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Summary

English

This research work treats the subjects of simulation, automatic design and
metrology of freeform imaging optical systems. Starting from an example of
freeform unobscured space telescope design, we identified two challenges that
are implied or amplified by the introduction of freeform optics: firstly the ef-
ficiency of computer-assisted optical design, secondly the possibility of testing
the shape of freeform optics. Aspects of performance simulation through se-
quential raytracing are thoroughly revisited and led to studies on search al-
gorithms applied to freeform optical design. A rigorous methodology from the
applied mathematics research field is used to compare the efficiency of various
search algorithms in producing high performance solutions to conventional or
freeform optical design problems. In a second part, the opportunities presented
by phase-measuring deflectometry are highlighted on a freeform mirror sample
with characteristics that make it hard to measure with classic metrology means
such as interferometry. The great variety of measurement types and samples ac-
cessible to deflectometry is demonstrated. A quantitative analysis of the shape
measurement error on the freeform sample is performed.

French

Cette thèse a pour sujets la simulation, la conception automatique et la
métrologie de systèmes optiques imageurs freeform. A partir d’un exemple
de projet de conception de télescope spatial non-obstrué freeform, nous identi-
fions deux difficultés induites ou exacerbées par l’introduction de composants
freeform: premièrement la capacité à concevoir rapidement par ordinateur les
combinaisons optiques et secondement la capacité à contrôler la forme des op-
tiques freeform. Les aspects de simulation de performance par tracé de rayon
séquentiel sont revisités en détail et ont permis des études sur les algorithmes
de recherche appliqués à la conception optique freeform. Une méthodologie
rigoureuse provenant des mathématiques appliquées est utilisée pour comparer
la capacité de différents algorithmes de recherche à produire des solutions
d’un haut niveau de performance sur des problèmes de conception optique,
conventionnels et freeform. Dans un second volet des travaux, l’intérêt de la

2



déflectométrie à mesure de phase a été mis en valeur sur un échantillon de miroir
freeform présentant des caractéristiques le rendant difficilement mesurable pour
les méthodes de métrologie classiques comme l’interférométrie. La grande variété
des types de mesures et des types d’échantillon accessibles à la déflectométrie
est démontrée. Une évaluation quantitative de l’erreur de mesure de forme de
l’échantillon freeform par déflectométrie est effectuée.
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Chapter 1

Introduction

Freeform optical surfaces are surfaces without rotational symmetry [1]. They
improve the performance of off-axis optical systems and systems with spatially
asymmetric features (eg a biased field, offset aperture, etc). The performance
gains for these systems when compared with conventional spherical or conicoid
surfaces can be:

• Improved aberration correction allowing a larger aperture or field of view.

• Greater tilts and decenters of surfaces to reduce and ideally avoid obscu-
ration while maintaining acceptable image quality.

• Improved compacity. Also, complying with exotic packaging geometries.

• Mass reduction by decreasing the total number of required optical surfaces.

Freeform optics is a concept that only became possible due to the interdis-
ciplinary, past and ongoing research in:

• Optical systems design and performance simulation.

• Manufacturing and polishing technologies.

• Optical surface metrology.

• Optical systems integration and alignment methodology.

Freeform optics is now more or less established in some industrial sectors such
as airborne imaging systems, space optics, Head-Mounted Display (HMD) and
Head-Up Display (HUD) products, varifocal prescription glasses. Lighting sys-
tems also commonly exhibit freeform characteristics. The ecosystem is mature
enough so that optical designers can propose freeform systems, manufacturers
polish the surfaces, metrologists measure them, and systems integrators assem-
ble them. However, research is very much still ongoing in an effort to drive down
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the cost and push the envelope with more and more difficult shapes, unlocking
even more performance gains.

The present doctoral research work deals with topics in freeform optical sys-
tems design, particularly raytracing and search algorithms, and freeform surface
metrology. We deal with freeform imaging systems, and especially aim at space
optics applications with a focus on unobscured reflective telescopes. Our goal
is making the automatic design of freeform telescopes easier for optical design
practitioners, as well as investigating freeform surface metrology using phase-
measuring deflectometry.

Let us introduce the field of freeform optics in a general sense, then which
technological and research sub-fields are concerned and how they fit together,
and finally let us outline the work we carried out specifically inside this wider
field.

1.1 Freeform surfaces and freeform systems

What is meant by the term freeform and other surrounding terms? What are
examples of the application of freeform optical surfaces?

1.1.1 Freeform?

A freeform optical surface is a type of optical surface that constitutes the
diopters of lenses or mirrors. Its shape is designed with no axis of symmetry.
Planes of symmetry can be found however. By that definition, surfaces described
for instance by one of the freeform polynomial bases (more in Chapter 2) are
freeform, but off-axis parabolae are not since they have an axis of revolution
(albeit outside of their clear aperture). By extension, we refer to optical systems
that exhibit at least one freeform surface as freeform optical systems.

We call aspheric the surfaces that are not spherical and do not fall in the
freeform category either. These comprise, for instance, conicoids (off-axis or not)
and aspheric polynomial surfaces1. Surfaces with toroidal or biconic shapes fit
the definition of freeform we have given, but they are not typically refered to as
such in the literature and are treated as special cases.

1.1.2 What freeform optics is not

We want to warn against a possible misconception. Freeform optics does not
replace spherical optics or make it obsolete. There are numerous designs such
as, for instance, refractive photographic lenses that are very unlikely to ever
benefit from the addition of freeform surfaces where imaging quality is con-
cerned2. Freeform optics is useful only when, for some reason, the optical sys-
tem is off-axis, such as in unobscured reflective space telescopes (to avoid both

1In older papers, the term asphere designated all optical surfaces that were not spheres,
including freeform. Conventions have since changed.

2They do benefit from aspheres however
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pupil obscuration and chromatism) or has an asymmetric field. Even for these
systems that benefit from freeform optics, the cost and complexity should make
the optical designer hesitate and sometimes prefer conventional solutions when-
ever possible. The difference in technological maturity (mainly in metrology in
our view) between freeform optics and conventional optics is the root cause of
these difficulties. This gap should hopefully narrow in the future.

1.1.3 Main areas and first systems

Often cited as first commercial freeform optical system is the Polaroid SX-
70 which, in 1972, featured an off-axis system with two freeform lenses. The
design allowed the camera to be folded for transport [2]. Even earlier, in 1959,
the Varilux prescription lenses were designed and produced with a freeform
diopter allowing the continuous variation of focal length along the lens surface
[3]. Alvarez lenses, the first patent of which was sent in 1964, are also a notable
early example. Combinations of two or more freeform lenses produce a system
with variable focal length when relative transverse translations or rotations of
its parts are applied [4].

Freeform surfaces are used in HMD systems [5, 6], typically in freeform
prisms for Augmented Reality (AR) or Virtual Reality (VR) applications [7] and
in HUD, for aircrafts or automotive applications [8]. Many lighting applications
use freeform surfaces, with design methods that increasingly could be used in
imaging optics [9].

As far as space telescopes are concerned, freeform optics is about to be gen-
eralized [10]. Off-axis Three-Mirror Anastigmat (TMA) telescopes are already
popular choices (with conicoid surfaces), for instance on the James Webb Space
Telescope (JWST) [11, 12]. When a sufficient degree of confidence in the metrol-
ogy, which is critical in space-borne systems, will have been reached, freeform
optics is likely to become common in space optics as it should improve the per-
formance and compacity of existing unobscured telescope designs. [13] shows
an overview of the DESIS (Deutsche Zentrum für Luft- und Raumfahrt (DLR)
Earth Sensing Imaging Spectrometer) instrument, which is an imaging spec-
trometer with a freeform unobscured TMA as the spectrometer stage. DESIS
was launched on June 29th 2018 and was installed on board the ISS [14] (images
can be found online). Instances of using freeform optics in space satellites are the
TROPOMI telescope [15] (TNO, Netherlands) and the MicroCarb instrument
[16]. There are still few examples of spaceborne freeform optics.
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1.2 Historical Perspective

This work is not alone that of an inventor, nor of a
telescope-builder, nor of an optician, a glass-maker, a mechanician,
a mechanical engineer, a photographic-emulsion maker, an
astronomical photographer, a measurer of astronomical
photographs, an astronomer. It is not higher than, but more than
the work of any one of these. It is the work of all of these together.

George Willis Ritchey (1928) [17]

A little perspective on the history of telescope systems can help see how
optics researchers were driven to design systems with ever more complex sur-
face shapes. We also see how, each step of the way, progress in every field was
necessary: optical design, manufacturing and metrology.

1.2.1 Galileo’s era: research in optical instruments

Galileo’s telescopio, arguably the first notable telescope, the first prototypes of
which were produced in 1609, kicks off telescope production. These instruments
had a very small aperture (see the dimensions of one of the surviving telescopes
[18], the objective lens had a F# = 980

15 = 65) and reportedly produced very
blurry and chromatic results3.

In the context surrounding the production of these telescopes we already see
the need to research all fields in parallel: optical theory as well as manufactur-
ing, engineering and performance modeling. Galileo had read Kepler’s treatise
Astronomiae pars optica [The Optical Part of Astronomy]4 but did not under-
stand key parts of it and proceeded to invent his telescope by labor-intensive
trial and error, guided by only rudimentary optical theory (compared to Ke-
pler).This highlights the concurrent nature of manufacturing and theoretical
optical design work: each field feeds on the other and sometimes theory does
not come before practice.

Additionally we may see in Galileo’s story that the applications for his opti-
cal instruments are not so different from what they are for cutting-edge optical
instruments today. He was funded by the military, sold his telescopes to travel-
ling and sea-faring merchants and carried out astronomical observations5.

3We use the synthesis on the context of Galileo’s work by Feyerabend [19] in this section.
4It is noteworthy that Kepler introduced in Astronomiae pars optica (1604) the unified

representation of conics as optical surfaces divorced from the concept of generating cone and
intersecting plane[20]. Even in working out his theory, Kepler appears to have thought he was
cutting corners for the sake of producing usable concepts for optics, he said: ”Atque id est,
quod quaerebamus. Caeterùm quia difficilis est consideratio sectionum, proptera quò parum
teritur, libet aliqua mecanicè analogicè et populariter de iis differere: date veniam Geometriae
[And that is what we were seeking. However, because the subject consideration of [conic]
sections is difficult, having been too little pursued, it is permitted to treat them somewhat
mechanically, analogically and popularly. Geometers, be indulgent].” (taken from Centina
[20]). This corresponds with almost no modification to the parametrized conics representation
we still use today in optical design.

5The astronomical applications for the telescope left the other academics rather dubitative
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1.2.2 Drivers for surface complexity: genealogy of reflec-
tive telescope systems

Freeform optics can be seen as the prolongation of the tendancy in optics to
use more and more complex surfaces to improve performance, for instance in
telescope systems. The drivers for surface complexity were (allowing for great
oversimplification) first aberration correction in the center of the field (especially
chromatism at first), then increased Field Of View (FOV) and aperture, and
finally in the space age, compacity (including non-obscuration).

The first notable reflective telescope is attributed to Newton (1668). The
motivation for it was avoiding the chromatic aberrations that plagued refractive
designs [21]6. Indeed, due to a lack of research in the behaviour of the refractive
index for available glasses, it wasn’t clear at the time whether refractive designs
could ever hope to achieve achromatism. Reflective theoretical designs were quite
common at the time, even with conics. The designs of Mersenne, Gregory and
Cassegrain were produced before or around the time Newton fabricated his first
all-spherical reflective telescope. The manufacturing of mirrors was however too
far behind the design theory in this case, only concave spherical mirrors could
be manufactured with any hope of achieving usable instruments (Cassegrain’s
convex hyperbola was out of the question) and even then the polished mate-
rials (eg bronze) produced only dim reflections. It was not until decades after
Newton’s first prototype that reflective telescopes reached sufficient maturity
for them to be used in science observations.

Nonetheless, with the issue of chromatism removed (and spherical aberra-
tion solved with conics), larger and larger aperture reflectors were built right up
to the beginning of the 20th century thanks, in part, to more mature engineer-
ing. Among other factors, we may cite that bronze substrates were abandoned
around 1856 and replaced by glass, with better structural stability [22]. In sur-
face metrology, the Foucault knife-edge test (1858) allowed testing optics to
within wavelength-range accuracy with great practical ease of use. With the in-
troduction of photographic observation it became necessary to widen the usable
field. Ritchey-Chretien telescope designs, solving coma in addition to spherical
aberration thanks to their two hyperbolic mirrors, including a difficult convex
secondary, allowed such wider fields. Ritchey noted the advantageous compac-
ity of the design, that allowed the whole telescope to fit within a smaller dome
[17]. We can also note the concentric Schwarzchild designs, which were an ar-
guably better combination from an aberration point of view7, but suffered from
practical issues in their use (notably the convex field and its overall length).

at first. Indeed Galileo had so far no way of discriminating convincingly between features of his
instrument and features of the stars and planets observed. For instance stars were seen with
significant chromatic trails due to the instrument’s aberrations, which starkly contradicted
what even the naked eye could observe. So again we see the parallel nature of the development
of this telescope: observations were carried out even before seemingly essential parts of the
optical theory were mastered.

6We use the work of Baranne and Launay[21] for all the historical facts in this paragraph
7”the best combination of two mirrors ever devised, so far as the smallness of the out-of-axis

images, alone, is concerned” – Ritchey [17].
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Further addition of mirrors allows additional aberration correction, such as
astigmatism. The TMA proposed by Paul Maurice (1935) and later improved
by Baker (1969) [23] eliminate astigmatism while maintaining also low field cur-
vature. These first theoretical TMA designs were originally on-axis two-mirror
corrector solutions with conicoid surfaces for large parabolic primary mirrors.
Baker noted the value of this design because it allowed a large field of view
in a completely reflective solution. He also noted the potential for space-borne
instruments. Korsch showed how to eliminate spherical aberration, coma, astig-
matism and field curvature [24] with a TMA solution that can be folded for
compacity at the cost of both obscuration and image vignetting [25] (at least
in the first such designs, later designs avoid image vignetting). The compacity
and straylight performance of this instrument made it popular for space-borne
applications.

However, there remains the problem of aperture obscuration, which reduces
the quantity of light collected by instruments and degrades the Point Spread
Function (PSF), in ways that can be difficult to model. Quite soon in the history
of reflective telescopes, Herschel tilted the mirrors of the Forty-Foot telescope
(1789) [26] for light collection purposes, as metallic mirrors were not reflective
enough. Non-obscured two-mirror telescopes are generally grouped under the
Schiefspiegler family, which started, in practice, with Kutter [27].

1.2.3 Compact unobscured reflective telescopes

In contemporary times, for space-borne reflective imagers, one often seeks to
avoid obscuration while maintaining high compacity. Since folding an existing
on-axis system with flat mirrors necessarily adds either (or all) obscuration,
wavefront error, surface diffusion, straylight hazard and weight and causes the
need for additional alignment, designers often want to do without. The only
two remaining options, as reminded by Fuerschbach in his introduction [28], are
then to bias the field and/or offset the aperture (using only part of the field or
aperture in an on-axis system and cutting away the useless parts of the mirrors)
or alternatively tilt the mirrors themselves starting from an on-axis system.
Offsetting the field of an existing rotationally symmetric system allows using
only a part of the field away from the center of the aberration field. Offsetting
the aperture allows moving the better corrected area of the aberration field
into the field that is actually used. Both of these offsets techniques can give
rise to very performant unobscured all-conical TMA designs, such as the ones
in the JWST [12]. This can be understood using Nodal Aberration Theory
(NAT) (more in Section 1.3.1). Tilting mirrors directly allows designing off-axis
telescopes divorced from an on-axis parent system, which gives more freedom
in terms of system geometry. An early example of unobscured TMA is due to
Cook [29], building on the work of Korsch.

Optical surfaces in a tilted system, however, effectively generate aberration
fields on the image plane that are not all superimposed around a common center,
as is the case for on-axis systems (including systems with offset aperture/biased
field). Freeform optical surfaces allow the minimisation of aberrations across the
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image field with a higher degree of control over which aberration in particular
is being minimized. This in turn enables balancing the non-centered aberration
fields generated by each optical surface so that the sum of their contribution on
the image plane is minimal on the part of the aberration field that is actually
used by the instrument. This is the main motivation for the use of freeform
optical surfaces.

1.3 Problems being solved across fields of re-
search

Freeform optics, in a sense, makes every step of optical systems development
harder. What are the challenges that freeform optics create and how are they
being answered? We generally find these challenges already existed and freeform
optics only makes it more critical to solve them. Let us give a brief overview of
the state of aberration theory (nodal in particular). The present work does not
include the use of nodal aberration theory, but we want to give the reader suf-
ficient information on the existing literature. Secondly, let us give some outline
on the more naive approach to optical design via real raytracing and the issues
caused by the introduction of freeform optics. This subject occupied most of
our research work. Then we will give some information on freeform fabrication,
which we left outside the scope of our work. Finally we talk about metrology,
which is the object of a few chapters in this memoir.

1.3.1 Aberration Theory

The history of modern aberration theory was summarized by Sasian [30], see
also Rolland [31]. The analytical theory suited to model the optical aberrations
in tilted, and afterwards in freeform systems, evolved from Hopkins’ wave de-
composition formula [32], generalized and further applied by Shack. Following
the summaries on the subject by Thompson [33] and Fuerschbach [28], the wave-
front W in an imaging optical system, depending on the normalized positions in
the field H8 and in the pupil ρ can be decomposed into an addition of surface
contributions Wj(H,ρ) (Eq. 1.1).

W (H,ρ) =
∑
j

Wj(H,ρ) 1.1

These contributions can be rewritten as the sum of an expansion on the dot
products of the position vectors (Eq. 1.2), see eq 2 in Thompson [33].

Wj(H,ρ) =
∑
p

∑
n

∑
m

Wklm,j(H ·H)p(ρ · ρ)n(H · ρ)m 1.2

With k = 2p + m and l = 2n + m. The scalar Wklm is a wave aberration
coefficient indexed by k,l and m. These indices correspond to the field, aperture

8We use a bold notation for vectors.
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and radial power dependency of each aberration’s wavefront. The less general
(reducing the field to a single dimension for working in rotationally symmet-
ric systems) scalar expression (eq 1 in [33]) highlights these dependencies best
(Eq. 1.3).

Wj =
∑
p

∑
n

∑
m

Wklm,jH
kρl cosm(φ) 1.3

With H = ‖H‖, ρ = ‖ρ‖ and φ the angular position in the aperture.
Thus, the familiar power term, which is a parabolic wavefront, is represented
by W020ρ

2, coma by W131Hρ
3 cos(φ) (which we know is linear in the field and

cubed in aperture position), and so on and so forth.
The above representations are suited to on-axis spherical systems, Buchroeder

[34] saw that each optical surface contributed its own aberration field to the
final wavefront, and that these fields were off-centered depending on the mis-
alignments in the system. The first NAT paper according to Thompson is [35],
where the misalignment of two-mirrors telescope (Cassegrain, Ritchey-Chrétien
etc) is studied and shown to generate binodal astigmatism for the wavefront in
the exit pupil. The theory was then expanded to account for freeform surfaces
in off-axis systems and fifth order terms were derived [33, 36, 37]. A useful
summary for NAT is provided by Thompson [38]. It highlights that the central
idea to NAT is the introduction of a vector multiplication operation from Ge-
ometric Algebra. This allows rewriting the aberration field expressions in ways
that clearly highlight nodal behaviour of aberration fields as a function of the
tilt of the components in a system.

We also want to cite Sasian [30] as a reference in the study of optical aber-
rations. Readers can consult [39, 40] for examples of the application of NAT to
optical design tasks.

1.3.2 Optical design

NAT is a valuable tool for optical design, as it provides an analytical model for
the image performance of a system across the field. This allows compensating
aberrations directly, instead of applying an iterative search as is common in
optical design. Even in the case of the application of search algorithms (more
on that later), an analytical model linking performance with variables such
as component tilts, radii of curvature etc, is valuable since it gives access to
derivatives to guide the search.

1.3.2.1 Real raytracing

Optical systems design, in most cases, is done with constraints in addition to im-
age quality. The designer seeks the best compromise between these constraints
and image quality. General search algorithms are thus required. Another gen-
eral tool is so-called real raytracing, which models the imaging performance
of a system via the tracing of rays obeying the Snell-Descartes laws of refrac-
tion/reflection (for simple systems at least). The real raytracing approach is
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largely independent from aberration theory. It is more general although it gives
less information to the optical designer. For instance, real raytracing can be
used for wavefront simulation down to the nanometer range or to estimate the
performance of optical systems the surfaces of which were measured and are
represented by grids of points with a high spatial frequency. It is also simple
conceptually (though complex to perform as we will see). Real raytracing is the
favored approach in most optical design software ever since the field took off in
the late 20th century with the advent of powerful computers9.

Although the study of aberration and real raytracing are different ap-
proaches, an expert designer is likely to use either or both depending on the
project he is working on.

1.3.2.2 Freeform and search algorithms

The typical workflow of an optical designer assisted by a software is: set up an
accurate quantification of project requirements that are obtainable via simula-
tion (such as real raytracing), define variables in the optical system definition
(such as radii of curvature, tilts, thicknesses) the value of which will be modified
in order to meet the requirements, finally run search algorithms on the search
problem that was set up. The software will output a new set of variables that
generates an optical system that is closer to satisfying the project requirements
inputted by the designer. The designer will then tweak the inputs, perhaps man-
ually correct some aspects of the design that cannot be simulated or quantified
easily for the search algorithms to process, and run the search again. The de-
signer will iterate these steps until he is satisfied with the optical system, both
regarding the easily quantifiable requirements and the requirements that can
only be (easily) assessed by a human.

With the increase in computing power, one of the winning strategies for
optical designers has been to craft more and more intricate and comprehensive
quantifications of the project requirements, in order to automate more and more
of the design process. Likewise, the designer wants the software to operate on
a maximum number of variables at once, to find the best possible result. This
strategy works as long as the dimensionality of the search space (the number of
variables) is relatively low (say a dozen in the current state of software).

The introduction of freeform optical surfaces in this workflow increases dra-
matically the number of variables the search algorithms need to operate on.
A single surface can be defined with dozens of coefficients, bringing the total
number of variables in an optical system in the hundreds. Search algorithms
designed for lower dimensionalities will behave poorly in higher dimensions. In
addition, the performance simulation itself is made harder to perform, both con-
ceptually (the software itself is harder to program) and computationally (the
computations are costlier for the end user). The result is that the existing strat-
egy outlined above is severely impeded.

9Paraxial rays were traced in the early days of the discipline. The term real for raytracing
refers to the fact that rays obey Snell-Descartes laws instead, which model more accurately
the real behaviour of light.
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There are several axes of improvement:

• Keep upgrading the computation power. The issue is that these improve-
ments are largely linear while our problem complexities likely grow in
superlinear fashion10.

• Search algorithms better suited to high dimensionality. They would require
a lesser computational cost to find solutions equally as good when com-
pared with existing search algorithms (or better with the same invested
computational cost).

• Draw more information from the simulation, for instance with aberration
theory.

• Obtain accurate performance estimates at a lesser cost. This is for instance
the role of aperture stop sampling schemes, which we will detail in this
work and that are currently used in optical design.

1.3.3 Fabrication

The manufacturing of freeform surfaces is enabled by a variety of technologies,
with varying cost/quality compromises and degree of generality in the generated
surfaces. High level reviews such as [1, 41, 42] synthesize this information.

• Single Point Diamond Turning (SPDT) is able to produce freeform optical
surfaces from even very rough starting points. The final quality of the
optical surfaces, both in roughness and shape is increasingly good and
even compatible with imaging for some applications, either in Infrared
(IR) [43] or with low image quality requirements (See freeform prism [44])
and more recently for space optics [45]. The machines mainly use Slow
Slide Servo (SSS) (also called Slow Servo Tool) [46] with a tool axis (Z)
perpendicular to the sample as well as an axis (X) in the spindle plane
that both oscillate synchronously with the spindle rotation to produce
freeform optics. Another method is Fast Tool Servo (FTS) [47] where the
tool itself (and not the whole tool table) is driven by much lighter and
higher frequency drivers such as piezo actuators or voice coils.

• Molding is adequate for low-cost applications and plastic optics, such as
in VR and HMD [48] or lighting.

• Robotic Polishing : the polishing tool is borne by a robotic arm.

• Stressed Mirror Polishing [49]: The substrate is mechanically stressed with
a specific deformation. While this constraint is applied, the surface is pol-
ished using traditional means into a shape that is easy to manufacture

10Say hypothetically that the cost of finding a good solution to a search problem is kn with
k an arbitrary cost and n the number of search variables. Throwing twice as much computing
power (a massive improvement in computer hardware) at the problem does not give access to
problems with much higher values of n.
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(such as a sphere). Once the polishing is done, the release of the mechan-
ical constraints creates the final optical surface shape.

• MagnetoRheological Finishing (MRF) [50] uses an abrasive fluid, the vis-
cosity of which can be modified locally via a magnetic field.

• Ion Beam Figuring (IBF) [51, 52] projects an ion beam onto the surface
to polish. The ions produce material ejection locally on the substrate.

• Additive Manufacturing [53–57] is a field covering many technologies.
There is a wide variety of applications, from micro-optics to space mir-
rors. The materials can be transparent plastic or more rarely glass. Mirrors
can be made out of metallic (aluminum, titanium) or ceramic substrates.
The main advantage is being able to print the optical surface in the same
material and in the same manufacturing step as the mechanical structure
behind it. Generally speaking, the maturity of these technologies and
processes is lower than for the other manufacturing technologies listed
here.

The interesting criteria to select which method to use are the cost (equip-
ment required, man-hours required), time (driven in part by the removal rate of
the method), final surface roughness, shape accuracy, shape limits (maximum
manufacturable slope or altitude departures, surface diameter), the range of
materials available.

1.3.4 Surface Metrology

Freeform optical surface metrology is a critical step in freeform optics. Depend-
ing on the amplitude of the surface departures, the base shape, the surface shape
error budget, the piece diameter, the measurement cost/time, one must choose
the adequate metrology method. We have reviewed the working principles and
comparative advantages of metrology methods adequate for freeform optics in
Chapter 8. See [1] for a review.

Particularly in metrology, surfaces were always ”freeform”, although this
was an unwanted artefact of manufacturing up to a recent date. The challenge
we face is that freeform departures are more and more pronounced as optical
designers become more acquainted as a profession with freeform optics, and as
the number of manufacturers equipped with freeform-ready machines and ex-
pertise grows. This is an issue since most conventional metrology methods, such
as Fizeau interferometry (which is perhaps one of the most trusted methods for
conventional optical surface metrology), rely on the comparison with spherical
calibers. The measurement range of most conventional metrology methods is not
adequate for freeform metrology. This is why, in our work, we investigated de-
flectometry as a promising method for the measurement of even strong freeform
surfaces.
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1.3.5 System Alignment

Optical system alignment is another hard discipline made arguably harder by
the introduction of freeform optics. In the case of telescope systems, the goal is
to decenter and tilt the mirrors in order to obtain minimized aberrations across
the field (which should be close to the nominal design performance if we ignore
the surface shape errors). Since we solve an inverse problem not unlike that of
optical design, we can use conceptually the same methods. However, since the
acquisition of the image aberration field takes time (typically with an interfer-
ogram at each point in the field or with a star field), as does translating and
rotating the mirrors, black-box optimization approaches are heavily penalized
and NAT becomes indicated. NAT allows linking analytically the mechanical
decenters and tilts of each mirror to separable effects on the aberration field.
This allows a guided alignment procedure: see Schmid [58, 59] for two mirrors
and Thompson [60] for TMA alignment. See Hampson [61] for an example of
a more empirical automatic alignement system for two-mirror telescopes. See
also the proposed methods for aligning the JWST segments using a star field
[62]. Using well thought-out mechanical fiducials for obtaining the best possible
alignment from the assembly alone before starting the fine alignment procedure
helps of course [28].

1.4 Thesis Summary

The present document is divided into chapters as follows:

1. We first review the types of freeform surfaces representations and brush
many related topics.

2. An overview of freeform unobscured telescopes is given. We include both
a review of systems from the literature and typical concepts that prove
useful in designing this kind of systems.

3. In application of the design concepts for freeform unobscured telescopes,
we design a freeform TMA for thermal IR Earth observation. We give the
prescription data and all relevant performance results. Because designing
freeform systems is hard and time-consuming with conventional tools (and
without the help of aberration theory methods), we decided to dig deeper
into raytracing and search algorithms in the following chapters.

4. We remind the reader of all the applied mathematics involved in sequential
raytracing, or at least enough to be able to model most components and
systems, including freeform unobscured telescopes. We implemented all of
these concepts in our own sequential raytracer.

5. We dig even further into optical design software by explaining many con-
cepts relating to ray-aiming. We give some results and many ideas for the
implementation of this hard task made even harder by freeform optics.
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6. Now armed with our raytracing engine and no lack of software optimiza-
tion work, we run computationally-intensive experiments on search algo-
rithms from the applied mathematics literature. We compare the results
of minimization runs on conventional and freeform systems between many
search algorithms and a commercial optical design integrated solution. Ad-
ditionally, we give a clear account of search algorithms concepts to help
optical designers understand this crucial part of the tools they use. The
raytracing implementation plus search algorithms constitute the outline
of a simple self-standing optical design program.

7. In a second, smaller part of our work, we have worked on the metrology of
freeform optical surfaces. We start by giving a review of the measurement
principles which are, in our view, the most able to output low to mid
spatial frequencies shape maps of freeform surfaces.

8. We give the results of measurements we carried out using a phase-
measuring deflectometry bench on various samples. The prominent re-
sults are those on a freeform torture test mirror we designed. This mirror
exhibits extreme altitude and slopes freeform departure.
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Chapter 2

Freeform Representations

Mathematical freeform representations – 2D polynomials – Point-based – RBF
and local representations – Orthogonality properties – Fitting – Generalized eval-
uation via Clenshaw’s method – Edge cases – Suitability v. application

We provide a high level review of the different ways to wholly describe
freeform optical surfaces continuous in altitude and slope. We refer to similar
reviews by Gross et al [63], Ye et al [64] and Steinkopf et al [65]1.

We distinguish three broad families of representations:

• 2D polynomials

• Point-based

• Radial basis functions and local series expansions.

We describe these representations as well as provide some information con-
cerning computerized implementation. We emphasize polynomial representa-
tions since they are typically more useful when used in conjunction with search
algorithms for the automatic design of optical systems. This emphasis, or bias,
is also found in the discipline as a whole. We discuss some common operations
such as polynomial fitting, normalization and shape pre-factors. We give some
important mathematical generalizations for freeform polynomials: Clenshaw’s
evaluation method as well as a general outlook on how new polynomials could
be generated for optics. We conclude with some synthetic and practical remarks
concerning freeform representations.

2.1 2D Polynomials

Freeform optical surfaces can be described using analytical formulae with 2D
polynomials. We refer here directly to the work of Brömel et al [66, 67] which

1It should be noted that this kind of review starts becoming less and less necessary as their
number grows in the literature. Nonetheless, for the sake of completeness and because there
were many related subject we wished to include, here is our own review.
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Figure 2.1: Illustration of the decomposition principle of polynomial-based freeform representa-
tions. The freeform shape is the result of the addition of a base shape and a weighted sum of
polynomials. The dot symbol denotes the scalar product between the coefficients and the polyno-
mials.

compiles a summary of these representations. A common characteristic of all
polynomial representations is to be defined using a base shape to which is added
a weighted sum of 2D polynomials, as illustrated in Fig. 2.1. The altitude z(x, y)2

along a surface defined with a polynomial-based representation is expressed in
Eq. 2.1, with Pj arbitrary 2D polynomial terms, and cj coefficients weighting
their sum.

z(x, y) = zbase(x, y) + zpoly(x, y) 2.1

zpoly(x, y) =

jmax∑
j=0

cjPj(x, y) 2.1a

2.1.1 Properties in Common

Polynomial-based representation share a number of characteristics which we
summarize here.

2.1.1.1 Base Shapes

The base shape component of the description is used in optical design or man-
ufacturing as a link to conventional optical surfaces. The optical designer will
often have a starting point that uses conventional shapes. The base shape com-
ponent allows the representation of these shapes. It can also be used to straight-
forwardly quantify and limit the freeform departure from a base shape that
would be easier to manufacture. The commonly used base shapes are: planar,
spherical, conic, toroidal, biconic (Eq. 2.2). All these definitions can be found
in [67] and in the user manual of any optical design software [68].

2Or z(ρ, θ). Please note that throughout the present chapter, we will use cartesian or polar
coordinates interchangeably.
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zbase(x, y) =



0 planar
cρ2

1+
√

1−c2ρ2
spherical

cρ2

1+
√

1−(1+K)c2ρ2
conic

cxx
2+cyy

2

1+
√

1−c2xx2−c2yy2
toroidal

cxx
2+cyy

2

1+
√

1−(1+Kx)c2xx
2−(1+Ky)c2yy

2
biconic

2.2

With:

• ρ =
√
x2 + y2

• c = 1
R : the curvature of the sphere of radius R.

• cx, cy: the curvatures in X and Y directions.

• K: the conic constant.

• Kx,Ky: the conic constants in X and Y directions.

The biconic base shape is the most general description. However, discernment
should be exercised when choosing a description depending on the context.
Introducing superfluous Degrees Of Freedom (DOF) is detrimental to optical
design optimization. An unnecessarily complex base shape can be a source of
confusion when trying to communicate the surface data. One can also introduce
degeneracies in the surface description (see Takaki et al [69]), meaning that
the base shape and some freeform terms compensate each other. An obvious
example is the spherical shape both in base shape and Zernike polynomial Zm=0

n=2

but degeneracies also appear with conics.

2.1.1.2 Multiplying Polynomials with Shape-Controlling Factors

As explained by Brömel [66] (we refer the reader to her memoir for further
details and only reproduce a quick summary here), one can introduce 2D shape-
controlling factors to the freeform description: namely a boundary function
B(x, y) and a projection factor P (x, y)3. Note these spatial-dependent factors
are simply a way of manually constraining freeform departures on a case by case
basis, they are not to be confused with the weight function (see Section 2.1.1.5)
that characterizes the orthogonality of polynomials. The general expression for
polynomial-based freeform surfaces is then Eq. 2.3.

z(x, y) = zbase(x, y) +B(x, y)P (x, y)zpoly(x, y) 2.3

3Please note that our projection factor is the reciprocal of the projection factor defined
by Brömel [66]. This change is for readability. Additionally, it seems to us there are small
confusions in the equations between the projection factor and its reciprocal in [66], eq.2.8 for
example.
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The boundary function B(x, y) provides an envelope for the freeform shape.
One can thus constrain, for example, the border of the unit disk to have zero
freeform departure, to avoid the often extreme and sometimes useless departures
that many polynomials present there. Brömel provides an example of such a
boundary function, constraining the center and edges of the unit disk to be zero,
we propose a slight variation with a factor of 4 to maintain a unit maximum
over the unit disk in Eq. 2.4. It is plotted in Fig. 2.2.

Bcenter−edge(ρ) = 4(1− ρ2)ρ2 2.4

We can also add piecewise boundary functions with smooth transitions which
can be used to spatially knit together arbitrary freeform representations on dif-
ferent areas of a surface or simply to smooth out the edges for better manu-
facturability. The smoothstep functions provide a transition from 0 to 1 guar-
anteeing zero derivatives at the edges from order 1 through n4. This property
allows manufacturing transition areas without sudden changes in slope or tool
acceleration. Smoothstep functions are an application of Hermite interpolation,
the general analytical expression is found in Eq. 2.5 [70], an application for order
n = 2 (zero slope and curvature at the edges) is found in Eq. 2.6. Wikipedia
provides a list of many other sigmoid functions, some of which could probably
just as well be used [71] for the same purposes.

Sn(x) = xn+1
n∑
k=0

(
n+ k

k

)(
2n+ 1

n− k

)
(−x)k 2.5

S2(x) = 6x5 − 15x4 + 10x3 2.6

Using this sigmoid function, we can craft a piecewise edge-smoothing func-
tion. It can be useful to knit the outer border of an optical surface with a
mechanical flat outside of the rays footprint. For example, we may wish to tran-
sition from a freeform to the base shape between ρ = ρtrans and ρ = 1 on the
unit disk, we may use Bρtrans

S2
(ρ) Eq. 2.7. It is plotted in Fig. 2.3.

Bρtrans

S2
(ρ) =

{
1 ρ < ρtrans

S2(1− ρ−ρtrans
1−ρtrans ) ρtrans ≤ ρ ≤ 1

2.7

The projection factor P (x, y) has the effect of dampening the freeform de-
parture in relation with the normal vector angle of the base shape. The freeform

departure is projected along the normal vector of the base shape
−−−→
Nbase rather

than along the piece Z axis. The expression for P (x, y) is simply Eq. 2.8 with
α the angle between the base shape normal vector and the Z axis.

4One should probably avoid using high orders of n due to accuracy concerns, as the com-
putation of the function involves an addition of powers. We found n = 2 to be sufficient for
practical purposes, although we did not carry out formal investigations
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Figure 2.2: Surface plot and diametral cross-
section of Bcenter−edge(ρ) Eq. 2.4. The cen-
ter and edges of the surface shape are con-
strained to zero.

B       (ρ)ρtrans
S2

0
0.2
0.4
0.6
0.8

1

-1 -0.5 0 0.5 1

ρtrans-ρtrans

Figure 2.3: Surface plot and diametral cross-
section of BρtransS2

(ρ) Eq. 2.7. The edges af-
ter ρtrans transition smoothly to zero.

P (x, y) = cos(α)

=

−−−→
Nbase∥∥∥−−−→Nbase

∥∥∥ · −→z
=

1∥∥∥−−−→Nbase

∥∥∥
∂zbase(x,y)

∂x
∂zbase(x,y)

∂y

−1

 ·
 0

0
−1


=

1√
1 +

(
∂zbase(x,y)

∂x

)2

+
(
∂zbase(x,y)

∂y

)2

2.8

In the case of a spherical base shape of curvature c, following Brömel [66]
we then have Psphere(ρ) (Eq. 2.9). We plot this profile in Fig. 2.4.

Psphere(ρ) =
√

1− c2ρ2 2.9

The projection factor has the advantage over the boundary factor to be
adaptable on the base shape. In optical raytracing, avoiding important depar-
tures near the edge of very curved base shapes will tend to reduce the probability
of rays missing the surface, which typically generates an error in the merit func-
tion computation in raytracing software.
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Figure 2.4: Projection factor Psphere(ρ)
(Eq. 2.9) on a whole hemisphere. The
freeform shape is contrained to zero as the
normal vector approaches π
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Figure 2.5: Simple example of adapting XY
polynomials to a rectangular aperture with
normalization values Xnorm = 2, Ynorm =
1.

Figure 2.6: Random Zernike polynomials
surface evaluated outside of the unit-disk.
The unit-disk boundary is indicated by the
green line. The outer region has altitude de-
partures which are completely out of propor-
tion with those in the unit-disk.
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2.1.1.3 Coordinates Normalization

Polynomials being usually defined either on the unit disk or the unit square, they
are generally used with normalized coordinates. One can also want to adapt a
polynomial to a different aperture shape, as in Fig. 2.5. In the particular case of
XY polynomials, we avoid extreme values outside of the normalized unit square
by a simple change of coordinates. Simple coordinates normalizations include:

• Normalization radius (Eq. 2.10), for the normalization of circular aperture
shapes.

• X-Y normalization (Eq. 2.11), for the normalization of rectangular aper-
ture shapes.

zpoly(x̂, ŷ) = zpoly

(
x

Rnorm
,

y

Rnorm

)
2.10

zpoly(x̂, ŷ) = zpoly

(
x

Xnorm
,

y

Ynorm

)
2.11

2.1.1.4 Aperture Shape and Extrapolation

Most polynomials can be extrapolated outside of their support. This is an im-
portant property in optical design optimization. The diameter of optics can vary
automatically during optimization but the polynomials will continue to be eval-
uated even if the diameter grows beyond the normalization radius. This prevents
unevaluable merit functions.

For ”production-ready” surfaces however, extrapolated regions will, as a gen-
eral rule, have undesirably large departures, as can be seen on Fig. 2.6. It is of-
ten recommended to define polynomials over a larger normalization radius than
what is needed for the clear aperture, in order to describe the necessary me-
chanical outer region with polynomials that are not extrapolated. A better way
still in our opinion is to transition from the freeform surface to a mechanical
flat using a sigmoid function as mentioned above (Section 2.1.1.2). The sur-
face will then have to be communicated to the manufacturer in a point-based
representation, which can degrade the accuracy if one is not careful.5

Adapting polynomials to other aperture shapes, while retaining their orthog-
onality, can be done via a Gram-Schmidt process [72].

2.1.1.5 Polynomials Orthogonality

Definitions We explain what is meant when polynomials are called orthogonal
Eq. 2.12 or slope orthogonal Eq. 2.13 for any two polynomial terms Pj , Pj′

5In our experience, manufacturers do not like instructions such as ”Use the freeform coef-
ficients over the clear aperture and then transition smoothly to a flat on the outer diameter
of the piece.” It is better in practice to provide them a unique definition for the whole piece.
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taken in an single-indexing scheme and for a unit weight function. We give the
definitions for the unit disk, but they can be applied to any 2D support.

〈Pj , Pj′〉 =
1

π

π∫
θ=−π

1∫
ρ=0

Pj(ρ, θ) · Pj′(ρ, θ)ρdρdθ = const(j)δj,j′ 2.12

〈
−→
∇Pj ,

−→
∇Pj′〉 =

1

π

π∫
θ=−π

1∫
ρ=0

−→
∇Pj(ρ, θ) ·

−→
∇Pj′(ρ, θ)ρdρdθ = const(j)δj,j′ 2.13

δj,j′ is the Kronecker delta. If additionally, const(j) = 1, then the polyno-
mials are said to be orthonormal.

One can also express orthogonality with an integral scalar product with a
non-unit weight function W (ρ, θ): Eq. 2.14. The resulting mathematical defini-
tion of the Root Mean Square (RMS) will then be weighted and will not express
the departure in nanometers over the surface to which optics practitioners are
accustomed.

〈Pj , Pj′〉 =

π∫
θ=−π

1∫
ρ=0

Pj(ρ, θ) · Pj′(ρ, θ) ·W (ρ, θ)ρdρdθ 2.14

The orthogonality property enables, in practice, three very related applica-
tions:

• Computing the RMS departure (altitude or slope depending on the type
of orthogonality) from the indiviual coefficients alone.

• Easily fitting a surface with polynomials, through a separable minimiza-
tion problem.

• A very powerful evaluation algorithm (see Section 2.1.3.1).

Formally and in the most general sense, the set of polynomials with degree
at most n is a vector space Pn of dimension n + 1. An inner product 〈·, ·〉 can
be defined between terms (it is an integral over some domain in the examples
above). The inner product is a scalar function of two members of Pn and has
the following properties [73]:

• Symmetry: 〈Pi, Pj〉 = 〈Pj , Pi〉

• Linearity in the first argument: 〈aPi, Pj〉 = a〈Pi, Pj〉 and 〈Pi + Pk, Pj〉 =
〈Pi, Pj〉+ 〈Pk, Pj〉

• Positive-definite for any Pi except 0: 〈Pi, Pi〉 > 0
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The integral over a surface of the product of two altitudes is an inner product,
the same integral for the dot product of gradients is another inner product.
Adding a weight function to the integral still defines an inner product etc.

In the most general sense, saying that a polynomial basis is orthogonal is
just stating that there exist an inner product that is zero when applied to any
two different members of the basis: Eq. 2.15.

∀(i, j) so that i 6= j, 〈Pi, Pj〉 = 0 2.15

For freeform polynomials we should be careful to specify what inner product
is meant when we call polynomials orthogonal, since it is often linked to physical
quantities we care about.

Polynomials in Optical Design Optimization Problems In our experi-
ence, optical designers often think orthogonal polynomials behave better dur-
ing optical system optimizations. This is reported by empirical investigations
[74]6. However, since the only commonly used non-orthogonal polynomials are
the monomials, we wonder whether it could be that monomials give rise, as a
general rule, to slower convergence in optimization, not because they are not
orthogonal but because of some other unrelated factor7.

For a polynomial set to be useful in optical design, we can give a requirement:
The first polynomial terms must be relevant to the problem at hand. We mean
that they must allow the greatest minimization of the merit function in as few
terms as possible. In most cases, this means that the first polynomial terms
must correct the low order aberrations (which are usually the largest in design
starting points)8. This is the case for all the polynomials presented here.

2.1.1.6 RMS Departure of Orthogonal Polynomials

The RMS departures in altitude RMSalt(zpoly) or in gradient RMSgrad(zpoly)
are often used as a simple manufacturability metrics for freeform optics at the
optical design stage. For a general freeform surface without orthogonality prop-
erties, these can be computed by evaluating the altitude/gradient on a discrete
uniform sampling of a sufficient number Npoints of points over the surface, as in
Eqs. 2.16 and 2.17.

6”The convergence speed is much higher for orthogonal polynomial sets than for non-
orthogonal (Monomials),[...]”

7We sometimes encounter a misconception among optical designers that using orthogonal
polynomials gives rise to separable optimization problems, in much the same way as fitting
optical surfaces with orthogonal polynomials is a separable problem (see Section 2.1.1.7). This
is emphatically not the case: for a general optical system (eg a TMA), the merit function is
not separable with regards to the freeform coefficients variables defining the optical surfaces.

8There is no one-size-fits-all polynomial set, the performance will always be related to the
problem at hand. Most of the presented polynomials are very adequate for correcting low order
optical aberrations. However, in edge cases where the Merit Function (MF) is not related to
aberration correction, or if very high order of aberrations were the optimization target, the
presented polynomials could become inadequate.
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RMSalt(zpoly) ≈

√√√√∑Npoints

i=1 z2
poly(xi, yi)

Npoints
2.16

RMSgrad(zpoly) ≈

√√√√∑Npoints

i=1

(
∂zpoly

∂x (xi, yi)
)2

+
(
∂zpoly

∂y (xi, yi)
)2

Npoints
2.17

For the case of orthogonal polynomials with respect to an integral inner
product over some spatial domain (unit disk here), computing the RMS quan-
tities becomes exact and less computationally intensive, they are a function of
the polynomials coefficients cj :

• For polynomials orthogonal in altitude: Eq. 2.18.

• For polynomials orthogonal in gradient: Eq. 2.19.

RMSalt(zpoly) =

√√√√√ 1

π

π∫
θ=−π

1∫
ρ=0

jmax∑
j=0

cjPj(ρ, θ)

2

ρdρdθ

=

√√√√jmax∑
j=0

(const(j) · cj)2

2.18

RMSgrad(zpoly) =

√√√√√ 1

π

π∫
θ=−π

1∫
ρ=0

−→
∇

jmax∑
j=0

cjPj(ρ, θ) ·
−→
∇

jmax∑
j=0

cjPj(ρ, θ)ρdρdθ

=

√√√√jmax∑
j=0

(const(j) · cj)2

2.19

2.1.1.7 Fitting Surfaces with Orthogonal Polynomials

We can approximate a continuous function f(ρ, θ) using a finite series of or-
thogonal polynomials Pj with coefficients cj with j ∈ J0 . . . jmaxK resulting in an
approximation ffit(ρ, θ) (Eq. 2.20). If the RMS is taken in the usual sense in op-
tics (in nanometers and unweighted spatially), we need orthogonal polynomials
with respect to an integral of an altitude product over a spatial domain (such
as Zernike polynomials).

ffit(ρ, θ) =

jmax∑
j=0

cj · Pj(ρ, θ) 2.20
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The solution set to our minimization problem is the set of coefficients cj
that minimize a distance metric between f and ffit. In most cases, we want to
minimize the RMS altitude errors between the two functions (Eq. 2.21). For
the sake of clarity, we work in the unit disk, but the case is adaptable to any
support over which the polynomial basis is orthogonal.

RMS(f, ffit) =

√√√√√ π∫
θ=−π

1∫
ρ=0

jmax∑
j=0

cj · Pj(ρ, θ)− f(ρ, θ)

2

ρdρdθ 2.21

Now, using the polynomials orthogonality condition (Eq. 2.12) and the fact
that f can be expressed in the polynomial basis P with coefficients c′j (Eq. 2.22).
We can deduce (with some steps omitted) Eq. 2.23.

f(ρ, θ) =

∞∑
j=0

c′j · Pj(ρ, θ) 2.22

RMS(f, ffit) = π

jmax∑
j=0

const(j)(cj − c′j)2 +

∞∑
j=jmax+1

const(j)(c′j)
2

 2.23

We can easily see from Eq. 2.23 that the individual coefficients cj will have an
independent effect on RMS(f, ffit). Thus, the minimization problem is separable
and vastly easier to solve numerically than if it were non-separable.9

Please note the orthogonality is broken by:

• Not working on the support over which the polynomials are defined and
orthogonal. For example working with a subaperture of unit-disk poly-
nomials completely breaks the orthogonality. Likewise, extrapolating the
polynomials outside of their support breaks the orthogonality.

• Working with an arbitrary discrete sampling of the surface described by
f(ρ, θ), this is obviously always the case with measurement data. Gray [75]
reports in Appendix III a particular discrete sampling that allows orthogo-
nality for Zernike polynomials, as well as a method to find a Zernike poly-
nomial expansion for a surface without the need for an iterative search
process. Most of the time however, surfaces are fitted with a sufficient
number of data points so that the orthogonality approximately holds10.

On the subject of fitting a discrete sample of points with polynomials, we
refer the reader to [76] for the importance of the sampling scheme.

9In a search problem that is so-called separable, each parameter can be optimized indepen-
dently. For instance, say we seek the minimum of f(c1, c2, c3, c4) (4 dimensional search prob-
lem). We can find the value of each parameter that minimizes f(cj) with all the others fixed
at arbitrary values. The four optimal arguments also provide the minimum to f(c1, c2, c3, c4)
if f is separable with respect to its four arguments. Thus the 4D search problem is reduced
to four much simpler 1D search problems.

10The integral in Eq. 2.12 becomes a finite sum over the sampling points.
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2.1.2 Commonplace Polynomials

2.1.2.1 Zernike

Zernike polynomials Zmn (ρ, θ) are defined explicitely as the product of a radial
component Rmn (ρ) and an azimuthal component Am(θ) as in Eq. 2.24 [77].

Zmn (ρ, θ) = Rmn (ρ) ·Am(θ) 2.24

Rmn (ρ) =

(n−|m|)/2∑
k=0

(−1)k
(n− k)!

k!(n+m
2 − k)!(n−m2 − k)!

ρn−2k 2.24a

Am(θ) =

{
cosmθ m ≥ 0

sin |m|θ m < 0
2.24b

Please note the explicit expressions cannot be used for n > 8 approxi-
mately [78] on typical 64-bits computers performing floating-point arithmetic.
The numerical error grows with n, e.g. in the computation of the ρn terms11.
See Section 2.1.3.1 for a numerically robust evaluation strategy.

We give Fig. 2.7, a table of the first few terms of the Zernike polynomials in
the Standard normalization and the OpticStudio indexing for the surface type
Zernike Standard Sag. For more details on the Zernike polynomials, the different
conventions, indexing, normalizations and properties, we refer the reader to the
dedicated Appendix A.

2.1.2.2 XY (monomials)

So-called XY polynomials, monomials or Extended Polynomials (in OpticStudio)
can be defined over a double indexing (p, q) as Eq. 2.25.

PXY
p,q (x, y) = xpyq 2.25

XY polynomials have no orthogonality property. It is our view that one
should not dismiss these polynomials for this reason. Indeed, perfectly good op-
tical systems were designed using XY polynomials [80, 81]. Additionally, their
simple definition allows very clear communication. We plot the first few poly-
nomials in Fig. 2.8.

We adopt the OpticStudio single indexing for Extended Polynomials. The
terms are arranged in increasing order n = p + q and inside each order in
decreasing exponent p and increasing q. We start the indexing at j = 0 for the
term X1Y 0. To compute the single index j from (p, q), use Eq. 2.26. To compute
the exponents (p, q) from j, use Eq. 2.27.{

n = p+ q

j = n(n+1)
2 − 1 + q

2.26

11The arithmetically inclined readers can refer to [79] on the subject.
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Figure 2.7: Table of the first few Zernike polynomials, as computed by our implementation using
Andersen’s work [78] and the OpticStudio ”Zernike Standard Sag” indexing and conventions. For
each polynomial, we give three numbers: j, n,m with j the Noll/OpticStudio single-index starting
from 0 and n,m the corresponding radial and azimuthal orders respectively. The color scale is
common to all the polynomials and the terms use the standard normalization.
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Figure 2.8: XY polynomials table. The indices on top of each map are j; p; q. j is the OpticStudio
single index, p the x exponent and q the y exponent. Only the very first terms are represented here.
The following terms have altitudes at the edge that is so high that maps with a linear colormap
appear mostly flat.


n =

⌊
−1+
√

1+8(j+1)

2

⌋
p = n− j + n(n+1)

2 − 1

q = j − n(n+1)
2 + 1

2.27

2.1.2.3 Q-poly (Forbes)

The freeform polynomials commonly referred to as Q-poly are due to G.W.
Forbes [82], building upon his previous work on the representation of rotationally
symmetric aspheres [83]. Eq.2.2 of [82] gives the expression for a general surface
with a spherical base shape employing Q-polys. It also uses a spherical projection
factor Eq. 2.9. Ignoring the base shape and projection issues, we can express
Q-polys as Eq. 2.28 (Eq.B.1 in [82]).

PQ(ρ, θ) =ρ2(1− ρ2)

nmax∑
n=0

rotnQ
0
n(ρ2)

+

mmax∑
m=1

ρm

(
cosmθ

nmax∑
n=0

amn Q
m
n (ρ2) + sinmθ

nmax∑
n=0

bmn Q
m
n (ρ2)

) 2.28

Notice how the formula can be broken down into:

• A rotationally symmetric component: ρ2(1− ρ2)
∑nmax

n=0 rotnQ
0
n(ρ2)

• A freeform component:∑mmax

m=1 ρm
(
cosmθ

∑nmax

n=0 amn Q
m
n (ρ2) + sinmθ

∑nmax

n=0 bmn Q
m
n (ρ2)

)
The rotationally symmetric component is exactly the aspheric polynomials

Qbfs shown in [83]. The freeform component has a part in cos and a part in
sin much like Zernike polynomials. Explicit formulae for the terms Qmn (ρ2) are
given in Fig.3 of [82], although they quickly become numerically intractable for
higher orders of n and m.

The available parameters for this surface are:

37



Figure 2.9: Table for the rotationally symmetric terms ρ2(1−ρ2)Q0
n(ρ2) for n = [0, 6]. The color

scale is the same for all terms. Notice how the extremum decreases along with order n. The radial
spatial frequency also increases with order. A cross-section plot of these terms can be found in
Fig.2 of [83].

• rotn : Coefficients for rotationally symmetric terms. A table for these terms
is shown in Fig. 2.9.

• amn : Coefficients for the cos component of the freeform part. A table is
shown in Fig. 2.10.

• bmn : Coefficients for the sin component of the freeform part. A table is
shown in Fig. 2.11 for the sake of completeness.

All these coefficients could be arranged in a single-indexed table, much in the
way Zernike polynomials coefficients are.

The Q-polys PQ of Eq. 2.28 are slope orthonormal (see Eq. 2.13) over the
unit-disk, but not orthogonal in altitude. This enables the computation of a
manufacturing criterion of RMS departure in gradient in the efficient, exact
and straightforward way highlighted in Eq. 2.19.

A robust and efficient way of computing the Q-polynomials surfaces and
their derivatives to any order is shown by Forbes. As it happens, sums can
be computed directly in Eq. 2.28 using Clenshaw’s method (Section 2.1.3.1).
This allows robust and efficient evaluation. See [82, 84] for the application of
Clenshaw’s method to Q-polynomials. All the tables of Q-polynomials we show
in the present work are computed using this method.

2.1.2.4 Legendre

Legendre polynomials, in a mathematical context, refer to 1D polynomials, an
explicit equation of which is Eq. 2.29 (one of many such formulae) [85], with
n = [0, nmax].

Ln(x) =
1

2n

bn/2c∑
k=0

(−1)k
(
n

k

)(
2n− 2k

n

)
xn−2k 2.29

For a more robust implementation, the recurrence relation in Eq. 2.30 [85] is
indicated. Start with the first terms L0 = 1, L1 = x. Better still, the weighted
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Figure 2.10: Table for the freeform cos terms ρm cosmθQmn (ρ2) for n = [0, 6], m = [1, 7]. The
color scale is the same for all terms. The indices written on top of each map are n;m. Notice how
the extremum decreases along with orders n and m. The radial spatial frequency increases with
n. The angular spatial frequency increases with m.
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Figure 2.11: Table for the freeform sin terms ρm sinmθQmn (ρ2).
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sum of Legendre terms and their derivatives can be computed directly using the
general Clenshaw method (Section 2.1.3.1).

(1 + n)Ln+1(x)− (2n+ 1)xLn(x) + nLn−1(x) = 0 2.30

From the 1D Legendre polynomials, we can build a 2D polynomial for optics
via a simple product in x and y, see Eq. 2.31 [67].

PLm,n(x, y) = Lm(x)Ln(y) 2.31

We then have a double-indexed table of coefficients cm,n. We represent the
first few 2D Legendre polynomial terms in Fig. 2.12.

The 1D Legendre polynomials are orthogonal over [−1, 1] [85], see Eq. 2.32.

1∫
x=−1

Ln(x) · Ln′(x)dx =
2δn,n′

2n+ 1
2.32

It can further be shown that the 2D version is orthogonal on the unit-square
x = [−1, 1], y = [−1, 1], using the separation along the two coordinates (x, y)
and the 1D orthogonality property, see Eq. 2.33.

〈PLm,n, PLm′,n′〉 =

1∫
y=−1

1∫
x=−1

Lm(x)Ln(y) · Lm′(x)Ln′(y)dxdy

=
4δm,m′δn,n′

(2m+ 1)(2n+ 1)

2.33

2.1.2.5 Chebyshev

As with Legendre polynomials, Chebyshev polynomials refer to 1D polynomials
which we multiply along the two cartesian directions for use in optics. An explicit
expression for Chebyshev polynomials of the first kind, in the interval [−1, 1] is
given by Eq. 2.34 [86].

C1st
n (x) = cos(n arccos(x)) if |x| ≤ 1 2.34

The first kind is orthogonal on [−1, 1] with respect to a non-unit weight
function, as seen in Eq. 2.3512 [86].

1∫
−1

C1st
n (x) · C1st

n′ (x)√
1− x2

dx =

{
πδn,n′

2 n 6= 0 and n′ 6= 0

π n = n′ = 0
2.35

12Note this is an improper integral.
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Figure 2.12: Table of Legendre 2D polynomials. The indices on top of each map are (m,n).
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We can build a 2D Chebyshev polynomials of the first kind via a simple
product shown in Eq. 2.36. The first few terms are shown in Fig. 2.13. It is
straightforward to show these 2D polynomials are orthogonal on the unit square
with respect to some non-unit weight function, see Eq. 2.37.

PC
1st

m,n (x, y) = C1st
m (x)C1st

n (y) 2.36

〈PC
1st

m,n , P
C1st

m′,n′〉 =

1∫
y=−1

1∫
x=−1

C1st
m (x)C1st

n (y) · C1st
m′ (x)C1st

n′ (y)√
(1− x2)(1− y2)

dxdy

=



π2δm,m′δn,n′

4 {m,m′, n, n′} ∈ N∗
π2δm,m′

2 n = n′ = 0, {m,m′} ∈ N∗
π2δn,n′

2 m = m′ = 0, {n, n′} ∈ N∗

π2 m = m′ = n = n′ = 0

2.37

A possible explicit expression for Chebyshev polynomials of the second kind
is given by Eq. 2.38 [87].

C2nd
n (x) =

bn/2c∑
m=0

(
n+ 1

2m+ 1

)
xn−2m(x2 − 1)m 2.38

Chebyshev polynomials of the second kind are orthogonal on [−1, 1] with
respect to a different non-unit weight function, see Eq. 2.39.

1∫
−1

C2nd
n (x) · C2nd

n′ (x)
√

1− x2dx =
πδn,n′

2
2.39

A 2D version of Chebyshev polynomials can be constructed as in Eq. 2.40.
The first few terms are shown in Fig. 2.14. These polynomials are orthogonal on
the unit square with respect to a non-unit weight function, as Eq. 2.41 shows.

PC
2nd

m,n (x, y) = C2nd
m (x)C2nd

n (y) 2.40

〈PC
2nd

m,n , PC
2nd

m′,n′〉

=

1∫
y=−1

1∫
x=−1

C2nd
m (x)C2nd

n (y) · C2nd
m′ (x)C2nd

n′ (y)
√

(1− x2)(1− y2)dxdy

=
π2

4
δm,m′δn,n′

2.41
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Another definition for both first kind and second kind is with the recurrence
relation in Eq. 2.42 [86] with the starting terms given in Eq. 2.43. As always
with orthogonal polynomials, Clenshaw (Section 2.1.3.1) applies.

Cn+1(x) = 2xCn(x)− Cn−1(x) 2.42

{
C1st

0 (x) = 1;C1st
1 (x) = x first kind

C2nd
0 (x) = 1;C2nd

1 (x) = 2x second kind
2.43

2.1.2.6 Bernstein

Researchers at LAM [88, 89] have shown the successful application of Bernstein
polynomials to the description of surfaces for optical design. They have described
2D polynomials and a further orthogonalization method. We will show the non-
orthogonal version here for the sake of simplicity. Over the unit-square, we can
define the 2D Bernstein polynomials as Eq. 2.44 with a double-indexing scheme
(i, j) and respective maximum orders (n,m).

PBi,j,n,m(x, y) =(
n

i

)(
1 + x

2

)i(
1− x

2

)n−i(
m

j

)(
1 + y

2

)j (
1− y

2

)m−j 2.44

With the usual binomial coefficient:(
n

k

)
=

n!

k!(n− k)!
2.45

The Bernstein polynomials have the following properties:

• The highest orders (n,m) have to be defined in advance.

• The Bernstein polynomials through the maximum order form a partition
of unity. This means that everywhere on the surface:∑n
i=0

∑m
j=0 P

B
i,j,n,m(x, y) = 1

• Each term is positive everywhere on the surface: PBi,j,n,m(x, y) ≥ 0

We give a table of Bernstein polynomial terms for (n,m) = (6, 6) Fig. 2.15.
Each term is mostly a local deformation of the surface, the indices (i, j) move
the center of the deformation along the two cartesian dimensions. We refer the
reader to [88] for the derivation through singular value decomposition of a set
of orthogonal terms, which the authors note should be more suited to optical
design.

2.1.3 Generalizations and Computerized Implementation

The mathematics and algorithmic literature provide powerful shortcuts and
points of view for the implementation of polynomials.
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Figure 2.13: Table of 2D Chebyshev polynomials of the first kind PC
1st

m,n (x, y). The indices on top
of each map are (m,n).
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Figure 2.14: Table of 2D Chebyshev polynomials of the second kind PC
2nd

m,n (x, y). The indices on
top of each map are (m,n).
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Figure 2.15: Berstein polynomials table for (n,m) = (6, 6). The indices we give on top of each
map are (i, j). Notice how each map is a local deformation of the surface.
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2.1.3.1 General implementation for orthogonal polynomials: Clen-
shaw’s method

As noted by Forbes [90], all orthogonal polynomials (1D) with terms Pn(x) can
be expressed with the aid of the recurrence relation of the type given in Eq. 2.46.

Pn+1(x) = (An +Bnx) · Pn(x)− Cn · Pn−1(x) 2.46

P0(x) = 1 2.46a

P1(x) = A0 +B0x 2.46b

What follows is true for all polynomials that obey Eq. 2.46. Not all polyno-
mials can be expressed in this way, but all orthogonal polynomials can, as can
a few other non-orthogonal polynomials, eg monomials with An = Cn = 0 and
Bn = 1.

Defining the particular polynomials is then just a matter of setting An, Bn
and Cn. A table for most classical orthogonal polynomials is found online in
the NIST DLMF (18.9(i)) [91] (careful, An and Bn are switched). This gen-
eral recurrence formula is already more numerically robust than most explicit
expressions, but there is more. For any orthogonal polynomial, one can then
evaluate finite sums of weighted polynomials and their derivatives using an in-
credibly simple and efficient relation we owe to Clenshaw, and highlighted in
[90]. Evaluating the altitude and first derivatives is all that is needed for simple
raytracing, so the implications for optical design code are self-evident.

For the evaluation of a weighted sum S(x) (altitude in optical design) (see
Eq. 2.47) of polynomial terms Pm (polynomials that obey the recurrence relation
Eq. 2.46) at point x, with coefficients cm, we can introduce the quantity αn which
follows the (descending) recurrence relation given in Eq. 2.48 [90].

S(x) =

M∑
m=0

cm · Pm(x) 2.47

αn = cn + (An +Bnx) · αn+1 − Cn+1 · αn+2 2.48

αM = cM 2.48a

αM−1 = cM−1 + (AM−1 +BM−1x) · cM 2.48b

The sum S(x) can then be obtained through the exceedingly simple Eq. 2.49.

S(x) = α0(x) 2.49

Similarly, derivatives of order j, S(j)(x) (Eq. 2.50) are obtained by intro-

ducing α
(j)
n obeying the recurrence relation in Eq. 2.51. The result is given by

Eq. 2.52.
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S(j)(x) =

M∑
m=0

cm · P (j)
m (x) 2.50

α(j)
n = jBn · α(j−1)

n+1 + (An +Bnx) · α(j)
n+1 − Cn+1 · α(j)

n+2 2.51

α
(j)
M−j+1 = 0 2.51a

α
(j)
M−j = jBM−j · α(j−1)

M−j+1 2.51b

S(j)(x) = α
(j)
0 (x) 2.52

These relations are given in the 1D case, but are applicable to 2D polynomials
that are defined using radial and azimuthal terms: the application to Zernike
polynomials is detailed in [90], to Q-polys in [82, 83], note this is always the same
general method. Also note that during the implementation of this method, some
quantities (eg An, Bn, Cn) that are independent from x can be precomputed up
to some maximum polynomial order, which further speeds up the computation.

We think it necessary to insist on the relevance of these relations. This
is in most cases the best (quickest and most accurate up to high polynomial
orders) way to compute any surfaces described by orthogonal polynomials (plus
any other polynomials that obey the three-term recurrence in Eq. 2.46) and
their derivatives in optics. It is moreover astonishingly simple and general. The
subject of Clenshaw’s method is also detailed in Numerical Recipes [92], with
interesting discussions on the numerical stability of the recurrences used. A
similar shortcut is available for changes of basis between polynomials that obey
Eq. 2.46, owed to Salzer and discussed by Forbes [90].

A perhaps less powerful generalization for the presented polynomials is to
realise that many can be directly linked to Jacobi polynomials (18.7 [91]). This
is true of Chebyshev polynomials of all kinds, Legendre, Zernike [90], Q-poly
[82].

2.1.3.2 Numerical methods for polynomials evaluation

When Clenshaw’s method is not applicable, there are a few well-known methods
that can be of interest when evaluating weighted sums of polynomials and their
derivatives.

When the coefficients in front of polynomials are ”ill-conditioned” (a mix
of very large and very small coefficients), the sum will suffer from numerical
inaccuracy13. To perform the sum while compensating for inaccuracies, one can
use the Kahan (also Kahan-Babuska-Neumaier) summation algorithm [93].

13The reader can try evaluating the following sum in any programming language performing
simple float arithmetics: 1.0 + 1E16−1E16−0.5. The correct result is blatantly 0.5. However,
if you tell your computer to sum the terms in that order, performing just single or double
float arithmetics, the result will be −0.5. The first 1.0 gets squashed by 1E16.
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For reference, several well-known evaluation schemes exist for monomials.
Horner’s scheme (see 5.1 in [92]) is a particular case of Clenshaw’s method.
Estrin’s scheme [94] (also 5.1 [92]) allows the evaluation of another factorisation
of monomials.

Additionally, since optical researchers will often want at least the first deriva-
tives of polynomial surfaces in addition to the altitude, it should be noted that
it is often possible to compute both altitude and derivatives simultaneously in
less time than if they were evaluated independently [92].

2.1.3.3 Methods to generate new polynomials for optics

There is no reason to doubt other polynomials could be useful for the repre-
sentation of freeform optics. There are several ways one could go about finding
new polynomials.

First, one can perform a Gram-Schmidt orthogonalization of an existing
polynomial basis, using a different integration support and/or a different weight
function. This is what Broemel applied to the Zernike polynomials to create the
so-called A-polynomials [67].

Second, a Singular Value Decomposition (SVD) can be performed on a poly-
nomial basis to extract eigenmodes. In this way, we can construct a new poly-
nomial basis of terms with increasing spatial frequency. The first terms are then
likely to be relevant for freeform surface description. This is a means of obtain-
ing a basis relevant for optics from a not so useful initial basis. This is applied
to Bernstein polynomials in [88].

The third way is simply to find existing polynomials in the mathematics
and engineering literature and apply them to optics. Most polynomial bases
have increasing spatial frequency with the index of terms, making them likely
to be relevant for optics. If not, Gram-Schmidt and/or SVD can be used, as
described above. One can for example try playing with the parameters of Jacobi
polynomials [95] and test the results in optical systems.

A fourth method would be to use the general definition given in Eq. 2.46
and feed An, Bn, Cn functions to generate new polynomials. A test of recur-
rence stability and eventually of orthogonality should be implemented. Defining
a surface type in this way for optical design raytracing would be a worthwhile
investigation, the An, Bn, Cn could be functions defined by the user that con-
tain parameters exposed to the optimizer. We would then have a surface with a
dynamically changing polynomials definition. The surface would be able to gen-
erate any orthogonal polynomials and some others, giving the optical designer
enormous freedom.

Concerning this last method, we refer the reader to the Favard-Shohat the-
orem [96], which allows generating only (but not all) univariate orthogonal
polynomials via a restricted version of Eq. 2.46.

The question of going from 1D to 2D polynomials remains however. Some
commonly employed methods are: performing a product of two 1D terms along
the cartesian coordinates (such as in Legendre, Bernstein, Chebyshev) ; evaluat-
ing the polynomials along the radial direction and multiplying by an azimuthal
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Figure 2.16: Illustration of different levels of sophistication of point-based representations. From
left to right, the first representation is just a discrete sampling of altitudes. The second illustrates
interpolation schemes between points, the altitude of points outside the sampling can be estimated.
The third takes additionally into account a discrete sampling of normal vectors as well as an
interpolation strategy for these.

trigonometric coefficient (Zernike and Q-poly). Both these methods seem restric-
tive. An example of going from 1D to 2D for Hermite and Laguerre polynomials
while maintaining generality is shown in [97]. It would be better to generate 2D
polynomials directly using some multivariate analogue to the three-term recur-
rence, the Favard-Shohat theorem and to Clenshaw’s algorithm. As it happens,
the three-term recurrence relation and Clenshaw’s algorithm do generalize to
polynomials of n (hence 2) variables [98, 99]. The n-dimensional generalization
of the Favard theorem also exists [98]. We believe the investigation into the ap-
plication to the generation and computation for the polynomials of optics would
be fruitful14.

2.2 Point-based Representations

Freeform surfaces may also be represented using point-based schemes. Broadly
speaking, these are all the representations using grids (regular or not) of points in
altitude, optionally with interpolation schemes (splines, patches etc.) or taking
normal vectors into account. These different concepts are crudely illustrated
in Fig. 2.16. These representations are usually found in the Computer-Aided
Design (CAD) industry, or as measurement results. The high number of DOF
of these representations (one or more for each point) makes them, in most cases,
unsuitable for typical freeform optical design15.

2.2.1 Point clouds

The simplest point-based representation is simply the point cloud. The contin-
uous surface is sampled on a discrete grid (regular or not). This representation
requires the most data points, which can become cumbersome, but is widely
compatible and simple.

The number of data points requirement can be driven by:

14We plan on investigating the matter at a further date
15However, we note that OpticStudio, since a recent date, incorporates a freeform represen-

tation that is an interpolated point grid accessible to the optimization engine [100].
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X

Z

ΔzP1
P2

I1

Figure 2.17: Simple estimation method of the error introduced by a discrete point-cloud sampling
in the case of a linear interpolation. The red curve represents the continuous nominal surface.
The black dots are the points in the point-cloud representation. The green line is the linearly
interpolated surface from the point-cloud representation. An error ∆z is evaluated in the middle of
each interpolated segment along pairs of adjacent points on the grid. These individual quantities
can be summed into a useful error metric.

• The mechanical size of the optical clear aperture on the surface.

• The altitude error requirements.

• The lateral spatial resolution of the manufacturing machine.

A simple way of estimating the error that is made when converting from
a continuous representation to a point cloud is illustrated in Fig. 2.17. A (ar-
guably worst case) linear interpolation is assumed and the error between pairs
of adjacent points on the grid is evaluated.

We can estimate the error introduced via the local curvature 1/r of the op-
tical surface (for surfaces with curvature variations of spatial frequency smaller
than the sampling frequency and reasonable slopes). Taking r to be the local ra-
dius of curvature, approximately the same at points P1, P2 and I1 (on Fig. 2.17),
we can approximate the error introduced by the discrete sampling with Eq. 2.53,
with a sampling step of δs.

∆z ≈ (δs)
2

8r
2.53

It follows that a good rule of thumb for creating a dynamic discrete sampling
scheme for freeform surfaces is to densify the samples where high local curvatures
occur. Alternatively, an iterative sampling scheme using the error metric ∆e can
be devised. Dynamic samplings diminish the number of required samples while
maintaining an arbitrarily low error over the surface. However, they are less
compatible with common software than the regular cartesian grid point clouds.
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2.2.2 Interpolation, normal vectors and splines

The choice of interpolation for evaluating the altitude of the optical surface be-
tween sample points in a point-cloud greatly influences the introduced error. The
derivatives can be included in the data for a better interpolated representation.

Some usual surface interpolation methods are (particular cases of Hermite
interpolation):

• Bilinear: Generalization of linear interpolation to 2D.

• Bicubic: Generalization of cubic interpolation to 2D.

Alternatively, optical surfaces may be represented using B-spline-based
schemes. A practical difference between Hermite interpolation and splines is
that splines do not necessarily pass through the data points (named control
points). Their application in optical design is investigated in [101–103].

Other methods include polygon patches. They generally allow the interpo-
lation of not only the altitude but also the normal vector (which is required
for raytracing). An example of this type of surface representation is the Nagata
patch [104].

2.3 Radial Basis Functions and Local Series Ex-
pansions

This last surface representation family deals with sums of decentered local func-
tions, such as Radial Basis Function (RBF)16. A RBF is a function the value
of which depends only on the distance between the points in the input space
and a center [106]. In the case of optical surfaces, these are all the rotationally
symmetric functions around some center (xc, yc) on the surface. For example,
2D gaussian functions are RBF, an application to optical design with a sum of
2D gaussians is found in [107]. Optical surfaces can be approximated up to an
arbitrarily small error with a growing number of local functions.

RBF can be used in combination with polynomial representations in order to
approximate (or indeed define) surfaces more efficiently than with polynomials
or RBF alone [108]. It is reported that some complex surface shapes can be
represented with only a few dozen polynomial terms and RBF. Another proposed
hybrid method between polynomials and RBF (conics in this case) is in [109].

On a related topic, [110] investigated the ability of Zernike polynomials to
approximate a local gaussian deformation. Another investigation of this type
with Zernike and Q polynomials is carried out in [111].

16RBF were an active research area in the 1990s for the approximation of multivariate
functions. [105] is a widely cited reference on the subject.
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2.4 General remarks

2.4.1 An edge case: Hyperhemispheres

Optical designers might wonder how to extend freeform optical surfaces defini-
tions into the realm of near-hemispherical and hyperhemispherical diopters (eg
in wide-angle lenses and microscopy). The projection factor can only mitigate
problems for moderately curved surfaces. Near the equator of a sphere or into
the second hemisphere, we encounter a fundamental coordinates issue: Most
freeform surfaces presented here are defined using a z = f(x, y) definition. It
breaks down completely in the case of hyperhemispheres.

A crude solution to this problem is to use the usual f(x, y) definition, as
is, in a spherical coordinate system. The u − v system or the so-called double-
pole coordinate system [112] appear adequate. We give Eq. 2.54 and Eq. 2.55,
adapted from [112] for the conversion of double-pole coordinates (α, β, r)R to
and from cartesian coordinates (x, y, z).

r =
√
x2 + y2 + z2 −R

α = atan
(

x
z+R+r

)
β = atan

(
y

z+R+r

) 2.54


x = (R+ r)(1 + δ) tan(α)

y = (R+ r)(1 + δ) tan(β)

z = (R+ r)δ

2.55

With:

δ =
1− tan2(α)− tan2(β)

1 + tan2(α) + tan2(β)
2.56

As a naive first approach, we can treat the coordinates (α, β) exactly as
though they were cartesian coordinates, and compute r = f(α, β), the radial
deviation from a given sphere of radius R.

2.4.2 A variety of representations and a variety of use
cases

Let us look along the other dimension (looking across use cases rather than
representation families), we give typical tasks of optical engineering and how
each freeform representation family (polynomial, point-based or RBF) relates
to them.

2.4.2.1 In optical design minimization problems

Optical design traditionally makes use of polynomial representations for the
good reason that they provide very relevant DOF for minimizing most merit
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functions in a typical minimization problem. Indeed, a grid-based representa-
tion with thousands of DOF will likely converge very slowly towards a solution,
if at all, given the structure of usual search algorithms and the curse of di-
mensionality. However, the optimization on sparse, interpolated point clouds is
tractable and useful (see the TrueFreeform surface in OpticStudio). The RBF
sums or hybrid representations also provide a viable alternative, given that the
required number of DOF is manageable (as seen in [108]).

2.4.2.2 In direct design

In the context of direct-design or construction methods [113–115], we compute
a point-based representation: the intersection and slope of rays on an optimal
surface. As a subsequent step, a polynomial fit is sometimes performed.

2.4.2.3 Communicating the surface to a manufacturer

In theory, polynomial representation are ideal for the purpose of communicating
the shape of an optical surface to be manufactured. In practice however, poly-
nomials give rise to a considerable risk of misunderstanding between the optical
designer and the manufacturer. Exotic polynomials will not be compatible with
the manufacturer’s software, and even in the case of the widely used Zernike
polynomials, the variety of conventions (see Appendix A) complicates things
considerably. It is advisable to provide redundant representations of different
types:

• A polynomial representation (usually Zernike) with sufficient informa-
tion on its definition, conventions etc. It might also be important to deter-
mine a set of coefficients and base shape that will minimize the freeform
departure (eg transfer the optical power from the freeform definition to
the base sphere).

• A point cloud. Where applicable, choose a sufficient density so that the
error is acceptable when the surface is interpolated in any way possible.

• A CAD model of the optical surface plus the surrounding mechanical
part. This is to make sure the position of the optical surface with regards
to the part is correct, and what positive altitude values mean. Keep in
mind that CAD models can suffer from significant surface shape errors
and may not be suitable for the representation of the optical surface.

2.4.2.4 In surface metrology

Across measurement methods, metrology results are usually given in point-based
representations. The raw results will often additionally be fitted with orthogonal
polynomials (in our experience overwhelmingly Zernike), for several reasons:

• The representation is more compact (eg a few dozens coefficients vs. mil-
lions of data points) and thus easier to communicate.
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• This separates the low frequency (or shape) from the mid/high frequency
content. (This is owed to the typical arrangement of polynomial terms
from lowest to highest spatial frequency with the increasing index)

2.4.2.5 Simulation of an existing optical system

Some projects driven by optical performance involve running simulations taking
into account the shape of parts of the system that were already manufactured, to
optimize the rest of the system accordingly. We can also import surface measure-
ments back into our optical design software for straylight simulations or other
checks of the as-built system. Given that these surfaces are measured, fixed, the
benefit of the link between polynomials and optical aberrations becomes very
small and point-based representation can be used. Other considerations such as
raytracing speed and representation compacity still apply.

2.4.3 Characteristics of freeform representations

Let us synthesize some characteristics that describe a freeform representation:
these are the items to consider when assessing which freeform representation is
best for a given context.

• Availability: Whether the representation is widely available in software
tools or easy to understand and implement. The optical surface definition
will likely be transmitted to a few different companies and engineers (de-
sign, manufacturing, metrology, simulation checks). If the representation is
too esoteric, we run the risk of people misusing formulae (eg using explicit
formulae for high polynomial orders) or performing lossy conversions.

• Evaluation speed: When performing simulations or numerical checks
on the surface, the evaluation speed for altitude, slopes and eventually
curvatures may matter. In optical design, more systems can be explored
in a given amount of time, in straylight simulation more rays can be traced
etc.

• Compacity: This is the size of the files containing the representation.
Polynomials are the most compact, but point-based representations are
able to capture the high frequency content in metrology results, at the
cost of space. Nowadays storage space is cheap, but file size still matters
from a workflow point of view: it makes the difference between exchanging
data via email or dedicated file sharing services, or between working on a
local machine or on a dedicated server.

• Approximation error: The error introduced by switching representa-
tions. In the case of a discrete sampling of a polynomial representation to
a point-based one, introducing an error is unavoidable. Likewise, in the
general case, fitting point-based representations with polynomials or RBF
will introduce an error.
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Overviews such as this can be helpful to grasp how freeform surfaces are
defined, and how each kind has peculiarities which make it more efficient for
some applications over other kinds. In our experience, it seems that going into
the minutiae of using a polynomial representation only slightly different than
another will result in very little benefit. The details for the representations are
still useful for implementation and quality control. Usefulness is rather found in
switching between broader types of freeform representations depending on the ap-
plication. For example: 1.polynomial representations for interaction with search
algorithms, as the parameters are generally expressive of changes highly linked
with optical quality and other performance criteria 2.point-based representations
for high-fidelity, high spatial frequency metrology results on an optical surface.
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Chapter 3

Freeform Unobscured
Telescopes

Les miroirs feraient bien de réfléchir un peu plus avant de renvoyer
les images.

Jean Cocteau - Le Sang d’un poète

Freeform telescopes in the literature – Folding geometries – Different design
approaches – Ray-based merit function for telescope design – Aperture sampling
schemes – Exit pupil shape – Early straylight prevention – Tolerancing

In the present work, we are particularly interested in the application of
freeform surfaces to reflective unobscured imaging telescopes. Freeform optics
has brought to instruments greater imaging performance over a larger field of
view and aperture as well as greater compacity. The common design approach
for freeform telescopes, as implemented in optical design software, involves many
details but is largely the same as for conventional optics. One could find room
for improvements in each of these details to better accomodate the design of
freeform telescopes specifically, which is why we dive deep in the subject.

A lot of design work has already gone into the field of freeform unobscured
telescopes, of which we give a brief review. Out of the many folding geometries
that give rise to high compacity and imaging performance, we highlight the few
that stand out in the literature. We then take a brief look at the variety of
design approaches that exist. Digging deeper into the matter, we take a closer
look at arguably what is the most popular design approach, which we also
adopt, which involves the computation of a ray-based merit function from the
discrete sampling of the field and aperture and geometric raytracing. Finally
we give a few optical design tips relevant to unobscured telescopes, namely the
management of the exit pupil shape and the avoidance of straylight in early
design stages. We also touch briefly on the tolerancing of designs.
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3.1 Review and Terminology

3.1.1 Examples of reflective unobscured telescope or cam-
era systems

The main differentiating characteristics for reflective unobscured telescopes or
cameras are:

• FOV (degrees): In the X and Y directions (for rectangular sensors) in
object space.

• Image quality: Measured either by the Modulation Transfer Function
(MTF), Wavefront Error (WFE) or via spot sizes for each field.

• F#: F-number of the instrument.

• Entrance pupil diameter or Sensor size: Missing piece of informa-
tion to completely determine the characteristics of the instrument. The
entrance pupil diameter allows determining the focal length and sensor
size from the F# and the FOV, and the sensor size allows determining the
focal length from the FOV and the entrance pupil diameter from the F#.

• Distortion: Can be seen as local variations of magnification with respect
to the field. Does not affect image quality. Can become critical in spec-
trography instruments.

Muslimov [116] gives a review of the FOV, spot size and F# reached by
17 different TMA designs from the available literature, moreover showing what
freeform representations were used for the optical surfaces. The review shows
vastly different characteristics across TMA systems, and that no freeform rep-
resentation is clearly ahead of the others in terms of performance.

We point to a few examples of unobscured telescopes, infinite conjugate
camera systems or even HUD from the literature, by number of mirrors, and
indicate when the prescription data is given explicitely with the dagger symbol:†

• two-mirrors

– [115] Two-mirror telescope obtained through differential raytracing.

– [81] Two-mirror IR imaging system with an accessible aperture stop
at the entrance. Prototype manufactured.

– [117]† Three telescopes with different geometries are given.

– [118] Two-mirror designs, including reminders about classics such as
Schiefspiegler and Yolo.

• three-mirrors

– [89, 116, 119] Freeform TMAs
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– [12]† Thompson retro-engineered three TMAs with conical mirrors
from the NIRSpec instrument on the JWST from data available at
the time of writing.

– [28, 120] Pamplemousse TMA: IR telescope, actually manufactured.

– [121]† Freeform IR TMA, actually manufactured.

– [122] Several high performance TMAs are reported that mix different
freeform representations.

– [123]† Two freeform TMAs are given.

– [124]† Freeform TMA with a linear FOV.

– [40] Freeform TMA reported.

– [125] IR freeform TMA, actually manufactured.

– [126]† TMA with wide push-broom field.

– [127]† TMA with wide rectangular field, prototype manufactured.

• four-mirrors

– [128] HUD with four mirrors, including one freeform, one flat and
two spherical. The geometry is very compact thanks to folding.

– [129] Some starting geometries for four-mirrors telescopes are given
explicitely.

– [130]† Four-mirror design strategy and example.

These examples can serve as starting point designs for optical designers.
Even when the prescription data is not given, the layout, general characteristics
and information about the surface types (spherical, conic, freeform) is often
sufficient to generate a system with similar geometry and performance.

3.1.2 Folding geometry

The folding geometry of unobscured telescopes is sometimes used to classify
them. It is useful to know the terminology to communicate with other designers.

3.1.2.1 Two-mirror telescopes

Starting from a ray bundle reflecting off the primary mirror onto the secondary
mirror, there are only two choices of folding geometry for the secondary mir-
ror. Trumper [117] has coined terms for these, which we adopt here. The two
geometries are illustrated on Fig. 3.1.

• Type 4: The third ray bundle (3 on Fig. 3.1) is folded back onto the first
bundle. The sensor is placed to the left of M1 (when looking from M2 in
the direction of the light propagation). The general outline drawn by ray
bundles inside the instrument is in the shape of the number 4.

• Type Z: The sensor is placed on the right of M1. The general outline is
in the shape of the letter Z.
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Type 4 Type Z
Figure 3.1: The two possible types of two-mirror telescope folding geometry. The ray bundles
between diopters are numbered from 1 to 3 from the object to the image.

3.1.2.2 TMA

From the two geometry types for two-mirror telescopes, we can build the possible
geometries for TMA, by replacing the sensor with M3 and putting the sensor
at various positions between the preceding elements.

Two of the more popular folding geometries are illustrated on Fig. 3.2: the
γ ”gamma” and W (also zigzag) geometries. These geometries give a good
compromise between compacity and keeping tilt angles manageable (which is
usually good for image quality).

In addition to the folding geometry, the sign (P or N ) of the optical power
of each of the three mirrors is also used for the classification. A TMA can thus
be said to be PNP for concave M1, convex M2 and concave M3. Papa [131]
has surveyed exhaustively the combinatorics of folding geometries and optical
powers of TMA systems.

3.2 Obtaining Starting Points and Design Meth-
ods

We give some references on ways to approach freeform unobscured telescope
design (and more broadly freeform optical design). There are several proposed
strategies to start designs in the literature, and several families of very different
”evaluation approaches” (sequential raytracing to feed a scalar MF into a black-
box search algorithm being only one of them).
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Figure 3.2: Two popular folding geometries for TMA: the γ geometry and the W, also zigzag
geometry. Additionally, these two systems can be said to be of type PNP.

3.2.1 Starting a design

In conventional optical design, a typical approach when given a set of instrument
specifications is to look for a starting point design with similar characteristics
from one of these sources:

• Academic literature. Papers describing a specific system, its character-
istics and performance, and sometimes giving the lens prescription data,
are very useful to researchers and engineers.

• Patents. The lens prescription data of optical systems can be the basis of
a patent [7]. The patented optical systems’ performance can be analysed
in detail and be used as a baseline for new systems.

• Collections of designs. Books such as Smith’s [132] offer collections of
lens prescription data for systems of all kinds. This is tremendously useful
to help dimension a system (number of lenses, achievable performance,
etc) with respect to a set of specifications.

• Past experience and private databases. A veteran optical designer
can always draw from past designs. Moreover, companies and research
teams specialized in optical design will often curate (or at least they prob-
ably should curate) a database of optical systems.

However, there is a problem with freeform optical design: it being newer.
All resources for freeform optical design tend to be rarer. While the corpus of
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academic papers and doctoral theses is now quite rich, there are fewer (none?)
synthetic books on the subject. Patents are also much rarer. Likewise, the expe-
rience of optical designers is usually fresher and often found in niche domains:
eg aerospace, automotive lighting, upstream research projects.

3.2.2 Design strategies

Several strategies have been proposed to go from rough starting points (pos-
sibly spherical or with a rotationally symmetric system geometry) to freeform
preliminary designs. Let us make a non-exhaustive list:

• [28] (Chapter 5) Fuerschbach shows the process of designing a telescope
by starting from an axial, spherical system and adding tilts little by little
along with the proper freeform corrections. The corrections are determined
by the analysis of aberration fields and NAT.

• [133, 134] These papers propose simple parametrizations of the system
geometry for TMAs to arrive at starting systems.

• [121, 126, 127] In addition to a simple geometric parametrization, these
works report the success of iteratively growing either the field or aper-
ture, or both at the same time, in designing telescope systems when the
geometry has already been found.

These strategies are not mutually exclusive and can all be tried, depending
on what leeway there is in the overall system geometry, and on how far into the
design process a system is.

3.2.3 Evaluation approaches

The design strategies of which we have just given a brief account actually overlap
with the choice of point of view for performance evaluation. A number of broad
families of evaluation approaches are used. They are quite different from one
another and do not require the same tools, mathematical formalism and know-
how.

• Real ray-based: This is the most common approach in optical design
software. The performance evaluation and analysis of optical systems are
done using the raytracing of real rays. It is general, robust, fast and con-
ceptually simple but there is not a lot of information extracted from the
systems to guide the designer. This is the favored approach in the present
work1. Real raytracing is often preferable to pure aberration theory anal-
ysis in the case of complex systems (many diopters), with large field of
view and large aperture. The reason is that higher order aberration terms
for these systems have a significant impact on performance. These higher

1This is a bias in the present work and does not represent the state of the literature in
freeform optical design. Other methods were not explored as much by the author.
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order aberrations are computationally expensive to evaluate and also nu-
merically inaccurate (as increasing exponents are used for field and pupil
dependencies)2. An example of favoring real ray-tracing over aberration
theory for the evaluation of chromaticity in a relatively complex large field
and large aperture system is found in [135].

• Aberration theory: The analysis of aberration fields and their nodes
(NAT) enables a ”smart” way of guiding the design, as opposed to the
black-box approach of tracing real rays to evaluate a scalar performance
MF. Rogers [136] shows in a didactic way how aberration fields can be anal-
ysed in unobscured telescopes. Zhong [137] shows how to obtain starting
points in TMA systems with analytical evaluation using NAT and Gaus-
sian brackets. Bauer [40] presents a method with NAT to choose TMA
geometries that present aberrations readily correctible via the addition
of low order freeform caps. Scaduto [138] works out the desensitization to
misalignments of a two-mirror telescope through aberration fields analysis.

• Direct design: So-called direct design methods comprise several related
approaches that find discrete sets of points belonging to optimally-shaped
optical surfaces, as opposed to polynomial coefficients that describe a con-
tinuous surface. [139] lists a good number of these methods in its intro-
duction. [103] shows such a construction method for non-imaging freeform
optics. Direct design methods come from non-imaging optics but are ap-
plied to imagers. The Simultaneous Multiple Surface (SMS) method [140]
is another example, applicable both to non-imaging and imaging systems.
[113, 124] show construction methods applied to TMA imagers.

• Differential raytracing: It involves the computation of Jacobian and
Hessian matrices (first and second partial derivatives respectively) for ray
quantities (eg intersections of rays on surfaces) and merit functions thanks
to the differentiability of the optical surfaces representations, the ray-
tracing equations and the merit functions. The derivatives are useful to
guide an optimization process or for tolerancing designs. Nice overviews for
derivative-assisted system raytracing optimization can be found in [141,
142]. In reverse, optimal freeform surfaces can be constructed via the in-
tegration of the derivatives around a known ray [115, 143].

3.3 Ray-based Merit Function

We present general considerations on the computation of merit functions for un-
obscured telescopes and freeform systems. Compared with conventional optics,
we rely less on shortcuts such as quantities computed from marginal rays, which
are often invalid in severely off-axis and freeform systems.

2Please note however that eg TMAs are, as a general rule, not sufficiently complex for high
order terms to have an impact that prevents using aberration theory to obtain starting points.
Please also note that aberration theory analyses can rely on real raytracing for estimating
aberration coefficients. The aberration analysis is then an additional layer of information.
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3.3.1 General Definition

In the context of sequential geometrical raytracing simulation of optical systems,
and abstracting away the differences between optical design tools, the optical
designer will fundamentally use the coordinates of rays inside a given optical
system.

Since the search algorithms in most optical design tools work on a single
scalar performance metric (which is limiting as we’ll see in Chapter 7), called
the merit function, we have to build it via a combination of individual criteria (eg
focal length, image quality, etc). In order to be independent from particular opti-
cal design tools, we give a general purpose MF suitable for most typical freeform
telescope design jobs that is purely ray-based: the MF can be constructed only
from the geometrical ray data (x, y, z, l,m, n) on the sensor surface3.

For a given entrance pupil diameter, we need only constrain three criteria
for most preliminary optical design of unobscured telescopes, as we have al-
ready done in our research paper [144]. We construct three scalar quantities
accordingly, for any given field f :

• Spotf : Image quality through RMS spot radius.

• Posf : Image position, ie focal length and distortion.

• Telef : Image telecentricity.

Quantities related to these criteria are defined on Fig. 3.3. A possible MF
(among many others) is given, over all considered fields f , by Eq. 3.1. α and β
are arbitrary scalar weights set by the optical designer.

MF =

∑Nfields

f=1 Spotf + α · Posf + β · Telef

Nfields
3.1

3.3.2 Image quality: spot size

The image quality can be quantified via a RMS spot radius rf metric, which is
very typical in optical design: Eq. 3.2. This quantity is defined for a given field
f and over a given sampling of the aperture stop with Nrays rays.

Spotf =

∑Nrays

i=1 (xi − xf )2 + (yi − yf )2

Nrays
= (rf )2 3.2

With (xf , yf ) the coordinates of the centroid of the spot for field f (Eq. 3.3).xf =
∑Nrays

i=1 xi

Nrays

yf =
∑Nrays

i=1 yi
Nrays

3.3

3Note that what we propose is not new, we give it for the sake of synthesis.
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φf

Δf
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Figure 3.3: Illustration of the three defined MF scalar criteria using image plane ray data. The red
dots are targets, or control points. The blue dots are the actual raytraced impacts on the image
plane. The dotted blue lines represent the normal to the image plane at the impacts. The blue
lines represent the simulated rays incoming on the image plane.

3.3.3 Image position: focal length and distortion

Instrument requirements dictate a mapping between the object field and po-
sitions on the sensor. For a given field f , the centroid of the spot must land
on target coordinates (xtrgt

f , ytrgt
f ) on the sensor. We can construct a quadratic

penalty function for spots that wander off from this target4 (Eq. 3.4).

Posf = (xf − xtrgt
f )2 + (yf − y

trgt
f )2 = ∆2

f 3.4

The question of determining the target coordinates is left to the designer
depending on the mission requirements. To illustrate, for instruments with large
FOV (such as enabled by freeform optics), we might encounter two types of
target mapping from the field to the image:

• Mapping an object plane to the sensor plane homothetically, ie a detector
pixel is always the same size on the object plane.

• Mapping the object field angles to the sensor plane so that each detector
pixel has the same size in solid angle in the object field. This is the case
for all-sky systems (also for f-theta lenses).

Assuming our instrument has a paraxial focal length f ′, and noting (θx, θy)
the object field angular coordinates (u-v system) for field f , our target points
(xtrgt
f , ytrgt

f ) are determined in each case by Eq. 3.5.

4One reason to use ray-based metrics for setting the focal length is that the focal length
computed in most optical design software (eg EFFL in OpticStudio) is a paraxial quantity,
which should not be used in large field non-axial systems [68]. Additionally, it is our personal
preference to characterize instruments with control points on the image plane and deviations
(distortion) from these points rather than simply give the focal length, which can lead to
ambiguous interpretations.
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O

P

RCR

Figure 3.4: Diagram defining some relevant points to the computation of the OpticStudio distortion
metric. The plane represented here is the image plane. O (at (0, 0)) is the center of the field, ie the
intersection of the chief ray of the center field with the image plane. The black grid is the predicted
image chief ray intersections across the defined field range in the hypothesis of no distortion, this
corresponds to the planar targets (Eq. 3.5). Point P (xpf , y

p
f ) is a point on that grid for field f .

Point RCR (xrf , y
r
f ) is the real chief ray intersection with the image plane for field f .

{
xtrgt
f = f ′ tan(θx); ytrgt

f = f ′ tan(θy) planar

xtrgt
f = f ′θx; ytrgt

f = f ′θy f-theta
3.5

In the planar case, a detector pixel is always the same size on a plane object
observed perpendicular to the optical axis. In the f-theta case, a detector pixel
is always the same solid angle in the scene (eg in the sky). Please note that what
we have just defined is not a metric for distortion stricto-sensu, as defined in
aberration theory, since we use centroids (xf , yf ) rather than chief ray intersec-

tions (xCR
f , yCR

f ) and we allow for f-theta targets. Our approach is closer to final

instrument requirements5, but we lose the insights given by aberration theory.
For reference, let us remind ourselves of the definition of the metric for max-

imum distortion (in percent) that is often given in optical design reports. The
usual number is given by the ”Grid Distortion” tool in OpticStudio (see the
corresponding section in [68]). The relevant points are defined on Fig. 3.4. The
zero-distortion grid is estimated according to the usual planar targets (Eq. 3.5),
an object plane is imaged as an undistorted image plane. The distortion grid is
computed using real paraxial rays to approximate the first order properties of
the system which are then extrapolated for bigger fields. For any given field f ,
as per [68], a scalar (percents) distortion metric D%f is computed (Eq. 3.6). It
corresponds to a signed image plane position error between the real and pre-
dicted (with zero distortion) chief ray intersection, normalized by the predicted
chief ray distance from the center of the image.

D%f = 100·sign
([

(xrf )2 + (yrf )2
]
−
[
(xpf )2 + (ypf )2

])
·

√
(xrf − x

p
f )2 + (yrf − y

p
f )2

(xpf )2 + (ypf )2

3.6

5In cases where centroids differ significantly from chief ray intersections (eg in the presence
of coma), what matters ultimately for the mission is where most of the energy is going, as
measured by the centroid position
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What is usually reported in optical design reports is the maximum absolute
value of D%f across all fields. Depending on the instrument specifications, it
can be useful to abuse the metric definition and use a f-theta field or centroids
instead of chief rays.

3.3.4 Image telecentricity

Image telecentricity can be defined as a condition met when the exit pupil is
at infinity in the image space. Alternatively, the ray-based approach is that all
chief rays across the field are parallel to one another. Telecentricity in the image
space can be critical when plates with surface treatments or filters are involved,
their response being a function of the angle of incidence. It is also needed to
minimize crosstalk between pixel channels.

We can build a metric penalizing the difference between the angle of inci-
dence φf of different chief rays across the field sampling (Eq. 3.7). The metric
is zero when all chief rays have the same angle of incidence on the image plane.

Telef = (φx,f − φx)2 + (φy,f − φy)2 3.7

With φx the angle of incidence of chief rays on the image plane averaged
over the field samples (Eq. 3.8).

φx =

∑Nfields

f=1 φx,f

Nfields
, idem for y 3.8

3.4 Sampling the field and the aperture stop

As with most optical system, we derive our ray-based metrics from a sampling
of both field and aperture spaces. The number of samples is the result of a
compromise between:

• Metric accuracy: The computed metrics for distortion, image quality
and telecentricity must describe the actual system performance with suf-
ficient accuracy for the purpose of optimization.Eg a field sampling with
rays from just the center field and one extreme field will likely be insuf-
ficient to describe the performance accurately, we must also sample the
fields in-between and in other directions.

• Computation time: The computation time for the merit function grows
linearly with the number of rays. Sampling the aperture or field in too fine
a fashion will result in a lower number of optical systems being evaluated
per unit of time in search algorithms.
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3.4.1 Pupil

For a given field, rays sample the wavefront in pupil space. The metrics that
are integrations on the pupil (such as rms spot radius) are only approximations
when a finite number of rays are used.

Let us look, as an example, at the exact definition for the RMS spot radius
rf , as explained by Malacara [145] (Section 8.4.1). Taking the limit of an infinite
number of rays sampling the pupil space in uniform fashion, on a well-behaved
optical system (the aperture stop is taken to be a continuous disk), the set of
ray impacts on the image plane is a continuous function of the position (ρ, θ) on
the pupil disk into R2, (x, y) on the image plane, (ρ, θ) 7→ (x, y). Additionally,
this function is dependent on the field f considered (also in a continuous fashion
for most optical systems). Using this continuous point of view, rf becomes a
standard deviation with euclidian distance on the image plane, integrated over
the pupil:

(rf )2 =
1

π

∫ π

−π

∫ 1

0

[
(x(ρ, θ)− xf )2 + (y(ρ, θ)− yf )2

]
ρdρdθ 3.9

The centroid (xf , yf ) also assumes an integral definition of course. Eq. 3.9
is found as eq.8.36 in [145], we removed all assumptions of symmetry however.

The goal of pupil sampling schemes is then to approximate the ”pupil-
integral” quantities, such as spot radius, using as few rays (samples) as possible.
These sampling schemes are already well integrated in optical design software
and in the literature [146, 147]. The same problem (or at least very related) ap-
pears in surface wavefront fitting in metrology. This is also a common problem
in integration via monte carlo methods, there is a large applied mathematics
literature treating this cubature problem6. We can give a few usual sampling
schemes in a non-exhaustive list, grouping broad types together:

• Regular grids:

– Cartesian: The coordinates (x, y) are sampled at regular interval,
and cropped by the aperture disk.

– Polar: Sampling at regular interval the polar coordinates (ρ, θ). Suf-
fers from a lack of points near the edge.

– Polar with equi-arcs (fig.2 in [146]): The polar plane is sampled at
regular ρ interval, but the interval in θ is computed such that points
are always spaced by the same arc length across all rings. This results
in a sampling more uniform than its naive polar counterpart.

– Hexagonal (fig.5a in [76]) Honeycomb pattern.

• Spirals: Can be expressed as a polar parametric equation t 7→ (ρ, θ) and
sampled at regular t intervals.

– Logarithmic [148] ρ(θ) = abθ with a > 0, b > 0.

6cubature names the numerical integration of higher dimensional (more than 1) functions.
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– Archimedean [149] ρ(θ) = aθ
1
n 7.

– Fibonacci (special case of logarithmic) [150–152] (see Fig. 3.5)

• Low-discrepancy sequences: Deterministic sequences of points that
have the nice property that points do not cluster too much yet sample
space in uniform fashion (this is, roughly speaking, what low discrepancy
is) and in a ”random-looking” way. These are compromises between ran-
dom samplings (the points of which tend to form undesirable clusters) and
a regular patterns (points are spread out but we may generate frequency
problems in the sampling due to the regularity) [153].

– Halton (see Fig. 3.8)

– Sobol, Hammersley etc.

• Stochastic: These are random sampling methods.

– Random uniform [154] (see Fig. 3.7). It suffers from naturally form-
ing clusters of points. For most applications, it is useless to sample
locally with a very high density.

– Poisson-disk [155]: Random sampling method with the additional
rule that no two points should be closer than some disk radius.

– Edge-clustered [76]: Random sampling method proposed by Kaya
et al for the approximation of freeform optical surfaces. It is inter-
esting to sample the edge of the disk more densely since this is where
large altitude variations for most polynomials occur (see eg Zernike).
In the case of aperture sampling, the rays near the edge will also
likely be those that contribute the most to degrading the image qual-
ity metrics, and thus need to be included in the sampling more so
than well-behaved paraxial rays.

• Quadrature rules We mention here weighted schemes for sampling.
Points are assigned a weight and a position according to some rule con-
structed to allow the approximation of the integral of families of functions.
Forbes has shown decades ago that these could be used successfully for
computing spot radii [146] and it seems to still be in use today.

– Radau

– Gaussian: used eg in OpticalStudio (see [68] Gaussian quadrature)
(Fig. 3.6).

7The spirals with negative n are asymptotically collapsing towards their center. This does
not seem a very useful property for sampling the unit disk.

70



Figure 3.5: Sampling on a Fibonacci spiral.
1000 points.

Figure 3.6: Gaussian quadrature sampling
with 5 radial steps and 10 angular steps.
The area of each circle is proportional to the
weight. The positions and weights are taken
from Forbes [146].

Figure 3.7: Random uniform sampling. No-
tice the small clusters of points that form
naturally. Sampling points that are too close
to one another is generally useless.

Figure 3.8: Halton sequence with bases 2
and 3 for the x and y coordinates respec-
tively. Notice that in comparison to random
sampling, the clustering effect is reduced and
the disk is still sampled in a uniform fashion.
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Figure 3.9: A general purpose field sampling for plane-symmetrical instruments with a rectangular
field.

3.4.2 Field

Since most unobscured reflective telescopes possess a plane of symmetry, there
are some redundant rays. We could very well choose to trace only half the aper-
ture stop sampling and both halves of the field in a symmetric fashion. However,
the usual choice is to sample the aperture stop completely and symmetrically
and only half of the field. One possible general purpose field sampling is showed
in Fig. 3.98. A similar but denser sampling is reported by Trumper et al [117].

3.5 Pupil Shape Control

A common issue with off-axis systems is that their exit pupil will often be
non-circular. One of the consequences is a non-circular Airy pattern, which
complicates image analysis and degrades the MTF in the elongated direction.
Expressed in another way, this means the MTF diffraction limit depends on the
direction in the object field. For a given field and in the case of near image tele-
centricity, the exit pupil shape can be assessed in a virtual plane perpendicular
to the chief ray in the image space (Fig. 3.10). An example of marginal rays
intersecting such a virtual plane for a real freeform system is given in Fig. 3.11.

There is a simple geometrical criterion we can use to constrain the exit
pupil circularity. In the image space virtual plane perpendicular to the chief
ray, we trace Nmarg marginal rays. From this ray data, we can compute a metric
penalizing the non-circularity of the shape drawn by the rays (Fig. 3.12) for a
given field.

8The sampling is here limited to 11 points because the number of fields is limited to 12
in Zemax 13. In any case, more fields can be used in the MF when it is user-defined. In the
latter case, we are limited only by the computational expense.
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Chief ray
Virtual plane

Image plane

Marginal rays

Figure 3.10: The shape of the exit pupil can
be assessed from a set of marginal rays in a
virtual plane perpendicular to the chief ray
in the image space.

Figure 3.11: Example of the intersection of
marginal rays on a virtual plane away from
the image plane, as traced by OpticStudio.
The different colors represent different fields.
Note some shapes deviate slightly from cir-
cles, both due to image aberrations and pupil
shape aberrations.
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Figure 3.12: Diagram explaining one way to constrain the circularity of the marginal rays on a
virtual plane in image space.

Pupcircf =

Nmarg∑
i=0

(ρi − ρf )2 3.10

Note that this is an empirical metric useful in the case of roughly telecentric
systems. We have not investigated system with large angles of incidence on the
image plane. We also have not investigated the illumination inside the pupil,
from the entrance pupil to the aperture stop and then from the aperture stop
to the exit pupil.

3.6 Straylight

Straylight analysis is an important part of the design of any instrument. Stray-
light can limit the Signal-to-Noise Ratio (SNR) of an imaging system, to the
point of, in severe cases, completely blinding it. A full-fledged straylight analy-
sis requires that every part of the instrument be known: the optical surfaces of
course, but also all the mechanical parts, the windows and coatings, the baffling,
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Scattering on mechanical parts

Specular outside the clear aperture

Direct specular paths

Ghosts and Narcissus

Diffraction

Volume scattering

Scattering on optical surfaces

Figure 3.13: Diagram of the different types of straylight inside a telescope.

and a good knowledge of the Bidirectional Reflectance Distribution Function
(BRDF) for all the materials found in the instrument. Special attention must
be given to straylight in the design of unobscured telescopes since compacity
increases the risk of significant straylight occuring.

We illustrate the different possible sources of straylight on Fig. 3.13. In order
of decreasing typical quantity of generated straylight levels, we can list:

• Direct specular paths: These are the straylight paths that follow a non-
nominal specular path from the instrument entrance window to the sensor.
The straylight level is of the same magnitude as the observed object.

• Specular paths outside the clear aperture of optical surfaces: A potential
snag for designers is the straylight coming from the outer part of optical
surfaces. In the early stage of optical design, the raytracing usually in-
cludes only the useful aperture of the optics (cut as close as possible to
the ray footprints). The optical parts will then be usually manufactured
with slightly larger clear apertures and straylight can be generated by the
added optical areas.

• Reflections off the mechanical parts: Either specular or diffusive reflections
happen on the mechanical parts. These are modelled by the BRDF of the
material. In worst case scenari, with highly specular materials, their power
can be a significant portion of the useful flux.
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• Ghosts and Narcissus: Ghosts can be generated either by the Narcissus ef-
fect, ie light reflecting off the sensor back into the optical system and then
back to the sensor again, or by refractive optics. The typical maximum
relative straylight level of these stray paths is in the order of magnitude
of 1%.

• Surface scattering : In addition to the nominal specular reflection, all op-
tical surfaces have surface defects of various sizes that generate a small
amount of diffused light.

• Volume scattering : For refractive optics, light is diffused not only by the
diopters but also in the volume itself.

• Diffraction: Typically on the edge of the aperture stop, some light is
diffracted in (generally) unintended directions.

To avoid the need for heavy redesigns, it is advisable to take into account the
straylight early in the design process. As it happens, even during preliminary
optical design, we already have enough data on the system to avoid most of
the major causes of straylight: the direct specular paths, the specular paths
generated by the outer aperture of optics and even ghosts.

We give some diagrams of how the design of unobscured telescopes avoiding
direct specular straylight can be approached, in a very practical and visual way,
by the optical designer. First, we give a diagram in Fig. 3.14 (on a hypothet-
ical ”zigzag” 4MA) highlighting the envelopes of rays between diopters. It is
useful to think in terms of envelopes to see what spaces are potentially free to
place optical baffles. Using the intersection between successive envelopes, we can
deduce the envelope of the straylight rays that will reach a particular surface
no matter the baffling. Using this, we can determine what part of the optical
surface is exposed to straylight, noted S on Fig. 3.14. The optical designer can
then evaluate visually the severity of the degradation this direct straylight can
cause.

We give in Fig. 3.15 a simple visual criterion to detect whether a straylight
ray is likely to reach the instrument’s sensor through a direct specular path.
On a given mirror (M3 in this example) that is not in a pupil plane, we note
C the cone of all possible incident angles for nominal imaging rays, irrespective
of the intersection’s position on the mirror. Assuming a near-spherical surface,
any ray that hits M3 with an incident angle within this cone will likely land
somewhere in the nominal image plane of M3, here the instrument’s sensor. We
see on Fig. 3.15 an example of a straylight ray that contaminates the image
plane of M3 in such a way. For the particular example of the straylight ray
drawn in Fig. 3.15, it is as if the ray were coming from within the nominal field
of the instrument but from a slightly larger aperture stop, this is why it is highly
likely that it will contaminate the image.

We have omitted external baffling in this section, but it is a common type
of baffling to block straylight coming at angles outside the nominal field. It is
commonly cone-shaped and placed around the entrance window. The demerit
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Space for
baffles

Figure 3.14: Diagram illustrating a way to approach straylight analysis at an early design stage.
The optical surfaces of the instrument are in light blue. The orange parallelograms numbered from
1 to 5 are the envelope of all nominal rays between each pair of successive diopters. Obstructing
these envelopes means that an obscuration will occur. The spaces left free between the envelopes
are potential locations for optical baffles. The intersection (here in 2D) between two successive
ray envelopes is drawn as a dark blue dot. The dotted blue lines represent the envelope of all
straylight rays that pass through the window towards M3 and cannot be baffled without creating
an obscuration. The set of all ”un-bafflable” straylight rays from the window to M3 has the
footprint S on M3. A particular straylight ray is drawn in light green and intersects with M3 at
point P.
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M2 (Stop)

Window

Sensor

P

C

M1

M3

Figure 3.15: Diagram illustrating a visual method for assessing whether a straylight ray will follow
the nominal specular path of the instrument, thus having a high likelihood of reaching the sensor.
We assume near-spherical optical surfaces. A straylight ray in light green passes through the window
and intersects M3 at P. C is the cone of all possible incident angles for nominal imaging rays on
M3. When a straylight ray is incident on M3 with an angle within the cone C, then it is likely that
it will reach the sensor.
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of this type of baffling is that it can potentially be quite long, as designers are
tempted to make it longer to block rays at incident angles closer and closer to
the nominal field.

It is understood that the method we give is vague and mainly a visual aid for
optical designers. Developing a rigorous criterion robust across all instrument
geometries could prove difficult but worthwhile. A more traditional straylight
analysis of all specular paths (as shown in Chapter 4) remains the surest way
to quantify straylight in an instrument. It is however often impractical in the
current state of optical design software to go back and forth between sequential
raytracing and straylight analysis, which is why such visual aids as we have
given are useful in the earliest stage of design.

Also note that all the diagrams we have drawn are in 2D for convenience.
In reality the envelopes of rays are in 3D, as well as the baffling etc. From ex-
perience, we know straylight can take unexpected paths through an instrument
that are not easy to visualize on 2D cross-sections and must be displayed in a
3D view.

We summarize the types of specular straylight the optical designer must pay
attention to in early design stages, in order of increasing severity:

• Straylight that enters the instrument but does not reach a specular surface.
This type is mostly unavoidable and will be quantified and mitigated (if
necessary) much later in the design process.

• Straylight that enters the instrument and reaches a specular surface, but
never reaches the sensor through a specular path. It is largely unavoidable
but better if minimized since surface scattering will generate straylight
that cannot be mitigated through baffling.

• Straylight that reaches the sensor through a direct specular path but can
be blocked by eventual baffles. Adding optical baffles everywhere in the
instrument is not a viable strategy since other mechanical parts must fit, it
is better to minimize this type of straylight through the design geometry.

• Straylight that reaches the sensor through a direct specular path and
cannot be blocked by baffles (as seems to be the case in Fig. 3.15). There is
no way to mitigate this type of straylight other than through obscuration,
a change of design or sometimes very long external baffling. It must be
avoided since there is potentially no way to fix the problem later in the
design process and the amount of straylight is likely very significant.

3.7 Tolerancing

Tolerancing in optical design is the study of the influence of perturbations to the
nominal design on the system performance. In much the same way as straylight
analysis, tolerancing is better done as soon as possible in the life of a design to
detect dead-ends but requires data from subsequent steps in order to become
accurate. The task of the optical designer is often not to find the best nominal
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Figure 3.16: Diagram illustrating 6 DOF that can affect a mirror on its mount. Reproduced from
[158].

design but the design that will be resilient to the largest errors while main-
taining acceptable performance. We usually distinguish between two kinds of
perturbations:

• Position: The error in position and orientation that affects diopters due
to manufacturing errors or alignment errors. We usually consider all 6
DOF of rigid-body transformations (see Fig. 3.16).

• Shape: Optical surfaces are never manufactured exactly to specifications.
We usually take into account low spatial frequency deviations first. Ru-
gosity (highest frequency) belongs to straylight analysis. Mid-spatial fre-
quencies, although important, are difficult to model [156, 157].

3.7.1 Position

Tolerancing the position of elements is more straightforward than tolerancing
shape defects. One possible method is to draw perturbations in all 6 DOF ac-
cording to a gaussian distribution centered at the nominal position. We manually
tune the standard-deviations to some realistic values, starting from large errors
and progressively reducing the error budget. We evaluate a sufficient number
of systems to obtain statistically significant results. We consider a design to
be resilient to the applied perturbations when a sufficient proportion Ptol of
systems (say 90%) still perform above the target requirements. The result of
this analysis is a set of standard-deviations that are as large as possible so that
performance is still acceptable for a proportion Ptol of randomly drawn systems.
The usefulness of this analysis can be improved by knowing in advance the type
of mounts that will be used and the usual errors associated with them, eg what
standard-deviation can we expect for each axis of translation and rotation from
our experience on previous systems. Please note DOFs can be broken down,
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depending on the system idiosyncrasies, into sub-DOFs relating to centering er-
rors in manufacturing, mount and assembly error etc. An example of a relatively
detailed tolerancing for the MAORY instrument is found in [159]. An analysis
for Pamplemousse is found in [28] (section 7.1.1).

3.7.2 Shape

Tolerancing surface shape errors is challenging. We usually indicate an error
budget in RMS altitude deviation from the nominal shape. The way in which
the altitude deviation should be randomly drawn is however not clear at all. Let
us take two extreme examples to understand why. An optical designer could be
tempted to use:

• The first low-order terms of a freeform polynomial representation. But
then, why choose a particular polynomial basis rather than another one?
Why stop at a fixed number of terms, don’t higher frequencies also occur
in manufacturing? How would we choose the range in which to randomly
draw the freeform coefficients, is there any reason why the range would be
identical across coefficients?

• A grid of points. If the altitude of individual points are drawn randomly
in an uncorrelated fashion, we are left with nothing but rugosity. If we
choose to draw gaussian bumps, how would we calibrate their amplitude,
what about their lateral size? Why would the bumps be gaussian?

In an ideal world, the optical designer would know how each diopter would be
manufactured and have statistical data on the type of surface shape errors that
appear for the given manufacturing machine, for this given shape etc. Obviously,
this is almost never the case, except perhaps for optical surfaces produced for
mass markets. The optical designer is then left to find an acceptable compromise
to somehow model random surface errors in a credible way. The experience from
past projects (eg measurements of previously manufactured optics) is precious.

The strategy that we have applied for the design of a TMA [158] (another
strategy is found in [159]) is to use Zernike Standard coefficients. Since the
individual coefficients represent directly a RMS altitude contribution, we make
the assumption (still quite arbitrary) that we can treat every coefficients the
same way. Our strategy is9:

1. Determine a fixed value for RMS altitude error.

2. Choose Zernike standard terms to include in the shape tolerancing. Piston,
tip and tilt are excluded since they are already in the position tolerancing
analysing.

9This method can be readily implemented in OpticStudio with TEZI operands, albeit with
a few scripting tricks.
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3. Distribute the fixed RMS budget at random uniformly across the chosen
Zernike coefficients10.

Please note this method comes with a few caveats and is not entirely satis-
factory:

• The choice of the included Zernike terms can make the results vary quite
a bit. For example, selecting all terms between Z4 and Z45, rather than
just Z4 through Z28, will have the effect of reducing the expected error
amplitude of all low-frequency terms, the rms contributions will be spread
over a larger frequency spectrum. It might be worthwhile to specify error
budgets using pre-defined ranges of Zernike terms, as in [159].

• There is no clear reason why the Zernike polynomial basis would be the
most adequate to describe manufacturing errors arising from across all
machines and methods.

3.8 Useful tools relating to polynomials

In the context of optical design with freeform optics, we often want to:

• Constrain the RMS or maximum departure in altitude or slope. We usually
want to avoid departures that are larger than necessary. To this end, we
can craft penalization terms, either using a general method that samples
the optical surface (general but computationally costly) or with exact
methods when the orthogonality property of the polynomial basis allows
it (eg Zernike for altitude, Q-polys for slope) (see Section 2.1.1.6). See
also Takaki et al [160] on applying departure regularization terms in the
context of TMA design.

• Convert a surface between different polynomial basis. Manufacturers will
often ask for a specific freeform basis (usually Zernike). It can also be used
for the purpose of optimization: converting a surface from one representa-
tion to another necessarily changes the merit function landscape and can
be used advantageously to get out of local minima.11

As we have seen, optical designers have different approaches available for
freeform telescope design. Firstly the choice of the freeform representation, most
likely polynomial and as shown by the literature, is not likely to be a huge in-
fluence on the final design performance. Switching between polynomial bases

10This can be done by drawing a random uniform number for each coefficient between 0
and 1, and then scaling all the coefficients so that the total RMS contribution matches the
defined RMS error.

11As already mentioned in Section 2.1.3.1, Forbes cites a method for efficient change of basis
in [90]
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can be advantageous for reasons of commodity, perhaps modify the relation be-
tween parameters and MF when the system is ”stuck” in the case of the use of
search algorithms (as will be explained later), or taking advantage of orthogo-
nality properties to access quickly-computed slope or height limiting constraints.
Understanding the details of ray-based optical simulation is sometimes required
when very specific design specifications must be met and custom computations
performed (either through commercial software existing scripting capabilities or
through external software). We insist here on the value of taking into account
straylight, tolerancing and pupil shapes, which can generate a slew of problems
further down the road and are better dealt with as early as possible. The fol-
lowing chapter will showcase the design of a TMA system in application of the
design approach described in the present chapter.
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Chapter 4

YATMA: TMA Design
Report

General characteristics – Nominal performance – Tolerancing the position and
shape of mirrors – Analysing straylight – Prescription data – Discussion of pros
and cons of this design

We present the design of a compact freeform TMA telescope suitable for
thermal IR applications with rectangular field of view, near diffraction-limited
performance and large aperture. We nicknamed the design YATMA, for Yet
Another TMA. This design is a rework of the one we have presented in previous
work [158], and was part of the CNES R&T FAME supervised by Vincent
Costes. We give an overview of the system and its performance, and provide all
the data required to replicate the design.

4.1 Overall characteristics

This TMA is the result of a study for a thermal infrared telescope for nanosatel-
lites. The high level specifications, including focal length and minimum aperture
were provided by CNES. The volume constraint, as well as the aperture were
critical and explain the recourse to freeform optics. An all-ceramic mirror blank
was manufactured using additive manufacturing technologies to assess the fea-
sibility of this technique.

We give the general characteristics of YATMA in Tab. 4.1, the system layout
in Fig. 4.1 and a CAD view of the optical components in Fig. 4.2. The sensor
specifications are taken from Lynred’s ”PICO1024 Gen2” sensor.

Classification-wise, our TMA is a PNP W (or zigzag, see Section 3.1.2.2) with
the aperture stop on M2. All three mirrors are freeform, using plane-symmetric
Zernike Standard terms up to Z37 (see Appendix A).
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130 mm

180 mm

110 mmM1
Φ108

M2
Φ36

STOP M3
Φ88.8

Sensor
17.4x13

Figure 4.1: YATMA layout and physical dimensions. Figure 4.2: CAD view (Freecad)
of YATMA (optics only).

F-number 1.84
Airy disk diameter @8 µm 35.9 µm
Full field (rectangular) 10.7° × 8°
Volume 130 × 180 × 110 mm or 2.6 L
Max. distortion (see Eq. 3.6) 3-4 %
Min. MTF @30 mm−1 0.39
Sensor: Uncooled microbolometers
Pixels 1024 × 768
Pixel pitch 17 µm
Sensor area 17.4 × 13.1 mm
Spectral band 8 - 14 µm
Nyquist frequency 30 mm−1

Table 4.1: General TMA characteristics.
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Figure 4.3: Field sampling used for the optimization and performance analysis. The system sym-
metry is exploited here. The values in the legend are object field angles in X and Y directions in
degrees. The diagram represents the nominal position of these fields on the sensor plane (in the
absence of distortion).

4.2 Performance analysis

We analyse the performance of YATMA using typical metrics for optical design.
The field is sampled according to the scheme illustrated in Fig. 4.3. The spot
diagrams for these fields are in Fig. 4.4. So-called diffraction and Huygens MTF
are plotted on Fig. 4.7 and Fig. 4.8. Both the spot diagrams and the MTF
show that the performance is near diffraction-limited. The exit pupil being
slightly elliptic, we see two bundles of MTF curves depending on the direction
of analysis. In addition, we check that there is no performance drop-off hidden
in the field by plotting the RMS spot radius (Fig. 4.5) and the RMS wavefront
error (Fig. 4.6) on a finely-sampled field grid.

4.3 Tolerancing and Straylight Analysis

4.3.1 Tolerancing

The tolerance study involves introducing the following errors:

• Position: rigid body DOFs of the mirrors and sensor. Perturbations are
drawn along each axis or angle according to a normal distribution of a
given standard deviation.
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Figure 4.4: Spot diagram for considered field sampling. The black circles are the Airy disks @8 µm.

Figure 4.5: RMS spot radius across a fine sampling of the field.
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Figure 4.6: RMS wavefront error across a fine sampling of the field. The wavelength is 8 µm.

Diffraction limit
X direction

Diffraction limit
Y direction

Figure 4.7: Diffraction MTF for considered field sampling @8 µm. We stop at the sensor’s Nyquist
frequency. The topmost black curve in each of the two bundles is the diffraction limit. The X
direction on the sensor is perpendicular to the plane of symmetry of the system.
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Figure 4.8: Huygens MTF for considered field sampling @8 µm.

• Surface shape: shape error on the mirrors. The errors are drawn using
Zernike Standard coefficients Z4 through Z45 using the strategy explained
in section Section 3.7.2 with fixed RMS contribution spread randomly over
coefficients in the chosen range.

We report in Tab. 4.2 the standard deviations for the gaussian distributions
that were used so that 90 % of systems reach an average (across considered
fields) diffraction MTF value at Nyquist of above 0.3. We perform three distinct
tolerance runs: the first with only position errors, the second with only shape
errors, the third with both position and shape errors at the same time.

4.3.2 Straylight analysis

We performed a systematic straylight analysis using OpticStudio in non se-
quential mode. Rudimentary baffling was placed where necessary, as shown in
Fig. 4.9. All the straylight comes from a 90x76 mm window element with ran-
dom angle within the hemisphere going into the sytem. The baffling is composed
of two rectangular elements with 100 % absorption. No diffusive (nor diffraction
a fortiori) straylight is considered and parts other than mirrors are ignored. We
avoid obscuration entirely by placing baffling only outside of the nominal ray
paths materialised on Fig. 4.10.

The Total Integrated Scatter (TIS) [161] (Eq. 4.1) is often used to estimate
the fraction of incident flux that is reemitted diffusively at a diopter surface given
the wavelength λ, the RMS surface roughness σ and the difference in refractive
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Perturbation type Standard Deviation (±)
Position only
Piston 20 µm
X Decenter 25 µm
Y Decenter 25 µm
X Tilt 1′ (0.29 mrad)
Y Tilt 1′

Z Tilt (not the sensor) 1′

Shape only (Z4-Z45 Standard)
RMS altitude error (all mirrors) 300 nm
Position & Shape
Piston 15 µm
X Decenter 20 µm
Y Decenter 20 µm
X Tilt 0.78′ (0.23 mrad)
Y Tilt 0.78′

Z Tilt (not the sensor) 0.78′

RMS altitude error (all mirrors) 200 nm

Table 4.2: Tolerance analysis results. Perturbation standard deviations so that >90 % of drawn
systems reach a mean diffraction MTF of > 0.3 at Nyquist.

index between incident and exit media ∆n (2 for a mirror). In our case, we
may estimate the TIS of our mirrors to be below 3.10−4 with the reasonable
assumptions σ = 10 nm, λ = 8 µm. These levels of straylight are negligible at
the design stage we are at.

TIS =

(
2.π.∆n.σ

λ

)2

4.1

4.4 System Prescription Data

In this section, all the data necessary to replicate the YATMA optical design is
given. We begin with the overall system geometry and then describe the shape
of all the mirrors.

4.4.1 General prescription data

We present the prescription data for YATMA in Tab. 4.3. The shape of the
mirrors is found further below (Tab. 4.4). The whole system is symmetric around
the plane of the layout (Fig. 4.1). Except where otherwise noted, all length
units are millimeters, all angles degrees. ”CR” designates default OpticStudio
Coordinate Breaks. Values are given with a sufficient numerical accuracy, a light
optimization may be necessary to reproduce the exact nominal performance.
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M1

M2

Sensor

M3

Window

Baffle 1

Baffle 2

Figure 4.9: 3D view (OpticStudio) of the
TMA and the rudimentary baffling that was
used in the simulation.

Figure 4.10: 3D CAD view of the TMA with
the ray bundle solids for extremal fields. Me-
chanical parts placed outside the bundles do
not generate obscuration.

# Surface Type Thickness Decenter Y Tilt X
OBJ Standard Inf - -

1 Standard 100 - -
2 CR - - -41.0713
3 M1
4 CR -77 - -41.0713
5 CR - - 37.2007
6 M2 (STOP)
7 CR 84.683 - 37.2007
8 CR - - -12.6951
9 M3

10 CR -105.426 - -12.6951
11 CR - -1.6054 -0.2298

IMA

Table 4.3: YATMA prescription data: overall system geometry.
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Parameter M1 M2 M3
Semi-diameter (mm) 54 18 44.4

Base sphere
curvature radius (mm)

-422.015 -119.037 -135.408

Zernike normalization
radius (mm)

57 23 52

Z6 (mm) -2,95853E-01 -8,7699E-02 1,2550E-02
Z7 4,3442E-02 7,50E-04 3,9146E-02
Z9 9,89E-04 -6,474E-03 -1,0893E-02
Z11 3,014E-03 -2,585E-03 -8,083E-03
Z12 4,885E-03 -4,83E-04 1,541E-03
Z14 7,98E-04 -1,52E-04 -1,096E-03
Z17 -2,99E-04 -1,24E-04 1,680E-03
Z19 -5,86E-04 -1,14E-04 -2,86E-04
Z22 3,3E-05 -2,0E-05 -3,77E-04
Z24 1,17E-04 -2,4E-05 1,9E-05
Z29 6E-06 (-1E-09) 5,6E-05
Z37 -1,3E-05 1,2E-05 -9E-06

Max. normal departure
from base sphere (mrad)

36 16 13

Max. sag departure
from base sphere (µm)

730 142 70

Table 4.4: Freeform mirrors shape description. Surface type: Zernike Standard Sag.

4.4.2 Mirrors

We give the complete description of the mirrors in Tab. 4.4. The coefficients are
presented with the same signs as entered in OpticStudio and are consistent with
the general system prescription data in Tab. 4.3. Zernike Standard coefficients
are expressed in millimeters up to nanometer accuracy for conciseness. We use
the OpticStudio indexing.

Additionally, let us plot some surface maps for the freeform mirrors to better
assess the freeform complexity we are dealing with. For each mirror, we produce
the following maps1:

• Sag. (Figs. 4.11, 4.15 and 4.18)

• Sag of the freeform component (base sphere subtracted). (Figs. 4.12, 4.13,
4.16 and 4.19)

• Angular departure of the freeform component (base sphere subtracted).
Note this is the angle between the normal to the surface and the normal
to the sphere, not the gradient (although they are related). (Figs. 4.14,
4.17 and 4.20). The figures are produced with a Zemax macro we have
written.

1Please refer to the digital version of the present manuscript for high resolution pictures.
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Figure 4.11: M1: Sag. Figure 4.12: M1: Sag of the freeform com-
ponent.

Figure 4.13: M1: Sag of the freeform com-
ponent without astigmatism. Coma is the
second dominant term.

Figure 4.14: M1: Angular departure of the
freeform component.

Note the freeform departure maps in sag and angle are produced using cus-
tom OpticStudio macros. Also note that for the maps below, the sign for the sag
has been adapted so that positive altitude corresponds to bumps away from the
face of the mirror (check the convexity/concavity of mirrors on the sag maps if
there is still some ambiguity left).

Finally, we show the ray footprints on M1 and M2 for extremal fields
(Figs. 4.21 and 4.22). This gives an idea of what the real useful area looks
like and what part of the mirrors’ faces could be used for eventual fiducials or
could be removed altogether for weight reduction. Note that a small part at the
bottom of M1 actually needs to be removed to avoid obscuration.

4.5 Discussion

The imaging performance of YATMA is satisfactory, with good near diffraction-
limited MTF and good fastness. The design geometry is also quite compact. The
distortion levels are manageable.

Although the exit pupil ellipticity was controlled in our merit function, it is
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Figure 4.15: M2: Sag. Figure 4.16: M2: Sag of the freeform com-
ponent.

Figure 4.17: M2: Angular departure of the
freeform component.

Figure 4.18: M3: Sag.

Figure 4.19: M3: Sag of the freeform com-
ponent.

Figure 4.20: M3: Angular departure of the
freeform component.
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Figure 4.21: Footprint of extremal fields on
M1. Note the clear aperture would be resized
and shifted upwards for manufacturing.

Figure 4.22: Footprint of extremal fields on
M3.

however the limiting factor for image quality, we believe a better compromise
can be found by degrading slightly the spot diagrams in the field in order to im-
prove the exit pupil circularity. Also, the system needs baffling to avoid specular
straylight, this is not common in TMA systems. Since we observe in thermal IR,
this could prove problematic as the baffling is heated by the absorbed straylight
and seen by the sensor.

The tolerancing shows the system is quite sensitive, although further studies
could be carried out to better balance each error contributor. As far as man-
ufacturing and surface shape metrology are concerned, some mirrors are quite
challenging since they exhibit high slopes (M1 in particular with a maximum
slope of 36 mrad2).

The primary focus of the CNES R&T FAME was assessing the manufactur-
ing feasibility of a fast freeform mirror using ceramic processes. The fact that our
M3 mirror is fast in our design could be detrimental to the optical performance,
but our mission was to produce a voluntarily difficult case for the manufacturer
as part of the research program. Likewise, the scope of the research program
did not include manufacturing the whole system.

Our optical design led to the manufacturing of an unpolished M3 mirror
using laser stereolithography (SLA) of ceramic material by Nicolas Rousselet at
3DCERAM (Figs. 4.23 and 4.24)3. This was done to assess the feasability of
manufacturing a very fast mirror (M3 on its own has N = 0.634). The advan-
tages of this manufacturing method are:

• The freeform component is already included in the first manufacturing

2Though most of the freeform component is astigmatism so null systems could be used for
metrology, as shown in [28]

3Actually the earlier version of M3 shown in [158], though the shape is close
4The mirror fastness was evaluated using its clear aperture and best focal length when

used on its own with a collimated ray (see [158])
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Figure 4.23: Front of the unpolished M3
mirror.

Figure 4.24: Back of the unpolished M3 mir-
ror.

step. The designer is not constrained by the quantity of material that
needs to be removed between the base sphere and the target freeform
shape.

• The optical surface is in the same material and manufactured during the
same step as the mechanical structure behind it. This eliminates some
possibilities for positionning errors between the optical surface and the
mechanical part.

• The part can be hollowed out as well as optimized for rigidity and vibration
resistance.

Further characterization or manufacturing were not carried out for this de-
sign.
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We think the present chapter might be a good template of what an optical
design preliminary study report for a freeform unobscured telescope should in-
clude. The design meets the requirements that were set at the time. However we
spent a lot of time working on it with the means available to optical designers.
Moreover, were the requirements to change enough to prompt a redesign, we
would have to start over and likely spend a significant amount of time (minus
the time spent creating the performance metrics, evaluations, literature review
etc.) doing a rework. It is well known (especially to inexperienced optical design-
ers) that finding the right optical design, or at least the one that even begins to
provide good performance, is akin to finding a needle in a haystack. Motivated by
our newfound experience in freeform optical design, we have investigated ways
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to search haystacks faster using search algorithms. In order to investigate the
matter with total control over the computational flow, we have first implemented
tools for sequential raytracing, as will be explained in the next two chapters.
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Chapter 5

Sequential raytracing

Sequential raytracing vs other types of raytracing – Coordinate systems – Ray
propagation – Sphere intersections – Surface normals – Snell-Descartes reflec-
tion and refraction – Error cases – Gratings – General (freeform) surface in-
tersection – Our implementation: validation and performance – Parallelism –
GPU – Software architecture – Advice to implementers

Motivated by understanding the exact computational flow behind what is
called sequential raytracing in commercial software, we have implemented our
own tools to perform the task. Publishing (see below) on sequential raytracing
seem to have been more popular some decades ago than it is now. This is per-
haps due to the fact that commercial software have largely solved the issue for
most purposes. The unfortunate consequence being that there is not a huge deal
of resources on the details of doing such computations. The following chapter
covers topics in sequential raytracing. It is organized as a template for actu-
ally programming a sequential raytracer, as closed-form formulae are provided
whenever possible and reasonings on how to solve common issues are given.

Firstly we remind basic concepts such as Snell-Descartes refraction and re-
flection, then we move onto more advanced topics such as simulating gratings
and computing the intersection of rays with freeform surfaces, lastly we give
some test results of our own implementation and advice on the questions that
arose concerning the software architecture during development.

5.1 Context

Sequential raytracing for optical design is the application of geometric ray prop-
agation through a known sequence of diopters and media from an object space
to an image space. It satisfies constraints of predefined sampling of field or aper-
ture. It constitutes the core simulation method of optical performance for the
largest part of imaging systems.

Several related fields of study exist, which must not be confused with sequen-
tial raytracing. First, so-called non-sequential raytracing is the propagation of

97



rays through an a priori unknown sequence of diopters and media. Rays emerge
from light sources towards objects that interact with light and finally are even-
tually absorbed1. Applications are mainly lighting and straylight analysis. This
type of simulation typically mixes optical components with the surrounding me-
chanical components and sources and lights. It takes into account, in most cases,
a scattering model for diopters, surfaces and volumes. It outputs data on which
object were struck by light, how much light was absorbed etc. Despite involv-
ing the same surface types as sequential raytracing, non-sequential raytracing
is fundamentally different: the ray propagation is made substantially harder by
the need to find the next object to interact with for each ray.

Another related field, much more popular, is raytracing for visual rendering
(eg for computer games and animated movies). This field has much more in
common with non-sequential raytracing than sequential raytracing. The need
for realism in visual rendering drives the inclusion of more and more rigorously
implemented physical phenomena in raytracing engines, to the point that using
engines originally made for visual rendering in actual physics simulation has
become viable [163, 164].

Also note that the raytracing we are concerned with here is referred to
as real raytracing, ie the application of Snell-Descartes laws at diopters for
every ray instead of the propagation of quantities like the Lagrange invariant
via the raytracing of one ray. We are also not concerned with physical optics
(propagation of electromagnetic fields using eg Fresnel propagation and Fourier
optics)2.

Several references exist on real raytracing [166–170]. In the present chapter,
we describe some low-level mathematical descriptions for raytracing but omit
code optimization and numerical accuracy considerations (which are nonetheless
important for fast and accurate raytracing implementation).

5.2 Basic Concepts

Let us present sequential raytracing concepts. We will only brush the concepts
and do not detail their implementation. The building blocks we give are all the
computations needed to build a simple raytracer (omitting ray-aiming for now,
which is the hard part). As we’ll see, the mathematics of the problem are rather
straightforward.

5.2.1 Ray representation

The fundamental data object for real raytracing is the ray representation. A
simple, viable representation is composed of a point xyz and a unit vector lmn
in the direction of light propagation (Tab. 5.1).

1See for instance [162] for the implementation of non-sequential computations.
2See for instance [165] for a treatment of the subject of implementing such programs.
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x
y
z eg the altitude of the intersection on a surface at (x, y)
l x direction cosine

m y direction cosine
n z direction cosine

Table 5.1: Ray data representation.

Optionally, optical path value, polarization, power etc can be added to this
representation for specialized simulations3.

5.2.2 Coordinate systems and transfer

We need a way to propagate rays from one optical surface to the next in ho-
mogeneous media. We choose to represent optical systems (simple ones in any
case) as a succession of optical surfaces which typically apply intersections and
refraction/reflection on a ray, separated by propagation in straight lines from
one surface to the next.

Contrary to non-sequential raytracing, there is little to gain in sequential ray-
tracing by adopting a global coordinate system, it can, to the contrary, cause
numerical accuracy issues. We rather choose, along with commercial software
(as far as we know), to adopt a local coordinate system relative to each optical
surface. Optical systems are a succession of optical surfaces separated by co-
ordinate transfer from one surface to the next. A necessary operation is then
to transform the ray coordinates xyzlmn from one coordinate system to the
next, given eg a rotation matrix Ptrans and a translation vector (DX,DY,DZ)
(or any representation for rigid motion) between the two (Fig. 5.1). This can
be represented for the user as a sequence of tilts and translations along each
coordinate axis4. This transfer from one surface coordinate system to the next
is the equivalent of Coordinate Break in OpticStudio. This raytracing concept
is key to the design of off-axis systems (such as unobscured telescopes).

We illustrate this transfer concept from one surface coordinate system to
the next with Fig. 5.25. We transfer rays from their position P1 in the initial
coordinate system (for example just after applying an intersection with the

surface and a refraction), with initial direction
−→
d to the next coordinate system,

rotated and with its origin at the next apex A2. The point P2 is the intersection

3Note additionally that the de facto standard for number representation in raytracing is
currently IEEE double-precision floating point number. The difference between single and
double precision is important for accuracy in many optical systems (nanometer intersection
precision over meters of propagation repeated for whatever number of optical surfaces there
are). In visual rendering single-float numbers are traditionally used, but with the advent of
General Purpose GPU (GPGPU) double-float computing was introduced on most modern
graphics cards.

4The actual order of transformations matters little as long as it is indicated clearly.
5Note the coordinate system is with the Z axis opposed to the direction of light but it is

just a matter of convention, the computation remains fundamentally the same.
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y

transfer DY, DX

DZ

MA

A1

A2

y'

x'
z'

y

x

z=0

z'=0

Ptrans

Figure 5.1: Quantities characterizing a transfer between two successive optical surfaces. A1 and
A2 are the apex of the two successive optical surfaces, joined by the mechanical axis (MA). A
z = 0 plane goes through each apex. The unprimed coordinate system has origin A1 and pertains
to the first surface. The primed coordinate system has origin A2 and pertains to the second optical
surface.

of the ray with the z′ = 0 plane. This choice aligns all the rays on a plane, and
makes the subsequent intersection with the next surface easier to perform.

For the sake of completeness, let us give the mathematical expressions needed
to compute the ray intersection from one surface coordinate system to the next.

The rotation matrix from the initial coordinate system to the next is such
that it links lmn and l′m′n′ as in Eq. 5.16. l′m′

n′

 = P−1
trans ·

 lm
n

 5.1

P1 can be expressed in the new coordinate system with Eq. 5.2.x′1y′1
z′1

 = P−1
trans ·

x1

y1

z1

−
DXDY
DZ

 5.2

And only the intersection with the z′ = 0 plane is left to obtain the coordi-
nates of P2 in the primed coordinate system (Eq. 5.3)7.

6P−1
trans can of course be pre-computed (and is, in our implementation). The same goes for

any quantity independent from ray coordinates.
7Note it is actually possible to miss the plane if the ray is parallel to it. This is a special

raytracing case.
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surface
z=f(x,y)

y

z
x

A1

A2

P1

P2

d

transfer
Ptrans

(DX,DY,DZ)

y'

z'
x'

surface
z'=f(x',y')

ray d

Figure 5.2: Diagram for coordinate system transfer from one surface to the next. The ray coor-
dinates xyzlmn starting on the previous surface at point P1 in the coordinate system A1xyz are
simply expressed in the new coordinate system A2x′y′z′ and the intersection P2 is found at the
new z′ = 0 plane.
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z=0
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C

Figure 5.3: Ray intersection with spheres diagram. Here I is on a sphere with positive R, the
computations are exactly the same with spheres with negative R.

x′2y′2
z′2

 =

x′1y′1
z′1

+ t ·

 l′m′
n′

 =

 x′1 − z′1
n′ l
′

y′1 −
z′1
n′m

′

0

 5.3

Functionally, the transfer operation, for a given ray, computes the num-
bers (x′2, y

′
2, 0, l

′,m′, n′) from the previous ray (x1, y1, z1, l,m, n) and Ptrans,
(DX,DY,DZ)8.

5.2.3 Surface intersection: basic sphere case

We need to compute the intersection between rays and spheres. Thankfully, this
is a problem for which the solution is a closed-form (we’ll see in Section 5.3.2
the general case for more complex surface shapes).

Starting with a ray at P with direction
−→
d , we want to compute I the point of

intersection with the sphere of apex A, center C and radius R (signed) (Fig. 5.3).
The points along the ray obey Eq. 5.4.

8Readers might wonder why we express rotations with rotation matrices rather than with
quaternions, as is usual in computer graphics. The reason is that rotating vectors is twice as
fast with rotation matrices as with quaternions. We also do not need to chain rotations at
execution time in our implementation and we do not encounter gimbal lock issues.
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x(t)
y(t)
z(t)

 =

 xP + tl
yP + tm

tn

 5.4

The points of the sphere obey Eq. 5.5.

x2 + y2 + (z −R)2 = R2 5.5

Combining the two and knowing that l2+m2+n2 = 1, we obtain a quadratic
equation t2 + bt+ c = 0 with:

b = 2(xP · l + yP ·m− nR)

c = x2
P + y2

P

∆ = b2 − 4c

5.6

We want the intersection closest to the z = 0 plane out of the eventual two,
so we choose the solution in Eq. 5.7.

tsol =
−b+ sign(b)

√
∆

2
5.7

Finally, the intersection (if it exists) is given by Eq. 5.8.xIyI
zI

 =

 xP + tsol · l
yP + tsol ·m

tsol · n

 5.8

The problem is not so simple as it might first appear, indeed we have special
cases to manage during the raytracing, these are, in order:

1. ∆ < 0: No intersection between the ray and the sphere exists.

2. |zI | > |R|: This is an intersection beyond the hemisphere closest to the
z = 0 plane. The math works out, but this is not what we want to define
with spherical surface types.

We will encounter other special cases below, we summarize them in Sec-
tion 5.2.7.

5.2.4 Surface Normal

Computing the surface normal (or first derivatives) is required for Snell-
Descartes laws. Let’s review the spherical case and then the general one.
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R>0

z
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I

C
n<0

N

R>0 n<0

N

R>0 n>0

R<0 n<0 R<0 n>0

N

N

N

Figure 5.4: Sphere normal vector N at I.

5.2.4.1 Sphere normal vector

Knowing the point of intersection I on the sphere, we want to compute the

corresponding unit normal vector
−→
N . The trick is we always want the vector

pointing in the direction opposed to that of the incoming rays9. We illustrate
this in Fig. 5.4.−→

CI (Eq. 5.9) is colinear to
−→
N .

−→
CI =

 xI
yI

sign(R)
√
R2 − (x2

I + y2
I )

 5.9

−→
CI normalized and flipped opposite to the incoming ray gives

−→
N (Eq. 5.10).

−→
N = −sign(n) · sign(R) ·

−→
CI

|R|
= −sign(n) ·

 xI/R
yI/R√

R2 − (x2
I + y2

I )/|R|

 5.10

9This is a choice on our part to indicate which side of the surface is being intersected by
the ray. This is useful for mirror reflection (Section 5.2.5).
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N

n1 n2

(l,m,n)

(l',m',n')r

i i'

(l',m',n')x

i

y

z
x

Figure 5.5: Snell-Descartes law illustration: Incident, refracted (r) and reflected (x) rays in the
plane of incidence on an arbitrary surface.

5.2.4.2 Normal vector: general case

The unit normal vector
−→
N can be computed easily from the first spatial deriva-

tives in the X and Y directions (Eq. 5.11), with z = f(x, y) the function com-
puting the altitude of the surface [171].

−→
N =

sign(n)√
1 +

(
∂f
∂x (x, y)

)2

+
(
∂f
∂y (x, y)

)2
·

∂f∂x (x, y)
∂f
∂y (x, y)

−1

 5.11

5.2.5 Snell-Descartes refraction and mirrors

Given an incident ray with direction lmn and a unit surface normal
−→
N . We

can compute the new direction l′m′n′ of the ray in the refraction case (between
media with refraction indices n1 and n2) and in the reflection case (Fig. 5.5)
[166, 167].

First we need to compute the angle of incidence (its cosine) via the scalar
product between ray direction and normal (Eq. 5.12).10

cos(i) =
−−→
lmn ·

−→
N 5.12

10Note cos(i) is always negative since the incident direction and
−→
N are always in opposite

half planes.
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5.2.5.1 Reflection case

The new direction in reflection is simply given by subtracting twice the scaled
normal from the incident vector Eq. 5.13.11

−−−−−−→
(l′m′n′)x =

−−→
lmn− 2 cos(i) ·

−→
N 5.13

5.2.5.2 Refraction case

The scalar law of refraction n1 · sin(i) = n2 · sin(i′) gives Eq. 5.14.

cos(i′) =

√
1 +

(
n1

n2

)2 (
cos(i)

2 − 1
)

5.14

We then have the new refracted ray direction
−−−−−−→
(l′m′n′)r (Eq. 5.15).

−−−−−−→
(l′m′n′)r =

n1

n2
·
−−→
lmn− k ·

−→
N 5.15

With:

k =
n1

n2
· cos(i) + cos(i′) 5.16

5.2.5.3 Special case: TIR

We have a case of Total Internal Reflection (TIR) when 1+
(
n1
n2

)2
(cos(i)

2−1) <
0.

5.2.6 Sequence application on a ray

For a given ray and a given sequence of diopters, the propagation of the ray from
the start of the sequence to its end can be seen as the successive application of:

1. transfer (Section 5.2.2)

2. intersection (Section 5.2.3)

3. normal computation (Section 5.2.4)

4. snell refraction/reflection (Section 5.2.5)

5. transfer

6. etc.

Fig. 5.6 summarizes these steps and the involved data.

11Note that, with our definition of
−→
N , this automatically points the ray in the direction

of the propagation of light. We flip the ray and not the coordinate system (as is sometimes
legitimately done with mirrors).
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Figure 5.6: General raytracing ray propagation through a sequence of diopters.

5.2.7 Special cases and errors

Fig. 5.7 summarizes the different special cases and errors we encounter in basic
raytracing. These are:

• TIR (Section 5.2.5).

• Ray missing the surface (Section 5.2.3).

• Intersecting a sphere beyond the intended hemisphere (Section 5.2.3).

Some control flow is necessary to manage these special cases during raytrac-
ing. We can either signal an error which interrupts the current MF computation,
or drop the rays with errors and carry on with the rest of the raytracing with
the remaining rays.

5.3 Advanced topics

The above description is sufficient to implement a raytracer that propagates
rays from an entrance pupil to an image plane through a sequence of spherical
diopters, possibly off-axis and with 3D geometry.

Let us review two more advanced concepts in raytracing: gratings and general
ray/surface intersections.

5.3.1 Gratings

As an example of a special surface, let us look at raytracing through gratings
[166, 167, 172, 173]. We give the completely general treatment of a freeform
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TIR

Ray miss
Wrong
hemisphere

Figure 5.7: Summary of special cases in basic raytracing.

phase function on a freeform substrate12. Such gratings are useful for instance
in spectro-imager systems, see [174] for a freeform substrate grating used in
spectro-imagers designs. As we’ll see, they integrate the already presented com-
putation flow, the intersection function and the function computing the output
ray direction are simply replaced.

In the case of gratings raytracing, we have to ignore many diffraction effects.
We only raytrace a single order of diffraction and ignore polarisation, scattering
and efficiency. Our idealized grating is described by a substrate shape and a
phase function. The raytracing model is:

1. Intersect the ray and substrate (see Section 5.3.2). This gives a point I of

intersection. We also compute the unit normal vector
−→
N to the substrate

as usual.

2. Determine the groove direction and step at the intersection point from the
phase function φ(x, y). Locally, the effect of the grating on the ray is the
same as that of a straight grating with these direction and step size.

3. Compute the output ray direction using the vectorial grating equation.

We consider the phase function φ(x, y) a given, defined by the optical de-
signer13. The usual treatment is to define the grooves as the intersection between
the substrate and iso-surfaces in a 3D phase field (typically interference fringes)
[172]. For practical purposes, we can use without loss of generality a 3D phase
field constant in the z direction φ(x, y) since this is how we propose to define the
phase (rather than with two interfering sources) (see Fig. 5.9). This simplifies
the phase definition as well as raytracing computations.

12Although this might be difficult to manufacture
13The 2D phase can be defined by freeform polynomials for instance.
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Figure 5.8: Grating raytracing notations. The intersection of the iso-phase curves with the substrate
define the grooves positions. The grooves on the substrates are the little black lines.

For future reference, let us give the whole derivation for the raytracing equa-
tions, in the general case (with a 3D phase φ(x, y, z)). This derivation is con-
tained in [167, 172]. Figs. 5.8 and 5.10 illustrate some of the notations we use.
When possible we take the same notations as Rayces [172] but we maintain
consistency with the preceding paragraphs. Let us make a list:

• n1, n2: Respectively incident and exit refraction indices.

•
−−→
lmn,

−−−→
l′m′n′r,

−−−→
l′m′n′x: Incident, transmitted and reflected ray directions

on or through the grating.

• λ: Vacuum wavelength of the incident ray.

• φ(x, y, z): General 3D phase function for the grating.

• d: Local groove step (in units of length).

•
−→
N : Unit normal vector to the substrate at intersection I with the ray,

defined as before to be in half-plane opposite to
−−→
lmn.

•
−→
∇φ: phase gradient.

• −→s : unit vector in the plane of
−→
N and

−→
∇φ, tangent to the substrate and

orthogonal to the grooves direction.
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Figure 5.10: Illustration for the vectors used
in the grating equation. Inspired from Fig.2
in [172].

• −→t : unit vector parallel to the grooves direction, we have
−→
N ×−→s =

−→
t .

• md: Diffraction order.

The implicit raytracing equation for gratings, both in transmission and re-
flection is Eq. 5.17.

−−−→
l′m′n′ ×

−→
N = µ ·

−−→
lmn×

−→
N + Λ · −→t 5.17

With: {
µ = n1

n2

Λ = md·λ
n2·d

5.18

Observing that
−→
t = −−→s ×

−→
N , we can find a factorization (Eq. 5.19).(−−−→

l′m′n′ − µ ·
−−→
lmn+ Λ · −→s

)
×
−→
N =

−→
0 5.19

This means the quantity multiplied by
−→
N is zero plus some vector Γ ·

−→
N

(Eq. 5.20). This is the explicit grating raytracing equation. The same in scalar
format is Eq. 5.21, with −→s = (u, v, w).

−−−→
l′m′n′ = µ ·

−−→
lmn− Λ · −→s + Γ ·

−→
N 5.20


l′ = µ · l − Λ · u+ Γ · lN
m′ = µ ·m− Λ · v + Γ ·mN

n′ = µ · n− Λ · w + Γ · nN
5.21
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We can see, by the way, that the sign of −→s does not really matter, as it will
just swap negative refraction orders with positive ones.

We now need to compute the missing quantities to plug into Eq. 5.20:

• −→s (Eq. 5.23) and d (Eq. 5.24).

• Γ (Eq. 5.28)

Observe that:

−→
t = ±

−→
∇φ×

−→
N∥∥∥−→∇φ×−→N∥∥∥ 5.22

We now have −→s (Eq. 5.23).

−→s =
−→
t ×
−→
N = ±

−→
∇φ×

−→
N∥∥∥−→∇φ×−→N∥∥∥ ×−→N 5.23

The groove density 1
d is simply the length of phase gradient projected on −→s

(Eq. 5.24).

−→
∇φ · −→s =

1

d
5.24

We now have all the numerical data to compute Λ. Let us move onto the
matter of computing Γ. Squaring and adding all the lines in Eq. 5.21, we obtain
Eq. 5.25.

1 =µ2 + Λ2 + Γ2

− 2µ · Λ(l · u+m · v + n · w)

+ 2µ · Γ(l · lN +m ·mN + n · nN )

− 2ΛΓ(u · lN + v ·mN + w · nN )

5.25

If we observe that −→s ·
−→
N = 0, we obtain Eq. 5.26, a quadratic equation in Γ.

Γ2 + Γ · b+ c = 0 5.26

With: 
b = 2µ ·

−−→
lmn ·

−→
N

c = µ2 + Λ2 − 1− 2µΛ ·
−−→
lmn · −→s

∆ = b2 − 4c

5.27

We solve it, there are solutions iff b2 ≥ 4.c. For instance, there are no solu-
tions once the step d starts becoming too small compared to λ.
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Figure 5.11: General ray/surface intersection problem illustration. The intersection to be found
is point I. Points 1, 2 and 3 are easily accessible points where the altitude of the surface can
be evaluated, they are 1: Start of the bounding box, 2: Base shape intersection, 3: Exit of the
bounding box.

Our two roots give us the solutions in transmission and in reflection
(Eq. 5.28). {

Γ = −b−
√

∆
2 transmission

Γ = −b+
√

∆
2 reflection

5.28

To determine which root is which, in our raytracing formalism with
−→
N always

in the opposite half-plane to
−−→
lmn, observe in Eq. 5.20 that positive Γ pulls the

exit ray direction towards
−→
N . We also see that −b = −2µ ·

−−→
lmn ·

−→
N > 0. The

reflection root is then the one that pulls the exit
−−−→
l′m′n′ the most towards

−→
N , or

the largest of the two roots.

5.3.2 Surface intersection: general case

As we have seen (Section 5.2.3), the problem of intersecting rays with spheres
has a solution in closed-form. This is not the case in general for more complex
optical surfaces such as aspheres and freeform, even though they might have a
polynomial expression. The problem of intersecting rays with general surfaces
has to be solved iteratively [166] and is rather open-ended. We provide useful
general tools to tackle the problem but leave the detailed case by case imple-
mentation up to the reader.
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The problem is illustrated by Fig. 5.11. We want to determine I the in-
tersection between the ray and the surface. We only have equations for the
altitude and, in most cases, first derivatives of the surface at (x, y): zsurf(x, y)

and
(
∂zsurf

∂x (x, y), ∂zsurf

∂y (x, y)
)

.

To solve the intersection problem, the general idea is to express it as a 1D
root-finding problem, which are a particular subset of search problems14, solv-
able by well-known algorithms such as the bisection method, Newton-Raphson
or TOMS 748 [92]. We can express the intersection problem as a 1D root-finding
problem readily (Eq. 5.29). The choice of root-finding algorithm depends on the
availability of the derivative (they exist for all the surface types we have shown
in the present work).

f(t) = zray(t)− zsurf(x(t), y(t)) 5.29

With the ray parametrized with t as usual, from the intersection with the
z = 0 plane (x0, y0, 0) as explained in Section 5.2.2 (Eq. 5.30).

xray(t) = x0 + t · l
yray(t) = y0 + t ·m
zray(t) = 0 + t · n

5.30

The derivative f ′(t) will be given by Eq. 5.31.

f ′(t) = n−
(
l · ∂zsurf

∂x
(x, y) +m · ∂zsurf

∂y
(x, y)

)
5.31

We use the concept of bounding box, which is usual in visual rendering and
can be found in optical raytracing for instance in Morita [104]. The general idea
is to achieve bracketing on f(t), that is find ta and tb such that f(ta) < 0 < f(tb).
By virtue of the continuity of the surface shape, we are then assured of finding
ti (at least one) such that f(ti) = 0 somewhere between ta and tb. By defining a
sufficiently large bounding box (compared with the freeform altitude departure)
around eg the base shape of a freeform surface we can then compute f(t) at
the entrance and exit of the bounding box (points 1 and 3 on Fig. 5.11) and
hopefully reach a bracket. The bounding box we propose on Fig. 5.11 is a shift of
the base shape by bz in either z directions. It is closed off radially by a maximum
semi-diameter of bsd

15. Point 2 (on the intersection with the base shape) can
also be useful to find a smaller bracket (starting the 1D search with a smaller
bracket obviously makes for a faster search). In cases where no bracketing can
be found, we have to give up and mark the ray as failed/invalid or have recourse
to other methods such as ray marching (see below) at the cost of speed.

14Search algorithms crop up in many places in sequential raytracing, not just in the MF
optimization.

15Many other bounding boxes could be proposed, for instance a simple cuboid around the
apex, though managing its size could prove troublesome. A good bounding box balances the
probability of achieving bracketing (robustness) with the size of the bracket (speed).
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Figure 5.12: The bracketting is successful
but there are several roots of f(t) within it.
The correct one is the one with smallest t in
our formalism.

Figure 5.13: The bracketting fails! All the
points used for the bracket (in blue) are on
the same side of the surface (f(t) is always
the same sign).

We do not give a ”one size fits all” solution to the problem because many
factors come into play. The strategy we have outlined works most of the time for
reasonable freeform departures. Balancing robustness and speed should be done
on a case by case basis based on the evaluation cost of f(t), f ′(t) and that of
the intersection with the base shape and bounding box. Consider the following
pathological cases:

• Several intersections: Fig. 5.12.

• Failed bracket: Fig. 5.13.

These issues can be solved by stepping through values of t carefully. This is
a widespread technique in computer graphics, often referred to as ray marching.
Many techniques exist, for instance with dynamic t step sizes depending on the
proximity of the object, but this takes us outside the scope of this chapter. Note
that a compromise must be found between giving up on the intersection (for the
sake of speed), concluding that the ray misses the surface, accepting an inter-
section when we are not sure of having found the right one, and looking harder
with ray marching. See also Lerner (p.66) [175] on the intersection problem,
notably the concept of guide surface.

5.4 Implementation

5.4.1 Our implementation: Details and tools used

We have implemented a sequential raytracer using the core mathematical de-
scriptions in the present chapter. Its main features are:
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• 3D vectorial raytracing for off-axis systems.

• Spherical and XY polynomial surfaces (demonstrated in [144]).

• Fast: the speed of raytracing and MF evaluation is of the same order of
magnitude as that of OpticStudio.

• Script User Interface (UI) to input optical systems, create MF and manage
search algorithms. No Graphical User Interface (GUI).

• Ray-aiming: prototypes, more in Chapter 6.

We used Common Lisp for our implementation, with the compiler Steel Bank
Common Lisp (SBCL) [176]. Read-Eval-Print Loop (REPL)-driven development
has allowed us to prototype our implementation much faster that we could have
in other languages, such as C++. Thanks to SBCL, which compiles Common
Lisp down to machine code and provides many options to optimize low-level
performance, our implementation is quite fast as we’ll see.

5.4.2 Test systems and timings

We used test systems (Fig. 5.14) to validate our implementation against Zemax
(Zemax 13 SP1 EE (64-bit) Version April 4, 2013), at least in the 3D spherical
case with both reflection and refraction and no ray-aiming. From a ray grid at
the entrance pupil, we produced the ray data (x, y, z, l,m, n) at each surface for
the two programs. We report that the data matches down to numerical machine
double-float precision.

Furthermore, we benchmarked the raytracing speed of our implementation.
We obtained a metric hopefully similar to the integrated Zemax benchmark
function which measures a number of rays traced per second on a given optical
system. In our implementation, we compute the metric by raytracing an array
of a million rays through the system. The comparison is only indicative of per-
formance since in reality, there is significant overhead for computing the MF for
much fewer rays (hundreds) and treating the ray data for each MF. The results
for the test systems are in Fig. 5.15. The tests were performed on the same
machine on one Central Processing Unit (CPU) thread.

We notice that for systems with decentered and tilted elements (b,c and d),
the raytracing speed is almost the same between both programs, with a slight
advantage for Zemax16. On systems with completely axisymmetric components
(a and e), Zemax is 2 to 3 times faster. We suspect Zemax treats axisymmet-
ric systems as a special case and exploits the symmetry to avoid redundant
computations, in contrast we always perform the full 3D computation.

Let us give orders of magnitude useful for the dimensioning of raytracing
operations: Fig. 5.16.

16This proves, perhaps surprisingly, that Common Lisp compiled with SBCL is adequate
for high-performance CPU computing. It is indeed as fast as the Zemax code, which is prob-
ably very efficient C code. With Common Lisp, we had access to the required performance
where needed along with the more abstract language features which C is lacking that reduce
development time.
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(a) Doublet lens, on axis. (b) System (a) with an added tilted and decentered
(random in all DOF) lens at the end.

(c) Plane-symmetric TMA. (d) System (c) with added randomly tilted
and decentered lens at the end.

(e) Simple lens with rays prop-
agated in the inverse direction
(right to left on the figure, oppo-

site
−−→
lmn in the propram).

Figure 5.14: Validation and benchmark optical systems for our raytracing implementation. All
diopters are spherical and raytracing starts from a known entrance pupil.
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Figure 5.15: Raytracing speed comparison between our implementation and Zemax on our test
systems.
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Ray intersection + refraction on one diopter
  ~ 100ns (spherical)
  ~ 1 μs (XY)

Rays through a system (dozen diopters)
  ~ [1 - 10] μs per ray

All rays for a MF 
(about a hundred rays
+ data treatment overhead)
  ~ [1-10] ms

Figure 5.16: Raytracing orders of magnitude for performance in our implementation.

5.4.3 Parallelism

Raytracing is a parallel problem: first obviously at the ray level but also at the
higher level of MF evaluation. Which level is actually exploitable depends on
the number of rays being traced and the nature of search algorithms.

5.4.3.1 Ray-level

Each ray can be traced independently from the others through a given optical
system. Indeed, sequential raytracing can be seen as the successive application
of functions (intersection, refraction etc.) on each ray with an auxiliary array of
parameters (radii of curvature, thicknesses etc.). This point of view is illustrated
in Fig. 5.17.

We ran performance measurements of parallel raytracing at the ray level on a
spherical axisymmetric Cooke Triplet without ray-aiming to assess the difference
between languages and architectures (Fig. 5.18). We raytraced a million rays in
each case then divided the timing to obtain an indicative measure of performance
per ray17. We compared Common Lisp compiled with SBCL, C with a variable
number of CPU threads and Compute Unified Device Architecture (CUDA) on
a Graphics Processing Unit (GPU). Again, results are only indicative of real
attainable performance since we trace one million rays at a time, moreover we
are not expert in parallel computing or GPU computing and it is quite possible
the parallel cases could be further optimised. All tests are performed on the same
machine. The CPU has 4 cores and 8 threads. The rays were divided equally into

17The raytracing is re-implemented naively for the specific case of the Cooke Triplet so we
can ignore the overhead relevant to excessive number of function calls etc, it is then slightly
faster than general raytracing code.
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Computing threads Raytracing
functions

State 0 F0

State 1 F1

...

State n
=

Image plane
rays

FN

A single ray is a set of
6 numbers + validity flag

x y z l m n flag

Figure 5.17: Raytracing rays in parallel through an optical system: naive view. Each computing
thread applies the sequence of raytracing functions F on a ray.

each available thread. The GPU is a Nvidia GTX 1060 and the GPU raytracing
is implemented in CUDA. One CUDA core per ray is used18. The results show
that C is slightly faster that the Common Lisp implementation. Then, as we
increase the number of threads involved in the computation, we see a typical
(for multithreaded tasks) sublinear increase in performance. GPU raytracing
is significantly faster, moreover we suspect that the results would scale almost
linearly with the number of available CUDA cores on the graphics card.

This begs the question: If raytracing on parallel architecture is so fast, why
isn’t it used everywhere? We have to take into account that the comparison
performed here is an unrealistic use-case for sequential raytracing, but much
more relevant for non-sequential raytracing. We raytrace a million rays, in re-
ality we won’t have more than a few hundred rays that are required to assess
the performance of optical systems. Furthermore, the raytracing of a ray is a
relatively cheap operation, to the point that the threading overhead will likely
be significant and completely nullify performance gains in cases where few rays
need to be traced. In addition, the control flow in sequential raytracing is not
so simple once ray-aiming is introduced.

In a few words, we think parallelism at the ray level is not really exploitable
for typical sequential raytracing, except perhaps in cases where tens of thou-
sands of rays need to be traced through many complex surfaces for a single MF

18It might be better to operate on several rays per core, we did not try it.
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Figure 5.18: Performance timing of several naive parallel ray-level implementations on an axisym-
metric spherical Cooke Triplet without ray-aiming. The number of involved threads for CPU is
indicated with ”nt” for n threads. SBCL: Common Lisp implementation. C: C language. GPU:
CUDA language.

(for example to take into account high spatial frequencies). It is however very
relevant to non-sequential raytracing, although the computations differ signifi-
cantly from what we have shown.

5.4.3.2 MF level

A more adequate and flexible parallelism is at the MF evaluation level. This is
what we chose in our implementation. This requires using search algorithms that
allow at least some degree of parallelism. Thankfully, even search algorithms that
were developed without parallelism in mind generally contain logically parallel
search function evaluations:

• Population-based algorithm (eg Particle Swarm Optimization (PSO)) can
generally allow the parallel evaluation of the MF value at the position of
individuals in the search space at each step.

• Even in the simplex search, some steps like general contraction require
reevaluating the MF at the position of almost all points. This can be done
in parallel.

In our implementation, the PSO and Simplex algorithms are parallel. How-
ever, for these algorithms, the number of parallel MF evaluations is limited by
the nature of the search method. For example in PSO, we can only evaluate in
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parallel as many MF as there are particles in the swarm. Increasing the number
of individuals artificially to take advantage of a parallelism is not always advis-
able in search algorithms that were not designed specifically for this use. This
is why parallel search algorithms were developed [177, 178].

An additional, practical (but perhaps less justifiable), reason to implement
parallelism at the MF level is that programming for parallel tasks is notoriously
difficult and raytracing in a system that includes ray-aiming and complex sur-
faces is complicated enough as it is. In contrast, search algorithms are easy to
implement and the complexity added by parallelism is easily managed.

5.4.4 Raytracer architecture

The mathematical ray operations given in this chapter are required but insuffi-
cient to build a usable, robust and fast sequential raytracing software. In fact,
we found that most of the difficulty in implementing a sequential raytracer lies
in the program architecture design. Let us outline our proposed architecture.

We may divide the program into separate subsystems19:

• Raytracer: The goal is to provide a function closure20 that exposes the
user-defined search variables to the search algorithms and which, when
called, performs the raytracing of a user-defined optical system. The pro-
duced closure must be evaluable as fast as possible and in a thread-safe
way.

– OS (Optical System) definition: Transforms a user-defined OS into an
OS representation suitable for fast raytracing. Among other things,
the user parameters are used to pre-compute raytracing quantities
(eg rotation matrices), to compress sequences of operations (when
multiple transfer surfaces are adjacent and do not involve user vari-
ables, they may be compressed into just one surface in this step).
The representation also contains the list of core raytracing opera-
tions to apply. The result is a closure that takes user variable values
and outputs arrays of raytraced rays ready to be inputted into MF
computation.

– Core raytracing functions: These are the mathematical operations
that were explained earlier in this chapter. They are functions that
operate on arrays of rays and pre-computed surface parameters.

• Search: Search algorithms (see Chapter 7). The algorithms can be imple-
mented in a completely decoupled way. Indeed even other languages or
optimization libraries may be used in place of this subsystem.

19Or libraries, packages, whatever they are called in your particular programming language
idiom.

20To appreciate the flexibility that closures bring to programming, we recommend the book
Let Over Lambda by Doug Hoyte [179].
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• MF computation & Co.: Auxiliary subsystem for computing MF values
from arrays of rays. Other small, auxiliary, subsystems include a ray aper-
ture stop sampling generator and other useful optics-related computations
for the user. All these may actually be left up to the user to implement.

These subsystems are largely decoupled21.

5.4.5 Discussion and Implementation advice

We provide some advice and opinion from our experience in implementing our
raytracer.

5.4.5.1 Development focus

The mathematical operations to perform raytracing are the easy part. It might
be tempting to develop a crude program architecture and add many surface
representations (every known polynomials, Non-Uniform Rational Basis Spline
(NURBS) etc). But we advise to only include a few surface representations and
develop instead a solid program architecture. The reason is that ray-aiming and
user UI could require massive changes to prototype architectures. It is better to
have to modify a relatively lightweight raytracing codebase than a cumbersome
ones with many features.

5.4.5.2 Modularity

The core feature of a sequential raytracer is to raytrace arrays of rays given
an aperture stop sampling, an optical system, fields etc. Search algorithms are
completely external to this core feature, the program architecture should reflect
that. This allows using any third-party library to handle the search22.

On the subject of surface representations: there are many possible types.
Providing a way for the user to implement their own surfaces is useful to offload
some of the development effort on the user, who may have very specific needs23.
These user-defined surfaces must provide the rules for computing output ray
data from input ray data (xyzlmn in what we have presented).

The topics we have just covered, however few there were, suffice to compute
the geometric propagation of rays through many, if not most, optical components
(lenses, mirrors, diffraction surfaces). The specific issues of polarization, illu-
mination quantities (etc) on the focal plane etc are left out of our work. These
issues could be dealt with using the same architecture (at least as far as we reckon

21In particular, search algorithms and search logic implementations have nothing to do in
the raytracer subsystem. They may be called for iterative intersection (1D root-finding) and
ray-aiming (2D search) as general black boxes.

22Furthermore, if you are a programmer in optics, odds are that search algorithms libraries
made by professionals in the field are better than yours.

23OpticStudio provides this feature as User-defined surfaces Dynamic-Link Library (DLL).
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without having tackled the problem ourselves) but should involve tracking more
ray properties through the optical systems.

If sequential raytracing were only about the contents of the past chapter, it
would be rather easy. Crucially we have left out, until now, the problem of ray-
aiming that is necessary to perform computations on optical systems the aperture
stop of which is not at the entrance. This is what the next chapter is about.
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Chapter 6

Ray-aiming strategies

Ray-aiming problem explained – Single-ray point of view – Whole sampling point
of view – Naive solution for simple systems – Diving into complex issues arising
from freeform and other complex systems – Dynamic aperture stop position

We find ray-aiming to be both a complex concept and a complex task to
program in a sequential raytracing program. However, it is required to perform
raytracing in the case of optical systems with an aperture stop that is not at the
entrance of the system (which is rather often the case). We find the treatment of
the subject in the literature to be almost non-existent1 even though the method
is obviously programmed into commercial software. As the issue is more open-
ended than basic raytracing through single components, there are several ways of
solving it. Rather than giving ready-made closed-form formulae, we give several
lines of reasoning on how to solve ray-aiming.

We begin by framing the problem as clearly as we can, then present a naive
scheme to solve the problem, which works for simple systems. Then we dive into
issues arising with freeforms and unobscured telescopes.

6.1 Ray-aiming problem

Any typical optical system sequential raytracing setup possesses:

• Fields, provided in object space2.

• An aperture stop sampling and position in the optical system.

Real raytracing requires that all the rays defined in the object space by the
field direction match with the positions defined in the aperture stop sampling
when raytraced from the object space to the aperture stop surface. The difficulty

1We apologize if we have missed something. Please let us know if perchance you have found
or written anything on the subject.

2With the notable exception of fields being defined as positions on the image plane. We
leave out this case in the present treatment of ray-aiming.
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is that the relationship between the bundles of rays in object space and the bun-
dles of rays at the aperture stop is governed by the laws of geometrical light ray
propagation through this first half of the optical system (From object to stop).
This relationship can be arbitrarily complex if numerous or complex surfaces are
placed between the object space and the aperture stop. Ray-aiming is the pro-
cess by which the rays that satisfy both the field and aperture stop constraints
are found and can be subsequently raytraced normally through the second half
of the system (from stop to image). Ray-aiming is not an active research area
in the publicly available literature, although it was undoubtedly implemented
in commercial software. We mostly used the CodeV and OpticStudio manuals
on the issue (although they do not reveal complete strategies of course).

For the sake of simplicity we consider objects at infinity in our treatment of
the subject. Ray-aiming problems with objects at finite distances can be reduced
to problems with objects at infinity by the addition of a perfect lens as a first
element in the system.

6.1.1 Optical system decomposition around the stop

We can divide any optical system into subsystems for raytracing around the
aperture stop (Fig. 6.1). Four subsystems are of interest:

• 1: The whole optical system in direct raytracing.

• 2: The stop/object part in inverse raytracing.

• 3: The stop/image part in direct raytracing.

• 4: The object/stop part in direct raytracing.

For the purpose of performing ray-aiming, only subsystems 2 and 4 are needed.
The subsystems 1 and 3 are used to perform the rest of the raytracing to the
image plane.

6.1.2 Description for a single ray

For a given ray, we know:

• Its target position (xyz)stop on the aperture stop surface, as defined by
the aperture stop sampling and the altitude of this surface.

• Its target direction (lmn)obj in the object space, as defined by the field
direction.

These two quantities are constraints that the ray must satisfy, but they are
insufficient to perform raytracing straight away. One must also know either a
point (xyz)obj in object space the ray passes through or the direction (lmn)stop
of the ray at the aperture stop surface. We use subsystems 2 and 4 in Fig. 6.1 in
order to determine these quantities. The important quantities in the ray-aiming
of a single ray are synthesized on Fig. 6.2a.

There are two ways to perform this search:
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Figure 6.1: Raytracing decomposition for a typical optical system.

Figure 6.2: Ray-aiming for a single ray.

Aperture
Stop

Object
space

Stop/object
system

(xyz)stop

(xyz)obj

(lmn)obj

(lmn)stop

(a) Important ray-aiming quantities for a single ray. The quantities in red are constraints. The quantities in blue
must be determined by the ray-aiming procedure.

stop->object

(b) Searching from the aperture stop. The variable
to optimize is the direction from the known posi-
tion on the stop. The target is the direction of the
raytraced ray in object space.

object->stop

(c) Searching from the object space. The variable
to optimize is the position in object space of a point
on an arbitrary plane. The direction of the ray in
object space is known. The target is the position
of the raytraced ray on the aperture stop.
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• Start from the aperture stop position (xyz)stop and search for the ray
direction (lmn)stop that gives the correct field direction (lmn)obj after
raytracing3. This uses subsystem 2. This method is illustrated in Fig. 6.2b.

• Start from the field direction (lmn)obj in object space and search for the
ray position (xyz)obj that gives the correct ray position on the aperture
stop (xyz)stop after raytracing. This uses subsystem 4. This method is
illustrated in Fig. 6.2c.

Finding either (lmn)stop or (xyz)obj is sufficient to solve ray-aiming for a
given ray. When one is known, the other can be found by unambiguous raytrac-
ing.

The n component of (lmn)stop is given by the normalization of the direction
vector. Likewise, (xyz)obj represents only 2 degrees of freedom, since we can
define our object rays at any plane in the object space. We can then describe
the ray-aiming of one ray as a 2D search problem. We need to minimize either
one of the two functions (Eqs. 6.1 and 6.2).

f1(lstop,mstop) = d1(rtstop→obj [ray
stop(lstop,mstop)]lm, (lm)obj,target) 6.1

f2(xobj , yobj) = d2(rtobj→stop[ray
obj(xobj , yobj)]xy, (xy)stop,target) 6.2

With:

• rtstop→obj [.], rtobj→stop[.] denoting the raytracing operation from the stop
to the object space and object to stop respectively. We get a ray as a result
of this operation and we have its xy or lm coordinates.

• raystop, rayobj a ray originating from the stop and a ray originating from
the object space respectively.

• d1, d2 arbitrary metrics between ray coordinates. This is the quantity to
be minimized.

• (lm)obj,target, (xy)stop,target the target coordinates for the raytraced rays
in each case.

The interchangeability of these two problems can be exploited fruitfully in
raytracing stategies. We can go back and forth between object and stop spaces
during the search. Indeed, minimizing either one of Eq. 6.1 or Eq. 6.2 is equiv-
alent.

3This is probably where the name ray-aiming comes from. At a fixed position on the
aperture stop, we aim the ray by trying several directions and looking at the result as a field
direction until we find the right one.
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(b) Aperture stop sampling scheme, here a carte-
sian grid with 15 rays on one side cropped to the
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(c) Defined object field directions.

Starting from the stop (x,y)
and aiming (l,m)

Starting from the object space (l,m)
and searching for the position (x,y)

(d) Search process applied on the rays of the stop
samplings for each field direction. The rays in-
volved in the search from the stop are in orange.
The rays involved in the search from the object
space are in purple.

Figure 6.3: Example ray-aiming process on a TMA telescope.

6.1.3 Illustrating samplings with a TMA

The problem of ray-aiming, while it involves single rays, is only solved when
whole bundles of rays for a given field are correctly aimed. Let us illustrate
this on a real optical system (Section 6.1.3). The example system is YATMA
(Chapter 4). The ray-aiming is performed by OpticStudio in this example and
the ray data was extracted for illustration purposes.

The optical system is entirely described using the optical surfaces definitions
and the geometric position of the surfaces relative to each other (Fig. 6.3a). Two
pieces of information are necessary to begin the ray-aiming: 1. The aperture stop
sampling (Fig. 6.3b) 2. The field sampling (Fig. 6.3c). These two samplings can
be seen as targets in the search problem that is the ray-aiming (Fig. 6.3d). The
ray bundles, one for each field in the field sampling, must cross the aperture stop
exactly at the points defined in the stop sampling and have a direction in object
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Figure 6.4: Resulting samplings in (x, y) and (l,m) ray coordinates at the stop and in object space.

space that corresponds to the relevant field. We consider the ray-aiming process
to be successful when these targets are met for all the ray bundles, although
additional considerations must be taken into account for complex systems (Sec-
tion 6.3.4). The ray-aimed ray bundles define two complementary result sam-
plings: 1. The position of each ray on an arbitrary surface in object space 2.
The direction of each ray from the aperture stop. These two result samplings
(Section 6.1.3) are complementary in the sense that, for a given optical system,
one can be obtained using the other via unambiguous raytracing. It is therefore
sufficient in order to give a solution to ray-aiming to provide either one of these
samplings.

6.2 Naive solution

Observing that, for most systems, the ray sampling in object space is only a
slightly deformed aperture stop sampling. We propose using a bilinear transform
method relying on marginal rays, this is similar to what is used in paraxial
raytracing. This naive solution that mostly works on axisymmetric systems. Its
advantages are that it is quite fast. On the other hand, it is not very robust and
can be impacted by all the problems raised in Section 6.3. It works as follows:

Given a disk aperture stop sampling of radius dstop, let four marginal rays
have coordinates on the aperture stop sampling at points A, B, C and D, in the
(x, y) coordinate system centered on the chief ray such that:
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A =

(
dstop

0

)

B =

(
0

−dstop

)

C =

(
−dstop

0

)

D =

(
0

dstop

)
6.3

We can assign any point P in the sampling coordinates (u, v) such that

P = (1− u)(1− v)A+ u(1− v)B + (1− u)vD + uvC 6.4

With our particular A, B, C, D coordinates, the problem is tractable:4{
u = 1

2 −
xP +yP
2dpup

v = 1
2 + yP−xP

2dpup

6.5

Now that we have (u, v) coordinates for every point in our sampling, we pro-
ceed with ray-aiming the marginal rays individually (A,B,C,D on the aperture
stop). Once this is done, we have obtained, in an arbitrary plane in object space,
solution points A′, B′, C ′, D′. We simply have to apply the bilinear map for all
the other points P ′ in the sampling to fill the entrance pupil with rays:

P ′ = (1− u)(1− v)A′ + u(1− v)B′ + (1− u)vD′ + uvC ′ 6.6

This strategy is illustrated in Fig. 6.5. As an additional step, ray-aiming each
ray individually from the candidate solution given by the above method may be
required to obtain a more accurate solution for complex systems. The bilinear
transform should give a candidate solution quite close to the true solution, so
searches should be short.

We tested this ray-aiming strategy on the Double Gauss system in Fig. 6.6a.
We validated the spot diagrams obtained using our software with our ray-aiming
strategy (Fig. 6.6c) against the spot diagrams obtained using Zemax (Fig. 6.6c).
Results are identical with error close to machine precision. Additional ray-aiming
of every ray was not required in this case.

6.3 Problems with complex systems

Ray-aiming in complex systems, typically with strong freeform surfaces and
with no clearly defined axis that a chief ray will likely follow, becomes harder.

4The case of general coordinates for A,B,C and D (anywhere on the (x, y) plane) allows
finding (u, v) in closed form of course but the expression is longer.
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Figure 6.5: Bilinear transformation ray-aiming strategy. The aperture stop sampling (left) is trans-
formed into a sampling on a plane in object space using the complete ray-aiming of four marginal
rays and a bilinear transformation.

The ray-aiming search problem, thankfully, is not a black-box, we can gather
information useful to the search by opening the black box, at the cost of increased
implementation complexity. We show difficult cases that can arise in ray-aiming
and some ideas indicating how to solve them. Note that some of these cases can
be so exotic as to put in doubt whether or not the system is really an imager, in
which case giving up ray-aiming would be perfectly acceptable (but detecting
these cases is hard in itself). In the following, we mostly treat ray-aiming from
the aperture stop towards the object space. Most situations can be transposed
to the other ray-aiming point of view, starting from the object space.

6.3.1 Search direction and ray missing surfaces

Let us say we have an off-axis system (Fig. 6.7a) and want to ray-aim a ray
from point P on the aperture stop. We have M1 and M2 in front of the aperture
stop, towards the object space. A problem we encounter is that the mirrors can
be so small that we will likely miss them if we do not gather additional data on
the system geometry to guide the search. We can, for instance:

• Start the ray parallel to the mechanical axis (AsA1).

• Start the ray oriented towards A1.

In this way, we are very likely to intersect M1. But reaching the second mirror
M2 once M1 intersections have been found can be difficult (especially if the
optical system does not have good imaging properties), since its direction is given
by raytracing. For instance, the green ray on Fig. 6.7a reaches M1 but misses M2
completely. To solve these cases, we can think about the problem as finding the
ray that successively intersects all the surfaces between the stop and the object
space (Fig. 6.7b). The solution (l,m) pair is enclosed in concentric continuous
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(a) System diagram and ray fans for the raytraced fields. Drawn in
Zemax.

(b) Zemax raytracing results: spot diagrams at the
image plane for each considered field.

(c) Idem for our raytracing program.

Figure 6.6: Naive ray-aiming method validation on a Double-Gauss optical system. The same
cartesian grid aperture stop sampling is ray-aimed and raytraced in each case.
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Stop

M1

M2

AS

A1

A2

Towards
object space

P

Iz

z=0 (local)

(a) Rays are traced from point P towards the object
space through successive surfaces (here mirrors). It
is not known a priori whether rays will successfully
intersect all surfaces.

(l,m) search space

solution

M1
M2

(b) The lm 2D search space can be represented as a
diagram of this shape. The areas that correspond to
successful intersections are assumed to be concentric.
The solution point is included in all successive sets in
this case.

Figure 6.7: Finding the object space during a ray-aiming search from the aperture stop. Note
we represent the intersection areas as elliptic in the lm space, but we only mean to represent
continuous 2D areas within the search space.

sets of directions corresponding to whether a given mirror is intersected or not.
We can encode this property in the ray-aiming scalar metric to be minimized
(used when the ray direction in object space is not available to compute Eq. 6.1),
for instance by a conditional function (Eq. 6.7).

fsets (lstop,mstop) =

(
1− ninter

ntotal

)
+
∥∥∥−−−→Iz,iAi

∥∥∥ 6.7

With:

• ninter: Number of intersected surfaces.

• ntotal: Total number of surfaces between aperture stop and object space.

• Iz,i: Point of intersection between ray and local z = 0 plane for the current
surface i, when the intersection with the surface itself was not found.

• Ai: Apex of surface i.

Note that we assume the ray footprint on surfaces to be somewhere close to
the apex (which can be decentered by the user as needed in the surface definition
of course).

The complete function to minimize for this type of ray-aiming becomes
Eq. 6.8.

f (lstop,mstop) =

{
fsets (lstop,mstop) Object space not yet reached

f1 (lstop,mstop) Object space reached (Eq. 6.1)
6.8
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Stop

M1

M2

Towards
object space

z=0 (local)

P

A2Iz

(a) M1 has a shape that, from left to right on the
surface, causes rays from P to first successfully inter-
sect M2, then miss it, and then successfully intersect
it again.

(l,m) search space

solution

M1
M2M2

(b) The shape of M1 causes disjointed areas of in-
tersection with M2 in the search space. The solution
is only in one of them however.

Figure 6.8: Ray-aiming search with strong freeform surface M1 inducing a disjointed intersection
area of M2 in the lm search space.

However, with strong freeform surfaces, the problem becomes even harder
(Fig. 6.8a). We very possibly can obtain disjoint areas in the lm search space
for which a given surface is successfully intersected, and the solution is only in
one of them (Fig. 6.8b).

A possible solving strategy is then to conduct a depth-first search in each
intersection area in the search space. This would require a large number of
evaluations and a criterion for concluding that a given intersection area is devoid
of further intersections or solution. We did not investigate the question further.

6.3.2 Marginal rays

Using marginal rays is tempting to transform whole samplings, as shown in
Section 6.2. However, in the case of freeform surfaces, these rays are likely to
intersect the edge of surfaces, which likely have the strongest slopes (Zernike
basis for instance). The marginal rays are therefore likely to be the first to miss
surfaces in the optical system (Fig. 6.9).

This is either good news or bad news depending on the kind of raytracing
we want to perform. If we want to interrupt the raytracing as soon as rays in
the aperture stop sampling encounter some kind of error/special case (such as
missing a surface), then this provides an early signal to interrupt the raytracing.
If we want to raytrace valid rays and ignore rays with errors, then this compli-
cates ray-aiming, as we have to design strategies that do not rely on marginal
rays (or any ray in particular for that matter).

6.3.3 Problem non-convexity

Non-convexity in the search can occur, even in simple cases. On Fig. 6.10 rays
are traced from P on the stop through a single mirror and their exit angle
is compared with the target field direction. Going from left to right on the
mirror, rays start with almost the target direction (light blue), then seem to go
away from the target (medium blue) but finally reach the target direction at
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Figure 6.9: A freeform lens that makes a marginal ray (in red) go outside the optical system (miss
the next surface).

Stop

P

lmntarget

Figure 6.10: Ray-aiming problem with non-convex search properties. There is a single S-shape
mirror between the stop and object space. lmntarget is the target field direction in object space.

the rightmost intersection (dark blue). This search landscape shape will likely
defeat purely local search algorithms. This is troublesome because we generally
want very light search algorithms for the ray-aiming of one ray and local search
algorithms tend to be the lightest. Since raytracing a single ray is a very cheap
operation, the search algorithm computational overhead is likely significant.

6.3.4 Solution unicity and sampling bundle

Another problem that comes up with freeform surfaces is a non-unicity in the
ray-aiming solution for one ray. Fig. 6.11a illustrates this: two directions from a
given point P on the aperture stop give rise to the same object field direction.

If we were to ray-aim a whole aperture stop sampling ray by ray, we could en-
counter a situation where rays take either possible path more or less at random.
Our resulting ray-aiming, while formally a solution ray by ray, would make no
sense when the whole aperture stop sampling is considered (Fig. 6.11b). Now,
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Stop

P

lmntarget

(a) Ray-aiming a single ray in a case where the so-
lution is non-unique. The ray from P on the aperture
stop can follow two possible paths towards a solution
in object space.

Stop

P

lmntarget

(b) Non-unicity in ray-aiming: case of stop sampling.
Every ray in the stop sampling has multiple possible
solutions. We have two possible solution bundles, in
blue and green.

Figure 6.11: Ray-aiming solution non-unicity in the case of single rays and stop sampling bundles.

the optical system that present properties like this are almost certainly not well
defined as imagers, we’re almost doing something that resembles raytracing for
lighting. However, we can see how one might want to have the possibility to de-
fine strong freeform surfaces that generate non-unicity and still want ray-aiming
to find a single bundle. The designer could then manually cut away the part of
the freeform surface that generates the spurious solution.

A possible strategy to achieve the ray-aiming of a single, sensical bundle
from the aperture stop sampling might be to consider continuous functions of
(x, y)stop into (l,m)stop, described by general coefficients. We think rays are
more likely to ”stay together” using such descriptions. The search would use
the coefficients as variables and raytrace all or a subset of the aperture stop
sampling to evaluate the metric to minimize.

Another solution could be to search ray by ray and re-use previous results.
The starting point for the search on a new ray is the search result obtained
for a previous, nearby ray. This requires a way of automatically iterate through
positions in the sampling while keeping a short distance between each position5,
it is straightforward if the sampling is of a known type, such as cartesian grid,
polar, etc. Even in simple ray-aiming cases, this strategy is advisable since it is
likely to speed up the search.

6.3.5 Moving the aperture stop

Optical design beginners often want to move the aperture stop automatically
using search variables in sequential raytracing software, ie make the stop freely
jump between the object and image spaces of each diopter along the system.

In our implementation, we found that it was possible to implement a feature
that causes the aperture stop to be redefined in the optical system according to
a variable indicating how far along the mechanical axis it should be as well as
a variable for stop semi-diameter. The aperture stop is simply a flat iris when

5In the general case this is akin to the Traveling Salesman Problem.
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MA

M1

M3

M2

Figure 6.12: Moving the aperture stop along the mechanical axis in a TMA. MA: Mechanical
Axis. The angle of the stop is interpolated between each surface. When a collision with an existing
surface occurs, such as with M1 (red dot), the aperture stop can be snapped automatically to
being on M1.

located in free space and snaps to surfaces whenever the iris would intersect
them. In the case of off-axis systems, the aperture stop can be oriented using an
angle interpolated from the transfer rotation matrix between the two successive
surfaces. The concept is illustrated on Fig. 6.12.

We did not fully implement this feature in our raytracer yet. We think this
represents a worthwhile investigation in an effort to make optical design still
more palatable to search algorithms. The reasons why this concept is not com-
monly used could be:

• Software complexity requirements become too high.

• The strategy is not robust enough to be made generally available in ray-
tracers.

• The search problems with such variable aperture stop become too hard.

As we have just seen, ray-aiming can be difficult in the case of complex sys-
tems. As far as our implementation is concerned, we have prototypes in various
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states of completion which follow the ideas given in the past chapter. Concern-
ing performance, even though we have not performed benchmarks on consoli-
dated implementations, we can already say that other ideas seem to be required
to get close to the execution speed reached in commercial software, which we find
remarkably fast.

Now that ray-aiming is explained and solutions investigated, we have all
the tools one could need to perform raytracing MF evaluation tasks on unob-
scured telescopes and many other types of optical systems that include lenses,
mirrors and gratings. For would-be implementers out there: programming an
(open-source) sequential raytracer that would include all the features we have
written about in the past two chapters would already be very useful to the optical
community, but only if it is also FAST (let’s say realistically within 50 % of
commercial software performance). We have fallen a bit short as we have not
had time to implement validated, general and fast ray-aiming schemes. Also our
implementation is not likely to become public due to opposing views on intel-
lectual property. We hope the past chapters have documented sufficiently clearly
ideas that will help other programmers.

In the next chapter, we will use our sequential raytracer (without ray-aiming)
as the computational core for automatic optical design using search algorithms.

137



Chapter 7

Search Algorithms Applied
to Optical Design

When a lens designer studies non-spherical surfaces he is appalled
by the infinite domain that opens before him.

Bernard Maitenaz [3]

Levers for faster automatic optical design using search algorithms – Intro-
duction to search algorithms – Simplex search – Nature inspired evolution strate-
gies – Benchmarking algorithms and optimization runs – Comparing some al-
gorithms from the literature and commercial solutions on a freeform system –
Leads for further improvements in the workflow of optical design using search
algorithms

The use of search algorithms on top of a sequential raytracer core is the
method of choice for the automatic design of optical systems. While it is not
the only approach, it is, as far as we know, the most general since it allows incor-
porating many objectives into the merit function. Likewise the search algorithms
that are used are not specific to optical design. Since the optical design commu-
nity is rather small, it is convenient that we should rely on the research effort of
branches of engineering and applied mathematics with many more practitioners.

We begin by stating some of the issues that are faced when using search
algorithms, as is traditional in optical design, especially in the case of designing
complex freeform systems. We then give introductory ideas into search algo-
rithms, a field which we think is sometimes obscure to optical designers but
actually not hard to get into. We include some of the published works we have
produced on the subject of search algorithms applied to freeform optical design,
we deal with how search algorithms could be compared and how much faster
existing search algorithms are than the commercial solutions in the case of a
sample (by necessity limited) of optical systems. Lastly we give some of the
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directions in which optical designers might go to further improve how they use
search algorithms in their work.

7.1 Cost of search problems in freeform optical
design

Freeform optical design has made the optimization of optical systems harder.
We can cite some of the reasons:

• The number of problem parameters has increased dramatically.

• The performance analysis, including MF computation, is made more com-
putationally expensive.

• Although this is hard to quantify and assert for all systems, it is often
the case that freeform systems (off-axis in particular) MF landscapes are
filled with more unevaluable regions due to TIR, rays missing surfaces or
ray-aiming difficulties.

As we have seen (Chapter 2) freeform optical surfaces are represented us-
ing more parameters than spherical or conical surfaces. We have gone from
representing a single diopter using one or two parameters, to using dozens of
independent parameters. In addition, off-axis systems use potentially 5 position
DOFs instead of just thicknesses. This creates harder search problems, which
will require a higher number of MF evaluations neval to solve. A single MF
evaluation has a cost MFcost.

To a good approximation, ignoring the negligible cost of managing the search
algorithms themselves, the required cost in order to solve a search problem P
can be expressed as Pcost (Eq. 7.1). The transition from conventional to freeform
optics increases both cost components.

Pcost = MFcost · neval 7.1

The levers of action available in order to minimize the cost of freeform search
problems are:

• Reducing MFcost.

– Using more efficient aperture stop sampling strategies (Section 3.4.1)
to reduce, for a given accuracy, the required number of rays used in
computing some MF components (eg spot radius RMS).

– Using efficient freeform surface evaluation algorithms (Appendix A).

– Using efficient raytracing strategies (see Chapter 5).

– Using faster computers or more adequate processing architectures (eg
parallel computing).

139



• Reducing neval.

– Using search algorithms that are more efficient for our problems.

– Using freeform surface representations that happen to generate a
more tractable search problem [67].

In the present work, most of these leads were investigated, some more in-
depth than others. Let us talk in this chapter about finding more efficient search
algorithms for optical design problems. This is a complementary approach to
the existing efforts in comparing freeform representations in search problems
[67].

7.2 An optical designer’s introduction to search
algorithms

Let us look at how optical design search problems relate to more general opti-
mization problems, for which an extensive literature exists. We then give a cur-
sory overview of how typical search algorithms work, including the Nelder&Mead
simplex search and the family of population-based evolution strategies.

7.2.1 Search Problem Characteristics and Related Search
Algorithms

The problem of finding minima of functions in some d-dimensional search space
is very general and corresponds to an enormous corpus of literature in applied
mathematics. Let us go over the characteristics of the search problems we deal
with in optical design and relate them to the optimization literature in order to
narrow down the kind of algorithms we should look at.

As we have seen (Section 3.3), the way in which search problems are typically
set up in optical design is via a single scalar MF that synthesizes all performance
metrics (eg MTF value) and all constraints (eg lens thicknesses between 0 and
some value). As we’ll see (Pareto Section 7.4.3), there are alternatives for set-
ting up search problems, but let us adopt this point of view for the time being.
Formally, solving an optical design search problem corresponds to finding X?

(Eq. 7.2) the vector of optimal problem parameters (freeform coefficients, thick-
nesses, etc . . . ), with D the search domain (usually very ”unconstrained” in
optical design).

X? = argmin
X∈D

MF(X) 7.2

The only kind of knowledge we can gather about the MF landscape is its
value at discrete points (if we omit differential raytracing we do not have access
to first nor second derivatives). This is called a black box problem. Moreover,
optical search problems are relatively noiseless (compared to what is considered
noisy in the search algorithms literature, see the functions with ”severe” noise
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in [180]). We could potentially obtain noisy MFs if each evaluation were done
using a random aperture stop sampling with few rays. This is not the case
for properly setup MFs. Finally, most parameters constituting the search space
are continuous, with the notable exception of glass refraction indices and Abbe
numbers which must correspond to available glasses in manufacturers’ catalogs.

To summarize, the search problems we encounter in optical design, freeform
or otherwise, typically have the following general characteristics:

• Continuous, or Hybrid (when glasses are involved), also real-parameter.

• Low noise.

• Black box.

• Simple constraints (bounds) or even none at all (in the way optical de-
signers typically set up the MF).

• Number of parameters in the [101, 102] range.

[181] gives a nice overview of all the kinds of algorithms designed to solve
the kind of problems we have just described. In addition, the BBOB (Black Box
Optimization Benchmarking) competition results [182]1 and the GECCO (Ge-
netic and Evolutionary Computation Conference) [183] provide a useful catalog
of many current search algorithms and comparison methodology.

7.2.2 Demystifying search algorithms

It is our experience that optical designers often see search algorithms as mys-
terious, which is not surprising given that these algorithms, critical to optical
design software, are bundled in commercial products with little details about
their implementation. We hope to give the readers some intuition about how
search algorithms operate.

7.2.2.1 Simplex Search

First let us look at the Nelder&Mead simplex search [184]. It is one of the
most widespread search algorithms. It is entirely deterministic, meaning that it
is composed of a fixed set of rules with no random component, always giving
the same results with the same starting conditions. The simplex search involves
moving a d-simplex2 around inside the d-dimensional search space and evaluat-
ing the MF at the simplex vertices, guiding the following steps according to the
evaluation results.

For the purpose of illustration, let us take the case of a 2-dimensional space
(two variables), which involves a 2-simplex (a triangle). All the search steps
can be summarized on a flowchart (Fig. 7.1). At the start of the algorithm,

1Also https://coco.gforge.inria.fr/ for up-to-date results.
2A d-simplex is a simplex in d-dimensional space. Triangles are 2-simplices, tetrahedra

3-simplices etc.
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the three points are: best (so far) MF value position (1), second worst (2) and
worst (3) (In higher dimensions, there would be other points between 1 and
2). We then apply geometric transformations on the simplex and update the
points according to the decision tree. Once an end state has been reached, we
loop back to the beginning. We do so until the simplex has reached a stable
state, as checked by a termination criterion, either because the vertices are all
superposed onto a local minimum, or because there was an early convergence
due to some issue like simplex degeneracy (the vertices are aligned). Further
details were explained in [144], and in the specialized literature of course. We
hope the reader will appreciate that nothing mysterious is going on, as these
simple steps can be followed with pen and paper on a printed-out 2D heatmap
for example. Furthermore, it can be said about the simplex search, in contrast
with some other algorithms, that it is local in nature. Loosely speaking, in 2-
space, if the three vertices start in a particular ”valley”, there is a good chance
the simplex will converge at the bottom of this valley (or become stuck due to
some arrangement of bumps along the way).

7.2.2.2 Nature-inspired population-based evolution strategies

A broad and common family of search algorithms is the population-based and
nature-inspired one. We illustrate some of the concepts used in these algorithms
on Fig. 7.2.

• A population (also swarm) is composed of agents (also individuals) that
are points in the search space at which the MF value is evaluated.

• The position of agents is updated from one step to the next using previous
results, a set of rules, potentially pseudo-random components and in some
cases using a velocity or acceleration vector in the search space.

• Update rules can depend on the past evaluations at a particular agent’s
successive positions. These rules, independent of the other agents, are said
to be cognitive (i.e., the agent is intelligent on its own).

• Update rules can also depend on the results of other agents. These rules
are said to be social, (i.e., the behaviour of an agent is influenced by other
agents in the population).

• In some strategies, agents are grouped by colonies, ie a subgroup in the
population that is more closely connected by rules. Agents generally in-
teract within their colony and colonies can interact with each other.

Lastly, the name of these strategies often refers to the behaviour of various
animals (fireflies, cuckoos, elephants . . . ). These nicknames are largely used as
mnemonic devices for the rules governing the agents, the actual relation between
real-life behaviour and the virtual ”animal” agents is very loose.3

3A somewhat tongue-in-cheek list of such names for search algorithms can be found at
https://github.com/fcampelo/EC-Bestiary
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Figure 7.1: Flowchart of the simplex search applied to 2-space (inspired by the flowchart Fig 5
in [185]). The vertices of the simplex are numbered 1, 2, 3 and each a different color. Potential
update vertices are smaller and in light orange.
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Agent
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Figure 7.2: Illustration of the usual concepts in population-based nature-inspired search algorithms.
[186]

To further give the reader a grasp on search algorithms, we provide URLs to
animations of 5 of these algorithms operating on the 2D Himmelblau function
[187]:

• Nelder&Mead simplex search [188].

• Gravity Search Algorithm [189].

• Particle Swarm Optimization [190].

• Covariance Matrix Adaptation Evolution Strategy [191].

• Cuckoo Search [192].

We note that the strategies present visually very different behaviours, which
we wouldn’t have noticed if it weren’t for visualizations. Visualizing is also a
good, convincing validation for our implementations of these algorithms (at least
in 2D).

7.3 Our contributions on search algorithms ap-
plied to optical design

We [144] have compared 5 search algorithms on two eyepieces: one freeform and
the other conventional. One of the point of interest is introducing a more rigorous
method for algorithm benchmarking, taken from the specialized literature and
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applied to optical design. It is our opinion that articles dealing specifically with
the optimization of optical systems should rely more on benchmarking methods
that give information about the behaviour of an algorithm on a specific problem.
The usual reporting of a best MF value after some number of evaluations is
insufficient4.

We also worked on more advanced search algorithms with a researcher in the
field [193], buiding on initial results using the algorithms we had presented in
[186]. The optical system is a simple Cooke Triplet and the MF a penalization of
Seidel aberrations. We have shown that much better results5 were obtained using
the more advanced CoMEC (Mind Evolutionary Computation co-algorithm)
despite the apparent simplicity of the problem. We hope this gap in algorithm
efficiency could translate to freeform optical design but we have not tested it.

We have explained some of the present context and ideas in past presenta-
tions [186, 194].

7.3.1 Notes on working with existing tools and across dis-
ciplines

There are some limits that affect the field of optical system optimization. First
we often have to rely on existing commercial raytracers for complex systems,
which provide (perhaps understandably) limited information about their search
routines. Interfacing with these tools in order to use them solely for raytracing
and be able to research algorithms in this way is possible, but entails some
overhead and requires specialized knowledge.

In our work, to have superior control, we have chosen to rely on our own
raytracer. But the difficulty of ray-aiming (see Chapter 6) prevented us, at the
time, from looking at systems with the aperture stop away from the first surface.

Interdisciplinary work, between optical designers and optimization re-
searchers, is also hampered by cultural differences. The optimization community
(and to an even greater extent the encompassing machine-learning community)
has recognized sooner the value of open-source for research, while we find this
culture to be almost non-existent in optical design circles. We can however set
up interdisciplinary experiments using compiled, black-box pieces of software.
This is what we have relied on in our interdisciplinary work. It involves a work
overhead and adds confusion though.

We reproduce hereafter the article [144] which summarizes the core of our
contribution.

4For example, simply changing the evaluation budget and giving only an average MF at
the end will often lead to some algorithm being ahead of others, but it could end up last
were the evaluation budget to be doubled. This explains partly why papers on comparing
search algorithms will often conclude that whatever the proposed algorithm is outperforms
everything. This is a strong bias that is not necessarily conscious and that is partly remedied
by the benchmarking tools developed by experts in search algorithms.

5At least mathematically. Since we only modeled third order Seidel aberrations, past some
low threshold in MF, the performance should be estimated using raytracing instead in order
to produce more realistic designs.
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Abstract: Five search algorithms from the literature of black-box optimization were 
implemented and applied to optical design problems. These algorithms are the Particle Swarm 
Optimization, Gravity Search Algorithm, Cuckoo Search, Covariance Matrix Adaptation 
Evolution Strategy and Nelder&Mead Simplex search. The performance of these search 
algorithms’ implementations was assessed using the BBOB2009 (Black Box Optimization 
Benchmark) benchmark suite. These algorithms were compared in the context of two optical 
case studies, one with conventional rotationally symmetric optics and one with freeform 
optics. A comparison was performed against a commercial optical design software. Finally 
we provided a simple restart scheme applicable in the workflow of an optical designer. To the 
best of our knowledge, this is the first in-depth quantitative comparison of optimization 
algorithms for optical design. 
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1. Introduction 

Search algorithms play a crucial part in optical systems design and the literature shows 
longstanding efforts in the discipline [1–7]. In addition, the field of freeform optics, which 
commonly designates the study of optical systems with optical surfaces that do not have an 
axis of rotational symmetry, allows the design of very compact, very performant systems [8–
12]. The use of freeform surfaces creates, as a general rule, optimization problems with more 
DOF (degrees of freedom) than in conventional optics. This makes the optimization process 
more difficult. The problem has prompted an interest in investigating various mathematical 
representations for freeform surfaces in their interplay with the search process [13–16]. We 
felt however that there was a need to compare quantitatively different search algorithms when 
applied to optical design examples, both conventional and freeform. We were encouraged by 
the good results of Menke’s research in applying Particle Swarm Optimization to optical 
design [17]. An investigation similar to our own, limited to conventional optics and with less 
detailed quantitative assessments can be found in [18]. 

Our aim is mainly to give optical designers an insight into what they could gain from 
using different search algorithms on their optimization problems. We would also like to show 
search algorithms specialists how their field is applied to optics, so that hopefully they will be 
inspired to make more recent, more performant advances available to the optical design 
community. In contrast with typical optical design methods where a starting point is required, 
we investigate algorithms which only need a defined search space. This brings the optical 
systems optimization closer to a fully automated process. 

Other research, complementary to our own in the attempt to better the optimization of 
freeform optics, can be found in [19–22]. These provide much needed analytical and 
systematic methods for the design of freeform optics and focus on providing good starting 
points. In contrast, we take the more common raw raytracing approach of optical design 
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3. Implemented search algorithms 

We implemented 5 search algorithms from the derivative-free optimization literature. We also 
implemented a simple Monte Carlo search (abbrev. MC), which serves as a baseline for 
“worst” search algorithm. Our implementations may deviate from the canonical versions of 
each of the search algorithms, as numerous variations for each algorithm already exist in the 
literature. 

Each algorithm has a set of tunable parameters, whose values can have a very significant 
impact on performance and must be adapted to the particular search problem the algorithm 
runs on. We describe each algorithm only sufficiently for the readers to understand general 
ideas and where the parameters come into play in our implementations. For the sake of 
conciseness, we refer the readers to the articles given as references for complete definitions of 
each algorithm. 

3.1. Particle Swarm Optimization 

The Particle Swarm Optimization (PSO) involves a swarm of particles, each having a position 
in the search space and a corresponding function value [23–25]. Each particle remembers the 
best position it has personally visited (cognitive component). It also knows the best position 
currently occupied by an individual of the swarm (social component). We implemented the 
so-called gbest swarm topology [23], where the social component is constituted only by the 
current best particle in the swarm. We note that PSO has already been applied to optical 
design with success [17]. 

The speed of each particle is updated at each iteration step in a loop by the formula [25]: 

 ( )1 2next last cog socv v rand D rand Dα β= × + × × + ×
   

 (1) 

• nextv


: The updated velocity vector of the particle. 

• lastv


: The velocity vector of the particle from the previous iteration. Also called inertia. 

• 1 2,rand rand : Two different scalar random numbers from a uniform random number 

generator, from 0 to 1. 

• cogD


: The distance vector between the particle and the best position it has personally 

visited. 

• socD


: The distance vector between the particle and the best particle in the swarm. 

• ,α β : Two parameters for the algorithm. The recommended values when no 

information is available on the function to be minimized are 0.7298α =  and 
1.4961β =  [25]. 

Another parameter for the PSO is of course the number of particles we choose to use, 
which we will call partsn . 

3.2. Gravity Search Algorithm 

The Gravity Search Algorithm (GSA) [26,27], like the PSO, is a particle-based search 
method. Each particle is seen as a planet in an n-body gravitational system. A mass is 
assigned to each particle in relation to the function value at its position. To make the 
algorithm better suited to minimization, only the heaviest planets (with better function value) 
exert an attraction pull. The number of planets in this active set is ( )bestK t out of partsn planets 

in total. Furthermore, the size of the “heaviest planets” set decreases linearly with time, with 
only one planet attracting all the others by the end of the optimization run. The gravitational 
constant ( )G t of this fictitious universe is also dynamically decreased as a function of current 

iteration number. 
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We use the following update equations, as a function of t  the iteration number, with itern

the total number of iterations in a given optimization run: 

 ( ) 0 exp
iter

t
G t G

n

α 
= − 

 
 (2) 

 ( ) ( )1parts

best parts
iter

t n
K t round n

n

 −
 = −
 
 

 (3) 

0G  and α are parameters for our implementation of GSA. ( )bestK t decreases linearly with 

t  from partsn  to 1 . The rest of the implementation follows closely the one outlined in [26]. 

3.3. Cuckoo Search 

The Cuckoo Search (CS) involves particles viewed as cuckoos [28–31], who jump from 
position to position in the search space using a random walk modeled by Levy flights and 
creating ‘nests’ in the process at the new positions. These nests have in turn a chance of being 
discovered by a virtual host bird with a fixed probability (thus mimicking the parasitic 
brooding behavior of cuckoos). This prompts another, different, random walk using a uniform 
probability density. We followed closely the MatLab implementation provided in [30]. 

For simplicity’s sake, let us consider each cuckoo as a particle that can probe around its 
position using two random walks: one being global, a Levy flight, applied to every particle, 
and the other being local and involving only a fraction of the particles. The position of a 
particle is updated only if it finds a better position while probing. 

The position ,probe Lévyx


 probed by a particle by (global) Levy flight from position x


 is: 

 ( ) ( ) ( )( )0.66

, 0.01 0,1 0,1 0,1probe Lévy bestx x N N N x xσ −
= + −

   
 (4) 

And the position ,probe walkx


 probed by a particle via local random walk, with probability 

ap  of happening is: 

 ( ), 1 2probe walk shuff shuffx x rand x x= + × −
   

 (5) 

• σ : A fixed parameter for Levy flight. 0.6965745σ = . 

• ( )0,1N : Random number drawn from a normal distribution with zero mean and unit 

standard deviation. Each occurrence in the equations is a different random number. 
• rand : Random number from a uniform distribution between 0 and 1. 

• bestx


: Position of the current best particle in the swarm. 

• 1 2,shuff shuffx x
 

: Positions of two particles in the swarm taken at random. 

The parameters for this particular implementation of CS are then partsn (the number of 

particles to use) and ap . 

3.4. Covariance Matrix Adaptation Evolution Strategy 

The Covariance Matrix Adaptation Evolution Strategy (CMAES) is a population-based search 
algorithm [32–35]. The general idea behind this algorithm is to draw generations of points at 
random positions using a probability density model. The probability density, which is a 
multivariate normal distribution, characterized by a mean and a covariance matrix, is 
recalibrated every few generations to reflect the results obtained by the previous generations 
of points and guide the population towards a minimum. The technical details of 
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implementation are too involved to be explained here in a concise way, but the reader can 
refer to a very detailed guide published by Hansen on his algorithm [33], which we tried to 
follow as closely as possible. We use all the default parameters detailed in [33], leaving only 
σ , the initial step-size for mutation, as a control knob for the user. 

3.5. Nelder&Mead simplex search 

The simplex search developed by Nelder and Mead (SPX) is one of the most common and 
better known search algorithm [36–38]. It is not stochastic, meaning that it has no random 
component and will always give the same result with a fixed set of starting conditions. The 
method involves a simplex, a geometrical shape which has 1D +  vertices, D  being the 
dimensionality of the search space. The simplex search is based on a simple set of rules 
involving the function values at the positions of three points: the best, second worst and worst 
points of the simplex. A flowchart can be found in [36]. These rules give rise to four different 
possible geometric transformations of the simplex called reflection, expansion, contraction 
and multiple contraction (or general contraction or shrinking). The first three are homothetic 
transformations of the worst point in the simplex around the barycenter (non-weighted) of the 

rest of the points in the simplex. The new position newx


 is obtained from the worst point 

position worstx


 and barycenter position baryx


 via: 

 ( )new bary bary worstx x x xα= + × −
   

 (6) 

The multiple contraction transformation shrinks all the points (here each noted lastx


) in 

the simplex towards the best point bestx


 by the ratio β  as such: 

 ( )new best last bestx x x xβ= + × −
   

 (7) 

Our implementation follows closely the one from Numerical Recipes [38], and we kept 
the canonical transformation parameters for reflection, expansion and contraction of 

1,2,0.5α = − respectively and 0.5β = . Our implementation of simplex search without restart 

strategy has no user parameter. 

3.6. Other implementation concerns 

Comments must be added on three issues, namely search starting point, search space bounds 
management and restart strategies. 

Our search methods do not start at a given starting point defined by the user, as is usually 
the case in optical design software. The user only provides a minimum and maximum value 
for each variable, defining a search space boundary. We initialize every search method by 
drawing random points in the search space within the user-provided bounds, until we gather a 
sufficient number of feasible points to start the search. Feasible points are positions where the 
merit function can be evaluated. It is often the case in optical design that merit functions have 
unevaluable regions (take the case of rays missing elements entirely for example). For PSO, 
GSA and CS, we draw all the particles in the initial swarm at random, they are thus spread all 
over the search space. For CMAES and SPX, we draw a single initial random point and 
initialize the other particles at starting positions close to the initial point using a small fraction 
of the search space size in each dimension to spread apart the points while keeping them 
relatively close to the initial point. 

The algorithms we present here generally do not have bound management methods in 
their canonical version. We implemented strict bound enforcing for each algorithm, we never 
evaluate the merit function outside of the user-provided bounds and set the eventual 
infringing points at the nearest bound instead. For CMAES, we used another method, we 
strongly penalized points falling outside of bounds by assigning them a huge constant value 
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instead of evaluating the merit function. This is not ideal, but it is simple. A more thought out 
way of implementing bound enforcement for CMAES is discussed in [33], it was too 
involved for us to implement easily. 

An “evaluation budget” is a maximum number of function evaluations a search method is 
allowed to perform before stopping. For simplicity’s sake and for ease of comparison, we did 
not provide any stop condition to our search methods other than the function evaluation 
budget. To highlight the effectiveness of restart strategies, we do however show throughout 
this paper the effect of adding a “stop and restart” condition to the simplex search. We 
designate by “restart strategies” the methods one can use to abort and restart an optimization 
run before having spent the whole evaluation budget, when an early convergence is detected 
for example. The remaining budget is used to find potentially better minima elsewhere in the 
search space. This stop condition, which is the one used in [38], is as follows: 

 
2 hi lo

tol
hi lo

y y
f

y y ε
−

<
+ +

 (8) 

• hiy : Value of the merit function at the highest (worst) point in the simplex. 

• loy : Value of the merit function at the lowest (best) point in the simplex. 

• ε : Tiny numerical constant to avoid division by zero. 
• tolf : Stop condition parameter. Note that it is independent of actual merit function 

value. 
If the stop condition is reached, the search method aborts the current simplex run, saving 

the best result it had reached beforehand, and reinitializes a simplex randomly within the 
search space. This continues until the search method has spent its function evaluation budget. 

4. Results on the BBOB2009 test suite 

Given that we implemented our own versions of the search algorithms cited in the present 
paper, we needed to provide an objective point of reference for their performance. We chose 
to run the BBOB2009 (Black-Box Optimization Benchmarking) [39], which we re-
implemented using the very useful online resources provided by the authors of this test suite 
[40]. 

The BBOB2009, consists of 24 different function types of D  dimensions [41], which 

have a search space of [ ]5;5
D− , a random minimum position optx


, and a random minimum 

value of [ ]1000;1000optf ∈ −  drawn from a Cauchy distribution. We draw 15 optimization 

problems for each function type and for each dimensionality D  considered, 

[ ]2,3,5,10,20,40D = , thus creating 24 15 6 2160× × =  independent optimization problems 

for our search algorithms to run on. 
We run all the implemented search algorithms on each of the 2160 optimization problems 

and we save the best found minimum so far bestf  as a function of number of function 

evaluations for each problem. For the optimization problem i  having a global minimum 

,opt if , we compute , ,i best i opt if f fΔ = − . The optimization problem is considered as solved 

when ifΔ  is below an arbitrary threshold threshfΔ . A measure of performance for a search 

algorithm is then the proportion [ ]0;1R ∈ of the 2160 problems which have reached the 

threshold as a function of two parameters, first the number of function evaluations divided by 

D  the dimensionality of the problem ,
eval

eval D

n
n

D
= and secondly the threshold threshfΔ . This 

performance metric can be thought of as a 2D surface, the altitude of the surface being the 
proportion R  of solved problems as a function of the two parameters ,eval Dn  and threshfΔ . 
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The results are synthesized in a way very similar to that adopted by the authors of the 
BBOB2009 [42], namely we draw two graphs, which are cuts of the 2D surface mentioned 
above: 

1. Proportion of solved problems as a function of number of function evaluations per 
search space dimension with a fixed threshold distance to the global minimum value. 
This is in Fig. 2. 

2. Proportion of solved problems as a function of threshold distance to the global 
minimum value at a fixed number of function evaluations. This is in Fig. 3. 

 

Fig. 2. Result of the implemented algorithms on the BBOB2009 test suite. Proportion of solved 
problems as a function of function evaluation budget. The threshold of the distance to the 
global minimum for a problem to be considered as solved is chosen arbitrarily to be Δfthresh = 
1. 

 

Fig. 3. Result of the implemented algorithms on the BBOB2009 test suite. Proportion of solved 
problems as a function of threshold criterion Δfthresh. The function evaluation budget is 10^3 
per problem dimension for every algorithm. The thick vertical line highlights the Δfthresh 
value taken in Fig. 2. The proportion of solved problems for each algorithm at this threshold 
matches the proportions obtained after 10^3 function evaluations per problem dimension in 
Fig. 2. 

A good algorithm on Fig. 2 will have a curve that is towards higher R values (more 
problems solved) as early as possible in terms of evaluation count ,eval Dn . On Fig. 3, a good 

algorithm will exhibit a curve closer to the top left of the diagram, meaning that it will solve 
many problems with a solution closer to the global minimum. The threshfΔ value can be seen as 

a difficulty setting meaning “solve the problems to within threshfΔ of the global minimum”. 
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The parameterization for all the algorithms we ran on the BBOB2009 can be found in 
Table 1. It is important for the readers to note that we do not pretend to compare in absolute 
terms the merits of the search algorithms we chose to implement, we merely state the 
performance of our own implementations, which could be faulty, with a particular set of 
search parameters, which can be ill-chosen for a given problem. 

Our results show that our implementations of search algorithms do not perform very well 
against state of the art methods [42], which is not surprising given that we used very bare 
versions, with little attention to parameter tuning and no restart strategies. Despite the poor 
performance of our implementations against the state of the art, we will see that they 
nonetheless perform satisfactorily in optimizing optical systems when compared with a 
commercially available tool. 

Table 1. Parameterization for each of the algorithms running on the BBOB2009 test 
suite. 

Algorithm Parameters used 

PSO 0.7298; 1.4961; partsn Dα β= = =  

GSA 0 10; 20; partsG n Dα= = =  

CS ; 0.75parts an D p= =  

CMAES 0.1σ =  

SPX - 

SPX with restart 810tolf −=  

5. Application to two optical systems 

We measure the performance of our implementations of search algorithms on a typical merit 
function for the design of optical systems. We use two different optical systems to perform 
the test. They are both eyepieces sharing a number of common specifications. We also 
compare the performance of the implemented algorithms against the search methods included 
in OpticStudio (Zemax). We will hereafter abbreviate ‘OpticStudio’ by ‘OS’. We used our 
own independent raytracing engine to compute the results of the implemented search 
algorithms. 

5.1. Simulation setup 

We describe the merit function we used as a measure of performance to optimize in the two 
optical case studies. 

5.1.1. Merit function definition 

The MF we defined takes into account two typical optical quality criteria: 
• Spot size: Each bundle of rays coming from a given field at the entrance of the optical 

system must form the smallest possible spot on the image plane. This is an image 
quality criterion, if it is low then the image will be sharp, otherwise it will be blurry. 

• Image position: Each bundle of rays coming from a given field at the entrance of the 
optical system must focus at a given position on the image plane. This is a control 
over the focal length as well as the distortion in the optical system. 
Our definition of the MF is then: 

 1

Nfields

f f
f

Spot Pos

MF
Nfields

α
=

+
=


 (9) 

• Nfields : The number of field points taken into account for the computation. We 

typically sample the object field space with up to a dozen points. 
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• fSpot : The spot size criterion for field f , see Eq. (10). 

• fPos : The image position criterion for field f , see Eq. (11). 

• α : A weighting coefficient to balance the two criteria. 

 
( ) ( )2 2

1

Nrays

i i
i

f

x x y y
Spot

Nrays
=

− + −
=


 (10) 

• ,i ix y : The coordinates of impact of individual rays on the image plane. 

• ,x y : The coordinates of the centroid of the spot. 

• Nrays : The number of rays considered in the ray bundle. Typically in the hundreds. 

 ( ) ( )2 2

trgtf trgtPos x x y y= − + −  (11) 

• ,trgt trgtx y : Target coordinates on the image plane for the centroid of the ray bundle. 

5.1.2. Raytracing implementation details 

We have developed simple raytracing routines. They perform raytracing on optical systems 
with surfaces positioned arbitrarily in 3D space and support spherical as well as XY 
polynomials surface representations. They are limited to monochromatic raytracing, but 
support the sampling of multiple field points as well as arbitrary aperture stop sampling. We 
also limited ourselves to the case of aperture stops located in the object space of optical 
systems. For the two case studies in the present paper, we used an aperture stop sampling 
consisting of a uniform Cartesian grid cropped by the aperture shape, which is a disk. 

5.2. Characteristics of the case studies 

We specify the optical characteristics of our two case studies as they would be in a typical 
optical design preliminary work. The two optical systems share the same set of basic target 
specifications but they differ greatly in shape and complexity. 

5.2.1. Specifications for the two optical systems 

We give the optical specifications for the two eyepieces we mean to optimize. The first 
eyepiece, drawn in Fig. 4, has 5 spherical lenses in an axio-symmetric configuration. This is a 
typical eyepiece for use with amateur telescopes for example. This system has 21 DOF and is 
comparatively easier to optimize: it is easy to reach realistic systems with good optical 
quality. The second eyepiece, drawn in Fig. 5, is a freeform prism with 2 optical surfaces 
described by fifth order XY polynomials (defined exactly as the surface type “Extended 
Polynomial” in OS). The whole prism is plano-symmetric. This system has 22 DOF. System 
2 is inspired from the general shape of the system in [9]. The optical specifications are found 
in Table 2. The aperture stop diameter is the diameter of the eye pupil. The focal length is 
constrained by the field of view (FOV) in the eye space and size of the object. We give the 
design parameters specific to each system in Table 3. The raytracing for both system is done 
monochromatic and the refraction indices for the various glasses are indicated in Fig. 4 for 
system 1 and Fig. 5 for system 2. We note that it is preferable to use curvatures instead of 
radii of spheres for the specification of spherical surfaces. These quantities are inverse of each 
other. Indeed, radii give rise to unevaluable MF around their zero value, making a “hole” in 
the search space that hampers the performance of the search algorithms we implemented. 
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5.2.2. Obtaining results on a commercial software for comparison 

We recreated the same minimization problems in OS. The surfaces of the optical system are 
modeled using the native functionalities of the software. The raytracing is also done using the 
native OS capabilities. The merit function is computed ray by ray using so-called 
“optimization operands” so as to mirror exactly Eqs. (9)–(11). 

To enforce strict bounds on the search space, we resorted to the same type of method as 
we applied on the CMAES, namely we penalized heavily the MF variables that wander 
outside the user-defined bounds. We have _ _with boundsMF MF bound penalty= + , the search 

algorithms in OS ran on _with boundsMF , but we always report MF  since it is the true measure of 

the optical systems’ fitness. This may very well have impacted the performance exhibited by 
the OS search routines. However, we consider the comparison is still fair if the design 
problem the optical designer sets out to solve is “Find the best optical system according to the 
MF with system variables strictly within the bounds”. 

5.2.3. Validation of the raytracing merit function 

To assess the exactness of the comparison between our raytracing routines and OS, we 
compared the values of the MF for 1000 random points within the search space bounds for 
both of our case studies. The MF is evaluable at these 1000 positions. This test ensures the 
exactness of our raytracing routines and the concordance between the MF definitions in our 
routines and in OS. 

For each of these 1000 points, we computed the difference author zmxMF MF−  between the 

two results. We report the maximum and mean values of this quantity across our test set in 
Table 4. The errors are negligible when compared to the lowest MF values found, the lowest 
MFs for System 1 being in the order of 510−  and for System 2 in the order of 410−  (see 
Section 5.3). 

Table 4. Reported errors in the validation of raytracing implementation and MF on the 
two example systems. 

System OS vs. own implementation 

 Mean error Max. error 

System 1: Rotationally symmetric 
eyepiece 

105 10−×  81 10−×  

System 2: Freeform prism eyepiece 107 10−×  98 10−×  

5.3. Results of running the implemented algorithms on the two case studies 

We launch, for each case study, 100 independent optimization runs of at least 5000 function 
evaluations for each search algorithm, including those in OS. The OS searches were started 
with a fixed list of 100 random, evaluable points within the user-provided bounds. We ran 
two types of search routines provided by OS, which are called: Local optimization 
Orthogonal Descent (ZLOD) and Hammer OD (ZHOD). The Hammer is a global optimizer. 
A DLS (Damped Least Squares) mode also exists in OS. However it could not be brought to 
perform at least 5000 MF evaluations for each optimization run, hence the comparison with 
other search methods would not have been fair to OS. We report that the performance of the 
DLS mode appears to be worse than that of the OD mode for both our case studies in test runs 
that are not reported here. OS provides another search routine called “Global Optimization”. 
We did not test it due to practicality issues. This routine carries out the optimization over 
many different files, making the results difficult to track. 

The results can be found in Fig. 6 and Fig. 7 for the 5 lenses eyepiece (System 1) and in 
Fig. 8 and Fig. 9 for the freeform prism eyepiece (System 2). The results are formatted in the 
same manner as those in the BBOB2009 benchmark, except for the y axis of each graph. 
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Rather than expressing the ratio of successful number of runs (reaching below threshfΔ ), we 

give the raw number of successful runs. The total number of launched runs is 100 for each 
search algorithm. The SPX with restart can have a higher number of successful runs, since it 
has the ability to restart as many times as it wants within its 5000 evaluations budget. We 
count each convergence of the SPX method with restart as a complete run since it provides 
each time a viable optical system. The parameterization of the search algorithms for the two 
case studies is given in Table 5. 

Since the global minima of the MF for the two case studies are unknown, we use the raw 
MF value as criterion for threshfΔ . Namely, we compute best optf f fΔ = − with 0optf = , bestf

being the minimum MF value found so far in a given optimization run. 

 

Fig. 6. Result of the implemented algorithms and OS search methods on the MF of System 1. 
Number of successful runs (out of 100 starting systems) as a function of number of function 
evaluations per problem dimensionality (21 for System 1). The threshold of the MF value for a 
run to be considered successful is chosen arbitrarily to be Δfthresh = 10E-2. The thick black 
vertical line highlights the minimum evaluation budget for every run. 

 

Fig. 7. Result of the implemented algorithms and OS search methods on the MF of System 1. 
Number of successful runs (out of 100 starting systems) as a function of Δfthresh, the 
threshold in MF value below which a run is considered to be successful. The function 
evaluation budget is 5000 for every algorithm. The thick vertical line highlights the Δfthresh 
value taken in Fig. 6. The number of successful runs for each algorithm at this threshold 
matches the proportions obtained after 5000 function evaluations in Fig. 6. 
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Fig. 8. Result of the implemented algorithms and OS search methods on the MF of System 2. 
Number of successful runs (out of 100 starting systems) as a function of number of function 
evaluations per problem dimensionality (22 for System 2). The threshold of the MF value for a 
run to be considered successful is chosen arbitrarily to be Δfthresh = 10E-2. The thick black 
vertical line highlights the minimum evaluation budget for every run, which is 5000. 

 

Fig. 9. Result of the implemented algorithms and OS search methods on the MF of System 2. 
Number of successful runs (out of 100 starting systems) as a function of Δfthresh, the 
threshold in MF value below which a run is considered to be successful. The function 
evaluation budget is 5000 for every algorithm. The thick vertical line highlights the Δfthresh 
value taken in Fig. 8. The number of successful runs for each algorithm at this threshold 
matches the proportions obtained after 5000 function evaluations in Fig. 8. The total number of 
runs for the SPX with restart is 292 and not shown on this diagram. 

Table 5. Parameterization for each of the algorithms running on the two optical case 
studies MF. 

Algorithm Parameters used 

PSO 0.7298; 1.4961; 20partsnα β= = =  

GSA 0 10; 20; 20partsG nα= = =  

CS 50; 0.75parts an p= =  

CMAES 1σ =  for system 1 ; 510σ −=  for system 2. 

SPX - 

SPX with restart 310tolf −=  

Note that whenever an algorithm does not appear in a graph, it means that its performance 
was too low. Let us analyze the results from the perspective of an optical designer. On Fig. 6, 
a designer running 100 optimization runs on System 1 would find 50 optical systems with a 
MF below 210−  in about 50 evaluations per problem dimension (~1050 MF evaluations in 
total) for the SPX with restart versus about 90 evaluations per dimension (~1890 in total) for 
the ZLOD. This means that, for the particular problem of obtaining 50 optical systems of a 
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given quality out of a 100 tries, the SPX with restart can be seen as a little less than twice as 
fast as the ZLOD. Likewise on Fig. 8, using the PSO over the ZHOD to obtain 50 optical 
systems with a MF below 210−  would be about 2 times faster (56 evaluations per dimension 
for PSO versus 106.5 evaluations per dimension for ZHOD). 

Note that, for every example presented here, the computational cost of evaluating the MF 
was always hugely predominant over the computational cost of managing the searches. This 
means that the time it takes a designer to run the optimizations is directly proportional to the 
number of MF evaluations needed. 

Now let us look at the ability of the algorithms to reach low global minima, ie find better 
optical systems for the optical designer. If we were to perform a hundred runs of 5000 MF 
evaluations for each algorithm and look at the quality of the 5 best systems we obtained out of 
100, for System 1 on Fig. 7 we would get 5 systems with a MF better than 54.10− using SPX 

and 5 systems better than 42.10− with ZLOD, the 5 best systems of the SPX runs are 5 times 
better in terms of MF than the 5 best systems of the ZLOD runs. On Fig. 9, for System 2, we 
can compare the performance of the 5 best systems for PSO and ZHOD. The 5 best systems 
for PSO are below 48 10−×  in MF value, while they are below 41.6 10−×  for ZHOD, the 
ZHOD shows a MF value 5 times better than the PSO. 

We note that the SPX that includes a restart strategy is mostly preferable to the SPX 
without restart strategy. This is not surprising given that a simplex cannot get out of a local 
minimum. Once the simplex is trapped in a local minimum, it is useless to let it run further. In 
consideration of this result, the implementation of restart strategies for the other algorithms, 
detecting similar “stalled” system states, seems very desirable. 

To synthesize the present results, for System 1, it is preferable to use the SPX with restart, 
the SPX or the PSO over the rest of the algorithms. For System 2, the ZHOD and ZLOD are 
almost always preferable, and the PSO could be used as a complementary method to obtain a 
greater result variety. 

The optical performance of the best found systems in each case study is satisfactory. The 
best results of System 1 have RMS spot radii of about 5-10 µm and maximum distortion of 
about 3.5%. For System 2, these values become 10-15 µm and 2.5%. System 2 could for 
example be used in virtual or augmented reality applications, as it is very small and has a 
shape compatible with injection molding. The comparison of both case studies highlights the 
advantages of freeform optics for miniaturization. 

The performance of search algorithms depends heavily on the type of problem being 
optimized. We see this when comparing the relative performance of the search algorithms on 
the two present case studies. For example, SPX performs very well comparatively to the other 
methods on System 1, but its performance is underwhelming on System 2. This phenomenon 
is known as the No Free Lunch theorem of optimization [43]. It states, in layman’s terms, that 
no search method can outperform another search method on all MFs. In fact, if we compare 
search method A and search method B, there are always as many MFs for which A is better 
than B as there are for which B is better than A. It would be helpful to the optical design 
community to study the performance of search methods depending on the types of optical 
systems and/or on MF definitions. 

6. A basic restart scheme for practical use 

Using pure search methods facilitates comparisons for the purpose of publishing the present 
results. However, for practical purposes, there is a great performance gain in using even 
simple restart schemes, as suggested in [37]. It allows a more user-friendly interface with the 
search algorithms, as the optical designer can specify parameters like the desired local 
algorithm (out of the ones in Section 3), the number of best systems to save and display at the 
end of the optimization process, the evaluation budget of the runs (which can be thought of as 
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7.4 Going further

A lot of practices that are usual in the optimization literature or in other engi-
neering disciplines are left underexploited in optical design. These include hybrid
optimization and decision-making (Fig. 7.3), surrogate optimization (Fig. 7.4)
and modeling using deep learning, and finally multi-objective (or Pareto) opti-
mization (Fig. 7.5).

7.4.1 Hybrid Optimization and Decision-Making

We have mainly touched upon real-valued continuous variables in the present
chapter, because this is the main type of variables in optical design, particularly
reflective telescope design. However, glass selection is an important part of lens
design. Glass selection is a discrete optimization problem since the designer
is constrained by the glass catalog of glass manufacturers (see the websites of
Schott, Ohara, CDGM, etc). Glasses, to a sufficient approximation, are discrete
points in a 2-space constituted by refraction index and Abbe number. Search
problems mixing continuous and discrete parameters are often called hybrid.
They can be solved with algorithms such as Ant Colony Optimization (ACO)
[195] (here applied to optical design [196]). This type of optimization exists in
commercial software as ”Glass Substitution” (OpticStudio) and ”Glass Expert”
(CodeV).

Another type of optimization, related to discrete or combinatorial problems,
is that involving decisions. An applicable case in optical design is that of adding
or removing elements in the design. This decision is typically made by the optical
designer based on how far from the performance requirements a design is after
many attempts at optimization. A designer will typically add elements if the
performance remains poor and remove elements if the performance is excellent
(so as to cut cost and unnecessary complexity)6. Such problems seem related
to Markov Decision Processes [197], although we have not found it applied
specifically to optical design and have not tried it ourselves.

7.4.2 Surrogate Optimization

There are many ways to assess the performance of an optical system, which trade
accuracy for computational cost. The main simulation type we have talked about
in the present work is sequential raytracing of ”real rays”, ie applying Snell laws
on an aperture stop sampling through a cascade of diopters from the scene to
the detector. However, there are other simulation types we can take advantage
of. These could integrate well with surrogate optimization (an overview of which
can be found in [198]). The general idea in surrogate optimization algorithms is
to use at least an accurate but costly simulation model and an approximate but
cheaply-computed model. The cheap model is evaluated more frequently than

6This is at least the simplest way of looking at the problem of the number of elements.
Other considerations such as lens groups in zoom system are equally important but would be
more difficult to model.
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Figure 7.3: Alternative variable types: glass selection is an example of discrete variable and the
search process could also include decision-making about adding or subtracting elements.

the costly model and is used to guide the general direction of the search in order
to find minima in the costly function landscape quicker.

The different broad types of optical simulation we can use are, in rough order
of increasing accuracy and computational cost are (in the style of Fig 1 in [198]):

1. Low order aberration theory for spherical systems (eg Seidel).

2. Real raytracing.

3. Freeform aberration theory (eg NAT).

4. Ray-based Electro-Magnetic (EM) descriptions (eg Fresnel formulae).

5. Straylight analysis based on empirical models (BRDF etc).

6. Wavefront propagation models (eg Fourier optics).

7. Experiment.

Tolerancing results could be used as a performance metric. Tolerancing can
be performed at any of the listed simulation levels (although tolerancing on
top of a straylight analysis would have a prohibitive cost). Note that quickly-
evaluated shortcuts for as-built tolerances exist [199].

As a sidenote, machine learning models have been demonstrated that suc-
cessfully take specifications as inputs and output a vector of parameters de-
scribing optical systems [200, 201]. These models are trained on existing sets of
optical systems and corresponding specifications.
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Figure 7.4: Surrogate optimization: illustration. An accurate but computationally costly model is
approximated by an alternate rough but cheaply-computed model. Surrogate optimization strate-
gies make use of both.

7.4.3 Pareto Optimization

An overview for Pareto optimization (also named multiobjective optimization) is
provided in [202]. It involves the simultaneous optimization of several objectives.
The result is not a single vector of parameters but several, called Pareto optima
(plural), along the Pareto front. The Pareto optima are vectors of parameters
that cannot be modified to improve one objective without worsening at least
one other.

Performing Pareto optimization is advantageous in optical design (as well as
in many other engineering disciplines) because of the Pareto optimal systems
it provides. Obtaining a set of Pareto optima is better than obtaining a single
system that combines all the objectives into one (such as with a typical MF)
with an arbitrary weighting. The reason is that engineers can see the available
trade-offs and orient the design accordingly.

We think that search algorithms are underexploited in optical design. By
necessity and lack of research effort due to the smallness of the community,
optical designers rely on existing tools. We hope to have shown how much larger
both the use and study of search algorithms really is.

It seems to us that optical design is a field with many low-hanging fruits for
applied mathematicians to pick. The functions generated in optical design are
very hard to optimize while being quite fast to evaluate. These properties make
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Figure 7.5: Illustration for multiobjective optimization and Pareto optima: what it could look like
in optical design.
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them, as far as our understanding goes, appropriate challenges, in themselves,
for search algorithms. Research could have been hampered by a general lack of
communication between optical designers and applied mathematicians or by the
difficulty in finding convenient and available software tools to both communities.
In any case, we hope this interdisciplinary research effort, to which we have
made a small contribution, can grow in the future and cover the increasing need
generated by more and more complex freeform systems.
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Chapter 8

Freeform metrology
overview: shape
measurements

Measurands – Measurement geometries – Sampling – Ranges – Duration – En-
vironment – In-situ – Coordinate Measuring Machines – Chromatic Confocal
Microscopy – Contact Stylus Profilometry – Curvature sensing – Null interfer-
ometry – Shearing interferometry – Shack-Hartmann – Phase-Measuring De-
flectometry – Comparison Matrix

In this chapter, we review metrology methods suitable for the measurement
of freeform optical surfaces. The difference between conventional and freeform
optics metrology is quantitative: any surface is freeform at a small enough alti-
tude scale. However, freeform optical surfaces exhibit large, intended, departures
in altitude and slope from reference flats and spheres. This prompted the de-
velopment of new methods and instrument architectures. The gold standard
that was, and still is, interferometry for planes and spheres is less applicable
to freeform surfaces without costly and difficult to align nulls, be they lenses,
mirrors or Computer-Generated Holograms (CGH). There are many, available
or promising, alternative measurement methods. The scope of the review is
narrowed to:

• Continuous surfaces in altitude, preferably in slopes too.

• Shape measurement (low to mid spatial frequencies), we do not mention
roughness measurement.

• Surfaces with a roughness sufficient to obtain a specular reflection.

We keep the present review short and general, the idea is to have sufficient
information to be able to interact with metrology experts and manufacturers.
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Altitude Slope Curvature

X

Y

Figure 8.1: Illustration: altitude, first derivatives and curvatures in X and Y directions for a random
third order XY freeform surface. The green contour line is the zero in each heatmap.

We refer the reader to other reviews of freeform optical metrology [1, 41, 203,
204].

8.1 Criteria for measurements of surfaces

Let us list some of the comparison criteria (in a non-exhaustive way) for metrol-
ogy methods. These help deal adequately with trade-offs in the often more
difficult measurement of freeform optical surfaces.

8.1.1 Measurand

Measurement methods can be classified based on their measurand:

• Altitude

• Slope

• Curvature

The methods with an altitude measurand will provide the surface shape with
minimal additional data processing (at least in principle, ignoring calibration
issues that can account for a significant part of a method’s complexity). Meth-
ods with a slope or curvature measurand require an additional integration step
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[205–207] that can magnify the measurement errors. However, slope and curva-
ture measurands are less sensitive to errors in reference frame calibration [208],
curvature in particular being entirely intrinsic to the surface (does not depend
on the measurement reference frame). We illustrate the different measurand on
Fig. 8.1. Note that we need at least two distinct measurement directions for
slopes and curvatures.

8.1.2 Measurement geometry

Another high-level discrimination criterion between metrology methods is the
measurement geometry. The different architectures (illustrated in Fig. 8.2) are:

• Point-based. A probe, whether mechanical, optical or electronic, is mounted
on an arm scanning the optical surface point by point. Some of these sys-
tems are called Coordinate-Measuring Machine (CMM).

• Full-field. The entirety of the surface aperture is measured in a single
acquisition step.

• Stitched aperture. The metrology systems is only able to measure sub-
apertures of the surface, these subapertures are stitched together to form
a reconstructed whole aperture result.

Full-field

Stitched
subapertures

Point-based

Figure 8.2: Illustration: Measurement ge-
ometries in metrology systems.

Full-field measurement requires, when
applicable, only a single calibration of the
relative position of the measurement sys-
tem to the surface. In addition, measur-
ing the position of the surface relative to
fiducials is simpler since they can, in some
cases (eg deflectometry and CMM), be in-
cluded in the measurement data directly.

Stitching is required when the instru-
ment has a field that is smaller than the
sample aperture. This can be the result of
a trade-off that favors a finer lateral res-
olution. Stitching requires a careful cali-
bration and data processing [209].

Point-based machines or indeed
stitching methods require moving a probe or an optical head relative to the
sample. This can be achieved by rotating the sample on a spindle and/or mov-
ing the probe. This makes calibration necessary at each position and requires
even more attention to the mechanical structure of the instrument (see the
NANOMEFOS [210]).

8.1.3 Sampling accuracy & resolution

Metrology systems can be characterized by their surface sampling accuracy and
resolution, both lateral and in altitude.
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Figure 8.3: Illustration: Sampling a surface
shape with a given lateral sampling step dlat

and an altitude accuracy dalt.
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Figure 8.4: Illustration: PSD. The lowest
spatial frequencies correspond to shape, then
come the mid-spatial and roughness ranges.
We are concerned mostly with shape and
mid-spatial frequencies in the present chap-
ter.

8.1.3.1 Lateral sampling

We generally use the range of Power Spectral Density (PSD) frequencies to
characterize metrology instruments [63, 203], as illustrated in Figs. 8.3 and 8.4.

There is often a trade-off between the measurement field and the lateral
resolution (eg in interferometry), or alternatively between lateral resolution and
measurement duration for most CMMs.

8.1.3.2 Altitude sampling

This criterion has to be compared with the design requirements of the manu-
factured optical surfaces and the results of tolerancing analyses. The required
accuracy is largely driven by the application domain: telescopes in the near-
Ultraviolet (UV) and visible wavelengths have stringent surface shape require-
ments (eg 1 nm RMS), while IR systems will require less accurate metrology (eg
10 nm RMS).

8.1.4 Measurement ranges

Metrology systems have an allowable range of measurement slopes and altitude.

8.1.4.1 Slope limit

The range of measurable slopes (Fig. 8.5) is often a limiting factor in freeform
metrology, especially for full-field measurements (eg CGH null-interferometry).
The CMM-type machines are less impacted as the measurement head can often
be rotated to follow the slope of the sample.

With regards to general surface shape, concave samples are generally easier
to measure than convex ones. For example, the access to a focal point of a more
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Figure 8.5: Illustration of the measurement ranges in altitude and slope. Metrology methods are
usually limited to measuring slopes within some cone θfield and inside some altitude range ∆alt.

or less spherical wavefront allows very straightforward setups (eg Fizeau interfer-
ometer with spherical reference). Convex samples generate problems for optical
measurements since the light is likely to be reflected out of the measurement
system (eg interferometry, deflectometry).

Similarly, a limit in curvature also exists: eg the radius of a stylus probe. This
can lead to filtering in the measurement that is hard to detect a posteriori1.

8.1.4.2 Altitude range

The range of measurable altitude, either in an absolute sense or deviating from
a null (eg interferometry), is a commonly limiting factor in freeform metrology.

8.1.5 Measurement duration

Particularly for CMM machines and stitching setups, there is an obvious trade-
off between the quantity of data (which can increase the lateral resolution or
the robustness of the data) and the measurement duration. The reasons why
we might want to keep the measurement duration short are: cost in man-hours
supervising the measurement, long measurements impede the back and forth be-
tween manufacturing and metrology, calibration shifts (eg thermal) can happen
during the time that separates the calibration step from the acquisition itself
etc.

8.1.6 Environmental perturbations

The susceptibility of a measurement setup to environmental perturbations is a
factor in ensuring reliable results. These perturbations are typically:

• Vibrations.

• Ambient lighting.

• Dust and particles.

1See also an example of a measurement bias between average slopes (lateral shearing in-
terferometer) and discretely sampled slopes (deflectometry) [208].
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Figure 8.6: Breakdown of incident light on a refractive sample for optical metrology systems.

• Temperature.

• Air convection.

Additionally, for optical-based systems, the level of sample surface scattering
(linked to surface roughness) as well as reflectivity and back reflections are other
sources of perturbations (Fig. 8.6).

8.1.7 Portability and in-situ measurements

System size is important in particular for in-situ measurements. The conven-
tional workflow for manufacturing optical surfaces is to execute successive ma-
chining passes guided by a measurement in between each one. The back and forth
between manufacturing machine and metrology instrument is time-consuming
and generates repositioning problems. A possible solution is to integrate the
metrology instrument in the manufacturing machine. Such integration is how-
ever difficult and is the subject of ongoing research [211, 212] and programs2.

8.2 Some shape measurement methods

We present a non-exhaustive list of metrology methods relevant to freeform
optics and explain succinctly their working principle.

8.2.1 Coordinate Measuring Machines

We classify in this section methods which scan a point-based measurement probe
above the sample. The probes can be of various types: some are contact probes
and some are optical. In addition to the more traditional methods we present in
this section, the reader may read the following papers [213–215] on an optical
probe-based instrument using cascade optical coherence tomography, provided

2see ESA ITT AO/1-10040/19/NL/AR “METROLOGY FOR OPTICAL FREE-FORM
SURFACES”
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Figure 8.7: Chromatic Confocal Microscopy working principle.

with an assessment on a freeform mirror with shape error residuals in the dozens
of nm RMS.

8.2.1.1 Optical probes: Chromatic Confocal Microscopy

Let us take chromatic confocal microscopy as an example of non-contact op-
tical probes, although many others exist (multi-wavelength interferometry in
LUPHOScan, laser triangulation etc). Chromatic confocal microscopy makes use
of an objective lens with deliberately large longitudinal chromatism (Fig. 8.7).
By sending white light through this objective lens, light is focused at different
altitudes depending on the wavelength. The sample surface reflects all the light
back through the objective and into a pinhole system. The pinhole selects the
wavelength that was focused around the surface altitude. A spectrometer is then
used to further narrow down which wavelength was better focused on the sample
surface (peak intensity).

The dynamic range of measurable altitudes is determined by the bandwidth
of the white light and the magnitude of the longitudinal chromatism of the
objective lens. The resolution in altitude is determined by the resolution of the
spectrometer and the magnitude of the longitudinal chromatism. For example,
a chromatic probe working with wavelengths ranging from 300 nm to 1300 nm,
with a target of 100 nm in altitude resolution would require a spectrometer with
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Altitude range 1 mm
Slope limit ± 44°
Accuracy 100 nm
Resolution 50 nm
Spot size 8 µm
Max. acquisition freq. 10 kHz

Table 8.1: STIL EVEREST K1 Optical pen specifications [217].

Travel dimensions (X × Y) 200 mm × 700 mm
Lateral resolution 125 nm (X axis)
Lateral accuracy > 1 µm (X)
Altitude range 5 mm
Altitude resolution 0.4− 20 nm
Altitude repeatability 100 nm
Tip radius 2 µm

Table 8.2: Specifications for Taylor Hobson Form Talysurf CNC series profilometer [219].

1300−300
106/100 = 0.1nm (in the naive hypothesis where the dynamic range comes from

the probe alone). We list the characteristics of a typical commercial sensor in
Tab. 8.1. Note that probes that acquire multiple points on a line also exist. See
also a related interferometric setup [216].

8.2.1.2 Contact Stylus Profilometry

Contact stylus profilometry is a widespread point-based surface shape measure-
ment method. A mechanical probe (the technology of which is in itself quite
involved and for which many alternatives exist) is typically mounted on an arm
above the sample and scanned across the surface, point-by-point or along lines.

Stylus profilometry is very flexible due to the usually quite large altitude
and lateral measurement range. The altitude range is furthermore combined
with a good altitude resolution. It does not require the surface to be reflective.
In addition, the optical surface as well as the surrounding mechanical parts
can be measured together. The main drawbacks are: the surface is likely to
get scratched by the probe, the method is point-based and the measurement
duration is usually long, the acquired surface profile is biased by the fact that the
stylus tip is not punctual [218] and soft materials can also bias the measurement.
The specifications of a commercial system are given in Tab. 8.2.

8.2.1.3 Curvature Sensing

As noted by Rose [220] in their review, an instrument was developed for point-
by-point curvature sensing at NIST [221]: the GEMM (GEometry Measuring
Machine) [222, 223]. Its working principle is as follows: an optical head is scanned
along the sample. Inside the optical head, an interferometer with a small aper-

177



ture measures an altitude map locally. From this map are extracted curvature
values for the current lateral position of the head above the sample. In this fash-
ion, a point-by-point grid of curvatures is acquired. These curvatures are then
integrated twice to obtain the altitude [224]. The advantage of measuring cur-
vatures is that this measurand is intrinsic to the surface shape, thus calibration
requirements are looser. The curvature measurements, being computed from an
interferometric map with many pixels, also exhibit the very low noise required
by the double integration operation.

The reported repeatability of GEMM is 3 nm RMS, and a cross-validation
on a test surface against another metrology method shows a match within 6 nm
RMS [223]. Another curvature sensing setup with the same working principle
can be found in [225]. See [226] for a Shack-Hartmann based curvature sensor
which outputs local principal curvatures and principal directions.

8.2.2 Null Interferometry

Interferometry is traditionally the main metrology method for precision optics
manufacturing, typically Fizeau setups with reference flats or spherical refer-
ences. Freeform surface testing however, when the test wavefront differs signif-
icantly from a sphere (the spatial frequency of the fringes becomes too high
to measure), requires freeform nulls in order to generate a freeform reference
wavefront.

The null can be:

• A CGH [11, 227–229] including some slightly adaptive setups [230].

• A lens or optical system [231].

• A Spatial Light Modulator (SLM) or Deformable Mirror (DM) [232–235].

Null interferometry has the advantage of being well understood by a large
number of companies and labs. The achievable resolution and accuracy are in
the nanometer range. Some of the limitations are: a priori knowledge of the
sample shape is required, a different null must be manufactured for each surface
under test (in the case of non-adaptable nulls), there is usually some slope limit
to the phase of the null (eg attainable slope in CGH phase is limited by the
manufacturing process), nulls are sensitive to alignment errors.

8.2.3 Shearing Interferometry

Shearing interferometry is a full-field slope measurement method. It uses two al-
most coincident wavefronts separated on the sample by a lateral distance called
shear distance. In contrast with classical interferometry, there is no reference
wavefront, the two wavefronts hit the surface sample but at slightly different
positions. The difference in fringe phase between interferograms with two differ-
ent, known, shear distances is computed. This working principle, which relies on
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measuring the variation of phase and not the phase directly, is why this method
is called differential interferometry.

For a lateral shearing interferometer with displacement in two orthogonal
directions x and y, one can establish [220] Eq. 8.1:{

αx = ∆Φx · λ
4π·δx

αy = ∆Φy · λ
4π·δy

8.1

With:

• λ: Measurement wavelength.

• α: Average surface slope across the shear distance.

• δ: Lateral shear distance on the sample.

• ∆Φ: Measured phase variation between zero shearing and applied shear
distance.

Taking the Michelson configuration in [220] as an example, a shear angle is
introduced using piezo-electric actuators on one of the mirror (phase-shifting
is also performed using these actuators). A possible measurement method is to
measure the phase difference ∆Φ between a reference phase at zero shearing,
and a phase measured via temporal phase-shifting with a given, known, shear
distance δ. The shear distance can be calibrated using a grid in lieu of the
sample.

Possible variations include:

• Scan with the wavelength instead of the shear distance [236]. This elim-
inates the need for a potentially inaccurate or vibration-generating me-
chanical actuators.

• Use polarisation to add a calibration arm to the setup [236].

• Use several shear values and directions (eg multilateral shearing interfer-
ometry) [237].

Given that the two interfering beams share almost the same path in space,
shearing interferometry setups generally have a low sensitivity to vibrations.
Moreover, the slope measurement range can be adjusted via the shear distance,
making the instrument flexible.

8.2.4 Shack-Hartmann

Shack-Hartmann sensors Fig. 8.8 measure the slopes of an incoming wavefront
using an array of microlenses [238, 239]. It is a full-field slope-measuring method.
Through each microlens, the local wavefront is focused on a sensor, creating a
spot, the position of which is related to the local slope. Calibration to account
for the actual aberrations in the microlens array is necessary.
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Figure 8.8: Shack-Hartmann working principle.

The lateral resolution is limited by the number of microlenses in the array.
There is only one data point per microlens in a single acquisition. The tilt dy-
namic range is also quite narrow since spots must land on the sensor in the right
”channel” (the area of the sensor dedicated to the microlens the light passed
through), although it is possible to track spots across channels with unwrapping
algorithms [240, 241] or have a scanning setup [242] to increase the measure-
ment range. We give the specifications of a commercial system in Tab. 8.3. One
advantage for Shack-Hartmann systems is that they can be packaged in quite
compact camera-format systems with factory calibration.

Aperture dimension 3.6 mm × 4.6 mm
# of microlenses 32× 40
Lateral sampling resolution 110 µm
Tilt dynamic range ± 3°
Tilt sensitivity 5 µrad RMS
Wavefront accuracy ≈ λ/100
Acquisition frequency ≈ 100 Hz
Working wavelength 400− 1100 nm

Table 8.3: Imagine Optic HASO4 First specifications [243]. λ is a single wavelength chosen within
the working range and for which the system is calibrated.
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8.2.5 Phase-Measuring Deflectometry

Phase-Measuring Deflectometry (PMD) is a full-field slope measurement method
[244–250]. A camera observes fringes from a display screen reflected on a spec-
ular surface. With careful calibration it is possible to measure the phase of a
known fringe pattern as reflected by the sample, and translate it into slopes.
Once a slope map is obtained, integration can be performed and an altitude
map obtained. An additional piece of prior information is required though: the
position of one point on the surface in the reference frame of the setup. This is
to solve the slope/height ambiguity : the solution surfaces that reflect rays from
the screen towards the camera are a continuous set of sample positions and
shapes. The ambiguity is broken by constraining the solution surface to pass
through a known point in space (more in Chapter 9).

The accuracy of PMD is limited by the knowledge of the geometry of the
setup, ie by the quality of the required calibrations. The measurement range,
both in sample size and sample slopes is potentially very large, it is only limited
by the size of the display: a measurement can be carried out as long as the
FOV of the camera through the sample lands within the limits of the display
screen (Fig. 8.9). The lateral sampling is limited by the camera sensor and the
achievable size of the sample in the camera FOV (with the additional hypothesis
that the display pixels are unresolved by the camera).

There is still ongoing research in taking into account more and more factors
in the calibration of PMD in order to reach better accuracy, for instance in the
display screen model: both shape and refraction from the protective layer on
top of the pixels can be taken into account [251, 252].

An example of an application using a SCOTS (Software Configurable Opti-
cal Test System) instrument on the measurement of a Giant Magellan Telescope
(GMT) primary mirror segment (8.4 m diameter) with 25 nm RMS agreement
with interferometry is found in [253], other results in [254]. Deflectometry, due
to the simplicity of the required equipment, is often considered for in-situ mea-
surements [211]. It is also very suited to appearance defects measurements and
semi-quantitative measurement of surfaces [255].

Notable variants include:

• Transmission setups [256].

• Application to discontinuous surfaces [257].

• Setups with more cameras and/or screens [258, 259].

A related method is that of fringe projection, for the measurement of diffuse
surfaces [260–262].

8.3 Comparison Matrix

We can summarize the above information with a high-level comparison matrix
(Tab. 8.4).
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Figure 8.9: Illustration for the measurement range of deflectometry. The camera looks at the
display screen through the sample (here nearly flat). The field of view of the camera through the
sample is drawn as the red solid. The intersection of the solid with the screen is the surface of
the screen observed by the camera. As long as this surface is where fringes can be displayed, a
measurement can be performed.

Method
Measurand
Geometry

Advantages
Limiting factors

Chromatic Confocal
Microscopy

Altitude
Point(s)

Slope range
Z range/resolution trade-off

Contact Stylus
Profilometry

Altitude
Point

Z range/resolution trade-off
Diffuse

Scratches, Duration
Measurement bias

Curvature Sensing
Curvature

Point
Intrinsic, calibration

Noise

Null Interferometry
Altitude
Full-field

Accuracy
Cost, Alignment, Reference

Shearing
Interferometry

Slope
Full-field

Dynamic range
Calibration

Shack-Hartmann
Slope

Full-field
Compact

Lateral sampling

Phase Measuring
Deflectometry

Slope
Full-field

Slope range, Cheap
Calibration

Table 8.4: Comparison matrix of metrology methods.

182



This past chapter has shown there are many measurement methods for
freeform optical surfaces. As with many things in technology, the best method
will very much depend on the use case. Need to control the shape of thousands
of identical surfaces on an automated assembly line? Null interferometry might
be indicated. Need to measure the shape of objects with somewhat diverse sur-
face shapes and contours, as quickly as possible? More flexible methods such
as deflectometry or shearing interferometry will be prefered. Need to assess
the position of an optical surface with respect to surrounding non-reflective
mechanical parts? Contact Stylus Profilometry is the best tool for this. In the
following chapter, we will perform measurements of freeform optics using Phase
Measuring Deflectometry.
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Chapter 9

Metrology experiments

Designing a freeform benchmark test – Deflectometry bench and setup – Dif-
ferent types of results – Results on the freeform piece: cosmetic, curvatures,
absolute shape, mid-spatial frequency content – Other samples

To demonstrate the ability of PMD to measure challenging optical sur-
faces, including freeform, we performed measurements on a freeform test piece
and other various samples. The measurements on the freeform test piece were
both qualitative (appearance defect detection) and quantitative (shape mea-
surements).

The metrology bench and corresponding data treatment were designed and
built by Yves Surrel and hosted at IOGS Saint-Etienne.

9.1 Freeform test piece

We designed and manufactured a freeform test piece with the goal of challeng-
ing existing metrology methods with high altitude and slope departure from a
base shape. The piece design and manufacturing, the PMD bench setup and
calibration, and the measurement results are described in the article draft in-
cluded below (the article was submitted and rejected a first time, a rewrite will
be submitted at a further date).
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Abstract: We manufactured an aluminum optical freeform mirror using slow tool servo
single point diamond turning (SPDT) machining. The mirror is 50.8 mm in diameter and
presents extreme freeform departures of more than 400 micrometers in altitude, 80 mrad in
slope. The surface exhibits both concave and convex areas. We measured the mirror’s surface
appearance defects, absolute shape and high spatial frequency errors using a Phase-Measuring
Deflectometry (PMD) bench. We assessed the absolute shape measurement error with the help
of a complementary LUPHOScan measurement. The RMS deviation between the deflectometric
and LUPHOScan absolute measurements was found to be no more than 940 nm RMS over the
whole area, falling down to 55 nm RMS over the central 10 mm subaperture, confirming that
PMD is a very interesting tool for freeform metrology.

© 2021 Optical Society of America

1. Introduction

Recent work in the manufacturing of freeform imagers [1–4] and in individual freeform pieces [5]
has demonstrated the value of single-point diamong turning (SPDT) as a fast prototyping tool for
infrared imaging systems. The surface shape error as well as roughness obtained by SPDT is
sufficient for IR imagers and can be used for visible wavelength imagers with further cladding
and polishing.
Parallel work in freeform surface metrology allows the measurement of these freeform

surfaces. We can cite null-interferometry benches [6, 7] using optical systems or Computer-
Generated Hologram (CGH) as nulls, scanning multi-wavelength interferometry (eg. Taylor
Hobson’s LUPHOScan [8]), Coordinate-Measuring Machines (CMM) with optical probe [9].
For the purpose of measuring freeform surfaces, particularly in-situ, some more flexible or more
accessible methods exist, such as shearing interferometry [10] and phase-measuring deflectometry
(PMD) [11–14].

We designed, manufactured, and measured a freeform aluminum mirror. Our goal is to assess
the capabilities of SPDT and PMD in manufacturing and measuring extreme freeform optical
surfaces. The proposed shape has a plane for base shape. It is extreme in the sense that it
possesses steep slopes of more than 80 mrad and maximum deviation from the plane of more
than 400 µm. The proposed surface, because of its steep slopes, cannot be measured over its
whole aperture using a straightforward interferometry setup, and probably neither with a CGH



null [15] (due to pattern density limits).

2. Design and manufacturing of the freeform mirror

2.1. Design

The manufactured mirror was specifically designed to be a ‘torture test’ both for manufacturing
and metrology. The clear aperture is Φ50.8 mm. The central Φ16 mm subaperture was designed
with low altitude and slope departures (less than 10 µm and less than 5 mrad respectively). The
annulus from Φ16 mm to Φ46.8 mm has a maximum slope greater than 80 mrad. The outer
annulus fromΦ46.8 mm toΦ50.8 mm presents much higher slopes, greater than 200 mrad. Maps
for the nominal mirror shape, in altitude and slope are given in Figs. 1a and 1b.
The border outside the clear aperture is a flat with four engraved cross fiducials. The total

mechanical diameter is Φ60 mm. A threaded hole on the backside of the mirror is made so as to
allow convenient support.

2.2. Manufacturing

The freeform mirror material is the RSA6061T6 aluminum alloy from RSP technology. The
mirror (see the photos in Fig. 1c) was machined on a Moore Nanotech 350FG equipped with a
Slow Slide Servo (SSS). The diamond tool, from Contour Fine Tooling, is sharpened to a 250 nm
PV shape error which should produce a surface roughness lower than 10 nm.
A few hours of machining were necessary to obtain the first version of the mirror. To go

from the flat blank to the final result, we needed around 20 rough machining passes, in addition
to the finishing. Indeed, the surface PV is approximately 500 µm and the milled depth on a
rough machining pass is around 30 µm, to ensure the tool durability. With a half hour rough
pass duration, this makes a total of a dozen hours for the roughing step. The finishing step took
around 20 hours. During this last step, only 4 µm were etched with a cutting speed, set by the
rotational axis, of 5 m min−1 (40 times less than for a typical machining).

3. Deflectometry overview and experimental setup

3.1. Overview

The origin of deflectometry (not including slope filtering in the Fourier plane which is the
basis of Ronchi tests [16]) dates back to more than three decades ago, emerging with various
flavors in different fields such as optical metrology (along with moiré [17, 18]), mechanical
engineering (with moiré [19] or without [20, 21]) or industrial inspection [22]. Today’s state
of the art is to use the direct reflection of sinusoidal lines patterns displayed by a computer
monitor screen (Figs. 1d and 1e, showing our experimental setup). Temporal phase-stepping
along G (with vertical lines) and H (with horizontal lines) is used to realize a precise acquisition
of the light-emitting screen pixel coordinates, the lines phase being simply proportional to their
G (vertical lines) or H (horizontal lines) coordinates. Temporal phase unwrapping [23] can be
used to obtain faithfully unwrapped phase maps. In this work, we used the synthetic wavelength
approach [24], allowing to map the zero phase point to the center of the display screen.

There are different levels in deflectometric measurements, differing in the amount of required
calibration and data processing.

3.1.1. Qualitative

The G and H phase maps are high-pass filtered, in order to detect localized (cosmetic) defects.
Indeed, the high frequency local phase variations are related to local slope variations, and
displaying these will give information about mid-frequency shape defects. These maps can also
be differentiated to provide maps related to local curvatures. This will enhance high frequency
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Fig. 1. (a) Mirror nominal altitude, (b) Angular departure from Z axis (slope). The
central overlayed circle indicates a Φ16 mm subaperture. The second overlayed circle
indicates a Φ46.8 mm subaperture. Please note the non-linear and discretized color
scale for viewing purposes, the actual surface is continuous in altitude. (c) Photos of the
manufactured mirror: during the manufacturing process (left) and finished (right). (d)
Setup overview. (e) Reflected fringes as seen by the camera (the fiducials engraved onto
the outer ring can be seen). (f) a mechanical gauge is put in contact with the freeform
mirror. (g) the plane mirror is put in contact with the gauge. (h) ray trajectories in the
horizontal diametral (G, I) plane in the camera frame of reference. (i) closeup view of
the rays at the camera pupil, showing the lens spherical aberration.



defects detection, due to the gain of the filter corresponding to differentiation that is proportional
to the spatial frequency. If only arbitrary units are sought, which can be the case in industrial
applications requiring only detection based on simple thresholding criteria, no calibration nor
complex data processing is necessary. If real units are needed, a rudimentary camera model
(pinhole) and calibration (camera and screen position) is most often sufficient. Apart from the
phase data, another very interesting outcome of deflectometric measurements is the detected
amplitude (or contrast). The detected modulation amplitude exclusively corresponds to reflected
light. So, scratches (but also dust, fingerprints and any surface pollution) that diffract or absorb
light will lower locally this amplitude, which will make these defects clearly show up when
displaying amplitude G and H derivatives. These features (simplicity, sensitivity) make this
qualitative level popular in industrial inspection of parts [25].

3.1.2. Differential-quantitative

The part to be measured can be compared in-situ to a reference object, usually a plane mirror. In
that case, only the phase deviations between the measurements on the reference and tested objects
matter, making most of the systematic errors (e.g. lens distortion) vanish. The camera model can
be restricted to a pinhole one, with or without distortion correction depending on the requirement
on lateral defects positioning accuracy. Quantitative results require a moderate/good quality
calibration, in which case excellent results can be obtained. For example, Huang et al. [26]
obtain an accuracy in the nanometer range when measuring an off-axis elliptical X-ray mirror.
Results on our freeform mirror are presented below. However, in our case it can be seen from the
rays trajectories in Fig. 1h that the deviation from a plane is such that the reflected ‘sight’ rays
(coming from the camera) impinge the display screen at positions that can be tens of millimiters
away from what they are in the plane mirror case. In that case, residual error compensations
(especially related to the position and shape of the screen) are not so well realized and thus the
absolute shape reconstruction will not be as good as what is presented in [26].

3.1.3. Absolute-quantitative

Absolute shape measurement is sought. It is still a challenging issue today, as it requires ultimate
precision and accuracy in the geometrical description of the whole setup: ray trajectories in
object space, screen position and shape, index and thickness measurement of the screen protective
window, etc., possibly requiring additional measurement tools like a CMM or laser tracker to
locate the screen and camera in a single frame of reference.

3.2. Integration

To reconstruct the shape, the slopes have to be integrated. However, converting the acquired
screen coordinates observed in reflection into slopes requires knowing the object shape, an
egg-and-hen problem. We followed the usual iterative approach: the slopes are first evaluated
assuming a plane object and then integrated to get a first shape estimate. Then, reflected screen
coordinates assuming this object shape are computed. The deviations from the measured screen
coordinates allow the determination of small slope corrections, that can be integrated to get a
small shape correction, and the process is iterated until the shape correction falls below a given
level (e.g. 10 nm).

3.3. Calibration

For this work, we used a 28", 3840×2160 pixel Samsung U28E570 screen, a 2592×1944 pixel
Basler acA2500-14-gm camera and a 35 mm Fujinon HF35XA-5M lens opened at its smallest
aperture value F/16. Different calibration steps are needed for deflectometric measurements.

• calibration of the effective screen/camera gamma curve, to ensure a purely sinusoidal
profile of the fringes after display and acquisition;



• calibration of rays:
– identification of the camera intrinsic parameters in case of a pinhole camera model;
– identification of the distortion in case it is required;
– identification of the ray trajectories in the object space in case of a model-free camera
description, which was our choice in this work.

• identification of the screen position.

3.3.1. Effective screen/camera gamma curve

When temporal phase stepping is used, the only crucial point is related to the harmonic content
of the fringe profile. To avoid applying a numerical rejection of harmonics [27], we calibrate the
system response. In the case of fringes displayed by a computer screen, the best is to calibrate
the screen+camera response such that the displayed fringes appear sinusoidal to the camera.
To do this, a set of uniform linearly increasing gray levels is displayed on the screen, and the
average image gray level is determined at each step, in order to have the screen/camera response
(so called ‘gamma’ curve). This curve is then inverted to create a lookup table (LUT), thus
linearizing the overall system response.

3.3.2. Identification of rays in object space

We used a model-free camera description, requiring the identification, in a fixed frame of
reference, of the equation of the ray propagation line for each camera pixel. To do this, the screen
is located at different distances (250 mm apart within an overall 1500 mm travel) in front of the
camera which is positioned on a Newport MTM250 translation stage and moved at different
distances (10 mm apart within its 250 mm range). For each screen and camera distance, the screen
coordinates are acquired via a phase-stepped measurement. To prevent disturbances induced
by air turbulence, a protective tunnel is placed around the bench. After determination of the
translation stage movement imperfections (roll, pitch, yaw) and screen attitudes (no assumption
is made on the screen being orthogonal to any axis), the rays trajectories can be determined in a
common frame of reference. It can be seen in Fig. 1i that the lens we have used exhibits some
amount of spherical aberration.

3.3.3. Screen position identification

With the camera set in its final geometric position in the setup (Fig. 1d), the screen position in its
coordinate system can be computed using reflections off of a plane mirror at different angles. We
used an approach similar to what is described in [28, 29], although our mathematical treatment
seems simpler.
For each mirror position the screen image position (affine transform consisting in a rotation

and a translation) can be determined, because the rays trajectories are known. When at least three
arbitrary plane mirror positions are used, one can deduce the position of the display plane in the
camera reference frame.
Let us summarize the key principles of the procedure. The camera and screen positions are

fixed throughout the process. For a particular plane mirror position, the screen and its image are
symmetrical with respect to the mirror plane. Moving the mirror will modify the position of this
image. Let us number three mirror (and screen image) positions 1, 2 and 3. The transformation
image 1→ image 2 is the composition of two successive plane symmetries: image 1→ screen
and screen → image 2. It is a known mathematical result that a composition of two plane
symmetries is a pure rotation around an axis that is the intersection of the two symmetry planes
(here the mirror in positions 1 and 2 that we denote mirror 1 and mirror 2). Since the screen
image positions 1 and 2 are known, we can deduce the rotation axis between them, which belongs
to both mirror 1 and mirror 2. We can similarly determine an axis common to mirror 1 and
mirror 3, and another one common to mirror 2 and mirror 3. As we have now two axes per mirror



position, this is enough to determine the position of the three mirror planes. From these mirror
positions we can finally deduce by plane symmetry the screen position from the corresponding
image positions. There is of course a redundancy as the screen position can be obtained three
times from the three different mirror/image couples, allowing to check the coherence and quality
of the results. Another check is to verify how close the two axes corresponding to each mirror
position are; mathematically, they should intersect as they are supposed to belong to the same
plane but it is of course never the case in a real measurement. We obtained a typical 200 µm
distance between axes in our calibration.

Theoretically, acquiring data for more than three mirror positions and with angles and positions
as far apart as possible should increase the method’s accuracy as the random errors should
compensate more and more. However this accuracy increase is not granted, because systematic
errors remain as the screen is not perfectly flat.

4. Results

We performed a differential measurement to get the surface shape of the freeform mirror, using
a plane reference mirror. We first measured the plane mirror with a Zygo GPI XP Fizeau
interferometer with an absolute accuracy of λ/100 and checked it was within _/10 flatness. In
differential deflectometric measurements, it is essential to reposition a reference point of the part
to be measured exactly at the same location in space as some point of the reference part to define
a I = 0 plane. To achieve this, the following procedure was set up.
First, with the freeform mirror in measurement position, a Mitutoyo gauge 513-404-10

(minimum contact force: 0.01 N) positioned on a manual translation stage is brought just-in-
contact with the mirror (Fig. 1f). An auxiliary carrier is used as a mechanical stop on the bench to
be able to reposition exactly the gauge afterwards, and the gauge was removed. After measuring
the freeform mirror, the gauge was replaced and the plane mirror placed on two crossed manual
translation stages was then put just-in-contact with the gauge. The plane mirror can then be
measured.

4.1. Cosmetics

The H−derivative of the amplitude is represented in Fig. 2a. The pseudo-curvature residuals,
high-pass filtered sum of the G− and H−derivatives of the G and H phase maps is found in Fig. 2b.
The low spatial frequencies were subtracted from the pseudo curvature map by subtracting the
convolution by a 31x31 pixels gaussian kernel of standard deviation 17 pixels.
These results illustrate the usefulness of deflectometry for cosmetic control of reflective

surfaces, as nanometric-range defects are easily revealed with very simple data processing,
despite the fact that in that case the results are only obtained in arbitrary units. In Fig. 2a, the
zoomed-in view shows a slope artefact, which is confirmed to be an actual manufacturing defect
in our quantitative measurement of curvatures.

4.2. Shape

The result for the shape measurement is shown in Fig. 3a. A cross-check measurement was carried
out using the LUPHOscan (LS420HD) over Φ48.2 mm. The manufacturer claims an accuracy
of ±50 nm (2σ) for this instrument. We performed a comparison between the deflectometry,
LUPHOScan and nominal altitudes over Φ45 mm to crop out edge effects in the measurements.
The piston, tip, tilt and clocking were conjointly optimized between the three maps to minimize
the RMS altitude error. Some amount of lateral magnification (0.3 %) was also introduced. As
the deflectometric results crucially depend on the system geometry identification, and particularly
on the screen pixel size, an error of this order of magnitude is not impossible, as this feature is
not easy to measure with an extreme precision. The freeform shape is very complex, so it seems
unlikely that the improvement introduced by this magnification correction be only coincidental.



(a) (b)

Fig. 2. (a) H−derivative of amplitude, in arbitrary units. The measurement highlights
qualitatively the scratches and defects on the mirror surface. No filtering of the
measurement data was applied. (b) Pseudo curvature defects, high-pass filtering of the
sum of the phases derivatives.

A horizontal cross-section of the cross-differences as well as altitude measurement is shown
in Fig. 3e. The RMS error between the LUPHOScan and deflectometry maps as a function of
subaperture size is plotted in Fig. 3f (the RMS altitude of the piece as manufactured is given as
indicative of the difficulty of the measurement on the same plot).
LUPHOScan and PMD measurements agree better with one another than with the nominal

map (see Fig. 3d). This confirms that the piece was manufactured with significant errors. This is
unsurprising given the difficulty of this manufacturing task. This gives data on what level of
accuracy one should expect when manufacturing a very difficult freeform surface in SPDT, on
the first try, without subsequent polishing/correcting steps.
Taking the LUPHOScan measurement as ground truth, we can assess the accuracy of our

deflectometry results with regards to absolute surface shape. Difference values have to be taken
with caution, and are certainly an upper bound of the deviation. The problem comes from the
pixel-wise subtraction. Artificially large errors can come from a slight discrepancy in position
and orientation between the two sets of values. The mirror has slopes over 0.1 rad, corresponding
to 1 µm per 10 µm lateral displacement. This shows that any slight discrepancy between the
pixel positions during the difference may end up with large artificial errors. The altitude error
between deflectometry and LUPHOScan is shown on Fig. 3c. We see that the error is smaller
around the center of the piece and larger near the outer edge, which presents the largest freeform
departures, both in altitude and slopes. Thus, the deflectometry measurement error seems to be
related to the freeform departure, as shown in Fig. 3f. On a smaller subaperture of 10 mm, over
which the freeform departure is 4 µm RMS, we obtain a measurement error of 55 nm RMS. This
is a sufficient surface accuracy for low-end imaging applications, especially in IR. This is also
sufficient for most lighting applications. On the other hand, once the whole 45 mm comparison
subaperture is considered, which includes the steep outer parts of the piece and a 47 µm RMS
freeform departure, the error of our proposed deflectometry method is at most 937 nm RMS.

4.3. High/medium frequency machining defects

From the shape measurement, it is also possible to extract the medium- and high-frequency
component to get some relevant and quantitative machining defects. As can be seen in Fig. 3b,
an axisymmetric defect is clearly visible, the high-frequency part of which was already visible in
the cosmetic result in Fig. 2b. It corresponds to the linear translation defect of the machining
tip. Due to the axisymmetry, it is possible to perform an azimutal filtering to get the smoothed
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Fig. 3. (a) Deflectometry measurement map. (b) High frequency machining defects.
A best fit XY polynomial of degree 20 was subtracted from the measured altitude.
The scale is cropped in the range [-150;200]nm. The horizontal line indicates the
cross-section position in (g). (c) Difference deflectometry/LUPHOScan. Note the scale
is cropped at [-7,7] µm. The black circle indicates the size of the aperture that was
measured with the deflectometric method. (d) Difference LUPHOScan/nominal. Same
scale as in (c). (e) Horizontal cross-section across the center of the piece: all crossed
differences. (f) RMS error deflectometry/LUPHOScan as a function of considered
subaperture diameter (left axis). RMS of the manufactured surface (right axis). (g)
Cross-section of the smoothed axisymmetric machining medium/high frequency defect.



machining defect, of which a cross-section is shown in Fig. 3g.

5. Conclusion

We have shown what could be expected from blind (without measurement and correction)
SPDT machining for a freeform piece with extreme departures (>47 µm RMS and slopes of
more than 80 mrad). The machining error is approximately 17 µm PV and 3 µm RMS (see
Fig. 3d). Additionaly, we have assessed the measurement error of a simple, cost-effective and
fast deflectometric method for shape measurement: 55 nm RMS for areas with low-departure
freeforms (4 µm RMS) and 937 nm RMS once extreme freeforms are considered (47 µm RMS).
The values can be read on Fig. 3f. While insufficent for testing strongly freeform optical surfaces
for imaging applications, the simplicity of the method makes it a good lead (with some accuracy
improvements) for online testing during the first machining passes, since the manufacturing error
of a blind process is still greater than those of our proposed method, where absolute shape is
concerned.

In accordance with the well-known relevancy of deflectometry for local shape defects detection,
we have shown minute scratches that were not detected with the LUPHOScan, and could not
have been due to its insufficient spatial resolution. Quantitatively, the high spatial frequency
content can be extracted from the shape measurement. High frequency machining defects can be
measured with near-nanometric resolution. This is useful to assess the surface error that can be
attributed to mid-spatial frequencies.

Certainly, a deflectometry bench should be a very useful addition to optical testing equipments
suitable to freeform optics. As compared with existing techniques (CMM and/or laser trackers,
scanning multi-wavelength interferometry, sophisticated nulls or CGH for interferometers),
deflectometry has the advantages of:

• cost-effectiveness (overall cost of some thousands of dollars instead of some hundreds of
thousands),

• measurement speed (tens of seconds instead of tens of minutes),
• spatial resolution (the usual advantage of full-field techniques against scanning ones),
• dynamic range (field of view —at least on quasi-planar or concave surfaces, slopes),
• extremely simple data processing for cosmetic defects assessment.

The well known weakness of deflectometry is the difficulty to access the low frequency shape
information. However, the presented results show that even on a very challenging freeform
surface, provided a convenient calibration and data processing has been implemented, the shape
measurement accuracy begins to convincingly approach what can be obtained with the best
instruments on the market.

Planned improvements of the deflectometric setup are:
• improvement of the screen pixel size measurement;
• during the calibration step, in situ shape measurement of the monitor screen by fringe
projection;

• during the calibration step and for each measurement, correction of phase maps by taking
into account the heterogeneous point spread function of the system (camera lens + object
under test + screen being out of focus).
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Measurement of a freeform mirror
with strong altitude and slope
departures using deflectometry:
supplemental document

We compile here additional data about the freeform mirror, including its complete freeform
surface definition for reproducibility. We also include complementary information about our
setup, calibration and results.

1. ADDITIONAL MAPS OF NOMINAL SHAPE

Found here are additional maps for the nominal shape of the freeform mirror, these can help
estimate the measurability.

• X and Y first derivatives: Figs. S1a, S1b
• X and Y curvatures: Figs. S1c, S1d

2. FREEFORM SURFACE DEFINITION

The complete mathematical definition for the nominal freeform mirror surface shape is as follows:

• Clear aperture semi-diameter: 25.4 mm
• Base shape: Plane
• Freeform type: Zernike Standard Sag (OpticStudio)
• Normalization radius: 26.8 mm
• Maximum freeform coefficient: Z78
• Freeform coefficients: see Fig. S2

The piston, tip, tilt and focus terms, as well as all rotationally symmetric terms were set to zero.
The normalization radius for the Zernike polynomials is 26.8 mm, which is a bit larger than the
clear aperture of the mirror (25.4 mm in semi-diameter) so as to avoid including the very high
slopes that are likely to appear on the edge of Zernike polynomial terms.

In order to reproduce the surface, one can input the Tab. S2 coefficients in OpticStudio, then,
taking the usual OpticStudio coordinate system, perform a symmetry around the Y axis and
finally flip the Z axis sign. All these transformations are the result of choices made for the sake of
convenience for working using the different coordinate systems between optical design software
and manufacturing software.

3. INTERFEROMETER MEASUREMENT ATTEMPT AND PLANE REFERENCE MIRROR

To show how difficult interferometric measurements would be, we put the freeform mirror in
front of a Zygo Fizeau interferometer with a reference plane. We tried measuring the Φ16 mm
subaperture. Fig. S3a shows the Zygo in alignment mode. A single mirror position cannot be
used to measure the whole Φ16 mm subaperture, only very partial measurements were obtained,
not enough for a cross-validation.

Additionally, we provide the interferometric measurement of the plane mirror that was used as
plane reference for the screen position identification and for the quantitative deflectometric shape
measurement (Fig. S3b).

4. IDENTIFICATION OF RAYS IN OBJECT SPACE

The frame of reference orientation follows the OpenGL convention and is visible in Fig. S1e.
Additionally, we give the gamma curve we identified during our screen/camera calibration:
Fig. S1f.
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Fig. S1. (a) Nominal shape: X partial derivatives. (b) Nominal shape: Y partial derivatives. (c)
Nominal shape: X curvature. (d) Nominal shape: Y curvature. (e) Calibration bench with its
tunnel for protection against air turbulence. (f) Identified gamma curve of the screen+camera
set.
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Fig. S2. Zernike coefficients values used for manufacturing

i n m value (mm) i n m value (mm) i n m value (mm)

1 0 0 0.0 27 6 -6 -9.686649E-003 53 9 -7 9.896096E-003

2 1 1 0.0 28 6 6 8.278042E-003 54 9 9 3.967977E-002

3 1 -1 0.0 29 7 -1 -9.270868E-003 55 9 -9 -6.526665E-003

4 2 0 0.0 30 7 1 -7.406787E-003 56 10 0 0.0

5 2 -2 2.185503E-002 31 7 -3 6.692923E-003 57 10 -2 4.134598 E-003

6 2 2 1.069417E-002 32 7 3 -3.025685E-003 58 10 2 2.648275E- 003

7 3 -1 2.335031E-002 33 7 -5 -1.444321E-002 59 10 -4 6.46039 5E-003

8 3 1 8.194023E-003 34 7 5 -2.742256E-003 60 10 4 9.338736E- 004

9 3 -3 6.600191E-004 35 7 -7 4.318112E-003 61 10 -6 -1.20788 9E-002

10 3 3 -1.123816E-002 36 7 7 2.050808E-002 62 10 6 6.996871E -003

11 4 0 0.0 37 8 0 0.0 63 10 -8 2.166373E-003

12 4 2 -4.554537E-003 38 8 2 1.336044E-002 64 10 8 9.027355E -004

13 4 -2 2.335059E-002 39 8 -2 8.385570E-003 65 10 -10 -1.934 656E-002

14 4 4 -9.342982E-003 40 8 4 -1.655579E-003 66 10 10 3.91125 6E-003

15 4 -4 1.591519E-002 41 8 -4 1.534804E-002 67 11 -1 1.12497 6E-002

16 5 1 2.278314E-003 42 8 6 2.679274E-003 68 11 1 7.732164E- 004

17 5 -1 1.297572E-003 43 8 -6 3.929712E-003 69 11 -3 -5.9869 39E-003

18 5 3 -3.363955E-003 44 8 8 -1.095440E-003 70 11 3 -1.69165 2E-003

19 5 -3 -1.740357E-002 45 8 -8 4.171808E-005 71 11 -5 3.7897 61E-003

20 5 5 3.816153E-003 46 9 1 -3.317181E-003 72 11 5 4.427385E -003

21 5 -5 -6.307519E-003 47 9 -1 1.204005E-002 73 11 -7 7.1307 28E-003

22 6 0 0.0 48 9 3 -3.799028E-003 74 11 7 7.524236E-003

23 6 -2 1.282647E-002 49 9 -3 -1.229129E-003 75 11 -9 -2.161 745E-003

24 6 2 1.196439E-002 50 9 5 6.843080E-003 76 11 9 1.764461E- 002

25 6 -4 9.213908E-003 51 9 -5 -1.111872E-004 77 11 -11 -4.04 0449E-003

26 6 4 -5.034138E-003 52 9 7 9.013520E-003 78 11 11 -1.79366 8E-002

(a)

(b)

Fig. S3. (a) Zygo Fizeau interferometer in alignment mode. This is the best alignment we could
obtain. The high values of freeform departures make alignment difficult. (b) Reference plane
mirror interferometric measurement. The altitude PV within the red circle is about 40 nm.

3



9.2 Surface defects measurements

Additionally, we performed deflectometric qualitative surface defects measure-
ments on other samples with a great variety in general characteristics:

• The 2 inches diameter plane mirror used as reference in the freeform piece
shape measurement.

• A Φ250 mm spherical BK7 reference (raw glass, only partially specular),
concave of radius of curvature 685.88 mm (Fig. 9.1).

• A ≈Φ44 mm asphero-toroidal mirror, concave with a base shape of ap-
proximate radii of curvature 140 mm and 68 mm (Fig. 9.2). The material
is titanium.

We perform the exact same measurement referred to as qualitative in the
above article draft. It allows the detection of surface defects and estimating
their position and spatial extent on the sample. No geometrical setup calibra-
tion is required in order to obtain the included measurements. Overall, this
method is a cheap and convenient way to perform qualitative appearance defect
measurement. This can be the basis of surface inspection in the sense of ISO
10110-7 (size and number of defects) [263, 264]. The depth of the defects is not
accessible without further geometrical calibration (as explained for the freeform
test piece shape measurement).

Fig. 9.3 shows the defects on the surface of the reference plane mirror. We
can see numerous digs and scratches1 as well as possibly some dust particles.
The mirror is seen with a slight perspective deformation as the camera is not
directly in front of the mirror.

Fig. 9.4 shows the defects on the surface of the reference sphere. The reflec-
tion on the back face was neutralised using black nail polish and black adhesive.
Scratches and digs are visible. The circular hole in the data at the bottom left
corresponds to a sticker that would allow clocking angle measurement of the
surface. The surface coverage of the measurement is only partial. A complete
coverage could be reached using two acquisitions or alternatively by altering the
setup geometry so that the camera field through the mirror is comprised within
the display boundaries.

Fig. 9.5 shows the defects on the asphero-toroidal mirror. A few digs are
visible and some dust. The surface is comparatively of better quality than for the
other samples. As was the case for the spherical mirror, the measured aperture
is cropped, here at the bottom, left and right of the surface. We could likewise
alter the setup geometry to obtain a full aperture measurement.

We have shown how, with only minimal equipment, many different mea-
surements could be performed: cosmetic, curvatures, absolute shape, mid-spatial
frequency content. Additionally, we have exhibited measurements on a freeform

1Probably the result of years of handling by IOGS students.
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Figure 9.1: Photo of the spherical BK7 ref-
erence installed in the deflectometric bench.

Figure 9.2: Photo of the toroidal mirror.

Figure 9.3: Plane mirror: X amplitude derivative, arbitrary units.
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Figure 9.4: Spherical mirror: X amplitude derivative, arbitrary units.

benchmark test which would have been impossible using most conventional mea-
surement instruments and quantified the error in absolute shape. While the nu-
merical result of nearly 1 micron RMS in absolute shape error is rather large for
many applications (including most imaging), we think this value is caused mainly
by the extreme slopes of our sample. We think further research on the topic of
surface shape measurement for extreme freeform samples would be worthwhile.
It would unlock further freedom for the optical designers to include extreme
diopters in their design.
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Figure 9.5: Asphero-toroidal mirror: X amplitude derivative, arbitrary units.
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Chapter 10

Conclusion

Over the course of the present work, we have brushed many topics related to the
design and metrology of freeform optics for imaging. Namely, we gave a short
historical and technical context for the use of freeform optics in telescope design
(Chapter 1). We made detailed reminders on the various current freeform rep-
resentations and related mathematical tools (Chapter 2). We also documented
what we considered to be the conventional way of carrying out the optical design
of unobscured telescopes using the software tools available to the community
(Chapter 3). We have shown the result of a study on a TMA and provided all
the data to replicate our work (Chapter 4). On the metrology side of things, we
have provided a short review of metrology methods that seem the most promis-
ing when it comes to measuring the surface shape of freeform optics, including
with high departures in altitude and slope (Chapter 8). While the part of this
memoir cited above presents only limited academic novelty, what we hope to
have accomplished with these reminders is to have made available a self-standing
introduction to telescope and imaging systems design up-to-date with freeform
optics.

Three topics were the objects of more detailed work and gave rise to hopefully
interesting contributions:

• Sequential raytracing implementation (Chapters 5 and 6)

• Search algorithms for optical design (Chapter 7)

• Phase-Measuring Deflectometry for the metrology of extreme freeform sur-
faces (Chapter 9)

Sequential raytracing for the simulation and design of imaging systems was
summed up in all its basic principles. All the required information was given
for an actual implementation of raytracing routines. We have developed a ray-
tracing program in Common Lisp with sufficient performance so as to make it
actually usable in real design problem cases1 (and it was indeed used in the very

1Sadly this program is not available to the public, even upon request, in spite of its author’s
good will in this regard.
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resource-intensive study in [144]). Conversations that we had on the occasion of
various conferences, meetings and workshops impressed on us the importance
of ray-aiming and the frustration it generated among many other optical de-
signers with a programming streak to their skill set. The lack of published work
on the matter prompted us to lay out the problem clearly and propose ideas
useful for solving it. We do not know exactly what the solution implemented
in commercial software is, nor whether it is the same across different software,
but the programmers were undoubtedly smarter than we have been in solving
ray-aiming, as their solution is more robust, even when it comes to (most) tricky
freeform cases, and an order of magnitude faster than what we tried. We hope
the documentation we produced on the subject will serve as a stepping stone
for would-be raytracing programmers.

With regard to search algorithms applied to optical design, we demonstrated
in our works [144, 193] the advantages there are in keeping up with the state
of the art from the applied mathematics disciplines. We feel the optical design
community, in spite of its historical involvement in automatic design, is lagging
behind when it comes to tools and design methods that are nowadays widespread
in many other engineering disciplines. The silver lining in the current state of
affairs is that there are many low-hanging fruits available for interdisciplinary
research work between optical design and applied mathematics. We have given
some of these topics in Section 7.4, but this is just the tip of the iceberg. The
researchers in the applied mathematics field we have had exchanges with were
all anxious to find a domain of application for their work, especially one so
untouched as optical design is (comparatively to, say, structural design in civil
engineering). In our opinion, and given our work on the topic, optical design
does not present any fundamental difficulty that would make it harder to take
advantage of tools that are already in use in automatic design frameworks across
almost all other engineering disciplines. Given the usefulness for optical design of
automatic design tools, especially as freeform optics is more and more prevalent,
the fact that these tools, in themselves, are already developed and widespread
and that there are experts anxious to help the optical design community apply
them, we may but exhort researchers and institutions to allocate more research
effort in this direction.

The work carried out on the measurement of a freeform torture test using
PMD demonstrated the versatility of deflectometry in obtaining measurements
(albeit not very accurate yet) on surfaces with locally strongly concave and
convex areas. The freeform departures we worked with are far beyond what
is currently considered, even in hypothetical optical designs. Our goal was to
push the envelope in terms of acceptable freeform altitude and slope depar-
tures. Our hope is that one day optical designers will be able to design such
extreme pieces with the confidence that they are manufacturable. This would
unlock even greater freedom for optical designers: they could start building high
performance designs with surface shapes that are considered ridiculous as of to-
day. If completely general (with regards to shape) manufacturing and metrology
methods were to become widely available in optical shops, then the manufac-
turing of freeform optics could perhaps become as easy as that of axi-symmetric
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optics is today2.

Further work There are several subjects that can researched further and can
give rise to quickly obtained and interesting results. We plan to either investigate
these matters ourselves with the help of our colleagues or launch other research
programs.

• We think Clenshaw-Favard theorem has potential as a freeform polynomi-
als generating tool (Section 2.1.3.3). Using this kind of hyperparametrized
freeform polynomials representation in optical design could perhaps al-
low: 1. Smoothly transitioning from one freeform polynomial to another
(Zernike to XY for exemple) during automatic design. 2. Generating poly-
nomials seldom used in optics but no less interesting. 3. Unifying (most!)
freeform polynomials representations in software under a single implemen-
tation, which, though general, would be quite fast due to Clenshaw.

• Multi-objective, constrained, surrogate or Pareto optimization frameworks
are all very accessible and worthwhile investigations using existing optical
design software tools.

• We have begun work with our fellow researcher Maxim Sakharov to apply
his advanced black box optimization methods to more complex optical
systems.

• We have begun work with another colleague to optimize optical systems
using a radically analytical approach3.

• Yves Surrel is improving his deflectometry bench and data treatment.
With adequate measurement procedure and subsequent treatment, he is
hoping to obtain measurements of absolute surface shapes with an accu-
racy better by at least an order of magnitude compared to what we have
shown in the present work.

2Freeform or not: not that easy when the error budget is in the nanometers!
3We do not want to give too much details until an article is published.
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“Advanced optical freeform substrates fabricated by ceramic 3D printing
and controlled by deflectometry”. In: Optical Fabrication, Testing, and
Metrology VI. Ed. by Sven Schröder and Roland Geyl. Vol. 10692. Inter-
national Society for Optics and Photonics. SPIE, 2018, pp. 171–182. doi:
10.1117/12.2312649

• Maxim Sakharov, Thomas Houllier, and Thierry Lépine. “Mind Evolu-
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Appendix A

Zernike Polynomials

Zernike polynomials are one of the most used polynomial bases. They are not
the simplest to use however. It is useful to expatiate on the subject.

A.1 Definition

Zernike polynomials are defined using a set of conventions which we explain.

A.1.1 Coordinate System

The Zernike polynomials are defined over the unit disk. The explicit expression,
as given by e.g. B&W [266], uses a polar coordinate system. We choose the
coordinate system represented in Fig. A.1.

X

Y
θ

ρ

1

Figure A.1: Chosen coordinate system for the unit disk in cartesian and polar coordinates.
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n m Zmn (ρ, θ)
0 0 1
1 -1 ρ sin θ
1 1 ρ cos θ
2 -2 ρ2 sin 2θ
2 0 2ρ2 − 1
2 2 ρ2 cos 2θ
3 -3 ρ3 sin 3θ
3 -1 (3ρ3 − 2ρ) sin θ
3 1 (3ρ3 − 2ρ) cos θ
3 3 ρ3 cos 3θ
... ... ...

Table A.1: First few Zernike polynomials using explicit expressions. We arbitrarily order them as
in [77].

A.1.2 Double-indexing Scheme

Zernike polynomials can be indexed with a double-indexing scheme (n,m). n is
called the radial order and m the azimuthal order. Following the recommanda-
tions of [77], we choose for our double-indexing:

• n: Starts at zero and iterates on positive integers: 0, 1, 2, 3, etc.

• m: Integer, for a given n, it can take the values such that −n ≤ m ≤ n
and n+m is even. For example, for n = 3, m = {−3,−1, 1, 3}, for n = 4,
m = {−4,−2, 0, 2, 4}, etc.

A.1.3 Explicit Expression

An explicit expression for Zernike polynomials was given in Eq. 2.24. These
polynomials are unit-normalized. For each polynomial, the maximum absolute
value over the unit disk is 1 [78]. Eq. 2.24 generates the explicit expressions of
which the first few are written out in Tab. A.1. Such tables are found, albeit
using different conventions, in [75, 77], in the OpticStudio user manual [68] and
in many other works.

A.1.4 Single-indexing Scheme

A way of mapping the (n,m) double-indexing scheme onto a single index j
is necessary. We choose to use Noll’s indexing [267], which is the one used in
OpticStudio’s ”Zernike Standard Sag”. In Noll’s indexing, the parity of the
single index determines the choice of the azimuthal component Am(θ) (between
cosine and sine). In his paper [267], Noll did not give an explicit formula for
his indexing scheme, but we can deduce an expression: Eq. A.1. Note that our
indexing starts from 0, when Noll started it from 1.
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j =
n(n+ 1)

2
+ |m| − (tests(n,m) mod 2) A.1

tests(n,m) = (n mod 2) +

(
n(n+ 1)

2
mod 2

)
+ b(m) A.1a

b(m) =

{
0 m ≤ 0

1 m > 0
A.1b

We provide useful equations when working with Zernike polynomials in Noll
indexing [72]:

• Total number Nterms of polynomials for radial orders n from 0 up to nmax:
Eq. A.2

• Radial order n corresponding to a given index j: Eq. A.3

• Azimuthal order m corresponding to a given index j: Alg. 1. The algorithm
could also be expressed as a formula with cases, as in Eq. A.1.

Nterms =
nmax(nmax + 3)

2
+ 1 A.2

n =

⌈
−3 +

√
9 + 8j

2

⌉
A.3

A.1.5 Normalization

As noted by Andersen [78], the polynomials Zmn (ρ, θ) in Eq. 2.24 are unit-
normalized in the sense of Eq. A.4.

max
0≤ρ≤1
−π≤θ<π

|Zmn (ρ, θ)| = 1 A.4

The polynomials used in OpticStudio are normalized to unit standard devi-
ation. This is the normalization used by Noll [267]. We call these polynomials
”Standard” after their name in OpticStudio. The standard Zernike polynomials
Zstd
nm(ρ, θ) are defined by Eq. A.5.

Zstd
nm(ρ, θ) = NnmZ

m
n (ρ, θ) A.5

Nnm =
√

(2− δm,0)(n+ 1) A.5a
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Algorithm 1: Computing m from j in Noll indexing starting from 0.

input : The index j.
output: The corresponding azimuthal order m.

npart ← n(n+1)
2 ;

mpart ← j - npart;
if mod(n,2) = 0 then

if mod(npart,2) = 0 then
if mod(mpart,2)=0 then

m←-mpart;
else

m←mpart+1;
end

else
if mod(mpart,2)=0 then

m←mpart;
else

m←-mpart-1;
end

end

else
if mod(npart,2) = 0 then

if mod(mpart,2)=0 then
m←-mpart-1;

else
m←mpart;

end

else
if mod(mpart,2)=0 then

m←mpart+1;
else

m←-mpart;
end

end

end
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The meaning of unit standard deviation1 is made explicit in Eq. A.6 (see
eq.3.11 of Gray [75]).

1

π

π∫
θ=−π

1∫
ρ=0

(Zstd
nm(ρ, θ))2ρdρdθ = 1 A.6

A.1.6 Communicating Conventions

We know from experience that the different conventions used for Zernike polyno-
mials can be the source of great confusion. Some domain-specific normalization
effort has been going on [77] (ophtalmology) [268] (optical surface form toler-
ance)2, but there is no consensus among optical design practitioners and man-
ufacturers in practice. An exhaustive review of all the conventions used would
be of limited interest but let us propose a list of items to pay attention to when
working with Zernike polynomials:

• Coordinate system (see Fig. A.1)

– What is the orientation of the axes X and Y?

– What is the orientation for positive θ?

– Is θ = 0 on the X or Y axis?

• Polynomials definition

– What is the double-indexing used? m can be positive only [78, 266,
267] or a signed integer [77].

– How are cos and sin terms assigned? This can be dependent on the
parity of the single-indexing [267] or on the sign of m [77].

• Single-indexing scheme

– What single-indexing scheme is used? Noll [267], fringe, ANSI [77]
and many more exist.

• Normalization

– Are the polynomials unit-normalized (see Eq. 2.24) or standard (see
Eq. A.5)? The normalization used in B&W [266] is yet another one.

We urge readers to communicate the conventions they use unambiguously.
Cross-checking using point-cloud data is often necessary.

1Here, standard deviation is used in the sense of the square of the root-mean-square quan-
tity. This is the mean of squares of a 2D function over its support.

2The conventions used in these two normative works differ.
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A.1.7 Polynomials Orthogonality

Zernike standard polynomials are orthonormal over the unit-disk (eq. III.5 of
Gray [75] and eq. 7 of [72]), Eq. A.7.

1

π

π∫
θ=−π

1∫
ρ=0

Zstd
nm(ρ, θ) · Zstd

n′m′(ρ, θ)ρdρdθ = δn,n′δm,m′ A.7

A.1.8 Using the Normalization Radius, Extrapolation and
Aperture Shape

In optical design, it is often useful to deviate slightly from canonical Zernike
polynomials.

A.1.8.1 Normalization Radius

The outer ring of the unit disk on Zernike polynomials of a higher n+m order is
rarely useful in optical design (see the terms j = 43, 44 in Fig. 2.7). These high
amplitude variations on the edge of the surface are likely to make the system
behave in a chaotic way (especially computations involving marginal rays). This
is why optical designers will often crop this part by using a normalization radius
greater than the clear aperture of the optical surfaces. This modified table of
polynomials can be seen in Fig. A.2. We plotted a clear aperture that is only
80 % of the normalization radius. As can be seen, with this designer’s trick, some
terms that represented mainly high spatial frequencies on the outer edge of the
surface are now almost flat (eg 19;5;5) and the troublesome outer edge of some
other terms is cropped out (eg 23;6;2).

Another tip is to use Zernike polynomials in increasing order of n + m, to
better match the order in which optical aberrations are likely to appear. This
idea is used in the so-called Fringe ordering.

A.1.8.2 Aperture Shape and Extrapolation

The Zernike polynomials can be adapted to elliptical, annular or arbitrary aper-
ture shape while retaining orthogonality with a Gram-Schmidt orthogonaliza-
tion [72]. Additionally, the polynomials can also be extrapolated outside of the
unit disk to fit rectangular aperture shapes for example, although extrapolation
will likely generate important departures in altitude and slope.

A.2 Practical Implementation

Having an implementation independent from off-the-shelf optical design tool is
useful for cross-checking results and working with external tools on the shape of
freeform surfaces. A table with the first Zernike polynomials is given in Fig. 2.7.
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Figure A.2: Table of the first few Zernike polynomials in OpticStudio ”Zernike Standard Sag”
indexing and normalization. The clear aperture is only 80 % of the radius of normalization. The
color scale is common to all the polynomials. We give numbers j, n,m as in Fig. 2.7.
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We elaborate on the implementation of Zernike polynomials and cartesian first
derivatives using the work of Andersen [78].

A.2.1 Works on Recurrence Relations

As already mentioned, the explicit expression given in Eq. 2.24 cannot be used
for a computer implementation when high orders must be computed due to a
lack of numerical accuracy. An additional goal for implementations is to compute
the first spatial derivatives of the Zernike polynomials, as they are required for
raytracing. Many recurrence relations have been derived to circumvent the prob-
lem and compute higher order Zernike polynomials while preserving numerical
accuracy and execution speed as much as possible [90, 269–271]. A notewor-
thy alternative to recurrence relations is mentioned in [72]: the computation of
higher orders can make use of the Fourier transform to improve the numerical
accuracy.

Andersen [78] has provided a recurrence relation that is both accurate and
efficient for the computation of Zernike polynomials and their first derivatives in
a cartesian coordinate system. He provided pseudo-code that makes the imple-
mentation straightforward. His work was implemented in OpticStudio 20.1 [100].

A.2.2 Implementation

We wrote our own implementation of Andersen’s work [78] in Common Lisp
and validated it against the established implementation in OpticStudio. We
give some formulae that allow generating Zernike polynomials using the same
conventions as in OpticStudio’s ”Zernike Standard Sag”.

A.2.2.1 Conventions Conversion

Given the coordinate system in Fig. A.1, Andersen’s pseudocode produces
Zernike polynomials and cartesian derivatives that are unit-normalized Eq. A.4,
and use a single-indexing that can also be found in [72]. One can work with
the single-index jAnd using Eqs. A.8 and A.9. Eqs. A.2 and A.3 still apply. By
applying the indexing conversion as well as the normalization term Eq. A.5,
one can obtain Zernike polynomials and derivatives exactly as computed in
OpticStudio.

jAnd =
n(n+ 2) +m

2
A.8

m = 2jAnd − n(n+ 2) A.9
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A.2.2.2 Validation methodology

We drew 2313 random coefficients using a uniform distribution in the interval
[−1, 1]. 100 random points in the unit disk were also drawn. We independently
evaluated the altitude, X derivative and Y derivative of the generated ”Zernike
Standard Sag” surface at each random point on the unit disk using either Zemax
13 SP1 EE Version April 4th, 20134 or our own implementation. We validated
our implementation using this method. Additionally, a visual check on the pro-
duced Zernike polynomials maps in Fig. 2.7 is also useful.

3231 coefficients is the maximum number of terms supported the ”Zernike Standard Sag”
surface type in OpticStudio for the version we used.

4We did not use the latest OpticStudio due to limited licence availability at Sophia Engi-
neering, this older version is sufficient for validation as long as the last decimals of accuracy
are not considered, as assessed by [78].
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Appendix B

Questions that come up
concerning aperture stops
in raytracing programs

B.1 Altitude across the aperture stop

When the aperture stop of an optical system is an iris diaphragm, such as is
often the case in photographic objectives, then there is no question as to where
the rays should cross on the surface: they cross on the aperture plane (Fig. B.1a).

One may however be left wondering what to do in the case where no me-
chanical diaphragm is present and the light cones in the system are limited
by an optical surface. What shape should the aperture stop surface have in
this case? Couldn’t we use a planar aperture stop at the apex of our optical
surface (Fig. B.1b)? Or with its outer limits aligned with those of the optical
surface (Fig. B.1c)? And what to do with more pathological freeform surfaces
(Fig. B.1d)?

Let us explore what would happen if we were to perform raytracing on a
planar aperture stop positioned on top of an optical surface. Geometrically, the
stop would in many cases cross the optical surface, with some portion of the
surface positioned behind the stop and the rest in front of it. This would happen
in every case for a S-shaped lens (Fig. B.1d) but let us look at a planar aperture
stop crossing a convex lens for the sake of simplicity. In sequential raytracing,
we have two options: the stop can be placed in the raytracing surfaces sequence
either before or after the optical surface we set it on, independently of the
geometry. When the stop is set logically before the surface (Fig. B.2a), the ray
bundles for the different fields cross at the aperture stop position before having
been affected by the refraction. When the stop is set after the surface (Fig. B.2b),
the ray bundles cross at the aperture stop after the refraction has been applied.
When tracing single rays, we then have four possible cases ( Figs. B.2c to B.2f)

219



Figure B.1: Different intuitions for setting the position of the aperture stop when a planar shape
is assumed.

(a) An aperture stop on a mechanical iris di-
aphragm after a lens. The ray bundles correspond-
ing to each field cross at the aperture stop sampling
points along the surface plane.

(b) A planar aperture stop positioned at the apex
of a convex lens.

(c) A planar aperture stop with its border aligned
to the outer limit of a convex lens.

(d) A planar aperture stop on a somewhat patho-
logical, but realistic, S-shaped surface.

?
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depending on whether the stop is before or after the surface in the raytracing
chain and geometrically along the ray. In every case, the ray-aiming is made to
work unambiguously: ray bundles from different fields cross at the points defined
by the aperture stop sampling on the planar stop surface, even though some rays
are virtual (Algs. 2 and 3). However, we see that the rays that exit the optical
surface after the refraction are necessarily different depending on whether we
choose to place the aperture stop before or after the surface in the raytracing
sequence. This makes little sense if we think about our optical system as being
real and not simulated: we have an aperture stop that is a physical object with
a fixed geometrical position and our simulation result is influenced by whether
we choose to locate our aperture stop in the object space of our optical surface
or in its image space.

Algorithm 2: Direct ray-
tracing sequence when the
stop is in the object space of
the optical surface.

1: Intersect with the stop.
2: Intersect with the surface.
3: Refract by the surface.

Algorithm 3: Direct ray-
tracing sequence when the
stop is in the image space of
the optical surface.

1: Intersect with the surface.
2: Refract by the surface.
3: Intersect with the stop.

The solution that was adopted by raytracing programs is to make the aper-
ture stop follow the altitude of the optical surfaces when they bear the stop
(Figs. B.3a and B.3b). This is, as far as we know, the only solution that makes
sense. The optical surface itself is the only physical object that is the intersection
between the object space and image space of itself. It is the only place where
the choice of raytracing space (object or image space of the optical surface) for
the aperture stop does not affect the resulting rays traced.1

B.2 Real optical system with aperture stop
across two raytracing spaces

We can imagine an optical system with an aperture stop position that would
make raytracing quite hard for sequential raytracing programs. An example of
such a system is given in Fig. B.4. In this system, the rays follow a different
raytracing sequence depending on their position in the aperture stop sampling.
We give the two different, complete, direct raytracing sequences in Algs. 4 and 5.

1We can think of esoteric systems where a physical iris is indeed across two raytracing
spaces (Appendix B.2).
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Figure B.2: Raytracing using a planar aperture stop crossing a convex optical surface in two cases:
stop placed before or after the surface in the raytracing chain.

(a) Raytracing with stop placed before the surface
in the raytracing.

(b) Raytracing with stop placed after the surface
in the raytracing.

(c) Raytracing a ray with the stop before the sur-
face in raytracing and before the surface geomet-
rically.

(d) Raytracing a ray with the stop after the surface
in raytracing and before the surface geometrically.

(e) Raytracing a ray with the stop before the sur-
face in raytracing and after the surface geometri-
cally.

(f) Raytracing a ray with the stop after the surface
in raytracing and after the surface geometrically.
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Figure B.3: An aperture stop positioned on the optical surface on two lenses.

(a) A convex lens.

(b) A s-shaped lens.

Figure B.4: A hypothetical gas lens with an iris diaphragm. The iris is the aperture stop of the
optical system. The rays belonging to the blue zone of the aperture stop follow a different raytracing
sequence than those belonging to the red zone. #1 and #2 denote the two air/gas interfaces.

airgas
iris

#1 #2
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Algorithm 4: Direct ray-
tracing sequence for the rays
in the blue (gas) zone of the
aperture stop in the hypo-
thetical gas lens system.

1: Intersect with the surface #1.
2: Refract by the surface #1.
3: Intersect with the aperture

stop surface.
4: Intersect with the surface #2.
5: Refract by the surface #2.

Algorithm 5: Direct ray-
tracing sequence for the rays
in the red (air) zone of the
aperture stop.

1: Intersect with the surface #1.
2: Refract by the surface #1.
3: Intersect with the surface #2.
4: Refract by the surface #2.
5: Intersect with the aperture

stop surface.
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Correcting Chromatic Aberrations in Imaging Systems”. In: International Journal of
Optics (Mar. 2014). doi: 10.1155/2014/351584.

[136] John R. Rogers. “Techniques and tools for obtaining symmetrical performance from
tilted-component systems”. In: Optical Engineering 39.7 (2000), pp. 1776–1787. doi:
10.1117/1.602557.

[137] Yi Zhong and Herbert Gross. “Initial system design method for non-rotationally sym-
metric systems based on Gaussian brackets and Nodal aberration theory”. In: Opt.
Express 25.9 (May 2017), pp. 10016–10030. doi: 10.1364/OE.25.010016.

[138] Lucimara Cristina et al. “Two-mirror telescope design with third-order coma insen-
sitive to decenter misalignment”. In: Opt. Express 21.6 (Mar. 2013), pp. 6851–6865.
doi: 10.1364/OE.21.006851.

[139] Jun Zhu et al. “Generating optical freeform surfaces considering both coordinates and
normals of discrete data points”. In: J. Opt. Soc. Am. A 31.11 (Nov. 2014), pp. 2401–
2408. doi: 10.1364/JOSAA.31.002401.

[140] Pablo Gimenez-Benitez et al. “Simultaneous multiple surface optical design method in
three dimensions”. In: Optical Engineering 43.7 (2004), pp. 1489–1502. doi: 10.1117/
1.1752918.
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tation Co-algorithm for Optimizing Optical Systems”. In: Proceedings of the Fourth
International Scientific Conference “Intelligent Information Technologies for Indus-
try” (IITI’19). Ed. by Sergey Kovalev et al. Cham: Springer International Publishing,
2020, pp. 476–486. isbn: 978-3-030-50097-9. doi: 10.1007/978-3-030-50097-9_48.
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