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Résumé étendu en français

Le corps du document est écrit en anglais. Ce résumé présente le contexte, l’état de l’art
et la contribution développée dans le reste du document.

Contexte

Le concept de système multi-agents est communément accepté comme une représentation
d’exemples de systèmes réels où des entités autonomes, les agents, agissent conformément
à leur connaissance du monde courant afin d’atteindre des buts individuels ou collectifs.

Considérons des exemples de systèmes multi-agents.

• Dans les systèmes multi-robots, les agents sont les robots qui accumulent de la
connaissance par l’environnement qu’ils perçoivent depuis leurs capteurs et par
l’information obtenue via des canaux de communication [Lem+14]. Ils doivent égale-
ment prendre en compte les autres agents, en particulier les agents humains, pour
remplir leurs objectifs. Par exemple, Lemaignan et al. [Lem+10] donnent un exam-
ple de gestion de la connaissance dans les systèmes multi-robots où les interactions
avec l’humain sont prises en compte. Leur système met en jeu une base de con-
naissance sur l’environnement que le robot maintient. Le domaine de l’intelligence
distribuée est dédiée précisément à ce problème, avec des applications directes pour
les systèmes multi-robots [Par08].

• En sécurité, les agents sont l’attaquant et le propriétaire du système. Par exemple
en sécurité réseau [PKS16], le propriétaire désire que l’attaquant ait le moins de
connaissance possible sur le système. En effet, si l’attaquant obtient de l’information,
il pourrait être alors capable de compromettre ce système, comme par exemple
dans les attaques d’élévation des privilèges. En outre en cryptographie [MOV96], le
propriétaire désire que l’information transmise ne soit pas décryptée par l’attaquant.
En effet, l’information peut être aisément interceptée par l’attaquant car le canal
de communication est ouvert, mais s’il ne possède pas la clé de cryptage, il ne sera
pas capable de lire le contenu du message. Nous pouvons également mentionner
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Résumé étendu en français

les détections d’attaque dans les bâtiments, généralement modélisées par des arbres
d’attaque-défense [Kor+11], où l’attaquant veut accéder par exemple à une ressource
cachée, et doit infiltrer le bâtiment sans être repéré. Dans ce cas, il s’agit du point du
vue opposé à la sécurité réseau, puisque c’est l’attaquant qui veut que le propriétaire
ait le moins d’information possible sur ses agissements.

• Dans les jeux de société, comme les jeux de carte, la bataille navale, Cluedo, etc.,
les agents sont les joueurs. Par exemple dans les jeux de carte classiques, la main
d’un joueur est la seule information qu’il possède au début de la partie. Au fur et à
mesure que le jeu progresse, les agents acquièrent de la connaissance supplémentaire
de part les actions et déclarations des autres joueurs. Il existe une panoplie de jeux
de société qui sont pertinents car ils couvrent le champ des interactions possibles
entre les joueurs. Par exemple Hanabi 1 est un jeu où la connaissance mutuelle entre
les agents est centrale, car un joueur ne voit que les mains des autres joueurs, et les
joueurs doivent collaborer pour gagner ensemble un maximum de points. Tragedy
Looper 2 met également en jeu une notion de collaboration, mais les joueurs doivent
ici collaborer contre un joueur isolé, appelé le mastermind. En effet, dans ce jeu, les
joueurs ont une vue incomplète du scénario, et doivent s’assurer que le mastermind,
qui lui a une vision complète du scénario, ne déclenche pas une condition de défaite.
Ils peuvent jouer le scénario plusieurs fois (par une mécanique de voyage dans le
temps dans le jeu) afin de gagner de plus en plus de connaissance sur le contenu
du scénario. Le mastermind lui doit s’assurer que les joueurs déclenchent toujours
une condition de défaite et obtiennent le moins de connaissance possible. Enfin,
beaucoup de jeux existent autour de la communication, comme le jeu Loups-Garous
de Thiercelieux 3, où les joueurs ont tous un rôle caché, soit loup-garou soit villageois.
Les villageois doivent démasquer les loups-garous pendant les phases de jour et les
loups-garous doivent manger les villageois pendant les phases de nuit. Dans ce jeu,
la connaissance est obtenue par les interactions entre les joueurs mais également
par les rôles d’information, comme la voyante qui peut regarder le rôle d’un joueur
chaque nuit.

• Dans les jeux vidéos, les agents sont les joueurs et les personnages non-jouables
(PNJ). Les PNJs ont une connaissance et une capacité de raisonnement limitées,

1. Créé par Antoine Bauza en 2010, édité par Cocktail Games et XII Singes.
2. Créé par Bakafire en 2014, édité by Z-Man Games et BakaFire Party.
3. Créé par Philippe des Pallières et Hervé Marly en 2001, édité par Lui-Même.
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mais il est pertinent de considérer les jeux vidéos comme des systèmes multi-agents
lorsque les PNJs interagissent avec le joueur. Par exemple, dans les jeux de rôle
massivement multi-joueur en ligne, les boss ont un mécanisme de menace qui leur
permet de toujours attaquer le joueur qui représente la plus grande menace à leurs
yeux. Il existe également des mécaniques plus sophistiquées, comme le boss notoire
Dark Link tiré du jeu “The Legend of Zelda: Ocarina of Time”4. Sa vie se cale sur
celle du joueur et il a une intelligence artificielle qui s’adapte à la façon d’attaquer
du joueur. Par exemple si le joueur ne donne que des coups d’épée basiques, Dark
Link va principalement bloquer les attaques.

Dans tous ces exemples, la notion de connaissance est centrale, en particulier la con-
naissance d’ordre supérieur, c’est à dire la connaissance que les agents ont à propos de la
connaissance des autres agents. En effet, la connaissance d’ordre supérieur représente la
façon que les agents ont de raisonner sur les autres agents. C’est donc une notion cruciale
dans beaucoup des exemples cités au dessus, comme en sécurité où chaque agent doit
raisonner sur la connaissance de l’autre agent, ou dans les jeux de carte pour concevoir
des stratégies pertinentes. De plus, la dynamique est également importante, puisque les
agents communiquent et agissent sur le système. Quelques exemples d’actions dynamiques
seraient l’envoi d’un message, l’ouverture d’une porte, le déplacement d’un objet, le jeu
d’une carte, le lancer d’un sort dans un jeu vidéo, etc. C’est pourquoi nous voulons ex-
primer les actions des agents dans les systèmes multi-agents.

Tout au long du document, nous nous focalisons sur la vérification de propriétés met-
tant en jeu de la connaissance dans les systèmes multi-agents. Puisque nous avons besoin
d’exprimer la connaissance et des actions dynamiques, nous choisissons d’utiliser la logique
épistémique dynamique qui exprime les deux. Nous étudions le problème de vérification de
modèles, mais également le problème d’existence d’un modèle, appelé problème de satis-
fiabilité. Nous étudions également leurs variantes symboliques. Nous allons aussi plus loin
en considérant des variantes stratégiques de la logique épistémique dynamique, comme la
planification épistémique ou les actions arbitraires.

Notions introduites dans le document

Logique épistémique Dans le document, nous mettons en avant l’utilisation de la
logique pour exprimer des propriétés dans les systèmes multi-agents. En effet, la logique

4. Édité par Nintendo.
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donne un langage de spécification, et est utile pour définir des procédures de vérification,
puisque sa définition claire permet d’écrire naturellement ces procédures.

Nous considérons la logique épistémique introduite par Hintikka [Hin65]. Elle étend la
logique propositionnelle avec des opérateurs de connaissance, comme Ka pour “L’agent
a sait que”. Toutes les valeurs considérées sont booléennes, ce qui veut dire que les deux
seules valeurs possibles sont vrai (>) ou faux (⊥). Nous pouvons ainsi exprimer toute
variable avec une valeur sur un domaine fini, comme les entiers bornés par exemple en
utilisant plusieurs variables booléennes. En revanche, nous ne pouvons pas exprimer les
valeurs dans des domaines infinis, comme les rationnels ou les réels.

L’opérateur Ka est appelé une modalité. En effet, la logique épistémique est un type
spécial de logique modale (cf par exemple [BBW06] pour plus d’information sur la logique
modale) où les seules modalités sont Ka. La différence principale entre la logique propo-
sitionnelle et la logique modale réside dans l’interprétation des formules. Alors que les
formules propositionnelles sont évaluées sur les interprétations des variables (appelées val-
uations), les formules modales sont évaluées sur ce que l’on appelle des modèles de Kripke.
Ces modèles peuvent être vus comme des graphes où chaque noeud (appelé monde) pos-
sède une valuation et représente une configuration possible, par exemple le contenu des
mains des joueurs. Les arcs représentent quels mondes les agents imaginent comme pos-
sibles, de telle manière que Ka est interprété comme “ pour tous les mondes imaginés
comme possibles par l’agent a, . . . ”. Les systèmes multi-agents sont alors représentés par
des modèles de Kripke et les propriétés sont des formules de la logique épistémique.

Pour plus d’information à propos de la logique épistémique, le lecteur peut se référer
aux livres [Fag+95; MV04] qui décrivent des travaux classiques sur la logique épistémique,
ou à l’article [vV02]. Plus récemment, le livre [Dit+15] couvre également la logique
épistémique et plusieurs de ses extensions.

Néanmoins la logique épistémique a plusieurs limitations. En effet, les agents sont
supposés rationnels et ont une connaissance parfaite du modèle de Kripke. Plusieurs ex-
tensions de la logique épistémique existent pour résoudre ces problèmes. Par exemple
l’article [FH87] introduit une extension de la logique épistémique où les agents peuvent
être ignorants de l’existence de propositions atomiques, et ont des capacités de raison-
nements limitées, ce qui signifie qu’ils ne peuvent pas déduire toutes les implications
logiques. De plus, la logique épistémique ne se focalise par sur pourquoi les agents savent
une propriété. La logique de justification [Art08] définit un mécanisme de justification de
la connaissance des agents. Pour citer un article plus récent, l’article [SW18] propose
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une logique où les noms des agents ne sont pas connaissance commune, faisant ainsi une
distinction entre “savoir que l’agent a a commis un crime sans connaître son nom” et
“savoir qu’un agent nommé a a commis un crime sans savoir qui c’est.”

Dans le document, nous ne considérons pas ces extensions pour garder une logique
simple et considérons la définition usuelle de la logique épistémique.

Connaissance commune La connaissance commune a d’abord été définie formelle-
ment dans [Aum76]. On dit qu’une formule est connaissance commune si elle est vraie
dans chaque monde possible. On peut également définir la connaissance commune par
une conjonction de formules de la forme “tout le monde sait que tout le monde sait que
. . . ”.

La notion de connaissance commune en logique épistémique est très proche de l’opérateur
AG de CTL (cf [BK08] pour plus d’information sur les logiques temporelles). Les deux
opérateurs peuvent être vus comme des opérateurs de point fixe comme ceux du µ-calcul
[Pra81].

Dans le document, tous les chapitres excepté le Chapitre 4 autorisent l’opérateur de
connaissance commune dans la logique.

Vérification de modèles et satisfiabilité Quand on définit une logique, il est clas-
sique d’étudier ses propriétées computationnelles. Ici, nous considérons une approche sim-
ilaire à [HV91] en définissant le problème de vérification de modèles. Ce problème prend
en entrée un modèle et uen formule et vérifie si la formule est vraie dans ce modèle. Nous
prouvons d’ailleurs en Annexe C que le problème est dans P pour la logique épistémique,
avec une preuve très similaire à celle pour CTL. Pour un rappel sur la complexité com-
putationnelle, le lecteur peut se référer à l’Annexe A.

Un autre problème classique est de vérifer la satisfiabilité d’une formule, c’est à dire
trouver un modèle de Kripke satisfaisant la formule. En réalité, le problème de satisfia-
bilité est dual au problème de preuve de théorème, puisqu’une formule ϕ est valide si et
seulement si ¬ϕ n’est pas satisfiable. Pour la logique épistémique, le problème de satis-
fiabilité est Pspace-complet sans connaissance commune, avec au moins deux agents et
pour des modèles S5 5 [HM92].

Il est également classique de définir l’axiomatisation de la logique. Il s’agit d’un en-
semble d’axiomes et de règles qui illustrent la construction de formules prouvables (cf

5. c’est à dire des modèles de Kripke avec des arcs qui forment une relation d’équivalence.
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[Fag+95] pour la logique épistémique). Nous établissons généralement si cette axioma-
tisation est correcte (chaque formule prouvable est valide) et complète (chaque formule
valide est prouvable). Lorsqu’une axiomatisation correcte et complète est proposée, il est
parfois possible de définir alors un algorithme de preuve de théorème qui vérifie la valid-
ité de formules en utilisant l’axiomatisation. La différence principale avec la vérification
de modèles est que l’on prouve alors la validité de la formule en entrée au lieu de sa
satisfaction dans un modèle donné. Si nous voulons alors utiliser la preuve de théorème
pour vérifier une formule ϕ dans un modèle, nous devons caractériser le modèle par une
formule ϕM et prouver la validité de ϕM → ϕ. La preuve de théorème étant duale à
la satisfiabilité, la vérification de modèles est en général un problème plus simple. C’est
pourquoi nous n’utilisons pas la preuve de théorème ici, car ce serait un problème trop
difficile pour l’utilisation que l’on compte en faire.

Modèles symboliques Lorsque l’on souhaite utiliser la vérification de modèles et la
satisfiabilité en pratique, nous nous heurtons généralement à l’explosion combinatoire des
modèles de Kripke. Par exemple dans les jeux de carte, quand il y a k joueurs et n cartes,
le nombre de propositions atomiques est généralement k × n. Si l’on considère un jeu de
tarot classique avec 5 joueurs, le nombre de mondes possibles serait alors environ 6×1048,
ce qui est du même ordre de grandeur que le nombre d’atomes sur Terre. Il paraît donc
déraisonnable de manipuler les modèles explicitement.

Pour cette raison, nous proposons une représentation symbolique des modèles de
Kripke, ce qui évite de les définir à la main. De telles représentations existent déjà pour
d’autres formalismes, comme les circuits booléens pour les chemins Hamiltoniens dans les
graphes [Pap03]. Généralement, une représentation symbolique définit un modèle par des
formules booléennes au lieu de définir le modèle de façon explicite. Par exemple l’article
[Bur+90] donne une représentation symbolique des modèles pour les logiques temporelles.
Il est alors possible d’utiliser des structures de données appelées des diagrammes de dé-
cision binaires ordonnés et réduits [DB98] (ROBDDs), afin d’implémenter les représenta-
tions symboliques.

Cela peut paraître surprenant de considérer des procédures de vérification avec des
modèles symboliques en entrée, car cela peut paraître très similaire à la méthode de preuve
de théorème mentionnée précédemment. La différence principale est que la description des
modèles (donnée par des ROBDDs par exemple) n’est pas écrite dans le même langage que
la formule (par exemple en logique épistémique), cela aurait donc peu de sens d’essayer
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de prouver ϕM → ϕ avec ϕM la représentation symbolique du modèle de KripkeM.
Pour la logique épistémique, plusieurs approches symboliques existent déjà, qui sont

décrites plus en détail dans le Chapitre 3. La première approche définie associe les mondes
à des valuations et les agents observent un ensemble de propositions atomiques [HTW11;
HIW12; Ågo+13]. Dans ce cas, un modèle de Kripke est seulement défini par l’ensemble
des mondes et les propositions que chaque agent observe, les relations épistémiques étant
alors inférées des ensembles d’observation. En outre, l’article [GGS15] étend cette idée
en considérant des agents dans un espace de dimension 2 qui peuvent seulement voir
un cône devant eux. Enfin, l’article [HLM15] considère une représentation des relations
épistémiques avec des variables de la forme Sap pour “l’agent a perçoit la valeur de p” qui
peuvent être d’ordre supérieur comme SaSbp pour “l’agent a perçoit la valeur de Sbp”.

Ici, nous utilisons une approche symbolique qui utilise les programmes de la logique
dynamique avec des affectations propositionnelles (DL-PA [BHT13]), qui sont des pro-
grammes particuliers de la logique dynamique propositionnelle (PDL [FL79]) où les pro-
grammes atomiques sont des affectations propositionnelles. Même si ce ne sont pas di-
rectement des formules booléennes, ces programmes peuvent être traduits en formules
booléennes classiques afin d’utiliser des techniques ROBDDs 6. Cette approche a les avan-
tages habituels des modèles symboliques : ils peuvent exprimer n’importe quel modèle, ils
sont succincts, et ils permettent une représentation simple des exemples habituels de la
logique épitémique.

Dynamique dans la logique épistémique Comme souligné dans le paragraphe sur
la logique épistémique, on ne peut pas y exprimer la dynamique dans les modèles. Nous
considérons ici la logique épistémique dynamique. C’est un terme parapluie pour toutes
les extensions de la logique épistémique avec des opérateurs dynamiques. Les extensions
de la logique épistémique avec de la dynamique sont fortement inspirées de la logique
dynamique comme définie dans [FL79].

Initialement, la première occurrence d’opérateurs dynamiques dans la logique épistémique
reposait sur les annonces publiques (la logique associée est nommée PAL) [Pla07] 7. Cela
correspond à des diffusions de propriétés vraies à tous les agents. Par exemple dans un jeu
vidéo, si un joueur dit “le boss est au milieu attention !”, tous les joueurs sauront main-
tenant que le boss est au milieu. Dans ce cas, si le boss est également considéré comme

6. En fait, le Chapitre 6 donne une réduction vers la logique du premier ordre, ce qui permet également
d’utiliser les ROBDDs par la suite.

7. Le papier cité est une réédition de 2007 d’un papier de 1989.
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un agent, nous pouvons considérer que le boss sait maintenant que les joueurs savent sa
position, donc il peut agir en conséquence en se cachant par exemple.

La logique épistémique dynamique comme référéee dans le reste du document (ap-
pelée DEL) étend PAL en considérant des événements plus riches (annonces privées par
exemple), l’article fondateur étant [BMS98]. Un événement est maintenant représenté par
un graphe, similairement aux modèles de Kripke, et est appelé un modèle d’événement.
Dans ce modèle, chaque noeud est un événement possible et les arcs, étiquetés par des
agents, représentent les événements que les agents imaginent comme possible. Par exem-
ple, dans l’exemple du boss, le modèle d’événement pour “il y a une annonce que le boss
n’entend pas” contiendrait deux événements : l’événement “annoncer que le boss est au
milieu” et l’événement “rien n’est dit”, et le boss penserait que le deuxième événement est
celui exécuté. De plus, les événements peuvent modifier le monde (on dit alors qu’ils sont
ontiques). Par exemple, jouer une carte est un événement ontique, car la carte n’est plus
dans la main du joueur qui l’a jouée. La logique DEL étend alors la logique épistémique
avec l’opérateur “après l’exécution du modèle d’événement E . . . ”.

Comme pour la logique épistémique, on peut définir les problèmes de vérification de
modèles et de satisfiabilité pour DEL. Il est déjà prouvé que sans connaissance commune,
le problème de vérification de modèles est Pspace-complet et le problème de satisfiabilité
est NExptime-complet [AS13]. Toutefois, ce résultat n’est pas pour DEL en soi mais
pour une variante légèrement plus riche où les modèles d’événement sont multi-pointés.
Cela signifie que lorsque l’on applique un modèle d’événement, le choix de l’événement
appliqué dans le monde courant est non déterministe. Par exemple le modèle d’événement
“lancer un dé” aurait six événements pointés, un pour chaque valeur possible. En réalité,
l’article [HP18] prouve que le problème de vérification de modèles est Pspace-dur pour
des modèles d’événement multi-pointés, S5, non-ontiques, et avec deux agents.

Pour plus d’information sur la logique épistémique dynamique, le lecteur peut se référer
à [BMS98], qui est le livre de référence sur DEL. Comme cité aupravant, le livre [Dit+15]
traite également de DEL.

Pour citer des variantes de DEL, il existe la variante probabiliste de PAL [Koo03],
ainsi que la logique épistémique dynamique temporelle [RSY09] qui étend DEL avec
des opérateurs temporels. De plus, il a été prouvé récemment que la logique de descrip-
tion de jeux III (GDL-III [Thi16]), une logique pour exprimer des jeux avec des aspects
épistémiques, est aussi expressive que DEL [Eng+18].
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Planification épistémique La planification est un domaine en intelligence artificielle
où le problème de décision habituel est, donnés une situation initiale, des actions et un
but, de déterminer si l’on peut trouver une séquence de ces actions pour atteindre le but.

La forme la plus connue de la planification est appelée la planification classique, en
particulier le langage de résolution de problème de Stanford Research Institute (STRIPS
[FN71]). Dans STRIPS, la situation initiale est représentée par une valuation, les actions
ont seulement des préconditions/effets propositionnels et le but est une formule proposi-
tionnelle. Une vaste littérature existe à ce sujet, et un langage de spécification commun a
été défini pour les planificateurs, appelé langage de description de domaine de planification
(PDDL [McD+98]).

Ici, on s’intéresse à la planification épistémique. Cela signifie que les problèmes de plan-
ification doivent prendre en compte des aspects épistémiques. La planification épistémique
est une notion vaste, et a une communauté active. Nous résumons ici le groupe de discus-
sion du séminaire Dagstuhl sur les méthodes pour la planification épistémique ([Bar+17]
Section 4.4) que j’ai coordonné. Nous laissons de côté les aspects mono-agents.

La planification épistémique considérée dans le document est celle basée sur DEL. Cela
signifie que nous considérons en entrée un modèle de Kripke, des modèles d’événements
pour les actions, et une formule épistémique pour le but. Malheureusement, la planification
épistémique basée sur DEL est indécidable dans le cas général [AB13], y compris lorsqu’il
n’y a pas de connaissance d’ordre supérieur dans les formules des modèles d’événement.
[BA11]. Néanmoins, quand les modèles d’événement ont seulement des formules propo-
sitionnelles, la planification épistémique devient décidable [YWL13] (plus précisément
non-élémentaire [DPS18]). En outre, lorsque les modèles d’événements sont proposition-
nels et non-ontiques, il a été prouvé que la planification épistémique est dans Expspace
[BJS15]. Nous prouvons en réalité dans [CMS16] que la planification épistémique est
Pspace-complète dans ce cas, et expliquerons ce résultat en détail dans le Chapitre 4.

Pour contourner le problème de complexité, d’autres approches ont été considérées
pour la planification épistémique basée sur DEL. Elles utilisent principalement des com-
pilations syntaxiques vers la planification classique, utilisant en général PDDL. Le point
commun de ces approches est que l’expressivité est restreinte afin d’être applicable. Le tra-
vail de [Mui+15] considère par exemple des modèles d’événement avec un seul événement
et des effets conditionnels, ce qui produit une traduction exponentielle vers la planification
classique. Dans [KG15], les auteurs considèrent des annonces publiques, des affectations
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publiques et des annonces semi-privées 8, et ont une réduction polynomiale à la planifi-
cation classique 9 . Dans [Coo+16], les auteurs considèrent les variables Sip pour décrire
les modèles.

D’autres approches existent pour résoudre la planification épistémique qui ne se basent
pas sur DEL. Par exemple, il est possible de faire de la planification épistémique en éten-
dant la logique temporelle alternante (ATL [AHK02]) avec des opérateurs épistémiques
(AETL). ATL est elle même une extension de CTL [BK08] avec des modalités dynamiques
pour exprimer l’existence de stratégies dans les jeux. Avec cette modélisation, on peut
exprimer qu’un groupe d’agents a une stratégie pour atteindre une formule ϕ, ce qui cor-
respond bien à la planification quand il n’y a pas d’adversaire. Cela permet d’exprimer
également des propriétés plus fortes que juste la planification, comme l’existence de straté-
gies gagnantes par exemple. Le vérificateur MCMAS [LQR17] permet de résoudre AETL,
mais a de fortes limitations : les modèles sont nécessairement S5, et la connaissance n’a
pas de rappel parfait (puisque sinon cela devient indécidable [DT11]), ce qui signifie que
les agents oublient une partie de l’historique des actions. En particulier, on ne peut pas
exprimer la planification épistémique basée sur DEL ainsi, puisqu’elle a intrinsèquement
un rappel parfait. De plus, le modèle doit être régulier (décrit par un automate à états
finis), ce qui n’est pas toujours le cas pour DEL.

Il est également possible d’exprimer la planification épistémique en utilisant des tech-
niques par automate pour utiliser la vérification de modèles de CTL∗Kn [BMP15]. Cela
est possible par exemple lorsque les modèles sont propositionnels [AMP14a; DPS18]. Mal-
heureusement, cette approche ne va pas plus loin.

D’autres techniques existent mais sont trop éloignées par rapport à la planification
épistémique considérée dans ce document. Le lecteur peut se référer à [Bar+17] pour plus
d’information, puisque cet article sonde les techniques existantes pour la planification
épistémique.

Annonces publiques arbitraires A cause de l’indécidabilité de la planification épistémique,
nous étudions une classe plus restreinte de modèles d’événements. Des extensions de PAL
existent pour exprimer l’existence d’une annonce publique. La logique correspondante est
APAL [Bal+08], l’extension de PAL avec l’opérateur d’existence d’annonce (appelé an-

8. Annonce à un groupe d’agents d’une formule ϕ, les autres agents sachant que ϕ ou ¬ϕ a été annoncée
sans savoir la valeur.

9. Ce qui n’est pas surprenant, dans le Chapitre 4 nous prouvons que leur article s’exprime en plani-
fication épistémique avec des événements séparables.
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nonce arbitraire). Une autre variante a été considérée : la logique d’annonce de groupe
[Ågo+10] (GAL), où l’on ne quantifie pas sur toutes les annonces possibles mais seulement
sur celles qui peuvent être faites par un certain groupe d’agents.

Malheureusement, les problèmes de satisfiabilité pour APAL et GAL sont indécidables
[FD08; Ågo+10]. Ce n’est pas un problème si l’on veut voir APAL comme une autre façon
de faire de la planification épistémique, comme le modèle de Kripke est donné en entrée.

Toutefois, APAL et GAL sont loin de la planification épistémique basée sur DEL,
comme ils permettent seulement d’exprimer des annonces publiques, et ne permettent
pas d’exprimer l’existence d’une séquence d’annonces.

Contribution

Dans ce document, nous étudions les problèmes de décision pour la logique épistémique
dynamique mentionnés précédemment : la vérification de modèles et la satisfiabilité.
Nous étudions également le problème de planification épistémique basé sur la logique
épistémique dynamique, et des extensions de la logique épistémique avec quantification
sur les annonces publiques. Enfin, nous définissons une représentation symbolique des
modèles de Kripke et des modèles d’événements, et étudions son impact sur l’expressivité
et sur la complexité algorithmique. Tout au long du document, nous donnons des exem-
ples de jeux et de puzzles car ils sont intuitifs et mettent en jeu les problèmes que nous
souhaitons discuter, comme par exemple l’interaction entre les agents. Nous décrivons
maintenant la contribution de la thèse et le contenu de chaque chapitre de la partie en
anglais.

• Le Chapitre 1 définit la syntaxe et la sémantique de la logique épistémique dy-
namique (DEL). Nous définissons d’abord la logique épistémique, avec la notion de
connaissance commune, et introduisons après les opérateurs dynamiques, définis par
les modèles d’événement. Nous rappelons également quelques axiomes définissant les
classes de modèles usuelles. En particulier, nous définissons S5 pour les modèles pour
la connaissance et KD45 pour les modèles pour la croyance. Nous prouvons ensuite
des résultats d’expressivité pour DEL : toute formule de DEL avec des modèles
d’événement sans connaissance commune peut être exprimée en une formule équiv-
alente où tous les modèles d’événements ont des formules sans connaissance d’ordre
supérieur.
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• Le Chapitre 2 définit les problèmes de vérification de modèles et de satisfiabilité
pour DEL avec connaissance commune (DELCK). Nous étendons les résultats de
[AS13] pour DELCK en prouvant que le problème de vérification de modèles est
Pspace-complet (tout comme DEL) et le problème de satisfiabilité est 2-Exptime-
complet (alors qu’il est NExptime-complet pour DEL). Toutes les preuves utilisent
les classes de complexité alternantes, définies par des algorithmes/machines de Tur-
ing enrichis par des choix existentiels et universels. En effet, comme rappelé en
Annexe A, ces classes sont directement corrélées avec les classes de complexité clas-
siques et permettent d’exprimer très intuitivement les complexités des problèmes
de décision. Nous appliquons le résultat de vérification de modèles pour exprimer
l’existence d’une stratégie uniforme dans le jeu du morpion fantôme, c’est à dire le
morpion où les joueurs ne voient pas directement les coups de l’adversaire.

• Le Chapitre 3 introduit les représentations symboliques des modèles de Kripke et
des modèles d’événements, en utilisant des programmes de DL-PA. Nous montrons
que nous ne perdons pas en expressivité en introduisant ces modèles symboliques
et que la représentation est exponentiellement plus succincte dans les cas usuels.
Ensuite, nous montrons que les complexités pour les problèmes de vérification de
modèles et de satisfiabilité restent les mêmes que dans le cas non symbolique. Nous
appliquons le résultat pour montrer que l’existence de stratégies uniformes dans le
jeu de bridge peut se décider avec un algorithme Pspace.

• Le Chapitre 4 est dédié à la planification épistémique. Nous prouvons en pre-
mier des résultats de décidabilité lorsque les modèles sont séparables, c’est à dire
que les préconditions des événements sont disjointes. Dans ce cas, la planifica-
tion épistémique est NP-complète si les événements sont non-ontiques et Pspace-
complète sinon. Nous prouvons ensuite que la planification épistémique est Pspace-
complète lorsque tous les modèles d’événement en entrée sont propositionnels (mais
pas forcément séparables). Enfin, nous montrons que la planification épistémique
est indécidable lorsque les modèles d’événement en entrée sont non-ontiques et ont
des préconditions avec des formules de profondeur modale 2.

• Le Chapitre 5 considère le problème de vérification de modèle pour APAL et
GAL, introduisant une logique qui étend les deux, nommée la logique de protocoles
d’annonces publiques (PAPL). Cette logique considère des protocoles d’annonce qui
combinent des annonces publiques et des annonces arbitraires via des programmes
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Table 1: Publications durant ma thèse.

similaires à ceux de PDL, ce qui permet d’étendre la planification épistémique dans
le cas où toutes les actions sont des annonces publiques. Nous prouvons que le prob-
lème de vérification de modèles symboliques pour PAPL est ApolExptime-complet
(voir Annexe A), qui est une classe entre Exptime et Expspace. Ce résultat de
complexité est différent du cas non symbolique, qui est Pspace-complet.

• Le Chapitre 6 décrit une réduction depuis le problème de vérification de modèles
symboliques vers la vérification de modèles de MMSO : la logique du second-ordre
monadique où tous les prédicats sont monadiques. Nous considérons le fragment
existentiel de PAPL et montrons que nous pouvons implémenter la vérification de
modèles sur ce fragment en utilisant la logique du premier ordre monadique (MFO).
Nous détaillons ensuite des résultats expérimentaux en utilisant le solveur du pre-
mier ordre Iprover [Kor08].

La Table 1 résume les publications réalisées pendant ma thèse et les parties concernées
du document.
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Introduction

Context

The concept of multi-agent system is commonly accepted as a representation of many
examples of real-life systems where autonomous entities, the agents, act according to
their knowledge of the actual world in order to achieve individual or collective goals.

Let us consider examples of multi-agent systems.

• In multi-robot systems, the agents are robots that gather knowledge from the envi-
ronment they perceive with their sensors and from the information obtained via com-
munication channels [Lem+14]. They also need to take into account other agents,
in particular human agents, to fulfill their objectives. For instance, Lemaignan et al.
[Lem+10] give an example of knowledge management in multi-robot systems to take
into account interactions with a human agent. Their system contains a notion of
knowledge base the robot has about the environment. The field of distributed intelli-
gence is dedicated precisely to this matter, having direct applications in multi-robot
systems [Par08].

• In security, the agents are the attacker and the owner of a system. For instance in web
security [PKS16], the owner wants the attacker to have the least possible knowledge.
Indeed, if the attacker obtains information about the system, he may be able to
compromise it, for instance in privilege escalation attacks. Also in cryptography
[MOV96], the owner usually wants to ensure that the transmitted information is
not decrypted by the attacker. Indeed, the information can be easily intercepted by
the attacker, but if he does not own the encryption key, he cannot find the content of
the message. We may also mention here attack detection, usually done with attack-
defense trees [Kor+11], where for instance the attacker wants to access some hidden
resource in a building (a document typically), and has to infiltrate the building
without being seen. In this case, it is quite the contrary of the web security example.
Indeed, the attacker is the one who wants to leak the least possible information, and
the defender must gain knowledge of the attacker’s whereabouts.
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• In board games, like card games, Battleship, Clue, etc., the agents are the players.
For instance in classical card games, the hand of a player is the only information
he perceives at first. When the game goes on, the agents also acquire additional
knowledge by other players’ statements and actions. There exists a variety of board
games that are relevant because they cover the spectrum of possible interactions be-
tween players. For instance in Hanabi 10, there is a heavy focus on mutual knowledge
between agents, because a player only sees the hands of the other players, and the
players must collaborate to collectively earn a maximum of points. Tragedy Looper
11 also features a notion of collaboration, but the players act together against an iso-
lated player, the mastermind. Indeed, in this game, the players have an incomplete
view about the scenario, and have to ensure that they do not let the mastermind
trigger a defeat condition. They can play the scenario several times (in the game
by a time travel mechanic) and collaborate to gain knowledge about the content
of the scenario. The mastermind, on the other side, must ensure that the players
always trigger a defeat condition and gain as little knowledge as possible. Finally, a
lot of communication games exist, like the werewolf game, where all players have a
hidden role and can be either a werewolf or a villager. The villagers must find the
werewolves during the day phase and the werewolves must eat the villagers during
the night phase. In this game, the knowledge is obtained by interactions between
players but also by information roles, like the fortune teller who can see a role each
turn.

• In video games, the agents are the players and the non-playable characters (NPC).
The NPCs may have limited knowledge and capacities of reasoning, but it is rel-
evant to consider the game as a multi-agent system when the NPCs interact with
the players. For instance, in many massively multi-player online role-playing games
(MMORPGs), the bosses have a threat mechanism that allows them to attack the
player that represents the biggest threat. Also, there exist more sophisticated be-
haviors for NPCs, as the notorious boss Dark Link from the game “The Legend of
Zelda: Ocarina of Time”12. His health scales to the player’s and he has a AI that
adapts to the way the player is attacking. For instance, if the player only does basic
sword attacks, Dark Link will mainly block attacks.

10. Created by Antoine Bauza in 2010, edited by Cocktail Games and XII Singes.
11. Created by Bakafire in 2014, edited by Z-Man Games and BakaFire Party.
12. Edited by Nintendo.
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In all these examples, the notion of knowledge is central, in particular nested knowledge
i.e. knowledge agents have about the knowledge of other agents. Indeed, nested knowledge
represents the way agents reason about the reasoning of other agents. It is central in many
examples cited above, as in security where each agent needs to reason about the other
agent’s knowledge, or card games in order to design meaningful strategies. Furthermore,
dynamics is also important, since agents communicate and act on a system. Some examples
of dynamic actions are sending a message, opening a door, moving an object, playing a
card, casting a spell in a video game, etc. Therefore, we aim at expressing the actions of
agents in a multi-agent system.

Through the manuscript, we focus on the verification of properties involving knowledge
in multi-agent systems. We need to express knowledge and dynamic actions, therefore we
choose to use dynamic epistemic logic featuring both. It is an extension of epistemic logic
with dynamic operators. We study the verification problem, calledmodel checking and also
the existence of a model, called the satisfiability problem, and their symbolic counterparts.
We also go further by studying strategic variants of dynamic epistemic logic, like epistemic
planning or arbitrary actions.

Notions introduced in the manuscript

Epistemic logic In this manuscript, we advocate for the use of logic to express prop-
erties in multi-agent systems. Indeed, logic provides a clear specification language, and is
handy to define verification procedures, since its clear definition allows to write verification
algorithms.

We consider epistemic logic as introduced by Hintikka [Hin65]. It extends propositional
logic with knowledge operators, such as Ka for “Agent a knows that”. All considered
variables will be boolean, meaning that the only two values are true (>) or false (⊥).
We can express every variable on a finite domain, as bounded integers, by using several
variables. We cannot express infinite domains though, as rational or real numbers.

The operator Ka is called a modality. Indeed, epistemic logic is a special type of modal
logic (read for instance [BBW06] for more information about modal logic) where the only
modalities are Ka. The main difference between propositional logic and modal logic is
the interpretation of formulas. As a propositional formula (also called boolean formula)
is evaluated over interpretations for variables (called valuations), modal formulas are
evaluated over so-called Kripke models. Such models can be seen as graphs where each
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node (called a world) has a valuation and represent a possible setting, for instance which
cards players own in a card game. The edges represent which worlds agents imagine as
possible, so that Ka is interpreted as “for all worlds imagined as possible by Agent a,
. . . ”. Multi-agent systems are then represented by Kripke models and the properties are
formulas in epistemic logic.

For more information about epistemic logic, the reader may refer to any the books
[Fag+95; MV04] that browse classical works about epistemic logic, or the survey [vV02].
More recently, the book [Dit+15] also covers epistemic logic and many of its extensions.

However epistemic logic has some limitations. Indeed, agents are supposed to be ra-
tional and to have a perfect knowledge of the Kripke model. Some extensions of epistemic
logic exist to solve these issues. For instance, the paper [FH87] introduces an extension
of epistemic logic where agents may be unaware of the existence of atomic propositions,
and have limited capacities of reasoning, meaning that they cannot deduce all logical va-
lidities. Also, epistemic logic does not focus on why the agents know a fact. Justification
logic [Art08] is a way of defining a justification of their knowledge when agents know a
fact. To cite a more recent work, the paper [SW18] proposes a logic where agents’ names
are not known by all agents, making a distinction between “knowing that a committed
a crime and not knowing his name” and “knowing that an agent named a committed a
crime without knowing who he is”.

In the manuscript, we do not consider all these extensions to keep a simple logic and
stick to the usual definition of epistemic logic.

Common knowledge Common knowledge has been first defined formally in [Aum76].
A formula is common knowledge if it is true in every possible world. It can be defined as
an infinite conjunction of formulas of the form “everyone knows that everyone knows that
. . . ” which is an equivalent definition.

The notion of common knowledge in epistemic logic is very close to the AG operator
in CTL (see [BK08] for more information about temporal logics). Both operators can be
seen as fixpoint operators as seen in the µ-calculus [Pra81].

In the manuscript, all the chapters, except Chapter 4, allow the common knowledge
operator in the logic.

Model checking and satisfiability When a logic is defined, it is common to study
its computational properties. Here, we take a similar approach to [HV91] by defining the
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verification problem called the model checking problem. It takes as input a Kripke model
and a formula and verifies whether the formula is true in the current model. We prove in
Appendix C that the model checking problem for epistemic logic with common knowledge
is in P, which is very similar to the proof for the model checking of CTL. For a reminder
on computational complexity, the reader may refer to Appendix A.

Another classical problem is to check the satisfiability of a formula, meaning finding a
Kripke model satisfying a formula. In fact, the satisfiability problem is dual to the theorem
proving problem, since a formula ϕ is valid if and only if ¬ϕ is not satisfiable. For epistemic
logic, the satisfiability without common knowledge is known to be Pspace-complete, for
at least two agents and for S5 models 13 [HM92].

It is also common to define the axiomatization of the logic. It consists in a set of axioms
and rules that illustrate how to construct provable formulas (see [Fag+95] for epistemic
logic). We establish whether it is sound (any provable formula is valid) and complete (any
valid formula is provable). When a sound and complete axiomatization is provided, it
may lead to a theorem proving algorithm, that checks the validity of the formula using
the axiomatization. The main difference with model checking is that we prove the validity
of a formula instead of verifying it in a given model. Therefore, if we would like to use
theorem proving to verify a formula ϕ in a model, we would need to characterize the
model by a formula ϕM and prove the validity of ϕM → ϕ. Theorem proving is dual to
satisfiability, so in fact model checking is a simpler problem. That is why we do not use
theorem proving instead of model checking because it would be a sledgehammer.

Symbolic models When we want to use model checking and satisfiability approaches
in practice, we have to deal with combinatorial explosion in the size of Kripke models.
For instance in card games, when there is k players and n cards, the number of atomic
propositions is usually k×n. If we consider a classical tarot card game with 5 players, the
number of possible worlds would be approximately 6 × 1048, which is the same order of
magnitude than the number of atoms in Earth. It thus seems rather unrealistic to define
the input Kripke models explicitly.

For this reason, we propose to use a symbolic representation of the Kripke models, that
avoids defining models completely by hand. Such representations already exist for other
formalisms, such as boolean circuits for searching for Hamiltonian paths in graphs [Pap03].
Usually, a symbolic representation of models consists in describing the input model with

13. I.e. edges in Kripke models are equivalence relations.
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boolean formulas instead of describing it explicitly. For example, the paper [Bur+90] gives
a symbolic representation of models for temporal logics. For symbolic representations, it
is possible to use data structures known as reduced and ordered binary decision diagrams
[DB98] (ROBDDs) to implement symbolic representations.

It may seem surprising to consider model checking procedures with symbolic inputs,
as it looks very similar to theorem proving as mentioned before. Yet, the difference is
that the description of the model (given with ROBDDs, etc.) is not written in the same
language as the formula (e.g. in epistemic logic), so it would not make sense to try to
prove ϕM → ϕ with ϕM the symbolic representation of the Kripke modelM.

For epistemic logic, many symbolic approaches already exist, described in more depth
in Chapter 3. The first approach defines worlds as valuations and agents observe a set
of atomic propositions [HTW11; HIW12; Ågo+13]. In this case, only the set of worlds is
needed, so a Kripke model is only the data of the set of worlds, and for each agent the set of
propositions he observes, the edges being inferred from the observation set. Also the paper
[GGS15] extends this idea sightly by considering agents in a two-dimensional space that
can only see inside a cone in front of them. Finally, [HLM15] considers a representation
of the epistemic relations with “seeing”-variables of the form Sap for “Agent a perceives
the value of p” that may be of higher-order like SaSbp for “Agent a perceives the value of
Sbp”.

Here, we use a symbolic approach using programs of Dynamic Logic with Propositional
Assignments (DL-PA [BHT13]), that are particular programs of Propositional Dynamic
Logic (PDL [FL79]) where atomic programs are propositional assignments. While not
directly boolean formulas, they can be translated into classical boolean formulas so that
BDD techniques may be used 14. The advantage of this approach is that it has the usual
properties of symbolic models: they can express any model, they are succinct, and they
allow for a simple representation of usual examples of epistemic logic.

Dynamics in epistemic logic As highlighted in the epistemic logic paragraph, epis-
temic logic is not sufficient to express the dynamics in models. We consider here the
so-called dynamic epistemic logic. It is an umbrella term for all extensions of epistemic
logic with dynamic operators. The extensions of epistemic logic with dynamics are strongly
inspired from dynamic logic [FL79].

14. Actually, Chapter 6 gives the reduction to first-order formulas, which gives a way to define BDDs
afterwards.
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Originally, the first occurrence of dynamic operators for epistemic logic relied on public
announcements (the logic is called PAL for Public Announcement Logic) [Pla07] 15. It
corresponds to broadcasting true properties to all agents. For instance, in a video game, if
a player says “the boss is in the middle watch out!”, all players will now know that the boss
is in the center. In that case, if the boss is also considered as an agent, we would consider
that the boss also knows that players know his position, so he may act accordingly by
hiding for instance.

The dynamic epistemic logic as referred in the rest of the manuscript (called DEL)
extends PAL by considering richer types of events (private announcements, etc.), the
paper [BMS98] being the milestone. An event is now represented as a graph, alike Kripke
models, and is called event model. In this model, each node is a possible event and the
edges, labeled by agents, represent events agents imagine as possible. For instance, in the
broadcast example, the event model for “There is an announcement not heard by the
boss” would contain two events: the event “Announcing that the boss is in the middle”
and the event “Nothing is said”, and the boss would think that the second event is the
actual one happening. Furthermore, events may modify the world, and usually are called
ontic events when they do. For instance, playing a card modifies the world, because the
card is no longer in the player’s hand. The logic DEL thus extends epistemic logic with
the operator “after applying the event model E ...”.

As for epistemic logic, we can define the model checking and satisfiability problems
for DEL (so without common knowledge). It has been proven that without common
knowledge the model checking problem is Pspace-complete and the satisfiability problem
is NExptime-complete [AS13]. Notice that the result in [AS13] does not hold for dynamic
epistemic logic per se, but for a slightly richer version where event models are multi-
pointed. It simply means that when applying an event model, the choice of the actual event
occurring is non-deterministic. For instance, the event model for “role a dice” would have
6 events, one for each value, and all would be pointed. Actually, in [HP18], it is proven
that the model checking problem is Pspace-hard for non-ontic, multi-pointed S5 event
models with only one agent, or non-ontic, single-pointed S5 event models with two agents.

For more information about dynamic epistemic logic, the reader may refer to [BMS98],
which is the reference book on DEL. As cited before, the book [Dit+15] also covers DEL
to some extent.

To cite variants of DEL, we may cite probabilistic DEL [Koo03] which extends PAL

15. The cited paper is 2007 re-edition of a 1989 paper to our knowledge.
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with probabilities and dynamic epistemic temporal logic [RSY09] that extends DEL with
temporal operators. Also, it has been proven recently that Game Description Logic III
(GDL-III [Thi16]), a logic for expressing games with epistemic aspects, is as expressive
as DEL [Eng+18].

Epistemic planning Planning is a field in Artificial Intelligence where the usual deci-
sion problem is, given an initial situation and actions, find a sequence of actions to reach
the goal.

The well known form of planning is called classical planning, in particular the lan-
guage of the Stanford Research Institute problem solver (STRIPS [FN71]), where the
initial situation is represented with a valuation, the actions only feature propositional
preconditions/effects and the goal is also propositional. A vast literature exists on the
subject, leading to a specification language called Planning Domain Description Lan-
guage (PDDL [McD+98]), that aims at defining a common language for designers and
users of planners.

Here, we are interested in epistemic planning. It means that the planning problems
must consider epistemic aspects. Epistemic planning is a broad notion, and has an active
community. We summarize here the group discussion at Dagstuhl about methods for
epistemic planning ([Bar+17] Section 4.4) that I coordinated. We leave apart the single-
agent approaches.

The way of doing epistemic planning we consider in the manuscript is epistemic plan-
ning based on DEL. It means that we consider as input a Kripke model, event models
for actions, and an epistemic formula as a goal. Unfortunately, epistemic planning based
on DEL is undecidable [AB13], even when there is no nested knowledge in event models’
formulas [BA11]. Yet, when event models only feature propositional formulas, the epis-
temic planning problem is decidable [YWL13], more precisely non-elementary [DPS18].
Furthermore, when all event models feature non-ontic and propositional events, the epis-
temic planning problem has been proven to be in Expspace [BJS15]. Actually, we prove
in [CMS16] that it is Pspace-complete. We will explain this result in detail in Chapter
4.

To circumvent the complexity problem, some other approaches have been considered to
do epistemic planning based on DEL. They mainly revolve around syntactic compilation
to classical planning, usually using PDDL. The common point between the approaches is
the restricted expressivity to be applicable with classical planners. The work of [Mui+15]
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considers event models with one event with additional conditional effects, that leads to
an exponential reduction to classical planning. In [KG15], they consider public announce-
ments, public assignments and semi-private announcements16, and have a polynomial
reduction to classical planning17. In [Coo+16], the authors consider the “seeing”-variables
to describe the models.

Other approaches exist to solve epistemic planning that do not rely on DEL. For
instance, it is possible to do epistemic planning by extending Alternating Temporal Logic
(ATL) [AHK02] with knowledge (AETL). ATL is itself an extension of computation-tree
logic [BK08] with dynamic modalities to express the existence of strategies. With this
model, we can express that a group of agents have a strategy to reach a formula ϕ, which
corresponds to planning. This allows to express stronger properties than just planning,
such as winning strategies for instance. The model checker MCMAS [LQR17] can solve
AETL, but has strong limitations: only S5 models are allowed and the knowledge has
no perfect recall (it is undecidable with perfect recall [DT11]), meaning that each agent
forgets a part of the actions history. In particular, this setting does not express epistemic
planning based on DEL since it is intrinsically perfect recall. Furthermore, the model
must be regular (described by a finite-state automaton), which is not the case for DEL
because the epistemic planning problem would be decidable otherwise.

It is also possible to express epistemic planning using automata techniques to solve the
model checking of CTL∗Kn [BMP15], when it is possible to describe with automata the
infinite structure generated by the event models. It is possible, for instance, when event
models are propositional [AMP14a; DPS18]. Unfortunately, this approach does not work
further.

Other techniques exist but are further from epistemic planning as considered in the
manuscript. The reader can refer to [Bar+17] for more information, since it surveys cur-
rently existing techniques for epistemic planning.

Arbitrary public announcements Because epistemic planning is undecidable, we
study a more restrictive class of event models. Some extensions of PAL already exist
to express the existence of an announcement. The corresponding logic is called APAL
[Bal+08], the extension of PAL with the existential operator (called arbitrary announce-

16. Announcement to a group of agents of the value of a formula ϕ, the other agents being uncertain
of the announced value.
17. Which is not surprising, in Chapter 4 we will see that their paper falls into epistemic planning with

separable events.
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ment). Another variant was considered: Group Announcement Logic [Ågo+10] (GAL),
where we do not quantify on all announcements but only on announcements doable by a
certain group of agents.

Unfortunately, the satisfiability problems of both APAL and GAL are undecidable
[FD08; Ågo+10]. It is not a problem if we want to see APAL as a different way of studying
epistemic planning, since the Kripke model is given in input.

Yet, by themselves, APAL and GAL are pretty far from epistemic planning. They just
express the existence of public announcements once, and do not consider a sequence of
announcements.

Contribution

In this document, we study the mentioned decision problems for dynamic epistemic logic,
namely model checking and satisfiability. We also study the epistemic planning problem
based on dynamic epistemic logic, and extensions of epistemic logic that quantify over
public announcements. Finally, we define a symbolic representation of Kripke models and
event models and study its impact on expressivity and algorithmic complexity. Through
the manuscript, we give games and puzzles as examples since they are intuitive and feature
the matters we wish to discuss, as interaction of knowledge between agents. We now detail
the content of each chapter.

• Chapter 1 defines the syntax and the semantics of Dynamic Epistemic Logic
(DEL). We first define epistemic logic, with the notion of common knowledge, and
then introduce dynamic operators, defined with event models. We also recall some
axioms leading to classical classes of models. In particular, we define S5 models to
talk about knowledge and KD45 to talk about beliefs. We then prove expressivity
results for DEL, namely that for any formula of DEL where event models do not
contain common knowledge, we can define an equivalent formula of DEL where
event model contain no nested knowledge.

• Chapter 2 defines the model checking and satisfiability problems for DEL with
common knowledge (DELCK). We extend the results of [AS13] for DEL by proving
that the model checking problem against DELCK is Pspace-complete (as DEL)
and the satisfiability problem is 2-Exptime-complete (compared to NExptime-
complete for DEL). All proofs strongly rely on alternating complexity classes, de-
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fined by algorithms/Turing machines enriched by existential and universal choices.
Indeed, as explained in Appendix A, such classes are directly correlated with stan-
dard complexity classes and they provide a very intuitive way of establishing com-
plexities of decision problems. We apply our result on the model checking to express
the existence of a uniform strategy in the game blind tic tac toe, which is tic tac
toe where players do not see the moves of their opponents.

• Chapter 3 introduces the symbolic representation of Kripke and event models using
DL-PA-relations. We show that we do not lose any expressivity by introducing the
symbolic models and that the representation is exponentially more succinct. Then,
we show that the model checking and satisfiability problems for DELCK with
symbolic models have the same complexities than the non-symbolic case, Pspace-
complete and 2-Exptime-complete respectively. We apply the result for symbolic
model checking to express the existence of a uniform strategy in the bridge card
game, which shows that with symbolic inputs, expressing the existence of winning
uniform strategies in classical card games is in Pspace.

• Chapter 4 is dedicated to epistemic planning. We first prove decidability results
when event models are separable, i.e. events have disjoint conditions. In that case,
the epistemic planning is NP-complete when all events are non-ontic, and Pspace-
complete when events are ontic. We next prove that epistemic planning is also
Pspace-complete when event models are propositional but not necessarily separable
and all events are non-ontic. Finally, we show that undecidability holds when event
models with modal depth 2 are allowed and non-ontic events.

• Chapter 5 considers symbolic model checking of APAL and GAL, introducing
a unifying logic called Public Announcement Protocol Logic (PAPL). This logic
features announcement protocols that combine public announcements and arbitrary
announcements in a PDL fashion, which allows to extend epistemic planning in the
case where events are announcements. We show that the symbolic model checking
for PAPL is ApolExptime-complete (see Appendix A), which is a class between
Exptime and Expspace. The complexity result is noticeably different from the
Pspace-completeness of the model checking of PAPL in the non-symbolic case.

• Chapter 6 describes a reduction from the symbolic model checking of APAL into
the model checking of MMSO: second-order logic where all predicates occurring in
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the formulas considered are monadic, as opposed to MSO where only the predicates
under quantification must be monadic. We exhibit the existential fragment of PAPL
and show how to implement its symbolic model checking with the satisfiability of
Monadic First-Order Logic (MFO). We then give some experimental results using
the first-order solver Iprover [Kor08].

Table 2 summarizes the publications during my PhD and the concerned parts in the
manuscript.
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Chapter 1

Dynamic Epistemic Logic

In this chapter, we describe dynamic epistemic logic (DEL in short). The chapter is
constructed as follows.

• First, we give the definition of DEL to model interactions of knowledge between
agents in a multi-agent system and complex dynamic actions.

• Second, we show that in actions, it is always possible to gather the knowledge
complexity either in the conditions or in the effects. We go even further by showing
also that actions with no nesting of knowledge are sufficient to capture the whole
expressive power of DEL.

• Finally we conclude.

The expressivity results are the contribution of this chapter, and have not been pub-
lished yet.

1.1 Background on DEL

We define epistemic logic (without dynamic actions) and then introduce dynamic epis-
temic logic.

1.1.1 Epistemic logic

Syntax

We consider a countable set of atomic propositions AP and a finite set of agents Ag.
The syntax of the language of epistemic logic (ELCK), denoted by LELCK, is defined as
follows.

Definition 1 (Syntax of epistemic logic). LELCK is defined by the following grammar.
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Operator Intuitive meaning
> True.
p Atomic proposition p is true.
¬ϕ Formula ϕ is false.
ϕ ∨ ψ Formula ϕ or formula ψ is true.
Kaϕ Agent a knows that ϕ is true.
CGϕ ϕ is common knowledge among the agents of G.

Table 1.1: Intuitive meaning of the operators of LELCK.

Abbreviation Meaning
⊥ ¬>

(ϕ1 ∧ ϕ2) ¬(¬ϕ1 ∨ ¬ϕ2)
ϕ1 → ϕ2 ¬ϕ1 ∨ ϕ2
ϕ1 ↔ ϕ2 (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)
K̂aϕ ¬Ka¬ϕ
ĈGϕ ¬CG¬ϕ

Table 1.2: Abbreviations for ELCK.

ϕ ::= > | p | ¬ϕ | (ϕ ∨ ϕ) | Kaϕ | CGϕ

with p ∈ AP, a ∈ Ag, G ⊆ Ag.

Intuitive meaning of the operators of LELCK are given in Table 1.1. Other operators
appearing afterwards are defined in Table 1.2, either with the De Morgan’s law or by
duality.

Epistemic logic without the common knowledge operator (CG) is noted EL and its
language LEL.

Example 1. Formula “Ka(Kbp ∨Kcp)” reads “Agent a knows that either Agent b knows
p or Agent c knows p”.

Semantics

We know define the semantics of ELCK. A multi-agent system is formalized by a Kripke
model, defined as follows.

Definition 2. A Kripke modelM = (W, (Ra)a∈Ag, V ) is defined by a non-empty set W of
epistemic worlds, epistemic relations Ra ⊆ W ×W for all agents a ∈ Ag, and a valuation
function V : W → 2AP.
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w : {p} u : ∅
a, b

a, b a, b

Figure 1.1: A simple Kripke model.

We write RMa for the epistemic relation for agent a in modelM. We may also write
w

a−→M u for (w, u) ∈ RMa or w a−→ u when M is clear. Later on, if we need to define a
Kripke model but do not need to use W , Ra or V outside of the definition, we may write
the tuple (W, (Ra)a∈Ag, V ) even if the names are already used.

A pair (M, w) is called a pointed Kripke model, where w denotes the real world, the
other worlds being only imagined as possible by the agents.

Intuitively, a world represents a possible configuration, and the Kripke model repre-
sents all possible configurations agents imagine as possible. The epistemic relations Ra

represent the agents’ capacities of reasoning. We have w a−→ u if Agent a thinks that u
may be the real world when the real world is actually w.

Example 2. Figure 1.1 shows a simple Kripke modelM = (W,Ra, Rb, V ) with AP = {p},
Ag = {a, b} and:

• W = {w, u};

• Ra = Rb = W ×W ;

• V (w) = {p}; V (u) = ∅.

Worlds in Kripke models are drawn with ellipses. Inside each ellipse, the label corre-
sponds to the name of the world followed by a colon and its valuation. The edges represent
the relations Ra and Rb: there is an a-edge from w to u if and only if (w, u) ∈ Ra. If an
edge goes both ways, we do not draw the arrow but just a line instead (as between w and
u in Figure 1.1). The pointed world is represented by an incoming edge coming from no
world. For instance Example 1.1 represents the pointed Kripke model (M, w).

When each valuation is unique in the Kripke model, we may name a world by its
valuation. For instance in the previous example, world w would be world {p} and world
u would be world ∅. In this case, we do not include the name of the world in the ellipse
as in Figure 1.2.
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{ma,mb} {mb}

{ma} ∅

a

a

b b

a, b

a, b

a, b

a, b

Figure 1.2: The Kripke model for the muddy children puzzle for two children a, b.

Example 3 (Muddy children [McC87; DK15]). We now model the famous muddy children
puzzle. In this puzzle, n children are playing in a garden, and some of them become muddy.
They are supposed clever and honest. Their father comes and say “At least one of you
is muddy”. They do not see whether they are muddy or not, but see the other children
muddiness. The father then asks several times “Does any one of you know whether he is
muddy?”. The puzzle consists in determining how many times the father needs to ask the
question before any of the children answers “I know that I am muddy” or “I know that I
am not muddy”.

We leave aside the answer for now and only model the initial situation. The initial
situation is modeled by the Kripke model of Figure 1.2 in the case of 2 agents, and is
modeled in general by the Kripke modelM = (W, {Ra}a∈Ag, V ) with Ag the set of children,
AP = {ma, a ∈ Ag} and:

• W = 2AP

• Ra = {(w, u) | w \ {ma} = u \ {ma}};

• V (w) = w.

We now give the semantics of ELCK on Kripke models.

Definition 3 (Semantics of ELCK). The semantics of ELCK is defined on a pointed
Kripke model. We note M, w |= ϕ for “Formula ϕ is true in the pointed Kripke model
(M, w)”. It is defined by induction on ϕ as follows.

• M, w |= >;

• M, w |= p if p ∈ V (w);
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• M, w |= ¬ϕ ifM, w 6|= ϕ;

• M, w |= (ϕ ∨ ψ) ifM, w |= ϕ orM, w |= ψ;

• M, w |= Kaϕ if for all u ∈ W, (w, u) ∈ Ra impliesM, u |= ϕ;

• M, w |= CGϕ if for all u ∈ W, (w, u) ∈ RG implies M, u |= ϕ where RG is the
transitive closure of ⋃a∈GRa.

Example 4. We consider again the Kripke model of Figure 1.1. Let ϕ = C{a,b}¬Kap. If
we want to check whetherM, w |= ϕ, we first compute the set of worlds satisfying p. Here,
there is only w. For Kap, we verify that all worlds a-accessible satisfy p, which is the case
for no world here. Then both w and u satisfy ¬Kap. Finally for ϕ, we must check that
all worlds that are accessible by a combination of a and b satisfy ¬Kap, so both w and u
satisfy ϕ.

Axioms and Types of Kripke models

In the rest of the manuscript, we will refer to types of Kripke models, as S5, KD45, K.
They correspond to Kripke models where a certain set of axioms is true. Such axioms
are summarized in Table 1.3. The models we are going to work on are described in the
following definition.

Definition 4 (K, KD45 and S5). The classes of models K, KD45 and S5 are defined in
the following way.

• K is the set of Kripke models satisfying the axiom K. It corresponds to all Kripke
models.

• KD45 is the set of Kripke models satisfying the axioms K, D, 4 and 5.

• S5 is the set of Kripke models satisfying the axioms K, T, 4 and 5.

Other axioms and types of Kripke models exist, but we omit them here since they are
not used later.

The usual class of Kripke models considered in the literature are S5 models. They
correspond to models where the epistemic relations are equivalence relations and thus
represent knowledge. On the contrary, KD45 models usually represent belief, because in
particular the current world is not always considered as possible by the agents.
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Axiom Condition on Kripke models Drawing of the condition
K Ka(ϕ1 → ϕ2) →

(Kaϕ1 → Kaϕ2)
None

T Kaϕ→ ϕ
Reflexivity: for all w, (w,w) ∈
Ra

w a

D Kaϕ→ K̂aϕ
Serial: for all w, there exists u
such that (w, u) ∈ Ra

w ⇒ w u
a

4 Kaϕ→ KaKaϕ
Transitivity: for all w, u, v,
(w, u) ∈ Ra and (u, v) ∈ Ra

implies (w, v) ∈ Ra

w u v
a a

⇒ w u v
a a

a

5 K̂aϕ→ KaK̂aϕ
Euclidean: for all w, u, v,
(w, u) ∈ Ra and (w, v) ∈ Ra

implies (u, v) ∈ Ra

w
u

v

a

a
⇒ w

u

v

a

a
a

Table 1.3: Axioms for epistemic logic

Example 5. Both Kripke models of Figures 1.1 and 1.2 are S5 models.

For more information about axioms and epistemic logic, the reader may refer for
instance to [MV04].

1.1.2 Dynamic Epistemic Logic

Dynamic Epistemic Logic (DELCK), initially proposed in [BMS98], extends epistemic
logic by adding a new operator. The book [DHK07] published later on is an extensive
reference on DELCK, so the reader may feel free to browse this book for more information
about DELCK. For a more recent reference with additional extensions of epistemic logic,
the reader may refer to [Dit+15].

Its language LDELCK is defined in the following way.

Definition 5 (Syntax of DEL). LDELCK is defined by the following grammar.

ϕ ::= > | p | ¬ϕ | (ϕ ∨ ϕ) | Kaϕ | CGϕ | 〈E ,E0〉ϕ

with p ∈ AP, a ∈ Ag, G ⊆ Ag.

The language without the CG operator is written LDEL and the logic DEL. The
operator 〈E ,E0〉ϕ is read “After the execution of the multi-pointed event model (E ,E0), ϕ
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e : pre : p
post : p← ⊥ f : pre : >

post : /
b

a a, b

Figure 1.3: Example of an event model

is true”. We define its dual [E ,E0]ϕ = ¬〈E ,E0〉¬ϕ. Event models are a semantic object that
appear in the syntax of DELCK. The main reason is that DELCK aims at reasoning
about knowledge when the actions are fixed. Therefore, we need the event models to be
fixed in the formula. It is possible to only consider the 〈E ,E0〉 operator as a symbol that
is interpreted in the semantics, but it is not done this way in the literature, and changes
decision problems later on, in particular the satisfiability problem where the event models
are fixed in the input. Event models are defined as follows.

Definition 6 (Event model). An event model E = (E, (REa)a∈Ag, pre, post) is defined by a
non-empty set of events E, epistemic relations (REa)a∈Ag ⊆ E× E, a precondition function
pre : E→ LELCK and a postcondition function post : E× AP → LELCK.

An event model is similar to a Kripke model but epistemic worlds are now replaced
by events labeled by a precondition and a postcondition. The precondition pre(e) of an
event e is the necessary condition to execute the event. An event e is said executable in
a world w if and only if its precondition pre(e) holds in w. The postcondition post(e, p)
represents the effect the event has on atomic proposition p, meaning whether p is now >
or ⊥. Events can be seen as PDDL [McD+98] actions where formulas in preconditions
and postconditions/effects can be any formula of ELCK instead of propositional. As for
Kripke models, if outside definitions we do not use the content of the tuple, we may write
event models with the tuple (E, (REa)a∈Ag, pre, post) even if the names are already used.
We may write e ∈ E for e ∈ E.

A pair (E , e) with e ∈ E is called a pointed event model, where e represents the actual
event. A pair (E ,E0) with E0 ⊆ E is called a multi-pointed event model, where E0 represents
the set of possible actual events. Pointed event models correspond to deterministic actions
and multi-pointed event models correspond to non-deterministic actions. We may confuse
(E , e) and (E , {e}) as they are equivalent.
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pre : ∨
a∈Ag ma

post : /

Ag

pre : ∧
a∈Ag ¬(Kama ∨Ka¬ma)

post : /

Ag

a. b.

Figure 1.4: Event models in the muddy children puzzle

Example 6. Figure 1.3 shows an example of a pointed event model (E , e) with E =
(E, (REa)a∈Ag, pre, post), Ag = {a, b}, AP = {p} and:

• E = {e, f};

• Ra = {(e, e), (f, f)}; Rb = {(e, f), (f, f)};

• pre(e) = p; pre(f) = >;

• post(e, p) = ⊥; post(f, p) = p

It has two events e and f . Event e is executable only when p is true and assigns p
to false. Event f is always executable and does not perform any assignment. Agent a has
exact knowledge of the event and agent b always thinks that the actual event is f .

By convention, we draw the events of event models with rectangles (whereas worlds in
Kripke models are ellipses). In each rectangle, the name of the event is written followed by
the precondition and the postcondition. For the postconditions, all atomic propositions not
mentioned in the figure are assigned to their previous value. For instance, post(f, p) = p.
In this case, we say that the postcondition of f is trivial for p. If the postcondition of an
event f is trivial for all atoms of AP, we simply say that the postcondition of f is trivial
and represent the postcondition with a bar (/) in the figures.

Example 7. In the muddy children example, two types of event models are relevant.

• The announcement by the father, represented in Figure 1.4.a, is an event model with
one event whose precondition is true if and only if at least one of the children is
muddy and whose postcondition is trivial.
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(w, e) : ∅ (w, f) : {p}

(u, f) : ∅

b

b

a

a, b

a, b

a, b

Figure 1.5: Example of the product of the Kripke model of Figure 1.1 page 37 and the
event model of the Figure 1.3 page 41.

• The fact that children do not speak after the question of the father is also modeled by
an announcement, represented in Figure 1.4.b. The event model also has only one
event with a trivial postcondition and the precondition is no child knows whether he
is muddy.

Both event models are public announcements, that will be central in Chapters 5 and
6. They are event models with only one event with a trivial postcondition. If the postcon-
dition is not trivial, we usually called such an event model a public action.

The effect an event model has on a Kripke model is characterized by the synchronous
product operation, also called product update.

Definition 7. LetM = (W, (Ra)a∈Ag, V ) be a Kripke model. Let E = (E, (REa)a∈Ag, pre, post)
be an event model. The product ofM and E isM⊗E = (W ′, (Ra)′, V ′) where:

• W ′ = {(w, e) ∈ W × E | M, w |= pre(e)};

• ((w, e), (w′, e′)) ∈ R′a iff (w,w′) ∈ Ra and (e, e′) ∈ REa ;

• V ′((w, e)) = {p ∈ AP | M, w |= post(e, p)}.

Example 8. Figure 1.5 shows the product operation of the Kripke model of Figure 1.1
and the event model of the Figure 1.3.
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{ma,mb} {mb}

{ma}

a
b

a, ba, b

a, b

After the father says that
at least one child is muddy.

{ma,mb}

a, b

After the father asks
the question.

Figure 1.6: Kripke models in the execution of muddy children puzzle with 2 agents a, b.

Example 9. Figure 1.6 shows the effect of the actions drawn in Figure 1.4 on the Kripke
model in 1.2. After the father speaks, the world with valuation ∅ is removed. After the
father asks the question and no child answers, all worlds except the one with valuation
{ma,mb} are removed. In this Kripke model, both children a and b now know that they
are muddy.

In fact, it can be proven that when k children are muddy, the father needs to ask the
question k − 1 times, and all the muddy children then answer that they know they are
muddy.

We now define the semantics of the operator 〈E ,E0〉.

Definition 8 (Semantics of DELCK). We extend the definition M, w |= ϕ to LDELCK

with the following clause:

• M, w |= 〈E ,E0〉ϕ if there exists e ∈ E0 s.t.M, w |= pre(e) andM⊗E , (w, e) |= ϕ.

In the sequel, we take the abbreviation (w, e1, . . . , en) for (((w, e1), . . . ), en) and further
abbreviate it by w−→e . We also write M−→E for M, E1, . . . , En. We write M−→E , w−→e |= ϕ

instead ofM⊗E1⊗· · ·⊗En, (((w, e1), . . . ), en) |= ϕ. A sequence of events −→e is executable
in w if w−→e is inM−→E . The empty sequence of events is denoted by ε (so wε = w). The
empty sequence is of course executable in all worlds.

We will also need a notion of size of formulas and models, noted |ϕ|, |M|, |E|.
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1.2. Expressivity of event models in DEL

Definition 9 (Size of formulas and models). The size of formulas ϕ and models M, E
are mutually defined by induction:

• |>| = |p| = 1;

• |¬ϕ| = 1 + |ϕ|;

• |ϕ1 ∨ ϕ2| = 1 + |ϕ1|+ |ϕ2|;

• |Kaϕ| = 1 + |ϕ|;

• |CGϕ| = 1 + |ϕ|;

• |〈E ,E0〉ϕ| = 1 + |E|+ |E0|+ |ϕ|;

• |M| = |AP| × |W |;

• |E| = |E|+∑e∈E

(
| pre(e)|+∑

p∈AP | post(e, p)|
)
.

The notion of size may change in the analysis later on, the differences will be explicitly
given if it is the case.

1.2 Expressivity of event models in DEL

We now show expressivity results for DEL. Indeed, the whole class of event models is not
needed to capture the whole expressivity of DEL. In fact, it is already proven that DEL
has the same expressivity than EL [DHK07], but it is not the case with DELCK and
ELCK. Yet, the translation from a formula of DEL to a formula of EL is exponential.
Here we exhibit a sublanguage of DEL that captures the whole expressivity of DEL with
a polynomial translation.

Before announcing the outline of the subsections, let us define two notions: modal
depth of an epistemic formula without common knowledge and classes of event models.

Definition 10 (Modal depth). The modal depth of a formula ϕ ∈ LEL, noted d(ϕ) is
defined by induction on ϕ:

• d(p) = d(>) = 0;

• d(¬ϕ) = d(ϕ);

• d(ϕ1 ∨ ϕ2) = max(d(ϕ1), d(ϕ2));

• d(Kaϕ) = 1 + d(ϕ).

Intuitively, the modal depth corresponds to the maximal nesting of knowledge oper-
ators. Common knowledge is not included in the definition of modal depth because it
intrinsically introduces an unbounded nesting of knowledge operators.

We now define the classes of event models for the section.

Definition 11. The class of event models Cji with i ≥ 0 or i =∞, and j ≥ −1 or j =∞,
is the set of event models where the events have preconditions of modal depth at most i and

45



Chapter 1 – Dynamic Epistemic Logic

postconditions of modal depth at most j. If i or j is ∞ the modal depth is not constrained,
and if j = −1, the event models must have trivial postconditions.

Example 10. The event model from Figure 1.3 page 41 is in C0
0 because all formulas are

propositional, but it is not in C−1
0 because the postcondition of e is not trivial. Notice that

it is also in Cji for any i, j ≥ 0 and i, j =∞.

We trivially have that Cji ⊆ C
j′

i′ whenever i ≥ i′ and j ≥ j′.
Let us now define the notion of equivalence of formulas.

Definition 12 (Equivalent formulas). Let ϕ1 and ϕ2 be two formulas. We say that they
are equivalent if M, w |= ϕ1 if and only if M, w |= ϕ2 for all pointed Kripke models
(M, w).

We prove here that for any formula ϕ ∈ LDEL on AP (supposed finite) whose event
models are all in a certain Cji , it is possible to polynomially construct an equivalent formula
tr(ϕ) on a certain AP ′ ⊇ AP where the event models are in C, where C can be any of the
following: Cmax(i,j)

0 , C0
max(i,j), C1

0 .
It will also prove directly that the result holds for C0

1 . The C
max(i,j)
0 case is not directly

needed, but we present the construction because it is fairly easy and allows us to introduce
some notions needed for the next two.

The formulas ϕ and tr(ϕ) do not contain the same set of atomic propositions, but if
we evaluate them on Kripke models on AP ′, we will indeed haveM, w |= ϕ if and only if
M, w |= tr(ϕ). If we want to be rigorous on the notion of equivalence, they would need to
be defined in the same set of atomic propositions. We decide to distinguish AP and AP ′

to avoid defining both formulas with atomic propositions of the infinite set AP, with tr(ϕ)
containing fresh atomic propositions of AP not appearing in ϕ. Indeed, such a definition
would make the proofs more difficult to read.

We dedicate one subsection per class and then discuss the case of common knowledge
briefly.

1.2.1 Removing the knowledge operators from the precondi-
tions

This section is dedicated to the Cmax(i,j)
0 case.
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General idea

In a formula ϕ, we replace the modality 〈E ,E0〉 by two nested modalities 〈E ′,E′0〉〈Ep,E0p〉.
The pointed event model (E ′,E′0) is (E ,E0) where the preconditions are pushed in post-
conditions by assigning the value of a fresh atomic proposition, pprune, to > whenever the
precondition is true. The event model (Ep,E0p) removes any world where pprune is false
and resets the value of pprune.

e : pre : Kap
post : p← ⊥

f : pre : ¬Kbq
post : /

b

a

a, b

e′ :
pre : >

post : p← ⊥
pprune ← Kap

f ′ : pre : >
post : pprune ← ¬Kbq

b

a

a, b

(E ,E0) (E ′,E′0)

Figure 1.7: Example of an event model (E ′,E′0) for the Cmax(i,j)
0 construction.

ep : pre : pprune
post : pprune ← ⊥

a, b

Figure 1.8: Event model (Ep,E0p) for the Cmax(i,j)
0 construction.

An example of E ′ is drawn in Figure 1.7 and the event model Ep is drawn on Figure
1.8.
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Formal definition

Let AP ′ = AP∪{pprune} and (E ,E0) an event model on AP with E = (E, (REa)a∈Ag, pre, post).
We define the event models (E ′,E′0) and (Ep,E0p).

Definition 13 (Event model (E ′,E′0)). The event model E ′ = (E′, (REa
′)a∈Ag, pre′, post′)

and set E′0 are defined as follows:

• E′ = {e′, e ∈ E};

• REa
′ = {(e′, f ′), (e, f) ∈ REa} for all a ∈ Ag;

• pre′(e′) = > for all e′ ∈ E′;

• post′(e′, p) = post(e, p) for all e′ ∈ E′ and p ∈ AP;

• post′(e′, pprune) = pre(e) for all e′ ∈ E′;

• E′0 = {e′, e ∈ E0}.

If E ∈ Cji then E ′ ∈ C
max(i,j)
0 because the preconditions in E ′ are now propositional and

the postconditions contain formulas both from the preconditions and the postconditions
of E , thus are of modal depth at most max(i, j).

Definition 14 (Event model (Ep,E0p)). The event model Ep = (Ep, (REpa )a∈Ag, prep, postp)
and set E0p are defined as follows:

• Ep = {ep};

• REpa = {(ep, ep)};

• prep(ep) = pprune;

• postp(ep, pprune) = ⊥; postp is trivial for other atomic propositions;

• E0p = {ep}.

The event model Ep is in C0
0 because both the precondition and the postcondition of

ep are propositional.
We now prove that executing (E ′,E′0) then (Ep,E0p) has the same effect than executing

(E ,E0) for any pointed Kripke model (M, w). Before stating the theorem, we need to
define a notion of equivalence between Kripke models , generally called AP-bisimulation.
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Definition 15 (AP-bisimulation). LetM = (W, (Ra)a∈Ag, V ) andM′ = (W ′, (R′a)a∈Ag, V
′)

two Kripke models on AP1 ⊇ AP and AP2 ⊇ AP. An AP-bisimulation is a relation
B ⊆ W ×W ′ such that:

• AP-conservation: For all (w,w′) ∈ B, for all p ∈ AP, p ∈ V (w) if and only if
p ∈ V ′(w′);

• Zig: For all (w,w′) ∈ B, for all a ∈ Ag and u ∈ W , if (w, u) ∈ Ra then there exists
u′ ∈ W ′ such that (w′, u′) ∈ R′a and (u, u′) ∈ B.

• Zag: For all (w,w′) ∈ B, for all a ∈ Ag and u′ ∈ W ′, if (w′, u′) ∈ R′a then there
exists u ∈ W such that (w, u) ∈ Ra and (u, u′) ∈ B.

If there exists an AP-bisimulation betweenM andM′ then we say that both Kripke
model are AP-bisimilar. Bisimulation is also defined on pointed Kripke models (M, w)
and (M, w′) by adding the constraint (w,w′) ∈ B. Interestingly, if two pointed Kripke
models (M, w) and (M′, w′) are AP-bisimilar thenM, w |= ϕ if and only ifM′, w′ |= ϕ

for any formula ϕ ∈ LDELCK on AP.

Theorem 1. Let (E ,E0) be an event model on AP and (E ′,E′0), (Ep,E0p) be the two event
models defined respectively in Definitions 13 and 14. Then for any pointed Kripke model
(M, w) on AP, e ∈ E0, (M⊗E , w) and (M⊗E ′ ⊗ Ep, (w, e′, ep)) are AP ′-bisimilar.

Proof. We define the relation B = {((w, e), (w, e′, ep)), (w, e) ∈ M⊗ E}. Before proving
that B is a AP ′-bisimulation, we first need to prove that it is well defined, meaning that
(w, e) exists if and only if the world (w, e′, ep) exists.

The world (w, e) exists if and only ifM, w |= pre(e)
if and only ifM, w |= post(e′, pprune)
if and only if pprune ∈ V (w, e′)
if and only ifM⊗E ′, (w, e′) |= prep(ep)
if and only if (w, e′, ep) exists.

We now prove that B is a AP ′-bisimulation.

• AP ′-conservation: Let p ∈ AP. Then p ∈ V (w, e) if and only ifM, w |= post(e, p).
In the construction of (w, e′, ep), the value of p is only modified on the execution of
e′, then p ∈ V (w, e′, ep) if and only if M, w |= post′(e′, p) if and only if M, w |=
post(e, p) by definition of e′. Therefore, p ∈ V (w, e) if and only if p ∈ V (w, e′, ep).
For pprune, we necessarily have pprune 6∈ V (w, e) and pprune 6∈ V (w, e′, ep).
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• Zig and Zag: we have ((w, e), (u, f)) ∈ RM⊗(E,E0)
a if and only if ((w, e′, ep), (u, f ′, ep)) ∈

R
M⊗(E ′,E′0)⊗(Ep,E0p)
a by definition of E ′ and Ep so the Zig and Zag properties are direct.

Therefore, we haveM, w |= 〈E ,E0〉ϕ if and only ifM, w |= 〈E ′,E′0〉〈Ep,E0p〉ϕ for any
formula ϕ on AP. Also, we have also proven that pprune is false everywhere after having
applied E ′ and Ep, thus we can reuse pprune. In particular, we have proven that the following
translation is correct.

Definition 16. Let ϕ be a formula on AP with event models all in Cji . We construct
an AP-equivalent formula tr(ϕ) on AP ∪ {pprune}, with events models all in Cmax(i,j)

0 by
induction on ϕ:

• tr(>) = >;

• tr(p) = p;

• tr(¬ϕ) = ¬tr(ϕ);

• tr(ϕ1 ∨ ϕ2) = tr(ϕ1) ∨ tr(ϕ2);

• tr(Kaϕ) = Katr(ϕ)

• tr(CGϕ) = CGtr(ϕ);

• tr(〈E ,E0〉ϕ) = 〈E ′,E′0〉〈Ep,E0p〉tr(ϕ).

1.2.2 Removing the knowledge from the postconditions.

This section is dedicated to the C0
max(i,j) case.

General idea

Let (E ,E0) be an event model in Cji . To simulate the execution of this event model, we
introduce one atomic proposition pe for each atomic proposition p ∈ AP and event e ∈ E ,
and create one event model (Ee,p,Ee,p0 ) per p and e that will assign the value of post(e, p) to
pe. We furthermore introduce an event model (E ′,E′0) that is (E ,E0) where postcondition
of event e become p← pe for every p ∈ AP.

Figure 1.9 gives an example.

Formal definition

Let (E ,E0) be an event model with E = (E, (REa)a∈Ag, pre, post). We define the setAP ′ =
AP ∪ {pe, p ∈ AP, e ∈ E}.
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e : pre : p
post : p← Kap

f : pre : >
post : q ← ¬Kbq

b

a

a, b

ce,p> : pre : Kap
post : pe ← >

ce,p⊥ : pre : ¬Kap
post : pe ← ⊥

a, b

a, b

a, b

e′ :

pre : p

post :

p← pe
q ← qe
pe ← ⊥
qe ← ⊥
pf ← ⊥
qf ← ⊥

f ′ :

pre : >

post :

p← pf
q ← qf
pe ← ⊥
qe ← ⊥
pf ← ⊥
qf ← ⊥

b

a

a, b

(E ,E0) (Ee,p,Ee,p0 ) (E ′,E′0)

Figure 1.9: Example of an event model (Ee,p,Ee,p0 ) and (E ′,E′0) for the C0
max(i,j) construction.

Definition 17 (Event model (Ee,p,Ee,p0 )). The event model Ee,p = (Ee,p, (Re,p
a )p∈AP , pree,p, poste,p)

is defined as follows:

• Ee,p = {ce,p> , c
e,p
⊥ };

• Re,p
a = Ee,p × Ee,p for all a ∈ Ag;

• pree,p(ce,p> ) = post(e, p); pree,p(ce,p⊥ ) = ¬ post(e, p);

• poste,p(ce,p> , pe) = >; poste,p(ce,p⊥ , pe) = ⊥; poste,p is trivial for all other atomic
propositions of AP ′;

• Ee,p0 = Ee,p.
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Notice that the following proposition holds.

Proposition 1. For any Kripke model M on AP ′, M⊗ Ee,p is isomorphic to M with
the only difference that pe is in the new valuation of w if and only ifM, w |= post(e, p).

Proof sketch Each world of M matches exactly to one event of Ee,p = {ce,p> , c
e,p
⊥ }, so

M⊗ Ee,p has the same number of worlds. Furthermore, the epistemic relation form a
complete graph in (Ee,p,Ee,p0 ), so all pre-existing edges in M remain. Therefore, M and
M⊗Ee,p are isomorphic.

For the second point, it is direct by definition ofM⊗Ee,p. �

Definition 18 (Event model (E ′,E′0)). The event model E ′ = (E′, (REa
′)a∈Ag, pre′, post′) is

defined as follows:

• E′ = {e′, e′ ∈ E};

• REa
′ = {(e′, f ′), (e, f) ∈ REa} for all a ∈ Ag;

• pre′(e′) = pre(e) for all e′ ∈ E′;

• post′(e′, p) = pe for all e′ ∈ E′ and p ∈ AP; post′(e′, q) = ⊥ for all e′ ∈ E′ and
q ∈ AP ′ \ AP;

• E′0 = {e′, e ∈ E0}.

Theorem 2. For any pointed Kripke model (M, w) on AP, for every e ∈ E0, (M ⊗
E , (w, e)) and (M⊗

(⊗
e∈E

⊗
p∈AP Ee,p

)
⊗E ′, (w, . . . , e′)) are AP-bisimilar where (w, . . . , e′)

is the only possible world corresponding to (w, e).

Proof. The proof is similar to the one of Theorem 1. Here B associates (w, e) to the only
(w, . . . , e′) that exists, with . . . the cf,q⊥ /cf,q> that are the only events that can be inserted
in the tuple.

• AP-conservation: for any p ∈ AP, p is in the valuation of (w, . . . , e′) if pe was
true, meaning that post(e′, p) was true in a certain (M′, w) isomorphic to (M, w).
Therefore, p has the same value in (w, e) and (w, . . . , e′).

• Zig and Zag: as remarked before,M⊗
(⊗

e∈E
⊗

p∈AP Ee,p
)
is isomorphic toM, and

E ′ is constructed similarly to E , therefore the Zig and Zag properties are direct.
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As before, we can then define a translation from a formula with event models in Cji to a
formula with event models in C0

max(i,j). Here the new formula will have∑E∈ϕ |AP|×|E| new
atomic propositions and its size will be in O(|ϕ| ×∑E∈ϕ |AP| × |E|) which is polynomial
in |ϕ|.

1.2.3 Removing the knowledge nesting from preconditions and
the knowledge operators from postconditions.

This subsection is dedicated to the C1
0 case.

General idea

To simulate the effect of an event model (E ,E0) in Cji with event models with no nesting of
knowledge operators, we compute with event models (E1,E1

0), . . . , (Emax(i,j)−1,Emax(i,j)−1
0 )

the values of subformulas of formulas in E that are of modal depth 1, . . . ,max(i, j) − 1.
For each formula ϕ in E , we introduce one new atomic proposition pψ for each subformula
ψ of ϕ. Then at the end we execute an event model (E ′,E′0) which is (E ,E0) where each
formula ϕ is now replaced by pϕ.

Figure 1.10 gives an example of a (E1,E1
0) event model and of a (E ′,E′0) event model.

Formal definition

We first need to define the set of subformulas of ϕ.

Definition 19 (Set of subformulas). Let ϕ ∈ LEL be a formula. We define the set of
subformulas of ϕ, noted SF (ϕ) in the following way.

• SF (p) = {p};

• SF (>) = {>}

• SF (¬ϕ) = {¬ϕ} ∪ SF (ϕ);

• SF (ϕ1 ∨ ϕ2) = {ϕ1 ∨ ϕ2} ∪ SF (ϕ1) ∪ SF (ϕ2);

• SF (Kaϕ) = {Kaϕ} ∪ SF (ϕ)
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e : pre : KaKbp
post : p← Kap

f : pre : q
post : q ← ¬Kbq

b

a

a, b

(E ,E0)

e1 :

pre : >

post :
pKap ← Kap
pKbp ← Kbp
pKbq ← Kbq

a, b

(E1,E1
0)

e′ :

pre : pKaKbp

post :

p← pKap
pKap ← Ka⊥
pKbp ← Kb⊥
pKbq ← Kb⊥
pKaKbp ← ⊥

f ′ :

pre : q

post :

q ← ¬pKbq
pKap ← Ka⊥
pKbp ← Kb⊥
pKbq ← Kb⊥
pKaKbp ← ⊥

b

a

a, b

(E ′,E′0)

Figure 1.10: Example of an event model (E1,E1
0) and (E ′,E′0) for the C1

0 construction.

Notice that SF (ϕ) has polynomial size compared to |ϕ|.
We now define AP ′ = AP ∪ {pψ, ψ ∈ SF (ϕ), ϕ ∈ E , d(ψ) ≥ 1} where ϕ ∈ E means

that ϕ appears in a precondition or a postcondition in E . For any formula ϕ, we define a
new formula tr(ϕ) of modal depth one where subformulas ψ have been replaced by pψ.

Definition 20. Let ϕ be a formula of modal depth at least 2. Then we define ϕ′ = tr(ϕ)
in the following way.

• tr(p) = p;

• tr(>) = >;

• tr(¬ϕ) = ¬tr(ϕ);
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1.2. Expressivity of event models in DEL

• tr(ϕ1 ∨ ϕ2) = tr(ϕ1) ∨ tr(ϕ2);

• tr(Kaψ) = Kapψ.

Indeed, tr(ϕ) is a now a formula of modal depth at most 1, and any pψ appearing in
tr(ϕ) is such that d(ψ) = d(ϕ) − 1. The definition is for any formula ϕ of modal depth
at least 2 because we need to be sure that pψ exists. For any formula of modal depth at
most 1, it is not needed to transform it to a formula of modal depth at most 1 because it
already is. In that case we define tr(ϕ) = ϕ.

Definition 21 (Event model (Ek,Ek0)). The event model Ek = (Ek, (Rk
a)a∈Ag, prek, postk)

is defined in the following way.

• Ek = {ek};

• Rk
a = {(ek, ek)} for all agents a ∈ Ag;

• prek(ek) = >;

• postk(e, pϕ) = tr(ϕ) for any formula ϕ of modal depth k such that pϕ ∈ AP ′;

• postk is trivial for all other atomic propositions;

• Ek0 = {ek}.

Definition 22 (Event model (E ′,E′0)). The event model E ′ = (E′, (R′a)a∈Ag, pre′, post′) is
defined in the following way.

• E′ = {e′, e′ ∈ E};

• REa
′ = {(e′, f ′), (e, f) ∈ REa} for all a ∈ Ag;

• pre′(e′) =

 ppre(e) if d(pre(e)) ≥ 1
pre(e) otherwise.

for all e′ ∈ E′;

• post′(e′, p) =

 ppost(e,p) if d(post(e, p)) ≥ 1
post(e, p) otherwise.

for all e′ ∈ E′ and p ∈ AP;

• post′(e′, pψ) = ⊥ for all e′ ∈ E′ and qψ ∈ AP ′ \ AP;

• E′0 = {e′, e ∈ E0}.
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Theorem 3. For any pointed Kripke model (M, w) and e ∈ E0, the Kripke models (M⊗
E , (w, e)) and (M⊗⊗max(i,j)

k=1 Ek ⊗ E ′, (w, e1, . . . , emax(i,j), e′)) are AP-bisimilar.

Proof. The bisimulation is B = {((w, e), (w, e1, . . . , emax(i,j), e′), w ∈ W, e ∈ E}. As before,
the Zig and Zag properties are easy to prove, the difficult part of the proof is to prove
thatM, w |= ϕ if and only ifM⊗⊗max(i,j)

k=1 , (w, e1, . . . , emax(i,j)) |= pϕ with ϕ any formula
appearing in a precondition or a postcondition in E. Indeed, if such a property is proven,
then:

• B is well defined because (w, e1, . . . , emax(i,j), e′) passed all the preconditions if and
only if w passed the precondition of e (because the only precondition which is not
> is pre′(e′) = ppre(e)).

• The AP-conservation is direct because:
p ∈ V (w, e) if and only ifM, w |= post(e, p)

if and only ifM⊗⊗max(i,j)
k=1 , (w, e1, . . . , emax(i,j)) |= tr(post(e, p))

if and onlyM⊗⊗max(i,j)
k=1 , (w, e1, . . . , emax(i,j)) |= post′(e′, p)

if and only if p ∈ V (w, e1, . . . , emax(i,j), e′).
The above property is a consequence of the following lemma.

Lemma 1. For any i ∈ {0, . . . ,max(i, j)− 1}, for any formula ϕ of modal depth at most
i+ 1,M, w |= ϕ if and only ifM⊗⊗i

k=1 Ek, (w, e1, . . . , ei) |= tr(ϕ)

It is proven by recurrence on i:

• i = 0: for this case, tr(ϕ) = ϕ andM⊗⊗i
k=1 Ek, (w, e1, . . . , ei) =M so the case is

direct.

• i > 0: if the property is true for k − 1 then for i, in M⊗⊗i
k=1 Ek, (w, e1, . . . , ei),

any atomic proposition pψ with ψ of modal depth i has now the correct value of ψ
in each world w. Therefore for any formula ϕ of modal depth i+ 1, we indeed have
M, w |= ϕ if and only ifM⊗⊗i

k=1 Ek, (w, e1, . . . , ei) |= tr(ϕ).

Replacing (E ,E0) by (E1,E1
0) . . . (Emax(i,j)−1,Emax(i,j)−1

0 )(E ′,E0) introduces∑ϕ∈E |SF (ϕ)|
new atomic propositions, and there are (max(i, j) + 1) times event models compared to
before. Therefore, translating a formula from Cji to C1

0 is polynomial.
Notice that we have also proven that it is polynomial to go from Cji to C0

1 by combining
the C0

max(i,j) result with the C1
0 result.
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1.3. Conclusion

Theorem 4. For any formula ϕ containing event models without common knowledge, it
is possible to polynomially construct a formula ϕ′ with events models either all in C1

0 or
either all in C0

1 .

1.2.4 Adding common knowledge

Unfortunately, such results do not hold when formulas in event models contain common
knowledge operators. The reason is that common knowledge introduces an unbounded
modal depth, so it is in no Cji with i, j ∈ N.

Nevertheless, when the Kripke model M is fixed from the start and is finite, it is
possible to transform the CGϕ modality into ⋃|W |k=0

⋃
a1,...,ak∈Ag Ka1 . . . Kakϕ, which has ex-

ponential size compared to |CGϕ|. But this formula depends on the initial Kripke model,
so the expressivity results do not hold anymore.

1.3 Conclusion

In this chapter, we have first defined epistemic logic, seen here as a specification language
for multi-agent systems. Its semantics uses Kripke models, that express multi-agent sys-
tems by a graph of possible configurations, called worlds. We considered classical axioms
for epistemic logic to restrict the Kripke models considered, as S5, for models about knowl-
edge, and KD45, for models about beliefs. Then, we have defined dynamic epistemic logic
(DEL) and its extension with common knowledge (DELCK), that extends epistemic
logic with dynamic operators featuring event models. Such models give a precise way of
defining events and the perception agents have about the events.

We have shown that in fact, a relevant fragment of DELCK is sufficient to express
every formula of DELCK where event models do not feature common knowledge. We
defined the class Cji for events models with preconditions of modal depth at most i and
postconditions of modal depth at most j. We have shown that for any formula where its
event models are in Cji , we could find an equivalent formula where its event models fall into
one of the following classes: Cmax(i,j)

0 , C0
max(i,j), C1

0 , and deduced that C0
1 is also suitable. The

proof techniques involves dividing a dynamic modality 〈E ,E0〉 into a sequence of modalities
〈E i,Ei0〉 where each event model E i is in the relevant class considered.

The main limitation of the expressivity results is common knowledge in event models.
Indeed, common knowledge introduces an unbounded number of modal depth, so an
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event model containing common knowledge is in no Cji with i, j ∈ N. We suspect that no
polynomial translation exist in this case.
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Chapter 2

Model Checking and Satisfiability of
Dynamic Epistemic Logic

In this chapter, we study decision problems of DELCK. The chapter is constructed as
follows.

• First, we show that the model checking problem against DELCK is Pspace-
complete (same result than DEL).

• Second, we recall that the satisfiability problem of DEL is NExptime-complete,
and show that it is 2-Exptime-complete for DELCK.

• Third, we model a game with incomplete information, blind tic tac toe, to illustrate
the notions presented in the chapter. We show in particular that finding a uniform
strategy in blind tic tac toe can be reduced to the model checking problem against
DELCK, meaning that finding a uniform strategy in such games is not harder than
Pspace.

• Finally, we conclude.

Everything in this chapter is a contribution. The model checking and the satisfiability
section have been published in [CS18].

2.1 Complexity of model checking against DELCK

In this section, we explain the model checking problem against DELCK, recall that it
was already known against DEL to be PSPACE-complete, and detail the contribution:
the model checking against DELCK remains PSPACE-complete even when common
knowledge is added (the PSPACE-hardness being easy, we only prove here the PSPACE-
membership).
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Duality of algorithms. In the sequel, alternating algorithms are paired: a yes-algorithm
algoyes and a no-algorithm algono.

• Algorithm algono rejects exactly when Algorithm algoyes does not reject, and vice
versa;

• Existential choices and universal choices are permuted in the two algorithms.

In the sequel, we will write and explain yes algorithms, and write the no algorithms in
Appendix D.

The model checking for DELCK is defined as follows.

Definition 23 (Model checking problem).

• Input: a pointed Kripke modelM, w, a formula ϕ of LDELCK;

• Output: yes ifM, w |= ϕ, no otherwise.

In this section, we prove the following theorem.

Theorem 5. The model checking problem for DELCK is Pspace-complete.

Hardness comes directly from the Pspace-hardness of the model checking of DEL
without common knowledge [AS13] (actually, it is already Pspace-hard for single-pointed
event models [BJS15], but actually even when the Kripke model is S5 and event models
are S5 and single-pointed [PRS15]).

For the Pspace-membership, Figures 2.1 and 2.2 provides the pseudo-code of an
alternating Turing machine that decides the model checking problem for DELCK in
polynomial time. The upper bound is proven since Pspace = Aptime. The machine
starts by calling mcyes(M, w, ϕ). The specifications of the procedures mcyes, invalyes, inyes,
accessyes and access∗yes (see Figures 2.1 and 2.2) are given in the following proposition:

Proposition 2. For all formulas ϕ, for all Kripke modelsM, for all sequences of event
models −→E , for all worlds w−→e , u−→f of M−→E , for all agents a, for all groups of agents G,
for integers i that are powers of two,
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proc mcyes(M
−→
E , w−→e , ϕ) |M

−→
E |+ |ϕ|

B accepts wheneverM−→E , w−→e |= ϕ

case ϕ = p: invalyes(p,M
−→
E , w−→e )

case ϕ = (ϕ1 ∨ ϕ2): (∃)(∃)(∃) choose i ∈ {1, 2}; mcyes(M
−→
E , w−→e , ϕi)

case ϕ = ¬ψ: mcno(M−→E , w−→e , ψ).
case ϕ = Kaψ:

(∀)(∀)(∀) choose u−→f ∈M−→E
(∃)(∃)(∃) accessno(w−→e , u−→f , a,M−→E ) or inno(u−→f ,M−→E ) or mcyes(M

−→
E , u
−→
f , ψ)

case ϕ = 〈E ,E0〉ψ:
(∃)(∃)(∃) choose e ∈ E0;
(∀)(∀)(∀) mcyes(M

−→
E , w−→e , pre(e)) and mcyes(M

−→
E :: E , w−→e :: e, ψ).

case ϕ = CGψ:
(∀)(∀)(∀) choose u−→f ∈M−→E
(∃)(∃)(∃) access∗no(w−→e , u−→f ,G,BM,ϕ,M

−→
E ) or inno(u−→f ,M−→E ) or mcyes(M

−→
E , u
−→
f , ψ)

proc invalyes(p, w−→e ,M
−→
E ) |M

−→
E |

B accepts whenever p ∈ V (w−→e )
case

−→
E = ε: if p ∈ V (w) then accept else reject

case
−→
E = −→E ′::E and w−→e = w−→e ′::e: mcyes(M

−→
E ′, w−→e ′, post(e, p))

proc inyes(w−→e ,M
−→
E ) |M

−→
E |

B accepts whenever w−→e ∈M−→E
case

−→
E = ε: accept

case
−→
E = −→E ′::E , w−→e = w−→e ′::e: (∀)(∀)(∀) mcyes(M

−→
E ′, w−→e ′, pre(e)) and inyes(w−→e ′,M

−→
E ′)

proc accessyes(w−→e , u
−→
f , a,M

−→
E ) |M

−→
E |

B accepts whenever (w−→e , u−→f ) ∈ Ra

case
−→
E = ε: if (w, u) ∈ RMa then accept else reject

case
−→
E = −→E ′ :: E , −→e = −→e ′ :: e, −→f = −→f ′ :: f :

(∀)(∀)(∀) accessyes(w−→e ′, u
−→
f ′, a,M

−→
E ′) and if (e, f) ∈ REa then accept else reject

Figure 2.1: Model checking procedures for DELCK (in gray: quantities associated to each
procedure call).
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proc access∗yes(w−→e , u
−→
f ,G, i,M

−→
E ) |M

−→
E |+ log i

B accepts whenever (w−→e , u−→f ) ∈ (⋃a∈GRa)j for some j ≤ i
case i = 1:
if u
−→
f = w−→e then accept else (∃)(∃)(∃) choose a ∈ G; accessyes(w−→e , u

−→
f , a,M

−→
E )

case i ≥ 2:
(∃)(∃)(∃) choose v−→g ∈M−→E
(∀)(∀)(∀) inyes(v−→g ,M

−→
E ) and access∗yes(w−→e , v−→g ,G, i/2,M

−→
E )

and access∗yes(v−→g , u
−→
f ,G, i/2,M−→E )

Figure 2.2: Sub-procedures for DELCK (in gray: quantities associated to each procedure
call).

mcyes(M
−→
E , w−→e , ϕ) is accepting iffM−→E , w−→e |= ϕ,

mcno(M−→E , w−→e , ϕ) is accepting iffM−→E , w−→e 6|= ϕ,
invalyes(p, w−→e ,M

−→
E ) is accepting iff p ∈ V (w−→e ),

invalno(p, w−→e ,M−→E ) is accepting iff p 6∈ V (w−→e ),
inyes(w−→e ,M

−→
E ) is accepting iff w−→e ∈M

−→
E ,

inno(w−→e ,M−→E ) is accepting iff w−→e 6∈ M
−→
E ,

accessyes(w−→e , u
−→
f , a,M

−→
E ) is accepting iff (w−→e , u−→f ) ∈ Ra,

accessno(w−→e , u−→f , a,M−→E ) is accepting iff (w−→e , u−→f ) 6∈ Ra,
access∗yes(w−→e , u

−→
f ,G, i,M

−→
E ) is accepting iff (w−→e , u−→f ) ∈ ⋃j≤i (⋃a∈GRa)j

and access∗no(w−→e , u−→f ,G, i,M−→E ) is accepting iff (w−→e , u−→f ) 6∈ ⋃j≤i (⋃a∈GRa)j.

We do not prove the proposition here, since it mimics the semantics of DELCK.
Instead, we first detail the meaning of the procedures, then give an example, and finally
prove that the quantities given in each procedure in grey are strictly decreasing:

Propositional constructions inmcyes. For ϕ = p, the procedure calls invalyes(p,M
−→
E , w−→e )

that checks whether the valuation of w−→e contains p. This procedure has two cases: if
−→
E = ε, meaning that there is no event model, we just check that p ∈ V (w). Else, if
−→
E = −→E ′ :: E , we call mcyes(M

−→
E ′, w−→e ′, post(e, p)) to check whether p is in the valuation

of w−→e .
As expected, for ϕ = ¬ψ, the call switches from mcyes to mcno.
For ϕ = ϕ1 ∨ ϕ2, mcyes(M

−→
E , w−→e , ϕ) consists in existentially choosing i ∈ {1, 2} and

then in calling mcyes(M
−→
E , w−→e , ϕi).
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Knowledge operators in mcyes. The callmcyes(M
−→
E , w−→e ,Kaψ) consists in universally

choosing a valuation u−→f ∈M−→E , then checking two conditions such thatmcyes(M
−→
E , u
−→
f , ψ)

must be true if they are verified. The first test is (w−→e , u−→f ) ∈ RM
−→
E

a , thus calling
accessyes(w−→e , u

−→
f , a,M

−→
E ). This procedure just checks that (w, u) ∈ Ra and (ei, fi) ∈ REia

for each Ei ∈
−→
E .

The second test is u−→f ∈M−→E , by calling Algorithm inyes(u
−→
f ,M

−→
E ). This procedure

checks all preconditions.
Both tests are negated in the code of mcyes because the condition is an implication.

Event model operators in mcyes The call mcyes(M
−→
E , w−→e , 〈E ,E0〉ψ) just chooses an

event e ∈ E0, checks that its precondition is true with the call mcyes(M
−→
E , w−→e , pre(e))

and goes on with the model checking by calling mcyes(M
−→
E :: E , w−→e :: e, ψ).

Common knowledge operators in mcyes. The call mcyes(M
−→
E , w−→e , CGψ) triggers

mcyes(M
−→
E , w−→e ,Ka1 ...Kaiψ) for all possible choices of a multiset {a1, . . . , ai} of G. The

semantics of operator CG yields checking that mcyes(M
−→
E , u
−→
f , ψ) does not reject, for all

u
−→
f ∈M

−→
E reachable from w−→e by iterating ⋃a∈GRM−→Ea . This is the purpose of Algorithm

access∗yes. Regarding the size of the multiset {a1, . . . , ai}, it is sufficient to consider at most
BM,ϕ, that is the smallest power of 2 greater than all |M−→E | that may appear during the
evaluation of the formula: indeed, each iteration of ⋃a∈GRM−→Ea adds at least one world into
the set of reachable worlds from w−→e , so it will necessarily stabilize within at most BM,ϕ

steps. Additionally, it is important to require that after each iteration, the obtained world
is inM−→E , ensured by the call inyes in access∗yes. To remain in the class Aptime, Algorithm
access∗yes relies on a divide and conquer method, alike the one shown in [Bal+14]; because
in case i ≥ 2, only one of the three recursive calls is universally chosen, it ensures that
in an execution branch, the number of recursive calls is logarithmic in BM,ϕ. It computes(⋃

a∈GR
M
−→
E

a

)i
for all i ≤ BM,ϕ and not just

(⋃
a∈GR

M
−→
E

a

)BM,ϕ because in the case i = 1, we

either compute
(⋃

a∈GR
M
−→
E

a

)0
or
(⋃

a∈GR
M
−→
E

a

)1
. Therefore, all i ≤ BM,ϕ can be computed.

Example 11. We take the example of mcyes(M, w, 〈E ,E0〉¬CGp) depicted in Figure 2.3.
The procedure starts by choosing e in E0. Then, we check that both pre(e) holds in w and
that ¬CGp holds in we. Checking that ¬CGp holds in we leads to a negated configuration:
we negate the fact that CGp holds in we. It is followed by a universal choice of uf ∈ME.
For each choice of uf ∈ ME, we progress in an existential configuration that checks that
either uf is not a world of ME, either wf is not reachable from we by at most BM,ϕ
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mcyes(M, w, 〈E ,E0〉¬CGp)

(∃)(∃)(∃)
... ...(∀)(∀)(∀)

mcyes(M, w, pre(e)) mcyes(M, we,¬CGp)

mcyes(M, we, CGp)

(∀)(∀)(∀)... ...(∃)(∃)(∃)

inno(uf,ME)...
access∗no(we, uf,G,BM,ϕ,ME)

(∃)(∃)(∃)
... ...(∀)(∀)(∀)

inno(vg,ME) access∗no(we, vg,G, BM,ϕ

2 ,ME) access∗no(vg, uf,G, BM,ϕ

2 ,ME)... ... ...

mcyes(ME , uf, p)

invalyes(p, uf,ME)

mcyes(M, u, post(e, p))...

...

existential choice of
an event e in E0

universal choice of
uf in ME

existential
choice of the
intermediate
world vg in
MEhe

ig
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Figure 2.3: Computation tree rooted at mcyes(M, w, 〈E ,E0〉¬CGp).

⋃
a∈GR

ME
a -steps or that p in uf . Checking that p holds in uf is performed by the call of

invalyes(p, uf,ME), which itself check that the postcondition post(e, p) holds in u.

The quantities associated to each procedure call used for the proofs change a little bit
compared to Definition 9 page 45. The first difference is |CGϕ| := log2BM,ϕ+1+|ϕ|. Since
BM,ϕ is polynomial in the size of the biggest M−→E , which itself is single-exponential in
the size ofM in the worst case, it means that BM,ϕ is single-exponential inM, therefore
adding log2BM,ϕ in the new size of a formula |ϕ| is polynomial in |M| + |ϕ| as given in
Definition 9. Furthermore, in the algorithms, when |M−→E | is written, it is not the number
of worlds of |M−→E | here but |M| + ∑

E∈
−→
E |E|, which is clearly linear in |M| + |ϕ| at all

times.

Lemma 2. The quantities given in gray in Figures 2.1 and 2.2 are strictly decreasing
along a branch of the computation tree (i.e. when a recursive call is made, the quantity
associated is strictly lower).

Proof. Let us discuss the following cases (the other ones are straightforward):
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• The quantity formcyes(M
−→
E , w−→e , CGϕ) is |M−→E |+|CGϕ|+1 = |M−→E |+log2BM,ϕ+

|ϕ|+1 and is strictly greater than the quantity for access∗no(w−→e , u−→f ,G,BM,ϕ,M
−→
E ),

which is |M−→E |+ log2BM,ϕ.

• The quantity for mcyes(M
−→
E , w−→e , 〈E ,E0〉ϕ) is |M−→E |+ |E|+ |ϕ|+ 1 and is strictly

greater than the quantity for mcyes(M
−→
E , w−→e , pre(e)), which is |M−→E |+ | pre(e)| <

|M
−→
E |+ |E|.

• The quantity for invalyes(p, w−→e ,M
−→
E ) is |M−→E ′E| = |M−→E ′| + |E| and is strictly

greater than the quantity formcyes(M
−→
E ′, w−→e ′, post(e, p)) which |M−→E ′|+post(e, p).

Proposition 3. mcyes(M, w,Φ) is executed in polynomial time in the size of the input
(M, w,Φ).

Proof. The time is bounded the height of the computation tree rooted in mcyes(M, w,Φ).
Thanks to Lemma 2, the height of the computation tree is bounded by the quantity
associated to mcyes(M

−→
E , w−→e , ϕ), that is |M| + |ϕ|. Recall that this quantity is not the

size of the input (M, w, ϕ): for instance the weight of CG-modalities is log2BM,ϕ. However
this quantity is polynomial in the the size of the input (M, w, ϕ).

At each node of the computation tree, the computation performed in a single node is
polynomial. For instance, the instruction “(∀)(∀)(∀) choose u−→f ∈ M−→E ” consists in choosing
each bit of u−→f , thus is polynomial in the size of the input.

To conclude, the execution time on each branch in the computation tree is polynomial.

2.2 Complexity of the satisfiability problem of DELCK

The satisfiability problem for DELCK is defined as follows.

Definition 24 (Satisfiability problem).

• Input: a DELCK-formula ϕ.

• Output: yes if there exists a Kripke model M and a world w ∈ M such that
M, w |= ϕ, no otherwise.
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In this section, we prove the following upper bound result:

Theorem 6. The satisfiability problem of DELCK is in 2-Exptime.

We first prove the upper bound result (the membership) and then the lower bound
result (the hardness).

2.2.1 Upper Bound of Satisfiability

In order to prove Theorem 6, we will proceed as for proving that Propositional Dynamic
Logic is in Exptime and use the method of Pratt [Pra80], but we will simulate tableau
method rules of the same kind that in [AS13]. Intuitively, we define a canonical Kripke
model, where the worlds are called Hintikka sets and the model itself is called the Hin-
tikka structure. The algorithm will then construct the Hintikka structure and remove any
inconsistent world, and the resulting model will be a model of the input formula if a world
satisfying this formula exists.

To ease the reading, we will w.l.o.g consider that formulas are in negative normal form,
defined as follows.

Definition 25 (Negative normal form of DELCK). The syntax of negative normal form
of DELCK is defined as follows.

ϕ ::= > | ⊥ | p | ¬p | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | Kaϕ | K̂aϕ | CGϕ | ĈGϕ | 〈E ,E0〉ϕ | [E ,E0]ϕ

Intuitively, it means that negations are pushed in front of atomic propositions, and
we will use all connectives ∨, ∧, Ka, K̂a, Ca, Ĉa, 〈E ,E0〉, [E ,E0]. The following definition
gives an inductive function nnf that transforms a formula ϕ into an equivalent formula
nnf(ϕ) in negative normal form.

Definition 26 (Function nnf). The function nnf is defined as follows:

• nnf(>) = nnf(¬⊥) = >;

• nnf(⊥) = nnf(¬>) = ⊥;

• nnf(p) = p;

• nnf(¬p) = ¬p;

• nnf(ϕ1 ∨ ϕ2) = nnf(ϕ1) ∨ nnf(ϕ2);

• nnf(¬(ϕ1 ∨ ϕ2)) = nnf(¬ϕ1) ∧
nnf(¬ϕ2);
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• nnf(ϕ1 ∧ ϕ2) = nnf(ϕ1) ∧ nnf(ϕ2);

• nnf(¬(ϕ1 ∧ ϕ2)) = nnf(¬ϕ1) ∨
nnf(¬ϕ2);

• nnf(Kaϕ) = Kannf(ϕ);

• nnf(¬Kaϕ) = K̂annf(¬ϕ);

• nnf(K̂aϕ) = K̂annf(ϕ);

• nnf(¬K̂aϕ) = Kannf(¬ϕ);

• nnf(CGϕ) = CGnnf(ϕ);

• nnf(¬CGϕ) = ĈGnnf(¬ϕ);

• nnf(ĈGϕ) = ĈGnnf(ϕ);

• nnf(¬ĈGϕ) = CGnnf(¬ϕ);

• nnf(〈E ,E0〉ϕ) = 〈E ,E0〉nnf(ϕ);

• nnf(¬〈E ,E0〉ϕ) = [E ,E0]nnf(¬ϕ);

• nnf([E ,E0]ϕ) = [E ,E0]nnf(ϕ);

• nnf(¬[E ,E0]ϕ) = 〈E ,E0〉nnf(¬ϕ);

The negation of a formula ϕ in negative normal form corresponds to nnf(¬ϕ), the
formula in negative normal form obtained by negating all connectives. The dynamic modal
depth of a formula ϕ, noted dmd(ϕ), is the modal depth by only counting the dynamic
operators. E.g. the dynamic modal depth of Ka[E ,E0][E ′,E′0]p∧ [E ′,E′0]CGq is 2. From now
on, in this section, we also suppose that there is a unique event model E , that is the union
of all event model appearing in ϕ. The set E0 will then give the relevant part of the event
model E we consider, and so the modality 〈E ,E0〉 becomes 〈E0〉. We now define the notion
of closure of a formula.

Definition 27. The closure1 of formula ϕ is the set Cl(ϕ) that contains elements in−→e
and (−→e , ψ) where −→e is a sequence of events in E of length at most dmd(ϕ), and ψ

is a subformula (or negation) of ϕ or a subformula (or negation) of a precondition or
postcondition in E, under the condition that dmd(ϕ) + |−→e | ≤ dmd(ϕ).

The intended meaning of in−→e is that the current world is compatible with the sequence
of events −→e . The intended meaning of (−→e , ϕ) is that formula ϕ is true in the current world
after having executed the sequence of events −→e .

Example 12. Let us take the event model E of Figure 1.5 page 43 and formula ϕ :=
[e]Ka[f ]q. The closure Cl(Φ) is the set {inε, ine, inef , inf , infe, (ε, ϕ), (ε,Ka[f ]q), (e,Ka[f ]q), . . . }.

Proposition 4. The size of the closure of ϕ is exponential in |ϕ|.

1. The definition given here contains ‘too many’ formulas. We could have given a much more thorough
definition, but the definition would have been more complicated to understand and the closure would
have had the same asymptotic size.
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Proof. There is a direct correspondence between a subformula of ϕ and a node in the
syntactic tree of ϕ. Therefore, the number of subformulas of ϕ is in O(|ϕ|). The number
of possible ψ is then bounded by O(|ϕ|) (the size of ϕ is the number of memory cells
needed to write down ϕ, all the information of the event model E included). The number
of possible sequences −→e is |E|dmd(ϕ), thus exponential in |ϕ|.

A Hintikka set (see Definition 28) is a maximal subset of Cl(Φ) that is consistent
with respect to propositional logic (points 2-4), common knowledge reflexivity (point 5),
dynamic operators (point 6-7), executability of events (point 8-9) and postconditions
(point 10).

Definition 28. A Hintikka set h over Cl(Φ) is a subset of Cl(Φ) that satisfies:
(1) If (−→e , ϕ) ∈ h then in−→e ∈ h;
(2) (−→e , ϕ ∧ ψ) ∈ h iff (−→e , ϕ) ∈ h and (−→e , ψ) ∈ h;
(3) (−→e , ϕ ∨ ψ) ∈ h iff (−→e , ϕ) ∈ h or (−→e , ψ) ∈ h;
(4) If in−→e ∈ h then (−→e , ϕ) ∈ h xor (−→e , nnf(¬ϕ)) ∈ h;
(5) If (−→e , CGϕ) ∈ h then (−→e , ϕ) ∈ h;
(6) (−→e , 〈E0〉ϕ) ∈ h iff there exists e ∈ E0 s.t. in−→e ::e ∈ h and (−→e ::e, ϕ) ∈ h;2

(7) (−→e , [E0]ϕ) ∈ h iff for all e ∈ E0, we have in−→e ::e ∈ h implies (−→e ::e, ϕ) ∈ h;
(8) inε ∈ h;
(9) in−→e ::e ∈ h iff in−→e ∈ h and (−→e , pre(e)) ∈ h;
(10) (−→e ::e, p) ∈ h iff (−→e , post(e)(p)) ∈ h.

Point (1) means that if a Hintikka set contains (−→e , ϕ), then it means that −→e should
be executable (in the intuitive world represented by the Hintikka set). Point (4) means
that Hintikka sets are consistent. Point (5) says that if ϕ is common knowledge then ϕ
is true. Points (6) and (7) mimics the truth condition given in Definition 8. Point (8)
means the empty sequence of events ε is always executable. Point (9) means that −→e ::e is
executable iff −→e is executable and the precondition of e holds after having executed −→e .
Point (10) means that the truth of atomic proposition p after a non-empty sequence −→e ::e
of events is given by the truth of its postcondition before the last event e.

Now, we define the following structure that takes care of the consistency of the box
modalities Ka, CG.

Definition 29. The Hintikka structure for ϕ is H := (H, (Ra)a∈Ag) where:

2. We explicitly mentioned in−→e ::e ∈ h for uniformity with the semantics. However, note that it is
implied by point (1).
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function isDELCK-sat?(ϕ)
Compute the Hintikka structure H := (H, (Ra)a∈Ag) for ϕ
repeat
Remove any Hintikka set h from H if
(K̂a) either there is (−→e , K̂aψ) ∈ h but no h′ ∈ Ra(h) with (−→e ′, ψ) ∈ h with −→e →a −→e ′

and in−→e ′ ∈ h′;

(ĈG) or there is (−→e , ĈGψ) ∈ h but no path h = h0 →a1 h1 . . . hk and no path −→e =
−→e (0) →a1 −→e (1) · · · →ak −→e (k) such that (−→e (k)

, ψ) ∈ hk and a1, . . . , ak ∈ G and
in−→e (i) ∈ hi.

until no more Hintikka sets are removed
if there is still a Hintikka set in H containing (ε, ϕ) then accept else reject

endFunction

Figure 2.4: Algorithm for the satisfiability problem of a DELCK-formula ϕ.

• H is the set of all possible Hintikka sets over Cl(Φ);

• hRah
′ if the two following conditions holds:

(Ka) for all (−→e ,Kaϕ) ∈ h we have (−→e ′, ϕ) ∈ h′ for all −→e ′ such that −→e →a −→e ′ and
in−→e ′ ∈ h′,

(CG) for all (−→e , CGϕ) ∈ h we have (−→e ′, CGϕ) ∈ h′ for all −→e ′ such that −→e →a −→e ′

with a ∈ G and in−→e ′ ∈ h′.

The size of the Hintikka structure is double-exponential in |ϕ|, since there are a
double-exponential number of different Hintikka sets. We finish by giving the algorithm
isDELCK-sat?(see Figure 2.4) whose repeat...until loop takes care of the consistency of
diamond modalities, K̂a, Ĉa. The algorithm starts with the full Hintikka structure. Points
(K̂a), (Ĉa) remove worlds where K̂aψ and Ĉaψ have no appropriate ψ-successor. We write
−→e →a −→e ′ if for all (−→e i,−→e ′i) ∈ REa . Actually, the algorithm decides in double-exponential
time whether a DELCK-formula is satisfiable (Propositions 5 and 6).

Proposition 5. Algorithm isDELCK-sat? of Figure 2.4 runs in double-exponential time
in |ϕ|.

Proof. The computation of H can be performed by brute-force: enumerate all subsets
of Cl(Φ) and discard those which do not satisfy all conditions (1)-(10) of Definition 28.
Compute Ra according to Definition 29. The loop is repeated at most the number of
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Hintikka sets in H, that is O(22|ϕ|) times, since at least one Hintikka set is removed or we
exit the loop. Both tests (K̂a) and (ĈG) can be performed by depth-first search algorithm
running in polynomial time in the size of the graph, that is of size double-exponential in
|ϕ|.

Proposition 6. ϕ is DELCK-satisfiable iff isDELCK-sat? accepts ϕ.

Proof. (⇒) LetM, w such thatM, w |= ϕ. Given a world u, we note h(u) the Hintikka
set obtained by taking in−→e if −→e is executable in u and (−→e , ψ) if ψ holds in u,−→e . We
show that no Hintikka set h(u) is removed from H. In particular, h(w) is not removed,
and contains (ε, ϕ) so the algorithm isDELCK-sat? accepts ϕ.

(⇐) Suppose isDELCK-sat? accepts ϕ. We construct a modelM = (W, (Ra)a∈Ag, V )
as follows:

• W is the set of Hintikka sets that remain in the structure at the end of the algorithm;

• Ra is the relation for agent a at the end of the algorithm;

• V (h) = {p ∈ AP | (ε, p) ∈ h}.

The proof finishes by proving the following lemma:

Lemma 3. (truth lemma) The properties P(in−→e ) and P((−→e , ϕ)) defined below hold:

• P(in−→e ): for all h ∈ W , in−→e ∈ h iff −→e is executable inM, h;

• P((−→e , ϕ)): for all h ∈ W , (−→e , ϕ) ∈ h iffM⊗E |−→e |, (h,−→e ) |= ϕ.

Proof. The proof is performed by induction. The quantity for in−→e is n|E|. The quantity
for (−→e , ϕ) is n|E|+ |ϕ| where n is the length of −→e .

We conclude by applying the truth lemma (Lemma 3 to the Hintikka set h that
contains (ε, ϕ)) and we obtain thatM, h |= ϕ.

Remark 1. The 2EXPTIME upper bound also holds for the satisfiability problem of
DELCK in S5 Kripke models. We proceed as in [HM92] (p. 358). We add the following
clauses to Definition 28:

(5’) If (−→e ,Kaϕ) ∈ h then (−→e , ϕ) ∈ h;

We add the following clause in the definition of Ra in Definition 29:

for all −→e →a −→e ′, if in−→e ∈ h and in−→e ′ ∈ h′ then (−→e ,Kaϕ) ∈ h iff (−→e ′, Kaϕ) ∈ h′.
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2.2.2 Lower Bound of Satisfiability

The aim of this section is to prove the following theorem.

Theorem 7. The satisfiability problem of DELCK is 2-Exptime-hard.

p∀, pwin

Control worlds ∼ computation tree skeleton Cell worlds ∼ Content of the tape

p∃, pwin

p∃, pwin

p∀, pwin

p∃

p∃, pwin

pω0 , pq0

x = 0
pω1

x = 1
. . . p␣

x = N

pa
x = 0

pω1 , pq1

x = 1
p␣

x = N
. . .

pa1

x = 0
pb, pqacc
x = 1

p␣
x = N

. . .

pa3 , pqrej
x = 0

pω1

x = 1
p␣

x = N
. . .

pa2 , pq2

x = 0
pω1

x = 1
p␣

x = N
. . .

pa4

x = 0
pω1 , pqacc
x = 1

p␣
x = N

. . .

Agent t

Agent ex

Figure 2.5: (Expected) Kripke model that represents the computation tree of M on the
input instance ω.

Let us consider any 2-Exptime decision problem L. As Aexpspace = 2-Exptime
[CS76], it is decided by an alternating Turing machine M that runs in exponential space.
W.l.o.g we suppose that all executions halt3 and no state is a negated state. We will define
a polynomial reduction tr from L to the satisfiability problem of DELCK, that is tr will
be computable in polynomial time, and ω is a positive instance of L if and only if tr(ω)
is a satisfiable DELCK-formula.

The idea of tr(ω) is to enforce an expected form of a Kripke model as shown in Figure
2.5 that represents the computation tree of M starting with ω on the tape. The cursor
of the machine remains in the N -first cell portion of the tape, where N is exponential in
|ω|. We define N0 = log2(N) for the rest of the section. N0 is polynomial in |ω|.

We introduce two agents: agent ex for the transitions in the computation tree and agent
t for the linear structure of tapes. A configuration of the Turing machine is represented by
a sequence of worlds linked by agent t: one so-called control world followed by cell worlds.

3. If not, we add a double exponential counter to the machine and we abort the execution after a
double exponential number of steps.
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• The control world contains the type of the configuration: existential (resp. universal)
if p∃ (resp. p∀) is true. A special atomic proposition pwin tags control worlds that
correspond to winning configurations for player ∃.

• Cell worlds represent the cells of the tape and form a linear structure. They are in-
dexed by x from x = 0 (left-most cell) to x = N (right-most cell). In each cell world,
pa is true means that the corresponding cell contains letter a ∈ Γ. A proposition of
the form pq being true means that the cursor is at that cell and the current state is
q ∈ Q.

Besides atomic propositions p∃, p∀, pa, a ∈ Γ and pq, q ∈ Q, we also consider the list of
atomic propositions for the bits of the cell index x: x1, . . . , xN0 . We also consider another
such list for another cell index v: v1, . . . , vN0 . The index v will be used to compare cell
worlds of tapes of a configuration and a successor configuration different tapes during
transitions.

ei

pre : >
post : vi ← >

t, ex

f i

pre : >
post : vi ← ⊥

t, ex

Figure 2.6: Multi-pointed event models (E i,Ei0).

The definition of tr(ω) needs multi-pointed event models (E i,Ei0) given in Figure 2.6
non-deterministically and publicly choose the ith bit of value v. We also consider Boolean
formulas x ≤ v, x = v, x = v − 1 and finally Ktx = x + 1 (the value of Ktx0 . . . KtxN0 is
equal to x+1). We define the abbreviation [choosev] = [E0,E0

0] . . . [EN0 ,EN0
0 ]. Technically,

it corresponds to non-deterministically choosing and publicly announcing a value for v.

Definition 30. Formula tr(ω) is the conjunction of the formulas shown in Table 2.1.

In formulas of Table 2.1, common knowledge operators Cex and Ĉex are used to talk
about any control world, while Ct and Ĉt talk about any cell world.

Importantly, notice that with DELCK, it is impossible to force the each world to
have exactly one successor. Thus in general, the expected Kripke model is not as depicted
in Figure 2.5. Instead, we ensure that cell worlds of depth k have the value x = k. We use
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Valuations for control worlds

1. Cex(x = 0) x = 0 holds in all control worlds.

2. Cex (p∃ ↔
∨
q|g(q)=∃ Ĉtpq)

∧ (p∀ ↔
∨
q|g(q)=∀ Ĉtpq)

p∀ and p∃ match the type of the state on the tape.

3. Cex
(∧

a∈Γ ¬pa ∧
∧
q∈Q ¬pq

)
Every pa or pq is false.

Winning condition

4. Cex((Ĉtpqacc)→ pwin) ∧ (Ĉtpqrej )→ ¬pwin)) If the current state is qacc the world is marked as win-
ning, if the current state is qrej it is marked as losing.

5. Cex( (p∀ ∧ (Ct(¬pqacc ∧ ¬pqrej )))
→ (pwin ↔ Kexpwin))

If the current state is not qacc nor qrej and is universal,
the world is marked as winning if all successor worlds
are marked as winning.

6. Cex( (p∃ ∧ (Ct¬pqacc ∧ ¬pqrej )))
→ (pwin ↔ K̂expwin))

If the current state is not qacc nor qrej and is existen-
tial, the world is marked as winning if one successor
world is marked as winning.

Tape

7. CexKt(x = 0) The cell index of the left-most cell is 0.

8. CexKtCt
(∧N0

i=0(Ktxi ∨Kt¬xi)
)

On any tape world, the value of x is the same in all
successors

9. CexKtCt(Ktx = x+ 1) On any tape world, the value of x is incremented by 1
on all successors.

10. CexKtCt (⊕a∈Γpa) On any tape world, only one pa is true and represent
the current letter on the cell.

11. CexĈt (⊕q∈Qpq) On any tape, somewhere only one pq is true

12. CexCt
∧
q∈Q

(
pq → Ct

∧
q′∈Q ¬pq′

)
Anywhere, if pq is true then no pq′ is true anywhere
on the rest of the tape.

Transitions
We define here ϕ(q,a,q′,b,d) = Ct((x = v → pb ∧ ¬pq) ∧ (x = v + d→ pq′))

13. [choosev]Cex
∧
a∈Γ Ĉt(pa ∧

∧
q∈Q ¬pq∧

x = v)→ KexCt(x = v → pa)
On the tape, if no pq is true and pa is true, then at
the same position on the successors’ tapes, pa is true.

14.
∧

(q,a,q′,b,d)∈δ[choosev]
(
Cex(Ĉt(pq ∧ pa∧

x = v)→ K̂exϕ(q,a,q′,b,d))
) If there is a transition it must be present on the model.

15.
[choosev]

∧
a∈Γ

∧
q∈QCex

(
Ĉt(pq ∧ pa

∧x = v)→ Kex
∨

(q,a,q′,b,d)∈δ ϕ(q,a,q′,b,d)
) In every world, any ex-successor must correspond to a

transition.

Initial configuration

16.
∧|ω|−1
i=0 Ct((x = i)→ pω(i)) The letters of the initial word are on the initial tape.

17. Ct((x ≥ |ω|)→ p␣) Cells of index |ω| are blank.

18. Ktpq0
Head in the left-most cell. Initially in the initial state.

19. pwin The initial control world is winning.

Table 2.1: Clauses of DELCK-formula tr(ω) .
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formula (8) that imposes the value of x to be the same in all successor cell worlds, and
formula (9) saying that everywhere, Ktx = x + 1. Formula (10) states that only one pa
is true in each cell world, formula (11) states that only one pq is true in some cell world,
and formula (12) states that if pq is true in a cell world, then no p′q is true in all the
t-successors. Formulas (16), (17) and (18) define the initial tape. Transitions are ensured
by formulas (13) to (15). These formulas automatically ensure that several cell worlds
with the same index x have the same valuation over x, pa, a ∈ Γ, pq, q ∈ Q.

Formulas that handle transitions use integer v to pinpoint a cell index in the tape.
It is used in formula (13) to tell that when the cursor is not in a cell world, then the
letter remains the same during any transition. It is also used in formula (14) to check
the existence of all compatible transitions and in formula (15) to check that all successor
control worlds and their tapes correspond to a transition.

Proposition 7. tr(ω) is satisfiable if and only if ω is a positive instance of L.

The lower bound given in Theorem 7 still holds for the variant of the satisfiability prob-
lem where we require the model to be S5, that is, epistemic relations, to be equivalence
relations.

2.3 Example: blind tic tac toe

In this section, we express in DEL the existence of a uniform winning strategy in the
blind tic tac toe game. We begin by giving the rules of the game, then define some useful
macros for defining the event models, give the models and finally the formula.

For a recall on uniform winning strategies, the reader may refer to Appendix B. We
do not model the game here, just explain the rules.

2.3.1 Rules of the game

Blind tic tac toe is a two player game where the goal is to fill a row, a column or a diagonal
with only ◦ (for Player ◦) or only × (for player ×). The difference with basic tic tac toe
is that players do not see the actions of the other Player.

The game begins with Player ◦. At each turn, the current player attempts to play his
token on a position in the grid where he did not put a token before. Then one of the two
following cases occur.
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2.3. Example: blind tic tac toe

• If there is nothing on the cell the token is now played on the cell.

• Otherwise, an external referee informs the player that the move is invalid. The player
can then attempt to play somewhere else.

The adversary does not see where the token is played, but hears the referee. Therefore
he knows whether the Player played a token or was given an information.

The game stops when a row, a column or a diagonal is filled by tokens of the same
player.

Figure 2.7 gives an example of play. Each player maintains his grid according to his
previous moves and the information he gained. Notice that until turn 5, each move is
played on an empty cell, therefore the players do not gain information on their opponent’s
previous moves. At turn 5, Player ◦ attempts a move that is invalid, he thus gains a
information that a × is present in the cell. Therefore, he has the right to play another
move. The game stops at turn 6 because Player × completes a diagonal, and is thus the
winner.

Grid

◦ ×
Played token from Player ◦ Played token from Player ×

◦ ×
Attempted move from Player ◦ Attempted move from Player ×

◦
Turn 1

Valid move

◦
×

Turn 2

Valid move

◦
×◦

Turn 3

Valid move

◦
×◦
×

Turn 4

Valid move

◦
×◦
×◦

Turn 5

Invalid move

◦
◦×◦
×

Turn 5

Valid move

×◦◦×◦
×

Turn 6

Valid move

×◦◦×◦
×

End

Player × wins

Figure 2.7: Example of a play of blind tic tac toe .

We now define the problem we want to tackle.
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Definition 31 (Blind tic tac toe problem). It is defined as follows.

• Input: an integer n (the size of the grid);

• Output: does there exist a uniform winning strategy for player ◦ in blind tic tac toe
in a n× n grid.

We now describe the reduction of the tic tac toe problem to the model checking
problem of DEL.

2.3.2 Atomic propositions and macros

In this subsection, we consider a fixed integer n. The agents are Ag = {◦,×}. We assign
coordinates to each cell. For instance in Figure 2.8, the ◦ token is in cell (1,2) and the ×
token in cell (3,1).

◦
×

x

y

1 2 3
1
2
3

Figure 2.8: Example of coordinates for blind tic tac toe

We begin by defining the set of atomic propositions AP needed for defining the prob-
lem:

Definition 32 (Atomic propositions for blind tic tac toe). We define AP = {pz◦, z ∈
{1, . . . , n}2} ∪ {pz×, z ∈ {1, . . . , n}2} ∪ {cz◦, z ∈ {1, . . . , n}2} ∪ {cz×, z ∈ {1, . . . , n}2} ∪
{t◦, t×, pend}.

The meaning of the atomic proposition is the following.

• z is a pair (x, y) of integers in {1, . . . , n} (position in the grid);

• pz◦ (resp. pz×) is true iff there is a ◦ token (resp. a × token) in z;
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2.3. Example: blind tic tac toe

• cz◦ (resp. cz×) is true iff Player ◦ (resp. Player ×) has chosen to do a move in position
z (such atomic propositions will be used later in event models);

• t◦ (resp. t×) is true iff it is Player ◦’s turn (resp. Player ×’s turn) to play;

• pend is true iff the game has ended.

A state of the game is then represented by a world uniquely characterized by a valu-
ation on AP.

Example 13. Consider for instance the empty grid:

The empty grid is represented by the world with valuation {t◦}, since no pz◦ and no pz×
is true, it is Player ◦’s turn to play and since the game has not ended yet. Consider now
the following grid:

◦
◦×◦
×

It is represented by the world with valuation {p(1,2)
◦ , p(2,3)

◦ , p(3,2)
◦ , p

(2,2)
× , p

(3,1)
× , t×}.

We now define a formula ϕwin◦ (resp. ϕwin× ) to express that ◦ (resp. × )wins the game.

Definition 33 (Winning condition for blind tic tac toe). The formula ϕwin◦ is defined as
follows.

ϕwin◦ =
 n∨
x=1

n∧
y=1

p(x,y)
◦


︸ ︷︷ ︸

column

∨

 n∨
y=1

n∧
x=1

p(x,y)
◦


︸ ︷︷ ︸

row

∨
(

n∧
x=1

p(x,x)
◦

)
∨
(

n∧
x=1

p(x,n+1−x)
◦

)
︸ ︷︷ ︸

diagonal

Formula ϕwin× is defined similarly by replacing ◦ by ×.

Notice that formula ϕwin◦ has quadratic size compared to n.
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2.3.3 Reduction into DEL

We now describe the initial Kripke model, the event models and the formula characterizing
the existence of a uniform winning strategy in blind tic tac toe.

Initial Kripke model

The initial Kripke model consists in a unique world, the empty grid (Figure 2.9).

Definition 34 (Initial Kripke model for blind Tic Tac Toe). LetM0 = (W, (Ra)a∈Ag, V )
with:

• W = {w0};

• R◦ = R× = {(w0, w0)};

• V (w0) = {t◦}.

w0 : {t◦}

◦,×

Figure 2.9: The initial Kripke model for blind tic tac toe.

Event models for choosing a position

A Player’s turn is divided in two event models: one choosing a position to play a token
on and one for the effect of the move. Figure 2.10 shows an example of the event model
(E (1,1)
◦ ,E(1,1)

◦ ) for Player ◦ to choose the cell (1, 1) on a 2× 2 grid.
In (Ez◦ ,Ez◦), there is one event ez

′
◦,choose for each possible position z′, for “Player ◦ chooses

to play in position z′”. Player × does not know the position, so he imagines as possible
any event ez′◦,choose.

Definition 35 (Event model (Ez◦ ,Ez◦)). The event model Ez◦ = (E, (REa)a∈Ag, pre, post) is
defined as follows:

• E = {ez′◦,choose, z′ ∈ {1, . . . , n}2};
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e
(1,1)
◦,choose:

pre : >
post : c(1,1)

◦ ← >

e
(1,2)
◦,choose:

pre : >
post : c(1,2)

◦ ← >

e
(2,1)
◦,choose:

pre : >
post : c(2,1)

◦ ← >

e
(2,2)
◦,choose:

pre : >
post : c(2,2)

◦ ← >

◦,×

◦,×

◦,×

◦,×

×

×

×

×

×

×

Figure 2.10: Event model (E (1,1)
◦ ,E(1,1)

◦ ) for a 2× 2 grid.
.

• RE◦ = {(ez′◦,choose, ez
′
◦,choose), z′ ∈ {1, . . . , n}2};

• RE× = E× E ;

• pre(ez′◦,choose) = >;

• post(ez′◦,choose, cz
′
◦ ) = >

• post is trivial otherwise.

Additionally, Ez◦ = {ez◦,choose}.

The event model for × is defined similarly by switching ◦ and ×’s roles.
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Event model for playing a token

We now describe the event model of playing a token in the position chosen by ◦. It is
composed of two types of events: ez◦,play and ez◦,info that model the fact that the move
resulted in a token played at position z (for event ez◦,play) or in an information for Player
◦ (for event ez◦,info). Such events are drawn in Figures 2.11 and 2.12.

Notice first that both events are executable only if there is no ◦-token in z (¬pz◦),
Player ◦ does not know that there is a × token in z (¬K◦pz×), it is Player ◦’s turn to play
(t◦), Player ◦ has chosen to play in z (cz◦) and the game has not ended yet pend. If such
conditions are not fulfilled, the previous choice of a position was invalid, thus removing
any invalid move from possible strategies. Furthermore:

• Event ez◦,play is executable in the case where there is no ×-token in z (¬pz×). The
effect is that there is now a ◦-token in z (pz◦ ← >), and it is now the other Player’s
turn (t◦ ← ⊥; t× ← >).

• Event ez◦,info is executable in the case where there is a ×-token in z (¬pz×). In this
case, there is no effect (trivial postcondition).

ez◦,play : pre : ¬pz◦ ∧ ¬K◦pz× ∧ cz◦ ∧ ¬pz× ∧ t◦ ∧ ¬pend
post : pz◦ ← >; t◦ ← ⊥; t× ← >; cz◦ ← ⊥

Figure 2.11: Event ez◦,play.

ez◦,info : pre : ¬pz◦ ∧ ¬K◦pz× ∧ cz◦ ∧ pz× ∧ t◦ ∧ ¬pend
post : cz◦ ← ⊥

Figure 2.12: Event ez◦,info.

The pointed event model (Epl◦ ,Epl◦ ) for Player ◦ playing is now the following: it contains
one event ez′◦,play and one event ez′◦,info for each possible position z′ in the grid, and all are
pointed. Figure 2.13 gives an example with a 2× 2 grid.

Let us know define formally (Epl◦ ,Epl◦ ) ( (Epl× ,Epl×) is defined similarly by switching ◦
and ×’s roles).

Definition 36 (Event model (Epl◦ ,Epl◦ )). The event model (Epl◦ ,Epl◦ ) = (E, (REa)a∈Ag, pre, post)
is defined as follows:
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e
(1,1)
◦,play

e
(1,2)
◦,play

e
(2,1)
◦,play

e
(2,2)
◦,play

e
(1,1)
◦,info

e
(1,2)
◦,info

e
(2,1)
◦,info

e
(2,2)
◦,info

◦,×

◦,×

◦,×

◦,×

◦,×

◦,×

◦,×

◦,×

×

×

×

×

×

×

×

×

×

×

×

×

Figure 2.13: Event model (Epl◦ ,Epl◦ ) for a 2× 2 grid.
.

• E = {ez′◦,play, z′ ∈ {1, . . . , n}2} ∪ {ez′◦,info, z′ ∈ {1, . . . , n}2};

• RE◦ = {(ez′◦,play, ez
′
◦,play), z′ ∈ {1, . . . , n}2} ∪ {(ez′◦,info, ez

′
◦,info)z′ ∈ {1, . . . , n}2};

• RE× = {(ez′◦,play, ez
′′
◦,play), z′, z′′ ∈ {1, . . . , n}2} ∪ {(ez′◦,info, ez

′′
◦,info)z′, z′′ ∈ {1, . . . , n}2};

• pre(ez′◦,play) = (¬pz′◦ ∧ ¬K◦pz
′
× ∧ cz

′
◦ ∧ ¬pz

′
× ∧ t◦ ∧ ¬pend) for all z′;

• pre(ez′◦,info) = (¬pz′◦ ∧ ¬K◦pz
′
× ∧ cz

′
◦ ∧ pz

′
× ∧ t◦ ∧ ¬pend) for all z′;

• post(ez′◦,play, pz
′
◦ ) = post(ez′◦,play, t×) = > for all z′ ;

• post(ez′◦,play, t◦) = post(ez′◦,play, cz
′
◦ ) = post(ez′◦,info, cz

′
◦ ) = ⊥ for all z′;

• post is trivial otherwise.

Additionally, Ez◦ = {ez◦,play, ez◦,info}.
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Dummy event model to fill the turns

We do not know in advance the length of a turn, it may need several applications of event
models (Epl◦ ,Epl◦ ). That is why in the formula will we say that event models (Epl◦ ,Epl◦ ) are
played n2 times, and introduce a dummy event model (Edu◦ ,Edu◦ ) that is executable iff the
turn has ended (Figure 2.14).

epass : pre : ¬t◦ ∨ pend
post : cz

′
◦ ← ⊥ for all z′

◦,×

Figure 2.14: Event model (Edu◦ ,Edu◦ )

Definition 37 (Event model (Edu◦ ,Edu◦ )). The event model (Edu◦ ,Edu◦ ) = (E, (REa)a∈Ag, pre, post)
is defined as follows:

• E = {epass};

• RE◦ = RE× = {(epass, epass)};

• pre(epass) = ¬t◦ ∨ pend;

• post(epass, cz
′
◦ ) = ⊥ for all z′;

• post is trivial for other propositions.

Additionally Epass = {epass}.

Event model to declare the end of the game

At the end of each turn, the event model (Eend,Eend) (Figure 2.15) will be executed to
declare the end of the game (i.e. assign pend to >). It is executable if any of the players
wins, meaning that ϕwin◦ ∨ ϕwin× is true.

Definition 38 (Event model (Eend,Eend)). The event model (Eend,Eend) = (E, (REa)a∈Ag, pre, post)
is defined as follows:

• E = {eend};
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2.3. Example: blind tic tac toe

eend : pre : ϕwin◦ ∨ ϕwin×
post : pend ← >

◦,×

Figure 2.15: Event model (Eend,Eend)

• RE◦ = RE× = {(eend, eend)};

• pre(eend) = ϕwin◦ ∨ ϕwin× ;

• post(eend, pend) = >;

• post is trivial for other propositions.

Additionally Eend = {eend}.

Formula

Let (Ech◦ ,Ech◦ ) = ⋃
z′∈{1,...,n}2(Ez′◦ ,Ez

′
◦ ). Now the formula fragment describing a turn for

agent ◦ is the following:
t◦ = (〈(Ech◦ ,Ech◦ )〉K◦〈(Epl◦ ,Epl◦ ) ∪ (Edu◦ ,Edu◦ )〉)n2〈(Eend,Eend)〉
The turn is divided in two steps: first the choice of a position ((Ech◦ ,Ech◦ )) and then

the move, with a possibility of a dummy event if the turn was already ended ((Epl◦ ,Epl◦ ) ∪
(Edu◦ ,Edu◦ )). The modality K◦ in the formula t◦ ensures the uniformity of the position
choice: it must be winning in any possible world for Player ◦. Then, after n2 moves
(which is an obvious and improvable upper bound of the length of the turn), we verify
whether the game has ended with (Eend,Eend).

For Player × the formula fragment is similar except that it does not contain any K×
operator (since the winning strategy must work against any action of Player ×):

t× = ([(Ech× ,Ech× )][(Epl× ,Epl×) ∪ (Edu× ,Edu× )])n2 [(Eend,Eend)]
Finally the whole formula is: ϕ = (t◦t×)n2/2ϕwin◦

Each event model is at most of size O(n2). Overall, it means that ϕ is of size O(n6),
which is polynomial in n. Therefore, the reduction is polynomial, leading to the following
theorem.

Theorem 8. The blind tic tac toe problem is in Pspace.
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2.4 Conclusion

In this chapter, we have defined the model checking and satisfiability problems, and
have proven that the complexity of the model checking problem is Pspace-complete for
DELCK, meaning that adding common knowledge does not change the complexity of the
model checking problem. However, for the satisfiability problem, we go from NExptime
(for DEL) to 2-Exptime (for DELCK).

Finally, we have applied the model checking result to the blind tic tac toe game, thus
proving that searching for the existence a uniform winning strategy in blind tic tac toe
yields a Pspace problem.
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Chapter 3

Symbolic Dynamic Epistemic Logic

In Chapter 1, we have introduced DELCK and shown in Chapter 2 that the complexity
of the model checking problem is Pspace-complete. Yet, this complexity may seem a bit
artificial, because the polynomial is defined with respect to the size of the input, namely
|M|+ |w|+ |ϕ|. Take for instance the muddy children example defined in Example 3 page
37. The associated Kripke model drawn in Figure 1.2 page 38 has 2n worlds in general
where n is the number of children. Indeed, the Kripke model may have an exponential
number of worlds when described explicitly. In practice, we may want to have an implicit
representation of the model that is more succinct. This is what we propose in this chapter.

Usually, if the description language is (exponentially) more succinct, algorithmic prob-
lems become (exponentially) harder. For instance, deciding the existence of an Hamilto-
nian cycle is NP-complete but it becomes NExptime-complete [Pap03] when the input
graph is described succinctly. A succinct representation of a graph with 2b nodes is a
Boolean circuit C such that there is an edge (i, j) ∈

{
0, . . . , 2b − 1

}2
iff C accepts the

binary representations of the b-bit integers i, j as inputs.
In DELCK, the results are surprising. Here, we would expect that the succinct version

of the model checking is Expspace-complete. Actually, we provide a framework where the
representation of events such as attention-based announcements [Bol+16] is exponentially
more succinct whereas the model checking remains in Pspace.

Here, we do not use Boolean circuits traditionally used for representing instances for
succinct decision problems (see [Pap03], Chapter 20.1) but accessibility programs (also
called mental programs in the literature) based on Dynamic Logic of Propositional As-
signments (DL-PA) ([BHT13], [Bal+14]) as developed in [CS15]. The reason of that choice
is that our model checking algorithm directly relies on DL-PA.

The chapter is divided as follows:

• First, we define the notion of symbolic Kripke models and symbolic event models,
and prove that we do not lose in expressivity and that some usual Kripke/event
models have an exponentially more succinct representation.
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• Second, we comment on the complexity of model checking and satisfiability problems
that remain the same for DELCK with or without symbolic models in input.

• Third, we model the bridge card game with succinct DELCK and establish that
searching for a uniform winning strategy is a Pspace-problem even when the initial
situation is described symbolically.

• Fourth, we discuss related work on symbolic models for epistemic logic.

• Finally, we conclude.

Our first definition of symbolic models and the expressivity/succinctness results have
been published in [CS17]. The current definition of symbolic models with the model
checking/satisfiability results have been published in [CS18].

3.1 Programs and Symbolic Models

We describe a symbolic way of describing Kripke models: the set of worlds is the set of
all valuations over the set AP of propositional variables and accessibility relations a−→ are
given in a symbolic manner by means of programs, based on the programs of the Dynamic
Logic of Propositional Assignments (DLPA) [BHT13]. In the rest of the manuscript, we let
U = 2AP be the set of all valuations over AP. When we discuss succinct Kripke models,
a typical world w is associated with its valuation on U and we may confuse the notion
of world and valuation.

3.1.1 Programs for accessibility relations

We first introduce the syntax of programs.

Definition 39 (Syntax of programs). The syntax of programs π is defined as follows.

π ::= p←β | β? | π; π | π ∪ π

where p ∈ AP, β is a propositional formula.
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The intuitive meaning of programs is the following. The program p←β sets variable
p to the truth value of β. β? tests whether β holds or not. The program π; π′ executes π
then execute π′. The program π ∪ π′ non-deterministically executes π or π′.

Originally in DL-PA programs also feature the Kleene star π∗ for “execute π a non-
deterministic finite number of times”, yet here we choose to not include it in the syntax
since it is not very relevant afterwards. Instead, iteration over programs will be featured
with the common knowledge operator. Furthermore, initially the only allowed assignments
in DL-PA are p ← ⊥ and p ← > but here we choose to have a more convenient syntax.
Our syntax is equivalent since p← β is equivalent to (β?; p← >) ∪ (¬β?; p← ⊥).

The semantics of a program π is an accessibility relation over U , written π−→, and
defined by induction over π as follows.

Definition 40 (Semantics of programs). The semantics of a program π is a subset of U 2

defined as follows.

• w
p←β−−→ u if (u = w\{p} and w 6|= β) or (u = w ∪ {p} and w |= β);

• w
β?−→ u if w |= β and w = u;

• w
π1;π2−−−→ u if there exists v ∈ U such that w π1−→ v and v π2−→ u;

• w
π1∪π2−−−→ u if w π1−→ u or w π2−→ u.

We distinguish a particular program set(p1, ..., pn) that allows to reach all worlds
which may differ from the current one only on the valuation of propositions p1, ..., pn.
This program non-deterministically assigns values to p1, ..., pn, namely:

set(p1, ..., pn) = (p1←⊥∪ p1←>); . . . ; (pn←⊥∪ pn←>)

We now give examples of programs.

Example 14 (Programs for muddy children). Since child a sees the forehead of b but
not her own, the program for a amounts to modifying the truth value of ma. That is,
πa = set(ma), and symmetrically πb = set(mb).

Example 15 (Program for an omniscient agent). The program >? represents an omni-
scient agent since the only reachable valuation with >? is the actual valuation, the only
possible world is the current one. For instance in the muddy children, the program of the
father is πf = >?.
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Example 16 (Program for an agent believing p). Let AP = {p, q}. The program π =
p←>; set(q) represents an Agent a that believes p but is uncertain of q.

The size of a program is defined as follows.

Definition 41 (Size of a program). It is noted |π| and is defined by induction:

• |p← β| = 1 + |β|;

• |β?| = 1 + |β|;

• |π1; π2| = 1 + |π1|+ |π2|;

• |π1 ∪ π2| = 1 + |π1|+ |π2|.

Now that programs are defined, we turn to symbolic (Kripke) models.

3.1.2 Symbolic Kripke models

Symbolic models are fully defined by means of the programs that denote accessibility
relations between the set of valuations.

Definition 42 (Symbolic Kripke models). A symbolic Kripke model is a tuple M =
〈APM, βM, (πa)a∈Ag〉 where:

• APM is a finite set of atomic propositions;

• βM is a Boolean formula over APM;

• and πa is a program over APM for each agent a.

A symbolic model naturally denote a Kripke model as follows.

Definition 43 (Semantics of symbolic Kripke models). Given a symbolic Kripke model
M = 〈APM, βM, (πa)a∈Ag〉 the Kripke model represented by M, writtenMM is the model
(W, { a−→}a∈Ag, V ) where:

• W = {w ∈ U | w |= βM};

• a−→= {(w, u) | w πa−→ u};

• V (w) = w.

Notice that the translation from symbolic Kripke models to Kripke models can be also
done conversely, meaning that we do not lose expressivity by considering symbolic Kripke
models.
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Definition 44. Let M = (W, (Ra)a∈Ag, V ) be a Kripke model. We define the succinct
Kripke model MM = 〈APM, βM, (πa)a∈Ag〉 where:

• APM = AP ∪ {pw | w ∈ W};

• βM = ∃!({pw | w ∈ W})∧
∧
w∈W pw → desc(V (w))

• πa = ⋃
wRau pw?; set(APM); pu?.

The intended meaning of the fresh atomic propositions pw is to designate the world w
(as nominals in hybrid logic [Bla00]). Formula βM describes the set W and the valuation
V . Program πa performs a non-deterministic choice over edges wRau and then simulate
the transition wRau. The following proposition states that MM indeed representsM.

Proposition 8. (M̂(MM), {pw} ∪ V (w)) and (M, w) are AP-bisimilar.

Proof. We note M = (W, (Ra)a∈Ag, V ) and M̂(MM) = (W ′, (R′a)a∈Ag, V
′). We define

B := {(u, pu ∪ V (u)) | u ∈ W}. Let us prove that B is a AP-bisimulation.

• AP-conservation: for all w ∈ W , the valuation of w on AP is V (w) by definition.
The valuation of {pw} ∪ V (w) is also V (w) since pw 6∈ AP. The AP-conservation is
thus proven.

• Zig: consider w ∈ W . Then we have pw ∪ V (w) |= βM by Definition 44, therefore
{pw}∪V (w) ∈ M̂(MM). For all u ∈ W , we then also have {pu}∪V (u) ∈ M̂(MM)
and if wRau then we have pw ∪ V (w) πa−→ pu ∪ V (u) so we have wRM̂(MM)

a u.

• Zig: the reasoning is symmetrical, since w and pw ∪ V (w) have a one on one corre-
spondence.

Therefore, with the potential cost of more atomic propositions, it is always possible
to go from Kripke model to symbolic Kripke models and vice versa. Notice that the
transformation from Kripke models to symbolic Kripke models introduces |W | new atomic
propositions, and that the symbolic Kripke model MM is of polynomial size compared to
the size of the Kripke modelM. Yet, from one Kripke modelM, there is not an unique
succinct Kripke model representing M. For instance, instead of introducing one atomic
proposition per world, we could have introduced atomic propositions p1, . . . , plog2(|W |) and
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{ma,mb} {mb}

{ma} ∅

πa

πa

πb πb

πa, πb

πa, πb

πa, πb

πa, πb

Figure 3.1: πa = set(pa), πb = set(pb), and πf = >?

then instead of pw we would have assigned a valuation on p1, . . . , plog2(|W |) to each worlds
instead, which introduces a logarithmic number of atomic propositions.

We now model some examples and prove at the same time that a family of Kripke
models, there exist equivalent symbolic Kripke models that are exponentially smaller.

Example 17. The Kripke model M from Figure 1.1 page 37 is modeled by the succinct
Kripke model MM = 〈APM, βM, (πa)a∈Ag〉 with APM = {p, pw, pu}, βM = ∃!({pu, pw}) ∧
(pw → p) ∧ (pu → ¬p) and πa = ⋃

w1,w2∈W pw1?; set(APM); pw2?.

Example 18. The symbolic Kripke model corresponding to the initial situation of the
muddy children puzzle is M = 〈APM, βM, (πa)a∈Ag〉 with APM = AP, βM = > and for
each child a, πa = set(ma). Figure 3.1 showsMM for two children a and b.

Example 19 (A Kripke model with multi-valuations). We consider the Kripke modelM
of Figure 3.2a with AP = {p}, in which valuations {p} and ∅ appear twice. In this figure,
Agent b believes that Agent a believes that p is true (i.e. KbKap holds with K interpreted as
a belief operator). For succinctly representingM, we introduce a new atomic proposition
pbel that marks possible worlds for b. We now have AP = {p, pbel} and obtain the Kripke
model in Figure 3.2b, with the following programs:

πa = (¬pbel?)∪ (pbel?; (p←>)): Agent a believes p in the pbel-worlds, and is omniscient
in the ¬pbel-worlds.

πb = (pbel ← >): Agent b knows the value of p but believes that pbel is true.

Notice that in the symbolic Kripke model for muddy children, each program πa has
linear size compared to |Ag|, |APM| = |AP| and |βM| = 1. Therefore, the size of the
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∅ ∅

{p} {p}

a

b

b

a, ba, b

a, b a, b

{pbel} ∅

{p, pbel} {p}

πa

πb

πb

πa, πbπa, πb

πa, πb πa, πb

a. b.

Figure 3.2: Kripke model with multi-valuations and its symbolic representation.

symbolic Kripke model is quadratic in the number of children, whereas the Kripke model
has exponential size. Notice that we cannot find another Kripke model exponentially
smaller AP-bisimilar since each valuation must be present in an explicit Kripke model
representing the muddy children. Therefore, the example of muddy children shows that
there exist Kripke models such that there exist a symbolic counterpart exponentially
smaller, and that this exponential is significant because the Kripke model could not be
reduced written explicitly. Therefore, the following theorem is true.

Theorem 9. There exists a family of Kripke model (Mn)n∈N of exponential size in n

such that there exists a family of equivalent succinct Kripke models (Mn)n∈N which are of
polynomial size in n.

Proof. Take n as the number of children in the muddy children puzzle.

3.1.3 Symbolic Event Models

We adopt a similar method for symbolic event models.

Definition 45. A symbolic event model is a tuple E = 〈APE , χE , (πa,E)a∈Ag, pre, post〉
where:

• APE is a set of atomic propositions disjoint from AP;

• χE is a propositional formula over APE characterizing the set of events;

• πa,E is a program over APE for all a ∈ Ag;
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• pre is a propositional formula over APE ∪ LEL(AP) (meaning that any atom from
APE cannot be under the scope of a K or a C operator);

• for all p ∈ AP, post(p) is a propositional formula over APE ∪ LEL(AP).

As for symbolic Kripke models, the set of events in symbolic events models is de-
scribed by a set of valuations. Here, we choose to distinguish the atomic propositions that
describe the set of possible events (APE) from the atomic propositions that describe the
preconditions and the postconditions (AP).

Similarly to symbolic Kripke models, it is possible to express any event model as a
symbolic event model and vice versa.

Definition 46. Given a symbolic event model E = 〈APE , χE , (πa,E)a∈Ag, pre, post〉, the
event model represented by E, noted Ê(E) is the model (E, (REa)a∈Ag, pre, post) on AP
where:

• E = {ve ∈ V(APE) | ve |= χE};

• REa = {(ve, ve
′) | ve

πa,E−−→ ve
′};

• pre(ve) = pre|ve which is pre where every atomic proposition of APE is replaced by
its value in ve;

• post(ve, p) = post(p)|ve.

The definition is quite straightforward. The set of events is the set of valuations sat-
isfying χE We define a symbolic event model EE representing the event model E .

Definition 47. Let E = (E, (REa)a∈Ag, pre, post) be an event model on AP. We define the
symbolic event model EE = 〈APE , χE , (πa,E)a∈Ag, pre, post〉 where:

• APE = {pe | e ∈ E};

• χE = ∃!(APE);

• πa,E = ⋃
eREaf

pe?; pe ← ⊥; pf ← >;

• pre = ∧
e∈E(pe → pre(e));

• post(p) = ∧
e∈E(pe → post(e, p)).
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Fresh atomic proposition pe is used to designate the event e. Formula χE describes
the set E. Program πa,E performs a non-deterministic choice in the same spirit than πa in
Definition 44. The formulas pre and post(p) mimic the formulas pre and post(p).

It is possible to define symbolic multi-pointed event models (E, β0): β0 is just a boolean
formula on APE defining the set of pointed events.

Example 20. The event model E of Figure 1.3 page 41 is modeled by the symbolic event
model EE = 〈APM,APE , χE , (πa,E)a∈Ag, post〉 with:

• APE = {pe, pf};

• χE = ∃!(APE);

• πa,E = pe? ∪ pf?

• πb,E = (pe?; pe ← ⊥; pf ← >) ∪ (pf?);

• pre = (pe → p) ∧ (pf → >);

• post(p) = (pe → ⊥) ∧ (pf ← p).

Proposition 9. Ê(EE) and E are equivalent.

Proof. Let E = (E, (REa)a∈Ag, pre, post) and Ê(EE) = (E′, (REa
′)a∈Ag, pre′, post′). We prove

that for any Kripke model M = (W, (RMa )a∈Ag, V ), M ⊗ E and M ⊗ Ê(EE) are AP-
bisimilar. Let B is the set of tuples ((w, e), (w, e′)) with w ∈ W , e ∈ E and e′ = {pe}.
Such a bisimulation is well defined becauseM, w |= pre(e) if and only ifM, w |= pre|{pe},
because pre|{pe} = pre(e). We prove that B is a bisimulation:

• AP-conservation: for all p ∈ AP, we have M, w |= post(p) if and only if M, w |=
post(p)|{pe} so p ∈ VM⊗E((w, e)) if and only if p ∈ V Ê(EE)((w, e)). The AP-conservation
is thus proven.

• Zig and Zag: we have (w, e) a−→ (u, f) if and only if w a−→ u, f and e
a−→ f . By

definition, e a−→ f if and only if {pe}
πa,E−−→ {pf} therefore (w, e) a−→ (u, f) if and only

if (w, e′) a−→ (u, f ′). The Zig and Zag properties are directly deduced from this fact.
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Succinctness of symbolic event models

As for succinct Kripke models, we provide a family of event models having exponentially
more compact representations with symbolic event models. First let us define this family
of event models.

pre : ¬p∧¬ha1∧¬ha2

post : /

pre : ¬p∧¬ha1∧ha2

post : /

pre : ¬p∧ha1∧¬ha2

post : /

pre : ¬p∧ha1∧ha2

post : /

pre : p∧¬ha1∧¬ha2

post : /

pre : p∧¬ha1∧ha2

post : /

pre : p∧ha1∧¬ha2

post : /

pre : p∧ha1∧ha2

post : /

idle : >

a1, a2
a1

a1, a2
a1

a2a2

a1, a2

a1

a2

a1, a2

a1

a2

a1, a2

Figure 3.3: The event model Ap corresponding to an attention-based announcement p for
two agents a1 and a2. The model consists of nine events. The six edges pointing to the
dashed box point to all four events in the box.

Example 21. We focus on the notion of attention-based announcement of p as shown in
[Bol+16]. In addition of classic atomic propositions, we add propositions ha for “agent
a is listening to the announcement”. The attention-based announcement of p can be then
represented by the event model E = (E, (REa)a∈Ag, pre) where:

• E = V({p} ∪ {ha | a ∈ Ag}) ∪ {eidle};

• for all a, (e, f) ∈ REa if e 6= eidle, f 6= eidle, e |= ha and f |= p;

• for all a, (e, eidle) ∈ REa if e 6= eidle and e 6|= ha;
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• for all a, (eidle, eidle) ∈ REa ;

• pre(e) =

 e if e 6= eidle

> otherwise.
;

• post is trivial.

Figure 3.3 shows the event model of the attention-based announcement of p for two agents
a1 and a2. Event eidle is the event where nothing happens. The relation REa is defined as
follows: if a is listening (e |= ha) then a believes that p has been announced (f |= p). If
a is not listening (e 6|= ha) then a believes nothing happens. The precondition is defined
to match the fact that attentive agents listen to the announcement of p (thus leading to
events where p holds) and that others agents believe that nothing that happened (thus
the > precondition on eidle). The announcement is purely epistemic so the postcondition
function is trivial.

Let us consider the family of models (En)n∈N given in Example 21 for all number
of agents n. The event model E is succinctly represented by the symbolic event model
E = 〈APM,APE , χE , (πa,E)a∈Ag, post〉 defined by

• χE = >;

• πa,E = (¬pidle?; (ha?; p←>; set({hb, b ∈ Ag}))∪

(¬ha?; set(APM); pidle←>)) ∪(pidle?; set(APM));

• post = >?.

Atomic proposition pidle intuitively means that the event eidle is occurring (at the
bottom in Figure 3.3). Formula χE = > means that the set of possible events in uncon-
strained. Program πa,E works as follows: if pidle is false, if ha is true, assign > to p and
arbitrarily change hb for all b 6= a; if ha is false, change valuations of propositions in APM
and set pidle to true; otherwise if pidle is true, change all truth values of propositions in
APM. The number of worlds in E is 2n+1 + 1 while the size of E is O(n2) (each program
πa,E is of size O(n)).

Notice that this is not sufficient to say that we have found a family of event models
whose symbolic representation is exponentially more succinct. Indeed, the event model
itself could be too big, because the event model may be reducible, which was not the case
in the muddy children Kripke model before. For instance take the event model with one
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event whose precondition is > and with trivial postcondition, and take a second one with
two events with preconditions p and ¬p and trivial postconditions, linked by all agents for
epistemic relations. Then both event models are equivalent, although the preconditions
in the second one are disjoint.

To show that the event model is not reducible, we need here a notion of equivalence
between event model called action emulation.

Definition 48. Let E = (E, (→Ea)a∈Ag, pre) and E ′ = (E ′, (→E ′a )a∈Ag, pre
′) be two event

models without postconditions Let Σ be the set of preconditions appearing in E and E ′. Let
Σ̂ be the set of formulas containing Σ and closed under sub-formulas and negation (see
[ERS12] for more details). Let CS(Σ̂) be the set of maximal consistent subsets of Σ̂. An
action emulation AE is a set of relations {AEΓ}Γ∈CS(Σ̂) ⊆ E × E ′ such that whenever
eAEΓe

′:

• Invariance: pre(e) ∈ Γ and pre(e′) ∈ Γ;

• Zig: For all f ∈ E and Γ′ ∈ CS(Σ̂), if e →Ea f , pre(f) ∈ Γ′ and the formula(∧
ψ∈Γ ψ ∧ K̂a

∧
ψ′∈Γ′ ψ

′
)
is consistent then there exists f ′ ∈ E ′ such that e′ →E ′a f ′

and fAEΓ′f
′;

• Zag: symmetric of Zig for E ′.

Action emulation is similar to bisimulation in the sense that the types of rules are the
same, except that instead of imposing equivalence for preconditions, we just ask here that
they are in a same maximal consistent subset of Σ̂.

Action emulation characterizes equivalence for event models without postconditions:
E and E ′ are equivalent if there is an action emulation AE between E and E ′ such that
for all e ∈ E and Γ ∈ CS(Σ̂) there exists e′ ∈ E′ such that eAEΓe

′ and vice versa.
Now we prove that standard event models cannot represent En as succinctly as symbolic

event models.

Theorem 10. There is no propositional event model E ′n equivalent to En with less that 2n

events.

Proof. We use the characterization of equivalent models with action emulations (Defini-
tion 48). We suppose that there is an action emulation AE between En and E ′n. Let Σ
be the set of preconditions of En and E ′n. Note that Σ̂ (defined as in Definition 48) is a
set of propositional formulas. Let e1 and e2 be events of E such that pre(e1) |= p and
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pre(e2) |= p and e1 6= e2.

Suppose that there is e′ of E ′n, Γ1,Γ2 such that e1AEΓ1e
′ and e2AEΓ2e

′. As e1 6= e2,
there is an agent a such that pre(e1) |= ¬ha and pre(e2) |= ha (we swap e1 and e2 if
pre(e1) |= ha and pre(e2) |= ¬ha).

Then e1R
En
a eidle. We consider the maximal consistent subset Γ′ = {ϕ ∈ Σ̂|{ha, a ∈

Ag} |= ϕ} . We have pre(eidle) ∈ Γ′ and the formula
(∧

ψ∈Γ1 ψ ∧ K̂a
∧
ψ′∈Γ′ ψ

′
)
is consistent

(because Γ1 and Γ′ are propositional). By Zig, there exists f ′ ∈ E′ such that e′RE ′na f ′ with
eidleAEΓ′f

′. By Zag, as e2AEΓ2e
′ and the formula

(∧
ψ∈Γ2 ψ ∧ K̂a

∧
ψ′∈Γ′ ψ

′
)
is consistent,

there exists f ∈ E such that eREna f and fAEΓ′e
′. By invariance we obtain pre(f) ∈ Γ′.

However we necessarily have here pre(f) |= p so {ha, a ∈ Ag} 6|= pre(f). Therefore we
derive a contradiction.

This proves that there at least 2n events.

3.2 Model checking and satisfiability

3.2.1 Model checking

Let M be a symbolic Kripke model and ϕ ∈ LDELCK a formula containing only symbolic
event models. We define the notation M, w |= ϕ for M̂(M), w′ |= ϕ′ where w′ is the
counterpart of w in the Kripke model M̂(M) and ϕ′ is ϕ where each event model (E, β0)
is replaced by (Ê(E),E0) with E0 = {e | e |= β0}.

The symbolic model checking problem is now defined as follows.

Definition 49 (Model checking problem). The succinct model checking problem of DELCK
is defined as follows:

• Input: a symbolic Kripke model M, a world w of M, a formula ϕ of DELCK
whose event models are symbolic.

• Output: yes if M, w |= ϕ, no otherwise.

Here we prove that the symbolic model checking problem against DELCK is also
Pspace-complete. In fact, we do not go into much detail, because the proof is almost
identical to the Pspace-completeness of the model checking problem against DELCK.
The algorithms for the symbolic checking are given in Figures 3.4, 3.5 and 3.6.

The main differences are the following.
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proc mcyes(M
−→
E , w−→e , ϕ) |M

−→
E |+ |ϕ|

B accepts whenever M−→E , w−→e |= ϕ

case ϕ = p: invalyes(p,M
−→
E , w−→e )

case ϕ = (ϕ1 ∨ ϕ2): (∃)(∃)(∃) choose i ∈ {1, 2}; mcyes(M
−→
E , w−→e , ϕi)

case ϕ = ¬ψ: mcno(M−→E , w−→e , ψ).
case ϕ = Kaψ:

(∀)(∀)(∀) choose u−→f ∈M
−→
E

(∃)(∃)(∃) accessno(w−→e , u−→f , a,M−→E ) or inno(u−→f ,M−→E ) or mcyes(M
−→
E , u
−→
f , ψ)

case ϕ = 〈E, β0〉ψ:
(∃)(∃)(∃) choose e such that e |= β0;
(∀)(∀)(∀) mcyes(M

−→
E , w−→e , pre|ve) and mcyes(M

−→
E :: E, w−→e :: e, ψ).

case ϕ = CGψ:
(∀)(∀)(∀) choose u−→f ∈M

−→
E

(∃)(∃)(∃) access∗no(w−→e , u−→f ,G,BM,ϕ,M
−→
E ) or inno(u−→f ,M−→E ) or mcyes(M

−→
E , u
−→
f , ψ)

Figure 3.4: Model checking procedures for DELCK (in gray: quantities associated to each
procedure call).

proc relationyes(w, u, π) |π|

B accepts whenever w π−→ u
case π = p←β:
if (w |= β ∧ (u = w ∪ {p})) ∨ (w 6|= β ∧ (u = w \ {p})) then accept else reject

case π = π1; π2: (∃)(∃)(∃) v ∈ U ; (∀)(∀)(∀) relationyes(w, v, π1) and relationyes(v, u, π2)
case π = π1 ∪ π2: (∃)(∃)(∃) relationyes(w, u, π1) or relationyes(w, u, π2)
case π = β?: if w = u ∧ w |=PL β then accept else reject

Figure 3.5: Procedures relationyes and relationno to check whether w π−→ u.

• Instead of checking whether (w, u) ∈ Ra we have w πa−→ u, checked by the procedure
relationyes(w, u, πa). This procedure takes |πa| in time so it does not change the
overall complexity.

• Instead of pre and post we now have pre and post, their symbolic counterparts.
Therefore, instead of pre(e), we now have pre|ve . Constructing pre|ve takes linear
time in the size of pre. Here we can consider it to simplify that it is constant since
the a computation branch is linear in respect of the size, so the constructions of
formulas pre|ve and post(p)|ve will add a quadratic factor to the time taken in the
worst case.
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proc invalyes(p, w−→e ,M
−→
E ) |M

−→
E |

B accepts whenever p ∈ V (w−→e )
case

−→
E = ε: if p ∈ w then accept else reject

case
−→
E = −→E ′::E, w−→e = w−→e ′::e: mcyes(M

−→
E ′, w−→e ′, post(p)|ve)

proc inyes(w−→e ,M
−→
E ) |M

−→
E |

B accepts whenever w−→e ∈M
−→
E

case
−→
E = ε: accept

case
−→
E = −→E ′::E, w−→e = w−→e ′::e:

(∀)(∀)(∀) mcyes(M
−→
E ′, w−→e ′, pre|ve) and inyes(w−→e ′,M

−→
E ′)

proc accessyes(w−→e , u
−→
f , a,M

−→
E ) |M

−→
E |

B accepts whenever (w−→e , u−→f ) ∈ RM
−→
E

a

case
−→
E = ε: relationyes(w, u, πa)

case
−→
E = −→E ′ :: E, −→e = −→e ′ :: e, −→f = −→f ′ :: f :

(∀)(∀)(∀) accessyes(w−→e ′, u
−→
f ′, a,M

−→
E ′) and relationyes(e, f, πEa )

proc access∗yes(w−→e , u
−→
f ,G, i,M

−→
E ) |M

−→
E |+ log i

B accepts whenever (w−→e , u−→f ) ∈ (⋃a∈GRa)j with j ≤ i
case i = 1:
if u
−→
f = w−→e then accept else (∃)(∃)(∃) choose a ∈ G; accessyes(w−→e , u

−→
f , a,M

−→
E )

case i ≥ 2:
(∃)(∃)(∃) choose v−→g ∈M

−→
E

(∀)(∀)(∀) inyes(v−→g ,M
−→
E ) and access∗yes(w−→e , v−→g ,G, i/2,M

−→
E )

and access∗yes(v−→g , u
−→
f ,G, i/2,M−→E )

Figure 3.6: Sub-procedures for DELCK (in gray: quantities associated to each procedure
call).
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Therefore, the complexity remains unchanged, the symbolic model checking problem
is in Pspace. The Pspace-hardness comes from the hardness of non-symbolic model
checking. The specification of the procedures are as follows.

Proposition 10. For all formulas ϕ with symbolic event models, for all symbolic Kripke
models M, for all sequences of event models −→E , for all worlds w−→e , u−→f of M−→E , for all
agents a, for all groups of agents G, for all programs π, for integers i that are powers of
two,
mcyes(M

−→
E , w−→e , ϕ) is accepting iff M

−→
E , w−→e |= ϕ,

mcno(M−→E , w−→e , ϕ) is accepting iff M
−→
E , w−→e 6|= ϕ,

invalyes(p, w−→e ,M
−→
E ) is accepting iff p ∈ V (w−→e ),

invalno(p, w−→e ,M−→E ) is accepting iff p 6∈ V (w−→e ),
inyes(w−→e ,M

−→
E ) is accepting iff w−→e ∈M

−→
E ,

inno(w−→e ,M−→E ) is accepting iff w−→e 6∈M
−→
E ,

accessyes(w−→e , u
−→
f , a,M

−→
E ) is accepting iff (w−→e , u−→f ) ∈ Ra,

accessno(w−→e , u−→f , a,M−→E ) is accepting iff (w−→e , u−→f ) 6∈ Ra,
access∗yes(w−→e , u

−→
f ,G, i,M

−→
E ) is accepting iff (w−→e , u−→f ) ∈ ⋃j≤i (⋃a∈GRa)j,

access∗no(w−→e , u−→f ,G, i,M−→E ) is accepting iff (w−→e , u−→f ) 6∈ ⋃j≤i (⋃a∈GRa)j,
relationyes(w, u, π) is accepting iff w

π−→ u,
and relationno(w, u, π) is accepting iff w 6 π−→ u.

The result on the complexity may seem surprising, since usually considering symbolic
models increases the complexity. Here, we advocate that the non-symbolic model checking
already has some kind of symbolic representation, since the model M⊗ −→E is not rep-
resented explicitly in the input. We add another layer of symbolic here, and fortunately
having both symbolic aspects at the same time does not cause any issue here.

3.2.2 Satisfiability

Succinct satisfiability problem

The symbolic satisfiability problem for DELCK is defined as follows:

Definition 50 (Symbolic satisfiability problem).

• Input: ϕ ∈ LsucDELCK;
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• Output: yes if ϕ is satisfiable (that is, there exists a pointed epistemic model1M, w

such thatM, w |= ϕ); no otherwise.

Theorem 11. The symbolic satisfiability problem of DELCK is in 2EXPTIME.

Proof. We adapt the algorithm of Figure 2.4 for the non-succinct satisfiability problem.
First, we translate in exponential time our formula ϕ ∈ LsucDELCK into an exponential size
formula τ(ϕ) ∈ LDELCK. Then we call isDELCK-sat?(τ(ϕ)). As the skeleton of formula
ϕ and τ(ϕ) are the same (only dynamic modalities have been replaced), the cardinality
of each Hintikka set h is still exponential in the size of ϕ. Therefore, the new algorithm
for symbolic satisfiability problem is still double-exponential in the size of ϕ.

3.3 Example: bridge card game

In this section, we show how to use symbolic model checking of DELCK to polynomially
express the existence of a uniform winning strategy in the bridge card game [FTF01].

Here, we occult completely the bidding aspect of the bridge, we just want to know if
it is possible to win at least k deals once the bidding is done. Notice that even though
there are more than two players, we consider the bridge as a two player game, where the
adversaries are considered as a coalition.

After recalling the rules of the game, we define a symbolic Kripke model and symbolic
event models to express the game, and finally write a formula to express the existence of
a winning strategy. With the model checking result for symbolic DELCK, we will thus
prove that checking for the existence of a winning strategy in bridge is in Pspace. We
discuss briefly how to use this result in the bidding phase afterwards.

3.3.1 Rules

In bridge, we have the data of a set of card values V = {v1, . . . , vn}. In a classical card
game, we would have V = {1, . . . , 13} with Jack the card 11, Queen the card 12 and King
the card 13. We say that card i is stronger than card j if and only if i > j. We also have
a set of card colors C = {c1, . . . , cm}. A card is then a couple (v, c) with v ∈ V the value
of the card and c ∈ C its color. Figure 3.7 shows a example of card set corresponding to
a classical 52 cards deck.

1. Succinctness is needed for the input of decision problems. Therefore, we do not require the Kripke
model in a symbolic version. It would not change the decision problem.
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Figure 3.7: Example of a set of cards for V = {1, . . . , 13} (here J = 11, Q = 12, K = 13)
and C = {♠,♣,♥,♦}.

Goal of the game As said before, we completely omit the bidding part. Each player
initially has the same number of cards and all the cards are given to the players (therefore
the number of players n must divide |V | × |C|). The player we want to check the winning
strategy for is called the leader. His aim is to win at least k deals where k corresponds to
his bidding (in the classical bridge it is 6 + the bidding but it is equivalent).

Dummy players Some players do not play the game. They are called dummy players.
The dummy players reveal their hands, and the leader is now in control of its own hand
and the hands of the dummy players. In classical bridge with 4 players, there is only one
dummy player, so the leader controls 2 hands and 2 other players control their own hand.

Execution of a deal In a deal, the first player plays a card. The color of the card is
the color players must play during the deal. Each player then plays a card of the same
color, and the player with the highest card wins the deal. He becomes the first player for
the next deal.

Notable exceptions Initially, there may be a special color called the trump color de-
termined by the bidding. If a player cannot play the color of the deal, then he can play a
card of the trump color instead. When played, trump colors are stronger than the color
of the deal. If the player cannot play the color of the deal nor a trump card, he plays
another card but he will necessarily lose the deal.

The problem we address is then the following:

• Input: n players, a set of values V , a set of colors C such that n divides |V | × |C|,
an integer k ≤ |V |×|C|

n
, a set of dummy players D ⊆ {2, . . . , n}, an optional trump
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hi,v,c i ∈ {1, . . . , n}, v ∈ V, c ∈ C Player i has card (v, c) in his hand
tui i ∈ {1, . . . , n} It is Player’s i turn to play
pi,v,c i ∈ {1, . . . , n}, v ∈ V, c ∈ C Player i has played card (v, c) in the current deal.
wl l ∈ {0, . . . , |V |×|C|

n
} Player 1 had currently won l deals.

trc c ∈ C Color c = ct is the trump color.
dui i ∈ {1, . . . , n} The leader plays the hand of Player i (meaning

that Player i is dummy or the leader)
dec c ∈ C c is the current color of the deal.

Table 3.1: Set AP for bridge.

color ct ∈ C, the data of the hand H1 of the leader and of the dummy players Hd

for d ∈ D.

• Output: yes if Player 1 has a uniform winning strategy to win at least k deals in
the game where he controls his hand and the hands of players in D.

3.3.2 Atomic propositions and useful formulas

Compared to blind tic tac toe (see Section 2.3), the difficulty of the modeling is not in
the events since all events are combinations of public announcements. Instead, the heart
of matter lies in the atomic propositions and the Kripke model. In Table 3.1 we define the
set of atomic proposition AP needed. Notice that there is a polynomial number of atomic
propositions in the input size.

We also define the following macros:
winsdeal(i) = ∨n

i=1(pi,v,c∧
((dec ∧ ¬trc ∧

∧
1≤j≤n,j 6=i

(∧
c2∈C,v2∈V pj,v2,c2 → (¬trc2 ∧ (dec2 → (v2 < v)))

)
)

∨(trc ∧
∧

1≤j≤n,j 6=i

(∧
c2∈C,v2∈V pj,v2,c2 ∧ trc2 → (v2 < v)

)
))

The formula winsdeal(i) states that Player i wins the current deal. Indeed:

• The first line states that there is a c ∈ C and v ∈ V such that Player i has played
card (v, c).

• The second line states that if c is the color of the deal then for every Player, the
card he played has not the trump color and if it has the color of the deal, its value
is lower than v.

• The third line states that if c is the trump color, then for every Player, if he played
a card with the trump color then its value is lower than v.
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The case where Player i has played a card which has not the color of the deal nor the
trump color is not considered because this card would not make Player i win the deal.

canplay(i, (v, c)) = hi,v,c ∧ (dec ∨(trc ∧
∧
c′∈C (dec′ →

∧
v′∈V ¬hi,v′,c′))

∨ (∧c′∈C (dec′ ∨ trc′ →
∧
v′∈V ¬hi,v′,c′)))

∨∧c′∈C ¬dec′
)

Formula canplay(i, (v, c)) states that Player i can play card (v, c). The formula is the
conjunction of Player i has card (v, c) in hand (hi,v,c) and of a disjunction of four cases:

• Color c is the color of the deal (dec).

• Color c is the trump color and Player i does not have any card of the color of the
deal.

• Color c is nor the color of the deal or the trump color but Player i does not have
any of the two colors in hand.

• No color is currently the color of the deal (then Player i can play any card).

3.3.3 Initial Kripke model

Compared to blind tic tac toe, the Kripke model initially has a exponential number of
words. Thus, for practical reasons, we consider a symbolic Kripke model instead. It is
M = 〈APM, βM, (πa)a∈Ag〉. Here APM = AP. The formula βM is the conjunction of
formulas given in Table 3.2.

Remark 2. Although Formula 1 is not boolean, it is possible to express the equality with a
boolean formula in the following way. Let S be a list of atomic propositions. We introduce
the atomic proposition eqk(S ′) for any k ≤ |V |×|C|

n
and S ′ sublist of S. It is defined as the

following conjunction of formulas:

• eqk([])↔

 > if k = 0
⊥ otherwise

• eqk(S ′ :: p)↔

 (p ∧ eqk−1(S ′)) ∨ (¬p ∧ eqk(S ′)) if k > 0
(¬p ∧ eqk(S ′)) otherwise

Then the formula ∧ni=1

(
|{hi,v,c = >, v ∈ V, c ∈ C}| = |V |×|C|

n

)
is replaced by the follow-

ing formula:
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3.3. Example: bridge card game

Content of the hands for players

1.
∧n
i=1

(
|{hi,v,c = >, v ∈ V, c ∈ C}| = |V |×|C|

n

)
Each player has exactly |V |×|C|

n
cards in hand

2.
∧
v∈V,c∈C

⊕n
i=1 hi,v,c Each card is exactly in one player’s hand.

3.
∧
v∈V,c∈C

∧n
i=1 ¬pi,v,c No card is currently played.

Initial situation in the game

4. tu1 ∧
∧n
i=2 ¬tui It is Player’s 1 turn to play.

5. w0 ∧
∧ |V |×|C|

n
l=1 ¬wl Player 1 has not won any deal yet.

6. trct ∧
∧
c∈C\{ct} ¬trc

Color ct is the only trump color (replace by
∧
c∈C ¬trc

if there is no trump color).

7. du1 ∧
∧
i∈D dui ∧

∧
j∈C\(D∪{1}) ¬duj The dummy players’ hands are controlled by Player 1.

8.
∧
c∈C ¬dec No color is the color of the deal.

Table 3.2: Clauses of βM formula for bridge.

n∧
i=1

eq |V |×|C|
n

({hi,v,c, v ∈ V, c ∈ C}) where {hi,v,c, v ∈ V, c ∈ C} is viewed as a list.

The number of new atomic propositions introduced is |V |× |C|×
(
|V |×|C|

n
+ 1

)
for each

Player i, so |V | × |C| × (|V | × |C|+ n) in total, so we remain polynomial. In the rest of
the construction we omit the values of eqk(S ′) because they are irrelevant in event models,
they are only useful to define the initial Kripke model.

The players only have uncertainty about the hands of other non dummy players so πa
is defined as follows.

πa = set({hi,v,c, v ∈ V, c ∈ C, i 6∈ D, i 6= a})
The initial symbolic Kripke model M is then indeed of polynomial size in the size of

the input.

3.3.4 Event models

To be consistent with the definition of symbolic model checking, we should define event
models symbolically. Yet, they are of linear size when described explicitly, we use Defini-
tion 47 page 92 to obtain symbolic event models and describe them explicitly instead.
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Event model of playing a card for Player i Ev,ci

The event model is drawn in Figure 3.8 for V = {1} and C = {♠,♣}.

e1,♠:

pre : tui ∧ canplay(i, (1,♠))

post :

hi,1,♠ ← ⊥
pi,1,♠ ← >
tui ← ⊥
tu(i+1%n) ←

∧
v∈V,c∈C ¬p(i+1%n),v,c

de♠ ←
∧
c′∈C ¬dec′

Ag

e1,♣:

pre : tui ∧ canplay(i, (1,♣))

post :

hi,1,♣ ← ⊥
pi,1,♣ ← >
tui ← ⊥
tu(i+1%n) ←

∧
v∈V,c∈C ¬p(i+1%n),v,c

de♣ ←
∧
c′∈C ¬dec′

Ag

epass:
pre : ¬tui
post : /

Ag

Figure 3.8: Example of event model (E i,Ei0) for V = {1} and C = {♠,♣}.

It contains one event ev,c per card (v, c) which is executable when it is the turn of Player
i (tui) and that he is allowed to play this card (canplay(i, (v, c))). The postcondition is
that Player i does not have the card in hand anymore (hi,v,c ← ⊥), the card is played
(pi,v,c ← >), it is not Player i’s turn anymore (tui ← ⊥), it is the turn of the next player
if he has not played yet in the deal (tu(i+1%n) ←

∧
v∈V,c∈C ¬p(i+1%n),v,c), and the color the

deal becomes c if it was not assigned beforehand in the deal (dec ←
∧
c∈C ¬dec).

We add one event epass because afterwards this event model may be used in a case
where Player i was not allowed to play, it is a trivial event whose precondition is ¬tui.
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3.3. Example: bridge card game

The formal definition in the general case is the following.

Definition 51 (Event model (E i,Ei0)). The event model E i = (Ei, (Ri
a, prei, posti)) is

defined as follows:

• Ei = {ev,c, v ∈ V, c ∈ C} ∪ {epass};

• Ra = {(e, e), e ∈ Ei} for all agents a ∈ Ag;

• prei(ev,c) = tui ∧ canplay(i, (v, c));

• prei(epass) = ¬tui;

• posti(ev,c, hi,v,c) = ⊥;

• posti(ev,c, pi,v,c) = >;

• posti(ev,c, tui) = ⊥;

• posti(ev,c, tu(i+1%n)) = ∧
v′∈V,c′∈C ¬p(i+1%n),v′,c′;

• posti(ev,c, dec) = ∧
c′∈C ¬dec′;

• posti is trivial for all other cases;

• Ei0 = Ei.

Event model to end the deal Eend

The event model contains one event ei per Player, where an example is drawn in Figure
3.9.

Intuitively, ei is fired if Player i has won the deal. The precondition is thus winsdeal(i).
The postcondition is do not change the score of Player 1 is Player i is not a dummy
player (wl ← wl ∧ ¬dui), increase the score of Player 1 is Player i is a dummy player
(wl+1 ← wl ∧ dui), for the next deal Player i begins (tui ← >), all other players do not
begin (tuj ← ⊥), all cards played are now considered not played (pj,v,c ← ⊥), and no
color is the color of the deal (dec ← ⊥).

The formal definition of Eend is the following:

Definition 52 (Event model (Eend,Eend0 )). The event model Eend = (Eend, Rend
a , preend, postend)

is defined as follows:
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ei:

pre : winsdeal(i)

post :

wl ← wl ∧ ¬dui for all l
wl+1 ← wl ∧ dui for all l
tui ← >
tuj ← ⊥ for j 6= i
pj,v,c ← ⊥ for all j ∈ {1, . . . , n}, v ∈ V, c ∈ C
dec ← ⊥ for all c ∈ C

Ag

Figure 3.9: Example of event ei for Player i in the event model (Eend,Eend0 ).

• Eend = {ei, i ∈ {1, . . . , n}};

• Ra = {(e, e), e ∈ Eend} for all agents a ∈ Ag;

• preend(ei) = winsdeal(i) for all events ei;

• postend(ei, wl) = wl ∧ ¬dui for all events ei and l;

• postend(ei, wl+1) = wl ∧ dui for all events ei and l;

• postend(ei, tui) = > for all events ei

• postend(ei, tuj) = ⊥ for all events ei and j 6= i;

• postend(ei, pj,v,c) = ⊥ for all events ei, j ∈ {1, . . . , n}, v ∈ V, c ∈ C;

• postend(ei, dec) = ⊥ for all events ei and c ∈ C;

• postend is trivial for all other cases;

• Eend0 = Eend.

3.3.5 Formula

We consider the succinct versions of E i and Eend, namely Ei and Eend. We define {E i,Ei0}
as 〈E i,Ei0〉K1 when i is a dummy player, [E i,Ei0] otherwise. Then:

ϕg = (({E1,E1
0} . . . {En,En0})2[Eend])

|V |×|C|
n

∨
l≥k wl
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In each deal, each player plays 2 times in the formula because we do not know in
advance which player begins the deal, so we apply the event model 2 times to be sure
each player plays once (if we execute E i in a case where Player i has already played then
necessarily tui will be false). We translate the bridge problem into the symbolic model
checking instance M, w |= ϕg where w is the world corresponding to the initial situation.
Therefore the following Theorem is true.

Theorem 12. The bridge problem is in Pspace.

3.3.6 Concluding remarks

In the above modeling, we have supposed that the hand of the dummy players were already
known in advance. If we want to apply such techniques in the bidding phase, it is possible
to change the model such that players do not know the hand of dummy players. It only
amounts to change the programs πa.

The new model can then be used in the bidding phase. If a player announces for
instance “I can do 6 deals with ♠ as the trump color”, then if all agents only do safe
biddings, the agents can deduce that this player has a winning strategy for 6 deals with
♠ as the trump color. It then becomes common knowledge between agents and they can
update the Kripke model accordingly. Therefore, it is possible to apply the technique
above to make agents that can reason about the biddings.

3.4 Related work

We now briefly survey other works in the literature that display important features of our
contribution.

3.4.1 Dynamic Logic of Propositional Assignments.

Dynamic Logic of Propositional Assignments [BHT13] is a instantiated version of Propo-
sitional Dynamic Logic (PDL) [FL79] where atomic programs are propositional assign-
ments. The authors of DL-PA have shown that DL-PA behaves better than PDL in many
respects, having e.g. compactness and eliminability of the iteration construct in programs.
However, the model checking problem against DL-PA is Pspace-complete, as opposed to
the model checking problem against PDL which is P-complete [Lan06].
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The iteration-free fragment of DL-PA has been extended with epistemic operators in
[DHL12] where the programs are viewed as ontic actions, rather than accessibility relations
as done in our contribution. In their setting, the authors showed that the validity problem
of the iteration-free fragment of DL-PA is coNP-complete in the single-agent case and
PSPACE-complete in the multi-agent case.

3.4.2 Ad-hoc accessibility relations

We highlight frameworks in which Kripke models have ad-hoc accessibility relations, and
demonstrate that they can be captured by DL-PA programs. Consequently, all these
frameworks may take advantage of the ability to use the full expressive power the full
PAPL language.

Geometrical models. Gasquet et al. [GGS15] defined a family of Kripke models for
reasoning about the knowledge of agents that are video cameras located in the 2-dimensional
space (a position and a direction), according to elementary facts of the kind “Agent a sees
b”. They also designed a suitable language whose atomic propositions are the form a B b,
so as to mean “Agent a sees Agent b”. In this setting, the worlds of the Kripke mod-
els denote configurations of agents (i.e. video cameras); each agent has a fixed position
and its fixed range is some cone. It is assumed that the agents’ position, as opposed to
their direction, is a common knowledge to all agents. An agent cannot distinguish two
worlds characterized by different dispositions of agents out of its reach. For instance, in
Figure 3.10, the two depicted worlds are indistinguishable for Agent a, since they only
differ on the directions of Agents b, d and e that are out of its range.

d

b
a c

e

d

b
e

a c

Figure 3.10: Two indistinguishable worlds for Agent a

Such Kripke models can be embedded in our framework. First of all, notice that not
all valuations of atomic propositions are meaningful: for instance, the positions of agents
in (any world of) Figure 3.10, prevents Agent a from seeing both Agent c and Agent
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b at the same time, whichever its direction might be. As a consequence, it is common
knowledge that Agent a does not see both Agent b and Agent c simultaneously. This
can be captured in our setting by prefixing any property of interest by an announcement
modality with an appropriate (Boolean) formula that restricts the set of valuations to
meaningful ones. Now, the accessibility relation for Agent a can be described the program
that non-deterministically chooses a direction of all agents that are not seen by Agent a,
which can formally be written as

;
b∈Ag,b6=a(a B b?) ∪

(
¬(a B b)?;

(;
c∈Ag,c6=bset(b B c)

))
It is important to observe that our representation of the video camera Kripke models

relies on a subtle argument, noticed [GGS15]: any quantitative model (that is where
worlds are defined by the real coordinates of video camera’s position/direction in the
plane) is bisimilar to a Kripke model where the only information about worlds is the
truth values of all atomic propositions a B b. Incidentally, it is an open question whether
this property still holds, when the assumption that the fixed video cameras’ position is
common knowledge is relaxed, as done in [BGS13].

Observation/Visibility There is a long tradition in inferring epistemic aspects from
the ability of agents to observe the value of atomic propositions, e.g Epistemic Coalition
Logic of Propositional Control with Partial Observability [HTW11], Logic of Revelation
and Concealment [HIW12], Boolean games with epistemic goals [Ågo+13], Alternating-
time Temporal Logic under imperfect information [AHK02]. In these approaches, each
agent a observe a subset of propositions Obsa, entailing a natural accessibility relation:
two worlds are indistinguishable to Agent a if they agree on Obsa. Therefore, the program
for Agent a is πa = set(AP \ Obs(a)) and consists in reassigning values to unobservable
propositions.

Differently, and somehow connected to a geometrical setting, the more recent work of
[HLM15] describes a multi-agent epistemic logic that relies on visibility atomic proposi-
tions of the form, e.g. SaSbp to mean that ’Agent a sees that Agent b sees that p holds’.
Such visibility atomic propositions (v-a-p) may contain an arbitrary finite (possibly zero)
number of nested observability abilities Sa. Worlds of the Kripke models are valuations
over the set of v-a-p’s, and the accessibility relations are given by: Agent a cannot dis-
tinguish between valuations w and u whenever every v-a-p that a sees in w has the same
truth value in u. Such ad-hoc accessibility relations can easily be described by DL-PA-
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programs, but in a way that depends on the formula to be evaluated (actually, it would
only depend on the knowledge modal depth of the formula) – indeed, it is necessary to
select a finite set of v-a-p’s the program will act on, as there are infinitely many. To do so,
let us first define the program πa,p = (Sap?) ∪ (¬(Sap)?; set(p)), where a is an agent and
p is a v-a-p. Intuitively, program πa,p non-deterministically reassigns the value of v-a-p p
if not seen by Agent a. Now consider the formula KaKbβ where β is a Boolean formula of
v-a-p’s. For the sake of simplicity, assume additionally that the only v-a-p’s occurring in
β are p and q. It can be established that the relevant v-a-p’s in KaKbβ are p, q, Sbp, and
Sbq for Agent a, and p and q for Agent b – we do not justify this claim as it is out of the
scope of the paper. We would consequently define programs πa = (πa,p; πa,Sbp; πa,q; πa,Sbq)
and πb = (πb,p; πb,q) for the accessibility relations of Agent a and b, respectively.

This framework has subsequently been enlarged to encompass public announcements,
yielding Dynamic Epistemic Logic of Propositional Assignment and Observation (DEL-
PAO) [Cha+16].

3.5 Conclusion

In this chapter, we have defined the notion of symbolic Kripke and event models. We
have shown that for a family of Kripke/event models, their symbolic counterparts become
exponentially smaller. In fact, this result is true in most applications. In fact, all the
related work shown before have symbolic representations which are exponentially smaller
than their explicit representation.

We have shown that the complexity results for model checking and satisfiability do not
change, namely model checking remains Pspace-complete and satisfiability 2-Exptime-
complete. As we highlighted before, this result may seem surprising. In our opinion, the
reason this symbolic representation does not make the complexity grow up is because
DELCK initially has a king of symbolic representation, because the modelM−→E is not
represented explicitly in the input. Therefore, adding a symbolic representation for the
input models does not impact the complexity.

We have applied the model checking result to show that the existence of a uniform
strategy in bridge is a Pspace-problem. In fact, the examples of blind tic tac toe and
bridge are similar, since in both it is possible to describe the input Kripke model with a
representation of polynomial size, and the length of the game is always polynomial. For
all games of this kind, we suspect that the existence of a uniform strategy is in Pspace. It
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is a strong result, since it proves that introducing imperfect information in a lot of games
does not increase their complexity. It refines in particular the result of [DH08] stating
that bounded games with imperfect information are NExptime-complete for players in
teams. Indeed, we can show that bounded two-player games with imperfection information
yield Pspace problems when the bound is given in unary in input. With this result, we
can show for instance that Othello which is Pspace-complete [IK94] remains Pspace-
complete with imperfect information.

We consider implementing our approach to effectively find these winning strategies.
A symbolic model checker of DEL already exists: SMCDEL [Ben+15]. Their symbolic
representation relies on observation sets, and so they can be expressed easily with DL-PA.
We envision introducing DL-PA-programs into their model checker, which may allow
simpler and more efficient representations for problems. With this model checker, we then
wish to implement the existence of uniform strategies in games to see experimental results
on the matter.
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Chapter 4

Epistemic Planning

In this chapter, we extend on DELCK by considering the so-called epistemic planning
problem. It is defined as follows:

Definition 53 (Epistemic planning problem).

• Input: a pointed epistemic model (M, w), a finite set of pointed event models E,

and a goal formula ϕG ∈ ELCK;

• Output: yes if there exists a sequence of pointed event models (E1,E1
0), . . . , (Ep,Ep0) ∈

E (a plan) such thatM, w |= 〈E1,E1
0〉 . . . 〈Ep,E

p
0〉ϕG; no otherwise.

Epistemic planning can be seen as an extension of classical planning [FN71] where the
models are the ones considered in DELCK, namely Kripke and event models. In classical
planning, the model is a valuation and the actions are propositional, which correspond to
propositional public actions in DELCK.

Here, we study the impact on complexity when all input event models are in Cji , the
class of event models where preconditions are of modal depth at most i and postconditions
are of modal depth at most j.

On the one hand, when only propositional preconditions are used it is known that
the problem is decidable if postconditions are also propositional [YWL13]. In this case
it is in k-Exptime, where k is the modal depth of goal formulas [AMP14b]; if there
are no postconditions, the problem is in Expspace [BJS15]. On the other hand, epis-
temic preconditions yield undecidability: if propositional postconditions are allowed, then
the problem is already undecidable with preconditions of modal depth one [BA11]. It
is also known to be undecidable without postconditions, if we allow for preconditions
of unbounded modal depth [AB13]. Table 4.1 summarizes the results about epistemic
planning.

Here, we refine this table to the one of Figure 4.2 where new results are highlighted
in red.
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trivial postconditions (j = −1) with postconditions (j =∞)
i = 0 In Expspace [BJS15] Decidable [YWL13]
i = 1 ? Undecidable [BA11]
i =∞ Undecidable [AB13] Undecidable

Table 4.1: Overview of the complexity of epistemic planning where event models are all
in Cji .

trivial postconditions (j = −1) with postconditions (j =∞)
i = 0 Pspace-complete Decidable [YWL13]
i = 1 ? Undecidable [BA11]
i = 2 Undecidable Undecidable
i =∞ Undecidable [AB13] Undecidable

Table 4.2: Overview of the new complexity results of epistemic planning where event
models are all in Cji .

The chapter is divided as follows:

• First, we prove an easy result on epistemic planning with only “separable” event
models.

• Second, we prove that with propositional preconditions and trivial postconditions,
epistemic planning is Pspace-complete (Theorem 15). The key point is that in this
case events commute [LPW11]. This allows for a succinct representation of tuples
of events, and we build upon a model checking procedure from [AS13] to devise a
polynomial space decision procedure.

• Third, we prove that epistemic planning is already undecidable for the subproblem
with only event models in C−1

2 , that is with preconditions of modal depth at most two
and trivial postconditions (Theorem 16). The proof, by reduction from the halting
problem for two counter machines, refines the one given in [AB13], which requires
preconditions with unbounded modal depth. By designing more involved gadgets to
code the configurations and instructions of the machines, we manage to bound the
modal depth of preconditions.

• Finally, we conclude.

The chapter, except the separable events section, corresponds to the published paper
[CMS16].
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4.1 Separable event models

We prove that when event models are separable (all events have disjoint preconditions)
then the following two cases are true.

• If all events also have trivial postconditions, then the epistemic planning problem
is NP-complete.

• Else, the epistemic planning is Pspace-complete.

To our knowledge, these results were never published. Yet, they are interested since
they legitimate for instance the approach of [KG15], that considered public actions and
semi-private announcements, which fall into the separable events setting. The hardness
results for both cases are direct because they extend [BJS15] where it is proven that for
public announcements, the epistemic planning is NP-complete and with public actions,
the epistemic planning problem is Pspace-complete.

The intuition between separable event models is simple: preconditions must be dis-
joint. For instance, the event model from Figure 1.3 page 41 is not separable since the
precondition > of event f is compatible with the precondition of event e (p). We now
define formally separable event models.

Definition 54 (Separable event models). An event model E = (E, (REa)a∈Ag, pre, post) is
separable if and only if for all events e, f ∈ E such that e 6= f , the formula pre(e)∧pre(f)
is unsatisfiable.

Example 22. Here are some examples of separable event models:

• Public announcements and public actions are separable events models (i.e. event
models with only one event).

• Semi-private announcements to a group G ⊆ Ag are separable, since they are of the
following form:

eϕ :
pre : ϕ

post : / e¬ϕ :
pre : ¬ϕ
post : /

Ag \G

Ag Ag
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And some example of event models that are not separable:

• Semi-private assignments:

e> :
pre : >
post : p← >

e⊥ :
pre : >
post : p← ⊥

Ag \G

Ag Ag

• The event model (E (1,1)
◦ ,E(1,1)

◦ ) from Figure 2.10 page 79.

We now detail the results we obtain for epistemic planning when the event models in
input are separable.

Theorem 13. We consider the epistemic planning problem with the additional restriction
that E only contains separable event models with trivial postconditions. Then this new
epistemic planning problem is NP-complete.

Proof. Hardness: direct from [BJS15].
Membership: We define the following algorithm:
proc existplan(M, w,E, ϕG)

(∃)(∃)(∃) k ∈ {0, . . . , |M|}
(∃)(∃)(∃) (E1,E1

0), . . . , (Ek,Ek0) ∈ Ek

LetMcur, wcur =M, w

for i = 1 to k:
(∃)(∃)(∃) e ∈ Ei0
if Mcur, wcur 6|= pre(e) then reject
else Mcur, wcur =Mcur ⊗ E i, (wcur, e)

if Mcur, wcur |= ϕG then accept else reject

The algorithm tries to find the plan by choosing non determiniscally the sequence of
event models executed. Here it is important to notice that since the event models are
separable and non-ontic, it is sufficient to consider a plan of at most |M| event models,
since each application of an event model will either remove a world, an epistemic edge
or do nothing. We then update the Kripke model in Mcur. Since the event models are
separable, then the product update is performed in polynomial time. Finally, we check
that ϕG, which is a formula of ELCK is satisfied in Mcur. Since the model checking
against ELCK is in P (see Appendix C) this concludes the proof.

118



4.1. Separable event models

We now establish a similar theorem for all separable event models.

Theorem 14. We consider the epistemic planning problem with the additional restriction
that E only contains separable event models. Then this new epistemic planning problem is
Pspace-complete.

Proof. Hardness: direct from [BJS15].
Membership: we write a trivial algorithm searching for a plan:

proc existplan(M, w,E, ϕG)
if M, w |= ϕG: accept
else :

(∃)(∃)(∃) choose (E ,E0) ∈ E
(∃)(∃)(∃) choose e ∈ E0

if M, w 6|= pre(e): reject else existplan(M⊗E , (w, e),E, ϕG)

It chooses an event model and calls back to itself with the product update in input. It
stops whenever the goal has been reached. Since the event models are separable, then |M⊗
E| ≤ |M|, so the space needed is polynomial, which proves the Pspace-membership.

Remark 3. In practice, if we want to apply Theorems 13 and 14, we need an algorithm
to check that an event model is separable. If the event model has a single event, it is
trivially separable. Otherwise, checking that pre(e)∧pre(e′) is unsatisfiable calls a Pspace
procedure since the satisfiability problem for epistemic logic is Pspace-complete. Therefore
for the trivial postcondition Theorem 13 is unusable for any event model if we do not know
it is separable beforehand. However, for the Pspace variant, having a Pspace procedure
beforehand is not a problem. Notice that the same problem arises even if all preconditions
are propositional.

However, for most cases in practice, for most event models we construct, we know be-
forehand if they are separable or not, so calling a Pspace procedure to verify separability
is a sledgehammer.

Remark 4. In theory, the separability constraint is too strong. It is sufficient to say that
for the input Kripke models (M, w), for any event models E1, . . . , En ∈ E and event model
E ∈ E, in each world ofM⊗E1 ⊗ · · · ⊗ En, at most one of the events of E is applicable.

Indeed if this constraint is true, then the Kripke model will never increase in size, and
so the algorithms presented before still work. Yet, this constraint seems very hard to check.
That is why separability is an easier criteria.
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Similarly, if |M ⊗ E1 ⊗ . . . En| is never bigger than P (|M|) for a fixed polynomial P
then the Theorems 13 and 14 would still work (just replace i ≤ |M| by i ≤ P (|M|)).

4.2 Propositional preconditions

It is already known that the epistemic planning problem restricted to C−1
0 is Pspace-hard

[BJS15]. We establish that it is actually Pspace-complete.
From now on, we suppose that the event models are single-pointed in the input of the

epistemic planning problem. If not, we just need to transform an event model (E ,E0) into
a set of event models (E , e) for each e ∈ E0.

As pointed out in [LPW11], epistemic event models with propositional preconditions
commute. Formally:

Lemma 4. For all pointed epistemic models (M, w), for all pointed event models (E1, e1)
and (E2, e2) in C−1

0 , M⊗ E1 ⊗ E2, (w, e1, e2) exists iff M⊗ E2 ⊗ E1, (w, e2, e1) exists, and
in that case they are bisimilar.

As a consequence, in the rest of the section, the order in which events are applied in
an initial world is indifferent. Only the number of times each event occurs is relevant, and
the proof of our result heavily relies on this property.

We first establish a preliminary result on the model checking problem for a dedicated
language: we extend the dynamic epistemic language with iterations of event models in
C−1

0 , that is, constructions of the form 〈(E , e)`〉ψ where (E , e) is a pointed event model
in C−1

0 and ` is a positive integer. We suppose here that ` is written in binary so that
this language, called LitC−1

0
, is exponentially more succinct than DEL. The size |ϕ| of a

formula ϕ is defined as usual, with the following additional inductive case: |〈(E , e)`〉ψ| =
1+|E|+dlog2 `e+|ψ| (by convention dlog2 0e = 0). Classically, the model checking problem
for LitC−1

0
is, given a pointed epistemic model (M, w) and a formula ϕ ∈ LitC−1

0
, to decide

whetherM, w |= ϕ.

Proposition 11. Model checking LitC−1
0

is in Pspace.

Proof. We design a deterministic algorithm that takes as an input a pointed epistemic
model (M, w0) and a formula ϕ ∈ LitC−1

0
, and decides whetherM, w0 |= ϕ. Without loss

of generality, we suppose that all event models appearing in the formula are the same,
noted E = (E,→, pre) (if not, we replace each one by their disjoint union). Let e1, . . . , e|E|
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function mc(M, w, E , ~n, ϕ)
match ϕ do
case p: return (p is true in w)
case ¬ψ: return not mc(M, w, E , ~n, ψ)
case (ψ1 ∨ ψ2): return mc(M, w, E , ~n, ψ1) or mc(M, w, E , ~n, ψ2)
case Kaψ :
for u ∈ Ra(w), ~̀ ∈ N|E| s.t. ∑|E|i=1 `i = ∑|E|

i=1 ni do
if preok(M, u, E , ~̀) ∧ succ(E , a, ~n, ~̀) ∧ ¬mc(M, u, E , ~̀, ψ) then return false

endFor
return true

case 〈(E , ei)`〉ψ :
if pre(ei) is false in w then return false
else return mc(M, w, E , (n1, .., ni−1, ni + `, ni+1, .., nk), ψ)

endMatch
endFunction

function preok(M, u, E , ~̀)
for li ∈ ~̀:
if (li > 0) ∧ ¬mc(M, u, E , ~̀, pre(ei)) then return false

return true
endFunction

function succ(E , a, ~n, ~̀)
for li ∈ ~̀:
if (li > 0) ∧ ¬mc(M, u, E , ~̀, pre(ei)) then return false

return true
endFunction

Figure 4.1: Algorithm mc for model checking LitC−1
0
.

be an enumeration of the possible events in E . By Lemma 4, all permutations of events
in a tuple (w, ei1 , . . . , eip) are equivalent in the sense that either they all are worlds in
M⊗Ep and they all are bisimilar, or none of them exists: only the number of times each
event occurs is relevant. For a world w and a vector ~n = (n1, . . . , n|E|), we thus let w•~n
denote the representative permutation (w, e1, . . . , e1︸ ︷︷ ︸

n1 times

, . . . , e|E|, . . . , e|E|︸ ︷︷ ︸
n|E| times

).

Let mc be the algorithm given in Figure 4.1, and let 0|E| denote the null |E|-vector.
We claim that mc(M, w0, E , 0|E|, ϕ) returns true iff M, w0 |= ϕ. To prove this claim we
establish that for all w ∈ M, all integers n1, . . . , n|E| and all subformula ψ of ϕ, the
following property P holds:

IfM⊗E
∑|E|

i=1 ni , w•~n exists then mc(M, w, E , (n1, . . . , n|E|), ψ) returns true iff
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M⊗E
∑|E|

i=1 ni , w•~n |= ψ.

Property P is proven by induction on ϕ. We omit the boolean cases and case 〈(E , ei)`〉ψ
which are trivial.

Case Kaψ: the algorithm has to check that ψ holds in all a-successors of w•~n in
M⊗E

∑|E|
i=1 ni . Every a-successor of w•~n is a permutation of some u•~̀ and is bisimilar to

it. We thus need to enumerate all worlds u and vectors ~̀ that represent some a-successor,
and verify that ψ holds in u•~̀. Given a tuple u•~̀, to check whether it is a permutation of
some a-successor of w•~n, we first check that it is an existing world inM⊗E

∑|E|
i=1 ni . Since

events are purely epistemic and propositional, preconditions of successive events can all
be checked in the initial world u. This is done by calling function preok(M, u, E , ~̀), which
checks that for all i ∈ {1, . . . , |E|}, if `i > 0 then pre(ei) is true in u. Next, we check that
some permutation of u•~̀ is indeed a-related to w•~n: we should first have u ∈ Ra(w); then,
it should be possible to map each occurrence of an event ei in w•~n to some occurrence of
some a-related event ej in u•~̀ so as to form a bijection. Deciding whether such a bijection
exists amounts to solving the following integer linear program: checking whether there
exist positive integers (xi,j)(i,j)∈{1,...,|E|}2|ej∈Ra(ei), where xi,j is the number of times ej is
chosen as a-successor for ei, such that:

(S)

 ni = ∑
j|ej∈REa (ei) xi,j for all i ∈ {1, . . . , |E|}, and

`j = ∑
i|ei∈REa (ej) xi,j for all j ∈ {1, . . . , |E|}.

This is done by calling succ(E , a, ~n, ~̀).

Spatial complexity. We justify that mc can be implemented in polynomial space in
the size of the input (which is |M|+ |ϕ|). The maximal number of nested calls is bounded
by |ϕ|, so that the number of local variables to be stored is polynomial in |ϕ|. We now
bound the space needed to store vector ~n in each call, which is in O(∑|E|i=1dlog2 nie).
Letting `1, . . . , `m be an enumeration of the numbers appearing in ϕ, it is clear that∑k
i=1 ni ≤

∑m
i=1 `i, and thus for all i ∈ {1, . . . , |E|}, ni ≤

∑m
j=1 `j. We obtain

|E|∑
i=1
dlog2 nie ≤ |E|dlog2(

m∑
i=1

`i)e.

Now, it can be proven by studying the variation of function f : (x1, . . . , xm) 7→ log2(∑m
i=1 xi)−
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∑m
i=1 log2 xi − log2m, that since `i ≥ 1 for all i ∈ {1, . . . ,m}, we have

log2(
m∑
i=1

`i) ≤
m∑
i=1

log2 `i + log2m,

and because the ceiling of a sum is less than the sum of the ceilings, we get

kdlog2(
m∑
i=1

`i)e ≤ |E|(
m∑
i=1
dlog2 `ie+ dlog2me).

By definition of the size of LitC−1
0

formulas, k = |E| ≤ |ϕ|, ∑m
i=1dlog2 `ie ≤ |ϕ| and

dlog2me ≤ m ≤ |ϕ|, so that the space used to store ~n is in O(|ϕ|2).
It only remains to note that checking consistency of a system (S) can be done in non-

deterministic time polynomial in the number of bits needed to encode ~n and ~̀ [Pap81],
and therefore succ is in deterministic space polynomial in |ϕ|.

We now describe a (non-deterministic) algorithm for the epistemic planning problem,
which consists in guessing a plan and then model-check an LitC−1

0
-formula to check that

this plan realizes the goal. The crucial points here are, first, that we can restrict to
plans of exponential length, second, that thanks to commutation of events they can be
represented in polynomial space, and third, that verifying whether a plan works can be
done in polynomial space (Proposition 11).

Theorem 15. The epistemic planning problem restricted to C−1
0 is in Pspace.

Proof. We adapt the algorithm given in [BJS15, Theorem 5.8]. First it is proved in [Sad06]
that, noting 'd the d-bisimulation1 for event models (see [BJS15; Sad06; DHK07]), for
every d ≥ 0, every pointed event model (E , e) is 'd-stabilizing at iteration |E|d; formally,
(E , ei)k 'd (E , ei)k+1 for all k ≥ |E|d.2 Secondly, by Lemma 4, event models with propo-
sitional preconditions commute. Therefore, the following algorithm correctly solves the
epistemic planning problem for event models with propositional preconditions:

Given input 〈(M, w), {(E1, e1), . . . , (Em, em)}, ϕG〉:

1. Compute d, the modal depth of the goal formula ϕG;

2. For each i ∈ {1, . . . ,m}, non-deterministically guess ni ∈
{

0, . . . , |Ei|d
}
;

1. Bisimulation up to modal depth d.
2. Actually a better bound is proved in [BJS15].
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3. Accept ifM, w |= 〈(E1, e1)n1〉 . . . 〈(Em, em)nm〉ϕG.

This algorithm is non-deterministic. The first step is clearly performed in space poly-
nomial in the size of the input. Concerning the second point, each ni can be exponen-
tial in d and thus in |ϕG|, but its binary representation uses polynomial space. Since
〈(E1, e1)n1〉 . . . 〈(Em, em)nm〉ϕG is an LitC−1

0
formula, it follows from Proposition 11 that the

last step can also be performed in polynomial space. The epistemic planning problem
restricted to C−1

0 is therefore in NPspace and thus in Pspace by Savitch’s theorem
[Sav70].

4.3 Preconditions of modal depth 2

We now prove the following theorem by refining the reduction given in [AB13].

Theorem 16. The epistemic planning problem restricted to C−1
2 is undecidable.

We first recall the halting problem for two-counter machines, known to be undecidable
[Min67], and then we reduce it to the epistemic planning problem restricted to C−1

2 .

4.3.1 Two-counter machines

We present two-counter machines as introduced in [Min67].

Definition 55. A two-counter machineM is a sequence of instructions (I0, . . . , IN) where

• For ` < N , I` is either inc(i), goto(`′) or gotocond(i, `′), with i ∈ {1, 2}, `′ ≤ N

and ` 6= `′;

• IN = halt.

We call program line a pair k:Ik.

Example 23. The following four programs lines define a two-counter machine Mex:
0:inc(1)
1:gotocond(1, 3)
2:goto(0)
3:halt
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A configuration of a two-counter machine M is a triple (`, c1, c2) where ` ∈ {0, . . . , N}
is the program counter and c1, c2 ∈ N are the two data counters.
Let CM = {0, . . . , N} × N× N be the set of all possible configurations.

The transition function →M on CM is defined as follows. For all (`, c1, c2) ∈ CM :

• If I` = inc(1), (`, c1, c2)→M (`+ 1, c1 + 1, c2);

• If I` = inc(2), (`, c1, c2)→M (`+ 1, c1, c2 + 1);

• If I` = goto(`′), (`, c1, c2)→M (`′, c1, c2) ;

• If I` = gotocond(1, `′), (`, c1, c2)→M

(`′, 0, c2) if c1 = 0;

(`+ 1, c1 − 1, c2) otherwise;

• If I` = gotocond(2, `′), (`, c1, c2)→M

(`′, c1, 0) if c2 = 0;

(`+ 1, c1, c2 − 1) otherwise.

A two-counter machine M halts if there exist c1, c2 such that (0, 0, 0) →∗M (N, c1, c2),
where →∗M denotes the reflexive transitive closure of →M . For instance, the machine Mex

given in Example 23 above does not halt. The halting problem for two-counter machines
consists in deciding, given a two-counter machine, whether it halts or not. This problem
is well known to be undecidable [Min67].

4.3.2 The reduction

From now on in the figures, since there are a lot of worlds/events, we keep the notation
circles for worlds and squares for events, but write the valuation/precondition beside the
world/event.

We define an effective reduction tr that, given a two-counter machine M , computes
an instance tr(M) of the epistemic planning problem restricted to C−1

2 . We fix M and
the rest of the section is devoted to defining tr(M) = 〈(M0, w0);E;ϕG〉 and justifying
its correctness (Proposition 12). As in [AB13], we only use one agent a (� stands for Ka

and ♦ stands for K̂a), configurations of M are represented by pointed epistemic models,
and the initial pointed epistemic model represents the initial configuration (0, 0, 0). Each
program line `:I` is represented by one or two pointed event model(s), such that a plan
corresponds to a sequence of program lines. The goal formula expresses that the final
pointed epistemic model represents a halting configuration.
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PC ` = 1

c1 = 3 c2 = 2

a0 a1 aN

a1

. . .
a2

p1

q1p1

p1

p1

p2

q2p2

p2

Figure 4.2: Pointed epistemic model (M, w)(1,3,2).

PC ` = 0 c1 = 0 c2 = 0
a0 a1 aN

a0

. . .
p1 q1 p2 q2

Figure 4.3: Pointed epistemic model representing the initial configuration (0, 0, 0).

Pointed epistemic models

Let (`, c1, c2) be a configuration of M . We describe the model (M(`,c1,c2), w(`,c1,c2)) (short-
ened as (M, w)(`,c1,c2)) that represents (`, c1, c2). For instance, Figure 4.2 shows (M, w)(1,3,2).
It is a tree-like structure rooted at w(`,c1,c2). In each world except the root, there is ex-
actly one true atomic proposition, and we call p-world any world where p holds. The root
w(`,c1,c2) verifies no atomic proposition, and it has three groups of children, one for each
counter:

Program counter. For each program line `′ : I`′ , w(`,c1,c2) has one reflexive child labeled
by proposition a`′ . The a`-child of w(`,c1,c2) has a child also labeled by a`, without any
outgoing edge: we say that there is an a`-strip. Intuitively, the a`-strip represents
the fact that I` is the next instruction to be executed.

Data counter ci. For each i ∈ {1, 2}, w(`,c1,c2) has a reflexive pi-child that has an ir-
reflexive qi-child, and is followed by a chain of irreflexive pi-worlds of length ci.
Intuitively, the number of irreflexive pi-children represents the value of ci.

We define the first component of tr(M): (M0, w0) := (M, w)(0,0,0) as depicted in Fig-
ure 4.3. We call configuration model a pointed epistemic model of the form (M, w)(`,c1,c2).
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a0 aN

a0

. . .
a2

p1

q1p1

p1

p1

p2

q2p2

p2

a0 a1 aN

a1

. . . p2

q2p2

p2

p2

(a) (b)

Figure 4.4: Examples of non valid epistemic models.

Pointed event models

For each program line `:I` of M where I` is of the form goto(`′) or inc(i), we define a
pointed event model (E`:I` , e`:I`) (shortened as (E , e)`:I`) that mimics the semantics of `:I`
(Figures 4.6 and 4.8). For each program line `:gotocond(i, `′) of M , we define two pointed
event models (E , e)`:gotocond(i,`′) and (E>0, e>0)`:gotocond(i,`′), respectively for the case ci = 0
and ci > 0 (Figure 4.9). These pointed event models form the second component of tr(M):

E := {(E , e)`:I` | ` < N} ∪ {(E>0, e>0)`:I` | ` < N and I` = gotocond(i, `′)}.

In the model (M, w)(`,c1,c2) where ` < N , the only pointed event model of E that
should be applied is the one representing the behavior of program line `:I` in configuration
(`, c1, c2). This event model is defined as follows:

E(`, c1, c2) :=


(E>0, e>0)`:I` if I` = gotocond(i, `′)

and ci > 0,
(E , e)`:I` otherwise.

The product with any other event model from E results in a model that is not valid
according to the following definition:

Definition 56. A pointed epistemic model (M, w) is valid if w has an a`-child for each
` ∈ {0, . . . , N} and a pi-child for each i ∈ {1, 2}.

Example 24. The model shown in Figure 4.2, corresponding to (M, w)(1,3,2), is valid.
Notice that by definition, every configuration model is valid.

The two models shown in Figure 4.4 are not valid. Indeed:

127



Chapter 4 – Epistemic Planning

• In the model shown in Figure 4.4(a), the root does not have a a1-child.

• In the model shown in Figure 4.4(b), the root does not have a p1-child.

Further down, we will define event models of E such that:

Lemma 5. For every configuration (`, c1, c2), it holds that

1. (M, w)(`,c1,c2) ⊗ E(`, c1, c2) is isomorphic3 to (M, w)(`′,c′1,c′2), where (`, c1, c2) →M

(`′, c′1, c′2).

2. The product of (M, w)(`,c1,c2) with any other event model from E is defined but not
valid.

3. For any non-empty sequence of event models (E1, . . . ,En,En+1) in E, if the model
(M, w)(`,c1,c2)⊗E1⊗· · ·⊗En is not valid, then (M, w)(`,c1,c2)⊗E1⊗· · ·⊗En⊗En+1

is also not valid.

We now describe the event models in E and at the same time we prove Lemma 5. Each
of these models has three groups (from left to right on Figures 4.6, 4.8, 4.9), that update
respectively the program counter group, the data counter c1 group and the data counter
c2 group of configuration models.

Event model for ` : goto(`′). The pointed event model (E , e)`:goto(`′), that mimics
the effect of `:goto(`′), is depicted in Figure 4.6. Portion repl(`, `′) concerns the program
counter group and is described in Figure 4.5. The two other groups leave the data counter
groups c1 and c2 unchanged.

• The product (M, w)(`,c1,c2)⊗ (E , e)`:goto(`′) is isomorphic to (M, w)(`′,c1,c2): indeed, por-
tion repl(`, `′) removes the a`-strip and adds an a`′-strip in the program counter group
(recall that ` 6= `′).

• The product (M, w)(`′′,c1,c2)⊗(E , e)`:goto(`′) with `′′ 6= ` is not valid. Indeed, as (M, w)(`′′,c1,c2)

does not have an a`-strip in its program counter group, its a`-world violates precondi-
tion a` ∧ ♦�⊥ in portion repl(`, `′). As a consequence, (M, w)(`′′,c1,c2) ⊗ (E , e)`:goto(`′)
has no a`-child at its root and is thus not valid.

3. More precisely, the reachable parts of the pointed epistemic models are isomorphic.
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>

a0
. . .

a` ∧ ♦�⊥ a`′

a`′

. . . . . .
aN

Figure 4.5: Event model portion repl(`, `′) for ` 6= `′.

>

repl(`, `′)
p1 q1 p2 q2

Figure 4.6: Event model (E , e)`:goto(`′) for `:goto(`′).

Event model for ` : inc(i). Figure 4.8 shows (E , e)`:inc(1) that mimics the effect of
` : inc(1) (for inc(2), the construction is symmetric). Portion repl(`, ` + 1) is meant to
increment the program counter. Portion lengthen(1) (described in Figure 4.7) is meant to
increment the data counter c1. The intermediate event of precondition p1∧♦q1 duplicates
once the p1-child of the root: it adds one p1-world at the start of the p1-chain. The last
group leaves data counter c2 unchanged.

• The product (M, w)(`,c1,c2) ⊗ (E , e)`:inc(1) is isomorphic to (M, w)(`+1,c1+1,c2).

• For the same reason as for (E , e)`:goto(`′), the product (M, w)(`′′,c1,c2)⊗ (E , e)`:inc(1) with
`′′ 6= ` is not valid.

Event models for ` : gotocond(i, `′). Figure 4.9 describes models (E , e)`:gotocond(1,`′)

and (E>0, e>0)`:gotocond(1,`′). They mimic the effect of ` : gotocond(1, `′) in case c1 = 0 and
case c1 > 0, respectively (for ` : gotocond(2, `′), constructions are symmetric).

pi ∧ ♦qi qi

pi ∧ ♦qi

pi ∧ ¬♦qi

pi ∧ ♦qi ∧ ♦(pi ∧�¬qi) qi

pi ∧ ¬♦qi ∧ ♦>

Figure 4.7: Event model portions lengthen(i) and shorten(i).
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>

repl(`, `+ 1)

lengthen(1)
p2 q2

Figure 4.8: Event model (E , e)`:inc(1) for `:inc(1).

>

repl(`, `′)

¬♦(p1∧¬♦q1) q1
p2 q2

>

repl(`, `+ 1)

shorten(1)
p2 q2

(E , e)`:gotocond(1,`′) (E>0, e>0)`:gotocond(1,`′)

Figure 4.9: Event models for `:gotocond(1, `′).

• (M, w)(`,0,c2)⊗(E , e)`:gotocond(1,`′) is isomorphic to (M, w)(`′,0,c2): indeed, the precondition
¬♦(p1 ∧ ¬♦q1) checks that the p1-chain in the data counter c1 group is of length 0.
Here it is the case, so that the data counter group c1 remains unchanged. However,
when c1 > 0, the p1-child of the root of (M, w)(`,c1,c2) violates this precondition. It is
thus removed, so that the product (M, w)(`,c1,c2) ⊗ (E , e)`:gotocond(1,`′) is not valid.

• (M, w)(`,c1,c2) ⊗ (E>0, e>0)`:gotocond(1,`′) with c1 > 0 is isomorphic to (M, w)(`+1,c1−1,c2).
Indeed, portion shorten(1) (Figure 4.7) is meant to decrement data counter c1 by one:
precondition p1∧¬♦q1∧♦> checks that we are in the p1-chain (p1), but not at the start
(¬♦q1) nor the end (♦>) of the chain. The last world of the p1-chain is thus removed
when c1 > 0. When c1 = 0, precondition ♦(pi ∧�¬qi) is violated by the p1-child of the
root of (M, w)(`,0,c2): indeed, this precondition checks that the length of the p1-chain
is at least 1. The product (M, w)(`,0,c2) ⊗ (E>0, e>0)`:gotocond(1,`′) is thus not valid.

• For `′′ 6= `, (M, w)(`′′,c1,c2)⊗(E , e)`:gotocond(1,`′) and (M, w)(`′′,c1,c2)⊗(E>0, e>0)`:gotocond(1,`′)

are not valid.

We now prove point 3 of Lemma 5:
We first prove the following assertion An for all n ≥ 1: for all (`, c1, c2), for all E1⊗· · ·⊗

En, if (M, w)(`,c1,c2) ⊗ E1 ⊗ · · · ⊗ En is not valid then there exists p ∈ {a0, . . . , aN , p1, p2}
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such that there is no p-world in (M, w)(`,c1,c2) ⊗ E1 ⊗ · · · ⊗ En. It is proven by recurrence
on n ≥ 1.

• A1: if (M, w)(`,c1,c2) ⊗ E1 is not valid, then:

– Either E1 contains a repl(`′′, `′) part such that `′′ 6= `, then there is no a`-world in
(M, w)(`,c1,c2) ⊗ E1, so we take p = a`;

– Or I` = gotocond(i, `) (with i ∈ {1, 2}) and E1 is (E , e)`:gotocond(i,`′) with ci > 0. In
this case, there is no pi-world in (M, w)(`,c1,c2) ⊗ E1, so we take p = pi.

– Or I` = gotocond(i, `) (with i ∈ {1, 2}) and E1 is (E>0, e>0)`:gotocond(i,`′) with ci = 0.
In this case, there is no pi-world in (M, w)(`,c1,c2) ⊗ E1, so we take p = pi.

In other cases, (M, w)(`,c1,c2) ⊗ E1 is valid by point 1 of Lemma 5.

• An ⇒ An+1: We supposeAn holds for a given n ≥ 1. For any En+1 ∈ E, if (M, w)(`,c1,c2)⊗
E1 ⊗ · · · ⊗ En+1 is not valid then:

– Either (M, w)(`,c1,c2) ⊗ E1 ⊗ · · · ⊗ En is valid and by points 1 and 2 of Lemma 5, it
is isomorphic to some (M, w)(`′,c′1,c′2). We apply A1 to conclude.

– Either (M, w)(`,c1,c2) ⊗ E1 ⊗ · · · ⊗ En is not valid, so by An there exists p such
that there is no p-world. Because there is no postcondition, there is no p-world in
(M, w)(`,c1,c2) ⊗ E1 ⊗ · · · ⊗ En+1 either.

To conclude, we have proven that if (M, w)(`,c1,c2) ⊗ E1 ⊗ · · · ⊗ En is not valid, by An
there is p ∈ {a0, . . . , aN , p1, p2} that is false in every world. Therefore, for any En+1,
there is no p-world in (M, w)(`,c1,c2)⊗E1⊗· · ·⊗En+1, so (M, w)(`,c1,c2)⊗E1⊗· · ·⊗En+1

is not valid either. This concludes the proof of point 3 of Lemma 5.

Goal formula

The goal formula ϕG in tr(M) is ϕvalid ∧ ϕhalt, where:

• ϕvalid := ∧N
`=0 ♦a` ∧ ♦p1 ∧ ♦p2, and

• ϕhalt := ♦(aN ∧ ♦�⊥).

Intuitively, formula ϕvalid forces the final pointed epistemic model of a plan to be valid
(and therefore, by Point 3 of Lemma 5, all intermediate pointed epistemic models of the
plan also are valid). Formula ϕhalt enforces the final pointed epistemic model to represent
a halting configuration (N, ∗, ∗).
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Proposition 12. M halts iff there is a plan for tr(M).

Proof. ⇒ If M halts, let (`t, ct1, ct2)t=0,...,T be the sequence of configurations of the halt-
ing execution. We build a plan for tr(M) by taking the sequence of pointed event mod-
els (E(`t, ct1, ct2))t=0,...,T−1. One can prove by recurrence, using point 1 of Lemma 5, that
each intermediate product (M, w)(0,0,0) ⊗ E(0, 0, 0) ⊗ . . . ⊗ E(`t, ct1, ct2) is isomorphic to
(M, w)(`t,ct1,ct2). The final product is thus isomorphic to (M, w)(N,c1,c2) for some c1, c2, so
that (M, w)(N,c1,c2) |= ϕhalt. In addition, (M, w)(N,c1,c2) is valid, so that (M, w)(N,c1,c2) |=
ϕvalid.
⇐ Suppose that there is a plan (Et, et)t=0,...,T−1 for tr(M). As the final product

satisfies ϕvalid, it is valid. Using point 3 of Lemma 5 we can prove by backward recurrence
that all intermediate products are valid. By forward recurrence, using points 1 and 2 of
Lemma 5, we can prove that each intermediate model is isomorphic to a model of the
form (M, w)(`,c1,c2), and that the event model applied to it in the plan is E(`, c1, c2). We
extract a sequence of configurations (`, c1, c2)t=0,...,T that starts with (0, 0, 0) and that, by
point 1 of Lemma 5, follows the transition function of M . As the final product satisfies
ϕhalt, it is isomorphic to (M, w)(N,c1,c2) for some c1, c2, so that the final configuration is
(N, c1, c2). Therefore, M halts.

4.3.3 Comparison

In [AB13] the program counter as well as the data counters are represented with chains
of worlds, and incrementation, decrementation and replacement of a value by another one
are implemented on such chains. While the first two operations can be performed with
preconditions of modal depth two, repl(`, `′) requires unbounded nesting in general to be
implemented on chains. We observed that unlike data counters, the program counter is
bounded so that we can avoid chains for its representation, and provide an alternative
gadget for repl(`, `′) that only uses preconditions of modal depth two.

4.4 Conclusion

In this chapter, we have introduced the epistemic planning problem, which takes in input
a Kripke model, event models and a goal formula, and searches for a sequence of event
models to apply to reach the goal formulas.
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4.4. Conclusion

We proved that when event models are separable, meaning that any pair of events in an
event models have disjoint preconditions, the epistemic planning problem is NP-complete
when all events are non-ontic, and Pspace-complete otherwise. We also proved that in
the general case, when all event models are in C−1

0 , the epistemic planning problem is
Pspace-complete. Finally, we showed that if the epistemic planning problem is restricted
to the C−1

2 , it is already undecidable. This negative result shows that it is impossible to
deal with epistemic planning in all its generality, but there is still hope in practice. Indeed,
for separable events, epistemic planning has the same complexity than classical planning,
so maybe for non separable event model with insightful constraints, we might find other
decidable fragments of epistemic planning. For instance, semi-private assignments, i.e.
assign a variable to a value but some agents are oblivious about the value, may be a
non separable event model such that the epistemic planning problem is still decidable.
It corresponds to playing cards secretly in card games for instance. We wish to continue
studying epistemic planning in this respect.
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Chapter 5

Symbolic Epistemic Logic with
Arbitrary Announcements

5.1 Introduction

In this chapter, we do not consider the full expressivity of DELCK, but instead focus
on a special type of event models: public announcements, that is event models with only
one event with a trivial postcondition. The family of announcement logics has been the
subject of much work as they open the way to formal reasoning in many practical applica-
tions. We here mention a few, at the intuitive level only. For example, such logics enable
one to reason about human/robot interaction via a public channel of communication:
message exchanges between robots can modeled by public announcements when there is
common knowledge of the reliability of the network and when it is assumed that mes-
sages are received instantaneously [Lem+14]. Announcement logics, as well as dynamic
epistemic logic, are also relevant in games [Löw+08]: in the Battleships game, players
publicly announce that there is a ship in a given cell. In card games, players often pub-
licly show some cards to other players or announce something. Some issues in security
may also be approached with announcement logics: for example, one may wish to verify
that no announcement leads the system to a critical/bad state, say, where Intruder knows
some secret [CD17]. Finally, gossip-based algorithms in distributed systems, where agents
privately share their secrets in order to achieve shared knowledge of all secrets, may be
analyzed with announcement logics [HM15; Dit+16; Dit+17].

Since epistemic planning is undecidable in general but NP-complete when restricted to
announcements [BJS15] 1, studying in depth the the announcement operator is reasonable.

Here, we go further by synthesizing an announcement from scratch. Several logics were
created to express the existence of an announcement, as arbitrary public announcement

1. Section 4.1 is a more general proof for separable event models
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logic (APAL) [Bal+07] or group announcement logic (GAL) [Ågo+10].
In this chapter, we study the symbolic model checking against the Public Announce-

ment Protocol Logic (PAPL), that embeds both APAL and GAL, where symbolic models
are defined as in Chapter 3. The content of this chapter extends a previous paper [CS15]
that only focused on symbolic model checking of APAL. The content of the chapter is the
following.

No arbitrary announcements Arbitrary/group announcements
star-free protocols PSPACE-complete ApolExptime-complete
protocols with stars ApolExptime-complete ApolExptime-complete

Table 5.1: Symbolic model checking of PAPL

• First, we define the logic PAPL as an extension of epistemic logic with announcement
protocols.

• Second, we prove that even if a formula contains arbitrary announcements, it is suffi-
cient to consider the set of atomic propositions in this formula in symbolic models to
capture the whole expressivity.

• Third, we design algorithms that establish upper bound complexities.

• Fourth, we establish tight lower bounds.

• Fifth, we discuss the non-symbolic case.

• Finally, we conclude.

See Table 5.1 for a summary of the results. The chapter was initially published in
[CS15] but only for APAL and GAL. The extensions presented in this chapter are sub-
mitted and accepted to the Journal of Logic in Computation.

5.2 Public announcement protocol logic

We define a unifying logic, called PAPL (Public Announcement Protocol Logic), that
extends Public Announcement Logic (PAL) [Pla07], Arbitrary Public Announcement Logic
(APAL) [Bal+07] and Group Arbitrary Public Announcement Logic (GAL) [Ågo+10]. It
also contains constructions to express announcement protocols in the dynamic logic style.
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5.2. Public announcement protocol logic

5.2.1 Syntax of the full language PAPL

The formulas of PAPL, that may rely on announcement protocols, obey to the following
syntax.

Definition 57 (Syntax of PAPL).

(Formulas) ϕ ::= p | (ϕ ∧ ϕ) | ¬ϕ | Kaϕ | CGϕ | 〈γ〉ϕ
(Announcement protocols) γ ::= ϕ! | •! | •!G | ϕ? | (γ; γ) | (γ ∪ γ) | γ∗

where p ∈ AP is a proposition, a ∈ Ag is an agent, and G ⊆ Ag is a group of agents.

The intuitive meanings of the modal construction 〈γ〉ϕ is “there is a successful execu-
tion of the protocol γ after which ϕ holds”.

Protocols can be understood as knowledge-based programs [Fag+97], except that we
do not impose tests ϕ? to be formulas of the form Kaψ, as protocols could be executed
by the environment. Their intuitive behavior is given by th following table.

ϕ! announce the true formula ϕ; fail if ϕ is false
•! announce an arbitrary true formula
•!G announce an arbitrary true formula of the form ∧

a∈GKaψa

ϕ? succeed if ϕ is true, fail otherwise
γ1; γ2 sequentially execute γ1 then γ2

γ1 ∪ γ2 non-deterministically choose between γ1 and γ2

γ∗ execute protocol γ a finite number of times (possibly 0 times) 2

Noticeable syntactic fragments of PAPL can be exhibited. Arbitrary public announce-
ment logic (APAL) is the fragment where only operator Ka, 〈ψ〉 and 〈•!〉 are permitted.
Group announcement logic (GAL) is the fragment where only Ka, 〈ψ〉 and 〈•!G〉 can be
used.

We now give examples of PAPL-formulas.

Example 25 (Muddy children with two children). Formula 〈•!〉〈(¬Kapa∧¬Kbpb)!〉C{a,b}pa
states that “there exists an arbitrary public announcement such that after having an-
nounced it, the announcement that Agent a does not know that he is muddy and Agent
b does not know he is muddy makes it common knowledge that Agent a is muddy”. It is
true for instance in the case with two children where pa = pb = > by instantiating the
arbitrary announcement by the announcement of pa ∨ pb.

2. This protocol is non-deterministic as the number of times can be any finite number.
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Example 26 (Muddy children in the general case). The announcement protocol

γ =
 ∨
a∈Ag

pa!
 ;

 ∧
a∈Ag
¬Kapa!

∗

consists in first announcing that one of the children is muddy, and second, non-deterministically
announcing a finite number of times that no child knows that he is muddy. Formula
〈γ〉∨a∈Ag Kapa is true in any situation where at least one child is muddy.

Example 27 (Protocol of a dialogue). Consider four agents a, b, c, d that discuss together.
The “dialogue” protocol where a speaks first and leading to the situation where c does not
know p, followed by a sentence expressed by b and leading to the situation where d does
not know p is modeled by the following announcement protocol.

•!a;¬Kcp?; •!b;¬Kdp?

In the following, a formula ϕ or a protocol γ is arbitrary-free if it does not contain
any occurrence of operators •! or •!G. Typically the protocol of Example 26 is arbitrary-
free, but the protocol of Example 27 is not. Similarly, a protocol is star-free if it does
not contain any occurrence of operators ∗. Thus the protocol of Example 25 is not star-
free but the protocol of Example 26 is. Arbitrary-free and star-free protocols are noted τ
instead of γ.

Remark 5. We can express epistemic planning with announcements by a PAPL formulas.
Let {a1, . . . , an} be a series of announcements that can public or arbitrary. Then the
epistemic planning problem with this set announcements as the set of possible actions is
expressed by the PAPL-formula 〈(a1 ∪ · · · ∪ an)∗〉ϕG where ϕG is the goal formula. In this
setting, the action •! is interpreted as “find a formula to announce” and •!G is interpreted
as “find any formula announced by group G”.

5.2.2 Well-founded order over protocols and formulas

We can equip the set PAPL with well-founded orders over protocols and formulas, that
will be useful in subsequent proofs. We first define the order ≺γ over protocols (Definition
58) and then define the order ≺ over formulas (Definition 59).

Definition 58 (Well-founded order over protocols). We let ≺γ be the least relation on
protocols that contains the standard “subprotocols”-based ordering and that satisfies:
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• ϕ! ≺γ •! for any arbitrary-free formula ϕ;

• ϕ! ≺γ •!G for any arbitrary-free formula ϕ and any set G;

• γi ≺γ γ∗ for any protocol γ and any i ∈ N;

Proposition 13. ≺γ is well-founded.

Proof. For any protocol γ we define q(γ) = (•!G(γ), •!(γ), ∗(γ), symb(γ)) ∈ N4 with •!G(γ)
the number of •!G operators in γ, •!(γ) the number of •! operators in γ, ∗(γ) the number
of Kleene stars in γ and symb(γ) the total number of symbols in γ. We define Qγ =
{q(γ)} ⊆ N4 equipped with the lexicographical order <lex on N4. We obtain directly that
γ ≺γ γ′ implies q(γ) <lex q(γ′), which shows that ≺γ is well-founded.

We now define the well-founded operator over formulas.

Definition 59 (Well-founded order over formulas). We let ≺⊆ PAPL × PAPL be the
least relation that contains the standard “subformula”-based ordering and that satisfies:

• 〈γ〉ϕ ≺ 〈γ′〉ϕ for any formula ϕ and any protocols γ and γ′ such that γ ≺γ γ′;

• Ka1 ...Kanϕ ≺ CGϕ for any set G, any sequence a1, . . . , an of agents in G and any
formula ϕ.

We prove the following.

Proposition 14. ≺ is well-founded.

Proof. Similarly to Proposition 13, we define q(ϕ) = (•!G(ϕ), •!(ϕ), ∗(ϕ), CG(ϕ), symb(ϕ))
with •!G(ϕ) being the number of •!G operators in ϕ, •!(ϕ) being the number of •! operators
in ϕ etc. We conclude with the same argument.

In the rest of the chapter, the notion of induction for protocols and formulas is relative
respectively to ≺γ and ≺.

5.2.3 Semantics

The semantics of PAPL-formulas is defined as follows.

Definition 60 (Semantics of PAPL). LetM = (W, { a−→}a∈Ag, V ), w ∈ W and ϕ a formula.
We extend the definition ofM, w |= ϕ given in Definition 3 page 38 for ELCK with the
following inductive case.

139



Chapter 5 – Symbolic Epistemic Logic with Arbitrary Announcements

• M, w |= 〈γ〉ϕ if there existsM′, w such that (M, w) γ (M′, w) andM′, w |= ϕ.

We define γ a binary relation between pointed models by induction over protocols γ.

• (M, w) ϕ! (M{u∈W |M,u|=ϕ}, w) wheneverM, w |= ϕ;

• (M, w) •! (M′, w) whenever (M, w) ϕ! (M′, w) for some arbitrary-free formula ϕ;

• (M, w) •!G (M′, w) whenever (M, w)
∧
a∈GKaψa! (M′, w) for some arbitrary-free

formulas (ψa)a∈G;

• (M, w) ϕ? (M, w) wheneverM, w |= ϕ;

• (γ∪γ′) is γ ∪ γ′ ; γ;γ′ is the composition γ ◦ γ′ ; and γ∗ is the reflexive
transitive closure of γ .

5.3 Relevant atomic propositions in symbolic Kripke
models

5.3.1 Symbolic Kripke models

We consider a similar definition to Definition 42 page 88. The main difference here is that
the symbolic Kripke model is only described by the programs, the set of worlds being U

by default. If we want to begin with a set W of worlds instead of U , it is always possible
to express W with a formula ϕW and replace for any formula ϕ the model checking of ϕ
by the model checking of 〈ϕW !〉ϕ.

Definition 61 (Symbolic Kripke models). A symbolic (Kripke) model is a collection
M = (πa)a∈Ag of programs over the set AP of propositional variables.

Before proving the main theorem of this section, let us detail an example to highlight
why arbitrary announcements and symbolic models are relevant together.

Example 28 (Russian cards, ([Dit03; DK15])). We consider a card game where the cards
range from 1 to 7, with three players/agents Agent a, Agent b and Agent c, respectively,
each of them having in hand 3 cards, 3 cards and 1 card. Such a typical situation is
depicted in Figure 5.1.
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1 3 4 2 6 7 5
a b c

Figure 5.1: Example of hands for the Russian cards puzzle

We address the question of whether Agents a and b can or cannot publicly announce a
course of truthful facts so that they end-up commonly knowing each player’s hand, while
Agent c not being able to learn any card from Agent a’s or Agent b’s hands from any of
these announcements.

From [Dit03], we know that in any possible initial situation, Agents a and b can indeed
share full information of their hand by performing each a single public announcement. For
example, from the situation of Figure 5.1, agents can do the following. Notice first that a
cannot announce the hand, because c would then get a forbidden information. However a
may announce a set of possible hands so that Agent b can infer Agent a’s hand but Agent
c cannot. Let Agent a announce the sentence “My hand is either 134, 126, 367, 465 or
275”. Whichever hand Agent b and Agent c have, Agent b will always be able to deduce
Agents a’s hand while Agent c will never find out any card of Agent a. After Agent a’s
announcement, Agent b actually knows all hands of the players and achieves the goal by
announcing Agent c’s hand so that Agent a knows all hands.

We formalize the Russian cards puzzle with a symbolic Kripke model and state a for-
mula expressing that both agents a and b commonly know the card configurations while
Agent c does not know any others’ card.

To do so, we first let proposition pi,a denote the fact “Agent a has card i”, where
i ∈ {1, . . . , 7} ranges over the set of cards, and we let APσ be the set of propositions
pi,a, pi,b, pi,c, where i ∈ {1, . . . , 7}.

Legal hands. Let S7 be the set of all permutations of (1, 2, 3, 4, 5, 6, 7) whose typical
element is σ = (σ(1), ..., σ(7)). The valuations that correspond to legal hands are the
models of the formula ϕ`h defined by

ϕ`h =
∨
σ∈S7

ϕσ

where ϕσ describes the hands given by the permutation σ = (σ(1), ..., σ(7)) ∈ S7.
Namely,
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ϕσ = pσ(1),a ∧ pσ(2),a ∧ pσ(3),a ∧ pσ(4),b ∧ pσ(5),b ∧ pσ(6),b ∧ pσ(7),c ∧
∧

p∈APσ\{pσ(1),a,...,pσ(7),c}
¬p.

The public announcement ϕ`h! restricts the set of valuations to those denoting legal
hands.

Symbolic Kripke model. The programs for the three players are the following.

πa = set(p1,b, ..., p7,b, p1,c, ..., p7,c)
πb = set(p1,a, ..., p7,a, p1,c, ..., p7,c)
πc = set(p1,a, ..., p7,a, p1,b, ..., p7,b)

Each program expresses that its agent considers possible all worlds obtained by chang-
ing other players’ cards, and in a legal manner since formula ϕ`h has previously been
announced.

Formula. We express formula ϕ stating that both agents a and b commonly know the
card configurations while Agent c does not know any others’ card.

ϕ =
∨
σ∈S7

(C{a,b}ϕσ) ∧
∧

p∈{p1,a,...,p7,a,p1,b,...,p7,b}
¬(Kcp ∨Kc¬p)

We can show that for all w ∈ U , U , w 6|= 〈ϕ`h!〉〈•!a〉ϕ but for all w ∈ U , U , w |=
[ϕ`h!]〈•!a〉〈•!b〉ϕ.

Notation 1. In the rest of the chapter, we suppose that the symbolic Kripke model M
is clear from the context. Thus, for every set of valuations U ⊆ U , for every valuation
u ∈ U , we simply write (U, u) instead of (MU

M, u).

5.3.2 Relevant set of propositions

We establish non-surprising but important results regarding the relevant set of propo-
sitions that should be considered in a symbolic model. Given a symbolic model M and
a formula ϕ ∈ PAPL, the set of atomic propositions that appear in both is sufficient
to evaluate the truth value of ϕ. In particular, it is not necessary to consider arbitrary
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announcements that involve formulas referring to propositions not occurring in any of the
program π among M and in ϕ.

This property (stated in Proposition 15) plays an important role in the design of our
algorithms in Section 5.4. Before we prove this property, we need to introduce notations
and to define the notion of relevant propositions.

In the rest of this proof, given a program π, two sets of valuations W,U ⊆ U , and a
valuation w ∈ W ∩ U , we consider the two following sets.

• ∼
preπ,W (U) =

{
w ∈ W | ∀v ∈ W,w π−→ v implies v ∈ U

}
is the set of worlds whose all

π-successors are in U ;

• postπ,W (U) =
{
v ∈ W | ∃w ∈ U,w π−→ v

}
is the set of worlds that are π-successors of

worlds in U .

We now define relevant propositions.

Definition 62. Given a symbolic model M, we define the set of relevant propositions
AP(ϕ) in a formula ϕ, AP(γ) in a protocol γ, and AP(π) in a program π as follows, in
a crossed-inductive manner.

• For formulas:

– AP(>) = ∅; AP(p) = {p};

– AP(¬ϕ) = AP(ϕ);

– AP(ϕ1 ∨ ϕ2) = AP(ϕ1) ∪ AP(ϕ2);

– AP(Kaϕ) = AP(πa) ∪ AP(ϕ);

– AP(CGϕ) = AP(ϕ) ∪ ⋃a∈G AP(πa);

– AP(〈γ〉ϕ) = AP(γ) ∪ AP(ϕ);

• For programs:

– AP(p← ⊥) = AP(p← >) = {p};

– AP(β?) = AP(β);

– AP(π1; π2) = AP(π1 ∪ π2) = AP(π1) ∪
AP(π2);

• For protocols:
– AP(ϕ!) = AP(ϕ);

– AP(•!) = ∅;

– AP(•!G) = ⋃
a∈G AP(πa);

– AP(ϕ?) = AP(ϕ);

– AP(γ1; γ2) = AP(γ1 ∪ γ2) = AP(γ1) ∪
AP(γ2);

– AP(γ∗) = AP(γ);

Example 29. If πa = set(q, r), then AP(Kap) = {p, q, r}.
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Given a symbolic model M, sole the set AP(ϕ) is relevant to evaluate a formula ϕ, as
stated by the following proposition.

Proposition 15. Let ϕ ∈ PAPL and M be a symbolic model. For every U ⊆ U and
u ∈ T ,

U, u |= ϕ iff Uϕ
u , u

ϕ |= ϕ

where Uϕ
u = {vϕ | v ∈ U and for all p ∈ AP \ AP(ϕ), p ∈ v iff p ∈ u} with vϕ = v∩AP(ϕ).

Proof. In Appendix E.1.

Thanks to Proposition 15, we can alternatively characterize the semantics of 〈•!G〉ϕ
by the existence of subsets of valuations Ua instead of the existence of formulas ψa as
stated in Proposition 16. This characterization will be used for the design of algorithms
in Section 5.4.

Proposition 16. Let AP be a finite set. For all set W,w ∈ W,ϕ, (W,u) |= 〈•!G〉ϕ iff
there exist (Ua)a∈G ⊆ W, such that Ua = ∼

preπa,W (postπa,W (Ua)), and
⋂
a∈G

Ua, w |= ϕ

Proof. In Appendix E.2.

We end this section by redefining the notion of size to take in account the symbolic
model:

Definition 63 (Size of programs, formulas, protocols and symbolic Kripke models). Given
a symbolic Kripke model M, the sizes of a program π, a formula ϕ and of a protocol γ,
written |π|, |ϕ|, |γ| are mutually inductively defined as follows.

• Programs π

– |p← β| = |β?| = 1 + |β|;

– |π1; π2| = |π1 ∪ π2| = 1 + |π1|+ |π2|.

• Formulas ϕ:

– |>| = |p| = 1

– |¬ψ| = 1 + |ψ|

– |ψ1 ∨ ψ2| = 1 + |ψ1|+ |ψ2|

– |K̂aϕ| = 1 + |πa|+ |ϕ|
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proc relationyes(w, u, π) |π|

B accepts whenever w π−→ u
case π = p←β:
if (w |= β ∧ (u = w ∪ {p})) ∨ (w 6|= β ∧ (u = w \ {p})) then accept else reject

case π = π1; π2: (∃)(∃)(∃) v ∈ U ; (∀)(∀)(∀) relationyes(w, v, π1) and relationyes(v, u, π2)
case π = π1 ∪ π2: (∃)(∃)(∃) relationyes(w, u, π1) or relationyes(w, u, π2)
case π = β?: if w = u ∧ w |=PL β then accept else reject

Figure 5.2: Algorithm for program relation verification.

– |CGψ| = 1 + |AP|+∑
a∈G |πa|+ |ψ|

– |〈γ〉ϕ| = 1 + |γ|+ |ϕ|

• Announcement protocols γ:

– |ϕ!| = |ϕ?| = 1 + |ϕ|;

– |•!| = 1

– |•!G| = 1 +∑
a∈G |πa|;

– |γ1 ∪ γ2| = |γ1; γ2| = 1 + |γ1|+ |γ2|;

– |γ∗| = |AP|+ |γ|.

5.4 Upper bounds

We design algorithms and establish upper bound complexity results. The alternating al-
gorithm to decide whether w π−→ u, relationyes(w, u, π) is in Figure 5.2 and is the same
than the one of Chapter 3. In Subsection 5.4.1, we present an alternating polynomial-time
algorithm to model check against PAPL-formulas with star-free and alternation-free pro-
tocols only; since Aptime = Pspace [CS76], we obtain a Pspace upper bound (Theorem
17). In Subsection 5.4.2, we transform the previous algorithm into an ApolExptime al-
gorithm for model-checking against formulas that may contain protocols with stars and
arbitrary announcement operators, yielding Theorem 18.

By Proposition 15, U , w |= ϕ is equivalent to U ϕ
w , w

ϕ |= ϕ so we abuse notations
by taking U for U ϕ

w , w for wϕ for w and AP for AP(ϕ), thus considering only finite
valuation sets.
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Chapter 5 – Symbolic Epistemic Logic with Arbitrary Announcements

proc mcyes(L,w, ϕ) |L|+ |AP|+ |ϕ|
B accepts whenever WL, w |= ϕ
match ϕ with
case ϕ = p: if p ∈ w then accept else reject
case ϕ = ¬ψ: mcno(L,w, ψ)
case ϕ = (ψ1 ∨ ψ2): (∃)(∃)(∃) mcyes(L,w, ψ1) or mcyes(L,w, ψ2)
case ϕ = Kaψ: (∀)(∀)(∀) u ∈ U ; (∃)(∃)(∃) accessno(w, u, πa) or inno(L, u) or mcyes(L, u, ψ)
case ϕ = CGψ:

(∀)(∀)(∀) u ∈ U
(∃)(∃)(∃) access∗no(L,w, u,

⋃
a∈G πa, 2#AP) or inno(L, u) or mcyes(L, u, ψ)

case ϕ = 〈ψ!〉χ: (∀)(∀)(∀) mcyes(L,w, ψ) and mcyes(L :: ψ,w, χ)
case ϕ = 〈ψ?〉χ: (∀)(∀)(∀) mcyes(L,w, ψ) and mcyes(L,w, χ)
case ϕ = 〈τ1 ∪ τ2〉χ: (∃)(∃)(∃) mcyes(L,w, 〈τ1〉χ) or mcyes(L,w, 〈τ2〉χ)
case ϕ = 〈τ1; τ2〉χ: mcyes(L,w, 〈τ1〉〈τ2〉χ)

Figure 5.3: Algorithm mcyes for model-checking against star-free and arbitrary-free for-
mulas.

5.4.1 Model checking against formulas with star-free and arbitrary-
free protocols

The aim of this subsection is to prove the following theorem.

Theorem 17. The symbolic model checking problem against PAPL-formulas with star-
free and arbitrary-free protocols is in Pspace.

The algorithm for the symbolic model checking problem against formulas with a star-
free and arbitrary-free protocols is the following, where [ ] is (initially) the empty list
of announcements, w is the current valuation and ϕ is the formula to model check. The
algorithm for mcyes is described in Figure 5.3.

proc mainmc(w,ϕ)
B accepts whenever U , w |= ϕ

mcyes([ ], w, ϕ)

We now detail algorithm mcyes of Figure 5.3. In a call mcyes(L,w, ϕ), L is the list of all
previous announcements, w ∈ U is a valuation, and ϕ is a formula. We write L :: ϕ for
the list L followed by ϕ. The call mcyes(L,w, ϕ) accepts whenever WL, w |= ϕ, where the
set of valuations WL is the restriction of U to worlds satisfying all the announcements in
list L. Notice that the overall complexity is confined to Aptime by avoiding an explicit
representation of the announcement context WL: instead, we use the list L of previous
announcements, that implicitly denotes this context.
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Propositional constructions inmcyes (Figure 5.3). For ϕ = p, the callmcyes(L,w, ϕ)
accepts if and only if p ∈ w. As expected, for ϕ = ¬ψ, the call switches from mcyes to
mcno. For ϕ = ϕ1∨ϕ2, mcyes(L,w, ϕ) consists in existentially choosing i ∈ {1, 2} and then
calling mcyes(L,w, ϕi).

Knowledge operators in mcyes (Figure 5.3). The call mcyes(L,w,Kaϕ) consists in
universally choosing a valuation u ∈ U , then in performing two tests. The first test
is w πa−→ u, thus calling relationyes(w, u, πa). Notice that intermediate valuations along
the execution of πa are unconstrained. The second test is u ∈ WL, by calling Algorithm
inyes(L, u) shown in Figure 5.4. If both tests succeed thenmcyes(L, u, ϕ) terminates without
rejecting.

proc inyes(L,w) |L|+ |AP|+ 1
B accepts whenever w ∈ WL

match L with
case L = [ ]: accept
case L = L′::ϕ: (∀)(∀)(∀) mcyes(L′, w, ϕ) and inyes(L′, w)

Figure 5.4: Algorithm inyes to check membership in the current context.

Common knowledge operators in mcyes (Figure 5.3). The call mcyes(L,w,CGψ)
triggers mcyes(L,w,Ka1 ...Kaiψ) for all possible choices of a multiset {a1, . . . , ai} of G.
The semantics of operator CG yields checking that mcyes(L, u, ϕ) does not reject, for all
u ∈ U reachable from w by iterating ⋃a∈G πa. This is the purpose of Algorithm access∗yes

(Figure 5.5). Regarding the size of the multiset {a1, . . . , ai}, it is sufficient to consider at
most i = 2#AP : indeed, each iteration of ⋃a∈G πa adds at least one valuation into the set
of reachable valuations from w, so it will necessarily stabilize within at most 2#AP steps,
which is the size of U . Additionally, it is important to require that after each iteration,
the obtained valuation is in WL, ensured by the call inyes in access∗yes. To remain in the
class Aptime, Algorithm access∗yes relies on a divide and conquer method, similarly to
access∗yes in Chapters 2 and 3.

Announcement protocol operators in mcyes (Figure 5.3). We separate the case of
a formula of the form 〈τ〉χ into four cases depending on the form of τ : namely, either ψ!,
or ψ?, or τ1 ∪ τ2, or τ1; τ2.
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proc access∗yes(L,w, u, π, i) |L|+ |AP|+ log2(i) + |π|

B accepts whenever w = u or there exist v1, . . . , vk ∈ WL with k < i such that w π−→
v1 . . .

π−→ vi−1
π−→ u (for i > 1)

case i = 1: if u 6= w then accessyes(w, u, π) else accept
case i ≥ 2:

(∃)(∃)(∃) v ∈ U
(∀)(∀)(∀) inyes(L, u) and access∗yes(L,w, v, π, i/2) and access∗yes(L, v, u, π, i/2)

Figure 5.5: Iteration algorithm access∗yes for symbolic accessibility relations
(arbitrary-free and star-free case).

When considering an announcement (some ψ!), it is necessary to check that this an-
nouncement is consistent with w (by calling mcyes(L,w, ψ)) and that χ holds after the
announcement (by calling mcyes(L :: ψ,w, χ)). The case for ψ? is similar: it is needed
to check ψ in w (by calling mcyes(L,w, ψ)), but in this case the list L needs not being
changed (hence the call to mcyes(L,w, χ)). Regarding a non-deterministic choice τ1 ∪ τ2,
the algorithm existentially chooses which protocol to consider. Finally, for a sequence
τ1; τ2, the algorithm uses the fact that formula 〈τ1; τ2〉χ is equivalent to formula 〈τ1〉〈τ2〉χ.

We now state the correctness of Algorithmsmcyes, access∗yes, inyes, andmainmc (Propo-
sition 17).

Proposition 17. Given a list L = ϕ1; . . . ;ϕn of announcements, a valuation w, a formula
ϕ, and i ≤ 2#AP we have:

mcyes(L,w, ϕ) accepts iff WL, w |= ϕ;
mcno(L,w, ϕ) accepts iff WL, w 6|= ϕ;
access∗yes(L,w, u, π, i) accepts iff there are w1, . . . , wj−1 ∈ WL such that

w
π−→ w1

π−→ . . .
π−→ wj−1

π−→ u and j ≤ i;
access∗no(L,w, u, π, i) accepts iff for all w1, . . . , wj−1 ∈ WL such that j ≤ i,

it is false that w π−→ w1
π−→ . . .

π−→ wj−1
π−→ u;

inyes(L,w) accepts iff w ∈ WL;
inno(L,w) accepts iff w 6∈ WL;
mainmc(w,ϕ) accepts iff U , w |= ϕ.

Proof. Let H(n) be the Proposition 17 but only for all L,w, ϕ, i such that |L|+ |ϕ| ≤ n.
We prove H(n) by induction on n. The case access∗yes is proven by another induction on
i. Details are left to the reader.
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Algorithm mainmc is achieved by an alternating Turing machine running in poly-
nomial time. Indeed in the algorithms, the quantities in gray decrease strictly with the
recursive calls, and are polynomial in the size of the input. Furthermore in each recur-
sive call, only polynomial time instructions are performed. Since Pspace = Aptime, it
concludes the proof of Theorem 17.

5.4.2 Model checking against PAPL-formulas

In this section, we prove the following theorem.

Theorem 18. The symbolic model checking problem against formulas (even with protocols
with stars and arbitrary announcements) is in ApolExptime.

In order to prove Theorem 18, we provide the following model checking algorithm
mainmc that resorts on Algorithm mcyes subsequently defined (Figure 5.6).

proc mainmc(w,ϕ)
B accepts whenever U , w |= ϕ

mcyes(U , w, ϕ)

The algorithm mcyes, shown in Figure 5.6 is similar to the algorithm of Figure 5.3.
However, instead of using the history of announcements L, we directly consider the context
WL, thus written W in the algorithms. Namely, the call to mcyes(L,w, ϕ) in Figure 5.3 is
now replaced by the call mcyes(W,w, ϕ), and similarly for all other auxiliary algorithms.
Typically, for the case of a formula of the form Kaϕ, and in order to check that a given
valuation u is in W , we replace the call inyes(L, u) (in Figure 5.3) by choosing directly u
in W (in Figure 5.6).

We now detail each case of Algorithm mcyes of Figure 5.6.

Common knowledge. We tune the algorithms access∗yes and access∗no of Figure 5.5
into those in Figure 5.7.

Announcement protocols. We define algorithm execyes (Figure 5.8) such that the call
execyes(W,w,W ′, γ) checks that (W,w) γ (W ′, w). For announcements ϕ!, we check that
W ′ is the restriction ofW with respect to the announcement ϕ: namely every element u in
W ′ should satisfy ϕ (mcyes(W,u, ϕ)) and every element v outside W ′ should not satisfy ϕ
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proc mcyes(W,w, ϕ) |AP|+ |ϕ|
B accepts whenever W,w |= ϕ
match ϕ with
case ϕ = p: if p ∈ w then accept else reject
case ϕ = ¬ψ: mcno(W,w, ψ)
case ϕ = (ψ1 ∨ ψ2): (∃)(∃)(∃) mcyes(W,w, ψ1) or mcyes(W,w, ψ2)
case ϕ = Kaψ: (∀)(∀)(∀) u ∈ W ; (∃)(∃)(∃) accessno(w, u, πa) or mcyes(W,u, ψ)
case ϕ = CGψ:

(∀)(∀)(∀) u ∈ W
(∃)(∃)(∃) access∗no(W,w, u,⋃a∈G πa, 2#AP) or mcyes(W,u, ψ)

case ϕ = 〈γ〉χ:
(∃)(∃)(∃) W ′ ⊆ W | w ∈ W ′

(∀)(∀)(∀) execyes(W,w,W ′, γ) and mcyes(W ′, w, χ)

Figure 5.6: Model checking sub-procedure mcyes that handles protocols with arbitrary
announcements and Kleene star.

(mcno(W, v, ϕ)). For an arbitrary announcement •!, the call execyes simply succeeds since
W ′ ⊆ W is granted.

For group announcements •!G, we guess subsets (Wa)a∈G of W containing w. We
then check whether there exist (ψa)a∈G such that for all a ∈ G, (W,w) Kaψa! (Wa, w).
According to Proposition 16, it amounts to checking that ∼

preπ,W (postπ,W (Wa)) = Wa, as
achieved by algorithm stableyes shown in Figure 5.10. The idea for checking that ∼

preπ,W

(postπ,W (Wa)) = Wa is that for all w ∈ Wa, check that for all v ∈ W such that w πa−→ v

(which is done by filtering the other ones by accessno(w, v, πa)), all πa-predecessors of
v are in Wa. Therefore, the algorithm stableyes checks that ∼

preπ,W (postπ,W (Wa)) ⊆ Wa

3. After having chosen the Wa, the model-checking goes on with the new current set of
valuations ⋂

a∈G
Wa.

For γ′∗, we introduce the algorithm exec∗yes (Figure 5.9), based on divide-and-conquer
as access∗yes.

3. The other implication is always true.
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proc access∗yes(W,w, u, π, i) |AP|+ log2(i) + |π|

B accepts whenever w = u or there exist v1, . . . , vk ∈ W with k < i such that w π−→
v1 . . .

π−→ vi−1
π−→ u (for i > 1)

case i = 1: if u 6= w then accessyes(w, u, π) else accept
case i ≥ 2: (∃)(∃)(∃) v ∈ W ; (∀)(∀)(∀) access∗yes(W,w, v, π, i/2) and access∗yes(W, v, u, π, i/2)

Figure 5.7: Iteration algorithms access∗yes for programs.

proc execyes(W,w,W ′, γ) |AP|+ |γ|
B accepts whenever (W,w) γ (W ′, w)
match γ with
case γ = ϕ!:

(∀)(∀)(∀) (u, v) ∈ W ′ × (W\W ′)
(∀)(∀)(∀) mcyes(W,u, ϕ) and mcno(W, v, ϕ)

case γ = •!: accept
case γ = •!G:

(∃)(∃)(∃) (Wa)a∈G | for all a ∈ G,Wa⊆W,w∈Wa

if ⋂
a∈G

Wa 6= W ′ then reject

else (∀)(∀)(∀) a ∈ G; stableyes(W,Wa, πa)case γ = γ1; γ2:
(∃)(∃)(∃) W ′′ ⊆ W such that W ′ ⊆ W ′′

(∀)(∀)(∀) execyes(W,w,W ′′, γ1) and execyes(W ′′, w,W ′, γ2)
case γ = γ1 ∪ γ2: (∃)(∃)(∃) k ∈ {1, 2}; execyes(W,w,W ′, γk)
case γ = ϕ?: (∀)(∀)(∀) if W ′ 6= W then reject and mcyes(W,w, ϕ)
case γ = γ′∗: (∃)(∃)(∃) i ∈ {0, ..., 2#AP − 1} exec∗yes(W,w,W ′, γ′, i)

Figure 5.8: Dual path searching algorithm execyes for announcements.

proc exec∗yes(W,w,W ′, γ, i) |AP|+ |γ|+ log2(i)

B accepts whenever (W,w) γi (W ′, w)
case i = 1: if W = W ′ then accept else execyes(W,w,W ′, γ)
case i ≥ 2:

(∃)(∃)(∃) W ′′ s.th. W ′ ⊆ W ′′ ⊆ W
(∀)(∀)(∀) exec∗yes(W,w,W ′′, γ, i/2) and exec∗yes(W ′′, w,W ′, γ, i/2)

Figure 5.9: Iteration algorithm exec∗yes.
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proc stableyes(W,W ′, π) |π|+ 1

B accepts whenever ∼
preπ,W (postπ,W (W ′)) ⊆ W ′

(∀)(∀)(∀) (w, v, u) ∈ W ′ ×W ×W
if u 6∈ W ′ then (∃)(∃)(∃) accessno(w, v, π) or accessno(u, v, π)

Figure 5.10: Algorithm that checks that ∼
preπ,W (postπ,W (W ′)) ⊆ W ′.

We now state the correction (Proposition 18).

Proposition 18. We have:
mcyes(L,w, ϕ) accepts iff WL, w |= ϕ;
mcno(L,w, ϕ) accepts iff WL, w 6|= ϕ;
access∗yes(L,w, u, π, i) accepts iff there are w1, . . . , wj−1 ∈ WL such that

w
π−→ w1

π−→ . . .
π−→ wj−1

π−→ u and j ≤ i;
access∗no(L,w, u, π, i) accepts iff for all w1, . . . , wj−1 ∈ WL such that j ≤ i,

it is false that w π−→ w1
π−→ . . .

π−→ wj−1
π−→ u;

inyes(L,w) accepts iff w ∈ WL;
inno(L,w) accepts iff w 6∈ WL;
execyes(W,w,W ′, γ) accepts iff (W,w) γ (W ′, w)
execno(W,w,W ′, γ) accepts iff (W,w) 6 γ (W ′, w)
exec∗yes(W,w,W ′, γ, i) accepts iff (W,w) γj (W ′, w) for some j ≤ i

execno(W,w,W ′, γ) accepts iff (W,w) 6 γ (W ′, w) for all j ≤ i

stableyes(W,W ′, π) accepts iff ∼
preπ,W (postπ,W (W ′)) ⊆ W ′

stableno(W,W ′, π) accepts iff ∼
preπ,W (postπ,W (W ′)) 6⊆ W ′

mainmc(w,ϕ) accepts iff U , w |= ϕ.

Proof. By induction on ϕ, i, γ.

The algorithm mainmc runs on exponential time and introduces a polynomial number
of alternations. Indeed, the quantities in gray are polynomial and decrease strictly, and
in each recursive call, there is a polynomial number of alternations and the call runs in
exponential time.

5.5 Lower bounds

In this section, we establish tight lower bounds for the symbolic model checking problem.
First, as DL-PA-model checking is Pspace-hard [Her+11], we obtain that:
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Theorem 19. The symbolic model checking against formulas with arbitrary-free and star-
free protocols is Pspace-hard.

To prove the other lower bound results of Table 5.1, we first prove in Subsection
5.5.1, as an intermediate step, the NExptime lower bound for the fragment ∃1PAPL

defined as the restriction to formulas of the form 〈•!〉ϕ where ϕ does not contain any
arbitrary public announcement and no protocols. Then we use this NExptime lower
bound in Subsection 5.5.2 to show the ApolExptime-hardness for the fragment of PAPL
containing only formulas with star-free protocols, by taking alternations of ∃1PAPL-
formulas. The proofs described generalize Cook’s theorem [Coo71]. Cook’s theorem states
that we can express the existence of a polynomially long accepting execution of a given
non-deterministic Turing machine with a formula of propositional logic. Analogously, we
will prove that:

• the existence of an exponentially long accepting execution of a given non-deterministic
Turing machine can be stated by a formula of ∃1PAPL.

• the existence of an exponentially long accepting execution of a given alternating Turing
machine with a polynomial number of alternations can be stated by a with a formula
of PAPL with star-free protocols.

In order to ease the notations, we confuse an agent and its program. We write Kπ

instead of Ka, where a is an agent whose program is π.
In the Subsection 5.5.3, we tackle the ApolExptime-hardness for the case of protocols

without arbitrary announcements.

5.5.1 NEXPTIME-hardness for ∃1PAPL

The aim of this Subsection is to prove Theorem 20.

Theorem 20. The ∃1PAPL-model checking problem is NExptime-hard.

Proof. Let L be a NExptime problem. We define a polynomial reduction tr from L to the
∃1PAPL-model checking problem. Let M = (Q,Σ,Γ, δ, q0, qacc) be an non-deterministic
Turing machine running in exponential time that decides L. Q is a finite set of states,
Σ is the finite input alphabet, Γ is the finite tape alphabet where the blank symbol ␣ is
in Γ and Σ ⊆ Γ, δ ⊆ Q × Γ × Q × Γ × {−1, 0, 1}, q0 is the start state and qacc is the
accept state. We suppose here that all end-states that are not qacc are rejecting. Let P be
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should be in an accepting state

initial configuration

2P (|ω|)

x

t a c a a c ␣ ␣ ␣ ␣ ␣

should be in an accepting state

0th part (existential)

1st part (universal)

2nd part (existential)

(A(ω)− 1)th part

...

initial configuration
2P (|ω|)

2P (|ω|)

2P (|ω|)

2P (|ω|)

x

t

a. NExptime case b. ApolExptime case
Figure 5.11: Tableaux for executions of M

a polynomial function such that for all inputs ω ∈ Σ∗, the length of any execution of M
on ω is bounded by 2P (|ω|). Note that the length of the non-empty part of the tape (that
is the smallest portion of the tape such that there are only occurrences of the symbol ␣
on the left and on the right of that portion) is also bounded by 2P (|ω|) at any step of the
execution.

Let ω be an instance of L. We encode the existence of an accepting execution of M
for ω (that is, which ends in the state qacc) in an ∃1PAPL-model checking instance tr(ω).
Without loss of generality, we suppose that the machine M is built so that we loop on
state qacc: formally (qacc, a, qacc, a, 0) ∈ δ for all a ∈ Γ.

The atomic propositions to represent an execution. An execution of M is repre-
sented by a tableau whose rows are the configurations of M , as depicted in Figure 5.11a.
The integers x and t in

{
0, . . . , 2P (|ω|) − 1

}
respectively represent a cell index on the tape

and the time index. We identify x and t with their binary representations respectively
expressed by means of the atomic propositions x1, . . . , xn and t1, . . . , tn where n = P (|ω|).
For instance, if n = 4, x1,¬x2, x3,¬x4 represents x = 5.

We use the following atomic propositions to represent a given tape cell of index x at
a given moment t:

• x = x1 . . . xn: the position of the current tape cell;

• t = t1 . . . tn: the moment we consider;

• cur: true if the cursor of the tape is in position x at time t, false otherwise;
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• symbola: true if the symbol a is stored at position x at time t, false otherwise;

• stateq: at time t, M is in state q ∈ Q (q could be the initial state q0, the accepting
state qacc or any other state of the finite state space of the Turing machine; notice that
the truth values of propositions stateq should be independent from x);

• trq,a,q′,b,d: the transition starting from state q ∈ Q and going to state q′ ∈ Q, reading
the symbol a ∈ Γ on the tape and writing b ∈ Γ, moving the cursor on direction
d ∈ {−1, 0,+1} is executed at time t (note that the truth values of propositions
trq,a,q′,b,d should be independent from x).

The set of the atomic propositions we just described is noted AP ′.

Example 30. Let us suppose that n = 4. Valuation {x1, x3, t2, stateq′ , symbolc, trq′,b,q′′,a,−1}
is about time 2 ( as ¬t1, t2,¬t3,¬t4 represents 0× 20 + 1× 21 + 0× 22 + 0× 23) and the
5th cell of the tape (as x1,¬x2, x3,¬x4 represents 20 + 0× 21 + 22 + 0× 23):

• The cursor is not in the 5th cell of the tape at time 2 (because cur is false);

• Letter c is written in the 5th cell of the tape;

• The machine M is in state q′ at time 2;

• From time 2 to time 3, the machine M triggers the transition from state q′ to state q′′

by reading b, writing a and moving the cursor left.

The existence of an accepting execution as an arbitrary public announcement.
Remark that there are non legal valuations in 2AP′ , such as a valuation in which both
symbola and symbolb are true with a 6= b. The idea is to perform an arbitrary public
announcement yielding to a set of legal valuations representing an accepting execution for
ω of M . Each remaining valuation describes the content of one cell on the tape at a given
moment along this execution. The rest of the proof consists in defining a formula of the
form 〈•!〉ϕ such that ϕ expresses that the set resulting from the announcement represents
an accepting execution of M on ω.

Abbreviations. To ease the reading of the formula expressing the accepting execution,
we introduce the following abbreviations:
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• Exactly one proposition among {p1, . . . , pn} is true

∃!(p1, . . . , pn) :=
∨

i∈{1,...,n}

pi ∧ ∧
j 6=i
¬pj

;
• x=y, x≥y, etc. are formulas over x1, . . . , xn and y1, . . . , yn whose intended meaning is

that the values of propositions x1, . . . , xn and y1, . . . , yn are such that the number x
(denoted by x1, . . . , xn) is equal to y (denoted by y1, . . . , yn), greater or equal than y,
etc. We define these formulas by recurrence on the number of digits, with ε the empty
word (0 digit):

– ε = ε is > and x1 . . . xn = y1 . . . yn is (xn ↔ yn) ∧ (x1 . . . xn−1 = y1 . . . yn−1)

– ε ≥ ε is > and x1 . . . xn ≥ y1 . . . yn is (xn ∧ ¬yn) ∨ ((yn → xn) ∧ (x1 . . . xn−1 ≥
y1 . . . yn−1))

For instance the formula x=5 is equivalent to x1 ∧ ¬x2 ∧ x3 ∧
∧n
k=4 ¬xk. Formula

t=2P (|ω|)−1 is equivalent to ∧nk=1 tk.

• Non-deterministically choose values for {p1, . . . , pn} such that at least one pi’s value
changes:
set6=(p1, . . . , pn) := ((p1?; p1←>) ∪ (¬p1?; p1←⊥)) ; . . . ;

((pn?; pn←>) ∪ (¬pn?; pn←⊥)) ; set(p1, . . . , pn) ;¬ ∧
i∈{1,...,n}

(pi ↔ pi)
?; (p1←⊥); . . . ; (pn←⊥)

where p1 . . . pn are fresh propositions;

• x←x−1, x←x+1 and t←t+1 are programs of polynomial size in |ω| that respectively
decrement x, increment x and increment t. Notice that x←x+1 is not executable when
x = 2P (|ω|) − 1 and that x←x−1 is not executable when x = 0. More precisely:

x←x+1 :=
n−1⋃
k=0

(
(¬xk+1 ∧

k∧
i=1

xi)?;x1←⊥; . . . xk←⊥;xk+1←>
)

x←x−1 :=
n−1⋃
k=0

(
(xk+1 ∧

k∧
i=1
¬xi)?;x1←>; . . . xk←>;xk+1←⊥

)

Definition of the reduction. The instance tr(ω) is of the form (w, 〈•!〉Kset(AP′)(ϕexe∧
ϕinit ∧ ϕaccept)).

• First, w is the valuation
{
symbolω0 , cur, stateq0

}
. Valuation w represents the most-left

tape cell in initial configuration of M (U , w |= (x = 0 ∧ t = 0)).
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Tableau structure

1. K̂(x←x+1∪x=2P (|ω|)−1?);set(state,symbol,cur,tr)> If x < 2P (|ω|), the x+ 1th cell exists

2. K̂(t←t+1∪t=2P (|ω|)−1?);set(state,symbol,cur,tr)> if t < 2P (|ω|), time t+ 1 exists

States

3. ∃!(stateq)q∈Q the machine is in a unique state

4.
(
stateq → Kset(x,state,symbol,cur,tr)stateq

)
the state of the machine only depends on time

Cursor

5. K̂set(x,symbol,cur,tr)cur on each possible tape, there must be a cursor

6. cur → Kset6=(x,symbol,cur,tr)¬cur the cursor has a position

7. (cur → Kset(cur)cur) ∧ (¬cur → Kset(cur)¬cur) at a given time, the cursor has a unique position

Tape

8. ∃!(symbola)a∈Γ a tape cell contains a unique letter

9. symbola → Kset(symbol)symbola
on each cell, there is no world in which all atomic
propositions are the same except the letter written in
the cell

Transitions

10. ∃!(trδ)δ∈δ there is a unique transition to be triggered

11.
∧
δ∈δ

(
trδ → Kset(x,state,symbol,cur,tr)trδ

)
the triggered transition only depends on time

12.
∧
a∈Γ(¬cur ∧ symbola)→ Kt←t+1symbola

Tape cells that are not under the cursor remain un-
changed

13.
∧

(q,a,q′,b,d)∈δ trq,a,q′,b,d → stateq
The triggered transition is compatible with the current
state

14.
∧

(q,a,q′,b,d)∈δ trq,a,q′,b,d ∧ cur → symbola
The triggered transition is compatible with th read
letter

15.
∧

(q,a,q′,b,d)∈δ trq,a,q′,b,d ∧ cur → Kt←t+1symbolb
The triggered transition is compatible with the written
letter

16.
∧

(q,a,q′,b,d)∈δ trq,a,q′,b,d → Kt←t+1stateq′
The triggered transition is compatible with the next
state

17.
∧

(q,a,q′,b,+1)∈δ trq,a,q′,b,d ∧ cur
→ Kt←t+1;x←x+1cur

Behavior of the cursor that moves to the right

18.
∧

(q,a,q′,b,−1)∈δ trq,a,q′,b,d ∧ cur
→ Kt←t+1;x←x−1cur

Behavior of the cursor that moves to the left

19.
∧

(q,a,q′,b,0)∈δ trq,a,q′,b,d ∧ cur → Kt←t+1cur Behavior of the cursor that stays in the same cell

Table 5.2: Formulas that constraint the set of valuations to represent an execution
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• Formula ϕexe is the conjunction of the formulas in Table 5.2. Formula ϕexe imposes the
set of surviving valuations to represent an execution ofM . For instance, formula 4 in Ta-
ble 5.2 says that changing the current valuation via the program
set(x, state, symbol, cur, tr) (that only time t is fixed) will not change the truth valu-
ation of proposition stateq.

• Formula ϕinit says that in that execution, the configuration at time t = 0 is the initial
configuration on ω. Formally: ϕinit := t=0 → stateq0 ∧ [(x=0 → (cur ∧ symbolω0))∧∧|ω|−1
i=1 (x=i→ (¬cur∧ symbolωi))∧ (x≥|ω| → (¬cur∧ symbol␣))], where ␣ is the blank

symbol.

• Formula ϕaccept says that the configuration at time t = 2P (|ω|)−1 is an accepting con-
figuration. Formally: ϕaccept :=

(
t=2P (|ω|)−1

)
→ stateqacc .

By construction, tr(ω) is computable from ω in polynomial time in |ω| and tr(ω) is
a positive instance of ∃1PAPL-model checking problem if and only if ω is a positive
instance of L.

5.5.2 ApolExptime-hardness for PAPL with star-free protocols

The aim of this subsection is to prove Theorem 21 given below:

Theorem 21. The symbolic model checking of any formula is ApolExptime-hard.

To prove the theorem, we use Theorem 20 as a basic step for the part of an execution
where all states are of the same type (existential or universal). Now we will alternate the
use of 〈•!〉 and [•!] operators to simulate alternations in executions of alternating Turing
machines.

Proof. (of Theorem 21) Let L be a problem in ApolExptime. We are going to define
a polynomial reduction tr from L to our symbolic model checking problem. Let M =
(Q,Σ,Γ, δ, q0, qacc, type) be an alternating Turing machine running in exponential time
that decides L with a polynomial number of alternations, where Q,Σ,Γ, δ, q0, qacc are
defined as in the proof of Proposition 20 and type : Q × {∃,∀} says whether a given
state is existential (∃) or universal (∀). Let A be a polynomial function such that for
all inputs ω, the number of alternations of any execution starting from ω is bounded by
A(|ω|). Without loss of generality, we suppose that the number of alternations is exactly
A(|ω|) and that the initial state is existential. The execution is segmented into maximal
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parts in which each configuration is of the same type: in a given part, either all states are
existential states or all are universal states. Let P be a polynomial function such that for
all inputs ω, the length of any such part is bounded by 2P (|ω|).

Transformation of M so that all execution parts are of length 2P (|ω|). We trans-
form the machine M so that we can suppose that the length of any part of an execution
is exactly 2P (|ω|) in the following way. For all transitions t from an existential state to a
universal state, we add an intermediate existential state it as pictured below:

∃ ∀
t =⇒

∃
it
∃ ∀

Let us explain the transformation formally. For all transitions δ = (q, a, q′, b, d) ∈ δ,
such that type(q) = ∃ and type(q′) = ∀, we add a new state it in δ, we remove the
transition t from δ, we add the transitions (q, a, it, a, 0), (it, a, q′, b, d) to δ and also the
transitions (it, α, it, α, 0) for all tape symbols α ∈ Γ.

We do the same transformation for transitions that go from a universal state to an
existential state. Figure 5.11b shows the shape of an execution of M .

Abbreviations. Now we use the notation of the proof of Proposition 20 but now
numbers x and t ranges over

{
0, . . . , A(|ω|)×2P (|ω|)

}
so we take the number n of digits

of the numbers x and t to be P (ω) + log2(A(ω)) + 1. Now we define formula ϕ∃exe which
is similar to formula ϕexe (see proof of theorem 20) except that we impose end states
of transitions to be existential. We define formula ϕ∀exe which is similar to formula ϕexe
except that we impose end states of transitions to be universal.

We define the following abbreviations:

• We are in a k′th part with k′ ≥ k: k×2P (|ω|)≤t

• We are in a k′th part with k′ ≤ k: t<(k+1)×2P (|ω|)

• Go to the kth part : Uk := set(AP ′);
((
k×2P (|ω|)≤t

)
∧
(
t<(k+1)×2P (|ω|)

))
?

• Go after the kth part : U after
k := set(AP ′);

(
t>k×2P (|ω|)

)
?

• We are at the end of the execution: t=A(|ω|)×2P (|ω|)
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• All valuations concerning the kth part and beyond exist (i.e. the parts from the kth

part are unfixed):

ϕkunfixed := KU after
k

K̂x←x+1∪(x=A(|ω|)×2P (|ω|))?> ∧ K̂t←t+1∪t=A(|ω|)×2P (|ω|)?>∧∧
p∈AP′\{x1,...,xn,t1,...,tn}

(
¬(p→ Kset(p)p) ∧ ¬(¬p→ Kset(p)¬p)

)


• Transitions at time (k + 1)×2P (|ω|)−1 only end into universal states:

ϕ∃→∀exe,k :=
(
t=(k + 1)×2P (|ω|)−1

)
→ ∃!(trδ)δ∈δ|δ ends in a universal state

• Transitions at time (k + 1)×2P (|ω|)−1 only end into existential states:

ϕ∀→∃exe,k :=
(
t=(k + 1)×2P (|ω|)−1

)
→ ∃!(trδ)δ∈δ|δ ends in a existential state

Describing the accepting condition. Now we define a sequence of formulas
(ψk)k∈{0,...,A(|ω|)} that describe the execution of the Turing machine M one part after
another. Assuming the execution is already defined until the time 2k×2P (|ω|), the formula
ψ2k chooses the next transitions to execute in the (2k)th part so that the last transition
executed in the (2k)th part leads to a universal state. Moreover, it leaves all valuations
in remaining parts unfixed so that formula ψ2k+1 is carrying on the rest of the execution.
Assuming the execution is already defined until the time (2k + 1) × 2P (|ω|), the formula
ψ2k+1 checks that all possible executions in the (2k + 1)th part are accepting. Assuming
the execution is defined until the end, the last formula ψA(|ω|) checks that the last state is
qacc. Formally:

• ψA(|ω|) := KUA(|ω|) [(t = A(|ω|)×2P (|ω|)) → stateqacc ];

• for all k such that 2k + 1 < A(|ω|), ψ2k+1 := [•!]
((
KU2k+1(ϕ∀exe ∧ ϕ∀→∃exe,2k+1) ∧ ϕ2k+2

unfixed

)
→ ψ2k+2);

• for all k such that 0 ≤ 2k < A(|ω|), ψ2k := 〈•!〉
(
KU2k(ϕ∃exe ∧ ϕ∃→∀exe,2k) ∧ ϕ2k+1

unfixed ∧ ψ2k+1
)
;

For all k ∈ {0, . . . , A(|ω|)}, we define the following property P (k): For all W ⊆ U ,
such that W defines a unique configuration C at time t = k × 2P (|ω|) and contains all
valuations for t > k × 2P (|ω|), W,w |= ψk if and only if C is an accepting configuration.

We can prove by induction on k that P (k) is true for all k ∈ {0, . . . , A(|ω|)}.
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Definition of the reduction. The instance tr(ω) is of the form (w,ϕ) where:

• w is the valuation
{
symbolω0 , cur, stateq0

}
;

• ϕ = 〈•!〉
(
Kset(AP′)ϕinit ∧ ϕ0

unfixed ∧ ψ0
)
.

Formula ϕ ensures that the initial configuration (t = 0) is fixed, leaves all valuations
concerning t > 0 unfixed and ψ0 checks whether the initial configuration is accepting.
tr(ω) is computable from ω in polynomial time in |ω|. We have that ω is a positive
instance of L if and only if the initial configuration for ω in M is accepting if and only if
(w,ϕ) is a positive instance of the model checking problem.

5.5.3 ApolExptime-hardness for PAPL with protocols without
arbitrary announcements

In this section, we prove that:

Theorem 22. The symbolic model checking of formulas with protocols but without arbi-
trary announcements is ApolExptime-hard.

Proof. We reduce the symbolic model checking of formulas with arbitrary announcements
(and without protocols) to it. Suppose that the formula to check is over propositions
AP = {p1, . . . , pn}. The idea is to simulate an arbitrary announcement •! by a protocol
γ•!. The protocol consists in iterating over all valuations, and, each time, either we keep
the current valuation or we remove it from the current context.

For representing the current valuation in the iteration, we introduce fresh propositions
ι1, . . . , ιn for each occurrence of •! in ϕ. ι1, . . . , ιn represents an integer in {0, . . . , 2n − 1}.
Thus the new set of atomic propositions is AP ′ = AP ∪ {ιi}1≤i≤n,•!∈ϕ. The idea in each
protocol is to iterate ι1, . . . , ιn over integers from 2n − 1 down to 0. At the beginning, all
valuations are in the model hence integer ι1 . . . ιn = 1 . . . 1 = 2n− 1 is the current integer.

We introduce symbolic accessibility relation succ(ι) to link a valuation over ι, differ-
ent from 2n − 1 to the next integer representing the next integer. Formally, we define
succ(ιn . . . ι1) (ι1 is the least significant bit) by induction on n:

• succ(ι1) = (¬ι1?; ι1←>);

• succ(ιn . . . ι1) = (¬ι1?; ι1←>) ∪ (ι1?; ι1←⊥; succ(ιn . . . ι2));
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Now we define protocols to keep the current valuation (keepval), remove the current
valuation (removeval), consider the next valuation (nextval):

• keepval = >!: the model is unchanged;

• removeval = Kset(ι)(¬K̂succ(ι)> →
∨n
i=1 ¬(ιi ↔ pi)): we change the value of ι and if

ι has no successor (meaning that ι is the current valuation/integer) then valuation ~p
should be different from valuation ι;

• nextval = K̂succ(ι)>!: we remove valuations without successors (we remove valuation
ι = 1 . . . 1, then valuation ι = 1 . . . 10, etc.).

The protocol is then:

γ•! = ((keepval ∪ removeval); ((¬end?;nextval) ∪ end?))∗; end?

where formula end states the protocol is over. Formally: end := Kset(AP′)(ι = 0).
In the reduction of Subsection 5.5.2 we now replace 〈•!〉 by 〈γ•!〉 and [•!] by [γ•!],

thus transforming the formula ϕ into a new formula ϕ′. Let U ′ = 2AP′ . The new model
checking instance is now U ′, w |= ϕ′ instead of U , w |= ϕ (by taking the same valuation
in the new model checking instance, thus having all ι to 0). Both are equivalent.

5.6 Non-symbolic model checking of PAPL

The aim of this section is to prove the following theorem.

Theorem 23. The non-symbolic model checking against PAPL is Pspace-complete.

5.6.1 Hardness

To prove the Pspace-hardness, we reduce the Quantified Boolean Formula (QBF) prob-
lem which is known to be Pspace-complete [Sip96].

Definition 64 (QBF). A QBF formula is of the form Q1p1Q2p2 . . . Qnpnβ where Qi is
a quantifier, either ∀ or ∃, and pi ∈ AP for all i ∈ {1, . . . , n}, and β is a propositional
formula.

We define the following translation tr that takes a QBF formula and return a PAPL
formula.

Definition 65 (Translation tr from QBF to PAPL).
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w∅ : ∅

wp{p} wq{q}

a

a
a

Figure 5.12: Example of a Kripke model for the hardness proof of Theorem 23 with
AP(β) = {p, q}.

• tr(p) = K̂ap

• tr(¬ϕ) = ¬tr(ϕ)

• tr(ϕ1 ∧ ϕ2) = tr(ϕ1) ∧ tr(ϕ2)

• tr(∃pϕ) = 〈¬p! ∪ >!〉tr(ϕ)

• tr(∀pϕ) = [¬p! ∪ >!]tr(ϕ)

The input Kripke modelM is represented in Figure 5.12. Intuitively, the formula tr(ϕ)
prunesM with public announcements. Announcing ¬p! means that we assign p to ⊥ and
announcing >! means we assign p to >. In the resulting Kripke model, we evaluate β
where p is replaced by K̂ap. Indeed, p is assigned to > is equivalent to p is present in the
Kripke model after the announcement, thus p is assigned to > if and only if K̂ap is true
in the Kripke model. It means that when we evaluate β, p is true if and only if in the
model K̂ap is true. To express the quantifier, we consider the modality 〈〉 for ∃ and [ ] for
∀, which effectively simulates the quantifier.

Definition 66 (Input model M). The Kripke model M = (W,Ra, V ) is defined as fol-
lows.

• W = {w∅} ∪ {wp, p ∈ AP}

• Ra = {(w∅, w), w ∈ W}

• V (w∅) = ∅;V (wp) = {p}

We now formally define the reduction.

Definition 67 (Reduction). Let ϕ be a QBF formula. Then the input of the model check-
ing procedure is (M, w∅) for the pointed Kripke model and tr(ϕ) for the formula to model
check.
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The reduction is indeed polynomial and we can verify easily that ϕ is true if and only
ifM, w∅ |= tr(ϕ), which concludes the Pspace-hardness proof.

5.6.2 Membership

For the membership, we simply adapt the algorithms of Section 5.4.2 into the non-symbolic
case (Figures 5.13, 5.14, 5.15, 5.16 and 5.17). The main difference is that accessyes(w, u, πa)
is now replaced by a checking of (w, u) ∈ Ra. In each recursive call, the time taken is now
polynomial, because choosingW ′ ⊆ W takes a polynomial amount of time. To insure that
the notations are uniform with the symbolic case, we supposed thatM is fixed and only
focus on the current set of worlds W . We leave apart the detail of the algorithms since
they are very similar to 5.4.2. As usual, the dual procedures are in Appendix D.

proc mcyes(W,w, ϕ) |AP|+ |ϕ|
B accepts whenever W,w |= ϕ
match ϕ with
case ϕ = p: if p ∈ V (w) then accept else reject
case ϕ = ¬ψ: mcno(W,w, ψ)
case ϕ = (ψ1 ∨ ψ2): (∃)(∃)(∃) mcyes(W,w, ψ1) or mcyes(W,w, ψ2)
case ϕ = Kaψ: (∀)(∀)(∀) u ∈ W ; if (w, u) ∈ Ra then mcyes(W,u, ψ)
case ϕ = CGψ:

(∀)(∀)(∀) u ∈ W
(∃)(∃)(∃) access∗no(W,w, u,⋃a∈GRa, 2log2(|W |)+1) or mcyes(W,u, ψ)

case ϕ = 〈γ〉χ:
(∃)(∃)(∃) W ′ ⊆ W | w ∈ W ′

(∀)(∀)(∀) execyes(W,w,W ′, γ) and mcyes(W ′, w, χ)

Figure 5.13: Model checking sub-procedure mcyes that handles protocols with arbitrary
announcements and Kleene star.

proc access∗yes(W,w, u,R, i) |AP|+ log2(i)

B accepts if w = u or there exist v1, . . . , vk ∈ W with k < i such that w π−→ v1 . . .
R−→

vi−1
R−→ u (for i > 1)

case i = 1: if u = w or (w, u) ∈ R then accept else reject
case i ≥ 2: (∃)(∃)(∃) v ∈ W ; (∀)(∀)(∀) access∗yes(W,w, v, π, i/2) and access∗yes(W, v, u, π, i/2)

Figure 5.14: Iteration algorithms access∗yes for programs.
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proc execyes(W,w,W ′, γ) |AP|+ |γ|
B accepts whenever (W,w) γ (W ′, w)
match γ with
case γ = ϕ!:

(∀)(∀)(∀) (u, v) ∈ W ′ × (W\W ′); (∀)(∀)(∀) mcyes(W,u, ϕ) and mcno(W, v, ϕ)
case γ = •!: accept
case γ = •!G:

(∃)(∃)(∃) (Wa)a∈G | for all a ∈ G,Wa⊆W,w∈Wa

if ⋂
a∈G

Wa 6= W ′ then reject else (∀)(∀)(∀) a ∈ G; stableyes(W,Wa, Ra)
case γ = γ1; γ2:

(∃)(∃)(∃) W ′′ ⊆ W such that W ′ ⊆ W ′′

(∀)(∀)(∀) execyes(W,w,W ′′, γ1) and execyes(W ′′, w,W ′, γ2)
case γ = γ1 ∪ γ2: (∃)(∃)(∃) k ∈ {1, 2}; execyes(W,w,W ′, γk)
case γ = ϕ?: (∀)(∀)(∀) if W ′ 6= W then reject and mcyes(W,w, ϕ)
case γ = γ′∗: (∃)(∃)(∃) i ∈ {0, ..., 2log2(|W |)+1}; exec∗yes(W,w,W ′, γ′, i)

Figure 5.15: Dual path searching algorithm execyes for announcements.

proc exec∗yes(W,w,W ′, γ, i) |AP|+ |γ|+ log2(i)

B accepts whenever (W,w) γi (W ′, w)
case i = 0: if W = W ′ then accept else execyes(W,w,W ′, γ);
case i ≥ 2:

(∃)(∃)(∃) W ′′ s.th. W ′ ⊆ W ′′ ⊆ W
(∀)(∀)(∀) exec∗yes(W,w,W ′′, γ, i/2) and exec∗yes(W ′′, w,W ′, γ, i/2)

Figure 5.16: Iteration algorithm exec∗yes.

proc stableyes(W,W ′, R) |π|+ 1

B accepts whenever ∼
preR,W (postR,W (W ′)) ⊆ W ′

(∀)(∀)(∀) (w, v, u) ∈ W ′ ×W ×W
if ((w, v) ∈ R and (u, v) ∈ R implies u ∈ W ′) then accept else reject

Figure 5.17: Algorithm that checks that ∼
preπ,W (postπ,W (W ′)) ⊆ W ′.

5.7 Conclusion

In this chapter, we have introduced PAPL, a logic extending APAL and GAL. It contains
an arbitrary announcement operator that checks for the existence of an announcement.
The logic PAPL features announcement protocols, that combine public announcements
and arbitrary announcements, and allow to express in particular epistemic planning in this
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setting. We have shown that the symbolic model checking against PAPL is ApolExptime-
complete and that the non-symbolic model checking against PAPL is Pspace-complete.
We thus observe a jump of complexity when considering symbolic models, which is a usual
phenomenon.
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Chapter 6

Implementation of Succinct
Epistemic Logic with Arbitrary

Announcements

In this chapter, we focus on the implementation of symbolic model checking of PAPL in
practice. For that, we reduce the model checking of PAPL into the model checking of
monadic monadic second-order logic (MMSO), that is, monadic second order logic where
all predicates are monadic, not only the quantified ones.

Since the model checking of PAPL is ApolExptime-complete, it seems rather unrea-
sonable to have an implementation of the full logic. That is why we consider the existential
fragment of PAPL, ∃PAPL , and reduce the model checking of ∃PAPL into the satisfia-
bility of monadic first-order logic (MFO), that is first-order logic where all predicates are
monadic.

The chapter is divided as follows:

• First, we briefly recall the definitions of first and second-order logics.

• Second, we reduce the model checking of PAPL into the satisfiability of MMSO.

• Third, we reduce the model checking of ∃PAPL into the satisfiability of MFO.

• Finally we conclude.

The content of the chapter was initially published in [CPS17], but for APAL and GAL
instead of PAPL. Therefore, we extend the results to PAPL here.

6.1 First and second-order logics

Monadic monadic second-order logic MMSO and its fragment monadic first-order logic
MFO are central in the proposed approach. These monadic fragments of MSO and FO
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disallow the use of non-unary predicates and of function symbols. We first define the
syntax of these two logics.

Definition 68. We suppose that we have first-order variables x, y, z and second-order
variables X,Y, . . . The syntax of MMSO is defined as follows:

ϕ ::= X(x) | ϕ ∧ ϕ | ¬ϕ | ∀xϕ | ∀Xϕ

MFO is the fragment of MMSO where the operator ∀Xϕ is removed.

MMSO-formulas are thus monadic second-order formulas with first-order and second-
order variables but with no occurrence of non-unary predicates. The signature of MMSO
mimics the set of atomic propositions AP: to each atomic proposition p ∈ AP, we intro-
duce a corresponding unary predicate symbol P (.). We take the convention that atomic
propositions are written in lowercase while the corresponding predicates are written in
uppercase.

The semantics of MMSO is defined on models defined as follows.

Definition 69. A model M of MMSO is a structure (D, (PM )p∈AP) where D is a non-
empty domain and each predicate PM is such that PM ⊆ D.

We will use the classical notation of the form M [...] for the model M extended with
(first-order and second-order) variable assignments: for instance, M [x ← e, y ← e′,X ←
D′,Y ← D′′] is the model M in which first-order variables x and y are interpreted by
element e ∈ D and e′ ∈ D respectively, and second-order variables X and Y are interpreted
by element D′ ⊆ D and D′′ ⊆ D respectively.

The semantics of MMSO is defined as follows.

Definition 70. Let M be a model with variable assignments. The semantics of MMSO
is defined by induction on ϕ as follows.

• M |= X(x) iff M (x) ∈M (X);

• M |= ϕ1 ∧ ϕ2 iff M |= ϕ1 and M |= ϕ2;

• M |= ¬ϕ iff M 6|= ϕ;

• M |= ∀xϕ iff for all c ∈ D, M [x ← c] |= ϕ;
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• M |= ∀Xϕ iff for all D′ ⊆ D, M [X← D′] |= ϕ.

The model checking problem for MFO and MMSO is defined as follows.

Definition 71 (Model checking problem).

• Input: a model M , a formula ϕ of MMSO/MFO such that all free variables (i.e.
variables not bound by a quantifier) are assigned in M .

• Output: yes if M |= ϕ, no otherwise.

Definition 72 (Satisfiability problem).

• Input: a formula ϕ.

• Output: yes if there exists M with variable assignments such that M |= ϕ, no other-
wise.

Notice that for MMSO, the model checking problem and satisfiability problem are
equivalent, since ϕ is satisfiable if and only if M |= ∃x1 . . . ∃xn∃X1 . . . ∃Xmϕ where
x1, . . . , xn,X1, . . . ,Xm are the free variables of ϕ and M is arbitrary.

Regarding the properties of MMSO and MFO, it is known that the satisfiability
problem of a MFO-formula is NExptime-complete [BGW93; Lew80]. Also, there are
plenty of FO provers: Isabelle, iprover, Z3 [MB08], CVC4 [Bar+11]. In particular, the
prover iprover won CASC 2016 in EPR division [Sut16].

6.2 PAPL into monadic monadic second-order logic

We reduce the model checking against PAPL to the satisfiability problem of MMSO.
Intuitively, second-order variables denote current sets of valuations, called contexts, and
first-order variables denote possible worlds/valuations. We present the reduction in four
steps:

1. we define an MMSO-theory that enforce the MMSO-model to contain all valuations
(Theorem 24);

2. we translate arbitrary accessibility programs into first-order logic (Theorem 25);

3. we translate PAPL formulas into MMSO (Theorem 26);

4. we give the reduction of the PAPL-model checking into the MMSO-satisfiability
problem (Theorem 27).
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6.2.1 The theory of models of valuations

In this section, we fix a set of atomic propositions AP. Since we evaluate PAPL-formulas
on a symbolic modelMmeant to denote the Kripke model with all valuations, we therefore
need to enforce that all such valuations are captured.

Definition 73. The model of valuations MAP on AP is the structure MAP = (D, (PMAP )p∈AP)
with D is the domain of all valuations on AP and the interpretation of P is defined by as
PMAP (w) iff p ∈ w.

In what follows, we write PAP for the set of atomic predicates associated to some
p ∈ AP.

Definition 74. Let β be a Boolean formula over AP. We define the first-order formula
tr(β)(x) to be formula β in which each occurrence of p ∈ AP is replaced by P (x). Similarly,
for a valuation w, we define tr(w)(x) for the formula describing w where all p are replaced
by P (x).

Example 31. Let β = (p∨q)∧ (¬p∨q). Then tr(β)(x) = (P (x)∨Q(x))∧ (¬P (x)∨Q(x)).

Example 32. Let w = {p, q} a valuation over AP = {p, q, r}. tr(w)(x) = P (x) ∧ Q(x) ∧
¬R(x).

We define a theory TAP such that MAP satisfies TAP and every model satisfying TAP

is isomorphic to MAP .
Currently, in an arbitrary structure (D, (PM

i )pi∈AP), two distinct elements e, e′ in D
may be such that e ∈ PM

i iff e′ ∈ PM
i for all pi ∈ AP. To prevent it, we define ϕunique =

∀x∀y(x = y)↔ ∧
p∈AP(P (x)↔ P (y)). It says that two elements satisfy the same predicates

(i.e. are the same valuation) iff they are equal. We define too ϕexists says that for each
valuation, for each atomic proposition p, there exists another valuation that differs only on
p. In other words, ϕexists = ∀x∧p∈AP

(
∃y
(
(P (x)↔ ¬P (y)) ∧ ∧q∈AP,q 6=p(Q(x)↔ Q(y))

))
,

imposing all valuations to appear in the model.
By letting TAP = {ϕunique, ϕexists}, we get the following.

Theorem 24. For all MMSO-models M , we have M |= TAP iff M is isomorphic to
MAP.

Proof.⇐: It is sufficient to prove that MAP |= TAP :
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– MAP |= ϕunique because each valuation is represented exactly one time in D and by
Definition 73, P mimics the role of the atomic propositions in the valuations.

– MAP |= ϕexists because all valuations are represented in D.

Therefore MAP |= TAP and thus M |= TAP .

⇒: Let M be such that M |= TAP . Let D′ be the domain of M and P ′ be the monadic
predicates of M . We define the mapping f : D′ → D such that for all e ∈ D, f(e) is
the valuation {p | e ∈ P ′} ∈ D. We conclude by showing that f is an isomorphism.

– f is injective: if f(e) = f(e′), it means that for all P , e ∈ PM iff e′ ∈ PM . With
M |= ϕunique, we conclude that e = e′.

– f is surjective: let w be an element of D. As D′ is non-empty, let e be in D′. As
M |= ϕexists, we can, from e, guarantee the existence of an element e′ of D′ such
that f(e′) = w.

From Theorem 24, we obtain the following.

Corollary 1. Let ϕ be an MMSO-formula. Then MAP |= ϕ if, and only if, TAP ∧ ϕ is
MMSO-satisfiable.

6.2.2 From programs to FO-formulas

Definition 75. Let π be a program and x, y be two first-order variables. We define the
first-order formula π(x, y) by induction π as follows:

(p← β)(x, y) = (P (y)↔ tr(β)(x)) ∧ ∧q∈AP,q 6=p (Q(x)↔ Q(y));
β?(x, y) = tr(β)(x) ∧ (x = y);
(π1; π2)(x, y) = ∃z π1(x, z) ∧ π2(z, y).
(π1 ∪ π2)(x, y) = π1(x, y) ∨ π2(x, y);

The formula π(x, y) expresses that y is a π-successor of x. It should be noticed that
formulas π(x, y) are in MFO, even though they have two parameters x and y. We consider
those formulas as macros to shorten the definitions afterwards, so they are monadic.
Formally:

Theorem 25. For all worlds w, u and π, w π−→ u if, and only if, MAP [x ← w, y ← u] |=
π(x, y).
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Proof. By induction on π.

• π = p← β:

w p←β−−→ u iff (p ∈ u iff w |= β) and for all q 6= p, (q ∈ w iff q ∈ u).
iff MAP [x ← w, y← u] |= P (y)↔ tr(β)(x)

and for all q 6= p,MAP [x ← w, y← u] |= Q(x)↔ Q(y).
iff MAP [x ← w, y← u] |= (p← β)(x, y).

• π = β?:

w β?−→ u iff w = u and w |= β

iff MAP [x ← w, y← u] |= (x = y) and MAP [x ← w, y← u] |= tr(β)(x).
iff MAP [x ← w, y← u] |= β?(x, y).

• π = π1; π2:

w π1;π2−−−→ u iff there exists v such that w π1−→ v and v π2−→ u
iff there exists v such that MAP [x ← w, y← u, z← v] |= π1(x, z) ∧ π2(z, y).
iff MAP [x ← w, y← u] |= (π1; π2)(x, y).

• π = π1 ∪ π2:

w π1∪π2−−−→ u iff w π1−→ u or w π2−→ u
iff MAP [x ← w, y← u] |= π1(x, y) or MAP [x ← w, y← u] |= π2(x, y)
iff MAP [x ← w, y← u] |= (π1 ∪ π2)(x, y).

6.2.3 From PAPL-formulas to MMSO-formulas

In the following definition, we define trX(ϕ)(x) to be the translation of the PAPL-formula
ϕ, where x is a first-order variable representing the valuation in which the formula ϕ is
evaluated and X is a second-order variable representing the context (namely, the set of
valuations that survived the previous announcements). Both variables x and X are the
sole free variables of trX(ϕ)(x). We also define tr(γ)(X,Y) for X γ−→ Y, whose sole free
variables are X and Y.

Definition 76. Let M = 〈APM, (πa)a∈Ag〉 be a symbolic model, ϕ be a PAPL-formula, γ
an announcement protocol, X and Y be two second-order variables, and x be a first-order
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variable. We define the MMSO-formulas trX(ϕ)(x) and tr(γ)(X,Y) by mutual induction
over ϕ and γ, with the notation Y ⊆ X for ∀x(Y(x)→ X(x)).

trX(p)(x) = P (x);
trX(¬ϕ)(x) = ¬trX(ϕ)(x);
trX(ϕ1 ∨ ϕ2)(x) = trX(ϕ1)(x) ∨ trX(ϕ2)(x);
trX(Kaϕ)(x) = ∀y [(X(y) ∧ πa(x, y))→ trX(ϕ)(y)];
trX(CGϕ)(x) = ∃XG (groupX(XG, x) ∧ ∀Y (groupX(Y, x)→ XG ⊆ Y)

∧∀y(XG(y)→ trX(ϕ)(y)))
with groupX(Y, x) = (Y(x) ∧ ∀y(Y(y)→ (∀zX(z) ∧ ∨a∈G πa(y, z)→ Y(z)))
trX(〈γ〉ϕ)(x) = ∃Ytr(γ)(X,Y) ∧ Y(x) ∧ trY(ϕ)(x)

tr(ϕ!)(X,Y) = ∀y Y(y)↔ (X(y) ∧ trX(ϕ)(y)));
tr(•!)(X,Y) = Y ⊆ X;
tr(•!G)(X,Y) = Y ⊆ X ∧ ∧a∈G ∀x (∀y πa(x, y)→ (∃z πa(z, y) ∧ Y(z)))→ Y(x).
tr(γ1; γ2)(X,Y) = ∃ZZ ⊆ X ∧ Y ⊆ Z ∧ tr(γ1)(X,Z) ∧ tr(γ2)(Z,Y)
tr(γ1 ∪ γ2)(X,Y) = tr(γ1)(X,Y) ∨ tr(γ2)(X,Y)
tr(γ∗)(X,Y) = ∨2APM

i=0 tr(γi)(X,Y)

We now explain the formulas and protocols that are not direct.

Formulas:

• Formula trX(Kaϕ)(x) mimics the standard translation of modal logic into first-order
logic ([BRV01], p. 84), except that we use the MFO-formula πa(x, y) instead of Ra(x, y).

• Formula trx(CGϕ)(X) first computes in a variable XG the set of G-successors of x by
the macro groupX(X, x). This macro states that all iterated successors of x are present
in XG. Second, the quantification on Y avoid having other worlds in XG by saying that
XG is the smallest set Y such that groupX(Y, x) is true. Finally, the last part of the
formula states that try(ϕ)(X) must be true for all y ∈ XG.

• Formula trx(〈γ〉ϕ)(X) first existentially finds a context Y such that tr(γ)(X,Y) is true,
checks that x is in Y (by Y(x) and goes on with trY(ϕ)(x).

Protocols:

• Formula tr(ϕ!)(X,Y) asks that Y corresponds to the set of valuations in which ϕ holds
(∀y Y(y)↔ (X(y) ∧ trX(ψ)(y)))

173



Chapter 6 – Implementation of Succinct Epistemic Logic with Arbitrary Announcements

• Formula tr(•!)(X,Y) imposes that the announcement is a group announcement, which
is the same characterization than Proposition 16 page 144.

We now state and prove the correctness of the translation.

Theorem 26. Let M be a symbolic model on AP, ϕ be an PAPL-formula on AP, γ a
protocol, and w ∈ M. Let DM be the set of valuations of M. Let D,D′ ⊆ DM. Then
M, w |= ϕ iff MAP [x ← w,X ← DM] |= trX(ϕ)(x), and D γ−→ D′ iff MAP [X ← D,Y ←
D′]tr(γ)(X,Y).

Proof. By mutual induction on ϕ and γ.

• ϕ = p:

M, w |= ϕ iff p ∈ w
iff MAP [x ← w,X← DM] |= P (x)

• ϕ = ¬ψ:

M, w |= ¬ψ iff M, w 6|= ψ

iff MAP [x ← w,X← DM] 6|= trX(ϕ)(x)
iff MAP [x ← w,X← DM] |= ¬trX(ϕ)(x)

• ϕ = ϕ1 ∨ ϕ2:

M, w |= ϕ1 ∨ ϕ2 iff M, w |= ϕ1

or M, w |= ϕ2

iff MAP [x ← w,X← DM] |= trX(ϕ1)(x) or MAP [x ← w,X← DM] |= trX(ϕ2)(x)
iff MAP [x ← w,X← DM] |= trX(ϕ1)(x) ∨ trX(ϕ2)(x)

• ϕ = Kaϕ:

M, w |= (Kaψ) iff for all u ∈ DM such that w πa−→ u, M, u |= ψ

iff for all u ∈ DM such that w πa−→ u, MAP [y← u,X← DM] |= trX(ψ)(y)
iff for all u ∈ DM such that MAP [x ← w, y← u,X← DM] |= πa(x, y),

MAP [y← u,X← DM] |= trX(ψ)(y)
iff MAP [x ← w,X← DM] |= ∀y (X(y) ∧ πa(x, y)→ trX(ϕ)(y))

• ϕ = CGψ: for this case we first need to prove that w
(
⋃
a∈G πa)∗

−−−−−−−→ u if and only if MAP [x ←
w, y← u,X← DM] |= ∃XG (groupX(XG, x) ∧ ∀Y (groupX(Y, x)→ XG ⊆ Y) ∧ XG(y)):
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– If w
(
⋃
a∈G πa)∗

−−−−−−−→ u then let D′ = {v ∈ DM | w
(
⋃
a∈G πa)∗

−−−−−−−→ v}. Obviously we have w, u ∈
D′. We now prove that MAP [x ← w, y← u,X← DM,XG ← D′] |= (groupX(XG, x) ∧
∀Y (groupX(Y, x) → XG ⊆ Y) ∧ XG(y)): by definition of group, we obtain directly
that groupX(XG, x) is true and if we take another Y such that groupX(Y, x) is true,
its interpretation will necessarily contain D′.

– If MAP [x ← w, y← u,X← DM] |= ∃XG (groupX(XG, x) ∧ ∀Y (groupX(Y, x)→ XG ⊆
Y) ∧ XG(y)) then let D′ be the interpretation of XG. By the deifnition of group, D′

contains {v ∈ DM | w
(
⋃
a∈G πa)∗

−−−−−−−→ v}, and it is the smallest one, so the interpretation

of XG is necessarily {v ∈ DM | w
(
⋃
a∈G πa)∗

−−−−−−−→ v}, which concludes the proof.

M, w |= (CGψ) iff for all u ∈ DM such that w
(
⋃
a∈G πa)∗

−−−−−−−→ u, M, u |= ψ

iff for all u ∈ DM such that
MAP [x ← w, y← u,X← DM] |= ∃XG (groupX(XG, x) ∧ ∀Y (groupX(Y, x)→ XG ⊆ Y) ∧ XG(y)),
MAP [y← u,X← DM] |= trX(ψ)(y)
iff MAP [x ← w,X← DM] |= ∃XG (groupX(XG, x)∧

∀Y (groupX(Y, x)→ XG ⊆ Y) ∧ ∀y(XG(y)→ trX(ϕ)(y)))

• ϕ = 〈γ〉ψ:

M, w |= (〈γ〉ψ) iff there exists D′ such that D′ ⊆ DM, w ∈ D′ and
M′, w |= ψ (where M′ is M restricted to D′).

iff there exists D′ such that
MAP [X← DM,Y ← D′, x ← w] |= tr(γ)(X,Y) ∧ Y(x) ∧ trx(ψ)(Y)

iff MAP [X← DM, x ← w] |= ∃Y tr(γ)(X,Y) ∧ Y(x) ∧ trx(ψ)(Y)

• γ = χ!:

D
χ!−→ D′ iff for all u, u ∈ D′ iff u ∈ D and M, u |= χ.

iff for all u, MAP [y← u,Y ← D′] |= Y(y) iff
MAP [y← u,X← D] |= X(y) and MAP [y← u,X← D] |= trX(χ)(y)

iff MAP [x ← w,X← D,Y ← D′] |= ∀y Y(y)↔ (X(y) ∧ trX(ψ)(y))

• γ = •! and γ = •!G: both cases use characterizations established in the previous
chapter.

• γ = γ1; γ2:
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D
γ1;γ2−−−→ D′ iff there exists D′′ such that D′ ⊆ D′′ ⊆ D and D γ1−→ D′′ and D′′ γ2−→ D′.

iff there exists D′′ such that MAP [X← D,Z← D′′] |= Z ⊆ X ∧ tr(γ1)(X,Z)
and MAP [Z← D′′,Y ← D′] |= Y ⊆ Z ∧ tr(γ2)(Z,Y).

iff MAP [X← D,Y ← D′] |= ∃Z Z ⊆ X ∧ Y ⊆ Z ∧ tr(γ1)(X,Z) ∧ tr(γ2)(Z,Y).

• γ = γ1 ∪ γ2:
D

γ1∪γ2−−−→ D′ iff D γ1−→ D′ or D γ2−→ D′

iff MAP [X← D,Y ← D′] |= tr(γ1)(X,Y) or MAP [X← D,Y ← D′] |= tr(γ2)(X,Y).
iff MAP [X← D,Y ← D′] |= tr(γ1)(X,Y) ∨ tr(γ2)(X,Y)

• γ = γ′∗:

D
γ′∗−→ D′ iff there exists i ∈ {0, 2APM} such that D γ′i−→ D′

iff there exists i ∈ {0, 2APM} such that MAP [X← D,Y ← D′] |= tr(γ′i)(X,Y)
iff MAP [X← D,Y ← D′] |= ∨2APM

i=0 tr(γ′i)(X,Y)

6.2.4 Reduction from PAPL-mc to MMSO-sat

Definition 77 (reduction). Given a pointed symbolic Kripke model (M, w) and an PAPL-
formula ϕ, we let ≤P (M, w, ϕ) be the MMSO formula TAP∧tr(w)(x)∧∀yX(y)∧trX(ϕ)(x).

Notice that unfortunately, the formula for γ∗ causes an exponential blowup. We could
fix this blowup by creating the set of y that we can construct from X with γ∗, but we
suspect that it is not possible. Furthermore, the non-deterministic choice in protocol also
causes an exponential blowup.

If we want to obtain a polynomial reduction, we thus need to consider PAPL without
non-deterministic choice or Kleene star in protocols.

By Corollary 1 and Theorem 26 we get the following.

Theorem 27. M, w, |= ϕ iff ≤P (M, w, ϕ) is MMSO-satisfiable.

Because the symbolic model checking of APAL is ApolExptime-hard [CS15], and
PAPL without non-deterministic choice nor star contain APAL, we obtain:

Corollary 2. MMSO-satisfiability problem is ApolExptime-hard.

However, as discussed in the next section, restricting to logic ∃PAPL yields a reduction
to the satisfiability problem of monadic first-order logic MFO.
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6.3. Existential announcement logic into monadic first-order logic

6.3 Existential announcement logic into monadic first-
order logic

We first define ∃PAPL.

Definition 78. The syntax of ∃PAPL is defined as follows.

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | K̂aϕ | ĈGϕ | 〈γ〉ϕ | ψ
γ ::= ϕ! | •! | •!G | γ; γ | γ ∪ γ | γ∗

with ψ ∈ LELCK.

Notice that here, for the reduction to work, we need to remove the second order
quantification in the CG case in the following way.

trX(CGϕ)(x) =
2APM∧
i=0
∀y
(⋃
a∈G

πa

)i
(x, y)→ trx(ϕ)(y)

It causes an exponential blowup but it is now a first-order formula.
If we restrict inputs M, w, ϕ of the PAPL-model checking by letting ϕ ∈ ∃PAPL, then

≤P (M, w, ϕ) is an MMSO-formula where all second-order quantifiers are existential and
are not under the scope of universal quantifiers. Such second-order quantifiers can be
removed from the formula ≤P (M, w, ϕ) resulting in a MFO-formula.

In the next section, we make use of this reduction to solve the symbolic model checking
problem against ∃PAPL.

6.4 Implementation

We implemented the reduction from ∃PAPL to MFO in OCaml. We also built bench-
marks. The code and a readme file can be found at the following link

https://github.com/tcharrie/agpal-mmso

6.4.1 Description of the implementation

The input is an ∃PAPL formula of the type agpal_formula in the source code. The
type acc_program represents accessibility programs, the type bool_formula boolean for-
mulas, and the type fo_formula MFO-formulas (the output of the code). The function
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Chapter 6 – Implementation of Succinct Epistemic Logic with Arbitrary Announcements

agpal_formula_to_mfo defines the translation from ∃PAPL formulas to MFO formulas
(as in Definition 77).

In addition to the algorithm for the reduction, we implemented a function from
existential formulas to the TPTP format [SSY94] used by the FO-SAT-solvers, called
agpal_formula_to_tptp. It first calls the function agpal_formula_to_mfo, then calls
the function mfo_formula_to_tptp that transforms a MFO-formula into its TPTP rep-
resentation.

6.4.2 Benchmarks

We provide benchmarks for FO-provers built from the muddy children and the Russian
card puzzles in order to tests the combinatorial ability of FO-provers.

Muddy children. We consider the following true properties:

• ϕmuddystandard = 〈∨a∈Ag pa!〉〈
∧
a∈Ag ¬(Kapa∧¬Ka¬pa)!〉 . . . 〈

∧
a∈Ag ¬(Kapa∧¬Ka¬pa)!〉

∨
a∈Ag(Kapa∨

Ka¬pa): standard formalization of the muddy children.

• ϕmuddyarbitrary = 〈∨a∈Ag pa!〉〈•!〉
∧
a∈Ag(Kapa ∨Ka¬pa): variant with an arbitrary announce-

ment.

• ϕmuddygroup = 〈∨a∈Ag pa!〉〈•!Ag〉
∧
a∈Ag(Kapa ∨Ka¬pa): variant with a group announcement.

where Ag = {1, . . . , n}.

Russian cards. For this example, agents a and b holds the same number of cards n.
For instance, the classical Russian cards problem corresponds to n = 3. Let ϕRussiangoal =∧2n+1
i=1 (Kapi,b∨Ka¬pi,b)∧ (Kbpi,a∨Kb¬pi,a)∧¬Kcpi,a∧¬Kc¬pi,a∧¬Kcpi,b∧¬Kc¬pi,b. We

consider three types of properties:

• ϕRussianarbitrary = 〈ϕRh!〉〈•!〉ϕRussiangoal : formalization of the Russian cards with a unique arbi-
trary announcement.

• ϕRussiangroup1 = 〈ϕRh!〉〈•!{a}〉ϕRussiangoal : formalization with only one announcement from a.
This formula is not satisfiable.

• ϕRussiangroup2 = 〈ϕRh!〉〈•!{a}〉〈•!{b}〉ϕRussiangoal : normal formalization of the Russian cards prob-
lem.
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6.4. Implementation

n = ϕmuddyarbitrary n = ϕmuddystandard ϕmuddygroup n = ϕRussianarbitrary ϕRussiangroup1 ϕRussiangroup2

3 0.03s 3 0.07s 0.04s 2 0.18s 0.32s 0.45s
10 0.20s 4 0.09s 0.08s 3 0.44s 0.85s 0.92s
25 1.32s 5 0.19s 0.22s 4 3.80s 3.51s 3.32s
40 3.23s 6 0.24s 0.25s 5 23.48s 26.80s 24.20s
55 9.405s 7 > 10min > 10min 6 > 10min > 10min > 10min

Figure 6.1: Results for the implementation of the reduction from ∃PAPL to MFO, using
the FO-SAT-solver Iprover.

6.4.3 Experiments

To perform the tests, we used the FO-solver Iprover [Kor08] on a HP EliteBook 840 G2.
The prover Iprover enabled us to test whether a FO-formula is satisfiable or not. The
results are summarized in Figure 6.4.3.

We now briefly comment on the experiments.

Muddy children. For ϕmuddyarbitrary, the FO-SAT solver seems to perform well in all cases,
as arbitrary announcements only require the new context to be included in the previous
one. Hence, in this example, it is sufficient to restrict the model to the current world in
order to satisfy the goal of ϕmuddyarbitrary. However, for the other tests, namely ϕmuddystandard and
ϕmuddygroup , the FO-SAT-solver is able to test up to n = 6 agents. This can be explained by
the fact public announcements and group announcements add significant combinatorial
constraints to the specification.

Russian cards. For the three properties, the tests cannot exceed n = 6 cards, the main
reason being that the rules of the game are very combinatorial, as for the muddy children.

Notice that the problems we have considered are puzzles, thus highly combinatorial.
For the muddy children puzzle, the existential second-order quantification ranges over 22n

subsets. For n = 7, we have 227 = 2128 ∼ 1038, that is, about the number of positions
1.15868..× 1042 of a chess board.

Still, our implementation is promising and provides some interesting benchmarks for
FO-provers.
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6.5 Conclusion

In this chapter, we have expressed the model checking against PAPL as a model check-
ing problem against MMSO, the monadic second-order logic where all predicates are
monadic. Unfortunately, the reduction is exponential because of the star operator, but is
polynomial if we remove this operator. We have also shown that the existential fragment
of PAPL, ∃PAPL, can be expressed in the satisfiability problem of MFO, monadic first-
order logic, and implemented the model checking problem against existential PAPL using
a first-order solver.
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Perspectives

In this manuscript, we have introduced epistemic logic, studied dynamic operators, and
defined symbolic Kripke and event models. We now discuss missing features of DEL and
possible perspectives.

In the introduction, we recalled a variety of applications of multi-agent systems, as
robots, security, and games. We explained that high-order knowledge was an important
notion to consider and claimed that DEL was suited for all these applications. In multi-
robot systems, it makes perfect sense that the robots have to be able to reason about the
other robots’ reasoning to enable meaningful collaboration. Actually, DEL is especially
adapted when robots interact with other robots that are perfectly rational. Unfortunately,
the logic DEL reaches its limits when human agents are considered, because they are not
perfectly rational [De +06]. However, in the case when the humans do not reason about
the knowledge of robots but the robots do reason about the knowledge of humans, DEL
may be suited in the following sense: a robot would have an algorithm to reason about an
idealized rational version of the human, and the human would only have to deal with his
own knowledge. A potential application would be in cases where the robot must adapt
to the human, but not the other way around. If we need humans to collaborate with
robots, a solution would be to define AIs that consider all agents to be rational at first,
and then lower their expectations if some agent does not act rationally. Introducing levels
of rationality for agents in DEL would be a workaround. Technically, it means that if a
world in the model is too hard to consider for an agent, he may consider as possible a
false world instead. We could express levels of rationality by bounding modal depth for
certain agents or considering limited belief (as in [LLL04]).

In Chapters 2 and 3 we showed that the existence of a uniform strategy can be reduced
to the model checking against DEL. This result opens up the use of DEL for AIs in games.
Yet, for now, few applications currently exist for DEL. One reason is that it is too technical
for a non-expert to design the event models. In the near future, we need to have a clear
understanding of which event models are relevant in practice, and define a higher-level
language to specify them. The third version of Game Description Language (GDL-III) is a
promising specification language for DEL, given that they are both equivalent [Eng+18].
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GDL-III is well suited for expressing games, but it is not clear yet it if is for expressing
properties in multi-agent systems in general. Furthermore we strongly need to develop
the implementations of DEL to make it widely convincing. The symbolic model checking
for DEL (SMCDEL [Ben+15]) is a possibility, but we need to make it more accessible
to non-experts. Hintikka’s world [Sch18] has been developed to help people understand
DEL, which is a good start to show researchers and engineers outside of our community
how DEL works.

Also, in some applicative scenarios, for instance involving intelligent domestic robots,
the system never stops or if it does, it is unknown when the systems stops. This is modeled
classically in temporal logic by considering infinite executions of a finite transition system.
Because of results about epistemic planning (see Theorem 16), we know that, in DEL,
if event models feature knowledge modalities, verifying properties yield an undecidable
problem. Nevertheless, we know that it is decidable to reason about infinite executions
generated by propositional event models [DPS18]. In the future, the epistemic planning
community will continue working on exhibiting restrictions of DEL (e.g. separable event
models) for which this reasoning is decidable.

Finally in real applications, the notion of intentions is crucial. For instance in human-
robot interactions, if the humans says “the keys are on the table”, he may also implicitly
mean that he wants the robot to take the keys. In the security example, if an attacker takes
a key, the information is not only that he obtained these keys but also that he may unlock
some door with these keys. In the game Hanabi, when a player gives an information, e.g.
“this card has number 2”, he does not only mean that the card has number 2 but also
that the other player should play this card. If we want to design realistic AIs for this kind
of games, we need to include intentions in DEL. Games are suited to study intentions
because they are fairly simple and have the same mechanisms for knowledge than real-life
examples in robotics and security. That is why, although games seem somehow pointless
to study, they remain very interesting because they are a stepping stone to study more
intricated problems.
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Symbols
a−→M, 37
∃PAPL, 177
•!, 137
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w−→e , 44
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Appendix A

Reminder on Complexity Classes

A.1 Classical classes

Through the manuscript, we analyze the complexity of many decision problems. First we
define what a decision problem is.

Definition 79 (Decision problem). A decision problem is a problem that only has two
outputs for any input: yes or no. It will be presented in the following way.

• Input: . . .

• Output: yes if . . . , no otherwise.

Decision problems are naturally associated to the concept of Turing machines. They
are automata, thus taking a word (the input) and saying yes/no, but expressive enough
to capture all algorithms we can write.

Definition 80 (Turing machine). A Turing machine is a tupleM = (Q,Σ,Γ, δ, q0, qacc, qrej)
where:

• Q is the finite set of states of M ;

• Σ is the finite input alphabet;

• Γ is the finite tape alphabet with Σ ⊆ Γ;

• δ ⊆ Q× Γ×Q× Γ× {−1,+1} is the transition function;

• q0 ∈ Q is the initial state, qacc ∈ Q the accepting state and qrej ∈ Q is the rejecting
state;
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q0start q1

qacc

qrej

(a,+1, b)

(b,+1, b)

(a,+1, b)
(b,+1, b)

(a,+1, b)

Figure A.1: Example of a Turing machine

A Turing machine is an automaton where a word is written on an input tape. The
input tape contains only letters of an alphabet Σ called the input alphabet. The Turing
machine then works with a larger alphabet, called the tape alphabet Γ. Anytime on the
tape, a unique cell is pointed by a cursor, initially it is the first cell. In each state, when
transition (q1, a, q2, b,+1) is fired, we go from state q1 to state q2 by reading the letter a,
write the letter a and then move the cursor to the next cell (+1). If the transition contains
-1 instead of +1, we go back to the previous cell. Let us give an example.

Example 33. We consider the Turing machine of Figure A.1. The accepting state is in
green, the rejecting state in red, the initial state is marked by an incoming edge. Here we
consider Σ = Γ = {a, b}. On the tape, initially the word aaaaaaab is written. Here several
executions are possible. For instance q0 → q1 → qrej is possible by reading two times a.
The execution q0 → q1 → q1 → qrej is also possible. Unfortunately, both executions are
rejecting, whereas the execution q0 → q1 → q1 → q1 → q1 → q1 → q1 → qacc is accepting.
In this case, because such an execution exists, we say that the Turing machine accepts the
input.

Here, the language accepted by this Turing machine is a+b (read at least one a and
then end on some b).

We do not define formally the notion of execution here. It is just the data of a sequence
of states visited with the state of the tape given in each step. The set of words such that
there exist an execution reaching qacc is called the language of M , noted L(M).

In general, the following decision problem is undecidable:

• Input: a Turing machine M , a word ω.

200



• Output: yes if ω ∈ L(M), no otherwise.

It means that it is not possible to find a Turing machineM0 taking in input any Turing
machine M and any word ω and accepting the input if and only if ω ∈ L(M).

However, Turing machines are used to define complexity classes of algorithms. Indeed,
when we restrict the set of possible Turing machines in respect of the length of the
execution/the memory needed, we obtain classes of problems that we call complexity
classes. In the following definition, we refer to deterministic and non-deterministic Turing
machines. Deterministic Turing machines are such that at most one transition is possible
in each state for each letter a ∈ Σ. Non-deterministic Turing machines do not have this
restriction.

Example 34. The Turing machine of Figure A.1 is non-deterministic because in q1, there
are two transitions with letter a: one leading to q1 and one leading to qrej.

We now define complexity classes.

Definition 81 (Complexity classes).
Deterministic time The classes P, Exptime, 2-Exptime, are the classes of deter-

ministic Turing machines whose executions always end in O(P (n)) time, O(2P (n)) time,
O(22P (n)) time, etc., where P is a polynomial and n is the size of the input word.

Deterministic space The classes Pspace, Expspace, 2-Expspace, are the classes
of deterministic Turing machines whose executions need only O(P (n)), O(2P (n)), O(22P (n))
new cells (the memory) to work. Such classes are not defined with the length of the exe-
cution but with the memory needed.

Non-deterministic time and space The non-deterministic counterparts of these
complexity classes are called NPtime (also called NP), NExptime, NPspace, etc.

It is known that P ⊆ NP ⊆ Pspace ⊆ NPspace ⊆ Exptime ⊆ NExptime . . .

Interestingly, it is also known that Xspace = NXspace for X ∈ { P, Exp, 2Exp,
. . .} (by Savitch’s theorem [Sav70]). However, it is not known whether Xtime = NXtime
or Xtime 6= NXtime.

We conclude the classical complexity classes by defining the notion of membership,
hardness and completeness of a decision problem in a complexity class:

Definition 82 (Membership, Hardness, Completeness). Let P we a decision problem and
C a complexity class (Pspace, NExptime . . . ).
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We say that P is a member of C if there exist a Turing machine M of C deciding P .
We say that P is hard for C if for all Turing machines of M , there exists a function

f running in polynomial time taking in parameter an input M , returning an input of P ,
and such that M accepts ω if and only if f(ω) is a positive instance of P .

P is complete for C if it is a member of C and it is hard for C.

Instead of writing Turing machines to prove the membership of problems, we will
write algorithms in pseudo-code. Interestingly, the correspondence between algorithms
and Turing machines is direct: an algorithm running in polynomial time/space induces a
Turing machine running in polynomial time/space.

We now define a different class of Turing machines that will prove very handy to
establish the complexity of decision problems later on.

A.2 Alternating Turing machines

Alternating Turing machines [CS76] are an extension of Turing machines where states
now have a type: ∃ or ∀. In an execution, a state labeled with ∃ must have at least one
transition which makes the execution succeed. For ∀ states, every compatible transition
must make the execution succeed. If all states are ∃, we go back to non-deterministic
machines.

Definition 83 (Alternating Turing machine).
An alternating Turing machine is a tuple M = (Q,Σ,Γ, δ, q0, qacc, qrej, g) where:

• Q is the finite set of states of M ;

• Σ is the finite input alphabet;

• Γ is the finite tape alphabet with Σ ⊆ Γ;

• δ ⊆ Q× Γ×Q× Γ× {−1,+1} is the transition function;

• q0 ∈ Q is the initial state, qacc ∈ Q the accepting state and qrej ∈ Q is the rejecting
state;

• g : Q→ {∃,∀} is the quantification function for the states.
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q0 : ∃start q1 : ∀

qacc

qrej

(a,+1, b)

(b,+1, b)

(a,+1, b)

(b,+1, b)

(a,+1, b)

Figure A.2: Example of an alternating Turing machine

Example 35. Figure A.2 gives an example of an alternating Turing machine. Each state
now have a type: ∃ or ∀, except the accept and reject state that do not really need a type
since the execution always end when these states are reached.

The word aaaaaaab is now not accepted by the Turing machine. Indeed, when in q1,
firing the q1 → q1 transition and the q1 → qrej must lead to a successful execution. Yet,
the transition to qrej is obviously not successful.

In fact, here, the only word recognized is ab.

Alternating Turing machines create new complexity classes, defined as follows.

Definition 84 (Alternating complexity classes).
Alternating time The classes Aptime, Aexptime, A2Exptime, are the classes

of alternating Turing machines whose executions always end in O(P (n)) time, O(2P (n))
time, O(2P (n)) time, etc., where P is a polynomial and n is the size of the input word.

Alternating space The classes Apspace, Aexpspace, A2Expspace, are the classes
of alternating Turing machines whose executions need only O(P (n)), O(2P (n)), O(2P (n))
new cells (the memory) to work.

We also define the class ApolExptime which is the class of alternating Turing machine
running in exponential time but there is only a polynomial number of alternation of ∃ and
∀ in any execution.

The main advantage of alternating classes is that they are directly correlated with
deterministic class. We have AXtime = Xspace and AXspace = XExptime for ev-
ery X ∈ { P, Exp, 2Exp, . . .}. For instance, Apspace = Exptime, A2Exptime =
2Expspace. When we wish to analyze the membership of problems, we then choose to
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establish the complexity with an alternating class of complexity instead of its deterministic
class. For that, we write alternating algorithms that we now define.

A.3 Algorithms for alternating complexity classes

Alternating algorithms are standard algorithms augmented with two types of non-deterministic
choices: existential (∃)(∃)(∃) choices and universal (∀)(∀)(∀) choices. From an existential choice, the
algorithm accepts if there exists a choice that makes the continuation of algorithm ac-
cept. From a universal choice, any choice should make the continuation of the algorithm
accept. For example, when we write the instruction “(∃)(∃)(∃) w ∈ W”, the algorithm non-
deterministically chooses w in W and continues its execution with this chosen world w.
As it is an existential choice, the instruction “(∃)(∃)(∃) w ∈ W” succeeds if there is a way to
choose w, so that the algorithm accepts. Dually, the instruction “(∀)(∀)(∀) w ∈ W” succeeds
whenever any choice of w makes the algorithm accept.

In the following existential and universal choices between several algorithms will be
written as follows.

(∃)(∃)(∃) algo1 or algo2 (∀)(∀)(∀) algo1 and algo2

“(∀)(∀)(∀) algo1 and algo2” means that both algo1 and algo2 must accept, “(∃)(∃)(∃) algo1 or
algo2” means that either algo1 or algo2 must accept.

Instruction I Running time T (I)
(Q)(Q)(Q) i ∈ {0, 1} 1

(Q)(Q)(Q) i ∈ {1, ..., n} log2(n)
(Q)(Q)(Q) u ∈ W log2(|W |)

Choose W ′ ⊆ W |W |
(∃)(∃)(∃) algo1 or algo2 1 + max(T (algo1), T (algo2))

(∀)(∀)(∀) algo1 and algo2 1 + max(T (algo1), T (algo2))
Sub-algorithm proc 1 + T (proc)

Table A.1: Execution time of alternating algorithms where |AP| is the cardinal of AP.

Execution time of alternating algorithms. The execution time of an alternating
algorithm corresponds to the depth of its computation tree. Table A.1 describes the ex-
ecution time of some instructions up to a constant factor (we write (Q)(Q)(Q) for either (∃)(∃)(∃) or
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(∀)(∀)(∀)). Choosing a world w ∈ W takes log2(|W |) steps because it consists in assigning an
integer to each world of W and choosing log2(|W |). The argument is similar for choosing
i ∈ {1, ..., n}. Choosing a set of worlds W ⊆ W takes |W | steps because it amounts for
each world w ∈ W to choose whether it is in W ′.
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Appendix B

Reminder on Uniform Strategies

The definitions from this chapter are inspired from [AG11]. For more information about
game theory and uniform strategies, the reader may refer to this book. In particular,
although here games are finite, the book considers infinite games.

B.1 Games with imperfect information

We consider the setting of two-player games such that one player does not have perfect
knowledge of the state of the game whereas the other does. The reason is explained
afterwards when winning strategies are defined. Such games are defined as follows.

Definition 85 (Game with imperfect information). A game with imperfect information
is a tuple G = 〈L, lI , LG,Σ, δ, O〉 where:

• L is a finite set of states;

• lI is the initial state;

• LG ⊆ L is the set of winning states;

• Σ is a finite alphabet of actions;

• δ ⊆ L× Σ× L is the transition function;

• O is a partition of L called the observations.

Here we suppose that states in LG are end states, meaning there are no outgoing
transitions from states in LG.

Intuitively, in such games, one player has not full knowledge of the current state of
the game and plays the actions, and the other player chooses which transition is taken.
The aim for the player controlling the action is to reach one of the states in LG, the goal
of the other player is to avoid it.
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lI

l1

l2

l3

l4

l5
a

a

a, b

b

a

l3, l4 are the winning states, l1, l2 are indistinguishable for the player.

Figure B.1: Example of a game with imperfect information

Example 36. We take the game of Figure B.1. Initially, the game starts in lI . The player
only has one possible action, a, that leads either into l1 or l2. The other player that chooses
whether the next state is l1 or l2. Both states l1 and l2 are indistinguishable for the player,
so he does not know which one is the current state. Then in state l2, if the player plays b,
he wins, otherwise he loses. In state l1, whatever the player plays, he wins. Formally the
game is defined as follows:

• L = {lI , l1, l2, l3, l4, l5};

• LG = {l3, l4};

• Σ = {a, b};

• δ = {(lI , a, l1), (lI , a, l2), (l1, a, l3), (l1, b, l3), (l2, b, l4), (l2, a, l5)};

• O = {{lI}, {l1, l2}, {l3}, {l4}, {l5}}.

We now define the notion of history and run in a game.

Definition 86. History and run A history is a sequence of states lI = l0, l1, . . . , ln such
that for all 0 ≤ i ≤ n− 1, there exists a ∈ Σ such that (li, a, li+1) ∈ δ.

A run is a history such that ln is an end state. It is winning if ln ∈ LG, losing otherwise.

There exist games where infinite runs are possible (like Go for instance). For the
manuscript we forbid infinite runs since the games we model only have finite runs.
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B.2 Uniform strategies

We now define the notion of uniform strategies. We begin by considering the previous
example.

Example 37. In the game of Figure B.1, the player must first play a in lI . Then, he has
to choose an action but does not know whether he is in state l1 or state l2. If he chooses
to play a, he wins if the current state is l1 but loses if the current state is l2. Here, in
a strategy, we cannot allow the player to play differently depending on the state because
he does not know which state is the current one. Therefore to have a winning strategy,
playing a is forbidden. Yet, playing b is allowed here because for any of the states l1 or l2,
playing b leads to a winning state.

The definition of a uniform strategies is thus the following.

Definition 87. Uniform strategy A strategy is a function σ : L+ → Σ that assigns an
action to a history (lI , . . . , ln) of visited states.

The strategy σ is said uniform if for all histories (lI , l1, . . . , ln) and (lI , l′1, . . . , l′n) such
that (li, l′i) ∈ O for all i, σ(lI , . . . , ln) = (lI , . . . , l′n).

A uniform strategy is said winning if whatever the other player does, by following the
strategy the games always end in a winning state.

Definition 88. Let σ be a uniform strategy. It is said winning if all runs lI = l0, l1, . . . , ln

such that (li, σ(l0, . . . , li), li+1) ∈ δ for all 0 ≤ i ≤ n− 1 are winning.

Example 38. In the game of Figure B.1, the strategy defined by σ(lI) = a, σ(lI , l1) =
σ(lI , l2) = a is not winning but the strategy defined by σ′(lI) = a, σ′(lI , l1) = σ′(lI , l2) = b

is winning.
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Appendix C

Model Checking against ELCK is in
P

This Appendix is dedicated to the proof of the following theorem:

Theorem 28. The model checking problem against ELCK is in P.

The proof is an extension of the proof for CTL [BK08]. Indeed, CTL corresponds
to ELCK with one agent and the until operator added. We just add here multi-agent
aspects.

LetM = (W, (Ra)a∈Ag, V ) be a Kripke model. The algorithm of Figure C.1 computes
the set of worlds Wϕ satisfying a formula ϕ. The correctness proof is direct for proposi-
tional constructions. For ϕ = Kaψ, we construct the set of worlds W ′ satisfying ψ and
compute the set of worlds W ′′ such that all a-successors fall in W ′, which corresponds
to the set of worlds satisfying ψ. For ϕ = CGψ, we first compute the set of worlds W ′

satisfying ψ, and then repeat a loop where we remove the worlds fromW ′ with a successor
by an agent of G which is not in W ′. In the end, as for the A� operator for CTL, we
obtain exactly the set of worlds satisfying CGψ.

For the complexity of the algorithm, the only real matter is for case ϕ = CGψ, since it
contains a while loop. Notice that the while loop only removes worlds from W ′ and stops
when no world is removed in an iteration, therefore there is at most |W ′| loops, which
remains polynomial.
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function setofworlds(M, ϕ)
case ϕ = p:
W ′ = ∅
for w ∈ W :
if p ∈ V (w): W ′ = W ′ ∪ {w}

return W ′

case ϕ = ¬ψ: return (W \ setofworlds(M, ψ))
case ϕ = ϕ1 ∨ ϕ2: return (setofworlds(M, ϕ1) ∪ setofworlds(M, ϕ2))
case ϕ = Kaψ:
Let W ′ = setofworlds(M, ψ)
Let W ′′ = W
for w ∈ W :
for u ∈ W :
if (w, u) ∈ Ra and u 6∈ W ′:
W ′′ = W ′′ \ {w}

return W ′′

case ϕ = CGψ:
Let W ′ = setofworlds(M, ψ)
Let pstop = ⊥
while ¬pstop:
pstop = >
for w ∈ W :
for u ∈ W :
for a ∈ G:
if (w, u) ∈ Ra and u 6∈ W ′:
W ′ = W ′ \ {w}
pstop = ⊥

return W ′

Figure C.1: Procedure for ELCK computing the set of worlds satisfying a formula
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Appendix D

Dual Algorithms

D.1 Algorithms of Chapter 2

proc mcno(M−→E , w−→e , ϕ) |M
−→
E |+ |ϕ|

B accepts wheneverM−→E , w−→e 6|= ϕ

case ϕ = p: invalno(p,M−→E , w−→e )
case ϕ = (ϕ1 ∨ ϕ2): (∀)(∀)(∀) choose i ∈ {1, 2}; mcno(M−→E , w−→e , ϕi)
case ϕ = ¬ψ: mcyes(M

−→
E , w−→e , ψ).

case ϕ = Kaψ:
(∃)(∃)(∃) choose u−→f ∈M−→E
(∀)(∀)(∀) accessyes(w−→e , u

−→
f , a,M

−→
E ) and inyes(u

−→
f ,M

−→
E ) and mcno(M−→E , u−→f , ψ)

case ϕ = 〈E ,E0〉ψ:
(∀)(∀)(∀) choose e ∈ E0;
(∃)(∃)(∃) mcno(M−→E , w−→e , pre(e)) or mcno(M−→E :: E , w−→e :: e, ψ).

case ϕ = CGψ:
(∃)(∃)(∃) choose u−→f ∈M−→E
(∀)(∀)(∀) access∗yes(w−→e , u

−→
f ,G,BM,ϕ,M

−→
E ) and inyes(u

−→
f ,M

−→
E ) and mcno(M−→E , u−→f , ψ)

proc invalno(p, w−→e ,M−→E ) |M
−→
E |

B accepts whenever p 6∈ V (w−→e )
case

−→
E = ε: if p ∈ V (w) then reject else accept

case
−→
E = −→E ′::E and w−→e = w−→e ′::e: mcno(M−→E ′, w−→e ′, post(e, p))

proc inno(w−→e ,M−→E ) |M
−→
E |

B accepts whenever w−→e 6∈ M−→E
case

−→
E = ε: reject

case
−→
E = −→E ′::E , w−→e = w−→e ′::e: (∃)(∃)(∃) mcno(M−→E ′, w−→e ′, pre(e)) or inno(w−→e ′,M−→E ′)
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proc accessno(w−→e , u−→f , a,M−→E ) |M
−→
E |

B accepts whenever (w−→e , u−→f ) 6∈ Ra

case
−→
E = ε: if (w, u) 6∈ RMa then accept else reject

case
−→
E = −→E ′ :: E , −→e = −→e ′ :: e, −→f = −→f ′ :: f :

if (e, f) 6∈ REa then accept else accessno(w−→e ′, u−→f ′, a,M−→E ′)

proc access∗no(w−→e , u−→f ,G, i,M−→E ) |M
−→
E |+ log i

B accepts whenever (w−→e , u−→f ) 6∈ (⋃a∈GRa)j for all j ≤ i
case i = 1:
if u
−→
f = w−→e then reject else (∀)(∀)(∀) choose a ∈ G; accessno(w−→e , u−→f , a,M−→E )

case i ≥ 2:
(∀)(∀)(∀) choose v−→g ∈M−→E
(∃)(∃)(∃) inno(v−→g ,M−→E ) or access∗no(w−→e , v−→g ,G, i/2,M−→E )

or access∗no(v−→g , u−→f ,G, i/2,M−→E )

D.2 Algorithms for Chapter 3

proc mcno(M−→E , w−→e , ϕ) |M
−→
E |+ |ϕ|

B accepts whenever M−→E , w−→e 6|= ϕ

case ϕ = p: invalno(p,M−→E , w−→e )
case ϕ = (ϕ1 ∨ ϕ2): (∀)(∀)(∀) choose i ∈ {1, 2}; mcno(M−→E , w−→e , ϕi)
case ϕ = ¬ψ: mcyes(M

−→
E , w−→e , ψ).

case ϕ = Kaψ:
(∃)(∃)(∃) choose u−→f ∈M

−→
E

(∀)(∀)(∀) accessyes(w−→e , u
−→
f , a,M

−→
E ) and inyes(u

−→
f ,M

−→
E ) and mcno(M−→E , u−→f , ψ)

case ϕ = 〈E, β0〉ψ:
(∀)(∀)(∀) choose e such that e |= β0;
(∃)(∃)(∃) mcno(M−→E , w−→e , pre|ve) or mcno(M−→E :: E, w−→e :: e, ψ).

case ϕ = CGψ:
(∃)(∃)(∃) choose u−→f ∈M

−→
E

(∀)(∀)(∀) access∗yes(w−→e , u
−→
f ,G,BM,ϕ,M

−→
E ) and inyes(u

−→
f ,M

−→
E ) and mcno(M−→E , u−→f , ψ)

proc invalno(p, w−→e ,M−→E ) |M
−→
E |

B accepts whenever p 6∈ V (w−→e )
case

−→
E = ε: if p 6∈ w then accept else reject

case
−→
E = −→E ′::E, w−→e = w−→e ′::e: mcno(M−→E ′, w−→e ′, post(p)|ve)
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proc inno(w−→e ,M−→E ) |M
−→
E |

B accepts whenever w−→e 6∈M
−→
E

case
−→
E = ε: reject

case
−→
E = −→E ′::E, w−→e = w−→e ′::e: (∃)(∃)(∃) mcno(M−→E ′, w−→e ′, pre|ve) or inno(w−→e ′,M−→E ′)

proc accessno(w−→e , u−→f , a,M−→E ) |M
−→
E |

B accepts whenever (w−→e , u−→f ) 6∈ Ra

case
−→
E = ε: relationno(w, u, πa)

case
−→
E = −→E ′ :: E, −→e = −→e ′ :: e, −→f = −→f ′ :: f :

(∃)(∃)(∃) accessno(w−→e ′, u−→f ′, a,M−→E ′) or relationno(e, f, πEa )

proc access∗no(w−→e , u−→f ,G, i,M−→E ) |M
−→
E |+ log i

B accepts whenever (w−→e , u−→f ) 6∈ (⋃a∈GRa)j for all j ≤ i
case i = 1:
if u
−→
f = w−→e then reject else (∀)(∀)(∀) choose a ∈ G; accessno(w−→e , u−→f , a,M−→E )

case i ≥ 2:
(∀)(∀)(∀) choose v−→g ∈M

−→
E

(∃)(∃)(∃) inno(v−→g ,M−→E ) or access∗no(w−→e , v−→g ,G, i/2,M−→E )
or access∗no(v−→g , u−→f ,G, i/2,M−→E )

proc relationno(w, u, π) |π|

B accepts whenever w 6 π−→ u
case π = p←β:
if (w |= β ∧ (u 6= w ∪ {p})) ∨ (w 6|= β ∧ (u 6= w \ {p})) then accept else reject

case π = π1; π2: (∀)(∀)(∀) v ∈ U ; (∃)(∃)(∃) relationno(w, v, π1) or relationno(v, u, π2)
case π = π1 ∪ π2: (∀)(∀)(∀) relationno(w, u, π1) and relationno(w, u, π2)
case π = β?: if w 6= u ∨ w¬ |=PL β then accept else reject
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D.3 Algorithms for Chapter 5

D.3.1 Symbolic model checking

proc relationno(w, u, π) |π|

B accepts whenever w 6 π−→ u
case π = p←β:
if (w |= β ∧ (u 6= w ∪ {p})) ∨ (w 6|= β ∧ (u 6= w \ {p})) then accept else reject

case π = π1; π2: (∀)(∀)(∀) v ∈ U ; (∃)(∃)(∃) relationno(w, v, π1) or relationno(v, u, π2)
case π = π1 ∪ π2: (∀)(∀)(∀) relationno(w, u, π1) and relationno(w, u, π2)
case π = β?: if w 6= u ∨ w¬ |=PL β then accept else reject

Star-free fragment

proc inno(L,w) |L|+ |AP|+ 1

B accepts whenever w 6∈ WL

case L = [ ]: reject
case L = L′::ϕ: (∃)(∃)(∃) mcno(L′, w, ϕ) or inno(L′, w)

proc access∗no(L,w, u, π, i) |L|+ |AP|+ log2(i) + |π|

B accepts whenever for all k < i and w1, . . . , wk−1, it is false that w π−→ w1 . . .
π−→ wk−1

π−→ u
case i = 1: if w 6= u then accessno(w, u, π) else reject
case i ≥ 2:

(∀)(∀)(∀) v ∈ U

(∃)(∃)(∃) inno(L, u) or access∗no(L,w, v, π, i/2) or access∗no(L, v, u, π, i/2)
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proc mcno(L,w, ϕ) |L|+ |AP|+ |ϕ|

B accepts whenever WL, w 6|= ϕ
case ϕ = p: if p 6∈ w then accept else reject
case ϕ = ¬ψ: mcyes(L,w, ψ)
case ϕ = (ψ1 ∨ ψ2): (∀)(∀)(∀) mcno(L,w, ψ1) and mcno(L,w, ψ2)
case ϕ = Kaψ: (∃)(∃)(∃) u ∈ U ; (∀)(∀)(∀) accessyes(w, u, πa) and inyes(L, u) and mcno(L, u, ψ)
case ϕ = CGψ:

(∃)(∃)(∃) u ∈ U

(∀)(∀)(∀) access∗yes(L,w, u,
⋃
a∈G πa, 2#AP) and inyes(L, u) and mcno(L, u, ψ)

case ϕ = 〈ψ!〉χ: (∃)(∃)(∃) mcno(L,w, ψ) or mcno(L :: ψ,w, χ)
case ϕ = 〈ψ?〉χ: (∃)(∃)(∃) mcno(L,w, ψ) or mcno(L,w, χ)
case ϕ = 〈τ1 ∪ τ2〉χ: (∀)(∀)(∀) mcno(L,w, 〈τ1〉χ) and mcno(L,w, 〈τ2〉χ)
case ϕ = 〈τ1; τ2〉χ: mcno(L,w, 〈τ1〉〈τ2〉χ)

General case

proc access∗no(W,w, u, π, i) |AP|+ log2(i) + |π|

B accepts whenever for all k < i and w1, . . . , wk−1, it is false that w π−→ w1 . . .
π−→ wk−1

π−→ u
case i = 1: if w 6= u then accessno(w, u, π) else reject
case i ≥ 2: (∀)(∀)(∀) v ∈ W ; (∃)(∃)(∃) access∗no(W,w, v, π, bi/2c) or access∗no(W, v, u, π, di/2e)

proc mcno(W,w, ϕ) |AP|+ |ϕ|

B accepts whenever W,w 6|= ϕ
case ϕ = p: if p 6∈ w then accept
case ϕ = ¬ψ: mcyes(W,w, ψ)
case ϕ = (ψ1 ∨ ψ2): (∀)(∀)(∀) mcno(W,w, ψ1) and mcno(W,w, ψ2)
case ϕ = Kaψ: (∃)(∃)(∃) u ∈ W ; (∀)(∀)(∀) accessyes(w, u, πa) and mcno(W,u, ψ)
case ϕ = CGψ:

(∃)(∃)(∃) u ∈ W
(∀)(∀)(∀) access∗yes(W,w, u,

⋃
a∈G πa, 2#AP) and mcno(W,u, ψ)

case ϕ = 〈γ〉χ:
(∀)(∀)(∀) W ′ ⊆ W | w ∈ W ′

(∃)(∃)(∃) execno(W,w,W ′, γ) or mcno(W ′, w, χ)

proc stableno(W,W ′, π) |π|+ 1

B accepts whenever ∼
preπ,W (postπ,W (W ′)) 6⊆ W ′

(∃)(∃)(∃) (w, v, u) ∈ W ′ ×W ×W
if u ∈ W ′ then reject else (∀)(∀)(∀) accessyes(w, v, π) and accessyes(u, v, π)
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proc execno(W,w,W ′, γ) |AP|+ |γ|

B accepts whenever (W,w) 6 γ (W ′, w)
case γ = ϕ!:

(∃)(∃)(∃) (u, v) ∈ W ′ × (W\W ′)
(∃)(∃)(∃) mcno(W,u, ϕ) or mcyes(W, v, ϕ)

case γ = •!: reject
case γ = •!G:

(∀)(∀)(∀) (Wa)a∈G | for all a ∈ G,Wa⊆W,w∈Wa

if ⋂
a∈G

Wa 6= W ′ then accept else (∃)(∃)(∃) a ∈ G; stableno(W,Wa, πa)
case γ = γ1; γ2:

(∀)(∀)(∀) W ′′ ⊆ W such that W ′ ⊆ W ′′

(∃)(∃)(∃) execno(W,w,W ′′, γ1) or execno(W ′′, w,W ′, γ2)
case γ = γ1 ∪ γ2: (∀)(∀)(∀) k ∈ {1, 2}; execno(W,w,W ′, γk)
case γ = ϕ?: if W ′ 6= W then accept else mcno(W,w, ϕ)
case γ = γ′∗: exec∗no(W,w,W ′, γ′, 2#AP − 1)

proc exec∗no(W,w,W ′, γ, i) |AP|+ |γ|+ log2(i)

B accepts whenever (W,w) 6 γj (W ′, w) for all j ≤ i
case i = 0: if W 6= W ′ then accept else execno(W,w,W ′, γ);
case i ≥ 2:

(∀)(∀)(∀) W ′′ s.th. W ′ ⊆ W ′′ ⊆ W

(∃)(∃)(∃) exec∗no(W,w,W ′′, γ, i/2) or exec∗no(W ′′, w,W ′, γ, i/2)

D.4 Non symbolic model checking

proc mcno(W,w, ϕ) |AP|+ |ϕ|
B accepts whenever W,w 6|= ϕ

match ϕ with
case ϕ = p: if p ∈ V (w) then reject else accept
case ϕ = ¬ψ: mcyes(W,w, ψ)
case ϕ = (ψ1 ∨ ψ2): (∀)(∀)(∀) mcno(W,w, ψ1) and mcno(W,w, ψ2)
case ϕ = Kaψ: (∃)(∃)(∃) u ∈ W ; if (w, u) ∈ Ra then mcno(W,u, ψ)
case ϕ = CGψ:

(∃)(∃)(∃) u ∈ W
(∀)(∀)(∀) access∗yes(W,w, u,

⋃
a∈GRa, 2log2(|W |)+1) and mcno(W,u, ψ)

case ϕ = 〈γ〉χ:
(∀)(∀)(∀) W ′ ⊆ W | w ∈ W ′

(∃)(∃)(∃) execno(W,w,W ′, γ) or mcno(W ′, w, χ)

216



proc access∗no(W,w, u,R, i) |AP|+ log2(i)
B accepts if w 6= u and there do not exist v1, . . . , vk ∈ WL with k < i such that
w

π−→ v1 . . .
R−→ vi−1

R−→ u (for i > 1)
case i = 1: if u = w or (w, u) ∈ R then reject else accept
case i ≥ 2: (∀)(∀)(∀) v ∈ W ; (∃)(∃)(∃) access∗no(W,w, v, π, i/2) or access∗no(W, v, u, π, i/2)

proc execno(W,w,W ′, γ) |AP|+ |γ|
B accepts whenever (W,w) 6 γ (W ′, w)
match γ with
case γ = ϕ!:

(∃)(∃)(∃) (u, v) ∈ W ′ × (W\W ′); (∃)(∃)(∃) mcno(W,u, ϕ) or mcyes(W, v, ϕ)
case γ = •!: reject
case γ = •!G:

(∀)(∀)(∀) (Wa)a∈G | for all a ∈ G,Wa⊆W,w∈Wa

if ⋂
a∈G

Wa 6= W ′ then accept else (∃)(∃)(∃) a ∈ G; stableno(W,Wa, Ra)
case γ = γ1; γ2:

(∀)(∀)(∀) W ′′ ⊆ W such that W ′ ⊆ W ′′

(∃)(∃)(∃) execno(W,w,W ′′, γ1) or execno(W ′′, w,W ′, γ2)
case γ = γ1 ∪ γ2: (∀)(∀)(∀) k ∈ {1, 2}; execno(W,w,W ′, γk)
case γ = ϕ?: (∃)(∃)(∃) if W ′ 6= W then accept or mcno(W,w, ϕ)
case γ = γ′∗: (∀)(∀)(∀) i ∈ {0, ..., 2log2(|W |)+1}; exec∗no(W,w,W ′, γ′, i)

proc exec∗no(W,w,W ′, γ, i) |AP|+ |γ|+ log2(i)

B accepts whenever (W,w) 6 γi (W ′, w)
case i = 0: if W = W ′ then reject else execno(W,w,W ′, γ);
case i ≥ 2:

(∀)(∀)(∀) W ′′ s.th. W ′ ⊆ W ′′ ⊆ W

(∃)(∃)(∃) exec∗no(W,w,W ′′, γ, i/2) or exec∗no(W ′′, w,W ′, γ, i/2)

proc stableno(W,W ′, R) |π|+ 1

B accepts whenever ∼
preR,W (postR,W (W ′)) 6⊆ W ′

(∃)(∃)(∃) (w, v, u) ∈ W ′ ×W ×W
if ((w, v) ∈ R and (u, v) ∈ R implies u ∈ W ′) then reject else accept
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Appendix E

Proofs of Chapter 5

E.1 Proof of Proposition 15

We prove the following more general Lemma:

Lemma 6. Let ϕ ∈ PAPL, γ be a protocol and M be a symbolic model. Let AP ′ be such
that AP(ϕ) ⊆ AP ′. Then:

H(ϕ) : for every U ⊆ U and u ∈ U,U, u |= ϕ iff U ′u, u
′ |= ϕ.

H(γ) : for every U ⊆ U , W ⊆ U ′u, and u ∈ U , (U ′u, u′) γ (W,u′) iff there exists T
such that (U, u) γ (T, u) and T ′u = W .

where U ′u =
{
v′ | v ∈ U and for all p ∈ AP \ AP ′, p ∈ v iff p ∈ u

}
with v′ = v ∩ AP ′.

We show H(ϕ) and H(γ) by mutual induction over ϕ and γ.

• ϕ = p: clearly U, u |= p iff U ′u, u′ |= p.

• ϕ = ¬ψ:

U, u |= ϕ iff U, u 6|= ψ

iff U ′u, u′ 6|= ψ (by H(ψ))
iff U ′u, u′ |= ϕ.

• ϕ = ϕ1 ∨ ϕ2:

U, u |= ϕ iff U, u |= ϕ1 or U, u |= ϕ2

iff U ′u, u′ |= ϕ1 or U ′u, u′ |= ϕ2 (by using H(ϕ1) and H(ϕ2))
iff U ′u, u′ |= ϕ.

• ϕ = Kaψ:

U, u |= ϕ iff for all v ∈ U such that u πa−→ v, U, v |= ψ.

iff for all v ∈ U such that u πa−→ v, U ′v, v
′ |= ψ (by H(ψ)).

iff for all v ∈ U such that u πa−→ v, U ′u, v
′ |= ψ (because U ′u = U ′v).

iff for all w ∈ U ′u such that u′ πa−→ w,U ′u, w |= ψ (because AP(π) ⊆ AP ′).
iff U ′u, u′ |= ϕ.
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• ϕ = CGψ:

U, u |= ϕ iff for all (a1, . . . , am) ∈ G,U, u |= Ka1 . . . Kamψ

iff for all (a1, . . . , am) ∈ G,U ′u, u′ |= Ka1 . . . Kamψ (by repeating m times
the previous reasoning and using H(ψ)).

iff U ′u, u′ |= ϕ.

• ϕ = 〈γ〉ψ:

U, u |= ϕ iff there exists T ⊆ U such that (U, u) γ (T, u) and T, u |= ψ.
iff there exists T ⊆ U such that (U, u) γ (T, u) and T ′u, u′ |= ψ (by H(ψ)).
iff there exists W ⊆ U ′u such that (U ′u, u) γ (W,u) and W,u′ |= ψ (by H(γ),

take W = T ′u).
iff U ′u, u′ |= ϕ.

• γ = ϕ?:

(U ′u, u′) ϕ? (W,u′) iff U ′u = W and U ′u, u′ |= ϕ

iff U ′u = W and U, u |= ϕ (by H(ϕ)).
iff there exists T such that T = U and T ′u = W and U, u |= ϕ.
iff there exists T such that (U, u) ϕ? (T, u) and W = T ′u.

• γ = ϕ!:

– If (U ′u, u′) ϕ! (W,u′) then we have w ∈ W iff U ′u, w |= ϕ. Let T = {w ∪ (u \ u′), w ∈ W}.
Intuitively, T is the extension of W by taking values of u outside AP ′. We obtain
directly that T ′u = W . Furthermore, v ∈ T iff v′ ∈ T ′u, iff U ′u, v′ |= ϕ, iff U, v |= ϕ (by
H(ϕ)). We conclude that there exists T such that (U, u) ϕ! (T, u) and W = T ′u.

– If there exists T such that (U, u) ϕ! (T, u) and W = T ′u then w ∈ W iff there
exists v ∈ T such that v′ = w. For such v, we have by definition of T , U, v |= ϕ, so
U ′u, v

′ |= ϕ. Thus w ∈ W iff U ′u, w |= ϕ. Therefore, (U ′u, u′) ϕ! (W,u′).

• γ = γ1 ∪ γ2:

(U ′u, u′) γ1∪γ2 (W,u′) iff (U ′u, u′) γ1 (W,u′) or (U ′u, u′) γ2 (W,u′).
iff there exists T such that (U, u) γ1 (T, u) and W = T ′u or there exists

T such that (U, u) γ2 (T, u) and W = T ′u (by H(γ1) and H(γ2)).
iff there exists T such that (U, u) γ1 (T, u) or (U, u) γ2 (T, u), and W = T ′u.
iff there exists T such that (U, u) γ1∪γ2 (T, u) and W = T ′u.
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• γ = γ1; γ2:

(U ′u, u′) γ1;γ2 (W,u′) iff there exists W0 such that (U ′u, u′) γ1 (W0, u
′) γ2 (W,u′)

iff there exists T0 such that (U, u) γ1 (T0, u) and (T0
′
u, u

′) γ2 (W,u′) (by H(γ1)).
iff there exists T0, T such that (U, u) γ1 (T0, u) γ2 (T, u) and W = T ′u (by H(γ2)).
iff there exists T such that (U, u) γ1;γ2 (T, u) and W = T ′u.

• γ = γ′∗:

(U ′u, u′) γ′∗ (W,u′) iff there exists k ≥ 0 such that (U ′u, u′) γ′k (W,u′)
iff there exists T such that (U, u) γ′k (T, u) and W = T ′u (by repeating case γ = γ1; γ2).
iff there exists T such that (U, u) γ′∗ (T, u) and W = T ′u.

• γ = •!: this case amounts to γ = •!{f} with f an omniscient agent, meaning that
πf = >?. We apply the case γ = •!G to conclude.

• γ = •!G:

– Let T be such that (U, u) 〈•!G〉 (T, u) and T ′u = W then there exists formulas

(ψa)a∈Ag such that (U, u)
∧
a∈G

Kaψa!
(T, u). We cannot apply the induction hypoth-

esis here because it may not be true that AP(ψa) ⊆ AP ′. For any agent a ∈ G,
let χa = ∨

v∈postπa,U′u (T ′u)

(∧
p∈v∩AP′ p ∧

∧
p∈(AP\v)∩AP′ ¬p

)
. Intuitively, χa describes

exactly the πa-successors of T ′u that are in U ′u. Notice that here all successors of
elements in T ′u are in U ′u, so χa actually describes the successors of T ′u by πa. Let W0

be such that (U ′u, u)
∧
a∈GKaχa! (W0, u). Let us show that W0 = T ′u:

∗ If v0 ∈ T ′u then each πa successor of v0 is in postπa,U ′u(T ′u) so U ′u, v0 |= Kaχa. So
v0 ∈ W0.

∗ If v0 ∈ W0, let v ∈ U defined by v = v0 ∪ (u \u′). For any w such that v πa−→ w, we
have v0

πa−→ w′ so w′ ∈ postπa,U ′u(T ′u). Then there exists v1 ∈ T such that v′1
πa−→ w′,

so v1
πa−→ w. Furthermore, because v1 ∈ T , we have U, v1 |= Kaψa, so U,w |= ψa.

We then obtain that W, v |= Kaψa for every agent a ∈ G, so v ∈ T .

then (U ′u, u) 〈•!G〉 (T ′u, u) and then (U ′u, u) 〈•!G〉 (W,u) .

– If (U ′u, u) 〈•!G〉 (W,u) then there exist formulas (ψa)a∈G such that (U ′u, u)
∧
a∈GKaψa

(W,u). For any agent a ∈ G, we take the same χa than before. Let W0 be such that
(U ′u, u)

∧
a∈GKaχa! (W0, u). Let us show that W0 = T ′u:
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∗ If v ∈ W then as before, U ′u, v |= Kaψa so v ∈ W0.
∗ If v ∈ W0 then for all w such that v πa−→ w, there exists v1 ∈ W such that v1

πa−→ w,
so U ′u, v1 |= Kaψa, so U ′u |= ψa, so U ′u, v |= Kaψa and so v ∈ W .

Now we have AP(χa) ⊆ AP ′ for all agents a ∈ G so we conclude by case γ = ϕ!
that there exists T such that (U, u)

∧
a∈GKaχa! (T, u) and T ′u = W .

E.2 Proof of Proposition 16

We first prove that for any Agent a and any two sets of valuations U ⊆ W ⊆ U , the two
following statements are equivalent:

1. There exists an arbitrary-free formula ψ such that for any valuation w ∈ W ∩ U ,
(W,w) Kaψ! (U,w);

2. U = ∼
preπa,W (postπa,W (U)).

We prove first prove that 1. implies 2.
Suppose that there exists an arbitrary-free formula ψ such that for any valuation

w ∈ W∩U , (W,w) Kaψ! (U,w). We prove U = ∼
preπa,W (postπa,W (U)) by double inclusion.

• First, notice that by definition of postπa,W (U), any element u of U has all its πa-
successors in postπa,W (U), so that u ∈ ∼

preπa,W (postπa,W (U)). Therefore U ⊆ ∼
preπa,W (postπa,W (U)).

• Second, let u ∈ ∼
preπa,W (postπa,W (U)). By definition of ∼

preπa,W , for any v πa-successor
of u, we have v ∈ postπa,W (U). As a consequence, for each of those v, there exists
u′ ∈ U such that u′ πa−→ v. Since by assumption, for any valuation w′ ∈ W ∩ U ,
(W,w′) Kaψ!−−−→ (U,w′), we have in particular W,u′ |= Kaψ. Since u′ πa−→ v, we also have
W, v |= ψ. Because v is an arbitrary πa-successor of u, we can state that W,u |= Kaψ,
so that u survives after the announcement Kaψ!, that is u ∈ U . We have shown that
U ⊇ ∼

preπa,W (postπa,W (W )), which achieves the proof of that 1. implies 2.

We now show that 2. implies 1.
Suppose U = ∼

preπa,W (postπa,W (W )). We show that there exists an arbitrary-free for-
mula χa such that (W,w) Kaχa! (U,w) for any w ∈ W ∩U . We prove that the arbitrary-
free formula χa defined by

χa
def=

∨
v∈postπa,W (U)

∧
p∈v

p ∧
∧

p∈AP\v
¬p

 is a good candidate.
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Clearly, for any world v, we haveW, v |= χa iff v ∈ postπa,W (U). We have w ∈ U iff w ∈
∼
preπa,W (postπa,W (U)), iff for all πa-successor v ∈ W of w, we have v ∈ postπa,W (U), iff for
all v ∈ W , w πa−→ v impliesW, v |= χa iffW,w |= Kaχa. We conclude (W,w) Kaχa! (U,w).

We have just shown that the existence of a Kaχa-formula to announce is equivalent
to the existence of a set of valuations U such that U = ∼

preπa,W (postπa,W (U)).
With the semantics of 〈•!G〉ϕ, justifying the existence of Kaψa-formulas for each a ∈ G

that can be announced is equivalent to justifying the existence of sets Ua such that
Ua = ∼

preπa,W (postπa,W (Ua)). Furthermore, (W,u) (∧a∈GKaψa)! (⋂a∈G Ua, u). To con-
clude, searching for a formula of the form ∧

a∈GKaψa! with W,u |= 〈∧a∈GKaψa!〉ϕ is
equivalent to searching for Ua such that Ua = ∼

preπa,W (postπa,W (Ua)) and
⋂
a∈G Ua, u |= ϕ.

222



Titre: Complexité théorique du raisonnement en logique
épistémique dynamique et étude d’une approche sym-
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Résumé : Nous étudions la complexité
théorique de tâches de raisonnement met-
tant en jeu la connaissance des agents dans
les systèmes multi-agents. Nous considérons
la logique épistémique dynamique (DEL)
comme une façon naturelle d’exprimer la
connaissance, qui permet d’exprimer la con-
naissance d’ordre supérieur des agents et
des actions dynamiques partiellement ob-

servées. Nous montrons des résultats de
complexité algorithmique pour la vérifi-
cation de modèles et la satisfiabilité de
formules de DEL, et définissons une ap-
proche symbolique pour ces mêmes prob-
lèmes. Nous étudions également la planifi-
cation basée sur DEL ainsi que des quantifi-
cations sur certaines actions : les annonces
publiques.

Title: Theoretical complexity of reasoning in dynamic
epistemic logic and study of a symbolic approach.
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Abstract : We study the theoretical com-
plexity of reasoning tasks involving knowl-
edge in multi-agent systems. We consider
dynamic epistemic logic (DEL) as a natu-
ral way of expressing knowledge, which al-
lows to express nested knowledge of agents
and partially observed dynamic actions. We

show complexity results for model checking
and satisfiability of DEL formulas, and de-
fine a symbolic approach for these problems.
We also study DEL-based planning and
quantification over specific actions: public
announcements.
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