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Abstract

This thesis concerns the problems of feedback stabilization and output regulation for infinite-
dimensional nonlinear systems. First, we study the stability of a one-dimensional wave equation
with a nonlinear velocity feedback at one extremity of the domain and a nonlinear dynamic bound-
ary condition at the other end. This model is inspired by the behavior of torsional vibrations along
drill strings, and the boundary dynamics represent a nonlinear anti-damping at the rock-bit in-
terface that renders the uncontrolled plant unstable. Exponential stability of the set of stationnary
solutions is investigated by Lyapunov methods. In a second part, we consider the multi-dimensional
wave equation supplied with a nonlinear and nonlocal Dirichlet feedback control acting on a part of
the boundary. Well-posedness and asymptotic stability of the closed-loop dynamics are established
using nonlinear contraction semigroup arguments combined with the LaSalle invariance principle
and unique continuation for waves. When the feedback nonlinearity has linear growth around zero
(e.g., in the case of saturating feedback), polynomial energy decay rates are derived for strong so-
lutions. In the final part of the thesis, we are interested in constant output regulation of a class
of abstract infinite-dimensional systems governed by nonlinear contraction semigroups on Hilbert
spaces. The approach we propose relies on the so-called forwarding methodology, which was orig-
inally developed for the stabilization of finite-dimensional nonlinear cascade systems. We give
sufficient conditions for the existence of a dynamic control law that steers the system to some equi-
librium at which the output coincides with the reference. These conditions are then investigated
in the particular case of semilinear systems and illustrated by examples.
Keywords: Stabilization, output regulation, partial differential equations, wave equation, saturation,
contraction semigroups.

Résumé

Dans cette thèse, nous étudions quelques problèmes de stabilisation et de régulation de sor-
tie pour des systèmes non-linéaires en dimension infinie. Tout d’abord, nous analysons la stabilité
d’une équation des ondes en dimension un d’espace, soumise à un retour stabilisant non-linéaire
de type Neumann à une extrémité et à une condition au bord dynamique non-linéaire à l’autre
extrémité du domaine. Ce modèle s’inspire de la propagation de vibrations de torsion le long de
trains de forage, la condition au bord dynamique représentant un anti-amortissement non-linéaire
à l’interface avec la roche, qui peut déstabiliser le dispositif. La stabilité exponentielle de l’ensemble
des solutions stationnaires est examinée avec une approche type Lyapunov. Dans un second temps,
nous considérons une équation des ondes multi-dimensionnelle soumise à un contrôle non-linéaire
et non-local de type Dirichlet sur une partie de la frontière. Le caractère bien posé du problème
en boucle fermée ainsi que la stabilité asymptotique sont établis à l’aide de techniques issues de
la théorie des semi-groupes de contractions combinées au principe d’invariance de LaSalle et à un
résultat de continuation unique pour les ondes. Lorsque la non-linéarité dans le contrôle a une
croissance linéaire autour de zéro, nous démontrons que l’énergie des solutions fortes décroît de
manière polynomiale. Enfin, dans une dernière partie, nous nous intéressons au problème de ré-
gulation à sortie constante pour une classe de systèmes abstraits régis par des semi-groupes de
contractions sur des espaces de Hilbert. Notre approche repose sur la technique du « forwarding »,
originellement développée pour la stabilisation de systèmes non-linéaires de dimension finie en
cascade. Nous proposons des conditions suffisantes pour l’existence d’une loi de commande dy-
namique menant le système à un équilibre où la sortie coïncide avec la référence. Ces conditions
sont étudiées en détail dans le cas des systèmes semi-linéaires, et des exemples d’illustration sont
donnés.
Mots-clés : Stabilisation, régulation de sortie, équations aux dérivées partielles, équation des ondes,
saturation, semi-groupes de contractions.
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One

General introduction

At the interface of applied mathematics and engineering, control theory is the study of dynamical
systems in order to control them, i.e., influence their behavior with a desired goal in mind. A control
system is a dynamical system on which one can act by choosing at each time some parameter, called
the control, in the evolution law. The state of the system is the variable obeying said evolution law.
Finite-dimensional control systems (i.e., the state evolves in a finite-dimensional space) are often gov-
erned by ordinary differential equations [Khalil, 2015] and have been an active area of research since
the thirties. On the other hand, infinite-dimensional control systems include (but are not restricted to)
systems modeled by partial differential equations or delay differential equations. The mathematical
theory of infinite-dimensional control systems is far more recent than its finite-dimensional counter-
part – see, e.g., [Lions, 1968, Russell, 1978, Coron, 2007]. It is mostly built upon the foundation of
partial differential equation analysis, functional analysis and dynamical systems theory. Consider the
following examples. First, given a sufficiently smooth function of two variables f : Rd ×R→ Rd , the
differential equation

dx
dt
= f (x , U) (1.1)

defines a finite-dimensional control system where x is the state and the scalar U is the control. In that
case, the state space is the standard Euclidian space Rd . Second, let Ω be some bounded domain of
Rd , d ¾ 2, with boundary Γ ; the following wave equation with non-homogeneous Dirichlet boundary
conditions

∂2u
∂ t2
−∆u= 0 in Ω, (1.2a)

u|Γ = U on Γ , (1.2b)

defines (at least formally) another control system, where the state is the tuple [u,∂ tu] and the control
is the boundary data U . Following the theory of partial differential equations, both the state and the
control must be chosen in some appropriate infinite-dimensional function spaces. When the control
is chosen as a function of the state, we speak of feedback action. A static feedback law is a choice
of control that is a function of the state at the given time only. The control of systems with static
feedback laws gives rise to dynamical systems. In the case of the example given by (1.1), a static
feedback law has the form

U = h(x) (1.3)

where h : Rd → R is some suitable function. The closed-loop system is then governed by the evolution
equation

dx
dt
= f (x , h(x)) (1.4)

which, under mild assumptions, defines a dynamical system on Rd .
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1. GENERAL INTRODUCTION

Control problems and orientation Now, as mentioned above, the objective of a control law is
to influence the behavior of the controlled dynamics in order to achieve a certain objective. This
corresponds to a wide variety of control problems. Let us introduce the two fundamental ones we
are interested in.

1. The feedback stabilization problem. Given an equilibrium point that is unstable for the uncon-
trolled dynamics, it consists in designing a feedback law such that the closed-loop system is
steered to the equilibrium. An interesting infinite-dimensional example is [Smyshlyaev et al.,
2010], where a wave equation with in-domain anti-damping is exponentially stabilized via a
boundary controller.

2. The output regulation problem. Considering a control system with measured output, i.e., a func-
tion of the state that may represent some physical parameter of interest in a given application,
it consists in designing a feedback law which ensures that the output of the closed-loop system,
possibly subjected to external disturbance, tracks a given reference. Output regulation is one
of the oldest problems in automatic control and is essential in engineering applications – see,
e.g., the seminal work [Davison, 1975] for finite-dimensional linear systems.

We can now give the general direction of our work.

This thesis concerns the problems of feedback stabilization and output regulation for
infinite-dimensional nonlinear systems, with a particular emphasis on those governed by
partial differential equations.

We are driven by two underlying ideas that are central in control theory. Stability concerns the be-
havior of trajectories of dynamical systems under small perturbations of the initial condition and, if
applicable, qualitative and quantitative properties of the convergence of trajectories to a given equi-
librium. Robustness refers to the behavior of trajectories under external perturbations, such as those
representing discrepancies in the model, numerical noise and disturbances, etc. This is instrumental
in the successful implementation of a given controller.

A possible way to achieve stability is to ensure that the closed-loop dynamics satisfy a contraction
property, i.e., the distance between closed-loop trajectories (typically measured in terms of energy in
the context of partial differential equations) do not grow or even go to zero [Lohmiller and Slotine,
1998]. In our work, the property of contraction will often be the key to obtaining stability, proving the
existence of suitable equilibria and also establishing existence of solutions to closed-loop equations,
which is not immediate in the infinite-dimensional settings – see, e.g., [Barbu, 1976,Showalter, 2013].

Outline of the thesis and contributions In what follows, we briefly outline the content of the
remaining chapters and indicate our contributions. Of course, in relation with the specifics of each
problem, a more detailed exposition of the scientific context and literature is given in each chapter.

In Chapter 2, we investigate the stability of a one-dimensional wave equation with a nonlinear
velocity feedback at one extremity of the domain and a nonlinear dynamic boundary condition at
the other end. This problem is similar to the one tackled in the aforementioned work [Smyshlyaev
et al., 2010] in that we analyze the action of a (boundary) feedback competing against an (dynamic
boundary instead of static in-domain) anti-damping term. The model under consideration is inspired
by the behavior of torsional vibrations along drill strings, and the boundary dynamics represent non-
linear friction at the rock-bit interface that may destabilize the plant. In that regard, such a nonlinear
boundary anti-damping is the main novelty here. Sufficient conditions for the exponential stability
are obtained after constructing a suitable Lyapunov functional.
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In Chapter 3, we study the multi-dimensional wave equation (1.2a) supplied with a nonlin-
ear and nonlocal Dirichlet feedback control, which is chosen as a natural candidate dissipating the
L2(Ω) × H−1(Ω)-energy of the system. Unlike its well-known Neumann counterpart, the natural
Dirichlet boundary feedback has been given little attention in the literature; in particular, no non-
linear treatment had been proposed so far. Well-posedness and asymptotic stability is established
using nonlinear contraction semigroup arguments combined with the LaSalle invariance principle
and unique continuation for waves. Under additional assumptions on the feedback nonlinearity (en-
compassing notably the case of saturating feedback), we establish a polynomial energy decay rate for
strong solutions to the closed-loop equations. This is done by deriving appropriate integral energy
estimates using carefully chosen differential multipliers with time-varying weights.

Chapter 4 deals with the problem of output regulation for a class of nonlinear systems that are
governed by contraction semigroups. Very few output regulation results exist in the context of infinite-
dimensional nonlinear systems. We propose sufficient conditions for the existence of a dynamic feed-
back law steering, even in presence of small constant disturbances, the closed-loop system to an
equilibrium at which the reference is achieved. The construction of the control is based on the so-
called forwarding technique originally developed in [Mazenc and Praly, 1996] for the problem of
stabilizing finite-dimensional nonlinear systems in cascade. The proof of existence of a locally stable
equilibrium is based on the fact that the feedback law we propose preserves, at least locally and up to
a change of variable, the contraction property of the original uncontrolled system. Those sufficient
conditions are then thoroughly investigated on semilinear systems.

Publications issued from this thesis

Journal articles

• Vanspranghe, N., Ferrante, F., and Prieur, C. (2022b). Velocity stabilization of a wave equation
with a nonlinear dynamic boundary condition. To appear in the IEEE Transactions on Automatic
Control.

Chapter 2 is partially adapted from this work.

• Vanspranghe, N., Ferrante, F., and Prieur, C. (2022a). Stabilization of the wave equation through
nonlinear Dirichlet actuation. Provisionally accepted for publication in ESAIM: Control, Opti-
misation and Calculus of Variations.

Chapter 3 is adapted from this work.

• Vanspranghe, N. and Brivadis, L. (2022). Output regulation of infinite-dimensional nonlinear
systems: a forwarding approach for contraction semigroups. Submitted to SIAM Journal on
Control and Optimization.

Chapter 4 is adapted from this work. This is a collaboration with Lucas Brivadis (Laboratoire
des Signaux et Systèmes, CentraleSupélec).

Conference papers

• Vanspranghe, N., Ferrante, F., and Prieur, C. (2020). Control of a wave equation with a dynamic
boundary condition. In 59th IEEE Conference on Decision and Control (CDC 2020), Jeju Island,
South Korea.

This conference article is a preliminary work containing some results of Chapter 2.
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1. GENERAL INTRODUCTION

• Vanspranghe, N., Ferrante, F., and Prieur, C. (2021). Stabilization of the wave equation by the
mean of a saturating Dirichlet feedback. In Third IFAC Conference on Modelling, Identification
and Control of Nonlinear Systems.

This conference article is a preliminary work containing some results of Chapter 3.

• Vanspranghe, N. (2022). Wave equation with hyperbolic boundary condition: a frequency do-
main approach. In Fourth IFAC Workshop on Control of Systems Governed by Partial Differential
Equations.

This work is a side-project that does not pertain to the general topic of the thesis.
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Definitions and notation used throughout the manuscript

Linear spaces and maps Let E be a given Banach space. The norm of E is denoted by ‖ · ‖E . The
duality bracket 〈φ, x〉E is used to write φ(x) for any vector x in E and continuous linear form φ in
the topological dual E′ of E. If E is also a Hilbert space, its scalar product is denoted by (·, ·)E . Given
two Banach spaces E and F ,L (E, F) stands for the space of bounded linear operators between E and
F . It is a Banach space as well if equipped with the operator norm. If E and F are Hilbert spaces, any
operator L in L (E, F) possesses an adjoint L∗ uniquely defined in L (F, E) by (Lx , y)E = (x , L∗ y)F
for all x in E and y in F . Finally, we denote by L (E) the Banach algebra L (E, E).

Dynamical systems and semigroups We shall describe dynamical systems using the language of
evolution semigroups. Let X be a subset of the Banach space E. By a semigroup on X , we mean a
family {St}t¾0 of continuous mappings of X into itself satisfying the following properties:

(i) S0 = id, where id denotes the identity function;

(ii) For all t, s ¾ 0, St+s = StSs.

We use the semigroup notation and omit the parentheses even if the action of {St} on X need not be
linear. We say that {St} is strongly continuous if in addition

(iii) For all x ∈ X , St x → x in E as t → 0+.

In the particular cases that {St} is a semigroup of nonlinear contractions or bounded linear operators,
one can infer from Items (i) to (iii) that for each x in X , the flow t 7→ St x belongs toC (R+, E). Given
a semigroup {St} on X , for any subset Y of X , we define the ω-limit set of Y with respect to {St} by

ω(Y ) =
⋂

s¾0

⋃

t¾s

St Y (1.5)

where the closure (denoted by the bar) is taken in the topology of the ambient space E.

Vector-valued functions and integrals The abbreviation “a.e.” stands for “almost everywhere” or
“almost every” in the sense of measure theory. Vector-valued integrals are intended in the sense of
Bochner. For positive T , we denote by W 1,p(0, T ; E) the subspace of Lp(0, T ; E) composed of (classes
of) E-valued functions ϕ such that for some ψ in Lp(0, T ; E) and ξ in E,

ϕ(t) = ξ+

∫ t

0

ψ(s)ds for a.e. t in (0, T ). (1.6)

Such a class ϕ is identified with its continuous representative and we say that ϕ′ =ψ in the sense of
E-valued distributions.

Function spaces By domain of Rd , we mean an open and connected subset Ω of the ambient Eu-
clidian space Rd . Given a real number s, we denote by H s(Ω) the (real) L2(Ω)-based Sobolev space
of order s on Ω. Assuming that the boundary Γ of Ω is smooth, we use the notation H s(Γ ) for Sobolev
spaces on the boundary. In that context, the notation dx indicates the Lebesgue measure on Rd ;
and dσ denotes the induced surface measure on Γ . We denote by D(Ω) the space of compactly sup-
ported and infinitely differentiable real-valued functions on Ω. Then, D ′(Ω) denotes the space of
(real-valued) distributions on Ω.
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1. GENERAL INTRODUCTION

Miscellaneous If E is a metric space endowed with a distance d, the distance between a element x
and a subset Y of E is defined as follows: dist(x , Y )¬ infy∈Y d(x , y). Given two normed vector spaces
E and F , a map Φ from E to F is Fréchet differentiable at a point x of E if there exists a (necessarily
unique) continuous linear operator dΦ(x) from E to F such that

lim
h→0

‖Φ(x + h)−Φ(x)− dΦ(x)h‖F

‖h‖E
= 0. (1.7)

The Fréchet differential dΦ of Φ, which is defined on the set of such points x , is the map x 7→ dΦ(x).
Also, we say that Φ is locally Lipschitz continuous if it is Lipschitz continuous on any bounded subset
of E.

8



Two

A control problem in mechanical engineering

Contents
2.1 Dynamical equations and control problem . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Well-posedness of the feedback system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Variational formulation and weak solutions . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Nonlinear semigroup approach and strong solutions . . . . . . . . . . . . . . 13
2.2.3 Proof of the Hadamard theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Uniform stabilization and Lyapunov methods . . . . . . . . . . . . . . . . . . . 19
2.3.2 The problem of saturated stabilization . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Dynamical equations and control problem

The subject of this chapter is the stability analysis of a one-dimensional wave equation (or string
equation) that is supplied with a dynamic boundary condition at one extremity and is actuated by
the mean of Neumann boundary control acting on the other end. Consider a one-dimensional domain
Ω¬ (0, L) where L > 0. The pure wave equation posed in Ω reads as follows:

∂2u
∂ t2
(x , t)−

∂2u
∂x2
(x , t) = 0, (2.1)

where x ∈ Ω stands for the space variable and t is the time variable. Equation (2.1) is a partial
differential equation of the hyperbolic type that can model propagation of some deformation u along
a one-dimensional elastic medium. We now add boundary conditions to (2.1). Assume for instance
that the extremity at x = 0 is attached to some tip mass and obeys a dynamical equation of the form

∂2u
∂ t2
(0, t)−

∂u
∂x
(0, t) = F

�

∂u
∂ t
(0, t)

�

(2.2)

where F is some nonlinear map representing velocity-depending friction to which said mass is sub-
ject. By definition, dynamic (or kinetic) boundary conditions such as (2.2) involve second-order time
derivative and typically arise in physical problems where the boundary carries its own momentum.
Aside from the nonlinear friction term, the model is very similar to the equations in [Andrews et al.,
1996]; on the other hand, such a boundary condition can also be considered in Euler-Bernoulli beam
dynamics, as in [Conrad and Morgul, 1998]. Higher-dimensional examples include vibrating mem-
branes with a given surfacic mass density that react to some in-domain deformations – see, e.g., [Gal
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2. A CONTROL PROBLEM IN MECHANICAL ENGINEERING

et al., 2003,Goldstein, 2006,Vitillaro, 2017]. As for the endpoint x = L, its momentum is neglected
and we consider a standard non-homogeneous Neumann boundary condition:

∂u
∂x
(L, t) = −g(U(t)), (2.3)

where U(t) represents an input signal and g is a continuous monotone increasing function satisfying
g(0) = 0. The scalar mapping g may represent nonlinear behavior of the actuators such as saturation
or deadzone. On the other hand, F is assumed to be a globally Lipschitz continuous scalar function
and represents a nonlinear boundary anti-damping term at x = 0. In the absence of feedback action
and anti-damping, i.e., U(t) = 0 and F = 0, the mechanical energy of the system

E =
1
2

∫

Ω

�

�

�

�

∂u
∂x

�

�

�

�

2

+

�

�

�

�

∂u
∂ t

�

�

�

�

2

dx +
1
2

�

�

�

�

∂u
∂ t
(0, t)

�

�

�

�

2

(2.4)

is conserved. By setting

U(t) =
∂u
∂ t
(L, t), (2.5)

the energy is made monotone decreasing. In presence of the friction term F however, the energy need
not decay. Our objective here is to investigate conditions on F and g under which the energy goes to
0; in other words, the boundary anti-damping at x = 0 is compensated by the boundary dissipation
at x = L, which comes from the feedback law (2.5). The goals of this chapter are twofold.

First, the coupled dynamics described by (2.1)-(2.2), or variants, have sparked interest in the
control community and are very often considered in the context of minimizing torsional vibrations
along drilling rods due to nonlinear friction at the rock-tip interface, where the so-called stick-slip
phenomenon may occur and destabilize the plant [Saldivar et al., 2016, Adly and Goeleven, 2020].
System (2.1) can be seen as an infinite-dimensional model of such a plant: the rod is seen as a purely
elastic medium whose angular deformation obeys the wave equation (2.6a), and the drilling tip is
subject to nonlinear torsional friction, represented by F at the rock interface, which yields (2.6b).
In that context, various boundary control strategies have been proposed. In [Terrand-Jeanne et al.,
2020], stabilization and regulation using a proportional integral boundary controller is investigated;
the elasticity of the propagation medium being possibly nonhomogenous. In [Mlayeh et al., 2018], an
observer-based boundary control design is proposed. In [Roman et al., 2018], a backstepping-based
controller is considered. Other related works include [Smyshlyaev and Krstic, 2009] and [Bresch-
Pietri and Krstic, 2014], where first-order boundary anti-damping is considered. In all these works,
the dynamical equations under study are linearized. In contrast, our analysis is valid in presence of
nonlinear anti-damping (modeled by F) and nonlinearity in the feedback loop (modeled by g).

Second, this chapter aims at illustrating on simple equations some of the methods and operator-
theoretic tools that we will use throughout the entire thesis when dealing with dynamical systems
governed by partial differential equations. This includes variational framework and methods, mono-
tonicity techniques, semigroup generation, etc. Particular emphasis is placed on the notion of solution
to boundary value problems, which in that context is often quite weak and must sometimes be tailored
to the given problem. By doing so, we hope that for the reader unfamiliar with infinite-dimensional
systems, this chapter serves as suitable introductory material.
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2.2. Well-posedness of the feedback system

2.2 Well-posedness of the feedback system

Let us recall the closed-loop equations introduced in Section 2.1:

∂2u
∂ t2
−
∂2u
∂x2

= 0 in Ω× (0,+∞), (2.6a)

∂2u
∂ t2
(0, t)−

∂u
∂x
(0, t) = F

�

∂u
∂ t
(0, t)

�

for all t ∈ (0,+∞), (2.6b)

∂u
∂x
(L, t) = −g

�

∂u
∂ t
(L, t)

�

for all t ∈ (0,+∞). (2.6c)

In this section, we introduce different notions of solutions to (2.6) in a unified framework and prove
existence and uniqueness of such solutions.

2.2.1 Variational formulation and weak solutions

Let w be some smooth function on Ω. By (formally) multiplying (2.6a) by w and integrating over Ω,
we obtain

∫

Ω

∂2u
∂ t2

w dx +
∂2u
∂ t2
(0, t)w(0) +

∫

Ω

∂u
∂x
∂w
∂x

dx + g
�

∂u
∂ t
(L, t)

�

w(L) = F
�

∂u
∂ t
(0, t)

�

w(0). (2.7)

We introduce the pivot space H and the space of test functions V :

H ¬ L2(Ω)×R, and V ¬ {(u,θ ) ∈ H1(Ω)×R : u(0) = θ}. (2.8)

The space H is equipped with the product Hilbertian structure: for any [u1,θ1] and [u2,θ2] in H,

([u1,θ1], [u2,θ2])H ¬
∫

Ω

u1u2 dx + θ1θ2. (2.9)

It is not hard to see that V is a dense subset of H. On the other hand, V can be seen as the graph of
the (continuous) trace operator at x = 0 on H1(Ω), which makes it a closed subspace of H1(Ω)×R by
virtue of the closed graph theorem. As such, it is a Hilbert space as well if equipped with the scalar
product inherited from H1(Ω) × R. In fact, there is an isomorphism between V and H1(Ω); thus,
we will drop the tuple notation and frequently make the identification V ' H1(Ω). We also define a
continuous (nonnegative) bilinear form a on V × V :

a(u1, u2)¬
∫

Ω

∂u1

∂x
∂u2

∂x
dx for all u1, u2 ∈ V. (2.10)

Then, the scalar product on V reads as follows:

(u1, u2)V = (u1, u2)H + a(u1, u2) for all u1, u2 ∈ V. (2.11)

Equation (2.11) shows that the embedding V ,→ H is continuous. Besides, as a Hilbert space, H
can be identified to its topological dual H ′ by Riesz representation theorem. Therefore, H can be
continuously embedded into V ′. Moreover, since V is a dense subspace of H, the latter can be seen as
a dense subspace of V ′, which is equipped with the dual norm. This is summarized by the following
classical chain of injections:

V ,→ H ' H ′ ,→ V ′, (2.12)

where each space is dense in the following one and the inclusions are continuous. With a slight abuse
of notation, we define an operator F : [u,θ] ∈ H 7→ [0, F(θ )] ∈ H. That being said, we can rephrase
the (formal) variational equation (2.7) as follows.
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2. A CONTROL PROBLEM IN MECHANICAL ENGINEERING

Definition 2.2.1. Let T > 0. A weak solution [u, u′] to (2.6) on [0, T] is given by any u with regularity

u ∈ C 1([0, T], H)∩C ([0, T], V ), u(L, ·) ∈W 1,1(0, T ), g(u′(L, ·)) ∈ L1(0, T ) (2.13)

that satisfies the variational identity

d
dt
(u′, w)H + g(u′(L, ·))w(L) + a(u, w) = (F(u′), w)H for all w ∈ V, (2.14)

where d/dt is understood in the sense of scalar distributions on (0, T ), u′ denotes the time derivative
of u in H, and u′(L, ·) stands for the (weak) derivative of u(L, ·).

In order to define a dynamical system, we need to supplement the evolution equations (2.6) with
initial conditions. Quite naturally, initial data is considered in the energy spaceH defined by

H ¬ V ×H, (2.15)

and equipped with the product Hilbertian structure. The space H is also referred to as the state or
phase space. Let us define a “mechanical energy” functional E ∈ C (H ,R). Let

E (u, v)¬
1
2
‖v‖2

H +
1
2

a(u, u) for all [u, v] ∈H . (2.16)

Coming back to formal considerations, multiplying (2.6a) by u′ and integrating by parts over Ω yields
the following energy identity:

d
dt
E (u, u′) = −g(u′(L, ·))u′(L, ·) + (F(u′), u′)H . (2.17)

Equation (2.17) shows that in the absence of feedback action and friction term F , the energy E of
the solutions is conserved. From a control perspective, what we are interested in is the competition
between boundary dissipation at x = L and boundary anti-damping at x = 0. This will be investigated
in Section 2.3, which is devoted to the stability analysis of the feedback system (2.6). Now, we recall
that a problem is said to be well-posed in the Hadamard sense if

1. Solutions exist;

2. For each initial condition, the solution is unique;

3. The solution depends continuously on the initial data in some sense.

The next theorem shows that the initial-and-boundary problem defined by the closed-loop equations
(2.6) and initial conditions inH is indeed well-posed.

Theorem 2.2.2 (Hadamard well-posedness). For each [u0, v0] ∈ H , there exists a unique weak so-
lution [u, u′] to (2.6) that satisfies the initial condition [u(0), u′(0)] = [u0, v0]. Furthermore, weak
solutions enjoy the following properties:

(i) (Trace regularity.) For any τ > 0, u′(L, ·) is in fact in H1(0,τ); also, g(u′(L, ·)) ∈ L2(0,τ);

(ii) (Energy identity.) Weak solutions satisfy the energy identity

E (u, u′)
�

�

τ

0 = −
∫ τ

0

g(u′(L, t))u′(L, t))dt +

∫ τ

0

F(u′(t)), u′(t))H dt for all τ¾ 0; (2.18)

12



2.2. Well-posedness of the feedback system

(iii) (A priori estimate.) For any τ ¾ 0, there exists a constant C(τ) such that any given pair of weak
solutions [ui , u′i], i ∈ {1,2}, to (2.6), having let u¬ u1 − u2,

sup
t∈[0,τ]

E (u(t), u′(t)) +

∫ τ

0

|u′(L, t)|2 dt ¶ C(τ)E (u(0), u′(0)). (2.19)

Finally, by setting St : [u0, v0] 7→ [u(t), u′(t)], weak solutions to (2.6) describe a strongly continuous
semigroup {St} of Lipschitz continuous operators onH .

The proof of Theorem 2.2.2 relies on tools introduced in Section 2.2.2 and is given in Section 2.2.3.
We end this section by introducing some additional definitions regarding the variational formulation
(2.14) of (2.6). By bilinearity and continuity of a, the mapping A defined by

〈Au, w〉V ¬ a(u, w) for all u, w ∈ V (2.20)

belongs to L (V, V ′). Since Ω is a one-dimensional domain, the Dirac distribution δL at x = L is
continuous with respect to the norm of H1(Ω); thus, δL ∈ V ′. This allows to reformulate (2.14) as
follows:

d
dt
(u′, w)H + 〈Au, w〉V + g(u′(L, ·))〈δL , w〉V = (F(u′), w)H for all w ∈ H. (2.21)

We will see later that (2.21) is equivalent to the following functional formulation:

u′′ + Au+ g(u′(L, ·))δL = F(u′) in the sense of V ′-valued distributions. (2.22)

2.2.2 Nonlinear semigroup approach and strong solutions

A possible way to tackle the problem of existence of solutions to (2.6) is to recast the closed-loop
equations into a first-order abstract Cauchy problem onH . To do so, we shall introduce a nonlinear
mapA defined on some subset D(A ) ofH such that solutions [u, u′] to (2.6) satisfy, in some sense,

d
dt
[u, u′] +A [u, u′] = 0. (2.23)

Bearing in mind the variational identity (2.14) and the chain of embeddings (2.12), we start by
defining the subset D(A ), referred to as the domain ofA , as follows:

D(A )¬ {[u, v] ∈H : v ∈ V, Au+ g(v(L))δL ∈ H}. (2.24)

Next, we defineA by
A [u, v]¬ [−v, Au+ g(v(L))δL − F(v)]. (2.25)

Lemma 2.2.3. The domain D(A ) can be explicitly described as follows:

D(A ) =
§

[u, v] ∈H : v ∈ V, u ∈ H2(Ω),
∂u
∂x
(L) = −g(v(L))

ª

. (2.26)

Furthermore, D(A ) is dense inH .

Proof. Let [u, v] ∈ V ×V such that Au+ g(v(L))δL ∈ H. Recalling the embedding H ,→ V ′, this means
that there exists f = [ f1, f2] ∈ H such that for all w ∈ V ,

∫

Ω

∂u
∂x
∂w
∂x

dx + g(v(L))w(L) =

∫

Ω

f1w dx + f2w(0). (2.27)
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2. A CONTROL PROBLEM IN MECHANICAL ENGINEERING

We particularize (2.27) to the case where w = ϕ, with ϕ being an arbitrary test function in D(Ω):
the boundary terms vanish and after an integration by parts, we obtain

−
∫

Ω

u
∂2ϕ

∂x2
dx =

∫

Ω

f1ϕ for all ϕ ∈ D(Ω). (2.28)

Equation (2.28) is exactly the definition of −∂ x xu = f1 in D ′(Ω), and because f1 ∈ L2(Ω) and u ∈
H1(Ω), this means that u ∈ H2(Ω). Hence, we can perform a different integration by parts in (2.27)
to obtain

∂u
∂x
(L)w(L) + g(v(L))w(L) = f2w(0). (2.29)

Besides, there certainly exists some w ∈ V satisfying w(0) = 0 and w(L) = 1. This leads to ∂ xu(L) =
−g(v(L)). Conversely, given u ∈ H2(Ω) and v ∈ V with ∂ xu(L) = −g(v(L)), it is clear that

∫

Ω

∂u
∂x
∂w
∂x

dx + g(v(L))w(L) = −
∫

Ω

∂2u
∂x2

w dx −
∂u
∂x
(0)w(0) for all w ∈ V, (2.30)

which means that Au+ g(v(L))δL = [−∂ x xu,−∂ xu(0)] ∈ H. It remains to prove that D(A ) is dense
inH . Let ε > 0 and [u, v] ∈H . By denseness of V in H, we can pick v̂ ∈ V such that ‖v − v̂‖H ¶ ε.
We let θ ¬ −g(v̂(L)), we pick ϕ ∈ D(Ω) such that ‖ϕ−∂ xu‖L2(Ω) ¶ ε, and we find a piecewise affine
function η satisfying η(L) = θ and ‖η‖L2(Ω) ¶ ε. Set

û(x)¬ u(0) +

∫ x

0

ϕ(s) +η(s)ds. (2.31)

Then, û ∈ H2(Ω) and ∂ x û(L) = θ , so that [û, v̂] ∈ D(A ). On the other hand, û(0) = u(0) and
‖∂ xu− ∂ x û‖L2(Ω) ¶ 2ε. By norm equivalence, it follows that ‖u− û‖V ¶ Kε for some constant K that
does not depend on ε or [u, v]. In sum, we have ‖u− û‖2

V + ‖v − v̂‖2
H ¶ (1+ K2)ε2, which concludes

the proof.

Remark 2.2.4. Here, we could have directly defined D(A ) as in (2.26), and the equivalence between
(2.24) and (2.26) is quite straightforward. This is because in space dimension one, u ∈ H1(Ω) and
∆u ∈ L2(Ω) trivially imply u ∈ H2(Ω). In the next chapter, we will see that the matter is more
complicated for higher-dimensional domains.

One can see D(A ) as the set of “smooth” initial data satisfying a compatibility condition with the
feedback action at the boundary x = L. Our subsequent goal is to find appropriate solutions for initial
data in the dense set D(A ) before passing to the limit to recover weak solutions for general initial
conditions in H . For that purpose, we introduce the following definition, which is standard in the
context of nonlinear semigroups and abstract first-order Cauchy problems.

Definition 2.2.5. Let T > 0. A strong solution [u, u′] to (2.6) on [0, T] is any [u, u′] with regularity

[u, u′] ∈W 1,1(0, T ;H ) (2.32)

that takes values in D(A ) and satisfies

d
dt
[u, u′] +A [u, u′] = 0 a.e. in (0, T ) (2.33)

in the sense of strong differentiation inH .
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2.2. Well-posedness of the feedback system

Remark 2.2.6. For a strong solution [u, u′], (2.33) implies that, as expected, the trace of u′ at x = L
coincides a.e. with the weak derivative of the trace of u at x = L.

Proposition 2.2.7 (Existence of strong solutions). For any [u0, v0] ∈ D(A ), there exists a unique
strong solution [u, u′] to (2.6) that satisfies [u(0), u′(0)] = [u0, v0]. In addition, [u, u′] is differentiable
from the right and for any τ > 0,

[u, u′] ∈W 1,∞(0,τ;H ). (2.34)

Proof. We shall express A as the perturbation of a maximal monotone operator by some globally
Lipschitz mapping. First, we define a mapping F onH as follows:

F [u, v] = [0, F(v)] for all [u, v] ∈H . (2.35)

Clearly, F is globally Lipschitz continuous due to F being globally Lipschitz continuous. We let

A0 ¬A +
1
2

id+F . (2.36)

Let us now prove that A0 is maximal monotone; once this is established, the existence of a unique
strong solution [u, u′] to (2.6) with [u, u′] ∈ W 1,∞(0,τ;H ),τ > 0, and [u, u′] right-differentiable
in H will follow from [Showalter, 2013, Chapter IV, Corollary 4.1]. Starting with the monotonicity
condition, we pick a pair of elements [ui , vi] ∈ D(A ) and write

(A0[u1, v1]−A0[u2, v2], [u, v])H

= −(u, v)H − a(u, v) + (Au+ {g(v1(L))− g(v2(L))}δL , v)H +
1
2
‖u‖2

V +
1
2
‖v‖2

H . (2.37)

where u¬ u1 − u2 and v ¬ v1 − v2. First, we have

(Au+{g(v1(L))− g(v2(L))}δL , v)H = a(u, v)+(g(v1(L))− g(v2(L)))(v1(L)− v2(L))¾ a(u, v) (2.38)

because g is monotone increasing. Besides, ‖u‖2
V + ‖v‖

2
H ¾ ‖u‖

2
H + ‖v‖

2
H ¾ 2|(u, v)H |. It follows that

(A0[u1, v1]−A0[u2, v2], [u, v])H ¾ 0, (2.39)

which proves that A0 is monotone. Next, to obtain the range condition, it suffices to prove that
A0 + (1/2) id is onto. Let [ f , g] ∈H . We must find [u, v] ∈ D(A ) such that

− v + u= f1 in V, (2.40a)

Au+ g(v(L))δL + v = f2 in H. (2.40b)

Substituting (2.40a) into (2.40b) shows that for any solution [u, v] to (2.40), v must satisfy

Av + v + g(v(L))δL = Af1 + f2 in V ′. (2.41)

To solve the variational problem (2.41), we introduce a nonlinear operator Φ : V → V ′ given by

Φ(v)¬ Av + v + g(v(L))δL , (2.42)

so that (2.41) rewrites as Φ(v) = Af1 + f2. We note that

〈Φ(v), v〉V = a(v, v) + ‖v‖2
H + g(v(L))v(L)¾ ‖v‖2

V for all v ∈ V. (2.43)

Let us prove that Φ is onto. To do so, we use [Showalter, 2013, Chapter II, Lemma 2.1 and Theorem
2.1]. Due to (2.43), we only have to check that
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2. A CONTROL PROBLEM IN MECHANICAL ENGINEERING

1. Φ is monotone, i.e., 〈Φ(v1)−Φ(v2), v1 − v2〉V ¾ 0 for any v1, v2 ∈ V ;

2. Φ maps bounded sets of V into bounded sets of V ′;

3. For any v1, v2 ∈ V , the scalar function t 7→ 〈Φ(v1 + t v2), v2〉V is continuous.

This is done by using that g is continuous and monotone increasing; besides, g being a scalar con-
tinuous function, g(v(L)) remains bounded when v describes bounded sets of V . Therefore, there
exists v ∈ V satisfying (2.41). By letting u = f1 + v, we readily get (2.40b), which also means that
[u, v] ∈ D(A ). The proof is now complete.

Proposition 2.2.8. Let [u0, v0] ∈ D(A ). The strong solution [u, u′] to (2.6) originating from [u0, v0]
is also a weak solution to (2.6).

Proof. Let [u0, v0] ∈ D(A ) and [u, u′] the associated strong solution to (2.6) as provided by Proposi-
tion 2.2.7. Let τ¾ 0. Then, u′ ∈ L∞(0,τ; V )∩W 1,∞(0,τ; H). In particular, following Remark 2.2.6,
u(L, ·) belongs to W 1,∞(0,τ). Also,

u′′ + Au+ g(u′(L, ·)δL = F(u′) a.e. on (0,τ) (2.44)

in the sense of strong differentiation in H. We recall that H is continuously embedded into V ′, so
that u′ ∈ W 1,∞(0,τ; V ′) and (2.44) holds in the sense of strong differentiation in V ′ as well. Then,
we can use general results on vector-valued distributions [Temam, 1997, Lemma 3.1, Chapter II] to
deduce from (2.44) that

d
dt
(u′, w) + a(u, w) + g(u′(L, ·))w(L) = (F(u′), w) for all w ∈ V (2.45)

in the sense of scalar distributions on (0,τ).

2.2.3 Proof of the Hadamard theorem

In this section, we bridge the gap between the variational problem (2.14) and the first-order abstract
Cauchy problem (2.33) by showing that limits of strong solutions are in fact weak solutions to (2.6).
This motivates the following definition, which provides an intermediate notion of solution.

Definition 2.2.9. Let T > 0. A generalized solution [u, u′] to (2.6) is any limit of strong solutions
in C ([0, T],H ) with respect to the topology of uniform convergence, i.e., there exists a sequence of
strong solutions [un, u′n] such that

sup
t∈[0,T]

‖[un, u′n]− [u, u′]‖H → 0 as n→ +∞. (2.46)

This definition naturally arises in the context of evolution equations involving maximal mono-
tone operators [Barbu, 1976,Showalter, 2013], where the contraction property of solutions provides
Cauchy sequences in C ([0, T],H ).

Lemma 2.2.10 (Existence of generalized solutions). Let T > 0. For any [u0, v0] ∈ H , there exists a
unique generalized solution [u, u′] ∈ C ([0, T],H ) to (2.6) satisfying [u(0), u′(0)] = [u0, v0].

Proof. We recall that D(A ) is dense inH and apply [Showalter, 2013, Corollary 4.1A] toA written
as a globally Lipschitz perturbation of the maximal monotone operatorA0.

We are finally in position to prove Theorem 2.2.2. We need to show that strong solutions satisfy
the various additional properties stated in the theorem, and then pass to the limit in suitable spaces.
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2.2. Well-posedness of the feedback system

Proof of Theorem 2.2.2. We start by proving that strong solutions satisfy the energy identity (2.18)
and the estimate (2.19). To do so, given initial data in D(A ), we consider a pair [ui , u′i] of strong
solutions to (2.6). As usual, we let u¬ u1 − u2. Let τ¾ 0. Then, u′ ∈W 1,∞(0,τ; H) and u′ solves

u′′ + Au+ {g(u1(L, ·))− g(u2(L, ·))}δL = F(u′1)− F(u′2) in H. (2.47)

We take the scalar product of (2.47) with u′ and integrate over (0,τ) to obtain

∫ τ

0

(u′′, u′)H + a(u, u′)dt

= −
∫ τ

0

{g(u′1(L, t))− g(u′2(L, t))}u′(L, t)dt +

∫ τ

0

(F(u′1)− F(u′2), u′)H dt (2.48)

Because u′ ∈ W 1,∞(0,τ; H), (u′′, u′)H = (d/dt)‖u′‖2
H/2, and because u′ ∈ W 1,∞(0,τ; V ) and a is a

continuous and symmetric bilinear form, a(u, u′) = (d/dt)a(u, u)/2, so that

E (u, u′)
�

�

τ

0 = −
∫ τ

0

{g(u′1(L, t))− g(u′2(L, t))}u′(L, t)dt +

∫ τ

0

(F(u′1)− F(u′2), u′)H dt. (2.49)

Equation (2.49) in the particular case where [u2(0), u′2(0)] = 0 yields the desired energy identity
(2.18). Bearing in mind that g is monotone increasing and F is globally q-Lipschitz continuous for
some constant positive q, we deduce from (2.49) that

E (u, u′)
�

�

τ

0 ¶ q

∫ τ

0

‖u′‖2
H dt ¶ 2q

∫ τ

0

E (u, u′)dt. (2.50)

The parameter τ being arbitrary, (2.50) holds with τ replaced by any t ¶ τ. By using Grönwall’s
inequality, we infer from (2.50) that

E (u(t), u′(t))¶ exp(2qt)E (u(0), u′(0))¶ exp(2qτ)E (u(0), u′(0)) for all t ¶ τ. (2.51)

Next, detailing (2.47), we get

u′′ −
∂2u
∂x2

= 0 a.e. in Ω× (0,τ), (2.52a)

u′′(0, t)−
∂u
∂x
(0, t) = F(u′1(0, t))− F(u′2(0, t) for a.e. t ∈ (0,τ), (2.52b)

where u′′(0, ·) is the weak derivative of u′(0, ·). Let us define a differential multiplierM as follows:

Mu(x , t)¬ x
∂u
∂x
(x , t). (2.53)

Then, Mu ∈ W 1,∞(0,τ; L2(Ω)), which allows to take the scalar product of (2.52a) in L2(Ω) and
integrate by parts with respect to the time variable: having let Qτ ¬ Ω× (0,τ),

∫

Ω

u′Mu dx

�

�

�

�

τ

0

−
∫∫

Qτ

u′Mu′ dx dt −
∫∫

Qτ

∂2u
∂x2
Mu dx dt = 0. (2.54)

Integrating by parts with respect to the space variable leads to following standard trace identity:

L
2

∫ τ

0

�

�

�

�

∂u
∂x
(L, t)

�

�

�

�

2

+ |u′(L, t)|2 dt =

∫

Ω

u′Mu dx

�

�

�

�

τ

0

+
1
2

∫∫

Qτ

�

�

�

�

∂u
∂x

�

�

�

�

2

+ |u′|2 dx dt. (2.55)
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2. A CONTROL PROBLEM IN MECHANICAL ENGINEERING

First, by using Cauchy-Swcharz and Young inequalities, we obtain
∫

Ω

u′Mu dx

�

�

�

�

τ

0

¶ LE (u(0), u′(0)) + LE (u(τ), u′(τ)). (2.56)

In particular, it follows from (2.51) and (2.55) that
∫ τ

0

|u′(L, t)|2 dt ¶ 2{1+ (1+τ/L)exp(2qτ)}E (u(0), u′(0)). (2.57)

Combining (2.51) and (2.57) yields (2.19). Now we consider general initial data [u0, v0] ∈ H . By
Lemma 2.2.10, there exists a unique generalized solution [u, u′] ∈ C (R+,H ) to (2.6). Fix τ > 0. We
can pick a sequence of strong solutions [un, u′n] such that [un, u′n]→ [u, u′] in C ([0,τ],H ). Let us
first prove that

u(L, ·) ∈ H1(0,τ), and u′n(L, ·)→ u′(L, ·) in L2(0,τ). (2.58)

By continuity of the trace at x = L with respect to the H1(Ω)-norm, {un(L, ·)} converges to u(·, L)
in C ([0,τ]). Furthermore, we deduce from (2.19) that {un(L, ·)} is a Cauchy sequence in H1(0,τ).
Uniqueness of the limit implies (2.58). Next, we prove that

g(u′(L, ·)) ∈ L2(Ω), and g(u′n(L, ·))→ g(u′(L, ·)) in L2(0,τ). (2.59)

We infer from (2.55) that
§

∂un

∂x
(L, ·)

ª

= {g(u′n(L, ·))} is a Cauchy sequence in L2(0,τ) (2.60)

and converges to some function U ∈ L2(0,τ). Let us now prove that U = g(u′(L, ·)). Recall from the
theory of Lp-spaces that there exists a negligible subset N1 of (0,τ) such that, up to a subsequence,

u′n(L, t)→ u′(L, t) for all t ∈ (0,τ) \N1. (2.61)

For such t, by continuity of g, g(u′n(L, t))→ g(u′(L, t)). On the other hand, there exists a negligible
set N2 ⊂ (0,τ) such that, up to another subsequence, u′n(L, t)→ U(t) for all t ∈ (0,τ) \ N2. Now,
N1 ∪N2 is a set of measure 0 as well, so that by uniqueness of the limit, U(t) = g(u′(L, t)) a.e. in
(0,τ). It remains to prove that [u, u′] satisfies the variational identity (2.14) and the energy identity
(2.18). To see this, we pick ϕ ∈ D(0,τ) and must prove that for any w ∈ V ,

−
∫ τ

0

(u′, v)Hϕ
′ dt +

∫ τ

0

a(u, v)ϕ dt = −
∫ τ

0

g(u(L, t))w(L)ϕ(t)dt +

∫ τ

0

(F(u′), w)ϕ dt. (2.62)

Equation (2.62) is satisfied by the [un, u′n] because those are strong solutions to (2.6); then, one
can pass to the limit using the convergence in C ([0,τ],H ) together with (2.59). The same argu-
ment shows that (2.18) holds for [u, u′] as well. The last statement of Theorem 2.2.2 concerns the
semigroup {St} associated with (2.6). That {St} is well-defined and enjoys the semigroup proper-
ties readily follows from existence and uniqueness of solutions to the (autonomous) equations (2.6).
Then, each St is Lipschitz continuous because of the incremental estimate (2.19) combined with

‖u1(t)− u2(t)‖H ¶ ‖u1(0)− u2(0)‖H +

∫ t

0

‖u′1(s)− u′2(s)‖H ds (2.63)

for any pair [ui , u′i] of solutions to (2.6), which completes the proof.
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2.3 Stability analysis

This section is devoted to the stability properties of the feedback system (2.6). Our objective is to
derive sufficient conditions under which the mechanical energy E of solutions to (2.6) decays expo-
nentially. For that purpose, we need to investigate the competition between the nonlinear boundary
anti-damping at x = 0 and the dissipative feedback action at x = L.

2.3.1 Uniform stabilization and Lyapunov methods

The first theorem states that under some (global) conditions on the anti-damping nonlinearity F and
the feedback function g, the energy of solutions to (2.6) decays exponentially and uniformly.

Theorem 2.3.1 (Exponential stabilization). Assume that F is globally q-Lipschitz continuous for some
q < 1/2. Suppose also that the feedback function g satisfies the following sector condition:

α1|s|¶ |g(s)|¶ α2|s| for all s ∈ R, (2.64)

where α1 and α2 are positive constants satisfying

α1

1+α2
2

> q. (2.65)

Then, there exist positive constants µ and M such that for all solutions [u, u′] to (2.6),

E (u(t), u′(t))¶ M exp(−µt)E (u(0), u′(0)) for all t ¾ 0. (2.66)

Theorem 2.3.1 is proved and discussed below. Let us state a consequence of the energy decay
property (2.66) regarding the stability and attractivity of the set A ⊂ H of stationary solutions to
(2.6). The set A is given by

A= span(1)× {0} (2.67)

where 1 denotes the constant function whose value is 1. Note that

A= {[u, v] ∈H : E (u, v) = 0}. (2.68)

In fact, the (squared) distance between A and a given point [u, v] of the state spaceH can be upper-
and lower-bounded by its energy E (u, v) – see (2.92) below. This leads us to the following corollary.

Corollary 2.3.2 (Stability of the set of stationary solutions). Under the hypotheses of Theorem 2.3.1,
the set A of stationary solutions is pointwise asymptotically stable, i.e.,

• Each point [u, 0] ∈ A is Lyapunov stable;

• Every solution [u, u′] to (2.6) converges inH to some limit [u?, 0] ∈ A.

Furthermore, the following exponential stability property holds: there exists K > 0 such that all solutions
[u, u′] to (2.6) satisfy

dist([u(t), u′(t)],A)2 ¶ K exp(−µt)dist([u(0), u′(0)],A)2 for all t ¾ 0. (2.69)

Coming back to Theorem 2.3.1, a simple examination of the energy identity (2.17) is not enough
to draw any conclusion regarding the decay (or lack thereof) of E along solutions to (2.6). In order
to overcome this issue and exhibit the boundary coupling between the two extremities of Ω, we
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2. A CONTROL PROBLEM IN MECHANICAL ENGINEERING

introduce a class of Lyapunov candidates that are perturbations of the energy functional E . Given a
continuous scalar function ρ on [0, L], we define Eρ as follows:

Eρ(u, v)¬ E (u, v) +

∫

Ω

ρ(x)
∂u
∂x
(x)v(x)dx for all [u, v] ∈H . (2.70)

Then, Eρ is continuous and there exists M > 0 such that Eρ(u, v) ¶ ME (u, v) for all [u, v] in H .
Furthermore, if maxx∈[0,L] |ρ(x)|< 1, then there also exists m> 0 such that

mEρ(u, v)¶ E (u, v)¶ MEρ(u, v) for all [u, v] ∈H . (2.71)

The constants m and M in the sandwich inequality (2.71) depend on ρ only. The idea behind the
cross term in Eρ is to supplement (2.17) with trace identities that are similar to those used in the
proof of Theorem 2.2.2 and will help us quantifying the behavior of the energy of the system.

Proposition 2.3.3 (Lyapunov analysis). Under the assumptions of Theorem 2.3.1, there exists an affine
weight function ρ taking values in [0,1) and a positive constant µ such that for any solution [u, u′] to
(2.6),

Eρ(u, u′)
�

�

τ

0 ¶ −µ
∫ τ

0

Eρ(u, u′)dt for all τ¾ 0. (2.72)

Furthermore, if the incremental version of (2.64) is satisfied, i.e.,

α1|r1 − r2|¶ |g(r1)− g(r2)|¶ α2|r1 − r2| for all r1, r2 ∈ R, (2.73)

then, for any pair [u1, u′1], [u2, u′2] of solutions to (2.6), the incremental version of (2.72) holds:

Eρ(u1 − u2, u′1 − u′2)
�

�

τ

0 ¶ −µ
∫ τ

0

Eρ(u1 − u2, u′1 − u′2)dt for all τ¾ 0. (2.74)

Once Proposition 2.3.3 is established, Theorem 2.3.1 becomes a simple consequence of the in-
tegral inequality (2.72), as shown below. The incremental inequality (2.74), which is stronger than
(2.72) in that it concerns pairs of solutions, will be used for technical reasons when dealing with the
problem of saturated stabilization in Section 2.3.2.

Proof of Proposition 2.3.3. Pick two strong solutions [u1, u′1] and [u2, u′2] to (2.6). We assume that the
incremental sector condition (2.73) is satisfied; if only (2.64) holds, then all the computations below
are valid in the case u2 = 0. Again, we write u ¬ u1 − u2. Let ρ be affine, positive and monotone
increasing. Fix τ ¾ 0. Similarly as in the proof of Theorem 2.2.2, by multiplying (2.52a) by ρ∂ xu,
integrating over Qτ = Ω×(0,τ) and performing some integrations by parts, we obtain a trace identity
that generalizes (2.55):

2

∫

Ω

ρu′
∂u
∂x

dx

�

�

�

�

τ

0

+ρ′
∫∫

Qτ

�

�

�

�

∂u
∂x

�

�

�

�

2

+ |u′|2 dx dt =

�

ρ

∫ τ

0

�

�

�

�

∂u
∂x

�

�

�

�

2

+ |u′|2 dt

�x=L

x=0

(2.75)

where we recall the notation Qτ = Ω× (0, T ). By summing the incremental energy identity (2.49)
and one half of (2.75), we obtain an identity giving the variation of Eρ(u, u′):

Eρ(u, u′)
�

�

τ

0 = E (u, u′)
�

�

τ

0 −
ρ′

2

∫∫

Qτ

�

�

�

�

∂u
∂x

�

�

�

�

2

+ |u′|2 dx dt +

�

ρ

2

∫ τ

0

�

�

�

�

∂u
∂x

�

�

�

�

2

+ |u′|2 dt

�x=L

x=0

(2.76)
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Since g is monotone increasing and the sector condition (2.64) holds, we have

−
∫ τ

0

{g(u′1(L, t))− g(u′2(L, t))}u′(L, t)dt ¶ −α1

∫ τ

0

|u′(L, t)|2 dt. (2.77)

Using the q-Lipschitz continuity of F , we deduce from (2.49), (2.76) and (2.77) that

Eρ(u, u′)
�

�

τ

0 ¶ −
ρ′

2

∫∫

Qτ

�

�

�

�

∂u
∂x

�

�

�

�

2

+ |u′|2 dx dt +
§

q−
ρ(0)

2

ª

∫ τ

0

|u′(0, t)|2 dt

+

∫ τ

0

ρ(L)
2

�

�

�

�

∂u
∂x
(L, t)

�

�

�

�

2

+
§

ρ(L)
2
−α1

ª

|u′(L, t)|2 dt. (2.78)

Next, we use (2.64) again and write

∫ τ

0

�

�

�

�

∂u
∂x
(L, t)

�

�

�

�

2

dt =

∫ τ

0

|g(u′1(L, t))− g(u′2(L, t))|2 dt ¶ α2
2

∫ τ

0

|u′(L, t)|2 dt. (2.79)

Plugging (2.79) into (2.78) leads to

Eρ(u, u′)
�

�

τ

0 ¶ −
ρ′

2

∫∫

Qτ

�

�

�

�

∂u
∂x

�

�

�

�

2

+ |u′|2 dx dt +
§

q−
ρ(0)

2

ª

∫ τ

0

|u′(0, t)|2 dt

+

∫ τ

0

§

ρ(L)
2
(1+α2

2)−α1

ª

|u′(L, t)|2 dt. (2.80)

It remains to tune the affine weight ρ appropriately. Let ε > 0. Recall from the hypothesis (2.65)
that

α1

1+α2
2

> q, hence
α1 − ε
1+α2

2

> q+ ε (2.81)

provided that ε is sufficiently small. The choice ρ(0) = 2q + 2ε and ρ(L) = 2(α1 − ε)(1 + α2
2)
−1

defines a unique affine function ρ, which is strictly increasing by (2.81) (meaning that ρ′ > 0) and
positive as q > 0. Then, q−ρ(0)/2= −ε, ρ(L)(1+α2

2)/2−α1 = −ε and (2.80) yields

Eρ(u, u′)
�

�

τ

0 ¶ −
ρ′

2

∫∫

Qτ

�

�

�

�

∂u
∂x

�

�

�

�

2

+ |u′|2 dx dt − ε
∫ τ

0

|u′(0, t)|2 dt. (2.82)

Furthermore, since α1 ¶ α2, we have α1(1+α2
2)
−1 ¶ 1/2, hence ρ(L)< 1. As a result, the sandwich

inequality (2.71) is valid for some positive constants m and M depending on ρ. Having let µ ¬
m−1 min(ρ′, 2ε) > 0, we finally obtain (2.74) holding for arbitrary τ ¾ 0. This concludes the proof.

We end this section by completing the proofs of Theorem 2.3.1 and Corollary 2.3.2.

Proof of Theorem 2.3.1. Let [u, u′] be a solution to (2.6). Since Eρ(u, u′) is continuous and satisfies
the integral inequality (2.72), Grönwall’s lemma yields

Eρ(u(t), u′(t))¶ exp(−µt)E (u(t), u′(0)) for all t ¾ 0. (2.83)

The conclusion follows from the sandwich inequality (2.71).
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Proof of Corollary 2.3.2. By equivalence between the norms of V and H1(Ω), there exist positive con-
stants c and C such that

c‖w‖2
H1(Ω) ¶ ‖w‖

2
V ¶ C‖w‖2

H1(Ω) for all w ∈ V. (2.84)

Recall that A= span(1)× {0}. Given [u, v] ∈H , we have

dist([u, v],A)2 = inf
[w,0]∈A

‖u−w‖2
V + ‖v‖

2
H . (2.85)

Let uΩ be the constant function given by the mean value of u over Ω:

uΩ ¬
1
L

∫

Ω

u dx . (2.86)

Then, uΩ is the orthogonal projection in H1(Ω) of u onto the vector line of constant functions. Thus,
it follows from (2.84) that

‖u−w‖2
V ¾ c‖u− uΩ‖2

H1(Ω) = c

∫

Ω

�

�

�

�

∂u
∂x

�

�

�

�

2

+ |u− uΩ|2dx for all [w, 0] ∈ A. (2.87)

We deduce from (2.85) and (2.87) that

dist([u, v],A)2 ¾ c

∫

Ω

�

�

�

�

∂u
∂x

�

�

�

�

2

+ |u− uΩ|2 dx + c‖v‖2
H ¾ 2cE (u, v). (2.88)

On the other hand, [uΩ, 0] ∈ A, which implies that

dist([u, v],A)2 ¶ ‖u−uΩ‖2
V+‖v‖

2
H ¶ C‖u−uΩ‖2

H1(Ω)+‖v‖
2
H = C

∫

Ω

�

�

�

�

∂u
∂x

�

�

�

�

2

+|u−uΩ|2dx+‖v‖2
H , (2.89)

where we used (2.84) again. Now, the Poincaré-Wirtinger inequality states that for some constant
K > 0 and arbitrary u ∈ H1(Ω),

∫

Ω

|u− uΩ|2 dx ¶ K

∫

Ω

�

�

�

�

∂u
∂x

�

�

�

�

2

dx . (2.90)

Plugging (2.90) into (2.89) yields

dist([u, v],A)2 ¶ C(1+ K)

∫

Ω

�

�

�

�

∂u
∂x

�

�

�

�

2

dx + ‖v‖2
H ¶ 2max{C(1+ K), 1}E (u, v). (2.91)

Renaming the constants if needed, we infer from (2.88) and (2.91) that for some positive c and C ,

cE (u, v)¶ dist([u, v],A)2 ¶ CE (u, v) for all [u, v] ∈H . (2.92)

Using (2.66), we apply (2.92) to a solution [u, u′] to (2.6) and obtain that for all t ¾ 0,

dist([u(t), u′(t)],A)2 ¶ CE (u(t), u′(t))
¶ C M exp(−µt)E (u(0), u′(0))

¶ c−1C M exp(−µt)dist([u(0), u′(0)],A)2,

(2.93)
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which is the desired inequality (2.69). Next, we show that each point of A is Lyapunov stable. Let
[w, 0] ∈ A and ε > 0. We must find δ > 0 such that for any [u0, v0] ∈ BH ([w, 0],δ), St[u0, v0] ∈
BH ([w, 0],ε) for all t ¾ 0. Given [u0, v0] ∈ H , we denote the associated solution to (2.6) by
[u(t), u′(t)] = St[u0, v0]. First, u ∈W 1,1(0,+∞; H) and

‖u(t)− u0‖H ¶
∫ +∞

0

‖u′(r)‖H dr for all t ¾ 0. (2.94)

The right-hand side of (2.94) is finite because of the exponential decay of E (u, u′). In fact, we have

‖u(t)− u0‖H ¶
2M1/2

µ
E (u0, v0)

1/2 for all t ¾ 0. (2.95)

On the other hand, since [w, 0] ∈ A, w is a constant, and we can write

‖[u(t)−w, u′(t)]‖2
H = ‖u

′(t)‖2
H+a(u(t), u(t))+‖u(t)−w‖2

H ¶ 2E (u(t), u′(t))+‖u(t)−w‖2
H . (2.96)

We also have ‖u(t)−w‖2
H ¶ 2‖u(t)−u0‖2

H +2‖w−u0‖2
H for all t ¾ 0. Thus, combining (2.66), (2.95)

and (2.96), we obtain that

‖[u(t)−w, u′(t)]‖2
H ¶ K{E (u0, v0) + ‖w− u0‖2

H} for all t ¾ 0, (2.97)

for some positive constant K . Because [w, 0] ∈ A, E (w, 0) = 0, and by continuity of E with respect
to the norm ofH , there exists δ > 0 such that any [u0, v0] ∈BH (Y,δ), E (u0, v0) ¶ ε/2K . Taking δ
smaller than ε/2K as well if needed, since ‖w− u0‖2

H ¶ ‖w− u0‖2
V ¶ ‖[u0 − w, v0]‖2

H , we obtain the
desired Lyapunov stability property. It remains to prove that for each [u0, v0] ∈H , [u(t), u′(t)] goes
to some limit [u?, 0] ∈ A as t goes to +∞. We already know that u′ goes to 0 in H. Equation (2.95)
combined with the semigroup properties of {St} and a(u(t), u(t))→ 0 implies that for each increasing
sequence of nonnegative real numbers {tn}, {utn

} is a Cauchy sequence in V and therefore converges
to some u?, which must then satisfies a(u?, u?) = 0, i.e., [u?, 0] ∈ A. By using that [u?, 0] is Lyapunov
stable, one can check that u? does not depend on the particular choice of sequence {tn}.

2.3.2 The problem of saturated stabilization

It is clear that Theorem 2.3.1 does not apply for bounded feedback functions g such as “hard” satu-
ration maps satS with threshold S > 0 defined by

satS(s)¬







s if |s|¶ S,

S
s
|s|

otherwise,
(2.98)

which only satisfy the sector condition (2.64) around zero. Nevertheless, one may expect that a local
version of the result holds in that case. We shall prove the following theorem.

Theorem 2.3.4 (Saturated stabilization). Instead of (2.64), assume there exist positive constants S,
α1 and α2, with α1 and α2 satisfying (2.65), such that

α1|s1 − s2|¶ |g(s1)− g(s2)|¶ α2|s1 − s2| for all s1, s2 ∈ R with |si |¶ S. (2.99)

Then, there exists positive constants K, M and µ such that (2.66) holds for all strong solutions [u, v]
with initial data [u0, v0] ∈ D(A ) satisfying

‖u0‖2
H1(Ω) +









∂v0

∂x









2

H1(Ω)
¶ K . (2.100)
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In other words, smooth solutions originating from some small ball around the origin still have
exponentially decaying energy; however, this ball is defined with respect to a norm that is stronger
than that of H . Now, establishing Theorem 2.3.4 essentially amounts to proving that sufficiently
small balls in the H2(Ω) × H1(Ω)-norm are contained in some subset of H that is invariant with
respect to the closed-loop dynamics. Indeed, roughly speaking, if the H1(Ω)-norm of u′ is sufficiently
small, then u(L, t)¶ S for all t ¾ 0, and the analysis of Proposition 2.3.3 is valid. On the other hand,
if [u0, v0] is taken small in some ball of the energy space H , using (2.19), we only get L2-estimates
of u′(L, ·), as opposed to pointwise estimates. Thus, we need to bound some higher-degree norm of
strong solutions. While the general theory of contraction semigroups directly provides such results
in problems where the original (uncontrolled) dynamics are non-expansive, in our case the original
system can be unstable due to the anti-damping term; and, in the example of saturated proportional
control, only when the feedback effectively operates does the contraction property of the closed-loop
equations (2.6) holds. That is, modulo constant solutions, which is another fact that requires some
workaround. To overcome these issues, we shall prove a series of technical lemmas that are given in
the sequel.

We start by introducing the quotient space H̃ ¬ H /A, i.e., H̃ is the vector space of equiva-
lence classes modulo stationnary solutions. Since A is a closed subspace of the Banach spaceH , H̃
endowed with the norm

‖[u, v]‖H̃ ¬ inf
[w,0]∈A

‖[u−w, v]‖H (2.101)

is also a Banach space. The first lemma shows that the semigroup {St} is compatible with the quotient
by A, i.e., the image by each St of an equivalence class modulo A is a single equivalence class.

Lemma 2.3.5. Let [u1, v1] and [u2, v2] inH . If [u1−u2, v1− v2] ∈ A, then St[u1, v1]−St[u2, v2] ∈ A.

Proof. Let t ¾ 0. A consequence of the a priori estimate (2.19) is that

E (St[u1, v1]−St[u2, v2])¶ C(t)E (u1 − u2, v1 − v2) = 0, (2.102)

where we used that [u1 − u2, v1 − v2] ∈ A. The conclusion follows from (2.68).

This allows us to define a semigroup {S̃t} that operates on the quotient space H̃ : an equivalence
class in H̃ containing some element [u, v] is mapped by S̃t to the equivalence class of St[u, v], and
by Lemma 2.3.5 the result does not depend on the representative [u, v]. The semigroup property is
easily verified as well. Next, we introduce some additional notation. Given a continuous ρ satisfying
maxx∈[0,L] |ρ(x)|< 1, we let

‖[u, v]‖H̃ ,ρ ¬ Eρ(u, v)1/2 for all [u, v] ∈H . (2.103)

This definition is valid for either single points inH or equivalence classes in H̃ since

Eρ(u+w, v) = Eρ(u, v) for all [w, 0] ∈ A. (2.104)

Lemma 2.3.6. The function ‖ · ‖H̃ ,ρ is an Hilbert norm on H̃ that is equivalent to ‖ · ‖H̃ .

Proof. Triangular inequality and absolute homogeneity are easily verified. Positive-definiteness fol-
lows from (2.68). By the sandwich inequality (2.71), it is sufficient to prove that ‖·‖H̃ ,0 is equivalent
to ‖ · ‖H̃ , i.e., there exist some positive constants c and C such that for all [u, v] ∈H ,

cE (u, v)¶ inf
[w,0]∈A

‖[u−w, v]‖2
H ¶ CE (u, v). (2.105)
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Equation (2.105) is exactly (2.92) and has already been established in the proof of Corollary 2.3.2.
To see that ‖ · ‖H̃ ,ρ is induced by a scalar product, we can check for instance that the following
parallelogram identity is valid:

2Eρ(u1, v1) + 2Eρ(u2, v2) = Eρ(u1 − u2, v1 − v2) + Eρ(u1 + u2, v1 + v2) (2.106)

for all pairs [ui , vi] ∈H .

As a consequence of Lemma 2.3.6, the quotient space H̃ equipped with any of the (equivalent)
norms ‖ · ‖H̃ ,ρ is a Hilbert space.

Our next objective is to use contraction properties of the “quotient semigroup” in order to prove
that for strong solutions, the H1(Ω)-norm of the velocity remains bounded. Key to the proof of
Theorem 2.3.4 is the following lemma.

Lemma 2.3.7. Let r > 0. Under the full hypotheses of Proposition 2.3.3, consider the (nonempty) set

Kρ,r ¬ {[u, v] ∈ D(A ) : ‖A [u, v]‖H̃ ,ρ ¶ r}. (2.107)

where ρ is the weight given by the proposition. Then, Kρ,r is positively invariant with respect to {St},
i.e.,

StKr ⊂Kr for all t ¾ 0. (2.108)

Proof. Let [u0, v0] ∈Kr . We write [u(t), u′(t)] = St[u0, v0]. Then, since [u0, v0] ∈ D(A ), [u, u′] is a
strong solution to (2.6) and by virtue of Proposition 2.2.7, [u, u′] is differentiable from the right and

lim
s→0+









Ss+t[u0, v0]−St[u0, v0]
s

+ASt[u0, v0]









H
= 0 for all t ¾ 0. (2.109)

We now make a detour by the quotient space H̃ . Since E ¶ (1/2)‖ · ‖2
H , the linear map from H

to H̃ sending an element [u, v] to its equivalence class modulo A is continuous. It follows that the
semigroup {S̃t} is strongly continuous as well; in addition, (2.109) means that for each t ¾ 0, (the
class of) −A [u(t), u′(t)] is the right-derivative at t of s 7→ S̃s[u0, v0] with respect to the norm of
H̃ . Furthermore, we infer from (2.74) in Proposition 2.3.3 that it is in fact a contraction semigroup.
In sum, {S̃t} is a strongly continuous semigroup of contractions on (the Hilbert space) H̃ , and its
trajectory originating from [u0, v0] is right-differentiable; therefore, by virtue of [Crandall and Pazy,
1969, Theorem 1.4], the norm of the right-derivative is a monotone decreasing function of the time
variable. Putting aside the matter of equivalence classes, this means that

‖A [u(t), u′(t)]‖H̃ ,ρ ¶ ‖A [u(0), u′(0)]‖H̃ ,ρ for all t ¾ 0. (2.110)

The result is now proved.

Lemma 2.3.8. There exist positive constants C1 and C2 such that for all [u, v] ∈ D(A ),

C1

�

‖v‖2
H1(Ω) +









∂u
∂x









2

H1(Ω)

�

¶ ‖A [u, v]‖2
H̃ ,ρ
+ ‖[u, v]‖2

H̃ ,ρ
¶ C2

�

‖v‖H1(Ω) +









∂u
∂x









H1(Ω)

�

. (2.111)

Proof. By (2.71), it suffices to prove the case ρ = 0. We have

‖A [u, v]‖2
H̃ ,0
= E (−v, Au+ g(v(L))δL) =

1
2

∫

Ω

�

�

�

�

∂v
∂x

�

�

�

�

2

+

�

�

�

�

∂2u
∂x2

�

�

�

�

2

dx +
1
2

�

�

�

�

∂u
∂x
(0)

�

�

�

�

2

. (2.112)
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Therefore,

‖A [u, v]‖2
H̃ ,0
+‖[u, v]‖2

H̃ ,0
=

1
2

∫

Ω

�

�

�

�

∂2u
∂x2

�

�

�

�

2

+

�

�

�

�

∂u
∂x

�

�

�

�

2

+

�

�

�

�

∂v
∂x

�

�

�

�

2

+|v|2dx+
1
2

�

�

�

�

∂u
∂x
(0)

�

�

�

�

2

+
1
2
|v(0)|2. (2.113)

Since the trace is continuous with respect to the H1(Ω)-norm, the conclusion readily follows.

We are finally in position to prove Theorem 2.3.4. Note that the lemmas established so far require
that the feedback linearity g satisfies the global sector condition of Proposition 2.3.3. Nonetheless,
by proving that well-chosen setsKρ,r are invariant for the saturated dynamics as well, we can obtain
the desired result.

Proof of Theorem 2.3.4. First, we claim that there exists a continuous monotone increasing function
f satisfying the global incremental sector condition (2.64) and such that

g(s) = f (s) for all |s|¶ S. (2.114)

For instance, we can explicitly build one as follows:

f (s)¬ g(s) for s ∈ (−S, S), (2.115a)

f (s)¬ g(S) +
α1 +α2

2
(s− S) for s ¾ S, (2.115b)

f (s)¬ g(−S) +
α1 +α2

2
(s+ S) for s ¶ −S. (2.115c)

The closed-loop equations (2.6) with g replaced by f generate another semigroup of nonlinear op-
erators on H , which we denote by {Tt}. All results in Proposition 2.3.3 and Theorem 2.3.1 apply
to {Tt}. Let ρ be the weight function given by Proposition 2.3.3. By Lemma 2.3.7, all sets Kρ,r are
positively invariant for {Tt}. On the other hand, by Lemma 2.3.8, contraction property of {Tt} with
respect to the ‖ · ‖H̃ ,ρ-norm and continuity of the trace, one can chose r > 0 such that

|v(L)|¶ S for all [u, v] ∈Kr . (2.116)

Let us prove that Kρ,r is positively invariant for the original semigroup {St}. Pick [u0, v0] ∈ Kρ,r .
Let [u(t), u′(t)]¬ St[u0, v0] and [z(t), z′(t)]¬ Tt[u0, v0]. Then, [z, z′] satisfies

z′′ + Az + f (z′(L, ·))δL = F(z′) in V ′ (or even H) (2.117)

a.e. in (0,+∞). On the other hand, by positive invariance of Kr , |z′(L, t)| ¶ S for all t ¾ 0, which
means that f (z′(L, t)) = g(z′(L, t)) for all t ¾ 0. In other words, [u, u′] and [z, z′] satisfy the same
variational identity (2.14) and the same initial condition. By uniqueness of weak solutions to (2.6)
in Theorem 2.2.2, this implies [u, u′] = [z, z′]. We have proved that for some positive constants µ
and M given by Theorem 2.3.1 applied to {Tt}, all solutions [u, u′] = St[u0, v0] originating fromKr
satisfy the exponential energy decay property (2.66). Using Lemma 2.3.8 again, there exists K > 0
such that

If ‖v0‖2
H1(Ω) +









∂u0

∂x









2

H1(Ω)
¶ K , then [u0, v0] ∈Kr , (2.118)

which concludes the proof.
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2.3. Stability analysis

Comments on Chapter 2

One-dimensional hyperbolic systems Using the Riemannian invariants ∂ tu− ∂ xu and ∂ tu+ ∂ xu,
the-dimensional wave equation (2.1) can be recast into the framework of first-order one-dimensional
hyperbolic equations, for which a wide variety a general results exist – see, e.g., [Coron et al., 2008].
We do not follow this approach here for two reasons:

• Due to the nonlinear aspect of the boundary conditions (2.6b) and (2.6c), they do not translate
conveniently in the new Riemann coordinates;

• The formalism we use in Chapter 2 is a starting point for analyzing more general second-order
evolution equations, including Euler-Bernoulli beam equations or multi-dimensional wave equa-
tions as in Chapter 3; in particular, it should be noted that in dimension higher than one, the
“wave” differential operator (also known as d’Alembertian) ∂/∂ t −∆ no longer factorizes into
a product of transport operators.

Lagrangian mechanics and variational identity The mechanical energy functional E belongs to
C 1(H ,R) and its Fréchet differential is given by

dE (u, v)[w, z] = a(u, w) + (v, z)H for all [u, v], [w, z] ∈H . (2.119)

Using the notation of physics, the variational identity (2.14), which characterizes solutions [u, u̇],
can be rewritten as a balance of energy. For all virtual displacement in the test function space V , the
following Euler-Lagrange equation is satisfied:

d
dt

§

∂E
∂u̇
(u, u̇)δ

ª

−
∂E
∂u
(u, u̇)δ = Virtual power of external forces, (2.120)

where ∂/∂u and ∂/∂u̇ denote partial Fréchet differentials with respect to the position and velocity
variable respectively. Such an energy-based formulation highlights the close relation between varia-
tional methods and the principle of least action in mechanics.
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3.1 Background and closed-loop equations

In this chapter, we study the multi-dimensional wave equation with Dirichlet boundary control subject
to a nonlinearity g. Let Ω be a bounded domain of Rd , d ¾ 2, with smooth boundary Γ . Given a
relatively open nonempty subset Γ0 of Γ , we consider the following control system:

∂2u
∂ t2
−∆u= 0 in Ω× (0,+∞), (3.1a)

u|Γ = −g(U(t)) on Γ0 × (0,+∞), (3.1b)

u|Γ = 0 on Γ1 × (0,+∞), (3.1c)

where U represents the control input and Γ1 ¬ Γ \ Γ0 is the uncontrolled part of the boundary. It was
proved in [Lasiecka et al., 1986] that, roughly speaking, the largest state space H for which, with
reference to the wave equation (3.1a), the property

[u(0), u′(0)] ∈H , u|Γ ∈ L2(0, T ; L2(Γ )) implies [u, u′] ∈ C ([0, T],H ), (3.2)

or, in other words, the optimal energy space H for the waves with L2(0, T ; L2(Γ ))-Dirichlet control
is in fact

H ¬ L2(Ω)×H−1(Ω). (3.3)

where we recall that the Sobolev space of negative order H−1(Ω) is the topological dual of H1
0(Ω),

which is the closure of D(Ω) in H1(Ω). Note that H−1(Ω) is a space of distributions. It is a Hilbert
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space if equipped with the following scalar product:

(u1, u2)H−1(Ω) ¬ (A−1/2u1, A−1/2u2)L2(Ω) for all u1, u2 ∈ H−1(Ω), (3.4)

where the “−∆ with homogeneous Dirichlet boundary conditions” operator A and its fractional pow-
ers are properly introduced in Section 3.2.1. The aforementioned optimal regularity result suggests
working inH for the feedback stabilization problem as well. As usual, we define an energy functional
E onH by letting

E (u, v)¬
1
2
‖u‖2

L2(Ω) +
1
2
‖v‖2

H−1(Ω) for all [u, v] ∈H . (3.5)

Formally differentiating E along “trajectories” of the open-loop system (3.1) yields the energy identity

d
dt
E (u, u′) =

∫

Γ0

g(U(t))
∂[A−1u′]
∂ν

dσ (3.6)

where ∂/∂ν denotes the outward normal derivative. Assuming that g(s)s ¾ 0 for all real s, (3.5)
suggests the following choice of (velocity) feedback:

U(t) = −
∂[A−1u′]
∂ν

. (3.7)

The feedback law (3.7) was introduced in [Lasiecka and Triggiani, 1987] for the linear problem (i.e.,
g = id). The authors then proved that the linear version of (3.1)-(3.7) gives rise to an exponentially
stable semigroup of operators onH under the assumption that the whole boundary is actuated (i.e.,
Γ = Γ0) and that Ω satisfies suitable geometric conditions. The proof relies on the analysis of a new
variable p defined as

p ¬ A−1u′ (3.8)

which is smoother and solves a wave-type equation as well. The result was later refined by the same
authors in [Lasiecka and Triggiani, 1992b] where feedback acting only on a subset of the boundary is
allowed and, most importantly, specific geometric conditions related to the analysis of the p-variable
by multipliers are relaxed. This was achieved by the mean of another change of variable operating
at the level of pseudodifferential calculus. In short, after transposing problem (3.1)-(3.7) to the half-
space via partition of unity and truncating the solution with respect to the time variable, one defines
a new variable w by

F [w](ξ,ω; x) = λ(ξ,ω)F [u](ξ,ω; x), ξ ∈ Rd−1, ω ∈ R, x ¾ 0, (3.9)

where F denotes the Fourier transform in both tangential and time variables and λ is a carefully
constructed symbol. While transformations (3.8) and (3.9) are quite different in nature, both enable
computations on variables with H1(Ω)× L2(Ω)-regularity.

The closed-loop equations (3.1)-(3.7) constitute a natural Dirichlet counterpart to the wave equa-
tion with nonlinear Neumann boundary dissipation

∂2u
∂ t2
−∆u= 0 in Ω× (0,+∞) (3.10a)

∂u
∂ν
= −g

�

∂u
∂ t

�

on Γ0 × (0,+∞), (3.10b)

u|Γ = 0 on Γ1 × (0,+∞), (3.10c)

which, in contrast, have been extensively studied in the literature. To cite only a few, when the non-
linearity g has linear growth at infinity, uniform decay of the H1(Ω)× L2(Ω)-energy of solutions to
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(3.10) can be achieved, as in [Zuazua, 1990] or [Lasiecka and Tataru, 1993] – see also [Komornik,
1994a] and the references therein, or more recently [Daoulatli et al., 2009]. In the one-dimensional
settings, arguments based on Riemann invariants are available, and the decay of the energy can be
analyzed via appropriate iterated sequences. See for instance [Chitour et al., 2021], where g is al-
lowed to be a multivalued monotone mapping, or [Vancostenoble and Martinez, 2000], where it is
proved, in particular, that exponential or polynomial uniform decay cannot be achieved when g rep-
resents a pointwise saturation mapping – see also [Prieur et al., 2016,Xu and Xu, 2019] for a stability
analysis in the saturated case. Our objective in this chapter is to bridge the gap between Neumann
and Dirichlet boundary conditions and extend the stability analysis of the closed-loop system (3.1)-
(3.7) to the nonlinear case. As in Chapter 2, our main motivation behind the term g in the feedback
loop is the problem of saturated stabilization, and one can think of the maps satS defined by (2.98)
as prototype nonlinearities satisfying all the assumptions given below. Let us introduce a first set of
hypotheses satisfied by the scalar mapping g.

Hypothesis 3.1.1. The (real) scalar mapping g satisfies the following properties:

(i) g is globally Lipschitz continuous and monotone increasing;

(ii) g(s) = 0 if and only if s = 0.

3.2 Well-posedness and asymptotic stability

Our objective in this section is to establish well-posedness of the closed-loop equations (3.1)-(3.7)
with initial data in H = L2(Ω) × H−1(Ω) as well as asymptotic stability of the zero equilibrium.
Now, in comparison with Chapter 2 where initial data had H1(Ω)× L2(Ω)-regularity, we have to deal
with very weak solutions, and the operator-theoretic formulation of the evolution problem is more
involved. In particular, we need fractional powers of the “positive Laplacian with homogeneous
Dirichlet boundary conditions” A, which we introduce in Section 3.2.1. Well-posedness is then stated
and proved in Section 3.2.2. Finally, asymptotic stability is established in Section 3.2.3.

3.2.1 Functional preliminaries

We start by defining a (symmetric) continuous bilinear form a on H1
0(Ω)×H1

0(Ω):

a(u1, u2)¬
∫

Ω

∇u1 · ∇u2 dx for all u1, u2 ∈ H1
0(Ω). (3.11)

The bilinear form a is coercive since ‖ · ‖H1
0 (Ω)
= a(·, ·). By letting

〈Au, w〉H1
0 (Ω)
¬ a(u, w) for all u, w ∈ H1

0(Ω), (3.12)

we define a duality mapping A∈ L (H1
0(Ω), H−1(Ω)). By symmetry of a, A is self-adjoint in the sense

that
〈Au1, u2〉H1

0 (Ω)
= 〈Au2, u1〉H1

0 (Ω)
for all u1, u2 ∈ H1

0(Ω). (3.13)

Note that because a is coercive, by virtue of the Lax-Milgram lemma, A−1 exists inL (H−1(Ω), H1
0(Ω))

(and a fortiori in L (L2(Ω))). At this point, following the ideas presented in Chapter 2, we could
easily define H1(Ω)× L2(Ω)-solutions to the wave equation with Neumann boundary control; for the
Dirichlet problem on H , however, we need to go further in the analysis. It is possible to see A as
a linear unbounded operator on L2(Ω). To do so, bearing in mind the embedding chain H1

0(Ω) ,→
L2(Ω) ,→ H−1(Ω), we let

D(A)¬ {u ∈ H1
0(Ω) : Au ∈ L2(Ω)}. (3.14)
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The domain D(A) is equipped with the norm ‖ · ‖D(A) given by

‖u‖D(A) ¬ ‖Au‖L2(Ω) for all u ∈ D(A). (3.15)

Then, A is an isomorphism from D(A) onto L2(Ω). Besides, by using the coercivity of a, the Poincaré
inequality, and Cauchy-Schwarz and Young inequalities, one obtains that D(A) is continuously em-
bedded into H1

0(Ω) and L2(Ω). Furthermore, the domain D(A) of A is dense in L2(Ω) – for instance,
one can see that D(Ω) ⊂ D(A ) and D(Ω) is dense in L2(Ω). Then, by symmetry of a, it is easy to see
that A considered as an unbounded operator is self-adjoint, i.e., D(A∗) = D(A) and A= A∗. Finally,

(Au, u)L2(Ω) ¾ λ‖u‖2
L2(Ω) for all u ∈ D(A), (3.16)

where λ > 0 comes from the Poincaré inequality, meaning that A is strictly positive.

Elliptic regularity By using test functions inD(Ω) ⊂ H1
0(Ω), we see thatD(A) is the set of elements u

of H1
0(Ω) such that the (distributional) Laplacian∆u is in fact a function in L2(Ω). Then, recalling that

Ω is assumed to be smooth, elliptic regularity theory [Lions and Magenes, 1968] gives the following
characterization:

D(A) = H2(Ω)∩H1
0(Ω), (3.17)

with equivalence between the norm ‖ · ‖D(A) and the norm induced by H2(Ω).

Fractional powers As a closed positive self-adjoint operator, A possesses fractional power As, s ∈ R
[Yosida, 2012]. More precisely, there exists a family of unbounded operators As with dense domains
D(As) ⊂ L2(Ω), s ¾ 0, such that, given s1, s2 ∈ R, As1+s2u = As1As2u = As2As1 u for any u ∈ D(As) where
s = max{s1, s2, s1 + s2}. Those are strictly positive and self-adjoint as well. Each D(As) is a Hilbert
space if equipped with the scalar product

(u1, u2)D(As) ¬ (Asu1, Asu2)L2(Ω) for all u1, u2 ∈ D(As). (3.18)

Then, for s ¾ 0, As is an isomorphism from D(As) onto L2(Ω). For s > 0, after letting D(A−s)¬ D(As)′,
one proves that As can be extended by continuity as an isomorphism from L2(Ω) onto D(A−s), and the
extension is denoted with the same symbol. Then, an equivalent norm on D(A−s) is induced by the
scalar product (3.18) where s is replaced by −s. The set family {D(As)}s∈R is increasing (with respect
to the inclusion) and for each s1 ∈ R, D(As1) is continuously embedded into every D(As2), s2 ¶ s1.
Finally, for all s1 ¾ s2, As1−s2 is an isomorphism from D(As1) onto D(As2). We also recover

D(A1/2) = H1
0(Ω), and thus D(A−1/2) = H−1(Ω), (3.19)

where the norms are the same in both equalities. For additional details and references on that matter,
the reader is referred to [Temam, 1997, Section II.2.1], where inspiration for the presentation of this
paragraph was taken from. The main properties that we shall use in the sequel can be summarized
with the continuous embedding chain

D(A) ,→ H1
0(Ω) ,→ L2(Ω) ,→ H−1(Ω) ,→D(A−1) (3.20)

and the isomorphism property

A∈ L (D(As),D(As−1)), A−1 ∈ L (D(As),D(As+1)), s ∈ R. (3.21)
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Harmonic extension operator Next, we introduce the Dirichlet map D. Let f ∈ H1/2(Γ ); there
exists a unique D f ¬ u ∈ H1(Ω) such that u|Γ = f and ∆u = 0. The linear operator D defined that
way enjoys the continuity property

D ∈ L (H1/2(Γ ), H1(Ω)). (3.22)

In other words, D is a continuous right-inverse for the trace. In fact, D possesses extensions on
fractional Sobolev spaces [Lions and Magenes, 1968], which we denote with the same symbol:

D ∈ L (H s(Γ ), H s+1/2(Ω)) for all s ∈ R. (3.23)

In particular, D continuously maps L2(Γ ) into L2(Ω), allowing us to define the adjoint D∗ with respect
to these spaces:

(D∗u, f )L2(Γ ) = (u, D f )L2(Ω) for all u ∈ L2(Ω) and f ∈ L2(Γ ). (3.24)

The adjoint D∗ admits continuous extensions as well:

D∗ ∈ L (H s(Ω), H s+1/2(Γ )) for all s ∈ R. (3.25)

Lemma 3.2.1. We have the following identity:

− D∗Au=
∂u
∂ν

for all u ∈ D(A). (3.26)

Proof. This follows from the Green formula. Let u ∈ D(A). Let ϕ ∈ H1/2(Γ ) (say). Then,

(−D∗Au,ϕ)L2(Γ ) = (−Au, Dϕ)L2(Ω) =

∫

Ω

∆uDϕ dx = −
∫

Ω

∇u · ∇[Dϕ]dx +

∫

Γ

∂u
∂ν
[Dϕ]|Γ dσ

=

∫

Γ

∂u
∂ν
ϕ dσ,

(3.27)

where we used that [Dϕ]|Γ = ϕ and ∆[Dϕ] = 0 by definition of D. Since ϕ is chosen arbitrarily in
H1/2(Γ ), which is dense in L2(Γ ), the result is proved.

3.2.2 Well-posedness and additional properties of the semigroup

With a little abuse of notation, we denote by g the Lipschitz mapping on L2(Γ ) defined by

g( f )(·)¬ g( f (·)) for all f ∈ L2(Γ ) (3.28)

We also define a projection operator P ∈ L2(Γ ) by

[P f ](·) = 1Γ0(·) f (·) for all f ∈ L2(Γ ). (3.29)

Equation (3.26) in Lemma 3.2.1 shows that the boundary conditions given by (3.1b) and (3.1c)
together with the feedback law (3.7) can be rewritten as follows:

u|Γ = −P g(D∗u′). (3.30)

Next, we introduce the nonlinear operator A associated with the closed-loop system (3.1)-(3.7).
Bearing in mind the chain of embeddings (3.20) and that A maps L2(Ω) onto D(A−1), we define
D(A ) by

D(A )¬ {[u, v] ∈H : v ∈ L2(Ω), A[u+ DP g(D∗v)] ∈ H−1(Ω)}

= {[u, v] ∈H : v ∈ L2(Ω), u+ DP g(D∗v) ∈ H1
0(Ω)}.

(3.31)
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Next, we let
A [u, v]¬ [−v, Au+ ADP g(D∗v)] (3.32)

In the sequel, we employ the standard nonlinear semigroup terminology that has been introduced
in Chapter 2: by a strong solution to (3.1)-(3.7), we mean any [u, u′] ∈ W 1,1(0, T ;H ), T > 0, that
satisfies [u(t), u′(t)] ∈ D(A ) for all t ¾ 0 and

d
dt
[u, u′] +A [u, u′] = 0 a.e. (3.33)

in the sense of strong differentiation in H ; by a generalized solution to (3.1)-(3.7), we mean a con-
tinuousH -valued function [u, v] that is, on each interval [0, T], the uniform limit of some sequence
of strong solutions.

Theorem 3.2.2 (Hadamard well-posedness). The nonlinear operator A is densely defined and max-
imal monotone. Thus, −A is the infinitesimal generator of a strongly continuous semigroup {St} of
contractions on the energy spaceH . For all initial data [u0, v0] inH , there exists a unique generalized
solution [u, u′] ∈ C (R+,H ) to (3.1)-(3.7). If [u0, v0] belongs to D(A ), then [u, u′] is a strong solution
to (3.1)-(3.7). Furthermore,

(i) Strong solutions satisfy the inequality

‖A [u(t), u′(t)]‖H ¶ ‖A [u0, v0]‖H for all t ¾ 0; (3.34)

(ii) Strong solutions satisfy the energy identity

d
dt
E (u, u′) = −

∫

Γ0

g(D∗u′)D∗u′ dσ =

∫

Γ0

g

�

−
∂[A−1u′]
∂ν

�

∂[A−1u′]
∂ν

dσ (3.35)

in the scalar distribution sense on (0,+∞).

Remark 3.2.3. If we also assume that |g(s)| ¾ α|s| for all s ∈ R and some α > 0, the energy identity
(3.35) provides a uniform estimate of the L2(0,+∞; L2(Γ0))-norm of ∂ν[A−1u′] for strong solutions.
From there, one can prove that (3.35) holds for generalized solution as well by passing to the limit
and recovering the traces u|Γ and ∂ν[A−1u′] in L2(0,+∞; L2(Γ0)) – see for instance [Chueshov et al.,
2002] for similar arguments in the Neumann case.

Proof of Theorem 3.2.2. Once proven that A is maximal monotone, existence and uniqueness of
strong and generalized solutions to (3.1)-(3.7), together with the appropriate semigroup properties,
follow from Kato’s theorem and nonlinear semigroup theory – see, e.g., [Showalter, 2013, Chapter
IV].

Step 1: Monotonicity. Let [u1, v1] and [u2, v2] in D(A ). Then,

(A [u1, v1]−A [u2, v2], [u1, v1]− [u2, v2])H
= −(v1 − v2, u1 − u2)L2(Ω) + (A

1/2[u1 − u2 + DP g(D∗v1)− DP g(D∗v2)], A−1/2[v1 − v2])L2(Ω). (3.36)

Now we use that A−1/2[v1 − v2] belongs to D(A1/2) and that A1/2 is self-adjoint to obtain

(A [u1, v1]−A [u2, v2], [u1, v1]− [u2, v2])H = (DP g(D∗v1)− DP g(D∗v2), v1 − v2)L2(Ω)

= (P g(D∗v1)− P g(D∗v2), D∗v1 − D∗v2)L2(Γ )

= (g(D∗v1)− g(D∗v2), D∗v1 − D∗v2)L2(Γ0) ¾ 0,

(3.37)
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3.2. Well-posedness and asymptotic stability

the right-hand side being nonnegative by g being monotone increasing, which proves that A is
monotone.

Step 2: Range condition. Let λ > 0 and [ f1, f2] ∈ H . To solve the equation A [u, v] + λ[u, v] =
[ f1, f2], it suffices to find v ∈ L2(Ω) such that

λ−1v + DP g(D∗v) +λA−1v = A−1 f2 −λ−1 f1. (3.38)

This is seen by substituting −v + λu = f1 into the second coordinate of the equation and applying
A−1 to the result. If such an element v ∈ L2(Ω) is found, then [u, v] belongs to D(A ) (and solves
the desired equation). Indeed, we then have u + DP g(D∗v) + λA−1v = A−1 f2, which implies that
u+ DP g(D∗v) ∈ H1

0(Ω) since A−1 f2 and λA−1v both belong to H1
0(Ω).

The method is the same as in Chapter 2. We define a nonlinear operator Θ on L2(Ω) by Θ(v) ¬
λ−1v + DP g(D∗v) +λA−1v for all v ∈ L2(Ω). Then, Θ enjoys the following properties:

(i) Θ maps bounded sets into bounded sets;

(ii) (Θ(v1)−Θ(v2), v1 − v2)L2(Ω) ¾ 0 for all v1 and v2 in L2(Ω);

(iii) The scalar function t 7→ (Θ(v1 + t v2), v2)L2(Ω) is continuous for all v1 and v2 in L2(Ω).

Also, we have
(Θ(v), v)L2(Ω) ¾ λ−1‖v‖2

L2(Ω) for all v ∈ L2(Ω). (3.39)

Thus, it follows from [Showalter, 2013, Chapter II, Lemma 2.1 and Theorem 2.1] that Θ is onto.
Consequently, the equationA [u, v] +λ[u, v] = [ f1, f2] has a solution in D(A ).

Step 3: Denseness of the domain. Let [u, v] ∈H and ε > 0. Since A−1v ∈ H1
0(Ω) and D(Ω) is dense

in H1
0(Ω), we can pick φ ∈ D(Ω) such that

‖A−1v −φ‖2
H1

0 (Ω)
¶ ε, and thus ‖v − Aφ‖2

H−1(Ω) ¶ Cε, (3.40)

where C > 0 comes from A ∈ L (H1
0(Ω), H−1(Ω)). Besides, there exists ψ ∈ D(Ω) such that ‖u −

ψ‖2
L2(Ω) ¶ ε. Since φ ∈ D(Ω) ⊂ D(A), we have Aφ ∈ L2(Ω) and also, using (3.26),

g(D∗Aφ) = g
�

−
∂φ

∂ν

�

= 0. (3.41)

Thus, [ψ, Aφ] ∈ D(A ); also, we have ‖[u, v]− [ψ, Aφ]‖2
H ¶ (1+ C)ε. It is now proved that D(A )

is dense inH .
Step 4: Energy identity. Let [u, v] be a strong solution to (3.1)-(3.7). We recall that E (u, u′) =

(1/2)‖[u, u′]‖2
H . Consequently, by the chain rule, E (u, u′) belongs to W 1,∞(0,+∞) and

d
dt
E (u, u′) = (−A [u, u′], [u, u′])H a.e. (3.42)

Thus, the desired identity (3.35) follows from (3.37).

Now, we establish some compactness and regularity properties that are useful in the proof of
the stability results presented in Sections 3.2.3 and 3.3.1. We start by introducing the following
proposition, which enables us to prove asymptotic stability of the feedback system (3.1)-(3.7) using
LaSalle’s invariance principle.

Proposition 3.2.4 (Compactness). For any λ > 0, the (nonlinear) resolvent operator (A + λid)−1 is
well-defined on H and compact. In particular, for all initial data [u0, v0] ∈ H , the (semi)trajectory
{St[u0, v0]}t¾0 is relatively compact inH .
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3. DIRICHLET STABILIZATION OF THE WAVE EQUATION

Proof. Assume for a moment that (A + λid)−1 is well-defined and compact for some λ > 0. Then,
sinceA (0) = 0, relative compactness of the trajectories follows from [Dafermos and Slemrod, 1973,
Theorem 3].

Let λ > 0. We already know from the proof of Theorem 3.2.2 that the equation

A [u, v] = [ f1, f2] (3.43)

has a solution in D(A ) for all [ f1, f2] ∈H .
Step 1: Uniqueness. Consider two solutions [u1, v1] and [u2, v2] to (3.43). Then, we recall from

(3.38) in the proof of Theorem 3.2.2 that

λ−1[v1 − v2] + DP[g(D∗v1)− g(D∗v2)] +λA−1[v1 − v2] = 0. (3.44)

Taking the scalar product in L2(Ω) of (3.44) with v1 − v2 yields

λ−1‖v1 − v2‖2
L2(Ω) + (g(D

∗v1)− g(D∗v2), D∗v1 − D∗v2)L2(Γ0) +λ‖v1 − v2‖2
H−1(Ω) = 0. (3.45)

In particular, since g is monotone increasing, we infer from (3.45) that v1 = v2; thus, [u1, v1] =
[u2, v2] and (A +λid)−1 is well-defined.

Step 2: Compactness of the resolvent operator. In what follows, we let [u, v]¬ (A +λid)−1[ f1, f2]
and we look for estimates of [u, v] ∈ D(A ) in stronger norms. First, as in the previous step, we
obtain

λ−1‖v‖2
L2(Ω) + (g(D

∗v), D∗v)L2(Γ0) +λ‖v‖
2
H−1(Ω) = (A

−1/2 f2, A−1/2v)L2(Ω) −λ−1( f1, v)L2(Ω), (3.46)

where it is used that A−1/2 is self-adjoint. Recalling that (g(D∗v), D∗v)L2(Γ0) ¾ 0, we use Cauchy-
Schwarz and Young inequalities with positive parameters ε1 and ε2 to infer from (3.46) that

1
λ
‖v‖2

L2(Ω) ++λ‖v‖
2
H−1(Ω) ¶

1
2ε1
‖ f2‖2

H−1(Ω) +
ε1

2
‖v‖2

H−1(Ω) +
1

2ε2λ
‖ f1‖2

L2(Ω) +
ε2

2λ
‖v‖2

L2(Ω). (3.47)

Letting ε1 = 2λ and ε2 = 1 in (3.47) yields

‖v‖2
L2(Ω) ¶

1
2
‖ f2‖2

H−1(Ω) + ‖ f1‖2
L2(Ω). (3.48)

The remainder of the proof relies on elliptic regularity theory and in particular [Lions and Magenes,
1968, Théorème 10.1]. Since [u, v] ∈ D(A ), we know that u+ DP g(D∗v) belongs to H1

0(Ω) and

u+ DP g(D∗v) = A−1 f2 −λA−1v. (3.49)

Picking an arbitrary test function φ in D(Ω) ⊂ D(A), taking the scalar product in L2(Ω) of (3.49) with
Aφ and using again that D∗Aφ = −∂νφ = 0 leads to

−∆u= f2 −λv in D ′(Ω). (3.50)

Besides, since −∆u ∈ H−1(Ω), u|Γ is well-defined in H−1/2(Γ ); then, we infer from u+ DP g(D∗v) ∈
H1

0(Ω) that u|Γ = −P g(D∗v) ∈ L2(Γ ). Applying the aforementioned theorem, we obtain u ∈ H1/2(Ω)
along with the estimate

‖u‖2
H1/2(Ω) ¶ C1

¦

‖P g(D∗v)‖2
L2(Γ ) + ‖ f2 −λv‖2

H−1(Ω)

©

(3.51)

36



3.2. Well-posedness and asymptotic stability

where C1 > 0 is solution independent. Since P and g are Lipschitz continuous on L2(Γ ), g(0) = 0
and D∗ is linear continuous from L2(Ω) into L2(Γ ), plugging (3.48) into (3.51) yields

‖u‖2
H1/2(Ω) ¶ C1C2‖v‖2

L2(Ω) + 2C1λ
2‖v‖2

H−1(Ω) + 2C1‖ f2‖2
H−1(Ω), (3.52)

where C2 > 0 is some other constant.
Combining (3.48) and (3.52), we see that (A+λid)−1 maps bounded sets ofH = L2(Ω)×H−1(Ω)

into bounded sets of H1/2(Ω)× L2(Ω), the latter being compactly embedded intoH . Thus, the result
is proved.

The next proposition is meant for use in Section 3.3, where we work under additional assumptions
on Ω; however, since it is a direct continuation of the proof of Proposition 3.2.4, we introduce it here.

Proposition 3.2.5 (Regularity). Suppose that Γ0∩ Γ1 = ;. Then, the following explicit characterization
of D(A ) holds:

D(A ) =
�

[u, v] ∈H : v ∈ L2(Ω), u ∈ H1(Ω), u|Γ = −1Γ0 g(D∗v)
	

. (3.53)

Thus, strong solutions [u, u′] take values in H1(Ω)× L2(Ω). Furthermore, there exists a constant K > 0
such that any strong solution to (3.1)-(3.7) satisfies

‖[u(t), u′(t)]‖H1(Ω)×L2(Ω) ¶ K‖A [u(0), u′(0)]‖H for all t ¾ 0. (3.54)

Remark 3.2.6. Since H1(Ω)× L2(Ω) is continuously embedded intoH , it follows from (3.54) evalu-
ated at t = 0 that for some constant K ′ > 0,

E (u0, v0)¶ K ′‖A [u0, v0]‖2
H for all [u0, v0] ∈ D(A ). (3.55)

Proof of Proposition 3.2.5. Let u ∈ H1(Ω) and v ∈ L2(Ω) such that

u|Γ = −1Γ0 g(D∗v) = −P g(D∗v). (3.56)

By trace regularity, P g(D∗v) ∈ H1/2(Γ ), and by (3.23), DP g(D∗v) ∈ H1(Ω). It follows that u +
DP g(D∗v) ∈ H1

0(Ω), i.e., [u, v] ∈ D(A ).
Conversely, let [u, v] ∈ D(A ). Recalling calculations made in Proposition 3.2.4, we already know

that [u, v]must satisfy −∆u ∈ H−1(Ω) and u|Γ = −P g(D∗v). Therefore, in comparison with the proof
of Proposition 3.2.4, it suffices to show that u|Γ belongs to H1/2(Γ ) instead of L2(Γ ) and apply the
elliptic regularity theorem to gain the desired extra half-unit of regularity. By virtue of (3.23), we
have D∗v ∈ H1/2(Γ ).

First, recall1 that pointwise Lipschitz nonlinearities such as g map bounded sets of H1/2(Γ ) into
bounded sets of H1/2(Γ ). Indeed, using the definition of Sobolev spaces on manifold by local charts
and the Sobolev-Slobodeckij characterization of the fractional spaces H s(Rd−1) (see [Di Nezza et al.,
2012]), we know that for a given f in H1/2(Γ ), g ∈ H1/2(Γ ) if and only if

∫∫

Rd−1×Rd−1

|φi(x1)g([ f ◦ψi](x1))−φi(x2)g([ f ◦ψi](x2))|2

‖x1 − x2‖d
dx1 dx2 < +∞, (3.57)

for all suitable (φi ,ψi), where the functions φi ∈ D(Rd−1) are chosen from a partition of unity subor-
dinate to some (finite) covering of Γ and the functions ψi are corresponding local representations of

1 This fact seems to be commonly used in the literature; however we did not find a proof, so we give one here for the
reader’s convenience.
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3. DIRICHLET STABILIZATION OF THE WAVE EQUATION

the surface. The integral term in (3.57) is finite because g and φi are globally Lipschitz continuous;
hence, g( f ) ∈ H1/2(Ω). Furthermore, taking the integral term in (3.57) plus some appropriate lower-
order L2-term defines a norm on H1/2(Rd−1) equivalent to the one given by interpolation. Thus, after
coming back to functions on Γ , it follows from (3.57) that

‖g( f )‖H1/2(Γ ) ¶ K‖ f ‖H1/2(Γ ) for all f ∈ H1/2(Γ ), (3.58)

where K is some positive constant coming from the Lipschitz continuity of g and norm equivalence.
Next we have to check that P ∈ L (H1/2(Γ )). Again, this is a consequence of (3.57): we observe

that since Γ0 ∩ Γ1 = ;, there exists m > 0 such that ‖x1 − x2‖ > m whenever (ψi(x1),ψi(x2)) ∈
[Γ0 × Γ1]∪ [Γ1 × Γ0].

Finally, combining (3.23) for s = 1/2, the estimate (3.58), the fact that P ∈ L (H1/2(Γ )) together
with the elliptic regularity theorem, we obtain u ∈ H1(Ω) and the stronger estimate

‖u‖H1(Ω) ¶ C
�

‖∆u‖H−1(Ω) + ‖v‖L2(Ω)

	

= C
�

‖A[u+ DP g(D∗v)]‖H−1(Ω) + ‖v‖L2(Ω)

	

¶ C ′‖A [u, v]‖H
(3.59)

where C and C ′ are some positive constants that do not depend on [u, v]. The set equality in (3.53)
is now proved and the property (3.54) readily follows from (3.59) and (3.34).

3.2.3 Asymptotic stability

Next, we state the second main result of the section, which asserts that the zero equilibrium of the
closed-loop system (3.1)-(3.7) is globally asymptotically stable.

Theorem 3.2.7 (Asymptotic stability of the closed-loop system). Let [u0, v0] ∈H . Then,

‖St[u0, v0]‖H → 0 as t → +∞. (3.60)

Together with the contraction property of {St}, (3.60) implies that 0 is a globally asymptotically stable
equilibrium point for the feedback system (3.1)-(3.7).

Proof. By the contraction property of the semigroup {St} and denseness of D(A ) in H , it suffices
to prove (3.60) for initial data [u0, v0] in D(A ).

To do so, we use a Lasalle-type invariance approach. Let us recall the classical line of arguments.
We consider the ω-limit set ω([u0, v0]) of [u0, v0], which can be characterized as follows: [w0, z0] ∈
H belongs to ω([u0, v0]) if there exists an increasing sequence {tn} ∈ RN such that tn→ +∞ and

Stn
[u0, v0]→ [w0, z0] inH as n→ +∞. (3.61)

Recall that {St[u0, v0]}t¾0 is relatively compact in H . Therefore, ω([u0, v0]) is a nonempty (posi-
tively) invariant compact set, and dist(St[u0, v0],ω([u0, v0]))→ 0 as t → +∞ – see [Haraux, 1991,
Théorème 1.1.8]. Moreover, since t 7→ ‖A (St[u0, v0])‖H is bounded, it follows from [Crandall and
Pazy, 1969, Lemma 2.3] and (3.61) thatω([u0, v0]) ⊂ D(A ). Besides, since E (St[u0, v0]) is bounded
and monotone decreasing with respect to t, it must converge to some E∞ ¾ 0 as t goes to +∞. By
(3.61) and continuity of E , we have E (w0, z0) = E∞ for any [w0, z0] ∈ω([u0, v0]).

The remainder consists in proving thatω([u0, v0]) is reduced to {0}. Let [w0, z0] ∈ω([u0, v0]); we
write [w(t), w′(t)] = St[w0, z0] and we notice that E (w(t), w′(t)) = E∞ for all t ¾ 0. Furthermore,
[w, w′] is a strong solution to (3.1)-(3.7) and we infer from the energy identity (3.35) that

∫ τ

0

∫

Γ0

g

�

−
∂[A−1w′]
∂ν

�

∂[A−1w′]
∂ν

dσdt = 0 for all τ¾ 0. (3.62)
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It follows from Hypothesis 3.1.1 that g(s)s > 0 for every nonzero s. Thus, letting p ¬ A−1w′ ∈
C (R+, H1

0(Ω))∩ L∞(0,+∞;D(A)), (3.62) leads to

∂p
∂ν
= 0 a.e. on Γ0 × (0,+∞). (3.63)

Next, we recall that w′ ∈ W 1,∞(0,+∞; H−1(Ω)) and, using (3.63) together with the operator-
theoretic formulation of (3.1)-(3.7), we obtain w′′ + Aw = 0. Hence, p ∈ W 1,∞(0,+∞; H1

0(Ω))
satisfies p′ +w= 0, which in turn implies that p ∈W 2,∞(0,+∞; H−1(Ω)) and solves p′′ + Ap = 0 in
H−1(Ω), i.e., the standard variational formulation of the wave equation with homogeneous Dirich-
let boundary conditions. In particular, p ∈ C (R+, H1

0(Ω))∩C
1(R+, L2(Ω)) and solves the following

boundary value problem:

∂2p
∂ t2
−∆p = 0 in Ω× (0,+∞), (3.64a)

∂p
∂ν
= 0 on Γ0 × (0,+∞), (3.64b)

p|Γ = 0 on Γ × (0,+∞). (3.64c)

We see that p has vanishing Cauchy data on Γ0. The subset Γ0 being relatively open in Γ , a unique
continuation argument for waves yields p = 0 – for instance, one can directly apply [Robbiano,
1991, Théorème 2]. Therefore, w′ = 0, Aw= 0 and finally w= 0, which concludes the proof.

3.3 Polynomial decay rates for strong solutions

This section is dedicated to the analysis of the decay rate of strong solutions under additional as-
sumptions on the feedback nonlinearity and the geometry of the problem.

3.3.1 Statement of the result and outline of the proof

In what follows, we work under stronger assumptions that are given next.

Hypothesis 3.3.1. There exist positive constants S, α1 and α2 such that

α1|s|¶ |g(s)|¶ α2|s| for all |s|¶ S. (3.65)

Hypothesis 3.3.2. The domain Ω ⊂ Rd with smooth boundary Γ = Γ0 ∪ Γ1 satisfies the following
conditions:

1. The boundary is such that
Γ0 ∩ Γ1 = ;; (3.66)

2. There exists a point x0 ∈ Rd such that, setting h(x)¬ x − x0,

h · ν¶ 0 on Γ1. (3.67)

As mentioned earlier, the class of nonlinearities g satisfying (3.65) includes the saturation maps
satS introduced in (2.98). Then, we can estimate the decay rate of each strong solution.

Theorem 3.3.3 (Non-uniform polynomial decay rate). Let r ¾max{d−1,2}. Under Hypotheses 3.3.1
and 3.3.2, strong solutions [u, u′] to (3.1)-(3.7) satisfy

E (u(t), u′(t))¶ Cu t−2/(r−1) for all t ¾ 0, (3.68)

where Cu is a positive constant depending only on E (u0, v0) and ‖A [u0, v0]‖H .

39



3. DIRICHLET STABILIZATION OF THE WAVE EQUATION

Theorem 3.3.3 is a Dirichlet counterpart to non-uniform polynomial decay results that are well-
known in the case of Neumann boundary conditions – see, e.g., [Komornik, 1994a, Theorem 9.10].
Let us introduce the following notation: if [u, u′] is a given solution to (3.1)-(3.7), we define a
(continuous) function Eu over R+ by

Eu(t)¬ E (u(t), u′(t)). (3.69)

Here, polynomial decay rate is obtained by applying the following classical lemma to the (monotone
decreasing) energy Eu of each solution.

Lemma 3.3.4. Let E : R+→ R+ be a monotone decreasing function. Assume that there exist two positive
constants γ and T such that

∫ +∞

τ

Eγ+1 dt ¶ T E(0)γE(τ) for all τ¾ 0. (3.70)

Then,

E(t)¶ E(0)
�

T + γt
T + γT

�−1/γ

for all t ¾ T. (3.71)

The reader is referred to [Komornik, 1994a, Theorem 9.1] for a proof of the lemma. We already
know from Section 3.2 that Eu(t) converges to 0 as t goes to +∞. Our subsequent efforts focus on
estimating

∫ τ2

τ1

E (r+1)/2
u dt for arbitrary 0¶ τ1 ¶ τ2, (3.72)

where we recall that

Eu(t) =
1
2
‖u‖2

L2(Ω) +
1
2
‖u′‖2

H−1(Ω). (3.73)

As mentioned earlier, the proof is based on an analysis of the variable p defined by

p = A−1u′ (3.74)

which solves, at least formally, the following boundary-value problem:

∂2p
∂ t2
−∆p = −

∂

∂ t

§

DP g
�

−
∂p
∂ν

�ª

in Ω× (0,+∞), (3.75a)

p|Γ = 0 on Γ × (0,+∞). (3.75b)

If u′ takes values in L2(Ω), recalling the formula (3.26), we have

−
∂p
∂ν
= −

∂[A−1u′]
∂ν

= D∗Ap = D∗u′. (3.76)

To alleviate notation, in the sequel we denote by Φ the term

Φ(t)¬ DP g(D∗u′(t)). (3.77)

In regards to (3.30), we see that −Φ is the harmonic extension of the trace u|Γ . As mentioned earlier,
the p-variable is smoother, which permits, in regards to the wave-type equation (3.75a) satisfied by
p, the use of a differential multiplier technique to obtain estimates of the integral over time of

1
2

∫

Ω

‖∇p‖2 + |p′|2 dx (3.78)
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premultiplied by an appropriate power of Eu. The quantity (3.78) is the natural energy of [p, p′] at
the H1(Ω) × L2(Ω)-level (i.e., the standard variational framework); from there, we will be able to
deduce a suitable integral estimate of the energy Eu associated with the less regular u-variable.

Remark 3.3.5. In fact, since we want to avoid differentiating terms involving g so that our results
remain valid when the nonlinearity is only continuous, we will rather multiply an integrated version of
(3.75a), namely the formula u= −[p′+Φ], by the time derivative of the multiplier – see Lemma 3.3.6
below. In particular, p′ need not be continuous.

3.3.2 The multiplier identity

In this section, we give more precise properties of the p-variable and derive an expression of (3.72)
in the form of a identity obtained by applying an appropriate multiplier to (3.75a).

Lemma 3.3.6. Let [u, u′] be a strong solution. The corresponding functions p and Φ enjoy the regularity

p ∈ L∞(0,+∞;D(A))∩W 1,∞(0,+∞; H1
0(Ω)), Φ ∈ L∞(0,+∞; H1(Ω)), (3.79)

Also, the following identity holds:

u= −[p′ +Φ] ∈ C (R, L2(Ω)). (3.80)

Proof. We infer from Proposition 3.2.5 that [u, u′] ∈ L∞(0,+∞; H1(Ω)× L2(Ω)). As a consequence,
since A−1 is continuous from L2(Ω) into D(A), we get

p = A−1u′ ∈ L∞(0,+∞;D(A)). (3.81)

Besides, u′ ∈W 1,∞(0,+∞; H−1(Ω)) and

u′′ + Au= −ADP g(D∗u′) a.e. (3.82)

Thus, applying A−1 to (3.82) yields

p′ = A−1u′′ ∈ L∞(0,+∞; H1
0(Ω)), (3.83)

and also
u= −[p′ +Φ], and Φ ∈ L∞(0,+∞; H1(Ω)), (3.84)

which concludes the proof.

Define the usual wave multiplier as follows:

M p ¬ 2h · ∇p+ (d − 1)p, (3.85)

where h(x) = x − x0 as defined in Hypothesis 3.3.2 and d is the space dimension. Since p satisfies a
wave equation, we know that the integral of

∫

Ω
‖∇p‖2 + |p′|dx dt over (τ1,τ2) can be estimated by

multiplying (3.75a) byM p and integrating over Ω× (τ1,τ2). Since we are looking for estimates of
Eu at the power (r +1)/2, we premultiplyM p by Eu at the power (r −1)/2. Thus, we shall multiply
(3.75a) by

E (r−1)/2
u (t)M p(x , t). (3.86)

The resulting identity is given in the next lemma.
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Lemma 3.3.7 (Multiplier identity). The following equality holds for any 0¶ τ1 ¶ τ2:

2

∫ τ2

τ1

E (r+1)/2
u dt = E (r−1)/2

u

∫

Ω

uM p dx

�

�

�

�

τ2

τ1

+

∫ τ2

τ1

E (r−1)/2
u

∫

Γ

(h · ν)
�

�

�

�

∂p
∂ν

�

�

�

�

2

dσ

−
∫

Γ0

(h · ν)|g(D∗u′)|2 dσdt −
∫ τ2

τ1

E (r−1)/2
u

∫

Ω

(d + 1)Φu+Φ[2h · ∇u]dx dt

−
(r − 1)

2

∫ τ2

τ1

E ′uE
(r−3)/2
u

∫

Ω

uM p dx dt. (3.87)

Proof. The proof is split into four steps.
Step 1: Integration by parts with respect to time. First, by linearity and continuity of M , M p

belongs to W 1,∞(0,+∞; L2(Ω)). On the other hand, recall that Eu is bounded and absolutely con-
tinuous with

E ′u = −
∫

Γ0

g(D∗u′)D∗u′ dσ a.e., E ′u ∈ L∞(0,+∞), (3.88)

because strong solutions are Lipschitz continuous with respect to time. Thus, E (r−1)/2
u belongs to

W 1,∞(0,+∞) and E (r−1)/2
u M p belongs to W 1,∞(0,+∞; L2(Ω)) with

[E (r−1)/2
u M p]′ = E (r−1)/2

u M p′ +
(r − 1)

2
E ′uE

(r−3)/2
u M p a.e. in L2(Ω). (3.89)

Now, it follows from (3.80) that p′ +Φ belongs to W 1,∞(0,+∞; L2(Ω)) and

− [p′ +Φ]′ = u′ = Ap. (3.90)

Let 0 ¶ τ1 ¶ τ2. Recall that, since p ∈ D(A), Ap = −∆p ∈ L2(Ω). Thus, taking the scalar prod-
uct of (3.90) with E (r−1)/2

u M p in L2(τ1,τ2; L2(Ω)) and using the integration by parts formula in
W 1,2(τ1,τ2; L2(Ω)) leads to

−
∫ τ2

τ1

E (r−1)/2
u

∫

Ω

∆pM p dx dt = E (r−1)/2
u

∫

Ω

uM p dx

�

�

�

�

τ2

τ1

−
∫ τ2

τ1

E (r−1)/2
u

∫

Ω

uM p′ dx dt

−
(r − 1)

2

∫ τ2

τ1

E ′uE
(r−3)/2
u

∫

Ω

uM p dx dt. (3.91)

Step 2: Multiplier technique for the wave equation. In what follows, we apply classical vector
calculus identities to recover the H1

0(Ω) × L2(Ω)-energy of [p, p′]. Since p takes values in H2(Ω),
Rellich’s identity yields

∫

Ω

∆p[2h · ∇p]dx = (d − 2)

∫

Ω

‖∇p‖2 dx +

∫

Γ

∂p
∂ν
[2h · ∇p]dσ−

∫

Γ

(h · ν)‖∇p‖2 dσ. (3.92)

Furthermore, p|Γ = 0; thus

∇p =
�

∂p
∂ν

�

ν on Γ . (3.93)

Combining (3.92) and (3.93), we obtain
∫

Ω

∆p[2h · ∇p] = (d − 2)

∫

Ω

‖∇p‖2 dx +

∫

Γ

(h · ν)|∂νp|2 dσ. (3.94)
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On the other hand,
∫

Ω

∆p(d − 1)p dx = −(d − 1)

∫

Ω

‖∇p‖2 dx , (3.95)

where we use again that p vanishes on the boundary. Summing (3.94) and (3.95) yields
∫

Ω

∆pM p dx = −
∫

Ω

‖∇p‖2 dx +

∫

Γ

(h · ν)|∂νp|2 dx . (3.96)

Coming back to (3.91) and recalling (3.80), let us write
∫

Ω

uM p′ = −
∫

Ω

p′M p′ dx −
∫

Ω

ΦM p′dx

= −
∫

Ω

p′[2h · ∇p′] + (d − 1)|p′|2 dx −
∫

Ω

ΦM p′ dx

=

∫

Ω

|p′|2 dx −
∫

Ω

ΦM p′ dx ,

(3.97)

where we use the identity
∫

Ω

φ[2h · ∇φ]dx =

∫

Γ

(h · ν)(φ|Γ )2 dσ−
∫

Ω

(φ)2 div h dx for all φ ∈ H1(Ω) (3.98)

together with div h= d and p|Γ = 0. Therefore, combining (3.91) with (3.96) and (3.97) leads to
∫ τ2

τ1

E (r−1)/2
u

∫

Ω

‖∇p‖2 + |p′|2 dx dt = E (r−1)/2
u

∫

Ω

uM p dx

�

�

�

�

τ2

τ1

+

∫ τ2

τ1

E (r−1)/2
u

∫

Ω

ΦM p′ dx dt

+

∫ τ2

τ1

E (r−1)/2
u

∫

Γ

(h · ν)
�

�

�

�

∂p
∂ν

�

�

�

�

2

dσdt −
(r − 1)

2

∫ τ2

τ1

E ′uE
(r−3)/2
u

∫

Ω

uM p dx dt.

(3.99)

Step 3: Additional terms. Here, we put the terms involving Φ into a form suitable for further
estimation. It follows from (3.80) that

∫

Ω

ΦM p′ dx = −
∫

Ω

ΦMu dx −
∫

Ω

ΦMΦdx . (3.100)

Applying (3.98) to Φ, similarly to (3.97), we obtain

−
∫

Ω

ΦMΦdx =

∫

Ω

|Φ|2 dx −
∫

Γ

(h · ν)(Φ|Γ )2

=

∫

Ω

|Φ|2 dx −
∫

Γ0

(h · ν)|g(D∗u′)|2 dσ,
(3.101)

where we use that, by definition,

Φ|Γ = g(D∗Ap) = g(D∗u′) on Γ0, Φ|Γ = 0 on Γ1. (3.102)

On the other hand, we recall that

−
∫

Ω

ΦMu dx = −
∫

Ω

Φ[2h · ∇u] + (d − 1)Φu dx . (3.103)
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Plugging (3.101) and (3.103) into (3.99) leads to

∫ τ2

τ1

E (r−1)/2
u

∫

Ω

‖∇p‖2 + |p′|2 dx dt

= E (r−1)/2
u

∫

Ω

uM p dx

�

�

�

�

τ2

τ1

−
(r − 1)

2

∫ τ2

τ1

E ′uE
(r−3)/2
u

∫

Ω

uM p dx dt

+

∫ τ2

τ1

E (r−1)/2
u

∫

Γ

(h ·ν)
�

�

�

�

∂p
∂ν

�

�

�

�

2

dσ−
∫

Γ0

(h ·ν)|g(D∗Ap)|2 dσ−
∫

Ω

Φ[2h ·∇u]+(d−1)Φu−|Φ|2 dx dt.

(3.104)

Step 4: Conclusion. We finish the proof by rewriting (3.104) as an estimate of
∫ τ2

τ1
E (r+1)/2

u dt. This
is done as follows. First, by definition of the p-variable,

∫

Ω

‖∇p‖2 dx = ‖A1/2p‖2
L2(Ω) = ‖A

−1/2u′‖2
L2(Ω) = ‖u

′‖2
H−1(Ω). (3.105)

On the other hand, it immediately follows from u= −[p′ +Φ] that
∫

Ω

|p′|2 dx =

∫

Ω

|u|2 dx +

∫

Ω

2Φu+ |Φ|2 dx a.e. (3.106)

Summing (3.105) and (3.106) yields
∫

Ω

‖∇p‖2 + |p′|2 dx = 2Eu +

∫

Ω

2Φu+ |Φ|2 dx a.e. (3.107)

Plugging (3.107) into (3.104), we get the desired identity

3.3.3 Integral estimates and conclusion

Our goal in this section is to establish an integral inequality in the form of

(1−µ)
∫ τ2

τ1

E (r+1)/2
u dt ¶ Ku{Eu(τ1) + Eu(τ2)} for all 0¶ τ1 ¶ τ2, (3.108)

where Ku is a constant that may depend on the initial data and µ is a sufficiently small constant that
may depend on u as well. Bearing in mind the full statement of Theorem 3.3.3, we aim at finding
such constants that depend on ‖A [u0, v0]‖ and Eu(0) = E (u0, v0) only.

Assuming that (3.108) holds, we let τ2 go to +∞ to obtain
∫ +∞

τ

E (r+1)/2
u dt ¶

Ku

1−µ
Eu(τ) for all τ¾ 0. (3.109)

Then, Theorem 3.3.3 follows readily from Lemma 3.3.4 if we choose

γ=
(r − 1)

2
and T =

Ku

1−µ
Eu(0)

−(r−1)/2. (3.110)

To prove (3.108), we shall examine each term in the multiplier identity (3.87) and derive estimates
in terms of
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• Either directly Eu(τ1) or Eu(τ2);

• Or the boundary dissipation term
∫ τ2

τ1

∫

Γ0
g(D∗u′)D∗u′ dσ which is nonnegative and can be in-

tegrated, since

−E ′u =
∫

Γ0

g(D∗u′)D∗u′ dσ = −
∫

Γ0

g
�

−
∂p
∂ν

�

∂p
∂ν

dσ; (3.111)

• And also
∫ τ2

τ1
E (r+1)/2

u dt premultiplied by small µ so that it can be absorbed in the left-hand
side.

Remark 3.3.8. In what follows, we shall denote by K , K ′, etc. generic constants that do not depend
on the initial data.

We can write estimates in terms of
∫ τ2

τ1

∫

Γ0
|g(D∗u′)|2 dσdt instead of

∫ τ2

τ1

∫

Γ0
g(D∗u′)D∗u′ dσdt

since

0¶
∫

Γ0

|g(D∗u′)|2 dσ ¶ K

∫

Γ0

|g(D∗u′)D∗u′|dσ = K

∫

Γ0

g(D∗u′)D∗u′ dσ (3.112)

by Lipschitz continuity and monotonicity of g, together with g(0) = 0.
Moreover, recalling (3.67) in Hypothesis 3.3.2 and looking at the sign of each term, we observe

that |∂νp| in (3.87) need not be estimated on the uncontrolled boundary Γ1.
That being said, let us start by estimating the term involving 2h ·∇u in (3.87). This is done in the

following lemma.

Lemma 3.3.9. Suppose that r ¾ 2. Then, there exists a positive constant K such that
�

�

�

�

�

∫ τ2

τ1

E (r−1)/2
u

∫

Ω

Φ[2h · ∇u]dx dt

�

�

�

�

�

¶ K‖A [u0, v0]‖
1/2
H

¨

∫ τ2

τ1

1
µ

∫

Γ0

|g(D∗u′)|2 dσ+µE (r−2)/2
u (0)E (r+1)/2

u dt

«

(3.113)

for all τ2 ¾ τ1 ¾ 0 and µ > 0.

Proof. We start by writing

(Φ, 2h · ∇u)L2(Ω) = (DP g(D∗u′), 2h · ∇u)L2(Ω) = (g(D
∗u′), D∗[2h · ∇u])L2(Γ0). (3.114)

Thus, applying the Cauchy-Schwarz inequality yields
�

�

�

�

∫

Ω

Φ[2h · ∇u]dx

�

�

�

�

¶ ‖g(D∗u′)‖L2(Γ0)‖D
∗[2h·∇u]‖L2(Γ0) ¶ ‖g(D

∗u′)‖L2(Γ0)‖D
∗[2h·∇u]‖L2(Γ ). (3.115)

Next, recall from (3.25) that
D∗ ∈ L (H−1/2(Ω), L2(Γ )). (3.116)

Therefore, it follows from (3.115) that
�

�

�

�

∫

Ω

Φ[2h · ∇u]dx

�

�

�

�

¶ K‖g(D∗Ap)‖L2(Γ0)‖2h · ∇u‖H−1/2(Ω). (3.117)

Linear interpolation between the Sobolev spaces L2(Ω) and H−1(Ω) leads to

‖2h · ∇u‖H−1/2(Ω) ¶ K‖2h · ∇u‖1/2
L2(Ω)‖2h · ∇u‖1/2

H−1(Ω) (3.118)
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First, by Proposition 3.2.5,

‖2h · ∇u‖1/2
L2(Ω) ¶ K‖h‖1/2

L∞(Ω)d‖∇u‖1/2
L2(Ω)d ¶ K ′‖A [u0, v0]‖

1/2
H . (3.119)

Besides, since 2h · ∇u belongs to L2(Ω), we have

〈2h · ∇u, w〉H1
0 (Ω)
= (2h · ∇u, w)L2(Ω) for all w ∈ H1

0(Ω). (3.120)

Let us write
∫

Ω

[2h · ∇u]w dx = 2
d
∑

i=1

∫

Ω

hi
∂u
∂x i

w dx

= −2
d
∑

i=1

∫

Ω

u
�

w
∂hi

∂x i
+ hi

∂w
∂x i

�

dx +
d
∑

i=1

∫

Γ

νihiuw dσ

= −2

∫

Ω

u[w div h+ h · ∇w]dx ,

(3.121)

where hi (resp. νi) denotes the i-th coordinate of the vector field h (resp. the outward normal vector
ν). Recall that h ∈ C 1(Ω). Then, using the Poincaré inequality on w, we obtain that for some K > 0,

�

�(2h · ∇u, w)L2(Ω)

�

�¶ K‖u‖L2(Ω)‖w‖H1
0 (Ω)

. (3.122)

By norm equivalence between H−1(Ω) and H1
0(Ω)

′, we infer from (3.122) that

‖2h · ∇u‖H−1(Ω) ¶ K‖u‖L2(Ω). (3.123)

Coming back to (3.117), combining (3.119) and (3.123) yields
�

�

�

�

∫

Ω

Dg(D∗u′)[2h · ∇u]dx

�

�

�

�

¶ K‖A [u0, v0]‖
1/2
H ‖g(D

∗u′)‖L2(Γ0)‖u‖
1/2
L2(Ω)

¶ K ′‖A [u0, v0]‖
1/2
H ‖g(D

∗u′)‖L2(Γ0)E
1/4
u .

(3.124)

Therefore, since Eu ¾ 0, we have
�

�

�

�

E (r−1)/2
u

∫

Ω

Dg(D∗u′)2h · ∇u dx

�

�

�

�

¶ K‖A [u0, v0]‖
1/2
H ‖g(D

∗u′)‖L2(Γ0)E
(r−1)/2+1/4
u . (3.125)

Applying Young’s inequality with a parameter µ > 0, we obtain

‖g(D∗u′)‖L2(Γ0)E
(r−1)/2+1/4
u ¶

1
2µ
‖g(D∗u′)‖2

L2(Γ0)
+
µ

2
E r−1/2

u . (3.126)

It is assumed that r ¾ 2. Thus, letting η¬ (r − 1/2)− (r + 1)/2¾ 0, by nonincreasingness of Eu, we
have

E r−1/2
u = Eηu E

(r+1)/2 ¶ Eηu (0)E
(r+1)/2
u . (3.127)

Plugging (3.127) into (3.126) and integrating over (τ1,τ2) yields the desired result.

Next, we deal with the term involving |∂νp| = |D∗u′| on the controlled boundary Γ0. Here, the
arguments are very similar to those employed in the case of saturated Neumann feedback – see,
e.g., [Komornik, 1994a, Theorem 9.10].
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Lemma 3.3.10. Suppose that r ¾ d − 1. Then, there exists K > 0 and η ∈ (0,1) such that
�

�

�

�

�

∫ τ2

τ1

E (r−1)/2
u

∫

Γ0

�

�

�

�

∂p
∂ν

�

�

�

�

2

dσdt

�

�

�

�

�

¶ K

∫ τ2

τ1

∫

Γ0

|g(D∗u′)|2 dσdt

+ K‖A [u0, v0]‖
2−η
H

¨

µ1/η

∫ τ2

τ1

∫

Γ0

g(D∗u′)D∗u′ dσdt +µ−1/(1−η)
∫ τ2

τ1

E (r+1)/2
u dt

«

(3.128)

for all 0¶ τ1 ¶ τ2 and µ > 0.

Proof. For each t ¾ 0, we set

Γ 0
t ¬

�

σ ∈ Γ0 :

�

�

�

�

∂p
∂ν
(σ, t)

�

�

�

�

2

¶ S

�

and Γ 1
t ¬ Γ0 \ Γ

0
t . (3.129)

where we recall that the constant S is introduced in Hypothesis 3.3.1. Then,
�

�

�

�

�

∫

Γ0

(h · ν)
�

�

�

�

∂p
∂ν

�

�

�

�

2

dσ

�

�

�

�

�

¶ K

∫

Γ 0
t

�

�

�

�

∂p
∂ν

�

�

�

�

2

dσ+ K

∫

Γ 1
t

�

�

�

�

∂p
∂ν

�

�

�

�

2

dσ. (3.130)

Using (3.65) in Hypothesis 3.3.1, we estimate the first term in (3.130) as follows:
∫

Γ 0
t

�

�

�

�

∂p
∂ν

�

�

�

�

2

dσ ¶ α−2
1

∫

Γ 0
t

�

�

�

�

g
�

−
∂p
∂ν

�

�

�

�

�

2

dσ ¶ α−2
1

∫

Γ0

�

�

�

�

g
�

−
∂p
∂ν

�

�

�

�

�

2

dσ = α−2
1

∫

Γ0

|g(D∗u′)|2 dσ. (3.131)

Let us examine the second term in (3.130). Setting a parameter η ∈ (0, 1) to be tuned later on, we
have

∫

Γ 1
t

�

�

�

�

∂p
∂ν

�

�

�

�

2

dσ =

∫

Γ 1
t

|D∗u′|2 dσ =

∫

Γ 1
t

|D∗u′|2−η
|g(D∗u′)D∗u′|η

|g(D∗u′)|η
dσ. (3.132)

Equation (3.132) makes sense since |g(D∗u′)|¾min{g(S),−g(−S)}> 0 on Γ 1
t . In fact, we have

∫

Γ 1
t

|D∗u′|2 dσ ¶min{g(S),−g(−S)}−η
∫

Γ 1
t

|D∗u′|2−η|g(D∗u′)D∗u′|η dσ

¶ K

∫

Γ0

|D∗u′|2−η|g(D∗u′)D∗u′|η dσ.

(3.133)

Using Hölder’s inequality with conjugates 1/η and 1/(1−η), we infer from (3.133) that
∫

Γ 1
t

|D∗u′|2 dσ ¶ K

�

∫

Γ0

|D∗u′|
2−η
1−η

�1−η�∫

Γ0

g(D∗u′)D∗u′ dσ

�η

. (3.134)

Now, [u, u′] being a strong solution to (3.1)-(3.7), we recall from Proposition 3.2.5 that u′ takes
values in L2(Ω) and ‖u′(t)‖L2(Ω) ¶ K‖A [u0, v0]‖H for all t ¾ 0. The continuity property (3.23)
yields

‖D∗u′(t)‖H1/2(Γ ) ¶ K‖A [u0, v0]‖H for all t ¾ 0. (3.135)

In what follows, we rely on (fractional) Sobolev inequalities – see [Di Nezza et al., 2012, Theorems
6.5 and 6.9]. First, we consider the case d ¾ 3, where we recall that d denotes the space dimension.
We have the continuous embedding

H1/2(Γ0) ,→ Lq(Γ0) for all q ∈
�

2,
2(d − 1)

d − 2

�

¬ Id . (3.136)
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Furthermore, since r+1¾ d, if we choose η= 2/(r+1), some computations yield (2−η)/(1−η) ∈ Id ;
hence

H1/2(Γ0) ,→ L
2−η
1−η (Γ0). (3.137)

If d = 2, then the embedding (3.136) holds in fact for any q ∈ [2,+∞); therefore, (3.137) is valid
as well. Coming back to (3.134), combining (3.137) with (3.135) yields

E (r−1)/2
u

∫

Γ 1
t

|D∗u′|2 dσ ¶ K‖A [u0, v0]‖
2−η
H E

(r−1)/2
u

�

∫

Γ0

g(D∗u′)D∗u′ dσ

�η

. (3.138)

Applying the Young inequality with conjugates 1/η and 1/(1−η), we get that for all µ > 0,

E (r−1)/2
u

∫

Γ 1
t

|D∗u′|2 dσ ¶ K‖A [u0, v0]‖
2−η
H

¨

µ−
1

1−η E
r−1

2(1−η)
u +µ

1
η

∫

Γ0

g(D∗u′)D∗u′ dσ

«

. (3.139)

Since (r−1)/2(1−η) = (r+1)/2, we conclude the proof by combining (3.139) and (3.131) together
with (3.130).

At this point, the proof of Theorem 3.3.3 is almost complete. Estimates of the remaining terms
in (3.87) are given in the next lemmas. Following our remarks at the beginning of the section, we
claim that Theorem 3.3.3 is proved once those are established.

Lemma 3.3.11. There exists a positive constant K such that

�

�

�

�

�

�

E (r−1)/2
u

∫

Ω

uM p dx

�τ2

τ1

�

�

�

�

�

¶ KE (r−1)/2
u (0){Eu(τ1) + Eu(τ2)} for all 0¶ τ1 ¶ τ2. (3.140)

Proof. Let τ¾ 0. Then,

�

�

�

�

E (r−1)/2
u (τ)

∫

Ω

u(τ)M p(τ)dx

�

�

�

�

¶ E (r−1)/2
u (τ)‖u(τ)‖L2(Ω)‖M p(τ)‖L2(Ω)

¶ KE (r−1)/2
u (τ)‖u(τ)‖L2(Ω)‖p(τ)‖H1

0 (Ω)

¶ KE (r−1)/2(τ)‖u(τ)‖L2(Ω)‖u′(τ)‖H−1(Ω)

¶ KE (r−1)/2
u (0)Eu(τ),

(3.141)

where it used that Eu is monotone decreasing. Equation (3.140) readily follows from the triangular
inequality.

Lemma 3.3.12. There exists a positive constant K such that

�

�

�

�

�

∫ τ2

τ1

E ′uE
(r−3)/2
u

∫

Ω

uM p dx dt

�

�

�

�

�

¶ KE (r−1)/2
u (0){Eu(τ1) + Eu(τ2)} for all 0¶ τ1 ¶ τ2. (3.142)

Proof. Again, we write
�

�

�

�

∫

Ω

uM p dx

�

�

�

�

¶ KEu. (3.143)
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Therefore,

�

�

�

�

�

∫ τ2

τ1

E ′uE
(r−3)/2
u

∫

Ω

uM p dx dt

�

�

�

�

�

¶ K

∫ τ2

τ1

(−E ′u)E
(r−1)/2
u dt = −K

∫ τ2

τ1

�

2
r + 1

E (r+1)/2
�′

dt

=
2K

r + 1
{E (r+1)/2

u (τ1)−E (r+1)/2
u (τ2)}. (3.144)

The desired inequality follows from the fact that Eu is monotone decreasing and (3.144).

Lemma 3.3.13. There exists a positive contant K such that
�

�

�

�

�

∫ τ2

τ1

E (r−1)/2
u

∫

Ω

Φu dx dt

�

�

�

�

�

¶ K

¨

1
µ

∫ τ2

τ1

E (r+1)/2
u dt +µE (r−1)/2

u (0)

∫ τ2

τ1

∫

Γ0

|g(D∗u′)|2 dσdt

«

(3.145)
for all 0¶ τ1 ¶ τ2 and µ > 0.

Proof. First, using Cauchy-Schwarz and Young inequalities, we obtain
�

�

�

�

�

∫ τ2

τ1

E (r−1)/2
u

∫

Ω

Φu dx dt

�

�

�

�

�

¶
∫ τ2

τ1

E (r−1)/2
u ‖Φ‖L2(Ω)‖u‖L2(Ω) dt

¶
1

2µ

∫ τ2

τ1

E (r−1)/2
u ‖Φ‖2

L2(Ω) dt +µ

∫ τ2

τ1

E (r+1)/2
u dt.

(3.146)

Next, recall that Φ= DP g(D∗u′) and that D continuously maps L2(Γ ) into L2(Ω). Therefore,

‖Φ‖2
L2(Ω) ¶ K‖P g(D∗u′)‖2

L2(Γ ) = K‖g(D∗u′)‖2
L2(Γ0)

. (3.147)

We conclude the proof by plugging (3.147) into (3.146) and using that Eu is monotone decreasing.

Comments on Chapter 3

The multiplier method The use of differential multipliers in order to derive appropriate integral
energy estimates, which we illustrated in Section 3.3, has been widely developed in the literature
– see, e.g., [Komornik, 1994a] or [Alabau-Boussouira, 2012]. To mention only a few, this strategy
has been successfully applied to the Schrödinger equation [Lasiecka and Triggiani, 1992a] or Kirch-
hoff plates [Komornik, 1994b] in the context of exact observability and/or feedback stabilization.
Coming back to the wave equation, an alternative approach based on Carleman estimates has been
proposed in [Baudouin et al., 2013], with the goal of establishing exact controllability of the waves
in presence of a potential term together with a robust reconstruction method of said potential – see
also the recent work [Baudouin et al., 2022]. However, both methods lead to quite strong geometric
assumptions, such as “star-shaped” conditions (as in our Hypothesis 3.3.2) or other more general
convexity-based hypotheses. Those are known to be non-optimal (at least as long as the pure wave
equation is concerned) since the seminal work [Bardos et al., 1992] where the celebrated geometric
control conditions, which involve the technical apparatus of microlocal analysis, were proved to be
necessary and sufficient for the problems of exact observability and exponential feedback stabiliza-
tion. For further discussions on that matter, the reader is referred to [Miller, 2002] or [Laurent and
Léautaud, 2016].
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Optimality of the non-uniform decay rate Theorem 3.3.3 deals with the decay rate of strong solu-
tions to (3.1)-(3.7), which remain bounded in a stronger norm (here, in H1(Ω)×L2(Ω)). In particular,
this enables the use of Sobolev embeddings to obtain estimates of the boundary term ∂ν[A−1u′] in
L∞(0,+∞; Lq(Γ )) for some appropriate q. In view of the energy identity (3.35), and as done in
Lemma 3.3.10, we can then derive an estimate involving only the “dissipation term” g(−∂ν[A−1u′])
and lower-order energy terms, even though no lower bound on nonlinearity g is prescribed at infinity.
Here, using the terminology of [Vancostenoble and Martinez, 2000], the feedback is allowed to be
weak, i.e., g(s)/s can go to 0 as |s| goes to infinity, as it is the case when g represents a saturation
mapping; then, loss of uniformity is to be expected. More precisely, coming back to the Neumann
problem, the one-dimensional version of (3.10) with g being a saturation mapping as given by (2.98)
is known to possess weak solutions that decay to zero (in the natural energy space H1(Ω)× L2(Ω))
slower than any exponential or polynomial, whereas strong solutions decay exponentially to zero but
in a non-uniform way – see [Vancostenoble and Martinez, 2000, Theorem 4.1] or also [Chitour et al.,
2021, Theorem 4.33]. Proving a similar result in our Dirichlet case would be interesting.

Uniform stabilization Putting aside the matter of saturated feedback and assuming if needed that
g has linear growth at infinity, we see that, unfortunately, the strategy followed here is not sufficient
to prove uniform decay of solutions to (3.1)-(3.7). Indeed, while estimating the term (Φ, 2h ·∇u)L2(Ω)
as in Lemma 3.3.9 is good enough for the purpose of proving Theorem 3.3.3, it requires, again, that
solutions remain bounded in a norm stronger than that of the energy spaceH . If, instead of (3.113),
one manages to prove something in the likes of

∫ τ

0

∫

Ω

Φ[2h · ∇u]dx dt ¶ K(τ)

∫ τ

0

|g(D∗u′)|2 dσdt + K ′{Eu(0) + Eu(τ)}+ ε
∫ τ

0

Eu dt (3.148)

for some τ > 0, where K(τ) is allowed to depend on τ and ε can be chosen sufficiently small, then, by
remarking that the multiplier identity (3.87) is still valid with the time-varying weight E (u, u′)(r−1)/2

replaced by the constant 1, one could easily adapt the rest of our proof to obtain exponential uniform
stability. By following the proof of [Lasiecka and Triggiani, 1987, Lemma 3.3], we can prove such
an estimate when g is the identity, at least under some specific geometric conditions; however, the
argument breaks down in the nonlinear case. Therefore, the problem of uniform stability is still open.
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4.1 Introduction and forwarding design

This chapter is an attempt at tackling the problem of output regulation for a class of infinite-dimensional
nonlinear systems governed by dynamics of contraction.

4.1.1 Background and control problem

Consider a control system with measured output governed by an abstract evolution equation of the
form

dw
dt
+A (w) = BU(t), (4.1a)

y = Cw. (4.1b)

The problem of robust output regulation consists in designing a feedback law which ensures that the
output y of the closed-loop system tracks a given reference yref even in presence of external (constant
here) disturbances d acting on the original dynamics (4.1a).

The idea of integral action, which derives from the more general internal model principle [Isidori
and Byrnes, 1990], is instrumental in solving that problem. Let us add an output integrator to the
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control loop, i.e., extend the original w-dynamics with a new variable z solving

dz
dt
= Cw− yref. (4.2)

Assume that one manages to build a feedback law U(t) = K (w, z) of the extended state variable
[w, z] such that trajectories of the system (4.1)-(4.2) are steered to some equilibrium [w?, z?]; then,
one immediately infer from (4.2) that Cw? = yref, i.e., the output y is at the reference yref when the
full state is at the equilibrium. From here, establishing that the output y tracks the reference yref
amounts to proving suitable attractivity properties of said equilibrium.

The theory of output regulation for linear finite-dimensional systems has been well understood for
several decades – see, e.g., [Davison, 1975,Davison, 1976,Francis, 1977]. However, nonlinear (finite-
dimensional) output regulation theory is still an active research area. The matter is especially delicate
when dealing with more general (time-varying) disturbances, as illustrated for instance in [Natarajan
and Weiss, 2019]. Another interesting example is [Astolfi et al., 2021] where an infinite-dimensional
controller is designed in order to regulate a finite-dimensional nonlinear system and reject periodic
disturbances. Extensions of the linear output regulation theory to the infinite-dimensional settings
were first proposed in [Pohjolainen, 1982, Pohjolainen, 1985], where an output integrator was con-
sidered. This research effort was pursued in [Paunonen and Pohjolainen, 2010,Paunonen, 2019,Phan
and Paunonen, 2021], where internal models were implemented in order to reject wider classes of
disturbances. Other works dealing with the problem of output regulation for particular linear partial
differential equations include [Guo and Meng, 2021,Guo and Zhao, 2022] or [Guo et al., 2018].

On the other hand, very few papers in the literature deal with output regulation problems in the
infinite-dimensional nonlinear settings. Most of them are very “transfer-function oriented”, and ei-
ther rely on linearizing the plant around the origin, as in [Natarajan and Bentsman, 2016], where
an approximate linear controller is proposed with the goal of regulating a finite-number of harmon-
ics of the output with reference to a periodic signal, or deal with dynamics that are linear without
control but are subject to some appropriate nonlinearity applied to the input, as in [Logemann and
Ryan, 2000]. Also, in all of them, the output is finite-dimensional. The approach we propose in this
chapter is quite different: we take the point of view of dynamical systems theory and are driven by
Lyapunov calculus (more precisely, our control design relies on the forwarding methodology, which
we introduce in the next section), hopefully paving the way to the output regulation of more general
nonlinear dynamics.

Before further investigating the control strategy, let us introduce some notation and specify the
formal control system (4.1). The original state variable w, the output y (together with the state z of
the integrator) and the control signal U(t) take values in some Hilbert spaces H, Z and E respectively.
The input and output maps B and C are linear, with B : E→ H bounded and C : D(C)→ Z ,D(C) ⊂ H,
possibly unbounded. The properties of the nonlinear mapA : D(A )→ H will be precised later on,
for the moment we simply assume that D(A ) is included in D(C).

4.1.2 Forwarding technique and feedback law

Our control design relies on the forwarding technique [Mazenc and Praly, 1996] for the stabilization
of (finite-dimensional) nonlinear systems in cascade. This methodology has been developed with
different purposes in, e.g., [Kaliora and Astolfi, 2005,Benachour et al., 2013,Astolfi and Praly, 2017].
It has also been used for nonlinear output regulation purpose in the recent work [Giaccagli et al.,
2021]. Note that while extensions of this approach to the infinite-dimensional settings have been
proposed [Terrand-Jeanne et al., 2019,Marx et al., 2021a,Marx et al., 2021b,Balogoun et al., 2021],
in all of them the uncontrolled dynamics are linear.

In what follows, we introduce our choice of control law for the extended system composed of the
original w-equation and the output integrator. For a moment, let us forget about the reference yref
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and the disturbance d, and consider the following cascade:

dw
dt
+A (w) = BU(t), (4.3a)

dz
dt
= Cw, (4.3b)

Let us make two assumptions (rigorous formulations will be given later on) on the system:

1. (Input-to-state stability of the w-subsystem.) There exists a Lyapunov functional V and positive
α and β such that

d
dt
V (w)¶ −αV (w) + β‖U(t)‖2

E (4.4)

along solutions to the w-equation (4.3a) (in other words, V is a control-Lyapunov function);

2. (Invariant graph.) There exists a smooth mapping M : H → Z such that M (0) = 0 and the
graph ofM is invariant with respect to the uncontrolled cascade dynamics (4.3), i.e.,1

dM (w)A (w) + Cw= 0 for all suitable w ∈ H. (4.5)

Then, consider the Lyapunov candidate

W (w, z)¬ V (w) +
ρ

2
‖z −M (w)‖2

Z , (4.6)

where ρ > 0 is a parameter to be tuned. The functionalW is the “energy” V of the w-subsystem plus
an additional term penalizing the distance to the invariant graph. By the chain rule, we obtain

d
dt
W (w, z) =

d
dt
V (w) +ρ(Cw− dM (w)[−A (w) + BU(t)], z −M (w))Z

=
d
dt
V (w)−ρ(U(t), B∗dM (w)∗[z −M (w)])E ,

(4.7)

where we plugged (4.5) into (4.7). Equation (4.7) suggests setting the feedback law as

U(t) = B∗dM (w)∗[z −M (w)]. (4.8)

Indeed, by choosing ρ ¾ 2β and using (4.4) together with Young’s inequality, we obtain

d
dt
W (w, z)¶ −αV (w)− β‖B∗dM (w)∗[z −M (w)]‖2

Z . (4.9)

Thus,W is rendered monotone decreasing along trajectories of (4.3) in closed loop with (4.8). Apply-
ing (formally!) a LaSalle invariance argument and assuming in addition that dM (0)∗B∗z = 0 implies
z = 0, since V is definite positive andM (0) = 0, we expect that solutions [w, z] to (4.3)-(4.8) go to
0 in H × Z .

1Equation (4.5) is obtained by formally differentiatingM (w) = z along solutions [w, z] to (4.3) with U(t) = 0.
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4.1.3 System under consideration

Coming back to the problem of (local) output regulation, our motivation is that for small reference
yref and disturbance d, the forwarding-based feedback law (4.8) still steers the system to a new
equilibrium [w?, z?] near the origin, at which the output y = Cw is regulated at yref. Proving this
reasonably requires to focus on a specific class of nonlinear dynamics. Inspired by previous work in the
theory of output regulation for finite-dimensional nonlinear systems [Pavlov et al., 2006, Giaccagli
et al., 2021], and following the general spirit of this thesis, we shall concentrate our attention on
systems of contractions.

Hypothesis 4.1.1 (Monotonicity). The nonlinear mappingA : D(A )→ H is a (single-valued) densely
defined maximal monotone operator satisfyingA (0) = 0. Furthermore,A is strongly monotone, i.e.,
there exists α > 0 such that

(A (w1)−A (w2), w1 −w2)H ¾ α‖w1 −w2‖2
H for all w1, w2 ∈ D(A ). (4.10)

Then, according to [Showalter, 2013, Chapter IV, Proposition 3.1], −A is the generator of a
strongly continuous contraction semigroup on H, which is denoted by {Tt}. Equation (4.10) implies
that the semigroup {Tt} satisfies

‖Tt w1 −Tt w2‖H ¶ exp(−αt)‖w1 −w2‖H for all w1, w2 ∈ H and t ¾ 0. (4.11)

In other words, the original w-equation exponentially contracts distances in H. With reference to
our preliminary Lyapunov analysis in Section 4.1.2, we will see later on that the additional strong
monotonicity property (4.10) yields an incremental version of (4.4) if we let

V (w)¬
1
2
‖w‖2

H for all w ∈ H. (4.12)

Next, we give the precise formulation of the “invariance equation” (4.5) satisfied by the mapping
M upon which we wish to build the controller (4.8).

Hypothesis 4.1.2 (Praly-Mazenc equation). There exists a continuously Fréchet differentiable solution
M ∈C 1(H, Z) to

dM (w)A (w) + Cw= 0 for all w ∈ D(A ) (4.13)

that satisfiesM (0) = 0.

Note that a formal candidate to (4.13) is always given by

M (w) = −C

∫ +∞

0

Tt w dt; (4.14)

however, what is difficult to check for general A is that the mapM given by (4.14) is well-defined
for all w in H (even if the integral converges in H, it need not take values in D(C)) and sufficiently
smooth. This is all the more true since bothM and dM appear in the feedback law (4.8). Never-
theless, in the case that A has a semilinear structure, we are able to work around these difficulties
– see Section 4.3 below. Note also that uniqueness of solutions to (4.13) is not investigated here. In
the sequel, when working under Hypothesis 4.1.2, we implicitly fix a particular choice ofM .

Let [d, yref] in H × Z . We now end this section by recalling the full extended control system with
output integrator relative to the reference yref and unknown disturbance d:

dw
dt
+A (w) = BU(t) + d, (4.15a)

dz
dt
= Cw− yref, (4.15b)
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together with the (full-state) feedback law, which is well-defined under Hypothesis 4.1.2,

U(t) = B∗dM (w)∗[z −M (w)]. (4.16)

Again, when referring to the closed-loop equations (4.15)-(4.16), there is an implicit dependence on
the pair [d, yref] and the choice ofM .

4.2 Analysis of the closed-loop system

Our aim in this section is to derive sufficient conditions for the feedback law (4.16) (which we assume
exists) to steer the system (4.15) to some equilibrium at the prescribed output reference. Due to the
presence of the output integrator (4.15b) in the feedback loop, this amounts to proving the existence
of a (locally or globally) attractive equilibrium for the closed-loop equations (4.15)-(4.16). The
precise statements are given in Section 4.2.1. The main idea here is that, up to a certain change of
variable, which we introduce in Section 4.2.2, the feedback law (4.16) preserves at least locally the
contraction property of the original w-dynamics. This reasoning is made precise in Section 4.2.3,
where the main result is proved.

4.2.1 Sufficient conditions for output regulation

The first thing to do is to establish existence and uniqueness of solutions to (4.15)-(4.16). Let us
slightly adapt the definitions of solutions given in Chapter 2.

Definition 4.2.1 (Strong and generalized solutions). Let T ∈ (0,+∞]. We say that a H × Z-valued
function [w, z] defined on [0, T ) is

(i) A strong solution to (4.15) − (4.16) on [0, T ) if [w, z] belongs to W 1,1(0,τ; H × Z) for any
τ ∈ (0, T ), takes values in D(A )× Z and satisfies (4.15)-(4.16) a.e. on (0, T );

(ii) A generalized solution to (4.15)-(4.16) if [w, z] is a limit of strong solutions in C ([0,τ], H × Z)
for any fixed τ ∈ (0, T ).

Theorem 4.2.2 (Well-posedness). Assume Hypotheses 4.1.1 and 4.1.2 hold and dM is locally Lipschitz
continuous. Then,

(i) For all [d, yref] ∈ H × Z and all [w0, z0] ∈ H × Z, the closed-loop system (4.15)-(4.16) admits a
unique maximal2 satisfying the initial condition [w(0), z(0)] = [w0, z0] and defined on [0, Tmax),
where Tmax ∈ (0,+∞] depends on [w0, z0];

(ii) Moreover, if w0 ∈ D(A ), then [w, z] is a strong solution to (4.15)-(4.16) and satisfies [w, z] ∈
W 1,∞(0,τ; H × Z) for any τ ∈ (0, Tmax);

(iii) Furthermore, if d = 0 or dM is globally Lipschitz continuous, then (4.15)-(4.16) is forward
complete, i.e., Tmax = +∞ for any initial condition.

Theorem 4.2.2 is proved in Section 4.2.2. Then, in the next theorem, we establish sufficient
conditions for achieving output regulation in terms of the map M (which makes the link between
the operatorA governing the w-dynamics and the output operator C), the input operator B and the
pair of disturbance-reference [d, yref].

2This means that there is no solution defined on an interval [0, T ) where T > Tmax.
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Theorem 4.2.3 (Sufficient conditions for output regulation). Assume Hypotheses 4.1.1 and 4.1.2 are
satisfied. Assume that

RangedM (0)B = Z , i.e., ∃λ > 0 | ∀z ∈ Z , ‖B∗dM (0)∗z‖2
Z ¾ λ‖z‖

2
Z . (4.17)

If dM is globally (resp. locally) Lipschitz continuous, then there exist positive constants M, κ and r and a
neighborhoodN of the origin in H×Z such that for any [d, yref] inBH×Z(0, r) (resp. in {0}×BZ(0, r)),
the following results hold.

(i) There exists an equilibrium point [w?, z?] ∈ D(A )× Z, which lies in N , of the closed-loop system
(4.15)-(4.16) such that Cw? = yref and for all initial data [w0, z0] in N , the corresponding
solution [w, z] to (4.15)-(4.16) satisfies, for all t ¾ 0,

‖[w(t)−w?, z(t)− z?]‖H×Z ¶ M exp(−κt)‖[w0 −w?, z0 − z?]‖H×Z . (4.18)

(ii) Moreover, if for all z ∈ Z and w ∈ H,

‖B∗dM (w)∗z‖2
Z ¾ λ‖z‖

2
Z (4.19)

then for any initial data [w0, z0] in H × Z, the corresponding solution [w, z] to (4.15)-(4.16)
satisfies

[w(t), z(t)]→ [w?, z?] in H × Z as t → +∞. (4.20)

The proof of Theorem 4.2.3 is given in Section 4.2.3, together with an outline of the strategy we
followed and some appropriate auxiliary results. In terms of stability,

• Equation (4.18) means that the equilibrium [w?, z?] is locally exponentially stable, and its
bassin of attraction includes the origin;

• Under the uniform coercivity condition (4.19), the equilibrium [w?, z?] is also globally asymp-
totically stable by (4.20).

Note that (4.19) is stronger than a global version of the range condition (4.17): if Range dM (w)B = Z
for all w in H, then the adjoint argument provides a family of positive λw such that ‖B∗dM (w)∗z‖2

Z ¾
λw‖z‖2

Z for all w in H and z in Z; however, the infimum of the λw might very well be 0.

Remark 4.2.4 (Bassin of attraction). For the sake of clarity, we chose to establish, on one hand, a quite
general local result (Item (i) of Theorem 4.2.3) under the relativity weak range condition (4.17), and
on the other hand, a global result (Item (ii)) under the very strong condition (4.19). However, it will
appear clear that the bassin of attraction of the equilibrium [w?, z?] is, roughly speaking, as large as
the set where (4.19) holds. This can be inferred from the proof of Lemma 4.2.7 below.

Let us conclude the section with an important point that is specific to the infinite-dimensional
settings. It is clear that if the operator C is continuous, i.e., C belongs to L (H, Z), then the output
Cw(t) goes to yref in Z whenever w(t) goes to w? in H. If C is unbounded, then Cw need not be
defined for all closed-loop solutions, and even for strong solutions, it need not be continuous. This is
further discussed at the end of chapter.

4.2.2 Change of coordinates and proof of well-posedness

In what follows, we will investigate the properties of the closed-loop system (4.15)-(4.16) in the new
coordinates [w,η] where η is given by

η¬ z −M (w). (4.21)
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In [w,η]-coordinates, (4.15)-(4.16) can be equivalently rewritten as

dw
dt
+A (w) = BB∗dM (w)∗η+ d, (4.22a)

dη
dt
+ dM (w)BB∗dM (w)∗η= −yref − dM (w)d. (4.22b)

Equation (4.22b) is obtained by differentiating (4.21) and using (4.13) combined with (4.22a). By
continuity of M , the change of variables is continuous. In particular, given [w?, z?] ∈ H × Z , any
solution [w, z] to (4.15)-(4.16) converges to [w?, z?] if and only if [w,η] converges to [w?,η?], where
η = z −M (z) and η? = z? −M (w?). Moreover, given a ball of H containing w?, by local Lipschtz
continuity ofM , there exist positive constants K1 and K2 (depending on said ball) such that

K1‖[w−w?, z − z?]‖H×Z ¶ ‖[w−w?,η−η?]‖H×Z ¶ K2‖[w−w?, z − z?]‖H×Z (4.23)

whenever w lies in that ball. Bearing in mind the statements of Theorems 4.2.2 and 4.2.3, this
means that well-posedness and existence of a locally exponentially stable and/or global attractive
equilibrium can be investigated in the new [w,η]-coordinates, i.e., by considering (4.22).

Before proving Theorem 4.2.2, in order to alleviate notation when needed, let us define

K (w)¬ dM (w)B for all w ∈ H. (4.24)

Proof of Theorem 4.2.2. We start by proving that solutions to (4.22) exist at least on a finite time inter-
val (Items (i) and (ii) of Theorem 4.2.2), and then we investigate forward completeness (Item (iii)).

Step 1: Local well-posedness. First, we observe that (4.22) represents a locally Lipschitz perturba-
tion of the following maximal monotone problem:

d
dt
[w,η] + [A (w),η] = 0. (4.25)

Indeed, by letting

Fd,yref
[w,η]¬

�

−BK (w)∗η− d
−η+K (w)K (w)∗η+ yref + dM (w)d

�

for all [w,η] ∈ H × Z , (4.26)

we can rewrite (4.22) as follows:

d
dt
[w,η] + [A (w),η] +Fd,yref

[w,η] = 0. (4.27)

The nonlinear map Fd,yref
is locally Lipschitz continuous on H × Z . Besides, since A is maximal

monotone on H, so is the mapping [w,η] 7→ [A (w),η] on H × Z (with dense domain D(A )× Z).
Furthermore, [A (0), 0] = 0. Thus, it follows from [Chueshov et al., 2002, Theorem 7.2] that for
each initial condition [w0,η0] ∈ H × Z , there exists a unique maximal generalized solution [w,η] to
(4.22) defined on [0, Tmax), with Tmax ∈ (0,+∞]. Moreover, if w0 ∈ D(A ), [w,η] is in fact a strong
solution. Recalling that z = η+M (w) andM ∈C 1(H, Z), we obtain Items (i) and (ii). Finally, the
aforementioned theorem also states that if Tmax is finite, then the norm of [w(t),η(t)] must go to
+∞ as t approaches Tmax.

Step 2: Sufficient conditions for forward completeness. Let us prove that if d = 0 or dM is globally
Lipschitz continuous, then Tmax = +∞ for any initial condition [w0,η0] ∈ H × Z . Let ρ > 0 to be
fixed (large enough) later on. Given a (strong) solution [w,η] with initial data [w0,η0] ∈ D(A )× Z ,
we have

1
2

d
dt

�

‖w‖2
H +ρ‖η‖

2
Z

	

= −(A (w), w)H + (BK (w)∗η, w)H + (d, w)H

−ρ‖K (w)∗η‖2
E −ρ(yref,η)Z −ρ(dM (w)d,η)Z (4.28)
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4. AN OUTPUT REGULATION PROBLEM

holding a.e. on (0, Tmax). Similarly as in our preliminary Lyapunov analysis in Section 4.1.2, in
order to deal with the term BK (w)∗η, we use (4.10) together with Young’s inequality and choose
2ρ ¾ ‖B‖2

L (E,H) to obtain

d
dt

�

‖w‖2
H +ρ‖η‖

2
Z

	

¶ 2‖w‖2
H + 2ρ‖η‖2

Z +ρ‖yref‖2
Z + ‖d‖

2
H +ρ‖dM (w)d‖

2
Z (4.29)

If d = 0 or dM is globally Lipschitz continuous, the following inequality holds:

‖dM (w)d‖2
Z ¶ K(1+ ‖w‖2

H)‖d‖
2
H (4.30)

for some K > 0 independent of w or d. Combining (4.29) and (4.30) yields

d
dt

�

‖w‖2
H +ρ‖η‖

2
Z

	

¶ K ′
�

‖w‖2
H +ρ‖η‖

2
Z‖
	

+ K ′ a.e. (4.31)

for some K ′ > 0 independent of the initial data. As a strong solution to (4.22), [w,η] is absolutely
continuous in H × Z; therefore, we can deduce from (4.31) and Grönwall’s inequality the following
uniform estimate: for all t ∈ [0, Tmax),

‖w(t)‖2
H +ρ‖η(t)‖

2
Z ¶ exp(K ′ t){‖w0‖2

H +ρ‖η0‖2
Z + 1}. (4.32)

We infer from (4.32) that the norm of [w,η] cannot blow up in finite time; thus, Tmax = +∞.
Furthermore, by passing to the limit, we see that (4.32) is satisfied for generalized solutions as well,
which means that the same conclusion holds for any initial data in H × Z . This proves Item (iii) and
ends the proof of Theorem 4.2.2.

4.2.3 Proof of the output regulation theorem

The proof of Theorem 4.2.3 relies on a series of lemmas that are given below. Let us first give some
insight on the main strategy.

1. Under the range condition (4.17), the operators K (w)∗ = B∗dM (w)∗ involved in the η-
equation (4.22b) enjoy a coercivity property that is uniform with respect to w, provided that w
remains in some ball around the origin. This is shown in Lemma 4.2.5.

2. This allows to prove that there exists a (not necessarily invariant) region around the origin
of H × Z where the dynamics generated by (4.22) are strictly contractive. This is stated in
Lemma 4.2.6.

3. Another consequence of the local coercivity property is the existence of suitable attracting sets
for the closed-loop dynamics (4.22), as demonstrated in Lemma 4.2.7. Furthermore, if the
reference yref and the perturbation d are sufficiently small, then those sets are contained in the
contraction region of the previous step.

4. Finally, existence of a locally exponentially stable equilibrium for (4.22) is shown by using
Banach fixed point arguments and properties of ω-limit sets associated with contraction semi-
groups.

5. Additionally, under the global coercivity condition (4.19), the attracting sets from Lemma 4.2.7
are in fact globally attractive, hence the equilibrium is also globally asymptotically stable.
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4.2. Analysis of the closed-loop system

Coming back to the [w, z]-coordinates and thus to the original closed-loop system (4.15)-(4.16) is
then straightforward. In what follows, we shall be careful regarding the dependence of the various
neighborhoods involved in the analysis with respect to each parameter. Before proceeding further,
we introduce some additional notation. Recalling (4.26) and (4.27), given [d, yref], we denote by
Ãd,yref

the nonlinear operator

Ãd,yref
¬ [A , id] +Fd,yref

(4.33)

defined on D(A ) × Z and associated with the closed-loop system (4.22) in the [w,η]-coordinates.
Also, for ρ > 0, we denote by ‖ · ‖H×Z ,ρ the Hilbert norm on H × Z given by

‖[w,η]‖2
H×Z ,ρ ¬ ‖w‖

2
H +ρ‖η‖

2
Z for all [w,η] ∈ H × Z . (4.34)

We denote by (·, ·)H×Z ,ρ the associated scalar product. All these norms are equivalent. Bearing in
mind our Lyapunov analysis in the [w, z]-coordinates in Section 4.1.2, the ρ-norm is connected to
the Lyapunov functional W by

W (w, z) =
1
2
‖[w, z −M (w)‖2

H×Z ,ρ. (4.35)

In the sequel, we either take d = 0 or assume that dM is globally Lipschitz continuous. Therefore, by
virtue of Theorem 4.2.2, solutions to the closed-loop equations (4.22) are well-defined for all positive
time and any initial condition in H × Z . Recall from (4.17) in the statement of Theorem 4.2.3 that
the following coercivity assumption is in force:

‖K (0)∗z‖2
E ¾ λ‖z‖

2
Z for all z ∈ Z . (4.36)

The first lemma is a simple consequence of (4.36) and continuity of dM .

Lemma 4.2.5 (Local coercivity). There exist positive constants λ̃ and r̃ such that

‖K (w)∗z‖2
E ¾ λ̃‖z‖

2
Z for all z ∈ Z and w ∈BH(0, r̃). (4.37)

Proof. Let w ∈ H and z ∈ Z . Recall that K (w)∗z = B∗dM (0)∗z + B∗[dM (w) − dM (0)]∗z. Using
Cauchy-Schwarz and Young inequalities together with (4.36), we get

‖K (w)∗z‖2
E ¾

2λ
3
‖z‖2

H − 2‖B‖2
L (E,H)‖[dM (w)− dM (0)]∗‖2

L (Z ,E)‖z‖
2
Z . (4.38)

By continuity of dM at 0, we can choose r̃ > 0 such that

‖dM (w)− dM (0)‖2
L (H,Z) ¶

λ

6‖B‖2
L (E,H)

for all w ∈BH(0, r̃). (4.39)

Thus, by letting λ̃¬ λ/3> 0, we obtain the desired inequality (4.37).

The following constant appears in the next two lemmas:

κ¬min{α/4, λ̃/4}. (4.40)

Those concern the contraction property of the dynamics governed by (4.22) around the origin and
the existence of attractive sets depending on [d, yref].
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4. AN OUTPUT REGULATION PROBLEM

Lemma 4.2.6 (Local strong monotonicity). There exists ρ0 > 0 such that the following property holds:
for all ρ ¾ ρ0, there exists a positive r0,ρ ¶ r̃ such that

(Ãd,yref
[w1,η1]− Ãd,yref

[w2,η2], [w1,η1]− [w2,η2])H×Z ,ρ ¾ κ‖[w1,η1]− [w2,η2]‖2
H×Z ,ρ (4.41)

for all [w1,η1], [w2,η2] ∈BH×Z(0, r0,ρ)∩D(A )× Z, d ∈BH(0, r0,ρ), and yref ∈ Z.

Proof. Let [w1,η2] and [w2,η2] in D(A )× Z . We write w̃¬ w1−w2 and η̃¬ η1−η2. Then, for any
ρ > 0,

(Ãd,yref
[w1,η1]−Ãd,yref

[w2,η2], [w̃, η̃])H×Z ,ρ = (A (w1)−A (w2)−B[K (w1)
∗η1−K (w2)

∗η2], w̃)H
+ρ(K (w1)K (w1)

∗η1 −K (w2)K (w2)
∗η2 + [dM (w1)− dM (w2)]d, η̃)Z . (4.42)

By adding and removing some terms, (4.42) can be rewritten as follows:

(Ãd,yref
[w1,η1]− Ãd,yref

[w2,η2], [w̃, η̃])H×Z ,ρ = (A (w1)−A (w2), w̃)H
+ρ(K (w1)K (w1)

∗η̃, η̃)Z +ρ([K (w1)K (w1)
∗ −K (w2)K (w2)

∗]η2, η̃)Z
− (BK (w1)

∗η̃, w̃)H − (B[K (w1)−K (w2)]
∗η2, w̃)H +ρ([dM (w1)− dM (w2)]d, η̃)Z . (4.43)

Assume for a moment that ‖wi‖H ¶ r̃/2, where r̃ is given by Lemma 4.2.5. Therefore, ‖w̃‖H ¶ r̃;
and using (4.10) and (4.37) together with the Lipschtz continuity ofK andK (·)K (·)∗ onBH(0, r̃),
we infer from (4.43) that

(Ãd,yref
[w1,η1]− Ãd,yref

[w2,η2], [w̃, η̃])H×Z ,ρ ¾ α‖w̃‖2
H +ρλ̃‖η̃‖

2
Z

−ρK1‖w̃‖H‖η2‖Z‖η̃‖Z − K2‖η̃‖Z‖w̃‖H − K3‖η2‖Z‖w̃‖2
H −ρK4‖w̃‖H‖d‖H‖η̃‖Z . (4.44)

where the Ki are some positive constants independent of [wi ,ηi], [d, yref], and ρ. Given ε > 0, we
employ Cauchy-Schwarz and Young inequalities to obtain

(Ãd,yref
[w1,η1]− Ãd,yref

[w2,η2], [w̃, η̃])H×Z ,ρ ¾ α‖w̃‖2
H +ρλ̃‖η̃‖

2
Z

−
ρ

2
{K1‖η2‖Z + K4‖d‖H}{‖w̃‖2

H + ‖η̃‖
2
Z} −

K2

2ε
‖η̃‖2

Z −
εK2

2
‖w̃‖2

H − K3‖η2‖Z‖w̃‖2
H . (4.45)

Let ε = α/(2K2) in (4.45) and define ρ0 ¬ 2K2/(λ̃ε). For all ρ ¾ ρ0,

(Ãd,yref
[w1,η1]− Ãd,yref

[w2,η2], [w̃, η̃])H×Z ,ρ ¾
α

2
‖w̃‖2

H +
ρλ̃

2
‖η̃‖2

Z

−
ρ

2
{K1‖η2‖Z + K4‖d‖H}{‖w̃‖2

H + ‖η̃‖
2
Z} − K3‖η2‖Z‖w̃‖2

H . (4.46)

Let ρ ¾ ρ0. We infer from (4.46) that there exists r0,ρ ¶ r̃/2 such that

(Ãd,yref
[w1,η1]− Ãd,yref

[w2,η2], [w̃, η̃])H×Z ,ρ ¾
α

4
‖w̃‖2

H +
ρλ̃

4
‖η̃‖2

Z (4.47)

as long as [wi ,ηi] ∈BH×Z(0, r0,ρ) and d ∈BH(0, r0,ρ), which completes the proof.

Lemma 4.2.7 (Absorbing balls). There exists ρ1 > 0 such that the following property holds: for any
ρ ¾ ρ1, there exist positive r1,ρ and Kρ such that, if [d, yref] ∈BH×Z(0, r1,ρ), then the estimate

‖[w(t),η(t)]‖2
H×Z ,ρ ¶ exp(−κt)‖[w0,η0]‖2

H×Z ,ρ + Kρ{1− exp(−κt)}‖[d, yref]‖2
H×Z (4.48)

holds for any solution [w,η] to (4.22) with initial data [w0,η0] in BH×Z(0, r1,ρ). Furthermore, if
(4.37) holds globally, then (4.48) is true for all initial data in H × Z.
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4.2. Analysis of the closed-loop system

Proof. All formal computations performed below are justified by considering appropriate sequence
of strong solutions as provided by Theorem 4.2.2 and then passing to the limit at the very end. First,
let

ρ1 ¬ ‖B‖2
L (E,H)max{1, 2α−1}. (4.49)

Let ρ ¾ ρ1 be fixed and let [w,η] be a solution to (4.22) with initial condition [w0,η0]. As in the
proof of Theorem 4.2.2, using (4.28) we obtain

d
dt
‖[w,η]‖2

H×Z ,ρ ¶ kρ{‖[w,η]‖2
H×Z ,ρ + ‖yref‖2

Z + ‖d‖
2
H} (4.50)

for some kρ > 0 independent of [w0,η0] and [d, yref]. It follows from (4.50) that

‖[w(t),η(t)]‖2
H×Z ,ρ ¶ exp(kρ)‖[w0,η0]‖2

H×Z ,ρ + exp(kρ){‖yref‖2
Z + ‖d‖

2
H} (4.51)

for all t ∈ [0, 1]. As a consequence of (4.51), there exists a positive constant rρ such that

max{‖w0‖H ,‖η0‖Z ,‖d‖H ,‖yref‖Z}¶ rρ implies ‖w(t)‖H ¶ r̃ for all t ∈ [0, 1], (4.52)

where r̃ is defined in Lemma 4.2.5. Therefore, for such initial data, we can use (4.37) in (4.28) to
refine our previous estimate: for all positive ε and µ, on (0, 1) we have

1
2

d
dt
‖[w,η]‖2

H×Z ,ρ ¶ −α‖w‖
2
H +

1
2ε
‖B‖2

L (E,H)‖K (w)
∗η‖2

U + ε‖w‖
2
H

+
1
2ε
‖d‖2

H −ρ‖K (w)
∗η‖2

U +
ρ

2µ
‖yref‖2

Z +
ρ

2µ
‖dM (w)d‖2

Z +ρµ‖η‖
2
Z . (4.53)

First, recall that we have either dM globally Lipschitz continuous or d = 0. Hence, there exists k > 0
independent of [w0,η0] and [d, yref] such that ‖dM (w)d‖2

Z ¶ k‖d‖2
H . By choosing µ = λ̃/4 and

ε = α/2, we deduce from (4.53) the following differential inequality, valid on (0,1):

1
2

d
dt
‖[w,η]‖2

H×Z ,ρ ¶ −
α

2
‖w‖2

H −
ρλ̃

4
‖η‖2

Z +
ρ

2µ
‖yref‖2

Z +
§

ρk
2µ
+

1
2ε

ª

‖d‖2
H (4.54)

Applying Grönwall’s inequality to (4.54) yields

‖[w(t),η(t)]‖2
H×Z ,ρ ¶ exp(−κt)‖[w0,η0]‖2

H×Z ,ρ + Kρ(1− exp(−κt))‖[d, yref]‖2
H×Z (4.55)

for all t ∈ [0, 1], where κ is defined in (4.40) and Kρ ¾ 1 is some constant independent of [w0,η0]
and [d, yref]. Next, by norm equivalence, there exists r1,ρ > 0 such that the following implication
holds: if [w0,η0] and [d, yref] are inBH×Z(0, r1,ρ), then

‖[w0,η0]‖H×Z ,ρ ¶ 2−1/2rρ, and ‖[d, yref]‖H×Z ¶ (2Kρ)
−1/2rρ. (4.56)

Now, we claim that the estimate (4.55) remains valid for all t ¾ 0. Indeed, (4.55) shows that
‖[w(1),η(1)]‖H×Z ,ρ ¶ rρ. Therefore, by definition of rρ, we infer from the estimate (4.51) ap-
plied to the initial data [w(1),η(1)] that ‖w(t)‖H ¶ r̃ for all t ∈ [1, 2]. As a consequence, the
differential inequality (4.54) is valid on (0,2); hence, (4.55) holds on [0,2], with in particular
‖[w(2),η(2)‖H×Z ,ρ ¶ rρ, and so on. The conclusion readily follows by induction.

Moreover, if it is assumed that (4.37) holds for all w ∈ H, then (4.54) is valid on (0,+∞)whatever
the initial condition, so that (4.51) immediately holds for all t ¾ 0. In this case, no additional
condition on [d, yref] is required.
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4. AN OUTPUT REGULATION PROBLEM

We are finally ready to prove Theorem 4.2.3 by following the strategy we outlined above.

Proof of Theorem 4.2.3. The proof is split into four steps for the reader’s convenience.
Step 1: Setting all neighborhoods. Pick ρ such that ρ ¾max{ρ0,ρ1} as in Lemmas 4.2.6 and 4.2.7.

In the sequel, [d, yref] is assumed to lie in the intersection of BH(0, r0,ρ)× Z and BH×Z(0, r1,ρ), so
that the lemmas apply. Now that ρ is fixed, we will omit the dependence on ρ in further notation.
Lemma 4.2.6 provides a neighborhood K of the origin in H × Z , which we will refer to as the con-
traction region, where (4.41) holds. On the other hand, according to (4.48) in Lemma 4.2.7, the
set

Vd,yref
¬BH×Z ,ρ(0, K1/2

ρ ‖[d, yref]‖H×Z) (4.57)

attracts all solutions to (4.22) originating fromBH×Z(0, r1,ρ). By norm equivalence, any sufficiently
small ball for the ρ-norm that is centered at the origin is contained in both K andBH×Z(0, r1,ρ). That
being said, as a consequence of (4.48) and (4.57), there exists positive numbers δ and r such that,
having letB ¬BH×Z ,ρ(0,δ), the following properties hold for any [d, yref] ∈BH×Z(0, r):

• The closure of the corresponding attracting set Vd,yref
is contained inB;

• Solutions to (4.22) with initial data inB remain in K.

If in addition we assume that (4.19) holds, i.e., (4.37) holds globally, then by Lemma 4.2.7,

• The set Vd,yref
attracts all solutions to (4.22), whatever the initial data.

In what follows, we omit the dependence on [d, yref] in the notation and we denote by {T̃t} the
strongly continuous semigroup associated with (4.22). Then, since solutions originating from (the
nonempty open set) B remain in the contraction region K, we infer from (4.41) together with a
density argument that

‖T̃t[w1,η1]− T̃t[w2,η2]‖H×Z ,ρ ¶ exp(−κt)‖[w1,η1]− [w0,η0]‖H×Z ,ρ (4.58)

for all t ¾ 0 and [wi ,ηi] ∈B , i ∈ {1,2}.
Step 2: Existence of a fixed point. Pick an arbitrary [w0,η0] ∈B . By (4.58) and a usual contraction

argument, we see that

{T̃n[w0,η0]}n¾0 is a Cauchy sequence in H × Z (4.59)

and converges to a fixed point [w?0,η?0] of the nonlinear operator T̃1. Now, consider the ω-limit set
ω([w0,η0]) of [w0,η0] with respect to the evolution semigroup {T̃t}. By the sequential characteriza-
tion ofω-limit sets (see [Chueshov, 2002, Lemma 2.1, p.19]), we observe that [w?0,η?0] ∈ω([w0,η0]),
which means that ω([w0,η0]) is nonempty. Moreover, it is positively invariant by definition. Finally,
since Vd,yref

attracts all solutions originating fromB , we must have

ω([w0,η0]) ⊂Vd,yref
⊂B . (4.60)

By following verbatim3 the proof of [Dafermos and Slemrod, 1973, Theorem 1], we obtain that for
each t ¾ 0, T̃t is an isometry on ω([w0,η0]). On the other hand, for positive t, T̃t is a strict contrac-
tion on ω([w0,η0]); thus, ω([w0,η0]) must be reduced to the singleton {[w?0,η?0]}. By invariance
of the ω-limit set, [w?0,η?0] is fixed by the semigroup {T̃t}. Moreover, it follows from (4.58) that

3 The only difference with [Dafermos and Slemrod, 1973, Theorem 1] is that {T̃t} is a contraction only on a region (con-
taining the ω-limit set) that is not a priori positively invariant. However, in order to obtain the isometry property, contraction
is only needed on the points of the ω-limit set.
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[w?0,η?0] is the unique fixed point of {T̃t} in B and is exponentially attractive in B . Thus, we write
[w?,η?]¬ [w?0,η?0].

Step 3: The fixed point lies in the domain. We now prove that w? ∈ D(A ). Let ε > 0 sufficiently
small and consider the ball

C ¬BH×Z ,ρ([w
?,η?],ε) ⊂ K. (4.61)

SinceD(A ) is dense in H andC has nonempty interior, we can pick some [w0,η0] ∈ [D(A )×Z]∩C .
Let [w(t),η(t)]¬ T̃t[w0,η0]. As a strong solution to (4.22), [w,η] is differentiable a.e. in H×Z and

d
dt
[w,η] + Ãd,yref

[w,η] = 0 a.e. (4.62)

Besides, we infer from (4.58) that C is positively invariant so that {T̃t} restricted to C is still a
well-defined contraction semigroup. Thus, we can apply [Crandall and Pazy, 1969, Theorem 1.4] to
obtain

‖Ãd,yref
[w,η]‖H×Z ,ρ ¶ ‖Ãd,yref

[w(t0),η(t0)]‖H×Z ,ρ a.e. on (t0,+∞) (4.63)

for some t0 ¾ 0. In particular, ‖A (w)‖H is bounded a.e. on (t0,+∞). On the other hand, w(t)
converges to w? in H when t goes to +∞. Therefore, it follows from A being maximal monotone
and [Crandall and Pazy, 1969, Lemma 2.3] that w? ∈ D(A ).

Step 4: Conclusion. Since [w?,η?] belongs to D(A )× Z and is fixed by {T̃t}, Ãd,yref
[w?,η?] = 0.

We come back to the original [w, z] coordinates by letting z? ¬ η? +M (w?) and N ¬ {[w,η +
M (w)], [w,η] ∈ B}. Then, [w?, z?] belongs to [D(A ) × Z] ∩N and is an equilibrium for (4.15)-
(3.7); hence, Cw? = yref. BecauseM vanishes at 0 and is continuous, N is indeed a neighborhood
of 0. Local exponential stability of [w?, z?] with decay rate κ and bassin of attraction containing
N follows from (4.58) and our prior remarks regarding the change of coordinates; the constant
M in (4.11) comes from (4.23) and equivalence with the ρ-norm. Additionally, under the stronger
condition (4.19), [w?, z?] is globally asymptotically stable. The proof is now complete.

4.3 The semilinear case

Our objective in this section is to prove the existence (in fact, build “explicitly”) a solutionM to (4.13)
in the semilinear settings, thereby guaranteeing the existence of the control law (4.16) for a wide
class of systems. We will see that for such a map, the requirements of Theorem 4.2.3 translate into
(mostly) easy to verify conditions on the original w-dynamics, the input operator B and the output
operator C . This is demonstrated on examples in Section 4.3.3.

4.3.1 Existence of an invariant graph for the cascade dynamics

Consider the case whereA = A+ F with D(A ) = D(A), where −A is the infinitesimal generator of a
strongly continuous semigroup {St} of linear operators on H, and F is a nonlinear mapping satisfying

F ∈ C 1(H), dF locally Lipschitz continuous, (4.64)

and without loss of generality, dF(0) = 0. Following [Pazy, 2012], we shall say thatA is semilinear.
In that context, let us introduce the following set of assumptions.

Hypothesis 4.3.1. The operatorA = A+ F is semilinear and satisfies the following properties:

(i) C is A-bounded, i.e., there exist positive constants a and b such that

‖Cw‖Z ¶ a‖Aw‖H + b‖w‖H for all w ∈ D(A); (4.65)
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(ii) 0 is in the resolvent set of A, i.e., A−1 ∈ L (H);

(iii) There exists α > 0 such that

(Ah+ dF(w)h, h)H ¾ α‖h‖2
H for all w ∈ H and h ∈ D(A). (4.66)

We claim that Hypothesis 4.3.1 implies Hypothesis 4.1.1. Indeed, writing F(w1)− F(w2) as an in-
tegral of dF along the line segment joining w1 to w2, one can show that (4.66) implies (4.10). Then,
standard results on Lipschitz perturbations of linear systems (see [Pazy, 2012, Section 6.1]) together
with (4.10) yield that −A generates a strongly continuous semigroup of contractions (denoted by
{Tt}) on H, which in turn implies that A is maximal monotone by virtue of [Komura, 1969, The-
orem 4]. Under Hypothesis 4.3.1, the functional equation (4.13) admits a solution M , which is a
function of C , A, F and the original semigroup {Tt} – meaning that Hypothesis 4.3.1 also implies
Hypothesis 4.1.2. This is shown in the next theorem.

Theorem 4.3.2 (Existence ofM in the semilinear case). Assume Hypothesis 4.3.1 is satisfied. Then
there exists a mapM ∈C 1(H, Z) satisfying (4.13) with dM locally Lipschitz continuous and given by

M (w)¬ −C

�

lim
τ→+∞

∫ τ

0

Tt w dt

�

= −CA−1w+ CA−1

∫ +∞

0

F(Tt w)dt for all w ∈ H, (4.67)

where the limit on the left-hand side of (4.67) is taken in H and the integrand on the right-hand is
absolutely integrable in H. The differential dM is given by

dM (w)h= −CA−1h+ CA−1

∫ +∞

0

dF(Tt w)dTt(w)h dt for all w, h ∈ H, (4.68)

where dTt(w) denotes the differential of Tt at w. Moreover, if F and dF are globally Lipschitz continuous,
then so is dM .

The proof of Theorem 4.3.2, including the limit equality in (4.67) and the differentiability of the
semigroup {Tt}, is given below in Section 4.3.2. A notable consequence of (4.68) is that the coercivity
condition (4.17) in Theorem 4.2.3 simply reads as

Range CA−1B = Z , (4.69)

which, in the context of output regulation of finite-dimensional linear systems, corresponds to a non-
resonance condition between A and the zero dynamics of the integrator via the Schur complement –
see, e.g., [Isidori et al., 2003]. On the other hand, Theorem 4.3.2 also states that dM inherits the
Lipschitz properties of F and dF .

Now, regarding Hypothesis 4.3.1, (4.66) is a sufficient condition under which solutions to the
uncontrolled w-equation linearized around a given trajectory (also called first variation equation, see
(4.86) below) uniformly converge to that trajectory. Equation (4.66) is easily verified in (at least)
two situations of interest.

• The nonlinearity F contributes to the contraction behavior of the w-dynamics. This is the case
for example if A is coercive and F is monotone (i.e. such that (dF(w)h, h)H is nonnegative for
all w, h in H). More generally, the reader may refer to [Lohmiller and Slotine, 1998] in finite
dimension or [Temam, 1997, Chapter V] for the contraction analysis of the system by means of
its first variation equation.

64



4.3. The semilinear case

• Variations of F are small with respect to linear dissipation brought by A. More precisely, if
F is K-Lipschitz continuous, then ‖dF(·)‖L (H) is bounded by K , hence (4.66) is satisfied if
(Ah, h)H ¾ β‖h‖2

H for some constant β > K . In the same spirit, under (4.66) and (4.69), by
observing4 that for each w the integral map in (4.68) has operator norm bounded by K/α, one
deduces from (4.68) together with a Neumann series argument that global uniform coercivity
(4.19) holds whenever K < α.

Remark 4.3.3 (Linear case). If A is linear, i.e., F = 0, and 0 lies in the resolvent set of A, then the
solutionM to (4.13) is unique and given byM = −CA−1.

4.3.2 Additional properties in the semilinear settings and proof

We start by establishing some auxiliary results valid under the hypotheses of Section 4.3. In what
follows, D(A) is endowed with the graph norm:

‖w‖2
D(A) ¬ ‖w‖

2
H + ‖Aw‖2

H for all w ∈ D(A). (4.70)

Of course, in the semilinear case, the uncontrolled w-equation

dw
dt
+A (w) = 0 (4.71)

rewrites as the following perturbated linear equation:

dw
dt
+ Aw+ F(w) = 0. (4.72)

The next lemmas provide some additional properties of solutions to the uncontrolled w-equation
(4.71) that stem from its semilinear structure.

Lemma 4.3.4. Generalized solutions w to (4.71) with initial data w0 ∈ H are characterized by

w(t) = St w0 −
∫ t

0

St−s F(w(s))ds for all t ¾ 0, (4.73)

where we recall that {St} is the semigroup of linear operators generated by −A. Furthermore, strong
solutions w to (4.71) enjoy the additional regularity

w ∈ C (R+,D(A))∩C 1(R+, H). (4.74)

Proof. Let T > 0 and w0 ∈ H. First, let us prove that if w ∈ C ([0, T], H) satisfies (4.73), then it is
a limit of strong solutions to (4.71). Pick a sequence {w0

n} ⊂ D(A ) such that w0
n → w0 in H. Then,

by the contraction property of {Tt}, letting wn(t) ¬ Tt w
0
n and w̃(t) ¬ Tt w

0, we have wn → w̃ in
C ([0, T], H), and it suffices to prove that w = w̃. Now, each wn belongs to W 1,∞(0, T ; H), takes
values in D(A ) = D(A), and solves

dwn

dt
+ Awn + F(wn) = 0 a.e. in (0, T ). (4.75)

Applying variation of constants, we get

wn(t) = St w
0
n −

∫ t

0

St−s F(wn(s))ds for all t ∈ [0, T]. (4.76)

4 See Lemma 4.3.8 below for the bound K/α.
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Then, taking the difference between (4.73) and (4.76) yields

wn(t)−w(t) = St[w
0
n −w0]−

∫ t

0

St−s[F(wn(s))− F(w(s))]ds for all t ∈ [0, T]. (4.77)

Since {w0
n} is a bounded sequence in H, the functions wn are bounded in C ([0, T], H), and for a

suitable local Lipschitz constant K , we infer from (4.77) together with ‖St‖L (H) ¶ 1 that

‖wn(t)−w(t)‖H ¶ ‖w0
n −w0‖H + K

∫ t

0

‖wn(s)−w(s)‖H ds for all t ∈ [0, T]. (4.78)

Passing to the limit after an application of the Grönwall’s lemma yields w̃= w. Conversely, let w be a
generalized solution to (4.71). By passing to the limit in (4.76), where the wn as a suitable sequence
of strong solutions to (4.71), we see that w satisfies (4.73) and is indeed a mild solution to (4.72).

Finally, since F is continuously differentiable, the regularity property (4.74) follows from [Pazy,
2012, Theorem 1.5, p.187].

Remark 4.3.5. Lemma 4.3.4 means that, as expected, generalized solutions to (4.71) (in the sense
of nonlinear semigroup theory) coincide with mild solutions to (4.72) (in the sense of perturbated
linear problems).

Next, Lemma 4.3.6 given below allows us to circumvent the possible unboundedness of the output
operator C and together with the A-boundeness of C guarantees thatM given by the limit in (4.67)
is a well-defined mapping on the whole space H.

Lemma 4.3.6 (Integral formula). For any w0 ∈ H,

lim
τ→+∞

∫ τ

0

Tt w0 dt = A−1w0 − A−1

∫ +∞

0

F(Tt w0)dt. (4.79)

In particular, limτ→+∞
∫ τ

0 Tt w0 dt belongs to D(A).

Proof. Let w0 ∈ H. Recall from standard linear semigroup theory that
∫ τ

0

St w0 dt ∈ D(A), and A

∫ τ

0

St w0 dt = w0 −Sτw0. (4.80)

Thus, by integrating the variation of the constant formula (4.73) over (0,τ), τ¾ 0, we obtain
∫ τ

0

Tt w0 dt = A−1w0 − A−1Sτw0 −
∫ τ

0

∫ t

0

St−s F(Tsw0)ds dt. (4.81)

Let τ ¾ 0. Then, by letting Iτ ¬ {(s, t) ∈ R2, 0 ¶ s ¶ t ¶ τ}, we can write the last term in (4.81) as
an absolutely convergent integral over R2:

∫ τ

0

∫ t

0

St−s F(Tsw0)ds dt =

∫∫

R2

1Iτ(s, t)St−s F(Tsw0)ds dt, (4.82)

where 1Iτ denotes the indicator function of the set Iτ. Switching the order of integration in the
right-hand side of (4.82) leads to

∫ τ

0

∫ t

0

St−s F(Tsw0)ds dt =

∫ +∞

0

�

1Iτ(s, s)

∫ τ−s

0

St F(Tsw0)dt

�

ds. (4.83)
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We shall apply Lebesgue’s dominated convergence theorem to conclude, the parameter being τ. For
fixed s ¾ 0, limτ→+∞ 1Iτ = 1, and limτ→+∞SτF(Tsw0) = 0 in H; hence,

lim
τ→+∞

1Iτ(s, s)

∫ τ−s

0

St F(Tsw0)dt = A−1F(Tsw0). (4.84)

On the other hand, by α-exponential stability of {St}, for all τ¾ 0 and s ¾ 0,










1Iτ(s, s)

∫ τ−s

0

St F(Tsw0)dt











H

¶
1
α
‖F(Tsw0)‖H , (4.85)

Equation (4.85) provides an integrable dominating function, which ends the proof.

Now, let us come back to the uncontrolled w-equation (4.71), which we linearize around a given
trajectory {Tt w0, t ¾ 0}:

dv
dt
+ Av + dF(Tt w0)v = 0. (4.86)

Equation (4.86) is linear but non-autonomous in general. Given h ∈ H, (4.86) possesses a unique mild
solution t 7→ v(t) = v(t; w0, h) satisfying v(0) = h and v ∈ C (R+, H) (see [Pazy, 2012, Theorem 1.2,
p.184]). Given w0 in H, the next lemma states that the nonlinear operators Tt are all differentiable at
w0 and their differentials coincide with the evolution family associated with (4.86). This is a classical
fact for sufficiently smooth nonlinear dynamics; here, we give a proof that matches our particular set
of hypotheses.

Lemma 4.3.7 (Differentiability of the semigroup). Each operator Tt is Fréchet differentiable. Further-
more, for any t ¾ 0 and w0 ∈ H, the differential dTt(w0) is given by

dTt(w0)h= v(t; w0, h) for all h ∈ H, (4.87)

where t 7→ v(t; w0, h) is the unique mild solution to (4.86) with initial data h.

Proof. Let τ ¾ 0 and w0 ∈ H. It is clear that the mapping h 7→ v(τ; w0, h) is linear; it is also
continuous by [Pazy, 2012, Theorem 1.2, p.184]. First, since F is differentiable, the following Taylor
formula holds:

F(a+ b)− F(a) = dF(a)b+ R(a, b) for all a, b ∈ H, (4.88)

with R(a, b) = o(‖b‖H) when ‖b‖H → 0 for fixed a ∈ H. Now, take a nonzero h ∈ H. Combining the
variation of the constant formula (4.73) with (4.88) leads to

Tt(w0 + h)−Tt w0 = Sth−
∫ t

0

St−sdF(Tsw0){Ts(w0 + h)−Tsw0}ds

−
∫ t

0

St−sR(Tsw0,Ts(w0 + h)−Tsw0)ds. (4.89)

Omitting the dependence on w0 and h for the moment, we write v(t) ¬ v(t; w0, h) and R(t) ¬
Tt(w0+h)−Tt w0−v(t). Now, taking the difference between (4.89) and the integral identity satisfied
by v as a mild solution to (4.86), one obtains

R(t) =
∫ t

0

St−sdF(Tsw0)R(s)ds−
∫ t

0

St−sR(Tsw0,Ts(w0 + h)−Tsw0)ds (4.90)
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holding for all 0 ¶ t ¶ τ. Next, because dF is continuous on the compact set {Tsw0, 0 ¶ s ¶ τ},
‖dF(Tsw0)‖L (H) is bounded by some m independent of h. Besides, ‖Ss‖L (H) ¶ 1 for all s ¾ 0.
Therefore, it follows from (4.90) that for all 0¶ t ¶ τ,

‖R(t)‖H ¶ m

∫ t

0

‖R(s)‖H ds+

∫ t

0

‖R(Tsw0,Ts(w0 + h)−Tsw0)‖H ds. (4.91)

Using Grönwall’s inequality in its integral form, we deduce from (4.91) that

‖R(τ)‖H

‖h‖H
¶ exp(mτ)

∫ τ

0

‖R(Tsw0,Ts(w0 + h)−Tsw0)‖H

‖h‖H
ds. (4.92)

To obtain the desired differentiability property, it suffices to show that the right-hand side of (4.92)
converges to 0 as ‖h‖H goes to 0. This is done using Lebegue’s dominated convergence theorem. Let
s ∈ [0,τ]. By the contraction property of {Tt}, for any nonzero h ∈ H such that Ts(w0 + h)−Tsw0 is
nonzero, we have

‖R(Tsw0,Ts(w0 + h)−Tsw0)‖H

‖h‖H
¶
‖R(Tsw0,Ts(w0 + h)−Tsw0)‖H

‖Ts(w0 + h)−Tsw0‖H
, (4.93)

and if Ts(w0 + h) − Tsw0 = 0, then R(Tsw0,Ts(w0 + h) − Tsw0) = 0. Either way, when ‖h‖H → 0,
‖Ts(w0+h)−Tsw0‖H → 0, and by definition of the residual term R, the right-hand side of (4.93) must
converge to 0 as well. To conclude the proof, let us estimate the left-hand side of (4.93) uniformly
with respect to h. We observe that the set of all points Ts(w0 + h), 0 ¶ s ¶ τ, ‖h‖H ¶ 1, is contained
in some open ball, on which F is K-Lipschitz continuous for some K > 0. Thus, using (4.88), one
obtains that the left-hand side of (4.93) is smaller than 2K .

We continue by establishing exponential decay of solutions to (4.86).

Lemma 4.3.8 (Stability of the linearized equation). Let w0 ∈ H. For any h ∈ H, the solution t 7→
v(t; w0, h) to (4.86) with initial data h satisfies

‖v(t; w0, h)‖H ¶ exp(−αt)‖h‖H for all t ¾ 0. (4.94)

Proof. Let w0 and h in H. Let τ¾ 0 and f ¬ t 7→ dF(Tt w0)v(t) ∈ C ([0,τ], H). Then, pick sequences
{hn} ⊂ D(A) and { fn} ⊂ W 1,2(0,τ; H) such that hn → h in H and fn → f in L2(0,τ; H). For each n,
there exists a unique strong solution vn to dvn/dt + Avn + fn(t) = 0 satisfying the initial condition
vn(0) = hn. Furthermore,

1
2

d
dt
‖vn‖2

H = −(Avn, vn)H − ( fn, h)H a.e. on (0,τ), (4.95)

and vn converges to v in C ([0,τ], H). Plugging (4.66) into (4.95) yields

1
2

d
dt
‖vn‖2

H ¶ −α‖vn‖2
H + (dF(Tt w0)vn − fn, vn)H a.e. on (0,τ). (4.96)

We deduce from (4.96) that for all 0¶ t ¶ τ,

‖vn(t)‖2
H ¶ exp(−2αt)‖hn‖2

H +
1

2α

∫ τ

0

|(dF(Tsw0)vn(s)− fn(s), vn(s))H |ds. (4.97)

As n goes to +∞, the integral term in (4.97) tends to 0 and we obtain the desired result by passing
to the limit.
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Now that we have established that all objects in the statement of Theorem 4.3.2 are well-defined,
we can conclude this section by proving that M as given by (4.67) enjoys the required regularity
properties, namely M ∈ C 1(H, Z) with locally (or globally) Lipschitz continuous differential, and
solves the functional equation (4.13).

Proof of Theorem 4.3.2. Recall that CA−1 is a bounded linear operator. In view of the formula (4.79),
the desired properties ofM and dM readily follow from those of the mappings

w 7→
∫ +∞

0

F(Tt w)dt and w 7→
∫ +∞

0

dF(Tt w)dTt(w)dt, (4.98)

which we investigate next.
Step 1: Differentiability. Let w0 ∈ H. It suffices to prove that

∫ +∞

0

‖F(Tt(w0 + h))− F(Tt w0)− dF(Tt w0)dTt(w0)h‖H

‖h‖H
dt → 0 (4.99)

when ‖h‖H goes to 0. We use Lebesgue’s dominated convergence theorem. Since F and Tt are
differentiable, by the chain rule, the integrand in (4.99) converges to 0 pointwise. Let us now find
some integrable dominating function. As in the proof of Lemma 4.3.7, we can find some open ball
where F is K-Lipschitz and which contains the set of all Tt(w0+h), ‖h‖H ¶ 1, t ¾ 0. Thus, it follows
from (4.11) and (4.94) that the integrand in (4.99) is dominated by t 7→ 2K exp(−αt), which is
integrable.

Step 2: Lipschitz continuity of the differential. Pick two elements w1 and w2 in H. We write
R¬max{‖w1‖H ,‖w2‖H}. Subsequent estimates are motivated by the following decomposition:

dF(Tt w1)dTt(w1)− dF(Tt w2)dTt(w2)
= dF(Tt w1)[dTt(w1)− dTt(w2)] + [dF(Tt w1)− dF(Tt w2)]dTt(w2). (4.100)

First, Tt w1 and Tt w2 must remain in BH(0, R), where dF is, say, KR-Lipschitz continuous. Since
dF(0) = 0, for all t ¾ 0 we have

‖dF(Tt w1)‖L (H) ¶ KR‖Tt w1‖H ¶ KR‖w1‖H . (4.101)

Now, let us estimate dTt(w1)− dTt(w2) in operator norm. Pick h ∈ H. In what follows, we denote
by v(t) the difference v(t) ¬ dTt(w1)h− dTt(w2)h. Then, v(0) = 0 and v is a (mild) solution to the
following non-automonous equation:

dv
dt
+ Av + [dF(Tt w1)dTt(w1)− dF(Tt w2)dTt(w2)]h= 0, (4.102)

which can be rewritten as

dv
dt
+ Av + dF(Tt w1)v + [dF(Tt w1)− dF(Tt w2)]dTt(w2)h= 0. (4.103)

Justifications for the formal computations performed below are similar to those in the proof of
Lemma 4.3.8; they are omitted here. Taking the scalar product in H of (4.103) with v and using
(4.66) along with Cauchy-Schwarz and Young inequalities leads to

1
2

d
dt
‖v‖2

H ¶ −
α

2
‖v‖2

H +
1

2α
‖[dF(Tt w1)− dF(Tt w2)]dTt(w2)‖2

L (H)‖h‖
2
H . (4.104)
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Since v(0) = 0, we deduce from (4.104) multiplied by exp(αt), (4.94) and (4.11) that

‖v(t)‖2
H ¶

K2
R exp(−αt)

3α2
‖w1 −w2‖2

H‖h‖
2
H for all t ¾ 0. (4.105)

We infer from (4.101) and (4.105) that

‖dF(Tt w1)[dTt(w1)− dTt(w2)]‖L (H) ¶ mRK2
R exp(−αt/2)‖w1 −w2‖H (4.106)

for all t ¾ 0, where m is some constant independent of R; on the other hand, coming back to the
second term of (4.100), we also have

‖[dF(Tt w1)− dF(Tt w2)]dTt(w2)‖L (H) ¶ KR exp(−2αt)‖w1 −w2‖H . (4.107)

Thus, the desired local Lipschitz continuity is obtained by applying the triangular inequality to (4.100)
and integrating (4.106) and (4.107) over (0,+∞). Furthermore, if we assume that both F and dF are
globally Lipschitz continuous, then for some KF we can choose KR = KF independent of R and replace
(4.101) with ‖dF(Tt w1)‖L (H) ¶ KF , thereby proving global Lipschitz continuity of the differential
dM .

Step 3: Conclusion. At this point, it remains to check that our candidate M is a solution to
(4.13). It is clear that M (0) = 0. Take w0 in D(A ) and consider the associated strong solution
w¬ t 7→ Tt w0 ∈ C (R+,D(A))∩C 1(R+, H) to (4.71). Then,

M (Tt w0)−M (w0)
t

= C

�

1
t

∫ t

0

Tsw0 ds

�

. (4.108)

As w is continuous in D(A), the term t−1
∫ t

0 Tsw0 ds converges to w0 in D(A) when t approaches 0.
Thus, C being A-bounded, the difference quotient in (4.108) converges to Cw0 in Z . On the other
hand, since w ∈ C 1(R+, H) andM ∈C 1(H, Z), by the chain rule, we have

d
dt
[M (Tt w0)] = −dM (Tt w0)A (Tt w0) for all t ¾ 0. (4.109)

Evaluating (4.109) at t = 0 yields dM (w0)A (w0) + Cw0 = 0 by uniqueness of the limit.

4.3.3 Applications

In this section, we provide two semilinear examples for which all our results apply.

Sine-Gordon equation Let ξ, γ, and L be positive constants. Let O be a nonempty open subset
of Ω ¬ (0, L). Consider the following damped sine-Gordon equation with control acting on O and
homogeneous Dirichlet boundary conditions:

∂2θ

∂ t2
+ ξ
∂θ

∂ t
−
∂2θ

∂x2
+ γ sin(θ ) = 1O (x)U(x , t) in (0, L)× (0,+∞), (4.110a)

θ (0, t) = θ (L, t) = 0 for all t ¾ 0. (4.110b)

In this example inspired by [Temam, 1997, Chapter IV], (4.110) may represent the voltage dynamics
of the continuous limit case for coupled Josephson junctions, with the control U being proportional to
the applied current. The uncontrolled dynamics generated by (4.110) are well-posed on the energy
space H ¬ H1

0(Ω)×L2(Ω). Using the state variable w= [θ ,θ ′], we can recast (4.110) into a semilinear
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evolution problem on H as in Section 4.3. Letting D(A) ¬ [H2(Ω)× H1
0(Ω)]∩ H and U ¬ L2(O ), we

define the unbounded linear operator A, the input operator B, and the nonlinear mapping F by

A[θ ,ζ]¬
�

−ζ,−
∂2θ

∂x2
+ ξζ+ γθ

�

, [θ ,ζ] ∈ D(A), (4.111a)

BU ¬ [0,1O U], U ∈ E, (4.111b)

F[θ ,ζ]¬ [0,γ sin(θ )− γθ], [θ ,ζ] ∈ H. (4.111c)

As an output, consider the Neumann trace at, say, x = 0:

y(t) = Cw(t) =
∂θ

∂x
(0, t), (4.112)

which is modeled by an unbounded (but A-bounded) scalar-valued operator. That A−1 exists inL (H)
can be proved using Riesz representation theorem in H1

0(Ω). Besides, F is in C 1(H) and both F and
dF are globally Lipschitz continuous, dF being given by

dF(θ ,ζ)[h1, h2] = [0,γ cos(θ )h1 − γh1] for all [θ ,ζ], [h1, h2] ∈ H. (4.113)

We equip H with a scalar product that is equivalent to the usual one:

([θ1,ζ1], [θ2,ζ2])H,ε ¬
∫

Ω

∂θ1

∂x
∂θ2

∂x
dx +

∫

Ω

(ζ1 + εθ1)(ζ2 + εθ2)dx (4.114)

where ε ¬ min{ξ/4,λ1/(2ξ)}, with λ1 being the optimal Poincaré inequality constant. Then, after
some computations similar to [Temam, 1997, Section IV.1.2], we obtain

(Ah+ dF(θ ,η)h, h)H,ε ¾
ε

2
‖h‖2

H,ε − γλ1‖h‖2
H,ε for all h ∈ D(A) and [θ ,ζ] ∈ H. (4.115)

Therefore, Hypothesis 4.3.1 is satisfied as long as γ < ε/(2λ1). In that case, Theorem 4.3.2 provides
a suitable solution M to (4.13) with dM globally Lipschitz continuous, upon which a forwarding
control law can be built for the output regulation problem. Since the range of CA−1B is non-zero5

and hence R, Theorem 4.2.3 guarantees the existence of a locally exponentially stable equilibrium for
the closed-loop system with small reference and disturbance. Furthermore, following the discussion
subsequent to Theorem 4.2.3, the global coercivity condition (4.19) holds whenever ε/2(1+λ1)> γ,
in which case the theorem provides a globally asymptotically stable equilibrium.

A pre-stabilized Wilson-Cowan equation The following example is inspired by the study of neural
fields – see for instance [Boscain et al., 2021]. Let Ω be a bounded domain in Rn and O be an open
subset of Ω. Given a positive gain α, a kernel k ∈ L∞(Ω×Ω), and a smooth scalar nonlinearity s that
has bounded derivative and vanishes at 0, consider the following non-local evolution equation:

∂w
∂ t
(x , t) +αw(x , t) +

∫

Ω

k(x ,ν)s(w(ν, t))dν= 1O (x)U(x , t) in Ω× (0,+∞). (4.116)

We look at the (vector-valued) output given by

y(t) = Cw(t) = w|O (t). (4.117)

5 Consider for instance the image by CA−1B of 1I where I is some segment contained in O .
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4. AN OUTPUT REGULATION PROBLEM

Having set H ¬ L2(Ω), we define two mappings K and F on H by

[Kw](x)¬ s′(0)

∫

Ω

k(x ,ν)w(ν)dν, and [F(w)](x)¬
∫

Ω

k(x ,ν){s(w(ν))− s′(0)w(ν)}dν (4.118)

for all w ∈ H. Then, K is a bounded linear operator, and F is continuously differentiable with F
and dF globally Lipschitz continuous. We also let A ¬ αid+ K and BU ¬ 1O U with E ¬ L2(O ). As
an integral operator, K is compact; thus, 0 lies in the resolvent set of A except for a bounded and
countable set of values for α. Here, A is continuous; therefore, we can choose Z ¬ Range A−1B,
which as a closed subspace of H is a Hilbert space as well. By letting C ¬ id, the condition (4.69) is
automatically satisfied. Furthermore, Z = H if and only if O = Ω. As for condition (4.66), we have

(Ah+ dF(w)h, h)H ¾ (α−Mk,s)‖h‖2
H for all w, h ∈ H, (4.119)

where Mk,s ¬
∫∫

Ω×Ω |k(x ,ν)s′(ν)|2 dx dν. Hypothesis 4.3.1 is satisfied whenever α > Mk,s, while
global uniform coercivity (4.19) holds provided that α > 2Mk,s.

Comments on Chapter 4

The case of unbounded output Let us hold an informal discussion regarding the convergence of
the output Cw(t) towards the reference when the operator C is unbounded. To get some insight
on the situation, assume for a moment that the original w-system is linear. Then, the solution M
to (4.13) provided by Theorem 4.3.2 is a bounded linear operator, and the closed-loop dynamics
around the equilibrium are governed by a strongly continuous linear semigroup, which commutes
with its generator. Recalling the notation from Section 4.3, it follows that for a strong solution [w, z]
to (4.15)-(4.16), w(t)− w? goes to 0 in D(A) endowed the graph norm, hence Cw(t) converges to
yref provided that C is A-bounded. In the nonlinear case, the argument breaks down.

Alternatively, one may look for weaker notions of convergence. In many applications, unbounded
output operators of interest enjoy an admissibility property with respect to the uncontrolled dynamics.
In the linear theory, C is said to be A-admissible if C is A-bounded and there exist positive constants
K and T such that

∫ T

0

‖CSt w0‖2
Z dt ¶ K‖w0‖2

H for all w0 ∈ D(A). (4.120)

In the semilinear case, one can deduce from (4.120) that, first of all, the output Cw is well-defined in
L2

loc(0,+∞; Z) even for generalized solutions [w, z] to the closed-loop equations (4.15)-(4.16), and
secondly, that the output converges “in average” to the reference:

lim
τ→+∞

∫ T+τ

τ

‖Cw(t)− yref‖2
Z dt = 0 (4.121)

for any (including generalized) solution [w, z] that converges to the equilibrium [w?, z?] in H × Z .
When no semilinear structure is prescribed for the maximal monotone operator A governing the
w-dynamics, we generalize (4.120) by assuming that for any w0

i in D(A ) and fi in W 1,2(0, T ; H) ,
the solution6 wi to dwi/dt +A (wi) = fi with initial condition wi(0) = w0

i , i ∈ {1,2}, satisfies
∫ T

0

‖Cw1(t)− Cw2(t)‖2
Z dt ¶ K‖w1(0)−w2(0)‖2

H + K

∫ T

0

‖ f1 − f2‖2
H dt. (4.122)

In that case, the same conclusions hold for closed-loop solutions.
6Existence and uniqueness of a strong solution is guaranteed by [Showalter, 2013, Chapter IV, Theorem 4.1]. In particular,

each wi is absolutely continuous; henceA (wi) is measurable, and so is Cwi by (4.13).
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4.3. The semilinear case

On robustness and bounded control In order to take into account nonlinear behavior of actuators
(e.g., saturation) in the feedback loop, one may investigate stability properties of (4.15)-(4.16) when
a nonlinearity g is applied to the input U . This is also relevant in applications where the control signal
must satisfy some prescribed bound in norm (see e.g. [Marx et al., 2021b]). Consider a Lipschitz
continuous map g that vanishes at 0 and is strongly monotone in some neighborhood of 0. Then, the
local (strict) contraction property of the [w,η]-dynamics is preserved. This leaves room for a possible
adaptation of Theorem 4.2.3 in the case of saturated or a priori bounded control.

We also believe that our framework provides tools to analyse the behavior of the closed-loop
(4.15)-(4.16) under certain time-varying disturbances. Indeed, given [d0, yref] as in Theorem 4.2.3,
to which we associate an equilibrium [w?, z?], consider a disturbance of the form d(t) = d0 + d1(t)
with d1 small in L2(0,+∞; H). It can then be deduced from (4.41) that the system (4.15)-(4.16) is
incrementally input-to-state stable in a neighborhood of [w?, z?], allowing us to quantify the deviation
from equilibrium due to the exogenous signal d1 in terms of its L2-norm.

Stabilization of cascade systems Putting aside the problem of output regulation and following
[Marx et al., 2021b,Marx et al., 2021a], we might be interested in stabilizing the cascade composed
of the (actuated) w-subsystem and a more general z-subsystem governed by dz/dt = Sz+Cw, where
S is a skew-adjoint operator on Z . This would require to investigate a nonlinear Sylvester equation
of the form

dM (w)A (w) + SM (w) + Cw= 0, w ∈ D(A ). (4.123)

Under the condition that a sufficiently regular solutionM to (4.123) exists, the Lyapunov analysis
performed in Section 4.1.2 remains valid, which is a good starting point for analysing stability of the
new closed-loop with control law given by (4.16).
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Five

Conclusions and perspectives

In this thesis, several problems related to the control of infinite-dimensional nonlinear systems were
studied. Our results can be summarized as follows.

Chapter 2 deals with a one-dimensional wave equation supplied with nonlinear unstable boundary
dynamics and anticollocated nonlinear velocity feedback. Existence, uniqueness and regularity of
(variational and strong) solutions to the closed-loop equations were investigated. A Lyapunov-based
analysis showed that solutions converge exponentially to the set of stationary points, provided that
the Lipschitz constant of the anti-damping term is small and the feedback nonlinearity g satisfies a
suitable global sector condition. Furthermore, an incremental Lyapunov analysis combined with fine
properties of nonlinear contraction semigroups and a certain invariant set argument allowed to prove
a local (in the sense of a stronger norm, however) version of the exponential stability result which
holds in the case of saturating control.

In Chapter 3, we considered the problem of nonlinear stabilization of the multi-dimensional wave
equation with Dirichlet boundary conditions. It was shown that the wave dynamics subject to a
specific nonlocal feedback generate a strongly continuous semigroup of contractions on the optimal
energy space L2(Ω)×H−1(Ω). Using a standard LaSalle invariance argument combined with unique
continuation, we proved that any solution to the closed-loop equations converges to zero in the
aforementioned topology. Secondly, under the condition that the feedback nonlinearity has linear
growth around zero, polynomial energy decay rates were established for strong solutions. This result
is, in particular, valid in the case that the feedback nonlinearity represents a (nonsmooth) pointwise
saturation mapping. This constitutes new Dirichlet counterparts to well-known results pertaining to
nonlinear stabilization in H1(Ω)× L2(Ω) of the wave equation with Neumann boundary conditions.

In Chapter 4, we tackled the problem of (set-point) output regulation of a class of abstract sys-
tems governed by nonlinear contraction semigroups. After having extended the original plant with an
output integrator, we designed a feedback law based on the so-called forwarding approach. The pro-
posed controller exists provided that a well-behaved solution to a certain functional equation exists,
which, geometricly speaking, amounts to finding a smooth invariant graph for the cascade dynamics
composed of the original system and the output integrator. We then gave sufficient conditions for the
existence of a locally exponentially stable (and under additional hypotheses, globally asymptotically
stable) equilibrium at which the output of the closed-loop system coincides with the reference. All
these conditions were investigated in the particular case of semilinear systems and illustrated with
examples.

We believe that our work open up new research perspectives, some of which are given next.

Uniform Dirichlet stabilization of the waves and nonlocal terms With reference to the closed-
loop equations (3.1)-(3.7), the question of whether uniform stability holds under appropriate global
assumptions on the feedback nonlinearity is still open. As discussed at the end of Chapter 3, we
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5. CONCLUSIONS AND PERSPECTIVES

fear that this problem is beyond the reach of the methods developed in this thesis. Regardless, we
believe that the difficulties we encounter illustrate a more general and interesting matter, namely the
mix of nonlocal terms (involving for instance the operator A−1, harmonic extensions, etc.) on one
hand and pointwise, local nonlinearities (such as g) on the other hand. The same goes for Wilson-
Cowan equations, such as the simplified version (4.116), where the nonlinearity s typically has some
monotonicity that is however “mixed up” by the convolution kernel, rendering the analysis more
involved.

Nonlinear output regulation While the literature on feedback stabilization of infinite-dimensional
systems has become quite mature over the last decades, the problem of output regulation of infinite-
dimensional nonlinear systems, despite its importance in engineering applications, is quite over-
looked. For that reason, we believe that our related research effort, which we describe in Chap-
ter 4, is worth pursuing. More specifically, we find that the following points constitute interesting
perspectives for future works.

• Functional equations of the form of (4.13) are worth investigating per se. As mentioned at the
end of Chapter 4, we remark that (4.13) is a (somehow degenerate) nonlinear Sylvester-type
equation. This indicates that our approach somehow generalizes the linear theory. Even in the
semilinear case, establishing existence of solutions to more involved version of (4.13), such as
(4.123), would be an interesting challenge.

• On a similar note, for general nonlinear A , formally speaking, a candidate solution M to
(4.13) is given by (4.14). which, at least in the case where the output C is bounded, is well-
posed provided that solutions to the uncontrolled dynamics go to zero sufficiently fast. The
difficulty lies in proving that the candidate is sufficiently regular, namely continuously differen-
tiable with locally Lipschitz differential. We believe that the arguments used in the semilinear
case partially transpose to more general nonlinear systems, provided that those enjoy some
smoothing properties. For that reason, we think that nonlinear parabolic equations of reaction-
diffusion type constitute an interesting class of “non-semilinear” systems for which existence of
a solution to (4.13) could be investigated.

• The feedback law (4.16) requires, in addition to the integrated tracking error z, the knowledge
of the full state w of the system. In control, a challenging problem is to design a output feedback
controller, i.e., one that would only require the knowledge of the output y = Cw and the inte-
grator state z. A natural strategy to do so is to estimate the state w via an observer in the control
scheme. In that context, an interesting approach to consider is the Lyapunov strictification via
observer developed in [Praly, 2019] and applied in, e.g., [Marx et al., 2021a].

• Finally, if one desires to implement the controller given by (4.16), rigorously analysing the per-
formance of an approximate linearized version would be interesting. To that end, the method-
ology developed for tackling the semilinear case in Section 4.3 seems to be a good starting
basis.
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A

Résumé étendu en français

Introduction générale

A l’interface des mathématiques appliquées et des sciences de l’ingénieur, la théorie du contrôle est
l’étude des systèmes dynamiques dans le but de les contrôler, c’est-à-dire, leur donner un compor-
tement souhaité. Un système contrôlé est un système dynamique dont un paramètre, le contrôle, est
choisi à chaque instant. L’état du système est la variable régie par cette dynamique. Un système
contrôlé de dimension finie est souvent gouverné par des équations différentielles ordinaires, tandis
qu’un système modélisé par des équations aux dérivées partielles constitue un système de dimension
infinie. La théorie mathématique de tels systèmes est plus récente qu’en dimension finie ; elle repose
notamment sur l’analyse des équations aux dérivées partielles, l’analyse fonctionelle et la théorie des
systèmes dynamiques. Donnons quelques exemples. Tout d’abord, supposons que f : Rd ×R → Rd

est une fonction suffisamment régulière, alors l’équation différentielle

dx
dt
= f (x , U) (A.1)

définit un système contrôlé de dimension finie où x est l’état et le scalaire U est le contrôle. Dans ce
cas, l’espace d’état est l’espace euclidien Rd . Ensuite, considérons un domaine borné Ω de Rd , d ¾ 2,
dont la frontière est Γ . Alors, l’équations des ondes avec donnée au bord de Dirichlet non-homogène

∂2u
∂ t2
−∆u= 0 dans Ω, (A.2a)

u|Γ = U sur Γ , (A.2b)

définit (au moins formellement) un autre système contrôlé dont l’état est le couple [u,∂ tu]. La théorie
des équations aux dérivées partielles nous indique que l’état et le contrôle doivent être choisis dans
des espaces fonctionnels adaptés. Lorsque le contrôle est choisi comme une fonction de l’état, on parle
d’un système commandé par rétroaction. Cette dernière est dite statique si elle dépend uniquement
de l’état du système à l’instant présent. L’étude des systèmes commandés par un retour d’état statique
mène à celle des systèmes dynamiques. Dans le cas de l’exemple donné par (A.1), un retour statique
a la forme

U = h(x) (A.3)

où h : Rd → R est une fonction bien choisie. Le système en boucle fermée est alors régi par l’équation
d’évolution

dx
dt
= f (x , h(x)), (A.4)

laquelle définit, sous certaines hypothèses, un système dynamique sur Rd .
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A. RÉSUMÉ ÉTENDU EN FRANÇAIS

Les problèmes de contrôle sur lesquels nous nous concentrons tout particulièrement sont les sui-
vants.

1. Le problème de stabilisation par rétroaction. Etant donné un point d’équilibre instable pour le
système sans contrôle, il s’agit de trouver une loi de commande par rétroaction telle que la
boucle fermée converge vers l’équilibre.

2. Le problème de régulation de sortie. Considérons un système dont on mesure une sortie, c’est-à-
dire une fonction de l’état représentant par exemple une grandeur physique que l’on souhaite
contrôler. On cherche alors à concevoir une loi de commande garantissant que la sortie du
système en boucle fermée est à une référence donnée même si ce dernier est soumis à une
perturbation externe inconnue.

Voici l’orientation générale de ce travail :

Dans ce mémoire, nous nous intéressons à des problèmes de stabilisation et de régulation
de sortie pour des systèmes non-linéaires en dimension infinie.

Gardons à l’esprit deux idées fondamentales en automatique. Premièrement, la notion de stabilité,
qui est liée au comportement des trajectoires de systèmes dynamiques lorsque la donnée initiale est
perturbée, et également aux propriétés qualitatives et quantitatives de la convergence des trajectoires
vers un équilibre donné, lorsqu’il en existe. Deuxièmement, la notion de robustesse, renvoyant à l’ana-
lyse de l’influence de perturbations exogènes sur le système, lesquelles représentent par exemple un
écart du modèle à la réalité, un bruit numérique, etc. Leur prise en compte est cruciale pour implé-
menter un contrôleur.

Une façon d’obtenir de la stabilité est d’imposer une propriété de contraction à la dynamique en
boucle fermée, c’est-à-dire que la distance entre deux trajectoires (typiquement mesurée en termes
d’énergie dans le contexte des équations aux dérivées partielles) soit décroissante voire tende vers zéro
avec le temps. Dans notre travail, l’idée de contraction intervient à la fois dans la stabilité, l’existence
d’équilibres et l’existence de solutions.

Résumé du Chapitre 2

Ce chapitre, motivé par des problèmes non-linéaires de propagation de vibrations mécaniques au sein
de dispositifs de forage, porte sur le système dynamique défini par les équations suivantes :

∂2u
∂ t2
−
∂2u
∂x2

= 0 dans (0, L)× (0,+∞), (A.5a)

∂2u
∂ t2
(0, t)−

∂u
∂x
(0, t) = F

�

∂u
∂ t
(0, t)

�

pour tout t ∈ (0,+∞), (A.5b)

∂u
∂x
(L, t) = −g

�

∂u
∂ t
(L, t)

�

pour tout t ∈ (0,+∞), (A.5c)

où g et F sont deux fonctions non-linéaires. L’équation (A.5b) est une condition au bord cinétique
représentant une dynamique de second ordre à l’extrémité x = 0, F modélisant un terme de friction
non-linéaire. En supposant que g est une fonction croissante avec g(0) = 0, l’équation (A.5c) définit
un retour en vitesse dissipatif au bord en condition au bord de Neumann. La question est de savoir si
l’action au bord x = L permet de compenser l’éventuel anti-amortissement lié à la dynamique au bord
x = 0 et de stabiliser l’ensemble du système. Nous donnons des conditions sur g et F sous lesquelles
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la réponse est positive. L’analyse repose sur la construction d’une fonctionnelle de Lyapunov exhibant
le couplage entre les deux bords, de la forme

Eρ =
1
2

�

�

�

�

∂u(0, t)
∂ t

�

�

�

�

2

+
1
2

∫ L

0

�

�

�

�

∂u
∂x
(x , t)

�

�

�

�

2

+

�

�

�

�

∂u
∂ t
(x , t)

�

�

�

�

2

+ 2ρ(x)
∂u
∂x
(x , t)

∂u
∂ t
(x , t)dx , (A.6)

où ρ est un poids variable dans l’espace à choisir de manière appropriée. Notons la présence dans
l’énergie de la vitesse en x = 0 considérée ponctuellement du fait de la condition au bord dynamique
(A.5b).

Il est démontré que lorsque g vérifie une certaine condition de secteur dépendant de la constante
de Lipschitz de F , alors l’ensemble des solutions stationnaires est globalement exponentiellement
stable. Plus précisément, en notant q la constant de Lipschitz de F , alors on supposera qu’il existe des
constantes strictement positives α1 et α2 telles que

α1|s|¶ |g(s)|¶ α2|s| pour tout s ∈ R, (A.7)

avec
α1

1+α2
2

> q. (A.8)

Cependant, cette condition exclut le cas intéressant du contrôle saturé, puisqu’elle implique que g est
approximativement linéaire à l’infini. Dans cette situation, nous démontrons un résultat alternatif,
valable sous une hypothèse « locale » sur g seulement, portant sur la décroissance de l’énergie des
solutions fortes dont la donnée initiale est bornée dans une norme d’ordre plus élevé par rapport à
l’espace d’énergie naturel du système. La démonstration de ce résultat repose notamment sur une
analyse de contraction où l’on applique la fonctionelle définie par (A.6) à la différence de deux so-
lutions de (A.5). Quelques outils issus de la théorie des semi-groupes de contractions non-linéaires
interviennent également.

Ce chapitre est également l’occasion d’introduire un certain nombre d’outils théoriques relatifs à
l’étude des systèmes dynamiques en dimension infinie et des équations aux dérivées partielles. En
particulier, les différentes notions de solution utilisées dans le manuscrit, ainsi que des méthodes
permettant d’obtenir leur existence, sont présentées en détail.

Résumé du Chapitre 3

On se donne un domaine borné et régulier Ω de Rd , d ¾ 2, et on considère le système suivant :

∂2u
∂ t2
−∆u= 0 dans Ω× (0,+∞), (A.9a)

u|Γ = −g(U(t)) sur Γ0 × (0,+∞), (A.9b)

u|Γ = 0, sur Γ1 × (0,+∞), (A.9c)

où ∆ est l’opérateur Laplacien, U(t) représente un contrôle exercé sur un sous-ensemble Γ0 de la
frontière, et g est une non-linéarité scalaire supposée croissante, avec g(s) = 0 si et seulement si s = 0.
Le reste de la frontière, noté Γ1 ¬ Γ \ Γ0 et éventuellement vide, est laissé « au repos ». Typiquement,
g peut représenter une fonction de saturation.

Par rapport au problème précédent, nous notons deux difficultés supplémentaires.

• D’une part, l’équation des ondes est désormais posée en dimension d’espace plus grande que
1, et l’entrée est désormais à valeurs vectorielles et non scalaires. En particulier, l’analyse de
régularité des solutions est plus délicate.

79



A. RÉSUMÉ ÉTENDU EN FRANÇAIS

• D’autre part, l’espace d’état adapté au contrôle des solutions de l’équation des ondes par la
condition au bord de Dirichlet est en fait

H ¬ L2(Ω)×H−1(Ω) (A.10)

et non un espace du type H1(Ω)× L2(Ω) comme dans le cas Neumann. L’espaceH , plus grand,
est davantage rencontré dans les problèmes de contrôlabilité où l’on se ramène par transposition
à une variable possédant une régularité H1(Ω) × L2(Ω). Rappelons que H−1(Ω) est le dual
topologique de H1

0(Ω) muni d’un produit scalaire, et qu’il s’agit d’un espace de distributions.

En dérivant une certaine fonctionelle d’énergie (correspondant à la norme au carré dansH ) le long
des « trajectoires » du système en boucle ouverte (A.9), on obtient un choix naturel de retour en
vitesse :

U(t) = −
∂[A−1u′]
∂ν

(A.11)

où ∂/∂ν désigne la dérivée normale orientée vers l’extérieur et A−1 est l’inverse de l’opérateur « moins
Laplacien avec condition au bord de Dirichlet homogène ». Autrement dit, on choisit un retour dissi-
patif consistant à résoudre à chaque instant

−∆p = u′ dans Ω, (A.12a)

p|Γ = 0 sur Γ , (A.12b)

puis prendre (moins) la dérivée normale du résultat p ¬ A−1u′ en guise de contrôle.
En ce qui concerne le cas linéaire, il a été démontré dans [Lasiecka and Triggiani, 1992b] que

la loi de commande (A.11) stabilise exponentiellement le système. L’analyse est plus délicate que
celle du problème équivalent en condition au bord de Neumann et, à notre connaissance, n’a pas été
étendue au cas où une non-linéarité statique est présente dans la boucle.

Dans un premier temps, nous démontrons un résultat de stabilité asymptotique globale. Dans un
second temps, et afin d’obtenir un résultat plus précis mais valable lorsque g est une fonction de satu-
ration, nous faisons uniquement l’hypothèse que g est approximativement linéaire dans un voisinage
de 0, et nous démontrons que les solutions fortes de (A.9), c’est-à-dire les solutions régulières dont les
données initiales vérifient certaines conditions de compatibilité, voient leur énergie décroître comme
un polynôme 1/t−r , où r dépend de la dimension d’espace d du problème – sous l’hypothèse que
certaines conditions géométriques soient vérifiées si jamais le contrôle n’est pas exercé sur toute la
frontière. La constante devant le taux de décroissance, en revanche, dépend de la condition initiale
de manière a priori non-continue – plus précisément, elle dépend aussi de la norme de la condition
initiale dans H1(Ω)× L2(Ω), laquelle est définie uniquement pour les solutions fortes. En cela, il s’agit
d’un résultat de décroissance non-uniforme. Mais en l’absence de conditions sur le comportement de
g à l’infini, on s’attend à ce type de résultat : dans le cas Neumann, on sait que le système équivalent
en boucle fermée avec un contrôle saturé n’est pas uniformément exponentiellement stable – voire
par exemple [Vancostenoble and Martinez, 2000] ; et on peut conjecturer qu’il en est de même pour
le cas Dirichlet.

De la même façon, par analogie avec le cas Neumann, on s’attend à ce que le système soit exponen-
tiellement (et uniformément) stable si la non-linéarité g est également approximativement linéaire
à l’infini ; mais ce problème reste ouvert et semble hors d’atteinte pour le moment.

Résumé du Chapitre 4

Dans ce chapitre, nous nous intéressons au problème de régulation de sortie. Il s’agit de concevoir une
commande permettant à la sortie du système étudié de suivre une référence donnée, et ce, même en
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présence d’une perturbation externe inconnue. Nous considérons des systèmes non-linéaires abstraits
de la forme

dw
dt
+A (w) = BU(t), (A.13a)

y = Cw, (A.13b)

où l’état w, le contrôle U(t) et la sortie y vivent respectivement dans des espaces de Hilbert H, E
et Z , où A est un opérateur maximal monotone, et B et C sont des opérateurs d’entrée et de sortie
linéaires.

L’objectif est de trouver une loi de commande, possiblement dynamique, telle que, pour une sortie
de référence yref donnée, les sorties du système en boucle fermée convergent vers yref. Nous supposons
au préalable queA est en fait strictement monotone, garantissant une propriété de stabilité de type
« input-to-state » : il existe une fonctionnelle de Lyapunov V ∈ C 1(H) et deux constantes strictement
positives α et β telles que

d
dt
V (w)¶ −αV (w) + β‖U(t)‖2

E (A.14)

pour chaque solution de (A.13a). En fait, V sera simplement une norme au carré, et une telle inégalité
est également vérifiée par la différence entre deux solutions.

Revenant aux fondamentaux de l’automatique, on utilise une action intégrale en ajoutant au sys-
tème une nouvelle variable

dz
dt
= Cw− yref. (A.15)

La loi de commande souhaitée sera une fonction de l’état étendu [w, z] ; si un équilibre pour le système
contrôlé existe, la sortie correspondante sera nécessairement yref.

Avant toute chose, on considère le cas yref = 0 et on cherche à stabiliser la cascade « sous-système
w » et intégrateur. L’approche adoptée ici est celle du forwarding [Mazenc and Praly, 1996] : supposons
qu’il existe une fonctionM ∈C 1(H, Z) vérifiantM (0) = 0 et l’équation fonctionnelle

dM (w)A (w) + Cw= 0 (A.16)

où dM (w) est la différentielle (au sens de Fréchet) deM au point w. Alors, le graphe deM est une
variété stable pour la dynamique donnée par (A.13a)-(A.15), et en définissant une fonctionnelle de
Lyapunov W sur H × Z par

W (w, z)¬ V (w) +
ρ

2
‖z −M (w)‖2

Z , (A.17)

on obtient, au moins formellement, le long des solutions de (A.13a)-(A.15)

d
dt
W (w, z)¶ −αV (w) + β‖U(t)‖2 −ρ(U(t), B∗dM (w)∗[z −M (w)])Z , (A.18)

où (·, ·)Z est le produit scalaire dans Z et ∗ désigne l’adjoint. L’équation (A.18) suggère, en choisissant
bien ρ, la loi de commande (non-linéaire)

U(t) = B∗dM (w)∗[z −M (w)], (A.19)

qui rend ainsi W décroissante le long des trajectoires du système en boucle fermée.
On peut expliciter une solution formelle à (A.16) :

M (w0) = −
∫ +∞

0

CTsw0 ds, (A.20)
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où {Ts} est le semi-groupe continu engendré par −A , i.e., s 7→ Tsw0 ∈ C (R+, H) est la solution
de (A.13a) sans second membre. En dimension finie, sous l’hypothèse de stabilité (A.14), M est
nécessairement bien défini. En dimension infinie, l’observation peut être non-bornée – c’est souvent
le cas pour une observation au bord par exemple, et en général, CTsw0 n’est défini « ponctuellement »
que pour une donnée initiale w0 régulière. Cependant, dans le cas semi-linéaire, ou, plus précisément,
quand A est une perturbation lipschitzienne d’un générateur infinitésimal de semi-groupe linéaire,
on démontre une formule alternative pour (A.20) permettant d’écrireM comme un opérateur non-
linéaire bien défini sur H tout entier.

Sous l’hypothèse de l’existence d’une solutionM suffisamment régulière, et lorsque la référence
yref et la perturbation extérieure (constante) sont suffisamment petites, on démontre l’existence d’un
équilibre local exponentiellement attractif pour la dynamique donnée par (A.13a) en boucle fermée
avec (A.19), pour peu queM vérifie une condition de surjectivité de type

Image dM (0)B = Z . (A.21)

Dans le cas deM construit dans le cas semi-linéaire, on fait le lien avec la théorie linéaire en remar-
quant que cette condition s’écrit comme une condition de non-résonance :

Image CA−1B = Z . (A.22)

Nous appliquons ensuite ces résultats à quelques exemples. Tout d’abord, l’équation de Sine-Gordon
amortie, qui est une équation d’onde semi-linéaire :

∂2θ

∂ t2
+ ξ
∂θ

∂ t
−
∂2θ

∂x2
+ γ sin(θ ) = 1O (x)U(x , t) dans (0, L)× (0,+∞), (A.23a)

θ (0, t) = θ (L, t) = 0 pour tout t ∈ (0,+∞), (A.23b)

où ξ et γ sont des paramètres strictement positifs, et O est un sous-ensemble ouvert de (0, L). Enfin,
une équation de Wilson-Cowan pré-stabilisée issue des neurosciences :

∂w
∂ t
(x , t) +αw(x , t) +

∫

Ω

k(x ,ν)s(w(ν, t))dν= 1O (x)U(x , t) dans Ω× (0,+∞), (A.24)

où Ω est un domain borné de Rn, O est un sous-ensemble ouvert de Ω, α est un paramètre strictement
positif, k est un noyau intégral borné et s est une non-linéarité scalaire suffisamment régulière.
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