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La dynamiques de la connectivité fonctionnelle

cérébro-cérébelleuse au repos: relation avec la

cognition, le comportement et la physiopathologie

Résumé

La connectivité fonctionnelle à l’état de repos (CF), mesurée avec l’imagerie par ré-

sonance magnétique fonctionnelle (IRMf), a mis en évidence des connexions fonc-

tionnelles entre le cervelet et les régions cognitives du cerveau,qui a soutenu un

rôle important pour le cervelet dans la cognition. Ces résultats ont été basés sur des

mesures statiques de la CF. Cependant, il s’agit d’une approche simpliste du CF

qui a récemment été remise en question, les résultats indiquant la présence d’une

dynamique continue et non aléatoire dans le CF à de courts intervalles de quelques

secondes, ce qui, étant donné la nature dynamique du cerveau, est une vision plus

naturelle qui peut coder des informations sur des fonctions cognitives complexes.

Jusqu’à présent, le cervelet a été négligé dans la plupart des études sur la CF dy-

namique, malgré son rôle bien reconnu dans les fonctions cognitives complexes.

Dans cette thèse, nous avons émis l’hypothèse que la dynamique du cervelet au

repos peut être significative, en saisissant des aspects de la cognition et du com-

portement non pris en compte par le cervelet statique et en présentant des altéra-

tions des troubles cérébraux associés au dysfonctionnement cérébro-cérébelleux,

comme l’alcoolisme. Nous avons testé ces hypothèses dans deux études distinctes

portant sur la dynamique de la CF cérébro-cérébelleuse en relation avec des traits

complexes, tels que l’impulsivité (première étude) et l’alcoolisme (deuxième étude).

La première étude a été motivée par une hypothèse récente sur le rôle du cervelet

dans l’impulsivité, un trait de personnalité complexe défini comme la tendance à

agir sans prévoyance. Nous avons émis l’hypothèse que les différences individu-

elles dans les traits normaux d’impulsivité pouvaient être associées à la force (sta-

tique) et à la variabilité temporelle (dynamique) du CF cérébro-cérébelleux. Nous

avons testé cette hypothèse en utilisant des données d’IRMf à l’état de repos et

des auto-rapports d’impulsivité (UPPS-P et BIS/BAS) d’un groupe d’individus en
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bonne santé (N=134). En particulier, nous avons utilisé des techniques robustes

pour identifier les réseaux cérébraux et cérébelleux, calculer des mesures som-

maires de la CF statique et dynamique, et tester les associations avec l’impulsivité.

Nous avons observé des preuves liant de multiples formes d’impulsivité à la force

et à la variabilité temporelle de la CF au repos entre le cervelet et un ensemble de

réseaux cérébraux dynamiques et intégratifs qui soutiennent le contrôle cognitif et

les processus de récompense, ce qui soutient notre hypothèse selon laquelle la dy-

namique de la CF cérébro-cérébelleuse est pertinente sur le plan comportemental.

Dans la seconde étude, nous avons émis l’hypothèse que la dynamiques de la CF

cérébro-cérébelleuse différerait entre les les patients alcooliques et les contrôles, en

particulier dans les circuits frontocérébelleux. Pour tester cette hypothèse, nous

avons exploré les différences de dynamiques de la CF cérébro-cérébelleuse entre

un groupe de patients alcooliques (N=18) et un groupe de contrôles (N=18), en

comparant des groupes sur différentes mesures de connectivité dynamique. Les

résultats ont révélé une altération de la dynamique du réseau fonctionnel cérébro-

cérébelleux chez les sujets alcooliques, caractérisée par une hypervariabilité de la

CF dans les réseaux fronto-parieto-cérébelleux, une réduction de la flexibilité céré-

belleuse et une augmentation de l’intégration cérébelleuse. Ces résultats suggèrent

un rôle possible de la dynamique des réseaux fronto-pariétal-cérébelleux dans la

physiopathologie de ce trouble. Pris ensemble, les résultats de cette thèse soulig-

nent l’utilité de compléter les approches statiques de la CF par une analyse dy-

namique de la CF pour approfondir notre compréhension du fonctions des réseaux

cérébro-cérébelleux et les neurobiologie des comportements complexes et les trou-

bles du cerveau.

Mots clés: Imagerie par Résonance Magnétique Fonctionnelle, Connectivité

Fonctionnelle Dynamique, Cervelet, Connectivité fonctionnelle Dynamique

Cérébro-Cérébelleux, Cognition, Comportement
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The dynamics of cerebro-cerebellar resting-state
functional connectivity: Relation to cognition,

behavior, and pathophysiology

Abstract

Studies of resting-state functional connectivity (FC), measured by functional mag-

netic resonance imaging (rsfMRI), have revealed extensive functional connections

between the cerebellum and association regions in the brain, supporting an impor-

tant role for the cerebellum in cognition. These findings have been based on static

FC measures averaged across entire scans spanning a few minutes. However, this

is a narrow view that has been recently challenged, with findings pointing to the

presence of an ongoing, behaviorally relevant dynamics in resting-state FC occur-

ring at short timescales of a few seconds, which, given the dynamic nature of the

brain, is a more natural view that may encode information about complex cog-

nitive functions. So far, however, the cerebellum has been overlooked in most,

if not all, studies of dynamic FC, despite its well-recognized role in coordinating

complex cognitive functions. In this thesis, we hypothesized that the dynamics

of cerebro-cerebellar FC, during rest, may be behaviorally relevant, capturing as-

pects of cognition and behavior not accounted for by static FC and exhibiting alter-

ations in brain disorders commonly associated with cerebro-cerebellar dysfunction,

such as alcohol use disorder (AUD). We tested these hypotheses in two separate

studies focusing on the dynamics of cerebro-cerebellar FC in relation to complex

traits and disorders, such as impulsivity (first study) and AUD (second study). The

first study has been motivated by a recent hypothesis for a role of the cerebellum

in impulsivity; a complex personality trait defined as the tendency to act without

foresight. We hypothesized that individual differences in normal impulsivity traits

could be associated with the (static) strength and (dynamic) temporal variability

of cerebro-cerebellar resting-state FC. We tested this hypothesis using rsfMRI data

and self-report questionnaires of impulsivity (UPPS-P and BIS/BAS) collected from

a group of healthy individuals. In particular, we employed data-driven techniques
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to identify cerebral and cerebellar resting-state networks, compute summary mea-

sures of static and dynamic FC, and test for associations with self-reported impul-

sivity. We observed evidence linking multiple forms of impulsivity to the strength

and temporal variability of resting-state FC between the cerebellum and a set of

highly dynamic and integrative brain networks that support top-down cognitive

control and bottom-up reward/saliency processes, supporting our hypothesis that

cerebro-cerebellar FC dynamics are behaviorally relevant. In the second study, we

hypothesized that the dynamics of cerebro-cerebellar FC at short timescales would

differ between AUD and controls, especially in the frontocerebellar circuits. To test

this hypothesis, we explored the differences in the dynamic cerebro-cerebellar FC

between an AUD group (N=18) and a group of unaffected controls (N=18) by com-

paring groups on different dynamic connectivity measures. Results revealed al-

tered cerebro-cerebellar FC dynamics in the AUD group characterized by hyper-

variability of FC within fronto-parieto-cerebellar networks, reduced cerebellar flex-

ibility, and increased cerebellar integration, compared with controls. These results

suggest a possible role for the dynamics of fronto-parieto-cerebellar networks in the

pathophysiology of this disorder. Taken together, the findings from this thesis high-

light the utility of complementing static FC approaches with dynamic FC analysis

in furthering our understanding of the functional repertoire of cerebro-cerebellar

networks and the neurobiological architecture of complex behaviors and brain dis-

orders.

Keywords: Cerebellum, Dynamic Functional Connectivity, Cerebro-Cerebellar

Networks, Resting-State fMRI, Cognition
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General Introduction

Brief Review: What Do We Know

Constituting 10% of the brain’s total volume, the cerebellum contains roughly 80%

of the neurons of the central nervous system, which is regarded as one of the mys-

teries of human evolution (Leiner, 2010). Until recently, the often forgotten “little

brain” has been though of as a sensorimotor structure that is not involved in non-

motor, cognitive functions (Buckner, 2013). This entrenched belief has been partly

driven by early observations of severe motor disturbances in patients with cerebel-

lar damage and the lack of monosynaptic projections between the cerebral cortex

and the cerebellum, which precluded any investigation into the cerebellum’s full or-

ganizational properties (Buckner, 2013). Yet, the view of the cerebellum as sensori-

motor regulator has not helped in solving the mystery of the dramatic enlargement

of the cerebellum’s posterolateral regions and the deep nuclei embedded in cerebel-

lar white matter in the human brain relative to other primates (Leiner, 2010). One

speculation has been that a more complex sensorimotor map with novel properties

and functions may occupy these "extra large" regions of the cerebellum. However,

the past three decades have witnessed an accumulation of evidence implicating the

cerebellum in a wide array of functions that extend beyond the motor field to en-

compass almost every other function of the brain. These functions include posture

and balance, movement coordination, cognitive control, abstract thinking, and in-

ferring on others’ mental state or beliefs (Schmahmann, 2019; Sokolov, 2018).

Evidence of a possible cerebellar role in cognition can be attributed to the use of

novel trans-synaptic viral tract tracing techniques, which can delineate polysynap-

tic connections. In this domain, studies have uncovered anatomically segregated

closed-loop connections between the cerebellum and higher-order cognitive regions
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of the brain, most notably the prefrontal cortex, that do not overlap with previ-

ously detected sensorimotor connections, suggesting a non-motor involvement of

the cerebellum (Middleton and Strick, 1994). Other equally important evidence of

cerebellar contributions to cognition has come from clinical observations of cogni-

tive and affective disturbances in patients with lesions in the posterolateral parts of

the cerebellum (Schmahmann and Sherman, 1997). These observations culminated

in the introduction of the "Cerebellar Cognitive Affective Syndrome" (CCAS; also

known as Schmahmann’s syndrome, Schmahmann and Sherman, 1997) and the

theories of the universal cerebellar transforl (UCT) and the Dysmetria of thought.

These theories hold that the cerebellum performs unique computational processes

across the motor and non-motor domains and that damage to cognitive cerebellar

regions induce cognitive impairments characterized by loss of fluidity and coordi-

nation, in a similar manner to motor impairments caused by damage to the motor

cerebellum (Schmahmann, 1998; Guell et al., 2017). In this context, Jeremy Schmah-

mann, one of earliest and most prominent proponents of the cerebellar involve-

ment in non-motor functions, has hypothesized that, “It may also transpire that in

the same way as the cerebellum regulates the rate, force, rhythm, and accuracy of

movements, so may it regulate the speed, capacity, consistency, and appropriate-

ness of mental or cognitive processes” (Schmahmann, 1991a). Thus, the postulated

role for the cerebellum in cognition presides on the coordination of diverse streams

of thoughts and information underlying a range of cognitive domains in a timely

manner, thereby maintaining fluidly coordinated cognitive processing and facilitat-

ing the acquisition of new "mental skills" (Leiner, Leiner, and Dow, 1986; Sokolov,

Miall, and Ivry, 2017).

Yet, the major breakthrough and direct evidence of a cognitive role for the cere-

bellum are attributed to the introduction of functional neuroimaging, especially

functional magnetic resonance imaging (fMRI), which have provided the means to

observe and visualize cognitive regions of cerebellum (Kim, Ugurbil, and Strick,

1994; Raichle et al., 1994). In this domain, researchers have unexpectedly detected

activations in the cerebellum in response to cognitive and limbic tasks that are

independent of any overt sensorimotor demand (Buckner, 2013; Stoodley, Valera,

and Schmahmann, 2012; Van Overwalle et al., 2014). Moreover, by measuring the
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spontaneous low-frequency fluctuations in brain activity while subjects rested in

an MRI machine without engaging in any task, neuroscientists have been able to

map the complete functional network organization of the human cerebellum, with

findings indicating that the majority of the cerebellum is functionally connected

with well-known cognitive networks in the brain, notably the default mode, atten-

tion, salience and the executive control networks (Buckner et al., 2011; Guell et al.,

2018). These studies have used the concept of functional connectivity, defined as

the temporal correlation between remote neurophysiological events (i.e., neuronal

signals, changes in oxygen level) recorded simultaneously in distinct brain regions.

In fMRI, especially resting-state fMRI (rsfMRI) where subjects do not perform any

explicit task, functional connectivity measures the synchronization between the lev-

els of oxygen consumption, during the scan, in distinct brain regions as a proxy to

neuronal activity and can be quantified with measures of statistical dependencies,

such as Pearson’s correlation. Thus, resting-state fMRI studies have found that the

posterolateral regions of the cerebellum have strong functional connectivity with

association regions in the brain, suggesting the involvement of the cerebellum in

cognitive processing.

Apart from delineating functional regions in the cerebellum, many studies have

used fMRI and functional connectivity to understand the role of the cerebellum

and the cerebro-cerebellar functional networks in a growing number of brain dis-

orders, such a substance addiction (Chanraud et al., 2013), schizophrenia (Zhuo et

al., 2018), autism (Khan et al., 2015), and attention deficit/hyperactivity disorder

(ADHD; Stoodley, 2016). The involvement of the cerebellum and its circuits within

those disorders contributes to a broad range of executive and affective deficits that

lead to symptoms such as behavioral disinhibition, hyperactivity, craving, compul-

sive and impulsive behaviors, poor performance on cognitive tasks, personality

changes, and emotional distress (Schmahmann et al., 2019). Owing to the advent of

resting- state fMRI, these findings, among others from task-activation experiments

(King et al., 2019; Stoodley, Valera, and Schmahmann, 2012), have placed the cere-

bellum on the neurobiological map of a wide variety of cognitive functions and

brain disorders, making it an important cognitive structure and a potential thera-

peutic target that should not be excluded from anatomical and functional models
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FIGURE 1: A schematic summarizing the interactions between the
cerebellum and higher-order association regions in the brain. The cere-
bellum receives input and sends output to association cortical areas in
a bidirectional closed-loop network architecture. In addition, resting-
state fMRI studies have revealed extensive cerebellum-based represen-
tations of the networks anchored within these association regions. Fig-
ure reproduced from Sokolov, Miall, and Ivry (2017), with permission.

of complex human behaviors.

Problem Statement and Hypothesis: What is Missing

The vast majority of findings on the functional organization of the human cerebel-

lum have been based on the assumption of a "static" FC that does not vary across an

entire fMRI scan. This approach has been pivotal for delineating the stable organi-

zation of networks in the brain (Damoiseaux et al., 2006; Yeo et al., 2011), including

the cerebellum (Buckner et al., 2011). However, it is rather a narrow view that has

been challenged over the past few years, with findings pointing to the presence of

an ongoing, behaviorally relevant FC variations at faster timescales of a few sec-

onds, which, given the dynamic nature of the brain, is a more natural view that

might hold answers to fundamental questions about the function and dysfunction

of the brain (Liégeois et al., 2019; Zalesky et al., 2014). As a response to the short-

comings of traditional measures of FC, the past decade have witnessed a growing



5

interest in studying the fast variations in FC, commonly known as dynamic or time-

varying FC (Calhoun et al., 2014; Preti, Bolton, and Ville, 2017; Lurie et al., 2020).

Individual differences in both task-based and resting-state dynamic FC have been

associated with cognitive task performance (Braun et al., 2015; Douw et al., 2016;

Fong et al., 2019), attention (Fong et al., 2019), learning (Bassett et al., 2011), emo-

tions (Betzel et al., 2017), and personality traits (Liegeois et al., 2017), to name a

few. Moreover, alterations in dynamic resting-state FC have been extensively doc-

umented in a growing number of brain disorders including, among others, autism

(Harlalka et al., 2019), ADHD (Lacy and Calhoun, 2018), depression (Kaiser et al.,

2016), schizophrenia (Rashid et al., 2014), Parkinson’s disease (Engels et al., 2018),

and substance use disorders (Vergara et al., 2017). Yet, most, if not all, studies on

dynamic FC have either entirely overlooked the cerebellum or have poorly rep-

resented by it by a few regions-of-interest that do not cover important functional

regions of interest.

Considering that the brain is naturally dynamic, continuously integrating in-

formation and refining internal representations of the world to anticipate and ef-

ficiently execute adaptive behaviors (Lurie et al., 2020), and given the postulated

role for the cerebellum in the adaptive control of cognitive processes at different

timescales (Xu-Wilson et al., 2009), we hypothesized that the dynamics of cerebro-

cerebellar FC, during rest, could have a behavioral relevance, possibly capturing

aspects of cognition, behavior, and pathophysiology not accounted for by tradi-

tional, time-averaged FC. In this thesis, we address this hypothesis in two inde-

pendent resting-state fMRI studies that lay special emphasis on the dynamics of

cerebro-cerebellar FC and their relation to complex behaviors, such as impulsivity,

and brain disorders, such as alcohol use disorder.

This Thesis

The thesis is divided into two parts, the first of which includes two independent

literature review chapters. In the first chapter, we offer a general overview of the
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growing field of research into cerebellum’s cognitive functions, starting with a his-

torical background that highlights the shift in the understanding of the cerebel-

lum, which coincided with the rise of functional neuroimaging, especially fMRI,

as prominent research tools in cognitive and systems neuroscience. We then sum-

marize the functional neuroanatomy of the cerebellum in the light of influential

findings from rsfMRI and the theories that define the function and dysfunction of

cerebellum, namely the Universal Cerebellar Transform and the Dysmetria of Thought.

In the second literature review chapter, we present an extensive overview of fMRI

and FC analysis, starting with a historical review of some important checkpoints

in the relatively short history of fMRI, highlighting the old-new debates surround-

ing brain function and how the introduction of fMRI catalyzed successive waves of

studies aimed at mapping the brain’s functional network organization at different

scales of topology, space, and time. Then, we briefly summarize the physical, physi-

ological and data preprocessing basics of fMRI. Finally and foremost, we emphasize

on some of the most commonly used methods in the analysis of static and dynamic

FC, highlighting the technical details, values, and limitations of each approach.

The second part of the thesis introduces the experimental work carried out in

two separate studies to explore the dynamics of cerebro-cerebellar resting-state FC

in the light of recent hypotheses and findings implicating the cerebellum in com-

plex behaviors and brain disorders, most notably impulsivity and alcohol use dis-

order (Chanraud et al., 2011; Chanraud et al., 2013; Jung et al., 2014; Miquel et

al., 2019). Importantly, the two studies are presented in the form of articles. In

the first study, third chapter overall, we explore a recently advanced hypothesis

for a cerebellar role in impulsivity—a complex personality trait mediated by mul-

tiple cognitive systems and defined as the tendency to act rashly under the effect

of emotions or in response to rewarding cues. Miquel et al. (2019) have recently

advanced this hypothesis leaning on scattered but converging evidence from clini-

cal observations and animal models suggesting that cerebellar lesions and cerebro-

cerebellar dysconnectivity are associated with overt impulsive and compulsive be-

haviors. In particular, studies have found that disrupting cerebellar function may

induce an imbalance between top-down cognitive control and bottom-up reward
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processes, contributing to rapid decision making and intolerance to delays in re-

ward delivery (Miquel et al., 2019). So far, however, the relation between indi-

vidual differences in normal trait impulsivity, which might underlie the liability

for a broad range of psychopathology, and cerebro-cerebellar functional coupling

has not been characterized and remains unclear. Given the influence of multiple

brain systems on this complex trait (Davis et al., 2012) and the postulated role for

the cerebellum in coordinating diverse streams of information underlying complex

cognitive processes (Schmahmann, 2016b), we hypothesized that individual dif-

ferences in multiple facets of impulsivity could be encoded in broad patterns of

information processing involving the cerebellum and emerging from dynamic

functional interactions among integrative brain systems at different timescales.

To test this hypothesis, we sought to quantify the time-averaged (static) and time-

varying (dynamic) FC between the cerebellum and distinct cerebral networks and

test for associations with self-reported impulsivity, in a group of healthy young

individuals (N=134, ages 20-40). Accordingly, we performed group independent

components analysis to delineate separate cerebral and cerebellar RSNs, static FC

analysis to estimate time-averaged FC matrices, and hidden Markov models (HMM)

to estimate subject-specific FC states defined as replicable patterns of connectivity

that transiently recur over time (Vidaurre, Smith, and Woolrich, 2017; Vidaurre et

al., 2018). This methodology enabled us to explicitly model the temporal dynamics

of cerebro-cerebellar connectivity with enhanced representation of the cerebellum

and, subsequently, estimate summary measures of the overall strength and tempo-

ral variability of resting-state FC between the cerebellum and distinct large-scale

brain systems.

In the second study, fourth chapter overall, we explored the differences in the

dynamics of cerebro-cerebellar resting-state FC between a group of participants di-

agnosed with alcohol use disorder (AUD; N=18) and a group of unaffected controls

(N=18). AUD is a chronic and relapsing brain disorder, characterized by systems-

level alterations underlying a broad range of cognitive deficits, most notably in

executive function, caused by prolonged and excessive intake of alcohol (Sullivan,

Harris, and Pfefferbaum, 2010). One of the severely altered brain systems in AUD

is the cerebro-cerebellar system, and more precisely, the frontocerebellar networks
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that play an important role in a diversity of executive functions (Sullivan and Pf-

efferbaum, 2005). Previous studies have revealed that frontocerebellar resting-state

FC is severely altered in AUD, associating it with deficits in cognitive functions

such as working memory and impulse control (Chanraud et al., 2011; Chanraud

et al., 2013; Jung et al., 2014). However, these findings have been based on time-

averaged measures of FC, which are blind to potentially adverse effects inflicted

by alcohol intake on cognitive processes that necessitate a dynamic integration of

multiple brain systems at short timescales, such as adaptive cognitive control and

working memory (Chanraud et al., 2013; Douw et al., 2016). Therefore, we hy-

pothesized that the dynamics of cerebro-cerebellar FC, during rest, would dif-

fer between AUD subjects and controls, especially in the frontocerebellar exec-

utive control circuit. To test this hypothesis, we adopted a sliding window cor-

relation method (Hindriks et al., 2016) to divide BOLD timeseries, extracted from

finely parcellated cerebral and cerebellar regions (Power et al., 2011; Seitzman et

al., 2020), into overlapping segments and measure FC within each segment, which

permitted modelling fast variations in cerebro-cerebellar FC patterns across short

time intervals. Then, we assessed group differences in terms of temporal variabil-

ity of FC patterns between the cerebellum and large-scale cognitive networks—the

default mode, executive control, attention, and salience networks. Moreover, we

performed multilayer community detection analysis—a powerful extension of tra-

ditional graph theory community detection methods—which permitted the quan-

tification of short-term changes in the brain’s modular structure using measures of

flexibility and integration computed in the cerebellum as well as large-scale cog-

nitive networks (Braun et al., 2015; Gifford et al., 2020; Mucha et al., 2010). Finally,

the thesis closes with a general conclusion chapter that summarizes the findings,

answers the main hypothesis, and presents suggestions for future research.
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Part I

Literature Review
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Chapter 1

The Cerebellum in Cognition: A

General Overview

Abstract

The cerebellum or the "little brain" has intrigued researchers and clinicians interested in the brain

since the time of antiquity. The principle anatomic and cytoarchitectonic features of the cerebel-

lum were recognized and characterized early, and the strong emphasis on its role in coordinating

movements has been around since the late 18th century. However, over the last three decades, accu-

mulating evidence has indicated that the cerebellum is involved in diverse functions that transcends

the sphere of the sensorimotor domain. This view has emerged from studies of viral tract tracing

in animals, functional neuroanatomy, functional neuroimaging, neuropsychology, and brain stimu-

lation, with findings implicating the cerebellum in domains as diverse as cognitive control, work-

ing memory, attention, language, and social cognition. Moreover, sophisticated models of how the

cerebellum helps refine movements through implementations of forward models and error-based

learning have provided some evidence of the core mechanisms behind cerebellar functioning in the

cognitive and affective domains. This has been supported by evidence of an essentially uniform

cerebellar anatomy, functionally diverse cerebro-cerebellar connections, and cognitive and affective

dysregulations that arise from cerebellar injuries or brain disorders. Importantly, task-based and

resting-state functional magnetic resonance imaging (rsfMRI) techniques have provided unprece-

dented non-invasive support for the involvement of the cerebellum in a broad range of motor and

cognitive functions, revolutionizing the ways the neuroscience community explore the functions

and dysfunctions of the little brain. In light of these advances, this chapter presents a summary

of the growing field of research into the functions of the cerebellum. It starts with a brief histori-

cal background, then moves on to describe the functional neuroanatomy of the cerebellum and the

theories of cerebellar functions and dysfunctions.
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1 A History of Cerebellar Function: Not So Little After

All

Notions regarding the function of the cerebellum has been around since times of

antiquity and have included the belief that it provides strength for motor nerves,

is an epicenter of memories and dreams, it controls sensory functions, is involved

with involuntary actions such heart beat and respiration, and is the seat of emo-

tions and love (see Schmahmann, 2016a for a comprehensive review). In modern

times, it seems that these historical accounts, although not based on solid evidence

nor a rigorous scientific methodology, are not very far from reality. Contemporary

accounts have found that the cerebellum, in fact, contributes to motor coordination

and learning (De Zeeuw and Ten Brinke, 2015), working memory (Deverett et al.,

2019), episodic memory (Fliessbach et al., 2007), autonomic functions (Wu et al.,

2014), and emotion regulation (Adamaszek et al., 2017).

1.1 The Cerebellum in Sensorimotor Control and Learning

Traditionally, the cerebellum has been thought of as a mere sensorimotor structure.

The cerebellar contribution to sensorimotor functions has two broad aspects (Manto

et al., 2012). The first, which is known as motor control and coordination, refers

to the moment to moment gathering of external sensory information with a "motor

command" from the primary motor cortices to produce an accurate movement at

an appropriate speed and timing. The interest in the cerebellar role in sensorimotor

control and coordination arose early in the late 18th to early 19th centuries following

careful observations in animal models of the consequences of cerebellar ablation

and damage (Buckner, 2013). In particular, Marie-Jean-Pierre Flourens (1824) was

the first to show that the cerebellum is responsible for the coordination, rather than

generation, of voluntary movement and gait in pigeons. Flourens wrote "all move-

ments persist following ablation of the cerebellum: all that is missing is that they are

not regular and coordinated" (Flourens, 1842). Around the same period, François

Magendie’s studies of cerebellar lesions provided evidence that the cerebellum is

essential for maintaining posture and equilibrium. Disturbances of motor control
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and coordination following a focal cerebellar lesion in monkeys were demonstrated

by several neuroscientists in the late nineteenth century, most notably Luigi Luciani

who described thee basic symptoms of cerebellar lesions: asthenia (i.e.,muscular

weakness), atonia (i.e., muscular slackness), and astasia (i.e., posture and equilib-

rium deficits; Luciani, 1891). Later, in the 1930s, it was established that the cere-

bellum is fundamental for adjusting the timing and speed of movement initiation,

which ensures that movements are appropriately selected and sequenced at a fine

level (Holmes, 1939). The term motor ataxia was later introduced to describe an

array of motor syndromes caused by damage to the cerebellum and broadly charac-

terized by lack of temporal coordination between movements, among other symp-

toms (Schmahmann, 2000). For a detailed review of cerebellar functioning in motor

control, see (Manto et al., 2012).

The second aspect of the cerebellar contribution to sensorimotor function is

motor learning, which is the plastic consequence of motor control (Manto et al.,

2012). Motor learning, sometimes referred to as motor plasticity, refers to a long-

term change of the "procedural memory" in the relation between an input signal

and a resulting motor output induced by continuous practice or repetition (Marr

and Thach, 1991; Sokolov, Miall, and Ivry, 2017; Thach, 1996). Studies from the

early to mid twentieth century have provided evidence that the cerebellum, besides

the "online" coordination of ongoing movements, is important for long-term motor

learning, acquisition of new skills and formation of habits (Miquel et al., 2019).

The theories of cerebellar motor learning has been largely motivated by the seminal

works of David Marr, Masao Ito, and James Albus who, in the mid 20th century, pro-

posed computational and mathematical models of cerebellar functions, especially

in sensorimotor learning, based on the neurocircuitry and cellular architecture of

the cerebellum (Albus, 1971; Marr and Thach, 1991; Marr and Thach, 1991). Within

these models, the cerebellum forms an internal representation of the environment

through repeated performance and feedback mechanisms. As a movement is prac-

ticed, the cerebellum allows it to be executed automatically without dynamic feed-

back from the environment. In simpler terms, the cerebellum predicts the outcome

of a movement and then adaptively fine-tunes cortical motor commands, in case of

a mismatch between prediction and the actual outcome, to adjust the movements
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in the next iterations, accordingly. Then upon a series of repetitions through a trial-

and-error or error based learning process, movements become automated, requir-

ing less allocation of neural resources (Knierim, 1997). Recently, analogous compu-

tational principles of the cerebellum have been proposed to support an automated

and coordinated execution of higher-order cognition (Buckner, 2013; Schmahmann

et al., 2019). For a recent review of the different models of cerebellar sensorimotor

learning, see Kawato et al. (2020).

1.2 The Cerebellum and Cognition

For a long period of time, the emphasis of the literature on the cerebellum was solely

focused on sensorimotor control and learning (Strick, Dum, and Fiez, 2009). This

was partly driven by a peculiar feature of the cerebro-cerebellar circuitry that has

precluded traditional anatomical techniques from delineating the cerebellum’s full

functional properties. In general, two main reason contributed to the entrenched

view of sensorimotor function: the obviously severe motor disturbances induced

by cerebellar lesions and the absence of monosynaptic connections between the

cerebellum and the cerebrum, which precluded investigations into the organiza-

tion of the cerebellum using conventional anterograde and retrograde viral tracing

techniques that do not cross the synapse (Buckner, 2013). However, a shift in the

understanding of the cerebellum has taken place over the past 30 years. In an in-

cisive review in the mid-1980s by Henrietta Leiner, Alan Leiner, and Robert Dow,

a summary of evidence based on observations of cerebellar evolution in mammals

(including humans) introduced one of the early hypotheses that the cerebellum is

involved in cognitive functions beyond the sensorimotor domain (Leiner, Leiner,

and Dow, 1986). Their hypothesis was based on cross-species observations that the

posterior cerebellum and the dentate nucleus (a cluster of neurons embedded in the

white matter of the cerebellum) are significantly enlarged in humans, and that this

enlargement mirrors that of the prefrontal cortex. Based on this observation the

authors hypothesized, "The phylogenetically newest structures of the cerebellum

may contribute to mental skills in much the same way that the phylogenetically

older structures contribute to motor skills". In the late 1980s to early 1990s and on,
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researchers conducting trans-synaptic viral tracing studies, careful clinical observa-

tions in patients with cerebellar damage, and importantly, functional neuroimaging

experiments, have been able to finally confirm this hypothesis based on numerous

evidence.

Direct evidence for a cerebellar role in cognition have surfaced from studies of

anatomical cerebro-cerebellar circuits using novel transneuronal or trans-synaptic

tract tracing techniques (Middleton and Strick, 1994). Trans-synaptic viral tracing

uses viruses that spread across synapses that enable the mapping of polysynap-

tic circuits, such as those between the cerebrum and the cerebellum, thereby over-

coming the limitations of traditional tracing techniques. In one the early influen-

tial studies, Middleton and Strick (1994) used trans-synaptic viral tracers on non-

human primates to examine whether parts of the cerebellar cortex that receive pro-

jections from the primary motor cortex and prefrontal cortex (area 46). Their find-

ings showed that afferents from the primary motor cortex (M1) terminated mainly

in the anterior cerebellum (primary motor map; lobules IV,V,VI) and in a small por-

tion in the posterior cerebellar (secondary motor map; lobules VIIB and VIII). In-

terestingly, they found that afferents from the prefrontal area 46 (i.e., dorsolateral

prefrontal cortex) terminated in large region in the posterior cerebellum (Crus I and

Crus II) that is totally segregated from the primary motor cortex and motor regions

of the cerebellum. Thus, these observations suggested that multiple closed-loop

circuits represent the fundamental architectural feature of cerebro-cerebellar inter-

actions (Kelly and Strick, 2003). Later tract tracing studies revealed large swathes of

cerebellar projections to higher-order cortical association regions, notably the pos-

terior parietal and cingulate cortices, as well as subcortical structures such as the

basal ganglia, amygdala, and thalamus (see (Bostan and Strick, 2013) for a compre-

hensive review on the topic). Interestingly, very recent studies have also shown that

the cerebellum directly projects to the sub-thalamic nuclei, nucleus accumbens, and

most importantly, the ventral tegmental area, the center of dopimanergic cell bod-

ies, ascribing the cerebellum a pivotal role in the reward system (Carta et al., 2019).

Collectively, trans-synaptic viral tracing results have revealed that extensive cere-

bellar association regions fall in between the primary and secondary motor maps,

providing the first clue of a parsimonious organizational principle of the cerebellar
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FIGURE 1.1: (A) The cerebellum is connected to the cerebral cortex
through poly-synaptic connections: input projections from the cere-
bral cortex first synapse on the ipsilateral pons and then cross to the
contralateral cerebellar cortex. Output projections first synapse on the
dentate then cross to synapse in the contralateral thalamus and finally
project to the cerebral cortex. (B) Neurons in the cerebellum labelled
by injecting trans-synaptic viruses in the prefrontal are 46. The viruses
can cross the synapses in the pons and pass to the green region, sug-
gesting it connects to the prefrontal cortex. The topography of the pro-
jections is specific and distinct from the motor zones. Figures adapted

from Buckner, 2013 and Bostan and Strick, 2013, with permissions.

cortex, which putatively allows the cerebellum to communicate with brain regions

of specialized primary functions to regions at the higher levels of integrative cogni-

tion and emotion processing (Bostan and Strick, 2013).

Along a parallel research lane at the time, observations of cognitive and affective

impairments in patients with cerebellar abnormalities in the posterior cerebellum

surfaced (Fiez et al., 1992; Grafman et al., 1992; Schmahmann, 1991b; Schmahmann

and Sherman, 1997). Of particular importance are the observations made by Jeremy

Schmahmann in the 1980s and 1990s, which culminated in the emergence of three

important concepts: the Cerebellar Cognitive Affective Syndrome (CCAS), the Dysme-

tria of Thought Theory, and the Universal Cerebellar Transform (Schmahmann, 2019). In

particular, the CCAS describes an array of symptoms or deficits in executive func-

tion, linguistic processing, spatial cognition, and affective dysregulations ranging
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from emotional distress, depression, to impulsiveness, disinhibition and psychotic

features observed separately or collectively in patients suffering from cerebellar at-

rophies caused by strokes (Schmahmann and Sherman, 1997). In particular, it arises

from damage to the cognitive cerebellum in the posterior cerebellar lobe, and is pos-

tulated to reflect a cognitive dysmetria analogous to ataxia in sensorimotor control

(impaired balance, gait, and limbs and eye movements) observed in patients with

damage to the sensorimotor cerebellum (Hoche et al., 2018). The umbrella term

used to describe the motor and cognitive deficits arising from cerebellar damage is

the "Dysmetria of Thought Theory", predicated on the so called Universal Cerebellar

Transform, or UCT (Guell, Gabrieli, and Schmahmann, 2018a; Schmahmann, 2019).

The theory of the UCT posits that the computational process underlying cerebellar

role in modulating movement, cognition and emotion are unitary, building on the

striking uniformity of cerebellar anatomy (Schmahmann et al., 2019). That is, the

cerebellum is believed to serve a domain-general function, while having diverse

heterogeneous connections to motor and non-motor structures. Thus, the Dysme-

tria of Thought theory posits that the motor ataxia and CCAS are consequences of

a unitary neurological dysfunction, known as the Universal Cerebellar Impairment

(Schmahmann, 2004).

These collective observations provide evidence of anatomical and pathological

substrates for contributions of the cerebellum to cognition. However, the major

breakthroughs and direct empirical evidence on the participation of the cerebel-

lum in cognitive and affective functions have come from functional neuroimaging

studies Buckner, 2013. With the introduction of functional neuroimaging to neuro-

science in the 1980s, Petersen et al. (1988) published a seminal paper with extraordi-

nary findings on the functional anatomy of single-word processing using positron

emission tomography (PET). Unintentionally, they found that when participants

generated words, a recurrent response (i.e., activity) occurs in the right posterolat-

eral cerebellum (Petersen et al., 1988), providing a first-hand evidence for the role

of the cerebellum in language production. Based on this finding, Fiez et al. (1992)

conducted a single-subject PET study on a patient with cerebellar lesion to the right

posterolateral cerebellum. Interestingly, they found that the patient performed nor-

mally on standard language tasks, but had profound deficits in practice-related
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learning and detection of errors tasks; two important functions of the cerebellum

in motor control and learning. These seminal results suggested that some functions

performed by the cerebellum may be generalized beyond a purely motor domain.

Anchoring from these initial observation, later experiments using functional mag-

netic resonance imaging (fMRI; Ogawa et al., 1990), in the early 1990s, have detected

posterior cerebellar activation during non-motor learning and cognitive processing

tasks (Desmond, Gabrieli, and Glover, 1998). Task-activation associations are based

on the concept of blood-oxygen-level dependent (BOLD) signals that index changes

in brain metabolism in a given brain region (Ogawa et al., 1990), which in turn is

considered a proxy to neuronal activity in response to task demands (Glover, 2011).

The exponential growth and success of task-activation experiments, owing to the

non-invasive and non-ionizing use of fMRI, catalyzed many studies that detected

large number of activations in the posterior cerebellum across a wide range of cog-

nitive tasks (Figure 1.1), including executive function, language, working memory,

emotional processing, spatial attention, and social cognition, leaving little doubt

that the origins of these responses are non-motor and the cerebellum is indeed in-

volved in higher-order cognitive functions (for recent reviews of studies of task-

activation in the cerebellum, see Keren-Happuch et al., 2014; Stoodley, Valera, and

Schmahmann, 2012).

In a recent large-scale task-based fMRI study, King et al. (2019) have been able

to extensively map the functional sub-regions of the whole cerebellum using a rich

battery of tasks performed in hours-long fMRI experiments designed to tap into a

broad range of cognitive processes (King et al., 2019). Shortly before that, however,

a surprisingly powerful fMRI approach, that does not include eternally cued tasks,

have been used to comprehensively map the organization of the human cerebel-

lar cortex (Buckner et al., 2011). The approach has been motivated by the obser-

vation that the functional organization of the brain can be inferred by measuring

the level of synchrony between spontaneous low-frequency fluctuations in intrinsic

activity between brain regions, when individuals rested in a state of mind wan-

dering (Biswal et al., 1995; Fox and Raichle, 2007; Van Den Heuvel and Pol, 2010).
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FIGURE 1.2: Activations in the cerebellum in response to different
tasks in meta-analysis (left), a single-subject case study (middle), and
group analysis right). Figure reproduced from Stoodley and Schmah-

mann (2009), with permission.

BOLD signals extracted from regions that have monosynaptic or polysynaptic con-

nections tend to fluctuate together, during rest, and hence exhibit functional con-

nectivity (FC), even in the absence of task (Biswal et al., 1995; Buckner et al., 2011).

In this context, studies using resting-state FC analysis have been able to delineate

functional regions in the cerebellum that intrinsically connect to large-scale cerebral

functional networks previously identified across a multitude of studies (Calhoun,

Kiehl, and Pearlson, 2008; Damoiseaux et al., 2006; Power et al., 2011; Rosazza and

Minati, 2011; Smith et al., 2009; Yeo et al., 2011).

Two resting-state fMRI (rsfMRI) studies carried in parallel by Habas et al. (2009)

and Krienen and Buckner (2009) have mapped the functional topography of the

cerebellum based on functional correlations with different regions in the cerebral

cortex. Although the studies have relied on two different techniques to quantify
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and analyze cerebro-cerebellar FC, their findings have converged on qualitatively

overlapping findings. On one hand, Habas et al. (2009) used a technique that de-

composes high-dimensional data to a set of spatial maps representing networks

of highly interconnected regions, often called resting-state networks (RSNs). They

delineated spatial maps showing that regions from the posterior cerebellum con-

nect to executive control, salience network, and default mode networks that are in-

volved in higher-order cognition. Importantly, little to no overlap was detected be-

tween these cerebellar regions and the sensorimotor anterior cerebellum that mostly

connected to the primary motor cortices. These results suggest that the posterior

cerebellum makes contributions executive control, salience detection, and episodic

memory/self-reflection. On the other hand, Krienen and Buckner (2009) used a

seed based analysis, which entails selecting a region of interest in the prefrontal

cortex and estimating its FC with the whole cerebellum to see to which regions

it mostly connects. They found contralateral and segregated representations of at

least four different prefrontal regions in the cerebellum, suggesting that frontocere-

bellar functional connections during rest reflect the closed-loop circuitry previously

identified using tract tracing, wherein different prefrontal areas receive input from

the very same cerebellar regions that they project. Together, these studies provided

groundbreaking evidence that the cerebellum functionally interacts with higher-

order cognitive networks. In a later study, Buckner et al. (2011) used rsfMRI data

to map, for the first time, the entire cerebellum based on the FC between each point

(i.e., voxel) in the cerebellum and a previously created 7-Network and 17-Networks

maps of the cerebral cortex (Yeo et al., 2011). This yielded a 7-Network (Figure 1.4)

and a 17-Network representations of well-known cerebral networks in the brain.

Importantly, the majority of the human cerebellum falling between the anterior

and posterior motor representations was found to map to cerebral cognitive and

affective networks, mirroring the cerebral asymmetries for language and attention

(Buckner, 2013).

Finally, studies of brain disorders using task and resting-state fMRI have re-

vealed alterations in cerebro-cerebellar FC, contributing to a wide array of symp-

toms ranging from motor disturbances to cognitive and affective deficits. In this

context, many studies have implicated the cerebellum, along with the prefrontal
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FIGURE 1.3: A complete map of the cerebellum to a mutli-domain task
battery. The cerebellum can be involved in functions ranging from mo-
tor planning (top-right) to autobiographical memory (bottom-right).

Figure reproduced from King et al. (2019), with permission.

cortex and basal ganglia, in brain disorders, such a substance addiction (Chanraud

et al., 2013), schizophrenia (Zhuo et al., 2018), autism (Khan et al., 2015), and at-

tention deficit/hyperactivity disorder (ADHD; Stoodley, 2016), contributing to a

broad range of executive and affective deficits that manifest in symptoms such

as behavioral disinhibition, hyperactivity, craving, compulsive and impulsive be-

haviors, poor performance on cognitive tasks, personality changes, and emotional

distress (Schmahmann et al., 2019). Owing to the advent of fMRI, these findings,

among others from task-activation experiments (King et al., 2019; Stoodley, Valera,

and Schmahmann, 2012), have placed the cerebellum on the neurobiological map

of a wide variety of cognitive abilities and brain disorders that feature cognitive

deficits, making it an important cognitive structure and a potential therapeutic tar-

get that should not be excluded from anatomical and functional models of complex

human behaviors and brain disorders. Based on the abovementioned historical ob-

servations and recent findings, it seems that the "little brain" is simply too large to

ignore in the functional and anatomical models of cognition, emotions, and brain

disorders and is not so little after all. For a key consensus review on the role of the
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FIGURE 1.4: Resting-state functional connectivity studies have shown
that each cerebellar region can be linked to a region in the cerebral
cortex (A–D). (A-B) the 7-Network functional maps of the cerebral
cortex. (C-D) the 17-Network functional maps of the cerebral cortex.
(E) The 17-Network functional map in the cerebellum. Figure repro-
duced, with permission, from Sokolov, Miall, and Ivry (2017), origi-

nally adapted from Buckner et al., 2011 and Yeo et al. (2011).

cerebellum in motor function and cognition, see (Koziol et al., 2014).
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2 Gross Anatomy of the Human Cerebellum

FIGURE 1.5: Gross Anatomy of the Cerebellum. On the rostral-caudal
directions, the cerebellum is divided into two large lobes along with a
smaller third lobe: The anterior sensorimotor lobe, the posterior cogni-
tive lobe, and the smaller floccunolodular lobe involved in vestibular
functions. The two main lobes are separated by the primary fissure.
On the transversal direction, the cerebellum is made up of two large
lateral hemispheres, connected to the contralateral hemispheres in the
cerebral cortex, separated by a thin intermediary zone called the ver-
mis that is mainly involved in limbic functions. Figure adapted from

Neuroscience Online.

The cerebellum is located at the base of the brain in the "hindbrain" region, with

the cerebral cortex above it and the brain stem in front of it. The cerebellum is

separated from the cerebrum by a layer of tough dura mater. The human cerebel-

lum consists of three lobes and two hemispheres connected by a narrow midline

structure, called the vermis (Figure 1.5). The hemispheres and the vermis are each

divided into 10 lobules, with the primary fissure defining the border between the

anterior "sensorimotor" and posterior "cognitive" lobes. Similarly to the cerebral

cortex, the cerebellum has an outer cortical layer made up of a very tightly folded

https://nba.uth.tmc.edu/neuroscience/m/s3/chapter05.html
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layer of gray matter (GM): the cerebellar cortex. The cerebellar cortex has a highly

conserved "crystal like" structure laid out with a highly stereotyped geometry (i.e.,

accordion-like ridges) and consisting of three layers: Molecular layer, Purkinje cell

layer, and Granule cell layer each having different cytoarchitectonic features. Each

ridge of the cerebellar cortex is called a folium (Figure 1.5; top left). It is estimated

that, if the human cerebellar cortex is unfolded, it would span about 1 meter long

and 5 centimeters wide. Beneath the GM there is an inner layer of white matter

(WM) that contains small but dense clusters of GM called the deep cerebellar nuclei;

the main output of the cerebellum to other brain regions. The input to the cerebel-

lum comes from the pontine nuclei in the pons; the pontine nuclei receive extensive

projections from the cerebral cortical and sub-cortical regions and then relays the

information to the cerebellar cortex or directly to the deep cerebellar nuclei. The

cerebellar cortex (the Purkinje cell layer) processes the input information and also

relays them to deep cerebellar nuclei in the form of inhibitory synapses. Finally,

the deep cerebellar nuclei, especially the dentate nucleus, send efferent signals to

the cerebral cortex and subcortex via direct connections with the thalamus. This

polysynaptic network has been the major contributor to the ambiguity surround-

ing the organization and functions of the cerebellum, mainly because conventional

anterograde and retrograde tracing techniques do not cross poly-synapses. For a

detailed description of the cerebellum’s gross anatomy, the reader is referred to the

textbooks and reviews on the subject, such as (Schmahmann et al., 2000; Voogd and

Glickstein, 1998).

3 Functional Organization of the Human Cerebellum

In recent years, there has been an great effort to map the complete functional orga-

nization of the human cerebellum using fMRI. Early task-based fMRI studies have

provided traction and a general sense for how the cerebellum might be function-

ally organized, but they have only revealed discrete maps of few active regions in

response to an externally-cued stimuli (Stoodley, Valera, and Schmahmann, 2012).

Recently, however, there has been a major effort by King et al. (2019) to make a

functional map of the entire cerebellar cortex using a large multi-domain battery
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FIGURE 1.6: Buckner’s 7-Networks cerebellar map (left) based on a
"winner-takes-all" strategy that assigns each voxel in the cerebellum to
a cerebral cortex network (right) based on maximum functional con-
nectivity. Figure adapted from Buckner et al., 2011, with permission.

of 47 tasks and long hours of task fMRI scans. Findings from this study have un-

covered a detailed map of ten cerebellar functional zones related to tasks of lan-

guage, working memory, motor planning, emotion processing, and autobiographi-

cal memory, among others (Figure ??. As expected by the authors, strict anatomical

lobular boundaries, commonly used to describe different functional zones in the

cerebellum, did not perfectly coincide with the functional subdivisions, suggest-

ing that lobular representations of the cerebellum are not suitable to explore its

function. Shortly before that, however, parsimonious functional organization maps

in the cerebellum have come from task-free, or rsfMRI studies (Allen et al., 2005;

Buckner et al., 2011; Habas et al., 2009; Strick, Dum, and Fiez, 2009). These stud-

ies have been motivated by preceding similar studies that focused on delineating

the complete functional organization of human cerebral cortex by analyzing the
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FIGURE 1.7: Mapping of cerebellar functional networks to anatomical
boundaries. DMN=Default Mode Network, FPN=Fronto-Parietal Net-
work, PFC: Prefrontal Cortex. Figure adapted from Bernard and Mittal

(2014), with permission.

resting-state FC patterns between brain regions in large datasets using data-driven

techniques (Buckner et al., 2011). Of particular importance, is the study by Buck-

ner et al. (2011) who used a "winner-takes-all" strategy that assigns each cerebellar

region to the cerebral cortical network (Power et al., 2011; Yeo et al., 2011) with the

most similar profile of connectivity, in a large group of healthy subjects (N=1000).

This yielded a 7-Network map (Figure 1.6) of major cerebellar networks as well as

a 17-network map, mirroring the 7 and 17-Network maps (Figure 1.4) previously

delineated in the cerebral cortex (Yeo et al., 2011). These cerebellar functional maps

included representations of most well-known cerebral resting-state networks, with

findings showing that the majority of the cerebellum maps onto higher-order cog-

nitive networks (Buckner, 2013).

On the group level, cerebellar functional networks are dominated by common

organizational principles (Marek et al., 2018). That is, sensorimotor networks are

contralaterally represented in two maps: the primary representation in the ante-

rior cerebellum (overlapping with lobules I-IV and V and extending into lobule VI)

and a smaller secondary representation (lobule VIII) in the posterior cerebellum,

whereas the cognitive networks are represented in three maps (overlapping with

lobules IV/V/VI/Crus I, lobules Crus II/VIIB/VIII and lobules IX/X) situated in
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the posterior and lateral cerebellar regions in between the primary and secondary

motor maps (see Figures 1.6 and 1.7; and Bernard et al., 2012; Guell, Gabrieli, and

Schmahmann, 2018b for reviews). Yet, on the individual subject level the cortical

network representations are highly subject-specific in terms of distribution, size,

and location, especially within the cognitive cerebellum (Marek et al., 2018). Using

the highly-sampled Midnight Scan Club (MSC) dataset (10 subjects, 10 sessions),

Marek et al. (2018) found that the cerebellum contains reliable, individual-specific

network organization that varies significantly when compared to the cerebral cor-

tex. Moreover, across all individuals, the frontoparietal network, thought to sup-

port adaptive control, was the only network to be over-represented in the cerebel-

lum compared to the cerebral cortex.

Recently, there has been a focus on deriving functional connectivity "gradients"

using a a nonlinear dimensionality reduction technique and can be used to analyze

similarities between FC profiles across the brain, known as diffusion embedding

(Coifman et al., 2005). Margulies et al. (2016) used diffusion embedding to provide

a simple and powerful description of a principal gradient of resting-state FC in the

cerebral cortex. This study revealed representational gradient-like hierarchies of

information processing ranging from specialized unimodal motor regions to inte-

grative transmodal regions (DMN), confirming a hypothesized primary-unimodal-

transmodal hierarchical principle of the cerebral cortex (Mesulam, 1998). Inspired

by these findings, Guell et al. (2018) used diffusion embedding to compute FC

gradients within the cerebellum (Figure 1.8). Comparing their results with the

whole-cerebellum map obtained by Buckner et al. (2011) and task activation maps,

the authors have shown, for the first time, that the cerebellum follows a gradual

"gradient-like" organization which progresses from primary (motor) to transmodal

(DMN) regions, mirroring that of the cerebral cortex. Also, a secondary axis was re-

vealed that extends from DMN to executive control processing. Further, these two

principal gradients revealed the general organizational principal of the cerebellum

that defines the relationship between the double motor representation (lobules I-VI

and VIII), and a triple nonmotor/cognitive representation (lobules VI/Crus I, Crus

II/VIIB, IX/X) defined in earlier study by the same authors \citet {guell2018triple}.
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For other prominent works on the functional network organization of the cerebel-

lum, see these key papers Allen et al., 2005; Buckner et al., 2011; Habas et al., 2009;

Guell et al., 2018; King et al., 2019; Krienen and Buckner, 2009; Marek et al., 2018;

O’reilly et al., 2010; Strick, Dum, and Fiez, 2009.

4 Theories of Cerebellar Function and Dysfunction

4.1 Universal Cerebellar Transform

The cerebellar cortical architecture is essentially invariant throughout (contrasting

with the heterogeneous cerebral cytoarchitecture), which has given rise to the idea

that the cerebellum performs a domain-general function across sensorimotor and

cognitive processes, a principle expressed in the notion of the universal cerebellar

transform (UCT) (Schmahmann, 2000). Superimposed upon the UCT principle is

the presence of highly organized and functionally diverse cerebellar connections

with the cerebral cortex, sub-cortex, brain stem, and spinal cord, enabling the cere-

bellum to modulate diverse streams of information that originate in unimodal and

multimodal brain systems, in a concise and contextual manner (Guell, Gabrieli,

and Schmahmann, 2018c). This functional diversity might not be compatible with

the UCT, but cerebellar regions are thought to differ in the projections of their in-

puts and outputs to different brain regions, while performing similar computations

(Voogd and Glickstein, 1998; Schmahmann, 2016b). The cerebellum thus supports

an "embodiment" of cognition, which involves a constitutive dependence between

sensorimotor, cognitive, and affective functions, by integrating multiple internal

representations with external stimuli and self-generated responses and, ultimately

optimizing performance (Guell, Gabrieli, and Schmahmann, 2018a). This univer-

sal integrative principle of cerebellar functioning maintains movement, cognition,

and behavior fine-tuned around a homeostatic baseline (Diedrichsen et al., 2019;

Schmahmann, 2016b; Schmahmann, 2019; Sokolov, Miall, and Ivry, 2017).
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FIGURE 1.8: Cerebellar functional connectivity gradients and their re-
lationship with task activity maps (from Guell, Gabrieli, and Schmah-
mann, 2018b) and resting-state maps (from Buckner et al., 2011). Gra-
dient 1 extended from motor regions to language/DMN regions. Gra-
dient 2 extends from DMN regions to executive control regions. (A)
Cerebellum flatmap of gradients 1, gradient 2, and a lobular atlas of
the cerebellum. (B) Scatter plot of the first two gradients. Each dot
corresponds to a cerebellar voxel, position of each dot along x and y
axis corresponds to position along Gradient 1 and Gradient 2 for that
cerebellar voxel, and color of the dot corresponds to task activity (top)
or resting-state network (bottom) associated with that particular voxel.

Figure reproduced from Guell et al. (2018), with permission.
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4.2 The Dysmetria of Thought Theory

Besides the recent characterizations of cerebellar cytoarchitecture and functional or-

ganization, the theories of UCT and embodied cerebellar cognition have been sup-

ported by recurring observations of common patterns of deficits across sensorimo-

tor and cognitive domains caused by cerebellar injury or brain disorders, notably

addiction (Schmahmann, 1998; Sullivan and Pfefferbaum, 2005). Based on these ob-

servations and given that the UCT is the essential functional/computational contri-

bution that the cerebellum offers to distributed neural systems, then, by deduction,

there should be universal cerebellar impairments that manifest uniformly across

disparate functions (Schmahmann et al., 2019). In this context, many studies have

converged on consistent findings that while brain cortical damage may result in

a total loss of a certain function, cerebellar damage degrades the precision, tim-

ing, and efficiency of that function as observed in patients with linguistic deficits,

executive deficits as well as motor dis-coordination or ataxia (Guell et al., 2018).

These universal cerebellar impairments are collectively defined within the "Dys-

metria of Thought" theory (Guell, Hoche, and Schmahmann, 2015). In this sense,

when the dystmetria of thought involves the motor domain, the various manifes-

tations of ataxia are evident in loss of coordination in limb movements, eye move-

ments, gait, and speech. However, when the dysmetria involves non-motor, cog-

nitive functions subserved by the posterior cerebellum, it results in cognitive dys-

metria, and manifests as the various components of the cerebellar cognitive affec-

tive syndrome, or CCAS. Patients with cognitive/affective cerebellar dysfunction

may struggle with depressive symptoms and other forms of emotional distress, re-

flecting dis-coordinated emotions, in addition to impairments in cognitive flexibil-

ity, decision making, and attention, which manifest as impulsive and compulsive

symptoms as well as impaired ability to multitask automatically (Schmahmann and

Sherman, 1997). For more comprehensive reviews on dysmetria of thought, see

Guell, Gabrieli, and Schmahmann (2018a), Schmahmann (2004), and Schmahmann

et al. (2019).
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5 Summary

In this introductory literature review chapter, we reviewed some of the main find-

ings that have ascribed the cerebellum an important role in the cognitive domains.

First, we have summarized the progression of cerebellar neuroscience research from

the traditional purely motor models to the complex cognitive models, which has

been largely facilitated by the introduction of novel methods to viral tract trac-

ing, careful observations of cognitive deficits in patients with cerebellar damage,

and, most importantly, the rise of functional neuroimaging to prominence in neu-

roscience, most notably fMRI. Then, we briefly revisited the gross anatomy of the

cerebellum and laid special emphasis on its functional network organization that

has been mapped entirely using different analysis techniques across task-based and

resting-state fMRI datasets. Finally, we have reviewed the most prominent theories

of cerebellar function and dysfunction, namely the Universal Cerebellar Transform

and Dysmetria of thought.
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Chapter 2

Functional Magnetic Resonance

Imaging and Functional Connectivity

Analysis: A General Overview

Abstract

Functional neuroimaging encompasses a wide variety of modalities that can be used to explore

brain function and relate a change in brain activity or connectivity with behavior, cognition, and

psychopathology. Some modalities directly record neuronal activity as electrophysiological signals

or magnetic fields, while other modalities measure changes in glucose or blood oxygen consump-

tion as surrogates of neuronal activity. Of all the functional neuroimaging techniques, functional

magnetic resonance imaging (fMRI) has been the most influential in transforming and revolutioniz-

ing neuroscience in a relatively short period of time. Since the early 1990s, fMRI has offered various

advances over other modalities, such as the non-invasive and non-ionizing use, enhanced spatial

resolution, and the ability to explore all brain regions, not just those close to the surface. These fea-

tures have enabled modern day neuroscientists to explore and infer brain-behavior relationships,

non-invasively, in vivo, by measuring localized brain activity in response to task demands, evaluat-

ing functional connectivity (FC) patterns during resting-state and task, and correlating these with

cognition, behavior, and pathophysiology. This general overview chapter summarizes some impor-

tant checkpoints in the relatively short history of fMRI, highlighting the early debates surrounding

the nature of brain function and how the introduction of fMRI catalyzed successive waves of ef-

forts to map the human brain at multiple scales of space, time, and topology. Then, the chapter

summarizes the bases of fMRI, the preprocessing steps necessary to remove background noise, and

some of most commonly used methods used in the analysis of FC. Last and foremost, considering

that the brain is a dynamic interconnected system, this chapter highlights the shortcomings of tra-

ditional time-averaged FC analysis and summarizes some of the approaches tailored for analyzing

time-varying FC beyond simple scan-length averages.
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1 Functional MRI and Neuroscience: A Brief History

Since its introduction to the clinical and research practices in the early 1980s, mag-

netic resonance imaging (MRI) has radically transformed the way we look at and

explore the human and animal body. With MRI, the ability to diagnose condi-

tions, plan treatments and assess the effectiveness of previous treatments has been

greatly enhanced. In fact, MRI is considered a medical marvel with an unparal-

leled, non-invasive and non-ionizing use and an unprecedented spatial resolution

not offered by other imaging modalities. Over the years, MRI has advanced into

a brain imaging (or neuroimaging) modality that continues to provide us with

new insights into the morphology and pathomorphology of the brain. However,

major breakthroughs in fundamental brain research have been made in the past

two decades owing to the development of functional magnetic resonance imaging

(fMRI), informing us of the function and dysfunction of brain at different timescales

and across different populations. Informed by fMRI, sophisticated models of brain

function, structure, and physiology are constantly evolving and enhancing our un-

derstanding of the human and animal brain.

1.1 Early Beginnings: Functional Localization

Over the past few decades, the scope of neuroscience has expanded enormously to

include a multitude of functional neuroimaging modalities that enable exploring

the brain at multiple spatiotemporal scales, from individual neurons to large-scale

brain systems and on timescales extending from milliseconds to hours (Figure 2.1).

However, much of the growth of today’s neuroscience, and more specifically cog-

nitive neuroscience, in terms of prevalence, impact, and scope is attributed to the

advent of MRI-based technologies, especially fMRI (Poldrack, 2008).

Functional MRI emerged in the early 1990s (Kwong et al., 1992; Ogawa et al.,

1990) as a non-invasive, in vivo and easy-to-use MRI-based technique to explore

brain function rather than anatomy at a relatively enhanced spatial resolution com-

pared with other modalities at the time (Figure 2.1). In a relatively short period of
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FIGURE 2.1: The spatial and temporal resolutions of the mostly used modalities that mea-
sure brain activity, as available in 2014 (large window) and 1988 (small window). A typical
fMRI acquisition (as of 2014) enjoys a range of spatial resolutions on the order of≈ 0.5—200
mm (i.e., from layers to whole brain coverage) and temporal resolutions on the order of few
seconds to hours. Figure reproduced from Sejnowski, Churchland, and Movshon (2014),

with permission.

time, fMRI has become a prominent neuroimaging modality in cognitive and sys-

tems neuroscience and has given rise to a new era of brain research, extending in-

vasive approaches for measuring brain activity in animals to exploring the function

and dysfunction of the living human brain (Sutterer and Tranel, 2017). The rise of

fMRI to prominence coincided with an exponential increase in computer processing

power, which has afforded neuroscientists with the means to ask and pursue funda-

mental questions about the human brain. Importantly, neuroscientists are now able

to measure and begin to understand how the brain, with all its complexity, enable

the mind and constrain behavior—a concept regarded as the "holy grail" of cogni-

tive neuroscience. In this context, modern day neuroscientists use fMRI to explore

different properties of brain activity during task performance and wakeful rest in

relation to behavior across different populations. In a nutshell, brain activity can

be measured by harnessing the temporal changes in regional cerebral blood flow
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(CBF) and blood oxygen level as markers of brain metabolism, which in turn is a

surrogate of neuronal activity (Glover, 2011).

Prior to the development of neuroimaging, neuroscientists did not have an easy

access to the living human brain in order to make inferences about the relation-

ship between brain function and behavior. Early studies of brain-behavior relation-

ships, from the 19th and early 20th centuries, mainly focused on brain physiology

and lesions in animal models and local brain damage underlying a given behav-

ioral syndrome in humans. Then, upon the death of a patient with brain damage,

postmortem autopsies provided the confirmatory information about the site of the

damage causing a specific syndrome, such as non-fluent or expressive aphasia; the

famous Paul Broca’s observation that speech deficits are caused by injuries targeting

the left inferior frontal gyrus (Sutterer and Tranel, 2017). This observation, among

many others at the time, fortified the belief in the existence of localized language

centers in the human brain and later culminated in the emergence of the functional

localization/specialization theory, holding that the brain is organized into spatially

constrained and isolated regions each responsible of a specific function. Although

sharply criticized, this school of thought has contributed to a better understanding

of the functional organization of the brain and has found support in surgical neu-

rology, anatomy, physiology, and electrophysiology (Finger, 2009; Friston, 2011). Of

note, other pseudo-scientific approaches that advocated functional specialization

existed such as phrenology that argued that personality could be determined by

the local variations in the shape of the skull (Renneville, 2020).

The advent of MRI-based neuroimaging modalities, more than a century after

Broca’s observation, has paved the way for non-invasive and precise anatomical

localization of functions in living patients with cognitive and behavioral deficits

caused by brain injury and has significantly reduced the reliance on postmortem

autopsies for inferring brain–behavior relationships (Karnath, Sperber, and Ror-

den, 2018). Moreover, the unprecedented combination of spatial and temporal res-

olutions provided by fMRI (Figure 2.1) has triggered a wave of studies focused

on localizing brain regions, in healthy and diseased brains, that are active during

the performance of a variety of tasks such as finger tapping (Biswal et al., 1995),

language production (Binder et al., 1997), semantic memory (Hantke et al., 2013),
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working memory, visual attention (Tomasi et al., 2007), moral judgement (Greene

et al., 2001) and executive functions (Sylvester et al., 2003), to name a few. The dom-

inance of such studies in the early days of fMRI tacitly mirrored the early localiza-

tionist ambitions and the views of the brain as reflexive structure, driven by the

momentary demands of the environment (Raichle, 2010; Sutterer and Tranel, 2017).

This type of studies is still performed today (although not dominant anymore) and

has significantly advanced our understanding of the function and dysfunction of

disparate brain structures.

Yet, even with the use of non-invasive neuroimaging modalities, fundamental

questions have always faced the localizationist and reflexive views of brain func-

tion. For instance, how modular is the functional organization of the brain with

respect to functions? In other words, is there an accurate one-to-one map between

functions and brain regions or is the coding more complex? Additionally, how are

complex sequential behaviors (e.g., playing a piece on the piano) rapidly generated

from highly specialized, segregated regions that are presumably discrete and do

not interact? Moreover, how can the reflexive theory of brain function explain the

brain’s high energy expenditure in the absence of external task demands?

Unfortunately, task-activation fMRI experiments can reveal only a small frac-

tion of the actual spectrum of functions performed by the human brain and cannot,

alone, answer these fundamental questions (Raichle, 2010). Thus, there seems to be

a discrepancy between how the brain has been traditionally thought to function and

how humans actually behave and interact with their surrounding. Interestingly, a

second wave of fMRI studies has quickly followed and dominated fMRI research,

focusing on inter-regional interactions and brain networks as mediators and en-

coders of complex human behaviors, even in the absence of an externally directed

task (Sutterer and Tranel, 2017). This has been motivated by a growing recognition

in cognitive and systems neuroscience that frameworks focusing on singular neural

substrates cannot account for all aspects of human behavior and brain disorders.
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1.2 The Shift Towards Functional Integration

The localizationist view of brain function has been unable to explain how the brain

incorporates and interprets information from multiple external and internal sources

and give rise to complex behaviors and efficient cognitive processing. Therefore, it

is highly unlikely that any region acts independently in isolation from the rest of

the brain. This idea actually goes back to connectionist theories of the late 19th

and early 20th centuries. These theories have advocated an integrative theory of

brain function, which posits that complex brain processes are an emergent property

of dynamic interactions among spatially distributed brain regions that form dense

neural networks and operate in parallel (Benton, 1969; Sutterer and Tranel, 2017).

Early pioneers in neuroscience—such as Santiago Ramón y Cajal, Camillo Golgi,

Carl Wernicke, and Korbinian Brodmann—were interested in understanding the

laws that govern the central nervous system through network representations (For-

nito, Zalesky, and Bullmore, 2016). For example, the famous Wernicke-Lichtheim

network model of aphasia is among the very first macroscale representations of a

network linking a language generation region (i.e., Broca’s area) to a language com-

prehension region (i.e., Wernicke’s area). However, at the time of Wernicke, due

to methodological weaknesses and the reliance on postmortem autopsies to infer

brain-behavior relationships, the progress of network approaches in neuroscience

was slow and somewhat eclipsed by localizationist and psychological models of

behavior and brain disorders (Fornito, Zalesky, and Bullmore, 2016). Neverthe-

less, the early diagrams of large-scale networks and later influential research work

of Norman Geschwind on disconnection syndromes (Geschwind, 1974) have set

the stage for the emergence and dominance of the functional integration theory

and the concept of the connectome, which have been substantially supported by

the development of electrophysiological and functional neuroimaging modalities,

especially fMRI (Figure 2.2; see Cohen and D’Esposito (2016), Deco et al. (2015),

Raichle (2010), Sporns (2013), and Varela et al. (2001) for comprehensive reviews).

Around the mid to late 20th century, the debate between the localizationist and
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connectionist views had been gradually relaxing when it finally came into an un-

easy balance that coincided with the early rise of fMRI as a predominant neu-

roimaging modality in the 1990s (Friston, 2011; Sutterer and Tranel, 2017). Shortly

before that, however, it has been known that coordinated fluctuations in the neu-

ronal activity of distributed brain regions are critical for complex behavior and

higher-level cognition (Friston, 1994). In fact, at this point in time, a majority of

neuroscientists has started advocating the network theory believed to combine lo-

calizationism, globalism (or holism), and disconnection theories into one ensemble

(Figure 2.2). In particular, the theory posits that functions are localized to some de-

gree in interconnected regions forming networks, the networks can be thought of as

broad functional systems separately and collectively subserving a variety of func-

tions, and the disconnection of different parts of a network induces heterogeneous

effects based on the features of the isolated regions (Sutterer and Tranel, 2017).

These concepts have caught the attention of the nascent fMRI community, but

have taken sometime to culminate into a promising field of research in fMRI. This

is because the great success of task-evoked, localized brain activation studies, that

briefly dominated the early days of fMRI, overshadowed efforts to map brain net-

works and understand their intricacies (Raichle, 2010). However, the past two and

the half decades have witnessed a paradigm shift and a second wave of studies

focused on functional networks and patterns of synchronized activity (i.e., connec-

tivity) among distributed brain regions (Biswal et al., 1995; Fox et al., 2005; Van Den

Heuvel and Pol, 2010). These studies rely on the concepts of functional and effective

connectivity, previously used in EEG and PET studies, to quantify functional inte-

gration among remote regions in the brain (see Friston (1994) and Friston (2011) for

reviews on the topic).

Functional connectivity (FC) has been, and still is, the predominant measure of

functional integration and is formally defined as the temporal correlation (or statis-

tical dependence) between remote neurophysiological events (i.e., neuronal signals,

changes in CBF and oxygen level) recorded simultaneously in distinct brain regions,

whereas effective connectivity is defined as the magnitude of directed causal influ-

ences that neural populations exert over another (Friston, 2011). These measures

have provided the much needed platform to explore how information is allocated



40 Chapter 2. Overview of fMRI and Functional Connectivity Analysis

FIGURE 2.2: Complex network topology (left) arises from a balance between a high-cost,
largely integrated workspace (top stream) that supports fluid intelligence, problem solv-
ing, planning, executive functions, and effortful information processing; and segregated
modules (bottom stream) specialized, automated, and unconscious information processing.
Figure reproduced from Fornito, Zalesky, and Bullmore (2016), with permission, Copyright

(2016) Elsevier Inc., London, UK

and processed in the brain and manifest as complex behaviors, and how does the

brain’s network organization vary as function of age, gender, learning, task condi-

tions, and brain disease (Van Den Heuvel and Pol, 2010). Studies of fMRI FC have

revealed interesting findings of the functional repertoire of different large-scale net-

works as well as their hierarchical topology, spatial and temporal dynamics, and

disturbances across brain disorders (Buckner, Krienen, and Yeo, 2013; Fox et al.,

2005; Lurie et al., 2020; Van Den Heuvel and Pol, 2010). Perhaps one of the fun-

damental discoveries in this area is that regions that are active together during the

task performance maintain signatures of their interactions that can be detected dur-

ing rest (Biswal et al., 1995). This discovery has opened a window for new research

perspectives in cognitive and systems neuroscience and paved the way for the dis-

covery of a cognitively rich intrinsic network architecture in the "resting" brain,
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which in fact reflects a "restless brain" (Biswal et al., 1995; Raichle, 2011).

1.3 The Restless Brain

The living human brain exhibits an ongoing “stream of consciousness" regardless

of the presence or absence of an explicit behavior (Raichle, 2011). In fact, this idea

of a "restless brain" has philosophical roots in ancient history. Around the year 60

CE, the Roman stoic philosopher Seneca stated: “The fact that the body is lying down

is no reason for supposing that the mind is at peace. Rest is... far from restful” (Seneca,

2016). Centuries later, in the late 1800s, William James stated: "Whilst part of what

we perceive comes through our senses from the object before us, another part (and it may be

the larger part) always comes out of our own mind" (James, 2007). Shortly after James,

a number of neuroscientists argued that the brain is not primarily reflexive, but

rather exhibits an intrinsic function beyond simple responses to stimuli (Raichle,

2010). However, these claims were given little credence at the time. Many years af-

ter Seneca and James, and with the development of electrophysiological recording,

optical imaging, MR spectroscopy, PET, and ultimately fMRI, neuroscientists have

detected spontaneous yet strikingly coherent fluctuations in brain activity while

subjects rested in a state of mind wandering. However, the discovery of this re-

markable property of brain activity had been motivated, in large, by questions of

neurobiology before being harnessed by cognitive theories (see Raichle (2010) and

Snyder and Raichle (2012) for comprehensive historical reviews).

In the early to mid 20th century, scalp EEG and averaged evoked response po-

tentials have enabled researchers to extract reproducible waveforms of ongoing

brain activity and relate them to external stimuli (Snyder and Raichle, 2012). Al-

though the pioneers of EEG understood that explicit "mental activity" only slightly

increments cortical work which is already going on continuously (Millett, 2001),

almost all of the research work carried using EEG has been based on phase syn-

chrony between extracted waveforms and external events of interest (Snyder and

Raichle, 2012). Interestingly, around the same time period, seminal studies focus-

ing on whole-brain metabolism in resting state have revealed that the brain, while

contributing to only 2% of the body weight, consumes around 20% of the body’s
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FIGURE 2.3: Resting-state fMRI studies have converged on a set of large-scale resting-state
networks (RSNs) that are reproducible across healthy and diseased individuals. Of those
networks is the default mode network (DMN; top-left) that subtends the posterior cingu-
late cortex, the medial prefrontal cortex, and angular gyrus. This RSN is active during
mind wandering, daydreaming, planning the future, and remembering the past. This fig-

ure adapted from Raichle (2011), with permission.

energy (Sokoloff et al., 1955). Later studies using similar approaches have revealed

that the energy expenditure of the brain during "mental activity" is too low (com-

pared with resting state) to be detected, and that the resting state accounts for the

majority of the brain’s metabolic costs (Snyder and Raichle, 2012; Sokoloff et al.,

1955). Moreover, long before fMRI, studies of spontaneous fluctuations in regional

oxygen concentration have reported low-frequency (< 0.1 Hz) variations in oxygen

levels that are synchronous in homologous regions in both brain hemispheres and

increase with the presentation of an external stimuli (Cooper and Crow, 1975; Sny-

der and Raichle, 2012). These early findings, among others, have confirmed that the

resting brain is actually not in a "resting state", in the literal sense. Nevertheless, up

until cognitive neuroscientists started using functional neuroimaging modalities, it



1. Functional MRI and Neuroscience: A Brief History 43

was not clear how to undertake a study of spontaneous brain activity to infer brain-

behavior relationships and understand the organizational principles of the human

brain.

With the development of fMRI, evidence of spontaneous brain activity and, con-

sequently, inter-regional FC in subjects lying still in an MRI scanner, has affirmed,

without any doubt, the presence of a spatially organized and cognitively rich spon-

taneous activity in the human brain. The first attempt to explore spontaneous ac-

tivity and resting-state FC using fMRI was in a study by Biswal et al. (1995) who

reported that low frequency, spontaneous fluctuations (< 0.1Hz) in activity of the

left and right primary motor cortices highly synchronize with each other and also

with those in other brain regions. This seminal study has revealed, for the first time,

that a considerable fraction of the spontaneous fluctuations (previously regarded as

noise) exhibits patterns of signal coherence within known brain systems. Interest-

ingly, these resting state patterns strikingly mirrored those observed when subjects

performed a finger tapping task (Biswal et al., 1995). In the decade following these

findings, resting-state fMRI (rsfMRI) would become one of the core research ap-

proaches used by neuroscientists to evaluate inter-regional FC in the brain (Buck-

ner, Krienen, and Yeo, 2013). In this context, studies have found that individual dif-

ferences in resting state FC can predict phenotypic traits (Smith et al., 2015), cogni-

tive performance (Rosenberg et al., 2016), age, gender, and even individual identity

(brain "fingerprinting"; Finn et al., 2015). Despite its many limitations, such as the

sensitivity to physiological noise and in scanner head motion and the lack of control

over an individual’s cognitive state, rsfMRI has proven to be well-suited for explor-

ing the brain’s functional organization, inferring brain-behavior relationships, and

extracting relevant biomarkers for brain disorders (Greicius, 2008; Ichikawa et al.,

2017; Liégeois et al., 2019; Smith et al., 2015).

A great advantage of rsfMRI over task-based fMRI experiments, which typi-

cally highlight a single brain network or region associated with a task, is that they

provide a means to explore multiple functional networks at once, with minimal

constraints and enhanced analytic flexibility (Lv et al., 2018). As a result, studies of

resting state FC have converged on a set of large-scale networks (Figure 2.3) char-

acterized by strong intraconnections and weaker interconnections. These canonical
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modules, commonly known as resting-state networks (RSNs), form the backbone of

global brain connectivity, are consistently detected across populations, and highly

correspond with task-evoked co-activation patterns (Figure 2.5; Calhoun, Kiehl,

and Pearlson (2008), Damoiseaux et al. (2006), Power et al. (2011), Rosazza and

Minati (2011), Smith et al. (2009), and Yeo et al. (2011)). Moreover, these networks

exhibit a hierarchical organization transcending single-resolution maps showing

large-scale RSNs. For instance, using clustering techniques on rsfMRI, Schaefer et

al., 2017 have been able to generate up to 1000 functionally homogeneous regions

in the cerebral cortex (Figure 2.4) that, when grouped together, highly overlap with

large-scale brain network organization (7 or 17 networks) previously identified by

Yeo et al. (2011) in a large dataset of healthy individuals.

One of the most intriguing and highly-studied networks is the default mode

network of the brain, or the DMN. First discovered by Shulman et al. (1997) using

PET and then by Raichle et al. (2001) using rsfMRI, the DMN, or the "task-negative"

network, is activated when individuals focus their attention on internally oriented

tasks such as daydreaming, planning the future, processing personal/familial in-

formation, retrieving autobiographical memories, and gauging the perspectives of

others (Raichle et al., 2001; Greicius et al., 2003). More RSNs that subserve other

brain functions including executive-control, attention, language, salience, visual,

sensorimotor, auditory, and limbic networks have been identified (Buckner et al.,

2011; Choi, Yeo, and Buckner, 2012; Fox et al., 2006; Dosenbach et al., 2006; Power

et al., 2011; Seeley et al., 2007; Yeo et al., 2011). Importantly, it has been shown that

these networks reflect a history of co-activation among distributed regions across a

wide range of tasks and encode various aspects of behavior and cognition (Barkhof,

Haller, and Rombouts, 2014; Calhoun, Kiehl, and Pearlson, 2008; Liégeois et al.,

2019; Smith et al., 2009). Moreover, the RSNs are believed to emerge from com-

plex organizational mechanisms and exhibit multiscale spatiotemporal changes as

a function of age, awareness, learning, arousal, and task conditions (Chang and

Glover, 2010). As a result, a large body of literature has been devoted to explore

the principles underlying the emergence of RSNs, their communication routes, and

the roles they play in complex cognitive processes (Power, Schlaggar, and Petersen,

2014). This has required the integration of a wide array of analytical approaches
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FIGURE 2.4: The influential Yeo 7 and 17-Networks map of the functional organization of
the cerebral cortex, each represented by a different color (first row). Second row shows
each functional region from Schaefer et al. (2017) assigned a network color based only on
spatial overlap with networks from Yeo et al. (2011). Clustering of parcels without prior
reference to Yeo’s 7 and 17 Networks shows striking similarity between second and third
rows, suggesting a hierarchical functional network structure in the brain during resting

state. Figure reproduced from Schaefer et al. (2017), with permission.

that have afforded modern day neuroscientists an unprecedented opportunity to

explore the intricacies of the intrinsic functional network organization of the hu-

man brain.

1.4 Contemporary Trends and Future Perspectives

Understanding the organizational principles that give rise to brain networks and,

ultimately, complex human behavior is the crux that drives the search for refined

models of the human brain. In this context, the recent convergence of the opposing



46 Chapter 2. Overview of fMRI and Functional Connectivity Analysis

FIGURE 2.5: RSNs highly resemble task activated networks (left side and right side of (A),
respectively). (A) Rest and task-evoked networks reported in Smith et al., 2015. Networks
are: (1) medial visual, (2) occipital visual, (3) lateral visual, (4) default mode, (5) cerebellum,
(6) sensorimotor, (7) auditory, (8) frontal executive/salience, (9) right frontoparietal, and
(10) left frontoparietal. (B) Sensorimotor network during finger tapping task (top) and dur-
ing resting-state from the seminal resting-state fMRI study by Biswal et al. (1995). Figures
adapted from Barkhof, Haller, and Rombouts (2014) and Biswal et al. (1995), with permis-

sions.

views of brain function has motivated neuroscientists to model the brain as a com-

plex interconnected system with small-world properties that supports both spe-

cialized and distributed processing of information and transcends multiple levels

of space, time, and topology (Achard et al., 2006; Bassett and Bullmore, 2006; Bassett

and Bullmore, 2017; Betzel and Bassett, 2017; Bullmore and Sporns, 2009; Sporns,

2018). Roughly speaking, a network is said to have small-world properties if any

two of its components can efficiently communicate and share information through

a short sequence of connections (Achard et al., 2006). Another important property

that is highly associated with small-world networks is the over-abundance of net-

work hubs, which are network components that play multiple roles and enable effi-

cient signaling within the network through strategic short-range connections with

many network components (Achard et al., 2006; Crossley et al., 2014; Heuvel and

Sporns, 2013). These ideas are not totally new to neuroscience; in fact, Santiago

Ramón y Cajal was among the first neuroscientists to anticipate these aspects of
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brain network architecture (Fornito, Zalesky, and Bullmore, 2016). He believed that

the morphological confirmations of neurons are governed by laws of conservation

of time, space, and material. However, at the time of Cajal, apart from delineating

small sets of anatomical neural connections, it was not possible to measure how the

brain combines two archetypal extremes that can, ultimately, give rise to efficient,

ongoing cognition from the integration of discrete sets of external and internal in-

formation (Achard et al., 2006; Bassett and Bullmore, 2006).

In recent times, this representation of the brain experienced a theoretical and

computational revolution that is breaching neuroscience research, allowing neuro-

scientists to explore the overwhelming complexity of the human brain across mul-

tiple scales and dimensions and model its structure and function from new per-

spectives, sometimes combining them together (see Huang and Ding (2016) for a

review). The advances in fMRI technology in terms of spatial and temporal resolu-

tions, along with unprecedented advances in automated mathematical tools, such

as graph theory and machine learning, have enabled neuroscientists to begin under-

standing the multiscale properties of the human brain (Betzel and Bassett, 2017). On

one hand, graph theory has simplified the analysis of highly detailed brain systems

by providing simple graphical models, implemented using simple mathematical

language, by which myriad biological intricacies of the brain are effectively reduced

to a set of vertices or nodes, representing brain regions, connected by lines or edges,

which represent connectivity (Fornito, Zalesky, and Bullmore, 2016). The applica-

tion of graph theory to rsfMRI data has revealed non-trivial topological properties

of the intrinsic network organization of the human brain (Fornito, Zalesky, and

Bullmore, 2010; Fornito, Zalesky, and Bullmore, 2016; Wang, Zuo, and He, 2010).

Among these is that the brain is a resilient, small-world, and modular network

with a rich-club (i.e., hubs) organization that promotes efficient information alloca-

tion (Achard et al., 2006; Van Den Heuvel and Sporns, 2011; Sporns, 2018).

On the other hand, studies using machine learning to project high-dimensional

resting-state FC data onto a low-dimensional space have revealed representational

gradient-like hierarchies of information processing ranging from specialized uni-

modal regions to integrative transmodal regions (primary-unimodal-transmodal

hierarchy; Figure 2.6; Huntenburg, Bazin, and Margulies, 2018; Sepulcre et al., 2012;
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FIGURE 2.6: Cortical FC gradients 1–3 of the human brain. (A) Gradient 1 is the prin-
cipal axis of connectivity variation and extends from the primary sensorimotor regions
(blue) to transmodal default mode regions (red). (B) Gradient 2 extends from somatomo-
tor/auditory cortices (blue) to the visual cortex (red). (C) Finally, gradient 3 extends from
default mode and sensorimotor regions to executive control regions. Figure adapted from

Margulies et al. (2016).

Guell et al., 2018; Margulies et al., 2016; Mesulam, 1998). The theory of functional

gradients is a new frontier in the field of human brain mapping, promising to re-

veal how the spectrum of cognitive functions emerges from the spatial arrangement

of the brain’s functional modules (Margulies et al., 2016; Huntenburg, Bazin, and

Margulies, 2018). The theory posits that, although the brain is formed of functional

networks of strongly interconnected regions, the spatial arrangement of these is not

arbitrary nor defined by strict borders, but rather by smooth gradients that reflect

a gradual transition of information processing from specialized primary cortices

to multiple demand domain-general systems and, ultimately, to highly-integrative

brain regions that are "insulated" from direct environmental input and hence sup-

port abstraction of information in the form of emotions, memories, and social inter-

actions (Huntenburg, Bazin, and Margulies, 2018; Margulies et al., 2016; Sepulcre

et al., 2012). Importantly, the spatial location of a brain region along these gradients

can determine its functional role (Huntenburg, Bazin, and Margulies, 2018).

Since the early beginnings of fMRI research and up until the early 2010s, al-

most all studies have summarized brain FC over the entire scanning session using

a single measure of dependency per pair of regions, such as correlation or coher-

ence. This approach has been used to identify stable large-scale networks in the

brain and characterize their dominant FC patterns. Additionally, FC averaged over

extended periods of time has been shown to correlate with the structural connec-

tivity between brain regions (Wang et al., 2013). However, the brain is a complex
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multiscale system (Lurie et al., 2020), and in order to adapt to constantly chang-

ing environmental conditions or experimental task demands, it must rapidly re-

configure its network structure and integrate neuronal ensembles in a flexible yet

contextual manner (Zalesky et al., 2014). This physiological reality adds an extra

dimension to the functional organization of the brain; it allows the brain to opti-

mally process multiple inputs and execute complex cognitive processes in a timely

manner through temporal transitioning across a set of recurring network configura-

tions, or states (Figure 2.7), each characterized by a whole-brain FC pattern, a spa-

tial co-activation pattern, a probability of activation/occurrence (Vidaurre, Smith,

and Woolrich, 2017). The time-varying, transient patterns of FC, observed using

fMRI, are believed to index changes in activity at the neuronal level (Hutchison et

al., 2013). Moreover, it has been shown that dynamic or time-varying FC (TVFC)

predicts personality traits (Liégeois et al., 2019), learning capabilities (Bassett et al.,

2011), attention (Madhyastha et al., 2015), cognitive flexibility (Douw et al., 2016),

creativity (Li et al., 2017), and emotional regulation (Betzel et al., 2017), and to ex-

hibit alterations in brain disorders (Braun et al., 2016; Damaraju et al., 2014; Rashid

et al., 2014; Sakoğlu et al., 2010).

With the fast accumulation of evidence on TVFC, the fMRI community grasped

that previous studies have been limited by the assumption of spatiotemporal sta-

tionarity of FC over the scanning session (Calhoun et al., 2014). As a result, the sec-

ond decade of the twenty-first century witnessed a third wave of studies that shifted

from time-averaged measures of FC, to measures of TVFC. This conceptualization

has culminated in the emergence of the field of dynamic functional connectivity as

opposed to the field of traditional methods known as static functional connectivity.

However, like any emerging field of research, TVFC analysis still suffers from con-

tinuous debates, inaccuracies, and controversies regarding the extent to which the

estimates reflect actual changes in neuronal signaling or the extent to which these

estimates are driven by an actual change in cognitive state and not by background

noise (e.g., head motion or cardiovascular and respiratory effects) or sampling vari-

ability (see Lurie et al. (2020) for a review on the topic). Moreover, it still not clear

how to determine if the observed estimates of TVFC are actually "time-varying"

compared with “static” null hypotheses, and what are the properties that define a
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true "dynamic" FC (Liegeois et al., 2017). Furthermore, fundamental questions often

arise regarding how the time-varying integrative topology of the brain fits into the

model of conservation laws and the theory of brain-wide processing hierarchies.

These questions and criticisms suggest that the field is still in its infancy. However,

despite these difficulties, the time-resolved analysis of FC stands out as an attrac-

tive tool with great potential to expand our understanding of brain dynamics and

is likely to remain a promising research frontier in the future (see Calhoun et al.

(2014), Hutchison et al. (2013), Keilholz (2014), Lurie et al. (2020), and Preti, Bolton,

and Ville (2017) for reviews).

FIGURE 2.7: Spontaneous brain activity measured by fMRI has been found to transition be-
tween a set of recurring states each characterized by a unique patterns of functional connec-
tivity (Bottom Panel), a spatial co-activation pattern among brain regions (Middle Panel),
and a probability to be active at timescales shorter than the duration of an fMRI scanning

session. Figure reproduced from Vidaurre, Smith, and Woolrich (2017).

The impact of fMRI on neuroscience has been marked by the old-new debates

and paradigm shifts from localizationist/reflexive to integrative/intrinsic views,
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and recently to brain-wide functional hierarchies that extends beyond single scales

of topology, time, and space. Despite the limitations of fMRI, such as the limited

temporal resolution, the uncertainty of neurobiological interpretations of FC, and

issues of reliability and reproducibility (see Elliott et al. (2020) for a recent review),

there is no doubt that the rich fMRI-based literature has provided an incredible

amount of knowledge about the living human brain. In fact, the comprehensive

mapping of functional systems in the healthy and diseased brain has created an

abundance of data on the human connectome. As a result, functional neuroimag-

ing modalities in general, and in particular fMRI, are rapidly transforming neu-

roscience into the era of "big data". In this context, several large-scale initiatives

have been created to collect and curate high-quality fMRI data from hundreds and

thousands of individuals. These initiatives include, but are not limited to, the Hu-

man connectome project (Van Essen et al., 2013), UK Biobank Imaging Study, Brain

Genomics Superstruct Project (Buckner et al., 2012), Midnight Scan Club, and MPI-

Leipzig Mind-Brain-Body database (Mendes et al., 2019), to name a few. However,

these population imaging protocols entail massive data storage. Thus, online plat-

forms for sharing and organizing multilmodal imaging databases including MRI,

MEG, EEG, iEEG, and ECoG data have been created to accommodate such large-

scale datasets (Gorgolewski et al., 2017). Additionally, another kind of platforms

have emerged, such as NeuroSynth, that aim at creating a generative framework

for automatically synthesizing human fMRI data to distil the extant literature and

achieve a consensus regarding the relationship between brain structure, function,

and observed behavior (Yarkoni et al., 2011). The long-term goals of these ini-

tiatives include constructing the human brain connectome, promoting open neu-

roscience, informing brain-inspired artificial intelligence, and contributing to the

development of novel strategies for diagnosis, treatment, and prognosis of brain

disorders.
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2 Bases of fMRI: From 3D to 4D Images

2.1 Physical Basis of MRI

The complex physics behind MRI and, consequently, fMRI boils down to the inter-

action between strong magnetic fields and protons of atoms that make up biological

tissues. Conventional MRI scanners apply a strong and static magnetic field (1.5,

3, or 7 Tesla) to align the magnetic spin moments of protons along an axis parallel

to the direction of the field, around which they "precess" or rotate in particular fre-

quency. Then, a second magnetic field, known as the gradient field, is applied in

order to define the position, in three dimensional (3D) space, of the protons. This

gradient field distorts the main field in a predictable pattern, inducing gradual vari-

ations in the resonance frequency of protons as a function of their position in space.

Finally, radio-frequency (RF) excitation pulses are emitted to excite the protons to

higher magnetization levels, creating the nuclear magnetic resonance condition by

which protons absorb energy. When the RF field is removed, the protons go back to

their equilibrium or "relaxed" states along the axis of the main magnetic field and

emit electromagnetic radiation (i.e., MR signals) that are recorded using a special

coil and later reconstructed in the form of high-resolution 3D images of the brain

(Figure 2.9). The time required for the magnetization of protons to relax varies from

one tissue type to another depending on their constituent elements and the corre-

sponding number of protons. This difference in relaxation times can be used to

produce contrast among different types of brain tissues. Thus, conventional MRI

scans provide static, high resolution 3D images of the brain, which allow clinicians

and neuroscientists to explore different properties (e.g., volume, shape, etc..) of

brain structures and detect damage caused by strokes or tumors. See Ogawa et al.

(1990) and Wang (2014) for a comprehensive overview of the physics of MRI.

2.2 Bases of fMRI

The central idea underpinning the development of fMRI is to extend conventional

MRI brain scans beyond capturing static 3D images to capturing the temporal
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changes in regional brain metabolism/activity in a 3D+time, or 4D, fashion as prox-

ies to neuronal activity. The physical and physiological bases underlying fMRI,

in its most prevalent form, are based on the blood-oxygenation-level-dependent

(BOLD) effect occurring through the process of hemodynamic response that follows

a neuronal activity (i.e., "firing") combined with the differential physical properties

of hemoglobin. The physiological relationship between brain activity and blood

flow has been around since the late 19th century and was first proposed by Roy

and Sherrington (1890) who stated that "...the brain possesses an intrinsic mech-

anism by which its vascular supply can be varied locally in correspondence with

local variations of functional activity...”. However, the basis of temporal coupling

between cerebral blood flow (CBF) and brain activity now rests on physiological

findings, from the 20th century, holding that neurons, when firing, rapidly consume

available energy and require that oxygen and nutrients be rapidly and continu-

ously delivered by the CBF (Figure 2.8A); a phenomenon known as neurovascular

coupling (see Attwell and Iadecola (2002), Buxton and Frank (1997), and Hosford

and Gourine (2019) for reviews on the topic). When neurons fire as a response to

external or internal stimuli, the hemodynamic response to the neuronal activity in-

duces a rapid delivery of blood oxygen to active neurons at a greater rate than con-

sumed (Raichle and Mintun, 2006). This causes the amount of oxygenated blood

(i.e., oxyhemoglobin) arriving to the site of activity to significantly increase with

respect to the amount of deoxygenated blood (i.e., deoxyhemoglobin) present as a

result of oxygen consumption. This causes a relative difference in the levels of oxy-

hemoglobin and deoxyhemoglobin that is detected on the basis of the differential

magnetic properties of hemoglobin.

Hemoglobin has a varying sensitivity to magnetic fields, depending on whether

it is bound to oxygen molecules or not (Raichle and Mintun, 2006). Particularly,

deoxyhemoglobin is paramagnetic (i.e., it is more attracted to magnetic fields),

whereas oxyhemoglobin is diamagnetic (i.e., it is less responsive to magnetic fields).

Thus, deoxyhemoglobin alone distorts the surrounding magnetic field, causing
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FIGURE 2.8: (A) Cerebral blood flow (CBF) delivers oxygen to "inactive" (left) versus active
(right) neurons. (B) The canonical hemodynamic response function (HRF). As illustrated
in B, after the presentation of a stimuli, an initial dip in the HRF occurs, followed by a fast
rise, peak, a gradual fall, and, finally, a brief "undershoot" where the MR signal falls below
baseline level. Following the onset of neuronal activity, an initial dip (1–2 s) occurs, reflect-
ing a brief decrease in the MR signal and an initial increase in the proportion of deoxyhe-
moglobin to oxyhemoglobin due to fast consumption. Shortly following this local oxygen
deficit, an inflow of oxygenated blood supplies significantly more oxygen than is consumed
to support neuronal activity. This results in a decrease in the ratio of deoxyhemoglobin to
oxyhemoglobin and a fast increase in the MR signal, peaking at around 4–6 s following neu-
ronal activity. When neuronal activity ceases, the CBF will return to baseline levels while
blood volume will remain elevated. This combination result in a transient increase in the
ratio of deoxyhemoglobin to oxyhemoglobin, reflecting a post-stimulus undershoot of the

MR signal.

nearby protons to lose their magnetization much faster and emit a weak MR sig-

nal. In contrast, a local increase in oxygen delivery over oxygen consumption de-

creases the concentration of deoxyhemoglobin, thereby reducing local field inho-

mogeneities and enhancing the emitted MR signal. These subtle differences in the

magnetic properties of hemoglobin form the bases of the BOLD contrast that al-

low neuroscientists to produce brain activation maps of neuronal assemblies that

exhibit a relative increase/decrease in activity compared with those that are "in-

active" (i.e., remain at baseline activity) during task performance or wakeful rest.

For a comprehensive overview of the physiological basis of fMRI, see Buxton and

Frank (1997), Buxton, Wong, and Frank (1998), Glover (2011), Hosford and Gourine

(2019), and Ogawa and Lee (1990).
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FIGURE 2.9: Conventional MRI scans (left) produce a single high-resolution 3D volume,
whereas fMRI scans (right) produce a series of 3D volumes that reflect changes in brain

metabolism/activity with relatively lower spatial resolution than conventional scans.

2.3 Data Acquisition

In conventional MRI, the contrast in the image depends on the differential relax-

ation times of protons in different brain tissues after the removal of the RF-pulses.

Specifically, the contrast can be characterized by two relaxations times: T1 (lon-

gitudinal relaxation time), which measures the time of the exponential return of

magnetization to equilibrium, and T2 (transverse relaxation time), which measures

the time of exponential decay of phase synchronization between the magnetic spin

moments of protons while their magnetization is returning to equilibrium. T2 is

much shorter than T1 in human tissue, and local differences in the main magnetic

field, caused by machine inaccuracies and differential brain anatomy, induces even

a faster decay in phase synchronization, commonly known as the T2∗ relaxation

time. T1, T2, and T2∗-weighted images can be used to explore different contrasts
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between different types of tissues depending on the question and application. In

this context, fMRI makes use of the local differences in magnetization (i.e., BOLD

contrast) and therefore requires the acquisition of T2∗-weighted images (Weisskoff

et al., 1994).

The acquisition of BOLD-fMRI data with whole-brain coverage requires the col-

lection of multiple 3D brain volumes (i.e., images) to obtain a single 3D+time image

of brain activity per scanning session. In standard fMRI protocols, volumes are col-

lected using fast echo-planar imaging (EPI), which allows for a rapid collection of

single or multiple 2D brain slices and stacking them to create the 3D image or vol-

ume. The 3D image consists of an array of volumetric pixel (or voxel) intensity val-

ues, one value per voxel, that encode the activity of the underlying cluster of neu-

rons. In order to obtain 3D+time (or 4D) data that capture the temporal changes in

brain activity, gradient echo (or spin echo) RF excitation pulses are applied in short

time intervals, and by the end of each interval a 3D image is collected. This pro-

cedure yields a timeseries of T2∗-weighted 3D brain images (Figure 2.9) and takes

about 0.5 to 4 seconds per 3D volume; a duration known as the repetition time, or

simply TR. Thus, a 15-minute (900 seconds) fMRI scan with a TR=2 seconds yields

a timeseries of 450 T2∗-weighted (i.e., BOLD) 3D volumes that capture temporal

changes in brain activity as a response to stimuli and task conditions or during

resting state. For detailed explanations of the physical and technical principles of

MRI and fMRI, the reader is referred to the broad literature and many textbooks on

the subject, such as Bernstein, King, and Zhou (2004), Westbrook (2014), and Wang

(2014).
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3 Preprocessing of fMRI Data: Going Through the Ar-

tifacts

The BOLD-fMRI data are complex mixtures of neuronal, metabolic, and vascular

processes, severely affected by non-neuronal noise of instrumental and physiolog-

ical origins, such as low frequency drifts, respiration, heart beat, and most infa-

mously, head motion (Power et al., 2012). As a result, a certain form of prepro-

cessing must be performed to "denoise" and normalize the data before subjecting

it to further analysis. The preprocessing of fMRI data is typically performed in a

sequence of steps forming a pipeline that is usually paralleled by another pipeline

for structural MRI images (Esteban et al., 2019). Over the years, many strategies

to counteract and adjust for different noise sources have been developed. So far,

however, there is still no consensus in the preprocessing stage regarding the most

effective pipeline. Nonetheless, preprocessing is necessary in one form or another

to attenuate unwanted artifacts as much as possible and transform the data into

a standard format. Here, the commonly used preprocessing steps and the type of

artifact they tackle are briefly described. Note that only volume-based preprocess-

ing techniques are discussed in the following subsections. For a comprehensive

overview of the merits and pitfalls of different fMRI preprocessing steps, pipelines,

and tools, the reader is referred to specialized research work on the topic, such as

(Ciric et al., 2017; Jenkinson and Smith, 2006; Patel et al., 2014; Poldrack, Mumford,

and Nichols, 2011; Power et al., 2012; Power et al., 2014; Soares et al., 2016).

3.1 Pre-preprocessing

The raw images collected during an fMRI scan are typically stored in the DICOM

(Digital imaging and communications in medicine) format before being converted

to the NIFTI (Neuroimaging Informatics Technology Initiative) format for analy-

sis. Then, there are some "zeroth" steps that have to be completed before subject-

ing the data to further preprocessing and may include preliminary re-orientations

of images, brain extraction (i.e., "skull-stripping"), tissue segmentation of the T1-

weighted structural images, bias field corrections, and the removal of the first few
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volumes. The latter step is important as it usually takes around five to eight seconds

for protons to approach a steady state after the magnetic fields are applied, and thus

the volumes acquired during the first few seconds (≈ 5 to 10 seconds), also known

as non-steady state scans, are removed. However, most modern MRI scanners au-

tomatically discard the non-steady state scans from the raw data (Gonzalez-Castillo

et al., 2013).

3.2 Distortion Correction

The use of fast EPI makes the fMRI data sensitive to inhomogeneities in the main

magnetic field that cause unwanted geometric distortions, which are not uniform

across subjects and brain regions and are more severe in some regions than oth-

ers, especially in the orbitofontal cortex and the medial temporal lobe (Chang and

Fitzpatrick, 1992; Chambers et al., 2015). Magnetic field inhomogeneities are not

known in advance and highly depend on the geometry of individual brains, the

orientation with respect to the main magnetic field, and other machine-specific set-

tings. Modern MRI scanners can minimize these effects by fine-tuning the magnetic

fields in a procedure known as shimming. However, it is necessary to account for

inhomogeneities that are not adjusted for by shimming. In this context, magnetic

field inhomogeneities can be measured using "fieldmapping" techniques that re-

quire the acquisition of two gradient echo images with slightly different echo times

(i.e., onset of RF-pulses) or EPI images with different phase-encoding directions

and calculating a map of the phase differences between them (Jezzard and Balaban,

1995).

The phase difference image which is proportional to the magnetic field strength

at any given location. That is, in the ideal case of a completely uniform and ho-

mogeneous magnetic field the phase difference induced by the different echo times

(or phase-encoding directions) will be the same across all voxels and hence no ge-

ometric distortion of voxels is detected. Using the phase difference image, one can

generate a fieldmap the measures the degree of distortion of voxels and then apply

an equal and opposite "shift" to the fMRI data (Jezzard and Balaban, 1995; Wang et

al., 2017). This preprocessing step is often called distortion correction or fieldmap
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unwarping and has two advantages: (a) improving the within-subject similarity be-

tween the fMRI functional images and the high-resolution MRI structural images;

and (b) reducing the non-uniformity of geometrical distortions across subjects to

improve the spatial mapping of individual brain images onto a common brain tem-

plate in group-level designs. Finally, several effective "fieldmapless" techniques

have been recently developed to estimate the distortion using nonlinear image reg-

istration and can be used with some confidence in case fieldmap images have not

been collected during the scanning session (see Chambers et al. (2015), Chang and

Fitzpatrick (1992), Hutton et al. (2002), Jezzard and Balaban (1995), and Wang et al.

(2017) for reviews on the topic).

3.3 Slice Timing Correction

The first step of preprocessing after distortion correction is conventionally slice tim-

ing correction, even though some studies prefer to perform this step before correct-

ing for geometrical distortions. In short, MRI scanners acquire several 2D slices,

via fast EPI, at slightly different instances in order to construct a single 3D volume

and, subsequently, a 4D image of the brain. Thus, brain activity in one 3D brain

volume might be presented at slightly different instances across 2D (Figure 2.10),

which can complicate later analysis. Exact timing is essential for fMRI data analy-

sis to accurately model the effects of different stimuli. Thus, slice timing correction

is performed using interpolation techniques to correct those timing differences be-

tween acquired slices. However, slice timing correction is not recommended if the

repetition time (TR) is in the sub-seconds (< 1 s).

3.4 Motion Correction

In a typical fMRI session there will be inevitable head movements that severely cor-

rupt the data with artifacts and noise (Friston et al., 1996). Head movements in the

scanner cause the voxel-to-neurons mapping to vary from one volume to another

while scanning is in progress. That is, a voxel may continue to refer to the same ab-

solute location in space while the neurons underneath it have changed. Thus, mo-

tion correction is crucial in order to establish spatial correspondence across brain
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FIGURE 2.10: Slice Timing correction involves shifting the data acquired at slightly different
instances via interpolation to account for slice timing differences MRIQuestions.

volumes. Motion correction operates by selecting one functional volume (usually

the first or middle one) as a reference to which all other functional volumes are

aligned via rigid-body transformation (Frackowiak et al., 2004; Jenkinson et al.,

2012; Jenkinson et al., 2002). The rigid realignment improves the spatial correspon-

dence between scans such that voxels correspond to the same brain regions and

locations across different volumes. In rigid-body transformation, spatial displace-

ment of volumes is described by three translation parameters along the x, y and

z-axes in 3D space and three rotation parameters around these axes as well. These

six parameters are estimated iteratively by analyzing how a volume has been trans-

lated and rotated so that it is aligned with the reference volume. Moreover, the six

motion parameters can be used in the calculation of the frame-to-frame movement,

or the framewise displacement (FD), which can be used to inform exclusion criteria

of high motion subjects to further adjust for motion-induced spurious findings in

http://mriquestions.com/data-pre-processing.html
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group designs (Power et al., 2014).

3.5 Coregistration and Spatial Normalization

Typical fMRI studies collect data from multiple subjects that differ in terms of head

size and shape. Such inter-individual variability in brain structure precludes group-

level inferences in terms of regional correspondence of activity and functional con-

nectivity from one subject’s brain to another. Therefore, to uniformly interpret the

results across subjects, studies use a standard brain template, and systematically

transform all the subjects’ data (structural and functional) to the coordinate sys-

tem of this template, also known as the standard space. This preprocessing step

is known as spatial normalization. The commonly used standard templates are

the Talairach template, which is a single brain image of an elderly woman created

by Jean Talairach in 1967 (Talairach and Szikla, 1980), and the Montreal Neurologi-

cal Institute (MNI) template, commonly known as MNI152, which is a probabilistic

brain map that has been created by combining and averaging high-resolution struc-

tural MRI brain images of 152 healthy individuals (Laird et al., 2010; Mazziotta et

al., 1995).

Normalizing T1-weighted structural images to the standard space can be di-

rectly performed using automated non-linear affine transformation or diffeomorphic

non-linear registration techinques (Avants et al., 2011). However, transforming the

functional images into the standard space cannot be performed directly, because

functional images have a much lower spatial resolution and inter-tissue contrast

than structural images and may suffer from intensity distortions. Therefore, to

define regions of interest and localize brain activity within individual brains with

some confidence, one needs to align the subject-specific functional images with the

same subject’s MRI structural T1-weighted image prior to spatial normalization.

This step is known as coregistration. Coregistration is usually performed using

six-, nine-, or twelve-parameter rigid-body transformation, similarly to motion cor-

rection. After coregistration, the spatial normalization to the standard space can be

achieved by applying the transformations, obtained from the normalization of the

T1-weighted images to the standard space, to the T1-coregistered functional images
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to obtain normalized fMRI data across all study subjects (Figure 2.11). However, it

is recommended to apply the different resampling or deformation steps (i.e., distor-

tion correction, motion correction, coregistration, normalization) to the raw BOLD

data in a single step after concatenating all the pertinent transformations (initially

estimated using a reference 3D BOLD volume) into one transformation matrix or

deformation field such that little information is lost due to multiple resampling of

the raw data (Esteban et al., 2019).

FIGURE 2.11: Flowchart of a standard pipeline to normalize fMRI data. (1) motion correc-
tion by realignment, (2) coregistration of structural and functional images, (3) normalization
of structural images to a standard anatomical space (e.g., MNI152 space), (4) Apply the de-
formations from the previous to the structurally-coregistered functional images, and finally
(5) Smoothing of the functional images using a Gaussian Kernel. Figure reproduced from

Flandin and Novak (2020), with permission.

3.6 Spatial Smoothing

After spatial normalization, many studies choose to apply spatial smoothing to the

spatially normalized fMRI data to enhance the signal-to-noise ratio (SNR) and aver-

age out spatially distributed high-frequency noise in each volume. Spatial smooth-

ing consists of averaging each voxel intensity with the intensity of nearby voxels to
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produce a smooth spatial map across the brain (Figure 2.12). Averaging is achieved

by convolving the data with a Gaussian kernel (or filter), which, at every voxel,

weighs neighboring voxels by their distance, with the weights decaying exponen-

tially according to a bell curve shape. The Gaussian kernel is characterized by its

"Full Width at Half Maximum" or, simply, FWHM measured in millimeters. The

FWHM is related to the standard deviation of the Gaussian filter and usually takes

the values 2, 4, 6, or 8 mm depending on the application and study design. Al-

though spatial smoothing enhances the SNR, recent reports suggest that it might

affect and bias the results of resting-state fMRI studies that perform functional net-

work analysis (Alakörkkö et al., 2017).

FIGURE 2.12: Effects of spatial smoothing using different values of the Full Width at Half
Maximum (FWHM)

3.7 Temporal Filtering

Resting-state and task-activated fMRI signals contain low frequencies of no inter-

est that arise from scanner drifts, coil interference, and slow vascular/metabolic

oscillations (< 0.008 Hz) as well as high frequencies of no interest related to physi-

ological fluctuations such as breathing and heartbeat (0.3-1.0 Hz). Therefore, stud-

ies usually apply temporal filtering in the form of low-, high-, or band-pass filters

to attenuate the effect of signals with these frequencies within the raw fMRI data

(Figure ??). For instance, rsfMRI studies are mostly interested in low-frequency

fluctuations (< 0.1 Hz). Therefore, band-pass filtering is commonly applied to at-

tenuate frequencies outside the range [0.01-0.1 Hz (or 0.08 Hz)]. However, recent
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studies have shown that meaningful information might be present at high frequen-

cies, suggesting that high-pass filtering may be more advantageous than low-pass

and band-pass filters (Boubela et al., 2013). In task-based fMRI studies, the range of

the frequencies of interest is dependent on the timing of the presented stimulus, and

many fMRI experiments include randomly presented stimuli (i.e., event-related de-

signs), also suggesting the presence of meaningful information at high frequencies.

Therefore, most task-based fMRI and some rsfMRI studies avoid low-pass filtering

and instead use high-pass filtering only.

FIGURE 2.13: Effects of temporal filtering using a highpass (top) and a lowpass (bottom)
filters. Figure reproduced from MRIQuestions

3.8 Nuisance Regression

In the past two decades, there has been a proliferation of techniques tailored to-

wards mitigating motion and physiological artifacts in BOLD-fMRI data that are

not accounted for by simple realignments and filtering. One of the most popular

strategies has been confound or nuisance regression. Nuisance regression entails

removing signals believed to be of non-neuronal origin from the BOLD-fMRI data

using multiple linear regression. As a result of this regression, the data become or-

thogonal (i.e., residualized) with respect to confounding variables and hence can

http://mriquestions.com/data-pre-processing.html
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be used with confidence in subsequent analyses with more confidence. The sig-

nals commonly removed in nuisance regression often include combinations of the

six motion parameters, tissue-specific signals from white matter (WM) and cerebro-

spinal fluid (CSF), the average (or global) signal, the first order derivatives of these,

their quadratic terms, quadratic terms of the derivatives, linear trends, regres-

sors corresponding to volumes heavily affected by motion (i.e., "spike regressors"),

physiological recordings of cardiac pulsations and respiration (i.e., RETROICOR),

principal components derived from noise regions of interest (i.e., aCompCor and

tCompCor) (Behzadi et al., 2007), and signals identified as noise via data-driven

techniques based on independent component analysis (ICA-FIX or ICA-AROMA;

Pruim et al., 2015). However, even slightly different combinations of nuisance vari-

ables can alter the results and lead to different interpretations and conclusions (Ciric

et al., 2017).

This plurality in choices and the inherent flexibility involved in nuisance regres-

sion have motivated many studies to evaluate the effect of different combinations

of regressors according to a number of benchmarks (see Ciric et al. (2017), Friston

et al. (1996), Jo et al. (2010), and Parkes et al. (2018) for reviews). Nevertheless, there

is still no gold-standard solution for nuisance removal, and controversy still exists

regarding the benefits and perils of adjusting for certain variables, most notably, the

global signal (Murphy and Fox, 2017; Li et al., 2019). Moreover, recent reports have

demonstrated that subject-level nuisance regression is not sufficient to effectively

attenuate noise, and hence group-level adjustments are also recommended (Power

et al., 2012; Power et al., 2014). Finally, its has been shown that nuisance regression

steps and temporal filtering operations are not commutative, and the order in which

they are performed is important as they basically project the data onto a subspace,

whereby it becomes orthogonal to nuisance variables and to signals of no interest

(Lindquist et al., 2019). So, performing many projections in series can reintroduce

nuisance signals that have been removed in previous projections. Thus, it is now

highly recommended to combine those steps into a single linear filter/regression

step or to sequentially orthogonalize the nuisance variables with respect to tempo-

ral filters and each other prior to nuisance regression (Hallquist, Hwang, and Luna,

2013; Lindquist et al., 2019).
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3.9 Despiking

Recent studies have demonstrated that small head movements (i.e., micromove-

ments) in the range of (0.5-1 mm) can induce systematic biases in the analysis of

fMRI data (Power et al., 2012). These studies suggest that standard methods of

nuisance regression and volume realignment cannot remove the more subtle effects

of micromovements, particularly in groups of children and patients, where larger

spike-like head movements are prevalent and often correlate with age or disease

symptom severity (Patel et al., 2014). Different despiking approaches have been

proposed to attenuate the subtle effects of head motion not accounted for by stan-

dard preprocessing techniques. The most straightforward method is scrubbing or

volume censoring. Scrubbing is often performed on the basis of the frame-to-frame

or framewise displacement (FD) to identify and censor volumes heavily affected by

head motion (Power et al., 2014). This is achieved by simply removing those vol-

umes and temporally interpolating the missing data or by including them as "spike

regressors" in the nuisance regression step. Another approach, commonly referred

to as "Time Despike", identifies spikes at the voxel level as supra-threshold devi-

ations from the local median of absolute deviations, or MAD, calculated at each

time point using two to six neighbouring time points on either side, and com-

presses any detected spikes to the level of the MAD (Patel et al., 2014). Finally,

a recently introduced data-driven approach, known as "Wavelet Despike", identi-

fies non-stationary events caused by micromovements, using a wavelet-based ap-

proach. Wavelet-based approaches, such as wavelet transforms, enable the anal-

ysis of the properties of complex timeseries in the wavelet domain (Daubechies,

1992), provide multi-frequency information about signals, and are effective at de-

tecting transient phenomena, such as sudden spikes (Patel et al., 2014). The wavelet

despike algorithm identifies non-stationary events across different frequencies as

chains of maximal or minimal wavelet coefficients, despikes them from voxel time-

series without distorting the overall temporal structure, and recovers the denoised

fMRI signals (Patel et al., 2014). Despiking can be performed earlier in the prepro-

cessing pipeline to account for the effects of large spikes prior to coregistration and

normalization. However, Patel et al. (2014) demonstrated that applying wavelet
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despike before nuisance regression and directly after spatial smoothing produced

better results.

4 Functional Connectivity

It has long been thought that behavior is not merely encoded in discrete brain re-

gions, but rather emerges from the functional interactions between regions. The

fMRI community has grasped this concept from the beginnings and have since

focused on inferring brain-behavior relationships through functional connectivity

(Buckner, Krienen, and Yeo, 2013). The notion behind this connectivity approach is

that areas are presumed to be coupled or participate in the same network if their

activities consistently co-vary together to some extent. A great effort has been ded-

icated in the last two decades to investigate functional connectivity, and the expo-

nential growth in findings has been supported by an influx of analysis methods

and applications from across the natural, social, and information sciences, provid-

ing neuroscientists with the means to explore and begin to understand the relation

between inter-regional functional coupling and behavior across different popula-

tions (Van Den Heuvel and Pol, 2010). Although FC is a measure of undirected

communication, it is fairly simple enjoying more analytical flexibility than directed

measures (e.g., effective connectivity) that often require neurobiological and bio-

physical modelling with many different parameter and a clear hypothesis. In the

following subsections, we broadly summarize the most commonly used FC analysis

methods, highlighting the values and limitations of each. We first introduce some

of the statistical dependency measures used for quantifying FC and then we move

on to summarize seed-based, ROI-based, and graph analysis approaches. For more

elaborate descriptions and comparisons of mentioned and unmentioned method-

ological choices, the reader is referred to specialized reviews, such as Bastos and

Schoffelen (2016), Bijsterbosch, Smith, and Beckmann (2017), Toga (2015), and most

recently Pervaiz et al. (2020). Note that, although FC analysis is more abundant in

rsfMRI than in task-based studies, the methods and measures explained below are

generally compatible with and have been used in both study designs. Therefore,

unless explicitly mentioned, FC is referred to in the general sense.
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4.1 Measures of Functional Connectivity

A considerable amount of work and methods have been directed to evaluating

and characterising FC observed using fMRI. However, despite the varying levels

of complexity between the different methods and measures, the ultimate goal is

to quantify the level of synchronization between pairs of simultaneously recorded

BOLD timeseries extracted from distributed brain regions. For this purpose, metrics

of statistical dependence have been used, with Pearson’s product-moment correla-

tion being perhaps the most commonly used measure (Friston, 2011). In principle,

any generic measure for estimating dependence can be used to quantify FC, but

Pearson’s correlation is credited for its simplicity and versatility (Fornito, Zalesky,

and Bullmore, 2016). Denoted by r or ρ, Pearson’s correlation is defined as the

linear covariance of two timeseries divided by the product of their standard devi-

ations (Equation 2.1, Figure 2.14). It is bounded between -1 and 1; a high, positive

correlation coefficient close to 1 indicates strong in-phase coupling; a correlation

coefficient close to zero indicates no relation; and a negative correlation coefficient

close to -1 indicates anti-coupling or strongly out-of-phase relation between signals.

Both positive and negative correlation inform us about the nature of interactions

between brain systems: positive values imply integration, whereas negative values

imply antagonism or segregation. However, the nature of negative correlations is

still debated, and there is little consensus on how to handle and interpret negative

FC in the brain. Due to this ambiguity, many studies choose to discard negatively-

weighted FC and only analyze positively-weighted FC (see Hallquist and Hillary

(2018) for a recent review). Pearson’s correlation is defined as:

Corr(x, y) =
Cov(x, y)√

Var(x)×Var(y)
(2.1)

where cov(x,y) is the covariance between the timeseries and var(x) and var(y)

represent the variance in each timeseries, respectively.

Computing Pearson’s correlation entails different assumptions about the data,

such as linear relationships among variables, normality of variables, and indepen-

dent observations (Kirch, 2008). Faithfully presuming the first two conditions are
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met (however this may not be the case), fMRI-FC studies often apply Fisher’s r-

to-z transformation (z = arctanh(r)) to the correlation coefficients in order to sta-

bilize their variance and make valid statistical inferences, provided that the third

assumption is also met in this case (Afyouni, Smith, and Nichols, 2019). However,

the variance of the correlation coefficients and their standardized z-scores counter-

parts heavily depends on the independence of successive timepoints in any given

timeseries (Bartlett, 1946). However, observation independence is not a property of

BOLD timeseries. In general, the hemodynamic response function (HRF) is slug-

gish and has an overall cycle of about 12-15 seconds, while typical TRs in an fMRI

experiment are around 2 seconds. This causes the BOLD timeseries to exhibit serial

autocorrelation (i.e., dependent observations), which can in turn inflate the variance

of correlation coefficients and reduce the effective number of degrees of freedom

(EDF) in the data (Afyouni, Smith, and Nichols, 2019), violating the third assump-

tion of Pearson’s correlation. Ignoring this variance inflation and the overall reduc-

tion in EDF will inflate the z-scores as well and produce an excess of false positives

when testing hypotheses, which leads to misleading conclusions (Afyouni, Smith,

and Nichols, 2019). However, to solve the issue of autocorrelation and ensure valid

statistical inference, ad hoc solutions have been proposed, such as Bartlett’s method

of dividing arctanh(r) by a data-driven deflated-EDF (Afyouni, Smith, and Nichols,

2019; Bartlett, 1946), prewhitening of BOLD timeseries (Bright, Tench, and Murphy,

2017), computing Pearson’s correlation in the wavelet domain instead of the time

domain (Patel and Bullmore, 2016), and the recently introduced, more robust ex-

tension of Bartlett’s method: the cross-EDF or xDF (Afyouni, Smith, and Nichols,

2019). For recent reviews and comparisons of methods that adjust for serial autocor-

relation in fMRI-FC analysis, see Afyouni, Smith, and Nichols (2019) and Olszowy

et al. (2019).

An important limitation of Pearson’s correlation is its sensitivity to "third party"

effects. That is, two BOLD timeseries can exhibit a strong positive correlation, even

in the absence of a direct connection between the regions involved (see Li et al.

(2009) for a review). This can arise because the activity of one or both regions cor-

relates with the activity of a third, intermediary region. However, if only direct

connections are of interest, the conditional or partial correlation between a pair of
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FIGURE 2.14: Pearson’s correlation coefficient among the BOLD timeseries of three differ-
ent brain regions. This figure illustrates the differences between positive, negligible, and

negative FC.

BOLD timeseries can be computed by statistically removing the effect of timeseries

of all remaining brain regions via multiple regression or covariance matrix inver-

sion. Partial correlation provides a sparser representation of whole-brain FC than

"full" correlation and can better relate to the underlying direct structural connec-

tivity (Huang and Ding, 2016). However, a considerable increase in the number

of regions of interest (ROIs), given the noisy BOLD timeseries with finite length,

may lead to a rank deficient covariance structure in the data (Varoquaux and Crad-

dock, 2013). That is, the covariance matrix may be ill-conditioned and possibly

un-invertible, rendering the computation of partial correlations computationally

challenging and unreliable (Ledoit and Wolf, 2004). To circumvent this issue and

counteract the "curse of dimensionality" without losing data, regularized estima-

tion of full and partial correlations have been suggested. These measures are esti-

mated using covariance penalization (shrinkage) methods including, among others,

the Ledoit–Wolf estimator (Ledoit and Wolf, 2004), Tikhonov regularization (L2-

regularization; Golub, Hansen, and O’Leary, 1999), least absolute shrinkage and se-

lection operator (LASSO) (Tibshirani, 1996), and Sparse Graphical Gaussian Models
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(SGGMs) (Ng et al., 2013), that provide reliable estimates of the covariance struc-

ture in high-dimensional data (Brier et al., 2015; Varoquaux and Craddock, 2013).

So far, however, there is no clear consensus on whether FC have to be based on full

(i.e., marginal) or partial (i.e., conditional) correlations. Nonetheless, both measures

reveal fundamentally different properties of brain FC, and hence the choice highly

depends on the question in hand, sample size, and the number of brain regions of

interest (see Vico Fallani et al. (2014), Hallquist and Hillary (2018), Pervaiz et al.

(2019), and Varoquaux and Craddock (2013) for reviews on the topic).

A second limitation of Pearson’s correlation is that it is defined at "zero lag",

making it highly sensitive to the shape and delays of the HRF, which can vary be-

tween brain regions and individuals. For example, older adults have a delayed

hemodynamic response compared with younger adults or children (D’Esposito,

Deouell, and Gazzaley, 2003), and the parameters of an individual’s HRF, such as

onset delay, time to reach peak, and width can vary across regions due to vascu-

lar differences (Sun, Miller, and D’Esposito, 2004). In other words, two regions

might be functionally connected, but due to a time delay between their activity

profiles, Pearson’s correlation may not be the optimal choice to quantify this inter-

dependence. Moreover, BOLD timeseries have fractal scaling properties meaning

that they exhibit details and meaningful structure on multiple temporal and spec-

tral scales (Achard et al., 2006). A popular measure that is invariant to inter-regional

and inter-individual differences in the HRF, insensitive to the autocorrelation of

BOLD timeseries, and is well-suited for the analysis of fractal timeseries is the

spectral/wavelet coherence (Sun, Miller, and D’Esposito, 2004), also known as the

magnitude-squared coherence. Coherence measures the level of synchrony, in the

spectral or wavelet (i.e., time-frequency) domains, between a pair of BOLD time-

series that have been filtered within specific narrow-band frequency bandwidths

and subjected to a Fourier or a wavelet transform (Fornito, Zalesky, and Bullmore,

2016; Sun, Miller, and D’Esposito, 2004). Mathematically, coherence is the spectral

(or wavelet) domain analog of the time domain cross-correlation coefficient. That

is, its squared value quantifies the amount of variance in one timeseries that can

be explained by the other timeseries in the frequency domain, in analogy to the

squared correlation (i.e., r2) in the time domain. Moreover, unlike the time-domain
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correlation coefficient, coherence is a function of frequency with values bounded

between 0 and 1. These values indicate how well timeseries a timeseries x corre-

sponds to timeseries y within a certain frequency bandwidth, with 0 indicating no

correspondence and 1 indicating total correspondence. This simplifies the analysis

and interpretation of FC at the expense of losing the distinction between different

types of functional interactions (i.e., coupling vs. anti-coupling). The spectral co-

herence between two timeseries x and y at a given frequency f is defined as:

Cohxy( f ) =
| Pxy( f ) |2

Pxx( f )Pyy( f )
(2.2)

where Pxy(f) is the cross-power spectral density of x and y, and Pxx(f) and Pyy(f)

are the power spectral densities of x and y at frequency f, respectively. For re-

views and studies that use spectral and wavelet coherence (and wavelet-domain

cross-correlation) in FC analysis, see Achard et al. (2006), Achard and Bullmore

(2007), Gardner (1992), Grinsted, Moore, and Jevrejeva (2004), and Sun, Miller, and

D’Esposito (2004).

Correlation and coherence efficiently capture linear dependencies, but they are

not suitable for measuring inter-regional relationships when regional activity might

exhibit non-linear properties. To overcome this issue, measures that are sensitive to

both linear and non-linear relationships, most notably mutual information (Sal-

vador et al., 2007; Wang et al., 2015), have been used to quantify FC. Mutual in-

formation, or MI, has been adapted from information theory and determines how

different the joint distribution of the pair of variable (e.g., BOLD timeseries) is to the

product of their marginal distributions (Equation ??). MI is measured in bits and

can be thought of as an indicator of uncertainty about one random variable given

knowledge of another variable. The higher the value of MI the larger the reduction

in uncertainty and vice versa, whereas a value closer to zero indicates that the vari-

ables are mutually exclusive. Thus, MI is believed to provide a more clear physical

meaning about the strength of FC than correlation or coherence (Wang et al., 2015).

So far, however, the advantages and disadvantages of using MI as a measure of

fMRI-FC have not been extensively characterized, and its applications remain lim-

ited compared with linear measures of FC. For more information on the use of MI
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in fMRI, see Chai et al. (2009), Salvador et al. (2007), Wang et al. (2015), and Zhang

et al. (2018).

4.2 Methods of Analysis

Seed-based Analysis

Seed-based FC analysis is a popular model-based technique that provides straight-

forward and easy-to-interpret results with few constraints on the definition of brain

regions. Specifically, seed-based FC analysis involves selecting a voxel or a ROI as a

"seed", extracting the corresponding BOLD timeseries, and using Pearson’s correla-

tion or any other measure of dependency to estimate the FC between the seed and

every other voxel in the brain, in an exploratory fashion. The output is a whole-

brain FC map demonstrating the level of synchronization between the seed’s activ-

ity and the activity of the rest of the brain (Figure 2.15). The primary advantage

of seed-based FC over other methods is that it provides a direct answer to a well-

defined hypothesis and helps in making direct inferences of brain-behavior rela-

tionships. However, this method requires a prior knowledge or hypothesis-driven

selection of the seed region, which imposes restrictions on the measurement of FC

and cannot be generalized to test systems-level hypotheses and construct connec-

tomic representations of brain function (Cole, Smith, and Beckmann, 2010). Thus,

the disadvantage of seed-based FC analysis is its dependence on the user’s choice,

which makes it highly vulnerable to statistical bias if the choice has not been driven

by a clear and sound hypothesis. Finally, apart from whole-brain FC analysis, seed-

based approaches are useful for quantifying regional FC profiles (i.e., within region

FC) using measures such the amplitude of low frequency fluctuations (ALFF), frac-

tional amplitude of low frequency fluctuations (fALFF), and regional homogeneity

(ReHo). The latter is based on an assumption that a given voxel or seed is tem-

porally correlated its neighboring voxels and, thus, reflects information about the

regional integration of information processing. See Cole, Smith, and Beckmann

(2010), Lv et al. (2018), and Smitha et al. (2017) for comprehensive reviews on seed-

based FC analysis.
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FIGURE 2.15: Seed-based FC analysis for resting-state (top) and task-based fMRI (bottom)
investigations. The heat maps (right) represent correlation scores between every brain voxel

and a predefined seed region (left). Figure adapted from Toga (2015), with permission.

ROI-to-ROI and Independent Components Analyses

To explore and understand connectome-wide associations, several methods have

been introduced that enable the exploration of whole-brain FC patterns without the

need of defining an a priori seed region. There is a multitude of methods to quantify

FC between brain ROIs covering the whole brain. However, despite the apparent

technical differences between methods, there is a common workflow that goes as

follows (Figure 2.16: (i) A set of brain ROIs is defined according to pre-established

brain atlases based on anatomical or functional priors or directly derived from the

data at hand; (ii) BOLD timeseries are extracted for each ROI; (iii) FC values be-

tween pairs of ROIs are finally estimated using any measure of statistical depen-

dence (e.g., correlation or coherence) and conveniently arranged in a square matrix

of size N, where N is the total number of ROIs. From there, further analysis can

be conducted to relate pairwise connections to behavior, estimate meaningful met-

rics that describe the network organization of the brain, and compare FC matrices

between healthy and diseased populations.

Defining ROIs is conventionally known as parcellation. Many studies use

anatomically-defined brain parcellations that are based on brain morphometry (e.g.,

Brodmann areas) or cytoarchitecture with little to no functional relevance, whereas



4. Functional Connectivity 75

FIGURE 2.16: A typical ROI-based FC analysis workflow. The first step is defining ROIs
based on either functional or anatomical atlases. Then, the BOLD timeseries are extracted
from each ROI and a functional connectivity matrix is constructed by computing a measure
of dependency between the timeseries. Thresholding can be done after that *but it is an
optional step. A graph can be constructed from which meaningful measures of network

topology can be estimated. Figure adapted from Uehara et al. (2014).

other studies prefer functionally homogeneous and spatially constrained ROIs de-

rived from the data or pre-established by previous studies using other data. The

heterogeneity in choices makes it difficult to combine results across studies and

draw consistent conclusions. As a result, there is a very active field of research

focused on defining whole-brain parcellations that best fit the brain’s functional or-

ganization. Nonetheless, there is still no clear consensus as to which is the best

parcellation or method to derive parcellations. Additionally, it is a common prac-

tice to use the same parcellation across all study subjects, which ignores the inter-

individual variability and within-individual variability as a function of cognitive

state (Salehi et al., 2020; Yaakub et al., 2020). This is often the case of anatomical par-

cellations, such as the Automated Anatomical Labelling (AAL) atlas that is based

on single-subject images (Tzourio-Mazoyer et al., 2002). Although some anatomical

structures support a direct mapping to specific functions (e.g., the primary visual
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areas), anatomical definitions of brain regions are mostly independent of the ex-

plored function and may merge functionally distinct neuronal clusters (Yaakub et

al., 2020). Additionally, individual variations in FC estimated from a single func-

tional parcellation, with the underlying assumption that parcels are invariant in

size or location across subjects, has been shown to be almost entirely explained by

the spatial configuration of regions rather than actual differences in FC strength

(Bijsterbosch et al., 2018; Salehi et al., 2020). Recently, methods for precision func-

tional mapping of subject-specific ROIs have been proposed and used across differ-

ent studies (Gordon et al., 2017; Laumann et al., 2015; Marek et al., 2018), but they

require highly-sampled BOLD-fMRI data acquired across several hours (Gordon et

al., 2017). However, in case such data are not readily available, group-level ROIs

that are adapted to functional data are more suitable for modelling brain FC than

those adapted to histological or cytoarchitectonic boundaries.

Functional parcellations can be derived directly from the data at hand (Beck-

mann et al., 2005), defined according to pre-established and cross-validated func-

tional atlases (Gordon et al., 2016; Schaefer et al., 2017; Yeo et al., 2011), or created

via large-scale meta-analyses of previous resting-state and task-based fMRI studies

(Power et al., 2011). Popular data-driven approaches include, but are not limited to,

spatial independent components analysis (sICA; Beckmann et al., 2005), temporal

ICA (Calhoun and Adali, 2012), dictionary learning (Varoquaux et al., 2011), princi-

pal components analysis (PCA) (Kiviniemi et al., 2009), mixture models (Lashkari et

al., 2012), k-means clustering (Kahnt et al., 2012; Yeo et al., 2011), hierarchical clus-

tering (Michel et al., 2012), spectral clustering (Craddock et al., 2012), and gradient-

based methods (Gordon et al., 2016; Schaefer et al., 2017). Here, only sICA (in

particular group sICA) is described owing to its straightforward and prevalent use

across many studies.

Group spatial ICA (GICA), is an unsupervised data-driven method that can

be used to derive spatial maps of functional networks in the brain, extract useful

biomarkers for brain disorders, and denoise BOLD-fMRI data (Beckmann et al.,

2005; Calhoun, Liu, and Adalı, 2009; Pruim et al., 2015). GICA is based on blind-

source separation, which traditionally attempts to discover hidden sources that un-

derlie observed data (Calhoun, Liu, and Adalı, 2009). A classical example that is
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often used to explain blind source separation is the "cocktail party problem", which

describes a situation where an individual attending a cocktail party is unable to seg-

regate the different voice sources that have interfered to create the overall mixture

of noise, and attempts to do so by focusing on each source independently, while

ignoring other sources (Cherry, 1953).

FIGURE 2.17: A typical output of a group independent components analysis (GICA) show-
ing a set of large-scale brain networks. A-B default mode networks; C-D left and right
frontoparietal executive control networks; E-F visual networks; G-H attention/salience net-

works; I-J sensorimotor networks.

In fMRI, GICA assumes that the observed BOLD data is a mixture of indepen-

dent sets of data that originate from unobserved (hidden) sources, which can either

be functional networks/regions or noise of non-neuronal origin (Beckmann et al.,

2005). In a typical GICA setting, the observed fMRI data are temporally concate-

nated across all subjects and organized into an N matrix, where N is the total num-

ber of timepoints and M is the total number of voxels (i.e., observed spatial features)
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in the brain. This high-dimensional matrix undergoes an initial two-stage dimen-

sionality reduction step using PCA; first a subject level PCA followed by a group-

level PCA on the components (PCs) from all the subjects (Calhoun and Adali, 2012).

PCA linearly transforms the high-dimensional, correlated voxel data into a smaller

number of uncorrelated principal directions (features or components) that explain

a maximal amount of variance in the data, that is to say, a small set of variables that

capture most information of the data in a low-dimensional space, first at the subject-

level then at the group-level. GICA then attempts to factor the PCA-reduced data

into a product of a set of timecourses and a set of maximally independent spatial

activation maps (i.e., unobserved spatial features, Figure 2.17), known as indepen-

dent components (ICs), that can be classified as either functional brain networks or

noise based on direct visual inspection or spectral properties (Calhoun and Adali,

2012). The number of ICs of interest is a free parameter, which can be either theoret-

ically/heuristically determined or estimated using data-driven techniques (Beck-

mann et al., 2005). Many algorithms and toolbox softwares have been developed

to analyze and decompose fMRI data using GICA. The most commonly used algo-

rithms are Infomax and FastIC, which can be found across different software pack-

ages, such as the GIFT toolbox http://mialab.mrn.org/software/gift/.

A major issue in the application of GICA is the instability of the estimated ICs

across different runs of the algorithm. This is because most GICA algorithms have a

stochastic nature and may converge to different local minima across different runs.

To solve this issue, different model-selection tools have been developed and can be

used to perform multiple runs of GICA, visualize the different outcomes, and col-

lect the most stable set of group-level ICs from different runs of GICA according

to special criteria and quality metrics. The most commonly used tool for this pur-

pose is the ICASSO, which is implemented in the GIFT toolbox software (Himberg,

Hyvärinen, and Esposito, 2004; Li, Adalı, and Calhoun, 2007). In ICASSO, absolute

correlation coefficients are computed among the spatial maps of ICs across different

runs and employed as a measure of similarity. Then, a group-average agglomera-

tion strategy can be used to group similar ICs across runs in clusters attributed to

the same independent source. The most stable and reliable estimates of ICs are auto-

matically obtained by retrieving the centrotype of each cluster, i.e., the estimate that

http://mialab.mrn.org/software/gift/
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is most similar to the others in each cluster (Li, Adalı, and Calhoun, 2007). ICASSO

also offers quantitative evaluations of the "compactness" of each cluster of IC esti-

mates. A compactness index close to 1 indicates that the estimation is stable and

highly consistent, i.e., highly similar components are estimated at each run of the

ICA algorithm. For further technical information regarding GICA and ICASSO, the

reader is referred to Calhoun and Adali (2012), Cole, Smith, and Beckmann (2010),

Erhardt et al. (2011), Himberg, Hyvärinen, and Esposito (2004), and Li, Adalı, and

Calhoun (2007).

Finally, in rsfMRI, RSNs are commonly computed at the group level, providing

no subject-level information necessary to make statistical inferences at a later stage

of analysis. However, a common need for brain FC analysis is to first perform a

GICA, and then, for each subject, estimate a version of each RSN and a correspond-

ing BOLD timeseries. This is usually achieved using the dual regression technique

(Nickerson et al., 2017). In the framework of dual regression, each group-level spa-

tial map (i.e., RSN) is regressed onto each subject’s BOLD-fMRI data to extract the

corresponding subject-specific BOLD timeseries. Then, the extracted timeseries are

regressed onto the same BOLD-fMRI data to obtain the subject-specific set of RSNs

(Beckmann et al., 2005; Nickerson et al., 2017). In recent years, more advanced ex-

tensions of GICA and dual regression have been developed and can provide better

estimations of subject-specific RSNs. The most notable method is the group infor-

mation guided ICA (GIG-ICA), which utilizes the group-level ICs, obtained from a

preceding GICA, as guidance to compute subject-specific ICs and timeseries using

a multi-objective optimization strategy that can also be applied to fMRI data not

included in the computation of the initial group ICs (Du and Fan, 2013). GIG-

ICA simultaneously optimizes the independence among individual networks of

each subject and the dependence of networks across subjects, providing a conve-

nient balance between the group model (fixed networks) and the individual subject

specificity of the estimated networks (Salman et al., 2019).
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Graph Analysis

The brain is perhaps the most complex network known to humans (Fornito, Za-

lesky, and Bullmore, 2016). On the microscale, a human brain is made up of a hun-

dred billion neurons connected by an extraordinary mesh of 100 trillion synapses.

Moving up to the mesoscale, a brain is made up of hundreds and thousands of

interacting functional units connected by anatomical fibers and/or functional con-

nectivity. At the macroscale, the brain’s functional network organization is sum-

marized by a handful of large-scale networks each subserving a functional domain

and interacting with other networks to generate complex behaviors. Indeed, if per-

turbed at any scale, the brain can exhibit many uncertainties and non-linear events

that are difficult to predict and evaluate without prior knowledge of all details of

the network (Betzel and Bassett, 2017). However, it is an overwhelmingly difficult,

yet very important, task to fathom how the brain is organized in every detail, how

functional networks give rise to complex cognition and behavior, and how are they

altered brain disorders. In this context, graph theory has been introduced to net-

work neuroscience research to afford neuroscientists an opportunity to characterize,

estimate, and simulate the minute details of brain networks using fairly simple, yet

highly effective models.

Graph theory is a branch of mathematics concerned with the analysis of com-

plex relationships among the components of an interconnected system (Bassett and

Bullmore, 2017; Fornito, Zalesky, and Bullmore, 2016). A graph is a simple model

made up of a set of nodes linked by a set of edges (Wilson, 1986). In the context of

the brain, a graph is made up of brain regions/networks/voxels (nodes) connected

by structural connections or by FC weights (edges). For examples, the AAL atlas

(Tzourio-Mazoyer et al., 2002), which contains 116 anatomical ROIs, or the Power-

264 atlas (Power et al., 2011), which contains 264 functional ROIs, can be used to

define the nodes, whereas Pearson’s correlation can be used to compute pairwise

FC weights, which define the edges.

As an optional preprocessing step, brain FC graph may undergo thresholding

and binarization to remove spurious connections and further simplify the analysis.

In FC graph analysis, thresholding is the process of removing FC weights that fall
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below a prespecified cut-off threshold (Heuvel et al., 2017). In some cases, thresh-

olding can be followed by binarization, whereby surviving FC weights are set to

1 and those that do not survive are set to 0. A thresholding strategy in a typical

FC graph analysis can use an absolute threshold or a proportional threshold de-

pending on the research question, although other types of thresholds exist, such as

probabilistic thresholds (Váša, Bullmore, and Patel, 2018). Nonetheless, it has been

shown that different types of thresholding may lead to different results or even bias

group comparisons, especially when comparing healthy controls to cohorts charac-

terized by low overall FC, such as schizophrenia (Heuvel et al., 2017). An alterna-

tive approach is to use fully-weighted networks suited for computing graph mea-

sures that are robust to spurious FC weights, discarding the need for thresholding

in the first place (Heuvel et al., 2017). The advantage of fully-weighted networks is

that they better reflect the small-world properties of brain networks, and that edges

with lower weights actually have less impact on the overall network organization

compared with stronger connections (Schwarz and McGonigle, 2011; Heuvel et al.,

2017). Moreover, studies have shown that weak connections are organized precisely

as predicted by the theory of cost-efficient information transfer in the brain (Gallos,

Sigman, and Makse, 2012). That is, a network in which strong links form large-

world fractal communities, weak links form shortcuts between them, establishing

a small-world global brain network that supports cross-module interactions and

hence efficient flow of information (Gallos, Makse, and Sigman, 2012). Yet, whether

using thresholded or fully-weighted graphs depends on the research question and

the data at hand. For more information and comprehensive reviews on threshold-

ing, see Fornito, Zalesky, and Bullmore (2016), Jalili (2016), Van Wijk, Stam, and

Daffertshofer (2010), and Heuvel et al. (2017) and Váša, Bullmore, and Patel (2018).

Whether using fully-weighted or thresholded graphs, the topological features

of the FC graph can be characterized by meaningful measures, such as degree,

strength, degree distribution, hubs, and rich clubs, to name a few. The degree is

the total number of connections (in binary graphs) a given node has with the rest

of the network. A similar measure is the strength, defined as the total sum of FC

weights of a given node with all other nodes in the network. Another related con-

cept is the degree distribution that describes how the degrees and strengths of all
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nodes in a network are distributed and allows researchers to determine whether a

network contains centralized hubs that connect to many nodes (Van Den Heuvel

and Sporns, 2011). One of the major discoveries that emerged from graph theory is

that the nodes of many real-world networks—including the brain—do not connect

randomly nor uniformly, but rather follow a power-law or a scale-free distribution

(Fornito, Zalesky, and Bullmore, 2016). Power-law distributions describe graphs

that have a topological core-periphery organization with nodes of the core having a

very large number of connections and those in the periphery having fewer connec-

tions. The core nodes are often called hubs that serve central roles in the network

and facilitate efficient cross-network information transmission through short-range

connections (Achard et al., 2006; Van Den Heuvel and Sporns, 2011). Hubs that are

also strongly connected to one another form what is known as a rich club organi-

zation (Van Den Heuvel and Sporns, 2011).

Another important set of second-level graph measures include, among others,

the clustering coefficient, characteristic path length, small-worldness, efficiency,

and modularity. The clustering coefficient measures the tendency of nodes in a

graph to cluster together in groups of strongly connected nodes called communi-

ties. Two versions of this measure exist: the global and the local clustering coef-

ficients. The global clustering coefficient gives an indication of the overall con-

nectedness of the entire network, whereas the local clustering coefficient gives an

indication of the tendency of single nodes to join clusters or communities. The char-

acteristic path length, also known as the average shortest path length, is a measure

of the average number of connections between all pairs of nodes, and can be an in-

dicator of the cost-efficiency of a network. That is, larger values of the characteristic

path length indicate less cost-efficiency (i.e., long distances and high "wiring" cost),

whereas smaller values indicate greater cost-efficiency (i.e., short distances and low

"wiring" cost). The interplay between the characteristic path length and the cluster-

ing coefficient determines the small-worldness of a network (Bassett and Bullmore,

2017). Small-worldness is formally defined as the ratio of the clustering coefficient

to the average shortest path length; a small-world network is characterized by large

clustering coefficient and small characteristic path length, reflecting efficient infor-

mation transmission with minimal wiring costs. In this context, a measure of global



4. Functional Connectivity 83

and local efficiency can be computed from the reciprocal of the characteristic path

length. Global efficiency quantifies the exchange of information across the whole

network, whereas local efficiency is computed a the level of nodes and can quantify

the capacity of information transfer through each node.

FIGURE 2.18: Schematic representation of three important graph measures: clustering co-
efficient, modularity, and path length.

Finally, modularity is an important property of many real-world networks and

describes the strength of segregation of networks into modules over several topo-

logical scales in a Russian doll-like organization (Fornito, Zalesky, and Bullmore,

2016). The brain’s modular structure reflects regularities in its wiring diagram,

such that brain regions or neurons that are highly connected and putatively per-

form common functions are grouped together (Crossley et al., 2013). Moreover,

the brain’s community structure spans hierarchical organizational scales, rang-

ing from microscale communities at the neuronal level to mesoscale communities

of functionally-specialized regions to macroscale communities associated with a

broader range of brain functions (Betzel and Bassett, 2017). Essentially, hierarchical,

modular networks have small-world properties such as dense, short-range intra-

modular connections and sparse, long-range inter-modular connections. In this

sense, the intrinsic functional organization of the human brain manifests as hier-

archically organized RSNs, has small-world properties, and is remarkably flexible,

exhibiting a fractal community structure that transcends multiple levels of space,

time, and topology (Betzel and Bassett, 2017). For comprehensive reviews on all

mentioned and unmentioned graph measures and on the use of graph analysis

in neuroscience, in general, see Achard et al. (2006), Bassett and Bullmore (2017),
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Bondy, Murty, et al. (1976), Bullmore and Sporns (2009), Vico Fallani et al. (2014),

and Fornito, Zalesky, and Bullmore (2016) and Sporns (2018).

5 Dynamic Functional Connectivity

5.1 Introduction

The emergence of large-scale networks during both resting-state and task perfor-

mance, as measured by fMRI, is a widely studied phenomenon (Damoiseaux et al.,

2006; Chang and Glover, 2010). Such networks reflect the average, stable functional

organization of the brain and are derived from a scanning period of 5 minutes or

more based on an implicit assumption that FC over this duration is relatively sta-

tionary (Calhoun et al., 2014). That is, FC has been considered “static” in a sense

that all time points in a fMRI scan are taken to produce a single measure of aver-

age FC strength (Fong et al., 2019). However, the brain is an inherently dynamic

system that rapidly integrates, coordinates, and responds to multiple internal and

external stimuli at fast timescales in order to complete complex tasks and achieve

goals (Hutchison et al., 2013). Therefore, the "static" perspective of FC, although

informative, is a narrow view of brain functioning, precluding the harnessing of in-

formation embedded in very fast variations in FC and necessary to answer funda-

mental questions about the function and dysfunction of the human brain (Zalesky

et al., 2014). In this context, different approaches have been recently developed

to study the brain as a time-varying or "dynamic" interconnected system with a

functional network organization that reconfigures over timescales shorter than a

standard task (Bassett et al., 2011; Braun et al., 2015; Gonzalez-Castillo and Bandet-

tini, 2018; Sakoğlu et al., 2010; Shine et al., 2016) or resting-state fMRI session (Allen

et al., 2014; Chang and Glover, 2010; Damaraju et al., 2014; Liégeois et al., 2019;

Zalesky et al., 2014).

The interest in dynamical inter-dependence between neurons (i.e., the modula-

tion of activity in one brain region caused by the activity in other regions) actually

goes back to the mid 20th century. Dynamical approaches have been applied to an-

alyze neural systems across different spatial scales including ion channels, single
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cell firing, microscopic field potentials, and scalp EEG data (see Breakspear (2004)

for a comprehensive review on this topic). This has been supported by the ability

of these modalities to directly measure, with sub-second resolution, the fast os-

cillations in neuronal signalling subserving diverse perceptual and cognitive op-

erations. However, this type of analysis did not attract the interest of the fMRI

community at first, mostly because BOLD signals are much slower than the under-

lying neuronal signals—placing a fundamental limit on the temporal resolution of

fMRI-FC measures—and are highly sensitive to external noise such as breathing,

cardiac pulsations, and head movements (Lurie et al., 2020). Instead, fMRI stud-

ies have focused on FC changes as a function of age (Supekar, Musen, and Menon,

2009), visual state (Bianciardi et al., 2009), awareness (e.g., sleep, sedation, anes-

thesia) (Beason-Held, Kraut, and Resnick, 2009), and cognitive state (e.g., different

task conditions and resting state) (Fransson, 2006). In the latter case, studies have

shown that attention (Fransson, 2006) and learning (Sun et al., 2007) can induce

changes in coordinated BOLD fluctuations throughout the performance of cogni-

tive task and in subsequent rsfMRI scans. Yet, these findings have been based on

measuring FC variations across different scanning sessions and not on measures of

short-term variations within a single session.

In the early 2010s, Chang and Glover (2010) have undertaken one of two earli-

est fMRI experiments to examine the within-session temporal variations in resting-

state FC, happening at timescales of a few seconds between two brain networks

thought to be dominantly and consistently "anti-correlated" across time. Particu-

larly, using a joint time-frequency analysis and sliding window analysis, Chang

and Glover (2010) have examined the variability of resting-state FC between the

posterior cingulate cortex (PCC), a primary node of the DMN, and regions of the

antagonist (or "anti-correlated") executive control network (ECN) as well as other

regions of the DMN itself. This has been motivated by preceding observations that

the magnitude of negative FC between the two networks is much weaker and much

less consistent than within-network positive FC across scanning sessions, especially

when global signal regression, which introduces artificial negative correlations, is

not performed (Chang and Glover, 2009; Shehzad et al., 2009; Murphy et al., 2009).

Moreover, because the resting brain may exhibit varying levels of attention, mind
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wandering, and arousal, Chang and Glover (2010) have also hypothesized that the

FC within and between networks may vary across the duration of a scan. Indeed,

it was found that the coherence and phase coupling between the BOLD timeseries

of the PCC and regions of the ECN are variable in time and frequency, and that

the two networks exhibit temporally-localized epochs of strong negative connec-

tivity interspersed by transient periods of weakly coordinated co-activation, which

explains the weak negative correlation between them. Additionally, using sliding

window analysis to segment the BOLD timeseries into non-overlapping time in-

tervals, Chang and Glover (2010) have found that more regions exhibit a variable

FC profile with the PCC, including the so called "task-positive" regions known to

be part of the attention and salience networks. These early findings, among others

(Sakoğlu et al., 2010), have marked the beginning of a new era in fMRI-FC research,

which takes into account that FC may exhibit dynamic changes at timescales of few

seconds during an fMRI scan.

Many studies of TVFC have focused on quantifying the temporal variability (i.e.,

standard deviation from the mean) in FC between pairs of brain regions within nar-

row time intervals or frequency bandwidths (Chang and Glover, 2010), which, dur-

ing resting state, is believed to underlie a general readiness for these regions to re-

configure their connectivity profile when environmental conditions change (Chang

and Glover, 2010). Other studies have used extensions of traditional graph the-

ory analysis to TVFC, such as multilayer network approaches (Mucha et al., 2010),

which attempt to quantify dynamic reconfigurations in modular structures. This

modular flexibility have been associated with a broad range of cognitive and patho-

physiological factors, including learning (Bassett et al., 2011), cognitive flexibility

(Braun et al., 2015), emotion regulation (Betzel et al., 2017), and schizophrenia (Gif-

ford et al., 2020), to name a few. However, the vast majority of studies have focused

on extracting a set of patterns that capture the main modes of whole-brain TVFC.

Perhaps the main and most controversial finding in this context is that whole-brain

functional network organization transitions back and forth between a set of quasi-

stationary and recurring (possibly overlapping) states that are stable for a short

period time (Cabral, Kringelbach, and Deco, 2017; Calhoun et al., 2014; Heitmann

and Breakspear, 2018; Lurie et al., 2020; Vidaurre et al., 2018). These states are
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characterized by unique FC patterns, spatial co-activation patterns, probabilities

of occurrence and transition, and subject-specific timecourse profiles that reflect

the most likely sequence of state "visits" for each subject (Vidaurre et al., 2018).

The spatiotemporal properties of the states are thought to reflect nonrandom re-

organization of functional interactions that give rise to stable RSNs at extended pe-

riods and might encode information not captured by the time-averaged measures

of FC (Cabral, Kringelbach, and Deco, 2017; Calhoun et al., 2014; Vidaurre, Smith,

and Woolrich, 2017). Moreover, studies have found that FC states at rest are largely

reproducible across individuals and datasets, even when data are collected from

multiple scanning sites and different populations (Abrol et al., 2017; Lurie et al.,

2020). As a natural consequence of these findings, the term chronnectome has been

coined by Calhoun et al. (2014), as the time-varying analog of the connectome, to

describe a focus on identifying time-varying, but recurring, patterns of functional

coupling among brain regions.

While there is clear evidence that the time-varying properties of brain FC de-

rived using electrophysiological recording modalities (e.g., EEG and MEG) relate to

momentarily recurring cognitive states, whether or not fMRI’s TVFC reflects actual

shifts in communication modes between neuronal populations is still, somehow,

controversial (Lurie et al., 2020). However, there is a growing literature on task-

related reconfiguration in FC at short timescales, which has shown that measures of

TVFC can predict performance on tasks both inside and outside the scanner (Douw

et al., 2016; Gonzalez-Castillo and Bandettini, 2018; Liégeois et al., 2019; Shine et

al., 2016) and infer an individual’s emotional experience during the performance of

a task (Tobia et al. (2017); see Shine and Poldrack (2018) for a review on the topic).

Moreover, task-based TVFC methods have been used to identify functional network

reconfigurations associated with different task conditions (Braun et al., 2015; Quinn

et al., 2018) and learning (Bassett et al., 2011). However, in the absence of external

tasks and any ground truth during resting state, discerning whether the intrinsic

TVFC has a cognitive and behavioral relevance has not been a straightforward task

(Vidaurre et al., 2019). In addition, the relatively low temporal SNR and the major

sources of noise in rsfMRI, including system-related instabilities, head motion, and
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physiological fluctuations have led to considerable skepticism regarding the pres-

ence neuronal origins for TVFC (Lurie et al., 2020). However, spontaneous fluctu-

ations are a hallmark of neuronal signalling and studies have found strong asso-

ciations between intrinsic TVFC and simultaneously recorded electrophysiological

data (Chang et al., 2013; Lindquist et al., 2014) and neuronal calcium signals in mice

(Matsui, Murakami, and Ohki, 2019) as well as cognitive performance (Cabral et al.,

2017), attention (Fong et al., 2019), creativity (Li et al., 2017), personality traits (Lié-

geois et al., 2019; Vidaurre et al., 2019), and a growing number of brain disorders

(Engels et al., 2018; Gifford et al., 2020; Harlalka et al., 2019; Rashid et al., 2014),

suggesting a neuronal origin for resting-state TVFC measured by fMRI (see Zhang

et al. (2016) for a review on the topic).

Over the past decade, the number of methods used in the analysis of TVFC

have grown exponentially in terms of volume and complexity. Although a review

of all existing methods along with their merits and pitfalls is an absolute necessity,

it is beyond the capacity of this general overview chapter to cover all methods in

detail. However, in the following subsections, some of the most commonly used

analysis methods in the TVFC literature are described along with their merits and

pitfalls. However, for comprehensive reviews and technical details of the different

methods used in TVFC analysis, the reader is referred to these key reviews (Betzel

and Bassett, 2017; Cabral, Kringelbach, and Deco, 2017; Calhoun et al., 2014; Filippi

et al., 2019; Hindriks et al., 2016; Hutchison et al., 2013; Laumann et al., 2017; Lurie

et al., 2020; Preti, Bolton, and Ville, 2017; Shine et al., 2015)

5.2 Methods of Analysis

Sliding Window Analysis

The sliding window analysis is perhaps the most commonly used and straightfor-

ward method in the study of TVFC (Allen et al., 2014; Damaraju et al., 2014; Hin-

driks et al., 2016; Calhoun et al., 2014). It is analogous to a moving average function,

whereby it computes a succession of pairwise FC matrices over overlapping or non-

overlapping segments of the BOLD timeseries extracted from brain ROIs or voxels

(Figure 2.19B). For example, given two simultaneously recorded BOLD timeseries
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FIGURE 2.19: A standard sliding window and clustering approach to identify time-varying
patterns of functional connectivity from fMRI Data. (A) Identifying resting-state networks
and extracting BOLD timeseries using group independent components analysis. (B) Per-
forming a sliding window analysis (left) for every subject and applying k-means clustering
(right) across all windowed FC matrices from all subjects to extract FC states. Figure repro-

duced from Calhoun et al. (2014), with permission.

with 400 timepoints each, we compute Pearson’s correlation (or any other measure

of dependency) between them within a window that covers the first 20 timepoints.

Then, we move or "slide" this window by one timepoint such that it covers time-

points 2 through 21, and compute the pairwise correlation coefficient again. We

repeat this procedure until the 400 timepoints have been covered by 370 overlap-

ping windows. Performing this procedure across all pairs of ROIs or voxels yields a

timeseries of FC matrices from which several descriptors of TVFC can be computed,

such as the mean and variability (i.e., standard deviation) or time-dependent graph

measures (Bassett et al., 2011; Braun et al., 2015; Gifford et al., 2020; Sizemore and

Bassett, 2017). Moreover, clustering techniques, such as k-means clustering, can be

applied to the upper triangular part of the windowed FC matrices obtained in a

group of subjects to estimate a set of FC states and quantify their temporal proper-

ties (Figure 2.19).

Although the use of sliding window correlations is both simple and versatile, it

entails some caveats. Importantly, the results of sliding window analysis are highly
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sensitive to the different choices of parameters, such as window shape, length, and

choice of FC metric (Hindriks et al., 2016). In the case of window shape, most

studies use a rectangular window that assigns the same weight to all underlying

timepoints, potentially increasing the sensitivity of Pearson’s correlation, for in-

stance, to noise and outliers, especially at the sharp edges of the window (Mokhtari

et al., 2019). To limit the effect of sharp edges and noise, some studies have pro-

posed using exponentially weighted (Lindquist et al., 2014; Zalesky et al., 2014) or

tapered windows (Allen et al., 2014; Rashid et al., 2014). On one hand, the exponen-

tially weighted window, also known as the exponentially weighted moving aver-

age (EWMA), applies declining weights to past observations in the timeseries and

places the strongest weights on recent observations, and after each "sliding" step,

timepoints are gradually down-weighted by a factor λ, before eventually being re-

moved from further computations of FC. This has been previously proposed for

financial timeseries data (Lindquist et al., 2014). On the other hand, tapered win-

dows deal exclusively with edge effects by gradually down-weighing timepoints

that are far from the middle section of the window according a bell curve shape

such that the timepoints at the edges are ultimately assigned zero weights, thereby

limiting the effect of sharp edges. This tapered window can be created by convolv-

ing a rectangular window spanning, for example, 20 timepoints with a Gaussian

kernel with a standard deviation σ=3 TRs (Allen et al., 2014; Rashid et al., 2014;

Mokhtari et al., 2019).

Another important parameter is the window length that needs to be carefully

set in order to obtain reliable estimates of TVFC (Hindriks et al., 2016). Although

there is still no systematic account nor a theoretical support for any particular win-

dow length in the analysis of TVFC, empirically grounded rules-of-thumb that

guide the choice of an appropriate length are widely used in the literature. One

simple approach is to use varying window lengths, for example 15, 20, 30, 60, and

120 timepoints, and assess the findings’ robustness to different choices. However, it

has been reported that even small changes in window length can systematically al-

ter the results (Leonardi and Van De Ville, 2015), and thus including many choices

of window lengths as a validation analysis may complicate the interpretation of

findings.
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In an effort to ease the perplexing window length issue, Leonardi and Van De

Ville (2015) have proposed a rule-of-thumb for choosing a minimal window length

depending on the choice of highpass temporal filtering applied to the BOLD time-

series. For example, if the BOLD timeseries are bandpass filtered in the range

[0.01Hz-0.1Hz], then the minimal window duration needs to be at least 1
0.01 = 100

seconds. This is because the sliding window acts as a non-uniform lowpass filter

in the frequency domain, and spurious fluctuations in windowed correlations have

been observed when the window length is too short with respect to the underlying

frequency components (Leonardi and Van De Ville, 2015). However, the authors

have recommended the use of 30-60 seconds windows to capture reliable TVFC

and discriminate FC states, provided that a proper highpass filter that matches the

chosen window length is used.

Another commonly used rule-of-thumb requires the characterization of the ex-

tent of information that certain lengths can provide (Telesford et al., 2016). For

instance, short windows (<30 seconds) can capture faster variations in FC, but at

the cost of introducing spurious measures due to the small number of timepoints.

In contrast, long windows (≈ 75 seconds to 150 seconds) have been shown to pro-

vide more reliable measures of windowed FC and better discriminate the dynamic

roles of different brain regions in a temporal core-periphery organization (Telesford

et al., 2016), but at the expense of not capturing fast changes in FC (Leonardi and

Van De Ville, 2015). Therefore, it has been suggested that 30-60 seconds windows is

a reasonable middle-ground choice , although some studies have suggested the use

of window lengths of 120 or 240 s (Savva, Mitsis, and Matsopoulos, 2019).

Finally, the choice of FC measure is also critical for TVFC analysis. The most

frequently used measures are the Pearson’s correlation (Allen et al., 2014; Gifford

et al., 2020; Lurie et al., 2020; Rashid et al., 2014; Savva, Mitsis, and Matsopoulos,

2019) and wavelet transform coherence (Bassett et al., 2011; Betzel et al., 2017; Braun

et al., 2015; Braun et al., 2016; Chang and Glover, 2010; Patel and Bullmore, 2016),

whereas other measures have been sparsely used, such as Spearman’s rank corre-

lation and mutual information (Hindriks et al., 2016; Preti, Bolton, and Ville, 2017;

Savva, Mitsis, and Matsopoulos, 2019; Vergara et al., 2017). So far, however, there

is no clear consensus on the "best" set of sliding window parameters and the choice
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remains highly dependent on the research question and the data at hand. For a

reviews and studies on sliding window analysis, see Hindriks et al. (2016), Savva,

Mitsis, and Matsopoulos (2019), and Thompson et al. (2018).

Instantaneous Connectivity Analysis

The use of use sliding window analysis, as mentioned earlier, imposes restrictions

on the length and shape of the window, which might compromise the temporal res-

olution and lead to varying conclusions across studies (Hindriks et al., 2016). As a

response, some studies have recently shown that it is possible to reliably maximise

the temporal resolution by using instantaneous measures of brain FC (i.e., at each

single timepoint), most notably instantaneous phase synchronization (Glerean et

al., 2012) and multiplication of temporal derivatives (MTD) (Shine et al., 2015).

Similarly to sliding window analysis, the output of these two methods is a time-

series of FC matrices that can be used for estimating FC states via clustering Cabral

et al. (2017) or for computing time-varying graph measures (Pedersen et al., 2018).

Instantaneous phase synchronization (IPS), also known as instantaneous phase

coherence, is widely used in physics to study the behavior of weakly-coupled oscil-

lators (Rosenblum, Pikovsky, and Kurths, 1996). The main idea behind IPS is to es-

timate the magnitude of "phase-locking" between a pair of timeseries by first sepa-

rating their amplitude information from their phase information, the latter of which

can be used to estimate the difference in phase coupling at each timepoint. The first

step is usually achieved by converting the original timeseries into their complex

analytic versions using the Hilbert transform (see Le Van Quyen et al. (2001) for a

review), whereas the second step is achieved by simply subtracting the phase time-

series and calculating the cosine of this difference at each timepoint as a measure of

instantaneous FC. In the case of TVFC analysis with N ROIs, this procedure yields

a timeseries of instantaneous FC matrices that can be conveniently arranged into an

adjacency tensor of shape T, where T is the number of timepoints. The advantages

of using IPS to compute TVFC are: (1) it is not affected by cross-subject variabil-

ity in the amplitude of BOLD timeseries (i.e., the phase information are sufficient
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to capture temporal variations in FC), and (2) it is a measure of non-linear depen-

dency, which makes it more suitable for capturing non-linear variations in FC than

Pearson’s correlation that only captures linear properties (Glerean et al., 2012).

Like Pearson’s correlation, IPS is bounded between -1 and 1, indicating maxi-

mal anti-coupling and maximal coupling, respectively (Cabral et al., 2017; Glerean

et al., 2012). For instance, a phase difference equal to zero degrees at one timepoint

indicates that the BOLD timeseries are maximally phase-locked, and hence IPS, cal-

culated as the cosine of 0, is equal to 1. As the phase difference approaches 180

degrees (or π), the IPS approaches -1, indicating maximal anti-coupling or out-of-

phase coherence. Using IPS to quantify TVFC bears some limitations. Importantly,

like any instantaneous measure of dependency, IPS is susceptible to high-frequency

noise fluctuations that are usually filtered out when using sliding window (Cabral

et al., 2017). However, different approaches have been developed to overcome this

issue, including bandpass filtering the BOLD timeseries within a narrow frequency

band (e.g., 0.04–0.07 Hz) (Glerean et al., 2012) or by analyzing the dominant FC

pattern captured by the leading eigenvector of each of IPS FC matrix, which con-

serves a sufficient amount of variance (Cabral et al., 2017). The latter technique is

known as leading eigenvector instantaneous dynamic analysis, or LEiDA. For fur-

ther reading and information on the use of IPS and LEiDA in TVFC analysis, see

Cabral et al. (2017), Cabral, Kringelbach, and Deco (2017), Pedersen et al. (2018),

and Glerean et al. (2012).

Multiplication of temporal derivatives (MTD) is a recently developed approach

to estimate instantaneous FC during task performance (Shine et al., 2016) and

resting-state (Shine, Koyejo, and Poldrack, 2016). Computing MTD is fairly sim-

ple: (1) the temporal derivatives of N BOLD timeseries of length T are calculated by

subtracting each BOLD timeseries at timepoint t1 from itself at timepoint t, hence

obtaining a timeseries (length=t-1) of temporal derivatives for each BOLD time-

series; (2) each temporal derivative timeseries is then normalized by dividing it

by its standard deviation; and finally (3) the MTD is computed as the point-wise

product of the standardized temporal derivatives timeseries of each pair of brain

regions and conveniently transformed into an adjacency tensor of shape T − 1, for

each subject (Shine et al., 2015). MTD is also susceptible to high-frequency noise.
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In this context, Shine et al. (2015) have suggested calculating a simple moving av-

erage of the MTD scores such that scores surrounding a point in time are averaged

within a window of a pre-specified length. This solution yields similar results to

those of the sliding window analysis. However, in MTD, short window lengths (<

30 seconds) may be used with confidence, as simulations have shown that, when

averaged, MTD are not as sensitive to low- and high-frequency noise as the slid-

ing window correlation, are not adversely affected by the choice of highpass filter,

and are robust to spurious effects of head motion (Shine et al., 2015). Besides, with

short windows, MTD has shown higher sensitivity to fast changes in FC than slid-

ing window, making it useful for capturing fast changes in cognitive state and for

characterizing task-driven TVFC in event-related paradigms or studies of natural-

istic stimuli (e.g., movie watching) (Shine et al., 2016). However, recent reports

have suggested that MTD may be overly sensitive to very small, and possibly spu-

rious, variations in FC, compromising its ability to detect meaningful variations in

the absence of clear benchmarks, post hoc statistical assessments, and effective data-

cleaning strategies (Savva, Mitsis, and Matsopoulos, 2019).

Multilayer Network Analysis

The brain’s network architecture is highly organized across multiple levels of gran-

ularity, from the microscale at the level of individual neurons to the macroscale at

the level of entire brain systems that communicate at different timescales. Situated

between these extremes is the mesoscale, which comprises medium-sized groups of

highly connected nodes known as “communities” or “modules” and whose time-

varying functional intra- and inter-connections can be captured with fMRI at short

timescales (Betzel and Bassett, 2017).

Whether using sliding window analysis or instantaneous measures to quantify

TVFC, the resulting FC matrices can be combined in a time-respecting manner to

form an adjacency tensor that can be thought of as an ordinal multilayer network

(Figure 2.20). The ordinal multilayer network configuration carries information

about the evolution of the brain’s network structure at short timescales, which can

be quantified using measures derived from graph theory (Bassett et al., 2011; Betzel
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and Bassett, 2017; Mucha et al., 2010). In fact, most of the "time-invariant" graph

metrics can be extended to the time-resolved domain so that they can be easily

computed on a multilayer network. These may include, small-worldness, charac-

teristic path length, clustering coefficients, centrality, and rich clubs, to name a few

(Kivelä et al., 2014; Sizemore and Bassett, 2017). However, the most commonly used

multilayer network measure in TVFC analysis is that of multilayer community de-

tection, which measures how the brain’s functional modular organization varies

across time-respecting layers (Betzel and Bassett, 2017; Braun et al., 2015; Mucha

et al., 2010).

A straightforward approach to assess the time-varying modular organization

is to identify communities in each layer, separately, and then compute a statistic

that characterizes the changes in their size and membership (i.e., constituent nodes)

across time (Betzel and Bassett, 2017). There are different criteria to define com-

munities and many algorithms for detecting them including, the Louvain Method,

non-negative matrix factorization, Newman’s modularity, hidden Markov models,

clustering and InfoMap (Betzel and Bassett, 2017; Newman, 2006). However, the

most popular approach to quantify communities the iterative maximization of the

modularity quality function, denoted Q, that directly compares the number (in case

of binary graphs) or strength (in case of weighted graphs) of intra-community con-

nections in each layer to what is be expected in a network of similar size and density

having randomly distributed connections, also known as null network or model

(Equation 2.3; see Fortunato and Hric (2016), Fornito, Zalesky, and Bullmore (2016),

and Newman (2006) for reviews on the topic). The single-layer modularity quality

function is defined as:

Q (γ) = ∑
ij

[
Aij − γPij

]
δ(Mi, Mj) (2.3)

where Aij is the observed FC weight between nodes i and j in a single layer

network, Pij is the expected FC weight between nodes i and j in a random network

(i.e., null model), Kronecker’s δ(Mi, Mj) = 1 if the community assignments Mi and

Mj of nodes i and j, respectively, are the same and 0 otherwise. The parameter γ is

the structural resolution parameter, which scales the relative importance of the null
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random weights against the actual FC weights. That is, large values of γ result in

the detection of many small communities composed of a few nodes, whereas small

values result in the detection of a few large communities composed of many nodes.

A major shortcoming of using single-layer methods in a multilayer setting is that

the precise quantification of changes in module membership requires a map from

a given module in one layer to itself in the next layer (Mucha et al., 2010). Such a

map cannot be derived by methods applied to individual layers, separately, due to

the heuristic nature of most well-known community detection algorithms (Clauset,

Newman, and Moore (2004) and Fortunato (2010); see Fortunato and Hric (2016) for

a review on the topic). That is to say, a module labeled as module A in one layer is

not necessarily the same module labelled A in the next layer or the layer after. This

can be presumably resolved using ad hoc and post-processing methods such as the

Hungarian algorithm that optimally aligns similar modules across different layer

(Munkres, 1957). Nevertheless, if there are strong topological similarities between

different modules across layers this approach may fail, especially when analyzing

large networks with a fractal topography (Khambhati et al., 2018).

A recent solution to this issue is using multilayer modularity maximization algo-

rithms that represent powerful extensions of the single-layer methods (Bassett et al.,

2011; Betzel and Bassett, 2017; Mucha et al., 2010). Importantly, the multilayer ana-

log estimates the communities in all layers simultaneously in a self-contained man-

ner, which resolves the problem of persistence or continuity of communities from

one layer to the next (Betzel and Bassett, 2017). In particular, the algorithm treats

the multilayer network as a combination of individual networks coupled through

"artificial" ordinal links that connect node i in layer s to itself in the temporally adja-

cent layers s− 1 and s + 1 (Mucha et al., 2010). The multilayer modularity operates

on the same idea as the single-layer version. That is, communities in each layer are

defined by grouping nodes having connections stronger than expected in a random

version of the network (Bassett et al., 2011). However, by adding inter-layer ordi-

nal connections of weight, ω, besides grouping intra-layer nodes into communities,

the multilayer modularity algorithm assigns nodes in different layers to modules,

thereby accounting for the continuity of communities across layers (Equation 2.4;

Betzel and Bassett, 2017). Yet, as ideal as it may seem, selecting values for ω and γ
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is not straightforward and there is still no theory-driven nor data-driven approach,

at least in TVFC analysis, for selecting an optimal combination of parameters, al-

though many heuristics exist, such as making a "grid search" and making a choice

based on user-defined criteria (Gerraty et al., 2018). Therefore, in the absence of

strong evidence to select one weighting scheme over another, in studies of TVFC at

least, the free parameters are usually assigned the same de facto value, γ = ω = 1,

that can be heuristically varied over a narrow range to assess the robustness of find-

ings (Bassett et al., 2011; Braun et al., 2015; Braun et al., 2016). Ideally, there needs

to be a principled, data-driven approach for selecting the "correct" free parameters

in modularity maximization methods. Which can be an interesting research topic

in the future. The multilayer modularity quality function is defined as:

Q(γ, ω) = ∑
ijsr

[(
Aijs − γPijs

)
δsr + ωδ(ij)

]
δ
(

Mis, Mjr
)
. (2.4)

where Aijs represents the observed FC between node i and node j in layer s,

Pijs is the expected FC weight between nodes i and j in a random network (i.e.,

null model) derived from layer s, γs is the structural resolution parameter in layer

s, ωj,r,s is the inter-layer temporal resolution parameter or the connection strength

between each node in layer s and itself in a subsequent layer r, Mi,s and Mj,s are

the community assignments of nodes i and j in window s, respectively, and, finally,

δ(Mi,s, Mj,s) is equal to 1 when Mi,s=Mj,s and equal to 0 otherwise.

The choice of the null model, P, is critical for multilayer modularity maximiza-

tion. In the study of temporal networks, such as TVFC, the most commonly used

null models employ random graphs derived from the observed adjacency matrices

(Bassett et al., 2013). There are three types of null models usually adopted in the

analysis of TVFC: connectional null models, nodal null models, and temporal null

models, in which intra-network connections, inter-network connections, and order

timepoints in an adjacency tensor are randomized to get a random (i.e., permuted)

network, respectively (Bassett et al., 2011; Braun et al., 2015; Mucha et al., 2010).

In the first approach, the connections between nodes in each layer are randomly

rearranged such that the total density of graph is preserved while the meaningful

topographic properties are lost. The predominantly used model in this case is the
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Newman-Girvan null model (Newman, 2006) defined as:

Pijs =
ki,sk j,s

2ms
(2.5)

where ki,s and k j,s are the strengths (or weighted degrees) of nodes i and j in a

null-model version of layer s, respectively, and ms is the density, or the total sum

of weighted degrees, of the whole graph in layer s. The second approach requires

linking a node in one layer, with a weight ω, to a randomly chosen node in the pre-

vious and next layers. Last, the construction of a temporal null model is based on

randomly reordering the multilayer network layers in time. Then, the dynamic net-

work measures computed using the observed multilayer community structure are

statistically compared to those computed using the temporally permuted version

(Bassett et al., 2011).

After determining the optimal community structure via multilayer modularity

maximization or any other method with the appropriate null model, one can ex-

plore the architectural fluctuations and temporal excursions of each region from

the "native" (i.e., time-averaged) network configuration using different network di-

agnostic measures. For example, flexibility (Figure 2.20C) has been largely used

to quantify how frequently a brain region changes its community assignment from

one layer to the next (Bassett et al., 2011; Betzel and Bassett, 2017; Mattar, Betzel,

and Bassett, 2016). Increased flexibility has been associated with learning (Bassett

et al., 2011), enhanced executive function (Braun et al., 2015), aging (Betzel et al.,

2015) , emotions (Betzel et al., 2017), and cognitive dysfunction in brain disorders

(Braun et al., 2016; Gifford et al., 2020; Harlalka et al., 2019). Related measures are

node promiscuity, cohesion, disjointness (Telesford et al., 2017). Promiscuity is

the fraction of all the communities in which a node participates at least once across

time (Papadopoulos et al., 2016). Cohesion measures the extent to which each node

transitions mutually with other nodes between communities across layers, whereas

disjointness measures the extent to which nodes move independently from between

communities (Telesford et al., 2017). These two metrics are particularly informative

for determining collective (or local) variations in the coordinated activity of brain

regions thought to mark changes in general cognitive processing.
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FIGURE 2.20: Construction of multilayer networks and computation of the flexibility. (A)
BOLD timeseries are extracted from a pre-defined set of ROIs, (B) Dynamic FC matrices
are computed either using sliding window or instantaneous measures of FC, (C) Multilayer
modularity maximization algorithm uncovers community assignments across ordinal lay-
ers for all nodes. The temporal flexibility of each node in the network is then calculated
as the average number of times it changes its community affiliation. Least flexible nodes
tend to stay with the same community and rarely transitions to other communities, whereas
most flexible nodes tend to change their community affiliation more often. This represents
a temporal core-periphery organization, where inflexible nodes make up the core, while
flexible node constitute the periphery. Figure reproduced from Mattar, Betzel, and Bassett

(2016), with permission.
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FIGURE 2.21: (A) The module allegiance matrix represents the proportion of time that any
two brain regions are assigned to same community across layers. The warm block-like
structure along the diagonal of the matrix suggests that nodes belonging to the same brain
system tend to cluster together more often than with nodes outside the system across time.
(B) The average allegiance value within the native system of the node represents the re-
cruitment coefficient, whereas the average allegiance value outside the node’s native sys-
tem yields the integration coefficient. (C) Recruitment (top) and integration (bottom) for
different brain regions in a study conducted by Chen et al. (2016). As seen from the figure,
nearby regions (potentially belonging to the same brain system) tend to have very similar
recruitment and integration profiles, suggesting the presence of system-level integration of
information at short timescales. Figure reproduced from Mattar et al. (2015), with permis-

sion.

Another important set of measures can quantify the extent to which nodes

participate in communities with nodes belonging to or outside their native sys-

tem (Chen et al., 2016; Mattar et al., 2015). These measures require the computa-

tion of the average module allegiance matrix (sometimes called the temporal co-

occurrence matrix; Figure 2.21A), for each study subject, in which each element

measures the proportion of times that two brain regions have been assigned to the

same community across layers (Chen et al., 2016; Gifford et al., 2020). The module

allegiance matrix can be used to estimate the probability of brain nodes to show

spatiotemporally diverse functional interactions with nodes outside their "native

system" using a measure called integration. Conversely, the module allegiance ma-

trix can be used to estimate the recruitment coefficient, which measures the proba-

bility of brain nodes to remain connected to nodes belonging to their time-averaged
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native community (Mattar et al., 2015). For comprehensive reviews and papers on

the use of multilayer modularity analysis in TVFC, see Bassett et al. (2011), Bet-

zel and Bassett (2017), Betzel et al. (2019), Chen et al. (2016), De Domenico (2017),

Mattar et al. (2015), Mucha et al. (2010), Telesford et al. (2016), and Pedersen et al.

(2018).

Hidden Markov Models

The sliding window analysis and related methods suffer from a number of limita-

tions that may undermine and complicate the analysis of TVFC, potentially leading

to false conclusions if not carefully accounted for (Hindriks et al., 2016). In par-

ticular, they need a careful pre-specification of the timescales (i.e., window length)

within which reliable estimates of windowed FC can be computed. A recent alter-

native approach to sliding window analysis is the hidden Markov models (HMM),

which belong to the class of probabilistic graphical modelling tools specifically de-

signed for the analysis of sequential data (e.g., timeseries). HMM can be used to

directly segment the observed BOLD timeseries into a set of states characterized

by distinct FC configurations that reoccur over time, in a self-contained manner

(Quinn et al., 2018). That is, the HMM method does not require a pre-specification

of any window length (Quinn et al., 2018). Instead, the timescales of interest are

inferred directly form the observed data (Quinn et al., 2018; Vidaurre, Smith, and

Woolrich, 2017). Particularly, while sliding window analysis permit the estima-

tion of FC within short data segments with a fixed length, the HMM decomposes

the data efficiently by inferring adaptive "windows" or lifetimes for each state and

then estimating FC patterns averaged across all visits to that state (Baker et al.,

2014; Quinn et al., 2018; Vidaurre et al., 2018). This removes the necessity of pre-

specifying window length and the need for windows to be sufficiently long to get

reliable estimates and short enough to capture fast changes in FC. Instead, the tem-

poral properties of the states such as frequency of occurrence and dwell times are

independent of the semi-arbitrary choices of window and thus become interesting

properties in themselves, driven by variations in the BOLD timeseries rather than

the researcher’s choice of parameters.
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The HMM has been used to flexibly characterize FC states across a range of

data modalities and has been applied to an increasing number of conditions and

datasets that include resting-state (Vidaurre, Smith, and Woolrich, 2017) and dif-

ferent task paradigms (Quinn et al., 2018). The findings highlight the ability of the

HMM to represent behaviourally relevant dynamics at different data-specific and

data-driven timescales not captured by fixed sliding window analysis (Quinn et al.,

2018). This approach has been extended to explore the relationship between states

and cognition in very large datasets (Vidaurre et al., 2018). For example, brain states

inferred by applying the HMM on massive resting-state fMRI data from the Human

Connectome Project have revealed a hierarchical temporal structure characterized

by two "metastates" each comprised of a set of sub-states (Vidaurre, Smith, and

Woolrich, 2017). One of these metastates has been shown to represent higher-order

cognition, and the other represents the primary sensorimotor systems. Importantly,

the metastates have been consistently detected across different datasets, with find-

ings showing that their temporal properties at the subject-level (e.g., frequency of

occurrence) are heritable and predictive of psychological and personality traits (Vi-

daurre et al., 2018; Vidaurre et al., 2019).

The HMM method is based on the principles of Markov chains and variational

Bayesian inference (Vidaurre, Smith, and Woolrich, 2017). A Markov chain is a

stochastic process describing systems that are presumed to transition between a set

of observable states (e.g., weather) according to certain probabilistic rules. Impor-

tantly, in a Markov chain the probability of a state to occur at one timepoint de-

pends only on the state of the previous timepoint. In other words, the states before

the current state do not directly affect the transition to a future state. Markov chains

are often modelled by a graph that includes a set of observed states connected by

transition probabilities (see Gagniuc, 2017 for a textbook on Markov chains). Simi-

larly to Markov chains, the hidden Markov models can be used to model dynamic

systems that are postulated to transition between states, such as the human brain.

However, unlike Markov chains, the states in HMM are hidden, and the algorithm

attempts to uncover these states and estimate their properties from the observed

timeseries using variational Bayesian inference. In this framework, the observed

timeseries are believed to have been "emitted" by the occurrence of given state at
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each timepoint. That is, each state that can be identified by the HMM is defined as

an instantiation of a certain family of probability distributions known as observa-

tion models (or emission probabilities) that have "emitted" the observed timeseries

data at the timepoints when a certain state is "active" (Figure 2.22). For example,

multivariate Gaussian distributions have been widely-used as observational mod-

els when modelling FC dynamics in fMRI studies (Vidaurre, Smith, and Woolrich,

2017).

In TVFC analysis, the HMM method assumes that the BOLD timeseries are gen-

erated from joint multivariate Gaussian distributions each characterized by a mean

vector and a covariance matrix (Vidaurre, Smith, and Woolrich, 2017). The HMM

attempts to infer those parameters (i.e., mean and covariance) directly from the ob-

served data using variational Bayesian inference (Baker et al., 2014; Ryali et al.,

2016; Vidaurre et al., 2018). The mean vector encodes the average signal intensities

of brain regions when a certain state is active and hence represents a transiently

recurring spatial "co-activation" pattern in the brain. The covariance matrix, on the

other hand, can be interpreted as a state-specific FC pattern encoding the patterns

of connectivity when a certain state is active (Vidaurre et al., 2018). Moreover, the

HMM yields a description of the temporal properties of the states, such as the state

timecourses (i.e., the probability of each state to be active at each time point in a

timeseries) and the transition probabilities (i.e., the probability to transition from

one state to each of the other states).

HMM is usually performed at the group level and, more precisely, applied to the

concatenated timeseries across all study subjects (Vidaurre et al., 2018). This means

that the states mean vectors, covariance matrices, and transition probabilities are

defined for the whole group. Only the state time courses are, however, subject-

specific—that is, states can be active at different moments for each subject. A recent

extension to the HMM is the dual estimation, which is analogous to the dual re-

gression or GIG-ICA used in the framework of GICA (Vidaurre et al., 2019). In

dual-estimation, the HMM is first applied at the group level and then re-applied to

each subject’s BOLD timeseries while employing the group-level estimates as prior

information when updating and re-inferring the states for each subject (Vidaurre

et al., 2019). This procedure yields an individualised estimation of the co-activation
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FIGURE 2.22: (A) Each sample at each timepoint can described as one of a set of discrete
hidden states denoted Xt. Each state has an observation model Y which characterizes the
distributions of the observed data whilst state X is "active". (B) A simple example of a
system with two interacting nodes moving through three HMM states (red, blue, and green
states). The observation model for each node is shown in the line plots to the left. Each
state has a distribution for each node describing the observed values whilst that state is
"active". The timeseries to the right show the observed data for each node (e.g., BOLD
timeseries). The values are color-coded according to which state is "active" at each time
point. Note that at each point in time the observed values are drawn from the distribution
of the appropriate observation for that sample. The bottom row shows the state timecourse

for this simple system. Figure reproduced from Quinn et al. (2018), with permission.
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patterns and FC matrices, the latter of which can be used, for example, to test for as-

sociations between TVFC and behavior. Then, the subject-specific states can be used

to re-compute the state timecourses and transition probabilities for each subject in-

dependently from the group estimates (Vidaurre et al., 2019). Thus, with HMM

combined with dual estimation, subject-specific data-driven estimates of TVFC can

be computed, bypassing the limits of the sliding window analysis.

A limitation of HMM algorithm is that it requires a large amount of data and,

possibly, more than one fMRI scan per subject to yield richer and more robust

results, which is computationally expensive, especially when analyzing massive

datasets like the Human Connectome Project. However, stochastic variational

Bayesian inference approaches have been proposed and can be applied to very large

neuroimaging datasets in an iterative cost-efficient manner (Vidaurre et al., 2018).

A second limitation of the HMM is that it requires that the number of states be

specified a priori, similarly to traditional k-means clustering (Vidaurre, Smith, and

Woolrich, 2017). However, as argued by Quinn et al. (2018), the objective of HMM

is not to establish a "correct" number of states to describe state transitions in the

data, but rather identify a number that provides a good description at a desired

temporal granularity dependent on the question at hand, similarly to the choice of

the number of components in GICA (Quinn et al., 2018). Finally, given the heuristic

nature of variational Bayesian inference (i.e., sensitivity to initial starting points),

the HMM may yield slightly different outcomes across different runs of the algo-

rithm (Karapanagiotidis et al., 2018). However, this issue is amplified when the

number of states and/or number of channels (i.e., brain regions) increase, exponen-

tially inflating the number of parameters to be estimated (Baker et al., 2014). Thus,

in order to get consistent results, a trade-off must be made between the desired

temporal resolution (i.e., number of states), number brain regions of interest, the

free energy index (an index of the goodness-of-fit of the model), and the stability of

estimates across different runs (Karapanagiotidis et al., 2018). For comprehensive

mathematical and technical details on the use of HMM in TVFC analysis, see Baker

et al. (2014), Kottaram et al. (2019), Ou et al. (2015), Quinn et al. (2018), Rabiner

and Juang (1986), Vidaurre et al. (2016), Vidaurre, Smith, and Woolrich (2017), and

Vidaurre et al. (2018).
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Statistical Testing with Null Models

The use of any of the abovementioned TVFC approaches generates different mea-

sures that should not be directly regarded as estimates of "true" TVFC (Miller et al.,

2018). Given the finite number of timepoints and the numerous sources of noise

present in the BOLD data, measures of TVFC, such as temporal variance or state

transitions, are subject to statistical ambiguity (Hindriks et al., 2016). Therefore,

a proper statistical framework needs to be adopted to determine whether the ob-

served variations in FC can be characterized as significantly "dynamic" (Hindriks

et al., 2016; Liegeois et al., 2017). So far, the most commonly used approach is to

simulate surrogate data from the original timeseries or TVFC matrices that pre-

serve the first-order statistics (i.e., mean and variance of the real timeseries) and

other properties such as the time-averaged FC, power spectral density, and ampli-

tude distribution (Zalesky and Breakspear, 2015). This data is considered "null" in

the sense that it lacks any meaningful time-varying structure as the one presumed

to exist in the fMRI data (Miller et al., 2018). The surrogate data can thus be used

to formulate a null hypothesis that the observed measures of TVFC are not time-

varying. Then, statistical tests can be performed to find evidence in support of or

against this hypothesis and determine whether a TVFC metric is reflecting statis-

tically significant temporal dynamics or is attributable to background noise and

resampling variability (Miller et al., 2018).

The most popular frameworks to simulate surrogate data are phase randomiza-

tion and multivariate autoregressive randomization (Liegeois et al., 2017; Miller

et al., 2018; Savva, Mitsis, and Matsopoulos, 2019)). Phase randomization (PR)

can be used to generate null data by performing a Discrete Fourier Transform

(DFT) to each BOLD timeseries, adding a uniformly distributed random phase

to each frequency component, and finally applying inverse DFT to recover the

phase-randomized BOLD timeseries (Liegeois et al., 2017). Importantly, random-

ized phases are generated independently for each frequency components, but are

uniform across all brain regions (Liegeois et al., 2017). In the ARR method, on the

other hand, the BOLD timeseries at a given timepoint is assumed to be a linear com-

bination of the values of previous timepoints (Chang and Glover, 2010; Liegeois et
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al., 2017; Zalesky et al., 2014). In this framework, a multivariate vector of all BOLD

timeseries is regressed on a lagged vector of the same timeseries, with the optimal

lag determined using different criteria (Chang and Glover, 2010). Then, the coeffi-

cients of this regression are estimated using multivariate ordinary least squares and

used in the generation of surrogate timeseries. Next, using bootstrapping, surro-

gate timeseries having the same ARR coefficients (i.e., same stationary relationship

as the original timeseries) are generated. Yet, regardless of the method used, the

generated surrogate data are assumed to be null in the sense that they are station-

ary, linear, and follow a Gaussian distribution (Liegeois et al., 2017).

After generating the surrogate datasets, the TVFC analysis applied to the origi-

nal BOLD timeseries is repeated for each set of null data to construct an empirical

distribution of the measure of interest (e.g., temporal variability). Then, hypothe-

sis testing (one-tailed or two-tailed) can proceed by selecting an αth percentile (e.g.,

95%) at which the null hypothesis can be rejected. If an observed value falls outside

the critical value, the null hypothesis can be rejected and the alternative hypothesis

that the observed measure is an estimate of "true" TVFC can be accepted. How-

ever, since the surrogate data are linear, Gaussian, and stationary, the null hypoth-

esis can be rejected due to non-linearity, non-Gaussianity, and/or non-stationarity,

which does not permit a clear conclusion regarding the presence nor absence of

non-stationary FC (Miller et al., 2018). That is, the observed FC data can be statisti-

cally stationary, but exhibit non-linearities, which may lead to a false rejection of the

null hypothesis (Liegeois et al., 2017). Moreover, studies have shown that the notion

of "stationarity" assessed using the PR and ARR models does not necessarily imply

the absence of meaningful FC state transitions observed using HMM, which can

reveal a set of "metastable" brain states (Liegeois et al., 2017; Vidaurre, Smith, and

Woolrich, 2017). These major limitations of statistical testing in TVFC analysis have

triggered debates on whether it is necessary to test for the "presence or absence" of

TVFC (Miller et al., 2018). According to recent studies, given the dynamic nature of

the human brain and strong associations between TVFC and electrophysiological

recordings (Chang et al., 2013), the focus should not be on whether the dynamics

exist or not, but rather on how they might manifest over different temporal, spatial,

and topographical scales and how do they relate behavior (Miller et al., 2018). For
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reviews and key papers on null models in TVFC analysis, see Chang and Glover

(2010), Hindriks et al. (2016), Laumann et al. (2017), Liegeois et al. (2017), Leonardi

and Van De Ville (2015), Lurie et al. (2020), Miller et al. (2018), Savva, Mitsis, and

Matsopoulos (2019), and Zalesky and Breakspear (2015).

6 Summary

In summary, we have seen that fMRI has revolutionized neuroscience in a relatively

short period of time, tacitly mirroring the dominance of localizationist/reflexive

ambitions in the early days, and later supporting an integrative theory of brain

function that recognizes the importance of resting-state brain activity, which in fact

reflects a "restless brain". These breakthroughs have opened new research lanes

to understand the nature and behavioral relevance of the ongoing “stream of con-

sciousness" in the human brain. Moreover, we have seen that the past two decades

have witnessed an exponential growth in methods for analyzing fMRI data, en-

abling neuroscientists to continuously ameliorate models of the topological, spa-

tial, and temporal intricacies that give rise to well-organized network organization

and complex human behaviors. In this context, we have discussed the merits and

pitfalls of some of the most-commonly used methods for analyzing FC at differ-

ent temporal scales. Importantly, we have shown that time-averaged measures of

FC do not capture the full extent of brain function and time-varying FC can com-

plement traditional methods in capture more complex network interactions, with

several caveats. In the years to come, as the fMRI community will likely continue

to grow in volume and diversity, new analysis methods and refined models of the

brain’s functional organization are likely to advance at a much faster pace, promis-

ing to unlock more secrets of the brain’s functions and dysfunctions, inform tech-

nological advances in artificial intelligence, and promote individualized treatments

of brain disorders.
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Abstract

Converging evidence from human brain studies and research in animal models suggest a possible

role for the cerebellum in regulating impulsivity—a multifaceted, complex trait broadly defined as

the tendency to act without foresight and believed to be orchestrated by multiple cognitive pro-

cesses. The cerebellum is postulated to be involved in the processes underlying trait impulsivity,

such as executive control and reward, maintaining them around a homeostatic baseline. The cere-

bellum does so through extensive anatomical and functional connections with association regions

in the brain such as the prefrontal cortex and basal ganglia. In this context, growing evidence from

functional magnetic resonance imaging (fMRI) studies associates impairments in cerebro-cerebellar

functional connectivity (FC) with several brain disorders in which impulsive symptomatology is a

part of the disease pattern. However, most of the findings have been based on static FC that does

not vary across the entire duration of the scan, an approach now regarded as simplistic. Moreover,

the relation between cerebro-cerebellar FC and normal trait impulsivity, which might underlie a pre-

disposition to psychopathology, remains unclear. Here, we hypothesized that individual differences

in multiple facets of impulsivity could be encoded in broad patterns of information processing in-

volving the cerebellum and emerging from dynamic functional interactions among multiple brain

systems. We tested this hypothesis using a publicly available dataset comprising highly-sampled

resting-state fMRI data acquired in a group of healthy young individuals (N=134, fMRI duration≈

1 hour per subject) and self-report questionnaires of impulsivity. We applied group independent

components analysis (GICA), static FC analysis, and hidden Markov models (HMM) to the resting-

state fMRI data. In particular, we identified distinct cerebral and cerebellar resting-state networks

(RSNs), computed time-averaged or time-averaged FC matrices, and modeled whole-brain intrin-

sic activity as a dynamic sequence of recurring FC states. This methodology allowed us to com-

pute the total strength and temporal variability in cerebro-cerebellar FC and evaluate them against

self-reported measures of impulsivity. Results revealed that the behavioral approach and inhibi-

tion systems scales negatively correlated with the (static) strength of the FC between the cerebellum

and two brain networks: a frontal salience network and the basal ganglia network, respectively.

Moreover, we found compelling evidence linking lack of premeditation and sensation seeking traits

to dynamic resting-state FC between the cerebellum and set of integrative brain networks that sub-

tend hub regions subserving top-down cognitive control and bottom-up reward/saliency processes.

These findings show the cerebro-cerebellar FC dynamics are behaviorally relevant, predicting indi-

vidual differences in behavioral traits not captured by traditional static FC. Together, the findings

highlight the utility of complementing static FC approaches with dynamic FC analyses in furthering

our understanding of the behavioral repertoire of the cerebro-cerebellar system and the neurobiol-

ogy of complex behaviors.
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1 Introduction

There is strong evidence that links individual differences in normal behaviors and

personality traits to the liability for a broad range of neuropsychiatric disorders,

such as substance addiction, pathological gambling, depression, and anxiety (Davis

et al., 2012; Eisenberg et al., 2001; Krueger and Markon, 2006). One such common

and crosscutting trait is impulsivity, which involves initiating actions that are pre-

mature, poorly planned, and inappropriate to context (Davis et al., 2012; Krueger

and Markon, 2006; Moeller et al., 2001). Impulsivity is a complex, multidimen-

sional personality trait present to varying degrees in healthy individuals as well

as diverse neuropsychiatric populations (Bakhshani, 2014), and can be assessed us-

ing behavioral tasks and self-report questionnaires that measure two broad cogni-

tive processes: inhibitory control (or response inhibition) and reward sensitivity (or

reward-delay impulsivity) (Jauregi, Kessler, and Hassel, 2018). Individual differ-

ences in these processes are believed to arise from genetic and neuronal origins that

are not well understood (Khadka et al., 2014). Nonetheless, developing a compre-

hensive neurobiological understanding of impulsivity in healthy populations may

help map the etiological risks for developing a certain psychopathology and, ulti-

mately, inform treatment or prevention strategies (Davis et al., 2012). In this context,

converging evidence from neuroscience and functional neuroimaging research sug-

gests that the monoaminergic neurotransmitter, cortico-striatal and cortico-limbic

systems mediate the different cognitive constructs related to impulsivity (Dalley,

Everitt, and Robbins, 2011; Davis et al., 2012; Fineberg et al., 2014; Mitchell and

Potenza, 2014; Somerville, Hare, and Casey, 2011). However, scattered but con-

sistent findings from human brain studies and research in animal models have

motivated recent hypotheses for the involvement of the cerebellum and cerebro-

cerebellar networks in impulsivity Miquel et al., 2019. In short, findings suggest

that the cerebellum may regulate impulsive behavior through its interactions with

the prefrontal cortex and the basal ganglia (see Miquel et al., 2019 for a recent re-

view).

Originally thought of as a sensorimotor structure, the cerebellum is now known

to be functionally diverse and involved higher-order cognitive processes (Strick,
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Dum, and Fiez, 2009; Buckner, 2013; Sokolov, Miall, and Ivry, 2017). In this con-

text, converging evidence suggests that the cerebro-cerebellar circuitry may con-

tribute to complex cognitive processes that underlie different forms of impulsive

behavior (Miquel et al., 2019). Primarily, as established by neuroimaging, viral

neuronal tracing, electro-stimulation, and optogenetics studies, the cerebellum ap-

pears to be closely-related to brain regions that subserve cognitive, affective, and

reward-related processes including the prefrontal cortex, posterior parietal cortex,

anterior cingulate cortex, insula, ventral tegmental area, thalamus, and basal gan-

glia (Caligiore et al., 2017; Carta et al., 2019; Moreno-Rius and Miquel, 2017; Strick,

Dum, and Fiez, 2009). Moreover, early studies on the cerebellar role in cognition

and emotion have reported that patients with posterolateral and midline cerebel-

lar damage exhibit impairments in executive control and emotional regulation and

show signs of impulsiveness and behavioral disinhibition (Schmahmann and Sher-

man, 1997). Furthermore, preclinical and neuroimaging studies have shown that

cerebro-cerebellar dysconnectivity is common in brain disorders in which abnor-

mal impulsive behavior is part of the disease pattern, such as substance addiction

and attention deficit hyperactivity disorder (Zeeuw et al., 2013; Jung et al., 2014).

These findings, among others, support a relation between cerebro-cerebellar dys-

function and impulsive-type behaviors in different patient populations (Miquel et

al., 2019). However, the relation between cerebro-cerebellar functional coupling and

impulsivity in healthy populations has not been characterized and remains largely

unclear.

Impulsivity is influenced by multiple brain systems that overlap with a "mul-

tiple demand network" (Golchert et al., 2017) and it is likely that inter-individual

differences in this complex trait are associated with global patterns of functional

interactions and balanced resource sharing among distributed brain regions (Davis

et al., 2012). In this context, the cerebellum is hypothesized to be involved in orga-

nizing the timing and accuracy of diverse streams of information arising from mul-

tiple brain regions by implementing forward internal models of the environment

for prediction of potential outcomes and rapidly adjusting thoughts and actions

according to context (Barton, 2012; Schmahmann, 2019). Hence, the cerebellum

is likely to interact with cerebral cortical and subcortical regions at fast timescales
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to ensure smooth, coordinated information transmission and processing across the

brain and maintain a homeostatic balance between top-down and bottom-up influ-

ences on behavior (Miquel et al., 2019; Schmahmann et al., 2019; Sokolov, Miall,

and Ivry, 2017). This aspect of cerebro-cerebellar coupling may be embedded in

the intrinsic network organization of the brain, which is classically evaluated using

resting-state functional magnetic resonance imaging (rsfMRI) and encodes various

behavioral aspects such as the integration of cognition and emotions, monitoring of

external environment, and personality traits at different timescales (Liégeois et al.,

2019). In this context, previous studies have effectively used rsfMRI FC analysis to

uncover a hierarchical organizational principle in the cerebellar cortex and delin-

eate cerebellar representations of most well-known cortical networks, including an

expanded representations of executive control networks (Buckner et al., 2011; Guell

et al., 2018; Marek et al., 2018).

So far, most of the rsfMRI literature related to the cerebellum has been based

on time-averaged measures of FC across entire scanning sessions. However, con-

sidering the dynamic nature of the human brain and the continuously changing

environmental conditions, the assumption that FC remains constant over an ex-

tended period of time is an over-simplification that obscures important behavioral

information embedded at timescales shorter than the scan duration (Zalesky et al.,

2014). Accordingly, several analysis approaches have been developed to explore

the time-varying aspects of brain activity and connectivity (see Lurie et al., 2020;

Preti, Bolton, and Ville, 2017 for recent reviews). This new approach to analyze FC

has advanced our understanding of the temporal organization of functional inter-

actions in the cerebral cortex and their cognitive and behavioral relevance (Liégeois

et al., 2019). In this context, converging findings point to the presence of an ongoing

and nonrandom reconfiguration of functional brain networks that predicts cogni-

tive abilities, such as attention, learning, creativity, and cognitive flexibility, and ex-

hibits alterations in brain disorders (Allen et al., 2014; Bassett et al., 2011; Calhoun

et al., 2014; Chen et al., 2016; Damaraju et al., 2014; Rashid et al., 2014). Measures

of dynamic FC are believed to complement and, in some cases, outperform mea-

sures of static (i.e., time-averaged) FC in explaining complex behaviors (Liégeois

et al., 2019). However, joint information from both approaches has been shown to
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explain more variance in behavior and cognition than either alone (Ramos-Nuñez

et al., 2017; Liégeois et al., 2019). Nonetheless, little is known about the dynamics

of cerebro-cerebellar functional networks and their cognitive and behavioral corre-

lates, even though the cerebellum is known to interact with most, if not all, cerebral

regions at different timescales in support of complex behaviors beyond the senso-

rimotor domain (Schmahmann, 2019). That being said, we believe that by explor-

ing cerebro-cerebellar resting-state FC at different timescales, we may gain further

insight into the functional repertoire of the cerebellum and the cerebro-cerebellar

system.

In this study, we hypothesized that different temporal aspects of cerebro-

cerebellar resting-state FC could be associated with different constructs related to

impulsivity. So, we sought to quantify static and dynamic FC between cerebel-

lum and distinct cerebral networks involved in cognitive, affective, and reward-

related processes and test for associations with cross-sectional differences in im-

pulsivity. Toward these goals, we employed a publicly available dataset compris-

ing highly-sampled rsfMRI data, acquired in group of healthy young individuals

(N=134), and two widely-used self-report questionnaires that assess different facets

of impulsivity, namely the UPPS-P impulsive behavior scale and the BIS/BAS. Im-

portantly, we used four 15-minute rsfMRI runs per subject to enhance the tem-

poral signal-to-noise ratio in the data, improve the identification of cerebral and

cerebellar networks, and reliably model FC dynamics. Accordingly, we analyzed

the rsfMRI data from all runs and subjects using group independent component

analysis (GICA) to identify separate sets of cerebral and cerebellar RSNs that ac-

counted for the functional heterogeneity present in both structures. Then, we mod-

eled static cerebro-cerebellar FC by computing Pearson’s correlation (full and par-

tial) between the timeseries of all pairs of RSNs. This permitted the calculation

of the time-averaged strength of cerebro-cerebellar FC over the entire scanning

session. Moreover, to measure temporal variations in FC, we performed hidden

Markov modelling (HMM) of whole-brain FC dynamics to estimate subject-specific

FC "states" defined as transiently recurring patterns of connectivity in the brain

(Vidaurre, Smith, and Woolrich, 2017; Vidaurre et al., 2018). By providing quan-

tified descriptions of FC states and how they manifest at the level of individuals,
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the HMM permitted the calculation of the temporal variability in FC between the

cerebellum and distinct cerebral RSNs, such that the overall variations in cerebro-

cerebellar FC could be driven by spontaneous fluctuations in mental state. Finally,

we used multivariate general linear models to evaluate the association between

cerebro-cerebellar resting-state FC and self-reported impulsivity.

2 Materials and Methods

2.1 Participants

A total of 134 healthy young participants (62 females, ages 20-40 years) from the

Neuroanatomy and Connectivity (N&C) dataset, which is part of the Max Planck

Institute-Leipzig Mind-Brain-Body (MPILMBB) database, were included in this

study. At the time of inclusion, all participants were healthy with no signs of

any serious neuropsychiatric or neurological condition, fulfilled the MRI safety

requirements, and provided written informed consent prior to their participation

(see Mendes et al., 2019 for more details). Originally, the fully preprocessed and

denoised dataset included structural and functional MRI data and a battery of be-

havioral assessments from 188 participants. However, due to a gap in the age distri-

bution, we excluded 26 subjects older than 55 years. Moreover, 28 subjects were ex-

cluded for missing imaging and/or behavioral data from source. Summary statis-

tics of demographic and behavioral data are provided in Table 3.1 in the results

section.

2.2 Self-Reported Measures of Impulsivity

To assess inter-individual differences in different forms of impulsivity, we used in-

dividual scores obtained from two self-report questionnaires: the UPPS-P impul-

sive behavior scale and the Behavioral Inhibition and Approach Systems scale,

widely known as BIS/BAS. On one hand, the UPPS-P impulsive behavior scale is

designed to measure impulsive behavior across the five-factor model of personal-

ity: negative urgency, positive urgency, sensation seeking, lack of premeditation,
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and lack of perseverance (Whiteside and Lynam, 2001). High scores on the nega-

tive and positive urgency sub-scales indicate a higher tendency to act quickly under

the effect of negative and positive emotions, respectively. A high score on the lack

of perseverance sub-scale indicates an inability to remain focused on an arduous or

boring task, whereas a high score on the lack of premeditation sub-scale indicates a

higher tendency to behave rashly without prior thinking or consideration of conse-

quences. Finally, a high score on the sensation seeking sub-scale indicates a higher

tendency towards seeking novel and exciting experiences (Whiteside and Lynam,

2001). On the other hand, the BIS/BAS scales measure two general motivational

systems argued by theorists to underlie behavior: a behavioral inhibition system

(BIS) that regulates the sensitivity towards punishment, non-reward and negative

outcomes, and a behavioral approach system (BAS) that regulates the sensitivity

towards desirable cues and non-punishment (e.g., rewards). A high score on the

BIS scale indicates an increased sensitivity to negative outcomes of anticipated ac-

tions and hence a higher tendency to control impulses/responses or restrain actions

in advance (i.e., proactive inhibition), whereas a high score on the BAS scale indi-

cates an increased sensitivity to rewarding activities and hence a higher tendency

to engage in goal-directed, rewarding behaviors and, potentially, higher levels of

reward-delay impulsivity. The BAS scale included in this study is the sum of three

sub-scales: BAS drive, BAS fun seeking, and BAS reward responsiveness. Collec-

tively, these scales offer a sufficient set of variables that assess different constructs

of impulsivity, most importantly inhibitory control and reward sensitivity.

2.3 MRI Acquisition

The structural MRI and rsfMRI acquisition parameters are described in full detail

in Mendes et al. (2019). In summary, the high resolution structural images were

acquired using a 3D MP2RAGE sequence using the following parameters: voxel

size = 1 mm isotropic, bandwidth = 240 Hz/Px, FOV = 256240176 mm, TR = 5000

ms, TE = 2.92 ms, TI1 = 700 ms, TI2 = 2500 ms, flip angle 1 = 4, flip angle 2 = 5,

GRAPPA acceleration with iPAT factor 3 (32 reference lines), and pre-scan normal-

ization. As for functional images, four resting-state fMRI scans were acquired for
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each individual in axial orientation using T2*-weighted gradient-echo echo planar

imaging (GE-EPI) with multi-band acceleration. Sequences were identical across

the four runs, with the exception of varying slice orientation and phase-encoding

direction. The phase-encoding direction was anterior–posterior (AP) for runs 1 and

3, and posterior-anterior (PA) for runs 2 and 4. The complete set of parameters was

set as follows: voxel size = 2.3 mm isotropic, FOV = 202 x 202 mm, imaging matrix =

88 x 88, 64 slices with 2.3 mm thickness, TR = 1400 ms, TE = 39.4 ms, flip angle = 69,

echo spacing = 0.67 ms, bandwidth = 1776 Hz/Px, partial Fourier 7/8, no prescan

normalization, multi-band acceleration factor = 4657 volumes, duration = 15 min

30 s per run. Individuals were instructed to remain awake, during the resting-state

scan, with their eyes open and to fixate on a cross-hair.

2.4 Preprocessing

The preprocessing pipeline is described in full detail in Mendes et al. (2019) and

fully preprocessed functional data were obtained from https://ftp.gwdg.de/pub/

misc/MPI-Leipzig_Mind-Brain-Body/derivatives/. In summary, the preprocess-

ing steps included (1) removal of the first 5 volumes (≈ 7 seconds) from each of

the four resting-state runs, (2) Rigid body alignment to the first volume using FSL-

MCFLIRT to obtain transformation parameters for motion correction; (3) fieldmap

unwarping using FSL-FLIRT and FSL-FUGUE to estimate transformation parame-

ters for distortion correction (Jenkinson et al., 2012), (4) boundary-based registration

(BBR) of the rsfMRI data to the same subject’s structural scan via FreeSurfer-BBR

to estimate transformation parameters for co-registration, (5) spatial normalization

of structural scans to MNI152 2mm space using diffeomorphic non-linear registra-

tion as implemented in the ANTsSyN algorithm to estimate transformation param-

eters for spatial normalization (Avants et al., 2011) (6) applying all transformation

parameters to each rsfMRI volume in the four resting state runs in one interpola-

tion step (i.e., Lanczos interpolation) ; (7) inclusion of six motion parameters, their

first-order derivatives, and motion outliers (frame-to-frame displacement>0.5 mm)

from Nipype’s rapidart algorithm as nuisance regressors in a general linear model

(GLM) to clean the data from motion-induced artifacts, (8) the aCompCor method

https://ftp.gwdg.de/pub/misc/MPI-Leipzig_Mind-Brain-Body/derivatives/
https://ftp.gwdg.de/pub/misc/MPI-Leipzig_Mind-Brain-Body/derivatives/


120 Chapter 3. Cerebro-Cerebellar Functional Connectivity and Impulsivity

to remove physiological noise from residual data from the previous denoising step

(Behzadi et al., 2007), and (9) bandpass filtering [0.01 Hz—0.1 Hz].

2.5 Group Independent Components Analysis (GICA)

The preprocessed fMRI data from all subjects were analyzed using group inde-

pendent component analysis (GICA) implemented in the GIFT toolbox software

http://mialab.mrn.org/software/gift/. GICA decomposes the functional data

into linear mixtures of spatially independent components (ICs) that exhibit unique

time course profiles (Allen et al., 2014). To characterize cerebro-cerebellar FC, we

decomposed the rsfMRI data from the cerebrum and cerebellum into two separate

sets of ICs that reflected the functional network organization of both structures.

By applying a "cerebellum-only" GICA approach (Dobromyslin et al., 2012), we

were able to extract well-defined cerebellar networks and timeseries that are usu-

ally overpowered by signals of cortical and sub-cortical origins when performing

a whole-brain GICA (Kipping et al., 2016). Cerebral and cerebellar GICA analyses

are explained in detail in the following subsections.

Cerebellum-Only GICA

The first step of the "cerebellum-only" GICA was to isolate the cerebellum from the

rest of the brain. To do so, we generated an average cerebellar mask in MNI152

2 mm space using the standard MNI152 cerebellum template from FSL and ex-

cluded all non-cerebellar voxels located outside the mask. Then, we concatenated,

demeaned, and variance normalized the cerebellar functional data from all subjects

and applied principal components analysis (PCA) to reduce the dimensionality of

the data to 100 subject-level principal components (PCs, retaining > 99% of the

variance in the data) and, subsequently, 25 group-level PCs. Then, the Infomax al-

gorithm was applied to the 25 group-level PCs to estimate 25 group-level ICs. To

ensure stable estimations of cerebellar components, we repeated the Infomax algo-

rithm 20 times using ICASSO (implemented in the GIFT toolbox software) that au-

tomatically selected the most stable set of 25 cerebellar ICs. Finally, we used the

group information guided ICA algorithm, or GIG-ICA, to estimate subject-specific

http://mialab.mrn.org/software/gift/
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cerebellar ICs and timeseries (see (Du and Fan, 2013; Salman et al., 2019) for reviews

on GIG-ICA).

The selected number of cerebellar ICs (i.e., 25 ICs) was in accordance with previ-

ous studies that identified between 7 and 20 functionally homogeneous cerebellar

RSNs using different data-driven techniques (Buckner et al., 2011; Bernard et al.,

2012; Kipping et al., 2016; Wang et al., 2016). However, since noise may still be

present in the data even after preprocessing and denoising, we assumed a slightly

higher number of ICs than the putative number of cerebellar RSNs to allow for bet-

ter disentanglement of cerebellar signals from each other and from noise. In this

context, ICs that exhibited spatial activation patterns near the grey matter/white

matter/cerebro-spinal fluid borders and/or featured irregular and functionally ir-

relevant patterns were removed from the data and discarded as noise. In contrast,

ICs that exhibited unilateral/bilateral spatial activation in the grey matter and had

relevance to well-known cerebellar functional networks (Buckner et al., 2011) were

retained as RSNs. The timeseries of cerebellar RSNs were standardized to have a

zero mean and a unit variance for each subject in each resting-state run. Finally, all

retained cerebellar RSNs were arranged into putative functional groups based on

their anatomical and functional properties and in accordance with previous studies

(Buckner et al., 2011).

Cerebral GICA

A similar approach to the cerebellum-only GICA was performed to extract cere-

bral RSNs and timeseries. First, we generated an average "cerebrum-only" mask in

MNI152 2 mm space using a standard FSL MNI152 brain anatomical template and

excluded all voxels residing outside the mask (Jenkinson et al., 2012). Concatenated,

demeaned, and variance normalized cerebral functional data from all subjects and

runs were analyzed using PCA to estimate 120 subject-level PCs (retaining > 99%

of the variance of the data) and, subsequently, 30 group-level PCs. We performed

20 runs of the Infomax algorithm using ICASSO to estimate and automatically se-

lect the most stable set of 30 cerebral ICs. Note that performing GICA assuming



122 Chapter 3. Cerebro-Cerebellar Functional Connectivity and Impulsivity

30 group-level ICs can reliably recover large-scale brain RSNs convenient for sub-

sequent FC analyses in terms of complexity, dimensionality and interpretability.

Subject-specific ICs and timeseries were estimated using GIG-ICA. Then, the ICs

that exhibited spatial activation near the edges and in the white matter were re-

moved from the data and discarded from subsequent analysis; the timeseries of

the retained RSNs were standardized to have a zero mean and unit variance for

each subject in each resting-state run. Finally, RSNs were arranged into putative

functional groups based on their anatomical and functional properties and in ac-

cordance with previous studies (Yeo et al., 2011).

2.6 Functional Connectivity Analysis

Static Functional Connectivity

To estimate static FC matrices, we computed pairwise Pearson’s full and partial cor-

relation coefficients in each of the four resting-state runs using the Ledoit-Wolf es-

timator as implemented in the scikit-learn python package (Ledoit and Wolf, 2004;

Abraham et al., 2014). The subject-level, full and partial correlation matrices were

r-to-z transformed using Fisher’s transformation to stabilize the variance of correla-

tion coefficients and corrected for the effective number of degrees of freedom using

Bartlett’s method (Bartlett, 1946; Afyouni, Smith, and Nichols, 2019). This method

controls for the effect of serial autocorrelation, in the timeseries, on the estimation

of FC (see Afyouni, Smith, and Nichols, 2019 for a review). Then, for each sub-

ject and in each resting-state run, we extracted the cerebro-cerebellar FC sub-matrix

and calculated the total strength of FC between distinct large-scale cerebral RSNs

and the cerebellum as the sum of positively-weighted edges between them, given

as:

Si =
J

∑
j=1

wi j, wi j > 0 (3.1)

where Si is the total FC strength between cerebral RSN i and the cerebellum

and wi j is the weight of the edge linking cerebral RSN i and cerebellar RSN j such
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that wi j > 0. Negatively-weighted edges were discarded due to the lack of consen-

sus and ambiguity concerning their nature, interpretation, and means of analysis

(Hallquist and Hillary, 2018). More importantly, the meaning and importance of

negative FC within the context of cerebro-cerebellar networks is not known and

should be explored in future studies.

We were interested in computing FC using both Pearson’s full and partial cor-

relation to examine different types of functional interactions in the brain. Full (or

marginal) correlation reflected both direct and indirect connections, whereas par-

tial (or conditional) correlation reflected direct connections between pairs of brain

regions after removing the effect of all other regions (Varoquaux and Craddock,

2013). This is informative for our study for two reasons. First, given that cerebro-

cerebellar structural networks form segregated closed-loops circuits (Habas, 2016),

it is likely that distinct cerebellar functional modules directly connect to singular

cerebral components rather than directly affecting large-scale complex processes

(Sokolov, Miall, and Ivry, 2017). Partial correlation can reflect this aspect of cerebro-

cerebellar connectivity better than full correlation. Second, it is believed that the

cerebellum and cerebro-cerebellar networks are fundamental components of large-

scale integrative brain systems that work together in conjunction in support of

embodied cognition—the theory that holds that cognitive and affective functions

are not independent from sensorimotor or "bodily" functions (Barton, 2012; Guell,

Gabrieli, and Schmahmann, 2018a). Therefore, cerebro-cerebral connections that

may give rise to indirect cerebro-cerebellar FC provide a means to expand the influ-

ence of the cerebellum (see Barton, 2012; Guell, Gabrieli, and Schmahmann, 2018a;

Sokolov, Miall, and Ivry, 2017 for reviews). Pearson’s full correlation can reflect

those aspects better than partial correlation, which regresses out any indirect effect.

Dynamic Functional Connectivity

To model whole-brain FC dynamics, we applied the hidden Markov models

(HMM) to the concatenated timeseries, across all subjects and runs, as implemented

in the hidden Markov model multivariate auto-regression (HMM-MAR) toolbox

https://github.com/OHBA-analysis/HMM-MAR. The HMM method is a generative

https://github.com/OHBA-analysis/HMM-MAR
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probabilistic modelling approach based on the principles of variational Bayesian

inference that uncovers a set of hidden states that describe the observed timeseries

and reoccur over time, taking into account the temporal ordering of the observed

data points (Vidaurre, Smith, and Woolrich, 2017). The HMM bypasses the limi-

tations of the commonly used sliding window and k-means clustering by directly

inferring FC states at each timepoint in a self-contained manner (i.e., without "win-

dowing") (Quinn et al., 2018; Vidaurre, Smith, and Woolrich, 2017). That is, the

HMM determines temporal resolution or "window length" in a data-driven man-

ner (Quinn et al., 2018). Moreover, unlike clustering techniques, the HMM accounts

for the time-dependencies of the data and explicitly models the state transitions as

a Markov chain, in that the next state is only dependent on the current state (i.e.,

model order=0) not past states (Quinn et al., 2018). Within the framework of the

HMM, each state is modelled as a multivariate Gaussian distribution of observa-

tions at each timepoint with a mean representing a "spatial co-activation" pattern

and a covariance matrix representing a FC pattern among brain regions (Vidaurre,

Smith, and Woolrich, 2017). In this study, we were mostly interested in FC vari-

ations. Thus, we defined the states by their Pearson’s full and partial correlation

matrices rather than changes in regional activation. Additionally, the HMM esti-

mated the transition probabilities between the states and the subject-specific state

timecourses, which represented timeseries of pointwise probability for each state

to be "active" at each timepoint for each subject (Quinn et al., 2018; Vidaurre et al.,

2018).

Similarly to clustering methods, the HMM method does not represent a bio-

physical model and hence requires that the number of states be specified a pri-

ori. The commonly used criterion for choosing an "optimal" number of states is

to compare different models in terms of goodness-of-fit using the free-energy in-

dex (Stevner et al., 2019). The free-energy is the cost function that the variational

Bayesian inference aims to minimize, and is typically used for model comparison

and selection (i.e., the lower the better). In this study, we assumed a fixed number

of six states as a compromise, in terms of free energy, temporal resolution, and sta-

bility, between a lower-order model (5 states) and higher-order models (8, 10 and
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12 states) after performing a stability analysis (Supplementary Section S3.3, Supple-

mentary Figure S3.2). However, we were able to replicate our findings using the 5

and 8 states configurations (Supplementary Tables S3.2-S3.3). Finally, we generated

surrogate (null) data to assess whether the observed state transitions are an exclu-

sive property of the observed rsfMRI data or are due to mere resampling variations.

The detailed description and results of this analysis are presented in Supplementary

Material (Supplementary Figure S3.1).

Subject-Specific FC States and Temporal Variability

In order to estimate a descriptive summary measure of dynamic cerebro-cerebellar

FC, we explored the manifestation of the group-level FC states at the subject level.

In the group model, the states are common across subjects, whereas the state time-

courses are subject-specific. So, in order to get a subject-specific description of the

states, we performed a "dual-estimation" of the HMM (analogous to dual regression

in the framework of GICA; Vidaurre et al., 2019). In particular, we re-applied the

HMM to each subject’s data using the initial group-level estimates and the subject-

specific state timecourses as priors when updating and re-inferring the states. This

procedure estimated a maximum of six FC states per subject, each represented by a

full and a partial correlation matrix. Then, using these estimations, we recomputed

the state timecourses and, ultimately, the frequency of occurrence of each state for

each subject, defined as the total number of times each state was active during the

scanning session (Vidaurre et al., 2019).

To compute the temporal variability of cerebro-cerebellar FC in each subject,

we first calculated the statewise FC strength between cognitive cerebral RSNs and

the cerebellum, similarly to the static FC analysis, using equation 3.1. Then, we

calculated the temporal variability of FC, denoted Vi, between each cerebral RSN i

and the cerebellum as the frequency-weighted standard deviation of the statewise

strength scores from the static FC strength score, using the states’ frequencies of

occurrence as weights. This meant that more frequently "visited" states had more

contribution to the final value of temporal variability, which was defined as follows:
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Vi =

√√√√∑6
k=1 fk

(
Sik − Si

)2

∑6
k=1 fk − 1

(3.2)

where Si,k is the strength of FC between cerebral RSN i and the cerebellum in

state k, Si is the time-averaged strength of FC between cerebral RSN i and the cere-

bellum, and the weight factor fk is the frequency of occurrence of state k. As a result,

the temporal variability index contained information about the absolute deviations

in FC strength at short timescales combined with information about the time spent

by each subject in each state.

2.7 Statistical Analysis

To test for associations between the different measures of cerebro-cerebellar FC

and self-reported impulsivity, we used multivariate general linear models (GLMs)

that included the different impulsivity variables as predictors and the FC measures

(static and dynamic) as response variables in a multiple linear regression frame-

work. All variables were orthogonalized with respect to age, gender, and meanFD

to control for potential confounding effects imposed by these variables on the find-

ings. To test for significance, we performed non-parametric permutation testing

with 10,000 permutations and a maximum test-statistic procedure to obtain family-

wise error (FWE) adjusted p-values for all tests. In this context, subject labels in the

observed data were randomly rearranged 10,000 times, GLMs were re-fitted in each

rearrangement, and an empirical distribution of the maximum test-statistics (i.e.,

z-scores) obtained from all permutations was estimated. Then, a FWE-adjusted

p-value was calculated for each test as the proportion of maximum z-scores that

are greater than the observed z-score, z0, in the original, non-permuted data. This

method has been shown to provide strong control of Type-I errors without being

strictly conservative as is the case with conventional techniques that adjust for the

family-wise error rate (e.g., Bonferroni) (Winkler et al., 2014). Finally, we reported

significant associations with FWE-adjusted p < 0.05 .
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To further evaluate the generalizability and replicability of our inference frame-

work, we used a repeated stratified 5-folds cross-validation scheme to split the ini-

tial sample into training (80% of data, 107 subjects) and testing (20% of data, 27

subjects) sub-samples where the proportion of males and females was preserved in

each split. The cross-validation scheme was repeated 500 times with a different ran-

domization in each repetition. Then, GLMs were fitted to the training data in each

fold/repetition and then used to predict the outcomes (i.e., static and dynamic FC

measures) in the testing data. Finally, we reported the median of the explained vari-

ance scores obtained in the training data, denoted R2
train, and testing data, denoted

R2
test, across all folds and repetitions as indicators of the replicability of significant

findings.

3 Results

3.1 Behavioral and Demographic Data

Summary statistics of demographic and behavioral data are provided in Table 3.1,

whereas associations between the different self-reported measures of impulsivity

are provided in Supplementary Table S3.1. Note that, although they theoretically

assess distinct cognitive and behavioral constructs related to impulsivity, the differ-

ent self-reported measures may exhibit strong relationships with each other, poten-

tially biasing statistical inferences due to multicollinearity. Multicollinearity arises

when there is a strong linear relationships between one or more of the indepen-

dent variables in a multiple regression model (Farrar and Glauber, 1967). Thus, we

tested for possible multicollinearity issues in the data by computing the variance

inflation factor (VIF), which quantifies the severity of multicollinearity among the

independent variables in a multiple regression model. A low VIF score close to

1 indicates the absence of collinear relationship between an independent variable

and other variables present in the model. In this study, all self-reported impulsiv-

ity variables had a VIF < 2 except for the UPPS-P negative and positive urgency.

Accordingly, in order to avoid potential multicollinearity effect due to the strong

association between the two measures (Student’s t = 11.34, r = 0.68, p < 10−15),
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TABLE 3.1: Demographics and Data Characteristics

Healthy Subjects (N=134, 62 females)

Mean SD Median Min Max VIF Correlation with age (r) Gender difference (t)

Age 24 4 25 20 40 — — -0.464

meanFD 0.14 0.03 0.15 0.09 0.22 — 0.0028 0.1

PosUrg 1.9 0.5 1.9 1 3 2.5 0.07 0.13

NegUrg 2.2 0.5 2.2 1.2 3.3 2.3 -0.01 2.91∗

Premed 2 0.4 2 1.1 3 1.3 -0.02 -0.74

Persev 2 0.5 1.9 1 3.2 1.36 0.04 -1.54

SenSeek 2.8 0.6 2.8 1.4 4 1.13 -0.18 -3.32∗∗

BIS 20.5 3.1 21 12 28 1.15 -0.1 4.73∗∗

BAS 37.2 3.7 37 28 47 1.22 0.1 0.45

Note: SD: Standard deviation,VIF: Variance inflation factor, r : Pearson’s correlation, t : Student’s t,
meanFD : mean framewise displacement, PosUrg: Positive urgency, NegUrg: Negative urgency,
Premed: Lack of premeditation , Persev: Lack of perseverance, SenSeek: Sensation seeking, BIS:

Behavioral inhibition system, BAS: Behavioral approach system.
* p < 0.05 , ** p < 0.01

we applied factor analysis to obtain one urgency factor that preserves a sufficient

amount of variance in the data, while eliminating potential multicollinearity effects.

The final set of self-reported measures of impulsivity included six variables: UPPS-

P urgency, UPPS-P lack of premeditation, UPPS-P lack of perseverance, UPPS-P

sensation seeking, behavioral inhibition system (BIS) and behavioral approach sys-

tem (BAS). The normality of the variables was assessed using the Shapiro-Wilk test

of normality, and departures from normality were counteracted using rank-based

inverse Gaussian transform.

3.2 GICA Results

Cerebellum-only GICA

Resting-state fMRI data from the cerebellum were decomposed into 25 ICs, out of

which 14 ICs were visually identified as cerebellar RSNs and illustrated in Fig-

ure 3.1. Eleven ICs were identified as noise and hence discarded from subsequent

analysis. The RSNs were arranged into putative functional groups based on their

anatomical or functional properties and overlap with previously established cere-

bellar functional clusters (Buckner et al., 2011). Specifically, the functional clusters

were: sensorimotor, visual, attention, salience, fronto-parietal, default mode, and
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FIGURE 3.1: The identified cerebellar networks. Cer-latMot: Cerebellar lateral motor net-
work, Cer-rMot: Cerebellar right motor Network,Cer-lMot: Cerebellar left motor network,
Cer-mMot: Cerebellar medial motor network, Cer-Vis: Cerebellar visual network, Cer-
DAN: Cerebellar dorsal attention network, Cer-SalVan: Cerebellar salience/ventral atten-
tion network, Cer-SN: Cerebellar salience network, Cer-DMN: Cereballar default mode
network , Cer-LN: Cerebellar language network, Cer-lFPN: Cerebellar left fronto-parietal

network, Cer-rFPN: Cerebellar right fronto-parietal network

language. However, two cerebellar RSNs, whose spatial activation maps were well

situated in the GM, did not overlap with well-known cerebellar functional clusters.

These were labelled as "Vermis" and "Crus-I/II" based on the anatomical landmarks

that overlap with their spatial activation maps. Moreover, taking into consideration

the contralateral representation of large-scale networks in the cerebellum, labels of

unilateral cerebellar RSNs were inverted. For instance, if spatial activation was

mostly localized in the left anterior cerebellum, the naming would be cerebellar

right motor network (Cer-rMot) due to the inverted sensorimotor map present in

the anterior cerebellar lobe.

Cerebral GICA

Resting-state fMRI data from the cerebral cortex and sub-cortex were decomposed

into 30 ICs out of which 25 ICs were identified as non-artifactual RSNs based on

visual inspection of the localization of spatial activation in the grey matter (GM)

and illustrated in Figure 3.2.
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FIGURE 3.2: The identified large-scale cerebral networks. BGN: Basal ganglia network,
Thal: Thalamus, latMot: Lateral motor network, rMot: Right motor Network, lMot: Left
motor network, mMot: Medial motor network, exVis: Extra-striate visual network, mVis:
Medial Visual network, oVis: Occipital Visual Network, lVis: Lateral visual network, Aud:
Auditory network, pCun/PCC: Precuneus/Posterior cingulate cortex network , DAN: Dor-
sal Attention Network, TPN: Task positive network, SalVAN: Salience-ventral attention
network, AccSN: Anterior cingulate cortex salience network, FSN: Frontal salience net-
work, cFPN: Central fronto-parietal network, rFPN: Right fronto-parietal network, lFPN:
Left fronto-parietal network, dDMN: Dorsal default mode network, vDMN: Ventral default

mode network, LN: Language network, vmOFN: Ventro-medial orbito-frontal network

3.3 Strength of Cerebro-Cerebellar FC Predicts BIS/BAS

We found significant associations (i.e., FWE-adjusted p-values < 0.05) between the

strength of cerebro-cerebellar (partial correlation) FC and self-reported measures of

impulsivity. Particularly, results revealed a negative correlation between behavioral

inhibition system (BIS) and the strength of FC between the cerebellum and the basal

ganglia network (BGN, z = −3, β = −0.31, p = 0.038, R2
train = 0.07, R2

test = 0.068)

and a negative correlation between the behavioral approach system scale (BAS) and

the strength of FC between the cerebellum and the frontal salience network (FSN,

z = −3.1, β = −0.29, p = 0.033, R2
train = 0.08, R2

test = 0.073). These findings are

presented in Table 3.2 and the corresponding scatter plots are illustrated in Figure



3. Results 131

3.3.

FIGURE 3.3: Scatter plots of significant associations between the strength of cerebro-
cerebellar FC and self-reported impulsivity, assessed using the BIS/BAS scales. (A) Val-
ues of FC strength between the frontal salience network (FSN) and the cerebellum plot-
ted against the individual self-report scores on the Behavioral Approach System (BAS). (B)
Values of functional connectivity strength between the basal ganglia and the cerebellum
plotted against the individual self-report scores on the Behavioral Inhibition System (BIS).
Variables were adjusted for age, gender, and meanFD and presented as z-scores. β: stan-

dardized regression coefficient, p: FWE-adjusted p-value

Temporal Variability of Cerebro-Cerebellar FC Predicts UPPS-P

Sub-Scales

We found significant associations between the temporal variability of cerebro-

cerebellar (full correlation) FC and self-reported measures of impulsivity. Partic-

ularly, results revealed negative correlations between UPPS-P lack of premedita-

tion and the temporal variability of FC between the cerebellum and both the FSN

(z = −3.5, β = −0.34, p = 0.008, R2
train = 0.092, R2

test = 0.09) and the pre-

cuneus/posterior cingulate cortex network (pCun/PCC, z = −3.7, β = −0.36,

p = 0.003, R2
train = 0.11, R2

test = 0.096). Moreover, results revealed positive cor-

relations between UPPS-P sensation seeking and the temporal variability of FC be-

tween the cerebellum and the FSN (z = 3.3, β = 0.32, p = 0.019, R2
train = 0.078,

R2
test = 0.08), pCun/PCC (z = 3.6, β = 0.35, p = 0.005, R2

train = 0.093, R2
test = 0.086),

BGN (z = 3.1, β = 0.3, p = 0.037, R2
train = 0.068, R2

test = 0.063), and thalamus

(z = 3.3, β = 0.32, p = 0.019, R2
train = 0.078, R2

test = 0.074). Significant findings are
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presented in Table 3.2 and the corresponding scatter plots are illustrated in Figure

3.4.

FIGURE 3.4: Scatter plot representations of significant associations between the temporal
variability of cerebro-cerebellar FC and self-reported impulsivity. Values of temporal vari-
ability of FC between cerebellum and the (A) frontal salience network (FSN) and (B) pre-
cuneus/posterior cingulate cortex network (pCun/PCC) plotted against the individual self-
report scores on the UPPS-P lack of premeditation sub-scale. Values of temporal variability
of FC between the cerebellum and (C) FSN, (D) pCun/PCC, (E) BGN, and (F) thalamus
plotted against the individual self-report scores on the UPPS-P sensation seeking sub-scale.
All variables were adjusted for age, gender, and meanFD and presented as standardised

z-scores. β: standardized regression coefficient, p: FWE-adjusted p-value

4 Discussion

Growing evidence associates cerebellar damage and pathological cerebro-cerebellar

dysfunction with abnormal levels of impulsivity caused by deficits in executive

function and an imbalance between top-down control and bottom-up reward pro-

cesses. However, little is known about the relation between cerebro-cerebellar func-

tioning and impulsivity in healthy adults, which can potentially inform future in-

vestigations into the neurobiology of cognitive deficits associated with impulsivity.
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TABLE 3.2: Significant Associations Between Cerebro-Cerebellar FC
and Self-Reported Impulsivity

Network FC Aspect Impulsivity Scale z β p R2
train R2

test

BGN-Cerebellum Strength BIS -3 -0.31 0.038 0.07 0.068

Variability SenSeek 3.1 0.3 0.037 0.068 0.063

Thal-Cerebellum Variability SenSeek 3.3 0.32 0.019 0.078 0.074

FSN-Cerebellum Strength BAS -3.1 -0.29 0.033 0.08 0.073

Variability Premed -3.5 -0.34 0.008 0.092 0.09

Variability SenSeek 3.3 0.32 0.019 0.078 0.08

pCun/PCC-Cerebellum Variability Premed -3.7 -0.36 0.003 0.11 0.096

Variability SenSeek 3.6 0.35 0.005 0.093 0.086

Note: Strength: Time-Averaged Strength of FC, Variability: Temporal variability of FC, z: z-statistic,
β: standardized regression coefficient, p: family-wise error adjusted p-value, R2

train: median of
explained variance in the training data, R2

test: median of explained variance in the testing data

Accordingly, we set out to examine whether different aspects of cerebro-cerebellar

FC at different timescales could relate to different forms of self-reported impulsiv-

ity in healthy young adults. Using static and dynamic FC analysis approaches, we

found evidence that behavioral inhibition, behavioral approach, lack of premedi-

tation and sensation seeking are associated with the strength and temporal vari-

ability of FC between the cerebellum and multiple brain networks encompassing

prefrontal, parietal, and subcortical regions involved in executive control, salience

attribution, and reward processing. Non-parametric permutation testing and cross-

validation supported the statistical significance and cross-validity of the current

findings, respectively. Together, our findings suggest that the cerebellum could

play an integral role in the circuits subserving the integration of a heterogeneous

mixture of cognitive and affective functions related to impulsivity. Importantly, the

study highlights the utility of complementing time-averaged (i.e., static) measures

of FC with time-resolved (i.e., dynamic) FC analysis in furthering current under-

standing of the neurobiological underpinnings of complex traits and the functional

repertoire of the cerebellum and the cerebro-cerebellar system. We further discuss

the findings, limitations and future directions of the study in the following subsec-

tions.
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4.1 Static Cerebro-Cerebellar FC and Impulsivity

Results of the static FC analysis revealed a significant negative correlation between

the behavioral inhibition system (BIS) and the strength of the direct FC between

the cerebellum and the basal ganglia network (BGN). According to Gray’s theory

(Gray, 1991), a high activity of the BIS is expressed as an increase in sensitivity

towards negative cues and outcomes, resulting in avoidance behavior. Thus, our

finding suggests that stronger BGN-cerebellar FC in healthy individuals is associ-

ated with less avoidance of actions with potentially negative or aversive outcomes

and comports with previous findings implicating both the cerebellum and the basal

ganglia in the circuits that underlie inhibitory executive control of evaluated ac-

tions (Brunamonti et al., 2014). Traditionally, the basal ganglia and the cerebellum

have been assigned to complementary roles within the sensorimotor domain. How-

ever, recent findings show that both structures are reciprocally interconnected with

each other and with multiple cortical regions (Bostan and Strick, 2010), which al-

lows for a joint modulatory influence on cognitive and limbic functions, notably

in reward/punishment learning mechanisms (see Pierce and Péron (2020) for a re-

cent review). In this context, previous studies have shown that increased striato-

cerebellar connectivity is associated with increased impulsivity in patients with at-

tention deficit hyperactivity disorder and substance use disorders (Miquel et al.,

2019; Oldehinkel et al., 2016; Ruitenberg et al., 2018), suggesting this to index an

imbalance between top-down and bottom-up influences on behavior. The conse-

quence of this imbalance is an over-reliance on motivated "Go" brain mechanisms

at the expense of "No-Go" behavioral inhibition mechanisms, indicating an under-

active BIS (see Miquel et al. (2019) for a review).

Furthermore, results revealed a significant negative correlation between the be-

havioral approach system (BAS) and the strength of the direct FC between the cere-

bellum and the frontal salience network (FSN). Unlike the BIS, the behavioral ac-

tivation system (BAS) is based on a model of appetitive motivation, reflecting an

individual’s disposition to pursue reward and engage in goal-directed behaviors

(Gray, 1991). This suggests that stronger FC between the cerebellum and the FSN



4. Discussion 135

in healthy individuals is associated with less activation of approach behaviors to-

wards rewards and hence increased top-down control over goal-directed behav-

iors. The identified FSN encompasses regions of the dorsolateral prefrontal cor-

tex, frontopolar cortex, dorsal anterior cingulate cortex, anterior insula, and pos-

terior parietal cortex (see Figure 3.6). These regions are known to be involved in

directing attention towards important stimuli, selecting appropriate responses to

salient stimuli, and integrating relevant sensory, emotional, and cognitive informa-

tion (Corbetta and Shulman, 2002; Uddin, 2016). The cerebellum might play an

important role in the prediction of the outcome of responses to stimuli and coor-

dinate the streams of information integrated by the FSN, thereby promoting pre-

frontal functionality in top-down cognitive control (Miquel et al., 2019). In this

context, previous studies have shown that frontocerebellar dysconnectivity in cer-

tain brain disorders marked an active BAS, notably substance addiction, is associ-

ated with deficits in impulse control, cognitive planning and attentional set shifting

(Jung et al., 2014; Miquel et al., 2019; Sullivan and Pfefferbaum, 2005). Thus, the

strength of FC between the cerebellum and FSN may be informative of potential

predisposing factors for vulnerability to certain psychopathology characterized by

an over-activation of the BAS.

It is worth noting that although we calculated a summary measure of cerebro-

cerebellar FC strength averaged over the whole cerebellum, the FSN was found

to predominantly connect with the cerebellar salience network (Cer-SN) that over-

lapped with posterolateral regions of the cerebellum, whereas the BGN predom-

inantly connect with the Vermis network that overlapped with the posterior cere-

bellar vermis, at the group level (see Figure 3.5). Previous fMRI studies have shown

that the posterolateral cerebellum is mostly devoted to association networks such

as the salience and executive control network (Buckner et al., 2011; Habas et al.,

2009), whereas the posterior vermis is mainly involved with the limbic system and

directly connects to the ventral tegmental area, which is the center of dopaminer-

gic cell bodies (Carta et al., 2019). Moreover, lesions to the posterolateral cerebel-

lum and the posterior vermis have been shown to induce an an array of behavioral

disturbances including, among others, impulsiveness and behavioral disinhibition

(Schmahmann, Weilburg, and Sherman, 2007; Kim et al., 2013; Miquel et al., 2019).
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FIGURE 3.5: (A) The group-average partial correlation FC matrix and
the cerebro-cerebellar sub-matrix. (B) A circular graph of the extracted
sub-matrix showing the strongest direct cerebro-cerebellar links at the

group level

These results, along with the present findings, suggest that these cerebellar net-

works (i.e., Cer-SN and Vermis) take part in the circuits influencing the motivational

systems that regulate responses to cues signaling reward and aversion. However,

since we discuss results related to undirected FC, a causal effect of the cerebellum

can only be speculated and will require future studies involving measures of causal

influences such as effective connectivity (Friston, 2011).

4.2 Dynamic Cerebro-Cerebellar FC and Impulsivity

Results of the dynamic FC analysis revealed that the UPPS-P lack of premedita-

tion sub-scale—which measures the tendency to act rashly without reflection upon

the potential consequences of an action—was negatively correlated with the tem-

poral variability of FC between the cerebellum and two brain networks, the FSN

and the precuneus/posterior cingulate cortex network (pCun/PCC). The identified

pCun/PCC network includes sub-regions of the dorsal and central precuneus and

the dorsal posterior cingulate cortex (Figure 3.6), which are classified as parts of

the executive control network (Yeo et al., 2011). Although the traditional functional
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FIGURE 3.6: Group-level (A) FSN and (B) pCun/PCC networks

characterization of the precuneus and the PCC arises from their roles within the

DMN, studies have revealed that the dorsal PCC is a highly dynamic region show-

ing selective FC across a range of networks, most notably frontoparietal networks

involved in top-down cognitive control (Leech, Braga, and Sharp, 2012; Leech and

Sharp, 2013). In particular, the dorsal PCC tunes the "metastability" of the brain as

a whole, by dynamically linking networks, that are functionally distinct but exhibit

coordinated changes in activity, to allow for cost-efficient allocation of resources

across the brain (Lee, Smyser, and Shimony, 2013). Thus, our finding suggests that

greater switching of resting-state FC, driven by state transitions, between the cere-

bellum and integrative "multi-network" regions predicts an increased tendency to

make thoughtful decisions not dominated by spontaneity. This might mean that
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thoughtful decision making requires higher levels of dynamic functional interac-

tions, during rest, between the cerebellum and multiple demand networks to ame-

liorate adaptive reconfigurations of brain states in support a greater control over

immature impulses once an action is anticipated.

Furthermore, we found significant positive correlations between the UPPS-

P sensation seeking—which measures the tendency to seek new and rewarding

experiences—and the temporal variability of FC between the cerebellum and four

brain networks, the FSN, pCun/PCC, BGN, and the thalamus network. This find-

ing suggests that greater switching of resting-state FC between the cerebellum and

integrative brain regions predicts an enhanced salience attribution to novel and

exciting experiences. The regions belonging to this ensemble of networks are well-

known connector hubs (Hwang et al., 2017; Heuvel and Sporns, 2013), central for

the integration of resources from across the brain and play pivotal roles in a wide

range of cognitive functions including those underlying sensation seeking, such as

top-down cognitive control and bottom-up reward/saliency evaluation (Cheng et

al., 2015). The balance in the interplay of these processes may explain individual

differences in sensation seeking (Cheng et al., 2015). Thus, in an analogous argu-

ment to the previous finding, the cognitive processes underlying sensation seeking

might require dynamic functional interactions of top-down control and bottom-up

reward/saliency networks with the cerebellum, to adaptively reconfigure attention

and actions once a potentially salient stimuli is anticipated.

Broadly, these findings suggest that measures of dynamic FC between the

cerebellum and integrative brain networks, that act as "funnels" of information

streams across the brain, can reveal information about the functional repertoire

of the cerebro-cerebellar system not captured by time-averaged measures. More-

over, these findings comport with the hypothesis that the cerebellum and cerebro-

cerebellar networks take part in large-scale integrative brain systems that operate

in conjunction to support embodied cognition Barton (2012). In this configura-

tion, cerebellar resources might be recruited at fast timescales to maintain a well-

calibrated flow of information and a homeostatic balance between top-down cogni-

tive control and bottom-up reward processes, which preserves impulsivity-related
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traits in a "healthy" range. Importantly, since we only included healthy individu-

als with no past nor present psychiatric conditions, it was not possible to discern

whether temporal variability of FC within the implicated networks relates to patho-

logical sensation seeking, for instance. However, these findings might provide a

starting point for future studies focusing on cerebro-cerebellar dynamic interactions

in brain disorders marked by impulsive symptomatology, such as alcohol use disor-

der or ADHD (Jung et al., 2014; Miller et al., 2010). Moreover, since we analyzed the

dynamics of undirected FC, the interpretations of the current findings are limited.

Hence, causal links or modulatory effects within the implicated cerebro-cerebellar

networks cannot be concluded in this case, and future investigations are needed

to make such inferences. Nonetheless, these results constitute empirical evidence

suggesting that complex processes underlying different impulsivity traits are me-

diated by extended cognitive control and reward/saliency systems encompassing

cerebellar functional modules, potentially as adaptive modulators of information

flow and cognitive state transitions.

4.3 Limitations and Future Perspectives

Developing an understanding of the dynamics of cerebro-cerebellar connectivity in

healthy individuals may have future implications for explaining adaptive cogni-

tive control mechanisms, reward/aversion processing, and a variety of brain dis-

orders featuring impulsive symptomatology and cerebro-cerebellar dysconnection.

In this sense, the main focus of this study was to test whether inter-individual dif-

ferences in normal trait impulsivity relate to static and dynamic cerebro-cerebellar

FC in healthy individuals. Although we found evidence that supported the hy-

pothesis, the correlational nature of our analysis precludes the inference of any

causal or directed relationship. A comprehensive understanding of the cerebellar

role in impulsivity will require future research involving causal analysis of cerebro-

cerebellar connectivity at different timescales. For instance, future studies may use

time-resolved extensions (Park et al., 2018) of effective connectivity, dynamic causal

modelling, psychophysiological interaction analysis, or causative manipulation of
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cerebellar activity to make more insightful inferences of a direct cerebellar involve-

ment in regulating impulsivity. In the same sense, another limitation is the lack

of objective measurements of impulsivity such as behavioral tasks (e.g., Go/No-

Go task, Stop-Signal task, reward devaluation tests), which could have provided a

more controlled and, potentially, less biased perspective of individual differences in

impulsivity. Future investigations using dynamic FC methods should explore gen-

der and age differences and include individuals diagnosed with neuropsychiatric

disorders that are known to feature a co-occurrence of cerebro-cerebellar dysfunc-

tioning and impulsive symptomatology.

Other limitations regarding choices of methodology are also noteworthy. One

limitation is the use of low-dimensional spatial decompositions of both the cere-

brum and cerebellum that only identified large-scale RSNs in both structures. The

choice of low-dimensional representations was driven by the fact that the num-

ber of parameters to be estimated by the HMM increases exponentially when the

number of channels (i.e., brain regions) becomes higher, which in turn inflates com-

putational complexity and, given a moderate sample size, significantly minimizes

the stability of the HMM across different runs (Quinn et al., 2018). However, fine-

grained representations of the brain can decompose large-scale RSNs further into

smaller sub-networks that enable a more accurate mapping between dynamic FC

and impulsivity. For instance, high-dimensional representations may reveal fur-

ther sub-cortical regions that are not independently observed in low-dimensional

parcellations, such as the amygdala, hippocampus, and nuclei of the brain stem,

which are key components of the limbic system subserving in emotion regulation

and, hence, regulating impulsive behavior. Developing new methods or augment-

ing existing ones to reliably process high-dimensional data is needed in order to

overcome this limitation.

Along a similar line, a potential limitation is that we restricted our analysis to

the overall cerebellar "influence" within distinct large-scale brain systems, which,

although appropriate with respect to our hypothesis, precluded a direct and de-

tailed mapping between different forms of impulsivity and specific cerebellar-based

networks. However, this choice was driven by on several reasons. First, cere-

bellar regions exhibit strikingly similar anatomical properties and are believed to
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perform universal computations across the sensorimotor, cognitive, and affective

domains, regardless of the fact that they communicate with different brain regions

(chmahmann2019cerebellum; Guell, Gabrieli, and Schmahmann, 2018a). Second,

in a recent study, Marek et al. (2018) have revealed that the cerebellum seems to

follow a common organizational principle at the group level, but cortical func-

tional network representations within the cerebellum are highly individual-specific

in terms of shape, size and location. Additionally, individual variations in shape

and exact location of brain regions strongly influences the modelling of brain con-

nectivity (Bijsterbosch, Smith, and Beckmann, 2017). For these reasons, we did

not impose a group effect on the computation of summary measures by assum-

ing a single one-to-one mapping between cerebral and cerebellar RSNs based on

a "winner-takes-all" strategy that discards potentially meaningful weaker connec-

tions that arise due to individual variability. Nonetheless, exploring the unique

contributions of different cerebellar modules to disparate cognitive domains and

personality traits may be of interest for future studies in the light of recent hypothe-

ses of "multiple cerebellar functionality" (Diedrichsen et al., 2019). This will require

using individualized cerebellar parcellations, computed using precision functional

mapping techniques (Gordon et al., 2017), to accurately map cerebellar networks at

the individual level and better understand their unique contributions.

5 Conclusion

In this study, we have shown that multiple subfacets of trait impulsivity are associ-

ated with both static and dynamic aspects of cerebro-cerebellar FC, during resting-

state. Importantly, this study sheds new light on the cognitive and behavioral rel-

evance of dynamic reconfigurations, driven by changes in FC states during rest,

between the cerebellum and large-scale brain networks. Together, the findings

might have future implications for predicting predisposing factors to certain psy-

chopathology characterized by impulsive symptomatology. Our results also point

out the importance of complementing time-averaged measures with time-resolved

analysis of FC for comprehensively understanding the functional repertoire of the

cerebellum and the cerebro-cerebellar system.
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Supplementary Material For Chapter 3

S3.1 Self-Reports of Impulsivity

The partial correlation coefficients between the different self-reports of impulsivity

are summarized in Table S3.1, below.

TABLE S3.1: Partial Correlation Coefficients Among Impulsivity
Scales Assessed by Multiple Linear Regression

PosUrg NegUrg PreMed Persev SenSeek BIS BAS

PosUrg 0.63*** 0.16 0.16 0.00 -0.03 0.10

NegUrg 0.05 0.08 -0.03 0.3** -0.02

PreMed 0.28*** 0.23** -0.23** 0.00

Persev 0.04 0.16 -0.37***

SenSeek -0.13 0.25**

BIS -0.00

Notes PosUrg: Positive Urgency, NegUrg: Negative Urgency, Premed: Lack of Premeditation, Persev:
Lack of Perseverance, SenSeek: Sensation Seeking, BIS:Behavioral Inhibition System, BAS:

Behavioral Approach System.
*p < .05 , **p < .01 ,***p < .001

S3.2 Assessment of Genuine FC State Transitions

We examined whether the state transitions are a genuine and exclusive property of

the observed rsfMRI data and are not attributable to resampling variations by gen-

erating surrogate "null" data. Like any generative model, the HMM can be used to

generate surrogate data that follow the same distribution as the observed data and

preserve the first-order statistics, the autocorrelation structure, the time-averaged

FC, power spectral density, and amplitude distribution, but presumably lack the

property of biological interest, which is, in this case, state transitions (Vidaurre,
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Smith, and Woolrich, 2017; Zalesky et al., 2014). In this sense, we fitted a multivari-

ate Gaussian distribution, that matched the observation model used by the HMM,

to each subject’s rsfMRI timeseries to generate 100 surrogate null datasets that com-

prised the same amount of data (i.e., 1 hour, four runs, and TR=1400 ms). Then, we

applied the HMM, with unchanged parameters, to the null data and estimated a

metric that enabled a straightforward comparison of the estimated dynamics with

those estimated in the observed rsfMRI data.

One informative metric that has been used in a previous study (Vidaurre, Smith,

and Woolrich, 2017) is the maximum fractional occupancy. Fractional occupancy

(FO) is defined as the proportion of time a state is visited across the scanning ses-

sion, whereas maximum fractional occupancy (maxFO) is simply the proportion of

time the predominantly occurring state is visited (Vidaurre, Smith, and Woolrich,

2017). Thus, high values of maxFO (close to 1) indicate that almost a single state

describes the data and hence the absence of any time-dependent structure or state

transitions. In contrast, low values of maxFO (closer to 0 than 1) indicate that mul-

tiple recurring states describe the data and hence the presence of structured time-

dependencies in FC. In this sense, when applied to the surrogate data, the HMM

should not reveal any meaningful state transitions, and maxFO scores should be

close to 1. However, if the HMM captured state transitions in the null data like

those in the observed data, then the whether the In this context, we compared the

distributions of maxFO scores aggregated from all subjects and runs in the real data

to those obtained in the 100 null datasets to assess the presence of state transitions

that are an exclusive property of the real rsfMRI data.

The distribution of maxFO and the group-averaged frequency of occurrence of

each state suggest the presence of genuine FC state transitions in the real data as

opposed to the simulated (null) data that were mostly described by a single domi-

nant state (Figure S3.1). These findings indicate that the time-varying structure of

FC is a genuine characteristic of the real rsfMRI, despite the fact that the real and

simulated data share identical time-averaged FC profiles.
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FIGURE S3.1: Dynamic FC analysis results. A) Group-level FC states.
At the top of each matrix is the group-averaged fractional occupancy
(FO), which represents the percentage of time each state is visited over
all subjects. B) Maximum fractional occupancy distributions in the real
rsfMRI dataset (left) and the surrogate null datasets (right). A straight-
forward comparison of the profiles of both distributions suggests that
state transitions are a property of the real rsfMRI data and do arise due

to resampling variability.
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S3.3 Hidden Markov Models: Stability Analysis

Previous studies that have used hidden Markov modelling of whole-brain FC dy-

namics estimated between 5 and 12 brain states using different criteria and data-

driven techniques (Baker et al., 2014; Ou et al., 2015; Vidaurre, Smith, and Woolrich,

2017; Vidaurre et al., 2018; Kottaram et al., 2019; Karapanagiotidis et al., 2018). In

this study, we considered testing the stability of models with 5, 6, 8, 10, and 12 states

by running the HMM 100 times in each case and estimating the degree of similarity

between the different runs, measured as the pairwise correlation between the state

timecourses when the states are optimally aligned (across runs) via the Hungarian

algorithm (Munkres, 1957). We performed 100 runs of each configuration because

of the heuristic nature of the Bayesian inference process, which is very sensitive to

slightly varying initial conditions and might converge to different local minima in

each run, leading to different conclusions in each run (Quinn et al., 2018). Thus, the

stability or consistency of a certain model is crucial in order to obtain reliable and

interpretable findings. In this sense, if the state timecourses across different runs

were highly similar, then a model seems to be consistently converging towards a

global minima in each run.

As expected, lower-order models (5 and 6 states) were more stable across runs

than higher-order models (8, 10, and 12 states). This is because the parameter space

enlarges exponentially as the number of assumed states increases, which decreases

the likelihood of the algorithm to converge to a global minima across different runs

(Quinn et al., 2018). However, we found that high-order models attained relatively

lower free energy indices of goodness-of-fit than low-order models. Accordingly,

we decided, as a compromise between stability, goodness-of-fit, and temporal res-

olution, to use the 6 states model, which was significantly more stable than higher-

order models and attained a lower free energy index than the 5 states model.

Finally, out of the 100 HMM runs with 6 states, we chose the optimal solution

that corresponded to the lowest free energy index as the final estimate of group-

level FC states. Figure S3.2 illustrates the similarity (or stability) matrices that en-

code pairwise correlation coefficient between the state timecourses of 100 runs of

the HMM with a different number of assumed states.
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FIGURE S3.2: Similarity between 100 runs of HMM in 5 different con-
figurations. F.E. stands for average free energy index across all runs.

Similarity between Static and Dynamic FC Matrices

Computing the temporal variability of resting-state cerebro-cerebellar FC using the

subject-specific FC states was based on our observation that static FC matrices

highly resembled the frequency-weighted mean of the dynamic FC matrices: cosine

similarity > 0.98 on average over all subjects. A bar chart showing the cosine sim-

ilarity between the static FC matrix (full correlation) and the frequency-weighted

mean of the dynamic FC matrices (full correlation) for each subject is illustrated in

Supplementary Figure S3.3 below.
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FIGURE S3.3: Cosine similarity between the static FC matrix and the
frequency-weighted mean of the dynamic FC matrices for all subjects

(Mean= 0.986)

S3.4 Results Obtained Using the 5 and 8 States HMM

Configurations

To assess the robustness of our findings to varying analysis setting, we repeated the

same analysis using 5 and 8 states HMM configurations. First, we selected, out of

100 runs of HMM in each case, the run the corresponded to the lowest value of free

energy and then we estimated the subject-level FC states and the temporal variabil-

ity of cerebro-cerebellar FC. The results reflected qualitatively similar patterns of

associations between the dynamics of cerebro-cerebellar FC (full correlation) and

the self-reported measures of impulsivity as those observed in the 6 states config-

uration. The statistical details of significant associations are reported in the Tables

S3.2 and S3.3 below. Note that we did not correct for multiple comparisons in this

validation step.
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TABLE S3.2: Results obtained using the 5 states HMM configuration

Network Impulsivity Scale z β p-value

FSN-Cerebellum Premed -3.4 -0.33 0.001

SenSeek 3.1 0.31 0.002

pCun/PCC-Cerebellum Premed -3.6 -0.34 <.001

SenSeek 3.6 0.36 <.001

BGN-Cerebellum SenSeek 3 0.29 0.003

Thal-Cerebellum SenSeek 2.8 0.28 0.005

TABLE S3.3: Results obtained using the 8 states HMM configuration

Network Impulsivity Scale z β p-value

FSN-Cerebellum Premed -2.1 -0.22 0.045

SenSeek 2.5 0.26 0.027

pCun/PCC-Cerebellum Premed -2.9 -0.28 0.007

SenSeek 3.6 0.36 <.001

BGN-Cerebellum SenSeek 2.6 0.27 0.008

Thal-Cerebellum SenSeek 3.1 0.31 0.002
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Abstract

Alcohol use disorder (AUD) is widely associated with alterations in the cerebellum and cerebro-

cerebellar networks, contributing to an array of cognitive deficits. Resting-state functional connec-

tivity (FC) analysis has been widely used to characterize these alterations, but almost all findings

have been based on time-averaged measures of FC that do not address the dynamic nature of the

human brain. In recent years, the "static" approach has been challenged with a growing interest

in approaches that assess fast, dynamic changes in FC at fast timescales. In this domain, findings

suggest links between "dynamic" FC and attention, learning, memory, cognitive flexibility, execu-

tive function and brain disorders, such as substance use disorders. Yet, little is known about the

dynamics of cerebro-cerebellar resting-state FC, especially in AUD. Here, we analyzed resting-state

functional magnetic resonance imaging data collected from AUD patients (N=18) and age- and sex-

matched controls (N=18) using sliding window analysis and multilayer community detection. We

assessed group differences in the dynamics of cerebro-cerebellar resting-state FC. Particularly, we

compared groups in terms of temporal variability of cerebro-cerebellar FC and two measures of

time-varying community structure: flexibility and integration, computed in the cerebellum as well

as large-scale brain networks, in an exploratory analysis. Additionally, we evaluated the association

between aberrant cerebro-cerebellar FC dynamics and an index of AUD symptom severity. Results

revealed that, relative to controls, the AUD group exhibited significantly greater temporal variability

of FC between the cerebellum and both the frontoparietal and ventral attention networks, indicat-

ing an abnormal hypervariability in resting-state FC within cerebro-cerebellar executive control and

attention circuits in AUD. Moreover, we found that the AUD group exhibited significantly less flex-

ibility and greater integration of cerebellar nodes than controls, which might reflect compensatory

remapping or maladaptive plasticity in the cerebellum. Finally, exploratory analysis revealed sig-

nificant group differences in flexibility and integration at the level of large-scale cognitive networks

including the fronto-parietal, salience, and cingulo-opercular networks, suggesting abnormalities

and disorganization in the time-varying community structure. Together, our findings bring evi-

dence of selective and widespread alterations in cerebro-cerebellar FC dynamics during rest, which

might have future implications for explaining features of the development of cognitive deficits in

AUD and improving our understanding of the functional network organization of the brain with

addiction.
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4.1 Introduction

Alcohol use disorder (AUD) is a chronic and relapsing condition, characterized

by uncontrolled consumption of dangerous amounts of alcohol, inducing a spec-

trum of effects on the central nervous system (Sullivan, Harris, and Pfefferbaum,

2010). Three decades of magnetic resonance imaging (MRI) studies have exten-

sively have highlighted the negative consequences of AUD on selective brain re-

gions and large-scale networks, providing a non-invasive, in vivo view of the neu-

robiological underpinnings of executive dysfunction, impulsive decision making,

compulsive alcohol seeking, and the emotional distress associated with alcoholism

(Chanraud and Bernard, 2015; Gilman et al., 2008; Jung et al., 2014). In this con-

text, evidence suggests that the cerebellum and its circuits, notably the frontocere-

bellar circuitry, are highly vulnerable to alcohol-induced damage (Rogers et al.,

2012; Sullivan and Pfefferbaum, 2005; Zahr, Pfefferbaum, and Sullivan, 2017). In

short, structural MRI studies have reported significant reduction in gray matter

volumes in the cerebellum (Sullivan and Pfefferbaum, 2005), and have found sub-

stantial damage to cerebro-cerebellar white matter pathways associated with the

severity of alcohol dependence (De Bellis et al., 2005; Pfefferbaum et al., 2014; Yeh

et al., 2009). Moreover, studies that use functional MRI to measure blood-oxygen-

level-dependent (BOLD) brain activity, during task performance and resting-state

(rsfMRI), have reported abnormal activity in the cerebellum as well as disrupted

patterns of cerebro-cerebellar functional connectivity (FC), associated with impair-

ments of selective cognitive processes in AUD (Chanraud et al., 2011; Chanraud et

al., 2013; Desmond et al., 2003; Rogers et al., 2012; Tapert et al., 2001; Wilcox et al.,

2014).

The cerebellum is traditionally known for its role in motor control and learn-

ing (Manto et al., 2012). Over the past three decades, however, extensive evidence,

notably from fMRI studies, has revealed that the majority of the cerebellum commu-

nicates with large-scale cognitive networks, suggesting a critical role for the cere-

bellum in cognitive and emotional functions (Barton, 2012; Buckner et al., 2011;

Buckner, 2013; Guell, Gabrieli, and Schmahmann, 2018b; Guell et al., 2018). In this

context, the cerebellum is believed to control cognitive processes, in a similar way
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to controlling movements, thereby maintaining efficient cognitive processing and,

ultimately, behavior around a homeostatic baseline (Buckner, 2013; Schmahmann,

2019; Sokolov, Miall, and Ivry, 2017). In AUD, however, selective cognitive and

affective processes are impaired and deemed as inefficient, possibly due to the dis-

organization of information flow in the brain caused, at least in part, by altered FC

within cognitive cerebro-cerebellar closed-loop circuits in general and frontocere-

bellar circuits in particular (Bernardin, Maheut-Bosser, and Paille, 2014; Chanraud

et al., 2011; Oscar-Berman and Marinković, 2007). Studies have also shown that

AUD patients performing well on tasks tend to recruit unaffected cerebro-cerebellar

loops to compensate for functional degradation of brain networks normally used

by controls for task performance, suggesting compensatory functional reorganiza-

tion within the brains of AUD patients (Chanraud et al., 2013). These findings are

predicated on observations of reduced FC within certain frontocerebellar executive

control loops that is paralleled by an increase in FC strength within adjacent unaf-

fected loops (Chanraud et al., 2011; Chanraud et al., 2013). Thus, AUD patients may

need to integrate more brain regions, especially within the cerebellum, to complete

a given cognitive task, which might compromise their ability to multitask (Sullivan,

Harris, and Pfefferbaum, 2010).

Yet, most of our understanding of the role of cerebro-cerebellar networks in

AUD comes from studies treating FC as a "static" quantity that does not change

across a scanning session lasting five minutes or more. This approach, however, is

blind to the fact that the brain is a dynamic structure, continuously integrating in-

formation and rapidly reconfiguring its intrinsic organization to refine internal rep-

resentations of the environment and execute adaptive behaviors (Breakspear, 2017).

In other words, the analysis of time-invariant FC is believed to average out mean-

ingful variations in FC at timescales much shorter than a typical fMRI scan (Cal-

houn et al., 2014; Zalesky et al., 2014). In response to this shortcoming, studies have

begun exploring "dynamic" FC, with findings indicating that the brain navigates

through a set of transiently recurring FC configurations that encode fast changes

in cognitive state, even during rest (Allen et al., 2014; Calhoun et al., 2014; Rashid

et al., 2014; Vidaurre et al., 2018). Furthermore, dynamic FC has been shown to

predict individual differences in complex cognitive processes, such as skill learning



4.1. Introduction 155

(Bassett et al., 2011), executive functioning (Braun et al., 2015), attention (Fong et

al., 2019), and cognitive flexibility (Douw et al., 2016) better than static FC, and to

exhibit alterations in a number of brain disorders including, among others, autism

(Harlalka et al., 2019), schizophrenia (Braun et al., 2016; Sakoğlu et al., 2010) and

substance use disorders (Vergara et al., 2018).

Few studies have investigated the impact of excessive alcohol use on brain dy-

namics, with findings showing significant alterations in sensorimotor control re-

gions (Vergara et al., 2018), the orbitofrontal cortex and insula (Hong et al., 2018),

and, recently, frontostriatal circuits (Gerchen et al., 2020), associated with the level

of alcohol consumption and poor cognitive performance in alcoholics. Further-

more, recent findings (Abdallah et al., 2020), in a large sample of healthy individ-

uals, show significant associations between dynamic FC within cognitive cerebro-

cerebellar networks and multiple facets of trait impulsivity, most notably sensation

seeking, which is a well-known predisposing factor to AUD (Dick et al., 2010). To-

gether, these findings indicate that dynamic FC, notably within cognitive cerebro-

cerebellar networks, may have implications for explaining features of the develop-

ment and maintenance of AUD. So far, however, cerebro-cerebellar dynamics and

their potential role in of AUD remain elusive.

In this study, we explored between-group differences in cerebro-cerebellar dy-

namic FC between a group of AUD patients and a group of unaffected controls,

matched to the AUD group on age and sex. Toward this goal, we adopted the

sliding window approach (Hindriks et al., 2016) to estimate FC within overlap-

ping segments (L≈ 1 minute) of the BOLD timeseries extracted from a fine-grained

map of cerebral and cerebellar regions (Power et al., 2011; Seitzman et al., 2020).

With a focus on the temporal variability of cerebro-cerebellar FC, we systematically

examined the extent of variation in FC between the cerebellum and the executive

control, attention, salience, and default mode networks. Then, we applied a graph

theory-based dynamic network analysis, known as multilayer community detec-

tion (Braun et al., 2015; Gifford et al., 2020; Mucha et al., 2010), to characterize

AUD-related changes in the temporal dynamics of the brain’s modular structure.

In particular, we quantified the role that the cerebellum plays in these dynamics by
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estimating diagnostic measures—flexibility and integration—that reflect the ten-

dency of cerebellar regions to communicate with different networks over time and

the consistency of their interactions with brain regions from outside their origi-

nal or "native" functional system (Gerraty et al., 2018; Mattar et al., 2015). In an

exploratory analysis, we computed these principal measures at the level of large-

scale cognitive networks to explore AUD-related changes in their dynamic prop-

erties. Our specific hypothesis was that the dynamics of FC within and between

the cerebellum and large-scale cognitive networks, especially those anchored in the

frontal lobe, would differ between AUD patients and healthy controls, such that

AUD would confer an overall reduction in the strength of frontocerebellar FC.

4.2 Methods and Materials

4.2.1 Participants

We acquired high-resolution structural MRI and rsfMRI scans for 18 individuals

diagnosed with AUD and 18 age- and gender-matched healthy controls. All partic-

ipants were free of any serious medical, psychiatric, and neurological disorders at

the time of scanning and provided written informed consent to participate in this

study, which was conducted with the approval of the Institutional Review Boards of

Stanford University and SRI International. Participants received a stipend of $200

for completing the study. The Structured Clinical Interview for the Diagnostic and

Statistical Manual of Mental Disorders was administered to the AUD participants

to assess 11 DSM-5 criteria that determine the severity of AUD symptoms (Asso-

ciation, 2013). The severity of AUD—mild, moderate, or severe—is based on the

number of criteria met. Demographics and data characteristics are summarized in

Table 4.1.

4.2.2 MRI Acquisition

For each participant, a single resting-state fMRI scan and cerebrospinal fluid (CSF)-

nulled Magnetization Prepared Rapid Gradient echo (MPRAGE) T1-weighted scan



4.2. Methods and Materials 157

FIGURE 4.1: Schematic overview of the main methods used in this study. (A) Whole-brain
parcellation using functionally-defined regions of interest with an improved representa-
tion of the cerebellum and the subcortex. (B) BOLD signals from all ROIs were segmented
into overlapping windows using the tapered sliding window analysis, and a whole-brain
FC matrix was constructed by computing pairwise Pearson’s correlation in each window.
(C) An example FC matrix in an arbitrary time window ws. The FC profile between dis-
tinct brain cognitive networks and the cerebellum is a sub-matrix (shown as boxes marked
by black lines) containing the FC weights between its constituent nodes and nodes of the
cognitive cerebellum. We calculated the average cosine distance between the FC profiles
over all time windows as a measure of temporal variability of cerebro-cerebellar FC. (D)
The multilayer modularity quality function Q(γ, ω) was maximized using a greedy Lou-
vain algorithm to detect the optimal community assignment for each brain node in each
time window. Using the optimal community structure, we calculated the flexibility of
each node as the number of times a node changes its community assignment divided by
the total number of possible changes. Also, we calculated the integration of each node as
the average probability for a node to be assigned to the same community with nodes out-
side its native system. Brain networks were visualized with the BrainNet Viewer toolbox

http://www.nitrc.org/projects/bnv/. (Xia, Wang, and He, 2013)

http://www.nitrc.org/projects/bnv/
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TABLE 4.1: Demographics and Data Characteristics:
mean±SD

Controls (n=18) AUD (n=18) Test p-value

Gender (male/female) 10/8 13/5 Fisher’s exact test 0.49

Age (years) 48.6±8.81 53.2±8.76 Two-sample t-test 0.13

Handedness (right/left) 18/0 14/4 Fisher’s exact test 0.1

meanFD (mm) 0.1±0.04 0.18±0.09 Two-sample t-test < 0.001

DSM-5 AUD — 9.58±2.25 — —
Note: AUD= Alcohol Use Disorder, meanFD= Mean framewise displacement, — no data available.

were acquired. The resting-state scans were acquired with a 1.71 x 1.71 x 3 mm spa-

tial resolution and 200 time-points for each participant. Three protocols associated

with slightly different repetition times (TRs) ranging from 2.65 to 2.86 seconds were

used during the study. In particular, 28 participants (16 controls, 12 AUD) were

scanned with a TR=2.65 s, 4 participants (2 controls, 2 AUD) were scanned with a

TR=2.75 s, and 4 participants (4 AUD) were scanned with a TR=2.86 s. Statistical

analysis revealed no significant effect of TR on our findings. Therefore, we included

the scans from all protocols and did not consider TR as a confounding co-variate in

subsequent group comparisons.

4.2.3 Preprocessing

The structural MRI data were preprocessed using fmriprep 20.0.1, which is based on

Nipype 1.4.1 (Esteban et al., 2019). Briefly, for each participant, the structural high-

resolution T1-weighted (T1w) image was corrected for intensity non-uniformity

and skull-stripped. Brain tissue segmentation of cerebrospinal fluid (CSF), white

matter (WM), and gray matter (GM) was performed on the brain-extracted T1w us-

ing fast algorithm implemented in FSL(Jenkinson et al., 2012). Volume-based spatial

normalization to the Montreal Neurological Institute (MNI152) standard space was

performed through nonlinear registration with antsRegistration (ANTs 2.3.1), using

the brain-extracted versions of both the T1w image and the MNI152 template. The

template selected for spatial normalization was ICBM 152 Nonlinear Asymmetrical
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template version 2009c (TemplateFlow ID: MNI152NLin2009cAsym). The transfor-

mation parameters for normalization were estimated to be used in the preprocess-

ing of the rsfMRI data.

Preprocessing of rsfMRI data was performed using fmriprep 20.0.1, in addition

to other custom scripts, and included the following steps: (a) Creation of an EPI

reference image using a custom methodology from fmriprep; (b) Slice-timing cor-

rection using 3dTshift from AFNI; (c) Fieldmap-less susceptibility distortion correc-

tion (Huntenburg, 2014; Wang et al., 2017) using a deformation field resulting from

coregistering the EPI reference to the same-subject T1w-reference with its intensity

inverted using antsRegistration algorithm; (d) Head motion correction with respect

to the corrected EPI reference using mcflirt from FSL to estimate transformation

parameters for head motion correction; (e) Coregistration of the corrected EPI ref-

erence to the T1w reference image using boundary-based registration from FSL config-

ured with 9 degrees-of-freedom to estimate transformation parameters for coregis-

ration; (f) Resampling the BOLD time series to the output standard space in a single

interpolation step by composing all the pertinent transformations (i.e. head motion

transform matrices, susceptibility distortion correction, coregistration to T1w im-

age, and normalization to the MNI152 standard space); (g) Reslicing to 222 mm3;

(h) Spatial smoothing (FWMH = 4 mm); and (i) Band-pass filtering [0.018Hz-0.1Hz]

to attenuate low-frequency drifts and high-frequency noise. The choice of the cut-

off frequency for high-pass filtering is consistent with the criterion for choosing a

cut-off that attenuates low frequency components below 1/w, where w is the win-

dow length, in seconds, in the sliding window analysis (see the section on Dynamic

functional connectivity analysis) (Leonardi and Van De Ville, 2015). Finally, nui-

sance co-variates, including 12 head motion parameters (i.e., six motion parameters

and their first-order derivatives), 10 aCompCor principal components from WM, and

10 aCompCor principal components from CSF were regressed from the data in one

regression step (Behzadi et al., 2007). The aCompCor approach can mitigate head

motion effects not accounted for by the 12 motion regressors while also accounting

for physiological noise such as respiration and cardiac pulsation (Muschelli et al.,

2014). Moreover, the inclusion of more components from aCompCor improves the

quality of the data and the specificity of FC estimates (Muschelli et al., 2014). The
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nuisance co-variates were band-pass filtered [0.018Hz-0.1Hz] prior to performing

regression to achieve orthogonality between temporal filtering and confounds re-

moval as suggested by Lindquist et al. (2019).

4.2.4 Definition of Brain Functional Networks

To define brain functional networks, we used a set of 300 functionally-defined

spherical ROIs positioned around suggested coordinates in MNI space (see Fig-

ure 4.1A). The functionally-defined brain parcellation, introduced by Seitzman et

al. (2020), is based on the Power-264 cortical atlas (Power et al., 2011) and offers a

comprehensive view for the study of brain functional modules and their interac-

tions with improved representations of the cerebellum (27 ROIs) and the subcortex

(34 ROIs). The Power-264 cortical atlas was originally created via large-scale meta-

analyses of resting-state and task fMRI studies (Power et al., 2011), whereas the

recently added cerebellar and subcortical ROIs were defined using a "winner-takes-

all" partitioning method applied to rsfMRI data and cross-validated across multiple

large-scale datasets (Seitzman et al., 2020). Consistent with the study of Seitzman et

al. (2020), we partitioned the whole brain into 13 intrinsic functional networks: dor-

sal sensorimotor network, lateral sensorimotor network, auditory network, visual

network, default mode network (DMN), cingulo-opercular network (CON), fron-

toparietal network (FPN), reward network (RN), salience network (SN), ventral at-

tention network (VAN), dorsal attention network (DAN), parieto-medial network,

and medial-temporal network. In this study, however, we focus on and discuss

the results related to the dynamics of FC within the cerebellum and between the

cerebellum and seven large-scale cognitive networks, namely the DMN, FPN, RN,

DAN, VAN, SN, and CON.

4.2.5 Dynamic Functional Connectivity Estimation

We estimated dynamic functional connectivity using tapered sliding window with

50% overlap between windows (see Figure 4.1B). Consistent with previous studies

(Damaraju et al., 2014; Fukushima et al., 2018), tapering was done to mitigate the ef-

fect of sudden changes associated with the edges of rectangular windows and was
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achieved by convolving a rectangular window with a Gaussian of standard devia-

tion σ = 3 TRs. For the main analysis, we used a window length of 20 time-points

for all subjects. This corresponded to 53 seconds, 55 seconds, and 57 seconds for

the three scanning protocols with slightly different repetition times, respectively.

We chose this particular window length for several reasons. First, shorter windows

(≈ 30 s or less) can capture fast variations in FC but at the expense of introducing

spurious FC estimations due to the small number of time-points in each window.

Second, longer windows (between 75 s and 100 s) provide more reliable estimates

of FC within a single window but are relatively less sensitive to fast variations in

FC (Leonardi and Van De Ville, 2015; Telesford et al., 2016). Third, shorter windows

help distinguish individual differences in brain network dynamics, whereas longer

windows help distinguish the dynamic roles of distinct brain systems in a tempo-

ral core-periphery organization, where regions of the core are minimally dynamic

and regions in the periphery are maximally dynamic (Mattar et al., 2015; Telesford

et al., 2016). Because we were interested in differences between individuals as well

as brain systems, we chose a window length of 20 TR as a compromise between

shorter and longer windows. Within each window, we constructed a 300 × 300

FC matrix by computing the pairwise Pearson product-moment correlation coeffi-

cient amongst the BOLD time series of all ROIs. Finally, the resulting windowed

FC matrices were Fisher r-to-z transformed to stabilize the variance of correlation

coefficients. We repeated the same analysis using 15 TR and 25 TR windows to

assess the robustness of our results to different choices of window lengths. More-

over, we adopted the multiplication of temporal derivatives (Shine et al., 2015) as

an alternative to sliding window correlation to assess the robustness of our find-

ings to different choices of dynamic FC analysis approach. Details and results of

the different validation analyses are reported in the Supplementary Material 4.5.

4.2.6 Temporal Variability of Cerebro-Cerebellar FC

A straightforward measure that has been used in previous studies to quantify dy-

namic FC at the scale of nodes and networks is the temporal variability (Zhang
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et al., 2016). In this study, we calculated the temporal variability of the FC pro-

files between cerebral nodes, belonging to any cognitive network of interest, and

cerebellar nodes belonging to the cognitive cerebellum (see Figure 4.1C). The cog-

nitive cerebellum included nodes participating in higher-order cognitive networks

and mainly located in the posterolateral cerebellum. For a given window s, the FC

profile between a brain node i and the cognitive cerebellum, denoted FCi,s, is a con-

nectivity vector containing the FC weights between that node and every node in the

cognitive cerebellum. We calculated the temporal variability of FC between a node

i and the cerebellum, denoted Vi, as the average pairwise cosine distance between

the FC profiles (i.e., FC vectors) over all windows. Then, we averaged the temporal

variability scores over nodes belonging to the same large-scale cognitive network

to obtain a network-level measure of the temporal variability of cerebro-cerebellar

FC (see Figure 4.1C). We calculated Vi using the following formula:

Vi =
2

T(T − 1)

T

∑
s=2

s

∑
r=1

cosine distance(FCi,s, FCi,r) (4.1)

where T denotes the total number of windows, FCi,s and FCi,r are the FC profiles

between cerebral node i and the cognitive cerebellum in windows s and r, respec-

tively, and cosine distance is given by:

cosine distance(FCi,s, FCi,r) = 1− FCi,s · FCi,r

FCi,sFCi,r
(4.2)

where the second part of (4.2) represents the cosine similarity, which is a mea-

sure of similarity between two vectors in high-dimensional space. The values of

cosine similarity vary between -1 and 1, indicating maximal dissimilarity and max-

imal similarity, respectively. This approach for estimating FC temporal variability

was implemented in previous studies using Pearson’s correlation instead of cosine

similarity (Long et al., 2020; Zhang et al., 2016; Zhu et al., 2019). However, co-

sine similarity has been shown to provide a better distinction between groups than

Pearson’s correlation (Cabral et al., 2017; Menon and Krishnamurthy, 2019). Note

that we did not compare different measures of similarity (or dissimilarity) as this is

beyond the scope of the current study.
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4.2.7 Multilayer Modularity Analysis

We applied multilayer community detection to the windowed FC matrices to iden-

tify time-varying functional communities that permitted the estimation of diagnos-

tic measures of the dynamic behavior of different brain networks. Particularly, we

used the generalized Louvain-like multilayer community detection method (Mucha

et al., 2010; Jutla, Jeub, and Mucha, 2011-2019) and implemented it using an open-

source code package in Matlab https://github.com/GenLouvain/GenLouvain. The

functional communities in each window were identified by maximizing (or opti-

mizing) a multilayer modularity quality function Q, which uses the relative den-

sities of connections within and between communities to assign nodes that have

stronger connections than expected in a Newman-Girvan null model to the same

functional community (Blondel et al., 2008; Mattar et al., 2015; Mucha et al., 2010;

Newman and Girvan, 2004). For each participant, we ran 100 optimizations of the

modularity quality function, defined as:

Q(γ, ω) =
1

2µ ∑i,j,s,r[(Ai,j,s − γs
ki,sk j,s

2ms
)δ(Mi,s, Mj,s) + δ(i, j)ωj,r,s]δ(Mi,s, Mj,s)

(4.3)

where Aijs represents the adjacency matrix or FC matrix in window s,
ki,skj,s
2ms

is the

term associated with the Newman-Girvan null model, ki,s and k j,s are the strengths

(or weighted degrees) of nodes i and j in window s, respectively, ms is the density,

or the total sum of weighted degrees, of the graph in window s, µ represents the

total sum of weighted degrees across all windows, γs is the structural resolution

parameter in window s, ωj,r,s is the inter-layer temporal resolution parameter or

the connection strength between node j in window s and itself in window r, Mi,s

and Mj,s are the community assignments of nodes i and j in window s, respectively,

and, finally, δ(Mi,s, Mj,s) is Kronecker’s delta equal to 1 when Mi,s=Mj,s and equal to

zero otherwise. Because this multilayer modularity function accepts non-negative

adjacency matrices only, we thresholded the windowed FC matrices to remove neg-

atively weighted edges. In addition, we fixed γ and ω to the commonly used value

https://github.com/GenLouvain/GenLouvain
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γ = ω = 1 due to the lack of application-driven justification or consensus for de-

termining the optimal values of these parameters (Betzel et al., 2017; Braun et al.,

2015). However, we examined the effects of small variations in the parameters’

values by varying both γ and ω over the range [0.95, 1.05] with steps of 0.05 and

maximizing the multilayer modularity function for all pairs of parameter values

(see results in Supplementary Material). Finally, due to the heuristic nature of the

algorithm and the near-degeneracy of the optimization process of the multilayer

modularity quality function, different runs of the algorithm may provide slightly

different partitions of nodes into communities (Mucha et al., 2010). Therefore, we

performed 100 runs of the modularity optimization procedure for each participant

and averaged the scores of dynamic network measures over all runs.

4.2.8 Dynamic Network Diagnostics: Flexibility and Integration

Multilayer modularity optimization yields an assignment for each node into a func-

tional community in each window. This permits the quantification of the dynamic

reconfiguration of community assignments across regions over time, reflecting the

emergence and dissolution of communities as patterns of FC change from one win-

dow to another (Bassett et al., 2015; Braun et al., 2015). To measure the dynamic

reconfiguration of community assignments in the cerebellum, we calculated the

nodal flexibility of each cerebellar node. Flexibility reflects how often nodes switch

their community affiliation over time and is driven by transient interactions be-

tween communities; it is the number of times a node changes its community af-

filiation across two consecutive windows divided by the total number of possible

changes (i.e., total number of windows) (Bassett et al., 2015; Braun et al., 2015), and

defined as:

fi = 1− 1
T − 1

T−1

∑
s=1

δ(Mi,s, Mi,s+1) (4.4)

where T is the total number of windows, Mi,s and Mi,s+1 are the community

assignments of node i in two consecutive windows s and s+1, respectively, and

δ(Mi,s, Mi,s+1) is Kronecker’s delta equal to 1 when Mi,s=Mi,s+1 and equal to zero
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otherwise. The overall cerebellar flexibility for each participant was calculated by

averaging the flexibility scores over all cerebellar nodes.

Nodal integration, sometimes called "spatiotemporal diversity" (Chen et al.,

2016), is defined as the average probability for a node to be assigned to the same

community with nodes from other brain systems across windows (Bassett et al.,

2015; Mattar et al., 2015). In this study, intrinsic brain systems were defined accord-

ing to the 13 consensus network partitions (Seitzman et al., 2020). To calculate inte-

gration, we first had to construct the module allegiance matrix or the "temporal co-

occurrence matrix" for each participant (Chen et al., 2016). The module allegiance

matrix summarizes the dynamic community structure and measures the level of

synchronisation between the reconfiguration profiles of any two nodes across win-

dows (Chen et al., 2016). Each entry in the module allegiance matrix, denoted Gi,j,

corresponds to the proportion of windows in which any two nodes i and j are as-

signed to the same community (Bassett et al., 2015; Braun et al., 2015). A high value

of allegiance between two nodes indicates that they are often assigned to the same

communities across time windows. Using the module allegiance matrix and the

13 time-averaged consensus network partitions provided by Seitzman et al. (2020),

we calculated the average probability for each cerebellar node to be assigned to the

same community with nodes outside its native system, defined as:

IS
i =

1
N − nS

∑
j 6∈S

Gi,j (4.5)

where S is the native brain system that node i belongs to, N is the total number

of nodes, nS is the total number of nodes in brain system S, and Gi,j is the magnitude

of allegiance between node i and any node j not belonging to system S. The total

cerebellar integration for each participant was calculated by averaging the integra-

tion scores over all cerebellar nodes. Finally, we conducted an exploratory analysis

to estimate the average flexibility and integration in each of the seven large-scale

cognitive networks.
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TABLE 4.2: Results of Group Comparisons in Temporal Variability of
Cerebro-Cerebellar FC

Network Controls mean(SD) AUD mean(SD) F1,31 p-value (FDR) η2
p

DMN 0.76(0.03) 0.77(0.046) 0.14 0.71 0.005

FPN 0.71(0.055) 0.76(0.046) 7.01 0.031 0.18

RN 0.82(0.036) 0.82(0.048) 0.7 0.533 0.02

DAN 0.77(0.04) 0.76(0.07) 0.72 0.533 0.02

VAN 0.79(0.04) 0.82(0.052) 7.34 0.031 0.19

SN 0.8(0.035) 0.82(0.045) 1.28 0.48 0.04

CON 0.8(0.033) 0.81(0.027) 0.93 0.533 0.03

Note: AUD= Alcohol Use Disorder, SD=Standard Deviation, FDR= False Discovery Rate, F=
F-statistic, η2

p= Partial eta-squared effect size, DMN= Default Mode Network, FPN=
Fronto-Parietal Network, RN= Reward Network, DAN= Dorsal Attention Network, VAN= Ventral

Attention Network, SN= Salience Network, CON= Cingulo-Opercular Network

4.2.9 Statistical Analysis

We used two-sample t-tests to test for differences in age and head motion between

groups, and Fisher’s exact test to test for differences in gender and handedness

distributions between groups. For the main and exploratory analyses, we used uni-

variate analysis of covariance (ANCOVA) to test for differences between groups

on temporal variability, flexibility, and integration controlling for the effects of age,

gender, and head motion. Moreover, we used ordinary least squares (OLS) regres-

sion analysis to test for associations between AUD symptom severity, assessed via

the DSM-5 AUD total score, and measures of cerebro-cerebellar dynamic FC that

show significant differences between groups, while controlling for age, gender, and

head motion. Finally, we used the Benjamini–Hochberg false discovery rate (FDR)

procedure to control for the rate of Type-I errors from multiple comparisons at

α = 0.05 (Benjamini and Hochberg, 1995); however, we did not correct for mul-

tiple comparisons in the exploratory analyses.
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TABLE 4.3: Results of Group Comparisons in Cerebellar Flexibility and
Integration

Score Controls mean(SD) AUD mean(SD) F1,31 p-value (FDR) η2
p

Flexibility 0.45(0.033) 0.4(0.06) 8.61 0.031 0.22

Integration 0.28(0.012) 0.3(0.019) 9.11 0.031 0.23

Note: SD=Standard Deviation, FDR= False Discovery Rate, F= F-statistic, η2= Partial eta-squared
effect size

4.3 Results

4.3.1 Group Comparisons: Temporal Variability of Cerebro-

Cerebellar FC

Results of group comparisons showed that, relative to the controls, the AUD group

exhibited significantly greater temporal variability of FC between the cerebellum

and two large-scale cognitive networks: FPN (F1,31 = 7.01, p(FDR) = 0.031) and

VAN (F1,31 = 7.35, p(FDR) = 0.031). Group differences were not forthcoming in

other networks: DMN (F1,31 = 0.144, p(FDR) = 0.71), RN (F1,31 = 0.7, p(FDR) =

0.533), DAN (F1,31 = 0.72, p(FDR) = 0.533), SN (F1,31 = 1.28, p(FDR) = 0.48),

and CON (F1,31 = 0.93, p(FDR) = 0.533). Statistical details of group comparisons

in temporal variability of cerebro-cerebellar FC are summarized in Table 4.3 and

illustrated in Figure 4.2.

4.3.2 Group Comparisons: Cerebellar Flexibility and Integration

Results of group comparisons showed that, on average, the AUD group exhibited

significantly less cerebellar flexibility than controls across the fMRI scanning in-

terval (F1,31 = 8.61, p(FDR) = 0.031), indicating that over time, cerebellar nodes

switched their community affiliation less frequently in the AUD group than the con-

trols. By contrast, the AUD group demonstrated significantly greater cerebellar in-

tegration than controls across the scanning interval (F1,31 = 9.11, p(FDR) = 0.031),

indicating that over time, cerebellar nodes belonging to diverse brain systems were

integrated into functional communities with nodes outside their native system
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FIGURE 4.2: (A) Violin plots of temporal variability of FC between the cerebellum and
seven large-scale cognitive networks for the AUD group and controls. Asterix show
p < 0.05 (FDR corrected) for group differences. (B) Brain plot of the frontoparietal
and ventral attention networks. (C) Scatter plot representation of the significant cor-
relation between the temporal variability of VAN-Cerebellum FC and the DSM-5 AUD
symptom severity. Brain networks were visualized with the BrainNet Viewer toolbox
http://www.nitrc.org/projects/bnv/ (Xia, Wang, and He, 2013). r= Correlation coeffi-
cient, p= FDR-corrected p-value. HC= Healthy Controls, DMN= Default Mode Network,
FPN= Fronto-Parietal Network, RN= Reward Network, DAN= Dorsal Attention Network,
VAN= Ventral Attention Network, SN= Salience Network, CON= Cingulo-Opercular Net-

work

more often in the AUD group than in controls. Statistical details of group com-

parisons in cerebellar flexibility and integration are summarized in Table 4.4 and

illustrated in Figures 4.3A and 4.3B, respectively.

4.3.3 Associations with AUD Symptom Severity

Ordinary least-squares regression analysis revealed a significant positive correla-

tion between AUD severity expressed as the total score on DSM-5 and the tem-

poral variability of VAN-Cerebellum FC (R = 0.6, t = 2.9, p(FDR) = 0.031; see

Figure 4.2C). We did not observe significant correlations between AUD severity

score and the temporal variability of FPN-cerebellum FC (R = −0.08, t = −0.365,

p(FDR) = 0.72), cerebellar flexibility (R = 0.11, t = 0.45, p(FDR) = 0.72), and

cerebellar integration R = 0.27, t = 1.1, p(FDR) = 0.533).

http://www.nitrc.org/projects/bnv/
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FIGURE 4.3: Violin plots of (A) cerebellar flexibility and (B) integration for the AUD group
and healthy controls (HC). Asterix show p < 0.05 (FDR corrected) for group differences.

4.3.4 Exploratory: Network Flexibility and Integration

Results of group comparisons in the exploratory analysis revealed statistically sig-

nificant group differences in network flexibility and integration (see Figures 4.4A

and 4.4B). Specifically, relative to controls, the AUD group exhibited significantly

less flexibility in the SN (F1,31 = 21.6, p < 0.001 uncorrected) and CON (F1,31 = 6.01,

p = 0.02 uncorrected). Furthermore, relative to controls, the AUD group exhibited

significantly greater integration in the FPN (F1,31 = 5.4, p = 0.026 uncorrected).

TABLE 4.4: Results of Group Comparisons in Network Flexibility and
Integration

Network Score Controls mean(SD) AUD mean(SD) F1,31 p-value η2
p

SN Flexibility 0.46(0.025) 0.4(0.03) 21.6 < 0.001 0.42

CON Flexibility 0.45(0.03) 0.42(0.035) 6.01 0.02 0.15

FPN Integration 0.28(0.013) 0.29(0.017) 5.4 0.026 0.12

Note:SD=Standard Deviation, FDR= False Discovery Rate, F= F-statistic, η2
p= Partial eta-squared

effect size

4.4 Discussion

Previous rsfMRI studies have reported altered cerebro-cerebellar FC in AUD associ-

ated with deficits in executive function, memory, and metacognitive abilities. Most,
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FIGURE 4.4: Violin plots of (A) network flexibility and (B) network integration for the AUD
group and controls. Asterix indicate p < 0.05 (uncorrected) for group differences. (C) Brain
plots of the Salience and (D) Cingulo-Opercular networks. Brain networks were visualized
with the BrainNet Viewer toolbox http://www.nitrc.org/projects/bnv/ (Xia, Wang, and

He, 2013)

if not all, of these findings, however, have been based on time-averaged measures

of FC that are blind to fast reconfigurations in the brain’s network structure. In the

present study, we aimed at exploring AUD-related changes in the temporal dynam-

ics of cerebro-cerebellar resting-state FC, for the first time, using sliding window

analysis and multilayer community detection. Our findings revealed that, relative

to controls, the AUD group exhibited significantly greater temporal variability of

FC between the cerebellum and two cognitive networks: FPN and VAN. More-

over, we found that the AUD group showed significantly less flexibility and greater

integration in the cerebellum compared with controls. Finally, results from the ex-

ploratory analysis revealed that the AUD group exhibited relatively less flexibility

in the salience and cingulo-opercular networks and greater integration in the fron-

toparietal network. Overall, the current study brings new evidence of AUD-related

http://www.nitrc.org/projects/bnv/
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alterations in cerebro-cerebellar dynamics, most notably in the frontocerebellar cir-

cuits, complementing existing literature on the adverse effects of prolonged, exces-

sive intake of alcohol on the brain at different spatial and temporal scales.

4.4.1 Hypervariability of Cerebro-Cerebellar FC in AUD

Temporal variability of FC is believed to reflect a general readiness of the brain to

reorganize in response to changing attention demands (Braun et al., 2015; Davi-

son et al., 2015; Douw et al., 2016; Fransson, 2005; Zhang et al., 2016). However,

previous studies have shown that hypervariability of FC, during rest, is a hall-

mark of brain disorders including schizophrenia, bipolar disorder, autism spectrum

disorder, Alzheimer’s disease, and Parkinson’s disease, potentially reflecting a fre-

quent emergence of a state of disconnectivity and disrupted exchange of informa-

tion among brain regions (Engels et al., 2018; Harlalka et al., 2019; Long et al., 2020;

Mash et al., 2019; Zhang et al., 2019; Zhu et al., 2019).

Likewise, our results revealed that, relative to controls, the AUD group exhib-

ited hypervariability of FC between the cerebellum and both the FPN and VAN,

suggesting a disorganized FC dynamics and reduced overall connectivity strength

within cerebro-cerebellar executive control and attention networks. These networks

are involved in top-down cognitive control, working memory, and attention shift-

ing (Marek and Dosenbach, 2018; Sheffield et al., 2015; Vossel, Geng, and Fink,

2014), which have been shown to be impaired in AUD (Le Berre, Fama, and Sulli-

van, 2017; Le Berre et al., 2019; Oscar-Berman et al., 2014; Sullivan and Pfefferbaum,

2019). Although these networks are anchored in the frontal lobe, the coordinated

interaction among distributed brain regions, including the cerebellum, is believed

to be a critical component for maintaining efficient cognitive functioning (Weiland

et al., 2014). Thus, we hypothesize that the observed hypervariability of cerebro-

cerebellar FC within these networks would be associated with deficits in executive

function and attention, often attributed to the neurotoxic effects of excessive use of

alcohol (Sullivan, Harris, and Pfefferbaum, 2010).
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4.4.2 Abnormal Cerebellar Flexibility and Integration in AUD

The AUD group showed significantly less cerebellar flexibility than controls. Flex-

ibility has been previously associated with diverse cognitive processes including

working memory (Braun et al., 2015), learning (Bassett et al., 2011), attention (Shine

et al., 2016), cognitive flexibility, planning, and processing speed (Gifford et al.,

2020; Pedersen et al., 2018), supporting its relevance to cognition and behavior.

Moreover, studies of brain disorders have reported abnormally higher levels of

whole-brain flexibility in patients with schizophrenia and autism, which is thought

to reflect temporally less stable, disintegrated, and disordered network dynamics

associated with the unique pathophysiology of these disorders (Braun et al., 2016;

Gifford et al., 2020; Harlalka et al., 2019).

Given that the cerebellum is implicated in AUD, the relative cerebellar inflexi-

bility during rest in the AUD group is unlikely to indicate more organized cerebro-

cerebellar network dynamics, but rather increased functional rigidity of cerebel-

lar nodes across time-varying functional modules. This might reflect a compro-

mised capacity of the cerebellum of AUD patients to flexibly adapt to environmen-

tal changes that require fast reconfiguration of brain networks. Nonetheless, our

interpretation remains speculative and should be further explored in future stud-

ies using externally cued cognitive tasks interspersed by epochs of resting-state,

which enable a direct assessment of cerebellar flexibility as environmental condi-

tions change.

We also found that the AUD group exhibited significantly greater integration

in the cerebellum than controls. The relatively greater cerebellar integration in the

AUD group might reflect a compensatory functional remapping (Chanraud et al.,

2013), whereby cerebellar regions tend to connect for longer periods with other

regions outside their "native" functional systems to promote normal performance

on tasks. Recent findings, however, suggest that abnormal cerebellar activity in

AUD patients, who are early in abstinence, is unlikely to reflect compensatory

re-organization but rather pathological or maladaptive plasticity, especially in the

frontal lobe and the cerebellum (Ritz et al., 2019). In this sense, results from our ex-

ploratory analysis also revealed significantly greater integration in the FPN in the
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AUD group compared to controls. As such, we could also interpret greater inte-

gration in the cerebellum and the FPN as a signature of pathological, rather than

compensatory, functional re-organization. However, this remains an open question

for future studies, which should consider exploring this feature of task-evoked dy-

namics within frontocerebellar networks using executive control tasks.

4.4.3 Exploratory Analysis: Abnormal Network Flexibility and In-

tegration in AUD

Results of the exploratory analysis revealed that the AUD group exhibited relatively

less flexibility than controls in the salience network (SN) and the cingulo-opercular

network (CON). These networks subtend portions of the anterior cingulate cor-

tex, anterior insula/operculum, supplementary motor area, thalamus, and basal

ganglia (see Figures 4.4C and 4.4D), which are highly vulnerable to alcohol-related

damage and are purported to take part in the formation of the addiction cycle (Wei-

land et al., 2014). Of particular importance, the SN is known to be a highly flexi-

ble and versatile network that facilitates the antagonistic activity of the DMN and

the executive control networks (i.e., FPN and CON), promoting cognitive flexibility

(Chen et al., 2016; Nomi et al., 2016; Steimke et al., 2017). Altered dynamics between

those networks has been associated with the disruption of shifting from internally

to externally focused attention, leading to inefficient cognitive processing (Bolton

et al., 2020). Considering this, we hypothesize that altered SN dynamics in AUD

would contribute to commonly reported deficits in cognitive control, memory, and

reward/motivation processes (Sridharan, Levitin, and Menon, 2008; Chen et al.,

2016). Taken together, the findings from this study corroborate those from the lit-

erature suggesting selective and far-reaching alterations in major brain systems en-

compassing the cerebellum, frontal lobe, and the basal forebrain in AUD (Koob and

Volkow, 2016; Sullivan and Pfefferbaum, 2005; Sullivan, Harris, and Pfefferbaum,

2010).
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4.4.4 Limitations

Several limitations for this study are worth noting. First, major limitations that

might affect the reliability of the current findings are the limited sample sizes and

number of timepoints (200 timepoints), which might be sub-optimal for dynamic

FC analysis. Future studies should validate current findings using larger sample

sizes, longer scans, and probably multiple rsfMRI sessions. A second limitation is

that the groups were not matched with respect to certain factors listed in Table ??,

such as years of education, socioeconomic status, IQ, depressive symptoms, and

smoking status. However, the directionality of these group differences is expected

based on the typical epidemiology of the AUD group. A third limitation is the

lack of detail at the level of the cerebellum and large-scale brain networks. There-

fore, for a more comprehensive view, future studies, guided by specific hypotheses,

should explore features of dynamic FC at the level of cerebellar sub-modules. Fi-

nally, a general limitation regarding the use of the sliding window approach is that

there is still no clear consensus on the optimal window length even though exten-

sive efforts have been made to address this issue (Hindriks et al., 2016; Menon and

Krishnamurthy, 2019; Savva, Mitsis, and Matsopoulos, 2019; Shakil, Lee, and Keil-

holz, 2016). Therefore, to assess the robustness of our findings to different window

lengths, we repeated the sliding window analysis with 15 TR and 20 TR windows.

The results of this supplementary analysis generally supported our main findings,

with a few caveats (see Supplementary Material). This is consistent with previous

findings suggesting that different choices of window length can induce some vari-

ability in the results (Leonardi and Van De Ville, 2015; Gifford et al., 2020). Hence,

care needs to be taken when interpreting findings derived from sliding window

analysis.

4.5 Conclusion

To the best of our knowledge, this is the first study to bring evidence of altered

cerebro-cerebellar dynamic FC in AUD. Our analysis shows that AUD patients ex-

hibit hypervariability in cerebro-cerebellar networks subserving executive control
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and attention as well as abnormalities in the network role of the cerebellum at fast

timescales. Adding to previous findings, our results suggest that AUD confers al-

terations to cognitive cerebro-cerebellar networks at different temporal and topo-

logical scales. Longitudinal studies will be essential for determining whether the

features of cerebro-cerebellar dynamic FC are trait characteristics for the develop-

ment and maintenance of AUD or are state characteristics that may change with

sustained sobriety.

Finally, the present findings may provide an impetus for further studies on

the dynamic interactions among functional brain networks that subserve executive

functioning, cognitive flexibility, and attention and their role in the etiology and

pathophysiology of substance use disorders.
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Supplementary Material for Chapter 4

S4.1 Validation Analyses

To evaluate the effect of different analysis strategies on our findings, we conducted

supplementary validation analyses that included different window sizes, different

multilayer modularity resolution parameters γ and ω, and a different dynamic FC

analysis method. Given that dynamic FC estimates may be affected by changes in

window length (Leonardi and Van De Ville, 2015), we repeated the analysis dif-

ferent window lengths of 15 TRs (≈ 40 s) and 25 TRs (≈ 70 s). Then, we tested

for group differences in cerebro-cerebellar FC temporal variability, flexibility, and

integration in each case. In addition, we repeated the multilayer modularity anal-

yses using different values for the free parameters γ and ω, which are commonly

fixed γ=ω=1. In particular, we examined the effects of small variations in the pa-

rameters’ values by varying both γ and ω over the range [0.95, 1.05] with steps of

0.05 and maximizing the multilayer modularity quality function for all pairs of pa-

rameter values. Finally, we used the multiplication of temporal derivatives (MTD)

technique as an alternative to sliding window correlation to evaluate the effects of

changing the dynamic connectivity analysis method on group comparisons.

S4.2 Different window lengths: 15 TR and 25 TR

Results obtained using 15 TR (≈ 40 seconds) and 25 TR (≈ 70 seconds) windows

revealed qualitatively similar patterns of group differences as those obtained in the

main analysis using 20 TR windows, however, with few exceptions. Particularly, we

observed significant FC hypervariability between the cerebellum and both the FPN

and the VAN in the AUD group when using 25 TR windows. However, when using

15 TR windows, we found significant FC hypervariability between the cerebellum
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and the FPN only. In addition, we observed significantly less cerebellar flexibil-

ity in the AUD group relative to controls when using 15 TR and 25 TR windows.

However, while we found significant group differences in network flexibility in the

SAN, CON, VAN, and DMN in the case of 15 TR windows, no significant group dif-

ference in network flexibility were observed in the case of 25 TR windows. This is

consistent with previous studies showing that shorter windows are more sensitive

to individual differences in flexibility, whereas longer windows are more sensitive

to inter-regional variations, rather than inter-individual differences, in flexibility

(Telesford et al., 2016). Finally, while we observed significantly greater cerebel-

lar and FPN integration in the AUD group relative to controls when using 25 TR

windows, no significant group differences in cerebellar and FPN integration were

detected in the case of 15 TR windows. Results are summarized below in Supple-

mentary Tables S4.1-S4.4 and illustrated in Supplementary Figures S4.1-S4.3. Note

that we did not correct for multiple comparisons in the supplementary analysis.

TABLE S4.1: Group comparisons in cerebro-cerebellar FC temporal
variability (15 TR)

Network Controls mean(SD) AUD mean(SD) F1,31 p-value η2
p

DMN 0.81(0.023) 0.82(0.034) 0.02 0.84 < 0.0001

FPN 0.78(0.04) 0.82(0.04) 7.21 0.012 0.19

RN 0.86(0.03) 0.86(0.04) 2.48 0.125 0.07

DAN 0.82(0.04) 0.81(0.07) 0.25 0.62 0.06

VAN 0.84(0.03) 0.85(0.04) 2.55 0.12 0.07

SN 0.84(0.03) 0.85(0.04) 0.74 0.4 0.02

CON 0.85(0.02) 0.85(0.02) 0.15 0.71 0.005

Note: AUD= Alcohol Use Disorder, SD=Standard Deviation, F= F-statistic, η2
p= Partial eta-squared

effect size



S4.2. Different window lengths: 15 TR and 25 TR 179

FIGURE S4.1: Violin plots of temporal variability of FC between the cerebellum and seven
large-scale cognitive networks for the AUD group and controls obtained using (A) 15 TR

and (B) 25 TR windows. Asterix show p < 0.05 (uncorrected) for group differences
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TABLE S4.2: Results of Group Comparisons in Temporal Variability
Cerebro-Cerebellar FC (25 TR)

Network Controls mean(SD) AUD mean(SD) F1,31 p-value η2
p

DMN 0.72(0.04) 0.73(0.06) 0.61 0.44 0.02

FPN 0.66(0.07) 0.71(0.06) 6.18 0.018 0.17

RN 0.79(0.04) 0.79(0.07) 0.29 0.6 0.009

DAN 0.73(0.05) 0.72(0.07) 0.08 0.77 < 0.0001

VAN 0.74(0.04) 0.78(0.06) 7.75 0.009 0.2

SN 0.75(0.04) 0.78(0.06) 0.62 0.43 0.02

CON 0.77(0.04) 0.77(0.03) 0.28 0.6 0.008

Note: AUD= Alcohol Use Disorder, SD=Standard Deviation, F= F-statistic, η2
p= Partial eta-squared

effect size

TABLE S4.3: Results of Group Comparisons in Flexibility and Integra-
tion (15 TR)

Network Metric Controls mean(SD) AUD mean(SD) F1,31 p-value η2
p

Cerebellum Flexibility 0.47(0.03) 0.43(0.05) 10.4 0.003 0.25

Integration 0.28(0.014) 0.29(0.017) 2.7 0.11 0.08

DMN Flexibility 0.45(0.03) 0.43(0.02) 5.3 0.03 0.14

VAN Flexibility 0.48(0.03) 0.45(0.035) 11.85 0.002 0.27

SN Flexibility 0.47(0.025) 0.44(0.035) 10.5 0.003 0.25

CON Flexibility 0.48(0.02) 0.45(0.03) 13.8 < 0.001 0.3

Note: AUD= Alcohol Use Disorder, SD=Standard Deviation, F= F-statistic, η2= Partial eta-squared
effect size

TABLE S4.4: Results of Group Comparisons in Flexibility and Integra-
tion (25 TR)

Network Metric Controls mean(SD) AUD mean(SD) F1,31 p-value η2
p

Cerebellum Flexibility 0.43(0.04) 0.39(0.07) 11.1 0.002 0.26

Integration 0.28(0.018) 0.3(0.025) 7.85 0.009 0.2

FPN Integration 0.28(0.017) 0.3(0.02) 5.2 0.03 0.14

Note: AUD= Alcohol Use Disorder, SD=Standard Deviation, F= F-statistic, η2= Partial eta-squared
effect size
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FIGURE S4.2: Violin plots of cerebellar flexibility and integration for the AUD group and
controls obtained using (A), (C) 15 TR and (B), (D) 25 TR windows. Asterix show p < 0.05

(uncorrected) for group differences.
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FIGURE S4.3: Violin plots of network flexibility and integration for the AUD group and con-
trols using (A), (C) 15 TR and (B), (D) 25 TR windows. Asterix show p < 0.05 (uncorrected)

for group differences
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S4.3 Different values for γ and ω

The spatial and temporal resolutions of the multilayer community detection algo-

rithm are controlled by the parameters γ and ω, respectively (Braun et al., 2016;

Pedersen et al., 2018; Gifford et al., 2020). Lower/higher values for γ provide

fewer/more communities in each layer, whereas lower/higher values for ω give

weaker/stronger temporal coupling between a given node and itself in adjacent

layers. Despite the importance of the free parameters γ and ω, they are commonly

fixed at a de facto value of 1. A complete exploration of all combination of parame-

ter values is beyond the scope of this study. Ideally, there needs to be a principled,

theory-driven or data-driven approach for selecting the "correct" free parameters in

modularity maximization methods. However, this is still missing and most studies

examine γ and ω varied over a narrow range.

FIGURE S4.4: Heatmaps of absolute correlation between flexibility scores in different com-
binations of γ and ω. This was calculated at the level of the cerebellum and seven large-
scale cognitive networks. The values in parentheses represent the average correlation in

each case.
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Accordingly, we examined the effects of small variations in the parameters’ val-

ues by varying both γ and ω over the range [0.95, 1.05] with steps of 0.05 and

maximizing the multilayer modularity function for all pairs of parameter values, as

was done previously in (Braun et al., 2015; Braun et al., 2016). First, we performed a

repeated measures ANOVA using the "combination" as Then, we evaluated the cor-

relation of flexibility and integration scores of each network, including the cerebel-

lum, obtained across different combinations of values of γ and ω. Results showed

that flexibility and integration scores across different combinations of values for γ

and ω were highly correlated. Particularly, the average correlation for flexibility

scores was r ≈ 0.96 and for integration scores r ≈ 0.82. Results are illustrated in

Supplementary Figures S4.4-S4.5. This indicates that varying γ and ω varied over

a narrow range did not alter the findings of the study.

FIGURE S4.5: Heatmaps of absolute correlation between integration scores in different com-
binations of γ and ω. This was done for the cerebellum and seven large-scale cognitive
networks. The values in parentheses represent the average Pearson’s correlation in each

case.
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S4.4 Multiplication of temporal derivatives

The MTD is as an alternative method to sliding window Pearson’s correlation that

estimates instantaneous FC patterns (Shine et al., 2015; Shine et al., 2016). First,

the temporal derivative of each time series is estimated by subtracting the BOLD

intensity at time point t1 from the intensity at time point t. Then, the temporal

derivatives of any two time series are multiplied and their product is divided by

the product of their respective standard deviations calculated over the entire time

course. A positive MTD FC weight indicates that the BOLD signals of two brain re-

gions are ’coupled’ in the same direction i.e., they are either both increasing or both

decreasing together, whereas a negative MTD FC weight reflects ‘anti-coupling’ be-

tween two brain regions i.e., the BOLD signal in one region increases while the

other decreases (Shine et al., 2015). MTD estimates FC on a single data point, mak-

ing it susceptible to high frequency noise. To overcome this issue, a simple moving

average is used to average FC matrices surrounding a point in time within a win-

dow of a certain length. In this study, we estimated dynamic FC using the MTD

method with a moving average of length equal to 20 TR and performed the same

set of analyses and group comparisons as in the main analysis. Results revealed

qualitatively similar patterns of group differences to the main analysis in terms of

temporal variability of cerebro-cerebellar FC, cerebellar flexibility and integration,

and network integration. However, we did not detect significant group differences

in terms of network flexibility. Overall, this validation analysis fairly supported

the robustness of the main findings to variations in dynamic FC method with few

exceptions. Results are summarized below in Supplementary Tables S4.5-S4.6 and

illustrated in Supplementary Figures S4.6-S4.8.
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FIGURE S4.6: Violin plots of temporal variability of FC between the cerebellum and seven
cognitive networks for the AUD group and controls obtained using the MTD method. As-

terix show p < 0.05 (uncorrected) for group differences

FIGURE S4.7: Violin plots of cerebellar (A) flexibility and (B) integration for the AUD group
and controls obtained using MTD. Asterix show p < 0.05 (uncorrected) for group differ-

ences.



S4.4. Multiplication of temporal derivatives 187

TABLE S4.5: Group comparisons in temporal variability of cerebro-
cerebellar FC (MTD)

Network Controls mean(SD) AUD mean(SD) F1,31 p-value η2
p

DMN 0.78(0.024) 0.79(0.04) 0.075 0.78 0.002

FPN 0.75(0.04) 0.79(0.04) 11.15 0.002 0.26

RN 0.82(0.025) 0.825(0.05) 0.65 0.43 0.02

DAN 0.795(0.03) 0.79(0.045) 0.3 0.59 0.009

VAN 0.8(0.03) 0.83(0.04) 7.75 0.009 0.2

SN 0.81(0.03) 0.82(0.04) 0.35 0.56 0.01

CON 0.81(0.02) 0.82(0.02) 3.2 0.08 0.09

Note: AUD= Alcohol Use Disorder, SD=Standard Deviation, F= F-statistic, η2
p= Partial eta-squared

effect size

TABLE S4.6: Results of Group Comparisons in Flexibility and Integra-
tion (MTD)

Network Metric Controls mean(SD) AUD mean(SD) F1,31 p-value η2
p

Cerebellum Flexibility 0.095(0.011) 0.11(0.012) 9.26 0.005 0.23

Integration 0.3(0.011) 0.31(0.018) 5.1 0.03 0.14

FPN Integration 0.29(0.012) 0.31(0.014) 6.8 0.014 0.18

Note: AUD= Alcohol Use Disorder, SD=Standard Deviation, F= F-statistic, η2= Partial eta-squared
effect size
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FIGURE S4.8: Violin plots of network (A) flexibility and (B) integration for the AUD group
and controls obtained using MTD. Asterix show p < 0.05 (uncorrected) for group differ-

ences
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General Conclusions and Future

Perspectives

Summary

Rationale

The past thirty years of studies on the cerebellum have converged to a fundamental

finding that the human cerebellum is involved in cognition, with its posterolat-

eral parts mainly communicating with cerebral association networks (Buckner et

al., 2011; Buckner, 2013). Functional neuroimaging techniques, especially resting-

state functional magnetic resonance imaging (rsfMRI), have enabled neuroscientists

to map the complete functional organization of the human cerebellum and pro-

vide insights into a wide array of domains to which it contributes (Buckner et al.,

2011; Guell et al., 2018; Schmahmann, 2019). The discovery that the cerebellum pos-

sesses prominent cognitive zones has far-reaching implications for how we explore

its function and also view brain disorders that arise from disruptions in cerebro-

cerebellar connectivity. In this context, besides delineating the full organizational

extent of the cerebellum, resting-state FC have been used to explore the behavioral

correlates of cerebro-cerebellar FC and its alterations in brain disorders, notably al-

cohol use disorder (Chanraud et al., 2011; Moreno-Rius and Miquel, 2017; Sullivan

and Pfefferbaum, 2005).

Yet, the majority of rsfMRI studies on the cerebellum have estimated time-

averaged measures of FC, across entire scanning sessions spanning a few minutes.

However, growing evidence, motivated by the dynamic nature of the brain, have

suggested that resting-state FC, as measured by fMRI, shows noticeable variations

over a range of a few seconds that is associated with behavior and not attributable
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to physiological noise or resampling variability (Calhoun et al., 2014). In fact, these

variations seem to be highly structured and fluctuate among a set of metastable FC

patterns, known as states, that recur transiently and inter-changeably across time

(Vidaurre, Smith, and Woolrich, 2017). Time-varying FC has strong links to electro-

physiological FC, cognitive flexibility, creativity, emotion regulation, and personal-

ity traits, and has been found to exhibit alterations in a growing number of brain

disorders (Lurie et al., 2020; Preti, Bolton, and Ville, 2017). Yet, despite the postu-

lated cerebellar role in coordinating cognitive processes at fast timescales, which

confers dynamic patterns of cerebro-cerebellar FC, the cerebellum has been over-

looked and/or poorly represented in most studies of dynamic FC. Hence, the be-

havioral relevance of cerebro-cerebellar FC dynamics remain elusive.

In this thesis, we addressed this question and hypothesized that the dynamics

of cerebro-cerebellar FC, during rest, may be behaviorally relevant, capturing as-

pects of cognition and behavior not accounted for by time-averaged measures of

FC, and to exhibit alterations in brain disorders commonly associated with cerebro-

cerebellar dysfunction, notably alcohol use disorder (AUD). We tested this hypoth-

esis in two separate resting-state fMRI studies that lay special emphasis on the dy-

namics of cerebro-cerebellar FC happening at fast timescales and their relation to

complex traits and disorders, such as impulsivity (first study) and alcohol use dis-

order (second study).

The First Study

The first study was motivated by a recent hypothesis for a cerebellar involvement

in regulating impulsivity based on converging findings from clinical studies and

research in animal models (Miquel et al., 2019). In our study, we hypothesized

that individual differences in normal impulsivity traits could be associated with the

strength and temporal variability of cerebro-cerebellar resting-state FC. We tested

this hypothesis by analyzing rsfMRI data and self-report questionnaires of impul-

sivity collected from a group of 134 healthy young individuals. We delineated 25

cerebral and 14 cerebellar resting-state networks (RSNs) using group independent

components analysis (GICA) and modeled the static and dynamic patterns of FC
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between them using different data-driven methods. Particularly, in the static FC

analysis, we estimated FC matrices and computed the total strength of FC between

the cerebellum and distinct brain RSNs for each subject. In the dynamic FC anal-

ysis, we used hidden Markov modelling (HMM; Vidaurre, Smith, and Woolrich,

2017) to extract subject-specific FC states, each represented by a correlation and

a partial correlation matrix, and then used these to compute the overall temporal

variability of FC strength between the cerebellum and distinct large-scale RSNs.

Finally, we used multivariate general linear models to evaluate the association be-

tween cerebro-cerebellar FC and self-reported impulsivity. We found compelling

evidence linking multiple facets of impulsivity to both the strength and temporal

variability of cerebro-cerebellar resting-state FC. Particularly:

• Results from the static FC analysis revealed that individual scores on the be-

havioral approach and inhibition systems (BIS/BAS) negatively correlated

with the strength of the direct (i.e., partial correlation) FC between the cerebel-

lum and two large-scale networks: the frontal salience network (FSN) and the

basal ganglia (BGN), respectively. These results suggest that stronger FSN-

Cerebellum FC, during rest, is associated with increased control over goal-

directed behaviors, whereas stronger BGN-Cerebellum FC is associated with

less sensitivity towards unpleasant/aversive outcomes and hence less activa-

tion of avoidance behavior. These findings comport with the existing liter-

ature suggesting that the cerebellum engages in the neural circuits underly-

ing the motivational systems that regulate responses towards rewarding and

punishment cues (Brunamonti et al., 2014; Miquel et al., 2019; Moulton et al.,

2011).

• Results from the dynamic FC analysis revealed that the UPPS-P lack of

premeditation scale was inversely associated with the dynamic FC be-

tween the cerebellum and two integrative networks: the FSN and the pre-

cuneus/posterior cingulate cortex (pCun/PCC) network. Furthermore, re-

sults revealed that the UPPS-P sensation seeking scale positively correlated

with the dynamic FC between the cerebellum and four networks: the FSN,



194 General Conclusions and Future Perspectives

pCun/PCC, BGN, and thalamus. These results suggest that the dynamic in-

teractions, during rest, between the cerebellum and highly integrative hub

regions, at the interface of top-down cognitive control and bottom-up re-

ward/saliency processes, may serve to adaptively reconfigure attention and

actions in response to a change in environmental conditions.

• Our results also suggest that the dynamics of cerebro-cerebellar FC in healthy

individuals are behaviorally relevant and may have implications, along with

time-averaged measures, in future studies for explaining features of the de-

velopment and progression of certain brain disorders marked by impulsive

symptomatology.

• Overall, the study highlights the utility of complementing time-averaged

(i.e., static) measures of FC with time-resolved (i.e., dynamic) FC analysis

in furthering current understanding of the neurobiological correlates of com-

plex traits and the functional repertoire of the cerebellum and the cerebro-

cerebellar system.

The Second Study

In the second study, we hypothesized that the dynamics of cerebro-cerebellar

resting-state FC at short timescales would differ between individuals diagnosed

with AUD and unaffected controls, especially in frontocerebellar circuits, which are

particularly vulnerable to alcohol-inflicted damage (Chanraud et al., 2013; Sulli-

van, Harris, and Pfefferbaum, 2010). We tested this hypothesis by examining AUD-

related changes in cerebro-cerebellar FC, during rest, from a dynamic FC perspec-

tive. In particular, we used sliding window analysis and multilayer community

detection to characterize time-varying patterns of FC within and between the cere-

bellum and seven large-scale cognitive networks. We observed new evidence of

aberrant cerebro-cerebellar functional coupling dynamics especially between the

cerebellum and networks anchored in the frontal lobe. Particularly:

• We observed evidence of altered cerebellar dynamics across the time-varying

functional modular structure in AUD, characterized by hypervariability of FC
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between the cerebellum and both the frontoparietal network (FPN) and the

ventral attention network (VAN), the latter of which significantly correlated

with AUD symptom severity. This is indicative of the presence of aberrant

communication dynamics amongst the nodes of the cerebro-cerebellar exec-

utive control and attention systems, possibly contributing to a lower overall

connectivity within these systems and comporting with previous findings of

frontocerebellar dissociation in AUD.

• We also detected altered dynamic modular structure in AUD, characterized

by relatively less flexibility and greater integration in the cerebellum of alco-

holics compared with controls. The first of which indicates temporal rigidity

of cerebellar nodes across time-varying functional modules, potentially re-

flecting a compromised capacity of the cerebellum to flexibly adapt to envi-

ronmental changes, which might explain inefficient cognitive processing. The

latter finding, along with a finding from the exploratory analysis showing

greater integration in the frontoparietal network, might be attributed to either

compensatory functional remapping of frontocerebellar circuits or maladap-

tive plasticity inflicted by excessive use of alcohol. This should be further

explored in future studies using cognitive task paradigms.

• The findings from this study extend those from the literature that suggest the

presence of selective yet far-reaching alterations in major neural systems en-

compassing the cerebellum, frontal lobe, basal forebrain, and the limbic sys-

tem in substance dependence in general, and in particular, alcohol depen-

dence.

• Importantly and foremost, the findings of this study are consistent with pre-

vious studies showing altered frontocerebellar FC in AUD patients, which

might have future implications for explaining features of the development of

cognitive deficits in AUD and improving our understanding of the functional

network organization of the brain with addiction.
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Future Directions

A sizeable corpus of literature has emerged over the past thirty years focusing the

role of the cerebellum in cognitive and affective functions. While the findings of this

thesis corroborate and extend the existing literature, they are based on correlative

relationships typically derived from resting-state and significance-tested for proof

of concept, which precludes making inferences regarding how the cerebellum con-

tributes to cognition and behavior. In fact, most interpretations derived from imag-

ing findings, so far, in terms of how the cerebellum might contribute to cognition

are speculative and mainly rest on theoretical accounts, such as the Universal Cere-

bellar Transform and Dysmetria of Thought, which in turn are mainly predicated on

computational models of sensorimotor control and clinical observations. Moreover,

given the nature of resting-state FC and the controversies surrounding time-varying

measures of FC, it is definitive that more research is needed to complement current

findings and develop a broader perspective of the role of the cerebellum in cogni-

tive functions.

That being said, the central question in cerebellar neuroscience should no longer

be whether the cerebellum plays a role in certain cognitive processes, but instead

research should now focus on how the cerebellum contributes to these functions

in both health and disease. In this context, future multimodal designs based

on more refined questions and more naturalistic cognitive task paradigms inter-

spersed by rest epochs will help further explicate the underlying mechanisms that

drive cerebro-cerebellar functional coupling dynamics. For instance, this can in-

clude task-evoked dynamic FC analysis, that include experimentally imposed

and traceable shifts in cognitive state at fast timescales that can be captured by

hidden Markov models. Further, it can also include brain stimulation modalities,

such as transcranial electrical stimulation (Ali, Sellers, and Fröhlich, 2013), embed-

ded within fMRI experiments, to dynamically modulate activity patterns in the

cerebellum, while subjects rest or engage in a cognitive task.

Finally, recent hypotheses of Multiple Cerebellar Functionality (Diedrichsen et al.,

2019) have emerged, holding that the diversity of structurally similar cerebellar

modules suggests that the theory of universal computations may be misguiding



General Conclusions and Future Perspectives 197

and impeding the progress in cerebellar neuroscience (Sokolov, Miall, and Ivry,

2017). The proponents of this hypothesis argue that there can be a universal um-

brella term for cerebellar functioning, but that includes domain-specific computa-

tions. However, the substantial evidence of cerebellar anatomical uniformity, gen-

eral principle of the functional organization of the cerebellum at the group levels

(Guell et al., 2018), and the highly individual-specific cerebellar maps (Marek et

al., 2018), it might be challenging to disentangle unique computations across cere-

bellar sub-modules using traditional designs. In this case, as a suggestion, com-

bining the suggested continuous task or transcranial stimulation paradigms with

precision functional mapping methods (Gordon et al., 2017; Marek et al., 2018) that

estimate subject-specifc functional maps, may be informative about the domain-

specific computational models in the cerebellum, if they exist.
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