayleigh fading with perfect CSI.

3.4.1 Performance comparison of J48 and MLP classifiers

Through intensive simulations, we show that the optimal MLP structure to be used for

the proposed algorithm is a two hidden layers network (excluding the input and output

layers), where the first layer consists of 10 nodes and the second of 15 nodes. Thus, we

compare the recognition performance of J48 classifier to this structure of the MLP classi-

fier based on the ROC curves, the probability of identification and the training time.

Figure 3.4 depicts the ROC curves for both J48 and MLP classifiers when using coope-

rative MIMO systems employing the V-BLAST technique with NA = 4, SNRSR = 30dB and

SNR = 5dB over Rayleigh fading channels. Here, it is clear that the AUC of the J48 classi-

fier is larger than that of the MLP classifier. Indeed, J48 and MLP classifiers can recognize

perfectly the 16, 64 and 256−QAM (i.e., AUC = 1). However, for {2 , 4 and 8}−PSK, by com-

paring the ROC curves of these two classifiers, we can conclude that the J48 classifier is

more efficient as it offers a better AUC.
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FIGURE 3.4 – ROC curves of J48 and MLP classifiers for each type of modulation scheme when
using cooperative MIMO systems employing the V-BLAST technique with NA = 4, SNRSR = 30dB
and SNR = 5dB over Rayleigh fading channels

To confirm these results, we show the average probability of recognition for J48 and

MLP classifiers in the case of non-cooperative and cooperative MIMO systems using V-

BLAST technique with NA = 4 over Rayleigh fading channels in Figure 3.5. As can be seen

from these results, at 95% of recognition, the J48 classifier offers an SNR gain of about

0.7dB and 2.1dB compared to the MLP classifier for the cooperative and non-cooperative

cases, respectively.

It is noteworthy that the duration of the training phases for J48 and MLP in the case of a

cooperative MIMO system forΘ1 employing the V-BLAST technique with NA = 4, SNRSR =

30dB and SNR = 5dB over Rayleigh fading channels given by the data mining tool Weka

are 0.19 and 8.59 seconds, respectively. Therefore, the J48 classifier is more adapted for

the proposed algorithm in terms of both the performance of modulation recognition and

the training time.
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FIGURE 3.5 – Performance comparison of J48 and MLP classifiers (Probability of correct recogni-
tion as a function of SNR for Θ1 when using V-BLAST technique with NA = 4 over Rayleigh fading
channels)

3.4.2 Performance comparison of J48, NBD and TAN classifiers

Figures 3.6 and 3.7 show the ROC curves for NBD and TAN classifiers compared to the

J48 classifier for a cooperative MIMO system using the V-BLAST technique with NA = 4,

SNRSR = 30dB and SNR = 5dB over Rayleigh fading channels. The AUC of each classifier

given by the data mining tool Weka is summarized in Table 3.5. By comparing the weigh-

ted average of AUC, it is clear that these three classifiers (J48, NBD and TAN) are nearly

similar in terms of modulation recognition.
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TABLE 3.5 – AUC of each classifier in the case of a cooperative MIMO system employing the V-
BLAST technique with NA = 4, SNRSR = 30dB and SNR = 5dB over Rayleigh fading channels

Classifier NBD TAN J48

2−PSK 1 1 0.999

4−PSK 0.993 0.995 0.994

8−PSK 0.991 0.994 0.992

16−QAM 1 1 1

64−QAM 1 1 1

256−QAM 1 1 1

Weighted Avg. of AUC 0.997 0.998 0.998
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FIGURE 3.8 – Performance comparison of J48, NBD and TAN classifiers (Probability of correct re-
cognition as a function of SNR for Θ1 when using V-BLAST technique with NA = 4 over Rayleigh
fading channels)

To confirm these results, we depict in Figure 3.8 the average probability of recognition

for NBD, TAN and J48 classifiers in the case of non-cooperative and cooperative MIMO
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systems using V-BLAST technique with NA = 4 over Rayleigh fading channels. As can be

seen from these results, the NBD and TAN classifiers achieve nearly similar performance

compared to the J48 classifier in cooperative and non-cooperative cases.

From Figure 3.9, it is clearly shown that the duration of the training phase for NBD,

TAN are nearly equal that of the J48. Therefore, the NBD and TAN methods are also adap-

ted for the proposed recognition algorithm in terms of both the performance of modula-

tion recognition and the training time.

FIGURE 3.9 – Time model building in the case of cooperative MIMO system for Θ1 employing V-
BLAST technique with NA = 4, SNRSR = 30dB and SNR = 5dB over Rayleigh fading channels

3.5 Conclusion

We have presented an algorithm for modulation recognition dedicated to cooperative

MIMO systems over uncorrelated channels with perfect CSI. Through the ROC curves, the

probability of correct recognition and the training period time, we carried out a compara-

tive study of the J48, MLP, NBD and TAN classifiers. Simulation results show the superio-

rity of J48 and Bayesian network classifiers to discriminate among different linear modu-

lation schemes with a reasonable training time. Consequently, J48 and Bayesian network

classifiers allow for better monitoring of the intercepted signals in broadband techno-

logies with reduced complexity. We have also shown that the effectiveness of modulation

recognition based on cooperative schemes is remarkably better than the non-cooperative

case.

Assuming uncorrelated channels is not a practical consideration. Indeed, spatial cor-

relation effects caused by insufficient spacing between antenna elements and/or the exis-

tence of scatterers in the propagation environment can influence diversity, multiplexing,

and capacity gains. Hence, the effect of spatial correlation has to be addressed for prac-
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tical cooperative MIMO systems. Additionally, the assumption of perfect CSI at all nodes

is often difficult to obtain in practical systems. In fact, errors, which are introduced by

channel estimation, reciprocity mismatch, quantization, and delay produce imperfect

CSI. Thus, modulation recognition for spatially-correlated MIMO channels with imper-

fect CSI in a cooperative context is desirable. To the best of our knowledge, no work has

yet examined the effect of imperfect CSI on modulation recognition in cooperative MIMO

systems with spatially correlated channels. So, in the next chapter, under correlated Ray-

leigh fading channels, we will address the problem of modulation recognition for coope-

rative MIMO systems in the presence of imperfect CSI.
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4.2. INTRODUCTION

4.1 Introduction

In this Chapter, under correlated Rayleigh fading channels, we address the problem of

modulation recognition for MIMO relaying broadcast channels with multi-relay nodes in

the presence of perfect CSI of the backward (source–relay) links and imperfect CSI of both

the direct (source–destination) link and the forward (relay–destination) links at the source

and the relay nodes, respectively. We also derive the expression of the ergodic capacity to

evaluate the proposed transmission system in the presence of imperfect CSI and spatial

correlation.

The remainder of this chapter is organized as follows : In Section 4.2, the system model

of a MIMO relaying broadcast channels with a direct link using a multi-relay network is

introduced. Then, we derive the ergodic capacity of the proposed transmission model un-

der imperfect CSI in the presence of spatial correlation. Section 4.3 provides a description

of the proposed modulation recognition algorithm. Section 4.4 is devoted to simulation

results, followed by a conclusion in Section 4.5.

4.2 System model and ergodic capacity

This section explains in detail the transmission system model and the derivation of

the ergodic capacity.

4.2.1 Model description

In the following subsubsection, we present the considered cooperative MIMO system.

4.2.1.1 Considered cooperative MIMO system

In this chapter, we consider a cooperative MIMO system that consists of a single source

(S) node and destination (D) node and L relay nodes (Rl, l = 1, 2, . . . , L) as shown in Figure

4.1. Let NAS, NAR and NAD denote the number of antennas at S, each Rl and D. In this trans-

mission scheme, a two-time-slot protocol is employed to transmit data from S to D via the
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direct SD link and the cooperative SRl −RlD links. For simplicity and practical considera-

tion, we assume that a non-regenerative and half-duplex relaying strategy is utilized at Rl

to process and forward the received signals [79]. When SM is applied at S, two necessary

conditions {NAD ≥ NAS, NAR ≥ NAS} must be satisfied if all Rl and D are to support all the

NAS independent substreams simultaneously. To simplify the analysis, we suppose that all

nodes have the same number of antennas, i.e., NAS = NAR = NAD = NA.

+
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FIGURE 4.1 – MIMO relaying broadcast network with source, L−relay and destination nodes using
two-time-slot protocol

At the first time slot, the source signals s are encoded using SM. Therefore, the signals

x can be written as

x =
[
s1, s2, . . . , sNA

]T , (4.1)

where s are assumed to be i.i.d., and mutually independent. Note that s satisfies the power

constraint E
{

ssH
}

= Ps
NA

INA , where Ps is defined as the transmit power at S.

Next, we employ a RZF filter at S as a linear PM since it can achieve near-capacity at

sum-rate [45]. Thus, the linear PM can be expressed as

P = ĤH
SD

(
ĤSDĤH

SD +α3INA

)−1
, (4.2)

where ĤSD ∈ CNA×NA is the estimated channel matrix of SD with a Gaussian distributed

error at the source node and α3 is calculated by the ratio of the total noise variance to

the total transmit power (i.e., α3 = NAσ
2
SD/Ps) [45]. Next, S broadcasts its NA precoded data
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streams simultaneously to all Rl and D. Then, the received signal vectors at D and each Rl,

respectively, can be written as

ySD =
[
ySD1,ySD2, . . . ,ySDNA

]T

= ρsHSDPx+nSD,
(4.3)

ySRl =
[

ySRl1,ySRl2, . . . ,ySRlNA

]T

= ρsHSRl Px+nSRl ,
(4.4)

where ρs =
√

Ps/tr
(
PPH

)
represents the source power control factor. HSD ∈ CNA×NA and

HSRl ∈CNA×NA are the complex spatial correlation matrices of the SD and SRl MIMO chan-

nels, respectively. Each nc = {
[
nc1, nc2, . . . , ncNA

]T ∼ C N
(
0, σ2

c INA

)
, c = SD, SRl}, is a vec-

tor corresponding to an additive zero-mean spatially-white circularly complex Gaussian

noise with variance σ2
c .

At the second time slot, all Rl simultaneously forward the received signal vector to D

after applying a linear BM, denoted by Fl . In fact, Fl is divided into two parts, which are

the receiving BM FRl and the transmitting BM FTl . Based on ZF-RZF [11], we model FTl

and FRl , respectively, as

FTl = ĤH
RlD

(
ĤRlDĤH

RlD
+α4INA

)−1
, (4.5)

FRl =
((

HSRl P
)H HSRl P

)−1 (
HSRl P

)H , (4.6)

where ĤRlD ∈ CNA×NA is the estimated channel matrix of RlD with a Gaussian distributed

error at the lth relay node and α4 represents the ratio of the total noise variance to the

total transmit power (i.e., α4 = NAσ
2
RD/Pr) [45]. Thus, Fl is given by

Fl = FTl FRl . (4.7)

The received signal vector at D without any time oversampling and optimum symbol ti-

ming and with perfect carrier frequency and phase estimation can be expressed as

yRD =
[

yRD1, yRD2, . . . , yRDNA

]T

=
L∑

l=1
ρrlρsHRlDFlHSRl Px+

L∑
l=1
ρrl HRlDFlnSRl +nRD,

(4.8)

where HRlD ∈CNA×NA is the complex spatial correlation matrix of the RlD MIMO channel,
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ρrl =

√
Pr/tr

(
ρ2

s Fl HSRl PPHHH
SRl

FH
l +σ2

RDFl FH
l

)
denotes the lth relay power control factor

and nRD ∼C N
(
0,σ2

RDINA

)
is a vector corresponding to the additive zero-mean spatially-

white circularly complex Gaussian noise with variance σ2
RD.

4.2.1.2 Spatial correlation model

The reasons for the spatial correlation that occurs at all nodes include insufficient an-

tenna spacing, the presence of scatterers in the propagation environment, and the an-

tenna geometry [15]. In this study, our focus is on the Kronecker model for MIMO cor-

related channels which was modeled in [15]. The channel correlation matrices HSD, HSRl

and HRlD can be written as

Hc = R1/2
Hc, RXHwc R1/2

Hc, TX, c = (SD, SRl, RlD) , (4.9)

where Hwc is a full rank gain matrix, of which the entries are i.i.d. and follow a circu-

larly symmetric complex Gaussian distribution with zero-mean and unit variance. RHc, RX

and RHc, TX represent the receiver and the transmitter correlation matrices, respectively.

To model the spatial correlation matrices, we employ the exponential correlation model

that was presented in [54, 114]. Thus, the entries of the correlation matrix R are given by

(R)pq =

 ρq−p , p ≤ q

(R)qp , p > q
,
∣∣ρ∣∣< 1, (4.10)

where ρ represents the complex correlation coefficient of neighboring transmit branches.

The two matrices RHc, RX and RHc, TX are, respectively, defined by the receive correlation

coefficients ρHc, RX and the transmit correlation coefficients ρHc, TX.

4.2.1.3 Imperfect channel estimation model

Due to large delay and reciprocity mismatch, we assume the imperfect CSI of both SD

and RlD to be complex Gaussian distributed. Thus, the imperfect SD at S and the imper-

fect RlD received at Rl can be modeled by [16]

Ĥc = Hc +ecΩc , c = (SD, RlD) , (4.11)
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where ΩSD and ΩRlD are matrices independent of HSD and HRlD, respectively, whose en-

tries are i.i.d. zero-mean circularly symmetric complex Gaussian variables with unit va-

riance. We denote by e2
SD and e2

RlD
the estimation error variances of the SD and RlD chan-

nels, respectively. It is worth noting that each relay node Rl has a perfect knowledge of HSRl

since the estimation of the backward channels can be performed based on pilot signaling

[93].

In the following, we will derive the ergodic capacity under the condition of imperfect

SD and RlD CSI at S and Rl, respectively.

4.2.2 Ergodic capacity

4.2.2.1 Instantaneous SNR of RZF Beamforming

Assuming that the channel estimation error is small (i.e., eSD ¿ 1), the linear PM P

(equation 4.2) can be approximated by using the Taylor expansion as [115]

P̃ = H†
SD

(
INA −eSDΩSDH†

SD

)(
INA −α3Hα3

SD +eSDα3Hα3
SDHe

SDHα3
SD

)
, (4.12)

where H†
SD = HH

SD

(
HSDHH

SD

)−1
, Hα3

SD =
(
HSDHH

SD+ α3INA

)−1
and He

SD = HSDΩ
H
SD +ΩSDHH

SD.

Therefore, the source power control factor becomes

ρ̃s =

√
Ps/tr

(
P̃P̃H

)
. (4.13)

By replacing equation (4.12) in (4.3) and after neglecting some small terms, the recei-

ved signal vectors ySD in the presence of imperfect CSI can be further expressed as

ySD
∼= ρ̃s

(
INA −α3Hα3

SD

)
x+eSDρ̃sα3Hα3

SDHe
SDHα3

SDx+nSD. (4.14)

From the above expression (4.14), we observe that the second term represents an additio-

nal noise caused by the channel estimation error of SD.

We denote the last two terms of equation (4.14) as

n̂SD = eSDρ̃sα3Hα3
SDHe

SDHα3
SDx+nSD, (4.15)

and we refer to it as the "effective post-processing noise". The effective transmitting ma-
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trix is given by

HSD,RZF = ρ̃s
(
INA −α3Hα3

SD

)
. (4.16)

Hence, we have

ySD
∼= HSD,RZFx+ n̂SD. (4.17)

Then, the power of the nth transmitted signal stream becomes Ps
NA

(
HSD,RZF

)2
n,n . The cova-

riance matrix of the effective post-processing noise n̂SD can then be computed as

E
{

n̂SDn̂H
SD

}
= e2

SDρ̃
2
sα

2
3

Ps
NA

Hα3
SD

[
tr

(
Hα3

SD

(
Hα3

SD

)H
)

HSDHH
SD + tr

(
HH

SDHα3
SD

(
Hα3

SD

)H HSD

)
INA

]
×(

Hα3
SD

)H +σ2
SDINA ,

(4.18)

where we used the fact that E
{
ΩHΩH}

= tr(H)INA for any H ∈ CNA×NA [115]. Thus, the ef-

fective noise power of the nth data stream is

E
{(

n̂SDn̂H
SD

)
n,n

}
= e2

SDρ̃
2
sα

2
3

Ps
NA

[
tr

(
Hα3

SD

(
Hα3

SD

)H
)∥∥∥(

Hα3
SDHSD

)
n

∥∥∥2 +
∥∥∥(

Hα3
SD

)
n

∥∥∥2

×tr
(
HH

SDHα3
SD

(
Hα3

SD

)H HSD

)]
+σ2

SD.
(4.19)

Based on equation (4.19), the postprocessing SNR per symbol of the nth stream can be

written as

γSD
n =

Ps
NA

(
HSD,RZF

)2
n,n

e2
SDρ̃

2
sα

2
3

Ps
NA

(
tr

(
Hα3

SD

(
Hα3

SD

)H
)∥∥∥(

Hα3
SDHSD

)
n

∥∥∥2 + tr
(
HH

SDHα3
SD

(
Hα3

SD

)H HSD

)∥∥∥(
Hα3

SD

)
n

∥∥∥2)+σ2
SD

(4.20)

Here, we see an additional term is added to the covariance of the effective postprocessing

noise under the condition of imperfect SD CSI compared to the perfect CSI (i.e., eSD = 0),

which is related to the transmit power Ps and the channel estimation error variance of

SD (i.e., e2
SD). We define this term as the channel-error-generated noise power (CEG-noise

power) of SD, which can be written as

(
CEG−noise power

)SD
n = e2

SDρ̃
2
sα

2
3

Ps
NA

(
tr

(
Hα3

SD

(
Hα3

SD

)H
)∥∥∥(

Hα3
SDHSD

)
n

∥∥∥2

+tr
(
HH

SDHα3
SD

(
Hα3

SD

)H HSD

)∥∥∥(
Hα3

SD

)
n

∥∥∥2)
.

(4.21)
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4.2.2.2 Instantaneous SNR of ZF-RZF Beamforming

Supposing eRlD ¿ 1, the transmitting BM FTl (equation 4.5) can be approximated by

using the Taylor expansion as

F̃Tl = H†
RlD

(
INA −eRlDΩRlDH†

RlD

)(
INA −α4Hα4

RlD
+eRlDα4Hα4

RlD
He

RlD
Hα4

RlD

)
, (4.22)

where H†
RlD

= HH
RlD

(
HRlDHH

RlD

)−1
, Hα4

RlD
=

(
HRlD ×HH

RlD
+α4INA

)−1
and He

RlD
= HRlDΩ

H
RlD

+
ΩRlDHH

RlD
. Since eSD ¿ 1, the transmitting BM FRl (equation 4.6) can be approximated by

using the Taylor expansion as

F̃Rl =
((

HSRl P̃
)H HSRl P̃

)−1 (
HSRl P̃

)H . (4.23)

Thus, the lth relay power control factor can be re-expressed as

ρ̃rl =

√
Pr/tr

(
ρ2

s F̃l HSRl P̃P̃HHH
SRl

F̃H
l +σ2

RDF̃l F̃H
l

)
, (4.24)

where F̃l = F̃Tl F̃Rl .

Substituting equations (4.22) and (4.23) into (4.8) and ignoring some small terms, the

received signal vectors yRD under imperfect CSI may be written as

yRD
∼=

L∑
l=1
ρ̃rl ρ̃s

(
INA −α4Hα4

RlD

)
x+

L∑
l=1
ρ̃rl

(
INA −α4Hα4

RlD

)
F̃Rl nSRl

+
L∑

l=1
eRlDρ̃rl ρ̃sα4Hα4

RlD
He

RlD
Hα4

RlD
x+nRD.

(4.25)

The third term in equation (4.25) represents the additional noises generated by the chan-

nel estimation error of RlD. We define the last three terms as

n̂RD =
L∑

l=1
ρ̃rl

(
INA −α4Hα4

RlD

)
F̃Rl nSRl +

L∑
l=1

eRlDρ̃rl ρ̃sα4Hα4
RlD

He
RlD

Hα4
RlD

x+nRD, (4.26)

and we refer to it as the "effective post-processing noise". The effective transmitting ma-

trix is calculated as

HRD,ZF−RZF =
L∑

l=1
ρ̃rl ρ̃s

(
INA −α4Hα4

RlD

)
. (4.27)
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Thus, we can rewrite (4.8) as

yRD
∼= HRD,RZFx+ n̂RD. (4.28)

Consequently, the power of the nth transmitted signal stream can be written as Ps
NA

(
HRD,ZF−RZF

)2
n,n .

Then, we obtain the covariance matrix of the effective post-processing noise n̂RD as fol-

lows

E
{

n̂RDn̂H
RD

}
=

L∑
l=1
ρ̃

2

rl

(
INA −α4Hα4

RlD

)
F̃Rl F̃

H
Rl

(
INA −α4Hα4

RlD

)H
σ2

SRl
+ ρ̃2

sα
2
4

Ps
NA

[ L∑
l=1

e2
RlD

Hα4
RlD

HRlD

×tr

(
Hα4

RlD

(
Hα4

RlD

)H
)

HH
RlD

(
Hα4

RlD

)H +
L∑

l=1
ρ̃2

rl
e2

RlD
Hα4

RlD
tr

(
HH

RlD
Hα4

RlD

(
Hα4

RlD

)H

×HRlD

)(
Hα4

RlD

)H
]
+σ2

RDINA .

(4.29)

Hence, the effective noise power of the nth data stream is given by

E
{(

n̂RDn̂H
RD

)
n,n

}
=

L∑
l=1
ρ̃

2

rl
σ2

SRl

∥∥∥((
INA −α4Hα4

RlD

)
F̃Rl

)
n

∥∥∥2 + ρ̃2
sα

2
4

Ps
NA

[ L∑
l=1
ρ̃2

rl
e2

RlD

×
∥∥∥(

Hα4
RlD

HRlD

)
n

∥∥∥2
tr

(
Hα4

RlD

(
Hα4

RlD

)H
)
+

L∑
l=1
ρ̃2

rl
e2

RlD

∥∥∥(
Hα4

RlD

)
n

∥∥∥2

×tr
(
HH

RlD
Hα4

RlD

(
Hα4

RlD

)H
HRlD

)]
+σ2

RD.

(4.30)

Accordingly, we obtain the following expression for postprocessing SNR per symbol of the

nth stream at D

γSR-RD
n = Ps

NA

(
HRD,ZF−RZF

)2
n,n ×

[ L∑
l=1
ρ̃

2

rl
σ2

SRl

∥∥∥((
INA −α4 ×Hα4

RlD

)
F̃Rl

)
n

∥∥∥2+ρ̃2
sα

2
4

Ps
NA

×
( L∑

l=1
ρ̃2

rl
e2

RlD

[∥∥∥(
Hα4

RlD
HRlD

)
n

∥∥∥2
tr

(
Hα4

RlD

(
Hα4

RlD

)H
)
+

∥∥∥(
Hα4

RlD

)
n

∥∥∥2

×tr
(
HH

RlD
Hα4

RlD

(
Hα4

RlD

)H
HRlD

)])
+σ2

RD

]−1
.

(4.31)

Thus, the CEG-noise power of SR−RD is

(
CEG−noise power

)SR-RD
n = ρ̃2

sα
2
4

Ps
NA

( L∑
l=1
ρ̃2

rl
e2

RlD

[∥∥∥(
Hα4

RlD
HRlD

)
n

∥∥∥2
tr

(
Hα4

RlD

(
Hα4

RlD

)H
)

+
∥∥∥(

Hα4
RlD

)
n

∥∥∥2
tr

(
HH

RlD
Hα4

RlD

(
Hα4

RlD

)H
HRlD

)])
.

(4.32)
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By adding up all the data rates on each antenna path, we obtain the ergodic capacity

expression of the SD link and SRl −RlD links, respectively, as follows.

CSD = E{HSD}

{
NA∑
n=1

log2

(
1+γSD

n

)}
, (4.33)

CSR−RD = E{
HSRl

, HRlD

}L

l=1

{
1
2

NA∑
n=1

log2

(
1+γSR-RD

n

)}
, (4.34)

where the factor 1/2 in (4.34) accounts for the fact that the same data is transmitted over

two time slots. Therefore, the ergodic capacity of the two independent channels SD and

SRl −RlD, denoted as C, can be given as

C = CSD +ζCSR−RD, (4.35)

where ζ = 1 when there is a cooperation with relay nodes and ζ = 0 otherwise.

4.3 Proposed modulation recognition algorithm

The destination receives two replicas of the data vector x ; ySD (4.3) and yRD (4.8) via SD

and SRl−RlD links, respectively. To enhance the SNR at D, these two replicas are combined

as follows

yD =
[

yD1, yD2, . . . , yDNA

]T

= ySD +yRD.
(4.36)

Thereafter, an extraction of discriminating features is applied to each signal yD in order to

implement the Bagging classifier.

4.3.1 Extraction of discriminating features

Features extraction is useful to extract features that will enable the proposed algorithm

to correctly discriminate between different modulation schemes. In this work, we use the

combination of HOM and HOC of the received signal up to order eight as features, which

is proved to be efficient in discriminating between modulation schemes in cooperative

MIMO system over uncorrelated channels with perfect CSI as shown in the above chapter.

We recall that the oth-order HOMs and HOCs of a sequence at the ath antenna with size

of N symbols (i.e., y(a)
D =

(
y (a)

D1 , · · · , y (a)
DN

)
, a = 1, . . . ,NA) are expressed in equations (3.8)
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and (3.12), respectively. Given the fact that the magnitude of cumulants increases with

their order, we raise each cumulant to the power of 2/o [102].

4.3.2 Bagging classifier

After extracting the key features, the modulation recognition problem can be viewed

as a pattern recognition problem. Here, the considered set of modulation schemes is de-

noted by Θ2 =
{
Mi , i = 1, ..., µ2

}
, where µ2 is the number of modulation schemes in Θ2.

In this study, we use the Bagging classifier, which is a “bootstrap” ensemble method that

makes decisions from multiple classifiers [116]. Knowing that Bagging classifier typically

employs two phases of processing : training and testing. Before launching the training

phase, we perform the PCA technique in order to reduce and equalize the original di-

mensionality of the features set [103]. In this work, only ten orthogonal components (i.e.,

NF = 10) among twenty eight are selected for both training and testing. In the training

phase, the Bagging classifier generates T new training subsets (i.e., TSt, t = 1, 2, · · · , T).

Each of the new subsets is built by randomly sampling training instances, with replace-

ment, from the original training data (i.e., D). Hence, some examples may be selected re-

peatedly while others may be left out. In Bagging, all new training subsets have the same

number of instances than D. Each of these subsets is used to construct one classifier em-

ploying the J48 [104] as a base classifier. Let CMt, t = 1, 2, · · · , T denote the constructed

classifiers for modulation prediction. Thus, the final decision (i.e., CMfinal) is obtained by

combining the decisions of these T classifiers using un-weighted voting. Here, to classify

an instance, denoted by i nst , a vote for a modulation scheme (i.e., Mi ), is recorded by

every classifier for which CMt(inst) = Mi . Then, the modulation scheme, which receives

the largest number of votes, is selected as a final decision (i.e., CM f i nal (inst)). It is note-

worthy that Bagging mainly enhances the recognition performance by minimizing the va-

riance error [117]. The Bagging process is illustrated in Algorithm 1 and Figure 4.2, where

the 5-th line of Algorithm 1 means that the final decision of an instance denoted, i nst , is

built from the constructed classifiers CM1,CM2, . . .CMT whose output is the class predic-

ted most often by its sub-classifiers. It worth noting that the time complexity of Bagging

using J48 as base classifier is O
(
T ·ND ·N2

F

)
, where T is the number of the generated trai-

ning subsets, ND is the size of the training data and NF is the number of selected features.

After that, the training process is launched. It involves building a classifier from a trai-
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ning database. After training, the test step is triggered to predict the modulation scheme

of each unknown signal based on the classifier already built.

Algorithm 1 Bagging algorithm using J48 classifier

Input:
D . Training Data
J48 . Base classifier
T .Number of training subsets (iterations)

1: for t = 1 to T do
2: TDt = Generate_training_subset(D)
3: CMt =J48(Dt )
4: end for

5: CM f i nal (i nst ) = argmax
Mi∈Θ2

( ∑
1

t :CMt (i nst )=Mi

)
Output: CM f i nal . Final decision

Training Data

Subset
#TD1

Training Data

Subset
#TDt

Training Data

Subset
#TDT

J48 learning 

algorithm

J48 learning 

algorithm

J48 learning 

algorithm

Classifier Classifier Classifier

Combined classifier 

using un-weighted voting

#CM1 #CMt #CMT

Predicted decision
#CMfinal

FIGURE 4.2 – Bagging process employing the J48 classifier

4.4 Simulation Results

In what follows, we present the numerical results for the ergodic capacity of the pro-

posed transmission scheme. We then compare the performance of Bagging with that of
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J48 by using the AUC. Simulations were also run to assess the probability of modulation

recognition of the proposed modulation recognition algorithm. In our simulations, we

consider MIMO systems employing the V-BLAST technique under correlated and uncor-

related Rayleigh fading channels with and without perfect CSI. Without loss of generality,

we assume that the correlation coefficients for sub-channels SD SRl, and RlD are equal

(i.e.,
∣∣ρ∣∣ =

∣∣ρHc, RX
∣∣ =

∣∣ρHc, TX
∣∣ , c = (SD, SRl, RlD)). We also assume that the variances of es-

timation error for sub-channels SD and RlD are equal (i.e., e2 = e2
SD = e2

RlD
). In all results,

we set the number of antennas at all nodes to NA = 4. Note that a spatially-white circu-

larly complex Gaussian noise with variance σ2
c , c = (SD, SRl, RD) is added at each value of

SNRc such that SNRc = 10log10

(
σ2

s

σ2
c

)
, where σ2

s is the average transmitted power. Here, we

consider that the SNRs for sub-channels SRl are equal (i.e., SNRSR = SNRSRl , l = 1, 2, . . . , L).

SNRSR must be higher in order to enhance the quality of transmission via the cooperative

link SRl −RlD. In fact, for low SNRSR, the non-cooperative system yields a better perfor-

mance compared to cooperative one [118]. In addition, we suppose that the SNRs for sub-

channels SD and RD are equal (i.e., SNR = SNRSD = SNRRD). It is worth noting that L = 0

represents the non-cooperative system (i.e., direct transmission).

4.4.1 Ergodic capacity as a function of relays number

In Figure 4.3, the ergodic capacity for cooperative MIMO systems with NA = 4, Ps =

Pr = 12dB, SNRSR = 15dB and SNR = 0dB is examined for different values of channel esti-

mation error variances (i.e., e2 = {0, 0.05 and 0.1}) and compared to the non-cooperative

case when considering uncorrelated MIMO channels (i.e.,
∣∣ρ∣∣ = 0). Here, it is clear that the

cooperative scheme offers a larger capacity gain than the non-cooperative case. In fact,

the capacity improves significantly as the number of relays (i.e., L) increases. It can also

be observed from Figure 4.3 that the ergodic capacity has a higher sensitivity to channel

estimation errors. This latter drops remarkably as e2 increases.
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FIGURE 4.3 – Ergodic capacity as a function of L (number of relays) for different e2 (variances of
channel estimation error) with NA = 4,

∣∣ρ∣∣ = 0, Ps = Pr = 12dB, SNRSR = 15dB and SNR = 0dB

The effects of different values of the Kronecker correlation coefficients (i.e.,
∣∣ρ∣∣ = {0, 0.3,

0.5, 0.6, 0.7, 0.8}) on ergodic capacities for MIMO systems with NA = 4, Ps = Pr = 12dB,

SNRSR = 15dB, SNR = 0dB and e2 = 0.1 are shown in Figure 4.4. It is observed that the er-

godic capacity deteriorates significantly with increasing correlation coefficients. Here, we

also show that the ergodic capacity improves considerably as the number of relay nodes L

increases when all channels are slightly correlated (or uncorrelated). Furthermore, it can

be seen that the capacity increases slightly with L when all channels are highly correlated

(i.e.,
∣∣ρ∣∣ −→ 1). Consequently, the aid of multiple relay nodes is proved beneficial in all

cases.
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FIGURE 4.4 – Ergodic capacity as a function of L (number of relays) for different
∣∣ρ∣∣ ( Kronecker

correlation coefficients) with NA = 4, e2 = 0.1, Ps = Pr = 12dB, SNRSR = 15dB and SNR = 0dB

In the following, the set of digital modulation types isΘ2 = {2−PSK, 4−PSK, 8−PSK,

16−QAM, 64−QAM}. For each modulation type, the training set consist of 50 realizations

of test MIMO signals with 512×NA symbols, where the source messages and the channels

matrices are randomly generated for each realization. While the test set contains 5000

Monte Carlo trials in total (i.e., Ntotal = 5000), i.e., 1000 Monte Carlo trials for each modu-

lation scheme. For each trial, NA test signals are considered where each signal consists of

512 i.i.d. symbols. For both training and test phases, the features set is formed by calcu-

lating the combined HOM and HOC of the equalized signals at each antenna (i.e., y(a)
D =(

y (a)
D1 , · · · , y (a)

DN

)
, a = 1, . . . ,NA). Then, features subset selection was performed as a pre-

paration for the classifier. After training the classifier through selected training set, the NA

receiver antennas cooperate to make a better decision for each test trial i.e., each NA test

signals. In fact, the modulation that receives the majority of votes is considered the esti-

mated modulation. In the case where no modulation has the majority number of votes,

the trial is considered to be misrecognized. Here, the average probability of correct recog-

©2016 Wassim BEN CHIKHA 64



4.4. SIMULATION RESULTS

nition in percentage is given by

Pra =

∑
Mi∈Θ2

NMi

Ntot al
×100, (4.37)

where NMi is equal to the number of trials for which the modulation Mi ∈Θ2 is correctly

recognized.

In the following, we carry out a comparative study of the Bagging with J48, TAN, NBD

and MLP classifiers using the data mining tool Weka [113]. Recall that J48, TAN, NBD and

MLP are described in subsection 3.3.2 of the above chapter. For Bagging, we find out

through intensive simulations that the optimal number of iterations is 60 (i.e., T = 60).

With this setting, Bagging gives a good tradeoff between accuracy of modulation recogni-

tion and speed of training.

4.4.2 Performance comparison of Bagging and J48 classifiers
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FIGURE 4.5 – ROC curves of Bagging and J48 methods for each type of modulation in the case of a
MIMO scheme using the V-BLAST, NA = 4, L = 1, SNRSR = 20dB, SNR = −5dB, e2 = 0.1 and

∣∣ρ∣∣ = 0.5

We provide a comparison between the Bagging and J48 classifiers through the ROC

curves as depicted in Figure 4.5. For our comparison, we consider a cooperative MIMO

©2016 Wassim BEN CHIKHA 65



4.4. SIMULATION RESULTS

system using the V-BLAST technique with NA = 4, L = 1, SNRSR = 20dB, SNR = −5dB and

e2 = 0.1 when assuming moderately correlated MIMO channels (i.e.,
∣∣ρ∣∣ = 0.5). The AUC of

each recognition method given by the data mining tool Weka is summarized in Table 4.1.

By comparing the weighted average of AUC, it is clearly seen that the Bagging classifier

outperforms the J48 classifier in terms of modulation recognition.

TABLE 4.1 – AUC of each recognition method (in the case of V-BLAST MIMO scheme with NA = 4,
L = 1, SNRSR = 20dB, SNR = −5dB, e2 = 0.1 and

∣∣ρ∣∣ = 0.5)

Classifier Bagging J48

2-PSK 1 0.997

4-PSK 0.999 0.963

8-PSK 1 0.963

16-QAM 0.999 0.994

64-QAM 1 0.994

Weighted Avg. of AUC 0.999 0.982

As can be seen from Table 4.2, the duration of the training phase for the Bagging clas-

sifier is greater than that for the J48. Hence, the Bagging classifier provides a compromise

between recognition performance and convergence speed in the proposed algorithm.

TABLE 4.2 – Time model building (in the case of MIMO scheme using V-BLAST with NA = 4, L = 1,
SNRSR = 20dB, SNR = −5dB, e2 = 0.1 and

∣∣ρ∣∣ = 0.5)

Classifier Time taken to build model (seconds)

Bagging 1.53

J48 0.13

To confirm the efficiency of the Bagging, we plot in Figure 4.6 the probability of re-

cognition for Bagging and J48 methods in the case of a cooperative MIMO system using

the V-BLAST technique with NA = 4 and L = 1. The performance of the non-cooperative

system is further provided as a benchmark. We observe from these results that the Bag-

ging classifier provides a performance improvement with respect to the J48 classifier in
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both cooperative and non-cooperative cases for all SNRs. For instance, Bagging provides

SNR gain of about 1.4dB with respect to the J48 classifier in the non-cooperative case

with e2 = 0.1 and
∣∣ρ∣∣ = 0.5. Moreover, the probability of recognition attains about 97.5% for

the Bagging classifier and 96.5% for the J48 classifier in the case where L = 0, e2 = 0.1 and∣∣ρ∣∣ = 0.5. On the same figure, it is also observed that the recognition performance has a

higher sensitivity to channel estimation errors and correlation. Indeed, the probability of

recognition is degraded and will not exceed an upper bound even for very large values of

SNR contrary to the case of perfectly uncorrelated channels (i.e., e2 = 0 and
∣∣ρ∣∣ = 0). Thus,

this upper bound may pose a serious problem in practical applications. In order to solve

this problem, we first propose to investigate the recognition performance with the aid of

one relay node. From the same figure, it is clearly shown that this cooperation offers a

large gain as compared with the non-cooperative case. In fact, the probability of recogni-

tion reaches about 99% for cooperative scheme with L = 1 and 97.5% for non-cooperative

scheme in the case of imperfectly correlated channels (i.e., e2 = 0.1 and
∣∣ρ∣∣ = 0.5) using

Bagging classifier.
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FIGURE 4.6 – Probability of recognition as a function of SNR for Θ2 in a MIMO schemes using the
V-BLAST with NA = 4 and SNRSR = 20dB for Bagging and J48 classifiers
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4.4.3 Performance comparison of Bagging, TAN, NBD and MLP classi-

fiers

Figure 4.7 illustrates the probability of recognition for the Bagging, TAN, NBD and

MLP methods in the case of a MIMO system using the V-BLAST technique with NA = 4,

e2 = 0.1,
∣∣ρ∣∣ = 0.5 and SNRSR = 20dB. Here, we use the MLP with two hidden layers net-

work (excluding the input and output layers), where the first layer consists of 10 nodes

and the second of 15 nodes as in the above chapter. As shown from these results, the Bag-

ging classifier also outperforms the TAN, the NBD and the MLP classifiers in terms of the

probability of recognition in the cooperative (L = 1) and the non-cooperative cases (L = 0).
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FIGURE 4.7 – Probability of recognition as a function of SNR for Θ2 in MIMO schemes using V-
BLAST with NA = 4, e2 = 0.1,

∣∣ρ∣∣ = 0.5 and SNRSR = 20dB for Bagging, TAN, NBD and MLP classifiers

Despite the improvement due to the use of one relay node, the performance of re-

cognition will not reach 100% even at higher SNR. Dealing with this issue, we propose

employing multiple relay nodes in MIMO systems in order to further assess the effect of

increasing diversity gain.
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4.4.4 Probability of modulation recognition as a function of relays num-

ber

Figure 4.8 examines the effect of increasing the number of relay nodes (i.e., L) on

the recognition performance of the proposed algorithm compared to the ZF-DMI algo-

rithm [26] under the same configuration i.e., V-BLAST MIMO systems with NA = 4, e2 = 0.1

and
∣∣ρ∣∣ = 0.5 employing the Bagging classifier. As observed, a remarkable improvement in

the modulation recognition performance results from increasing L. These results exactly

match those of ergodic capacities. It can also be shown from this figure that the coope-

rative schemes realized an important gain compared to both the non-cooperative one

(L = 0) and the ZF-DMI algorithm. In fact, the probability of recognition for the coope-

rative scheme can reach about 100% from a certain relay number (i.e., L = 3) while the

non-cooperative scheme and ZF-DMI algorithm not exceed 97.5% and 93% of recogni-

tion, respectively. Therefore, the cooperative MIMO system can remove the effect of the

imperfect CSI and the correlation thanks to the cooperation of multi-relay nodes with the

source node.
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FIGURE 4.8 – Probability of recognition as a function of SNR for the proposed algorithm with dif-
ferent L (number of relay nodes) compared to the ZF-DMI algorithm [26] in MIMO schemes em-
ploying V-BLAST with NA = 4, SNRSR = 20dB, e2 = 0.1 and

∣∣ρ∣∣ = 0.5 using the Bagging classifier
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4.5 Conclusion

In an effort to improve modulation recognition, we have proposed an algorithm desi-

gned for spatially-correlated MIMO relaying broadcast channels using multi-relay nodes

with a direct link under imperfect CSI. This algorithm is based on combining HOM and

HOC as features extraction subsystem and Bagging as a classifier subsystem. In order to

quantify the effect of imperfect CSI and spatial correlation for the proposed transmission

system, we have derived the ergodic capacity. For reasonable channel estimation error

values and Kronecker correlation coefficients, the capacity increases with the number of

relays. Through the probability of modulation recognition, we executed a comparative

study of the Bagging classifier and the J48, TAN, NBD and MLP classifiers. We demonstra-

ted that the Bagging classifier is more efficient than J48, TAN, NBD and MLP at discrimi-

nating between different linear modulation schemes. We have also shown that its effec-

tiveness in discriminating between different linear modulation schemes, which is based

on cooperative schemes, is significantly better than in the non-cooperative case. In the

presence of spatially correlated channels and imperfect CSI, we have also shown that mo-

dulation recognition is improved by increasing the number of relay nodes. Consequently,

the recognition performance degradation caused by both spatially correlated channels

and channel estimation errors can be removed by means of a relaying scheme.
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Chapter 5
Recognition of superposed modulations

for two way relay MIMO systems with

PLNC
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5.2. INTRODUCTION

5.1 Introduction

In TWRC, the two sources can diversify the modulation schemes for each transmission

depending on the application requirements. Thus, each source requires the recognition

of the modulation used by the other source to ensure correct data reception at the des-

tinations. To solve the problem of the recognition of sources modulations for a two-way

MIMO relay channel with PLNC, we propose in this chapter an algorithm for the recogni-

tion of superposed modulations.

The rest of this Chapter is organized as follows : Section 5.2 presents the proposed al-

gorithm using HOMs and HOCs as a features extraction where the genetic algorithm and

information theory (GA&IT) is employed as a features selection method and the Random

Forests machine learning method as a classifier. Simulation results are discussed in Sec-

tion 5.3. Section 5.4 concludes this chapter.

5.2 Proposed modulation recognition algorithm

5.2.1 Motivation

In the TWRC with PLNC, the two users’ symbols are physically superposed by consu-

ming only one time-slot in the multiple access phase. Let a1 and a2 denotes respectively

the transmitting antennas in the sources S1 and S2 and let x1a1,t and x2a2,t be the two

transmitted symbols at time instant t from the sources S1 and S2 using modulations of

orders M1 and M2, respectively. The superposition of the two modulations leads to a one

of an order which is upper bounded by M1M2. For instance, the superposition of a BPSK

and a 16-QAM produces a constellation including 32 different points, as shown in Figure

5.2. We note that in the case of similar modulations of order M, the number of superposed

symbols in the superposed constellation, can be lower than M2. This is due to the fact that

several superposed symbols result from different scenarios of source symbols superposi-

tion. An example is illustrated in Table 5.1, where only 7 network-coded symbols denoted

by x⊕ emerge from two 4-ASK. It is seen that the symbol x⊕ = 3A is the superposition result

of four distinct symbol pairs from S1 and S2 (00⊕11,01⊕10,10⊕01and11⊕00), where A is
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a constant with respect to the power normalization. It is worth noting that, in addition to

the considerable increase in constellation size with an irregular spatial arrangement, the

superposition of the useful symbols with the additional noise will disperse the constel-

lation points from their original locations. Given the fact that there is no previous work,

which addressed the problem of superposed modulations recognition, hence proposing

an algorithm for recognition the sources modulations is a serious challenge.

FIGURE 5.1 – Constellations : BPSK signal, 16-QAM signal and superposed BPSK and 16-QAM si-
gnal

TABLE 5.1 – Superposition of two 4-ASK signals at the relay node and the corresponding mapped
bits using XOR operation

4-ASK 4-ASK XOR x⊕ 4-ASK 4-ASK XOR x⊕
00 00 00 0 10 00 10 2A
00 01 01 A 10 01 11 3A
00 10 10 2A 10 10 00 4A
00 11 11 3A 10 11 01 5A
01 00 01 A 11 00 11 3A
01 01 00 2A 11 01 10 4A
01 10 11 3A 11 10 01 5A
01 11 10 4A 11 11 00 6A
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5.2.2 Considered two-way MIMO relay channels

First time slot

Second time slot

Relay
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2

1 NAR

Source #1

P
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1 NAS

Source #2

P
2

x
2

1 NAS

HRS1
HRS2

FIGURE 5.2 – Two-way MIMO relay channels

In the proposed transmission scheme, we consider a TWRC with MIMO wherein two

transmitting source nodes S1 and S2 exchange information with the help of a relay node

R, as depicted in Figure 5.2. In our transmission model, we assume that the direct link

transmissions between the source nodes are not considered. Let NAS and NAR denote the

number of antennas at each source node and the relay node, respectively.

In the first time slot, a ZF technique is applied at S1 and S2 to both data vectors x1 =(
x11, . . . , x1NAS

)
and x2 =

(
x21, . . . , x2NAS

)
in form of a multiplication with a precoding matrix.

Under the assumption of a frequency flat and time invariant MIMO channel, the preco-

ding matrix of ZF at the source Si , denoted by Pi , is expressed as

Pu = HH
Su R

(
HSu RHH

Su R

)−1
, (5.1)

where HSu R ∈ CNAR×NAS is the full rank gain matrices of the Su−R channel, u = 1,2. The

entries of HSu R,u = 1,2, follow a circularly symmetric complex Gaussian distribution with

zero-mean and unit variance. Thereafter, both source nodes transmit the precoded data

streams simultaneously to the relay node. The received superposed signal is denoted by

yR = (y (1)
R , . . . , y (NAR)

R )T and is given by

yR =
√

PS1RHS1RP1x1 +
√

PS2RHS2RP2x2 +nR, (5.2)

where PS1R and PS2R are the received signal powers at the relay nodes from the sources S1
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and S2, respectively, and nR is the additive zero-mean spatially-white circularly complex

Gaussian noise with variances σ2
n .

For the sake of realistic modeling, the distances between nodes have to be considered.

Therefore, let dTXRX denote the geometrical distance between a transmitter node TX and a

receiver node RX. The path loss between these two nodes can be modeled by [119]

gTXRX =
κ

dδ
TXRX

, (5.3)

where κ is a constant that depends on the carrier wavelength and the environment, and δ

is the path-loss exponent with values typically in the range 2 ≤ δ≤ 6. Assume that the two

source nodes transmit with the same power PS = PS1 = PS2 . For the sake of fair comparison

with the one-hop communication, let PSS’ = PS1S2 = PS2S1 be the received signal power at

the end-node of the direct link as if the direct signal between the two source nodes were

present. PSS’ is considered as the reference signal power. Thus, the received signal power

PSu R at the relay node from the source node Su can be expressed as follows :

PSu R =
κ

dδ
Su R

PS =

(
dS1S2

dSu R

)δ
PSS’, (5.4)

where dS1S2 is the distance between the sources S1 and S2, and dSu R is the distance bet-

ween the source Su ,u = 1,2 and R. The quotient
(
dS1S2 /dSu R

)δ is referred to as the power

gain of the Su −R link with respect to the reference signal power PSS’ and is denoted by

GSu R, u = 1,2. According to the normalized fading coefficients, the average SNRs of the

Su −R link is given by

γ̄Su R =
PSu R

σ2
n

= GSu R
PSS’

σ2
n

,u = 1,2. (5.5)

Up to now, PSS’/σ
2
n is referred to as reference SNR and is denoted by γ̄.

In the second transmission phase, the relay node broadcasts the superposed physical

layer network-coded signal to both sources with an additional overhead referring to the

estimated sources modulations pair. A necessary condition to provide correct data recep-

tion at the destinations is the perfect recognition of the sources modulations types and

orders. Accordingly, the relay node R must recognize the sources modulations from the
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received superposed signal yR,t . At this stage, an algorithm for recognition the sources

modulations must take place.

In the following, we present the proposed algorithm as illustrated in Figure 5.5. The

discriminating features from the received signal yR,t are firstly extracted and then an ap-

propriate features set is selected. Thereafter, the modulation recognition is carried out by

employing the random forests classifier (RFC).

receive
d

Fsignal
ExtractionFofFHOMFandFHOC

HOMFandFHOCFsetFselectionFF
usingFGA&IT

Begin

End

TrainingF
samples

Training Recognition

RFC

R
ecognitionFofF

sourcesFm
odulatio

ns

  

FIGURE 5.3 – Processes diagram of sources modulations recognition algorithm for an unknown
received signal

5.2.3 Extraction of discriminating features

Features extraction is an essential step in modulation recognition algorithms. It is im-

portant to extract appropriate features that enable the algorithm to correctly recognize

the sources modulations from the superposed constellation. The HOMs and the HOCs of

a received signal have the capability to distinguish between linear modulation schemes as

can be seen in the above chapters (3 and 4). Accordingly, we propose an algorithm suitable

for superposed modulations recognition using HOMs and HOCs statistics. Here, we em-

ploy these statistics up to order eight. It is noteworthy that the oth-order HOM and HOC
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of a sequence at the ath antenna with size of N symbols (i.e., y(a)
R =

(
y (a)

R1 , · · · , y (a)
RN

)
, a =

1, . . . ,NAR) can be computed using equations (3.8) and (3.12), respectively. Given the fact

that the magnitude of cumulants increases with their order, we raise each cumulant to the

power of 2/o [102].

In order to improve the accuracy of the proposed algorithm with low computational

cost, features selection algorithm can be used as features filter. Here, we select an optimal

features set based on a genetic algorithm and information theory (GA&IT) [120]. Through

intensive simulations, we have observed that selecting more than five features (NF = 5)

among thirty-one features, which are involved in the implementation of the Random Fo-

rests classifier, does not improve the recognition performance.

5.2.4 Random forests classifier

It is well known, that the well functioning of the RFC on various recognition problems

is provided thanks to the bootstrap nature and the random features selection [121]. In

this study, we use RFC to recognize sources modulations from the superposed constella-

tion based on the selected features. RFC is an ensemble learning technique that is based

on the combination of a set of unpruned random decision trees. Typically, RFC includes

two processing steps : a training step and a recognition step. In the training step, RFC

builds multiple classification and regression tree (CART)-like classifiers [122], in which

each tree is trained on a bootstrapped sample of the original training samples, where the

algorithm only searches across a random subset of the features to find out a split at each

node in each CART tree. In the recognition step, each tree in the RFC gives a unit vote

for the most popular modulation pairs. Then, the modulation pairs receiving the biggest

number of votes from the trees are the predicted sources modulations. RFC requires a

complexity of O
(
Ntr ees ·NRFC ·ND · log2 (ND)

)
, where Ntr ees is the number of trees to grow,

NRFC =
⌊

log2 (NF)+1
⌋

represents the number of random features to be considered at each

node, and ND denotes the number of samples in the training data set.
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5.3 Simulation results

5.3.1 Simulation setup

Computer simulations are carried out to highlight the benefits of the proposed mo-

dulation recognition algorithm. In this work, different combinations of modulation pairs

from the ASK, QAM and PSK modulations are chosen to build the following three sets :

v Θ3 ={(2−PSK, 2−PSK), (2−PSK, 4−PSK), (2−PSK, 16−QAM), (2−PSK, 64−QAM), (4−PSK,

4−PSK), (4−PSK, 16−QAM), (4−PSK, 64−QAM), (16−QAM, 16−QAM), (16−QAM,

64−QAM), (64−QAM, 64−QAM)}

v Θ4 ={(2−PSK, 2−PSK), (2−PSK, 4−PSK), (2−PSK, 4−ASK), (2−PSK, 8−ASK), (4−PSK,

4−PSK), (4−PSK, 4−ASK), (4−PSK, 8−ASK), (4−ASK, 4−ASK), (4−ASK, 8−ASK), (8−ASK,

8−ASK)}

v Θ5 ={(4−ASK, 4−ASK), (4−ASK, 8−ASK), (4−ASK, 16−QAM), (4−ASK, 64−QAM), (8−ASK,

8−ASK), (8−ASK, 16−QAM), (8−ASK, 64−QAM), (16−QAM, 16−QAM), (16−QAM,

64−QAM), (64−QAM, 64−QAM)}

We note thatΘ3 includes modulations pairs from PSK and QAM modulations,Θ4 includes

modulations pairs from PSK and ASK modulations, and Θ5 includes modulations pairs

from ASK and QAM modulations. For each superposed pair of modulations in

Thet ad , d = 3, 4, 5, the training set consists of 200 test signals realizations, where the

source messages x1 and x2 of S1 and S2 are randomly generated for each realization. In

this work, the different channels are subject to flat fading, where perfect transmitter-side

CSI is assumed. The test set contains 1000 Monte Carlo trials for each superposed pair

of modulations, hence Ntot al = 10×1000 = 10000 Monte Carlo trials results as each mo-

dulation set includes 10 modulation schemes. For each trial, NAS test signals are consi-

dered. Unless otherwise mentioned, the number of symbols at each antenna consists of

N = 10000 symbols, the number of antennas are NAS = NAR = 4 and the path loss mo-

del is a free-space with δ = 2. For both training and classification steps, the features set

is formed by calculating the HOMs and HOCs of the equalized signals at each antenna

(i.e., y(a)
R =

(
y (a)

R1 , · · · , y (a)
RN

)
a = 1, . . . ,NAR). Then, the features subset selection based

on GA&IT was performed and the five best features are selected as a preparation for the

RFC. Here, we use RFC with the default configuration of the data mining tool Weka (i.e.,
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Ntr ees = 100 and NRFC = 3) [113]. With this setting, we find out that RFC gives a good tra-

deoff between accuracy of modulation recognition and speed of training. We note that

the performance results presented in the following are given with respect to the above

defined γ̄.

The average probability of correct recognition in percentage can be computed as

Pr a =

∑
Mi∈Θd

NMi

Ntot al
×100, (5.6)

where NMi is equal to the number of trials for which the modulation Mi ∈Θd , d = 3, 4, 5

is correctly recognized.

In this work, we use V-BLAST as a spatial multiplexing technique. It is worth noting

that all the NAR antennas cooperate to make a better decision for each test trial. In fact,

the modulation pair that receives the majority of votes is considered to be the estimated

modulation pair. In the case where no modulation has the majority number of votes, the

trial is considered as misrecognized.

5.3.2 Effect of the relay position

The proposed transmission model incorporates the relay position as shown in equa-

tion (5.4). In the sequel, all distances involved in the calculation of the power gain in

equation (5.4) are relative to the distance between the two sources S1 and S2, i.e., dS1S2

is assumed to be unity and dS1R +dS2R = 1.

Figure 5.4 shows Pr a of the proposed algorithm as a function of γ̄ at different relay

positions for Θ3. It can be seen that the best performance in terms of probability of cor-

rect recognition is obtained when the relay is located at the middle point between the two

sources. For instance, Pr a achieves an excellent performance (Pr a ' 100%) at dS1R = 0.5,

while it reaches only 87% at dS1R = 0.1 for γ̄ = 3dB. The finding reveals that the propo-

sed algorithm can achieve a good performance (Pr a ' 100%) at all relay positions and for

acceptable SNR (γ̄ = 8dB).
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FIGURE 5.4 – The effect of the distance between S1 and R, dS1R, on the average probability of correct
recognition, Pr a , for Θ3, NAS = NAR = 4, N = 10000, δ = 2 and dS1S2 = dS1R +dS2R = 1

5.3.3 Effect of the modulation types

Figure 5.5 illustrates the effect of modulation types,Θd , d = 3, 4, 5, on the average pro-

bability of correct recognition, Pr a , in the case when dS1R = dS2R = 0.5. As can be observed

from these results, the proposed algorithm provides almost ideal modulation recognition

for the different modulation sets at acceptable SNRs. Besides, we note that the modula-

tion set Θ4 is the best recognized one by the proposed algorithm. This can be explained

by the fact that the modulation orders inΘ4 are lower than those inΘ3 andΘ5.

Additionally, and in order to prove the effectiveness of the RFC, we compare its perfor-

mance to that of the Bagging classifier. In Chapter 4, we have shown that the Bagging clas-

sifier leads to better performance compared to several other classifiers, such as J48, NBD,

TAN and MLP, for the price of training time. Simulation results employing the Bagging

classifier are carried out. We note that the training subset number of Bagging using J48 as

a base classifier is set to T = 60 as in Chapter 4. The findings in Figure 5.7 and Table 5.2

reveal that the RFC achieves nearly similar performance compared to the Bagging classi-

fier. In addition, Table 5.3 shows that the time required for the RFC training phase is lower

than that required for the Bagging classifier. This confirms the adequacy of the RFC in
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terms of recognition performance and training time.

0 1 2 3 4 5 6 7 8 9 10
20

30

40

50

60

70

80

90

100

γ̄ (dB)

P
ra

 (
%

)

 

 

RFC, Θ
4

Bagging, Θ
4

RF, Θ
3

Bagging, Θ
3

RFC, Θ
5

Bagging, Θ
5

FIGURE 5.5 – The effect of the modulation schemes, Θd ,d = 3, 4, 5, on the average probability of
correct recognition, Pr a , for RFC and Bagging classifiers using NAS = NAR = 4, N = 10000, δ = 2 and
dS1R = dS2R = 0.5

TABLE 5.2 – AUC of each classifier for Θ4 with NAS = NAR = 4, N = 10000, δ = 2, dS1R = dS2R = 0.5 and
γ̄ = 3 dB

hhhhhhhhhhhhhhhhhhModulation pair
Classifier

RFC Bagging

4-ASK, 4-ASK 0.959 0.958
4-ASK, 8-ASK 0.962 0.957
4-ASK, BPSK 0.958 0.958
4-ASK, QPSK 0.959 0.958
8-ASK, 8-ASK 0.96 0.957
8-ASK, BPSK 0.958 0.958
8-ASK, QPSK 0.958 0.958
BPSK, BPSK 0.958 0.958
BPSK, QPSK 0.958 0.958
QPSK, QPSK 0.958 0.958

Weighted Average of AUC 0.959 0.958
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TABLE 5.3 – Time model building for Θ4 with NAS = NAR = 4, N = 10000, δ = 2, dS1R = dS2R = 0.5 and
γ̄ = 3 dB

Classifier Time taken to build model (seconds)

RFC 5.08
Bagging 7.09

5.3.4 Effect of the antennas number

Figure 5.6 presents Pr a of the proposed algorithm as a function of γ̄, forΘ3 and dS1R =

dS2R = 0.5. It is clearly seen that increasing the number of antennas leads to an impro-

vement in the recognition performance. For instance, a good performance (Pr a ' 100%)

is obtained at γ̄ = 2dB for NAS = NAR = 8, whereas a similar performance is obtained at

γ̄ = 3dB for NAS = NAR = 4.
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FIGURE 5.6 – The effect of the number of antennas, NAS and NAR, on the average probability of
correct recognition, Pr a , for Θ3, N = 10000, δ = 2 and dS1R = dS2R = 0.5

5.3.5 Effect of the symbols number

Figure 5.7 shows Pr a of the proposed algorithm as a function of γ̄, at various values of

symbols number N, for Θ3 and dS1R = dS2R = 0.5. It is apparent that an important gain can
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be achieved when increasing N. This result reflects the improvement in the HOMs esti-

mation accuracy when increasing N in equation (3.8). Even though, we observe a certain

saturation up to a number of 20000 symbols.
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FIGURE 5.7 – The effect of the number of symbols, N, on the average probability of correct recog-
nition, Pr a , for Θ3, NAS = NAR = 4 , δ = 2 and dS1R = dS2R = 0.5

5.3.6 Effect of the path loss exponent

Figure 5.8 illustrates Pr a of the proposed algorithm plotted as a function of γ̄, for seve-

ral values of δ, using Θ3 and dS1R = dS2R = 0.5. A significant improvement in Pr a is noticed

when increasing δ. This behavior is due to the fact that the SNR at the relay increases when

increasing the path loss exponent for the same reference γ̄ as given in equation (5.4).
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FIGURE 5.8 – The effect of the path loss exponent, δ, on the average probability of correct recogni-
tion, Pr a , for Θ3, NAS = NAR = 4, N = 10000, and dS1R = dS2R = 0.5

5.4 Conclusion

In this chapter, we have proposed an algorithm for recognizing superposed modula-

tions designed for two-way relaying MIMO systems with PLNC. This algorithm extracts

the HOMs and the HOCs as features from the superposed received signals at the relay

node. The features selection is done to select the best ones using GA&IT. For the purpose

of recognition, the Random Forests machine learning method was used. Different simula-

tions were carried out to assess the efficiency of the proposed algorithm in an acceptable

SNR range.
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Chapter 6
General conclusion and Future Works
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Cooperative MIMO communications are considered among the most promising tech-

nologies in wireless telecommunication systems. The research work presented in this the-

sis has covered many important issues in modulation recognition for cooperative MIMO

communications. The contributions of this thesis present a good starting point for fur-

ther research. In this concluding chapter, all the key findings discussed in each Chapter

are summarized and possible near-future work and perspectives are suggested.

6.1 Summary of results

In Chapter 3, we have presented a modulation recognition algorithm suitable for co-

operative MIMO networks over uncorrelated channels with perfect CSI. It is based on a

pattern recognition approach. For this purpose, the proposed modulation recognition al-

gorithm is composed of two subsystems. The first subsystem concerns the features extrac-

tion whose role is to select the best subset of HOS using the PCA technique. The second

subsystem is called the classifier, and its function is to recognize the modulation scheme.

From the ROC curves, the probability of recognition and the learning period time, we have

executed a comparative study of the J48 classifier, MLP classifier and the Bayesian net-

work classifiers. We demonstrated that the J48 classifier and the Bayesian network clas-

sifiers have acceptable performance to discriminate among different linear modulation
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types with a reasonable training time. Therefore, the J48 classifier and the Bayesian net-

work classifiers can be applied for recognition modulation and hence achieve better mo-

nitoring of intercepted signals in broadband technologies with low complexity. We have

also shown that the cooperative schemes can offer an important gain in modulation re-

cognition compared to the non-cooperative case.

Assuming uncorrelated channels with perfect CSI in cooperative MIMO systems is not

always a practical assumption. In fact, diversity, multiplexing and capacity gains can be

directly influenced by spatial correlation effects due to insufficient spacing between an-

tenna elements and/or poor scattering. In addition, an imperfect CSI may arise because

of errors introduced by channel estimation, reciprocity mismatch, quantization, and de-

lay. For these reasons, in Chapter 4 we addressed the problem of modulation recognition

for cooperative MIMO systems over spatially-correlated channels with imperfect CSI. The

spatial correlation channels are modeled according to the well-known Kronecker model

and the imperfect CSI is modeled by a complex Gaussian distribution. We first derived

the expression for the ergodic capacity to assess the performance of the proposed trans-

mission system with imperfect CSI in the presence of spatial correlation. Thereafter, we

investigate the performance of modulation recognition based on a pattern recognition

approach using HOS as a features extraction and the Bagging as a classifier. The robust-

ness of the Bagging classifier is demonstrated through a comparative study with the J48,

TAN, NBD and MLP classifiers. We also evaluate the modulation recognition gain for the

cooperative MIMO scheme relative to the non-cooperative one under spatially correla-

ted channels and in the presence of imperfect CSI. In order to compensate for the per-

formance degradation induced by both the spatial correlation and the imperfect CSI, we

evaluated the effect of increasing the number of relay nodes for the modulation recog-

nition. Simulation results showed that the recognition performance degradation caused

by both spatially correlated channels and channel estimation errors can be removed by

means of a relaying scheme.

In TWRC, the two source nodes (S1 and S2) can vary the modulation scheme and the

modulation order for each transmission depending on applications according to its re-

quirement. Consequently, S1 (S2) requires the recognition of the type and the order of

the modulation used by S2 (S1) in order to demodulate the received signal. A necessary

requirement for guaranteeing correct data reception at the destinations is the perfect re-
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cognition of the sources modulations schemes and orders. To this end, in Chapter 5, we

solved the problem of recognizing sources modulations for a two-way MIMO relay chan-

nel with PLNC. In the proposed algorithm, we use HOS-based features where the GA&IT

is employed as a method of features selection and the Random Forests machine learning

method as a classifier. For the sake of realistic modeling, we incorporated different relay

positions. Simulation results showed that the proposed algorithm achieves a high recog-

nition performance in an acceptable SNR range at different relay positions.

6.2 Future works

Beyond the contributions presented in this thesis, several possible research paths can

be explored in future work. We shall list some of them below :

v The proposed algorithms in this thesis speculate that the radio-frequency (RF) ope-

rations are previously performed at the reception. Their performance degrades in

the presence of estimation error in the RF parameters (carrier frequency, symbol

time and sampling time). One improvement would be to design robust algorithms

to handle these estimation errors.

v Our study considers the case of communications without frequency multiplexing.

The modulation recognition for cooperative MIMO systems using frequency multi-

plexing in a multi-user environment is a challenge to be faced in future work.

v We addressed in our work the case of frequency non-selective channels degraded by

additive Gaussian noise. We think it would be of great interest to develop algorithms

of modulation recognition in the most difficult context of frequency-selective chan-

nels in conjunction with the orthogonal frequency division multiplexing (OFDM)

system.

v Finally, it would be really interesting to propose robust algorithms for the recogni-

tion of other communication parameters dedicated to cooperative MIMO systems,

such as the type of coding and the number of the transmitter antennas.
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