
HAL Id: tel-03881868
https://theses.hal.science/tel-03881868

Submitted on 2 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimation and control for resilience in large-scale
network systems

Ujjwal Pratap

To cite this version:
Ujjwal Pratap. Estimation and control for resilience in large-scale network systems. Automatic.
Université Grenoble Alpes [2020-..], 2022. English. �NNT : 2022GRALT058�. �tel-03881868�

https://theses.hal.science/tel-03881868
https://hal.archives-ouvertes.fr


THÈSE 
Pour obtenir le grade de 

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : EEATS - Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS)
Spécialité : Automatique - Productique
Unité de recherche : Grenoble Images Parole Signal Automatique

Estimation  et  commande  pour  la  résilience  dans  les  systèmes  en
réseaux à grande échelle

Estimation and control for resilience in large-scale network systems

Présentée par :

Ujjwal PRATAP
Direction de thèse :

Carlos CANUDAS DE WIT
Directeur de Recherche, Université Grenoble Alpes

Directeur de thèse

Federica GARIN
 INRIA

Co-encadrante de 
thèse

Henrik SANDBERG
 KTH Royal Institute of Technology

Co-encadrant de thèse

Rapporteurs :
Ming CAO
PROFESSEUR, Hanzehogeschool Groningen
Constantin MORARESCU
PROFESSEUR DES UNIVERSITES, UNIVERSITE DE LORRAINE

Thèse soutenue publiquement le 7 septembre 2022, devant le jury composé de :
Olivier SENAME
PROFESSEUR DES UNIVERSITES, GRENOBLE INP

Président

Ming CAO
PROFESSEUR, Hanzehogeschool Groningen

Rapporteur

Constantin MORARESCU
PROFESSEUR DES UNIVERSITES, UNIVERSITE DE LORRAINE

Rapporteur

Alain RAPAPORT
DIRECTEUR  DE  RECHERCHE,  CNRS  DELEGATION  OCCITANIE
EST

Examinateur

Julie DUGDALE
Maître de conférences HDR, UNIVERSITE GRENOBLE ALPES

Examinatrice

Silvia SIRI
PROFESSEUR ASSOCIE, Università Degli Studi di Genova

Examinatrice

Invités :
Federica Garin
CHARGE DE RECHERCHE, Inria
Henrik Sandberg
PROFESSEUR, KTH Royal Institute of Technology





UNIVERSITÉ DE GRENOBLE ALPES

ÉCOLE DOCTORALE EEATS
Eléctronique, Eléctrotechnique, Automatique, Traitement du Signal

T H È S E
pour obtenir le titre de

docteur en sciences

de l’Université de Grenoble
Mention : Automatique

Présentée et soutenue par

Ujjwal PRATAP

Estimation and control for

resilience in large-scale network systems

Thèse dirigée par Carlos CANUDAS-DE-WIT et co-encadrée par
Federica GARIN et Henrik SANDBERG

préparée au laboratoire Grenoble Images Parole Signal Automatique
(GIPSA-Lab)

soutenue le 07/09/2022

Jury :

Rapporteurs : Ming CAO - University of Groningen
Constantine MORARESCU - Universite de Lorraine

Président : Olivier SENAME - Université Grenoble Alpes
Examinateur/Examinatrice : Alain RAPAPORT - INRAE

Julie DUGDALE - Université Grenoble Alpes
Silvia SIRI - University of Genova





Abstract — This research has been done in the context of European Research Council’s
(ERC) Advance Grant project Scale-Freeback. The aim of Scale-Freeback project is to develop
a holistic scale-free control approach to complex systems, and to set new foundations for a
theory dealing with complex physical networks with arbitrary dimension.

The contributions of this work are divided into two parts:
Part 1: Outlier detection and state estimation in network systems
Part 2: Modeling and control of mobility for epidemic mitigation in large scale urban networks

In part 1, we consider the problem of average state estimation in network systems where
only some of the states are measured. There is an outlier among the unmeasured states,
which is so different from the remaining states that it significantly affects the average value.
We develop a methodology to detect the outlier and estimate the average state, excluding the
outlier for the cases when the system model might be known or partially unknown. We also
illustrate the method in a thermal diffusion system.

In part 2, we consider the problem of modeling and control of human mobility in large-scale
urban networks. At first, we provide a supply-demand-based mobility model in discrete time,
which preserves the properties of non-negativity, boundedness, and mass conservation. This
model captures the daily movement of people between residences and places of interest such
as workplaces, schools, hospitals, cinemas, etc. called destinations, using time schedules and
gating profiles which also accommodate the possibility of imposing restrictions on mobility.
We also built the large-scale mobility network in the metropolitan city of Grenoble by using
publicly available information to answer the questions: “where do the people move?” “When
do they move?” and “how many people move?” Secondly, since the mobility can be controlled
in the model by using a control parameter that tunes the capacities of the destinations, we
exploit this control for epidemic mitigation. Considering an integrated model for epidemic
and mobility in continuous time, we provide a discretization that preserves the property of
the original model. Then, we provide optimal mobility control policies that maximize the
economic activity of an urban area by tuning the operating capacities of destinations keeping
the total infections within the area bounded with application to Grenoble metropolis. Fi-
nally, we also developed an online simulation platform called GTL-Healthmob, which aims at
visualizing the population movement, simulating epidemic propagation, and optimizing the
mobility restrictions to limit the epidemic spread in the Grenoble metropolis by taking dif-
ferent epidemic and mobility control parameters inputs from users and showing the results in
terms of plots and heatmaps overlaid onto the map of the metropolis.



Résumé — Cette recherche s’inscrit principalement dans le cadre du projet Scale-Freeback
du Conseil européen de la recherche (ERC). L’objectif du projet Scale-Freeback est de dévelop-
per une approche holistique du contrôle invariant d’échelle des systèmes complexes, et d’établir
de nouvelles bases pour une théorie traitant des réseaux physiques complexes de dimension
arbitraire.

Les contributions de cette thèse sont divisées en deux parties:
Partie 1: Détection de valeurs aberrantes et estimation d’état dans les systèmes de réseaux
Partie 2: Modélisation et contrôle de la mobilité pour la réduction des épidémies dans les
réseaux urbains à grande échelle

Dans la première partie, nous considérons le problème de l’estimation de l’état moyen dans
les systèmes de réseau dans lesquels seuls certains états sont mesurés et il existe une valeur
aberrante parmi les états non mesurés, qui est si différente des autres états qu’elle affecte la
valeur moyenne de manière significative. Nous développons une méthodologie pour détecter
la valeur aberrante et pour estimer l’état moyen en excluant la valeur aberrante pour les cas
où les matrices du système peuvent être connues ou partiellement inconnues. Notre méthode
a également été illustrée sur un système de diffusion thermique.

Dans la deuxième partie, nous considérons le problème de la modélisation et du contrôle
de la mobilité humaine dans les réseaux urbains de grande échelle. Dans un premier temps,
nous fournissons un modèle de mobilité en temps discret basé sur l’offre et la demande qui
préserve les propriétés de non-négativité, de limitabilité et de conservation de la masse. Ce
modèle capture le mouvement quotidien des personnes entre les résidences et les lieux d’intérêt
tels que les lieux de travail, les écoles, les hôpitaux, les cinémas, etc. appelés destinations,
en utilisant des horaires et des profils d’accès qui permettent également d’imposer des restric-
tions à la mobilité. Nous avons également construit le réseau de mobilité à grande échelle
de la ville métropolitaine de Grenoble en utilisant les informations disponibles publiquement
pour répondre aux questions suivantes : "où les gens se déplacent-ils ?" "quand se déplacent-
ils?" et "combien de personnes se déplacent ?". Deuxièmement, puisque dans le modèle la
mobilité peut être contrôlée en utilisant un paramètre de contrôle qui règle les capacités des
destinations, nous exploitons ce contrôle pour l’atténuation d’épidémies. En utilisant un mod-
èle intégré pour l’épidémie et la mobilité en temps discret, nous fournissons des solutions à
un problème de contrôle optimal, afin de concevoir des politiques de contrôle de la mobilité
qui maximisent l’activité économique d’une zone urbaine en ajustant les capacités de fonc-
tionnement des destinations de différents types en utilisant des entrées de commande et en
maintenant les infections totales dans la zone bornées avec une application au réseau de mo-
bilité de la métropole de Grenoble. Enfin, nous avons également développé une plateforme
de simulation en ligne appelée GTL-Healthmob, qui vise à visualiser le mouvement de la
population, à simuler la propagation des épidémies et à optimiser les restrictions de mobilité
pour limiter la propagation de l’épidémie dans la métropole grenobloise en prenant différents
paramètres de contrôle de l’épidémie et de la mobilité des utilisateurs et en montrant les
résultats en termes de graphiques et de heat map superposées à la carte de la métropole.
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General Introduction

The word resilience originates from the Latin ‘resilire’, which means to leap back. In general,
resilience can be defined as an ability of an entity to cope and recover after confronting
unnatural, alarming, and often unexpected events or complex conditions. It is a property of
an entity to recoil and bounce back after facing an adversarial event. Resilience as a process
is versatile, having a multidisciplinary approach. It has numerous aspects, such as mental,
psychological, physical, and resilience in different complex systems, making it interesting for
medical practitioners, policymakers, scientists, and engineers.

In this thesis, we are interested in complex systems. A complex system can either be
engineered, such as a power network, or can exist naturally, like a human society. Generally, a
complex system needs a set of rules for proper functioning in standard times. However, should
any external or internal disruption come, it requires improvements to the existing algorithms
to ensure the system’s proper functioning. In this regard, this thesis deals with two specific
aspects of such resilience. The first is imparting resilience in the process of average state
estimation in network systems with outliers, and the other is societal resilience in case of an
epidemic outbreak.

Specifically, our contributions in these aspects have been presented in two parts:

• Part 1: Average state-estimation in network systems with outliers.

• Part 2: Modeling and control of mobility for epidemic mitigation in large scale urban
networks.

In part 1, we consider the problem of average state estimation in network systems where
only some of the states are measured. There is an outlier among the unmeasured states,
which is so different from the remaining states that it significantly affects the average value.
We develop a methodology to detect the outlier and estimate the average state, excluding the
outlier for the cases when the system model might be known or partially unknown. We also
illustrate the method in a thermal diffusion system.

In part 2, we consider the problem of modeling and control of human mobility in large-
scale urban networks. At first, considering a continuous-time supply-demand-based human
mobility model, we provide a model in discrete-time, which preserves the properties of non-
negativity, boundedness, and mass conservation. This model captures the daily movement of
people between residences and places of interest such as workplaces, schools, hospitals, cine-
mas, etc called destinations, using time schedules and gating profiles which also accommodate
the possibility of imposing restrictions on mobility. We also provide techniques to build a
model of the mobility network in a metropolitan city with application to Grenoble metropolis
by using publicly available information to answer the questions: “where do the people move?”

1



2 General Introduction

“When do they move?” and “how many people move?” Secondly, since the mobility can be
controlled in the model by using a control parameter that tunes the capacities of the des-
tinations, we exploit this control for epidemic mitigation. Considering an integrated model
for epidemic and mobility in continuous time, we provide a discretization that preserves the
property of the original model. Then, we provide solutions to an optimal control problem
that maximize the economic activity of an urban area by tuning the operating capacities of
destinations while keeping the total infections within the area bounded. We apply these tech-
niques to the large-scale mobility network of Grenoble metropolis. Finally, we developed an
online simulation platform called GTL-Healthmob, which aims at visualizing the population
movement, simulating epidemic propagation, and optimizing the mobility restrictions to limit
the epidemic spread in the Grenoble metropolis by taking different epidemic and mobility
control parameters inputs from users and showing the results in terms of plots and heatmaps
overlaid onto the map of the metropolis.

Thesis Organization

The first part deals with the problem of average state estimation in a network system in
presence of outliers and comprises of Chapter 1 and Chapter 2. In Chapter 1, we provide the
literature review and identify our contributions related to the average state estimation. In
chapter 2, we provide the problem formulation and a methodology for outlier detection and
trimmed-average estimation in a network system with an outlier.

The second part deals with the modeling and control of human mobility for epidemic mit-
igation and comprises of Chapter 3 to Chapter 7. In Chapter 3, we provide the literature
review and identify our contributions. Chapter 4 considers a urban human mobility model
integrated with epidemic spread process, and provides a model in discrete-time that preserves
the properties of mass-conservation, non-negativity and boundedness. In Chapter 5, we pro-
vide methodologies to compute the parameters for the model in Chapter 4 for a metropolitan
city with application to Grenoble metropolis. Chapter 6 provides optimal mobility restriction
policies for epidemic mitigation with application to Grenoble metropolis. Finally, Chapter 7
presents the GTL-Healthmob simulation platform developed on the basis of work done in
Chapters 4, 5 and 6.

Publications

Based on the work done in this thesis, we have made following contributions:

Journals

• U. Pratap, C. Canudas-de-Wit and F. Garin, Outlier detection and trimmed-average
estimation in network systems, European Journal of Control, vol. 60, pp. 36-47, Jul.
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2021. Preprint: https://hal.archives-ouvertes.fr/hal-03225214

• U. Pratap, C. Canudas-de-Wit, and F. Garin, Where, when and how people move
in large-scale urban networks: the Grenoble saga, (working paper). Preprint:
https://hal.archives-ouvertes.fr/hal-03554612

• U. Pratap, C. Canudas-de-Wit, and F. Garin, Optimizing mobility to various destina-
tions to save lives and economy during an epidemic outbreak: application to Grenoble
metropolis, (working paper).

Conference publications

• U. Pratap, C. Canudas-de-Wit and F. Garin, Average state estimation in presence of
outliers, 2020 59th IEEE Conference on Decision and Control(CDC) 2020, pp. 6058-
6063. Preprint: https://hal.archives-ouvertes.fr/hal-02925053

• U. Pratap, C. Canudas-de-Wit, and F. Garin, Scalable socio-economic optimal mobil-
ity policies for epidemic mitigation under health constraints: application to Grenoble
metropolis, (working paper).

• U. Pratap, Leo Senique, C. Canudas-de-Wit, GTL-Healthmob: Simulation platform for
urban mobility and epidemic control, 6èmes Journées des Démonstrateurs en Automa-
tique 2022, Jun 2022, Angers, France. Preprint: https://hal.archives-ouvertes.fr/hal-
03674156v1

Simulation platform

• GTL-Healthmob1 - It is an online simulation platform developed within the team2 based
on the work done in this thesis. It is a part of Grenoble Traffic Lab(GTL) which takes
Grenoble métropole as a case study. Here, an user can visualize the developed Grenoble
mobility network, simulate different mobility restriction scenarios to see its effect on
epidemic spread in Grenoble metropolis and also visualize optimal mobility restriction
scenarios.

1http://gtlville.inrialpes.fr/covid-19
2https://www.inria.fr/en/dance
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Chapter 1

Introduction

This part addresses the problem of outlier detection and trimmed-average state estimation in
an LTI network system. The problem of estimation in network control systems is very well
studied due to its vast area of application such as power networks, communication networks,
and traffic networks to name a few. The complexity in the problem of state estimation in a
network system increases when there is a limited information about the network and limited
access to only a few states for estimation and control purposes. This problem of complexity
in large-scale network can be tackled by aggregation of the state variables as done in the
context of Scale-Freeback1 project and a natural choice for such an aggregate function is the
average of the states. Estimation and control of such an aggregated states is reasonable as
it can have many applications such as in building thermal monitoring [Den+14],[NWK20],
urban traffic networks [RVWF20],[RHG15], power modules [IBF18] and epidemic spread over
large-networks [MFW20].

Therefore, in some networks, instead of reconstructing the entire states, some aggregation
of the unmeasured states are estimated using a few available measurements obtained from the
dedicated sensors placed at some positions. For instance, [NCK20] investigates the problem
of estimation of the average of the unmeasured nodes in a network system and [SII17] and
[Nia+20] propose design of some average state observers. This approach is very beneficial in
terms of reducing complexity. However, if there is an outlier, among the unmeasured states,
which could be a result of an error or anomaly, the average value so estimated may not lead
to the true average value. Instead, one might look for an average value that excludes the
outlier that is a trimmed-average. For example, in a power distribution network, one might be
interested in estimating the average household consumption of an area using dedicated sensors
deployed in some households. In case, there is a major consumer (an outlier) in the area, whose
consumption is not measured directly, one might not obtain the desired value through average
estimation since its high power consumption can affect the average significantly. Therefore, it
is natural to ask some questions: what if there is an outlier in the unmeasured section of the
network? How to apply an estimation technique such that it filters the outlier and detects it
simultaneously?

Outlier detection and analysis is a very well studied problem in statistics and data min-
ing. Some of the classical works are [Haw80]; [RL87]. The former gives a formal accepted
definition of the outlier and the latter proposes different regression-based detection methods.

1http://scale-freeback.eu/

7



8 Chapter 1. Introduction

Figure 1.1: Scenario considered in this part: An LTI system with dedicated sensors at some
positions and an outlier in the unmeasured part.

Since then, work in this field has flourished. A survey of the state-of-the-art can be found in
the book [Agg17]. In particular, some of the methods include depth-based methods [ARR96],
distance-based methods [KNT00] and k-nearest neighbour methods [HKF04]. However, these
techniques apply to available static data points only. Here, in this part, we consider a net-
work system with dynamics and moreover the aim is to detect the outlier present among the
unavailable measurements.

In network systems also, there has been focus on outlier detection in sensor networks
with outliers in the sensed data. The paper [ZMH10] is a survey on different techniques
used for outlier detection in wireless sensor networks. For example, [Bra+06] addresses un-
supervised detection in wireless sensor networks which accommodates different unsupervised
techniques, [YYH12] focuses on neighbor based detection methods and [Wan+18] proposes a
robust Kalman filter to detect and exclude the outlier from the sensor measurements which is
somehow similar to our goal. However, the main difference is that in this literature, outliers
are among sensor measurements, arising due to noise, error, sensor limitations, disturbances
etc., while in our case the outlier is in the system itself, and is an unmeasured state which is
so different from the other states that it affects the average value significantly.

The scenario in this part considers a continuous LTI system with dedicated sensors at
some positions, and there exists an outlier in the set of unmeasured nodes. We propose a
centralized method to detect the outlier and estimate the average, excluding it simultaneously.
Our approach is to run a bank of observers and compare the estimates so obtained in order
to detect the outlier, as illustrated in Figure 1.1. We first provide a necessary and sufficient
condition under which a bank of scalar and tunable observers can be designed to estimate the
average of the unmeasured nodes, excluding an element at every possible position. Then, we
define a distance-based dissimilarity criterion to differentiate between the average estimates
so obtained.

Using an optimization defined on the distance between the different estimates, we obtain
an estimate for the outlier position and the average excluding it(trimmed-average). At first, we
investigate the case where the system matrices are known and then the case where the system
matrices are only partially known since the outlier results from a fault, and the only available
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knowledge is the system model without the fault. For this, we consider a class of localized
faults that result in a single outlier, for which we can extend our method. The advantage of
this method is that we don’t use the fault model information to design the observer. Finally,
we illustrate the method on a thermal diffusion system.
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trimmed-average estimation
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When estimating the aggregated states in a network system, the presence of outliers can
affect the estimated state significantly. Therefore, this chapter addresses the problem of out-
lier detection and trimmed-average state estimation in an linear time invariant(LTI) network
system. We consider that only some states are measured and there exists an outlier among the
unmeasured states, which is so different from the remaining states that it affects the average
value significantly. The goal of this paper is both to detect the outlier and to estimate the
average state excluding the outlier (trimmed-average). Moreover, we also investigate the case
where the system matrices are partially unknown since the outlier results from an unknown
localized fault in the system.

2.1 Problem formulation

Consider a network represented by a weighted directed graph G = (V, E), where V =

{1, 2, 3 . . . n} denotes the set of the nodes and E ⊆ V × V denotes the set of edges. We

11
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follow the convention that the edge (i, j) ∈ E is represented as i ← j, since this edge will
correspond to the influence of state xj on the dynamics of state xi. Let A = [aij ] be the
associated weighted adjacency matrix, where aij is the weight of the edge (i, j) ∈ E .

The dynamics of the network is described by
{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) ,
(2.1)

where x(t) ∈ Rn,u(t) ∈ Rm and y(t) ∈ Rn1 are the state vector, the input vector and the
output vector respectively. We assume that the input is bounded and the system is BIBS
stable. Therefore, we have bounded input and bounded state trajectories.

We assume to have dedicated sensor measurements at n1 nodes, i.e., the output y contains
the values of n1 states. Without loss of generality, we order the states starting with the
measured ones, so that we have the state partition

x(t) = [xT1 (t),xT2 (t)]T , (2.2)

where the vector y = x1(t) ∈ Rn1 contains the measured states and x2(t) ∈ Rn2 contains the
unmeasured states. We assume that n2 > 1. Denoting by Is ∈ Rs×s the identity matrix of
size s, and by 0s,r ∈ Rs×r the zero matrix of size s × r, the block structure of the matrices
corresponding to the above-mentioned partition is

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
and C =

[
In1 0n1,n2

]
. (2.3)

With this partition, the system can be rewritten as




ẋ1(t) = A11x1(t) +A12x2(t) +B1u(t)

ẋ2(t) = A21x1(t) +A22x2(t) +B2u(t)

y(t) = x1(t).

(2.4)

Having given the system description, we define the outlier in consideration as follows.

Definition 2.1. Outliers: A state is called an outlier if its value differs from all the other
states by such a large value that the average value changes significantly.

2.1.1 Motivating example

This section presents an example to motivate the reader toward the problem. First, this
example shows how an outlier may affect the average value of the unmeasured states. Then,
we use the same example in the subsequent sections to illustrate the results and the method
for outlier detection proposed in the chapter.
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Figure 2.1: A network system with an outlier at node 7. The nodes in green circles are the
measured nodes, and the nodes in red squares are the unmeasured nodes with the outlier in a
darker red shade.

Example 2.1. Consider the network depicted in Figure 2.1. The dynamics of the network is
described as in (2.1). The input is given by u(t) = 0.2 ∗ sin(0.1t), x(0) = 110, where 1s ∈ Rs
denotes the vector of all ones. The corresponding system matrices A,B,C according to the
partition in (2.3) are

A11 =




−3.25 0.98 0.84 0 0 0

0.61 −5.33 0 0 0 0

0 0 −3.53 0.48 0 0

0 0 0.25 −3.05 0 0

0 0 0 0.13 −1.69 0

0 0.54 0 0 0.85 −2.18



,

A12 =




0.35 0.35 0.35 0

0 0 0.76 0.76

0 0.22 0 0

0.23 0 0 0.23

0.16 0.16 0 0

0 0.35 0 0



, A21 =




0 0 0 0 0 0.02

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


 ,

A22 =




−0.03 0 0 0

0.02 −1.4 0 0

0 0.64 −1.16 0

0 0 0.4 −2.0


 , B =

[
1 1 1 1 1 1 1 1 1 1

]T and

C =
[
I6 06,4

]
.

Here, in this example, we have a network of n = 10 nodes depicted in Figure 2.1. The
sensor measurements are obtained from the nodes {1, . . . , 6} denoted by the circle nodes and
the nodes {7, . . . , 10} are the unmeasured nodes denoted by the square nodes. Here, n1 = 6 and
n2 = 4. We have an outlier at node 7 pointed as the shaded node. It can be seen in Figure 2.3,
where the averages of the unmeasured states with and without the outlier have been depicted,
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Figure 2.2: State trajectories of the network in Figure 1 in response to u(t) = 0.2 ∗ sin(0.1t).

Here, it can be seen that the outlier state (in red) is behaving very differently than the other
states.

that there is a significant difference in the average value because of the outlier. Hence, we must
find ways to estimate the average in such a way that it excludes the outlier.

2.1.2 Problem Statement

Consider a network with the dynamics as (2.1) assuming that there exists an outlier in the
unmeasured part of the system. Using only the dedicated sensor measurements y(t) = x1(t),
how is it possible to reconstruct the average of the unmeasured nodes x2(t) without the
outlier? In addition, is it possible to design a scalar observer to estimate such an average with
an arbitrary rate of convergence? Moreover, if the position of the outlier is unknown, how is
it possible to detect it and compute the average excluding it simultaneously? Finally, can the
same result be achieved in the case where the system matrices are only partially known, since
the outlier results from a fault, and the only available knowledge is the system without the
fault?

2.2 Outlier at a known position

In this subsection, we consider the case when the position of the existing outlier is known. Let
us define jo as the true position of the outlier in the set of unmeasured nodes. The position
jo means that the outlier is the node n1 + jo.

At first, we recall the necessary and sufficient condition to design a scalar and tunable
observer to estimate the average of all but one element j in the set of unmeasured nodes.
Then, we provide an explicit construction of the observer. In the end, we illustrate the
estimation using Example 2.1.
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Figure 2.3: Trajectories of the average of the unmeasured states with and without the outlier,
demonstrating the effect of an outlier on the average.

Let cj ∈ Rn2 be a vector of all ones but zero at the jth position. Let us define qj = 1
n2−1 cj ,

so that the average state of the unmeasured nodes excluding the element at the jth position
be denoted as

xav
2,j(t) = qTj x2(t), (2.5)

where x2(t) is defined in (2.2).

Definition 2.2. Trimmed-average The average of the unmeasured states excluding the out-
lier denoted as xav

2,jo
(t).

To reconstruct the average xav
2,j(t), we consider a scalar observer, namely a system of the

form {
ẇj(t) = −αwj(t) + hTj y(t) + gTj u(t)

x̂av
2,j(t) = wj(t) + `Tj y(t),

(2.6)

where wj(t) ∈ R is the state of the observer, while α ∈ R, `j , hj ∈ Rn1 and gj ∈ Rm will be
suitably designed.

Let ξj(t) = xav
2,j(t)− x̂av

2,j(t) be the estimation error. We say that (2.6) is an observer if the
parameters α, hj , gj and `j can be chosen such that ξj(t) → 0 as t → ∞. Moreover, we are
interested in designing an observer such that the error ξj(t) → 0 as t → ∞ with a desired
rate of convergence. The condition under which this is possible has been studied in [Nia+20].

Theorem 2.1. [Nia+20, Theorem IV.1] A scalar and tunable observer of the form (2.6) to
estimate xav

2,j(t) for a given j exists if and only if

rank



A12

qTj A22

qTj


 = rank[A12]. (2.7)

Proof. For proof see [Nia+20].
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Now, assuming that the condition (2.7) holds, we give the explicit design of the observer:

Choose an arbitrary α > 0 ∈ R and compute the parameters `Tj , g
T
j and hTj as

`Tj = qTj (A22 + αIn2)A†12, (2.8a)

hTj = − `Tj (αIn1 +A11) + qTj A21, (2.8b)

gTj = qTj B2 − `Tj B1, (2.8c)

where A†12 is the Moore-Penrose pseudo-inverse of A12.

In what follows, we show that with the above choice of parameters, the observer (2.6) has
the error dynamics ξ̇j(t) = −αξj(t). For that, let us consider the error dynamics ξ̇j(t). From
(2.4), (2.5) and (2.6) we have

ξ̇j(t) = −αξj(t)+(−α`Tj + qTj A21 − `Tj A11 − hTj )x1(t)

+(qTj A22 − `Tj A12 + αqTj )x2(t)

+(qTj B2 − gTj − `Tj B1)u(t).

(2.9)

Assuming that condition (2.7) holds, and with `j , hj and gj as in (2.8), here, we will show
that the following conditions are satisfied:

qTj A21 − α`Tj − `Tj A11 − hTj = 0, (2.10a)

αqTj + qTj A22 − `Tj A12 = 0, and (2.10b)

qTj B2 − gTj − `Tj B1 = 0 (2.10c)

and hence the estimation error ξj has stable dynamics

ξ̇j(t) = −αξj(t). (2.11)

It can be seen that if the condition (2.7) holds, then the row vectors cj and cTj A22 lie in the
row space of A12. Then, the vector αqTj + qTj A22 also lies in the row space of A12 for any
α ∈ R. Therefore, it holds that

(αqTj + qTj A22)(I −A†12A12) = 0.

Hence,
αqTj + qTj A22 = (αqTj + qTj A22)A†12A12. (2.12)

It can be seen that with the choice of `Tj in (2.8a), (2.12) is equivalent to (2.10b). Further, it
can also be seen that with the choice of gj and hj in (2.8b) and (2.8c), the conditions (2.10a)
and (2.10c) are satisfied.

We have shown that, under condition (2.7), the observer (2.6) with gains as in (2.8) has
error dynamics (2.11), which is stable for arbitrary α > 0. However, the rate of convergence
α should be tuned taking into account the discretization scheme. For example, with forward
Euler method with fixed time-step δt, α must satisfy α < 2/δt in order to ensure stability of
the discretized error dynamics ξj(t+ δt) = (1− α δt)ξj(t). Moreover, the rate of convergence
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Figure 2.4: For the network system in Example 2.1, where the outlier is node 7 (i.e., jo = 1):
estimated (x̂av

2,1(t)) and original (xav
2,1(t)) average of all unmeasured states except the outlier’s.

should be adapted to the system properties, with a rule of thumb that suggests α around twice
as fast as the system. In the examples of this chapter, we will take a smaller α for illustrative
purposes, to make the transient behaviours more visible.

For initialization of the observer, in the absence of information on the initial state, it is
natural to set x̂av

2,j(0) = 0, which can be obtained by choosing w(0) = −`Ty(0). The choice
w(0) = 0, instead, corresponds to x̂av

2,j(0) = `Ty(0), which grows with α (see the definition of
` in (2.8a)) and might be used only with small values of α.

Now, we illustrate the estimation using Example 2.1.

Example 2.1 (continued). Here, we have the knowledge that the outlier is at node 7, which
is the first node in the set of unmeasured nodes, i.e., jo = 1. We want to estimate xav

2,jo
(t),

i.e., xav
2,1(t). Note that the condition (2.7) with j = 1 is satisfied, as rank



A12

qT1 A22

qT1


 = 4 =

rank[A12], where qT1 =
[
0, 1

3 ,
1
3 ,

1
3

]
. Therefore, we can design an observer of the form (2.6) to

estimate xav
2,1(t) with an arbitrary rate. Let us fix α = 3 and use observer (2.6) with `1, g1

and h1 computed with (2.8). We initialize the observer with w1(0) = −`T1 y(0) so as to obtain
x̂av

2,1(0) = 0.

It can be seen in Figure 2.4 that our observer is able to estimate the average xav
2,1(t), i.e.,

the average of unmeasured states excluding the outlier at node n1 + 1 = 7.

In the next subsection, we investigate the possibility of estimating the average using an
observer of the type (2.6) in presence of an outlier at an arbitrary position, and we also give
a method to detect the outlier.
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Figure 2.5: Structure of the estimation and detection algorithm presented in Section 2.3 for
the detection of the outlier and trimmed-average estimation. Here, Obs stands for the observer
and D is the dissimilarity matrix. ̂o and x̂av

2,̂o
are the detected position of the outlier and the

average estimate excluding the outlier respectively(trimmed-average).

2.3 Outlier at an unknown position

In this section, we consider the case when the position of the outlier i.e., jo is unknown. We
propose a centralised method to estimate the average of the unmeasured nodes excluding the
outlier and detecting it simultaneously. Our approach is to estimate the averages xav

2,j(t) for
all possible j ∈ {1, . . . , n2} using a bank of scalar observers and then compare the estimates in
order to detect the outlier. For the comparison, we propose a dissimilarity criterion inspired by
the distance-based dissimilarity used in signal processing. Figure 2.5 illustrates the process we
use for the detection of the outlier which also gives us the required average. Therefore, at first,
we provide a necessary and sufficient condition for the design of observers of the form (2.6) for
every possible j ∈ {1, . . . , n2}. Then we define a dissimilarity criterion to distinguish between
the estimates. After that, we define a very general optimization problem to detect the outlier.
In the end, we illustrate the method with the help of Example 2.1.

2.3.1 Existence condition for the bank of observers

In order to design observers of the form (2.6) to reconstruct xav
2,j(t) for all j ∈ {1, . . . , n2},

the condition (2.7) must be satisfied for all j ∈ {1, . . . , n2}. The resulting condition has been
stated in the following theorem.

Theorem 2.2. A tunable and scalar observer for xav
2,j(t) exists for all j ∈ {1, . . . , n2} if and

only if
rank(A12) = n2. (2.13)

Proof. From Theorem 2.1, to estimate xav
2,j(t) for all j, a tunable, scalar observer exists if and

only if (2.7) holds for all j.



2.3. Outlier at an unknown position 19

This is equivalent to

rank




A12

qT1 A22
...

qTn2
A22

qT1
...
qTn2




= rank[A12]. (2.14)

Now define P = (In2 − 1n21
T
n2

), and Q = − 1

n2 − 1
P =



qT1
...
qTn2


, so that the left-hand side of

(2.14) is equal to



A12

QA22

Q


. We can see that rank(Q) = n2 by showing that rank(P ) = n2 and

we show rank(P ) = n2 by showing that detP 6= 0.

For this, notice that
[
In2 0n2,1

1Tn2
1

] [
P −1n2

01,n2 1

] [
In2 0n2,1

−1Tn2
1

]

=

[
In2 −1n2

01,n2 1− 1Tn2
1n2

]
.

Taking determinant of matrices on both the sides, we have det(P ) = 1− n2 6= 0.
Therefore, rank(P ) = n2 and hence, rank(Q) = n2.

Finally, since rank(Q) = n2, we have rank



A12

QA22

Q


 = n2. Therefore, (2.14) holds if and only

if rank(A12) = n2.

Now we present some remarks on how restrictive the conditions in Theorem 2.2 are.

Remark 2.1. It can be seen from (2.3), that A12 ∈ Rn1×n2 and the condition (2.13) is
rank(A12) = n2. It implies n1 ≥ n2, that is the number of measured nodes must be greater
than or equal to the number of unmeasured nodes.

Remark 2.2. From the condition (2.13), A12 is full column rank so it cannot have an all zero
column. Therefore, Theorem 2.2 requires that for every unmeasured node, there exists an edge
pointing to some measured node, i.e., for every unmeasured node j there is an edge (i, j) with
i a measured node (recall that the edge (i, j) is depicted as an arrow j → i, representing an
influence of state xj on the dynamics of state xi).

Now, we proceed towards the problem of detection of the outlier in the next section. For
this, we propose to run a bank of observers and then compare the estimates we obtain.
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Figure 2.6: Estimated trajectories of the averages of unmeasured nodes in Example 2.1 ex-
cluding one node at a time i.e. x̂av

2,j(t) ∀j ∈ {1, . . . , n2}, the output of the bank of observers.
The dash-starred line is x̂av

2,̂o
(t), the estimated average without the detected outlier at time t.

It can be seen that x̂av
2,̂o

(t) converges to x̂av
2,1(t) very quickly as the outlier is at jo = 1.

2.3.2 Outlier detection

In this subsection, we define a dissimilarity matrix and an optimization problem in order to
detect the outlier.

2.3.2.1 Dissimilarity criterion

Here, we define a dissimilarity criterion in order to distinguish between the estimates obtained
in the previous section with a goal in mind to pick the one which is without the outlier.
Dissimilarity criteria of this kind are used in signal processing. For instance, [XSB14] defines
dissimilarity as pairwise Euclidean distance between two signals.

Consider the estimates x̂av
2,j(t) ∀j ∈ {1, . . . , n2} obtained in the previous section, we define

their dissimilarity at time t as

Djk(t) =

∫ t

0
e−β(t−τ) | x̂av

2,j(τ)− x̂av
2,k(τ) | dτ for β > 0, (2.15)

where x̂av
2,j(τ) is the average estimate of the unmeasured nodes except the node j at time τ .

This definition seems to require all the average estimates from τ = 0 to the current time
τ = t, but this integral can be computed recursively as

Djk(t) = e−βδtDjk(t− δt) +

∫ t

t−δt
e−β(t−τ) | x̂av

2,j(τ)− x̂av
2,k(τ)|dτ,

which might be simplified with a suitable approximation, e.g.,

Djk(t) ' e−βδtDjk(t− δt) + δt | x̂av
2,j(t)− x̂av

2,k(t) | .
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Figure 2.7: Detected position of the outlier in the set of the unmeasured nodes at time t i.e.
̂o(t) in Example 2.1. jo = 1 is the actual position of the outlier. At first, the method identifies
unmeasured node 3 as the outlier but it converges very quickly to jo.

The matrix D = [Djk] so obtained is called the Dissimilarity matrix. Note that D is a
non-negative, symmetric matrix with zero diagonal elements. Here, the idea is to measure
how far are the estimates from each other.

Rather than instantaneous comparisons, we consider an integral, so as to consider only
differences that hold over non-trivial windows of time. The forgetting factor β tunes the
weight given to past values, and should be chosen avoiding the two extremes: β near to zero
gives too much weight to the initial transient, where the estimates might have large errors,
while too large β gives vanishing weight to all past values.

The system is assumed to have an outlier at jo, i.e., there is a significant difference between
the average xav

2,jo
(t) excluding jo and the average xav

2,k(t) excluding any other node k. Moreover,
the outlier is unique. Hence, for any j and k different from jo, |xav

2,jo
(t)− xav

2,k(t)| is large and
|xav

2,j(t) − xav
2,k(t)| is small (at least as an integral over time, as in the dissimilarity matrix).

Since each estimate x̂av
2,j(t) converges to the corresponding correct average xav

2,j(t), we also have
that |x̂av

2,jo
(t) − x̂av

2,k(t)| is large and |x̂av
2,j(t) − x̂av

2,k(t)| is small, except possibly for an initial
transient. For this reason, we can say that ̂o(t) is the detected position of the outlier at time t
if ̂o(t)th row sum of the dissimilarity matrix at time t is the largest:

̂o(t) = argmax
j

n∑

k=1
k 6=j

Djk(t). (2.16)

The above processes as depicted in Figure 2.5 can be put altogether as follows:

1. Using a bank of n2 observers of the form (2.6), compute x̂av
2,j(t) for all j from 1 to n2.

2. Compute the dissimilarity matrix D defined in (2.15).
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3. From the dissimilarity matrix, detect the outlier ̂o(t) at time t given by (2.16). Then
choose the corresponding average estimate x̂av

2,̂o
(t) obtained from the bank of observers,

which excludes xn1+̂o(t).

Now, we illustrate the method with Example 2.1. We will see that indeed ̂o(t) converges to
jo, the actual position of the outlier.

Example 2.1 (continued). The position of the outlier in Example 2.1 is jo = 1 but here we
assume that this information is unknown. We want to detect the outlier position and obtain
the average estimate excluding the outlier. Note that the condition (2.13) is satisfied with
rank(A12) = 4 = n2. Therefore, we can design a bank of n2 observers of the form (2.6) each
of which estimates the average of all but one unmeasured node at a time. Here, each observer
is designed with α = 3, and the parameters `Tj , g

T
j , h

T
j computed with (2.8) and initialization

wj(0) = −`Tj y(0). The estimates obtained by this bank of observers are depicted in Figure 2.6.
We compute the dissimilarity matrix with β = 10 in (2.15) and then follow the process described
above to detect the outlier using (2.16). Figure 2.7 shows that indeed the proposed method
detects the outlier position jo = 1, i.e., node n1 + jo = 7 in the network depicted in Figure 2.1.
In Figure 2.7, it can be seen that at first, the method identifies unmeasured node 3 (node 9
in the network) as the outlier but it converges very quickly to the actual position, i.e., jo = 1

(node n1 + jo = 7 in the network). One possible reason for this delay in detection could be the
delay in convergence of the observed value to the original value.

Note that we already have the average estimates x̂av
2,j(t) for all j ∈ {1, . . . , n2}, obtained

from the bank of observers. From them, we obtain x̂av
2,̂o

(t), which is initially equal to x̂av
2,3(t)

and then equal to x̂av
2,1(t), as illustrated by the dash-starred black line in Figure 2.6. This is

consistent with the quantity we aim at reconstructing: the average estimate of the unmeasured
nodes excluding the outlier, i.e., x̂av

2,1(t).

2.4 System model is partially unknown

In this section, we consider the case when there exists an outlier in the system but the system
matrices in (2.1) are partially unknown. Assuming that this outlier is caused by a fault, we
call the initial system which is without the fault, the nominal system. We aim to detect the
outlier and to compute the average without the outlier using the detection method proposed
in Section 2.3 even when the system with the fault is unknown, and only the nominal system
is known. Recall that, in the proposed detection method, we deploy a bank of observers of
the form (2.6), designed with the faulty system matrices. However, in this section, since the
faulty system is unknown, we propose to design the observers with the nominal system.

Let us define the nominal system as

{
ẋ(t) = Ãx(t) + B̃u(t)

y(t) = Cx(t),
(2.17)
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which describes the same physical system as system (2.1) but without the fault causing the
outlier. The system (2.1) and the system (2.17) are related in such a way that

A = Ã+ ∆ and B = B̃ + Ψ, (2.18)

where ∆ ∈ Rn×n and Ψ ∈ Rn×m are the matrices which describe the fault responsible for the
outlier.

The block structure of the matrices corresponding to the state partition x(t) =

[xT1 (t), xT2 (t)]T as in Section 2.1 is

Ã =

[
Ã11 Ã12

Ã21 Ã22

]
, ∆ =

[
∆11 ∆12

∆21 ∆22

]
,

B̃ =

[
B̃1

B̃2

]
, Ψ =

[
Ψ1

Ψ2

]
, C =

[
In1 0n1,n2

]
.

(2.19)

Let us consider the following fault model:

Fault model:

{
∆ = en1+jor

T + ρÃen1+joe
T
n1+jo

,

Ψ = en1+joψ
T .

(2.20)

where ei ∈ Rn is the standard ith basis vector, ρ ∈ R is a scalar, rT ∈ Rn and ψT ∈ Rm
are row vectors, that can be arbitrary, n1 is the number of measured nodes and jo is the true
position of the outlier. This means that ∆ is a matrix which is non-zero only in its (n1 + jo)th
row and column. Moreover, its (n1+jo)th column is proportional to the corresponding column
of Ã, while no such restriction is assumed on its (n1 + jo)th row, which can be arbitrary. The
matrix Ψ is a matrix with non-zero entries only in its (n1 + jo)th row which is equal to the
row vector ψT .

In terms of the network system, this corresponds to altering only the neighborhood of
node n1 + jo. More precisely, the row vector rT represents the change in the influence of the
in-neighbors of the node (n1 + jo) on it. It allows for arbitrary changes in the incoming edges
and in their weights. The term ρÃen1+joe

T
n1+jo

in (2.20) represents the change in the influence
of node (n1 + jo) on its out-neighbors. Due to this term, all entries of the (n1 + jo)th column
of A, other than the one on the diagonal, are equal to the corresponding entry of Ã, multiplied
by (1 +ρ). This means that the outgoing edges from n1 + jo are unchanged, and their weights
are all multiplied by a same scalar factor (1 + ρ), which describes a change in the strength of
the influence of node n1 + jo on its out-neighbors. The row vector ψT changes the effect of
the input, again in a localized way, only on the node n1 + j0.

Now, we illustrate the nominal system and the fault model with an example.

Example 2.2. Consider the network depicted in Figure 2.1. The input is given by u(t) =

0.2 ∗ sin(0.1t) and x(0) = 110. Here, we give a nominal system with no outlier, and a fault as
in (2.20), such that the resulting faulty system is the system with an outlier that was presented
in Example 2.1. The nominal system matrix Ã has the following blocks (according to the
partition in (2.19)):
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Figure 2.8: State trajectories of the nominal system described in Example 2.

Ã11 =




−3.25 0.98 0.84 0 0 0

0.61 −5.33 0 0 0 0

0 0 −3.53 0.48 0 0

0 0 0.25 −3.05 0 0

0 0 0 0.13 −1.69 0

0 0.54 0 0 0.85 −2.18



,

Ã12 =




17.15 0.35 0.35 0

0 0 0.76 0.76

0 0.22 0 0

11.27 0 0 0.23

7.84 0.16 0 0

0 0.35 0 0



,

Ã21 =




0 0.89 0 0 0 0.16

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

Ã22 =




−11.76 0 0 0

0.98 −1.4 0 0

0 0.64 −1.16 0

0 0 0.4 −2.0


.

Matrices B and C are the same as in Example 2.1, i.e.,
B =

[
1 1 1 1 1 1 1 1 1 1

]T and C =
[
I6 06,4

]
.

It can be seen in Figure 2.8 that there is no outlier in the nominal system. Then we
consider a faulty system matrix A = Ã + ∆ and B = B̃ + Ψ, where ∆ and Ψ are given by
(2.20), with jo = 1, rT = [0,−0.89, 0, 0, 0,−0.14,−11.55, 0, 0, 0], ρ = −48

49 and Ψ = 0n,1. This
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faulty system is the system considered in Example 2.1, where the state n1 +jo = 7 is an outlier
as shown in Figure 2.2.

Now, we proceed towards the problem of detecting the outlier while designing the ob-
servers with the known nominal system instead of the faulty system. Recall that, to estimate
xav

2,j(t), the average of the unmeasured nodes excluding the element at the jth position, we
use observers of the form (2.6) with observer gains obtained by fixing α > 0 and computing:

`Tj = qTj (Ã22 + αIn2)Ã†12, (2.21a)

hTj = − `Tj (αIn1 + Ã11) + qTj Ã21, (2.21b)

gTj = qTj B̃2 − `Tj B̃1, (2.21c)

where Ã†12 is the Moore-Penrose pseudo-inverse of Ã12,

Now, we present a lemma to describe an interesting property of the error dynamics when
the observer gains are computed as in (2.21).

Lemma 2.1. With the fault model given by (2.20) and rank(Ã12) = n2, given that the bank
of observers are of the form (2.6) and the observers gains computed as in (2.21), then the
estimation error ξj(t) = x̂av

2,j(t)− xav
2,j(t) is such that its dynamics is as follows:

ξ̇j(t) = −αξj(t)

+

{
0 j = jo

1
n2−1

(
rT1 x1(t) + (rT2 − ραeTjo)x2(t) + ψTu(t)

)
j 6= jo.

(2.22)

Proof. Let us consider the estimation error ξj(t).

ξ̇j(t) = −αξj(t)
+(qTj (Ã21 + ∆21)− α`Tj − `Tj (Ã11 + ∆11)− hTj )x1(t)

+(qTj (Ã22 + ∆22)− `Tj (Ã12 + ∆12) + αqTj )x2(t)

+(qTj (B̃2 + Ψ2)− gTj − `Tj (B̃1 + Ψ1))u(t).

Rearranging the equation by separating the terms with ∆11,∆12,∆21, ∆22, Ψ1 and Ψ2,
we have

ξ̇j(t) = −αξj(t)+(qTj Ã21 − α`Tj − `Tj Ã11 − hTj )x1(t)

+(qTj Ã22 − `Tj Ã12 + αqTj )x2(t)

+(qTj B̃2 − gTj − `Tj B̃1)u(t)

+(qTj ∆21 − `Tj ∆11)x1(t)

+(qTj ∆22 − `Tj ∆12)x2(t)

+(qTj Ψ2 − gTj − `Tj Ψ1)u(t).

(2.23)
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As shown in Section 2.2, the rank condition rank(Ã12) = n2 ensures that computing `j , gj and
hj as in (2.21), we have

−α`Tj + qTj Ã21 − `Tj Ã11 − hTj =0, (2.24a)

+αqTj + qTj Ã22 − `Tj Ã12 =0, and (2.24b)

qTj B̃2 − gTj − `Tj B̃1 =0. (2.24c)

Therefore, from (2.23) and (2.24), we have

ξ̇j(t) = −αξj(t)+(qTj ∆21 − `Tj ∆11)x1(t)

+(qTj ∆22 − `Tj ∆12)x2(t)

+(qTj Ψ2 − gTj − `Tj Ψ1)u(t).

(2.25)

From (2.20), using the notation rT = [rT1 , r
T
2 ], we have

∆11 =0n1,n1 , Ψ1 =0n1,1,

∆12 =ρÃ12ejoe
T
jo ,

∆21 =ejor
T
1 , Ψ2 =ejoψ

T ,

∆22 =ejor
T
2 + ρÃ22ejoe

T
jo .

Substituting these values in (2.25), we have

ξ̇j(t) = −αξj(t)+(qTj ejor
T
1 )x1(t) + (qTj ejor

T
2 )x2(t)

+ρ
(
qTj Ã22 − `Tj Ã12

)
ejoe

T
jox2(t)

+(qTj ejoψ
T )u(t).

(2.26)

Now, let us consider the second last term of (2.26). From (2.24b), it can be written as

ρ(qTj Ã22 − `Tj Ã12)ejoe
T
jo = −ραqTj ejoeTjo .

Notice that, if j = jo, we have qTj ejo = 0, while for all j 6= jo we have qTj ejo = 1
n2−1 .

Therefore, we conclude that the coefficient of x1(t) in (2.26) is

qTj ejor
T
1 =

{
01,n1 if j = jo

1
n2−1r

T
1 if j 6= jo,

(2.27)

the coefficient of x2(t) in (2.26) is

qTj ejor
T
2 − ραqTj ejoeTjo =

{
01,n2 if j = jo

1
n2−1(rT2 − ραeTjo) if j 6= jo.

(2.28)
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Figure 2.9: Estimated average trajectories x̂av
2,j(t) ∀j ∈ {1, . . . , n2}, in Example 2.2. The

observer gains were computed using nominal matrices instead of the faulty matrices. The
dashed-star line represents x̂av

2,̂o
(t).

and the coefficient of u(t) in (2.26) is

qTj ejoψ
T =

{
01,m if j = jo

1
n2−1ψ

T if j 6= jo,
(2.29)

which ends the proof of the lemma.

Now, we comment on the average estimates in the following theorem.

Theorem 2.3. With the fault model given by (2.20) and rank(Ã12) = n2, given that the bank
of observers are of the form (2.6) and the observer gains are computed as (2.21), then

i.) for j = jo, x̂
av
2,jo

(t)→ xav
2,jo

(t) as t→∞.

ii.) for all j, k 6= jo, (x̂av
2,j(t)− x̂av

2,k(t))→ (xav
2,j(t)− xav

2,k(t)) as t→∞.

Proof. i.) It follows immediately from Lemma 2.1, since ξjo(t) = xav
2,jo

(t) − x̂av
2,jo

(t) has a
stable dynamics ξ̇jo(t) = −αξjo(t).

ii.) We study the difference (xav
2,j(t)−xav

2,k(t))−(x̂av
2,j(t)−x̂av

2,k(t)) = ξj(t)−ξk(t). From (2.22),
for j, k 6= jo, such difference has stable dynamics

ξ̇j(t)− ξ̇k(t) = −α(ξj(t)− ξk(t)).

In Section 2.3, the observers were designed using the knowledge of the matrices A and B,
and hence it was possible to ensure convergence of the estimates x̂av

2,j(t) to the true averages
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Figure 2.10: Detected position of the outlier in the set of the unmeasured nodes at time t
i.e. ̂o(t) in Example 2.2. jo = 1 is the actual position of the outlier. At first, the method
identifies node 3 as the outlier but it converges quickly to jo.

xav
2,j(t). Here, the observers are designed with the nominal matrices Ã and B̃, while the true

averages are from the faulty system with matrices A and B, so in general convergence of the
estimates cannot be ensured. However, Theorem 2.3 gives two important convergence results.

First, for the estimate of the average without the outlier (x̂av
2,jo

(t)), convergence to the true
average xav

2,jo
(t) is still ensured, despite the use of matrix Ã instead of the unknown matrix

A. Hence, in case the outlier position jo is known or can be correctly detected, then the
trimmed-average xav

2,jo
(t) can be correctly estimated.

Second, for j and k different from jo, although the estimates x̂av
2,j(t) and x̂av

2,k(t) can be
wrong with respect to the true averages xav

2,j(t) and xav
2,k(t), Theorem 2.3 ensures that their

difference (x̂av
2,j(t)− x̂av

2,k(t)) converges to the true difference (xav
2,j(t)− xav

2,k(t)).

Moreover, since u(t) and x(t) are assumed to remain bounded, we can see from (2.22) that
the estimates x̂av

2,j(t) and x̂av
2,k(t) remain bounded, which avoids overflow issues in numerical

computation.

To see the importance of these two convergence results for our detection method, recall that
we use a bank of scalar observers and the dissimilarity matrix defined in (2.15), which involves
pairwise differences of estimates |x̂av

2,j(t)− x̂av
2,k(t)|. In this chapter, we restrict our attention to

systems where a localized fault at an unmeasured node results in the appearence of a single
outlier state trajectory, corresponding to such node. As discussed in Sect. 2.3.2.1, this implies
that, for any j and k different from jo, |xav

2,jo
(t)−xav

2,k(t)| is large and |xav
2,j(t)−xav

2,k(t)| is small
(at least as an integral over time). Then, our detection method is capable of reconstructing
the correct outlier position jo if these two properties of the true averages are preserved for the
estimated averages.

For j and k different from jo, the second part of Theorem 2.3 ensures that the difference
(x̂av

2,j(t) − x̂av
2,k(t)) converges to the true difference (xav

2,j(t) − xav
2,k(t)). Hence, the property

that the true difference |xav
2,j(t) − xav

2,k(t)| is small implies that also the estimated difference
|x̂av

2,j(t)− x̂av
2,k(t)| is small.
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The case of the differences |x̂av
2,jo

(t) − x̂av
2,k(t)| involving the outlier is more delicate. The

first part of Theorem 2.3 ensures that x̂av
2,jo

(t) converges to the true xav
2,jo

(t), but gives no
information about x̂av

2,k(t). In most cases, as illustrated in our examples, x̂av
2,k(t) is a wrong

estimate of xav
2,k(t), but the difference |x̂av

2,jo
(t)− x̂av

2,j(t)| remains large, thus leading to a correct
detection of the outlier position. When this happens, also the correct reconstruction of xav

2,jo
(t)

is ensured, since x̂av
2,jo

(t) converges to xav
2,jo

(t). In some particular cases, the wrong estimate
x̂av

2,k(t) might happen to be very near to x̂av
2,jo

(t). As discussed above, we also know that all
estimates x̂av

2,j(t) with j 6= jo are near to each other, and hence in this case they are all near
to x̂av

2,jo
(t). This might lead to a wrong detection of the outlier position jo but nevertheless

ensures that the trimmed average xav
2,jo

(t) is reconstructed with only a very small error. Now
we illustrate this with the help of Example 2.2.

Example 2.2 (continued). Consider the nominal and the faulty systems described in Exam-
ple 2.2. The position of the outlier is jo = 1 but this information is assumed to be unknown
and moreover, the system is also partially known: only the nominal matrix Ã is known, not the
fault. Our goal is to detect the outlier position and obtain the average estimate excluding the
outlier. Note that the condition (2.13) is satisfied as rank(Ã12) = 4 = n2. Therefore, a bank of
n2 observers of the form (2.6) can be designed. Here, for all j ∈ {1, . . . , n2}, we take α = 3,
wj(0) = −`Tj y(0) and the parameters `Tj , g

T
j , h

T
j are computed as in (2.21). The estimates

obtained by this bank of observers are depicted in Figure 2.9. We compute the dissimilarity
matrix with β = 10 in (2.15) and then follow the proposed method to detect the outlier using
(2.16). Figure 2.10 shows that indeed the proposed method detects the outlier position jo = 1.
In Figure 2.10, it can be seen that at first the method identifies unmeasured node 3 as the
outlier but it converges quickly to the true position, i.e., jo = 1 (node n1 + jo = 7 in the
network).

Remark 2.3. As a possible variation of our method, the bank of scalar observers for re-
construction of xav

2,j(t) for all j might be replaced by a full-order state observer x̂(t) =

Ax̂(t)+Bu(t)+L(y(t)−Cx̂(t)), followed by computation of averages x̂av,full
2,j (t) := [01,n1 , q

T
j ]x̂(t)

for all j. Then, estimates x̂av,full
2,j (t) can be used instead of x̂av

2,j(t) to compute the dissimilar-
ity matrix (2.15) and to find the outlier position (2.16) and the trimmed average without the
outlier.

Notice that the rank condition (2.13) that ensures the existence of the bank of tunable scalar
observers implies observability of the system (2.1). Hence, in the case where matrices A and
B are known (as in Section 2.2), the full-order observer can be designed to have stable error
dynamics with any desired rate of convergence.

However, when the observer is designed using nominal matrices, different from the faulty
ones of the system (as in the current section), the estimates obtained from the full-order
observer do not share the useful convergence properties of the bank of scalar observers.
Theorem 2.3 ensures that ξjo(t) = xav

2,j0
(t) − x̂av

2,j0
(t) tends to zero, and the differences

ξj(t)− ξk(t) = (xav
2,j(t)− xav

2,k(t))− (x̂av
2,j(t)− x̂av

2,k(t)) also tend to zero.

The full-order observer designed with nominal matrices is x̂ = Ãx̂(t) + B̃u(t) + L(y(t) −
Cx̂(t)), and has error dynamics ė(t) = (Ã − LC)e(t) + ∆x(t) + Ψu(t). Because of the
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Figure 2.11: A metal plate with a heater attached on one side and surrounded by air on the
other sides.

terms ∆x(t) + Ψu(t), the error e(t) does not tend to zero, and also when considering
[01,n1 , q

T
j0

]e(t) = xav
2,j0

(t) − x̂av,full
2,j0

(t) and [01,n1 , q
T
j ]e(t) − [01,n1 , q

T
k ]e(t) = (xav

2,j(t) − xav
2,k(t)) −

(x̂av,full
2,j (t) − x̂av,full

2,k (t)) there is no guarantee that they tend to zero. Therefore, the outlier
position and the trimmed average without the outlier might not be obtained correctly.

2.5 Outlier detection in a faulty metal plate

In this section, we illustrate the outlier detection method using the nominal system on a
faulty thermal diffusion system. This system is inspired by [SII17, Section IV]. Here, we deal
with a network given by spatial discretization of a thermal diffusion system consisting of a
rectangular metal plate attached to a heater on one side and surrounded by air on the other
sides as shown in Figure 2.11. Here, we detect the faulty region with only the knowledge
of the diffusion properties of the metal plate and the diffusion equations governing the heat
diffusion.

2.5.1 Thermal diffusion system

Consider a rectangular metal plate as shown in Figure 2.11. Let (X,Y ) ∈ D := [0, Xf ]× [0, Yf ]

correspond to a point on the metal plate. Let T (X,Y, t) be the temperature of the metal plate
at the position (X,Y ) at time t. The heat transfer in the metal plate is described by the
two-dimensional heat conduction equation

∂T

∂t
= λ

∂2T

∂X2
+ γ

∂2T

∂Y 2
, (X,Y ) ∈ int(D). (2.30)
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Figure 2.12: Graphical representation of the discretized metal plate. In this graph, the nodes
correspond to the cells obtained after discretization and edges show the heat transfer between
them. The circle nodes in green are the measured nodes and the red square nodes are the
unmeasured nodes. The nodes {1, 6, 11, 16, 21} receive input directly and the node 6 in dark
red is the outlier.

where int(D) denote the interior region of the plate. The constants λ and γ denote the
diffusion coefficient along the X-axis and Y-axis respectively. Moreover, there is an exchange
of heat between the plate, the heater and the air which is described by the following boundary
conditions. The heat exchange with the air is described with the Robin boundary condition
[ZC09]

∂T

∂ν
= −ηa(T − Ta), (X,Y ) ∈ Sa. (2.31)

where Sa is the set of contact points with the air, ν is the outward unit vector normal to Sa,
and Ta is the temperature of the air, and ηa is the ratio of coefficient of thermal conductivity
and the coefficient of heat transfer between air and the metal plate. For simplicity, we suppose
Ta = 0 for any t,X and Y. The heat exchange with the heater is described by another Robin
boundary condition

∂T

∂Y
= ηh(T − u), X ∈ [0, Xf ], Y = 0. (2.32)

where u is the temperature of the heater and ηh is the ratio of coefficient of thermal conduc-
tivity and the coefficient of heat transfer between heater and the metal plate. The heater is
assumed to have a uniform temperature distribution, that is, u is independent of X and Y.

We discretize (2.30) and (2.32) with step size δ = ∆X = ∆Y using central difference
quotients. In discretization, let the number of the cells along each axis be nc so that the total
number of cells will be n2

c . We obtain a network with grid structure with dynamics (2.17),
where x ∈ Rn2

c is a vector of spatially discretized temperature T. The numbering of the nodes
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Figure 2.13: State trajectories of the spatially disctretized equations describing the faulty
metal plate.

starts from the bottom left, and follows columns, each from bottom to top as in Figure 2.12.
To describe the entries ãij of Ã, we need to distinguish different cases, depending on the
position of the cell corresponding to vertex i. The non-zero entries of matrix Ã = [ãij ] are
given as follows. If i is not a boundary node then

ãij =





−2(λ+ γ) if j = i

γ if j = i+ 1, i− 1

λ if j = i+ nc, i− nc.

If i is a boundary node attached to the heater but not a corner node then, from the discretiza-
tion of (2.30) and (2.32), we have

ãij =





−2(λ+ γ + δηhλ) if j = i

2γ if j = i+ 1

λ if j = i+ nc, i− nc.

For the boundaries with air, the discretization of (2.30) and (2.31) is used. If i is on the upper,
left or right boundary, except for the corner nodes, we have ãij = −2(λ+ γ + δηaλ) if j = i.

If i is on the upper boundary, the non-zero non-diagonal entries are ãij = 2γ for j = i − 1

and ãij = λ for j = i + nc, i − nc. Similarly, if i is on the left border, we have ãij = γ for
j = i − 1, i + 1 and ãij = 2λ for j = i + nc, and then on the right, we have ãij = γ for
j = i− 1, i+ 1 and ãij = 2λ for j = i− nc. Finally, if i is an upper-left or upper-right corner
node, we have ãij = −2(λ + γ + δηaλ + δηaγ) for j = i. If i is on the upper-left corner, we
have ãij = 2γ for j = i − 1 and ãij = 2λ for j = i + nc. Similarly, if i is on the upper-right
corner, we have ãij = 2γ for j = i− 1 and ãij = 2λ for j = i− nc.

For a corner node in the bottom, the discretization of (2.30), (2.31) and (2.32) is used. If
i is either a bottom-left or bottom-right corner node, we have ãij = −2(λ+ γ + δηaλ+ δηhγ)

for j = i. For non-zero non-diagonal entries, we have ãij = 2γ for j = i + 1 and ãij = 2λ for
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Figure 2.14: In solid lines, estimated average trajectories of the unmeasured nodes excluding
one at a time, x̂av

2,j . The red trajectory corresponds to the average estimate without the outlier,
i.e., x̂av

2,jo
(t). Moreover, in this case x̂av

2,jo
(t) = x̂av

2,̂o
(t). The dotted trajectories correspond to

the true averages xav
2,j(t).

j = i + nc if i is on the bottom-left corner. Similarly, if i is on the bottom-right corner, we
have ãij = 2γ for j = i+ 1 and ãij = 2λ for j = i− nc.

The entries of the matrix B̃ = [b̃ij ] ∈ Rn2
c×1 are

b̃i1 =

{
2ηhδγ if i = 1 mod nc

0 otherwise.

and the matrix C depends on the choice of the measured nodes.

2.5.2 Illustration of the detection method

In this subsection, we show the effectiveness of the proposed detection method for spatially
discretized thermal diffusion network with δ = 1, and nc = 5, λ = γ = 29.1, ηh = 1.3×104, ηa =

103 and input u(t) = 10 + 10 ∗ sin(t). Initially the plate is kept at 0°C. On discretization, we
get a network with grid structure as shown in Figure 2.12. The nodes {1, 6, 11, 16, 21} are
attached to the heater. We assume that there is a defect in a region corresponding to the
discretization cell number 6. The metal plate corresponding to this region is defective and has
different coefficients of diffusion than the rest part of the plate. This defect can be the result
of the formation of brown stains, the formation of oxides on the metal plate, casting defects,
welding defects, or rolling defects to name a few. In our example, the fault scales the local
coefficients of diffusion λ and γ by one-third. This fault is represented as faulty matrices given
by A = Ã + ∆ and B = B̃ + Ψ with ∆ satisfying (2.20) with rT = −2

3(eT6 Ã − (eT6 Ãe6)eT6 ),

ρ = −2
3 and Ψ = 0n,1. It can be seen in Figure 2.13 that node 6 is an outlier.

We choose {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20, 22, 24} as the set of measured nodes, and hence
the set of unmeasured nodes is {2, 4, 6, 8, 10, 12, 14, 16, 18, 21, 23, 25}. Now, we can apply a



34 Chapter 2. Outlier detection and trimmed-average estimation

 

 
 

0 1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10
11
12

jo(t),̂o(t)

time (s)

un
m

ea
su

re
d

no
de

s

Figure 2.15: Detected position of the outlier ̂o. It can be seen that the detected position
converges to the true position of the outlier jo very quickly. It is found that the outlier is
at the third position in the set of unmeasured nodes i.e. jo = 3, which is at node 6 in the
network.

suitable permutation to rearrange the nodes such that the first n1 = 13 nodes are measured
and the rest n2 are unmeasured so as to obtain a block structure as in (2.19). Note that,
node 6 in the network is the third node in the set of unmeasured nodes, so we have jo = 3.

Now, we assume that we neither know the fault nor the position of the outlier. Therefore, for
estimation, we use the system matrices obtained by the discretization of the thermal diffusion
equation described in the previous subsection. Recall from Theorem 2.2 that in order to
design a bank of scalar observers, the sub-matrix Ã12 needs to be of full column rank. We
find that indeed rank(Ã12) = 12 = n2. Therefore, a bank of scalar observers of the form
(2.6) can be designed. Here, we take α = 3 and wj(0) = −`Tj y(0) for all j ∈ {1, . . . 12}.
Figure 2.14 shows the different average estimates excluding one node at a time x̂av

2,j(t) and the
corresponding true averages xav

2,j(t), depicted by solid and dotted lines respectively. The true
averages xav

2,j(t) clearly show that jo is an outlier: for all j except jo, the averages xav
2,j(t) are

near to each other, while xav
2,jo

(t) is more distant. As predicted by Theorem 2.3, the estimate
x̂av

2,jo
(t) quickly converges to the true trimmed-average xav

2,jo
(t). For j 6= jo, it can be seen that

all the estimates x̂av
2,j(t) for j 6= jo, have a significant error ξj from the corresponding true

averages, but such errors tend to be the same for all j, consistently with Lemma 2.1. Hence,
the fact that the true averages are near to each other results in the estimates also being near
to each other, despite their error.

Using β = 10 in (2.15) and then computing (2.16), we detect the position of the outlier as
shown in Figure 2.15.

It can be seen in Figure 2.15 that the detected position of the outlier is ̂ = jo. The process
identifies the outlier from the beginning as it is evident in Figure 2.14 that the difference
between the average estimates x̂av

2,jo
(t) and x̂av

2,j(t) is very large since the beginning.
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2.6 Concluding remarks

Average state reconstruction with the help of a few sensor measurements can give unexpected
results if there are some outliers among the unmeasured states. A method to estimate the
average excluding the outlier has been proposed. For that, a design of a scalar and tunable
observer has been given along with the condition under which a bank of these observers can
be designed to estimate the average of the unmeasured nodes while excluding an element at
every possible position. Moreover, the problem of detection of the existing outlier when the
system matrices might be known or partially unknown has also been addressed by using a
dissimilarity based matrix inspired from the euclidean distance-based dissimilarity matrix.
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Chapter 3

Introduction

Human mobility, because of its practical applications in epidemic control, urban planning,
traffic planning and land use patterns, has attracted the attention of researchers from trans-
portation [Hua+18], economic geography [RT04], epidemiology [SD95], physics [Sim+12] and
many other fields over past decades. Study of urban human mobility in cities, is important and
facilitates better planning and policy-making. For example, in the recent events of COVID-19
pandemic, controlled and restricted mobility of people became important and a fundamental
issue faced by the policymakers. In such scenarios, both fully operational mobility or a com-
pletely restricted mobility could result in negative consequences on the socio-economic status
of a country or a region. Therefore, a better understanding of human mobility patterns is
necessary on the level of a metropolitan area with the three mobility components, 1. ‘Where’
do the people go? 2.‘When’ do they move? and 3.‘How many’ people move? (WWH). There
are several human mobility prediction models which can be categorised mainly in two cate-
gories based on information they use: 1. mathematical models using traditional data such as
population census or travel survey data 2. models based on sensed data such as mobile phone
Call Detail Record (CDR) and GPS data.

At first, we give an overview of the first category which is the mathematical models us-
ing traditional datasets. The prediction of human mobility has been studied extensively by
statistical physicists over the years. One of the first models proposed to predict population
movement was gravity model [ES90]. This model proposes that the flow of people between
two locations is proportional to the product of their populations and inversely proportional to
the distance between them. Since then, many of its generalised versions have been proposed
which have several exponential parameters and functions to be inferred from the empirical data
[Gau+09]. This requires previous traffic data to fit the parameters in order to find the exact
mathematical formula making it difficult to predict mobility in regions which lack systematic
traffic data. Many improvements include the radiation model proposed in [Sim+12] and other
models which can be found in the survey [Bar+18]. These models give an estimate of number
of people moving between different places in terms of origin-destination matrices which can
be useful in predicting migratory flows and large scale mobility between cities. However, they
lack spatio-temporal characteristics which are relevant for urban mobility. In other words,
they estimate ‘how many’ and to some extent ‘where’ but give no estimate of ‘when’. Another
class of literature such as [Ekm+08], [MM06] model mobility of people between two locations
and time spent at such locations. the model is given in form of some power laws. Some
mover-stayer type dynamic mobility models have also been proposed in the literature such
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as [SD95] and [CMV13] in order to see its effect on a disease spread. These models capture
the evolution of mobility over time between different geographical regions. However, they
capture averaged mobility between different cities with large time-scales and cannot capture
daily mobility patterns and there is no distinction between origins and destinations.

Now, we give a brief overview of the second category which are data-driven models. Re-
cently, with the vast development in the information and communication technology, various
data sources have been used to facilitate travel behaviour research. Examples are smartcard
records data, GPS data and roadside sensor data, and among these, mobile phone CDR are the
most widely applied [WHL18]. The mobile phone CDR can be used to construct the origin-
destination matrices and mobility patterns. For example, [Iqb+14] developed OD matrices
using mobile phone CDR, [Bac+19] estimated OD matrices by transport mode, [Ale+15] esti-
mated the mobility pattern along the day with OD matrices, to name a few. The main reason
of extensive use of this data is ubiquitousness of mobile phones, hence the ability to track the
whole population at large span of time and relatively high spatial accuracy. These techniques
might cover ‘how much’ and ‘when’ to some extent provided the availability of data. How-
ever, some researchers have pointed to the biases of these data, caused by the event-triggered
nature of mobile phone data [Zha+16]. These data can also be unavailable in case of bad
weather or connectivity and moreover amount of mobile phone usage also varies according to
the socio-economic conditions of different regions. Another widely used data source is GPS
data due to its high geographical precision. It is used to study individuals’ movement in order
to analyse mobility patterns and give mobility models [LH14]. GPS data have been used to
identify stay and destinations [HT04], estimate mobility patterns [ZG10], estimating mobility
patterns using taxi GPS data [Tan+15], identifying transport mode [DH18] and updating OD
matrices [GF16]. However, these location data come at a risk of privacy of individuals and
taxi location data has a very low penetration rate. There is a serious concern over privacy
of individuals as removal of personal data does not fully preserve privacy and have risk of
re-identification [MYA+13]; [Yin+15] of the individuals. In future, new laws can also be im-
plemented which will restrict the mobile and location data use even more [com17]. Moreover,
privacy protection techniques require data aggregation or need to be recorded for short period
limiting their usefulness [ZB11].

In this part, we extend, adapt and implement the supply-demand flow mobility model
proposed in [Nia+21] to the large-scale network of Grenoble, a metropolitan city in France. In
this model, every day, a certain number of people travel from their residences, which are called
origins, to locations visited daily such as for work, education, shopping, hospitals etc., which
are called destinations, and then return to their home again. The daily mobility patterns
are captured by the time-dependent supply and demand gating profiles. The Supply Gating
Functions (SGF) of each destination is controlled by its daily destination schedule, which is its
opening and closing hours. The Demand Gating Profile (DGP), on the other hand, is defined
on each edge of the mobility network and corresponds to the daily mobility window, which
is the time interval during which people move between origins and destinations along that
edge. The supply function of each destination controlled by the SGF determines the inflow
allowed to that destination and depends on its operating capacity which can be tuned using
a control input, for instance for epidemic attenuation. The demand function controlled by
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the DGP determines the outflow from one location to another. The process of urban human
mobility is modeled on the network edges that connect different locations through flows. A
significant advantage of this model is that it can capture mobility on a smaller time-scales with
a different pattern on a given day of the week thanks to SGF and DGP. Another important
advantage with respect to existing models, is that the proposed model can encompass all the
three mobility components (WWH). However, [Nia+21] uses a toy example and hence lack a
precise procedure for the identification of the functions, gating profiles and parameters needed
to implement this model on a real large-scale network. One of the main aim of the work done
in this part is to devise methods and procedures for identifying the origin and destination
nodes, their O/D relations, setting the parameters and defining the gating functions DGP and
SGF for the large-scale mobility network of Grenoble.

In this part, we also build the large-scale network of Grenoble using public information
which makes our method free from privacy and legal issues. precisely, we build the three
components of mobility: Where, When and How many (WWH). In ‘where’, We consider the
residential areas of the communes as origins and identify different places of interests such as
schools, universities, workplaces, hospitals parks etc. as the destinations. The destinations are
then classified into categories and subcategories. Each origin and destination is represented by
a node in the network. While the origin nodes are placed in the residential areas, the destina-
tion nodes are placed at the exact locations using open source map data. Then, we collect the
population of the origins from census data and the capacities of the destinations from different
sources such as their websites. The capacity of a destination is the maximum number of per-
sons allowed to be there at any instant. If any subcategory has a large number of nodes, then
they are aggregated by replacing such nodes in a commune by a single node with its capac-
ity being the sum of their capacities and its location being the barycenter of their locations.
Having identified the origins and destinations, we make a bipartite graph corresponding to
the destinations of each subcategory to decide which origins and destinations are connected.
They are connected based on a form of attraction law proportional to the population and the
capacities of origins and destinations and there is a threshold over distance, a person would
travel to go to a destination. For this, we compute the real minimum road distance between all
possible locations. In the component, ‘When’, we collect the information about the opening
and closing time per destination category and the gating functions are computed using the
mobility profiles from travel survey or inspired from the real time popularity trends. Finally,
in the component ‘How many’, we compute the average daily number of people traveling from
an origin to a destination if they are connected by using rules of proportions.

Since, the mobility-model proposed in [Nia+21] is in continuous-time, therefore, in order
to extend and implement it on the real large -scale network, we redefine the model in discrete-
time ensuring mass-preservation and non-negativity. These properties are also satisfied even
if we take larger time-steps in simulations. In addition, since the model and the developed
setup is modular in nature, it can be used for many applications such as understanding social
behavior and urban planning and optimal control of mobility for epidemic mitigation. Indeed
human mobility is essential for the economy of a country or a region, however, it can also be
responsible for an epidemic spread when infected people mix with the susceptible population
in common places. For this reason, the government devises restricted mobility strategies in
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events of an epidemic. However, recently during Covid-19 pandemic, it has been seen that
unrestricted mobility can lead to health infrastructure overloading and hence to an substantial
increase in loss of lives. As an intent to mitigate epidemic spreading and their consequences on
the population health, governmental policies tends to reduce human mobility in a conservative
manner strongly affecting the social well-being and economy. Therefore, restricted mobility
policies should act parsimoniously by maximizing the social well-being and economic activities
(minimizing mobility restriction) while respecting the constraints imposed by the available
health infrastructure. Some works such as [BM20],[Mol+21] and [DEK21] show some analyses
on impact of Covid on mobility during the first wave and first set of hard measures.

In this work, we also extend our focus on integrating the mobility model with an epidemic
model and utilize it to design optimal mobility restriction policies to limit the epidemic spread.
Recently, the outbreak of Covid-19 motivated several work on optimization for epidemic mit-
igation but with no network such as [Las+21], [Kö+21], [Mor+21],[MR22]. We are interested
in human mobility restrictions for epidemic mitigation in urban network. Most of those works
consider mathematical models for the epidemic spreading part, but differs in the way how
mobility patterns are captured.

One category of these works uses data-driven mobility patters [NBC+21]; [Smo+21];
[Gos+21]; [Dut+21]. For example, the work in [Smo+21] analyses the effect of mobility
restrictions put by government bodies during Covid-19 across Italian regions, and [Gos+21]
quantifies a trade-off between allowed cross-region mobility and number of infections and gives
optimal restriction policies. [Dut+21] proposes an age-structured SEIRD epidemic model in
which parameters are tuned using daily mobility patterns and contact traces. The model is
given for intra-region mobility, and is used to design optimal mobility policies constrained to
health and socio-economic factors. However, one limitation is that it only considers aggregated
destinations without specific geographic locations. In this category, contributions rely on the
use mobility patterns from telecom or google real-time data which may be difficult to obtain,
and could violate privacy of individuals. To overcome privacy issues, [Son+20] proposes rein-
forced learning methods to find mobility restriction policies to and from high risk regions by
using aggregated inter-regional mobility data instead of individual traces.

Another category of works uses model-driven mobility patters to find optimal policies using
mathematical models based on conservation-like laws integrating both: mobility and epidemic
process. Model integrating cross-region mobility and epidemic spread by SIR dynamics has
been investigated by [SD95] and more recently by [CMV13]. Multi-cities epidemic models
have been extensively studied such as in [AD03], [KR07],[Ari09], [Yin+20], [LS13],[Kel+16],
[LABH21], [LXH21] , [KBG04], [Gao20], [CYX14]. Some recent works such as [Hu+21],
[Cen+21], [Car+20] exploit cross-region models to find optimal epidemic mitigation policies.
However, some limitations of these approaches are that they only capture cross-region mobility
patterns and are unable to capture daily mobility patterns in an urban network, necessary for
precise assessment of the health and economic impacts.

In this regard, [Nia+21] at first, proposed a dynamic mobility model which incorporates
epidemic spread at each geographical location in an urban city with SIR dynamics called
SIR-mobility model. This model is used to formulate optimal control problems for epidemic
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mitigation while maximizing the economic activity.

Similar to the mobility model, this SIR-mobility model is also given in continuous time,
so we propose a numerical mechanism so that the resulting discrete-time SIR-mobility model
preserves the original properties while ensuring numerical stability keeping in mind the goal to
devise techniques that can be applied to a large-scale network. Then, based on the numerical
version of the combined SIR-mobility model, we propose several optimal mobility policies to
maximize the socio-economic activity while respecting the ICU-hospital constraints. Since, in
large scale networks, solution of an optimal control problem is not possible by using off the
shelf solvers, we devise algorithm and techniques which can be implemented to a large-scale
network. We apply these techniques to obtain optimal mobility control policies for the Greno-
ble metropolis. At first, we provide optimal mobility control policies that is category-free. This
category-free control approach tunes the operating capacities of all the destination categories.
The optimal searching process exploits the monotonicity of the proposed optimization problem
to obtain an numerical efficient solver. The algorithm has been deployed in a model predictive
control (MPC) fashion with receding time horizon, where both the frequency of updates and
the length of the optimization horizon are design parameters. Results show that in this case,
it is most effective to have frequent updates and a short optmization horizon, leading to a U-
shape control profile where destinations are almost fully open at the beginning and at the end,
while they are almost closed near the infection peak. Then, we proceed to the more general
problem where we devise control policies that are category-dependent where different control
policies are applied to different categories depending on their socio-economic importance. We
devise algorithm to solve this general problem which uses outer approximation based methods
with several numerical enhancements alongwith an MPC approach provide policies that are
category-dependent. Results show that category-dependent policies are better than category-
free policies. We provide effective mobility control strategies to be adopted during different
phases of epidemic in Grenoble metropolis using the developed mobility network.

Finally, to illustrate our results, we have developed an online demonstrator called GTL-
Healthmob interface where an user can simulate different mobility control scenarios and as
a case study he/she can visualise the effect on mobility on COVID-19 epidemic spread in
Grenoble area.
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Control of human mobility during an epidemic outbreak becomes essential for the well
being of a society, therefore, making it an fundamental challenge faced by the policymakers.
Such control can only be done efficiently if human mobility is modeled at the scale of a city or
a metropolis. Therefore, in this chapter, we consider a continuous-time human-mobility model
and a model that integrates the epidemic spread process with mobility. Keeping in mind the
goal to extend, adapt and implement this model to a large-scale network which we build in the
next chapter, we provide a discretization of these models that preserves the original properties
such mass preservation, boundedness and non-negativity as in the continuous-time model.

4.1 Continuous-time mobility model: where, when and how
many?

In this section, we give a basic description of the urban-human mobility model proposed in
[Nia+21].

Human mobility can be defined as the flow of people between two locations. Consider the
human mobility in an urban area between two types of locations: origins and destinations. The
origins correspond to the residential areas and the destinations, on the other hand, correspond
to locations that people visit daily for some purpose like work, shopping, education or leisure
for example, companies, research centers, schools, restaurants, cinemas, etc. Every day a
certain number of people visit the destinations during specified time intervals and then return
later on the same day.

45
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Figure 4.1: An example of urban human mobility network and classification of destinations.
Here, Subcat stands for subcategory.

Consider the daily human mobility in the timescale of hours represented by a network
G = (Vo,Vd, E) between locations of two types: origins Vo and destinations Vd. For the sake
of simplicity, we assume that the network G is bipartite, i.e., we assume that there are edges
only between origins and destinations, and there is no edge between a pair of origins or a
pair of destinations. Since, the mobility is happening instantly between two locations, this
assumption doesn’t effect the mobility pattern much as the mobility between two destinations
can be understood as if a person first goes back to the origin from one destination and then
moves from the origin to the other destination. The assumptions on the model are as follows:

• The total population of the city remains constant.

• The mobility occurs only between pairs of origins and destinations, and not among a
pair of different origins or a pair of different destinations.

• The number of people who visit destination j from origin i during a day is equal to the
number of people who return to i from j on the same day.

The destinations Vd are partitioned into q categories D1, . . . ,Dq, where each category Dh
is further partitioned into subcategories, D1

h, . . . ,Dsh, where s is the number of subcategory
in the category Dh. Figure 4.1 shows an example of urban human mobility network which
also shows the classification of destination into categories and subcategories. Denote the total
population of origin i ∈ Vo by Pi which is the total number of people residing in i and the
nominal instantaneous capacity of destination j ∈ Vd by Cj which is the maximum number of
people who can visit j at any given time during normal operation. We introduce the possibility
to describe the restrictions of capacity as control inputs, such as those that were imposed by
many governments during peaks of Covid-19 pandemic. Such capacity reduction is done per
category of destinations, and is described by a coefficient uh(t) ∈ [0, 1] for h ∈ {1, . . . , q} which



4.1. Continuous-time mobility model: where, when and how many? 47

determines the allowed operating capacity of the destinations in Dh in terms of the proportion
of nominal capacity at time t. In other words, it can be considered as a policy at time t that
limits the operating capacities denoted as Coj (t) in the destinations of category h, where

Coj (t) = Cjuh(t), for j ∈ Dh. (4.1)

In (4.1), if for a destination j ∈ Dh, uh(t) = 0, then the operating capacity Coj (t) = 0, which
means that no person is allowed to visit j. On the other hand, if uh(t) = 1, then Coj (t) = Cj
that is the operating capacity of j is equal to its nominal capacity. Therefore, the operating
capacity Coj of a destination is less than or equal to its nominal capacity Cj and depends
on the control input uh(t) for j ∈ Dh which tunes the maximum number of people that can
gather at the destinations at any time and hence controls the flow of people between origins
and destinations.

Let Ni(t) > 0 be the number of people in i ∈ Vo∪Vd at time t and let Ni = {j : (i, j) ∈ E}
be the set of i’s neighbors. Then, according to the urban human mobility model proposed
in [Nia+21], the rate of change of the number of people at any location at time t is equal to
the sum of inflows to that location minus the sum of outflows from that location. In other
words, if φij(t,Ni(t), Nj(t)) denotes the flow from i to j, then the number of people Ni(t) at
a location i at time t is given by

Ṅi(t) =
∑

j∈Ni
(φji(t,Nj(t), Ni(t))− φij(t,Ni(t), Nj(t))), (4.2)

where
φij(t,Ni(t), Nj(t)) = min(∆ij(t,Ni(t)),Ψj(t,Nj(t))). (4.3)

Here, ∆ij(t,Ni(t)) is the demand of i with respect to j which describes the flow of people
who would like to travel from i to j and Ψj(t,Nj(t)) is the supply of j, i.e. the inflow that
can be allowed to enter j from its neighbors depending on the operating capacity Coj , if j is
a destination and Pj if j is an origin. For the sake of simplicity, here onward, we will use
the notation Zj(t) for the operating capacity Coj (t), if j is a destination or the population Pj
if j is an origin unless otherwise stated. Note that, if j is an origin, Zj(t) will be constant
and equal to the population Pj , however, if j is a destination then Zj(t) will be equal to the
operating capacity Coj (t) which varies according to the coefficient uh(t) if j ∈ Dh as defined
in (4.1). Furthermore, for the sake of simplicity in notations, we will just use φij(t) instead of
φij(t,Ni(t), Nj(t)) and similarly for φji(t).

Demand The demand of i with respect to j is given by

∆ij(t,Ni(t)) = δij(t) · fij(t) · 1Ni(t)>0, (4.4)

where δij(t) is the Demand Gating Profile (DGP) such that

{
δij(t) > 0 if t mod 24 ∈ [tij , tij + τij)

δij(t) = 0 otherwise
(4.5)
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satisfying
∫ 24

0 δij(t)dt = 1. Here, [tij , tij + τij) ⊆ [0, 24) is called the mobility window, defined
as the time interval in which there is mobility from i to j. Here, tij is the time when mobility
from i to j starts and τij is time duration for which the mobility from i to j continues to
happen. We can have different Demand Gating Profiles and mobility window for different
days of the week for different destination subcategories. The function δij gives the profile of
demand over the day, while the intensity of the demand is described by a factor fij(t) defined
as:

fij(t) = Mijuh(t). (4.6)

Here, Mij is the total number of people that would like to visit j from i, daily and Mijuh(t) is
the number of visitors when capacity is restricted with the coefficient uh(t). The termMijuh(t)

reflects the fact that when a government policy regarding capacity reduction is announced,
it not only restricts the number of people who can visit a destination but also reduces the
number of people willing to go to those destinations. Finally,

1Ni(t)>0 =

{
1 if Ni(t) > 0

0 otherwise
(4.7)

is an indicator function.

Supply The supply of j is given by

Ψj(t,Nj(t)) = ψj(t) · Fj · 1Nj(t)<Zj(t), (4.8)

where

ψj(t) =

{
1 if t mod 24 ∈ [aj , bj)

0 otherwise
(4.9)

is the Supply Gating Functions (SGF) with [aj , bj) ⊆ [0, 24) called the destination schedule
where aj is the opening hour and bj is the closing hour of location j. Similar to DGPs, also
SGFs are defined over a day and repeated periodically, possibly with different profiles for
different days of the week. For the origins j ∈ Vo, [aj , bj) = [0, 24) because they are always
open. Define Fj as the maximum constant flow inflow to j from its neighbors and computed
as Fj =

∑
i∈Nj fij is the maximum, constant inflow to j from its neighbors. Finally,

1Nj(t)<Zj(t) =

{
1 if Nj(t) < Zj(t)

0 otherwise
. (4.10)

Notice that N,φ,∆ and Ψ, all are implicitly dependent on the capacity control u(t) as it tunes
the operating capacity and hence controls the flows. It doesn’t appear in notations so as to
avoid heavier notations. It will be mentioned when applying control on the mobility in coming
chapters.

Similar to the restrictions on capacity, we can also have the possibility to describe the
restrictions on closing time of destinations, such as those that were imposed by many govern-
ments during peaks of Covid pandemics. Such restriction is decided per category of destina-
tions, and is described as the effective closing time denoted by beh ∈ [6, 24] for h ∈ {1, . . . , q}.
Similar restriction on the opening time can also be enforced by another such coefficient to tune
the effective opening time. However, if done, it must be enforced that the effective closing
time is later or same as the effective opening time.
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4.2 Continuous-time SIR-mobility model

The mobility model (4.2) can also be used to see the effect of mobility control on the epidemics
spread. In [Nia+21], the mobility model has been incorporated with the SIR epidemic model.
The resulting model is called the SIR-mobility model. Here, S, I and R stand for the number
of susceptible, infected and recovered people. At each location, the disease spread follows
the classical SIR model, but people are also allowed to move from one location to another
(irrespective of their status of infection) and such mobility happens according to the mobility
model (4.2)-(4.9). This has been depicted in Figure 4.2.

Figure 4.2: Mobility along the edges and the epidemic spread inside the locations.

Let us denote Si(t), Ii(t), Ri(t) to be the susceptible, infected and recovered population at
the location i at time t. Furthermore, as defined in (4.2), let Ni(t) be the number of people
at the location i at time t.

The disease transmission at each location i happens according mass action law

βi(t)Si(t)
Ii(t)

Ni(t)

where

βi(t) =

{
β̄i
Ni(t)
Pi

if i ∈ Vo
β̄i
Ni(t)
Ci

if i ∈ Vd

is the infection rate of i at time t with β̄i being the nominal infection rate of i. The nominal
infection rate is defined as the product of infection probability and the average number of
contacts of a person in location i per hour when the number of people in i is maximum. The
infection probability is defined as the probability by which an infected person might infect a
susceptible person when in contact. Also notice that, the infection rate βi is low when the
number of people Ni(t) at location i is small and high when Ni(t) is large. The infected people
Ii(t) recover with a recovery rate γ ∈ [0, 1], which is a constant that depends on the epidemic
and the existing treatments, if any. The recovery rate is defined as the inverse of the average
recovery period (in hours) of the infected cases.

Consider the flow φij(t), the number of people moving from the location i to the location
j at time t and Ni to be the neighbours of i, then the resulting SIR-mobility model proposed
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in [Nia+21] in continuous-time can be written as

Ṡi(t) =− βi(t)
Si(t)Ii(t)

Ni(t)
+
∑

j∈Ni

(
φji(t)

Sj(t)

Nj(t)
− φij(t)

Si(t)

Ni(t)

)

İi(t) =βi(t)
Si(t)Ii(t)

Ni(t)
− γIi(t) +

∑

j∈Ni(t)

(
φji(t)

Ij(t)

Nj(t)
− φij(t)

Ii(t)

Ni(t)

)

Ṙi(t) =γIi(t) +
∑

j∈Ni

(
φji(t)

Rj(t)

Nj(t)
− φij(t)

Ri(t)

Ni(t)

)
(4.11)

4.3 Discrete-time mobility model with preserving properties

To implement these models to a large-scale network, one needs a discretization of these models
which preserve their original properties. In this section, we propose such a discretization and
show that they indeed preserve the properties such as mass conservation and non-negativity.

Notice that in mobility model (4.2)-(4.10), the number of people at any location Ni(t)

is always non-negative i.e. Ni(t) ≥ 0 and it also remains below the population of Pi or
the operating capacity Coi (t), if it is an origin or a destination respectively i.e. Ni(t) ≤ Zi.

Recall that Zi(t) denotes the population of i if i is an origin and the operating capacity Coi
if it is a destination. Moreover, the total mass is also preserved. In other words, the total
number of people in the system remains constant for any time t, we have

∑
k∈Vo∪Vd Nk(t) =∑

i∈Vo Pi, which is equal to the sum of all population. To simulate the mobility model, we
need to discretize it. The discrete-time version of the continuous-time model (4.2)-(4.9), should
preserve the same mathematical properties than its continuous counterpart. Unfortunatelly,
trival discretization may lead to loss of such properties. This section analyzes these problems
and provides a solution.

Let Ni(k) be the number of people at location i at time step k and ∆t be the time-step
size, then with forward Euler discretization of (4.2), we have the discrete-time model as

Ni(k + 1) = Ni(k) + ∆t
∑

j∈Ni
(φji(k)− φij(k)), (4.12)

where, the flow φij(k) is the flow from i to j as described in (4.3). For any flow, φij(k) ≥ 0, the
discrete-time model (4.12) preserves the total mass. It can be seen in the following proposition.

Proposition 4.1
Consider system (4.12) with any flow φij(k) ≥ 0, the total number of people in the system
remains constant, i.e., for all time k,

∑
i∈Vo∪Vd Ni(k) =

∑
i∈Vo∪Vd Ni(0).

Proof. We prove it recursively, i.e. we show that 1TN(k+ 1) = 1TN(k), where, 1 ∈ Rn is the
vector of all ones and N(k) = [Ni(k)] ∈ Rn for n = |Vo ∪ Vd|.
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Let us define, Φ ∈ Rn×n as

[Φ]ij =

{
φij(k) if j ∈ Ni
0 otherwise

,

and rewriting (4.12) in matrix form, we have

N(k + 1) = N(k) + ∆t
(
ΦT − Φ

)
1.

By left-multiplication with 1T , we get

1TN(k + 1) = 1TN(k) + ∆t(1T (ΦT − Φ)1).

We will obtain the desired result by showing that 1T (ΦT − Φ)1 = 0. To do so, we notice
that 1TΦT1 = (1TΦ1)T = 1TΦ1, where the last equality is true since 1TΦ1 is a scalar.
Therefore, we have

1TN(k + 1) = 1TN(k).

Now, we discuss how to define the flows φij(k) to be used in (4.12). For time-step k, one
option is to have flows φij(k) which can be computed naively by plugging N(k) in the same
equations as in continuous time, namely,

φij(k) = min(∆ij(k),Ψj(k))

∆ij(k) = δij(k∆t)fij(k∆t)1Ni(k)>0

Ψj(k) = ψj(k∆t)Fj1Nj(k)<Zj(k∆t)

(4.13)

where the functions δij(k∆t), ψj(k∆t) and the fij(k∆t) and Fj are defined in section 4.1.
The discrete-time system (4.12) along with the flows defined as in (4.13), could result in two
undesired scenarios, which are Ni(k) < 0 or Ni(k) > Zi(k∆t), for some i and k . Indeed, in
continuous-time, the indicator functions that are present in the definition of ∆ij and Ψi are
enough to ensure that the demand ∆ij is zero as soon as Ni is zero and that the supply Ψi

is zero as soon as Ni reaches the capacity (or total population) Zi(k∆t). However, in discrete
time, they are not enough to ensure that the total demand over a sampling interval does not
exceed Ni(k), nor that the supply over a sampling interval does not exceed the remaining
capacity Zi(k∆t) − Ni(k), as we can easily understand by considering the following small
example.

Example 4.1. Let us consider a network of two nodes depicted in Figure 4.3.

The equations for mobility between node 1 and node 2 are given by

Ṅ1 = φ21 − φ12

Ṅ2 = φ12 − φ21
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Figure 4.3: A network of two nodes.

Let us consider a simple case where φ21 = 0 and φ12 = f121N1>0. Therefore, we have

Ṅ1 = −f121N1>0

Ṅ2 = f121N1>0

This system, starting from some N1(t) > 0, will have N1 decreasing up to some time t̄ where
N1(t̄) = 0, and then remaining equal to zero, as depicted in Figure 4.4a. We consider the
non-trivial case where t̄ is not a multiple of the sampling time ∆t, i.e., k̄∆t < t̄ < (k̄ + 1)∆t

for some k̄. Now, since N1(k̄∆t) > 0 the discrete-time flow computed naively as in (4.13)
will be φ12(k̄) = ∆tf12, which leads to N(k̄ + 1) < 0 as depicted in Figure 4.4a using starred
black dots. Therefore, we need to introduce a correction. We saturate the flow so as to ensure
that during a sampling time, we do not extract more flow than the available number of people.
Hence, we set

φ12(k) = min

(
f12,

N1(k)

∆t

)
(4.14)

so that ∆tφ12(k) ≤ N1(k). Therefore, in this example, we get φ12(k̄) = N1(k̄), and hence
N1(k̄ + 1) = 0 as depicted in Figure 4.4a using red circles. This correction is on the flow and
not on the N1 itself, which ensures that the total mass in the system is preserved, i.e., N1 +N2

remains constant. Figure 4.4b depicts the different flows chosen according to flows defined in
(4.13) and (4.14). It can be seen in Figure 4.4b that the corrected flow given by (4.14) adjusts
the value of φ12 according to the available number of people.

It can also be seen that in a complex network, no matter how small the step size be, this
phenomenon can occur. Therefore, following the intuition within the toy example, we define
suitable saturated flows, φij(k) that are equal to the continuous-time flows whenever possible
but ensures that the resulting model has the following properties

∆t
∑

j∈Ni
φij(k) ≤ Ni(k)

∆t
∑

j∈Ni
φji(k) ≤ Zi(k∆t)−Ni(k)

for all k and for all i and hence ensuring 0 ≤ Ni(k) ≤ Zi(k∆t) for all k.

The φij(k) can be defined as

φij(k) = min(∆ij(k),Ψj(k)), (4.15)
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(a) (b)

Figure 4.4: (a) Evolution of number of people at node 1 in Example 4.1 and (b) The outflows
from 1 to 2 in case of continuous-time model, depicted by blue line, and in discrete time when
the flows are defined naively by using (4.13), depicted by black stars, versus when the flow is
defined as proposed in (4.14) depicted by red circles.

where, ∆ij(k) is defined as

∆ij(k) = min

(
δij(k∆t)fij(k∆t),

Ni(k)αij(k)

∆t

)
, (4.16)

where, δij(k∆t) is the Demand Gating Profile(DGP) and fij(k∆t)is defined as in (4.6) and
the ψj(k∆t)is the Supply Gating Functions defined as in (4.9). Here, αij(k) in the second
term is the proportion in which the number of people will move to its neighbors. It can be
computed as

αij(k) =
δij(k∆t)fij(k∆t)ψj(kδt)∑

q∈Ni δiq(k∆t)fiq(k∆t)ψq(k∆t)

such that ∑

j∈Ni
αij(k) = 1.

The supply of j with respect to i Ψij(k) is defined as

Ψij(k) = ψj(k∆t)
(Zj(k∆t)−Nj(k))µij(k)

∆t
(4.17)

Here, ψj(k) is defined as in (4.9) and µij(k) is the proportion in which the remaining capacity
of the the location j will be divided among its neighbors defined as

µij(k) =
δij(k∆t)fij∑

q∈Nj δqj(k∆t)fqj
(4.18)

such that ∑

i∈Nj
µij(k) = 1.
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Notice that the second term in (4.16) ensures that if the number of people Ni at location
i is less than the sum of outflows from i, then this sum is taken equal to the number of
people available at i. If i has more than one neighbor then, as a natural choice, αij divides
Ni among its neighbors in proportion to what they might have received proportional to their
demands. Similarly, if at k, the supply of j is less than the demand of i and number of people
at i, then the flow φij will be equal to the remaining capacity at j divided proportionally by
µij among its neighbors what they might have received proportional to their demands. The
discrete-time model (4.12) with the flows as in (4.15)-(4.18) is same as the continuous time
model (4.2) whenever possible and ensures that the number of people at any location i, Ni(k)

is non-negative and remains bounded by Zi(k∆t). Now, we propose the following result to
support this claim.

Proposition 4.2
Consider the discrete-time system (4.12),(4.15)-(4.18),with the initial condition 0 ≤ Ni(0) ≤
Zi(0) for all i. Then, for all time k, we have 0 ≤ Ni(k) ≤ Zi(k∆t) for all i.

Proof. We prove it recursively that is we show that if 0 ≤ Ni(k) ≤ Zi(k∆t), then 0 ≤
Ni(k + 1) ≤ Zi((k + 1)∆t).

First, notice that from (4.15)-(4.18), 0 ≤ Ni(k) ≤ Zi(k∆t), ensures φij(k) ≥ 0,∀i, j since
it can be seen from (4.16) that δij(k∆t)fij(k∆t) ≥ 0 and Ni(k)αij(k)

∆t ≥ 0.

Now, from the equations (4.15)-(4.17), we have that

φij(k) ≤ Zj(k∆t)−Nj(k)

∆t
µij ,

φij(k) ≤ Ni(k)αij(k)

∆t
.

Therefore,

∆t
∑

i∈Nj
φij(k) ≤

∑

i∈Nj
µij(Zj(k∆t)−Nj(k)),

∆t
∑

j∈Ni
φij(k) ≤

∑

j∈Ni
αij(Ni(k)).

Since,
∑

i∈Nj µij(k) = 1, and
∑

j∈Ni αij(k) = 1, we have

∆t
∑

i∈Nj
φij(k) +Nj(k) ≤ Zj(k∆t), (4.19a)

∆t
∑

j∈Ni
φij(k) ≤ Ni(k). (4.19b)

Now from (4.12), we have the discrete model with the corrected

Nj(k + 1) = Nj(k) + ∆t
∑

i∈Nj
φij(k)−∆t

∑

i∈Nj
φji(k)). (4.20)
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From (4.20),(4.19a) and since φji(k) ≥ 0, we have

Nj(k + 1) ≤ Zj((k + 1)∆t),∀j.

Moreover, from (4.20), (4.19b), and since φji(k) ≥ 0, we have that

Ni(k + 1) ≥ 0,∀i.

Therefore, we have that for all i ∈ Vo ∪ Vd
0 ≤ Ni(k + 1) ≤ Zi((k + 1)∆t).

One of the advantages of the model (4.2) is that it is modular. This mobility model can
be used for many applications such as urban planning, studying epidemic spread etc. In the
next section, we descritize the SIR-mobility model, which incorporates mobility and the SIR
epidemic spread model, to implement it to the large scale mobility network of Grenoble.

4.4 Discrete-time SIR-mobility model

Discretization of (4.11), naively poses the issue that the number of susceptible, infected and
recovered people become negative for some time steps. Moreover, losing non-negativity might
lead to losing boundedness of the variables, which is ensured in (4.11) and (4.2)-(4.9) where
we have Ni(t) ≥ 0 and Si(t) + Ii(t) +Ri(t) = Ni(t). First of all, we should use the discretized
mobility model that ensures physically meaningful flows, as in Section 4.3. This is a key
ingredient to ensure non-negativity in SIR-mobility, but is not enough, we also need a suitable
discretization of the SIR dynamics. This can be done using the technique from the paper
[SD10]. Inspired from [SD10], we propose a discretization of (4.11) which ensures that all the
variables remain non-negative and the total mass is preserved. It can be called non-local as
it differs from the forward Euler discretization by taking some variables at time k + 1 on the
right-hand side instead of taking them all at the local time k.

Let ∆t be the time step size then the continuous-time SIR-mobility model (4.11) can be
discretized as follows.

Si(k + 1)− Si(k)

∆t
= −βi(k)Si(k + 1)

Ii(k)

Ni(k)
+
∑

j

(
φji(k)

Sj(k)

Nj(k)
− φij(k)

Si(k)

Ni(k)

)
(4.21a)

Ii(k + 1)− Ii(k)

∆t
= βi(k)Si(k + 1)

Ii(k)

Ni(k)
− γIi(k + 1) +

∑

j

(
φji(k)

Ij(k)

Nj(k)
− φij(k)

Ii(k)

Ni(k)

)

(4.21b)
Ri(k + 1)−Ri(k)

∆t
= Ii(k + 1) +

∑

j

(
φji(k)

Rj(k)

Nj(k)
− φij(k)

Ri(k)

Ni(k)

)
. (4.21c)
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Rearranging the terms, one can obtain the following equations that can be implemented to
actually compute Si(k + 1), Ii(k + 1) and Ri(k + 1).

Si(k + 1) =
1

1 + ∆tβi(k) Ii(k)
Ni(k)


Si(k) + ∆t

∑

j

(
φji(k)

Sj(k)

Nj(k)
− φij(k)

Si(k)

Ni
(k)

)
 (4.22a)

Ii(k + 1) =
1

1 + ∆tγ


Ii(k) + ∆tβi(k)Si(k + 1)

Ii(k)

Ni(k)
+ ∆t

∑

j

(
φji(k)

Ij(k)

Nj(k)
− φij(k)

Ii(k)

Ni(k)

)


(4.22b)

Ri(k + 1) = Ri(k) + ∆tγIi(k + 1) + ∆t
∑

j

(
φji(k)

Rj(k)

Nj(k)
− φij(k)

Ri(k)

Ni(k)

)
. (4.22c)

It is well-known that in standard SIR model, the sum of susceptible, infected and recovered
people remains constant, and equal to the total population. Here, in each location, the
number of people is not constant because of the mobility, but we can still show that the sum
Si(k) + Ii(k) +Ri(k) is equal to Ni(k) for all i and k, as shown in the following proposition.

Proposition 4.3
Given the discrete model (4.22), (4.12)-(4.18) with the initial condition Si(0)+Ii(0)+Ri(0) =

Ni(0), then for all i and k, we have Si(k) + Ii(k) +Ri(k) = Ni(k).

Proof. We prove it recursively, i.e., we prove that Si(k) + Ii(k) + Ri(k) = Ni(k), implies
Si(k + 1) + Ii(k + 1) +Ri(k + 1) = Ni(k + 1).

Recall that system (4.22) is equivalent to system (4.21); yet another equivalent re-writing
is the following:

Si(k + 1) = Si(k)−∆tβi(k)Si(k + 1)
Ii(k)

Ni(k)
+ ∆t

∑

j

(
φji

Sj(k)

Nj(k)
− φij(k)

Si(k)

Ni
(k)

)

Ii(k + 1) = Ii(k) + ∆tβi(k)Si(k + 1)
Ii(k)

Ni(k)
−∆tγIi(k + 1) + ∆t

∑

j

(
φji(k)

Ij(k)

Nj(k)
− φij(k)

Ii(k)

Ni
(k)

)

Ri(k + 1) = Ri(k) + ∆tγIi(k + 1) + ∆t
∑

j

(
φji(k)

Rj(k)

Nj(k)
− φij(k)

Ri(k)

Ni(k)

)
.

We can now sum the three equations above. Then, we use the fact that Si(k) + Ii(k) +

Ri(k) = Ni(k) and Sj(k) + Ij(k) + Rj(k) = Nj(k), and hence also Si(k)+Ii(k)+Ri(k)
Ni(k) = 1 and

Sj(k)+Ij(k)+Rj(k)
Nj(k) = 1. With this, we obtain

Si(k + 1) + Ii(k + 1) +Ri(k + 1) = Ni(k) + ∆t
∑

j∈Ni
(φji(k)− φij(k))

= Ni(k + 1).

where the last equality follows from (4.12).
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Now, we show that if the initial number of susceptible, infected and recovered people is
non-negative then they remain non-negative at any time-step k.

Proposition 4.4
Given the discrete model (4.22), (4.12)-(4.18) with the initial condition Si(0) ≥ 0, Ii(0) ≥
0, Ri(0) ≥ 0, Ni(0) ≥ 0, then for all i, k we have Si(k) ≥ 0, Ii(k) ≥ 0 and Ri(k) ≥ 0.

Proof. First, recall that by proposition 4.2, Ni(0) ≥ 0 implies Ni(k) ≥ 0, for all k. Moreover,
recall that the definition of flows in (4.12)-(4.18) together with Ni ≥ 0 ensures (4.19a)-(4.19b).

With this, we are ready to show recursively, the non-negativity of Si(k), Ii(k) and Ri(k),

namely we will show that Si(k) ≥ 0 implies Si(k + 1) ≥ 0, and then similarly show that
Ii(k) ≥ 0 implies Ii(k + 1) ≥ 0 and Ri(k) ≥ 0 implies Ri(k + 1) ≥ 0. From (4.22a), we have

Si(k + 1) =
1

1 + ∆tβi(k) Ii(k)
Ni(k)


Si(k) + ∆t

∑

j

(
φji(k)

Sj(k)

Nj(k)
− φij(k)

Si(k)

Ni(k)

)


=
1

1 + ∆tβi(k) Ii(k)
Ni(k)


Si(k)−∆t

∑

j

φij(k)
Si(k)

Ni(k)
+ ∆t

∑

j

φji(k)
Sj(k)

Nj(k)




=
1

1 + ∆tβi(k) Ii(k)
Ni(k)


 Si(k)

Ni(k)


Ni(k)−∆t

∑

j

φij(k)


+ ∆t

∑

j

φji(k)
Sj(k)

Nj(k)




from (4.19b), we have Ni(k)−∆t
∑

j φij(k) ≥ 0, and since Sj(k) ≥ 0, Nj(k) ≥ 0 and φji(k) ≥ 0

for all j, therefore,
Si(k + 1) ≥ 0.

Similarly, from (4.19b), we have Ni(k)−∆t
∑

j φij(k) ≥ 0, which also ensures that Ii(k)−
∆t
∑

j φij(k) Ii(k)
Ni(k) ≥ 0, and Ri(k) − ∆t

∑
j φij(k)Ri(k)

Ni(k) ≥ 0. Therefore, it can be seen from
(4.22b) and (4.22c) that Ii(k + 1) ≥ 0 and Ri(k + 1) ≥ 0 respectively.

It can be seen that the proposition 4.3 and the proposition 4.4 together ensure that Si, Ii,
and Ri remain bounded, since 0 ≤ Si(k) ≤ Ni(k), 0 ≤ Ii(k) ≤ Ni(k) and 0 ≤ Ri(k) ≤ Ni(k).

Notice that, in the right hand side of (4.21), the terms Si(k+ 1) and Ii(k+ 1) outside the
parenthesis have been taken at k+1 instead of k and in proposition 4.4, we show that with this
discretization, we have non-negative Si(k), Ii(k) and Ri(k). Recall that in the SIR dynamics,
people are transferred from one compartment to another depending on their infection status.
In the discretization (4.21), it is ensured that this transfer is reflected by diminishing the
number in one compartment by multiplication with a fraction as can be seen in (4.22). On the
other hand, in Euler discretization of SIR-mobility model, this transfer between compartments
is done by using a subtraction term as for instance can be seen in (4.23) for the variable S.

Si(k + 1) = Si(k)−∆tβi
Si(k)Ii(k)

Ni(k)
+ ∆t

∑

j∈Ni

(
φji(k)

Sj(k)

Nj(k)
− φij(k)

Si(k)

Ni(k)

)
(4.23)
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In (4.23), the term −∆tβi
Si(k)Ii(k)
Ni(k) along with the term −∆t

∑
j∈Ni

(
φij(k) Si(k)

Ni(k)

)
can some-

time lead to negative S depending on the time-step size ∆t. Instead, in the proposed dis-
cretization, the evolution of S is given by (4.22a), where we see that the transfer of people
out of this compartment is reflected by diminishing the number through multiplication by a
fraction. Therefore, ensuring the non-negativity of S as the non-negativity of the terms in the
the square-bracket of (4.22a) is ensured because of the flow defined in the section (4.3).

4.5 Concluding remarks

In this chapter, we consider a supply-demand based mobility model which captures the daily
movement of people between residences and places of interests called destinations, using time
schedules and gating profiles. This model also accommodates the possibility of imposing
restrictions on mobility which when integrated with an epidemic spread model, can be utilized
for epidemic mitigation.

These models are given in continuous-time in which the flows are defined such that the
model has nice properties of non-negativity, boundedness and mass conservation. For their
implementation to large-scale networks, the models needs to be discretised. Therefore, we
analysed the problems encountered in the discretization of this model and proposed to redefine
the flows in discrete-time which preserves the properties of non-negativity, boundedness and
mass conservation. Moreover, we also provide a dicretization of the SIR-mobility model,
which integrates the mobility and epidemic spread and also preserves the nice properties of
boundedness and non-negativity.

We will calibrate the parameters of the mobility model presented here in Chapter 5. Both
the models in discrete-time presented here will be used to devise optimal control policies for
epidemic mitigation in Chapter 6.
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In this chapter, we provide methodologies to compute the parameters of the mobility model
described in Chapter 4 to implement it in the Grenoble metropolis. First, we identify the
origins and destinations and then build the mobility network between them before computing
the parameters required in the model.

Grenoble is a metropolitan city in France located in the valley of the Alpes mountain range.
A métropole (French for “metropolis“) is an administrative entity in France, in which several
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communes cooperate, and which has the right to levy local taxes. Grenoble-Alpes métropole
is centered on the city of Grenoble. The area which we consider in this work includes 55
communes including all the 49 communes in Grenoble-Alpes métropole and 6 communes in
Gresivaudan, which are of economic importance to the Grenoble métropole. The population
of this area is about 500000 and has a surface area of about 600km2. We refer to this area as
Grenoble area here-onwards. In order to implement the mobility model (4.12),(4.15)-(4.18) to
a large-scale network of a metropolitan city, we need the following parameters:

1. Map of the communes in the area.

2. Origin nodes Vo and destination nodes Vd.

(i) Location of all the nodes in Vo and Vd.
(ii) Population Pi, ∀ i ∈ Vo.
(iii) Capacities Cj , ∀ j ∈ Vd.

3. OD matrix Oij =

{
1 if (i, j) ∈ E
0 otherwise

, to decide which origins and destinations are

connected to each other.

4. For destination j in each subcategory Dαc for each day of the week.

(i) Time schedules to define DGP and SGF

– opening times (aj),
– closing times (bj) and
– average time spent (sj), which will be described later and used to define DGP

for some destination categories.
– mobility window [tij , tij + τij ]

(ii) Demand Gating Profiles(DGPs) δic(t) for and Supply Gating Functions(SGFs).

5. For each edge (i, j) ∈ E , Mij , which is defined the average number of people going from
i to j daily.

We will discuss how to retrieve these parameters to build the large-scale mobility network of
Grenoble from the public information in detail in the following sections. In particular, we
will discuss the parameters of the three components of mobility: 1. Where? 2. When? 3.
How many? In ‘where’, we consider the map, nodes Vo and Vd and the OD matrices for each
subcategory. In ’when,’ we compute the time schedules and the gating profiles, and finally, in
‘How many’, we compute Mij for the destinations in each subcategory.

5.1 Origin-destination network

At first, we need the map of the communes in the area and need tools to manipulate it. For
that purpose, we use an open source software called QGIS. This software can be used to make,
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edit/manipulate or display maps and their features. In this work, the main source of data for
maps is OpenStreetMap [Opeb]. Openstreetmap is an open source collaborative project to
create a free editable map of the world and the geodata underlying the map is considered the
primary output of the project. The main source of statistical data is INSEE [INSb]. INSEE
is a government agency that conducts a census to collect socio-economic information from the
people in France. The other sources, if any, will be indicated in the details corresponding to
the different origins or destinations.

The coordinates of the boundaries of all the French communes can be downloaded from
[RFa] in GeoJSON format. The GeoJSON format is useful to display different information
on a map. This GeoJSON file contains name and coordinates for each commune. We use
GeoJSON files to locate the origin and destination nodes also as it helps us store any kind
of information corresponding to any location on the map and can be easily manipulated in
‘Python’ or simple text editors like ‘Notepad++’.

5.1.1 Origins

The residential areas of the communes are considered to be the origins. For mobility, we
aim to study the movement of the population of this origins. The population data for the
communes is retrieved in form of a table from INSEE [INSd]. Note that, in the area of
our study, Grenoble is the most populated commune with 160778 residents and the Mont-
Saint-Martin is the least populous commune with 79 residents. Moreover, the population of
Grenoble is almost five times that of the second most populous commune, therefore, in the
implementation, we consider a division of Grenoble, the commune which is basically located
at the center of the metropolis, into 6 parts which are called sectors. Therefore, the number
of origins increases from 55 to 60.

5.1.1.1 Partition of Grenoble commune

Grenoble commune is divided into 6 ‘sectors’, that regroups different neighbourhoods. The
sectors defines certain rules/regulations that affect daily life of the residents such as schools,
voting etc. This division is done by grouping smaller partitions called IRIS. IRIS is a partition
done by the government to identify an area with population greater than 10000 or with
population between 5000 to 10000. In Grenoble, there are 70 IRIS. We obtain the coordinates
of these sectors by regrouping IRIS whose coordinates can be found on [Opea]. The grouping of
IRIS has been done according to the division given on the official webpage of Grenoble [Gma].
In QGIS software, it can be done by taking union of polygons formed by the boundaries of
IRIS.
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Figure 5.1: Zones considered in our study: 54 communes and the 6 sectors in which Grenoble
has been partitioned. In the inset, we can see the partition of Grenoble commune into six
sectors.

Different datasets for these sectors can be retrieved from [Gma]. Now that, Grenoble
commune has been divided into 6 sectors, from here onwards, the communes and these sectors
of Grenoble will be referred as zones which are depicted in Figure 5.1.

5.1.1.2 Location and population of origin nodes

For the graphical representation and for implementation of the model, each zone is represented
by a node which is positioned in the residential area. This positioning of the nodes has
been done manually inspired by the position of nodes on a INSEE [INSe] or by locating the
residential areas on the online maps manually. Each origin node has a population Pi of the
corresponding zone. The population of the communes has been taken from [INSd] and that
for the partition of Grenoble from [Gmc]. Moreover, the population at each origin according
to the age groups 0−15, 16−24, 25−64 can be obtained from [Ins]. For simplicity, we assume
that these age groups are uniformly distributed. Therefore, to find the number of children at
any origin between the age 5− 10, for instance, we divide the population of age group 0− 15

in that origin by 3. In this way, we obtain the population of different age groups.

5.1.2 Destinations

Destinations comprise of the places where people go for some time during the day or night for
a short period of time and then return to their residences. We denote them by a node on the
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map. These include working places, schools, hospitals etc. First, in the following subsection,
we provide the classification of these destination nodes. Then, in the following subsection, we
discuss the method for locating the destination nodes. Finally, when we move to the section of
a particular destination category or subcategory, we mention the location method and discuss
mainly the strategies or methods for computing the capacities of the destination nodes.

5.1.2.1 Locating the destination nodes

Unlike the origin nodes, the data for location is not always available, so we apply different
strategies to locate various classes of destination nodes. We explain these methods in detail
in the following:

Method 1: using Opentstreetmap data In general, the objects or entities on Open-
streetmap are labeled correctly but many a time some objects are labeled incorrectly since it
is open-source. It makes the retrieval of data in categories difficult. In this method, we follow
the following steps:

1. Export the map data of a squared region from [Opeb] by using the export option on the
website. Since the region of selection is large in our case, we need to use overpass API or
planet OSM from the left panel to import the map data. On exporting, it downloads all
the data for the chosen region and contains many information like bus stops, shops, trees,
parks, fountains, hospitals etc., along with many attributes such as location, opening
and closing times, websites etc.

2. Since the downloaded data is for a squared region, we must select only the data concerned
with the Grenoble area. For that, we use the ‘intersection tool’ of QGIS software. It is
used to obtain all the common attributes from two given layers if they share some area
in common. The output is one layer with all the attributes at the intersection of these
two layers. Here, we use this tool with two input layers, one being the map data for a
square region downloaded from OSM and the other being the boundaries of our region
as depicted in Figure 5.1.

3. Once we have the desired data for our region as an output of the previous step, we need
to filter out the nodes of the desired category by using the ‘filter tool’ in QGIS. The
filter tool uses some SQL queries to extract the data matching our queries.

4. Once filtered, we need to remove unwanted attributes and keep only the wanted at-
tributes such as location or names etc. we also need to check for garbage nodes. Some-
times, there are too many garbage values because some contributors do not put the
correct labels. If we find any garbage nodes, we need to remove them by applying the
filter again. There is also a chance of missing some nodes of the same type because all
the nodes are not labeled correctly.

5. Save the file in GeoJSON format using QGIS.
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Figure 5.2: Classification of destinations in categories and subcategories.

Method 2: Manually by creating and editing a GeoJSON file directly If the coordi-
nates and other data of the destinations are available from some website, we make a GeoJSON
file directly by writing the coordinates, names and capacity manually. Here, the GeoJSON
files have been edited using Notepad++. If needed, they can also be edited later directly in
Notepad++ or by editing the attributes in QGIS.

Method 3: Locating the destinations manually in QGIS For some destinations, nei-
ther the location coordinates nor OSM data is available. In these cases, we locate the nodes
manually in QGIS using the node editing tool in a layer. While locating the node in QGIS,
the location of the corresponding destination in OSM map can be taken as a reference. Once
the nodes are located, we export the layer in GeoJSON format and the other attributes are
edited later either in Notepad++ or in QGIS as per convenience.

5.1.2.2 Classification of destinations

The destinations have been classified into five categories and each of them into some subcat-
egories which can be seen in Figure 5.2. It can be seen that we have 5 categories and 15

subcategories in total. Throughout the chapter, we will find the parameters for each subcat-
egory. At first, we will discuss the location and capacities of each destination class. All the
figures in this section depicting the destination nodes have been taken from the simulation
platform which will be described in Chapter 7. The position of the nodes are their actual
locations.

5.1.2.3 Schools

In this category, we have all the educational institutions such as

1. Primary schools

2. Middle schools

3. High schools
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4. Universities

Primary Schools In this subcategory, we consider all the primary schools in the region. It
includes école maternelle, école élémentaire and école primaire. There is at least one primary
school in each zone. The nodes in this category have been located manually using method 2
as described in 5.1.2.1. For their capacities, we take the total number of students studying
there. The location and capacity for primary schools has been taken from [AGb] by searching
for ‘école’ in each zone. For each zone, this website provides a complete list of such schools
with links to their websites. Each school website contains relevant information such as name,
address, location coordinates, the total number of students, etc. We manually input these
data in the GeoJSON file for primary schools.

Middle and high schools In these two subcategories, we consider all the middle
schools(collège) and high schools (Lycée) in our region. They have been located by method 2
as described in 5.1.2.1. For their capacities, we consider the total number of students study-
ing there. The location and capacity for the colleges and Lycee have been retrieved from the
website [AGc] by following the same procedures as that for the primary schools.

Universities Here, we consider the sites of University Grenoble Alpes namely, Campus in
Saint Martin d’Hères, Grenoble INP and IUTs in Grenoble downtown. We locate them by
method 3 as described in 5.1.2.1. Here, the total capacity is defined as the total number of
students and administrative or technical staffs which is 59600 as mentioned on the university
website [UGA]. For the capacity of different sites, let Cu = total capacity = 59600. We divide
the total capacity to obtain the capacities for different sites as follows:

1. Campus- 85% of Cu,

2. Grenoble INP- 10% of Cu,

3. IUTs- 5% of Cu.

This division has been done keeping in mind that most of the students visit the campus daily.
Finally, Figure 5.3 depict the nodes in different subcategories of schools.

5.1.2.4 Hospitals

In this category, we have considered the hospitals Centre hospitalier universitaire (CHU) nord,
CHU sud, Clinique belledonne, Clinique des Cèdres and Clinique mutualiste. We locate each of
these hospitals by method 3 as described in 5.1.2.1. The capacity of each hospital is considered
to be the sum of the following:

1. total number of available beds.
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(a) (b)

(c) (d)

Figure 5.3: Nodes for destinations in school category. (a) Primary school nodes. (b) Middle
school nodes. (c) High school nodes. (d) University nodes.
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2. total number of staffs including the doctors.

3. total number of daily consultations.

4. total number of visitors accompanying the patients. Information about the first three is
more or less available in some form, which will be discussed for each hospital. The data
regarding the number of visitors need to be estimated based on the first three. So, here
we discuss the strategy for this estimation. For the number of visitors to a hospital, we
need to consider that there are three kinds of patients who visit the hospital:

(a) consultations only.

(b) ambulatoire - they stay at the hospital for half a day to a full day mostly for minor
surgeries.

(c) hospitalization - the patients who need to be hospitalized and stay at the hospital
for six days on an average. This information has been retrieved from [CHUa].

Due to the lack of data regarding the number of visitors, we can follow the following
rule of thumb.

• For consultation and ambulatoire - zero visitors for 80 percent and 1 visitor for 20

percent.

• For hospitalized patients - one or two visitors per patient. The maximum limit of
visitors is 2 per patient at CHU Voiron [CV]. Due to lack of this data for others,
we take this rule in general for other hospitals as well. To compute the visitors
against hospitalized patients, we assume that 80% of the beds are occupied.

• Therefore, the general rule for number of visitors in a hospital is as follows:

number of visitors

= 0.2 ∗ (number of consultations + patients in ambulatoire)

+ 1.5 ∗ 0.8 ∗ (total number of beds.)

(5.1)

Now, we discuss the data for 1, 2 and 3 in details for each hospital in the following sections.

CHU nord and sud There are two CHUs in the region which are CHU nord located in La
Tronche and the other is CHU sud located in Echirolles. These are the main and largest public
hospitals in the Grenoble area. Annual data for three CHUs (CHU nord, CHU sud and CHU
Voiron) are available collectively on [CHUa]. Here, we consider the latest available annual
data which is for 2018. This data is for three hospitals (CHU Voiron, CHU nord and CHU
sud) but only CHU nord and CHU sud come under our area. The number of beds in CHU
voiron is given on the website [CHUb] so, at first, we divide the data in two parts (one for
CHU Voiron and the other for both CHU nord and sud) in proportion to the number of beds.
Since, CHU nord is larger than CHU sud, the remaining data is divided such as two-thirds
are given to CHU nord and the remaining one-third to CHU sud. The number of beds are
given as follows:
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Data category All CHU CHU nord CHU sud
Number of beds 2133 1222 611
Number of employees 9000 5156 2568
daily consultations and ambulatoire 2677 1534 767
Visitors 1773 886

Table 5.1: Computation of data for CHU nord and CHU sud

• Total number of beds in three CHUs = 2133.

• Total number of beds in CHU Voiron = 300.

• the proportion by which other data needs to be divided in order to obtain them for CHU
nord = 2

3 ∗ 1833
2133 .

• the proportion by which other data needs to be divided in order to obtain them for CHU
sud = 1

3 ∗ 1833
2133 .

Now, we compute all the data for CHU which is depicted in Table 5.1:

Clinique mutualiste Clinique mutualiste de Grenoble is a non-profit Private Health Es-
tablishment of Collective Interest (ESPIC) participating in the public hospital service. The
data for this hospital has been retrieved from the website [CM]. The number of visitors has
been computed using (5.1). Table 5.2 contains the capacities of this hospital.

Clinique Belledonne Clinique Belledonne is a private hospital located in Saint Martin
d’Heres. It has 290 beds and around 650 employees [CB]. The data regarding the daily
consultations is not available, so it is computed in proportion to the number of doctors by
considering the data for CHU as the ground rule. There are 2677 consultations per day at
CHU which has 2000 physicians. In this proportion, Clinique Belledonne, which has 150

physicians, will have 201 consultations and ambulatoire patients daily. The number of visitors
has been computed using (5.1). The capacity of this hospital is listed in Table 5.2.

Clinique des Cèdres Clinique des Cèdres is a private hospital located in Echirolles. It has
200 beds as mentioned on the website [CC]. No other relevant data other than the number of
beds is available to us, so we compute them in proportion to the number of beds taking the
data for Clinique Belledonne as ground rule. The number of beds in Clinique Belledonne is
290 and that in Clinique des Cèdres is 200 so the proportion by which the data of Clinique
is multiplied in order to get that for Clinique des Cèdres is 200

290 . Please see Table 5.2 for the
complete data. Figure 5.4 depict the nodes corresponding to hospitals.
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Hospital name Beds
Consultations
and
ambulatoire

Employees Visitors Total

CHU nord 1222 1534 5156 1773 9685
CHU sud 611 767 2568 886 4832
Clinique mutualiste 436 286 1300 581 2603
Clinique Belledonne 290 201 650 348 1489
Clinique des Cèdres 200 136 442 237 1015

Table 5.2: Capacities of hospitals

Figure 5.4: Hospital nodes

5.1.2.5 Workplaces

The category workplaces has the following three subcategories:

1. Companies

2. Research centers

3. Microenterprises and others

In France, INSEE [INSa] classifies the ‘enterprises’ on basis of number of employees as
follows:

• Grandes enterprises (GE) - A GE has more than 5000 employees and 25% of the total
employees work there.
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• Entreprises de taille intermédiaire (ETI)- An ETI has less than 5000 but more than 250
employees and 25% of the total employees work there.

• Petites et moyennes entreprises (PME) - A PME has less than 250 but more than 9
employees and 30% of the total employees work there.

• Microenterprises (MIC) - An MIC has less than 10 employees and 20% of the total
employees work there.

We consider GE, ETI and PME in companies subactegory and MIC in Microenterprises and
others along with some public offices.

Companies Here, we consider mainly the private companies. Due to lack of information
on the list of companies and number of employees working in them, we consider the list of
companies provided in [Pre] with employees greater than or equal to 120. The destination nodes
corresponding to the companies from this list have been located manually using method 3 as
stated in 5.1.2.1. We have also added some other companies located in the same commercial
zones as visible in the map on QGIS. Figure 5.5a depicts the companies considered. Here, the
capacity is defined to be the total number of employees working in the companies. In this
subcategory, we consider the GE, ETI and PMEs which employees around 80% of the total
employees. Since, we consider only the companies with more than 120 employees, we assume
that we have included only all GE and ETI but only half of the PMEs in our list, that is we
have only considered 65% of the total employees. Therefore, we need to inflate this number
which is done as follows:

Let Te = total number of people working in private companies and Am = sum of employees
in companies from the magazine. Since, the magazine gives us 65% of Te, therefore, Te can
be computed as

Te =
100

65
∗Am. (5.2)

According to INSEE, people working in GE + ETI + PME= 80%Te. Since, we assume to
have only 65% of GE+ETI+PME from the magazine, we need to inflate the capacities of
the companies to 80%. Since, 65% of Te = Am, then 80% of Te = 80

65 ∗ Am. Finally, for the
individual companies, we have that

the inflated capacity of the companies

=
80

65
∗ original no. of employees from the magazine.

(5.3)

Some Companies like ST microelectronics have more than one sites in the area. We
compute the capacity of each site by dividing the total number of employees in that company
by the number of sites. To the companies considered apart from the ones from [Pre], an
average capacity of 120 has been given.
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Research centers In this category, we consider the research labs listed on [GI] and some
others which are associated with the University Grenoble Alpes. They have been located
manually by method 3 as explained in 5.1.2.1. The capacity of each research center is the sum
of the number of doctoral students, researchers and technical staffs working in each center.
This information has been taken from the respective websites of each of these research centers.

MIC and others In this subcategory, we include the public offices and microenterpises
(MIC). They are represented by a node in each commune. The capacity of each node is sum
of the employees of MIC and employees in public offices in the corresponding communes.

Let Me = 20% of Te = the total number of employees in microenterprises in the region
and Ep = the total employees of public offices in the region. Therefore, capacity of each node

= (Me + Ep) ∗
population of the zone

total population
.

We have the knowledge ofMe but we need to find Ep. We observed that there is a huge gap
in the actual number of employees in a zone and our estimate of the number of employees taken
from the magazine. Therefore, we consider to include the left ones such as public employees as
others. We know from INSEE that 33% of the total employees work in public offices. Some of
these employees have already been taken into account in hospitals, universities, schools, etc.
so that we have already counted one-third of the total employees in them implicitly. We have
also counted the employees as the capacity of companies in the previous section that is Te in
(5.2) which we assume to be one-third of the total. So, the remaining one-third is considered
among others and hence Ep = Te.

Therefore, we have that the capacity of each node in MIC and others

= (0.2Te + Te)
population of the zone

total population

= (1.2 ∗ Te)
population of the zone

total population
.

(5.4)

5.1.2.6 Shopping centers

This category is subdivided into three subcategories:

1. Shopping malls

2. Supermarkets and

3. Small shops

The capacity in this category means the maximum number of shoppers allowed in the shop
at a given time.
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(a) (b) (c)

Figure 5.5: Nodes in the workplaces category. (a) Nodes depicting companies. (b) Nodes
depicting research centers. (c) Nodes depicting MIC and others.

Shopping malls In this category, we consider the big shopping malls such as Grand Place,
IKEA and Castorama which have more than one floor. The nodes corresponding to these
destinations have been located by method 3 as stated in 5.1.2.1.

For the capacity, we follow the national fire regulation [Ter] for maximum number of
allowed shoppers in a shop depending on their surface area. From there, we know that on
the ground floor, the permissible number of shoppers is 2 person per m2 in one-third of the
surface area, on first floor 1 person per m2, on second floor 1 person every 2m2, in one-third
of the surface area. Therefore, the capacity of the shopping mall with three floors available
for shopping is given as follows:

capacity of shopping malls = ξs ∗
7

6
∗ surface area (5.5)

where ξs is a scaling parameter to tune the capacities to a reasonable amount. The parameter
ξs accounts for the fact that the actual available surface area of a shop also depends on a
number of factors such as shopping shelves, walking area, billing area etc. It can also account
for the unavailable spaces because of people moving with their shopping trolleys. Here, ξs = 1

3 .

The surface area for these shopping malls have been taken from their wikipedia pages.

Supermarkets For the supermarkets, we consider the shops with a surface area of more than
300m2. Therefore, we consider mainly Carrefour hypermarkets, Carrefour markets, Carrefour
Contact, Geant casino, Casino supermarché, Monoprix, Biocoop, Lidl, Intermarché super,
Super U and a few others. On the commercial websites of the supermarket groups such as
carrefour, they specify how different outlets within their group are classified based on the
surface area or location. The classification of supermarkets and their average surface areas
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Supermarket name
Average Surface
area (m2)

Capacity
(ξs = 1,
fire regulation)

Capacity
ξs = 1/3)

Carrefour Hypermarket 10000 6667 2222
Carrefour Market 2000 1333 444
Carrefour contact 600 400 133
Geant casino 7400 4933 1644
Casino supermarché 1700 1133 378
Monoprix 1800 1200 400
Hyper U 4985 3323 1108
Super U 2016 1344 448
Intermarché Super 2000 1333 444
Lidl 1000 667 222
Biocoop 300 200 67
Supermarkets(national average) 6347 4320 1410

Table 5.3: Surface area and capacities of supermarkets

have been taken from different webpages corresponding to different supermarkets which are
Carrefour [Car], Monoprix [Bioa], Intermarché , Lidl [Jou], Biocoop [Biob] and from wikipedia
pages.

These supermarkets have been located by method 3 as described in 5.1.2.1. For the
capacity, we consider the nation wide rule regarding the permissible number of shoppers
according to fire-safety regulations [Ter]. For the sake of simplicity, we assume that the
supermarkets and small shops have only one floor for shopping. Since, on the ground floor,
the permissible number of shoppers is 2 persons per square meter on one- third of the surface
area, the capacities of the supermarkets are given by

Capacity of supermarkets or small shops =
2

3
∗ surface area of the shop. (5.6)

similar to the shopping areas, supermarkets and small shops are also never full to this capacity,
so, we reduce the capacity by a scaling factor ξs. Therefore,

Capacity of supermarkets = ξs ∗
2

3
∗ surface area of the shop. (5.7)

Table 5.3 contains the average surface areas and the capacities of different supermarkets.
Apart from the shops listed in Table 5.3, we also include Satoriz, Naturalia and Spar markets
for which we consider the surface area and capacities equal to that of Carrefour contact as
they are of the nature. We also consider some other supermarkets and for that we take the
surface area same as the national average from the website [INSc].

Small shops We retrieve their location by filtering the data from openstreetmap using QGIS
software as explained in 5.1.2.1. In this category, we consider the shops with average surface
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Shop type
Average Surface
area (m2)

Supérettes 216
Commerces d’alimentation générale 57
Commerces de détail de produits surgelés 263
Alimentation spécialisée et artisanat commercial 62
Habillement et chaussures 168
Culture, loisirs, sport 209
Produits pharmaceutiques et articles médicaux et orthopédiques 111
Autres équipements de la personne 79
Équipements de l’information et de la communication 128
Autres commerces de détail 180

Table 5.4: Small shop type and their average surface area as mentioned on [INSc].

area less than 300m2. INSEE specifies the shop type and national average of their surface area
on [INSc]. These small shops are of the types which have been enlisted in Table 5.4. It can
be seen that these shops encompasses almost all types of small shops.

We compute the average of surface area of these shops to obtain a common surface area
for all the small shops in Grenoble area and their capacity is computed by (5.7) with ξs = 1/3.

The average surface area is 147m2 and hence the average capacity is 33. All the nodes in this
subcategory have been given the same capacity.

The nodes corresponding to the destinations in this category have been depicted in Fig-
ure 5.6.

5.1.2.7 Leisure

The category leisure has four different subcategories which are:

1. Restaurants and bars,

2. Parks,

3. Stadiums and

4. Theaters.

Restaurants and bars: The restaurants and bars have been located by method 1 as de-
scribed in the 5.1.2.1. We have located around 700 restaurants and bars in the considered
zones. Here, the capacity is the total number of seats available in a restaurant. Due to lack of
data regarding available seats for all these restaurants, at first we consider the total number
of seats in 55 restaurants in Grenoble downtown from the website [Lin]. In our sample of 55
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(a) Nodes depicting shopping
malls

(b) Nodes depicting supermar-
kets

(c) Nodes representing small
shops

Figure 5.6: Destination nodes in the shopping category.

restaurants, the mean is 46 and variance is 1320. In order to impute the capacities for the
remaining restaurants, at first, we find which probability distribution fits this sample data
best using “distributionFitter" app in Matlab as can be seen in Figure 5.7a.

(a) (b) (c)

Figure 5.7: Curve fitting of the 55 sample capacities of restaurants to find the probability
distribution which fits them the best. (a) Curve fitting for the total number of seats in the
restaurants using ‘distributionFitter’ app in MATLAB. (b) probability density function of the
Lognormal distribution which fits our sample data. (c) histogram of the capacities of all the
restaurants in our region generated using Lognormal distribution with mean m and variance
σ computed using (5.9).

We find that the desired distribution is Lognormal distribution with the following proba-
bility density function

fX(x) =
1

xχ
√

2π
exp(−(log x−m)2

2χ2
). (5.8)

where m and χ is computed from the mean mean and variance var of the our sample as
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follows:

m = log(
mean2

√
var +mean2

) (5.9)

χ =

√
log(1 +

var

mean2
). (5.10)

For our sample mean = 46 and var = 1320. The pdf of the distribution which we follow is
given in Figure 5.7b. We generate data sets of 800 capacities using Lognormal distribution
given by (5.8) and then we distribute these capacities to the restaurants randomly. Figure 5.7c
shows the histogram of the capacities generated. We consider the capacities of the restaurants
up to 200 only.

Parks: We locate the parks by method 3 as described in 5.1.2.1. We retrieve the surface
area of the parks on their respective websites, or the website of Grenoble-Alpes métropole
or on the website of Isere tourism. The parks for which we don’t have the surface area, we
allocate them an average surface area of 50000m2. For the capacities of the parks, we consider
the following thumb rule:

Capacity of a park =
total surface area of the park

15
. (5.11)

Here, we assume that in general, in a not very crowded situation, there can be one person
in an area of 15m2. In case of any event, this thumb rule won’t be valid any more because
there would be many persons in a small area of the parks. However, in general, this capacity
is not filled up and people go there either just to walk or run. Therefore, we scale the
above mentioned capacity by ξp to have a reasonable number of daily visitors. Here, we take
ξp = 0.02, therefore, we have that

Capacity of a park = 0.02 ∗ total surface area of the park
15

. (5.12)

Stadiums and theaters: They nodes in these two subcategories have been located using
method 3 as described in 5.1.2.1. The capacities of the stadiums and the theaters are the total
number of available seats. This information is taken from their respective websites or from
the website of Grenoble métropole [Gmb] or the booking websites for the theaters.

The destination nodes of the leisure category can be seen in Figure 5.8.

5.1.2.8 Aggregation of nodes

In some subcategories such as restaurants and small shops, the number of nodes is very large.
So, in order to reduce the complexity in the mobility model to be implemented, we aggregate
the destinations nodes in such subcategories. This aggregation is done per zone by replacing
all the nodes belonging to a subcategory in a zone by a single node. The location of such
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(a) (b)

(c) (d)

Figure 5.8: Destination nodes in the leisure category. (a) Nodes representing restaurants. (b)
Nodes depicting parks. (c) Nodes representing stadiums. (d) Nodes depicting theaters.
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aggregated node is the barycenter of the locations of all the nodes of a subcategory in a zone
and the capacity of such a node is the sum of the capacities of all the nodes of the same
destination category in that zone. The destination subcategories for which this aggregation
has been done are primary schools, supermarkets, small shops, companies, research centers
and restaurants. Figure 5.9a depicts how the the aggregation of nodes belonging to the same
subcategory is done per zone and Figure 5.9b shows all the nodes in the region where as
Figure 5.9c depicts the aggregated nodes.

5.1.3 Mobility network

Each origin/destination node i is connected to at least one destination/origin node j. For each
subcategory, we have different rules to decide if the pair (i, j) ∈ E , where i ∈ Vo and j ∈ Vd.
These rules have been listed in Table 5.5.

Subcategory Rules for connecting origin and destination nodes
Primary schools connected to the origin node of the same zone.
Middle schools connected to the corresponding govt. defined college sec-

tor.[DIb]
High schools govt. defined rules based on one’s address [AGa][DIa]
Universities/ Hos-
pitals

connected to every origin node

Workplaces/
Shopping/ Leisure

Attraction based rules to be defined in Section 5.1.3.1.

Table 5.5: OD connection rules for different subcategories

5.1.3.1 Attraction based rules

Let dij represent the road distance between origin i and destination j and σj , the maximum
distance that ν% of people of i travel ‘daily’ to visit j. Here, we have assumed ν = 95% which
means that the rest 5% of the people in i choose to travel a distance more than σj to visit
the destination j. Given the location of origins and destinations, we compute the minimum
real minimum road distance dij between all possible i ∈ Vo and j ∈ Vd using OSMnx python
library [Boe17]. It has been estimated that the number of individuals per unit area who travel
a distance from home is inversely proportional to square of the distance travelled [Sch+21].
Inspired by the gravity models [Bar+18], we compute Qij , the attraction between i and j as

Qij = PiCje
−| ln(1−ν)|

(
dij
σj

)2

.
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(a)

(b) (c)

Figure 5.9: Aggregation of nodes in the subcategories: primary schools, supermarkets, small
shops, companies, research centers and restaurants. The capacities and location of the aggre-
gation nodes are the sum of the capacities of the non-aggregated nodes the barycenter of their
locations respectively. (a) Aggregation of nodes belonging to the same subcategory in a zone.
(b) Non- aggregated destination nodes in our region. (c) The aggregated destination nodes.
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For each destination j, normalize the attraction Qij

Aij =
Qij∑
hQhj

=
Pie
−| ln(1−ν)|

(
dij
σj

)2

∑
h Phe

−| ln(1−ν)|
(
dhj
σj

)2 .

where the dependence of Cj cancels out from numerator and denominator. Then, the OD
matrix Oij is computed as

Oij =

{
1 if dij ≤ σj & Aij ≥ ηj
0 otherwise

Note that, here σj is a threshold on the maximum distance traveled by the most people ‘daily’
to go from an origin to destination j and ηj is a threshold on the attraction between i and j.
These thresholds are different for destinations in different subcategories and they reflect the
fact that a person prefers to go to a nearer destination if available. For example, in general, we
visit the shops which are close to our residences. Figure 5.10 depicts how the thresholds σ and
ηj are applied to compute the OD connections. In Figure 5.10a, we consider the upper-left
quadrant after applying the thresholds.

(a) (b)

Figure 5.10: Computation of OD connection matrix using attraction law. (a) plot of Attraction
vs distance for companies. (b) OD connections for companies with σ = 15km.

Based on the rules for connecting two locations corresponding to each subcategory, ac-
cording to Table 5.5 and choosing thresholds for each subcategory, we have the connections
as depicted in Figures 5.11-5.15.

Finally, we have the mobility network of Grenoble area as depicted in Figure 5.16. It
can be seen that the city center has the highest connections which is a fact as most of the
destinations are situated in the city center and it attracts a large number of people daily.
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(a) (b)

(c) (d)

Figure 5.11: Connections for schools based on the government rules. The black square nodes
represent the origins and the colored diamond shaped nodes represent the destinations in the
corresponding subcategory. (a) OD connections for primary schools. (b) OD connections for
middle schools. (c) OD connections for high schools. (d) OD connections for universities.
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(a) (b) (c)

Figure 5.12: OD connections for the destinations in workplaces category using the attraction
based laws. (a) OD connections for the companies. Here ηj = 0.001 and σ = 15km. (b) OD
connections for the research centers. Here ηj = 0.001 and σ = 15km. (c) OD connections for
the MICs. Here ηj = 0.001 and σ = 5km.

(a) (b) (c)

Figure 5.13: OD Connections for destinations in shopping category using attraction based
laws. The black square nodes represent the origins and the colored diamond shaped nodes
represent the destinations in the corresponding subcategory. (a) OD connections for the
shopping malls. Here ηj = 0.001 and σ = 15km. (b) OD connections for the supermarkets.
Here ηj = 0.001 and σ = 8km. (c) OD connections for the small shops. Here ηj = 0.001 and
σ = 5km.
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(a) (b)

(c) (d)

Figure 5.14: Connections for the destinations in the leisure category. The black square nodes
represent the origins and the colored diamond shaped nodes represent the destinations in the
corresponding subcategory. (a) OD connections for the parks. Here ηj = 0.001 and σ = 5km.

(b) OD connections for the stadiums. Here ηj = 0.001 and σ = 20km. (c) OD connections for
the theaters. Here ηj = 0.001 and σ = 10km. (d) OD connections for the restaurants. Here
ηj = 0.001 and σ = 5km.



84 Chapter 5. Human mobility model calibration

Figure 5.15: Connections for hospitals. The black square nodes represent the origins and
the pink diamond shaped nodes represent the hospitals. Hospitals are connected with all the
origins.

Figure 5.16: Mobility network in Grenoble area. The destinations are denoted by yellow nodes
and origins by black. The nodes with higher connections are brighter than the ones which have
low connections. This figure has been taken from the demonstrator which will be described
in Chapter 7.
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5.2 Time dependent profiles

In this section, we find the time schedules for different subcategories. In particular, we find
the destination schedule, average time spent, mobility windows and Demand Gating Profile
(DGP) for each subcategory.

5.2.1 Destination schedule, mobility window and average time spent

Recall that the destination schedule of a destination j ∈ Vd is the daily time interval [aj , , bj),

where, 0 ≤ aj < bj ≤ 24 during which j is open. Here, aj and bj are the opening time and
closing time of the destination j ∈ Vd respectively. Mobility window is defined as the time
interval [tij , tij + τij ], during which there is mobility from i to j. Here, tij is the time when
the mobility starts from i to j and τij is the duration for which mobility keeps happening
between i and j. For the sake of simplicity, here we consider that τij = τji. It means that the
mobility window for the mobility from an origin i to a destination j is equal to the return
mobility window from j to i. Average time spent sj is the duration for which a person stays in
the destination j on an average. We set these parameters for each subcategory. Therefore, we
will follow the notations ag, bg, sg for opening time, closing time and the average time spent
of the destination subcategory g, where g ∈ {1, . . . , 15} and the mobility window from the
origins i ∈ Vo to the destination subcategory g will be denoted by [tig, tig + τig]. The mobility
window for the return from the destinations to the origins, will be denoted as [tgi, tgi + τig].

Table 5.6 contains different time-schedules parameters for different subcategories. The opening
time, closing time and the average time spent for primary schools, middle schools and high
schools has been taken from [RFb], [Sec] and [Lyc] and that for working places from [Off].
For shopping and leisure, we referred to the timings of some destinations on the web or
OSM maps and set that for all the other destinations in that subcategory. On the weekends,
schools and workplaces are closed. Note that we have different time schedules for each day
for the implementation to consider different time schedules for each day. This is important
since destinations in some subcategories, such as stadiums, are assumed to open only on the
evenings of each Friday and closed otherwise. Also, for example, primary schools have different
closing times on specific days of the week, and restaurants and bars are open till very late
on weekends. Moreover, it has been mentioned earlier that hospitals have different types of
capacities. Hence there are also different purposes for visiting hospitals. These persons can
be: employees denoted by Eh, new hospitalized patients Hh, patients going for consultations
Hc, and visitors Vh. We also assume a constant population is present in the hospitals during
nighttime. This includes the occupied number of beds and the proportion of employees who
do night shifts. We compute the occupied number of beds Bh by the following formula:

Bh = Hh × average time of hospitalization

where Hh is the average daily number of newly hospitalized patients. Let us assume that
the proportion of employees who do night shifts is 10%, then the constant population present
during the night time is given by Bh+ 0.1Eh. The average time spent at hospitals by a person
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Subcategory ag bg sg tig τig = τgi tgi

Primary Schools
7h30

16h30
(bg − ag) 7h30 1h

16h
Middle schools 18h 17h
High schools 18h30 17h
Companies

8h 18h (bg − ag) 8h 2h 16h30Research centers
MIC and others
Hospitals 7h 20h using (5.13) with

sE = 8, sC = 1

and sV = 1

7h (bg − ag) tig + sg

Shopping areas 10h 20h 2h 10h (bg − ag) tig + sg
Supermarkets 7h 30 23h 3

4h 7h 30 (bg − ag) tig + sg
Small shops 9h 19h 1

3h 9h (bg − ag) tig + sg
Restaurants and bars 8h 22h 2h 8h (bg − ag) tig + sg
Parks 0h 24h (bg − ag) tig + sg
Theaters 14h 23h 3h 14h (bg − ag) tig + sg
Stadiums

Table 5.6: Time schedules for different subcategories on a typical week-day. ag, bg and sg are
the opening time, closing time and average time spent for destination in subcategory g. tig is
when mobility from i to destination in subcategory g starts. τig = τgi is the size of mobility
window between i and destination in subcategory g.

is computed as

sh =
EhsE +HcsC + VhsV

Eh +Hc + Vh
(5.13)

where sE , sC , sV denote the employees work duration, average duration of consultation, and
average duration of visitors, respectively. For destinations in other categories also, there are
people with different purposes but the majority of the persons have a single purpose. For
example, in shops there are employees and shoppers but the number of shoppers is very high
in comparison to the the number of employees so the average time spent is mainly affected by
the shopper so we didn’t take the average time spent by the employees into account. On the
other hand, all four types of people coming to the hospitals are significant in number. Now
that we have the destination schedule we can easily compute the Supply Gating Functions by
(4.9). In the next subsection, we will find the Demand Gating Profiles for different destination
subcategories.

5.2.2 Demand Gating Profile (DGP)

Recall that DGP denoted by δig(t) is a function such that
∫ 24

0 δig(t)dt = 1. It captures the
mobility pattern from i to g. In general, we have two types of destinations.

1. One in which mobility happens during a window when people come to the destinations
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from the origins in the morning and stay there for a long period of time and the mobility
in the opposite direction starts at a specified time in the evening. This is the case with
all the destinations in school category, workplaces category and stadiums. In this case,
the DGP is defined as

δig(t) =

{
1
τig

t mod 24 ∈ [tig, tig + τig)

0 otherwise

and

δgi(t) =

{
1
τig

t mod 24 ∈ [tgi, tgi + τgi)

0 otherwise

Notice that, if we have different destination schedules for different days of the week, then
we will have different profiles for different days of the week. The destinations in school,
workplaces category and stadium subcategory have this profile as shown in Figure 5.17.
Recall that the stadiums open only on a friday night, the mobility only on that day and
follows the profile as similar to schools and workplaces.

2. The other kind is the one in which mobility keeps happening throughout the day. People
keep coming here, stay for some time and then return and it keeps happening till the
destination is closed. All the destinations of the categories hospitals, shopping and leisure
are of this type. In this case, if we find the demand gating profile δig(t) corresponding
to the mobility from origins to the destinations then the profile for return mobility is
given by δgi(t) = δig(t − sg), where sg is the average time spent per category. For the
hospitals, we have

δig(t) =

{
1
τig

t mod 24 ∈ [tig, tig + τig)

0 otherwise

For the shopping and leisure category, we inferred this mobility pattern δig(t) from
the household travel survey of Grenoble region done by INSEE in 2010 [Emd]. The
table ‘ED20A’ in the file EMD’10 contains the number of people traveling with different
motives on a given hour of a day. Since, the data points are given for each hour and in
absolute numbers, we obtain the required DGP for destinations in these two categories
by interpolation and normalising the values by the integral of the curve. For each of the
destinations, we compute these profiles for each day of the week. This information can
also be retrieved by observing the popularity trends of destinations in each subcategory
on google or OSM. In particular, the profiles on a week day is different from the ones on
a weekend reflecting the high popularity of destinations in leisure category. Figure 5.17
depicts the different types of DGPs we have for destinations in different categories on a
week day.
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(a) (b)

(c) (d)

Figure 5.17: DGP on a weekday for different destination categories. (a) DGP for the categories
schools and workplaces and stadiums in leisure (b) DGP for hospitals. (c) DGP for shopping.
(d) DGP for leisure.

5.3 Number of people

In this section, we will find how many people travel from i to j if they are connected.

5.3.1 Daily capacity of the destinations

In Section 5.1.2, we found the instantaneous capacities of different destinations denoted as
Cj . Now, the daily capacity of a destination can be defined as the total number of people who
can visit there. Let us denote the daily capacity of j by Cdj which can be computed as

Cdj = Cj
(bj − aj)

sj
.

Notice that, we have (bj−aj)
sj

≥ 1, ∀j ∈ Vd. Therefore, the destinations such as schools where
people stay for the whole day, the daily capacity Cdj is equal to the instantaneous nominal ca-
pacity Cj . On the other hand, for destinations such as shops where the mobility is continuously
happening, in that case Cdj >> Cj .
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5.3.2 Average daily number of people from origins to destinations

If for an origin-destination pair (i, j) ∈ E , Oij = 1 as computed in Section 5.1.3 for the
subcategory Dac , then the average daily number of people traveling from i to j ∈ Dac is denoted
by Mij and computed per subcategory Dac as

Mij = min{X1, X2}, (5.14)

where

X1 = Pic ∗ fpc ∗
Cdj∑

k∈Dac ,
k∈Ni

Cdk
and X2 =

Pic∑
h∈Nj Phc

∗ Cdj ∗
1

δ∗icτic
.

Here, Pic is the population of origin i which is eligible to go to destination subcategory Dac ,
and fpc is the fraction of the eligible population of origin i which, in general, goes to Dac (this
accounts for the fact that not all the eligible population goes every day to destination c).
Also, Cdj is the daily capacity of destination j, τic is size of the mobility window, and δ∗ic is
the maximum of the gating function δic(t). This definition of Mij gives daily demands that
are consistent with the population sizes and capacities. First, it takes into account the fact
that in normal operating situation (i.e., with nominal capacities, without restrictions), the
demand from i to j usually does not exceed population size of i and does not exceed capacity
of j. Second, it reflects the fact that largest demands are from largest origins towards largest
destination (as in the attraction law). The first term of (5.14), X1, considers the population
that is typically going from origin i to category c (this has size fpc Pic) and then splits it
among the destinations j that belong to category c and are neighbors of i, proportionally to
their daily capacities (representing their sizes). The second term, X2, instead, considers the
daily capacity of a destination j, weighted by a factor 1/(τicδ

∗
ic), and splits it among origins

i that are neighbors of j, proportionally to their eligible populations. The weighting factor
1/(τicδ

∗
ic) is equal to 1 when the gating function δic(t) has a rectangular shape, i.e., when δic(t)

is constantly equal to 1/τic over an interval of size τic and zero elsewhere; for other shapes, this
correction terms accounts for the fact that the computation of daily capacity assumes that
the destination is filled at full capacity over all its opening time, while the demand profile δ
is such that the demand reaches full capacity only at its peak δ∗, and is lower at other times.

Notice that the model assumes that people travel from origin i to destination j and then
returns back from j to i on the same day. This is expressed by defining Mji = Mij .

5.4 Simulation Example

Now that we have defined the model and calibrated the parameters for mobility model, in
this section, we show some simulation results for the mobility model (4.12)-(4.18) using the
parameters computed in this chapter for the large-scale network of Grenoble. The mobility
parameters DGP, SGF, Mij , aj , bj for each destination categories are the same as defined in
this chapter and the mobility happens along the edges the of the mobility network of Grenoble
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(a) (b)

(c) (d)

Figure 5.18: (a) Number of people Ni(k) of people in different origins and destinations in
Grenoble area during different times of a week. (b) Total number of people in the network
during the week. (c) Number of people in different destination categories during different
times of a week. (d) Heatmap showing distribution of people On Monday at 11:30 in the
morning. This heatmap is a screenshot from GTL-Healthmob simulation platform described
in Chapter 7.
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depicted in 5.16. The initial conditions are

Ni(0) =

{
Pi if i ∈ Vo
0 if i ∈ Vd

and we run the simulation for a week. Figure 5.18a shows the number of people at different
locations during the week. It can be seen that when the mobility starts, the people in origins
start to move to destinations and stay there for some time depending on the destination
category during the day time and return in the evening. Moreover, the total number of people
in the network remains constant throughout the week, as shown in Figure 5.18b. It can also
be noticed that indeed during the weekend, there are no people in some destinations which
remain closed. Figure 5.18c shows the number of people in different categories. Notice that
people go mostly to work or for educational purposes, which is natural on a weekday, and there
is no mobility during the weekend in these two categories. Also, notice that people go to these
destinations and stay at their workplaces or schools, or universities during work hours and
return to their residences in the evening. Also, notice that mobility in leisure and shopping
destinations keeps happening throughout the day and is higher in the afternoon than in the
morning, which is natural as people like to go shopping or for leisure activities after they
return from work or school. Moreover, we can see a spike in the number of people visiting
destinations in the leisure category on a Friday night as the stadiums open on Fridays. Also
notice very less mobility on a Sunday in shopping category as most of the shops are closed. In
the hospital also, the mobility keeps happening throughout the day on a weekdat, and there
is less mobility on a Sunday as they remain closed for daily consultations. Figure 5.18d is a
heatmap depicting the distribution of people on a Monday at 11 : 30 am. Notice that at this
time, most people are in zones near Grenoble as most of the destinations are located in that
and moreover have the most connections as shown in Figure 5.16.

5.5 Concluding remarks

In this chapter, we computed the parameters required for implementing the mobility model
(4.12)-(4.18) in the Grenoble area and built a mobility network. In particular, as they are
the building blocks of a mobility network, we first identified origins and destinations and
classified them into categories and further into subcategories. This classification is necessary
for applying control and identifying different parameters common to destinations of the same
kind. We collected the data regarding the capacities of destinations. Moreover, we proposed
attraction-based laws to decide if two locations are connected based on the minimum road
distance between them. We used them to establish network connections for some destinations
in some subcategories. In addition to this law, we also use government norms to establish OD
connections in some subcategories. Using these techniques, we built the mobility network of
the Grenoble area. Moreover, we collected the data to compute the time-dependent profiles
needed in the model. We proposed a method to compute the average daily flow between
origins and destinations in different subcategories. Finally, we gave a simulation example to
showcase the implementation of the model to Grenoble area.
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This chapter addresses the problem of controlling human mobility in order to mitigate an
epidemic in a city. We consider the discrete-time SIR-mobility model presented in Chapter 4
For this city-wide model, we provide techniques to compute optimal mobility control policies,
that tune the operating capacities of the destinations depending on the current epidemic
status, so as to maximize the socio-economic activity while keeping the total infections below
a desired threshold. We apply these techniques to the mobility network of Grenoble metropolis
developed in Chapter 5.
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6.1 Urban human mobility and epidemic model

Consider the human mobility in an urban area between two types of locations: origins and
destinations as stated in Chapter 4. Recall that the population of origin i ∈ Vo is denoted
by Pi and Ci denotes the nominal capacity of the destination i for i ∈ Vd. Also recall that
the model in chapter 4 has the possibility to describe restrictions on capacities of destination,
such as those that were imposed by many governments during peaks of Covid-19 pandemic.
Such capacity reduction is decided per category of destinations, and is described by a capacity
control uh(k). In order to have a control for capacity restriction which can be updated on
a regular basis, we can have a piece-wise constant uh(t) instead of a control input which is
constant for the total time horizon. Let T be the total time horizon of interest and let Tu be
the duration after which a policy affecting the capacity of destinations in different categories
is updated (the update period). Let p = dT/Tue, where d·e is the ceiling function, then the
piece wise constant control uh(k), can be defined as

uh(k) =





µ1
h if k∆t ∈ [0, Tu]

µ2
h if k∆t ∈ (Tu, 2Tu]

...
...

µph if k∆t ∈ ((p− 1)Tu, T ]

(6.1)

with µ`h ∈ [0, 1] for every ` ∈ {1, . . . , p}. uh(k) determines the allowed operating capacity
of the destinations in Dh at time step k in terms of the proportion of nominal capacity at
time k∆t where ∆t is the time step size. The operating capacity is the allowed capacity of a
destination at a given time denoted as Coj in the destinations of category h, where

Coj (k) = Cjuh(k), for j ∈ Dh. (6.2)

In (6.2), if for a destination j ∈ Dh, uh(k) = 0, then the operating capacity Coj (k) = 0,

which means that no person is allowed to visit j. On the other hand, if uh(k) = 1, then
Coj (k) = Cj that is the operating capacity of j is equal to its nominal capacity. For the sake
of simplicity, here onward, we will use the notation Zj(k) for the operating capacity Coj (k) if
j is a destination or the population Pj if j is an origin unless otherwise stated. Note that,
if j is an origin, Zj(k) will be constant and equal to the population Pj , however, if j is a
destination then Zj(k) will be equal to the operating capacity Coj (k) which varies according
to the coefficient uh(k) if h ∈ Dh as defined in (6.2).

Now, we recall the discrete-time mobility and SIR-mobility model described in Chapter 4
to keep them handy.

6.1.1 Discrete-time mobility model

Recall from Chapter 4 that Ni(k) is the number of people at location i ∈ Vo ∪Vd at time step
k and ∆t, the time-step size, then, the discrete-time mobility model is

Ni(k + 1) = Ni(k) + ∆t
∑

j∈Ni
(φji(k)− φij(k)), (6.3)
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where Ni = {j : (i, j) ∈ E} is the set of i’s neighbors and the flow φij(k) is the flow from i to
j defined as

φij(k) = min(∆ij(k),Ψj(k)), (6.4)

where ∆ij(k) is the demand of i with respect to j which is defined as

∆ij(k) = min

(
δij(k)fij(k),

Ni(k)αij(k)

∆t

)
, (6.5)

where fij(k) = Mijuh(k) with Mij being the total number of people that would like to visit j
from i daily and δij(k) is the Demand Gating Profile (DGP), such that

{
δij(k) > 0 if k∆t mod 24 ∈ [tij , tij + τij)

δij(k) = 0 otherwise

satisfying
∑

k∆t∈[0,24] δij(k) = 1. Here, [tij , tij + τij) ⊆ [0, 24) is called the mobility window,
defined as the time interval in which there is mobility from i to j. Here, αij in the second term,
is the proportion in which the number of people will move to its neighbors. It is computed as

αij(k) =
δij(k)fij(k)ψj(k)∑

q∈Ni δiq(k)fiq(k)ψq(k)
,

which ensures that
∑

j∈Ni αij(k) = 1.

The supply of j with respect to i, Ψij(k) is defined as

Ψij(k) = ψj(k)
(Zj(k)−Nj(k))πij(k)

∆t
. (6.6)

Here, the ψj(k) is the supply gating function defined as

ψj(k) =

{
1 if k∆t mod 24 ∈ [aj , bj)

0 otherwise
(6.7)

is the Supply Gating Function(SGF) with [aj , bj) ⊆ [0, 24) called the destination schedule
where aj is the opening hour and bj is the closing hour of location j. Similar to DGPs, also
SGFs are defined over a day and repeated periodically, possibly with different profiles for
different days of the week. For the origins j ∈ Vo, [aj , bj) = [0, 24) because they are always
open. πij(k) is the proportion in which the remaining capacity of the the location j will be
divided among its neighbors defined as

πij(k) =
δij(k)fij(k)∑

q∈Nj δqj(k)fqj(k)
, (6.8)

which ensures that
∑

i∈Nj πij(k) = 1.

Recall from Chapter 4, that in the mobility model (6.3)-(6.8), the number of people Ni(k)

at any location i is always non-negative, i.e., Ni(k) ≥ 0, and it also remains below the
population of Pi or the operating capacity Coi (k), if it is an origin or a destination respectively,
i.e., Ni(k) ≤ Zi(k). It is important to notice that the flow φij(k) depends on the control u(k)
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as it tunes the operating capacities of the destinations which tunes the demand δij(k) and
supply Ψij(k) through the terms fij and Zj(k) respectively.

Moreover, the total mass is also preserved: the total number of people in the system
remains constant, i.e., for any time k, we have

∑
j∈Vo∪Vd Nj(k) =

∑
j∈Vo∪Vd Nj(0). We will

use the notation P to indicate such constant number of people in the system.

6.1.2 SIR-mobility model

Now, we recall, the integrated model for mobility and epidemic in discrete-time from Chapter 4.
Here, Si(k), Ii(k) and Ri(k) denote the number of susceptible, infected and recovered people
at location i and time k∆t. We will also use the notation I(k) to denote the total number of
infected people at time k∆t, i.e., I(k) =

∑
i∈Vo∪Vd Ii(k). The SIR-mobility model is given by

Si(k + 1) =
1

1 + ∆tβi(k) Ii(k)
Ni(k)


Si(k) + ∆t

∑

j

(
φji(k)

Sj(k)

Nj(k)
− φij(k)

Si(k)

Ni(k)

)
 (6.9a)

Ii(k + 1) =
1

1 + ∆tγ

[
Ii(k) + ∆tβi(k)Si(k + 1)

Ii(k)

Ni(k)

+ ∆t
∑

j

(
φji(k)

Ij(k)

Nj(k)
− φij(k)

Ii(k)

Ni(k)

)]
(6.9b)

Ri(k + 1) = Ri(k) + ∆tγIi(k + 1) + ∆t
∑

j

(
φji(k)

Rj(k)

Nj(k)
− φij(k)

Ri(k)

Ni(k)

)
, (6.9c)

where the parameters βi(k) = β̄i
Ni(k)
Xi

, β̄i and γi are the infection rate, nominal infection rate
and recovery rate at i. Here, Xi = Pi if i ∈ Vo whereas Xi = Ci if i ∈ Vd. It is important to
note that when i ∈ Vo, the nominal infection rate β̄i is very low as in the origins, people live in
their individual houses and hence the infection spread remains small. Moreover, notice that
Si, Ii, Ri at any location i depends on u as φij , Ni, Nj are implicit functions of the control u.

6.1.3 Epidemic scenario in Grenoble area

In this chapter, we consider the large-scale mobility network of Grenoble constructed in Chap-
ter 4 for application and illustration of the results. Recall that there are 60 origins and 374

aggregated destinations grouped in 5 destination categories namely schools, hospitals, work-
places, shopping centers and leisure in this network. Throughout this chapter, destination
categories are taken in the order {schools, hospitals, workplaces, shopping centers, leisures}
and will be denoted as Dh for h ∈ {1, 2, 3, 4, 5} respectively. The mobility parameters DGP,
SGF, Mij , aj , bj for each destination categories have been taken as in Chapter 5. For the
epidemic, γi = 1/8 per 24 hours and the nominal infection rate β̄i = 0.25 per 24 hours for
i ∈ Vo and that for the destinations in categories schools, workplaces, hospitals, shopping
centers, leisure are 2, 2, 4, 2, 4 per 24 hours respectively. We take time horizon T = 2520 hours
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(a) (b)

Figure 6.1: (a.)Proportion of infected population I/P in Grenoble area when all the destina-
tions are open up to full capacity. (b.) Heatmap showing infection level in Grenoble area,
when all destinations are open to full capacity, at mid-morning on a day near the infection
peak. It is a screenshot from the online demonstrator described in Chapter 7

(15 weeks) in all the simulations and sum of total initial infections
∑

i Ii(0) = 100 which is
distributed randomly only among the origins(residential areas). The initial conditions are

[Ni(0), Ii(0), Si(0), Ri(0)] =[Pi, Ii(0), Pi − Ii(0), 0]

for i ∈ Vo
[Ni(0), Ii(0), Si(0), Ri(0)] =0 for i ∈ Vd.

(6.10)

With this initialization, the total number of people in the system is P =
∑

i∈Vo Pi. All the
plots in this chapter refer to the model (6.3)-(6.9) with parameters discussed in this section.
All the simulations presented in this chapter has been performed using MATLAB 2020b on
a windows PC with Intel(R) Xeon(R) processor running at 2.7GHz using 16MB of RAM.
Figure 6.1a depicts the evolution of infection in Grenoble area with no restriction on the
capacities of the destinations. It can be seen that more than forty percent of people get
infected after some weeks, which can overburden the health infrastructure and cause loss of
many lives. This highlights the need for some closure policy, to mitigate the infection level
while avoiding an undesirable complete lock-down.

6.2 Optimal capacity control for epidemic mitigation

The SIR-mobility model (6.9) describes the evolution of susceptible, infected and recovered
population at each location in the network and also incorporates the mobility of people between
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different locations. It can be seen that by applying restrictions in mobility using the control
input uh(k) defined in (6.1), the infection spread in the network can also be controlled. Using
this property, in [Nia+21], an optimal capacity control problem has been formulated which
aims at maintaining infections below a threshold by mobility control while maximizing the
economic activity defined as a function of number of people visiting the destinations. Here, we
provide solution techniques for this optimal capacity control problem for a large-scale network.

6.2.1 Socio-economic activity

The socio-economic activity E(k) ∈ R≥0 defined in [Nia+21] at a given time k is

E(k) =
∑

j∈Vd

χj
Cj
Nj(k),

where Nj(k) is the number of people at destination j at time k, Cj is the nominal capacity of
j and χj > 0 ∈ R is the weight assigned to the destination j in the destination category Dc
according to its socio-economic importance in the urban network.

Let us consider a time horizon of interest T , a policy update period Tu, and all the
parameters of the model (6.3)-(6.10) be given. Let u ∈ U , where U is the set of vectors of
piecewise-constant functions [u1(k), ..., uq(k)] as in (6.1), with p = dT/Tue. Recall that in
(6.3)-(6.9) there is a dependence on the capacity control u, due to the fact that u tunes the
operating capacities, modifying the flows φij and hence also all Ni, Si, Ii and Ri. To highlight
this implicit dependence, from now on, we will denote by Ni(k,u) and Ii(k,u) and E(k,u)

the number of people and number of infected people at location i and the economic activity,
at time k∆t, when the system is operated with capacity control u.

One of the choices for the weight χj is

χj =
χh
χnomh

, for j ∈ Dh (6.11)

where χh > 0 ∈ R is a weight given to the destination category h by the policymakers and
χnomh is the total economic activity done in the destinations of category Dh and is computed
as

χnomh =

T/∆T∑

k=0

∑

i∈Dh

Ni(k,1q)

Ci
.

It is the economic activity done in the category h when it is open to full capacity. The
weight χh corresponds to the socio-economic importance given to the destination category
h by policymakers when deciding category-dependent closures and restrictions. The effect
of economic weight will be evident when devising the category-dependent control policies in
Section 6.4. The weights that will be used in all the simulations in this chapter is given in
Table 6.1. Note that these weights are simply meant as an example, to showcase possible effects
of extreme weights on the socio-economic cost and control policies devised in later sections,
and do not reflect actual governments’ policies, nor they are meant as a recommendation.
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Schools Hospitals Workplaces Shopping centers Leisure

χh 0.1 1 0.7 0.8 0.2
χnomh 4.2× 105 1.5× 104 3.4× 105 9.7× 104 3.5× 105

Table 6.1: Socio-economic weights for different destination categories used in simulations.

Figure 6.2: Cost function L(u1q) and infection peak in proportion to the total population
Imax(u1q)/P as a functions of the capacity control u, when a fixed control u is applied over
the interval [0, T ] (i.e., Tu = T ), with T = 15 weeks.

6.2.2 Optimal capacity control problem

Our goal is to keep the economic activity as high as possible, while ensuring that the number
of infected people remains below a positive threshold Ī that reflects the capacity of the health-
care system, e.g. in relation with the number of ICU beds. More precisely, our goal is to
maximize the total economic activity L(u) done in the given time interval of interest [0, T ],
defined as L(u) =

∑T/∆t
k=0 E(k,u), i.e,

L(u) =

T/∆t∑

k=0

∑

j∈Vd

χj
Cj
Nj(k,u). (6.12)

The constraint that ensures that the capacity of the health-care system is never exceeded
can be expressed as ∑

j∈Vo∪Vd
Ij(k,u) ≤ Ī ∀k s.t. k∆t ∈ [0, T ],

or, equivalently, as Imax(T,u) ≤ Ī, where
Imax(u) = max

k=0,...,T/∆t

∑

j∈Vo∪Vd
Ij(k,u) (6.13)

is the maximum over the time interval [0, T ] of the total number of infected people. In some
cases where the interval of interest will be [T0, Tf ] instead of [0, T ], then both L(u) and Imax(u)
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will be computed in the time interval [T0, Tf ] with k in (6.12) and (6.13) ranging from T0/∆t

to Tf/∆t.

With the above notation, the optimal control policy is obtained by solving the following
optimization problem:

max
u∈U
{L(u)} (6.14a)

subject to Imax(u) ≤ Ī , (6.14b)

where, L(u) and Imax(u) are obtained with (6.3)-(6.9).

For all the plots in this chapter, we will consider the weights mentioned in the table 6.1 in
(6.11) and (6.12) and the threshold on infection Ī = 0.15P, where P is the total population.

The optimization problem (6.14) is non-convex since L(u) is a non-convex function as there
exist capacity controls u1 and u2 such that L(λu1 + (1 − λ)u2) > λL(u1) + (1 − λ)L(u2)

for λ ∈ [0, 1]. The problem (6.14) can be easily solved for smaller networks using solvers like
fmincon in MATLAB as shown in [Nia+21] but for large-scale urban network like that of
Grenoble developed in Chapter 5, the solution becomes hard or even impossible to obtain
by naive use of off-the-shelf solvers. In this chapter, at first we will start with a simple
variation of the problem (6.14) by taking the same control for all the destinations which we
call category-free policy. Then, we proceed towards the problem when we have different control
policy applied to different destination based on their categories and call it category-dependent
policy.

6.2.3 Benchmark control policy

We consider as a benchmark the case where the operating capacity of all the destinations is
equal to the nominal capacity that is uh(k) = 1 for all h and k. The economic activity in that
case is defined as the nominal economic activity denoted by Ē(k). Figure 6.1a depicts the
evolution of infection in Grenoble area in case of benchmark control policy. The aim of the
optimization is to control the epidemic and keep the economic activity as close as possible to
that of the benchmark case. Therefore, for comparison between different scenarios, we define
the relative economic activity RE(k) at time k as

RE(k) =

∑
`≤k E(`)∑
`≤k Ē(`)

. (6.15)

Note that RE(k) ∈ [0, 1], where RE(k) = 1 corresponds to the benchmark scenario where
there is no restriction, while RE(k) = 0 corresponds to a complete lockdown.

6.3 Category-free policies

In this section, we start with the simplest variation of the problem that restrict the optimiza-
tion to the subset of control policies that have the same control for all destination categories,
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Figure 6.3: Fixed policy: Proportion of infected people I/P when applying the fixed policy
u∗1q, where u∗ = 0.5625 is obtained by Algorithm 1 with Tu = T = 15 weeks.

that is we have u(k) = u(k)1q, where u(k) is piece-wise constant as in (6.1) and 1q ∈ Rq is a
vector of all ones. This corresponds to considering the following modification of the problem
(6.14), where we restrict the search to a subset Ũ of the set U :

max
u∈Ũ
{L(u)} (6.16a)

subject to Imax(u) ≤ Ī , (6.16b)

where
Ũ = {u(k)1q s.t. u(k) is piece-wise constant as in (6.1)},

and L(u) and Imax(u) are obtained with (6.3)-(6.10). In Sect. 6.3.1, we will consider a fur-
ther simplification, choosing Tu = T , which corresponds to a constant control over all the
time interval [0, T ], and we will show how this problem can be solved efficiently, exploiting
monotonicity. In Sect. 6.3.2 we will introduce an MPC approach, where the algorithm from
Sect. 6.3.1 is applied over a sliding time window, whose length Tm might be equal to T or
smaller.

6.3.1 Category-free fixed policy

In this section, we consider problem (6.16) with Tu = T , namely the case in which a same
fixed value of u is to be applied for all categories and at all times in the interval [0, T ]. Indeed,
when Tu = T , piecewise-constant functions as in (6.1) are actually constant functions. We
then notice some monotonicity properties of this problem and exploit them in order to find an
efficient algorithm. First, we notice that L(u1q) is a non-decreasing function of u, as we can
see from Figure 6.2. The intuitive explanation is that a larger u allows more visitors to the
destinations and hence more economic activity. For this reason, in order to maximize L(u1q),
we can simply focus on maximising u. Then, we notice that also Imax(u1q) is a non-decreasing
function of u, except possibly for u very near to zero. This property depends on the parameters
of the SIR-mobility model, and corresponds to the scenario of interest, where infection rate βi
is significantly lower at origins than at destinations. The intuitive explanation is that larger
u allows more visitors to the destinations, where the infection rate is higher, and hence the
number of infected grows more than when some of these persons are forbidden to reach their
destinations (except possibly near u = 0, where destinations are so empty that the probability
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of infection there is small). Figure 6.2 shows Imax(u1q) is indeed a non-decreasing function
of u in our example (described in Sect. 6.1.3). Provided that Imax(0) < Ī, this property of
Imax ensures that the feasible region is simply an interval [0, ū] ⊆ [0, 1], where ū is such that
Imax(ū1q) = Ī. Due to the above-discussed monotonicity of L(u1q), ū is the desired optimal
u, that maximizes L(u1q) under the constraint that Imax(ū1q) ≤ Ī. Finding ū can be done
e.g. by bisection method, i.e., by running Algorithm 1 with [T0, Tf ] = [0, T ]; Algorithm 1 is
given on a more general interval [T0, Tf ], because this will be then used within Algorithm 2 in
Section 6.3.2.

Algorithm 1: Category-free best fixed policy in [T0, Tf ].
Input: Parameters for (6.3)-(6.9), initial condition Ni(T0), Ii(T0), Si(T0), Ri(T0) ∀i,

threshold Ī, Imax(.), initial time T0, final time Tf , maximum number of
iterations niter and tolerance εf > 0.

Output: u∗ = umin

1 Set umin = 0 and umax = 1

2 REPEAT
3 Compute u = (umin + umax)/2,

4 Run (6.3)-(6.9) with u(k) = u1q for k = T0/∆t, . . . , Tf/∆t and compute Imax(u1q)

5 IF Imax(u1q) ≤ Ī
6 umin = u

7 ELSE, umax = u

8 till (Ī − Imax(umin1q)) ≤ εf or niter iterations.

Before running Algorithm 1, it is necessary to verify that Imax(0) < Ī, which ensures that
there is a feasible solution. Note that the obtained u∗ is such that Imax(u∗1q) ≤ Ī and moreover
(unless the algorithm terminates because of reaching niter iterations) Ī − Imax(u∗1q) < εf .

Under the above-mentioned monotonicity properties, this means that u∗ approaches the
optimal solution ū with any desired precision. Also notice that even in the cases where
monotonicity does not hold, u∗ is ensured to be a feasible solution of the original problem
(6.16).

For the large-scale network of Grenoble area, Algorithm 1 with εf = 0.0015P and niter =

20, when applied on [T0, Tf ] = [0, T ] with T = 15 weeks, gives u∗ = 0.5625. In Figures 6.5a-
6.5c, the plots with Tu = T = 15 weeks correspond to the best fixed policy (since Tu = T ),
i.e., to applying the constant policy u∗1q with u∗ = 0.5625. In particular, Figure 6.5c depicts
I/P , i.e., the proportion of infected population,

The plot confirms that I/P remains below the threshold Ī/P = 0.15, as we expect, since
by construction u∗ satisfies the constraint Imax(u∗1q) ≤ Ī.
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Figure 6.4: Receding horizon approach with update period Tu and the optimization horizon
Tm in the time interval [0, T ].

6.3.2 Category-free receding-horizon policy

In this section, the considered time interval is [0, T ] with the total time horizon T and the
policy makers are assumed to update the policy at intervals of length Tu < T but with the
same control applied to all the destinations. To find a good, although possibly suboptimal,
feasible solution of (6.16) in an efficient way, we adopt a receding horizon approach, where
we find a fixed policy within an interval of optimization that is by applying Algorithm 1 over
receding time intervals [`Tu, `Tu + Tm], where ` = 0, . . . p, and the length of the optimization
horizon is a parameter Tm ∈ [Tu, T ] to be designed. This approach has been depicted in
Figure 6.4 and been summarised in Algorithm 2.

Algorithm 2: Category-free receding-horizon policy, with update period Tu and
optimization horizon length Tm
Input: Parameters for (6.3)-(6.9), initial condition Ni(0), Ii(0), Si(0), Ri(0) ∀i,

threshold Ī, Imax(.), T, maximum number of iterations niter and tolerance
εf > 0.

Output: u∗1, . . . , u∗p

1 Initialize ` = 1. Compute p = dT/Tue.
2 REPEAT
3 Compute T0 = (`−1)Tu and Tf = (`−1)Tu + Tm
4 Apply Algorithm 1 over [T0, Tf ] with tolerance εf and maximum number of iterations

niter, and denote by u∗` the obtained output
5 Run (6.3)-(6.9) over the interval [(`−1)Tu, `Tu] , with fixed policy u∗`1q, so as to

obtain Ni(`Tu/∆t), Si(`Tu/∆t), Ii(`Tu/∆t), Ri(`Tu/∆t) for all i (to be used as
initialization for the next iteration)

6 ` = `+ 1

7 until ` = p.

Notice that the piecewise constant function u∗(k) defined by u∗(k) = u∗` for all k =

(`−1)Tu/∆t, . . . , `Tu/∆t is a feasible solution of (6.16).
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(a)

(b) (c)

Figure 6.5: Category-free receding-horizon policy with different update period Tu: (a) Optimal
control u∗(k), (b) Relative economic activity RE(k), and (c) proportion of infected people
(I/P ), when Algorithm 2 is applied with Tm = 15 weeks and Tu = 1, 2, 3, 15 weeks. (c) also
shows the benchmark case (u(k) constantly equal to 1).

6.3.3 Simulations

For the large-scale network of Grenoble area, and with an horizon of interest T = 15 weeks,
Figure 6.5 illustrates the effect of different update periods Tu, with curves corresponding to
Tu = 1 week, Tu = 2 weeks, Tu = 3 weeks and Tu = T = 15 weeks (the latter is the fixed policy
discussed in Sect. 6.3.1). For all curves, the optimization horizon is Tm = 15 weeks. Figure 6.5a
shows the optimal control policy, i.e., the piecewise constant function u∗(k) obtained from
Algorithm 2, while Fig. 6.5a and Fig. 6.5c show the corresponding relative economic activity
and proportion of infected people. We can see that all policies start with the same control u∗1,
since they all start from the same initial infection status, and they all find the best constant
u for an optimization horizon of Tm = 15 weeks. They also remain equal until the infection
peak (which is smaller than in the benchmark case, and below Ī, as enforced by the constraint
Imax(u1q) ≤ Ī. Then, after the peak, we can see the advantage of a smaller update period Tu,
which allows a faster adaptation to the current epidemic conditions: as infections decrease,
the capacity control u is increased and lets the economic activity grow, and this can happen
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(a)

(b) (c)

Figure 6.6: Category-free receding-horizon policy with different optimization horizon Tm: (a)
Optimal control u∗(k), (b) Relative economic activity RE(k), and (c) proportion of infected
people (I/P ), when Algorithm 2 is applied with Tu = 1 week and Tm = 1, 4, 7, 15 weeks. (c)
also shows the benchmark case (u(k) constantly equal to 1).

earlier for smaller values of Tu, leading to the best economic activity in the case of the smallest
Tu. This suggests to use the smallest Tu that can be socially acceptable, taking into account
the fact that extremely short values of Tu, of the order e.g. of a day, would create confusion
and lack of respect of the rules. As a side note, we can see the epidemic curve lasts longer in
the optimized cases than in the benchmark case; this is a well-known effect of policies aiming
at ‘flattening the curve’ so as to keep the number of infections below the rate that saturates
health infrastructure.

Figure 6.6, instead, illustrates the effect of different optimization horizons Tm: Algorithm 2
is applied with Tm = 1, 4, 7 and 15 weeks, while keeping a same small update period Tu = 1

week, which is chosen because a small value of Tu is recommended, as discussed above. It
can be seen in Figure 6.6b that performance improves when Tu decreases. The best solution
is obtained when Tm = 1, which corresponds to a U-shape control (see Figure 6.6a): full
capacity (u = 1) initially, when there are few infections, then strong limitations (small u) near
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the infection peak, followed by gradual reopenings, progressively augmenting u while keeping
the infection level near the threshold, until full reopening at the end of the infection wave.
The fact that the short-sighted policy outperforms the long-sighted ones might seem somewhat
counter-intuitive, but it can be clarified by recalling that Algorithm 2 looks for the best fixed
policy over each receding-horizon interval. Thus, Algorithm 2 with a large Tm enforces an
overly-cautious small u∗1, since despite the small initial number of infections it chooses u∗1

sufficiently small to flatten the infections peak that would happen in the coming Tm weeks.
With small Tm, instead, Algorithm 2 quickly adapts the control input to current infection
level, leading to best performance, both because of a larger initial activity, and because the
infection peak happens earlier, allowing for earlier partial reopenings. However, notice that
this performance comes at the price of a more aggressive control policy, that uses some lower
values of u, although for short time, as it is clearly illustrated in Figure 6.6a. The social
acceptability of such restrictions should be taken into account in the policy design.

From these simulations in this section, we can draw the recommendation to design policies
using Algorithm 2 with the smallest values of the update period that is Tu = 1 and of the
optimization horizon Tm = 1, within the margin of social acceptability.

6.4 Category-dependent policies

During the COVID-19 outbreak, it was noticed that various governments had different strate-
gies of closures and restrictions for different types of destinations according to their socio-
economic importance to save both lives and the economy. Therefore, in this section, we devise
policies that apply different capacity controls to destinations in different categories in the
optimal control problem (6.14). For this, we implement monotonic optimization techniques.

Throughout this section, for any two vectors, u,v ∈ Rn, we use the notation u ≤ v( or u <
v) if ui ≤ vi( or ui < vi) for all i = 1 . . . n.

6.4.1 Monotonic optimization

Now, we introduce some mathematical preliminaries of monotonic optimization [Tuy00];
[TAKT05].

Definition 6.1. Non-decreasing functions: A function f : Rn+ → R is an non-decreasing
function if f(x) ≤ f(y) when 0 ≤ x ≤ y, where Rn+ denotes the set of non-negative real
numbers.

Definition 6.2. Box: If 0 ≤ b, then the set of all x ∈ Rn such that 0 ≤ x ≤ b is defined as
the box [0,b] with the vertex b.

Definition 6.3. Normal set: A set G ⊂ Rn+ is normal if for any element x ∈ G, all other
elements x′ such that 0 ≤ x′ ≤ x are also in set G. In other words, the set G is normal if
given any element x ∈ G, then the box [0,x] ⊂ G.
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Figure 6.7: Cost function L(u) for T = 15 weeks and when we freeze all variables except one.
The free variable is increased in [0, 1] and the others are fixed at 1. Here, u ∈ [0, 1]5 as we
have Tu = T. The plots are obtained from two separate simulations in which a single variable
is kept free namely u1 and u3 respectively.

An optimization problem belongs to the class of monotonic optimization1 if it can be
expressed in the following form:

max
x

F (x) (6.17a)

subject to x ∈ G, (6.17b)

where, F (x) : Rn+ −→ R is an non-decreasing function and G ⊂ [0,b] ⊂ Rn+ is a compact
normal set with nonempty interior. In the optimal problem discussed in this chapter, the
objective function F (x) is given by L(x) defined in (6.14) and the feasible set G is defined as

G = {u ∈ U|Imax(u) ≤ Ī}. (6.18)

In the range of parameters of interest, where at least a total lockdown is enough to keep the
number of infected people below Ī , notice that 0 ∈ Rn is always in G, therefore G always
has a non-empty interior. Also notice that for the problem (6.14), G is enclosed in the box
[0,1], where 1 ∈ Rn. In order to use monotonic optimization techniques to solve (6.14), we
need two properties, namely the cost function L(u) be non-decreasing and the feasible set
G = {u ∈ U|Imax(u) ≤ Ī} be a normal set, where Imax(u) is computed using (6.3)-(6.9). At
first, notice that the function L(u) defined in (6.12) is a non-decreasing function of u. The
intuitive explanation is that given two control vectors u,v ∈ U such that v ≥ u, implies
that the number of visitors in destinations is higher with the control v than with the control
u. Therefore, more economic activity at the destinations which implies that L(v) ≥ L(u).

Figure 6.7 shows an example where when we freeze all variables in u ∈ R5 except one variable,
1The general form of monotonic optimization problem from the literature [Tuy00]; [TAKT05] also allows

for a further constraint being a so-called co-normal set, but in our case only the normal constraint is involved,
and hence we only include the normal set in this section.
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Figure 6.8: Cost function Imax for T = 15 weeks and when we freeze all variables at feasible
point 0.5625 ∗ 15 except one. The free variable is varied in [0, 1] and the others are fixed at
0.5625 ∗ 14. Here, u ∈ [0, 1]5 as we have Tu = T. The plots are obtained from two separate
simulations in which a single variable is kept free namely u1 and u3 respectively.

which we vary and we can see that indeed in this case L(u) is non-decreasing which is according
to our intuition.

In order to show that G defined in (6.18) is a normal set, we need to show that if control
z ∈ G, then any v ≤ z satisfies v ∈ G. Consider v ≤ z, then the number of visitors in each
destination is lower with the control v and higher with the control z. Since the infection rate
is higher at destinations, the number of infected people is more in case of more visitors at
destinations (except possibly near u = 0, where destinations are so empty that the probability
of infection there is small). This certainly depends on the parameters of the SIR-mobility
model, and corresponds to the scenario of interest, where infection rate βi is significantly
lower at origins than at destinations. Therefore, if Imax(z) ≤ Ī , then we have that also
Imax(v) ≤ Ī for v ∈ [0, z] except possibly for a very low threshold Ī , which is outside our
interest, since it would correspond to the case where even a total lockdown, i.e. u = 0, would
be unfeasible. It can also be seen in Figure 6.8, where we freeze all the variables at a feasible
point and vary one variable in [0, 0.7], that once a z is feasible, it remains feasible for all u
such that ui < zi for i = 1 while varying u1 and for i = 3 while varying u3.

6.4.2 Polyblock outer approximation algorithm

Since the objective function (6.12) is non-decreasing, the optimal value lies on the boundary
of the feasible set G [Tuy00]; [TAKT05]. However, we do not have the knowledge of the
boundary of the feasible set G. Therefore, we aim to have an approximation of the boundary
using some outer approximation methods notably Polyblock algorithm[Tuy00]. We start by
defining a polyblock and related terms first.

Definition 6.4. Polyblocks: A set P ⊂ Rn+ is called a polyblock if it is a union of a finite
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(a) (b)

Figure 6.9: (a) Example of a normal set in R2 (b) Example of a polyblock with vertices u1,u2

and u3. u1 and u2 are proper while u3 is improper.

number of boxes [0, z], where z ∈ T and |T | < +∞. The set T is called the vertex set of the
polyblock. A vertex v ∈ T is said to be proper if there is no v′ ∈ T such that v′ 6= v and
v′ ≥ v. The vertices which are not proper are called improper vertices. Improper vertices can
be removed from the vertex set T without affecting the shape of the polyblock.

Definition 6.5. Upper boundary: A point x̄ of a normal closed set G is called an upper
boundary point of G if G ∩ {x ∈ Rn+|x > x̄} = ∅. The set of all upper boundary points of G is
called its upper boundary and denoted by ∂+G.

Definition 6.6. Projection on the upper boundary: let G ⊂ Rn+ be a compact normal set
with non-empty interior. Then for any point z ∈ Rn+\G, the line segment joining 0 to z meets
the outer boundary ∂+G at a unique point πG(z) defined as

πG(z) = λz, λ = max{α > 0|αz ∈ G}
πG(z) is called the projection of z on the upper boundary of G.

In Polyblock outer approximation algorithm, the basic idea is to approach the boundary
of the feasible set by constructing a sequence of polyblocks. At each iteration, it refines the
polyblocks which is an upper bound for the feasible set G. The maximum of an non-decreasing
function over a polyblock is attained at one of its proper vertices[Tuy00], therefore, it makes
it easier to find the maximum of F over a polyblock. The polyblock algorithm maximizes the
non-decreasing objective function on a sequence of polyblocks that enclose the feasible set (or
a subset of the feasible set containing the optimal solution). At each iteration k, we find a
vertex zk that maximizes F (x) i.e.

zk = argmax
x∈T k

F (x),

where Tk is the vertex set of the polyblcok Pk enclosing the feasible set G. Therefore, F (zk)

is an upper bound to the optimal F (x∗) where

x∗ = argmax
x∈G

(F (x)).
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Moreover, zk might not be feasible, therefore, it is projected on a point xk on boundary
of the feasible set G. Since, xk is on the boundary of G, it is used to cut the cone K+

xk
, where

K+
xk

= {y ∈ Rn+|y > xk}
in order to refine the polyblock. Moreover, since xk is a feasible point, F (xk) is a lower
bound to the optimal F (x∗). More precisely, the algorithm keeps memory of the "current best
value (CBVk)", namely the largest among F (x1), ..., F (xk). Clearly CBVk can be updated
iteratively, as follows:

CBVk = max{CBVk−1, F (xk)}.
At each iteration the polyblock is refined, and hence the upper bound F (zk) is decreased, while
on the other hand the lower bound CBVk either remains constant or increases. The algorithm
terminates when the lower and the upper bounds are within a desired precision threshold,
thus certifying optimality, then the algorithm outputs CBVk, together with the corresponding
feasible point. Let us see in details the first iterations of the algorithm. The algorithm starts
with the polyblock P 1 = [0, b], which contains the feasible set G and corresponds to T 1 = {b},
and hence z1 = b. Then z1 is projected on G along the line segment joining 0 and z1 to obtain
x1 on the boundary of G.

(a) (b)

(c) (d)

Figure 6.10: Illustration of the polyblock outer approximation algorithm in R2. The optimal
point denoted by a red star is on the boundary of the normal set Z ∈ R2.

Then, a smaller polyblock P2 enclosing G is constructed based on P1 by replacing z1 with
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n new vertices T̃1 = {v1,1 . . .v1,n}. These new vertices v1,i is computed as v1,i = z1 + ((x)1
i −

(z1)i)ei, where ei ∈ Rn is standard basis vector and x1. Thus, the vertex set of the newly
constructed polyblock P2 is T2 = T1 \ {z1} ∪ T̃1. Then, we choose the vertex which maximizes
the objective function F of the problem in (6.17), i.e., z2 = argmaxz∈T2 F (z) for z ∈ T2. This
process is repeated successively to construct even smaller polyblocks based on P2 and so on
such that

G ⊂ . . .Pk ⊂ . . .P2 ⊂ P1.

Figure 6.10 illustrates this process for a normal set in R2. The algorithm terminates when
|F (zk) − F (xk))| ≤ ε, where ε > 0 is the error tolerance specifying the error tolerance of the
approximation. Under some mild conditions, [Tuy00], [TAKT05] show that xk converges to a
global optimal solution of the problem for k → ∞. The basic polyblock outer approximation
algorithm has been summarised in the Algorithm 3. In particular, step 4 searches for the
vertex zk which maximizes the objective function F (zk) among the vertices of the polyblock P.
Step 5 computes the projection of zk on the feasible set G. Step 6,7 and 8 indicate whether the
optimal vertex zk is already feasible. Otherwise, Step 9 creates a smaller polyblock enclosing
G. Finally, step 12 check if the algorithm can be terminated.

There are three steps in the algorithm 3 that we need to comment further:

• Step 5: Computing the projection of zk on the upper boundary of G, πG(zk) = xk.-
The projection of the vertex zk on the boundary of the feasible set G can be computed
using the bisection search algorithm. Clearly, an approximation is used in bisection,
therefore xk ends up inside the G within the approximation threshold.

• Step 9(b): Computing the vertex set Tk+1 of the new polyblock. - Once, the projection
xk = πG(zk) is computed, we know that xk ∈ ∂+G within the approximation threshold
used in bisection search. Since, L(z) is monotonic function, and since G is a normal set,
therefore the set of points in

K+
xk

= {y ∈ Rn+|y > xk}
are infeasible. Therefore, the new Polyblock Pk+1 is constructed by cutting the cone
K+

xk
out from Pk. To create the new set of vertices Tk+1, at first we compute

T̃k = {vk,1 . . .vk,n}.
These new vertices vk,i are computed as

vk,i = zk + ((x)ki − (zk)i)ei, ∀i (6.19)

where xk is the projection of z1 on G and ei ∈ Rn is standard basis vector. Notice that
vk,i is obtained by replacing the ith entry of zk by the ith entry of xk. Finally, the set of
vertices Tk+1 of the polyblock Pk+1 is computed as

Tk+1 = Tk \ {zk} ∪ T̃k.

• Step 9(c): Removing the improper vertices from Tk+1− The improper vertices in Tk+1

are those vertices vk,i ∈ T̃k for which there exists another vertex w ∈ Tk+1 such that
vk,i ≤ w [ZQH13]. The improper vertices can be removed after comparing these vertices
with each other.
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Algorithm 3: Outer Polyblock Approximation Algorithm
Input: F (z), G, tolerance ε
Output: ε−optimal solution x∗

1 Initialize the vertex set T1 = b. Set the Current Best Value(CBV0) = 0.

2 Set k = 1.

3 REPEAT
4 Select zk = argmax{F (z)|z ∈ Tk},
5 Compute the projection of zk, i.e. xk = πG(zk) on the upper boundary of G.
6 IF xk = zk,

7 Set current best feasible solution x̄k = xk

8 CBVk = F (zk)

9 ELSE

(a) IF F (x) ≥ CBVk−1,

x̄k = πG(zk) and CBVk = F (πG(zk))

ELSE

x̄k = x̄k−1 and CBVk = CBVk−1.

END IF

(b) Compute the new vertices Tk+1 of the next polyblock.

i) Create the new vertices from zk and xk by following the rule:
vk,i = zk + ((xk)i − (zk)i)ei for all i ∈ {1, . . . , n}.

ii) Tk+1 = Tk \ {zk} ∪ {vk,i}, where vk,i are the vectors computed in the previous
step.

(c) Remove all the improper vertices from Tk+1.

10 End IF
11 k = k + 1

12 Until |F (zk)− CBVk| ≤ ε, where ε > 0 is a small positive number.
13 u∗ = x̄k
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6.4.3 Implementation issues and Enhancements

There are some enhancements from the literature [ZQH13]; [CAKA05] that we implemented
to Algorithm 3. These enhancements improve its performance significantly to solve the prob-
lem (6.14). We discuss them in the following sections.

6.4.3.1 Anti-jamming

Notice that, in Algorithm 3, each iteration is computationally heavy, in particular the projec-
tion of zk, on the feasible set G which requires computing F numerous times. Note that, in
our problem it would mean running SIR-mobility model multiple times. Hence, it would be
desirable to obtain convergence after a reasonably limited number of iterations. However, in
some cases polyblock algorithm is known to have a very large number of iterations, due to a
phenomenon known as jamming. When zk is such that zki is close to zero for some i, then in
order to converge from zk to (zk1, . . . , z

k
i−1, 0, z

k
i+1, . . . , z

k
n), a subsequence of such vertices are

created and their difference in euclidean norm being very small. This phenomenon is termed
as jamming. In particular, jamming occurs when the angle between the line from 0 to the
vertex zk and one of the axes is steep. In order to prevent jamming, [CAKA05] proposes to
find the projection of zk on G alternatively.

Consider that zk maximizes {F (z)|z ∈ Tk} at iteration k. Let d be the minimum non-zero
distance between zk and 0 such that

d = min
{i:zki >0}

(zki ). (6.20)

Define a new vertex b′ as follows:

b′j =

{
zkj − d when zkj > 0

0 when zkj = 0.
(6.21)

Now, notice that if b′ ∈ G, then there exists a projection of zk on ∂+G along the line segment
joining 0 and zk. If b′ /∈ G, then instead, we now find the projection of b′ on ∂+G along the
line segment joining 0 and b′. In both the cases, we can obtain a point xk on ∂+G in the box
[0, zk]. Therefore, the next polyblock can be created by removing the region (xk, zk]. The main
importance of this technique is that it pushes any vertex close to the axis i.e. vertex with one
entry near 0 by distance d to the axis by forcing it to be 0 in a single iteration rather than
having recurring iterations in order to become 0. In order to implement this enhancement,
step 5, and step 9 in Algorithm 3 need to be modified as follows:

1. Step 5:

a) Let d be the minimum non-zero distance between zk and 0 computed in (6.20).

b) Compute the modified vertex b′ as defined in (6.21).

c) IF b′ ∈ G
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– THEN Compute the projection of zk on ∂+G i.e. compute xk = πG(zk).

d) ELSE

– Compute the projection of b′ on ∂+G i.e. compute xk = πG(b′).

2. Step 9

i) Create the new vertices vk,is from zk and xk by the following rule:

vk,i = zk + ((x)i − (zk)i)ei

for all i such that zki > xki .

ii) Tk+1 = Tk \{zk}∪{vk,i}, where vk,i are the vectors computed in the previous step.

Moreover, we notice that if d is large enough then b′ ∈ G, therefore, we set a threshold d̄ on
the minimum distance d computed in (6.20) and apply the correction above only if d < d̄.

This reduces the computation effort in checking if b′ ∈ G in every iteration since it is checked
only when d < d̄. Furthermore, to prevent recurring jamming due to sufficiently small xki in
the previous steps, round off the computed projection xk if it is larger than a set tolerance.
This threshold should be chosen such that its effect on the objective function is negligible.

6.4.3.2 Removal of suboptimal vertices from Tk+1

As the number of iterations grows, so does the size of the vertex set Tk+1. This might lead to
computational complexity in finding the optimal vertex zk in Step 4. Since the Algorithm 3
maximizes the CBVk or keeps it constant in successive iterations, the vertices with the value
of F smaller than the CBVk cannot be optimal and can be safely discarded [ZQH13]. With
this enhancement, Step 9c and Step 12 can be modified as follows:

1. Step 9c:

– Remove all the improper vertices from Tk+1 and the vertices w such that

{w|F (w) ≤ CBVk + ε}.

2. Step 12:

– Until: |F (zk)− CBVk| ≤ ε, OR Tk = ∅, where ε > 0 is a small positive number.

Moreover, the condition |F (zk)−CBVk| ≤ ε can be checked after step 9a, and if this condition
is satisfied, then GO TO step 13. This modification will prevent unnecessary computation of
Tk+1 and therefore save the effort in computing the objective function for the new vertices.

Although polyblock algorithm guarantees optimal solution it is known to be slow in con-
vergence [Cho+19] and like other non-convex optimization solver algorithms, it can be com-
putationally demanding as the dimension increases. Therefore, in addition to enhancements,
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as mentioned earlier, we set a maximum number of iterations for the Algorithm 3. Even if
the algorithm terminates because the maximum number of iterations has been reached, the
obtained solution might or might not be optimal but will always be feasible because of the
projection of the vertex on the boundary of the feasible set.

The final Polyblock algorithm after the above mentioned enhancements in Algorithm 3,
the modified polyblock algorithm which can be implemented to the problem (6.14) has been
presented in Algorithm 4 and the method for projection on the boundary of the feasible set
G defined in (6.18) has been presented in Algorithm 5.

Now, we can implement the polyblock algorithm presented in Algorithm 4 to obtain
category-dependent capacity control policies applied to destinations in different categories
according to their economic importance. At first, we solve the problem 6.14 in case where we
have a fixed policy for the total time horizon that is Tu = T, namely, for each destination cat-
egory Dh, we compute a control uh(k) that remains constant for all k such that k∆t ∈ [0, T ].

Then, we apply an MPC approach to obtain such policies, which can be updated on a regular
interval that is a control u of the form (6.1). We compare the category-dependent policies
with the category-free policies devised in section 6.3.

6.4.4 Category-dependent fixed policy

In this section, we find control uh(t) for different destination categories that remain constant
for the time period Tu = T, that is there is no update of policies in the time interval [0, T ].
Therefore, p = 1 in (6.1) and hence now the the searcjh space reduces to [0, 1]q instead of
[0, 1]pq. Recall that since the number of categories is 5, hence q = 5.

One of the simplest and naive method to find such control by brute force. A suboptimal
solution can be found by considering a finite number of points in [0, 1]5 which means explor-
ing a grid of points and running (6.3)-(6.9) for different values of u(k) = [u1(k), . . . , u5(k)],

where uh(k) ∈ [0, 1] and finding the u∗ by picking the u which is feasible and gives the max-
imum socio-economic cost L(u). In our simulation we consider uh(k) ∈ {0.4, 0.6, 0.8} for all
h ∈ {1, . . . , 5} hence reducing the computational complexity as we need to run (6.3)-(6.9)
53 times only. This particular choice of control inputs not only reduces the total number of
iteration to finite number but also prevents aggressive closing or opening of any particular
destination category. Figure 6.11 depicts category-dependent fixed control policies computed
using brute-force technique mentioned above and using Algorithm 4 with the initial polyblock
vertex 1 ∈ R5, maximum number of iteration npoly = 150 and the threshold ε = 0.03(one
percent of economic cost in benchmark case), d̄ = 0.01, nit = 20, ξ = Ī/100 for T = 15weeks.
Figures 6.11c and 6.11d compares the relative cost RE and infection spread for these two
cases with that of category-free fixed policy computed in section 6.3.1. First of all, notice
in Figure 6.11d that infection is below the desired threshold in all the cases. Moreover, Fig-
ure 6.11c shows that category-dependent policies indeed gives a higher socio-economic cost in
comparison to the category-free case.

Notice in Figures 6.11a and 6.11b that there is a pattern between capacity control uh and
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Algorithm 4: Category-dependent policy based on polyblock outer approximation
method
Input: parameters for (6.3)-(6.9), threshold Ī , initial time T0, final time Tf , Imax(.),

initial condition Ni(T0), Ii(T0), Si(T0), Ri(T0) ∀i, tolerance ε, d̄, sufficiently
large maximum number of iterations npoly, no. of updates pm in the time
interval [T0, Tf ], and projection tolerance ξ and projection maximum
iterations nit (for Algorithm 5)

Output: ε−optimal solution u∗

1 Initialize the vertex set T1 = 1pmq. Set the Current Best Value(CBV0) = 0.

2 Set k = 1.

3 REPEAT
4 Select zk = argmax{L(z)|z ∈ Tk}, where L(z) is computed by running (6.3)-(6.9)

for time for k = T0/∆t, . . . , Tf/∆t.

5 Compute the minimum distance d as in (6.20)
IF d < d̄

Compute b′ as in (6.21)
IF b′ ∈ G
Compute the projection xk = πG(zk) using Algorithm 5.

ELSE
Compute the projection xk = πG(b′) using Algorithm 5.

END IF
ELSE

Compute the projection xk = πG(zk) using Algorithm 5.
END IF

6 IF xk = zk,

Set current best feasible solution x̄k = xk

CBVk = L(zk)

7 ELSE
IF L(x) ≥ CBVk−1

x̄k = πG(zk) and CBVk = L(πG(zk))

ELSE
x̄k = x̄k−1 and CBVk = CBVk−1.

END IF
END IF

8 IF |L(zk)− CBVk| ≤ ε,
GO TO Step 13 and EXIT

9 ELSE

– Create the new vertices vjs from zk and x by following the rule:

vk,i = zk + ((x)i − (zk)i)ei

for all i such that zki > xki .

– Tk+1 = Tk \ {zk} ∪ vk,i, for all i, where vk,i are the vectors computed in the previous
step.

10 −Remove all the improper vertices from Tk+1 and the vertices w such that
L(w) ≤ CBVk + ε.

End IF
11 k = k + 1

12 Until: Tk = ∅ OR npoly iterations.
13 u∗ = x̄k
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(a) (b)

(c) (d)

Figure 6.11: Fixed control policy (a) category-dependent optimal control u∗(k) computed
using brute-force technique.(b) category-dependent optimal control u∗(k) computed using
polyblock Algorithm 4. (c) Relative economic activity RE(k), and (d) proportion of infected
people (I/P ), when brute-force technique and polyblock Algorithm 4 is applied with Tu =

T = 15 weeks. (c) and (d) also depicts RE and (I/P ) in case of category-free fixed policy.
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Algorithm 5: Bisection search to compute the projection x = πG(z) in Step 5 of
Algorithm 4
Input: z, parameters for (6.3)-(6.9), threshold Ī, initial time T0, final time Tf , initial

condition Ni(T0), Ii(T0), Si(T0), Ri(T0) ∀i, Imax(.), maximum number of
iterations nit and tolerance ξ > 0.

Output: x = a∗z such that a∗ = argmax{a∗ > 0|Imax(a∗z) ≤ Ī}.
1 Set amin = 0 and amax = 1.

2 REPEAT
3 Compute ā = (amin + amax)/2,

4 Run (6.3)-(6.9) with u(k) = āz for k = T0/∆t, . . . , Tf/∆t and compute Imax(āz)

5 IF Imax(āz) ≤ Ī
6 amin = ā

7 ELSE, amax = ā.

8 till (Ī − Imax(āz)) ≤ ξ or nit iterations.
9 Set a∗ = amin

10 Return x = a∗z

the weights χh (low uh with low χh and high uh with high χh). This is consistent with the
intuition that one allows for a stronger closure on low-weight categories, and lighter closure
on high-weight categories, thus leading to a higher L, while still ensuring that Imax remains
in the desirable range.

Moreover, it seems from Figure 6.11c that brute force technique performs the best among
all three but it is important to note that the u∗h which we obtain from the Algorithm 4
is not optimal as the algorithm terminated not because of convergence but because of the
maximum number of iterations. At the end of k = 150 iterations, there was still a significant
difference between the upper bound and the lower bound of L(u∗). Precisely, for k = 150,

L(zk) − L(xk) = 0.8537 which is very large than the threshold ε. Notice that category-free
fixed policy retains about 56 percent of the socio-economic cost of that in the benchmark case
where as category-dependent policies retain 61 percent and 71 percent using brute-force and
Algorithm 4 respectively. Therefore, category-dependent policies are recommended. Moreover,
the fact, that brute-force technique computes a policy which is able to retain about 71 percent
of the socio-economic cost while keeping the epidemic bounded below the threshold, is an
indicator that we can even do better. We noticed in section 6.3 that fixed policies apply
tighter restriction from the beginning in order to control the epidemic and hence a policy
which is updated regularly was recommended. Therefore, in the next section, we find a
category-dependent policy which can be updated on a regular time interval depending on the
epidemic spread.
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6.4.5 Category-dependent receding-horizon policy

For that, in principle, the problem (6.14) can also be solved directly using Algorithm 4 by
taking pm = dT/Tue = p, and T0 = 0, Tf = T, which corresponds to an optimization problem
with pq variables. However, the convergence of Algorithm 4 can be very slow [Cho+19].
Therefore, to find a good, although possibly suboptimal, feasible solution of (6.14) in an
efficient way, we adopt a receding horizon approach to obtain policies in which different control
is applied on different destination categories, which can be updated on a regular interval such
that we obtain a control u of the form (6.1). We compare the category-dependent policies
with the category-free policies devised in section 6.3.

Algorithm 6: Category-dependent receding-horizon policy, with update period Tu
and optimization horizon length Tm.
Input: Parameters for (6.3)-(6.9), initialization (6.10), Imax(.), threshold Ī,

maximum number of iterations nit, npoly, and tolerance ε, d̄ > 0, T, Tu.

Output: u∗ = {µ∗1, . . . ,µ∗p}, where µ∗` = {µ`h} for all h ∈ {1, . . . , q}.
1 Initialize ` = 1. Compute p = dT/Tue.
2 REPEAT
3 Compute T0 = (`−1)Tu and Tf = (`−1)Tu + Tm
4 Apply Algorithm 4 with pm = 1 over [T0, Tf ] and threshold ε, bisection tolerance ξ

and bisection maximum iterations nit, and denote by µ∗` the obtained output.
5 Run (6.3)-(6.9) over the interval [(`−1)Tu, `Tu] , with control µ∗`, so as to obtain

Ni(`Tu/∆t), Si(`Tu/∆t), Ii(`Tu/∆t), Ri(`Tu/∆t) for all i (to be used as
initialization for the next iteration).

6 ` = `+ 1

7 until ` = p.

In this receding horizon approach, over each interval of optimization we choose to have
a constant policy over time but allow different policies for different destination categories,
which corresponds to an optimization problem with q variables. In other words, we apply
Algorithm 4 on the receding time intervals [T0, Tf ] with the choice pm = 1, where T0 = `Tu
and Tf = `Tu + Tm and ` = 0, . . . , p − 1, as described in Algorithm 6 and as depicted in
Figure 6.4. Here, the length of the optimization horizon is a parameter Tm ∈ [Tu, T ] to be
designed.

6.4.6 Simulations

Algorithm 6 is similar in spirit to Algorithm 2: both have optimization over receding intervals
of length Tm, where for simplicity optimization only explores policies which are constant
in such time interval, and re-optimize every Tu weeks, while they differ in the fact that
Algorithm 6 exploits the opportunity to apply different controls to different categories. In
Section 6.3.2, it has been seen that the approach in Algorithm 2 gives the best results when
Tu = 1 and Tm = 1. For this reason, in this section we perform simulations using Algorithm 6
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with Tm = 1 and Tu = 1, to obtain results with this category-dependent policy, and we
compare them with the results obtained in Section 6.3 with a category-free policy and same
parameters Tu and Tm.

For the large-scale network of Grenoble and with horizon of interest T = 15 weeks, Fig-
ure 6.12 compares the effect of category-dependent control policy, computed using algorithm 6,
with ε = 0.002, npoly = 150, nit = 20, and d̄ = 0.01 for Tm = 1 and Tu = 1 with that of the
category-free control policy computed using algorithm 2 with εf = Ī/100 and niter = 20 in
section 6.3.

While running Algorithm 6 in our simulation, in most weeks (i.e., in most iterations of
Algorithm 6) Algorithm 4 terminated by having reached a distance between lower and upper
bound that is below the threshold ε. Only in weeks 4, 5 and 6 Algorithm 4 reached the
maximum number of iterations npoly and hence gives a suboptimal result. Recall that even
in this case the obtained control policy is feasible. Despite this suboptimality, we can see
in Figure 6.12c that the category-dependent policy obtained with Algorithm 6 significantly
outperforms the category-free policy, thus confirming the interest of allowing for category-
dependent controls. Figure 6.12b and Figure 6.12a show the piecewise-constant function u∗(k)

obtained from Algorithm 6, and piecewise-constant function u∗(k) obtained form Algorithm 2
while Figure 6.12c and Figure 6.12d show the corresponding relative economic activity and
proportion of infected people.

We can see that both category-free and category-dependent policies start with the same
control 15, since they are computed considering the same initial epidemics situation with few
infections, and hence they both foresee that full opening is possible, without causing too many
infections over the short optimization horizon Tm = 1. However, from the second week, some
partial closure becomes necessary in order to keep the infections below the given threshold.
Here, the difference between the category-free and the category-dependent approach becomes
apparent: by using a smaller control (i.e., heavier restrictions) on the categories with lower
socio-economic weight χh, the category-dependent approach allows a higher control (i.e., less
restrictions) on the categories with higher socio-economic weight, whose contribution has a
major impact on the socio-economic cost, while still ensuring that infections remain below the
threshold. For this reason, the category-dependent approach can outperform the category-
free one; indeed, Figure 6.12c shows that, after 15 weeks, category-dependent policy is able
to retain about 92 percent of the socio-economic of the Benchmark case, in comparison to 85

percent in case of category-free policy.

From these simulations, we can draw the recommendations to design category-dependent
policies using Algorithm 6, whenever the weights χh (which reflect socio-political priorities)
are quite unbalanced.



6.4. Category-dependent policies 121

(a) (b)

(c) (d)

Figure 6.12: Receding-horizon policy with optimization horizon Tm = 1 and Tu = 1: (a)
Category-dependent control u∗(k) obtained with Algorithm 6, (b) Category-free control u∗(k),
obtained with Algorithm 2.(c) Relative economic activityRE(k), and (d) proportion of infected
people (I/P ), when Algorithm 6 and Algorithm 2 are applied with Tu = 1 week and Tm = 1

weeks.
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6.5 Concluding remarks

In this chapter, we have designed mobility control policies to mitigate epidemics in a city-wide
network.

We have designed policies for capacity control at destinations, so as to maximize the
economic activity under the constraint that the number of infections remains below a desired
threshold, so as to avoid saturating health-care system.

At first, we proposed scalable algorithms to design such policies, by focusing on the case
where the same control is applied to all destination categories, and either a same fixed control
is applied over all the time window of interest, or an MPC approach is used, re-optimizing
over receding time windows.

Then, we addressed the more general optimization problem, where different controls can
be applied to different destination categories and at different times. Our solution technique
uses polyblock outer approximation method with some enhancements along with an MPC
approach. We implemented these techniques on large-scale network of Grenoble metropolis.
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GTL-Healthmob simulation platform
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In this chapter, we present and describe the GTL-healthmob online simulation platform,
available through the link1. It has been developed within the DANCE2 team in the context
of the ERC project Scale-FreeBack and the INRIA project Healthy-Mobility, on the basis of
work done in Chapters 4,5 and 6. It is a platform where users can

• Simulate different scenarios of epidemic spread,

• Simulate different scenarios of mobility restrictions and visualize its effect on the epi-
demic spread.

• Simulate the optimal mobility restriction aimed at limiting the epidemic spread and
maximizing the economy.

This platform is part of the Grenoble Traffic Lab (GTL), which considers the Grenoble
metropolis as a case study.

1http://gtlville.inrialpes.fr/covid-19
2https://team.inria.fr/dance/
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7.1 Platform Overview

Mobility Epidemic

OptimizationWeb

Interface

Storage

Computation

Figure 7.1: Modules and submodules of the GTL-Healthmob

Figure 7.1 shows the basic structure of the GTL-Healthmob platform. It comprises of the
following modules:

• The Storage modules deals with the database and the transmission of static data to the
Computation and the Web Interface modules. The static data mainly comprises of the
location of the origin and destinations nodes, Population of communes and capacities
of places of interests called destinations, OD matrices and time-dependent functions
described in Chapter 5

• The Web Interface module allows to visualise the mobility network, origin and desti-
nation nodes and also facilitates the users to choose input parameters and visualise the
computed results.

• The Computation module takes the parameters given as inputs by the users on the
Web Interface module and static data from the Storage module to simulate the mobility
and epidemic models and compute the evolution of mobility and epidemic spread using
the models presented in Chapter 4 using the model parameters described in Chapter 5.
The results is then passed on to the Web interface for visualization. It is composed of
three submodules:

– Mobility - Using different control and input parameters provided by the user, it
computes the number of people present at each location at different times for each
day during the simulation period using the discrete-time mobility model (4.12)-
(4.18) in Chapter 4.

– Epidemic - Using the epidemic parameters provided by the user and the number
of people present at any location, given by mobility submodule, it computes the
evolution of epidemic spread at each location using the discrete-time SIR-mobility
model (4.22) described in Chapter 4.

– Optimization - Using the results from mobility and epidemic submodules, it com-
putes the optimal mobility restriction that keeps maximum infection below the user
defined threshold. It uses the techniques developed in Chapter 6.
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7.2 User Interface

In this section, we describe the interfaces and functionality of the web platform available to the
general public. An user after clicking on the link http://gtlville.inrialpes.fr/covid-19
lands on the welcome page of the GTL-Healthmob as shown in Figure 7.2. In the right panel,
the map of Grenoble metropolis is shown with different buttons to visualise the network:

Figure 7.2: Welcome page of the GTL-Healthmob platform. In the left panel, there are
different modes and parameters which an user can set to simulate different scenarios. In
the right panel, users can visualise mobility-network related information and the heatmap
animations for infection and mobility after the simulation.

• Nodes : It is used to visualize the origins and destinations and their classification
into categories and subcategories. These are the same categories and subcategories of
destinations in which we classified them in Section 5.1.2 of Chapter 5. A user can
select a category or a subcategory to see the destinations in them. Information like
population or capacity of can be seen by hovering over it as in Figure 7.3. The size
of the node varies corresponding to its population or capacity. The ‘aggregate’ button
aggregates the nodes in some subcategories as done in Section 5.1.2.8 of Chapter 5. The
names of subcategories whose nodes have been aggregated appear in italics. There are
around 4000 destination nodes grouped in 5 categories and 15 subcategories but after
aggregation, we have 374 destination nodes. For simulations, these aggregated nodes
are used.
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Figure 7.3: Node menu in GTL-Healthmob platform.

• Population distribution : Shows the population distribution using a heatmap when
origin is selected and distribution of capacities when destination subcategory is selected.
It uses a Gaussian like curve to show the gradient. See Figure 7.4a.

• O/D Graph : Shows the OD connections between different origins and the aggregated
destination nodes which were established in Section 5.1.3. User can visualize the OD con-
nections for different destination categories and subcategories. For example, Figure 7.4b
shows the connections for schools.

In the left panel of the welcome page, the user has different options meant for simulations.
The options are :

1. Unrestricted mobility

2. Manual restricted mobility

3. Optimal restricted mobility

On running the simulations, the user can visualise the results with the help of plots and
heatmap animations which will be discussed in upcoming sections.

7.2.1 Unrestricted mobility

In this mode, user can visualise, how an epidemic, with different levels of infection rate and
recovery rate, evolves in the Grenoble metropolis. The user has three epidemic scenarios
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(a) (b)

Figure 7.4: (a) Population distribution. (b) Mobility network for schools. Origins are denoted
in blue color and the destination in white color. The color of the connecting edge ranges from
magenta to yellow depending on the amount of average daily flow along them.

to choose from. For all these scenarios, mobility is unrestricted but they differ in terms of
infection level in various destination categories. The Parameters in the top left as can be seen
in Figure 7.2 are:

• Simulation duration: The number of weeks the simulation runs. In this mode, it is fixed
to be 15 weeks.

• Initial infected cases : The number of people initially infected. This total number of
infected cases have been distributed among the origins using the following rule: We
create a set of intervals for each origin in proportion to their population. For every
infected person, we create a random number in the interval [0, 1] and assign this person
to the origin corresponding to the interval in which this random number belongs to. The
same rule has been used in every mode.

• Select scenario : Choose the epidemic scenario. These scenarios mimic the behavior of
different Covid-19 variants.

• Recovery period : This represents the number of days required for a person to recover
if he is infected. It depends on the epidemic scenario.

• Infection level : This represents the rate at which an infected person might infect others.
It ranges from low to high in different categories depending on the epidemic scenario.
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Figure 7.5: Unrestricted mobility: plots showing evolution of epidemic, mobility patterns and
ICU occupancy and the right panel shows the heatmap for infection in absolute numbers at
different locations on the day of infection peak during morning. Here, the selected scenario is
similar to that of Covid19.

7.2.1.1 Result visualization

When the run button is clicked, three plots and heatmaps are shown. The simulation uses the
discrete-time SIR-mobility model presented in Chapter 4. In the left panel, user can see the
following plots as can be seen in Figure 7.5.

• Epidemic evolution : Weekly average of proportion of total infected people I(t) and
proportion of infected persons in different categories.

• Mobility : Number of people in each category during a week.

• ICU bed occupancy : Shows the percentage of ICU beds occupied in the hospitals of
Grenoble metropolis. The ICU occupancy is given by following system: Given the
number of total infected persons I(t), ICU occupancy IICU (t) can be characterized as

İICU (t) =
1

γICU
∗ pICU ∗ I(t)− 1

µ
IICU (t),

where

– IICU (0) = 0,

– γICU = number of days after infection to get admitted to ICU,
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– pICU = proportion of infected who get admitted to ICU and

– µICU = number of days to recover from ICU.

Apart from the plots, user can choose to see the heatmap animations for mobility and infection
evolution. For infections, heatmap is shown in absolute numbers and relative as well. The
mobility heatmap shows the movement of people around the area and the infection heatmap
shows the evolution of infection in the area where the gradient is shown using Gaussian like
curves at each locations.

7.2.2 Manual restricted mobility:

In this mode, the user can choose to simulate mobility and epidemic scenario with parameters
and controls of his choice. It simulates the models (4.12)-(4.18) in Chapter 4 and (4.22)
with epidemic and control parameters chosen by the user as can be seen in Figure 7.6. The
parameters are:

• Simulation duration : The duration in weeks for which to run the simulation.

• Recovery period : Number of days, a person takes to recover after getting infected. It
corresponds to the parameter γi in (4.22).

• Infection probability : The probability by which an infected person would infect a sus-
ceptible person.

• Initial infected cases : Initial number of infected persons.

• Allowed capacity : With its value in the interval [0, 1] for each category, user can impose
restriction on mobility by restricting the capacity of destinations in different categories.

• Closing hours : With their value in the range [6, 24] for each destination category, user
can simulate partial or full closure of the destinations by forcing them to close before
the nominal closing hours.

• Contact rate : Average number of contacts people make in different categories. The
product of infection probability and contact rate gives the nominal infection rate β̄i at
the destination in model (4.22).

7.2.2.1 Result visualization:

The results are visualised using the same plots and heatmaps described in Section 7.2.1.1.
The simulation uses the discrete-time SIR-mobility model presented in Chapter 4. Plots and
heatmap can be seen in Figure 7.6 for a simulation done for 15 weeks, when schools are running
at half their capacities.
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Figure 7.6: Interface with manual restricted mobility mode. Here, we can see different param-
eters and control which an user can select for a simulation. It shows the results of a simulation
when Schools are running at half their capacities.

7.2.3 Optimal restricted mobility

This mode takes into account the implementation of the optimization problem solved in Chap-
ter 6 for the Grenoble area. Here, the user can visualise optimal mobility restriction policies
depending on epidemic status during the simulation period. This mode showcases the results
obtained in Section 6.3.2 and Section 6.4.5. All the parameters in this mode are fixed and are
just shown in the left panel. The parameters are simulation duration, initial infected, recovery
period, infection level(nominal infection rate), socio-economic importanceχh for all categories
h and infection threshold Ī defined in Chapter 6. The rest of the parameters have been ex-
plained in previous sections. The right panel showing the map remains the same showing the
same set of heatmaps as in previous two modes. In this mode, the user can choose to see the
effect of either the category-free optimal policy or category-dependent optimal policy as in
Chapter 6.

• Category-free : Here, the same capacity control is applied to all the destinations irre-
spective of the category while maximising the economy and keeping the infection below
a threshold. It is given by the Algorithm 2 in Chapter 6.

• Category-dependent : Here, different capacity controls are applied to different the des-
tinations in destination categories. It is given by Algorithm 6 in Chapter 6.
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Figure 7.7: Left panel of the Web Interface, when the category-free in “optimal restricted
mobility" is selected.
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Figure 7.8: Left panel of the Web Interface, when the category dependent option in “optimal
restricted mobility" is selected.
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7.2.3.1 Result Visualization

The results are visualized through the plots as shown in Figure 7.7:

• Capacity control : It shows the optimal capacity control inputs to be applied during
different weeks for simulation to keep the infection in check and to protect the economy.

• Infection evolution : It shows the comparison between infections in uncontrolled case
and the case when the optimal capacity control is applied.

• Mobility : It shows the number of people in different categories during the week. It is
shown by an animation as the mobility pattern is subject to change with respect change
in the capacity control. Since it changes every week, the mobility for a particular week
can be seen by selecting that week in capacity control plot.

• Economic activity : It is depicted by a bar, which shows, in terms of percentage, how
much economic activity under optimal mobility policy was done with respect to that in
case of uncontrolled mobility.

• The animation for heatmap for mobility, absolute infection, and relative infection is
shown as in the previous cases.

Figures 7.7 and 7.8 show the left panel of optimal restricted mobility mode when category-
free and category-dependent options are selected, respectively. Notice that the Mobility plot
indicates the number of people in different categories corresponding to the chosen week in
other plots.

7.3 Concluding remarks

In this chapter, we presented the main framework of the GTL-Healthmob simulation platform
and functionality of its different components. The main objective of this platform is to fa-
cilitate other users to simulate different scenarios of epidemic spread or mobility restrictions
to visualise the mobility patterns and its effect on the epidemic spread in Grenoble metropo-
lis. Using it, an user can also get an overview of the current situation during an epidemic.
Moreover, the platform uses different visualization techniques to make even a layman user to
understand the trends of the mobility patterns and epidemic spread. It can also serve as a
testbench for validating upcoming results.





Conclusion

Resilience can have different aspects, and in this thesis, we attempted to deal with two different
aspects of resilience in complex network systems. In the first part, we provide resilience in the
process of average state estimation in an engineered network system with an outlier. In the
second part, we suggest control policies in order to make the society resilient in the events of
an epidemic outbreak by providing optimal mobility restriction policies. Now, we summarize
the work done in this thesis.

Average state estimation in network systems with outliers

Average state estimation in a network system with a few sensor measurements can give un-
expected results if there is an outlier that is unmeasured. Since the outlier is so different
from other states, it drives the average very far from the actual average. Instead, an average
excluding the outlier will be near the actual average. Therefore, we provided a methodology
to detect the outlier and estimate the average excluding the outlier(trimmed-average). This
methodology uses a bank of scalar and tunable observers to estimate the average, excluding
the states at all possible positions. In this regard, we provided an explicit design of the ob-
server and a necessary and sufficient condition under which a bank of such an observer can
be designed. Then the method uses a dissimilarity criterion in order to differentiate between
the estimates obtained from the observers. This method has been applied to two different
cases, one when the system model is known and the other when the system model is partially
unknown when the outlier arises due to a localized fault. The advantage is that when the
outlier is a result of the considered localized fault, the design of the observers doesn’t require
the faulty system model but only the system without the fault.

Future perspectives include the cases of multiple outliers and sequential methods such as
group testing for detection. The sequential methods can be useful in reducing the number of
observers required. Moreover, it would be interesting to investigate if an outlier creates other
outliers and, if yes, how does it propagate in different network structures.

Modeling and control of mobility for epidemic mitigation in
large-scale urban networks

Human mobility is an essential component of everyday life. It drives the economy of a city
or a country. However, it can also facilitate disease spread if an epidemic outbreak occurs. A
full closure or a total lockdown can be detrimental to the economy, whereas unrestricted mo-
bility can harm people’s well-being. Therefore, policymakers need to have efficient strategies
for controlled mobility. To design such policies, they need a model that captures the daily
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movement of people between different locations. Therefore, in Chapter 4, we considered a
supply-demand-based mobility model in continuous-time, which captures the daily movement
of people between residences and places of interest called destinations in a network, using time
schedules and gating profiles. This model also accommodates the possibility of imposing re-
strictions on mobility which, when integrated with an epidemic spread model, can be utilized
for epidemic mitigation. This restriction is applied to the capacities of destinations, which
is the maximum number of people that can gather there at one time. Moreover, if the goal
of mobility control is epidemic mitigation, we need a model which integrates mobility and
epidemic spread. For this, we considered a model which integrates epidemic spread using SIR
dynamics with a supply-demand mobility model.

These models are given in continuous-time in which the flows are defined such that the
model has nice properties of non-negativity, boundedness, and mass conservation. However,
for their implementation in large-scale networks, the models need to be discretized. Therefore,
we analyzed the problems encountered in the discretization of these models and redefined the
flows in discrete-time, which preserves the properties of non-negativity, boundedness, and mass
conservation. We also provide a discretization of the SIR-mobility model, which integrates
the mobility and epidemic spread and preserves the nice properties of boundedness and non-
negativity.

In Chapter 5, we provide parameters of the discrete-time mobility model by using avail-
able public information. The first building block of a mobility network is the location between
which mobility happens. So, we provided methodologies to calibrate the model. We do it for
Grenoble metropolis, but they can be applied to different cities with some modifications. At
first, we collected map data and located different origins and destinations. We classify the
destinations in categories and further into subcategories. We provide techniques to obtain the
capacities of different destinations. We collect various data for different time-dependent pro-
files corresponding to destinations in different categories. Then, we provide methodologies to
establish connections between an origin and destination based on the minimum road distance
between them. After that, We propose methods to compute the daily number of people who
move between an origin and destination. Finally, we use these techniques and methodologies
to build the large-scale network of the Grenoble metropolis.

Next, in Chapter 6 we designed policies for capacity control at destinations to maximize
the economic activity under the constraint that the number of infections remains below a
desired threshold to avoid saturating the healthcare system.

At first, we propose scalable algorithms to design such policies by focusing on the case
where the same control is applied to all destination categories, and either the same fixed control
is applied over all the time window of interest, or an MPC approach is used, re-optimizing
over receding time windows. Then, address the more general optimization problem, where
different controls can be applied to different destination categories and at different times
using polyblock outer approximation with some enhancements along with an MPC approach.
We implement these techniques on the large-scale network of Grenoble metropolis.

A simulation platform GTL-Healthmob has also been developed in our team to showcase
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this thesis’s results, simulate different mobility restriction scenarios, and visualize its effect on
an epidemic spread with application to the Grenoble metropolis.

There can be several perspectives on the work done in this thesis. First of all, recall that the
mobility model is modular, so it can be used in different applications such as urban planning
and traffic planning. Moreover, it can be coupled with various epidemic spread models to
model complex disease spread behaviors.

Another possible application of the mobility model is to describe and predict the space-time
distribution of the charge of electric vehicles. This can be used to optimize charging station
locations and identify the locations where the power networks might be most vulnerable once
the use of electric vehicles becomes widespread.

Here, we considered the possibility of mobility restriction only by tuning the capacities of
destinations. Another natural possibility is to consider the destination closing times as control
and obtain optimal mobility policies for epidemic mitigation.

Finally, another perspective is to analyze the numerical aspect of the optimization done
in Chapter 6. Moreover, devising specific algorithms which are faster in convergence can be
an extension of the work done in this thesis.





Bibliography

[AD03] Julien Arino and P. van den Driessche. “A multi-city epidemic model.” In: Math-
ematical Population Studies 10.3 (2003), pp. 175–193 (cit. on p. 42).

[AGa] Academie-Grenoble. Eligible high schools according address in Grenoble and
Saint-Martin D’Heres. https://bv.ac-grenoble.fr/secto/rec. accessed 2
february 2022 (cit. on p. 78).

[AGb] Academie-Grenoble. Search engine for list of primary schools in region Grenoblois
per commune. https://bv.ac-grenoble.fr/carteforpub/ecole. accessed 6
December 2021 (cit. on p. 65).

[AGc] Academie-Grenoble. Search engine for list of primary schools in region Grenoblois
per commune. https://bv.ac-grenoble.fr/carteforpub/etab. accessed 6
December 2021 (cit. on p. 65).

[Agg17] Charu C. Aggarwal. Outlier Analysis. Vol. 2. Springer International Publishing,
2017, pp. xii,466 (cit. on p. 8).

[Ale+15] Lauren Alexander et al. “Origin–destination trips by purpose and time of day
inferred from mobile phone data.” In: Transportation Research Part C: Emerging
Technologies 58 (2015). Big Data in Transportation and Traffic Engineering,
pp. 240–250 (cit. on p. 40).

[Ari09] Julien Arino. “Diseases in Metapopulations.” In: Modeling and Dynamics of In-
fectious Diseases. World Scientific, 2009, pp. 64–122 (cit. on p. 42).

[ARR96] Andreas Arning, Agrawal Rakesh, and Prabhakar Raghavan. “Method for Devi-
ation in Large Databases.” In: Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (1996), 164–169 (cit. on
p. 8).

[Bac+19] Danya Bachir et al. “Inferring dynamic origin-destination flows by transport mode
using mobile phone data.” In: Transportation Research Part C: Emerging Tech-
nologies 101 (2019), pp. 254–275 (cit. on p. 40).

[Bar+18] Hugo Barbosa et al. “Human mobility: Models and applications.” In: Physics
Reports 734 (2018). Human mobility: Models and applications, pp. 1–74 (cit. on
pp. 39, 78).

[Bioa] Biocoop. Créer mon magasin Biocoop. https://ac-franchise.com/annuaire/
franchise-monoprix. accessed 15 April 2021 (cit. on p. 73).

[Biob] Biocoop. Créer mon magasin Biocoop. https://www.biocoop.fr/magasins-
bio/creer-mon-magasin-Biocoop. accessed 8 December 2021 (cit. on p. 73).

[BM20] Hensher DA. Beck MJ. “Insights into the impact of COVID-19 on household
travel and activities in Australia - The early days of easing restrictions.” In:
Transp Policy (Oxf) (2020) (cit. on p. 42).

139



140 Bibliography

[Boe17] G. Boeing. “OSMnx: New Methods for Acquiring, Constructing, Analyzing, and
Visualizing Complex Street Networks.” In: Computers, Environment and Urban
Systems 65 (2017), pp. 126–139 (cit. on p. 78).

[Bra+06] J. Branch et al. “In-Network Outlier Detection in Wireless Sensor Networks.”
In: 26th IEEE International Conference on Distributed Computing Systems
(ICDCS’06). 2006, pp. 51–51 (cit. on p. 8).

[CAKA05] Myun-Seok Cheon, Faiz A. Al-Khayyal, and Shabbir Ahmed. “Global optimiza-
tion of monotonic programs: applications in polynomial and stochastic program-
ming.” In: 2005 (cit. on p. 113).

[Car] Carrefour. Different format of stores in Carrefour group. https : / / www .
carrefour.com/en/group/stores. accessed 8 December 2021 (cit. on p. 73).

[Car+20] Raffaele Carli et al. “Model predictive control to mitigate the COVID-19 outbreak
in a multi-region scenario.” In: Annual Reviews in Control 50 (2020), pp. 373–393
(cit. on p. 42).

[CB] Clinique-Belledonne. Clinique belledonne. https://www.clinique-belledonne.
fr/presentation/. accessed 6 December 2021 (cit. on p. 68).

[CC] Clinique-Cedres. Official website of Clinique des Cedres. https : / / www .
cliniquedescedres . com / la - clinique. accessed 6 December 2021 (cit. on
p. 68).

[Cen+21] Carlo Cenedese et al. “Optimal policy design to mitigate epidemics on networks
using an SIS model.” In: 2021 60th IEEE Conference on Decision and Control
(CDC). 2021, pp. 4266–4271 (cit. on p. 42).

[Cho+19] Hussein Chour et al. “Global Optimal Resource Allocation for Efficient FD-D2D
Enabled Cellular Network.” In: IEEE Access 7 (2019), pp. 59690–59707 (cit. on
pp. 114, 119).

[CHUa] CHU. Collective data for CHU North, South and Voiron. https://www.chu-
grenoble.fr/content/chiffres-cles-0. accessed 6 December 2021 (cit. on
p. 67).

[CHUb] CHU. Public data for CHUs in Grenoble. https://www.chu- grenoble.fr/
content/sites-plans-dacces. accessed 15 April 2021 (cit. on p. 67).

[CM] Clinique-Mutualiste. Official website of Clinique Mutualiste. https://www.ghm-
grenoble.fr/Presentation.11.0.html. accessed 6 December 2021 (cit. on
p. 68).

[CMV13] Poletto C, Tizzoni M, and Colizza V. “Human mobility and time spent at desti-
nation: impact on spatial epidemic spreading.” In: J Theor Biol. (2013) (cit. on
pp. 40, 42).

[com17] European commission. “European Commision Proposal for a REGULATION OF
THE EUROPEAN PARLIAMENT AND OF THE COUNCIL concerning the re-
spect for private life and the protection of personal data in electronic communica-
tions and repealing directive 2002/58/EC (Regulation on privacy and electronic
Commu).” In: (2017) (cit. on p. 40).



Bibliography 141

[CV] CHU-Voiron. Rules for visitation in CHU Voiron. https://www.ch-voiron.fr/
patients-visiteurs/Visites.html. accessed 15 April 2021 (cit. on p. 67).

[CYX14] Yao Chen, Mei Yan, and Zhongyi Xiang. “Transmission Dynamics of a Two-City
SIR Epidemic Model with Transport-Related Infections.” In: Journal of Applied
Mathematics 2014 (2014), 764278:1–764278:12 (cit. on p. 42).

[DEK21] Ali Enes Dingil and Domokos Esztergár-Kiss. “The Influence of the Covid-19
Pandemic on Mobility Patterns: The First Wave’s Results.” In: Transportation
Letters (2021) (cit. on p. 42).

[Den+14] Kun Deng et al. “Structure-preserving model reduction of nonlinear building
thermal models.” In: Automatica 50.4 (2014), pp. 1188–1195 (cit. on p. 7).

[DH18] Sina Dabiri and Kevin Heaslip. “Inferring transportation modes from GPS tra-
jectories using a convolutional neural network.” In: Transportation Research Part
C: Emerging Technologies 86 (2018), pp. 360–371 (cit. on p. 40).

[DIa] Departement-ISERE. Eligible high schools according address of a person in Isere.
cache.media.education.gouv.fr/file/Scolarisation/38/6/Annexe_1_-
_sectorisation_lycees-rentree_2021_1405386.pdf. accessed 2 february 2022
(cit. on p. 78).

[DIb] Department-ISERE. Sector for different middle schools. https://carto.isere.
fr / carte - interactive / index . html ? _ga = 2 . 205615123 . 1019776183 .
1552918602-1334538445.1552918602. accessed 2 february 2022 (cit. on p. 78).

[Dut+21] Ritabrata Dutta et al. “Using mobility data in the design of optimal lockdown
strategies for the COVID-19 pandemic.” In: PLOS Computational Biology 17
(Aug. 2021) (cit. on p. 42).

[Ekm+08] Frans Ekman et al. “Working Day Movement Model.” In: Proceedings of the
1st ACM SIGMOBILE Workshop on Mobility Models. Hong Kong, Hong Kong,
China: Association for Computing Machinery, 2008, 33–40 (cit. on p. 39).

[Emd] Enquêtes Ménages Déplacements (EMD). https://www.data.gouv.fr/en/
datasets/enquetes-menages-deplacements-emd/. accessed 6 December 2021.
2010 (cit. on p. 87).

[ES90] S. Erlander and N.F. Stewart. The Gravity Model in Transportation Analysis:
Theory and Extensions. VSP, 1990 (cit. on p. 39).

[Gao20] Daozhou Gao. “How Does Dispersal Affect the Infection Size?” In: SIAM Journal
on Applied Mathematics 80.5 (2020), pp. 2144–2169 (cit. on p. 42).

[Gau+09] Krings Gautier et al. “Urban gravity: a model for inter-city telecommunication
flows.” In: J. Stat. Mech. (2009) (cit. on p. 39).

[GF16] Qian Ge and Daisuke Fukuda. “Updating origin–destination matrices with ag-
gregated data of GPS traces.” In: Transportation Research Part C: Emerging
Technologies 69 (2016), pp. 291–312 (cit. on p. 40).

[GI] Grenoble-INP. Research centers associated with Grenoble INP. https://www.
grenoble-inp.fr/en/research/laboratories. accessed 6 December 2021 (cit.
on p. 71).



142 Bibliography

[Gma] Grenoble-metrople. Official webpage of Grenoble metropole. https : / / www .
grenoble.fr/1459-les-secteurs-de-grenoble.htm. accessed 6 December
2021 (cit. on pp. 61, 62).

[Gmb] Grenoble-metropole. Grenoble Alpes metropole Tourism. https : / / www .
grenoble-tourisme.com/fr/faire/sorties/cinemas/?page=1. accessed 6
December 2021 (cit. on p. 76).

[Gmc] Grenoble-metropole. Sectors of Grenoble. https://www.grenoble.fr/1459-
les-secteurs-de-grenoble.htm. accessed 6 December 2021 (cit. on p. 62).

[Gos+21] M Gosgens et al. “Trade-offs between mobility restrictions and transmission of
SARS-CoV-2.” In: J R Soc Interface (2021) (cit. on p. 42).

[Haw80] Douglas M Hawkins. Identification of outliers. English. Chapman and Hall, 1980
(cit. on p. 7).

[HKF04] V. Hautamaki, I. Karkkainen, and P. Franti. “Outlier detection using k-nearest
neighbour graph.” In: Proceedings of the 17th International Conference on Pat-
tern Recognition, 2004. ICPR 2004. Vol. 3. 2004, 430–433 Vol.3 (cit. on p. 8).

[HT04] R. Hariharan and K. Toyama. “Project Lachesis:Parsing and Modeling Location
Histories.” In: Geographic Information Science (2004) (cit. on p. 40).

[Hu+21] W Hu et al. “Optimal strategic pandemic control: human mobility and travel
restriction.” In: Math Biosci Eng (2021) (cit. on p. 42).

[Hua+18] Zhiren Huang et al. “Modeling real-time human mobility based on mobile phone
and transportation data fusion.” In: Transportation Research Part C: Emerging
Technologies 96 (2018), pp. 251–269 (cit. on p. 39).

[IBF18] Sakhraoui Imane, Trajin Baptiste, and Rotella Frédéric. “Discrete Linear Func-
tional Observer for the Thermal Estimation in Power Modules.” In: 2018 IEEE
18th International Power Electronics and Motion Control Conference (PEMC).
2018, pp. 812–817 (cit. on p. 7).

[Ins] Population of people of different age groups in different communes. https://
statistiques-locales.insee.fr/bbox=577774,5679420,119058,71925&c=
indicator&i=rp.pop_3tr_ages&s=2017&view=map1. accessed 6 December 2021
(cit. on p. 62).

[INSa] INSEE. Classification of enterprises in France. https://www.insee.fr/fr/
statistiques/4277836?sommaire=4318291. accessed 6 December 2021 (cit. on
p. 69).

[INSb] INSEE. INSEE home page. https://www.insee.fr/en/accueil. accessed 6
December 2021 (cit. on p. 61).

[INSc] INSEE. National average surface area of supermarkets. https://www.insee.fr/
fr/statistiques/1281004. accessed 6 December 2021 (cit. on pp. 73, 74).

[INSd] INSEE. Population of the French communes. https://statistiques-locales.
insee.fr/bbox=598577,5676525,91084,55025&c=indicator&i=pop_depuis_
1876.pop&s=2017&view=map1. accessed 6 December 2021 (cit. on pp. 61, 62).



Bibliography 143

[INSe] INSEE. Statistical details of french communes. https : / / statistiques -
locales.insee.fr/bbox=612227,5668725,62775,37924&c=indicator&i=
pop_depuis_1876.pop&s=2017&selcodgeo=38045&view=map1. accessed 6
December 2021 (cit. on p. 62).

[Iqb+14] Md. Shahadat Iqbal et al. “Development of origin–destination matrices using mo-
bile phone call data.” In: Transportation Research Part C: Emerging Technologies
40 (2014), pp. 63–74 (cit. on p. 40).

[Jou] The business Journals. What’s a Lidl? https://www.bizjournals.com/triad/
blog/morning-edition/2015/04/whats-a-lidl-heres-the-scoop-on-huge-
grocery-chain.html. accessed 8 December 2021 (cit. on p. 73).

[Kö+21] Johannes Köhler et al. “Robust and optimal predictive control of the COVID-19
outbreak.” In: Annual Reviews in Control 51 (2021), pp. 525–539 (cit. on p. 42).

[KBG04] Matt J. Keeling, Ottar N. Bjørnstad, and Bryan T. Grenfell. “Metapopula-
tion Dynamics of Infectious Diseases.” In: Ecology, Genetics and Evolution of
Metapopulations. Ed. by Ilkka Hanski and Oscar E. Gaggiotti. Burlington: Aca-
demic Press, 2004, pp. 415–445 (cit. on p. 42).

[Kel+16] M.R. Kelly et al. “The impact of spatial arrangements on epidemic disease dy-
namics and intervention strategies.” In: Journal of biological dynamics (2016)
(cit. on p. 42).

[KNT00] Edwin M. Knorr, Raymond T. Ng, and Vladimir Tucakov. “Distance-based out-
liers: Algorithms and applications.” In: The VLDB Journal 3 (2000), pp. 237–253
(cit. on p. 8).

[KR07] Matt J. Keeling and Pejman Rohani. “Modeling infectious disease in Humans
and Animals.” In: Princeton university Press, 2007 (cit. on p. 42).

[LABH21] A. Lipshtat, R. Alimi, and Y. Ben-Horin. “Commuting in metapopulation epi-
demic modeling.” In: Scientific reports (2021) (cit. on p. 42).

[Las+21] Samson Lasaulce et al. “Analysis of the Tradeoff Between Health and Economic
Impacts of the Covid-19 Epidemic.” In: Frontiers in Public Health 9 (2021) (cit.
on p. 42).

[LH14] Miao Lin and Wen-Jing Hsu. “Mining GPS data for mobility patterns: A survey.”
In: Pervasive and Mobile Computing 12 (2014), pp. 1–16 (cit. on p. 40).

[Lin] Linternaute. Website with information on the number of seats in a restaurant
in Grenoble. https : / / www . linternaute . com / restaurant / guide / ville -
grenoble-38000/. accessed 6 December 2021 (cit. on p. 74).

[LS13] Xinzhi Liu and Peter Stechlinski. “Transmission dynamics of a switched multi-
city model with transport-related infections.” In: Nonlinear Analysis: Real World
Applications 14.1 (2013), pp. 264–279 (cit. on p. 42).

[LXH21] Jian Li, Tao Xiang, and Linghui He. “Modeling epidemic spread in transportation
networks: A review.” In: Journal of Traffic and Transportation Engineering (En-
glish Edition) 8.2 (2021). Transportation Planning and Operations for COVID-19
Epidemic and Other Emergencies, pp. 139–152 (cit. on p. 42).



144 Bibliography

[Lyc] Schedule for Lycee Emmanuel Mounnier. https://emmanuel- mounier.ent.
auvergnerhonealpes.fr/le-lycee/horaires-des-cours/. accessed 6 Decem-
ber 2021 (cit. on p. 85).

[MFW20] Nicolas Martin, Paolo Frasca, and Carlos Canudas-de Wit. “Subgraph Detection
for Average Detectability of LTI Systems.” In: IEEE Transactions on Network
Science and Engineering 7.4 (2020), pp. 2787–2798 (cit. on p. 7).

[MM06] Mirco Musolesi and Cecilia Mascolo. “A Community Based Mobility Model for
Ad Hoc Network Research.” In: Proceedings of the 2nd International Workshop on
Multi-Hop Ad Hoc Networks: From Theory to Reality. REALMAN ’06. Florence,
Italy: Association for Computing Machinery, 2006, 31–38 (cit. on p. 39).

[Mol+21] Joseph Molloy et al. “Observed impacts of the Covid-19 first wave on travel
behaviour in Switzerland based on a large GPS panel.” In: Transport Policy 104
(2021), pp. 43–51 (cit. on p. 42).

[Mor+21] D. H. Morris et al. “Optimal, near-optimal, and robust epidemic control.” In:
Commmunication physics 4 (2021) (cit. on p. 42).

[MR22] Emilio Molina and Alain Rapaport. An optimal feedback control that minimizes
the epidemic peak in the SIR model under a budget constraint. 2022 (cit. on p. 42).

[MYA+13] de Montjoye Yves-Alexandre et al. “Unique in the Crowd: The privacy bounds of
human mobility.” In: Scientific Reports (2013) (cit. on p. 40).

[NBC+21] Pierre Nouvellet, Sangeeta Bhatia, Anne Cori, et al. “Reduction in mobility and
COVID-19 transmission.” In: Nature Communications (2021) (cit. on p. 42).

[NCK20] M. U. B. Niazi, C. Canudas-de-Wit, and A. Kibangou. “Average State Estimation
in Large-scale Clustered Network Systems.” In: IEEE Transactions on Control
of Network Systems (2020). In press (cit. on p. 7).

[Nia+20] M. U. B. Niazi et al. “Scale-Free Estimation of the Average State in Large-Scale
Systems.” In: IEEE Control Systems Letters 4.1 (2020), pp. 211–216 (cit. on
pp. 7, 15).

[Nia+21] Muhammad Umar Niazi et al. “Optimal Control of Urban Human Mobility for
Epidemic Mitigation.” In: CDC 2021 - 60th IEEE Conference on Decision and
Control, Dec 2021, Austin, United States (2021) (cit. on pp. 40–42, 45, 47, 49,
50, 98, 100).

[NWK20] Muhammad Umar B. Niazi, Carlos Canudas de Wit, and Alain Y. Kibangou.
“Thermal Monitoring of Buildings by Aggregated Temperature Estimation.” In:
IFAC-PapersOnLine 53.2 (2020). 21st IFAC World Congress, pp. 4132–4137 (cit.
on p. 7).

[Off] French official working hours. https : / / businessculture . org / western -
europe/business- culture- in- france/work- life- balance- in- france/.
accessed 6 December 2021 (cit. on p. 85).



Bibliography 145

[Opea] Opendatasoft. Coordinates of the the IRIS in France. https : / / public .
opendatasoft . com / explore / dataset / georef - france - iris / export /
?disjunctive.reg_name&disjunctive.dep_name&disjunctive.arrdep_name&
disjunctive.ze2010_name&disjunctive.bv2012_name&disjunctive.epci_
name&disjunctive.ept_name&disjunctive.com_name&disjunctive.com_arm_
name&disjunctive.iris_name&sort=year&q=38185&refine.arrdep_name=
Grenoble&refine.com_name=Grenoble&location=12,45.19695,5.74791&
basemap=jawg.streets. accessed 6 December 2021 (cit. on p. 61).

[Opeb] Openstreetmap. Grenoble area on OpenStreetMap. https : / / www .
openstreetmap.org/map=11/45.1635/5.7273. accessed 6 December 2021
(cit. on pp. 61, 63).

[Pre] Presences. Official website of the magazine Presences: les magazine des enter-
prises du Sud Isere. https://www.presences-grenoble.fr/. issue: January,
2021 (cit. on p. 70).

[RFa] Republique-Francaise. Coordinates of the boundaries of communes. https://
www . data . gouv . fr / fr / datasets / r / 07b7c9a2 - d1e2 - 4da6 - 9f20 -
01a7b72d4b12. accessed 6 December 2021 (cit. on p. 61).

[RFb] Republique-Francaise. Schedules for primary schools. https://www.service-
public.fr/particuliers/vosdroits/F24490. accessed 6 December 2021 (cit.
on p. 85).

[RHG15] Mohsen Ramezani, Jack Haddad, and Nikolas Geroliminis. “Dynamics of hetero-
geneity in urban networks: aggregated traffic modeling and hierarchical control.”
In: Transportation Research Part B: Methodological 74 (2015), pp. 1–19 (cit. on
p. 7).

[RL87] P. J. Rousseeuw and A. M. Leroy. Robust Regression and Outlier Detection. USA:
John Wiley & Sons, Inc., 1987 (cit. on p. 7).

[RT04] John R. Roy and Jean-Claude Thill. Spatial interaction modelling. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2004, pp. 339–361 (cit. on p. 39).

[RVWF20] Martin Rodriguez-Vega, Carlos Canudas de Wit, and Hassen Fourati. “Average
density detectability in traffic networks using virtual road divisions.” In: IFAC-
PapersOnLine 53.2 (2020). 21st IFAC World Congress, pp. 17059–17064 (cit. on
p. 7).

[Sch+21] Markus Schläpfer et al. “The universal visitation law of human mobility.” In:
Nature 593 (2021) (cit. on p. 78).

[SD10] Agus Suryanto and Isnani Darti. “On the nonstandard numerical discretization of
SIR epidemic model with a saturated incidence rate and vaccination.” In: AIMS
Mathematics, 6(1): 141–155. (2010) (cit. on p. 55).

[SD95] Lisa Sattenspiel and Klaus Dietz. “A structured epidemic model incorporating
geographic mobility among regions.” In: Mathematical Biosciences 128.1 (1995),
pp. 71–91 (cit. on pp. 39, 40, 42).



146 Bibliography

[Sec] Schedule for Fantin Latour middle school. http : / / www . ac - grenoble . fr /
college/fantin-latour-grenoble/?page_id=71. accessed 6 December 2021
(cit. on p. 85).

[SII17] Tomonori Sadamoto, Takayuki Ishizaki, and Jun Ichi Imura. “Average state ob-
servers for large-scale network systems.” In: IEEE Transactions on Control of
Network Systems 4.4 (2017), pp. 761–769 (cit. on pp. 7, 30).

[Sim+12] F. Simini et al. “A universal model for mobility and migration patterns.” In:
nature 484 (2012), pp. 96–100 (cit. on p. 39).

[Smo+21] Alex Smolyak et al. “Effects of mobility restrictions during COVID19 in Italy.”
In: Scientific Reports (2021), pp. 2045–2322 (cit. on p. 42).

[Son+20] Sirui Song et al. Reinforced Epidemic Control: Saving Both Lives and Economy.
2020. arXiv: 2008.01257 [cs.AI] (cit. on p. 42).

[TAKT05] Hoang Tuy, Faiz Al-Khayyal, and Phan Thien Thach. “Monotonic Optimization:
Branch and Cut Methods.” In: Essays and Surveys in Global Optimization. Ed.
by Charles Audet, Pierre Hansen, and Gilles Savard. Boston, MA: Springer US,
2005, pp. 39–78 (cit. on pp. 106–108, 111).

[Tan+15] Jinjun Tang et al. “Uncovering urban human mobility from large scale taxi
GPS data.” In: Physica A: Statistical Mechanics and its Applications 438 (2015),
pp. 140–153 (cit. on p. 40).

[Ter] Territorial.fr. Safety regulation for the maximum number of persons allowed ac-
cording to surface area. https://www.territorial.fr/PAR_TPL_IDENTIFIANT/
17172/TPL_CODE/TPL_OVN_CHAPITRE_FICHE/3848-consultation-le-guide-
pratique-du-dst.htm. accessed 6 December 2021 (cit. on pp. 72, 73).

[Tuy00] Hoang Tuy. “Monotonic Optimization: Problems and Solution Approaches.” In:
SIAM Journal on Optimization 11.2 (2000), pp. 464–494. eprint: https://doi.
org/10.1137/S1052623499359828 (cit. on pp. 106–109, 111).

[UGA] UGA. Official website of University Grenoble Alpes. https : / / www . univ -
grenoble-alpes.fr/about/uga-in-numbers. accessed 6 December 2021 (cit. on
p. 65).

[Wan+18] Hongwei Wang et al. “Robust Gaussian Kalman Filter with Outlier Detection.”
In: IEEE Signal Processing Letters 25.8 (2018), pp. 1236–1240 (cit. on p. 8).

[WHL18] Zhenzhen Wang, Sylvia Y. He, and Yee Leung. “Applying mobile phone data to
travel behaviour research: A literature review.” In: Travel Behaviour and Society
11 (2018), pp. 141–155 (cit. on p. 40).

[XSB14] Yunwen Xu, Srinivasa M. Salapaka, and Carolyn L. Beck. “Aggregation of graph
models and markov chains by deterministic annealing.” In: IEEE Transactions
on Automatic Control 59.10 (2014), pp. 2807–2812 (cit. on p. 20).

[Yin+15] Ling Yin et al. “Re-Identification Risk versus Data Utility for Aggregated Mo-
bility Research Using Mobile Phone Location Data.” In: PLOS ONE 10 (Oct.
2015), pp. 1–23 (cit. on p. 40).



Bibliography 147

[Yin+20] Qian Yin et al. “A novel epidemic model considering demographics and inter-
city commuting on complex dynamical networks.” In: Applied Mathematics and
Computation 386 (2020), p. 125517 (cit. on p. 42).

[YYH12] Sung-Jib Yim and Choi Yoon-Hwa. “Neighbor-Based Malicious Node Detection
in Wireless Sensor Networks.” In: Wireless Sensor Networks 4.September (2012),
pp. 361–374 (cit. on p. 8).

[ZB11] Hui Zang and Jean Bolot. “Anonymization of Location Data Does Not Work:
A Large-Scale Measurement Study.” In: Proceedings of the 17th Annual Inter-
national Conference on Mobile Computing and Networking. MobiCom ’11. Las
Vegas, Nevada, USA: Association for Computing Machinery, 2011, 145–156 (cit.
on p. 40).

[ZC09] Dennis Zill and Michael Cullen. Differential Equations with Boundary-Value
Problems. Brooks/Cole Cengage Learning, Canada, 2009 (cit. on p. 31).

[ZG10] Matteo Zignani and Sabrina Gaito. “Extracting human mobility patterns from
GPS-based traces.” In: 2010 IFIP Wireless Days. 2010, pp. 1–5 (cit. on p. 40).

[Zha+16] Ziliang Zhao et al. “Understanding the bias of call detail records in human mobil-
ity research.” In: International Journal of Geographical Information Science 30.9
(2016), pp. 1738–1762 (cit. on p. 40).

[ZMH10] Y. Zhang, N. Meratnia, and P. Havinga. “Outlier Detection Techniques for Wire-
less Sensor Networks: A Survey.” In: IEEE Communications Surveys Tutorials
12.2 (2010), pp. 159–170 (cit. on p. 8).

[ZQH13] Ying Jun Zhang, Liping Qian, and Jianwei Huang. “Monotonic Optimization
in Communication and Networking Systems.” In: Foundation and trends in net-
working 7.1(2012) (2013), pp. 1–75 (cit. on pp. 111, 113, 114).


