
HAL Id: tel-03880905
https://theses.hal.science/tel-03880905

Submitted on 1 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intégrité des réseaux de neurones : défenses contre les
exemples adverses et leur transférabilité

Rémi Bernhard

To cite this version:
Rémi Bernhard. Intégrité des réseaux de neurones : défenses contre les exemples adverses et leur
transférabilité. Autre. Université de Lyon, 2021. Français. �NNT : 2021LYSEM033�. �tel-03880905�

https://theses.hal.science/tel-03880905
https://hal.archives-ouvertes.fr

N°d’ordre NNT : 2021LYSEM033

THESE de DOCTORAT DE L’UNIVERSITE DE LYON
opérée au sein de

l’Ecole des Mines de Saint-Etienne

Ecole Doctorale N° 488
Sciences, Ingénierie, Santé

Spécialité de doctorat : Microélectronique
Discipline :

Sciences et technologies de l’information et de la communication

Soutenue publiquement/à huis clos le 30/11/2021, par :
Rémi Bernhard

Intégrité des réseaux de neurones :
défenses contre les exemples adverses

et leur transférabilité

Devant le jury composé de :

Mermillod, Martial Professeur des universités Université Grenoble-Alpes Président

Bouchara, Frédéric Maître de conférences Université de Toulon Rapporteur
Furon, Teddy Chargé de recherche hors classe INRIA RENNES Rapporteur
Rosenberger, Christophe Professeur des universités ENSICAEN Examinateur

Dutertre, Jean-Max Professeur des universités Ecole Nationale Supérieure des Mines de
Saint-Etienne Directeur de thèse
Moëllic, Pierre-Alain Ingénieur de recherche CEA-Leti Invité

ABSI Nabil MR Génie industriel CMP

AUGUSTO Vincent MR Génie industriel CIS

AVRIL Stéphane PR Mécanique et ingénierie CIS

BADEL Pierre PR Mécanique et ingénierie CIS

BALBO Flavien PR Informatique FAYOL

BASSEREAU Jean-François PR Sciences et génie des matériaux SMS

BATTON-HUBERT Mireille PR Mathématiques appliquées FAYOL

BEIGBEDER Michel MA Informatique FAYOL

BILAL Blayac DR Sciences et génie de l'environnement SPIN

BLAYAC Sylvain PR Microélectronique CMP

BOISSIER Olivier PR Informatique FAYOL

BONNEFOY Olivier PR Génie des Procédés SPIN

BORBELY Andras DR Sciences et génie des matériaux SMS

BOUCHER Xavier PR Génie Industriel FAYOL

BRUCHON Julien PR Mécanique et ingénierie SMS

CAMEIRAO Ana PR Génie des Procédés SPIN

CHRISTIEN Frédéric PR Science et génie des matériaux SMS

DAUZERE-PERES Stéphane PR Génie Industriel CMP

DEBAYLE Johan MR Sciences des Images et des Formes SPIN

DEGEORGE Jean-Michel MA Génie industriel Fayol

DELAFOSSE David PR Sciences et génie des matériaux SMS

DELORME Xavier PR Génie industriel FAYOL

DESRAYAUD Christophe PR Mécanique et ingénierie SMS

DJENIZIAN Thierry PR Science et génie des matériaux CMP

BERGER-DOUCE Sandrine PR Sciences de gestion FAYOL

DRAPIER Sylvain PR Mécanique et ingénierie SMS

DUTERTRE Jean-Max PR Microélectronique CMP

EL MRABET Nadia MA Microélectronique CMP

FAUCHEU Jenny MA Sciences et génie des matériaux SMS

FAVERGEON Loïc MR Génie des Procédés SPIN

FEILLET Dominique PR Génie Industriel CMP

FOREST Valérie PR Génie des Procédés CIS

FRACZKIEWICZ Anna DR Sciences et génie des matériaux SMS

GAVET Yann MA Sciences des Images et des Formes SPIN

GERINGER Jean MA Sciences et génie des matériaux CIS

GONDRAN Natacha MA Sciences et génie de l'environnement FAYOL

GONZALEZ FELIU Jesus MA Sciences économiques FAYOL

GRAILLOT Didier DR Sciences et génie de l'environnement SPIN

GRIMAUD Frederic EC Génie mathématiques et industriel FAYOL

GROSSEAU Philippe DR Génie des Procédés SPIN

GRUY Frédéric PR Génie des Procédés SPIN

HAN Woo-Suck MR Mécanique et ingénierie SMS

HERRI Jean Michel PR Génie des Procédés SPIN

ISMAILOVA Esma MC Microélectronique CMP

KERMOUCHE Guillaume PR Mécanique et Ingénierie SMS

KLOCKER Helmut DR Sciences et génie des matériaux SMS

LAFOREST Valérie DR Sciences et génie de l'environnement FAYOL

LERICHE Rodolphe DR Mécanique et ingénierie FAYOL

LIOTIER Pierre-Jacques MA Mécanique et ingénierie SMS

MEDINI Khaled EC Sciences et génie de l'environnement FAYOL

MOLIMARD Jérôme PR Mécanique et ingénierie CIS

MOULIN Nicolas MA Mécanique et ingénierie SMS

MOUTTE Jacques MR Génie des Procédés SPIN

NAVARRO Laurent MR Mécanique et ingénierie CIS

NEUBERT Gilles PR Génie industriel FAYOL

NIKOLOVSKI Jean-Pierre Ingénieur de recherche Mécanique et ingénierie CMP

O CONNOR Rodney Philip PR Microélectronique CMP

PICARD Gauthier PR Informatique FAYOL

PINOLI Jean Charles PR Sciences des Images et des Formes SPIN

POURCHEZ Jérémy DR Génie des Procédés CIS

ROUSSY Agnès MA Microélectronique CMP

SANAUR Sébastien MA Microélectronique CMP

SERRIS Eric IRD Génie des Procédés FAYOL

STOLARZ Jacques CR Sciences et génie des matériaux SMS

VALDIVIESO François PR Sciences et génie des matériaux SMS

VIRICELLE Jean Paul DR Génie des Procédés SPIN

WOLSKI Krzystof DR Sciences et génie des matériaux SMS

XIE Xiaolan PR Génie industriel CIS

YUGMA Gallian MR Génie industriel CMP

EMSE : Enseignants-chercheurs et chercheurs autorisés à diriger des thèses de doctorat (titulaires d’un doctorat d’État ou d’une HDR)

Spécialités doctorales Responsables :

SCIENCES ET GENIE DES MATERIAUX K. Wolski Directeur de recherche

MECANIQUE ET INGENIERIE S. Drapier, professeur

GENIE DES PROCEDES F. Gruy, Maître de recherche

SCIENCES DE LA TERRE B. Guy, Directeur de recherche

SCIENCES ET GENIE DE L’ENVIRONNEMENT V.Laforest, Directeur de recherche

Spécialités doctorales Responsables

MATHEMATIQUES APPLIQUEES M. Batton-Hubert

INFORMATIQUE O. Boissier, Professeur

SCIENCES DES IMAGES ET DES FORMES JC. Pinoli, Professeur

GENIE INDUSTRIEL N. Absi, Maitre de recherche

MICROELECTRONIQUE Ph. Lalevée, Professeur

M
is

e
à

jo
u

r
:

0
4

/0
2

/2
0

2
1

Remerciements

Dans un premier temps, je souhaite remercier Frédéric Bouchara ainsi que Teddy Furon d’avoir
accepté d’être les rapporteurs de cette thèse. Leurs conseils et commentaires à la fois avisés et
pertinents, qui ont fait suite à une lecture minutieuse de ce manuscrit, ont grandement contribué
à son amélioration.
Je tiens à remercier Martial Mermillod d’avoir présidé le jury de cette thèse. Son expérience en
psychologie et neurocognition, ainsi que sa force de proposition, ont permis une collaboration aussi
intéressante que fructueuse.
Enfin, je remercie Christophe Rosenberger pour son rôle d’examinateur dans le jury de thèse, ainsi
que pour ses commentaires judicieux lors de la soutenance.

Dans un second temps, je tiens à exprimer ma profonde gratitude envers Pierre-Alain Moëllic
et Jean-Max Dutertre, pour m’avoir encadré et accompagné durant ces trois années de thèse. Sans
leur présence à mes côtés tout au long de cette aventure, cette thèse n’aurait sans aucun doute pas
été aussi agréable à mener, tant en termes professionnels qu’en termes humains. Enfin, je dirais
qu’ils m’ont permis de grandir, dans le domaine de la recherche, mais aussi humainement.
Je remercie Pierre-Alain de m’avoir apporté sa vision globale de la sécurité algorithmique et
matérielle de l’apprentissage statistique. Ses conseils de recherche ont toujours été les bienvenus,
tant par leur pertinence que leur côté novateur. Son expérience m’a permis de prendre la hauteur
sur les différents enjeux, actuels et concrets, de notre domaine de recherche. Ses conseils en matière
de présentation orale, qui se sont révélés particulièrement pertinents, m’accompagneront tout au
long de mon expérience professionnelle. Surtout, je remercie Pierre-Alain pour sa bienveillance
sincère, sa bonne humeur, son optimisme, et toutes les autres qualités humaines qui font de lui
un encadrant d’exception. Chaque jour de cette thèse a été marquée par le plaisir de collaborer
avec lui. Pierre-Alain a su faire preuve de sincérité, d’honnêteté et de dévouement tout au long de
la thèse, et m’a transmis un état d’esprit positif qui m’a vraiment élevé humainement. Enfin, je
dirais qu’il a été une composante essentielle de la réussite de cette thèse.
Je remercie Jean-Max d’avoir été le directeur de cette thèse. Son expérience de la sécurité matérielle
m’a permis d’apprendre à connaître de nouveaux horizons de recherche. Son suivi constant et métic-
uleux de mon travail a été une composante essentielle de cette thèse. Ses remarques pertinentes
permettaient d’explorer des pistes toujours intéressantes. Ses relectures de mes différents travaux
ont été les plus complètes qu’il m’a été donné de voir, et je lui en suis très reconnaissant pour ça.
Jean-Max a aussi été une personne avec des qualités humaines incroyables, marqué par la bienveil-
lance et la bonne humeur. Les discussions avec lui ont toujours été enrichissantes et positives. Je
garderai de Jean-Max l’image de quelqu’un de sincèrement gentil, qui a à cœur de s’occuper des
étudiants.

Dans un troisième temps, je souhaite remercier toutes les personnes du laboratoire dans lequel
j’ai effectué cette thèse. Les enseignants chercheurs, tous passionnés par leur domaine, et toujours
heureux de partager leurs idées et connaissances. L’équipe administrative, toujours disponible et
pleine de bons conseils. Enfin, toute l’équipe de doctorants avec qui j’ai eu le plaisir de travailler
pendant ces trois ans. La solidarité, l’entraide et les conversations au sein du laboratoire, autour
d’un verre ou d’un repas vont me manquer. Je tiens aussi à remercier les chercheurs et doctorants
du Cea-Leti à Grenoble et de l’université de Grenoble-Alpes pour la collaboration fructueuse que
nous avons pu mener !

Enfin, je remercie ma famille et mes amis, qui me soutiennent depuis toujours, et sans qui je
n’en serai pas arrivé là.

3

Abstract

Adversarial examples refer to a type of attack where an adversary maliciously modifies some input,
in order to fool a model at inference time. In this thesis, we aim at better understanding the
vulnerability of neural networks to adversarial examples, and at developing efficient schemes to
thwart their transferability, one of their worrisome aspect.

Regarding the success of deep learning in various tasks, ranging from image classification to
speech recognition, there is a growing will to deploy neural networks models in the everyday life.
Whether these models are used in distant APIs or embedded on devices, adversarial examples
therefore constitute a threat to this deployment, and more generally to the integrity of machine
learning (ML) models. More particularly, in some use-cases such as autonomous driving, adversarial
examples constitute a major threat to the public safety.

Among the different aspects of adversarial attacks, the phenomenon of the transferability of
adversarial perturbations is particularly concerning, as it is a powerful tool for an adversary who
does not have a direct access to the target model (black-box setting). Indeed, an adversarial
example crafted on a substitute model can also fool another model. As the black-box setting is the
most common scenario for a threat model, studying and hindering transferability would therefore
allow to greatly enhance the security of machine learning models.

Relatively to our goals in this thesis, we begin by investigating at a frequency level the cause
for the vulnerability of models to adversarial attacks. More particularly, we find links between
robustness issues of different models and intrinsic frequencies properties of the data set considered.
Then, we conduct a study based on cognitive psychology results showing the prevailing importance
of low-frequency information in the human classification process. More precisely, we discover
conditions ensuring robustness for models enforced to rely on low-frequency information during
training.

Considering the will to deploy machine learning models in a large variety of hardware platforms,
quantization schemes are used to address memory footprint and inference time issues. In the sci-
entific literature, some works found quantization methods to provide robustness to models trained
with such schemes. To better investigate this phenomenon, we conduct a study of the robustness
of quantized models, considering various attack schemes and threat models. Contrary to some
existing works on the subject, we showed that quantization offers no robustness. More precisely,
we found that it induces a false sense of security via the phenomenon of gradient masking, which
render gradients useless to find adversarial examples. Interestingly, we noticed a poor transfer-
ability of adversarial perturbations between quantized models with different bitwidths, which we
explain with gradient and quantization related concerns. Moreover, we use these results as a basis
for the development of an ensemble-based defense scheme.

We then tackle the transferability phenomenon, at the core of this thesis. We develop an inno-
vative way to thwart the transferability of adversarial perturbations: the luring effect, implemented
on a substitute model, relatively to a target model. When crafting adversarial examples on his
substitute model, the adversary is lured into choosing some directions, which are not the directions
which should have been chosen to fool the target model. The luring effect is conceptually new
as it does not make the target model more robust, nor it implements a reactive scheme such as
purification. We characterize the luring effect with experiments highlighting how it leads to the
substitute and target models relying on different concepts (and thus displaying different vulnera-
bilities) to perform their predictions. Then, we show how the luring effect can be used in different
threat models.

Eventually, we highlight a link between integrity and availability attacks. In many use-cases,
the accuracy is not sufficient and a ML-based system requires the underlying model to output
confident predictions. We design a new attack method against the availability of a system. It
aims at making the underlying model output uncertain predictions, characterized as an example
by a doubt between many labels. Importantly, we show how such attack can be implemented by
leveraging the knowledge of adversarial examples crafting schemes.

4

Résumé

Les exemples adverses sont un type d’attaque où un adversaire modifie de manière malicieuse une
entrée pour tromper un modèle à lors de l’inférence. Le but de cette thèse est de mieux comprendre
la vulnérabilité des réseaux de neurones aux exemples adverses, et de développer des schémas de
défense efficaces pour contrer leur transférabilité.

Au vu du succès du deep learning lors de nombreuses tâches, de la classification d’images
à la reconnaissance de la voix, on observe une volonté croissante de déployer des modèles de
réseaux de neurones. Que ces modèles soient utilisés via des APIs distantes ou embarqués sur
divers appareils, les exemples adverses constituent donc une menace à ce déploiement, et plus
générélement à l’intégrité des modèles de machine learning. Plus particulièrement, ils peuvent
constituer une menace sérieuse à la sécurité des systèmes critiques (santé, transport, énergie, ...).

Parmi les différents aspects des attaques adverses, la transférabilité des perturbations adverses
est particulièrement préoccupante, car elle représente un outil puissant pour un adversaire sans
accès direct au modèle cible (scénario boîte noire). En effet, un exemple adverse élaboré sur un
modèle substitut peut arriver à tromper un autre modèle. Le scénario boîte noire étant le plus
commun, étudier la transférabilité est une considération de premier plan.

Au vu de ces objectifs, nous commençons par étudier au niveau fréquentiel les causes de la
vulnérabilité des modèles aux attaques adverses. Plus particulièrement, nous montrons des liens
entre la robustesse de modèles et des propriétés fréquentielles propres aux données avec lesquelles
ils ont été entrainés. Nous conduisons ensuite une étude qui se base sur des résultats en psychologie
cognitive qui montrent que les informations basses fréquences prévalent dans le système humain
de classification. Plus précisément, nous découvrons des conditions pour la robustesse de modèles
forcés à tirer parti d’informations dans les basses fréquences pendant la phase d’entrainement.

Considérant la volonté de déployer des modèles de machine learning, des méthodes de quantifi-
cation sont utilisées pour répondre aux problèmes d’espace mémoire et de rapidité à l’inférence.
Dans la littérature, certains travaux semblent montrer que la quantification peut apporter une cer-
taine robustesse. Pour mieux comprendre ce phénomène, nous réalisons une étude sur la robustesse
des modèles quantifiés, en considérant divers modèles de menace. Contrairement aux travaux exis-
tants, nous montrons que la quantification n’offre en réalité aucune robustesse. Plus précisément,
nous révélons que la quantification induit une fausse impression de sécurité via le phénomène de
gradient masking, qui rend les gradients non-pertinents pour trouver un exemple adverse. Nous
constatons une faible transférabilité des perturbations adverses entre des modèles quantifiés avec
différents niveaux de quantification, ce que nous expliquons en raisonnant sur la quantification et
les gradients. De plus, nous prenons ces résultats comme base d’une défense construite à partir
d’un ensemble de modèles.

Nous considérons ensuite le phénomène de transférabilité. Nous développons une manière nova-
trice de contrer la transférabilité de perturbations adverses: l’effet de leurrage, qui est implémenté
sur un modèle substitut relativement à un modèle cible. Lors de l’élaboration d’un exemple ad-
verse, l’adversaire est amené à choisir certaines directions, qui ne sont pas celles nécessaires pour
tromper le modèle cible. L’effet de leurrage est conceptuellement nouveau : il ne rend pas le
modèle cible plus robuste, ni n’implémente de méthode a posteriori comme la purification. Nous
caractérisons l’effet de leurrage, en montrant que les modèles cible et substitut ne se reposent pas
sur les mêmes concepts (et donc ne présentent pas les mêmes vulnérabilités). Enfin, nous montrons
comment l’effet de leurrage peut être utilisé dans différents scénarios de défense.

Finalement, nous mettons en lumière un lien entre attaques contre l’intégrité et attaques contre
la disponibilité. Dans beaucoup de cas d’usage, la précision n’est pas suffisante pour un système,
qui requiert aussi que le modèle sous-jacent renvoie des prédictions de confiance. Nous concevons
une nouvelles attaque contre la disponibilité d’un système. Elle vise à faire en sorte que le modèle
sous-jacent renvoie des prédictions incertaines, avec par exemple un doute entre des classes. Nous
montrons comment cette attaque peut être implémentée en tirant parti des méthodes d’élaboration
d’exemples adverses.

5

Integrity of neural networks:
defending against adversarial examples

and their transferability

Contents

1 Introduction 12
1.1 Context . 13

1.1.1 Ubiquitous Deep Learning . 13
1.1.2 Machine Learning on Embedded Devices . 13

1.2 Machine Learning under attack . 14
1.2.1 The rise of threats against Machine Learning 14
1.2.2 Adversarial examples and transferability . 14

1.3 Objectives and contributions . 15

2 Overview of the Security of Machine Learning 17
2.1 Attacks blueprint . 18

2.1.1 Machine learning pipeline . 18
2.1.2 Attacking at training-time . 19
2.1.3 Attacking at inference-time . 20

2.2 Training threats . 20
2.2.1 Data poisoning . 20
2.2.2 Backdoor attacks . 21

2.3 Inference threats . 22
2.3.1 Model Inversion . 22
2.3.2 Data extraction . 23
2.3.3 Model Stealing . 24
2.3.4 Membership Inference . 25
2.3.5 Adversarial Examples . 25

2.4 Confidentiality, Integrity and Availability . 26
2.5 General threat model . 27

2.5.1 Establishing a threat model . 28
2.6 Conclusion . 29

3 Notations, formalism and data sets 30
3.1 Miscellaneous . 31
3.2 Classification task for a neural network . 32

3.2.1 Inference process . 32
3.2.2 Training process . 32
3.2.3 Data sets . 33

4 Adversarial Examples against Neural Network Models 35
4.1 The phenomenon of adversarial examples . 36

4.1.1 Brief history of adversarial examples . 36
4.1.2 Digital and Real-World adversarial examples 37

4.2 Threat model for adversarial examples against neural networks 39
4.2.1 Adversary goal . 39
4.2.2 Adversary capacity . 39
4.2.3 Adversarial knowledge . 40

4.3 Why do adversarial examples exist? . 41
4.3.1 Early explanations . 41
4.3.2 Identifying sensitive features of neural network models 41

4.4 Attack methods . 47
4.4.1 White-box setting . 47
4.4.2 Black-box setting (score and decision-based attacks) 51

7

4.4.3 Black-box setting (transferability) . 54
4.5 Defense methods . 58

4.5.1 Overview . 58
4.5.2 Reactive methods . 58
4.5.3 Provable proactive methods . 59
4.5.4 Empirical proactive methods . 59

4.6 Conclusion . 64

5 Frequency Analysis of Adversarial Robustness 65
5.1 Motivation . 66
5.2 Neural network models and frequency concerns: state-of-the-art 67
5.3 Preliminaries . 67

5.3.1 Filtering with the Fourier transform . 67
5.3.2 Data sets and models . 68

5.4 Frequency properties of data and models . 70
5.4.1 Impact of filtered data sets . 70
5.4.2 Sensitivity to high spatial frequency noise 71

5.5 Transferability analysis . 72
5.6 Adversarial robustness of frequency-constrained models 74

5.6.1 Frequency-based regularization . 74
5.6.2 Training setup . 74
5.6.3 Robustness evaluation . 75
5.6.4 Influence of intrinsic frequency properties of the data bias on the level of

adversarial robustness . 75
5.6.5 Compatibility of frequency-based regularization with Adversarial Training . 76

5.7 Conclusion and future work . 77

6 Quantization for robustness and transferability for quantized models 80
6.1 Motivation . 81
6.2 Quantization of neural networks . 83

6.2.1 Post-training quantization . 83
6.2.2 Quantization aware training . 83

6.3 Robustness and quantization . 84
6.4 Evaluating the Robustness of Quantized Models . 85

6.4.1 Threat model . 85
6.4.2 Data sets and models . 86
6.4.3 Attack methods . 87
6.4.4 Evaluation metrics . 87

6.5 Robustness against gradient-based and gradient-free attacks 87
6.6 Black-box transfer attacks . 90
6.7 Ensemble of quantized models . 93

6.7.1 Motivation . 93
6.7.2 Results . 94

6.8 Conclusion and future work . 96
6.9 Appendix: Complete transferability results . 97

7 Luring of transferable adversarial perturbations 107
7.1 Motivation . 108
7.2 Luring Adversarial Perturbations . 109

7.2.1 Objectives and design . 109
7.2.2 Training the luring component . 110

7.3 Characterization of the luring effect . 111
7.3.1 Objective . 111
7.3.2 Data sets and models . 111
7.3.3 Attack setup and metrics . 115
7.3.4 Results and further analysis of the luring effect 115

7.4 Using the luring effect as a black-box defense . 118
7.4.1 Threat model . 118
7.4.2 Metrics . 119
7.4.3 Attacks . 119
7.4.4 Results . 120

8

7.4.5 Compatibility with ImageNet and Adversarial Training 121
7.4.6 Discussion and Related Work . 123

7.5 Using the luring effect as a gray-box defense . 124
7.5.1 Threat model . 125
7.5.2 Implementation . 125
7.5.3 Experiments of characterization . 126
7.5.4 Results as a defense . 128

7.6 Using the luring effect to detect the crafting process of adversarial examples 129
7.6.1 Threat model . 129
7.6.2 Attacks . 129
7.6.3 Baselines and metrics . 130
7.6.4 Results . 131

7.7 Conclusion and future work . 132

8 Leveraging adversarial attacks against the availability of a ML system 134
8.1 Motivation . 135
8.2 Availability of a ML-based system . 136
8.3 Attacks against a ML-based system . 136
8.4 Threat model . 137

8.4.1 Adversary goal . 137
8.4.2 Adversarial capacity and knowledge . 137

8.5 Uncertain Examples . 138
8.5.1 Relative Confidence Uncertainty Attack . 138
8.5.2 Overall Confidence Uncertainty Attack . 138

8.6 Experiments . 139
8.6.1 Data sets and models . 139
8.6.2 Uncertainty on standard examples . 139
8.6.3 Convergence of uncertain examples . 139
8.6.4 Impact on Adversarial Training . 141

8.7 Conclusion . 141

9 Conclusion 142
9.1 Contributions of the thesis . 143
9.2 General perspective . 143

A Résumé de la thèse 164
A.1 Introduction . 165

A.1.1 L’omniprésence du machine learning . 165
A.1.2 Machine learning et systèmes embarqués . 165
A.1.3 Les attaques contre le machine learning . 166

A.2 Objectifs et sommaire . 167
A.2.1 Objectifs de la thèse . 167
A.2.2 Sommaire . 167

A.3 Sécurité des modèles de machine learning . 168
A.3.1 Processus de développement d’un modèle 168
A.3.2 Attaques pendant l’entrainement . 168
A.3.3 Attaques pendant l’inférence . 169
A.3.4 Confidentialité, Intégrité et Disponibilité . 170

A.4 Résumé des contributions . 172
A.4.1 Positionnement et préliminaires . 172
A.4.2 Objectifs . 173
A.4.3 Analyse fréquentielle des perturbations adverses 173
A.4.4 Impact de la quantification sur la robustesse et la transférabilité 174
A.4.5 Leurrage de perturbations adverses transferées 175
A.4.6 Utilisation des perturbations adverses pour attaquer l’accessibilité d’un système177

A.5 Conclusion . 178
A.6 Perspectives . 178

9

Preamble

Fundings and Projects
This thesis is funded by CEA-Leti. Works are parts of research activities from several research
projects: European ECSEL project InSecTT1, the French program Investissements d’avenir (ANR-
10-AIRT-05, irtnanoelec) and ANR project PICTURE (AAPG2020)2. This work benefited from
the French Jean Zay supercomputer thanks to the AI dynamic access3.

Publications
The thesis, started in November 2018 and ending in November 2021, has led to the publication of
research articles, which we list below:

• Impact of low-bitwidth quantization on the adversarial robustness for embedded
neural networks
Rémi Bernhard, Pierre-Alain Moellic, Jean-Max Dutertre
(2019) IEEE International Conference on Cyberworlds
Code: https://gitlab.emse.fr/remi.bernhard/Quantization-and-Adversarial-Robu
stness

• Luring of transferable adversarial perturbations in the black-box paradigm
Rémi Bernhard, Pierre-Alain Moellic, Jean-Max Dutertre
(2021) IEEE International Joint Conference on Neural Networks (IJCNN)
Code: https://gitlab.emse.fr/remi.bernhard/Luring_Adversarial/

• Impact of Spatial Frequency Based Constraints on Adversarial Robustness
Rémi Bernhard, Pierre-Alain Moellic, Martial Mermillod, Yannick Bourrier, Romain Cohen-
det, Miguel Solinas, Marina Reyboz
(2021) IEEE International Joint Conference on Neural Networks (IJCNN)
Code: https://gitlab.emse.fr/remi.bernhard/Frequency_and_Robustness/

• A Review of Confidentiality Threats Against Embedded Neural Network Models
Raphaël Joud, Pierre-Alain Moellic, Rémi Bernhard, Jean-Baptiste Rigaud
(2021) Workshop on Wireless Intelligent Secure Trustable Things, IEEE 7th World Forum
on Internet of Things

• An Overview of Laser Injection against Embedded Neural Network Models
Mathieu Dumont, Pierre-Alain Moellic, Raphael Viera, Jean-Max Dutertre, Rémi Bernhard
(2021) Workshop on Wireless Intelligent Secure Trustable Things, IEEE 7th World Forum
on Internet of Things

Communications
All along the thesis, advances and results were presented in different venues, in order to foster
scientific advances in the field of the robustness of neural networks against adversarial examples:

• Luring of Transferable Adversarial Perturbations in the Black-Box Paradigm
(2021) Research Group ISIS (Information, Signal, Image and viSion), online

• Adversarial Robustness of Quantized Embedded Neural Networks
(2019) C&ESAR IA conference, Artificial Intelligence and Defense, Rennes, France

• Impact of Low-bitwidth Quantization on the Adversarial Robustness for Embed-
ded Neural Networks
(2019) Journée de la recherche, Centre de Microélectronique de Provence, Gardanne, France

• Security of Neural Networks: Attacks, Defenses and Evaluation methods
(2019) Journée de la recherche, Centre de Microélectronique de Provence, Gardanne, France

• Impact of Quantization for Embedded Neural Network Models on the Adversarial
Robustness
(2019) Journée thématique Sécurité, fiabilité et tesf de SoC 2 : challenges et opportunités
dans l’ère de l’Intelligence Artificielle, Paris, France

1www.insectt.eu
2https://picture-anr.cea.fr
3http://www.idris.fr/jean-zay/

10

https://gitlab.emse.fr/remi.bernhard/Quantization-and-Adversarial-Robustness
https://gitlab.emse.fr/remi.bernhard/Quantization-and-Adversarial-Robustness
https://gitlab.emse.fr/remi.bernhard/Luring_Adversarial/
https://gitlab.emse.fr/remi.bernhard/Frequency_and_Robustness/
www.insectt.eu
https://picture-anr.cea.fr
http://www.idris.fr/jean-zay/

Teaching activities
Along with the research activities, I provided students of the Ecole Nationale Supérieure des Mines
de Saint-Etienne with courses:

• Algorithms and programming. 2019-2020. Practical sessions. Junior students of the
engineering school.
Study and implementation of graph theory algorithms in C: Dijkstra, Bellman-Ford and
Chandy-Misra-Haas.

• Security of machine learning. 2018-2020. Practical sessions and lectures. Senior students
of the engineering school.
Overview of the existing threats against a machine learning model. Presentation of adversarial
examples, attack and defense schemes.

11

Chapter 1

Introduction

12

1.1 Context

1.1.1 Ubiquitous Deep Learning
In recent years, machine learning and more specifically deep learning, has revealed to be the
most efficient technique to achieve remarkable performances in various domains. Notably, deep
neural networks reach state-of-the-art results in image classification [1], image generation [2], real-
time object detection [3], speech recognition [4], speech synthesis [5] and text translation [6]. In
consequence, deep learning is employed in many and various application domains such as medical
diagnosis [7], recommendation systems [8], malware detection [9] or autonomous cars [10].

As an aftermath of this success, models are being more and more widespread in the everyday life.
On mobile phones, an ever greater number of applications make recurrent calls to distant servers
relying on a machine learning model. In addition, an increasing number of publicly available APIs
use deep learning, such as the Google Cloud Vision API1 or Clarifai2. Moreover, the use of machine
learning is not reserved to publicly available services. Indeed, deep learning plays an important
role in critical applications such as cybersecurity, transport, warfare or medical and healthcare.

In other words, machine learning will soon be omnipresent around us, included in systems
available to anyone, in private networks, or in state-owned institutions. Accordingly and reasonably,
security issues related to machine learning models become more and more studied, whether it
concerns the data at stake or the reliability of the models at use. As a response to these worries,
new laws are adopted. At the European scale, these security concerns are important inputs to
the New Regulatory Framework on Artificial Intelligence presented in April 20213. This initiative
has been taken in order to allow the European Union to both coordinate the efforts in Artificial
Intelligence (AI), and allow for a well defined and harmonized regulation among the European
countries. Notably, it encompasses a clear policy for “high-risk AI”. This type of AI refers for
example to systems relative to biometrics, responsible for judicial decision making, credit scores,
etc. This type of action will have to hinge on existing laws focusing on the privacy of data, such
as the GDPR (General Data Protection Regulation)4, which has taken effect since May 2018.

1.1.2 Machine Learning on Embedded Devices
Deployment of deep learning models

The actual development of Machine Learning is mainly focused on two objectives: (1) increasing the
performance of models for highly challenging tasks with an impressive growing of their complexity
(and their related data sets), as for the recent transformer models for natural language processing;
(2) the deployment of models in a large variety of devices and hardware platforms. This large-scale
deployment responds to two major concerns. The first one relates to the server capacity. Indeed,
scaling a server hosting a machine learning system raises quality and availability issues, such as
service interruption, that can be efficiently addressed by deploying the model on client embedded
devices. The second concern relates to the dependence to communication networks. When the
model is integrated in a device, it offers a better user experience, both in terms of practicality and
latency.

However, when considering a neural network based model, millions of parameters are involved.
In fact, the rise of deep learning follows the emergence of GPU (Graphics Processing Units) tech-
nology, which allows to train models way faster, notably by taking advantage of parallel computing.
Therefore, embedding a deep learning model on a device leads to practical issues. First of all, the
memory footprint can quickly be a limiting factor for constrained devices. For example, a typi-
cal ARM Cortex-M4-based microcontroller such as STM32F4 has up to 384 KBytes RAM and a
maximum of 2MBytes of Flash memory5. Secondly, inference cost in terms of energy is critical for
devices like mobile phones or a large variety of connected objects (e.g., industrial sensors). Thirdly,
inference speed is necessary to avoid critical latency issues.

Security consequences of models deployment

Regarding the security constraints which are emerging as machine learning models become more
and more ubiquitous, embedded models raise a first issue: it widens the surface attack for an

1https://cloud.google.com/vision/
2https://www.clarifai.com/
3https://digital-strategy.ec.europa.eu/en/library/communication-fostering-european-approach-artificial-

intelligence
4https://gdpr-info.eu/
5https://www.st.com/en/microcontrollers-microprocessors/stm32f4-series.html

13

adversary. Therefore, it will be harder to secure a deployed model than it would have been if it
was only available via queries to a distant server.

When the model is in a distant fashion, some characteristics of the model can be hidden, in
order to obfuscate critical information to weaken the adversary. For example, one may conceal the
machine learning technique used, so that the adversary has a restricted knowledge of the system to
attack. The information given by the model can also be obfuscated, for example by only outputting
the predicted label for a classification task.

When the model is an physical fashion, embedded in a device available to the adversary, it is
reasonably provided with more attack vectors than in a distant fashion. Notably, even if hard-
ware obfuscation methods are implemented, an adversary can exploit some flaws related to the
physical implementation. Therefore, there is a higher chance that the adversary manages to find
vulnerabilities than if the model was kept distant.

Moreover, considering a model used both in a distant and physical public fashion, the adversary
can take advantage of the vulnerabilities of the public version to mount an attack against the distant
system. By doing so, his attack is more powerful than if only the distant system was known.

1.2 Machine Learning under attack

1.2.1 The rise of threats against Machine Learning
Attacks against computer systems and more particularly information systems have been demon-
strated and studied for several decades, for example, with denial of service or intrusion attacks.
In recent years, many threats targeting directly a machine learning model have emerged. These
new attacks mean that numerous applications, ranging from mobile phone applications to military
ones, are now vulnerable to attack vectors related to the use of models. This poses a serious and
growing menace to the security of popular services as well as critical infrastructures.

Concretely, these new attacks can occur at every stage of the traditional Machine Learning
pipeline: during the training phase, when inputs are supplied to the model to train it, or during
the inference phase, when the model is queried to achieve its task. The goals of these attacks are
diverse. Firstly, they may be designed to strongly deteriorate the inference process of the model.
The goal of such attack is to fool the model by modifying inputs. In this case, the integrity of the
model is threatened. Secondly, some attacks aim at stealing information about a hidden model or
about data the model was trained with. This can concern some private data as medical or financial
ones, or the exact parameters of trained machine learning models. This last type of threat is thus
particularly concerning regarding privacy and intellectual properties. Thirdly, these attacks may
aim at threatening the availability of an overall system containing a machine learning model. The
availability is related to system’s requirements, such as the time to access it, or the overall quality
of the predictions given by the model.

Considering the danger caused by these new attacks, it appears urgent to develop reliable
defenses to counter them. Therefore, these threats are increasingly studied by both the AI and the
Security scientific communities with more and more joint efforts.

1.2.2 Adversarial examples and transferability
Adversarial examples

Among existing threats, the phenomenon of adversarial examples has received a particular at-
tention [11]. Adversarial examples consist of clean inputs which have been maliciously modified
to fool a model. For example, for a classification task, fooling the model means that the model
does not predict the same label for the original input and its modified version. Importantly, these
inputs are modified in such a way that humans are not influenced by them. This means that for a
classification task, the model outputs two different labels for a clean example and its adversarial
counterpart, while the human classifies them in the same category. This specificity indicates that
adversarial examples can be deployed in the real-world without arousing suspicion. For example, a
traffic road sign can be subtly modified, by adding some stickers on it with specific colors at specific
locations, so that it does not attract any attention. However, this real-world adversarial example
will be able to fool an autonomous car system based on a neural network model, as demonstrated
on a Tesla car (Hardware Pack 1 with a MobilEye camera system) by a MacAfee laboratory in
20206.

6https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-fo
r-autonomous-vehicles/

14

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/

Adversarial examples is actually the most studied threat among the one targeting machine
learning models, for two main reasons. The first one is that it concerns the most well-spread
scenario of a already deployed model that an adversary wants to attack. The second reason is
that it can have the most harmful consequences among the other threats relating to the effort this
attack requires. For example, one modified traffic sign can lead to a deadly motor vehicle accident.

Transferability

The phenomenon of transferability of adversarial examples strongly aggravates their dangerousness.
The transferability property means that an adversarial example crafted to fool a specific model can
be used to fool another one. Transferability is therefore a powerful tool for an adversary which does
not have access to a target model. Indeed, in this case, the adversary can train his own substitute
model, or use an already available model, to craft an adversarial example on it. In this case,
the process of crafting an adversarial example is the most favorable one, as no information of the
substitute model is hidden from the adversary. This adversarial example is then later transferred
to the model the adversary does not have access to, in order to fool it. Moreover, the transferability
of adversarial examples is even more dangerous that it exists between different machine learning
techniques [12] (e.g., from a SVM to a neural network), and for different domains [13].

With the growing deployment of models, the transferability phenomenon has an increasing
importance. Notably, for computer vision tasks, this is a common scenario that the same model is
used in the distant system and the public device. The adversary can then extract from the hardware
device useful information about the model, which will help him in the choice of his substitute model.
As an example, the adversary can leverage SCA (Side Channel Analysis), a method exploiting the
implementation of the model, to retrieve the architecture of a neural network [14].

1.3 Objectives and contributions
In this thesis, we focus on better understanding the nature of adversarial examples, how to thwart
them, notably how to impede their transferability. The motivation behind this research direction
is twofold. On one hand, adversarial examples is one of the actual major threats to deep learning.
Therefore, better understanding the root causes of their existence can bring fruitful intuition for
future efficient defense schemes. On another hand, transferability is a growing concern with the
deployment of embedded models, which represents an important topic for the upcoming activities
of the laboratory in which this work takes place7.

More precisely, to gain meaningful insight on the cause for vulnerability of a neural network
to adversarial examples, we are interested in making new connections between the robustness
to adversarial examples, and the way the human vision system processes frequencies. In order
to find methods to hinder the transferability of adversarial examples, we study what explains
the transferability phenomenon, to derive methods to reduce it. Moreover, regarding the actual
landscape of threats and the everyday scenario, we are interested in investigating how actual threats
can be linked to existing ones.

In chapter 2, we enter into details concerning the existing threats against a machine learning
model. Overall, this allows to better understand which are the scenarios and application domains
at stake. We present general concepts behind existing threats against confidentiality, integrity and
availability.

In chapter 4, we review the phenomenon of adversarial examples and their transferability,
for a neural network trained for an image classification task. Notably, we detail formally the
corresponding threat model, and give examples of both attack and defense schemes.

In chapter 5, we investigate the reasons which make a neural network vulnerable to adversarial
examples, while seeming benign for a human. More specifically, we tackle this topic at a frequency
level, by taking advantage of the fact that humans predominantly use low frequency information
to perform classification.

In chapter 6, to better evaluate the security risks induced by the large-scale machine learning
model deployment, we investigate the specific features of models learned with quantization methods
in regards of robustness against adversarial examples. Moreover, we investigate the impact of
quantization of the transferability of adversarial perturbations.

In chapter 7, we study in-depth the transferability phenomenon, and design an innovative way
of hindering the transferability of adversarial examples between two neural network models. This
novel concept can then be used in different defense scenarios.

7Secure Architectures and Systems Joint Research Team between CEA LETI and Mines Saint-Etienne

15

In chapter 8, we extend the scope of adversarial examples, i.e. attacks against integrity, to an
attack that aims at deteriorating the access to a system relying on a machine learning model, i.e.
an attack against the availability of a system. Notably, we formalize a new kind of threat against
availability, and show how to leverage adversarial perturbations to implement this attack.

16

Chapter 2

Overview of the Security of Machine
Learning

17

In this chapter, we present an overview of the existing attacks that may target a machine
learning model. This presentation is intended at laying out the landscape of existing threats, with
a high-level description of the concept for each threat, with illustrative examples.

First, we detail when threats may occur during the deployment process of a machine learning
model, and who may realize them by interfering in this process. For each type of existing attack, we
describe the underlying concept and present illustrative examples. Second, we explain how these
threats can be seen under the classical CIA triad (Confidentiality, Integrity, Availability), and
categorize them accordingly. Finally, we enter into details concerning the adversary by presenting
the general threat model. The threat model is a proper definition of what can be an adversary’s
goal, knowledge and capacities. The definition of a threat model is a compulsory step when
designing a defense, to formally characterize the adversary. Then, we explain how threat models
are established in practice. Notably, we explain how the threat model is strongly influenced by the
real-life use-case envisaged for the machine learning model.

Related publications proposed during the thesis:

• [15] Joud, R., Moellic, P. A., Bernhard, R., Rigaud, J. B. A Review of Confidentiality
Threats Against Embedded Neural Network Models. IEEE World Forum on Internet of Thing
(WF-IOT). 2021.

• [16] Dumont, M., Moellic, P. A., Viera, R., Dutertre, J.-M., Bernhard, R. An Overview of
Laser Injection against Embedded Neural Network Models. IEEE World Forum on Internet
of Thing (WF-IOT). 2021.

2.1 Attacks blueprint

2.1.1 Machine learning pipeline
Whatever the underlying algorithm chosen by practitioners, the development of every supervised
machine learning model follows the same process. The complete Machine Learning pipeline that
leads to a model deployment is illustrated in Figure 2.1. At the first stage, raw data is gath-
ered. This data may have been collected by sensors, which have been specifically set up for that
purpose, such as cameras, microphones, multimeter devices, etc. The data may come also from
already existing databases, which can be publicly available or private. The second stage consists
in preprocessing the data in order to build a data set used to train the model. The preprocess-
ing scheme is vast and covers numerous concerns. It goes from basic cleaning and formatting to
statistical investigation to solve problems such as multicollinearity and class-imbalance. The third
stage consists in performing the training phase of the model with the data set built in the previous
stage. This stage resumes to search for the best model in terms of generalization error. The fourth
stage is the deployment of the model in an overall system. The deployed model is now part of
a system, and completely operational. Importantly, the deployment of a machine learning model
can be a continuous process. For example, in online learning, new data is unceasingly obtained
and processed to refine the model parameters.

At each stage of this process, from the data collection process to the instant the system is put
into operation, different threats are feasible. A brief overview of the different types of attacks that
may occur during the machine learning pipeline is presented in Figure 2.2. As described in the
next sections, these threats vary relatively to what the adversary is allowed to perform depending
on the considered stage.

Data Collection

Available data

Sensor data

Data Preparation Model Training Model Deployment

Cleaning
Formatting
Statistical processing

Cloud APIs
Embedded devices

Classical training
Federated training
Online training

Figure 2.1: Complete machine learning pipeline. Different phases of the development of a model.

18

Inference phase

Training phase

Data poisoning
- inject corrupted data
- modify existing data

Backdoor attacks
- inject trapdoored data

(deployed model)
Adversarial examples
- maliciously examples

Model stealing
Model inversion
Data extraction
Membership inference
- malicious queries

(learned model)

Figure 2.2: Different ways of attacking a machine learning model pipeline.

2.1.2 Attacking at training-time
Training threats encompass all attacks that can be performed during the first, second and third
stage of the development of a model, as presented in Figure 2.1. The goal of such attacks is to
maliciously influence the training stage, in order to eventually have some specific influence on the
final model. This kind of threats thus relates to the modification of the training data set. There
are two main scenarios where such attack is feasible.

Firstly, it may occur when the training phase is outsourced on the cloud for example. In this
case, an adversary that manages to penetrate the system responsible for the training phase can
modify at will the training set, in order to mount an attack.

The second scenario, which takes place when the data gathering and preprocessing steps are kept
private, requires a more powerful adversary than in the previous scenario. Indeed, as the adversary
is supposed to be able to interfere during the training phase, it indicates that the adversary is one
of the stakeholders of the project dedicated to the development of the machine learning model.
Depending on his role, and the type of project, he may interfere in two different ways.

The first way is related to federated learning which designates a machine learning technique
where a model is trained in a decentralized way among different collaborative actors. Each actor
participates to the training phase with his own data, training a local model, and then sharing
model updates with other actors on a common server to update a global model, which then sends
updates to each participant. During this process, the data of each actor is not communicated
to the others actors, thus addressing privacy and confidentiality requirements. Considering the
privacy gains brought by such a method, federated learning is a well-spread process in various
critical domains, such as medical and healthcare or defense [17, 18]. With federated learning, the
adversary is therefore one of the collaborative actors, acting as a malicious participant. The main
characteristic of this scenario is that the adversary is limited to modify his own training data.
After performing the attack on his data, he will update his local model accordingly, and share the
compromised updates with other collaborative actors.

The second way is related to online learning. In this case, external users are requested (vol-
untarily or not) to provide meaningful data, which will be later used to fine-tune the model:
parameters of the model are continuously updated to allow it to be more efficient for future inputs.
For example, users are asked about the pertinence of the output of a recommendation system, to
be able to later provide them with more pertinent ones. The adversary can then be one of these
users, and provide false feedback on the recommendations.

These threat scenarios concern the poisoning attacks and backdoor attacks, which are detailed
in section 2.2.

19

2.1.3 Attacking at inference-time
Inference threats encompass all attacks that can be performed during the fourth (final) stage of the
development process of a model (cf. Figure 2.1.). The range of potential adversaries performing
this type of attack is therefore much wider than for training threats. Indeed, where it was limited
to actors having access to the training phase, it now involves every actor having access to the
deployed model.

Depending on the type of access, details about the machine learning model may be or not
available to the adversary. These details include the type of machine learning algorithm used,
knowledge of the model parameters, etc. The information that is available to an adversary is
strongly linked with the real-life scenario within which the machine learning model is deployed.
Considering an API relying on a machine learning model, everyone who is able to use this API
is a potential adversary. However, as it is often the case with distant APIs such as the Google
Cloud Vision API 1 or Clarifai2, internal details of the underlying models are not communicated.
Therefore, the adversary, which can be any user of this API, is limited to querying the API to
mount an attack. Considering a machine learning model implemented without obfuscation method
on a mobile device, the adversary can be any individual having access to the hardware platform
(e.g., a 32-bit microcontroller, a typical platform for many IoT domains), and internal details may
be easy to reverse engineer.

Relatively to the goal of an adversary, these threats, detailed in the next section, can be
divided into five types: model inversion attacks, data extraction attacks, model stealing attacks,
membership inference attacks and adversarial examples attacks.

2.2 Training threats
In this section, we present conceptually data poisoning and backdoor attacks at a high-level, and
present illustrative examples for each type of attack.

2.2.1 Data poisoning
Principle In order to deteriorate the quality of a deployed model, an adversary can mount a
data poisoning attack by either injecting new poisoned data in the data set used for training
the model, or maliciously modifying existing training data. Data poisoning attacks may aim
at decreasing the accuracy of the target model on specific test set examples [19, 20], or for the
whole test set [21–23]. In the latter case, the deployed model can therefore end to be particularly
not accurate, preventing it being used in a system. Indeed, if the model does not satisfy some
requirements in terms of task-based performances (e.g. accuracy), defined by requirements of the
system it is deployed in, it can be declared as unreliable. The availability of the system relying
on this model may then be compromised. Therefore, data poisoning attacks can be particularly
damaging in critical application domains such as healthcare, where the system is in charge of
managing decisive operations. In the former case, where specific examples are targeted, it allows
to fool a model on specific examples, and consequently severely harm the decision process of the
model. Indeed, when the model is responsible for identifying anomalies in a process, or detect
unauthorized users, data poisoning thus can make an anomaly fall between the cracks, or allow an
unauthorized user to bypass the detection system.

Examples Shahafi et al. [19] show that 50 poisoned examples are sufficient to mount an attack
on the CIFAR10 data set [24], which makes a model misclassify a specific target example, with
70% success rate. On the same data set, and without access to the target model, Zhu et al. [20]
show that, with only poisoning 1% of the training set, an adversary can mount an attack to make
the target model misclassify a test set example.
Biggio et al. [21] decrease by up to 15% the accuracy of a Support Vector Machine trained to
distinguish two classes of the MNIST data set [25], introducing only one poisoned example. [23]
shows that an adversary introducing 3% of poisoned data in the training set can make the test
set error increase by 11% for a sentiment analysis task [26]. Muñoz-González et al. [22] mount a
poisoning attack and show how it can increase the test set error on two data sets, RansomWare
[27] and SpamBase [28], for logistic regression, Adaline and a multilayer perceptron. Results are

1https://cloud.google.com/vision/
2https://www.clarifai.com/

20

presented in Figure 2.3. Notably, an adversary poisoning 15% of the training set manages to
increase the test error of a MLP by 25% on the RamsonWare data set.

Figure 2.3: Data poisoning attack results (from [22]). For two data sets and different machine
learning algorithms is presented the error induced on the test set by perturbing a portion of the
training set.

2.2.2 Backdoor attacks
Principle When the purpose of the attack is to trick the model into having specific behaviors
on some inputs, the adversary can mount a backdoor attack. The adversary intervenes at training
time to make the model behave particularly at inference time on inputs in which some specific
trigger is included. In order for the model to respond at these specific triggers at inference time,
the adversary must include in the training data so-called trapdoored input-label pairs. Trapdoored
inputs consist of clean inputs containing specific signals on which the model is trained to produce
a malicious behavior. This type of threat is particularly harmful for classification tasks for two
main reasons. First, by definition, it allows an adversary to precisely induce misclassification at
test time. Second, when the model is deployed, as long as no malicious input is given to the model,
its behavior seems standard. As an example, for a detection system, a model may be trained
for the classification task of distinguishing between benign and dangerous inputs. With backdoor
attacks, an adversary can simply include a trigger in an input to make the model classify it as
benign, and therefore bypassing detection. In the case of a user authentication system, this raises
severe security breaches, as an unauthorized user can access a guarded facility [29]. In the case of
classifying road signs, this can lead to harmful consequences [30].

Examples Gu et al. [30] perform a backdoor attack against a U.S. road sign detector, which
allows at inference that a simple sticker on a "stop" road sign makes the object detection model
to mistake it as a "speed limit" road sign. An illustration of the attack is proposed in Figure 2.4.
Turner et al. [31] propose a backdoor attack method where trapdoor input-label pairs do not raise
suspicion when examined by a human. Indeed, many trapdoor attacks require injecting malicious
trapdoor inputs with labels in the training set, where the label is inconsistent with the input [30],
and would thus easily be flagged as suspicious by a human. Liu et al. [32] take advantage of the
natural reflection phenomenon to create stealthy backdoor inputs. The malicious cue takes the

21

form of a reflection on the image. Eventually, Guo et al. [29] introduce a backdoor attack, which
allows an adversary to impersonate a authorized user, for a face recognition system.

Figure 2.4: Backdoor attack (from [30]). The clean image (left), the clean image with the trigger
(middle), and the resulting misclassification (right).

2.3 Inference threats
In this section, we present conceptually inference time attacks at a high-level, and present illustra-
tive examples for each type of attack.

2.3.1 Model Inversion
Principle Considering an already deployed model, the goal of the adversary may be to retrieve
hidden information about sensitive features of input data. To this end, he can leverage model
inversion attacks. Given some target sensitive information of an input sample, the adversary only
needs to be able to get the output response of the machine learning model, and/or already have
some auxiliary knowledge of some non-sensitive parts of the input data, to retrieve a very good
approximation of the target sensitive information. This type of attack constitutes a severe threat to
confidentiality and privacy, as a machine learning model may be trained on sensitive data to perform
some task, and then be released on the market. The sensitive-features may concern personal
privacy, such as information about the identity of a person, or some of his behaviors [33–38].

Examples Fredriskon et al. [37] consider a face recognition model, trained on the picture of
people under various conditions (exposure, brightness, with/without glasses, etc.) to predict their
names. With only the confidence scores corresponding to an input image, they show that an ad-
versary is able to recover a highly resembling image to the one of the input image (see Figure 2.5).
Zhao et al. [36] also target face models trained on face images. With the knowledge of the target
model outputs, as well as gradient-based explanation methods, an adversary can retrieve images
highly similar to the true ones. Fredrikson et al. [33] consider a linear regression model trained to
predict the dose of warfarin based on personal information. Given auxiliary knowledge of the input
data, as well as the predicted dose of warfarin, the authors manage to recover sensitive knowledge
about genetic markers. Zhang et al. [35] leverage a generative adversarial network (GAN), trained
with public available data related to the task the machine learning is trained for, to perform a
model inversion attack against a face recognition classifier. Given auxiliary knowledge in the form
of blurred, or masked input face images, the GAN is used to retrieve the sensitive features and
recover the entire input face images. Mehnaz et al. [34] show that an adversary can mount a model
inversion attack with high accuracy and precision to reveal personal privacy related information.
With the first data set used in the experiments, the General Social Survey (GSS) data set [39],
used to train models that predict the level of happiness of an individual in his marriage, an adver-
sary targets the input information "Have you watched X-rated movies in the last year ?", and the
proposed attack reaches 61% accuracy. With the second data set, the Adult data set [28], used to
train model that predict if an individual earns more than $50K a year, an adversary targets the
marital status of the individual, and the proposed attack reaches more than 70%.

22

Figure 2.5: Model inversion attack (from [37]). The clean input (left) and the retrieved image with
the model inversion attack (right).

2.3.2 Data extraction
Principle Given a deployed model, the adversary may want to retrieve exact parts of the data
the model was trained with. To do so, the adversary may leverage data extraction attacks. While
model inversion attacks allow to recover sensitive features of input data with high fidelity, even if
this data is not part of the training set, data extraction attacks allow to recover exact portions
of the training data. Data extraction attacks exploit the memorization phenomenon of machine
learning models that tend to memorize exact information of the training data. Memorization occurs
at an early stage of the training phase, and label memorization, for example, is needed for good
generalization [40]. Moreover, this overfitting is not a necessary consequence of memorization, as
language models, which do not exhibit overfitting, memorize exact text sequence of the training
data [41,42]. Data extraction attacks are therefore a threat to the privacy of information contained
in the training data.

Examples. Concerning personal data, Carlini et al. [41] show that machine learning tend to
memorize infrequent data encountered during training. Exploiting this phenomenon, they manage
to extract credit card numbers from a data set of emails sent between employees of the Enron
Corporation [43]. Also exploiting memorization, Carlini et al. [42] attack the GPT-2 language
model, trained on data scraped from the internet [44], and manage to extract the name, the phone
number, the fax number, and the physical address of individuals. An illustration of this attack is
presented in Figure 2.6.

Figure 2.6: Data extraction attack (from [42]). A particular query allows to retrieve the name, the
phone number, the fax number, and the physical address of some individual.

23

2.3.3 Model Stealing
Principle When the goal of an adversary is to reverse engineer a hidden machine learning model,
i.e. retrieve a hidden machine learning model with high fidelity, he can mount a model stealing
attack. This kind of threat is particularly concerning, for two reasons. On one hand, this raises
private property and copyright issues. Indeed, model stealing attacks allow to copy an existing
model without bearing the same costs as the model issuers, such as research and development costs
and training related expenses (some actual models come with hundred of millions of parameters
which have to be fine-tuned). An adversary can then either use a model for his own purpose
without paying for it, in case of the initial model usage was a paid service, or release his copy on
the market, causing intellectual property breaches and unfair competition. On another hand, model
stealing attacks ease the mounting of various types of attacks against a hidden model. Whether
the adversary wants to perform a model stealing attack, or a membership inference attack or craft
adversarial examples (these two last threats are presented thereafter), being able to have a more
detailed knowledge of the target model allows to mount more dangerous attack. Indeed, in the
case of the target model being hidden to the adversary, model stealing attacks allow him to obtain
a local substitute model on which he will fine-tune his attack. Once he has derived the best way to
perform some attacks, he can use it against the distant target model. To perform a model stealing
attack, the adversary can take advantage of a purely mathematical reasoning [45–47]. He can also
exploit leakages related to the physical implementation of a model with Side-Channel Analysis
(SCA) [14, 15, 48, 49], which denotes any kind of attack exploiting information collected from the
implementation of a system.

Examples Jagielski et al. [45] target a two-layer neural network model using the ReLU activation
function. Exploiting the way the ReLU function change sign, they manage to completely recover
weight values of the first layer of a model. The weights of the second layer can then be determined
algebraically. Carlini et al. [46] manage to mount a fast and precise model stealing attack by seeing
the model extraction as a cryptanalytic problem. Oh et al. [47] use a metamodel, which predicts
the attributes of the target hidden model by exploiting the responses of the target model to specific
inputs. Moreover, the metamodel is able to find meaningful input queries regarding the goal of
retrieving information about the target model.

Batina et al. [14] use SCA methods such as the Correlation Power Analysis (CPA) to exploit
electromagnetic emanations from an ARM Cortex-M3 microcontroller on which a neural network
model is implemented, in order to retrieve important information such as the activation functions
used, the number of layers and the weight values, as 32-bit floating point information. The setup of
the attack is presented in Figure 2.7. Maji et al. [48] also use SCA to exploit timing, electromagnetic
and power leakages to perform amodel stealing attack for models implemented on two very common
micro-processors (ATmega328P, ARM Cortex-M0+) and a RISC-V platform. Hua et al. [49] use
off-chip memory access information of a hardware accelerator to retrieve information about the
architecture and weights of a neural network model.

Figure 2.7: Setup of a model stealing attack based on side-channel analysis (from [14]).

24

2.3.4 Membership Inference
Principle In order to determine if a particular record of data was part or not of the training
set, an adversary can mount a membership inference attack. This type of threat can lead to severe
privacy disclosure. Indeed, knowing that an individual was part of the training set may reveal
sensitive information about him. As an example, a model may have been trained to predict some
medication dosage value based on samples of medical data of people suffering from a particular
disease. Considering a medical data sample, determining that this sample was used to train the
model implies that the person is suffering from the disease.

More generally, membership inference attacks are therefore a growing concern for machine
learning models related to private data, as the disclosure of this data can have highly undesirable
consequences on people’s lives. Specifically, medical and healthcare related models are particularly
threatened by the nature of the information needed to train these models [50]. Moreover, not only
the data used to train a specific target model can be under attack, but also the data used to train
a model that is later used via transfer learning to train the target model [51]. Consequently, as
transfer learning is a very widespread method, membership inference attacks have therefore a very
extended threat surface.

Examples Yeom et al. [52] establish a strong link between overfitting and the vulnerability of
machine learning models against membership inference attacks. Consequently, for many models,
an example well predicted may be sufficient to ascertain that is was part of the training set. Shokri
et al. [53] perform membership inference attacks for a classification task, which are based on the
confidence score vectors given by the target model. In fact, this attack is performed by training a
machine learning model for each class, which predicts if an example is part of the training set of
the target model, by taking as inputs the confidence score vector given by the target model. This
attack process is illustrated in Figure 2.8. Leino et al. [54] take advantage of the fact that a model
learns features which are only predictive of the training data. Considering an adversary having a
complete access to the target model, they mount a membership inference attack by investigating if
a model relies on such type of features. Sablayrolles et al. [55] derive formally the optimal strategy
to perform a membership inference attack, and show that the adversary only requires to have access
to the loss function value for the target example. Therefore, an adversary with limited information,
i.e. only able to access loss function values, is as powerful as an adversary having a complete access
to the target model. Choo et al. [56] show that, under the assumptions that the adversary knows
the target architecture and training setup, as well as data from the same distribution as the one
used to train the target model, an adversary can perform efficient membership inference attacks
by only having access to the output label.

Figure 2.8: Illustration of the attack process from [53]. From the confidence score of the target
model, and the ground-truth label of the record, the attack model predicts if the record was part
of the training set or not.

2.3.5 Adversarial Examples
Principle When the goal of the adversary is to fool the inference process of a machine learning
model, he can use adversarial examples attacks. This threat consists in maliciously modifying
a clean input, by adding an adversarial perturbation to it, in order to deceive the prediction of
a target model. Importantly, this adversarial perturbation has to be imperceptible or appear as
benign, in order not to raise suspicion from a human observer. The phenomenon of adversarial
examples arises from the fact that machine learning models leverage features different than those
used by humans when performing predictions [57]. Notably, models can rely on specific signals

25

in an image, to which humans are not sensitive to. Perturbing these features therefore allows an
adversary to efficiently fool a model in an inconspicuous way. As this type of attack allows to
trick a model into making an erroneous prediction for a specific input at inference time, it is a
menace to the integrity of the prediction scheme of a wide range of systems. As an example, an
adversary managing to include adversarial perturbations on fake glasses can bypass efficiently a
face recognition system [58]. Moreover, adversarial examples for images have been shown to be
feasible in real-world conditions, with various weather conditions and possible points of view [59].

Figure 2.9: Illustration of adversarial examples from [11]. Clean image classified as a "school
bus"(left), magnified adversarial perturbation (middle), and resulting adversarial example misclas-
sified by the target model as "ostrich" (right).

Examples Szegedy et al. [11] firstly introduce a method to craft adversarial examples against a
neural network model by searching for a small perturbation maximizing the classification loss. An
illustration of adversarial examples crafted with this method is proposed in Figure 2.9. Engstrom
et al. [60] show that an adversary can exploit malicious rotations and translations in an image
classification task to craft adversarial examples. Shamsabadi et al. [61] propose an attack method
where adversarial examples are crafted by identifying parts of an image, where color modification
does not raise suspicion, and subsequently maliciously modify their colors to fool a machine learning
model. Su et al. [62] leverage differential evolution strategies to craft adversarial examples by only
modifying one pixel in an image. Cheng et al. [63] show how to craft adversarial examples against
a classification model in a very limited setting when the adversary can only query the target model
and retrieve the final output label. Interestingly, Papernot et al. [64] introduce the phenomenon of
transferability, which constitutes a powerful tool for an adversary with a constrained access to the
target model. In fact, they show that an adversarial example crafted on a substitute (source) model
can fool another machine learning model (target). Importantly, the machine learning models do not
need to be of the same type (e.g. adversarial examples can be crafted on a support vector machine
and fool a neural network model) [12]. Therefore, an adversary can train his own substitute model,
craft adversarial examples on it, and transfer them to the target model, on which it would have
been more difficult to craft adversarial examples due to a limited access. In Chapter 4, we give a
detailed description of the phenomenon of adversarial examples.

2.4 Confidentiality, Integrity and Availability
There is an important distinction to be made for the threats presented above, whether they occur
during the training or the inference phases of a model. On one hand, the adversary’s goal is to
steal information about a model or the input, such as for model inversion, model stealing, and
membership inference attacks. On the other hand, the adversary’s goal is to tweak the behavior
of a model, as for data poisoning, backdoor attacks and adversarial examples attacks. On a higher
level, the goal of each of this category of attacks can be viewed under the CIA triad (Confidentiality,
Integrity and Availability) that is the classical paradigm in IT (Information Technology) security.
These three concepts enable to exhaustively cover the different aspects to be protected for an IT
system. Whenever an attack of any type succeeds against a system (e.g. data stealing, denial of
service, unauthorized access, etc.), this indicates that one or several of these three principles has
been violated. Figure 2.10 displays the different attacks linked with confidentiality, integrity or
availability.

Confidentiality refers to the ability to protect confidential or private data from unauthorized
access, in order to prevent a malicious disclosure of it. Private data may refer to confidential
personal data such as medical or financial records, as well as to data protected by intellectual

26

Fool the model

The output prediction is not
the expected one

- Adversarial examples
- Data poisoning
- Backdoor attacks

Critical cases:
Autonomous vehicles: "stop"
recognized as a "130 km/h"
Malware detection

Extract information

Steal data (medical, biometric, ...)
or model (architecture, weights, ...)

- Model stealing
- Model inversion
- Membership Inference
- Data extraction

Critical cases:
Healthcare sensitive data
Copyright issues

Make the system useless
Degrade access to the system
(access delay, memory consumption,
inference time, ...)

Figure 2.10: CIA (Confidentiality, Integrity, Availability) triad for machine learning models with
corresponding possible attacks.

property legislation, such as copyrights or patents. In the case of a machine learning model, the
confidentiality of sensitive information is either related to the data at stake or to the model in
itself. Relatively to their goals, attacks involving confidentiality threats are model inversion, data
extraction, membership inference or model stealing. For the first three attacks, the privacy of the
data is threatened, whereas for model stealing, the intellectual property can be stolen.

Integrity refers to the protection against any malicious modification that aim at compromising
the correct achievement of a task. When related to a machine learning model, integrity refers to
the integrity of the inference process. An adversary mounting an attack against the integrity of the
model targets its inference process, in that he aims at compromising the integrity of the output.
Backdoor attacks and adversarial examples are the attack methods reviewed previously, which aim
at targeting the integrity of a machine learning model.

Availability designates the ability to keep a system accessible to authorized users. The goal
of an adversary targeting the availability of a system is to prevent access to it, or significantly
degrade its quality, with respect to specific requirements. Importantly, availability attacks have
to be considered not in terms of a model only, but in terms of the overall system containing
the model, contrary to confidentiality and integrity. Indeed, as mentioned in [65]: “Availability
is however ill defined for a model in isolation but makes sense for the ML-based system as a
whole”. For example, considering latency requirements, the availability can be threatened with
denial of service attacks, which completely block the access to the system, or other attack methods
increasing the response time. Considering quality related requirements of a system, an adversary
can target memory constraints or processing time requirements. Task-based performance can also
be under attack, in order to jeopardize a reliable usage of a system containing a machine learning
model. As an example, the accuracy of a model can be at stake. In this case, attacks against
the availability of a system show a link with integrity attacks, but differ conceptually. Indeed,
in the case of a poisoning attack, or for adversarial examples, modifying the confidence scores
is a goal in itself to reduce the accuracy on specific examples. In the case of an attack against
availability focused on task-based performances, the final goal is to impact the behavior of the
system in which the model takes place. Data poisoning attacks targeting a loss of accuracy on all
examples is a form of attack against the availability of a system. Recently, Shumailov et al. [66,67]
introduced two availability oriented attack schemes. Sponge examples [66] increase the latency
and energy consumption of the inference for neural networks implemented on devices. With data
ordering attacks [67], an adversary can slow down the training process. These results have also
been demonstrated by Grosse et al. [68] who target the initialization of the weights by taking
advantage of some properties of the ReLU function.

2.5 General threat model
Considering any system, its security is relative to a certain type of attack performed by a specific
adversary. When designing a defense or an attack method, in order to properly evaluate its
efficiency, it is therefore a mandatory step to define both the objective of the adversary and his

27

range of action. Considering some malicious goals of an adversary against a machine learning
model, the threat model will detail at which step of the machine learning process (from training to
inference) the way the adversary interferes, as well as how he is allowed to interfere, and to what
extent. The adversary threat model is composed of three components: adversary goal, adversary
knowledge and adversary capacity.

Adversary goal

The adversary goal formally defines the objective of the adversary when attacking a machine
learning model. For example, the goal of an adversary performing membership inference attacks is
to find if a record was used as part of the training set. In the same way, the goal of a model stealing
attack can be to retrieve the precise architecture of a hidden neural network model. The goal of
adversarial example attacks is to fool the machine learning model inference process by crafting an
adversarial perturbation that is added to a clean input to form an adversarial example.

Adversary knowledge

The adversary knowledge specifies what the adversary is able to know about the model under
attack. For example, for a neural network model, an adversary may be in a complete white-box
setting, therefore being able to know everything about the model, i.e. its exact architecture, weights
values, the loss function used for the training phase, etc. In a more restrictive setting, such as a
gray-box or black-box setting, the adversary may not have access to the model, being only able to
query it to get output values. Moreover, depending on the setting, the output values the adversary
can retrieve may vary. In a classification task, he may be only able to retrieve the final predicted
class, or the confidence scores for the top three values. Reasonably, the more an adversary will
have an exhaustive knowledge of the model, the more he will be able to mount efficient attacks.

Adversarial examples attacks illustrate this claim well, notably by considering the ability of an
adversary to compute the gradients of a machine learning model to craft adversarial perturbations.
Indeed, an adversary in a white-box setting will be able to derive formally the gradients of the
loss used to train the model with respect to the input. This will allow him to compute precisely
the minimum adversarial perturbation needed to fool a model. On the contrary, if the adversary
is in a black-box setting, being able to query the target model but only retrieving the output
confidence scores, he will have for example to use estimates of these gradients, leading to less
optimal perturbations.

Adversary capacity

The adversary capacity simply sets a bound on the ability of the attacker to cause harm. For
some attacks, given some adversary goal and adversary knowledge, an unconstrained adversary
would result in an attack that would be both unrealistic and without possible way of countering it.
For example, in the case of adversarial examples, not defining a proper adversary capacity results
in an adversary which could simply modify weight values at test time to cause misclassification.
Such an adversary, able to modify the weights values at each inference, would be unstoppable
considering software defense schemes. Therefore, for adversarial examples, the mostly common
adversary capacity in the literature consists on a bound of the size of the adversarial perturbation
(e.g. considering the lp norm of the adversarial perturbation).

2.5.1 Establishing a threat model
Considering some target machine learning model and an adversary with a defined adversary goal,
the adversary capacity and adversary knowledge arise predominantly from real-life use-cases of the
target model. Firstly, the way of performing the training phase will allow an adversary to intervene
or not. When kept private, no training phase threat is reasonably feasible. When delegated to the
cloud or involving many participants, such as for federated learning, exposures to training time
attacks are widened. Secondly, the intended use of the model once deployed will greatly influence
the access to an adversary willing to perform inference time attacks, as it defines the way users can
interact with it. Therefore, depending on practical concerns regarding the training and inference
phases, the adversary capacity and adversary knowledge will be more or less constrained.

For example, considering a model trained to perform a classification task, and an adversary
willing to fool it with adversarial examples, the real-life scenario regarding its deployment will
strongly influence the adversary knowledge. If the model is made available through a private
API offering to query it and get the label output, the adversary knowledge resumes to the final

28

label only. The adversary does not know the machine learning algorithm used, and is thus in
a strong black-box setting. On the contrary, if the model is deployed on local devices such as
microcontrollers without any obfuscation scheme, the adversary is now in a complete white-box
setting, knowing all details about the machine learning models.

When developing an attack or defense scheme, it can also be very meaningful to consider a
strict threat model. On one hand, in the case of a defense scheme, considering an adversary in
a complete white-box setting allows to study the worst-case scenario for the defender, against an
adversary able to mount adaptive attacks. Demonstrating the efficiency of a defense scheme in this
setting justifies its validity for all possibles use-cases. On another hand, when developing an attack
method, considering a very restricted access to the target model allows to show its efficiency even
in hard black-box setting, where only very limited information is available to the adversary.

2.6 Conclusion
In this chapter, we have considered a general supervised machine learning model, and presented
the existing attacks that can target it. Precisely, we introduced the different specific features of
the deployment of a machine learning model, in order to better identify which type of adversary
can intervene at each moment of the machine learning pipeline. For each existing attack, whether
it requires acting at training or inference time, we detailed it at a conceptual level, describing its
principle, laying out some examples for each of them. We explained how these current threats
can be viewed under the CIA (Confidentiality, Integrity and Availability) triad. Eventually, we
specified the threat model, whose definition is mandatory when considering an attack or defense
scheme against a machine learning model.

In Chapter 4, we will detail in depth the adversarial examples phenomenon against neural
network models used for an image classification task, as it is the core subject of this thesis.

29

Chapter 3

Notations, formalism and data sets

30

3.1 Miscellaneous
The range of integers from N (included) to M (included) is denoted by JN,MK.
The cardinality of a set A is denoted by |A|.
Considering a condition D, the indicator function of D is denoted as :

1D =

{
1 if D is true
0 otherwise (3.1)

The sign function for a real value a is defined as follows:

sign(a) =

 1 if a > 0
−1 if a < 0
0 if a = 0

(3.2)

When applied to a vector, the result of the sign function is simply the vector of the sign function
applied to each component of this vector.
The Clip function for a real value a, designed to clip a between two values u and v (u < v), is
defined as follows:

Clip(a, u, v) = min(max(a, u), v) (3.3)

When applied to a vector, the result of the Clip function is simply the vector of the Clip function
applied to each component of this vector.
For a vector u ∈ Rd, ui denotes the component of u at index i ∈ J1, dK.
The lp norm of a vector u ∈ Rd for 0 < p <∞, denoted by ‖u‖p, corresponds to:

‖u‖p =

(
d∑
i=1

|ui|p
) 1

p

(3.4)

The l∞ norm of a vector u ∈ Rd, denoted by ‖u‖∞, corresponds to:

‖u‖∞ =
d

max
i=1
|ui| (3.5)

The l0 norm of a vector u ∈ Rd, denoted by ‖u‖0, corresponds to:

‖u‖0 =

d∑
i=1

1{ui 6=0} (3.6)

The lp ball of center c and radius r, corresponding to
{
u | ‖u− c‖p ≤ r

}
, is denoted by Bp(c, r).

Bp(r) simply denotes the lp ball of radius r centered at origin.
We denote by projBp(c,r)(u) the projection of a vector u onto the lp ball of center c and radius r.
Considering two vectors u and v, the dot product between these vectors is denoted as u · v.
The cosine similarity between u an v is denoted as follows:

cossim(u, v) =
u · v

‖u‖2 ‖v‖2
(3.7)

Considering a function f , such that:

f : Rd1 × Rd2 → Rd3

x1 × x2 7→ y

The gradient of the function f at point (x1, x2) with respect to the variable x1 is denoted as
∇x1

f(x1, x2). Considering two metric spaces (X, dx) and (Y, dy), a function f : X → Y is said
lipschitz continuous if there exists K > 0, such that ∀(x1, x2) ∈ X ×X:

dy(f(x1), f(x2)) ≤ K dx(x1, x2)

K is said to be a lipschitz constant of f .
Considering two discrete probability distributions p and q with support A, the cross entropy is
given by:

CE(p, q) = −
∑
a∈A

p(a) log q(a) (3.8)

31

The Kullback-Leibler divergence between p and q is given by:

KL (p‖q) =
∑
a∈A

p(a)
log p(a)

log q(a)
(3.9)

N (m,σ2) denotes the Gaussian distribution with mean m and standard deviation σ.
For a model trained for a classification task and a set of adversarial examples, the adversarial
accuracy denotes the accuracy of this model on the set of adversarial examples. For example, an
adversarial accuracy of 0.3 for a set of 100 adversarial examples crafted from 100 well-classified
examples means that the model still classifies well 30 of these adversarial examples.

3.2 Classification task for a neural network
We consider a classification task where the goal is to map each input from an input space X ⊂ Rd

to one of the K possible class labels from the label space Y = {1, 2, . . . ,K}. Importantly, for this
task, we suppose that input-label pairs (x, y) ∈ X ×Y are sampled independently from an unknown
probability distribution D.

3.2.1 Inference process
To solve this classification task, we consider a neural network model Mθ. For the sake of read-
ability, the notation θ for the model parameters is not mentioned in the following notations,
except when necessary. This model allows to assign to an input x ∈ X a confidence score to
each class, in the form of a confidence score vector F (x) = (F1(x), F2(x), . . . , FK(x)) ∈ [0, 1]K ,
where

∑K
c=1 Fc(x) = 1. The predicted label is then M(x) = argmaxi Fi(x). The function

F : X 7→ [0, 1]K is the score function of M . The logits, consisting of the output vector at the final
layer, without considering an activation function, is denoted by h(x) = (h1(x), h2(x), . . . , hK(x)).
The confidence score vector is obtained by applying the softmax function to the logits:

Fi(x) =
ehi(x)∑K
j=1 e

hj(x)
(3.10)

The output vector at the penultimate layer of a neural network model is denoted by g(x). This
vector corresponds to what is often called features in the deep learning literature such as [57]: the
logits are a linear combination of the values in g(x), and so the prediction of the model can be
seen as learning a linear classifier on these feature values. The pipeline for the prediction scheme
for an input x is summarized in Equation 3.11.

x ∈ X −→ · · · −→ g(x) −→ h(x) ∈ RK
softmax−−−−−→ F (x) ∈ [0, 1]K

argmax−−−−−→M(x) ∈ Y (3.11)

3.2.2 Training process
In order to perform the training phase of the model Mθ, it is needed to first define a cost function
L(x, y,Mθ) : X ×Y× [0, 1] 7→ R, which indicates how much the predicted label given byMθ fits the
ground-truth label y (the smaller the more accurate the model is). The objective of the training
phase of the model Mθ being to obtain a model minimizing the cost function for input-label pairs
(x, y) drawn from D, it thus consists in minimizing the error measured by E(x,y)∼D [L(x, y,Mθ)].
Therefore, the objective of the training phase ofMθ resumes to the following optimization problem:

min
θ

E(x,y)∼D [L(x, y,Mθ)] (3.12)

However, as the distribution D is unknown, the training phase of M is performed in practice by
minimizing the empirical error, which resumes to minimizing the cost function on the available
training set (x1, y1), (x2, y2), . . . (xn, yn). Practically, the training phase of Mθ therefore resumes
to the empirical risk minimization problem, given as:

min
θ

1

n

n∑
i=1

L(xi, yi,Mθ) (3.13)

In practice, as solving directly the empirical risk minimization problem given in Equation 3.13
is intractable, the Stochastic Gradient Descent (SGD) method is performed. SGD consists in

32

updating iteratively the parameters θ, by considering – at each step – a batch of samples of the
train set, instead of the whole train set. More precisely, at each iteration, a batch of B < n input-
label pairs is drawn, (x1, y1), (x2, y2), . . . (xB , yB), and the parameters are updated as follows:

θ ← θ − η 1

B

B∑
i=1

∇θL(xi, yi,Mθ) (3.14)

where η is the learning rate. After the model Mθ is trained using the train set, its performance is
evaluated on the test set, to assess its generalization capacity. The difference between the error on
the training set and the error on the test set is called the generalization gap.
For a classification task, a typical example of a cost function is the cross-entropy loss. Considering
an input-label pair (x, y), the cross-entropy loss measures the adequacy between the model confi-
dence score vector F (x) and the one-hot encoded vector version of y, denoted as yhot. The cross
entropy-loss is given by:

LCE(x, y,Mθ) = CE(yhot, F (x)) (3.15)

= −
K∑
c=1

1{c=y} log Fc(x) (3.16)

Considering a neural network model, we will use the term standard model to refer to a model
trained with the cross-entropy loss.

3.2.3 Data sets
Throughout this thesis, we will mention and use different classification data sets, which are common
data sets used in the adversarial examples literature. We present in this part all these data sets.

MNIST

The MNIST (Modified National Institute of Standards and Technology) data set [25] is composed
of grayscale images of handwritten digits, each image representing a digit from "0" to "9". The
task consists in attributing to each input image of a handwritten image the correct digit (label)
among the 10 possible. The train set and test set are composed of 60, 000 and 10, 000 image-label
pairs, respectively. Each image is of size 28 × 28. Sample images from the MNIST data set are
presented in Figure 3.1.

Figure 3.1: Sample images from the MNIST data set [25].

SVHN

The SVHN (Street View House Numbers) data set [69] is composed of real-world color images of
numbers taken from Google Street View images. Each image depicts one digit from "0" to "9".
The task consists in attributing to each input image of a handwritten digit the correct digit (label)
among the 10 possible. The train set and test set are composed of 73, 257 and 26, 032 image-label
pairs, respectively. Each color image is of size 32 × 32. Sample images from the SVHN data set
are presented in Figure 3.2.

CIFAR10 and CIFAR100

The CIFAR10 (Canadian Institute For Advanced Research) data set [24] is composed of real-world
images taken from the web. The task consists in classifying each image to one of the 10 possible
labels: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck. The train set and test set
are composed of 50, 000 and 10, 000 image-label pairs, respectively. Each image is of size 32× 32.

33

Figure 3.2: Sample images from the SVHN data set [69].

Sample images from the CIFAR10 data set are presented in Figure 3.3. The CIFAR100 data set is
a finer version of the CIFAR10 data set, consisting in the same images but with 100 classes instead
of 10.

Figure 3.3: Sample images from the CIFAR10 data set [24]. From left to right, the correct labels
are cat, plane, truck and horse.

ImageNet

The ImageNet data set [70] from the ILSVRC (ImageNet Large Scale Visual Recognition Challenge)
is a real-world large-scale data set. The task consists in classifying each image to one of the 1, 000
labels. In this thesis, we consider images cropped at size 224 × 224. The train set and test set
are composed of 1.2 million and 50, 000 image-label pairs, respectively. Sample images from the
ImageNet data set are presented in Figure 3.4.

Figure 3.4: Sample images from the ImageNet data set [70]. From left to right, the correct labels
are tree frog, barber chair and brown bear.

34

Chapter 4

Adversarial Examples against Neural
Network Models

35

In Chapter 2, we depicted the landscape of the existing threats that may target a general
machine learning model. In this chapter, we give an in-depth analysis of the phenomenon of adver-
sarial examples targeting specifically a neural network model, trained for an image classification
task.

We begin by presenting a succinct history of adversarial examples in the literature, which is an
ever growing concern in the scientific community. Then, in order to better position our work, we
focus on the difference between digital and real-world adversarial examples. Secondly, we proceed to
detail formally the threat model corresponding to adversarial examples targeting a neural network
model trained for an image classification task. Then, we review the main explanations which
have been given to analyze the vulnerability of neural network models to adversarial examples.
Eventually, we detail various methods that an adversary can use to craft adversarial examples, as
well as existing defense schemes. Notably, we present the transferability property, which is a core
subject of this thesis.

4.1 The phenomenon of adversarial examples
In this section, we commence by laying out a brief historical review of adversarial examples in the
scientific literature. Then, we distinguish between digital (pixel level) and physical (real-world)
adversarial examples. Although our work focuses on digital attacks, we give some illustrations of
real-world attacks. It allows to better embrace the whole attack surface of adversarial examples,
by depicting feasible attacks for every-day life systems.

4.1.1 Brief history of adversarial examples
The seminal work of Szegedy et al. [71] in 2013 is the first one recognized to have introduced the
vulnerability of neural network models to adversarial examples. It describes them as “counter-
intuitive properties” of neural network, misclassifying examples, which are “indistinguishable from
the regular examples”. It has to be noted that in 2013, a concomitant work from Biggio et al. [72]
also introduce “evasion attacks” against machine learning classifiers, as examples modified in order
to fool a classifier at inference time, but the notion of indistinguishability of the perturbation is
not at the core of this work.

In 2015, Goodfellow et al. [73] extended these works by introducing a very simple method to craft
adversarial examples against a neural network for an adversary in a white-box setting. From there,
the interest towards adversarial examples in the scientific community has grown exponentially,
resulting in an ever increasing number of papers submitted to top-tier conferences over the years.
Figure 4.1 illustrates this trend. On one hand, some works were interested in understanding
the root cause of this phenomenon. One another hand, some other works focused on developing
empirical defense and attack methods.

Figure 4.1: From Nicholas Carlini [74]. Number of adversarial examples related papers over the
years (extracted from Arxiv).

Regarding the latter type of articles, even if efficient empirical methods were found [75], a major
problem appeared: a large number of defense methods submitted to top conferences were defeated
quickly after because of a lack of sound evaluation methods [76–80]. In the face of this issue, the

36

community reasonably understood the need for rigorous adversarial robustness evaluations, for both
emerging attack and defense schemes. Consequently, there is an incentive nowadays to properly
define the threat model, and meticulously evaluate the robustness with adaptive adversaries [81,82],
in order to allow for more rigorous progress in the defense against adversarial examples.

Another type of progress relates to the type of adversarial perturbations, as well as the consid-
ered applications domains. First, research does not limit to the lp norm for the distance between
clean and adversarial examples, as introduced in the seminal work of Szegedy et al. and Goodfellow
et al. [71, 73], but has investigated other types of distances such as the Wasserstein distance [83],
and perturbations such as rotations and translation [60], color modification [61] and unrestricted
but localized perturbations [84]. Second, adversarial examples are not focused anymore only on
the image domain, and have spread to other domains such as times series or natural language
processing [85,86].

In parallel to these advances, efficient attack methods continue to be found [87], as well as
defense schemes to defend against them [88, 89]. Moreover, the underlying reasons behind the
sensitivity of neural networks to adversarial perturbations are increasingly understood [57,90]. Im-
portantly, along the line of empirical defenses are developed provable defenses, providing theoretical
guarantees of robustness [91,92].

4.1.2 Digital and Real-World adversarial examples
Initially focused on image classification tasks [71,73], adversarial examples have quickly spread to
many application domains, such as time series [85, 93], natural language processing [86, 94] and
speech recognition [95,96], and other learning paradigms such as reinforcement learning [97,98].

Whether this distinction between application domains is illustrative of the vast landscape cov-
ered by the threat of adversarial examples, a more important distinction can be made. This
distinction revolves around the level at which an adversarial example is considered in a system
involving neural networks. Indeed, for such system, adversarial examples can be discriminated
whether they occur directly in the digital (pixel) world or in the real (physical) world.

In the former case, adversarial perturbations are considered directly at the model’s pixel level
input. As an example, for a classification API, the adversary perturbs directly the digital image.
In the latter case, physical adversarial perturbations are implemented on real-world objects, and
will go through sensors before being digitized and fed as input to the model. Indeed, a system
may rely on sensors, such as cameras or microphones, being in charge of capturing real-world data
such as images, videos, audio samples, environment feedbacks, etc. and digitizing them according
to the neural network input format.

In the case of physical adversarial examples, supplementary considerations such as climate
variations or environment noises have to be taken into account. As an example, Athalye et al. [99]
show how to print 3D adversarial objects, which will fool a classifier under various camera distances,
lighting conditions, translations, rotations, and solid background colors.

Considering image neural network classifiers, Kurakin et al. [100] show that adversarial examples
printed on a sheet and then fed to a neural network classifier through a cell phone camera can
fool this classifier. Eykholt et al. [59] perform real-world adversarial attacks in the form of black
and white stickers added to real-world traffic road signs, which fool a neural network classifier
recording images at varying distances and angles of view. An illustration of this attack is given in
Figure 4.2. Sitawarin et al. [101] also propose a method to make advertising road signs, reasonably
rejected by the traffic road sign recognition pipeline, being classified as precise traffic road signs.
An example is presented in Figure 4.3. In the two works, it has to be noted that the adversarial
perturbation, although not imperceptible, is completely benign. Boloor et al. [102] manage to
deceive an autonomous car driving system by drawing adversarial black lines on the road, which
would be considered by a human as simple tread marks.

Against face-recognition systems, Sharif et al. [58] design adversarial pair of glasses, which when
worn by an individual, allows him to impersonate another individual or not to be detected by the
system. Zhou et al. [103] design a method for an adversary to fool a face-recognition system, which
consists in illuminating the adversary’s face with infrared light. The dispositive to diffuse infrared
light, composed of very small LEDs, can be hidden in a cap, or a wig. Importantly, as the infrared
light is not visible to humans, the infrared light on the face of the adversary does not raise any
suspicion. An illustration of this real-world adversarial device is proposed in Figure 4.4.

Considering object detection systems, Thys et al. [104] design an adversarial image, which
allows an individual not to be recognized as a person. An illustration of this attack is presented
in Figure 4.5.

37

Whether the adversarial examples considered are digital or physical, crafting them resumes to
algorithmic concerns related to neural network internals. The scope of this thesis is the digital
adversarial examples threat and we will focus on this type of attacks for the next sections of this
chapter.

Figure 4.2: Stop sign with adversarial
black and white stickers, recognized as a
"speed limit 45" road sign, from [59].

Figure 4.3: Clean advertising sign (left), rea-
sonably rejected by the traffic sign recognition
system, and its adversarial counterpart (right),
recognized as a "stop" road sign, from [101].

Figure 4.4: Physical-world infrared adversarial device from [103].

Figure 4.5: Physical attack against an individual detection system, from [104].

38

4.2 Threat model for adversarial examples against neural
networks

In this section, we define the threat model for an adversary wanting to craft digital adversarial
examples against a neural network model trained for an image classification task. This allows
notably to formally define adversarial examples.

4.2.1 Adversary goal
We consider a target neural network model Mθ, trained for a classification task. As previously
presented, adversarial examples, resulting of the malicious addition of an adversarial perturbation
to a clean example, are crafted with a twofold objective:

• An oracle O , such as a human, classifies in the same class the clean example and its adver-
sarial counterpart.

• The target model M classifies the adversarial example in another class than the one it clas-
sifies the clean example in.

Importantly, these two objectives do not require the clean example to be initially correctly
classified by the target model M , they simply require the adversarial perturbation not to raise
suspicion.

Targeted attacks

When the adversary wants the adversarial example to be misclassified towards a specific adversarial
label yt, the attack is described as targeted. Thus, the goal of the adversary is given by:

Find δ

s.t.
{
O(x+ δ) = O(x)
M(x+ δ) = yt

(4.1)

Untargeted attacks

When the adversary does not specify the adversarial label, the attack is described as untargeted.
Denoting O(x) the label given by the classification process of an oracle, the goal of the adversary
is thus given at a high level by:

Find δ

s.t.
{
O(x+ δ) = O(x)
M(x+ δ) 6= M(x)

(4.2)

4.2.2 Adversary capacity
In practice, the imperceptibility and benignness characteristics encompassed in the first constraint
of the problem given in Equations 4.1 or 4.2 can not be formally expressed. Therefore, in order to
account for this, a mathematical proxy D for this constraint has to be defined, where minimizing
this proxy leads to decreased suspiciousness of the adversarial perturbation. This proxy can then
be used to define the adversary capacity, which characterizes how much the adversary can alter the
clean example x to craft the adversarial example x′ = x + δ. The adversary capacity will in fact
set an upper bound ε on D(δ), under which the adversarial perturbation is considered not raising
suspicion. The adversary goal described in Equation 4.2 can then be rewritten as the optimization
problem given in Equation 4.3.

Find δ

s.t.
{
D(δ) ≤ ε
M(x+ δ) 6= M(x)

(4.3)

The same reasoning applies for Equation 4.1. In Equation 4.3, the proxy D stays a high-level
concept. In the vast majority of works, this proxy is related to the lp norm. More precisely, it
can be related to the l∞ norm [73], the l2 norm [105], the l1 norm [106] and the l0 norm [107].
In this case, as an example, the adversary capacity is then defined via an upper bound on ‖δ‖p.
Some other works have investigated the Wasserstein distance [83]. If the proxy used is relative to

39

translations and rotations [60], the capacity will consider maximum translations and angle values.
In case of localized perturbations such as color changes [61], the adversary capacity specifies which
regions of the image can be colored without appearing as unnatural.

Figure 4.6: Illustration of the adversary capacity in the white and black-box settings, from [108].
In the black-box setting, the attacker may only access to the outputs of the model with different
levels of precision (logits, confidence score vector, labels).

4.2.3 Adversarial knowledge
The degree to which the adversary has access to the target model strongly influences his ability to
craft adversarial examples against it.

White-box setting. The adversary has a total access to the target model M . He knows the
architecture, the parameters values and the cost function L the model has been trained with.
Importantly, this complete knowledge grants him the ability to compute partial derivatives of L,
the score function F , the logits function h, and any output function at a hidden layer. This allows
him to quantify precisely the variations of these functions with respect to input variations, which is
very valuable relatively to his goal. Notably in a white-box setting, the adversary can use so-called
gradient-based attacks, which are characterized by the ability to derive formally partial derivatives.
It is described in more details in Section 4.4.1. Moreover, in a white-box setting no limitation is
generally assumed on the number of queries the adversary can make to the target model. The
white-box is relative to a worst-case adversary. Notably, when implementing a defense scheme
intended at protecting a model against adversarial examples, considering that the adversary also
knows the details about the defense scheme allows to ensure that this scheme is efficient against
adaptive attacks which are the most powerful feasible attacks.

Black-box setting. The adversary can not compute partial derivatives, which constitutes the
main difference with the white-box setting. Depending on the information obstruction the adversary
faces, many shades of black-box setting exist. In an extreme case, the adversary can only have
access to the label output M(x) for an input x. In other cases, only the confidence score vector
F (x) or the logits h(x) is available. The adversary can not use gradient-based attacks, as he can not
derive partial derivatives. In order to craft adversarial examples, the adversary can therefore rely
on decision-based or score-based attacks, in the case of an access only toM(x) or F (x), respectively.
Details about this type of attack will be presented in Section 4.4.2. Moreover, the adversary may
be limited in terms of number of queries. Indeed, when attacking a distant model, each query
may be tariffed, and too many queries may also raise suspicion. Instead of using decision-based or
score-based attacks, which may be very expensive in terms of computation, the adversary can rely
on the transferability phenomenon, detailed in Section 4.4.3. To take advantage of transferability,
the adversary needs to train a substitute model, i.e. a model trained for the same classification task
as M . Moreover, the closer the substitute model to the target model M in terms of architecture,
the better the transferability. Depending on the specificities of the black-box setting, data from the
same distribution D as the one used to train M is available to him or not, as well as the knowledge
of the architecture of M .

A high-level summary of the adversary knowledge is proposed in Figure 4.6. Differences between
white-box and black-box settings are also detailed in Table 4.1.

40

Table 4.1: Knowledge of the adversary depending on the white-box or black-box setting. The sign
∼ means that the knowledge may vary depending on the tightness of the black-box setting.

Available knowledge of Mθ White-box Black-box

Gradients X X

Predicted label M(x) X X

Confidence score vector F (x) X ∼
Logits h(x) X ∼
Architecture X ∼
Data from D X ∼

4.3 Why do adversarial examples exist?
We defined precisely the threat model corresponding to adversarial examples, where an adversary
wants to fool a neural network model trained for an image classification task, while the adversarial
perturbation remains benign or imperceptible. This last specificity raises an important point. The
feasibility of adversarial examples attacks arises from humans and neural networks not performing
image classification in the same way. In this section, we review the main works that aim at
explaining this difference, notably the reasons behind the vulnerability of neural network models
to adversarial examples.

4.3.1 Early explanations
The first works concerning the origin of adversarial examples explain this phenomenon either as
relatively to the distribution of adversarial examples in the input space, or relatively to specificities
of the model decision boundary. These investigations are characterized by a low-level appreciation
of the problem. They are independent from considerations relative to the high-level concepts
learned by the model, specifically the difference of these concepts with the concepts humans rely
on to perform classification.

The first explanation was proposed by Szegedy et al. [11], which argue that adversarial examples,
while being close to training set examples in the input space, are in fact located in low-probability
pockets of the input space. During the training phase, the model would then not learn to classify
them correctly.

Then, Goodfellow et al. [73], hypothesize that the local linear nature of neural networks is at
the root of their vulnerability to adversarial examples. The authors explain that given a clean
example x and a small perturbation ε to x (x′ = x+ ε), if the model score function F is linear in
x (i.e F (x) = w · x), then ε can mean a great perturbation as we have now F (x′) = w · x + w · ε.
The increase is accentuated as the dimensionality increases.

Tanay et al. [109] give a geometric explanation: the more the manifold of the data the classifier is
trained on is tilted with respect to the classifier decision hyperplane, the smaller the perturbations
needed to craft adversarial examples. More precisely, the more a model decision boundary is tilted
in the direction of low variance in the data, the smaller the size of perturbations needed to craft
adversarial examples. Meng et al. [110] make the hypothesis that adversarial examples do not lie
on the same manifold as normal examples, while still being close to it. This hypothesis has lead to
many defense schemes intended at projecting back adversarial examples on the clean data manifold
at inference time, before feeding them to the target model to get the label output [111,112].

4.3.2 Identifying sensitive features of neural network models
A more recent line of work is interested in identifying the features neural networks are sensitive
to. By comparing them to the ones humans are relying on, it helps to explain the vulnerability of
models to adversarial examples.

41

Convolutional Neural Networks are biased towards texture

Geirhos et al. [113] show with experiments that Convolutional Neural Networks (CNN) trained on
ImageNet tend to rely predominantly on local features such as textures rather than global shapes.
On the contrary, humans leverage to a lesser extent textures but rather use various global clues
such as silhouettes and edges. An illustration of this phenomenon is presented in Figure 4.7.

Figure 4.7: Accuracy of humans and models trained on Imagenet on standard and modified images.
From left to right images, standard images, grayscale images, silhouette images, edge images and
texture images, from [113]. Models seem to rely predominantly on texture to perform classification.

A stylized version of ImageNet is generated with style-transfer in order only to keep shape
components: for each image is generated many stylized versions of it such as the shape of the
object is conserved while texture varies from one stylized version to another. A CNN classifier
trained on this stylized version of ImageNet is shown to rely more on global shape features than
a CNN classifier trained on the original ImageNet data set, and performs well on the natural
(unmodified) test set. Moreover, the CNN classifier trained on the stylized version of ImageNet is
more robust to texture perturbations.

Robust Convolutional Neural Networks rely more on shape and contour

Zhang et al. [114] perform several experiments to analyze the concepts on which a CNN model
trained with Adversarial Training (a defense scheme intended at making a model more robust
against adversarial examples, see Section 4.5.4) relies to perform prediction. The three different
concepts considered are shape, contour and texture. To isolate a concept from the two others,
three transformations are used:

• Stylizing consists in changing the style of an image (with style-transfer), it preserves the
shape while destructing textures

• Saturation preserves the contours while destructing the textures

• Patch-shuffling k×k splits the image into k×k parts and shuffles them, it preserves textures
while destructing shape.

For each of this three transformations, a data set is generated from the natural one with data
augmentation. This allows to separate the concepts models rely on. Indeed, a model showing a
little accuracy decrease when evaluated on the stylized data set and a big accuracy decrease when
evaluated on the patch-shuffled data set is very likely to rely on the shapes of the images, and not
on local textures.

On CIFAR10, Tiny ImageNet (downsized version of ImageNet to size 64× 64) and Caltech-256
data sets [115] several CNN models are trained with Adversarial Training, as well as a model trained
in the standard way. First, sensitivity maps for the three transformations and all CNNs models
are investigated. A sensitivity map here refers to a visualization of the sensitivity of the confidence
score for the predicted class to variations of the inputs. The sensitivity maps for adversarially
trained CNNs clearly keep shape and contour information, while those for the classical CNN are
very noisy. An illustration of this phenomenon is presented in Figure 4.8.

Second, adversarially trained CNNs show higher accuracy than the classical model on the
stylized data set. Also, adversarially trained CNNs evaluated on the saturated data set show a
smaller accuracy drop when the saturation level increases than the classical model (the more robust
the adversarially trained CNN is, the smaller this drop).

42

Finally, adversarially trained CNNs evaluated on the k × k patch-shuffled data set show a
bigger accuracy drop when k increases (when k equals 8 all models have a 0% accuracy as too
much information is lost).

Figure 4.8: Sensitivity maps of different models on a standard image (top row), saturated image
to keep contour (middle row) and stylized image to keep shape (bottom row). From left to right,
standard model, underfitting model and model trained with Adversarial Training, from [114]. The
sensitivity maps for standard models are more noisy than the ones for the model trained with
Adversarial Training, more focused on shape and contours.

These experiments show that adversarially trained CNNs rely more on shape and contour
information and less on texture, and classical models rely more on textures information than
shape.

Moreover, experiments with frequency filters on Caltech-256 show that classical CNNs show
equally poor accuracy (around 16%) when evaluated on data set filtered with low-pass or high-pass
filters, and an adversarially trained CNN shows poor accuracy when evaluated on data set filtered
with high-pass filter but quite good (around 71%) when evaluated on data set filtered with low-
pass filter. This may be an indication than adversarially trained CNNs rely more on low-frequency
features (textures is a high frequency features while shape is considered a low frequency feature).

Fourier analysis of robustness

Yin et al. [90] suggest that the robustness of a classifier to some perturbations depends on the
frequency of these perturbations and the frequency of the features the classifier relies on to perform
prediction. Experiments are performed to support this idea and illustrate its consequences.

Firstly, a standard model trained on ImageNet achieves 50% accuracy on data preprocessed
with the use of a high-pass filter (only high frequencies components are kept). The high frequencies
components kept correspond to frequencies invisible to the human eye. This indicates that among
all the statistics (a statistic can be color, texture, shape, etc.) that describe the relation between the
input and target of the classification task, the classifier may have learned to rely on some of them
which are not meaningful to humans. This standard model also achieves above 30% accuracy on
low-pass filtered images consisting of indistinguishable colored shapes. An illustration is presented
in Figure 4.9.

Secondly, experiments show that models trained with Adversarial Training and gaussian data
augmentation become less sensitive to high-frequency perturbations but more sensitive to low-
frequency ones. This indicates that these two techniques make the models rely more on low-
frequency information. For example, a model trained with gaussian data augmentation will be
more robust to high-frequency perturbations such as snow, random noise, etc. but less robust to
low-frequency perturbations such as fog and contrast. Similarly, an adversarially trained model
has poorer performances when considering the fog perturbation than a naturally trained model.
However, adding low-frequency information during training does not improve robustness to low-
frequency perturbations. The authors hypothesize that as natural images are more concentrated
in the low frequencies, it is harder for the model to become unaware of low-frequency information
(thus low-frequency perturbations).

Thirdly, training a model with various perturbation types induce a better robustness, compared
to standard and adversarially trained models.

43

Fourthly, as Adversarial Training makes a model focus more on low-frequency information,
adversarial examples crafted on an adversarially trained model tend to present more low-frequency
components than for a standard model. This indicates that adversarial examples are not only
related to high-frequency components and this explains the failure of defenses relying on high-
frequency filtering (JPEG compression for example).

Figure 4.9: Accuracy of a model trained on ImageNet on low-pass and high-pass filtered images,
with different filtering intensities, from [90]. The model shows good accuracy even on images that
are unrecognizable for humans.

In Chapter 5, we will study the frequency nature of adversarial examples. Notably, we will
show that enforcing a model to leverage low frequency information can bring robustness to a
model if some conditions are satisfied. Among these conditions, we identify the localization of
the information in the frequency spectrum, as well as other factors such as the sensitivity to high
frequency noise.

Generalization and frequencies

Wang et al. [116] study experimentally the link between the generalization capacity of neural
networks and the fact that they rely, or not, on high-frequency components.

Firstly, it is shown that models rely on high-frequency components which are not interpretable
by humans, by looking at the recognition accuracy on low-frequency and high-frequency filtered
images. Then, it is shown that low-frequency components allow for a better generalization for
a correctly labeled data set. Indeed, experiments show that models trained on low-frequency
filtered images show higher accuracy on the natural test set than models trained on high-frequency
filtered images, meaning that low-frequency components allow for better generalization. On the
contrary, models trained on the same data set but with shuffled labels are shown to rely almost
equivalently on low-frequency and high-frequency components. The authors claim that this arises
from low-frequency components being better aligned with human labels perception.

Secondly, experiments study the influence of different factors. Experiments show that model
trained with smaller batch sizes correlate with smaller generalization gaps, and also with invariance
to high-frequency components. This agrees with the fact that low-frequency components allow
for better generalization. Also, adversarially trained models show invariance to high-frequency
components.

Thirdly, experiments study the relation between smoothness of convolution kernels at the input
and frequency. Recall that the smoother the convolution kernels at the input, the more the model
will ignore high-frequency components. Experiments show that adversarially trained models have
smoother convolution kernels than naturally trained ones. However, smoothing convolution kernels
only allow for a small robustness increase for naturally trained models, and almost no robustness
increase for adversarially trained models.

44

Intepretability of saliency maps and robustness to adversarial examples

Etmann et al. [117] investigate the relation between the robustness to adversarial examples and the
interpretability of the saliency maps. Recall that considering an input space of dimension d = n2

(for input images of size n× n for example), the saliency map is the matrix

S(x) = [∇xiFm(x)]i∈Ji,dK

where Fm(x) is the maximum value of the confidence score vector F (x). The interpretability of
the saliency map is represented by the alignment of the saliency map with the input as:

α(x) =
|x · S(x)|
‖S(x)‖2

The robustness of a model is defined as ρ(x) = infε {‖ε‖2 |M(x+ ε) 6= M(x)}. Note that this
definition of robustness does not require x to be well-classified by the model.

The authors show that for a linear classifier the robustness to adversarial examples and the
alignment of the saliency map with the input coincide. For non-linear classifiers, experiments show
that this is still verified on average, not necessarily for individual points. Eventually, the more
linear the model is locally, the more the relation between robustness and alignment holds.

Kaur et al. [118] also notice experimentally that robust models tend to have gradients that
are aligned with the human perception. Indeed, an adversarial example x′ from a clean example
x targeted towards label yt is crafted with a large perturbation budget on a standard model, a
model trained with Adversarial Training (see Section 4.5.4), and a model trained with Randomized
Smoothing (see Section 4.5.3). For the two robust models, the adversarial example x′ looks like
a clean example classified in class yt, whereas for the standard model, it simply looks like the
example x with noisy patterns.

Robust models exploit high-level interpretable features

Engstrom et al. [119] show that robust models (here models trained to be robust against adversarial
examples with Adversarial Training) learn representations which are more interpretable by humans.
A representation that a model has learned for an input x is denoted g(x) and corresponds to the
outputs of the penultimate layer. In other words, robust models are shown to extract high-level
features which are interpretable by humans.

First, it is shown that for standard models, it is possible to find inputs which are highly
visually dissimilar but have close representations. However, for robust models, two images having
close representations will be visually similar. This phenomenon is called invertibility of features.

More precisely, considering two source and target images x1 and x2, an augmented image is
computed as : x′1 = x1 + argminε ‖g(x1 + ε)− g(x2)‖2, which corresponds to adding to the source
image an ε which makes g(x1 + ε) and g(x2) close. For classical models, x′1 and x2 will be very
visually different, where for robust models x′1 looks like x2 (even when x1 is simply random noise).
Moreover, when adding a constraint on the l2 norm of ε to force x′1 and x2 to be visually similar,
it is more difficult for robust models to minimize both the distance in the input space (i.e ‖ε‖2)
and in the representation space (i.e. ‖g(x1 + ε)− g(x2)‖2), than for classical models.

Second, experiments show that robust models allow for easier feature visualization. More pre-
cisely, maximizing a component gi(x) of the representation leads to the same visual modification
for different images x (even when x is random noise), and this modification is interpretable by hu-
mans (for example maximizing one component of the representation leads to emergence of stripes
on different images). However, for standard models, maximizing a component of the representa-
tion leads to non-interpretable emerging patterns, which vary depending on the input image x.
Therefore, with robust models, one may introduce some characteristic in an image by maximizing
the component of the representation corresponding to this characteristic.

Robust and Non-robust features

Ilyas et al. [57] show that adversarial examples are the consequence of features derived from patterns
with a high predictive power, yet these patterns are meaningless to humans and they can be
adversarially modified to fool the target classifier. These features models are inherent to the data
set. A feature is a function from the input space X to R such that the output value of the target
classifier is a linear combination of the feature values. For a neural network, the features values
are thus the outputs at the penultimate layer.

45

More formally, considering a binary classification task, f is said to be ρ-useful (ρ > 0) if it
satisfies Equation 4.4 and is γ-useful robust if under the worst perturbation δ chosen in a predefined
set of allowed perturbations ∆, f stays γ-useful under this perturbation (Equation 4.5). A ρ-useful
feature f is said to be a non-robust feature if f is not robust for any γ ≥ 0.

E(x,y)∼D [y · f(x)] > ρ (4.4)

E(x,y)∼D

[
inf
δ∈∆

y · f(x+ δ)

]
> γ (4.5)

When training a classifier in order to minimize the empirical risk, no distinction is made between
robust and non-robust features. At inference time an adversary modifying non-robust features can
then fool the target classifier.

Experiments are presented on CIFAR10. First, the authors construct a robust data set mainly
composed of robust features. More precisely, starting with an adversarially trained model Mrob,
for each training set point (x, y), xr is found by solving argminz ‖g(z)− g(x)‖2 (where g is the
output function at the penultimate layer of Mrob). The starting point of the optimization problem
is chosen independently from the true label y in order not to introduce features which are not used
by Mrob. It is shown that a standard model trained on input-label pairs (xr, y) leads to non-trivial
accuracy and robustness. This shows that robustness and accuracy can be reached by discarding
non-robust features, i.e. that some non-robust features are responsible for the vulnerability of
classifiers to adversarial examples.

Second, the authors construct a data set with mainly non-robust features. More precisely,
starting from a clean example x of ground-truth label y, an adversarial example x′ targeted towards
label yt is crafted. A model Mnrob is then trained using the input-label pairs (x′, yt). This new
data set is incorrectly labeled according to humans as x′ is close to x, but here the adversarial label
yt is considered as the true label. Thus, when yt is randomly chosen for each example, the robust
features of the initial model are now uncorrelated with the label yt. Only non-robust features of
the initial model are correlated with yt. It is shown that models trained on this data set reach
good accuracy on the normal test set, while having no robustness against adversarial examples.
This shows that models rely on non-robust features at training time.

A summary of this finding is presented in Figure 4.10. Eventually, experiments show that
the more models learn similar non-robust features, the more transferable adversarial examples are.
More precisely, the authors train different models with the precedent data set of points (x, yt). The
models with the highest accuracy on the normal test set are the one with the more transferable
adversarial examples.

Figure 4.10: Accuracy of models on the CIFAR10 data set, on standard examples (blue) and
adversarial examples (red). D̂R denotes the robust data set (i.e. with almost only robust features),
and D̂NR denotes the non-robust data set (i.e. with almost only non-robust features), from [57].

46

4.4 Attack methods
In the previous sections, we have defined formally adversarial examples, and we have presented
relevant work, which gives the intuition about the underlying reasons for their existence. In this
section, we present methods intended to allow an adversary to craft adversarial examples against
a neural network model trained for image classification. The objective of this section is not to
give an exhaustive list of all existing attacks, but rather allow to understand the landscape of
attack methods. To this end, we present attack schemes that allow to craft adversarial examples
considering different levels of adversary knowledge, and with various ways of searching for an
adversarial example.
For all the attacks presented here, we denote byQ the domain in which inputs are considered. As we
study image classification tasks, Q is typically a range in which values of pixels must fit in. For an
image x, we denote by Clip(x,Q) the clipping operation of every pixel on this image to the domain
Q. Unless specified otherwise, the adversary aims at crafting an adversarial example x′ considering
a clean input-label pair (x, y). The attack schemes are only presented in their untargeted version,
unless the attack is specifically designed to craft targeted adversarial examples.

4.4.1 White-box setting
We consider an adversary in a complete white-box setting, i.e. with a full knowledge of the target
model’s architecture and parameters. The attacks presented in this section are characterized by the
fact that, in order to craft advesarial examples, the adversary can explicitly compute derivatives
of the score function F , or the logits function h, or the loss L.

L-BFGS algorithm

Szegedy et al. [11] are the first to propose a crafting method in a white-box setting. They consider
the objective of finding the smallest l2 adversarial distortion such that the adversarial example is
misclassified, as described in Equation 4.6.

argmin
ε

‖ε‖2

s.t.
{
Mθ(x+ ε) 6= y
x+ ε ∈ Q

(4.6)

To solve this problem, the authors consider the optimization problem given in Equation 4.7, and
search for the minimum c (with a box-constrained L-BFGS algorithm) for which the solution ε to
the problem in Equation 4.7 satisfies Mθ(x+ ε) 6= y.

argmin
ε

c ‖ε‖2 − L(x+ ε, y,Mθ)

s.t. x+ ε ∈ Q
(4.7)

Fast Gradient Sign Method (FGSM)

Goodfellow et al. [73] present the Fast Gradient Sign Method (FGSM). In order to craft adversarial
examples, it is searched for the worst-case adversarial perturbation in a lp ball of radius ε relatively
to the value of the loss function L of the target model. This objective is described in Equation 4.8.

argmax
α

L(x+ α, y,Mθ)

s.t ‖α‖p ≤ ε
(4.8)

By performing a first order approximation of L around x, the problems turns to:

argmax
α

α · ∇xL(x, y,Mθ)

s.t ‖α‖p ≤ ε
(4.9)

In their work, the authors only consider the l∞ norm, and in that case we have α = ε sign(∇xL(x, y,Mθ)).
Therefore, the adversarial example x′ is crafted with:

x′ = x+ ε sign(∇xL(x, y,Mθ)) (4.10)

47

This attack can be extended to other lp norms with 1 ≤ p <∞. In this case, we have

α = ε
∇xL(x, y,Mθ)

‖∇xL(x, y,Mθ)‖p

and then x′ is given by:

x′ = x+ ε
∇xL(x, y,Mθ)

‖∇xL(x, y,Mθ)‖p
(4.11)

Clipping to ensure that x′ ∈ Q is eventually performed.

Basic Iterative Method (BIM)

Kurakin et al. [100] extend the FGSM with a multi-step version of it, the Basic Iterative Method
(BIM). This attack scheme consists in iteratively performing the FGSM attack for a given number
of iterations, with a step size α < ε, projection onto the ball Bp(x, ε) being performed at each step.
Clipping to Q is performed at the end of each step. More precisely, for the l∞ version of the BIM
attack, at step t, the following operations are performed:

δt = α sign(∇xL(xt−1, y,Mθ))

xt = projBp(x,ε)(x
t−1 + δt)

xt = Clip(xt,Q)

(4.12)

where xt denotes the example obtained at step t, and x0 = x. The BIM attack can be seen as
the projected gradient descent algorithm applied to the optimization problem given in Equa-
tion 4.8, apart from the fact that the sign of ∇xL(xt−1, y,Mθ) is considered instead of only
∇xL(xt−1, y,Mθ).

Projected Gradient Descent (PGD)

The Projected Gradient Descent (PGD) [75] attack simply refers to the BIM attack where an initial
random step r sampled from a uniform distribution in the range [−ε, ε] is taken. Experimentally,
this step has been shown to allow to escape possible local minima around x. Moreover, in order to
better explore the output space, and find higher values for L(x′, y,Mθ), the adversary can perform
the PGD attack multiple times, with a different starting point each time (thanks to the initial
random sampling), and keep only the example inducing the highest L(x′, y,Mθ) value.

Importantly, the authors show that the PGD is a strong first-order adversary, as experiments
reveal that it would be hard to find a better maximum for the optimization problem of Equation
4.8 with first-order methods.

Sparse l1 PGD. Tramer et al. [120] propose an enhanced version of the l1 version of the PGD
attack. For the initial PGD attack in its l1 version, the perturbation δt computed at each step t
results in a vector with only one non-null component being sign gts with gts denoting the component
of gt = ∇xL(xt−1, y,M) for indice s = argmaxi |gti |.

Therefore, the authors propose a modified version of it where δt is set to sign gt if |gt| > Pq(|gt|),
and to 0 otherwise, where Pq(|gt|) is the qth percentile of |gt|. The smaller the parameter q, the
more δ components are likely to be modified. The perturbation δ is then normalized to the l1
unit-ball (i.e divided by ‖α‖1).

Wasserstein PGD. Wong et al. [83] propose a modification of the PGD attack to consider
the Wasserstein distance instead of the distance derived from a lp norm (see Figure 4.11). A threat
model based on the Wasserstein distance encompasses modifications such as translation, rotation
and scaling better than a threat model based on the lp norm. At each step of the PGD attack, the
projection is performed on a Wasserstein ball and not on a lp ball.

Auto-PGD. Croce et al. [87] propose Auto-PGD (APGD), an enhanced version of the PGD
attack, which only requires to specify the number of iterations and the l∞ bound for the adversarial
perturbation. Specifically, it considers an adaptive step size which takes into account the number
of iterations the adversary wants to perform. The main idea is to allow the step size to decrease
when no improvement in the optimization objective occurs, and when the step size decreases, to
restart at the best solution found so far.

48

Figure 4.11: Adversarial examples, crafted with Wasserstein PGD (top), and l∞-PGD (bottom),
from [83].

Carlini-Wagner (CW)

Carlini et al. [105] consider the joint objective of finding an adversarial example and minimizing
the l2 distortion related to this adversarial example, as described in Equation 4.13.

argmin
ε

‖ε‖2 + cG(x+ ε, y)

s.t. x+ ε ∈ Q
(4.13)

with:
G(x+ ε, y) = max(hy(x+ ε)−max

j 6=y
hj(x+ ε),−κ) (4.14)

where hy(x) denotes the logit value for the ground-truth indice and κ is a parameter for the desired
gap between the logit value for y and the second biggest logit value.

To solve the problem given in Equation 4.13, the change of variable x+ ε = 1
2 (tanh(w) + 1) is

performed to get rid of the box constraint, and the resulting optimization problem is then solved
with respect to w with the Adam optimizer. Moreover, this problem is solved for many values of
the constant c ∈ R+ found with binary search to find the solution with the lowest l2 distortion.
The authors also propose a l∞ and l0 version of their attack.

Jacobian-based Saliency Map Method (JSMA)

Papernot et al. [121] propose the JSMA method, which is based on the idea of identifying the most
sensitive pixels in terms of misclassification, and then modify them.

More precisely, this attack works in an iterative fashion. As long as the maximum number of
iterations is not reached, or that the adversarial distortion, in terms of number of modified pixels
does not reach a threshold, two steps are performed at each iteration.

Firstly, the adversary begins by measuring the variation of Fy(x) with respect to a variation of
each pixel i. To do so is computed the vector of partial derivatives of the confidence score value
for the ground-truth label y, for every pixel i, i.e. compute ∇xiFy(x) ∀i ∈ J1, dK.
Secondly the saliency map S(x, y) is computed, which allows to target the pixels which will have
the more influence for misclassification.

Decoupling Direction and Norm (DDN)

Rony et al. [122] propose the iterative DDN attack. Contrary to previously presented attacks,
the goal is not to search for the minimal adversarial distortion as with the CW attack in its l2
version, neither to fix a maximum allowed adversarial distortion, as with the FGSM or PGD attack.
Rather, the idea is to project at each step t the resulting example xt onto a l2 ball of some radius
εt, and increase or decrease the radius εt at next step whether the current xt was found adversarial
or not (i.e. is misclassified or not). More precisely, starting with a radius εt, a step size α, and an
adversarial perturbation of 0 for every pixel, are performed three steps at each iteration t.

DeepFool

Moosavi-Dezfooli et al. [123] propose the iterative DeepFool attack method. The idea of this
attack is, until no misclassification is induced, to project the current example onto the closest
decision boundary, where the projection can be derived thanks to a linear approximation of the
decision boundaries. In fact, at each step, the decision boundaries around the current example are

49

linearized, which allows to derive the equations for the resulting hyperplanes, and then to project
the current example onto the closest hyperplane. The resulting adversarial perturbation of this
attack is therefore the sum of the perturbations added to the current example at each step to
perform the projection. The authors propose a version of the attack where the closest hyperplane
is searched relatively to the l2 distance. However, it can be adapted to any lp norm.

Sparse Adversarial examples

Croce et al. [107] propose a method to craft sparse adversarial examples. Three different ways to
modify a single pixel are proposed by the authors, and when modifying one pixel does not suffice
to induce misclassification, a non-expensive multi-pixel modification scheme is presented.

An illustration of the adversarial examples crafted are presented in Figure 4.12.

Figure 4.12: Illustration of adversarial examples crafted with the different version of the attack
proposed in [107].

AdvGAN

Xiao et al. [124] propose AdvGAN, a method which takes advantage of a GAN (Generative Adver-
sarial Network) to craft adversarial examples against a target model M . This scheme is based on
a generator model G and a discriminator model D. Once trained, the generator G takes as input
a clean example x and allows to retrieve an adversarial example as x′ = x+ G(x).

Enhancing gradient-based attacks

Some works have investigated ways to improve the efficiency of gradient-based attacks.

Wang et al. [125] propose a way to enhance the choice of the initial point for gradient-based
attacks. Starting from a point x0, the idea is to identify a zone around this point and use sound
bound propagation methods to over approximate the output variations in this zone. Then, based
on this approximation, the best point in terms of desired output variations is found. This point is
then used as the initial point for the gradient-based attack.

Tashiro et al. [126] propose Output Diversified Initialization (ODI) to improve the initialization
step for attacks which use a certain number of restarts, with a different initialization at each restart.
These restarts are performed in order to increase diversity among beginning points of the attack,
with the aim of better exploring the adversarial subspace of the output space, and then select the
best adversarial example. The idea of the ODI scheme is to leverage diversity in the output space
rather than in the input space. The motivation comes from the fact that as models tend to be
very non-linear, considering diversity in the input space does not necessarily induce diversity in
the output space.

50

4.4.2 Black-box setting (score and decision-based attacks)
We now present attack schemes allowing an adversary to craft adversarial examples against a
target model in a black-box setting. A black-box setting may present different variations, relating
to the available output (logits, confidence score vector, predicted label, loss value, etc.). However,
as the adversary does not have access to both architecture and parameters, he can not formally
derive the gradients of any output or loss with respect to the inputs, which constitutes the main
characteristic of the black-box setting.
In a first time, we present attack methods intended to directly attack the target model, without
using a substitute model. In a second time (Section 4.4.3), we will present in details how an
adversary can take advantage of a substitute model and transferability to attack a model in a
black-box setting.

Zeroth-Order Optimization (ZOO)

Chen et al. [127] propose a score-based attack (i.e. for an adversary supposed only to know the
confidence score vector F (x)), which uses a gradient estimation method.
The loss to be optimized to craft adversarial examples is the one used for the CW attack (given
in Equation 4.13), where the logits function h is replaced by the score function F , as given in
Equation 4.15.

argmin
ε

‖ε‖2 + cGF (x+ ε, y)

s.t. x+ ε ∈ Q
(4.15)

with:
GF (x+ ε, y) = max(Fy(x+ ε)−max

j 6=y
Fj(x+ ε),−κ) (4.16)

The optimization procedure is done with the Adam optimizer where the following approximation
is used for the derivative of F with respect to xi (the ith element of x):

∇xi
F (x) ≈ F (x+ hei)− F (x− hei)

2h
(4.17)

where h is set to 0.0001 and ei is a vector with the ith component set to 1, and all other components
valuing 0. As the computation of the derivative of F with respect to xi has to be done d times
for each iteration of the optimization algorithm, and requires two evaluations of the score function
F at each time, it can quickly become very expensive in terms of computation costs to reach
convergence. The authors thus propose to solve the optimization problem in a stochastic way,
only updating one pixel at each minimization step (instead of all of them) until convergence. To
accelerate the minimization process, the authors also propose to focus on pixels near the main
objects on the pictures or to use dimension reduction methods to fasten the optimization.

Simultaneous Perturbation Stochastic Approximation (SPSA)

Uesato et al. [79] also propose a score-based attack scheme exploiting a gradient estimation method.
The adversary is supposed to have access to the logits h(x), and the adversarial example is searched
by solving the optimization problem presented in Equation 4.18.

argmin
x′

hy(x′)−max
j 6=y

hj(x
′)

s.t. ‖x′ − x‖∞ ≤ ε
(4.18)

This optimization problem is solved with the SPSA (Simultaneous Perturbation Stochastic Approx-
imation) method [128], which works in an iterative fashion. At each step t with current example xt,
n vectors v1, . . . , vn of dimension d are considered. For each vector vj (j ∈ J1, nK), its ith compo-
nent vj,i is drawn from a Rademacher distribution (a discrete probability distribution: vi,j has 50%

chance of being +1, and 50% chance of being −1). Then is computed gj =
(f(xt+δvj)−f(xt−δvj))

2δ ,
where δ is a perturbation size. The example is then updated as xt+1 = projB∞(x,ε)(x

t−α
∑n
j=1 gj),

where α is a step size.

51

Simple Black-box Attack (SimBA)

Guo et al. [129] propose a gradient estimation free score-based attack to craft adversarial examples,
where the adversary only has access to the confidence score vector. The idea is to pick orthogonal
directions in a set without replacement, updating the adversarial perturbation by one of these
directions if it lowers the confidence score for the predicted label. The orthogonality of poten-
tial directions allows not to search in directions cancelling each other or making the adversarial
perturbation grow too much.

Boundary Attack

Brendel et al. [130] propose a decision-based attack method (the adversary is only allowed to
retrieve the output label of the target model M). The idea is to consider at start an example
x0 classified in a different class than x (i.e. M(x0) 6= M(x)), and to make steps towards x while
staying adversarial, adapting the step procedure at each iteration.

In order to approach x while staying adversarial, the concept of the attack is to perform a
random walk along the decision boundary. The intuition of the Boundary attack is presented in
Figure 4.13

Figure 4.13: Illustration of the intuition of the Boundary Attack, from [130].

Hop Skip Jump Attack (HSJA)

Chen et al. [108] also propose a decision-based attack method, which relies on a gradient estimation
which is only valid on the decision boundary. Considering a clean example x0, classified in a
different class than x, this attack scheme works in an iterative manner to get closer to x while
staying adversarial. Each step involves three main components. Firstly, binary-search is performed
to reach the decision boundary. Secondly, the gradient estimation at the decision boundary is
performed. Thirdly, it is searched for a step size, so that taking a step in the estimated gradient
direction keeps the current example adversarial.

The intuition of the Hop Skip Jump Attack is presented in Figure 4.14

Figure 4.14: Illustration of the intuition of the Hop Skip Jump Attack, from [108]. (Left) Line
Search to find the boundary. (Middle) Gradient estimation. (Right) Step size search.

52

SurFree attack

Maho et al. [131] also propose a decision-based attack (the adversary only knows the output label),
whose main goal is to get the smallest number of queries made to the target model given some
adversarial distortion. Considering a starting point x0 classified in a different class than x, the
attack works in an iterative manner, to get closer to x at each step while staying adversarial. The
central idea of this attack is to replace gradients estimates made at the boundary at each step (as
for the HSJA attack [108]), which require queries to the model, by the study of multiple directions.
For each direction, the maximum distortion decrease is obtained with a geometrical rationale. The
motivation behind this choice is that investigating multiple directions and obtaining the biggest
distortion decrease for each direction is hoped to produce a faster distortion decrease in terms of
number of queries than performing a gradient estimate.

Optimization-based Approach

Cheng et al. [132] propose a decision-based (the adversary only has access to the output label)
attack that formulates the adversarial example search with an optimization problem which can
later be solved with a gradient-free optimization method. This optimization problem is given in
Equation 4.19.

argmin
θ

g(θ)

s.t. g(θ) = argmin
λ

(
M(x+ λ

θ

‖θ‖2
) 6= y

) (4.19)

Denoting θ∗ the solution to the problem given in Equation 4.19, θ∗ is the direction towards the
closest adversarial example, and g(θ∗) is thus the shortest distance towards an adversarial example.
We then have x′ = x+ g(θ∗) θ

‖θ‖2
.

It is shown experimentally that g(θ) is continuous even if M is not continuous, an can then be
solved by a zeroth-order optimization method.

Efficient Combinatorial Optimization (ECO)

Moon et al. [133] also propose a method to craft adversarial examples for an adversary in a black-
box setting having access to the values of the loss function. The search for an adversarial example
is considered as a discrete optimization problem, which is then solved in a greedy way without any
gradient estimation. The motivation comes from the experimental evidence than the adversarial
perturbations computed with the l∞ version of the PGD attack are predominantly found on the
vertices of the l∞ ball. This means that for a l∞ budget of ε, adversarial perturbations mostly
value −ε or ε. The authors therefore propose to replace the optimization objective used for the
FGSM, BIM or PGD method, given in Equation 4.20, by the one given in Equation 4.21.

max
x′
L(x, y,M)

s.t. ‖x′ − x‖∞ ≤ ε
(4.20)

max
x′
L(x, y,M)

s.t. x′ − x ∈ {−ε, ε}d
(4.21)

This problem can be reformulated as the one given in Equation 4.22.

max
S⊂V

F (S)

s.t. F (S) = L

x+ ε
∑
i∈S

ei − ε
∑
i∈V\S

ei, y,M

 (4.22)

where V denotes the set of all pixel locations, S denotes the set of pixels modified by +ε, and
V\S denotes the set of pixels modified by −ε. ei denotes the ith standard basis vector. The main
challenge in solving the problem given in Equation 4.22 is the fact that finding the set S is NP-
hard. However, the authors show that one can obtain an approximate solution with greedy search
algorithms.

53

The authors choose the Lazy-Greedy algorithm [134], a local-search optimization procedure,
which consists in alternatively adding pixels of S and removing pixels from S based on a defined
rule, until convergence. Moreover, to accelerate the solving, it is chosen to take advantage of the
fact that images exhibit locally regular structures. Therefore, the image is divided into blocks at
the beginning of the optimization, and the Lazy-Greedy algorithm is applied on each block. The
image is then divided in more blocks and the procedure is repeated. It is shown experimentally
that the attack converges often before the image being divided at the pixel level.

Limited Queries and Information

Ilyas et al. [135] propose attack schemes, in three different settings where the adversary is either
limited to a certain amount of queries, has only access to the top k confidence sore values or label
outputs.

• Query Limited setting. The adversary is limited in terms of number of queries to the target
model, and has only access to the confidence score values.

• Partial Information setting. The adversary is limited to the top k confidence score values.

• Label Only setting. The adversary is limited to the top k label outputs.

Rotations and Translations

Engstrom et al. [60] propose attack procedures to craft adversarial examples exploiting rotations
and translations of clean examples, where the adversary only needs to know the confidence score
vector. Considering the value xi,j of a clean example for pixel at position (i, j), the pixel value of
the adversarial example at the same position, x′i,j is built by performing a rotation of angle θ and
then a translation of deltau (resp. δv) in the direction for the x-axis (resp. y-axis).

An illustration of the attack is presented in Figure 4.15.

Figure 4.15: Illustration of adversarial rotations and translations, from [60].

Colorfool: Adversarial Colorization

Shamsabadi et al. [61] propose a decision-based attack, where the adversary modifies colors of a
clean example to turn it into an adversarial one. The specificity of this attack lies in the fact that
it separates sensitive regions, where large color changes seem unnatural (e.g. face color, sky, etc.),
with non-sensitive regions, which can undergo larger color changes (e.g. walls, ground, etc.).

An illustration of the attack is presented in Figure 4.16. The color of the background is largely
changed, as it corresponds to a non-sensitive region, while the color of the skin is only subtly
modified.

4.4.3 Black-box setting (transferability)
When the adversary is in a black-box setting, besides decision-based and score-based attacks, he
can leverage transferability, to attack the target model. Given that the adversary can train his
own substitute (source) model, using transferability is particularly relevant for the adversary when
he is limited in terms of number of queries made to the target model. Indeed, score-based and
decision-based attacks can be very expensive in terms of computation and queries made to the
target model.

The transferability phenomenon constitutes an important part of our work. In the following,
we introduce it, and present attack schemes intended at crafting transferable adversarial examples.

54

Figure 4.16: Illustration of the colorfool attack, with the clean image (left), and its adversarial
counterpart (right), from [61]. The background color (non-sensitive region) is largely modified,
while the skin color (very sensitive region) is very subtly changed.

The transferability phenomenon

The phenomenon of transferability is firstly introduced by Papernot et al. [64]. It is shown than
an adversary training a substitute (source) model MS for the same classification task can take
advantage of this model to attack the target model M . In fact, an adversarial example x′ crafted
on MS (MS(x′) 6= MS(x)) can also fools M (M(x′) 6= M(x)). The transferability is therefore
a powerful tool for an adversary in a black-box setting. Indeed, the adversary is in a white-box
setting relatively to his substitute model MS , and does not suffer from the limitations inherent
to the black-box setting of the target model M . In their work, Papernot et al. even propose a
method to generate a synthetic data set with a limited number of queries to the target model.
As an example, it is shown that with transferability, an adversary can successfully attack a model
hosted on Amazon1 and Google Vertex AI 2.

Importantly, the transferability phenomenon still holds between different machine learning al-
gorithms [12]. As an example, an adversarial example crafted against a decision tree model can
successfully fool a support vector machine model, or a neural network model.

In the scope of the threat of adversarial examples, transferability is reasonably the most con-
cerning issue regarding the security of machine learning models. Indeed, on one hand, in a real-life
scenario, the target model is almost never in a white-box setting. On another hand, decision-based
and score-based attacks require thousands of queries only to craft one adversarial example. This
is not tractable in practice, with most machine learning systems providing customer with a paid
service. Moreover, these malicious queries can easily be flagged as suspicious [136].

In the following, we present different attack schemes that allow an adversary to increase the
transferability of adversarial examples.

Momentum Iterative Method (MIM)

Dong et al. [137] propose a method to increase the transferability of adversarial examples crafted
with gradient-based attacks, where the main idea is to add a momentum term in the optimization
procedure. In fact, remembering at optimization step the precedent update allows to have more
consistent (i.e. in the same direction) updates throughout the attack.

The authors illustrate this scheme with the optimization problem considered for the FGSM,
BIM and PGD attacks, given in Equation 4.23.

max
x′
L(x, y,M)

s.t. ‖x′ − x‖∞ ≤ ε
(4.23)

For the FGSM, BIM and PGD methods, the optimization problem is solved at each step t by
performing xt = xt−1+α sign gt, with gt = ∇xL(xt−1, y,M). With the MIM method, a momentum

1https://aws.amazon.com/fr/machine-learning/
2https://cloud.google.com/vertex-ai

55

term to each gradient computation is added, as

gt = µgt−1 +
∇xL(xt−1, y,M)

‖∇xL(xt−1, y,M)‖1

where µ is a decay factor. The higher µ, the more the previous gradients are remembered through-
out the iterations. The current example is then obtained with xt = xt−1 + α sign gt. This method
is applicable to any gradient-based attack not already including a momentum term in the opti-
mization procedure.

Translation-Invariant Attack and Input Diversity

Dong et al. [138] propose to increase the transferability of adversarial examples crafted with a
gradient-based attack by accounting for many translated versions of the input during the opti-
mization procedure. The underlying idea is the hypothesis that the source and target models do
not rely on the same region of the image to predict the label, and therefore that crafted adversarial
examples tend to overfit to the source model’s gradients and discriminative regions. Considering
many translated version of an input for gradient computation could then allow to alleviate this
issue.

More precisely, the authors consider the same optimization problem as for the MIM attack
(Equation 4.23), and extend it with the one given in Equation 4.24.

argmax
x′

∑
i,j

wi,jL(θ, Ti,j(x), y)

s.t. ‖x′ − x‖∞ ≤ ε
(4.24)

where i, j ∈ J−k, kK with k a maximum number of pixels to shift, Ti,j(x) the shifted version of x
by i (resp. j) pixels along the x (resp. y) axis, and wi,j coefficients. Solving this optimization
problem requires performing (2k+ 1)2 gradient calculations at each step. To alleviate this burden,

the authors propose to use the approximation that ∇xL(x, y,MS)

∣∣∣∣
x=Ti,j(x̂)

' ∇xL(x, y,MS)

∣∣∣∣
x=x̂

,

which allows to have:

∇x
∑
i,j

wi,jL(θ, Ti,j(x), y)

∣∣∣∣
x=x̂

= W ~∇xL(x, y,MS)

∣∣∣∣
x=x̂

where ~ denotes the convolution operation and W is a kernel matrix of size (2k + 1) × (2k +
1). Therefore, the optimization problem given in Equation 4.24 can be solved efficiently, only
performing one gradient computation and convolving it with the matrix W .

This method can be efficiently combined with other methods, such as MIM for example. The
combination of the MIM attack with the translation-invariant method is denoted by MIM-TI.
Xie et al. [139] also propose a method to decrease the overfitting of adversarial examples to the
source network they are crafted on. To do so, the authors propose to use data augmentation with
spatially transformed inputs during the optimization procedure. More precisely, at each gradient
computation, the input is transformed with probability p with image resizing or random padding.
The combination of the MIM attack with the input diversity method is denoted by DIM. Moreover,
the combination of the DIM attack with the translation-invariant method is denoted by DIM-TI.

Intermediate Level Attack (ILA)

Huang et al. [140] propose the Intermediate Level Attack (ILA) to increase the transferability of
an already crafted adversarial example.

Given a hidden layer l of the source model with its output function Fl, and an existing adversar-
ial example x′, the attack method aims at maximizing the perturbation at layer l, while keeping the
original adversarial direction. Therefore, the attack aims at maximizing ∆(y

′′

l) = Fl(x
′′) − Fl(x)

with respect to x′′, while not straying too far from the original adversarial direction given by
∆(y

′

l) = Fl(x
′)−Fl(x). In order to do that, the authors propose to maximize −∆(y

′′

l) ·∆(y
′

l) with
respect to x′′.

The authors choose the layer l experimentally. Notably, they show that as the index of l
increases, the linearity of the target model decision boundary increases, which increases transfer-
ability. However, above some index, the linearity of the source model becomes more linear than
the one of the target model, decreasing transferability.

56

Attention guided Transfer Attack (ATA)

Wu et al. [141] propose a ATA (Attention guided Transfer Attack), a method to enhance the
transferability of adversarial examples. This method is based on the observation that some features
(internal representations in a neural network model) are commonly used by different models with
different architectures, and that therefore focusing more on these critical features would lead to a
better transferability.

By denoting by Ack the cth feature map in layer k, the idea is to craft an adversarial example
(x′, yt) from a clean input-label pair (x, y) such that the features the most exploited by the source
model MS to classify x are the same for x′. With the hypothesis that the target model M exploits
predominantly the same features than MS to classify x, it will make M even more vulnerable to
x′.

Direction Aggregated Attack (DA)

Huang et al. [142] propose DA (Direction Aggregated), an improvement to existing black-box trans-
fer attacks to craft more transferable adversarial examples. The idea is to replace each direction
computation (i.e. each gradient computation) with an aggregation of directions for examples per-
turbed with gaussian noise. By doing so, it is hoped to relieve overfitting to the source network,
allowing to find more meaningful directions to fool the target model. More precisely, considering
a source model MS in a white-box setting, each gradient computation ∇xL(x, y,MS) is replaced
by
∑T
i=1∇xL(x+ εi, y,MS), with εi ∼ N (0, σ2).

Transferable Adversarial Perturbations (TAP)

Zhou et al. [143] use the feature representation in intermediate layers, and the reducing of the
variations of the adversarial perturbation. More precisely, the TAP attack considers three goals to
craft an adversarial example x′ from a clean example x on a source model MS :

• Inducing misclassification for MS .

• Maximizing the distance between the feature space representation of x and the feature space
representation of x′ for all layers of the source model MS . The hypothesis behind this maxi-
mization, which is verified experimentally, is that it allows to craft adversarial perturbations
that impact the inference process of MS more strongly and deeply than simply considering
misclassification, and improve the black-box transfer rate.

• Removing high frequency components of the adversarial perturbation. Indeed, the authors
hypothesize that high-frequency components of the adversarial perturbation will be smoothed
by convolution kernels of the target model M .

Skip Gradient Method (SGM)

Wu et al. [144] propose SGM (Skip Gradient Method), a method to enhance the transferability of
adversarial examples crafted on a source model with residual blocks (a combination of a residual
module and a skip connection). The main idea is that backpropagating using more skip connec-
tions than residual modules when crafting the adversarial example on the source model allows
to rely more on low level information, which would be more transferable across different model
architectures. Indeed, skip connections pass directly the information from one layer to another
passing through the residual model. The SGM method is therefore designed to downweight the
importance of the gradient flowing through the residual module.

Activation Attack (AA)

Inkawhich et al. [145] propose Activation Attack (AA), a method to craft transferable targeted
adversarial examples. The main idea is to perturb the feature space representation of the source
model, relying on the hypothesis that, as the source and distant models have been trained for the
same task, they have learned similar features.

More precisely, considering a clean input-label pair (x, y), and a target label yt, a target input-
label pair (x0, yt) is chosen, and the idea is to craft an adversarial example x′ from x such that the
feature space representation of x′ at some layer of the source model is close to the feature space
representation of x0 at the same layer. The crafted adversarial example x′ is then transferred to
the target model, to have it misclassifying it in class yt. The adversarial example x′, whose feature

57

representation is close to the one of an example of class yt for the source model, will also have a
feature representation close to the one of an example of class yt on the target model, which will
thus misclassify it in class yt.

Using robust models

Springer et al. [146] propose a method to enhance the transferability of targeted adversarial ex-
amples. The idea is to use slightly robust models (models trained to be robust to adversarial
perturbations with small perturbation budget) as source models. The underlying hypothesis is
that slightly robust models learn more universal features [114, 117, 119], i.e. features, which are
also used by models trained for the same classification task, as the target model.

This hypothesis is verified with experiments on ImageNet, where models trained to be robust
to small l2 perturbations are shown to be better source models than standard models. For a target
model trained with Adversarial Training with perturbation budget ε, even targeted adversarial
examples with perturbation greater than ε hardly transfer with a standard model as the source
model. This is not the case when using slightly robust models as source models, which allows
significant transferability.

4.5 Defense methods
We propose an overview of the schemes intended at protecting a model against adversarial exam-
ples. This section is not intended to give an exhaustive presentation of all existing defense schemes,
we simply detail some of them, which are relevant to give intuition about the different underlying
ideas.

4.5.1 Overview
The defense schemes against adversarial examples can be divided into two types: reactive and
proactive schemes.

Proactive methods aim at making the model more robust in itself against adversarial examples:
a model defended with a proactive defense scheme will suffer less from adversarial examples than a
standard model. Proactive methods can be either empirical [75,147] or provable [89,91]. Provable
schemes provide guarantees about the robustness of a model. They certify that no adversarial
example can be found at a certain distance of a clean example, if some condition is satisfied.
Empirical methods do not give such guarantees but make it harder (or impossible, even if not
proven) for an adversary to find an adversarial example at some distance of a clean example.

On the contrary, reactive methods do not aim at making the model more robust against adver-
sarial examples, but rather act as prevention. Reactive methods may be classified in two categories:
detection of adversarial examples [148,149] and purification schemes [111,150]. Detection aims at
recognizing adversarial examples, in order to treat them differently (e.g. discarding them, banning
a user, etc.). Purification aims at denoising an adversarial example, so that the model outputs the
correct label on the denoised example.

We begin by presenting few examples of reactive methods. Then, we show the concept of
provable defense methods, as well as some examples of them. Eventually, we detail more in-depth
various empirical schemes, as this is the most common type of defense proposed.

4.5.2 Reactive methods
On the multiple detection schemes that have been proposed in the literature, the vast majority of
them have been show to be bypassable [76–80]. This issue arises from two main reasons, which
are increasingly addressed as good practices for defense evaluation are continuously fostered [81,
82]. The first issue concerns the setting considered for the evaluation of these defenses. This
setting, often refers as a gray-box setting, hypothesizes that the adversary is not aware of the
detection/purification mechanism. Under this hypothesis, the defense is shown to be efficient.
However, simply relieving this hypothesis, as it is a good practice with adaptive adversaries, makes
the defense useless. The second issue is specific to detection schemes, which tend to overfit to the
type of adversarial examples they are designed for.

In consequence of these issues, reactive defense schemes are increasingly less proposed in the
defense literature. However, this type of defense is still exploited, and detection schemes have a
clear advantage over provable and empirical proactive defense schemes. Indeed, in the vast majority
of cases, this type of method is easily implemented. More precisely, on one hand it does not need to

58

retrain the target model, as for empirical proactive schemes and some provable proactive schemes.
On another hand, it scales better to any type of architecture than some provable proactive schemes.

We now proceed to illustrate one denoising-based defenses, and one detection-based defense.
Xie et al. [151] propose a denoising scheme, based on the observation that features maps for
adversarial examples present some noise. Under the hypothesis that this noise is in fact the
adversarial perturbation at the pixel level which is increased as it goes through layers of the target
network, the authors propose to add denoising blocks in the target network architecture after
feature maps. For the denoising operation is tested non-local means, bilateral filter, mean filter
and median filter. The network is trained with l∞-PGD adversarial training to train the denoising
blocks to denoise the adversarial perturbation in feature maps. Li et al. [136] develop a method
to detect the process of crafting black-box adversarial examples. In fact, the detection schemes
exploits the fact that to craft an adversarial examples against a target model in the black-box
setting, an adversary needs to submit similar consecutive queries. Once a sequence of malicious
query is detected, all subsequent queries are rejected.

4.5.3 Provable proactive methods
As provable methods are not studied in this thesis, we focus on giving a high-level presentation
of them. The objective of provable methods is to certify that a model is robust (or not) against
adversarial examples. More precisely, for some input, the robustness certificate is provided in the
form of a certified radius. This certified radius is a real value indicating that no adversarial example
can be found in a ball of this radius centered on the input. The metric used for this ball is usually
the distance from the lp norm. The goal of a provable method is therefore to provide the biggest
certified radius for every input.

On one hand, some provable schemes use various formal methods to formally verify the robust-
ness of a model. Among these schemes, complete ones verify exactly this robustness. In order
to do so, they leverage the Satisfiability Modulo Theory (SMT) [152], or mixed-integer program-
ming [153]. These schemes, as computationally expensive, are only valid for small models, with
few layers and specific activation functions (e.g. ReLU [152]), and provide small certified radius.

On another hand, other provable schemes certify the robustness of models by leveraging not
exact methods. These methods provide looser certificates than complete ones, but can scale to
larger models. Kolter et al. [91] propose a provable method based on a linear relaxation of the
ReLU activation function. Gowal et al. [154] compute an upper bound on the worst case loss for
an adversarial perturbation by propagating a worst-case bound of the activation function values
throughout the layers. Hein et al. [155] derive a lower bound for the lp norm of the adversarial
perturbation required to craft an adversarial example x′ from a clean observation x, and derive
from it a loss function to minimize during training to increase the robustness of a model. Cohen et
al. [89] introduce Randomized Smoothing to formally verify the robustness of a model. Randomized
Smoothing is based on the idea of turning any model into a smoothed version of it, on which we can
derive l2 robustness guarantees. The main advantage of Randomized Smoothing is that contrary
to other provable methods, it scales better to large architectures, as it does not depend on the
architecture of the initial model.

4.5.4 Empirical proactive methods
Empirical proactive defense methods encompass all the defense schemes which do not provide a
formal guarantee for the robustness of a model for some input. With empirical methods, no certified
radius around a clean example is given, and thus the robustness of the model for this example can
not be proven. Consequently, it is mandatory to evaluate carefully its true efficiency. Many works
have emphasized this need, in order to foster a faster advance in the state of the art. Notably,
some works have analyzed defense schemes proposed in scientific conferences to demonstrate some
recurring flaws that lead to an over-evaluation of their efficiency [78,79,82].

Among these flaws, an important one is gradient masking, pointed out by Athalye et al. [78],
which may lead to a false sense of security. Indeed, gradient masking is a phenomenon where gradi-
ents of the model (loss, score function) with respect to the inputs are obfuscated. Attack methods
which rely on these gradients (gradient-based attacks) could therefore not find an adversarial ex-
ample at some distance of a clean example, even if this adversarial example exists. Attacking
a defended model with a gradient-based attack can therefore lead to the false assumption that
the model is well-protected against adversarial example, whereas it is not robust at all, and only
prevents some type of attacks from finding adversarial examples. Gradients can be obfuscated in
three ways:

59

• Shattered gradients: the defense scheme uses components that are either non-differentiable,
introduce numeric instability or make the gradients non-existent or incorrect. In the case of
differentiable gradients, following these gradients does not indicate the right direction to find
adversarial examples.

• Stochastic gradients: the defense scheme uses randomization, which makes the gradient being
not the same at each computation. Using only one gradient computation can therefore be
not sufficient to estimate the right direction to find adversarial examples.

• Exploding and vanishing gradients.

Developing a defense scheme therefore requires paying attention to gradient masking, which has
been shown to be present in many empirical defenses [78]. In order to do so, one may use various
methods. Firstly, against shattered, exploding or vanishing gradients, one may simply not at-
tack directly the target with gradient-based attacks, but rather use decision-based or score-based
attacks, or leverage the transferability phenomenon. In this case, this can allow to circumvent
existing gradient instability of the target model, as the gradient of the target model is not directly
used. Secondly, for shattered gradient, when the gradient is non-existent or incorrect, Athalye et
al. [78] propose the BPDA (Backward Pass Differentiable Approximation) that consists in approx-
imating a non-differentiable operation with a differentiable approximation of it. Eventually, for
stochastic gradients, they propose the EOT (Expectation over Transformation) method: instead
of relying on one computation of the gradient, one may average many values of it, to reduce the
impact of the randomization component included in the defense scheme.

Eventually, Carlini et al. [81] have laid down a non-exhaustive, yet quite complete, list to prop-
erly evaluate the efficiency of an empirical defense scheme.

In the following, we detail some proactive empirical defenses, to give intuition about various
ways of defending a neural network against adversarial examples.

Gradient regularization

Ross et al. [156] intuitively propose a method to constraint the variations of the usual loss function
L (e.g. LCE) with respect to varations of the input.

More precisely, the authors propose to consider the loss

LGREG(x, y,M) = LCE(x, y,M) + λ ‖∇xLCE(x, y,M)‖22 (4.25)

Experiments show that a model trained with the loss LGREG is more robust to adversarial examples
than a standard model. Moreover, adversarial examples crafted on a model trained with LGREG
are more transferable than the ones crafted on a standard model.

Lipschitz constant

Cisse et al. [157] propose to minimize the Lipschitz constant Lip(M) of the target model M , in
order to minimize the phenomeonon of the adversarial perturbation being amplified as it goes
through the model layers.

More precisely, the goal of this method is to have Lip(M) ≤ 1, so that the model does not
amplify any perturbation of the input. An overall Lipschitz constant being the product of the
Lipschitz constant at each layer, it resumes to ensures that Lipl(M) ≤ 1 for each layer l.

Adversarial Training

Madry et al. [75] propose Adversarial Training, an efficient empirical defense scheme which has
lead to many variants of it. Defense schemes consisting in improvements of Adversarial Training
are currently the ones providing the best empirical results on various data sets (e.g. [158]).

In the standard training procedure, the training phase of a model Mθ considers the following
optimization problem:

min
θ

E(x,y)∼D [L(x, y,Mθ)] (4.26)

Initially presented for the l∞ norm, the idea of Adversarial Training is to perform training to make
the model robust to adversarial examples in a l∞ ball of radius ε around each example. To this
end, the training phase is performed considering the worst-case input x′ in a lp ball of radius ε

60

around each clean example x, instead of x. The optimization problem considered with Adversarial
Training is thus the following:

min
θ

E(x,y)∼D

[
max

x′∈B∞(x,ε)
L(x′, y,Mθ)

]
(4.27)

In order to compute the inner maximization problem, the authors propose to use the l∞-PGD
attack. Practically, during training, for each clean example x, an adversarial example x′ is crafted
with the l∞-PGD attack with adversary budget ε, and the model is trained to classify x′ in the
ground-truth class y. Eventually, Adversarial Training can be performed with any lp norm. For
the rest of this thesis, we will refer as an adversarially trained model for a model trained with
Adversarial Training.

An illustration of the principle of Adversarial Training is proposed in Figure 4.17. On the left
is represented the decision boundary (blue and green colors) for standard training. Around each
example, the black square represents the l∞ ball of radius ε, and thus the range for possible adver-
sarial examples for the l∞ threat model considered. As a black square can intersect the decision
boundary, the model is not robust to this type of adversarial example, . On the right is represented
the idealized decision boundary resulting from Adversarial Training. In this case, no black square
intersects the decision boundary, which means that the model is robust to adversarial examples
that can be crafted in a l∞ ball of radius ε around each example.

Figure 4.17: Illustration of Adversarial Training, from [147]. On the left is presented the decision
boundary resulting from standard training. On the right is presented the decision boundary re-
sulting from Adversarial Training. The black square around each example represents the l∞ ball
of radius ε. The orange dotted line represents the decision boundary of standard training.

Accelerating Adversarial Training. The training phase with Adversarial Training is much
longer than with standard training, as for each example, if the l∞-PGD is run for T iterations, T
gradients computations are required. Consequently, some works have investigated ways to speed
up Adversarial Training [159,160].

Shafahi et al. [159] propose a first way intended at performing Adversarial Training with much
smaller training time. The idea of Free Adversarial Training is to consider repeating m times
the same procedure for each batch, for N

m epochs (where Adversarial Training is performed for N
epochs). For each batch, for each example encountered, it resumes to repeat m times firstly the
update of model parameters, then to compute only one step of the l∞-PGD attack (equivalent to
the FGSM attack).

Wong et al. [160] show experimentally that performing adversarial training using the FGSM
attack with non-zero initial perturbation (adding a perturbation to the clean example before per-
forming the gradient step) to craft adversarial examples the model is trained with, can be as
efficient as the classical adversarial training where the PGD attack is used.

Robust Overfitting in Adversarial Training. It is known that overfitting in classical train-
ing by augmenting the model complexity and training for long periods can help for generalization.
Rice et al. [161] show experimentally that when considering adversarial training instead of classical
training, this is not observed anymore. Indeed, when performing adversarial training, overfitting
may cause the robust test set error to increase while the robust train set error continues to decrease.
This phenomenon is called robust overfitting. An illustration of the robust overfitting phenomenon
is presented in Figure 4.18.

61

Figure 4.18: Illustration of the robust overfitting phenomenon, from [161]. While train and test
standard errors decrease, train robust error decreases but test robust error increases.

Improvements of Adversarial Training.
Maini et al. [162] propose an Adversarial Training method which allows to train models which

are robust to l∞, l2 and l1 adversarial examples. It consists in performing a single step of the PGD
attack for each p ∈ {1, 2,∞}, and keeping the adversarial perturbation resulting in the biggest loss
value as the initial adversarial perturbation for the next step. Croce et al. [163] also propose a
method to perform Adversarial Training for all lp threat models.

Wang et al. [164] propose MART (Misclassification Aware adveRsarial Training), a defense
scheme based on the fact of treating differently correctly classified and misclassified examples
during Adversarial Training.

Zhang et al. [165] propose GAIRAT (Geometry-Aware Instance-Reweighted Adversarial Train-
ing), an enhanced version of Adversarial Training, where the main idea is that adversarial examples
crafted from examples close to the decision boundary should be treated with more importance than
those crafted from examples further from the decision boundary, as they are more responsible for
the final shape of a robust decision boundary.

Naseer et al. [166] propose SAT (Stylized Adversarial Training), where an adversarial example
is crafted leveraging class-boundary information (as with Adversarial Training) but also style and
content information, to consider an even stronger adversarial examples. The main idea, considering
a clean example, is 1) to craft an adversarial perturbation using feature-level information such as
style and content of another example, called target example, from another class than the clean
example, and then 2) design another positive example from the same class as the clean example
with this perturbation, to eventually minimize a contrastive loss which encompasses maximizing a
distance between the clean and target example, and minimizing a distance between the clean and
positive example.

Goldblum et al. [167] propose ARD (Adversarially Robust Distillation), a method based on
distillation to transfer robustness from an adversarially trained teacher model T to a student
model S.

Adversarial Feature Stacking (AFS)

Liu et al. [168] propose AFS (Adversarial Feature Stacking), a defense method against adversarial
examples designed to reduce the trade-off between accuracy and robustness in Adversarial Training.

The main idea is to consider many models trained with Adversarial Training with different
adversarial budgets (‖ε‖ for the l∞ threat model), to take advantage of features with various levels
of usefulness and robustness. More precisely, it is known that considering ε1 > ε2, models trained
with AT with the ε1 value will learn features which are more robust but less useful than models
trained with AT with the ε2 value. This results in the model trained with ε1 showing a greater
robust accuracy but a smaller clean accuracy than the model trained with ε2.

62

Robust Local Features for Adversarial Training (RFLAT)

Song et al. [169] propose RLFAT, an enhancement to Adversarial Training which allows the trained
model to rely more on local features. This method is based on three observations:

• Adversarially trained models rely more on global features than classically trained models

• Adversarially trained models generalize with difficulty for clean and adversarial examples (i.e
there is a smaller test accuracy than for standard models, and there is a consequent gap
between adversarial robustness on training and test set)

• Standard models rely more on local features than adversarially trained models

The authors hypothesize than performing Adversarial Training while accounting more for local
features would allow better test set accuracy and test set robustness.

To force Adversarial Training to rely more on local features, the authors propose the Random
Block Shuffle (RBS) transform which consists of splitting an image into many blocks and shuffling
these blocks. At each step of adversarial training, the adversarial example x′ crafted from x is
passed through the RBS transform before the weight update. As the RBS transform breaks the
global structure of the image, it forces training to focus on local features.

Confidence Calibrated Adversarial Training (CCAT)

Stutz et al. [170] propose CCAT, a defense method against adversarial examples crafted in the
white-box setting, which includes a rejection mechanism. The main idea is to perform Adversarial
Training with the l∞ threat model, while training the model to output a combination of the ground-
truth label and the uniform distribution, which becomes more uniform as the distance between the
clean example and its adversarial counterpart increases. This procedure aims at making the model
output a uniform distribution for adversarial examples crafted considering other threat models, or
with bigger l∞ perturbations, making all type of adversarial examples detectable afterwards.

Jacobian Adversarially Regularized Networks (JARN)

Chan et al. [171] show that forcing a model to have salient jacobian matrices for the loss induces
better robustness against adversarial examples. A jacobian matrice being salient means that it is
interpretable by a human: it shows features relevant to the human. It has already been shown that
robust models (trained with adversarial training or randomized smoothing for example) exhibit
more salient jacobian matrices than naturally trained models [114,117].

Bit Planes Feature Consistency (BPFC)

Addepalli et al. [172] propose the Bit Plane Feature Consistency (BPFC) defense method against
adversarial examples, which consists in training a model to behave similarly for an example and its
high bit plane version (i.e. the example where only the most important bits are kept). The moti-
vation is that as human brains are not fooled by adversarial examples and rely on large magnitude
components to make a decision (then slightly refines it by looking at details), by enforcing that a
model behaves similarly on an example and its high bit plane version, it is hoped that it does not
rely on low bit plane information where adversarial perturbation is located. An illustration of an
image and various modifications of it, keeping only some bits, is presented in Figure 4.19.

Figure 4.19: Illustration from [172]. (a) Original 8-bit image (b) Weighted sum of (higher) bit
planes 7, 6 and 5 (c) Weighted sum of (higher) bit planes 7 and 6 (d) Bit plane 7 - Most significant
bit plane (e) Weighted sum of (lower) bit planes 4, 3, 2, 1 and 0

63

Flatness of the likelihood landscape

Lin et al. [173] show that there exists a link between the flatness of the likelihood landscape and
the robustness against adversarial examples. Non-robust models naturally show a high likelihood
for clean examples (these points are very likely to be points the model has been trained to predict
correctly), but a very low likelihood for slightly perturbed clean examples. This means that
perturbing the clean examples results in points which are very likely not to have been considered
by the model, and thus points for which the models has not been trained to classify correctly.
This results in a very non-flat likelihood landscape around clean examples for non-robust models
(with a peak at clean examples), whereas robust models show a flatter likelihood landscape around
clean examples (this means that slightly perturbed clean examples are also very likely to have
been considered by the model and thus very likely to still be well classified). An illustration of this
phenomenon is presented in Figure 4.20.

Figure 4.20: Illustration of the log-likelihood around a clean example x for two random directions
for various models, from [173]. (Left) standard training. (Middle) Adversarial Training. (Right)
Jacobian regularization. The likelihood landscape is strongly not flat around the example for
standard training, whereas it is quite flat for Adversarial Training et jacobian regularization.

4.6 Conclusion
In this chapter, we detailed in depth the phenomenon of adversarial examples targeting a neural
network model trained for an image classification task. This chapter has allowed to lay out the
foundations of the different notions and concepts that will be addressed throughout this thesis.

More precisely, as the study of adversarial examples stays a quite recent field of interest in
the scientific community, we began by giving a brief overview of the evolution of the adversarial
examples literature. This allows to better tackle the ongoing challenges regarding notably the
definition of the threat model and the evaluation of defense schemes. We then proceeded to
position our work on digital adversarial examples.

We defined formally the threat model for an adversary attacking a neural network for an image
classification task. The adversary goal, knowledge and capacity concepts presented here will be
specified throughout this work each time it is needed, to property evaluate the efficiency of an
attack or a defense scheme. In order to give an intuition of the reasons why neural network
are sensitive to adversarial examples, while it is not the case for humans, we reviewed the main
explanations for the existence of adversarial examples.

Eventually, to present various ways of finding adversarial examples, as well as various ideas
to defend a model against adversarial examples, we detailed some attack and defense schemes.
Moreover, this allows to present attack and defense methods that will be used later in this work.
For the attack methods, we considered an adversary in a white-box or in a black-box setting.
Importantly, we detailed the transferability phenomenon, which is a core subject of our thesis.

64

Chapter 5

Frequency Analysis of Adversarial
Robustness

65

In the previous chapter, we explained the root cause for the existence of adversarial examples:
neural networks rely on features humans are not sensitive to [57]. Notably, we have seen that neural
networks classify an image based mostly on local information such as texture [113,114]. Adversarial
attacks therefore exploit changes localized to these local features humans do not rely on to perform
classification. Indeed, humans make their decision based on various cues, but predominantly global
shapes (edges, silhouette, shape, contour, etc.) and to a lesser extent on local information such as
texture.

In this chapter, we continue to investigate the reasons for the vulnerability of neural networks
to adversarial examples, emphasizing on frequency properties. This allows notably to better under-
stand the sensitivity difference between humans and models. As the starting point of this chapter,
cognitive science reports that the process of interpretability for human classification decision relies
predominantly on low spatial frequency components.

Consequently, we study the robustness to adversarial perturbations of models trained to leverage
information corresponding to different spatial frequency ranges, and more specifically low spatial
frequencies. We show that this robustness is tightly linked with the spatial frequency characteristics
of the data at stake. Indeed, depending on the data set, the same constraint may results in very
different level of robustness (up to 0.41 adversarial accuracy difference).

To explain these results, we conduct several experiments to highlight influential factors. Among
these factors, the localization of the information in the frequency spectrum, the sensitivity to high
frequency noise, and the transferability of adversarial perturbations between original and low-pass
filtered inputs, play an important role.

Related publication proposed during the thesis:

• [174] Bernhard, R., Moellic, P. A., Mermillod , M., Bourrier, Y., Cohendet, R., Solinas, M.,
Reyboz, M. Impact of Spatial Frequency Based Constraints on Adversarial Robustness. IEEE
International Joint Conference on Neural Networks (2021). 2021.

5.1 Motivation
The vulnerability of neural network models to adversarial examples arises from models relying on
different features or different feature processing from those humans rely on to make their deci-
sions [57, 113, 114, 175]. Interestingly, there is a strong link between robustness and interpretabil-
ity: the features robust models rely on are interpretable by humans, and vice versa. Indeed, it
has been shown that models trained with Adversarial Training or Randomized Smoothing exhibit
interpretable gradients [117, 118, 176]: the more robust a model is, the more it will display inter-
pretable features. Inversely, a recent effort demonstrates that a model trained to have explainable
jacobian matrices presents adversarial robustness [171]. However, only few works underline this
critical link between robustness and the interpretability of the features a model relies on.

The association between robustness and interpretability has been studied by Zhang et al. [114]
at frequency level. The authors experimentally highlight a link between robustness for models and
some frequency properties. For models trained with Adversarial Training, low spatial frequency
(hereafter denoted by LSF) information related to interpretable notions such as shape is more im-
portant than non-interpretable concepts associated with high spatial frequency (hereafter denoted
by HSF) information.

For humans, experimental evidence in neural computation and cognitive psychology suggests
the importance of LSF to perform efficient classification [177–179]. Therefore, a natural hypothesis
would be that a model trained specifically to rely more on LSF information might present an
improved adversarial robustness. This hypothesis has already been indirectly exploited by taking
advantage of preprocessing defense schemes based on HSF components filtering [180–182]. Other
defenses aim at training a model exploiting more human interpretable information. As an example,
Addepalli et al. [172] give higher importance to information present in higher bit planes, which is
information humans predominantly rely on to make their decisions. However, these methods stay
agnostic of the intrinsic spatial frequency characteristics of the data.

In this chapter, we aim at investigating the link between robustness against adversarial examples
and frequency properties of the data at stake. More precisely, our objective is twofold. First,
we experimentally question some preconceived hypothesis related to adversarial examples, more
particularly ones considering adversarial perturbations as a pure HSF phenomenon with data-
agnostic spatial frequency characteristics. Second, we aim at investigating the link between the
spatial frequency features of the information that a model uses to perform predictions and the

66

robustness against adversarial perturbations offered by spatial frequency-based constraints. Our
key contributions are:

• We show that a frequency-based regularization induces very different levels of robustness
according to the frequency features of the data. As an example, a low-frequency constrained
model on CIFAR10 (that covers a broad frequency spectrum) has no robustness, while reach-
ing a 41 % true robustness for SVHN against the l∞-PGD attack.

• By analyzing the sensitivity of a standard model as well as adversarial transferability prop-
erties, we observe that enforcing a model to rely on LSF information is not a necessary
condition to bring adversarial robustness. We identify key factors which condition robust-
ness when training a model to rely on LSF information.

• We notice that, depending on the data set complexity, some models spread over the whole
frequency spectrum, and show that constraints spanning different frequency ranges can help
improving robustness.

• We discuss combination with Adversarial Training for a future overall defense strategy.

This chapter is organized as follows. After positioning our work in relation to the state-of-
the-art in Section 5.2, we present the details about data set and filtering methods that will be
used throughout the thesis in Section 5.3. We analyze, in Section 5.4, frequency properties and
sensitivity of features learned by a model. Notably, we study to which extent features learned by
a model are focused on low or high spatial frequency concepts, and the sensitivity of models to
frequency constrained noise. In Section 5.5, we set forth interesting links between transferability
of adversarial perturbations and frequency properties of the information models make use of. In
Section 5.6, we design loss functions to force a model to extract features in particular frequency
ranges, and observe the potential effects on adversarial robustness. We link these effects with
analysis performed in Sections 5.4 and 5.5. We also show promising future work direction by
binding our findings with Adversarial Training.

5.2 Neural network models and frequency concerns: state-
of-the-art

As mentioned in the previous chapter, recent efforts [90, 116] experimentally demonstrate that
regular models predominantly exploit non-interpretable HSF components, and that robust models
tend to use more concepts, such as shape, associated to LSF [113, 114], in a way similar to that
of humans [177–179]. Therefore, a common belief is that the adversarial vulnerability of a model
comes from the utilization of HSF components [183]. However, Yin et al. [90] show that adversarial
perturbations cannot be viewed only as a HSF phenomenon: adversarially trained models, more
sensitive to LSF, stay vulnerable to an adversary that optimally exploits this part of the frequency
spectrum. Notably, Sharma et al. [184] make use of LSF constraints to craft adversarial examples
against adversarially trained models on ImageNet and use fewer iterations than classical adversarial
attacks.

As adversarial examples are the consequence of models relying on brittle and non-interpretable
features [57], some papers exploit the idea of enforcing a model to use features to which humans
are sensitive. During training, Yin et al. [90] add LSF noise and demonstrate that it does not
necessarily improve robustness to LSF perturbations. As a explanation, the authors hypothesize
that as natural images are more LSF concentrated, it is harder for a model to become invariant to
these spatial frequencies and, then, to LSF perturbations. Before, Geirhos et al. [113] interestingly
took advantage of stylized images that keep only shape information within a data augmentation
process to improve the robustness against common perturbations. Even if not related to frequency
concerns, Addepalli et al. show in [172] that constraining a model to rely on the information
contained in the higher bit planes only (as humans make decisions based on the information of
large magnitude) has a positive impact on robustness.

5.3 Preliminaries

5.3.1 Filtering with the Fourier transform
In order to perform low-pass or high-pass filtering for an image, we simply delete the undesired
spatial frequencies in the Fourier domain, similarly to almost all works in the adversarial examples

67

Figure 5.1: Original image (left). Low-pass filtered images with corresponding mask (first row).
High-pass filtered images (magnified for visualization) with corresponding mask (bottom row).
For the Fourier domain masks, white denotes value 1 and black value 0. For LSF, low filtering
intensity means restricted low-pass filtering. For HSF, high filtering intensity means
restricted high-pass filtering.

literature [90, 116, 183, 184]. We note F and F−1 the Discrete Fourier Transform (DFT), and its
inverse function, respectively. C and C−1 denote a specific operator which centers coefficients of the
Fourier transform, and its inverse, respectively. More precisely, for a gray-scale image a ∈ Rn×n,
CF(a) ∈ Cn×n denotes the centered variant of F(a) ∈ Cn×n, where coefficients for low frequencies
are located at the center, and those for high-frequencies at the corners. The filtered version of an
image a is obtained in the following way:

1. First, the centered DFT Fc(a) = CF(a) is computed.

2. Second, the Hadamard product of Fc(a) with a mask Ω is performed, as Fc(a)�Ω, to select
the desired frequencies.

3. Third, the result is off-centered with the operator C−1.

4. Finally, the resulting filtered image is obtained with the inverse F−1 of the Fourier transform.

In summary, the filtered image is obtained as: afreq = F−1C−1Fc(a)� Ω.
For a color image, the procedure is applied to each of the channels. We denote xlowi and xhighi

respectively the low-pass and high-pass filtered versions of x at intensity i. The filtering intensity
is encompassed in the form of the binary mask Ω:

• Low-pass filtering. Ω corresponds to 1’s only in the 2i× 2i square in the middle.

• High-pass filtering. Ω corresponds to 1’s outside the 2i× 2i square in the middle

In consequence, for low-pass (resp. high-pass) filtering, the smaller (resp. the higher) the intensity
i, the stronger the filter is. We illustrate this process in Figure 5.1.

The LSF task (resp. HSF task) refers to the classification task where inputs have been low-
pass (resp. high-pass) filtered at some intensity, i.e. where input-label pairs correspond to (xlowi , y)

(resp. (xhighi , y)) for some i. M low
i (resp. Mhigh

i) denotes a model trained for the LSF (resp. HSF)
task.

5.3.2 Data sets and models
We consider CIFAR10, SVHN and a custom-built data set, named Small ImageNet, built by
extracting 10 meta classes from the ImageNet ILSVRC2012 benchmark. For each meta class, we
extracted 3, 000 images from the original training set and 300 images from the non-blacklisted
validation set. More details about the Small ImageNet data set are presented hereafter. All input
images are scaled to [0, 1].

CIFAR10 and SVHN, both involving color images of size 32 × 32 allow to make comparisons
and draw conclusions about the observed phenomenon. Small ImageNet, composed of 224 × 224
color images, enables to extrapolate results on images with higher definition.

68

SVHN and CIFAR10

For SVHN we use a model inspired from VGG [185], whose architecture is presented in Table
5.1. The model is trained for 25 epochs, a batch size of 28, and Adam optimizer with a learning
rate starting at 0.01 and decreasing to 0.001 after 15 epochs. A natural models reaches a test set
accuracy of 0.96.

Table 5.1: SVHN classifier architecture. BN, MaxPool(u,v) and Conv(f,k,k) denote respectively
batch normalization, max pooling with window size (u,v), and 2D convolution with f filters and
kernel of size (k,k).

Architecture

Conv(64,3,3) + BN + ReLU
Conv(64,3,3) + MaxPool(2,2) + BN + ReLU

Conv(128,3,3) + BN + ReLU
Conv(128,3,3) + MaxPool(2,2) + BN + ReLU

Conv(256,3,3) + BN + ReLU
Conv(256,3,3) + MaxPool(2,2) + BN + ReLU

Dense(1024) + BN + ReLU
Dense(1024) + BN + ReLU

Dense(10) + softmax

For CIFAR10 we use a WideResNet28-8 model [186]. The models is trained for 100 epochs, a
batch size of 128, and stochastic gradient descent with a momentum of 0.9, with a learning rate
starting at 0.1 and decreasing to 0.02, 0.004 and 0.0008 after respectively 40, 75 and 90 epochs.
This model reaches a test set accuracy of 0.93.

Small ImageNet

The Small ImageNet data set is a downscaled version of the ImageNet data set [70]. The chosen
resolution for images is 224 × 224. To build this data set, we created 10 meta classes from the
original ImageNet classes. For each meta class, we extracted 3, 000 images from the original training
set and 300 images from the non-blacklisted validation set.
More precisely, each meta class corresponds to three original classes. The final meta classes and
the indexes of the ImageNet original classes are detailed in Table 5.2 1.

Table 5.2: Small ImageNet. Matching between each Small ImageNet class and the original Im-
ageNet class indexes. The human readable labels corresponding to indexes of ImageNet can be
found at https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a

Meta class Original ImageNet class index

shark 2, 3 and 4
bird 85, 86 and 87
frog 30, 31 and 32
dog 153, 154 and 155
cat 281, 282 and 283
bear 294, 295 and 296

monkey 367, 368 and 369
ball 768, 805 and 852
chair 423, 559 and 765
truck 569, 717 and 867

For Small ImageNet we consider a MobileNetV2 model [187]. The model is trained for 100
epochs, a batch size of 128, and stochastic gradient descent with a momentum of 0.9, with a

1The human readable labels corresponding to indexes of ImageNet can be found at https://gist.github.com/
yrevar/942d3a0ac09ec9e5eb3a

69

https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a
https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a
https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a

Figure 5.2: CIFAR10 and SVHN. Accuracy of a regular model on low-pass and high-pass filtered
data set, for different filtering intensities.

Figure 5.3: Small ImageNet. Accuracy of a regular model on low-pass and high-pass filtered data
set, for different filtering intensities.

learning rate starting at 0.1 and decreasing to 0.02, 0.004 and 0.0008 after respectively 40, 75 and
90 epochs. A natural models reaches a test set accuracy of 0.93.

5.4 Frequency properties of data and models
In this section we aim at gaining insight on the way information learned by a classifier trained to
solve the regular classification task contains information for the LSF and HSF tasks. These exper-
iments allow to gain intuition on the way models leverage information with respect to data sets
frequencies. The conclusions draws in this section will help to better understand robustness dissim-
ilarities which occur between different models trained with the same frequency-based constraints
(later in Section 5.6).

5.4.1 Impact of filtered data sets
We begin by evaluating CIFAR10 and SVHN regular models on low-pass and high-pass filtered
images. Results are presented in Figure 5.2. For CIFAR10, we notice that the accuracy of a model
decreases much slower than SVHN when evaluated on more and more high-pass filtered images.
We obtain an opposite result for SVHN with low-pass filtered data. We can therefore assume
that the informative features learned by the regular model are more focused on the LSF task for
SVHN and are more spread between LSF and HSF tasks for CIFAR10. This analysis is consistent
with the intrinsic frequency features of the data sets that is revealed by a classical Fourier analysis
(presented in Figure 5.4, top row) that actually shows a quite narrow spectrum for SVHN (towards
LSF) and a spread spectrum for CIFAR10.
In Figure 5.3, we present the accuracy of a Small ImageNet regular model on low-pass and high-
pass filtered data sets. The accuracy for low-pass filtered images decreases quite slowly considering

70

Figure 5.4: CIFAR10, SVHN and Small ImageNet data sets. Fourier spectrum for clean images.
Low frequencies are at the center, and high frequencies at the corners.

Figure 5.5: CIFAR10 and SVHN. Accuracy of M low (resp. Mhigh) models on LSF (resp. HSF)
filtered data sets. (See Figure 5.1 for filtering intensity effect).

the range of the spectrum. This is an indication towards the fact that informative features learned
by the regular model are more spread between LSF and HSF tasks for Small ImageNet. This
observation is strenghtened by the Fourier analysis in Figure 5.4 (bottom row).

The accuracy of models M low
i (resp. Mhigh

i) for various i for the LSF (resp. HSF) test set
filtered at intensity i, presented in Figure 5.5, further highlights this phenomenon. The accuracy
reached by models M low

i decreases much slower for SVHN than for CIFAR10, as the filtering
intensity increases (and the inverse phenomenon is observable for high-pass filtering). This agrees
with previous results (Figure 5.2), i.e. the useful information for the classification task is more
distributed in the frequency spectrum for CIFAR10 compared to SVHN for which the information
is predominantly concentrated in the low frequencies.

5.4.2 Sensitivity to high spatial frequency noise
We investigate the sensitivity of regular models to perturbations in specific frequencies. For that
purpose, we use a similar procedure as in [90]: the sensitivity is measured as the error rate of the
model on a set of examples perturbed with noise located only in those spatial frequencies. More
precisely, for a clean input image x ∈ Rn×n×c, each channel is perturbed independently by the
addition of a noise rvUi,j , where Ui,j is a Fourier basis matrix for coordinates (i, j) in the Fourier
domain, r is chosen randomly in {−1, 1}, and v controls the magnitude of the perturbation. We
then measure the error rate of a model on 1, 000 well-classified test set examples perturbed with

71

Figure 5.6: CIFAR10 and SVHN. Error rate of models on data perturbed with Fourier constrained
noise. Value at (i, j) measures the error rate on data perturbed with noise along Fourier basis
matrice Ui,j . Low frequencies are located at the center, and high frequencies at the corner. High
values (red color) denote a high sensibility, and low values (blue color) denote a low sensibility.

this type of noise, as a function of (i, j). We focus our analysis on CIFAR10 and SVHN, two data
sets with the same image size, and we experimentally set v = 4. Results are presented in Figure 5.6
(top row). We notice that a CIFAR10 regular model is more sensitive to LSF and HSF noise, while
a SVHN regular model is more sensitive to LSF and not to high and very high frequencies.

For CIFAR10, we also investigate the sensitivity of models M low
i . Results are presented in

Figure 5.6 (middle and bottom rows). Interestingly, we notice that the models M low
i become less

sensitive to HSF as i decreases (i.e. as the low-pass filtering intensity increases). Therefore, for CI-
FAR10, training a model on low-pass filtered images brings robustness against HSF perturbations.
However, this robustness would be useless if adversarial perturbations were to rely on a broader
spectrum than only HSF. We investigate this in the following section.

5.5 Transferability analysis
The transferability of adversarial perturbations between two models has been explained by shared
non-robust useful features [57] (see Section 4.3.2), that is features sensitive to adversarial perturba-
tions and exploited for the prediction by both models. Therefore, to gain a better understanding of
the nature of features at stake as well as frequency properties of adversarial perturbations, we study
the transferability of adversarial examples between a regular model and models trained for the LSF
or HSF task (i.e. M low and Mhigh). For these M low and Mhigh models, a pre-processing layer
consisting of the filtering operation is added before the model to evaluate it on non-filtered inputs.
We use the l∞ DIM attack [139] (a state-of-the-art gradient-based attack tuned for transferability),
with 40 iterations, a probability p = 0.8 and a l∞ perturbation budget of 0.03.

We first remind that for modelsM low
i , a low filtering intensity i means that the model is trained

on a strict low-pass filtered data set (see Figure 5.1) and as the filtering intensity i increases, more
and more HSF are considered. Thus, for example, adversarial examples crafted on M low

2 exploit

72

Figure 5.7: CIFAR10. Fourier spectrum for the adversarial perturbation (a) Regular model, (b)
Model trained on low-pass filtered data set at intensity 6.

Figure 5.8: SVHN (top left), CIFAR10 (top right), Small ImageNet (bottom right). Transferability
analysis between base model and models trained on a filtered data set. (See Figure 5.1 for filtering
intensity effect).

non-robust features learned with only LSF information and adversarial examples crafted on M low
12

will have the possibility to take advantage of non-robust features determined on a broader range of
frequencies. On the contrary, for models Mhigh

i , a high filtering intensity i means that only HSF
are kept (see Figure 5.1), and a low intensity represents a larger spectrum, gathering more LSF.
Here, adversarial examples crafted on Mhigh

12 will exploit non-robust features learned exclusively
on HSF information and adversarial examples crafted on Mhigh

2 will rely on non-robust features
from a broader spectrum. We illustrate this in Figure 5.7 (a) and (b), by presenting the magnitude
of the Fourier spectrum of adversarial perturbation crafted on the regular model and on M low

6 .
We observe that the perturbation is quite uniformly distributed along the spectrum (confirming a
result from [90]) for the regular model and predominantly focused on the low frequencies forM low

6 .
This is an important point, as it shows that adversarial examples are not HSF phenomena but
may rely on a large range of spatial frequencies to efficiently fool a model.

Furthermore, analyzing the transferability results of Figure 5.8, we can provide interesting
information about the nature of the robust and non robust features of a model as well as the
properties of adversarial perturbations. Importantly, we observe similar behaviors for CIFAR10,
SVHN and Small ImageNet.

A first conclusion comes from the two-way transferability between the regular model M (noted
Base) and models M low

i (blue curves). Indeed, we notice that the stronger the low-pass filtering
(smaller i), the lower the transferability of adversarial perturbations. This indicates that the

73

regular classification task and the LSF task share predominantly robust useful features.
Secondly, an important outcome arises from the dissimilarity between the two orange curves

for each data set. On one hand, the solid orange curve attests the impact of non-robust features
exploiting HSF, highlighted by an almost constant success of adversarial examples crafted from
the base model against modelsMhigh

i (about 0.1, 0.2 and 0.5 of adversarial accuracy for CIFAR10,
SVHN and Small ImageNet respectively). On another hand, the dotted orange curve indicates that,
as the high-pass filtering becomes more restrictive (i.e. as the i value increases), the transferability
of adversarial examples crafted on Mhigh

i to the regular model decreases. These observations
support the claim that, to be efficient, adversarial perturbations must exploit a wide part of the
spectrum, and therefore cannot be only focused on HSF. This is particularly the case for Small
ImageNet, as i) the accuracy from a regular to a Mhigh model is higher than for CIFAR10 and
SVHN, and ii) the transferability of adversarial examples crafted on Mhigh

i is already poor for
i = 5.

We can summarize our conclusions as follows:

• Robustness is strongly related to features that rely on LSF information.

• Adversarial perturbation are not efficient when focused only on HSF.

In the next section, we propose to look deeper into the impact of frequency-based constraints when
training a regular model in order to investigate if it can help to increase its robustness.

5.6 Adversarial robustness of frequency-constrained models
Following the precedent observations, we investigate loss functions designed to make a model to
leverage informative features for both the regular task and the LSF and/or HSF task and evaluate
how it impacts the adversarial robustness.

5.6.1 Frequency-based regularization
To enforce a model Mθ to rely on information relative to the LSF or HSF task, we define the
following loss function Lfreq, which acts on the logits (with h being the logits function).

Lfreqi,j (x, y,Mθ) =LCE(x, y,Mθ) + λ1

∥∥h(x)− h(xlowi)
∥∥2

2

+ λ2

∥∥∥h(x)− h(xhighj)
∥∥∥2

2

(5.1)

For readability, when λ1 = 0 (i.e. constraint is only focused on the HSF task) the loss is simply
noted as Lhighi , and for λ2 = 0 as Llowi . During training, the cross-entropy part LCE makes the
model to learn useful features to solve the regular classification task. The second part (moderated
by λ1 and λ2) constraints the model to extract useful features coherently to the LSF and HSF
tasks.

5.6.2 Training setup
For SVHN, we consider the loss functions Llowi and Lhighi for i ∈ {2, 4, 6, 8, 10}, and Lfreqi,j .

We train models for 85 epochs, a batch size of 64, and Adam optimizer with a learning rate
starting at 0.01 and decreasing to 0.001 and 0.0001 after 42 and 64 epochs. The constants λ1 and
λ2 used to perform the trade-off between the cross-entropy loss and the constraints are increased
during training. The value starts at 0.1, increasing at 0.5, 1.0, 2.5 and 3.0 after respectively 10,
20, 40 and 75 epochs.

For CIFAR10, we consider the loss functions Llowi and Lhighi for i ∈ {2, 4, 6, 8, 10}, and Lfreqi,j .
We train models for 200 epochs, a batch size of 128, and stochastic gradient descent with a mo-

mentum of 0.9, with a learning rate starting at 0.1 and decreasing to 0.01, 0.001 after respectively
100, and 160 epochs. For the constants λ1 and λ2, the value starts at 0.1, increasing at 0.5, 1.0,
1.75 and 2.5 after respectively 20, 57, 114 and 170 epochs.

For Small ImageNet, as each model training is costly, we consider the loss functions Llowi , Lhighi

and Lfreqi,j for representatives values in {10, 20, 40, 60}.

74

We train models for 200 epochs, a batch size of 128, and stochastic gradient descent with a
momentum of 0.9, with a learning rate starting at 0.1 and decreasing to 0.01, 0.001 after respectively
110, and 180 epochs. For the constants λ1 and λ2, the value starts at 0.01, increasing at 0.1, 0.5,
1.0 and 2.0 after respectively 24, 71, 142 and 190 epochs.

5.6.3 Robustness evaluation
In this section, the robustness against adversarial examples is evaluated with the adversarial ac-
curacy (Accadd), considering an adversary in the white-box setting under the common l∞ threat
model. Adversarial examples are crafted with the l∞-PGD attack [75], with a perturbation budget
of ε = 0.03. To provide the more accurate evaluation of robustness as possible, notably to assess
that no gradient masking occurs, we follow state-of-the-art guidelines from [81]. Notably, we re-
port results for 5, 000 iterations (we check that increasing this number does not lower robustness)
against 1, 000 well-classified test set examples, when the following sanity checks are passed:

• increasing the perturbation budget ε does decrease the adversarial accuracy,

• the gradient-free attack SPSA [79] does not perform better than l∞-PGD,

• the robustness against black-box transfer attacks [64] from a model with the same architecture
and the MIM attack [137] does not perform better than PGD.

Table 5.3: CIFAR10, SVHN and Small ImageNet. Best and worst accuracy on clean (Acc) and
adversarial examples (Accadv) of models trained with the constrained loss Llowi or Lhighi .

SVHN

Acc Constraints Accadv Constraints

Best 0.96 Llowi>2 0.41 Llow6

Worst 0.93 Llow2 0.0 Llow10

CIFAR10

Acc Constraints Accadv Constraints

Best 0.92 Llow2 , Lhigh10 0.0 Llow∗ , Lhigh∗
Worst 0.74 Llow2 0.0 Llow∗ , Lhigh∗

Small ImageNet

Acc Constraints Accadv Constraints

Best 0.92 Llow40 0.0 Llow∗ , Lhigh∗
Worst 0.88 Lhigh40 0.0 Llow∗ , Lhigh∗

Table 5.4: CIFAR10. Accuracy on clean (Acc) and adversarial (Accadv) examples of models trained
with loss Llowi on a low-pass version of CIFAR10. The value l denotes the filtering intensity for
the data set.

Data filtering: l = 6 6 8 8 10 10 12 12
Loss constraint: i = 2 4 2 4 2 4 4 10

Acc 0.75 0.82 0.76 0.83 0.73 0.84 0.83 0.92
Accadv 0.09 0.08 0.06 0.05 0.09 0.11 0.08 0.0

5.6.4 Influence of intrinsic frequency properties of the data bias on the
level of adversarial robustness

Results for Llow and Lhigh are presented in Table 5.3, and allow for a first important observation.
Indeed, we see that the same constraint induces very different effects on the robustness, depending

75

on the data set at stake. For CIFAR10 and Small ImageNet we observe no robustness when
considering separate losses Llow∗ or Lhigh∗ . On the contrary, models trained on SVHN with Llow
present an interesting level of adversarial robustness depending on the intensity level.

This observation links with different frequency properties of the data sets highlighted in Section
5.4: the information learned by models trained on CIFAR10 and Small ImageNet are spread over
the whole frequency spectrum, and – on the contrary – focused on LSF for SVHN. To further
investigate this link, we proceed to check if a CIFAR10 model trained with Llow would still reach
some robustness on low-pass filtered data (i.e. train with Llowi (θ, xlow, y)). In other words, we try
to exclude the high spatial frequencies, which are predominantly non robust, and that we assume
to explain this complete lack of robustness.

To that purpose, we train models with Llowi (i = 6, 8, 10, 12) on low-pass filtered versions of
CIFAR10 (i = 2, 4, 10). Thus, we ensure that the model learns features strictly focused in the LSF.
Results are presented in Table 5.4. Interestingly, we measure a slight but true and non-negligible
robustness for some models with loss Llow (up to an adversarial accuracy of 0.11).

As robustness is noticed for SVHN with Llow or for CIFAR10 with Llow on low-pass filtered
data, a first conclusion is that a model relying predominantly on useful features of the LSF task
can be made more robust with low-frequency based constraint (Llow). Moreover, these models
also share a non-sensitivity to high and very high frequencies (cf. Section 5.4), which highlights
another influential factor on the robustness of a model trained with the loss Llow.

However, is a frequency-based regularization suitable for complex data sets such as CIFAR10
or Small ImageNet? In Table 5.5, we present results with a constraint spanning a wider spectrum
(λ1 > 0, λ2 > 0). For SVHN, as expected, the combined constraints does not enable to reach
better robustness compared to the loss Llow, as the combination of the two constraints is not
compatible with the intrinsic frequency properties of the data set: information is predominantly
concentrated in the low frequencies. For Small ImageNet and CIFAR10 the combined constraint
forces the model to learn informative features for the LSF and HSF tasks, which are mainly robust
as features informative of the LSF task are mostly robust, as shown in Section 5.5 for CIFAR10.
Interestingly, stronger level of robustness is observed for Small ImageNet and we hypothesize that
the impact of the combined constraint is all the more efficient that the frequency spectrum is wider.

Table 5.5: CIFAR10, SVHN and Small ImageNet. Best and worst accuracy on clean (Acc) and
adversarial examples (Accadv) of models trained with the constrained loss Lfreqi,j .

SVHN

Acc Constraints Accadv Constraints

Best 0.96 Lfreq10,4 , L
freq
6,∗ , Lfreq8,6 0.30 Lfreq6,3

Worst 0.95 Lfreq4,12 0.0 Lfreq10,4 , L
freq
6,10 , L

freq
6,8

CIFAR10

Acc Constraints Accadv Constraints

Best 0.95 Lfreq5,3 , Lfreq8,6 0.12 Lfreq5,3 , Lhigh∗

Worst 0.92 Lfreq4,12 0.03 Lfreq4,12 , L
freq
6,8

Small ImageNet

Acc Constraints Accadv Constraints

Best 0.92 Lfreq60,∗ 0.36 Lfreq40,20

Worst 0.89 Lfreq10,60 0.0 Lfreq60,∗

5.6.5 Compatibility of frequency-based regularization with Adversarial
Training

Motivated by the true robustness observed when training some models with loss functions Llow,
Lhigh or Lfreq, we study the combination of these losses with Adversarial Training (hereafter
AT) [75], a common and widely used approach when defending against an adversary in the white-
box setting. This study is of particular interest as AT is shown to be related to frequency concern as

76

it makes a model rely more on low-frequency concepts and being less sensitive to perturbations in
the high-frequencies [113,114]. AT consists of training a model on adversarial examples generated
online and designed to induce a worst-case loss. Considering a l∞ bound ε for adversarial pertur-
bations and an input-label pair (x, y), an adversarial example x′ = x + δ is generated following:

δ = argmax
‖δ‖∞≤ ε

LCE(x+ δ, y,Mθ) (5.2)

The model is then trained minimizing the loss LAT = LCE(θ, x + δ, y). For the combination of
Adversarial Training with frequency-based constraints, we define the loss functions LAT,freq:

LAT,freqi,j (x, y,Mθ) = Lfreqi,j (x+ δ, y,Mθ) (5.3)

Training setup

As AT can be prone to robust overfitting [161], we perform early-stopping relatively to the error
on an hold-out set of test set examples when training models with these loss functions.

For SVHN, models are trained for 80, 000 steps, a batch size of 64, and stochastic gradient
descent with a momentum of 0.9, with a learning rate starting at 0.01 and decreasing to 0.001,
0.0001 after respectively 40, 000, and 60, 000 steps. For the constants λ1 and λ2, the value starts
at 0.05, increasing at 0.1, 0.2, 0.25, 0.3 and 0.4 after respectively 1000, 10, 000, 20, 000 40, 000 and
70, 000 steps.

For CIFAR10, models are trained for 80, 000 steps, a batch size of 128, and stochastic gradient
descent with a momentum of 0.9, with a learning rate starting at 0.1 and decreasing to 0.01, 0.001
after respectively 40, 000, and 60, 000 steps. For the constants λ1 and λ2, the value starts at 0.1,
increasing at 0.3, 0.5, 0.7 and 1.0 after respectively 10, 000, 20, 000 40, 000 and 70, 000 steps.

We evaluate the robustness against the l∞ PGD attack with ε = 0.03 for CIFAR10 and SVHN,
considering the same sanity checks and attack parameters as the ones used in Section 5.6, to ensure
the tightest evaluation of robustness as possible.

Results

Results are presented in Tables 5.6 and 5.7 for CIFAR10 and SVHN, respectively. We highlight the
fact that, when dealing with Adversarial Training, there is an inherent trade-off between accuracy
and robustness [147]. Therefore, for a fair comparison, we focus on the benefits of the addition
of frequency-based constraints, only for no (or up to 0.1%) loss of natural accuracy (highlighted
in bold in Tables 5.6 and 5.7). Particularly, for CIFAR10, a model trained with loss LAT,freq2,10

outperforms AT by 0.06 on adversarial accuracy. For SVHN, this improvement reaches 0.12 for a
model trained with loss LAT,freq10,4 .

From these results, two important and dependent observations can be made. In first place,
it shows that existing defense scheme can in fact benefit from constraints related to frequency
properties. However, in second place, it shows that the intrinsic effects of the defense scheme (AT)
has an influence on the effectiveness of such frequency-based regularization. Indeed, relatively to
each data set, there is no connection between the frequency constraints which allow the loss function
LAT,freq to outperform Adversarial Training, and the ones which bring robustness when considered
alone (5.6.4). Indeed, as an example, for CIFAR10, no robustness was brought by constraint on the
HSF task (Table 5.3), whereas this is the loss LAT,highi which outperforms Adversarial Training.
A possible explanation is very likely to come from Adversarial Training biasing the sensitivity of
models towards the low frequencies. Therefore, when combining frequency related constraint with
a defense scheme, not only do the frequency properties of the data at stake play an important role,
but frequency related effects of the defense itself has a strong influence.

5.7 Conclusion and future work
In this chapter, we studied the link between frequency concerns and adversarial robustness. This
allows to better tackle the reasons for the sensitivity difference between humans and neural network
models to adversarial perturbations. Indeed, the existing literature is focused on explaining this
difference either with low-level features [57] or high-level concepts such as shape, contour, texture,
etc. [113, 114]. Particularly, this work allows to gain insight on the strong influence of frequency
properties of the data at stake that may be very specific according to the application domain.

77

Table 5.6: CIFAR10. Accuracy on clean (Acc) and adversarial (Accadv) examples of models trained
with loss functions LAT,lowi (λ2 = 0), LAT,highi (λ1 = 0) and LAT,freqi,j .

Loss LAT : Acc = 0.84, Accadv = 0.55

Loss LAT,lowi

i = 2 4 8 10

Acc 0.80 0.79 0.81 0.82
Accadv 0.59 0.60 0.57 0.56

Loss LAT,highi

i = 4 6 8 10

Acc 0.84 0.84 0.85 0.83
Accadv 0.58 0.6 0.55 0.60

Loss LAT,freqi,j

(i, j) = (10,4) (2,10) (4,8) (8,6)

Acc 0.84 0.8 0.81 0.82
Accadv 0.58 0.61 0.58 0.6

Table 5.7: SVHN. Accuracy on clean (Acc) and adversarial (Accadv) examples of models trained
with loss functions LAT,lowi (λ2 = 0), LAT,highi (λ1 = 0) and LAT,freqi,j .

Loss LAT : Acc = 0.93, Acadv = 0.54

Loss LAT,lowi

i = 2 4 8 10

Acc 0.87 0.9 0.90 0.90
Accadv 0.59 0.59 0.60 0.61

Loss LAT,highi

i = 4 6 8 10

Acc 0.87 0.8 0.88 0.87
Accadv 0.56 0.58 0.57 0.57

Loss LAT,freqi,j

(i, j) = (10,4) (2,10) (4,8) (8,6)

Acc 0.92 0.92 0.91 0.91
Accadv 0.66 0.6 0.64 0.66

We investigated through experiments the robustness of models enforced during training to
leverage information contained in specific frequency ranges, based on the result from cognitive
psychology that humans predominantly rely on low-frequency information to make their decisions.
Importantly, we found that models constrained to rely on useful information for the LSF task do
not necessarily show robustness against adversarial examples. We found that this is the case only
for models relying predominantly on useful features for the LSF task, and with a non-sensitivity
to high frequency noise. Interestingly, when the information encompassed in the images is spread
over the whole frequency spectrum, a constraint spanning a wide frequency spectrum is a viable
solution. Moreover, the efficiency of frequency-based regularization when combined with existing
defense schemes is strongly dependent of the nature of these schemes.

These experiences as well as the conclusions of previous efforts in neural computation and
cognitive psychology highlight the fact that the intrinsic frequency characteristics of data must be
necessarily considered when designing robust defense strategies against integrity-based attacks of

78

supervised models.
In this chapter, we tackled the intrinsic nature of adversarial examples, and enhanced the un-

derstanding of robustness by leveraging frequency properties of the data. In the next chapters, we
will be interested in understanding which factors can influence adversarial attacks. Notably, a big
part of this work will tackle the powerful transfer attacks for an adversary in the black-box setting.
In chapter 6, we study the impact of model quantization on the strength of adversarial examples
and their transferability. In chapter 7, we explicitly design a method to thwart black-box transfer
attacks.

Future Work. In terms of leveraging frequency property to increase the robustness of a
model, we identify two possible improvements. The first one is related to the frequency filtering
method used. Notably, one could perform experiments with smoother filtering methods than the
one used in this work, e.g. gaussian filtering. The second one is related to the combination of
frequency constraints with Adversarial Training. Better understanding the interactions between
the constraints and the natural biasing of Adversarial Training towards LSF could allow to derive
rules about which constraint to choose.

79

Chapter 6

Quantization for robustness and
transferability for quantized models

80

In the previous chapter, we gained insight on the link between data frequency properties and the
vulnerability of models to adversarial perturbations. We studied the frequency nature of adversarial
perturbations, and investigated how to bring robustness to models by studying frequency properties
specific to the data at stake.

In this chapter, we investigate another crucial aspect regarding the robustness of neural net-
works, which has to do with the growing will to deploy neural networks models on embedded
systems. In fact, with this intent comes memory footprint and energy consumption issues related
to the devices on which these models are implemented. Finding lighter solutions to store neural
networks has therefore become a major research topic. Consequently, some methods such as model
quantization, coupled with efficient inference methods, are becoming increasingly used in deep
learning. In this chapter, we study how quantization schemes affects adversarial robustness.

More precisely, in this chapter, we investigate the adversarial robustness of quantized neural
networks under different threat models. Contrary to previous conclusions in the literature, we find
that quantization does not offer any protection, and results in a severe form of gradient mask-
ing [78]. To explain the source of this gradient masking issue, we advance some hypotheses related
notably to theoretical concerns of the quantization methods used. Moreover, we study how quan-
tization may impact transferability, which is at the core of this thesis. We experimentally observe
poor transferability capacities between models with different quantization levels (number of bits
used), which we explain by the quantization value shift phenomenon and gradient misalignment.
Eventually, we explore how these results can be exploited with a defense based on an ensemble of
models.

Related publication proposed during the thesis:

• [188] Bernhard, R., Moellic, P. A., Dutertre, J.-M. Impact of low-bitwidth quantization on
the adversarial robustness for embedded neural networks. IEEE International Conference on
Cyberworlds (CW). 2019.

6.1 Motivation
The outstanding performances of neural networks in various domains have been allowed – among
others – by the tremendous computation power offered by the popularization of GPU. Also, the
resulting trained architectures come with thousands or even millions parameters. As the desire to
run pre-trained neural network based application (e.g image recognition) on embedded or mobile
systems grows, one must investigate the ways to solve the practical issues involved. Firstly, infer-
ence cost in terms of energy is critical for devices like mobile phones or a large variety of connected
objects (e.g., industrial sensors). Secondly, inference speed is necessary to avoid critical latency
issues. Last but not least, the memory footprint can quickly be a limiting factor for constrained
devices. For example, a typical ARM Cortex-M7-based microcontroller such as STM32H7 has 2
MByte of Flash memory and 512 KByte of SRAM memory1. A. Capotondi and M. Rusci (Univer-
sity of Bologna2) illustrate (Figure 6.1) how different MobileNet (v1) models can fit in a STM32H7.
Typically, most of the MobileNet architectures cannot fit the memory constraints of a STM32H7
with 32-bit floating point parameters. With the 160-MobileNet-0.25 a device should have at least
0.47 ∗ 4 = 1.88 MBytes of Flash memory to only store the model parameters. This issue raises
the question of the necessity of full-precision parameters for DNN models. Figure 6.1 (right) show
that with a 8-bit integer representation of the parameters, seven MobileNet architectures fit the
memory constraints (red rectangle).

On a software related side, some APIs like the Android Neural Network API (NNAPI3) have
been already developed to allow to run efficiently trained models with famous frameworks (Tensor-
Flow4, etc.) on Android systems. Tensorflow Lite (TFLite5) allows to transfer pre-trained model
to mobile or embedded devices thanks to model compression techniques and 8-bit post-training
weights quantization. ARM-NN6 is another SDK that does the link for applications between
various machine learning frameworks and diverse Cortex CPUs or Mali GPUs types (note that
CMSIS-NN7 is dedicated to Cortex-M MCU). STMicroelectronics also proposes an AI expansion

1https://www.st.com/en/microcontrollers-microprocessors/stm32h7-series.html
2Source: https://github.com/EEESlab/mobilenet_v1_stm32_cmsis_nn
3https://developer.android.com/ndk/guides/neuralnetworks
4https://www.tensorflow.org/
5https://www.tensorflow.org/lite
6https://developer.arm.com/products/processors/machine-learning/arm-nn
7https://github.com/ARM-software/CMSIS_5

81

https://github.com/EEESlab/mobilenet_v1_stm32_cmsis_nn

Figure 6.1: Left: MAC complexity of several state-of-the-art models. MAC = Multiply-accumulate
operations: the basic linear operation between the input and the weights (and bias) of a layer
(x ← x + w.x). Right: The Flash and SRAM memory consumption for different MobileNet (v1)
models with 8-bit weights. The memory requirements for a STM32H7 are represented with the
red rectangle (parameters for Flash and activation computations for SRAM).

pack for the STM32CubeMX8, to map pre-trained neural network models into different STM32 mi-
crocontroller series thanks to 8-bit post-training quantization and other optimization tricks related
to the specificity of these platforms.

On a more theoretical side, the scientific literature has investigated two different paths to
address the memory footprint, inference speed and energy consumption. On one hand, methods to
directly reduce the number of parameters have been explored [189–193]. These methods are related
mostly to pruning. On another hand, quantization schemes have been developed [194–203]. These
schemes reduce the memory footprint and are often coupled with efficient computation methods,
which allow to reduce inference time and thus energy consumption.

In terms of security, as embedded systems with neural networks models become ubiquitous, it is
a particularly interesting topic to evaluate the robustness of state-of-the-art quantization methods
under different threat models. Moreover, studying the transferability of adversarial examples
between original (i.e. full precision) and quantized neural networks may highlight weaknesses or
strengths of future embedded systems. This may allow to better understand if quantization in
itself could be a relevant defense against adversarial examples or, on the contrary, exacerbates
these flaws.

In this chapter, we study the robustness of natural and quantized models against adversarial
examples under different threat models and for various types of attacks. Our key contributions
are:

• We show experimentally that quantization in itself offers poor protection against various
adversarial attack methods. More precisely, we explain why activation quantization can lead
to severe gradient masking [78]. This phenomenon leads to non-useful gradients to craft
adversarial examples, and therefore leads to a false sense of security.

• We show very poor transferability capacities of adversarial examples between full-precision
and quantized models and between quantized models with different bitwidths. In order to
explain it, we advance many hypothesis, including a quantization shift phenomenon and
gradient misalignment.

• Based on the transferability results, we investigate a defense based on an ensemble of models
with different quantization levels. The results are promising and pave the way towards a
possible perspective for future work.

This chapter is organized as follows. After reviewing some common quantization methods for
neural networks in Section 6.2, we position our work in relation to the state-of-the-art in Section
6.3. In Section 6.4, we bring details about the experiments which will be performed throughout this
work. Notably, we specify the threat models studied, the data sets and the attacks used. In Section
6.5 we present results for the evaluation of the robustness of quantized models for an adversary in
a white-box or a black-box setting using gradient-based and score-based attacks. In Section 6.6,
we detail the results for the transferability of adversarial perturbations between quantized models.

8https://www.st.com/en/embedded-software/x-cube-ai.html

82

Eventually, in Section 6.7, we take advantage of the previous transferability results to develop a
defense based on an ensemble of quantized models.

6.2 Quantization of neural networks
During inference, energy consumption grows with memory access, which itself grows with memory
footprint. Quantization is one of the existing methods to reduce memory footprint and increase
inference speed, and other approaches are extensively studied to compress as well as to speed
up inference. Notably, reducing the number of parameters has been reasonably investigated. As
an example, Denil et al. [189] show, for specific architectures and data sets, that some of the
parameters are predictable from the others. Han et al. [192] develop a three-step method (pruning,
clustering, tuning) to efficiently compress a neural network, achieving a reduction of AlexNet
memory footprint by a factor of 35. Hacene et al. [190] propose a method to reduce the memory
size of a convolutional neural network by pruning connections based on a deterministic rule. This
method is also coupled with weight binarization (see [194]) and an efficient hardware architecture
on a FPGA in order to increase inference speed.

Quantization schemes are based on the rationale of mapping floating point weight values (usu-
ally 32 bits) to a precise format (e.g. 4 bits), to reduce memory footprint. Moreover, This is often
coupled with efficient computation methods, which take advantage of this precise format, and allow
for a reduced inference time. Considering the various advantages of quantization schemes, this is
an important field of investigation. Quantization can be performed as a post-training process or
during training.

6.2.1 Post-training quantization
For post-training quantization, as previously described in introduction, several tools have been
recently proposed to map full precision pre-trained models for inference purpose (TFLite, ARM-
NN, STMCubeMX AI) by coarsely quantizing some weights into – usually – no more than 8-bit
integers. More advanced methods propose clustering methods [193] or information theoretical
vector quantization methods (inspired by the work from Denil et al. [189]) such as the work from
Gong et al. [191], which achieves about 20 times compression of the model with only 1% loss of
classification accuracy on the Imagenet benchmark.

6.2.2 Quantization aware training
Quantization at training time consists in training models to perform inference with weight and/or
activation quantized. These approaches enable to reach state-of-the-art performance with lower
bitwidth precision. Hereunder, we detail some of the most popular works on that field that we
consider for our experimentations.

Binary Connect and Binary Net.

Courbariaux et al. [194] present a method to train neural networks with weights w binarized to
wb ∈ {−1, 1}. During training, weights are binarized for the forward pass, and as the binarization
operation can be not differentiable or lead to the vanishing gradient problem, a Straight Through
Estimator (STE) is used. A STE is a common technique to compute gradients when quantization
operations lead to differentiability issues. In this case, the STE given in Equation 6.1 is used for
the backward pass:

∂C(w)

∂w
≈ ∂C

∂w

∣∣∣∣
w=wb

1|w|≤1 (6.1)

Where C is the cost function used for training . Courbariaux et al. [195] pursue this idea by
training binary networks (BNN) with weight values w and activation function ak values binarized
to (wb, a

k
b) ∈ {−1, 1}2. During the backward pass, the authors used the same STE principle for

activations as in Equation 6.1 above. Darabi et al. [204] propose an improvement of this method
by adding regularization and a more complex approximation of the derivative on the backward
pass.

83

Xnor Net.

Rastegari et al. [197] binarize weigths and activation values no more to {−1, 1} but to {−α, α}
with α ∈ R∗,+. They formalize the search of the best binarization approximation of the real-valued
weights as the following optimization problem.:

argmin
B,α

‖W − αB‖2 (6.2)

Where W is the weight matrix and B is a matrix with only -1 and 1. During the backward pass,
a STE is used.

Ternarization.

Li et al. [198] propose a method to train a neural network with weight values ternarized to {−1, 0, 1}
during the forward pass. Zhu et al. [199] also propose a method to train a neural network with
weight values ternarized to {−αl, 0, αu} during the forward pass, where (αl, αu) R2, αl > 0, αu > 0,
and αl and αu are learnable parameters updated during training.

Low bitwidth quantization.

Gupta et al. [200] propose to limit the bitwidth of the weights values to 16 bits and to use stochastic
rounding. Dorefa et al. [201] propose a method to train neural networks with low-bitwidth weight
values, gradients and activation function values. They claim that taking advantage of this technique
during the forward pass could help speed up the training of neural network on resource-limited
hardware, and naturally speed up the inference. More precisely, for a real value x ∈ [0, 1] and a
number of bits n, the quantization of x to n bits is given in Equation 6.3.

Q(x, n) =
round((2n − 1)x)

2n − 1
(6.3)

This quantization function is used for weights, activation values and gradients. The weight and
activation values are quantized on the forward pass only. The authors also found that quantizing
gradients on the backward pass (with a STE) was requisite. Moreover, this quantization format
allows to implement en efficient inference procedure. Indeed, Q(x, n)(2n − 1) results in 2n values,
each of them representable with a n bits integer. During the forward pass, one can thus take
advantage of a bit convolution kernel method (see [201] for details) with respect to the Q(x, n)(2n−
1) values, and then scale afterwards with the 2n − 1 value.

Ding et al. [202] propose another weight quantization method with a constraint on the number
of "1" in the binary representation of weights, along with some efficient computation method.

Polino et al. [203] propose a method which involves distillation and quantization of the weight
values to decrease the storage size of a model. For the quantization part, given some weight value
w, it is first scaled to a value v in [0, 1], then mapped with a function Q to the nearest mapping
points among the s+ 1 points in [0, 1] and then scaled back to the original scale.

Throughout this chapter, we will use the Binary Net method and Binary Connect respectively
from [195] and [194], and the quantization method (Dorefa-Net) from [201].

6.3 Robustness and quantization
For neural networks, some authors have already investigated the link between quantization schemes
and robustness against adversarial examples. Galloway et al. [205] claim that neural networks
trained with weights and activation values binarized to {−1, 1} have an interesting robustness
against adversarial examples. However, this robustness was only demonstrated for the MNIST
data set, and use stochastic quantization. This quantization scheme induces the stochastic gradient
phenomenon [78], which can mislead to the true efficiency of this defense by causing what Uesato
et al. [79] called obscurity.

Lin et al. [206] bring some hypotheses about the weaknesses of quantization-based defense
methods against adversarial examples. They show experimentally that these defense methods can,
in fact, denoise an adversarial example or enlarge its perturbation, depending on the size of the
perturbation in the input space and the number of bits used for quantization. Thus, quantization
can participate in an error amplification or attenuation effect. However, they only apply the FGSM
attack [73] in a white-box setting against simple activation quantization. Although focused on
model compression (pruning), Zhao et al. [207] studied the robustness of quantized neural networks

84

against adversarial examples with a fixed-point quantization scheme. However, this scheme does
not differentiate between weight and activation quantization, does not consider less than 4 bits.
Moreover, the experiments are limited to a restricted set of gradient-based attacks.

Rakin et al. [208] propose a defense method based on activation quantization coupled with
Adversarial Training [75]. However, this defense scheme has been later shown by Lin et al. [206]
to introduce gradient masking.

Interestingly, Khalil et al. [209] note that gradients derived via the use of a Straight Through
Estimator may not be representative of the true gradients. This observation leads to questions
about the efficiency of gradient-based attacks against quantized neural networks, and strengthens
up the motivation to study gradient masking issues and black-box attacks against such models.
The authors propose a Mixed Integer Linear Programming (MILP) based attack, which shows good
results on the MNIST data set but is not scalable to large neural networks, due to computation
cost issues.

6.4 Evaluating the Robustness of Quantized Models
In this section, we present all the details of the experiments we carried out to evaluate the robustness
of quantized neural networks.

6.4.1 Threat model
We study the impact of quantization on robustness for two different threat models. First, we
consider a complete white-box setting. The adversary has therefore a full access to the target
model, and can use gradient-based methods to attack it. Second, we consider a black-box setting
where the adversary knows the architecture of the target model, and is allowed to retrieve the
logits h(x) for an input x.

In this black-box setting, we will look at two attack schemes. On one hand, the adversary
will attack the target model with score-based methods (detailed hereafter). On another hand, the
adversary will leverage the transferability phenomenon to attack the target model. The substitute
model and the target model having the same architecture guarantees the worst-case transferability
scenario for the defender [210]. This is also a realistic scenario as we use classical image collections.
Considering the global context of embedded neural networks for inference, numerous popular and
proven architectures (such as the ResNet networks) are directly applied for a large scope of appli-
cations. Then, a scenario where an adversary craft malicious inputs from a known full precision
models to attack an optimized (i.e. quantized) model with the same architecture is a realistic
scenario.

Attacking the target model with gradient-based and score-based methods will provide some
insights on the robustness of quantized neural networks. Notably, it will allow to identify some
gradient masking issues. Attacking the target model by leveraging transferability will allow to study
the transferability of adversarial perturbations between quantized models. As for the adversary
capacity, we consider a perturbation budget defined with the l∞ norm, and set it to 0.03 for the
two data sets.

However, we must highlight an important characteristic of the threat models when dealing
with an attacker who aims to target an embedded machine learning model. In that case, both the
architecture of the model itself and its implementation are important. That means we need to
consider a twofold white/black box paradigm: on one hand, the adversary can have – classically –
full or no knowledge of the model architecture (abstraction level), and, on the other hand, he
may also have full or no knowledge of the model implementation within the target device (physical
level).

As previously said, in this work and more particularly in the section dealing with the use of
quantized networks as a defense mechanism, we mainly focus on a threat model where an attacker
has a white-box access to the model architecture but not for its implementation in the target
device. Then, the most natural scenario corresponds to an attacker that tries to directly transfer
the adversarial examples crafted from a full precision model to the embedded system.

We are conscious of the limitation of such a scenario since, obviously, the attacker may guess –
thanks to information about the hardware platform (i.e. memory, precision constraints, etc.) –
relevant optimization methods applied to the model (weights and activations quantization, pruning,
etc.). That means an advanced adversary could try to craft adversarial examples from a quantized
model of its own (without knowing the quantization method used for the target device neither if
additional optimizations have been performed).

85

6.4.2 Data sets and models
All of the experiments throughout this work are conducted on the SVHN and CIFAR10 data sets.
For each data set, we train a full-precision (32-bit floating point) neural network (hereafter called
"float model" in tables), and various quantized neural networks.

More precisely, for each data set, the neural network architecture is based on the one presented
in [195]. It consists of convolutional blocks, each of them being the stack of a convolution layer,
a batch-normalization layer and the ReLU activation function, followed by dense blocks being a
stack of a dense layer, a batch-normalization layer and the ReLU activation function. At the top of
the network, we chose a dense layer with the softmax activation function, contrary to [195], where
there is no activation function but a final batch normalization layer. Contrary to [195] where the
hinge-loss is used, we use the cross-entropy loss as we found it to converge faster. The optimization
is done with Adam [211], using a staircase decay for the learning rate. Models architecture are
detailed in Table 6.1.

Table 6.1: SVHN and CIFAR10 classifier architecture. BN, MaxPool and Conv denote respectively
batch normalization, max pooling and convolution.

Layer type CIFAR10 SVHN

Conv + BN+ ReLU (128,3,3) (128,3,3)
Conv + MaxPool + BN + ReLU (128,3,3), (2,2) (128,3,3), (2,2)
Conv + BN + ReLU (256,3,3) (256,3,3)
Conv + MaxPool + BN + ReLU (256,3,3), (2,2) (128,3,3), (2,2)
Conv + BN + ReLU (512,3,3) (512,3,3)
Conv + MaxPool + BN + ReLU (512,3,3), (2,2) (512,3,3), (2,2)
Dense + BN + ReLU 1024, (2,2) 1024, (2,2)
Dense + BN + ReLU 1024, (2,2) 1024, (2,2)
Dense + softmax 10 10

For the quantized models, four different quantization bitwidth are considered: 1,2,3 and 4
bits. For each bitwidth, we consider quantization on the weights only (weight quantization) or the
weights and the output of each convolutional or dense block (full quantization). For the weight
binarization, the full binarization and the 2,3,4-bit quantization, we use respectively the Binary
Connect method [194], the Binary Net method [195] and the Dorefa Net method [201] described
in Section 6.2.2. The input layer and the last dense layer are never quantized, to allow an efficient
training [195].

The accuracy of each model on the test sets is presented in Table 6.2. Quantization does not
affect significantly the accuracy, except for fully binarized models which achieve only 0.79 and 0.89
accuracy on CIFAR10 and SVHN respectively, which represents a non negligible drop of perfor-
mance. For quantized models with more than 1 bit, the test set accuracy is comparable to the
one obtained for full-precision models. These results are consistent with [195] and [201]. Note
that in [195] the authors explain the performance of binarized networks with a regularization effect
brought by quantization and [201] show that the architecture as well as the size of the data set
can have an impact on the performance of quantized networks.

Table 6.2: Models accuracy on test sets. Full quantization means that both weights and activation
values are quantized.

CIFAR10 SVHN

Full-precision 0.89 0.96

Bitwidth 1 2 3 4 1 2 3 4

Full quantization 0.79 0.87 0.88 0.88 0.89 0.95 0.95 0.95

Weight quantization 0.88 0.88 0.88 0.88 0.96 0.95 0.96 0.95

86

6.4.3 Attack methods
For the white-box setting, we consider the FGSM [73], the BIM [100], and the CWl2 attack [105].
For the black-box setting the score-based attacks ZOO [127] and SPSA [79] are used. These attacks
are described in Section 4.4. For the FGSM attack, the perturbation budget is set to ε = 0.03. For
the BIM attack, we set the perturbation budget to ε = 0.03, the number of iterations to 500, and
the step size to 0.008. For the CWl2, we set the number of iterations to 1, 000, the learning rate for
the Adam optimizer to 0.1, the initial constant c to 0.9, 10 binary search steps. For the white-box
setting, the trade-off constant κ is set to 0. When considering transferability, this parameter is
tuned. More precisely, we consider κ > 0 to build adversarial examples on the source model more
likely to transfer. We test κ = 5, 10, 15, 20, 25 and report the best transferability results for each
source model.

For the SPSA attack, we set the perturbation budget to ε = 0.03, the number of iterations
to 500, the number of evaluation per update to 20, the learning rate for the Adam optimizer to
0.1, and the perturbation size δ for the gradient approximation to 0.01. For the ZOO attack, we
set the same parameters as for the CWl2 attack. This will allow a clear comparison between the
gradient-based, and score-based version of the same attack concept. Notably, this will allow to
detect some gradient masking issue (see Section 6.5).

For FGSM, BIM, CWl2 and SPSA we use the Cleverhans library [212], and for ZOO we use
the original code provided by the authors9.

We sum up the main characteristics of these attacks in table 6.3.

Table 6.3: Main characteristics of the considered adversarial examples crafting methods

FGSM BIM CWl2 SPSA ZOO

Gradient-based X X X

Gradient-free X X

one-step X

iterative X X X X

l∞ X X X

l2 X X

6.4.4 Evaluation metrics
For each attack, we report two evaluation metrics (see [81] for an extended review of the adversarial
robustness evaluation):

• The adversarial accuracy, which is the accuracy of the model on adversarial examples (de-
noted Acc in the result tables). The crafting method generates an adversarial example x′
from each input x of the test set X. Hereafter we note X ′ the adversarial test set on which is
computed the adversarial accuracy. The higher the adversarial accuracy, the less the model
is fooled by adversarial examples, i.e. the more the model is robust against the attack. The
adversarial accuracy is measured on 1, 000 clean examples well-classified by the target model.

• The average minimum-distance of the adversarial perturbation, i.e. in our case, the average
l2 norm and l∞ norm of the difference between clean and adversarial examples which succeed
to fool the target model (simply noted l2 and l∞ in the result tables). This quantifies the
average distortion needed by the attacker to fool the model.

6.5 Robustness against gradient-based and gradient-free at-
tacks

We start by performing adversarial robustness experiments for full-precision and quantized models
with gradient-based and gradient-free attacks that may be used in a black-box setting where the
gradient computation is unfeasible.

9https://github.com/huanzhang12/ZOO-Attack

87

In both case, we find that quantization does not provide reliable protection. More precisely, we
notice three phenomenons:

• Quantization of activation outputs causes gradient masking. This has the consequence of
hindering all gradient-based attacks and preventing some gradient-free attacks, relying on
the approximation of the gradient of the output function (ZOO), to perform well.

• Properly tuning existing gradient-based attacks (CWl2) allows for an adversary in the white-
box setting to efficiently attack a quantized model.

• The gradient estimation scheme of some gradient-free attacks (SPSA) overrides gradient
masking and offers efficiency for an adversary in a black-box setting.

In the following experiments, all the attacks are performed on 1, 000 well-classified samples
from the test set.

Results of direct attacks against fully quantized and weight-only quantized models are presented
respectively in tables 6.4 and 6.5. For these tables and the following ones dealing with quantized
models, first row of the results is for 1-bit model (binarized model), second row for the 2-bit model,
third row for the 3-bit model and fourth row for the 4-bit model.

Table 6.4: Adversarial accuracy and distortions for gradient-based and gradient-free attacks against
full-precision (32-bit) and fully quantized models.

CIFAR10 SVHN

Float model Quantized models Float model Quantized models
(32-bit) (1,2,3,4-bit) (32-bit) (1,2,3,4-bit)

Acc l2 l∞ Acc l2 l∞ Acc l2 l∞ Acc l2 l∞

FGSM 0.12 1.65 0.03

0.66 1.65 0.03

0.29 1.66 0.03

0.78 1.64 0.03
0.19 1.65 0.03 0.39 1.66 0.03
0.17 1.65 0.03 0.37 1.66 0.03
0.18 1.65 0.03 0.4 1.66 0.03

BIM 0.0 1.17 0.03

0.66 1.01 0.03

0.0 1.16 0.03

0.79 1.0 0.03
0.06 1.14 0.03 0.11 1.13 0.03
0.11 1.17 0.03 0.11 1.13 0.03
0.06 1.14 0.03 0.1 1.13 0.03

CWl2 0.0 0.58 0.02

0.05 0.78 0.03

0.0 0.64 0.03

0.04 1.02 0.03
0.03 0.6 0.03 0.01 0.67 0.03
0.02 0.55 0.03 0.02 0.66 0.03
0.04 0.6 0.03 0.01 0.68 0.03

SPSA 0.0 1.37 0.03

0.16 1.31 0.03

0.0 1.38 0.03

0.4 1.32 0.03
0.0 1.34 0.03 0.14 1.34 0.03
0.0 1.36 0.03 0.07 1.35 0.03
0.0 1.36 0.03 0.04 1.37 0.03

ZOO 0.0 0.72 0.03

0.56 0.1 0.03

0.0 0.91 0.03

0.82 0.07 0.03
0.83 0.13 0.03 0.93 0.1 0.03
0.76 0.24 0.03 0.94 0.11 0.03
0.73 1.09 0.03 0.93 0.38 0.03

Robustness of binarized neural networks

A first observation from the comparison of Tables 6.4 and 6.5 is that the weight-only quantization
has no impact on the robustness.

In Table 6.4, we notice that fully binarized models are far more robust to FGSM and BIM than
their full-precision counterparts, as noted by Galloway et al. [205]. However, these models achieve
only 0.79 and 0.89 accuracy on the CIFAR10 and SVHN test data sets, respectively (see table 6.2).
This represents a non negligible drop of performance.

However, the CWl2 attack is almost as efficient against fully binarized neural networks as
against full-precision models. This attack enables to reach 0% adversarial accuracy on a full-
precision model, and only 5% adversarial accuracy against a fully-binarized model. A first conclu-
sion is that fully-binarized neural networks do not bring much robustness improvement compared

88

Table 6.5: Adversarial accuracy and distortions for gradient-based and gradient-free attacks against
full-precision (32-bit) and weight-only quantized models.

CIFAR10 SVHN

Float model Quantized models Float model Quantized models
(32-bit) (1,2,3,4-bit) (32-bit) (1,2,3,4-bit)

Acc l2 l∞ Acc l2 l∞ Acc l2 l∞ Acc l2 l∞

FGSM 0.12 1.65 0.03

0.11 1.65 0.03

0.29 1.66 0.03

0.28 1.66 0.03
0.18 1.65 0.03 0.38 1.66 0.03
0.18 1.65 0.03 0.4 1.66 0.03
0.19 1.65 0.03 0.39 1.66 0.03

BIM 0.0 1.17 0.03

0.0 1.19 0.03

0.0 1.16 0.03

0.0 1.16 0.03
0.0 1.15 0.03 0.0 1.14 0.03
0.0 1.15 0.03 0.0 1.14 0.03
0.0 1.15 0.03 0.0 1.13 0.03

CWl2 0.0 0.58 0.04

0.0 0.57 0.03

0.0 0.64 0.06

0.0 0.64 0.03
0.0 0.6 0.03 0.0 0.66 0.03
0.0 0.61 0.03 0.0 0.67 0.03
0.0 0.62 0.03 0.0 0.68 0.03

SPSA 0.0 1.37 0.03

0.0 1.38 0.03

0.0 1.38 0.03

0.0 1.38 0.03
0.0 1.37 0.03 0.0 1.37 0.03
0.0 1.36 0.03 0.0 1.37 0.03
0.0 1.36 0.03 0.0 1.37 0.03

ZOO 0.0 0.72 0.03

0.0 0.75 0.03

0.0 0.91 0.03

0.0 0.92 0.03
0.0 0.74 0.03 0.0 0.92 0.03
0.0 0.72 0.03 0.0 0.95 0.03
0.0 0.73 0.03 0.0 0.93 0.03

to full-precison models against gradient-based attacks, contrary to what is claimed by Galloway et
al. [205].

We also note that fully binarized models are relatively more robust to SPSA as well compared
to full-precision models. This combined with the slightly poorer performance of CWl2 on binarized
models indicates that the loss surface for binarized models is difficult to optimize over.

For full quantization with more than 1 bit, the gradient-based attacks are almost as efficient as
against a full-precision model, except for FGSM on SVHN only with a 10% gain of accuracy.

Activation quantization causes gradient masking

Interestingly, we see that the ZOO attack fails to produce efficient adversarial examples a lot when
attacking fully quantized neural networks. More precisely, we have two different observations:

• When adversarial examples are crafted on a full-precision model, ZOO and CWl2 reach
almost the same adversarial accuracy, with slightly higher l2 distortion for ZOO.

• When adversarial examples are crafted on a model with quantized weights and activations, we
note that the adversarial accuracy is higher with ZOO than with CWl2, but that successful
adversarial examples crafted with ZOO have much lower l2 distortion than the ones crafted
with CWl2 as well as the one observed for the full-precision model (l2 = 0.72).

We claim that these observations reveal some form of gradient masking caused by the quanti-
zation of activation values: relying on the gradients computed thanks to the STE is not a viable
solution to find adversarial examples. Firstly, the almost equal performance of ZOO compared to
CWl2 for a full-precision model is expected as gradient-free attacks are supposed to perform worse
than their gradient-based counterparts when no gradient masking occurs. Secondly, we argue that
the phenomenon observed on full quantization models is due predominantly to gradient masking.

For the ZOO attack, we remind that the following approximation is used for the derivative of
F with respect to xi (the ith element of x):

∇xiF (x) ≈ F (x+ hei)− F (x− hei)
2h

(6.4)

89

where h is set to 0.0001 and ei is a vector with the ith component set to 1, and all other components
valuing 0.

We support our claim by distinguishing two cases:

• ZOO fails to produce successful adversarial examples and CWl2 succeeds: (1) because of
the activation quantization, a little change (hei) may switch the activation value from one
quantization bucket to another, inducing a big change in the predicted softmax values, causing
the discrete derivative F dZOO(x) to explode; (2) on the contrary, this change can also have no
impact (keep values in the same bucket), which results in FZOO(x−hei, y) = FZOO(x+hei, y),
causing the discrete derivative F dZOO(x) to be null. To sum up, FZOO presents some sharp
curvatures or flatness around some points, caused by activation quantization, which prevents
ZOO to build successful adversarial examples. The CWl2 attack avoids this problem as it
computes gradients thanks to a STE, even if the gradient computed may not be exactly the
same as the true gradient [209].

• Both ZOO and CWl2 succeed to produce successful adversarial examples: the l2 distortion
for the successful adversarial examples produced by ZOO is smaller than the one produced
by CWl2. Around these points, the surface of the objective function to optimize does not
present any sharp curvature or flatness. However, as noted by [209], the gradients computed
by the CWl2 attack are not representative of the true gradient. The gradient are therefore
being better estimated by the ZOO attack, which explains the lower l2 distortion observed.

When checking for gradient masking, a crucial step is to verify that gradient-based attacks
perform worse than gradient-free ones. In our case, for the quantization of activation values, we
notice that the SPSA attack (a gradient-free attack) performs quite better in terms of adversarial
accuracy than the BIM attack, against fully binarized models. This indicates gradient masking
issues. We also make the hypothesis that SPSA avoids the sharp curvatures or flatness observed
around some points, where ZOO fails to produce adversarial examples, because of the more efficient
gradient estimation method suited to noisy objective functions [79].

For the weight quantized models results presented in Table 6.5, we do not observe the same
phenomenon as for the full quantization models. No apparent robustness is noticeable for the
weight-quantized models. No sharp variation or flatness is induced for the objective function of
the ZOO attack of the weight-quantized models, as it originated from the quantization of activation
values. It has to be noted that we also measure that the variance of the logits values between full-
precision and weight-only quantized models is almost the same.

6.6 Black-box transfer attacks
In this section, we perform transferability experiments between full-precision and quantized mod-
els and show poor transferability capacities, which we explain with the quantization value shift
phenomenon and gradient misalignment.

We present results of transferability when the source network (i.e. the models the adversarial
examples are crafted from) is full-precision, fully or weight-only quantized models, and the ad-
versarial examples are transferred to (target models) full-precision, fully or weight-only quantized
networks, in figures 6.2 and 6.3. The results for the cases where the source networks are 2-bit or
4-bit quantized models are not presented here for the sake of conciseness and as these results can
be interpolated from the one we present. More complete tables can be found in Appendix 6.9.

Weak transferability

A first observation is that transferability results are quite poor for attacks FGSM, BIM and SPSA.
The CWl2 attack, given tuning the parameter κ, suffers less from transferability issues, at the cost of
increased l2 and l∞ distortion, except when the source or target network is a fully binarized network.
Indeed, for the κ values tested (for fully binarized models, the results reported are for κ = 5),
when the source network is a fully binarized model, CWl2 struggles to find adversarial examples
having both misclassification and a little l2 distortion. This results in adversarial examples being
missclassified but not imperceptible by a human. Our hypothesis is that this comes from the loss
function that is hard to optimize, as noted in Section 6.5. We also note that, as already noticed
by Wu et al. [213], and contrary to what was initially found by Kurakin et al. [100], that BIM – as
it is the case here – may produce more transferable adversarial examples than FGSM .

90

Figure 6.2: Adversarial transferability results for CIFAR10. Rows are relative to source networks
and columns to target networks. Values correspond to adversarial accuracy. The lower the value,
the more transferability occurs. wiaj refers to a model where weights are quantized to i bits and
activations to j bits.

FGSM BIM

CWl2 SPSA

Figure 6.3: Adversarial transferability results for SVHN. Rows are relative to source network and
columns to target networks. Values correspond to adversarial accuracy. The lower the value, the
more transferability occurs. wiaj refers to a model where weights are quantized to i bits and
activations to j bits.

Quantization shift phenomenon

These poor transferability results can be explained by the quantization value shift phenomenon
which takes places when quantization ruins the adversarial effect by mapping two different values
to the same quantization bucket. This phenomenon is noticeable for both weight-quantized models
and fully-quantized models. Hereafter, we give two simple examples of this. These examples are
based on two assumptions: (1) on the source model, the adversarial perturbation is effective because

91

it induces some relation between two output values, and (2) this same adversarial perturbation
is effective on the target model also if it causes the same two output values to share the same
relation. Then, considering activation quantization or weight quantization:

• Activation quantization. The adversarial perturbation is effective because it causes two
activation values to be different for the source model. In this case, on the target model, the
same two activation values for the same adversarial perturbation can be mapped to the same
value, because of different quantization levels between the source and target model.

• Weight quantization. The adversarial perturbation is effective because it causes two output
values to have some precise order relation (e.g. one is greater than the other). In this case, two
different quantization levels on the source and target models can also tamper the adversarial
perturbation. In Figure 6.4, we show a toy example of the impact of weight quantization on
adversarial effect: in this example, the adversarial effect is canceled.

ReLu

ReLu

ReLu

ReLu

Figure 6.4: A toy example to illustrate the quantization value shift phenomenon. Quantization of
the weights cancels the adversarial effect.

Consequently, whatever the quantization level of the source model adversarial examples are
crafted on, evaluating them on a target model with a different quantization level may hinder their
efficiency because of this phenomenon.

Gradient misalignment

Regarding the transferability results, we may also hypothesize that the gradient direction between
float models and quantized models and between models with different bitwidths is quite different.
Indeed, different gradient directions between models indicate that the way to fool the source model
is different than the one it should be used to fool the target model.

This gradient misalignment may be noticeable for the gradient computed with the Straight
Through Estimator, as poor transferability is observed for the white-box attacks (FGSM, BIM,
CWl2), and for the real gradient, as poor transferability is observed for SPSA. To assess the
alignment of gradients, we measure the mean cosine similarity between the gradient of the loss
function with respect to the input between models with different bitwidth and show the results in
Figures 6.5 and 6.6 for CIFAR10 and SVHN, respectively.

We remind that for two vectors a and b, cossim(a, b) = 0 indicates orthogonal vectors for
the usual scalar product, cossim(a, b) = 1 indicates aligned vectors in the same direction and
cossim(a, b) = −1 indicates aligned vectors in opposite directions.

In Figures 6.5 and 6.6, we first observe that the cosine similarity values for gradients of the loss
function between full-precision and quantized models and between quantized models with different
bitwidths, are relatively close to 0, indicating nearly orthogonal gradient directions. We observe
that the cosine similarity for the gradient between fully-binarized models and others models is
the closest to 0. This is in accordance for example with results presented in Fig. 6.2 where
transferability capacities for FGSM, BIM, CWl2 and SPSA are the poorest when fully-binarized
models are involved. Moreover, this may explain the fact that adversarial accuracy is much higher
in tables 6.12 and 6.13 (Appendix 6.9), where adversarial examples are crafted on fully-binarized
models, than in the other tables (see Appendix 6.9).

To conclude, transferability results show that quantization strongly alters the chances of success
for an adversary who has only access to a full-precision (or quantized) version of a model and wants
to attack a quantized (respectively, a full-precision) version of a model, assuming this adversary
can not use a black-box attack such as the SPSA one.

92

Figure 6.5: CIFAR10. Cosine similarity values between the gradient of the loss function with
respect to the input (computed with the STE), for full-precision and quantized models. wiaj
designates a model with a i -bit weight quantization and a j -bit activation quantization.

Figure 6.6: SVHN. Cosine similarity values between the gradient of the loss function with respect
to the input (computed with the STE), for full-precision and quantized models. wiaj designates a
model with a i -bit weight quantization and a j -bit activation quantization.

6.7 Ensemble of quantized models

6.7.1 Motivation
Regarding the transferability results, a logical consequence and a natural assumption is to consider
an ensemble of quantized models to filter out adversarial examples. In this section, we analyze the
relevance of this defense strategy.

We consider an ensemble of quantized models, M =
(
M i
)
i∈J1,5K consisting in a full-precision

model and four fully-quantized models (1,2,3 and 4 bits). As a first step, we analyze statistically
how the models agree on clean and adversarial examples crafted using FGSM.

More precisely, we consider an adversarial example crafted on a source model Ms and we look
at how the five models agree, given that this adversarial example is successful or not on Ms.
Similarly, we look at how the five models agree on clean test set examples, given that this test set
example is correctly classified in the true class or, on the contrary, misclassified by Ms.

In Table 6.6, we show for CIFAR10 and SVHN, given the source model Ms, how the four other
models agree on test set and adversarial examples crafted with FGSM. For example, for CIFAR10,
with the 2-bitwidth model, 77% of test set examples well-recognized by Ms are also correctly
classified by the other four models, compared to 33% for misclassified test set examples. Moreover,
37% of successful adversarial examples (i.e. examples that effectively fool Ms) also fool the other
four models, and 76% of unsuccessful adversarial examples (on Ms) are also unsuccessful on the
other four models.

These results lead to the following observations:

93

1. The models are more likely to agree on clean samples than on adversarial examples (successful
or not).

2. The models are much more likely to agree on unsuccessful (on Ms) adversarial examples.

Table 6.6: Rate of examples for which the other four models agree, depending on the source model
Ms and its prediction results (correctly classified, misclassified, successful, unsuccessful).

CIFAR10 SVHN
Source model

float w1a1 w2a2 w3a3 w4a4 float w1a1 w2a2 w3a3 w4a4

Test set examples

Correctly classified 0.75 0.85 0.77 0.82 0.76 0.9 0.97 0.91 0.91 0.9
Misclassified 0.39 0.19 0.33 0.33 0.34 0.46 0.16 0.38 0.37 0.4

Adversarial examples (FGSM)

Successful 0.31 0.09 0.37 0.31 0.33 0.33 0.09 0.41 0.43 0.39
Unsuccessful 0.88 0.80 0.76 0.78 0.79 0.89 0.94 0.81 0.82 0.84

Based on this preliminary results, we design an ensemble-based defense method for a distant
system: the prediction for an upcoming example is done only if m or more models agree, and the
final label is the one predicted by these m models. Considering the remarks made above, this
approach encourages prediction for clean examples rather than for adversarial examples, and when
the prediction is performed on adversarial examples, it would be predominantly unsuccessful ones.

More precisely, we note validm,M(X) the set of samples from the input data set X which
respect this criterion:

validm,M(X) =

{
x ∈ X

∣∣∣∣∣ max
j∈J1,KK

∑
i

1Mi(x)=j ≥ m

}
(6.5)

with K the number of labels and M i(x) the output prediction label of x by M i.
Then, the prediction rate (hereafter, PR) quantifying the proportion of examples from X for

which prediction is performed is :

PRm,M(X) =
|validm,M(X)|

|X|
(6.6)

Where |X| is the cardinality of X.
When evaluating this defense on the adversarial test set (X ′), an overall performance metric,

hereafter called defense accuracy (d_accm,M(X ′)) is simply defined as the proportion of adversarial
examples which have been filtered out or which are unsuccessful. Practically, the defense accuracy
is defined as:

d_accm,M(X ′) = 1− |validm,M(X ′)s|
|X ′|

(6.7)

Where validm,M(X ′)s denotes the set of successful adversarial examples which thwart the filtering
process (i.e. the error rate of the defense).

Importantly, the number m has to be decided following a trade-off between the number of test
set examples for which prediction is performed (which has to remain high) and the defense error
rates (which has to be low) when facing adversarial examples. We experimentally set m = 4 for
CIFAR10 and m = 5 for SVHN to reach a good trade-off. As presented in Table 6.7, the prediction
is performed for more than 87% of the clean test set examples for both CIFAR10 and SVHN, with
an accuracy of 90% and 98% respectively for CIFAR10 and SVHN on clean test set examples for
which prediction is performed.

6.7.2 Results
We present the results for this defense on CIFAR10 and SVHN in table 6.8. For each source model
and each attack method, we report the defense accuracy d_acc against four attacks (FGSM,

94

Table 6.7: Prediction rate and accuracy with the ensemble of models on CIFAR10 and SVHN.

CIFAR10 SVHN
PR Accuracy PR Accuracy

Test set 0.87 0.90 0.87 0.98

Table 6.8: Defense accuracy (d_acc) and adversarial prediction rate (PR) for gradient-based and
gradient-free attacks against an ensemble of quantized models, depending of the source model. For
example, for adversarial examples crafted with the FGSM attack on a fully binarized model, the
d_acc value equals 0.9 against the ensemble of models.

CIFAR10 SVHN

Float model Quantized models Float model Quantized models
(32-bit) (1,2,3,4-bit) (32-bit) (1,2,3,4-bit)

PR d_acc PR d_acc PR d_acc PR d_acc

FGSM 0.58 0.63

0.73 0.9

0.39 0.65

0.80 0.98
0.58 0.53 0.47 0.86
0.45 0.63 0.47 0.84
0.53 0.57 0.46 0.87

BIM 0.65 0.44

0.71 0.88

0.20 0.85

0.80 0.99
0.62 0.38 0.28 0.81
0.57 0.44 0.26 0.81
0.52 0.48 0.25 0.82

CWl2 0.54 0.60

0.17 0.84

0.15 0.84

0.18 0.84
0.47 0.53 0.23 0.77
0.58 0.42 0.2 0.8
0.36 0.64 0.17 0.83

SPSA 0.68 0.41

0.32 0.82

0.22 0.8

0.5 0.97
0.48 0.54 0.32 0.82
0.44 0.57 0.29 0.79
0.58 0.42 0.31 0.75

BIM, CWl2 and SPSA), along with the prediction rate PR. For the CWl2 attack, we test κ =
5, 10, 15, 20, 25 and report the best transferability results.

We notice that results are interesting for adversarial examples crafted from the full precision
model, especially for SVHN. Indeed, if an attacker tries to directly transfer the adversarial examples
crafted from the full precision model with, for example, the CWl2 attack, 60% of the adversarial
examples are harmless (i.e. filtered out or unsuccessful) for CIFAR10 and this robustness is even
stronger for SVHN with a defense accuracy superior to 80% for BIM, CWl2 or SPSA. Considering
an hidden system composed of a float model and quantized models, these results are particularly
promising. Indeed, when mounting a black-box transfer attack, the adversary is much more likely
to use a float model as for the substitute model than a quantized version of it.

Moreover, coherently with the transferability results (see Figures 6.2, 6.3 and additional tables
in Appendix 6.9), the highest robustness is reached when adversarial examples are crafted from a
fully binarized network with a defense accuracy superior to 0.8 – whatever the crafting method –
particularly for SVHN. However, there is no significant gain compare to the transferability results
obtained by taking each quantized model separately (see figures 6.2 and 6.3). But, except for this
case of the fully binarized network, the ensemble of quantized models shows better robustness to
transferred adversarial examples than all single models. The more relevant gain is reached with
CWl2 attack with a mean (over the 2, 3 and 4-bitwidth networks) defense accuracy of 0.53 and
0.8 respectively for CIFAR10 and SVHN.

95

6.8 Conclusion and future work
In this chapter, we showed experimentally that quantization in itself offers very poor protection
against adversarial examples crafted in a white-box or black-box setting, contrary to what was
previously found in the literature. Notably, we found that the quantization of the output of
activation functions can lead to gradient masking. In fact, we verified experimentally that the
efficiency of some gradient-based and gradient-free attacks can be tampered but other gradient-
based or gradient-free attacks do not suffer from gradient masking. As the cause of these issues,
we identified the usage of a STE (Straight Through Estimator) to approximate gradients, or the
optimization procedure being non well-suited for noisy functions. Eventually, we demonstrate poor
transferability capacities between classical models and quantized models, and between quantized
models with different bitwidths. We explain this by the quantization shift phenomenon which ruins
adversarial effects, and gradients misalignment.

As an exploratory work and logical consequence of the transferability results, we analyzed the
impact of considering an ensemble of quantized models in order to filter out adversarial examples
with a minimum impact on the standard accuracy. Such an ensemble method, like any other
detection-based approach, suffers from a narrow threat model since the defense is useless with an
attacker aware of the implementation details of the model in the target device [76,82]. However, for
black-box paradigms, the use of an ensemble of quantized models may have an interesting impact
on the transferability when associated to other and complementary defense mechanisms.

As an important outcome of this chapter, we believe that the characteristics of embedded
models, particularly those induced by quantization approaches (weights or activation outputs),
have to be taken into consideration in order to design suitable and efficient protection schemes.
Indeed, robustness requirements will obviously become more and more compulsory as critical tasks
(as well as processed data) will be performed thanks to a growing variety of devices.

In this chapter, we have studied a particular case of the transferability of adversarial pertur-
bations, for quantized models. Notably, we investigated how quantized models can be used in an
ensemble to thwart an adversary leveraging black-box transfer attacks. Black-box transfer attacks,
because of their efficiency in the realistic black-box setting, are the core of this thesis. Therefore,
we will focus in the next chapter on studying more in-depth this phenomenon. More precisely, in
chapter 7, we will design an innovative way of thwarting the transferability of adversarial pertur-
bations between specific models in various different real-life use-cases.

Future Work. We identify a room for improvement for the ensemble defense method, in
the diversity of quantization methods used. Indeed, the robustness of the ensemble of quantized
models is due to the poor transferability of adversarial perturbations between models, caused by
the misalignement of gradients. For a bidwidth of more than than 1 bit, the same quantization
method is used (Dorefa-Net), with the same STE. Therefore, investigating different quantization
methods, with diverse STE could increase the gradient misalignment, and lead to a robustness
increase.

96

6.9 Appendix: Complete transferability results
In the following tables, "–" denotes a value which can not be computed. For example, the l2 dis-
tortion of successful adversarial examples for an attack can not be computed when the adversarial
accuracy of the target model against this attack equals 1.

We summarize the reference of the transferability tables where wiaj designates a model with a
i -bit quantization of the weights and a j -bit quantization of the activation values.

Table 6.9: Summary of the references for the transferability results between full precision, fully
quantized and weight only models.

From
To full w1a1 w2a2 w3a3 w4a4 w1a32 w2a32 w3a32 w4a32

full Table 6.10 Table 6.11
w1a1 Table 6.12 Table 6.13
w1a32 Table 6.14 Table 6.15
w2a2 Table 6.16 Table 6.17
w2a32 Table 6.18 Table 6.19
w3a3 Table 6.20 Table 6.21
w3a32 Table 6.22 Table 6.23
w4a4 Table 6.24 Table 6.25
w4a32 Table 6.26 Table 6.27

Table 6.10: Transferability from full-precision model to 1,2,3,4-bit fully quantized models.

CIFAR10 SVHN

Float model Quantized models Float model Quantized models
(32-bit) (1,2,3,4-bit) (32-bit) (1,2,3,4-bit)

Acc l2 l∞ Acc l2 l∞ Acc l2 l∞ Acc l2 l∞

FGSM 0.12 1.65 0.03

0.58 1.65 0.03

0.29 1.66 0.03

0.63 1.66 0.03
0.41 1.65 0.03 0.54 1.66 0.03
0.4 1.65 0.03 0.54 1.66 0.03
0.4 1.65 0.03 0.53 1.66 0.03

BIM 0.00 1.17 0.03

0.64 1.18 0.03

0.0 1.16 0.03

0.71 1.16 0.03
0.32 1.17 0.03 0.54 1.16 0.03
0.38 1.18 0.03 0.55 1.16 0.03
0.26 1.17 0.03 0.53 1.16 0.03

CWl2 0.03 0.58 0.04

0.64 0.80 0.07

0.02 0.64 0.06

0.59 0.88 0.1
0.38 0.82 0.07 0.26 0.91 0.11
0.41 0.82 0.07 0.27 0.91 0.11
0.32 0.82 0.07 0.23 0.92 0.11

SPSA 0.0 1.37 0.03

0.64 1.37 0.03

0.0 1.38 0.03

0.64 1.38 0.03
0.28 1.37 0.03 0.4 1.38 0.03
0.38 1.37 0.03 0.42 1.38 0.03
0.23 1.37 0.03 0.43 1.38 0.03

ZOO 0.0 0.72 0.03

0.77 0.56 0.03

0.0 0.91 0.03

0.86 0.68 0.03
0.84 0.55 0.03 0.91 0.63 0.03
0.76 0.63 0.03 0.91 0.65 0.03
0.83 0.6 0.03 0.92 0.67 0.03

97

Table 6.11: Transferability from full-precision model to 1,2,3,4-bit weight-only quantized models.

CIFAR10 SVHN

Float model Quantized models Float model Quantized models
(32-bit) (1,2,3,4-bit) (32-bit) (1,2,3,4-bit)

Acc l2 l∞ Acc l2 l∞ Acc l2 l∞ Acc l2 l∞

FGSM 0.12 1.65 0.03

0.38 1.65 0.03

0.29 1.66 0.03

0.5 1.66 0.03
0.42 1.65 0.03 0.54 1.66 0.03
0.4 1.65 0.03 0.55 1.66 0.03
0.39 1.65 0.03 0.54 1.66 0.03

BIM 0.0 1.17 0.03

0.28 1.17 0.03

0.0 1.16 0.03

0.5 1.16 0.03
0.33 1.17 0.03 0.55 1.16 0.03
0.29 1.18 0.03 0.57 1.15 0.03
0.27 1.17 0.03 0.54 1.16 0.03

CWl2 0.03 0.58 0.04

0.35 0.82 0.07

0.02 0.64 0.06

0.21 0.92 0.11
0.4 0.82 0.07 0.28 0.91 0.11
0.34 0.82 0.07 0.26 0.91 0.11
0.32 0.82 0.07 0.26 0.91 0.11

SPSA 0.0 1.37 0.03

0.29 1.37 0.03

0.0 1.38 0.03

0.39 1.38 0.03
0.37 1.37 0.03 0.41 1.38 0.03
0.22 1.37 0.03 0.43 1.38 0.03
0.22 1.37 0.03 0.38 1.38 0.03

ZOO 0.0 0.72 0.09

0.84 0.56 0.08

0.0 0.91 0.11

0.93 0.51 0.08
0.83 0.56 0.08 0.9 0.62 0.09
0.84 0.61 0.09 0.92 0.69 0.1
0.83 0.58 0.09 0.92 0.64 0.1

Table 6.12: Transferability from fully binarized model to 1,2,3,4-bit fully quantized models and
full-precision models.

CIFAR10 SVHN

Float model Quantized models Float model Quantized models
(32-bit) (1,2,3,4-bit) (32-bit) (1,2,3,4-bit)

Acc l2 l∞ Acc l2 l∞ Acc l2 l∞ Acc l2 l∞

FGSM 0.82 1.65 0.03

0.66 1.65 0.03

0.92 1.64 0.03

0.78 1.64 0.03
0.81 1.65 0.03 0.91 1.64 0.03
0.72 1.65 0.03 0.91 1.64 0.03
0.8 1.65 0.03 0.91 1.64 0.03

BIM 0.88 1.01 0.03

0.66 1.01 0.03

0.95 1.01 0.03

0.79 1.0 0.03
0.86 1.01 0.03 0.93 1.0 0.03
0.79 1.02 0.03 0.93 1.0 0.03
0.86 1.01 0.03 0.94 1.0 0.03

CWl2 0.77 1.95 0.23

0.11 0.78 0.08

0.95 1.28 0.13

0.06 1.02 0.1
0.71 2.22 0.21 0.93 0.94 0.09
0.63 2.22 0.21 0.93 0.79 0.08
0.71 2.3 0.22 0.93 1.29 0.11

SPSA 0.81 1.31 0.03

0.16 1.31 0.03

0.87 1.32 0.03

0.4 1.32 0.03
0.79 1.32 0.03 0.87 1.32 0.03
0.76 1.31 0.03 0.85 1.32 0.03
0.79 1.32 0.03 0.89 1.33 0.03

ZOO 1.00 – –

0.56 0.1 0.05

1.00 – –

0.82 0.07 0.05
0.88 0.1 0.06 0.95 0.09 0.08
0.82 0.12 0.06 0.94 0.06 0.04
0.88 0.24 0.1 1.00 – –

98

Table 6.13: Transferability from fully binarized model to 1,2,3,4-bit weight-only quantized models
and full-precision models.

CIFAR10 SVHN

Float model Quantized models Float model Quantized models
(32-bit) (1,2,3,4-bit) (32-bit) (1,2,3,4-bit)

Acc l2 l∞ Acc l2 l∞ Acc l2 l∞ Acc l2 l∞

FGSM 0.82 1.65 0.03

0.82 1.65 0.03

0.92 1.64 0.03

0.92 1.64 0.03
0.81 1.65 0.03 0.9 1.64 0.03
0.81 1.65 0.03 0.91 1.64 0.03
0.8 1.65 0.03 0.91 1.64 0.03

BIM 0.88 1.01 0.03

0.88 1.01 0.03

0.95 1.01 0.03

0.94 1.0 0.03
0.86 1.01 0.03 0.93 1.01 0.03
0.86 1.01 0.03 0.94 1.01 0.03
0.85 1.02 0.03 0.94 1.0 0.03

CWl2 0.77 1.95 0.23

0.874 2.21 0.23

0.95 1.28 0.13

0.94 1.07 0.1
0.74 2.22 0.22 0.92 1.02 0.1
0.72 2.36 0.22 0.93 1.23 0.12
0.73 2.26 0.22 0.94 1.19 0.12

SPSA 0.81 1.31 0.03

0.78 1.32 0.03

0.87 1.32 0.03

0.88 1.32 0.03
0.77 1.32 0.03 0.84 1.32 0.03
0.83 1.32 0.03 0.88 1.32 0.03
0.77 1.32 0.03 0.89 1.32 0.03

ZOO 1.00 – –

0.89 – –

1.00 – –

1.00 – –
1.00 – – 1.00 – –
1.00 – – 1.00 – –
0.88 0.15 0.08 1.00 – –

Table 6.14: Transferability from weight-only binarized model to 1,2,3,4-bit fully quantized models
and full-precision models.

CIFAR10 SVHN

Float model Quantized models Float model Quantized models
(32-bit) (1,2,3,4-bit) (32-bit) (1,2,3,4-bit)

Acc l2 l∞ Acc l2 l∞ Acc l2 l∞ Acc l2 l∞

FGSM 0.33 1.65 0.03

0.61 1.65 0.03

0.49 1.66 0.03

0.63 1.66 0.03
0.37 1.65 0.03 0.52 1.66 0.03
0.42 1.65 0.03 0.52 1.66 0.03
0.36 1.65 0.03 0.52 1.66 0.03

BIM 0.2 1.19 0.03

0.64 1.19 0.03

0.49 1.16 0.03

0.74 1.16 0.03
0.27 1.19 0.03 0.54 1.16 0.03
0.37 1.19 0.03 0.53 1.16 0.03
0.23 1.19 0.03 0.52 1.16 0.03

CWl2 0.14 0.84 0.09

0.58 0.83 0.08

0.14 0.97 0.10

0.56 0.93 0.09
0.23 0.84 0.08 0.19 0.96 0.1
0.26 0.84 0.08 0.21 0.95 0.09
0.20 0.84 0.08 0.19 0.95 0.09

SPSA 0.29 1.38 0.03

0.68 1.38 0.03

0.39 1.39 0.03

0.64 1.39 0.03
0.34 1.38 0.03 0.4 1.39 0.03
0.41 1.38 0.03 0.43 1.39 0.03
0.3 1.38 0.03 0.36 1.39 0.03

ZOO 0.93 0.7 0.1

0.88 0.59 0.09

0.97 0.73 0.1

0.9 0.68 0.1
0.93 0.63 0.09 0.95 0.65 0.09
0.9 0.71 0.1 0.96 0.65 0.1
0.94 0.65 0.09 0.96 0.64 0.09

99

Table 6.15: Transferability from weight-only binarized model to 1,2,3,4-bit weight-only quantized
models and full-precision models.

CIFAR10 SVHN

Float model Quantized models Float model Quantized models
(32-bit) (1,2,3,4-bit) (32-bit) (1,2,3,4-bit)

Acc l2 l∞ Acc l2 l∞ Acc l2 l∞ Acc l2 l∞

FGSM 0.33 1.65 0.03

0.11 1.65 0.03

0.49 1.66 0.03

0.28 1.66 0.03
0.38 1.65 0.03 0.52 1.66 0.03
0.37 1.65 0.03 0.53 1.66 0.03
0.36 1.65 0.03 0.52 1.66 0.03

BIM 0.2 1.19 0.03

0.0 1.19 0.03

0.49 1.16 0.03

0.0 1.16 0.03
0.28 1.19 0.03 0.52 1.16 0.03
0.24 1.19 0.03 0.54 1.16 0.03
0.22 1.19 0.03 0.51 1.16 0.03

CWl2 0.14 0.84 0.09

0.07 0.84 0.08

0.14 0.97 0.10

0.02 1.00 0.10
0.24 0.84 0.08 0.22 0.95 0.10
0.21 0.84 0.09 0.22 0.95 0.10
0.21 0.84 0.08 0.19 0.95 0.10

SPSA 0.29 1.38 0.03

0.00 1.38 0.03

0.39 1.39 0.03

0.00 1.38 0.03
0.38 1.38 0.03 0.42 1.39 0.03
0.24 1.38 0.03 0.43 1.39 0.03
0.33 1.38 0.03 0.42 1.39 0.03

ZOO 0.93 0.7 0.1

0.00 0.75 0.1

0.97 0.73 0.1

0.0 0.92 0.1
0.94 0.65 0.1 0.96 0.63 0.1
0.94 0.62 0.09 0.97 0.7 0.1
0.93 0.63 0.09 0.97 0.7 0.1

Table 6.16: Transferability from 2-bit fully quantized model to 1,2,3,4-bit fully quantized models.

CIFAR10 SVHN

Float model Quantized models Float model Quantized models
(32-bit) (1,2,3,4-bit) (32-bit) (1,2,3,4-bit)

Acc l2 l∞ Acc l2 l∞ Acc l2 l∞ Acc l2 l∞

FGSM 0.45 1.65 0.03

0.6 1.65 0.03

0.56 1.66 0.03

0.62 1.66 0.03
0.19 1.65 0.03 0.39 1.66 0.03
0.44 1.65 0.03 0.52 1.66 0.03
0.37 1.65 0.03 0.51 1.66 0.03

BIM 0.3 1.14 0.03

0.68 1.14 0.03

0.55 1.12 0.03

0.73 1.13 0.03
0.06 1.14 0.03 0.11 1.13 0.03
0.39 1.14 0.03 0.50 1.13 0.03
0.20 1.14 0.03 0.49 1.13 0.03

CWl2 0.29 0.93 0.08

0.54 0.90 0.08

0.36 0.65 0.09

0.66 0.61 0.08
0.06 0.6 0.04 0.03 0.67 0.07
0.25 0.94 0.08 0.21 0.69 0.09
0.15 0.92 0.08 0.18 0.70 0.09

SPSA 0.57 1.34 0.03

0.72 1.33 0.03

0.55 1.34 0.03

0.68 1.33 0.03
0.0 1.34 0.03 0.14 1.34 0.03
0.57 1.34 0.03 0.55 1.34 0.03
0.39 1.34 0.03 0.56 1.34 0.03

ZOO 1.0 – –

0.98 0.13 0.06

1.0 – –

0.99 0.12 0.06
0.83 0.13 0.06 0.93 0.1 0.06
0.99 0.2 0.09 1.0 – –
0.99 0.24 0.09 1.0 – –

100

Table 6.17: Transferability from 2-bit fully quantized model to 1,2,3,4-bit weight-only quantized
models.

CIFAR10 SVHN

Float model Quantized models Float model Quantized models
(32-bit) (1,2,3,4-bit) (32-bit) (1,2,3,4-bit)

Acc l2 l∞ Acc l2 l∞ Acc l2 l∞ Acc l2 l∞

FGSM 0.45 1.65 0.03

0.46 1.65 0.03

0.56 1.66 0.03

0.54 1.66 0.03
0.38 1.65 0.03 0.52 1.66 0.03
0.37 1.65 0.03 0.53 1.66 0.03
0.37 1.65 0.03 0.51 1.66 0.03

BIM 0.3 1.14 0.03

0.35 1.14 0.03

0.55 1.12 0.03

0.55 1.13 0.03
0.25 1.14 0.03 0.50 1.12 0.03
0.21 1.14 0.03 0.52 1.13 0.03
0.21 1.14 0.03 0.49 1.13 0.03

CWl2 0.29 0.92 0.08

0.34 0.92 0.08

0.36 0.65 0.09

0.42 0.64 0.09
0.19 0.93 0.08 0.22 0.7 0.09
0.15 0.92 0.08 0.21 0.69 0.09
0.18 0.93 0.08 0.19 0.7 0.09

SPSA 0.57 1.34 0.03

0.61 1.34 0.03

0.55 1.34 0.03

0.58 1.34 0.03
0.44 1.34 0.03 0.56 1.33 0.03
0.37 1.34 0.03 0.56 1.34 0.03
0.42 1.34 0.03 0.53 1.34 0.03

ZOO 1.0 – –

0.99 0.15 0.07

1.0 – –

1.0 – –
1.0 – – 0.98 0.08 0.04
1.0 – – 1.0 – –
1.0 – – 1.0 – –

Table 6.18: Transferability from 2-bit weight-only quantized model to 1,2,3,4-bit fully quantized
models.

CIFAR10 SVHN

Float model Quantized models Float model Quantized models
(32-bit) (1,2,3,4-bit) (32-bit) (1,2,3,4-bit)

Acc l2 l∞ Acc l2 l∞ Acc l2 l∞ Acc l2 l∞

FGSM 0.47 1.65 0.03

0.61 1.65 0.03

0.57 1.66 0.03

0.64 1.66 0.03
0.39 1.65 0.03 0.53 1.66 0.03
0.44 1.65 0.03 0.54 1.66 0.03
0.38 1.65 0.03 0.52 1.66 0.03

BIM 0.34 1.15 0.03

0.68 1.14 0.03

0.58 1.13 0.03

0.72 1.13 0.03
0.27 1.15 0.03 0.51 1.14 0.03
0.24 1.15 0.03 0.52 1.13 0.03
0.20 1.14 0.03 0.51 1.13 0.03

CWl2 0.32 0.90 0.08

0.6 0.86 0.07

0.31 0.84 0.10

0.57 0.81 0.1
0.2 0.91 0.08 0.18 0.87 0.11
0.29 0.91 0.08 0.21 0.85 0.10
0.19 0.91 0.08 0.18 0.86 0.11

SPSA 0.41 1.36 0.03

0.64 1.36 0.03

0.49 1.37 0.03

0.59 1.36 0.03
0.26 1.36 0.03 0.36 1.36 0.03
0.43 1.36 0.03 0.41 1.37 0.03
0.25 1.36 0.03 0.35 1.37 0.03

ZOO 0.96 0.56 0.08

0.86 0.57 0.08

0.97 0.69 0.1

0.90 0.66 0.09
0.94 0.59 0.08 0.96 0.62 0.08
0.93 0.62 0.08 0.96 0.61 0.09
0.95 0.58 0.08 1.0 – –

101

Table 6.19: Transferability from 2-bit weight-only quantized model to 1,2,3,4-bit weight-only quan-
tized models.

CIFAR10 SVHN

Float model Quantized models Float model Quantized models
(32-bit) (1,2,3,4-bit) (32-bit) (1,2,3,4-bit)

Acc l2 l∞ Acc l2 l∞ Acc l2 l∞ Acc l2 l∞

FGSM 0.47 1.65 0.03

0.47 1.65 0.03

0.57 1.66 0.03

0.56 1.66 0.03
0.18 1.65 0.03 0.38 1.66 0.03
0.38 1.65 0.03 0.53 1.66 0.03
0.39 1.65 0.03 0.53 1.66 0.03

BIM 0.34 1.15 0.03

0.39 1.15 0.03

0.58 1.13 0.03

0.57 1.13 0.03
0.0 1.15 0.03 0.0 1.16 0.03
0.25 1.15 0.03 0.53 1.13 0.03
0.20 1.14 0.03 0.53 1.13 0.03

CWl2 0.32 0.90 0.07

0.38 0.89 0.07

0.31 0.84 0.10

0.35 0.84 0.10
0.06 0.6 0.04 0.02 0.66 0.06
0.19 0.91 0.08 0.17 0.86 0.11
0.19 0.91 0.08 0.19 0.86 0.10

SPSA 0.41 1.36 0.03

0.45 1.36 0.03

0.49 1.37 0.03

0.46 1.36 0.03
0.0 1.37 0.03 0.0 1.37 0.03
0.43 1.36 0.03 0.4 1.37 0.03
0.29 1.36 0.03 0.42 1.37 0.03

ZOO 0.96 0.56 0.08

0.66 0.55 0.08

0.97 0.69 0.1

0.98 0.64 0.09
0.0 0.74 0.1 0.0 0.92 0.1
0.95 0.61 0.08 0.97 0.7 0.09
0.95 0.55 0.08 0.97 0.7 0.1

Table 6.20: Transferability from 3-bit fully quantized model to 1,2,3,4-bit fully quantized models.

CIFAR10 SVHN

Float model Quantized models Float model Quantized models
(32-bit) (1,2,3,4-bit) (32-bit) (1,2,3,4-bit)

Acc l2 l∞ Acc l2 l∞ Acc l2 l∞ Acc l2 l∞

FGSM 0.49 1.65 0.03

0.62 1.65 0.03

0.56 1.66 0.03

0.63 1.66 0.03
0.43 1.65 0.03 0.51 1.66 0.03
0.17 1.65 0.03 0.37 1.66 0.03
0.43 1.65 0.03 0.51 1.66 0.03

BIM 0.38 1.17 0.03

0.67 1.17 0.03

0.58 1.13 0.03

0.72 1.13 0.03
0.35 1.17 0.03 0.49 1.13 0.03
0.11 1.17 0.03 0.11 1.13 0.03
0.33 1.17 0.03 0.49 1.13 0.03

CWl2 0.25 0.98 0.10

0.56 0.97 0.10

0.28 0.92 0.11

0.58 0.91 0.10
0.19 0.99 0.09 0.17 0.92 0.11
0.10 0.97 0.09 0.02 0.96 0.11
0.18 0.98 0.10 0.15 0.93 0.11

SPSA 0.42 1.36 0.03

0.67 1.36 0.03

0.45 1.36 0.03

0.67 1.35 0.03
0.39 1.37 0.03 0.42 1.36 0.03
0.00 1.36 0.03 0.07 1.35 0.03
0.34 1.36 0.03 0.42 1.36 0.03

ZOO 1.0 – –

0.99 0.23 0.07

1.0 – –

1.0 – –
1.0 – – 1.0 – –
0.76 0.24 0.07 0.94 0.11 0.05
1.0 – – 1.0 – –

102

Table 6.21: Transferability from 3-bit fully quantized model to 1,2,3,4-bit weight-only quantized
models.

CIFAR10 SVHN

Float model Quantized models Float model Quantized models
(32-bit) (1,2,3,4-bit) (32-bit) (1,2,3,4-bit)

Acc l2 l∞ Acc l2 l∞ Acc l2 l∞ Acc l2 l∞

FGSM 0.49 1.65 0.03

0.51 1.65 0.03

0.56 1.66 0.03

0.55 1.66 0.03
0.44 1.65 0.03 0.52 1.66 0.03
0.44 1.65 0.03 0.52 1.66 0.03
0.43 1.65 0.03 0.52 1.66 0.03

BIM 0.38 1.17 0.03

0.46 1.17 0.03

0.58 1.13 0.03

0.56 1.13 0.03
0.37 1.17 0.03 0.5 1.13 0.03
0.34 1.17 0.03 0.51 1.13 0.03
0.33 1.17 0.03 0.49 1.13 0.03

CWl2 0.25 0.98 0.10

0.29 0.98 0.10

0.28 0.92 0.11

0.33 0.92 0.11
0.2 0.92 0.1 0.19 0.93 0.11
0.18 0.98 0.09 0.17 0.92 0.11
0.18 0.98 0.09 0.15 0.94 0.11

SPSA 0.42 1.36 0.03

0.56 1.37 0.03

0.45 1.36 0.03

0.44 1.36 0.03
0.44 1.36 0.03 0.44 1.36 0.03
0.36 1.36 0.03 0.45 1.36 0.03
0.41 1.36 0.03 0.43 1.36 0.03

ZOO 1.0 – –

1.0 – –

1.0 – –

1.0 – –
1.0 – – 1.0 – –
1.0 – – 1.0 – –
1.0 – – 1.0 – –

Table 6.22: Transferability from 3-bit weight-only quantized model to 1,2,3,4-bit fully quantized
models.

CIFAR10 SVHN

Float model Quantized models Float model Quantized models
(32-bit) (1,2,3,4-bit) (32-bit) (1,2,3,4-bit)

Acc l2 l∞ Acc l2 l∞ Acc l2 l∞ Acc l2 l∞

FGSM 0.46 1.65 0.03

0.61 1.65 0.03

0.56 1.66 0.03

0.63 1.66 0.03
0.38 1.65 0.03 0.52 1.66 0.03
0.45 1.65 0.03 0.52 1.66 0.03
0.38 1.65 0.03 0.51 1.66 0.03

BIM 0.3 1.15 0.03

0.7 1.15 0.03

0.58 1.13 0.03

0.71 1.14 0.03
0.24 1.15 0.03 0.5 1.14 0.03
0.4 1.15 0.03 0.5 1.14 0.03
0.2 1.15 0.03 0.48 1.14 0.03

CWl2 0.39 0.83 0.07

0.61 0.81 0.07

0.34 0.87 0.1

0.61 0.86 0.1
0.27 0.83 0.07 0.22 0.89 0.11
0.36 0.83 0.07 0.21 0.88 0.11
0.24 0.82 0.07 0.21 0.89 0.11

SPSA 0.32 1.36 0.03

0.68 1.36 0.03

0.47 1.37 0.03

0.72 1.36 0.03
0.27 1.36 0.03 0.42 1.37 0.03
0.4 1.36 0.03 0.38 1.37 0.03
0.26 1.36 0.03 0.33 1.37 0.03

ZOO 0.96 0.59 0.08

0.86 0.56 0.09

0.96 0.7 0.11

0.9 0.68 0.1
0.94 0.56 0.09 0.95 0.63 0.11
0.91 0.65 0.09 0.94 0.72 0.11
0.94 0.52 0.08 0.94 0.66 0.11

103

Table 6.23: Transferability from 3-bit weight-only quantized model to 1,2,3,4-bit weight-only quan-
tized models.

CIFAR10 SVHN

Float model Quantized models Float model Quantized models
(32-bit) (1,2,3,4-bit) (32-bit) (1,2,3,4-bit)

Acc l2 l∞ Acc l2 l∞ Acc l2 l∞ Acc l2 l∞

FGSM 0.46 1.65 0.03

0.47 1.65 0.03

0.56 1.66 0.03

0.55 1.66 0.03
0.39 1.65 0.03 0.51 1.66 0.03
0.18 1.65 0.03 0.4 1.66 0.03
0.38 1.65 0.03 0.52 1.66 0.03

BIM 0.3 1.15 0.03

0.38 1.15 0.03

0.58 1.13 0.03

0.55 1.13 0.03
0.26 1.15 0.03 0.5 1.14 0.03
0.0 1.15 0.03 0.0 1.14 0.03
0.23 1.15 0.03 0.48 1.14 0.03

CWl2 0.39 0.83 0.07

0.44 0.83 0.07

0.34 0.87 0.1

0.38 0.87 0.10
0.30 0.83 0.07 0.23 0.88 0.11
0.06 0.82 0.07 0.03 0.90 0.11
0.26 0.83 0.07 0.21 0.89 0.11

SPSA 0.32 1.36 0.03

0.42 1.36 0.03

0.47 1.37 0.03

0.46 1.37 0.03
0.3 1.36 0.03 0.37 1.37 0.03
0.0 1.36 0.03 0.0 1.37 0.03
0.3 1.36 0.03 0.32 1.37 0.03

ZOO 0.96 0.59 0.08

0.96 0.6 0.08

0.96 0.7 0.11

0.97 0.57 0.1
0.94 0.57 0.08 0.95 0.68 0.1
0.0 0.72 0.09 0.0 0.95 0.11
0.95 0.55 0.09 0.96 0.72 0.11

Table 6.24: Transferability from 4-bit fully quantized model to 1,2,3,4-bit fully quantized models.

CIFAR10 SVHN

Float model Quantized models Float model Quantized models
(32-bit) (1,2,3,4-bit) (32-bit) (1,2,3,4-bit)

Acc l2 l∞ Acc l2 l∞ Acc l2 l∞ Acc l2 l∞

FGSM 0.46 1.65 0.03

0.62 1.65 0.03

0.56 1.66 0.03

0.63 1.66 0.03
0.4 1.65 0.03 0.53 1.66 0.03
0.47 1.65 0.03 0.53 1.66 0.03
0.18 1.65 0.03 0.4 1.66 0.03

BIM 0.32 1.15 0.03

0.69 1.15 0.03

0.55 1.13 0.03

0.73 1.13 0.03
0.26 1.15 0.03 0.50 1.13 0.03
0.42 1.15 0.03 0.48 1.13 0.03
0.06 1.14 0.03 0.1 1.13 0.03

CWl2 0.36 0.86 0.07

0.63 0.82 0.06

0.33 0.81 0.10

0.62 0.79 0.09
0.25 0.86 0.07 0.23 0.82 0.10
0.36 0.87 0.07 0.321 0.82 0.10
0.05 0.6 0.04 0.02 0.68 0.07

SPSA 0.33 1.36 0.03

0.64 1.36 0.03

0.45 1.37 0.03

0.66 1.36 0.03
0.3 1.36 0.03 0.37 1.36 0.03
0.44 1.36 0.03 0.41 1.37 0.03
0.0 1.36 0.03 0.04 1.37 0.03

ZOO 0.97 1.45 0.18

0.95 0.89 0.13

0.99 0.7 0.14

0.99 0.31 0.09
0.96 1.07 0.14 0.99 0.61 0.13
0.97 1.45 0.16 0.99 0.8 0.09
0.73 1.09 0.14 0.93 0.38 0.1

104

Table 6.25: Transferability from 4-bit fully quantized model to 1,2,3,4-bit weight-only quantized
models.

CIFAR10 SVHN

Float model Quantized models Float model Quantized models
(32-bit) (1,2,3,4-bit) (32-bit) (1,2,3,4-bit)

Acc l2 l∞ Acc l2 l∞ Acc l2 l∞ Acc l2 l∞

FGSM 0.46 1.65 0.03

0.47 1.65 0.03

0.56 1.66 0.03

0.55 1.66 0.03
0.41 1.65 0.03 0.52 1.66 0.03
0.4 1.65 0.03 0.53 1.66 0.03
0.39 1.65 0.03 0.53 1.66 0.03

BIM 0.32 1.15 0.03

0.4 1.15 0.03

0.55 1.13 0.03

0.53 1.13 0.03
0.29 1.15 0.03 0.50 1.13 0.03
0.25 1.15 0.03 0.49 1.13 0.03
0.26 1.15 0.03 0.47 1.13 0.03

CWl2 0.37 0.86 0.07

0.45 0.84 0.07

0.33 0.82 0.10

0.37 0.81 0.09
0.29 0.87 0.07 0.22 0.82 0.10
0.25 0.86 0.07 0.22 0.82 0.10
0.25 0.86 0.07 0.21 0.82 0.10

SPSA 0.33 1.36 0.03

0.43 1.36 0.03

0.45 1.37 0.03

0.44 1.36 0.03
0.34 1.36 0.03 0.39 1.36 0.03
0.27 1.36 0.03 0.38 1.37 0.03
0.3 1.36 0.03 0.39 1.37 0.03

ZOO 0.97 1.45 0.18

0.98 1.40 0.17

0.99 0.7 0.14

0.99 0.26 0.11
0.97 1.42 0.17 0.99 0.11 0.05
0.97 1.45 0.16 1.0 – –
0.97 1.45 0.17 0.99 0.27 0.8

Table 6.26: Transferability from 4-bit weight-only quantized model to 1,2,3,4-bit fully quantized
models.

CIFAR10 SVHN

Float model Quantized models Float model Quantized models
(32-bit) (1,2,3,4-bit) (32-bit) (1,2,3,4-bit)

Acc l2 l∞ Acc l2 l∞ Acc l2 l∞ Acc l2 l∞

FGSM 0.47 1.65 0.03

0.63 1.65 0.03

0.56 1.66 0.03

0.63 1.66 0.03
0.4 1.65 0.03 0.52 1.66 0.03
0.46 1.65 0.03 0.53 1.66 0.03
0.4 1.65 0.03 0.51 1.66 0.03

BIM 0.31 1.15 0.03

0.71 1.15 0.03

0.56 1.13 0.03

0.74 1.13 0.03
0.27 1.15 0.03 0.50 1.13 0.03
0.42 1.15 0.03 0.5 1.13 0.03
0.24 1.15 0.03 0.48 1.13 0.03

CWl2 0.39 0.85 0.07

0.65 0.83 0.06

0.37 0.80 0.09

0.61 0.79 0.09
0.28 0.86 0.07 0.26 0.81 0.10
0.39 0.87 0.07 0.26 0.81 0.10
0.26 0.86 0.07 0.24 0.80 0.10

SPSA 0.34 1.36 0.03

0.71 1.36 0.03

0.46 1.37 0.03

0.66 1.36 0.03
0.31 1.36 0.03 0.44 1.37 0.03
0.43 1.36 0.03 0.38 1.37 0.03
0.24 1.36 0.03 0.36 1.37 0.03

ZOO 0.96 0.6 0.08

0.86 0.56 0.08

0.96 0.69 0.1

0.88 0.69 0.09
0.95 0.56 0.09 0.96 0.61 0.1
0.93 0.65 0.09 0.95 0.66 0.09
0.95 0.6 0.09 0.94 0.61 0.09

105

Table 6.27: Transferability from 4-bit weight-only quantized model to 1,2,3,4-bit weight-only quan-
tized models.

CIFAR10 SVHN

Float model Quantized models Float model Quantized models
(32-bit) (1,2,3,4-bit) (32-bit) (1,2,3,4-bit)

Acc l2 l∞ Acc l2 l∞ Acc l2 l∞ Acc l2 l∞

FGSM 0.47 1.65 0.03

0.48 1.65 0.03

0.56 1.66 0.03

0.55 1.66 0.03
0.41 1.65 0.03 0.52 1.66 0.03
0.4 1.65 0.03 0.52 1.66 0.03
0.19 1.65 0.03 0.39 1.66 0.03

BIM 0.31 1.15 0.03

0.39 1.15 0.03

0.56 1.13 0.03

0.55 1.13 0.03
0.28 1.15 0.03 0.50 1.13 0.03
0.24 1.15 0.03 0.51 1.13 0.03
0.0 1.15 0.03 0.0 1.13 0.03

CWl2 0.39 0.85 0.07

0.47 0.984 0.07

0.37 0.80 0.09

0.40 0.79 0.09
0.31 0.87 0.07 0.26 0.81 0.10
0.29 0.87 0.07 0.26 0.81 0.10
0.06 0.62 0.04 0.02 0.68 0.07

SPSA 0.34 1.36 0.03

0.48 1.36 0.03

0.46 1.37 0.03

0.44 1.36 0.03
0.37 1.36 0.03 0.36 1.37 0.03
0.26 1.36 0.03 0.42 1.37 0.03
0.0 1.36 0.03 0.0 1.37 0.03

ZOO 0.96 0.6 0.08

0.96 0.58 0.08

0.96 0.69 0.1

0.97 0.61 0.09
0.95 0.54 0.08 0.94 0.7 0.1
0.96 0.57 0.09 0.96 0.66 0.1
0.0 0.73 0.09 0.0 0.93 0.11

106

Chapter 7

Luring of transferable adversarial
perturbations

107

In the previous chapter, we studied the impact of model quantization on the robustness of
neural networks. We observed that the transferability of adversarial perturbations is tampered
between models with different quantization levels. From these results, we derived an ensemble-
based defense against an adversary in the black-box setting leveraging transfer black-box attacks.
Transfer black-box attacks are a very powerful tool for an adversary in the black-box setting. For
this reason, and as black-box settings are the most realistic threat model, transfer black-box attacks
are at the core of this thesis.

In this chapter, we pave the way towards a new approach to improve the robustness of a model
against black-box transfer attacks. We design the luring effect, which tricks the adversary into
choosing false directions to fool the target model.

The luring effect is initially designed with a removable additional neural network being included
in the target model. Training the additional model is achieved thanks to a loss function acting on
the logits sequence order. Our deception-based method only needs to have access to the predictions
of the target model and does not require a labeled data set. We explain the luring effect thanks to
the notion of robust and non-robust useful features and perform experiments on MNIST, SVHN
and CIFAR10 to characterize and evaluate this phenomenon.

Then, we identify three possible implementations of the luring effect as part of a defense mecha-
nism. Two scenarios consider a black-box or gray-box setting and implement purification/detection
schemes. Eventually, we show how the luring effect can be leveraged to detect the crafting process
of adversarial perturbations.

Related publication proposed during the thesis:

• [214] Bernhard, R., Moellic, P. A., Dutertre, J.-M. Luring of transferable adversarial pertur-
bations in the black-box paradigm. IEEE International Joint Conference on Neural Networks
(2021). 2021.

7.1 Motivation
Many defenses have been proposed to protect the integrity of ML systems, predominantly focused
on an adversary in the white-box setting [75, 89, 147, 215, 216]. However, only few works have
considered the much more realistic black-box settings, which constitute increasingly existing use-
cases since many models are deployed within secure environments and accessible only through
open or restrictive API. Contrary to the white-box paradigm where the adversary is allowed to
use existing gradient-based attacks [73,75,105,106,125,137], an attacker in a black-box setting can
only access the output label, confidence scores or logits from the target model. While an adversary
in such setting can still take advantage of gradient-free methods [62, 79, 108, 129, 130, 135], he
faces two major drawbacks. First, the number of queries requires to mount the attack can be
prohibitive. In the scenario of a pay-per-query system, using gradient-free methods can then be
very costly. Second, the numerous queries (thousands) submitted to the target model can be easily
flagged as suspicious. To avoid these potential pitfalls, the adversary can thus take advantage of
the transferability property [64] by crafting adversarial examples on a substitute model and then
transfering them to the target model. The transferability of adversarial perturbations, studied in
a particular case in the previous chapter, is therefore a main concern for the security of machine
learning models.

In this chapter, we design the luring effect, an innovative way to limit the transferability of
adversarial perturbation towards a model, opening a new direction for robustness in the realistic
black-box setting. As ML-based online API are likely to become increasingly widespread, and
regarding the massive deployment of edge models in a large variety of devices, several instances of
a model may be deployed in systems with different environment and security properties. Thus, the
black-box paradigm needs to be extensively studied to efficiently protect systems in many critical
domains. Considering a target model M that a defender aims at protecting against adversarial
examples, we first propose a method which allows to build a model T , that is an augmented or
modified version of M , such that adversarial examples do not transfer from T to M . Importantly,
training T only requires to have access to M , meaning that no labeled data set is required, so
that our approach can be implemented at a low cost for any already trained model. T is built by
augmenting M with an additional component P (with T = M ◦ P) taking the form of a neural
network trained with a specific loss function with logit-based constraints. From the observation
that transferability of adversarial perturbations between two models occurs because they rely on
similar non-robust features [57], we design P such that (1) the augmented network exploits useful
features of M and that (2) non-robust features of T and M are either different or require different

108

perturbations to reach misclassification towards the same class. Our deception-based method is
conceptually new as it does not aim at makingM relying more on robust-features as with proactive
schemes [75,147], nor tries to anticipate perturbations which directly target the non-robust features
of M as with reactive strategies [110, 217]. We then leverage the luring effect in other defense
scenarios.

Our key contributions are:

• We present an innovative approach to thwart transferability between two models, which we
name the luring effect. This phenomenon, as conceptually novel, opens a new direction for
adversarial research.

• We propose an implementation of the luring effect which fits any pre-trained model and does
not require a label data set. An additional neural network is pasted to the target model and
trained with a specific loss function that acts on the logits sequence order.

• We experimentally characterize the luring effect, and discuss its potentiality for three different
black-box defense strategies on MNIST, SVHN and CIFAR10.

7.2 Luring Adversarial Perturbations

7.2.1 Objectives and design
Our objective is to find a novel way to make models more robust against transferable black-box
adversarial perturbation without expensive (and sometimes prohibitive) training cost required by
many white-box defense methods. Our main idea is based on classical deception-based approaches
for network security (e.g. honeypots) and can be summarized as follow: rather than try to prevent
an attack, let’s fool the attacker. Our approach relies on a network P : X → X , pasted to the
already trained target network M before its input layer, such as the resulting augmented model
will answer T (x) = M ◦P (x) when fed with input x. The additional component P is designed and
trained to reach a twofold objective:

• Prediction neutrality: adding P does not alter the decision for a clean example x, i.e. T (x) =
M ◦ P (x) = M(x);

• Adversarial luring: according to an adversarial example x′ crafted to fool T , M does not
output the same label as T (i.e. M ◦ P (x′) 6= M(x′)) and, in the best case, x′ is inefficient
(i.e. M(x′) = y, where y is the ground-truth label).

To explain the intuition of our method, we follow the feature-based framework proposed in [57]
where a feature f is a function from X to R, that M has learned to perform its predictions.
Considering a binary classification task whre y = 1 or y = −1, f is said to be ρ-useful (ρ > 0)
if it satisfies Equation 7.1 and is γ-useful robust if under the worst perturbation δ chosen in a
predefined set of allowed perturbations ∆, f stays γ-useful under this perturbation (Equation 7.2).
Eventually, a ρ-useful feature f is said to be a non-robust feature if f is not robust for any γ ≥ 0.

E(x,y)∼D [y · f(x)] > ρ (7.1)

E(x,y)∼D

[
inf
δ∈∆

y · f(x+ δ)

]
> γ (7.2)

An adversary which aims at fooling a model will thus perform perturbations to the inputs to
influence the useful features which are not robust with respect to the perturbation he is allowed
to apply. We denote F∗M the set of ρ-useful features learned by M . We consider a set of allowed
perturbations ∆ and γ > 0 such that we note F∗,RM and F∗,NRM respectively the set of γ-robust and
non-robust features learned by M (relatively to ∆). An adversary that aims at fooling M ◦ P will
alter function compositions of the form f ◦ P with f ∈ F∗M . These function compositions are the
non-robust useful features of M ◦ P , whose set is denoted F∗,NRM◦P .

Based on the observations that transferability of adversarial perturbations between two models
occurs because these models rely on similar non-robust features [57], we consider f ◦ P ∈ F∗,NRM◦P ,
and we derive two possibilities which ensure the lowest transferability between M ◦ P and M ,
regarding the robustness of f :

109

• f is robust (f ∈ F∗,RM). This case means that adversarial perturbations from ∆ is sufficient
to flip the augmented feature f ◦ P but is not efficient to directly impact f . This case is the
optimal one, since the adversarial example is unsuccessful on the target model (M ◦P (x′) 6= y
and M(x′) = y)

• f is non-robust (f ∈ F∗,NRM). As f ◦ P is non robust, in this case, thwarting transferability
means that the additional model P impacts the way useful features vary with respect to
input alterations so that the adversarial perturbation lead to two different labels.

We encompass these two cases (illustrated in Figure 7.1) within what we name the luring effect.
The adversary is tricked into modifying input values in some way to flip useful and non-robust
features of M ◦P and these modifications are either without effect on the useful features of M , or
flip the non-robust features of M in a different way (and therefore are detectable, as presented in
Sections 7.4 and 7.5).

Figure 7.1: Luring effect. (left) x′ fools M ◦ P by flipping a non-robust feature f ◦ P (toward the
green class). (right) However, f can be a robust feature, then M is not fooled (still in the blue
class), or a non-robust feature but switched differently than f ◦ P (towards the orange class).

7.2.2 Training the luring component
To reach our two objectives (prediction neutrality and adversarial luring), we propose to train
P with constraints based on the predicted labels order. For x ∈ X , let α and β be the labels
corresponding respectively to the first and second highest confidence score given to x by M . The
training of P is achieved with a new loss function that constraints α to (still) be the first class
predicted by M ◦ P (prediction neutrality) and that makes the logits gap between α and β the
highest as possible for M ◦ P (adversarial luring).

To understand the intuition behind this loss function, let’s formalize the concepts learned by
M and M ◦ P . The prediction given by M corresponds to "class α is predicted, class β is the
second possible class". Once P has been trained following this new loss function, the prediction
given by M ◦ P corresponds to "class α is predicted, the higher confidence given to class α, the
smaller confidence given to class β". Concepts learned by M and M ◦ P share the same goal of
prediction, i.e. "class α" is predicted, but the relation between class α and class β is forced to be
the most different as possible. As learned concepts are essentially different, then useful features
learned byM andM ◦P to reach these concepts are necessarily different, and consequently display
different types of sensitivity to the same input pixel modifications. We designate by direction of
confidence towards classes the way logits are distributed relatively to classes, and the gap between
logits values. As an example, it can designate the fact that the biggest logit value is relative to some
classe, the second biggest to another class, and the gap between these two logit values. Therefore,
we can assume here that the direction of confidence towards classes is forced to be structurally
different for M ◦P and M , and we hypothesize that useful features of the two classifiers should be
different and behave differently to adversarial perturbations.

The luring loss Llur, designed to induce this behavior, is given in Equation 7.3 and the complete
training procedure is detailed in Algorithm 1.

For an input x ∈ X , the logits for the target model M and the augmented model M ◦ P are
denoted hM (x) and hM◦P (x), respectively. The parameters of P are denoted by Φ. hMi (x) and
hM◦Pi (x) correspond respectively to the values of hM (x) and HM◦P (x) for class i. The classes a

110

and b correspond to the second maximum value of hM and hM◦P respectively. M has already been
trained and its parameters are frozen during the process.

Llur (x,M(x)) =− λ
(
hM◦PM(x)(x)− hM◦Pa (x)

)
+ max

(
0, hM◦Pb (x)− hM◦PM(x)(x)

)
(7.3)

The first term of Equation 7.3 optimizes the gap between the logits of M ◦P corresponding to
the first and second biggest unscaled confidence score (logits) given by M (i.e. M(x) and a). This
part formalizes the goal of changing the direction of confidence betweenM ◦P andM . The second
term is compulsory to reach a good classification since the first part alone does not ensure that
hM◦PM(x)(x) is the highest logit value (prediction neutrality). The parameter λ > 0, called the luring
coefficient, allows to control the trade-off between ensuring good accuracy and shifting confidence
direction.

Algorithm 1 Training of the luring component
Input: trained model M , training steps K, learning rate η, batch size B, luring coefficient λ
Output: luring component P , with parameters Φ
1: hM◦Pc (x) denotes the logits of M ◦ P for input x and class c
2: Randomly initialize the parameters Φ of P
3: for step = 1 . . .K: do
4: {x1, x2, . . . , xB}: batch of training set examples
5: for i = 1 . . . B: do
6: (a,b) ← (class of the 2nd max value of hM (xi), class of the 2nd max value of hM◦P (xi))
7: Llur (xi,M(xi)) ← −λ

(
hM◦PM(xi)

(xi)− hM◦Pa (xi)
)

+ max
(

(0, hM◦Pb (xi)− hM◦PM(xi)
(xi)

)
8: end for
9: Φ ← Φ− η

∑B
i=1∇ΦLlur(xi,M(xi))/B

10: end for
11: return P

7.3 Characterization of the luring effect

7.3.1 Objective
Our first experiments are dedicated to the characterization of the luring effect by (1) evaluating
our objectives in term of transferability and (2) isolating it from other factors that may influence
transferability. For that purpose, we compare our approach (Luring) to the following approaches,
which differ from ours in the training procedures and loss functions:

• Stack model: M ◦ P is retrained as a whole with the cross-entropy loss. Stack serves as a
first baseline to measure the transferability between the two architectures of M ◦ P and M .

• Auto model: P is an auto-encoder trained separately with binary cross-entropy loss. Auto
serves as a second baseline of a component resulting in a neutral mapping from Rd to Rd.

• C_E model: P is trained with the cross-entropy loss between the confidence score vectors
M ◦P (x) andM(x) in order to mimic the decision of the target modelM . This model serves
as a comparison between our loss and a loss function which does not aim at maximizing the
gap between the confidence scores.

7.3.2 Data sets and models
We perform experiments on MNIST, SVHN and CIFAR10. For MNIST, M has the same archi-
tecture as in [75]. For SVHN and CIFAR10, we follow an architecture inspired from VGG [185].
Architectures and training setup for M are detailed for MNIST, SVHN and CIFAR10 in Tables
7.1, 7.2 and 7.3.

Architectures and training setup for P are detailed for MNIST, SVHN and CIFAR10 in Tables
7.4, 7.5 and 7.6.

111

Table 7.1: MNIST base classifier architecture. Epochs: 5. Batch size: 28. Optimizer: Adam with
learning rate 0.01. MaxPool(u,v) and Conv(f,k,k) denote max pooling with window size (u,v) and
2D convolution with f filters and kernel of size (k,k), respectively.

Architecture

Conv(32,5,5) + ReLU
Maxpool(2,2)

Conv(64,5,5) + ReLU
MaxPool(2,2)

Dense(1024) + ReLU
Dense(10) + softmax

Table 7.2: SVHN base classifier architecture. Epochs: 50. Batch size: 28. Optimizer: Adam with
learning rate 0.01. BN, MaxPool(u,v) and Conv(f,k,k) denote respectively batch normalization,
max pooling with window size (u,v) and 2D convolution with f filters and kernel of size (k,k),
respectively.

Architecture

Conv(64,3,3) + BN + ReLU
Conv(64,3,3) + MaxPool(2,2) + BN + ReLU

Conv(128,3,3) + BN + ReLU
Conv(128,3,3) + MaxPool(2,2) + BN + ReLU

Conv(256,3,3) + BN + ReLU
Conv(256,3,3) + MaxPool(2,2) + BN + ReLU

Dense(1024) + BN + ReLU
Dense(1024) + BN + ReLU

Dense(10) + softmax

Table 7.3: CIFAR10 base classifier architecture. Epochs: 200. Batch size: 32. Optimizer: Adam
with learning rate starting at 0.1, decreasing to 0.01 and 0.001 respectively after 80 and 120
epochs. BN, MaxPool(u,v) and Conv(f,k,k) denote respectively batch normalization, max pooling
with window size (u,v) and 2D convolution with f filters and kernel of size (k,k), respectively.

Architecture

Conv(128,3,3) + BN + ReLU
Conv(128,3,3) + MaxPool(2,2) + BN + ReLU

Conv(256,3,3) + BN + ReLU
Conv(256,3,3) + MaxPool(2,2) + BN + ReLU

Conv(512,3,3) + BN + ReLU
Conv(512,3,3) + MaxPool(2,2) + BN + ReLU

Dense(1024) + BN + ReLU
Dense(1024) + BN + ReLU

Dense(10) + softmax

112

Table 7.4: Defense component architecture for
MNIST. MaxPool(u,v), UpSampling(u,v) and
Conv(f,k,k) denote max pooling with window size
(u,v), upsampling with sampling factor (u,v) and 2D
convolution with f filters and kernel of size (k,k),
respectively.

Architecture

Conv(16,3,3) + ReLU
MaxPool(2,2)

Conv(8,3,3) + ReLU
MaxPool(2,2)

Conv(8,3,3) + ReLU
Conv(8,3,3) + ReLU
UpSampling(2,2)

Conv(8,3,3) + ReLU
UpSampling(2,2)
Conv(16,3,3)

UpSampling(2,2)
Conv(1,3,3) + sigmoid

• Stack Epochs: 5. Batch
size: 28. Optimizer: Adam
with learning rate 0.001

• Auto Epochs: 50. Batch
size: 128. Optimizer: Adam
with learning rate 0.001

• C_E Epochs: 64. Batch
size: 64. Optimizer: Adam
with learning rate starting
at 0.001, decreasing to
0.0002 and 0.0004
respectively after 45 and 58
epochs

• Luring Epochs: 64. Batch
size: 64. Optimizer: Adam
with learning rate starting
at 0.001, decreasing to
0.0002 and 0.0004
respectively after 45 and 58
epochs

Table 7.5: Defense component architecture for SVHN.
BN, MaxPool(u,v), UpSampling(u,v) and Conv(f,k,k)
denote batch normalization, max pooling with window
size (u,v), upsampling with sampling factor (u,v) and
2D convolution with f filters and kernel of size (k,k),
respectively.

Architecture

Conv(128,3,3) + BN + ReLU
MaxPool(2,2)

Conv(256,3,3) + BN + ReLU
MaxPool(2,2)

Conv(512,3,3) + BN + ReLU
Conv(1024,3,3) + BN + ReLU

MaxPool(2,2)
Conv(512,3,3) + BN + ReLU
Conv(512,3,3) + BN + ReLU

UpSampling(2,2)
Conv(256,3,3) + BN + ReLU

UpSampling(2,2)
Conv(128,3,3) + BN + ReLU

UpSampling(2,2)
Conv(64,3,3) + BN + ReLU
Conv(3,3,3) + BN + sigmoid

• Stack Epochs: 20. Batch
size: 256. Optimizer: Adam
with learning rate 0.001

• Auto Epochs: 5. Batch size:
128. Optimizer: Adam with
learning rate 0.001

• C_E Epochs: 210. Batch
size: 256. Optimizer: Adam
with learning rate starting
at 0.0001, decreasing to
0.00001 and 0.000008
respectively after 126 and
168 epochs

• Luring Epochs: 210. Batch
size: 256. Optimizer: Adam
with learning rate starting
at 0.0001, decreasing to
0.00001 and 0.000008
respectively after 126 and
168 epochs. Dropout is used

113

Table 7.6: Defense component architecture for CI-
FAR10. BN, MaxPool(u,v), UpSampling(u,v) and
Conv(f,k,k) denote batch normalization, max pooling
with window size (u,v), upsampling with sampling fac-
tor (u,v) and 2D convolution with f filters and kernel
of size (k,k), respectively.

Architecture

Conv(128,3,3) + BN + ReLU
Conv(256,3,3) + BN + ReLU

MaxPool(2,2)
Conv(512,3,3) + BN + ReLU
Conv(1024,3,3) + BN + ReLU
Conv(512,3,3) + BN + ReLU
Conv(512,3,3) + BN + ReLU
Conv(256,3,3) + BN + ReLU

UpSampling(2,2)
Conv(128,3,3) + BN + ReLU
Conv(64,3,3) + BN + ReLU
Conv(3,3,3) + BN + sigmoid

• Stack Epochs: 200. Batch
size: 32. Optimizer: Adam
with learning rate starting
at 0.1, decreasing to 0.01
and 0.001 respectively after
80 and 120 epochs

• C_E Epochs: 216. Batch
size: 256. Optimizer: Adam
with learning rate starting
at 0.00001, decreasing to
0.000005 and 0.0000008
respectively after 154 and
185 epochs. Dropout is used

• Luring Epochs: 216. Batch
size: 256. Optimizer: Adam
with learning rate starting
at 0.00001, decreasing to
0.000005 and 0.0000008
respectively after 154 and
185 epochs. Dropout is used

114

Table 7.7 gathers the test set accuracy and agreement rate (on the ground-truth label) between
each augmented model and M . For the luring parameter, we set λ = 1 for MNIST and SVHN,
and λ = 0.15 for CIFAR10. For CIFAR10, since no autoencoder we tried reaches correct test set
accuracy, we exclude the Auto model. We observe that our approach has a limited impact on the
test accuracy with a relative decrease of 1.71%, 4.26% and 4.48% for MNIST, SVHN and CIFAR10
respectively.

Table 7.7: Test set accuracy and agreement (augmented and target model agree on the ground-
truth label) between each augmented model and the target model M , noted Base.

Model Data set

MNIST SVHN CIFAR10

Test Agree Test Agree Test Agree

Base 0.991 – 0.961 – 0.893 –
Stack 0.980 0.976 0.925 0.913 0.902 0.842
Auto 0.971 0.969 0.950 0.943 – –
C_E 0.982 0.977 0.919 0.907 0.860 0.834
Luring 0.974 0.969 0.920 0.917 0.853 0.822

7.3.3 Attack setup and metrics
For the characterization of the luring effect, we attack the model M ◦P of the four approaches and
transfer to M only the adversarial examples that are successful for these four models.

We define the disagreement rate, noted DR(X ′), that represents the rate of successful adver-
sarial examples crafted on M ◦ P for which M and M ◦ P do not agree. The disagreement rate is
defined formally in Equation 7.4. To measure the best case where the luring effect leads to unsuc-
cessful adversarial examples when transferred to M , we note IAR(X ′) an inefficient adversarial
examples rate that represents the proportion of successful adversarial examples on M ◦ P but not
on M . The inefficient adversarial examples rate is defined formally in Equation 7.5. For both
metrics, the higher, the better the luring effect to limit transferable attacks on the target model
M .

DR
(
X ′
)

=

∑
X′ 1MoP (x′)6=y,M◦P (x′) 6=M(x′)∑

X′ 1M◦P (x′)6=y
(7.4)

IAR
(
X ′
)

=

∑
X′ 1M◦P (x′)6=y,M(x′)=y∑

X′ 1M◦P (x′) 6=y
(7.5)

We use the gradient-based attacks FGSM [73], PGD [75], and MIM [137] in its l∞ (MIM) and l2
(MIML2) versions. We used three l∞ perturbation budgets (ε values): 0.2, 0.3 and 0.4 for MNIST,
0.03, 0.06 and 0.08 for SVHN, and 0.02, 0.03 and 0.04 for CIFAR10. For MIML2, we report results
when adversarial examples are clipped to respect the threat model with regards to ε. For PGD,
MIM and MIML2, the number of iterations is set to 1, 000, the step size to 0.01 and µ to 1.0 (MIM
and MIML2). For MIML2, the l2 bound is set to 30 on MNIST and 2 on SVHN and CIFAR10. An
illustration of a clean image and its adversarial counterpart for the maximum perturbation allowed
is presented in Figure 7.2. We note that the ground-truth label is still clearly recognizable.

7.3.4 Results and further analysis of the luring effect
Results

We report results for the DR and IAR in Figure 7.3. The highest performances reached with our
loss (for every ε) show that our training method is efficient at inducing the luring effect. More
precisely, we claim that the fact that both metrics decrease much slower as ε increases compared to
the other architectures, brings additional confirmation that non-robust features of M and M ◦ P
tend to behave more differently than with the three other considered approaches.

115

Figure 7.2: (top) Clean image, (bottom) adversarial example for the maximum perturbation al-
lowed (left to right: MNIST, SVHN, CIFAR10; ε = 0.4, 0.08, 0.04).

Figure 7.3: Disagreement Rate (solid line) and Inefficient Adversarial examples Rate (dashed line)
for different attacks.

Distance to an adversarial example

As a complementary analysis, we investigate the impact of our additional component compared
to the other approaches on the distance between a clean and an adversarial example. This will
allow to assess that the better results observed previously with the luring loss are due to the
luring effect being induced and not simply different distortion needed to fool M and M ◦P . More
precisely, this analysis will allow to verify one crucial issue: adversarial examples are found at
approximately the same distance for M ◦ P and M , for all approaches. Indeed, if the distance
between a clean and an adversarial input is much lower for M ◦ P with our approach than the
other approaches (and lower than the distance for the target model M), the better results could
then be explained as the adversary simply not perturbing enough the clean example when attacking
M ◦ P . The target model M could then show robustness but this would not be caused by the

116

Table 7.8: Average l2 and l∞ distortions between clean and adversarial examples generated with
the CWL2 attack for the target model M and the augmented models M ◦ P

MNIST SVHN CIFAR10

Model Mean l2 Mean l∞ Mean l2 Mean l∞ Mean l2 Mean l∞
Target 0.96 0.27 0.32 0.04 0.42 0.04
Stack 0.87 0.25 0.34 0.05 0.4 0.03
Auto 0.94 0.35 0.29 0.04 – –
C_E 0.92 0.34 0.29 0.04 0.41 0.04
Luring 0.94 0.31 0.31 0.04 0.39 0.04

luring effect, but simply minimal adversarial distortion concerns. To this end, we measure the l2
and l∞ means of the adversarial perturbations needed to find an adversarial example, and verify
that our approach is globally at the same level than the other approaches. For that purpose, an
appropriate and recommended attack is CWl2 attack [105] that searches for the closest adversarial
examples in terms of the l2 distortion. We run CWl2 with the following parameters: 10 binary
search steps, learning rate of 0.1, initial constant of 0.5 and 500 iterations for MNIST, SVHN and
CIFAR10. These parameters have been chosen such that increasing the number of iterations does
not lower the final l2 distortion. For each data set, we run the attack on 1, 000 test set examples
correctly classified for the four approaches for both M and M ◦ P . All the adversarial examples
fool the models. The average l2 and l∞ distortions are reported in Table 7.8: each perturbation
size corresponds to the lowest perturbation size among the 10 constant values of the CWl2 attack
objective function (see Equation 4.13) tested. Results show that there is no significant difference
between our approach and the other approaches. This is an additional observation that our luring
loss allows to train an augmented model which causes the luring effect by predominantly targeting
different useful non-robust features rather than artificially modifying the scale of the adversarial
distortion needed to cause misclassification. In other words, this indicates that our approach truly
impacts the underlying useful features and does not only imply different distortions scales needed
to fool both M and M ◦ P .

Investigating the l0 distortion

Moreover, we also investigate the l0 distortion. For MNIST, as presented in Figure 7.4 – left, we
notice that the l0 distortion (i.e. the cardinality of the pixels impacted by the adversarial attack)
is significantly higher with our method. This points out that P leverages more different useful
features, which are easily identifiable for MNIST because of the basic structure of the images. This
effect can also be demonstrated thanks to saliency maps (i.e. analyzing ∇xP (x)), as illustrated in
Figure 7.5. In Figure 7.5, if we denote by P1(x), P2(x), ..., Pd(x) the output of the component P ,
each pixel represents ∇x(P1 + P2 + · · · + Pd)(x). Indeed, for the Luring model, P is sensitive to
many additional useless background pixels than M , compared with the other approaches. Note
that for Auto, modifying P ’s mapping consists almost exclusively on modifying pixels correctly
correlated with the true label.

For more complex inputs from SVHN or CIFAR10, without a uniform background as for
MNIST, we observe that the l0 distortion is approximately the same for all the architectures
(Figure 7.4 – right). However, for these two data sets, we analyze the influence of P ’s mapping
thanks to the logits variations. More precisely, we analyze how P acts on the variation of the
logits with respect to the input features (∇xi

h(x)). For that purpose, we first pick 1, 000 test set
examples correctly classified by all the models (the base modelM and the augmented models of the
four approaches: Auto, Stack, C_E and Luring). Then, for each augmented model and each class
c, we compute the number Ωc of pixels xd that lead to an opposite effect on prediction between
M and M ◦ P . This quantity is defined in Equation 7.6 for an input x.

Ωc(x) =
∣∣{d | ∇xd

hc(x) · ∇xd
hM◦Pc (x) < 0

}∣∣ (7.6)

Next, we look at the proportion of these examples for which Ωc is higher for the Luring approach
than for the other approaches. Results for each class are presented in Table 7.9. For both SVHN
and CIFAR10, these proportions are strictly higher than 80% whatever the class. This is a sup-
plementary indication toward the fact that – with respect to the allowed adversarial perturbation

117

altering x – our approach is more relevant than other approaches (that also perform a mapping
within X) to flip useful and non-robust features of M ◦ P and M towards different labels.

Table 7.9: Rate of examples (over 1, 000) for which logits vary more differently between M and
M ◦ P , for the Luring approach against the other approaches.

Class

1 2 3 4 5 6 7 8 9 10

SVHN 0.81 0.85 0.86 0.89 0.86 0.82 0.83 0.84 0.83 0.82
CIFAR 0.86 0.88 0.88 0.87 0.88 0.87 0.89 0.86 0.88 0.85

7.4 Using the luring effect as a black-box defense
By fooling an adversary on the way to target a black-box model, the phenomenon that we charac-
terized in the previous section can be seen as a defense mechanism on its own or as a complement of
state-of-the-art approaches. In this section we discuss one way to use our approach as a protection
in a strict black-box setting.

7.4.1 Threat model
In the classical black-box transfer setting, the adversary uses a surrogate model M ′ to craft ad-
versarial examples, and he then transfers them to the target model M . Therefore, a way to take
advantage of the luring effect in this context is to consider an adversary provided with the model
T = M ◦ P as for the surrogate model. We assume that the adversary can query T without any
limit on the number of queries to get the logits outputs, but does not have access to the architecture
of T (black-box setting), as he could infer M directly.

We assume that the adversary has no access to the inner parameters and architecture, neither
of the target modelM nor the augmented modelM ◦P . This setting is classical when dealing with
cloud-based API or edge neural networks in secure embedded systems where users have only access
to input/output information with different querying abilities and output precision (i.e. scores or
labels).

Related real-world transferability scenarios may be linked to the increasingly widespread de-
ployment of models in a large variety of devices (edge AI) or services (cloud AI) as an integral
part of complex systems with different security requirements. For example, it is classically the
case with the IoT domain where a model may be the part of a critical system and, simultaneously,
be deployed and used in more mainstream connected objects with looser security requirements.
The model M is deployed for the critical system with strong security access, not accessible to an
attacker, and the augmented protected model will be deployed in the others black-box systems
with looser accessibility settings.

Figure 7.4: l0 adversarial distortion for MNIST (left) and CIFAR10 (right).

118

Figure 7.5: MNIST. (top) Clean image and gradient of the cross-entropy loss with respect to input;
(bottom) mapping gradients ∇xP (x) for 3 augmented models.

7.4.2 Metrics
Considering a secure black-box system with limited access, that only contains the target modelM ,
the goal of the defender is to thwart attacks crafted from T = M ◦P . The defender can rely on the
ability of the luring effect to lead to unsuccessful adversarial by looking at M(x) only. In this case,
the appropriate metric is the classical adversarial accuracy (Acc), which is the standard accuracy
measured on the adversarial set X ′ and noted AccMoP and AccM respectively for M ◦ P and M .
The defender can also detect adversarial examples by comparing the two inference outputs M(x)
and M ◦ P (x). This scenario assumes that M is completely hidden (the output is not available to
the adversary), as it would allow him to mount a black-box attack on the binary classifier given by
M(x)/T (x). An appropriate metric is the rate of adversarial examples which are either detected
or well-predicted by M , as expressed in Equation 7.7 and noted DAC for Detection Adversarial
Accuracy.

DAC = 1−
∑
x∈X′ 1M◦P (x′)=M(x′),M(x′) 6=y

|X ′|
(7.7)

Classically, the adversarial capability is an upper bound ε of the perturbation ‖x′ − x‖∞.

7.4.3 Attacks
In order to evaluate our defense with respect to the threat model, we attack M ◦ P with strong
gradient-free attacks (described in Section 4.4):

• SPSA attack [79] ensures to consider the strongest adversary in our black-box setting as it
considers that the adversary has access to the logits of M ◦ P .

• Coherently with an adversary that has no querying limitation, ECO [133] is a strong score-
based gradient-estimation free attack.

To perform an even more strict evaluation, and to anticipate future gradient-free attacks, we report
the best results1 obtained with the state-of-the-art transferability designed gradient-based attacks
MIM, DIM, MIM-TI and DIM-TI [137–139], under the name MIM-W.

All the attacks (SPSA, ECO, MIM, DIM, MIM-TI, DIM-TI) are performed on 1, 000 correctly
classified test set examples, with parameter values tuned for the highest transferability results.
More precisely, we searched for parameters leading to the lowest AccM and DAC values.

Gradient-free attacks For the SPSA attack, the learning rate is set to 0.1, the number of
iterations is set to 100 and the batch size to 128. For the ECO attack, for the three data sets,
the number of queries is set to 20, 000. We did not perform early-stopping as it results in less
transferable adversarial examples. The block size is set to 2, 8 and 4 respectively for MNIST,
SVHN and CIFAR10.

1Here best is from the adversary point of view.

119

Gradient-based attacks For DIM and DIM-TI, the optimal p value was searched in the set
{0.1, 0.2, · · · , 1.0}. We obtained the optimal values of 1.0, 1.0 and 0.6 respectively on MNIST,
SVHN and CIFAR10. For MIM and its variants, the number of iterations is set to 1, 000, 500 and
100 respectively on MNIST, SVHN and CIFAR10, and µ = 1.0. The optimal kernel size required
by MIM-TI and DIM-TI was searched in {(3, 3), (5, 5), (10, 10), (15, 15)}. The kernel size for the
MIM-TI and DIM-TI attacks resulting in the lowest AccM and DAC values are reported in Tables
7.10, 7.11 and 7.12 for MNIST, SVHN and CIFAR10, respectively.

Table 7.10: MNIST. Kernel size for the MIM-TI and DIM-TI attacks.

Attack Architecture ε value (l∞)
0.3 0.4 0.5

MIM-TI Stack 5× 5 5× 5 5× 5
Auto 10× 10 5× 5 5× 5
C_E 10× 10 10× 10 5× 5

Luring 5× 5 5× 5 10× 10

DIM-TI Stack 5× 5 5× 5 5× 5
Auto 5× 5 5× 5 5× 5
C_E 10× 10 10× 10 10× 10

Luring 5× 5 5× 5 5× 5

Table 7.11: SVHN. Kernel size for the MIM-TI and DIM-TI attacks.

Attack Architecture ε value (l∞)
0.03 0.06 0.08

MIM-TI Stack 5× 5 5× 5 5× 5
Auto 5× 5 5× 5 5× 5
C_E 5× 5 10× 10 5× 5

Luring 10× 10 10× 10 10× 10

DIM-TI Stack 5× 5 5× 5 5× 5
Auto 5× 5 5× 5 5× 5
C_E 5× 5 5× 5 5× 5

Luring 10× 10 10× 10 10× 10

Table 7.12: CIFAR10. Kernel size for the MIM-TI and DIM-TI attacks.

Attack Architecture ε value (l∞)
0.02 0.03 0.04

MIM-TI Stack 3× 3 3× 3 3× 3
Auto 3× 3 3× 3 3× 3
C_E 3× 3 10× 10 3× 3

Luring 3× 3 3× 3 3× 3

DIM-TI Stack 3× 3 3× 3 3× 3
Auto 3× 3 3× 3 3× 3
C_E 3× 3 3× 3 3× 3

Luring 3× 3 3× 3 3× 3

7.4.4 Results
The results are presented in Table 7.13 for MNIST, SVHN and CIFAR10. For CIFAR10, since
no autoencoder we tried allows to reach a correct test set accuracy for the Auto approach, we do
not consider it. First, we notice that AccMoP almost always equal 0 with gradient-based iterative

120

Table 7.13: Adversarial accuracy for M ◦ P (ACMoP), M (ACM), and Detection Adversarial
Accuracy (DAC) for different architectures. MNIST(top), SVHN (middle), CIFAR10 (bottom).

MNIST Stack Auto C_E Luring

ε AccMoP AccM DAC AccMoP AccM DAC AccMoP AccM DAC AccMoP AccM DAC

SPSA 0.2 0.0 0.96 0.97 0.03 0.95 0.95 0.0 0.97 0.98 0.14 0.99 0.99
0.3 0.0 0.86 0.89 0.03 0.90 0.92 0.0 0.94 0.95 0.05 0.96 0.97
0.4 0.0 0.72 0.77 0.0 0.85 0.87 0.0 0.88 0.91 0.02 0.95 0.96

ECO 0.2 0.03 0.86 0.92 0.03 0.86 0.88 0.01 0.91 0.93 0.05 0.99 1.0
0.3 0.02 0.56 0.65 0.03 0.68 0.7 0.01 0.8 0.87 0.02 0.91 0.96
0.4 0.01 0.35 0.54 0.03 0.36 0.46 0.01 0.45 0.48 0.03 0.77 0.79

MIM-W 0.2 0.0 0.79 0.82 0.0 0.81 0.82 0.0 0.85 0.88 0.19 0.92 0.93
0.3 0.0 0.31 0.45 0.0 0.35 0.45 0.0 0.43 0.57 0.13 0.69 0.75
0.4 0.0 0.07 0.24 0.0 0.07 0.17 0.0 0.13 0.31 0.07 0.34 0.45

SVHN Stack Auto C_E Luring

ε AccMoP AccM DAC AccMoP AccM DAC AccMoP AccM DAC AccMoP AccM DAC

SPSA 0.03 0.10 0.54 0.56 0.06 0.37 0.38 0.06 0.67 0.68 0.0 0.96 0.97
0.06 0.01 0.21 0.24 0.0 0.10 0.11 0.0 0.37 0.42 0.0 0.96 0.96
0.08 0.0 0.13 0.15 0.0 0.06 0.06 0.0 0.23 0.28 0.0 0.94 0.96

ECO 0.03 0.06 0.42 0.44 0.14 0.48 0.49 0.18 0.66 0.68 0.20 0.97 0.98
0.06 0.0 0.11 0.12 0.06 0.09 0.11 0.1 0.35 0.39 0.1 0.86 0.88
0.08 0.0 0.03 0.07 0.06 0.09 0.09 0.08 0.29 0.32 0.09 0.84 0.86

MIM-W 0.03 0.04 0.32 0.35 0.01 0.20 0.21 0.03 0.41 0.45 0.11 0.81 0.87
0.06 0.0 0.06 0.09 0.0 0.03 0.05 0.0 0.10 0.18 0.0 0.58 0.71
0.08 0.0 0.03 0.06 0.0 0.01 0.02 0.0 0.06 0.13 0.0 0.48 0.67

CIFAR10 Stack C_E Luring

ε AccMoP AccM DAC AccMoP AccM DAC AccMoP AccM DAC

SPSA 0.02 0.01 0.75 0.78 0.06 0.68 0.71 0.12 0.78 0.82
0.03 0.0 0.57 0.62 0.01 0.45 0.49 0.02 0.59 0.64
0.04 0.0 0.38 0.42 0.0 0.22 0.24 0.01 0.42 0.50

ECO 0.02 0.15 0.7 0.71 0.14 0.6 0.63 0.16 0.81 0.87
0.03 0.09 0.44 0.59 0.09 0.36 0.42 0.2 0.65 0.67
0.04 0.05 0.29 0.29 0.04 0.28 0.34 0.09 0.35 0.44

MIM-W 0.02 0.0 0.49 0.52 0.02 0.4 0.43 0.03 0.58 0.64
0.03 0.0 0.24 0.28 0.0 0.15 0.19 0.0 0.30 0.39
0.04 0.0 0.13 0.16 0.0 0.05 0.1 0.0 0.18 0.28

attacks2. This is an indication that P does not induce a form of gradient masking [78].
Remarkably on SVHN, for ε = 0.08 (the largest perturbation), and for the worst-case attacks,
adversarial examples tuned to achieve the best transferability only reduce AccM to 0.48 against
our approach, compared to almost 0 for the other architectures. The robustness benefits are
more observable on SVHN and MNIST but the results on CIFAR10 are particularly promising in
the scope of a defense scheme that only requires a pre-trained model. Indeed, for the common
l∞ perturbation value of 0.03, the worst DAC value for the C_E and Luring approaches are
respectively 0.19 (against DIM attack) and 0.39 (against DIM-TI attack).

7.4.5 Compatibility with ImageNet and Adversarial Training
We scale our approach to ImageNet (ILSVRC2012). For our experiments, the target model M
consists of a MobileNetV2 model [187], reaching 71.3% of accuracy on the validation set. The
architecture for the defense component is described in Table 7.14. We choose to present our
approach along with the C_E approach as it represents well the purpose of the method we present
in this chapter. Indeed, the C_E approach only requires training the additional component P ,
which fits into the scope of a defense which can be implemented on top of any already trained
model M . For both the Luring and C_E approaches, the additional component P is trained for
100 epochs, with a bath size of 256, using a momentum of 0.9 with learning rate starting at 0.01,
decreasing to 0.001 after 80 epochs. The λ parameter of the loss is set to 1.0. The accuracy of the
augmented model as well as the agreement rate (the model M and the augmented model M ◦ P)

2Parameters are tuned relatively to the adversarial goal: lowering our defense efficiency. Thus, the lowest
performances sometimes do not correspond to the lowest accuracy of M ◦ P on the adversarial examples.

121

are presented in Table 7.15. The attacks are performed on 1, 000 well-classified images from the
validation set, and three common l∞ perturbation budgets are considered : 4/255, 5/255 and
6/255. Results are presented in Table 7.16. The highest results observed in terms of both AccM
and DAC values with our approach confirm the scalability of our method on large-scale data sets.
For a common l∞ perturbation budget of 4/255, the smaller AccM and DAC observed against
the strong MIM-W attack equal 0.4 and 0.55 with our approach, while they equal 0.23 and 0.35
with the C_E approach. Following the results previously observed on the benchmarks used for
characterization, these results validate the scalability of our approach to large-scale data sets.

Table 7.14: Defense component architecture for ImageNet.

Architecture

Conv(128,3,3) + BN + ReLU
MaxPool(2,2)

Conv(256,3,3) + BN + ReLU
MaxPool(2,2)

Conv(512,3,3) + BN + ReLU
MaxPool(2,2)

Conv(512,3,3) + BN + ReLU
Conv(256,3,3) + BN + ReLU

UpSampling(2,2)
Conv(128,3,3) + BN + ReLU

UpSampling(2,2)
Conv(64,3,3) + BN + ReLU
Conv(3,3,3) + BN + sigmoid

Table 7.15: Test set accuracy and agreement (augmented and target model agree on the ground-
truth label) between each augmented model and the target model M , noted Base.

Model
Test Agree

Base 0.713 –
C_E 0.679 0.647
Luring 0.653 0.614

Table 7.16: ImageNet. AccMoP , AccM and DAC for different source model architectures.

C_E Luring

ε AccMoP AccM DAC AccMoP AccM DAC

MIM-W 4/255 0.0 0.23 0.35 0.00 0.4 0.55
5/255 0.0 0.15 0.25 0.00 0.28 0.43
6/255 0.0 0.08 0.18 0.00 0.18 0.33

Even if very few efforts tackle the issue of thwarting adversarial perturbations transferred from
a source model to a target model (transfer black-box attacks), there exists numerous detection
and defense schemes intended to protect a target model in a white-box or gray-box setting against
adversarial perturbations. As the luring effect is conceptually new, it can be combined to any of
these existing methods, to provide an enhanced protection. Indeed, our deceiving-based approach
acts on the way M ◦ P performs inference relatively to M . As the effort is focused on the design
of P , another defense method, focusing on M and designed to protect M , can be combined with
our scheme. We choose here to consider the combination with adversarial training [75], a state-
of-the-art approach for robustness in the white-box setting. The model M is already trained with

122

adversarial training. The l∞ bound constraint for PGD is set to 0.3 for MNIST and 0.03 for both
SVHN and CIFAR10. During training, the PGD is performed for 40 steps, and a step size of 0.1 for
MNIST. The PGD is performed for 10 steps with a step size of 0.008 for both SVHN and CIFAR10.
We report in Table 7.17 the accuracy and agreement (augmented and target models agree on the
ground-truth label) between the target model M and its augmented version T , whether M is
trained classically or with adversarial training.

Table 7.17: Test set accuracy and agreement (augmented and target model agree on the ground-
truth label) between an augmented luring model T and a target model M . Base and Base–Luring
denote respectively a target model trained classically and the augmented model trained with the
luring defense. AdvTrain and AdvTrain–Luring denote respectively a target model trained with
adversarial training and the augmented model trained with the luring defense.

Model Data set

MNIST SVHN CIFAR10

Test Agree Test Agree Test Agree

Base 0.991 – 0.961 – 0.893 –
Base–Luring 0.970 0.970 0.920 0.920 0.850 0.820
AdvTrain 0.990 – 0.930 – 0.790 –

AdvTrain–Luring 0.960 0.960 0.870 0.850 0.780 0.760

In Table 7.18 we report the AccM and DAC values corresponding to the same threat model as
the one used throughout this section, against the strong MIM-W attack. Moroever, we add the
accuracy in a white-box setting of the model M against the PGD attack with 40 iterations and a
step size of 0.01, denoted as ACM,wb. Interestingly, we observe a productive interaction between
the two defenses with DAC values that have greatly increased for the three data sets, as well as the
AccM values for MNIST and CIFAR10. Interestingly, we note that the joint use of these defenses
clearly improves the detection performance, with DAC values superior to 0.8 for the three data
sets as well a strong improvement of the AccM metric for MNIST (0.97) and CIFAR10 (0.85).

Table 7.18: AccM,wb, AccM and DAC values (among FGSM, MIM, DIM, MIM-TI and DIM-TI)
for the luring approach. Base–Luring and AdvTrain–luring denote the cases where the model M
is trained respectively classically and with adversarial training.

Luring AdvTrain–Luring

ε AccM,wb AccM DAC AccM,wb AccM DAC

MNIST 0.3 0.0 0.69 0.75 0.82 0.97 0.98

SVHN 0.03 0.0 0.81 0.87 0.45 0.898 0.911

CIFAR10 0.03 0.0 0.30 0.39 0.41 0.85 0.88

7.4.6 Discussion and Related Work
A good practice in the field of adversarial robustness is to consider an adaptive adversary [81]: an
attacker using some knowledge of the defense method to bypass it more efficiently. In our case,
the only information that could be given to an adversary without breaking the black-box threat
model is the supplementary knowledge that the augmented model has been trained with the luring
loss. Indeed, M has to stay hidden, otherwise the adversary could use a decision-based attack
to thwart the defense [63, 130]. Moreover, with a more permissive access to T , for example a
white-box access to T , the adversary could simply extractM from the augmented model, and then
defeat the defense. The additional information of the luring loss, would not bring any advantage
to the adversary in order to craft adversarial perturbations on T which transfer to M . Indeed, it
would imply for the attacker to inverse the effect of the luring loss on the prediction output vector
of T , which appears as a prohibitive effort. Therefore, respecting the threat model, an adaptive
adversary would not be more efficient than the adversary considered here.

123

Defenses in the black-box context are weakly covered in the literature as compared to the nu-
merous approaches focused on white-box attacks. More particularly, very few approaches deal with
query-based black-box attacks, such as the recent BlackLight [136]. A honeypot-based approach
has been recently proposed [218] with a trapdoored model to detect adversarial examples. Even
if the threat model (white-box) is different from ours, this approach is conceptually close to our
deception approach, and it is interestingly mentioned that transferability between the target and
the trapdoor-protected model is very poor. More precisely, Shan et al. [218] introduce trapdoors
to detect white-box adversarial examples attacks in order to trick the adversary’s attack into con-
verging towards specific adversarial directions, which later enables a straightforward detection. To
this end, to defend a model against targeted adversarial examples towards label yt, the clean data
set of input-label pairs (x, y) is augmented with trapdoored pairs (x+ ∆, yt), where ∆ is a specific
trigger. Then, the target model is trained by minimizing the cross-entropy between the clean and
trapdoored input-label pairs to obtain the trapdoored model. An input x is detected as a targeted
adversarial example thanks to a threshold-based test, that compares a "neuron activation signa-
ture" of this input against that of the embedded trapdoors. Note that the authors extend their
approach to untargeted adversarial examples. We refer to the article [218] for more details.

The authors mention that transferability between the target and the trapdoored model is very
poor. Based on the provided code3, we train trapdoored models with the architectures we used
for M . We observe that the transferability is hight from M to the trapdoor version but, on
the contrary, the transferability is weak when adversarial examples are crafted on the trapdoored
model and transferred to the target model. For the latter scenario, we report in Table 7.19 the
worst AccM and DAC values for FGSM, MIM, DIM, MIM-TI and DIM-TI along with those of our
method. The parameters used to run the attacks are the same as described in Section 7.4.3. These
results would correspond to a defense similar to ours where the public model is not the augmented
model M ◦ P , but the trapdoored model trained from M . The threat model stays the same,
corresponding to an adversary which wants to transfer adversarial examples from the public model
to the target model M . Results in Table 7.19 on MNIST and CIFAR10 for DAC indicate that
using trapdoors could allow for a more efficient detection of adversarial examples, especially for
large adversarial perturbations. Results for the AccM values on the three data sets also corroborate
the idea that both methods could benefit from each other. By fitting the trapdoor approach in
our black-box threat model we highlight complementary performances in terms of ACM and DAC
metrics, meaning that an overall deception-based strategy is a promising direction for future work.

Table 7.19: Optimal AccMoP , AccM and DAC values (among FGSM, MIM, DIM, MIM-TI and
DIM-TI) for the Trapdoor and Luring approaches.

Trapdoor Luring

ε AccMoP AccM DAC AccMoP AccM DAC

MNIST 0.2 0.06 0.82 0.97 0.19 0.92 0.93
0.3 0.0 0.54 0.94 0.13 0.69 0.75
0.4 0.0 0.27 0.87 0.07 0.34 0.45

SVHN 0.03 0.1 0.48 0.58 0.11 0.81 0.87
0.06 0.07 0.38 0.48 0.0 0.58 0.71
0.08 0.01 0.23 0.38 0.0 0.48 0.67

CIFAR10 0.02 0.0 0.71 0.84 0.03 0.58 0.64
0.03 0.0 0.58 0.77 0.0 0.30 0.39
0.04 0.0 0.45 0.78 0.0 0.16 0.27

7.5 Using the luring effect as a gray-box defense
In this section, we design another way of taking advantage of the luring effect, to be able to consider
a more permissive threat model, especially relatively to the setting in which the deployed model is
considered.

3https://github.com/Shawn-Shan/dnnbackdoor

124

7.5.1 Threat model
We consider a target model M to protect against transfer black-box attacks. The objective is
to train a substitute model M ′, to which the adversary has a white-box access, and embed on
it the luring effect so that adversarial examples targeting M ′ do not transfer to M . Contrary to
Section 7.4, the substitute model M ′ has to be fully available to the adversary. In this scenario,
the defender thus can not leverage an additional component as in Section 7.4 to induce the luring
effect for an augmented model T = M ◦ P . Indeed, the adversary would then simply separate P
from M , and craft adversarial examples on M .

This threat model corresponds to the real-life scenario where the target model is part of a
system with strong security requirements: the model M is thus hidden from potential adversaries.
Meanwhile, the ML practitioner that owns the model M want to release a mainstream version of
the model M , the model M ′, and logically wants to guarantee that adversarial examples targeting
M ′ do not transfer to M .

The goal of the defender is to limit the transferability from the public model M ′ to the hidden
target model M . As for Section 7.4, the defender can choose to rely on the luring effect for leading
to unsuccessful adversarial examples and look only at M(x). In this case, the adversarial accuracy
AccM is the appropriate metric. The adversary can also choose to compare the output from M ′

and M . In this case, the DAC metric (Equation 7.7) is an appropriate metric.

7.5.2 Implementation
The idea is to take advantage of the luring effect demonstrated for a black-box setting in the
previous sections, and to implement it on a model M ′. In order to implement it, we require M ′
to have the same architecture of M . The parameters of M are frozen during the training of M ′,
and M ′ is initialized with the parameters of M . This allows to encompass since the beginning the
way M performs prediction in M ′, which is necessary to induce the luring effect. Then, to induce
the luring effect for M ′, we train only the first layers of M ′ with a specific loss function intended,
and inspired from the loss used in a black-box setting (Equation 7.3). Importantly, the usage of
the luring effect in this scenario also does not require a labeled data set.

Note that asM ′ has the same architecture asM , this ensures a strict evaluation of our method.
Indeed, adversarial examples transfer better between two models with the same architecture [213].

The loss with which the first layers of M ′ are trained is described in Equation 7.8, and the
whole procedure is described in Algorithm 2 and hereafter.

For an input x ∈ X , we denote by hM
′
(x) the logits for the model M ′. hM

′

i (x) corresponds to
the value of hM

′
(x) for class i. The classes a and b correspond to the second maximum value of

hM and hM
′
respectively.

To train the substitute model M ′, our method is as follows:

• (1) We initialize the parameters of M ′ with the parameters of M .

• (2) We freeze the last k layers of M ′ and train only the remaining layers.

• (3) We train the remaining layers of M ′ with the loss described in Equation. 7.8

Llur−gray (x,M(x)) =− λ
(
hM

′

M(x)(x)− hM
′

a (x)
)

+ max
(

0, hM
′

b (x)− hM
′

M(x)(x)
)

+

max
(
c1,
∣∣∣hM ′

M(x)(x)− hM
′

a (x)
∣∣∣)+ max

(
c2,
∣∣∣hM ′

M(x)(x)− hM
′

b (x)
∣∣∣) (7.8)

The first two terms correspond directly with the original luring loss adapted to M ′. The two
other terms, including stability coefficients c1 and c2, have been added to respond to practical
training issues, more precisely to avoid logits to grow exponentially.

Steps (1) and (2) are the essential parts for the implementation of the luring effect in our
setting. Indeed, the main idea behind the luring effect is to train a model to rely on different
features than another model. The model being trained thus needs to take into account the way the
other model performs prediction. In the classical implementation of it (black-box setting), this was
implemented as P was trained in a bigger model T = M ◦P . As the parameters of M were frozen,
it ensured that P was trained upon the way M preforms prediction. In our setting, initializing
M ′ parameters with the M ones and keeping for M ′ some layers with the weights of M allows for
this. Then, the first layers being trained with the loss given in Equation 7.8 play the role of the
component P of the black-box setting.

125

Algorithm 2 Luring effect for a gray-box setting
Input: trained model M , training steps K, learning rate η, batch size B, luring coefficient λ,

number of layers k, stability coefficients c1 and c2
Output: luring model M ′, with parameters Φ
1: hM

′

c (x) denotes the logits of M ′ for input x and class c
2: Initialize the parameters Φ of M ′ with the parameters of M
3: Freeze the last k layers for M ′
4: for step = 1 . . .K: do
5: {x1, x2, . . . , xB}: batch of training set examples
6: for i = 1 . . . B: do
7: (a,b) ← (class of the 2nd max value of hM (xi), class of the 2nd max value of hM

′
(xi))

8: Llur−gray (xi,M(xi)) ← λ
(
hM

′

M(x)(x)− hM ′

a (x)
)

+ max
(

0, hM
′

b (x)− hM ′

M(x)(x)
)

+

max
(
c1,
∣∣∣hM ′

M(x)(x)− hM ′

a (x)
∣∣∣)+ max

(
c2,
∣∣∣hM ′

M(x)(x)− hM ′

b (x)
∣∣∣)

9: end for
10: Φ ← Φ− η

∑B
i=1∇ΦLlur−gray (xi,M(xi)) /B

11: end for
12: return M ′

7.5.3 Experiments of characterization
We train different substitute models M ′ with different loss functions. This allows to identify the
contributions of the steps (1), (2) and (3) of our method. The different models considered are as
follows:

• Oth_Init model: The last k layers are frozen. The weights of M ′ are initialized with the
weights ofM . Then, the non-frozen layers ofM ′ are trained with another weight initialization
scheme than M . This allows to evaluate the transferability for the same architecture, the
same frozen layers, but a different weight initialization scheme for the first layers.

• C_E model: The last k layers are frozen. The weights of M ′ are initialized with the
weights ofM . Then, the non-frozen layers ofM ′ are trained by minimizing the cross-entropy
between the confidence score of M and M ′. This allows to evaluate a training scheme not
implementing the luring effect. Moreover, by training M ′ this way, we make M and M ′ very
likely to rely on the same features (more details in the results).

• Lur_all model: No layer is frozen. The weights of M ′ are initialized with the weights of
M . M ′ is trained (entirely) with the gray luring loss. This allows to evaluate the pertinence
of the step (2), i.e. to justify that including the way M performs prediction in the training
of M ′ is meaningful.

Table 7.20: Test set accuracy and agreement (M ′ andM agree on the ground-truth label) between
each M ′ model and the target model M , noted Base.

Model Data set

MNIST SVHN CIFAR10

Test Agree Test Agree Test Agree

Base 0.992 – 0.948 – 0.899 –
Oth_Init 0.991 0.990 0.950 0.940 0.884 0.840
C_E 0.992 0.991 0.949 0.943 0.898 0.897

Lur_all 0.990 0.987 0.949 0.929 0.899 0.874
Luring 0.961 0.959 0.922 0.904 0.856 0.837

Note that training a model with the luring loss but without weight initialization leads to a
model without correct accuracy. Therefore, aside from its usefulness to implement the luring effect
by taking into account the way M performs prediction, the step (1) is mandatory.

We consider the same architecture, training setup, attack methods and parameters as for Section
7.3. For MNIST, all except the first layer are frozen. For SVHN and CIFAR10, all except the first

126

12 layers are frozen The accuracy and agreement (models M and M ′ agree on the ground-truth
label) for the three data sets are presented in Table 7.20. We note that our method does not induce
a significant accuracy loss.

We attack the model M ′ with FGSM, PGD, MIM and MIMl2. The adversary capacity is an
upper-bound on the l∞ adversarial distortion ‖x′ − x‖∞ set to ε = 0.03 for SVHN and CIFAR
and to ε = 0.3 for MNIST. The results for the Detection Rate (DR) and Inefficient Adversarial
examples Rate (IAR) are reported in Tables 7.21, 7.22 and 7.23 for MNIST, SVHN and CIFAR10,
respectively.

Table 7.21: MNIST. DR and IAR results (ε = 0.3).

Oth_Init C_E Lur_all Lur

FGSM IAR 0.10 0.01 0.34 0.71
DR 0.17 0.03 0.75 0.93

PGD IAR 0.0 0.0 0.20 0.81
DR 0.0 0.0 0.33 0.93

MIM IAR 0.0 0.02 0.12 0.78
DR 0.0 0.04 0.29 0.91

MIMl2 IAR 0.0 0.0 0.27 0.97
DR 0.01 0.0 0.51 0.99

Table 7.22: SVHN. DR and IAR results (ε = 0.03).

Oth_Init C_E Lur_all Lur

FGSM IAR 0.03 0.01 0.19 0.32
DR 0.18 0.09 0.44 0.61

PGD IAR 0.03 0.0 0.21 0.43
DR 0.03 0.0 0.29 0.55

MIM IAR 0.03 0.01 0.23 0.40
DR 0.03 0.01 0.34 0.55

MIMl2 IAR 0.0 0.0 0.11 0.13
DR 0.0 0.0 0.30 0.30

Table 7.23: CIFAR10. DR and IAR results (ε = 0.03).

Oth_Init C_E Lur_all Lur

FGSM IAR 0.14 0.0 0.05 0.26
DR 0.42 0.0 0.2 0.66

PGD IAR 0.06 0.0 0.14 0.19
DR 0.06 0.0 0.15 0.43

MIM IAR 0.04 0.0 0.18 0.20
DR 0.05 0.0 0.21 0.44

MIMl2 IAR 0.0 0.0 0.06 0.26
DR 0.0 0.0 0.23 0.28

For MNIST and SVHN, the IAR and DR results clearly validate our approach. For CIFAR10,
the difference for the IAR metric between our approach and the Lur_all model is not always very
significant. However, this is the case for the DR rate, which characterizes the most the luring
effect.

127

For the three data sets, the IAR and DR results are almost 0 for the C_E approach. This was
an expected result as M and M ′ are forced to predict the same confidence score. Indeed, this can
be seen as the inverse of the luring effect, where we train models to rely on different features by
acting on the logits sequence order. The training of model C_E can be seen as forcing M and M ′
to rely mostly on the same features.

Moreover, we train for each data set a model from scratch and using a different weight initial-
ization scheme. For the FGSM, PGD and MIM attacks, in almost all cases, this model gives better
or equivalent results than the model Lur_all. This strengthens the fact that only applying the
luring loss to another model, but not retaining the way M performs prediction, allows for little
improvement over simply training another model.

7.5.4 Results as a defense
After having characterized the efficiency of our implementation of the luring effect in a gray-
box setting, we now present results when attacking the model M ′ with state-of-the-art white-box
transferablity tuned attacks.

We consider the MIM-W attack (see Section 7.4) run on 1; 000 correctly classified test set
examples, with parameter values tuned for the highest transferability results (same parameters
tuning as in Section 7.4).

Results for MNIST, SVHN and CIFAR10 are reported in Tables 7.24, 7.25 and 7.26, respectively.
We denote by AccM ′ the adversarial accuracy for the model M ′.

Table 7.24: MNIST. AccM ′ , AccM and DAC results for MIM-W (ε = 0.3).

Oth_Init C_E Lur_all Lur

AccM ′ AccM DAC AccM ′ AccM DAC AccM ′ AccM DAC AccM ′ AccM DAC

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.21 0.0 0.52 0.79

Table 7.25: SVHN. AccM ′ , AccM and DAC results for MIM-W (ε = 0.03).

Oth_Init C_E Lur_all Lur

AccM ′ AccM DAC AccM ′ AccM DAC AccM ′ AccM DAC AccM ′ AccM DAC

0.0 0.03 0.03 0.0 0.01 0.01 0.0 0.23 0.31 0.0 0.35 0.50

Table 7.26: CIFAR10. AccM ′ , AccM and DAC results for MIM-W (ε = 0.03).

Oth_Init C_E Lur_all Lur

AccM ′ AccM DAC AccM ′ AccM DAC AccM ′ AccM DAC AccM ′ AccM DAC

0.0 0.03 0.04 0.0 0.0 0.0 0.0 0.16 0.17 0.0 0.17 0.45

These results clearly assess the efficiency of using the luring effect in a more permissive setting.
As already observed in the precedent section, for CIFAR10, using a detection scheme would be
more profitable than simply relying on the prediction of M . Indeed, for CIFAR10, DAC results
are much higher with our approach than the other approaches considered. This difference is less
sharp for the DAC metric.

Comparison with the black-box setting

We compare the results obtained in the gray-box setting with the ones obtained in the black-box
setting (Section 7.4, Table 7.13). For more clarity, we present this comparison in Table 7.27, for
the MIM-W attack, ε = 0.3 for MNIST, and ε = 0.03 for SVHN and CIFAR10.

128

In terms of the DAC metric, we notice no superiority of a particular setting. However, for the
black-box scenario, results for the metric AccM are clearly higher than for the gray-box scenario.
We claim that in the black-box setting, as the whole model M is kept, the luring effect is more
strongly induced than for the gray-box scenario, where the wayM performs prediction is only kept
partially. Moreover, in the gray-box setting, as models M ′ and M share the same architecture,
the transferability is more likely to be higher than for the black-box setting where models T and
M do not have the same architecture.

Table 7.27: Comparison of the black-box and gray-box settings in terms of AccM and DAC metrics,
for ε = 0.3 (MNIST) and ε = 0.03 (SVHN and CIFAR10).

Setting Data set

MNIST SVHN CIFAR10

AccM DAC AccM DAC AccM DAC

Black-box 0.69 0.75 0.58 0.71 0.30 0.39
Gray-box 0.52 0.79 0.35 0.50 0.17 0.45

7.6 Using the luring effect to detect the crafting process of
adversarial examples

In this section, we propose another protection scenario taking advantage of the luring effect :
detecting and stopping the crafting process of black-box adversarial examples.

7.6.1 Threat model
We consider a system S to protect against black-box adversarial examples. Considering an adver-
sary leveraging a method to craft a black-box adversarial example x′ from a clean input x, this
method requires multiple queries to be made to the system S. Our goal is to detect as soon as
possible (i.e. after the fewer queries as possible) this type of attack, to mitigate it.

To implement this method, our idea is to rely on the luring effect by designing S to be composed
of M and M ′, where M ′ is the model trained for the gray-box scenario (Section 7.5). As the luring
effect causes M ′ and M to disagree on adversarial examples, we hope that it will allow M and
M ′ to disagree at a very early stage of the crafting process of x′. More precisely, considering
x1, x2, . . . , xT−1 the inputs submitted to S as part of the crafting process of x′ = xT from x0 = x,
we hope that:

• M and M ′ will disagree on xi with the smaller i possible.

• M and M ′ agree on the ground-truth label y on xj for j < i.

In accordance with these objectives, we choose the system S to give an output only ifM andM ′
agree (i.e. M(x) = M ′(x) for an input x). Moreover, as the luring effect is efficient at thwarting
transferability from M ′ to M , the output given in case of label-agreement between M ′ and M
corresponds to the output given by M ′. By doing so, firstly, the system S is expected to answer
the correct label for clean examples and inoffensive queries of the adversarial example crafting
process. Secondly, when M and M ′ disagree, it will thwart the adversary, as no response is given:
in the absence of a output, the adversary can’t continue the adversarial crafting process.

We consider here an adversary having access to the logits of M ′. Therefore, the adversary is
allowed to use score-based black box adversarial attacks needing access to the logits. The adversary
capacity is an upper-bound on the l∞ adversarial distortion ‖x′ − x‖∞ set to ε = 0.03 for SVHN
and CIFAR and to ε = 0.3 for MNIST.

7.6.2 Attacks
In order to evaluate the efficiency of the luring effect in this scenario, we consider the SPSA and
ECO attacks with the same parameters than in Section 7.4: SPSA and ECO. SPSA is run with
100 iterations. The xi correspond to the intermediate adversarial example obtained after each of

129

these iterations. ECO is run with a limit of 20, 000 queries. The xi correspond to the intermediate
adversarial examples obtained after each local search optimization. Note that for a fixed number
of queries, the number of intermediate adversarial obtained is not the same for different examples.
We choose to keep only the first 100 intermediate adversarial examples.

As the methods to craft black-box adversarial examples are continuously evolving, we decide to
also present results resulting from white-box attacks tuned for transferability. This type of attacks
computes gradients exactly, and is thus enables to consider a kind of optimal black-box attack. To
this end, we consider the DIM attack with parameter p = 0.9.

7.6.3 Baselines and metrics
As for baselines for comparison, we consider the following models:

• k-Oth_Init model: The last k layers are frozen. The weights of M ′ are initialized with
the weights of M . M ′ is trained with another weight initialization scheme than M .

• C_E model: The last k layers are frozen. The weights ofM ′ are initialized with the weights
of M . M ′ is trained minimizing the cross entropy between the confidence score of M and
M ′.

• Lur_all model: No layer is frozen. The weights of M ′ are initialized with the weights of
M . M ′ is trained (entirely) with the gray luring loss.

Consequently, we note Sk−Oth_Init, SC_E , SLur_all and SLur the systems composed of M
and respectively the models k − Oth_Init, C_E, Lur_all and Lur. As already specified, when
querying a system S., if M ′ and M agree, the adversary is provided with the output given by
M ′. The rate of clean test set examples well predicted by S is therefore simply the rate of test set
examples for which M and M ′ agree. This accuracy of the different systems on clean examples is
presented in Table 7.28

Table 7.28: Accuracy of the different systems (noted AccS) on clean test set examples.

Model Data set

MNIST SVHN CIFAR10

AccS AccS AccS

Sk−Oth_Init 0.990 0.940 0.840
SC_E 0.991 0.943 0.897

SLur_all 0.987 0.929 0.874
SLur 0.959 0.904 0.837

To measure the efficiency of our scheme, we consider an hypothetical adversarial example x′
crafted from a clean input-label pair (x, y) on M ′. We note x1, x2, . . . , xT−1 the T − 1 queries,
with x0 = x and xT = x′. We say that an adversarial example is detected at iteration i if
M(xi) 6= M ′(xi) while having been correctly predicted for the past i− 1 iterations (i.e. M(xj) =
M ′(xj) = y ∀j ∈ J1, i− 1K). If during the process, there exits some j ∈ J1, i− 1K for which we have
M(xj) = M ′(xj) 6= y, the adversarial example is therefore not considered as detected at iteration
i. Considering m adversarial examples, we measure:

1. Det(i): how many of them are detected at iteration i < T . For a given i, the higher the
better.

2. Mean_Det : the mean number of iterations at which adversarial examples are detected.
The smaller the better.

3. Det: the proportion of them which are detected before the completion of the attack (i.e. how
many of them are detected at some iteration i with i < T . The higher the better.

4. Inof : the proportion of them which are not detected for i ≤ T , i.e. well-predicted during all
the attack process (i.e. how many of them M(x′i) = M ′(x′i) = y ∀i ∈ J1, T K). This indicates
the proportion of adversarial examples that are inefficient against M ′ and M at the same
time.

130

5. Tot: the proportion of them which are either detected before the completion of the attack or
well-predicted during all the attack process. This corresponds to the addition of 3. and 4.

The most important metrics to assess the efficiency of the luring effect in this scenario are
reasonably Det(i), Mean_Det, and Det, whereas the Inof metric is more illustrative and the Tot
metric an indicator of the global performance of the system against adversarial examples.

We present hereafter the results for MNIST, SVHN and CIFAR10 data sets. For a better
visualization of Det(i), we present it with a Figure.

7.6.4 Results
MNIST

The results for the metricDet(i) are presented in Figure 7.6. Results for other metrics (Mean_Det,
Det, Inof and Tot) are presented in Table 7.29

Figure 7.6: MNIST (ε = 0.3). Det(i) results. (left) SPSA. (middle) ECO. (right) MIM.

Table 7.29: MNIST. Results for the different metrics in detecting the crafting process of adversarial
examples. All attacks are run with ε = 0.03.

Lur Lur_All C_E k-Oth_Init
SPSA ECO DIM SPSA ECO DIM SPSA ECO DIM SPSA ECO DIM

Mean_Det 3.5 2.04 2.2 17 9.26 7.3 33 132 61 18 93 14.1
Det 0.998 0.982 0.999 0.961 0.929 0.997 0.796 0.032 0.401 0.979 0.336 0.949

Inof 0.0 0.0 0.0 0.038 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Tot 0.998 0.982 0.999 0.999 0.929 0.998 0.796 0.03 0.401 0.979 0.336 0.949

For the Det(i) metric, looking at the Figure 7.6, we notice very clearly that for the three
types of attacks, our approach allows to detect way more adversarial examples at a lower iteration.
Moreover, we notice that the mean number of iterations required to detect an adversarial exam-
ple (Mean_Det) is much lower with Lur than with the other schemes. We notice that for the
three metrics Det, Inof and Tot, values are slightly equivalent between Lur and Lur_All, while
significantly higher than C_E and k-Oth_Init.

SVHN

The results for the metricDet(i) are presented in Figure 7.7. Results for other metrics (Mean_Det,
Det, Inof and Tot) are presented in Table 7.30

For SVHN, for the four metricsMean_Det ,Det, Inof and Tot, results are significantly better
with our luring scheme than with other schemes. Notably, the number of adversarial examples
detected before the completion of the adversarial examples crafting process is much greater with
our scheme (see results for metric Det), as well as for the number of adversarial examples detected
for each each iteration (cf Figure 7.7).

CIFAR10

The results for the metricDet(i) are presented in Figure 7.8. Results for other metrics (Mean_Det,
Det, Inof and Tot) are presented in Table 7.31

For CIFAR10, the same observations as for SVHN can be made regarding the results.

131

Figure 7.7: SVHN (ε = 0.03). Det(i) results. (left) SPSA. (middle) ECO. (right) MIM.

Table 7.30: SVHN. Results for the different metrics in detecting the crafting process of adversarial
examples. All attacks are run with ε = 0.03.

Lur Lur_All C_E k-Oth_Init
SPSA ECO DIM SPSA ECO DIM SPSA ECO DIM SPSA ECO DIM

Mean_Det 6.3 5.3 4.6 55.1 29.3 24.5 47.3 63.1 82.1 41.6 41.6 56.8
Det 0.986 0.952 0.93 0.567 0.81 0.719 0.612 0.331 0.167 0.84 0.567 0.423

Inof 0.002 0.0 0.0 0.401 0.125 0.081 0.042 0.146 0.001 0.046 0.064 0.004
Tot 0.998 0.952 0.928 0.968 0.935 0.8 0.654 0.477 0.168 0.886 0.631 0.427

Figure 7.8: CIFAR10 (ε = 0.03). Det(i) results. (left) SPSA. (middle) ECO. (right) MIM.

Table 7.31: CIFAR10. Results for the different metrics in detecting the crafting process of adver-
sarial examples. All attacks are run with ε = 0.03.

Lur Lur_All C_E k-Oth_Init
SPSA ECO DIM SPSA ECO DIM SPSA ECO DIM SPSA ECO DIM

Mean_Det 4.3 3.8 5.5 55.2 63.4 59.5 93.4 81.2 98.9 9.4 15.1 22.1
Det 0.97 0.957 0.91 0.562 0.528 0.412 0.067 0.138 0.01 0.941 0.864 0.772

Inof 0.0 0.0 0.0 0.29 0.194 0.116 0.0 0.128 0.0 0.0 0.04 0.0
Tot 0.97 0.957 0.91 0.852 0.722 0.528 0.067 0.266 0.01 0.941 0.904 0.772

7.7 Conclusion and future work
In this chapter, we designed and studied the luring effect, a conceptually innovative approach
to improve the robustness of a model against transfer black-box adversarial perturbations. This
concept, which basically relies on a deception strategy, is inspired by the notion of robust and
non-robust features for transferability. The luring effect is implemented on a decoy model, with
a specific loss, which tricks the adversary into targeting on the decoy model different non-robust
features than the ones of the target model. Importantly, the luring effect only relies on the logits
of the target model. It does not require a labeled data set and therefore can by applied to any
pre-trained model.

132

We characterized the luring effect on MNIST, SVHN and CIFAR10 and show that it allows
to successfully thwart an adversary using state-of-the-art black-box transfer attacks with large
allowed adversarial budgets.

We proposed three possible scenarios, with different threat models, where the defender can
take advantage of the luring effect. Notably, two scenarios relate to thwarting the transferability of
adversarial perturbations, and one scenario considers detecting the crafting process of transferable
adversarial examples.

Future work. The concept behind the luring effect is innovative as it aims at fooling the
adversary. It does neither try to make the target model more robust in itself, nor implement a
reactive strategy. In this work, the luring effect has been designed to thwart transferability, a
major concern relatively to the well-spread black-box scenario, and a core subject of this thesis.
However, we believe that this paradigm of a deception strategy to thwart an adversary could pave
the way towards a new type of defense methods, beyond the scope of transferability concerns.

133

Chapter 8

Leveraging adversarial attacks
against the availability of a ML
system

134

In the previous chapters, we focused on the phenomenon of adversarial examples, posing a risk
to the integrity of models. More specifically, we studied the link between robustness and data
specific frequency properties, analyzed the impact of quantization on the adversarial robustness,
and derived a novel way to thwart the transferability of adversarial perturbations.

In this last chapter, we study how the mechanism of adversarial perturbations can be leveraged
to attack the availability of a system. This chapter has to be seen as an exploratory work of the
link between adversarial examples (integrity) and other threats to a machine learning model.

Whereas threats against integrity and confidentiality can be formalized at a model-level, avail-
ability threats require to consider how the model interacts with an overall system with specific
quality and performance requirements. More particularly, in most cases, a system relying on a
model exploits the model outputs if and only if these predictions reach a certain level of confi-
dence. Here, we design an availability-based attack that targets, at inference time, the quality of
the model prediction. The goal is not to fool the model but to inject uncertainty, which leads to
confidence issues for a system about the underlying model. By using the same principle as a state-
of-the-art adversarial example crafting method (PGD), we design two strategies to build uncertain
examples, which trick the model into making uncertain predictions. Interestingly, by their test-
time nature, uncertain examples allow to gain insight on the efficiency of existing defense schemes
against adversarial examples when confronted with this new type of threat.

8.1 Motivation
Although reaching impressive performances on complex and critical tasks, the deployment of deep
neural network models suffers from major threats that concern their integrity, confidentiality and
availability [65], as presented in Chapter 2. Confidentiality and integrity constitute an important
body of works in the last decade, with major and critical breaches and flaws that urge the devel-
opment of sound evaluation methodologies [82], as well as robust and certified defense schemes.
On one side, confidentiality-based attacks mainly aim at recovering information about the training
data [37, 53] or reverse-engineering a black-box model [219]. On the other side, the objective of
integrity-based attacks is to alter the performance of the model for the task it has been designed
for. To this end, poisoning attacks [220] act at training time, while adversarial examples [11]
maliciously modify inputs at inference time.

Importantly, as mentioned in [65], contrary to integrity and confidentiality-based threats which
can be viewed at a model-level, availability has a broader definition and has to be regarded at a
system-level, i.e. by taking into account the overall system (its requirements and constraints) in
which the model takes place.

Here, we discuss and formalize a novel type of inference-time attack against availability, which
threatens the quality of predictions of an already trained model, but does not aim at fooling
it. Thus, relatively to its expected main performance metric (e.g. the accuracy), the model sill
provides the correct prediction but with a high level of uncertainty, which deeply impacts how the
system will use these outputs. Actually, with this first study, we claim that for many application
domains, the accuracy of the model is not – and cannot be – sufficient to make it reliable because
its level of confidence is also a major system requirement. Therefore, at inference time, an attacker
can choose to target the accuracy or the reliable nature of the model predictions. In that sense, we
introduce uncertain examples, which aim at increasing the uncertainty of the model predictions.
Here, uncertainty is directly related to system requirements about the confidence score vectors.

Our contributions are as follows:

• We discuss the security concept of availability in the case of a ML-based system that takes
benefit from a deep neural network, and its close link with integrity. We introduce the notion
of uncertainty in the light of the system confidence requirements.

• We present methods to craft uncertain examples, which are inference-time attacks taking
advantage of typical adversarial perturbations, not to fool a model but to inject uncertainty
in its predictions.

• We evaluate our attack on CIFAR10 [24] and explore its impact on models trained with
Adversarial Training [75], which allows to expose meaningful links with classical integrity-
based attack such as adversarial examples.

135

8.2 Availability of a ML-based system
Model and system level. Integrity and confidentiality threats classically set within a perimeter
defined by the model itself and its related training and inference pipeline. On the contrary avail-
ability threats make sense at a larger level, i.e. by considering the interactions between the model
and the overall system. More particularly, important system features are related to the compo-
nent(s) that process the model input or the one(s) dedicated to model output in order to make an
operational decision with regards to the final task of the system. Therefore, the availability of a
system is defined through system performance and quality requirements. These requirements con-
cern a large variety of features such as processing time (e.g. inference latency), memory limitations,
network bandwidth, confidence / certainty level or overall task-centered performances.

Objective. In consequence of this divergence of scope, the objective of an integrity or confidentiality-
based attack is focused and well defined (e.g., fool the model, extract model architecture and inter-
nals or training data) whereas an availability threat may have different goals and attack vectors.
More precisely, an adversary may target the direct access to the system or its quality. The first
case typically concerns denial-of-service (DoS) attacks that can exploit flaws related to the soft-
ware or hardware environment in which the model takes place. For example, a server hosting a
model may not be scaled to process thousands of simultaneous queries. Regarding the quality of
the system, the goal of the attacker is to jeopardize the ability to fit some requirements usually
related to memory, energy or processing time constraints such as the recent sponge examples [66].
We introduce an attack against the quality of a system, which directly targets the model in terms
of task-based performance metrics.
For this task-based oriented availability attacks, there exists a close link with integrity threats,
which is crucial to note. In the case of a poisoning attack, or for adversarial examples, modifying
the confidence scores is a goal in itself. In the case of an attack against the quality of a system
focused on task-based performances, the final goal is to impact the behavior of the system in which
the model takes place.

Overall and Relative Confidence Our work concerns an inference time attack, which targets
the quality of the model in terms of task-based performances, by acting on the uncertainty of the
predictions. On a high-level, the uncertainty of a confidence score vector relates to the fact that
the system decides whether or not he can trust the model for this prediction. For the system
requirement, we distinguish between overall and relative confidence. These concepts are both
formalized in the Section 4.2. On one hand, overall confidence relates to a model being not
confident enough in the predicted label. A typical requirement is that the maximum confidence
score must be superior to a certain threshold, otherwise the system is not able to make a decision
or, to do so, requires additional models or data (or even a human expertise) that may be time
consuming. On another hand, relative confidence concerns the case when there is too much doubt
between several possible labels. Here, the reliability of the prediction is based on the fact that
the biggest confidence score must be far ahead of other ones. As an illustration, let’s consider a
classification task with 5 labels. For an input correctly classified in the first class, a confidence
score vector like (0.51, 0.49, 0, 0) or (0.34, 0.33, 033, 0) may raise serious doubt about the reliability
of the system.

8.3 Attacks against a ML-based system
Recently, Shumailov et al. propose sponge examples [66], which target the consumption and latency
of a device. The goal of this attack is to alter an input so that the model is more activated compared
to the inference with the clean sample. To the best of our knowledge, this is the first availability-
based attack at inference-time focused on system-based performances (here, energy consumption
and inference speed). The same author proposes an attack on the training process by reordering the
training data (BRRR: batch reordering, reshuffling, replacing) [67]. Identical conclusions have been
drawn in [68] where the training process is fooled by an attack exploiting the initialization of the
weights. In both cases, from an integrity point of view, modifying the randomness of the training
batches or altering the initialization of the weights are close to what a typical data poisoning aims
to achieve. However, both works show that such attacks can also impact the availability of the
machine learning system since it can noticeably slow down or even reset the learning progress.
These attacks are related to classical data poisoning attacks [22] that manipulate the training data
to degrade the performance of the learning process only for very specific inputs or at a global-level.

136

However, data poisoning takes place at training time, and considers a very permissive threat model,
where the adversary is supposed to be able to interfere during the training phase of the model.
Whereas this can be seen as realistic for federated machine learning, where the adversary can be
one of the multiple actors, it assumes a very powerful adversary in the classical scenario where
only one actor collects data and trains the model.

8.4 Threat model

8.4.1 Adversary goal
The goal of the adversary is to mount an inference-time attack intended at injecting uncertainty
in the confidence score vector of a target model. We begin by defining formally the uncertainty
nature of a confidence score vector with Overall Confidence (OC) and Relative Confidence (RC):

• Overall Confidence (OC) relates to a requirement that sets that the maximum confidence
score must be superior to a certain threshold τo: FM(x)(x) ≥ τo.

• Relative Confidence (RC) concerns the case where there is too much doubt between several
possible labels. Here, the reliability of the prediction is based on the fact that the biggest
confidence score must be far ahead of other ones: FM(x)(x)−Fj(x) ≥ τr with j 6= M(x) and
τr a threshold value.

An important remark is that an output prediction may be flagged as uncertain for one criterion
but not the other, and vice versa. From an adversary point of view, considering a maliciously
modified version of x, x′ = x + δ, increasing the uncertainty of predictions therefore resumes to
the two following possible objectives:

Overall Confidence Uncertainty Attack (OC-UA):

min
x′
||x− x′||p (8.1)

s.t. M(x′) = M(x) and FM(x)(x
′) < τo

Relative Confidence Uncertainty Attack (RC-UA):

min
x′
||x− x′||p (8.2)

s.t. M(x′) = M(x) and FM(x)(x
′)− Fj(x′) < τr ∀j ∈ T

where T is a chosen subset of target classes.
Note that, in our threat model, we set that the predicted class is not altered by the attack

(M(x′) = M(x)). Firstly, by investigating if unsuccessful adversarial examples reach the goal of the
OC-UA or RC-UA attacks, it allows to gain insight on the vulnerability of integrity defense schemes
against uncertain examples, as presented in Section 8.6. Secondly, if the condition M(x′) = M(x)
is not required, uncertain examples are a special case of adversarial examples, as they may both
change the predicted label and reach the goal of the OC-UA or RC-UA attack. From the adversary
point of view, this would result in an unclear goal. If the goal were to mount a OC-UA or RC-UA
attack, he would have not aimed at changing the predicted label, as it corresponds to a more
difficult objective.

8.4.2 Adversarial capacity and knowledge
The adversarial capacity defines how much the adversary is allowed to alter x. In order to gain
insight on the difference between our attack and adversarial examples, we use the same theoretical
framework and set an upper bound of the perturbation: ‖x′ − x‖∞ < ε. We consider an adversary
in the white-box setting, with a full knowledge of the target model and a complete access to
it. Moreover, the attacker has a relevant knowledge of the system requirements that define the
conditions under which the system discard the model output. Therefore, the attacker knows τo
and/or τr.

137

Algorithm 3 RC-UA attack with n iterations, perturbation budget ε, step size α, target classes
T and threshold value τr
Input: clean example x, number of iterations n, perturbation budget ε, initial step size α, target

labels T , threshold value τr
Output: adversarial example x′
1: ytc ← 1

|T |+1 if c ∈ T ∪ {M(x)}, 0 otherwise
2: i← 0
3: while i < n and FM(x)(x

′)− Fj(x′) ≥ τr, ∀j ∈ T : do
4: x′i ← x′i − α sign

(
∇xL

(
x′i, y

t
c,Mθ

))
5: x′i ← projB∞(x,ε)(x

′
i)

6: if M(x′i) 6= M(x) then
7: x′i ← x′i−1

8: α ← α
2

9: end if
10: i← i+ 1
11: end while
12: return x′n

8.5 Uncertain Examples
We propose an attack that injects uncertainty in the output confidences scores, following the
threat model detailed in the previous section, for both the Overall Confidence (OC) and Relative
Confidence (RC) objectives. Interestingly, we show that this attack achieves high performance with
a simple adaptation from the state-of-the-art PGD attack [75], used without random initialization.

8.5.1 Relative Confidence Uncertainty Attack
Considering a set T of target classes, and a threshold value τr, we do not target explicitly the
gap FM(x)(x

′)− Fj(x′) ∀j ∈ T . Instead, we aim at having the worst score vector relatively to the
ground-truth label y and the targeted labels, in terms of entropy. Indeed, the optimal uncertainty
can be seen as the biggest entropy for F (x′), i.e. a uniform distribution for classes M(x) ∪ T ,
with the constant confidence value 1

|T |+1 for these classes. However, as the label associated to the
highest score has to stay the same, the objective is thus to find the smallest ε such that:

FM(x)(x
′) =

1

|T |+ 1
+ ε (8.3)

Fj(x
′) =

1

|T |+ 1
− ε

|T |
∀j ∈ T

Fj(x
′) = 0 ∀j /∈ T ∪ {M(x)}

In practice, we use a modified version of the targeted version of l∞-PGD [75], a state-of-the-art
iterative method to craft adversarial examples, used here without random initialization. The target
output values are fixed to 1

|T |+1 for the classes in T ∪ {M(x)}. A simple trick is used to enforce
that the uncertain example x′ stays classified as the clean example x, and the process is stopped
as soon as FM(x)(x

′) − Fj(x′) < τr. More precisely, at the end of each iteration t, the condition
M(x′t) = M(x) is checked. If not, x′t is not updated and the step size α is halved (lines 7 and
8). This condition ensures that we always move towards the optimal uncertain prediction while
ensuring a constant and correct classification. The RC-UA attack is described in Algorithm 3, and
an illustration of it is presented in Figure 8.1.

8.5.2 Overall Confidence Uncertainty Attack
Here, the goal is simply to lower the confidence score corresponding to the true label, while ensuring
that the example stays well-classified. A simple way to achieve it is to perform the RC-UA attack
described above by modifying the condition for the main loop (line 3) to match the OC-UA
objective, and replacing line 4 with x′i ← x′i +α sign

(
∇xL

(
M(x′i), y

))
, that means to shift to the

untargeted version of l∞-PGD attack [100].
t

138

Figure 8.1: Illustration of the RC-UA attack. The white dotted square represents the l∞ ball of
radius ε centered at x. Each color denotes a different class.

8.6 Experiments

8.6.1 Data sets and models
We evaluate the uncertain examples on the CIFAR10 data set. For the model, we use the Wide-
Resnet 28-8 architecture [186]. Additionally, we train a robust version of the model thanks to
Adversarial Training (AT) [75]. The classically trained model achieves 93.3% accuracy on test set
examples. The model trained with Adversarial Training achieves 84.1% accuracy on clean test
set examples, and 55.1% accuracy against adversarial examples crafted with the l∞-PGD attack
with ε = 0.03, α = 0.008 and 100 iterations (all the accuracy values measured on adversarial
examples presented in this section are computed with these parameters). For our attacks, to
allow for comparison with adversarial examples, we also consider ε = 0.03 and a starting step size
α = 0.008.

8.6.2 Uncertainty on standard examples
Depending on the requirements of the system, in our case the τo and τr values, the accuracy at the
system-level is impacted. Indeed, as an example, for Overall Confidence (OC), for a clean example
x and some value τo, if FM(x)(x) < τ0, the system does not give a prediction. In Figures 8.2 and 8.3
are presented the accuracy at the system level for different values of confidence thresholds τo and
τr. We notice that for the standard model (Figure 8.2), the confidence scores are such as except
for high τr and τo values (values greater than 0.9), the accuracy at the system level is almost not
impacted. For a model trained with Adversarial Training (Figure 8.3), the accuracy is much more
impacted, especially for τr > 0.4 and tauc > 0.6. This result was expected as training with AT is
much more difficult, and therefore the confidence scores are not as high as with standard training
for the predicted class, and the difference between confidence scores for different classes is lower
than with standard training.

8.6.3 Convergence of uncertain examples
As an undefended model is vulnerable to adversarial examples, uncertain examples, which are
a weaker version of adversarial examples as no misclassification is induced, are thus feasible for
each clean example. We consider the RC-UA attack, where T only contains one target class,
and illustrate in Table 8.1 the number of iterations needed to perform this attack, for different
values of the threshold τr. More precisely, for each value of τr, we measure the mean number of
iterations, for all the possible pair of predicted and target classes, with 1, 000 test set examples
for each pair. As expected, as the τr value decreases, the number of iterations needed increases.
For comparison, adversarial examples crafted with the l∞-PGD attack are successful at inducing

139

Figure 8.2: CIFAR10. Accuracy at the system-level for a standard model, depending on the τo
and τr values of Overall Confidence (OC) and Relative Confidence (RC), respectively.

Figure 8.3: CIFAR10. Accuracy at the system-level for a model trained with Adversarial Training,
depending on the τo and τr values of Overall Confidence (OC) and Relative Confidence (RC),
respectively.

misclassification with at most 5 iterations. For a reasonable value of τr = 0.2, the RC-UA attack
needs on average 8.2 iterations, thus inducing only a slight supplementary burden for the adversary.
More interestingly, for a small value of τr = 0.05 (i.e. the difference between the confidence score of
the predicted class and the second biggest confidence score is inferior to 0.05), only 12.2 iterations
are required on average.
.

Table 8.1: Mean number of iterations (Mean_iters) for the RC-UA attack, with various τr. The
mean is performed for all the possible pairs (predicted, target), with 1, 000 test set examples for
pair.

τr 0.05 0.1 0.15 0.2 0.25 0.3

Mean_iters 12.2 10.2 9.0 8.2 7.5 6.8

140

Figure 8.4: Percentage of unsuccessful l∞-PGD adversarial examples for which the OC-UA or
RC-UA is reached, for various confidence threshold values t.

8.6.4 Impact on Adversarial Training
Relatively to our threat model, we only consider the 55.1% of unsuccessful adversarial examples,
i.e. the examples which are protected by AT against changes in the predicted label. We investigate
the proportion of these adversarial examples for which the OC-UA or RC-UA is successful. To this
end, we consider two ways of mounting the OC-UA or RC-UA:

• RC-UA: given a confidence probability vector F (x′PGD) resulting from the l∞ PGD-attack,
the adversary chooses, for the target probability vector, the values 0.5 for classes y and the
class corresponding to the second maximum value of F (x′PGD). The rationale behind this
choice is to consider the class corresponding to the confidence score the l∞-PGD tried to
maximize to achieve misclassification, as this corresponds to the easiest class to target.

• OC-UA: the initial adversarial examples crafted with the l∞-PGD attack are kept, as they
correspond to the ones where the maximum confidence score Fy(x′) is the most decreased.

Figure 8.4 presents the proportion of unsuccessful l∞-PGD adversarial examples for which the
OC-UA or RC-UA attacks are performed, for various confidence thresholds. For example, we
observe that among the 55.1% of unsuccessful adversarial examples, we can reach the RC-UA goal
with τr = 0.25 for almost 15% of them. For this value of τr, the accuracy (RC) at the system level
equals 78%. Also, for τr = 0.25, the accuracy (OC) at the system level equals 84%.

These results show that despite being efficient to protect a model against misclassification, a
defense scheme such as Adversarial Training is not able to completely thwart an adversary that
targets the confidence of the predictions by injecting uncertainty.

8.7 Conclusion
In this chapter, we defined a conceptually novel threat against the availability of a system relying
on a neural network model. This new threat is based on the fact that the prediction of a model can
be correct, but may show uncertainty. In this case, relatively to some requirements of a system,
its availability may be threatened. We define formally the concept of uncertainty of a model’s
output, and design two test-time attacks which allow to craft uncertain examples, which make
the model produce unreliable predictions. Interestingly, experiments show that existing integrity
defense schemes may protect a model against adversarial examples, but leave it vulnerable to
uncertain examples, which may lead to the whole system being made unavailable.

Beyond the new threat to availability that we studied, we highlight the existing links between
robustness to integrity attacks for a model and robustness to availability attacks for a system.
Moreover, this shows to which extent the knowledge of mechanisms behind some type of threat
(integrity) may be used to design an attack for another type of threat.

141

Chapter 9

Conclusion

142

9.1 Contributions of the thesis
The first objective of this thesis was to draw new conclusions about the robustness to adversarial
examples and the frequency nature of the data at stake. This objective is part of a more general
one: better understanding the simultaneous vulnerability of models and the insensitivity of hu-
mans to adversarial perturbations. We chose to tackle this issue under a frequency perspective,
with the motivation of cognitive psychology results underlining the prevalence of low frequency
components in the human decision process. To this end, in Chapter 5, for a model, we began by
investigating different behaviors related to frequency properties specific to the data this model was
trained on. This study allowed then to derive conditions under which some frequency constraints
added to the cross-entropy loss induced robustness. Notably, in relation with the way humans
perform classification, we identified precise factors which condition robustness when the model is
enforced to leverage low-frequency information. On a more general level, this work is an incentive
towards better taking into account neural computation knowledge when designing defense schemes
against adversarial examples.

The second objective of this thesis was relative to the impact of quantization on robustness, and
the transferability phenomenon. In fact, evaluating the influence of quantization on adversarial
perturbations allows for a better awareness of integrity issues related to the increasingly widespread
usage of quantization to embed models on devices. In that way, we showed in Chapter 6 that,
contrary to what was believed in some works, quantization does not offer any robustness. This
conclusion is quite important considering that critical tasks are more and more performed on
embedded devices.

Strongly linked with the large-scale deployment of models on devices, the transferability of
adversarial perturbations is a powerful tool for an adversary in the black-box setting. In Chap-
ter 6, we noticed poor transferability properties between models with different quantization levels
(bitwidths). These results led to a first possible ensemble-based defense leveraging quantization.
In Chapter 7, we studied specifically how to thwart the transferability between two models. To
this end, we designed the concept of luring effect, an innovative way to reduce the transferability
of adversarial perturbations. We showed how to induce the luring effect for two different threat
models, supporting its application in various settings. Interestingly, as this concept is novel, it is
fully compatible with other existing defense schemes. Moreover, the luring effect can be used to
prevent black-box attacks by detecting the crafting process of an adversarial example against a
distant system.

Eventually, we opened our work to the frontier between integrity and availability. More pre-
cisely, in Chapter 8, we showed how methods intended at crafting adversarial examples, targeting
the integrity of a model, can be leveraged for attacks targeting the availability of a system. In many
application domains, the accuracy of a model is not sufficient in itself. In order to make a decision,
a system needs the underlying model to output scores with some level of certainty. In Chapter 8,
we derived a notion of uncertainty related to the doubt between classes. Then, we showed how to
take advantage of adversarial perturbations to make a model output uncertain scores. This last
exploratory work of the thesis draws a meaningful link between adversarial examples and other
types of threat than integrity threats. Moreover, it underlines the fact that in many use-cases, a
protection against adversarial perturbations is simply a security feature, and does not mean that
the model can be deployed securely.

9.2 General perspective
At inference time, algorithmic threats have been extensively studied in the literature, whether they
relate to model inversion, data extraction, model stealing, membership inference or adversarial ex-
amples. However, as a direct consequence of the will to deploy machine learning models massively,
the surface attack for these threats is severely extended. Indeed, an adversary can take advantage
of models being more available because embedded on devices, to mount an attack using physical
attacks.

This is particularly worrisome for the integrity of machine learning models, and more specif-
ically in the case of adversarial examples. Indeed, a deployed model may be protected with a
software scheme such as Adversarial Training against adversarial perturbations, which mean ma-
licious modifications of the input. However, to fool the model, the adversary can leverage a fault
injection method to flip bit values of weight parameters [221], i.e. to cause a a malicious modifi-

143

cation of the weights. Even if the model was protected against input modification, the embedded
characteristic of the target model make it vulnerable to a physical attacks. As another example,
considering the same model in a distant system and in a public device, an adversary can use Side
Channel Analysis to retrieve the architecture of the model [14]. Then, he can take advantage of
this information to mount a black-box transfer attack against the distant model. The evolution of
the usage of machine learning models in the everyday life is thus making the surface attack evolve,
more specifically widen, leading to models being more vulnerable to new types of attacks.

Against physical threats, some defense schemes from the hardware security field, such as obfus-
cation, already exist. However, these methods are not specifically designed for embedded machine
learning models. In face of the growing deployment of models, taking into account for the simul-
taneous attacks at a software and hardware level becomes more and more compulsory. Based on
these conclusions, we advocate as a perspective for future work for the development of defense
schemes mixing physical and algorithmic features, i.e. taking advantage of the best of both worlds.
More precisely, we claim that future defense schemes, in order to be efficient, will have to combine
protections against software threats and hardware threats. Notably, an algorithmic defense could
take into account a possible malicious modification of the weights to counter bit-flipping attacks.
In the same vein, a physical protection could be designed to consider the specific characteristics
related to the implementation of a neural network. To summarize, we deeply believe that mixing
software and hardware defense schemes is the path towards a more secure deep learning in the
nowadays environment where models are increasingly deployed.

144

Bibliography

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-
tional neural networks,” in Advances in Neural Information Processing Systems, 2012.

[2] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio, “Generative adversarial nets,” in Proceedings of the 27th International
Conference on Neural Information Processing Systems - Volume 2, 2014.

[3] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time
object detection,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[4] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. N. Sainath, et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE Signal processing magazine,
pp. 82–97, 2012.

[5] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, Y. Zhang, Y. Wang,
R. Skerrv-Ryan, R. A. Saurous, Y. Agiomvrgiannakis, and Y. Wu, “Natural tts synthe-
sis by conditioning wavenet on mel spectrogram predictions,” in 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018.

[6] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural net-
works,” in Proceedings of the 27th International Conference on Neural Information Processing
Systems - Volume 2, 2014.

[7] J. Fauw, J. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham,
X. Glorot, B. O’Donoghue, D. Visentin, G. Driessche, B. Lakshminarayanan, C. Meyer,
F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, and O. Ron-
neberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,”
Nature Medicine, 2018.

[8] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for youtube recommenda-
tions,” in Proceedings of the 10th ACM Conference on Recommender Systems, p. 191–198,
2016.

[9] S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi, “Malware detection with
deep neural network using process behavior,” in 2016 IEEE 40th Annual Computer Software
and Applications Conference (COMPSAC), 2016.

[10] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,
M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end learning for
self-driving cars,” in NIPS Deep Learning Symposium, 2016.

[11] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fer-
gus, “Intriguing properties of neural networks,” in International Conference on Learning
Representations, 2014.

[12] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in machine learning: from
phenomena to black-box attacks using adversarial samples,” arXiv preprint arXiv:1605.07277,
2016.

[13] M. Naseer, S. Khan, M. H. Khan, F. Khan, and F. Porikli, “Cross-domain transferability of
adversarial perturbations,” in Advances in Neural Information Processing Systems, 2019.

145

[14] L. Batina, S. Bhasin, D. Jap, and S. Picek, “Csi nn: Reverse engineering of neural network
architectures through electromagnetic side channel,” in 28th USENIX Security Symposium
(USENIX Security 19), 2019.

[15] R. Joud, P.-A. Moellic, R. Bernhard, and J.-B. Rigaud, “A review of confidentiality threats
against embedded neural network models,” arXiv preprint arXiv:2105.01401, 2021.

[16] M. Dumont, P.-A. Moellic, R. Viera, J.-M. Dutertre, and R. Bernhard, “An overview of laser
injection against embedded neural network models,” arXiv preprint arXiv:2105.01403, 2021.

[17] B. Brik, A. Ksentini, and M. Bouaziz, “Federated learning for uavs-enabled wireless networks:
Use cases, challenges, and open problems,” IEEE Access, vol. 8, pp. 53841–53849, 2020.

[18] N. Rieke, J. Hancox, W. Li, F. Milletarì, H. R. Roth, S. Albarqouni, S. Bakas, M. N. Galtier,
B. A. Landman, K. Maier-Hein, and et al., “The future of digital health with federated
learning,” npj Digital Medicine, vol. 3.

[19] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras, and T. Goldstein,
“Poison frogs! targeted clean-label poisoning attacks on neural networks,” in Proceedings of
the 32nd International Conference on Neural Information Processing Systems, 2018.

[20] C. Zhu, W. R. Huang, H. Li, G. Taylor, C. Studer, and T. Goldstein, “Transferable clean-label
poisoning attacks on deep neural nets,” in Proceedings of the 36th International Conference
on Machine Learning, 2019.

[21] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support vector machines,” in
Proceedings of the 29th International Conference on Machine Learning, ICML 2012, 2012.

[22] L. Muñoz-González, B. Biggio, A. Demontis, A. Paudice, V. Wongrassamee, E. C. Lupu, and
F. Roli, “Towards poisoning of deep learning algorithms with back-gradient optimization,” in
Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 27–38,
ACM, 2017.

[23] J. Steinhardt, P. W. Koh, and P. Liang, “Certified defenses for data poisoning attacks,” in
Proceedings of the 31st International Conference on Neural Information Processing Systems,
2017.

[24] A. Krizhevsky, “Learning multiple layers of features from tiny images,” tech. rep., University
of Toronto, 2009.

[25] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to docu-
ment recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[26] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learning word
vectors for sentiment analysis,” in Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, 2011.

[27] D. Sgandurra, L. Muñoz-González, R. Mohsen, and E. C. Lupu, “Automated dynamic
analysis of ransomware: Benefits, limitations and use for detection,” arXiv preprint
arXiv:1609.03020, 2016.

[28] C. L. Blake and C. J. Merz, “Uci repository of machine learning databases,” 1998.

[29] W. Guo, B. Tondi, and M. Barni, “A master key backdoor for universal impersonation attack
against dnn-based face verification,” Pattern Recognition Letters.

[30] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnerabilities in the machine
learning model supply chain,” in NIPS Workshop on Mach. Learn. and Comp. Sec, 2017.

[31] A. Turner, D. Tsipras, and A. Madry, “Label-consistent backdoor attacks,” arXiv preprint
arXiv:1912.02771, 2019.

[32] Y. Liu, X. Ma, J. Bailey, and F. Lu, “Reflection backdoor: A natural backdoor attack on
deep neural networks,” in European Conference on Computer Vision, 2020.

[33] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart, “Privacy in pharmaco-
genetics: An end-to-end case study of personalized warfarin dosing,” in Proceedings of the
23rd USENIX Conference on Security Symposium, 2014.

146

[34] S. Mehnaz, N. Li, and E. Bertino, “Black-box model inversion attribute inference attacks on
classification models,” arXiv preprint arXiv:2012.03404, 2020.

[35] Y. Zhang, R. Jia, H. Pei, W. Wang, B. Li, and D. Song, “The secret revealer: Generative
model-inversion attacks against deep neural networks,” in 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.

[36] X. Zhao, W. Zhang, X. Xiao, and B. Y. Lim, “Exploiting explanations for model inversion
attacks,” arXiv preprint arXiv:2104.12669, 2021.

[37] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit confidence in-
formation and basic countermeasures,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, 2015.

[38] M. Wu, X. Zhang, J. Ding, H. Nguyen, R. Yu, M. Pan, and S. T. Wong, “Evaluation of
inference attack models for deep learning on medical data,” arXiv preprint arXiv:2011.00177,
2020.

[39] “The general social survey.” https://gss.norc.org/.

[40] V. Feldman, “Does learning require memorization? a short tale about a long tail,” in
Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, 2020.

[41] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song, “The secret sharer: Evaluating and
testing unintended memorization in neural networks,” in 28th USENIX Security Symposium
(USENIX Security 19), 2019.

[42] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee, A. Roberts,
T. Brown, D. Song, U. Erlingsson, et al., “Extracting training data from large language
models,” arXiv preprint arXiv:2012.07805, 2020.

[43] B. Klimt and Y. Yang, “The enron corpus: A new dataset for email classification research,”
in Proceedings of the 15th European Conference on Machine Learning, 2004.

[44] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., “Language models
are unsupervised multitask learners,” OpenAI blog, 2019.

[45] M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, and N. Papernot, “High accuracy and
high fidelity extraction of neural networks,” in 29th USENIX Security Symposium (USENIX
Security 20), 2020.

[46] N. Carlini, M. Jagielski, and I. Mironov, “Cryptanalytic extraction of neural network models,”
arXiv:2003.04884 [cs], 2020.

[47] S. J. Oh, B. Schiele, and M. Fritz, “Towards reverse-engineering black-box neural networks,”
in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, 2019.

[48] S. Maji, U. Banerjee, and A. P. Chandrakasan, “Leaky nets: Recovering embedded neu-
ral network models and inputs through simple power and timing side-channels–attacks and
defenses,” IEEE Internet of Things Journal, 2021.

[49] W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convolutional neural net-
works through side-channel information leaks,” in 2018 55th ACM/ESDA/IEEE Design
Automation Conference (DAC), 2018.

[50] U. Gupta, D. Stripelis, P. K. Lam, P. Thompson, J. L. Ambite, and G. V. Steeg, “Membership
inference attacks on deep regression models for neuroimaging,” in Medical Imaging with Deep
Learning, 2021.

[51] S. P. Liew and T. Takahashi, “Faceleaks: Inference attacks against transfer learning models
via black-box queries,” arXiv preprint arXiv:2010.14023, 2020.

[52] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy risk in machine learning: Ana-
lyzing the connection to overfitting,” arXiv preprint arXiv:1709.01604, 2017.

[53] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks against
machine learning models,” in Security and Privacy (SP), 2017 IEEE Symposium on, pp. 3–18,
IEEE, 2017.

147

https://gss.norc.org/

[54] K. Leino and M. Fredrikson, “Stolen memories: Leveraging model memorization for calibrated
white-box membership inference,” in 29th USENIX Security Symposium (USENIX Security
20), 2020.

[55] A. Sablayrolles, M. Douze, C. Schmid, Y. Ollivier, and H. Jegou, “White-box vs black-box:
Bayes optimal strategies for membership inference,” in Proceedings of the 36th International
Conference on Machine Learning, Proceedings of Machine Learning Research, pp. 5558–5567,
2019.

[56] C. A. C. Choo, F. Tramer, N. Carlini, and N. Papernot, “Label-only membership inference
attacks,” arXiv preprint arXiv:2007.14321, 2020.

[57] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry, “Adversarial exam-
ples are not bugs, they are features,” in Advances in Neural Information Processing Systems,
pp. 125–136, 2019.

[58] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize to a crime: Real
and stealthy attacks on state-of-the-art face recognition,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, 2016.

[59] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno,
and D. Song, “Robust physical-world attacks on deep learning visual classification,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.

[60] L. Engstrom, B. Tran, D. Tsipras, L. Schmidt, and A. Madry, “A rotation and a translation
suffice: Fooling cnns with simple transformations,” in Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, pp. 1802–1811, 2019.

[61] A. S. Shamsabadi, R. Sanchez-Matilla, and A. Cavallaro, “Colorfool: Semantic adversarial
colorization,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

[62] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep neural networks,”
IEEE Transactions on Evolutionary Computation, 2019.

[63] M. Cheng, S. Singh, P. Chen, P.-Y. Chen, S. Liu, and C.-J. Hsieh, “Sign-opt: A query-efficient
hard-label adversarial attack,” in International Conference on Learning Representations,
2020.

[64] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, “Practical black-
box attacks against machine learning,” in Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, pp. 506–519, ACM, 2017.

[65] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Towards the science of security and
privacy in machine learning,” arXiv preprint arXiv:1611.03814, 2016.

[66] I. Shumailov, Y. Zhao, D. Bates, N. Papernot, R. Mullins, and R. Anderson, “Sponge exam-
ples: Energy-latency attacks on neural networks,” 2020.

[67] I. Shumailov, Z. Shumaylov, D. Kazhdan, Y. Zhao, N. Papernot, M. A. Erdogdu, and R. An-
derson, “Manipulating sgd with data ordering attacks,” arXiv preprint arXiv:2104.09667,
2021.

[68] K. Grosse, T. A. Trost, M. Mosbach, M. Backes, and D. Klakow, “On the security relevance
of initial weights in deep neural networks,” in International Conference on Artificial Neural
Networks, pp. 3–14, Springer, 2020.

[69] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits in
natural images with unsupervised feature learning,” in NIPS Workshop on Deep Learning
and Unsupervised Feature Learning 2011, 2011.

[70] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern
Recognition, 2009.

[71] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1–9, 2015.

148

[72] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto, and
F. Roli, “Evasion attacks against machine learning at test time,” in Proceedings of the 2013th
European Conference on Machine Learning and Knowledge Discovery in Databases - Volume
Part III, (Berlin, Heidelberg), pp. 387–402, Springer-Verlag, 2013.

[73] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,”
in International Conference on Learning Representations, Wiley Online Library, 2015.

[74] “A complete list of all (arxiv) adversarial example papers.”
https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html.

[75] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models
resistant to adversarial attacks,” in International Conference on Learning Representations,
2018.

[76] N. Carlini and D. Wagner, “Adversarial examples are not easily detected: Bypassing ten
detection methods,” in Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, pp. 3–14, ACM, 2017.

[77] N. Carlini and D. Wagner, “Magnet and" efficient defenses against adversarial attacks" are
not robust to adversarial examples,” arXiv preprint arXiv:1711.08478, 2017.

[78] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples,” in Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, 2018.

[79] J. Uesato, B. O’Donoghue, A. v. d. Oord, and P. Kohli, “Adversarial risk and the dangers
of evaluating against weak attacks,” in Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, pp. 5025–5034, 2018.

[80] A. Athalye and N. Carlini, “On the robustness of the cvpr 2018 white-box adversarial example
defenses,” arXiv preprint arXiv:1804.03286, 2018.

[81] N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber, D. Tsipras, I. Goodfel-
low, A. Madry, and A. Kurakin, “On evaluating adversarial robustness,” arXiv preprint
arXiv:1902.06705, 2019.

[82] F. Tramèr, N. Carlini, W. Brendel, and A. Madry, “On adaptive attacks to adversarial
example defenses,” in Advances in Neural Information Processing Systems, 2020.

[83] E. Wong, F. R. Schmidt, and J. Z. Kolter, “Wasserstein adversarial examples via pro-
jected sinkhorn iterations,” in Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, pp. 6808–6817, 2019.

[84] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, “Adversarial patch,” in Advances
in Neural Information Processing Systems 31, 2017.

[85] F. Karim, S. Majumdar, and H. Darabi, “Adversarial attacks on time series,” IEEE
transactions on pattern analysis and machine intelligence, 2020.

[86] Y. Zang, F. Qi, C. Yang, Z. Liu, M. Zhang, Q. Liu, and M. Sun, “Word-level textual adver-
sarial attacking as combinatorial optimization,” Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, 2020.

[87] F. Croce and M. Hein, “Reliable evaluation of adversarial robustness with an ensemble of
diverse parameter-free attacks,” 2020.

[88] S. Gowal, C. Qin, J. Uesato, T. Mann, and P. Kohli, “Uncovering the limits of adversar-
ial training against norm-bounded adversarial examples,” arXiv preprint arXiv:2010.03593,
2020.

[89] J. M. Cohen, E. Rosenfeld, and J. Z. Kolter, “Certified adversarial robustness via randomized
smoothing,” in Proceedings of the 36th International Conference on Machine Learning, ICML
2019, pp. 1310–1320, 2019.

[90] D. Yin, R. Gontijo Lopes, J. Shlens, E. D. Cubuk, and J. Gilmer, “A fourier perspective on
model robustness in computer vision,” in Advances in Neural Information Processing Systems
32, 2019.

149

[91] J. Z. Kolter and E. Wong, “Provable defenses against adversarial examples via the convex
outer adversarial polytope,” in Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 2019.

[92] S. Singla and S. Feizi, “Second-order provable defenses against adversarial attacks,” in
Proceedings of the 37th International Conference on Machine Learning, 2020.

[93] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Adversarial attacks
on deep neural networks for time series classification,” 2019 International Joint Conference
on Neural Networks (IJCNN).

[94] L. Li, R. Ma, Q. Guo, X. Xue, and X. Qiu, “Bert-attack: Adversarial attack against bert using
bert,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2020.

[95] Y. Qin, N. Carlini, G. Cottrell, I. Goodfellow, and C. Raffel, “Imperceptible, robust, and
targeted adversarial examples for automatic speech recognition,” in Proceedings of the 36th
International Conference on Machine Learning, 2019.

[96] S. Hussain, P. Neekhara, S. Dubnov, J. McAuley, and F. Koushanfar, “Waveguard: Under-
standing and mitigating audio adversarial examples,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021.

[97] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel, “Adversarial attacks on
neural network policies,” Workshop of International Conference on Learning Representations
(ICLR), 2017.

[98] H. Zhang, H. Chen, C. Xiao, B. Li, M. Liu, D. Boning, and C.-J. Hsieh, “Robust deep
reinforcement learning against adversarial perturbations on state observations,” in Advances
in Neural Information Processing Systems, 2020.

[99] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing robust adversarial examples,”
in Proceedings of the 35th International Conference on Machine Learning, 2018.

[100] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical world,” in
International Conference on Learning Representations, 2016.

[101] C. Sitawarin, A. N. Bhagoji, A. Mosenia, P. Mittal, and M. Chiang, “Rogue signs: Deceiv-
ing traffic sign recognition with malicious ads and logos,” 1st Deep Learning and Security
Workshop (IEEE S&P 2018), 2018.

[102] A. Boloor, X. He, C. Gill, Y. Vorobeychik, and X. Zhang, “Simple physical adversarial exam-
ples against end-to-end autonomous driving models,” in 2019 IEEE International Conference
on Embedded Software and Systems (ICESS), 2019.

[103] Z. Zhou, D. Tang, X. Wang, W. Han, X. Liu, and K. Zhang, “Invisible mask: Practical
attacks on face recognition with infrared,” arXiv preprint arXiv:1803.04683, 2018.

[104] S. Thys, W. Van Ranst, and T. Goedemé, “Fooling automated surveillance cameras: adver-
sarial patches to attack person detection,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 2019.

[105] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in 2017
IEEE Symposium on Security and Privacy (SP), pp. 39–57, IEEE, 2017.

[106] P.-Y. Chen, Y. Sharma, H. Zhang, J. Yi, and C.-J. Hsieh, “Ead: elastic-net attacks to
deep neural networks via adversarial examples,” in The Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[107] F. Croce and M. Hein, “Sparse and imperceivable adversarial attacks,” in The IEEE
International Conference on Computer Vision (ICCV), 2019.

[108] J. Chen, M. I. Jordan, and M. J. Wainwright, “Hopskipjumpattack: A query-efficient
decision-based attack,” in 2020 IEEE Symposium on Security and Privacy (SP), 2020.

[109] T. Tanay and L. Griffin, “A boundary tilting persepective on the phenomenon of adversarial
examples,” arXiv preprint arXiv:1608.07690, 2016.

150

[110] D. Meng and H. Chen, “Magnet: a two-pronged defense against adversarial examples,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pp. 135–147, ACM, 2017.

[111] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-gan: Protecting classifiers against
adversarial attacks using generative models,” in International Conference on Learning
Representations, 2018.

[112] Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman, “Pixeldefend: Leveraging gen-
erative models to understand and defend against adversarial examples,” in International
Conference on Learning Representations, 2018.

[113] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Brendel,
“Imagenet-trained CNNs are biased towards texture; increasing shape bias improves accuracy
and robustness.,” in International Conference on Learning Representations, 2019.

[114] T. Zhang and Z. Zhu, “Interpreting adversarially trained convolutional neural networks,” in
Proceedings of the 36th International Conference on Machine Learning, 2019.

[115] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category dataset,” 2007.

[116] H. Wang, X. Wu, Z. Huang, and E. P. Xing, “High-frequency component helps explain the
generalization of convolutional neural networks,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020.

[117] C. Etmann, S. Lunz, P. Maass, and C. Schoenlieb, “On the connection between adversar-
ial robustness and saliency map interpretability,” in Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, pp. 1823–1832, 2019.

[118] S. Kaur, J. Cohen, and Z. C. Lipton, “Are perceptually-aligned gradients a general property
of robust classifiers?,” in Advances in Neural Information Processing Systems, 2019.

[119] L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, B. Tran, and A. Madry, “Adversarial robust-
ness as a prior for learned representations,” arXiv preprint arXiv:1906.00945, 2019.

[120] F. Tramèr and D. Boneh, “Adversarial training and robustness for multiple perturbations,”
in Advances in Neural Information Processing Systems 33, 2019.

[121] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, “The limitations
of deep learning in adversarial settings,” in Security and Privacy (EuroS&P), 2016 IEEE
European Symposium on, pp. 372–387, IEEE, 2016.

[122] J. Rony, L. G. Hafemann, L. S. Oliveira, I. B. Ayed, R. Sabourin, and E. Granger, “Decoupling
direction and norm for efficient gradient-based l2 adversarial attacks and defenses,” 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[123] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and accurate method
to fool deep neural networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2574–2582, 2016.

[124] C. Xiao, B. Li, J.-Y. Zhu, W. He, M. Liu, and D. Song, “Generating adversarial examples
with adversarial networks,” arXiv preprint arXiv:1801.02610, 2018.

[125] S. Wang, Y. Chen, A. Abdou, and S. Jana, “Enhancing gradient-based attacks with symbolic
intervals,” in Proceedings of the 36th International Conference on Machine Learning, ICML
2019, 2019.

[126] Y. Tashiro, Y. Song, and S. Ermon, “Diversity can be transferred: Output diversification for
white- and black-box attacks,” in Advances in Neural Information Processing Systems 33,
2020.

[127] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo: Zeroth order optimization
based black-box attacks to deep neural networks without training substitute models,” in
Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 15–26,
ACM, 2017.

151

[128] J. C. Spall et al., “Multivariate stochastic approximation using a simultaneous perturbation
gradient approximation,” IEEE transactions on automatic control, vol. 37, no. 3, pp. 332–341,
1992.

[129] C. Guo, J. R. Gardner, Y. You, A. G. Wilson, and K. Q. Weinberger, “Simple black-box ad-
versarial attacks,” in Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 2019.

[130] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial attacks: Reliable at-
tacks against black-box machine learning models,” in International Conference on Learning
Representations, 2018.

[131] T. Maho, T. Furon, and E. Le Merrer, “Surfree: A fast surrogate-free black-box attack,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

[132] M. Cheng, T. Le, P.-Y. Chen, H. Zhang, J. Yi, and C.-J. Hsieh, “Query-efficient hard-label
black-box attack: An optimization-based approach,” in International Conference on Learning
Representations, 2019.

[133] S. Moon, G. An, and H. O. Song, “Parsimonious black-box adversarial attacks via efficient
combinatorial optimization,” in Proceedings of the 36th International Conference on Machine
Learning, pp. 4636–4645, 2019.

[134] M. Minoux, “Accelerated greedy algorithms for maximizing submodular set functions,” in
Optimization Techniques, 1978.

[135] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial attacks with limited
queries and information,” in Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, 2018.

[136] H. Li, S. Shan, E. Wenger, J. Zhang, H. Zheng, and B. Y. Zhao, “Blacklight: Defending
black-box adversarial attacks on deep neural networks,” arXiv preprint arXiv:2006.14042,
2020.

[137] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting adversarial attacks with
momentum,” 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun
2018.

[138] Y. Dong, T. Pang, H. Su, and J. Zhu, “Evading defenses to transferable adversarial examples
by translation-invariant attacks,” in 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019.

[139] C. Xie, Z. Zhang, J. Wang, Y. Zhou, Z. Ren, and A. L. Yuille, “Improving transferability
of adversarial examples with input diversity,” in 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019.

[140] Q. Huang, I. Katsman, H. He, Z. Gu, S. Belongie, and S.-N. Lim, “Enhancing adversar-
ial example transferability with an intermediate level attack,” in The IEEE International
Conference on Computer Vision (ICCV), 2019.

[141] W. Wu, Y. Su, X. Chen, S. Zhao, I. King, M. R. Lyu, and Y.-W. Tai, “Boosting the trans-
ferability of adversarial samples via attention,” in 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020.

[142] T. Huang, V. Menkovski, Y. Pei, Y. Wang, and M. Pechenizkiy, “Direction-aggregated attack
for transferable adversarial examples,” arXiv preprint arXiv:2104.09172, 2021.

[143] W. Zhou, X. Hou, Y. Chen, M. Tang, X. Huang, X. Gan, and Y. Yang, “Transferable
adversarial perturbations,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018.

[144] D. Wu, Y. Wang, S.-T. Xia, J. Bailey, and X. Ma, “Skip connections matter: On the trans-
ferability of adversarial examples generated with resnets,” in International Conference on
Learning Representations, 2020.

152

[145] N. Inkawhich, W. Wen, H. H. Li, and Y. Chen, “Feature space perturbations yield more
transferable adversarial examples,” in 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

[146] J. M. Springer, M. Mitchell, and G. T. Kenyon, “Uncovering universal features: How adver-
sarial training improves adversarial transferability,” 2021.

[147] H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan, “Theoretically prin-
cipled trade-off between robustness and accuracy,” in Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 2019.

[148] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Detecting adversarial samples
from artifacts,” arXiv preprint arXiv:1703.00410, 2017.

[149] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. McDaniel, “On the (statistical)
detection of adversarial examples,” arXiv preprint arXiv:1702.06280, 2017.

[150] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu, “Defense against adversarial attacks
using high-level representation guided denoiser,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1778–1787, 2018.

[151] C. Xie, Y. Wu, L. van der Maaten, A. L. Yuille, and K. He, “Feature denoising for improving
adversarial robustness,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

[152] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Reluplex: An efficient
smt solver for verifying deep neural networks,” in International Conference on Computer
Aided Verification, 2017.

[153] V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of neural networks with mixed
integer programming,” in International Conference on Learning Representations, 2019.

[154] S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Uesato, T. Mann, and P. Kohli,
“On the effectiveness of interval bound propagation for training verifiably robust models,”
arXiv preprint arXiv:1810.12715, 2018.

[155] M. Hein and M. Andriushchenko, “Formal guarantees on the robustness of a classifier against
adversarial manipulation,” in Advances in Neural Information Processing Systems, pp. 2266–
2276, 2017.

[156] A. S. Ross and F. Doshi-Velez, “Improving the adversarial robustness and interpretability of
deep neural networks by regularizing their input gradients,” 2018.

[157] M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier, “Parseval networks: Improv-
ing robustness to adversarial examples,” in Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pp. 854–863, JMLR. org, 2017.

[158] S.-A. Rebuffi, S. Gowal, D. A. Calian, F. Stimberg, O. Wiles, and T. Mann, “Fixing data
augmentation to improve adversarial robustness,” arXiv preprint arXiv:2103.01946, 2021.

[159] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S. Davis, G. Taylor, and
T. Goldstein, “Adversarial training for free!,” in Advances in Neural Information Processing
Systems 33, 2019.

[160] E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free: Revisiting adversarial training,”
in International Conference on Learning Representations, 2020.

[161] L. Rice, E. Wong, and J. Z. Kolter, “Overfitting in adversarially robust deep learning,” in
Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 2020.

[162] P. Maini, E. Wong, and J. Z. Kolter, “Adversarial robustness against the union of multi-
ple perturbation models,” in Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 2020.

[163] F. Croce and M. Hein, “Adversarial robustness against multiple l_p-threat models at the
price of one and how to quickly fine-tune robust models to another threat model,” arXiv
preprint arXiv:2105.12508, 2021.

153

[164] Y. Wang, D. Zou, J. Yi, J. Bailey, X. Ma, and Q. Gu, “Improving adversarial robust-
ness requires revisiting misclassified examples,” in International Conference on Learning
Representations, 2020.

[165] J. Zhang, J. Zhu, G. Niu, B. Han, M. Sugiyama, and M. Kankanhalli, “Geometry-
aware instance-reweighted adversarial training,” in International Conference on Learning
Representations, 2021.

[166] M. Naseer, S. Khan, M. Hayat, F. S. Khan, and F. Porikli, “Stylized adversarial defense,”
arXiv preprint arXiv:2007.14672, 2020.

[167] M. Goldblum, L. Fowl, S. Feizi, and T. Goldstein, “Adversarially robust distillation,”
Proceedings of the AAAI Conference on Artificial Intelligence, p. 3996–4003, 2020.

[168] F. Liu, R. Zhao, and L. Shi, “Adversarial feature stacking for accurate and robust predictions,”
arXiv preprint arXiv:2103.13124, 2021.

[169] C. Song, K. He, J. Lin, L. Wang, and J. E. Hopcroft, “Robust local features for improv-
ing the generalization of adversarial training,” in International Conference on Learning
Representations, 2020.

[170] D. Stutz, M. Hein, and B. Schiele, “Confidence-calibrated adversarial training: Generalizing
to unseen attacks,” in Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 2020.

[171] A. Chan, Y. Tay, Y. S. Ong, and J. Fu, “Jacobian adversarially regularized networks for
robustness,” in International Conference on Learning Representations, 2020.

[172] S. Addepalli, B. Vivek, A. Baburaj, G. Sriramanan, and R. Venkatesh Babu, “Towards
achieving adversarial robustness by enforcing feature consistency across bit planes,” 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[173] F. Lin, R. Mittapali, P. Chattopadhyay, D. Bolya, and J. Hoffman, “Likelihood landscapes:
A unifying principle behind many adversarial defenses,” in Adversarial Robustness in the
Real World (AROW), ECCV, 2020.

[174] R. Bernhard, P.-A. Moellic, M. Mermillod, Y. Bourrier, R. Cohendet, M. Solinas, and
M. Reyboz, “Impact of spatial frequency based constraints on adversarial robustness,” in
2021 International Joint Conference on Neural Networks (IJCNN), 2021.

[175] J. Jo and Y. Bengio, “Measuring the tendency of cnns to learn surface statistical regularities,”
arXiv preprint arXiv:1711.11561, 2017.

[176] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry, “Robustness may be at
odds with accuracy,” in International Conference on Learning Representations, 2019.

[177] P. G. Schyns and A. Oliva, “From blobs to boundary edges: Evidence for time-and spatial-
scale-dependent scene recognition,” Psychological science, vol. 5, no. 4, pp. 195–200, 1994.

[178] M. Mermillod, P. Bonin, L. Mondillon, D. Alleysson, and N. Vermeulen, “Coarse scales are
sufficient for efficient categorization of emotional facial expressions: Evidence from neural
computation,” Neurocomputing, vol. 73, no. 13-15, pp. 2522–2531, 2010.

[179] R. M. French, M. Mermillod, A. Chauvin, P. C. Quinn, and D. Mareschal, “The importance
of starting blurry: Simulating improved basic-level category learning in infants due to weak
visual acuity,” in Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 24,
2002.

[180] N. Das, M. Shanbhogue, S.-T. Chen, F. Hohman, S. Li, L. Chen, M. E. Kounavis, and D. H.
Chau, “Shield: Fast, practical defense and vaccination for deep learning using jpeg com-
pression,” Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2018.

[181] Z. Liu, Q. Liu, T. Liu, N. Xu, X. Lin, Y. Wang, and W. Wen, “Feature distillation: Dnn-
oriented jpeg compression against adversarial examples,” in 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

154

[182] Z. Zhang, C. Jung, and X. Liang, “Adversarial defense by suppressing high-frequency com-
ponents,” arXiv preprint arXiv:1908.06566, 2019.

[183] Z. Wang, Y. Yang, A. Shrivastava, V. Rawal, and Z. Ding, “Towards frequency-based expla-
nation for robust cnn,” arXiv preprint arXiv:2005.03141, 2020.

[184] Y. Sharma, G. W. Ding, and M. A. Brubaker, “On the effectiveness of low frequency per-
turbations,” Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, 2019.

[185] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” in International Conference on Learning Representations, 2015.

[186] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in British Machine Vision
Conference (BVCM), 2016.

[187] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted
residuals and linear bottlenecks,” 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2018.

[188] R. Bernhard, P.-A. Moellic, and J.-M. Dutertre, “Impact of low-bitwidth quantization on the
adversarial robustness for embedded neural networks,” in 2019 International Conference on
Cyberworlds (CW), 2019.

[189] M. Denil, B. Shakibi, L. Dinh, N. De Freitas, et al., “Predicting parameters in deep learning,”
in Advances in neural information processing systems, pp. 2148–2156, 2013.

[190] G. B. Hacene, V. Gripon, M. Arzel, N. Farrugia, and Y. Bengio, “Quantized guided pruning
for efficient hardware implementations of convolutional neural networks,” arXiv preprint
arXiv:1812.11337, 2018.

[191] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep convolutional networks using
vector quantization,” arXiv preprint arXiv:1412.6115, 2014.

[192] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding,” arXiv preprint arXiv:1510.00149,
2015.

[193] Y. Choi, M. El-Khamy, and J. Lee, “Towards the limit of network quantization,” arXiv
preprint arXiv:1612.01543, 2016.

[194] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep neural networks
with binary weights during propagations,” in Advances in neural information processing
systems, pp. 3123–3131, 2015.

[195] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural net-
works: Training deep neural networks with weights and activations constrained to+ 1 or-1,”
arXiv preprint arXiv:1602.02830, 2016.

[196] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quantized neural
networks: Training neural networks with low precision weights and activations.,” Journal of
Machine Learning Research, vol. 18, no. 187, pp. 1–30, 2017.

[197] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet classification
using binary convolutional neural networks,” in European Conference on Computer Vision,
pp. 525–542, Springer, 2016.

[198] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” 2016.

[199] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,” arXiv preprint
arXiv:1612.01064, 2016.

[200] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning with limited
numerical precision,” in International Conference on Machine Learning, pp. 1737–1746, 2015.

[201] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net: Training low bitwidth
convolutional neural networks with low bitwidth gradients,” arXiv preprint arXiv:1606.06160,
2016.

155

[202] R. Ding, Z. Liu, R. Shi, D. Marculescu, and R. Blanton, “Lightnn: Filling the gap between
conventional deep neural networks and binarized networks,” in Proceedings of the on Great
Lakes Symposium on VLSI 2017, pp. 35–40, ACM, 2017.

[203] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via distillation and quantiza-
tion,” arXiv preprint arXiv:1802.05668, 2018.

[204] S. Darabi, M. Belbahri, M. Courbariaux, and V. P. Nia, “Bnn+: Improved binary network
training,” arXiv preprint arXiv:1812.11800, 2018.

[205] A. Galloway, G. W. Taylor, and M. Moussa, “Attacking binarized neural networks,” in
International Conference on Learning Representations, 2018.

[206] J. Lin, C. Gan, and S. Han, “Defensive quantization: When efficiency meets robustness,” in
International Conference on Learning Representations, 2019.

[207] Y. Zhao, I. Shumailov, R. Mullins, and R. Anderson, “To compress or not to compress:
Understanding the interactions between adversarial attacks and neural network compression,”
Conference on Systems and Machine Learning (SysML), 2019.

[208] A. S. Rakin, J. Yi, B. Gong, and D. Fan, “Defend deep neural networks against ad-
versarial examples via fixed anddynamic quantized activation functions,” arXiv preprint
arXiv:1807.06714, 2018.

[209] E. B. Khalil, A. Gupta, and B. Dilkina, “Combinatorial attacks on binarized neural networks,”
arXiv preprint arXiv:1810.03538, 2018.

[210] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adversarial examples and
black-box attacks,” in Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, 2017.

[211] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[212] N. Papernot, F. Faghri, N. Carlini, I. Goodfellow, R. Feinman, A. Kurakin, C. Xie,
Y. Sharma, T. Brown, A. Roy, A. Matyasko, V. Behzadan, K. Hambardzumyan, Z. Zhang,
Y.-L. Juang, Z. Li, R. Sheatsley, A. Garg, J. Uesato, W. Gierke, Y. Dong, D. Berthelot,
P. Hendricks, J. Rauber, and R. Long, “Technical report on the cleverhans v2.1.0 adversarial
examples library,” arXiv preprint arXiv:1610.00768, 2018.

[213] L. Wu, Z. Zhu, C. Tai, et al., “Towards understanding and improving the transferability of
adversarial examples in deep neural networks,” in Proceedings of The 12th Asian Conference
on Machine Learning, 2020.

[214] R. Bernhard, P.-A. Moellic, and J.-M. Dutertre, “Luring of transferable adversarial perturba-
tions in the black-box paradigm,” in 2021 International Joint Conference on Neural Networks
(IJCNN), 2021.

[215] D. Hendrycks, K. Lee, and M. Mazeika, “Using pre-training can improve model robustness
and uncertainty,” in Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 2019.

[216] Y. Carmon, A. Raghunathan, L. Schmidt, P. Liang, and J. C. Duchi, “Unlabeled data im-
proves adversarial robustness,” in Advances in Neural Information Processing Systems, 2019.

[217] U. Hwang, J. Park, H. Jang, S. Yoon, and N. I. Cho, “Puvae: A variational autoencoder to
purify adversarial examples,” IEEE Access, vol. 7, pp. 126582–126593, 2019.

[218] S. Shan, E. Wenger, B. Wang, B. Li, H. Zheng, and B. Y. Zhao, “Using honeypots to catch
adversarial attacks on neural networks,” in Proceedings of ACM Conference on Computer
and Communications Security (CCS), 2019.

[219] M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, and N. Papernot, “High accuracy and high
fidelity extraction of neural networks,” in 29th {USENIX} Security Symposium ({USENIX}
Security 20), pp. 1345–1362, 2020.

156

[220] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras, and T. Goldstein,
“Poison frogs! targeted clean-label poisoning attacks on neural networks,” in Proceedings of
the 32nd International Conference on Neural Information Processing Systems, pp. 6106–6116,
2018.

[221] A. S. Rakin, Z. He, and D. Fan, “Bit-flip attack: Crushing neural network with progressive
bit search,” in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019.

157

List of Figures

2.1 Complete machine learning pipeline. Different phases of the development of a model. 18
2.2 Different ways of attacking a machine learning model pipeline. 19
2.3 Data poisoning attack results (from [22]). For two data sets and different machine

learning algorithms is presented the error induced on the test set by perturbing a
portion of the training set. 21

2.4 Backdoor attack (from [30]). The clean image (left), the clean image with the trigger
(middle), and the resulting misclassification (right). 22

2.5 Model inversion attack (from [37]). The clean input (left) and the retrieved image
with the model inversion attack (right). 23

2.6 Data extraction attack (from [42]). A particular query allows to retrieve the name,
the phone number, the fax number, and the physical address of some individual. . 23

2.7 Setup of a model stealing attack based on side-channel analysis (from [14]). 24
2.8 Illustration of the attack process from [53]. From the confidence score of the target

model, and the ground-truth label of the record, the attack model predicts if the
record was part of the training set or not. 25

2.9 Illustration of adversarial examples from [11]. Clean image classified as a "school
bus"(left), magnified adversarial perturbation (middle), and resulting adversarial
example misclassified by the target model as "ostrich" (right). 26

2.10 CIA (Confidentiality, Integrity, Availability) triad for machine learning models with
corresponding possible attacks. 27

3.1 Sample images from the MNIST data set [25]. 33
3.2 Sample images from the SVHN data set [69]. 34
3.3 Sample images from the CIFAR10 data set [24]. From left to right, the correct labels

are cat, plane, truck and horse. 34
3.4 Sample images from the ImageNet data set [70]. From left to right, the correct

labels are tree frog, barber chair and brown bear. 34

4.1 From Nicholas Carlini [74]. Number of adversarial examples related papers over the
years (extracted from Arxiv). 36

4.2 Stop sign with adversarial black and white stickers, recognized as a "speed limit 45"
road sign, from [59]. 38

4.3 Clean advertising sign (left), reasonably rejected by the traffic sign recognition
system, and its adversarial counterpart (right), recognized as a "stop" road sign,
from [101]. 38

4.4 Physical-world infrared adversarial device from [103]. 38
4.5 Physical attack against an individual detection system, from [104]. 38
4.6 Illustration of the adversary capacity in the white and black-box settings, from [108].

In the black-box setting, the attacker may only access to the outputs of the model
with different levels of precision (logits, confidence score vector, labels). 40

4.7 Accuracy of humans and models trained on Imagenet on standard and modified
images. From left to right images, standard images, grayscale images, silhouette
images, edge images and texture images, from [113]. Models seem to rely predomi-
nantly on texture to perform classification. 42

158

4.8 Sensitivity maps of different models on a standard image (top row), saturated image
to keep contour (middle row) and stylized image to keep shape (bottom row). From
left to right, standard model, underfitting model and model trained with Adversarial
Training, from [114]. The sensitivity maps for standard models are more noisy than
the ones for the model trained with Adversarial Training, more focused on shape
and contours. 43

4.9 Accuracy of a model trained on ImageNet on low-pass and high-pass filtered images,
with different filtering intensities, from [90]. The model shows good accuracy even
on images that are unrecognizable for humans. 44

4.10 Accuracy of models on the CIFAR10 data set, on standard examples (blue) and
adversarial examples (red). D̂R denotes the robust data set (i.e. with almost only
robust features), and D̂NR denotes the non-robust data set (i.e. with almost only
non-robust features), from [57]. 46

4.11 Adversarial examples, crafted with Wasserstein PGD (top), and l∞-PGD (bottom),
from [83]. 49

4.12 Illustration of adversarial examples crafted with the different version of the attack
proposed in [107]. 50

4.13 Illustration of the intuition of the Boundary Attack, from [130]. 52
4.14 Illustration of the intuition of the Hop Skip Jump Attack, from [108]. (Left) Line

Search to find the boundary. (Middle) Gradient estimation. (Right) Step size search. 52
4.15 Illustration of adversarial rotations and translations, from [60]. 54
4.16 Illustration of the colorfool attack, with the clean image (left), and its adversarial

counterpart (right), from [61]. The background color (non-sensitive region) is largely
modified, while the skin color (very sensitive region) is very subtly changed. 55

4.17 Illustration of Adversarial Training, from [147]. On the left is presented the decision
boundary resulting from standard training. On the right is presented the decision
boundary resulting from Adversarial Training. The black square around each exam-
ple represents the l∞ ball of radius ε. The orange dotted line represents the decision
boundary of standard training. 61

4.18 Illustration of the robust overfitting phenomenon, from [161]. While train and test
standard errors decrease, train robust error decreases but test robust error increases. 62

4.19 Illustration from [172]. (a) Original 8-bit image (b) Weighted sum of (higher) bit
planes 7, 6 and 5 (c) Weighted sum of (higher) bit planes 7 and 6 (d) Bit plane 7 -
Most significant bit plane (e) Weighted sum of (lower) bit planes 4, 3, 2, 1 and 0 . 63

4.20 Illustration of the log-likelihood around a clean example x for two random direc-
tions for various models, from [173]. (Left) standard training. (Middle) Adversarial
Training. (Right) Jacobian regularization. The likelihood landscape is strongly not
flat around the example for standard training, whereas it is quite flat for Adversarial
Training et jacobian regularization. 64

5.1 Original image (left). Low-pass filtered images with corresponding mask (first row).
High-pass filtered images (magnified for visualization) with corresponding mask
(bottom row). For the Fourier domain masks, white denotes value 1 and black value
0. For LSF, low filtering intensity means restricted low-pass filtering. For
HSF, high filtering intensity means restricted high-pass filtering. 68

5.2 CIFAR10 and SVHN. Accuracy of a regular model on low-pass and high-pass filtered
data set, for different filtering intensities. 70

5.3 Small ImageNet. Accuracy of a regular model on low-pass and high-pass filtered
data set, for different filtering intensities. 70

5.4 CIFAR10, SVHN and Small ImageNet data sets. Fourier spectrum for clean images.
Low frequencies are at the center, and high frequencies at the corners. 71

5.5 CIFAR10 and SVHN. Accuracy of M low (resp. Mhigh) models on LSF (resp. HSF)
filtered data sets. (See Figure 5.1 for filtering intensity effect). 71

5.6 CIFAR10 and SVHN. Error rate of models on data perturbed with Fourier con-
strained noise. Value at (i, j) measures the error rate on data perturbed with noise
along Fourier basis matrice Ui,j . Low frequencies are located at the center, and high
frequencies at the corner. High values (red color) denote a high sensibility, and low
values (blue color) denote a low sensibility. 72

5.7 CIFAR10. Fourier spectrum for the adversarial perturbation (a) Regular model, (b)
Model trained on low-pass filtered data set at intensity 6. 73

159

5.8 SVHN (top left), CIFAR10 (top right), Small ImageNet (bottom right). Transfer-
ability analysis between base model and models trained on a filtered data set. (See
Figure 5.1 for filtering intensity effect). 73

6.1 Left: MAC complexity of several state-of-the-art models. MAC=Multiply-accumulate
operations: the basic linear operation between the input and the weights (and bias)
of a layer (x ← x + w.x). Right: The Flash and SRAM memory consumption
for different MobileNet (v1) models with 8-bit weights. The memory requirements
for a STM32H7 are represented with the red rectangle (parameters for Flash and
activation computations for SRAM). 82

6.2 Adversarial transferability results for CIFAR10. Rows are relative to source networks
and columns to target networks. Values correspond to adversarial accuracy. The
lower the value, the more transferability occurs. wiaj refers to a model where weights
are quantized to i bits and activations to j bits. 91

6.3 Adversarial transferability results for SVHN. Rows are relative to source network
and columns to target networks. Values correspond to adversarial accuracy. The
lower the value, the more transferability occurs. wiaj refers to a model where weights
are quantized to i bits and activations to j bits. 91

6.4 A toy example to illustrate the quantization value shift phenomenon. Quantization
of the weights cancels the adversarial effect. 92

6.5 CIFAR10. Cosine similarity values between the gradient of the loss function with
respect to the input (computed with the STE), for full-precision and quantized mod-
els. wiaj designates a model with a i -bit weight quantization and a j -bit activation
quantization. 93

6.6 SVHN. Cosine similarity values between the gradient of the loss function with respect
to the input (computed with the STE), for full-precision and quantized models. wiaj
designates a model with a i -bit weight quantization and a j -bit activation quantization. 93

7.1 Luring effect. (left) x′ fools M ◦ P by flipping a non-robust feature f ◦ P (toward
the green class). (right) However, f can be a robust feature, then M is not fooled
(still in the blue class), or a non-robust feature but switched differently than f ◦ P
(towards the orange class). 110

7.2 (top) Clean image, (bottom) adversarial example for the maximum perturbation
allowed (left to right: MNIST, SVHN, CIFAR10; ε = 0.4, 0.08, 0.04). 116

7.3 Disagreement Rate (solid line) and Inefficient Adversarial examples Rate (dashed
line) for different attacks. 116

7.4 l0 adversarial distortion for MNIST (left) and CIFAR10 (right). 118
7.5 MNIST. (top) Clean image and gradient of the cross-entropy loss with respect to

input; (bottom) mapping gradients ∇xP (x) for 3 augmented models. 119
7.6 MNIST (ε = 0.3). Det(i) results. (left) SPSA. (middle) ECO. (right) MIM. 131
7.7 SVHN (ε = 0.03). Det(i) results. (left) SPSA. (middle) ECO. (right) MIM. 132
7.8 CIFAR10 (ε = 0.03). Det(i) results. (left) SPSA. (middle) ECO. (right) MIM. . . 132

8.1 Illustration of the RC-UA attack. The white dotted square represents the l∞ ball
of radius ε centered at x. Each color denotes a different class. 139

8.2 CIFAR10. Accuracy at the system-level for a standard model, depending on the τo
and τr values of Overall Confidence (OC) and Relative Confidence (RC), respectively.140

8.3 CIFAR10. Accuracy at the system-level for a model trained with Adversarial Train-
ing, depending on the τo and τr values of Overall Confidence (OC) and Relative
Confidence (RC), respectively. 140

8.4 Percentage of unsuccessful l∞-PGD adversarial examples for which the OC-UA or
RC-UA is reached, for various confidence threshold values t. 141

A.1 Illustration d’un exemple adverse, tiré de [11]. (Gauche) L’image originale est
prédite comme un bus d’écoliers. (Milieu) La perturbation adverse, amplifiée pour
une meileure visualisation. (Droite) L’exemple adverse résultat, prédit par le modèle
cible comme une autruche. 171

A.2 Differentes manières d’attaquer un modèle de machine learning 171
A.3 Triade CIA (Confidentialité, Integrité, Disponibilité) pour un modèle de machine

learning, et les attaques correspondantes. 172

160

List of Tables

4.1 Knowledge of the adversary depending on the white-box or black-box setting. The
sign ∼ means that the knowledge may vary depending on the tightness of the black-
box setting. 41

5.1 SVHN classifier architecture. BN, MaxPool(u,v) and Conv(f,k,k) denote respectively
batch normalization, max pooling with window size (u,v), and 2D convolution with
f filters and kernel of size (k,k). 69

5.2 Small ImageNet. Matching between each Small ImageNet class and the original
ImageNet class indexes. The human readable labels corresponding to indexes of
ImageNet can be found at https://gist.github.com/yrevar/942d3a0ac09ec9e
5eb3a . 69

5.3 CIFAR10, SVHN and Small ImageNet. Best and worst accuracy on clean (Acc) and
adversarial examples (Accadv) of models trained with the constrained loss Llowi or
Lhighi . 75

5.4 CIFAR10. Accuracy on clean (Acc) and adversarial (Accadv) examples of models
trained with loss Llowi on a low-pass version of CIFAR10. The value l denotes the
filtering intensity for the data set. 75

5.5 CIFAR10, SVHN and Small ImageNet. Best and worst accuracy on clean (Acc) and
adversarial examples (Accadv) of models trained with the constrained loss Lfreqi,j . . 76

5.6 CIFAR10. Accuracy on clean (Acc) and adversarial (Accadv) examples of models
trained with loss functions LAT,lowi (λ2 = 0), LAT,highi (λ1 = 0) and LAT,freqi,j 78

5.7 SVHN. Accuracy on clean (Acc) and adversarial (Accadv) examples of models trained
with loss functions LAT,lowi (λ2 = 0), LAT,highi (λ1 = 0) and LAT,freqi,j 78

6.1 SVHN and CIFAR10 classifier architecture. BN, MaxPool and Conv denote respec-
tively batch normalization, max pooling and convolution. 86

6.2 Models accuracy on test sets. Full quantization means that both weights and acti-
vation values are quantized. 86

6.3 Main characteristics of the considered adversarial examples crafting methods . . . 87
6.4 Adversarial accuracy and distortions for gradient-based and gradient-free attacks

against full-precision (32-bit) and fully quantized models. 88
6.5 Adversarial accuracy and distortions for gradient-based and gradient-free attacks

against full-precision (32-bit) and weight-only quantized models. 89
6.6 Rate of examples for which the other four models agree, depending on the source

model Ms and its prediction results (correctly classified, misclassified, successful,
unsuccessful). 94

6.7 Prediction rate and accuracy with the ensemble of models on CIFAR10 and SVHN. 95
6.8 Defense accuracy (d_acc) and adversarial prediction rate (PR) for gradient-based

and gradient-free attacks against an ensemble of quantized models, depending of the
source model. For example, for adversarial examples crafted with the FGSM attack
on a fully binarized model, the d_acc value equals 0.9 against the ensemble of models. 95

6.9 Summary of the references for the transferability results between full precision, fully
quantized and weight only models. 97

6.10 Transferability from full-precision model to 1,2,3,4-bit fully quantized models. . . . 97
6.11 Transferability from full-precision model to 1,2,3,4-bit weight-only quantized models. 98
6.12 Transferability from fully binarized model to 1,2,3,4-bit fully quantized models and

full-precision models. 98
6.13 Transferability from fully binarized model to 1,2,3,4-bit weight-only quantized mod-

els and full-precision models. 99

161

https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a
https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a

6.14 Transferability from weight-only binarized model to 1,2,3,4-bit fully quantized mod-
els and full-precision models. 99

6.15 Transferability from weight-only binarized model to 1,2,3,4-bit weight-only quan-
tized models and full-precision models. 100

6.16 Transferability from 2-bit fully quantized model to 1,2,3,4-bit fully quantized models.100
6.17 Transferability from 2-bit fully quantized model to 1,2,3,4-bit weight-only quantized

models. 101
6.18 Transferability from 2-bit weight-only quantized model to 1,2,3,4-bit fully quantized

models. 101
6.19 Transferability from 2-bit weight-only quantized model to 1,2,3,4-bit weight-only

quantized models. 102
6.20 Transferability from 3-bit fully quantized model to 1,2,3,4-bit fully quantized models.102
6.21 Transferability from 3-bit fully quantized model to 1,2,3,4-bit weight-only quantized

models. 103
6.22 Transferability from 3-bit weight-only quantized model to 1,2,3,4-bit fully quantized

models. 103
6.23 Transferability from 3-bit weight-only quantized model to 1,2,3,4-bit weight-only

quantized models. 104
6.24 Transferability from 4-bit fully quantized model to 1,2,3,4-bit fully quantized models.104
6.25 Transferability from 4-bit fully quantized model to 1,2,3,4-bit weight-only quantized

models. 105
6.26 Transferability from 4-bit weight-only quantized model to 1,2,3,4-bit fully quantized

models. 105
6.27 Transferability from 4-bit weight-only quantized model to 1,2,3,4-bit weight-only

quantized models. 106

7.1 MNIST base classifier architecture. Epochs: 5. Batch size: 28. Optimizer: Adam
with learning rate 0.01. MaxPool(u,v) and Conv(f,k,k) denote max pooling with
window size (u,v) and 2D convolution with f filters and kernel of size (k,k), respectively.112

7.2 SVHN base classifier architecture. Epochs: 50. Batch size: 28. Optimizer: Adam
with learning rate 0.01. BN, MaxPool(u,v) and Conv(f,k,k) denote respectively
batch normalization, max pooling with window size (u,v) and 2D convolution with
f filters and kernel of size (k,k), respectively. 112

7.3 CIFAR10 base classifier architecture. Epochs: 200. Batch size: 32. Optimizer:
Adam with learning rate starting at 0.1, decreasing to 0.01 and 0.001 respectively
after 80 and 120 epochs. BN, MaxPool(u,v) and Conv(f,k,k) denote respectively
batch normalization, max pooling with window size (u,v) and 2D convolution with
f filters and kernel of size (k,k), respectively. 112

7.4 Defense component architecture for MNIST. MaxPool(u,v), UpSampling(u,v) and
Conv(f,k,k) denote max pooling with window size (u,v), upsampling with sampling
factor (u,v) and 2D convolution with f filters and kernel of size (k,k), respectively. 113

7.5 Defense component architecture for SVHN. BN, MaxPool(u,v), UpSampling(u,v)
and Conv(f,k,k) denote batch normalization, max pooling with window size (u,v),
upsampling with sampling factor (u,v) and 2D convolution with f filters and kernel
of size (k,k), respectively. 113

7.6 Defense component architecture for CIFAR10. BN, MaxPool(u,v), UpSampling(u,v)
and Conv(f,k,k) denote batch normalization, max pooling with window size (u,v),
upsampling with sampling factor (u,v) and 2D convolution with f filters and kernel
of size (k,k), respectively. 114

7.7 Test set accuracy and agreement (augmented and target model agree on the ground-
truth label) between each augmented model and the target model M , noted Base. 115

7.8 Average l2 and l∞ distortions between clean and adversarial examples generated
with the CWL2 attack for the target model M and the augmented models M ◦ P . 117

7.9 Rate of examples (over 1, 000) for which logits vary more differently betweenM and
M ◦ P , for the Luring approach against the other approaches. 118

7.10 MNIST. Kernel size for the MIM-TI and DIM-TI attacks. 120
7.11 SVHN. Kernel size for the MIM-TI and DIM-TI attacks. 120
7.12 CIFAR10. Kernel size for the MIM-TI and DIM-TI attacks. 120
7.13 Adversarial accuracy forM ◦P (ACMoP),M (ACM), and Detection Adversarial Ac-

curacy (DAC) for different architectures. MNIST(top), SVHN (middle), CIFAR10
(bottom). 121

162

7.14 Defense component architecture for ImageNet. 122
7.15 Test set accuracy and agreement (augmented and target model agree on the ground-

truth label) between each augmented model and the target model M , noted Base. 122
7.16 ImageNet. AccMoP , AccM and DAC for different source model architectures. . . . 122
7.17 Test set accuracy and agreement (augmented and target model agree on the ground-

truth label) between an augmented luring model T and a target model M . Base
and Base–Luring denote respectively a target model trained classically and the aug-
mented model trained with the luring defense. AdvTrain and AdvTrain–Luring
denote respectively a target model trained with adversarial training and the aug-
mented model trained with the luring defense. 123

7.18 AccM,wb, AccM and DAC values (among FGSM, MIM, DIM, MIM-TI and DIM-TI)
for the luring approach. Base–Luring and AdvTrain–luring denote the cases where
the model M is trained respectively classically and with adversarial training. . . . 123

7.19 Optimal AccMoP , AccM and DAC values (among FGSM, MIM, DIM, MIM-TI and
DIM-TI) for the Trapdoor and Luring approaches. 124

7.20 Test set accuracy and agreement (M ′ and M agree on the ground-truth label) be-
tween each M ′ model and the target model M , noted Base. 126

7.21 MNIST. DR and IAR results (ε = 0.3). 127
7.22 SVHN. DR and IAR results (ε = 0.03). 127
7.23 CIFAR10. DR and IAR results (ε = 0.03). 127
7.24 MNIST. AccM ′ , AccM and DAC results for MIM-W (ε = 0.3). 128
7.25 SVHN. AccM ′ , AccM and DAC results for MIM-W (ε = 0.03). 128
7.26 CIFAR10. AccM ′ , AccM and DAC results for MIM-W (ε = 0.03). 128
7.27 Comparison of the black-box and gray-box settings in terms of AccM and DAC

metrics, for ε = 0.3 (MNIST) and ε = 0.03 (SVHN and CIFAR10). 129
7.28 Accuracy of the different systems (noted AccS) on clean test set examples. 130
7.29 MNIST. Results for the different metrics in detecting the crafting process of adver-

sarial examples. All attacks are run with ε = 0.03. 131
7.30 SVHN. Results for the different metrics in detecting the crafting process of adver-

sarial examples. All attacks are run with ε = 0.03. 132
7.31 CIFAR10. Results for the different metrics in detecting the crafting process of

adversarial examples. All attacks are run with ε = 0.03. 132

8.1 Mean number of iterations (Mean_iters) for the RC-UA attack, with various τr.
The mean is performed for all the possible pairs (predicted, target), with 1, 000 test
set examples for pair. 140

163

Appendix A

Résumé de la thèse

164

Cette thèse a pour objectif de mieux comprendre le phénomène des exemples adverses (ad-
versarial examples) et de proposer des mécanismes de défense, plus particulièrement pour lutter
contre leur transférabilité. La motivation est double. D’une part, les attaques contre l’intégrité
des modèles de Machine Learning à l’inférence sont reconnues pour leur criticité et il est crucial
d’analyser finement les phénomènes sous-jacents pour améliorer le développement de protections
robustes. D’autre part, parmi les nombreuses méthodologies et vecteurs d’attaques des exemples
adverses (boite blanche, boite noire), ceux tirant profit de leur transférabilité apparaissent comme
particulièrement critiques dans un contexte de déploiement des modèles à très large-échelle (par
exemple les systèmes embarqués pour l’IoT).

A.1 Introduction

A.1.1 L’omniprésence du machine learning
Depuis quelques années, le machine learning, et plus spécifiquement les approches par represen-
tation learning avec les réseaux de neurones profonds (deep learning), a démontré des perfor-
mances remarquables pour de nombreuses tâches complexes: classification d’images [1], synthèse
d’images [2], détection et reconnaissance d’objets en temps réel [3], reconnaissance de la parole [4],
synthèse de la voix [5] ou traduction automatique de texte [6]. Aujourd’hui, les réseaux de neu-
rones profonds sont employés dans de multiple domaines d’applications comme le diagnostic médi-
cal [7], les systèmes de recommandation [8], la détection de malwares [9] ou encore les véhicules
autonomes [10].

Etant donné ce succès, des modèles sont de plus en plus déployés dans la vie de tous les jours.
Par exemple, un nombre croissant d’applications sur les téléphones mobiles fonctionnent en faisant
des appels répétés à des serveurs distants qui se reposent sur des modèles de machine learning. En
outre, de plus en plus d’API utilisent le deep learning, comme l’API Google Cloud Vision API1 ou
l’API Clarifai2. De plus, l’utilisation du machine learning n’est pas réservée à des services qui sont
disponibles à tout le monde. En effet, le deep learning joue un rôle important dans de nombreuses
applications critiques telles que la cybersécurité, le transport, la défense ou encore la santé.

En d’autres termes, on parle de machine learning omniprésent (ubiquitous artificial intelligence)
avec l’inclusion de modèles dans une multitude de systèmes publics ou privés. Ce déploiement à
large-échelle soulève d’importantes questions de sécurité que cela concerne les données en jeu ou
la fiabilité intrinsèque des modèles. En réponse à ces inquiétudes, de nouvelles règlementations
sont adoptées. A l’échelle européenne, la question de la sécurité des données et des modèles d’IA
fait partie intégrante du nouveau framework de régulation de l’intelligence artificielle, présenté en
Avril 2021 3 centré sur les intelligences artificielles à risque et qui devra compléter et s’articuler
avec les législations existantes pour la protection des données personnelles (RGPD, 2018)4.

A.1.2 Machine learning et systèmes embarqués
Le déploiement de modèles de machine learning

Le développement actuel du machine learning se concentre principalement sur deux objectifs :
(1) augmenter les performances des modèles pour des tâches complexes, ce qui s’accompagne
généralement d’un accroissement de leur complexité, comme pour les récent modèles transform-
ers en traitement automatique de la langue ; (2) le déploiement de modèles vers un vaste panel
de plateformes matérielles. Ce déploiement à grande échelle répond aux problèmes classiques du
paradigme client/serveur pour les applications d’IA et la trop grande dépendance aux capacités
des serveurs ainsi qu’aux réseaux de communication: passage à l’échelle, qualité, disponibilité...
Déployer et distribuer l’intelligence vers les clients permet de réduire cette dépendance. Cepen-
dant, les réseaux de neurones profonds peuvent regrouper plusieurs millions de paramètres. Cette
complexité est généralement absorbée par des architectures de calcul GPU (Graphics Processing
Units). De ce fait, embarquer un modèle de deep learning sur une plateforme matérielle contrainte
conduit à plusieurs problèmes majeurs: la capacité mémoire de certaines plateformes (typiquement,
un microcontrôleur dans l’IoT) peut vite devenir un facteur limitant tout comme la consommation

1https://cloud.google.com/vision/
2https://www.clarifai.com/
3https://digital-strategy.ec.europa.eu/en/library/communication-fostering-european-approach-artificial-

intelligence
4https://www.cnil.fr/fr/intelligence-artificielle-lavis-de-la-cnil-et-de-ses-homologues-sur-le-

futur-reglement-europeen

165

https://www.cnil.fr/fr/intelligence-artificielle-lavis-de-la-cnil-et-de-ses-homologues-sur-le-futur-reglement-europeen
https://www.cnil.fr/fr/intelligence-artificielle-lavis-de-la-cnil-et-de-ses-homologues-sur-le-futur-reglement-europeen

énergétique d’une inférence pour de nombreux domaines d’applications ou le temps de traitement
d’une inférence pour des applications temps réel.

Les conséquences du déploiement de modèles en termes de sécurité

Au vu des contraintes de sécurité qui émergent alors que les modèles de machine learning deviennent
de plus en plus omniprésents, les modèles embarqués soulèvent un premier problème : ils élargissent
la surface d’attaque disponible pour un adversaire. En conséquence, il sera plus difficile de sécuriser
un modèle déployé qu’un modèle implanté sur un serveur distant, uniquement disponible via des
requêtes à ce serveur.

Pour un modèle distant, certaines de ses caractéristiques peuvent être cachées pour obfusquer
des informations critiques et ainsi affaiblir un potentiel adversaire. Par exemple, la nature du
modèle (arbre de décision, machine à vecteurs de support, etc.) peut être caché, pour restreindre
la connaissance qu’a l’adversaire du système à attaquer. L’information donnée par le modèle en
inférence peut aussi être obstruée, par exemple en ne dévoilant que la classe prédite pour une tâche
de classification, au lieu du score pour chaque classe possible.

Quand le modèle est physiquement accessible par un attaquant, ce dernier se voit offrir une
plus grande surface d’attaque. Notamment, même si des méthodes d’obfuscation sont employées,
un adversaire peut exploiter certains défauts liés directement à l’implémentation physique.

De plus, considérant un modèle utilisé à la fois à distance et en rendu public en physique,
l’adversaire peut tirer parti des vulnérabilités de la version publique pour monter une attaque
contre la version distante. En faisant cela, son attaque est bien plus puissante que si seulement le
modèle distant était connu.

A.1.3 Les attaques contre le machine learning
La montée des menaces contre le machine learning

Les attaques contre les systèmes informatiques, et plus particulièrement les systèmes d’information,
sont particulièrement étudiées avec, par exemple, les attaques par déni de service. Depuis quelques
années, de nombreuses menaces visant directement un modèle de machine learning, et plus par-
ticulièrement les réseaux de neurones, ont été démontrées. L’existence de ces nouvelles attaques
implique que de nombreuses applications reposant sur des modules de machine learning, dont cer-
taines particulièrement critiques, sont aussi vulnérables vis-à-vis de menaces contre leur intégrité,
confidentialité ou disponibilité.

Concrètement, ces nouvelles attaques peuvent survenir à toutes les étapes du traditionnel ma-
chine learning pipeline : pendant la phase d’apprentissage (quand le modèle est entrainé sur un jeu
de données), ou pendant la phase d’inférence, quand le modèle est utilisé réellement pour effectuer
sa tâche. Les objectifs de ces nouvelles attaques sont assez divers. Premièrement, elles peuvent être
conçues pour altérer sérieusement le processus d’inférence du modèle. Il s’agit de tromper le modèle
en modifiant les entrées. Dans ce cas, l’intégrité du système est menacée. Deuxièmement, certaines
attaques visent à voler les informations concernant un modèle caché (par exemple, les poids d’un
réseau de neurones) ou les données avec lesquelles ce modèle a été entrainé. Cela peut concerner
des données privées ou confidentielles (des données médicales, financières, ...). Ce type de menace
est donc particulièrement préoccupant au regard de la vie privée, confidentialité et de la propriété
intellectuelle. Troisièmement, ces attaques peuvent viser la disponibilité d’un système utilisant un
modèle de machine learning. La disponibilité se réfère aux exigences du système (en termes de
performances et de qualité), comme le temps d’accès, les temps de traitement (apprentissage ou
inférence), ou la qualité moyenne des prédictions délivrées par le modèle.

Considérant les dangers causés par ces nouvelles attaques, il apparait donc comme urgent de
développer des méthodes de défense fiables et robustes. En conséquence, ces menaces sont de plus
en plus étudiées par les communautés de la sécurité et de l’intelligence artificielle, avec de plus en
plus d’efforts communs réalisés.

Exemples adverses

Parmi les menaces existantes, le phénomène des exemples adverses (adversarial examples) a reçu
une attention particulière [11]. Les exemples adverses sont des données d’inférence modifiées de
manière malicieuse (en leur ajoutant une perturbation adverse) pour tromper un modèle de machine
learning pendant la phase d’inférence. Par exemple, pour une tâche de classification, tromper
le modèle revient à ce que le modèle ne prédise pas la même classe pour l’exemple original et
sa version modifiée. Il est aussi important que les exemples soient modifiés de manière à ce

166

qu’un expert humain ne soit pas influencé par ces modifications (i.e. qu’il ne détecte pas de
phénomène malveillant). Le modèle prédit deux classes différentes pour l’exemple original et sa
version modifiée, tandis que l’humain prédit la même classe pour les deux. Cette spécificité indique
donc que les exemples adverses peuvent être déployés dans de nombreux scenarios sans susciter
de suspicion. Par exemple, un panneau de signalisation routière peut être modifié subtilement en
lui ajoutant des autocollants dessus de manière bien précise, sans que cela attire l’attention car
le panneau reste largement reconnaissable. Cependant, ces autocollants vont tromper le système
d’une voiture autonome qui se repose sur un modèle de machine learning, comme ça a été montré
pour une voiture Tesla par un laboratoire MacAfee en 20205.

Les exemples adverses constituent actuellement la menace la plus étudiée parmi celles ciblant
les modèles de machine learning, et ce pour deux raisons. La première concerne le scénario le
plus répandu d’un adversaire qui veut attaquer un modèle qui est déjà déployé. La seconde raison
est que ce type d’attaque a les conséquences les plus graves parmi toutes les attaques existantes,
relativement à l’effort qu’elles requièrent. Par exemple, un simple panneau de signalisation adverse
peut entrainer un accident de la voie publique mortel.

Transferabilité

Le phénomène de transférabilité des exemples adverses aggrave sévèrement leur dangerosité. La
transférabilité des perturbations adverses désigne le fait qu’un exemple adverse élaboré pour
tromper un modèle peut être utilisé pour tromper un autre modèle entrainé pour réaliser la même
tâche. La transférabilité est donc un outil puissant pour un adversaire qui n’a pas un accès direct
au modèle ciblé. En effet, dans ce cas, l’adversaire peut entrainer son propre modèle de substitution
(appelé modèle substitut), ou utiliser un autre modèle déjà disponible, pour construire un exemple
adverse. Dans ce cas, le processus d’élaboration d’un exemple adverse est le plus favorable, car
toutes les informations du modèle substitut sont connues par l’adversaire. Cet exemple adverse
est ensuite transféré au modèle auquel l’adversaire n’a pas accès, pour le tromper. De plus, la
transférabilité des exemples adverses est d’autant plus dangereuse qu’elle existe entre différentes
techniques de machine learning [12] (par exemple d’une machine à vecteurs de support vers un
arbre de décision), et pour différents domaines (i.e. différentes tâches) [13].

Avec le déploiement croissant de modèles, le phénomène de transférabilité est en conséquence de
plus en plus préoccupant. Notamment, pour les tâches de vision par ordinateur, il est souvent le cas
qu’un même système soit utilisé à la fois pour un système distant et déployé sur des plateformes
matérielles. L’adversaire peut donc extraire de l’appareil des informations utiles qui l’aideront
dans la fabrication ou le choix du modèle substitut. Par exemple, l’adversaire peut utiliser une
attaque par canal auxiliaire, une méthode qui exploite les détails d’implémentation d’un modèle,
pour retrouver l’architecture d’un réseau de neurones [14].

A.2 Objectifs et sommaire

A.2.1 Objectifs de la thèse
Dans cette thèse, nous nous intéressons à la robustesse des réseaux de neurones aux exemples
adverses, pour une tâche de classification d’images. Plus précisément nous considérons deux prin-
cipaux axes de recherche. Le premier vise à une meilleure compréhension de la nature intrinsèque
des exemples adverses, et à expliquer la vulnérabilité des réseaux de neurones à ces attaques. Ce
premier axe, qui s’attache à mieux comprendre l’origine de la sensibilité des modèles à ce type
de menace doit permettre la conception de méthodes de défense originales. Le second axe de
recherche est orienté vers une réduction de l’impact des attaques adverses, en visant notamment
à réduire l’impact de la transférabilité des perturbations adverses. La transférabilite est un outil
très puissant pour un adversaire qui se trouve dans le scénario le plus commun où il n’a pas accès
directement au modèle ciblé. Etudier comment réduire ce phénomène de transférabilité est de ce
fait crucial.

A.2.2 Sommaire
Cette thèse est organisée de la manière suivante :

5https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-fo
r-autonomous-vehicles/

167

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/

• Dans un premier travail, nous étudions la vulnérabilité des réseaux de neurones aux exemples
adverses d’un point de vue fréquentiel. Ce travail se base sur des résultats de psychologie
cognitive indiquant que les basses fréquences ont une part prédominante dans le système de
classification humain. Nous étudions alors comment utiliser à bon escient des contraintes
fréquentielles lors de l’entrainement d’un réseau de neurones.

• Dans un second travail, nous considérons les méthodes de quantification, utilisées pour embar-
quer un réseau de neurones, qui sont de plus en plus employées en conséquence de la volonté
croissante de déploiement de modèles. Nous étudions l’impact de ce type de méthodes sur la
robustesse des modèles aux exemples adverses, et particulièrement sur leur transférabilité.

• Dans un troisième travail, nous analysons le phénomène de transférabilité, et proposons
un concept innovant pour le réduire, l’effet de leurrage. L’effet de leurrage vise à tromper
l’adversaire, qui va sélectionner certaines caractéristiques du modèles substitut à attaquer,
qui ne sont pas celles qu’il aurait fallu choisir pour tromper le modèle cible. L’effet de
leurrage est simple d’implémentation, et nous proposons trois cas d’usages concrets pour son
utilisation, dont la détection du processus d’élaboration d’exemples adverses.

• Dans un dernier travail, nous montrons comment les perturbations adverses peuvent être
utilisées pour attaquer la disponibilité d’un système qui se repose sur un modèle de machine
learning. De manière générale, cette étude tisse un lien entre intégrité et disponibilité, et
souligne le fait que la précision d’un modèle n’est pas suffisante pour un déploiement sécurisé
de celui-ci.

A.3 Sécurité des modèles de machine learning
Dans cette section, nous présentons les différentes menaces qui peuvent cibler un modèle de machine
learning.

A.3.1 Processus de développement d’un modèle
Quelque soit la technique de machine learning utilisée, le développement d’un modèle pour une
tâche supervisée suit toujours le même processus. Dans un premier temps, des données brutes
sont collectées. La seconde étape consiste en leur traitement pour construire un jeu de données,
qui sera utilisé pour entrainer le modèle de machine learning. La troisième étape consiste est
l’entrainement du modèle avec le jeu de données obtenu suite à l’étape précédente. Cette étape
revient à chercher le meilleur modèle en termes d’erreur en généralisation. La quatrième étape est
le déploiement du modèle dans un système. Le modèle déployé fait maintenant partie du système,
et est totalement opérationnel. Par ailleurs, le déploiement d’un modèle de machine learning peut
être un processus continu. Par exemple, dans le cas du online learning, de nouvelles données sont
obtenues de manière continue pour affiner les paramètres du modèle.

A chaque étape, de la collecte de données au moment où le modèle est mis en service, différentes
attaques sont réalisables.

A.3.2 Attaques pendant l’entrainement
Les attaques qui surviennent pendant l’entrainement d’un modèle ont pour but d’influencer de
manière malicieuse le processus d’entrainement, pour au final causer des conséquences précises sur
le modèle appris. Ce type d’attaque est réalisable selon deux scénarios.

Premièrement, il peut survenir quand la phase d’entrainement est réalisée sur un service cloud.
Dans ce cas, un adversaire qui arrive à pénétrer le système responsable de l’entrainement peut
modifier le jeu de données d’entrainement pour réaliser une attaque.

Le second scenario survient quand la collecte des données et la phase de traitement sont
privées. Il nécessite un adversaire bien plus puissant que dans le scénario précédent. En effet,
puisque l’adversaire est supposé pouvoir interférer durant la phase d’apprentissage, il implique que
l’adversaire est un des acteurs du projet de développement du modèle ciblé.

Data poisoning

Pour détériorer la qualité d’un modèle déployé, un adversaire peut monter une attaque de data poi-
soning, soit en injectant de nouvelles données empoisonnées dans le jeu de données d’entrainement
du modèle, soit en modifiant de manière malicieuse des données existantes. Le data poisoning vise

168

à diminuer la précision d’un modèle pour certains exemples bien précis [19,20], ou pour tout le jeu
de données de test [21–23]. Dans ce cas, le modèle déployé peut être particulièrement imprécis,
ce qui l’empêche d’être utilisé par un système. En effet, si le modèle ne satisfait pas certains
prérequis en termes de performances relatives à la tâche (par exemple la précision), il peut être
déclaré comme non-fiable et la disponibilité du système qui se repose sur ce modèle est compromise.
En conséquence, le data poisoning peut être particulièrement dommageable dans ces applications
critiques telles que la santé, où le système peut être en charge de la prise de décision critiques.

Backdoor attacks

Quand le but de l’adversaire est de faire en sorte que le modèle ciblé ait des comportements
spécifiques pour certains exemples, un adversaire peut réaliser une backdoor attack. L’adversaire
intervient pendant la phase d’entrainement pour faire en sorte que le modèle se comporte d’une
façon particulière à l’inférence pour certains exemples dans lesquels sont intégrés des mécanismes de
déclenchement appelés triggers. Pour que le modèle réagisse quand il rencontre ses mécanismes de
déclenchement, l’adversaire doit inclure dans le jeu d’entrainement des données avec ce mécanisme
et le comportement désiré. Les exemples avec le mécanisme de déclenchement sont des exemples
normaux qui contiennent des signaux spécifiques sur lesquels le modèle cible est entrainé à produire
un certain comportement. ce type de menace est particulièrement dangereux pour les tâches
de classification, pour deux raisons. Premièrement, par définition, ce genre d’attaque autorise
l’adversaire à causer des mauvaises classifications à l’inférence. Deuxièmement, quand le modèle
est déployé, tant qu’aucun exemple avec un mécanisme de déclenchement ne lui est présenté, son
comportement paraît normal.

A.3.3 Attaques pendant l’inférence
Les attaques à l’inférence comprennent toutes les attaques qui peuvent survenir une fois que le
modèle est appris et déployé. La variété d’adversaires qui réalisent ce type d’attaques est bien
plus grande que pour les attaques pendant l’entrainement. En effet, alors que pour les attaques
pendant l’entrainement, cela était limité aux adversaires ayant accès à la phase d’entrainement du
modèle, cela implique maintenant tous les possibles adversaires qui ont accès au modèle déployé.
Ce modèle peut être déployé via des APIs distantes, ou embarqué sur une cible matérielle comme
un téléphone mobile. En fonction du scénario, l’adversaire aura une connaissance plus ou moins
grande des détails du modèle à attaquer : technique de machine learning utilisée, connaissance des
paramètres du modèle, etc.

Inversion de modèle

Considérant un modèle déjà déployé, le but d’un adversaire peut être de trouver des informations
sensibles des données d’entrée. Pour ce faire, un adversaire peut réaliser une attaque d’inversion
de modèle, pour retrouver une très bonne approximation de l’information sensible visée. Etant
donné une certaine information d’une donnée d’entrée que l’adversaire veut retrouver, avec ce type
d’attaque, l’adversaire a uniquement besoin d’être capable d’obtenir la réponse du modèle pour
cette entrée, et/ou déjà avoir une connaissance d’informations non-sensibles de cette donnée. Ce
type d’attaque constitue une grande menace à la confidentialité et à la vie privée, car un modèle de
machine learning peut être entrainé sur des données sensibles pour réaliser une tâche. Ces données
sensibles peuvent concerner la vie privée, avec par exemple des informations sur l’identité d’une
personne, ou certaines de ses habitudes [35–38].

Extraction de données

Considérant un modèle déployé, l’adversaire peut vouloir retrouver des informations concernant les
données avec lesquelles le modèle a été entrainé, et ce de manière exacte. Pour ce faire, l’adversaire
peut réaliser une attaque d’extraction de données [41, 42]. Tandis que les attaques d’inversion de
modèle permettent de retrouver des informations sensibles pour toute donnée d’entrée soumise,
avec une grande précision, même si la donnée ne fait pas partie du jeu de données d’entrainement,
les attaques d’extraction de données permettent de récupérer de manière exacte des parties du jeu
de données d’entrainement. Les attaques d’extraction de données exploitent en fait le phénomène
de mémorisation des modèles de machine learning : les modèles ont tendance à mémoriser de
manière exacte certaines parties du jeu de données d’entrainement. La mémorisation se produit
au début de la phase d’entrainement, et la mémorisation des classes, par exemple, est nécessaire

169

pour une bonne généralisation [40]. Les attaques d’extraction de données sont donc une menace
pour la confidentialité des données d’entrainement du modèle.

Vol de modèle

Quand le but de l’adversaire est de réaliser de la rétro-ingénierie sur un modèle de machine learning,
il peut réaliser une attaque dite de vol de modèle [45–47]. Ce type de menace est préoccupant pour
deux raisons. Premièrement, cela pose des problèmes de confidentialité et de propriété intellectuelle.
En effet, le vol de modèle permet de copier un modèle existant sans avoir à supporter les mêmes
coûts que le créateur du modèle, à savoir les coûts en recherche et développement et les coûts liés
à la phase d’entrainement. Grâce à ce genre d’attaque, un adversaire peut utiliser un modèle sans
avoir à payer pour, si le modèle de base n’était disponible que via un accès payant par exemple. Un
adversaire peut aussi copier un modèle et le mettre en vente de son côté, ce qui ause des problèmes
de propriété intellectuelle et de concurrence déloyale. Deuxièmement, le vol de modèle facilite la
réalisation de différents types d’attaques contre un modèle caché. Quelque soit le type d’attaque
que l’adversaire veut réaliser, avoir une connaissance plus détaillée du modèle à attaquer facilite
la réalisation de cette attaque. L’adversaire peut utiliser le vol de modèle pour obtenir un modèle
substitut du modèle ciblé, et s’entrainer à réaliser l’attaque sur le modèle substitut avant de la
réaliser sur le modèle ciblé.

Membership inference

Pour déterminer si un exemple particulier fait partie ou non du jeu d’entrainement d’un modèle,
un adversaire peut réaliser une attaque de membership inference [55, 56]. Ce type d’attaque peut
donner lieu à des divulgations graves d’informations personnelles. En effet, savoir qu’un individu
fait partie du jeu de données d’entrainement peut permettre de déduire des informations sensibles
de sa vie privée. Par exemple, un modèle de machine learning peut être entrainé pour prédire une
dose de médication, en se basant sur des données de personnes souffrant d’une certaine maladie.
Considérant une donnée particulière, le fait de déterminer que cette donnée faisait partie du jeu
d’entrainement implique que la personne associée à cette donnée souffre de cette maladie. Les
modèles entrainés avec des données médicales et de santé sont particulièrement concernés par ce
type d’attaque. [50]. De plus, les données d’un modèle qui a servi de modèle de base pour du
transfer learning peuvent aussi être menacées par ce type d’attaques [51].

Exemples adverses

Quand le but de l’adversaire est d’attaquer directement le processus d’inférence d’un modèle, il
peut utiliser les exemples adverses [11,64]. Ce type d’attaque consiste à ajouter une perturbation
adverse à un exemple normal pour tromper un modèle. La perturbation adverse se doit d’être
imperceptible ou d’apparence bénigne, afin de ne pas être détectée par un humain. Le phénomène
des exemples adverses tire son origine du fait que les modèles de machine learning utilisent des
caractéristiques différentes de celles que les humains utilisent [57]. Notamment, les modèles se
reposent sur certains signaux dans une image, auxquels les humains ne sont pas sensibles. Perturber
ces signaux permet donc à un adversaire de tromper un modèle de machine learning de manière
totalement anodine pour un observateur humain. Puisque ce type d’attaque permet de faire en
sorte que le modèle donne des prédictions erronées pour un exemple précis à l’inférence, c’est une
menace très sérieuse pour l’intégrité du processus de prédiction des modèles de machine learning.
Par exemple, un adversaire peut faire en sore d’inclure des perturbations adverses dans l’apparence
de lunettes pour passer outre un système de reconnaissance faciale [58]. Un adversaire peut réaliser
des exemples adverses pour des images dans des conditions environnementales changeantes et en
tenant compte des différents points de vue possibles [59]. La Figure A.1 propose l’illustration d’un
exemple adverse.

Les différentes attaques qui peuvent survenir, que ce soit pendant la phase d’entrainement ou
la phase d’apprentissage, sont rappelées dans la Figure A.2.

A.3.4 Confidentialité, Intégrité et Disponibilité
Les attaques présentées ci-dessus peuvent être vues sous l’angle de la triade CIA (Confidentialité,
Intégrité et Accessibilité/Disponibilité), qui est un paradigme très connu dans le domaine de la
sécurité de l’information. Ces trois concepts permettent de recouvrir de manière exhaustive les
différents aspects qui doivent être protégés dans un système.

170

Figure A.1: Illustration d’un exemple adverse, tiré de [11]. (Gauche) L’image originale est prédite
comme un bus d’écoliers. (Milieu) La perturbation adverse, amplifiée pour une meileure visualisa-
tion. (Droite) L’exemple adverse résultat, prédit par le modèle cible comme une autruche.

Phase d'inférence

Phase d'entrainement

Data poisoning
- injection de données
corrompues
- modification de données
existantes

Backdoor attacks
- injection de données avec un
mécanisme de déclenchement

(modèle déployé)
Exemples adverses
- Exemples malicieux

Vol de modèle
Inversion de modèle
Extraction de données
Membership inference
- Requêtes malicieuses

(modèle entrainé)

Figure A.2: Differentes manières d’attaquer un modèle de machine learning

Confidentialité. Ce concept fait référence à la protection des données confidentielles, pour éviter
une divulgation de celles-ci. Les données confidentielles peuvent être de l’ordre du domaine médical,
financier, de la vie privée ou encore relatives à la propriété intellectuelle (brevets, etc.). Dans le
cas d’un modèle de machine learning, la confidentalité d’informations sensibles est soit relative aux
données, soit au modèle en lui-même. Ainsi, l’inversion de modèle, l’extraction de données, les
attaques membership inference ou le vol de modèle menace la confidentialité d’un modèle. Pour
les deux premières attaques, la confidentialité des données est en jeu. Pour le vol de modèle, la
propriété intellectuelle est menacée.

Intégrité. Ce concept fait référence à la protection contre toute modification malicieuse qui a
pour but de compromettre la complétion d’une tâche. Dans le cas d’un modèle de machine learning,
l’intégrité fait référence à l’intégrité du processus d’inférence. Un adversaire qui réalise une attaque
contre l’intégrité d’un modèle cible son processus d’inférence car il a pour but de compromettre
l’intégrité de la prédiction. Les attaques backdoor et les exemples adverses menacent l’intégrité
d’un modèle de machine learning.

Accessibilité. Le concept d’accessibilité désigne la capacité à garder un système accessible
uniquement aux utilisateurs autorisés. Le but d’un adversaire qui cible l’accessibilité d’un système
est de diminuer l’accès à ce système, ou de dégrader la qualité de cet accès, relativement à cer-
taines exigences définies pour ce système. De manière importante, les attaques contre l’accessibilité
d’un système ne doivent pas être considérées uniquement à l’échelle d’un modèle, mais en termes
de système global qui contient un modèle, contrairement aux attaques contre la confidentialité ou
l’intégrité d’un modèle. En effet, comme mentionné dans [65] : “L’accessibilité n’est pas bien définie
pour un modèle considéré de manière isolé, mais fait sens pour un système basé sur du machine
learning dans son ensemble”. Par exemple, considérant des exigences de latence, la disponibilité
peut être menacée par des attaques par déni de service, qui vont complètement bloquer l’accès au
système, ou par d’autres attaques qui vont augmenter le temps de réponse de la part du système.
Un autre exemple, considérant des exigences de qualité, est celui d’un adversaire qui va cibler des

171

exigences d’espace mémoire ou de rapidité de calcul. Les performances relatives à la tâche à réaliser
par le système peuvent aussi être menacées, pour compromettre un usage fiable du système. Ainsi,
la précision du modèle peut être en jeu. Dans ce cas, les attaques contre l’accessibilité d’un système
présentent un lien avec les attaques contre l’intégrité, mais diffèrent fortement dans leur concept.
En effet, dans le cas d’une attaque de data poisoning ou d’exemples adverses, la modification des
scores de confiance est un but en soi pour réduire la précision sur des exemples particuliers. Dans
le cas d’une attaque contre l’accessibilité concentrée sur des performances relatives à la tâche à
réaliser, le but final est d’impacter le comportement du système dans lequel le modèle se trouve.
Les attaques de data poisoning qui visent une baisse de précision pour tous les exemples sont une
forme d’attaque contre l’accessibilité d’un système.

La Figure A.3 propose un résumé des différentes attaques présentées précédemment, et l’intégrité,
la confidentialité, ou l’accessibilité d’un réseau de neurones

A.4 Résumé des contributions

A.4.1 Positionnement et préliminaires
Dans cette thèse, nous étudions les exemples adverses pour une tâche de classification d’images.
Plus précisément, nous concentrons notre travail sur les exemples adverses digitaux, et non les
exemples adverses physiques. Les exemples adverses digitaux sont relatifs aux perturbations qui
interviennent directement au niveau des pixels considérés en entrée du modèle attaque. Pour at-
taquer une API par exemple, un adversaire va perturber directement les pixels d’une image. Au
contraire, pour les exemples adverses physiques, les perturbations adverses sont réalisées directe-
ment sur des objets réels. Par exemple, un adversaire va modifier un panneau de signalisation pour
tromper le système de reconnaissance d’une voiture autonome.

Les exemples adverses pour une tâche de classification d’image se doivent soit d’apparaître
bénins (la perturbation adverse est imperceptible). En pratique, le caractère bénin ou d’imperceptibilité
ne peut pas être traduit directement. De ce fait, un proxy mathématique est défini de telle sorte
que minimiser ce proxy revient à diminuer le caractère suspect de la perturbation. Ce proxy est
aussi utilisé pour définir la capacité de l’adversaire, c’est-à-dire à quel point un adversaire peut
modifier une image x pour réaliser un exemple adverse x′ = x+ δ, avec x un image, δ la perturba-
tion adverse, et x′ l’image adverse résultante. Dans la grande majorité des travaux sur les exemples
adverses, le proxy utilisé est la norme lp: la capacité de l’adversaire est une borne supérieure pour
‖δ‖p. Plus précisément la norme l∞ [73], la norme l2 [105], la norme l1 [106] ou encore la norme
l0 [107] sont couramment utilisées. Quelques travaux considèrent la distance de Wasserstein [83],
les rotations et translations [60], ou encore les changements de couleur [61].

Considérant un modèle cible, deux grands types de méthodes existent pour construire un ex-
emple adverse. Le premier type de méthode peut être utilisé par un adversaire quand il a un accès
complet au modèle (scénario boite blanche). Dans ce scénario, l’adversaire a une connaissance
totale du modèle à attaquer: architecture, valeur des paramètres, etc. De manière importante, il
peut calculer les gradients (de la fonction de coût, de la fonction de sortie, etc.) du réseau par
rapport à son entrée. Cela lui permet d’utiliser des attaques dites gradient-based qui se basent sur
les calculs des gradients pour construire un exemple adverse. Le second type de méthode d’attaque
est utile à un adversaire qui ne peut pas calculer les gradients du modèle cible. Ce type de scénario

Tromper le modèle

La prédiction n'est pas celle
attendue

- Exemples adverses
- Data poisoning
- Backdoor attacks

Cas critiques :
Véhicules autonomes : panneau
"stop" reconnu comme un panneau
"130 km/h"
Détection de malwares

Extraction d'information

Vol de données (médicales, biometriques, ...)
ou de modèles (architecture, paramètres, ...)

- Vol de modèle
- Inversion de modèle
- Membership Inference
- Extraction de données

Cas critiques :
Données médicales
Propriété intellectuelle

Rendre le systèmes inutilisable
Dégrader l'accès au système
(latence, consommation mémoire,
durée d'inférence, ...)

Disponibilité

C
on

fid
en

tia
lit

é
Intégrité

Figure A.3: Triade CIA (Confidentialité, Integrité, Disponibilité) pour un modèle de machine
learning, et les attaques correspondantes.

172

intervient quand l’adversaire n’a pas un accès total au modèle qu’il souhaite attaquer (scénario
boite noire). Ce type de scénario présente différentes nuances. L’adversaire peut n’avoir accès
qu’à la classe prédite, ou alors de manière plus souple, n’avoir accès qu’aux scores de confiance
pour chaque classe prédite. Dans le premier cas, l’adversaire pourra utiliser des attaques dites
decision-based, et dans le second cas des attaques dites score-based.

A.4.2 Objectifs
Pour mieux comprendre en détails la cause de la vulnérabilité d’un réseau de neurones aux exemples
adverses, nous cherchons à faire de nouveaux liens entre la robustesse aux exemples adverses et la
manière dont le système de vision humain traite les fréquences. Notamment, nous tirons avantage
du fait que les humains se reposent principalement sur les composantes basses fréquences d’une
image pour prendre une décision.

Dans le but de trouver des méthodes pour réduire la transférabilité des perturbations adverses,
nous étudions les raisons de cette transférabilité, et en déduisons des méthodes de défense adaptées
au scénario de transférabilité. Pour ce faire, nous commençons par une évaluation de la robustesse
des réseaux de neurones déployés avec des méthodes de quantification et l’impact de ces méth-
odes sur la transférabilité. Ensuite, nous développons une méthode innovante pour restreindre la
transférabilité entre deux réseaux de neurones.

De plus, au regard des différentes menaces qui peuvent cibler un modèle de machine learning,
nous nous intéressons aux nouvelles menaces potentielles qui pourraient être liées à celles existantes.
Plus précisément, nous formalisons une nouvelle attaque qui vise à détériorer l’accès à un système
qui se repose sur un modèle de machine learning. De manière intéressante, nous montrons comment
ce type d’attaques peut être réalisé en tirant parti des méthodes de construction des exemples
adverses.

A.4.3 Analyse fréquentielle des perturbations adverses

Publication proposée pendant la thèse:

• [174] Bernhard, R., Moellic, P. A., Mermillod , M., Bourrier, Y., Cohendet, R., Solinas, M.,
Reyboz, M. Impact of Spatial Frequency Based Constraints on Adversarial Robustness. IEEE
International Joint Conference on Neural Networks (2021). 2021.

Dans ce premier travail, nous réalisons une analyse des exemples adverses au niveau fréquen-
tiel. Cela permet notamment de mieux comprendre la différence de sensibilité aux perturbations
adverses entre les humains et les réseaux de neurones. En effet, la vulnérabilité des réseaux de
neurones standard aux exemples adverses vient du fait que les modèles exploitent sur des caractéris-
tiques différentes de celles exploitées par les humains [57, 113, 114, 175]. De manière intéressante,
pour les modèles robustes, il existe un lien fort entre robustesse et interprétabilité : les caractéris-
tiques sur lesquelles se reposent les réseaux de neurones robustes sont interprétables, et vice versa.
Plus un modèle est robuste, plus il va se reposer sur des caractéristiques interprétables par des
humains [117,118,171,176].

Le lien entre robustesse et interprétabilité pour les réseaux de neurones a été étudié au niveau
des fréquences par Zhang et al. [114]. Les auteurs montrent via des expériences que pour des
modèles robustes, les concepts basse fréquences comme la forme sont plus importants que des
concepts moins interprétables liés aux hautes fréquences.

Pour les humains, des résultats expérimentaux en psychologie cognitive montrent l’importance
des basses fréquences dans la prise de décision [177–179]. De ce fait, une hypothèse raisonnable
serait qu’un modèle entrainé pour exploiter de manière quasi-exclusive les basses fréquences serait
alors robustes contre les exemples adverses. Cette hypothèse a déjà été exploitée dans des travaux
qui tirent parti de méthodes de pré-traitement [180–182], ou qui forcent un modèle à exploiter
l’information contenue dans les bits de poids fort [172]. Cependant, ces méthodes restent agnos-
tiques des propriétés fréquentielles spécifiques des jeux de données en jeu.

Notre contribution dans ce travail a été d’étudier en général le lien entre la robustesse contre
les exemples adverses et les propriétés spécifiques des données au niveau fréquentiel.

Dans un premier temps, nous nous sommes intéressés au lien entre les fréquences contenues
dans les jeux de donnée et l’information sur lesquels se reposaient les réseaux de neurones entrainés
sur ces jeux de donnée. Les résultats des expériences menées ont permis de tirer les conclusions
suivantes :

173

• En étudiant des modèles appris sur des jeux de données filtrés en basse et haute fréquence,
nous montrons comment les fréquences sur lesquelles se reposent les modèles sont influencées
par la localisation de l’information dans le spectre fréquentiel. Notamment, nous montrons
qu’en fonction du jeu de données, un modèle appris sur ces données peut être précis ou pas
sur ce même jeu de donnée filtré en basse ou haute fréquence.

• Les modèles appris sur des jeux de donnée filtrés en basse et haute fréquence présentent
des sensibilités différentes au bruit localisé dans des fréquences spécifiques. Notamment, les
modèles appris sur des jeux de donnée filtrés pour ne garder que les basses fréquences ne
présentent que très peu de sensibilité au bruit localisé dans les hautes fréquences.

• Les perturbations adverses exploitent tout le spectre de fréquence, et ne sont pas localisées
uniquement dans les hautes fréquences.

Dans un second temps, nous utilisons les résultats précédents pour mieux comprendre comment
apporter de la robustesse aux modèles en utilisant des contraintes fréquentielles lors de la phase
d’entrainement. Notamment, nous étudions sous quelles conditions, telle ou telle contrainte, con-
centrée sur les basses et hautes fréquences, peut être source de robustesse contre les perturbations
adverses. Nous montrons notamment que:

• Une contrainte fréquentielle induit des niveaux de robustesse très différents en fonction des
caractéristiques fréquentielles du jeu de données. Par exemple, la même contrainte forçant
un modèle à se reposer sur les basses fréquences peut donner lieu à une différence en termes
de précision sur des exemples adverses de l’ordre de 41%, avec certains modèles ne présentant
aucune robustesse.

• Nous montrons qu’une contrainte forçant un modèle à se reposer sur les basses fréquences
donne lieu à de la robustesse si le modèle se repose se base de manière prédominante sur les
basses fréquences, et ne présente pas de sensibilité au bruit localisé dans les hautes fréquences.

• Pour les modèles se reposant sur de l’information contenu dans tout le spectre fréquentiel,
nous identifions des combinaisons de contraintes, mêlant basses et hautes fréquences, qui
peuvent apporter de la robustesse.

• On montre que les contraintes utilisées peuvent être utilisées de manière intéressante en
combinaison avec d’autres méthodes de défense existantes.

Ce travail a permis de bien appréhender l’importance des propriétés fréquentielles des données
en jeu dans la robustesse contre les exemples adverses. Tandis que la littérature existante est
concentrée sur des concepts tels que la forme, le contour, ou les textures, nous proposons une
étude plus générale directement au niveau des fréquences. Les résultats de ce travail et les conclu-
sions de plusieurs travaux en psychologie cognitive mettent en lumière l’importance de considérer
les caractéristiques fréquentielles de l’information dans le développement de futures méthodes de
défense.

A.4.4 Impact de la quantification sur la robustesse et la transférabilité

Publication proposée pendant la thèse:

• [188] Bernhard, R., Moellic, P. A., Dutertre, J.-M. Impact of low-bitwidth quantization on
the adversarial robustness for embedded neural networks. IEEE International Conference on
Cyberworlds (CW). 2019.

Au vu des performances qui peuvent être atteintes grâce aux modèles de machine learning, il
existe une volonté croissante de déployer ces modèles sur des architectures matérielles. Cependant,
ces appareils s’accompagnent de contraintes en termes d’espace mémoire et de rapidité en inférence.
Par exemple, un microcontrôleur ARM Cortex-M4 comme le STM32F4 n’a que 384 ko de mémoire
vive et 2Mo de mémoire flash 6. De plus, pour des appareils comme des téléphones mobiles ou
des objets connectés comme des capteurs industriels, la consommation d’énergie est un facteur
critique. Enfin, la rapidité en inférence est nécessaire pour éviter tout problème de latence.

Trouver des solutions pour embarquer des réseaux de neurones dans ces circuits de type mi-
crocontrôleur est donc nécessaire. Certaines APIs comme l’ API Android Neural Network 7 ont

6https://www.st.com/en/microcontrollers-microprocessors/stm32f4-series.html
7https://developer.android.com/ndk/guides/neuralnetworks

174

déjà été développées pour permettre de déployer efficacement des réseaux de neurones entrainés
avec des frameworks répandus comme Tensorflow 8. L’entreprise ARM, de son côté, propose un
kit de développement logiciel pour faire le lien entre un modèle de machine learning et des CPUs
ARM (ou GPUs) 9. D’un côté plus théorique, deux pistes différentes sont étudiées pour répondre
aux problématiques d’espace mémoire et de temps en inférence. La première consiste à réduire
le nombre de paramètres [189–193]. La seconde piste étudiée concerne les méthodes de quantifi-
cation [194–203]. La quantification consiste à réduire le nombre de bits utilisé pour stocker les
valeurs des paramètres et/ou des sorties de différentes couches d’un réseau de neurones. Cette
solution permet donc de diminuer l’espace mémoire nécessaire pour stocker tous les paramètres du
modèles, ainsi que d’accélérer leur processus d’inférence.

Notre contribution dans ce travail a été d’étudier la robustesse des réseaux de neurones quan-
tifiés, en considérant divers scénarios. Le premier scénario concerne un réseau de neurones quantifié
qu’un adversaire va cibler directement avec différentes méthodes d’attaque. Contrairement à ce
qui avait été montré dans la littérature scientifique, nous montrons que la quantification n’apporte
aucune vraie robustesse contre les exemples adverses. Plus précisément, la quantification cause
l’apparition du phénomène de gradient masking, qui induit une fausse impression de sécurité. En
effet, le gradient masking empêche certaines méthodes d’attaque de trouver un exemple adverse ef-
ficace pour tromper le modèle, en rendant les gradients inexploitables. D’une part, nous montrons
comment certaines attaques gradient-based (c’est-à-dire qui se reposent du le calcul de gradients)
souffrent particulièrement du gradient masking causé par la quantification. Certaines autres at-
taques gradient-based, moyennant un travail de recherche sur les paramètres optimaux, arrivent à
trouver des exemples adverses qui trompent le modèle. D’autre part, des attaques decision-based
(c’est-à-dire utilisant les scores de confiance), reposant sur une approximation du gradient, arrivent
à trouver des exemples adverses efficaces aussi facilement que pour un modèle standard. La quan-
tification n’apporte alors aucune robustesse, que ce soit pour un adversaire dans un scénario boîte
blanche ou boîte noire.

Dans un deuxième temps, nous étudions la robustesse des réseaux de neurones quantifiés dans
un scénario d’attaque par transférabilité, qui est un phénomène au coeur de cette thèse. Plus
précisément, nous considérons des modèles quantifiés à des niveaux différents (c’est-à-dire différents
nombres de bits), et étudions la transférabilité des perturbations adverses entre ces modèles. Ce
travail a permis de montrer que les perturbations adverses se transfèrent mal entre modèles avec
différents niveaux de quantification. Pour expliquer ce résultat, nous mettons en lumière deux
phénomènes. Le premier concerne le fait que les gradients ne sont pas alignés entre les différents
modèles. Ainsi, la "direction" qu’il faut prendre pour trouver un exemple adverse sur un modèle
n’est pas celle qu’il faudrait prendre pour tromper un autre modèle. Deuxièmement, nous montrons
de manière théorique comment un certain niveau de quantification peut ruiner l’effet adverse d’un
exemple adverse calculé avec un autre niveau de quantification.

Enfin, en nous basant sur les résultat précédents, nous construisons une défense contre les
exemples adverses qui repose sur l’utilisation d’un ensemble de modèles avec des niveaux de quan-
tification différents.

Ce travail a permis de mettre à jour la vulnérabilité des modèles de machine learning déployés
avec des méthodes de quantification. Nous avons montré que la transférabilité entre différents
modèles quantifiés avec des niveaux de quantification différents est faible, ce que l’on explique par
deux phénomènes. En conséquence de ces résultats, nous développons une défense basée sur un
ensemble de plusieurs modèles quantifiés avec différents niveaux de quantification.

De manière générale, ce travail souligne le fait que les caractéristiques algorithmiques des mod-
èles qui sont déployés doivent faire l’objet d’une étude particulière vis-à-vis des problématiques de
robustesse. Ceci étant d’autant plus appuyé que des modèles de réseaux de neurones vont être de
plus en plus déployés sur des architectures matérielles.

A.4.5 Leurrage de perturbations adverses transferées

Publication proposée pendant la thèse:

• [214] Bernhard, R., Moellic, P. A., Dutertre, J.-M. Luring of transferable adversarial pertur-
bations in the black-box paradigm. IEEE International Joint Conference on Neural Networks
(2021). 2021.

8https://www.tensorflow.org/
9https://developer.arm.com/products/processors/machine-learning/arm-nn

175

Considérant un modèle de machine learning pouvant être attaqué, la situation la plus répandue
est celle d’un adversaire dans un scénario boîte noire. Notamment, ce type de scénario est relatif
à tous les services à bases de machine learning disponibles via des APIs distantes. L’adversaire
n’a pas un accès total au modèle, et ne peut pas calculer ses gradients. De ce fait, il doit utiliser
des attaques de type decision-based, score-based ou le phénomène de transférabilité. Concernant
les deux premiers types d’attaques, elles sont potentiellement soumises à la limitation venant du
nombre de requêtes à effectuer au modèle cible pour obtenir un exemple adverse (qui peut se
compter en milliers). Lorsque les requêtes sont tarifées, le coût pour monter ce type d’attaque
peut être prohibitif. De plus, ce type de méthode d’attaque se reposant sur des requêtes similaires
soumises au modèle, le processus d’attaque peut facilement être détecté [136]. Il peut donc être
plus simple pour un adversaire d’utiliser le phénomène de transférabilité : construire un exemple
adverse sur un modèle substitut et le transférer au modèle cible. La transférabilité apparaît donc
comme une des menaces les plus préoccupantes en termes de sécurité du machine learning. Ce
phénomène est d’autant plus aggravé par le fait que le même modèle peut être déployé dans des
environnements avec des contraintes de sécurité différentes. Un modèle peu protégé peut alors
être utilisé comme modèle substitut pour attaquer via la transférabilité le même modèle dans un
système plus sécurisé.

Dans ce travail, nous proposons une nouvelle méthode pour limiter la transférabilité des per-
turbations adverses entre deux modèles de réseaux de neurones. Etant donné un modèle cible
M qu’un défenseur veut protéger contre les exemples adverses, nous proposons une méthode qui
permet d’entrainer un modèle T , c’est-à-dire une version augmentée du modèle M , telle que les
perturbations adverses ne se transfèrent pas de T à M . De plus, entrainer T requiert uniquement
de pouvoir faire des requêtes à M , et ainsi ne nécessite pas de jeu de données labellisé. Notre
méthode est donc applicable pour n’importe quel modèle déjà entrainé.

Le modèle T consiste en l’augmentation du modèle M avec un réseau de neurones P placé en
aval, pour avoir T = M ◦ P . Pour que les perturbations adverses ne se transfèrent pas de T à M ,
nous concevons l’effet de leurrage. Cet effet de leurrage tire parti de l’observation que le transfert
d’un exemple adverse entre deux modèle survient car les deux modèles utilisent des caractéristiques
similaires et vulnérables [57]. En conséquence, on entraine P de sorte que:

• les caractéristiques vulnérables de T et M soient différentes, ou alors ne se comportent pas
de la même façon face à une attaque. Dans ce dernier cas, les modèles T et M prédisent
deux classes différentes pour un exemple adverse x′, ce qui permet sa détection.

• les modèles T et M prédisent la même classe pour des exemples normaux. Cela revient à ce
que les modèlesM et T partagent les mêmes caractéristiques utiles à la tâche de classification.

Il apparait donc nécessaire que la manière de prédire de M soit incluse dans P , à la fois pour
garder une bonne prédiction pour les exemples normaux, et pour qu’il puisse induire une prédiction
différente de M pour les exemples adverses. Pour réaliser ces deux objectifs, nous entrainons le
modèle P avec une fonction de coût, qui exploite l’ordre (en termes de grandeur) des scores de
confiance du modèle M . L’intuition derrière cette fonction de coût est la suivante. Si le modèle
M prédit; : "La classe A est la classe prédite, la classe B est la classe avec le second plus grand
score de confiance", cette fonction de coût correspond pour le modèle T à "La classe A est la classe
prédite, l’écart entre les scores de confiance pour les classes A et B est le plus grand possible".
De ce fait, les modèles M et T se reposent sur des concepts différents, et donc présentent des
vulnérabilités différentes. Notre méthode de défense est conceptuellement novatrice, dans le sens
où elle ne cherhe pas à rendre le modèle cible M plus robuste contre les exemples adverses, et où
elle ne cherche pas à anticiper l’attaque comme c’est le cas avec les méthodes de post-processing
par exemple.

Une fois cette effet de luring vérifié expérimentalement, nous proposons trois scénarios dans
lesquels on peut en tirer parti:

• Le scénario qui correspond à la manière dont l’effet de leurrage a été conçu. Un défenseur
possède un modèle M totalement caché de l’adversaire, qui ne peut pas lui soumettre de
requête. Le défenseur souhaite mettre à disposition du public un modèle T tel que les
exemples adverses ne se transfèrent pas de T à M . Dans ce cas, il construit T de sorte que
T = M ◦ P avec P entrainé pour causer l’effet de leurrage. Le modèle T est disponible dans
un scénario boîte noire, pour ne pas que son architecture soit disponible, ce qui permettrait
à l’adversaire de séparer T de M . Nous montrons de plus que cette méthode est compatible
avec des méthodes de défense déjà existantes.

176

• Un scénario plus souple où le défenseur veut distribuer une version publique de son modèle
M , qui soit totalement disponible, c’est-à-dire disponible dans un scénario boîte blanche.
Nous décidons d’inclure l’effet de leurrage dans un modèle M ′, qui a la même architecture
que le modèle M . Pour ce faire, nous considérons au départ les mêmes paramètres pour le
modèle M ′ que pour le modèle M , et entrainons les premières couches du modèle M ′ avec la
même fonction de coût que le modèle P du scénario précédent.

• Un scénario de détection pour un système distant composé des deux modèles M et M ′,
auquel on peut faire des requêtes et qui renvoie la réponse du modèle M ′ (l’effet de leurrage
fonctionnant du modèleM ′ vers le modèleM). En effet, un des objectifs de l’effet de leurrage
est de faire en sorte que M ′ et M prédisent deux classes différentes pour un exemple adverse
x′. Un adversaire qui attaquerait ce système avec des attaques decision-based ou score-based
a besoin de faire des milliers de requête au système. Notre défense permet de rapidement
détecter ce processus de construction d’un exemple adverse en arrêtant de renvoyer une
réponse dès que M et M ′ prédisent deux classes différentes.

D’un point de vue général, ce travail ouvre une nouvelle voie de recherche pour les défenses
dans un scénario boîte noire, qui est la situation la plus rencontrée en termes de menace contre
l’intégrite du processus d’inférence d’un réseau de neurones.

A.4.6 Utilisation des perturbations adverses pour attaquer l’accessibilité
d’un système

Les menaces contre l’intégrité ou la confidentialité sont vues uniquement au niveau du modèle
de machine learning, de sa phase d’entrainement et d’inférence. Au contaire, les menaces contre
l’accessibilité ont une définition plus vaste et doivent être vues au niveau d’un système. Ce sys-
tème utilise un modèle de machine learning et présente des prérequis et contraintes relatifs à son
utilisation. Il est nécessaire de considérer les interactions entre le modèle et le système dans son
ensemble. Plus particulièrement, il faut voir ce type de menace au niveau du processus qui va
traiter l’entrée ou la sortie du modèle, pour prendre des décisions relatives à la raison d’être du
système. En conséquence, l’accessibilité d’un système est définie via les performances et prérequis
du système. Ces prérequis peuvent concerner une grande diversité de caractéristiques, comme le
temps de calcul (c’est-à-dire qu’il ne doit pas y avoir de latence), des limitations mémoire, la bande
passante du réseau, etc. Lors d’une attaque contre l’accessibilité d’un système, un adversaire peut
cibler l’accès au système, comme c’est par exemple le cas avec les attaques par déni de service, qui
exploitent des failles logicielles ou matérielles.

Dans le cas d’un système basé sur un modèle de machine learning, plusieurs méthodes d’attaque
ont déjà été proposées. Shumailov et al. ont conçu les sponge examples [66], qui visent les perfor-
mances d’un système. Cette attaque modifie l’entrée d’un modèle de réseau de neurones (à l’instar
des exemples adverses) pour augmenter la consommation énergétique et la durée en inférence d’une
cible matérielle sur laquelle est implémentée ce modèle. C’est à notre connaissance l’unique at-
taque qui vise l’accessibilité d’un système qui intervient lorsque le modèle sous-jacent est en phase
d’inférence. Shumailov et al. ont aussi proposé une attaque qui ralentit et détériore le processus
d’entrainement d’un modèle en modifiant l’ordre de soumission des données du jeu d’entrainement
au modèle [67]. De même, Grosse et al. [68] pervertissent le processus d’entrainement en jouant
sur l’initialisation des paramètres. Le data poisoning, quand il vise à réduire la précision du mod-
èle de machine learning, est aussi une attaque contre l’accessibilité d’un système, car il vise les
performances du système se reposant sur ce modèle en termes de précision.

Dans ce travail, nous formalisons une nouvelle attaque qui intervient lorsque le modèle de
machine learning est déjà entrainé. Elle vise à dégrader la qualité de la prédiction du modèle, sans
toutefois chercher à le tromper (à l’instar des exemples adverses). Cette attaque ne réduit pas la
précision du modèle, mais fait en sorte que le modèle renvoie des prédictions incertaines. Ce type
d’attaque est donc particulièrement préoccupant pour les systèmes qui, comme dans beaucoup de
domaines d’application, ne requièrent pas uniquement une bonne précision de le part du modèle
sous-jacent, mais aussi des prédictions de confiance.

Nous concevons deux cas possibles où un système considère que le modèle n’est pas assez
confiant dans la prédiction de la classe :

• Le score de confiance pour la classe prédite est trop faible.

• La différence de score de confiance entre la classe prédite et d’autres classes est trop faible.

177

Pour chacun de ces scénarios, nous montrons comment réaliser l’attaque en tirant parti d’une
méthode d’attaque existante pour les exemples adverses. De manière intéressante, nous montrons
que des modèles protégés contre les exemples adverses avec des méthodes destinées à augmenter
leur robustesse, restent vulnérables à ce type d’attaque.

Au-delà de la nouvelle menace contre l’accessibilité d’un système que nous introduisons, ce
travail permet de mettre en lumière des liens existants entre la robustesse d’un modèle aux attaques
contre l’intégrité et la robustesse d’un système aux attaques contre son accessibilité. De plus, ce
travail illustre comment la connaissance d’un mécanisme derrière une menace (intégrité) peut être
utilisée pour concevoir un tout autre type d’attaque.

A.5 Conclusion
Le premier objectif de cette thèse était de tirer des nouvelles conclusions à-propos de la robustesse
aux exemples adverses et de la nature fréquentielle des données en jeu. Cet objectif faisait partie
d’un objectif plus général : mieux comprendre la vulnérabilité des modèles à des perturbations
auxquelles les humains ne sont pas sensibles. Nous avons choisi de considérer ce problème sous
le prisme fréquentiel, avec comme motivation et base de notre travail des résultats en psychologie
cognitive qui montrent la prévalence des caractéristiques en basse fréquence dans le processus
de classification humain. Notamment, nous avons identifié des facteurs précis qui conditionnent
l’apparition de robustesse lorsqu’un modèle est entrainé à tirer parti de manière prédominante
d’information présente dans les basses fréquences. De manière plus générale, ce travail est un
encouragement à mieux tenir compte des connaissances en neuro-psychologie dans le développement
de futures défenses.

Le second objectif de cette thèse était relatif à l’impact des méthodes de quantification sur
la robustesse et le phénomène de transférabilité des perturbations adverses. Cette évaluation de
l’influence de la quantification sur les exemples adverses permet une meilleure prise de conscience
des problématiques d’intégrité liées à l’usage croissant de méthodes de quantification pour em-
barquer des modèles sur des architectures matérielles publiques. Notamment, nous avons montré
que la quantification n’offrait qu’une robustesse très limitée. Cette conclusion est particulièrement
importante considérant le fait que de plus en plus de tâches dites critiques sont réalisées sur des
systèmes embarqués.

La transférabilité des perturbations adverses, qui est un outil très puissant pour un adversaire
dans un scénario boîte noire, est fortement liée au déploiement croissant de modèles sur des archi-
tectures matérielles. Nous avons observé une faible transférabilité entre des modèles quantifiés avec
des niveaux de quantification différents. Ces résultats ont mené au développement d’une défense
à base d’un ensemble de modèles quantifiés. Nous avons ensuite étudié spécifiquement les raisons
du phénomène de transférabilite. Cela a mené au développement du concept innovant d’effet de
leurrage. Nous avons montré comment induire l’effet de leurrage, et détaillé comment il pouvait
s’appliquer dans de nombreux scénarios. De manière intéressante, puisque ce concept est nouveau,
il est compatible avec les méthodes de défense existantes. De plus, l’effet de leurrage peut être
utilisé de manière à détecter le processus de construction d’un exemple adverse contre un système
distant.

Enfin, nous avons étendu notre travail aux menaces contre l’accessibilité/disponibilité. Notam-
ment, nous avons montré comment des méthodes pour construire des exemples adverses peuvent
être utilisées pour attaquer un système qui requiert un certain niveau de confiance pour les prédic-
tions. Dans de nombreux domaines d’applications, la précision d’un modèle n’est pas suffisante en
soi. Pour prendre une décision, un système requiert que le modèle sous-jacent renvoie des prédic-
tions avec un certain niveau de certitude. Nous avons conceptualisé une notion d’incertitude basée
sur le doute du modèle entre plusieurs classes. Nous avons ensuite montré comment les perturba-
tions adverses peuvent être utilisées pour produire cette notion d’incertitude dans les prédictions
d’un modèle. Ce dernier travail de la thèse fait un lien entre les exemples adverses et d’autres
types de menace qui ne visent pas l’intégrité d’un modèle. De plus, on souligne le fait que dans
de nombreux cas d’application, une protection contre les exemples adverses ne signifie pas que le
modèle peut être déployé de manière sécurisée.

A.6 Perspectives
Lors de la phase d’inférence, les menaces algorithmiques (logicielles) ont été très largement cou-
vertes dans la littérature scientifique, qu’elles soient relatives à l’inversion de modèle, l’extraction

178

de données, le vol de modèle, les attaques membership inference ou les exemples adverses. Cepen-
dant, une conséquence directe de la volonté croissante de déploiement des modèles est l’extension
de la surface d’attaque pour un adversaire. En effet, un adversaire peut tirer avantage de modèles
qui deviennent de plus en plus disponibles sur des cibles matérielles, pour monter des attaques
physiques (matérielles).

Ce phénomène est particulièrement préoccupant pour l’intégrité de modèles de machine learn-
ing, et plus spécifiquement dans le cas des exemples adverses. En effet, un modèle peut être
protégé de manière algorithmique par une certaine méthode de défense, qui prévient des mod-
ifications malicieuses des entrées données au modèle. Cependant, pour tromper le modèle, un
adversaire peut réaliser une attaque par injection de faute, pour faire changer la valeur des bits
des paramètres du modèle [221], ce qui revient à une modification malicieuse des poids. Même si le
modèle était protégé contre les exemples adverses, son caractère embarqué le rend vulnérable à un
autre type d’attaque. De même, considérant un même modèle dans une API distante et embarqué
sur un appareil public, un adversaire peut utiliser une attaque par canal auxiliaire pour retrouver
l’architecture du modèle [14]. Ainsi, il peut tirer parti de cette information pour réaliser une at-
taque par transférabilité contre le modèle distant. L’évolution des usages vers une omniprésence
des modèles de machine learning dans la vie de tous les jours est donc en train de rendre les modèles
vulnérables à un nombre croissant de méthodes d’attaque.

Pour lutter contre les menaces d’ordre physique, certaines méthodes de défense issues du monde
de la sécurité matérielle existent, comme l’obfuscation. Cependant, ces méthodes ne sont pas
conçues spécifiquement pour les modèles de machine learning. Au vu du déploiement croissant de
ces modèles, prendre en compte les possibilités d’attaques à la fois au niveau logiciel et physique,
devient une nécessité. En nous basant sur ces conclusions, nous préconisons un développement
de méthodes de défense mélangeant des caractéristiques algorithmiques et physiques, c’est-à-dire
des méthodes qui tirent parti du meilleur des deux mondes. Plus précisément, nous considérons
que les futures schémas de défense ne seront efficaces que si ils combinent des protections contre
les menaces à la fois logicielles et matérielles. Notamment, une défense logicielle pourrait tenir
en compte d’une possible modification des paramètres pour contrer les attaques qui vont modifier
les valeurs des bits des paramètres. Dans la même veine, une protection matérielle pourrait être
conçue pour considérer des caractéristiques spécifiques à un modèle de réseau de neurones. Pour
résumer, nous croyons fermement qu’un mélange protections physiques et algorithmiques est le
meilleur chemin à emprunter vers un machine learning plus sécurisé.

Projets, publications et communications

Projets
Cette thèse est financée par le CEA-Leti. Les travaux menés dans cette thèse s’inscrivent dans
plusieurs projets de recherche collaboratifs : le projet Européen InSecTT10, le programme In-
vestissements d’avenir (ANR-10-AIRT-05, irtnanoelec) et le programme ANR PICTURE (AAPG2020)11.
Cette thèse a pu profiter du supercalculateur français "Jean Zay" grâce à l’accès AI dynamique12.

Publications
Cette thèse, qui a débuté en novembre 2018 et a pris fin en novembre 2021, a donné lieu à la
publication d’articles scientifiques:

• Impact of low-bitwidth quantization on the adversarial robustness for embedded
neural networks
Rémi Bernhard, Pierre-Alain Moellic, Jean-Max Dutertre
(2019) IEEE International Conference on Cyberworlds
Code: https://gitlab.emse.fr/remi.bernhard/Quantization-and-Adversarial-Robu
stness

• Luring of transferable adversarial perturbations in the black-box paradigm
Rémi Bernhard, Pierre-Alain Moellic, Jean-Max Dutertre
(2021) IEEE International Joint Conference on Neural Networks (IJCNN)
Code: https://gitlab.emse.fr/remi.bernhard/Luring_Adversarial/

10www.insectt.eu
11https://picture-anr.cea.fr
12http://www.idris.fr/jean-zay/

179

https://gitlab.emse.fr/remi.bernhard/Quantization-and-Adversarial-Robustness
https://gitlab.emse.fr/remi.bernhard/Quantization-and-Adversarial-Robustness
https://gitlab.emse.fr/remi.bernhard/Luring_Adversarial/
www.insectt.eu
https://picture-anr.cea.fr
http://www.idris.fr/jean-zay/

• Impact of Spatial Frequency Based Constraints on Adversarial Robustness
Rémi Bernhard, Pierre-Alain Moellic, Martial Mermillod, Yannick Bourrier, Romain Cohen-
det, Miguel Solinas, Marina Reyboz
(2021) IEEE International Joint Conference on Neural Networks (IJCNN)
Code: https://gitlab.emse.fr/remi.bernhard/Frequency_and_Robustness/

• A Review of Confidentiality Threats Against Embedded Neural Network Models
Raphaël Joud, Pierre-Alain Moellic, Rémi Bernhard, Jean-Baptiste Rigaud
(2021) Workshop on Wireless Intelligent Secure Trustable Things, IEEE 7th World Forum
on Internet of Things

• An Overview of Laser Injection against Embedded Neural Network Models
Mathieu Dumont, Pierre-Alain Moellic, Raphael Viera, Jean-Max Dutertre, Rémi Bernhard
(2021) Workshop on Wireless Intelligent Secure Trustable Things, IEEE 7th World Forum
on Internet of Things

Communications
Durant cette thèse, les avancées et résultats ont été présentés à différentes occasions, pour encour-
ager les avancées scientifiques dans le domaine de la robustesse des réseaux de neurones face aux
exemples adverses:

• Impact of Quantization for Embedded Neural Network Models on the Adversarial
Robustness
(2019) Journée thématique Sécurité, fiabilité et tesf de SoC 2 : challenges et opportunités
dans l’ère de l’Intelligence Artificielle, Paris, France

• Security of Neural Networks: Attacks, Defenses and Evaluation methods
(2019) Journée de la recherche, Centre de Microélectronique de Provence, Gardanne, France

• Impact of Low-bitwidth Quantization on the Adversarial Robustness for Embed-
ded Neural Networks
(2019) Journée de la recherche, Centre de Microélectronique de Provence, Gardanne, France

• Adversarial Robustness of Quantized Embedded Neural Networks
(2019) C&ESAR IA conference, Artificial Intelligence and Defense, Rennes, France

• Luring Adversarial Perturbations
(2020) C&ESAR IA conference, Artificial Intelligence and Defense, Rennes, France

• Luring of Transferable Adversarial Perturbations in the Black-Box Paradigm
(2021) Groupe de Recherche ISIS (Information, Signal, Image and viSion), online

Activités d’enseignement
En parallèle des activités de recherche, j’ai assuré la tenue de cours magistraux et des séances de
travaux pratiques pour les étudiants de l’Ecole Nationale Supérieure des Mines de Saint-Etienne:

• Algorithmique et programmation. 2019-2020. Travaux pratiques. Etudiants de pre-
mière année à l’Ecole Nationale Supérieure des Mines de Saint-Etienne.
Etude et implémentation d’algorithmes de théorie des graphes en C: Dijkstra, Bellman-Ford
and Chandy-Misra-Haas.

• Securité du machine learning. 2018-2020. Travaux pratiques et cours magistraux. Etu-
diants de seconde année à l’Ecole Nationale Supérieure des Mines de Saint-Etienne.
Présentation des principales menaces pouvant viser un modèle de machine learning. Présen-
tation des exemples adverses, de méthodes d’attaque et de défense.

180

https://gitlab.emse.fr/remi.bernhard/Frequency_and_Robustness/

École Nationale Supérieure des Mines

de Saint-Étienne

NNT : 2021LYSEM033

Rémi BERNHARD

 INTEGRITY OF NEURAL NETWORKS: DEFENDING AGAINST

ADVERSARIAL EXAMPLES AND THEIR TRANSFERABILITY

Speciality : Microelectronics

Keywords : Neural networks, adversarial examples, transferability, integrity

Abstract :

Regarding the success of deep learning in various tasks, ranging from image classification to

speech recognition, there is a growing will to deploy neural networks models in the everyday

life. However, these models have been shown to be vulnerable to multiple threats. Among

them, the phenomenon of adversarial examples is of primary interest as a menace to the

integrity of a machine learning model. Adversarial examples refer to a type of attack where

an adversary maliciously modifies some input, in order to fool a model at inference time.

Whether neural network models are used in distant APIs or embedded on devices, adversarial

examples therefore constitute a threat to this deployment, and more generally to the integrity

of machine learning models. More particularly, in some use-cases such as autonomous

driving, adversarial examples constitute a major threat to the public safety.

Among the different aspects of adversarial attacks, the phenomenon of the transferability of

adversarial perturbations is particularly concerning, as it is a powerful tool for an adversar

who does not have a direct access to the target model (black-box setting). Indeed, an

adversarial example crafted on a substitute model can also fool another model. As the black-

box setting is the most common scenario for a threat model, studying and hindering

transferability would therefore allow to greatly enhance the security of machine learning

models.

In this thesis, we aim at better understanding the vulnerability of neural networks to

adversarial examples, and at developing efficient schemes to thwart their transferability.

École Nationale Supérieure des Mines

de Saint-Étienne

NNT : 2021LYSEM033

Rémi BERNHARD

INTEGRITE DES RESEAUX DE NEURONES : DEFENSES CONTRE LES

EXEMPLES ADVERSES ET LEUR TRANSFERABILITÉ

Spécialité: Microélectronique

Mots clefs : Réseaux de neurones, exemples adverses, transferabilité, integrité, sécurité, …

Résumé :

Au vu du succès du deep learning dans de nombreuses tâches, de la classification d'images à
la reconnaissance de la voix, il y a une volonté croissante de déployer des modèles de réseaux
de neurones. Cependant, il a été montré que ces modèles sont vulnérables à de nombreux
types d’attaques. Parmi celles-ci, les exemples adverses constituent une menace grandissante
pour l’intégrité d’un système de machine learning. Les exemples adverses sont un type
d'attaque où un adversaire va modifier de manière malicieuse une entrée pour tromper un
modèle à lors de l'inférence.

Que ces modèles soient utilisés via des APIs distantes ou embarqués sur divers appareils, les
exemples adverses constituent donc une menace à ce déploiement, et plus généralement à
l'intégrité des modèles de machine learning. Plus particulièrement, dans certains cas comme
les voitures autonomes, ils constituent une menace sérieuse à la sécurité civile. Parmi les
différents aspects des attaques adverses, la transférabilité des perturbations adverses est
particulièrement préoccupante, car elle représente un outil puissant pour un adversaire sans
accès direct au modèle cible (scénario boîte noire). En effet, un exemple adverse élaboré sur
un modèle substitut peut arriver à tromper un autre modèle. Le scénario boîte noire étant le
plus commun, étudier la transférabilité est une considération de premier plan.

Le but de cette thèse est de mieux comprendre la vulnérabilité des réseaux de neurones aux
exemples adverses, et de développer des schémas de défense efficaces pour contrer leur
transférabilité.

	Introduction
	Context
	Ubiquitous Deep Learning
	Machine Learning on Embedded Devices

	Machine Learning under attack
	The rise of threats against Machine Learning
	Adversarial examples and transferability

	Objectives and contributions

	Overview of the Security of Machine Learning
	Attacks blueprint
	Machine learning pipeline
	Attacking at training-time
	Attacking at inference-time

	Training threats
	Data poisoning
	Backdoor attacks

	Inference threats
	Model Inversion
	Data extraction
	Model Stealing
	Membership Inference
	Adversarial Examples

	Confidentiality, Integrity and Availability
	General threat model
	Establishing a threat model

	Conclusion

	Notations, formalism and data sets
	Miscellaneous
	Classification task for a neural network
	Inference process
	Training process
	Data sets

	Adversarial Examples against Neural Network Models
	The phenomenon of adversarial examples
	Brief history of adversarial examples
	Digital and Real-World adversarial examples

	Threat model for adversarial examples against neural networks
	Adversary goal
	Adversary capacity
	Adversarial knowledge

	Why do adversarial examples exist?
	Early explanations
	Identifying sensitive features of neural network models

	Attack methods
	White-box setting
	Black-box setting (score and decision-based attacks)
	Black-box setting (transferability)

	Defense methods
	Overview
	Reactive methods
	Provable proactive methods
	Empirical proactive methods

	Conclusion

	Frequency Analysis of Adversarial Robustness
	Motivation
	Neural network models and frequency concerns: state-of-the-art
	Preliminaries
	Filtering with the Fourier transform
	Data sets and models

	Frequency properties of data and models
	Impact of filtered data sets
	Sensitivity to high spatial frequency noise

	Transferability analysis
	Adversarial robustness of frequency-constrained models
	Frequency-based regularization
	Training setup
	Robustness evaluation
	Influence of intrinsic frequency properties of the data bias on the level of adversarial robustness
	Compatibility of frequency-based regularization with Adversarial Training

	Conclusion and future work

	Quantization for robustness and transferability for quantized models
	Motivation
	Quantization of neural networks
	Post-training quantization
	Quantization aware training

	Robustness and quantization
	Evaluating the Robustness of Quantized Models
	Threat model
	Data sets and models
	Attack methods
	Evaluation metrics

	Robustness against gradient-based and gradient-free attacks
	Black-box transfer attacks
	Ensemble of quantized models
	Motivation
	Results

	Conclusion and future work
	Appendix: Complete transferability results

	Luring of transferable adversarial perturbations
	Motivation
	Luring Adversarial Perturbations
	Objectives and design
	Training the luring component

	Characterization of the luring effect
	Objective
	Data sets and models
	Attack setup and metrics
	Results and further analysis of the luring effect

	Using the luring effect as a black-box defense
	Threat model
	Metrics
	Attacks
	Results
	Compatibility with ImageNet and Adversarial Training
	Discussion and Related Work

	Using the luring effect as a gray-box defense
	Threat model
	Implementation
	Experiments of characterization
	Results as a defense

	Using the luring effect to detect the crafting process of adversarial examples
	Threat model
	Attacks
	Baselines and metrics
	Results

	Conclusion and future work

	Leveraging adversarial attacks against the availability of a ML system
	Motivation
	Availability of a ML-based system
	Attacks against a ML-based system
	Threat model
	Adversary goal
	Adversarial capacity and knowledge

	Uncertain Examples
	Relative Confidence Uncertainty Attack
	Overall Confidence Uncertainty Attack

	Experiments
	Data sets and models
	Uncertainty on standard examples
	Convergence of uncertain examples
	Impact on Adversarial Training

	Conclusion

	Conclusion
	Contributions of the thesis
	General perspective

	Résumé de la thèse
	Introduction
	L'omniprésence du machine learning
	Machine learning et systèmes embarqués
	Les attaques contre le machine learning

	Objectifs et sommaire
	Objectifs de la thèse
	Sommaire

	Sécurité des modèles de machine learning
	Processus de développement d'un modèle
	Attaques pendant l'entrainement
	Attaques pendant l'inférence
	Confidentialité, Intégrité et Disponibilité

	Résumé des contributions
	Positionnement et préliminaires
	Objectifs
	Analyse fréquentielle des perturbations adverses
	Impact de la quantification sur la robustesse et la transférabilité
	Leurrage de perturbations adverses transferées
	Utilisation des perturbations adverses pour attaquer l'accessibilité d'un système

	Conclusion
	Perspectives

