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Chapter 1. Introduction: Multiplex microRNA detection methods

Chapter 1

Introduction: Multiplex microRNA

detection methods

1.1 Interest and challenges of miRNA detection

MicroRNAs (miRNAs) are a class of short non-coding RNAs of about 19 to 25 nucleotides.

They were first discovered in 1993 in Caenorhabditis elegans [1] and are said to be responsible

for the post-transcriptional gene expression regulation of more than 60% of human protein-

coding genes[2]. This regulatory process, called RNA interference (RNAi), was first described

in 1998 by Andrew Fire and Craig Mello[3], who were awarded the 2006 Nobel Prize in

Medicine and Physiology.

In order to regulate gene expression, miRNAs form complexes with protein GW182 and

one of the proteins of the Argonaute (AGO) family[4, 5]. This complex is known as the

miRNA-Induced Silencing Complex (miRISC). In this complex, the miRNA is used for target

recognition through base pairing, whereas proteins actively induce repression[6]. Two main

mechanisms of the miRISC complex are proposed (Fig. 1.1): in most cases, the miRNA binds

the 3’ untranslated region (UTR) thanks to a region known as the miRNA ”seed”, located

between the second and the seventh nucleotides. The RISC proteins then recruit factors

inhibiting mRNA translation and promoting mRNA deadenylation[4]. Another mechanism

of action of miRISC involves the complete binding of the miRNA inside the coding region

of the gene, which leads to mRNA cleavage by the AGO protein[7]. The shortness of the

miRNA-recognition site on the 3’ UTR of the mRNAs explains how only a few thousands

miRNAs can regulate the expression of more than half of human genes.

The biogenesis of miRNAs is initiated in the nucleus, as miRNA genes are transcribed

by RNA polymerase II into a primary miRNA (pri-miRNA) (Fig. 1.2). The pri-miRNA is

generally over 1 kb long and partially hairpin-shaped, with single-stranded 3’ and 5’ ends.
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mature
miRNA

mature RISC

messenger RNA

coding region 3' UTR5' UTR

mRNA cleavage

translational repression

ribosome

Figure 1.1: The two main miRNA-induced pathways for post-transcriptional regulation.
Complete binding of the miRNA to the coding region of the mRNA leads to the cleavage
of the mRNA by the proteins of the RISC complex. Alternatively, the ”seed” region of
the miRNA, typically located between the second and seventh nucleotide hybridizes to one
of the untranslated regions (most commonly 3’ UTR). This partial binding triggers the re-
cruitment of translation-inhibiting factors and/or destabilizes the mRNA by promoting its
deadenylation.

The mature miRNA sequence is part of the stem. Still inside the nucleus, this pri-miRNA

undergoes maturation by the Microprocessor complex composed of nuclear RNase III Drosha

and cofactor DGCR8[6]. Drosha cleaves the pri-miRNA and releases a 65 bases long hairpin-

shaped RNA called precursor-miRNA (pre-miRNA). The pre-miRNA is exported in the cy-

toplasm, where it undergoes a second maturation step by Dicer endonuclease. Dicer cleaves

pre-miRNA near both ends of the loop, releasing a duplex of small RNAs. This duplex is

loaded onto an AGO protein to form a pre-RISC. The duplex is then unwinded by a helicase

and only one of the RNAs remains in the complex, forming a mature RNA-induced silencing

complex. For a more complete overview of miRNA biogenesis and physiological role, we refer

the reader to dedicated reviews[6, 8, 9].

The role of miRNAs in cancer was first evidenced by Croce’s group in 2002 when they dis-

covered that a genomic region on which were located two miRNA genes was commonly deleted

in chronic lymphocytic leukemia[10]. Since then, a plethora of disease-related miRNA dys-

regulations have been reported, not only in cancer [11], but also for Parkinson’s disease[12],

diabetes[13] and cardiovascular diseases[14], among others. The causes of these dysregula-

tions are for example gene deletions[10, 15] or amplifications[16, 17] and defects in miRNA

transcriptional control[18, 19, 20] or biogenesis machinery[21, 22]. In cancer, due to their

gene expression-regulating role, the miRNA dysregulations could contribute to most of the

cancer hallmarks. Among countless examples, miR92a’s upregulation has been described as

promoting cell proliferation[23], miR21 was found upregulated in lung cancer and inducing
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Figure 1.2: Simplified miRNA biogenesis pathway. The miRNA gene is transcribed into
a 1kb-long primary miRNA (pri-miRNA). The pri-miRNA then undergoes two successive
maturations, first forming an hairpin-shaped precursor miRNA (pre-miRNA) and then an
RNA duplex composed of the miRNA and its complementary sequence. The complex binds
a protein of the Argonaute (AGO) family and is unwinded by an helicase, releasing the
complementary strand. The mature miRNA remains bound to the complex composed of
AGO and other proteins, such as GW182, called the miRNA-induced silencing complex
(miRISC).

apoptosis resistance[24], whereas miR203 downregulation was observed in metastatic breast

cancer cells[11].

Tumor tissue biopsy is currently the main biomarker analysis method for cancer diag-

nostics. This procedure however presents serious drawbacks, such as limited capacities to

recapitulate tumor heterogeneity, high cost and invasiveness. Moreover it is also not ap-

propriate for tumor real time characterization which could be of great interest for patient

follow up and treatment management. To circumvent these limitations, liquid biopsies are

being developed. Liquid biopsy relies on the analysis of circulating biomarkers (including

circulating tumoral DNA, circulating tumoral cells, proteins and miRNAs) in bodily fluids,

such as blood or urine. MiRNAs have been shown to be released by healthy and tumor cells

in the bloodstream and other biofluids[25]. These circulating miRNAs are thought to be

not only passively released by apoptotic or necrotic cells, as it has mainly been described for

ctDNA, but also actively secreted by living cells in extracellular vesicles. Studies suggest that

secreted miRNAs could be addressed and delivered to specific cells. Once inside target cells,

recovered miRNAs would modify the gene expression pattern, thus playing a long distance

cell-to-cell signaling role[26]. Moreover, released miRNAs are protected, by conjugation to

RNA-binding proteins such as AGO2 or high-density lipoprotein (HDL)[5], and are thus very

stable even under harsh conditions[27]. These characteristics make miRNAs very promising

biomarkers for liquid biopsy strategies.
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1.1.1 Challenges for miRNA detection.

In spite of their attractiveness as biomarkers, several challenges need to be adressed in order

to apply miRNA detection to cancer diagnosis. First, miRNAs are very short sequences,

displaying a high level of homology, especially if they belong to the same family: The Let-7

miRNA family, involved in numerous pathologies including cancers, is comprised of 10 miR-

NAs sharing the same seed and most other nucleotides[28]. Let-7a and Let-7e, for example,

are perfectly identical with the exception of their 9th nucleotide. Hence, a very high level of

specificity is required to selectively quantify each miRNA.

MiRNAs only represent 0.01% of total RNA mass[29], and additionally need to be detected

from highly complex media. In blood plasma, the concentrations of miRNAs are in the sub-

picomolar (pM) range[27, 30]. In addition to sufficient sensitivity, miRNA detection methods

need to display a dynamic range spanning at least four orders of magnitude.

The aim of a miRNA-based liquid biopsy is to detect miRNA concentrations changes,

as both healthy and tumor cells release miRNAs, but in different relative quantities. Since

these dysregulations may be subtle, the accuracy and precision of the assay is thus of utmost

importance.

1.1.2 Importance of multiplexed detection.

The study of the dysregulation of single miRNAs is, in most cases, insufficient for a reliable

diagnosis. Some members of the Let-7 family, which work as inhibitors of cell growth, are

down-regulated in different cancers, such as lung, breast and cervical cancers[31]. Similarly,

miR-21, an apoptosis inhibitor, is found upregulated in glioblastoma, B-cell lymphoma and

ovarian cancer, among others[32]. Consequently, the diagnostic, predictive and prognostic

potential of miRNAs is most likely the determination of miRNA-signatures associated to

a disease with which a patient miRNA profile can be compared[33]. A plethora of such

signatures were described for both diagnostic[34, 35, 36] and prognostic applications[37, 38,

39]. The determination of disease signatures opens the way for diagnosis, which requires the

quantification of multiple miRNAs in order to establish the miRNA profile of the patient.

Such profiles can be determined either by running multiple single-plex detection reactions or

a single multiplex reaction. In the case of parallel single-plex reactions, the sample is splitted

in aliquots, one for each miRNA target. The required amount of sample thus increases

proportionally to the number of miRNA targets, which is not the case of multiplexed detection

methods. Alternatively, the sample can be diluted. Both of these strategies come at the

cost of lowered sensitivity. Additionally, performing multiple single-plex assays in parallel

significantly increases the workload, the cost and error risks. For all these reasons, the
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development of multiplex techniques has drawn considerable research efforts.
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1.2 Amplification techniques applied to miRNA detec-

tion

The detection of miRNA targets, present in concentrations within the 1-100 femtomolars

(fM) range, requires a high sensitivity and accuracy. The amplification of the target se-

quence or of an intermediate molecule is in most cases mandatory to detect such diluted

targets by conventional readout strategies, such as fluorescence. While the pool of DNA

amplification chemistries comprises a plethora of techniques, most of them are not fitted for

the amplification of short RNA sequences such as miRNAs.

Here we briefly describe conventional amplification methods and the developments that

were made in an attempt to adapt these methods to the amplification of miRNAs and to

increase the accuracy and the specificity of the quantification. For a more detailed overview

of nucleic acids amplification techniques applied to miRNA detection, we refer the readers

to a dedicated review from our group[40].

1.2.1 RT-qPCR

Of all miRNA detection techniques herein presented, RT-qPCR is undoubtedly considered

as the gold-standard method. It allows for the detection of miRNA targets down to the

attomolar (aM) range[41, 42] and displays single-nucleotide specificity[43] while being rela-

tively low-cost. RT-qPCR also features a wide dynamic range, spanning up to 8 orders of

magnitude.

Quantification of RNA molecules by RT-qPCR, in general, comprises two steps: (i) Re-

verse Transcriptase (RT) is first used to synthetize the complementary DNA (cDNA) of the

RNA target. (ii) this cDNA is then amplified by PCR thanks to a thermostable DNA poly-

merase and a pair of primers. The amplification is monitored in real-time by fluorescence,

using either a double-stranded DNA specific dye (e.g. SYBR Green I) or specific fluorescence

probes (e.g. hydrolysis or molecular beacon probes) labeled with orthogonal dyes in the case

of multiplex RT-qPCR (cf. 3.2.1)(Fig. 1.3b). The target is quantified by measuring the num-

ber of temperature cycles necessary to cross a fluorescence threshold (Cq) and comparing it

to a standard range of samples of known concentrations.

Adapting qPCR to miRNA quantification requires some ingenuity. Indeed, RT-qPCR was

initially developed to quantify long RNA sequences: typical PCR primers are approximately

20 bases long, which is the size of a full miRNA. This problem was solved by designing

stem-loop[41] or linear[44] RT primers partially complementary to the miRNA (Fig. 1.3a,

left) or by using the poly(A) polymerase (PAP)[42] (Fig. 1.3a, right). Although convenient,
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this method may reduce the specificity and sensitivity of the assay[40]. This observation is

however contradicted by a study by Mestdagh et al.[45], where the authors systematically

analysed seven RT-qPCR kits. They show that minimal cross-reactivity is obtained using the

polyA strategy, in combination with LNA-modified universal RT primer. Another limitation

of miRNA RT-qPCR is that the interval of melting temperatures (Tm) of the miRNA-specific

primer/miRNA duplex is rather large due to the heterogeneous GC content of miRNAs.

According to Benes et al., the sensitivity is reduced if the Tm is below 55°C, which can

be the case for GC-poor miRNA sequences[46]. Moreover, the RT step efficiency can also

depend on the miRNA sequence or structure, which has been shown to introduce biases in

the transcribed cDNA library[47, 48].

miRNA specific primer

cDNA

AAAAAAAA

PAP

miRNA

cDNA

universal
primer

cDNA

specific primer

Q

Q

universal
primer

hydrolysis
probe

a.

b.

Figure 1.3: Principle of RT-qPCR. (a) Reverse-transcription strategies. Left: The miRNA is
reverse-transcribed using a miRNA-specific hairpin-shaped primer that partially hybridizes
to the miRNA 3’ end. Right: The 3’ ends of all miRNAs are extended using the poly(A)
polymerase (PAP). This allows the reverse transcription of all miRNAs using a universal
primer. (b) The produced complementary DNA (cDNA) strands are quantified by qPCR,
using a miRNA-specific and an universal primer.
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RT-related biases can be reduced by using two-tailed primers[49], or by replacing the RT

by a miRNA-induced ligation step[50, 51]. The ligated oligonucleotide is the cDNA strand

that will be then quantified by qPCR. This ligation step is however also most likely prone

to sequence-specific biases, as shown in the context of library preparation for small RNA

sequencing[52]. Two-tailed primers and ligation-mediated qPCR also increase the specificity

of the detection[49, 53]. In the case of ligation-mediated qPCR, the choice of the ligase is

especially important to specificity. Jin and coworkers demonstrated a detection of several

members of the let-7 family with excellent specificity by using the SplintR ligase instead

of the commonly used T4 ligase[53]. This strategy has also been adapted to recombinase

polymerase amplification (RPA)[54].

As it was already mentioned, qPCR-based measurement only provides a relative quantifi-

cation of the sample with respect to a calibration curve established from standard samples,

which may introduce quantification biases (e.g. due to the presence of PCR inhibitors in the

sample).

1.2.2 Rolling Circle Amplification

Rolling circle amplification (RCA) was originally designed by Kool’s group as a method for

the linear amplification of single-stranded RNA[55] or DNA[56]. The amplification uses cir-

cular single-stranded DNA as a template. Once a forward primer (P1, the miRNA in this

case) hybridizes to the circular template, it is elongated by a DNA polymerase. The poly-

merase progresses around the circular template multiple times, producing a long concatemer

composed of numerous copies of the sequence complementary to the template (Fig. 1.4).

polymerase

P1 (miRNA)

circular
template

Figure 1.4: Principle of RCA. The miRNA hybridizes to a circular DNA template, and acts as
a primer for elungation by a DNA polymerase. The polymerase keeps progressing around the
circular template, producing a long DNA strand composed of repeats of the same sequence.
Amplification is reported by the hybridization of fluorescent probes complementary to the
repeat sequence.

RCA was first applied to miRNA detection by Jonstrup et al.[57]. The sensitivity of the

method was low, due to its northern blot readout. Interestingly, the assay relied on linear
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detection probes that were circularized by ligation upon miRNA hybridization, therefore in-

creasing specificity. The use of SplintR ligase[58, 59], dumbbell probes[60] or graphene-oxide

nanosheets[61] further improved detection specificity. The sensitivity of RCA-based detec-

tion can be enhanced by adding additional primers, turning the concatemer into a template

for further amplification[62]. RCA can also be modified to be an exponential amplifica-

tion method by integrating nicking enzyme recognition sites to the template sequence, as

demonstrated for miRNA detection by Liu et al.[63].

1.2.3 Exponential Amplification Reaction

Exponential amplification reaction (EXPAR) was designed by Galas and coworkers as an

alternative to PCR[64, 65]. EXPAR allows the amplification of a nucleic acid sequence us-

ing a DNA template, a DNA polymerase and a nicking enzyme[66] (Fig. 1.5). The DNA

template is composed of two miRNA-complementary sequences separated by a nicking en-

zyme recognition site. Upon hybridization, the miRNA is used as a primer for elongation.

The nicking enzyme then recognizes its specific site, and cleaves only the miRNA-containing

strand, releasing a DNA analog of the miRNA. This DNA strand can in turn hybridize to a

probe and generate more miRNA analogs. The miRNA sequence is therefore exponentially

amplified.

While being an efficient signal-amplification method (106 to 109-fold amplification)[67],

EXPAR is however prone to unspecific amplification, which limits its sensitivity[68, 69].

This problem has been solved by Montagne and coworkers by introducing an additional

template (referred as pseudotemplate) that drives the deactivation of unspecifically produced

triggers[70], allowing accurate miRNA quantification using a digital readout (see section

3.2.3)[71]. Additionally, the specificity of the assay by Jia’s group within the Let7 family

was rather low: The chemical network designed for Let7-a detection was triggered almost

simultaneously by Let7-a and Let7-e. Several groups adapted the original EXPAR design in

order to improve the specificity, such as using dumbbell or hairpin-shaped probes[72, 73].

1.2.4 Duplex-specific Nuclease Signal Amplification

Duplex-Specific Nuclease Signal Amplification (DSNSA) is commonly used for multiplex

miRNA detection. Originally isolated from the Kamchatka crab[74], the duplex-specific

nuclease (DSN) was first characterized as an exonuclease that specifically degrades double-

stranded DNA. Anisimova et al. later demonstrated that in the presence of DNA:RNA

duplexes, DSN specifically degrades the DNA strand, leaving the RNA strand untouched[75].

Based on this property, Yin et al. first applied DSN for the simultaneous detection of 3
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miRNA

nickase

nickase
recognition site

DNA
polymerase

reporting by double-strand
specific dye

amplification template

Figure 1.5: Principle of EXPAR. The miRNA is captured by a DNA template composed
of two miRNA-complementary sequences separated by a nicking enzyme recognition site.
Binding of the miRNA initiates the production of multiple DNA analogs of the miRNA
following polymerization/nicking cycles. The produced miRNA analogs are released in the
solution and can in turn initiate the production of more analogs, resulting in exponential
amplification.

miRNAs with sub-pM sensitivity[76]. The assay was based on the hybridization of hydrolysis

DNA probes on the miRNA, thus forming a DNA:RNA duplex. The hydrolysis probe was

preferentially degraded by DSN, and the unaffected miRNA was free to hybridize to another

probe, resulting in linear signal amplification (Fig. 1.6). The sensitivity of the assay was

improved using different reporter probes, such as molecular beacons[77] or G-quadruplex

specific probes[78]. Alternatively to DSN, CRISPR-associated nucleases (Cas)[79] or T7

exonuclease[80] were successfully applied to similar methods for miRNA detection.

1.2.5 Enzyme-free amplification techniques

Contrary to most other amplification methods presented herein, hybridization chain reaction

(HCR) and catalyzed hairpin amplification (CHA) are enzyme-free amplification techniques.

First described by Dirks and Pierce[81, 82], HCR only uses two short DNA hairpins (H1

and H2) and a single-stranded initiator hairpin (Fig. 1.7). The loop region of the initiator

hybridizes to the target. The 5’ and 3’ ends of the initiator become available and hybridize to

H1, opening it in the process. The part of H1 that remains single-stranded is complementary

to H2, which in turn opens and binds H1, resulting in the sequential concatemerization of
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hydrolysis
probe

Q

Q

miRNA

duplex-specific
nuclease

Q

Figure 1.6: Principle of DSNSA. Hybridization of the miRNA to a complementary DNA
hydrolysis probe forms a RNA/DNA duplex. The duplex-specific nuclease recognizes the
duplex and selectively degrades the probe, producing fluorescence. The miRNA remains
untouched and is free to bind to another hydrolysis probe, triggering its degradation.

H1 and H2. The amplification can be monitored by fluorescence using molecular beacons as

H1 and H2[83] or thanks to an intercalating dye[84]. This technique was applied by Pierce’s

team for the detection of mRNAs[83, 85] and miRNAs[86], with a limit of detection (LOD)

of 25 attomoles (amol).

Developed by the same team, CHA also relies on toehold-mediated strand displacement[87].

The nucleic acid target triggers the opening of a first hairpin by hybridizing in the stem re-

gion. The target is then displaced by the binding of a second hairpin, and is thus recycled in

the process. CHA can be coupled to various readout strategies, and provides an amplification

ratio of around 100-fold[87, 88, 89, 90].
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double-strand
specific dye

molecular beacon
reporting

miRNA

initiator

H2H1

Figure 1.7: Principle of HCR. The hybridiztaion of the miRNA to the iniator strand triggers
sequential concatemerization of hairpins H1 and H2, forming long regions of double-stranded
DNA. The amplification can be reported by a double-strand specific dye or by using molecular
beacons as H1 and H2.

1.3 Multiplexed miRNA detection

1.3.1 Separation techniques

1.3.1.1 Northern Blot and size-separation gel-based techniques

Northern blotting (NB) is a well-established miRNA detection method, for example involved

in the first identification of a miRNA[1]. In this method, cells RNA extracts first undergo

a size-separation step on a denaturing polyacrylamide gel (Fig. 1.9). Separated RNAs are

then fixed on a membrane, on which sequences of interest are labeled by hybridization of

complementary DNA probes. Historically radiolabeled with 32P, these probes are now more

commonly labeled using fluorescent or chemiluminescent dyes.

12



Chapter 1. Introduction: Multiplex microRNA detection methods

Figure 1.8: Schematic representation of the approaches to multiplex miRNA detection pre-
sented in this chapter.

Although it has been described as robust and reliable, NB is a cumbersome and time-

consuming technique. Since gel electrophoresis cannot distinguish different sequences of the

same molecular weight, as is the case for miRNAs, specificity relies only on probe hybridiza-

tion, resulting in rather poor specificity and sensitivity. Both sensitivity and specificity can

be improved by using Locked Nucleic Acid (LNA)-modified probes[91]. Additionally, target

quantitation is only relative and lacks accuracy[92].

NB can be implemented into a multiplex miRNA detection method using color-coded

detection probes, as was demonstrated by Schwarzkopf et al.[86]. Interestingly, NB was in

this work coupled to HCR amplification in order to improve sensitivity (100 amol). This

multiplexing strategy is however limited by the availibility of spectrally-resolved fluorescent

probes.

In spite of the narrow size distribution of miRNAs, size-separation can be useful for

multiplex miRNA detection by using the miRNAs to generate size-coded molecules. For

example, Arefian et al. used miRNAs as a scaffold for the ligation of 2 miRNA-specific

DNA sequences, one of which is of different length depending on the target miRNA[93]. The

method allowed the simultaneous detection of 9 miRNAs of the Let-7 family, also showing

great specificity, but rather low sensitivity (1 pM). Chandrasekaran and coworkers proposed

another method, based on agarose gel separation[94]. This assay allows miRNA detection

using only a double-stranded DNA probe with two miRNA-specific overhangs. The presence

of the miRNA brings the 2 overhangs together, forcing the double-stranded DNA probe to

form a loop. In this method, the barcoding strategy is only based on the distance between

the two overhangs, which defines the size of the loop once the miRNA is captured and allows

electrophoresis separation. The authors demonstrated multiplexing for up to five targets as

well as single-nucleotide specificity, with a LOD around 100 fM.
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Figure 1.9: Multiplex miRNA detection strategies based on separation techniques. Since the
size distribution of miRNAs is very narrow, miRNAs can not be directly separated based on
size. Multiplex detection is however possible by using miRNA-specific detection probes (a),
or by using the miRNA to generate size-coded DNA molecules that can be separated on slab
gels (b) or by capillary electrophoresis (c).

1.3.1.2 Capillary electrophoresis

Also a size-based separation technique, capillary gel electrophoresis monitors the time needed

for a molecule migrating in a gel-filled capillary to reach a detector (Fig. 1.9c). As for afore-

mentioned slab gel techniques, multiple miRNAs can be indirectly detected by generating

miRNA-specific size coded molecules. Jiang et al. demonstrated an amplification-free method

based on the hybridization of target miRNAs to a capture probes presenting a poly(A) tail

of different lengths, allowing separation based on the molecular weight of the duplex[95]. An

amplification step, such as PCR[96], DSNSA[97] or EXPAR[98] can be added prior to sepa-

ration to improve sensitivity. In terms of multiplexing, Na et al. managed to detect up to 8

miRNAs simultaneously using conformation-sensitive separation (single strand conformation

polymorphism, CE-SSCP)[98], demonstrating the multiplexing potential of these methods.

High-performance liquid chromatography (HPLC) was also used in a similar assay coupled

to DSNSA, displaying sub-fM sensitivity[99].

1.3.2 Homogeneous multiplex detection

Most conventional miRNA detection methods are fully realized in solution, such as RT-qPCR,

EXPAR or RCA. Such techniques are therefore named homogeneous methods.

1.3.2.1 Multiplex RT-qPCR

One of the biggest RT-qPCR limitations lies in its multiplexing ability. The reverse tran-

scription step can be performed simultaneously for all target miRNAs by using any of the

RT strategies presented in section 2.1, but the qPCR, however, can only be performed on
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a few miRNAs simultaneously. This is due to fluorescence emission spectra overlap that

limits the number of fluorescence colors simultaneously distinguishable. In the best cases,

multiplex qPCR is limited to six colors. Noteworthy, a 15-plex qPCR detection of 16S RNAs

was performed by using different combinations of two spectrally distinct fluorophores out of

six to identify bacterial species[100]. This strategy is not adapted however to the profiling

of multiple RNA species present in the same sample, as multiple combinations of targets

would generate the same signal, leading to a degeneracy issue. This problem can be solved

mathematically by adjusting the probes concentrations so that the output signal corresponds

only to one possible input combination[101]. To our knowledge, this strategy has not been

implemented to increase the multiplexing capabilities of RT-qPCR in miRNA quantification.

In addition, multiplying the number of primers increases the risk of primer dimer reaction

and thus, requires careful design and tuning of the experimental conditions to guarantee

specific amplification of all targets.

To circumvent this specificity issue, qPCR mix is typically diluted after one-pot reverse

transcription, and distributed in 96- or 384-well plates, each well containing different miRNA-

specific primers as well as universal primers and fluorescent probes[102].

1.3.2.2 Isothermal multiplex homogeneous assays

Fluorescence is the most common readout for in-solution detection assays, but spectral over-

lap therefore limits their multiplexing capabilities.

Hildebrandt’s group developed several amplification-free multiplex detection methods in

solution, using either fluorescent dyes[103] or quantum dots (QD)[104, 105]. These methods

use the miRNA to bring FRET donor and acceptor within close proximity either by ligation

or base stacking. Interestingly, they reported the simultaneous detection of two miRNAs

using a single FRET pair (terbium complex / QD), whose photoluminescence is tuned by

the distance between the donor and the acceptor, reaching sub-nanomolar sensitivity. By

coupling this temporal multiplexing with enzyme-free amplification, the same team reported

a gain in sensitivity of three orders of magnitude[106, 107]. More recently, they combined

spectral and temporal multiplexing to detect four DNA analogues of miRNAs with RCA[108].

Quantum dots were also used by Ye et al. in a 4-plex microfluidics-based assay[109]. RCA

was also used by Wang et al. in a 3-plex assay displaying a LOD of 90 fM[110].

Interestingly, the chromogenic cationic polymer poly[(9,9-bis(60-N,N,N-trimethylammonium)-

hexyl)-fluorenylene phenylene dibromide] (PFP) has been used as a universal FRET donor,

allowing the detection of three miRNAs, combined with orthogonal fluorescent probes and

DNAzyme-based amplification[111].

Color-coded fluorescent reporters were also widely applied to amplified homogeneous de-
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tection methods, such as the first DSNSA miRNA multiplex detection by Yin and coworkers[76].

The LOD of the method (100 fM) was indeed improved compared to amplification-free

techniques. Other DSN-based fluorescent methods were since then reported, most notably

Xiao’s 3-plex assay, using fluorescent probes embedded in MoS2 nanosheets to improve

specificity[112, 80, 113].

1.3.2.3 Fluorescence-based digital methods

Fluorescence intensity level encoding is a possible way to perform multiplex detection past

the “one target per color” barrier. In previously described fluorescence-based methods, how-

ever, signal intensity (referring either to an amplification time or a luminescent intensity) was

used to compute the miRNA concentration. Additionally, these methods only provide rela-

tive quantification of their target requiring assay calibration with standard samples. Digital

readout refers to methods where the absolute target concentration is directly computed from

a ratio of positive (target-containing) and negative (empty) partitions, following the poisso-

nian distribution of target molecules throughout these partitions. Digital PCR (dPCR) is

undoubtedly the most widespread method for digital nucleic acid quantification. This method

relies on the partitioning of the sample into microchambers[114] or microdroplets[115] (the

latter referred as droplet digital PCR, ddPCR) thanks to microfluidics, in such a way that

every partition contains either zero, one or a few cDNA or RNA molecules, according to the

Poisson distribution. The RT step can either be performed before or after sample partition-

ing. Following thermocycling, the partitions are analyzed by imaging or in-line fluorescence

readout. Absolute quantification of the cDNAs is achieved by counting the fluorescence-

emitting (i.e. cDNA-containing) partitions and assuming the cDNA repartition followed a

Poisson distribution. This quantification mode does not rely on fluorescence intensity, which

is thus available for multiplexing. Introducing different probe concentrations, several groups

managed to break the one target per color barrier for the detection of DNA molecules[116].

Our group recently reported a multiplex isothermal amplification method using orthog-

onal EXPAR-like designs[117]. By solving the problem of cross-reactivity often observed in

one-pot multiplex reactions, they demonstrated a 3-plex assay using a droplet digital readout.

Smith et al. recently reported an ingenious use of RCA for single-molecule miRNA

detection[118]. Following one-pot multiplex RCA, RCA products are labelled with probes

tagged with different fluorophores, which allows miRNA indexation. They achieved as a proof

of concept a duplex miRNA detection with sub-pM sensitivity. The analysis was performed by

single-molecule flow cytometry, as DNA molecules produced by RCA were large enough (48

kb) to be detected using conventional instruments. Although the authors only demonstrated

a duplex detection as their proof of concept, it is clear that the barcoding capacity can reach
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hundreds or even thousands of combinations. The sensitivity of the assay, however, still

needs to be improved to match the requirements of miRNA profiling in biological samples.

This may be caused by non-specific initiation of RCA, which could be reduced by using

padlock probes[119]. Hu and coworkers however reported a similar method using padlock

probes displaying similar sensitivity (1 pM)[120]. One can note the development of a similar

strategy applied to multiplex nucleic acid detection, combined with a microfluidic-driven

enrichment step to improve the sensitivity[121].

1.3.2.4 Next Generation Sequencing

Next Generation Sequencing (NGS) is an emerging technology for miRNA profiling. In order

to perform RNA sequencing (RNA seq), the RNAs of the sample first need to be extracted

and purified. After purification, universal adapters are ligated, typically to the 5’ and 3’ ends

of each RNA strand (alternatively, a single adapter can be ligated to the 3’ end followed by

circularization of the product[122]). A reverse-transcription step is then performed, followed

by a PCR amplification and finally, sequencing.

NGS historically allowed the discovery of a plethora of miRNAs[123], as NGS instruments

are able to read millions to billions of sequences in a few days. This very high throughput

is one of the advantages of NGS, and is extremely important for miRNA profiling. NGS is

indeed the miRNA detection method that displays the highest multiplexing ability, since all

RNAs in the sample can theoretically be detected, thanks to the use of universal RT and

PCR primers[124]. RNA seq thus requires no prior information or specified target sequence.

This ability makes RNA seq unique among miRNA detection methods, because most other

techniques require the design of specific primers and/or probes for each targeted miRNA,

which reduces the spectrum of the analysis. The specificity of NGS miRNA detection depends

on the error rate of the sequencing platforms, which is typically around 1-10 errors for 1,000

bases called[125]. Since miRNAs are around 20 bases long, NGS is very accurate for the

differentiation of miRNAs, even highly homologous sequences.

While it displays undeniable advantages, NGS still suffers from several flaws. Owing to its

lack of sensitivity, sequencing analysis always requires a pre-amplification step traditionally

achieved by RT-qPCR (which also converts the RNA sequence into DNA material read-

able by DNA sequencing). The reverse-transcription and PCR steps can generate sequence-

dependent biases[126, 127], making this technique poorly quantitative. Additionally, rare

sequences are often droped out because of abundant RNAs drawing most of the reads, thus

reducing the sensitivity. NGS equipments are still very expensive, which makes, so far, rou-

tine diagnosis impossible. Each analysis provides a great amount of useful information, the

extraction of which requires time and skilled bioinformaticians.
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In spite of its drawbacks, comprehensive miRNA analysis by NGS is progressively be-

coming a benchmark to identified disease-linked miRNA signatures[128, 129]. Coenen-Stass

et al., for example, reported a dysregulated miRNA profile for the diagnosis of Duchenne

muscular dystrophy using NGS[130].

1.3.3 Heterogeneous multiplex detection

1.3.3.1 On-sensor methods

Several readout strategies require a surface to be performed, forbidding their use in fully

in-solution - homogeneous - format. On-sensors methods refer to the use of a surface for

performing the readout, coupled to orthogonal signals for multiplexing (as opposed to mi-

croarrays that use universal reporting for all targets, combined with spatial indexation, see

section 3.3.3.1). That is the case for electrochemical readout, since electrodes are needed to

measure the intensity in the solution.

This method has been applied to multiplex miRNA detection in a planar format by Yuan’s

group. The team first coupled electrochemical readout to DSNSA, achieving detection limits

of a few fM[131]. The sensitivity was further improved to reach a LOD around 50 aM

by designing a DNA bot triggering the degradation of electrochemical labels upon miRNA

capture[132]. The group so far demonstrated the simultaneous detection of two targets using

methylene blue and ferrocene as electrolabels. Xu and coworkers reported a LOD of 20

aM for a similar assay relying on a DNA framework changing conformation upon miRNA

capture[133].

Similar designs were developed in suspension, using the target miRNA to modify the

distance between a magnetic microparticle and a miRNA-specific electrolabel[134, 135, 136].

To our knowledge, all of the so far reported electrochemical on-particle methods demonstrated

a duplex miRNA detection. The most sensitive of those methods reported a limit of detection

around 1 fM[135].

In all aforementioned electrochemical assays, each target is quantified using a different

electrochemical label. As for fluorescence-based homogeneous assays, the multiplex ability of

this method is limited by the number of electrochemical dyes simultaneously distinguishable

by square wave voltammetry. Alternatively, mass spectrometry has demonstrated a high

multiplexing potential using dozens of orthogonal metal isotopes[137]. Such readout was

for example combined with lanthanide-tagged recognition probes and DSNSA in a triplex

assay[138].

Surface-enhanced Raman scattering (SERS) is a powerful technique allowing the enhance-

ment of Raman light scattering signals by up to 11 orders of magnitude[139]. The method

18



Chapter 1. Introduction: Multiplex microRNA detection methods

requires the interaction of two surfaces brought within close proximity to amplify the signal,

and is therefore a heterogeneous-only detection method. SERS can for example be applied

to sandwich assays using Raman-barcoded particles[140, 141]. Su et al. designed SERS

”nano-mushrooms”[140], composed of a gold core linked to a silver cap by DNA spacers.

The gap between the gold and silver surfaces forms a signal-enhancing ”hotspot”, in which

Raman labels are inserted. The gold core of the mushroom is coupled to DNA probes specific

to one miRNA target, and are accordingly barcoded by inserting different Raman dyes in

the hotspot. In this assay, the miRNA forms a bridge between a magnetic microparticle

and its specific SERS nano-mushroom. After hybridization, the microparticles are recov-

ered and each target is quantified by measuring the intensity of the corresponding Raman

signals. The authors demonstrated a 3-plex assay with a 1 pM detection limit. Zhou and

coworkers increased the sensitivity by a 100-fold by using gold-Raman Nanobridge Nanogap

Probes (Au-RNNP)[141]. Instead of a sandwich detection, Wang et al. designed the ”Inverse

Molecular Sentinel” (IMS) assay[142]. They used gold particles specifically engineered for

signal enhancement, called Nanostars. Raman-labeled hairpins were immobilized on the par-

ticles. In the absence of the miRNA, the hairpins are opened and partially hybridized to the

miRNA capture probe. The miRNA is perfectly complementary to its capture probe and can

hybridize to it, strand-displacing the hairpin in the process. The hairpin then closes, bringing

the Raman dye close to the SERS-inducing tips of the Nanostar particle, which amplifies the

Raman signal of the dye. This technique enabled the duplex detection of miRNAs from total

RNA cell extracts.

While most of the herein presented SERS-based assays rely on the use of Raman dyes,

Sim’s group developed a label-free miRNA detection method, able to recognize the Raman

signature of the miRNA directly[143]. Although the label-free approach reduced the sensitiv-

ity (5 fM) compared to other assays from the same group (section 3.3.3, planar microarrays),

the multiplexing potential of the method appears promising.

1.3.3.2 Nanostring

The NanoString nCounter system is an emerging technology for multiplexed miRNA detec-

tion. It was originally developed for gene expression monitoring by quantifying messenger

RNAs[144, 145, 146] and adapted for miRNA detection[147, 148]. This system allows single-

molecule detection using a microarray-inspired principle. As for a classical microarray, the

miRNA hybridizes to a capture probe and a detection probe (Fig. 1.10). The capture probe,

35 to 50 base-long and coupled to biotin on its 3’ end, binds the 5’ half of the miRNA. The

detection probe is composed of a 3’ end complementary to the miRNA and a chain of fluo-

rescently labeled RNA sequences, forming a fluorescent barcode associated with the target
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miRNA. After hybridization of both probes, the complex is immobilized on a surface thanks

to the biotin tag on the capture probe, and fluorescence imaging is performed. Analysis

consists simply in counting fluorescent barcodes, each of them indicating the capture of one

miRNA molecule.
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Figure 1.10: Principle of the Nanostring nCounter system. (a) The miRNA bridges between
biotinylated capture probe, allowing immobilization on a glass slide, and a detection probe
carrying a combination of fluorescent labels allowing identification of the target miRNA. (b)
The immobilized sets of labels are counted, each one of them reporting the capture of a single
miRNA molecule.

This single-molecule approach grants the nCounter system with great sensitivity, in the

sub-fM range[144], without requiring any amplification. This technology still displays some

limitations in terms of specificity and assay duration[148, 45].

The multiplexing ability of the nCounter system lies in the fluorescently barcoded RNA

fragments on the reporter probe. They are prepared separately by incorporating amino-

allyl-modified UTPs during transcription of the fragments and coupling the modified uracil

residues to four different dyes[144]. The reporter probe is then assembled from a template

by ligating seven fluorescent RNA fragments and the miRNA-specific 5’ end together. This

strategy of seven fluorescent RNAs, with four possible colors for each of them, allows more

than 15,000 possible combinations. Taking into account that two consecutive fragments must

be of different colors, the number of combinations is still 2916, while only 2654 miRNA se-

quences are referenced for Homo Sapiens in miRbase[149]. In practice, Nanostring proposes

detection panels of up to 800 human miRNAs. This effective barcoding strategy places this

technology among the highest multiplexing methods, in the same range as density-based

microarrays, while supposedly outperforming them in terms of sensitivity and sample re-

quirement thanks to single-molecule counting[144]. This observation is however contradicted

by a study by Mestdagh et al.[45], where the authors benchmarked 3 microarray platforms
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(including Agilent, Affimetric and Nanostring) and concluded that the nCounter system did

not display higher sensitivity and was even poorly performing with low-input amount of RNA.

The nCounter system was recently used to screen for possible cancer miRNA signatures, for

example in breast[150] and ovarian[151] cancers.

1.3.3.3 Microarrays

Microarrays are detection methods enabling multiplexing by spatially separating the specific

receptors of each target. These methods can be divided into two main categories: Planar

arrays and suspension (i.e. on-particle) arrays. In suspension arrays, each particle is coupled

to capture probes for a single analyte and is given a corresponding “barcode”, indicating

what is the target of the particle. Given the diversity of available particles, various barcod-

ing strategies were implemented, such as size, graphical and most commonly fluorescence

encoding. Planar arrays, or flat-arrays, use spatial separation as a multiplexing strategy:

Specific capture probes are spotted on a flat surface, each spot targeting a different analyte.

Both approaches display interesting characteristics, especially in terms of multiplexing.

Planar microarrays Planar arrays are composed of high-density spots of DNA probes

immobilized on a flat glass or polymer support[152] (Fig. 1.11). These probes can capture

one specific target by Watson-Crick base-pairing. Each spot comprises only one kind of

DNA capture probes, and can therefore in theory only capture one kind of target. The

sample is flown on the support, and every target sequence is captured on its specific probe

spot. Multiple targets can thus be simultaneously quantified by measuring the signal on each

spot. The spatial target separation allows microarrays to detect up to hundreds to thousands

of nucleic acid sequences simultaneously [Yin, 2008]. Thanks to this excellent multiplexing

ability, microarrays are often used for miRNA screening assays, leading for example to the

identification of disease miRNA signatures[153, 154].

Most conventional microarrays require the enrichment and labelling of potential targets

prior to hybridization. In the case of miRNAs, the enrichment step consists in the separation

of short RNAs (usually under 200 nt) from total RNA. All short RNAs are then labelled,

typically using radioactive or fluorescent labels[155]. The labelling can be performed either

directly on the RNA strands, by ligating a fluorescent dye[156, 157] or a biotin residue[158] to

one of the miRNA ends, or indirectly following a reverse-transcription step[159] and possibly

a PCR amplification[160, 161].

Despite being high-throughput and highly multiplexed, classic miRNAs microarrays dis-

play a relatively low sensitivity, with detection limits within the nanomolar range. Moreover,

since the yield of labelling, enrichment and/or amplification steps often varies depending
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Figure 1.11: Principle of planar microarrays. (a) Capture probes are immobilized on a
surface, forming separated spots. (b) Each spot is exclusively composed of capture probes
for the same miRNA. Multiple readout strategies can be employed to quantify the miRNAs.

on the sequence, these steps can introduce quantification biases. The hybridization step

is also prone to biases due to the variable miRNA hybridation thermodynamics[162]. The

specificity of conventional microarrays is also relatively low towards highly homologous miR-

NAs, which requires long hybridization steps (up to several days). The implementation of

LNA-modified[163] or stem-loop capture probes[164] is reported to improve the specificity.

The relatively low sensitivity of conventional microarrays is a critical issue for the detec-

tion of low-abundant miRNAs in real samples. In order to detect lower concentrations, two

main options are available: Improving the sensitivity of the detector, or increasing the target

concentration. In this section, we will focus on new detectors and readout strategies applied

to the detection of miRNAs.

As was already presented, SERS is a very powerful surface-based signal amplification

technique. Sim’s group for example reported significant advances for SERS-based multiplex

miRNA detection[165, 143]. The group designed a sensor composed of gold nanopillars, the

tips of which are coupled to miRNA-specific DNA capture probes. The sensor allowed the

sensitive detection of 3 miRNAs simultaneously, either by amplifying the Raman signal of the

miRNA itself[143] or in a labeled sandwich assay format[165]. The assays are indeed more

sensitive than conventional microarrays: The LOD of the direct detection method is a few

fM, and the sandwich assay can even detect concentrations in the attomolar range, with a 9

orders of magnitude dynamic range. Liu et al. also designed a SERS-based microarray[166].

The method uses Raman-labeled nanoparticles that compete with miRNA to bind miRNA-

specific capture probes coupled to the sensor. The concentration of target miRNA for each
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spot is thus inversely related to the intensity of the Raman signal. Interestingly, the proof

of concept assay was an 8-plex detection of the members of the Let7 family, showing the

excellent specificity of the method. The LOD was around 100 fM, not as good as previously

reported nanopillar-based methods.

Other reporting strategies for amplification-free miRNA sensing were developed, such

as surface-plasmon resonance[167, 168], microring resonators[169], electrochemistry[170, 171]

or gold nanoparticles aggregation[172]. None of these technologies have however surpassed

SERS in terms of sensitivity.

The high multiplexing ability of microarrays can also be used to enhance the potential of

conventional techniques, such as RT-qPCR[173, 174] or LAMP[175]. Choi et al. for example

proposed an on-support version of RT-qPCR[173]. In this method, following the RT step,

the cDNA mix is introduced in a microfluidic channel. Hydrogel microposts were formed in

the middle of the microchannel. The microposts are photochemically coupled to miRNA-

specific PCR primers, allowing each post to capture its specific cDNAs. Quantitative PCR

is performed using a universal reverse primer in solution, and amplification is reported by

SYBR Green I fluorescence. Although less sensitive than in-solution RT-qPCR, this assay

displays increased multiplex potential, because the independent PCR amplifications are spa-

tially separated, mitigating cross-reactivity issues. A similar assay using LAMP amplification

coupled to an electrochemical readout was developed by Hashimoto and coworkers[175]. A

5-plex detection with a LOD in the 100 aM range was demonstrated. Alternatively, Ishihara

et al. used a dendritic amplification step by flowing fluorescent streptavidin and biotinylated

anti-streptavidin antibodies[176]. Instead of capturing the target and then amplifying the

signal, the other approach is to perform an amplification in solution prior to capturing and

labeling the amplified target. Mader et al. performed a 14-plex detection based on nucleic

acids sequence-based amplification (NASBA) using this approach[177].

1.3.3.4 Suspension arrays

The fundamental difference between planar and suspension microarrays is the mobility of

detection particles. Instead of being tethered on a surface, analyte receptors are therefore

spread throughout the entire volume[178]. As both targets and capture probes diffuse in the

sample, the analyte-receptor encounter probability is increased, resulting in faster capture

kinetics. This feature is of crucial importance given the duration of hybridization protocols

for planar microarrays (up to several days).

One of the main challenges for multiplexed detection is that several output signals not

only need to be measured, but also attributed to the corresponding target. For homogeneous

methods, target identification is mostly based on two strategies: The use of different fluo-
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rescent reporters or the coupling to separative techniques. In the case of planar arrays, the

indexation is encoded in spatially distinct spots. Barcoding designates the various indexa-

tion methods for suspension microarrays. Thanks to the diversity and versatility of particles

and functionalization techniques, the field of suspension arrays offers a greater variety of

barcoding strategies and shows excellent multiplexing potential.

Fluorescence As for homogeneous assays, fluorescence is the most common barcoding

strategy for particle-based methods. In this case, it is however possible to surpass the typ-

ical limitation of six colors by encoding the particles with different intensities for a single

fluorescent channel.

Fluorescently barcoded particles can be prepared using various techniques. The easiest of

them is the functionalization of the surface of the particle with fluorescent oligonucleotides,

either using affinity or covalent coupling[179]. Alternatively, dyes can be integrated to the

core of the particle, in the form of dyes[180] or Quantum Dots (QD)[181, 182].

dye 1

dy
e 

2

dye 3 

a. b.

Figure 1.12: Example of fluorescent particle barcoding. (a) Fluorescent particle barcoding
allows to overcome the ”one color per target” barrier by combining intensity levels of flu-
orophores. In this example, using 2 dyes, each of which can be introduced in 3 distinct
intensity levels, allows the barcoding of up to 32=9 subpopulations. (b) Reporting is per-
formed using an independent fluorescence channel, the intensity of which can be used to
compute the miRNA concentration.

The Luminex xMAP system is a commercial set of more than 100 fluorescent microparti-

cles subpopulations, widely used for multiplex detection assays. Li et al.. applied this system

for the amplification-free detection of 4 miRNAs in a single assay[183]. The technique dis-

played a relatively high detection limit (500 fM). Causa and coworkers notably reported

another amplification-free 3-plex method using fluorescent hydrogel particles, displaying re-

markable sensitivity for such assays, in the fM range[180]. A similar limit of detection was

achieved by Tao’s group[184]. Additionally, the authors managed to break the “one tar-
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get per color” barrier by relying on particle colocalization for reporting: 6 miRNAs were

simultaneously detected using only 4 fluorescent particles populations.

Fluorescent particles are also compatible with amplification techniques, such as DSNSA[182],

strand-displacement amplification[105] or SIMOA detection. The single molecule array (SIMOA)

is a suspension array designed by Quanterix corporation. This system allows the detection

of analytes down to the single-molecule level thanks to microfluidics[185, 186]. Originally

developed for the detection of proteins[185, 187, 188], the assay was later adapted to dig-

ital nucleic acid detection[189]. In this technology, microparticles are functionalized with

miRNA-specific capture probes. The target miRNA is used to bridge the capture probe and

a reporter oligonucleotide tagged with a beta-galactosidase. The particles are then isolated

in individual wells carved on a microfluidic chip. The hydrolysis of a fluorogenic substrate by

the beta-galactosidase reports the capture of the target in each well. Fluorescent imaging of

the microfluidic chamber, followed by poissonian analysis allows the absolute quantification

of the target. Cohen et al. reported a 3-plex digital detection of miRNAs using the SIMOA

system[179]. The assay showed good sensitivity, as the limit of detection was approximately

10 fM. In order to improve the specificity of the multiplex detection, LNA capture probes

were designed, which prevented any cross-reactivity between the three targets. The method

was further validated by a comparison with gold-standard RT-qPCR, showing convincing

results even from total RNA cell extracts.

Graphical barcoding Graphical barcoding consists in shaping or engraving visual pat-

terns in order to differentiate beads subpopulations. This strategy allows for highly multi-

plexed assays, as the pool of potential symbols or patterns that can be encoded in the particles

is only limited by patterning resolution[190]. Doyle’s group extensively used such encoded

particles for multiplexed miRNA detection[191, 192, 193]. Their hydrogel particles are bar-

coded by a set of five length-coded stripes, using stop-flow lithography. As there are three

possible lengths for each stripe, there are 35=243 possible combinations. The authors demon-

strated the potential of these particles for miRNA detection in real samples, such as formalin-

fixed paraffin-embedded tissue[192] or raw cell lysates[193]. The introduction of a RCA am-

plification step increased the sensitivity of the assay by a 100-fold[191]. The same group

also designed polygon-shaped, easily recognizable particles for mobile phone readout[194].

Doyle’s group also designed digital patterns, with a set of 8 spots, each of them being in a

0 (No engraving) or 1 (Engraved) state, for a similar capacity (256 combinations)[195]. As

a proof of concept, the authors demonstrated a multiplex assay where barcoded hydrogel

particles targeting 3 different miRNAs are individually trapped in a microfluidic chamber

prior to an enzymatic (β-galactosidase) signal amplification, achieving a 10 fM limit of de-
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Figure 1.13: Principle of the SIMOA detection system. (a) The hybridization of the miRNA
to its specific capture probes allows the capture of β-galactosidase on a barcoded micropar-
ticle. (b) Simplified workflow. After enzyme capture, particles are trapped in individual
microwells and incubated. (c) Readout is performed in two steps. First, particle barcodes
are read, enabling target identification. Then, reporter fluorescence is measured, indicating
whether the targeted miRNA was captured or not. Since the capture of miRNAs by particles
follows a Poisson distribution, absolute quantification of the target can be achieved by simply
counting ”ON” and ”OFF” wells for each miRNA.

tection. A similar digital encoding was used by Liu on silica particles, reaching 128 possible

sub-populations and demonstrating a duplex assay[196]. The experimental design included a

RCA step to improve sensitivity, reaching 1 fM. Jung and co-workers reached an exceptional

312 combinations with radially-encoded polyethylene glycol half-spheres, which they used in

combination with qPCR-based detection method[190]. MiRNA specific primers are chem-

ically grafted in the gel matrix, and the particles are graphically encoded by lithography.

Following a common RT step, cDNAs are specifically captured by the immobilized primers,

inside the pores of the corresponding particle. RT-qPCR is then performed using universal

reverse primers in solution. After each cycle, the fluorescence of each particle is measured by

microscopy. The method allowed to perform a 10-plex detection from purified extracellular

vesicles. The sensitivity of the assay was significantly reduced (1 pM) compared to conven-

tional RT-qPCR. The authors report that the specificity of this supported qPCR is superior

to that of solution qPCR. In spite of this exceptional multiplexing ability, such techniques are

neither as easy, nor as commonly used as fluorescence barcoding strategies, possibly because

of the need for special equipment and expertise for generating the particles.

Photonic crystals A photonic band-gap crystal, or photonic crystal (PhC), is a spatially

periodic structure composed of materials having different dielectric constants[197]. In such
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Figure 1.14: Examples of graphical particle barcoding. (a) Hydrogel particle encoded by 5
stripes of various lengths. Picture extracted from Chapin and Doyle[191]. (b) Example of
digital encryption: Each particle presents 8 spots that can be engraved (1 state) or not (0
state). The cetral triangle is used for orientation. Picture from Kim et al.[195]. (c) Each
particle carries a circular barcode divided in 16 angular sectors. Picture from Jung et al.[190].

structures, photons of a chosen wavelength can not propagate and are therefore reflected,

whereas all other wavelengths are transmitted. The excluded wavelength, or bandgap, de-

pends on dielectric constants of the materials and on the characteristics of the periodic

lattice itself. The reflected wavelength range is thus highly tunable. The advantages of using

photonic crystals as particle barcodes are numerous: PhCs are highly stable and are not

affected by photobleaching. Being a fluorescence-free strategy, photonic crystal particles do

not interfere with fluorescent reporting[198, 199, 200]. Contrary to fluorescence barcoding,

photonic crystal particles can not be intensity-encoded. Moreover, the reflection spectra of

PhCs are gaussian peaks with a typical half-height width of 25nm[199], which limits the

number of simultaneously distinguishable populations, just like overlapping emission spectra

do for fluorescence barcoding. The preparation of such particles is also a limitation, as it

is very expertise-demanding. These drawbacks may explain why, in spite of their attractive

qualities, PhC particles are still an uncommon barcoding strategy.

The use of PhC particles for multiplexed miRNA detection was demonstrated by Zhao’s

group, either coupled to RCA[199] or HCR[198, 200]. The highest sensitivity was obtained

using a RCA step, with a LOD of 20 fM. All designs allowed the detection of up to 3

miRNAs simultaneously. Due to overlapping reflection spectra, the maximum multiplicity of

PhCs appears to be 5 subpopulations.

Size encoding Particle size encoding is an easy way for subpopulations barcoding. Size-

coded particles can simply be differentiated by microscopy, or flow cytometry by measuring
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Figure 1.15: Photonic crystal particles. (a) Electron microscopy image of the surface of a
photonic crystal particle. (b) Reflection images of photonic particles with blue, green and red
structural colors. (c) Fluorescence image of the particles shown on (b). Green fluorescence
intensity allows quantification of the corresponding target. White light reflection by the
photonic crystal and fluorescence emission are completely independent. Pictures from Bian
et al.[198].

particles forward light scattering (FSC)[201, 202]. Particles of different sizes but similar

densities can also be distinguished based on their mass, using separative techniques such

as field-flow fractionation (FFF)[203] or acoustic levitation[204]. Size-based barcoding is

however a relatively uncommon strategy, mostly because of its low multiplexing potential, as

none of the aforementioned techniques can detect subtle size variations. To our knowledge,

the highest demonstrated multiplex miRNA detection using size-coded particles was a 4-plex

assay by Wang et al.[202].

Although size coding may not be easily scalable, the main quality of this method is its

compatibility with other barcoding strategies. The combination of fluorescent barcoding

with an additional size-based encryption level appears as particularly promising: Both ap-

proaches can easily be combined, as affinity tag-coated particles of various sizes are widely

available. Moreover, both particle size and fluorescence can be measured simultaneously by

flow cytometry, which makes this multimodal strategy particularly convenient.

Other barcoding strategies Among the numerous suspension-based methods for mul-

tiplexed miRNA detection, Kim and coworkers proposed a unique barcoding strategy[205].

Their approach is based on three encryption levels: First, they used plasmonic nanoparti-

cles as detection particles. The three different kinds of particles (gold-silver nanorods, gold

nanospheres and silver nanospheres) had different light-scattering signatures (red, green and

blue, respectively). The second unique feature of this work is kinetic encoding: The particles
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were also discriminated based on their mobility. For each kind of plasmonic particles, half

was functionalized with lipids that could interact with an immobile 2D lipid bilayer, hin-

dering the mobility of the particle. The other half was left free in solution, creating a new

dimension of barcoding composed of two levels (mobile and immobile). The third encryption

level was linked to the reporting, as target detection was signaled by the colocalization of an

immobilized particle with a mobile one. This method allowed for the detection of 9 miRNA

targets using only six particle subpopulations. The sensitivity was rather low, however, since

the LOD is around 10 pM.

1.3.4 Multiplex microRNA detection from live cells

Although most of the miRNA detection methods presented in this chapter aim at quantifying

miRNAs in cell extracts or bodily fluids, some multiplex methods were also developed to

detect miRNAs in live cells. The detection of miRNAs from live cells presents different

challenges than detection from biofluids: The quantification method needs to be particularly

robust to resist to the complex environment of the cell, while being perfectly biocompatible

to avoid damaging it. Most of the reported methods rely on color-coded fluorescent probes

quenched by nanoparticles[206, 207] or nanosheets[208, 209, 210, 211]. Zhou et al designed

an assembly of DNA strands forming a tetrahedron that changes its conformation to emit

fluorescence upon miRNA hybridization[212]. Similar DNA framework was applied by several

groups to multiplex miRNA detection thanks to the great versatility and biocompatibility of

this approach[213, 214].

Signal amplification in live cells is particularly challenging, since it requires biocompati-

bility, which is not required for ex vivo detection. Lu et al managed to implement DSNSA

in live cells[215], while Meng and coworkers combined strand-displacement and DNAzyme

amplifications in order to increase the sensitivity of their assay[216]. Interestingly, Wang et

al. took advantage of the cells expression machinery by introducing plasmids promoting the

production of fluorescent proteins (e.g. GFP, mRFP) once the miRNA is captured[217]. All

of the aforementioned techniques rely on fluorescence for detection, and are limited by the

one-color-per-target barrier. Wang and coworkers implemented successive cycles composed

of an HCR amplification step, fluorescence imaging followed by the degradation of HCR

hairpins by DNAse I to increase the multiplexing ability of their method to 12[218]. As an

alternative to fluorescence, Zhou et al used SERS to detect 2 miRNAs simultaneously in live

cells[219].
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Figure 1.16: Examples of common approaches for miRNA detection from live cells. a. DNA
framework allowing the simultaneous of 3 miRNAs simultaneously. All 3 fluorophores are
initially quenched. The binding of a miRNA changes the conformation of the framework,
taking the corresponding fluorophore and its quencher apart. Picture from Zhou et al.[213].
b. MiRNA detection based on metal oxide nanosheets. The fluorescent probes are initially
embedded in the nanosheet, which quenches their fluorescence. Upon miRNA hybridization,
the probe is freed from the nanosheet, and fluorescence is recovered. Picture from Wu et
al.[209].

1.4 Conclusions and perspectives

Conventional miRNA detection methods suffer from symmetrical limitations: RT-qPCR is

highly sensitive, but its multiplex capacity is limited by the lack of spectrally-resolved fluores-

cent probes, whereas planar microarrays can detect up to thousands of miRNAs simultaeously

but display relatively low sensitivity. In this chapter, we reported innovative miRNA sens-

ing methods aiming at detecting very low concentrations while being highly multiplexable.

Signal overlap still limits the multiplex ability of methods using an independent reporter

for each targeted miRNA. This is not only the case for fluorescence-based methods, but also

applies to electrochemical or Raman-scattering readouts. Consequently, alternative target in-

dexation methods were implemented to boost the multiplex capacity. Suspension arrays are
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currently emerging as very promising detection methods. The wide diversity and versatility

of functionalizable particles offers high multiplexing potential and compatibility with multi-

ple readout strategies, while the suspension format allows higher sensitivity and throughput

than planar microarrays. Although the low concentrations of miRNAs in bodily fluids are

still challenging to reach for numerous methods, the field greatly benefited from the design

of novel nucleic acid amplification techniques. The development of highly sensitive readout

methods, such as SERS, SPR or electrochemical labels, has also been instrumental in the

improvement of the sensitivity of assays.

Due to the high sequence homology encountered in the miRNA world, multiplex assays

would also need to be highly specific. Different strategies have been explored to increase

target specificity. These include the design of selective capture oligonucleotides that discrim-

inate miRNAs taking into account the difference in free energy (using secondary-structured

probes or chemical modifications such as LNA). Similarly, specific reporting probes (e.g. hy-

drolysis probes) may be used to discriminate the target sequence from nonspecific reactions.

In enzyme-based systems, the choice of the enzyme(s) (polymerase, ligase, restriction en-

zyme, RNAse or other nucleases) is crucial to maximise the assay selectivity with respect

to homologous target sequences. Finally, support-assisted designs seem promising leads for

improving specificity in multiplexed format[220, 174, 113]. We refer the readers to a recent

review from Ouyang et al., in which the specificity of microRNA is thoroughly discussed[92].

In all the above-mentioned multiplex methods, each miRNA target is individually quanti-

fied using independent bioreceptors and data analysis allows to reconstruct the sample profile.

These techniques are ideally suited to accurately profile miRNAs and discover novel disease-

related signatures. Complementary approaches are focusing on the in vitro integration of

the data processing step. Conceptually, a DNA circuit is built to integrate the presence or

absence of a set of miRNAs, transduce this information in moleculo, and report an output

that depends on the programmable circuit’s architecture. More than a decade ago, Seelig

and coworkers conceived a 11-gate amplification-free DNA circuit that accept 6 miRNA se-

quences as input (let-7c AND miR-124a AND (miR-15a OR miR-10b) AND (miR-143 OR

miR-122a)), resulting in the classification of the samples according to the presence or ab-

sence of DNA analogues of the target sequences[221]. Other groups have cascaded HCR

and/or DNAzyme amplification to assemble boolean logic circuits, using fluorescence[222],

colorimetric[223] or nanopore readout[224]. Although conceptually elegant, these demon-

strations use hundreds of nanomolars to subnanomolar of discrete concentrations of miRNA

input, making them unsuitable for clinical applications without substantial sensitivity im-

provement. Yet another path exploits DNA architectures that emulate neural networks to

perform sample classification based on biomolecules concentrations[221, 222]. Coupled to
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PCR and RCA amplification, such approach has recently proven capable of cancer diag-

nosis from plasma samples[225]: after training an in silico classifier from publicly-available

miR-seq profile and identified a 4-miRNA signature of non-small cell lung cancer, Zhang et

al.. implemented a DNA classifier that computes the weighted sum of all 4 miRNA targets

and return a yes/no diagnosis. To reach clinically relevant sensitivity, miRNA from plasma

samples were first amplified by RT-PCR and converted to circular single-stranded DNA, sub-

sequently used as input for the molecular computation. Yet to be confirmed, an advantage of

these emerging concepts is that the complexity to measure independently miRNA markers is

transferred from the technology (microarray, microfluidics, sequencing, etc.) to the molecular

chemistry, opening the door to miRNA profiling kits for rapid testing, for example for routine

screening of cancer diseases from minimally invasive, low-cost procedure, that would expand

the arsenal of multiplexed microRNA detection technologies.
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1.5 Objectives of the PhD project

A plethora of studies reported the role of miRNA dysregulations in cancers, and demonstrated

their potential as diagnostic or prognostic biomarkers. They are released in a stable form

in bodily fluids, which makes them attractive targets for the development of liquid biopsy

technologies. Moreover, the clinical applications of miRNA quantification are not limited

to diagnostics: miRNA detection from biofluids could also be a particularly useful tool for

patient follow-up, for example in response to a treatment, given its non-invasive nature.

However, miRNAs are short sequences, presenting in some cases high levels of homol-

ogy, and are only present in very low concentrations in highly complex media. Relevant

miRNA detection methods therefore need to display high specificity and sensitivity while

being quantitative and robust. Additionally, relevant clinical applications of miRNAs rather

rely on panels of biomarkers than single ones. Such multiplex information can be obtained

in two different ways, either by repeating a singleplex assay multiple times, which is costly in

terms of time, consumables and sample requirement, or by designing a more complex assay si-

multaneously measuring multiple miRNA concentrations. The current gold-standard method

for miRNA analysis, RT-qPCR, is mostly a singleplex or low-multiplex method, but possesses

excellent sensitivity and robustness. On the other hand, microarrays and NGS-based tech-

nologies are highly multiplexable techniques but lack sensitivity. Moreover, well-established

miRNA detection methods only provide a relative quantification and require prior calibration

to be quantitative.

Considerable efforts were deployed in recent years to design innovative technologies or

improve existing ones in order to overcome these issues. Heterogeneous assays, in particular,

display enhanced multiplexing ability while being compatible with conventional amplification

strategies or sensitive detectors, which allows the quantification of miRNAs at lower concen-

trations. Unfortunately, sensitivity is still an issue for many of these methods. Moreover,

most of the reported approaches still rely on a calibration step to provide a quantitative

information, which is a potential source of biases. Only a few multiplex methods claim to

provide absolute quantification of miRNAs, namely the nCounter (Nanostring) and SIMOA

(Quanterix) systems.

Our group previously developed a novel singleplex digital miRNA detection method, based

on a noise-reducing molecular amplification network and droplet microfluidics. The aim of

this PhD project was first to design a multiplex miRNA detection method based on this

singleplex assay. This method is referred to as the MultimiR method Simultaneously, we

wished to obtain an excellent sensitivity, within the fM range, in order to be relevant for

miRNA detection from biofluids.
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Our first challenge was to achieve multiplexing. Our strategy relied on the immobilization

of part of the chemical network on fluorescently barcoded particles. In addition to multiplex-

ing, this supported approach enables digital and high-throughput readout by flow cytometry.

DNA analogs of miRNA sequences were first used as target analytes for the early stages of

development of the method. Once multiplex quantification of DNA targets was achieved,

experimental conditions were further optimized for the detection of synthetic miRNAs. A

limit of detection of about 1 fM was reached. A proof-of-concept 6-plex miRNA detection

was performed.

Once validated on synthetic miRNAs, our second aim was to detect endogenous miRNAs

from human biological samples. First, we intended to detect miRNAs from extracted total

RNA from healthy and tumoral tissue. Our final aim was miRNA analysis from blood plasma,

as it is a crucial step towards the development of liquid biopsy technologies. This work is

still ongoing, but holds good potential.
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Chapter 2

Proof of Concept: Multiplex detection

of synthetic DNAs

2.1 Introduction: Molecular programming for isother-

mal digital miRNA detection

The aim of our approach is to simultaneously quantify multiple miRNAs from human bioflu-

ids. The first step to validate our detection method is to detect synthetic miRNA targets

spiked in a buffer of controlled composition.

In this chapter, we first describe the low-background isothermal amplification molecular

network we applied to miRNA detection. The network is based on the PEN DNA toolbox

(Polymerase Exonuclease Nickase Dynamic Network Assembly) and is composed of four DNA

templates, each of which fulfils a specific function: conversion, amplification, thresholding

and reporting. This system enables miRNA detection either in tubes or in microdroplets.

The droplet format allows absolute quantification of the miRNA target as well as enhanced

sensitivity.

We then present how this singleplex method was modified to quantify multiple miRNAs

simultaneously. Our approach is based on the use of functionalizable microparticles on which

part of the detection machinery is immobilized.

The barcoding of the particles is key to the multiplexing ability of suspension arrays, as

presented in chapter 1. We chose to use fluorescent oligonucleotides that can efficiently be

coupled to the beads. We were able to create up to 20 subpopulations of microparticles thanks

to this approach, which also allows high-throughput particle analysis by flow cytometry.

Finally, we present the preliminary results we obtained by progressively adapting our

singleplex digital miRNA quantification method to a multiplex digital miRNA quantification.
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Since DNA displays a higher stability than RNA, here we demonstrate a 6-plex detection of

synthetic DNA versions of miRNAs.

2.1.1 Design of the molecular network

The isothermal amplification method we designed is based on the principle of exponential

amplification reaction (EXPAR)[64]. As explained in chapter 1, EXPAR is an attractive

isothermal amplification method. However, its main disadvantage is nonspecific amplifica-

tion. In practice, negative controls tend to amplify shortly after target-containing samples.

This problem makes the design of an EXPAR-based digital method especially challenging,

because the short time gap separating positive samples from negative controls would certainly

result in false positive signal, negatively affecting sensitivity.

To reduce background noise in EXPAR amplification, we used the polymerase exonucle-

ase nickase dynamic network assembly (PEN-DNA) toolbox, a chemical programming system

developed by our lab to design networks performing various functions, such as switches or

oscillators. The toolbox is composed of three enzymes (polymerase, exonuclease and nicking

enzyme) performing chemical reactions on tailored DNA oligonucleotides, called templates.

Typically, an input strand binds the template, and undergoes polymerization/nicking cycles

to generate output strands, the sequence of which is determined by that of the template. The

exonuclease degrades all unprotected single strands, keeping the system out of equilibrium.

Each template is a module of the chemical network, fulfilling a specific function. Combin-

ing different modules, our group designed networks displaying complex behaviours, such as

oscillations[228, 229] or multistability[230].

Basic EXPAR uses an amplification template that, once activated by a trigger sequence,

undergoes polymerization/nicking cycles to generate more trigger strands. The trigger pro-

duction rate thus increases linearly with the concentration of trigger, until all amplification

templates are hybridized to trigger strands. At this point, the production rate saturates.

EXPAR amplification in the presence of a first order decay mechanism (such as an exonucle-

ase) is modeled on Fig 2.1a. The system possesses one unstable state, before amplification,

in total absence of trigger, and only one stable equilibrium state, after amplification, at high

trigger concentration. In this configuration, the presence of the slightest amount of trigger

inevitably leads to amplification, explaining the already discussed generation of background

noise by EXPAR. Montagne et al. reported a bistable network by coupling the exonucle-

ase degradation to a trigger-specific degradation pathway[70]. The exonuclease provides an

unspecific and linear degradation, while a tailored DNA template, referred to as ”pseudo-

template”, specifically disables triggers. Once the concentrations of all components were

optimized, the system possesses two stable steady states: one in the absence of trigger, the
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Figure 2.1: Trigger production (green curves) and degradation (red curves) rates depending
on trigger concentration. a. No drain template. The system is initially at the unstable
steady state at 0 trigger. If trigger is produced - specifically or not - production is faster
than degradation and the amplification is triggered. b. The combination of the exonuclease
(path 1) and drain template (path 2) degradation pathways increases the slope of the overall
degradation rate at low trigger concentration only. c. The combination of both degradation
pathways, when properly adjusted, generates a system presenting two stable steady states.
Above the threshold trigger concentration, the amplification is triggered, while a trigger con-
centration below the threshold will not allow amplification. Figure extracted from Montagne
et al.

other after amplification, at high trigger concentration (Fig 2.1c). Additionally, the satu-

ration of the template-induced degradation pathway creates an unstable equilibrium state,

defining a threshold concentration of trigger. Below this threshold concentration, degradation

is faster than amplification, leading to stabilisation at the ”no trigger” steady state. If trig-

ger concentration surpasses the threshold, however, the amplification occurs. This bistable

switch is the base module of our detection machinery.
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Nb.BsmI

Polymerase

1 Trigger

Autocatalytic Template

2 Triggers

Nb.BsmI
recognition site

Figure 2.2: Trigger amplification by the autocatalytic template. One trigger molecule hy-
bridizes to the 3’ half of the aT. One can note that the two bases on the 5’ end of the trigger
sequence do not hybridize to the aT (red circle). This overhang is of prime importance
to the prevention of non-specific amplification. The trigger molecule acts as a primer for
polymerization. The trigger molecule is designed so that a repeat of this sequence presents
a Nb.BsmI recognition site. Nicking by Nb.BsmI separates the elongated strand into two
trigger sequences. The amount of trigger molecules is thus regularly doubled, resulting in
exponential amplification.

Our miRNA detection network is composed of 4 DNA templates, each fulfilling a different

function: amplification, thresholding, conversion and reporting. The autocatalytic template

(aT) and pseudo-template (pT) were already mentioned as part of the bistable switch. The

aT catalyses exponential amplification of a 12 bases DNA sequence, called trigger sequence.

The 3’ end of the aT is complementary to the trigger sequence. The captured trigger sequence

acts as a primer for polymerase elongation. The 5’end of aT is also complementary to the

trigger, the sequence of the elongated strand is thus two trigger sequences. The trigger is

engineered in such way that the middle of this elongated strand forms a Nb.BsmI recognition

site, leading to the nicking and release of two trigger sequences. The amount of trigger is

therefore regularly doubled by polymerization/nicking cycles.

The pT also hybridizes to the trigger and extends it with a few bases (2-5 bases typically).

This short polynucleotide tail prevents the modified trigger from being elongated along its

cognate aT. Moreover, the produced strand can not be converted back to a functional trigger

by nicking. Pseudo-templates is therefore a specific, fast but saturable trigger degradation

pathway. The aim of the pT is to deactivate triggers produced by leaky reactions, while still

allowing amplification if enough trigger is present. The concentration threshold required for
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Waste
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Exonuclease

Figure 2.3: Trigger inactivation by the pseudo template. The pT hybridizes to the trigger
molecule. A few bases (typically 5 bases) are added to the 3’ end of the trigger, preventing
its amplification by the aT. The inactivated trigger is unprotected and eventually degraded
by the exonuclease. The inactivation is catalytic for the pT. Noteworthy, contrary to the
aT, the trigger molecule completely hybridizes to the pT. The trigger therefore preferentially
binds a pT rather than an aT, increasing the leak-absorbing effect of the pT.

the amplification to start can be tuned by modifying the pT concentration. Noteworthy, the

pT is complementary to all 12 bases of the trigger sequence, whereas aT is only complemen-

tary to 10 bases, leaving a 2 bases overhang on the 5’ end of the trigger. Consequently, a

trigger sequence is more likely to bind a pT than an aT if one is available, making the pT

pathway the preferential one at low concentrations of trigger.

The conversion template (cT) is the link between the target miRNA and the amplifica-

tion/thresholding module. The cT specifically captures the target miRNA by hybridization,

and uses it as a primer to produce multiple trigger strands via polymerisation/nicking cycles.

The system is thus highly versatile, as only the cT needs to be changed to detect a different

miRNA. The nicking enzyme used for the converters is Nt.BstNBI.
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Polymerase

Nt.Bst.NBI

miRNA

Conversion Template

Nt.Bst.NBI
recognition site

Trigger

Figure 2.4: Conversion of the miRNA into a trigger molecule. The miRNA hybridizes to
the 3’end of the cT and is elongated by the polymerase. The cT sequence is composed of 3
regions: The miRNA complementary sequence in 3’, the trigger complementary sequence in
5’ and a Nt.Bst.NBI restriction site in between. The elongated strand is therefore cleaved
by Nt.Bst.NBI, freeing a trigger molecule. The miRNA does not melt away, and undergoes
polymerization/nicking cycles, generating multiple trigger strands.

Finally, the reporting template (rT) produces a fluorescent signal in the presence of trigger

sequence (fig 2.5a). The rT is a stem-loop oligonucleotide coupled to a fluorophore on one end

and to a fluorescence quencher on the other end. In the absence of trigger sequence, the rT

is in closed conformation and fluorescence is quenched. The hybridization and extension of a

trigger strand opens the hairpin, releasing fluorescence. Cleavage by Nb.BsmI reverts probe

opening. If the restriction enzyme BsmI is added to the reaction mix, the double-stranded

rT can be cleaved, making fluorescent emission irreversible, and avoiding the consumption

of a trigger strand.

This set of 4 DNA templates is refered to as the molecular program. Each template

forms a node of the chemical network, and the trigger sequence links each node to the

others. Noteworthy, DNA templates are protected against exonuclease degradation thanks

to phosphorothioate (PTO) modifications. The organisation of the network is summed up on

figure 2.5b. First, the converter template captures the target miRNA and uses it to generate

trigger molecules. If the number of activated cTs is sufficient to increase the concentration of

trigger above the threshold concentration of the bistable switch, the amplification is triggered.

If the trigger production is too low to surpass the threshold concentration, the combination of
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Figure 2.5: (a) Fluorescent reporting of amplification. The rT is originally hairpin-shaped,
and coupled to a fluorophore on one of its ends and a fluorescence quencher on the other end.
In the stem-loop conformation, the fluorophore and the quencher are close, and fluorescence is
quenched. Upon hybridization of a trigger molecule, the hairpin opens, enabling fluorescence
emission. The opening of the hairpin is reversible, as the trigger molecule can melt away, but
extension by the polymerase stabilizes this conformation. Adding BsmI restriction enzyme to
the reaction renders the opening irreversible by cleaving the rT. (b) Summary of the functions
of each template of the molecular program.

the exonuclease and pT degradation pathways prevents the amplification from being initiated.

Once the amplification takes place, the exponentially increasing amount of trigger allows the

opening of the rTs and the emission of a fluorescent signal. Based on this molecular program,

our group developed isothermal analogs of qPCR and ddPCR for miRNA detection [71].

Sections 2.1.2 and 2.1.3 present the singleplex quantification methods developed by Guil-

laume Gines and Roberta Menezes, upon which our multiplex detection method is based.

2.1.2 Isothermal detection of miRNA

The 4 DNA templates presented in the previous section were first applied to an isothermal

qPCR-inspired miRNA detection method. In this real-time approach, the miRNA concentra-

tion is computed based on the time needed for the exponential amplification to be triggered.
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As for RT-qPCR, the miRNA quantification is relative, and requires a calibration using

standard samples of known miRNA concentration.

The molecular program of 4 DNA templates is mixed with the enzymes of the PEN DNA

toolbox (Vent(exo-) DNA polymerase, exonuclease ttRecJ, nicking enzymes Nt.Bst.NBI and

Nb.BsmI) and the miRNA-containing sample (Fig. 2.6). The reaction tube is incubated at

50°C and rT fluorescence is monitored in real-time. A high concentration of miRNA will allow

the quick activation of numerous cTs, and therefore a quick initiation of the amplification.

Reversely, a low amount of targets requires more time and activates less converters, which

delays the amplification. Figure 2.6a shows the normalized fluorescence signals over time of a

range of samples of known Let7a concentration. The amplification times indeed increase when

the miRNA concentration decreases. For the 1 fM sample and the no target control (NC), the

amplification does not take place. A calibration curve can be established by measuring the

time needed to reach 20% of the maximum, as was done on figure 2.6b. We observe a range

of concentration over which the amplification time varies proportionally to the logarithm of

the concentration. The miRNA can be accurately quantified within a dynamic range going

from 10-100 fM to 100 pM.

The pT improves the limit of detection compared to EXPAR, at the cost of longer incu-

bation times. For most miRNAs, the LOD is 10 fM detected in real-time within 16 hours.

As is the case for qPCR and EXPAR, this amplification method suffers from non-specific

amplification, which limits the limit of detection around 10 fM for most miRNAs.

2.1.3 Digital detection of miRNA

To improve the sensitivity of our method, we decided to implement our chemical network in

a digital detection design. The principle is close to that of droplet-based digital PCR. The

reaction mixture is composed of the same components as the previous design. The mixture is

then partitioned in millions of picoliter droplets. The distribution of miRNA copy numbers

per droplet is poissonnian. In our method, the sample dilution is adjusted in such a way

that most droplet contains either zero or one miRNA. In this droplet-based approach, the

internal concentration can take only one out of two values (0 or 3 pM for a 0.5 pL droplet),

and the amplification reaction takes place or not in each droplet independently of the others,

depending on whether or not the droplet contains a miRNA. The droplets are incubated at

50°C. The reporter fluorescence is again monitored in real time during incubation. Contrary

to a bulk detection, the amplication reaction takes place independantly in every droplet,

resulting in a much slower fluorescence increase. Droplets incubation is stopped when the

fluorescent signal reaches a plateau, meaning that the amplification was completed in all

miRNA-containing droplets. The droplets are imaged by fluorescence microscopy. In miRNA-
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Figure 2.6: qPCR-inspired miRNA quantification using molecular programming. a. The
reaction mixture, containing the 4 DNA templates, the enzymes and the miRNA-containing
sample is assembled and incubated at 50°C. b. Fluorescence over time curves. The higher
the miRNA concentration, the sooner the amplification is triggered. c. The amplification
start times are measured to generate a calibration curve. In this experiment, the linear range
spans from 100 pM to 10 fM.

containing droplets, the trigger molecule was amplified and rT fluorescence was activated,

whereas droplets that do not contain any miRNA remain non-fluorescent. The readout

is said digital, as the information carried by each droplet can only take two values. The

miRNA concentration is computed from the percentage of fluorescent droplets by assuming

the distribution of miRNAs in droplets was poissonian. This digital detection method is

refered to as isothermal digital droplet detection of miRNAs (ID3miR)[71].
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Figure 2.7: ID3miR method. a. Worflow of the method. The reaction mixture is composed of
the 4 DNA templates of the molecular program, the PEN enzymes and the miRNA-containing
sample. The sample is then partitioned in 10 µm droplets using a flow-focusing microfluidic
device. The droplets are incubated at 50°C until fluorescence reaches a plateau, at which
point incubation is stopped and droplets are imaged. b. Fluorescence microscopy images of
a range of Let7a. c. Results of the Let7a range. The results are in good accordance with the
expected concentration.

This method allows the detection of miRNA down to the single molecule level, and is
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therefore more sensitive than its bulk counterpart. Additionally, this technique allows abso-

lute target quantification.
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2.2 Design of multiplexed method

The aim of the project is to implement this molecular programming approach into a mul-

tiplex miRNA detection method. Here, we present our strategy, based on functionalizable

microparticles, to achieve this objective. We also discuss the selection of the particles we

used for our multiplex technology. Finally, we report the formation of beads subpopulations

by fluorescent barcoding.

2.2.1 Multiplexing strategy

The previously described singleplex method relies on fluorescence to report detection. As

discussed in chapter 1, fluorescence-based homogeneous assays are limited in terms of multi-

plexing by the spectral overlap of fluorophores and chemical crosstalk [117]. To circumvent

this limitation, we decided to design a suspension microarray based on the same chemical

network by immobilizing part of the molecular program on particles. Each bead would be

coupled to converter templates for a specific miRNA target and a corresponding fluorescent

barcode. The reporter template, common to all targets, is also bound to the particles, allow-

ing the high throughput analysis of barcodes and reporters simultaneously by flow cytometry.

The bistable switch, composed of the autocatalytic template and pseudo-template is left in

solution.

Reporting
Template

Conversion Template

Fluorescent
barcode

On particle In solution

Autocatalytic Template

Pseudo Template

Enzymes

Figure 2.8: Repartition of the molecular program components. Converters and reporters
are immobilized on fluorescent barcoded particles. The autocatalytic templates and pseudo
templates remain free in solution, as well as the enzymes.

The detection process is similar to the one presented on figure 2.7. A capture step is

however added at the beginning of the procedure (figure 2.9). During this step, the reaction
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mixture is incubated at 40°C for 2 hours so that miRNAs can hybridize to their corresponding

cTs. The capture of a miRNA by a particle is a random process and therefore follows the

Poisson law. After capture, the mixture is partitioned in microdroplets and incubated at

50°C. When the fluorescence reaches a plateau, incubation is stopped and the emulsion is

broken to allow flow cytometry analysis of the particles. For each particle, barcode and

reporter signals are measured. The beads are first sorted based on their barcode, each

subpopulation corresponding to a different target miRNA. Then, the reporter fluorescence is

examined for each subpopulation separately. The reporter fluorescence histograms is typically

composed of two peaks: One at low fluorescence intensity, indicating that the particle did

not capture any miRNA, the other at high fluorescence, meaning that the particle captured

at least one miRNA target.

Flow cytometry analysis

Dye 1

D
ye

 2

Barcode reading

Fpos Fpos

Reporter dye Reporter dye

C
ou

nt

Separate reporter analysis

Reaction mixture
assembly

aT, pT Enzymes miRNAParticles

miRNA capture

Sample partitioning

Particles are partitioned
in microdroplets

Isothermal incubation

Incubation at 50°C Amplification in 
miRNA-containing droplets

Figure 2.9: Multiplexing strategy. The reaction mixture contains the functionalized particles,
aT and pT in solution, the PEN enzymes and the miRNA-containing sample. The mixture
is incubated prior to partitioning to allow the capture of miRNAs on the immobilized cTs.
Following encapsulation, droplets are incubated. Droplets are then broken in order to recover
the beads for flow cytometry analysis. The barcode fluorescence is first measured, and then
reporter fluorescence is analyzed for each subpopulation separately.
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C
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Figure 2.10: Summarized workflow. This summary will be used to indicate what step is
being optimized in a section.

The concentration of each targeted miRNA in the original sample can be computed thanks

to these fluorescence histograms. Since miRNA capture is a random process, the distribution

of miRNAs on their specific particles follows a Poisson law. Hence, the probability P(k) for

a particle to capture k miRNA targets is given by equation 2.1:

P (k) =
λk.e−λ

k!
(2.1)

where λ is the mathematical average number of miRNAs per specific particle:

λ =
CmiRNA

Cparticles

(2.2)

with CmiRNA the concentration of the miRNA and Cparticles the concentration of detection

particles targeting the miRNA. Considering that the probability for a particle to be positive

F pos is equal to the probability of having captured one miRNA or more, we get equation 2.3.

F pos =
∞∑
k=1

P (k) = 1− P (0) = 1− e−λ (2.3)

Hence,

λ = − ln(1− F pos) (2.4)

The concentration of the miRNA in the original sample is thus given by equation 2.5:

CmiRNA = − ln(1− F pos).Cparticles (2.5)

Since Cparticles is known, the concentration of the miRNA can be calculated directly from

the reporter fluorescence histogram of the corresponding subpopulation by measuring the

percentage of beads in the ON state.

This approach theoretically allows the absolute quantification of multiple miRNAs simul-

taneously based on our amplification chemical network.
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2.2.2 Particles selection

A plethora of functionalizable microparticles are commercially available, presenting a wide

variety of materials, sizes, affinity coatings, etc.

2.2.2.1 Droplets and particle size

Flow cytometry
analysis

E A FC
Encapsulation Amplification

C
Capture

The choice of a particle size is indirectly conditioned by particle coencapsulation. Figure

2.11 shows an example of two coencapsulated particles, only one of which has captured its

target miRNA. During incubation, the miRNA-bound particle will induce amplification of

the trigger sequence in the whole droplet, inevitably leading the opening of all rTs in the

droplet. Both particles will therefore be counted as positive during flow cytometry analysis,

whereas only one captured its target miRNA. Since the distribution of particles in droplets

also follows a Poisson law of parameter Λ:

Λ = NA.Cparticles.V droplet (2.6)

with NA the Avogadro constant, Cparticles the concentration of particles in the reaction mix-

ture and V droplet the volume of a droplet. Given equation 2.2, and in order to keep λ within

a reasonable range (between 0.1 and 10), the typical Cparticles would be around 1 pM. The

target Λ is 0.1, which limits the probability of coencapsulation to 1%. Equation 2.6 thus gives

us an ideal droplet diameter of about 7 µm. In order to avoid any clogging and sedimentation

inside the microfluidic chip, we chose a particule size of 1 µm.

2.2.2.2 Coating

Flow cytometry
analysis

E A FC
Encapsulation Amplification

C
Capture

We selected two sets of 1 µm particles to be further tested: Polystyrene particles from Bangs

Laboratories and magnetic Dynabeads from Thermo Fisher Scientific. Both types of particles

can be coated to allow the coupling of DNA oligonucleotides to their surface. Such coupling

can either be covalent, relying on thiol/maleimide or amine/carboxylic acid reactions, or

non-covalent, by using affinity coupling such as biotin/streptavidin. Covalent bonding pro-

vides a nearly irreversible coupling, which prevents any exchange of oligonucleotides between

particles, whereas biotin/streptavidin coupling is reversible and promoted by heating but is
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Conversion
by the red
particle

Trigger
amplification

rT activation

Figure 2.11: Generation of false positive particles by coencapsulation. In this example,
a miRNA-carrying particle is encapsulated along with a particle that did not capture
any miRNA target. During amplification at 50 °C, the loaded converter produces trigger
molecules, which are then exponentially amplified by the machinery in solution. After ampli-
fication, the droplet contains numerous copies of the trigger sequence free in solution. Since
the rTs carried by the particles are identical, the trigger strands open indiscriminately the
rTs carried by both beads. During flow cytometry analysis, both particles are counted as
positive, whereas only the red particule captured its target.

54



Chapter 2. Proof of concept: Multiplex detection of synthetic DNAs

0 50 100 150 200 250 300

102

103

104

105

Time (min)

C
y5

 F
lu

or
es

ce
nc

e 
(R

FU
)

Fluorescent
particles

Non-fluorescent
particles

Figure 2.12: Evaluation of the exchange of oligonucleotides by Dynabeads at 30°C. At this
temperature, it appears that particles can indeed exchange immobilized oligonucleotides.
After 5 hours, 4% of the oligonucleotides were exchanged

far more convenient to perform, as the number of oligonucleotides displayed on the surface

can be reproducibly controlled.

In order to determine the extent of interparticule oligonucleotide exchange, we incubated

together streptavidin-coated magnetic particles, half of which were coupled to biotinylated

fluorescent oligonucleotides (50% of saturation). The beads were incubated several hours at

30°C under strong stirring (2000rpm) in order to mimic the conditions during the capture

step, which is most prone to interparticule exchange. A fraction of the particles are regularly

collected and analyzed by flow cytometry to follow the exchange of the labeled oligonu-

cleotides. Figure 2.12 shows the results of the experiment. The fluorescent signal emitted by

the originally non-fluorescent beads quickly increases in the first minutes of the incubation.

The exchange then slows down, but the fluorescent signals continues to steadily increase

even after 5 hours of incubation. After 5 hours, we estimate that 4% of the fluorescent

oligonucleotides were transferred.

As presented in section 1.2.1, detection particles carry 3 types of oligonucleotides: con-

verters, reporters, and fluorescent barcodes. Reporter templates are the same for all particles,

their exchange during capture is thus inconsequential. The exchange of a cT can trigger false

positive signal, but only if the transferred cT was bound to a miRNA, which is a rare event,

given that the cT/miRNA ratio is typically around 100. Moreover, converters only represent

0.1% of the oligonucleotides carried by the particles. We therefore considered cT exchange

as negligible. The main consequence of oligonucleotides is its effect on bead barcoding, since

fluorescent barcodes can occupy up to 85% of the streptavidin sites of the particles. Bar-
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Figure 2.13: Measurement of the oligonucleotide binding capacity of the two types of 1 µm
streptavidin-coated particles. One microliter of Dynabeads stock solution can carry up to
8 pmol of oligonucleotides, while the saturation of polystyrene particles is of 5 pmol/µL of
stock solution. RFU values are not directly comparable because fluorescence measurements
were realized with different cytometry settings.

code exchange could decrease the number of distinguishable particles subpopulations, thus

lowering the multiplex ability of the method. We however decided to use streptavidin-coated

particles for the development of the method.

The oligonucleotide binding capacity of the streptavidin-coated Bangs particles and Dyn-

abeads was then measured by adding increasing amounts of fluorescent biotinylated DNA

strands and measuring the resulting fluorescent signal by flow cytometry. The results are

shown on figure 2.13. The binding capacity of Dynabeads is approximately 8 picomoles

(pmol) of oligonucleotides per µL of beads stock solution. The capacity of Bangs Laborato-

ries polystyrene beads is lower, at 5 pmol/µL of stock solution.

Finally, the resistance of the coupling in emulsion was investigated. As explained in

section 1.2.1, our multiplex detection method relies on the partitioning of beads in micro-

droplets, during which our team already observed loss of DNA in other projects. We thus

functionalized the two types of particles with fluorescent oligonucleotides (30% of saturation)

and analyzed their fluorescent intensity by FC before and after a microfluidic encapsulation in

10 µm droplets. Figure 2.14 compares the fluorescent distributions before and after encapsu-

lation for both types of particles. While for Dynabeads the particle fluorescence distribution

was barely modified by the encapsulation, only a small fraction of polystyrene beads dis-

played the same fluorescence before and after partitioning, suggesting that oligonucleotides

are released from the particules during the process. This makes polystyrene beads unus-

able in our detection method. We therefore used streptavidin-coated Dynabeads with 1 µm
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Figure 2.14: Distribution of particle fluorescence before and after encapsulation. a: Dyn-
abeads: The fluorescent distributions before and after are almost identical, indicating that
no fluorescent oligonucleotides were lost during encapsulation. b: Polystyrene beads: Most of
the fluorescent oligonucleotides were lost during the partitioning in microdroplets, resulting
in a heterogeneous fluorescence distribution.

diameter for the rest of this study.

Particle type Bangs particles Dynabeads
Material Polystyrene Polystyrene and iron oxide
Density 1.06 2.0

Saturation (pmol/µL stock) 5 pmol/µL 8 pmol/µL
Saturation (oligo/bead) 170000 oligo/bead 480000 oligo/bead

Resistance to encapsulation Poor Excellent

Table 2.1: Summary of beads characteristics

2.2.3 Particle barcoding

Flow cytometry
analysis

E A FC
Encapsulation Amplification

C
Capture

Particle barcoding is the key to our detection method: The multiplex capacity of the assay is

indeed directly determined by the number of distinguishable subpopulations we are able to

generate. For this project, fluorescence appeared to be the most efficient barcoding strategy.

Indeed, fluorescent dyes are low-cost, and can easily be coupled to biotin and grafted on the

streptavidin-coated microparticles we used. Moreover, fluorescent barcodes can be read by

flow cytometry, allowing the high-throughput analysis of beads.

Our assay relies on fluorescence for both barcoding and readout. A fluorescent channel

is therefore reserved for reporting. In this project we chose the dye FAM as a reporter.

Absorption and emission spectra of FAM are shown on figure 2.15a as well as the 490 nm
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Figure 2.15: a: Absorption (dashed) and emission spectra of FAM (a), Cy3.5 (b) and Cy5
(c). The lines at 490 nm, 561 nm and 630 nm indicate the wavelength of the corresponding
excitation laser. d: Overlay of the 3 emission spectra. There is a slight overlap between
Cy3.5 and Cy5 spectra, which could produce fluorescence spillover.

excitation laser. Another limitation is related to the cytometer used and fluorescence readout:

For this project, we used a flow cytometer equipped with three lasers, for excitation at 490

nm, 561 nm and 630 nm. Based on these constraints, we designed a barcoding system

composed of two dyes: Cy3.5 (excitation at 561 nm, fig 2.15b) and Atto633 (630 nm, fig

2.15c). The emission spectra of all 3 fluorophores are overlaid on figure 2.15: There is a

slight overlap between Cy3.5 and Cy5 emissions, which might result in fluorescence spillover.

The oligonucleotide binding capacity of the particles is 8 pmol/µL of particles stock

solution. The converter templates occupy about 0.1% of this capacity, and the reporters

15%, 85% of the streptavidin sites are therefore available for barcoding. Using this 85% of

slots, we managed to create 20 distinguishable combinations, as shown on figure 2.16. This

number was achieved by using 5 different levels of Cy5 dye (0%, 0.6%, 2.5%, 11% and 35% of

the streptavidin sites) and 4 levels of Cy3.5 dye (0%, 2.5%, 12.5% and 50% of the sites). The

fluorescence histograms of both channels are also displayed on figure 2.16. Due to saturation,

the 35% Cy5 - 50% Cy3.5 subpopulation is slightly less fluorescent in both channels than its

unsaturated counterparts. One can also note that, as figure 2.15d suggested, the Cy5-Cy3.5

spectral overlap generates a slight crosstalk between both channels. This is particularly

evidenced by the 4 subpopulations that did not receive any Cy5 dye (leftmost clusters): The

Cy5 fluorescent signal slightly increases when more Cy3.5 dye is added.
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Figure 2.16: Flow cytometry Cy5 vs Cy3.5 fluorescence diagram of a mix containing 20
subpopulations of barcoded particles. The fluorescence distributions of Cy5 (top) and Cy3.5
(right) are also displayed. Due to the saturation of the streptavidin sites on their surface,
the particles of the cluster in the top-right corner did not capture all the available fluorescent
oligonucleotides. Consequently, this subpopulation is slightly less fluorescent than expected
in both channels, although it can still be easily clusterized.
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2.3 On-particle detection of DNA analogs of miRNAs

2.3.1 On-bead converter template

Flow cytometry
analysis

E A FC
Encapsulation Amplification

C
Capture

Our multiplexing strategy, presented in section 1.2.1, requires the grafting of the converter

and reporter templates on particles. We will first focus on the design and testing of on-bead

cTs. In this process, we used a DNA analog of Let7a as a target. All cTs presented in this

section are therefore designed for the detection of Let7a. The sequence of the cT used for

our singleplex methods is presented in Table 2.2 (Non biotinylated cT).

Converter type Sequence (5’→3’)

Non biotinylated cT
TGCAGTCCAGAA-GTTTGACTC-
AACTATACAACCTACTACCTCA

Biotin cT
TGCAGTCCAGAA-GTTTGACTC-

AACTATACAACCTACTACCTCA-Biotin

Biotin T7 cT
TGCAGTCCAGAA-GTTTGACTC-

AACTATACAACCTACTACCTCA-TTTTTTT-Biotin

A15 cT
TGCAGTCCAGAA-GTTTGACTC-
AACTATACAACCTACTACCTCA-

AAAAAAAAAAAAAAA

A30 cT
TGCAGTCCAGAA-GTTTGACTC-
AACTATACAACCTACTACCTCA-

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Table 2.2: Sequences of the potential on-bead converters. Green regions: Complementary
of the trigger sequence. Violet: Nt.Bst.NBI recognition site. Red: Let7a-specific sequence.
Blue: Spacer. Orange: Region allowing coupling to the particle.

In order to be grafted on streptavidin-coated particles, oligonucleotides need to present a

biotin on one of their ends. The basic design is therefore to add a biotin on the 3’ end of our

non biotinylated cT. This design is referred to in Table 2.2 as biotin cT. The immobilization

of the cT on the surface of a 1 µm-particle could prevent or interfere with the miRNA

hybridization of the miRNA and the action of the polymerase and nicking enzyme on the

cT once the target miRNA has been captured. We therefore designed a biotin T7 cT,

whose sequence is the same as the biotin cT with the addition of a spacer of 7 thymine

residues between the biotin and the miRNA binding site. Alternatively, we designed poly(A)

(A15 and A30) cTs. These cTs are not biotinylated, but can hybridize to a T30-biotin

oligonucleotide grafted to the particle. This reversible binding allows the release of the cTs

once the particle has been encapsulated in a droplet, preventing any interference of the
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Figure 2.17: Comparison of the on-bead cT designs.

particle in the enzymatic conversion of the miRNA in trigger molecule. These designs were

tested by replacing the cTs by cT-carrying beads in a bulk detection. Figure 2.17 compares

the incubation time required to trigger amplification for all 4 on-bead designs and the non

biotinylated cT when mixed with 1 pM of Let-7a DNA analog. A no target control was also

performed to assess the leak-proneness of the cTs.

All designs allowed the detection of the miRNA and display similar amplification times

for the Let7a-containing samples. We also notice that both poly(A) designs appear to be

more prone to unspecific trigger production than the biotinylated cTs. In order to chose the

best cT design, we calculated a score taking into account the speed of conversion and the

leakiness:

Score =
Amplification time of the 1 pM sample

Amplification time of the no target control
(2.7)

The scores of all designs are presented in Table 2.3. The biotin T7 cT displays the highest

score and is therefore the design used in further on-bead experiments.

Converter type Score
Non biotinylated cT 3.7

Biotin cT 3.1
Biotin T7 cT 3.6

A15 cT 2.5
A30 cT 2.9

Table 2.3: Comparison of the on-bead cTs scores, as defined by equation 2.7

A similar experiment was then performed to optimize the cT concentration. Particles

were grafted with 3 different amounts of biotin T7 cT so the final cT concentration in the

reaction mixture is 0.5 nM, 2 nM or 8 nM. A no cT control was also performed. Increasing the

61



Digital and multiplex miRNA detection for molecular diagnostics

No cT control

0.5 nM cT

2 nM cT

8 nM cT

No target control 1 pM Let7a
0

200

400

600

800

1000

A
m

pl
ifi

ca
tio

n 
tim

e 
(m

in
)

Figure 2.18: Optimisation of the biotin T7 cT concentration. Increasing the cT concentration
accelerates both the detection of 1 pM Let7a and the self-start of the system.

cT concentration allows faster detection of 1 pM of Let7a, but slightly increases non-specific

trigger production and self-start, as shown on figure 2.18. The 3 concentrations displayed

similar scores. We chose a cT concentration of 0.5 nM for further experiments.

As a first step towards multiplex detection, we decided to perform a singleplex detection

using immobilized cTs. The rest of the molecular program (aT, pT, rT) remains in solution.

This experimental design is similar to that of our previously reported singleplex detection

method, the only difference being that the cT is not free in the solution. Since beads do

not carry reporter templates, the readout will not be performed by flow cytometry, but by

fluorescence imaging of the droplets after the incubation at 50°C. Results are shown on figure

2.19.

First, we observe that part of the particle-containing droplets display red fluorescence,

thus indicating that a miRNA was succesfully converted and the amplification was conse-

quently triggered. Noteworthy, no droplet containing no particle appears to be positive,

which was expected since these droplets should not contain any cT. Algorithmic analysis of

the microscopy images shows that 57% of particle-containing droplets were positive, which is

equivalent to a concentration of 1,13 pM Let7a, very close to the expected concentration of 1

pM. On-bead conversion therefore appears to be fully functional (at least for DNA versions

of the miRNA sequences).
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Figure 2.19: Singleplex digital detection of 1 pM Let7a using on-bead biotin T7 cTs. a. and
b. Fluorescence microscopy images. The green spots are the particles. c. and d. Fluorescence
analysis of the particle-containing droplets. 57% of bead-containing droplets were found to be
positive, which is in accordance with the 1 pM Let7a in the original sample (expected: 53%).
The variation of fluorescence of positive droplets observed on c. is caused by heterogeneous
background light.

2.3.2 Capture time optimization

Flow cytometry
analysis

E A FC
Encapsulation Amplification

C
Capture

The conditions of the capture step were also optimized. Since the capture mixture contains

all the enzymes and molecular program templates required for amplification, the capture

temperature needs to be significantly lower than the amplification temperature (50°C) to

avoid triggering the amplification before sample partitioning. We decided to perform the

capture at 30°C. Since Dynabeads tend to sediment quickly, the reaction was stirred at 2000

rpm. In order to determine the optimal duration of the capture step, the singleplex digital

detection of 1 pM Let7a was performed using various capture durations. The results indicate
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Figure 2.20: Capture step kinetics. A capture duration of 2 hours appears to be optimal, but
the differences are small (from 38% positive beads after 30 min to 46% after 4h) and might
not be significant.

that a capture step duration of 2 hours appears to be optimal (figure 2.20)

2.3.3 On-bead reporting

Flow cytometry
analysis

E A FC
Encapsulation Amplification

C
Capture

The second module of the molecular program that we immobilized on-particle is the rT. The

aim is to switch from a fluorescence microscopy readout to a flow cytometry readout. Flow

cytometry allows a much higher analysis throughput, as tens of thousands of particles can

be analyzed in a few minutes. Flow cytometry is also less expertise-demanding, since the

percentage of positive particles is readily available whereas fluorescence microscopy requires

the use of complex image analysis algorithms.

Biotin

Spacer

FAM dye

Quencher
Stem

Trigger
binding site

Figure 2.21: Generic scheme of a biotinylated rT. The regions are colored accordingly to
Table 2.4. The biotin can either be at the 5’ or 3’ end.

As the rT is designed to hybridize to the amplified trigger, it is likely that it reroutes

a fraction of trigger, therefore inhibiting the autocatalysis. Also, the enzymatic machinery
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rT designation Sequence (5’→3’)

rT 1
Biotin-TTTTTTTTTT-FAM-

GTGAGAATGCAGTCCAGAATGTCTCAC-BHQ2

rT 2
Biotin-TTTTTTTTTT-FAM-

TGTGAGAATGCAGTCCAGAATGTCTCACA-BHQ2

rT 3
Biotin-TTTTTTTTTT-FAM-

GTGAGAATGCAGTCCAGAATGTCTCAC-BHQ1

rT 4
Dabcyl-GTGAGAATGCAGTCCAGAATGTCTCAC-FAM-

TTTTTTTTTT-Biotin

Table 2.4: rT designs sequences. Color code: Orange: Biotin; Purple: T10 spacer; Green: dT
FAM; Red: Stem region; Blue: Trigger binding site; Brown: Fluorescence quencher. Designs
1, 2 and 3 carry the biotin on their 5’ end, whereas rT 4 is biotinylated on its 3’ end. Design
2 possesses a slightly longer stem region to increase stability of the closed conformation. rT
1 and 3 only differ by their fluorescence quencher.

may be sensitive the dye used. For instance, it as been shown that the FAM fluorophore

strongly inhibit the amplification reaction (data not shown). We designed 4 different rTs,

displaying slight variations (e.g. the length of the stem, the quencher, etc). The sequences

of the rT designs are presented in table 2.4. The reaction-inhibiting effect of each design has

been tested by an on-bead bulk detection of 10 pM Let7a. The results are shown on fig 2.22.

The rT 4 displays the lowest reaction-inhibiting effect of all designs, followed by the rT 1

design.

The other major factor for the choice of the rT design is the fluorescent signal difference

between rTs in closed and open configurations. A high ON signal/OFF signal ratio allows a

clearer separation between positive and negative particles, which avoids false-positive events.

The ON/OFF ratio of each design was tested by flow cytometry. Results are displayed in

table 2.5.

rT design ON/OFF ratio
rT1 8.2
rT2 2.3
rT3 6.0
rT4 6.6

Table 2.5: ON/OFF fluorescence signal ratios of on-particle rT designs

Based on our experimental data, rT1 and rT4 are the most promising rT designs: rT4 has

the lowest reaction-inhibiting effect and an acceptable ON/OFF ratio, while rT1 displays the

highest ratio but slows down the reaction. We chose the rT1 design in order to reduce the

amount of rT required for a clear negative/positive separation, which leaves more streptavidin
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Figure 2.22: Comparaison of the reaction-inhibiting effects of rT designs. a. Fluorescence
monitoring over time. All 4 rT designs delay the amplification of the bulk reaction. rT4
appears to be the least amplification-delaying design by a large margin, followed by rT1,
rT2 and rT3. The shown fluorescent signal is from an orthogonal reporter in solution. b.
Fluorescence derivative over time. Although rT4 displays a lower inhibiting effect, the probe
opening process appears to be slower than for the 3 other designs.
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sites available for particle barcoding and therefore increases the multiplexing potential of the

method.

2.3.4 Multiplex detection of DNA versions of miRNAs

We so far showed that our design was functional for the digital singleplex detection of the

DNA analog of a miRNA. On-particle cTs are still able to convert the target into trigger

strands, and immobilized rT enable the high-throughput readout of the reaction by flow

cytometry. Additionally, we demonstrated in section 1.2.3 that we were able to distinguish

multiple beads subpopulations using fluorescent oligonucleotides.

As a proof of concept, we therefore performed a 3-plex detection of the DNA analogs of

Let7a, miR 92a and miR 203a. Four samples were prepared for analysis:

• A no target control

• A sample containing 1 pM Let7a (DNA)

• A sample containing 1 pM miR 92a (DNA)

• A sample containing 1 pM miR 203a (DNA)

Figure 2.23b compares the reporter fluorescence distributions of the three beads subpopula-

tions for the Let7a-containing sample. As predicted, the proportion of positive Let7a particles

was significantly higher than the proportion of positive miR 92a and miR 203a particles. We

however notice a strong false positive signal. This is confirmed by the analysis of the no target

control (Figure 2.23c). MiR 92a particles were particularly prone to non-specific amplifica-

tion, with more than 11% false positive particles, which corresponds to a concentration of 150

fM. The LOD of the method therefore appears to be insufficient for the detection of miRNAs

at physiologically relevant concentrations, that are usually comprised between a few pM and

a few fM[27, 30]. The coencapsulation of particles is a probable promoter of false positive, as

the particles tend to aggregate before being encapsulated, resulting in non-poissonian particle

distribution. The false positive levels measured in the no target controls were subtracted to

the percentage of positive particules in the miRNA samples (Figure 2.23d). Although the

detected concentrations are lower than the expected levels (1 pM), in each sample the beads

population corresponding to the present miRNA presented a significantly higher percentage

of ON particules than the two other populations. The working principle of the method thus

enables the multiplex detection of DNA analogs of miRNAs.

67



Digital and multiplex miRNA detection for molecular diagnostics

102 103 104 105

Cy5 Fluorescence (RFU)

C
ou

nt

a.

102

103

104

105
FAM Fluorescence (RFU)

C
ou

nt

miR 203a
miR 92a

Let-7a

b.

miR 203a

miR 92a

Let-7a

1 pM
miR 203a

1 pM
miR 92a

1 pM
Let-7a

0 fM

200 fM

400 fM

600 fM

800 fM

1 pM

d.

M
ea

su
re

d 
C

on
ce

nt
ra

tio
n

0 fM

50 fM

100 fM

150 fM

200 fM

c.

M
ea

su
re

d 
C

on
ce

nt
ra

tio
n

Figure 2.23: Simultaneous detection of 3 DNA analogs of miRNAs. a. Fluorescence his-
tograms of the barcode fluorescence (Cy5). The 3 barcoded subpopulations are clearly dis-
tinguishable. b. Reporter fluorescence histograms of all 3 subpopulations in the sample con-
taining 1 pM Let7a. The Let7a-targeting subpopulation has a much higher positive particles
proportion. c. Detected concentrations in the no-target control. d. Measured concentra-
tions in the 3 miRNA-containing samples. The false positive percentage from the no-target
control was substracted. Although the detected concentrations are lower than the expected
concentrations, in each sample the beads population corresponding to the present miRNA
presented a significantly higher percentage of ON particules than the two other populations.
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2.4 Chapter summary

Very few of the reported miRNA detection methods combine absolute quantification and

high multiplex ability (see chapter 1). The main aim of this project was to develop such an

highly sensitive, digital and multiplex approach.

Here, we validate our method for the multiplexed and absolute quantification of DNA

analogs of miRNAs commonly dysregulated in cancers. This was achieved using a noise-

reducing amplification chemical network composed of 4 tailored DNA templates, based on

the PEN DNA toolbox. This molecular program was succesfully applied to singleplex or low-

multiplex absolute miRNA quantification. The immobilization of part of these DNA tem-

plates on functionalizable microparticules, divided in subpopulations targeting one miRNA

sequence each, greatly enhanced the multiplexing potential of the method.

In order to perform on-bead miRNA detection, preliminary tests were required. First,

the particles were selected and characterized. The best candidates were streptavidin-coated

1 µm magnetic beads. The multiplex potential of these particles was assessed by optimizing

the number of barcoded subpopulations. We reached a maximum of 20 particle populations

with our equipment, thus setting the maximal multiplicity of the assay at 20 miRNAs, which

is much higher than most multiplexed approaches reviewed in chapter 1.

We then designed and characterized converters and reporters adapted to on-bead de-

tection. We first performed on-bead converting, using solution reporters and a microscopy

readout, before immobilizing the rT as well and transitioning to a high-throughput flow cy-

tometry readout. Finally, a 3-plex detection of DNA analogs of miR 92a, miR 203a and

Let7a was succesfully performed as a proof of concept.

This preliminary result on synthetic DNA now needs to be confirmed for the detection

of RNA, first in synthetic conditions and then in biological samples. Technical limitations

also need to be tackled, most notably the coencapsulation of particles, that generates false

positive signal. This problem could be tackled by diluting the particles after the capture

step, as presented in chapter 3.
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Chapter 3

Particle enzyme scavenging

3.1 Discovery of the effect

The detection process developed in chapter 2 enables the multiplex detection of DNA analogs

of miRNA sequences, but still suffers of serious limitations, especially its high percentages of

false positive particles, which greatly limits the sensitivity of the technique. This high limit

of blank may be caused by two independent effects:

• Non-specific amplification reaction: In spite of the presence of the noise-reducing pseudo

template, the chemical amplification network can be non-specifically triggered due to

ex nihilo polymerization, as is also observed in bulk experiments (see section 2.1.2.).

The particle contained in a droplet in which non-specific amplification takes place is

detected as positive during flow cytometry analysis. Our main path to reducing non-

specific amplification is increasing the concentration of pT, which comes at the cost of

reaction speed.

• Particle coencapsulation: As explained in chapter 2, the encapsulation of a non-miRNA-

bound particle in the same droplet as a miRNA-bound particle results in the activation

of the rTs attached to both particles. The non-miRNA-bound particle is therefore

wrongly counted as positive during flow cytometry analysis. This effect is for example

evidenced on the experiment presented on fig 2.23, in which the false positive rate is

significantly higher for all particles in samples containing any target. The probability

of coencapsulation can in theory be decreased by lowering the concentration of particles

during the encapsulation step.

Diluting the particles prior to the encapsulation step appears to be the most efficient way

to reduce the noise without lowering reaction speed. We therefore decided to implement a

post-capture washing/dilution step.
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3.1.1 Addition of a washing step

The addition of the washing step presents two main advantages:

• First, this washing should remove any product present in the capture mix that could

be toxic to the reaction or promote the self-start of the system. This also may improve

the specificity of the system by preventing the partial hybridization of a miRNA to a

cT designed for the detection of another microRNA of highly homologous sequence.

The washing step is particularly important for the analysis of biological samples, which

may contain inhibitors and nucleases.

• Second, it allows to modify the concentration of particles between the capture step

and the partitioning step. As explained in chapter 2, both steps follow a Poisson

distribution, whose parameters are linked to the concentration of particles (Equations

2.2 and 2.6). Lowering the concentration of particles is beneficial to the encapsulation

step, as it theoretically reduces the risk of coencapsulation. Beads dilution can however

be detrimental to the quantitativity of the assay, since a very high miRNA-per-particle

ratio will result in nearly 100% of the particles being positive, which does not allow

accurate quantification. Without a pull-down/resuspension step, the concentration of

particles is identical in the capture and partitioning step, forcing us to find a trade-

off concentration, which is not optimal for either step. The procedure presented in

fig 3.1 allows us to use particles at their optimal concentration for capture, wash and

resuspend them in a larger volume to reduce coencapsulation.

The updated procedure is presented on figure 3.1. Contrary to the workflow presented in

figure 2.9, the reaction mixture assembly was performed in two steps. First, the detection

particles and the miRNA-containing sample were mixed in a preliminary mix, referred to as

the capture mix. The capture step was then performed as described in chapter 2. Following

capture, a washing step was added. The particles were magnetically gathered and the rest

of the capture mix was discarded. The beads were then washed by supernatant discard-

ing/resuspension cycles in the beads storage buffer. The particles were finally resuspended in

storage buffer. The final reaction mixture was finally assembled by mixing the resuspended

particles with the molecular program and the reaction enzymes. The rest of the procedure

was identical to the one presented in chapter 2.
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Figure 3.1: Updated workflow with a post-capture washing step. Contrary to the previous
chapter, the capture mixture is composed of the miRNAs and the particles only. The enzymes,
aT and pT are added once the particles were washed and resuspended. The resuspension
of the particles allows us to dilute them in order to avoid coencapsulation. The rest of the
procedure is identical to that of chapter 2.
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Figure 3.2: Updated summarized workflow
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Figure 3.3: Comparison of the reporter fluorescence distribution for particles in no-target
controls that underwent, or not, the washing/dilution step. The vertical bar shows the usual
limit between positive and negative particles. The proportion of particles in the positive
region is much higher among particles that underwent the washing step.

3.1.2 Effect of particles dilution

Flow cytometry
analysis
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Dilution
Encapsulation Amplification

In order to assess the efficiency of the washing step, we performed the detection of 1 pM

of Let7a (DNA version) with and without washing/resuspension. In samples in which the

washing was implemented, the particles were finally resuspended in a larger volume to reach

a particle-per-droplet ratio of 0.04 for 10µm droplets, which theoretically reduces the proba-

bility of particle coencapsulation to 0.08%. Figure 3.3 compares the results with and without

washing. Surprisingly, the percentage of false positive particles in the no target control is

much higher if the particles were washed (10% in the washed sample, 1% in the wash-free

sample). The addition of the washing step appears to promote nonspecific amplification.

This effect was further studied by investigating the reaction kinetics whether a washing is

performed or not. The results are shown of figure 3.4. In the samples containing 1 pM Let7a,

the amplification is triggered faster in the washed sample. After 2 hours of incubation, 19%

of the washed particles are positive, whereas only 1% of the beads are positive in the sample
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Figure 3.4: Amplification kinetics in samples in which the washing/dilution step was imple-
mented. In the washed samples the amplification is triggered significantly sooner, and the
plateau positive rate is higher than washing-free samples.

without washing step. After 5 hours, the percentages tend to stabilize at different levels:

66% with the washing step, 46% without. In these experimental conditions, the expected

percentage for 1 pM is 53%. The excess of positive particles in the washed sample is in

accordance with the analysis of the no target controls: After 5 hours, 18% of the washed

beads turned on, while less than 1% of unwashed particles are positive.The amount of false

positive beads in the washed sample appears to increase linearly. An endpoint measurement

was realized after an overnight incubation: 59.8% of the particles of the washed sample were

positive. The proportion was only 9.6% in the unwashed sample.

As explained earlier, washing the particles consists in gathering the particles, removing the

supernatant and resuspending the beads in their storage buffer. It appears very unlikely that

the washing itself would promote nonspecific reactions. The final resuspension, however, was

so far always used to dilute the particles in order to avoid coencapsulation. If we compare the

final reaction mixtures in the procedures described in figures 2.9 and 3.1, their composition
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is identical, with the exception of the concentration of particles, that is lower when the

washing/dilution step is implemented. Our hypothesis was that reducing the concentration

of particles, and thus of cT and rT, while the concentrations of enzymes, aT and pT remained

the same would explain the higher rate of nonspecific reactions. We therefore investigated

the influence of particles dilution by comparing the percentage of false positive particles in

two samples that underwent a washing step, but were resuspended in different volumes.
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3.2 Effect characterization: Enzyme depletion experi-

ments

During encapsulation, the content of a solution is theoretically randomly distributed. For the

enzymes and in-solution DNA templates, the molecule per droplet ratio is very high (typically

8000 for aT, 1000 for pT), resulting in very similar levels in all droplets. For particles, the

ratio is in favor of the droplets (typically 0.1), meaning that most droplets contain either 0 or

1 particle. The concentration of cT and rT is proportional to the number of particles in the

droplet. According to this model, the content of bead-containing and non-bead-containing

droplets is not modified by the concentration of particles in the pre-encapsulation mix, as

can be seen of figure 3.5. This theory is however contradicted by the observations discussed

in section 3.1.2.

5 beads

10 enzymes

Random
distribution

1 bead

10 enzymes

Random
distribution

Figure 3.5: Theoretical distribution of enzymes in droplets. The enzymes are equally dis-
tributed in bead-containing and empty droplets.

The most probable explanation to the effect of particle dilution is that enzymes and/or

free DNA templates distribution is influenced by the presence of a particle in the droplet.

Based on the observations of section 3.1.2, our hypothesis was that some of the enzymes used
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by the molecular program are attracted and trapped on the surface of the particles, resulting

in enzyme overconcentration in bead-containing droplets. If the concentration of particles is

lowered, each particle can trap even more enzymes, amplifying the enzyme overconcentration

in bead-containing droplets (fig 3.6).

5 beads

10 enzymes

Random
distribution

5 beads

10 enzymes

Enzyme
Scavenging

1 bead

10 enzymes

Enzyme
Scavenging

Figure 3.6: Schematic representation of the enzyme scavenging effect. a. Random distribu-
tion. b. Enzyme-scaveging effect: Enzymes are preferentially distributed in bead-containing
droplets. c. Effect of particle dilution: Less concentrated particles means that one parti-
cle can scavenge more enzymes than in undiluted samples. The enzyme concentration in
particle-containing droplets is further increased, promoting nonspecific reactions.

In order to validate this hypothesis, the following experiment was designed: A mixture

containing all enzymes used by the chemical network at their usual concentrations was as-

sembled and splitted in 3 tubes. One tube was left untouched as a control, while raw particles

were introduced in the second tube and rT-coupled (30% of streptavidin sites) particles in the

third. All three tubes were incubated at room temperature for an hour, as would typically
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Figure 3.7: Enzyme depletion experiment. a. Fluorescence monitoring over time. The en-
zyme mixture in which functionalized particles were introduced is not as efficient for detection
as enzyme mixtures in which raw particles or no particles were introduced. b. Derivative of
the fluorescence. In addition of being late, the functionalized beads sample displays a lower
amplification sharpness, also indicating that the sample is enzyme-depleted.

be the case for a reaction mixture awaiting to be encapsulated. After this incubation, the

particles are removed. The supernatants were used as an enzyme mix for the bulk detection

of 1 pM of Let7a. If the particles indeed trap enzymes on their surface, the supernatant

should be depleted in enzymes, and amplification should therefore be delayed or shut down.

The results of the experiment are shown on figure 3.7.

The amplification is triggered at the same time in the no particles control and the un-

fonctionalized particles sample. The amplification is however severely delayed if rT-coupled

particles were introduced in the enzyme mix. The enzymes are not captured by the particles

themselves, but are trapped by interacting with the on-bead rTs. This is also evidenced by

the analysis of the fluorescence derivative (fig 3.7b), that shows a softer amplification in this

third sample. The influence of barcodes, that are T5 oligonucleotides coupled to biotin on

the 5’ end and a fluorophore on the 3’ end, was also tested (fig 3.8). The composition of the

particles is described in table 3.1.

Particles rT amount Barcode amount
rT only 15% 0%

rT and barcode 15% 30%

Table 3.1: Composition of the particles mentioned in fig 3.8

The barcode oligonucleotides also trap the enzymes, which is all the more worrying, given

that barcodes can occupy up to 85% of the streptavidin sites of a particule. The effect of

converters was not investigated, as cTs are far less numerous than rTs and barcodes (0.1%

of sites).
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Figure 3.8: Identification of the oligonucleotides responsible for the scavenging of enzymes.
Reporter templates and florescent barcodes appear to be equally responsible for enzyme
scavenging.

3.3 Proposed solutions

As explained in the previous section, the concentration of particles relatively to the enzymes

is of crucial importance. In order to implement the dilution step, which reduces the absolute

concentration of particles, without triggering more nonspecific reactions, the obvious solution

would be to reduce the concentration of enzymes accordingly. This solution is however highly

inconvenient, since the enzymes levels would need to be adjusted depending both on particles

concentration and functionalization. This would require extensive crossed calibration for both

parameters. We thus investigated 1/ the addition of ”neutral” particles, only used to keep

a constant particle concentration and not for detection, and 2/ the addition of a second

water phase inlet to the encapsulation microfluidic device so enzymes and particles can be

introduced separately.

3.3.1 Addition of ”neutral” particles

Flow cytometry
analysis

C W E A FC
Capture Washing/

Dilution
Encapsulation Amplification

Based on our previous observations, diluting detection particles inevitably results in an in-

crease of the false-positive rate. This may however be avoided by introducing another particle

population, not dedicated to miRNA detection, to maintain the overall concentration of par-

ticles constant while lowering the detection particle concentration. These particles could

therefore act as ”enzyme lures”, maintaining an enzyme-per-particle ratio that limits the

non-specific reaction rates in an acceptable range. The base principle of this approach is pre-
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sented of figure 3.9. This class of particles, only dedicated to limiting the enzyme trapping

on detection beads, are referred to as neutral particles/beads. Since enzymes are not trapped

by the beads themselves but by the oligonucleotides immobilized on their surface, neutral

particles were functionalized with the same amount of rT than regular detection beads (figure

3.10).

1 detection bead
4 neutral beads

10 enzymes

1 bead

10 enzymes

Figure 3.9: Principle of neutral beads. The addition of neutral beads increases the overall
particle concentration without modifying the concentration of miRNA detection particles.
This maintains an acceptable enzyme-per-particle ratio while also preventing the coencapsu-
lation of detection particles.

In order to determine the optimal amount of neutral particles for noise reduction, a sin-

gleplex detection of Let7a was performed with reaction mixtures containing various amounts

of neutral particles. The concentration of detection particles was 100.000 beads/µL in all

samples. As observed on fig 3.11, adding neutral particles does indeed reduce the proportion

of false positive particles. From 5% of false positive beads without neutral particles, the pro-

portion falls to 0,8% with a concentration of 1.000.000 particles/µL. This background noise

reduction comes however at the cost of severely reducing the reaction speed. The NP-free

reaction is completed after 5 hours of incubation only, whereas with 900.000 NP/µL, the

amplification requires an incubation of more than 8 hours.
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Figure 3.10: Representation of a neutral particle. The only difference between detection
particles and neutral particles is that neutral particles do not carry converters.

Although we observed a noise-reducing effect of NP, this effect was too limited to be a

realistic strategy. At 300.000 particles/µL, the false positive rate is slightly below 1%, which

was our objective, but the amplification requires approximately 10 hours to complete. In ad-

dition, the use of 100.000 detection particles/µL and 200.000 NP/µL triples the consumption

of particles compared to using detection particles alone. Both of those factors encouraged us

to explore alternative solutions to the enzyme scavenging effect.

3.3.2 Modification of the encapsulation microfluidic device

Flow cytometry
analysis
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Dilution
Encapsulation Amplification

A possible solution to avoid any trapping of enzymes on the surface of the particles is to mix

particles and enzymes only a few seconds before sample partitioning. Doing so would allow

to optimize once the experimental conditions and use this set of conditions with any particle

concentration and functionalization. This also lowers the consumption of particles compared

to the ”neutral beads” approach.

Assembling the reaction mix right before beginning the amplification is however not suffi-

cient, since the microfluidic partitioning of a typical 25 µL sample requires around 30 minutes,

during which enzymes can be captured at the surface of the particules. In order to bring

enzymes and particles together shortly enough before encapsulation, the microfluidic system

needs to be adapted.

The microfluidic device so far used for the generation of 10 µm is shown on figure 3.12.

The device is based on the flow focusing technique. At the nozzle, the pinching of the

convergent oil flows forms monodisperse droplets of the water phase (ie the sample in our

case). This setup possesses a single sample inlet, thus requiring the reaction mixture to
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Figure 3.11: Results of the neutral particle range. The concentration of Let7a detection
particles is 100000 particles/µL in all samples. The concentration of neutral particles in
the samples are therefore 0, 100.000, 200.000 and 900.000 beads/µL respectively. The false
positive rate is lowered by the use of neutral particles, without significantly modifying the
positive percentage in the 1 pM samples. Increasing the concentration of particles however
slows down the amplification reaction, from 5 hours in the 100000 particles/µL to more than
24 hours in the 1000000 particles/µL. The false positive rate is much lowered compared to
those of section 3.1.2 due to an increase of the amount of on-bead rT, which also slowed the
reaction.

be assembled beforehand. Based on the same principle, we designed a microfluidic device

displaying 2 water inlets (fig 3.13). This allows the mixing of enzymes and particles at

the very moment of encapsulation by splitting the reaction mixture in two pre-mixes, one

containing the enzymes, the other the particles and the free DNA templates. The Reynolds

number being very low in microchannels, the two converging water flows do not mix before

encapsulation, preventing any trapping of enzymes. Additionally, the time interval between

flow convergence and encapsulation is very small (less than 1s).This hydrodynamic effect is

evidenced by fig 3.14.

This modification of the microfluidic setup came with a reoptimization of the concen-

trations of the bistable switch templates. The previous set of concentrations was indeed

optimized for a reaction in which enzymes were overconcentrated by the enzyme trapping

effect. With this effect removed, the rate of specific and non-specific trigger-producing reac-

tion has dicreased. The amplification-inhibiting strength therefore needs to be lowered. To

that end, the final concentration of pT was adjusted at 8 nM (12 nM previously).

A 3-plex assay was realized using the updated settings. Results are displayed in fig 3.15.

The false-positive rates for all 3 miRNAs in the no-target control are low, ranging from 0,6%

for miR 16 particles to 1,0% for Lin 4 particles. These low levels were obtained even though

the washing/dilution step was implemented, meaning that 2-water inlet microfluidics is a
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Figure 3.12: Single water inlet microfluidic device. a. View of the whole device. Green parts
correspond to a height of 30 µm and orange parts (filters and nozzle) have a height of 7 µm.
b. Zoom on the nozzle of the device. The water phase, coming from the top, is pinched from
both sides by the oil phase, composed of fluorinated oil mixed with supernatant.
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Figure 3.13: Co-flow microfluidic device. a. View of the whole device. As in figure 3.12,
green parts are 30 µm high and orange parts are 7 µm high. O corresponds to the oil inlet,
and W1 and W2 are the two water inlets. b. Zoom on the nozzle.

Figure 3.14: Fluorescence microscopy image of the nozzle of the co-flow microfluidic device.
Both water phases contained a fluorescent dye. The two incoming water flows do not mix at
the channel intersection due to the low Reynolds number in the system, forming a straight
interface. The water phases only mix after encapsulation, as evidenced by the orange color
of the produced droplets
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Figure 3.15: Implementation of 2-water inlet microfluidics for miRNA detection. The no-
target control displays low false positive rates, from 0,6% for miR 16 particles to 1,0% for
Lin 4 particles. Detected concentrations are different from the expected levels, but there
is no tendency shared by all miRNAs: Measured concentrations of Lin 4 are above the
expected 1 pM in both Lin 4-containing samples, while miR 203a and miR 16 levels are
under the expected concentration. This could mean that the differences between expected
and measured concentrations are caused by experimental errors rather than inaccuracy of
the detection system. This experiment was realized by Alexis Moravic during his internship.

satisfactory solution to the enzyme-scavenging effect. In terms of accuracy, the detected

levels are different from the expected levels by factors around 2. The observed differences are

however not of the same nature for all miRNAs: Detected amounts of Lin 4 are above 1 pM

in both Lin 4-containing samples, while miR 203a and miR 16 levels are below the expected

concentrations in relevant samples. This could mean that those differences are caused by

experimental errors rather than by an inaccuracy of the system.
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3.4 Chapter summary

In this chapter, we introduced an additional washing and dilution step following capture.

The objectives of this new step are two-fold:

• Washing the particles following the capture is an important step towards detection

from biological samples, which may contain components impeding the detection, for

example by destroying targets or inhibiting the reaction.

• The dilution of the particles prior to sample partitioning may reduce the prevalence of

coencapsulated particles, therefore lowering the false positive rate.

The introduction of the post-capture washing/dilution step unexpectedly increased the

false positive rate. This increase was found to be related to the dilution of the particles,

and not by the washing itself. The underlying cause appears to be the scavenging of free

enzymes by oligonucleotides immobilized on the surface of particles. We indeed demonstrated

that the introduction and removal of functionalized particles in an enzyme-containing solution

significantly lowered the enzyme concentration in the solution. Due to this enzyme scavenging

effect, enzymes were overconcentrated in bead-containing droplets, disturbing the fine balance

of the molecular program and resulting in an increased rate of nonspecific reactions.

This effect was first tackled by compensating the dilution of detection particles with the

introduction of neutral particles, only dedicated to maintaining a constant particle concen-

tration. This approach indeed allowed the reduction of the false positive rate, but at the cost

of reaction speed and particle consumption.

We therefore elected to suppress the enzyme-trapping effect by not mixing enzymes and

particles before the encapsulation. To that end, a new microfluidic device, allowing the

separate introduction of enzymes and particles, was designed. Thanks to this device, enzymes

were not brought into contact with the particles before the formation of the droplet. This

new encapsulation strategy efficiently prevented enzyme distribution heterogeneity, reducing

the false positive rate without slowing down the reaction.
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Chapter 4

From DNA to miRNA detection

We presented in chapter 2 the multiplex detection of DNA analogs of miRNAs. In this

chapter, we present the transition towards the detection of synthetic miRNAs spiked in

buffer.

4.1 Introduction: Inaccurate quantification of RNA

The multiplex detection of synthetic miRNAs was implemented using the optimized condi-

tions from chapters 2 and 3. Unless specified otherwise, all the expected concentrations are

determined based on ID3miR quantification of the stock aliquots.

Initially, we simply applied these experimental conditions to the 5-plex detection of syn-

thetic miRNAs in their RNA version. During the assay, 5 samples were analyzed, each

containing 1 pM of one of the 5 miRNAs. Let7e was introduced in its DNA version instead

of RNA in the corresponding sample. The results are presented on fig 4.1.

Close to no miRNA-detection was observed in the samples containing miR 16, Let7c

and miR 92a. This is inconsistent with the results obtained with their DNA versions. The

system appears unable to detect the RNA versions of these miRNAs. Considering the Let7a-

containing sample, contrary to the previous 3 samples, the detected levels of Let7a and Let7e

clearly stand out from the background noise. We can thus suspect a specificity problem con-

cerning Let7a and Let7e, since the Let7a strands appear to have been captured indifferently

by Let7e and Let7a particles. The combined concentration of Let7a+Let7e is however still

significantly lower than the expected 1 pM concentration. This specificity problem appears

to be reciprocal, as in the Let7e-containing sample, miRNA strands were captured in similar

proportions on Let7a and Let7e particles. In this sample, the Let7a+Let7e concentration is

close to the expected level of Let7e. As mentioned earlier, the DNA version of Let7e was

introduced instead of its RNA version, which may confirm the observation made for miR 16,
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Figure 4.1: Results of the 5-plex assay on RNA versions of miRNAs. The DNA version of
Let7e was introduced instead of its RNA version. We observe that in the samples containing
Let7c, miR 16 and miR 92a, very low amounts of miRNAs were measured. The system
appears to be unable to detect these 3 miRNAs in their RNA version. The detection of
the DNA versions of these 3 miRNAs was however accurate. The concentrations detected
in the Let7a-containing sample are also lower than the expected level, but stand out from
the background noise, contrary to the 3 previously discussed samples. One can note that
the system appears to be unable to differenciate Let7a and Let7e. The Let7e-containing
sample is the only one displaying a combined Let7e+Let7a concentration that is close to the
expected Let7e concentration
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miR 92a and Let7c samples that the system does not work as efficiently when detecting RNA

instead of DNA.

This hypothesis was tested by performing three singleplex quantifications of both RNA

and DNA versions of Let7a. Fig 4.2 clearly shows the discrepancy of the measured con-

centrations between RNA and DNA versions of Let7a. The detected concentrations of the

DNA version are consistent with the expectation, while the concentration of the RNA version

is consistently underestimated by the method. The measured concentration of RNA is on

average 40% of the expected concentration.

Expected
Measured

0 fM

200 fM

400 fM

600 fM

800 fM

1 pM

1,2 pM

1,4 pM

No target
control

1 pM DNA 1 pM RNA

Figure 4.2: Digital detection of Let7a in its DNA and RNA versions. The measured concen-
tration of the DNA version is close on average (1.2 pM) to the expected. The concentration
of the RNA version, however, is consistently underestimated, around 400 fM on average.
The measured concentrations shown are the average of 3 technical replicates. The error bars
represent the standard deviation based on the 3 measurements.

To explain the RNA-specific nature of the lack of quantitativity of the method, our first

hypothesis was the presence of RNA-specific nucleases, such as RNase H, that specifically

degrades RNA-DNA duplexes. Such miRNA degradation by RNases was already observed

during the development of the ID3miR method (Roberta Menezes’ PhD). Another possible

explanation, based on supplier information, is that the Vent polymerase used for signal

amplification elongates RNA primers less efficiently than DNA primers.

We first tried to determine if our experiments were contaminated by RNases. We therefore

carried out an on-bead capture step with murine and placenta RNAse inhibitors, recovered the

particles and performed by a bulk detection reaction. The results, shown on fig 4.3, confirm

the observations made previously on digital detection of a lower performance of the system
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Figure 4.3: Results of the addition of RNAse inhibitors during capture. A capture step
integrating either murine or placenta RNAse inhibitors was performed by a bulk detection
reaction. We first observe that RNA samples are overall significantly slower to amplify than
DNA samples, which confirms our previous observations. The addition of either RNAse
inhibitor does not appear to significantly influence the amplification time, indicating that
the lower performance of the system towards RNA targets is probably not caused by a
contamiation by RNAses. The sudden drop of fluorescence observed after the first plateau
of all curves is caused by the closing of rTs once all dNTPs have been expanded. Adding
BsmI to the reaction mixture suppresses the drop by irreversibly cleaving the rTs, as is for
example the case on fig 2.6

when quantifying RNA targets. The addition of RNAse inhibitors did not decrease the time

required for amplification. RNases do not appear to be responsible for the underestimation

of RNA targets concentrations.
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Figure 4.4: Comparison of on/off-bead trigger production rates of cTs when converting DNA
or RNA targets. Free cTs and on-bead cTs are mixed with their target sequence, either in its
RNA or DNA version, in the presence of Vent polymerase and Nt.BstNBI. A free rT is also
introduced to report on the production of trigger. Since there is no aT in the mix, all triggers
are produced by the cTs. The variation of fluorescence is therefore directly correlated to the
production rate of the cTs. a. Overview of the fluorograms. Free cTs appear to produce
trigger from RNA and DNA targets at the same rate. On-bead cTs produce trigger molecules
at a lower rate, especially when the target is made of RNA. b. Zoom on the first minutes
of the reaction. Although for free cTs the average production rate is the same for RNA and
DNA targets, the initiation of the reaction appears to be slower in the RNA sample. This
could indicate that the first polymerization, that uses the captured target as a primer, is
slowed by the RNA nature of said primer.

4.2 Trigger production rate

The main polymerase used by our team for miRNA detection reactions is the Vent(exo-)

polymerase from New England Biolabs (NEB). Although this enzyme worked fine for fully

in-solution miRNA detection, the supplier does not recommend the use of Vent polymerase to

elongate RNA primers, as is the case in our miRNA detection chemical network. A reduction

of the efficiency of the polymerase could very well explain the differences observed between

detection of DNA and RNA versions of a miRNA sequence. This hypothesis was tested by

the following experiment: Converter templates (either free or particle-bound) are introduced

with an excess of miRNA sequence (DNA or RNA version). Vent(exo-) polymerase and

Nt.Bst.NBI are added to the mix to allow trigger production from the cTs. Trigger production

is reported using trigger-specific rTs. The production rate of trigger sequence is therefore

directly accessed by monitoring the rT fluorescence. In order to ensure the production rate

is limited only by the efficiency of Vent polymerase, Nt.BstNBI is introduced at higher levels

than in typical miRNA detection experiments. Figure 4.4 shows the result of this experiment.

We observe that the slope during the increase phase is significantly reduced when cTs are

immobilized on particles, suggesting that cT immobilization slows down the trigger produc-

tion by the polymerase down. Trigger production rate appears to be further reduced when
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the detected primer is made of RNA. When the cT is in solution, however, this reduction is

no longer observed. Focusing on the very first minutes of the experiment for both free-cT

samples still reveals a slower start to the trigger production for the RNA target, even though

the maximal rates in solution are similar for RNA and DNA. This could be interpreted to be

caused by a slower first elongation of a RNA target. In order to perform the first elongation,

the polymerase uses the captured target as a primer, whereas for the subsequent elongations

the primer is composed of the target and the 9 bases of the Nt.BstNBI cutting site, which

are made of DNA.

These observations support the hypothesis of a lower efficiency of the Vent polymerase

when working from RNA primers. This reduction of the productivity of Vent appears to be

mild and limited to the first elongation reaction when the cT is in solution, which explains

why this characteristic was not causing quantitativity issues to the ID3miR system. The effect

appears to be severely enhanced and affects both initiation and further polymerization cycles

when cTs are immobilized on particles, resulting in the underestimation of the concentration

of RNA targets.
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4.3 Proposed solutions

4.3.1 Addition of Klenow polymerase

Flow cytometry
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A possibility to solve the lower efficiency of Vent polymerase when working on RNA primers

is to use another polymerase better suited to the elongation of RNA primers. DNA pol I,

large Klenow fragment (referred to as Klenow polymerase in the rest of this thesis) appears as

a promising polymerase to complement Vent(exo-). This enzyme is derived from Escherichia

coli ’s DNA pol I, and retains polymerase activity while lacking the exonuclease activity of

the original enzyme. According to the supplier (NEB), Klenow polymerase elongates RNA

as well as DNA primers, which is the main feature we are looking for. Its optimal working

temperature being 37°C, and its half-life at 50°C is approximately 60 minutes. Klenow

polymerase is therefore not a suitable solution for fully replacing Vent polymerase, which is

perfectly stable at 50°C. Klenow can however efficiently complement Vent by accelerating the

initiation of the reaction.

This decay of Klenow polymerase at 50°C can be used to our advantage. The main ob-

jective of Klenow is indeed to perform the conversion of the miRNA to trigger molecules

more efficiently than Vent. Once the amplification is triggered, Klenow loses its usefulness,

as Vent polymerase can perform the exponential amplification on its own. During the am-

plification, Klenow could even be detrimental to the detection since it is more prone to

nonspecific reactions than Vent. If its concentration is tuned correctly, the decay of Klenow

could theoretically improve the speed and specificity of the system, by rapidly triggering

the amplification in miRNA-containing droplets while its degradation prevents Klenow from

contributing to late, nonspecific amplification.

In order to assess the effectiveness of Klenow polymerase to increase the production rate,

a similar experiment as the one presented on fig 4.4 was performed with part of the Vent

polymerase substituted by Klenow polymerase. Results of this experiment are presented on

fig 4.5.

We observed that the addition of Klenow polymerase increased the trigger production

rate of the cTs, even when converting a RNA target. The production rate from RNA in the

Klenow-containing sample is even higher than the no-Klenow rate for DNA. This observation

implies that the addition of Klenow polymerase should restore the quantitativity of the assay

for RNA targets. Klenow however appears to also increase the production rate in the no-

target control, which may increase the false positive particles rate. It is also worth noting

that Klenow polymerase does not remove the delay observed in RNA samples caused by the
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Figure 4.5: Comparison of the trigger production rates from RNA and DNA with or with-
out Klenow polymerase. NC stands for negative control, meaning no target was introduced.
Klenow significantly increases the slope, and thus the production rate, for both DNA and
RNA targets. Noteworthy, the delay of production from RNA observed in fig 4.4 and at-
tributed to a slow first elongation is still observed. In no-target controls, the production rate
in the Klenow-containing sample is much higher than in its no Klenow counterpart. Klenow
polymerase could therefore cause an increase of the false positive rate.

first target elongation.

We then assessed the optimal concentration of Klenow polymerase to maximize the re-

action rate while maintaining a low background noise. An on-bead bulk detection was per-

formed, integrating different concentrations of Klenow polymerase: 0% (v/v), 0,25% (12,5

units/mL), 0,5% (25 units/mL) and 1% (50 units/mL) were introduced. The results are

presented on figure 4.6. As expected, increasing the concentration of Klenow polymerase

increases the rate of the reaction, as observed in the sample containing 1 pM Let7a. This

acceleration comes at the cost of also increasing the non-specific reaction rate: The two high-

est Klenow concentrations triggered amplification in the no-target control. Noteworthy, the

effect described previously, relying on Klenow’s decay to accelerate the specific amplification

without triggering non-specific amplification, may be responsible for the huge difference ob-

served in the no-target controls between amplifying (amplification before 300 minutes) and

not amplifying (nothing after 2000 minutes) samples.

We then tested the effect of Klenow polymerase in digital detection reactions.The result

of this experiment is presented on figure 4.7. The detected amount of Let7a (RNA version)

in the 1 pM sample without Klenow polymerase is about 50 % of the detected amount with

0,25 % of Klenow, which is consistent with the expected/measured differences observed on

fig 4.2.
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Figure 4.6: Range of Klenow polymerase in bulk detection reactions. a. No target controls.
Non-specific amplification was observed for the two highest Klenow percentages. b. Samples
containing 1 pM Let7a. The addition of Klenow polymerase indeed increases the reaction
speed. The optimal concentration appears to be 0,25% (12,5 units/mL). Percentages are
volume-per-volume percentages.
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Figure 4.7: Effect of Klenow polymerase during the amplification step. The detected con-
centration in the Let7a-containing sample is indeed higher, but at the cost of a much higher
rate of false positive particles.

4.3.2 1 dNTP capture step

Flow cytometry
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As already discussed, the first elongation of the capture miRNA appears to require much

more time than subsequent elongations. Consequently, we tried to introduce the Klenow

polymerase during the capture step only. Klenow would then be removed during the wash-

ing/resuspension step, which would prevent the Klenow-induced nonspecific reactions. Since

Klenow polymerase optimal working temperature is 37°C, the capture temperature was ad-

justed accordingly, from 30°C to 40°C.

Even when introduced only during the capture step, Klenow polymerase increases the

false positive rate. Our hypothesis is that Klenow polymerase manages to ”load” cTs ex

nihilo. A ”loaded” cT will act exactly the same as a miRNA-bound cT.

In order to circumvent the ex nihilo synthesis by Klenow polymerase on cTs, a new class

of converters are designed, displaying a poly(T) spacer between the miRNA binding site and

the Nt.BstNBI recognition site. These cTs would be employed in a capture mix containing

only dATPs instead of all 4 dNTPs. In the absence of the target miRNA, ex nihilo polymerase

reactions can only generate poly(A) strands, the length of which is equal to the length of

the poly(T) spacer. A short spacer would therefore generate short poly(A) strands, with a

melting temperature well below the capture temperature of 40°C. These short strands would

thus melt away of the converter, preventing nonspecific reactions. On the other hand, if

the miRNA is indeed captured, it will be extended, strengthening the hybridization to the
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converter. Moreover, the first elongation might be favored, since the Vent polymerase will

not extend the miRNA directly, but the poly(A) spacer. The efficiency of this new design

was first tested in a production rate experiment. A capture step was performed in presence

of Klenow polymerase and particles functionalized with cTs presenting poly(T) spacers of

various lengths. Particles were then recovered, washed and incubated with Vent polymerase,

Nt.BstNBI and a free rT. Results are presented on fig 4.8. The experiment shows that the

addition of a poly(T) spacer as short as 5 nucleotides increases the trigger production rate

of the converter when compared to the no-spacer cT. The length of the spacer, from 5 to 20

bases, does not modify the production profile nor the maximal production rate. The poly(T)

spacer cTs may be a solution to the lower efficiency of Vent polymerase when working from

RNA targets.

The poly(T) cT designs were then implemented in an on-bead digital detection. The

results of the digital detection of 1 pM of Let7a (RNA version) are shown on fig 4.9. The

detected concentrations for the T5 and T15 designs are in good accordance with the expected

1 pM Let7a, while the T10 cT reports a Let7a concentration of just over 300 fM. Although

surprising, this underestimation of the concentration by the T10 cT was observed in several

further experiments (data not shown). Looking at the no-target control, there is a clear

difference between the false positive rates observed for T5 and T10 cTs (0,88% and 0,90%

respectively) and the rate for the T15 cT (3,39%). This can possibly be explained by the

melting temperatures of poly(A)/poly(T) duplexes of 5, 10 and 15 base pairs. The melting

temperature of a 15-base pair duplex is around 30°C, and the capture step is set to be

performed at 40°C, but the actual temperature is most reasonably comprised between 35°C
and 40°C. A small portion of the poly(A) produced ex nihilo by Klenow polymerase may

therefore not melt away and are still present during the 50°C amplification step, triggering

the amplification in the droplets containing them. This is not the case for 5- and 10-base pair

duplexes, which display lower melting temperatures and/or priming efficiency. The converter

design with a 5 bases-long poly(T) spacer appears to be the best candidate for accurately

quantifying a miRNA in its RNA version while maintaining a low background noise level.

This design is the one used in all further experiments.

The same experiment was realized on miR 21 instead of Let7a to confirm that the ob-

servations made for Let7a can be translated to other miRNAs. Fig 4.10 shows the results of

the experiment, that are almost identical to those of fig 4.9. The optimal cT design for miR

21 detection also appears to be the T5 design.
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Figure 4.8: Evaluation of the trigger production rate by poly(T) spacers cTs after Klenow
capture. a. Evolution of the fluorescence during incubation. All cT designs integrating a
poly(T) spacer display similar profiles of trigger production, with rates significantly higher
than the no-spacer design. The addition of just 5 bases between the miRNA-bindng spot and
the Nt.BstNBI cutting site appears sufficient to facilitate the Vent-only conversion of RNA
targets. b. Time derivative of the florescence. The maximal rates are almost identical for all
poly(T) cTs, almost twice as high as the T0 cT.
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Figure 4.9: Evaluation of poly(T) cTs for the singleplex detection of Let7a (RNA version).
The T5 and T15 cTs report concentrations even higher than the expected 1 pM, probably
indicating that the actual concentration of the sample was above 1 pM. Surprisingly, the
concentration detected by the T10 cT is much lower. Insert: Zoom on the no-target controls.
The T15 design displays a much higher false positive rates than the T5 and T10 cTs
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Figure 4.10: The experiment presented on fig 4.9 was also performed on miR 21 instead of
Let7a, for similar results. As for Let7a, the T5 design appears to be the optimal cT for RNA
detection
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4.3.3 Post-capture particle washing
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As experienced in chapter 3, the oligonucleotides bound to the surface of the particles tend

to trap enzymes displaying a high affinity towards DNA. For the amplification step, this

effect was suppressed by mixing particles and enzymes right before encapsulation thanks to

2-water inlet microfluidics. The new conditions of the capture step, developed in the previous

section, could however lead to scavenging of Klenow polymerase on the surface of the beads,

probably increasing the false positive particle rate. The post-capture washing step conditions

need to be adapted to the new capture procedure.

The washing step was so far composed of 2 resuspension/supernatant discarding cycles

in the buffer used for particles storage (for composition, see chapter 6). We designed a more

stringent washing procedure (referred to as ”hard” washing procedure), composed of 2 resus-

pension/ultrasound sonication/supernatant discarding cycles in a salty buffer (see chapter 6)

followed by 2 resuspension/supernatant discarding cycles in the storage buffer to restore salts

concentrations compatible with the molecular program. The average (3 technical replicates)

percentage of positive particles in the no-target controls and the standard deviations are

presented in table 4.1. The false positive rate is reduced by a 3-fold when the hard washing

procedure is implemented, probably indicating that trapped Klenow molecules were removed

from the surface of the particles. These stringent conditions did not significantly modify the

detected concentrations from miRNA-containing samples (data not shown).

Procedure False positive % Standard deviation
Storage buffer washing 1,04% 0,29%

”Hard” washing 0,32% 0,14%

Table 4.1: Comparison of the false positive rates measured for the 2 proposed washing
procedures. The ”hard” washing procedure reduces the percentage of positive particles in
the no-target control by 3-fold. This decrease of the false positive rate is probably caused by
the removal of Klenow polymerase molecules trapped on the surface of the particles.
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Procedure False positive RNA detection
rate quantitativity

Vent only + -
amplification

RNase + -
inhibitors

Vent + Klenow - - - + + +
amplification

Klenow capture - + + +
only

Klenow capture + + + + +
1 dNTP only

Klenow capture + + + + + +
1 dNTP only
Hard wash

Table 4.2: Summary of the effect of the tested optimization procedures. In the false positive
column, ”- - -” means the false positive rate is high, while ”+ + +” indicates a very low
false postive rate. In the ”RNA detection quantitativity” column, ”+ + +” indicates that
the detection of RNAs is quantitative.

4.4 Dynamic range of the method

Our method relies on the hypothesis that the number of miRNAs captured by a particle fol-

lows a poissonian distribution. As discussed in chapter 2, the concentration of miRNAs in the

capture mix is computed from the percentage of positive particles F pos and the concentration

of particles Cparticles as follows:

CmiRNA = − ln(1− F pos).Cparticles (4.1)

The variation of the percentage of positive particles depending on the target concentration

for a given concentration of particles is presented on figure 4.11. The curve displays a

linear region, comprised between 15% and 95%, and 2 plateaus outside of the corresponding

concentration range. In the two flat regions of the curve, a small, non-significant variation of

F pos results in a wide difference of measured concentration, which may lead to inaccuracies

in the quantification.

The percentage of positive particles observed in no-target controls with the conditions

optimized in section 4.3.3. is 0,32% with a standard deviation of 0,14%. The limit of detection

(LOD) is often defined in the litterature as the average blank plus 3 standard deviations. In

the case of our method, the LOD is thus the miRNA concentration corresponding to 0,74%

of positive particles. This percentage defines the lower limit of the dynamic range of the
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Figure 4.11: Theoretical curves of the percentage of positive particles depending on the
concentration of particles and miRNA. The curves are S-shaped, with a linear range from
approximately 10% to 95% positive particles and plateaus at percentages under 10% and
above 95%.

method. At high positive percentages, where the turn from the linear to the plateau region

is very sharp, quantification accuracy dramatically decreases above 95% of positive particles.

For an example Cparticles of 109 particles/mL, the upper limit of the quantification range is

approximately of 5 pM, and the LOD is 12 fM. For a given Cparticles, the span of the dynamic

range covers between 2 and 3 orders of magnitude, which is relatively narrow compared to

other miRNA detection methods, such as RT-qPCR (8 orders of magnitude).

The dynamic range of the method can however be tuned by modifying the concentration

of particles during the capture step. According to equation 4.1, the measured concentration

of miRNAs varies linearly with Cparticles. Hence, lowering Cparticles by a factor 10 theoretically

shifts the dynamic range to concentrations 10 times lower, as shown on fig 4.11.

In order to verify the accuracy of the system and to assess its dynamic range, we per-

formed a quantification of a range of standard samples of known concentrations for 2 different

Cparticles. The experimental results (Fig. 4.12) are in accordance with the theoretical curves.

This experiment confirms that the dynamic range can be tuned by modifying Cparticles. This

feature extends the relatively low span of the dynamic range for a given Cparticles.

Based on the only two Cparticles we considered for these experiments, we accurately quanti-

fied Let7a for concentrations comprised between 10 pM and 3 fM. Athough it is still relatively

narrow, this dynamic range appears adequate for the detection of miRNAs in bodily fluids,

as the concentrations of a miRNA in plasma is in the fM-pM range. Lower Cparticles have not

been investigated yet, but may allow the sensing of even lower miRNA concentrations.
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Figure 4.12: Comparison of the measured percentages of positive particles with the theoretical
result at 2 different concentrations of particles. The expected results are computed using
equation 4.1

4.5 Specificity of the method

Specificity is a major challenge for miRNA detection methods, due to the short sequences

of miRNAs and the high level of homology found within some miRNA families, such as

the Let7 family. In this miRNA family, miRNAs only vary from one another by one or two

nucleotides, making it ideal for studying the specificity of a detection method. The sequences

of the miRNAs of the Let7 family are presented in table 4.3.

MicroRNA Sequence (5’→3’)
Let7a UGAGGUAGUAGGUUGUAUAGUU
Let7b UGAGGUAGUAGGUUGUGUGGUU
Let7c UGAGGUAGUAGGUUGUAUGGUU
Let7d AGAGGUAGUAGGUUGCAUAGUU
Let7e UGAGGUAGGAGGUUGUAUAGUU
Let7f UGAGGUAGUAGAUUGUAUAGUU
Let7g UGAGGUAGUAGUUUGUACAGUU
Let7i UGAGGUAGUAGUUUGUGCUGUU

Table 4.3: Sequences of the members of the Let7 family. The sequence of Let7a is taken
as reference for comparison with the other members of the family. Nucleotides are marked
green if identical to the nucleotide in the same position in Let7a, and red if different.

As presented at the beginning of the chapter, the results of a 5-plex experiment indicated

that the system might not be able to efficiently differenciate Let7a and Let7e. As presented

in table 4.3, these two miRNAs differ by a single nucleotide. Let7c is another member of the

105



Digital and multiplex miRNA detection for molecular diagnostics

Let7 family that shares all but one nucleotides with Let7a. To assess the specificity of our

detection method, we performed duplex digital detection experiments with Let7a and Let7c

or Let7e as follows:

• Detection particles targeting 2 different miRNAs are introduced in the capture mix.

• Only one of the 2 targeted miRNAs is introduced.

• The MultimiR procedure is performed as usual.

• After flow cytometry analysis, the positive particles in both populations are counted.

The results are presented as the proportion of each subpopulation among the pool of

positive particles.

The results of these specificity experiments are presented on fig 4.13. The data shows that

although the system shows some specificity between Let7a and Let7c, no specificity was

observed between Let7a and Let7e, as the capture of Let7a targets was reported in similar

proportions by Let7a and Let7e particles, and vice-versa.

This difference of specificity between two miRNA pairs sharing all but one nucleotide can

be explained by the position of the lone mismatched base. In the case of the Let7a-Let7c

pair, the differing base is located close to the 3’ of the miRNA. During the conversion, this

very 3’ end is extended to produce a trigger strand. Improper hybridization of the 3’ end of

the miRNA to the cT could hinder the action of the polymerase, reducing the production

rate of trigger, preventing the initiation of amplification in some droplets. The Let7a-Let7e

pair, on the other hand, presents a mismatch further from the 3’ end, which would not hinder

elongation by the polymerase if a miRNA is captured by the wrong cT.

Even in the case of the Let7a-Let7c pair, the mechanism proposed above implies that the

specificity observed is not caused by the capture, but by the conversion. We can therefore

assume that when targeting very highly homologous sequences, the detected amounts are

underestimated due to non-specific capture, even if that capture did not trigger amplification.

Several strategies to improve the specificity of miRNA detection methods were discussed

in chapter 1. The implementation of a ligation step, during which the cT is assembled upon

miRNA hybridization, might be particularly effective to discriminate miRNAs differing only

by their 3’ end. The use of modified residues, such as LNA, also produced good results in the

literature. The relevance of trying to discriminate members of the Let7 family is however yet

to be assessed. As discussed in chapter 1, the main mechanism for miRNA-induced silencing

involves only the binding of the miRNA ”seed”, comprised between positions 2 and 7, which

are shared by all members of the Let7 family (see table 4.3).
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Figure 4.13: Specificity experiments. The bars indicate the proportion of each population
among the pool of all positive particles. a. Let7a vs Let7c specificity. The data indicates
that, when Let7c was the introduced target, approximately 70% of positive particles after
amplification were Let7c detection particles and the other 30% were Let7a particles, and
vice-versa. The system exhibits some single-nucleotide specificity between Let7a and Let7c.
b. Let7a vs Let7e specificity. Contrary to a., the pool of positive particles is composed of
50% Let7a and 50% Let7e particles independantly of the actual target, which confirms the
observations of fig 4.1. The system therefore appears to be completely unable to differentiate
Let7a from Let7e and conversely.
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4.6 Multiplex detection of synthetic miRNAs

We have seen in section 4.4. that our system was able to accurately quantify a single miRNA.

In this section, we present a proof of concept 6-plex quantification of synthetic miRNAs spiked

in buffer in their RNA versions.

The target miRNAs for this 6-plex assay were miR 21, Let7a, miR 10a, miR 16, miR

203a (human miRNAs) and Lin4, from Caenorhabditis elegans. Two different mixes of these

miRNAs were prepared, each mix containing all 6 miRNAs either at high (500 fM) or low (10

fM) concentration. The two miRNA mixes were submitted to a capture step as described in

section 4.3.2., after which the particles were washed following the ”hard” washing procedure

(see section 4.3.3.). A multiplex digital detection was then performed as described in chapter

3. The used experimental conditions were as follows:

• Particles functionalization: 300 cT and 300000 rT/particle

• Cparticles: 556 fM of each subpopulation (3.33 pM total)

• Capture buffer: dATP-only miRNA detection buffer 1X

• Capture conditions: 2 hours at 40°C, 2000 rpm

• Klenow concentration during capture: 50 units/mL

• Enzymes concentrations during amplification: Nb.BsmI: 200 u/mL; Nt.BstNBI: 10

u/mL; Vent(exo-): 80 u/mL; ttRecJ/140: 23 nM; BsmI: 50 u/mL

• Templates concentrations during amplification: aT: 50 nM; pT: 8 nM

• Droplet incubation time: 10 hours

The results for both miRNA mixes are presented on fig 4.14.

miRNA mix A mix B
Lin4 500 fM 10 fM

miR 21 10 fM 500 fM
Let7a 500 fM 500 fM

miR 10a 10 fM 10 fM
miR 16 500 fM 500 fM

miR 203a 10 fM 500 fM

Table 4.4: Composition of the 2 miRNA mixes

Measured concentrations are overall close to the expected values. The average relative

error on the concentration is of 30%. The concentration of some of the tested miRNAs, in
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particular Lin4, are still significantly underestimated, which may indicate that the problem

of lowered efficiency of the molecular program when detecting RNA targets is not completely

solved for all miRNAs yet. In this study, we mostly relied on Let7a as our model miRNA for

the development of the detection technique, thus assuming that other miRNAs would display

similar responses. Custom sequence optimization of the cT might however be required for

each miRNA individually, as our molecular network is prone to sequence-dependant effects

that are still poorly understood. This was evidenced in this very chapter by the unpredicted

and still unexplained lower conversion efficiency of the T10 cT. Similarly, spacers of different

lengths or sequences might be more efficient than the T5 design for other miRNAs than

Let7a.

This 6-plex assay is nonetheless a satisfactory proof of concept of the system we devel-

oped for the multiplex detection of miRNAs, as it allows the unambiguous discrimination of

microRNA patters.
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Figure 4.14: 6-plex detection of miRNAs in their RNA version. The targeted miRNAs are
Lin4, miR 21, Let7a, miR 10a, miR 16 and miR 203a. Two different miRNA mixes (a.
and b.) were analyzed. The results show good accordance between expected levels and the
measured concentrations for both patterns. The average relative error on the concentration
is of 30%. The concentration of some of the tested miRNAs, in particular Lin4, are still
significantly underestimated, which may indicate that the problem of lowered efficiency of
the molecular program when detecting RNA targets is not completely solved for all miRNAs
yet. It is possible that the T5 cT design, which is the best fit for the quantification of Let7a,
is not optimal for the detection of other miRNA sequences.
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4.7 Conclusion

In this chapter, we demonstrated the transition from a system optimized for the detection

of DNA analogs of miRNAs to a technique adapted to the quantification of actual miRNA

targets. The process was not as straightforward as expected due to a lowered efficiency of the

used DNA polymerase (Vent polymerase) when extending RNA primers, such as miRNAs.

This reduced efficiency lowered the trigger production rate of the activated cTs. In a large

part of miRNA-containing droplets, the trigger production rate was too low to exceed the

trigger threshold concentration required to initiate the isothermal amplification, resulting in

a significant underestimation of the miRNA concentration.

Our first approach to solving this problem was substituting part of the introduced Vent

polymerase for a more RNA-friendly DNA polymerase, the Klenow polymerase. This enzyme

indeed increased the trigger production rate from RNA targets, but also increased the non-

specific reaction rate, lowering the sensitivity. Even when introduced only during the capture

step, Klenow polymerase was able to ”load” cTs without prior hybridization of the target

miRNA, also increasing the false positive particle rate.

A compromise was found by designing new cTs presenting a poly(T) spacer between the

miRNA binding site and the Nt.BstNBI recognition sequence. Instead of introducing the

Klenow polymerase and all 4 dNTPs during the capture step, only dATPs were introduced:

Upon hybridization, the miRNA is still extended by Klenow, facilitating the work of Vent

during amplification; If the miRNA is absent, however, Klenow can only ”load” cTs with

poly(A) strands too short to stay hybridized to the cT at capture temperature. A T5 spacer

was found to be the most effective design for the detection of Let7a and allowed its accurate

detection in its RNA version.

Based on these conditions, the dynamic range of the system was assessed. For a given

concentration of particles during capture, the span of the dynamic range was found to be

comprised between 2 and 3 orders of magnitude, which is relatively narrow compared to other

miRNA detection methods such as RT-qPCR (8 orders of magnitude). The dynamic range

can however be extended by adapting the concentration of particles during capture to the

concentration of the target. Using 2 different particles concentrations, we demonstrated the

accurate detection of Let7a at concentrations ranging from 3 fM to 10 pM. Such dynamic

range appears to be adequate for the detection of miRNAs in the bloodstream (concentrations

comprised between a few fM and a few hundreds of fM). Lower concentrations of particles

are still to be tested, but have the potential to lower the LOD of the system even more.

Experimental results suggested that the method was not completely specific when trying

to detect highly homologous miRNAs, in particular towards the Let7a/Let7e pair. Fur-
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ther experiments showed that the MultimiR method could indeed not differenciate between

Let7e and Let7a, that only differ by one nucleotide. Similar experiments performed on the

Lat7a/Let7c pair (1 mismatch also) indicated that mismatches near the 3’ end of the miRNA

were easier to discriminate for the method than 5’ end mismatches. Adding a preliminary

ligation step, during which the cT is assembled upon miRNA binding, could increase the

specificity of the method towards miRNAs presenting identical 3’ end but different 3’ ends.

Alternatively, modifying the cTs using LNA residues could also be a solution to improve

specificity.

Finally, a 6-plex proof of concept assay was performed, producing satisfactory results. The

quantification was not as accurate for all miRNAs as it was for our model miRNA, Let7a,

probably indicating that the modified experimental conditions, in particular cT sequence,

are not yet optimal for all miRNAs, and may require individualized optimization efforts.
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Chapter 5

Conclusion

MiRNAs are promising new biomarkers for numerous diseases, such as cancers and neu-

rodegenerative diseases. The aim of this PhD project was to design a multiplex and digital

miRNA quantification method.

The current standard methods for miRNA detection are RT-qPCR and microarrays.

These methods display symmetrical strengths and weaknesses: RT-qPCR is extremely sen-

sitive, but is limited to 4-5 miRNAs in terms of multiplexing, while microarrays are highly

multiplexable but their sensitivity is too low for miRNA detection from bodily fluids. Both

methods only provide a relative quantification of their targets.

Our group designed a droplet-based technique providing absolute quantification of a

miRNA. The method relied on an exponential amplification chemical network based on the

PEN DNA toolbox. This approach was however more suited to singleplex or low-multiplex

detection.

Building from this technique, we immobilized part of the chemical network on particles to

increase the multiplexing potential of the method. Particles were ”programmed” to capture a

particular miRNA and report its capture by grafting tailored DNA templates on their surface.

Fluorescent barcodes were also immobilized on the surface to indicate the miRNA target of

each particle. This transition from a fully in-solution reaction to a supported format allowed

us to increase the throughput of the method by replacing the fluorescence microscopy readout

by a high-throughput flow cytometry readout. The maximal multiplexing potential of the

method is determined by the number of barcoded subpopulations of particles that can be

simultaneously distinguished by flow cytometry. In the current configuration of the used flow

cytometer, the multiplexing potential was found to be 20 miRNAs quantified simultaneously,

but similar approaches have been demonstrated with 100 populations (xMAP technology,

Luminex Corporation). The detection procedure is composed of a first incubation of the

reaction mixture at 30°C, during which miRNAs are captured by the particles, followed by
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the microfluidic encapsulation of the mixture in microdroplets and a second incubation at

50°C during which the chemical network is activated if the miRNA is present. As a proof

of concept, we realized a 3-plex assay detection of the DNA analogs of 3 miRNAs. Non-

specific reactions were however a problem in this assay, in part due to the coencapsulation

of particles.

A washing step was added to the procedure after the capture step in prevision of detection

from more complex samples, such as cell extracts or plasma. This washing was coupled to

a dilution of the particles in order to reduce the probability of particle coencapsulation.

The dilution of particles however revealed an unexpected effect increasing the non-specific

reaction rate and reducing the sensitivity: The enzymes used by the molecular program could

be trapped by the DNA oligonucleotides attached to the surface of the particles. Diluting

the particles increased the enzyme-per-particle ratio, resulting in an overconcentration of

enzymes in the bead-containing droplets, which increases the non-specific reaction rate. We

solved this problem by modifying our microfluidic device in order to mix the particles and

the enzymes at the very last moment.

The transition from detecting DNA targets, as was the case at early stages of development

of the method, to RNA targets, turned out to be more difficult than expected because of the

lower efficiency of the Vent polymerase when extending RNA primers. This effect, which did

not cause any disruption to our in-solution detection schemes, was enhanced by the on-bead

format. Consequently, the production rate of trigger strands by the on-bead converters was

lower when the miRNA sequence was made of RNA instead of DNA. This resulted in an

underestimation of the concentration of RNA targets observed for all tested miRNAs. The

quantitativity of the assay towards RNA targets was restored by modifying the cT design to

increase the distance between the miRNA binding site and the trigger coding region, where

the polymerase action is required. A 6-plex assay was successfully performed on actual

miRNAs spiked in buffer, which constitutes a nice proof of concept of our detection method.

No specificity issues were detected for miRNAs outside of the Let7 family. The analy-

sis of the Let7a-Let7c and Let7a-Let7e pairs, that share the same sequence except for one

nucleotide, showed that the position of the mismatch was important. The specificity was

indeed better for the Let7a-Let7c pair, which presents a mismatch near the 3’ end, than for

the Let7a-Let7e pair, the mismatch of which is located in the middle of the sequence. This

specificity however appears to be determined by the conversion step, as a mismatch near the

3’ end would reduce the efficiency of the polymerase for extension, and not by the capture.

A miRNA (miR X) could therefore be captured by a cT designed for a homologous miRNA

without being converted, which would lead to the underestimation of the concentration of

miR X.
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So far, we demonstrated the accurate quantification of miRNAs for concentrations rang-

ing from 3 fM to 10 pM, which is a suitable dynamic range for miRNA detection in the

blood. We additionally demonstrated that the dynamic range could be tuned by modifying

the concentration of particles during the capture step. Lowering Cparticles might enable the

detection of even lower concentrations, which is yet to be tested.

Perspectives

Significant developments efforts still remain necessary to increase the potential of this de-

tection method. First, the range of detectable miRNAs needs to be extended. Although

the theoretical multiplexing limit is defined by the number of distiguishable subpopulations

of barcoded particles, we do not currently have working cTs for 20 different miRNAs. The

functioning of a converter is sequence-dependent, and this dependency follows mechanisms

that we do not fully understand yet. Due to that dependency, cT designs can not always be

generalized to all miRNAs, some requiring individualized sequence optimisation efforts.

The method appears nonetheless to be working for some miRNA sequences spiked in

buffer. The natural next step of development would be to detect multiple miRNAs from

biological samples to assess the therapeutic potential of the method. We first intend to

analyze cell extracts from healthy and tumor samples. More challenging, detecting miRNAs

from plasma, first with an extraction step and then directly, would be a great step towards

miRNA-based liquid biopsy.

In parallel, our team is currently working on the use of the same noise-reducing amplifi-

cation network for the detection of other targets than nucleic acids, such as proteins or cells.

The implementation of our multiplex detection system for multi-target appears extremely

promising for diagnostics applications.

On the longer term, the developed procedure would need to be adapted to an industrial

scale to actually be implemented for clinical purposes. Kits of pre-mixed particles subpop-

ulations, allowing the quantification of an application-specific miRNA panel, would need to

be prepared. This particle kit would only need to be introduced in the sample to analyze,

capturing all targeted miRNAs, and would then be recovered for analysis. Enzymes and

molecular pre-mixes would also be prepared, simplifying the reaction mixture assembly. The

most operator time-consuming step of the MultimiR procedure is sample partitioning, since it

requires constant monitoring from the operator to avoid any clogging and maintain a proper

balance between both water flows. Using the current setup, the microfluidic encapsulation

of a 25 µL samples requires up to 1 hour. The automation of this step using an integrated

platform is thus essential for routine use. Some commercial platforms already enable the
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generation of such small droplets, but the use of aggregation-prone microparticles and the

2-water inlet device make this step even more challenging. The other steps, namely capture,

washing, amplification and flow cytometry analysis, are much less operator time-consuming:

Capture and amplification are incubation steps and do not require any monitoring; The

washing step and emulsion breaking only require 5 minutes each per sample, and could easily

be automated; Flow cytometry analysis does not require monitoring and automated sample

changers are already commercially available.

Overall, the MultimiR method proved to be a powerful tool for the multiplex detection

of miRNAs. Its limit of detection and dynamic range are adequate for clinical applications.

Much of its potential remains to be explored, but the method holds great promise.
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Chapter 6

Materials and methods

6.1 General material and methods

Oligonucleotides were purchased from Biomers (Germany). The sequences were purified by

HPLC and checked by matrix-assisted laser desorption/ionization mass spectrometry. Tem-

plate sequences are protected from the degradation by the exonuclease using phosphoroth-

ioate modifications at the 5’ end of each template. The sequences of the oligonucleotides

used in this study are presented in tables 6.1 and 6.2.

Nb.BsmI, Nt.BstNBI, Vent(exo-) and Klenow large fragment DNA polymerases and BSA

were purchased from New England Biolabs (NEB). A 10-fold dilution of Nt.BstNBI prepared

by dissolving the stock enzyme in diluent A (also from NEB) supplemented 0.1% (v/v) Triton

X100.
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Oligo name Sequence (5’→3’) Function
α CATTCTGGACTG Trigger

αtoα C*A*G*T*CCAGAATGCAGTCCAGAA p aT
pTα T*T*T*T*TCAGTCCAGAATG p pT

Free rTα Atto633 *A*T*TCTGAATGCAGTCCAGAAT BHQ2 free rT
OB rT 1 Biotin *T*T*T*TTTTTTT FAM GTGAG- On-bead rT

-AATGCAGTCCAGAATGTCTCAC BHQ2
OB rT 2 Biotin *T*T*T*TTTTTTT FAM TGTGA- On-bead rT

-GAATGCAGTCCAGAATGTCTCACA BHQ2
OB rT 3 Biotin *T*T*T*TTTTTTT FAM GTGAG- On-bead rT

-AATGCAGTCCAGAATGTCTCAC BHQ1
OB rT 4 Dabcyl *G*T*G*AGAATGCAGTCCAGAAT- On-bead rT

-GTCTCAC FAM TTTTTTTTTT Biotin
Let7atoα TGCAGTCCAGAAGTTTGACTCAAA- free cT

-CTATACAACCTACTACCTCA p
Let7atoα biot TGCAGTCCAGAAGTTTGACTCAAA- On-bead cT

-CTATACAACCTACTACCTCA Biotin
Let7atoα T7 biot TGCAGTCCAGAAGTTTGACTCAAACTATA- On-bead cT

-CAACCTACTACCTCATTTTTTT Biotin
Let7atoα T15 TGCAGTCCAGAAGTTTGACTCAAACTATA- On-bead cT

-CAACCTACTACCTCATTTTTTTTTTTTTTT
Let7atoα T30 TGCAGTCCAGAAGTTTGACTCAAA- On-bead cT

-CTATACAACCTACTACCTCA-
-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

A30 Biotin Biotin AAAAAAAAAA- Connector
-AAAAAAAAAAAAAAAAAAAA

Let7atoα T5 TGCAGTCCAGAAGTTTGACTCTTTTTAACT- On-bead cT
T7 Biotin -ATACAACCTACTACCTCATTTTTTT Biotin

Let7atoα T10 TGCAGTCCAGAAGTTTGACTCTTTTT- On-bead cT
T7 Biotin -TTTTTAACTATACAACCTACTACC-

-TCATTTTTTT Biotin
Let7atoα T15 TGCAGTCCAGAAGTTTGACTCTTTTT- On-bead cT

T7 Biotin -TTTTTTTTTTAACTATACAACCTA-
-CTACCTCATTTTTTT Biotin

Let7atoα T20 TGCAGTCCAGAAGTTTGACTCTTTTT- On-bead cT
T7 Biotin -TTTTTTTTTTTTTTTAACTATACA-

-ACCTACTACCTCATTTTTTT Biotin
miR21toα T5 TGCAGTCCAGAAGTTTGACTCTTTTTTCAA- On-bead cT

T7 Biotin -CATCAGTCTGATAAGCTATTTTTTT Biotin
miR21toα T10 TGCAGTCCAGAAGTTTGACTCTTTTTTTTT- On-bead cT

T7 Biotin -TTCAACATCAGTCTGATAAG-
-CTATTTTTTT Biotin

Table 6.1: Sequences of the oligonucleotides used in this study
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Oligo name Sequence (5’→3’) Function
miR21toα T15 TGCAGTCCAGAAGTTTGACTCTTTTTTTTT- On-bead cT

T7 Biotin -TTTTTTTCAACATCAGTCTG-
-ATAAGCTATTTTTTT Biotin

miR21toα T20 TGCAGTCCAGAAGTTTGACTCTTTTTTTTT- On-bead cT
T7 Biotin -TTTTTTTTTTTTCAACATCA-

-GTCTGATAAGCTATTTTTTT Biotin
miR16toα T5 TGCAGTCCAGAAGTTTGACTCTTTTTCGCC- On-bead cT

T7 Biotin -AATATTTACGTGCTTTTTTT Biotin
Let7ctoα T5 TGCAGTCCAGAAGTTTGACTCTTTTTAACC- On-bead cT

T7 Biotin -ATACAACCTACTACCTCATTTTTTT Biotin
miR10atoα T5 TGCAGTCCAGAAGTTTGACTCTTTTTCACA- On-bead cT

T7 Biotin -AATTCGGATCTACAGGGTATTTTTTT Biotin
miR203atoα T5 TGCAGTCCAGAAGTTTGACTCTTTTTCTAG- On-bead cT

T7 Biotin -TGGTCCTAAACATTTCACTTTTTTT Biotin
Lin4toα T5 TGCAGTCCAGAAGTTTGACTCTTTTTTCAC- On-bead cT
T7 Biotin -ACTTGAGGTCTCAGGGATTTTTTT Biotin

Let7etoα T5 TGCAGTCCAGAAGTTTGACTCTTTTTAAAC- On-bead cT
T7 Biotin -TATACAACCTCCTACCTCA Biotin

Let7a UGAGGUAGUAGGUUGUAUAGUU miRNA
Let7c UGAGGUAGUAGGUUGUAUGGUU miRNA
Let7e UGAGGUAGGAGGUUGUAUAGUU miRNA

miR 16 UAGCAGCACGUAAAUAUUGGCG miRNA
miR 21 UAGCUUAUCAGACUGAUGUUGA miRNA
miR 10a UACCCUGUAGAUCCGAAUUUGUG miRNA
miR 203a AGUGGUUCUUAACAGUUCAACAGUU miRNA

Lin4 UCCCUGAGACCUCAAGUGUGA miRNA

Table 6.2: Sequences of the oligonucleotides used in this study
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6.2 Buffers

6.2.1 miR Buffer

MiR Buffer is the custom buffer our group optimized for miRNA detection using molecular

programming. The composition of this buffer is presented in table 6.3.

Component Concentration
Tris HCl ph 7.9 20 mM

(NH4)2SO4 10 mM
KCl 40 mM

MgSO4 10 mM
dNTP 50 µM each

Synperonic F 104 0.1% (w/v)
Netropsin 2 µM

Table 6.3: Composition of the 1X miRNA detection buffer

6.2.2 Binding and washing buffer

As indicated by its name, the binding and washing (B&W) buffer is used for washing the

particles and functionalizing them.

Component Concentration
Tris-HCl ph 7.5 20 mM

NaCl 1 M
EDTA 1 mM

Tween 20 0.2% (v/v)

Table 6.4: Composition of the binding and washing buffer

6.2.3 Particles storage buffer

Component Concentration
Tris-HCl ph 7.5 5 mM

NaCl 50 mM
EDTA 500 µM
MgSO4 5 mM

Table 6.5: Composition of the storage buffer
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6.3 Particles functionalization

The selected particles were streptavidin-coated MyOne Dynabeads from ThermoFisher. Prior

to functionalization, particles are washed 3 times using B&W buffer, and are also resuspended

in B&W buffer. Particles are then introduced in a tube containing the oligonucleotides to

be grafted. The mix is vortexed for 30 seconds to prevent heterogeneous functionalization.

The particules are incubated for 30 minutes at room temperature. A first wash is performed,

again with B&W buffer, followed by 2 washes in storage buffer in order to lower the salt

concentration, as the NaCl concentration is not compatible with the molecular program.

6.4 MultimiR reaction mixture

All reactions of the chemical network are performed in miR buffer 1X (see table 6.3). The

typical enzymes compositions are displayed in table 6.6. Unless stated otherwise (when

Klenow polymerase is added), these enzyme mix is the one used for all miRNA detection

experiments.

Enzyme Composition
Nb.BsmI 200 u/mL

Nt.BstNBI 10 u/mL
Vent(exo-) 80 u/mL

ttRecJ 23 nM
BsmI 50 u/mL

Table 6.6: Typical enzymes concentrations for miRNA detection

The concentration of DNA templates varied during the project. The only concentration

kept constant was the concentration of aT, which was 50 nM. The concentrations optimized

for the detection of RNA targets, and used for the proof of concept 6-plex assay of chapter

4, were 50 nM aT and 8 nM pT. On-bead templates concentrations were 300 cT (0,015% of

saturation) and 300.000 rT (15% of saturation) per bead.

The miRNA targets were serially diluted in Tris-EDTA buffer (Sigma-Aldrich) using low

DNA retention tips from Eppendorf.

6.5 Capture step

The conditions of the capture step varied during the course of the project. The initial scheme

was to assemble the reaction mixture prior to the capture step. The capture was performed
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at 30°C in a ThermoMixer C from Eppendorf. The stirring was set at the maximum speed,

2000 rpm, to avoid biases caused by particle sedimentation. The optimal capture time was

found to be 2 hours.

Once the washing step was implemented, the composition of the capture mix was modified.

Instead of assembling the whole reaction mixture prior to the capture step, the capture mix

was only composed of the detection particles and the miRNA-containing sample. The capture

buffer was miR buffer 1X.

Finally, the capture step was again adapted in order to detect RNA targets. Klenow

polymerase was added to the capture mix at a concentration of 1% v/v. The capture tem-

perature was changed to 40°C in order to favor the action of Klenow polymerase, whose

optimal working temperature is 37°C. The capture buffer was slightly modified by removing

all dNTPs witn the exception of dATPs to avoid non-specific ”loading” of the cTs by Klenow

polymerase.

6.6 Post-capture particles washing

As described in chapter 3, a post-capture washing step was added to the protocol.

6.6.1 ”Soft” washing procedure

1. The particles are gathered using a magnet.

2. The supernatant is discarded.

3. The particles are resuspended in storage buffer. (Same volume as capture mix)

4. Magnetic particle gathering.

5. Supernatant discarding.

6. Resuspension in storage buffer. (Same volume as capture mix)

7. Magnetic particle gathering.

8. Supernatant discarding.

9. Resuspension in storage volume. (Free volume)
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6.6.2 ”Hard” washing procedure

1. Magnetic particle gathering.

2. Supernatant discarding.

3. Resuspension in B&W buffer. (Same volume as capture mix)

4. Ultrasound bath sonication.

5. Magnetic particle gathering.

6. Supernatant discarding.

7. Resuspension in B&W buffer. (Same volume as capture mix)

8. Ultrasound bath sonication.

9. Magnetic particle gathering.

10. Supernatant discarding.

11. Resuspension in storage buffer. (Same volume as capture mix)

12. Magnetic particle gathering.

13. Supernatant discarding.

14. Resuspension in storage buffer. (Same volume as capture mix)

15. Magnetic particle gathering.

16. Supernatant discarding.

17. Resuspension in storage buffer. (Free volume)

6.7 Microfluidics

6.7.1 Microfluidics material

The microfluidic setup was composed of a 4-channel MFCS-EZ pressure pump controller from

Fluigent and an Eclipse-TI microscope from Nikon. The used tubings were 200 µm-diameter

PTFE tubing from C.I.L.. The oil phase of the generated microemulsions is fluorinated oil

Novec 7500 from 3M supplemented by Fluosurf surfactant from Emulseo.
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6.7.2 Microfluidic devices preparation

6.7.2.1 Soft lithography

Microfluidic molds preparation was performed by soft lithography. A thin layer SU-8 pho-

tosensitive resin (MicroChem Corp., USA) was homogeneously deposited on a 4-inch silicon

wafer by spin-coating. The thickness of the SU-8 layer can be adjusted by chosing the viscos-

ity of the resin and the spin-coating speed. The covered wafer was then selectively exposed

to UV light through a photolithography mask. After exposition, the wafer was introduced in

a developer solvent (PDMEA) bath in order to remove all unreticulated resin.

6.7.2.2 PDMS chip preparation

40 g of a 10:1 (w/w) mix of PDMS resin/curing agent was poured on the mold. The mold

was placed in a vacuum chamber in order to remove all dissolved gas from the PDMS mix.

The PDMS was then baked in an oven at 70°C for 2 hours for crosslinking. The crosslinked

PDMS was then peeled from the mold.

6.7.2.3 Plasma cleaning

The PDMS chip was irreversibly bound to a 1mm-thick glass slide thanks to a plasma cleaner.

In order to avoid clogging of the microfluidic channels by dust, the procedure was realized

in a clean room. The chip and the glass slide were introduced in the plasma oven, that was

then placed under vacuum. Three vacuum/O2 flushing cycles were performed to remove all

other gases than O2 from the chamber. Finally, the O2 pressure is fixed around 300 mTorr

and a plasma is generated for 60 seconds in the chamber. The vacuum is then broken, and

the surfaces that were exposed to the plasma are brought together for bonding.

6.7.2.4 Hydrophobic treatment

In order to produce microdroplets, the microfluidic chip needs to be hydrophobic, which is

not initially the case. The chip is baked at 200°C for 5 hours.

6.7.3 Single water inlet microfluidics

The original chip design used to generate microdroplets is presented on fig 6.1. The colors

indicate the height of the microchannels. Green regions have a height of 30 µm, while orange

parts are 7 µm parts. The oil phase is introduced from the top inlet, and the water phase

from the bottom inlet. The oil flow is split in half, and pinches the water flow at the nozzle

to generate droplets. Filter regions, in which the height is the same as in the nozzle region,
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Figure 6.1: Single water inlet microfluidic chip

are placed after both inlets to prevent the clogging of the nozzle. This device allows us to

generate droplets with a diameter of 9 µm.

6.7.4 2-water inlet microfluidics

The design of the microfluidic device was modified to counter the enzyme scavenging effect

presented in chapter 3. The new chip is presented on fig 6.2. A second water phase inlet is

added to introduce particles and enzymes separately. Both water phases meet right before

the nozzle, preventing any enzyme scavenging by the particles. Channel heights are identical

to those of the single water inlet device.

6.8 Amplification step

The amplification step was performed at 50°C, in a CFX96 Touch qPCR thermocycler from

Biorad. The rT fluorescence is measured in real time. The aim is to stop the incubation when

the fluorescence reaches plateau, indicating that the amplification took place in all miRNA-

containing droplets. For MultimiR experiments, however, the amplitude of the variations of

the rT fluorescence is very low, which makes the determination of the optimal time to stop

amplification difficult. In practice, the produced emulsion was split in several tubes stopped

at different times to find the optimal incubation stopping time. At the conditions used for

the 6-plex miRNA detection of chapter 4, teh incubation time was approximately 10 hours.
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Figure 6.2: Double water inlet microfluidic chip

6.9 Flow cytometry analysis

The flow cytometer used in this study is a Attune NxT from ThermoFisher, equipped with

three lasers, emitting at 490 nm, 561 nm and 630 nm. The optical configuration of the flow

cytometer is presented in table 6.7. The particles were first sorted from the dusts using a

FSC vs SSC plot. The barcode fluorescence of the particles was then analyzed using detectors

YL-3 (Cy3.5) and RL-1 (Atto633). Finally, rT fluorescence was measured using the BL-1

detector (Atto488 fluorescence). The optical configuration of the flow cytometer used for this

study is presented in table 6.7.

Detector name Laser Center Bandwidth
BL-1 Blue 488 nm 10 nm
BL-2 Blue 530 nm 30 nm
BL-3 Blue 590 nm 40 nm
BL-4 Blue 695 nm 40 nm
YL-1 Yellow 585 nm 16 nm
YL-2 Yellow 620 nm 15 nm
YL-3 Yellow 695 nm 40 nm
YL-4 Yellow 780 nm 60 nm
RL-1 Red 670 nm 14 nm
RL-2 Red 720 nm 30 nm
RL-3 Red 780 nm 60 nm

Table 6.7: Configuration of the detectors of the used flow cytometer
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6.10 ID3miR

Isothermal Digital Droplet Detection of miRNAs (ID3miR) is the singleplex miRNA detection

method MultimiR is based on. In this technique, the full reaction mixture is assembled as

described in section 6.4. The mix is encapsulated using a single water inlet microfluidic

device into 10 µm-diameter droplets. The distribution of the miRNA targets into the droplets

follows a Poisson law. The droplets are incubated at 50°C in a qPCR thermocycler. The

fluorescence of the rT is monitored in real time. The incubation of the droplets is stopped

once the rT fluorescence reaches a plateau. At that point, droplets are placed in microscopy

chambers composed of two glass slides and sealed by epoxy glue. The glass slides were

treated to be hydrophobic by dipping them in Novec 1720 (3M) and heating them. Polymer

particles with a diameter of 10µm are spotted on the surface of the glass slide to maintain a

minimal distance of 10µm between the glass slides in order to prevent droplet compression.

Fluorescence images were captured using an epifluorescence microscope Nikon Eclipse Ti

equipped with a motorized XY stage (Nikon), a camera Nikon DS-Qi2, an apochromatic 10X

and a CoolLed pE-4000 illumination source. Microscopy images are analyzed thanks to a

Mathematica software (Wolfram) algorithm.

6.11 Production rate experiments

The production rate protocol is a variation of the bulk detection protocol. The aim of this

kind of experiment is to assess the efficiency of the conversion step. To that end, only cTs

and rTs are introduced in the mix. The only necessary enzymes are the polymerase and

Nt.BstNBI. The reaction buffer is miR buffer 1X. Experimental conditions for production

rate experiments are presented in table 6.8. Nt.BstNBI is introduced in excess compared

with miRNA detection experiments in order to make sure that polymerisation is the kinetic-

limiting process.

Component Concentration
cT 0,5 nM
rT 25 nM

Polymerase Various
Nt.BstNBI 20 u/mL

Let7a 1 nM

Table 6.8: Reaction mixture for production rate experiments
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6.12 Enzyme depletion experiments

Enzyme depletion experiments allowed us to evidence the enzyme-scavenging effect in chapter

3. In this kind of experiment, the enzymes are pre-mixed, and particles are introduced. The

concentrations in the enzyme pre-mix are 10 times higher than in the miRNA detection

mixture. The enzyme-particles mix is incubated for 30 minutes at 25°C with a 2000 rpm

stirring in a ThermoMixer (Eppendorf). After incubation, particles are gathered in the

bottom of the tube using a magnet, and 1µL of the supernatant is pipetted and introduced

instead of the separate enzymes in a miRNA detection mixture.
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Résumé :
Les microARN sont de courts ARN simple brins, non codants, impliqués dans la régulation post tran-

scriptionnelle de l’expression génétique. De nombreuses études ont montré que les concentrations

de miARN dans les fluides corporels sont dérégulées dans de nombreuses conditions pathologiques,

comme les cancers, les maladies cardiovasculaires ou bien encore la maladie d’Alzheimer, en faisant

de potentiels indicateurs de ces maladies. De plus, les miARN sont libérés dans les fluides corporels,

notamment le sang, sous la forme de complexes protéique, ce qui leur confère une meilleure stabilité,

en comparaison d’autres marqueurs circulants, dans ces fluides. Pour ces raisons, les miARN appa-

raissent comme des cibles de choix pour le développement de nouvelles méthodes de diagnostic. Ces

méthodes requierrent cependant de hauts niveaux de sensibilité, de spécificité et de quantitativité,

qui sont autant de défis technologiques. De plus, le potentiel diagnostique des miARN se situe

probablement dans l’analyse chez le patient de différents miARN, formant un profil pouvant être

comparé avec les signatures miARN typiques des conditions pathologiques ou non-pathologiques.

Ainsi, la capacité de quantifier différents miARN en parallèle est également cruciale. Dans cette

thèse, nous présentons les différentes étapes du développement d’une méthode permettant la quan-

tification absolue et multiplexe de miARN. Cette méthode combine l’utilisation d’un réseau de

réactions chimiques permettant l’amplification exponentielle d’un signal moléculaire avec la pro-

duction de microémulsions par microfluidique. La technique développée permet la quantification de

20 miARNs simultanément, une capacité bien supérieure à celle de la RT-qPCR, méthode standard

pour la détection de miARN. La sensibilité de notre méthode est adaptée pour l’analyse de miARN

dans les fluides corporels humains, avec une limite de détection de l’ordre du femtomolaire.

Mots-clés : microRNA; diagnostic; multiplex; digital; biologie synthétique; microfluidique;
cytométrie en flux.

Summary:
MicroRNAs are short, non-coding, single-stranded RNA molecules involved in post-transcriptional

regulation of protein expression. A plethora of studies reported that the concentrations of some

miRNAs are dysregulated in numerous pathological conditions, such as cancers, cardiovascular or

Alzheimer’s diseases, making them potential markers of these diseases. Additionally, the miRNAs

released in bodily fluids are protected by protein complexes, which improves their stability in these

fluids. For those reasons, miRNAs appear as promising targets for the development of new di-

agnostic methods. MiRNA-based diagnostics however require high levels of sensitivity, specificity

and quantitativity. Additionally, the potential of miRNAs as biomarkers most likely lies in the

parallelized analysis of several miRNAs, forming a profile of the patient, which is then compared to

pathological and non-pathological miRNA signatures. The ability to detect several miRNAs simul-

taneously is therefore of prime importance. In this PhD thesis, we report on the development of a

high-multiplex and digital miRNA detection method. The technique combines a chemical network

allowing exponential amplification of a molecular signal and droplet microfluidics. The developed

method allows the absolute quantification of up to 20 miRNAs, outperforming the gold-standard

method for miRNA detection, RT-qPCR. The sensitivity of the method is suited for miRNA detec-

tion from bodily fluids, with a limit of detection in the femtomolar range.

Keywords: microRNA; diagnostics; multiplex; digital; synthetic biology; microfluidics; flow
cytometry.
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