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Abstract

Collective Movement in Dictyostelium discoideum and Other Species. Mod-
eling, Analysis and Simulations.

This thesis is concerned with the modeling of collective cell movement and the analysis
of spreading phenomena arising in these models.

The starting point of the thesis is the mathematical modeling of an experiment, where
a colony of Dictyostelium discoideum is able to escape hypoxia through a remarkable
collective behavior. It is shown that oxygen consumption leads to self-generated oxygen
gradients, which serve as directional cues and trigger a collective movement towards higher
oxygen regions. This movement is sustained over large scales by the perpetual consumption
of oxygen by the cells. Through an elementary PDE model, the so-called Go or Grow
model, we show that the combination of cell division and aerotaxis plays a key role in
this collective behavior. In particular, this approach leads to an explicit formula for the
propagation speed.

We carry out a thorough mathematical analysis of the Go or Grow model, including a
result of existence and uniqueness locally in time of the model, an analysis of the inside dy-
namics of the propagating population, as well as a weak characterization of the asymptotic
spreading behavior.

Following the aforementioned investigation, we address the question under which cir-
cumstance a cell population may propagate, by generating their own signaling gradients.
We do a survey on existing results in the literature and discuss various modeling scenarios,
which lead to this type of propagation phenomena.

Then, we propose an approach to design well-balanced numerical schemes for traveling
waves in kinetic and parabolic models. The approach combines an estimate of the instan-
taneous spreading speed with techniques taken from the literature to design well-balanced
schemes.

Finally, we study a stochastic individual-based Go or Grow model, which is based on
a simple Go or Grow rule. We conjecture the large population limit, which can be seen
as an alternative Go or Grow model, and investigate numerically the ancestral lineages of
particles. This leads to an alternative viewpoint on the inside dynamics. The alternative
Go or Grow model is analyzed and we give preliminary results estimating the asymptotic
behavior of the spreading.

Keywords: Mathematical Biology, Chemotaxis, Modeling, Propagation Phenomena,
Parabolic Equations, Kinetic Equations, Well-Balanced Schemes, Stochastic Processes.



Résumé

Cette thèse s’inscrit dans le domaine de la modélisation du mouvement cellulaire col-
lectif et de l’analyse de phénomènes de propagation dans ces modèles.

Le point de départ de cette thèse est la modélisation mathématique d’une expérience,
où une colonie de Dictyostelium discoideum parvient à échapper l’hypoxie grâce à un
remarquable comportement collectif. Il est montré que la consommation d’oxygène conduit
à des gradients d’oxygène auto-générés, qui servent d’indicateurs de navigation aux cellules
et déclenchent un mouvement collectif vers des zones de teneur en oxygène plus élevée.
Le mouvement se maintient sur des larges échelles à travers la consommation permanente
d’oxygène par les cellules. Par un modèle élémentaire EDP, que nous désignons par modèle
"Se déplacer ou Se diviser" (Go or Grow en anglais), nous montrons que la combinaison
de la division cellulaire et de l’aérotactisme joue un rôle crucial dans ce comportement
collectif. En particulier, cette approche conduit à une formule explicite de la vitesse de
propagation.

Nous conduisons ensuite une analyse mathématique du modèle "Se déplacer ou Se
diviser", qui inclut notamment un résultat d’existence et d’unicité du modèle localement
en temps, une analyse de la dynamique intérieure de la population en propagation, ainsi
qu’une caractérisation faible du comportement de propagation asymptotique.

Suite à ce travail, nous nous interrogeons sur les conditions sous lesquelles une popu-
lation cellulaire peut se propager, en générant leur propre gradient de signalisation. Nous
mentionnons des résultats antérieurs dans la littérature et discutons de divers scénarios de
modélisation, qui conduisent à ce type de phénomènes de propagation.

Ensuite, nous proposons une approche pour concevoir des schémas numériques bien
équilibrés pour des ondes progressives dans des modèles cinétiques et paraboliques. Cette
approche combine une estimation de la vitesse de propagation instantanée, ainsi que des
techniques documentées dans la littérature pour concevoir des schémas bien équilibrés.

Enfin, nous étudions un modèle "Se déplacer ou Se diviser" stochastique et individu-
centré, qui se fonde sur une simple règle "Se déplacer ou Se diviser". Nous conjecturons
une limite en large population, qui peut être vu comme un modèle "Se déplacer ou Se
diviser" alernatif, et étudions numériquement les lignées ancestrales des particules. Ainsi,
nous proposons un point de vue parallèle sur les dynamiques intérieures. Le modèle "Se
déplacer ou Se diviser" alternatif est analysée et nous donnons des résultats préliminaires
sur le comportement asymptotique de la propagation.

Mots-clés: Biologie mathématique, Chimiotactisme, Modélisation, Phénomènes de
propagation, Equations paraboliques, Equations cinétiques, Schémas bien-équilibrés, Pro-
cessus stochastique.
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Résumé substantiel en français

Cette thèse s’inscrit dans le domaine de la modélisation du mouvement cellulaire collectif.
De nombreux organismes unicellulaires ont la capacité de réagir à des changements de
leur environnement en se déplaçant. Ces phénomènes sont généralement regroupés sous
le terme de tactisme (par exemple chimiotactisme, aérotactisme, phototactisme, etc...) et
sont étudiés notamment en tant que mécanisme d’adaptation.

Le premier chapitre est consituté d’un article [48] sur lequel nous avons collaboré en
contribuant à la modélisation mathématique de l’expérience étudiée. A travers un dispositif
expérimental, il est montré que lorsqu’une colonie de cellules Dictyostelium discoideum, un
amibe de taille 50µm, est confinée verticalement entre deux plaques, sa consommation
d’oxygène l’expose à de l’hypoxie. De plus, cette consommation d’oxygène conduit à des
gradients d’oxygène, dits auto-générés. Ces gradients auto-générées déclenchent alors par
aérotactisme un mouvement collectif vers l’extérieur, qui se fait sous forme d’un anneau.
Cet anneau croît à vitesse constante et présente un profil constant sur des longues échelles
de temps.

Dans un premier temps, ce phénomène est simulé numériquement par un modèle cel-
lulaire Potts, qui inclut de la division cellulaire et une modulation d’aérotactisme. Dans
un second temps, nous avons contributé à proposer un modèle EDP en champ moyen, qui
se fonde sur le précédent modèle cellulaire Potts. Suite à la difficulté de mener à bien
une analyse de ce modèle EDP, nous proposons une hypothèse de modélisation, dont le
but est de montrer que les ingrédients susmentionnés sont suffisants pour expliquer un tel
phénomène de propagation. Nous dénommons ce modèle "Se déplacer ou Se diviser" (Go
or Grow en anglais). Il présente l’avantage de conduire à trouver des solutions explicites
sous forme d’onde progressive et une formule explicite de la vitesse de propagation. De
plus, il permet d’analyser les dynamiques intérieures, démontrant que dans le cas d’un
aérotactisme fort, l’onde est de nature poussée, alors que dans le cas d’un aérotactisme
faible, l’onde est de nature tirée. Enfin, en proposant des variations de ce modèle "Se
déplacer ou Se diviser", nous testons la validité des conclusions tirées de ce modèle élé-
mentaire.

Le deuxième chapitre est constituté d’un article [54], qui a été soumis au Journal de
l’École polytechnique — Mathématiques. Nous y proposons une analyse mathématique
du modèle "Se déplacer ou Se diviser", qui sert de complément au travail du chapitre
précédent.

ρ(t, x) dénotant la densité cellulaire et N(t, x) la concentration en oxygène, le modèle
"Se déplacer ou Se diviser" consiste alors en un système d’équations de réaction-diffusion-
advection. Pour (t, x) ∈ R+ × R:{

∂tρ− ∂xxρ+ ∂x (χ1N<Nthsign(∂xN)ρ) = 1N>Nthρ

∂tN −D∂xxN = −ρN,
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où χ est la vitesse d’advection aérotactique, D la constante de diffusion de l’oxygène et Nth
un seuil en dessous duquel la population est en régime "Se déplacer", et au-dessus duquel
elle est en régime "Se diviser".

A cause du terme d’advection discontinu, le problème de Cauchy doit être traité avec
soin. Nous établissons donc dans un premier temps un résultat d’existence et d’unicité de
ce système, en réduisant le problème à une EDO, sous une condition de monotonicité de
N . Ensuite, nous effectuons une analyse asymptotique du système. Toutes les solutions
positives et bornées sous forme d’onde progressive sont calculées et une formule explicite
de la vitesse minimale de propagation en est déduite. Une analyse de la dynamique in-
térieure des ondes progressives est proposée, qui étend notamment des résultats de [152]
à des modèles de réaction-diffusion-advection. Puis, nous identifions la vitesse minimale
σ∗ comme la vitesse biologiquement pertinente dans un sens faible: si, nous introduisons
la position du seuil x̄(t), tel que N(t, x̄(t)) = Nth, alors sous certaines hypothèses, nous
avons: 

lim inf
t→+∞

˙̄x(t) ≤ σ∗,

lim sup
t→+∞

˙̄x(t) ≥ σ∗.

Enfin, nous étendons cette étude à un modèle hyperbolique à deux vitesses avec persistence.

Le troisième chapitre a été publié comme article [36] dans l’ouvrage collectif [18]. Il
a été écrit en collaboration avec Vincent Calvez et Roxana Sublet, notamment lors
d’un stage de cette dernière encadré par les deux autres auteurs.

Nous partons du constat que les gradients auto-générés ont attiré une grande attention
dans la littérature biologique récente. Ils sont proposés comme modèles de navigation et
de déplacements collectifs et sont considérés comme constituant une stratégie robuste pour
qu’une population cellulaire puisse naviguer dans son environnement. Le chapitre s’attache
à discuter différents scénarios de modélisation pour modéliser une propagation de cellules,
qui consomment en permanence son signal chimique et crée ainsi leur propre gradient de
signalisation lors de leur propagation.

Nous commençons avec un célèbre modèle proposé par Keller et Segel [114] pour du
chimiotactisme dans des bactéries. Après une présentation du modèle, nous construisons
les solutions d’onde progressive de ce modèle. Nous discutons les limitations de cette
approche et passons en revue quelques travaux qui mettent en lumière des problèmes de
stabilité de ce modèle.

Dans un second temps, nous proposons deux extensions pertinentes de ce modèle, qui
sont soutenues par des considérations biologiques. Les deux extensions donnent lieu à des
solutions d’ondes progressives avec une valeur explicite pour la vitesse de l’onde. Nous
concluons en mentionnant certains problèmes ouverts et des perspectives, en particulier un
mécanisme remarquable de sélection de la vitesse, ayant lieu à l’arrière de l’onde.

Tous les résultats dans cette étude sont illustrés par des simulations numériques.

Le quatrième chapitre a été écrit en collaboration avec Benoit Fabrèges, qui a mené
à bien la partie parabolique de ce chapitre. Avant de soumettre l’article, nous souhaitons
davantage étudier si nous pouvons proposer une amélioration du schéma dans le cas ciné-
tique.

Nous proposons une méthodologie pour concevoir des schémas numériques bien équili-
brés afin d’étudier des solutions d’ondes progressives dans des modèles cinétiques et paraboliques,
provenant de la biologie mathématique. Nous combinons des techniques de schémas bien
équilibrés avec la formule, dite de LeVeque-Yee, qui estime de manière dynamique la
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vitesse de propagation. Cette dernière formule est utilisée afin de considérer le prob-
lème d’évolution dans le référentiel en mouvement à cette vitesse. Dans ce référentiel les
équations admettent une solution stationnaire. Les techniques de schémas bien équilibrés
se prêtent particulièrement bien à l’étude de ces solutions stationnaires. Ensuite, nous
procédons à une translation de la solution calculée de retour vers le référentiel station-
naire. Cette translation est effectuée de manière bien équilibrée. Nous illustrons cette
méthodologie sur deux cas d’application: le premier est le modèle cinétique "Se déplacer
ou Se diviser" mentionné brièvement dans le premier chapitre; le second est la célèbre
équation parabolique de Fisher/Kolmogorov-Petrovsky-Piskunov (F/KPP). Dans les deux
cas, nous montrons que le schéma numérique rend compte de manière cohérente simultané-
ment de la vitesse de propagation et du profile d’onde à l’avant du front. De plus, nous
montrons que pour l’équation F/KPP, le schéma est capable jusqu’à un certain degrés de
correctement calculer le décalage, dit de Bramson.

Le cinquième chapitre est une présentation préliminaire de résultats, qui sont le fruit
d’une collaboration avec Vincent Calvez et Milica Tomašević. La présentation est
volontairement informelle et des affirmations non-rigoureuses sont soutenues par des sim-
ulations numériques.

Nous proposons un modèle stochastique "Se déplacer ou Se diviser" individu-centré:
les K premières particules (comptées à partir de la droite) sont dans le régime "Se diviser"
et les autres particules sont dans le régime "Se déplacer". Le modèle consiste alors en
un système d’EDS décrivant un mouvement brownien avec advection (à vitesse χ dans le
régime "Se déplacer" et vitesse nulle dans le régime "Se diviser), qui est combiné avec un
processus poissonien de naissance pour les K premières particules. Nous commençons par
donner une construction algorithmique du processus. Cette approche est complétée par
une EDS qui décrit l’évolution de la mesure ponctuelle associée à la population.

Ensuite, nous conjecturons la limite dans le régime de large population quandK → +∞
sous une renormalisation appropriée. L’équation limite correspond alors à une EDP, qui
peut être vue comme un modèle alternatif "Se déplacer ou Se diviser". Nous donnons
des arguments numériques indiquant que dans la limite K → +∞ le modèle stochastique
converge vers les ondes progressives solutions de cette EDP.

Enfin, nous étudions la lignée ancestrale des particules, en suivant une méthodologie
proposée récemment dans [38, 74]. Numériquement, nous montrons que deux régimes dif-
férents existent, qui correspondent exactement les régimes de faible et fort aérotactisme
du deuxième chapitre. Ce point de vue donne lieu à une interprétation alternative pour la
dichotomie entre onde tirée et onde poussée.

Ce chapitre est une présentation préliminaire de résultats, fruits d’une collaboration
avec Christopher Henderson.

Nous étudions le modèle EDP alternatif "Se déplacer ou Se diviser", que nous avons
précédemment conjecturé comme équation limite du modèle stochastique "Se déplacer ou
Se diviser" individu-centré. Nous montrons un résultat d’existence et d’unicité localement
en temps pour ce modèle, qui est une adaptation du résultat analogue dans le deuxième
chapitre.

Ensuite, nous proposons une conjecture sur le comportement asymptotique de la posi-
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tion du seuil x̄(t):

x̄(t) =


2t− 3

2 log(t) +O(1) if χ < 1

2t− 1
2 log(t) +O(1) if χ = 1(

χ+ 1
χ

)
+O(1) if χ > 1

.

Nous montrons les résultats intermédiaires suivants:
x̄(t) ≤ 2t− 3

2 log(t) +O(1) , if χ < 1

2t− 1
2 log(t) +O(1) ≤ x̄(t) ≤ 2t+O(1) , if χ = 1

x̄(t) ≤
(
χ+ 1

χ

)
+O(1) , if χ > 1

Enfin, nous concluons le chapitre en montrant un résultat de stabilité asymptotique
de l’onde progressive de vitesse minimale dans le cas d’un large biais aérotactique. Cette
preuve se fonde sur une méthode d’énergie L2.
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Chapter 0

Introduction

0.1 Biological Motivations: Collective Cell Movement

0.1.1 Taxis Phenomena: Cell Navigation in Heterogeneous Environ-
ments

Collective Cell Movement as an Adaptation Mechanism

This thesis is very broadly concerned with the question of collective cell movement in
motile cells, i.e. which can move spatially: this could for example be bacteria with flagella
swimming through a liquid phase [22], or amoeboids crawling via protrusions of lamellipo-
dia [133]. In many cases, these cells can react to changes in their environment through
displacement. These remarkable cellular responses to envionmental signals have been des-
ignated under the concept of taxis (pl. taxes), which comes from the Ancient Greek word
τάξις for arrangement or order. Taxes are classified according to the nature of the signal,
to which cells are exposed to: aerotaxis in the case of oxygen, chemotaxis in the case of
another chemical, phototaxis in the case of stimulation by light, thigmotaxis in the case of
a mechanical contact, etc... Of note, since oxygen can be viewed as a chemical, when we
refer to chemotaxis in this manuscript, it may implicitly include aerotaxis, but we will use
the term aerotaxis, when we specifically consider oxygen. Furthermore, taxis can describe
the individual cell response to a signal, but in this thesis we will use the term to describe
the collective behavior, which emerges from individual cell responses.

The scientific investigation of taxis phenomena dates back to the 1880’s, where a series
of discoveries has evidenced different types of taxes. To the best of our knowledge, the
first description of a taxis phenomenon was a population of bacteria undergoing aerotaxis:
in [63], when bacteria under a coverslip are exposed to low oxygen concentrations, they
move to regions with higher oxygen concentrations such as the edges of the coverslip.
This was interpretated as an adapatation mechanism, since oxygen is required in the cell
metabolism, in particular as has been established later on for the production of adenosine
triphosphate (ATP), which provides energy for many processes in living cells. Later on,
the same author was able to show evidence for phototaxis [64] by concentrating light onto
a small spot of the coverslip and noticing that bacteria would accumulate at the light spot.
Finally, chemotaxis has been put into evidence in sperm cells [146] and in bacteria [147].
Of note, in the case of chemotaxis, there exist essentially two flavors: a signaling chemical
can be a chemoattractant, which tends to attract cells, or a chemorepellant, which tends
to repel cells.

As noted in [2, 10], although the studies [63, 64, 146, 147] have already postulated
that these phenomena may play an important role as adaptation mechanisms in cells, for a
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Figure 1: Photograph, taken from [5], showing bands of E.coli in a capillary tube traveling
from the left to the right.

relatively long period of time the efforts to investigate these mechanism were rather scarce.
Only in the 1960’s, interest in these phenomena, in particular chemotaxis in bacteria,
notably rose again, especially through the works [3–5]. From there on, studies on different
taxes, considered as a large framework for adaptation mechanisms in cells, have risen again.
An exhaustive survey of these studies clearly extends the scope of this manuscript, but in
the following lines, we give some examples:

Chemotactic Traveling Bands in Escherichia coli. Escherichia coli (E. coli in
short) is a bacterium of an average size of 1µm, which can swim in liquid phases via its
flagella. In the seminal article [5], the author proposes an experimental setup to evidence
chemotaxis in E.coli : approximately a million E. coli cells are placed at the end of a cap-
illary. The capillary contains galactose, an energy source for E. coli, and oxygen, which is
needed in order to oxydize the galactose. After a short time, a band of E. coli starts to
propagate from their initial position to the other extremity of the capillary, whereas other
cells are left behind (see Figure 1). In fact, a second slower band is also observed, but we
will not discuss it here. By measuring the concentration of oxygen and galactose in each
segment of the capillary, it is shown that the cells consume the entirety of galactose or oxy-
gen (depending on which is the limited ressource) leading to chemical gradients directed
towards the other extremity of the capillary. Via chemotaxis (or aerotaxis) the cells then
move upwards this gradient, leading to the macroscopic propagation of the band. Further-
more, the study also excludes heterogeneity in cells by repeating the experiment with cells
from different positions of the capillary and obtaining the same result. This shows that
the emerging collective bheavior is not reliant on a diversity in individual behaviors.

Chemotaxis in Dictyostelium discoideum. Dictyostelium discoideum (Dd cells in
short hereafter), sometimes also referred to as slime mold, is an amoeba with an average
size of 50µm. Dd cells are the main living organism studied in this manuscript. These
eukaryots can undergo two different development stages [189]. In normal circumstances,
Dd cells live as single cells in soil, undergo cell division and feed on bacteria. However,
in starvation conditions, cells produce cyclic adenaosine monophosphate (cAMP), which
acts as a chemoattractant: this leads to an aggregation of up to several hundred thou-
sand neighboring cells to form a multicellular structure, called slug (see Figure 2b). Cells
regrouped in spores of the slug are then exposed to air and can escape the hostile environ-
ment, by being borne by the wind. This enables the start of a new life cycle for part of
the cell population in a different environment. It has been demonstrated that chemotaxis
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(a) (b)

Figure 2: (a): A Dd cell under a microscope, taken from [129]. (b): Photograph repre-
senting the slugs that Dd cells form. Dictyostelium discoideum by Chris Wagner in 2007,
taken from CalPhotos Photo Database and licensed under CC BY-ND 3.0.

Figure 3: Representation of a typical Run and Tumble trajectory in a single E. coli cell,
taken from [22]. The runs correspond to the relatively straight lines, which are interupted
during a tumble leading to a reorientation of the cell’s trajectory.

plays a crucial role in the formation of the slug [73, 189].

Emergence of Collective Movement: from Individual Cell Trajectories to Taxis

In the seminal paper [22], the authors have, through an elaborate experimental tracking
of E. coli, unveiled the microscopic features of its movement: trajectories of an individual
bacterium consists in a series of approximately straight lines (called runs), where the cell
moves approximately with velocity 20µm · s−1 for a duration following a Poisson distribu-
tion of mean 1s. The runs are interrupted by brief pauses (called twiddles, or tumbles later
on in the litterature) of approximately 0.1s, where the cell reorients itself in a seemingly
random direction (see Figure 3). This characteristic movement is now commonly referred
to as Run and Tumble movement.

Furthermore, it is shown that when E. coli is exposed to a gradient of a chemoattractant
a modulation of the tumbling frequency occurs: when cells move the gradient upward,
the runs are longer, whereas they are shorter, when cells move the gradient downward.
Theses biases in the cell trajectories lead then in average to a net displacement upward
the gradient. Later on, the study on the chemotactic traveling bands [160] proposed an
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Figure 4: Experiment of chemotactic traveling waves of E. coli in a PDMS microchannel
[160]. The upper figure represents successive snapshots of the same channel (500s between
each frame). The lower figure represents the trajectories of single cells, where in red a
single trajectory has been highlighted.

illustration of the emergence of chemotaxis as the consequence of an averaging in small
biases in trajectories (see Figure 4).

In addition, the fact, that the law of reorientations is the same independently of whether
cells move the gradient downward or upward, indicates that cells do not possess the ability
to locally sense a spatial gradient: the authors in [22] argue that cells rather sense tem-
poral variations in the surrounding concentration, which enables the modulation of the
tumbling frequency. This fact may also be conforted by the observation that E. coli cells
are very small, meaning that different parts of the cell are exposed to extremely small and
indetectible variations in concentration: in fact at the scale of the cell size the chemical
concentration may even be prone to local microscopic fluctations. These conclusions were
later on supported by investigations on the signal transduction [16].

Although the Run and Tumble movement in E. coli is a very elegant account of how
the individual cell movement can lead to macroscopic collective behavior, it is by far not
the only one. For instance the trajectories of Dd cells may be much more diverse, including
among others linear, spiral or directional reversal movements [60]. However, not unlike E.
coli, the movement of Dd cells features a high directional persistence, which is the key
ingredient to explain the emergence of chemotaxis [120]. Yet, the sensing mechanisms of
the gradient drastically differ in both cells: because of its relatively large size, Dd cells
can sense the spatial direction of the signal and thus orient their movement [120], whereas
the law of change in directions with respect to the incoming direction in E. coli does not
depend on the gradient, as pointed out above.

Intra-cellular Mechanisms

Taxis as a model of collective movement is certainly appealing in its way of proposing an
elegant framework encompassing very different phenomena. However, the question of the
microscopic movement of cells has already shown that this unified framework accounts for
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different behaviors. If we further zoom in on the scale and investigate how the individual
cell movement is governed by intra-cellular mechanisms, the diversity of biological phe-
nomena decuples. For example, aerotaxis in E. coli can be explained through the signal
transduction via the receptor Aer, which differs from the four receptors Tsr, Tar, Trg,
and Tap involved in chemotaxis [173]. In contrast, the transduction of oxygen sensing in
Dd cells remain unknown [48]. However, the difficulty of these questions falls beyond the
scope of this thesis, as well as the understanding of its author. Hence, in this thesis we are
not going to deal with the scale of intra-cellular mechanisms, but it certainly is worthwile
remembering the diversity, which hides below the term taxis.

Let us conclude this Subsection by observing that, despite the great research interest
that taxis phenomena have attracted, it still constitues a very active field of research and
many questions remain to be answered. This is true for the intra-cellular mechanism
described just above, but also for other aspects. For instance, eukaryotic cells can respond
to chemotaxis by forming pseudopods, but the exact underlying physical process is still
under investigation [104]. As another example: it is reasonable to suppose that aerotaxis
plays an important role in eukaryotic cells, as a mechanism to increase the oxygen supply
and thus the cell’s ability to produce ATP. But as noted in [48, 56], the studies that bring
evidence of aerotaxis in eukaryots are rather scarce.

0.1.2 Self-Generated Signaling Gradients: an Effective Navigation Strat-
egy

The ability of cells to navigate through signaling gradients naturally raises the question
of the emergence of signaling gradients. A widely considered hypothesis stipulates the
existence of imposed external gradients: via a certain, possibly unknown, biological phe-
nomenon emerges a signaling gradient, which offers signaling cues to a cell population,
and the cell population responds in turn to this external gradient. However, only very few
cases of such imposed external gradients are known in physiological situations [181]. An
alternative model of navigation through signaling gradients is the model of self-generated
signaling gradients (SGG in short from here on): the cells are in presence of a chemoattrac-
tant, which may for example be uniformly distributed in space. Then, the cell population
acts as a sink by removing the chemoattractant, through degradation or consumption for
instance. This induces the emergence of a signaling gradient. The cells via taxis follow
this gradient and in turn continue its removal, leading to the propagation of the signaling
gradient. Thus, it is the cells themselves that generate and propagate the signaling gra-
dient, which constitutes in turn their navigation cues. On the scale of the experimental
observation, SGG thus stand in contrast with preimposed gradients, via the emergence of
a local dynamic gradient, rather than a global gradient. The model of navigation through
SGG is in particular interesting, as it frees collective migration from the condition of an
externally pre-imposed gradients [59].

We stress that in the case of SGG, there exists hence a feedback loop between the
environment and the collective cell movement. This feedback loop plays a crucial role from
a theoretical, experimental and modeling point of view as it drastically differs from the
case of an imposed external gradient. Questions concerning for instance the navigation
strategy and its effectiveness thus depend not only on the cellular mechanisms by which
cells undergo taxis, but also on the way cells impact their environment. Hence, for example
the investigation of how cells degrade the chemoattractant [135] plays an important role
to understand their collective motion.
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Figure 5: Dd cells exposed to imposed gradients (upper frames) and SGG (lower frames) in
[182]. Dd cells perform better in SGG than in imposed gradients. The scale bar represents
50µm.

SGG: Advantages in Navigation Strategy

The model of SGG has attracted in the last decade much interest as it constitues an
effective navigation strategy for cells in environments that may be very complex. First,
SGG enable cells to navigate over long ranges. Contrary to externally imposed gradients,
where a trade-off between the steepness of the gradient and the range of the gradient exists,
in theory there exists no limit on the range of navigation through SGG [179, 180]. As a
corollary, SGG also leads to a good exploration of space by enhancing range expansion,
meaning that cells tend to displace faster and over longer distances (see Figure 5), as has
been pointed out in [49, 179, 181]. The works of [139, 181, 182] have also pointed out
that navigation through SGG constitutes an extremely robust navigation strategy, which
may lead to important biological advantages in certain systems. Finally, SGG may serve as
directional cues in complex environments. To illustrate this point, the authors of [182] have
designed complex mazes and shown that a population of Dd cells is capable of navigating
with a remarkable effectiveness through different mazes (see Figure 6 as an example of
such a maze).

Examples of SGG

The first quantitative experimental evidence for SGG known to us is the already mentioned
experiment of chemotactic traveling bands of E. coli in [5], although the author does not
explicitly mention the concept of SGG, which seems to have become prevalent only in the
past decade. However of note, as has shown the study [160], it seems that the contribution
of the second chemoattractant secreted by the cells plays an important role in order for
the cells to remain aggregated. Whereas the nutrient (i.e. galactose or oxygen) suits the
framework of SGG, this second chemoattractant does not enter the framework of SGG,
since rather than inducing a collective displacement, it leads to cell aggregation.

Furthermore, the features of SGG, such as robust navigation cues over long distances
and not being constrained to an imposed signaling gradient, seem to be of particular
interest in developmental biology [179, 180]. The first occurence in vivo has been evidenced
in the embryogenesis of the zebrafish, where SGG play a key role during the initiation of
the posterior lateral line in zebrafish [59, 185]. There, a population of approximately
one hundred cells generate local signaling gradients through consumption over the whole
posterior lateral line. Recently, a study [73] has evidenced that SGG cAMP gradients in Dd
cells during the slug stage in combination with a spiral tip motion can explain surprising
spiral waves of Dd cells inside the slug.

In parallel, SGG may also be involved in cancer invasion and metastasis. In the study

20



Figure 6: Dd cells solve a maze. Cells enter from the left and exit to the right. Time is
represented by cell color, where blue shows earlier times and red later times. In the bottom
figure, cells successfully senses a shortcut and chose the minimal route.

[162], authors have shown that cancer epithelial cells have the ability through self-generated
epidermal growth factors (EGF) gradients to navigate in a microfluidic maze. These find-
ings stand in stark contrast with the original belief that epithelial cells could not navigate
without a preexisting chemical gradient. Later on, the study [56] has shown that cancer
epithelial cells can also undergo migration through self-generated oxygen gradients, which
has triggered the interest for the main experimental study, which we will consider in this
thesis.

Many of the aforementioned studies postulate the ubiquity of SGG in cell systems.
However, much investigation still needs to be undertaken to understand the biology in real
life systems. In particular, the experimental study of SGG especially in vivo is complicated
by the difficulty to prove through an experimental setup the existence of such dynamic SGG
and the resulting navigation strategies [59].

0.2 On the Mathematical Modeling of Propagation Phenom-
ena in Biology

0.2.1 The Modeling of Chemotaxis: three different Scales of Modeling

Many of the experiments, whose modeling we consider in this Subsection, take place on a
short-time scale, where cell division plays a negligible role. For now, we leave the question
of cell division and its induced propagation phenomena to the next Subsection, where we
survey reaction-diffusion models.
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Parabolic Models and the Macroscopic scale

One of the groundworks in the mathematical modeling of chemotaxis has been the cele-
brated Patlak-Keller-Segel (PKS) model, proposed independently in [145] and in [112, 114].
Although many variations on the model exists, in its essential form it is constituted of a
system of parabolic equations describing the evolution of possibly several cell populations
and chemotatic signals. For the sake of concision, we restrict ourselves here to a single cell
population and a single chemoattractant. The cell population is modeled through a density
in space and time ρ(t, x), constituting what we call here the macroscopic scale, and so is
the chemoattractant c(t, x). The cells ρ undergo diffusion and are transported according
to an advection field χ[c], which can be seen as a chemotactic response function to the
chemoattractant c. In parallel, the chemoattractant c is subject to a reaction-diffusion
equation, where, depending on the specific modeling needs, the chemoattractant can for
instance degrade over time, or be secreted or consumed by the cells:

∂tρ = Dρ∆ρ︸ ︷︷ ︸
diffusion

−div (ρχ[c])︸ ︷︷ ︸
chemotactic transport

α∂tc = Dc∆c︸ ︷︷ ︸
diffusion

−βc︸︷︷︸
degradation

+γρ︸︷︷︸
secretion by cells

−δρc︸ ︷︷ ︸
consumption by cells

.

(0.2.1a)

(0.2.1b)

The chemotactic response function χ[c] may take different shapes: common choices are
a linear gradient sensing mechanism with χ[c] = χ∇c, as well as a logarithmic gradient
sensing mechanism with χ[c] = χ∇cc . The latter seems to be of great interest as it offers
a scale-free response ability, which has been observed in different organisms, for instance
[110]. Moreover, let us mention that when the time-dynamics of the chemoattractant is
much faster than the time-dynamics of the cells, one can consider System (0.2.1) with
α = 0, leading to the so-called parabolic-elliptic PKS model.

System (0.2.1) has attracted much attention as it may lead to a critical mass phe-
nomenon. Consider System (0.2.1) in R2, with α, β, δ = 0 and χ(c,∇c) = χ∇c and suppose
that the initial datum ρ0 satisfies ρ0

(
| log(ρ0)|+ 1 + |x|2

)
∈ L1(R2). Let M :=

∫
R2 ρ

0 the
total mass of cells (which is conserved over time). Then if M < 8π

χ , the solution is global
in time, whereas if M > 8π

χ , the solution blows-up in finite time [25, 58]. From a modeling
perspective this can be interpretated as a condition under which a cell population forms a
dense chemotactic aggregate.

Kinetic Transport Models and the Mesoscopic Scale

The discovery of the Run and Tumble movement in the seminal paper [22] (see the discus-
sion in Section 0.1.1) gave rise to an approach that consists in describing the evolution of
the cell density on a mesoscopic scale, i.e. the cell density is considered in time, space and
the velocity, at which cells move [6, 7, 141]: the Othmer-Dunbar-Alt model consists then
in the following kinetic evolution equation:

∂tf(t, x, v) + v ·∇xf(t, x, v) =

∫
V
T [c](v′, v)f(t, x, v′)dv′ −

∫
V
T [c](v, v′)f(t, x, v)dv′,

(0.2.2)

with (t, x, v) ∈ R+×Rd×V , where V ⊂ Rd, that we suppose to be compact and isotropic,
i.e. invariant under the action of the special orthonormal group SO(d). Furthermore, we
suppose without loss of generality that |V | = 1. Equation (0.2.2) expresses the fact that
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cells move with velocity v (which corresponds to the aforementioned runs) and cells reorient
themselves according to a law that is encoded through the tumbling kernel T [c](v′, v): at
(t, x), T [c](v′, v)f(t, x, v′) cells switch from velocity v′ to velocity v. In fact Equation
(0.2.2) can be seen as a mass-balance equation, where the left hand-side describes the
movement according to the free-transport operator and the right hand-side keeps track of
how many cells change velocity. Moreover, Equation (0.2.2) can be supplemented by the
description of the evolution of the chemotactic field c such as in Equation (0.2.1b), with
ρ(t, x) :=

∫
V f(t, x, v)dv.

Of note, although the Othmer-Dunbar-Alt model has been introduced with an explicit
reference to the Run and Tumble motion in E. coli, the model is suited as well to describe
other types of persistent cell motion, i.e. when locally in time a direction of movement in
individual cells can be determined.

The kinetic model and the parabolic PKS are connected through the diffusive (or
parabolic) scaling limit [46, 142, 143]. Suppose there exists a small parameter ε > 0,
that corresponds to the ratio of the length of a run and its duration. Suppose that after
the scaling (t̃, x̃, v) = (ε2t, εx, v), the tumbling kernel is under the shape Tε[c](v, v′) =
T0[c]+εT1[c](v, v′)+O(ε2), which encapsulates the fact that the modulation of the tumbling
rate is of order ε. Then, one obtains:

ε2∂tf(t, x, v) + εv ·∇xf(t, x, v) =

∫
V
Tε[c](v

′, v)f(t, x, v′)dv′ −
∫
V
Tε[c](v, v

′)f(t, x, v)dv′,

(0.2.3)

Set jε(t, x) := 1
ε

∫
V vf(t, x, v)dv and integrating over V , we obtain the following mass

conservation law:
∂tρε +∇ · jε = 0. (0.2.4)

Now, suppose that in the limit ε → 0, we have fε = ρ0 + O(ε) and ε2∂tjε = O(ε).
Multiplying Equation (0.2.3) with v and integrating over V yields:∫

V
v ⊗ vdv∇ρ0 =

∫
V
vT1[c](v′, v)dvρ0 − T0[c]jε +O(ε). (0.2.5)

Hence combining Equations (0.2.4) and (0.2.5) and taking the limit leads to:

∂tρ0 +∇ · (D[c]∇ρ0 − χ[c]ρ0) = 0, (0.2.6)

with D[c] = 1
T0[c]

∫
V v ⊗ vdv and χ[c] = 1

T0[c]

∫
V vT1[c](v′, v)dvdv′. Thus the diffusive

limit consists (formally) in Equation (0.2.6), which is of a slightly more general type than
Equation (0.2.1a). We refer to [46] for a rigorous derivation of this limit.

The diffusive scaling limit naturally raises the question whether the obtained limit equa-
tion may accurately describe the evolution of the cell population. In the study [160], the
authors have shown that depending on the cell population, the limit may be relevant, just
as it may not be as well. An important criterion is the bias of the mean value of the velocity
distribution. In fact, since the diffusive scaling limit averages the distribution of velocities,
it assumes that f(t, x, v) ≈ ρ(t, x). Nevertheless as the authors [160] have pointed out,
this approximation may not be valid: in that case, there is a priori no reason that the
diffusive limit should be insightful. Hence, although the reduction to a parabolic model
seems tempting, we should be invited to verify the validity of the underlying assumptions.

Finally, we briefly mention that there exist other scaling limits for Equation (0.2.2): in
the studies [57, 71] a so-called hydrodynamic scaling limit has been considered, i.e. when
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space scales as time. These other scaling limits clearly lead to other limit equations. Here
again, the question to the modeler is whether these scaling limits are then insightful. In
this thesis, we have not investigated such a hydrodynamic scaling limit.

Stochastic Individual-based Models and the Microscopic Scale

Both the macroscopic and the microscopic scale describe the evolution of the system as a
density of cells. The underlying assumption is that there is a large number of cells and
that the random fluctuations for instance in cell positions can be averaged and described
through the cell density. However, one can also zoom in to the scale of an individual cell
and describe their law of motion, which involves stochasticity. We discuss here very briefly
these stochastic individual-based models.

First, one can describe the law of motion of each single cell of the population via its
position (Xt). Given a static chemotactic field c, the position of the i-th cell evolves
according to the following stochastic differential equation (in Itô’s sense):

dXi
t = χ[c]

(
Xi

t

)
dt+

√
2DρdW

i
t, (0.2.7)

withW i
t a d-dimensional Brownian movement. Via Itô’s Lemma, one shows then that the

cell distribution ρ, i.e. the probability distribution up to normalization of the stochastic
process, satisfies Equation (0.2.1a).

In a second step, the System of SDEs (0.2.7) can be complemented with an evolution
equation on the chemotactic concentration, such as Equation (0.2.1b). However, this makes
the analysis considerably more complex. In the case of the parabolic-elliptic PKS case,
i.e. when α = β = δ = 0 in Equation (0.2.1b), the chemical concentration becomes a
convolution with the cell distribution (see [43, 75, 97]). We also refer to the parabolic-
parabolic case, i.e. when β = δ = 0 in Equation (0.2.1b), which has been considered in
[105, 176].

Finally, other approaches for stochastic individual-based models exist. We briefly men-
tion the work presented in [171], where the author proposes a stochastic process on the
position and the velocity of the individual cell, mimicking the Run and Tumble movement
and called velocity-jump process. Interestingly in that case, for a fixed concentration field,
the probability distribution satisfies Equation (0.2.1a).

0.2.2 Reaction-Diffusion Equations and Spreading Phenomena in Biol-
ogy

Reaction-diffusion equations have been a cornerstone in mathematical biology for the mod-
eling of spatial spreading in populations. It is used to describe a wide variety of biological
problems, such as for instance the introduction of rodents in a new geographic area [167]
or a colony of bacteria expanding on a Petri dish. Although reaction-diffusion equations
constitute a larger class of mathematical problems than what we describe in the following
lines, in its essence they combine two ingredients to describe the evolution of a homoge-
neous population ρ(t, x): (i) unbiased motion, modeled through a diffusion operator; (ii)
a reaction term f(ρ) depending (here exclusively) on the local population density, which
can represent either growth of the population, when f(ρ) > 0, or decay of the population,
when f(ρ) < 0:

∂tρ−∆ρ = f(ρ), (0.2.8)

where we have rescaled the Equation to obtain a diffusion constant equal to 1 and f(1) = 0.
A prototype is the celebrated Fisher/Kolmogorov-Petrovsky-Piskunov (F/KPP) Equation
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Figure 7: Representation, taken from [167], of the spread of muskrat in central Europe.
It illustrates the linear spreading, i.e. at constant speed, and motivates the use of the
F/KPP Equation as a model.

[72, 115], where f(ρ) = ρ(1−ρ). It describes a competition among the individuals (e.g. for
ressources): the higher the density ρ is, the lower is the per capita growth rate f(ρ)

ρ , with
a saturation when the population reaches the maximal density ρ = 1. Many other shapes
for f have been investigated according to the modeling needs for each precise problem.
Noticeably, different shapes of f may lead to very different behaviors. The following (non-
exhaustive) categorization for the shapes of f is very common:

• When f is non-negative and admits exactly 0 and 1 as zeros, then f is referred to as
monostable. Example: f(ρ) = ρ(1− ρ)(1 + aρ) with a ≥ 0.

• When in addition, f satisfies the following inequality f ′(0)ρ ≥ f(ρ) for ρ ∈ [0, 1],
then f is referred to as of the F/KPP type. Example: f(ρ) = ρ(1− ρ)(1 + aρ) with
a ∈ [0, 2]. Note that a = 0 yields exactly the F/KPP reaction term.

• When f admits exactly three zeros, that are 0, θ, 1 with θ ∈ (0, 1) and f ′(0) <
0, f ′(θ) > 0, f ′(1) < 0. Then f is referred to as bistable. Example: f(ρ) = ρ(ρ −
θ)(1− ρ).

• When f ≡ 0 on the interval [0, θ] with θ ∈ (0, 1), f > 0 on the interval (θ, 1)
and f(1) = 0, then f is referred to as of the ignition type. Example f(ρ) ={

0 if ρ ≤ θ
(ρ− θ)(1− ρ) else

For the rest of the manuscript, we will exclusively be interested by the monostable case.

Traveling Wave Solutions

Reaction-diffusion equations can give rise to a (linear) spreading phenomenon. Mathe-
matically, this is reflectd by the existence of traveling wave solutions to Equation (0.2.8).
Here, we treat exclusively the one-dimensional case (i.e. x ∈ R). A traveling wave solution
(ρ̃, σ) is then constitued of a profile ρ̃ : R→ [0, 1] and a corresponding wave speed σ, such
that ρ(t, x) = ρ̃(x− σt) is a solution of Equation (0.2.8). Plugging ρ(t, x) = ρ̃(x− σt) into
Equation (0.2.8) leads to the following ODE for ζ ∈ R:

−σρ̃′(ζ)− ρ̃′′(ζ) = f(ρ̃(ζ)) (0.2.9)
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Figure 8: Graphic representations of the dispersion relation (0.2.11): µ2−σµ+1 = 0. The
graphic on the left represents σ as a function of µ, with a minimum at (µ, σ) = (1, 2). The
graphic on the right represents µ as a function of σ. Two branches µ± exist in that case,
which satisfy µ− ≤ 1 ≤ µ+ and start from the common point (σ, µ) = (2, 1).

Here we will consider solutions, such that σ > 0, i.e. the wave travels from the left side to
the right side. Furthermore, we suppose that ρ̃(−∞) = 1 and ρ̃(+∞) = 0: one says that
the (stable) state ρ = 1 invades the (unstable) state ρ = 0.

The works [11, 70, 72, 94, 115] have shown that in particular in the monostable case
nonnegative traveling wave solutions exist. A way of proving their existence is by consid-
ering the phase portrait of ODE (0.2.9). Furthermore, it is important to keep in mind that
the behavior around the state ρ = 0 is very instructive. Indeed, let us linearize the ODE
(0.2.9) around the state ρ = 0. By a rescaling we can suppose that f ′(0) = 1 and obtain:

−σρ̃′ − ρ̃′′ = ρ̃ (0.2.10)

Notice that the F/KPP condition f(ρ) ≤ ρ (as we assume that f ′(0) = 1) implies that the
solution of Equation (0.2.10) is in fact a supersolution of Equation (0.2.9). Furthermore,
the characteristic polynomial of the ODE (0.2.10) is X2 +σX+1 with discriminant σ2−4.
However, since we are looking for a nonnegative solution, any oscillating behavior that
would arise from a complex root is prohibited. Hence σ ≥ 2. Therefore we expect the
behavior at ζ = +∞ of ρ̃ to be close to a decaying exponential e−µζ , where:

µ2 − σµ+ 1 = 0 (0.2.11)

We refer to Equation (0.2.11) as the dispersion relation: it binds the wave speed σ with
the exponential decay rate µ in ζ = +∞. Given σ, we have that µ± = σ±

√
σ2−4
2 > 0; and

given µ, we have that σ = µ + 1
µ ≥ 2 (see Figure 8 for a graphic illustration). Hence, we

wish to stress that the exact shape of the traveling wave is very instructive.
The works [11, 72, 94, 115] have also shown that in the monostable case the traveling

wave solutions have the following structure: there exists a minimal wave speed σ∗ ≥ 2,
such that for every wave speed σ ≥ σ∗, there exists a corresponding traveling wave profile.
Moreover, for f of the F/KPP type, we have in fact σ∗ = 2. However, for instance when
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f(ρ) = ρ(1− ρ)(1 + aρ), with a > 2 [94], we have σ∗ > 2. In addition, the traveling wave
corresponding to the minimal wave speed does not decay in the F/KPP type slower than
ζe−ζ , whereas every wave for σ > σ∗ = 2 decays like e−µ−ζ , with µ−(σ) = σ−

√
σ2−4
2 < 1. In

the case, where σ∗ > 2, the minimal wave speed profile decays like e−µ+ζ , with µ+(σ∗) =
σ∗+
√
σ∗2−4

2 > 1, and every profile for σ > σ∗ decays like e−µ+(σ)ζ . In other words, the wave
corresponding to the minimal wave speed is also the wave that has the fastest exponential
decay.

Interestingly, the minimal wave speed is also the wave speed, which is biologically
relevant: given an inital datum ρ0, which decreases fast enough, i.e. faster than the
corresponding wave profile, ρ will converge to a traveling wave in a certain sense. The
first such result dates back to [115], and we mention the result in [11]: for ρ0 with support
bounded above and for f of monostable or bistable type (when it admits a positive minimal
velocity σ∗ > 0), one has:

lim
t→+∞

inf
x∈[0,σt]

ρ(t, x) = 1, for σ < σ∗ and lim
t→+∞

inf
x≥σt

ρ(t, x) = 0, for σ > σ∗ (0.2.12)

Later on, more precise results have been obtained (see [154, 169] for the monostable non-
F/KPP type and [29, 96] for the F/KPP type, as well as [184] for a general discussion
on these results). Another way of framing it by the preceding observation, is to say
that ρ converges to the wave profile with fastest decay. Although, the aforementioned
studies prove this result in the corresponding specific cases, we are not aware of a general
mathematical argument, which proves such a result, but it will be helpful through this
manuscript to keep this general principle in mind.

Pulled and Pushed Waves

In [169], the author observes a qualitative difference in traveling wave solutions of reaction-
diffusion equations. When σ∗ = 2, the wave is called pulled : qualitatively, a pulled wave
is driven by growth and diffusion of the population at the edge of the front with negligible
contribution from the overall population. In fact the dynamics is dictated by the linear
dynamics around the state ρ = 0. However, when σ∗ > 2, the wave is pushed : qualitatively,
a pushed wave is subject to a significant contribution from the overall population to the
net propagation. These concepts have attracted interest especially in the field of evolution,
since as noted in [152], pushed waves promote genetic diversity inside the propagation
population, whereas pulled waves tend to select only the phenotypes at the leading edge
of the invasion.

The exact definitions of pulled and pushed waves can vary in the literature. The
historical definition as proposed in [169] (see also [154, 184]) is based on the criterion
whether the minimal speed σ∗ is equal to the speed of the linearized front around the
steady state 0 (pulled), or greater than this speed (pushed). An alternative way of defining
pulled waves may be the existence of the so-called Bramson shift (see [28, 29, 96, 183] or
recently in critical cases [9, 83]), i.e. a logarithmic correction term in the propagation of
level sets: ρ(t, x)→ ρ̃(x−σt−r ln(t)−c), with r = 3

2 , or in specific critical cases r = 1
2 [83].

On the contrary pushed waves merely have a constant correction term in the convergence
rate of level sets [9, 70, 154, 169]: ρ(t, x)→ ρ̃(x− σt− c).

In [82, 152], the authors have proposed a new definition that is based on the study of
the inside dynamics of the traveling waves. To do so, the authors introduce the formalism
of neutral fractions: the traveling wave is decomposed in subparts and each subpart is
marked with a neutral label, i.e. which does not interfer with the overall dynamics of
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Figure 9: Figure taken from [152], which illustrates the evolution of neutral fractions in
three cases. A: Depiction of the initial condition, which is the same for each case. B:
Evolution of neutral fractions in a pulled case, with the F/KPP reaction term f(ρ) =
ρ(1 − ρ). C& D: Evolution of neutral fractions in a pushed case, with a bistable reaction
term f(ρ) = ρ(1 − ρ)(ρ − θ) (with θ = 0.2 for C and θ = 0.4 for D). In each case, the
dashed black curve corresponds to the traveling wave profile.

the traveling wave. The authors then move on to describe the evolution over time of the
distribution of these labels. In the pushed case, after some time the traveling wave is
composed of a perfect mixture homogeneous in space (at least on compact sets around the
bulk of the wave) of each neutral fraction (see Figure 9 C and D): this shows that in fact
every subpart of the wave contributes to the propagation of the wave. On the contrary, in
the pulled case, after some time the traveling wave is almost exclusively composed of the
neutral fraction, which constituted the leading edge, and all the other neutral fractions go
extinct in the traveling wave (see Figure 9 B): hence in the pulled case, only the leading
edge contributes to the propagation of the wave.

Finally, let us briefly mention a novel point of view on pushed waves, such as it has
been point out in [74] (see also [38]). Instead of considering neutral fractions and their
evolution (forward) in time, the authors of [74] consider the ancestral distribution of an
individual particle inside the traveling wave: for each individual particle in the wave at
time t, they study the backward in time stochastic process of the position of its ancestor
Xs,t at a time t − s for s ≥ 0. They show that this stochastic process has in the moving
frame a stationary distribution when s→ +∞, which is independent of the position Xt of
the particle at time t. Hence, this backward stationary distribution can be interpretated
as a quantification of how much each subpart of the wave contributes to the propagation.
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0.2.3 The Interplay between Cell Division and Chemotaxis

As mentioned above, cell division and chemotaxis may take place on different time scales,
which is why experimentally they have often been studied separately. Our presentation has
until now followed the lines of this separation. However, cells that undergo chemotaxis may
very well continue dividing, and by the preceding discussion on reaction-diffusion equations,
we know that cell division combined with diffusion leads to an expansion phenomena, in
parallel to chemotaxis. Hence, this raises naturally question how these two propagation
phenomena combine. One of the main points of view of this manuscript is to shed light
precisely on the intersection between chemotaxis and expansion by division-diffusion.

First, let us mention the studies [30, 33, 34], where the authors have inoculated a colony
of E. coli on a Petri dish. They observe an expansion under the form of concentric rings
followed by stationary symmetric patterns of spots or stripes (see Figure 10). The proposed
explanation is that: (i) the colony expands first through division-diffusion, similarily to
the dynamics described by the F/KPP equation. (ii) The cells trailing, i.e. the ones,
which are not in the leading section of the expanding front, excrete a chemoattractant,
which in turn leads to chemotactic aggregation, such as described by the PKS model: this
chemotactic aggregation translates into the observed stationary patterns. Nevertheless in
these studies, it is not entirely clear whether in the expanding front cell division really
combines with chemotaxis, or whether the two phenomena merely happen to be simply
juxtaposed, without a true interaction.

In parallel, many studies on SGG neglect cell division. However, in [172], the author
emits the hypothesis that cell division is an important feature of SGG: in order to induce
a sufficiently steep local gradient, the local cell population should reach a sufficient size,
which is made possible through cell division. In turn, this will induce chemotaxis and the
propagation through SGG. Nevertheless, here the hypothesis stipulates the necessity of cell
division, but neglects the possible expansion induced by division-diffusion.

In contrast, the study [49] has investigated carefully the dynamics of a population
of E. coli, whose propagation is induced through a SGG. By comparing in vitro and in
silico experiments, the expansion to a mere division-diffusion driven expansion, such as the
F/KPP dynamics, the authors show that chemotaxis enhances the range expansion and
postulate that this feature may give a fitness advantage to the population. Nevertheless,
the study does not compare the expansion to an expansion driven merely by chemotaxis
without division.

Finally, on the mathematical side, the combination of division and chemotaxis has
attracted in recent years much interest, especially since the introduction of the PKS system
with Fisher growth term [137]. This Keller-Segel model with growth term has been the
subject of numerous investigations in recent years, among which the works [27, 121, 137,
157, 158]. These types of models combine chemotaxis and cell division and exhibit traveling
waves under some conditions on the parameters. Nevertheless, chemotactic self-aggregation
(in the aformentioned studies) differs from the case of SGG, since both lead to chemotactic
biases in opposite directions at the edge of expansion front. Recently, in the works [95,
99], the authors have investigated the case of negative chemotaxis, where the bias induced
by chemotaxis is in the same direction than the propagation induced by division-diffusion
and thus bears more similarity in spirit with the case of SGG.

0.2.4 Well-balanced Numerical Schemes

In Subsection 0.2.2 on reaction-diffusion equations, we have stressed the relevance of getting
insight on the exact traveling wave profile. This was best illustrated through the dispersion
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Figure 10: Figure, taken from [33], representing the expansion of an E. coli colony leading
inside the ring to a stationary sunflower-like array. The images correspond to successive
snapshots with interval 4h and the scale bar represents 4cm.
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relation (0.2.11). Nevertheless, it may not always be possible to compute analytically the
exact explicit wave profile. In that case, a natural alternative consists in investigating
these questions numerically. In essence, a numerical scheme consists in the discretization
of the problem on a finite mesh, which should lead to a fairly good approximation of the
continuous problem. Thus, we may be interested in finding a suitable numerical scheme,
in order to approximate well the traveling wave. Yet, it is a difficult problem to capture
these traveling waves numerically, in particular since it asks for an accurate numerical
computation over long times and large domains.

The philosophy of well-balanced (WB from here on) schemes consists in designing
numerical schemes, which will be exact on the steady states (e.g. a stationary state or
a traveling wave). More precisely, the discretization and the steady state commute: the
(discretized) numerical scheme admits as steady state exactly the discretization of the
steady state of the continuous problem. Hence, WB numerical schemes are especially well-
suited for the numerical investigation of steady states. Furthermore as is shown in the
monograph [8], WB schemes are efficient at reducing numerical errors and their growth
over time, which is another of their advantages for traveling wave problems. In [87], the
author shows also how WB numerical schemes may be adapted to parabolic problems. In
[37], the authors have introduced a WB numerical scheme to compute traveling waves in
kinetic models. Yet, this approach suffers from a drawback, as the numerical scheme is
stricto sensu only WB in the case of a stationary wave and does not propose a scheme
that is WB for waves with nonzero velocity.

0.3 Results obtained in this Thesis

We here give an overview of the results obtained in this thesis. The overview follows the
order of the subsequent chapters. Of note in each Subsection, the notations may vary
slightly in order to be consistent with the notations in the corresponding chapter: for
instance σ or c for the wave speed, C, N or S for the chemoattractant and χ1,a for the
chemotactic advection field (we use the boldface print to indicate the vector field nature
of the advection field, even in the one-dimensional case).

0.3.1 Hypoxia triggers Collective Migration in Dictyostelium discoideum

The starting point of this thesis has been the collaboration with a team from Institute
for Light and Matter in Lyon, composed of Christophe Anjard, Olivier Cochet-
Escartin and Jean-Paul Rieu. Through an experimental setup, they have investigated
the collective behavior of Dd cells undergoing aerotaxis induced by self-generated oxygen
gradients and cell division. We start by describing briefly the lines of the work published
in the article [48], which we have reproduced in this manuscript in its integral form, before
developping on our contribution with Vincent Calvez and the aforementioned team to
this work.

Experimentally, the following emerging behavior of Dd cells in hypoxic conditions has
been observed: when a colony of Dd cells is confined between two narrowly spaced plates,
Dd cells form a dense ring moving outwards. After a brief transitory phase, the ring of
cells moves at constant speed and constant density over the time course of the experiment
(see Figure 11). It has been shown that the quick consumption of oxygen by Dd cells
exposes them to hypoxia, i.e. a lack of oxygen, and in turn induces aerotaxis leading to a

1Here χ denotes the chemotactic advection field, whereas later on χ denotes a constant chemotactic
speed.
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Figure 11: Formation and evolution of a dense ring of Dd cells after vertical confinement.
A: Snapshots of early formation. The scale bar represents 500µm. B: Snapshots at longer
times imaged under a binocular. The scale bar represents 1mm.

Figure 12: A schematic representation of the experiment presented in Figure 11. Cells
are confined between two narrowly spaced plates and quickly consume available oxygen, so
that the colony experiences self-induced hypoxic conditions. This, in turn, triggers outward
migration of the colony under the form of a ring expanding at constant speed over long
periods of time.
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macroscopic outward motion (see Figure 12). Through cell tracking, it has been established
that the cell behavior differs according to their position relative to the ring: (i) in the outer
region of the ring, cells have a low persistent and unbiased motion; (ii) in the ring itself,
cells have a persistent and biased motion towards higher oxygen regions; (iii) in the inner
region of the ring, cells have a strongly persistent but unbiased motion. Of note, in the
inner region, the cell population is less dense, but not negligible, meaning that a substantial
part of the cells are left behind by the ring. In parallel, experiments in controlled oxygen
gradients have led to a better characterization of the aerotactic response. Furthermore, it
has been shown that the contribution of cell division is not negligible over the time-scale
of the experiment, leading to an overall increase of the cell population, which is necessary
to sustain the propagation to compensate for the cell leakage behind the ring.

Then, through a cellular Potts model, i.e. an individual-based cell algorithm, the
collective behavior of the cell population was reproduced in silico by merely including
a modulation of aerotaxis and cell divison depending on the level and the variations of
oxygen. This shows that the combination of these two ingredients are sufficient to explain
the emergence of a ring-shaped propagataion.

From there on, in collaboration with Vincent Calvez and the aforementioned team,
we have first proposed a parabolic mean-field model mimicking the cellular Potts model,
where ρ represents the cell density and C the oxygen concentration:{

∂tρ = D∆ρ−∇ · (a(C,∇C)ρ) + r(C)ρ

∂tC = Doxy∆C − b(C)ρ,

(0.3.1a)
(0.3.1b)

with a(C,∇C) = a(C, ∂rC) = λaero(C)∂rC, assuming radial symmetry, λaero a decreasing
function, which has been calibrated with the experimental data, r(C) = r01C>C0 , C0 a
threshold value and b(C) the oxygen consumption rate per cell. Numerical simulations of
Equation (0.3.1) have shown similar results to the Potts model. Furthermore, assuming
1D planar system, neglecting curvature effects, we have shown that the wave profile with
speed σ, ρ(t, x) = ρ(x− σt), satisfies the following simple relation:

σρ(−∞) =

∫
R
r(C(z))ρ(z)dz. (0.3.2)

By roughly approximating the right hand-side with experimental data, we were able to
obtain an estimate of the wave speed merely based on the shape of the cell density profile
and the spatial cell division profile. However, a more thorough analysis of the mean-field
model (0.3.1) seemed out of reach.

Hence, we have proposed as an alternative model the Go or Grow model. Cells have
two disctinct behaviors: either, cells have a biased motion towards high oxygen regions,
but do not divide (the Go behavior); or, cells have an unbiased motion, but do divide (the
Grow behavior). The switch between both behaviors is induced when the ambient oxygen
level crosses a threshold value C0. Hence:

a(C, ∂xC) = a01C<C0sign(∂xC) and r(C) = r01C>C0 (0.3.3)

The aim of the Go or Grow model is to show that its ingredients are sufficient to trigger
propagation via SGG and to determine the relative contribution of cell division and aero-
taxis on the speed of the ring. Its relevance lies in the fact that through its simplicity,
one can investigate analytically its traveling wave solutions. In particular, we stress that
in that case Equation (0.3.1a) has piecewise constant coefficients, which is reminiscent
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Figure 13: Classification of the inside dynamics in the Go or Grow model. Cells initially
on the left-hand side or right-hand side of the peak get labeled differently (A and B). The
labeling is neutral and does not change the dynamics of the cells. We let evolve the two
colored population for some time and observe the mixing of the colors (C and D). In both
cases

√
r0D = 0.2µm · min−1. (A and C) With a0 = 1µm · min−1, the wave is pushed

wave and after some time the front undergoes a spatially uniform mixing. (B and D)
With a0 = 0.1µm · min−1, the wave is pulled and only the fraction initially in the front is
conserved in the front.

of a modeling hypothesis in [160]. In fact, we have shown numerically and in Chapter 2
mathematically that cells will propagate in a weak sense after a transient phase with speed:

σ∗ =

 a0 +
r0D

a0
if a0 >

√
r0D

2
√
r0D if a0 ≤

√
r0D

(0.3.4)

Then, in order to quantify the relative contribution of cell division and diffusion to the
overall wave speed, we introduce the fraction:

ϕ =
σF/KPP

σ∗
=

2
√
r0D

σ∗
(0.3.5)

The relevance of quantity ϕ resides in its applicability to other experiments, which would
involve SGG and division-diffusion. Here, we have that ϕ = 40%, which shows that the
dominant ingredient in setting the wave speed is aerotaxis.

Furthermore, we show that the dichotomy in Formula (0.3.4) translates into a di-
chotomy on the inside dynamics, by following the formalism of neutral fractions proposed
in [152] (see Figure 132). When aerotaxis is low, i.e. a0 ≤

√
r0D, the wave is pulled,

whereas when aerotaxis is high, i.e. a0 >
√
r0D, the wave is pushed. This has been shown

numerically and investigated mathematically in Chapter 2. Moreover, the same dynamics
is observed in the Potts model.

Finally, through variations on the Go or Grow hypothesis, despite its simplicity, we
show that the conclusions of the elementary Go or Grow model (0.3.3) seem to be valid for

2This Figure can be seen as an adaptation of Figure 9 to the present model.
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more general models. We do so, first by introducting a second threshold C ′0, below which
aerotaxis stops:

a(C, ∂xC) = a01C′0<C<C0
sign(∂xC)

Numerically and to some extent analytically, we show that Formula (0.3.4) is a good
approximation of the propagation speed (at most 15% relative error). In a second step, we
consider more involved aerotactic responses and illustrate their qualitative influences via
numerical simulations.

0.3.2 When SGG interact with Expansion by Cell Division and Diffu-
sion. Analysis of a Minimal Model.

The work presented just above has shown the relevance of the Go or Grow model, as a
minimal model to explain cell propagation induced by SGG and where cell division plays
a role. In this Chapter, we carry out a thorough mathematical analysis of the Go or Grow
model3: {

∂tρ− ∂xxρ+ ∂x (χ1N<Nthsign(∂xN)ρ) = 1N>Nthρ

∂tN −D∂xxN = −ρN,
(0.3.6a)
(0.3.6b)

where we have rescaled the Equation and swapped the label of the oxygen field for N
(nutrient). This analysis consists (i) in a short-time analysis of the existence and uniqueness
of the Cauchy problem; (ii) in the study of the long-time dynamics of System (0.3.6).

Because of the discontinous advection term ∂x(χ1N<Nthsign(∂xN)ρ), the question of
the well-posedness of System (0.3.6) turns out to be rather complicated. In order to
circumvent this issue, we consider the problem in the framework, where N is increasing.
Thus, there exist a unique position x̄(t) of the threshold (i.e. N(t, x̄(t)) = Nth). The
strategy then consists in applying Banach’s Fixed Point Theorem to the curve x̄( · ), which
establishes existence and uniqueness locally in time of the solution. We here stress two
subtleties of the strategy of proof. First, x̄( · ) is given by an ODE, but contrary to the
standard ODE theory, the fixed point on x̄( · ) is applied in a W 1,p space for p ∈ (4,+∞).
Second, the strategy relies on a subtle endpoint parabolic regularity estimate on N . For
the sake of concision and since the framework involves many notations, we do not state
explicitly the obtained Theorem and refer to Chapter 2. The strategy of reducing the
Cauchy problem for the PDE to the Cauchy problem of the scalar function in time t 7→ x̄(t)
(which implicitly depends on the PDE) is reminiscent of studies in one-dimensional free
boundary problems (see, e.g. Chapter 3 in [67] on the Stefan problem, [117] in the context
of front propagation, or [132] in the context of mutation-selection dynamics in evolutionary
biology).

Then, we move on to describe all traveling waves (ρσ, Nσ) with speed σ > 0 and give
a description of their exponential decay to the right side of the threshold:

Theorem 0.3.1. There exists a minimal speed σ∗ > 0, such that there exists a bounded
and nonnegative traveling wave profile (ρσ(z), Nσ(z)) if and only if σ ≥ σ∗. Given σ ≥ σ∗,
the traveling wave profile (ρσ(z), Nσ(z)) is unique. Moreover, the exact value of σ∗ is given
by4:

σ∗ =

 χ+
1

χ
if χ > 1

2 if χ ≤ 1

(0.3.7)

3Here, we have changed the notations as well as normalized some constants. N represents the oxygen,
D = 1, r0 = 1, a0 = χ, b(C) = −C and Doxy = D.

4This Formula is the same than Formula (0.3.4). We just have changed notations and normalized some
constants.
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Furthermore, the functions ρσ satisfy the following properties for z ≥ 0 with Cσ, Dσ > 0:

– for σ > σ∗, ρσ(z) = Aσe−µ−(σ)z +Bσe−µ+(σ)z, with µ±(σ) = σ±
√
σ2−4
2

– for χ > 1, σ = σ∗ = χ+ 1
χ , ρ

σ∗(z) = Aσ
∗
e−µ+(σ∗)z and µ+(σ∗) = χ

– for χ ≤ 1, σ = σF/KPP, ρ
σF/KPP(z) = AσF/KPP((1− χ)z + 1)e−z

Next, we apply the methodology of neutral fractions introduced in [82, 152] to describe
the inside dynamics of the waves, extending thereby their work to a reaction-diffusion-
advection equation. We prove that:

– if χ > 1 and σ = σ∗ = χ+ 1
χ , then the wave is pushed.

– if σ = 2 or σ > σ∗, then the wave is pulled.

As we have mentioned before, we expect the biologically relevant spreading speed to be
the minimal wave speed σ∗, or equivalently the wave speed, whose profile has the steepest
decrease. To support this claim, we give a weak characterization of the asymptotic behavior
of the instantaneous spreading speed ˙̄x(t) under the restrictive (but rather reasonable)
assumption that ˙̄x ∈ L∞(R+).

Theorem 0.3.2. Suppose that ˙̄x ∈ L∞(R+) and that:

ρ0

ρσ∗
∈ L∞.

Then:
lim inf
t→+∞

˙̄x(t) ≤ σ∗.

Theorem 0.3.3. Suppose that ˙̄x ∈ L∞(R+) and that ρ0 ∈ L∞. Then, we have that:

lim sup
t→+∞

˙̄x(t) ≥ σ∗.

Notice in Theorem 0.3.2 that the initial datum ρ0 cannot decrease slower than ρσ
∗ .

These results show that for a biologically relevant initial datum ρ0, which is expected to
decay fast, the only reasonable candidate for convergence to a traveling wave profile is the
one associated with the minimal wave speed. Nevertheless, convergence in a stronger sense
is still an open question.

Finally, we propose a kinetic model as an alternative description on a mesoscopic scale.
This model is still currently under investigation, but we briefly study the corresponding
two-velocity model:{

∂tf
±±ε−1∂xf

± = ε−2
(
M(±ε−1;N, ∂xN)ρ− f±

)
+ 1N>Nthρ

∂tN −D∂xxN = −ρN,
(0.3.8a)
(0.3.8b)

where ρ := f++f−

2 and,

M(±ε−1;N, ∂xN) =


1 if N > Nth
1± εχ if N ≤ Nth and ∂xN ≥ 0
1∓ εχ if N ≤ Nth and ∂xN < 0

,

with χ < ε−1. We establish an equivalent to Theorem 0.3.1 for subsonic (i.e. |σ| < ε−1)
traveling wave solutions of System (0.3.8). For the sake of concision, we do not state the
exponential decay properties here and refer to Chapter 2 Section 2.6.
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Theorem 0.3.4. In the parabolic regime ε−2 > 1 (see [26] for the terminology), there exists
a minimal speed σ∗ ∈ (1, ε−1), such that for any σ ∈ [σ∗, ε−1), there exists a corresponding
bounded and nonnegative traveling wave profile (f+,σ, f−,σ, Nσ). In addition, for σ ∈
[σ∗, ε−1) fixed, the traveling wave profile (f+,σ(z), f−,σ(z), Nσ(z)) is unique. For σ ∈
[0, σ∗), there does not exist a traveling wave profile. The expression of σ∗ is given by:

σ∗ =


χ+ 1

χ

1 + ε2
if χ > 1

2

1 + ε2
if χ ≤ 1

(0.3.9)

In the hyperbolic regime ε−2 < 1 (see [26]), there does not exist any subsonic traveling wave
profile, i.e a wave traveling with speed σ < ε−1.

In addition, the traveling wave solutions given by Theorem 0.3.4 correspond exactly to
the traveling wave solutions given by Theorem 0.3.1 in the diffusive limit when ε→ 0.

0.3.3 Mathematical Modeling of Cell Collective Motion triggered by
SGG

This Chapter has been written in collaboration with Vincent Calvez and Roxana
Sublet, a graduate student, who did an internship supervized by Vincent Calvez and
myself. The aim of the Chapter is to discuss broadly some of the mathematical questions
that arise in models of SGG. Although most of the content discusses results from the
literature, at the end we present a novel result.

We start by a discussion of the seminal paper [114], which proposes a model5 for the
movement of bacteria in a 1D capillary tube, such as in the experiment by Adler [5]:

{
∂tρ+ ∂x (−d∂xρ+ χρ∂x log(S)) = 0

∂tS = D∂xxS − kρ,
(0.3.10a)
(0.3.10b)

where ρ describes the cell density, χ a chemotactic strength6 and S the signaling molecule,
which satisfies limx→+∞ S

0(x) = Sinit. Notice that Equation (0.3.10a) is under conservative
form and hence mass is conserved M :=

∫
R ρ(t, x)dx. The following result was established:

Theorem 0.3.5 (Keller and Segel [114]). Assume D = 0 and χ > d. Then, there exists a
speed c > 0 7(depending on M,k and Sinit, but not on χ, nor d) and a stationary solution
of System (0.3.10) in the moving frame (ρ(x − ct), S(x − ct)), such that ρ is positive and
integrable,

∫
R ρ(z)dz = M , and S is increasing between the following limiting values{

limz→−∞ S(z) = 0
limz→+∞ S(z) = Sinit

Strikingly the wave speed does not depend on χ and d, which stands in contrast with
results that we will present below.

Nevertheless, System (0.3.10) suffers from two major drawbacks. First, via numerical
simulation we show that the Cauchy problem does not guarantee positivity. Second, we

5This model has previously been discussed in Subsection 0.2.1.
6Note here that χ does not have the units of a speed, but that of a diffusion constant.
7In this Section, we denote the traveling wave speed by c, rather than σ, which has been the case until

now.
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do a brief survey of works indicating that the obtained wave in Theorem 0.3.5 is unstable.
In order to remedy these two issues, we discuss two relevant extensions of the preceding
model:

Scenario 1: Strongest advection at the back. We discuss the study of [160], where a
second chemoattractant secreted by the bacteria is added:

∂tρ+ ∂x (−d∂xρ+ ρ (χSsign(∂xS) + χAsign(∂xA))) = 0

∂tS = DS∂xxS − k(S, ρ)

∂tA = DA∂xxA+ βρ− αA,

(0.3.11a)
(0.3.11b)
(0.3.11c)

Note again that mass is conserved and bacteria are assumed to respond to the gradients
in a binary way. In addition, the advection induced is merely the sum of the responses to
each gradient. This leads to the following Theorem:

Theorem 0.3.6 (Saragosti et al. [160]). There exists a speed c > 0, and a positive limit
value S− < Sinit, such that System (0.3.11) admits a stationary solution in the moving
frame (ρ(x−ct), S(x−ct), A(x−ct)), such that ρ is positive and integrable,

∫
R ρ(z)dz = M ,

A decays to zero on both sides, and S is increasing between the following limiting values{
limz→−∞ S(z) = S−
limz→+∞ S(z) = Sinit

Moreover the speed c > 0 is determined by the following implicit relation,

χS − c = χA
c√

c2 + 4αDA

Since A is increasing, then decreasing, in the back of the wave there is a stronger
advection than in the front of the wave. Interestingly, we note that here the signaling
molecule is not entirely consumed, contrary to the case presented in Theorem 0.3.5.

Scenario 2: Cell compensated by growth. Then, we summarize the work on the Go or
Grow model, presented in the first two Chapters. We argue that growth, i.e. cell division,
can be an essential ingredient for propagation of cells under a single SGG.

Finally, we extend the Go or Grow hypothesis to include a logarithmic sensitivity to
the gradient8, such as was initially proposed by Keller and Segel [114]:{

∂tρ+ ∂x (−d∂xρ+ ρχ1S<S0∂x log(S)) = r1S>S0ρ

∂tS = D∂xxS − k(S, ρ).

(0.3.12a)
(0.3.12b)

This leads to the following new preliminary result:

Theorem 0.3.7. Assume D = 0 and k(S, ρ) = κρS for some κ > 0. There exists a speed
c > 0, and a positive limit value ρ− > 0, such that System (0.3.12) admits a stationary
solution in the moving frame (ρ(x − ct), S(x − ct)), such that ρ and S have the following
limiting values {

limz→−∞ ρ(z) = ρ−
limz→+∞ ρ(z) = 0

and
{

limz→−∞ S(z) = 0
limz→+∞ S(z) = Sinit

Moreover the speed c > 0 is given by the following dichotomy,

c = 2

√
rmax

{
d, χ log

(
Sinit

S0

)}
(0.3.13)

8Here again, we stress that the parameter χ denotes a chemotactic strength as for System (0.3.10) and
has the units of a diffusion constant.
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Interestingly, the condition that c ≥ 2

√
rχ log

(
Sinit
S0

)
is imposed by the dynamics at

the back of the wave, which stands in strong opposition to the more standard F/KPP
case, where the wave speed selection is imposed by the dynamics at the very front of the
wave. Finally, through numerical simulations, we give evidence that the Cauchy problem
converges to the traveling wave propagating with speed c given by Formula (0.3.13). Of
note, in the proof we show here again that c given by Formula (0.3.13) is in fact the minimal
wave speed.

0.3.4 A Paradigm for Well-balanced Schemes for TravelingWaves emerg-
ing in Biological Models

In this Chapter, we expose a work in collaboration with Benoit Frabrèges. This Chap-
ter is expected to be soon submitted as an article, but before we wish to improve some
aspects of this work, such as possibly improving one of the schemes.

As we have already stressed, numerical investigation for models of SGG are extremely
useful. Yet, this requires good numerical schemes, in order to capture for instance the
correct exponential decay of the profiles. The works on WB schemes for kinetic models
(see [37]) or parabolic models (see [87]) are in this respect very insightful. However, as we
have pointed out, in order to design a WB scheme for traveling waves, one requires the
knowledge of the spreading speed σ, which in many cases is not known a priori. In order
to remedy here, we propose the use of LeVeque-Yee’s formula [118, 131]: a traveling wave
φ(x− σt) satisfies the following advection equation:

∂tφ+ σ∂xφ = 0

Integrating over R, we find that:

σ = −
∫
R ∂tφdx

φ(+∞)− φ(−∞)
(0.3.14)

The LeVeque-Yee speed estimator is then the discretized version of Formula (0.3.14) for a
density, which may not necessarily be a traveling wave profile. Combining the LeVeque-Yee
speed estimator with the methodology of WB schemes then leads to a seemingly new type
of numerical schemes, which are particularily well suited for the numerical investigation of
traveling wave phenomena. We illustrate this methodology on two models: the first is a
kinetic Go or Grow model, which we have originally proposed in Chapter 2. This model
has been the starting point of the present work. Then, in a second step, we illustrate the
methodology on the F/KPP equation, which has been done in collaboration with Benoit
Fabrèges.

A Well-balanced Numerical Scheme for a Kinetic Go or Grow Model

We consider the following system:{
∂tf + v∂x = α2 (M(v;N, ∂xN)ρ− f) + 1N>Nthρ

∂tN −D∂xxN = −ρN,
(0.3.15a)
(0.3.15b)

where v ∈ V := αV0, ρ(t, x) := 1
|V |
∫
V f(t, x, v′)dv′, α > 1 and M has as a zero first order

moment when N > Nth, and sign(∂xN)χ, when N ≤ Nth. The dependency in α here as
been chosen such that at least in a formal sense, when α→ +∞, System (0.3.15) converges
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Figure 14: Fitting of the coefficient r = 3/2 of the Bramson shift (see Equation (0.3.19)
with the WB scheme.

to the parabolic Go or Grow System (0.3.6) (see Chapter 2 or the discussion in Subsection
0.2.1). However, we will not investigate numerically this limit α→ +∞.

We discretize f(tn, xi, vj) = fni,j on a grid and for notation purposes introduce a parallel
grid with zi = xi. System (0.3.15) is then treated via the following time-splitting approach:

1. The Equation on N is treated via a standard Crank-Nicholson scheme.

2. a) We use the LeVeque-Yee speed estimator on N to obtain σ̂n.
b) We compute a numerical approximation of f̃(t, z, v) = f(t, x− σ̂nt, v) on the time
interval (tn, tn+1) via a WB scheme, such as presented in [37].
c) Then we transport the solution back to the stationary frame f(tn+1, x, v) =
f̃(tn+1, z + σ̂n∆t, v). To do so we compute the stationary solution of the follow-
ing problem, for i, j and z ∈ (zi, zi+1):


(vj − σ̂n)∂z f̂ = α2

(
M(vj ;N, ∂zN)r̂ − f̂

)
+ 1N>Nth ρ̂

f̂(zi, vj) = f̃(tn+1, zi, vj), for vj > σ̂n

f̂(zi+1, vj) = f̃(tn+1, zi+1, vj), for vj < σ̂n

Finally, we project on the given stationary solution f̂ , i.e. fn+1
i,j = f̂(zi + σ̂n∆t, vj).

We compare the performance of the scheme with other numerical schemes. Although,
numerically this WB scheme may perform poorer at capturing the speed wave compared
to high-order schemes, such as a WENO scheme, it is the only scheme, which captures
in a consistent way simultaneously the wave speed and the exponential decay rate at the
leading edge of the profile: by this we mean that the numerical decay rate is extremely
close to the theoretical decay rate associated with speed σ = σnum, where σnum is the
numerical wave speed.
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A Well-balanced Numerical Scheme for the F/KPP Equation

We consider the one-dimensional F/KPP Equation9:

∂tu− ∂xxu = u(1− u) (0.3.16)

In [87], the author has proposed a well-balanced approach for parabolic equations, which
relies on an explicit Euler time integration. Here, we combine this methodology with
the LeVeque-Yee speed estimator. Yet, numerically we observe that the explicit Euler
time integration seems to only be stable under a parabolic CFL condition. Therefore, we
propose as an alternative an implicit Euler time integration, which numerically appears to
be stable under an hyperbolic CFL condition.

We discretize u = (tn, xi) = uni on a grid and for notation purposes introduce a parallel
grid with zi = xi. The procedure of the numerical scheme can be summarized as follows:

1. We use LeVeque-Yee speed estimator on the profile u in order to obtain an estimate
σ̂n of the propagation speed.

2. Given σ̂n, on the time interval (tn, tn+1) we consider u in the moving frame (t, z) =
(t, x− σ̂n(t− tn)) and denote it by ū, which leads to Equation:

∂tū− σ̂n∂zū− ∂zzū = ū(1− ū) (0.3.17)

In order to deal with the nonlinear term in the right hand-side of Equation (0.3.17),
we freeze the non-linear contribution to the term on each mesh (tn, tn+1)× (zi, zi+1)

by considering that ū(1− ū) ≈ ū
(

1− ūn
i+ 1

2

)
, where ūn

i+ 1
2

=
ūni +ūni+1

2 . We then apply
the methodology proposed in [87] to solve Equation (0.3.17), but we use an implicit
Euler time integration, instead of the explicit Euler method.

3. It remains to shift back to the stationnary frame (t, x). Just as in the case of System
(0.3.15), we use the values ūn+1

i , which approximate ū(tn+1, zi) in order to extrapolate
a value for u(tn+1, xi), i.e. ū(tn+1, zi+ σ̂n∆tn). To do so we consider the stationnary
solution û of Equation (0.3.17) in the cell (zi, zi+1): − σ̂

n∂zû− ∂zzû = û(1− ūn
i+ 1

2

), for z ∈ C̄i+ 1
2

û(zi) = ūn+1
i and û(zi+1) = ūn+1

i+1 ,

(0.3.18)

with ūn
i+ 1

2

=
ūni +ūni+1

2 . Finally, we set un+1
i := û(zi + σ̂n∆tn).

The performances of the scheme are compared to other numerical schemes: a standard
operator splitting approach, where the heat equation is treated with a Crank-Nicolson
scheme, and the same approach as above, but where we set the fixed σ̂n = 0, which we
refer to as the "0-wave" scheme. Interestingly, the WB scheme captures strikingly well the
spreading speed, even for an extremely coarse mesh size. In particular the WB scheme
performs here much better than the other schemes. Then, we investigate to which extend
the scheme is able to capture the Bramson shift, which we briefly recall (see Subsection
0.2.2). We denote by x 1

2
(t), the level set u

(
t, x 1

2
(t)
)

= 1
2 . Asymptotically:

x 1
2
(t) = 2t− r ln(t) + o(ln(t)), (0.3.19)

9This equation corresponds to Equation (0.2.8) with the reaction term f(u) = u(1− u).
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with r = 3
2 . Here we fit r for the numerical curve of x 1

2
(t) (see Figure 14) and find that,

the finer mesh, the closer r gets to 3
2 . However, it seems that r converges to a value slightly

lower than 3
2 .

0.3.5 A Stochastic Individual-based Go or Grow Model and its Prelim-
inary Analysis

In this Chapter, we expose preliminary results of an ongoing collaboration with Vincent
Calvez and Milica Tomašević.

The aim is to investigate a stochastic individual-based model of the Go or Grow Sys-
tem (0.3.6). Nevertheless, the rule determining the switch between the Go and the Grow
behavior, that we have used until now (N ≤ Nth: Go behavior, N > Nth Grow behavior)
leads to a stochastic model, which appears to be hardly tractable in a theoretical analysis.
In fact following the work [105] on a parabolic-parabolic PKS model, we could replace
ρ with a distribution of Dirac functions. But the non-linear term in Equation (0.3.6b)
makes it analytically much less tractable, compared to the study in [105], where ρ merely
intervenes as a source term. Furthermore, the well-posedness analysis of the Cauchy prob-
lem in Chapter 2 shows that it heavily relies on an endpoint regularity estimate of N . A
distribution of Dirac functions being less regular, it points to the fact that in that case the
well-posedness might not be guaranteed.

Hence, we define a new Go or Grow rule: the position of the threshold is set by the
position of the K-th particle. In a sense, we consider that the first K particles consume
enough oxygen for the oxygen concentration to drop below the threshold. This leads then
to the following algorithmic construction of a stochastic process:

1. We consider a birth process through an exponential random variable with rate K.
Once this clock rings, among the K first particles is chosen a particle uniformly at
random, which will divide, i.e. be duplicated.

2. In between two birth times, the particles undergo the following SDE:

dXi
t = χ1

(
∑
j H(Xj

t−Xi
t)>K)

dt+
√

2dW i
t , (0.3.20)

with H the Heaviside function.
∑

j H(Xj
t −Xi

t) then denotes the rank of the particle.
If this rank is above K, then the particles undergo an additional drift. Otherwise,
they merely undergo Brownian motion.

Then, we give an SDE description of the point measure Zt =
∑

i δXi
t
. We start by

introducing some notations: H i(Zt) denotes the position of particle with rank i at time
t, {W i, i ∈ N∗} a family of independent standard one-dimensional Brownian motions and
N (ds, di, dθ) a Poisson point measure on R+×N∗×[0, 1] with intensity ds×

(∑
j≥1 δj(di)

)
×

dθ. Moreover, we denote:

b(x, Zt) := 1{〈Zt,H( ·−x)〉≤K},

which has value 1 if the number of particles to the right of x is not higher than K and
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value 0, otherwise. Then, for f ∈ C2
b (R) we have:

〈Zt, f〉 = 〈Z0, f〉+ χ

∫ t

0

〈Z−s ,1〉∑
i=1

f ′(H i(Zs))(1− b(H i(Zs), Zs))ds

+
√

2

∫ t

0

〈Z−s ,1〉∑
i=1

f ′(H i(Zs))dW
i
s +

∫ t

0

〈Z−s ,1〉∑
i=1

f ′′(H i(Zs))ds

+

∫ t

0

∫
N∗

∫ 1

0
1{i≤〈Zs− ,1〉}1{θ≤b(Hi(Zs− ),Zs− )}f(H i(Zs−))N (ds, di, dθ). (0.3.21)

Next, we postulate that in the large population limit K → +∞, 1
KZt converges to the

solution of the following PDE:
∂tρ− ∂xxρ+ ∂x

(
χ1x≤x̄(t)ρ

)
= 1x>x̄(t)ρ∫ +∞

x̄(t)
ρ(t, x)dx = 1

(0.3.22)

Interestingly, Theorem 0.3.1 remains valid for Equation (0.3.22). Although the rigorous
derivation of this large population limit is postponed to future investigations, we investigate
the stochastic process numerically and show that in the large population limit, when K →
+∞, the spreading speed is given by Formula (0.3.7).

Finally, we apply the methodology of the works in [38, 74] on the ancestral distribution
to this model. This discussion is rather informal, as rigorous results are still under investi-
gation. But we support the claims with numerical simulations. We consider the stochastic
process in the moving frame (t, z) = (t, x−σ∗t) and suppose that it is close to the station-
ary distribution in this frame. For K fixed we then define the ancestral distribution Y i

s,t:
for s ≥ 0, Y i

s,t is the position at time t − s of the ancestor of the particle whose position
at time t is Xi

t . We then conjecture that in the large population limit K → +∞, the
ancestral distribution converges to a stochastic process, which satisfies the following SDE:

dYs = β(Ys)ds+
√

2dWs, (0.3.23)

where β(z) = σ∗ − χ1z≤0 + 2∂zρ
σ∗

ρσ∗
. Moreover its probability distribution v satisfies the

following PDE:
∂sv + Lv = 0, (0.3.24)

where L := −∂zz + ∂z (β · ). To conclude, we show that the dynamics of the ancestral
distribution drastically differ when χ > 1 or χ ≤ 1, which can be seen as an alternative
interpretation to pushed or pulled waves. In fact, when χ > 1, then the probability
distribution v converges exponentially to a stationary distribution, which quantifies in a
sense the contribution of each subpart of the wave. But, when χ ≤ 1 (the case χ = 1 being
slightly special), the probability distribution spreads towards z = +∞: in a sense, in a
pulled wave the ancestors come from the extreme leading edge of the wave.

0.3.6 An Alternative Go or Grow PDE Model and its Preliminary Anal-
ysis

The line of reasoning in the preceding Chapter naturally leads to the question of the
investigation of Equation (0.3.22), which in many ways lends itself to a better analysis than
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the initial Go or Grow System (0.3.6). In this Chapter, we present some preliminary results,
which have emerged from an ongoing collaboration with Christopher Henderson.

The main question, we wish to investigate in this Chapter is the characterization of the
asymptotic behavior of x̄(t). In fact, we conjecture that:

x(t) =


2t− 3

2 log(t) +O(1) if χ < 1

2t− 1
2 log(t) +O(1) if χ = 1(

χ+ 1
χ

)
+O(1) if χ > 1

. (0.3.25)

In the case χ < 1, this means that we would obtain for the asymptotics a (standard)
Bramson shift, which has been well studied in the case of the F/KPP Equation (see [29,
96] for instance). In the case χ = 1, the asymptotics undergo a similar Bramson shift,
but with a different coefficient, which has recently been observed on the Burgers-F/KPP
Equation [9] and a reaction-diffusion equation with a cubic monostable reaction term [83].
The case χ > 1 corresponds to the pushed case, where the result is in accordance with
many results on standard reaction-diffusion equations (e.g. [70, 154, 169]). Moreover
this conjecture is in accordance with results presented on a free boundary problem in [20].
There, the authors have through formal computations determined the asymptotic behavior
of the spreading, which depends merely on the traveling wave profile and how fast the initial
datum decreases. Interestingly, the traveling wave profiles for this free boundary problem
are exactly the same than the traveling wave solutions of Equation (0.3.22). Of note, the
asymptotics (0.3.25) complement Theorems 0.3.2 and 0.3.3, whose proof applies mutatis
mutandis to Equation (0.3.22).

First, we start by proving an existence and uniqueness result for ρ the solution to
Equation (0.3.22) locally in time. The proof is very similar to the analogous result in
Chapter 2 and is based on a fixed point theorem on the curve x̄( · ). Just as in Chapter
2, we need an enpoint regularity estimate, which we achieve by a careful hangdling of the
singularity at the interface.

In a second step, we prove three intermediary results to Conjecture (0.3.25):

Proposition 0.3.8. Suppose that:∫
R
e

min
{

1, 1
χ

}
x
ρ0(x)dx < +∞ (0.3.26)

Then, there exists a constant C ∈ R, such that:

x̄(t) ≤ σ∗t+ C, (0.3.27)

where we recall that σ∗ = 2, when χ ≤ 1, or σ∗ = χ+ 1
χ , when χ > 1.

Note that Condition (0.3.26) requires that the initial datum ρ0 decreases fast enough,
not unlike the condition that ρ0

ρσ ∈ L∞(R) presented in Theorem 0.3.2.
For the next two results, we start by considering P (t, x) :=

∫ +∞
x ρ(t, y)dy, which sat-

isfies:
∂tP − ∂xxP + χ1P≥1∂xP = min{1, P} (0.3.28)

In contrast with Equation (0.3.22), Equation (0.3.28) admits a certain comparison prin-
ciple, which enables us to construct sub- and supersolutions. This then leads to the two
following results:
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Proposition 0.3.9. Suppose that χ = 1 and that:

1. There exists t0 > e
1
e and A > 0, such that for every x ≥ A:

e
− x2

4t0 ≤ P (0, x)

2. There exists B > 0 and β ∈ R, such that for every x ≤ −B:

−x+ α ≤ P (0, x)

Then, there exists a constant K ∈ R, such that:

x̄(t) ≥ 2t− ln(t)

2
−K

Proposition 0.3.10. Suppose that χ < 1 and that:

1. There exists t0 > 0 and A > 0, such that for every x ≥ A:

P (0, x) ≤ e−
x2

4t0

2. There exists B > 0 and β > 0, such that for every x ≤ −B:

P (0, x) ≤ −x
2− χ + β

Then, there exists a constant K ∈ R, such that:

x̄(t) ≤ 2t− 3 ln(t)

2
+K

Finally, for the case χ > 1, we give an asymptotic stability result of the minimal
traveling wave solution. We consider Equation (0.3.22) in the moving frame (t, z) = (t, x−
x̄(t)). Let V = β′, with β = 1

χ−χ1z>0, ρ∞(z) = χε−χ1z>0z and γ :=
(

1
2 min

{
1
χ , χ− 1

χ

})2
.

Then we have the following theorem:

Theorem 0.3.11. There exist θ, φ ∈
[
0, π2

)
such that for η ∈

(
0, 2 cos2(φ)γ

)
, there exists

δ > 0, such that if: ∥∥∥∥∂z (ρ(0, · )

ρ∞

)∥∥∥∥2

L2(eV dz)

< δ

Then, we have: ∥∥∥∥ρ(t, · )

ρ∞
− 1

∥∥∥∥2

L2(eV dz)

≤ δ2

2γ cos2(θ)
e−ηt

The proof, which is reminiscent of a line of reasoning presented in [39], is based on an
energy method and uses a Poincaré inequality, which is deduced from the analysis of the
spectral properties of the linearized operator in L2(eV dz).

0.4 Future Investigations

We give here a brief overview of work that is currently under investigation, as well as a list
of broad open questions, which have been raised by the work presented in this thesis and
which may lead to interesting mathematical work.
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0.4.1 On the Alternative Go or Grow PDE Models

In Chapter 6, we are mainly concerned with the investigation of Equation (0.3.22). How-
ever, we briefly mention yet another alternative Go or Grow Models:

∂tρ− ∂xxρ+ ∂x (χψ(ρ)ρ) = (1− ψ(ρ))ρ, (0.4.1)

where ψ(s) = 1s≥1. Interestingly, Equation (0.4.1) for a general function ψ includes the
Burgers-F/KPP Equation [9], with ψ(s) = s. In many ways, the Burgers-F/KPP Equation
behaves very similarily to the different Go or Grow models. Jing An, Christopher
Henderson and Lenya Rhyzik are currently working on the generalization for Burgers-
F/KPP to Equation (0.4.1) for ψ convex and have obtained results on the asymptotic
behavior of the level sets propagation. In turn, inspired by that methodology, we are
currently working with Christopher Henderson on the case with ψ(s) = 1s≥1, in
order to obtain the same asymptotics than (0.3.25).

Furthermore, these Go or Grow models resemble also greatly a free boundary problem
proposed in [20]: {

∂tu− ∂xxu = u, for x > µt
u(t, µt) = α and ∂xu(t, µt) = β

, (0.4.2)

with α, β ∈ R. In particular, when α > 0 and β = −χα, we recover a very similar dynamic
to the Go or Grow models. In [20], through an elegant, yet non-rigorous argument, the
authors have conjectured the same asymptotics than (0.3.25). We are not aware of any
rigorous proof of these results. But we believe that the work on Equation (0.4.1) could
lead to such a proof, thus contributing to a unified picture of the Go or Grow models,
the Burgers-F/KPP Equation, Equation (0.4.1) with a general ψ and the free boundary
problem (0.4.2).

Finally, these investigations also raise the question whether the asymptotics (0.3.25)
are also valid for the initial Go or Grow model involving the chemical field N (0.3.6). The
argument of [20] presented in Chapter 6 points to this conjecture. However, it is not at all
clear how the dynamics of N interfere. In addition, if the results are true, then a natural
open question is: why does the dynamics of N almost not contribute to the propagation
of the cells?

0.4.2 On the Stochastic Go or Grow Model

We briefly summarize the questions, which we are currently working on with Vincent
Calvez and Milica Tomašević.

First, we wish to give a rigorous proof of the large population limit when K → +∞
and show that in that case the measure 1

K

∑
δXi converge in fact to the solution ρ of

Equation (0.3.22). The study [52] on the N -Branching Brownian motion has shown that
its limit when N → +∞ satisfies a free boundary problem of the form (0.4.2). This makes
us believe that the proof of such a large population limit may well be in reach.

Then, following the work on ancestral distributions [38, 74], we wish to further investi-
gate the link between the stochastic ancestral dynamics and prove rigorously the informal
statements concerning the limit SDE (0.3.23) for Ys,t and its propability distribution v
given by PDE (0.3.24). In particular, as already mentioned in [74], this may lead to an
alternative interpretation of pulled and pushed waves.
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0.4.3 Further Open Questions on SGG

Traveling Waves for the Kinetic Go or Grow Model

In this thesis we have investigated the question of traveling wave solutions for the kinetic
Go or Grow model (0.3.15) in the special two-velocity case (see Chapter 2). For the general
case, the question remains however open. In [35], the existence of traveling waves for a
kinetic model in bacterial chemotaxis has been shown. We believe that the (rather long)
argument also applies to the case of the kinetic Go or Grow model (0.3.15). However, we
wish to proceed differently, by first studying the K-veloctiy case (for K < +∞) and then
using a compactness argument. This might lead to a better understanding of the traveling
wave speed σ.

A General Parabolic Model for Cell Division and SGG

We can propose the following system to model a cell population undergoing taxis induced
by a single SGG and cell division:{

∂tρ− ∂xxρ+ ∂x (χ(N, ∂xN)ρ) = r(N)ρ

∂tN −D∂xxN = −β(N)ρ,

(0.4.3a)
(0.4.3b)

where we suppose that the advection field and division field admit finite fixed values:

lim
x→±∞

χ(N, ∂xN)|(t,x) = χ±, lim
x→−∞

r(N)|(t,x) = 0 and lim
x→−∞

r(N)|(t,x) = 1 (0.4.4)

We wish to investigate the existence of traveling wave solutions (ρ(t, x), N(t, x)) = (ρ(x−
σt), N(x − σt)) for System (0.4.3). Currently, we are working on an existence result for
such a traveling wave, which satisfies the property that ρ does not decrease slower than
the F/KPP traveling wave, i.e. not slower than xe−x. The key observation is that for a
fixed profile N , and thus a fixed advection and division field, the elliptic problem for the
traveling wave profile (σ, ρ) becomes:

−σρ′ − ρ′′ + (χ(z)ρ)′ = r(z)ρ (0.4.5)

But because of Condition (0.4.4) and as long as we can bound in a compact set the possible
values of σ, the dependency of N on the elliptic problem induces merely a compact pertur-
bation. In fact ∂z (α(z) · ) + β(z) · with α(±∞) = β(±∞) = 0 is a compact perturbation
of the Laplacian operator. Hence, we believe that the application of a fixed point theorem
seems in reach. Nevertheless, for now we still have to work on technicalities.

If the proposed strategy were to succeed, the next natural question is then, whether
this traveling wave is unique. Notice that until now in every result of this thesis, the
condition that ρ does not decrease slower than the F/KPP traveling wave was sufficient
to ensure uniqueness. However, in this case the questions remains completely unsolved.
Furthermore, if uniqueness is not guaranteed, the arising question is then: which traveling
wave does the Cauchy problem select, if it selects any at all? From the work here, a natural
supposition would be the selection of the profile with minimal wave speed. Yet, it could
even be that there exist more than one traveling wave profile associated to the minimal
wave speed.

In Chapters 3 and 6, we have briefly discussed the question of the stability of the
traveling wave profiles. Although, this question is different than the preceding one, a
better understanding of the stability properties of the waves may give us insight into the
preceding wave selection problem.
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Chapter 1

Hypoxia triggers Collective
Aerotactic Migration in
Dictyostelium discoideum

This Chapter consists of an article [48], which has been published in the
journal eLife.
It is shown that when a cell colony of Dictyostelium discoideum is cov-
ered, triggered by a quick consumption of the available oxygen, a dense
ring of cells forms and moves outwards at constant speed and density.
Although our contribution to this article consitutes merely a subpart
of the article, we have reproduced the article in its entirety. Our
contribution consists in the mathematical modeling of the experiment
and is the result of a collaboration between Christophe Anjard,
Vincent Calvez, Olivier Cochet-Escard, M.D. and Jean-Paul
Rieu: first, we propose a parabolic mean-field model to describe the phe-
nomenon. Then, we propose an elementary Go or Grow model, which
accounts for division, aerotaxis and diffusion of cells. Through the anal-
ysis of this model, we quantify the contribution of division and aerotaxis
to the propagation speed. Moreover, a study of the inside dynamics is
carried out. Finally, through variations of the Go or Grow model, we
test the validity of its conclusions.
In Appendix A, we have included the figures and figure supplements of
the article.
Moreover, in Appendix B, we have included a commentary [150] to the
work in [23], which considers a very similar experiment to the one pre-
sented in this Chapter, but where the conclusions of the authors differ
slightly from ours.
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Hypoxia triggers collective aerotactic
migration in Dictyostelium discoideum
Olivier Cochet-Escartin1†*, Mete Demircigil2†, Satomi Hirose3,4, Blandine Allais1,
Philippe Gonzalo5,6, Ivan Mikaelian5, Kenichi Funamoto3,4,7, Christophe Anjard1,
Vincent Calvez2†*, Jean-Paul Rieu1†*

1Institut Lumière Matière, UMR5306, Université Lyon 1-CNRS, Université de Lyon,
Villeurbanne, France; 2Institut Camille Jordan, UMR5208, Université Lyon 1-CNRS,
Université de Lyon, Villeurbanne, France; 3Graduate School of Biomedical
Engineering, Tohoku University, Sendai, Japan; 4Institute of Fluid Science, Tohoku
University, Sendai, Japan; 5Centre Léon Bérard, Centre de recherche en
cancérologie de Lyon, INSERM 1052, CNRS 5286, Université Lyon 1, Université de
Lyon, Lyon, France; 6Laboratoire de Biochimie et Pharmacologie, Faculté de
médecine de Saint-Etienne, CHU de Saint-Etienne, Saint-Etienne, France; 7Graduate
School of Engineering, Tohoku University, Sendai, Japan

Abstract Using a self-generated hypoxic assay, we show that the amoeba Dictyostelium

discoideum displays a remarkable collective aerotactic behavior. When a cell colony is covered,

cells quickly consume the available oxygen (O2) and form a dense ring moving outwards at constant

speed and density. To decipher this collective process, we combined two technological

developments: porphyrin-based O2 -sensing films and microfluidic O2 gradient generators. We

showed that Dictyostelium cells exhibit aerotactic and aerokinetic response in a low range of O2

concentration indicative of a very efficient detection mechanism. Cell behaviors under self-

generated or imposed O2 gradients were modeled using an in silico cellular Potts model built on

experimental observations. This computational model was complemented with a parsimonious ‘Go

or Grow’ partial differential equation (PDE) model. In both models, we found that the collective

migration of a dense ring can be explained by the interplay between cell division and the

modulation of aerotaxis.

Introduction
Oxygen is the main electron acceptor for aerobic organism to allow efficient ATP synthesis. This

high-energy metabolic pathway has contributed to the emergence and diversification of multicellular

organism (Chen et al., 2015). While high O2 availability in the environment seems a given, its rapid

local consumption can generate spatial and temporal gradients in many places, including within mul-

ticellular organism. Oxygen level and gradients are increasingly recognized as a central parameter in

various physiopathological processes (Tonon et al., 2019), cancer and development. The well-known

HIF (hypoxia-inducible factor) pathway allows cells to regulate their behavior when exposed to hyp-

oxia. At low O2 levels, cells accumulate HIFa leading to the expression of genes that support cell

functions appropriate to hypoxia (Pugh and Ratcliffe, 2017).

Another strategy used by organisms facing severe oxygen conditions is to move away from hyp-

oxic regions, a mechanism called aerotaxis and first described in bacteria (Engelmann, 1881;

Winn et al., 2013). Aerotaxis will occur at the interface between environments with different oxygen

content, such as soil/air, water/air or even within eukaryotic multicellular organisms between differ-

ent tissues (Lyons et al., 2014). In such organisms, oxygen was proposed to be a morphogen as in

placentation (Genbacev et al., 1997) or a chemoattractant during sarcoma cell invasion
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(Lewis et al., 2016). Aerotaxis may also play a role in morphogenesis. The notion that gradients of

O2 and energy metabolism govern spatial patterning in various embryos dates back to the classic

work of Child, 1941. Such notions have mostly been abandoned due to the inability to visualize such

a gradient or clarify whether they are the result or the cause of developmental patterning

Figure 1. Formation and dynamics of a dense ring of cells after vertical confinement. (A) Snapshots of early

formation, scale bars: 500 mm. (B) Snapshots at longer times imaged under a binocular, scale bars: 1 mm. (C) Close

up on a ring (band with a higher density on the right hand side) already formed moving rightward and showing

different cellular shapes in the ring and behind it, scale bar: 100 mm. (D) Kymograph of cell density over 20 hr

showing the formation and migration of the highly dense ring. (E) Cell density profiles in the radial direction at

selected time points.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Raw data for Figure 1.

Figure supplement 1. Measurement of the confinement height 105 min after covering a cell colony with ~1000
cells plated on plastic with a coverglass using.

Figure supplement 2. Ring formation time decreases with cell number.

Figure supplement 2—source data 1. Raw data for Figure 1—figure supplement 2.

Figure supplement 3. Morphological properties of a propagating ring.

Figure supplement 3—source data 1. Raw data for Figure 1—figure supplement 3.

Figure supplement 4. Effective cell diffusion constant and instantaneous speeds as a function of distance to the
center.

Figure supplement 4—source data 1. Raw data for Figure 1—figure supplement 4.

Figure supplement 5. Cell velocity bias in the spot assay as a function of distance to the center.

Figure supplement 5—source data 1. Raw data for Figure 1—figure supplement 5.
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(Coffman and Denegre, 2007). Even at the single-cell level, in vitro experimental studies on aero-

taxis are rare. One reason might be technical: gradient control and live monitoring of oxygen con-

centrations at the cellular level are difficult. More recently, Chang et al. found an asymmetric

distribution of hypoxia-inducible factor regulating dorsoventral axis establishment in the early sea

urchin embryo (Chang et al., 2017). Interestingly, they also found evidence for an intrinsic hypoxia

gradient in embryos, which may be a forerunner to dorsoventral patterning.

Self-generated chemoattractant gradients have been reported to trigger the dispersion of mela-

noma cells (Muinonen-Martin et al., 2014; Stuelten, 2017), Dictyostelium cells (Tweedy et al.,

2016) or the migration of the zebrafish lateral line primordium (Donà et al., 2013;

Venkiteswaran et al., 2013). The mechanism is simple and very robust: the cell colony acts as a sink

for the chemoattractant, removes it by degradation or uptake creating a gradient that, in turn,

attracts the cells as long as the chemoattractant is present in the environment. Physiologically speak-

ing, self-generated gradients have been demonstrated to increase the range of expansion of cell col-

onies (Cremer et al., 2019; Tweedy and Insall, 2020) and to serve as directional cues to help

various cell types navigate complex environments, including mazes (Tweedy et al., 2020). Recently,

it was demonstrated that after covering an epithelial cell colony by a coverglass non permeable to

O2, peripheral cells exhibit a strong outward directional migration to escape hypoxia from the center

of the colony (Deygas et al., 2018). This is a striking example of a collective response to a self-gen-

erated oxygen gradient by eukaryotic cells. Oxygen self-generated gradients could therefore play

important roles in a variety of contexts, such as development, cancer progression, or even environ-

mental navigation in the soil.

Dictyostelium discoideum (Dd) is an excellent model system to study the fairly virgin field of aero-

taxis and of self-generated gradients. Dd is an obligatory aerobic organism that requires at least 5%

O2 to grow at optimal exponential rate (Cotter and Raper, 1968; Sandonà et al., 1995) while

slower growth can occur at 2% O2. However, its ecological niche in the soil and around large amount

of bacteria can result in reduced O2 availability. During its multicellular motile stage, high oxygen

level is one of the signal used to trigger culmination of the migrating slug (Xu et al., 2012). For

many years, Dd has been a classical organism to study chemotaxis and has emulated the develop-

ment of many models of emergent and collective behavior since the seminal work of Keller and

Segel (Hillen and Painter, 2009; Keller and Segel, 1970). An integrated approach combining bio-

logical methods (mutants), technological progress, and mathematical modeling is very valuable to

tackle the issue of aerotaxis.

In this article, we study the influence of O2 self-generated gradients on Dd cells. Using a simple

confinement assay, microfluidic tools, original oxygen sensors and theoretical approaches, we show

that oxygen self-generated gradients can direct a seemingly collective migration of a cell colony.

Our results confirm the remarkable robustness

and long-lasting effect of self-generated gra-

dients in collective migration. This case where

oxygen is the key driver also suggests that self-

generated gradients are widespread and a pos-

sible important feature in multicellular

morphogenesis.

Results

Confinement triggers formation
and propagation of a self-
sustained cell ring
To trigger hypoxia on a colony of Dd cells, we

used a vertical confinement strategy

(Deygas et al., 2018). A spot of cells with a

radius of about 1 mm was deposited and cov-

ered by a larger glass coverslip with a radius of 9

mm. We measured the vertical confinement

through confocal microscopy and found the

Video 1. Initial phase (0–4 hr) of ring formation and

migration. Scale bar: 500 mm.

https://elifesciences.org/articles/64731#video1
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height between the bottom of the plate and the coverslip to be 50 mm (Figure 1—figure supple-

ment 1).

Using spots containing around 2000 cells (initial density around 103 cells/mm2), the formation of a

dense ring of cells moving outwards was observed as quickly as 30 min after initiation of the confine-

ment (Figure 1A and Video 1). This formation time however depended non-linearly on initial cell

density (the denser, the faster, Figure 1—figure supplement 2). Once triggered, this collective

migration was self-maintained for tens of hours, even days and the ring could, at these points, span

centimeters (Figure 1B).

Notably, as the ring expanded outwards, it left a trail of cells behind. This led to the formation of

a central zone populated by cells which did not contribute directly to the migration of the ring

(Figure 1B) but were still alive and moving albeit a clear elongated phenotype resembling pre-

aggregative Dd cells (Figure 1C and Video 2). In comparison, cells in the ring or outside the colony

were rounder, as usual vegetative cells (Delanoë-Ayari et al., 2008).

To study the properties of the ring, we computed density profiles using radial coordinates from

the center of the colony to study cell density as a function of time and distance to the center

(Figure 1D–E). We found that after a transitory period corresponding to the ring passing through

the initial spot, the density in the ring, its width and its speed all remained constant over long time

scales (Figure 1—figure supplement 3). The speed and density of the ring were found to be 1.2 ±

0.3 mm/min (mean ± std, N=9 independent experiments) and 1.9 103 ± 0.3 103 cells/mm2 (mean ±

std, N=4 independent experiments, that is fourfold higher than behind it, Figure 1E) respectively.

The density of cells left behind the ring was also found to remain constant after a transient regime

(Figure 1D). As the diameter of the ring increased over time, the absence of changes in morphology

implies an increase of the number of cells and thus an important role of cell division.

Overall, this self-sustained ring propagation is very robust and a long lasting collective phenotype

that can easily be triggered experimentally. This shows that the spot assay is an excellent experimen-

tal system to study the response of a variety of cell types to vertical confinement and its physiologi-

cal consequences (Deygas et al., 2018).

Cell dynamics in different regions
Following the reported shape differences, we questioned how cells behaved dynamically in different

regions. To do so, we performed higher resolution, higher frame rate experiments to allow cell track-

ing over times on the order of tens of minutes. Both the cell diffusion constant and instantaneous

cell speeds were fairly constant throughout the entire colony (Figure 1—figure supplement 4). Cell

diffusion was 28.2 ± 1.4 mm2/min (N=3 indepen-

dent experiments, each containing at least 2000

cells), comparable to our measurement of activ-

ity at very low oxygen level in the microfluidic

device (see below). To test the influence of

motion bias, we projected cell displacements on

the radial direction and computed mean speeds

in this direction as a function of distance to the

center. Random motion, either persistent or not,

would lead to a null mean radial displacement

whereas biased migration would be revealed by

positive (outward motion) or negative (inward

motion) values. Here, we found that significantly

non-zero biases were observed only in a region

spanning the entire ring and a few tens of

microns behind and in front of it with the stron-

gest positive biases found in the ring (Figure 1—

figure supplement 5).

Overall, our results show that the different

regions defined by the ring and its dynamics can

be characterized in terms of cell behavior: (i)

behind the ring in the hypoxic region: elongated

Video 2. High framerate, high-resolution imaging of

cell dynamics in and behind the ring over 15 min. Time

is in min:s and the scale bar represents 100 mm.

https://elifesciences.org/articles/64731#video2
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shape, normal speeds, and low bias; (ii) in the ring: round shape, normal speeds and high bias.

Response of Dd cells to controlled oxygen gradients
The spot assay is experimentally simple but is not ideally suited to decipher the response of Dd cells

to hypoxia since local concentrations and gradients of oxygen are coupled to cell dynamics and thus

very difficult to manipulate. We hence designed a new double-layer PDMS microfluidic device allow-

ing to quickly generate oxygen gradients in a continuous, controlled manner (Figure 2A). Briefly,

cells were seeded homogenously within a media channel positioned 500 mm below two gas channels

continuously perfused with pure nitrogen on one side and air on the other. As PDMS is permeable

to these gases, the gas flows imposed hypoxic conditions on one side of the media channel while

the other was kept at atmospheric oxygen concentration. Of note, the distance between the two

gas channels, thereafter called the gap, varied from 0.5 mm to 2 mm in order to modify the steep-

ness of the gradients in the median region of the media channels (Figure 2A and

Materials and methods).

To make sure that the gas flows were sufficient to maintain a constant O2 distribution against lea-

kages and against small variation in the fabrication process, we also developed O2-sensing films to

be able to experimentally measure O2 profiles both in the microfluidic devices and in the spot assay.

These films consisted of porphyrin based O2 sensors embedded in a layer of PDMS. As O2 gets

depleted, the luminescence quenching of the porphyrin complex is reduced leading to an increase

in fluorescence intensity (Ungerböck et al., 2013). Quantitative oxygen measurements were then

extracted from this fluorescent signal using a Stern-Volmer equation (see Materials and methods

and Figure 2—figure supplements 1–4 for details).

Within 15 min, we observed the formation of a stable O2 gradient in the devices closely resem-

bling numerical predictions with or without cells (Figure 2B and Figure 2—figure supplements 5–

7).

We then turned our attention to the reaction of the cells to this external gradient. We first noticed

that depending on local O2 concentrations, cell motility was remarkably different. Using cell tracking,

we found that cell trajectories seemed much longer and more biased in hypoxic regions (Figure 2C).

These aerokinetic (large increase in cell activity) and aerotactic responses were confirmed by quanti-

fying the mean absolute distance travelled by cells (Figure 2D top), or the mean distance projected

along the gradient direction (Figure 2D bottom) in a given time as a function of position in the

device (Figure 2D). Since cells in the microfluidic devices were also experiencing oxygen gradients,

we further tested if the observed was true aerokinesis. To do so, we compared cell motility in

homogenous environments of either 20.95% or 0.4% O2. We found cell diffusion constant to be

D=40.2±9.6 mm2/min (mean ± std) at 0.4% (Figure 2—figure supplement 8), comparable to our

measurements in the center of the spot (Figure 1—figure supplement 4). At atmospheric oxygen

concentrations though, this effective diffusion was clearly reduced as we measured it to be

D=19.2±8.8 mm2/min (Figure 2—figure supplement 8). The very significant difference (p<0.0001)

demonstrates that Dd cells show an aerokinetic positive response to low oxygen, even in the

absence of gradients. The second important observation stemming from the microfluidic experi-

ments is an accumulation of cells at some midpoint within the cell channel (Figure 2E). Naively, one

could have expected cells to follow the O2 gradient over its entire span leading to an accumulation

of all cells on the O2 rich side of the channel. This did not happen and, instead, cells seemed to stop

responding to the gradient at a certain point. Similarly, we observed a strong positive bias in hypoxic

regions but the bias quickly fell to 0 as cells moved to oxygen levels higher than about 2%

(Figure 2D), confirming that the observed cell accumulation was a result of differential migration

and not, for example, differential cell division. In addition, if we inverted the gas channels halfway

through the experiment, we observed that the cells responded in around 15 min (which is also the

time needed to re-establish the gradient, see Figure 2—figure supplement 6) and showed the

same behavior, albeit in reverse positions. We measured the bias for the different gaps and for the

situation of reversed gradient and obtained a value of 1.1 ± 0.4 mm/min (N=6, three independent

experiments and for each, both directions of the gradient, each value stemming from a few hundred

cells).

Of note, the position at which cells accumulated and stopped responding to the gradient was still

in the region were the gradient was constantly increasing. This led to the hypothesis that, in addition
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Figure 2. Dictyostelium single cells are attracted by an external O2 gradient when O2 level drops below 2%. (A) Schemes of the new double-layer

PDMS microfluidic device allowing the control of the O2 gradient by the separation distance (gap) between two gas channels located 0.5 mm above

the three media channels and filled with pure nitrogen, and air (21% O2). (B) Measured O2 concentration profiles 30 min after N2-Air injection to the left

and right channels respectively (0–21% gradient) as a function of the position along the media channel for the three gaps. Error bars (see Methods) are

reported only for gap 1 mm for clarity. The inset shows the 0–2.5% region under the nitrogen gas channel (arrows, see E). (C) Trajectories lasting 1 hr

between 3 hr and 4 hr after establishment of a 0–21% gradient. Cells are fast and directed toward the air side in the region beyond the �1000 mm limit

(O2<2%). (D) Cell net displacement over 30 min (end to end distance, top kymograph) and 30 min displacement projected along gradient direction

(bottom kymograph). Cells are fast and directed toward O2, where O2<2%, within 15 min after 0–21% gradient establishment at t=0. At t=180 min, the

gradient is reversed to 21–0% by permuting gas entries. Cells within 15 min again respond in the 0–2% region. (E) Relative cell density histogram

(normalized to t=0 cell density) as a function of the position along media channel. Top panel: long term cell depletion for positions beyond �1600 mm

(O2<0.5%, see inset of B) and resulting accumulation at about �1200 mm for gap 1 mm channel. The overall relative cell density increase is due to cell

divisions. Bottom panel: cell depletion and accumulation at 10 hr for the three gaps. The empty and filled arrows pointing the limit of the depletion

region, and max cell accumulation respectively are reported in the inset of B.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Raw data for Figure 2.

Figure supplement 1. Oxygen profile measurements inside the microfluidic gradient generator device with a sensing film mounted on the bottom of
the media channel.

Figure supplement 1—source data 1. Raw data for Figure 2—figure supplement 1.

Figure supplement 2. Typical calibration data of sensing films mounted on a microfluidic device.

Figure supplement 2—source data 1. Raw data for Figure 2—figure supplement 2.

Figure supplement 3. Typical calibration data and oxygen profile measurement with covered sensing films for the spot assay.

Figure supplement 3—source data 1. Raw data for Figure 2—figure supplement 3.

Figure supplement 4. Image analysis pipeline to quantify oxygen map from O2 sensitive sensing films.

Figure supplement 5. Numerical simulations of oxygen profiles.

Figure supplement 5—source data 1. Raw data for Figure 2—figure supplement 5.

Figure supplement 6. Experimental oxygen gradient establishment in the microfluidic device (gap 0.5 mm).

Figure supplement 6—source data 1. Raw data for Figure 2—figure supplement 6.

Figure supplement 7. Influence of plated cells on the steady oxygen tension in the microfluidic device (Computational results).

Figure supplement 7—source data 1. Raw data for Figure 2—figure supplement 7.

Figure supplement 8. Aerokinesis of Dd cells in homogenous environments.

Figure supplement 8—source data 1. Raw data for Figure 2—figure supplement 8.
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to gradient strength, O2 levels also play an important role in setting the strength of aerotaxis dis-

played by Dd cells.

Furthermore, when we compared experiments performed with different gaps, we found that the

position of cell accumulation varied from one channel to another (Figure 2E). However, our O2 sen-

sors indicated that the accumulation occurred at a similar O2 concentration of about 1% in all three

channels (inset of Figure 2B) thus strongly hinting that the parameter controlling the aerotactic

response was O2 levels.

Overall, these experiments in controlled environments demonstrated two main features of the

response of Dd cells to hypoxia: a strong aerokinetic response and a positive aerotactic response,

both modulated by local O2 levels regardless of the local gradient. These results reveal a subtle

cross talk between O2 concentrations and gradients in defining cell properties and it would be very

informative, in the future, to study in details the reaction of Dd cells to various, well defined hypoxic

environments where O2 concentrations and gradients can be independently varied.

Figure 3. Interplay between ring dynamics and O2 profiles. (A) (i) Treated image showing cell distribution at t=10h, (ii) raw fluorescent signal indicative

of strong O2 depletion, (iii) reconstructed image showing the center of mass of all detected cells and quantitative O2 profiles (colorbar, in % of O2),

scale bars: 1 mm. (B) O2 profiles averaged over all angles and shown at different times. (C) Radial profile of cell density and O2 concentration at t=10h

showing the position of the ring relative to the O2 profile. (D) Kymograph of O2 concentration (colorbar in %) with the position of the ring represented

as a red line. The colormap is limited to the 0–2% range for readability but earlier time points show concentrations higher than the 2% limit. (E) O2

concentration as measured at the position of the ring as a function of time showing that the ring is indeed following a constant concentration after a

transitory period.

The online version of this article includes the following source data for figure 3:

Source data 1. Raw data for Figure 3.
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Coupled dynamics between oxygen profiles and collective motion
Thanks to these results, we turned our attention back to the collective migration of a ring of cells

and asked whether similar aerotactic behaviors were observed under self-generated gradients. To

do so, we performed spot experiments on the O2-sensing films described above which allowed us to

image, in parallel, cell behavior and O2 distribution (Figure 3A, Figure 2—figure supplement 3 and

Video 3).

In a first phase, preceding the formation of the ring, cell motion was limited and the structure of

the colony remained mostly unchanged. As O2 was consumed by cells, depletion started in the cen-

ter and sharp gradients appeared at the edges of the colony (Figure 3B–C).

Then, the ring formed and started moving outwards, O2 depletion continued and the region of

high O2 gradients naturally started moving outwards (Figure 3B). At this point, coupled dynamics

between the cells and the O2 distribution appeared and we observed that the position of the ring

closely followed the dynamics of the O2 field (Figure 3D), that is it followed a constant concentration

of oxygen of 0.25% (Figure 3C).

In the process, three distinct regions were created. Behind the ring, O2 was completely depleted

and thus no gradient was visible. In front of the ring, the O2 concentration remained high with high

gradients. Finally, in the ring region, O2 was low (<1%) and the gradients were strong. Based on our

results in externally imposed gradients, we would thus expect cells to present a positive aerotactic

bias mostly in the ring region which is indeed what we observed (Figure 1—figure supplement 5).

Minimal cellular Potts model
Based on these experimental results, we then asked whether this subtle response of Dd cells to com-

plex oxygen environments was sufficient to explain the emergence of a highly stable, self-maintained

collective phenomenon. To do so, we developed cellular Potts models based on experimental obser-

vations and tested whether they could reproduce the observed cell dynamics. Briefly, the ingredient

underlying the model are as follows (details can be found in the Materials and methods section).

First, all cells consume the oxygen that is locally available at a known rate (Torija et al., 2006). Cell

activity increases at low O2. Cells respond positively to O2 gradients with a modulation of the

strength of this aerotaxis based on local O2 concentrations, as observed in our microfluidic experi-

ments. Finally, all cells can divide as long as they sit in a high enough O2 concentration (chosen at

0.7%) since it was demonstrated that cell division slows down in hypoxic conditions (Schiavo and

Bisson, 1989; West et al., 2007). Of note, all parameters were scaled so that both time and length

scales in the Potts models are linked to experi-

mental times and lengths (see

Materials and methods).

Although this model is based on experimental

evidence, some of its parameters are not directly

related to easily measurable biological proper-

ties. Therefore, we decided to fit our parameters

to reproduce as faithfully as possible the results

of our microfluidic experiments. Through a trial

and error procedure, we managed to reproduce

these results qualitatively and quantitatively

(Video 4) in terms of collective behavior, cell

accumulation, and individual cell behavior (Fig-

ure 4—figure supplement 1).

We then applied this model and added O2

consumption by cells, with initial conditions mim-

icking our spot assay and other ingredients mim-

icking the vertical confinement. We observed

the rapid formation and migration of a ring

(Figure 4A–B, Video 5). This ring was remark-

ably similar to that observed in experiments. In

particular, we found its speed to be constant

after an initial transitory period (Figure 4C,

Video 3. Reconstruction of cell and oxygen dynamics

from a spot experiment on an oxygen sensor. Cell

positions are shown as black dots, oxygen in colors

(scale bar in %). The entire movie spans 15 hr of

experiment.

https://elifesciences.org/articles/64731#video3
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Figure 4—figure supplement 2). This speed

was also comparable to experimental ones. Simi-

larly, the morphology of these simulated rings

was constant over time with a fixed cell density

and width (Figure 4—figure supplement 2).

Finally, cell behavior was qualitatively well repro-

duced by this model (Figure 4—figure supple-

ment 3).

In terms of coupled dynamics between cell

density and O2 profiles, we found here too that

the driving force behind this collective phenome-

non was the fact that the ring followed a con-

stant O2 concentration (Figure 4D–E).

We then asked what were the key ingredients

in the model to trigger this phenomenon, a

question we explored by tuning our original

Potts model. We started by dividing cell con-

sumption of oxygen by a factor of 3 (Figure 5A)

and found that it did not significantly change the

ring speed but could change the aspect of cell

density in the central region. We then turned our

attention to other key elements in the model.

If we turned off cell division in our models,

the formation of the ring was mostly unchanged

but after a short time, the ring started slowing

down and even stopped as cell density was no

longer sufficient to reach highly hypoxic condi-

tions (comparing Figure 5A and B). Second, we

asked whether the observed and modeled aero-

kinesis was necessary to reproduce the collective

migration. We found that it wasn’t as models ran

at different effective temperatures applied to all

cells regardless of local O2 concentrations all

showed qualitatively similar behavior (see for

example Figure 5C). Of note though, lower

effective temperatures led to less dense rings as

fewer cells were able to start in the ring (Fig-

ure 5—figure supplement 1). Finally, we found

that modulation of aerotaxis by local O2 concen-

trations was essential. Indeed, as we increased

the range of O2 concentration at which aerotaxis

is at play (Figure 5G–H), we found that forming

rings became wider and less dense (Figure 5D–E) to the point where no actual ring could be distin-

guished if aerotaxis was kept constant for all cells (Figure 5I).

These numerical simulations based on cellular Potts models provide a good intuition of the phe-

nomenon and reveal that cell division and aerotactic modulation are the two key ingredients to

reproduce the ring of cells. Because of their versatility, they can also be used to make some predic-

tions on the observed phenomenon. Experimentally, we tested two such predictions to demonstrate

the relevance of the underlying assumptions.

First, we show in Figure 5B the effect of turning cell division off in the simulated spot. A similar

result can be achieved by placing cells in a phosphate buffer medium, lacking nutrients and thus

blocking cell division (Kelly et al., 2021). In this situation, at short time scales, a ring of cells started

forming and expanding outwards in a similar fashion as in nutritive medium (Figure 5—figure sup-

plement 2). After a few hours, however, the ring started slowing down until it completely stopped

and cells started dispersing again. This is in complete agreement with the predictions of the Cellular

Potts Model, as one can see by comparing the density kymographs (Figure 5A and Figure 5—figure

Video 4. Dynamics of the Potts model reproducing

microfluidic experiments. Low oxygen regions are on

the left and high oxygen on the right. Cell positions are

shown as black dots and the entire movie represents

the equivalent of 10 hr of experiments.

https://elifesciences.org/articles/64731#video4
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Figure 4. Minimal Potts model of ring formation and migration. (A) Snapshots of a simulated colony of cells

showing the formation of highly dense ring of cells. (B) Cell density profiles averaged over all angles for four

different times. (C) Corresponding kymograph of cell density (colorbar in cells/mm2) as a function of time and

distance to the center. Quantification in terms of microns and hours is described in the Materials and methods

section. (D) Kymograph of O2 concentration (colorbar in %) with the position of the ring represented as a red line.

The colormap is limited to the 0–10% range for readability but earlier time points show concentrations higher than

the 10% limit. (E) O2 concentration at the ring position as a function of time showing that, here too, the ring

follows a constant O2 concentration.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Raw data for Figure 4.

Figure supplement 1. Adjusting Potts model (right) to microfluidic experiments (left).

Figure supplement 1—source data 1. Raw data for Figure 4—figure supplement 1, experiments corresponding
to the left column.

Figure supplement 1—source data 2. Raw data for Figure 4—figure supplement 1, simulations corresponding
to the right column.

Figure supplement 2. Potts model ring features with parameters adjusted from the microfluidic experiments
(Figure 4—figure supplement 1).

Figure supplement 2—source data 1. Raw data for Figure 4—figure supplement 2.

Figure supplement 3. Comparison of cell behavior in spot experiments (left) and Potts models (right).

Figure supplement 3—source data 1. Raw data for Figure 4—figure supplement 3, experiments corresponding
to the left column.

Figure supplement 3—source data 2. Raw data for Figure 4—figure supplement 3, simulations corresponding
to the right column.

Cochet-Escartin, Demircigil, et al. eLife 2021;10:e64731. DOI: https://doi.org/10.7554/eLife.64731 10 of 34

Research article Computational and Systems Biology Physics of Living Systems



supplement 2) and firmly demonstrates the

importance of cell division in this behavior. At

longer time scales though (t>10h), Dd cells

started forming aggregates and entering a devel-

opmental phase (Video 6). This aggregation is

presumably due to the concomitant expression of

cell adhesion molecules and, apparition of self-

organizing secreted cAMP pulses whose timing

agrees with the one reported in classical free cell

spot aggregation assays (Gregor et al., 2010).

Cell-cell adhesion and cAMP signaling are not

included in our models or numerical simulations

that hence cannot predict the long times in

Video 6. However, the timing is well separated

from the end of the ring expansion period

(t<3.5h). This still demonstrates that the phenom-

enon observed here is relevant for both the sin-

gle cell and collective stages of Dd life cycle.

Second, we used these numerical simulations

to predict the behavior of cells in more complex

environments. One can see the expansion of the

ring as a way for each cell to optimize its own

resources. This begs the question of what hap-

pens when more than one colony is present in

the environment, a problem more directly relevant for real life situations. Can the different colonies

sense their respective presence and adapt accordingly by migrating preferably away from one

another or, on the other hand, will the depletion of oxygen induced by a neighboring colony

increase hypoxia on this side and therefore accelerate migration? In this case, what would happen

when two rings come in contact? We started exploring this question by simulating two colonies put

in close proximity. These simulations predict that the formed rings do not repel each other, instead

they tend to rush toward one another and, when they meet, they fuse together to make an elliptical

front which then relaxes towards a more circular shape (Video 7). We then performed the corre-

sponding experiment and found very similar behavior (Video 7).

Overall, these results show that the cellular Potts model indeed recapitulates all the major experi-

mental observations with only two key ingredients (cell division and aerotactic modulation). How-

ever, they fall short of giving an in-depth quantitative description because they rely on many

parameters and are not amenable to theoretical analysis per se.

’Go or Grow’ hypothesis: a Mean-field approach
In order to complement the methodology of the cellular Potts model, we developed a mean-field

approximation of the latter: the cell density � is subject to a reaction-advection-diffusion partial dif-

ferential equation (PDE):

q�

qt
¼Dr� r�ð Þ�r � a C;rCð Þ�ð Þþ r Cð Þ� (1)

C is the oxygen concentration, a C;rCð Þ corresponds to the aerotactic advection speed and

r Cð Þ to the cell division rate. By assuming radial symmetry in agreement with the experiments, we

propose a C;rCð Þ ¼ a C;qrCð Þ ¼ laero Cð ÞqrC, where laero Cð Þ is the already mentioned aerotactic

strength fitting the microfluidic experiments with an upper O2 concentration threshold C0=0.7%

(Figure 5G and Material and Methods) and r Cð Þ ¼ r0; if C>C0

0; if C<C0

�

is the division rate. When not speci-

fied, we use the same threshold C0 for cell division and aerotaxis as for the cellular Potts model.

Below, this assumption is coined as the ‘Go or Grow’ hypothesis. We thereby revisited the ‘Go or

Grow’ model for glioma cells (Hatzikirou et al., 2012) with the transition between division and

directional motion being mediated by oxygen levels rather than cell density in the mentionned

Video 5. Dynamics of the Potts model reproducing the

spot experiments. Cell positions are shown as black

dots and the oxygen is in colors (in %).

https://elifesciences.org/articles/64731#video5
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study. Congestion effects such as they may arise in the cellular Potts model or in experiments have

been ignored.

Oxygen is subject to a simple diffusion-consumption equation, with b Cð Þ the consumption rate of

oxygen per cell (see Materials and methods):

qC

qt
¼Doxyr� rCð Þ� b Cð Þ� (2)

The results obtained by numerical simulation of this mean-field model are comparable to the

ones already obtained by the cellular Potts model: emergence of a high cell density area traveling at

constant speed s»1:0 mm/min, leaving behind a trail of cells (Figure 6A-B).

Figure 5. Key ingredients of the Potts model by density kymograph (DK) evaluation. (A) DK for the full model with reduced oxygen consumption as a

basis for comparison. (B) DK in the absence of cell division, note the difference in length scale showing a clear limitation of motion in that case. (C) DK

in the absence of aerokinesis (cell activity is not modulated by local oxygen concentrations). (D) DK with a modulation of aerotactic strength as shown in

(G), note the wider ring. (E) DK with a modulation of aerotactic strength as shown in (H). (F) DK with a modulation of aerotactic strength as shown in (I),

no ring appears and cells quickly migrate outwards as shown by the difference in time scales. (G–I) Three different aerotactic modulations, in blue,

compared to the one used in the full model, shown in (A), drawn here as a red dashed line.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Raw data for Figure 5.

Figure supplement 1. Effect of temperature on ring migration in Potts models.

Figure supplement 1—source data 1. Raw data for Figure 5—figure supplement 1.

Figure supplement 2. Ring formation in a phosphate buffer.

Figure supplement 2—source data 1. Raw data for Figure 5—figure supplement 2.
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A general framework for traveling
waves in cells undergoing
aerotaxis and division
From there onwards, we propose a mathematical

framework that investigates general conditions

under which collective behavior of cells undergo-

ing cell division and aerotaxis is triggered. The

aim was to confirm conclusions already obtained

experimentally or through the cellular Potts

model and to decipher the contribution of cell

division to the collective behavior, while also

keeping the framework relatively general such

that it may be applied to other types of collective

cellular behavior.

We first considered models of the form given

by (Equations 1 and 2), independently of the

exact shape of the advection term a C;rCð Þ or

division term r Cð Þ. Because of its relevance for

the study of planar front propagation, we studied

these models in a planar symmetry

(� ¼ � t; xð Þ,C ¼ C t; xð Þ) instead of a radial symme-
try (� ¼ � t; rð Þ,C ¼ C t; rð Þ), neglecting thereby

any curvature effects. We were interested in the

study of a single front moving from left to right.

Introducing the front speed s, the front corre-

sponds to a stationary solution in the moving

frame z ¼ x� st, that is, a traveling wave profile,

satisfying:

�s
q�

qz
¼D

q
2�

qz2
� q

qz
a C;qzCð Þ�ð Þþ r Cð Þ� (3)

In the general case, the theoretical analysis of

such profiles and the determination of the front

speeds s seem out of reach due to the coupling

with the reaction-diffusion equation on the O2

concentration. Nonetheless, it is possible to

derive simple relations between the shape of the

wave and the speed of propagation. By integrat-

ing (Equation 3) over the line, we obtain:

s� a C �¥ð Þ;qzC �¥ð Þð Þð Þ� �¥ð Þ
¼
R

r C zð Þð Þ� zð Þdz (4)

This equation balances the net flux of cells to

the far left-hand with the amount of mass cre-

ated by heterogeneous (oxygen-dependent) cell

division. We illustrated this relationship with the

experimental data from Figure 1E. In order to

approximate the term
R

r C zð Þð Þ� zð Þdz, we used

an observation that we made through numerical

simulations: cell division stops roughly at half of

the peak, meaning that cells left to the peak do

not divide, while cells right to the peak continue

dividing (see Figure 4E and Figure 6— figure

supplement 1). Therefore, we approximated by

Video 6. Spot assay in phosphate buffer. Left: cell

dynamics show the formation and migration of a ring of

cells up to 4 hr at which point it started disintegrating

and aggregates started forming around 10 hr. Right:

polar visualization of cell dynamics with angles shown

vertically and distance to the center horizontally. This

visualization clearly shows the early propagation of a

ring of cells.

https://elifesciences.org/articles/64731#video6

Video 7. Ring fusion during experiments (top) and as

predicted by the Potts model (bottom). Note that this

Potts model is a non-quantitative version and, as a

result, space and time are in arbitrary units and thus

not shown.

https://elifesciences.org/articles/64731#video7
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a rectangle method
R

r C zð Þð Þ� zð Þdz¼ �r0L=2, where L is the length spanned by the ring and � is the

average cell density in the ring. As there is supposedly no advection a C;qzCð Þ�¼ 0 at z¼�¥ this

yields the approximation s»

r0L�
2� �¥ð Þ. Quantitatively, we assume L to be on the order of 300mm

(Figure 1E) and �
� �¥ð Þ, the ratio between cell densities in the ring and in the bulk of cells, to be on

the order of 4 (Figure 1E). This yields an estimate of the wave speed, based solely on the shape of

the cell density profile, of s»0:9 mm/min.

Mathematical analysis of the ‘Go or Grow’ hypothesis
The difficulty to study (Equation 3) analytically led us to propose a simpler version of the mean-field

model that recapitulates the two key ingredients, cell division and aerotaxis, in an original way.

Although it deviates from the reference Potts model in the details, it has the advantage of being

analytically solvable. Cells have two distinct behaviors, depending on the O2 concentration. Below a

certain threshold C0 cells move preferentially upward the oxygen gradient (go), with constant advec-

tion speed a0, but they cannot divide. Above the same threshold they divide (grow) and move ran-

domly without directional bias. This model may be considered as a strong simplification of

(Equation 1), here restricted to the one-dimensional space, where:

a C;qxCð Þ ¼ a Cð Þsign qxCð Þ; witha Cð Þ ¼ 0; if C>C0

a0; if C<C0

�

and r Cð Þ ¼ r0; if C>C0

0; if C<C0

:

�

(5)

The coupling between (Equations 1 and 2) then goes merely through the location of the oxygen

threshold C0. This elementary ‘Go or Grow’ model was meant to 1- demonstrate that its simple

ingredients suffice to trigger a collective motion and 2- determine the relative contributions of cell

division and aerotaxis on the speed of the ring in a general framework.

Interestingly enough, in this case (Equation 3) admits explicit traveling wave solutions (see more

details in the Materials and methods section). Moreover, an explicit formula for the wave speed was

obtained (Figure 6C and Materials and methods for a detailed derivation):

s¼
a0 þ r0D

a0
; if a0 �

ffiffiffiffiffiffiffiffi

r0D
p

2
ffiffiffiffiffiffiffiffi

r0D
p

; if a0 �
ffiffiffiffiffiffiffiffi

r0D
p

(

(6)

To the best of our knowledge, this analytical formula is new and captures basic features of a wave

under a single self-generated gradient. It is remarkable that Formula (Equation 6) does not depend

on the dynamics of oxygen consumption and diffusion. Furthermore, Formula (Equation 6) presents

a dichotomy according to the relative size of aerotaxis strength a0 and the quantity
ffiffiffiffiffiffiffiffi

r0D
p

: in the case

of small-bias (i.e. a0 �
ffiffiffiffiffiffiffiffi

r0D
p

), the wave speed s is independent of aerotaxis and coincides with the

so-called Fisher’s wave speed 2
ffiffiffiffiffiffiffiffi

r0D
p

. This speed is related to the Fisher-KPP equation (Aronson and

Weinberger, 1975; Fisher, 1937; Kolmogorov et al., 1937), which describes front propagation

under the combined effects of diffusion and growth (without advection). However, in the case of

large-bias (i.e., a0>
ffiffiffiffiffiffiffiffi

r0D
p

), aerotaxis is strong enough to contribute to the speed and the wave speed

increases s>2
ffiffiffiffiffiffiffiffi

r0D
p

.

Based on these observations, we propose the fraction ’ ¼ 2
ffiffiffiffiffiffiffiffi

r0D
p

=s as a measure of the relative

contribution of cell division and diffusion to the overall wave speed. Indeed, when aerotaxis is absent

(or as in the small-bias case not contributing to the wave speed), the value of ’ is 1 and the wave is

driven by cell division and unbiased random motion, that is, a reaction-diffusion wave. In the large-

bias case, 1=’ describes how much faster the wave travels, compared to if it were only driven by dif-

fusion and division. We illustrated the behavior of ’ with a heatmap (Figure 6D) as a function of the

parameters a0 and ln 2ð Þ=r0 (the doubling time of the cell population), the diffusion coefficient being

fixed to its experimental value D=30 mm2/min.

We confront this reasoning with the experimental data: as a rough approximation with a0 ¼ 1 mm/

min in experiments, assuming a doubling time of 8 hr for Dd cells, r0 ¼ ln2=480 min�1, we are clearly

in the case of large bias (
ffiffiffiffiffiffiffiffi

r0D
p ¼ 0:2 mm/min) and (Equation 4) yields s ¼ 1:04 mm/min while the

fraction ’ ¼ 40%. The wave travels 2.5 times faster than a wave merely driven by cell division, show-

ing that in this case the dominant ingredient to set the wave speed is aerotaxis. Still, our results can

similarly be applied to other systems in which this balance could be different. Finally, note that the
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density profile of the model (Figure 6E) does not present a sharp front peak as in experiments

(Figure 1D,E), Potts simulations (Figure 3B,C) or in the mean field model (Figure 6A,B). We will

show below that it can be slightly modified to change the profile of the fronts while keeping the ana-

lytical results relevant thus describing a whole class of systems (Figure 6E and Figure 6—figure sup-

plement 1).

Inside dynamics of the wave front
The wave speed of the elementary ‘Go or Grow’ model coincides with Fisher’s speed,

that is s ¼ 2
ffiffiffiffiffiffiffiffi

r0D
p

, in the regime of small bias (a0<
ffiffiffiffiffiffiffiffi

r0D
p

). This is the signature of a pulled wave,

Figure 6. Variations on the ‘Go or Grow’ hypothesis. (A) Cell density and O2 concentration profiles for the mean-field model (Equations 1 and 2). (B)

Corresponding kymograph of cell density (colorbar in cells/mm2) as a function of time and distance to the center. (C) Comparison of wave speeds for

the elementary ‘Go or Grow’ model, given by Formula Equation 6, and the ‘Go or Grow’ model with a second threshold, obtained by numerical

simulation (solid and dotted lines respectively). The relative difference between the speeds of the two models is represented by crosses. (D) Heatmap

of ’ ¼ 2
ffiffiffiffiffiffiffiffi

r0D
p

=s as a measure of the relative contribution of cell division to the overall wave speed s in the space parameter ln 2ð Þ=r0 and a0 for the ‘Go

or Grow’ model (Equation 5), where s is given by Formula Equation 6. The curve a0 ¼
ffiffiffiffiffiffiffiffi

r0D
p

is depicted in black. (E) Cell density and O2 concentration

profiles for the ‘Go or Grow’ model with a0 ¼ 1�m=min,r0 ¼ ln2=480min�1 and C0 ¼ 0:7%. (F) Cell density and O2 concentration profiles for the ‘Go or

Grow’ model with two thresholds: cells undergo aerotaxis with a constant advection speed a0 ¼ 1�m=min when the O2 concentration is in the

range C
0
0
;C0

� �

with C0 ¼ 0:7%, C0
0
¼ 0:1%. In both cases, thresholds coincide with the cusps in the profiles.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Zip file containing raw data for Figure 6 and associated Python code for simulations.

Figure supplement 1. Structural variations of (Equation 1).

Figure supplement 1—source data 1. Zip file containing raw data for Figure 6—figure supplement 1 and associated Python code for simulations.
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meaning that the propagation is driven by the division and motion of cells at the edge of the front,

with negligible contribution from the bulk, and little diversity in the expanding population. In con-

trast, when the bias is large (a0>
ffiffiffiffiffiffiffiffi

r0D
p

) then the wave speed in (Equation 6) is greater than Fisher’s

speed. This is the signature of a pushed wave, meaning that there is a significant contribution from

the bulk to the net propagation, with an expanding population maintaining diversity across expan-

sion, see Birzu et al., 2018; Stokes, 1976 for insights about the dichotomy between pulled and

pushed waves. In particular, it was conjectured that the ratio ’ ¼ 2
ffiffiffiffiffiffiffiffi

r0D
p

=s proposed above controls

the transitions between different regimes of diversity loss in a wide class of reaction-diffusion models

(Birzu et al., 2018; Birzu et al., 2019).

In order to explore this dichotomy between pulled and pushed waves, we used the framework of

neutral labeling (Roques et al., 2012) in the context of PDE models. We colored fractions of the

density profile during wave propagation to mimic labeling of cells with two colors. Then, we fol-

lowed numerically the dynamics of these fractions, and quantified the mixing of the two colors. Our

results were in perfect agreement with (Roques et al., 2012), extending their results beyond classi-

cal reaction-diffusion equations to equations which also include advection (see Materials and meth-

ods). In the case of large bias (Figure 7A–C), the wave is pushed and the profile is a perfect mixture

of blue and yellow cells at long times. Contrarily, the wave is pulled in the regime of small bias: only

cells that were already initially in the front, here colored in blue (Figure 7B–D), are conserved in the

front, whilst yellow cells at the back cannot catch up with the front.

In the absence of associated experimental data, we explored the cellular Potts model with such

neutral labeling. The results were in agreement with the PDE simulations (Figure 7—figure supple-

ment 1) showing a clear, rapid mixing of the two cell populations under the propagation of a

pushed wave in the regime of experimental parameter values.

Robustness of the conclusions to structural variations of the model
We voluntarily defined our elementary ‘Go or Grow model’ as a rough simplification of our original

mean-field model in order to keep it solvable and extract a general formula for the front speed and

an analysis of the relative contribution of diffusion/division and aerotaxis in that respect. However,

many experimental systems will not conform to the hypothesis underlying this model (in particular

the shapes of the aerotactic response and cell division modulation). In order to investigate whether

the conclusions drawn from the elementary ‘Go or Grow’ model extend to more general situations,

we decided to submit it to structural variations and check if the results obtained above still held.

First, we made the hypothesis of a second oxygen threshold C0
0
<C0, below which cells are not sensi-

tive to gradients any longer (Figure 6F). In the general case, we were not able to do a thorough

analysis of this model, but through numerical exploration we found that the propagation speed

remained close to the value given by formula (Equation 6) (at most 15% of relative difference in a

relevant range of parameters, Figure 6C). Intuitively, the main contribution to the collective speed is

the strong bias inside the high-density area at intermediate levels of O2, whereas cells at levels

below the second threshold C0
0
, where the dynamics of both models diverge, do not contribute

much to the collective speed. We also noticed that cell density profiles (Figure 6F) were much closer

to experimental observations and results obtained through the cellular Potts model or the original

mean-field approach. Moreover, the wave speed is no longer independent of the oxygen dynamics.

In the Materials and methods section, we pushed further the analysis with a specific form of oxygen

consumption and developed a specific case of such a ‘Go or Grow’ model with a second threshold,

where we were able to conduct its complete analysis. Figure 7—figure supplement 2 shows that

the conclusions concerning the contribution of growth to the wave speed are robust. Finally, we

show on this modified ‘Go or Grow’ model that our conclusions regarding how the behavior can

switch from a pulled to a pushed wave remain true as well (Figure 7—figure supplement 3) demon-

strating that our results can be generalized to a variety of different systems showing the propagation

of a front in response to a single self-generated gradient.

To go beyond this first variation with two oxygen thresholds, we also investigated the influence

of the shape of the aerotactic response such as linear or logarithmic gradient sensitivity. Figure 6—

figure supplement 1 shows the qualitative outcomes of these different models. This numerical

exploration indicates that a wide combination of the two key ingredients, aerotaxis and cell division,

can drive the propagation of a stable wave with various density profiles. Cell division at the edge
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yields a net flux of cells, backward in the moving frame, that sustains the wave propagation in the

long term, but may have a relatively small contribution to the wave speed.

Discussion
Overall, our results demonstrate the ability of Dd cells to respond to hypoxia through both aerotac-

tic and aerokinetic responses. Both of these behaviors could be very important to help Dd cells to

navigate complex hypoxic environments they encounter in the soil. In addition, our results are a con-

firmation of the ability of self-generated gradients to serve as very robust, long-lasting directional

cues in environmental navigation, a property which has recently emerged in a variety of systems

(Cremer et al., 2019; Tweedy and Insall, 2020). Finally, our work goes beyond theses results as it

demonstrates that oxygen can play the role of the attractant in self-generated gradients therefore

potentially extending the physiological relevance of the use of such cues in collective migration.

In addition, although our experimental results were obtained on simple, 2d experiments, our find-

ings can generalize to more complex cases. The fact that the dense front of cells follows a constant

oxygen concentration (Figure 3E, Figure 4E) provides a hint that any situation in which cell density

Figure 7. Classification of the expansion type in the ‘Go or Grow’ model. Cells initially on the left-hand side or right-hand side of the peak get labeled

differently (A and B). The labeling is neutral and does not change the dynamics of the cells. We let evolve the two colored population for some time

and observe the mixing of the colors (C and D). (A and C) With a0 ¼ 1m � min�1, the wave is pushed wave and after some time the front undergoes a

spatially uniform mixing. (B and D) With a0 ¼ 0:1�m � min�1, the wave is pulled and only the fraction initially in the front is conserved in the

front. r0 ¼ ln2=480min�1 and C0 ¼ 0:7% for all conditions.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Zip file containing raw data for Figure 7 and associated Python code for simulations.

Figure supplement 1. Mixing in Potts models.

Figure supplement 1—source data 1. Raw data for Figure 7—figure supplement 1.

Figure supplement 2. Heatmap of ’ ¼ 2
ffiffiffiffiffiffiffiffi

r0D
p

=s as a measure of the relative contribution of cell division to the overall wave speed s in the space
parameter 1=r0 and a0 for the ‘Go or Grow’ model with a second threshold, under the specific condition that O2 consumption term be b Cð Þ ¼ b0 and
that O2 concentration may be negative (see Materials and methods).

Figure supplement 2—source data 1. Zip file containing raw data for Figure 7—figure supplement 2 and associated Python code for simulations.

Figure supplement 3. Classification of the expansion type in the ‘Go or Grow’ model with a second-threshold.

Figure supplement 3—source data 1. Zip file containing raw data for Figure 7—figure supplement 3 and associated Python code for simulations.
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is locally high enough to trigger hypoxic conditions will also lead to a similar behavior. Then,

depending on the dimensionality of the system, its architecture and the position of possible oxygen

sources, we hypothesize that a similar front will develop and follow isoconcentration lines. Indeed,

the original experiments of Adler (Adler, 1966) and more recent developments (Cremer et al.,

2019; Fu et al., 2018; Saragosti et al., 2011) on bacteria demonstrated that similar ingredients as

the ones presented here can lead to front propagation in both 1d and 2d situations. Similarly, using

an under agarose assay, it was demonstrated that self-generated gradients of degraded folate

induce a group migration of cells in bands (in 1D) or rings (in 2D spots) up to 4 mm (Tweedy and

Insall, 2020). Beyond the dimensionality of the system, it was also shown that self-generated gra-

dients allow cells to solve mazes by locally degrading an attractant that has a source at the exit of

the maze (Tweedy et al., 2020). Our results are in total agreement with these past examples. To fur-

ther show the generality of the underlying principles, we ran some 3D Potts simulations using a qual-

itative version of our model. Briefly, we show that in three dimensions, if oxygen is provided on all

sides, a spherical front of cells starts moving outwards (Video 8). However, if we assumed that the

bottom of the space was completely deprived of oxygen (i.e. a symmetry breaking situation that can

be encountered in various physiological situations), this front was migrating upwards only in a half-

spherical shape (Video 8). Our 2d results can therefore be extended to any other situations and they

show that the key to proper steering are high enough cell densities and the creation of robust self-

generated gradients.

While aerotaxis is well established for bacteria, its role is often invoked in multicellular organisms

to explain various processes in development or cancer progression but very few in vitro studies were

conducted to prove it is an efficient and operating mechanism or to understand the molecular mech-

anisms at play during aerotaxis. Deygas et al. showed that confined epithelial colonies may trigger a

self-generated O2 gradient and an aerotactic indirect response through a secondary ROS self-gener-

ated gradient (Deygas et al., 2018). Gilkes et al. showed that hypoxia enhances MDA-MB231 breast

cancer cell motility through an increased activity of HIFs (Gilkes et al., 2014). HIFs activate transcrip-

tion of the Rho family member RHOA and Rho kinase 1 (ROCK1) genes, leading to cytoskeletal

changes, focal adhesion formation and actomyosin contractions that underlie the invasive cancer cell

phenotype. This study suggests a role for aerotaxis in tumor escape, but it only demonstrates aeroki-

nesis as O2 gradients were not imposed to probe a directed migration toward O2. Using a microflui-

dic device, the same cancer cell line was submitted to various oxygen levels as well as oxygen

gradients (Koens et al., 2020) but the observed aerotactic response was not clear.

By contrast, the experimental results presented here with Dd show a strong response to hypoxia.

Within 15 min, cells exhibit an aerokinetic and

aerotactic response when exposed to externally

imposed O2 gradients (Figure 2). Self-generated

O2 gradients are produced within 20 min (Fig-

ure 3 and Figure 1—figure supplement 2). But

this cellular response is within the equilibration

time of the oxygen distribution (Figure 2—fig-

ure supplement 6). Hence we can consider the

cellular response as almost instantaneous with

Dd. The difference with previously studied cells

is probably due to the extreme plasticity of the

rapidly moving amoeboid cells (Dd) and their

almost adhesion independent migration mecha-

nism (Friedl et al., 2001) while mesenchymal

cancer cells move slower by coordinating cyto-

skeleton forces and focal adhesion

(Palecek et al., 1997).

The quick response of Dd in directed migra-

tion assays has been largely exploited to deci-

pher the molecular mechanisms at play during

chemotaxis (Nakajima et al., 2014). The molecu-

lar mechanisms used for O2 sensing and its

transduction into cellular response are for the

Video 8. 3D Potts simulations. Top : with oxygen

sources on all sides. Bottom: with oxygen sources on

all sides except on the bottom. The left column shows

the behavior of the whole cell assembly in 3D (original

cells are in blue, cells created during the process are

shown in green). The middle column is an xz slice of

the cell behavior to show that the 3d structures are

indeed spheres or pseudo-spheres. The right column is

the same slice as in the middle but showing oxygen

profiles as a colormap.

https://elifesciences.org/articles/64731#video8

Cochet-Escartin, Demircigil, et al. eLife 2021;10:e64731. DOI: https://doi.org/10.7554/eLife.64731 18 of 34

Research article Computational and Systems Biology Physics of Living Systems



moment unknown but we can expect that the O2 molecular sensors modulate cytoskeleton organiza-

tion, particularly localized actin polymerization/depolymerization through some of the molecular

components involved in classical chemotaxis toward folate or cAMP (Pan et al., 2016; van Haastert

et al., 2017). However, new and unexpected mechanisms cannot be excluded.

The finding that migrating cells can influence the direction of their own migration by building che-

moattractant gradients is not new. Several species of bacteria can move preferentially toward oxy-

gen or nutrient as reported by Adler, 1966. However, this mechanism was only recently reported in

eukaryotes (Stuelten, 2017): melanoma cells that break down lysophosphatidic acid (LPA) and gen-

erate a LPA gradient in the vicinity of the tumor (Muinonen-Martin et al., 2014), Dd colonies that

generate folate gradients (Tweedy et al., 2016) or for the migration of the zebrafish lateral line pri-

mordium through a self-generated chemokine gradient (Donà et al., 2013; Venkiteswaran et al.,

2013). The dispersal of melanoma cells is particularly instructive. The stroma surrounding the tumor

acts as a source of LPA. The tumor cells act as a sink for LPA. As long as LPA is present in the envi-

ronment a steady wave of migrating melanoma cells propagates away from the initial tumor over

long distances and long time periods.

The self-generated LPA (melanoma) and folate (Dd) gradients were modeled with a simple

numerical model that was able to predict the steady wave. In particular, it predicted an invasive front

where cells are exposed to a steep chemoattractant gradient, followed by a ‘trailing end’ where the

gradient is shallow and fewer cells migrate with poor directionality (Tweedy and Insall, 2020). It

also predicted that the wave may have a less marked front, and/or a smaller speed, or even vanishes

if the cell density was too low due to insufficient chemoattractant removal. All these features are sur-

prisingly similar to our experimental measurements of cell density and O2 profiles (Figure 1E,

Figure 3C). The atmospheric O2 that diffuses through the culture medium and eventually the plastic

surfaces is the chemoattractant. The O2 consumption triggers hypoxia that in turn generate an aero-

tactic response toward O2 in a very narrow range of O2 concentrations (0–1.5%) (Figure 3C). The

exact value of the lower O2 threshold value will deserve future investigations. The exact nature of

the cellular response at these extremely low O2 levels, and in a very shallow gradient, also has yet to

be clarified.

Our different models unveil a set of basic assumptions which are sufficient for collective motion

of cells without cell-cell interactions (attractive or otherwise), in contrast with (Sandonà et al., 1995).

Cell growth is necessary to produce a long-standing wave without any damping effect. However, it

may not be the main contribution in the wave speed, depending on the relative ratio between direc-

tional motion (the bias a0), and reaction-diffusion (the Fisher half-speed
ffiffiffiffiffiffiffiffi

r0D
p

). In the case where the

former is greater than the latter, the wave is due to the combination of growth and directional

motion and it is pushed. This result differs particularly from the Fisher-KPP equation with constant

advection (meaning with uniform migration and division) where the wave speed is a0 þ 2
ffiffiffiffiffiffiffiffi

r0D
p

and

the wave is pulled. In the experiments under study, we estimate directional motion to contribute the

most to the cell speed, ruling out the possibility of seeing a pulled wave driven by cell division and

diffusion at the edge of the front.

In conclusion, we demonstrate the remarkable stability of collective motion driven by self-gener-

ated gradients through depletion of oxygen. Through coupled dynamics, these gradients give rise

to long lasting, communication-free migrations of entire colonies of cells which are important both

from ecological and developmental points of view. In the case presented here where oxygen plays

the role of the depleted attractant, this could prove to be a very general mechanism as oxygen is

ubiquitous and always consumed by cells.

Materials and methods

Cell preparation
The AX2 cell line was used and cultured in HL5 media (Formedium, Norfolk, UK) at 22˚C with shaking

at 180 rpm for oxygenation (Sussman, 1987). Exponentially growing cells were harvested, counted

to adjust cell density to the desired one, typically 2000 cells/mL.
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Observations and analysis of self-generated aerotaxis by cell
confinement (spot assay)
For the spot assay, 1 mL of cell suspension containing 1000–8000 cells (typically 2000) was carefully

deposited on a dry surface using a 1 mL syringe (Hamilton, Reno, NV, USA). The dry surface was

either the nunclon treated surface of Nunc six wells polystyrene plates for usual experiments (Ther-

moFisher Scientific, Waltham, MA, USA) or polydimethylsiloxane surface (PDMS, Sylgard 184, Dow

Corning, Midland, MI, USA) for experiments on oxygen-sensing films. The drop was incubated for 5

to 7 min in humid atmosphere at 22˚C before gently adding 2 ml of HL5 medium without detaching

the spotted cells forming a micro-colony. A 14 mm or 18 mm diameter round glass coverslip cleaned

in ethanol, thoroughly rinsed in HL5 was kept wet and deposited on top of it. In some experiments,

fluorescein FITC at 16 mM was added to the HL5 medium and confocal slices were taken, showing

that confined Dictyostelium cells were not compressed by the coverglass but separated from it by a

layer of medium of about 50 mm (Figure 1—figure supplement 1).

The outward spreading of the Dictyostelium micro-colony was observed at 22˚C in transmission

with three types of microscope: (i) a TE2000-E inverted microscope (Nikon, Tokyo, Japan) equipped

with motorized stage, a 4x Plan Fluor objective lens (Nikon) and a Zyla camera (Andor, Belfast,

Northern Ireland) using brightfield for most of the experiments lasting 16 hr (Figure 1A), (ii) a binoc-

ular MZ16 (Leica, Wetzlar, Germany) equipped with a TL3000 Ergo transmitted light base (Leica)

operated in the one-sided darkfield illumination mode and a LC/DMC camera (Leica) for experi-

ments over days (Figure 1B) and finally (iii) a confocal microscope (Leica SP5) with a 10x objective

lens for a few larger magnification experiments (Figure 1C).

For computing densities, cell positions were determined using the built-in Find Maxima plugin in

ImageJ (National Institutes of Health, Bethesda, MD, USA) through a custom made routine. Data

analysis and plotting was performed in Matlab (Mathworks, Natick, MA, USA). For density profiles

(Figure 1E) and kymographs (Figure 1D), the center of the colony was defined as the center of mass

of all cells detected at all times. Cell positions were then turned into radial coordinates and cells

were counted within concentric crown regions. Densities were calculated by dividing this count by

the area of each crown.

Density profiles such as the ones showed in Figure 1E were treated to automatically extract the

position, width and density of a ring in various experiments and at various time points. Density pro-

files were first stripped of values lower than 500 cell/mm2 in order to avoid asymmetric baselines

behind and in front of the ring. Resulting profiles were then fitted in Matlab by a Gaussian function

with a non-zero baseline. The non-zero baseline corresponds to density in the bulk, the maximum of

the Gaussian gives ring position, its height added to the non-zero baseline gives the cell density in

the ring and its width the width of the ring.

Cell tracking, diffusion coefficients, and aerotactic biases
After retrieving cells’ positions with optimized ImageJ macros based on Find Maxima, the individual

trajectories were reconstructed with a squared-displacement minimization algorithm (http://site.

physics.georgetown.edu/matlab/). Data were analysed using in-house Matlab programs. Timelaspse

microscopy experiments devoted to cell tracking in the spot assay experiments was acquired at a

high frame rate (1 frame every 15 s) (Figure 1—figure supplements 4–5) due to the very high cell

density in the ring region (up to 2000 cells/mm2, Figures 1E and 3C). For the microfluidic experi-

ments, as cells were plated at a lower density (less than 200 cells/mm2), 1 min time intervals was

used to track cell trajectories (Figure 2C). In order to highlight aerotactic biases, cells displacements

over various time lags dt (dt up to 60 min) were projected in the radial direction for spot assays and

in the gradient direction X for microfluidic experiments and eventually divided by dt to obtain veloc-

ity biases. Individual biases were then averaged within bins of equal distance (Figure 2D, Figure 1—

figure supplement 5, Figure 4—figure supplement 1). Individual effective cell diffusion constants

were measured as the square of their displacement over their entire trajectory divided by the trajec-

tory time length and divided by 4. These measurements were then similarly averaged over bins (Fig-

ure 1—figure supplement 4).
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Microfluidic-based oxygen gradient generator: design, fabrication, and
cell injection
A schematic of the present double-layer microfluidic device is shown in Figure 2A. It is made of sev-

eral layers of PDMS mounted on a bottom glass coverslip. The overall diameter D of the microfluidic

device is 27 mm and the overall thickness H is 4 mm. Three parallel media channels are positioned

for cell culture, and two gas channels are positioned at a height Hg=0.5 mm above the media chan-

nels to allow gas exchange between the channels during cell culture. The horizontal distance

between the two gas channels narrows step-by-step (2 mm, 1 mm, and 0.5 mm gaps, respectively),

thus yielding to generate different gradients of oxygen concentration along the media channels

simultaneously. All channels are 125 mm high and 2 mm wide, and therefore, the media and gas

channels are separated by a PDMS wall of 375 mm thickness. A polycarbonate (PC) film (26 mm in

diameter and 0.5 mm thickness) is embedded inside the device at a height Hf=1 mm from the bot-

tom coverslip to prevent oxygen diffusion from the atmosphere. The cartesian coordinate origin was

set at the center of the media channel (median axis), and the x and y-directions were defined as par-

allel to media and gas channels respectively (Figure 2A). The z-direction was set to the vertical direc-

tion from the top of the bottom coverslip.

The manufacturing steps are as follow. The media channel and gas channels were drawn with

AutoCAD (Autodesk, Mill Valley, CA, USA) and replicated in SU-8 photoresist using classical photoli-

thography techniques. These SU8 molds were silanized to make it non-adherent and reusable.

PDMS was mixed at a 10:1 ratio of base:curing agent, poured over each mold to a thickness of Hg,

and cured in an oven at 60˚C for more than four hours. On top of the cured PDMS layer of the gas

channels, the above-mentioned PC film with 3 mm port holes punched at the locations of the media

and gas channel ports was positioned. Additional PDMS was then poured over the PC film until the

total PDMS layer became 3.5 mm thick, then the PDMS layer was cured in an oven at 60˚C overnight.

The PDMS layers of the media and gas channel patterns were peeled off the silicon wafers and cut

into 27 mm diameter circles. The PDMS layer with the gas channel pattern was punched to form

inlets and outlets 2 mm in diameter to allow the infusion of gas mixtures. The channel-patterned sur-

face of the PDMS layer with the gas channels and the top surface of the other PDMS layer with the

media channels were plasma treated (PDC-001-HP; Harrick Plasma Inc, Ithaca, NY, USA) to bond

with each other. After incubating the bonded PDMS mold overnight in an oven at 60˚C, 2 mm diam-

eter inlets were punched to allow access to the media channels, respectively. Finally, the channel-

patterned side of the PDMS mold and a 35 mm-diameter glass bottom dish with or without covered

by an oxygen sensing film were plasma treated and bonded each other.

Measurements of aerokinesis in homogenous environments were performed using a homemade

glass-duralumin environmental chamber to perform random motility assays (d’Alessandro et al.,

2018; Golé et al., 2011).

Dictyostelium cells were seeded in the media channels at density of 2x106 cells/ml, and the cell

culture medium was filled in the glass bottom dish up to the height covering the PDMS mold. Cells

were allowed to adhere to the bottom surface (bare glass or coverglass covered with a sensing film)

for 15 min.

Gas control and injection
We used a controlled oxygen concentration for three types of experiments: (i) to calibrate oxygen

sensing films (see below), (ii) to create the oxygen gradients within microfluidic devices (see below)

or (iii) to insure a pure hypoxic condition (pure N2) at the end of the spot assay experiment. The gas

mixture (0% to 21% O2 in N2) was prepared in a gas mixer (Oko-lab 2GF-MIXER to mix compressed

AIR with 100% N2 or HORIBA STEC MU-3405, Kyoto, Japan to mix pure O2 and N2) by mixing pure

O2 (or air) and pure N2. Free sensing films for calibration (i) or for the spot assay (iii) were placed

inside 6-wells plates and the multiwells were placed in an environmental chamber fitting our micro-

scope stage (H301-K-frame, Okolab, Pozzuoli, Italia). Gas was injected at about 500 mL/min in this

chamber. Eventually, multi-wells were drilled to a diameter of 25 mm and the sensing films were

glued with a silicone adhesive on the plate bottom to reduce the background noise from fluores-

cence. For microfluidic experiments, the tubes from the mixer were connected to the gas channels

and gas was injected at a controlled flowrate (between 60 and 180 mL/min) into the device.
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Oxygen-sensing film preparation
Oxygen-sensing films were prepared by inserting the luminescent O2-sensitive dye 5,10,15,20-Tetra-

kis-(2,3,4,5,6-pentafluorophenyl)-porphyrin-Pt(II) (PtTFPP, Por-Lab, Porphyrin-Laboratories, Schar-

beutz, Germany) in a 4:1 PDMS:curing agent thin layer spin-coated on 30 mm to 35 mm rounded

coverglasses. Briefly, 17 mg of PtTFPP was dissolved in 5 mL chloroform and thoroughly mixed with

2.8 mg of PDMS and 0.7 mg curing agent. The mixture was degassed in a vacuum chamber for 5 hr.

About 0.5 mL to 1 mL of this solution was spread on the coverglass and spin-coated for 2 min at 500

rpm with a final speed of 2000 rpm during 10 s to flatten the edge bead. Chloroform was allowed to

evaporate overnight while the polymer cured at 60˚C. The final PtTFPP sensor film had a dye concen-

tration of 4 mmol/L and was 25 mm thick. This thickness was measured using a ContourGT-K 3D

Optical microscope (Bruker, Billerica, MA, USA) after removing a piece of film with a surgical blade.

Sensing films were stored in dark. They were used to measure the oxygen concentration in self-gen-

erated O2 gradients (spot assay) and for microfluidic experiments with controlled O2 gradients.

Fluorescence microscopy for oxygen measurements
Fluorescence images of O2-sensing films (either for film calibration or for in situ oxygen measure-

ments in the spot assay or in microfluidic devices) were taken with two inverted epifluorescence

microscopes: (i) a TE2000-E inverted microscope (Nikon) equipped with motorized stage, a 4x Plan

Fluor objective lens (Nikon), a X-Cite Series 120PC illumination lamp, a TRITC bandpass filter cube

and a Zyla camera (Andor) (Figure 3Aii, Figure 2—figure supplement 3), (ii) a IX83 inverted micro-

scope (Olympus, Tokyo, Japan) equipped with a motorized stage, a UPlanSApo 4x objective lens

(Olympus), a U-HGLGPS lamp (Olympus), a RFP bandpass filter and a Zyla camera (Andor). This sec-

ond microscope was used for mosaic imaging, in order to scan the whole dimension of the three

media channels (about 1 cm in length) thanks to the dedicated imaging software cellSens (Olympus)

(Figure 2—figure supplement 1).

Oxygen-sensing film calibration
Calibration was carried out with the sensing films in air, in water or in HL5 culture medium. We

applied gas concentration ramps with steps of 5 min for calibration in air (time to exchange fully the

gas composition of the chamber and tubes, as O2 almost instantaneously diffuses within the 25 mm

thick sensing film) and with much longer steps (i.e. 2–4 hr) for calibrations in liquid. There is indeed

an additional diffusion time in the PDMS intermediate layer of our microfluidic devices or in the

medium height of a Petri dish: typically, a few minutes for a 0.5-mm-thick PDMS layer and 1h30 for a

2.7-mm-thick liquid layer in a dish.

Timelapse fluorescence images we recorded and signal intensity I was measured in ROIs of typi-

cally 64x64 pixels in various positions of the image, especially along a line scanning the middle of

the image (Figure 2—figure supplement 1B, Figure 2—figure supplement 3A). The response of

the sensing film in the presence of oxygen can be modeled by a linear Stern-Volmer relationship:

I0 �Bg

I Cð Þ�Bg

¼ 1þKC

where C is the oxygen concentration expressed as a percentage of oxygen in the injected gas phase

(nearly 21% for atmospheric conditions), I0 is the reference intensity in the absence of oxygen, Bg is

the background intensity independent from the oxygen sensitive signal of the PtTFPP molecules and

K is the Stern-Volmer constant used as an indicator of the sensing film sensitivity.

Notice that the background is usually not included in the Stern-Volmer relationship but a repre-

sentative background image (O2 independent) is subtracted prior to intensity measurements

(Nock et al., 2008; Thomas et al., 2009). This O2-independent background value can be deduced

from the fluorescence of a plain PDMS film prepared in the same conditions than the sensing film

but devoid of PtTFPP molecules (i.e. a standard) (Thomas et al., 2009). We tested that procedure

that is basically working but we choose to include the background as a fitting parameter because

illumination conditions may change between the sample and the standard (especially the focus plane

that affects the focused height of autofluorescent medium above the surface). The slight changes in

thickness and PtTFPP composition of sensing films at the large spatial scales we are interested here

(3–6 mm wide images, Figure 2—figure supplement 1A–D, Figure 2—figure supplement 3A–C)
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are another source of heterogeneity especially for the K value. For those reasons, we apply the

Stern-Volmer relation with K and Bg as a fitting parameters in many different small regions of interest

(ROI) of the surface. For each ROI, we found that the measured intensities follow perfectly the

Stern–Volmer relation (i.e. C linearly increases with the Stern-Volmer parameter (I0-Bg)/(I(C)-Bg)�1,

Figure 2—figure supplement 2B) and that K and Bg are clearly uncorrelated, in particular Bg

depends on the illumination pattern but not K.

The illumination pattern is clearly visible on fluorescence images at 21% O2. For instance, the

large field of view of Figure 2—figure supplement 1B reconstituted by the multi-area module of

the microscope displays an up and down landscape in the 21% intensity (Figure 2—figure supple-

ment 2C) due illumination changes in the periphery of each overlapped area but also due to the

slightly different fluorescence in the gap region of the microfluidic device and especially at its inter-

faces. The single large field of view of Figure 2—figure supplement 3A taken with our second

microscope setup displays a dome shaped pattern with 20% intensity difference between the center

and borders (Figure 2—figure supplement 3D). The background value Bg is very correlated with

the 21% signal variations in both imaging configurations (Figure 2—figure supplement 2C, Fig-

ure 2—figure supplement 3D) and we can for each experiment calibrate a linear relationship

between between Bg and I(21%) (Figure 2—figure supplement 2D, Figure 2—figure supplement

3F).

As already stated, the background is due to the autofluorescence of the various media (PDMS

layer and coverglass for the sensing film, bottom plastic dish if any, and surrounding fluid). For Fig-

ure 2—figure supplement 1, the microfluidic device was filled with pure water and for Figure 2—

figure supplement 3, the calibration was performed in the autofluorescent HL5 medium before

spotting the cells. Sometimes the sensing film was placed in a non-drilled well and in that case the

strong autofluorescence of the plastic bottom of the plate becomes a major source of background

(not shown). Finally, Bg also includes the read noise RN of the camera which is a constant indepen-

dent of the light output or exposure time. For Figure 2—figure supplement 2, we measured

RN=108 A.U. and hence a light background Bg* = Bg-RN=15 A.U. which is half the ‘true oxygen

dependent signal’ at 21% O2, I(21%)-RN=30 A.U. The maximum deviation of Bg from the linear fit in

Figure 2—figure supplement 5D is about 1.5 A.U. Hence a relative error 1.5/15=10% for Bg* will

be taken in the following. For Figure 2—figure supplement 3, we measured RN=100 A.U. and at

the top of the bell curve, Bg*=1400–100=1300 A.U. while I(21%)*=1600–100=1500 A.U. (Figure 2—

figure supplement 3D). Hence, the background is nearly 87% of the signal due to the HL5 autofluor-

escence. Nevertheless, the maximum relative deviation from the linear fit is smaller at about 25/

1300» 2% of Bg*. All these values will be used for the error analysis of the oxygen profiles below.

For uncovered (free) sensing films the sensibility K ranges between 3 and 5 %�1 and is very con-

stant, weakly dependent on the illumination pattern (Figure 2—figure supplement 2D and blue

points in Figure 2—figure supplement 3E). When films are covered with a coverglass, the fluores-

cence under hypoxic conditions (0%) increases significantly on the covered region (Figure 2—figure

supplement 3C) but not at 21% (Figure 2—figure supplement 3B). As a results, K, which is propor-

tional to this ratio, increases significantly (Figure 2—figure supplement 3E) but not Bg and I(21%)

(Figure 2—figure supplement 3D) confirming that K and Bg are independent. This increase in K is

probably due to a local temperature increase: the coverglass adsorbs more heat from the micro-

scope illumination light and this heat is difficult to evacuate due to the confinement. In principle, for

the spot assay experiment, it would be necessary to perform an independent calibration with the

Stern-Volmer relation in the covered situation. However, this is difficult due to the very long time

required to equilibrate the oxygen level under the confinement far from the coverglass boundary

(this is why we started the Stern-Volmer fit at ROI7 in Figure 2—figure supplement 3B,D,E). A too

long procedure causes other problems such as medium evaporation, stage or focus drift. . . To avoid

that, we decided to apply the protocol described in the image analysis pipeline of Figure 2—figure

supplement 4. First, we perform a gas calibration ramp and do a Stern-Volmer analysis in various

points of an uncovered sensing film (the subscript U is for uncovered) where I0U is reliable in order to

get the linear background relation BgU=a I(21%)U +b and to measure the measure the ratio R=I0U/I

(21%)U. Reliable means here any point if gas mixture is applied uniformly when calibrating in a dish

or just underneath the gas channel in microfluidic devices. Second, we choose the reference fluores-

cence image I(21%) immediately before starting any experiment (i.e. just after covering the spot, or

just before applying the gradient in the gas channels). From that image, we build a Bg image as a I
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(21%)+b (as Bg is the same for uncovered and covered case) and eventually we build a reconstituted

I0 image as R I(21%). Finally, we subtract and divide images with the ‘Image calculator’ of ImageJ

(i.e. pixel by pixel) following the Stern-Volmer model and hence get a K-value image map and subse-

quently an oxygen map (Figure 2—figure supplement 4C–D). This enables to correct non-homoge-

neous illumination conditions or non-homogeneous sensing film properties as well to quickly

estimate error bars on the oxygen map from the estimated errors on Bg, I(21%) and I0 detailed

below.

We already discussed the error on the background. In principle, I(21%) is a reference image

(hence error free), however as an experiment (especially the spot assay) may run overnight we need

somewhere to evaluate drift in the absolute intensity for instance by running an overnight timelapse

experiment with a sensing film under ambient gas conditions. This error is added on I(21%) and was

estimated as 2% of the true fluorescence signal corrected from read noise I(21%)-RN. Error on I0
could be much larger. As the intensity I(C) is strongly nonlinearly increasing with the oxygen concen-

tration C, if we measure an intensity I0* corresponding to a residual small oxygen level C0*, we need

to correct the true I0 value using the relation I0 � Bg » I0 » I0 1þ KC
0

� �

. Due to oxygen leakage along

tubes and within our environmental chamber, when applying 100% N2, we measured a residual

C
0
» 0:15 O2 in a culture medium dish using a bare fiber oxygen sensor coupled to its commercial

oxymeter (Firesting, Pyroscience, Aachen, Germany). Hence with a typical K=5 value, we obtain a

very large discrepancy between the measured fluorescence I0* and the ideal one: I0 » 1:75I0, but

finally this discrepancy is not really dramatic on the measured error again due to the non-linearity.

The effect of these different error sources on the measured oxygen map is presented in Fig-

ure 2—figure supplement 1E and Figure 2—figure supplement 3H for a typical microfluidic and

spot experiments. Even if we make a 1.75 error on I0, this has little effect on the profiles except in

the very hypoxic region when C<0.25% where the error exceed 50%. But even in the region around

C=1%, the error is less than 10%. The error on I(21%) on the other hand has a significant effect on

the high oxygen regions but less on the hypoxic regions. Finally, the background error is relatively

visible in the intermediate oxygen concentration region (very visible on the side of the spot in Fig-

ure 2—figure supplement 3H, but also to some extend around the median axis at C~10% in the

microfluidic experiment, Figure 2—figure supplement 1E). Finally, we defined error bars with (max-

min)/2 values of the calculated C when exploring the estimated errors discussed above. In the 0.5–

1.5% region were we observe most of the interesting aerotactic behaviors with Dictyostelium cells,

the precision on the oxygen concentration DC/C is less than 0.3. For the purpose of this paper, we

can conclude that aerotaxis and aerokinesis occurs undoubtedly between C=0% and C=2%

(Figure 2).

Numerical simulation of oxygen tension. Oxygen tension inside the device was computed using

commercial finite element software (COMSOL Multiphysics 5.5; COMSOL, Inc, Burlington, MA,

USA). The gas flow in the individual channels were simulated by solving the Navier-Stokes equations

coupled with mass continuity for an incompressible fluid:

�Gðu �rÞu¼ �GDu�rp;
�Gr�u¼ 0;

where u is the velocity vector, p is the pressure, and �G and �G are the gas density and viscosity

(taken as 1 kg/m3 and 10�5 Pa.s, respectively). The spatial and temporal distribution of oxygen

inside the device was then calculated by solving the convection-diffusion equation:

qc

qt
¼Dc�u �rc;

where c is the oxygen concentration, D is the diffusion coefficient of oxygen, and T is the time.

The device was assumed to be in an atmosphere containing 21% O2. Medium at 21% O2 concen-

tration was supplied to media channels. Gases containing 0% and 21% O2 were respectively sup-

plied to the left-hand and right-hand side gas channels at 30 ml/min to generate an oxygen

gradient. Zero pressure and convection flux conditions were set at the outlets of the gas channels,

and a no-slip condition was applied on the channel walls for fluid flow analysis. Boundary conditions

for oxygen concentration were set according to Henry’s law. Oxygen concentration at the interfaces

between the PDMS and gas phase (atmosphere and gas mixture in the gas channel) was set
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correspondingly to the product of the solubility coefficient of oxygen in PDMS and the partial pres-

sure of oxygen. At the interfaces between PDMS and media or gel, a partition condition was

applied, which balanced the mass flux of oxygen to satisfy continuity of partial pressure of oxygen:

cPDMS

SPDMS

¼ cchannel

Schannel
;

where cPDMS and SPDMS are the oxygen concentration and the solubility of oxygen in the PDMS,

respectively, and cchannel and Schannel are those in the media and gel channels. Moreover, oxygen

consumption by cells was considered by setting an outward flux of oxygen of 6x10�8 [mole/(m2.s)]

on the bottom of the media channels (calculated as b�* where b=1.2.10�16 mole/(cell.s) is the oxy-

gen molar consumption per Dd cell per unit of time (Torija et al., 2006) and �*=500 cell/mm2 is the

highest density used in the device).

The diffusion constants of oxygen in the various media were taken to be 2.10�9, 4.1.10�9 and

2.10�12 m2/s for culture medium, PDMS and PC, respectively. Oxygen solubility at 1atm were taken

to be 219 (close to the measured value, see below), 1666 and 1666 mM for culture medium, PDMS

and PC, respectively (PDMS and the PC values were assumed to be the same since they are report-

edly within the same range Merkel et al., 2000; Moon et al., 2009). The computational models con-

sisted of approximately 1,135,000 computational elements. The initial condition of oxygen

concentration in each material was set to 21% O2 everywhere (219 mM).

Potts models
Potts model simulations were run using CompuCell3D (Swat et al., 2012) with a mix of prebuilt

modules and home-made Python steppables in particular to implement the modulation of aerotactic

strength by local oxygen levels. Most parameters were fitted to experimental measurements and

both time and length scales were also adapted to achieve quantitative simulations. In all simulations,

we used Compucell’s Volume module which applies to all cells a Hamiltonian of the form:

Hvolume ¼ lv V �Vcellð Þ

where V is the volume of a cell and Vcell a target volume set to 2 pixels. This already set the length

scale of our simulations to 1pixel = 10mm. lv was set to 800. These values were adapted to repro-

duce the cell speeds observed in the microfluidic experiments. To achieve this relationship, we also

decided to fix that one step of the simulation (Monte Carlo Step) was meant to represent 0.1s.

Aerotaxis was modeled using CompuCell’s built-in chemotaxis plugin. This leads to a new term in

the Hamiltonian of the form

Hchemotaxis ¼ laeroDC

where DC is the difference in oxygen concentration C between the source and target pixels of a flip

and laero is the aerotactic strength. Key to our model is thus the fact that we made laero different for

each cell and dependent on the local oxygen concentration. This modulation was fitted to the micro-

fluidic experiments and set, in the general model as:

laero Cð Þ ¼ 800

1þ e
C�0:7
0:2

where C is the oxygen concertation at the center of mass of a cell. Figure 5 shows variations on that

relationship which are:

laero Cð Þ ¼ 1225

1þ e
C�0:7
1:5

Based on experimental observations, we also made the effective temperature of the model differ-

ent for each cell and dependent on local oxygen concentrations. This allowed us to reproduce the

aerokinetic effect and the modulation of the temperature was fitted to reproduce the cell diffusion

constants measured in the microfluidics experiment. The main model thus uses the following rela-

tionship for temperature T
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T Cð Þ ¼ 85þ 105

1þ e
C�0:7

1

Figure 5 and Figure 5—figure supplement 1 show variations on this relationship, which is simply

replaced by a constant value of T (115, 135 or 155).

Another key aspect of the models is the oxygen field, which is implemented using CompuCell’s

DiffusionSolverFE module. In the case of the microfluidics experiments, the oxygen field was made

to be constant (no diffusion, no consumption by cells) and fitted on experimental measurements of

this gradient shown in Figure 2B. The oxygen concentrations were expressed in % giving 0 and 21

as natural boundaries. The actual oxygen profile varied in the x direction only as:

C xð Þ ¼ 21:38

1þ e0:031� x�200ð Þ

where x is the position in pixels in the simulation which was run on a 400 by 800 xy grid.

For spot assays, oxygen was allowed to diffuse freely. In our time and length units, the diffusion

constant of oxygen in liquids (2.103 mm2.s�1) is two pixel2 step�1.

In terms of consumption, we took the oxygen consumption by Dicty cells to be 1.2.10�16 mole/

(cell.s) (Torija et al., 2006) and we measured the oxygen solubility in HL5 medium as 250 mM (mea-

surement with a bare fiber sensor plugged to a a Firesting oximeter, Pyroscience, Germany). Taking

the measured vertical confinement of 50 mm (Figure 1—figure supplement 1), the amount of oxy-

gen available, at maximum, above a single pixel of the simulation is 1.25.10�15 moles, which we

define, in arbitrary units, to be 21. We can then turn the consumption of a single cell into a consump-

tion per pixel given that the typical size of a cell is two pixels and per time step, each representing

0.1 s. We end up with a consumption, in our arbitrary units of 0.1 pixel�1 step�1 which is only

applied to pixels occupied by a cell. Of note, in case an occupied pixel had a remaining oxygen level

of less than this values, then consumption was set at this oxygen level so that all oxygen was con-

sumed. The last ingredient in oxygen dynamics is the leak of oxygen coming from the bottom of the

multiwall plate. Assuming complete hypoxia on the cells’ side, this would lead to a net flux of oxygen

of DC/e where D is the oxygen diffusion constant in polystyrene, C is the oxygen concentration on

the outside and e is the thickness of the polystyrene bottom. This leads to a flux by unit surface, in

our Potts units of 0.001 pixel�1.step�1. We therefore implement a source of oxygen for all pixels in

the simulation, whether they are occupied by a cell or not, of the form:

secretion Cð Þ ¼ 0:001
21�C

C

where C is the local oxygen concentration at the considered pixel.

This was sufficient to faithfully reproduce the formation time of the rings. Finally, the spot simula-

tions were run on a 500 by 500 pixels grid and we imposed boundary conditions to the oxygen field

as a constant concentration of 21, the borders acting as a source of oxygen just like the edges of the

coverslip in the experiments.

Cell division was also set to experimental observations. Given a doubling time of 8 hr, we imple-

mented random divisions at each time point, each cell having a 1/ (8h * 3600 s/h * 10step/s) =

3.10�6 chance of dividing. However, cell division was turned off at low oxygen concentrations

(<0.7%). In Figure 5, a simulation is shown were this probability was set to 0 for all cells in all

conditions.

In terms of initial conditions, the microfluidic simulations were started from a homogenous cell

density, each cell being initialized on a grid: two pixels per cells and a six pixel gap to the next

neighbor in all directions. For the spot simulations, cells were seeded in three circular, concentric

regions of decreasing density. The first region was set to be 30 pixels (300 mm) in radius with a gap

of 1 pixel between each cell, the second one spanned the radii between 30 and 60 pixels with a gap

of two pixels between each cell and the last one spanned between 60 and 90 pixels with a gap of 3

pixels. This lead to an initial colony with a radius of 900 mm and between 1900 and 2000 cells, both

very similar to experiments.
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Mean-field model, Go or Grow model and simulations
Both diffusion equations (Equations 1 and 2) were discretized through a time-backward space-cen-

tered difference scheme with an upwind discretization for the advection operator. In the case of the

mean-field model, we were considering (Equations 1 and 2) in a radial symmetry, which lead to the

following discretization for �:

�
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and Ri the distance from the center.

In the case of the Go or grow model with its planar symmetry, the discretization for � was:
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Concerning the equation on Oxygen concentration Equation 2, the consumption term

�b Cð Þ� was expressed in two different manners: either b Cð Þ ¼ b0 and a non-negativity constraint was

added on the Oxygen concentration, just as it was the case in the cellular Potts model, or

b Cð Þ ¼ min b0; b0
C
C0
0

� �

which leads to an oxygen consumption that goes to zero in the region of very

low concentration C<C0
0
and therefore ensures non-negativity for C under a sufficiently small time

step Dt. Both expressions led to qualitatively similar results, but we opted for the latter in all the sim-

ulations presented here. Finally, the discretization scheme for C in the planar symmetry was:
Cnþ1
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. For the radial symmetry:
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The schemes were coded in Python language. All simulations of (Equations 1 and 2) shown in

this article were carried out with a mesh size Dt¼ 0:02min and Dx¼ 1�m. The values used for the con-

stants are: D¼ 30�m2 �min�1 (effective cellular diffusion constant), C0 ¼ 0:7%O2 (threshold for cell divi-

sion), C0
0
¼ 0:1%O2 (lower threshold in the two threshold ‘Go or Grow’ model, below which cells stop

aerotaxis), Doxy ¼ 1:2 � 105�m2 �min�1 (oxygen diffusion constant in medium), r0 ¼ ln2=480min�1 (rate of

cell division) and b0 ¼ 0:01%O2min
�1cell�1 (using the equivalence 1.25.10�15 moles = 21 %O_2 dis-

cussed above in Potts model section).

The scheme on C was supplemented with the boundary condition C Lð Þ ¼ 21%O2. We have chosen

L ¼ 9mm for the Go or grow model to match experimental conditions. For the mean-field model, we

have chosen L ¼ 2:5mm in order to match the cellular Potts model for which size was a concern for

computation time.

In the mean-field model, the initial condition for � was taken the same as in the cellular Potts

model. For the other simulations, initial conditions for � and C were chosen such that they were

already close to the expected stationary profile.

We measured the speed of the wave s, once the wave profile was qualitatively stable, by consid-

ering the evolution of the point �x tð Þ such that C t;�x tð Þð Þ ¼ C0.

Mathematical analysis of the ‘Go or Grow’ model
We present below a preliminary analysis of the ‘Go or Grow’ model. A more detailed mathematical

investigation of this model will be carried out in a separate article.

1.The ‘Go or Grow’ model admits explicit traveling wave solutions.

We recall that z ¼ x� st is the spatial variable in the moving frame at (unknown) speed s>0. We

seek a pair of stationary profiles, resp. the density � zð Þ and the oxygen concentration C zð Þ. We

assume that C zð Þ is an increasing function. By translation invariance, we set without loss of generality

that C 0ð Þ ¼ C0, so that Equation 3 becomes:
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�s
q�
qz
¼D

q
2�
qz2

� a0
q�
qz
; if z<0

�s
q�
qz
¼D

q
2�
qz2

þ r0�; if z>0

8

<

:

(7)

Furthermore, the function � zð Þ must satisfy at z¼ 0 the following relation (i.e. the continuity of the

flux) :

s
q�

qz
ð0þÞ�s

q�

qz
ð0�Þ ¼�a0

D
�ð0Þ (8)

Thus the equation becomes a second order differential equation with piecewise constant coeffi-

cients on each half-line, that can be solved explicitly.

For z<0, the solution is of the form Aþ Be
a0�s

D
z. From Equation 4 we observe that

s � a0 equivalently
a0�s
D

� 0 and as � is bounded, it implies that B ¼ 0.

For z>0, we look at the roots of the characteristic polynomial P �ð Þ ¼ D�2 þ s�þ r0. We note that

to yield a nonnegative solution, we need s2 � 4r0D.

If s ¼ 2
ffiffiffiffiffiffiffiffi

r0D
p

, then the solution is of the form Czþ Dð Þe�
ffiffiffi

r0
D

p
z and with relation Equation 8, we

obtain � zð Þ ¼ A
ffiffiffiffiffiffi

Dr0
p �a0

D
zþ 1

� �

e�
ffiffiffi

r0
D

p
z and observe that in this case, we necessarily have a0 �

ffiffiffiffiffiffiffiffi

r0D
p

.

If s>2
ffiffiffiffiffiffiffiffi

r0D
p

, the solution is of the form A0e�z þ B0e�þz, with � ¼ �s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2�4r0D
p
2D

. By arguments exposed

in Van Saarloos, 2003, solutions with initial datum localized cannot decrease exponentially at a

rate �>�
ffiffiffi

r0
D

p

, where �
ffiffiffi

r0
D

p

corresponds to the exponential decay parameter when s ¼ 2
ffiffiffiffiffiffiffiffi

r0D
p

. This

leads to B0 ¼ 0, as �þ>�
ffiffiffi

r0
D

p

. Then A ¼ A0, but in order to satisfy the C1-discontinuity jump relation

Equation 7, it must be that :

�� ¼�a0

D
(9)

Equation 9 can be solved algebraically for s, which yields s¼ a0 þ Dr0
a0
. Furthermore, we can

rewrite Equation 9 as follows 2a0 �sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � 4r0D
p

, multiplying by 2a0þs, we find

that 4a2
0
�s2

� �

¼ 2a0 þsð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � 4r0D
p

>0, which leads to a2
0
>s2

4
>r0D.

Thus, we have disclosed all possible profiles. In the case a0 �
ffiffiffiffiffiffiffiffi

r0D
p

the profile travels at

speed s ¼ 2
ffiffiffiffiffiffiffiffi

r0D
p

, whilst for a0>
ffiffiffiffiffiffiffiffi

r0D
p

the profile travels at speed s ¼ a0 þ r0D
a0
.

One needs to verify that each of these profiles admits an associated oxygen profile that satisfies

the condition C 0ð Þ ¼ C0, but the preceding profiles were defined up to the multiplicative constant A,

by linearity of Equation 7. The differential equation on C becomes with �
~

the solution given above

for A ¼ 1:

�s
qC

qz
¼Doxy

q
2

qz2
� b A�

~

� �

C (10)

One concludes by checking that by monotonicity there exists a unique constant A such that the

solution to the differential Equation 10 equation satisfies C 0ð Þ ¼C0.

2. The wave is pushed in the case a0>
ffiffiffiffiffiffiffiffi

r0D
p

.

A neutral fraction vk is defined as satisfying the following linear equation in the moving

frame z ¼ x� st:

qvk

qt
þLvk:¼ qvk

qt
�s

qvk

qz
�D

q
2vk

qz2
þ q

qz
a zð Þvk
� �

� r zð Þvk ¼ 0; (11)

with vk 0; zð Þ ¼ vk
0
zð Þ where we identify a zð Þ ¼ a C zð Þð Þ and r zð Þ ¼ r C zð Þð Þ for the sake of clarity. This cor-

responds biologically to staining the cells given by the initial distribution vk
0
at time t¼ 0 with a neu-

tral label (Roques et al., 2012).

Defining U zð Þ: ¼ s�a zð Þð Þ
D

z, then we note that Lf ¼ �D q

qz
e�U q

qz
eU fð Þ

� �

� r zð Þf . This leads to setting

w: ¼ e
U
2vk that satisfies the parabolic equation qw

qt
þ L

~

w ¼ 0,
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with L
~

g: ¼ �De
U
2
q

qz
e�U q

qz
e
U
2g

� �� �

� r zð Þg ¼ �D
q
2g

qz2
þ U02

4
� r zð Þ � a0

2
d

� �

g. The operator L
~

is self-adjoint

in L2 R; dzð Þ on the appropriate domain. Then by setting g: ¼ min inf U02

4
� r zð Þ

n o

; r0D
a0

� �2
� �

>0, one can

first show that every element of the spectrum of l 2 s L
~

� �

such that l<g is an eigenvalue of L
~

. Sec-

ond, one shows that the only eigenvalue l of L
~

such that l<g is l ¼ 0. Finally by standard theory of

self-adjoint operators and semi-group theory, one obtains that w tð Þ ¼ Pw0 þ e�tL
~

I � Pð Þw0,

where ke�tL
~

I � Pð Þw0kL2 R;dzð Þ< e�gtkw0kL2 R;dzð Þ. Translating these properties onto the neutral fraction vk,

we have that vk tð Þ !
vk
0
;�h i

L2 R;eU dzð Þ
�;�h i

L2 R;eUdzð Þ
� at an exponential rate, where � is the traveling wave profile calcu-

lated in the previous section. Therefore, each fraction converges to a fixed proportion of the whole

population. We conclude that after some time the wave becomes a perfect mix of each neutral frac-

tion. This corresponds to the definition of a pushed wave according to Roques et al., 2012.

3. The wave is pulled in the case a0 �
ffiffiffiffiffiffiffiffi

r0D
p

.

The preceding reasoning does not apply to this case and the intuition is clear, as the wave speed

coincides with Fisher’s s ¼ 2
ffiffiffiffiffiffiffiffi

r0D
p

, which is typically the signature of a pulled reaction- diffusion

front. In order to prove the pulled nature of the front, we consider wk ¼ vk

� , where � is the corre-

sponding wave profile. By computation, wk then satisfies the following PDE:

qwk

qt
� b zð Þ qwk

qz
� D q

2wk

qz2
¼ 0 with b zð Þ ¼

2
ffiffiffiffiffiffi

r0D
p

�a0
D

; ifz<0

2

ffiffiffiffiffiffi

r0D
p

�a0
ffiffiffiffiffiffi

r0D
p

�a0ð Þzþ1
; ifz � 0

8

<

:

and set h a positive solution to the

differential equation h0 ¼ bh. As b zð Þ � 0 and b0 bounded above, it can be shown by arguments simi-

lar to Roques et al., 2012, that under the integrability condition
R

wk
0
zð Þ

� �2
h zð Þdz<¥, the neutral frac-

tion goes extinct, that is
t¼þ¥
lim k wk

� �2
hk

¥
¼ 0, which characterizes a pulled wave in the framework of

neutral fractions.

Mathematical analysis of a specific ‘Go or Grow’ model with a second
threshold
We present quickly a specific case for a ‘Go or Grow’ model with a second threshold, that is

completely analytically solvable. We consider the advection term of the form

a Cð Þsign qxCð Þ with a Cð Þ ¼ a0; if C0
0
<C<C0

0; otherwise

�

, the division rate r Cð Þ ¼ r0; if C>C0

0; if C<C0

�

and the O2

consumption rate per cell b Cð Þ ¼ b0, without including the constraint that the O2 concentration C be

non-negative. Although this hypothesis seems physically non relevant, it is consistent with the fact

that cells are not sensitive to O2 concentration gradients below the threshold C0
0
.

Given a traveling wave profile �;C and the corresponding front speed s, we suppose

C 0ð Þ ¼ C0 and we introduce the spatial gap h>0 between the two thresholds, i.e. C �hð Þ ¼ C0
0
, so

that (Equation 1) becomes:

�s
q�
qz
¼D

q
2�
qz2

; if z<� h

�s
q�
qz
¼D

q
2�
qz2

� a0
q�
qz
; if � h<z<0

�s
q�
qz
¼D

q
2�
qz2

þ r0�; if z>0

8

>

>

>

<

>

>

>

:

(12)

Introducing a multiplicative constant A, � is then of the shape:

� zð Þ ¼ A BþEe
s�a0
D

h
� �

; if z<� h

� zð Þ ¼ A BþEe
� s�a0ð Þ

D
z

� �

; if � h<z<0

� zð Þ ¼ Ae��z; if z>0

8

>

>

>

>

<

>

>

>

>

:

(13)

With B¼ s�D
s�a0

, E¼ D�a0
s�a0

and ¼ sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2�4Dr0

p
2D

. We obtain the following condition, that establishes a

one-to-one correspondence between s and h:
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e
s�a0
D

h ¼ a0 s��Dð Þ
s a0��Dð Þ (14)

The equation on C becomes:

�s
qC

qz
¼ Doxy

q
2

qz2
� b0� (15)

With the assumption that that C be continuously differentiable, we can solve Equation 15 for C:

C zð Þ ¼ FAzþG; if z<� h

C zð Þ ¼HAzþ IAe
� s�a0ð Þ

D
zþ JþKe

�s
Doxy

z
; if � h<z<0

C zð Þ ¼ LAe��zþMe
�s
Doxy

zþCinit ; if z>0

8

>

<

>

:

With F ¼ b0
s

BþEe
s�a0
D

h
� �

, G¼C0
0
þFAh, H ¼ b0B

s
, I ¼ b0D

2E

s�a0ð Þ Ds�Doxy s�a0ð Þð Þ, L¼ b0

Doxy�sð Þ,

M ¼C0�LA�Cinit, J ¼C0 � IA�K and, by

setting D¼ s
D

H�F� I s�a0
D

� �

e
s�a0
D

h
� �

� HþL � s
Doxy

� �

� I s�a0
D

� �

� �

s
Doxy

e
s

Doxy
h

� �

, we have that

K ¼ 1

D

H�F� I s�a0
D

� �

e
s�a0
D

h
� �

s
Doxy

Cinit �C0
0

� �

and A¼ 1

D

s
Doxy

e
s

Doxy
h

� �

s
Doxy

Cinit �C0
0

� �

. This closes the system,

but one more constraint remains, which is:

C0
0
¼�HAhþ IAe

s�a0ð Þ
D

h þ JþKe
s

Doxy
h

(16)

The front speed s of a traveling wave must therefore satisfy the implicit Equation 16. Finding a

closed form for the solutions of Equation 16 seems out of reach. Nevertheless, we can approximate

the roots numerically, especially by noticing through numerical observation that Equation 16 is

monotone on the interval 2
ffiffiffiffiffiffiffiffi

r0D
p

;a0þ r0D
a0

� �

, where the root s is located. Hence through a dichotomy

search algorithm we can find the speed s of the traveling wave with arbitrary accuracy.
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Chapter 2

When Self-Generated Gradients
interact with Expansion by Cell
Division and Diffusion. Analysis of a
Minimal Model.

This Chapter consists of the article [54], which has been submitted to
Journal de l’École polytechnique — Mathématiques.
We investigate a minimal model for cell propagation involving migration
along self-generated signaling gradients and cell division, which has been
proposed in an earlier study. The model consists in a system of two
coupled parabolic diffusion-advection-reaction equations. Because of a
discontinuous advection term, the Cauchy problem should be handled
with care. We first establish existence and uniqueness locally in time
through the reduction of the problem to the well-posedness of an ODE,
under a monotonicity condition on the signaling gradient. Then, we
carry out an asymptotic analysis of the system. All positive and bounded
traveling waves of the system are computed and an explicit formula for
the minimal wave speed is deduced. An analysis on the inside dynamics
of the wave establishes a dichotomy between pushed and pulled waves
depending on the strength of the advection. We identified the minimal
wave speed as the biologically relevant speed, in a weak sense, that is,
the solution propagates slower, respectively faster, than the minimal
wave speed, up to time extraction. Finally, we extend the study to a
hyperbolic two-velocity model with persistence.

2.1 Introduction

In this paper, we are mainly concerned with the investigation of spreading properties for
a one-dimensional parabolic system of two diffusion-advection-reaction equations, with
t ≥ 0, x ∈ R,

{
∂tρ− ∂xxρ+ ∂x(χsign(∂xN)1N≤Nthρ) = 1N>Nthρ

∂tN −D∂xxN = −ρN.
(2.1.1a)
(2.1.1b)
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Here ρ(t, x) describes a cell population subject to diffusion, with a diffusion constant nor-
malized to 1, and either growth or advection depending on its position. The switch between
growth and advection is mediated by the value N(t, x) of a chemical nutrient field: for a
given threshold value Nth, if N > Nth, the population ρ is subject to growth with con-
stant rate normalized to 1, and if N ≤ Nth, the population is subject to advection with
constant speed χ > 0 in the direction of the gradient ∂xN . This advection speed results
from biases in individual cell trajectories, which are averaged at the macroscopic level.
The chemical nutrient N undergoes a reaction-diffusion equation through a simple con-
sumption term −ρN , with the consumption rate per cell normalized to 1. All along the
article, we work in the setting, where N is increasing in space, limx→−∞N(t, x) = 0 and
limx→+∞N(t, x) = 1 > Nth, by normalizing the limit to 1. Under these conditions, the cell
population propagates from left to right. Furthermore, we introduce the (unique) position
of the threshold x̄(t), such that:

N(t, x̄(t)) = Nth. (2.1.2)

In Equation (2.1.1a), the advection term is discontinuous, but the flux should still be
continous. Hence in particular at the interface x̄(t) the flux must be continuous. More
precisely, consider a weak solution to Equation (2.1.1a), which is continuous and sufficiently
regular on either side of the interface x̄(t). By a Rankine-Hugoniot type argument, ρ
satisfies the following C1-jump relation at the interface x̄(t):

∂xρ
(
t, x̄(t)+

)
− ∂xρ

(
t, x̄(t)−

)
= −χρ(t, x̄(t)). (2.1.3)

A typical initial datum (ρ0, N0) ∈ L∞(R)2 for System (2.1.1) satisfies nonnegativity, i.e.
ρ0, N0 ≥ 0. In addition, we assume that ρ0 satisfies the C1-jump relation (2.1.3) and is
bounded by an exponentially decreasing function at x = +∞. Furthermore, ∂xN0 > 0,
limx→−∞N

0(x) = 0 and limx→+∞N
0(x) = 1 > Nth.

System (2.1.1) was introduced in [48] by the author and collaborators as a minimal
model for cell collective behaviour triggered by a self-generated gradient. In this study, the
following emerging behavior of Dictyostelium discoideum cells (Dd cells in short) in hypoxic
conditions was observed: when a colony of Dd cells is confined between two narrowly
spaced plates, Dd cells form a dense ring moving outwards. After a brief transitory phase,
the ring of cells moves at constant speed and constant density over the time course of
the experiment (see Figure 2.1a). The authors emitted the hypothesis that the quick
consumption of oxygen by Dd cells exposes them to hypoxia, i.e. lack of oxygen, and
in turn induces aerotaxis, i.e. a bias in the individual trajectories of Dd cells towards
higher oxygen concentrations, leading to a macroscopic outward motion. We refer to [23,
48] (see also [150]) for a biological discussion on the hypotheses under which the observed
phenomenon may arise. The scientific approach in [48] leading to this minimal model
can be described as follows: (i) Experimentally, it was observed that cells exhibit various
individual behaviors accross the colony. (ii) In the model, two particular behaviors were
retained as an alternative: either cell division, or migration towards oxygen. (iii) It was
postulated that the transition between the two behaviors depends on a single threshold
(see Figure 2.1b). Indeed, it is for instance well known that Dd cells do not have enough
energy to divide, when oxygen is lacking. The term ’Go or Grow’ was coined to describe
this dichotomy, by analogy with a similar mechanism in the modeling of glioma cells [98],
which nevertheless is of another nature, as it describes a density-dependent rather than an
oxygen-dependent switch between diffusion and cell division.
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(a) (b)

Figure 2.1: (a): A schematic representation of the experiment carried out in [48]. Cells
are confined between two narrowly spaced plates and quickly consume available oxygen, so
that the colony experiences self-induced hypoxic conditions. This, in turn, triggers outward
migration of the colony under the form of a ring expanding at constant speed over long
periods of time. (b): A cartoon representation of the ’Go or Grow’ hypothesis. Cells switch
between two behaviors, depending on the level of oxygen. When oxygen concentration is
above some threshold Nth, cells divide and follow Brownian trajectories (this is the ’Grow’
behavior). In contrast, when oxygen concentration drops below Nth, cells stop dividing
and follow a biased Brownian motion towards higher levels of oxygen (this is the ’Go’
behavior).

The mechanism of cell division in System (2.1.1) resembles to some extent to stan-
dard reaction-diffusion models, among which the classical Fisher/Kolmogorov-Petrovsky-
Piskunov [11, 72, 115] is a prototype. The F/KPP model describes in particular expansion
of a cell population undergoing cell division and diffusion. However, while in standard
reaction-diffusion models, growth is limited by a density-mediated mechanism (e.g. a
quadratic saturation term in the F/KPP case), here it is limited via the dependence on
the chemical nutrient N , which leads to a similar regulatory mechanism: the more cells
divide, the more they consume the chemical nutrient N , the more their growth is limited.

Interestingly, this minimal model is sufficient to describe the propagation of a wave
of cells, in a context of self-generated oxygen gradients. In fact, System (2.1.1) exhibits
explicit traveling wave solutions and the minimal wave speed can be computed explicitly
(see [48] and also Section 2.3). This gives rise to the following formula for the minimal
wave speed,

σ∗ =

{
χ+ 1

χ if χ > 1

2 if χ ≤ 1
. (2.1.4)

Thus, there are two different regimes: in the regime χ ≤ 1, which we call the small bias
regime, the speed corresponds to the well-known F/KPP speed, σF/KPP := 2, whereas
in the regime of large bias, χ > 1, the wave speed χ + 1

χ is greater than σF/KPP . The
threshold is reached when the advection speed χ is equal to half the F/KPP speed σF/KPP :
there, the two expressions coincide.

System (2.1.1) combines two distinct propagation phenomena, one being aerotaxis of
cells triggered by the self-generated gradient, and the other being expansion by division-
diffusion, such as described by the F/KPP model. Biologically, it is therefore relevant to
ask how these two propagation phenomena combine with each other (see [23, 48]). Since the
collective propagation speed σ∗ is always higher than the advection speed χ, cell division
has a net positive effect on the propagation of cells. In parallel, in the regime of large bias
χ > 1, aerotaxis has also in turn a net positive effect on the propagation speed, compared
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to mere expansion by division-diffusion, which is in agreement with the findings by [49]. In
that case, we may refer to the wave as an aerotactic wave. Yet, in the regime of small bias
χ ≤ 1, the propagation is driven by division-diffusion, and aerotaxis does not contribute
to the wave speed: in that case, we refer to the propagation as a F/KPP wave.

Recently, numerous works, among which [49, 124, 179, 182], have investigated prop-
agation of cells under self-generated gradients and shown its biological relevance as an
efficient migration strategy. Notably in [49], the authors observe that the the combination
of chemotaxis (the response to chemical gradients, which is very analogous to aerotaxis in
a mathematical setting) and cell division, leads to an enhanced expansion.

Other works have investigated chemotactic waves in Escherichia coli bacteria (and
references therein [35, 160]). These works have proposed a description at a mesoscopic
scale, through a kinetic model, and at a macroscopic scale, through a parabolic model,
analogous to some extent with System (2.1.1). However, the main difference is that in
order to sustain the propagation of the wave, two attractants are required in [35, 160],
whereas here the single attractant N is sufficient. Additionally in the case of E. coli cell
division is negligible, while here it plays a key ingredient. We refer to [36] for a discussion
on different models of propagation through self-generated signaling gradients.

In parallel, the Keller-Segel model [112, 114] has been widely used in order to give a de-
scription of cells undergoing chemotaxis. In [137], a variation on this model was proposed
by adding a density-dependent growth term to the model. This Keller-Segel model with
growth term has been the subject of numerous investigations in recent years, among which
the works [27, 121, 137, 157, 158]. These types of models combine chemotaxis and cell di-
vision and exhibit traveling waves under some conditions on the parameters. Nevertheless,
chemotactic self-aggregation (in the aformentioned studies) and aerotaxis (in the present
study) lead to biases in opposite directions at the edge of expansion front. Recently, in
the works [95, 99], the authors have investigated the case of negative chemotaxis, where
the bias induced by chemotaxis is in the same direction than the propagation induced by
division-diffusion and thus bears a similarity to the aerotactic advection term. In [99], the
author was able to obtain bounds on the propagation speed. Since the considered model is
different from ours, this result cannot be directly compared to our explicit speed Formula
(2.1.4), but in the regime of small negative chemotaxis, the wave speed exactly agrees, i.e.
σ∗ = 2, and the propagation is caused by division-diffusion. In the regime of large negative
chemotaxis, the wave speed increases, which is also in agreement with our findings.

Interestingly, Formula (2.1.4) coincides with the formula for the wave speed obtained
in the monostable cubic reaction-diffusion equation with reaction term f(u) = u(1−u)(1+
2χ2u) [19, 94] or the Burgers-FKPP equation of the form ∂tu− ∂xxu+ 2χu∂xu = u(1− u)
[9]. We also mention a class of free boundary problems introduced in [20], that is linked to
the large-population limit of the N -Branching Brownian Motion [52]. The authors of [20]
show that the following free boundary problem for (u, µt) ∈ C(R+×R)×C(R+) sufficiently
regular admits Formula (2.1.4) as minimal wave speed:{

∂tu− ∂xxu = u, for x > µt
u(t, µt) = 1 and ∂xu(t, µt) = −χ

In [82, 152], the authors have investigated the inside dynamics of traveling waves in
reaction-diffusion equations. They have proposed a new characterization of the catego-
rization between pushed and pulled waves. A pushed wave is subject to a significant
contribution from the overall population to the net propagation, whereas a pulled wave is
driven by growth and diffusion of the population at the edge of the front with negligible
contribution from the overall population. In particular, it was shown in [82] that in the
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monostable cubic reaction-diffusion equation with reaction term f(u) = u(1−u)(1+2χ2u)
a transition from a pulled to a pushed nature of the wave exists at χ = 1. The same
dichotomy was observed at play in System (2.1.1), essentially via numerical simulations
[48]: in the case of small bias χ ≤ 1, the traveling wave is pulled. In contrast, in the case
of large bias χ > 1, the traveling wave is pushed. A transition from pulled to pushed waves
has recently been of interest in the works [80, 81, 148], but in these studies they are due
to structural modifications of the system, i.e. the reaction term goes from a monostable
structure to a bistable structure. However here, as well as in the case of the monostable
cubic case and the Burgers-FKPP equation [9], it is a transition induced by the relative
size of the parameters without changing the nature of the stable states.

Of note, the definitions of pulled and pushed waves can vary in the literature. The
historical definition as proposed in [169] (see also [154, 184]) is based on the criterion
whether the minimal speed σ∗ is equal to the speed of the linearized front around the
steady state 0 (pulled), or greater than this speed (pushed). The definition proposed in
[82, 152] is based in turn on the inside dynamics of the traveling waves. In this paper,
we follow the latter definition and more precisely the study of the inside dynamics of ρ,
that we believe is more appropriate to the study of a system of equations, such as System
(2.1.1). However, both definitions coincide in our case, since linearizing System (2.1.1)
around its leading edge yields a constant chemical nutrient field N ≡ 1 and the linear
F/KPP equation on ρ, which gives rise to a front traveling at speed σ = 2.

In this paper, we are mainly concerned with the study of the parabolic System (2.1.1),
that can be viewed as a minimal model on a macroscopic scale including self-generated
signaling gradients and cell division. However, following the discovery of the run and
tumble motion in E. coli [22], it may be relevant to model collective motion of micro-
organisms on a mesoscopic scale through kinetic transport equations, see for instance [6,
7, 46, 141, 171]. In particular in [35], the author has investigated the existence of traveling
waves in E. coli populations propagating in microchannels. In Dd cells, persistent motion
is observed as well [48]. Therefore, it is very natural to propose a kinetic model for their
study, involving free transport and reorientations of cells. Hence, by analogy with the
aforementioned studies, we propose the following kinetic model:

{
∂tf(t, x, v) + v∂xf(t, x, v) = λ (M(v;N, ∂xN)ρ(t, x)− f(t, x, v)) + r(N)ρ(t, x)

∂tN −D∂xxN = −ρN,
(2.1.5a)
(2.1.5b)

where v ∈ V , a compact subset of R and ρ(t, x) = 1
|V |
∫
V f(t, x, v)dx. Equation (2.1.5a)

describes the evolution of the mesoscopic density of cells, that undergo cell division and
persistent motion: cells move with velocity v and at a constant rate λ cells reorient them-
selves according to the probability distribution described by the MaxwellianM(v;N, ∂xN).
In addition, cells divide with rate r(N), depending on the ambient oxygen level, and the
new cells have a velocity that is drawn from the uniform distribution on V . In particular,
we can adapt the ’Go or Grow’ hypothesis to Equation (2.1.5a): for N < Nth, set cell
division to zero and a fixed Maxwellian distribution with mean χsign(∂xN); for N > Nth,
set a fixed nonzero cell division rate and a fixed Maxwellian with zero mean.

Whilst the general study of System (2.1.5) is postponed to future investigations, we
analyze in the present study the two-velocity case, which we will refer to as the two-velocity
system with persistence. In fact, we consider V = {±ε−1}, with rescaled velocity and
System (2.1.5) becomes a system of two hyperbolic equations for f±(t, x) := f(t, x,±ε−1)
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and a parabolic equation for N , with t ≥ 0, x ∈ R,
∂tf

+ + ε−1∂xf
+ = ε−2

(
M(+ε−1;N, ∂xN)ρ− f+

)
+ 1N>Nthρ

∂tf
− − ε−1∂xf

− = ε−2
(
M(−ε−1;N, ∂xN)ρ− f−

)
+ 1N>Nthρ

∂tN −D∂xxN = −ρN,

(2.1.6a)

(2.1.6b)
(2.1.6c)

where ρ := f++f−

2 and,

M(±ε−1;N, ∂xN) =


1 if N > Nth
1± εχ if N ≤ Nth and ∂xN ≥ 0
1∓ εχ if N ≤ Nth and ∂xN < 0

,

with χ < ε−1 and, up to a scale of units, r(N) = 1N>Nth , λ = ε−2 and the mean of the
Maxwellian distribution equal to ±χ, when N ≤ Nth.

The parabolic System (2.1.1) and the two-velocity System with persistence (2.1.6) are
linked through the so-called parabolic scaling limit. Indeed, taking the limit ε → 0 of
Equations (2.1.6) leads, at least in a formal sense, to Equations (2.1.1). We refer to [46]
for a rigorous derivation in a general chemotaxis model without cell division.

Results and Strategies of Proof

The present article contains on the one hand an analysis of the well-posedness of System
(2.1.1) locally in time and on the other hand an asymptotic analysis of System (2.1.1),
including: the computation of traveling wave solutions, the study of the inside dynamics
of the traveling waves, as well as a weak characterization of the asymptotic behavior of
the spreading speed in the Cauchy problem. We also characterize traveling wave solutions
for the two-velocity System with persistence (2.1.6). All along the article we work in the
setting where N is increasing in space and cells propagate from left to right. Concerning
the well-posedness we give a non-optimal criterion on the initial datum N0 under which
monotonicity of N is preserved locally in time and globally in space. However, for the rest
of the article, monotonicity of N is a restrictive assumption in our study.

In Section 2.2, we prove an existence and uniqueness result for the parabolic System
(2.1.1) locally in time under the assumption that N is initally monotonic. Because of
the discontinuity of the advection coefficients, involving the coupling with the signaling
gradient, direct application of Banach’s Fixed point Theorem seems not directly applicable.
To circumvent this delicate issue, we use the monotonicity of N and the definition of the
threshold position x̄(t) (see Equation (2.1.2)) and apply Banach’s Fixed Point Theorem to
the curve x̄( · ). Our strategy relies on an endpoint estimate of N in W 3,∞, which is out
of the range of textbook estimates (to the best of our knowledge), that we achieve by a
careful handling of the singularity at the interface. This reduction to an equation on the
dynamics of a curve, coupled with a PDE, is reminiscent of studies in one-dimensional free
boundary problems (see, e.g. Chapter 3 in [67] on the Stefan problem, [117] in the context
of front propagation, or [132] in the context of mutation-selection dynamics in evolutionary
biology).

In Section 2.3, we exhibit all positive and bounded traveling wave solutions for Equa-
tions (2.1.1), which propagate from left to right, i.e. all stationary solutions in the frame
(t, z) = (t, x− σt), with σ ≥ 0. This completes the preliminary analysis performed in [48].
In that case, Equation (2.1.1a) reduces to a piecewise constant second-order differential
equation. All traveling wave profiles of ρ are a concatenation of a constant profile on the
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left side and an exponentially decreasing profile on the right side. In both the small and
large bias regimes, there exists a minimal velocity σ∗ for traveling waves, given by Formula
(2.1.4). For each σ ≥ σ∗, there exists an associated wave profile (ρσ, Nσ), whose exponen-
tial decay at z = +∞ is slower than the decay of the profile associated to the minimal
velocity σ∗, which will be a crucial observation for Section 2.5.

In Section 2.4, we investigate the inside dynamics of the traveling waves. We introduce
the formalism of neutral fractions [82, 152] and extent it to System (2.1.1). The method-
ology consists in studying the evolution of a fraction ν = ρ

ρσ of the traveling wave, relative
to the stationary dynamics in the moving frame prescribed by the traveling wave solution
ρσ. This gives rise to a linear parabolic equation,

∂tν + Lν = 0.

In the case of large bias (χ > 1), the elliptic operator L is self-adjoint in a weighted L2-
space and has the following spectral properties: 0 is a simple eigenvalue, whose eigenspace
is spanned by the constants, and the operator L has a spectral gap. This leads to the
conclusion that every neutral fraction converges exponentially to a constant in a weighted
L2-norm, which constitues the signature of a pushed wave, according to [82, 152]. In
contrast, in the regime of small bias (χ ≤ 1), under the condition that ν0ρ

σ∗ is square-
integrable at z = +∞, the solution ν converges to 0, which is the signature of a pulled
wave. To do so, we use an energy method in an L2-setting to show uniform convergence
to 0 on intervals of the form [a,+∞).

In Section 2.5, we give a weak description of the asymptotic behavior of solutions to
System (2.1.1). In fact, if we define the instantaneous spreading speed to be ˙̄x(t), we show
that for initial conditions bounded above by a multiple of ρσ∗ and under the technical
assumption that ˙̄x ∈ L∞(R+), we have that,

lim inf
t→+∞

˙̄x(t) ≤ σ∗, and lim sup
t→+∞

˙̄x(t) ≥ σ∗.

In other words, for an inital cell profile, whose exponential decay is faster than ρσ
∗ , up

to a time extraction, the cell profile spreads either slower or quicker than the minimal
wave speed σ∗. Hence, an important conclusion of this Section is that for biologically
relevant initial conditions (e.g. a profile, whose support is bounded above), the only
reasonable candidate for convergence to a traveling wave profile, is the one associated to
the minimal wave speed σ∗. However, convergence in a proper sense to the traveling wave
profile remains an open problem, a major difficulty being notably the lack of a suitable
comparison principle.

Finally, in Section 2.6, we compute all subsonic traveling wave solutions, i.e. σ < ε−1,
for System (2.1.6). Subsonic traveling wave solutions exist if and only if ε−1 > 1. The
structure of these solutions then follows mutatis mutandis the structure of the solutions
for the parabolic System (2.1.1). In particular we find a similar expression for the minimal
wave speed,

σ∗ =
1

1 + ε2
·
{
χ+ 1

χ if χ ∈ (1, ε−1)

2 if χ ≤ 1
. (2.1.7)

The proof consists in solving piecewise constant linear differential equations. Furthermore,
the velocity formula for χ ≤ 1 coincides with the velocity of traveling waves in two-velocity
models with a reaction term, but without advection (see for instance [26, 93]).
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2.2 Existence and Uniquess of Solutions for the Parabolic
Model

In this Section, we establish existence and uniqueness locally in time for the parabolic
System (2.1.1), under certain conditions. The main difficulty to prove such a result stems
from the singular advection term ∂x (χsign(∂xN)1N≤Nthρ) in Equation (2.1.1a). Therefore,
we will work in the framework, where N is increasing and N(t, · ) = Nth admits a unique
solution x̄(t). In this framework, System (2.1.1) is equivalent to the following simpler
System: 

∂tρ− ∂xxρ+ ∂x(χ1x≤x̄(t)ρ) = 1x>x̄(t)ρ

∂tN −D∂xxN = −ρN
N(t, x̄(t)) = Nth.

(2.2.1a)

(2.2.1b)
(2.2.1c)

In order to prove existence and uniqueness of the solution x̄(t), it suffices to require that
∂xN > 0. Nevertheless, the property that ∂xN(t, · ) > 0 is in general not implied by the
sole condition that ∂xN0 > 0. In fact, it is possible to exhibit an initial configuration
(ρ0, N0) where N0 is monotonic, but nearly constant, and ρ0 is sufficiently localized, so
that the concentrationN(t, x) is no longer monotonic after some time t > 0, simply because
of strong depletion around a spatial location. To circumvent this issue, we will here simply
study System (2.2.1) and at the end of Section, we give a simple criterion, far from being
optimal, on the inital data (ρ0, N0) such that the property ∂xN > 0 is conserved for small
time. Hence the solution of System (2.2.1), (ρ,N) is in fact a solution of (2.1.1).

The strategy of proof consists in applying a fixed point mapping to the curve t 7→ x̄(t),
i.e. the unique solution to N(t, · ) = Nth. More precisely, the main steps consist in (i) given
the curve x̄( · ), solving Equations (2.2.1a,2.2.1b). (ii) Given the solution (ρ[x̄], N [x̄]), we
show existence and uniqueness of a solution to Equation N [x̄](t, · ) = Nth, that we denote
ȳ( · ). We then show that the solution ȳ( · ) satisfies the following ODE:{

˙̄y(t) = − ∂tN [x̄](t,ȳ(t))
∂xN [x̄](t,ȳ(t))

ȳ(0) = x̄(0)
. (2.2.2)

In fact, ODE (2.2.2) is equivalent to Equation N(t, · ) = Nth. To show well-posedness of
ODE (2.2.2), we need to obtain enough regularity on N : ∂tN [x̄] and (∂xN [x̄])−1 should
be locally Lipschitz in space. But from standard parabolic theory and the fact that the
time derivative is expected to have the same regularity as the double space derivative,
this roughly corresponds to ∂xxN [x̄] being locally Lipschitz in space (and ∂xN [x̄](t, ȳ(t))
uniformly bounded away from 0). Hence the required regularity of N is W 3,∞ in space.
We shall see that this regularity holds true, but it is an endpoint case. (iii) Finally, the
aim is to show that the mapping x̄( · ) 7→ ȳ( · ) is a contraction and there exists a unique
solution to the Cauchy problem:{

˙̄x(t) = − ∂tN [x̄](t,x̄(t))
∂xN [x̄](t,x̄(t))

x̄( · )|t=0 = x̄(0)
.

However, because of the regularity requirement on N , the mapping x̄ 7→ ȳ becomes only
a contraction, as will be seen, in a space that controls also the time derivative ˙̄x. This
deviates from standard Picard-Lindelöf theory of integration for ODEs, where contraction
in L∞-norm is sufficient and is obtained through a local in time integration of the ODE.
Furthermore, from the ODE (2.2.2) it becomes clear that x̄ 7→ ȳ is at best merely Lipschitz
continuous in the W 1,∞-norm and not a contraction. In order to circumvent this issue, we
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will consider the mapping x̄ 7→ ȳ in an W 1,p-norm (with p < ∞) and therefore by a local
in time integration of the ODE (2.2.2), the mapping x̄( · ) 7→ ȳ( · ) becomes a contraction
in that given norm.

Next, we introduce some notations and basic facts, before moving on to the statement
of Theorem 2.2.1.
The evolution operator of the heat equation etµ∂xx (here µ = 1 and µ = D will be of
interest) on the real-line is defined as follows:

etµ∂xxf(x) =
1√

4πµt

∫
R
e
− (x−y)2

4µt f(y)dy.

The operator etµ∂xx satisfies the following well-known functional inequalities, as a conse-
quence of Young’s convolutional inequality. For 1 ≤ p ≤ q ≤ ∞:∥∥∥etµ∂xxf∥∥∥

q
≤ Ct−

1
2

(
1
p
− 1
q

)
‖f‖p ,∥∥∥etµ∂xx∂xf∥∥∥

q
≤ Ct−

1
2

(
1
p
− 1
q

+1
)
‖f‖p .

(2.2.3)

(2.2.4)

In addition, we consider Hölder spaces Ck,α(R), with α ∈ (0, 1) and the norm ‖ · ‖Ck,α(R) =∑k
i=0

∥∥∂ix ·
∥∥
∞ + [∂kx · ]α, where [f ]α := supx,y

|f(x)−f(y)|
|x−y|α . From Real Interpolation Theory

with the K-method (see Chapter 1 in [126]), we know that Ck,α(R) =
(
Ck(R), Ck+1(R)

)
α,∞,

where Ck(R) is the space of functions k-times differentiable with bounded derivatives,
equipped with its usual W k,∞-norm. This leads to the following bounds:∥∥∥etµ∂xxf∥∥∥

C0,α(R)
≤ Ct−α2 ‖f‖∞ ,∥∥∥etµ∂xxf∥∥∥

C1,α(R)
≤ Ct− 1+α

2 ‖f‖∞ ,∥∥∥∂xetµ∂xxf∥∥∥
∞
≤ Ctα−1

2 ‖f‖C0,α(R) ,∥∥∥∂xxetµ∂xxf∥∥∥
∞
≤ Ctα2−1 ‖f‖C0,α(R) .

(2.2.5)

(2.2.6)

(2.2.7)

(2.2.8)

SetB(A) := BW 1,p([0,T ])(A) =
{
ȳ( · ) ∈W 1,p([0, T ])

∣∣‖y‖W 1,p ≤ A
}
, with the norm ‖y‖W 1,p =

‖y‖p + ‖ẏ‖p and p ∈ (4,∞). Given a curve x̄ ∈ B(A), we consider System (2.2.1) in the
moving frame of reference (t, z) = (t, x− x̄(t)), which yields:{

∂tρ̃− ˙̄x(t)∂zρ̃− ∂zzρ̃+ ∂z(χ1z≤0ρ̃) = 1z>0ρ̃

∂tÑ − ˙̄x(t)∂zÑ −D∂zzÑ = −ρ̃Ñ .
(2.2.9a)

(2.2.9b)

Of note, throughout this Section ρ̃, Ñ denotes the solutions in the moving frame, in order
to easily distinguish between for instance ρ and ρ̃. Without loss of generality, we also
suppose that x̄(0) = 0, so that ρ̃0 = ρ0 and Ñ0 = N0. Thereafter, we will however drop
the diacritical mark˜and systematically designate by ρ the solution in the moving frame.

As already observed in the Introduction, continuity of the flux in Equation (2.2.9a)
leads by a Rankine-Hugoniot type of argument to a C1-jump relation (2.1.3), which in the
moving frame can simply be rewritten as:

∂zρ̃(t, 0+)− ∂zρ̃(t, 0−) = −χρ̃(t, 0).
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In fact, it is furthermore possible to factorize ρ̃ under the form vU , with a function U such
that the factorization precisely cancels out the C1-jump relation at z = 0. For instance,

we can choose U(z) =

{
1 if z ≤ 0
e−χz if z > 0

. Notice that U exactly satisfies the C1-jump

relation and that we obtain the following Equation on v:

∂tv − ∂zzv − β(t, z)∂zv − γ(t, z)v = 0, (2.2.10)

where β(t, z) := ˙̄x − χ1z≤0 − 2χ1z>0 and γ(t, z) := χ
((
χ+ 1

χ

)
− ˙̄x
)
1z>0. Under this

circumstance, v will be of higher regularity, i.e. C1,α. Of note, the particular choice of U
is arbitrary in this Section, although as will be seen in Section 2.3, U corresponds to the
traveling wave profile in the case χ ≥ 1. In fact, one could consider other candidates for
U , but for the sake of simplicity we restrict ourselves to this particular choice.

Let us now move to the statement of a well-posedness theorem locally in time under
the condition that N0 is increasing.

Theorem 2.2.1. Let p ∈ (4,∞), α ∈
(

0, 1− 2
p

)
and α′ ∈

(
2
p , 1− 2

p

)
. Suppose that N0 ∈

W 3,∞(R) and ρ0

U ∈ C1,α(R). Additionally suppose that ∂xN0 > 0 and that N0( · ) = Nth
admits a (unique) solution, for x = 0. For a certain ζ > 0, denote m a lower bound of
∂xN

0 on the interval [−ζ,+ζ].
Given A > 0 big enough (depending on D,χ, p, α, α′,

∥∥∥ρ0

U

∥∥∥
C1,α

,
∥∥N0

∥∥
W 3,∞ ,m, ζ) there

exists a small enough T > 0, such that for any curve x̄ ∈ B(A), there exists a unique solu-
tion (ρ̃, Ñ) to System (2.2.9). Moreover, ρ̃ ∈ L∞([0, T ],W 1,∞(R)), v = ρ̃

U ∈ L∞([0, T ], C1,α(R))

and Ñ ∈ L∞([0, T ],W 3,∞(R)).
Furthermore, there exists a unique curve x̄ ∈ B(A), such that the solution (ρ̃, Ñ) to

System (2.2.9) satisfies in addition the condition Ñ(t, 0) = Nth, or in the static frame
N(t, x̄(t)) = Nth, for t ∈ [0, T ]. In other terms, (ρ,N) in the static frame is the unique
solution to System (2.2.1).

Proof. We divide the proof of Theorem 2.2.1 into several steps:

1. a) We fix a curve x̄( · ) ∈ W 1,p([0, T ]) and construct the unique (mild) solution
v ∈ L∞

(
[0, T ], C1,α(R)

)
) to Equation (2.2.10). Furthermore the map x̄ ∈ B(A) 7→

v ∈ L∞([0, T ], C1,α(R)) is Lipschitz continuous.
b) Given v and thus ρ̃, we construct the unique solution Ñ ∈ L∞

(
[0, T ], C2,α′(R)

)
to Equation (2.2.9b). Furthermore the map x̄ ∈ B(A) 7→ Ñ ∈ L∞([0, T ], C2,α′(R))
is Lipschitz continuous.

2. We show that Ñ ∈ L∞([0, T ],W 3,∞(R)). This regularity is an improvement from
the more standard regularity result obtained in Step 1b) and is crucial for the rest
of the proof. We carry out estimates on explicit computations and finally we refer to
the Remark at the end of the proof of Theorem 2.2.1 for a brief argument to show
that the obtained regularity is borderline.

3. For t ∈ [0, T ], N(t) (in the static frame) admits a unique solution to the equation
N(t, · ) = Nth that we denote by ȳ(t). Furthermore ȳ( · ) satisfies ODE (2.2.2) and
the regularity obtained on N leads to well-posedness of ODE (2.2.2).

4. For A > 0 big enough the map x̄ 7→ ȳ maps from B(A) into itself and is further-
more a contraction. We conclude by Banach’s Fixed Point Theorem and obtain
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well-posedness.

Conventions. For the sake of clarity, throughout the proof we will make use of the fol-
lowing conventions. C will represent constants that depend on D,χ, p, α, α′,m, ζ. In order
to simplify the presentations of the inequalities, we suppose thatA,

∥∥∥ρ0

U

∥∥∥
C1,α

,
∥∥N0

∥∥
W 3,∞ ,

∥∥N0
∥∥
C2,α′ >

1 in order to use freely for instance the bounds 1+A ≤ 2A or
∥∥∥ρ0

U

∥∥∥
C1,α
≤
∥∥∥ρ0

U

∥∥∥2

C1,α
. In par-

allel, we suppose that T < 1, in order to use freely bounds of the type |t− s|−c ≤ |t− s|−d,
for t, s ∈ [0, T ], when 0 < c < d.

Step 1a: Existence and uniqueness of a (mild) solution v to Equation (2.2.10).
Consider the affine map F : L∞

(
[0, T ], C1,α(R)

)
→ L∞

(
[0, T ], C1,α(R)

)
, for t ∈ [0, T ]:

F [u](t) = et∂zz
(
ρ0

U

)
+

∫ t

0
e(t−s)∂zz (β(s)∂zu(s) + γ(s)u(s)) ds. (2.2.11)

As ρ0

U ∈ C1,α(R), we have that et∂zz
(
ρ0

U

)
∈ L∞

(
[0, T ], C1,α(R)

)
.

We will now show that the second term in (2.2.11) is in L∞
(
[0, T ], C1,α(R)

)
. Notice that

β(s, z)∂zu(s, z) = ∂z (β(s, z)u(s, z)) +χu(s, 0)δ0. Hence by using Bounds (2.2.3,2.2.4), the
fact that

∥∥e(t−s)∂zzδ0

∥∥
∞ ≤

C√
t−s and that |β| ≤ C(1 + | ˙̄x(s)|), we have that:∥∥∥∥∫ t

0
e(t−s)∂zz (β(s)∂zu(s)) ds

∥∥∥∥
∞
≤ C

∫ t

0

(‖β(s)u(s)‖∞√
t− s +

|u(s, 0)|√
t− s

)
ds

≤ C
∫ t

0

(1 + | ˙̄x(s)|) ‖u(s)‖∞√
t− s ds

≤ C ‖u‖∞
∫ t

0

(1 + | ˙̄x(s)|)√
t− s ds

≤ C ‖u‖∞
(

1 + ‖ ˙̄x‖p
)
T
p−2
2p

≤ C ‖u‖∞AT
p−2
2p ,

where we have used Hölder’s inequality, p > 2 in order to guarantee the integrability of
s 7→ (t− s)−

p
2(p−1) and the convention that T < 1 and A > 1. In a slightly easier manner,

we have also that:∥∥∥∥∂z ∫ t

0
e(t−s)∂zz (β(s)∂zu(s)) ds

∥∥∥∥
∞
≤ C ‖∂zu‖∞AT

p−2
2p .

Finally by using Bound (2.2.6):[
∂z

∫ t

0
e(t−s)∂zz (β(s)∂zu(s)) ds

]
α

≤ C ‖∂zu‖∞AT
p(1−α)−2

2p ,

where integrability of
∥∥∥s 7→ (t− s)−α+1

2

∥∥∥
p
p−1

is guaranteed by the condition α < 1 − 2
p .

This yields the bound:∥∥∥∥∫ t

0
e(t−s)∂zz (β(s)∂zu(s)) ds

∥∥∥∥
L∞([0,T ],C1,α(R))

≤ C ‖u‖L∞([0,T ],W 1,∞(R))AT
p(1−α)−2

2p ,
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where by the conventions, we have used that T
p−2
2p < T

p(1−α)−2
2p . The remaining term in

(2.2.11) admits a similar bound. In fact:∥∥∥∥∫ t

0
e(t−s)∂zz (γ(s)u(s)) ds

∥∥∥∥
L∞([0,T ],C1,α(R))

≤ C ‖u‖L∞([0,T ]×R)AT
p(1−α)−2

2p .

Hence F maps L∞([0, T ], C1,α(R)) into itself.
Furthermore, if we choose T small enough (depending on A), for instance such that the

Lipschitz constant of F becomes 1
2 , then F is a contraction and by Banach’s Fixed Point

Theorem Equation (2.2.9a) admits a unique solution v. Furthermore, we have the bound:

‖v‖ = ‖F [v]‖ ≤ ‖F [v]− F [0]‖+ ‖F [0]‖ ≤ ‖v‖
2

+ ‖F [0]‖

=⇒ ‖v‖L∞([0,T ],C1,α(R)) ≤ 2

∥∥∥∥ρ0

U

∥∥∥∥
C1,α(R)

. (2.2.12)

It remains to show that the map x̄ 7→ v is Lipschitz continuous. Given x̄1, x̄2 ∈ B(A),
consider the two corresponding functions v1, v2 ∈ L∞([0, T ], C1,α(R)), as well as the two
corresponding maps F1, F2, and set w := v1 − v2:

w(t) =

∫ t

0
e(t−s)∂zz (β1∂zw + (β1 − β2)∂zv2 + γ1w + (γ1 − γ2)v2) ds

=

(
F1[w]− et∂zz

(
ρ0

U

))
+

∫ t

0
e(t−s)∂zz ((β1 − β2)∂zv2 + (γ1 − γ2)v2) ds.

First of all, by using that et∂zz
(
ρ0

U

)
= F1[0] and by recalling that by the choice of T the

Lipschitz constant of F1 is 1
2 , we have:∥∥∥∥F1[w]− et∂zz

(
ρ0

U

)∥∥∥∥
L∞([0,T ],C1,α(R))

= ‖F1[w]− F1[0]‖L∞([0,T ],C1,α(R))

≤ 1

2
‖w‖L∞([0,T ],C1,α(R)) .

We have that β1 − β2 = ˙̄x1 − ˙̄x2 and γ1 − γ2 = ( ˙̄x1 − ˙̄x2)χ1z≥0, which leads for t ∈ [0, T ]
to: ∥∥∥∥∫ t

0
e(t−s)∂zz ((β1 − β2)∂zv2 + (γ1 − γ2)v2) ds

∥∥∥∥
C1,α(R)

=

∥∥∥∥∫ t

0
e(t−s)∂zz( ˙̄x1(s)− ˙̄x2(s))(∂zv2 + χ1z≥0v2)ds

∥∥∥∥
C1,α(R)

≤C
∫ t

0

| ˙̄x2(s)− ˙̄x1(s)| ‖∂zv2(s) + χ1z≥0v2(s)‖∞
(t− s)α+1

2

ds

≤C ‖v2‖L∞([0,T ],C1,α(R))

∫ t

0

| ˙̄x2(s)− ˙̄x1(s)|
(t− s)α+1

2

ds

≤C
∥∥∥∥ρ0

U

∥∥∥∥
C1,α(R)

‖ ˙̄x2 − ˙̄x1‖p T
p(1−α)−2

2p ,

where the last bound is an application of Hölder’s inequality. Hence we have that:

‖w‖L∞([0,T ],C1,α(R)) ≤
1

2
‖w‖L∞([0,T ],C1,α(R)) + C

∥∥∥∥ρ0

U

∥∥∥∥
C1,α(R)

‖ ˙̄x2 − ˙̄x1‖p T
p(1−α)−2

2p .
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And finally we establish that the map x̄ 7→ v is Lipschitz continuous with:

‖w‖L∞([0,T ],C1,α(R)) ≤ CT
p(1−α)−2

2p

∥∥∥∥ρ0

U

∥∥∥∥
C1,α(R)

‖ ˙̄x2 − ˙̄x1‖p (2.2.13)

Step 1b: Existence and uniqueness of a (mild) solution Ñ to Equation (2.2.9b).
Consider the map G : L∞([0, T ], C2,α′(R))→ L∞([0, T ], C2,α′(R)), with α′ ∈ (2

p , 1− 2
p).

For t ∈ [0, T ]:

G[u](t) = etD∂zzN0 +

∫ t

0
e(t−s)D∂zz ( ˙̄x(s)∂zu(s)− v(s)Uu(s)) ds. (2.2.14)

We proceed as before and treat explicitly only the following two terms:[
∂zz

∫ t

0
eD(t−s)∂zzv(s)Uu(s)ds

]
α′
≤ C

∫ t

0
(t− s)− 1+α′

2 ‖∂z (v(s)Uu(s))‖∞ ds

≤ C
∫ t

0
(t− s)− 1+α′

2 (‖∂zv(s)‖∞ ‖u(s)‖∞ + ‖v(s)‖∞ ‖∂zu(s)‖∞) ds

≤ CT 1−α′
2 ‖v‖L∞([0,T ],W 1,∞(R)) ‖u‖L∞([0,T ],W 1,∞(R))

≤ CT 1−α′
2

∥∥∥∥ρ0

U

∥∥∥∥
C1,α(R)

‖u‖L∞([0,T ],W 1,∞(R)) ,

where we used the fact that U ∈W 1,∞(R). And:[
∂zz

∫ t

0
eD(t−s)∂zz ˙̄x(s)∂zu(s)ds

]
α′
≤ C

∫ t

0
(t− s)− 1+α′

2 | ˙̄x(s)| ‖∂zzu(s)‖∞ ds

≤ CA ‖u‖L∞([0,T ],W 2,∞(R) T
1−α′

2 .

By using Bound (2.2.12), we can choose T such that the Lipschitz constant for G becomes
1
2 . Therefore G is a contraction and this yields existence and uniqueness of the solution Ñ
to Equation (2.2.9b) and Ñ satisfies the bound:∥∥∥Ñ∥∥∥

L∞([0,T ],C2,α′ (R))
≤ 2

∥∥N0
∥∥
C2,α′ (R)

≤ 2
∥∥N0

∥∥
W 3,∞ . (2.2.15)

As before, we show that x̄ ∈ B(A) 7→ N ∈ L∞([0, T ], C2,α′(R)) is Lipschitz continuous.
Given x̄1, x̄2 ∈ B(A), consider the corresponding Ñ1, Ñ2, as well as the two corresponding
maps G1, G2. We recall that w = v1 − v2 and set P := Ñ1 − Ñ2:

P = G1[P ]−G1[0] +

∫ t

0
e(t−s)D∂zz

(
( ˙̄x1(s)− ˙̄x2(s))∂zÑ2(s)ds− w(s)UÑ2(s)

)
ds.

By the same arguments as before, we have the following bounds:

‖G1[P ]−G1[0]‖L∞([0,T ],C2,α′ (R)) ≤
1

2
‖P‖L∞([0,T ],C2,α′ (R))∥∥∥∥∫ t

0
e(t−s)D∂zz( ˙̄x1(s)− ˙̄x2(s))∂zÑ1(s)ds

∥∥∥∥
L∞([0,T ],C2,α′ (R))

≤ CT
p(1−α′)−2

2p
∥∥N0

∥∥
C2,α′ (R)

‖ ˙̄x2 − ˙̄x1‖p∥∥∥∥∫ t

0
e(t−s)∂zzw(s)UÑ1(s)ds

∥∥∥∥
L∞([0,T ],C2,α′ (R))

≤ CT 1−α′
2 ‖w‖L∞([0,T ],C1,α(R))

∥∥N0
∥∥
C2,α′ (R)

.
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By recalling Inequality (2.2.13) on ‖w‖L∞([0,T ],C1,α(R)), we obtain that the map x̄ 7→ N is
Lipschitz continuous, with:

‖P‖L∞([0,T ],C2,α′ (R)) ≤ C
(
T
p(1−α′)−2

2p + T
(1−α′)(p(1−α)−2)

4p

)∥∥∥∥ρ0

U

∥∥∥∥
C1,α(R)

∥∥N0
∥∥
C2,α′ (R)

‖ ˙̄x2 − ˙̄x1‖p .

(2.2.16)

Step 2: Enhanced regularity on Ñ ∈ L∞([0, T ],W 3,∞(R)).
First let us point out that Ñ satisfies Equation (2.2.9b):

∂tÑ − ∂zzÑ − ˙̄x(t)∂zÑ = −vUÑ.

Suppose that vUÑ had C1,α′′ regularity in space for some α′′ ∈ (0, 1). Then by standard
Parabolic Schauder Estimates (see Chapter 8 in [116]), Ñ would have C3,α′′ regularity in
space. But because of the C1-discontinuity of U at z = 0, this fails and vUÑ is merely
Lipschitz continuous. This constitutes the endpoint case for the Parabolic Schauder Esti-
mates and it cannot generally be deduced that Ñ has W 3,∞ regularity in space. However,
in our case this result remains true, as we can single out the C1-discontinuity of U at z = 0,
then prove that this explicit contribution enjoys the endpoint W 3,∞ regularity. Finally, we
refer the reader to Remark 2.2 at the end of this proof, where we give an argument why
any higher regularity is not to be expected.

From the preceding point, we have the following representation for Ñ :

Ñ(t) = etD∂zzN0 +

∫ t

0
e(t−s)D∂zz

(
˙̄x(s)∂zÑ(s)− v(s)UÑ(s)

)
ds. (2.2.17)

The term etD∂zzN0 ∈ L∞([0, T ],W 3,∞(R)), as by assumption N0 ∈W 3,∞(R).
In addition, by using Bound (2.2.8):∥∥∥∥∂zzz ∫ t

0
e(t−s)D∂zz ˙̄x(s)∂zÑ(s)ds

∥∥∥∥
∞
≤
∫ t

0

∥∥∥∂zze(t−s)∂zz ˙̄x(s)∂zzÑ(s)
∥∥∥
∞
ds

≤ CT
pα′−2

2p ‖ ˙̄x‖p
∥∥∥Ñ∥∥∥

L∞([0,T ],C2,α′ (R))
,

where the integrability of
∥∥∥s 7→ (t− s)α

′
2
−1
∥∥∥

p
p−1

is due to the condition α′ > 2
p .

It remains to be shown that
∫ t

0 e
(t−s)D∂zz

(
v(s)UÑ(s)

)
ds ∈ L∞([0, T ],W 3,∞(R)). In order

to do so, we will decompose the term ∂z

(
v(s)UÑ(s)

)
as the sum of a C0,α function and

a discontinous function. In fact for s ∈ [0, T ], z ∈ R:

∂z

(
vUÑ

)
(s, z) = ∂z

(
vUÑ

)
(s, z)− J∂z

(
vUÑ

)
(s)Kz=01z≥0︸ ︷︷ ︸

g(s,z):=

+ J∂z
(
vUÑ

)
(s)Kz=0︸ ︷︷ ︸

h(s):=

1z≥0,

(2.2.18)

where JfKz0 = limz→z+
0
f(z)− limz→z−0

f(z). Here J∂z
(
vUÑ

)
(s)Kz=0 is well-defined, since

v(s), Ñ(s) ∈ C1,α(R) and U ∈ C1(R+)∩C1(R−). We will conclude by treating both terms
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separately and using the following bound:∥∥∥∥∂zzz ∫ t

0
e(t−s)∂zz

(
v(s)UÑ(s)

)
ds

∥∥∥∥
∞

≤
∥∥∥∥∫ t

0
∂zze

(t−s)∂zzg(s)ds

∥∥∥∥
∞

+

∥∥∥∥∫ t

0
∂zze

(t−s)∂zzh(s)1z≥0ds

∥∥∥∥
∞
. (2.2.19)

Lemma 2.2.1.1. Let f ∈ L∞([0, T ], C0,α(R+)) ∩ L∞([0, T ], C0,α(R−)), where we under-
stand C0,α(R±) as a normed space, equipped with the norm ‖ · ‖∞ + [ · ]α;R±.

Then we have that g := f − JfKz=01z≥0 ∈ L∞([0, T ], C0,α(R)) and:

‖g‖L∞([0,T ],C0,α(R)) ≤ 21−α max

{
sup
t∈[0,T ]

[f(t)]α;R+ , sup
t∈[0,T ]

[f(t)]α;R−

}
+ 3 ‖f‖∞ .

Proof. By construction we have that for t ∈ [0, T ], g(t) ∈ C0(R) and ‖g‖∞ ≤ 3 ‖f‖∞, since
|JfKz=0| ≤ 2 ‖f‖∞. Let t ∈ [0, T ] and x, y ∈ R and suppose that x < 0 < y:

|f(t, y)− f(t, x)|
|y − x|α ≤ |f(t, y)− f(t, 0)|

|y − x|α +
|f(t, 0)− f(t, x)|
|y − x|α

≤ 2

(
1

2
·
|y|α
|y − x|α [f(t)]α;R− +

1

2
·
|x|α
|y − x|α [f(t)]α;R+

)
≤ 2

( |y|+ |x|
2|y − x|

)α
max

{
sup
t∈[0,T ]

[f(t)]α;R+ , sup
t∈[0,T ]

[f(t)]α;R−

}

= 21−α max

{
sup
t∈[0,T ]

[f(t)]α;R+ , sup
t∈[0,T ]

[f(t)]α;R−

}
,

(2.2.20)

where we have used the concavity of z 7→ zα and the fact that x < 0 < y.
If x, y < 0 (resp. x, y > 0), then the left handside of (2.2.20) is simply bounded by

[f(t)]α;R− (resp. [f(t)]α;R+).

Let f = ∂z

(
vUÑ

)
∈ L∞([0, T ], C0,α̃(R+)) ∩ L∞([0, T ], C0,α̃(R−)), where we have set

α̃ := min(α, α′), and apply Lemma 2.2.1.1 to obtain that g ∈ L∞([0, T ], C0,α̃(R)). Through
Bound (2.2.8), this leads to:∥∥∥∥∫ t

0
∂zze

(t−s)∂zzg(s)ds

∥∥∥∥
∞

≤CT α̃
2 ‖g‖L∞([0,T ],C0,α̃(R))

≤CT α̃
2

(
max

{
sup
t∈[0,T ]

[∂z

(
vUÑ

)
(t)]α̃;R+ , sup

t∈[0,T ]
[∂z

(
vUÑ

)
(t)]α̃;R−

}

+
∥∥∥∂z (vUÑ)∥∥∥

L∞([0,T ],C0,α̃(R))

)
≤CT α̃

2 ‖v‖L∞([0,T ],C1,α̃(R)) ‖N‖L∞([0,T ],C1,α̃(R))

≤CT α̃
2

∥∥∥∥ρ0

U

∥∥∥∥
C1,α

∥∥N0
∥∥
W 3,∞ , (2.2.21)
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where we have used that the product of C1,α̃ functions are C1,α̃.
The last term is treated differently by using explicit computations:∫ t

0
∂zze

(t−s)D∂zzh(s)1z≥0ds =

∫ t

0
∂ze

(t−s)D∂zzh(s)δ0ds

= −
∫ t

0

zh(s)

4π
1
2D

3
2 (t− s) 3

2

e
− z2

4(t−s)ds

= −
∫ ∞
|z|√
t

h
(
t− z2

u2

)
2π

1
2D

3
2

e−u
2
du , where u =

|z|√
(t− s)

.

Hence, by the integrability of e−u2 :∥∥∥∥∫ t

0
∂zze

(t−s)D∂zzh(s)1z≥0ds

∥∥∥∥
∞
≤ C ‖h‖∞

But we have the following identity:

h(s)

= lim
z→0+

∂z(vUÑ)(s, z)− lim
z→0−

∂z(vUÑ)(s, z)

= lim
z→0+

U(z)∂z(vÑ)(s, z)

+ lim
z→0+

(vÑ)(s, z)∂zU(z)− lim
z→0−

U(z)∂z(vÑ)(s, z)− lim
z→0−

(vÑ)(s, z)∂zU(z)

=v(s, 0)Ñ(s, 0)J∂zUKz=0

=− χv(s, 0)Ñ(s, 0).

Therefore: ∥∥∥∥∫ t

0
∂zze

(t−s)D∂zzh(s)1z≥0ds

∥∥∥∥
∞
≤ C ‖v‖∞

∥∥∥Ñ∥∥∥
∞
. (2.2.22)

Bringing Bounds (2.2.19, 2.2.21, 2.2.22) together, we can conclude that:∫ t

0
e(t−s)D∂zz

(
v(s)UÑ(s)

)
ds ∈ L∞([0, T ],W 3,∞(R)).

Thus Ñ ∈ L∞([0, T ],W 3,∞(R)).

Step 3: Definition of the map x̄ 7→ ȳ: Existence and Uniqueness of the solution
N(t, · ) = Nth.

We consider ρ,N again in the initial frame (t, x), where they satisfy Equations (2.2.1).
Note that ‖N‖∞ =

∥∥∥Ñ∥∥∥
∞

and ‖ρ‖∞ ≤ ‖v‖∞. By assumption, we have that ∂xN0 > m

on the interval [−ζ,+ζ]. Therefore by setting ε = ζm, we have that for x < −ζ,N0(x) <
Nth − ε and x > ζ,N0(x) > Nth + ε.

1. We start by showing that there exists T > 0, such that for t ∈ [0, T ] and x ≤ −ζ ,
we have that N(t, x) < Nth. Note that:∥∥∥∥−∫ t

0
e(t−s)∂zzρ(s)N(s)ds

∥∥∥∥
∞
≤ T ‖N‖∞ ‖ρ‖∞

≤ 4T
∥∥ρ0
∥∥
C1,α

∥∥N0
∥∥
W 3,∞ .
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So for T > 0 small enough, the right handside is smaller than ε
4 .

Choose T > 0 small engouh, so that for t ∈ (0, T ] we have that:

1√
4πDt

∫ +∞

ζ
e−

x2

4Dtdx <
ε

4
.

From this we can deduce that for t ∈ (0, T ], x < −ζ, by recalling that
∥∥N0

∥∥
∞ = 1,

we have:

N(t, x) = et∂xxN0|x −
∫ t

0
e(t−s)∂xxρ(s)N(s)ds|x

≤ 1√
4πDt

∫
R
e−

(x−y)2

4Dt N0(y)dy +

∥∥∥∥−∫ t

0
e(t−s)∂xxρ(s)N(s)ds

∥∥∥∥
∞

<
Nth − ε

2
+
Nth

2
+

∥∥N0
∥∥
∞√

4πDt

∫ +∞

ζ
e−

x2

4t dx+
ε

4

< Nth.

2. By a similar reasoning, there exists T > 0, such that for t ∈ [0, T ] and x ≥ ζ, we
have that N(t, x) > Nth.

3. We now show that there exists T > 0, such that for t ∈ [0, T ], x ∈ [−ζ,+ζ], we have
that ∂xN(t, x) ≥ m

8 .
The reasoning is again similar. On the one hand:∥∥∥∥∂x(− ∫ t

0
e(t−s)D∂xxρ(s)N(s)ds

)∥∥∥∥
∞
≤
∫ t

0

C√
t− s ‖ρ(s)‖∞ ‖N(s)‖∞ ds.

As before we can choose T > 0 such that the right handside becomes smaller than
m
8 (here the constant C does not depend on m).
On the other hand, by choosing T > 0 small enough such that for every t ∈ [0, T ]:

1√
4πDt

∫ ζ

0
e−

y2

4Dtdy ≥ 1

4
.

In that fashion for x ∈ [−ζ,+ζ]:

etD∂xx∂xN
0|x =

1√
4πDt

∫
R
e−

(x−y)2

4Dt ∂xN
0(y)dy

≥ 1√
4πDt

∫ ζ

−ζ
e−

(x−y)2

4Dt ∂xN
0(y)dy

≥ m√
4πDt

∫ ζ−x

−ζ−x
e−

y2

4Dtdy

≥ m

4
,

by noticing that either [0, ζ] ⊂ [−ζ − x, ζ − x], when x ≤ 0, or alternatively that
[−ζ, 0] ⊂ [−ζ − x, ζ − x], when x ≥ 0. From this, we conclude that:

∂xN(t, x) = etD∂xx∂xN
0|x − ∂x

(∫ t

0
e(t−s)D∂xxρ(s)N(s)ds

)∣∣∣∣
x

≥ m

4
− m

8
=
m

8
.
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4. From the considerations above, we see that there exists T > 0, such that for t ∈ [0, T ],
the equation N(t) = Nth has a unique solution, which we denote by ȳ(t). We know
that ȳ(t) ∈ [−ζ,+ζ] and ȳ(0) = 0. Furthermore from the preceding analysis we
know that N is differentiable and by differentiating the relation N(t, ȳ(t)) = Nth,
ȳ(t) satisfies an ODE:

˙̄y(t) = − ∂tN(t, ȳ(t))

∂xN(t, ȳ(t))
=: F(t, ȳ(t)).

We have N ∈ L∞([0, T ],W 3,∞(R)) (resp. ρ ∈ L∞([0, T ],W 1,∞(R))), because Ñ ∈
L∞([0, T ],W 3,∞(R)) (resp. v ∈ L∞([0, T ],W 1,∞(R))). But since ∂tN = D∂xxN −
ρN this leads to ∂tN ∈ L∞([0, T ],W 1,∞(R)). Additionally, since ∂xN(t, ȳ(t)) ≥ m

4
and ∂xN ∈ L∞([0, T ],W 1,∞(R)), we have that (∂xN)−1 ∈ L∞([0, T ],W 1,∞(R)).
Therefore F ∈ L∞([0, T ] × [−ζ, ζ]) is uniformly in time Lipschitz continuous in
the second variable. Hence the ODE is well-posed and it admits a unique solution
ȳ ∈W 1,∞([0, T ]).
We have the bound:

| ˙̄y(t)| ≤ |∂xN(t, ȳ(t))|−1 ‖D∂xxN − ρN‖∞
≤ 8

m
(D ‖∂xxN‖∞ + ‖ρ‖∞ ‖N‖∞)

≤ C
∥∥N0

∥∥
W 3,∞

∥∥∥∥ρ0

U

∥∥∥∥
C1,α′

,

where at the end, we have used Bounds (2.2.12,2.2.15). Hence, by the convention
that T < 1, we have ‖ȳ‖W 1,p ≤ C

∥∥N0
∥∥
W 3,∞

∥∥∥ρ0

U

∥∥∥
C1,α′

. It therefore suffices that A
is bigger than the right handside and in that case the map x̄ 7→ ȳ maps B(A) into
itself.

Step 4: Unique Fixed Point of the map x̄ ∈ B(A) 7→ ȳ ∈ B(A).
Given x̄1, x̄2 ∈ B(A), consider ȳ1, ȳ2 ∈ B(A). Set Fi = − ∂tNi

∂xNi
, such that ˙̄yi(t) =

Fi(t, ȳi(t) . Note that ȳi(t) ∈ [−ζ,+ζ] and that therefore ∂xNi(t, ȳi(t)) >
m
8 .

| ˙̄y1(t)− ˙̄y2(t)| = |F1(t, ȳ1(t))−F2(t, ȳ2(t))|
≤ |F1(t, ȳ1(t))−F1(t, ȳ2(t))|+ |F1(t, ȳ2(t))−F2(t, ȳ2(t))| .

For x ∈ [−ζ,+ζ], t ∈ [0, T ] and by using the lower bounded of ∂xN(t, x) from Step 3, we
have that:

|∂xF1(t, x)| ≤
(

sup
x∈[−ζ,+ζ]

1

∂xN(t, x)

)2

‖∂txN∂xN − ∂tN∂xxxN‖∞

≤ C ‖(∂xxxN − ∂x(ρN)) ∂xN − (∂xxN − ρN)∂xxxN‖∞ .

This latter term is bounded, in particular because of Step 2. Hence:

|F1(t, ȳ1(t))−F1(t, ȳ2(t))| ≤ C
∥∥N0

∥∥2

W 3,∞(R)

∥∥∥∥ρ0

U

∥∥∥∥
C1,α(R)

|ȳ1(t)− ȳ2(t)|. (2.2.23)
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For the second term:

|F1(t, ȳ2(t))−F2(t, ȳ2(t))|

≤ |∂tN1(t, ȳ2(t))|
|∂xN1(t, ȳ2(t))||∂xN2(t, ȳ2(t))| |∂xN1(t, ȳ2(t))− ∂xN2(t, ȳ2(t))|

+
1

|∂xN2(t, ȳ2(t))| |∂tN1(t, ȳ2(t))− ∂tN2(t, ȳ2(t))|

≤C (‖∂xxN1 − ρ1N1‖∞ ‖∂xN1 − ∂xN2‖∞ + ‖∂xxN1 − ∂xxN2‖∞
+ ‖ρ1 − ρ2‖∞ ‖N1‖∞ + ‖ρ2‖∞ ‖N1 −N2‖) .

Now take (t, y) ∈ [0, T ]× R, we have:

|∂xxN1(t, y)− ∂xxN2(t, y)|
=|∂zzÑ1(t, y − x̄1(t))− ∂zzÑ2(t, y − x̄2(t))|
≤|∂zzÑ1(t, y − x̄1(t))− ∂zzÑ1(t, y − x̄2(t))|+ |∂zzÑ1(t, y − x̄2(t))− ∂zzÑ2(t, y − x̄2(t))|
≤
∥∥∥∂zzzÑ1

∥∥∥
∞
|x̄1(t)− x̄2(t)|+

∥∥∥∂zzÑ1 − ∂zzÑ2

∥∥∥
∞
.

We have similar bounds for ‖ρ1 − ρ2‖∞, ‖N1 −N2‖∞ and ‖∂xN1 − ∂xN2‖∞. Hence, by
using ‖x̄1 − x̄2‖∞ ≤ T

1− 1
p ‖ ˙̄x1 − ˙̄x2‖p and Bounds (2.2.13,2.2.16) this leads to:

|F1(t, ȳ1(t))−F2(t, ȳ2(t))|

≤C
∥∥N0

∥∥2

W 3,∞

∥∥∥∥ρ0

U

∥∥∥∥2

C1,α

(
T

1− 1
p + T

p(1−α′)−2
2p + T

(1−α′)(p(1−α)−2)
4p

)
‖ ˙̄x1 − ˙̄x2‖p . (2.2.24)

Setting K := C
∥∥N0

∥∥2

W 3,∞

∥∥∥ρ0

U

∥∥∥2

C1,α
, combining Inequalities (2.2.23,2.2.24) and using the

conventions, we find that:

| ˙̄y1(t)− ˙̄y2(t)| ≤ K
(
|ȳ1(t)− ȳ2(t)|+ ‖ ˙̄x1 − ˙̄x2‖p

)
.

By Grönwall’s lemma, we obtain:

‖ȳ1 − ȳ2‖∞ ≤
(
eKT − 1

)
‖ ˙̄x1 − ˙̄x2‖p .

Bootstrapping the penultimate estimate, we can prove that:

‖ ˙̄y1 − ˙̄y2‖p ≤ KT
1
p eKT ‖ ˙̄x1 − ˙̄x2‖p .

By noticing that ‖ȳ1 − ȳ2‖p ≤ T
1
p ‖ȳ1 − ȳ2‖∞ and using the two last inequalities, we find

that the map x̄ ∈ B(A) 7→ ȳ ∈ B(A) is a contraction in the W 1,p-norm for T > 0
small enough. Thus, we have a unique fixed point, which concludes the proof of Theorem
2.2.1.

Remark. The Step 2 of the preceding proof naturally leads to the question whether Ñ ∈
L∞([0, T ], C3,α′′(R)) for α′′ ∈ (0, 1). In fact, by the reasoning in Step 2, this is equivalent to
wondering, whether

∫ t
0 ∂zze

(t−s)D∂zzh(s)1z≥0ds ∈ L∞([0, T ], C0,α′′(R)). But we see that if
we take h ≡ 1 and denote θ > 0 the constant such that 1

π
1
2

∫ θ
0 e
−u2

du = 1
4 . Then, by apply-

ing the preceding computations between (t, z) = (min(y2θ−2, T ), y) and (min(y2θ−2, T ), 0),
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we find:∣∣∣∣∣∣
(∫ min(y2θ−2,T )

0
∂zze

(t−s)D∂zz1z≥0ds

∣∣∣∣∣
z=0

)
−

∫ min(y2θ−2,T )

0
∂zze

(t−s)D∂zz1z≥0ds

∣∣∣∣∣
z=y

∣∣∣∣∣∣
= 2π

1
2D

3
2

∫ max
(
θ, y√

T

)
0

e−u
2
du

≥ 1

8D
3
2

.

Since this expression is bounded below, this shows that there C0,α′′ norms will be unbounded
as y → 0. Hence

∫ t
0 ∂zze

(t−s)D∂zz1z≥0ds /∈ L∞([0, T ], C0,α′′(R)). Hence the expression is
unbounded and we have that

∫ t
0 ∂zze

(t−s)D∂zz1z≥0ds /∈ L∞([0, T ], C0,α′′(R)). This estab-
lishes that the regularity Ñ ∈ L∞([0, T ],W 3,∞(R)) is in fact critical.

Corollary 2.2.1.2. Suppose that in addition to the assumptions of Theorem 2.2.1, the
initial conditions (ρ0, N0) satisfy the following conditions:

1. ∂xN0

N0 , ∂xρ
0

ρ0 ∈ L∞(R),

2. lim infx→−∞
∂xN0

N0 ≥ ν > 0 and lim supx→+∞
∂xρ0

ρ0 ≤ −η < 0,

3. 1−N0 is square-integrable at x = +∞.

Then (ρ,N), the solution given by Theorem 2.2.1, satisfies the condition ∂xN ≥ 0 locally
in time and hence (ρ,N) is in fact a solution to System (2.1.1).

Let us briefly comment on the assumptions of Corollary 2.2.1.2. The assumption on
N0 implies that N0 increases at least exponentially at x = −∞. The assumption, that
1 − N0 is square-integrable at x = +∞, is of course more restrictive than the condition
limx→+∞N

0(x) = 1. We will see in the next Section that the traveling wave solution
satisfies the property Ñ(z) = 1 + p(z) with p a function that is dominated by an expo-
nentially decreasing function at z = +∞, which is then square-integrable at z = +∞.
Concerning the assumption on ρ0, we already know that ρ̃ = vU with U an exponentially
decreasing function at z = +∞ and v a bounded function. Hence the additional condi-
tion translates the fact that lim supx→+∞

(
∂xv0

v0

)
≤ χ− η. Considering that we must have

lim infx→+∞
∂xv0

v0 ≤ 0, otherwise v0 is not bounded, this assumption translates a restriction
on the oscillations of ∂xv

0

v0 .

Proof. 1. We start by showing that w := ∂zÑ
Ñ

is well-defined. In fact by dividing Equation
(2.2.9b) by Ñ , we obtain:

∂tÑ

Ñ
= D(∂zw + w2) + ˙̄xw − vU.

Then by observing that ∂z
(
∂tÑ
Ñ

)
= ∂zt log Ñ = ∂t

(
∂zÑ
Ñ

)
and by differentiating the pre-

ceding Equation, w satisfies the following equation:

∂tw = D(∂zzw + ∂z
(
w2
)
) + ˙̄x∂zw − ∂z (vU) .
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This leads to the following representation formula for w:

w(t) = etD∂zzw0 +

∫ t

0
e(t−s)D∂zz (D∂z (w2

)
(s) + ˙̄x(s)∂zw(s)− ∂z (v(s)U)

)
ds.

By arguments similar to the ones exposed in the proof of Theorem 2.2.1, we simply must
show that for R > 0 big enough there exists T > 0 such that the right handside defines
a contraction from L∞([0, T ], B(R)) into itself, where B(R) = {f ∈ L∞(R), ‖f‖∞ ≤
R}. We merely treat the term w ∈ L∞([0, T ], B(R)) 7→

∫ t
0 e

(t−s)D∂zzD∂z
(
w2(s)

)
ds ∈

L∞([0, T ], B(R)). Let w1, w2 ∈ L∞([0, T ]× R), we have:∥∥∥∥∫ t

0
e(t−s)D∂zz (∂z (w2

1

)
(s)− ∂z

(
w2

2

)
(s)
)
ds

∥∥∥∥
∞

≤C
∫ t

0

∥∥w2
1(s)− w2

2(s)
∥∥
∞

ds√
t− s

≤C
∫ t

0
‖w1(s)− w2(s)‖∞ ‖w1(s) + w2(s)‖∞

ds√
t− s

≤CR
√
T ‖w1 − w2‖∞ .

Hence w = ∂xÑ
Ñ
∈ L∞([0, T ]× R).

Furthermore, we show that w ∈ C([0, T ], L∞(R)). The map t 7→ etD∂xxw0 is continuous
and in addition by noticing, for instance, that:∥∥∥∥∫ t+h

0
e(t+h−s)D∂zzD∂z

(
w2
)

(s)ds−
∫ t

0
e(t−s)D∂zzD∂z

(
w2
)

(s)ds

∥∥∥∥
∞

=

∥∥∥∥∫ t+h

t
e(t+h−s)D∂zzD∂z

(
w2
)

(s)ds+
(

1− ehD∂zz
)∫ t

0
e(t−s)D∂zzD∂z

(
w2
)

(s)ds

∥∥∥∥
∞

≤C ‖w‖2∞
∫ t+h

t

ds√
t+ h− s

+

∥∥∥∥(1− ehD∂zz
)∫ t

0
e(t−s)D∂zzD∂z

(
w2
)

(s)ds

∥∥∥∥
∞
.

When h → 0, the first term clearly tends to 0 and so does the second term by strong
continuity of the heat semi-group.

2. Next we show that q = ∂zv
v is well-defined. q satisfies:

∂tq = ∂zzq + ∂z(q
2) + ∂z(βq) + ∂zγ.

The proof is similar to the preceding point. However, one should notice the following fact,
in order to prove that the map:

∫ t
0 e

(t−s)∂zz∂zγds ∈ L∞([0, T ]× R). Indeed, by observing

that ∂zγ = χ
(
χ+ 1

χ − ˙̄x(t)
)
δ0 and applying Hölder’s inequality, we have that:

∥∥∥∥∫ t

0
e(t−s)∂zz∂zγds

∥∥∥∥
∞

=

∥∥∥∥∥χ
∫ t

0

χ+ 1
χ − ˙̄x(s)√

4π(t− s)
e
− z2

4(t−s)ds

∥∥∥∥∥
∞

≤ C
∥∥∥∥χ+

1

χ
− ˙̄x

∥∥∥∥
p

.

3. We establish that Ñ is nondecreasing. To do so we start by noticing that since
lim supz→+∞

∂z ρ̃0

ρ̃0 < −η < 0. There exists an A > 0 such that for every z > A, ∂zv
0(z)

v0(z)
+
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U ′(z)
U < −η. But by continuity of t 7→ ∂zv(t, · )

v(t, · ) in L∞(R), there exists T > 0, such that for

every t ∈ [0, T ] and z > A, ∂z ρ̃(t,z)
ρ̃(t,z) = ∂zv(t,z)

v(t,z) + U ′(z)
U < −η

2 . In particular ∂zρ̃(t, z) < 0 for
(t, z) ∈ [0, T ]× [A,+∞).
Now because of Condition 1 and 3, we have in fact that for z ∈ (−∞, A], w0(z) ≥ ν

2 > 0
and by the same argument, we must have for T > 0 small enough that for t ∈ [0, T ], z ∈
(−∞, A], w(t, z) ≥ ν

4 > 0.
Therefore it remains to show that on the interval [A,+∞), we also have that ∂zÑ ≥ 0. For
h > 0, let f(t, z) := Ñ(t, z+h)−Ñ(t, z) and g(t, z) := −ρ̃(t, z+h)Ñ(t, z+h)+ρ̃(t, z)Ñ(t, z).
Then we have that:

∂tf − ˙̄x∂zf −D∂zzf = g. (2.2.25)

Furthermore for (t, z) ∈ [0, T ] × (−∞, A), we have that f ≥ 0 by the preceding and
for z > A, if f(t, z) = Ñ(t, z + h) − Ñ(t, z) < 0, then we must have that g(t, z) =
−ρ̃(t, z + h)Ñ(t, z + h) + ρ̃(t, z)Ñ(t, z) ≥ 0, since ρ̃(t, z + h) ≤ ρ̃(t, z). Therefore we have
f−g ≥ 0, where ( · )− = −min(0, · ).

We have that g(t, · ) ∈ L2(R), since Ñ is dominated at z = −∞ by e
νz
4 and ρ̃ is

dominated at z = +∞ by e−
ηz
2 . Notice that f(0, · ) ∈ L2(R) by the assumption that

1−N0 is square-integrable at x = +∞. Therefore f(t · ) ∈ L2(R) as solution to Equation
(2.2.25). Hence, the following computations are justified:

d

dt

(
1

2

∫
R

(f−)2

)
=

∫
R
f−∂tf−

= −
∫
R
f−∂tf , since f−∂t (f−) = −f−∂tf

= − ˙̄x(t)

∫
R
f−∂zf −D

∫
R
f−∂zzf −

∫
f−g

= ˙̄x(t)

∫
R
f−∂z(f−)−D

∫
R
f−∂zzf −

∫
f−g, since f−∂z (f−) = −f−∂zf

≤
˙̄x(t)

2

∫
R
∂z((f−)2) +D

∫
R

(∂zf−)∂zf , since f−g ≥ 0

= −D
∫
R

(∂zf−)2, since ∂zf−∂zf = −(∂zf−)2

≤ 0.

But, by assumption f−(0, · ) ≡ 0. Hence f−(t, · ) ≡ 0 and Ñ(t, · ) is nondecreasing.

2.3 Traveling Waves for the Parabolic System

In this Section, we will investigate the existence of waves for the parabolic System (2.1.1),
i.e. solutions of the form (ρ(t, x), N(t, x)) = (ρ̃(x − σt), Ñ(x − σt)), for a velocity σ to
be determined. Set z = x − σt, any traveling wave solution must satisfy the following
equations: {

− σρ̃′ − ρ̃′ + (χsign(∂zN)1Ñ≤Nth
ρ̃)′ = 1Ñ>Nth

ρ̃

− σÑ ′ −DÑ ′′ = −ρ̃Ñ .
(2.3.1a)

(2.3.1b)

For the sake of concision, we will drop the diacritical .̃ Applying the assumption that
N is increasing, Equation (2.3.1a) reduces to a second-order linear ordinary differential
equation with piecewise-constant coefficients. By translation invariance of the traveling
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waves, we suppose that N(0) = Nth. Adding the C1-jump relation (2.1.3), that comes
from the continuity of the flux, we obtain the following problem:{

−σρ′ − ρ′′ + χρ′ = 0 for z < 0
−σρ′ − ρ′′ = ρ for z > 0

and ρ′(0+)− ρ′(0−) = −χρ(0). (2.3.2)

We solve this problem explicitly and thus deduce all bounded and nonnegative traveling
wave profiles for ρ. Moreover, there exists a minimal speed σ∗, such that for every σ ∈
[σ∗,+∞), there exists a unique (up to a multiplicative factor) traveling wave profile ρσ.
In a second step, given the profile ρσ, we construct a corresponding traveling wave profile
Nσ and the condition N(0) = Nth will fix the multiplicative factor of ρ, thus leading to a
unique traveling wave profile (ρσ, Nσ) for each σ ≥ σ∗.

Let us introduce some notations, before moving on to the statement of Theorem 2.3.1.
Define the Fisher/Kolmogorov–Petrovsky–Piskunov speed σF/KPP := 2. Note that χ+ 1

χ ≥
σF/KPP, with equality if and only if χ = 1. Furthermore set for σ ≥ 2, µ±(σ) := σ±

√
σ2−4
2 .

We then have the following inequality for σ > σF/KPP = 2:

0 < µ−(σ) < µ−
(
σF/KPP

)
= 1 = µ+

(
σF/KPP

)
< µ+(σ)

In addition, the function σ 7→ µ+(σ) (resp. σ 7→ µ−(σ)) is increasing (resp. decreasing).

Theorem 2.3.1. Under the assumption that N is increasing, there exists a minimal speed
σ∗, such that there exists a bounded and nonnegative traveling wave profile (ρσ(z), Nσ(z))
if and only if σ ≥ σ∗. Given σ ≥ σ∗, the traveling wave profile (ρσ(z), Nσ(z)) is unique.
Moreover, the exact value of σ∗ is given by Formula (2.1.4) and depends on the value of χ:

– if χ > 1, then σ∗ = χ+ 1
χ ,

– if χ ≤ 1, then σ∗ = σF/KPP = 2

Furthermore, the functions ρσ satisfy the following properties for z ≥ 0 with Cσ, Dσ > 0:

– for σ > σ∗, ρσ(z) = Aσe−µ−(σ)z +Bσe−µ+(σ)z

– for χ > 1, σ = σ∗ = χ+ 1
χ , ρ

σ∗(z) = Aσ
∗
e−µ+(σ∗)z and µ+(σ∗) = χ

– for χ ≤ 1, σ = σF/KPP, ρ
σF/KPP(z) = AσF/KPP((1− χ)z + 1)e−z

In addition, let µ > 0, with µ 6= σ
D , such that ρ(z) ≤ Ce−µz for a constant C > 0, then

there exists another constant C > 0, such that for z ∈ R:

|N(z)− 1| ≤ C
(
e−

σ
D
z + e−µz

)
. (2.3.3)

Proof. Integrating Equation (2.3.2) over the whole line yields (σ−χ)ρσ(−∞) =
∫
R+
ρσ(z)dz

(as we will see just below, ρσ is integrable at z = +∞). Therefore by nonnegativity of the
left handside, we find that σ > χ. Consider Equation (2.3.2) for z < 0. Its characteristic
polynomial is X2 + (σ − χ)X and has roots 0 and χ− σ. There exist two constants
A−, B− ∈ R, such that ρσ(z) = A− +B−e(χ−σ)z, for z < 0. Since σ > χ, the term e(χ−σ)z

is unbounded on R−, which leads to B− = 0.
Consider Equation (2.3.2) for z > 0. Its characteristic polynomial is X2 + σX + 1 and
its discriminant is σ2 − 4. If the discriminant is negative, the roots are complex and ρσ

would be a linear combination of two oscillating functions, which is prohibited by the
nonnegativity condition. Hence σ2 ≥ 4, or, by positivity of σ, σ ≥ 2.

105



Suppose σ > 2 = σF/KPP, the roots of the characteristic polynomial are then −µ±(σ) and
there exist two constants A+, B+ ∈ R such that ρσ(z) = A+e−µ+(σ)z + B+e−µ−(σ)z. By
the continuity at z = 0 of ρσ, we obtain equality A− = A+ + B+ and by the C1-jump
relation (2.1.3), we obtain equality −µ+A

+ − µ−B+ = −χA−. Thus we find that ρσ(z) =
A−√
σ2−4

(
(µ+(σ)− χ)e−µ−(σ)z + (χ− µ−(σ))e−µ+(σ)z

)
. One checks that this expression is

nonegative for all z, if and only if, µ+(σ) ≥ χ. In the case of small bias χ ≤ 1, this
inequality is always verified. In the case of large bias χ > 1, this inequality is verified, if
and only if σ ≥ χ+ 1

χ . This proves all cases of Theorem for σ > σF/KPP.
Suppose σ = 2 = σF/KPP, then there exist two constants A+, B+ ∈ R such that ρσ(z) =
(A+z + B+)e−z. By the same arguments as above, we have B+ = A−, A+ = (1− χ)A−

and this leads to ρσ(z) = A− ((1− χ)z + 1) e−z. To satisfy the nonnegativity condition,
we must have χ ≤ 1, which shows that σ = 2 = σF/KPP, is the speed of a traveling wave,
if and only if χ ≤ 1.

The behavior of ρσ for z ≥ 0 is simply a reformulation of the considerations above. In
particular, note that in the case of large bias and σ = σ∗, we have that µ+(σ∗) = χ, which
leads to ρσ∗(z) = A−e−χz, for z ≥ 0.

It remains to show that for every wave profile ρσ, we have a corresponding wave profile
Nσ, which satisfies the condition Nσ(0) = Nth. To do so, notice that by linearity of
the equation on ρ, the profile ρσ is defined up to the multiplicative constant A−, that is
yet to be determined. Denote for a given constant A− > 0, ρσA− its corresponding profile.
Equation (2.3.1b) with boundary condition N(+∞) = 1, then has a unique solution, which
we denote Nσ

A− . But it is clear that the map A− 7→ Nσ
A−(0) is continuous and decreasing

and its range is (0, 1). Therefore there exists a unique A−, such that Nσ
A−(0) = Nth and

we obtain for a fixed σ ≥ σ∗ a unique traveling wave profile (ρσA− , N
σ
A−).

Let us finally prove Estimate (2.3.3). By integrating Equation (2.3.1b) on the interval
(z,+∞) and noticing that N(+∞) = 1, N ′(+∞) = 0:

σ (N(z)− 1) +D (N(z)− 1)′ = −
∫ +∞

z
ρ(y)N(y)dy.

Hence for a constant C > 0:∣∣∣∣(e σD z(N(z)− 1)
)′∣∣∣∣ ≤ Ce( σD−µ)z.

By integrating this inequality on the interval (0, z) for another C > 0, we find:

|N(z)− 1| ≤ C
(
e−

σ
D
z + e−µz

)
.

Theorem 2.3.1 shows that there exist a large number of traveling waves. However,
in Section 2.5 we will show that in the circumstances of a biologically relevant initial
conditions, the interesting traveling wave will be that of minimal speed σ∗.

2.4 Inside Dynamics of Traveling Waves

We elaborate on the properties of the traveling waves, following the lines of [82], as well
as [152] to a small extent. We establish that in the large bias case, the wave is pushed,
and in the small bias case (or when σ > σ∗), the wave is pulled, according to the definition
proposed in [82] (see the discussion in the Introduction on the ambiguity of pushed and
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pulled waves). To do so, we are using the formalism of neutral fractions. The aim is to
study the behaviour of partitions of the traveling wave profile (see [82] and [48] for the
biological relevance of this decomposition).

Definition. Define L := −∂zz − β∂z, where β(z) = σ−χ1z≤0 + 2∂zρ
σ

ρσ . A neutral fraction
ν (of the traveling wave ρσ) is a solution to the following equation:{

∂tν + Lν = 0
ν(0, · ) = ν0 . (2.4.1)

It is clear that any constant is a neutral fraction, as stationary solutions to Equation
(2.4.1). The interest in Equation (2.4.1) stems from the following observation. Suppose
we have neutral fractions (νi)

k
i=1 ≥ 0 that satisfy

∑k
i=1 ν

0
i = 1. It amounts to marking

each part ν0
i ρ
σ of the population with neutral labels, i.e. that do not interfer with the

dynamics. The neutral fractions (νi(t)ρ
σ)ki=1 then describe the evolution over time of the

distribution of these labels. Because of this interpretation, it is natural to suppose that
ν0 takes its values in [0, 1], but such a restriction is of no relevance for the subsequent
analysis. Of note, describing νi or νiρσ is equivalent, only the expression of the operator
L changes.

2.4.1 Pushed Front Dynamics in the Large Bias Case

In this Section, we develop arguments very similar to the ones developped in the works [79]
and [82] (see also [152]). The evolution of neutral fractions is characterized in the regime
of large bias (χ > 1) and minimal velocity (σ = σ∗) by Theorem 2.4.1.

Consider the operator L in the space L2(eV dz), where V ′ = β. On the appro-
priate domain, L is self-adjoint, has 0 as eigenvalue and an exact spectral gap γ :=
1
4 min

(
σ2 − 4, 1

χ2

)
> 0. This leads to the following convergence result:

Theorem 2.4.1. Suppose that χ > 1 and that σ = σ∗. Let ν be a neutral fraction (2.4.1)
that satisfies ν0 ∈ L2(eV dz). Then we have the following convergence result:∥∥ν(t)− 〈ν0〉

∥∥
L2(eV dz)

≤
∥∥ν0
∥∥
L2(eV dz)

e−γt, (2.4.2)

with 〈ν0〉 =
∫
ν0eV dz∫
eV dz

and γ := 1
4 min

(
σ2 − 4, 1

χ2

)
> 0.

Furthermore for a constant C > 0, we have:∥∥∥(ν(t)− 〈ν0〉)eV2
∥∥∥
∞
≤ C

(
1 + t−

1
2

)
e−γt. (2.4.3)

And as a consequence ν converges exponentially fast to a constant on compact sets K ⊂ R,
i.e.:

sup
z∈K
|ν(t, z)− 〈ν0〉| ≤

C
(

1 + t−
1
2

)
e−γt

infK e
V
2

. (2.4.4)

Theorem 2.4.1 states that every neutral fraction converges to a constant. In other
words, independently of the initial datum for the neutral fraction, the neutral fraction
will after some time, uniformly on compact sets in space represent a multiple (which does
depend on the initial datum) of the total population. This is in stark contrast with the
case when σ = σF/KPP (or when σ > σ∗) in Corollary 2.4.2.1, where neutral fractions
will in general go extinct (unless they are part of the leading edge). In fact, in the large
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bias case when σ = σ∗, for z < 0, β(z) > 0 and for z > 0, β(z) < 0, which shows that
1 ∈ L2(eV dz). But this property is not true in the small bias case when σ = σF/KPP (or
when σ > σ∗), as we will see in Subsection 2.4.2.

We define L on L2(eV dz) with domain D(L) = H2(eV dz). Nevertheless to simplify
the spectral study of L, we introduce the pullback L of L to the space L2(dz), that is
L = e

V
2 L
(
e−

V
2 ·
)
, with domainD(L) =

{
f ∈ H1(dz)

∣∣∣f ′ − β
2 f ∈ H1(dz)

}
. L is symmetric

and monotone, as for f, g ∈ D(L),

〈f,Lg〉

=

∫
R
e
V
2 f

(
−
(
e−

V
2 g
)′′
− β

(
e−

V
2 g
)′)

dz

=

∫
R

((
e
V
2 f
)′ (

e−
V
2 g
)′
− βeV2 f

(
e−

V
2 g
)′)

dz

=

∫
R

((
f ′ +

β

2
f

)(
g′ − β

2
g

)
− βf

(
g′ − β

2
g

))
dz

=

∫
R

(
f ′ − β

2
f

)(
g′ − β

2
g

)
dz

=〈Lf, g〉,

(2.4.5)

where 〈f |g〉 :=
∫
R fgdz. In fact Equality (2.4.5) holds also true if f ∈ D(L) and g ∈

H1(dz). By observing that D(L) ⊂ H1(dz) and density of D(L) in H1(dz), we obtain that
for every f ∈ H1(dz):

〈f,Lf〉 =

∫
R

(
f ′ − β

2
f

)2

dz ≥ 0. (2.4.6)

Finally L has the following expressions:

Lf

=− f ′′ + β2

4
f +

β′

2
f

=−
(
e
V
2

(
e−

V
2 f
)′)′

.

(2.4.7)

(2.4.8)

Proposition 2.4.1.1. The operator L : D(L)→ L2(dz) is closed.

Proof. Let (fn,Lfn) ∈ Γ(L) such that (fn,Lfn)
L2(dz)−−−−−→
n→+∞

(f, g) ∈ L2(dz)×L2(dz). We will

show that f ∈ D(L) and Lf = g.
1. First, we prove boundedness of (fn) in H1(dz):∫

R

(
f ′n −

β

2
fn

)2

dz = 〈fn|Lfn〉 ≤ ‖fn‖2 ‖Lfn‖2 .

The right handside is bounded and thus f ′n − β
2 fn is bounded in L2(dz). But β

2 fn is also
bounded in L2(dz) (since β ∈ L∞(R)). Hence (fn) is bounded in H1(dz)

2. The boundedness of (fn) in H1(dz) implies weak compactness of the sequences.

Hence up to extraction of a subsequence, we can assume that fn
H1(dz)−−−−−⇀
n→+∞

` ∈ H1(dz). But

uniqueness of the limits in L2(dz) implies ` = f , which leads to f ∈ H1(dz).
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3. We now show strong convergence in H1(dz). Denote rn := f − fn∫
R

(
r′n −

β

2
rn

)2

dz

=

〈
f ′ − β

2
f

∣∣∣∣r′n − β

2
rn

〉
−
〈
f ′n −

β

2
fn

∣∣∣∣r′n − β

2
rn

〉
=

〈
f ′ − β

2
f

∣∣∣∣r′n − β

2
rn

〉
︸ ︷︷ ︸

→0 by weak convergence in H1(dz)

− 〈Lfn|rn〉︸ ︷︷ ︸
→0 since rn→0 in L2(dz) and Lfn is bounded

,

where we have applied (2.4.5) with fn ∈ D(L) and rn ∈ H1(dz). Thus fn
H1(dz)−−−−−→
n→+∞

f .

4. We show that f ∈ D(L):(
f ′n −

β

2
fn

)′
= −Lfn −

β

2
f ′n −

β2

4
fn.

The right handside converges in L2(dz), which establishes that f ′n− β
2 fn

H1(dz)−−−−−→
n→+∞

f ′− β
2 f ∈

H1(dz). Therefore f ∈ D(L).
5. Finally we show that Lf = g. Let h ∈ D(L∗). By definition of D(L∗), we have that

〈h|Lfn〉 −−−−−→
n→+∞

〈h|Lf〉. But we also know that 〈h|Lfn〉 −−−−−→
n→+∞

〈h|g〉. Therefore Lf − g ∈
D(L∗)⊥. But since L is a symmetric operator, we have the inclusion D(L) ⊂ D(L∗) and
thus D(L∗) is dense. Hence Lf = g.

Thus, the operator L is closed.

Proposition 2.4.1.2. The operator L : D(L)→ L2(dz) is self-adjoint.

Proof. We already know that the operator L is symmetric. It remains to show that it
shares the same domain as its adjoint.

Let g ∈ D(L∗) and f ∈ C∞0 (R) ⊂ D(L). By definition of D(L∗), we have that:

|〈g|Lf〉| ≤ C(g) ‖f‖L2(dz) . (2.4.9)

But since f is a test function, we can view Lg as a distribution. Let us take gn ∈ D(L) such

that gn
L2(dz)−−−−−→
n→+∞

g. Then Lgn
D′(R)−−−−−→
n→+∞

Lg, so that 〈Lgn|f〉 −−−−−→
n→+∞

〈Lg|uf〉L2(dz). But from

the symmetry of L, we get 〈Lgn|f〉 = 〈gn|Lf〉 −−−−−→
n→+∞

〈g|Lf〉. Hence 〈Lg|f〉 = 〈g|Lf〉
Therefore:

|〈Lg|f〉| = |〈g|Lf〉| ≤ C(g) ‖f‖2 . (2.4.10)

By Bound (2.4.10), the linear form f 7→ 〈Lg|f〉 is bounded on C∞0 (R) in the L2-norm and
we can extend it to the whole space L2(dz) by uniform continuity and density of C∞0 (R)
in L2(dz). This shows that Lg ∈ L2(dz).

Then:

Lg = −
(
e
V
2

(
e−

V
2 g
)′)′

∈ L2(dz)

=⇒ e
V
2

(
e−

V
2 g
)′
∈ H1(dz)

=⇒ g′ − β

2
g ∈ H1(dz)

=⇒ g ∈ D(L).

Thus D(L∗) ⊂ D(L), which concludes the proof.
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We are now ready to show a lower bound on the essential spectrum of the operator L.

Proposition 2.4.1.3.
σess(L) = [γ,+∞),

with γ := 1
4 min

(
σ2 − 4, 1

χ2

)
> 0

In order to prove this proposition, we require two standard lemmata, whose proof we
give for the sake of completeness.

Lemma 2.4.1.4. Let f ∈ H1(dz), then f ∈ C0(R) and:

‖f‖2∞ ≤
1

2π

∥∥f ′∥∥
2
‖f‖2 .

Proof. Let z ∈ R, η > 0, then:

f(z)2 =

(
1

2π

∫
R
f̂(ξ)eizξdξ

)2

≤

 1

2π

∫
R

√
1 + η|ξ|2

∣∣∣f̂(ξ)
∣∣∣√

1 + η|ξ|2
dξ

2

≤ 1

4π2

π√
η

(
‖f‖22 + η

∥∥f ′∥∥2

2

)
,

where we have used Cauchy-Schwartz Inequality and the fact that
∫
R

dξ
1+η|ξ|2 = π√

η . By

taking η =
‖f‖22
‖f ′‖22

, we obtain the desired bound.
By similar computations, we also have that:

(f(z + h)− f(z))2 ≤ 1

4π

∫
R

(
1 + |ξ|2

) ∣∣∣f̂(ξ)
∣∣∣2 ∣∣∣ei(z+h)ξ − eizξ

∣∣∣2 dξ.
By Dominated Convergence, we have that limh→0 f(z+h) = f(z) and hence f ∈ C0(R).

Lemma 2.4.1.5 (Weyl’s criterion). Let T be a self-adjoint operator in the Hilbert space
H. The following properties are equivalent:
(i) λ ∈ σess(T ).
(ii) There exists a sequence (un) ⊂ D(T ) such that ‖un‖H = 1, (un) is not relatively
compact and (T − λI)un

H−−−→
n→∞

0.

Proof. i) =⇒ (ii):
Let λ ∈ σess(T ), T − λI is not a Fredholm operator, which means that N(T − λI) infinite
dimensional. Therefore there exists an orthonormal family (un) ∈ N(T − λI), which
satisfies proposition (ii).

(ii) =⇒ (i):
Suppose λ /∈ σess(T ), then T − λI is a Fredholm operator. Consider a sequence (un) ⊂
D(T ) such that ‖un‖H = 1 and (T − λI)un

H−−−→
n→∞

0. Define vn ∈ N(T − λI), wn ∈
N(T − λI)⊥ such that un = vn + wn. We have that wn = A−1(T − λI) where A = (T −
λI)|N(T−λI)⊥ . A−1 is bounded and therefore wn

H−−−→
n→∞

0. Furthermore (vn) is bounded,
since ‖vn‖H ≤ ‖un‖H = 1 and as a bounded sequence in a finite-dimensional subspace it
admits a converging subsequence. Thus (un) admits a converging subsequence.

We now prove Proposition 2.4.1.3.
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Proof. 1. Let λ < γ, we show that λ /∈ σess(L).
By a straightforward computation, we have that β2

4 > λ. Suppose there exists a

sequence (fn) ⊂ D(L) that satisfies (L − λI)fn
L2(dz)−−−−→
n→∞

0 and ‖fn‖2 = 1. We will show
that (fn) has a converging subsequence.

(fn) is bounded in H1(dz) and we may apply Equality (2.4.6):

〈(L − λI)fn|fn〉 =

∫
R

((
f ′n
)2

+

(
β2

4
− λ

)
f2
n

)
dz − χfn(0)2

2

≥
∥∥f ′n∥∥2

2
− χfn(0)2

2

≥
∥∥f ′n∥∥2

2
− χ

4π

∥∥f ′n∥∥2
.

We used the fact that by Lemma 2.4.1.4 the domain D(L) ⊂ C0(R) and thus the distri-
bution β′

2 fn = −χfn(0)
2 δ0 is well-defined as a linear function on C0(R). The left handside

is bounded above as a converging sequence and thus the second-order polynomial in ‖f ′n‖2
on the right handside is also bounded above, which in turn shows that ‖f ′n‖2 is uniformly
bounded.

By boundedness of ‖f ′n‖2 and Lemma 2.4.1.4, we have that (fn(0)) is a bounded se-
quence and thus admits a converging subsequence. Up to extraction, we can suppose that
(fn(0)) converges.

〈(L − λI)(fn − fm)|(fn − fm)〉+
χ

2
(fn(0)− fm(0))2 ≥

∥∥f ′n − f ′m∥∥2

2
+ (inf γ − λ) ‖fn − fm‖22 ,

since γ(z) ≥ λ for z ∈ R. Therefore (fn) is a Cauchy sequence in L2(dz) (in fact even in
H1(z)) and converges. By Lemma 2.4.1.5, we have that λ /∈ σess(L).

2. Let λ ≥ γ, we show that λ ∈ σess(L).
If γ = 1

4 min
(
σ2 − 4, 1

χ2

)
= σ2−4

4 , or equivalently when β2(z)
4 −γ = 0 for z ≥ 0, we have

that for a function f ∈ D(L), such that supp(f) ⊂ R+ \ {0}, (L− λ)f = −f ′′ + (γ − λ)f .
Take a smooth increasing nonnegative function φ : [0, 1]→ [0, 1] such that φ(0) = φ′(0) =
φ′(1) = 0 and φ(1) = 0. Define the function fk : R→ R like so:

fk : z 7→ ck ·


φ(z) if z ∈ [0, 1]
cos
(√
λ− γ(z − 1)

)
if z ∈ [1, ak + 1]

φ(ak + 2− z) if z ∈ [ak + 1, ak + 2]
0 else

,

where ak = 2kπ√
λ−γ , ck =

(
ak
2 + 2

∫ 1
0 φ

2(z)dz
)− 1

2 , if λ > γ, or ak = 2k, ck =
(
ak + 2

∫ 1
0 φ

2(z)dz
)− 1

2 ,
if λ = γ. In all cases fk ∈ D(L), ‖fk‖2 = 1 and (L− λ)fk(z) = 0 for z ∈ [1, ak + 1]. Hence
‖(L − λ)fk‖22 = 2c2

k

∫ 1
0 (φ′′(z) + (λ − γ)φ(z))2dz → 0, because clearly limk→+∞ ck = 0.

Finally, it can be easily shown that (fk) is not relatively compact (its only possible ac-
cumulation point would be 0, but (fk) cannot converge to 0, since ‖fk‖2 = 1). Thus by
Lemma 2.4.1.5, λ ∈ σess(L).

If γ = 1
4 min

(
σ2 − 4, 1

χ2

)
= 1

4χ2 , or equivalently when β2(z)
4 − γ = 0 for z ≤ 0, the

same reasoning applies mutatis mutandis.

Proposition 2.4.1.6.
σ(L) ∩ (−∞, γ) = {0}

Furthermore, the eigenvalue 0 is simple.
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Proof. Let λ < γ be an eigenvalue for L in the space L2(dz).
For z > 0, the characteristic polynomial of the ordinary differential equation L−λ = 0

is P (µ) = −µ2 + σ2

4 − 1 − λ, whose roots are µ± = ±1
2

√
σ2 − 4(1 + λ), which is well-

defined, since λ < 1
4(σ2 − 4). This gives rise to two eigenvectors eµ±z, but it is clear that

only eµ−z ∈ L2(R+, dz).
For z < 0, by a similar reasoning we obtain that eν+z is an eigenvector for L in the

space L2(R−, dz), with ν+ = 1
2

√
1
χ2 − 4λ, which is well-defined, since λ < 1

4χ2 , .
The eigenvector associated with the eigenvalue λ is therefore of the shape:

fλ(z) =

{
eν+z if z < 0
eµ−z if z ≥ 0

.

However we must have that fλ ∈ D(L) which implies that f ′λ − β
2 fλ is continuous.(

f ′λ −
β

2
fλ

)
(0+) =

(
f ′λ −

β

2
fλ

)
(0−) ⇐⇒ µ− +

σ

2
= ν+ +

σ − χ
2

⇐⇒ χ =
√
σ2 − 4(1 + λ) +

√
1

χ2
− 4λ

The right handside is a strictly decreasing function in λ and thus the equation admits at
most one root. One checks that this root is λ = 0 and we already know that λ = 0 is
indeed an eigenvalue with the eigenvector e

V
2 .

We move on with the proof of Theorem 2.4.1.

Proof. L is monotone and self-adjoint, therefore by Semigroup theory (see Section 7.4 in
[32]), it generates the semi-group e−tL. We consider the spectral projection P onto the
eigenspace of L associated with the eigenvalue 0, which is Pu = 1∫

eV dz

∫
ue

V
2 dz. Let A be

the restriction of L to N(P)⊥. We have that inf σ(A) = γ and for λ < γ, (A − λI)−1 is
a bounded operator. Since A is a closed self-adjoint operator, inf σ(A) = inf‖u‖2=1〈Au|u〉
and therefore 〈(A−λI)u|u〉 ≥ (γ−λ) ‖u‖22, which shows that

∥∥(A− λI)−1
∥∥ ≤ 1

γ−λ . From
Hille-Yosida theorem in the self-adjoint case (see Section 7.4 in [32]), we then have for
every u ∈ N(P)⊥ (and not just u ∈ D(A)) that

∥∥e−tAu∥∥
2
≤ e−γt ‖u‖2 and

∥∥Ae−tAu∥∥
2
≤

e−γt

t ‖u‖2. By setting w = e
V
2 ν, we have that:

w(t) = Pw0 + e−tA(I − P)w0.

This leads to the bound:

‖w(t)− Pw0‖L2(dz) ≤ ‖w0‖L2(dz) e
−γt.

Bound (2.4.2) is simply a rewritten form of this bound.
Finally, we prove Bound (2.4.3). Set r(t) := e−tA(I − P)w0, then we have:∫

R

(
∂zr(t)−

β

2
r(t)

)2

= 〈r(t),Ar(t)〉 ≤ ‖r(t)‖2 ‖Ar(t)‖2 ≤
e−2γt

t
‖r(0)‖22 ,

where we have used the bounds obtained from Hille-Yosida Theorem in the self-adjoint
case. Therefore ‖∂zr(t)‖2 ≤

(
‖β‖∞‖r(0)‖2

2 +
‖r(0)‖2√

t

)
e−γt. By Lemma 2.4.1.4, we then have

that ‖r(t)‖∞ ≤ C
(

1 + t−
1
2

)
e−γt. Or equivalently:∥∥∥(ν(t)− 〈ν0〉)eV2

∥∥∥
∞
≤ C

(
1 + t−

1
2

)
e−γt.
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2.4.2 Pulled Front Dynamics in the Small Bias Case

In the small bias case χ ≤ 1 (or when σ > σ∗), the inside dynamics of the wave is drastically
different. In fact, we can start by observing that Theorem 2.4.1 doesn’t apply to these
cases. For σ = σF/KPP,

∂zρσ

ρσ = 1−χ
(1−χ)z+1 − 1, for z ≥ 0. Hence 1 · eV (z) = C((1− χ)z + 1)2

for a multiplicative constant C > 0 and 1 /∈ L2(eV ). Similarily, in the case σ > σ∗,
1 · eV behaves like e(σ−2µ−(σ))z, but σ−2µ−(σ) =

√
σ2 − 4 > 0 and thus 1 /∈ L2(eV dz). To

describe the behavior in these cases, we start by stating first a general Theorem concerning
Equation (2.4.1) under a condition on β:

Theorem 2.4.2. Consider Equation:{
∂tν − ∂zzν − β(z)∂zν = 0
ν(0, · ) = ν0 . (2.4.11)

Suppose that β verifies the following conditions:

• There exists K > 0, such that β′ ≤ K in the sense of distributions.

•
∫
R β−(z)dz < +∞, where ( · )− = −min(0, · ).

We recall that V ′ = β. Suppose that the initial datum ν0 satisfies the following condition:∫
R

(
ν0(z)

)2
eV (z)dz < +∞. (2.4.12)

Then the solution ν to Equation (2.4.11) satisfies the following decay property:

lim
t→+∞

∥∥∥ν(t)e
V
2

∥∥∥
∞

= 0. (2.4.13)

And as a consequence ν converges uniformly to 0 on intervals of the form [a,+∞), for
a ∈ R, i.e.:

lim
t→+∞

sup
z∈[a,+∞)

|ν(t, z)| = 0. (2.4.14)

Next, we apply Theorem 2.4.2 to establish the pulled nature of the waves in the two
mentioned cases (small bias case χ ≤ 1, or σ > σ∗).

Corollary 2.4.2.1. Suppose that χ ≤ 1 and that σ = σF/KPP = 2 and consider a neutral
fraction ν of the associated wave profile that satisfies Condition (2.4.12). In particular, any
function ν0 ∈ L∞(R) such that z 7→

(
ν0(z)z

)2 is integrable at z = +∞ satisfies Condition
(2.4.12). Then ν(t) converges to 0 uniformly on intervals of the form [a,+∞), with a ∈ R.
The same results holds true if we suppose that σ > σ∗. In particular, any function ν0 ∈
L∞(R) such that z 7→

(
ν0(z)

)2
e(σ−2µ−(σ))z is integrable at z = +∞ satisfies Condition

(2.4.12).

Proof. We recall that β(z) = σ − χ1z≤0 + 2∂zρ
σ

ρσ .
In the case where χ ≤ 1 and σ = 2, we have from Theorem 2.3.1 that:

ρσ(z) =

{
1 if z ≤ 0
((1− χ)z + 1)e−z if z > 0

,

which leads to:

β(z) =

{
2− χ if z ≤ 0

2(1−χ)
(1−χ)z+1 if z > 0

.
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β′ is clearly bounded everywhere except at z = 0, but β(0−) = 2 − χ and β(0+) =
2(1 − χ). This leads to β′ being bounded above in the sense of distributions and β ≥ 0,
hence Theorem 2.4.2 applies. Furthermore, by an easy computation up to a mulitplicative
constant we have that:

eV (z) =

{
e(2−χ)z if z ≤ 0
((1− χ)z + 1)2 if z > 0

.

Hence a bounded function ν0 ∈ L∞(R) satisfies Condition (2.4.12), if
(
ν0(z)z

)2 is inte-
grable at z = +∞.

In the case where σ > σ∗, we have:

ρσ(z) =

{
1 if z ≤ 0
µ+−χ
σ−χ e

−µ−z − µ−−χ
σ−χ e

−µ+z if z > 0
,

where we recall that µ± = σ±
√
σ2−4
2 . This leads to:

β(z) =

{
σ − χ if z ≤ 0

σ − 2 (µ+−χ)µ−e
−µ−z−(µ−−χ)µ+e

−µ+z

(µ+−χ)e−µ−z−(µ−−χ)e−µ+z
if z > 0

.

By the same reasoning β′ is bounded above. For z ≤ 0, β(z) ≥ 0 and limz→+∞ β(z) =
σ − 2µ− > 0, which establishes that

∫
R β−(z)dz < +∞ and hence Theorem 2.4.2 applies.

Finally, we have up to a multiplicative constant that:

eV (z) =

{
e(σ−χ)z if z ≤ 0

eσz (ρσ(z))2 if z > 0
.

Hence a bounded function ν0 ∈ L∞(R) satisfies Condition (2.4.12), if
(
ν0(z)

)2
e(σ−2µ−)z is

integrable at z = +∞.

Before moving on to the proof of Theorem 2.4.2, let us make some comments. Notice
that Corollary 2.4.2.1 does not apply to the neutral fraction ν0 ≡ 1, which is consistent with
the fact that the neutral fraction ν ≡ 1 stays constant and does not converge to 0. In fact,
Condition (2.4.12) or its counterparts in Corollary 2.4.2.1 may be seen as a characterization
of an initial datum ν0, that constitutes a negligible part of the leading edge of the traveling
wave. If, for the sake of the argument, we were to accept this property as a definition,
then Theorem 2.4.2 or Corollary 2.4.2.1 tell us that neutral fractions, which constitute a
negligible part of the leading edge of the traveling wave, go extinct in the traveling wave,
i.e they converge to 0.
Nevertheless, just like in the work [82], Theorem 2.4.2 does not give any rate of convergence,
contrary to Theorem 2.4.1, and this remains an open question. Finally let us note, that
unsurprisingly in the case of large bias with σ = σ∗, for β(z) is bounded above by a
negative constant for z > 0, which establishes that

∫
β−(z) = +∞ and thus Theorem 2.4.2

conversely does not apply to that case.
We now move on to the proof of Theorem 2.4.2.

Proof. Consider L := −∂zz −β(z)∂z in the weighted space L2(eV dz) with domain D(L) =
H2(eV dz). From the arguments of the proof of Theorem 2.4.1, we have that L is self-adjoint
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and it furthermore satisfies the following property for f ∈ D(L):

∫
R
f(Lf)eV dz =

∫
R
f(−f ′′ − βf ′)eV ∂z

=

∫
R

(
f ′2 + βff ′ − βff ′

)
eV dz

=
∥∥f ′∥∥2

L2(eV dz)
.

This leads to the following dissipation rate:

d

dt

(
1

2
‖ν‖2L2(eV dz)

)
= −‖∂zν‖2L2(eV dz) . (2.4.15)

Furthermore:

d

dt

(
1

2
‖∂zν‖2L2(eV dz)

)
=

∫
R
∂z(∂tν)∂zνe

V dz

=−
∫
R
∂tν∂z(e

V ∂zν)dz

=−
∫
R
∂zzν∂z(e

V ∂zν)dz −
∫
R
β∂zν∂z(e

V ∂zν)dz

=− ‖∂zzν‖2L2(eV dz) −
1

2

∫
R
∂z

(
(∂zν)2

)
βeV dz −

∫
R

(∂zν)2β2eV dz − 1

2

∫
R
β∂z

(
(∂zν)2

)
eV dz

=− ‖∂zzν‖2L2(eV dz) −
∫
R

(
∂z((∂zν)2)βeV + (∂zν)2β2eV

)
dz

=− ‖∂zzν‖2L2(eV dz) −
∫
R

(
∂z
(
(∂zν)2βeV

)
− (∂zν)2β′eV

)
dz

=− ‖∂zzν‖2L2(eV dz) +

∫
R

(∂zν)2 β′eV dz.

For K > 0 such that β′ ≤ K, we have that:

d

dt

(
K

2
‖ν‖2L2(eV dz) +

1

2
‖∂zν‖2L2(eV dz)

)
= −‖∂zzν‖2L2(eV dz) +

∫
R

(∂zν)2 (β′ −K) eV dz ≤ 0.

Hence ‖ν(t)‖L2(eV dz) converges to a limit and so does ‖∂zν(t)‖L2(eV dz). But by Equation
(2.4.15), the limit of ‖∂zν(t)‖L2(eV dz) can only be 0, otherwise ‖ν(t)‖L2(eV dz) could not
converge.
Finally, set c :=

∫ +∞
−∞ β− and W (z) =

∫ z
0 β+ − c. If we fix the constant of integration of V

such that V (z) =
∫ z

0 β. Then we have the following inequality:

V − 2c ≤W ≤ V.
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We can conclude by the following argument:

e−2c
∥∥ν(t)2eV

∥∥
∞ ≤

∥∥ν(t)2eW
∥∥
∞

≤
∫
R

∣∣∂z (ν2eW
)∣∣ dz

≤ 2

∫
R
|ν||∂zν|eWdz +

∫
R
|β+e

W |ν2dz

≤ 2

∫
R
|ν||∂zν|eWdz +

∫
R

(
eW
)′
ν2dz

≤ 2

∫
R
|ν||∂zν|eWdz − 2

∫
R
ν∂zνe

Wdz

≤ 4

∫
R
|ν||∂zν|eWdz

≤ 4 ‖ν(t)‖L2(eW dz) ‖∂zν(t)‖L2(eW dz)

≤ 4 ‖ν(t)‖L2(eV dz) ‖∂zν(t)‖L2(eV dz) ,

where at the end we have used Cauchy-Schwarz inequality, followed by the equivalence of
norms. Hence limt→∞ supz∈R |ν(t, z)2eV (z)| = 0. Finally, since

∫
R β−(z)dz < +∞, for ev-

ery a ∈ R, we have that infz∈[a,+∞) e
V (z) > 0 and therefore limt→+∞ supz∈[a,+∞) |ν(t, z)| =

0.

2.5 Asymptotic Spreading Properties

In this Section, we work under the hypothesis that the solution (ρ,N) of System (2.1.1) is
well-defined for all time, that x 7→ N(t, x) is an increasing function and we recall that x̄(t)
is defined as the unique solution N(t, x̄(t)) = Nth. As before, we consider the system in the
moving frame of reference and study (ρ(t, z), N(t, z)) solution of System (2.2.9), droping
the diacritical˜for the sake of concision.

The aim of the Section is to describe the asymptotic behavior of t 7→ x̄(t). In fact, we
will show that under some assumptions on the initial datum, we have lim inft→+∞ ˙̄x(t) ≤ σ∗
and lim supt→+∞ ˙̄x(t) ≥ σ∗. The strategy of proof for both results is similar and is based on
an argument by contradiction: if those properties were not satisfied, then this would first
lead to an abnormal behavior of ρ, which in turn contradicts the equation N(t, 0) = Nth.
We have not been able to prove a stronger result, such as for instance limt→+∞ ˙̄x(t) = σ∗

and we believe that in order to achieve such a result, one needs to study the behavior of
ρ and N simultaneously, which is much more involved than our present study. One major
difficulty comes from the fact that System (2.1.1) does not have a comparison principle.

2.5.1 The Spreading may not be too fast

Theorem 2.5.1. Suppose that ˙̄x ∈ L∞(R+) and that:

ρ0

ρσ∗
∈ L∞.

Then:
lim inf
t→+∞

˙̄x(t) ≤ σ∗.

Proof. 1. We argue by contradiction and start by showing that ρ converges to 0 uniformly
on intervals of the form [a,+∞) for a ∈ R.
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Let t0 ≥ 0, δ > 0, such that for t ≥ t0, ˙̄x(t) ≥ σ∗ + δ. Set v := ρ
ρσ∗+δ

, where ρσ∗+δ is the
traveling wave profile for speed σ∗ + δ (see Theorem 2.3.1). We have that v satisfies the
following Equation:

∂tv − ∂zzv − β(t, z)∂zv − γ(t, z)v = 0,

with β(t, z) := ˙̄x(t)−χ1z<0 + 2∂zρ
σ∗+δ

ρσ∗+δ
and γ(t, z) := ( ˙̄x(t)− (σ∗+ δ))∂zρ

σ∗+δ

ρσ∗+δ
. By noticing

that (t, z) 7→
∥∥∥ ρ0

ρσ∗

∥∥∥
∞

exp
(∥∥∥∂zρσ∗+δ

ρσ∗+δ

∥∥∥
∞

∫ t0
0 (σ∗ + δ − ˙̄x(s))+ds

)
is a super-solution to ∂t −

∂zz − β(t, z)∂z − γ(t, z), we observe that ρ(t0)

ρσ∗
∈ L∞. Hence we can suppose without loss

of generality that for t ≥ 0, ˙̄x(t) ≥ σ∗ + δ. Therefore, we have that β(t, z) ≥ σ∗ + δ −
χ1z<0 + 2∂zρ

σ∗+δ

ρσ∗+δ
=: βσ

∗+δ(z) and γ(t, z) ≤ 0. Moreover, by linearity we can suppose that∥∥∥ ρ0

ρσ∗

∥∥∥
∞
≤ 1.

Since γ(t, z) ≤ 0 and v ≥ 0, we have that v is a subsolution of ∂t − ∂zz − β(t, z)∂z.
Hence we consider the solution v̄ of ∂t−∂zz−β(t, z)∂z, such that v ≤ v̄, with initial datum
v̄0, which we define now. Set η := µ+(σ∗)−µ−(σ∗+δ)

2 and define g(z) = e−ηz

1+e−ηz . Let K > 0
be big enough such that:

ρ0(z)

ρσ∗+δ(z)
≤ ρσ

∗
(z)

ρσ∗+δ(z)
≤ Kg(z).

Such a constant exists, as a consequence of Theorem 2.3.1, since for z < 0, ρσ
∗

(z)

ρσ∗+δ(z)
= 1

and for z → +∞, ρσ
∗

(z)

ρσ
∗+δ(z)

= O
(
ze−(µ+(σ∗)−µ−(σ∗+δ))z

)
= O(g(z)). Thus, we set the initial

datum v̄0(z) = Kg(z).
Let us show that ∂z v̄ ≤ 0. By construction, ∂z v̄0 ≤ 0. Furthermore v̄0 ∈ H2

loc(R, dz)
and hence by standard regularity theory, we have that v̄ ∈ C(R+, H

2
loc(R, dz)). Setting

w := ∂z v̄, combining the facts that w(0, · ) ∈ H1(R, dz), w ∈ C(R+, H
1
loc(R)) and that w is

solution to ∂tw−∂zzw−∂z(βw) = 0, shows in fact that w ∈ C(R+, H
1(R, dz)). Now we can

procede as in the proof of Corollay 2.2.1.2, to show that w+ ≡ 0, where ( · )+ = max( · , 0):

d

dt

(
1

2

∫
R
w2

+(t, z)

)
=

∫
R
w+∂tw+dz

=

∫
R
w+∂twdz

=

∫
R
w+(∂zzw + ∂z(βw))dz

= −
∫
R

(∂zw+∂zw + βw∂zw+) dz

= −
∫
R

(∂zw+)2dz −
∫
R
βw+∂zw+dz

≤ −
∫
R

(∂zw+)2dz +
1

2

∫
R

(∂zw+)2dz +
‖β‖2∞

2

∫
R

(w+)2dz

≤ ‖β‖
2
∞

2

∫
R

(w+)2dz,

where we have applied arithmetic and geometric means inequality |βw+∂zw+| ≤ (∂zw+)2

2 +
‖β‖2∞(w+)2

2 . Since w+(0, · ) ≡ 0, by Grönwall’s lemma, we have that w+(t, · ) ≡ 0. Thus
∂z v̄ ≤ 0.
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Figure 2.2: In order to prove that condition N(t, 0) = Nth cannot be satisfied, we consider
solution n(t, z) to Equation (2.5.1) with inital datum n(t1, z) = n∞(z) for z ≥ Z and
n(t1, z) = 0 for z ∈ [−h, Z). Then n(t) → n∞ uniformly. Furthermore N is a super-
solution of Equation (2.5.1) and N(t1, · ) > n(t1, · ), which leads to N(t, · ) ≥ n(t, · ) for
all t ≥ t1. But n(t, 0)→ n∞(0) > Nth and thus the condition N(t, 0) = Nth is not satisfied
after some time.

By the bound βσ∗+δ ≤ β and the inequality ∂z v̄ ≤ 0, we have that v̄ is a sub-solution
(and not a super-solution!) of the parabolic operator ∂t − ∂zz − βσ∗+δ∂z. But from Corol-
lary 2.4.2.1, we know that the corresponding solution with initial datum v̄0(z) = Kg(z)
converges to 0 uniformly on intervals of the form [a,+∞). Hence so does v̄ and v by the
comparison principle and thus ρ converges to 0 uniformly on compact sets.

2. Let us now show that the condition N(t, 0) = Nth cannot be satisfied for time
t > 0 sufficiently large. Let µ > 0 such that µ < σ∗

D and µ < µ−(σ∗ + δ). Let ε > 0 be
sufficiently small, such that 1+Nth

2 − ε

Dµ(σ
∗
D
−µ)

> Nth and denote B := ε

Dµ(σ
∗
D
−µ)

. Choose

h > 0 big enough such that 1+Nth
2

(
1− e−σ

∗h
D

)
−B

(
1− e−

(
σ∗
D
−µ
)
h
)
> Nth, which exists

by noticing that in the limit h→ +∞ the inequality is satisfied by the above.
As v converges to 0 uniformly on the set [−h,+∞), and by noticing that ρσ∗+δ(z) =

o (e−µz), there exists t1, such that for t ≥ t1 and z ≥ −h, we have ρ(t, z)N(t, z) ≤ ρ(t, z) ≤
εe−µz. Finally let Z > 0 be such that N(t1, Z) > 1+Nth

2 .
We consider the parabolic equation in the domain Ω = (t1,+∞)× (−h,+∞):

∂tn− σ∗∂zn−D∂zzn+ εe−µz = 0

n(t,−h) = 0, n(t1, · ) = nt1( · ).

(2.5.1)

A stationary solution to Equation (2.5.1) is:

n∞(z) =
1 +Nth

2
−Be−µz + Ce−

σ∗
D
z,

with C := −Be−
(
σ∗
D
−µ
)
h − 1+Nth

2 e−
σ∗
D
h. Notice that n∞(0) > Nth, by the choices made
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above.
Consider now the solution n to Equation (2.5.1) with initial datum n(t1, · ) = n∞1z≥Z . We
will show that n(t, · )→ n∞ uniformly and in particular for z = 0, n(t, 0)→ n∞(0) > Nth.
Indeed set w := n∞ − n, then w satisfies for (t, z) ∈ Ω:

∂tw − σ∗∂zw −D∂zzw = 0

w(t,−h) = 0, w(t1, z) = n∞(z)1z<Z .

It can be verified that for (t, z) ∈ Ω, we have the following explicit expression:

|w(t, z)| =

∣∣∣∣∣∣ e−
σ∗2

4
t−σ

∗
2
z√

4πD(t− t1)

∫ +∞

−h

(
e
− (z+h−y)2

4D(t−t1) − e−
(z+h+y)2

4D(t−t1)

)
e
σ∗
2
yn∞(y)1y≤Zdy

∣∣∣∣∣∣
≤ Ce

σ∗
2
he−

σ∗2
4
t√

(t− t1)

∥∥∥eσ∗2 yn∞(y)
∥∥∥
L1([−h,Z])

.

Hence, limt→+∞w(t, z) = 0 uniformly, which shows that limt→+∞ n(t, z) = n∞(z) uni-
formly. In particular there exist t2 > t1, such that n(t2, 0) > Nth.

In the final step, it remains to show that N is a supersolution of Equation (2.5.1).
Indeed for (t, z) ∈ Ω:

∂tN − σ∗∂zN −D∂zzN + εe−µz

≥∂tN − ˙̄x(t)∂zN −D∂zzN + ρN

=0.

By construction N(t1, · ) ≥ n(t1, · ) and N( · ,−h) > 0 = n( · ,−h). Hence we have for all
(t, z) ∈ Ω, N(t, z) ≥ n(t, z) and in particular N(t2, 0) ≥ n(t2, 0) > Nth, which leads to a
contradiction.

2.5.2 The Spreading may not be too slow

In this Section, we will show that lim supt→+∞ ˙̄x(t) ≥ σ∗. The proof is based on the
observation that the norm of ρ increases exponentially in a certain weighted L1-spaces,
when ˙̄x < σ∗. In fact, as a starter, in the large bias case χ > 1, take for example the
weight e

z
χ . By noticing that it is an eigenvalue of the dual of the elliptic operator, one sees

that:
d

dt

∫
R
e
z
χ ρ(t, z)dz =

χ+ 1
χ − ˙̄x(t)

χ

∫
R
e
z
χ ρ(t, z)dz.

Then if lim supt→+∞ ˙̄x(t) < σ∗, we have that
∫
R e

z
χ ρ(t, z)dz grows exponentially. Nev-

ertheless, since e
z
χ is unbounded, this observation is not sufficiently instructive. Hence,

instead of e
z
χ an exact eigenvalue of the dual of the elliptic operator, we consider a super-

solution eu ∈ L∞(R) of the dual of the elliptic operator, which enables us to show that
ρ(t) diverges to +∞ in L1(R, eudz). Then we show that a similar statement remains true
for ρ in L1(R+, e

udz) and finally this accumulation of mass on the half-line R+ leads to a
contradiction on the condition N(t, 0) = Nth.

Theorem 2.5.2. Suppose that ˙̄x ∈ L∞(R+) and that ρ0 ∈ L∞. Then:

lim sup
t→+∞

˙̄x(t) ≥ σ∗.
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Proof. Suppose by contradiction that lim supt→+∞ ˙̄x(t) < σ∗ (= 2 in the small bias case
χ ≤ 1, = χ + 1

χ in the large bias case χ > 1). Then there exists δ > 0, t0 ≥ 0, such that
for t ≥ t0, ˙̄x(t) ≤ σ∗ − δ.

1. We start by constructing a function eu ∈ L∞(R), such that the quantity
∫
R e

u(z)ρ(t, z)dz

tends to infinity. Given a function u ∈ C2(R), set w(t, z) := eu(z)ρ(t, z), then:

∂tw − ∂zzw − ∂z

( ˙̄x(t)− 2u′ − χ1z≤0

)︸ ︷︷ ︸
=:β(t,z)

w

− (u′2 + u′′ − ˙̄x(t)u′ + 1z>0 + χ1z≤0u
′)︸ ︷︷ ︸

=:γ(t,z)

w.

(2.5.2)

We now show that we can construct a function u such that γ is bounded below by a
positive constant η > 0. u will be of the shape u(z) = µ(z)z with µ(z) = 1

χ for z ≤ 0,
µ(z) = − 1

‖ ˙̄x‖∞
for z > B, with B > 0, and µ will decrease slowly on the interval [0, B].

The key ingredients for the construction of the function u are Bounds (2.5.3,2.5.4) and
Lemma 2.5.2.1.

First notice that for t ≥ t0 and by assuming that 2η < δ
χ , we have the following Bound:(

1

χ

)2

− ˙̄x(t)

(
1

χ

)
+ χ

(
1

χ

)
=
χ+ 1

χ − ˙̄x(t)

χ
≥ δ

χ
. (2.5.3)

For the second bound we introduce the functions gt : µ ∈ I :=

[
− 1

‖ ˙̄x‖∞
, 1
χ

]
7→ µ2 −

˙̄x(t)µ+1 and show that it is uniformly in time bounded below by 2η for each ˙̄x(t). Without
loss of generality we suppose that ‖ ˙̄x‖∞ > 1. The minimum of gt on R is reached for
µ =

˙̄x(t)
2 and its minimal value is 1− ˙̄x(t)2

4 .

• If ˙̄x(t)
2 < − 1

‖ ˙̄x‖∞
, then the minimum of gt on its domain I is gt

(
− 1

‖ ˙̄x‖∞

)
= 1

‖ ˙̄x‖2

∞

−
˙̄x

‖ ˙̄x‖∞
+ 1 ≥ 1

‖ ˙̄x‖2

∞

.

• If ˙̄x(t)
2 > 1

χ , then the minimum of gt is gt
(

1
χ

)
≥ δ

χ .

• Else if ˙̄x(t)
2 ∈ I, then: (i) in the large bias case χ > 1, we have that gt(µ) ≥

1−min

(
1

‖ ˙̄x‖2

∞

, 1
χ2

)
> 0. (ii) In the small bias case χ ≤ 1, we know that ˙̄x(t) ≤ 2−δ

and ˙̄x(t) ≥ − 2

‖ ˙̄x‖∞
> −2. Hence the minimum of gt, which is 1 − ˙̄x(t)2

2 , is in that

case positive.

Finally this leads for η > 0 small enough and for every t ≥ t0 to the Bound:

min
µ∈I

gt(µ) ≥ 2η. (2.5.4)

Next, we introduce the following technical Lemma 2.5.2.1, which will be an essential
ingredient for the construction of u(z) = µ(z)z with the function z 7→ µ(z) varying slowly
in the interval I, such that γ will stay bounded below by η.
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Lemma 2.5.2.1. For every ε > 0, there exists a nondecreasing function θε ∈W 2,∞([0, 1], [0, 1])
such that θε(0) = 0, θ′ε(0) = 0, θε(1) = 1 and θ′ε(1) = 0, and that:

sup
z∈[0,1]

θ′ε(z)z ≤ ε.

Let us give a quick proof of Lemma 2.5.2.1.

Proof. Consider the function f(z) = zε. Then f ′(z)z = εzε−1. Hence supz∈[0,1] f
′(z)z ≤ ε.

Set:

θε : z 7→


ε(ε−3)(1+ 1

ε)
(
ε1+ 1

ε (3− ε)z2 − (2− ε)z3
)

if z ∈
[
0, ε1+ 1

ε

)
f(z) if z ∈ [ε1+ 1

ε , 1− ε)
g(z) if z ∈ [1− ε, 1]

,

where g is any concave C1 function such that g(1 − ε) = f(1 − ε), g′(1 − ε) = f ′(1 − ε),
g(1) = 1 and g′(1) = 0. Notice that g′(1 − ε) ≥ g′(1), hence such a concave function g
exists.

First notice that by construction θε(0) = θ′ε(0) = 0, θε
((

ε1+ 1
ε

)−)
= f

(
ε1+ 1

ε

)
and

θ′ε

((
ε1+ 1

ε

)−)
= f ′

(
ε1+ 1

ε

)
. By straightforward computations, we show that θε is increas-

ing on the interval
[
0, ε1+ 1

ε

)
and that θ′ε(z)z reaches its maximum on the interval

[
0, ε1+ 1

ε

)
at point zε :=

(
2
3

)2 3−ε
2−εε

1+ 1
ε , with value:

θ′ε(zε)zε =

(
2

3

)5 (3− ε)3

(2− ε)2
εε+1

≤
(

2

3

)5 33

12
εεε

≤ 32

9
ε.

For z ∈ [1− ε, 1], θε is increasing, as by concavity of g, we have that g′(z) ≥ g′(0) = 0. In
addition:

θ′ε(z)z = g′(z)z ≤ g′(1− ε)z ≤ g′(1− ε) =
(1− ε)f ′(1− ε)

1− ε ≤ ε

1− ε.

Finally, by construction, we have that θε ∈W 2([0, 1], [0, 1])

Using the function θε from Lemma 2.5.2.1, for ε > 0, B > 0 to be determined later, we
choose u(z) = µ(z)z with:

µ : z 7→


1
χ if z ≤ 0

1
χ − θε

(
z
B

)(
1
χ + 1

‖ ˙̄x‖∞

)
if z ∈ (0, B]

− 1

‖ ˙̄x‖∞
if z > B

.

• Notice that by Bound (2.5.3), we have that for t ≥ t0, z < 0, γ(t, z) = u′2 + u′′ −
˙̄x(t)u′ + χu′ =

(
1
χ

)2
− ˙̄x(t)

(
1
χ

)
+ χ

(
1
χ

)
≥ δ

χ ≥ 2η.
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• Additionally by Bound (2.5.4), we have that for t ≥ t0, z > B, γ(t, z) = u′2 + u′′ −
˙̄x(t)u′ + 1 = gt

(
− 1

‖ ˙̄x‖∞

)
≥ 2η.

• Then for t ≥ t0, z ∈ (0, B), first notice that µ(z) ∈ I and we will show that for ε > 0
small enough and B > 0 big enough, we have |γ(t, z)− gt (µ(z))| ≤ η.
We have that:

u′(z) = µ(z)− z

B
θ′ε

( z
B

)( 1

χ
+

1

‖ ˙̄x‖∞

)
.

But according to Lemma 2.5.2.1, supz∈[0,B] θ
′
ε

(
z
B

)
z
B ≤ supz∈[0,1] θ

′
ε(z)z ≤ ε. Hence

for ε > 0 small enough the quantity |u′(z)− µ(z)| can be bounded uniformly in time
by any arbitrary positive constant. Similarily:

u′′(z) = − 1

B

(
z

B
θ′′ε

( z
B

)( 1

χ
+

1

‖ ˙̄x‖∞

)
+ 2θ′ε

( z
B

)( 1

χ
+

1

‖ ˙̄x‖∞

))
︸ ︷︷ ︸

bounded by C(‖θ′ε‖∞+‖θ′′ε ‖∞)

.

For B > 0 big enough, |u′′(z)| can be bounded by any arbitrary positive constant.
Therefore, we can pick ε > 0 and B > 0 such that |γ(t, z)− gt (µ(z))| ≤ η. Then by
Bound (2.5.4), we have that for t ≥ t0, z ∈ (0, B):

γ(t, z) ≥ η.

As an intermediary conclusion, on each interval (−∞, 0], [0, B], [B,+∞), γ is lower bounded
by the positive constant η > 0.

Therefore, if we consider ω the solution to Equation for t ≥ t0:

∂tω − ∂zzω − ∂z (β(t, z)ω) = 0

ω(t0, · ) = eu( · )ρ(t0, · ).

(2.5.5)

Then ω(t, z)eη(t−t0) is a subsolution of Equation (2.5.2). Of note by the asymptotic prop-
erties of eu, we have that ω(t0, · ) ∈ L1(R). Moreover, Equation (2.5.5) is under con-
servative form and hence mass is conserved. Without loss of generality, we suppose that∫
R ω(t0, z)dz = 1 and for every t ≥ t0,

∫
R ω(t, z)dz = 1. Hence for t ≥ t0:∫

R
eu(z)ρ(t, z)dz ≥ eη(t−t0)

2. In the next step, we show that the mass of ρ in L1(eudz) is not exclusively concen-
trated on R−. More precisely, we show that lim inft→∞

∫ t
t−4

∫
R+
ω(s, z)dzds > 0. We start

by considering the quantity:

I(t) =

∫
R−

(
e
− z

2χ − 1 +
z

2χ

)
ω(t, z)dz.

Notice that for z < 0, we have β(t, z) = ˙̄x(t)− 2
χ−χ = ˙̄x(t)−

(
χ+ 1

χ

)
− 1
χ ≤ ˙̄x(t)−σ∗− 1

χ ≤
−δ − 1

χ and that this quantity is finite, since ω will be dominated by e
z
χ for z < 0 and so
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the following series of integration by parts is justified:

İ(t)

=

∫
R−

(
e
− z

2χ − 1 +
z

2χ

)
(∂zzω + ∂z (βω))dz

=

[(
e
− z

2χ − 1 +
z

2χ

)
(∂zω(t, z) + β(t, z)ω(t, z))

]z=0

z=−∞

+
1

2χ

∫
R−

(
e
− z

2χ − 1
)

(∂zω + βω)dz

=
1

4χ2

∫
R−

e
− z

2χωdz +
1

2χ

∫
R−

(
e
− z

2χ − 1
)
βωdz

=
1

2χ

∫
R−

(
1

2χ
+ β

)(
e
− z

2χ − 1
)
ωdz +

1

4χ2

∫
R−

ωdz

=
1

2χ

∫
R−

(
1

2χ
+ β

)
︸ ︷︷ ︸
≤−δ− 1

2χ

(
e
− z

2χ − 1 +
z

2χ

)
ωdz

+
1

4χ2

∫
R−

ωdz︸ ︷︷ ︸
≤
∫
R ωdz

− 1

2χ

∫
R−

(
1

2χ
+ β

)
z

2χ
ωdz︸ ︷︷ ︸

≤0

≤− 1

2χ

(
δ +

1

2χ

)
I(t) +

1

2χ
.

Thus by Grönwall’s Lemma, we obtain:

I(t) ≤ I(t0)e
− 1

2χ

(
δ+ 1

2χ

)
(t−t0)

+
1

4χ2
≤ I(t0) +

1

4χ2
.

Furthermore z 7→ e
− z

2χ − 1 + z
2χ is decreasing on R−, hence by a Markov inequality, we

obtain that: ∫ −h
−∞

ω(t, z)dz ≤ I(t)

e
h
2χ − 1− h

2χ

≤ 8χ2

h2

(
I(t0) +

1

4χ2

)
,

where we haved used that e
h
2χ − 1− h

2χ ≥ h2

8χ2 . Hence, if we choose h sufficiently large then
for t ≥ t0, we have: ∫ −h

−∞
ω(t, z)dz ≤ 1

2
.

Next, we use a parabolic Harnack inequality, such as it is stated in Theorem 1.1 in [177],
to obtain the following Lemma:

Lemma 2.5.2.2. Let Q1 := (−1, 0) × (−h, h) and Q2 := (−4,−2) × (−h, h), then there
exists a constant C > 0, such that for every t2 > t0 + 4, we have the following inequality:

sup
(t2,0)+Q2

ω ≤ C inf
(t2,0)+Q1

ω. (2.5.6)

We will use Inequality (2.5.6) to establish that for every t2 > t1 + 4:∫ t2

t2−4

∫
R+

ω(s, z)dzds ≥ 1

1 + 2C
. (2.5.7)
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Either, for every s ∈ (0, 1), we have that
∫
R ω(t2 − s, z)dz ≥ 1

1+2C and then Inequality
(2.5.7) follows. Or, there exists s ∈ (0, 1), such that

∫
R ω(t2 − s, z)dz < 1

1+2C . Then:

1

1 + 2C
>

∫
R+

ω(t2 − s, z)dz ≥
∫ h

0
ω(t2 − s, z)dz ≥ h inf

(t2,0)+Q1

ω.

By using Inequality (2.5.6), we then have that for every s ∈ (−4,−2):∫ 0

−h
ω(t− s, z)dz ≤ h sup

(t2,0)+Q2

ω ≤ Ch inf
(t2,0)+Q1

ω ≤ C

1 + 2C
.

But: ∫
R+

ω(t− s, z)dz = 1−
∫ −h
−∞

ω(t− s, z)dz −
∫ 0

−h
ω(t− s, z)dz ≥ 1

2
− C

1 + 2C
.

Hence: ∫ t2−2

t2−4

∫
R+

ω(s, z)dzds ≥ 1

1 + 2C
.

Thus, we have established Inequality (2.5.7).

3. In the final step we show that the last result contradicts with the condition that
N(t, 0) = Nth. We multiply Equation (2.2.9b) by eu and integrate over R+:

d

dt

∫
R+

euNdz = ˙̄x

∫
R+

eu∂zNdz +D

∫
R+

eu∂zzN −
∫
R+

ρeuN

=− ˙̄x

(
N(t, 0) +

∫
R+

Nu′eudz

)

+D

−∂zN(t, 0)︸ ︷︷ ︸
≤0

+
N(t, 0)

χ
+

∫
R+

(
u′′ + u′2

)
euNdz

− ∫
R+

ρeuNdz

≤C(1 + ‖ ˙̄x‖∞) ‖N‖∞ −Nth

∫
R+

ρeudz

≤C(1 + ‖ ˙̄x‖∞)−Nth

∫
R+

ωeη(t−t0)dz,

where we have used the fact that eu and its derivatives are integrable, N is bounded above
by 1 and below by Nth on R+ and ρeu is bounded below by ωeη(t−t0) (the latter being a
subsolution). Finally, we integrate between [t− 4, t] and obtain:∫

R+

euN(t, z)dz ≤
∫
R+

euN(t− 4, z)dz + 4C(1 + ‖ ˙̄x‖∞)−Nth

∫ t

t−4

∫
R+

eη(s−t0)ωdzds

≤
∫
R+

eudz + C(1 + ‖ ˙̄x‖∞)−Nthe
η(t−4−t0)

∫ t

t−4

∫
R+

ωdz

≤C(1 + ‖ ˙̄x‖∞)− Nthe
η(t−4−t0)

1 + 2C
.

By letting t→ +∞, we have that
∫
R+
euN(t, z)dz < 0, which is a contradiction.
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2.6 Traveling Waves for a Two-Velocity System with Persis-
tence

In this Section, we exhibit all subsonic (σ < ε−1) traveling wave solutions to System (2.1.6).
It is known [26] that in hyperbolic models with growth supersonic traveling wave solutions
can exist, but for the sake of concision we discard them in this discussion. Furthermore
by following the terminology in [26], there exist a parabolic regime ε−2 > 1 and a hyper-
bolic regime ε−2 < 1. Of note, the relevant quantities to compare are the tumbling rate,
normalized to ε−2 here, and the growth rate, normalized to 1 here. Therefore we write the
parabolic regime as ε−2 > 1 and not as ε−1 > 1, which is equivalent in our case. Theorem
2.6.1 notably states that subsonic traveling waves only exist in the parabolic regime, which
was already observed in another model [26].

We will procede similarily than in the parabolic case (Section 2.3) and consider that
∂zN > 0. In that case Equation (2.1.6) reduces in the moving frame of reference to:

for z < 0,

{
(−σ + ε−1)f+′ = ε−2

2 ((1 + εχ) f− − (1− εχ) f+)

(−σ − ε−1)f−
′
= ε−2

2 ((1− εχ) f+ − (1 + εχ) f−)

for z > 0,

{
(−σ + ε−1)f+′ = ε−2+1

2 f− − ε−2−1
2 f+

(−σ − ε−1)f−
′
= ε−2+1

2 f+ − ε−2−1
2 f−

(2.6.1a)

(2.6.1b)

Theorem 2.6.1. Assume that ∂zN > 0. In the parabolic regime ε−2 > 1, there exists a
minimal speed σ∗ ∈ (1, ε−1), such that for any σ ∈ [σ∗, ε−1), there exists a corresponding
bounded and nonnegative traveling wave profile (f+,σ, f−,σ, Nσ). In addition, for σ ∈
[σ∗, ε−1) fixed, the traveling wave profile (f+,σ(z), f−,σ(z), Nσ(z)) is unique. For σ ∈
[0, σ∗), there does not exist a traveling wave profile. The expression of σ∗ is given by
Formula (2.1.7) and depends on the value of χ:

– If χ ∈ (1, ε−1), then σ∗ =
χ+ 1

χ

1+ε2
. Note that in that case σ∗ < ε−1.

– If χ ≤ 1, then σ∗ = σF/KPP := 2
1+ε2

.

In the hyperbolic regime ε−2 < 1, there does not exist any subsonic traveling wave profile,
i.e a wave travaling with speed σ < ε−1.

Furthermore, in the parabolic regime ε−2 > 1, for σ ∈ [ 2
1+ε2

, ε−1), define µ±(σ) :=

σ(1−ε2)±
√
σ2(1+ε2)2−4

2(1−ε2σ2)
. We then have the inequality, for σ > σF/KPP :

0 < µ−(σ) < µ−
(
σF/KPP

)
=

1 + ε2

1− ε2
= µ+

(
σF/KPP

)
< µ+ (σ)

The functions f±,σ have the following behavior for z > 0:

– for σ ∈ (σ∗, ε−1), z > 0, f±,σ(z) = A±e−µ−(σ)z +B±e−µ+(σ)z;

– for χ > 1, σ = σ∗ =
χ+ 1

χ

1+ε2
, z > 0, f±,σ

∗
(z) = B±e−µ+(σ∗)z and µ+(σ∗) = χ(1+ε2)

1−ε2χ2 ;

– for χ < 1, z > 0, σ = σF/KPP, f
±,σF/KPP (z) = (A±z +B±)e

− 1+ε2

1−ε2
z;

– for χ = 1, z > 0, σ = σF/KPP, f
±,σF/KPP (z) = B±e

− 1+ε2

1−ε2
z.
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As before note that
χ+ 1

χ

1+ε2
≥ 2

1+ε2
= σF/KPP, with equality if and only if χ = 1.

Proof. The proof relies on similar arguments than the proof in the parabolic case (Section
2.3). Since we are looking for subsonic solution, we suppose througout the proof that
σ2 < ε−2.

Set F (z) =

(
f+(z)
f−(z)

)
, A− = ε−2

2

(
− 1−εχ
ε−1−σ

1+εχ
ε−1−σ

− 1−εχ
ε−1+σ

1+εχ
ε−1+σ

)
and A+ = 1

2

(
− ε−2−1
ε−1−σ

ε−2+1
ε−1−σ

− ε−2+1
ε−1+σ

ε−2−1
ε−1+σ

)
.

Then for z < 0, F ′(z) = A−F (z) and for z > 0, F ′(z) = A+F (z).
As in the parabolic case (Section 2.3), the characteristic polynomial of A− has two roots

0 and ε−2

2

(
1+εχ
ε−1+σ

− 1−εχ
ε−1−σ

)
, the later being negative, by an argument similar to the proof

of Theorem 2.3.1. Therefore there exist a constant a ∈ R, such that F (z) = a

(
1 + εχ
1− εχ

)
.

The negativity of the second root also shows that there cannot exist a traveling wave profile
with velocity σ < χ.

The characteristic polynomial of A+ is (up to a multiplicative constant) P (X) = (ε−2−
σ2)X2 +σ(ε−2− 1)X + ε−2. In the hyperbolic regime ε−2 < 1, we have that P (0) > 0 and
P ′(0) < 0. But the leading coefficient of P is positive, hence the roots of P have positive
real part, which is in contradiction with the fact that we are looking for a bounded solution.
Hence in the hyperbolic regime, there do not exist any (subsonic) traveling wave solutions.

For the rest of the proof, we suppose that we are in the parabolic regime ε−2 > 1.
The discriminant of the characteristic polynomial P is σ2(ε−2 − 1)2 − 4ε−2(ε−2 − σ2) =
σ2(ε−2 + 1)2 − 4ε−4. As in the parabolic case (Section 2.3) σ = σF/KPP cancels the
discriminant and we yield the condition that σ ≥ σF/KPP , since otherwise we would have
complex roots and oscillating functions.

Suppose σ > σF/KPP, the roots of the characteristic polynomial are then −µ±(σ). By
continuity of F at z = 0 and elementary computations, we find that:

F (z) = a
µ+(σ − χ)− 1

ε−2(µ+ − µ−)

(
µ−(σ)(ε−1 + σ)− 1
µ−(σ)(ε−1 − σ) + 1

)
e−µ−(σ)z

− aµ−(σ − χ)− 1

ε−2(µ+ − µ−)

(
µ+(σ)(ε−1 + σ)− 1
µ+(σ)(ε−1 − σ) + 1

)
e−µ+(σ)z.

First we show that the two components of the vectors are of the same sign. Indeed
(µ±(ε−1 + σ) − 1)(µ±(ε−1 − σ) + 1) ≥ 0 ⇐⇒ −µ± ≤ − 1

σ . Or equivalently − 1
σ is

bigger than the two roots of the characteristic polynomial P . But P
(
− 1
σ

)
= 1

ε2σ2 > 0 and

P ′
(
− 1
σ

)
= 1

σ(ε−2+1)

(
σ2 − 2

1+ε2

)
≥ 1

σ(ε−2+1)

(
σ2 − 4ε−4

(ε−2+1)2

)
≥ 0, where we used the fact

that 4ε−4

(ε−2+1)2 ≥ 2
1+ε2

, which is equivalent to ε−2 ≥ 1. Hence the components are of the
same sign, that is the positive sign, since the second component of each vector is positive.

Therefore we observe that F is positive if and only if g(σ) := µ+(σ)(σ − χ) − 1 ≥ 0.
g is an increasing function, as g′(σ) = µ+(σ) + µ′+(σ)(σ − χ) > 0 (one easily checks that
µ′+(σ) > 0). One checks that in the case χ ≤ 1, g(σF/KPP ) ≥ 0, which establishes existence
of waves for σ > σF/KPP , and that in the case χ > 1, g(σ∗) = 0, which establishes the

existence of waves for σ ≥ σ∗ =
χ+ 1

χ

1+ε2
and the nonexistence of waves for σ ∈ (σF/KPP , σ

∗).
Suppose σ = σF/KPP, then one shows that for z ≥ 0:

F (z) = A

(
1 + εχ+ z (1+ε2)2(1−χ)

(1−ε2)(1−ε)

1− εχ+ z (1+ε2)2(1−χ)
(1−ε2)(1+ε)

)
e−z. (2.6.2)
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Hence F is positive if and only if χ ≤ 1, which establishes the criterion for existence in
the last remaining case.

The decay properties follow immediately and the existence of the profile for N is treated
exactly as in the parabolic case.

Let us make some comments on Theorem 2.6.1 to show how it is linked to Theorem 2.3.1
in the limit ε→ 0. First of all, considering Formula (2.1.7) for σ∗ given by Theorem 2.6.1,
we observe that in the limit ε → 0, Formula (2.1.4) given by Theorem 2.3.1 is recovered.
Furthermore, the limit of all the values µ±(σ∗) coincide and so do the shapes of the wave.
For example, consider Expression (2.6.2) in the limit ε→ 0, we obtain for z > 0:

F (z) = A

(
1 + (1− χ)z
1 + (1− χ)z

)
e−z.

As a consequence ρ(t, z) = A(1 + (1−χ)z)e−z, which is exactly the form that we obtained
in the proof of Theorem 2.3.1.
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Chapter 3

Mathematical Modeling of Cell
Collective Motion triggered by
Self-generated Gradients

This Chapter has been published as a survey [36] in the edited volume
[18]. The work has been written in collaboration with Vincent Calvez
and Roxana Sublet, in particular during the internship of the latter
under the joint supervision of Vincent Calvez and M. D..
Self-generated gradients have attracted a lot of attention in the recent
biological literature. It is considered as a robust strategy for a group
of cells to find its way during a long journey. This note is intended
to discuss various scenarios for modeling traveling waves of cells that
constantly deplete a chemical cue, and so create their own signaling gra-
dient all along the way. We begin with one famous model by Keller and
Segel for bacterial chemotaxis. We present the model and the construc-
tion of the traveling wave solutions. We also discuss the limitation of
this approach, and review some subsequent work addressing stability is-
sues. Next, we review two relevant extensions, which are supported by
biological experiments. They both admit traveling wave solutions with
an explicit value for the wave speed. We conclude by discussing some
open problems and perspectives, and particularly a striking mechanism
of speed determinacy occurring at the back of the wave. All the results
presented in this note are illustrated by numerical simulations.

3.1 Introduction

It has been now 50 years that Evelyn F. Keller and Lee A. Segel published their article
"Traveling bands of chemotactic bacteria: A theoretical analysis" [114], which is part of a
series of works about the modeling of chemotaxis in bacteria Esherichia coli and amoebae
Dictyostelium discoideum (shortnamed as Dicty in the following) [111–114]. This article
described in a simple and elegant way the propagation of chemotactic waves of E. coli
in a one-dimensional space, echoing the remarkable experiments by Adler performed in a
capillary tube [5].

In the present contribution, the seminal ideas of Keller and Segel are discussed from a
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modern perspective, after half a century of intense activity at the interface of mathematics
and biology. Our goal is not to review exhaustively various directions of research in the
modeling of chemotaxis. Our narrow objective consists in setting the focus on the notion
of self-generated gradient (SGG), which has recently shed a new light on several biological
processes, both in bacterial collective motion, and in some aspects of developmental biology
[179, 181]. SGG are at the heart of the model in [114], in which cells create their own
signaling gradient by consuming some nutrient, while moving collectively from one side of
the domain to the other. There, collective motion results from the averaged biases in the
individual trajectories, in response to nutrient heterogeneities, a process called chemotaxis.
This concept of SGG can be generalized to any situation where the signal depletion and
chemotaxis functions overlap within the same cells [162, 180, 181].

SGG in waves of bacteria.

The work of Keller and Segel has initiated a wealth of studies on bacterial chemotaxis. We
refer to the comprehensive review of Tindall et al [174], and also the recent studies [49, 78]
for new biological questions in this topic. Most of the works discussed in this note consider
short time experiments, or experiments at low level of nutrients, neglecting the effect of
cell division. This makes a clear distinction between SGG and reaction-diffusion waves,
as the celebrated Fisher/Kolmogorov-Petrovsky-Piskunov (F/KPP) equation [12, 72, 115].
For this reason, we shall not comment further about the numerous modeling contributions
following the patterns reported by Budrene and Berg [30, 33, 34] (ring expansion followed
by formation of bacteria spots with remarkable symmetries). Chemotaxis has been shown
to be crucial in the emergence of such patterns. However, the dynamics of ring expansion
are mainly driven by growth and diffusion such as described by F/KPP, (but see [49] for
a recent study where chemotaxis has been shown to enhance range expansion).

There exist many modeling contributions of chemotaxis in bacteria [100, 174], with a
particular emphasis on the derivation of macroscopic models from individual rules through
kinetic transport equations, see e.g. [7, 17, 45, 46, 71, 141, 143]. In contrast, the number of
contributions about mathematical analysis of traveling waves without growth beyond [114]
is relatively scarce. We refer to [102], for an (algebraic) extension of [114] with more general
chemotaxis functions and uptake rates. We also refer to the series of articles by Z.A. Wang
and co-authors, see [188] for a preliminary review and below for further discussion.

SGG in development and cancer.

In developmental biology, cell movement over long distances is mediated by navigating
cues, including chemotactic factors [128]. It is commonly postulated that external, pre-
patterned gradients, drive cellular migration. One of the key conceptual advantage of
SGG is to free the developmental process from the requirement of pre-imposed long-range
chemoattractant gradients. In contrast, SGG travel together with the cells, so that they can
experience similar environmental conditions (chemical concentration, gradient steepness)
all over the journey. This is thought to provide robustness to the developmental system
[179, 180].

Recently, SGG have been shown to occur during embryogenesis, and in particular
during the initiation of the posterior lateral line in zebrafish [59, 185]. More precisely,
migrating cell cohorts (consisting of approximately a hundred of cells) can generate and
sustain gradients of chemoattractants across their length. This experimental work is of
great importance as being the first proof of the occurrence of SGG in vivo.
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Self-generated gradients are also under investigation during cancer invasion and metas-
tasis. This includes modeling in silico (see [163] and references therein), and experiments
with cell cultures in vitro [136]. In particular, we highlight the work of [162], in which
an astonishing self-guidance strategy in cancer epithelial cell populations was unravelled.
In fact, cells were put in microfluidic mazes, without any pre-existing external gradients.
Most of them could find their way out of the mazes by generating their own navigating
cues. Experimental studies with increasingly complex mazes were also performed with
Dicty cells, with quite remarkable outcomes [182].

Plan and purpose of the paper.

In Section 3.2.1 we recall the basic construction of traveling waves in the seminal article
[114]. The lack of positivity of the chemical concentration is illustrated by some numerical
simulations (Section 3.2.2). The issue of instability is also reviewed. Section 3.2.3 briefly
presents some possible variations of the original article from the literature. It is one of the
main goal of the present contribution to discuss in details two possible extensions which are
biologically relevant (that is, supported by experiments). Section 3.3 contains an overview
of past work where another attractant signal is added to prevent cell dispersion during
propagation. This results in competing cell fluxes, with stronger advection at the back of
the wave than at the edge. Section 3.4 reports on a piece of recent work including signal-
dependent phenotypical switch (division/ migration). This results in a wave sustained by
cell division restricted to the edge.

All mathematical results proven here are simple, namely involving explicit construction
of one-dimensional traveling waves (whose respective stabilities are supported by numerical
simulations of the Cauchy problems). The last construction is original, up to our knowl-
edge, see Theorem 3.4.2. It could be of interest for experts in reaction-diffusion equations,
as it exhibits a possibly new phenomenon of selection of the minimal speed at the back of
the wave.
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3.2 The Keller-Segel model and variations

3.2.1 The construction of waves by Keller and Segel

In this section, we recall briefly the model and analysis in [114]. The cell density (bacteria)
is denoted by ρ(t, x), for time t > 0, and position along the channel axis x ∈ R, whereas
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the concentration of the signaling molecule is denoted by S(t, x).
∂ρ

∂t
+

∂

∂x

(
−d∂ρ

∂x
+ χρ

∂ logS

∂x

)
= 0 ,

∂S

∂t
= D

∂2S

∂x2
− kρ .

(3.2.1)

The equation on ρ combines unbiased (diffusive) motion with directed motion in response
to the logarithmic signaling gradient (see below for further discussion about this specific
choice), with intensity χ > 0.

On the one hand, the equation on ρ is conservative, and the total mass of cells in the
channel, which is an invariant of the system, is denoted by M , so that M =

∫
R ρ(0, z) dz =∫

R ρ(t, z) dz. On the other hand, the chemical concentration decays globally in time, and
the limiting value at∞ is denoted by Sinit, which can be viewed as the initial, homogeneous,
concentration in the channel associated with the Cauchy problem.

Noticeably, the consumption term in the equation on S, namely −kρ, does not involve
S itself, precluding any guarantee about the positivity of S in the long time. Nevertheless,
the existence of positive traveling wave solutions ρ(x − ct), S(x − ct) was established in
[114] by means of explicit computations, in the absence of signal diffusion D = 0 (for
mathematical purposes), and with the condition χ > d. The wave under interest has the
following structure: ρ ∈ L1

+(R), with limz→±∞ ρ(z) = 0, and S ∈ L∞+ (R) is increasing
with limz→−∞ S(z) = 0, and limz→+∞ S(z) = Sinit, the reference value of the chemical
concentration.

Theorem 3.2.1 (Keller and Segel [114]). Assume D = 0, and χ > d. Then, there exist
a speed c > 0 (depending on M , k and Sinit, but not on χ nor on d), and a stationary
solution of (3.2.1) in the moving frame (ρ(x − ct), S(x − ct)), such that ρ is positive and
integrable,

∫
R ρ(z) dz = M , and S is increasing between the following limiting values{

limz→−∞ S(z) = 0 ,

limz→+∞ S(z) = Sinit .

Before we recall briefly the construction of the wave solution, let us comment on the
value of the wave speed c, that can be directly obtained from the second equation in (3.2.4),
whatever the value of D ≥ 0 is. Indeed, the equation in the moving frame reads

−cdS
dz

= D
d2S

dz2
− kρ .

By integrating this equation over the line, and using the extremal conditions at ±∞ (that
can be verified a posteriori), we find

cSinit = k

∫
R
ρ(z) dz = kM . (3.2.2)

Strikingly, the wave speed depends only on the dynamics of establishment of the gradient.
In particular, it does not depend on the intensity of the chemotactic response χ. This is
in contrast with several conclusions to be drawn from alternative models in the sequel (see
Sections 3.3 and 3.4).
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Proof. The speed c is given a priori by the relationship (3.2.2).
The first step in the construction of traveling wave solutions is the zero-flux condition

in the moving frame z = x− ct, namely

−cρ− ddρ
dz

+ χρ
d logS

dz
= 0 ⇔ d log ρ

dz
= − c

d
+
χ

d

d logS

dz

⇔ ρ(z) = a exp
(
− c
d
z +

χ

d
logS

)
,

where a is a (positive) constant of integration. The second step consists in solving the
following ODE (assuming D = 0)

c
dS

dz
= ka exp

(
− c
d
z +

χ

d
logS

)
⇔

(
1− χ

d

)−1 (
S

1−χ
d

init − S(z)1−χ
d

)
=
kad

c2
exp

(
− c
d
z
)
.

By re-arranging the terms, we obtain(
S(z)

Sinit

)1−χ
d

= 1 +
(χ
d
− 1
)(kad

c2
S
χ
d
−1

init

)
exp

(
− c
d
z
)
.

Suppose that χ < d, then the right-hand-side goes to −∞ as z → −∞ which is a con-
tradiction. Hence, the calculations make sense only if χ > d. By translational invariance,
the constant a can be chosen so as to cancel the prefactor in the right-hand-side (provided
χ > d), yielding the simple expression

S(z)

Sinit
=
(

1 + exp
(
− c
d
z
)) d

d−χ
. (3.2.3)

The corresponding density profile is:

ρ(z) = a′ exp
(
− c
d
z
)(

1 + exp
(
− c
d
z
)) χ

d−χ
, (3.2.4)

for some constant a′, that can be determined explicitly through the conservation of mass.

3.2.2 Positivity and stability issues

Despite its elegance, the previous construction suffers from two drawbacks. First of all,
the positivity of the signal concentration S is not guaranteed in the Cauchy problem.
Actually, numerical solutions soon break down because of this positivity issue. This occurs
starting from a generic initial data (Figure 3.1a), and even from the traveling wave solution
(ρ(z), S(z)) given by the expressions (3.2.3)–(3.2.4), after accumulation of numerical errors
(Figure 3.1b). Nevertheless, the positivity can be manually rescued by setting Sn+1 =
max(Sn, ε) for some arbitrary threshold ε � 1, as suggested in [101]. In that case, the
wave seems to propagate in a stable way in the long term, see Figure 3.1c.

Second, and somewhat related, is the problem of stability of the wave constructed in
Section 3.2.1. Linear stability was addressed first in [153], where it was proven that the
spectral problem admits no real positive eigenvalue. However, the linearized problem is not
self-adjoint, so that this preliminary result is largely incomplete from the perspective of
stability. Few years later, it was proven in [138] that the (essential) spectrum of the linear
operator intersects the right half-plane, meaning that the wave is linearly unstable. The
authors proved a refined instability result, when perturbations are restricted to a class of
exponentially decreasing functions. Noticeably, their results cover both D = 0 and D > 0.
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Figure 3.1: Positivity and stability issues in the numerical simulations of (3.2.1). (a)
Starting from a generic initial data, the numerical scheme quickly breaks down because
the signal becomes negative at some point. The initial condition is shown in dashed line,
and the final state in plain line (last time before numerical breakdown). (b) Aligning
the initial data on the exact density and signal profiles (ρ(z), S(z)) (3.2.3)–(3.2.4), yields
the same conclusion. The cell density is shown in space/time. The numerical breakdown
occurs at approximately t = 0.6. (c) The propagation of the wave can be rescued by setting
manually Sn+1 = max(Sn, 1E − 12) after each time step, as in [101]. For all the figures,
the parameters are (d = 1, χ = 2, D = 0, k = 1).
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This analysis has been largely extended in [50, 51] where it was proven that the wave is
either transiently (convectively) unstable, that is, the spectrum is shifted in the open left
half plane in a two-sided exponentially weighted function space [159], when χ > d is not too
large, but it is absolutely unstable when χ is above some threshold, that is, χd > β0

crit(D),
where, e.g. β0

crit(0) is the unique real root above one of an explicit 10th order polynomial,
see [50, Theorem 2.1].

Recently, it has been established the existence and nonlinear stability of stationary
solutions for the problem (3.2.1) set on a half-line {x > 0}, with respectively Neumann
boundary condition for ρ, and positive Dirichlet boundary condition for S at the origin
[42]. The motivation comes from the study of spike solutions stabilized by a sustained
amount of chemical concentration at the boundary. The stability result in [42] imposes
quite stringent conditions on the decay of the initial data at +∞. Nevertheless, local
stability of the stationary spike does not preclude loss of positivity in the numerics when
initiating the Cauchy problem with initial conditions far from equilibrium, see Figure 3.2.

Remark 3.2.2. Many of the references mentioned above also discuss and analyze the case
of a degenerate consumption rate ∂S

∂t = D ∂2S
∂x2 − kρSm (m < 1), without changing much of

the global picture.
The case m = 1 differs significantly, however. It can be viewed directly on the case

D = 0 that the logarithmic gradient of the putative wave in the moving frame, that is,
d logS
dz cannot have a positive limit as z → −∞, simply because it satisfies the relationship
−cd logS

dz = −kρ, the latter being integrable. Consequently, advection cannot balance diffu-
sion at −∞, preventing the existence of a traveling wave. The same conclusion holds in the
case D > 0, for which u = d logS

dz is a homoclinic orbit of the following first-order equation

du

dz
= − c

D
u− u2 +

k

D
ρ ,

that leaves the origin u = 0 at z = −∞, and gets back to the origin u = 0 at z = +∞, see
[35, Proposition 6.3].

3.2.3 Variations on the Keller-Segel model

As mentioned above, the seminal work [114] gave rise to a wealth of modeling and analysis
of traveling bands of bacteria. Many extensions were proposed soon after Keller and Segel’s
original paper, with various sensitivity functions (other than the logarithmic sensitivity),
and various consumption rates. The models have the following general form,

∂ρ

∂t
+

∂

∂x

(
−d∂ρ

∂x
+ ρχ

(
S,
∂S

∂x

))
= 0 ,

∂S

∂t
= D

∂2S

∂x2
− k(S, ρ) .

(3.2.5)

where the chemotactic sensitivity χ can be a function of both the signal concentration and
its gradient (as well as the diffusion coefficient d – dependency not reported here for the sake
of clarity). These variations were nicely reviewed by Tindall et al [174], and we are not going
to comment them, but the contribution of Rivero et al [151]. The latter follows the approach
of Stroock [171], and Alt [7]. These approaches make the connection between the individual
response of bacteria to space-time environmental heterogeneities, and the macroscopic flux,
hence making sense of the aforementioned averaging, by means of individual biases in the
trajectories (see e.g. [17, 45, 46, 71, 141, 143], and more specifically [65, 161, 166, 190]
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Figure 3.2: Numerical solutions of (3.2.1) with respectively Neumann boundary condition
for ρ, and positive Dirichlet boundary condition for S at the origin. (a) Local stability,
as established in [42] is illustrated numerically, for an initial condition chosen near the
stationary state, and a relatively large diffusion of the chemical (d = 1, χ = 2, D = 1, k =
1). (b) Nonetheless, the numerical solution may become nonpositive when the initial
condition is far from the stationary state, and diffusion of the chemical is not too large
(d = 1, χ = 2, D = 0.25, k = 1). For each figure, the initial condition is shown in dashed
line, and the final state in plain line (last time before numerical breakdown in (b)).
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for bacterial populations). Interestingly, Rivero et al postulate a chemotactic advection
speed χ which is non-linear with respect to the chemical gradient at the macroscopic scale,
namely

χ

(
S,
∂S

∂x

)
= χ tanh

(
f(S)

∂S

∂x

)
, (3.2.6)

where f is a decreasing function containing the details of signal integration by a single cell.
Up to our knowledge, none of the models in the long list of existing variations could

exhibit traveling waves while preserving positivity of S and keeping the total mass
∫
R ρ

constant (that is, ignoring growth). The minimal requirement for ensuring positivity would
essentially be that the uptake function k(S, ρ) is dominated by S at small concentration,
typically: lim supS→0

k(S,ρ)
S <∞. However, this intuitively leads to a shallow (logarithmic)

gradient at the back of the wave, unable to guarantee the effective migration of cells left
behind, see Remark 3.2.2. Cell leakage has long been identified in the biological literature,
but not considered as a major issue, see for instance a discussion in [78], and also the
addition of a linear growth term in [160] so that the loss of cells at the back is qualitatively
compensated by cell division (for a realistic value of the division rate).

It is interesting to discuss the natural choice −k(S, ρ) = −kSρ (combined with loga-
rithmic sensivity), which has been widely studied using tools from hyperbolic equations
(after performing the Hopf-Cole transformation) by Z.A. Wang and co-authors, see the
review [188], and further stability results in [108, 119]. The issue of shallow gradients is
overcome by the boundary conditions at infinity, ρ being uniformly positive at least on one
side. Clearly, the traveling wave solutions are not integrable. This hints to the conflict of
conservation of mass and chemical positivity which seem not concilable.

This leakage effect is a major mathematical issue, because most of the analytical studies
build upon the existence of a wave speed and a wave profile which is stationary in the
moving frame.

3.2.4 Beyond the Keller-Segel model: two scenarios for SGG

In the next two sections, we discuss two relevant modeling extensions, motivated by biolog-
ical experiments, for which traveling waves exist and are expected to be stable. In the first
scenario, cell leakage is circumvented by enhanced advection at the back of the wave, with
an asymptotic constant value of the transport speed at −∞. In the second scenario, cell
leakage occurs, but it is naturally compensated by growth at the edge of the propagating
front.

For each scenario, we discuss briefly the biological motivations. Then we present the
explicit construction of the traveling wave solutions, together with the formula for the wave
speed. When possible, we discuss the connections with some other works in the literature.

3.3 Scenario 1: strongest advection at the back

In this section, we present some study performed a decade ago, revisiting original Adler’s
experiment, see Figure 3.3. Inspired by massive tracking analysis, Saragosti et al [161]
proposed a simple model for the propagation of chemotactic waves of bacteria, including
two signals (see also [191] for an analogous approach developed independently at the same
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Figure 3.3: Cartoon of the experiments performed in [161] and [160]. A band of bacteria is
traveling from left to right in a microfluidic channel. Videomicroscopy allows tracking indi-
vidual trajectories inside the wave, revealing heterogeneous behaviors: biases are stronger
at the back of the wave than at the edge.

ρ

A

S

Direction of propagation

Strong advection
χS

χA

Weak advection
χS

χA

Figure 3.4: Sketch of the chemical environment viewed by the cell density in model (3.3.1).
It is characterized by stronger advection at the back (the two signals have the same orienta-
tion), than at the edge (the two gradients have opposite orientations). When chemotactic
speeds coincide (χS = χA), then we simply have diffusion on the right side of the peak.
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Figure 3.5: Numerical simulation of model (3.3.1) for a half-gaussian initial density of
bacteria.

time). The macroscopic model is the following:

∂ρ

∂t
+

∂

∂x

(
−d∂ρ

∂x
+ ρ

(
χSsign

(
∂S

∂x

)
+ χAsign

(
∂A

∂x

)))
= 0 ,

∂S

∂t
= DS

∂2S

∂x2
− k(S, ρ) ,

∂A

∂t
= DA

∂2A

∂x2
+ βρ− αA .

(3.3.1)

As compared to (3.2.5), it is supplemented with a second chemical signal, A, which plays
the role of a communication signal released by the cell population (hence, the source term
+βρ), and naturally degraded at a constant rate α > 0. Indeed, bacteria are known to
secrete amino-acids, which play the role of a chemo-attractant as part of a positive feedback
loop [21, 134]

Moreover, bacteria are assumed to respond to the signal in a binary way at the macro-
scopic scale: the advection speed associated with each signal (S,A) can take only two
values, respectively ±χS , ±χA, depending on the direction of the gradients. Then, the
total advection speed is simply the sum of the two components. This was derived in [161]
from a kinetic model at the mesoscopic scale, assuming a strong amplification during signal
integration, see also [35] for a discussion. This can be viewed as an extremal choice of the
advection speed proposed by Rivero et al [151], in the regime f → +∞ (3.2.6). The bio-
physical knowledge about the details of signal integration in bacteria E. coli have increased
in the meantime [si_pathway-based_2012, 107, 110, 178]. Actually, the logarithmic
sensing is a good approximation in a fairly large range of signal concentrations. However,
we retain this simple, binary, choice for theoretical purposes.

As for the Keller-Segel model, traveling waves for (3.3.1) have the great advantage of
being analytically solvable, essentially because the problem reduces to an equation with
piecewise constant coefficients. Introduce again the variable z = x−ct in the moving frame
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at (unknown) speed c. Then, we have the following result:

Theorem 3.3.1 (Saragosti et al [161]). There exist a speed c > 0, and a positive limit
value S− < Sinit, such that the system (3.3.1) admits a stationary solution in the moving
frame (ρ(x−ct), S(x−ct), A(x−ct)), such that ρ is positive and integrable,

∫
R ρ(z) dz = M ,

A decays to zero on both sides, and S is increasing between the following limiting values{
limz→−∞ S(z) = S− ,

limz→+∞ S(z) = Sinit .

Moreover, the speed c > 0 is determined by the following implicit relation,

χS − c = χA
c√

c2 + 4αDA

. (3.3.2)

Proof. Contrary to the proof of Theorem 3.2.1, the wave speed c cannot be computed by
a direct argument.

As a preliminary step, we should prescribe the environmental conditions, as they are
expected heuristically to be seen by the bacteria, see Figure 3.4. On the one hand, we seek
an increasing profile S, hence sign

(
dS
dz

)
= +1, and the equation on the density profile ρ is

decoupled from the dynamics of S. On the other hand, we assume that the communication
signal A reaches a unique maximum, that can be set at z = 0 by translational invariance.
The validation of this ansatz, a posteriori, will set the equation for c (3.3.2).

The equation for ρ has now piecewise constant coefficients in the moving frame,

−cdρ
dz

+
d

dz

(
−ddρ

dz
+ ρ (χS + χAsign (−z))

)
= 0 .

Hence, ρ is a combination of two exponential functions,

ρ(z) =


exp (λ−z) for z < 0, λ− =

−c+ χS + χA
d

(signals are aligned),

exp (−λ+z) for z > 0, λ+ =
c− χS + χA

d
(signals are competing).

Next, the attractant concentration A can be computed explicitly, by convolving the source
term βρ with the fundamental solution of the elliptic operator −c ddz − DA

d2

dz2 + α, de-
noted by A, that is, A = βA ∗ ρ. Coincidentally, A shares the same structure as ρ,
namely A(z) = a0 exp(µ−z) for z < 0 and A(z) = a0 exp(−µ+z) for z > 0, with
µ± = 1

2DA

(
±c+

√
c2 + 4αDA

)
, and a0 is a normalizing factor.

It remains to check the preliminary ansatz, that is, A changes monotonicity at z = 0.
A straightforward computation yields

dA

dz
(0) = βa0

(
− 1

1 + λ−/µ+
+

1

1 + λ+/µ−

)
.

Therefore, the construction is complete, provided λ−µ− = λ+µ+, which is equivalent to
(3.3.2).

To partially conclude, let us highlight the fact that cohesion in the wave is guaranteed
by the local aggregation signal A. To put things the other way around, in the absence of
the driving signal S, the cells can aggregate thanks to the secretion of A, and the density
reaches a stationary state (standing wave). In turn, this cohesive state can travel (with
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Figure 3.6: Schematic view of the experimental set-up in [48]. (a) An initial layer of Dicty
cells is deposited at the center of the plate, and covered with a large glass coverslip (after
[56]). This vertical confining reduces drastically the inflow of oxygen within the plate, by
restricting it to lateral exchanges. (b) Soon after the beginning of the experiment, a ring of
cells emerges, which is traveling over several days at constant speed with a well-preserved
shape. The moving ring consumes almost all the available oxygen, so that the center of
the colony is at very low concentration, below 1%.

some deformation) in the presence of the (self-generated) driving signal S. To make the
link with SGG in developmental biology [59], let us point to the modeling study [170]
which is devoted to the migration of cell collectives in the lateral line during development
of the zebrafish. There, it is assumed that the rod of cells maintains its shape per se with
a constant length which is a parameter of the model, see also [41] for biological evidence
of cell attraction during collective motion.

3.4 Scenario 2: cell leakage compensated by growth

In this section, we present a recent model of SGG, including localized (signal-dependent)
growth [48]. This work was motivated by aeroactic waves of Dicty observed in vertically
confined assays, in which oxygen is consumed by the cells and is soon limited at the
center of the colony, see Figure 3.6. We refer to [48] for the experimental details. The
model introduced in [48] was referred to as a "go-or-grow" model, a term coined in a
previous work by Hatzikirou et al [98] in the context of modeling cell invasion in brain
tumors. There, the basic hypothesis was that cells could switch between two states, or
phenotypes: a migrating state ’go’ (with enhanced random diffusion), and a proliferating
state ’grow’ (with enhanced rate of division), following previous works in the same context
(see e.g. [68]). In [98] it was assumed that hypoxia (lack of oxygen) triggers the switch
in the long term dynamics of the system, by selection of the migrating phenotype, but
in a global manner (oxygen supply was accounted for via the constant carrying capacity,
as one parameter of the cellular automaton). Later contributions considered PDE models
with density-dependent switch (see [168], as opposed to [68] where the switching rate is
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Figure 3.7: Graphical description of the ’go-or-grow’ model (3.4.1). (a) Individual cell
tracking in [48] shows different cell behaviours depending on the relative position with
respect to the tip of the ring: (I) ahead of the moving ring, cells exhibit unbiased motion,
together with division events; (II) inside the ring, cells exhibit clear directional motion
(which indeed results in the formation and maintenance of the ring); (III) the trail of cells
which are left behind exhibit unbiased motion, again, with more persistent trajectories
(but this last observation is neglected in the model, because it was shown to have limited
effect). (b) We hypothesize a single transition threshold S0 such that cells can divide above
the threshold, while they move preferentially up the gradient below the threshold, when
oxygen is limited. The unbiased component of cell motion (diffusion) is common to both
sides of the threshold.
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not modulated, and also the experimental design of density-dependent motility in bacteria
[123]).

In [48], the go-or-grow hypothesis was revisited, by studying an expanding ring of
Dicty cells, with limited supply of oxygen. Figure 3.7a shows the cell density profile, as it
is observed in experiments. Figure 3.7b summarizes the minimal assumption of an oxygen-
dependent switch, as proposed in [48]. It was hypothesized that the transition between
the proliferating state and the migrating state is modulated by the level of oxygen, with a
sudden change of phenotype at some threshold S0. Above this threshold, when oxygen is
available in sufficient quantity, cells exhibit slow random (diffusive) motion and divide at
some constant rate. Below this threshold, when oxygen is limited, cells stop dividing and
move preferentially up the oxygen gradient. The latter hypothesis (directional motion) is
different from the aforementioned go-or-grow models [68, 98, 168]. It is consistent with
the observations of individual tracking within the cell population in the bulk of the wave
in [48].

The following model recapitulates these assumptions,
∂ρ

∂t
+

∂

∂x

(
−d∂ρ

∂x
+ ρχ

(
S,
∂S

∂x

))
= r(S)ρ ,

∂S

∂t
= D

∂2S

∂x2
− k(S, ρ) .

(3.4.1)

with the specific choice

χ

(
S,
∂S

∂x

)
= χsign

(
∂S

∂x

)
1S<S0 , r(S) = r1S>S0 . (3.4.2)

This can be viewed as another variation of (3.2.5) including growth. It can also be viewed
as an extension of the celebrated F/KPP equation, with a signal-dependent growth sat-
uration, and including advection (we refer to [40, 155, 192] and references therein for
more classical synthesis of the F/KPP equation and the Keller-Segel model of cellular ag-
gregation). Interestingly, an analogous model was proposed in [77], following a general
motivation, and beginning with the statement that proliferation is necessary to sustain
wave propagation. As compared with (3.4.1)–(3.4.2), in the latter work, the reproduc-
tion rate r is signal-dependent with a linear dependency, and there is no threshold on the
chemosensitivity χ which is simply a linear function of the gradient ∂S

∂x . As a consequence,
the wave speed cannot be calculated analytically, in constrast with (3.4.1)–(3.4.2) (see
Theorem 3.4.1 below).

Before we show the construction of traveling wave solutions for (3.4.1)–(3.4.2), let us
comment on the reason why such solutions can exist. The expected density profile exhibits
a plateau of cells left behind the wave, see Figure 3.7a. In the vertical confining assay
experiment with Dicty, this corresponds to cells that are still highly motile, but have
lost the propension to move directionally. They cannot keep pace with the self-generated
oxygen gradient. The increasing amount of cells which are left behind is compensated
by the growth at the edge of the pulse. This localized growth term (above the oxygen
threshold) creates a flux term (negative flux in the moving coordinate) which is key to the
mathematical construction of the wave.

We can be more precise about the negative flux issued from cell division by looking at
the traveling wave equation (3.4.1)–(3.4.2) in the moving coordinate z = x− ct.

−cdρ
dz

+
d

dz

(
−ddρ

dz
+ ρχ

(
S,
dS

dz

))
= r(S)ρ . (3.4.3)
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Figure 3.8: Numerical simulation of model (3.3.1) for an initial plateau of cells restricted
to the interval {x < 10}.

Below the oxygen threshold, S < S0, the right-hand-side vanishes, and we are left with a
constant flux,

−cρ− ddρ
dz

+ ρχ

(
S,
dS

dz

)
= −J . (3.4.4)

By integrating (3.4.3) on {S > S0}, and using the continuity of the flux at the interface
{S = S0}, we find

J = r

∫
{S>S0}

ρ(z) dz . (3.4.5)

Note that the continuity of the flux is a pre-requisite for the well-posedness of (3.4.1)–
(3.4.2), see [54] for a rigorous analysis of this problem, and unexpected mathematical
subtleties.

Theorem 3.4.1 (Cochet et al [48], Demircigil [54]). There exist a speed c > 0, and
a positive limit value ρ− > 0, such that the system (3.4.1)–(3.4.2), admits a stationary
solution in the moving frame (ρ(x − ct), S(x − ct)), such that ρ and S have the following
limiting values {

limz→−∞ ρ(z) = ρ− ,

limz→+∞ ρ(z) = 0 ,

{
limz→−∞ S(z) = 0 ,

limz→+∞ S(z) = Sinit .

Moreover, the speed is given by the following dichotomy

c =

2
√
rd if χ ≤

√
rd ,

χ+
rd

χ
if χ ≥

√
rd .

(3.4.6)

Interestingly, the dichotomy in (3.4.6) depends on the relative values of the advection
speed (up the gradient) χ, and half the reaction-diffusion speed of the F/KPP equation
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√
rd. When the aerotactic biases are small (low advection speed χ), then the wave is

essentially driven by growth and diffusion. When biases are large, then the wave is mainly
driven by aerotaxis. This has interesting implications in terms of maintenance of genetic
diversity inside the wave (see [24, 152] for diversity dynamics among reaction-diffusion
traveling waves). In fact, the so-called dichotomy between pulled and pushed waves is at
play here, see [48, 54] for more details and discussion.

In contrast with the original Keller-Segel model (3.2.2), the wave speed does not depend
on the features of oxygen consumption and diffusion.

Proof. As in Section 3.3, the wave speed is not given a priori. We seek a monotonic oxygen
profile, such that dS

dz > 0. Therefore, the first equation reduces to

−cdρ
dz
− dd

2ρ

dz2
+

d

dz

{
0 if S > S0

χρ if S < S0

}
=

{
rρ if S > S0

0 if S < S0

}
.

By translational invariance, we assume that S = S0 occurs at z = 0.
For z < 0, we have by (3.4.4)–(3.4.5),

d
dρ

dz
= J + (χ− c)ρ , J > 0 . (3.4.7)

Suppose that c ≤ χ. Then, ddρdz ≥ J > 0, which is a contradiction with the positivity of
ρ. Hence, we must have c > χ. The solution of (3.4.7) is unbounded unless it is constant,
that is ρ = J

c−χ , and this is the natural choice we make for the construction.
For z > 0 we have the standard linear problem arising in the F/KPP equation (at small

density),

−cdρ
dz
− dd

2ρ

dz2
= rρ .

We look for exponential solutions exp(−λz). The characteristic equation, dλ2− cλ+ r = 0
has real roots when c2 ≥ 4rd. Then, we proceed by dichotomy.
� The case c = 2

√
rd. The general solution for z > 0 is of the form (a+ bz) exp(−λz),

with λ =
√

r
d the double root. The constant a coincides with J

c−χ by continuity of the
density (its value does not really matter here). Continuity of the flux at the interface z = 0
yields −d(b− aλ) = χa, hence bd = a(

√
rd− χ). Thus, the solution is admissible (b ≥ 0)

if, and only if χ ≤
√
rd.

� The case c > 2
√
rd. Standard arguments in the construction of reaction-diffusion

traveling waves imply to select the sharpest decay on the right side [12, 156], namely
ρ = a exp(−λz), with λ = 1

2d

(
c+
√
c2 − 4rd

)
. Continuity of the flux at the interface now

writes −d(−aλ) = χa, which is equivalent to

2χ− c =
√
c2 − 4rd ⇔

(
c = χ+

rd

χ

)
&
(
χ >

c

2

)
.

It must be checked a posteriori that c > 2
√
rd, which is immediate. The last inequality

constraint ensures that χ >
√
rd, in contrast with the other side of the dichotomy.

Thus, the construction is complete.

The wavefront constructed above appears to be numerically stable, driving the long-
time asymptotics, see Figure 3.8. However, the very strong advection at the back of the
wave creates a decreasing density profile, which is actually constant at the back of the
wavefront, in contrast with the experiments showing a non-monotonic pulse (Figure 3.7).
Several extensions were discussed in [48].
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Logarithmic sensitivity.

Below, we discuss a natural, yet original, extension of the previous result, restoring the
logarithmic gradient in the advection term. More precisely, we consider (3.4.1) again, with
the following choice of functions, instead of (3.4.2)

χ

(
S,
∂S

∂x

)
= χ log

(
∂S

∂x

)
1S<S0 , r(S) = r1S>S0 . (3.4.8)

We present below a preliminary result about the existence of traveling waves, followed by
heuristic arguments about the determination of the speed, and some numerical investiga-
tion.

Theorem 3.4.2. Assume D = 0, and k(S, ρ) = kρS for some k > 0. There exists a speed
c > 0, and a positive limit value ρ− > 0, such that the system (3.4.1)–(3.4.8), admits a
stationary solution in the moving frame (ρ(x− ct), S(x− ct)), such that ρ and S have the
following limiting values{

limz→−∞ ρ(z) = ρ− ,

limz→+∞ ρ(z) = 0 ,

{
limz→−∞ S(z) = 0 ,

limz→+∞ S(z) = Sinit .

Moreover, the speed is given by the following dichotomy

c = 2

√
rmax

{
d, χ log

(
Sinit

S0

)}
. (3.4.9)

Proof. We proceed similarly as in the proof of the previous statement. The assumption
D = 0 enables expressing the logarithmic gradient in terms of the density:

−cd(logS)

dz
= −kρ . (3.4.10)

For z < 0 we have a constant (negative) flux at equilibrium in the moving frame (3.4.4),

−cρ− ddρ
dz

+ χρ
d(logS)

dz
= −J < 0 . (3.4.11)

Combining (3.4.10) and (3.4.11), we get the ODE satisfied by the cell density profile at
the back:

d
dρ

dz
= −cρ+

kχ

c
ρ2 + J . (3.4.12)

This ODE comes with a sign condition, for the discriminant of the right-hand-side to be
non-negative (otherwise ρ cannot be positive for all z < 0 when dρ

dz is uniformly positive),
that is

c3

4kχ
≥ J . (3.4.13)

This condition is complemented by the integration of (3.4.10) over {z > 0}:

c log

(
Sinit

S0

)
= k

∫ +∞

0
ρ(z) dz =

k

r
J ,

where the last identity follows from (3.4.5). This yields the constraint

c3

4rχ
≥ c log

(
Sinit

S0

)
⇔ c2 ≥ 4rχ log

(
Sinit

S0

)
. (3.4.14)
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This is one part of the condition in (3.4.9). The second part comes naturally from the
constraint on the characteristic equation on {z > 0}, namely c2 ≥ 4rd. It can be shown
by simple phase plane analysis that admissible solutions exist in both cases when the
inequality (3.4.9) is an equality.

The previous analysis calls for a few comments:

1. Contrary to the former construction in Theorem 3.4.1, the latter construction does
not come naturally with an equation for c. This is because there is no clear way to
remove one degree of freedom on {z < 0} under the sign condition (3.4.13). Indeed,
the solution of (3.4.12) is naturally bounded for any intial condition, in opposition
to (3.4.7).

2. Surprisingly, the additional restriction (3.4.14) results from conditions imposed on
the solution at the back of the wave on {z < 0}, in opposition with the standard
case, say for F/KPP and related equations, where it always come from conditions on
{z > 0} (as it is the case for the classical restriction c2 ≥ 4rd).

At this point, we conjecture that the minimal speed (3.4.9) giving rise to admissible
solutions is selected when the Cauchy problem is initiated with localized initial data.

Claim 3.4.3. Starting from a compactly supported initial data, the asymptotic spreading
speed of solutions to (3.4.1)–(3.4.8) is given by (3.4.9).

This claim is supported by numerical exploration of the system in some range of pa-
rameters, see Figure 3.9 for one typical set of paramaters. On the one hand, the claim is
not surprising in the case of small bias, when c = 2

√
rd. In fact, this corresponds to the

standard mechanism of speed determination at the edge of the front in reaction-diffusion
equation with pulled waves. This was indeed confirmed in the previous model (3.4.1)–
(3.4.2) [48, 54]. On the other hand, we emphasize that it does look surprising in the case

of large bias, when c = 2

√
rχ log

(
Sinit
S0

)
. In the latter case, the selection of the minimal

speed would come from a discriminant condition at the back of the wave, which would be
a quite original phenomenon, up to our knowledge.

3.5 Conclusion and perspectives

We exposed the original contribution of Keller and Segel devoted to chemotactic waves of
bacteria, and discussed its limitations. These limitations are mainly concerned with the
possible lack of positivity of the chemical concentration in the model. A pair of extensions
were described. They both resolve the positivity issue, while keeping analytical solvability
of the waves thanks to the specific choice of piecewise homogeneous models. In addition,
they are both supported by biological experiments, respectively with bacteria E. coli and
Dicty cells.

To conclude, let us mention some open problems, either on the mathematical or on the
modeling side.

Determinacy of the speed at the back of the wave.

The result stated in Theorem 3.4.2 appeared quite unexpectedly. If further numerical
exploration with alternative schemes tends to confirm our Claim 3.4.3, we believe that
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Figure 3.9: (a) Traveling wave propagation obtained after long time simulations of the
Cauchy-problem (3.4.1)–(3.4.8) with parameters (d = 1, χ = 2, r = 1, D = 0, k = 1, Sinit =
8, S0 = 2). (b) The density profile is shown at successive times in the moving frame.
Note the low decay at the back of the wave, which is the signature of singular point in
the ODE (3.4.12) together with the choice of J that cancels the discriminant in (3.4.13).
The numerical speed is cnum ≈ 3.17, close to the theoretical one, 2

√
log(4) ≈ 3.33. (c)

To better assess our Claim 3.4.3, the numerical solution is plotted in the phase plane
(ρ, ρ′) (black dots), against the theoretical curves, that is ρ′ = −λρ (for z > 0), and

ρ′ = kχ
cd

(
ρ− c2

2kχ

)2
(3.4.12) (red lines). The isolated point on the right corresponds to

the transition at z = 0, where the expected theoretical profile has a C1 discontinuity. We
believe that the discrepancy is due to numerical errors.
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Figure 3.10: Same as in Figure 3.9, except for the diffusion coefficient of the chemical which
is set toD = 1. (a) We observe propagation of a traveling wave in the long time asymtptotic
with a reduced speed. Clearly, the wave profile differs significantly from 3.9b. (b) In
particular, the solution in the phase plane does not align with the theoretical expectation
available in the case D = 0 (red plain curves). It aligns much better with the theoretical
expectation computed from the equations (3.4.10)–(3.4.14) taking the reduced numerical
speed as an input (red dashed curves). We believe that the discrepancy is due to numerical
errors.
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understanding the mechanism of speed selection is an interesting, and possibly original
problem per se. We stress out that this mechanism occurs at z = −∞, in the sense that
the sign condition on the discriminant in (3.4.12) ensures that the cell density remains
positive for negative z. Alternatively speaking, we face a situation which is the mirror of
the standard mechanism of speed determinacy at z = +∞ in the F/KPP equation.

Traveling waves with non-zero chemical diffusion.

Figure 3.10 shows the numerical simulation of the Cauchy problem (3.4.1)–(3.4.8) with a
chemical diffusion coefficient D of order one. It seems that the solution converges towards
a traveling wave profile as t → +∞ with reduced speed as compared to the case without
chemical diffusion (Figure 3.9). Moreover, the numerical wave plotted in the phase plane
shows a similar pattern (compare Figure 3.9c and 3.10b), suggesting similar mechanisms
occurring at z = −∞ (in particular, a vanishing discriminant in the super-critical case
c > 2

√
rd). However, since the relationship (3.4.10) is not satisfied with non-zero diffusion,

we are lacking one equation to perform explicit computations. There exist multiple works
extending the construction of waves for the original model (3.2.1) to the case of non-zero
chemical diffusion. This may give some hints to address this question.

Stability.

Although stability in the Keller-Segel model (3.2.1) has drawn some attention, with a
nearly complete picture by now, stability of the traveling wave solutions to the models
presented in Sections 3.3 and 3.4 is almost entirely open. The first author and Hoffmann
proved local non-linear stability of standing waves for (3.3.1) (without the SGG signaling
S), assuming that the attractant concentration A is quasi-stationary (solving an elliptic
equation at any time). They performed a change of coordinates to by-pass the discontinuity
of the advection coefficient, and used higher-order energy methods to handle the singular
term of the coupling.

Nevertheless, numerical investigation performed at the occasion of this work, with
simple finite volume, semi-implicit, upwind schemes, argue in favor of stability of all the
waves described in 3.3 and 3.4.

Spatial sorting.

Another open problem is the theoretical analysis of spatial sorting in bacteria collectives
when the individuals have different chemotactic sensitivities. In [78], remarkable experi-
ments on bacteria E. coli, together with a very elegant analytical argument, indicated that
cells can move together despite their differences. The argument of [78] goes as follows:
assume that there exist multiple types of bacteria consuming a single nutrient S, and that
each type is characterized by a chemotactic sensivity χi ; suppose that, for each type, the
chemotactic advection is of the form χi

(
S, ∂S∂x

)
= χi

∂F (S)
∂x , say the logarithmic gradient as

in the original model (3.2.1) ; suppose that the solution of each type converges towards a
traveling wave in the long-time, with a common speed c, so that the flux is asymptotically
zero in the moving frame for each type:

(∀i) − c− d d
dz

(log ρi) + χi
d

dz
F (S) = 0 . (3.5.1)

Evaluating (3.5.1) at the maximum point of the density ρi, say z∗i , we would get that

c = χi
d

dz
F (S)(z∗i ) . (3.5.2)
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Differentiating (3.5.1) at z = z∗i , it could be deduced that

d2

dz2
F (S)(z∗i ) = d

d2

dz2
(log ρi) (z∗i ) ≤ 0 . (3.5.3)

The combination of (3.5.2) and (3.5.3) says that the peaks (z∗i ) of the densities (ρi) which
are traveling together are restricted to the interval where F (S) is concave. Moreover, they
are ordered in such a way that (χi < χj) ⇒ (z∗i < z∗j ). This nice calculation indicates
that different phenotypes could migrate collectively despite their differences. The intuitive
reason, which can be read on (3.5.2), is that larger chemosensitivity χi naturally pushes
the cells ahead, where they experience shallower gradients. Nonetheless, the analysis in
[78] is not complete, as the existence of a stable traveling waves of different types with a
common speed is taken for granted.

There exist previous theoretical works about collective migration of different pheno-
types within the same chemical environment. We refer for instance to [122], which adopted
the framework of the original model by Keller and Segel (3.2.1). In view of the discussion
above, the stability of their theoretical outcomes is questionable. In [61], the authors ex-
tend the framework of Section 3.3, including two subpopulations with different chemotactic
phenotypes. This work was supported by experimental data. However, the discussion in
[78] makes it clear that the framework of [61] is not directly compatible with their find-
ings. Actually, it is one consequence of the advection speed discontinuity in (3.3.1) that
the maximum peak density is located at the sign transition, whatever the chemosensitivity
coefficient is, hence violating the nice relationship (3.5.2).

Preliminary investigations suggest that the framework of Section 3.4 cannot be readily
extended as well. Indeed, signal-dependent growth counter-balances the fact that more
efficient chemotactic types experience shallower gradients, because they have better access
to nutrient. This triggers natural selection of the more efficient type by differential growth
(results not shown).

To our knowledge, there is no clear mathematical framework to handle the remarkable
experiments and biological insights as shown in [78], at the present time.
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Chapter 4

A Paradigm for Well-Balanced
Schemes for Traveling Waves
Emerging in Biological Models

This Chapter has been written in collaboration with Benoit Fabrèges,
who has carried out the parabolic part of this Chapter. Before submitting
this work to a journal, we wish to investigate if we can improve the
scheme in the kinetic case.
We propose a methodology for designing well-balanced numerical
schemes to investigate traveling waves in kinetic and parabolic mod-
els from mathematical biology. We combine well-balanced techniques
for kinetic and parabolic models known in the literature with the so-
called LeVeque-Yee formula as a dynamic estimate for the spreading
speed. This latter formula is used to consider the evolution problem in
a moving frame at each time step. There the equations admit station-
ary solutions, for which well-balanced techniques are suitable. Then,
the solution is shifted back to the stationary frame in a well-balanced
manner. We illustrate this methodology on two application cases: a re-
cent kinetic model for collective movement in eukaryotic cells and the
parabolic Fisher/Kolmogorov-Petrovsky-Piskunov (F/KPP) Equation.
In both cases, we show that the numerical schemes capture in a con-
sistent way simultaneously the wave speed as well as the wave profile at
the leading edge. Moreover, we show that for the F/KPP Equation the
scheme is able to capture to an extent the so-called Bramson shift.

4.1 Introduction

Many biological systems may give rise to spatial spreading phenomena, such as for instance
the invasion of rodents [167] or the collective displacement of a population of Escherichia
coli cells in a micro-channel [5]. Mathematical modelling of this phenomena has con-
tributed to a better understanding of these spreading phenomena and gives also rise to a
quantitative framework, which may for instance account for the spreading speed. On the
mathematical side, we may cite as models, that have attracted much attention, reaction-
diffusion equations (e.g. [11, 70, 72, 94, 115]), parabolic models of chemotaxis (e.g. [114,

151



160]) and kinetic models of chemotaxis (e.g. [6, 7, 35, 141]). The biological question of the
spreading of a population translates then into the mathematical question of the existence
of a traveling wave, i.e. solutions that are stationary in a moving frame of reference.

The mathematical investigation of traveling waves for biological models naturally raises
the question of the numerical investigation of these traveling wave solutions. Numerically,
this question is difficult, as it requires an accurate scheme over large domains in order to
capture precisely the behavior of the solution over large time. Moreover the questions we
may wish to address to such schemes are two-fold: (i) find the accurate spreading speed;
(ii) find the accurate traveling wave profile. In fact these two questions are related, since
mathematically the wave speed is intimately connected to the wave profile. In fact, as
we will see notably in this article, wave profiles will often at their leading edge decrease
exponentially and their exponential decay parameter can be tied to the wave speed through
a dispersion relation. Hence, we wish to find numerical schemes that capture at the same
time accurately a wave speed, as well as an exponential decay, which requires great precision
even at very low orders of magnitude, because of the nature of exponential decays.

In this article, we will use so-called well-balanced (WB) schemes in order to investigate
these questions. The notion of WB schemes has been introduced by [91] and consists
roughly speaking in numerical schemes that preserve the steady state of the continuous
model, i.e. the steady state of the numerical scheme matches the discretization of the
steady state of the continuous model. Many different approaches to such schemes exist
and we refer the reader for instance to [85] for a general discussion on these techniques.
However in their essence, WB schemes accurately balance the flux terms and the source
terms. In recent years, WB schemes have been proposed for kinetic equations of chemotaxis
(see [62, 85, 88, 89] and the review [149], as well as references therein). For instance, one
of the strategies consists in a Godunov scheme, where the source term is "localized" at
the boundary of the cells. In order to solve the corresponding Riemann problem, one then
uses the stationary solution to compute jump relations at the boundary [85]. Moreover,
WB schemes have also been investigated for parabolic equations [87, 88]. In these works,
the strategy consists in interpolating the function in each cell with L -splines (see [86] for
an overview on the concept of L - splines), which correspond to the stationary solutions of
the problem. The interpolation is then continous inside each cell, but at the nodes of the
grid it may have C1-discontinuities. The time integration then is computed by using the
C1 defect at each node. Of note, most referenced models are one-dimensional models, but
in recent years the leap to higher dimensions has attracted interest [31, 55, 84].

Yet, in the aformentioned studies, most often the schemes were designed to describe a
stationary state, not a traveling wave. We refer to the work of [37] for a WB scheme for
traveling waves in kinetic models, as well as [86] for a WB scheme for a parabolic model. As
mentioned above, the philosophy of WB schemes consists in balancing the fluxes and the
source terms. However, in the case of a traveling wave the fluxes depend on the propagation
speed. Whilst in some cases the propagation speed can be computed explicitly and thus
be used in the implementation of the scheme, in most cases the propagation speed is not
known a priori. This adds to the difficulty of designing a WB scheme for traveling waves.
For instance in the work [37], the authors have proposed a numerical scheme, which is
well-balanced for a wave with speed σ = 0, and have used it in order to capture traveling
waves with nonzero speed. Hence, the proposed scheme is stricto sensu not WB for the
observed traveling wave.

In the present article, in order to overcome this difficulty, we implement a strategy,
which measures dynamically the spreading speed. We use an estimate of this spreading
speed, which has been proposed in [118] and has recently been refered to as LeVeque-
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Yee formula [131]. This formula is based on the following observation: suppose that
u(t, x) = u(x − σt) is a traveling wave profile, which admits at ±∞ fixed limit values
u(±∞), then u satisfies:

∂tu+ σ∂xu = 0.

Integrating over R and rearranging the terms, we obtain the following identity:

σ = −
∫
R ∂tudx

u(+∞)− u(∞)
(4.1.1)

The LeVeque-Yee formula is then merely a discretized version of Identity (4.1.1):

σ̂nLY =
∆x

∆t

∑
i

(
un−1
i − uni

)
unI − un0

, (4.1.2)

where u is computed on a uniform Cartesian grid (n∆t)n∈N × (i∆x)i=0,...,I . For functions,
which are not traveling waves, the right hand-side of Identity (4.1.1) is still defined and
can be interpretated as an estimate of their spreading speed.

The contribution of this article consists in combining the LeVeque-Yee formula as a
dynamic speed estimate with the methodology of WB schemes for kinetic or parabolic
equations. The schemes, we propose in this article share the following common structure:

1. Estimate at each time step the spreading speed σ̂n via the LeVeque-Yee Formula
(4.1.2).

2. Consider over the time step the problem in the frame of reference moving at speed
σ̂n and use a WB scheme to integrate numerically the solution over the time step.

3. Given the solution integrated in time in the moving frame, shift back the solution
to the stationary frame. To do so in a WB manner, interpolate in each cell the
stationary solution, with the boundary conditions prescribed by the values obtained
at the preceding step. Finally, compute the value of the stationary solution at the
corresponding point in the stationary frame.

In order to illustrate this methodology, we apply it to two different cases: (i) a kinetic
Go or Grow model [54], which has been recently introduced by one of the authors, in
order to describe the emergence of aerotactic waves in eukaryotic cells (see [48]); (ii) the
Fisher/Kolmogorov-Petrovsky-Piskunov equation [72, 115], which has been a prototype
of traveling wave phenomena in (parabolic) reaction-diffusion equations. Next, we briefly
present the two application cases.

4.1.1 Aerotactic waves in Dictyostelium discoideum: a Kinetic Go or
Grow Model

For the first application case, we will consider a model of collective movement in Dic-
tyostelium discoideum (Dd cells in short) at a mesoscopic scale and investigate numerically
the spreading of the cell population.

In [48], one of the authors and collaborators have put into evidence the following
emerging behavior of Dd cells in hypoxic conditions: when a colony of Dd cells is confined
between two narrowly spaced plates, Dd cells form a dense ring moving outwards. After a
brief transitory phase, the ring of cells moves at constant speed and constant density over
the time course of the experiment (see Figure 4.1a). The authors emitted the hypothesis
that the quick consumption of oxygen by Dd cells exposes them to hypoxia, i.e. lack of
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(a) (b)

Figure 4.1: (a): A schematic representation of the experiment carried out in [48]. Cells
are confined between two narrowly spaced plates and quickly consume available oxygen, so
that the colony experiences self-induced hypoxic conditions. This, in turn, triggers outward
migration of the colony under the form of a ring expanding at constant speed over long
periods of time. (b): A cartoon representation of the ’Go or Grow’ hypothesis. Cells switch
between two behaviors, depending on the level of oxygen. When oxygen concentration is
above some threshold Nth, cells divide and follow Brownian trajectories (this is the ’Grow’
behavior). In contrast, when oxygen concentration drops below Nth, cells stop dividing
and follow a biased Brownian motion towards higher levels of oxygen (this is the ’Go’
behavior).

oxygen, and in turn induces aerotaxis, i.e. a bias in the individual trajectories of Dd cells
towards higher oxygen concentrations, leading to a macroscopic outward motion. In order
to gain insight in this surprising collective behavior, the authors have investigated the
’Go or Grow’ modeling hypothesis, whose mainspring can be motivated by the following
modeling approach: (i) Experimentally, it was observed that cells exhibit various individual
behaviors accross the colony. (ii) In the model, two particular behaviors were retained as
an alternative: either cell division (’Grow’ behavior), or migration towards oxygen (’Go’
behavior). (iii) It was postulated that the transition between the two behaviors depends
on a single threshold (see Figure 4.1b). Indeed, it is for instance well known that Dd cells
do not have enough energy to divide, when oxygen is lacking. The term ’Go or Grow’ was
coined to describe this dichotomy, by analogy with a similar mechanism in the modeling of
glioma cells [98], which nevertheless is of another nature, as it describes a density-dependent
rather than an oxygen-dependent switch between diffusion and cell division.

In [54], one of the authors has proposed the extension of the ’Go or Grow’ hypothesis
to a modeling at a mesoscopic scale of the cell density, via a kinetic equation. This has
lead to the following System:{

∂tf + v∂xf = α2 (M(v;N, ∂xN)ρ− f) + 1N>Nthρ

∂tN −D∂xxN = −ρN,
(4.1.3a)
(4.1.3b)

where (t, x, v) ∈ R+ × R× V , V a compact subset of R (either zero- or one-dimensional),
which satisfies 1

|V |
∫
V vdv = 0, α > 1 and ρ(t, x) = 1

|V |
∫
V f(t, x, v)dx.

Equation (4.1.3a) describes the evolution of the mesoscopic cell density f(t, x, v), where
cells undergo division and persistent motion: cells move with velocity v and at a constant
rate α2 cells reorient themselves according to the probability distribution described by
the Maxwellian M(v;N, ∂xN). The ’Go or Grow’ hypothesis then translates into the fact
that: (i) the cell division rate is 1N>Nth and cells divide if and only if N > Nth. (ii) The
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Maxwellian distribution M(v;N, ∂xN) depends in the following manner on the ambient
oxygen levels:

M(v;N, ∂xN) =


MGROW(v) if N > Nth
M+

GO(v) if N ≤ Nth and ∂xN ≥ 0
M−GO(v) if N ≤ Nth and ∂xN < 0

, (4.1.4)

satisfying the properties, with χ ∈ (0,min{maxV,−minV }):

1

|V |

∫
V
vM±GROW(v)dv = 0 and

1

|V |

∫
V
vM±GO(v)dv = ±χ. (4.1.5)

In this article, we will be concerned with the investigation of traveling waves when
∂xN > 0, i.e. waves that travel from left to right. Hence if we drop the diacriticals ±, we
implicitly mean MGROW = M+

GROW. Furthermore we assume that N(t,+∞) = N0 > Nth.
Finally, in order to simplify the notations, we introduce the "scattering operator":

C(f ;N, ∂xN) := α2 (M(v;N, ∂xN)ρ− f) + 1N>Nthρ (4.1.6)

Of note, suppose that if V is of the shape αV0 (independently of V0 being zero- or
one-dimensional) and if 1

|V0|
∫
V0
v2dv = 1, then, as has been pointed out in [54], f(t, x, v)

converges when α→ +∞ in a formal sense to a function ρ(t, x), which satisfies the following
diffusion-advection-reaction Equation:

∂tρ− ∂xxρ+ ∂x (χ1N<Nthρ) = 1N>Nthρ (4.1.7)

Equation (4.1.7) combined with Equation (4.1.3b) on N was the main object of investi-
gation in [54]. Hence this naturally raises the question of a numerical scheme which is
asymptotic-preserving (AP) under the limit α → +∞. Recently, different studies have
proposed procedure for AP schemes in the context of chemotatic kinetic models (see for
instance [62, 89, 149]). However, this will not be the point of view in this article and we
leave the design of AP schemes for System (4.1.3) to future investigations.

4.1.2 Fisher/Kolmogorov-Petrovsky-Piskunov Equation

¨

∂tu− ∂xxu = u(1− u). (4.1.8)

Fisher/Kolmogorov-Petrovsky-Piskunov (F/KPP) Equation (4.1.8), introduced indepen-
dently in [72] and [115], is a prototype of reaction-diffusion equations. It describes a
population u(t, x) of individuals undergoing unbiased motion, modeled through a diffusion
operator, as well as competition among the population (e.g. for ressources) through a
logistic growth term u(1 − u): the higher the density u becomes, the lower the growth
rate per capita 1−u becomes, with a saturation when the population reaches the maximal
density u = 1. It admits two steady stated u = 0 and u = 1: the first one is unstable,
whilst the second is stable.

Interestingly, for velocity σ, Equation (4.1.8) admits nonnegative traveling wave solu-
tions of the form:

uσ(−∞) = 1, uσ(+∞) = 0 and uσ(t, x) = uσ(x− σt) (4.1.9)
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if and only if σ ≥ σ∗ = σF/KPP := 2 [11, 72, 115]. These solutions are in fact invariant
by translation and we will fix a specific solution by the convention that uσ(0) = 1

2 . Hence
the equation describes a linear spatial invasion of the state u = 0 by the state u = 1.
Furthermore for a wide variety of initial data u0, one can show that in a certain sense,
which we will specify, u the solution of Equation (4.1.8) converges to the traveling wave
with minimal velocity σ∗ = σF/KPP . Take for example an initial datum u0, which satisfies:

lim inf
x→−∞

u0(x) ≥ κ > 0 and sup supp u0 < +∞. (4.1.10)

Of note these conditions may be relaxed, but for the sake of concision, we restrict our
attention to this class of initial data. Then, define the position of the level set xc(t) for
c ∈ (0, 1):

xc(t) = sup{x|u(t, x) = c} (4.1.11)

It has been shown in [28, 29], through a probabilistic interpretation of Equation (4.1.8) (see
[96, 140] for a proof based on PDE argument), that there exists a constant x∞ depending
on the initial datum and c, such that:

xc(t) = 2t− 3

2
ln(t) + x∞ + o(1) and lim

t→+∞
u(t, x+ xc(t)) = uσ∗(x). (4.1.12)

The logarithmic shift in the asymptotic expansion of xc(t) is known as the Bramson shift.
The result is in a sense very surprising, because it shows convergence to the traveling wave
with speed σF/KPP but in the frame shifted by a logarithmic correction term. As has been
observed in [96], this logarithmic correction term is due to subtle interactions between the
diffusion and the reaction term, when u ∼ 0. Hence, from a numerical point of view, we
can assume that capturing the Bramson shift is a very delicate task, since it requires an
accurate computation of the profile of u at very low orders of magnitude. As far as we
know, we are not aware of any work on a numerical scheme for Equation (4.1.8), which
captures the Bramson shift.

4.1.3 Outline of the paper

In this article, we combine the LeVeque-Yee formula with the methodology of WB schemes
for kinetic and parabolic equations in order to design numerical schemes that are WB for
traveling waves. In Section 4.2, we consider numerical schemes for the kinetic Go or Grow
model. We start by recalling an existence result for traveling waves in the two-velocity case,
which comes with a wave speed formula. Then, we describe the proposed numerical scheme,
which is valid for any finite set of velocities. We assess specifically this numerical scheme
in the two-velocity case, where we can compare the numerical values for the propagation
speed with the theoretical values. We also show numerical performances of the scheme
on the eight-velocity case. The scheme’s performances are compared with more standard
schemes based on an operator splitting approach of the source term and the free-transport
term. In Section 4.3, we propose a WB numerical scheme for F/KPP Equation (4.1.8).
The scheme is compared to an operator splitting approach. Furthermore, we show that
our scheme captures accurately the propagation speed and we compare the asymptotic
spreading with the theoretical result (4.1.12) and in particular to the logarithmic Bramson
correction to the asymptotic expansion.
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4.2 A WB scheme for Traveling Waves in a Kinetic Go or
Grow Model

In this Section, we briefly mention the results obtained in [54] on System (4.1.3). Then,
we describe a WB numerical scheme for traveling waves in System (4.1.3) and we assess
the performances of this scheme in comparison with other numerical schemes for the same
system.

4.2.1 Traveling Waves for the Kinetic Go or Grow Model

Consider System (4.1.3) with velocity space V = {−α, α}. We will refer to it as the two-
velocity case and set f±(t, x) = f(t, x,±α). Furthermore, we consider that α > 1, which
following the terminology in [26] is refered to as the parabolic regime. In order to simplify
the line of reasoning, we assume that ∂xN > 0, which leads to a collective movement of the
population from left to right. In [54], all nonnegative and bounded traveling wave solutions
to System (4.1.3) in the parabolic regime have been exhibited.

Let us first introduce some notations. Set σF/KPP := 2α2

α2+1
and for σ ∈ [σF/KPP , α):

µ±(σ) := −σ(α2 − 1)±
√
σ2(α2 + 1)2 − 4α4

2(α2 − σ2)
. (4.2.1)

We have the following inequality for σ > σF/KPP :

µ+(σ) < µ+

(
σF/KPP

)
= − α2

α2 − 1
= µ−

(
σF/KPP

)
< µ−(σ). (4.2.2)

In addition the function σ → µ+(σ) (resp. σ → µ−(σ)) is decreasing (resp.increasing).

Theorem 4.2.1 ([54]). In the parabolic regime α > 1, there exists a minimal speed σ∗ ∈
(1, α), such that for any σ ∈ [σ∗, α), there exists a corresponding bounded and nonnegative
traveling wave profile (f+,σ, f−,σ, Nσ). In addition, for σ ∈ [σ∗, α) fixed, the traveling
wave profile (f+,σ(z), f−,σ(z), Nσ(z)) is unique, under the condition that Nσ(0) = Nth.
For σ ∈ [0, σ∗), there does not exist a nonegative traveling wave profile. The expression of
σ∗ is given by:

σ∗ =


(
χ+ 1

χ

)
α2

α2+1
if χ > 1

σF/KPP = 2α2

α2+1
if χ ≤ 1

. (4.2.3)

Furthermore, the functions f±,σ have the following behavior for z > 0:

– for σ ∈ (σ∗, α), z > 0, f±,σ(z) = A±eµ−(σ)z +B±eµ+(σ)z;

– for χ > 1, σ = σ∗ =

(
χ+ 1

χ

)
α2

α2+1
, z > 0, f±,σ

∗
(z) = B±eµ+(σ∗)z and µ+(σ∗) = −χ(α2+1)

α2−χ2 ;

– for χ < 1, z > 0, σ = σF/KPP, f
±,σF/KPP (z) = (A±z +B±)e

− α2

α2−1
z;

– for χ = 1, z > 0, σ = σF/KPP, f
±,σF/KPP (z) = B±e

− α2

α2−1
z.

Of note, if we consider the proof of Theorem 4.2.1 in [54], we can in fact observe that
bounded traveling waves exist for all σ ∈ [0, α), if one relaxes the nonnegativity condition.
This observation will be useful to keep in mind, when we describe the numerical scheme.
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Nevertheless, Theorem 4.2.1 deals merely with traveling wave solutions and not with
the behavior of System (4.1.3) during the transitory phase. This is still an open problem,
but as will be shown below, we expect the solution to System (4.1.3) to behave closely
to the traveling wave of minimal wave speed. Yet, numerical investigations show that the
solution behaves differently in cases χ > 1 or χ ≤ 1. In the case χ > 1, we observe that the
numerical spreading speed stabilizes relatively fast, whereas in the case χ ≤ 1, we observe
a behavior reminiscent of the Bramson shift. Therefore, in this Section we will exclusively
consider the case χ > 1 and postpone a detailed investigation of the χ ≤ 1 case.

Moreover, for a general velocity space V , a result analog to Theorem 4.2.1 is still under
investigation.

4.2.2 A WB Approach for the Kinetic Go or Grow Model

We present a WB scheme for approximating numerically the solution of System (4.1.3).
We consider a uniform Cartesian grid with mesh sizes ∆x,∆t > 0. We denote tn := n∆t,
for n ∈ N, xi = i∆x, for i ∈ Z and Ci :=

(
xi− 1

2
, xi+ 1

2

)
. In the numerical scheme, we

will consider changes of reference of the form (t, z) = (t, x − σt). Hence, we introduce
a parallel notation, which will be convenient for readability zi = i∆z, with ∆z = ∆x,
C̄i :=

(
zi− 1

2
, zi+ 1

2

)
as well as a staggered cell C̄i+ 1

2
:= (zi, zi+1). Furthermore, we suppose

that:
V := αV0 = α{v−J , v−J+1, . . . , v−1, v1, . . . , vJ−1, vJ},

with vj = j
J and v−j = vj , for j ∈ {1, . . . , J}. We also introduce the notation J =

{−J, . . . ,−1, 1, . . . , J}. The assumption on V may be relaxed to any (not necessarily
symmetric) finite set (as long as the uniform distribution is of mean zero on it), but for
the sake of simplicity, we will restrict the study to this specific case. Finally, we we will
consider fni,j ≈ f(tn, xi, αvj).

The procedure of the numerical scheme consists first in an operator-splitting approach
between Equation (4.1.3a) and Equation (4.1.3b). The steps of the scheme, which we will
expand on below, can be summarized as follows:

1. We use LeVeque-Yee’s formula on the profile N in order to obtain an estimate σ̂n of
the spreading speed .

2. Given σ̂n, on the time interval (tn, tn+1) we consider f in the moving frame (t, z) =
(t, x− σ̂n(t− tn)) and denote it by f̄ , which leads to Equation:

∂tf̄ + (v − σ̂n)∂z f̄ = C(f̄ ;Nn, ∂xN
n) (4.2.4)

We approximate f̄ with a WB scheme, which is in essence an adapted version of
the WB scheme presented in [37]. Of note, this scheme is WB with respect to the
velocity σ̂n, i.e. it is exact on the stationary solution of Equation (4.2.4).

3. Given f̄n+1
i,j ≈ f̄(tn+1, zi, vj), we procede to a shift back to the stationary frame. We

observe that f(tn+1, xi, vj) = f̄(tn+1, zi + σ̂n∆t, vj) and in order to approximate this
value, we consider the stationary solution of Equation (4.2.4) in the cell C̄i+ 1

2
, which

leads to: (v − σ̂n)∂z f̂ = C(f̂ ;Nn, ∂xN
n)

f̂(zi, v) = f̄n+1
i,j , for vj > σ̂n and f̂(zi+1, vj) = f̄n+1

i+1,j , for vj < σ̂n

(4.2.5)
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The solution f̂ to Equation (4.2.5) is well-defined. Then, we set fn+1
i,j := f̂(tn+1, zi +

σ̂n∆t, vj). Note that this procedure also constitutes a WB approach: consider a
traveling wave for Equation (4.1.3a) with velocity σ and suppose that σ̂n = σ, then
the traveling wave in the moving frame satisfies by definition Equation (4.2.5). Hence
the extrapolated value for z = zi + σ̂n∆t corresponds exactly to the value of the
traveling wave at the point xi in the stationary frame.

4. Finally, we use a numerical scheme on N over the time inerval (tn, tn+1), by using in
particular the values ρn+1

i obtained above.

LeVeque-Yee Formula for the Kinetic Go or Grow Model

The procedure described above relies heavily on an estimate of the propagation speed σ̂n.
To estimate this speed, we use the LeVeque-Yee Formula (4.1.2), which, we recall, for a
quantity u is:

σ̂nLY =
∆x

∆t

∑
i

(
un−1
i − uni

)
unI − un0

,

However, in the case of System (4.1.3), there exists two quantities f and N . This raises
the question of which quantity should be used to estimate the speed. As has been observed
in [131], in order for Formula (4.1.2) to be relevant, one should expect that at ±∞ the
quantity u admits asymptotic states. This is the case for N , where we expect, after possibly
a transitory phase that N(t,−∞) = 0 and N(t,+∞) = N0. For f , there is no a priori
asymptotic state at x = −∞ and its values there may heavily depend on initial conditions.
Hence we apply the LeVeque-Yee formula to N and obtain the following estimate for the
propagation speed:

σ̂nLY =
∆x

∆t

∑
i

(
Nn−1
i −Nn

i

)
Nn
I −Nn

0

. (4.2.6)

Furthermore, as will become clear below, in order for the scheme to be well-defined, one
needs to ensure that |σ̂n| < max{|V |}. Moreover, it will be useful for the sake of a simpler
implementation to add the restriction that σ̂n ≥ 0. Hence, we set:

σ̂n =

{
σ̂nLY if σ̂nLY ∈ [0,max{V })
σ̄ else , (4.2.7)

where σ̄ ∈ [0,max{V }) is any generic value. In practice this restriction on the speed
esimtator σ̂n will not change much, since we will be interested here in capturing traveling
waves, whose speed will be in the interval (0,max{V }).

A WB Scheme in the Moving Frame

Next, we consider the evolution of f on the interval (tn, tn+1) in the moving frame (t, z) =
(t, x− σ̂n(t− tn)), i.e. f̄(t, z, v) = f(t, z + σ̂n(t− tn), v), where f̄ solves Equation (4.2.4).
Following the work in [37] (see also [85]), we procede to a localization of the scattering
operator C(f̄) and concentrate the scattering events at the fixed locations zi+ 1

2
. This leads

to the following approximation:
∂tf̄ + (vj − σ̂n)∂z f̄ = ∆z

∑
j∈Z
Ci+ 1

2
(f)δ

(
z − zi+ 1

2

)
f̄(tn, z, vj) = fni,j for z ∈ Ci,

(4.2.8)
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Figure 4.2: Graphic representation of the solution to the Riemann Problem (4.2.9) for
t > tn and z ∈ R, in the case 2J = 2, with V = {−α,+α}, σ > 0. We denote f+

i = fi,1
and f−i = fi,−1.

where Ci+ 1
2
(f̄) := C(f ;Nn

i+ 1
2

, ∂xN
n
i+ 1

2

).

A Godunov scheme.

Equation (4.2.8) lends itself to a Godunov scheme: the initial datum at time t = tn is
piecewise constant and the scattering events at the boundary of the cells, i.e. z = zi+ 1

2
,

introduce jump relations. For the sake of clarity, we consider the Riemann problem with a
single scattering event at z = zi+ 1

2
and the general approach will be specified below. For

t > tn, z ∈ R: ∂tf̄ + (vj − σ̂n)∂z f̄ = ∆zCi+ 1
2
(f̄)δ

(
z − zi+ 1

2

)
f̄(tn, z, vj) = fni,j if z < zi+ 1

2
and f̄(tn, z, vj) = fni+1,j if z > zi+ 1

2
.

(4.2.9)

We then introduce f̃i+ 1
2
,j , whose values we will specify below and define the function f̄ for

t > tn, z ∈ R (see also Figure 4.2):

f̄(t, z, vj) =



fni,j if vj < σ̂n and z ≤ zi+ 1
2

+ (vj − σ̂n)(t− tn)

f̃i+ 1
2
,j if vj < σ̂n and zi+ 1

2
+ (vj − σ̂n)(t− tn) < z < zi+ 1

2

fni+1,j if vj < σ̂n and zi+ 1
2
≤ z

fni,j if vj > σ̂n and z ≤ zi+ 1
2

f̃i+ 1
2
,j if vj > σ̂n and zi+ 1

2
< z < zi+ 1

2
+ (vj − σ̂n)(t− tn)

fni+1,j if vj > σ̂n and zi+ 1
2

+ (vj − σ̂n)(t− tn) ≤ z

(4.2.10)

One easily checks that outside of a neighborhood of z = zi+ 1
2
the function f̄ satisfies

Equation (4.2.9). Therefore it remains to define the values f̃i+ 1
2
,j in such a way that

in a neighborhood of z = zi+ 1
2
, the function f̄ is also a solution in a proper sense of

Equation (4.2.9). To do so, we state the procedure described in [37] and for the theoretical
justifications of this procedure, we refer the reader to [85]. Consider in cell C̄i+ 1

2
the
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following stationary problem with prescribed boundary conditions: (vj − σ̂n)∂z f̃ = Ci+ 1
2

(
f̃
)
, for z ∈ C̄i+ 1

2

f̃(zi, vj) = f̄ni,j if vj > σ̂n and f̃(zi+1, vj) = f̄ni+1,j if vj < σ̂n.

(4.2.11)

(4.2.12)

This Equation admits a solution f̃(z, vj), which we use to define:

f̃i+ 1
2
,j =

{
f̃(zi+1, vj) if vj > σ̂n

f̃(zi, vj) if vj < σ̂n
(4.2.13)

In this manner, we properly solve the Riemann Problem (4.2.9). From the Riemann Prob-
lem, via the juxtaposition of independent Riemann Problems at each interface z = zi+ 1

2
,

we can then move on to the general solution of Equation (4.2.8) on the interval (tn, tn+1)
under the CFL condition:

max{|V − σ̂n|}∆t ≤ ∆z (4.2.14)

In practice, since σ̂n ∈ max{|V |} (see Subsection 4.2.2), it suffices to suppose that:

2 max{|V |}∆t ≤ ∆z (4.2.15)

Finally under this CFL condition, we define the Godunov scheme in the following manner:

f̄n+1
i,j =

 f̄ni,j − ∆t
∆z (v − σ̂n)

(
f̄ni,j − f̃ni− 1

2
,j

)
if v > σ̂n

f̄ni,j − ∆t
∆z (v − σ̂n)

(
f̃n
i+ 1

2
,j
− f̄ni,j

)
if v < σ̂n

(4.2.16)

Of note, if f̄n is exactly the traveling wave solution, then the choice of f̃n (which we de-
scribe just below) will be such that f̃n

i+ 1
2
,j

= f̄ni+1,j if vj > σ̂n and f̃n
i+ 1

2
,j

= f̄ni,j if vj < σ̂n.
This observation with Scheme (4.2.16) shows that the traveling wave solution is going to
be a stationary solution of the numerical scheme (in the moving frame).

Definition of the Scattering Matrix Si+ 1
2
.

From the preceding, the remaining question is finding the solution of Equation (4.2.11).
Equation (4.2.11) is a linear equation and hence the mapping from the boundary values
to the values f̃i+ 1

2
,j will be linear. In particular, we partition V = V+ t V−, such that for

every v ∈ V+, v > σ̂n and for every v ∈ V−, v < σ̂n. Then we wish to find the so-called
scattering matrix Si+ 1

2
∈M2J(R), such that:

(
f̃i+ 1

2
,j

)
j

= Si+ 1
2

(
fi+1(V−)
fi(V+)

)
(4.2.17)

In the work [37], the authors have proposed two different approaches to derive the scattering
matrix Si+ 1

2
: one method is based on Case’s elementary solutions (see for instance [1, 15,

44]) and the other method is based on a finite-difference approach. Here, we will only focus
on the first method.

We look for a solution of Equation (4.2.11) under the form:

f̃(z, vj) =
2K∑
k=1

akg
k(z, vj), (4.2.18)
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where gk(z, vj) are the so-called Case’s elementary solutions, and as we will see there
exists exactly 2K = 2J such solutions (the parameter K has been introduced for the sake
of readibility). Case’s elementary solutions are in separated variables under the form:

gk(z, vj) = eµkzF k(vj) (4.2.19)

In order to find the exact expression of Case’s elementary solutions (4.2.19), we solve the
following spectral problem (µ, Fµ), with 1

2J

∑
j∈J F

µ(vj) = 1:

(vj − σ)µFµ(vj) = C(Fµ)(vj) (4.2.20)

Problem (4.2.20) depends on the shape of C. We start by exhibiting the solutions of
Problem (4.2.20) in the Grow case. Using the fact that ρFµ = 1

2J

∑
j∈J F

µ(vj) = 1, we
can rewrite (4.2.20) to obtain the following expression of Fµ (as a function of µ):

Fµ(vj) =
1 + α2MGROW(vj)

α2 + µ(vj − σ)
(4.2.21)

In order to determine µ, we simply use the property that ρFµ = 1, which leads to the
following equation:

1

2J

∑
j∈J

1 + α2MGROW(vj)

α2 + µ(vj − σ)
= 1 (4.2.22)

Then any µ satisfying Equation (4.2.22) leads via Equation (4.2.21) to a solution (µ, Fµ)
of Problem (4.2.20).

Similarily in the Go case, we obtain the following expression for the solutions of Problem
(4.2.20):

1

2J

∑
j∈J

α2MGO(vj)

α2 + µ(vj − σ)
= 1

Fµ(vj) =
α2MGO(vj)

α2 + µ(vj − σ)

(4.2.23)

(4.2.24)

Solving Problem (4.2.20) in the Grow case.

We are looking for the roots µ in Equation (4.2.22). We introduce the function:

Hσ : µ 7→ 1

2J

∑
j∈J

1 + α2MGROW(vj)

α2 + µ(vj − σ)
− 1 (4.2.25)

Hσ has 2K poles which can be ordered in the following manner: set pk := α2

σ−vk and let κ
be the greatest integer such that vκ < σ, the poles (pk) satisfy the following order:

pκ+1 < pκ+2 < . . . < p2K < 0 < p1 < p2 < . . . < pκ

It can be shown that Hσ has the following behavior (see Figure 4.3):

• On (−∞, pκ+1), Hσ is strictly decreasing from −1 to −∞, and does not admit any
root.
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Figure 4.3: Graphic representation of µ 7→ Hσ(µ) in the Grow case, when K = 6, V ={
−4,−8

3 ,−4
3 ,

4
3 ,

8
3 , 4
}
, α = 4, MGROW ≡ 1 and σ = 2. In this case, on the interval (p6, p1),

Hσ admits two distinct real roots. For other choices of σ, Hσ may admit a double real
root on the interval (p6, p1), or a pair of complex-conjugated roots.

• For k = κ + 1 . . . 2K − 1, on (pk, pk+1), Hσ decreases from +∞ to −∞ and admits
a unique root, which we denote µk. The root µk may be found numerically via a
simple dichotomic search.

• On (p2K , p1), Hσ decreases and then increases and three different cases may exist on
this interval:

– Hσ admits two distinct real roots, which we denote µ2K < µ1,

– Hσ admits a double real root and we denote it by convention µ2K = µ1,

– Hσ doesn’t admit any real root, but admits two complex-conjugated roots,
which we denote µ2K = µ̄1.

• For k = 1 . . . κ−1, on (pk, pk+1), Hσ increases from −∞ to +∞ and admits a unique
root, which we denote µk+1. This root may again be found numerically via a simple
dichotomic search.

• On (pκ,+∞) Hσ is strictly increasing from −∞ to −1, and does not admit any root.

Hence Hσ admits exactly 2K roots (counted with multiplicity), which a posteriori justi-
fies the claimed equality 2K = 2J . All roots except µ2K , µ1 can be found very simply
numerically. In order to compute the roots µ2K , µ1, we procede as follows:

For P (µ) := Π2K−1
k=2 (µ− µk) and Q(µ) := Π2K

k=1(µ− pk), we write:

Hσ(µ) =
(aµ2 + bµ+ c)P (µ)

Q(µ)

By taking either limit µ→ ±∞, we find that a = −1. Furthemore, we have that:

c =
Q(0)Hσ(0)

P (0)
=

Π2K
k=1pk

Π2K−1
k=2 µk

Hσ(0)
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And by taking the derivative and evaluating at µ = 0 (which is not a root for H, as can
be easily checked:

b =
HσQ

P

(
Hσ′

Hσ
+
Q′

Q
− P ′

P

)
|µ=0

= γ

(
H ′(0)

H(0)
−

2K∑
k=1

1

pk
+

2K−1∑
k=2

1

µk

)

Finally, we can solve the polynomial aµ2 + bµ+ c, whose roots are then µ1, µ2K .
Alternatively, in the case, where the roots µ2K , µ1 are real, one can find the unique

point q, where Hσ′ cancels on the interval (p2K , p1), and then find via a dichotomic search
the root on the interval (p2K , q) and the root on the interval (q, p1). Numerically, this
approach is more precise, especially for K large. However, since the roots µ2, . . . , µ2K−1

are found via a dichotomic search, they can be found with arbitrary precision at low com-
putational cost. Hence the approach described above can also be arbitraily precise at low
computational cost.

Solving Problem (4.2.20) in the Go case.

The Go case is treated similarily. We introduce:

Hσ : µ 7→ 1

2J

∑
j∈J

α2MGO(vj)

α2 + µ(vj − σ)
− 1 (4.2.26)

The behavior of Hσ is the same as in the Grow case, but on the interval (p2K , p1), Hσ

will always admit two real roots. In fact, one checks that µ = 0 is a root for H and
that H ′(0) = σ − χ. Hence either σ = χ and 0 is a double root, or σ 6= χ and another
root exists on the interval (p2K , p1). Suppose that σ > χ (for the case σ < χ a similar
reasoning applies), then µ1 = 0 and the remaining root µ2K is negative. Finally by setting
R(µ) = µ− µ2K ,we yield the following relationship:

RP

Q
=
Hσ

µ

By taking the limit µ→ 0 we find that:

µ2K =
Π2K
k=1pk

Π2K−1
k=2 µk

Hσ′(0).

Alternatively, to find the root µ2K , one can find the unique point q, where Hσ′ cancels
on the interval (p2K , 0), and then find via a dichotomic search the root µ2K on the interval
(p2K , q). The same remarks than for the Grow case apply concerning the precision of this
method.

The shape of g2K , g1, when the roots µ2K , µ1 are complex-conjugated or are equal.

As noted above in the Grow case, the roots µ2K , µ1 may be complex-conjugated. In that
situation, F 2K , F 1 are also complex-conjugated. In order to avoid dealing with complex
values, we may then define the functions g2K , g1 as follows:

g2K(z, vj) := eµ2KzF 2K(vj) + eµ1zF 1(vj),

g1(z, vj) := i
(
eµ2KzF 2K(vj)− eµ1zF 1(vj)

)
.
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Because F 2K = F 1 and µ2K = µ1, g2K , g1 are real functions.
When µ2K = µ1, then one defines:

g2K(z, vj) := eµ2KzF 2K(vj),

g1(z, vj) := zeµ2KzF 2K(vj).

Computing the Scattering Matrix Si+ 1
2
.

Given the solutions gk, we define the matrices M = (mjk)jk and M̃ = (m̃jk)jk such
that:

mjk =

{
gk(zi, vj) if vj < σ
gk(zi+1, vj) if vj > σ

and m̃jk =

{
gk(zi+1, vj) if vj < σ
gk(zi, vj) if vj > σ

Then one obtains the following relations:(
fi+1(V−)
fi(V+)

)
= MA and

(
f̃i+ 1

2
,j

)
j

= M̃A,

with A = (ak)k. Finally by setting Si+ 1
2

:= M̃M−1, we therefore obtain:

(
f̃i+ 1

2
,j

)
j

= Si+ 1
2

(
fi+1(V−)
fi(V+)

)
(4.2.27)

Of note, Equation (4.2.11) is translation invariant with respect to z, i.e. the solution of
Equation (4.2.11) is the same if z ← z + h. This actually shows that the definition of the
scattering matrix Si+ 1

2
for each time step only depends on the fact whether at zi+ 1

2
the

scattering operator is in the Go case or the Grow case. Hence, at each time step, we just
need to compute two scattering matrices (one for the Grow case and one for the Go case).

A WB Shift to the Stationary Frame

In the preceding step, we have computed f̄n+1
i,j , which is an approximation of f in the shifted

frame (t, z) = (t, x−σ̂n(t−tn)), i.e. f̄n+1
i,j ≈ f̄(tn+1, zi, vj) ≈ f(tn+1, xi−σ̂n(tn+1−tn), vj).

We now wish to find a good approximation of f(tn+1, xi, vj). For this approximation, we
consider the stationary state in the moving frame (t, z) = (t, x− σ̂n(t−tn)), with prescibed
boundary conditions given by f̄n+1

i,j : (vj − σ̂n)∂z f̂ = Ci+ 1
2

(
f̂
)
, for z ∈ ¯Ci+ 1

2

f̂(zi, vj) = f̄ni,j if vj > σ̂n and f̂(zi+1, vj) = f̄ni+1,j if vj > σ̂n

(4.2.28)

We then define:
fn+1
i,j = f̂(zi + σ̂n∆t, vj) (4.2.29)

Through this procedure, if σ̂n = σ and f̄n+1
i,j is a discretization of the traveling wave

associated with speed σ, then fn+1
i,j will be exactly equal to the discretization shifted in

space by σ∆t of the same travelig wave. Hence, this procedure is well-balanced with respect
to the traveling wave moving at speed σ.

In practice, to compute the values f̂(zi, vj), we use Case’s elementary solutions, similar-
ily to what we have done for the computation of the scattering matrix Si+ 1

2
. Given Case’s
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elementary solutions and under the condition σ̂n ≥ 0, we set the matrices N = (njk)jk and
Ñ = (ñjk)jk such that:

njk =

{
gk(zi, vj) if vj < σ
gk(zi+1, vj) if vj > σ

and m̃jk = gk(zi + σ̂n∆t, vj)

Then we define Ti+ 1
2

:= ÑN−1, which finally leads to:

(
fn+1
i,j

)
j

= Ti+ 1
2

((
f̄ni+1,j

)
j∈J−(

f̄ni,j
)
j∈J+

)
(4.2.30)

Here again because of the invariance by translation, the values of T 1
2
depend only on

whether at the point of the grid we are in the Go or Grow case.

Crank-Nicolson Scheme for N

The computation of N on the grid points (tn, xi) is done via a standard Crank-Nicolson
scheme:

Nn+1
i −Nn

i

∆t
=
Nn+1
i−1 − 2Nn+1

i +Nn+1
i+1

2∆x2
+
Nn
i−1 − 2Nn

i +Nn
i+1

2∆x2
− Nn+1

i +Nn
i

2
ρn+1
i

(4.2.31)
This approach is not WB. One could use the methodology proposed in [87] combined with
the LeVeque-Yee formula, in order to propose a WB scheme for N . However, this would be
computationally more costly, as for each cell Ci, one needs to solve a different stationary
problem. Furthermore, the coupling between N and f in System (4.1.3) is very weak and
depends merely on x̄(t), the position of the threshold, i.e. N(t, x̄(t)) = Nth. Hence, it is
reasonnable to assume that using the simpler Crank-Nicolson scheme for N will not result
in any substantial deterioriation of accuracy.

Computation of the Scattering Operator Cn
i+ 1

2

In order to compute the scattering operator Cn
i+ 1

2

, we use the following approximations for
Nn
i+ 1

2

and ∂xNn
i+ 1

2

:

Nn
i+ 1

2

=
Nn
i +Nn

i+1

2

∂xN
n
i+ 1

2

=
Nn
i+1 −Nn

i

∆x

(4.2.32)

(4.2.33)

4.2.3 Alternative Operator-Splitting (OS) Schemes

In order to compare the preceding WB scheme to other numerical schemes, we propose
alternative schemes based on an OS of the free-transport operator and the scattering
operator. We denote gn+1

i,j the value obtained via the discretization of the free-transport
operator with the initial values fni,j and then fn+1

i,j is set as the value obtained via the
discretization of the scattering operator. On the one hand, we use an upwind discretization
of the free-transport operator, and on the other hand we use a weighted essentially non-
oscillatory (WENO) method, such as proposed in [106, 125]. For the discretization of
the scattering operator we use also two methods: first, an explicit Euler time integration;
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second an exact integration in time, which is possible here, because of the linear nature
of the scattering operator. The latter method is obviously better suited to the problem,
but the Euler approach will be interesting, when comparing the numerical schemes and
drawing conclusions. This leads to four numerical schemes, which we will refer to: UW-
Euler, UW-Exact, WENO-Euler and WENO-Exact.

Upwind Discretization of the Free-Transport Operator

The free-transport operator is discretized on the time interval (tn, tn+1) via the standard
upwind method:

gn+1
i,j = fni +

vj∆t

∆x

(
fni − fni−1

)
for j = 1, . . . , J

gn+1
i,j = fni +

vj∆t

∆x

(
fni+1 − fni

)
for j = −J, . . . ,−1

(4.2.34)

(4.2.35)

WENO Discretization of the Free-Transport Operator

We use the 5th-order WENO scheme introduced in [106]. This scheme discretizes the
free-transport operator in a highly accurate manner. We briefly describe the scheme and
refer the reader to [165], whose notations we follow here, for further information about this
scheme (see also [164]). The space derivative is discretized in the following manner:

∂xfi,j =
1

∆x

(
f̂i+ 1

2
,j − f̂i− 1

2
,j

)
. (4.2.36)

The values of f̂i+ 1
2
with j = 1, . . . , J are a weighted average of three values using three

different stencils:
f̂i+ 1

2
,j = w1f̂

(1)

i+ 1
2
,j

+ w2f̂
(2)

i+ 1
2
,j

+ w3f̂
(3)

i+ 1
2
,j
, (4.2.37)

with:
f̂

(1)

i+ 1
2
,j

=
1

3
fi−2,j −

7

6
fi−1,j +

11

6
fi,j ,

f̂
(2)

i+ 1
2
,j

= −1

6
fi−1,j +

5

6
fi,j +

1

3
fi+1,j ,

f̂
(3)

i+ 1
2
,j

=
1

3
fi,j +

5

6
fi+1,j −

1

6
fi+2,j .

wi in (4.2.37) are nonlinear weights, which are given by the following relations:

wi =
w̃i

w̃1 + w̃2 + w̃3
and w̃i =

γi
(ε+ βi)2

γ1 =
1

10
, γ2 =

3

5
, γ3 =

3

10
.

Finally the values βi are the so-called smoothness indicators:

β1 = v2
j

(
13

12
(fi−2,j − 2fi−1,j + fi,j)

2 +
1

4
(fi−2,j − 4fi−1,j + 3fi,j)

2

)
,

β2 = v2
j

(
13

12
(fi−1,j − 2fi,j + fi+1,j)

2 +
1

4
(fi−1,j − fi+1,j)

2

)
,

β3 = v2
j

(
13

12
(fi,j − 2fi+1,j + fi+2,j)

2 +
1

4
(3fi,j − 4fi+1,j + fi+2,j)

2

)
.
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For j = −J, . . . ,−1, one uses exactly the same formulae to compute f̂i+ 1
2
,j by replacing

the list (fi−2,j , fi−1,j , fi,j , fi+1,j , fi+2,j) with the list (fi+3,j , fi+2,j , fi+1,j , fi,j , fi−1,j).
It turns out that the time integration plays a crucial role in this procedure and for

instance an explicit Euler method is unstable with the discretization given by (4.2.36)
[187]. As explained in [165], one should use a strong stability preserving (SSP) Runge-
Kutta time integrator [90], which goes as follows:

f (1) = fn + ∆tL(fn),

f (2) =
3

4
fn +

1

4
f (1) +

1

4
∆tL(f (1)),

fn+1 =
1

3
fn +

2

3
f (2) +

2

3
∆tL(f (2)),

where L(f) is given by (4.2.36).

Explicit Euler Integration of the Scattering Operator

The explicit Euler integration in time of the scattering operator simply goes as follows:

fn+1 = gn+1 + ∆tC(gn+1). (4.2.38)

Exact Computation of the Scattering Operator

As a more precise alternative to the Euler integration in time, we observe that the evolution
operator e∆tC can be computed explicitly. In fact set:

EGROW = e∆tCGROW = exp

(
∆t

(
α2

(
1

2J
diag((MGROW(vj))j∈J )J2J − I2J

)
+

1

2J
J2J

))
(4.2.39)

EGO = e∆tCGO = exp

(
∆tα2

(
1

2J
diag((MGO(vj))j∈J )J2J − I2J

))
, (4.2.40)

where I2J is the 2J × 2J identity matrix and J2J the 2J × 2J matrix composed of ones.
Thus we obtain:(

fn+1
i,j

)
j

= EGROW
(
gn+1
i,j

)
j
or
(
fn+1
i,j

)
j

= EGO
(
gn+1
i,j

)
j
, (4.2.41)

depending on which case applies.

4.2.4 Numerical Assessements

The code for the numerical schemes in this Section can be found in [53].

Condition number for Si+ 1
2
and Ti+ 1

2

When solving Problem (4.2.11) (resp. Problem (4.2.28)) via the matrix Si+ 1
2
(resp. Ti+ 1

2
),

we face a difficulty when σ̂n = vj for some j ∈ J , since both problems are not well-posed.
In practice, because σ̂n is a numerical estimate, the likelihood of σ̂n = vj is extremely
low. However, this raises the question what happens when σ̂n ≈ vj . Hence, we consider
the condition number of Si+ 1

2
and Ti+ 1

2
as a function of σ = ŝn (see Figure 4.4). We

observe that when σ is close to vj , the matrices become ill-conditioned, whereas they are
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Figure 4.4: Condition numbers of SGROW (σ), SGO(σ), TGROW (σ) and TGO(σ) for V =
{−4,−3,−2,−1, 1, 2, 3, 4} and χ = 2.

well-conditioned as soon as |σ− vj | is not too small for all j ∈ J . Hence, one should verify
this condition when using the WB scheme, at least a posterio (since in most cases it is
difficult to estimate a priori the asymptotic behavior of σ̂n. In the simulations presented
in this article, this condition is verified.

Comparison with OS Schemes

In this Subsection, we present preliminary numerical results, which compare the WB
scheme with the other OS Schemes. These results show that the WENO-Exact scheme
captures best the wave speed and the WB scheme does not perform substantially better
than the other OS schemes. Similar observations are valid for the exponential decay rate.
In our opinion, these results ask for a deeper analysis: in fact from Chapter 2, we know
that the wave speed is set by the interface at which N = Nth. Thus, we believe that by
better dealing with the dynamics at the interface, we can improve the performances of the
WB scheme. This is currently under investigation. Yet, interestingly the WB scheme is the
only scheme which captures in a consistent way simultaneously the numerical speed and
the numerical exponential decay rate, i.e. µnum ≈ µth(σnum) (see below for more details).

We analyze the results by considering the spreading speed and the exponential decay
parameter at the leading edge of the front. The spreading speed has in all cases been
measured with LeVeque-Yee Formula (4.2.6). The exponential decay parameter has been
measured by computing the mean of the logarithmic derivative of ρ on the interval [x̄(t) +
2, x̄(t) + 4], where we recall that x̄(t) is the position of the threshold, i.e. N(t, x̄(t)) =
Nth. This interval has been chosen, because there the logarithmic derivative is essentially
constant: in particular we observe that the more points are used in the discretization of
the grid, the preciser and more reliable this procedure becomes. For the initial data, we
have taken profiles (f,N) close to the expected wave profiles by running the simulation
once and looping the profiles. This has been done in particular, because we are interested
in the asymptotic behavior of the traveling wave.

First, we have tested the aforementioned schemes in the two-velocity case with χ = 2
and V = {−α, α} for α = 4 (see Figure 4.5) and α = 8 (see Figure 4.10 in Appendix).
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Figure 4.5: Comparison between performances of UW-Euler (cyan), UW-Exact (red),
WENO-Euler (yellow), WENO-Exact (blue) and WB scheme (green) as a function of Nx,
the number of points of the spatial discretization. Upper left: Plot of the numerical speed
σ. Upper right: Plot of the absolute value of the numerical speed σ and the theoretical
speed σth in log-scale. Lower left: Plot of the numerical exponential decay parameter µ.
Lower right: Plot of the absolute value of the numerical exponential decay parameter µ
and the theoretical exponential decay parameter µth in log-scale. Choice of parameters:
V = {−4, 4},α = 4, χ = 2,L = 100,dx = L

Nx
, T = 15, CFL = 0.5 and ∆t = ∆

2α .

Figure 4.6: Plot in log-scale of the absolute value between µnum the numerical exponential
decay parameter and the µ+(σ) theoretical exponential decay parameter given by Formula
(4.2.1) when σ = σnum the numerical wave speed. Choice of parameters: V = {−4, 4}, χ =
2,L = 100,dx = L

Nx
, T = 15, CFL = 0.5 and ∆t = ∆

2α .

In both cases results are comparable. Concerning the spreading speed σ, the WENO-
Exact scheme performs much better than the other ones. Surpisingly, UW-Euler performs
second best for the spreading speed. Moreover, we can observe that the WB and WENO-
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Euler scheme underestimates the speed, whereas the other schemes overestimate the speed.
Concerning the exponential decay parameter, again the WENO-Exact scheme performs
much better than the other schemes. The WB scheme performs second best. In all cases
except for WENO-Euler, the exponential decay parameter is overestimated. However, the
WB scheme realizes the following interesting feature: the exponential decay parameter
is extremely close to the decay parameter of a wave that would travel at the numerical
speed (see Figure 4.6), i.e. which we compute via Formula (4.2.1) for µ+. The other
schemes do not satisfy this property, as can simply be seen from the fact that σ 7→ µ+(s)
is decreasing, but WENO-Exact, UW-Euler and UW-Exact (resp. WENO-Euler) schemes
overestimate (resp. underestimate) the speed, which leads to µ+ smaller (resp. larger)
than the theoretical value. Yet, the three schemes overestimate (resp. underestimate) the
exponential decay parameter. This property might be interesting if we are interested in
numerical schemes, which capture in a consistent way the speed and the exponential decay
parameter simultaneously.

Finally, we have also tested the three schemes WB, WENO-Exact and UW-Exact in
the eight-velocity case (see Figure 4.11 in Appendix). There, we are lacking an explicit
wave formula, but it seems as if the WENO-Exact scheme converges fastest to a value
for the wave speed and a value for the exponential decay rate. Thus, we use these values
computed with the finest mesh as reference values. Then, similar observations as in the
two-velocity case apply.

4.3 A WB Scheme for F/KPP Equation

4.3.1 A WB Approach for F/KPP Equation

In order to solve numerically F/KPP Equation (4.1.8) in a WB manner, we propose a
numerical scheme, that is in its structure very similar to the numerical scheme proposed
for the kinetic Go or Grow Model (4.1.3). The main differences lie in the fact, that (i)
F/KPP Equation (4.1.8) is parabolic, whereas Equation (4.1.3a) is kinetic. Hence we must
adapt the well-balanced approach in order to account for parabolic equations. In [87], the
author has proposed exactly such an approach for parabolic operators. (ii) Contrary to
what we have done for the kinetic Go or Grow Model (4.1.3) and to what has been proposed
in [87], here we also investigate an implicit Euler method for time integration, besides the
standard explicit Euler method for time integration. In fact, as has been pointed out in [87],
for the explicit Euler method, one requires essentially a parabolic CFL condition in order
to guarantee stability. For the implicit Euler method, through numerical investigation,
we observe that a hyperbolic CFL condition is sufficient. Moreover, resolving the time
integration implicitly comes computationally at not too high of a cost, because of the
special tridiagonal structure of the problem. Of note, one could propose a similar approach
for the kinetic Go or Grow Model (4.1.3), but the structure there is block tridiagonal with
matrix blocks of size 2J × 2J , making the implementation a bit more involved, and for the
kinetic model, we are not limited by a parabolic CFL condition.

We consider a nonuniform Cartesian grid (tn) × (xi), with xi = i∆x, for i ∈ Z for a
given ∆x. Contrary to what has been done before the time points (tn) are set dynamically,
because of the lack of an a priori bound to satisfy a CFL condition. We set ∆tn = tn+1−tn.
As before, we introduce the parallel grid with points zi = i∆z, ∆z = ∆x, C̄i+ 1

2
= (zi, zi+1)

and consider uni ≈ u(tn, xi).
The procedure of the numerical scheme can be summarized as follows:

1. We use LeVeque-Yee Formula (4.1.2) on the profile u in order to obtain an estimate
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σ̂n of the propagation speed.

2. Given σ̂n, on the time interval (tn, tn+1) we consider u in the moving frame (t, z) =
(t, x− σ̂n(t− tn)) and denote it by ū, which leads to Equation:

∂tū− σ̂n∂zū− ∂zzū = ū(1− ū) (4.3.1)

In order to deal with the nonlinear term in the right hand-side of Equation (4.3.1),
we freeze the non-linear contribution to the term on each mesh (tn, tn+1)× C̄i+ 1

2
by

considering that ū(1− ū) ≈ ū
(

1− ūn
i+ 1

2

)
, where ūn

i+ 1
2

=
ūni +ūni+1

2 . As has been noted
in the Introduction (4.1.2), the dynamics of Equation (4.1.8) is predominantly set by
the dynamics at the leading edge of the profile, where u ∼ 0. There, the linearization
of Equation (4.1.8) approximates extremely well the nonlinear Equation. Hence it
is reasonnable to expect that this way of handling numerically the nonlinearity will
not influence much the dynamics of the propagation. Thanks to the freezing of the
nonlinearity, we obtain a linear problem for which we can apply the methodology of
L -spline interpolation, as proposed in [87]. Yet, as mentioned above, we propose
either an explicit time integration, which leads to:{ − σ̂n∂zū− ∂zzū = ū(1− ūn

i+ 1
2

), for z ∈ C̄i+ 1
2

ū(zi) = ūni and ū(zi+1) = ūni+1,

(4.3.2)

or as an alternative an implicit time integration, which leads to: − σ̂
n∂zū− ∂zzū = ū(1− ūn

i+ 1
2

), for z ∈ C̄i+ 1
2

ū(zi) = ūn+1
i and ū(zi+1) = ūn+1

i+1 .

(4.3.3)

3. It remains to shift back to the stationary frame (t, x). Just as in the case of System
(4.1.3), we use the values ūn+1

i , which approximate ū(tn+1, zi) in order to extrapolate
a value for u(tn+1, xi), i.e. ū(tn+1, zi + σ̂n∆tn). To do so we consider the stationary
solution û of Equation (4.3.1) in the cell C̄i+ 1

2
: − σ̂

n∂zû− ∂zzû = û(1− ūn
i+ 1

2

), for z ∈ C̄i+ 1
2

û(zi) = ūn+1
i and û(zi+1) = ūn+1

i+1 ,

(4.3.4)

with ūn
i+ 1

2

=
ūni +ūni+1

2 . Finally, we set:

un+1
i = û(zi + σ̂n∆tn).

LeVeque-Yee Formula for F/KPP Equation

As before, we apply the LeVeque-Yee formula to the profile u in order to obtain an estimate
for the propagation speed:

σ̂n =
∆x

∆tn−1

∑
i

(
un−1
i − uni

)
unI − un0

. (4.3.5)

The leftmost (resp. rightmost) value un0 (resp. unI ) will in practice (possibly after a short
transitory phase) be very close to the steady state 1 (resp. the steady state 0). Contrary
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to the kinetic case, we do not need to set any restriction on the speed estimate σ̂n for the
computations. However, we still need to satisfy a CFL condition:

σ̂n∆tn ≤ ∆x. (4.3.6)

Therefore, we set dynamically the time points of the grid, in order to satisfy this condition
without imposing a restriction on the speed estimate.

A WB Scheme in the Moving Frame

As explained above, we consider the evolution of f in the moving frame (t, z) = (t, x −
σ̂n∆tn), i.e. ū(t, z) = u(t, z + σ̂n(t − tn)), where ū solves Equation (4.3.1). In order
to approximate numerically this solution, we use the method of L -spline interpolation
proposed in [87] (except that we use an implicit in time integration).

The scheme is based either on the explicit integration in time rule:

ūn+1
i = ūn − ∆tn

∆x

(
L̄n
i+ 1

2

− R̄n
i− 1

2

)
, (4.3.7)

or on the implicit integration in time rule:

ūn+1
i = ūn − ∆tn

∆x

(
Ln+1
i+ 1

2

−Rn+1
i− 1

2

)
, (4.3.8)

where Rn+1
i− 1

2

, Ln+1
i+ 1

2

, R̄n
i− 1

2

, L̄n
i+ 1

2

correspond to numerical fluxes at the point z = zi of two

interpolated functions in C̄i− 1
2
and C̄i+ 1

2
. Numerically, we have observed that the explicit

time integration is stable under the parabolic CFL condition that:

∆tn ≤ 1

2
∆x2

The coefficient 1
2 can be slightly higher, but for 0.6, we have observed instability. This

empirical CFL condition is in the same spirit as an explicit CFL condition in [87]. For
the implicit time integration, we have observed that under the hyperbolic CFL condition
(4.3.6), the scheme remains stable.

The values Rn+1
i− 1

2

, Ln+1
i+ 1

2

, R̄n
i− 1

2

, L̄n
i+ 1

2

are obtained by solving the linear stationary prob-

lem (4.3.3), which we recall: − σ̂
n∂zū− ∂zzū = ū(1− ūn

i+ 1
2

), for z ∈ C̄i+ 1
2

ū(zi) = ūn+1
i and ū(zi+1) = ūn+1

i+1 ,

Given the solution û, we then set Rn+1
i+ 1

2

:= û′(z−i+1) and Ln+1
i+ 1

2

:= û′(z+
i ). Similarily for the

explicit case, one can consider û solution of Equation (4.3.2) and set R̄n
i+ 1

2

:= û′(z−i+1) and

L̄n
i+ 1

2

:= û′(z+
i ). One can view Ln+1

i+ 1
2

− Rn+1
i− 1

2

as a measure of the defect of C1-smoothness

at zi. The time integration (4.3.8) will therefore be stationary if û solves Equation (4.3.4)
on the whole space, which in particular implies that it is C1 as a solution to a second-order
elliptic equation. Thus this procedure is well-balanced in the sense that the numerical
scheme admits as stationary state the discretization of the continuous stationary state.

Let us now describe the implicit (linear) relation between (Ln+1
i+ 1

2

, Rn+1
i+ 1

2

) and (ūn+1
i , ūn+1

i+1 ).
The same approach applies mutatis mutandis for the explicit case. We solve Problem
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(4.3.4) with respect to (ūn+1
i , ūn+1

i+1 ). On the cell C̄i+ 1
2
, it is a simple second-order dif-

ferential equation with constant coefficients. We compute the roots of its characteristic
polynomial:

µ2 + σ̂nµ+
(

1− ūn
i+ 1

2

)
= 0 (4.3.9)

The discriminant is ∆n
i+ 1

2

= (σ̂n)2 − 4
(

1− ūn
i+ 1

2

)
and three cases exist:

1. Suppose ∆n
i+ 1

2

> 0, then set µn
i+ 1

2
,± =

−σ̂n±
√

∆n

i+ 1
2

2 . Then for z ∈ C̄i+ 1
2
, we have:

û(z) = a−e
µn
i+ 1

2 ,−
z

+ a+e
µn
i+ 1

2 ,+
z

Therefore by setting the following matrices:

M =

 e
µn
i+ 1

2 ,−
zi

e
µn
i+ 1

2 ,+
zi

e
µn
i+ 1

2 ,−
zi+1

e
µn
i+ 1

2 ,+
zi+1

 and M̃ =

 µn
i+ 1

2
,−e

µn−
i+ 1

2

zi
µn
i+ 1

2
,+
e
µn+

i+ 1
2

zi

µn
i+ 1

2
,−e

µn−
i+ 1

2

zi+1

µn
i+ 1

2
,+
e
µn+

i+ 1
2

zi+1

 ,

(4.3.10)

we obtain the following two systems:(
ūn+1
i

ūn+1
i+1

)
= M

(
a−

a+

)
and

(
Ln+1
i+ 1

2

Rn+1
i+ 1

2

)
= M̃

(
a−

a+

)
.

Hence, finally by setting Si+ 1
2

= M̃M−1, we obtain the following identity:

(
Ln+1
i+ 1

2

Rn+1
i+ 1

2

)
= Si+ 1

2

(
ūn+1
i

ūn+1
i+1

)
(4.3.11)

2. Suppose ∆n
i+ 1

2

= 0, then we set µn
i+ 1

2

:= − σ̂n

2 and the solution is of the shape:

û(z) = (az + b)e
µn
i+ 1

2

z
.

The definition of the matrix Si+ 1
2
then just follows mutatis mutandis as precedingly.

3. In the case ∆n
i+ 1

2

< 0, the solution û is of the shape:

û(z) =

(
a cos

(√
−∆n

i+ 1
2

z

)
+ b sin

(√
−∆n

i+ 1
2

z

))
e−

σ̂nz
2 ,

and again the definition of the matrix Si+ 1
2
then follows mutatis mutandis as preced-

ingly.

Relation (4.3.11) can be written in explicit form, but we will not do so for the sake of
concision, and combining then Relation (4.3.11) with the time integration (4.3.8), we end
up with a tridiagonal system, which can easily be inverted.
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A WB Shift to the Stationary Frame

In the next step, as previously we need to compute the values un+1
i (in the stationary

frame) from the values ūn+1
i (in the moving frame (t, z) = (t, x− σ̂n(t− tn))). As described

above, this amounts to solving Equation (4.3.4), which we recall: − σ̂
n∂zû− ∂zzû = û(1− ūn

i+ 1
2

), for z ∈ C̄i+ 1
2

û(zi) = ūn+1
i and û(zi+1) = ūn+1

i+1 ,

and then setting:
un+1
i = û(zi + σ̂n∆tn). (4.3.12)

It is here that enforcing the CFL condition (4.3.6) avoids taking values from cells, which
would not be direct neighbors. Equation (4.3.4) can be solved in the same manner as
previously. One takes Ni+ 1

2
= Mi+ 1

2
and for (φ1, φ2) the fundamental system of solutions,

that we have used above:

Ñi+ 1
2

=
(
φ1(zi + σ̂n∆tn) φ2(zi + σ̂n∆tn)

)
(4.3.13)

This then leads to the following 1× 2 matrix:

Ti+ 1
2

:= Ñi+ 1
2
N−1
i+ 1

2

,

and:

un+1
i = Ti+ 1

2

(
ūn+1
i

ūn+1
i+1

)
. (4.3.14)

4.3.2 Alternative Schemes

We compare the preceding WB scheme for F/KPP Equation (4.1.8) with two other nu-
merical schemes.

OS Scheme with Crank-Nicolson Method

The first scheme is based on a OS of the heat operator and the reaction term. For the heat
operator, we use the Crank-Nicolson method:

vn+1
i − uni

∆t
=
vn+1
i−1 − 2vn+1

i + vn+1
i+1

2∆x2
+
uni−1 − 2uni + uni+1

2∆x2
. (4.3.15)

The reaction term can be integrated exactly, which leads then to:

un+1
i =

e∆t

e∆t − 1 + 1
vn+1
i

. (4.3.16)

WB Scheme for the "0-Wave"

The second scheme is based on the same method as the WB scheme mentioned before, but
we impose that σ̂n = 0. This choice corresponds to the choice that has been investigated
in [87] (and also [37] for a kinetic chemotaxis equation). As mentioned in the Introduction,
this approach is only WB for a stationary state, or equivalently a traveling wave with speed
0. For the implementation of this scheme, one does not need to shift from the moving to
the stationary frame, as both coincide. Or with the notations from above, we have:

Ti+ 1
2

=

(
1
0

)
.
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4.3.3 Numerical Assessements

The code for the numerical schemes in this Section can be found in [66].

Condition Number for Si+ 1
2

Figure 4.7: Condition numbers of Su(σ), where u denotes the value at which the nonlin-
earity is "frozen".

We consider the condition number of matrix Si+ 1
2
(see Figure 4.7), which solves Problem

(4.3.3) as a function of σ for different fixed parameters u = ūn
i+ 1

2

, i.e. the value at which
the nonlinearity is "frozen". We observe that the matrix becomes ill-conditioned only for
u ∼ 1. In that case, one of the eigenvalues of Problem (4.3.3) µ ∼ 0, which explains the ill-
conditioning. Yet, in practice this may not lead to a difficulty, since u ∼ 1 corresponds to
the region where the profile of the solution is a plateau. Moreover, as already mentioned,
the propagation dynamics is dominantly set by the behavior at the leading edge of the
profile, when u ∼ 0. There, the matrix Si+ 1

2
is well-conditioned for a wide range of values

for σ, but in particular around the region σ ∼ σF/KPP = 2.

The Asymptotic Propagation Speed

The F/KPP Equation (4.1.8) has an asymptotic progation speed σ of 2. We compare the
ability of different schemes to capture this asymptotic velocity: the WB scheme of Section
4.3.1 in its explicit and implicit version, the OS scheme of Section 4.3.2 and the WB scheme
for the "0-Wave" of Section 4.3.2 also in its explicit and implicit version.

In order to capture the asymptotic propagation speed, the F/KPP equation is solved
over the time interval [0, 1500]. Because the expected spreading speed is σ = 2, the
domain considered should be at least twice bigger: here, we take the domain [0, 3080]. This
large domain avoids roughly speaking boundary effects, for an initial condition u0(x) =
1− 1

1+e−3(x−40) .
Figure 4.8 represents the velocity σ̂n obtained with the LeVeque-Yee formula at the

final time t = 1500 for the schemes considered here. With a coarse mesh, the asymptotic
propagation speed obtained is far from 2 for some schemes and the spatial domain had to
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Figure 4.8: Evolution of LeVeque-Yee velocity σ for F/KPP equation at time t = 1500 for
different schemes with respect to the space discretization size ∆x.

be extended to [0, 6080] in order to avoid boundary effects for these schemes. The same
time step is chosen for all the considered schemes at each iteration. It is the one satisfying
all the CFL conditions which is the parabolic one, ∆n

t ≤ 1
2∆2

x, needed for the explicit WB
schemes. As expected, the schemes capture the asymptotic propagation speed of 2 when
the discretization is fine enough. It can be noted that the WB scheme, both in its explicit
and implicit version, captures extremely well the asymptotic propagation speed even for
very coarse meshes.

Capturing the Bramson Shift

We recall that the Bramson shift is the logarithmic shift that appears in the expression of
the position of a level set xc(t) for c ∈ (0, 1) given by Equation (4.1.12). In the simulations,
we track the position of the level set x0.5(t) by linearly interpolating the solution in the
mesh cell where the level set is. The coefficient 3

2 of the Bramson shift is approximated by
fitting x0.5(t)− 2t over the last half of the simulation.

We try to capture this Bramson shift by refining the discretization of the spatial domain.
Using schemes that depend on a parabolic CFL condition results in a huge number of
iterations in time which becomes rapidly intractable in a reasonable amount of time in
practice. Moreover, the "0-Wave" implicit WB scheme and OS scheme do not capture
the asymptotic propagation speed as well as the implicit WB scheme. Thus, we only fit
the Bramson shift for the implicit WB scheme (see Figure 4.8). The coefficient recovered
numerically seems to converge towards a value sligthly lower than 3/2. This difference
could be due to the linearization of the non-linear term in the F/KPP equation.
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4.4 Appendix: Complementary Numerical Simulations

Figure 4.10: Comparison between performances of UW-Euler (cyan), UW-Exact (red),
WENO-Euler (yellow), WENO-Exact (blue) and WB scheme (green) as a function of
Nx, the number of points of the spatial discretization. Upper left: Plot of the numeri-
cal speed σ. Upper right: Plot of the absolute value of the numerical speed σ and the
theoretical speed σth in log-scale. Lower left: Plot of the numerical exponential decay
parameter µ. Lower right: Plot of the absolute value of the numerical exponential decay
parameter µ and the theoretical decay parameter µth in log-scale. Choice of parameters:
V = {−8, 8},α = 8, χ = 2,L = 100,dx = L

Nx
, T = 15, CFL = 0.5 and ∆t = ∆

2α .
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Figure 4.11: Comparison between performances of UW-Exact (red), WENO-Exact (blue)
and WB scheme (green) as a function of Nx, the number of points of the spatial dis-
cretization. Upper left: Plot of the numerical speed σ. Upper right: Plot of the
absolute value of the numerical speed σ and the speed σWENO,16384 obtained through
WENO scheme with Nx = 16384 in log-scale. Lower left: Plot of the numerical ex-
ponential decay parameter µ. Lower right: Plot of the absolute value of the numerical
exponential decay parameter µ and the exponential decay parameter µWENO,16384 ob-
tained through WENO scheme with Nx = 16384 in log-scale. Choice of parameters:
V = {−4,−3,−2,−1, 1, 2, 3, 4},α = 4, χ = 2,L = 100,dx = L

Nx
, T = 15, CFL = 0.5

and ∆t = ∆
2α .
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Chapter 5

A Stochastic Individual-Based Go or
Grow Model

This Chapter is a preliminary presentation of results from an ongoing
collaboration with Vincent Calvez and Milica Tomašević. The
presentation is voluntarily informal and nonrigorous statements are sup-
ported by numerical investigations. We propose a stochastic individual-
based Go or Grow model: the first K particles (counted from right to
left) are in the Grow regime, whereas the other particles are in the Go
regime. The model consists then in a system of stochastic differential
equations (SDE) describing Brownian motion with a drift combined with
a Poissonian birth process for the first K particles. We start by giving an
algorithmic description of the stochastic process. This approach is then
complemented by an SDE describing the evolution of the point measure
of the population. Then, we conjecture a large-population limit when
K → +∞ under suitable renormalization. The limit equation is a PDE
describing a Go or Grow model, with a new Go or Grow rule, compared
to the Go or Grow model in Chapter 2. We give numerical evidence that
in the large population limit K → +∞ the stochastic model seems to
converge to the traveling waves of the PDE model. Finally, we investi-
gate the ancestral lineage of particles, following a methodology, which
has recently been proposed in [38, 74]. Numerically, we show that there
exists two different regimes, which overlap with the two regimes of pulled
and pushed waves from Chapter 2.

5.1 Introduction

In this Chapter, we will be interested in a stochastic individual-based Go or Grow model.
This work has been trigger by the question of finding a stochastic counterpart for the
parabolic Go or Grow model, which has been studied in Chapter 2, which we recall:

{
∂tρ− ∂xxρ+ ∂x (χ1N<Nthsign(∂xN)ρ) = 1N>Nthρ

∂tN −D∂xxN = −ρN,
(5.1.1a)
(5.1.1b)

There, recall that the rule determining the switch between the Go and the Grow behavior
is controlled by the ambient oxygen level N and whether this level is below or above a
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threshold value Nth. In order to find a stochastic counterpart, one could for instance
follow the work [105, 175] by one of the authors on the parabolic-parabolic Keller-Segel
model and simply replace the cell density ρ by a distribution of Dirac functions, where
each Dirac function represents a single particle. Yet, the non-linear term in Equation
(5.1.1b) makes it analytically much less tractable, compared to the study in [105], where ρ
merely intervenes as a source term. Furthermore, the well-posedness analysis of the Cauchy
problem in Chapter 2 shows that it heavily relies on an endpoint regularity estimate of N .
A distribution of Dirac functions being less regular, it points to the fact that in that case
the well-posedness might not be guaranteed.

In order to circumvent those difficulties, we propose a simple alternative, where the
switch between the Go and the Grow behavior at position x is controlled by the number of
particles, whose position is higher than x. Let K ∈ N∗, the first K particles (counted from
the right) are subject to the Grow regime: these particles undergo Brownian motion and
will divide with rate one. The other particles are subject to the Go regime: they undergo
Brownian motion with a constant drift χ > 0.

This simple stochastic Go or Grow model has not been studied yet, to the best of our
knowledge. But its features are reminiscent of two different well-studied classes of stochas-
tic processes. The first class are so-called rank-based diffusion processes (see Introduction
in [103] for references): a system of finite and constant number of particles interact with
each other through their rank in the system, which determines their individual behavior
(drift and diffusion). As an example, we mention the Atlas model proposed in [69]: N par-
ticles diffuse and the last one "pushes" the whole population, by having a positive drift.
Later on, generalizations of the Atlas model have been proposed (see for instance [13, 144]).
The other class are the rank-dependent branching brownian motions following the termi-
nology [92]: there, the particles undergo Brownian motion and depending on their rank,
they can divide (and possibly also die). Among this class, we mention the N -Branching
Brownian Motion (N -BBM) introduced in [127] (see also [52]): N particles undergo Brow-
nian motion and each particle divides with rate equal to one. When a particle divides the
left-most particle is removed from the system. Thus, the stochastic Go or Grow model,
which we will investigate in this Chapter, lies at the intersection of those two classes of
models.

Outline

This Chapter documents an ungoing work and sketches only preliminary results. The
discussion is voluntarily rather nonrigorous and the arguments are often illustrated with
numerical simulations. In Section 5.2, we present the stochastic Go or Grow model. We
start with an algorithmic construction of the stochastic process. We introduce also a
specific labeling for the particles, which will be useful in Section 5.4. Then, we state the
stochastic differential equation (SDE) of the model and briefly show that the trajectories
of the SDE coincide with the algorithmic construction. In Section 5.3, we conjecture the
limit after suitable renormalization of the stochastic process when K → +∞, which leads
to a partial differential equation (PDE). This PDE admits traveling waves as solutions
and we show numerically that the stochastic Go or Grow model behaves very similarily to
these traveling waves. In Section 5.4, we adress the question of the ancestral distributions
of a particle, when the system is close to the traveling wave state. We conjecture that
the probability distribution of the ancestral distribution follows a PDE in the limit when
K → +∞. According to this PDE, the qualitative behavior of the ancestral distribution
differs in the case χ > 1 and the case χ ≤ 1, which can be interpretated as an alternative
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characterization of pushed and pulled traveling waves.

Notations

• MF (R) denotes the set of finite measures on R endowed with the topology of weak
convergence. We denote by M the subset of MF containing finite sums of dirac
measures :

M =

{
n∑
i=1

δxi ; n ∈ N, x1, . . . , xn ∈ R

}
.

• H : R→ R denotes the heavy side function, i.e. H(x) = 1x≥0.

• Let N∗ = N \ {0}. Let H = (H1, . . . ,Hk, . . . ) : M → (R)N
∗ be defined by

H(
∑n

i=1 δxi) = (xσ(1), . . . , xσ(n), 0, . . . , 0, . . . ), where σ is a permutation such that
xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(n).

5.2 The Stochastic Individual-Based Model

In this Section, we start by describing the stochastic individual-based Go or Grow model
via an algorithmic construction of its trajectories. Then, we give the SDE description of
the stochastic process and show briefly that the algorithmic construction corresponds to
the trajectories of the SDE. Finally, we propose an alternative labeling of the particles.

5.2.1 Algorithmic Construction of the Stochastic Process

First, we will give an informal description of the dynamics of individuals who are charac-
terized by their positions (Xj

t )j∈{1,...,Nt} in R at time t, where Nt is the total number of
particles at time t. We define its associated point measure by:

Zt =

Nt∑
j=1

δ
Xj
t

(5.2.1)

The general Go or Grow idea goes as follows: fixing K ≥ 1, the particle population is
divided into two subgroups. The K particles that are on the far right of the real line
follow the Grow behavior: they diffuse and may divide with constant rate equal to one.
By division we mean that at the position of the particle, which divides, a new particle is
added to the system. The rest of the particles follow the Go behavior: they diffuse, have
a drift with constant advection speed χ > 0 and cannot divide.

In order to give sense to the preceding description, we introduce the rank (from the
right) for a particle at position Xi

t among the family (Xj
t )j :

rank(Xi
t , Zt) := Zt ∗ H(Xi

t) = 〈Zt,H( · −Xi
t)〉 =

Nt∑
j=1

H(Xj
t −Xi

t) (5.2.2)

In the right hand-side of Equation (5.2.2), we see that each index j for which Xj
t ≥ Xi

t

is counted once, yielding thus an integer k ∈ N∗, which then means that Xi
t is the k-

th highest position in the list (Xj
t )j . The Go or Grow alternative then states that if

rank(Xi
t , Zt) ≤ K the particle Xi

t follow the Grow behavior, whereas if rank(Xi
t , Zt) > K

the particle Xi
t follow the Go behavior.
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For the positions between the times of division events, the particles then evolve accord-
ing to the SDE:

dXi
t = χ1{rank(Xi

t ,Zt)>K}dt+
√

2dW i
t , (5.2.3)

where (W i)i∈N∗ are independent standard one-dimensional Brownian motions defined on
some probability space (Ω,F ,P). For a system of particles with a fixed number of particles
i ∈ {1, . . . , N}, i.e. without division, the system of SDE (5.2.3) admits a unique strong
solution, since the drift is bounded [186]. Furthermore, particle systems satisfying Equation
(5.2.3) without division have for instance been studied in [144].

Moreover, notice that the total rate of division is equal to K, since there are K particles
that divide with rate one. Hence in order to determine the times at which new particles
are added to the system, one may consider an exponential clock with parameter K. Once
that clock rings, one chooses uniformly a particle among the K first particles and adds a
new particle with the same position to the system.

The last observation leads to a construction by induction of the sequence of division
times (Tk)k≥0, the number (Nk)k≥0 of individuals in the population at these times (i.e.
Nk := NTk with the notations just above) and the sequence of vectors of each particle’s
position (XTk)k≥0 at these times (XTk = (Xj

Tk
)j∈{1,...,Nk} ∈ RNk , k ≥ 0). Let us fix the

initial number of individuals N0 = N ∈ N∗ and the vector of random variables X0 ∈ RN ,
which denotes the initial positions. We assume for the sake of simplicity that N ≥ K.
For each pair of consecutive division times (Tk, Tk+1) we denote by Xt ∈ RNk the vector
of position of the individuals at time t ∈ [Tk, Tk+1). We introduce the following random
variables independent of X0: (W j,k)j,k∈N∗ , which are standard independent Brownian mo-
tions; τk, which are independent exponential random variables with rate K (independent
from the Brownian motions). For k ≥ 1 we define the system inductively. Set T0 = 0,
N0 = N and assume that (Tk−1, Nk−1, Xk−1) are given for some k ≥ 1. We let:

• Tk = Tk−1 + τk

• On the interval [Tk−1, Tk) we set the number of particles to be constant and equal to
Nk−1 and their position evolve according to the SDE

Xi
t = Xi

Tk−1
+χ

∫ t

Tk−1

1{rank(Xi
t ,Zt)>K}ds+

√
2W i,k

t−Tk−1
, t ∈ (Tk−1, Tk], 1 ≤ i ≤ Nk−1.

• At time Tk an individual Ik = i is chosen uniformly at random among the positions
Xi
Tk

of the first K particles, i.e. i such that
∑Nk−1

j=1 H(Xj
s − Xi

s) ≤ K. Let us
denote its position by Xi

Tk
. Then, we add the position Xi

Tk
to the vector XTk and

set Nk = Nk−1 + 1.

Following this procedure, the number of individualsNt in the population at given t ≤ supTk
and the empirical measure Zt can be recovered via:

Nt =
∑
k≥0

Nk 1{Tk≤t<Tk+1},

Zt =
∑
k≥0

1{Tk≤t<Tk+1}

Nk∑
j=1

δ
Xj
t
.

As the increments of the sequence Tk are independent exponential random variables with
rate K, it is obvious that limk→∞ Tk = +∞.
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5.2.2 The SDE of the Stochastic Process

In this step, we give a description of the stochastic process (Zt)t≥0 through an SDE. Below
we show that the stochastic process (Zt)t≥0 satisfying this SDE admits as trajectories the
algorithmic construction above.

The stochastic process (Zt)t≥0 takes values inM and we fix a probability space (Ω,F ,P)
such that the initial condition Z0 is almost surely aM-valued F0-measurable random vari-
able. Let us introduce the family {W i, i ∈ N∗} of independent standard one-dimensional
Brownian motions defined on (Ω,F ,P) independent of Z0 and of a Poisson point measure
N (ds, di, dθ) on R+ × N∗ × [0, 1] with intensity ds×

(∑
j≥1 δj(di)

)
× dθ.

We notice here that the individual birth rate of a cell at the position x belonging to a
population state ν ∈M is:

b(x, ν) := 1{〈ν,H( ·−x)〉≤K}. (5.2.4)

In parallel, the individual drift of a cell at position x belonging to a population state ν ∈M
is:

χ(1− b(x, ν)) = χ1{〈ν,H( ·−x)〉>K}. (5.2.5)

We may now write the the SDE satisfied by Z. For f ∈ C2
b (R) we have:

〈Zt, f〉 = 〈Z0, f〉+ χ

∫ t

0

〈Z−s ,1〉∑
i=1

f ′(H i(Zs))(1− b(H i(Zs), Zs))ds

+
√

2

∫ t

0

〈Z−s ,1〉∑
i=1

f ′(H i(Zs))dW
i
s +

∫ t

0

〈Z−s ,1〉∑
i=1

f ′′(H i(Zs))ds

+

∫ t

0

∫
N∗

∫ 1

0
1{i≤〈Zs− ,1〉}1{θ≤b(Hi(Zs− ),Zs− )}f(H i(Zs−))N (ds, di, dθ). (5.2.6)

〈Zt, 1〉 corresponds to the number of particles at time t and H i(Zt) to the position of the
i-th parrticle. Nota bene, index i therefore does not denote an individual particle fixed over
time, contrary to what we have seen for the algorithmic construction. The first integral
term corresponds to the drift term with constant drift χ, when the particle is of rank
higher than K. The two middle integrals correspond to the Brownian diffusion, to which
all particles are subject to. The last integral corresponds to the division of the first K
cells.

We now briefly show that the trajectories of Z, which solves Equation (5.2.6), satisfy
the algorithmic construction from above:

1. Suppose that the initial condition Z0 is such that N0 ≥ K. We notice here that the
waiting time T1 for the first event to happen has E(K) distribution. Indeed,

P(T1 ≤ t) = 1− P(T1 > t) = 1− P(Nt = N0).

The latter in the above equation means that, putting f = 1, the last term did not
produce any atom up to t. Hence:

P(T1 ≤ t) = 1− e
−
∫ t
0

∫
N∗
∫ 1
0 1{i≤〈Zs− ,1〉}1(θ≤b(Hi(Zs− ),Z

s− ))ds×(
∑
j≥1 δj(di))×dθ

= 1− e−
∫ t
0

∑〈Zs,1〉
i=1 b(Hi(Zs− ),Zs− )ds
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. The probability that a Poisson process with rate λ(ds, di, dθ) produces k atoms on a
setW ⊂ R+×N∗× [0, 1] follows a Poisson distribution of parameter

∫
W λ(ds, di, dθ).

Noticing that for any s ≥ 0 when N0 ≥ k one has
∑〈Zs,1〉

i=1 b(H i(Zs−), Zs−) = K gives

P(T1 ≤ t) = 1− e−Kt.

2. Suppose that the initial condition is such that N0 < K, then the waiting time of the
first event has E(N0) distribution. Similarily, the waiting time T2 − T1 of the second
event has E(N0 + 1) distribution, etc... Until we reach the (K − N0 + 1)-th event,
whose waiting time will have E(K) distribution and the same will be true for all later
events.

3. Let us now show that at a division time Tk, the position of the new particle X
NTk
Tk

is a

random variable uniformly distributed among
(
H i(ZT−k

)
)
i=1,...,K∧N

T−
k

the positions

of the K∧NT−k
first particles at time T−k , i.e. the K first particles if NT−k

the number
of particles at time T−k are higher than K, and the NT−k

first particles, otherwise.
We first observe that b(H i(Zt), Zt) = 1i≤K and that 1(i≤〈Zt− ,1〉)

= 1i≤N−t
. Then,

conditionally to T1, . . . , Tk, the jumps of the Poisson measure N , which we denote
by (Uj)j=1,...,k, are independent and follow the laws 1i≤K∧N

T−
j

∑
j≥1 δj(di)

K∧N
T−
j

on N∗ (we

refer the reader to the Appendix in [14]). Hence, we have:

N (ds, di, dθ) =

k∑
j=1

δ(Tj ,Uj).

Using this and Equation (5.2.6), we find that:〈
δ
X
NTk
Tk

, f

〉
= 〈ZTk − ZT−k , f〉 = f

(
HUk

(
ZT−k

))
,

which is exactly what we wanted to show, since Uk is uniformly distributed in
{1, . . . ,K ∧NT−k

}.

5.2.3 Alternative Labeling of Particles

We introduce an alternative labeling of particles to the indexing in the algorithmic con-
struction, which is often referred to as the classical Ulam-Harris-Neveu notation (see for
instance [130]). This will be helpful in particular in Section 5.4, when we consider the
lineages of the particles. Let:

U = {(j, a1, . . . , al)|j ∈ {1, . . . , N}, l ∈ N, xi ∈ {0, 1}} (5.2.7)

We denote by Ut ⊂ U the set of labels at time t ≥ 0, which is definite recurisevly in the
following manner:

• For time t = 0, the first N particles are labeled from 1 to N and U0 = {(j)|j ∈
{1, . . . , N}}.

• For time t ∈ [Tk, Tk+1), the labels of the particles are conserved and Ut = UTk .
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• At the division time t = Tk, consider (j, a1, . . . , al) the label of the particle, which will
divide. One of the resulting particles, then gets affected the label (j, a1, . . . , al, 0),
the other one the label (j, a1, . . . , al, 1) and the label (j, a1, . . . , al) gets suppressed
from the set of labels:

UTk =
(
UT−k ∪ {(j, a1, . . . , al, 0), (j, a1, . . . , al, 1)}

)
\ {(j, a1, . . . , al)}.

Of note, this labeling admits the following property: for t ≥ 0, there exists no two labels
`1, `2 ∈ Ut, such that `1 is a prefix of `2. Notice also that one could rewrite SDE (5.2.6) by
the means of a Poisson point process on the set R+ × U × [0, 1].

5.3 The Large-Population Limit K → +∞

In this Section, we will be interested in the large population limit ZKt
K when K → +∞,

where we have specified the dependency of ZKt on the parameter K. We start by con-
jecturing the limit, whose rigorous proof is left to future investigations. Nevertheless, we
summarize some directions of investigation in order to establish rigorously this limit. The
limit equation is in many aspects very similar to the parabolic Go or Grow equation (5.1.1)
from Chapter 2. We refer to Chapter 6, where the question of the existence and uniqueness
locally in time of the solution to the limit equation is treated. Furthermore, we state a
result on the structure of nonnegative traveling waves for the limit equation. This result is
mutatis mutandis the same than what has been obtained in Chapter 2 and we do not detail
its proof. In particular, this result leads to the conjecture that in the large population limit
the spreading speed should converge to the spreading speed:

σ∗ =

{
χ+ 1

χ if χ > 1

2 if χ ≤ 1
. (5.3.1)

Finally, we investigate this claim by studying numerically the behavior of ZKt . We give
numerical evidence that the spreading of the K-th particle evolves linearily with speed σK ,
i.e.:

σK := lim
t→+∞

HK(ZKt )

t
, (5.3.2)

where HK(ZKt ) is the position of the K-particle at time t. Then, we show that in the large
population limit K → +∞, we have:

lim
K→+∞

σK = σ∗. (5.3.3)

5.3.1 The Large Population Limit: A New Go or Grow PDE

We conjecture that ZKt
K converges to a function ρ(t, x), which satisfies the following Equa-

tion, for t > 0, x ∈ R:

∂tρ(t, x)− ∂xxρ(t, x) + ∂x
(
χ1(ρ(t)∗H)(x)>1ρ(t, x)

)
= 1(ρ(t)∗H)(x)≤1ρ(t, x) (5.3.4)

This conjecture is motivated by the following observations: the Brownian motion of the
particles translates into diffusion on ρ. As already observed, the position of the first K
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particles can be characterized by all the x ∈ R, such that
〈
ZKt
K ,H( · − x)

〉
≤ 1. But we

expect that:〈
ZKt
K

,H( · − x)

〉
=

(
ZKt
K
∗ H
)

(x) −−−−−→
K→+∞

(ρ(t) ∗ H) (x) =

∫ +∞

x
ρ(t, y)dy

Then in the large population limit K → +∞, the particles that are subject to division,
i.e. the particles at position x such that

(
ZKt
K ∗ H

)
(x) ≤ 1, will translate into a division

term for ρ with rate equal to one; whereas the particles that are subject to the drift, i.e.
the particles at position x such that

(
ZKt
K ∗ H

)
(x) > 1, will translate into a drift with

constant advection speed χ.
Equation (5.3.4) is very similar to the parabolic system (5.1.1), which was the object

of Chapter 2. Nevertheless, it replaces the Go or Grow rule determined by the oxygen
concentration, via the simple new Go or Grow rule: if the mass on the interval [x,∞) is
higher than 1, the population at position x is subject to the Go regime, whereas if this
mass is lower than 1 the population is subject to the Grow regime. Moreover, Theorem
2.3.1 from Chapter 2 applies to Equation (5.3.4) and we state it in an abbreviated version:

Theorem 5.3.1. There exists a minimal speed σ∗, such that there exists a bounded and
nonnegative traveling wave profile ρσ(z), i.e. ρσ(x−σt) is a solution to Equation (5.3.4), if
and only if σ ≥ σ∗. Given σ ≥ σ∗, the traveling wave profile ρσ is unique up to translation.
Moreover, the exact value of σ∗ is given by Formula (5.3.1):

σ∗ =

{
χ+ 1

χ if χ > 1

2 if χ ≤ 1
.

As mentioned, the rigorous proof of the convergence of ZKt
K → ρ(t, · ) is still under

investigation. But, we will briefly mention some approaches, which may be fruitful in
order to establish this convergence results.

First of all, an important ingredient is the question of the existence and uniqueness
of the solution to Equation (5.3.4) in order for the limit ρ to be well-defined and unique.
This question will be addressed in Chapter 6, where we show that locally in time the
solution ρ to Equation (5.3.4) exists and is unique. Although, we have not been able to
prove existence globally in time, the uniqueness argument applies as long as the solution
exists. Hence, an interesting perspective is that, if we were able to show convergence of
ZKt
K for all time t ≥ 0, then this would give simultaneously the existence of ρ globally in
time. Second in order to prove the convergence, we may resort to tools, such as martingale
properties for ZKt

K , which have been used in many large population limits (see for instance
[47, 76]). Another approach under consideration comes from [52], where the authors have
used upper and lower barriers in order to prove the convergence of the N -BBM to a free
boundary problem. Two auxiliary stochastic processes are defined, which bound above
(resp. below) the positions of the particles. The authors then show that both stochastic
processes converge to the same free boundary problem. Finally, the study on rank-based
diffusions [109] suggest to study the convergence of ZKt

K ∗ H. In our case, if we consider
P := ρ ∗ H, then P satisfies the following equation:

∂tP − ∂xxP + χ1P>1∂xP = min{1, P}. (5.3.5)

Interestingly the study of Equation (5.3.5) will be a very helpful tool in the Chapter 6, in
order to establish asymptotic results on the spreading of ρ.

188



5.3.2 Numerical Investigations

Figure 5.1: Histogram of ZKT for χ = 2,K = 4096, T = 200 and inital datum N =
2K. The width of a single bin in the histogram is dx = 0.1. The red curve represents

y = C

{
e−χ(x−HK(ZKT )) if x > HK(ZKT )
1 if x ≤ HK(ZKT )

, where we recall that HK(ZKT ) denotes the

position of the K-th particle at time T and C has been chosen a priori with C := Kχdx,
which is consistent with the discretization of the histogram.

In this Subsection, we briefly present numerical investigations, which support the claim
that the ZKt

K converges to ρ solution to Equation (5.3.4).

(a) (b)

Figure 5.2: (a): Graphic representation of HK(ZKt )
t , where HK(ZKt ) is the position of the

K-th particle at time t, for K = 4096, χ = 2 (red) and χ = 1
2 (blue). (b): Graphic

representation of H
K(ZKT )
T , with T = 200, χ = 2 (red) and χ = 1

2 (blue) as a function of K.
The magenta (resp. cyan) curve represents speed σ∗ = χ + 1

χ with χ = 2 (resp. σ∗ = 2

with χ = 1
2).

We simulate the stochastic process ZKt by following the algorithmic construction of
Subsection 5.2.1. We set the initial datum ZK0 as follows:
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• Set N = 2K the number of initial particles.

• In the case χ > 1, the position of the first K particles follow an exponential law
E(χ). In the case χ ≤ 1, their position is distributed according to the law with
density 1x≥0

2−χ ((1− χ)x+ 1) e−x. In both cases, the distribution corresponds to the
distribution given by the traveling wave profile ρσ∗ .

• Given the distribution of the K first particles on R+, we wish to sample the other
remaining K particles again, according to the traveling wave profile. Yet, since there
are only a finite number of particles and a proper sampling of the traveling wave
profile would require an infinite number of particles, we restrict the sampling of
the profile to an interval of the form [−a,+∞): in the case χ > 1, the remaining
K particles are uniformly distributed on

[
− 1
χ , 0
]
, whereas in the case χ ≤ 1 the

particles are uniformly distributed on [−(2− χ), 0].

In the long time behavior the distribution ZKt
K is reminiscient of the traveling wave

profile ρ at least in a compact set around the position of the K-th particle (see Figure 5.1).
Next, we show that in both cases (χ > 1 and χ ≤ 1), the spreading of the K-th particle
evolves linearily (see Figure 5.2a), i.e. HK(ZKt )

t converges to a finite value, which we denote
σK . Finally, by increasing K, we show numerically that the value σK seems to converge
to the wave speed σ∗ given by Formula (5.3.1) (see Figure 5.2b).

5.4 The Ancestral Lineage

In this Section, we wish to investigate the ancestral lineage of the particles, following a
methodology, which has recently been proposed in [38, 74]. Roughly speaking, given a
particle Xi

t at time t, we are interested in the positional distribution of its ancestor Y i
s,t

at time t− s, for s ≥ 0. As the mentioned studies have shown, these questions are rather
delicate and in this Section, we will only discuss these questions in an informal manner
and give the heuristics of the ancestral lineage distributions. We describe the approch,
which stands in direct analogy with the results in [38], by leaving rigorous results to future
investigations and illustrating the arguments with numerical simulations.

First, we delimit the question of the ancestral distribution to the regime of the traveling
wave: as observed in the previous section, the large population limit K → +∞ gives rise
to Equation (5.3.4). This equation admits a steady state, which is the traveling wave from
Theorem 5.3.1. Hence, if the individual-based stochastic process Z

K
t
K is close to the traveling

wave dynamics at initial time t = 0, we expect the stochastic process ZKt
K to remain close

to the traveling wave dynamics at least for finite time t = T < +∞, for K sufficiently
large. Figure 5.1 hints exactly to this fact, if we ignore the part of the population, which
is trailing the bulk of the propagating profile. As noted, the discrepancy for the trailing
part comes from the fact that we start with a finite initial number of particles, whereas the
steady dynamics woulde require an infinite number of particles. Ignoring this discrepancy,
for the sake of the argument, we reason as if the stochastic process ZKt

K is in its steady state.
Of course, this requires a leap of faith, since we have not shown that for finite K < +∞,
the stochastic process ZKt

K admits a steady state and we deliberately and nonrigorously
equate the steady state of Equation (5.3.4) with a steady state for the stochastic process
ZKt
K , which may or may not exist.
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Figure 5.3: Graphical representation of the particle trajectories for t ∈ [100, 200], with
χ = 2,K = 256 and initial datum N = 2K. The grey curves represent particle trajectories,
which have been sampled uniformly among the population. The black curves represent 4
particle trajectories, which at time T = 200 are neighbors of the K-th particle. Of note
two of these particles coalesce approximately at t = 168. The left graphic represents the
trajectories in the frame (t, x), whereas the right graphic represents the same trajectories
in the frame (t, x− σ∗t), where σ∗ = χ+ 1

χ .

Given a particle XK,`
t , its ancestral distribution Y K,`

s,t is defined as follows. Consider
the set UKt−s and find the unique label `s ∈ UKt−s, such that `s is a prefix of `. This label is
unique, since no two labels in UKt−s can be prefix of each other, as observed in Subsection
5.2.3, and it exists as a consequence of the algorithmic construction. Then Y K,`

s,t = XK,`s
t−s .

We start by illustrating a typical tajectory of Y K,`
s,T (see Figure 5.3). This naturally

leads to considering the distribution Y K,`
s,T in the moving frame (t, z) = (t, x − σ∗t). Thus

we define Ŷ K,`
s,T := Y K,`

s,T − σ∗(T − s). Figure 5.4a points to the fact that in the case χ > 1,
Ŷ K,`
s,T admits a stationary distribution. But, what would the shape of this stationary

distribution be? In order to investigate this question, we can consider the (formal) limit
when K → +∞. Then, we start by observing that the (forward in time) distribution of
the descendants of a particle is exactly given by the formalism of neutral fractions. From
Chapter 2, recall the following definition:

Definition. Define L := −∂zz − β∂z, where β(z) = σ−χ1z≤0 + 2∂zρ
σ

ρσ . A neutral fraction
ν (of the traveling wave ρσ) is a solution to the following equation:{

∂tν + Lν = 0
ν(0, · ) = ν0 . (5.4.1)

Roughly speaking, if ν0 describes a fraction of the population, which is marked by a
neutral label, i.e. that does not interfer with the dynamics, then ν(t, · ) describes the
fraction of the population for later time t > 0, which are marked by this label, i.e. which
are descendants of the initially marked population (the neutral label being transmitted to
its descent). Following this line of reasoning, the ancestral distribution v(s, · ) = ṽ(T−s, · )
should simply be the backward in time dynamics of Equation (5.4.1), i.e. for s ≥ 0:{

∂sv + Lv = 0,
v(0, · ) = ṽ(T, · ),

(5.4.2)
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(a) (b)

Figure 5.4: Graphical representations of the ancestral distribution. The first line represents
the distribution ZKT for T = 200 and K = 4096. The two red bars stake out the position
of the first 20K particles at time T = 200. The second line represents the distribution ZK80.
The third line represents the ancestral distribution at time t = 80, i.e. s = 120, of the first
20K particles at time T = 200 (which are between red bars in the first line). (a): The case

χ = 2. The red curves represent y1(x) = Ce
x−HK (ZK80)

χ and y2(x) = Ce
−
(
χ− 1

χ

)
(x−HK(ZK80)),

which leads to Cv∞
(
x−HK(ZK80)

)
= min{y1(x), y2(x)} (see Equation (5.4.4)). The con-

stant C has been chosen a posteriori by visually fitting the curves. The distribution of the
ancestors seems to be stationary in the frame (t, x − HK(ZKt )) and to coincide with the
distribution delimited by the red curves and the x-axis. The number of distinct ancestors
is 937. (b): The case χ = 1

2 . The ancestors of the particles all come from the leading edge.
The number of distinct ancestors is 5.

where time has been reversed and L := L∗ = −∂zz + ∂z (β · ). Of note Equation (5.4.2) is
under conservative form, which is consistent with the fact that a particle will have only a
single ancestor at earlier time.

One of the drawbacks of this reasoning lies in the fact that it is based on the limit PDE
(5.3.4). However, as observed in [38], when passing the stochastic process ZKt

K to the limit
K → +∞, the information of a single particle’s trajectory is erased. Hence, this approach
is not sufficient in order to make sense to the question of the ancestral distribution Ŷ K,`

s,T

whenK → +∞. Much of the work in [38] precisely consists in giving a rigorous sense to the
preceding heuristics. Leaving the question of rigorous formalism to future investigations,
we can continue the analogy with the work [38], where the authors have the convergence of
the equivalent of Ŷ K,`

s,T to a stochastic process. Mimicking this reasoning, we can conjecture
that Ŷ K,`

s,T converges to the following stochastic process, when K → +∞:

dŶs = β(Ŷs)ds+
√

2dWs, (5.4.3)

where the initial datum Ŷ0 depends only on the position of the particles, which are sampled,
and not their labels when K → +∞. In a consistent manner, Equation (5.4.2) is then
simply the associated Fokker-Planck equation of the SDE (5.4.3). Hence, following this
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conjecture, the trajectories in the moving frame (t, z) = (t, x − σt), which have been
illustrated in Figure 5.3, should be close to the trajectories given by Equation (5.4.3).

Finally, Equation (5.4.2) may give an alternative point of view on the inside dynamics
of the traveling waves, which have been studied in [82, 152] as well as in Chapter 2. In
particular, the qualitative behavior of Equation (5.4.2) drastically differs in the pushed or
pulled case.

The Pushed Case: χ > 1.

A traveling wave is called pushed, when the wave is subject to a significant contribution
from the overall population to the net propagation (see Chapter 2 for more details). In
Chapter 2, we have proven that this is the case, when χ > 1. Here, we show that in
this case Equation (5.4.2) admits a stationary distribution v∞, which is integrable. The
ancestral distribution will converge exponentially fast to v∞. Roughly speaking, if one
picks a particle inside the wave, then for sufficiently large time its ancestors are distributed
according to the stationary distribution v∞. Hence, the stationary distribution v∞ may be
interpretated (see [74]) as a quantification of which parts of the wave contribute the most
to the propagation.

Observe that:

v∞(z) := exp

(∫ z

0
β(y)dy

)
= exp

({ z
χ if z ≤ 0

−
(
χ− 1

χ

)
z if z > 0

)
(5.4.4)

is a stationary solution to Equation (5.4.2). In Figure 5.4a, we have ploted v∞ (up to a
multiplicative constant and in the right frame) and it seems in fact that Ŷ K,`

s,T converges to
a stationary distribution, close to v∞ (of note, here we have taken K large and fixed).

Given the stationary solution (5.4.4), we set f := v
v∞

. Then by a series of computations,
we find that:

∂tf = ∂zzf + β∂zf = −Lf, (5.4.5)

where L = −∂zz − β∂z. Equation (5.4.5) has been studied in Chapter 2. We have shown

that f converges exponentially fast to a constant with rate γ = 1
4 min

{
1
χ2 ,
(
χ− 1

χ

)2
}
.

Hence the stochastic process given by Equation (5.4.3) will have a probability distribution,
which converges exponentially in time s→ +∞ to the stationary distribution given by v∞.

The Pulled Case: χ ≤ 1.

A traveling wave is pulled, when it is driven by growth and diffusion of the population at
the edge of the front with negligible contribution from the overall population. This is the
case, when χ ≤ 1 (see Chapter 2). Contrary to the pushed case, although Equation (5.4.2)
admits stationary solutions, these are not integrable. In fact:

v∞(z) :=

{
e(2−χ)z if z < 0

((1− χ)z + 1)2 if z ≥ 0
. (5.4.6)

Hence v cannot converge to these stationary solution (recall that Equation (5.4.2) is con-
servative). This is illustrated numerically in Figure 5.4b, where the ancestral distribution
seems to originate from the extremity of the leading edge, contrary to the case χ > 1.

A precise quantitative analysis of Equation (5.4.2) is still under investigation in the case
χ ≤ 1. Hence, we merely illustrate numerically the behavior of v, solution to Equation
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(5.4.2) (see Figure 5.5). Interestingly, the behavior differs when χ = 1 or χ < 1. Although
in both cases, v does not converge to a stationary distribution, in the case χ = 1, the
profile of v resembles rougly a half of a Gaussian, which is locked at z = 0. In the case
χ < 1, the profile of v resembles to a Gaussian, centered around a mean, which spreads to
z = +∞. Numerically, this mean spreads asymptotically like C

√
t. This difference can be

seen heuristically from the term β: in the case χ = 1, β(z) = 0 for z ≥ 0, hence on R+

behaves like the heat equation on the half-line; in the case χ < 1, we have β(z) = 2(1−χ)
(1−χ)z+1

for z ≥ 0, hence there is a drift towards higher positive values, which gets smaller and
smaller. But in both cases (χ = 1 and χ < 1), the mean of the distribution given by v(s)
is asymptotically of order

√
t, which leads to the following alternative interpretation of a

pulled wave: given a particle in the wave its ancestors stem from the very leading edge.

Figure 5.5: Solution v of Equation (5.4.2), with inital datum v0(x) = 1[−10,10](x), when
χ = 1 (left) and χ = 1

2 (right).

Outlook

As mentioned most of the arguments in this Chapter have been exposed in an informal and
nonrigorous way. Rigorous results are still under investigation. Here, we wish to briefly
stress again which questions we are currently working on. First, we look forward to prove
that the large population limit of Z

K
t
K converges to ρ(t, · ), which satisfies Equation (5.3.4).

Then, we hope to transpose the methodology on ancestral lineages proposed in [38, 74]
to the model exposed here. In particular, this opens a perspective of understanding the
nature of pulled and pushed waves in a different light, which has already been mentioned
in [74].
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Chapter 6

Alternative Go or Grow PDE Model
and its Preliminary Analysis

This Chapter is a preliminary presentation of results from an ongoing
collaboration with Christopher Henderson. We study an alternative
Go or Grow PDE model (which in Chapter 5 is conjectured to be the
large population limit for the stochastic Go or Grow model), where the
Go or Grow regimes at position x depend on how much mass is located on
the interval [x,+∞). We show an existence and uniqueness result locally
in time for this alternative Go or Grow model, which is an adaptation
of the equivalent result in Chapter 2. Then, we propose a conjecture of
the asymptotic behavior of the spreading and give proofs for some cases
of this conjecture. Finally, through an L2-energy method, we show an
asymptotic stability result for the traveling wave of minimal velocity in
the case χ > 1.

6.1 Introduction

In the preceding Chapter, we have conjectured that the stochastic Go or Grow model
converges in the large population limit to a PDE, which can be seen as an alternative Go
or Grow model: 

∂tρ− ∂xxρ+ ∂x
(
χ1x<x̄(t)ρ

)
= 1x≥x̄(t)ρ,∫ +∞

x̄(t)
ρ(t, x)dx = 1.

(6.1.1a)

(6.1.1b)

In a sense, this can be seen as an Equation with the constraint, given by (6.1.1b). Thus,
we will sometimes refer to (6.1.1) as an Equation with constraint.

We recall the Go or Grow model, which has been the initial object of study in this
manuscript (see notably Chapter 2):

{
∂tρ− ∂xxρ+ ∂x (χ1N<Nthsign(∂xN)ρ) = 1N>Nthρ,

∂tN −D∂xxN = −ρN.
(6.1.2a)
(6.1.2b)

Of note, if we assume that ∂xN > 0 and we define x̄(t) the unique threshold position, such
that N(t, x̄(t)) = Nth, then Equation (6.1.2a) exactly reduces to Equation (6.1.1a), which
is the reason, why we refer to the Equation with constraint (6.1.1) as an alternative Go
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or Grow model. The difference in both models then resides only in how the curve x̄( · ),
which discriminates between the Go regime (x < x̄(t)) and the Grow regime (x ≥ x̄(t)),
is defined. In a sense, the dynamics of Equation (6.1.1) is simpler, as the Go or Grow
rule: the definition of x̄(t) can be seen as "Markovian". By this, we mean that in Equation
(6.1.1), x̄(t) depends only on the state ρ(t, · ). In System (6.1.2), this is not the case, as x̄(t)
is defined through the parabolic Equation (6.1.2b). Hence, it is reasonable to expect that
for Equation (6.1.1) we may overcome difficulties, which we have encountered in System
(6.1.2). This Chapter pleads to an extent for this.

Interestingly, both Go or Grow models are very similar to a free boundary problem
proposed in [20]: {

∂tu− ∂xxu = u, for x > µt
u(t, µt) = α and ∂xu(t, µt) = β

, (6.1.3)

with α, β ∈ R. In fact, if we consider α > 0 and β = −αχ, then the traveling wave
solutions of the Go or Grow models are exactly the same than the ones for the free boundary
Problem (6.1.3). Furthermore the authors in [20] determine through formal computations
the asymptotic behavior of µt, depending on χ and the initial datum u0 (and how fast it
decreases for x→ +∞). The computations surprisingly depend almost only on the shape
of the traveling wave profile. As mentioned, since the traveling wave solutions are the same
between the Go or Grow model and this free boundary problem, inspired by the results in
[20], we propose a conjecture of the asymptotic behavior of x̄(t) in (6.1.1):

x(t) =


2t− 3

2 log(t) +O(1) if χ < 1

2t− 1
2 log(t) +O(1) if χ = 1(

χ+ 1
χ

)
+O(1) if χ > 1

. (6.1.4)

In the case χ < 1, this means that we would obtain for the asymptotics a (standard)
Bramson shift, which has been well studied in the case of the F/KPP Equation (see [29,
96] for instance). In the case χ = 1, the asymptotics undergo a similar Bramson shift,
but with a different coefficient, which has recently been observed on the Burgers-F/KPP
Equation [9] and a reaction-diffusion equation with a cubic monostable reaction term [83].
The case χ > 1 corresponds to the pushed case, where the result is in accordance with
many results on standard reaction-diffusion equations (e.g. [70, 154, 169]). In this Chapter,
we will expose intermediary results towards the proof of Conjecture (6.1.4).

Moreover during our investigation, we have also considered a second alternative Go or
Grow model: {

∂tρ− ∂xxρ+ ∂x
(
χ1x<x̄(t)ρ

)
= 1x≥x̄(t)ρ,

x̄(t) = sup {x|ρ(t, x) = 1} .
(6.1.5a)

(6.1.5b)

We refer to it as the ρ-levelset Go or Grow model. This model will not be considered
in this Chapter, but we briefly mention it, as it invites us to consider a link with the
Burgers-F/KPP Equation, which has notably been studied in [9]. In fact, suppose that ρ
is decreasing and set ψ(s) = 1s>1, then we can rewrite the ρ-levelset Go or Grow model
as follows:

∂tρ− ∂xxρ+ ∂x (χψ(ρ)ρ) = (1− ψ(ρ))ρ. (6.1.6)

Now, the Burgers-F/KPP Equation is exactly Equation (6.1.6), when we use ψ(s) := s.
Therefore one can see ρ-levelset Go or Grow model and the Burgers-FKPP Equation as
part of the same class of Equations given by (6.1.6). In fact, the authors of [9] are currently
investigating the class of Equation (6.1.6) with ψ convex. It seems that the equivalent of
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Conjecture (6.1.4) may hold for this large class of Equations. In fact, as mentioned above,
this result has already been proven for the Burgers-F/KPP Equation with ψ(s) := s in [9].

Finally let us give an equivalent formulation of (6.1.1), which will be very useful in the
present study. Set P (t, x) =

∫ +∞
x ρ(t, y)dy, then one shows that:

Pt = Pxx + min{1, P} − χ1P>1Px. (6.1.7)

This equation admits a comparison principle, which slightly deviates from typical com-
parison principles for parabolic equations (see Propositions 6.3.5 and 6.3.4). Through this
comparison principle, we will be able to construct super- and subsolutions, which will lead
to upper and lower bounds on x̄(t).

Outline

In Section 6.3, we prove existence and uniquess of the solution ρ to Equation (6.1.1) locally
in time. The proof is very similar to the analogous result in Chapter 2 and is based on a
fixed point theorem on the curve x̄( · ). Just as in Chapter 2, we need an enpoint regularity
estimate, which we achieve by a careful handling of the singularity at the point, where
P = 1.

In Section 6.3, we give preliminary results on the asymptotic behavior of x̄(t). The
results are consistent with Conjecture (6.1.4). The first result is the upper bound on
x̄(t) ≤ σ∗t + C for any χ ≥ 0. This result corresponds to the upper bound for χ > 1 in
Conjecture (6.1.4). Then, we show that Equation (6.1.7) admits a comparison principle.
This comparison principle then enables us to construct a subsolution in the case χ = 1,
which leads to the lower bound for χ = 1 in Conjecture (6.1.4), and a supersolution in the
case χ < 1, which leads to the upper bound for χ < 1 in Conjecture (6.1.4).

In Section 6.4, we prove asymptotic stability of the minimal traveling wave solution in
a L2-space. The proof, which is reminiscent of a line of reasoning presented in [39], is based
on an energy method and uses a Poincaré inequality, which is deduced from the analysis
of the spectral properties of the linearized operator.

6.2 Existence and Uniquess Result

In this Section, we establish existence and uniqueness locally in time for Equation (6.1.1),
under the condition that x̄(0) in (6.1.1) is uniquely defined and that ρ0(x̄(t)) is bounded
below by a positive constant. Without loss of generality, we assume that x̄(0) = 0. The
proof is an adaptation of the existence and uniqueness result in Chapter 2 for System
(6.1.2) and follows the same line of reasoning. Hence, we will sketch the proof in a concise
format and refer the reader to Chapter 2 for an in-depth discussion on the strategy of
proof, as well as for technical details.

We start by considering Equation (6.1.1) in the moving frame (t, z) = (t, x − x̄(t)),
which leads to: 

∂tρ̃− ∂zzρ̃− ˙̄x(t)∂zρ+ ∂z (1z<0ρ̃) = 1z≥0ρ̃∫ +∞

0
ρ̃(t, z)dz = 1

(6.2.1a)

(6.2.1b)

Recall, that because of the discontinuous advection term ∂z (1z≤0 · ), ρ̃ will have a C1-
discontinuity, which follows from a Rankine-Hugoniot type of argument:

∂zρ̃(t, 0+)− ∂zρ̃(t, 0−) = −χρ̃(t, 0). (6.2.2)
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This naturally leads to factorize ρ̃ under the form ṽU , with a function U such that the
factorization precisely cancels out the C1-jump relation at z = 0. Of note, the notations
are slightly different than in Chapter 2, as here ṽ (contrary to v in Chapter 2) denotes the
factorization in the moving frame. We choose:

U(z) =

{
1 if z ≤ 0
e−χz if z > 0

. (6.2.3)

This leads to the following Equation on ṽ:

∂tṽ − ∂zz ṽ − β(t, z)∂z ṽ − γ(t, z)ṽ = 0, (6.2.4)

where β(t, z) := ˙̄x − χ1z≤0 − 2χ1z>0 and γ(t, z) := χ
((
χ+ 1

χ

)
− ˙̄x
)
1z>0. Under this

circumstance, ṽ will be of higher regularity: in fact, first, we will show that ṽ(t) ∈ C1,α(R)
for α ∈ (0, 1), then we will refine this result in order to show that ṽ(t) ∈ W 2,∞(R) (by
adapting the argument of Chapter 2, we can even show that this regularity is an endpoint
case and that ṽ(t) /∈ C2,α(R) for any α ∈ (0, 1)). Furthermore we introduce v in the
stationary frame, such that:

ρ(t, x) = v(t, x)e−χ(x−x̄(t))1x≥x̄(t) . (6.2.5)

Next, by differentiating Constraint (6.1.1b), x̄(t) must satisfy the following ODE:

˙̄x(t) =
1− ∂xρ(t, x̄(t)+)

ρ(t, x̄(t))
, (6.2.6)

or, equivalently:

˙̄x(t) =
1− ∂xv(t, x̄(t))

v(t, x̄(t))
+ χ. (6.2.7)

Of note, precisely because of the regularity v(t) ∈W 2,∞(R), we expect the ODE (6.2.7) to
be well-defined.

The strategy of proof consists in applying a fixed point mapping to the curve t 7→ x̄(t).
More precisely, the main steps consist in (i) given the curve x̄( · ), solving Equation (6.2.1a).
(ii) Given the solution ρ̃[x̄] and thus ρ[x̄], we show that there exists a unique solution ȳ(t)
locally in time, such that: ∫ +∞

ȳ(t)
ρ[x̄](t, x)dx = 1. (6.2.8)

Differentiating this relation leads to:

0 =− ˙̄y(t)ρ(t, ȳ(t)) +

∫ +∞

ȳ(t)

(
∂xxρ(t, x)− ∂x (χ1x < x̄(t)ρ(t, x)) + 1x≥x̄(t)ρ(t, x)

)
dx

=− ˙̄y(t)ρ(t, ȳ(t))− ∂xρ(t, ȳ(t)+) + χ1ȳ(t)<x̄(t)ρ(t, ȳ(t)) + P (t, x̄(t) ∨ ȳ(t)),

where P (t, x) :=
∫ +∞
x ρ(t, y)dy. By noticing that ∂xv

v = ∂xρ
ρ + χ1 ·≥x̄(t), we can rearrange

terms and obtain the following ODE:{
˙̄y(t) = χ− ∂xv(t,ȳ(t))

v(t,ȳ(t)) + P (t,x̄(t)∨ȳ(t))
ρ(t,ȳ(t))

ȳ(0) = 0
. (6.2.9)

We will show that the ODE (6.2.9) is well-posed, which then defines a mapping x̄ 7→ ȳ. (iii)
We show that the mapping x̄ 7→ ȳ is a contraction on a small enough time interval, which
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established by Banach’s Fixed Point Theorem, the existence and uniqueness of a fixed
point. For this fixed point x̄, ODE (6.2.9) and ODE (6.2.6) coincide, which establishes a
unique solution to Equation (6.1.1).

Exactly as in Chapter 2, in order to have sufficient regularity on ṽ given by Equation
(6.2.4), we need some type of regularity on ˙̄x. Yet, from ODE (6.2.9), it becomes clear that
the mapping x̄ 7→ ȳ will be at most Lipschitz continous in W 1,∞. In order to circumvent
this issue, we consider the mapping x̄ 7→ ȳ in W 1,p, with p ∈ (4,+∞). Considering
the mapping x̄ 7→ ȳ in W 1,p leads through a time integration of Equation (6.2.9) to a
contraction in W 1,p for small enough time. Furthermore, here in this proof at a crucial
point, when we show that ṽ(t) ∈ W 2,∞(R), we need a uniform bound on ‖ ˙̄x‖∞ for the
curves x̄( · ) considered, contrary to what was need in the well-posedness proof in Chapter
2. Hence, we introduce the set:

B(A) :=
{
ȳ( · ) ∈W 1,p([0, T ])

∣∣‖y‖W 1,p ≤ A and ‖ ˙̄x‖∞ ≤ A
}
, (6.2.10)

with the norm ‖y‖W 1,p = ‖y‖p+‖ẏ‖p and p ∈ (4,∞). B(A) is a closed subset ofW 1,p([0, T ])
and thus is complete. We will then construct the mapping x̄ ∈ B(A) → ȳ ∈ B(A), which
for A large enough and T small enough, will be a contraction. Finally, B(A) being a
complete normed space, we may apply Banach’s Fixed Point Theorem.

Next, we recall bounds from Chapter 2. The evolution operator of the heat equation
et∂xx on the real-line is defined as follows:

et∂xxf(x) =
1√
4πt

∫
R
e−

(x−y)2

4t f(y)dy. (6.2.11)

Although, we will only briefly sketch the proof in this Section and refer the reader to
Chapter 2 for more details, we recall the functional inequalities that operator et∂xx satisfies
and that are used in order to establish the result in this Section:∥∥∥et∂xxf∥∥∥

q
≤ Ct−

1
2

(
1
p
− 1
q

)
‖f‖p ,∥∥∥et∂xx∂xf∥∥∥

q
≤ Ct−

1
2

(
1
p
− 1
q

+1
)
‖f‖p .∥∥∥et∂xxf∥∥∥

C0,α(R)
≤ Ct−α2 ‖f‖∞ ,∥∥∥et∂xxf∥∥∥

C1,α(R)
≤ Ct− 1+α

2 ‖f‖∞ ,∥∥∥∂xet∂xxf∥∥∥
∞
≤ Ctα−1

2 ‖f‖C0,α(R) ,∥∥∥∂xxet∂xxf∥∥∥
∞
≤ Ctα2−1 ‖f‖C0,α(R) .

(6.2.12)

(6.2.13)

(6.2.14)

(6.2.15)

(6.2.16)

(6.2.17)

Let us now move to the statement of a well-posedness theorem locally in time under
the condition that ρ0(x̄(0)) be bounded below a positive constant.

Theorem 6.2.1. Let p ∈ (4,∞), α ∈
(

2
p , 1− 2

p

)
. Suppose that v0 := ρ0

U ∈ W 2,∞(R).
Additionally suppose that there exists ξ > 0 and m, such that for x ∈ [−ξ, ξ]:

ρ0(x) ≥ m. (6.2.18)

Given A > 0 big enough (depending on χ, p, α,
∥∥v0
∥∥
W 2,∞ ,m, ξ) there exists a small

enough T > 0, such that for any curve x̄ ∈ B(A), there exists a unique solution ρ̃ to
Equation (6.2.1a). Moreover, ρ̃ ∈ L∞([0, T ],W 1,∞(R)) and v = ρ̃

U ∈ L∞([0, T ], C1,α(R)).
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Furthermore, there exists a unique curve x̄ ∈ B(A), such that the solution ρ̃ to System
(6.2.1a) satisfies in addition Condition (6.2.1b). In other terms, ρ̃ is the unique solution
of (6.2.1).

Proof. We now move on to the Proof of Theorem 6.2.1. We skip many of the technicalities
and refer the reader to Chapter 2.

Step 1: Existence and uniqueness of a (mild) solution ṽ to Equation (6.2.4).

Fix x̄ ∈ B(A). Consider the affine map F : L∞
(
[0, T ], C1,α(R)

)
→ L∞

(
[0, T ], C1,α(R)

)
,

for t ∈ [0, T ]:

F [u](t) = et∂zzv0 +

∫ t

0
e(t−s)∂zz (β(s)∂zu(s) + γ(s)u(s)) ds. (6.2.19)

Following the proof of Chapter 2, we can show that F is a contraction for T > 0 small
enough. Hence there exists a unique ṽ ∈ L∞

(
[0, T ], C1,α(R)

)
solution to Equation (6.2.1a),

for x̄ fixed.
Furthermore we can show by the same arguments that the mapping x̄ ∈ B(A) 7→ ṽ ∈

L∞
(
[0, T ], C1,α(R)

)
is Lipschitz continuous.

Step 2: Enhanced regularity on ṽ ∈ L∞([0, T ],W 2,∞(R)).

By the preceding point, we have that:

ṽ(t) = et∂zzv0 +

∫ t

0
e(t−s)∂zz (β(s)∂z ṽ(s) + γ(s)ṽ(s)) ds.

For the first term, we have that et∂zzv0 ∈ L∞([0, T ],W 2,∞(R)).
Then we set f(t, z) := β(t, z)∂z ṽ(t, z) + γ(t, z)ṽ(t, z), g(t, z) := f(t, z) − Jf(t, · )Kz01z≥0

and h(t) := Jf(t, · )Kz0 , such that:

β(t, z)∂z ṽ(t, z) + γ(t, z)ṽ(t, z) = f(t, z) = g(t, z) + h(t)1z≥0.

By recalling that β(t, z) = ˙̄x(t)− χ− χ1z≥0 and γ(t, z) = χ
((
χ+ 1

χ

)
− ˙̄x
)
1z>0, we can

show by elementary analysis arguments that for t ∈ [0, T ]:

‖g(t)‖C0,α(R) ≤ C (1 + | ˙̄x(t)|) ‖ṽ(t)‖C1,α(R) .

Hence, by applying Inequality (6.2.17) and Hölder’s Inequality:∥∥∥∥∂zz ∫ t

0
e(t−s)∂zzg(s)ds

∥∥∥∥
∞

≤C
∫ t

0
(1 + | ˙̄x(s)|) (t− s)α2−1 ‖ṽ(s)‖C1,α(R) ds

≤C ‖ṽ‖L∞([0,T ],C1,α(R))

(
T

1
p + ‖ ˙̄x‖p

)∥∥∥t 7→ t
α
2
−1
∥∥∥

p
p−1

,

where the L
p
p−1 -integrability of t 7→ t

α
2
−1 is guaranteed by the condition α > 2

p .
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The remaining term is treated by using explicit computations:∫ t

0
∂zze

(t−s)∂zzh(s)1z≥0ds

=

∫ t

0
∂ze

(t−s)∂zzh(s)δ0ds

=−
∫ t

0

zh(s)
√

4π(t− s) 3
2

e
− z2

4(t−s)ds

=−
∫ ∞
|z|√
t

h
(
t− z2

u2

)
2π

1
2

e−u
2
du , where u =

|z|√
(t− s)

.

Hence, by the integrability of e−u2 :∥∥∥∥∫ t

0
∂zze

(t−s)∂zzh(s)1z≥0ds

∥∥∥∥
∞
≤ C ‖h‖∞

But we clearly have that:

‖h‖∞ ≤ C (1 + ‖ ˙̄x‖∞) ≤ C(1 +A),

by the definition of B(A), see (6.2.10). Of note, here it is crucial to suppose that ‖ ˙̄x‖∞
can be uniformly bounded (contrary to what was needed in the proof of Chapter 2). In
fact, under the mere condition that ‖ ˙̄x‖p is uniformly bounded,

∫ t
0 ∂zze

(t−s)∂zzh(s)1z≥0ds
is not bounded in L∞.

Finally, combining all these elements, we obtain that ṽ ∈ L∞([0, T ],W 2,∞(R)).

Step 3: Definition of the map x̄ 7→ ȳ: Existence and Uniqueness of the solution∫ +∞
· ρ(t, x)dx = 1.

By considering ρ in the initial frame (t, x) and using the fact that ρ0 is bounded below
by m on the interval [−ξ, ξ], we start by showing that for T small, we have for x ∈ [−ξ, ξ]
and t ∈ [0, T ]:

ρ(t, x) ≥ m

2
.

This can be done through elementary estimates on the heat kernel (see Chapter 2). Fur-
thermore, using the fact that v ∈ C([0, T ], L∞(R)), which can easily be shown, we show
that for T > 0 small enough, for t ∈ [0, T ], there exists ȳ(t) ∈ [−ξ, ξ], such that:∫ +∞

ȳ(t)
ρ[x̄](t, x)dx =

∫ +∞

ȳ(t)
v[x̄](t, x)e−χ(x−x̄(t))1x≥x̄(t)dx = 1. (6.2.20)

From there on, by differentiating this relation, we obtain ODE (6.2.9), which we recall:{
˙̄y(t) = χ− ∂xv(t,ȳ(t))

v(t,ȳ(t)) + P (t,x̄(t)∨ȳ(t))
ρ(t,ȳ(t))

ȳ(0) = 0
.

Notice that ρ[x̄](t, x) ≥ m
2 , v ∈ L∞([0, T ],W 2,∞(R)), which is a consequence of ṽ ∈

L∞([0, T ],W 2,∞(R)) and ρ ∈ L∞([0, T ],W 1,∞(R)), which is a consequence of Factorization
(6.2.5) and v ∈ L∞([0, T ],W 1,∞(R)). Finally, we have P (t, x̄(t)∨ · ) ∈ L∞([0, T ],W 1,∞

loc (R)),
since ∂xP (t, x̄(t) ∨ x) = −ρ(t, x̄(t) ∨ x). Thus ODE (6.2.9) is well-posed. Moreover, if we
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choose A big enough, then ȳ ∈ B(A). Thus we have defined the mapping x̄ ∈ B(A) 7→ ȳ ∈
B(A).

Step 4: Unique Fixed Point of the map x̄ ∈ B(A) 7→ ȳ ∈ B(A).

Given x̄1, x̄2 ∈ B(A), consider the associated ȳ1, ȳ2 ∈ B(A), as well as v1, v2, P1, P2, ρ1, ρ2.
Set:

Fi(t, x) := χ− ∂xvi(t, x)

vi(t, x)
+
Pi(t, x̄i(t) ∨ x)

ρi(t, x)
. (6.2.21)

We start by the following bound:

| ˙̄y1(t)− ˙̄y2(t)|
= |F1(t, ȳ1(t))−F2(t, ȳ2(t))|
≤ |F1(t, ȳ1(t))−F1(t, ȳ2(t))|+ |F1(t, ȳ2(t))−F2(t, ȳ2(t))| . (6.2.22)

For x ∈ [−ξ, ξ], t ∈ [0, T ], by using that ρ1(t, x) ≥ m
2 and therefore v1(t, x) ≥ Cm, we have

that:
|∂xF1(t, x)| ≤ C

m2

(
‖v1‖2L∞([0,T ],W 2,∞(R)) + ‖ρ1‖2L∞([0,T ],W 1,∞(R))

)
.

Hence:
|F1(t, ȳ1(t))−F1(t, ȳ2(t))| ≤ C|ȳ1(t)− ȳ2(t)|. (6.2.23)

For the second term, we observe that:

|F1(t, ȳ2(t))−F2(t, ȳ2(t))|
≤C

(
‖v1 − v2‖L∞([0,T ],W 1,∞(R)) + ‖ρ1 − ρ2‖L∞([0,T ],L∞(R))

+ ‖(t, x) 7→ P1(t, x̄1(t) ∨ x)− P2(t, x̄2(t) ∨ x)‖L∞([0,T ],L∞(R))

)
.

Now take (t, y) ∈ [0, T ]× R, we have:

|∂xv1(t, y)− ∂xv2(t, y)|
=|∂z ṽ1(t, y − x̄1(t))− ∂z ṽ2(t, y − x̄2(t))|
≤|∂z ṽ1(t, y − x̄1(t))− ∂z ṽ1(t, y − x̄2(t))|+ |∂z ṽ1(t, y − x̄2(t))− ∂z ṽ2(t, y − x̄2(t))|
≤ ‖∂zz ṽ1‖∞ |x̄1(t)− x̄2(t)|+ ‖∂z ṽ1 − ∂z ṽ2‖∞ .

Similarily:
|P1(t, y)− P2(t, y)|

=|P̃1(t, 0 ∨ (y − x̄1(t)))− P̃2(t, 0 ∨ (y − x̄2(t)))|
≤|P̃1(t, 0 ∨ (y − x̄1(t)))− P̃1(t, 0 ∨ (y − x̄2(t)))|

+ |P̃1(t, 0 ∨ (y − x̄2(t)))− P̃2(t, 0 ∨ (y − x̄2(t)))|

≤ ‖ρ̃1‖∞ |x̄1(t)− x̄2(t)|+ 1

χ
‖ṽ1 − ṽ2‖∞ ,

where the last bound follows from the observation, that:∣∣∣∣∣
∫ +∞

0∨(y−x̄1(t))
ρ̃1(t, z)dz +

∫ +∞

0∨(y−x̄2(t))
ρ̃2(t, z)dz

∣∣∣∣∣
≤
∫ +∞

0
e−χz|ṽ1(t, z)− ṽ2(t, z)|dz

≤ 1

χ
‖ṽ1 − ṽ2‖∞ .
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The remaining bounds are dealt with in a similar fashion. Finally, we have:

|F1(t, ȳ2(t))−F2(t, ȳ2(t))|
≤C

((
‖ṽ1‖L∞([0,T ],W 2,∞(R)) + ‖ρ̃1‖L∞([0,T ],W 1,∞(R))

)
|x̄1(t)− x̄2(t)|

+ ‖ṽ1 − ṽ2‖L∞([0,T ],W 1,∞(R)) + ‖ρ̃1 − ρ̃2‖∞
)

(6.2.24)

Let us recall that x̄ ∈ B(A) 7→ ṽ ∈ L∞([0, T ], C1,α(R)) is Lipschitz continuous and so is
x̄ ∈ B(A) 7→ ρ̃ ∈ L∞([0, T ] × R)). Then, by using ‖x̄1 − x̄2‖∞ ≤ T

1− 1
p ‖ ˙̄x1 − ˙̄x2‖p and

bringing Bounds (6.2.22,6.2.23,6.2.24) together, we obtain:

| ˙̄y1(t)− ˙̄y2(t)| ≤ C (|ȳ1(t)− ȳ2(t)|+ ‖x1 − x2‖W 1,p)

By Grönwall’s lemma, we obtain:

‖ȳ1 − ȳ2‖∞ ≤
(
eCT − 1

)
‖ ˙̄x1 − ˙̄x2‖W 1,p .

Bootstrapping the penultimate estimate, we can prove that:

‖ ˙̄y1 − ˙̄y2‖p ≤ CT
1
p eCT ‖ ˙̄x1 − ˙̄x2‖W 1,p .

By noticing that ‖ȳ1 − ȳ2‖p ≤ T
1
p ‖ȳ1 − ȳ2‖∞ and using the two last inequalities, we find

that the map x̄ ∈ B(A) 7→ ȳ ∈ B(A) is a contraction in the W 1,p-norm for T > 0
small enough. Thus, we have a unique fixed point, which concludes the proof of Theorem
6.2.1.

6.3 Asymptotic Behavior of x̄(t)

In this Section, we present preliminaries on the asymptotic behavior of x̄(t), when t→ +∞.
Of course, we implicitly assume that ρ, the solution to Equation (6.1.1) exists globally
in time. We recall that following the discussion in the Introduction, we conjecture the
following asymptotic behavior:

x̄(t) =


2t− 3

2 log(t) +O(1) if χ < 1

2t− 1
2 log(t) +O(1) if χ = 1(

χ+ 1
χ

)
+O(1) if χ > 1

.

In this Section, we prove the following results, leaving the remaining questions to future
investigations: 

x̄(t) ≤ 2t− 3
2 log(t) +O(1) , if χ < 1

2t− 1
2 log(t) +O(1) ≤ x̄(t) ≤ 2t+O(1) , if χ = 1

x̄(t) ≤
(
χ+ 1

χ

)
+O(1) , if χ > 1

6.3.1 A Simple Upper Bound on x̄(t)

We start by proving a simple upper bound on x̄(t). This upper bound corresponds to
the conjectured upper bound in the case χ > 1, but not in the case χ ≤ 1. We consider
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Equation (6.1.1) in the moving frame (t, z) = (t, x− x̄(t)). This leads to Equation (6.2.1),
which we recall: 

∂tρ̃− ∂zzρ̃− ˙̄x(t)∂zρ+ ∂z (1z<0ρ̃) = 1z≥0ρ̃∫ +∞

0
ρ̃(t, z)dz = 1

Proposition 6.3.1. In the case χ > 1, we suppose that:∫
R
ρ0(z)e

− z
χ < +∞.

In the case χ ≤ 1, we suppose that:∫
R
ρ0(z)e−z < +∞.

Then, there exists a constant C ≥ 0, such that:

x̄(t) ≤ σ∗t+ C

Proof. • Let us suppose that χ > 1 and set:

I(t) :=

∫
R
e
z
χ ρ̃(t, z)dz

Deriving I and integrating by parts, then leads to:

İ =

∫
R
e
z
χ (∂zzρ̃+ ˙̄x∂zρ̃− ∂z (χ1z<0ρ̃) + 1z≥0ρ̃) dz

=
I

χ2
−

˙̄xI

χ
+ I

=
˙σ∗ − ˙̄ (t)x

χ
I.

Therefore, we have:

I(t) = I(0) exp

(
σ∗t− x̄(t)

χ

)
.

But, by using the Constraint (6.2.1b), we find that:

I(0) exp

(
σ∗t− x̄(t)

χ

)
= I(t) =

∫
R
e
z
χ ρ̃(t, z)dz ≥

∫ +∞

0
ρ̃(t, z)dz = 1.

Taking the logarithmic and rearranging the terms, we obtain:

x̄(t) ≤ σ∗t+ χ ln(I(0))

• In the case χ ≤ 1, we set:

I(t) :=

∫
R
ezρ̃(t, z)dz

Deriving I, then leads to:

İ = I − ˙̄xI +

∫
R

(χ1z<0 + 1z≥0) ρ̃(t, z)dz ≤ (2− ˙̄x)I.

Hence:
I(t) ≤ I(0) exp (2t− x̄(t)) .

The rest of the proof goes as in the case χ > 1.
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6.3.2 A Comparison Principle for P

We recall that P (t, x) =
∫ +∞
x ρ(t, y)dy satisfies Equation (6.1.7) in the stationary frame of

reference:
∂tP = ∂xxP + min{1, P} − χ1P≥1∂xP.

The Equation on P is interesting, as it encodes in a local manner, whether the density
is in the Go regime (when P > 1) or the Grow regime (when P ≤ 1). This will give rise to
a comparison principle, which was for example lacking for System (6.1.2). Indeed, suppose
P1, P2 two solutions of Equation (6.1.7), such that P1(0, · ) ≤ P2(0, · ), and that there
exists (t, x) ∈ R+ × R, such that P1(t, x) = P2(t, x). Suppose that P1(t, x) = P2(t, x) > 1,
then both solutions are in the Go regime and locally satisfy Equation:

∂tPi = ∂xxPi − χ∂xPi + 1,

which clearly satisfies a comparison principle. Similarily when the solutions are in the
Grow regime. Hence, the only case, when solutions may not remain ordered, is when
P1(t, x) = P2(t, x) = 1. We believe that at P = 1, there exists no mechanism, which
guarantees that solutions remain ordered. However, if we construct a subsolution P (resp.
supersolution P ), which has a convex (resp. concave) cusp at P = 1 (resp. P = 1),
then because of the cusp, it is impossible that the solution P and the subsolution (resp.
supersolution) touch first, where P = 1. This leads to the two following propositions:

Proposition 6.3.2. Let P , such that :

1. P (0, · ) < P (0, · )

2. For every (t, x) such that P (t, x) = 1, we have:

∂xP (t, x−) < ∂xP (t, x+)

3. P satisfies:
∂tP ≤ ∂xxP + min{1, P} − χ1P≥1∂xP

Then P < P .

Proposition 6.3.3. Let P , such that :

1. P (0, · ) < P (0, · )

2. For every (t, x) such that P (t, x) = 1, we have:

∂xP (t, x−) > ∂xP (t, x+)

3. P satisfies:
∂tP ≥ ∂xxP + min{1, P} − χ1P≥1∂xP

Then P > P .

The proof of both propositions follows from the observations just above. We briefly
sketch the proof of Proposition 6.3.2. The proof of Proposition 6.3.3 follows mutatis mu-
tandis.
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Proof of Proposition 6.3.2. We argue by contradiction. Let t0 > 0 be the first time, such
that there exists x0 ∈ R, such that P (t0, x0) = P (t0, x0). Because of the remarks above,
this can only happen, when P (t0, x0) = P (t0, x0) = 1. But by the definition of the left and
right derivatives, we have:

0 ≤ P (t0, x)− P (t0, x) =
(
∂xP (t0, x0)− ∂xP (t0, x

+
0 )
)

(x− x0) + o((x− x0)) for x > x0

0 ≤ P (t0, x)− P (t0, x) =
(
∂xP (t0, x0)− ∂xP (t0, x

−
0 )
)

(x− x0) + o((x− x0)) for x < x0

But this implies that:

∂xP (t0, x
+
0 ) ≤ ∂xP (t0, x0) ≤ ∂xP (t0, x

−
0 ),

which contradicts Item 2 in Proposition 6.3.2.

6.3.3 A Subsolution in the Case χ = 1

In this Subsection we construct a subsolution for the χ = 1 case, which leads to the
conjectured lowerbound x̄(t) ≥ 2t− ln(t)

2 −K.

Proposition 6.3.4. Suppose that:

1. There exists t0 > e
1
e and A > 0, such that for every x ≥ A:

e
− x2

4t0 ≤ P (0, x)

2. There exists B > 0 and β ∈ R, such that for every x ≤ −B:

−x+ α ≤ P (0, x)

Then, there exists a constant K ∈ R, such that:

x̄(t) ≥ 2t− ln(t)

2
−K

Proof. We start by some elementary results, which will be useful in order to construct a
subsolution. Let k ∈

(
e

1
e ,
√
t0

)
. Set Gk(t, x) = k√

t
et−

x2

4t and denote xk(t) the nonnegative
solution to the Equation Gk(t, · ) = 1 for t ≥ t0. By elementary operations, we find that:

xk(t) =

√
4t2 − t ln(t)

2
+ ln(k)

ẋk(t) =
2− ln(t)

8t − 1
8t + ln(k)

4t√
1− ln(t)

8t2
+ ln(k)

4t

(6.3.1)

(6.3.2)

k > e
1
e , implies that 1

2 ln(k) < e = inft≥1
t

ln(t) . Therefore we have that:

2√
1− ln(t)

8t2
+ ln(k)

4t

< 2.

k <
√
t0 implies that ln(t) ≥ 2 ln(k) for t ≥ t0. Hence:

− ln(t)
8t − 1

8t + ln(k)
4t√

1− ln(t)
8t2

+ ln(k)
4t

< 0.
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Thus:
ẋk(t) ≤ 2. (6.3.3)

Finally k <
√
t0 implies also that t ln(t) > 2 ln(k) for t ≥ t0. Therefore, by Equation

(6.3.1):
xk(t)

2t
< 1. (6.3.4)

Let us now construct a subsolution. For (t, x) ∈ R+ × R, set:

P (t, x) =

{
k

t+t0
e
t+t0− x2

4(t+t0) if x > xk(t+ t0)

−(x− xk(t+ t0)) + 1 if x ≤ xk(t+ t0)

Then we have that P has a convex cusp at x = xk(t+ t0) by using (6.3.4):

∂xP (t, x̃(t)−) = −1 ≤ −xk(t+ t0)

2(t+ t0)
= ∂xP (t, x̃(t)+),

Furthermore P is a subsolution for x > xk(t+ t0) as, there it is a solution to the linearized
F/KPP Equation. For x < x̃(t):

∂tP − ∂xxP − 1 + ∂xP = ẋk(t)− 2 ≤ 0,

as a consequence of (6.3.3). Therefore P is a subsolution.
If we consider a translation of P , (t, x) 7→ P (t, x+ c). Then for c > 0 large enough, we

have that P (0, · + c) ≤ P (0, · ), by the assumptions on the initial datum. Thus, we can
apply the comparison principle given by Proposition 6.3.2. This then leads to:

x̄(t) ≥ xk(t+ t0)− c ≥ 2t− ln(t)

2
−K,

for a constant K ∈ R.

6.3.4 A Supersolution in the Case χ < 1

In this Subsection we construct a supersolution P in the case χ < 1 and show the lower
bound x̄(t) ≤ 2t − 3

2 ln(t) + K. To do se we consider Equation (6.1.7) in the frame
(t, z) =

(
t, x− 2t+ 3

2 ln(t+ t0)
)
, which leads to:

∂tP = ∂zzP +

(
2− 3

2(t+ t0)

)
∂zP − χ1P>1∂zP + min{1, P}. (6.3.5)

The exact shape of P may seem at first rather involved. However, the reasoning is similar
than in the preceding Subsection: the supersolution P is the concatenation of a supersolu-
tion of Equation (6.3.5) when P ≤ 1 and a linear function when P > 1. We start by giving
a heuristics of the shape of P in the region P ≤ 1, which comes from considering Equation
(6.3.5) in self-similar variables. In [96], it has already been shown that considering these
types of problems in self-similar variables may turn out to be very fruitful. Then, we
define the supersolution P in the variables (t, z) and show that this leads to the following
proposition:

Proposition 6.3.5. Suppose that:

1. There exists t0 > 0 and A > 0, such that for every z ≥ A:

P (0, z) ≤ e−
z2

4t0
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2. There exists B > 0 and β > 0, such that for every z ≤ −B:

P (0, z) ≤ −z
2− χ + β (6.3.6)

Then, there exists a constant K ∈ R, such that:

x̄(t) ≤ 2t− 3 ln(t)

2
+K

Let us note, that the traveling wave in the proper moving frame satisfies ρ∞(z) =
1

2−χ ((1− χ)z1z≥0 + 1) e−z1z≥0 and thus for z ≤ 0, we have
∫ +∞
z ρ(t, y)dy = −z

2−χ + 1,
which makes Assumption (6.3.6) reasonable. In fact, from the proof of Proposition 6.3.5,
it becomes clear that we can slighlty relax Assumption (6.3.6), but for the sake of concision,
we will not do so here.

Heuristics: Self-similar Variables

We start by giving a heuristics for the specific shape of the supersolution. Let us assume
that the result is true and that for instance for z ≥ 0, we have P (z) ≤ 1. Then inspired by
[96], we consider Equation (6.3.5) in self-similar variables (τ, η) =

(
ln(t+ t0), z√

t+t0

)
. Set:

ω(τ, η) := e
η2

8
− τ

2P

(
9

4ε2
(eτ − 1) ,

3

2ε
ηe

τ
2

)
.

Then, we obtain for η > 0 (assuming that P (z) ≤ 1 for z ≥ 0):

∂τω +Mω = εe−
τ
2

(η
4
ω − ∂ηω

)
,

whereM := −∂ηη +
(
η2

16 − 3
4

)
.

Now suppose that ω(η) := ηe−
η2

8 , which is in the nullspace ofM. Then :

∂τω +Mω − εe− τ2
(η

4
ω − ∂ηω

)
= εe−

τ
2

(
1

η
− 4η

)
ω

Hence ω is not a supersolution, but it may be reasonable to expect, that a small pertur-
bation of ω becomes a supersolution. Now consider:

ω(η) := ηeR(τ)−( 1
8
−β(τ))η2

, (6.3.7)

with R(τ) = −Cεe− τ2 , β(τ) = εe−
τ
2 . Then we obtain:

1

ω

(
∂τω +Mω + εe−

τ
2

(
ωη −

η

4
ω
))

=Ṙ+ β̇η2 + βη2 − 4β − 4β2η2 + εe−
τ
2

(
1

η
− η

2

)
+ 2εβe−

τ
2 η

≥εe− τ2
(
C

2
+

3

2
η2 − 4− 4εe−

τ
2 η2 +

1

η
− η

2

)
=εe−

τ
2

((
3

2
− 4εe−

τ
2

)
η2 +

1

η
− η

2
− 4 +

C

2

)
=εe−

τ
2

(
η2

2
+

1

η
− η

2
− 4 +

C

2

)
, under the condition ε ≤ 1

4

But the function η 7→ η2

2 + 1
η −

η
2 − 4 is clearly bounded below, hence we can choose C > 0

big enough, so that ω becomes a supersolution.
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Construction of a Supersolution

In this Subsection, we prove Proposition 6.3.5 by constructing a supersolution P , whose
shape for z ≥ 0 large corresponds exactly to ω given by (6.3.7), but in standard variables.

Proof of Proposition 6.3.5. Let:

F (t, z) := αze−ze
− z2

4(t+t0) e
1√
t+t0

(
z2

t+t0
−C
)
. (6.3.8)

This is the equivalent in standard variables of ω given by (6.3.7). Then:

∂tF =

(
z2

4(t+ t0)2
− 3z2

2(t+ t0)
5
2

+
C

2(t+ t0)
3
2

)
F

∂zF =

(
1

z
− 1− z

2(t+ t0)
+

2z

(t+ t0)
3
2

)
F

∂zzF =

(1

z
− 1− z

2(t+ t0)
+

2z

(t+ t0)
3
2

)2

+

(
− 1

z2
− 1

2(t+ t0)
+

2

((t+ t0))
3
2

)F

=

(
1 +

z2

4(t+ t0)2
+

4z2

(t+ t0)3
− 2

z
− 3

2(t+ t0)
+

6

((t+ t0))
3
2

+
z

(t+ t0)
− 4z

(t+ t0)
3
2

− 2z

(t+ t0)
5
2

)
F

Hence :

1

F

(
∂tF − ∂zzF −

(
2− 3

2(t+ t0)

)
∂zF − F

)
=

z2

2(t+ t0)
5
2

(
1− 8√

t+ t0

)
+

3

2z(t+ t0)
− 3z

4(t+ t0)2
+

3z

(t+ t0)
5
2

+
C
2 − 6

(t+ t0)
3
2

≥ z2

4(t+ t0)
5
2

− 3z

4(t+ t0)2
+

3z

(t+ t0)
5
2

+
C
2 − 6

(t+ t0)
3
2

, under the condition that
8√
t0
≤ 1

2

=
z2

4(t+ t0)
5
2

− 3z

4(t+ t0)2
+

3z

(t+ t0)
5
2

+
C
2 − 6

(t+ t0)
3
2

=
z

4(t+ t0)
5
2

(
4z − 3

√
t+ t0

)
+

C
2 − 6

(t+ t0)
3
2

≥−
9
64 + C

2 − 6

(t+ t0)
3
2

≥0 , under the condition that C ≥ 393

32
.

Set Gα(z) := αze−z with α > e, so that Gα( · ) = 1 has two positive roots. Consider zα
the biggest root and by an easy asymptotic expansion, we have that zα ∼ lnα. Let ε > 0,
and take t0 > 0 and α > 0 big enough, such that for every t ≥ 0, we have:∣∣∣∣∣ 1

zα
− zα

2(t+ t0)
+

2zα

(t+ t0)
3
2

∣∣∣∣∣ < ε (6.3.9)
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Take t0 big enough, then F (t, · ) = 1 also has two positive solutions and we denote z̃α(t)
the biggest root. Then, for t0 big enough, we have that for all t ≥ t0:

∣∣∣∣ 1

zα
− 1

z̃α(t)

∣∣∣∣ < ε

3
,

∣∣∣∣ zα
2(t+ t0)

− z̃α(t)

2(t+ t0)

∣∣∣∣ < ε

3
and

∣∣∣∣∣ 2zα

(t+ t0)
3
2

− 2z̃α(t)

(t+ t0)
3
2

∣∣∣∣∣ < ε

3
(6.3.10)

Finally, notice that :

∂zF (t, z̃α(t)) =

(
1

z̃α(t)
− 1− z̃α(t)

2(t+ t0)
+

2z̃α(t)

(t+ t0)
3
2

)
F (t, z̃α(t))

=
1

z̃α(t)
− 1− z̃α(t)

2(t+ t0)
+

2z̃α(t)

(t+ t0)
3
2

(6.3.11)

Combining (6.3.9,6.3.10,6.3.11), we obtain:

|∂zF (t, z̃α(t)) + 1| ≤ 2ε (6.3.12)

Let ε > 0 be small enough and A ∈
(

1+ε
2−χ , 1− 2ε

)
. Consider for (t, z) ∈ R+ × R:

P (t, z) =

{
F (t, z) if z ≥ z̃α(t)
−A(z − z̃α(t)) + 1 if z < z̃α(t)

Then, by Bound (6.3.12):

−∂zP (t, z̃α(t)+) ≥ 1− 2ε > A = −∂zP (t, z̃α(t)−)

Hence P has a concave cusp at z = z̃α(t).
For z < z̃α(t) :

∂tP − ∂zzP − 1 +

(
χ− 2 +

3

2(t+ t0)

)
∂zP

=A ˙̃zα(t) +A(2− χ)− 1 +
3A

2(t+ t0)

≥A ˙̃zα(t) + ε+
3A

2(t+ t0)

But we can always choose t0 > 0 big enough so that
∣∣∣A ˙̃zα(t) + 3A

2(t+t0)

∣∣∣ < ε, since żα(t)→ 0,

when t→ +∞. Thus P is a supersolution.
Finally, as in the case of Proposition 6.3.4, we consider a translation of P , (t, x) 7→

P (t, x − c). Then for c > 0 large enough, we have that P (0, · − c) ≥ P (0, · ) by the
Assumptions of Proposition 6.3.5. Thus, we can apply the comparison principle given by
Proposition 6.3.3. This then leads to:

x̄(t) ≤ 2t− 3 ln(t)

2
+K,

for a constant K ∈ R.
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6.4 Asymptotic Stability of the Traveling Wave in the Case
χ > 1

In this Section, we will prove that the traveling wave with minimal velocity σ∗ = χ + 1
χ

in the case χ > 1 is asymptotically stable. The proof is largely inspired by a similar
result in [39] for a model of chemotactic clustering in E. coli. The strategy of proof can be
summarized as follows: we consider the linearization of the problem around the stationary
state given by the traveling wave. In a certain L2-setting, the evolution operator e−tL of
the linearized problem leads to an exponential convergence of the nonlinear problem to the
nullspace of L under a small perturbation condition. In addition, the nonlinear problem
satisfies a conservation law. This conservation law then selects a unique element in the
nullspace of L, which corresponds to the traveling wave. Although the line of reasoning is
an adaptation of the proof in [39], we stress that the proof here is less involved, as there,
the authors have used an improved Poincaré inequality in a weighted L2-space, whereas
here a more standard Poincaré inequality is sufficient.

We consider the following Equation with constraint, which has already been introduced
earlier, see (6.2.1), but dropping the diacritical˜:

∂tρ− ∂zzρ− ˙̄x(t)∂zρ+ ∂z (1z<0ρ) = 1z≥0ρ∫ +∞

0
ρ(t, z)dz = 1.

(6.4.1a)

(6.4.1b)

Equation (6.4.1) has the unknowns (ρ, ˙̄x), where ˙̄x( · ) can roughly be seen as a Lagrange
multiplier associated with Constraint (6.4.1b).

(ρ∞(z), σ∗) =
(
χe−χz1z≥0 , χ+ 1

χ

)
is a stationary solution to Equation (6.4.1). Con-

sider v = ρ
ρ∞

, then:

∂tv + Lv + ε̇(t)∂zv = 0, (6.4.2)

with Lf = −f ′′ − βf ′, β(z) = σ∗ − χ − χ1z≥0, and ε̇(t) = σ∗ − ˙̄x(t). Next, we introduce
the space L2(eV dz), where V ′ = β:

V (z) =

{
−
(
χ− 1

χ

)
z if z > 0

z
χ if z ≤ 0

(6.4.3)

For f, g ∈ L2(eV dz), we use the following notations in this Section:

‖f‖ :=

√∫
R
f2(z)eV (z)dz and 〈f, g〉 :=

∫
R
f(z)g(z)eV (z)dz. (6.4.4)

From Chapter 2, we know that the operator L is self-adjoint in the space L2(eV dz) and
we have:

〈f, Lg〉 = 〈f ′, g′〉.

Furthermore, 1 is the simple eigenvector associated with the eigenvalue 0 of L and L has a

spectral gap γ =

(
min

(
1
χ
,χ− 1

χ

)
2

)2

. From this, we obtain a Poincaré inequality in the space

L2(eV dz).
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Proposition 6.4.1. Given f ∈ H1(eV dz):∥∥∥∥f −〈f, 1

‖1‖

〉
1

‖1‖

∥∥∥∥ ≤ 1√
γ

∥∥f ′∥∥
Next, we define the perturbation from equilibrium u := v − v∞ = v − 1 and we notice

that u satisfies the following conservation law, as a consequence of (6.4.1b):

〈u(t), e−(σ−χ)z
1z≥0〉 =

∫ +∞

0
u(t, z)e−χzdz = 0 (6.4.5)

Notice that this can be rewritten under the following form by integration by parts:

0 =

∫ +∞

0
u(t, z)e−χzdz

= −
∫ +∞

0
(u(t, z)e−χz)′zdz

= −
∫ +∞

0
(u′(t, z)− χu(t, z))ze−χzdz

= −〈u′(t)− χu(t), ze−(σ−χ)z
1z≥0〉 (6.4.6)

Of note, we can obtain a second conservation law,as a consequence of the first, which is
that:

M =

∫
R
u(t, z)e−χz1z≥0dz

However this conservation law will not be used here.

The aim is to show that u(t)→ 0. To do so we introduce the following quantities :

E(t) :=
1

2
‖u‖2 =

1

2

∫
R
u(t, z)2eV (z)dz,

F (t) :=
1

2
‖∂zu‖2 =

1

2
‖w‖2 =

1

2

∫
R
w(t, z)2eV (z)dz,

G(t) :=
1

2
‖∂zzu‖2 =

1

2
‖∂zw‖2 =

1

2

∫
R

(∂zw(t, z))2 eV (z)dz,

where w := ∂zu. Furthermore, we introduce two parameters θ, φ, such that:

cos(θ) :=
〈1, e−(σ−χ)z

1z≥0〉
‖1‖

∥∥e−(σ−χ)z1z≥0

∥∥ ,
cos(φ) :=

〈1, ze−(σ−χ)z
1z≥0〉

‖1‖
∥∥ze−(σ−χ)z1z≥0

∥∥ .
(6.4.7)

(6.4.8)

It is clear that cos(θ), cos(φ) > 0 as positive multiples of integrals of positive functions.
Next, we introduce a Proposition on the dissipation rate for F :

Proposition 6.4.2. We have the following dissipation rate for F :

Ḟ = −2G− χw(t, 0)2 − ε〈w, ∂zw〉
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Proof.

Ḟ =

∫
R
w∂twe

V dz

=

∫
R
w∂z∂tue

V dz

=

∫
R
w∂z (−Lu− ε̇(t)∂zu) eV dz

=

∫
R
w (∂zzw + ∂z(βw)) eV dz − ε̇〈w, ∂zw〉

=

∫
R
w (−Lw + ∂z(β)w) eV dz − ε̇〈w, ∂zw〉

= −
∫
R
wLweV dz − χw(t, 0)2 − ε̇〈w, ∂zw〉

= −
∫
R

(∂zw)′eV dz − χw(t, 0)2 − ε̇〈w, ∂zw〉

= −2G− χw(t, 0)2 − ε̇〈w, ∂zw〉

We now state the asymptotic stability result, which is the main results of this Section:

Theorem 6.4.3. Let δ < χ, then there exist constants C(δ) > 0, C1, C2 > 0 (given by
Lemmata1 6.4.3.1, 6.4.3.4 and 6.4.3.5), such that for every η < 2γ cos2(φ), if:

√
F (0) < min

 δ

C1
,

1− η
2 cos2(φ)

C(δ)
(

C1
cos(φ)

√
γ + C2

)
 (6.4.9)

Then, we have:

‖u(t)‖2 ≤ 2F (0)

γ cos2(θ)
e−ηt (6.4.10)

Before moving on to the proof of the Theorem 6.4.3, we introduce a series of Lemmata,
whose proofs are postponed to the end of the Section.

Lemma 6.4.3.1. Let δ < χ, then there exists a constant C(δ) > 0, such that whenever
|u(t, 0)| ≤ δ, we have:

|ε̇(t)| ≤ C(δ) (|u(t, 0)|+ |w(t, 0)|)
Of note, in Lemma 6.4.3.1, no restrictions are needed on |w(t, 0)|, which is a key point,

since without this property, the present strategy of proof is bound to fail.

Lemma 6.4.3.2. Suppose that 〈f, e−(σ−χ)z
1z≥0〉 = 0, then:

cos(θ) ‖f‖ ≤
∥∥∥∥f − 〈f, 1

‖1‖〉
1

‖1‖

∥∥∥∥ ,
where cos(θ) > 0 is given by (6.4.7).

Lemma 6.4.3.3. Suppose that 〈f ′ − χf, ze−(σ−χ)z
1z≥0〉 = 0, then :

cos(φ)
∥∥f ′∥∥ ≤ ∥∥∥∥f ′ − 〈f ′, 1

‖1‖〉
1

‖1‖

∥∥∥∥ ,
where cos(φ) > 0 is given by (6.4.8).

1See just below.
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Lemma 6.4.3.4. We have that:

|u(t, 0)| ≤ C1

√
F (t)

Lemma 6.4.3.5. We have that:

|w(t, 0)| ≤ C2

√
G(t)

Proof of Theorem 6.4.3. We start by showing that under Condition (6.4.9), Ḟ ≤ 0. In fact
first by Lemma 6.4.3.4 observe that, as long as

√
F (t) < δ

C1
, we have that:

|u(t, 0)| ≤ C1

√
F (t) < δ.

Suppose by contradiction that there exists a time t0 > 0, such that
√
F (t0) = δ

C1
. Then

for all t ∈ [0, t0], we have that:

Ḟ (t)

≤− 2G+ |ε̇(t)〈w, ∂zw〉| , by Proposition 6.4.2
≤− 2G+ C(δ) (|u(t, 0)|+ |w(t, 0)|) ‖w‖ ‖∂zw‖ , by Lemma 6.4.3.1

≤− 2G+ 2C(δ)
(
C1

√
F + C2

√
G
)√

FG , by Lemmata 6.4.3.4 and 6.4.3.5

≤− 2G+ 2C(δ)

(
C1

cos(φ)
√
γ

+ C2

)√
FG , by Lemma 6.4.3.3 and Proposition 6.4.1

≤− 2G(t)

(
1− C(δ)

(
C1

cos(φ)
√
γ

+ C2

)√
F (t)

)
But, because of Conditon (6.4.9), this shows that Ḟ (0) ≤ 0, which then implies further
that Ḟ (t) ≤ 0. Hence F ( · ) is nonincreasing on the interval [0, t0], which contradicts the
definition of t0. Thus, for all time t ≥ 0, we have

√
F (t) < δ

C1
and moreover that Ḟ ≤ 0.

This leads to the following decay rate:

Ḟ ≤ −2G

(
1− C(δ)

(
C1

cos(φ)
√
γ

+ C2

)√
F (0)

)
,

by Condition (6.4.9). Using now Lemma (6.4.3.3) in combination with Proposition (6.4.1),
we obtain:

Ḟ

≤− 2γ cos2(φ)F

(
1− C(δ)

(
C1

cos(φ)
√
γ

+ C2

)√
F (0)

)
≤− ηF

Hence, by Grönwall’s Inequality:

F (t) ≤ F (0)e−ηt

Finally by Lemma 6.4.3.2 and Proposition 6.4.1, we have:

‖u(t)‖2 ≤ ‖w(t)‖2
γ cos2(φ)

≤ 2F (0)

γ cos2(θ)
e−ηt

Let us conclude this Section by given quick proofs of Lemmata 6.4.3.1-6.4.3.5.
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Proof of Lemma 6.4.3.1.

ε̇ =
1

χ
− 1− ∂zu(t, 0)

χ+ u(t, 0)

It suffices to note that when ∂zu(t, 0) = u(t, 0) = 0, we have ε̇ = 0 and that ε̇ is Lipschitz
in those two quantities as long as χ+ u(t, 0) is bounded away from 0.

Proof of Lemma 6.4.3.2. In order to prove the Lemma, we first show the following property
in Hilbert spaces. For ‖p‖ = ‖q‖ = 1, we have that:

sup
‖g‖=1,〈g,q〉=0

〈g, p〉 =
√

1− 〈p, q〉2 (6.4.11)

Consider (p, r), an orthonormal basis of span(p, q). Then g = ap + br + g⊥, where g⊥ ⊥
span(p, q), a2 + b2 + ‖g⊥‖2 = 1 and 0 = a〈p, q〉 + b〈r, q〉. We have 〈g, p〉 = a. In order
to maximize a, one need to chose g⊥ = 0 and hence a2 + b2 = 1. From this we obtain
a2
(

1 + 〈p,q〉2
〈r,q〉2

)
= 1. This leads to a2 = 〈r,q〉2

〈r,q〉2+〈p,q〉2 = 〈r, q〉2, since q ∈ span(p, r). Finally

by an easy computation, we have |〈r, q〉| =
√

1− 〈p, q〉2.
To conclude the proof of Lemma 6.4.3.2, we apply Result (6.4.11) with p = f

‖f‖ , q = 1
‖1‖

and we lower bound the sup by choosing a specific g =
e−(σ−χ)z

1z≥0

‖e−(σ−χ)z1z≥0‖ :∥∥∥∥f −〈f, 1

‖1‖

〉
1

‖1‖

∥∥∥∥2

= ‖f‖2
(

1−
〈

f

‖f‖ ,
1

‖1‖

〉2
)

≥‖f‖2
〈

e−(σ−χ)z
1z≥0∥∥e−(σ−χ)z1z≥0

∥∥ , 1

‖1‖

〉2

= cos(θ)2 ‖f‖2 ,
where cos(θ) was already defined by (6.4.7).

Proof of Lemma 6.4.3.3. In order to prove the Lemma, pick f such that 〈f ′−χf, ze−(σ−χ)z
1z≥0〉 =

0. Define h := f−c, with c :=
〈f,ze−(σ−χ)z

1z≥0〉
〈1,ze−(σ−χ)z1z≥0〉

. One then has that 〈h′, ze−(σ−χ)z
1z≥0〉 = 0.

But then we have f ′ = h′, so ‖f ′‖ = ‖h′‖ and 〈f ′, 1〉 = 〈h′, 1〉. Hence:

sup
‖f ′‖=1,〈f ′−χf,ze−(σ−χ)z1z≥0〉=0

〈
f ′,

1

‖1‖

〉
= sup
‖g′‖=1,〈g′,ze−(σ−χ)z1z≥0〉=0

〈
g′,

1

‖1‖

〉
=
√

1− cos2(φ)

The rest of the proof is mutatis mutandis the same as the proof of Lemma 6.4.3.2.

Proof of Lemma 6.4.3.4. We have that:∫
R
u′βeV = −

∫
R
u(βeV )′

= −
∫
R

(uβ′ + uβ2)eV

= χu(t, 0)−
∫
R
uβ2eV

215



Hence :
χ|u(t, 0)| ≤

∥∥u′∥∥ ‖β‖+ ‖u‖
∥∥β2

∥∥ ≤ C(
√
F +

√
E) ≤ C

√
F

The last inequality is an application of Proposition 6.4.1 in combination with Lemma
6.4.3.2.

Proof of Lemma 6.4.3.5. Same proof as Lemma 6.4.3.4, but at the end we use Proposition
6.4.1 in combination with Lemma 6.4.3.3.

Outlook

As mentioned the results exposed in this Chapter are preliminary and the questions raised
here are still under investigation. First, we believe that the special structure of the al-
ternative Go or Grow model (6.1.1) may lead to a proof of existence globally in time. In
particular the "Markovian" aspect of the Go or Grow rule here, i.e.

∫ +∞
x̄(t) ρ(t, x)dx = 1,

may turn out to be fruitful. Moreover, Equation (6.1.7) on P can also be a helpful tool.
Then, we wish to continue investigating Conjecture (6.1.4). The lower bound for χ < 1
may likely be obtained by constructing a suitable subsolution. We believe that the main
difficulty lies in the upper bound for χ = 1, since this case was also the difficult part
in the study [9] on Burgers-F/KPP Equation. Finally, an interesting perspective to this
investigation is that the proofs for the alternative Go or Grow model (6.1.1) may apply
to the free boundary problem (6.1.3) proposed in [20], where the asymptotics have been
obtained through formal computations. We are not aware of any rigorous proofs of the
asymptotics for the free boundary problem (6.1.3). In addition, the techniques may turn
out to be applicable to a wider class of Equations, such as equations of type (6.1.6) for a
wide array of possible functions ψ( · ), but this remains hypothetical to this point.
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Appendix A

Figures and Figure Supplements:
Hypoxia triggers Collective
Aerotactic Migration in
Dictyostelium discoideum

This Section contains the figures and figure supplements of Chapter 1.
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Figures and figure supplements

Hypoxia triggers collective aerotactic migration in Dictyostelium discoideum

Olivier Cochet-Escartin et al
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Figure 1. Formation and dynamics of a dense ring of cells after vertical confinement. (A) Snapshots of early

formation, scale bars: 500 mm. (B) Snapshots at longer times imaged under a binocular, scale bars: 1 mm. (C) Close

up on a ring (band with a higher density on the right hand side) already formed moving rightward and showing

different cellular shapes in the ring and behind it, scale bar: 100 mm. (D) Kymograph of cell density over 20 hr

showing the formation and migration of the highly dense ring. (E) Cell density profiles in the radial direction at

selected time points.
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Figure 1—figure supplement 1. Measurement of the confinement height 105 min after covering a cell colony with ~1000 cells plated on plastic with a

coverglass using. (A-B) Confocal transmission and fluorescence XY images (slice 37) of a Z-stack from inside the plastic bottom of the well to the

coverglass; (C) Side view XZ along the horizontal line in B. (D) Vertical intensity profile along Z (averaged over X). The Full width at half maximum

(FWHM) is about 50 mm. Z-stacks were taken with a confocal microscope at 2.57 mm/slice using a 10x objective with a very small pinhole size (0.25 Airy),

the fluorescence is due to fluorescein FITC added at 16 mM in HL5 medium.
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Figure 1—figure supplement 2. Ring formation time decreases with cell number. Error bars represent std of n � 4 independent experiments.
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Figure 1—figure supplement 3. Morphological properties of a propagating ring. (A) Position of the ring as a function of time with a linear fit yielding a

speed of 1.1 mm/min. (B) Cell density within the ring as a function of time, starting after ring formation. (C) Ring width at half height as a function of

time, after ring formation.
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Figure 1—figure supplement 4. Effective cell diffusion constant and instantaneous speeds as a function of distance to the center. Cell diffusion is

defined as the squared of the migrated distance during a trajectory divided by 4 t with t the duration of that trajectory. Cells were tracked between

t=9h and t=10h and orange dashed line represent the position of the ring at these times. Each point is the mean±std of cells within the given distance

bin, n=2746 cells total.
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Figure 1—figure supplement 5. Cell velocity bias in the spot assay as a function of distance to the center. This bias is defined as the projected speed

in the radial direction. Each point is the mean±std of cells within the given distance bin, n=2211 cells total. Cells were tracked between t=9h and t=11h

and orange dashed lines represent the positions occupied by the ring at these times. Dotted blue line is a guide for the eye representing a 0 bias,

that is non-oriented motion.
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Figure 2. Dictyostelium single cells are attracted by an external O2 gradient when O2 level drops below 2%. (A) Schemes of the new double-layer

PDMS microfluidic device allowing the control of the O2 gradient by the separation distance (gap) between two gas channels located 0.5 mm above

the three media channels and filled with pure nitrogen, and air (21% O2). (B) Measured O2 concentration profiles 30 min after N2-Air injection to the left

and right channels respectively (0–21% gradient) as a function of the position along the media channel for the three gaps. Error bars (see Methods) are

reported only for gap 1 mm for clarity. The inset shows the 0–2.5% region under the nitrogen gas channel (arrows, see E). (C) Trajectories lasting 1 hr

between 3 hr and 4 hr after establishment of a 0–21% gradient. Cells are fast and directed toward the air side in the region beyond the �1000 mm limit

(O2<2%). (D) Cell net displacement over 30 min (end to end distance, top kymograph) and 30 min displacement projected along gradient direction

(bottom kymograph). Cells are fast and directed toward O2, where O2<2%, within 15 min after 0–21% gradient establishment at t=0. At t=180 min, the

gradient is reversed to 21–0% by permuting gas entries. Cells within 15 min again respond in the 0–2% region. (E) Relative cell density histogram

(normalized to t=0 cell density) as a function of the position along media channel. Top panel: long term cell depletion for positions beyond �1600 mm

(O2<0.5%, see inset of B) and resulting accumulation at about �1200 mm for gap 1 mm channel. The overall relative cell density increase is due to cell

divisions. Bottom panel: cell depletion and accumulation at 10 hr for the three gaps. The empty and filled arrows pointing the limit of the depletion

region, and max cell accumulation respectively are reported in the inset of B.
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Figure 2—figure supplement 1. Oxygen profile measurements inside the microfluidic gradient generator device with a sensing film mounted on the

bottom of the media channel. (A-B) Transmission and homogeneous 21% O2 level fluorescence images of the media channel with gap 0.5 mm between

the two gas channels. (C) Raw fluorescence image in presence of 0–21% gradient established by injecting pure N2 in the left gas channel and air in the

right one (image was taken 30 min after the beginning of the gas injection). (D-E) Corresponding calculated O2 map and O2 profile. In D colors

correspond to slight changes within the experimental uncertainty of the parameters used for the calculation (see text), insets correspond to the hypoxic

(~0%) and normoxic (~21%) sides of the profile.
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Figure 2—figure supplement 2. Typical calibration data of sensing films mounted on a microfluidic device. (A) Fluorescence intensity changes when

applying an oxygen concentration ramp with the concentration in each gas channel. (B) Corresponding Stern-Volmer plot (see text). (C) Measured

intensity at 21% O2 level (solid line) and fitted background Bg (bullets) for different ROI locations depicted in yellow in Figure 2—figure supplement

1B. (D) Fitted Bg (bullets) and Stern-Volmer sensitivity parameter K (triangles) as a function of 21% O2 level intensity.
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Figure 2—figure supplement 3. Typical calibration data and oxygen profile measurement with covered sensing films for the spot assay. (A)

Homogeneous 21% O2 level fluorescence image of an uncovered sensing film. (B) Homogeneous 21% O2 level fluorescence image of sensing film

partially covered by a plain coverglass simulating the border of the spot assay (the red arrow indicates the glass boundary also depicted as a long

dotted line in C. (C) Fluorescence intensity when pure N2 was flushed for 80 min (same region as in B) with the partial coverage of the sensing film). (D)

Measured intensity at 21% O2 level (solid line) and fitted background Bg (bullets) for different ROI positions depicted in yellow in A for uncovered film

(blue color) and in B for partially covered film (red color). (E) Fitted Bg (bullets) and Stern-Volmer sensitivity parameter K (triangle) along the ROI

positions for the uncovered (blue color) and partially covered situation (red color). (F) Fitted Bg plotted as a function of the 21% O2 level intensity for the

uncovered and covered situations. (G-H) Calculated O2 map of a Dictyostelium spot covered and corresponding profile along a median horizontal line.

Colors correspond to slight changes within the experimental uncertainty of the parameters used for the calculation, insets correspond to the hypoxic

(~0–2%) left side of the profile.
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Figure 2—figure supplement 4. Image analysis pipeline to quantify oxygen map from O2 sensitive sensing films. Images correspond to an hypoxic

circular zone created by a confined Dictyostelium spot.
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Figure 2—figure supplement 5. Numerical simulations of oxygen profiles. (A) Comparison of the measured stationary oxygen profile in the

microfluidic device (circles) and simulated ones (dotted lines) for the three gaps. Oxygen is measured thanks to the sensing film. The inset shows the

gas injection conditions in the device: pure N2 and air are flushed in left and right gas channel, respectively. (B) Enlarged oxygen profile in the hypoxic

side. The estimated error bar on experimental measurements (showed for clarity on gap 1 mm data only) is explained in Materials and methods.

Simulations are made with Comsol and explained in Methods.
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Figure 2—figure supplement 6. Experimental oxygen gradient establishment in the microfluidic device (gap 0.5

mm). Pure N2 and air are flushed at time 0 in left and right gas channel, respectively. (A) Oxygen profile measured

using the sensing films at 5 min time interval. (B-C) Raw intensity and measured oxygen in the ROI between �1000

mm and �800 mm from the device median axis in the region where the oxygen is about 1.5% (dotted region in A).

Within 15 min, each signal reached 95% of its equilibrium value.
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Figure 2—figure supplement 7. Influence of plated cells on the steady oxygen tension in the microfluidic device

(Computational results). (A) Absolute value of the oxygen concentration as a function of the position relative to the

median axis of the device for the gap 1 mm channel in presence (orange markers) or absence of cells (blue

markers). Nitrogen is supplied on the left gas channel and 21% O2 is supplied on the right channel. Cells density

was taken as 500 cells/mm2, which is the upper experimental limit. (B) Corresponding difference between the two

simulated situations (presence and absence of cells). In the region of interest where cells exhibit a strong

aerotactic response (i.e., around 1% O2 or �1 mm from the median axis), this difference is around 0.43% O2 which

is comparable to the error bar on O2 measurements using sensing films (Figure 2B). The rate of oxygen

consumption by Dd cells was taken as 1.2.10�16 mol.cell�1.s�1.
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Figure 2—figure supplement 8. Aerokinesis of Dd cells in homogenous environments. (A-B) Representative cell trajectories over 1 hr in either

atmospheric, C=20.95% (A) or hypoxic, C=0.4% (B) conditions. (C) Quantification of cell motility as mean square displacements in both conditions. (D)

Effective diffusion constants in both conditions, also shown after 3 and 20 hr in hypoxic conditions. Dashed lines represent the mean in each conditions

over 10 fields of view stemming from five independent experiments in each case.
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Figure 3. Interplay between ring dynamics and O2 profiles. (A) (i) Treated image showing cell distribution at t=10h, (ii) raw fluorescent signal indicative

of strong O2 depletion, (iii) reconstructed image showing the center of mass of all detected cells and quantitative O2 profiles (colorbar, in % of O2),

scale bars: 1 mm. (B) O2 profiles averaged over all angles and shown at different times. (C) Radial profile of cell density and O2 concentration at t=10h

showing the position of the ring relative to the O2 profile. (D) Kymograph of O2 concentration (colorbar in %) with the position of the ring represented

as a red line. The colormap is limited to the 0–2% range for readability but earlier time points show concentrations higher than the 2% limit. (E) O2

concentration as measured at the position of the ring as a function of time showing that the ring is indeed following a constant concentration after a

transitory period.
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Figure 4. Minimal Potts model of ring formation and migration. (A) Snapshots of a simulated colony of cells

showing the formation of highly dense ring of cells. (B) Cell density profiles averaged over all angles for four

different times. (C) Corresponding kymograph of cell density (colorbar in cells/mm2) as a function of time and

distance to the center. Quantification in terms of microns and hours is described in the Materials and methods

section. (D) Kymograph of O2 concentration (colorbar in %) with the position of the ring represented as a red line.

The colormap is limited to the 0–10% range for readability but earlier time points show concentrations higher than

the 10% limit. (E) O2 concentration at the ring position as a function of time showing that, here too, the ring

follows a constant O2 concentration.
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Figure 4—figure supplement 1. Adjusting Potts model (right) to microfluidic experiments (left). (A) Density kemographs showing cell accumulation in a

low oxygen region. Colorbar represents the fraction of all cells within a bin in distance. (B) Vectorial displacements displayed by cells over 1 hr. Higher

Figure 4—figure supplement 1 continued on next page
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Figure 4—figure supplement 1 continued

activity at low oxygen concentrations, on the left, is clearly visible in both cases. (C) Quantification of cell activity as the norm of the displacements over

1 hr at different positions in the central channel. (D) Quantification of cell bias as the displacement of the cells in the x-direction over 1 hr. In C and (D),

each point is the mean ± std of cells within the given distance bin, n=3392 cells total for experiments (left) and n=7520 cells total for simulations

(right).
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Figure 4—figure supplement 2. Potts model ring features with parameters adjusted from the microfluidic

experiments (Figure 4—figure supplement 1). (A) Position of the ring as a function of time along with a linear fit

yielding a speed of 1.1 mm/min. (B) Cell density within the ring as a function of time, after its formation. (C) Width

of the ring as a function of time.
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Figure 4—figure supplement 3. Comparison of cell behavior in spot experiments (left) and Potts models (right). (A) Sample vectorial displacements

over 1 hr. (B) Cell density profiles at the beginning (black) and end (red) of the time window used for cell tracking. This indicates ring position for other

plots. (C) Quantification of cell velocities as a function of position. (D) Mean bias in the radial direction measured as the norm of the projected velocity

in that direction. In (C) and (D), each point is the mean±std of cells within the given distance bin, n=4715 cells total for experiments (left) and n=5670

cells total for simulations (right).
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Figure 5. Key ingredients of the Potts model by density kymograph (DK) evaluation. (A) DK for the full model with reduced oxygen consumption as a

basis for comparison. (B) DK in the absence of cell division, note the difference in length scale showing a clear limitation of motion in that case. (C) DK

in the absence of aerokinesis (cell activity is not modulated by local oxygen concentrations). (D) DK with a modulation of aerotactic strength as shown in

(G), note the wider ring. (E) DK with a modulation of aerotactic strength as shown in (H). (F) DK with a modulation of aerotactic strength as shown in (I),

no ring appears and cells quickly migrate outwards as shown by the difference in time scales. (G–I) Three different aerotactic modulations, in blue,

compared to the one used in the full model, shown in (A), drawn here as a red dashed line.
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Figure 5—figure supplement 1. Effect of temperature on ring migration in Potts models. Density kemographs (all similarly scaled) of the full model,

deprived of aerokinesis, at three different temperatures. Colorbar represents cell density in cells/mm2. As temperature increases, fewer cells are left

behind the ring and the ring moves at faster velocities.
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Figure 5—figure supplement 2. Ring formation in a phosphate buffer. Left: Snapshot of a spot assay in phosphate buffer at t=3h clearly showing the

formation and migration of a dense ring of cells. Right: corresponding density kemograph (cell densities in cells/mm2) showing clear similarities with the

predictions of Figure 5B.
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Figure 6. Variations on the ‘Go or Grow’ hypothesis. (A) Cell density and O2 concentration profiles for the mean-field model (Equations 1 and 2). (B)

Corresponding kymograph of cell density (colorbar in cells/mm2) as a function of time and distance to the center. (C) Comparison of wave speeds for

the elementary ‘Go or Grow’ model, given by Formula Equation 6, and the ‘Go or Grow’ model with a second threshold, obtained by numerical

simulation (solid and dotted lines respectively). The relative difference between the speeds of the two models is represented by crosses. (D) Heatmap

of ’ ¼ 2
ffiffiffiffiffiffiffiffi

r0D
p

=s as a measure of the relative contribution of cell division to the overall wave speed s in the space parameter ln 2ð Þ=r0 and a0 for the ‘Go

or Grow’ model (Equation 5), where s is given by Formula Equation 6. The curve a0 ¼
ffiffiffiffiffiffiffiffi

r0D
p

is depicted in black. (E) Cell density and O2 concentration

profiles for the ‘Go or Grow’ model with a0 ¼ 1�m=min,r0 ¼ ln2=480min�1 and C0 ¼ 0:7%. (F) Cell density and O2 concentration profiles for the ‘Go or

Grow’ model with two thresholds: cells undergo aerotaxis with a constant advection speed a0 ¼ 1�m=min when the O2 concentration is in the

range C
0
0
;C0

� �

with C0 ¼ 0:7%, C0
0
¼ 0:1%. In both cases, thresholds coincide with the cusps in the profiles.
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Figure 6—figure supplement 1. Structural variations of (Equation 1). (A and B) The left column represents a Cð Þ. (C) The left column corresponds to a

linear gradient sensing mechanism with a C; qxCð Þ ¼ l Cð ÞqxC. (D) The left column corresponds to a logarithmic gradient sensing mechanism

with a C; qxCð Þ ¼ � Cð ÞqxC=C. For (C and D), the multiplicative factors of l Cð Þ and � Cð Þ have been chosen such that the speed of the

front s » 1m �min�1. The middle column represents the cell division rate r Cð Þ. The right column represents the corresponding cell density and O2

concentration profiles. The green curve represents the cell division rate as a function of the position. (A) s ¼ 1:04m �min�1, (B) s ¼ 1:20m �min�1,

(C) s ¼ 0:97m �min�1, (D) s ¼ 1:03m �min�1.
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Figure 7. Classification of the expansion type in the ‘Go or Grow’ model. Cells initially on the left-hand side or right-hand side of the peak get labeled

differently (A and B). The labeling is neutral and does not change the dynamics of the cells. We let evolve the two colored population for some time

and observe the mixing of the colors (C and D). (A and C) With a0 ¼ 1m � min�1, the wave is pushed wave and after some time the front undergoes a

spatially uniform mixing. (B and D) With a0 ¼ 0:1�m � min�1, the wave is pulled and only the fraction initially in the front is conserved in the

front. r0 ¼ ln2=480min�1 and C0 ¼ 0:7% for all conditions.
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Figure 7—figure supplement 1. Mixing in Potts models. A simulation of the full model was stopped at an

arbitrary time and cells were colored according to their position at this time. The simulation was then restarted

from this time point and left to run for the equivalent of 10 hr, at which point complete mixing of both populations

is clearly visible.
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Figure 7—figure supplement 2. Heatmap of ’ ¼ 2
ffiffiffiffiffiffiffiffi

r0D
p

=s as a measure of the relative contribution of cell division to the overall wave speed s in the

space parameter 1=r0 and a0 for the ‘Go or Grow’ model with a second threshold, under the specific condition that O2 consumption term be

b Cð Þ ¼ b0 and that O2 concentration may be negative (see Materials and methods). The curve a0 ¼
ffiffiffiffiffiffiffiffi

r0D
p

is depicted in black.
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Figure 7—figure supplement 3. Classification of the expansion type in the ‘Go or Grow’ model with a second-threshold. Cells initially on the left-hand

side or right-hand side of the peak get labeled differently (A and B). The labeling is neutral and does not change the dynamics of the cells. We let

evolve the two colored population for some time and observe the mixing of the colors (C and D). (A and C) With a0 ¼ 1m �min�1, the wave is pushed

and after some time the front undergoes a spatially uniform mixing. (B and D) With a0 ¼ 0:1�m �min�1, the wave is pulled and only the fraction initially

in the front is conserved in the front.
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Appendix B

Commentary: The Dynamics of
Aerotaxis in a Simple Eukaryotic
Model

This Section contains a commentary, published in [150], to the work in
[23], which considers a very similar experiment to the one presented in
Chapter 1, but where the conclusions of the authors differ slightly from
the ones in Chapter 1.
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A Commentary on

The Dynamics of Aerotaxis in a Simple Eukaryotic Model

by Biondo, M., Panuzzo, C., Ali, S. M., Bozzaro, S., Osella, M., Bracco, E., and Pergolizzi, B. (2021).
Front. Cell Dev. Biol. 9:720623. doi: 10.3389/fcell.2021.720623

We read with interest the article by Biondo et al. (2021) in Frontiers in Cell andDevelopmental Biology,
“The Dynamics of Aerotaxis in a Simple Eukaryotic Model.” Reproducing the confinement assay we
published in eLife earlier this year (Cochet-Escartin et al., 2021) with the same cell line, they found the same
emergent behavior, i.e., the propagation of a ring of cells, which they named corona, from a dense, confined
colony through the self-generation of oxygen gradients by cell consumption. The authors claimed that cell
division plays no role in the phenomenon, whereas in our study, we insisted on its important role.

This message is wrong. In this commentary, we first clarify that ring formation is independent on
cell division but that ring propagation over long times depends on it. Second, we discuss the possible
experimental biases that may have led the authors to this conclusion.

Cell division is not necessary for ring formation but is necessary for its sustained propagation.
Biondo et al. observed exactly the same collective phenotype as us for the confined colony in a starving
buffer that prevents cell division. A ring forms internally, but as soon as it reaches the colony edge (at ~6 h),
it stops and cells aggregate (compare Movie 3 of Biondio et al. with our movie M6 and Figure 5;
Supplementary Figure 2, Cochet-Escartin et al.). In contrast, in a nutrient medium, the ring propagates far
away from the initial colony for days (see Figure 1A below). Biondo et al. neither commented on this
fundamental difference between the two conditions nor on ourmodel that demonstrates that cell division is
necessary tomaintain ring propagation even if it contributes little to the expansion speed (Figures 5A,B and
Eq. 6, Cochet-Escartin et al.). Independently of anymodel, a simple mass balance equation for the total cell
number N with NB cells in the bulk region (core) and NR cells in the ring region invalidates Biondo’s
assertion that division plays no role:

N(t) � NB(t) +NR(t) � ρBπ(R(t) − L)2 + ρR2πR(t)L (1)
Using the experimental observations (Figures 1D,E, Supplementary Figure S3B in Cochet-Escartin

et al., Figures 1B–D below) that the ring width L and density ρR and bulk density ρB are constant, and
that the ring radius R is expanding at constant speed R(t) = R0+ σt,we predict thatNB(t) increases faster
with time (i.e., as R2 ~ t2) than NR(t) (i.e., as LR ~ t). Experimentally, up to 30 h, NB(t) increases
faster than linearly with time while NR increases linearly (Figure 1C). InitiallyNB/NR = 1, but after 24 h,
NB/NR = 1.8, and after 47 h, NB/NR = 2.8 (Figure 1C). Hence, NB largely contributes to the overall cell
number increaseN(t). By comparison, Biondo et al. assume a constantNR(t), and they do not consider
bulk cells at all.

Edited by:
Verena Ruprecht,

Centre for Genomic Regulation (CRG),
Spain

Reviewed by:
Jean Clairambault,

Institut National de Recherche en
Informatique et en Automatique

(INRIA), France

*Correspondence:
Jean-Paul Rieu

jean-paul.rieu@univ-lyon1.fr

Specialty section:
This article was submitted to

Molecular and Cellular Pathology,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 28 December 2021
Accepted: 20 January 2022
Published: 02 March 2022

Citation:
Rieu J-P, Cochet-Escartin O, Anjard C,

Demircigil M and Calvez V (2022)
Commentary: The Dynamics of

Aerotaxis in a Simple
Eukaryotic Model.

Front. Cell Dev. Biol. 10:844812.
doi: 10.3389/fcell.2022.844812

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2022 | Volume 10 | Article 8448121

GENERAL COMMENTARY
published: 02 March 2022

doi: 10.3389/fcell.2022.844812



Cell divisions hold in the ring. Our confined colony grows
slower than exponentially (see solid black line with a typical 8 h
doubling time (d’Alessandro et al., 2016) in Figure 1C), but it
grows (i.e., N(47 h)/N(0 h) = 8.5). In Cochet-Escartin et al., we
propose a go-or-grow model where aerotaxis holds at low O2 and
cell division at high O2. The threshold is around 1% O2 as
estimated by direct aerotaxis investigations using microfluidic
devices (Cochet-Escartin et al.) and from literature values for cell
division in hypoxic conditions (Schiavo and Bisson, 1989; West
et al., 2007). Such value corresponds to the O2 level measured in
the ring (Cochet-Escartin et al.). Hence, divisions occur mostly in
the ring, but ring cells are constantly transferred to the bulk to
maintain a constant ρB while R is increasing. This transfer occurs
in our models (see Figure 7 of Cochet-Escartin et al.), but perhaps
it was not sufficiently supported by data. In Figures 1E,F, we
present manually tracked trajectories in the ring frame. A few
ones displayed with a green or purple color enter or escape the
outward ring position, canceling any ring-to-front flux. Far more
trajectories are directed backward (i.e., ring to bulk, in blue).
Interestingly, the measured flux of such a cell transfer,
φR→B � 12 cells/mm/h, explains fairly well the bulk cell
number increase using the following equation:

dNB � 2πRϕR→Bdt (2)
The fit is displayed in Figure 1C.
Biondo et al. may have caught a transient regime only.

Biondo et al. measured 3% and 5% O2 in the bulk and ring
regions, respectively (Supplementary Figure S1). Above 2% O2,
aerotaxis should not hold (Cochet-Escartin et al.); the division

rate is fairly the same as in normoxic conditions (Schiavo and
Bisson, 1989; West et al., 2007). A possible reason for this
discrepancy is that O2 is overestimated. Their measurements
were performed with a commercial sensing film that is not
compatible with transmission microscopy, contrary to the
technology we developed in Cochet-Escartin et al. They may
have a different confinement on plastic (their usual experimental
condition) than on the sensing film. A loose (resp. tight)
confinement may generate a higher (resp. lower) O2 value
under the colony. They also made colonies with a huge
amount of cells (50,000 instead of 1,000 and 2,000 in our
case). As the self-generated O2 field depends on the
consumption of every cell, we expect a huge degree of
hypoxia. Finally, they never reached a stationary expansion
regime due to the large initial excess of inner cells. That excess
density slowly decreases with time as visible on their
kymograph. We have actually simulated a moderate bulk
cell excess in our work (Figure 4 of Cochet-Escartin et al.)
which is also transiently visible at 3 h in Figure 1B. Such an
inner cell mass transfer has to be taken into account
to establish a correct mass balance equation, and the only
L(t)R(t) quantity tested by Biondo et al. is clearly not sufficient
to draw a conclusion on cell divisions.
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FIGURE 1 | Cell proliferation during the aerotactic expansion of a small confined colony of vegetative Dictyostelium cells with an initial number of cell N(0 h) = 1,000
and an initial radius R(0 h) = 600 µm. (A) Snapshots at 3, 18, and 36 h showing the propagation of an external dense ring of cells mowing outwardly. Scale bar, 1.5 mm.
(B) Corresponding stationary radial density profiles. (C)Measurements of the number of ring and bulk cells as well as the sum of the two subpopulations (total). The ring
cells were estimated bymeasuring their density per unit length andmultiplying by the perimeter. The bulk and total cell numbers have been fitted byEqs 1, 2 (dotted
lines) with φR→B � 12 cells/mm/h and error bars correspond to a 20% error on φR→B. (D) Ring speed and bulk cell density measurements over time. (E,F) Close view of
the ring region to estimate the cell exchanges between the ring and the bulk. (F)Cell trajectories lasting 1 h in the ring frame. Ring borders are depicted by the dashed line.
Blue, red, green, and purple trajectories correspond to trajectories that escape the ring toward the bulk, reach the ring from the bulk, reach the ring from the front, and
escape the ring from the front, respectively. Overall, the net flux of cell from ring to front is zero; the net flux of cell from ring to bulk is approximately φR→B � 12 cells/mm/h.
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Collective movement in Dictyostelium discoideum and
other species. Modeling, analysis and simulations.

Abstract: This thesis is concerned with the modeling of collective cell
movement and the analysis of spreading phenomena arising in these models.
The starting point of the thesis is the mathematical modeling of an ex-
periment, where a colony of Dictyostelium discoideum is able to escape
hypoxia through a remarkable collective behavior. It is shown that oxy-
gen consumption leads to self-generated oxygen gradients, which serve as
directional cues and trigger a collective movement towards higher oxygen
regions. This movement is sustained over large scales by the perpetual con-
sumption of oxygen by the cells. Through an elementary PDE model, the
so-called Go or Grow model, we show that the combination of cell division
and aerotaxis plays a key role in this collective behavior. In particular, this
approach leads to an explicit formula for the propagation speed.
We carry out a thorough mathematical analysis of the Go or Grow model,
including a result of existence and uniqueness locally in time of the model,
an analysis of the inside dynamics of the propagating population, as well as
a weak characterization of the asymptotic spreading behavior.
Following the aforementioned investigation, we address the question under
which circumstance a cell population may propagate, by generating their
own signaling gradients. We do a survey on existing results in the liter-
ature and discuss various modeling scenarios, which lead to this type of
propagation phenomena.
Then, we propose an approach to design well-balanced numerical schemes
for traveling waves in kinetic and parabolic models. The approach combines
an estimate of the instantaneous spreading speed with techniques taken from
the literature to design well-balanced schemes.
Finally, we study a stochastic individual-based Go or Grow model, which
is based on a simple Go or Grow rule. We conjecture the large population
limit, which can be seen as an alternative Go or Grow model, and investigate
numerically the ancestral lineages of particles. This leads to an alternative
viewpoint on the inside dynamics. The alternative Go or Grow model is
analyzed and we give preliminary results estimating the asymptotic behavior
of the spreading.

Keywords: Mathematical Biology, Chemotaxis, Modeling, Propaga-
tion Phenomena, Parabolic Equations, Kinetic Equations, Well-Balanced
Schemes, Stochastic Processes.
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