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Titre : Séparation de composantes semi & non supervisée et déconvolution conjointe, application à la radio-
interférométrie. 

Mots clés : séparation aveugle de sources, problème inverse, parcimonie, apprentissage automatique, radio-
interférométrie.  

Résumé : Avec le développement des radio-
télescopes de taille continentale, l'analyse des 
données radio-interférométriques multifréquences 
devient un enjeu majeur tant en traitement du signal 
qu'en astrophysique. A cet égard, les méthodes de 
séparation de composantes constituent un outil 
adéquat car elles permettent de séparer les données 
multifréquences en composantes physiques 
élémentaires. 

Cependant, les algorithmes standard de séparation 
de composantes ne sont pas adaptés aux données 
radio-interférométriques à plus d'un titre : (i) celles-
ci sont composées de mesures incomplètes dans le 
domaine de Fourier, dit des visibilités, et sont en 
outre potentiellement détériorées par des effets  
 

instrumentaux ou non coplanaires, et (ii) les 
signaux recherchés peuvent être sévèrement noyés 
dans le bruit ou dans d'autres émissions. 

En conséquence, la prise en compte de la réponse 
instrumentale des télescopes requiert le 
développement d'algorithmes dédiés pour 
résoudre un problème de séparation et de 
déconvolution conjoint. De plus, la récupération de 
signaux faibles nécessite la conception 
d'approches précises qui exploitent des modèles 
physiques connus a priori ; cela motive le 
développement de méthodes de séparation semi 
supervisées qui intègrent des techniques par 
apprentissage automatique. 

 

 

Title: Joint deconvolution and semi & unsupervised component separation, with application to radio-
interferometry. 

Keywords: blind source separation, inverse problem, sparsity, machine learning, radio-interferometry. 

Abstract: With the development of continent-wide 
radio telescopes, the analysis of multi-frequency 
radio-interferometric data has become a significant 
challenge in signal processing and astrophysics. In 
this respect, component separation methods are an 
adequate tool as they allow the separation of multi-
frequency data into elementary physical 
components. 

However, standard component separation 
algorithms are not adapted to radio-interferometric 
data for several reasons: (i) they are constituted of 
incomplete measurements in the Fourier domain, 
also known as the visibility domain, and are 
 

potentially further deteriorated by instrumental or 
non-coplanar effects, and (ii) the sought-after 
signals can be severely drowned in noise or other 
emissions. 

Consequently, accounting for the telescope 
instrumental response requires developing 
dedicated algorithms to solve a joint deconvolution 
and separation problem. Furthermore, the recovery 
of weak signals calls for the design of accurate 
approaches that make use of physical models 
known a priori; this motivates the development of 
semi-supervised separation methods that integrate 
machine learning techniques. 
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Le silence éternel de ces espaces infinis m’effraie.

— Blaise Pascal, Pensées.



vi Remerciements



Contents

Remerciements iii

Synthèse xi
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Synthèse

Contexte et problèmes

Les algorithmes de séparation aveugle de sources (SAS) sont des méthodes non-
supervisées qui permettent d’analyser des données multivaluées en les décomposant
automatiquement en composantes élémentaires. Ils sont utilisés dans de nombreux
domaines, par exemple en biologie pour l’analyse des données électroencéphalogra-
phiques, en télédétection dans le cadre d’observations multispectrales terrestres ou
bien en sciences des données pour la fouille de textes [Gillis, 2020].

Les travaux de cette thèse visent notamment l’analyse d’images multispectrales en
astrophysique. Dans ce domaine, les algorithmes standard de SAS seront confrontés
par la complexité des données multispectrales des projets clefs à venir, comme le
radio-interféromètre continental Square Kilometer Array1 ou l’observatoire à rayons
X Athena2. A cet égard, plusieurs problèmes dans le domaine du traitement du signal
doivent être résolus :

– La résolution spatiale accrue atteinte par certains télescopes devrait permettre
de distinguer des émissions très faibles, jusqu’à quelques ordres de grandeur
en dessous des émissions les plus puissantes. En outre, le bruit instrumental
peut dominer le signal d’intérêt. Par conséquent, le premier point concerne le
développement de méthodes de séparation très précises.

– Les observations multispectrales sont déformées par des réponses instrumen-
tales dépendant de la longueur d’onde. Dans le cas de mesures large bande, les
méthodes de SAS doivent faire face à des données particulièrement hétérogènes,
avec des résolutions spatiales variables.

– Les données radio-interférométriques sont obtenues par corrélation de paires
d’antennes. En première approximation, chaque paire d’antennes produit une
mesure ponctuelle dans le domaine harmonique. Le nombre de paires étant fini,
les données interférométriques sont incomplètes. Par conséquent, les méthodes

1https://www.skatelescope.org/
2https://sci.esa.int/web/athena

https://www.skatelescope.org/
https://sci.esa.int/web/athena
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SAS appliquées aux données interférométriques doivent inclure des régularisations
spécifiques.

– Dans le cas de la radio-interférométrie à longue ligne de base (c’est-à-dire grande
distance entre les antennes les plus éloignées), l’hypothèse classique d’onde in-
cidente plane devient obsolète. Le modèle d’observation prenant en compte cet
effet non coplanaire est beaucoup plus complexe. Un phénomène similaire est
à considérer dans le cas d’observations à très grand champ. Les méthodes de
séparation précises doivent ainsi tenir compte de ces effets non coplanaires.

Plan

Ce manuscrit est constitué de cinq chapitres. Le chapitre 1 présente le problème stan-
dard de SAS linéaire et passe brièvement en revue les algorithmes qui permettent sa
résolution. Dans le chapitre 2, nous proposons un algorithme de séparation de sources
semi-supervisé qui exploite la potentielle connaissance de certaines des composantes
recherchées. Le chapitre 3 présente les bases de la radioastronomie dans l’objectif
d’en tirer des modèles d’observation multispectraux afin d’aborder ensuite la SAS
à partir de données radio. Dans le chapitre 4, nous étudions un algorithme de SAS
et de déconvolution conjointe pour l’analyse des données multispectrales très grand
champ acquises sur la sphère. Finalement, dans le chapitre 5, nous nous concentrons
sur le développement d’un algorithme de SAS et de déconvolution conjointe à partir
de données radio-interférométriques non coplanaires.

Chapitre 1 : une brève revue des algorithmes de

séparation aveugle de sources

Le problème de SAS linéaire est communément écrit sous forme matricielle :

Y = AS+N, (1)

où Y ∈ RJ×P contient les observations multispectrales, A ∈ RJ×I est la matrice de
mélange, S ∈ RI×P est la matrice des sources, N ∈ RJ×P le terme de bruit, avec
I le nombre de sources, J le nombre de canaux d’observation/bandes spectrales et
P le nombre de pixels par observation/source. Sous cette formulation, la matrice A
contient dans ses colonnes les I spectres associés aux composantes recherchées. Le
but de la SAS est d’estimer conjointement A et S à partir de Y ; pour ce faire, on
distingue trois familles de méthodes de résolution.
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La première famille repose sur l’analyse en composantes indépendantes [Comon
and Jutten, 2010]. Néanmoins, en astrophysique, l’hypothèse sous-jacente d’indépen-
dance statistique des sources est peu vérifiée en pratique, car les sources présentent
couramment des corrélations partielles.

La deuxième famille d’algorithmes de SAS s’appuie sur l’optimisation d’une fonc-
tion coût. D’une manière générale, on écrira celle-ci de la façon suivante :

argmin
A,S

D(Y,AS) + hS(S) + hA(A), (2)

avec D le terme d’attache aux données, qui dépend à la fois du modèle de mélange
et des statistiques du bruit, et hS et hA des fonctions de régularisation qui tiennent
compte respectivement des a priori sur les sources et sur la matrice de mélange.
Le problème (2) peut être résolu avec les méthodes de factorisation en matrices po-
sitives [Gillis, 2020], qui supposent la positivité des coefficients de A et S (hS et
hA sont alors des fonctions caractéristiques sur des orthants positifs). Ces méthodes
sont populaires pour leurs garanties de convergence, voire d’identifiabilité. Cepen-
dant, pour le traitement des données astrophysiques, elles ne sont pas adaptées car
(i) leurs schémas de minimisation offrent peu de flexibilité pour implémenter des
régularisations et des modèles de mélange plus élaborés, et (ii) elles manquent par-
fois de robustesse par rapport à l’initialisation.
On préférera donc les méthodes de SAS parcimonieuse pour résoudre le problème (2).
Celles-ci reposent sur la parcimonie des sources dans un domaine bien choisi (d’où
hS(S) = ∥Λ ⊙

(
SW⊤)∥1 avec W ∈ RP ′×P une transformée et Λ ∈ RI×P ′

des hy-
perparamètres de régularisation). En particulier, l’algorithme GMCA [Bobin et al.,
2015] se distingue par son cadre flexible et frugal basé sur un moindres carrés alterné
projeté, ses heuristiques et sa robustesse établie en SAS.

La troisième famille de méthodes de SAS, la moins explorée jusqu’à présent, repose
sur l’apprentissage automatique. Cette famille est assez disparate, que ce soit par
le type de problème considéré (modèle de mélange, hypothèses et a priori sur les
sources ou les processus de mélange) ou par la méthodologie (séparation bout-en-
bout, apprentissage de régularisation, etc.). Les avantages de ces méthodes sont de
potentiellement mieux exploiter les connaissances a priori des solutions et d’améliorer
l’interprétabilité des résultats.

Chapitre 2 : introduction de contraintes apprises en

séparation aveugle de sources

L’un des défis de la SAS appliquée aux données réelles est de fournir des résultats de
séparation physiquement interprétables. En particulier, il est primordial que les fuites
entre composantes restent limitées, que ce soit dans le domaine des sources ou dans
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le domaine spectral.
Les jeux de données multispectraux analysés concernent souvent des processus qui
sont au moins partiellement connus, et à cet égard, le recours à des approches totale-
ment non supervisées ne semble pas le plus adéquat. Par conséquent, dans ce chapitre,
nous proposons un algorithme de séparation semi-supervisé qui exploite la potentielle
connaissance a priori de certains des spectres recherchés.

La méthode proposée s’inscrit dans le cadre général de l’apprentissage de régulari-
sation pour approche variationnelle en problèmes inverses [Adler and Öktem, 2017].
Cette approche hybride permet d’associer apprentissage automatique et information
présente dans une fonction coût (modèle d’observation, modèle de bruit et fonctions
de régularisation déjà en place). Plus particulièrement, la fonction coût considérée
est3 :

argmin
A≥0,S≥0

1

2
∥Y −AS∥22 +

∥∥Λ⊙ (SW⊤)∥∥
1
+
∑
i∈I

ιM(mi) (A:i) . (3)

Nous faisons le choix de contraindre certains spectres, pour rappel présents dans A,
à appartenir à des variétés {M(mi)}i∈I préalablement apprises. Pour ce faire, nous
employons l’autoencodeur interpolateur, qui est un outil que nous avons développé
pour régulariser des problèmes de démélange tels que la SAS.

L’algorithme proposé, sGMCA (GMCA semi-aveugle), s’appuie sur un moindres
carrés alterné projeté et réemploie les heuristiques de GMCA. Des expériences numé-
riques approfondies sur données astrophysiques réalistes montrent que la régularisation
introduite permet de rejeter efficacement les fuites entre composantes, améliorant
ainsi de manière significative l’estimation des sources et des spectres comparé aux
méthodes totalement aveugles, y compris dans des contextes difficiles (observations
bruitées, spectres corrélés, émissions déséquilibrées).

Chapitre 3 : mesure et imagerie du ciel radio en vue

de traiter la séparation aveugle de sources

La radioastronomie est une branche de l’astronomie qui concerne l’observation du ciel
dans le domaine des fréquences radio. La mesure précise des sources radio, qui sont
généralement des signaux de très faible puissance, nécessite l’utilisation d’instruments
massifs, les radiotélescopes, qui mobilisent des ressources importantes tant en termes
matériel que de calcul.

Dans ce chapitre, les principes fondamentaux des mesures en radioastronomie
sont présentés. Les modèles d’acquisition des émissions radio sont ensuite développés,
d’une part avec les télescopes à antenne unique et d’autre part avec les interféromètres.

3La fonction coût ici présentée est volontairement simplifiée pour ne pas devoir aborder des détails
techniques d’implémentation.
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Enfin, les modèles d’acquisition sont étendus au cas multispectral en vue d’aborder
ultérieurement le problème de SAS. On différencie trois cas :

1. Les cas du télescope à antenne unique et de l’interféromètre coplanaire peuvent
tous deux être réunis dans le même cadre pour les petits champs de vue. Le
modèle, exprimé directement dans l’espace de Fourier ou des visibilités, s’écrit
pour chaque bande fréquentielle ν :

ỹ(ν)(u, v) = H̃(ν)(u, v) x̃(ν)(u, v), (4)

avec y(ν) les observations multispectrales, H(ν) l’opérateur d’observation (dans
le cas d’un télescope à antenne unique, sa réponse instrumentale, et dans le cas
d’un interféromètre, le masque issu de la distribution des antennes) et x(ν) les
mélanges recherchés, et où le tilde symbolise la transformée de Fourier bidimen-
sionnelle.

2. Dans le cas d’observations très grand champ, le modèle d’acquisition d’un
télescope à antenne unique s’écrit de manière similaire dans le domaine des
harmoniques sphériques :

ỹ(ν)(l,m) = H̃(ν)(l) x̃(ν)(l,m), (5)

avec les mêmes correspondances que ci-dessus hormis le tilde qui désigne ici la
transformée en harmoniques sphériques.

3. Finalement, le modèle d’acquisition d’un interféromètre non coplanaire s’écrit :

ỹ(ν)(u, v, w) = H̃(ν)(u, v, w)
[
F ◦

(
G(w) ⊙ x(ν)

)]
(u, v, w), (6)

avec F la transformée de Fourier bidimensionnelle, G(w)(l,m) =

e−2πiw(
√
1−l2−m2−1) qui rend compte des effets non coplanaires et les mêmes

correspondances que ci-dessus. On se restreint aux petits champs de vue, l’in-
terférométrie à très grand champ de vue qui exploite le formalisme sphérique
[Carozzi, 2015] étant encore un champ relativement inexploré.

Le chapitre 4 aborde la SAS dans le deuxième cas (et dans le premier par extension,
comme nous allons le voir). Le chapitre 5 s’inscrit dans le cadre du troisième cas.

Chapitre 4 : séparation aveugle de sources et décon-

volution conjointe d’observations grand champ

Les méthodes standard de SAS ne peuvent être employées sur les données multispec-
trales radio qu’après un prétraitement qui permet de tenir compte de la réponse du
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télescope (due aux effets instrumentaux voire à un échantillonnage incomplet dans le
cas d’un interféromètre). Toutefois, inclure la réponse du télescopes directement au
sein du processus de séparation devrait être plus performant, car cela permettrait de
prendre en compte précisément les modèles d’observation, de mélange et de bruit en
une seule opération.
Dans ce chapitre, nous étudions ainsi un algorithme de séparation aveugle de sources
et de déconvolution (SASD) conjointe. Nous traitons le cas des données grand champ
échantillonnées sur la sphère, qui sont maintenant courantes dans des domaines scien-
tifiques tels que la radioastronomie.

La fonction coût suivante est considérée :

argmin
A≥0,S≥0

∑
(l,m)∈P

1

2

(∥∥∥Ỹ:(l,m) − diag
(
H̃:l

)
AS̃:(l,m)

∥∥∥2
2
+

I∑
i=1

ε(i,l,m)
∣∣∣S̃i(l,m)

∣∣∣2)+∥∥Λ⊙ (SW⊤)∥∥
1
,

(7)
avec H ∈ RJ×P la matrice constituée des réponses du télescope (une réponse par
ligne, c’est-à-dire par canal), et où le tilde rend compte d’une transformation en
harmoniques sphériques. La résolution est basée sur un moindres carrés projeté al-
terné afin de combiner rapidité et précision. Par rapport au problème standard de
SAS, la procédure fait appel à une régularisation supplémentaire, introduite par
les {ε(i,l,m)}i,l,m, pour traiter un problème naturellement mal posé. Nous étudions de
manière approfondie l’impact de la régularisation dans la minimisation des moindres
carrés et introduisons des schémas de régularisation adaptés aux statistiques des
sources à estimer.
Sur la base de ces techniques de régularisation, nous présentons l’algorithme
SDecGMCA (GMCA déconvolution sur la sphère) qui s’avère être une procédure de
minimisation robuste et efficace. Des expériences numériques sur des exemples jouets
et sur des données issues de simulations astrophysiques évaluent les performances de
l’algorithme proposé dans un large éventail de scénarios de mélange. Des comparai-
sons avec des méthodes standard de SAS sont également effectuées, elles montrent
que SDecGMCA est compétitif.
Nous notons finalement que la méthode proposée s’adapte aisément au cas plan, en
remplaçant l’analyse en harmoniques sphériques par celle de Fourier.

Chapitre 5 : séparation aveugle de sources et décon-

volution conjointe à partir de données interféromét-

riques non coplanaires

L’avènement des radio-interféromètres à grande échelle impose le développement de
nouvelles méthodes d’analyse capables de traiter les effets non coplanaires, dits effets
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w. Comme nous l’avons vu au chapitre 3, ces effets proviennent des longues lignes de
base, qui annulent généralement l’hypothèse de coplanarité des lignes de base, ainsi
que des observations grand champ, car les ondes incidentes ne sont plus planes. De
façon similaire au chapitre 4, le modèle standard de mélange linéaire devient obsolète,
ce qui nécessite la conception d’une méthode de SASD dédiée.

Dans ce chapitre, nous proposons un algorithme pour aborder la SASD avec des
données interférométriques non coplanaires. Pour ce faire, nous reprenons le cadre
de w-stacking [Offringa et al., 2014] qui offre un bon compromis entre précision et
coût calculatoire pour les problèmes de déconvolution de données non coplanaires.
Les données sont supposées être échantillonnées sur un grille régulière et placées
dans un tenseur Y ∈ RJ×W×P , avec W le nombre de plans w considérés. Le modèle
d’observation s’écrit4 :

Y = H⊙ [F ◦ G] (AS) +N , (8)

avec H ∈ RJ×W×P le masque de l’interféromètre (dans l’espace des visibilités), F la
transformée de Fourier bidimensionnelle, G l’opérateur rendant compte de l’effet non
coplanaire et N ∈ RJ×W×P un bruit gaussien.
La fonction coût considérée est adaptée de la façon suivante :

argmin
A≥0,S≥0

1

2
q(Y −H⊙ [F ◦ G] (AS))+

1

2

∑
i,ω,p

ε(i,ω,p)
∣∣∣[F ◦ G](S)iωp∣∣∣2 + ∥∥Λ⊙ (SW⊤)∥∥

1
,

(9)
avec q une forme quadratique dépendant de la covariance de N . Le problème for-
mulé étant particulièrement complexe à traiter, nous choisissons de le résoudre avec
un moindres carrés projeté alterné pour son faible coût calculatoire. Comme pour
SDecGMCA, l’ajout d’une régularisation est cependant rendue nécessaire pour per-
mettre l’inversion par les moindres carrés. Nous adaptons les schémas de régularisa-
tions introduits dans le chapitre précédent au cas non coplanaire.
L’algorithme proposé est appelé wGMCA. Des expériences numériques sur des données
synthétiques et réalistes sont réalisées dans différents contextes expérimentaux (degré
de non-coplanarité, densité d’échantillonnage de l’espace des visibilités, distribution
et nombre de canaux, niveau de bruit, conditionnement du mélange). La méthode
proposée présente une certaine robustesse à l’initialisation et au choix des hyperpa-
ramètres. Comparé aux méthodes standard de déconvolution et de séparation séquen-
tielles, l’algorithme proposé s’avère performant, étant capable d’estimer les sources
avec une meilleure résolution et précision, ce qui augmente la qualité globale de la
séparation.

4On donne ici une forme simplifiée du modèle d’observation, à titre de résumé.
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Notations and acronyms

Notations

Matrices and tensors

• x: a vector.

• X: a matrix.

• X : a three-dimensional tensor.

• xi, Xij and X ijk : respectively, the ith, (i, j)th and (i, j, k)th entries of vector
x, matrix X and tensor X .

• Xi:, X:j, X :jk, X i:k and X ij:: column vectors formed by fixing the indicated
indices of matrix X or tensor X , depending on the case.

• X i::, X :j: and X ::k: matrices formed by fixing the indicated index of tensor X .

• x∗: the complex conjugate of x, where x can be a scalar, a vector, a matrix or
a tensor.

• X⊤: the transpose of matrix X.

• X†: the conjugate-transpose of matrix X.

Operators

• ∥·∥p, p ∈ N: the ℓp-norm for vectors, and the entrywise ℓp-norm for matrices.

• ∥·∥ℓp , p ∈ N: the matrix ℓp-norm induced by the vector ℓp-norm.

• diag(·): the diagonal operator, which produces a diagonal matrix from the input
parameter (e.g., if x is a vector of size P , then diag(x) is a diagonal matrix of
size P × P such that diag(x)pp = xp).
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• F(·): the 2-dimensional continuous Fourier transform or the spherical harmonic
transform5, depending if the input function is defined on a plane or on the
sphere. The tilde is used as a shortcut: x̃ := F(x).

• F: the 2-dimensional discrete Fourier matrix or the discrete harmonic transform
matrix, depending on the input. The tilde is likewise used as a shortcut:

– x̃ := Fx, noting furthermore that in the spherical case, x̃(l,m) designates
the spherical harmonic coefficient associated to degree l and mode m,

– X̃: the stack of the discrete Fourier transforms or spherical harmonic
transforms of the rows of X (X̃i: := FXi:, which is equivalently written
X̃ := XF⊤).

• ∗: the convolution product between two functions, in the continuous or dis-
crete case depending on the situation. For functions defined on the sphere, the
isotropic convolution product is used.

• ⊙: the entrywise multiplication, also known as the Hadamard product. When
written in a superscript of a matrix, it means a entrywise exponent (e.g.,
[X⊙2]ij = (Xij)

2 ̸= [X2]ij).

• ⊘: the entrywise division.

• ◦: the function composition operator.

• ι(·): the characteristic function of the set in subscript.

• Π(·): the orthogonal projection onto the set in subscript.

• Tλ(·) := sign(·)max(| · | − λ, 0): the soft-thresholding operator with threshold λ
where the sign, max and absolute-value functions are intended entrywise.

Dummy indices

The following dummy indices are reserved for one usage only, to facilitate readability:

• p: pixel or sample,

• i: source,

• j: observation channel,

• n: iteration,

5Elements of spherical signal analysis are provided in Appendix B.
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• s: scale (of a multiscale representation),

• m: spectrum model,

• l and m: degree and mode (in a spherical harmonic decomposition),

• ω: w-plane (in the context of noncoplanar interferometry).

Moreover, dummy indices usually iterate from 1 to their variable in upper case (e.g.
p ∈ [1 . . . P ], i ∈ [1 . . . I]).

Specific terms

The following variables refer to the same quantities throughout the manuscript:

• Y ∈ RJ×P and Y ∈ RJ×W×P : noisy data.

• A ∈ RJ×I : mixing matrix.

• S ∈ RI×P : source matrix.

• N ∈ RJ×P and N ∈ RJ×W×P : noise term.

• H ∈ RJ×P and H ∈ RJ×W×P : measurement operator (e.g., antenna power
pattern, interferometric mask).

• W ∈ RP ′×P : transform towards a sparsyfing domain (that is, where the signals
are sparse).

• Λ ∈ RI×P ′
: sparse hyperparameters,

• κ and K: parameters associated to the sparse hyperparameters (see Section
1.3.3.4),

• D(Y,AS) or D(Y ,AS): data-fidelity term,

• hA(A): mixing matrix regularization term,

• hS(S): source matrix regularization term,

• KA := {A ∈ RJ×I , ∀(j, i),Aji ≥ 0,∀i, ∥A:i∥2 ≤ 1}: intersection of the non-
negative orthant for mixing matrices and the unit balls of the columns of the
mixing matrices.

• OA := {A ∈ RJ×I ,∀(j, i),Aji ≥ 0}: non-negative orthant for mixing matrices.

• OS := {S ∈ RI×P ,∀(i, p),Sip ≥ 0}: non-negative orthant for source matrices.
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• I: identity matrix.

• 0 and 1: vector or matrix of zeros and ones, respectively.

• c: speed of light in vacuum.

• ν: electromagnetic frequency.

• λ: electromagnetic wavelength.

Miscellaneous

• := : is defined by.

• (·)(i): ith element of a sequence of variables (e.g., of an iterative scheme, of a
set).

• x̂: the estimate of x, where x can be a scalar, a vector, a matrix or a tensor.

• x⋄: the ground truth of x, where x can be a scalar, a vector, a matrix or a
tensor.

Attention is drawn to the fact that there is no link between two variables that
have the same letter but different cases or styles (e.g., Λi: ̸= λ, l ̸= l). An attempt
has been made to avoid using variables with the same letters in a single equation.

Acronyms

• (p)ALS: (projected) alternating least squares.

• BCD: block coordinate descent.

• BSS: blind source separation.

• CA: mixing matrix criterion.

• EoR: epoch of reionization.

• FBS: forward-backward splitting.

• FFT: fast Fourier transform.

• GMCA: generalized morphological component analysis.

– DecGMCA: deconvolution GMCA.
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– SDecGMCA: spherical deconvolution GMCA.

– sGMCA: semi-blind GMCA.

– wGMCA.

• HALS: hierarchical alternating least squares.

• HPBW: half power beam width.

• IAE: interpolatory autoencoder.

• ICA: independent component analysis.

• MAD: median absolute deviation estimator.

• MU: multiplicative update.

• NMF: nonnegative matrix factorization.

• NMSE: normalized mean square error.

• PALM: proximal alternating linearized minimization.

• SAD: spectral angular distance.

• SBSS: sparse blind source separation.

• SDR, SIR, SNR, SAR: signal-to-distortion, interference, noise and artifact ratio,
respectively.
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Introduction

Context

The latest technological developments allow for a continuous increase in data acquisi-
tion capabilities in scientific experiments. This requires the development of new and
more accurate data analysis methods to extract valuable information.

This thesis focuses on the unsupervised analysis of multivalued data. Multivalued
data are composed of several measurements of the same scene or process under dif-
ferent but coherent observation conditions. They are found in various applications,
for instance in biology with electroencephalographic data (see Fig. 1), in chemistry
with liquid chromatography–mass spectrometry data (see Fig. 2) or in physics with
multispectral imaging (see Fig. 3). In the given examples, the observed scenes or
processes are constituted of distinct elementary components (respectively neurons,
chemical compounds, atoms or molecules such as iron or water); each component
contributes differently in each observation, thus paving the way for their unmixing.

Blind source separation (BSS) algorithms are unsupervised methods that are the
cornerstone of multivalued data analysis by allowing for physically meaningful data
decompositions. The unsupervised aspect allows to separate the components auto-
matically, without any a priori knowledge of their presence or their properties (de-
pending on the case, spatial distribution, spectral or temporal response, etc.).

The developments of this thesis are especially aimed at the analysis of multispec-
tral6 image data in astrophysics. Two applications are particularly identified:

• 21-cm intensity mapping. The measurement of the hydrogen 21-cm line
emission is expected to provide key information on the history of our Universe.
As illustrated in Figure 4, this signal is not observed directly but mixed with
other components from our galaxy (e.g. synchrotron and free-free emissions) or

6Sometimes the term multispectral is reserved to the case where there are less than ten spectral
bands, the term hyperspectral being used otherwise. Hereafter the term multispectral will be used
interchangeably for both cases.
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Figure 1: Scalp electroencephalographic data. Electrodes placed on a person’s scalp
measure the resulting electrical activity of the underlying neurons, and potentially
non-cerebral artifacts such as muscles. The data have a temporal variable and a
spatial variable, that is related to the positioning of the electrodes. Image from [Hu
et al., 2007].

Figure 2: Liquid chromatography–mass spectrometry acquisition and data. A chemi-
cal fluid is introduced into a chromatography column; the compounds that constitute
the fluid flow out at different times and are then analyzed with a mass spectrometer.
The data have a temporal variable and a mass-to-charge variable. Image from [Rapin,
2014, Chenot, 2017].
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Figure 3: Hyperspectral image data from the OMEGA spectrometer which was
aboard the Mars Express Orbiter (https://mars-express.cnes.fr/en/MEX/index.
htm). A two-dimensional image is acquired by the spectrometer OMEGA along 128
spectral bands, at wavelengths ranging from 0.98 µm to 2.73 µm. The data have
a wavelength/electromagnetic-frequency variable and a two-dimensional spatial vari-
able. Image from [Chenot, 2017].

beyond (e.g., radio galaxies and clusters, present in the form of point sources).
The resulting problem can therefore be stated in the form of a BSS problem.
Two sub-applications are distinguished, depending on the redshift/frequency
range considered:

– at a redshift z from 6 to 30, which requires multichannel radio observa-
tions in the range [50, 200] MHz, the 21-cm line emission can only be
measured with precision by continental radio-interferometers, such as the
forthcoming Square Kilometer Array7 (SKA). This signal should provide
more information on the epoch of reionization (EoR), which is an early
period of the Universe that is poorly known.

– at later times (post-reionization), for a redshift z from 0.1 to 1, which
corresponds to the radio frequency range [700, 1300] MHz, the 21-cm line
emission can also be measured by single-dish radio-telescopes. Accessing
this signal will help understanding the formation of the large-scale struc-
tures in the Universe.

• X-ray spectro-imaging. BSS algorithms can be employed to separate the
elementary components constituting astronomical objects (e.g., supernova rem-
nants), in the aim of better understanding the physical processes that occur.
The forthcoming Athena8 telescope will provide measurements in a particularly

7https://www.skatelescope.org/
8https://sci.esa.int/web/athena

https://mars-express.cnes.fr/en/MEX/index.htm
https://mars-express.cnes.fr/en/MEX/index.htm
https://www.skatelescope.org/
https://sci.esa.int/web/athena
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Figure 4: Galactic and extra-galactic foregrounds contaminating the EoR signal.
Image from [Jelić, 2010].

large bandwidth with a fine spectral resolution. Undetected sources so far may
be extracted, as long as BSS algorithms are improved.

Problems and challenges

In the context of astrophysics, standard BSS algorithms will be challenged by the
deluge of data from key upcoming projects. For BSS methods to provide valuable
information, several problems in the field of signal processing must be addressed:

• The increased spatial resolution achieved by some telescopes should allow dis-
tinguishing very weak emissions – up to a few orders of magnitude below the
most powerful ones. Therefore, the first issue concerns developing very precise
separation methods. In addition, instrumental noise can dominate the signal of
interest.

• Multispectral observations are distorted by wavelength-dependent instrumental
responses. In the case of large-band measurements, BSS methods must cope
with particularly heterogeneous data, with varying spatial resolutions.

• Interferometric data are obtained by correlation of pairs of antennas. As a
first approximation, each pair of antennas produces a point measurement in the
harmonic domain. The number of pairs being finite, the interferometer sampling
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is incomplete. Therefore, BSS methods applied to interferometric measurements
must include specific regularizations.

• In the case of long baseline interferometry (i.e., a large distance between the
most distant antennas), the classical assumption of incident plane waves be-
comes obsolete. The instrumental response taking into account the non-coplanar
effect is much more complex; as a first approximation, it becomes non-stationary
on the observed field. A similar phenomenon is to be considered in the case of
single-dish wide-field observations. Accurate separation methods must take into
account these non-coplanar effects.

Contributions

To address these issues, the thesis focuses on three objectives:

I Develop a separation method that allows taking into account prior physical
knowledge of expected components. Resorting to such semi-supervised or semi-
blind approach is expected to better discriminate between sources, especially
the less powerful ones, and provide more physically relevant information.

II Design a BSS scheme that can process multispectral data distorted by poten-
tially channel-dependent measurement operators. For instance, this is the case
of large-band observations which have varying instrumental responses along the
channels or interferometric data whose measurement operators in Fourier space
are masks. Coping with such data requires tackling an extra deconvolution
step, thus leading to a joint deconvolution and blind source separation (DBSS)
problem. This becomes highly challenging when applied to datasets sampled
on the sphere, such as those provided by wide-field observations.

III Develop a BSS method for non-coplanar interferometric data. This is a novel
topic in several respects. Indeed, the single-channel deconvolution of non-
coplanar interferometric data is already a research topic in itself; adding blind
source separation from multi-channel data is an entirely open problem.

Outline

This manuscript builds upon five chapters. Chapter 1 briefly reviews blind source
separation algorithms for processing multispectral data in astrophysics. Chapter
2 proposes a semi-supervised separation method that allows leveraging the poten-
tial prior knowledge of expected components, thus tackling objective I . Chapter 3
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presents the basics of radio astronomy, with the primary goal of obtaining observa-
tional models to tackle BSS from radio data afterward. Chapter 4 investigates a joint
deconvolution and blind source separation algorithm to analyze multispectral data
acquired on the sphere, answering objective II . Finally, Chapter 5 focuses on devel-
oping a joint deconvolution and blind source separation algorithm for non-coplanar
radio-interferometric data, thus meeting objective III .



Chapter 1

A quick review of blind source
separation

This chapter introduces blind source separation (BSS) from a mathematical perspec-
tive. The main resolution methods in the literature are presented. In doing so,
the mathematical optimization tools that we will need later on are introduced. In
addition, performance metrics for BSS are provided.

1.1 Mixture model

Astrophysical multispectral data are generically constituted of observations of the
same region of the sky at different wavelengths across the electromagnetic spectrum.
In this respect, let Yj: ∈ RP be a measurement made of P samples or pixels at a
channel j ∈ [1 . . . J ], which corresponds to a given wavelength or spectral band. Yj:

is typically a two-dimensional image, which is flattened into a vector.
The linear mixture model provides a good approximation to decompose multispec-

tral data in astrophysics (and even more generally in the other application fields of
BSS [Comon and Jutten, 2010]). In this regard, Yj: can be expressed as the weighted
sum of I elementary sources {Si: ∈ RP}i∈[1...I]:

Yj: =
I∑
i=1

AjiSi: +Nj:, (1.1)

where Aji ∈ R is the contribution of component i at channel j and Nj: is a noise
term1. Equation (1.1) can be rewritten with matrices (see Fig. 1.1), yielding:

Y = AS+N, (1.2)

1The noise is written as additive to simplify the notation; however, we do not make this assump-
tion yet.
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YJ :

. . .

. . .
Y2:

Y1:

P

J

Y1: YJ :

A:1
. . .A:I

I

J

A:1 A:I

SI:

. . .
S1:

P

I

SI: S1:

= ×

Figure 1.1: Illustration of the (noiseless) matrix product Y = AS in BSS. The rows
of S include sources and the columns of A contain spectra. Y includes in its rows
the observed mixtures, per channel.

where Y ∈ RJ×P contains the multispectral mixtures, A ∈ RJ×I is the so-called mix-
ing matrix and S ∈ RI×P is the source matrix. With such notations, the columns of
A include the electromagnetic spectra of the elementary components. In this thesis,
the over-determined case is considered, i.e., the number of channels is assumed to be
larger than the number of sources (J ≥ I).

In the scope of BSS, the objective is to jointly estimate the matrices A and S
from their noise-corrupted product Y. It should be noted that A and S can be re-
covered up to two indeterminacies at best, namely of scale and permutation, which
stem from the matrix product model. As an illustration, if A⋄ and S⋄ are the ground-
truth matrices, then αA⋄ and α−1S⋄ have the same product (scale indeterminacy), as
well as [A⋄

:I . . .A
⋄
:1] and [S⋄

I: . . .S
⋄
1:]

⊤ (permutation indeterminacy). The performance
metrics that will be employed will account for these degeneracies (see Subsection 1.5).

BSS is a very challenging, ill-posed problem that requires the use of prior infor-
mation. Different kinds of priors have led to diverse classes of component separation
algorithms, which are reviewed hereinafter.
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1.2 Independent component analysis

Independent component analysis (ICA) is a statistical method that assumes that the
sources are mutually independent random signals, of which at most one follows a
Gaussian distribution, the others being non-Gaussian.

The mixing of random sources in the context of BSS tends to make the observa-
tions Gaussian. This is a consequence of the central limit theorem, which establishes
the convergence in law of the sum of a sequence of random variables to the normal
distribution. The gist of ICA is to use the ”non-Gaussianity” of the sources as a proxy
for their independence. ICA aims to find the linear transformation that maximizes
the sources’ non-Gaussianity to separate them.

Numerous ICA-based methods exist, they mainly differ in the kind of measure of
independence. Among the most renowned are [Comon and Jutten, 2010]:

• Infomax, which minimizes the mutual information between the sources.

• JADE, that diagonalizes the fourth-order cumulant tensor of the sources, which
amounts to minimizing the fourth-order cross-cumulants – thus favoring the
independence of the sources.

• FastICA, which maximizes the negentropy of the sources, that is the difference
between the statistical entropy of a Gaussian distribution and the entropy of
the sources.

Regarding BSS applications in astrophysics, three limitations of ICA-based meth-
ods are identified. First, sources often exhibit spatial correlations, for example when
they originate from the same physical processes; therefore, the mutual independence
assumption is not fulfilled. Second, ICA-based methods are generally not robust to
noise contamination – that said, we note the existence of derivations such as spectral
matching ICA (SMICA) [Cardoso et al., 2002] that address this specific point. Third,
they offer a rather inflexible framework, making it difficult to consider more specific
mixture models or add particular priors.

1.3 Cost-function-based methods

1.3.1 General framework

The source separation problem can be formulated as a cost function to be minimized.
In this section, the following setting will generically be considered:

argmin
A,S

D(Y,AS) + hS(S) + hA(A), (1.3)
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where D(·, ·) is the data-fidelity term, which depends on both the mixing model and
the noise statistics, and hS(·) and hA(·) are regularization terms that account for the
priors on the sources and the mixing matrix, respectively.

Because of the product AS, Eq. (1.3) is not convex. In consequence, no algorithm
can guarantee convergence to the global minimum. At best, some methods can ensure
the convergence towards a stationary point, which will depend on the starting point.

1.3.2 Non-negative matrix factorization

Non-negative matrix factorization (NMF) is an extensive class of source separation
algorithms which assume that both the mixing matrix and the sources are consti-
tuted of non-negative elements. In this regard, the regularization terms in Eq. (1.3)
are given by hS(S) = ιOS (S) and hA(A) = ιOA(A), with OS and OA non-negative
orthants2.

NMF methods generally assume that the data-fidelity term is based on a β-
divergence. β-divergences are estimators that can be deduced from several noise
distributions encountered in physical applications. If x and y are two non-negative
scalars, the β-divergence between x and y is given by:

dβ(x, y) :=


x
y
− log x

y
− 1 if β = 0,

x log x
y
− x+ y if β = 1,

1
β(β−1)

(
xβ + (β − 1)yβ − βxyβ−1

)
otherwise.

(1.4)

In the case of NMF, the derived data-fidelity is the sum of the β-divergences applied
to all entries of the data matrix and the mixture model:

D (Y,AS) :=
∑
j,p

dβ (Yjp, (AS)jp) . (1.5)

Three particular cases are worth being mentioned:

• β = 2 : the Frobenius norm, stemming from a Gaussian noise,

• β = 1: the Kullback-Leibler divergence, derived from a Poisson contamination
(e.g., in low count observations, as in X-ray imaging),

• β = 0: the Itakura–Saito divergence, which comes from a multiplicative noise
(and which is preferably used in audio separation for the resulting perceptual
proprieties).

2OS := {S ∈ RI×P ,∀(i, p),Sip ≥ 0} and OA := {A ∈ RJ×I ,∀(j, i),Aji ≥ 0}.



Cost-function-based methods 11

Multiplicative update A standard minimization scheme for solving Eq. (1.3) in
the case of a β-divergence-based data-fidelity term is the Multiplicative update al-
gorithm (MU, see Alg. 1) [Lee and Seung, 2000, Févotte and Idier, 2011]. It is an
iterative procedure that decreases the cost function by alternative updates of A and
S using element-wise multiplications and divisions; it can be interpreted as a par-
ticular gradient descent method [Gillis, 2020]. The MU framework presents several
advantages, among which:

• it ensures the convergence towards a stationary point,

• it is easy to implement, with no hyperparameter to tune,

• it scales well with large datasets and is among the fastest NMF algorithms for
β < 2.

Algorithm 1 Multiplicative update (MU)

Inputs: data Y, starting points A and S

while convergence not reached do

(1) Update S with A fixed

S← S⊙
(
A⊤

[
(AS)⊙(β−2) ⊙Y

])
⊘
(
A⊤ [AS]⊙(β−1)

)
(2) Update A with S fixed

A← A⊙
([

(AS)⊙(β−2) ⊙Y
]
S⊤
)
⊘
(
[AS]⊙(β−1) S⊤

)
Outputs: mixing matrix A, sources S

Hierarchical alternating least squares Another algorithm that has gained in-
terest is Hierarchical alternating least squares (HALS, see Alg. 2) [Gillis and Glineur,
2012]. It allows minimizing Eq. (1.3) in the case of additive Gaussian noise (β = 2,
therefore leading to D(Y,AS) = ∥Y−AS∥22/2). Built upon the block-projected gra-
dient descent scheme, it significantly speeds up the minimization compared to MU by
sequentially updating the rows of S and the columns of A. The convergence towards
a stationary point is also guaranteed.

Extensions The MU and in a lesser extent the HALS minimization schemes have
been adapted to include extra constraints or regularizations (e.g., the orthogonality
of the mixing matrix to promote spectra that do not overlap, or the smoothness of
the sources [Gillis, 2020]).
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Algorithm 2 Hierarchical alternating least squares (HALS)

Inputs: data Y, starting points A and S

while convergence not reached do

(1) Update S with A fixed
for i = 1, 2, . . . I do

Si: ← max
(
0, 1

∥A:i∥22

(
Y⊤A:i −

∑
k ̸=i
(
A⊤

:iA:k

)
Sk:

))
(2) Update A with S fixed
for i = 1, 2, . . . I do

A:i ← max
(
0, 1

∥Si:∥22

(
YSi: −

∑
k ̸=i
(
S⊤
i:Sk:

)
A:k

))
Outputs: mixing matrix A, sources S

In this thesis, the developed methods will be compared to sparse NMF (SNMF), which
enforces the sparsity of the sources by considering the following source regularization:

hS(S) = λ∥S∥1 + ιOS (S), (1.6)

with λ a sparsity regularization hyperparameter.
In practice, the sparsity regularization associated with the scale indeterminacy in-
herent to BSS gives degenerated solutions such as ∥Si:∥2 → 0 and ∥A:i∥2 → ∞. To
prevent this phenomenon, a constraint on the norm of the columns of the mixing
matrix A is added, yielding the following mixing matrix constraint:

hA(A) = ιBA(A) + ιOA(A)

= ιKA(A),
(1.7)

where BA := {A ∈ RJ×I ,∀i, ∥A:i∥2 ≤ 1} and thus KA := BA ∩ OA.
[Le Roux et al., 2015] proposed an adaptation of the MU framework to tackle SNMF
(see Alg. 3). The algorithm includes renormalizations of the columns of the mixing
matrix so as to fulfill the norm constraint ιBA(·). It distinguishes itself from other
SNMF algorithms by processing the normalization more rigorously.

In the context of NMF, the pure-pixel assumption states that each component
is active alone in at least one sample of the observed data. This strong assumption
offers theoretical guarantees of mixture separability [Donoho and Stodden, 2003].

Regarding applications, NMF algorithms are very popular in remote sensing (e.g.,
for multispectral terrestrial observations), in part since the data generally satisfy the
pure-pixel assumption.
Yet, with a view to tackling multispectral data in astrophysics, NMF presents several
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Algorithm 3 Sparse non-negative matrix factorization (SNMF) by [Le Roux et al.,
2015]

Inputs: data Y, regularization hyperparameter λ, starting points A and
S

A← [A:1/ ∥A:1∥2 ,A:2/ ∥A:2∥2 , . . . ,A:I/ ∥A:I∥2] # column-wise normalization

while convergence not reached do

(1) Update S with A fixed

S← S⊙
(
A⊤

[
(AS)⊙(β−2) ⊙Y

])
⊘
(
A⊤ [AS]⊙(β−1) + λ

)
(2) Update A with S fixed

U← A⊙
(
11⊤

[
A⊙

([
(AS)⊙(β−1)

]
S⊤
)])

# normalization purpose

V← A⊙
(
11⊤

[
A⊙

([
(AS)⊙(β−2) ⊙Y

]
S⊤
)])

# normalization purpose

A← A⊙
([

(AS)⊙(β−2) ⊙Y
]
S⊤ +U

)
⊘
(
[AS]⊙(β−1) S⊤ +V

)
A← [A:1/ ∥A:1∥2 ,A:2/ ∥A:2∥2 , . . . ,A:I/ ∥A:I∥2]

Outputs: mixing matrix A, sources S

limits. Firstly, the minimization schemes do not allow the implementation of more
complex regularizations (e.g., sparsity in a transformed domain), which are neverthe-
less crucial in practice for separation quality, nor do they allow for the consideration
of more complex mixture models. Secondly, NMF is sometimes shown to lack robust-
ness with respect to the initial point; in other words, the algorithm can stabilize on
a poor local minimum if the initialization is inadequate.

1.3.3 Sparse blind source separation

The methods developed in this thesis are part of the sparse BSS (SBSS) framework.
Indeed, it allows a finer modeling of both priors and mixing model. First, we spec-
ify the assumptions we will commonly make on the cost function. Then we review
algorithms in the literature that tackle the minimization problem thereby formed.

1.3.3.1 Assumptions on the cost function

Data-fidelity term Thereafter, the noise contamination is assumed additive Gaus-
sian. The data-fidelity term is therefore chosen as an Euclidean distance:

D(Y,AS) =
1

2
∥Y −AS∥22. (1.8)
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Sources Sparsity is a powerful prior for solving inverse problems [Mallat, 2008].
As we have seen, SNMF promotes the sparsity of the sources in the direct domain.
However, astrophysical sources are generally not point-like; they instead present ex-
tended and multiscale structures. Therefore, the sparsity of the sources is enforced
in a transformed domain – typically based on two-dimensional wavelets.
Let W ∈ RP ′×P be a dictionary of a chosen sparsifying representation. Following
the adopted notations, the source matrix expressed in the transformed domain writes
SW⊤ ∈ RI×P ′

. We choose to enforce the source sparsity with an analysis formulation
and not a synthesis formulation, as the former is more robust in the context of SBSS
when sources are approximately sparse [Rapin, 2014]. Therefore, the regularization
term writes:

hS(S) =
∥∥Λ⊙ (SW⊤)∥∥

1
+ ιOS (S). (1.9)

The regularization hyperparameter Λ ∈ RI×P ′
is written in matrix form to allow it to

depend on the samples. This general framework will enable using the reweighted-ℓ1
scheme later on in order to reduce regularization bias [Candès et al., 2008]. More-
over, as in NMF, the non-negativity constraint on the sources (in the direct domain)
is added. Indeed, this assumption is often, if not always, verified in astrophysical ap-
plications. However, it is highlighted that it can easily be removed in all developments
of this manuscript if desired.

Mixing matrix As for SNMF, in order to prevent the scale degeneracy triggered
by the sparse regularization of the sources, a norm constraint is added to the non-
negativity constraint of the mixing matrix, yielding:

hA(A) = ιKA(A), (1.10)

where it is reminded that KA = {A ∈ RJ×I , ∀(j, i),Aji ≥ 0,∀i, ∥A:i∥2 ≤ 1}.

Altogether, the SBSS problem writes:

argmin
A,S

1

2
∥Y −AS∥22 +

∥∥Λ⊙ (SW⊤)∥∥
1
+ ιOS (S) + ιKA(A). (1.11)

Equation (1.11) is multi-convex, i.e., convex with respect to both variables when
the other is fixed, which advocates the use of alternating minimization schemes. How-
ever, it is composed of non-differentiable terms, which prevent resorting to smooth
optimization techniques and rather call for the use of proximal algorithms, which are
based on proximal operators [Parikh and Boyd, 2014].
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1.3.3.2 Proximal operators of the regularization terms

In this section, we first define proximal operators and then provide the analytical ex-
pressions of the proximal operators associated with the two non-smooth regularization
terms, hA(·) and hS(·), which we will need in the sequel.

Definition Let f be a proper3, lower semi-continuous4, convex function from a
Hilbert space to R ∪ {+∞}. The proximal operator of f , denoted proxf , is defined
by:

proxf (y) = argmin
x

f(x) +
1

2
∥x− y∥22 . (1.12)

The assumptions on f guarantee the existence and uniqueness of the minimum, and
thus that proxf is well-defined.
In some respects, proximal operators can be interpreted as generalizing projections.
The simplest case is when f is the indicator function of a convex set, as proxf is
the orthogonal projection on this set. This interpretation can help appreciate why
proximal operators constrain or regularize the solutions in proximal algorithms.

Proximal operator of the mixing matrix constraint term KA being a convex
set, the proximal operator of the mixing matrix constraint hA is the orthogonal pro-
jection on KA. The latter is shown to be the composition of the orthogonal projections
on BA and OA:

proxhA(A) = ΠKA(A)

= ΠBA ◦ ΠOA(A),
(1.13)

where [ΠOA(A)]ji = max(0,Aji) and [ΠBA(A)]:i = A:i/max(1, ∥A:i∥2).

Proximal operator of the source regularization term The proximal operator
of the source regularization term hS has unfortunately no analytical form. It can be
estimated numerically using iterative schemes, for instance with Generalized forward-
backward splitting [Raguet et al., 2013]. However, this solution is likely too slow
when included in alternating minimization schemes. Instead, we prefer to resort to
approximations to derive an analytical formulation of the proximal operator.
In certain cases, the proximal operator of a sum of functions is the composition of
the proximal operators of these functions [Yu, 2013]. In our case, the conditions are
not entirely verified. Still, we will approximate the proximal operator of hS as the
composition of the proximal operators of the two terms it is composed of, namely the
non-negativity constraint and the ℓ1-penalization.

3A proper function has value in R ∪ {+∞} and is not identically worth +∞.
4A lower semi-continuous function verifies for every point x0 of its domain lim

x→x0

f(x) ≥ f(x0).
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Second, the proximal operator associated to the sparse regularization term ∥Λ ⊙
(SW⊤)∥1 has no analytical form, unless W is orthogonal. In this case, it amounts to
a soft-thresholding in the transformed domain, backprojected in the direct domain:

prox∥Λ⊙( ·W⊤)∥
1

(S) = TΛ
(
SW⊤)W, (1.14)

where [TΛ(Y)]ip = sign(Yip)max(0, |Yip| − Λip) is the soft-threshold operator. It
is noted that this expression can be employed in proximal algorithms when W is a
tight frame [Elad, 2006]. Hereafter, we will keep this result as an approximation for
transformations that are not tight frames.
Thus, the proximal operator of the source regularization term is approximated as:

proxhS (S) ≈ ΠOS

(
TΛ
(
SW⊤)M⊤) , (1.15)

where M verifies MW = I and [ΠOS (S)]ip = max(0,Sip).

1.3.3.3 Algorithms for sparse blind source separation

Several methods can tackle multi-convex non-smooth optimization problems such as
SBSS. In this section, we propose to review some proximal algorithms for solving the
SBSS problem. We do not aim for exhaustivity but instead choose to focus on the
essential elements for the rest of the manuscript.
We refer the interested reader to [Chenot, 2017], [Kervazo, 2019] and the references
hereinbelow for the theoretical details and the general formulation of the presented
algorithms (i.e., outside the scope of SBSS).

Block coordinate descent Block coordinate descent (BCD) is a simple iterative
method to tackle multi-convex minimization problems [Tseng, 2001]. The gist of BCD
is to minimize the cost function sequentially along each block coordinate, holding the
others fixed.
In the case of SBSS, a natural choice of block coordinate is A and S. This leads to
the following minimization subproblems, which are sequentially solved at each BCD
iteration: 

argmin
S

1

2
∥Y −AS∥22 +

∥∥Λ⊙ (SW⊤)∥∥
1
+ ιOS (S), (1.16)

argmin
A

1

2
∥Y −AS∥22 + ιKA(A). (1.17)

Both equations being convex and composed of smooth and non-smooth terms, they
can commonly be solved using the Forward-backward splitting (FBS) scheme [Com-
bettes and Wajs, 2005]. The BCD algorithm derived to solve Eq. (1.11) is reported
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in Alg. 4.
BCD is demonstrated to converge to a stationary point for the SBSS problem. Nev-
ertheless, it is not used in practice for SBSS because of its high computational cost,
as it nests two iterative schemes (each BCD iteration includes two FBS schemes).

Algorithm 4 Block coordinate descent (BCD) for SBSS

Inputs: data Y, starting points A and S, sparsifying transform W, thresholds Λ,
parameters µ ∈]0, 1[ and ν ∈]0, 1[
while convergence not reached do

(1) Update S with A fixed: solve Eq. (1.16) using FBS
γ ← 2µ∥AA⊤∥−1

ℓ2

while convergence not reached do
S← S− γ∇SD (Y,AS) = S− γA⊤ (AS−Y) # gradient update

S← proxγhS (S) # proximal update

(2) Update A with S fixed: solve Eq. (1.17) using FBS
γ ← 2ν∥S⊤S∥−1

ℓ2

while convergence not reached do
A← A− γ∇AD (Y,AS) = A− γ (AS−Y)S⊤ # gradient update

A← proxγhA(A) # proximal update

Outputs: mixing matrix A, sources S

Proximal alternating linearized minimization The core idea of Proximal al-
ternating linearized minimization (PALM) [Bolte et al., 2014] is to distribute the FBS
iterative updates in the alternating scheme. Where BCD minimizes exactly subprob-
lems (1.16) and (1.17), PALM minimizes proximal linearizations of these equations.
Therefore, the update of each block coordinate is only a gradient update of the smooth
data-fidelity term followed by a proximal update of the non-smooth regularization (see
Alg. 5 for its application to SBSS).
The advantage of PALM is that the computational cost is low if explicit expressions
of the proximal operators are available. In addition, PALM offers convergence guar-
antees in the SBSS context. The main drawbacks of PALM are the choice of the
sparse regularization hyperparameters Λ, which can be tedious to fix, and the poor
robustness to initial points – the starting point must be chosen carefully in order to
have meaningful solutions [Kervazo et al., 2020a].

Projected alternating least squares As its name suggests, Projected alternating
least squares (pALS) is an alternating algorithm, each iteration of which consists of
an exact minimization of the data-fidelity term followed by the application of the
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Algorithm 5 Proximal alternating linearized minimization (PALM) for SBSS

Inputs: data Y, starting points A and S, sparsifying transform W, thresholds Λ,
parameters µ ∈]0, 1[ and ν ∈]0, 1[
while convergence not reached do

(1) Update S with A fixed
γ ← 2µ∥AA⊤∥−1

ℓ2

S← S− γ∇SD (Y,AS) = S− γA⊤ (AS−Y) # gradient update

S← proxγhS (S) # proximal update

(2) Update A with S fixed
γ ← 2ν∥S⊤S∥−1

ℓ2

A← A− γ∇AD (Y,AS) = A− γ (AS−Y)S⊤ # gradient update

A← proxγhA(A) # proximal update

Outputs: mixing matrix A, sources S

proximal operator of the related regularization term (see Alg. 6 for its application in
SBSS).
The pALS algorithm has a very low computational cost when both the minimization
of the data-fidelity term and the proximal operators have explicit formulations, like
in SBSS. As such, it was among the first algorithms employed for source separation
[Paatero and Tapper, 1994]. The main drawback of pALS is that it has no proof of
convergence; in fact, it is not even shown that the stabilization point, when it exists,
is a local minimizer of Eq. (1.11).

Algorithm 6 Projected alternating least squares (pALS) for SBSS

Inputs: data Y, starting point A, sparsifying transform W, thresholds
Λ

while convergence not reached do

(1) Update S with A fixed
S← argminSD(Y,AS) = A+Y # least-square update

S← proxhS (S) # proximal update

(2) Update A with S fixed
A← argminAD(Y,AS) = YS+ # least-square update

A← proxhA(A) # proximal update

Outputs: mixing matrix A, sources S
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1.3.3.4 A particular pALS algorithm: Generalized morphological compo-
nent analysis

This section presents the Generalized morphological component analysis (GMCA)
framework [Bobin et al., 2007, Bobin et al., 2015, Kervazo, 2019]. Built upon the
pALS scheme, GMCA proposes automatic parameter tuning strategies and heuristics,
making it particularly reliable and easy to use in practice. Incidentally, the source
separation methods developed in this thesis are based on GMCA.

Morphological diversity The principle of morphological diversity was first in-
troduced in the context of Morphological component analysis (MCA) [Starck et al.,
2005]. The sources were assumed to be sparse in different domains, allowing for their
unmixing.
The concept of morphological diversity was extended for sources that are sparse in
the same representation. Recall that due to the sparsity assumption, each source is
encoded in a limited number of active samples when expressed in the transformed
domain. This time, morphological diversity assumes that these few active samples
are diverse from one source to another, i.e., they are located in different positions or
have sufficiently disjoint support. We note that real physical sources often verify this
property (at least those from different physical processes).
The gist of GMCA is to use these samples to disentangle the mixture; as they originate
from only one source, they are particularly discriminating for the unmixing.

Adaptive hyperparameter setting The source identification and unmixing is
made possible thanks to the source thresholding induced by the ℓ1-penalization. The
thresholding parameters in Λ play a central role for the robustness of the pALS
minimization scheme:

• if they are too low:

– the algorithm is burdened with uninformative samples for the unmixing (in
general, the low amplitude samples are not discriminating as they share
the same support between the sources),

– the noise from the data is not sufficiently removed, which is also likely to
interfere with the unmixing.

• if they are too high, too few samples are kept, which creates a lack of statistics
and makes the separation problem more ill-posed.

The strength of GMCA lies in proposing an automatic thresholding strategy. For the
sake of clarity, let us assume in this paragraph that the sources are sparse in the direct
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domain (i.e., W = I), noting that the principle is easily extendable to the general
case. Consider that the GMCA algorithm has stabilized to a point (A(∞),S(∞));
denoting (A⋄,S⋄) the ground-truth solution, the estimate of the sources after the
least-square update reads:

Ŝ = A(∞)+Y

= A(∞)+A⋄S⋄ +A(∞)+N

≈ S⋄ +A⋄+N,

(1.18)

assuming that the algorithm has converged to the ground truth mixing matrix (A(∞) ≈
A⋄). Ŝ is therefore composed of a sparse term, S⋄, and a Gaussian noise term, A⋄+N,
whose noise level depends on the matrix row. In this regard, let {σ(i)}i∈[1...I] denote
the noise term’s standard deviations per row.

The thresholding allows cutting the noise term while having a limited impact on
the (sparse) term of interest S⋄. A standard rule for the choice of the thresholding
parameter in such context – denoising a sparse signal – is to fix it proportional to the
noise level, leading to:

Λi: = κσ(i) 1, (1.19)

with κ a hyperparameter. For example with κ = 3, a sample of Ŝ whose amplitude
is lower than 3σ(i) has more than 99% chance of being noise.

The {σ(i)}i can be estimated numerically using the Median absolute deviation
(MAD) estimator. The MAD is a metric of the variability of a dataset; applied to a
vector n, it is defined by:

MAD (n) := median (|n−median (n)|) . (1.20)

If n is normally distributed with standard deviation σ, the MAD empirically relates
to σ by σ ≈ 1.48MAD(n). The MAD is robust to sparse outliers, it can therefore be
used to estimate the standard deviations {σ(i)}i directly from Ŝ:

MAD
(
Ŝi:

)
= MAD

(
S∗
i: +

[
A⋄+N

]
i:

)
≈ MAD

([
A⋄+N

]
i:

)
≈ 1

1.48
σ(i). (1.21)

Yet, using Eq. (1.21) to derive the noise levels and ultimately the thresholds
requires knowledge of Ŝ and, therefore, the ground-truth mixing matrix A⋄, which is
precisely unknown. The solution proposed by GMCA to avoid this obstacle is to set
the thresholds at each iteration with respect to the noise level in the current least-
square estimate of the sources (i.e., A(n−1)+Y at iteration n). Altogether, this results
in the following thresholds at iteration n:

Λ
(n)
i: =

κ

1.48
MAD

([
A(n−1)+Y

]
i:

)
1. (1.22)
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Decrease of the thresholds The argument of the MAD in Eq. (1.22) writes

A(n−1)+Y = A(n−1)+A⋄S⋄+A(n−1)+N. During the first iterations, the mixing matrix
estimate is likely far from the solution; thus, A(n−1)+A⋄ ̸= I, such that A(n−1)+A⋄S⋄

may not be sparse. Consequently, the MAD overestimates the noise levels {σ(i)}i,
resulting in high thresholds. This phenomenon is actually beneficial, as it leads to
keeping the highest amplitude samples only, which are precisely the most discrimi-
nating for determining the mixing directions of A. From iteration to iteration, as the
estimate of A is refined, A(n−1)+A⋄S⋄ becomes sparser, and the thresholds decrease.

In practice, this decay of the thresholds dramatically improves the robustness
of the separation process with respect to the spurious local minima. Beyond the
MAD, a specific threshold decreasing process is also implemented. At each iteration,
the thresholds are further increased to keep a specific percentage K of the most
significant amplitude samples which are above the thresholds determined by the noise
level (Eq. 1.21). The percentage K is increased linearly at each iteration from 0 (or,
more precisely, a very small percentage so as not to cut off the entire signal) to a
user-defined Kmax. This procedure provides an additional implicit regularization by
selecting only the most meaningful samples. In this regard, Kmax sets the intensity of
the regularization; more specifically, the smaller the Kmax, the slower the decrease of
the thresholds and the greater the regularization. Assuming that the coefficients of
A(n−1)+Y are sorted in order of descending modulus, this procedure is implemented
by:

Λ
(n)
i: =

∣∣∣∣[A(n−1)+Y
]
ip0

∣∣∣∣1, (1.23)

with p0 = ⌊K card({p, |[A(n−1)+Y]ip| ≥ κ
1.48

MAD([A(n−1)+Y]i:)})⌋.

ℓ1-reweighting The soft-thresholding induced by the ℓ1-penalization introduces a
bias in the estimation of the sources. This phenomenon can be reduced by resorting
to a ℓ1-reweighting scheme [Candès et al., 2008]. Basically, it amounts to replacing
the ℓ1-penalty on the sources in the cost function by a log-sum penalty. In prac-
tice, the implementation of ℓ1-reweighting consists in deriving sample-wise thresholds
based on the samples’ value; the greater the expected sample’s amplitude, the smaller
the threshold and thus the smaller the bias. Denoting λ

(n)
i the initial non-sample-

dependent threshold of source i at iteration n, the ℓ1-reweighted threshold for source
i at sample p is given by:

Λ
(n)
ip =

λ
(n)
i

1 +

∣∣∣S(n−1)
ip

∣∣∣
λ
(n)
i

. (1.24)

Since the starting point is likely to be quite far from the sought-after sources, the
ℓ1-reweighting scheme is only applied when the algorithm is stabilized, in order not
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to favor spurious solutions.

Dealing with a multiresolution representations Multiresolution representa-
tions (e.g., wavelets, curvelets, to only name two) are versatile and yet effective an-
alytic signal representations that are well adapted to provide sparse representations
for a wide range of natural data. As detailed in [Starck et al., 2010], such signal
representations decompose the data into one coarse scale and several detail scales.
The latter bears invaluable information to disentangle the sources while the former
is a mere low frequency approximation of the data that is useless for the separation
process. Therefore, the coarse scales of the data are generally removed for the esti-
mation of the mixing matrix. In addition, the thresholding is not performed on the
coarse scale, since it not sparse by nature.

The GMCA algorithm is summarized in Alg. 7 in the case of a multiresolution
representation. The starting mixing matrix has a very limited impact on the finale
solution, it can either be chosen randomly or from a PCA estimation. The choice
of the stopping criterion is also of little importance, one can for example choose a
relative variation on the estimated sources (e.g., ∥S(i) − S(i−1)∥2/∥S(i)∥2 ≤ ϵ, with
ϵ = 1e−6) coupled with a maximum number of iterations in the unlikely event where
the algorithm cycles (e.g., nmax = 200).

Thanks to the algorithm’s adaptive strategies, the choice of the few hyperparame-
ters is relatively straightforward. The threshold parameter κ is generally set ranging
from 1 to 3, depending on the sparsity of the expected sources (κ = 3 for very sparse
sources, κ = 1 for approximately sparse sources). Concerning the maximum support
of the sources, Kmax = 0.5 is suitable in practice for a large class of signals. Lastly,
the minimum number of iterations, which affects the decrease of the thresholds, must
be large enough to avoid local minima; it can typically be set to nmin = 100.

1.4 Learning-based techniques

We identify two limitations of BSS algorithms when applied to the analysis of multi-
spectral data in physical applications.
The first limitation is that BSS algorithms do not guarantee the interpretability of
separation results, owing to their completely unsupervised nature. For example, this
manifests in approximately separated sources, i.e., contaminated by residuals in the
form of leakage from other sources or in components that are not identified at all.
The second limitation concerns the adaptability of BSS algorithms. The regular-
izations employed, namely independence, non-negativity and sparsity, are not very
flexible and difficult to adapt to the nature of the signals to unmix. However, a regu-
larization that increases the contrast between the components is essential to promote
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Algorithm 7 Generalized morphological component analysis (GMCA) for sources
which are sparse in a multiresolution representation
Inputs: data Y, number of sources I, multiresolution representation (with S detail
scales of analysis operator Wd, one coarse scale of analysis operator Wc & a syn-
thesis operator M), thresholding parameters κ & Kmax, min. number of iterations nmin

n← 0

Yd ← YWd
⊤ # detail scales of the data

A(0) ← PCA(Y, I)

while convergence not reached do

n← n+ 1

(1) Update S with A fixed

(1-i) Least-square update

S(n) ← argminSD(Y,A(n−1)S) = A(n−1)+Y

(1-ii) Proximal update

(1-ii-a) Determination of the thresholds

Sd
(n) ← S(n)Wd

⊤ # detail scales of the sources

Estimate the noise levels per source and per detail scale {σ(i,s)}i∈[1...I],s∈[1...S] using
the MAD

K(n) ← Kmaxmin(n/nmin, 1) # % of significant samples kept

Derive the thresholds {λ(i,s)}i∈[1,...,I],s∈[1,...,S] w.r.t the noise levels so as to keep only

K(n)% of the most significant samples per scale, and write them in Λ(n)

if n > nmin then

Λ(n) ← Λ(n) ⊘ (1 + |Sd
(n−1)| ⊘Λ(n)) # perform ℓ1-reweighting

(1-ii-b) Soft-thresholding

Sd
(n) ← TΛ(n)(Sd

(n))

(1-ii-c) Non-negativity constraint

Sc
(n) ← S(n)Wc

⊤ # coarse scales of the sources

S(n) ← [Sd
(n)Sc

(n)]M⊤ # synthesis of the sources

S(n) ← ΠOS (S
(n))

(2) Update A with S fixed

(2-i) Least-square update

Sd
(n) ← S(n)Wd

⊤ # detail scales of the sources

A(n) ← argminAD(Yd,ASd
(n)) = YdSd

(n)+

(2-ii) Proximal update

A(n) ← proxhA(A
(n))

Outputs: mixing matrix A, sources S



24 A quick review of blind source separation

their separation.

Thanks to its fine modeling capabilities, machine learning has recently proven
to be a particularly powerful technique for solving specific inverse problems (e.g.,
denoising, deconvolution) and has been the subject of numerous studies [McCann
et al., 2017].
In this respect, learning-based approaches could address the limitations identified
above in the context of BSS. However, little research has been conducted in this
area to this day. As we have seen, BSS is a particularly challenging problem with
interdependent variables; learning-based approaches are likely more difficult to value.
In this section, methods that incorporate machine learning in BSS are reviewed.

End-to-end separation methods The first class of methods focuses on separating
the sources directly from their mixture using neural networks (e.g., with generative
adversarial networks [Subakan and Smaragdis, 2018], with deep generative priors
[Jayaram and Thickstun, 2020]). Most of the techniques proposed so far deal with
the single-channel case, which is severely underdetermined and whose stakes differ
substantially from the multichannel case we wish to address. Among the few multi-
channel source separation methods, [Kameoka et al., 2019] introduces a multichannel
variational autoencoder (VAE), which builds upon a set of conditional VAEs (one per
expected source) to identify and retrieve the sources.

It is worth noting that autoencoders have also been used to perform nonlinear in-
dependent component analysis [Brakel and Bengio, 2017, Hyvärinen et al., 2019]. The
gist is to learn a non-linear mapping (a neural network) towards a latent space with
independent features. The encoder can then be used to separate mixtures composed
of independent sources – the non-linear aspect comes from the neural network that
the encoder constitutes. This is probably a promising approach to tackle non-linear
BSS problems, for which methods remain scarce today (and that are out of the scope
of this thesis).

The main drawback of these end-to-end methods is that they do not consider
the mixture model nor necessarily the noise statistics, which is crucial in scientific
applications. In addition, they only work with identified mixture classes that must
be included in the learning stage.

Learning the priors to unmix Another way of incorporating machine learning
in BSS is to combine a standard variational approach, i.e., based on minimizing a
cost-function, with a learned prior. This makes it possible to leverage the knowledge
of the mixing model and the noise statistics, as well as the modeling capabilities of
machine learning.

In this respect, research was primarily conducted in the specific framework of audio
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source separation; for example in [Nugraha et al., 2016] the sources are iteratively
refined by a neural-network-based denoiser within a standard unsupervised source
separation scheme.

Unrolling blind source separation Deep unrolling or deep unfolding was initially
proposed to accelerate classical iterative algorithms. In brief, it consists in replacing
the updates of an iterative scheme (typically derived from a variational approach) with
layers of a neural network [Monga et al., 2021]. For similar performance, the number
of layers needed in the network is significantly reduced compared to the number of
iterations of the iterative algorithm. Indeed, it can be thought that the updates
are optimized during the network’s learning. An advantage that gains importance
concerns the network’s interpretability, as its architecture stems from a variational
framework.
Several algorithms have been successfully unrolled in the context of BSS, such as MU
[Nasser et al., 2022] and PALM [Fahes et al., 2022].

1.5 Performance metrics for BSS

Facing a bivariate problem, two performance metrics will be used each time to evaluate
the estimation quality of BSS algorithms, one for the mixing matrix and the other
for the sources. The metrics will be expressed on an inverse logarithmic scale for the
sake of precision (so that the higher the metrics, the more accurate the estimates).

1.5.1 Mixing matrix

Spectral angular distance The spectra that constitute the mixing matrix can be
evaluated individually with the spectral angular distance (SAD). This metric stems
from an angular interpretation, in which the estimated and ground truth spectra are
considered as geometrical vectors. The SAD associated to the ith spectrum in a
mixing matrix A is defined by:

SAD(i) := −10 log10
(
arccos

(
A:i

⊤A⋄
:i

∥A:i∥2 ∥A⋄
:i∥2

))
, (1.25)
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with A⋄ the ground truth mixing matrix. We define the overall SAD as the geometric
mean over all spectra in A:

SAD := −10 log10

( I∏
i=1

arccos

(
A:i

⊤A⋄
:i

∥A:i∥2 ∥A⋄
:i∥2

)) 1
I


:=

1

I

I∑
i=1

SAD(i)

(1.26)

Mixing matrix criterion The mixing matrix criterion, denoted CA, is a global
criterion over all spectra that is given by:

CA := −10 log10
(
mean

(
|A+A⋄ − I|

))
:= −10 log10

(
1

I2

I∑
i1=1

J∑
i2=1

∣∣A+A⋄ − I
∣∣
i1i2

)
.

(1.27)

The SAD has the advantage of quantifying the estimation quality of each spec-
trum, which may be crucial in some cases (e.g., to assess the impact of disparately
emitting components further), but the derived global criterion is somewhat ad hoc.
The CA is, on the contrary, a global metric; based on a pseudo-inverse calculation, it
is very sensitive to poorly separated spectra, which therefore correlate.

1.5.2 Sources

Signal-to-distortion ratio Estimation errors in the source domain can have sev-
eral origins that may be of interest to quantify. In this regard, [Vincent et al., 2006]
proposes to decompose the ith estimate of a source Si: as follows:

Si: = st
(i) + ei

(i) + en
(i) + ea

(i), (1.28)

where st
(i) is the term that actually corresponds to the sought-after source, and ei

(i),
en

(i) and ea
(i) are error terms originating respectively from the other sources, the

noise, and from other causes (e.g., thresholding artifacts). More specifically, denoting
P(·) the orthogonal projector on the subspace generated by the elements given in
subscript, each term is given by:

• st
(i) := PS∗

i:
(Si:),

• ei
(i) := PS⋄(Si:)− st

(i),
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• en
(i) := PS⋄,N(Si:)− ei

(i),

• ea
(i) := Si: − PS⋄,N(Si:).

Four performance metrics are derived from this decomposition, namely the signal-to-
distortion ratio (SDR), that accounts for all contaminations in Si:

SDR(i) := −10 log10
(
∥ei(i) + en

(i) + ea
(i)∥22

∥st(i)∥22

)
. (1.29)

the signal-to-interference ratio (SIR), which assesses in particular the contaminations
coming from the other sources:

SIR(i) := −10 log10
(
∥ei(i)∥22
∥st(i)∥22

)
, (1.30)

the signal-to-noise ratio (SNR), that evaluates specifically noise leakages:

SNR(i) := −10 log10
(

∥en(i)∥22
∥st(i) + ei(i)∥22

)
, (1.31)

and the signal-to-artifact ratio (SAR), which accounts for the remaining contamina-
tions:

SAR(i) := −10 log10
(

∥ea(i)∥22
∥st(i) + ei(i) + en(i)∥22

)
. (1.32)

Similarly to the SAD, we define a global SDR, SIR, SNR and SAR for all sources,
using geometric means.

Normalized mean square error While being particularly informative, the source
metrics defined above are not adapted for mixture models that include instrumental
responses. In that case, we will resort to a more basic normalized mean square error
(NMSE). We define both a source-dependent NMSE:

NMSE(i) = −10 log10
(
∥Si: − S∗

i:∥22
∥S⋄

i:∥22

)
, (1.33)

as well as an overall NMSE, which is the geometric mean of the source-dependant
NMSEs.
When working with heterogeneous data in terms of resolution, it is common in phys-
ical applications to reduce the resolution of the formed images to that of the low-
resolution channel to attenuate potential deconvolution artifacts. Consider a low-pass
kernel h that brings the resolution to a user-defined one; the NMSE is adapted as
follows:

NMSE(i) = −10 log10
(
∥h ∗ (Si: − S∗

i:) ∥22
∥h ∗ S⋄

i:∥22

)
, (1.34)

and likewise for the global metric.
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Chapter 2

Introducing learned constraints in
blind source separation

2.1 Introduction

When applied to real data, one of the challenges of BSS is to provide physically inter-
pretable separation results. In particular, it is of paramount importance that leakages
between components remain limited, whether in the source or spectral domain.

The multispectral datasets which are analyzed often concern processes that are at
least partially known, and in this respect, resorting to totally unsupervised approaches
may not be the most adequate. Therefore, it makes sense to develop semi-supervised
separation methods that account for prior knowledge of sought-after components; in
this chapter, we propose a way of introducing learning-based priors in source separa-
tion.

First, we discuss how to include learned priors that efficiently discriminate between
components in BSS. We then introduce the interpolatory autoencoder (IAE), which is
a learning-based approach that allows building regularizations for unmixing problems,
including BSS. This leads us afterward to propose a semi-blind source separation
framework that associates the SBSS variational approach with priors learned by the
IAE. The resulting algorithm, named semi-blind GMCA (sGMCA), is finally tested
on realistic astrophysical datasets. It is shown to reject leakages efficiently, allowing
for improved separation.



30 Introducing learned constraints in blind source separation

2.2 Towards a semi-blind source separation frame-

work

2.2.1 Constraining the spectra

In BSS, the role of regularization is to gain contrast between components to allow
their unmixing. So far, we have considered the sparsity of the sources in a trans-
formed domain (and the non-negativity of the sources and the mixing matrix, but
this constraint is not particularly restrictive). However, we identify two limitations
with the aim of tackling astrophysical applications.

First, sources may correlate spatially; the morphological diversity assumption be-
ing not strictly respected, SBSS algorithms struggle to separate them clearly [Pic-
quenot et al., 2019]. Second, the instruments may have a low spatial resolution,
either natively (e.g., Athena, which will have an excellent spectral resolution but will
produce images of few pixels) or due to measurement settings (e.g., the interferome-
ters in low radio frequency bands). SBSS algorithms can no longer rely solely on the
sparsity of the sources, which requires high spatial frequency information. A solution
could be to learn new representations for the sources, but this seems complicated as
they generally present a large variability.

Therefore, we resort to constraining the spectra that constitute the mixing matrix.
Indeed, contrary to sources, spectra in multispectral data generally present a lower
variability and exhibit strong structures (see examples of realistic spectra in Fig. 2.1),
which makes them particularly suitable for their modeling with machine learning.

To do so, we choose to employ autoencoders to constrain the sought-after spec-
tra to belong to learned, low-dimensional manifolds. The resulting regularization is
expected to reject significantly leakages, allowing for an improved disentanglement
between the components. In addition, enforcing spectra to belong to learned and
physically interpretable manifolds is of prime interest with a view to tackling physi-
cal applications.

2.2.2 Machine learning and blind source separation

End-to-end methods The first way to integrate machine learning into BSS is
with end-to-end separation, which directly estimates the sources and mixing process
from the observed mixtures [Kameoka et al., 2019, Jayaram and Thickstun, 2020].
Nonetheless, such methods are not well adapted to account for the exact mixture
model and the noise statistics, which is key in scientific applications. Moreover, in
the context of BSS, all possible combinations of A and S must be considered during
learning, which can quickly become voluminous.
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(c) Gaussian line models

Figure 2.1: Ensemble of three emission models, illustrating the low variability of
spectra.

Consequently, hybrid techniques that combine standard variational approaches
[Scherzer et al., 2008], i.e., based on the minimization of a cost-function, and learned
priors are better suited. In this framework, designing an effective BSS algorithm with
interpretable solutions requires building regularizations for the mixing matrix and/or
the sources that precisely account for the properties of the sought-after signals.

Associating a variational approach with a learning-based regularization In
the literature, combining variational approaches for inverse problems with
regularization-learning procedures comes in different flavors. In [Adler and Öktem,
2017, Adler and Öktem, 2018, Gilton et al., 2020, Yang et al., 2016], the proposed
learning architecture builds upon a residual network to mimic standard proximal al-
gorithms, in which regularization learning is one element of the learning scheme. So
far, it is unclear whether this approach is well-suited for multiconvex problems (i.e.,
convex according to each variable when the other variables are fixed) such as BSS.
A different way of solving inverse problems with learned regularizations consists in
first inverting the observation operator (e.g., the mixing matrix, when the sources
alone are estimated) with a fast and simple procedure (e.g., least-square solution)
and then clean inversion artifacts thanks to a learned denoiser. This technique has
been investigated both with standard convolutional networks denoisers [Hammernik
et al., 2018, Jin et al., 2017, Romano et al., 2017, Sureau et al., 2020] or with gen-
erative models with adversarial training [Lunz et al., 2018]. The underlying denoiser
depends on the linear operator to be inverted, and in the case of BSS, this means
that it should depend on the sources and the mixing matrix that are precisely the
variables to be estimated.
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Prior work in BSS Incorporating learning-based priors in classical BSS methods
is not novel. Research was mostly conducted in the specific framework of audio source
separation. A neural-network-based denoiser has been used in [Nugraha et al., 2016]
to refine the source estimate within a standard source separation scheme. Generative
models built upon variational autoencoders have also been exploited in the context of
single channel source separation [Narayanaswamy et al., 2020]. However, these meth-
ods are not easily transposable for the multichannel BSS problem that we propose
to tackle. Moreover, as said above, regularizing the sources might not be constrain-
ing enough to efficiently discriminate between the components and limit leakages,
especially in the presence of unknown morphologies or statistical distributions.

2.3 The interpolatory autoencoder

In this subsection, we present the interpolatory autoencoder (IAE), which is an ap-
proach that we first proposed to build learning-based regularizations for unmixing
problems, and that we will use thereafter for semi-blind source separation.

2.3.1 Principle

2.3.1.1 Learning to travel on a manifold

From a general viewpoint, the manifold hypothesis [Fefferman et al., 2013] states that
natural signals, such as spectra in the context of BSS, lie on low-dimensional manifolds
embedded in larger spaces. In contrast to learning the manifold structure straight
from the data, an interesting approach proposed in [Culpepper and Olshausen, 2009]
consists in estimating how to travel on it. The gist of this method is to learn a
transport operator from pairs of samples. The approach has recently been combined
with a variational autoencoder architecture to build a generative model allowing to
learn a latent space with a topology of increased interpretability [Connor and Rozell,
2020].

Inspired by this seminal work, we instead build upon the availability of examples,
whether derived from simulations or measurements, which can be exploited to learn
an efficient generative model from a reduced number of training samples. In this
context, the first ingredient of the proposed method is to build some regularization
by exploring the manifold from these examples, which we call ”anchor points”, rather
than trying to capture the overall manifold structure. This will be conveniently
carried out by building new samples on a manifold as an interpolation or barycenter
of the anchor points.
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2.3.1.2 Preliminary: affine hulls

We provide a brief mathematical background on affine spaces and, more particularly,
affine hulls, which allows us to define barycenters and barycentric projections.

The affine hull aff(K) of a set K ⊂ RJ is the set of all affine combinations, also
referred to as barycentric combinations, of elements of K, i.e.:

aff (K) :=

{
N∑
n=1

λ(n)α(n), N > 0,α(n) ∈ K, λ(n) ∈ R,
N∑
n=1

λ(n) = 1

}
. (2.1)

Illustrations of affine hulls are shown in Fig. 2.2. Thereafter, the elements of K
will be considered affinely independent, such that each element of aff(K) is uniquely
decomposed by affine combination of elements of K; in other words, K constitutes
a basis of aff(K). Assuming that card(K) = N ≥ 2, let us form the matrix Φ :=
[α(1) . . .α(N)] ∈ RN×J constituted by the elements of K. The definition of the affine
hull with the matrix-vector framework reads as follows:

aff (K) = {Φλ, λ ∈ S} , (2.2)

where S := {λ ∈ RN ,1⊤λ = 1}. The elements of λ are called barycentric coordinates.

•α(1)
•
α(2)

•
x

•
Πaff(K)(x)

aff(K)

(a) R2

aff(K)

•α(1)

•
α(2)

•
α(3)

•
x

•
Πaff(K)(x)

(b) R3

Figure 2.2: Illustrations of affine hulls and barycentric projections. (a) Πaff(K)(x) =
−0.87α(1) + 1.87α(2), thus the barycentric coordinates of the projection are λ =
(−0.87, 1.87)⊤. (b) Πaff(K)(x) = 1.10α(1) − 0.47α(2) + 0.38α(3), thus the barycentric
coordinates of the projection are λ = (1.10,−0.47, 0.38)⊤.

Affine hulls being convex sets, it is possible to define orthogonal projections onto
them. They are given by:

Πaff(K)(x) = Φλ s.t. λ = argmin
λ∈S

1

2
∥Φλ− x∥2

= Φ+x+
1− 1⊤Φ+x

1⊤ (Φ⊤Φ)−1 1

(
Φ⊤Φ

)−1
1.

(2.3)
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Hereafter, the projection onto an affine hull will be called barycentric projection, as
it amounts to finding the closest barycenter to the input vector.
Alternatively, the barycentric coordinates in the projection can be approximated by:

λ ≈ ΠS
(
Φ⊤x

)
, (2.4)

where the projection on S is further approached by a rescaling (ΠS(λ) ≈ λ/(1⊤λ)).

2.3.1.3 Architecture of the interpolatory autoencoder

Let A = {α(n)}n∈[1...N ] ⊂ M be a set of N anchor points of a manifoldM that one
seeks to model. In order to learn how to travel onM by computing barycenters of the
anchor points, a neural-network-based autoencoder is introduced; let ϕ : RJ → RJ ′

and ψ : RJ ′ → RJ be the forward encoder and the backward decoder, respectively.
The architecture of the IAE is represented in Figure 2.3. First, ϕ encodes the input

sample and the anchor points in the latent space, then the code of the input sample
is projected on the affine hull of the codes of the chosen anchor points, and finally, ψ
decodes the sample in the direct space. The encoder and decoder are optimized so to
minimize the reconstruction error of a given training dataset T ⊂M, that is:

argmin
ϕ,ψ

∑
t∈T

∥∥t− ψ ◦ Πaff(ϕ(A)) ◦ ϕ (t)
∥∥2
2
, (2.5)

where ϕ(A) is a shortcut for {ϕ(α(n))}n. In doing so, the manifold tends to be
linearized in the latent space (see Fig. 2.4).
Once the autoencoder is learned, the manifold can be approximated as the decoding
in the direct space of the affine hull of the encoded anchor points, that is:

M≈
{
x ∈ RJ ,∃λ ∈ S,x = ψ (Φλ)

}
, (2.6)

where now Φ := [ϕ(α(1)) . . . ϕ(α(N))] ∈ RN×J ′
to match the IAE’s architecture.

2.3.2 Application

The IAE can be used in unmixing problems to constrain the sought-after signals to
belong to learned manifolds. To do so, two projection operators on manifold are
defined.

Fast interpolation A first projection, named fast interpolation, is defined as a
forward pass in the autoencoder:

Π̌M (x) := ψ ◦ Πaff(ϕ(A)) ◦ ϕ (x) . (2.7)
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Figure 2.3: Diagram of the interpolatory autoencoder (IAE). It is recalled that λ is the
vector with the barycentric coordinates associated to x, andΦ = [ϕ(α(1)) . . . ϕ(α(N))].
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Figure 2.4: Illustration of the IAE data modeling and the barycentric span projection.
In this example, the manifold has one dimension; two anchor points are therefore
required.
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The corresponding barycentric coordinates are λ̌ := argminλ∈S
1
2
∥Φλ−ϕ(x)∥2, whose

solution is given in Eq. (2.3). The advantage of this projection is that it is fast, as it
is based on analytical formulations only. However, it does not guarantee the accuracy
of the reconstruction, as the encoder ϕ is not aimed to be robust to contaminations,
either from measurement noise or external interference. This is why a second, more
precise projection is implemented.

Generative modeling Before this, we note that the IAE allows us to derive a
generative model. It is obtained by exploring the latent domain:

g(λ) := ψ(Φλ), λ ∈ S, (2.8)

which amounts to decoding barycenters of the encoded anchor points. Unlike classical
generative models, for example derived from variational autoencoders, the proposed
generative model has no statistical basis, but it is not needed for the considered
application.

Barycentric span projection The second projection on manifold, called barycen-
tric span projection, is defined by:

ΠM(x) := g(λ) s.t. λ = argmin
λ∈S

1

2
∥g(λ)− x∥22 . (2.9)

The projection boils down to finding the latent parameters which minimize the Eu-
clidean distance between the input x and the image space of the generative model,
i.e., the decoding of the affine hull of the encoded anchor points. The optimization
problem is a constrained non-linear least-square problem, which does not admit a
closed-form solution. It can nonetheless be estimated by a gradient-descent-based
algorithm (e.g., the Adam optimizer) since g is differentiable; the sum-to-one con-
straint can be addressed by defining an element of λ as one minus the sum of the
other elements.
In physical applications, M is generally not convex, and thus neither is the projec-
tion. Therefore, the choice of the initialization of the descent algorithm is crucial,
as the quality of the solution depends on it. The barycentric coordinates λ̌ of the
fast interpolation seen above are generally accurate; therefore, when they are used
to initialize the descent algorithm of the barycentric span projection, the optimiza-
tion tends to be locally convex. This is particularly appealing when integrating the
barycentric span projection as a regularization scheme for unmixing problems.

2.4 The sGMCA algorithm

We now return to the BSS problem. As we concluded, we will keep the variational ap-
proach but constrain the spectra of the mixing matrix to belong to learned manifolds;
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for this purpose, we will use the IAE.

2.4.1 Principle

The proposed source separation algorithm is based on a the SBSS framework. In
accordance with Chapter 1, the considered mixture model is Y = AS +N, and the
cost function writes:

argmin
A,S

D (Y,AS) + hS (S) + hA (A) , (2.10)

where, in accordance with Chapter 1, D(Y,AS) = ∥Y − AS∥22/2 and hS(S) =
∥Λ ⊙ (SW⊤)∥1 + ιOS

(S) with Λ the sparse hyperparameters, W is a sparsifying
transform and OS is the non-negative orthant for source matrices. The difference
concerns the regularization term on the mixing matrix hA(·) that accounts for the
IAE modeling of the spectra, as discussed below.

Application of the generative models A first approach would amount to op-
timizing the spectra directly in the latent space of the IAE models, leading to the
following cost function:

min
S,{λ(i)}

i∈[1...I]

1

2
∥Y −AS∥22 +

∥∥Λ⊙ (SW⊤)∥∥
1
s.t. ∀i ∈ [1 . . . I], A:i = g(mi)

(
λ(i)
)
,

(2.11)
where mi is the index of the IAE spectrum model which is associated to component
i, and thus g(mi)(·) is the spectrum generative model associated to IAE model mi.
However, the optimization according to the {λ(i)}i∈[1...I] is problematic in two re-
spects. First, the sources intervene in the application of the models, which may pose
issues of convergence as the impact of an estimation bias of S on the {λ(i)}i∈[1...I] is
not necessarily well controlled. Second, the computational cost is high because the
optimization requires inverting the sources.
Rather, we take the IAE models into consideration by constraining the spectra to be-
long to the image spaces of the IAE models (which are supposed to approximate the
underlying spectrum manifolds {M(mi)}i∈[1...I]). To that end, the following constraint
term on the mixing matrix can be considered:

∑
i∈[1...I] ιM(mi) (A:i). This makes it

possible to decouple the application of the models from the sources, which facilitates
the problem resolution.

The semi-blind case Until now, we supposed that all the spectra of the mixing
matrix were known and modeled. However, in the more general semi-blind approach,
we suppose that among the I elementary components, M have a spectrum modeled
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by an IAE model and I −M are fully unknown. Let I ⊂ [1 . . . I] be the indices of the
modeled components.
If a spectrum is not modeled (i.e., i /∈ I), it is constrained to belong to Ka := {a ∈
RJ , ∥a∥2 ≤ 1,∀j, aj ≥ 0}, as above in SBSS (see Section 1.3.3). This constraint
is reminded to ensure the spectra’ non-negativity and prevent the scale degeneracy
inherent to SBSS.
The constraint term on the mixing matrix finally reads as:

hA (A) :=
∑
i∈I

ιM(mi) (A:i) +
∑
i/∈I

ιKa (A:i) . (2.12)

To summarize, sGMCA seeks the solution to the following problem:

min
A,S

1

2
∥Y −AS∥22+

∥∥Λ⊙ (SW⊤)∥∥
1
+ιOS

(S)+
∑
i∈I

ιM(mi) (A:i)+
∑
i/∈I

ιKa (A:i) . (2.13)

2.4.2 Minimization scheme

The sGMCA method is described in Algorithm 8; it is based on GMCA, which, as we
have seen, offers a flexible framework and provides robust and adaptive heuristics.
The sources and the mixing matrix are initialized with GMCA. At this point the solu-
tion is approximate; the mixing matrix and the sources are likely to be contaminated
by residuals of other components (referred to as ”leakages”). S and A are updated
alternatively and iteratively until convergence is reached. According to the projected
alternating least-square scheme, each update comprises a least-square estimate, so
as to minimize the data-fidelity term D, followed by the application of the proximal
operator of the corresponding regularization term. The procedure is stopped when ei-
ther the estimated sources have stabilized (∥S(k)−S(k−1)∥2/∥S(k)∥2 ≤ ϵ with ϵ = 10−6

in practice) or a maximal number of iterations have been reached (50 in practice).

Equation (2.13) is non-convex. It is nevertheless convex with respect to S when
A is fixed. This is however not the case for A when S is fixed, since the manifolds
{M(mi)}i∈I are unlikely to be convex. Fortunately, if the first guess obtained by
the least-square estimate is decent, and if the IAE generative models are accurate
enough, the projections tend to be locally convex (see results in Section 2.5.1). Being
a non-convex problem, convergence to a critical point can at best be guaranteed. As
far as we know, it is not proven that pALS converges, and in this respect, neither
does sGMCA. However, in all tests performed, the algorithm always stabilized. We
note that the stability is sometimes not strict, as minor cycles between the update
of S and A can appear. This is most likely due to the convexity assumption of the
spectrum update, which remains approximate.
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Algorithm 8 sGMCA

Inputs: data Y, number of sources I, set of M (already trained) IAE generative
models of spectra, sparsifying representation (analysis operator W and synthesis
operator M), thresholding parameters κ and Kmax

A,S← GMCA(Y, I,W,M, κ,Kmax)
while convergence not reached do

(1) Update S with A fixed
(1-i) Least squares: S← A+Y
(1-ii) Determination of the thresholding parameters Λ
(1-iii) Regularization: S← max

(
TΛ
(
SW⊤)M⊤,0

)
(2) Update A with S fixed
(2-i) Least squares: A← YS+

(2-ii) Spectrum identification & model-to-spectrum mapping: determine I &
{mi}i∈I (see Alg. 9)
(2-iii) Constraint application:
for i /∈ I do

(2-iii-a) Projection on Ka: A:i ← ΠKa (A:i)
for i ∈ I do

(2-iii-b) Manifold projection: A:i ← ΠM(mi) (A:i)

Outputs: mixing matrix A, sources S
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2.4.3 Source update

As seen previously, following the pALS minimization scheme, the source update reads
as:

S← proxhS (A
+Y) ≈ max

(
TΛ
((
A+Y

)
W⊤)M⊤,0

)
, (2.14)

with TΛ(·) the soft-thresholding operator and M an analysis operator such that
MW = I. The thresholds Λ are set automatically according to the strategies im-
plemented in GMCA (i.e., the thresholds are set with respect to the estimated noise
level according to a ”κ-σ” rule and then adapted with a ℓ1-reweighting scheme, see
Section 1.3.3.4).

2.4.4 Mixing matrix update

2.4.4.1 Adaptation of the barycentric span projection for spectra

The projection of a spectrum a ∈ RJ on a manifold M parameterized by an IAE
model is adapted as follows:

ΠM(a) := g(λ) s.t. λ = argmin
λ∈S, ρ∈R+

1

2
∥ρ g(λ)− a∥22 . (2.15)

Compared to the earlier defined barycentric span projection (Eq. 2.9), a scale coeffi-
cient ρ has been added to account for the scale indeterminacy on a, which is inherent
to BSS.
Regarding the choice of the starting points of the underlying descent algorithm, the
choice of the barycentric coordinate vector is unchanged (λ̌) and ρ is initialized so as
to minimize ∥a− ρ Π̌M(a)∥2, yielding ρ̌ := a⊤Π̌M(a)//∥Π̌M(a)∥22.

2.4.4.2 Spectrum identification and model-to-spectrum mapping

The least-square estimate, which constitutes the first step of the mixing matrix up-
date, is equal to Ā := YS+. Before applying the mixing matrix constraint, the
following questions arise: (i) among the I spectra in Ā, which can be modeled by
the provided generative models, and (ii) more specifically, which model to associate
with which identified spectrum? In other words, it raises the question of determining
I and {mi}i∈I of Eq. (2.13).

In physical applications where only one set of data is being worked on, identifi-
cation can usually be made by hand (on the first iteration only, as the order does
not change in the subsequent iterations). Otherwise, we propose the procedure for
identifying spectra in Algorithm 9. The gist is to iteratively associate the spectrum-
model pair (m, i) that minimizes the Euclidean distance between the interference-free
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spectra and their projections on manifolds, that is:

ϵ(m,i) :=
∥∥Ā:i −Mµ− ρ̌(m,i) Π̌M(m)

(
Ā:i −Mµ

)∥∥
2
. (2.16)

Indeed, for robustness purposes, it is essential to account for the interferences that are
likely to contaminate the input spectra in Ā. This is done by subtracting the identified
spectra up to the current iteration in M, weighted by coefficients µ. These can be
determined with a coarse grid-search, which is sufficient for the sake of identification.
Likewise, the fast projection is employed as its accuracy is enough to identify spectra.

Algorithm 9 Spectrum identification and model-to-spectrum mapping

Input: mixing matrix Ā, set of M IAE generative models of spectra

Initialize empty matrix M ∈ RJ×0

I← [], IC ← [1 . . . I], M← [1 . . .M ]

for k in 1 . . .M do

i,m,µ← argmin
i∈IC ,m∈M,µ∈Rk−1

∥∥∥Ā:i −Mµ− ρ̌(m,i) Π̌M(m)

(
Ā:i −Mµ

) ∥∥∥2
Append ρ̌ Π̌M(m)

(
Ā:i −Mµ

)
to M

Append i to I, remove i from IC , remove m from M
mi ← m

Output: indices of the modeled spectra I, model-to-spectrum map {mi}i∈I

2.4.4.3 Constraint application

It is recalled that the proximal operator of the characteristic function of a convex
set is the orthogonal projection on the aforementioned set. Depending on whether a
spectrum A:i is modeled or not, the applied constraint differs:

• Unknown spectrum: projection on Ka. If a spectrum is not constrained (i.e.,
i /∈ I), the update reads as:

A:i ← ΠKa

(
Ā:i

)
=

max
(
Ā:i,0

)
max

(
1,
∥∥max

(
Ā:i,0

)∥∥
2

) . (2.17)

• Modeled spectrum: projection on manifold. If a spectrum is constrained (i.e.,
i ∈ I), it is projected on its associated manifold:

A:i ← ΠM(mi)

(
Ā:i

)
. (2.18)
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(a) Synchrotron (b) Thermal (c) Gaussian I (d) Gaussian II

Figure 2.5: Spatial templates obtained from Chandra X-ray observations of the Cas-
siopeia A supernova remnant (logarithmic scale).

2.5 Numerical experiments

In this section, the proposed method is evaluated on a realistic toy model of the Cas-
siopeia A supernova remnant observed by the X-ray space telescope Chandra1 (see
[Picquenot et al., 2019] for more details about these data). The data are composed
of I = 4 sources of size P = 346 × 346 (see Fig. 2.5), specifically one synchrotron
source (radiation of the energetic charged particles in the supernova remnant by the
synchrotron process), one thermal source (emission from a 107 K plasma including
continuum and lines emissions) and two Gaussian line emissions. The mixtures are
observed over J = 75 channels. An absorbed power-law model and a hot plasma emis-
sion model produced using the Astrophysical Plasma Emission Code (APEC [Foster
and Heuer, 2020]) convolved with the spectral response of the Chandra telescope are
used to generate the sets of synchrotron and thermal spectra (see Fig. 2.6a and 2.6b).
The emission line spectra are modeled as Gaussian kernels, with widths proportional
to the center as shown in Fig. 2.6c.

We define three experimental parameters, namely:

• the signal-to-noise ratio SNR, which is defined as the ratio of signal energy
∥AS∥22 to the noise energy ∥N∥22,

• the distance between the center of the two Gaussian line spectra δ (expressed in
terms of spectral sample), to test how the proposed method separates two com-
ponents whose spectra correlate – this happens for example when the underlying
physical processes are similar,

• the amplitude ratio k, which is a scalar by which the thermal and Gaussian
sources are multiplied, so as to unbalance the sources and test how the algorithm

1chandra.harvard.edu

https://chandra.harvard.edu
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Figure 2.6: Ensemble of three emission models. The colored thick lines are the chosen
anchor points in the context of the IAE modeling.

recovers the least energetic components, which is a common situation in physical
applications.

The sGMCA code that is used is open source (see Appendix D). To the best of
our knowledge, sGMCA is the first BSS method that makes use of a learned prior on
the mixing matrix. We compare sGMCA with two benchmark experiments:

• an oracle version of GMCA, where S (respectively A) is estimated with the
ground-truth A (respectively S); it provides an upper-bound for the recon-
struction performances,

• an alternate version of sGMCA in which the spectra are regularized with a
nearest-neighbor search among the spectra of the training sets; this experiment
allows to better highlight the benefit of the IAE regularization.

The sGMCA algorithm is also compared to three standard BSS algorithms, which
have no data-driven prior on the spectra, namely GMCA, HALS [Gillis and Glineur,
2012] and SNMF [Le Roux et al., 2015] (see Chapter 1). For the GMCA-based
algorithms, the sparsity of the sources is enforced in the starlet (i.e., an isotropic
undecimated wavelet) representation with two details scales [Starck et al., 2015].

The estimated spectra and mixing matrices are assessed with the spectral angular
distance (SAD, see Chapter 1). Concerning the sources, they are evaluated with
the signal-to-distortion, interference, noise and artifacts ratios (respectively SDR,
SIR, SNR2 and SAR, see definitions in Chapter 1). The metrics are expressed in an
inverse logarithmic scale, so the greater they are, the more accurate the estimates.

2Note that SNR in italics refers to the signal-to-noise ratio of the observed data, while SNR in
roman is the criterion.
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Parameter Value

Sync. Therm. Gauss.

Anchor points 3 3 2
Training samples 541 601 600
Validation and test samples 178 198 200
Number of epochs 10 000 10 000 100 000

Regularization parameter 0.1
Number of layers 4
Residual parameter 0.1
Learning rate 1e− 4
Solver Adam
Batch size 25

Table 2.1: Parameters of the learning stage.

2.5.1 Learning of the generative models

Before tackling the source separation problem, the generative models of the three
families of spectra need to be learned. The first step is to choose the anchor points
and their numbers. The minimum number of anchor points required by the IAE is the
dimension of the underlying manifold plus one. The thermal and synchrotron spectra
depend on two physical parameters, therefore we will select three anchor points. The
Gaussian spectra depend on one parameter only, thus two anchor points are needed.
The choice of the anchor points is in practice not particularly critical; as long as they
are not colinear, the reconstruction performances are satisfying. The anchor points
are selected by hand, so that they tend to maximize their contrasts (see Fig. 2.6).
The three sets of spectra are decomposed into training, validation and test sets. The
reconstruction performances are found to stabilize as of four layers, which is therefore
the number of layers chosen for all three models. The values of the hyper-parameters
of the IAE models are summarized in Table 2.1.

Figure 2.7 shows examples of projections of spectra from the test sets on man-
ifolds modeled by IAE, alongside with the projection errors. The spectra are well
reproduced on a reasonably wide dynamic, except for the low-amplitude samples. To
correct this, the spectra could be learned in a logarithmic scale, but it is out of the
scope of the present work. The median SAD of each type of spectra and in overall
are reported in Table 2.2. These results give the IAE modeling error bounds, that
sGMCA cannot exceed.

Figure 2.8 shows two optimization landscapes of projections on manifold, that is
Eq. (2.15) as a function of the latent parameter λ. As stated earlier, the optimization
landscape is quite convex near the solution, which allows using proximal minimization
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Figure 2.7: Examples of projections of spectra from the test sets on manifolds modeled
by IAE. Top row: spectra (solid lines: results of projection, dashed lines: ground
truth). Bottom row: projected spectra over ground-truth spectra (plotted if ground
truth greater than 1e− 4). The figures on a same row share the same ordinate range.

Spectra Sync. Therm. Gauss. Overall

SAD (dB) 25.26 25.92 24.81 25.18

Table 2.2: Median reconstruction SAD over the test sets by the IAE.
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Figure 2.8: Optimization landscapes of the manifold projections, that is
∥a− ρ∗ g (λ)∥22 as a function of λ with the ground truth ρ∗, in an inverse loga-
rithmic scale. Blue cross: result of the manifold projection, red circle: initialization
(by the fast projection). Top row: overview. Bottom row: zoom on the solution.
(a) Synchrotron model, with λ3 = 1− λ1 − λ2 to fulfill the sum-to-one constraint of
the latent parameter inherent to the IAE. (b) Gaussian model, the dashed line is the
sum-to-one constraint λ1 + λ2 = 1.

schemes as long as the initialization is decent.

2.5.2 Results

2.5.2.1 Overall results

Firstly, let us compare qualitatively sGMCA to the BSS algorithms on a typical
run. Figure 2.9 shows the estimated spectra along with the estimation errors. The
three BSS methods are particularly prone to interferences, which result in either
portions of spectra misestimated at zero or with leakages of other components, which
is problematic for astrophysical interpretations. On the contrary, sGMCA manages
to remove most interferences and recovers satisfactory spectra. Figures 2.10 and
2.11 show the estimates of respectively the synchrotron source and the Gaussian II
source, as well as the associated estimation errors. Residuals of other sources and/or
reconstruction artifacts are clearly visible in the estimation errors of the three blind
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methods. The sGMCA algorithm provides more accurate sources, whose error equally
originates from interference, noise contamination and artifacts.
Concerning computation times, sGMCA is undeniably slower than the blind methods
due to the manifold projections. For example, in the tests performed, the projection
of the four spectra takes approximately three seconds and 50 iterations are typically
necessary. In contrast, the blind methods run in a few seconds.
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Figure 2.9: Example of estimated spectra, with SNR = 40 dB, δ = 20 and k = 1.
Top row: spectra (solid lines: estimation, dashed lines: ground truth). Bottom row:
estimated spectra over ground truth spectra (plotted if ground truth greater than
1e− 4). The figures on a same row share the same ordinate range.

2.5.2.2 Impact of the experimental parameters

In order to confirm quantitatively these results, three experiments are performed, in
each of which an experimental parameter is varied. They are constituted of Monte-
Carlo trials with varying spectra (taken from the test sets) and noise realizations.
The overall results are reported in Fig. 2.12 and are commented on in the paragraphs
below.
The sparsity hyperparameter of SNMF is found to be very sensitive to the noise level,
noise realization and mixing matrix. In the reported results, a fixed mean ”good”
hyperparameter λ = 10−7 is taken.

Noise level The overall tendencies are consistent; the higher the SNR, the better
the estimations. As we had observed previously on the example, sGMCA estimates
particularly well the spectra; the gain in SAD is from a few to 10 dB compared to



48 Introducing learned constraints in blind source separation

2.25

2.00

1.75

1.50

1.25

(a) sGMCA (b) GMCA (c) HALS (d) SNMF

4.0

3.5

3.0

2.5

Figure 2.10: Example of the estimated synchrotron source, with SNR = 40 dB, δ = 20
and k = 1. Top: estimations (logarithmic scale), bottom: absolute error (logarithmic
scale). The figures on a same row share the same color scale.

GMCA, depending on the noise level. Since the sources are better disentangled, this
results in a significant gain of the SIR and thus the SDR.
The additional prior information to which the nearest-neighbor benchmark algorithm
has access leads to improved performances compared to GMCA, but not as much as
sGMCA. This emphasizes the advantage of the regularization provided by the IAE;
by modeling the manifolds on which the spectra evolve, the latter are reconstructed
much more precisely.
It is noted that the performance metrics of sGMCA and GMCA can reach a plateau
at a high SNR. According to the hyperparameter tuning strategy of GMCA and
sGMCA, the thresholds applied to the sources are low at a low noise level, inducing
an underregularization. Interestingly, the sGMCA is less sensitive to this effect, most
likely because the components are better separated.

Collinearity of the spectra Similarly to the previous experiment, sGMCA out-
performs the BSS algorithms, with appreciable gains in SAD by 10 to 20 dB and
in SDR by 5 to 10 dB compared to GMCA. When the two Gaussian spectra tend
to coincide (δ → 0) the source estimates of the GMCA-based algorithms decline be-
cause the least-square update of the sources in the minimization scheme becomes
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Figure 2.11: Example of the estimated Gaussian II source, with SNR = 40 dB, δ = 20
and k = 1. Top: estimations (logarithmic scale), bottom: absolute error (logarithmic
scale). The figures on a same row share the same color scale.

ill-conditioned. Moreover, the GMCA metrics are relatively insensitive to δ; a more
detailed analysis shows that the GMCA errors are dominated by the synchrotron
component, on which δ has indeed a negligible effect.

Unbalanced sources The reported source metrics concern only the thermal and
Gaussian components, since we want to assess the impact on the hidden sources.
Again, sGMCA allows to recover more precisely the spectra, with a considerable gain
in SAD ranging from 8 dB to 12 dB compared to GMCA, and up to 5 dB for the
SDR.
When the sources are unbalanced, GMCA estimates precisely the synchrotron spec-
trum but very poorly the three other spectra (they are contaminated by the syn-
chrotron component). The accurate estimation of the synchrotron spectrum makes
it possible to separate the synchrotron source from the data in the least-square up-
date of the sources, which allows for the retrieval of the hidden sources, hence the
acceptable SDR (see examples of estimated sources when the synchrotron source is a
hundred times brighter in Fig. 2.13 and 2.14).
On the contrary, the nearest-neighbor benchmark algorithm performs particularly
poorly; it generally fails to identify the spectra of the three hidden sources, because
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Figure 2.12: Median metrics over 100 realizations, and first and third quartile for
sGMCA, when varying the (a) noise level, (b) collinearity of the Gaussian line spectra,
(c) unbalance of the sources. The top row (SAD) concerns only the spectra, the other
rows (SDR, SIR, SNR and SAR) concern only the sources. (c) The reported SDR,
SIR, SNR and SAR are calculated over the thermal and Gaussian sources only.
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at the first iteration (which we recall to be the output of GMCA) the nearest neighbors
of all four spectra are synchrotron spectra.

0.2
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Figure 2.13: Example of the estimated synchrotron source, with SNR = 40 dB,
δ = 20 and k = 0.01. Top: estimations (logarithmic scale), bottom: absolute error
(logarithmic scale). The figures on a same row share the same color scale.

2.5.2.3 Impact of the generative modeling

In the previous experiments, all four components were constrained by generative
models. In this subsection, we focus on the impact of having one or more components
fully unknown. To that end, Monte Carlo experiments are performed where the IAE
models of the synchrotron, thermal and/or Gaussian spectra are removed, both in
the balanced and an unbalanced case. The results are reported in Table 2.3.

In the balanced case, the performance metrics are particularly sensitive to the
presence or not of the thermal model. The thermal source strongly correlates with
the two Gaussian line sources, it is therefore not surprising that constraining the
thermal spectrum notably improves the unmixing.

In the unbalanced case, where the synchrotron source has a hundred times larger
norm than the other sources, it is particularly advantageous to include the synchrotron
model in addition to the thermal model. This reduces the leakage of the synchrotron
component into the estimates of the other hidden components.
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Figure 2.14: Example of the estimated Gaussian II source, with SNR = 40 dB,
δ = 20 and k = 0.01. Top: estimations (logarithmic scale), bottom: absolute error
(logarithmic scale). The figures on a same row share the same color scale.

2.6 Conclusion

We introduce a novel source separation approach to tackle physical multispectral data.
Compared to standard blind source separation methods, the objective is twofold: to
better discriminate between sources and to ensure the provision of physically rele-
vant information. For this purpose, we make use of learned priors, which are based
on generative models, on the spectra of the sought-after components in a standard
variational framework. Extensive numerical experiments on realistic astrophysical
data show that the introduced regularization efficiently rejects inter-component leak-
ages, thus improving significantly the estimation of both the sources and the spectra,
including in challenging settings.
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Components modeled with a generative model

k Metric
(dB)

All Therm. &
Gauss.

Sync. &
Gauss.

Gauss. None

SAD 21.67 20.71 15.59 15.32 12.54
SDR 43.93 42.41 39.06 37.74 34.24

1 SIR 44.16 42.16 33.35 33.33 17.49
SNR 31.98 31.97 31.96 31.91 31.91
SAR 30.48 29.42 22.81 22.57 16.30

SAD 17.73 12.27 8.83 8.27 5.78
SDR 36.64 34.39 36.96 37.02 34.56

0.01 SIR 42.54 35.97 36.70 37.05 18.22
SNR 31.87 31.68 31.67 31.62 31.47
SAR 29.24 27.00 25.05 25.00 17.31

Table 2.3: Median metrics over 100 realizations. The sGMCA algorithm is run in
various semi-blind configurations, with different known and unknown components.
k is recalled to be the ratio between the norm of the thermal or a Gaussian source
(they have the same norm) and the norm of the synchrotron source. For k = 0.01,
the source metrics are calculated over the thermal and Gaussian sources.
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Chapter 3

Measuring and imaging the radio
sky with a view to performing
blind source separation

Radio astronomy is a branch of astronomy dealing with the observation of the sky
in the radio frequency domain. The precise measurement of radio sources, which are
generally low-power signals, requires the use of massive instruments, radio telescopes,
which mobilize significant resources both in material and computational terms.

In this chapter, the fundamentals of radio astronomy measurements are first in-
troduced. The acquisition model of cosmic radio emissions is then developed, on
the one hand with single-dish telescopes and on the other hand with interferometers.
Lastly, the acquisition models are extended to the multispectral case, with a view to
addressing the BSS problem later on.

The content of this chapter builds upon the reference books in radio-astronomy
[Taylor et al., 1999] and [Thompson et al., 2017], as well as the lecture notes [Klein,
2011] and [Sasao and Fletcher, 2005].

3.1 Measuring astronomical radio emissions

3.1.1 Characterization of radio sources

In astronomy, the physical processes at the origin of radio emissions are chaotic. The
main examples are:

• thermal radiation due to the random movement of heated particles, which in-
cludes cosmological signals such as the cosmic microwave background or the
EoR signals, but also astrophysical objects such as interstellar clouds,
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• synchrotron emission due to the random acceleration of electrons in magnetic
fields,

• spectral line radiation produced by the random transition between different
energy states of atoms and molecules.

It follows that the received signals are random, and that a statistical processing stage
is required to derive any valuable information. For this purpose, the random pro-
cess framework is employed; some elements are recalled in Appendix A. Hereafter,
we make the standard assumptions of radio astronomy concerning radio emissions.
Firstly, radio sources are approximated as wide-sense stationary ergodic random pro-
cesses. Moreover, they are supposed to be spatially incoherent – that is the cross
correlation of the electric field incoming of two different directions is null.

In order to characterize radio sources, astronomers rely on spectral densities
(which are constant quantities in time, thanks to the stationarity hypothesis). The
most employed is the brightness B(ν), also called monochromatic or specific intensity
– ν corresponds to a radio frequency. It is defined as the electromagnetic radiation
power coming from a unit solid angle in the sky, through a perpendicular unit area,
per unit of frequency bandwidth around frequency ν, and thus expressed in terms of
Wm−2Hz−1sr−1. The brightness has the advantage of being conserved in empty space
(such that it is the same at the source and at the receiver), and of not depending on
the measurement/reception conditions (namely the field of view, the bandwidth and
the effective area).

Another spectral density quantity of interest is the flux S(ν) (also referred to
as spectral flux density). It is the amount of radiation energy through a unit-area
cross section, per unit frequency bandwidth around ν and per unit of time, and is
expressed in terms of Wm−2Hz−1 or Jansky (1 Jy = 1e− 26 Wm−2Hz−1). It relates
to the intensity by: S(ν) =

∫
B(ν)(s) dΩ.

3.1.2 Radio antennas

An antenna is a device that can radiate or receive an electromagnetic field (see
Fig. 3.1). Let us define some of its main characteristics.

Power pattern The power pattern describes how well the antenna radiates or
receives the electromagnetic power according to the angular direction. It depends
mostly on the antenna geometry. The fundamental reciprocity theorem in electro-
magnetic shows that the pattern is the same for radiation and reception.
Figure 3.2 illustrates an example of a normalized power pattern. It typically fea-
tures a primary lobe, centered on the so-called aperture axis, and side lobes. The
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{
Pn(σ)

Ae

B(ν)(s)

s0

Receiving system W (ν)(s0)

Figure 3.1: Illustration of a single-dish telescope scanning the sky brightness.

half power beam width (HPBW) is defined as the angular width in which the power
pattern amplitude is greater than half of the maximum. It affects the directivity of
the antenna, and consequently the resolution when forming images afterwards. In
rule of thumb, the HPBW relates to the radiation wavelength λ and the antenna
diameter D by the relation HPBW ≈ λ/D = c/(νD). In this regard, Fig. 3.2 shows
the effect of a frequency change on the normalized power pattern. In addition, side
lobes deteriorate the antenna directivity and thus the resolution, they are therefore
attenuated as much as possible during design.
Consider a diffuse source in the sky with a brightness B(ν)(s). The flux measured by
an antenna targeting the direction of s0 is the brightness weighted by the antenna
normalized power pattern P

(ν)
n : S(ν)(s0) =

∫
P

(ν)
n (σ)B(ν)(s0 + σ) dΩ with dΩ an

infinitesimal solid angle element of direction σ.

Antenna aperture The antenna aperture A
(ν)
e , which is expressed in terms of m2,

relates the received flux to the measured power spectral density W (ν) by W (ν) =
A

(ν)
e S(ν)/2 (the term 1/2 implies that a single component polarization is measured by

the antenna).

Thereafter, the following model between the brightness of an astronomical radio
source and the power spectral density at the output of an antenna targeting a point
s0 in the sky will be more simply considered:

W (ν)(s0) =

∫
A(ν)(σ)B(ν)(s0 − σ) dΩ, (3.1)

where A(ν)(σ) = A
(ν)
e P

(ν)
n (−σ)/2 is the antenna instrumental response.
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Figure 3.2: Example of normalized power patterns P
(ν)
n for different frequencies ν and

illustration of the HPBW.

Receiving systems In practice, an antenna measures a voltage. A signal process-
ing stage is needed at the output of the antenna to derive the power spectral density,
so to determine the brightness (see Fig. 3.1). Several techniques can be distinguished:

• correlator: it consists in the combination of a bandpass filter around a frequency
of interest, a square law detector and an integrator. Thanks to the ergodicity
hypothesis, the output approximates the power spectrum on the considered
band.

• filterbank spectrometer: it is the generalization of the correlator to several
frequency bands. The voltage is sent on a series of bandpass filters (a filterbank),
which are connected to square law detectors and integrators. The combination
of the outputs gives the whole power spectrum.

• autocorrelation spectrometer: this is a hardware implementation of the Wiener–
Khinchin theorem (see Appendix A). Each sample is multiplied with the other
successively delayed samples, and the ensemble is summed. This allows to
calculate the autocorrelation of the signal, from which the power spectral density
is deduced by Fourier transform.

• Fourier spectrometer: this is the most recent technique. The whole signal is
Fourier transformed, and the square modulus of the result is calculated to derive
the power spectrum. The main burden of this technique is the computation of
the Fourier transform, which can be particularly costly for big datasets.
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3.2 Single-dish imaging

An extended source can be imaged by scanning the sky at several locations and joining
the measurements [Mangum, J. G. et al., 2007]. When doing so, several detrimental
effects must be addressed, for instance the ones due to the aliasing or the gridding.
The aim of this section being to develop eventually a model for BSS with radio data,
we will consider them beyond the scope of the thesis and ignore them.

It is worth reminding that when tackling multispectral measurements, the antenna
responses {A(ν)}ν depend on the channel frequencies (as seen earlier, their resolution
varies roughly in λ/D = c/(νD)).

Two cases can further be distinguished, depending on whether dealing with a
small or large field of view.

3.2.1 Small fields of view

When imaging a small portion of the sphere, the problem can be reformulated on a
plane. To do so, let us consider the plane tangent to the celestial sphere at the center
of the field of view, parameterized by the system coordinates (l,m). Equation (3.1)
may be rewritten as follows:

W (ν)(l,m) =

∫∫
A(ν)(l′,m′)B(ν)(l − l′,m−m′) dl′dm′

=
[
A(ν) ∗B(ν)

]
(l,m),

(3.2)

where ∗ is the usual two-dimensional convolution product. In the perspective of
performing BSS, it is furthermore possible to simplify the model by expressing it in
the (spatial) Fourier domain; indeed, denoting (u, v) the coordinates in Fourier space,
the convolution product simplifies to an element-wise product:

W̃ (ν)(u, v) = Ã(ν)(u, v) B̃(ν)(u, v). (3.3)

3.2.2 Large fields of view

When imaging larger field of views, potentially the entire sphere, the spherical formu-
lation is inevitable. As in the planar case, the model can be expressed with a spherical
convolution product1[Driscoll and Healy, 1994], that we will denote likewise ∗:

W (ν)(s) =
[
A(ν) ∗B(ν)

]
(s). (3.4)

1Several convolution products are defined on the sphere [Roddy and McEwen, 2021], we consider
here the so-called isotropic convolution product, which requires the beams to be isotropic. See
Appendix B for more details.
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Similarly to the planar case, the spherical convolution product is diagonalized by the
spherical harmonic transform. The model therefore becomes:

W̃ (ν)(l,m) = Ã(ν)(l)B̃(ν)(l,m). (3.5)

3.3 Interferometric imaging

As seen in Section 3.1.2, the resolution of an antenna is roughly equal to λ/D. In order
to increase the resolution at a fixed wavelength, it is therefore necessary to increase the
antenna diameter D. However, there is a limitation in terms of mechanical feasibility,
typically at D ∼ 100 m. At a low radio frequency of 100 MHz, for the study of
the EoR signal for instance, this leads to a maximum resolution of 1.7◦, which is far
too coarse for scientific applications. Here lies one of the bottlenecks of single-dish
imaging: In order to image the sky at low radio frequencies with a sufficiently fine
resolution, antennas with an aperture diameter of potentially several kilometers would
be required.

This is one of the main motivations for the use of radio-interferometers. By
combining several antennas, it is possible on paper to achieve resolutions as fine as
desired. However, the price to pay is both a more complex signal processing chain
and more complex algorithms to form images.

3.3.1 A basic twin interferometer

Let us first consider a two-dimensional two-element interferometer plugged to a corre-
lator (see Fig. 3.3). The antennas are separated by a distance d (the so-called baseline)
and supposed identical, such that they have the same instrumental response. In ad-
dition, let us consider a monochromatic point source of frequency ν in the sky, that
forms an angle θ with the zenith.

The two antennas measure the incoming wavefront with a geometric delay τ(θ) =
d sin(θ)/c. The voltages at the output of the antennas can therefore be written
v1(t, θ) = V cos(2πνt) and v2(t, θ) = V cos(2πν(t − τ(θ))). These are multiplied and
then averaged on a sufficiently long time T by the correlator, yielding:

r(θ) = lim
T→∞

1

2T

∫ T

−T
v1(t, θ)v2(t, θ)dt

= lim
T→∞

1

2T

V 2

2

∫ T

−T
(cos (4πνt− τ(θ)) + cos (2πντ(θ))) dt

=
V 2

2
cos(2πντ(θ)).

(3.6)
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r(θ)
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v2(t, θ)v1(t, θ)

Figure 3.3: A basic twin interferometer with a point source monochromatic source.
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Figure 3.4: Illustration of the gain in resolution by the interferometer. ∆θ0,min and
∆θ0 are the angular resolutions of a single antenna and the interferometer, respec-
tively.

The term V 2/2 is proportional to the power P0(θ) measured by each antenna (the θ
dependency comes from the antennas’ non-isotropic response). The following power
can be derived at the output of the correlator (see Fig. 3.4):

P (θ) = P0(θ) cos(2πντ(θ)). (3.7)

It is the power received by each antenna modulated by a so-called fringe pattern
cos(2πντ(θ)).

This expression allows to highlight the gain in resolution provided by an interfer-
ometer. While an antenna can only distinguish sources with an angular distance ∆θ
greater than its HPBW (∆θ0,min ≈ HPBW, see Fig. 3.4), an interferometer can dis-
cern closer sources thanks to the fringe pattern (so long as ∆θmin ≈ ντ(θ) ≈ d/λ, see
Fig. 3.4). Thus, simply by moving antennas apart, images with a desired resolution
can be produced.

The above reasoning neglects the motion of Earth, which causes θ to vary in time.
It follows that the fringe pattern is not purely sinusoidal after integration over a long
time. Hereafter, we will continue neglecting this phenomenon, supposing that the
signal processing stage tracks the sources in the sky.

3.3.2 The visibility function

We now move to a more general three-dimensional setting with a diffuse multispectral
radio source (Fig. 3.5). Let s = s0 + σ be a unit-vector aiming towards the radio
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B(ν)(s)
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Receiving
system

V (ν)(d, s0)

Figure 3.5: Two elements of an interferometer in the general case.

source from the interferometer, with s0 a reference unit-vector which will become the
center of the imaged area.

In the case where the receiving system is the same correlator as before, the output
power in a small frequency band ∆ν around a frequency ν relates to the brightness
B(ν)(σ) by:

P (ν)(s0) = ∆ν

∫
A(ν)(s0 − σ)B(ν)(σ) cos(2πντ(σ)) dΩ, (3.8)

with τ(σ) = d⊤s/c the geometric delay and A(ν)(σ) the antennas’ instrumental re-
sponse (which are still supposed identical). Note the similarity of this expression with
the output power of a single-dish telescope (Eq. 3.1). Developing the cosinus term
yields:

P (ν)(s0) = ∆ν cos(2πνd⊤s0/c)

∫
A(ν)(s0 − σ)B(ν)(σ) cos(2πνd⊤σ/c) dΩ

−∆ν sin(2πνd⊤s0/c)

∫
A(ν)(s0 − σ)B(ν)(σ) sin(2πνd⊤σ/c) dΩ.

(3.9)
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Let us now define the complex-valued visibility function V (ν) as:

V (ν)(d, s0) = |V (ν)|eiφV (ν) :=

∫
A(ν)
n (s0 − σ)B(ν)(σ) e−2πiνd⊤σ/c dΩ, (3.10)

where A
(ν)
n (s) := A(ν)(s)/A(ν)(0) is the normalized antenna response. Separating the

real and imaginary parts yields:

Re
(
V (ν)

)
=

∫
A(ν)
n (s0 − σ) B(ν) (σ) cos

(
2πiνd⊤σ/c

)
dΩ =

∣∣V (ν)
∣∣ cos (φV (ν)) ,

Im
(
V (ν)

)
= −

∫
A(ν)
n (s0 − σ)B(ν) (σ) sin

(
2πiνd⊤σ/c

)
dΩ =

∣∣V (ν)
∣∣ sin (φV (ν)) .

(3.11)
The power then relates to the visibility by:

P (ν)(s0) = ∆νA(ν)(0)
∣∣V (ν)

∣∣ cos (2πνd⊤s0/c− φV (ν)

)
. (3.12)

The interferometer output is a fringe pattern whose period is that of a fictitious
source at the reference position s0. Moreover, the amplitude of the fringe pattern is
proportional to that of the visibility, and the phases of the fringe pattern and the visi-
blity are the same (noting that φV (ν) is measured relative to the reference position s0).

In practice, the receiving systems are more sophisticated than the basic correlator
considered above. Firstly, special structures allow obtaining the complex visibility
directly (complex correlators). Secondly, as with single-dish imaging, they can be
associated with spectrometers in order to derive the visibility function on a frequency
band or on several frequency channels at once. Hereafter, it will be considered that
each antenna pair gives directly a sample of the visibility function. In particular, the
calibration aspects, which amount for instance to determine exactly the antennas’
response, are set aside.

In summary, in single-dish imaging, the antennas are particularly directive so
that the sky brightness can be measured directly point by point. In interferometric
imaging, the antennas are usually small and so have large beams. Thus, each pair of
antennas acquires the brightness over a large area of the sky, but with a modulation
(by a fringe pattern (Eq. 3.8) or equivalently by a complex exponential (Eq. 3.10)).
In order to recover the brightness, algorithmic processing is required.

3.3.3 Coordinate systems for imaging

In this thesis, we will limit ourselves to interferometric data acquired on a small field
of view, allowing us to synthesize images faithfully on a plane. Indeed, wide-field
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Figure 3.6: Coordinate systems for interferometric imaging. Image from [Thompson
et al., 2017].
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interferometry, which uses the spherical formalism, is still a relatively unexplored do-
main that requires a high computational cost [Carozzi, 2015]. Let us introduce two
Euclidean coordinate systems dedicated for interferometric imaging problems (see
Fig. 3.6).
Let (u, v, w) represent the interferometer baseline coordinates, where u, v and w re-
spectively point towards East, North and the center of the region of interest in the
sky s0. The terms u, v and w are expressed in terms of wavelength.
Positions in the sky are indicated with the direction cosines with respect to u and
v, and denoted respectively l and m. The (l,m)-plane upon which the images are
formed is the plane tangent to the celestial sphere at the reference position s0.

Before going any further, some remarks are made. Firstly, the field of view of the
antennas being large, it is assumed that a single pointing is sufficient to image an area
of the sky, and that the antennas’ response in this area is constant (A

(ν)
n (s0−σ) ≈ 1).

Thus, to simplify the notations, the dependency in s0 will not be indicated, nor will
the antennas’ responses2.
Secondly, we will work with a single fixed frequency channel for the time being –
multi-frequency aspects will be addressed in Section 3.4. Thus, the dependency in ν
will be temporarily omitted for the sake of readability.

With the latter assumptions and the coordinate system presented above, the fol-
lowing results are obtained in the definition of the visibility function (3.10):

2πν
d⊤σ

c
= ul + vm+ w

(√
1− l2 −m2

)
,

2πν
d⊤s0
c

= w,

dΩ =
dldm√

1− l2 −m2
,

(3.13)

The visibility function then writes:

V (u, v, w) =

∫∫
B(l,m)√
1− l2 −m2

e−2πiw(
√
1−l2−m2−1) e−2πi(ul+vm)dl dm. (3.14)

The equation is further simplified. Firstly, we include the denominator term in the
brightness: B(l,m) ← B(l,m)/

√
1− l2 −m2 (noting that the actual brightness can

trivially be deduced by multiplying the estimated brightness by
√
1− l2 −m2). Sec-

ondly, we define the function G(l,m,w) := e−2πiw(
√
1−l2−m2−1), that we will refer to

2It is noted that the antennas’ responses could always be taken into account by dividing the

estimated brightness by A
(ν)
n .
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as the w-term. This leads to:

V (u, v, w) =

∫∫
B(l,m)G(l,m,w) e−2πi(ul+vm) dl dm. (3.15)

3.3.4 Towards the forward observation model

An interferometer samples the visibility function in the (u, v, w)-space based on the
positions of the antennas. In this regard, let {(uk, vk, wk)}k∈[1...K] denote the baseline
coordinates of an N -element interferometer. The number of measurements K is
the number of pairs of antennas, which relates to the number of antennas N by
K = N(N − 1)/2. It is possible to define a sampling function:

S(u, v, w) =
K∑
k=0

δ(u− uk)δ(v − vk)δ(w − wk), (3.16)

with δ the Dirac distribution. The sampling function allows to conveniently write the
forward model of the interferometer:

VS(u, v, w) = S(u, v, w)

∫∫
B(l,m)G(l,m,w) e−2πi(ul+vm) dl dm, (3.17)

where VS corresponds to the data acquired by the interferometer.

3.3.5 Deconvolution algorithms

In radio interferometry, deconvolution consists in estimating the brightness from the
measured visibility samples. In this section, we review common deconvolution algo-
rithms in the field. First, the coplanar case is addressed, which constitutes the main
case of study so far, both from a methodological and an application point of view.
Then, the non-coplanar case is tackled, which is a much more novel subject.

Until now, no mention has been made of the gridding of the data, which consists
in placing the interferometric measurements on a regular grid, particularly with a
view to using the fast Fourier transform (FFT), which is significantly faster than the
discrete Fourier transform. The gridding is generally performed by convolution with
a so-called gridding function. The most advanced deconvolution methods include the
gridding in a concern of precision. The choice is made below not to mention the
gridding, because the BSS algorithms developed thereafter will not include it, and
the developments would be unnecessarily complex.

3.3.5.1 The coplanar case

The coplanarity assumption is satisfied when the argument of the w-term G always
remains negligible: 2πw(1−

√
1− l2 −m2)≪ 1. This occurs when both:
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• the antennas of the interferometer all lie on a plane (which is mostly the case
if the baselines are small), implying that w ≪ 1,

• the size of view is narrow, which leads to l ≪ 1 and m ≪ 1, and thus 1 −√
1− l2 −m2 ≪ 1.

Consequently, the w-term disappears (G(l,m,w) ≈ 1). The visibility becomes a
function of u and v only, and relates to the brightness by:

V (u, v) =

∫∫
B(l,m) e−2πi(ul+vm) dl dm, (3.18)

which is none other than the two-dimensional Fourier transform: V (u, v) = [F ◦
B](u, v) = B̃(u, v).

Therefore, the forward observation model of the interferometer writes:

VS(u, v) = S(u, v) B̃(u, v) (3.19)

Again, note the similarity to the single-dish case (Eq. 3.3). The main difference is
that the convolution operator is here a mask, with zero values, and not a smoother
power pattern.

Two major classes of deconvolution algorithms can be distinguished in the litera-
ture: the methods built upon clean and those based on an optimization framework
[Thompson et al., 2017].

CLEAN-based algorithms Since the brightness and the visibility are Fourier
pairs, one may try to inverse Fourier transform the data in order to retrieve the
brightness:

Bd(l,m) := [F−1 ◦ VS](l,m). (3.20)

The resulting image Bd generally has strong artifacts, due to the partial sampling of
the visibility space, and is therefore called ”dirty” image. Indeed,

Bd(l,m) = [Sd ∗B](l,m), (3.21)

which shows that the dirty image is the true image convolved by the so-called ”dirty
beam” Sd := F−1(S), that is the inverse Fourier transform of the sampling function.

The clean algorithm [Högbom, 1974] has been the reference deconvolution method
in radio astronomy for many years already. It is a greedy algorithm that has similar-
ities with the matching pursuit algorithm [Mallat and Zhang, 1993]. It supposes that
the observed sky is constituted of point sources. The gist of clean is to iteratively:
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(i) backward step: find the brightest point in the dirty image (location and ampli-
tude) and add it in a list,

(ii) forward step: remove a portion of the brightest point from the dirty image,
using the dirty beam Sd.

The reconstructed (”cleaned”) image is formed by adding the identified point sources
and convolving it with a predefined beam in order to match the interferometer reso-
lution.

A first improvement of clean was proposed in [Clark, 1980]; it accelerates the
algorithm by considering approximate dirty beams and by using minor and major
cycles. This has been incorporated in a second upgrade [Schwab, 1984], which allows
a gain in accuracy by working directly with the ungridded visibilities.

Several extensions of clean have since been proposed to deal with more spe-
cific cases. In particular there exists multi-resolution versions of clean to tackle
extended sources [Wakker and Schwarz, 1988, Starck et al., 2002, Cornwell, 2008],
some of which include wavelet decompositions.

Clean-based methods are still the reference today in physical applications. In-
deed, they are quite modular and simple to implement. Above all, they are compatible
with large data sets such as can be found in radio-interferometry.

Optimization-based methods The second family of deconvolution algorithms,
more recent, relies on sparsity-based convex optimization [Carrillo et al., 2012, Girard
et al., 2015]. The problem is formulated in the form of a cost function which classically
includes the physical model of the acquisition by the interferometer and some priors on
the solution (among which sparsity in one or more transformed domains). The main
obstacle to the use of these methods in scientific applications is their computational
cost, which can quickly become prohibitive. The latest developments are therefore
focused on the acceleration/parallelization of the algorithms [Carrillo et al., 2014,
Thouvenin et al., 2021]

3.3.5.2 The non-coplanar case

The non-coplanar effects come from the w-term G which modulates the sky brightness
by introducing a phase difference. It is noticeable as soon as large fields of view (i.e.,
1− l2−m2 ≪ 1) and/or long antenna baselines (which generally leads to w ≫ 1) are
involved. It causes a spread spectrum in the visibility space [Wiaux et al., 2009]. To
illustrate this, consider the case where w is non-zero and constant; then the visibility
writes V (u, v, w) = [G̃(w) ∗ B̃](u, v) with G(w)(l,m) := G(l,m,w). The consequence is
that the handy Fourier transform can no longer be used to switch from the visibility
to the image space, as in the coplanar case.
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The main methods for dealing with non-coplanar effects are reviewed below. Some
deal with specific cases, e.g., a wide-field but a coplanar interferometer, or a small
w-effect. We note that all the methods were first proposed to be included in the
clean framework.

Combination of snapshots This method concerns the particular case of coplanar
radio-interferometers (i.e., all antennas lie on a plane). When long observations are
performed, because of Earth’s rotation, the baselines of the interferometer move,
which has the effect of rotating the plane and thus breaking the coplanar nature of
the measurements. A first technique amounts to decompose the measurements in a
set of so-called snapshots, in each of which the planar baseline assumption is valid,
and to correct the rotation so as to apply the usual planar inverting techniques.
More precisely, when dealing with coplanar baselines, the w coordinate terms are
shown to be linear combinations of the u and v terms: w = u tanZ sinχ−v tanZ cosχ
with Z the zenith angle and χ the parallactic angle of the interferometer [Perley, 1999].
Introducing the new coordinates system (l′,m′):{

l′ = l + tanZ sinχ
(√

1− l2 −m2 − 1
)

m′ = m− tanZ cosχ
(√

1− l2 −m2 − 1
)
,

(3.22)

the w-term disappears. While this method is shown to suffer a lack of precision
in practice, the idea of grouping coplanar measurements can be borrowed in other
techniques for speed considerations (e.g., [Cornwell et al., 2012] with w-projection,
which is presented below).

Three-dimensional Fourier transform The visibility function can be embedded
in a triple integral [Perley, 1999]:

V (u, v, w) =

∫∫∫
B(l,m)δ

(
n−
√
1− l2 −m2

)
e−2πi(ul+vm+w(n−1))dl dm dn, (3.23)

which is a particular three-dimensional Fourier transform of the function (l,m, n) 7→
B(l,m)δ(n−

√
1− l2 −m2). The latter can be inverted by:

B(l,m) =

∫∫∫
V (u, v, w)e2πi(ul+vm+w(

√
1−l2−m2−1))du dv dw, (3.24)

either with a three-dimensional FFT, or with a two-dimensional FFT along the (u, v)
axes combined with a Discrete Fourier Transform along the w axis.
This technique has not been used in practice for both memory and computational
reasons. [Smith et al., 2017] suggests it could still be of interest in some forthcoming
scenarios, with particularly non-coplanar baselines combined with very large field of
views.
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w-projection Recalling that the Fourier transform of a pointwise product is the
convolution of their Fourier transforms, the visibility function equivalently writes:

V (u, v, w) =
[
V (·, ·, 0) ∗ G̃(w)

]
(u, v), (3.25)

with G(w)(l,m) := G(l,m,w) (therefore, G̃(w) is the two-dimensional Fourier trans-
form of G with respect to (l,m) with a fixed w). Under the small angle approximation,
the following analytical form of G̃(w) can be derived: G̃(w)(u, v) = i/w e−πi(u

2+v2)/w

[Cornwell et al., 2008].
Consequently, the visibilities for any w can be deduced from those at w = 0 (which are
the Fourier transform of the sought-after brightness) by a convolution with a known
kernel G̃. This is very advantageous in iterative schemes where the data must be es-
timated with the observation model, as is the case with clean. Indeed, rather than
performing one Fourier transform per sampled w-value, which is time consuming, a
single Fourier transform is performed, and then the w-modulations are applied.

Facet-based The field of view is decomposed into small facets, tangent to the
sphere, in which the w-term is approximately constant [Cornwell and Perley, 1992].
Each facet has a locale dirty beam, which can be used for deconvolution. The main
issue of this method concerns the association of the facets for the estimation of the
residual in the clean procedure, which requires a costly reprojection.
To address this, [Kogan and Greisen, 2009] proposes a coplanar faceting, which ex-
ploits the w-projection technique. However, corrections of overlapping areas between
facets still must be dealt with.

w-stacking The gist of w-stacking is to group the sampled visibilities by close w-
values and affect them the same w-value. The brightness can then be derived by (i)
calculating the inverse Fourier transform of the visibilities for each group of w-values,
(ii) applying the inverse w-effect (1/G(w)) and (iii) associating the obtained images
[Humphreys and Cornwell, 2011, Offringa et al., 2014]. This technique, associated to
clean and coinedwsclean for w-stacking clean, is the one mainly used in scientific
applications, as it is particularly fast compared to the aforementioned methods.

3.4 Tackling multi-frequency data

3.4.1 Multi-frequency interferometric deconvolution

Before investigating BSS with multi-wavelength radio-interferometric measurements,
it is worthwhile exploring the literature on multi-channel deconvolution.
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An interferometer samples the visibility space as a function of antenna distri-
bution and wavelength. In the case of wideband measurements, a pair of anten-
nas with baseline coordinates (du, dv, dw) will produce interferometric samples at
(u, v, w) = (du/λ, dv/λ, dw/λ) for each wavelength λ. There is thus a dilation effect in
the sampling, which leads to an improvement of the brightness spatial-frequency cov-
erage. The difficulty is that the brightness depends on the wavelength. However, some
radio sources have particular spectral structures, for instance smooth (e.g., power law)
or known a priori. This can be advantageously used to synthesize brightness images
from multi-wavelength data.

Clean-based extensions for multi-channel data are numerous, they are generally
referred to as mfclean, for multi-frequency clean [Conway et al., 1990]. Extensions
to tackle extended sources have been proposed [Rau, U. and Cornwell, T. J., 2011],
as well as non-coplanar data [Offringa and Smirnov, 2017].

Research has also been conducted on optimization-based approaches. For instance
[Abdulaziz et al., 2019] proposes a low-rank regularization to favor spatial correlations
between channels.

3.4.2 Towards blind source separation

In the aim of performing BSS on radio data, we propose to summarize the acquisition
models seen above. We take the opportunity to rename the variables to make them
consistent with the specific notations of this manuscript. Three cases are distinguished
as detailed below and summarized in Table 3.1.

Euclidean/coplanar case The cases of the single-dish telescope and the coplanar
interferometer can both be combined in the same framework for small fields of view.
The model, expressed directly in the Fourier/visibility space, writes:

ỹ(ν)(u, v) = H̃(ν)(u, v) x̃(ν)(u, v), (3.26)

with ỹ(ν) the multispectral data (ỹ(ν) = W̃ (ν) for a single-dish telescope, ỹ(ν) = V
(ν)
S for

a coplanar interferometer), H̃(ν) the measurement operator (H̃(ν) = Ã(ν) for a single-
dish telescope, H̃(ν) = S(ν) for a coplanar interferometer) and x̃(ν) the sought-after
mixtures (x̃(ν) = B̃(ν)).

Spherical case This concerns the case of the single-dish telescope for wide-field
observations. Similarly to the Euclidean case, the model is:

ỹ(ν)(l,m) = H̃(ν)(l) x̃(ν)(l,m), (3.27)

with the same correspondences as the above single-dish telescope case.
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Wide field of view Small field of view

Single-dish telecope
[
H̃(ν) ⊙ x̃(ν)

]
(l,m) [

H̃(ν) ⊙ x̃(ν)
]
(u, v)

Interferometer
Coplanar not considered

Non-coplanar not considered
[
H̃(ν) ⊙

(
F ◦

[
G(w) ⊙ x(ν)

])]
(u, v, w)

Table 3.1: Summary of the considered radio telescope acquisition models. Wide-field
interferometry, which uses the spherical formalism [Carozzi, 2015], is a relatively new
field and will not be considered hereafter in the context of joint deconvolution and
BSS.

Non-coplanar case For non-coplanar interferometric measurements, the consid-
ered model is:

ỹ(ν)(u, v, w) = H̃(ν)(u, v, w)
[
F ◦

(
G(w) ⊙ x(ν)

)]
(u, v, w), (3.28)

with G(w)(l,m) := e−2πiw(
√
1−l2−m2−1) and the same correspondences as the coplanar

interferometer case seen above.

Chapter 4 addresses the second case (and the first one by extension, as we will
see). Chapter 5 tackles the third case.
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Chapter 4

Joint deconvolution and blind
source separation for wide-field
observations

4.1 Introduction

Data acquired in radio astronomy are distorted by channel-dependent instrumental
responses, whether they come from antenna beams in the case of single-dish telescopes
or from incomplete samplings in the case of interferometers, as we saw in the previous
chapter, Eq. (3.26). If the instrumental responses are assembled in a matrix H ∈
RJ×P (one operator per row, i.e., channel), the linear mixture model becomes Yj: =
Hj: ∗ [AS]j: + Nj: or more simply in the Fourier domain Ỹj: = H̃j: ⊙ [AS̃]j: + Ñj:.
In this case, coping with now heterogeneous or incomplete data requires tackling
an extra deconvolution step, thus leading to a joint deconvolution and blind source
separation (DBSS) problem. A mathematically similar problem arises with other
kind of astrophysical measurements, e.g., the X-ray observations from the future
European mission Athena1, or compressive hyperspectral imaging [Golbabaee et al.,
2013, Kobarg et al., 2014].

Being an ill-posed matrix factorization problem, BSS alone is already a challenging
inverse problem. This is all-the-more complex when a channel-dependent operator
further needs to be inverted as it can be ill-conditioned or even not invertible. Stan-
dard BSS methods cannot be employed directly unless the data Y are pre-processed
so as to obtain new data with a common resolution. However, jointly solving both
deconvolution and separation is expected to yield much better results, allowing to
more precisely account for the forward observation model and noise in a single pass.

1https://sci.esa.int/web/athena

https://sci.esa.int/web/athena
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To the best of our knowledge, joint DBSS has been seldom investigated. The
closest work known so far has been introduced by [Kleinsteuber and Shen, 2012], who
proposed a BSS algorithm to analyze incomplete data in the framework of compressed
sensing. This can be regarded as a special case of DBSS where the measurement
operator is defined as a projection onto a low-dimensional measurement subspace.
However, the proposed method is not compatible in our case since it only applies to
compressively sensed measurements.

More recently, the first joint DBSS method was introduced [Jiang et al., 2017]. The
proposed DecGMCA algorithm enforces the sparsity of the sources in a transformed
domain W by seeking a stationary point of the following cost function:

argmin
A,S

J∑
j=1

1

2

∥∥∥Ỹj: − H̃j: ⊙ [AS̃]j:

∥∥∥2
2
+
∥∥Λ⊙ (SW⊤)∥∥

1
+ ιOS (S) + ιKA(A), (4.1)

where the same notations as Chapter 1 are employed. DecGMCA builds upon the
GMCA framework. However, in the setting of DBSS, resorting to a projected ALS
optimization scheme also raises a major difficulty: The least-square problem with
respect to S is generally ill-conditioned, if not ill-posed, and needs to be regularized,
which has a significant impact on the quality of the separation results.

Contributions In this chapter, we investigate a new joint DBSS algorithm to an-
alyze data that are sampled on the sphere. This is essential to cope with the kind of
wide-field spherical data, which are now common in scientific fields such as astronomy.
In contrast to the standard case, analyzing spherical data raises extra difficulties due
to the high computational cost of their manipulation, which makes the design of a
computationally efficient and reliable algorithm essential. Therefore, we first aim to
extend the algorithm DecGMCA [Jiang et al., 2017] to tackle joint deconvolution and
separation problems from spherical data. As described in Section 4.2, the method is
based on a projected alternating least-square minimization in order to combine ra-
pidity and precision. Compared to the BSS problem, the procedure calls for an extra
regularization to deal with a naturally ill-conditioned, if not ill-posed, problem. Yet,
the regularization strategy and its impact on the solution have not been examined.
For that purpose, we introduce several regularization strategies in Subsection 4.2.3.1
that significantly improve the separation quality. Based on these results, we introduce
in Section 4.3 a new algorithm, coined SDecGMCA, to tackle efficiently joint decon-
volution and blind source separation problems. Finally, in Section 4.4, numerical
experiments, which involve both toy examples and realistic astrophysical simulations,
are presented.
We also provide in Appendix C the equations of SDecGMCA adapted for planar data,
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which is the case studied in [Jiang et al., 2017]. Indeed, there are noticeable parallels
with the spherical case that can help for interpretation.

4.2 The spherical DecGMCA algorithm

In this section, we first adapt the DBSS method proposed in [Jiang et al., 2017] to
tackle spherical data. Furthermore, we investigate in depth the ad hoc, yet neces-
sary, regularization procedure in the update of the sources used in the DecGMCA
algorithm. We show that it has a significant impact on the reconstruction quality of
the sources. We then introduce two new regularization strategies, which noticeably
outperform the one of DecGMCA.

4.2.1 Toward a DBSS method for spherical data

In the following, the multichannel data Y ∈ RJ×P are supposed to be sampled on
the sphere with healpix [Górski et al., 2005] (see Appendix B for mathematical
derivations related to signal analysis on the sphere). Moreover, the measurement
operators are assumed linear and isotropic. According to observation model in the
spherical case of the previous chapter, if the measurement operators are stacked in a
matrix H ∈ RJ×P , the mixture model writes:

Yj: = [AS]j: ∗Hj: +Nj:, (4.2)

where ∗ denotes the isotropic convolution operator on the sphere [Driscoll and Healy,
1994].
Quite similarly to the Euclidean case, the isotropic convolution product is shown to
simplify in the spherical harmonic domain:

Ỹj(l,m) = H̃j(l,m)[AS̃]j(l,m) + Ñj(l,m), (4.3)

where the subscript (l,m) refers to the column of the corresponding matrix with
degree l and mode m. Since the convolution kernels are isotropic, H̃ does not depend
on the mode m; we will remove it hereafter, slightly abusing the notation. Moreover,
the harmonic projections are performed up to a degree lmax

2; consequently, Ỹ, H̃
and Ñ are of size J × (lmax + 1)2, and S̃ is of size I × (lmax + 1)2. The mixing model
is rewritten by grouping the channels, yielding:

Ỹ:(l,m) = diag
(
H̃:l

)
AS̃:(l,m) + Ñ:(l,m), (4.4)

2According to the usage of healpix, lmax ≤ 3Nside − 1, where Nside is the resolution parameter
of the spherical sampling.
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where diag
(
H̃:l

)
∈ CJ×J , in agreement with the notations of the manuscript.

To build an estimator for the sources S and the mixing matrix A, the same
assumptions are made as in Chapter 1 regarding SBSS. These are briefly recalled and
adapted to the new mixing model:

• Data-fidelity term: The noise is considered as Gaussian; therefore, the data-
fidelity term writes:

D (Y,AS) =
∑

(l,m)∈P

1

2

∥∥∥Ỹ:(l,m) − diag
(
H̃:l

)
AS̃:(l,m)

∥∥∥2
2
, (4.5)

with P := {(l,m) ∈ N× Z, l ≤ lmax, |m| ≤ l} the set of multipoles.

• Source regularization: The sources are assumed to be both sparse in a given
dictionaryW ∈ RP ′×P and nonnegative, hence the following regularization term
on S:

hS (S) =
∥∥Λ⊙ (SW⊤)∥∥

1
+ ιOS (S) , (4.6)

where Λ ∈ RI×P ′
is a matrix that stores the thresholding parameters and OS =

{S ∈ RI×P ,∀(i, p),Sip ≥ 0}.

• Mixing matrix constraint: To mitigate the scale indeterminacy of the product
AS̃, the columns of A are enforced to be in the unit ball. Imposing in addition
the nonnegativity of the coefficients of the matrix yields the following constraint
term:

hA(A) = ιKA(A), (4.7)

where it is reminded that KA := {A ∈ RJ×I ,∀(j, i),Aji ≥ 0,∀i, ∥A:i∥2 ≤ 1}.

To sum up, the mixing matrix and the sources will be estimated by looking for a
stationary point of the following cost function:

argmin
A,S̃

∑
(l,m)∈P

1

2

∥∥∥Ỹ:(l,m) − diag
(
H̃:l

)
AS̃:(l,m)

∥∥∥2
2
+
∥∥∥Λ⊙ (S̃F∗W⊤

)∥∥∥
1

+ ιOS

(
S̃F∗

)
+ ιKA(A), (4.8)

where F is the spherical harmonic transform, in accordance with the notations of the
manuscript.

BSS is already a challenging non-convex problem. When it comes to DBSS, a
significant challenge is a need for a robust yet effective algorithm with a reasonable
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computational burden. The above cost-function combines non-differentiable terms,
such as the sparsity-enforcing ℓ1-regularization term or the characteristic functions.
Therefore, designing a minimizer based on plain proximal algorithms would make
perfect sense [Parikh and Boyd, 2014]. However, this would lead to algorithms
with very high computational costs, especially since DBSS problems are generally
ill-conditioned. Moreover, when BSS only is considered, tuning the regularization
parameters, which has a major impact on the separation performances, is already
particularly complex with standard proximal algorithms [Kervazo et al., 2020a].

In contrast, we have seen that projected alternating least squares (pALS) are
particularly effective methods for providing fast SBSS algorithms. Furthermore, they
come with almost automatic strategies to fix the regularization parameters robustly.
We thus propose to use this framework for spherical DBSS.

4.2.2 Update of A

Updating the mixing matrix A when the sources S are fixed requires solving the
least-square problem argmin

A
D (Y,AS), which yields for each channel j ∈ [1, J ]:

(Aj:)
⊤ ←

 ∑
(l,m)∈P

Ỹj(l,m)H̃
∗
jl

(
S̃:(l,m)

)† ∑
(l,m)∈P

∣∣∣H̃j(l,m)

∣∣∣2 S̃:(l,m)

(
S̃:(l,m)

)†−1

. (4.9)

In this equation, the estimate is defined with sums over all multipoles, which are
significantly numerous than the sources. Consequently, the matrix on the right is
generally invertible if not well conditioned.
In a second phase, the proximal operator of hA is applied on the solution. As seen in
Chapter 1, the update reads as follows, for each spectrum i:

A:i ←
max (A:i,0)

max (1, ∥max (A:i,0)∥2)
. (4.10)

4.2.3 Update of S

Updating S assuming A is fixed leads to the following optimization problem:

argmin
S̃

∑
(l,m)∈P

1

2

∥∥∥Ỹ:(l,m) − diag
(
H̃:l

)
AS̃:(l,m)

∥∥∥2
2
+
∥∥∥Λ⊙ (S̃F∗W⊤

)∥∥∥
1
+ ιOS

(
S̃F∗

)
.

(4.11)
According to the pALS minimization scheme, the solution of the above minimization
problem is first approximated with a least-square estimate by finding a solution to

argmin
S̃

∑
(l,m)∈P

1

2

∥∥∥Ỹ:(l,m) − diag
(
H̃:l

)
AS̃:(l,m)

∥∥∥2
2
, (4.12)
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which is given for each harmonic coefficient (l,m) ∈ P by:

S̃:(l,m) ←M(l)−1
A⊤ diag

(
H̃∗

:l

)
Ỹ:(l,m), (4.13)

with M(l) := A⊤ diag
(
|H̃:l|2

)
A.

In contrast to standard BSS problems, it is essential to notice that the above so-
lution is not necessarily stable with respect to noise as the matrices M(l) may be
ill-conditioned. Additionally, it is not always unique as M(l) may not be invertible;
this might occur when the convolution kernels vanish for some spherical harmonics
multipoles.
Borrowing ideas from sparsity enforcing deconvolution methods such as ForWard
[Neelamani et al., 2004], [Jiang et al., 2017] proposes adding an extra Tikhonov reg-
ularization [Bertero et al., 2021] to the least-square problem:

argmin
S̃

∑
(l,m)∈P

1

2

(∥∥∥Ỹ:(l,m) − diag
(
H̃:l

)
AS̃:(l,m)

∥∥∥2
2
+

I∑
i=1

ε(i,l)
∣∣∣S̃i(l,m)

∣∣∣2) , (4.14)

The set {ε(i,l) ≥ 0, i ∈ [1 . . . I], l ∈ N, l ≤ lmax} are the Tikhonov regularization
coefficients. They depend on the degree l and on the source i. For all (l,m) ∈ P ,
updating the sources can now be recast as:

S̃:(l,m) ←

(
M(l) + diag

i∈[1...I]

(
ε(i,l)

))−1

A⊤ diag
(
H̃∗

:l

)
Ỹ:(l,m). (4.15)

As with standard deconvolution problems, how the Tikhonov regularization coeffi-
cients are fixed dramatically impacts the quality of the regularized least-square solu-
tion and, eventually, the whole separation process. This is discussed in depth in the
following section.

In a second step, the proximal operator of hS is applied to the above least-square
solution. According to Chapter 1, it can be approximated by:

S̃← ΠOS

(
TΛ
(
S̃F∗W⊤

)
M⊤

)
F⊤ (4.16)

where we remind [TΛ(X)]ip = sign(Xip)max(0, |Xip| − Λip) is the soft-threshold op-
erator, M verifies MW = I and [ΠOS (S)]ip = max(0,Sip).

4.2.3.1 Regularization strategies

In [Jiang et al., 2017], the regularization strategy is defined somewhat arbitrarily with
hyperparameters fixed to an ad hoc small value (e.g., 1e− 3). In this section, we will
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highlight that this regularization has a significant impact on the estimation accuracy.
We then study different strategies to tune these critical parameters in a more efficient
and adaptive way.

Let c be a positive number, that will be called regularization hyperparameter. We
will further investigate four different regularization strategies:

• Strategy #1 Let us first consider the naive strategy where the regularization
parameters are chosen independently of the source i and the frequency l:

ε(i,l) = c. (4.17)

• Strategy #2 The strategy presented in [Jiang et al., 2017] is also considered:

ε(i,l) = c λmax(M
(l)), (4.18)

where λmax(·) returns the greatest eigenvalue. In [Jiang et al., 2017], the main
motivation of this choice was to set regularization parameters that scale with
the data.

• Strategy #3 In Eq. (4.13), the errors that contaminate the observations are
amplified by the inverse of the smallest eigenvalue ofM(l), denoted λmin(M

(l))−1.
Limiting the noise amplification to c amounts to choosing ε(i,l) such that ε(i,l) +
λmin(M

(l)) ≤ c ⇐⇒ ε(i,l) ≤ c − λmin(M
(l)). Bearing in mind that ε(i,l) ≥ 0, it

is possible to set ε(i,l) = max
(
0, c− λmin

(
M(l)

))
. A change of variable is finally

operated to facilitate the interpretation of the hyperparameter c, yielding for
each source i and frequency l:

ε(i,l) = max

(
0, c− λmin(M

(l))

λmin(A⊤A) + ϵ

)
, (4.19)

with ϵ = 1e− 2, to prevent numerical issues. Since the sequence (λmin(M
(l)))l∈N

decreases, the sequence (ε(i,l))l∈N increases. Consequently, the higher frequencies
are more penalized, while the lower ones are preserved. This is advantageous
because most of the information from physical sources is generally in low spatial
frequencies. Moreover, the maximum operator in (4.19) allows to have ε(i,l) = 0
for smaller frequencies, provided that c is small enough; this allows to keep the
smaller frequencies unbiased.

• Strategy #4 As in the Euclidean case, it is possible to derive an angular
power spectrum from a harmonic decomposition, which describes the power
distribution along the degrees l (see Appendix B). If the angular power spec-
tra of the sources {SSi:Si:

}i and the noise Snn (which is assumed observa-
tion independent, hence the notation with n) are known, the strategy which
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minimizes the mean square error of the unpenalized least-square problem is
ε(i,l) = Snnl/SSi:Si: l. This is reminiscent of a Wiener deconvolution filter. Yet,
it has to be reminded that the update of S is further followed by a thresholding
step, which likely alters the properties of the regularization strategy. Therefore,
the regularization strategy is adapted by adding a hyperparameter c, yielding
for each source i and degree l:

ε(i,l) = c
Snnl

SSi:Si: l

. (4.20)

The hyperparameter c tips the balance between the Tikhonov regularization
and the sparsity regularization.

4.2.3.2 Numerical comparisons of the regularization strategies

In this paragraph, we propose illustrating the impact of the above regularization
strategies with numerical experiments. For this purpose, we consider the non-blind
source separation case, i.e., using the ground truth mixing matrix A⋄.

Description of the data The data are generated as follows:

• the sources S are sampled on the sphere using the healpix pixelization, with
parameters Nside = 128 and lmax = 384. They are random nonnegative signals
that are sparse in the spherical starlet (isotropic undecimated wavelets) domain
[Starck et al., 2005], and further band-limited to a cut-off frequency lmax/6 = 64.
See example in Fig. 4.5a.

• the mixing matrices A are random nonnegative matrices with a given condition
number.

• the convolution kernels H̃jl = exp
(
− l(l+1)
r(j)(r(j)+1)

log 2
)

are Gaussian-shaped,

with resolutions r evenly spread between the minimum resolution rmin, which
is a parameter to be set, and lmax. The resolution is defined as the full width at
half maximum (FWHM) in the spherical harmonic domain of the convolution
kernel (see example in Fig. 4.1).

Throughout this section, we consider I = 4 sources. Moreover, we define four param-
eters that characterize the observations:

• number of observations J (J = 8 by default),

• mixing matrix condition number cond(A) (cond(A) = 2 by default),

• minimum resolution rmin (lmax/8 = 48 by default),

• overall signal-to-noise ratio (10 dB by default).
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Figure 4.1: Example of a Gaussian filter H̃j:, with a resolution r = 144.

Method The joint deconvolution and non-blind separation is performed by apply-
ing the source update proposed in Subsection 4.2.3 with the ground truth mixing
matrix (i.e., a least-square update and a proximal update). It is noted that the ob-
servations are unmixed and deconvolved at the resolution of the best-resolved channel,
which amounts to replacing H̃jl by H̃jl/H̃jbl with jb the index of the best-resolved
channel. Moreover, for strategy #4, the regularization parameters are calculated with
the angular power spectra of the ground truth sources. The thresholds are set in the
same way than during the finale iteration of SDecGMCA, which is discussed in the
following section.
We test how the four regularization strategies we defined in the previous section be-
have with respect to the number of observations, the mixing matrix condition number,
the minimum resolution of the convolution kernel and the SNR. Each experiment is
composed of 100 trials, with varying random sources, mixing matrices and noise re-
alizations. For each point, the optimal regularization hyperparameter is fine-tuned
using a grid-search. The performances of each strategy is evaluated based on the
NMSE of the estimated sources.

Results Figure 4.2 shows the mean NMSE as a function of each of the four afore-
mentioned observation parameters. Strategy #4 provides the best reconstruction
qualities in all observation scenarios. Among the other strategies, that do not assume
the sources to be known, strategy #3 achieves better results. It is mostly thanks
to the non-linear maximum operator, which allows keeping the lower frequencies un-
biased, where most of the sources energy is located (see example Fig. 4.3, where
ε(i,l) = 0 for l ≤ 44). Strategy #2 gives poor results; indeed, it biases more signifi-
cantly the lower frequencies than the higher ones.
Table 4.1 shows the range of variation of the mean optimal regularization hyperpa-



84
Joint deconvolution and blind source separation for wide-field

observations

2 4 6 8 10 12 14
Condition number

12.5

15.0

17.5

20.0

22.5

25.0

NM
SE

 (d
B)

Str 1
Str 2
Str 3
Str 4

0 50 100 150 200 250 300 350
Minimum resolution

16

18

20

22

24

26

NM
SE

 (d
B)

Str 1
Str 2
Str 3
Str 4

5 10 15 20 25
Number of observations

15.0

17.5

20.0

22.5

25.0

27.5

30.0

NM
SE

 (d
B)

Str 1
Str 2
Str 3
Str 4

10 0 10 20 30 40
SNR (dB)

10

20

30

40

50

NM
SE

 (d
B)

Str 1
Str 2
Str 3
Str 4

Figure 4.2: Mean NMSE over 100 realizations as a function of observation parameters.

rameters when the observation parameters vary. Contrary to the three first strategies,
the optimal regularization hyperparameter for strategy #4 is rather insensitive to the
observation parameters (typically copt ∼ 0.5). The noticeable exception is regard-
ing the SNR. When the SNR is low, the denoising by the sparsity regularization is
particularly promoted, hence a marked decrease of copt.

4.3 Implementation of the SDecGMCA algorithm

We shed light on how critical the choice of the Tikhonov regularization strategy is. In
this section, the details of implementation of SDecGMCA are described. In particu-
lar, a novel two-stage algorithm which exploits the proposed regularization strategies
is introduced.

SDecGMCA is summarized in Algorithm 10. The mixing matrix A is initialized
with a Principal Component Analysis (PCA) performed on the observations. For this
step only, the data are first reconvolved so as they share a common resolution; to
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Figure 4.3: Example of regularization parameters ε(i,l) as a function of the frequency l
for the default observation parameters and with the mean optimal hyperparameters.

Parameter Range
Regularization strategy

#1 #2 #3 #4

cond(A) 1.5 to 14 1.04 1.84 0.31 0.10
rmin 2 to 350 > 3.30 > 2.60 0.75 0.11
J 4 to 24 0.49 2.02 1.11 0.25
SNR (dB) −10 to 40 1.18 1.08 0.41 0.76

Table 4.1: Range of variation of the mean optimal regularization hyperparameter copt,
in terms of order of magnitude, when the observation parameters vary. In some cases,
copt is smaller than the lower bound of the search interval (1e − 5), hence the lower
limit of the range, which is indicated by the sign ”>”.
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avoid noise amplification, this resolution is that of the worse-resolved channel.
SDecGMCA is comprised of two stages. The first stage estimates a first guess of the
mixing matrix and the sources (warm-up); it is required to provide robustness with
respect to the initial point. The second stage refines the separation by employing a
more precise regularization strategy (refinement). The values of the parameters of
SDecGMCA according to the stage are summarized in Table 4.2.

Algorithm 10 SDecGMCA

Inputs: data Y, masks H̃, number of sources I, regularization hyperparam-
eters cwu and cref , variance of the noise σ2, sparsifying representation (anal-
ysis operator W and synthesis operator M), thresholding parameters κ and
Kmax

A← PCA(Y, I)

(1) Warm-up stage
stage ← warm-up
while convergence not reached do

Update c and K according to Table 4.2

S̃← UpdateS
(
stage, Ỹ, H̃, A, c, σ2, W, M, κ, K

)
A← UpdateA

(
Ỹ, H̃, S̃

)
(2) Refinement stage
stage ← refinement
while convergence not reached do

S̃← UpdateS
(
stage, Ỹ, H̃, A, cref , σ

2, W, M, κ, Kmax

)
A← UpdateA

(
Ỹ, H̃, S̃

)
return A, S

4.3.1 Choice of the thresholding parameters

As emphasized in Chapter 1, the thresholding parameters play a central role for the
robustness of the minimization scheme with respect to the spurious local minima and
the precision of the estimates. In this respect, the same threshold selection strategies
as GMCA are implemented in SDecGMCA, namely:

• the thresholds are adjusted with respect to the noise level contaminating the
current estimation of the sources (”κ− σ” rule, see Eq. 1.22),
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Algorithm 11 UpdateS

Inputs: stage, Ỹ, H̃, A, c, σ2, W, M, κ, K

(1) Least-square update
for l = 0, 1, . . . , lmax and m = −l,−l+ 1, . . . , l do

Determine the Tikhonov regularization parameters {ε(i,l)}i according to the
stage and c

S̃:(l,m) ←

(
A⊤ diag

(
|H̃:l|2

)
A+ diag

i∈[1...I]

(
ε(i,l)

))−1

A⊤ diag
(
H̃∗

:l

)
Ỹ:(l,m)

(2) Regularization
Calculate the thresholds Λ with a support-based strategy and a ℓ1-reweighting if
need be, according to the stage
if stage is warm-up then

S̃← TΛ
(
S̃F∗W⊤

)
M⊤F⊤

else
S̃← max

(
TΛ
(
S̃F∗W⊤

)
M⊤,0

)
F⊤

return S̃

Algorithm 12 UpdateA

Inputs: Ỹ, H̃, S̃

(1) Least-square update
for j = 1, 2, . . . , J do

Aj: ←

( ∑
(l,m)∈P

Ỹj(l,m)H̃
∗
jl

(
S̃:(l,m)

)†)( ∑
(l,m)∈P

∣∣∣H̃j(l,m)

∣∣∣2 S̃:(l,m)

(
S̃:(l,m)

)†)−1

(2) Constraint application
for i = 1, . . . , I do

A:i ← max (A:i,0)
A:i ← A:i/max(∥A:i∥2, 1)

return A
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Stage 1: warm-up 2: refinement

Regularization strategy #3 #4
Regularization hyperparameter c 10 cwu → cwu cref
Active source support K 0→ Kmax Kmax

ℓ1-reweighting No Yes
Nonnegativity constraint on S No Yes

Table 4.2: Parameters of SDecGMCA for each stage.

• the thresholds are decreased along the iterations to avoid inaccurate local min-
ima (see Eq. 1.23),

• the thresholds are adapted sample-wise with a ℓ1-reweighting scheme so as to
reduce thresholding artifacts [Candès et al., 2008] (see Eq. 1.24).

4.3.2 A two-stage minimization approach

We highlighted in Section 4.2.3.2 that regularization strategy #4 provides signifi-
cantly better results in the non-blind source separation case. Since, this strategy is
defined based on some estimate of the sources, we propose proceeding with a two-step
approach: (i) a warm-up step, whose goal is to provide a quick rough estimate of A
and S, with increased robustness with respect to the initialization and spurious local
minima, and (ii) a refinement step that makes use of the more precise regularization
strategy #4.

Warm-up stage During the warm-up, regularization strategy #3 is employed. In-
deed, as seen in Section 4.2.3.2, it provides the best results among the three first
regularization strategies that require no additional information about the sources.
During this stage, the estimates of the sources are likely to be dominated by the
artifacts due to the noise amplification, especially if the regularization hyperparam-
eter at warm-up cwu is too small. The estimation of A is then erroneous, and the
algorithm might get stuck in a local minimum. This phenomenon can be alleviated
by over-regularizing the sources during the first iterations, i.e., by taking a higher
cwu [Jiang et al., 2017]. In doing so, the noise contamination is reduced, and only the
major features of the sources are kept. In the spirit of [Jiang et al., 2017], the regu-
larization hyperparameter is then progressively decreased along the iterations to the
input value, in order to refine the estimations of S and consequently A. The decrease
of the warm-up regularization hyperparameter markedly improves the robustness of
the separation in terms of convergence.
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Moreover, the earlier mentioned support-based strategy is achieved during the warm-
up. Since the starting point of this step is likely to be quite far from the sought-after
sources, no reweighted ℓ1 is applied as it would tend to favor spurious solutions. For
the same reason, the nonnegativity constraint is likewise not applied to the sources
during this stage (but it is for A).
The warm-up ends when the decrease of cwu and the increase of K are com-
pleted, and when the estimations of the sources have converged, that is when
||S̃(n) − S̃(n−1)||2/||S̃(n)||2 ≤ ϵwu. In practice, ϵwu does not require to be very small
(e.g., ϵwu = 1e− 2).

Refinement stage During the second stage, the estimations are refined by using
the more precise regularization strategy #4 introduced in 4.2.3.1. The regularization
parameters are calculated with the angular power spectra of the sources estimated
at the previous iteration, which are assumed to be close enough to the ground truth
ones:

ε(i,l)
(n)

= cref
Snnl

S
S
(n−1)
i: S

(n−1)
i: l

, (4.21)

where n is an iteration and cref is the regularization hyperparameter at refinement.
Snn is deduced from the SNR of the observations. Concerning the choice of the
thresholds, the active support is kept constant at Kmax. The ℓ1-reweighting of the
sources we described above is applied during this stage, as well as the nonnegativity
constraint on the sources. The refinement ends when the estimations of the sources
have converged, that is when ||S̃(n) − S̃(n−1)||2/||S̃(n)||2 ≤ ϵref (for instance ϵref =
1e− 5).
Setting Kmax to a value different from 1 generally improves the separation, but it
biases the estimation of the sources. Therefore, after the refinement step, a final
estimation of the sources with A fixed and K = 1 is performed. This final step does
not appear in Algorithm 10 for clarity.

4.3.3 Convergence proprieties

DBSS requires solving a multi-convex optimization problem. No method can guar-
antee finding in general the global minimum. At best, it is possible to guarantee a
convergence toward a local minimum (e.g., BCD [Tseng, 2001], PALM [Bolte et al.,
2014]). SDecGMCA is built upon a projected ALS scheme. To the best of our knowl-
edge, is has not been theoretically proved that projected ALS algorithms converge.
However, we empirically show that the regularization parameters tend to stabilize
along the iteration, as well as the estimates of A and S (see Fig. 4.4).
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Figure 4.4: Illustration of the empirical stabilization. The relative variation is equal
to ∥X(n) −X(n−1)∥2/∥X(n)∥2, with X = A or S depending on the case. The peak at
iteration #101 corresponds to the switch from the warm-up stage to the refinement
stage.

4.4 Numerical experiments

In this section, we investigate the performances of the SDecGMCA algorithm on
synthetic toy examples that allow performing Monte-Carlo trials, as well as realistic
simulations with partial sky coverage. The code that is used is open source (see
Appendix D).
For all these experiments, we make use of the healpix pixelisation on the sphere.
Comparison criteria are first based on the NMSE, which measures the reconstruction
quality of the sources. As well, we make use of the mixing matrix criterion CA to assess
the quality of the estimated mixing matrices. The mixing matrix criterion is more
appropriate to compare DBSS and BSS methods with different source regularization,
since it only depends on A.
We define the oracle as the solution of the non-blind problem (i.e., knowing the ground
truth mixing matrix) with regularization strategy #4 and the optimal regularization
hyperparameter. It provides an upper bound of the NMSE that SDecGMCA can
reach.

4.4.1 Toy model

The same toy examples as in Section 4.2.3.2 are employed, with a similar parameter-
ization. The input parameters of SDecGMCA are summarized in Table 4.3.
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Parameter Notation Value

Minimum number of iterations at warm-up Nwu 100
Number of detail scales S 3
Thresholding parameter κ 3
Maximum source support Kmax 0.5

Table 4.3: Input parameters of SDecGMCA for the toy example

4.4.1.1 Impact of the Tikhonov regularization

In standard BSS, the common sources of error are interference (i.e., leakage between
sources due to a poor estimation of the mixing matrix), noise contamination (i.e.,
back-projected noise from the observations which is not filtered) and artifacts (i.e.,
remaining errors such as thresholding artifacts) [Vincent et al., 2006]. Within the
scope of joint deconvolution and BSS, this straightforward decomposition is not suit-
able anymore. For instance, when the mixing matrix is known, the estimation of the
sources alone can generate interference in addition to the deconvolution artifacts due
to the biasing Tikhonov regularization. Generally speaking, we can consider that
a separation is successful when deconvolution artifacts dominate the reconstruction
errors.

In this subsection, the data have the default observation parameters (see Sec-
tion 4.2.3.2). Figure 4.5 shows an example of solution by SDecGMCA where the
reconstructions errors are dominated by deconvolution artifacts (see Fig. 4.5f).

We first assess the impact of the regularization hyperparameters on the perfor-
mances of SDecGMCA. To this end, we execute SDecGMCA with different warm-up
and refinement regularization hyperparameters. Since the sources are updated sim-
ilarly in the non-blind problem, the mean optimal regularization hyperparameters
found in Section 4.2.3.2 are taken as reference regularization hyperparameters. Each
experiment is performed 100 times, with varying sources, mixing matrices and noise
realizations.

The mean NMSE and the mean CA are reported in Table 4.4. The choice of cwu
for the warm-up stage has little impact on the performance metrics; indeed, the loss
of NMSE and CA due to a poor choice of cwu is, respectively, at most 0.42 dB and
0.77 dB in the tested range. On the contrary, the selection of cref for the refinement
stage may be more critical. It is, however, very interesting to highlight that, in a range
of one order of magnitude around the optimal hyperparameter, the loss of NMSE and
CA remains quite limited (i.e., respectively about −2.21 dB and −1.05 dB at most).
It is noted that the oracle mean NMSE is 25.74 dB; thus, the extra estimation of the
mixing matrix is only the origin of a 0.95 dB loss in NMSE.
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Figure 4.5: DBSS example by SDecGMCA on the toy model. The graphics of sources,
observations and error are in logarithmic scale.
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cref (× cref opt)

10−1 10−0.5 100 100.5 101

cwu
(× cwuopt)

100 → 10−1 22.86 24.43 24.61 22.6 18.11
100.5 → 10−0.5 22.99 24.58 24.79 22.83 18.35
101 → 100 23.00 24.58 24.79 22.82 18.34
101.5 → 100.5 23.06 24.59 24.65 22.44 18.10
102 → 101 23.06 24.23 24.4 22.43 17.93

100 → 10−1 25.62 25.20 24.86 24.41 22.66
100.5 → 10−0.5 25.60 25.19 24.86 24.46 22.81
101 → 100 25.57 25.15 24.81 24.39 22.80
101.5 → 100.5 25.28 24.80 24.37 23.75 22.07
102 → 101 25.28 24.56 24.25 23.84 22.04

Table 4.4: Mean NMSE (top) and CA (bottom) in dB, over 100 realizations, performed
by SDecGMCA on the toy model as a function of cwu and cref . These are given as
multiples of cwuopt and cref opt, which are the mean optimal hyperparameters for the
non-blind problem. It is noted that the oracle mean NMSE is 25.74 dB.

4.4.1.2 Comparisons with other blind source separation methods

In this paragraph, comparisons with other blind source separation methods are per-
formed. Since few DBSS methods have been investigated so far, a natural comparison
would be with DecGMCA. However, as it has not directly been designed for data sam-
pled on the sphere, a direct comparison cannot be performed. We rather propose to
substitute DecGCMA’s regularization strategy #2 within SDecGMCA to quantify
the impact of the regularization strategy. In contrast to [Jiang et al., 2017], where
the regularization parameter is chosen in an ad hoc manner, we employ the optimal
regularization hyperparameters; this method is therefore referred to as oDecGMCA
(for optimized DecGMCA). Moreover, in order to highlight the benefit of combining
deconvolution and BSS, we propose to compare SDecGMCA to three standard BSS
methods:

• GMCA (with the decreasing thresholding strategy and the ℓ1-reweighting),

• Hierarchical alternating least squares (HALS) [Cichocki et al., 2007, Gillis and
Glineur, 2012], which is recalled to be a nonnegative matrix factorization algo-
rithm solving argminA≥0,S≥0∥X−AS∥22 using a block coordinate descent with
multiplicative updates,

• Beta sparse nonnegative matrix factorization (β-SNMF) [Cherni et al., 2020],
which is a nonnegative matrix factorization algorithm promoting the sparsity
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CA NMSEw NMSE

SDecGMCA 24.81 27.08 24.79
oDecGMCA 23.01 20.94 15.03
GMCA 21.98 19.35 N/A
HALS 8.17 5.83 N/A
β-SNMF 8.43 7.01 N/A

Table 4.5: Mean performance metrics in dB, over 100 realizations, achieved by differ-
ent algorithms on the toy model.

of S in the direct domain, which solves argminA≥0,S≥0∥X −AS∥22 + λ∥S∥1 by
resorting also to block coordinate descent with multiplicative updates.

As these methods can only process observations with the same resolution, the observa-
tions are deconvolved beforehand to the resolution of the worse-resolved observation
so as to avoid noise amplification. The NMSE is adapted to take account of the
resolution loss:

NMSEw = −10 log10
(
∥Hjw: ∗ S⋄ − S∥22
∥Hjw: ∗ S⋄∥22

)
, (4.22)

where jw is the index of the worse-resolved observation channel. The NMSEw of the
DBSS methods can be calculated by deteriorating the estimated sources.

The performance metrics achieved by the different DBSS and BSS algorithms are
reported in Table 4.5. Compared to oDecGMCA, SDecGMCA performs a significant
gain in NMSE and a moderate increase in CA. This result confirms that the choice
of the regularization strategy is crucial for the estimation of the sources. Moreover,
the BSS algorithms achieve poor results; indeed, high-frequency information, which
is essential for the separation process, is lost during deconvolution.

4.4.1.3 Varying observation parameters

Let us evaluate the sensitivity of the different source separation algorithms to the
observation parameters, that is the mixing matrix condition number, the minimum
resolution of the convolution kernels, the number of observations and the SNR. For
SDecGMCA and oDecGMCA, the mean optimal regularization hyperparameter found
above with the non-blind problem are used. At each point, the algorithms are ex-
ecuted 30 times with varying sources, mixing matrices and noise realizations. The
mean performance metrics are reported in Figure 4.6.

The NMSE achieved by SDecGMCA is close to the oracle; the loss is typically
of 1 dB. In every scenario, SDecGMCA clearly outperforms oDecGMCA in terms
of NMSE and CA. Overall, the tendencies are consistent; the performance metrics
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increase with increasing minimum resolution, number of observations and SNR, while
decrease with increasing mixing matrix condition number. The first notable exception
is the NMSEw against the minimum resolution. It is due to the fact that the reference
Hjw ∗S in the definition of the NMSEw varies from one point to the other. The second
exception concerns the SNR; the performance metrics stabilize or decrease when there
is little noise. This is an effect of the implicit regularization provided by the noise.
According to the proposed threshold tuning strategy, when the noise level is low, the
thresholds are low and the sparsity constraint is loosened. On the contrary, a higher
noise level yields higher thresholds that tend to select high amplitude coefficients,
which better discriminate between the sources.

Finally, let us assess the sensitivity of SDecGMCA to the regularization hyperpa-
rameter at refinement as a function of the observation parameters (see Fig. 4.7). Both
NMSE and CA losses are limited in a range of one order of magnitude around the
optimal regularization hyperparameter (typically −2 dB). The noticeable exception
is when A is ill-conditioned. The higher sensibility to the regularization hyperpa-
rameter may come from the induced ill-condition of the (M(l))l∈N (matrices which are
inverted in Eq. 4.15).

4.4.2 Application to realistic astrophysical data

Joint deconvolution and blind source separation is now performed on realistic astro-
physical simulations. These data are composed of J = 25 observations, which are
built as mixtures of three sources. The latter are associated with a synchrotron, a
thermal and an iron line emissions as displayed in Fig. 4.8, with spectra displayed in
panel (d). It is commonplace in such an application that only a partial sky coverage
is observed, which is simulated by projecting the sources on a limited portion of the
sphere (see Fig. 4.8). Similarly to the synthetic data, we set the pixelization param-
eters to Nside = 128 and lmax = 384. The 25 observations have resolutions evenly
spread between lmax/8 and lmax.

4.4.2.1 Example of result

We firstly consider that the observations are corrupted by a noise of 10 dB (see two
observations on Fig. 4.8e and 4.8f). Figure 4.9 shows a solution given by SDecGMCA
(with Kmax = 0.2 to overcome the correlations between the sources). The errors
are dominated by deconvolution artifacts. Actually, the estimated sources are very
close to the oracle estimates that use the ground truth mixing matrix (NMSE =
21.17 dB vs. oracle NMSE = 22.58 dB). Moreover, putting aside a small leakage in
the lower frequencies of the emission line spectrum in the synchrotron spectrum, all
three spectra are well reconstructed (CA = 18.02 dB).
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Figure 4.6: Mean performance metrics over more than 30 realizations as a function
of observation parameters on the toy model. The default values of the observation
parameters are summarized in Section 4.2.3.2.
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Figure 4.7: Mean performance metrics over more 30 realizations performed by
SDecGMCA on the toy model with the optimal regularization hyperparameter at
warm-up cwuopt and with different regularization hyperparameters at refinement cref ,
which are indicated as multiples of cref opt in the legends.
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Figure 4.8: Realistic data and example of observations with a SNR of 10 dB. The
plots of sources and observations are in logarithmic scale.
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Figure 4.9: DBSS example by SDecGMCA on realistic data. The plots of sources
and errors are in logarithmic scale.
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CA NMSEw NMSE

SDecGMCA 18.02 26.92 21.17
oDecGMCA 15.78 25.89 18.16
GMCA 16.60 25.84 N/A
HALS 7.78 10.29 N/A
β-SNMF 7.93 10.38 N/A

Table 4.6: Mean performance metrics in dB, over 50 realizations, achieved by different
algorithms. The oracle mean NMSE is 22.58 dB.

4.4.2.2 Comparison with other blind source separation methods

Let us compare the results returned by the previously considered DBSS and BSS
algorithms. The mean performance metrics over 50 noise realizations are reported
in Table 4.6. Equivalently to the synthetic data, SDecGMCA markedly overcomes
oDecGMCA in terms of estimation error on both S and A.

The estimates of the thermal source by the five algorithms are reported in Fig. 4.10
and 4.11, along with the ground truth and the oracle estimation. As said earlier, the
SDecGMCA and oracle estimates are remarkably similar. The oDecGMCA algorithm
reconstructs the source with a slightly lower resolution. More importantly, it is con-
taminated by outlier pixels, which are likely due to the regularization favoring the
higher frequencies combined with too low threshold. All the finer details are lost in
the GMCA estimate because the observations are degraded beforehand. Both HALS
and β-SNMF do not correctly denoise the sources; this highlights the advantage of
the sparsity constraint in a transformed domain.

4.4.2.3 Impact of the noise

We then focus on the behavior of the different algorithms with respect to the SNR.
The SNR is, in fact, the observation parameter that generally has the most significant
impact on the results and robustness of the algorithms.

In the first place, the optimal regularization parameters are estimated (by resolv-
ing the non-blind problem). The results are plotted in Fig. 4.12. As observed with the
synthetic data, the optimal regularization hyperparamater of strategy #4 (refinement
strategy) is relatively insensitive to the SNR and is worth approximately 0.5. The
optimal regularization hyperparameter at warm-up (strategy #3) is more sensitive to
the SNR. However, as with the synthetic data, it has limited influence on the result
of the separation (thereafter, we set cwu = 1e− 3, independently of the SNR).

The performance metrics of SDecGMCA as a function of the SNR and for different
regularization hyperparameters at refinement are plotted in Fig. 4.13. Similarly to
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Figure 4.10: Estimated source S2: by different algorithms. The plots are in logarithmic
scale.
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Figure 4.11: Zoom on the estimated source S2: by different algorithms. The plots
share the same logarithmic scale.
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Figure 4.12: Mean optimal regularization hyperparameter of the non-blind problem,
over 20 noise realizations, as a function of the SNR and the regularization strategy
on the realistic data.

the synthetic data, the NMSE and CA stabilize when there is little noise. In overall,
the choice of cref has little impact on the finale result (approximately −2 dB at most
for both metrics). Overestimating cref improves the estimation of A to the detriment
of the estimation of S, and vice versa.

The different DBSS and BSS algorithms are finally compared for different noise
levels. The results are reported in Fig. 4.14. Compared to the synthetic sources, the
realistic sources are more correlated and less sparse in the starlet domain. This can
result in a decrease in robustness. In order to compare the different methods, we
calculated the mean performance metrics only over the successful realizations (that
is with a CA close enough to the maximum CA across all realizations). SDecGMCA
demonstrates a satisfactory robustness to noise in terms of convergence. As with the
synthetic data, the performance metrics tend to stabilize when there is little noise.
These experiments highlight that oDecGMCA is not robust to low noise level; the few
cases that converge return good metrics, hence an apparent improvement in CA and
NMSE at high SNR compared to SDecGMCA. The performances of GMCA notably
decrease at a low noise level. Indeed, the degree of sparsity of the sources is markedly
decreased at low resolution; when combined with a low noise level (and thus a smaller
threshold regularization), the separation process is deteriorated.

4.5 Conclusion

This chapter investigates a new joint deconvolution and sparse blind source separation
algorithm to analyze multichannel spherical data. We first thoroughly investigate
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Figure 4.13: Mean performance metrics over 20 noise realizations performed by
SDecGMCA on the realistic data as a function of the SNR, with cwu = 1e − 3 at
warm-up and with different regularization hyperparameters cref at refinement, which
are indicated as multiples of cref opt in the legends.

the impact of the regularization scheme in the least-square minimization, which is
proven to impact the quality of the separation process broadly. We further introduce
dedicated regularization schemes that better adapt to the statistics of the sources
to be estimated. Based on these regularization techniques, we present a two-step
minimization algorithm coined SDecGMCA, which is shown to provide a robust and
effective minimization procedure. Numerical experiments on both toy examples and
realistic astronomical simulations evaluate how the proposed algorithm performs in a
wide range of mixing scenarios. Comparisons with standard BSS methods are further
carried out, which shows that the proposed SDecGMCA algorithm is competitive.



Conclusion 105

0 10 20 30 40
SNR (dB)

15

20

25

30

NM
SE

 (d
B)

Oracle
SDecGMCA
oDecGMCA

0 10 20 30 40
SNR (dB)

10

15

20

25

30

35

NM
SE

w
 (d

B) SDecGMCA
oDecGMCA
GMCA
HALS

-SNMF

0 10 20 30 40
SNR (dB)

7.5

10.0

12.5

15.0

17.5

20.0

CA
 (d

B)

SDecGMCA
oDecGMCA
GMCA
HALS

-SNMF

0 10 20 30 40
SNR (dB)

20

40

60

80

100

Co
nv

er
ge

nc
e 

ra
te

 (%
)

SDecGMCA
oDecGMCA
GMCA
HALS

-SNMF

Figure 4.14: Mean performance metrics and convergence rate over 20 noise realiza-
tions performed by different DBSS and BSS algorithms on the realistic data as a
function of the SNR.
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Chapter 5

Joint deconvolution and blind
source separation with
non-coplanar interferometric data

5.1 Introduction

The advent of large-scale radio-interferometers mandates the development of new
analysis methods that can tackle non-coplanar effects. As seen in Chapter 3, these
effects arise from long baselines (i.e., large distance between the most distant anten-
nas), which generally break the assumption that the antennas are on the same plane,
as well as wide-field observations, because the incident waves are no longer plane.
Similarly to Chapter 4, the standard linear mixture model becomes obsolete, which
calls for the design of a dedicated DBSS algorithm.

In the present chapter, we propose a method to address DBSS with non-coplanar
interferometric data. As with DecGMCA, jointly tackling deconvolution and separa-
tion is expected to yield better results, allowing for a more accurate accounting of the
forward model and noise in a single pass. The algorithm, called wGMCA, is tested
on synthetic and realistic data, and compared to sequential standard non-coplanar
deconvolution and separation methods. To the best of our knowledge, there exists no
BSS method that can tackle measurements with non-coplanar effects.
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5.2 Principle

5.2.1 Context

Recall the imaging model of non-coplanar radio interferometers on which we con-
cluded Chapter 3 (Eq. 3.28):

ỹ(ν)(u, v, w) = H̃(ν)(u, v, w)
[
F ◦

(
G(w) ⊙ x(ν)

)]
(u, v, w) + ñ(ν)(u, v, w), (5.1)

with:

• ν a spectral band, which is hereafter confused with its central frequency,

• (u, v, w) the baseline coordinate system and (l,m) the sky coordinate system,

• ỹ(ν)(u, v, w) the observed data at frequency ν,

• H̃(ν)(u, v, w) the response of the interferometer, which is a mask that depends
on the position of the antennas and ν,

• F the two-dimensional Fourier transform operator, which is applied in this case
on the u and v axes,

• G(w)(l,m) := e−2πiw(
√
1−l2−m2−1) the w-modulation term arising from the non-

coplanar effect,

• x(ν)(l,m) the sought-after image at frequency ν,

• ñ(ν)(u, v, w) the noise term at frequency ν.

In Chapter 3, we reviewed the main deconvolution algorithms for non-coplanar
interferometric data, and we highlighted that the w-stacking method [Offringa
et al., 2014] offered a decent compromise between accuracy and computational
cost. Therefore, we choose to build upon the w-stacking framework to derive a
non-coplanar DBSS algorithm.

In a multispectral context, consider an interferometer that probes the sky on
J channels between a low frequency νmin and a high frequency νmax. Thereafter,
we define the normalized baseline coordinate system (u, v, w) according to the
high-frequency channel; in other words, if (du, dv, dw) denotes the baseline coordinate
system, u := duνmax/c, v := dvνmax/c and w := dwνmax/c. Consequently, a
pair of antennas with baseline (du, dv, dw) will produce interferometric samples at
(uν/νmax, vν/νmax, wν/νmax) for each frequency ν.

Following the w-stacking framework, the w-axis is uniformly discretized into W
values and, for each channel, the interferometric samples are assigned to their nearest
w-plane. The number of planes W should be great enough so that the maximal
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angle difference between two samples of the same w-plane is small, which yields the
criterionW ≫ 2π(max(w)−min(w))maxl,m(1−

√
1− l2 −m2) [Offringa et al., 2014].

For each channel and for each w-plane, the interferometric samples are then gridded
on a uniform (u, v) grid of size

√
P ×

√
P and flattened in a vector of size P . This

leads to the obtaining of a three-dimensional tensor Y ∈ CJ×W×P .

5.2.2 Operators on tensors

Before going further, let us define three operators on three-dimensional tensors:

• As previously, ⊙ represents the element-wise product. If T and U are both in
CI×J×K , then so is T ⊙ U , and (T ⊙ U)ijk := T ijkU ijk.

• ⊠n denotes the n-mode product, which can be viewed as the multiplication
of the nth axis of a tensor by a matrix. For instance, if T ∈ CI×J×K is a
tensor and M ∈ CN×I a matrix, then M⊠1 T ∈ CN×J×K is a tensor such that
(M⊠1 T ):jk := MT :jk.

• ⊡ a binary operator, which we define as combining two matrices to produce a
tensor that is the element-wise product of the two matrices along their second
axis. More specifically, if M ∈ CJ×K and P ∈ CI×K , then M ⊡ P ∈ CI×J×K

such that (M⊡P)ij: = Mj:⊙Pi: (note the index swap, which is introduced for
practical reasons with respect to the following observation model).

5.2.3 Forward observation model

The forward model which makes the link between the observed data Y and the
mixture AS is:

Y = H⊙ (F⊠3 (G⊡ (AS))) +N , (5.2)

where H ∈ CJ×W×P is the mask of the interferometer at each channel and each
w-plane, F ∈ CP×P is the 2D Fourier transform matrix (reordered so as to tackle
flattened images), G ∈ CW×P accounts for the w-terms due to the non-coplanar
effect, A ∈ RJ×I and S ∈ RI×P are the usual mixing and source matrices, and finally
N ∈ CJ×W×P is a zero-mean complex Gaussian noise. An illustration of the model
is shown in Fig. 5.1.

Two specifications on the model are made. Firstly, in agreement with the response
of an interferometer in a non-coplanar setting (Eq. 3.17), the elements of G are given
by:

Gωp := exp
(
−2πiw(ω)

(√
1− l(p)2 −m(p)2 − 1

))
, (5.3)
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Figure 5.1: Illustration of the (noiseless) forward observation model. The pictures
show absolute values, except those concerning the w-term matrix G, which show real
parts.
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where w(ω) is the value of w associated to the plane indexed by ω, and l(p) and m(p)
are the direction cosines associated to pixel p.

Secondly, as in the planar case, the mask verifies a conjugate-symmetry propriety:
Hjωp = H∗

jω′p′ where ω
′ is the plane index such that w(ω′) = −w(ω) and p′ is the

pixel such that l(p′) = −l(p) and m(p′) = −m(p). Since the observed mixtures
are real-valued, the same conjugate-symmetry applies for the data Y and the noiseN .

In Eq. (5.2), the mixing matrixA is applied on the source axis of S, while operators
G and F are applied on the pixel axis of S. It follows that the model can be rewritten
equivalently:

Y = H⊙ (A⊠1 (F⊠3 (G⊡ S))) +N . (5.4)

The latter formulation is numerically advantageous because the costly Fourier trans-
form is evaluated fewer times, since the overdetermined case is considered (J ≥ I).

5.2.3.1 Assumptions on the noise

The independence of the noise between two channels and two w-planes is clear. In
this regard, let {Σ(j,ω) ∈ RP×P}j,ω denote the covariance matrices of N along the
pixel axis.

The gridding performed on the interferometric measurements of a single channel
and a single w-plane mixes the data and introduces noise correlation. However, for
numerical and memory reasons, we will neglect this effect and thus consider that
the {Σ(j,ω)}j,ω are diagonal. This assumption is all the more true if the convolution
kernel used for the gridding is small, incidentally. We note that the diagonal terms
of the covariance matrices are not constant since the visibility space is not sampled
uniformly by the interferometer.

To summarize, the considered noise is zero-mean complex Gaussian, independent
but not identically distributed. The variances per sample are stored in diagonal
matrices {Σ(j,ω)}j,ω.

5.2.4 Cost-function

The previously seen SBSS framework is adapted to tackle non-coplanar interferomet-
ric data.

Data-fidelity term The noise is reminded to be additive and Gaussian, with a
known covariance. The data-fidelity term is chosen as the noise neg-log-likelihood,
which leads to:

D(A,S) := 1

2
q (Y −H⊙ (A⊠1 (F⊠3 (G⊡ S)))) , (5.5)
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where q is a quadratic form, which depends on the noise covariance.

Source regularization The sources are assumed to be both nonnegative and
sparse in a transformed domain (e.g., wavelets); a nonnegative constraint and a ℓ1-
penalization term on the transformed coefficients of the sources are therefore consid-
ered. Let W ∈ RP ′×P be a dictionary of the considered sparsifying transform; the
regularization term is then given by:

hS (S) :=
∥∥Λ⊙ (SW⊤)∥∥

1
+ ιOS (S) , (5.6)

where Λ ∈ RI×P ′
is the regularization hyperparameter, written in matrix form to

allow it to be sample and source dependent, and OS := {X ∈ RI×P ,∀(i, p),Xip > 0}.

Mixing-matrix constraint In order to prevent the scale degeneracy ∥Si:∥2 → 0
and ∥A:i∥2 →∞ that is inherent to SBSS, the spectra constituting the mixing matrix
are enforced to belong to the unit ball. Assuming furthermore the nonnegativity of
the spectra leads to the following constraint:

hA (A) := ιKA(A), (5.7)

where KA =
{
A ∈ RJ×I , ∀(i, j),Aji ≥ 0,∀i, ∥A:i∥ ≤ 1

}
.

To summarize, the following cost-function is considered:

min
A,S

1

2
q (Y −H⊙ (A⊠1 (F⊠3 (G⊡ S)))) +

∥∥Λ⊙ (SW⊤)∥∥
1
+ ιOS (S) + ιKA(A).

(5.8)

5.3 Towards non-coplanar DBSS

We choose to tackle the above non-coplanar DBSS problem with a pALS scheme,
since it already proved to be efficient and reliable in the context of BSS [Kervazo,
2019]. Moreover, we propose to keep the general architecture of the planar version
of SDecGMCA, noting that the latter algorithm already addresses a particular case
of wGMCA (with a single w-plane at w = 0, that is W = 1 and G a row vector of
ones).

5.3.1 Update of S

Following the pALS scheme, the aim is to solve approximately:

min
S

1

2
q (Y −H⊙ (A⊠1 (F⊠3 (G⊡ S)))) +

∥∥Λ⊙ (SW⊤)∥∥
1
+ ιOS (S), (5.9)



Towards non-coplanar DBSS 113

by first minimizing the data-fidelity term and then applying the proximal operator of
the two regularization terms.

However, the direct minimization of the data-fidelity term with a fixed A is in-
tractable, as it requires inverting W matrices of size IP × IP (in the simpler cases,
P = 1282 typically). The minimization is therefore decomposed into two subprob-
lems.

5.3.1.1 Subproblem I: deconvolve and unmix the visibilites

We propose to firstly estimate X := F ⊠3 (G⊡ S) ∈ CI×W×P , that is the sources
modulated by the w-terms and projected in Fourier space. Indeed, the problem
becomes separable along the w and pixel axes, which reduces the computation costs.

For each plane ω and pixel p, let y(ω,p) =: Y :ωp ∈ CJ be the multichannel visi-
bilities, x(ω,p) =: X :ωp ∈ CI be the Fourier transform of the sources modulated by
the w-terms and H(ω,p) := diag (H:ωp) ∈ CJ×J be the mask of the interferometer
recast in a diagonal matrix. Since the noise is independent along the channel axis,
the covariance matrix of the noise which contaminates y(ω,p) is diagonal and given by
Ψ(ω,p) := diagj

(
Σ(j,ω)

pp

)
.

Equipped with these handy matrix-vector notations, and temporarily omitting
the dependencies in ω and p for clarity, the quadratic form q takes a simple form such
that the first subproblem can be written for each w-plane and each pixel:

min
x

1

2

∥∥∥Ψ− 1
2 (y −HAx)

∥∥∥2
2
. (5.10)

The above problem is very similar to the least squares tackled in the source update
of SDecGMCA (see Eq. 4.12). The operator HA is likely to be ill-posed, since the
mask can be mostly null. We therefore add an extra Tikhonov regularization so that
Eq. (5.10) can be inverted directly:

min
x

1

2

∥∥∥Ψ− 1
2 (y −HAx)

∥∥∥2
2
+

1

2

I∑
i=1

ε(i) |xi|22 , (5.11)

where {ε(i)}i are the Tikhonov regularization coefficients, which generally depend on
the sources, the pixels and the w-planes. The solution is then given by:

x̂ :=
(
A⊤H†Ψ−1HA+D

)−1
A⊤H†Ψ−1y, (5.12)

where D = diagi
(
ε(i)
)
is the diagonal matrix constituted of the Tikhonov regulariza-

tion coefficients for all sources.
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5.3.1.2 Subproblem II: correct the non-coplanar effect

The aim is now to recover S from the previous estimation of X . Let s(i) := Si: ∈ RP

be source i, Γ(ω) := diag (Gω:) ∈ CP×P be the w-terms of plane ω recast in a diagonal
matrix, ξ(i,ω) := X iω: ∈ CP be the Fourier transform of source i modulated by the
aforementioned w-term, and ξ̂(i,ω) be the estimation of ξ(i,ω) formed by Eq. (5.12)

(i.e., ξ̂
(i,ω)
p := x̂

(ω,p)
i ).

The second subproblem is separable in the source axis; it can be written for each
source:

min
s(i)

W∑
ω=1

1

2

∥∥∥Ω(i,ω)−
1
2

(
ξ̂(i,ω) − FΓ(ω) s(i)

)∥∥∥2
2
. (5.13)

The diagonal matrices {Ω(i,ω)}i,ω allow for a weighting to account for the uncertainty

on {ξ̂(i,ω)}i,ω; the calculations are detailed in the paragraph below. The solution of
Eq. (5.13) is given by:

ŝ(i) =

(
W∑
ω=1

Γ(ω)†F†Ω(i,ω)−1
FΓ(ω)

)−1( W∑
ω=1

Γ(ω)†F†Ω(i,ω)−1
ξ̂(i,ω)

)
. (5.14)

The analytical evaluation of Eq. (5.14) requires inverting a matrix of size P × P ,
which is numerically intractable. As a first approximation, if the non-coplanar effects
are small (i.e., Γ(ω) ≈ I), Eq. (5.14) can be approximated as follows:

ŝ ≈
W∑
ω=1

Γ(ω)†F†O(i,ω)ξ̂(i,ω), (5.15)

where O(i,ω) :=
(∑W

ω′=1 Ω
(i,ω′)−1

)−1

Ω(i,ω)−1
. In any case, a finer estimation of ŝ(i) can

be obtained by the conjugate gradient algorithm [Hestenes and Stiefel, 1952], taking
as a starting point the sources obtained by Eq. (5.15).

Calculation of the weights {Ω(i,ω)}i,ω Recall that Subproblem I aims at estimat-
ing X := F⊠3 (G⊡ S), that is the sources modulated by the w-terms and projected
in Fourier space, from the data Y . In order to be able to compute numerically the
solution, a Tikhonov regularization is introduced. However, it induces an estimation
bias:

Bias
(
X̂ :ωp

)
=

((
M(ω,p) + diag

i

(
ε(i,ω,p)

))−1

M(ω,p) − I

)
X :ωp, (5.16)

where M(ω,p) = A⊤ diagj
(
|Hjωp|2/Σ(j,ω)

pp

)
A and I is the identity matrix.

Moreover, the noise which contaminates the data propagates in the estimate of X .
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The following covariance matrices are derived:

Cov
(
X̂ :ωp

)
=

(
M(ω,p) + diag

i

(
ε(i,ω,p)

))−1

M(ω,p)

(
M(ω,p) + diag

i

(
ε(i,ω,p)

))−1

.

(5.17)
Subproblem II focuses on estimating the sources S from the previous estimation of
X . As we have just seen, the bias on X̂ is not null and its variance is not identically
distributed. Therefore, we consider the following weighting:

Ω(i,ω) := Cov
(
X̂ iω:

)
+ Bias

(
X̂ iω:

)
Bias

(
X̂ iω:

)†
. (5.18)

Concerning the first term of the sum, the covariance matrix is diagonal by con-
struction and the diagonal elements are given by Cov(X̂ iω:)pp = Cov(X̂ :ωp)ii (by
independence of the input noise). Regarding the second term, the following equality
holds: Bias(X̂ iω:)p = Bias(X̂ :ωp)i; for numerical reasons, only the diagonal elements

of Bias(X̂ iω:) Bias(X̂ iω:)
† are calculated.

5.3.1.3 Regularization of the sources

Following the pALS minimization procedure, the proximal operator of hS is then
applied on the above estimation of S. It is approximated as the composition of the
projection on the nonnegative orthant and TΛ, that is the soft-threshold operator
with thresholds Λ, in the sparsifying domain:

Ŝ← proxhS

(
Ŝ
)
≈ max

(
TΛ
(
SW⊤)M⊤,0

)
, (5.19)

with TΛ(·) := sign(·) ⊙ max(| · | − Λ,0) where the sign, max and absolute value
operators are intended element-wise, and M verifies MW = I.

5.3.2 Update of A

Minimizing the data-fidelity term with S fixed can be performed separately for each
channel of A. Recalling that X := F⊠3 (G⊡ S), it leads to:

min
Aj:

W∑
ω=1

1

2

∥∥∥Σ(j,ω)−1/2
(
Yjω: −Hjω: ⊙

(
(X :ω:)

⊤Aj:

))∥∥∥2
2
. (5.20)

whose solution is given by:(
Âj:

)⊤
=

(
W∑
ω=1

P∑
p=1

Σ(j,ω)−1

pp (Hjωp)
†Yjωp (X :ωp)

†

)
(

W∑
ω=1

P∑
p=1

Σ(j,ω)−1

pp |Hjωp|2X :ωp (X :ωp)
†

)−1

. (5.21)
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In a second step, the proximal operator of the mixing-matrix constraint hA is
applied. More precisely, for each spectrum i:

Â:i ← proxhA

(
Â:i

)
=

max (A:i,0)

max (∥max (A:i,0)∥2 , 1)
. (5.22)

5.4 The wGMCA algorithm

In the previous section, we presented the pALS framework upon which the wGMCA
algorithm is built. In this section, the implementation details of wGMCA are de-
scribed.

5.4.1 Regularization strategies

In the source update, the minimization of Subproblem I relies on a Tikhonov regular-
ization. Drawing inspiration of SDecGMCA, we consider two strategies to determine
the regularization coefficients {ε(i,ω,p)}i,ω,p, so that they depend on a single regular-
ization hyperparameter, denoted c:

• strategy #1: ε(i,ω,p) := max

(
0, c− λmin((Aj:)

⊤ diagj(|Hjωp|2/Σ(j,ω)
pp)Aj:)

λmin(A⊤A)

)
where

λmin (·) returns the smallest eigenvalue of the input matrix. As we showed in
Chapter 4, the gist of this strategy is to limit the noise amplification.

• strategy #2: ε(i,ω,p) := c
|X iωp|2

. This strategy is reminiscent of a Wiener

deconvolution filter.

As in SDecGMCA, empirical tests show that strategy #2 provides better source
estimates. However, unlike strategy #1, it requires a prior knowledge of the sought-
after sources.

5.4.2 Improving the estimation of the mixing matrix

The least-square update of A (Eq. 5.21) is likely to lack robustness in practice, when
working with realistic or real data. In this section, we analyze the reasons for this
and deduce an improved update for the mixing matrix.

Firstly, in the estimation of the sources, the convolution kernel is inverted totally.
The sparse regularization (and, in a lesser extent, the Tikhonov regularization) helps
recovering the missing high-frequency information of the sources that is not sampled
by the interferometer. This information may not be reliable to estimate the mixing
matrix. Therefore, a first improvement would consist in re-convolving partially the
sources, so as to remove high-frequency deconvolution artifacts.
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Secondly, as seen in Chapter 1, the classical GMCA algorithm is preferably run
directly in the transformed sparsifying domain W, because astrophysical sources cor-
relate less there. It leads in practice to a better estimation of the mixing matrix, the
sources being synthesized in the direct domain in a second step after the separation.
Consequently, a second way of improvement would involve updating the mixing ma-
trix with the sources and the data expressed in the transformed sparsifying domain.

With this in mind, let K ∈ RP×P be a user-defined low-pass filter, which attenu-
ates the higher frequencies that are not sampled by the interferometer. We propose
to substitute the least squares on A of Eq. (5.20) by:

min
Aj:

W∑
ω=1

1

2

∥∥∥Υ(j,ω)−1/2
(
Yjω: −Hjω: ⊙

(
(X ′

:ω:)
⊤
Aj:

))∥∥∥2
2
, (5.23)

where X ′ := F⊠3 (G⊡(SK⊤W⊤)) is constituted of the sources filtered by K (so as to
remove high-frequency deconvolution artifacts), projected in the sparsifying domain
W (in order to attenuate possible correlations between the sources), modulated by
the w-terms and projected in Fourier space, and Υ(j,ω) := Σ(j,ω) ⊙ |FK|2 ⊙ |FW|2
accounts for the effects of K and W (in doing so, it is assumed that W is a linear
filter, which still includes many transforms like wavelets).

Rigorously, the data Y should likewise be adapted to take into account K and
W. However, the matrix G, which renders the w-effect, prevents from having an
analytical expression of the transformed data from Y , as in the standard BSS case or
even the coplanar DBSS case, so the approximation is left as is.

The new update reads similarly to Eq. (5.21), replacing X by X ′ and Σ(j,ω) by
Υ(j,ω).

5.4.3 Thresholding parameters

The thresholding procedure of GMCA, which has been detailed in Section 1.3.3.4,
is implemented likewise in the wGMCA algorithm. It is reminded to include: an
automatic setting of the thresholds based on the level of the propagated noise (”κ-
σ”), a support-based strategy that decreases progressively the thresholds (”Kmax”)
and ℓ1-reweighting scheme.

5.4.4 A two-step minimization

As for SDecGMCA, the wGMCA algorithm relies on a two-stage minimization pro-
cedure. The first stage provides an initial estimate of the mixing matrix and the
sources, it ensures some robustness with respect to the initial point (warm-up). The
second stage refines the estimates by using more accurate techniques (refinement).
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Stage 1: warm-up 2: refinement

Regularization strategy #1 #2
Use conjugate gradient No If needed, yes
Active source support K 0→ Kmax Kmax

ℓ1-reweighting No Yes
Enforce non-negativity on S No Yes

Table 5.1: Parameters of wGMCA in the two stages.

The wGMCA algorithm is described in Algorithm 13, with the parameter values of
the algorithm according to the step summarized in Table 5.1.

Warm-up The mixing matrix is initialized running Principle Component Analysis
(PCA) on the w-plane with the most visibility samples.
In the first warm-up phase, regularization strategy #1 is used since it requires no
knowledge on the sources. Moreover, the refinement of the source estimate by the
conjugate gradient is not performed, even if the non-coplanar effects are large, as the
small non-coplanar effect approximation is sufficient to have a first estimate of the
sources and the mixing matrix.
Regarding the choice of the thresholds, because the starting point is generally poor,
(i) the earlier mentioned support-based strategy is performed to facilitate the iden-
tification of the main directions of the mixture, (ii) no reweighted-ℓ1 is achieved in
order to avoid spurious critical points and (iii) the nonnegativity constraint is not
applied as it tends to destabilize the algorithm when far from the solution.
The warm-up ends when the sources have converged (∥S(n) − S(n−1)∥2/∥S(n)∥2≤ ϵwu
where n is the iteration and ϵwu does not need to be particularly small, e.g.,
ϵwu = 1e− 2).

Refinement At the beginning of the second refinement phase, the estimates of the
sources and the mixing matrix are generally acceptable. This allows the more precise
regularization strategy #2 to be employed, using the latest estimate of the sources:
ε(i,ω,p)(n) = cref/|X (n−1)

iωp |2. In addition, if non-coplanar effects are important, the con-
jugate gradient algorithm may be used to improve the source estimates.
Concerning the regularization of the sources, (i) the source support is kept constant,
(ii) the thresholds are adapted with the ℓ1-reweighting procedure and (iii) the non-
negativity constraint of the sources is applied.
The refinement ends likewise when the sources have stabilized (∥S(n) −
S(n−1)∥2/∥S(n)∥2≤ ϵref , with ϵref = 1e− 4 in practice).
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Algorithm 13 wGMCA

Inputs: data Y , masks H, w-term matrix G, number of sources I, diagonal of
the noise covariance matrices {Σ(j,ω)

pp}j,ω,p, regularization hyperparameters cwu and
cref , sparsifying transform W, thresholding parameters κ and Kmax, low-pass filter
K

A← PCA(Y :ω:), with ω the w-plane with the most visibility samples

(1) Warm-up stage
stage ← warm-up
while convergence not reached do

Update K according to Table 5.1
S← UpdateS(stage, A, Y , H, G, {Σ(j,ω)

pp}j,ω,p, cwu, W, κ, K)
A← UpdateA(S, Y , H, G, {Σ(j,ω)

pp}j,ω,p,K)

(2) Refinement stage
stage ← refinement
while convergence not reached do

S← UpdateS(stage, A, Y , H, G, {Σ(j,ω)
pp}j,ω,p, cref , W, κ, Kmax)

A← UpdateA(S, Y , H, G, {Σ(j,ω)
pp}j,ω,p,K)

Outputs: mixing matrix A, sources S
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Algorithm 14 UpdateS

Inputs: stage, A, Y , H, G, {Σ(j,ω)
pp}j,ω,p, c, W, κ, K

(1) Subproblem I
for ω = 1, . . . ,W and p = 1, . . . P do

Determine the Tikhonov regularization coefficients {ε(i,ω,p)}i according to the
stage and c

X :ωp ←
(
A⊤ diagj

(
|Hjωp|2/Σ(j,ω)

pp

)
A+ diagi

(
ε(i,ω,p)

))−1

A⊤ diagj
(
H∗

jωp/Σ
(j,ω)

pp

)
Y :ωp

(2) Subproblem II
for i = 1, . . . I do

Determine the weighting matrices {Ω(i,ω)}ω (Eq. 5.18)
for ω = 1, . . .W do

O(i,ω) ←
(∑W

ω′=1Ω
(i,ω′)−1

)−1

Ω(i,ω)−1

Si: ←
∑W

ω=1 diag (Gω:)
†F†O(i,ω)X iω:

if stage is refinement and conjugate gradient requested then
Refine estimation S with conjugate gradient algorithm

(3) Regularization
Calculate the thresholds Λ with a support-based strategy and a ℓ1-reweighting if
need be, according to the stage
if stage is warm-up then

S← TΛ
(
SW⊤)W

else
S← max

(
TΛ
(
SW⊤)W,0

)
Output: S
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Algorithm 15 UpdateA

Inputs: S, Y , H, G, {Σ(j,ω)
pp}j,ω,p,K

for i = 1, . . . , I and ω = 1, . . . ,W do
X ′

iw: ← F diag(Gω:)WK⊤Si:
for j = 1, . . . , J and ω = 1, . . . ,W do

Υ(j,ω) ← Σ(j,ω) ⊙ |FK|2 ⊙ |FW|2

(1) Least squares
for j = 1, . . . , J do

(Aj:)
⊤ ←

(∑W
ω=1

∑P
p=1Υ

(j,ω)−1

pp (Hjwp)
† Yjwp

(
X ′

:ωp

)† )(∑W
ω=1

∑P
p=1Υ

(j,ω)−1

pp |Hjwp|2X ′
:ωp

(
X ′

:ωp

)† )−1

(2) Constraints
for i = 1, . . . , I do

A:i ← max (A:i,0)
A:i ← A:i/max(∥A:i∥2, 1)

Output: A
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5.4.5 Complexity and convergence proprieties

The computational complexity of deconvolution algorithms, both in terms of time
and memory, is one of the main limitations of radio-interferometry. Optimizing the
methods is therefore a hot research topic, especially for processing massive datasets
of future large-scale radio-interferometers.
The goal of this work being to propose a first DBSS algorithm for non-coplanar
interferometric data, we have left aside the computational optimization aspects. As
such, the wGMCA algorithm is limited in time by the Fourier transforms in the source
update (Subproblem II and proximal update), which scale in O(P logP ). Concerning
memory, the current implementation stores in volatile memory the data tensor Y , the
mask tensor H and the diagonal elements of the covariance matrices {Σ(j,ω)

pp}j,ω,p,
each of which is of size JWP .

Convergence towards a local minimum is not guaranteed by wGMCA. However,
as with the other GMCA-based algorithms, an empirical stabilization is observed.

5.5 Numerical experiments

Two sets of data are considered for the numerical experiments. The first one
consists of synthetic sources and mixing matrices; it allows easy modification of
the experimental parameters, making it adequate for characterizing the wGMCA
algorithm. The second dataset is composed of realistic astrophysical sources and
mixing matrices, and is used to compare wGMCA with standard methods that
perform the non-coplanar deconvolution and separation sequentially.

The intensity of the non-coplanar effect depends on the size of the field of view,
the non-coplanarity of the interferometer and the channel frequency. Rather than
providing the three values, we will indicate the maximal phase difference of the
w-terms ∆φmax := maxω,p(| arg(Gωp)|) ≈ 2πmax(w)maxl,m(1 −

√
1− l2 −m2),

which is a more global metric to account for the non-coplanar effect intensity.
Typically, the non-coplanar effect must be addressed as soon as ∆φmax ≳ 0.1 rad.

In digital signal processing, the signal-to-noise ratio is typically defined as the ratio
of the absolute square of the noiseless data on the expectancy of the absolute square
of the noise:

∑
jωp |(H⊙ F⊠3 G⊡AS)jωp|2/

∑
jωp(Σ

(j,ω)
pp ). In our case, the noise is

not identically distributed, and consequently neither is the signal-to-noise ratio. As
an illustration, Figure 5.2 shows an example of signal-to-noise ratio distribution by
an actual interferometer. Such a definition of SNR would lead to high values that
poorly reflect the level of data corruption. Therefore, we employ the SNR defined as
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(a) ν = 0.53νmax & w = 0 (b) ν = νmax & w = 0 (c) ν = νmax & w ≈ wmax
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Figure 5.2: Example of signal-to-noise ratio distribution |(H ⊙ F ⊠3 G ⊡
AS)jω:|2/ diag(Σ(j,ω)) by MeerKAT (see Section 5.5.2.1 for more details) for par-
ticular values of j and ω (which are related to ν and w, respectively), in dB. The
images all share the same colorbar. The signal-to-noise ratio does not exist in the
white areas, where there is no data. The SNR defined according to (5.24) is 41 dB,
the median values being here (a) 39 dB, (b) 15 dB and (a) 14 dB. In comparison,
the SNR according to the usual definition is 100 dB.

follows:

SNR := 10 log10

(
max
j,ω

(
medianp

(
|(H⊙ F⊠3 G⊡AS)jωp|2

Σ
(j,ω)
pp

)))
. (5.24)

In other words, the median SNR is calculated for each channel and each w-plane, and
the highest value is kept. It is found to reflect the degree of data corruption more
adequately. In any case, dirty maps will be given to provide an intuition of the level
of noise contamination in the data considered.

5.5.1 Characterization of wGMCA on synthetic data

The wGMCA algorithm is first characterized using toy datasets.

5.5.1.1 Data generation

Sources and mixing matrix The normalized baseline coordinate space (u, v, w)
is discretized on a grid of size

√
P ×
√
P ×W . The sources are random nonnegative

images of size
√
P ×

√
P = 128 × 128 that are sparse in the starlet (an isotropic

undecimated wavelet [Starck et al., 2015]) domain, see an example in Fig. 5.4a. The
mixing matrices are random nonnegative matrices with a given condition number.
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(a) ν = νmax & w ∼ 0 (b) ν = νmax & w ∼
wmax/2

(c) ν = νmax & w ∼
wmax

(d) ν = 0.86νmax & w ∼
0

(e) ν = 0.64νmax & w ∼
0

(f) ν = 0.5νmax & w ∼ 0
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Figure 5.3: Example of masks Hjω: used in the toy model for some particular values
of j and ω (which are related to ν and w, respectively), with a sampling density of
α = 10%. All the images are in a logarithmic scale and share the same colorbar.

Masks The channels are set at frequencies evenly distributed between a low fre-
quency νmin and a high frequency νmax. Concerning the masks of the high frequency
channel, pairs of points which respect the earlier mentioned symmetry of the interfer-
ometric sampling are drawn randomly from the grid according to a centered Gaussian
distribution – in this manner, the points near the origin (0, 0, 0) are favored, as for
an actual interferometer. The masks of the other channels are then deduced; for
each channel, the normalized baseline coordinates of the interferometric samples are
recalculated to take into account the dilation effect (as seen previously, with a fac-
tor ν/νmax) and a gridding is performed, firstly along the w-axis by associating each
sample to the nearest w-plane, and then along the (u, v) plane using bilinear interpo-
lation. Finally, the masks are all multiplied by a Gaussian-shaped kernel to emulate
the angular response of an interferometer. Examples of masks are shown in Figure
5.3.
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Parameter Symbol Default value

Maximal phase difference of the w-terms ∆φmax 0.1 rad
Sampling density α 10%
Resolution ratio r 0.5
Signal-to-noise ratio SNR 30 dB
Number of channels J 8
Mixing matrix condition number cond(A) 2

Table 5.2: Default observation parameters of the numerical experiments on the syn-
thetic data.

Noise The data are generated according to the forward model (5.2) using the grid-
ded sources. The noise variance of each sample is chosen proportional to the mask,
i.e., Σ

(j,ω)
pp ∝Hjωp. This choice mimics the noise distribution after the gridding pro-

cess, because the more a zone is sampled, the higher the noise level but the lower the
signal-to-noise ratio.

About the gridding The data gridding, which allows placing the interferometric
samples on a regular (u, v, w)-grid, introduces errors (mainly aliasing and discretiza-
tion); in the non-coplanar framework, it causes more particularly smearing and decor-
relation effects [Offringa, A. R. et al., 2019]). Different methods exist to limit these
errors, the simplest being to increase the number of samples on the grid.
In the experiments conducted, the sources are generated directly on a regular (u, v, w)-
grid; therefore, the impact of the gridding on the separation cannot be evaluated (it
is anyway outside the scope of this work). Hereafter, the number of w-planes is set
to W = 11; this choice is purely arbitrary as the data are generated directly from the
gridded sources.

Observation parameters Six observation parameters are considered, namely:

• the above-mentioned maximal phase difference of the w-terms ∆φmax,

• the interferometer sampling density α ∈]0, 1], which is defined as the proportion
of nonzero elements in the mask of the high-frequency channel,

• the resolution ratio r := νmin/νmax,

• the SNR as defined in (5.24),

• the number of channels J ,

• the mixing matrix condition number cond(A).
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Figure 5.4: Example of separation result with the synthetic data. The images are in
a logarithmic scale.

5.5.1.2 Result example

A representative example of result is shown in Fig. 5.4 with the default observation
parameters. Two dirty mixtures are also shown (see Fig. 5.4b and 5.4c) to illustrate
the effects of the interferometer instrumental response and of the noise.

Both sources and mixing matrix are recovered very precisely (see Fig. 5.4d and
Fig. 5.4f, respectively). Concerning the sources, we note that the residuals are domi-
nated by deconvolution artifacts (Fig. 5.4e), the interferences between sources being
very limited.

5.5.1.3 Impact of the non-coplanarity

Let us first evaluate how the non-coplanarity of the data affects the results of the
proposed algorithm. To this end, wGMCA is tested with data subject to a non-
coplanar effect of increasing intensity.

As seen earlier in the update of the sources, particularly in Subproblem II (5.13),
we resort to a small non-coplanar effect approximation allowing us to write the ana-
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Figure 5.5: Median performance metrics of wGMCA with and without the conjugate
gradient refinement, over 10 realizations (with first and third quartile), as a function
of the maximal phase difference of the w-terms ∆φmax.

lytical solution (5.15); we specify that the conjugate gradient method can still be used
as a refinement when the non-coplanar effect is strong. In this regard, the wGMCA
algorithm is executed with and without the conjugate gradient refinement to highlight
the range where the use of the conjugate gradient is required.

The results of the experiments, which are generalized with Monte-Carlo trials, are
reported in Fig. 5.5. When the conjugate gradient method is not used, the perfor-
mance unsurprisingly decreases as soon as the non-coplanar effect becomes important,
as of 0.1 rad. The effect is particularly pronounced for the source estimate, less for
the mixing matrix one.
Nevertheless, the use of the conjugate gradient algorithm allows to maintain the sep-
aration performance when the non-coplanar effect is important. We note that the
NMSE increases with the non-coplanar effect intensity, which may seem counter-
intuitive, while the SAD decreases. It is actually a common behavior in BSS, that
the degradation of the estimation of one parameter can lead to the improvement of
the estimation of the other.
The number of conjugate gradient iterations is also shown in the right panel of Fig. 5.5
(averaged over the iterations of wGMCA). The stopping criterion is based on the max-
imum number of iterations (1000) or on the ratio of the norms of the residual and
the data. We note that the number of iterations remains bounded.

In the following experiments on synthetic data, the non-coplanar effect will be
kept constant at ∆φmax = 0.1 rad. This will avoid the use of the conjugate gradient
algorithm and decrease the execution time.

5.5.1.4 Impact of the regularization hyperparameters

The wGMCA algorithm requires setting two regularization hyperparameters, namely
cwu for the warm-up stage and cref for the refinement step. In this subsection, we
assess their impacts on the algorithm.
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Figure 5.6: Median optimal hyperparameters at warm-up cwu and refinement cref
over 100 realizations (with first and third quartile) as a function of an observation
parameter, on the synthetic data.

As in the previous chapters, let the oracle estimator designate the version of
wGMCA in which the sources and the mixing matrix are estimated with the ground-
truth mixing matrix and sources, respectively. The oracle can be used to provide
optimal values of the two hyperparameters, that is which provide the best recon-
structions of the sources based on the NMSE.

We first evaluate the optimal values of cwu and cref with respect to the observa-
tion parameters. To do so, Monte-Carlo experiments are performed; for each realiza-
tion, the regularization hyperparameters which provide the best reconstructions are
searched. The results are reported in Fig. 5.6. Both hyperparameters at warm-up
and refinement tend to be stable with respect to the observation parameters, which
is valuable for physical applications. This is certainly due to the fact that the decon-
volution scheme takes into account the noise statistics.

When working with real data, the optimal hyperparameters are unknown. If the
previous experiment shows that these are rather insensitive to the experimental con-
ditions, it does not inform about the consequence of a poor choice of hyperparameters.
Therefore, for a selection of observation scenarios, the optimal hyperparameters of
the previous experiments cwuopt and cref opt are taken as reference, and the wGMCA
algorithm is run with varying values of hyperparameters around these optimal val-
ues. The results are reported in Fig. 5.7. In overall, the separation quality is notably
insensitive to the choice of the hyperparameters. In particular, the warm-up hyperpa-
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rameter cwu has almost no effect on the finale result. The refinement step is the most
determining, but the window of acceptable values for the refinement hyperparameter
cref is large, of several orders of magnitude.

5.5.1.5 Impact of the observation parameters

Finally, we test how the previously defined observation parameters influence the sep-
aration performance of the wGMCA algorithm. The results of the Monte-Carlo ex-
periments are reported in Fig. 5.8. The performance metrics of the oracle estimator
are also plotted; it provides the upper-bound that wGMCA can reach, the difference
being due to the blind nature of the unmixing.

In overall, the wGMCA algorithm achieves good results, mostly close to the ora-
cle. The evolutions of both source NMSEs and mixing matrix SADs are consistent,
since the better the observation conditions, the better the estimates. Concerning the
SNR, the metrics stagnate over 40 dB; this is likely because of the automatic thresh-
olding strategy, as we already observed with sGMCA and SDecGMCA. When the
sampling density reaches 100%, both metrics stabilize on a plateau. This is due to
the mask generation strategy that favors low spatial frequencies: At some point, the
new samples are predominantly high frequency and provide little information about
the sources, which are relatively low frequency. We note that the mixing matrix
condition number does not affect the SAD, only the NMSE. In fact, it impacts the
conditioning of the estimation problem of S, not particularly that of A.

5.5.2 Comparisons with other methods on realistic data

In a second stage, the wGMCA algorithm is tested on realistic astrophysical data,
and compared to other standard methods.

5.5.2.1 Description of the data

In the following experiments, I = 4 sources of size P = 128×128 representing realistic
diffuse astrophysical sources are considered (see first column in Fig. 5.10). The same
set of realistic emission spectra as in the experiments of sGMCA in Chapter 2 is used,
the sole difference being that the spectra are resampled along J = 20 channels (see
example in Fig. 5.11).

The masks are based on the MeerKAT telescope [Jonas, 2009]. It is a set of 64 an-
tennas in South Africa, operating on a wide frequency radio-band from approximately
700 MHz up to 14.5 GHz. 75% of the antennas are located within a 500-meter radius,
the remaining 25% being distributed over a larger area with a maximum baseline of
8 km. MeerKAT is one of the precursors of SKA and should be integrated to it in
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Figure 5.7: Median performance metrics of wGMCA over 100 realizations (with first
and third quartile) as a function of the regularization hyperparameter at warm-up
cwu or at refinement cref , which are both expressed in terms of their optimal value, in
various experimental scenarios on the synthetic data. When testing cwu (resp. cref ),
the optimal value of cref (resp. cwu) is taken.
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Figure 5.9: Example of realistic masks Hjω: for some particular values of j and ω
(which are related to ν and w, respectively), with an observation time of ∆t = 8 hours.
All the images are in a logarithmic scale and share the same colorbar.

the long term.
The masks are generated as follows:

• the (u, v, w)-coordinates of the interferometric samples are calculated based on
the MeerKAT array configuration with a random sky pointing, during an user-
defined observation time ∆t with a 30-minute time step,

• the w-axis is discretized into W = 11 planes,

• for each channel, the samples are grouped by w-values, and for each w-plane,
the samples are gridded on a uniform P ×P grid. To that end, a Gaussian-sinc
kernel of support 11 is used, with an oversampling factor of 63.

Examples of masks are shown in Fig. 5.9. The noise tensor is created in parallel, as
well as the covariance matrices. The interferometric data are finally generated using
the forward model (5.2).
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5.5.2.2 Sequential deconvolution and separation methods

Four methods that perform deconvolution and separation sequentially are tested. To
this end, two deconvolution algorithms are considered, namely:

• a Tikhonov-based deconvolution, quite similar to the least squares on S by
replacing A by the identity matrix,

• a wsclean-based algorithm [Offringa et al., 2014] that is adapted to enforce
the sparsity of the images in the starlet domain.

These two deconvolution algorithms are then combined with both GMCA and HALS
[Gillis and Glineur, 2012], bringing the number of comparison algorithms to four.

It is important to note that the separation step generally fails if the sources are
fully deconvolved, likely because of deconvolution artifacts; the mixtures are therefore
deconvolved at the resolution of the least-resolved low-frequency channel.

5.5.2.3 Results

A typical example of separation result by wGMCA and a sequential method is shown
in Fig. 5.10 and 5.11 for the sources and for the mixing matrix, respectively. Example
of dirty mixtures are also provided (see two last rows of Fig. 5.10) to illustrate the
effects of the interferometer instrumental response and of the noise.

Regarding the sources, the wGMCA algorithm recovers them quite precisely (see
third column of Fig. 5.10). Interestingly, the source on the first line is estimated with
the same high resolution. Indeed, it emits mostly in the best-resolved high-frequency
channels (blue spectrum in Fig. 5.11), which explains that the dirty image is well
resolved. On the contrary, the resolution of the three other source is lower - but
still better than the dirty images - because they emit predominantly in the least-
resolved low-frequency channels. The sources estimated by Tikhonov+HALS (see
fourth column of Fig. 5.10) present a low resolution, as the other sequential method
in fact. Indeed, as stated above for the sequential methods, the mixtures can only be
deconvolved partially for the separation to succeed.

Concerning the spectra, the estimations of wGMCA are in overall more precise
than the sequential methods, with less interference.

Quantitative results derived from Monte Carlo experiments are finally reported in
Tables 5.3 and 5.4. Eight configurations are tested, combining two regimes of noise
level, two resolution ratios and two observation times.

The gain of wGMCA lies mainly in the estimation of the sources, which is more
accurate thanks to the joint deconvolution. Indeed, the high-frequency information
present in the data is better rendered in the estimated sources. This results in an
improvement in the estimation of the mixing matrix, which is however less significant.
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Figure 5.10: Example of separation result in the source domain. Above the line: four
sources, in a logarithmic scale, sharing the same colorbar. Below the line: selection of
two zooms, in a logarithmic scale, but with different colorbars for the sake of clearness.
The data have been generated with the masks of Fig. 5.9, a SNR of 60 dB, and the
mixing matrix of Fig. 5.11. The dirty mixtures are at the channels where each source
is the most visible (that is, from left to right, channels #15, #6, #12 and #9).
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The principal limitation of the proposed algorithm concerns the best conditioned
cases, for instance when the measurements are homogeneous in resolution (which
corresponds to a resolution ratio that tends to one) or when the mask has few holes
(which corresponds to long observation times). Indeed, addressing the deconvolution
jointly does not appear to improve the separation particularly.

5.6 Conclusion

We investigate a joint deconvolution and sparse blind source separation algorithm
coined wGMCA to analyze multichannel non-coplanar interferometric data. Numer-
ical experiments on both synthetic and realistic data are achieved in various experi-
mental settings. In overall, it is advantageous to process the non-coplanar deconvo-
lution and the blind source separation in a single pass rather than sequentially, as
current standard method would. The proposed algorithm proves to be competitive,
estimating sources with improved resolution, which increases the overall separation
quality.
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r = 0.1 & r = 0.5 & r = 0.1 & r = 0.5 &
∆t = 8 h ∆t = 8 h ∆t = 30 mn ∆t = 30 mn

Method SAD NMSE SAD NMSE SAD NMSE SAD NMSE

Oracle 13.08 25.80 15.32 26.27 12.83 28.81 15.05 28.85
wGMCA 8.08 15.30 7.91 13.46 7.70 14.00 7.77 13.29
Tikhonov+GMCA 7.64 11.73 7.60 11.53 7.01 11.68 7.01 11.52
Tikhonov+HALS 7.95 13.26 7.82 13.52 7.17 12.88 6.84 12.28
WSClean+GMCA 6.79 7.59 7.71 9.72 5.97 6.09 6.67 5.47
WSClean+HALS 7.77 8.85 7.98 10.73 5.61 6.54 6.40 6.05

Table 5.3: Median metrics in dB over 100 realizations, with varying masks and mixing
matrices, for different resolution ratios r and observation times ∆t, in a low noise
regime (SNR = 60 dB when ∆t = 8 h, and SNR = 80 dB when ∆t = 30 mn).

r = 0.1 & r = 0.5 & r = 0.1 & r = 0.5 &
∆t = 8 h ∆t = 8 h ∆t = 30 mn ∆t = 30 mn

Method SAD NMSE SAD NMSE SAD NMSE SAD NMSE

Oracle 12.65 19.47 14.69 23.59 10.93 27.90 14.96 28.75
wGMCA 7.70 12.48 7.41 12.26 6.05 12.27 7.58 13.01
Tikhonov+GMCA 7.32 10.94 7.42 11.74 7.04 11.97 7.04 11.68
Tikhonov+HALS 7.64 10.78 7.64 12.64 7.05 12.30 7.20 12.57
WSClean+GMCA 6.81 7.55 7.65 9.58 5.98 6.10 6.67 5.47
WSClean+HALS 7.66 8.85 8.27 10.74 5.71 6.55 6.67 6.13

Table 5.4: Median metrics in dB over 100 realizations, with varying masks and mixing
matrices, for different resolution ratios r and observation times ∆t, in a high noise
regime (SNR = 10 dB when ∆t = 8 h, and SNR = 30 dB when ∆t = 30 mn).
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Conclusion and perspectives

BSS algorithms are the cornerstone of multivalued data analysis in several appli-
cations. However, as seen in the introduction, current methods will face several
bottlenecks when processing data of forthcoming telescopes in astrophysics. In
this regard, we study and propose three algorithms in this manuscript that tackle
identified issues.

First, we introduce in Chapter 2 the semi-blind source separation algorithm
sGMCA. Built upon a variational framework that allows accounting for the mixing
model, sGMCA makes use of learned priors on the sought-after spectra. Compared to
fully blind methods, numerical experiments emphasize that the components are bet-
ter separated, with a noticeable decrease in leakage, especially in challenging contexts
(low emissions, high noise, etc.). This is particularly beneficial for scientific applica-
tions, as the physical interpretability of the separation results is thereby improved.

We then describe in Chapter 4 the SDecGMCA algorithm, which allows perform-
ing joint deconvolution and blind source separation from wide-field observations on
the sphere. In order to keep a minimization procedure based on pALS, it is necessary
to regularize the least squares on the sources, which is otherwise naturally ill-posed.
This extra regularization is thoroughly analyzed and optimized, and a strategy for
automatic choice of the regularization parameters is derived. Numerous numerical ex-
periments demonstrate that performing the data deconvolution and separation jointly
allows a clear improvement of the separation quality.

Finally, we address in Chapter 5 joint deconvolution and source separation in the
case of non-coplanar interferometric data, and introduce the wGMCA algorithm. We
keep the pALS minimization scheme but have to adapt it to the new mixing model
that is computationally more complex. As far as we know, wGMCA is the first BSS
method for non-coplanar interferometric data to date. Extensive tests on synthetic
and realistic data show the advantage of tackling deconvolution and BSS in a single
pass rather than sequentially, as standard methods would.

The advantage of the variational formulation and the projected alternating least
squares on which the proposed algorithms are based is their flexibility. In this
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respect, although the developments are done separately, it would be straightforward
to include the learned constraints of sGMCA in joint deconvolution and blind source
separation problems (DecGMCA, SDecGMCA, or wGMCA), as the former impact
the mixing matrix A and the latter the sources S.

Several avenues for improvement can be considered within the framework of BSS
for the analysis of astrophysical signals; they are classified into three main categories.

Modeling First, the observation model, and therefore the data-fidelity term of the
cost function, may be refined. In radio-interferometry, standard deconvolution meth-
ods take the raw (at least calibrated) data as input and perform the gridding jointly
with the deconvolution, which improves the reconstruction quality. In this respect,
the question could be raised of including the gridding in DecGMCA and wGMCA
alongside the deconvolution and the separation.
The linear mixing model considered in this manuscript is only a first-order approxi-
mation of the observed processes. A more realistic model should account for spectral
variability, that is, when spectra vary from one pixel to another. The underlying
unmixing problem is much more complex and ill-posed; still, it can be dealt with
by introducing specific regularizations, as the spectra change little from one pixel to
another. A solution currently being explored in the laboratory is to constrain the
spectra in the latent spaces of IAEs, by regularizing the variation of the associated
latent parameters.

Interpretability Ensuring model and result interpretability is crucial for process-
ing real data; two tracks are particularly identified.
The first relates to the robustness of the learned spectrum regularization in sGMCA.
If the manifolds are modeled too approximately, there is a risk of systematically bi-
asing the solutions. An improvement would be to relax the current constraint by
allowing the spectra to belong to the neighborhoods of the manifolds.
The second track concerns uncertainty quantification. In general, results in the field of
physics are always associated with confidence intervals. In this respect, research has
recently been conducted to develop numerical methods that also estimate their out-
put uncertainty (see [Arras, Philipp et al., 2019] for example in radio-interferometry).
To our knowledge, this has not yet been explored in the context of BSS.

Acceleration The proposed joint deconvolution and blind source separation meth-
ods have a computational cost that can quickly become prohibitive with real obser-
vations, especially radio interferometric data. Thus, future developments will have to
focus on code optimization and parallelization. A way could be to resort to patches
on the sources (e.g., see [Kervazo et al., 2020b] in the context of SBSS and [Tasse, C.
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et al., 2018] in the context of non-coplanar interferometric deconvolution).
Deep unrolling is also a way to speed up the proposed algorithms. This may not
necessarily be more difficult to implement than BSS unrolling [Fahes et al., 2022]
since it would only be a matter of adapting already learned networks for given types
of mixtures AS to observation operators H or H under consideration (a single in-
strumental response in the case of a single-dish telescope, or a class of masks in the
case of an interferometer).
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Appendix A

Elements of signal processing for
random processes

Cosmic signals in radio astronomy are inherently random; therefore, a statistical
processing stage is required to derive any valuable information (see Chapter 3). This
appendix provides the main definitions and theoretical results of random processes,
on which statistical methods in radio astronomy are based.

Let X(t) be a complex random process, that is a function of time whose value at
any time t is a random complex variable [Charbit, 1996]. Rigorously, it should be
referred to as X or X(·); for the sake of clarity, we will however abuse the notations
thereafter to make the nature of variables explicit (e.g. time, frequency) and/or
distinguish several variables of the same nature in a single expression. A realization
of X(t) is denoted x(t).

Statistical moments We firstly define various statistical moments:

• the expectation µX(t):

µX(t) := E [X(t)] ,

:=

∫
R

∫
R
(xr + ixi)fX(xr, xi, t)dxrdxi,

(A.1)

where fX(xr, xi, t) is the probability density function of X(t),

• the autocorrelation RXX(t1, t2):

RXX(t1, t2) := E [X(t1)X(t2)
∗] , (A.2)

• the crosscorrelation between X(t) and another complex random process Y (t),
denoted RXY (t1, t2):

RXY (t1, t2) := E [X(t1)Y (t2)
∗] . (A.3)
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Stationarity A random process is first-order stationary if its expectation is inde-
pendent of time:

X(t) is first-order stationary ⇐⇒ E [X(t)] = µX ∈ C. (A.4)

Moreover, it is wide-sense stationary, or second-order stationary, if its expectation is
independent of time and its auto-correlation depends on the time difference only:

X(t) is wide-sense stationary ⇐⇒

{
E [X(t)] = µX ∈ C,
E [X(t1)X(t2)

∗] = RXX(τ), τ = t1 − t2.
(A.5)

In this manuscript, ”stationarity” actually refers to wide-sense stationarity.
Two random processes are jointly wide-sense stationary if they are both wide-sense

stationary and if their cross-correlation depends on the time difference:

X(t) and Y (t) are jointly wide-sense stationary

⇐⇒

{
X(t) and Y (t) are both wide sense-stationary,

E [X(t1)Y (t2)
∗] = RXY (τ), τ = t1 − t2.

(A.6)

”Joint stationarity” likewise refers to joint wide-sense stationarity in the manuscript.

Ergodicity A first-order stationary random process is first-order ergodic, or mean
ergodic, if the time average of a single realization of it is equal to the expectation:

X(t) is first-order ergodic ⇐⇒ lim
T→∞

1

T

∫ T/2

−T/2
x(t)dt = µX . (A.7)

A wide-sense stationary random process is wide-sense ergodic, also said second-order
or correlation ergodic, if both expectation and autocorrelation can be retrieved from
a single realization as follows:

X(t) is wide-sense ergodic ⇐⇒

 lim
T→∞

1
T

∫ T/2
−T/2 x(t)dt = µX ,

lim
T→∞

1
T

∫ T/2
−T/2 x(τ)x(τ − t)

∗dt = RXX(τ).

(A.8)
In this manuscript, ”ergodicity” actually refers to wide-sense ergodicity.

Power spectra A measure of interest in signal processing is the power spectral
density, also referred to as power spectrum. It describes how the power of a time
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function distributes along the frequencies, allowing for harmonic analysis.
Consider a function of time x(t) (which can be a realization of a random process) and
a rectangular window function wT (t), such that wT (t) = 1 if t ∈ [−T/2, T/2] and 0
elsewhere; let xT (t) := x(t)wT (t) be a truncated version of x(t) and x̃T (ω) its Fourier
transform.
The average power of x(t) is worth P = limT→∞

1
T

∫
R |xT (t)|

2dt. According to Par-
seval’s theorem, it is also equal to P = limT→∞

1
T

∫
R |x̃T (ω)|

2dω. The power spectral
density is defined as the integrand of the previous equation:

SXX(ω) := lim
T→∞

1

T
|x̃T (ω)|2 . (A.9)

The cross power spectral density, or simply cross power spectrum, of two random
processes x(t) and y(t) is defined similarly:

SXY (ω) := lim
T→∞

1

T
x̃T (ω)ỹT (ω)

∗. (A.10)

Proprieties Consider X(t) a stationary random process.
The Wiener-Khinchin theorem relates its power spectrum SXX(ω) to the Fourier
transform of its auto-correlation R̃XX(ω):

SXX(ω) = R̃XX(ω). (A.11)

Let Y (t) be another stationary random process, which is jointly stationary with
X(t). Quite similarly to the Wiener-Khinchin theorem, the cross-correlation theorem
states that:

SXY (ω) = R̃XY (ω). (A.12)
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Appendix B

Spherical signal analysis

Astrophysical signals as measured from Earth are by nature defined on the sphere.
Often the field of view is narrow and the corresponding portion of the sphere is
approximated by a plane, which then facilitates the various numerical calculations.
Nevertheless, in some applications such as cosmology, the valuable information lies
in large scales; large portions of the sphere if not the whole sphere must therefore be
surveyed, and the spherical formalism becomes indispensable. In this appendix, the
main results of spherical signal analysis are given.

Let S2 be the two-dimensional sphere, and f and g two real valued square-
integrable functions defined on the sphere. The inner product is defined by ⟨f, g⟩ :=
1
4π

∫
S2 fg.

B.1 Spherical harmonics

Spherical harmonics are the solution functions of Laplace’s equation on the sphere,
i.e., the spherical functions whose Laplacian is zero. They are shown to depend on
two whole parameters, known as multipoles, namely the degree l ∈ N and the order
m ∈ [−l, l]; l essentially corresponds to the angular spatial frequency and m to the
direction of the oscillations. Thereafter, the (l,m)th normalized spherical harmonic
will be denoted y(l,m).

Spherical harmonics are shown to form an orthonormal basis of the square-
integrable spherical functions. Therefore, if D := {(l,m) ∈ N× Z, |m| ≤ l} represents
the set of multipoles, f can be decomposed as follows:

f =
∑

(l,m)∈D

f̃ (l,m)y(l,m), (B.1)

where f̃ is the spherical harmonic transform of f , which is worth f̃ (l,m) := ⟨f, y(l,m)⟩
at multipole (l,m). Since f is assumed real-valued, the harmonic coefficients verify a
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complex-conjugate symmetry propriety: f̃ (l,m) = f̃ (l,−m)∗.
The spherical harmonic transform is the counterpart of the discrete-time Fourier
transform for functions defined on the sphere. An angular power spectrum {S(l)

ff}l∈N
can even be derived from the spherical harmonic transform of f . It is defined by:

S
(l)
ff :=

1

2l+ 1

l∑
m=−l

∣∣∣f̃ (l,m)
∣∣∣2 . (B.2)

B.2 Convolution products

Contrarily to the Euclidean case, the convolution product on the sphere is not
uniquely defined. Spherical convolution products differ in particular by the nature
of the convolution kernel (isotropic or not) and the output space of the product
(the sphere or another space, in general the three-dimensional rotation group SO(3))
[Roddy and McEwen, 2021].

In the thesis, we employ the isotropic convolution product [Driscoll and Healy,
1994], as we consider isotropic kernels only. Let h be an isotropic real valued square-
integrable spherical function. The convolution of f by h is defined by:

[f ∗ h](θ, φ) := ⟨f,Rθ,φ(h)⟩, (B.3)

where Rθ,φ denotes the rotation of angles θ and φ1.
The main property of the isotropic convolution product is that it simplifies into a

point-wise product in the spherical harmonic space:

f̃ ∗ h
(l,m)

=
4π

2l+ 1
f̃ (l,m)h̃(l,0)

†
. (B.4)

It is noted that the harmonic coefficients of h are null for non-null modes, i.e., h̃(l,m) =
0 for all m ̸= 0, since h is isotropic.

B.3 Healpix discretization

In order to perform numerical calculations, the data must be sampled on a grid. In
this thesis, we make use of the Healpix discretization of the sphere [Górski et al.,
2005]. As showed in Fig. B.1, the sphere is divided in 12 quadrilateral sections of equal
area, which are hierarchically subdivided in N2

side pixels. The resolution parameter
Nside is the number of pixels along the sides of the 12 initial sections. Healpix is the
most commonly used pixelization of the sphere in astrophysics and geophysics, since
it is well adapted for hierarchical analysis and spherical harmonic projections.

1The rotation depends on two parameters as it is applied on an isotropic function.
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Figure B.1: Healpix discretization of the sphere. Moving clockwise from top left,
Nside = 1, 2, 4, 8. Image from [Górski et al., 2005].

Let y(l,m) ∈ CP denote the (l,m)th spherical harmonic sampled with Healpix2.
The spherical harmonic projection of a vector f , denoted f̃ , can be approximated at
0th order by:

f̃(l,m) :=
4π

P
y(l,m)†f , (B.5)

and the angular power spectrum by:

Sff l =
1

2l+ 1

l∑
m=−l

∣∣∣f̃(l,m)

∣∣∣2 . (B.6)

In theory, the number of coefficients of f̃ and Sff should be infinite. In practice, as
the spherical harmonics sampled with healpix form a linearly independent set up to
l = 3Nside − 1, the signals are band-limited to a degree lmax ≤ 3Nside − 1, and the
spherical harmonic coefficients are calculated up to lmax.
Healpix provides fast routines to calculate spherical harmonic decompositions. The
notable difference with the discrete Fourier transform in the Euclidean case is that
the projection is not exact.

2According to the Healpix pixelization scheme, the number of pixels is P = 12N2
side.
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Appendix C

Adaptation of SDecGMCA for
coplanar data

In this appendix, we provide the equations adapted from SDecGMCA for planar
data (which is the case addressed by DecGMCA [Jiang et al., 2017]). The similarities
with the spherical case are remarkable.

First, the mixture model writes in the Fourier domain for all sample p:

Ỹ:p = diag
(
H̃:p

)
AS̃:p + Ñ:p, (C.1)

and the derived cost-function is:

argmin
A,S̃

1

2

∑
p

∥∥∥Ỹ:p − diag
(
H̃:p

)
AS̃:p

∥∥∥2
2
+
∥∥∥Λ⊙ (S̃F∗W⊤

)∥∥∥
1
+ ιOS

(
S̃F∗

)
+ ιKA(A),

(C.2)
where this time F denotes the discrete Fourier transform or FFT operator.
The update of the mixing matrix reads as follows:

(
Âj:

)⊤
←

(∑
p

ỸjpH̃
∗
jp

(
S̃:p

)†)(∑
p

∣∣∣H̃jp

∣∣∣2 S̃:p

(
S̃:p

)†)−1

, (C.3)

and the proximal step is unchanged.
Concerning the sources, the least-square update reads:

ˆ̃S:p ←

(
M(p) + diag

i∈[1...I]

(
ε(i,p)

))−1

A⊤ diag
(
H̃∗

:p

)
Ỹ:p. (C.4)
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with M(p) := A⊤ diag
(
|H̃:p|2

)
A. At warm-up, the Tikhonov regularization coeffi-

cients are given by:

ε(i,p) = max

(
0, c−

λmin

(
M(p)

)
λmin (A⊤A) + ϵ

)
, (C.5)

and at refinement:

ε(i,p) = c
Snnp

SSi:Si:p

. (C.6)

where Snn and SSi:Si:
denote the power spectral density of the noise and source i,

respectively. The proximal step on the source matrix is unchanged.



Appendix D

Open source codes

The codes presented in the manuscript are open source and can be found online on
version 3 of the LGPL:

• sGMCA: https://github.com/RCarloniGertosio/sGMCA,

• SDecGMCA: https://github.com/RCarloniGertosio/SDecGMCA,

• wGMCA: https://github.com/RCarloniGertosio/wGMCA.

https://github.com/RCarloniGertosio/sGMCA
https://github.com/RCarloniGertosio/SDecGMCA
https://github.com/RCarloniGertosio/wGMCA


154 Open source codes



Bibliography

[Abdulaziz et al., 2019] Abdulaziz, A., Dabbech, A., and Wiaux, Y. (2019). Wide-
band super-resolution imaging in Radio Interferometry via low rankness and joint
average sparsity models (HyperSARA). Monthly Notices of the Royal Astronomical
Society, 489(1):1230–1248.
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[Rapin, 2014] Rapin, J. (2014). Décompositions parcimonieuses pour l’analyse
avancée de données en spectrométrie pour la santé. PhD thesis, Université Paris-
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