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INTRODUCTION EN FRANÇAIS

Contexte

L’ingénierie logicielle moderne consiste essentiellement à utiliser les langages de

programmation les mieux adaptés à une tâche donnée, ce qui suppose de disposer du

support d’outils permettant d’utiliser ces langages efficacement. Les environnements

de développement intégrés (IDE) ont été initialement conçus comme un moyen de

rassembler dans un seul logiciel les différents services d’un langage donné (par exemple,

les services d’édition, de débogage, de vérification, de compilation, ...). Cependant, nous

voyons de plus en plus de projets tirer parti des avantages de plusieurs langages de

programmation en même temps, que ce soit pour des parties isolées (par exemple, dans

le cadre de développements full-stacks, ou pour des architectures microservices) ou

même dans la même base de code avec la tendance récente du développement polyglotte
[37], [80]. Par conséquent, il est aujourd’hui nécessaire d’avoir accès aux services de

plusieurs langages au sein d’un même environnement.

Pour éviter le développement de services de langages spécifiques pour chaque IDE

existant, les protocoles de langage sont devenus ces dernières années un sujet d’intérêt

dans la communauté de l’ingénierie des langages ([21], [65], [68]). En communiquant

par le biais de protocoles bien définis, les principaux services de langage peuvent être

réutilisés dans les différents IDE supportant ces protocoles. Une conséquence directe est

que la responsabilité de fournir un support approprié pour un langage spécifique n’est

plus du ressort du fabricant de l’IDE, mais incombe aux mainteneurs de langages qui

développent les services indépendamment de toute plateforme particulière. Le premier

protocole de langage, à savoir le Language Server Protocol (LSP) 1, a été proposé par

Microsoft dans le cadre du développement de VS Code 2. Le rôle de LSP est de prendre

en charge les services d’édition communs de n’importe quel langage en fournissant

une implémentation de serveur de langage conforme à des spécifications ouvertes et

consultables librement. Il a été conçu autour d’un ensemble de services qui ont été

1. cf. https://microsoft.github.io/language-server-protocol/
2. cf. https://code.visualstudio.com/
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extraits d’éditeurs de code spécialisés pour les langages généraux les plus couramment

utilisés. LSP, le Debug Adapter Protocol (DAP) 3, et la plupart des autres protocoles de

langage que nous voyons aujourd’hui spécifient la structure des données échangées entre

un client unique (un composant de l’interface utilisateur d’un IDE) et un serveur unique

(backend fournissant l’ensemble des services nécessaires au client), ainsi que les requêtes

et les événements qui peuvent être envoyés de l’un à l’autre. La plupart des messages sont

inclus dans ce que l’on appelle les « capabilities ». L’ensemble des capabilities est défini et

fixé par les spécifications du protocole. L’idée est que les clients et les serveurs peuvent

choisir d’implémenter un sous-ensemble des capabilities et d’en informer les autres, qui

devraient être en mesure d’utiliser tous les messages correspondants, conformément à la

spécification.

Énoncé du Problème

Avec le succès de LSP et de DAP, nous voyons apparaître de nouveaux protocoles

de langage pour de nouveaux cas d’utilisation (par exemple, le Build Server Protocol 4

ou le Test Adapter Protocol 5) et pour des fonctionnalités spécifiques mal prises en

charge par les protocoles existants (par exemple, l’utilisation d’une syntaxe graphique

dans LSP [68]). Le cas de la syntaxe graphique est particulièrement intéressant car il a

conduit à la définition de deux protocoles différents pour le même objectif : le Graphical

Language Server Protocol 6 et le Graphical Server Protocol 7. Une autre façon d’étendre

les fonctionnalités de LSP, qui a été utilisée dans des travaux tels que [60] et [50],

consiste à ajouter arbitrairement le support de nouveaux messages à un serveur et à un

client, et à considérer que toutes les implémentations existantes les ignoreront si elles

ne les supportent pas. Bien que ces deux travaux apportent des contributions très utiles,

une telle implémentation soulève des problèmes de maintenabilité et d’interopérabilité,

ce qui motive davantage notre travail.

Sur le long terme, il serait contre-productif de continuer à créer des protocoles

indépendants pour chaque cas d’utilisation, car cela irait à l’encontre de l’objectif de

la définition de ces protocoles, à savoir : assurer un support approprié des différents

3. cf. https://microsoft.github.io/debug-adapter-protocol/
4. cf. https://build-server-protocol.github.io/
5. cf. https://github.com/microsoft/vscode-debugadapter-node/issues/154
6. cf. https://www.eclipse.org/glsp/
7. cf. https://obeonetwork.github.io/GraphicalServerProtocol/
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services dans tous les environnements de développement. Dans une situation réelle, cela

déplacerait le défi sur la composabilité et la compatibilité des protocoles existants, qui

ne sont actuellement pas pris en compte. Par conséquent, au lieu d’avoir un serveur qui

englobe tous les services pour un langage donné, nous explorons l’idée de le décomposer

en services individuels interagissant les uns avec les autres. Pour assurer la communica-

tion entre ces services et le(s) client(s), ainsi que leur chorégraphie, nous considérons les

spécifications requises explicitement pour supporter toutes leurs interactions. Ainsi, au

lieu de définir un protocole de langage à partir de zéro, lié à un cas d’utilisation spéci-

fique, nous envisageons la définition d’un méta-protocole de langage à partir duquel nous

pourrons dériver les instanciations les plus pertinentes (c’est-à-dire les configurations des

services de langage). Grâce à cette approche, certaines parties des protocoles existants

qui sont en fait génériques pourraient être séparées, et leurs impémentations mieux

exploitées en étant réutilisées dans de multiples configurations de services. Cela apporte

également plus de flexibilité à l’architecture globale : les services spécialisés peuvent

être déplacés vers d’autres machines ou remplacés en fonction du cas d’utilisation, des

fonctionnalités peuvent être ajoutées ou supprimées à tout moment, et il devient possible

de contrôler finement le déploiement de chaque service indépendamment. Nous appelons

cette vision IDE as Code (ou « Environnements de Développement Programmables »).

Comme l’illustre la Figure 1, nous attendons des concepteurs de langage qu’ils

fournissent non seulement les spécifications de leur langage, mais aussi des informations

sur les interactions protocolaires requises par les différents services. À partir de là, nous

pouvons obtenir des « paquets de services de langage » qui sont des services de langage,

indépendants et minimaux, qui interagissent les uns avec les autres. En utilisant ces

paquets, les utilisateurs devraient pouvoir spécifier la configuration et le déploiement

de leur IDE (ou utiliser des IDE prédéfinis) pour mettre en place un environnement de

développement adapté à leurs besoins, en fonction de leur environnement de travail et

de leur cas d’utilisation.

Les développeurs ont besoin d’un accès optimal aux services de langage, quels que

soient leur lieu de travail et leur équipement. Avec la pandémie de COVID-19, il est

devenu encore plus évident qu’il n’est pas toujours possible d’assurer l’accès à un environ-

nement de travail stable, et de plus en plus d’efforts sont consacrés au développement

d’IDEs infonuagiques footnotecf. https://ecdtools.eclipse.org/events/idesummit/2021/.

Bien qu’ils permettent à leurs utilisateurs d’accéder à un environnement de développe-

ment persistant depuis n’importe où, ils présentent également des défauts qui doivent
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FIGURE 1 – Vision d’Ensemble de IDE as Code
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encore être abordés : la nécessité d’un accès Internet stable et rapide, qui peut forte-

ment fluctuer dans des situations telles que des voyages, une personnalisation limitée,

et une mise à l’échelle insuffisante pour offrir à tous leurs utilisateurs une expérience

transparente en même temps. Des travaux tels que [25] ont déjà pris en compte ces

limitations et ont exploré l’idée de séparer les services de langage en microservices,

avec des mécanismes de redéploiement dynamique, soit localement soit sur différents

serveurs, comme solution à ces problèmes.

En ce qui concerne la prise en charge de différents cas d’utilisation, nous pouvons

par exemple considérer les experts de domaine habitués à travailler avec un langage

dédié via une syntaxe graphique, qui n’ont pas besoin d’une représentation textuelle

ni des services pour la manipuler. Plusieurs études telles que [69] soutiennent que les

professionnels peuvent souvent se sentir dépassés par leurs environnements lorsque

ceux-ci offrent trop d’outils et de services. Cela peut être contre-productif car il est

difficile de mettre en valeur les fonctionnalités les plus utiles lorsque les utilisateurs

sont noyés sous les fonctionnalités inutiles. Par conséquent, l’un des objectifs de cette

approche est de permettre aux utilisateurs de disposer d’un environnement propre et

minimaliste où ils n’ont accès qu’aux outils qu’ils utilisent réellement. D’autre part, la

connaissance que peuvent apporter les concepteurs de langages, en ce qui concerne

l’ensemble des fonctionnalités les mieux adaptées à un cas d’utilisation particulier,

est également précieuse, de sorte qu’ils devraient pouvoir spécifier des configurations

d’environnements par défaut.

Les composants que l’on peut trouver dans un environnement de développement sont

nombreux. Ils peuvent aller d’un analyseur syntaxique pour la syntaxe textuelle d’un

langage à un débogueur pour l’exécution d’un programme. Dans cette thèse, nous mettons

l’accent sur les composants d’exécution, c’est-à-dire les composants qui permettent et

dirigent l’exécution des programmes (par exemple, les interpréteurs ou les débogueurs),

dans le contexte des environnements interactifs. Nous abordons trois défis dans ce

contexte :

— Le premier concerne directement la manière dont ces différents composants vont

communiquer entre eux. Une simple approche client/serveur avec des protocoles

fixes n’est pas suffisante pour supporter la customisation d’un tel environnement.

Par conséquent, il est nécessaire de manipuler directement les protocoles de lan-

gage comme des objets de première classe, tout comme les composants qui les

implémentent.
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— La seconde consiste à établir une hiérarchie entre les différents composants d’exé-

cution, et d’en déduire le plus basique qui peut être utilisé pour diriger les autres.

L’objectif principal est d’améliorer la réutilisation des implémentations de services,

tout en permettant de les standardiser autour d’APIs minimales et bien définies.

Cela signifie également que nous devons spécifier les dépendances entre ces com-

posants et définir les protocoles dont ils ont besoin pour interagir les uns avec les

autres.

— Et la troisième consiste à produire réellement les composants du langage qui ré-

pondent aux spécifications des protocoles, en utilisant les informations qui existent

déjà dans les spécifications des langages et en appliquant un processus possiblement

génératif.

Contributions

La contribution principale de cette thèse est le concept d’IDE as Code. Nous discutons

d’une implémentation possible d’outils de langage et de fonctionnalités fournis sous

forme de microservices indépendants, qui peuvent être déployés à la demande par les

utilisateurs pour adapter leur environnement de développement à leurs besoins. La

configuration de l’environnement étant externe à toute plateforme spécifique, elle peut

être utilisée pour mettre en place n’importe quelle infrastructure, qu’il s’agisse d’un

IDE entièrement local ou d’un environnement dans le web, lié à un dépôt de code

dans une forge telle que GitLab 8. En manipulant les protocoles de langage comme

des objets de première classe, nous pouvons tirer parti de la réutilisabilité des services

qui les implémentent, et même définir une hiérarchie avec des protocoles spécifiques

étendant ou utilisant une composition d’autres protocoles. Ceci est particulièrement

intéressant lorsque nous prenons en compte les nombreux outils d’exécution qui peuvent

être nécessaires pour un DSL donné, tels que : exécution complète d’un programme,

interpréteur REPL et débogage. Ainsi, une deuxième contribution de cette thèse est la

définition du composant le plus élémentaire qui peut diriger d’autres outils d’exécution

de langage, et son protocole. Au-dessus de ce composant, nous pouvons fournir des

outils d’exécution génériques pour chaque mode d’exécution identifié. Comme troisième

contribution, nous décrivons une approche générative pour créer des interpréteurs REPL

à partir de spécifications de langages dédiés, en utilisant le protocole mentionné ci-dessus.

8. cf. https://gitlab.com/gitlab-org/gitlab
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Cela permet d’utiliser les langages dédiés dans des environnements de développement

interactifs et modernes, tels que Jupyter Notebook, avec un minimum d’efforts, tout en

assurant la cohérence de la sémantique avec les autres interpréteurs existants.

Implémentations et Évaluation

Les implémentations abordées dans ce manuscrit visent spécifiquement les langages

dédiés (DSLs). À partir des spécifications de DSL existants, nous proposons une approche

générative pour dériver un interpréteur REPL, un outil d’exécution de langage capable

d’exécuter de manière incrémentale des programmes partiels. Un tel interpréteur peut

être utilisé dans des environnements comme des notebooks (par exemple, Jupyter

Notebook) que nous désignons comme « environnements de programmation interactifs ».

Ces environnements reposent sur un processus de développement incrémental dans

lequel le développeur peut écrire et documenter de petits bouts de code indépendants et

obtenir des retours, ce qui mélange les approches de la programmation exploratoire [45]

et de la programmation lettrée [49].

Les DSLs que nous avons utilisés pour évaluer cette implémentation offraient éga-

lement des fonctionnalités de débogage avancées. En essayant de les intégrer dans de

tels environnements, nous avons toutefois remarqué certains conflits entre les approches

utilisées pour implémenter ces débogueurs et nos interpréteurs REPL. Dans certains cas,

ils fournissaient touts les deux les mêmes fonctionnalités, et dans d’autres, ils se gênaient

mutuellement. Cela a conduit à une définition de la hiérarchie des outils d’exécution,

avec les interpréteurs REPL et les débogueurs s’appuyant sur une seule implémentation

d’un composant exposant une sémantique opérationnelle formalisée. Par la suite, nous

avons dérivé une autre approche pour obtenir ledit composant, soit implémenté ma-

nuellement par un ingénieur du langage, soit dérivé générativement d’une sémantique

opérationnelle existante. Nous présentons ensuite les autres outils d’exécution comme

des implémentations génériques, interagissant avec ce composant via un protocole de

langage spécifique.

Pour motiver notre vision et évaluer nos implémentations, nous considérons dans

cette thèse un environnement de programmation interactif qui fournit des possibilités de

débogage omniscient à partir d’une trace d’exécution, similaire à l’approche présentée

dans [18]. Afin de fournir le support d’un débogueur omniscient à plusieurs plateformes

différentes, nous pourrions en pratique utiliser DAP puisqu’il spécifie une requête step-
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Back. Cependant, le mécanisme de retour en arrière tel qu’introduit dans [18] donne

plus de contrôle que le simple retour en arrière : par exemple, on peut décider de reve-

nir soit à l’intérieur soit à l’extérieur de fonctions/méthodes. À l’heure actuelle, aucun

protocole de langage ne prend en charge un mécanisme de retour en arrière à ce niveau

de granularité.

En outre, la génération et le stockage de la trace d’exécution est un processus très

coûteux qui ne devrait pas être activé en permanence et qui gagnerait à être exécuté sur

un hôte dédié. Idéalement, son activation devrait être contrôlable tout au long d’une

session de débogage, et les protocoles de langage actuels n’offre aucune requête pour

gérer cela.
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CHAPTER 1

INTRODUCTION

1.1 Context

Modern software engineering consists heavily in using the programming languages

most suitable for the task, which relies on having the tool support to use these languages

efficiently. Integrated Development Environments (IDEs) have been initially designed

as a way to gather in a single software the various services of a given language (e.g.
facilities for editing, debugging, checking, compiling). However, we tend to see more and

more projects leveraging on the benefits of multiple programming languages at the same

time, either for isolated parts (e.g. full stack development, microservices architectures)

or even in the same codebase with the recent trend of polyglot development [37], [80].

As a consequence, there is a need to have access to the services of several languages in

the same environment.

To prevent the development of specific language services for each existing IDE,

language protocols have become in the recent years a topic of interest in the language

engineering community ([21], [65], [68]). By communicating through well-defined

protocols, the main language services can be reused across the various IDEs supporting

said protocols. A direct consequence is that the responsibility to provide a proper support

for a specific language is no longer a concern of the IDE manufacturer, but befalls on the

language maintainers developing the services independently. The first language protocol,

namely the Language Server Protocol (LSP) 1, was proposed by Microsoft in the context

of the development of VS Code 2. The role of LSP is to support common editing services

of any language providing a language server implementation that conforms to given

open source specifications. It was designed around a set of services that was extracted

from specialized code editors for the most commonly used general purposes languages.

As a consequence, nowadays, any code editor can provide the same level of language

support for GPLs that have a LSP implementation, e.g., both VS Code and NeoVIM 3 offer

1. cf. https://microsoft.github.io/language-server-protocol/
2. cf. https://code.visualstudio.com/
3. cf. https://neovim.io
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the same syntax highlighting, symbols documentation, type checking and refactoring

capabilities for Python programs through Pyright 4. LSP, the Debug Adapter Protocol

(DAP) 5, and most of the other language protocols we see nowadays (for e.g., graphical

syntax, compilation, testing) specify the structure of the data exchanged between a single

client (a UI component of an IDE) and a single server (backend providing the set of

services needed by the client), and the requests and events that can be sent from one

to the other. Most messages are included in what is referred to as “capabilities”. The

set of capabilities is set and fixed by the specifications of the protocol. The idea is that

both clients and servers can choose to implement a subset of the capabilities and notify

the other, which should be able to use all the corresponding messages according to the

specification.

1.2 Problem Statement

Fixing the set of services at the level of the protocol means that it might not fit every

use-case. For example, when considering domain specific languages (DSLs), we often

find some unusual features that can be tied to either the meta-language approach used

to design the language (e.g., generic services [17]), the language itself (e.g., paradigm,

syntax), or even the program being developed (e.g., current state representation). While

we could argue that it would be pertinent to add some of these features as new capabilities

to the existing protocols, it would be inconceivable to cover all specific use cases inside a

single generic protocol. Still, the adoption of DSLs would greatly benefit from support

by multiple major IDEs, as they would integrate better in the workflow of the users.

Protocols are making this situation possible, although some features would be lost in the

process [21].

With the success of LSP and DAP, we see new language protocols emerging for both

new use cases (e.g., Build Server Protocol 6, Test Adapter Protocol 7) and specific features

not properly supported by the existing ones (e.g. using a graphical syntax in LSP [68]).

The case of the graphical syntax is particularly interesting, because it led to the definition

of two different protocols for the same purpose: the Graphical Language Server Protocol 8

4. cf. https://github.com/microsoft/pyright
5. cf. https://microsoft.github.io/debug-adapter-protocol/
6. cf. https://build-server-protocol.github.io/
7. cf. https://github.com/microsoft/vscode-debugadapter-node/issues/154
8. cf. https://www.eclipse.org/glsp/
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and the Graphical Server Protocol 9. Another way to extend the features of LSP that

was used in works such as [60] and [50] consists in arbitrarily adding support for new

messages to a server and a client, and consider that all existing implementations will

ignore them if they don’t support them. While these two works provide very useful contri-

butions, such an implementation raises concerns of maintainability and interoperability,

which further motivates our work.

In the long run, it would be counter-productive to keep making independent protocols

for every use-case, as this would defeat the purpose of defining these protocols, i.e. to

ensure proper support in all development environments. In a real-world situation, this

would shift the challenge on the composability and compatibility of existing protocols,

which is currently not addressed. Hence, instead of having a server that encompasses all

services for a given language, we explore the idea of breaking it down into individual

services interacting with each other. To ensure the communication between these services

and the client(s), as well as their choreography, we consider the specifications required

explicitly to support all their interactions. Thus, instead of defining a language protocol

from the ground-up, tied to a specific use-case, we envision the definition of a meta

language protocol from which we can derive the most pertinent instantiations (i.e., lan-

guage services configurations). With this approach, some parts of existing protocols that

are actually generic could be separated, and their implementations leveraged better by

being reused in multiple services configurations. This also provides more flexibility to the

overall architecture: specialized services could be moved to other machines or replaced

depending on the use-case, features could be added or removed at any moment, and it

would become possible to finely control the deployment of each service independently.

We refer to this vision as IDE as Code.

As illustrated by Figure 1.1, we expect language designers to not only provide their

language specifications but also information about the protocol interactions required

for the different services. From there, we can obtain “language service packages” which

are minimal independent language services interacting with each other. Using these

packages, users should be able to specify the configuration and the deployment of their

IDE (or use predefined ones) to set up a development environment in the way they need

according to both their work environment and use case.

Developers require optimal access to language services no matter their workplace and

equipment. With the COVID-19 pandemic, it became even more apparent that relying

9. cf. https://obeonetwork.github.io/GraphicalServerProtocol/
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Figure 1.1 – Vision Overview for IDE as Code
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on a stable work environment is not always sustainable, and more and more efforts are

put towards the development of Cloud-based IDEs 10. While they allow their users to

access a persistent development environment from anywhere, they also possess flaws

that still require to be addressed: the need for a stable and fast Internet access, which

can greatly fluctuate in situations such as travels, limited customization, and insufficient

scaling to offer all their users a seamless experience at the same time. Works such as [25]

already took these limitations into account and explored the idea of separating language

services into microservices, with mechanisms for dynamic re-deployment either locally

or on different servers, as a solution to these issues.

On the topic of supporting different use cases, we can for example consider domain

experts used to working with a DSL through a graphical syntax, that do not require a

textual representation nor the services to manipulate it. Several studies such as [69] argue

that professionals can often feel overwhelmed by their environments when they offer too

many tools and services. This can be counterproductive as it is hard to properly showcase

the most useful features when the users are drowned in useless ones. Consequently, a

goal of this approach is to let users have a clean and minimalist environment where

they have access to only the tools they actually use. On the other hand, the input of

language designers in regard to the set of features best suited to a particular use-case is

also valuable, so they should be able to specify default environment configurations. Thus,

we consider the following research question: How to provide a fully customizable

development environment that empowers both DSL designers and users?

The components that can be found in a development environment are numerous.

They can range from a parser for the textual syntax of a language to a debugger for the

execution of a program. In this thesis, we put the focus on runtime components, meaning

the components that permit and drive the execution of programs (e.g., interpreters,

debuggers), in the context of interactive environments. We address three challenges in

this context:

— The first one relates directly to the way these different components will communi-

cate with each other. A simple client/server approach with fixed protocols is not

enough to support the customization of such an environment. As a consequence,

it is necessary to manipulate directly the language protocols as first class citizens,

much like the components implementing them.

— The second one consists in establishing a hierarchy between the different runtime

10. cf. https://ecdtools.eclipse.org/events/idesummit/2021/
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components, and deriving the most basic one that can be used to drive the others.

The main goal is to improve the reuse of implementations of services, while also

permitting to standardize them around minimal and well-defined APIs. This also

means that we need to specify the dependencies between these components and

define the protocols they require in order to interact with one another.

— And the third one is to actually produce the language components that meet the

protocol specifications, by making use of the information that already exists in the

specifications of the languages and applying a possibly generative process.

1.3 Contributions

The main contribution of this thesis is the concept of IDE as Code. We discuss a possible

implementation of language tools and features provided as independent microservices,

that can be deployed on demand by users to tailor their development environment

to their needs. The configuration of the environment being external to any specific

platform, it can be used to set up any infrastructure, either a fully local IDE or a basic

web environment tied to a code repository in a forge such as GitLab 11. By manipulating

language protocols as first class citizens, we can leverage on the reusability of the services

implementing them, and even define a hierarchy with specific protocols extending or

using a composition of others. This is particularly interesting when we consider the

multiple execution tools that can be required for a given DSL, e.g. complete program

execution, REPL interpreter and debugging. As such, a second contribution of this

thesis is the definition of the most basic component that can drive multiple language

execution tools, and its protocol. On top of this component, we can provide generic

execution tools for each identified execution mode. As a third contribution, we describe

a generative approach to create REPL interpreters from DSL specifications, making

use of the aforementioned protocol. This makes it possible to use DSLs in modern

interactive development environments such as Jupyter Notebook with minimal efforts,

while assuring the consistency of the semantics with other existing interpreters.

11. cf. https://gitlab.com/gitlab-org/gitlab
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1.4 Implementations & Evaluation

The implementations addressed in this manuscript are targeting specifically domain-

specific languages. From existing DSL specifications, we provide a generative approach

to derive a REPL interpreter, a language execution tool able to incrementally run partial

programs. Such an interpreter can be used in environments like notebooks (e.g., Jupyter

Notebook) that we identify as “interactive programming environment”. These environ-

ments rely on an incremental development process in which the developer can write

and document small independent code snippets and get feedback, which mixes the

approaches of both exploratory programming [45] and literate programming [49].

The DSLs we used to evaluate this implementation also offered advanced debugging

features. By trying to integrate them in such environments however, we noticed some

conflicts between the approaches used to implement these debuggers and our REPL

interpreters. In some instances, they would both provide the same features, and in others

they would clash with one another. This lead to a proper definition of the hierarchy

of execution tools, with both REPL interpreters and debuggers leveraging on a single

implementation of a component exposing formalized operational semantics. As such, we

derived another approach to obtain said component, either implemented manually by a

language engineer or generatively derived from an existing operational semantics. We

then introduce the other execution tools as generic implementations, interacting with

this component through a specific language protocol.

To motivate our vision and evaluate our implementations, we consider in this thesis

an interactive programming environment that provides omniscient debugging capabilities

from an execution trace, similar to the one presented in [18]. In their approach, Bousse et

al. rely on a debugger and a trace manager that are highly coupled. However, generating

and storing the execution trace is a very expensive process, and as a result their debugger

has trouble scaling for very large models. Considering a distributed approach based on

microservices would make a lot of sense in this scenario, as we could imagine splitting

the management of the full trace between several services, possibly hosted on separate

hosts, and for which the activation could be finely controlled whenever needed. In order

to provide support for an omniscient debugger to multiple platforms, in practice we

could use DAP since it specifies a stepBack request. However, the backtracking mechanism

as introduced in [18] gives more control than simply stepping back: for example, one

can step inside and outside functions/methods. There is currently no language protocol
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supporting such fine-grained backtracking mechanism.

1.5 Outline

The remainder of this thesis is structured in six chapters. Chapter 2 provides the

background required to follow the rest of the manuscript. It discusses the evolution of

IDEs and the challenges, both past and current, they face, while covering the current state

of the art on the topics of IDE modularity and DSL integration. Chapter 3 further details

the vision of IDE as Code introduced in this thesis and discusses possible implementations

for configuring and deploying a development environment. Since we put the focus

on program execution and interactive development environments, one of the main

components that we need to support in our infrastructure is a REPL interpreter. We

introduce the concept of REPL interpreters in Chapter 4 where we discuss the knowledge

gained from studying existing implementations, and derive a principled approach to

define them. Chapter 5 deals with the integration of services of executable DSLs in

interactive environments, and presents a generative approach to derive REPL interpreters

based on the principled approach. Chapter 6 defines a hierarchy between execution

components, including REPL interpreters and debuggers, and presents our proposal

for a language protocol dedicated to language runtimes that leverages on a unique

definition of operational semantics. And finally, Chapter 7 concludes this manuscript

with a research agenda following up on the work covered in this thesis and on the vision

of IDE as Code as a whole.

1.6 Publications List

In this section we list all the publications made as part of this thesis, either accepted

or still ongoing.

1.6.1 In-Press Publications

This section focuses on the accepted publications that are strictly related to this

manuscript:

IDE as Code: Reifying Language Protocols as First-Class Citizens (Conference Paper)
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CHAPTER 2

BACKGROUND & STATE OF THE ART

In this chapter, we introduce the background necessary to follow the rest of
the manuscript, and explore the related state of the art. We first present a
brief history of the evolution of IDEs (Section 2.1). Next, we cover domain-
specific languages (Section 2.2) that will be one of the main study subjects in
this thesis, followed by an overview of the requirements to execute programs
in different development environments (Section 2.3). Then, we consider more
globally language services and the issues to integrate them in multiple IDEs
(Section 2.4). We also mention REPL interpreters, which are another core concept
of our contributions, and we provide some background and examples on them
(Section 2.5). Finally, we present past research works on protocols engineering,
that shaped our thoughts on what a protocol for an IDE should look like and
how it should be defined (Section 2.6).

2.1 Integrated Development Environments

The first mention to an Integrated Development Environment can be traced back to

the work of P.S. Newman published in 1982 [59]. Such an environment should provide

to a developer all the necessary documentation to understand the system either currently

in development or being operated. In this paper, the author argues that the lack of

system documentation at the time was partly due to development tool fragmentation: the

lack of coordination between tools coupled with the absence of a unified environment

giving access to them made it hard for developers to know what features they could

use, and even if they did, there would be almost no interoperability. The higher cost of

maintaining an unintegrated set of tools is also a strong argument in favor of integrated

environments.

In those times, developers would mostly write source code through simple text editors

such as vi or Emacs. Due to their efficiency at text editing, such tools are still popular

today, but they have definitely evolved significantly throughout the years. For example,

vi has been replaced almost exclusively by an “improved” version known as vim, which is

itself slowly being supplanted by neovim. The integration of support for external plug-ins

in these editors makes them still relevant for development purposes and not just basic
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text editing. This in turns make them similar in nature to IDEs, as noted in [73].

As both programming languages and programs became more and more complex,

environments following the IDE ideology did the same by integrating more and more

complex and numerous language tools. This leads to two consequences:

— IDEs such as Eclipse 1 and IntelliJ IDEA 2 have so many features that their users can

feel overwhelmed, to the point of not knowing about some of the most basic such

as References ([69]);

— Developers who are satisfied with their IDEs are opposed to switching to others,

even when they offer some useful specific features. So new tools need to be

implemented for multiple environments in order to be used globally: development

tool fragmentation has been replaced by development environment fragmentation.

The trend of IDEs is now switching towards cleaner and more user-friendly interfaces.

At the same time, new concerns are emerging as today’s developers need an environment

offering support for multiple languages, sometimes even in the same project with polyglot

programming ([37]), and accessible from anywhere. Modern IDEs such as Microsoft’s

VS Code 3, Eclipse Theia 4 or JupyterLab 5 are consequently implemented using web

technologies, and support multiple languages through the implementation of newly

defined language protocols such as LSP 6 and DAP 7.

2.2 Domain Specific Languages

Domain Specific Languages (DSLs) are software languages specifically designed to

handle a specific application domain. As opposed to General-Purpose Languages (GPLs)

such as C or Java, that are Turing complete languages aiming to be usable in any context,

the role of DSLs is to capture the semantics of a given domain and only expose to their

users the concepts they require to solve a specific problem. While DSLs may end up

being Turing complete in some instances, this is usually not a goal when designing them.

Examples of DSLs include e.g. markup languages such as LaTeX 8, a language used to

1. cf. https://www.eclipse.org/
2. cf. https://www.jetbrains.com/idea/
3. cf. https://code.visualstudio.com/
4. cf. https://theia-ide.org/
5. cf. https://jupyter.org/
6. cf. https://microsoft.github.io/language-server-protocol/
7. cf. https://microsoft.github.io/debug-adapter-protocol/
8. cf. https://www.latex-project.org/
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annotate text documents with the necessary information to generate a consistent and

standardized output (this thesis’ manuscript was written entirely in LaTeX), modeling

languages such as SysML 9, a language for specifying and analyzing complex systems, and

programming languages such as SQL to interact with relational databases or alda 10 for

music composition. The examples given previously are called “External” DSLs, because

they use their own independent interpreter and/or compiler, and their editors rely on a

parser dedicated to their specific syntax. Other kinds of DSLs are called “Internal” DSLs,

and also consist in defining a grammar but on top of a host language to add domain-

specific elements to it. These leverage on the existing tool support for the host language,

both for edition and execution. Examples of Internal DSLs include Fluent APIs, APIs that

are designed to be used mainly through methods chaining which makes their particular

syntax explicit and easily readable, and language extensions that add new programming

concepts to the host language such as multi-stage programming frameworks ([76]).

Throughout this thesis, we will focus on external DSLs that provide a specification

designed to drive the development of a comprehensive development environment. A

language specification defines all the concepts available to the language users through

an abstract syntax, a metamodel whose instances are the programs written by the

users. In order to actually manipulate the language, developers have access to one or

several concrete syntaxes which map the concepts of the abstract syntax to concrete

representations that they can reason with. Semantics then map the abstract concepts to

actual behaviors within the context of the domain, making the language either executable

or translatable to another executable language. The specifications considered here usually

involve a concrete syntax definition in the form of a BNF-like description, an operational

semantics in the form of an interpreter (or any variant such as a visitor pattern), and static

semantics, that define all the context conditions ensuring statically correct conforming

programs. In such a definition, the language usually encompasses a single execution

entry point, a finely tuned execution context and an interpreter which defines a particular

traversal of a given syntax tree to manipulate and update the execution context over the

execution.

Such a language definition is now well-supported by advanced language workbenches

that help language engineers to develop language tools such as structured editors, de-

buggers and simulators. For instance, tools like Xtext 11 support the generation of an

9. cf. https://www.omgsysml.org/
10. cf. https://alda.io/
11. cf. https://www.eclipse.org/Xtext/

29

https://www.omgsysml.org/
https://alda.io/
https://www.eclipse.org/Xtext/


Chapter 2 – Background & State of the Art

advanced editor with a parser, syntactic validation, and all the features of modern code

editors (e.g., syntax coloring, auto-completion, etc.). Others, such as the GEMOC Stu-

dio 12, help to complement the language tooling with advanced execution engines and

debugging facilities. A study of the main features provided by some language work-

benches (e.g., MPS, Rascal, Spoofax) can be found in [28]. Most of these workbenches

are now mature enough to be included in industrial settings, and allow language engi-

neers to automate the development of the tools for the main scenarios of the expected

language users.

Let us consider for example the language Logo 13, illustrated in Figure 2.1. Logo is

an educational language whose main focus is the animation of turtle graphics. As such,

most of the statements are accompanied by feedback which is an action from the turtle,

and this is part of what makes it interesting for teaching purposes. An abstract syntax

of Logo specify that Program is made out of several instructions, that may also contain

multiple kinds of expressions. Figure 2.2 shows the metamodel associated to a very

minimal subset of this language. The associated concrete syntax is textual, and maps

the instructions to the keywords FORWARD, RIGHT and LEFT, while also ensuring parsing

of sums of integers to binary expressions and constants. Operational semantics define

how the execution of each instruction will affect the movements of the turtle. From

a comprehensive definition of the language, it is possible to automatically generate a

dedicated and structured editor that supports the definition of complete logo programs,

including a functional architecture and an explicit execution flow across the architecture.

2.3 Executability in Software Languages

Modern development environments support programming paradigms that differ from

the traditional edit-compile-run loop process. As an example, notebooks, that merge REPL

interpreters with the practice of literate programming, have recently gained popularity in

many fields (e.g., education [83], collaboration [81], domain exploration [71]) through

the Jupyter initiative [48]. At its core, a Jupyter notebook requires a language kernel

built on top of a REPL interpreter. Most of the popular languages nowadays provide REPL

interpreters implementations [15], such as Java with the JShell tool officially maintained

by Oracle. This makes these languages usable inside notebook environments. However,

12. cf. http://gemoc.org/studio.html
13. cf. https://en.wikipedia.org/wiki/Logo_(programming_language)
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Figure 2.1 – Example of a free Logo Interpreter (https://www.calormen.com/jslogo)

with a few exceptions such as Python, these tools are usually implemented and managed

independently of the other “more traditional” compilers or interpreters. They might reuse

parts of the existing semantics implementations, but cannot guarantee behaviors fully

consistent with the others. Tool support is also lacking: Oracle considers debugging as a

non-goal for JShell 14, which also means that notebooks based on this tool will not be

able to provide debugging facilities.

14. https://openjdk.java.net/jeps/222
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Figure 2.2 – Abstract syntax of a subset of the Logo language

When considering Domain-Specific Languages, these issues are even worse because it

is quite often unrealistic in terms of resources to develop and properly maintain multiple

implementations of the semantics for one language. Targeting one is already challenging

enough, and would depend greatly on the habits of the users and the tools they require

at a given time.

Besnard et al. studied such inconsistencies in [9] in the context of designing and

deploying cyber-physical systems. At the time the current practice was to derive multiple

semantics implementations from a first semantics definitions, each compatible with

a specific diagnosis tool. However, all the generated semantics would end up being

different from the one actually deployed on the target platform, which might invalidate

the results of the different diagnosis obtained pre-deployment. To mitigate this, they

contributed an approach based on a modular and reusable semantics implementation,

and a generic API akin to a protocol in order to adapt it for the different analysis tools.

In recent years, language protocols have become a topic of interest in the language

engineering community. The Language Server Protocol (LSP) provides an open source

unified specification of language features for textual concrete syntax. Through its adop-

tion in various development environments (e.g., VS Code, Eclipse, Jupyter) language

designers only require a single implementation of a language server to provide the same

textual language features (e.g., completion, formatting, validation) for users of different

platforms. The Debug Adapter Protocol (DAP) similarly permits using a single debugger

implementation in different environments.

A Foundational Subset for Executable UML Models (fUML [35]) was defined in order

to leverage on unified semantics and execution tools for modeling concepts shared by
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multiple domains (e.g., activity diagrams, state machines). The specifications of fUML

are very detailed and have been a great asset in the modeling community to support

semantics and tool reuse for many years. However, one of their main limitations is that

they do not, as yet, specify execution processes at a granularity low enough to handle

debugging scenarios, as already noted by works such as [36] or [51].

In [17], Bousse et al. introduced the concept of Execution Engine to leverage on a

single implementation of an operational semantics that follows a given interface. This

approach allows the definition of generic Engine Addons to support different runtime

scenarios. One of the addons contributed is a generic omniscient debugger (allowing

both forward stepping and back in time exploration of the executed steps) that can

be used by any sequential language interpreter that fits the interface. While sound in

design, we argue that the proposed interface is too restrictive for emerging execution

tools and frameworks: an Execution Engine expects a complete program as input, which

is not compatible with the process of incremental building and exploration offered by

notebooks.

2.4 Language Services

The term Language Service describes all the tools that can help users make an efficient

use of a language. Program formatters, refactoring utilities and advanced debuggers can

all be labeled as language services. Nowadays, the adoption of a programming language

is directly tied to the tool support available to the users, i.e., the language services.

2.4.1 Language Workbenches

The term Language Workbench was first introduced by Martin Fowler in 2005 ([32])

to describe the tools supporting the practice of Language Oriented Programming, namely

software development that defines and makes use of multiple domain specific languages.

The point of these workbenches is to ease the design and implementation of DSLs,

and to automatically derive the language services necessary for users to be, at least, as

efficient with the DSLs that they would be with GPLs offering professional tool support. In

practice, this translates into designing and creating a fully fledged IDE, tuned specifically

for the target DSL, and making it available to users.

While language workbenches have existed and been continuously improving for years,
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proper integration of the resulting DSLs into developers’ workflow has only recently

become a research focus. Providing a completely set up and ready to use IDE to users

might seem sound, but it also means that the users need to learn how to use a completely

new environment. Possibly, they might not even be able to import the settings that

they’ve been using for years prior. In a blog post published in 2017, Meinte Boersma

([16]) addresses the different reasons holding back a more widespread adoption of

language workbenches. He argues that the main issue is a “lack of integration with

existing software development practices”, and next that “even with a suitable language

workbench, creating/finding and implementing a good DSL is not easy”.

2.4.2 IDE Portability

A first improvement for integration is to provide support for the DSLs to the environ-

ment currently used by the targeted developers. Most language workbenches generate

features and tools that can only be deployed on specific environments. This phenomenon

is most generally observed for any IDE plug-in, and is known as the IDE portability
problem. Keidel et al. addressed this issue in [44] and proposed a solution based on an

intermediate representation of plug-in implementations. Environments require a Monto

Plug-In made specifically for them. This Plug-In interacts with a message broker by

sending a source message, containing the source code, at any change, and receiving

product messages, that contain data formatted as Monto IR that translate to visual

representations. The broker can interact with several environment independent language

services, such as parsers or linters, by sending forwarding them the source messages

and/or product messages obtained from other services.

The Asf+Sdf meta-environment [20] was probably the first language-parametric

IDE system that used decoupled architecture, both for static aspects of a language

definition [46], and for dynamic aspects such as debugging [19]. The approach uses an

architecture based on ToolBus, a programmable bus made to connect different software,

to coordinate heterogeneous components such as a parser, a text editor, or an interpreter.

A more recent approach to solve the IDE portability problem is the Language Server

Protocol (LSP) proposed by Microsoft, that we already introduced in Section 2.3. A SWOT

analysis of LSP with regard to DSLs was performed in [21]. LSP brings an opportunity to

quickly deploy domain specific languages in multiple environments, either IDEs favored

by the targeted developers or more simple and lightweight environments for user that are
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not programming experts. However, it was designed around general purposes languages

and is missing important features in order to really drive the deployment of DSLs, such

as projectional editing. It is in theory possible to add these features through custom

capabilities, but it would require implementing custom clients for each environment.

The results of the SWOT analysis highlight potential limitations for the scalability of

such an approach. They consider that each client requires the instantiation of complete

independent server for each language used, and the lack of modularity and reusability of

language features.

Similarly, the Debug Adapter Protocol (DAP) provides debugging support to multiple

development environments, but targets general purposes languages and does not offer

specific extensibility mechanisms for domain-specific concerns. The concept of moldable

debuggers ([24]), i.e., generic debuggers that provide a protocol to support domain-

specific extensions, could provide an elegant solution to these limitations. But it would

still require to first extend DAP with moldable capabilities.

2.5 REPL Interpreters

The acronym REPL stands for “Read-Eval-Print-Loop”. A REPL interpreter is a lan-

guage interpreter based on this principle of continuously reading user inputs as partial

program, evaluating them in the same execution context, and printing feedback after

each interpretation. These interpreters have a long history, and documentation on this

history is scattered across sources. The Flexowriter system of Lisp I from 1960 is perhaps

the oldest REPL implementation [54]. An early description of REPL behavior can be

found in Peter Deutsche’s memo on PDP-1 LISP [27]:

Each S-expression typed in will be evaluated, and its value printed out.

The PILOT system [79] is one of the earliest and most advanced interactive REPL sys-

tems, also based on a LISP, in that it supports fully incremental and interactive evolution

of programs. Teitelman writes that REPL-style interaction with Interlisp happened with

the introduction of time-sharing at MIT in 1964 [78]. It is very well possible, however,

that earlier Lisps and pre-1968 FORTH implementations [66] had REPL interfaces as well.

The earliest programming language REPL that is not a Lisp we could find documentation

of is the JOHNNIAC Open-Shop System (JOSS) [72]. Figure 2.3 shows an example of

interaction with JOSS.
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Figure 2.3 – Early user interaction using JOSS [72]

On their own, REPLs are useful tools to explore the possibilities offered by a language,

since they enable trying small code snippets and getting instantly the results of the

evaluation (including parsing and runtime errors), obtaining feedback on their effects

(e.g., by explicitly detailing the values changed in the execution context), and even

navigating the execution context interactively after the initial evaluation. But they can

also be used to drive more complex interactive environments such as computational

notebooks, which were pioneered in the Mathematica system [82]. More recently, this

style has been adopted in the context of other programming languages. IPython [62]

and Jupyter [48] provide a means for computational story telling, where cells containing

code are interleaved with output and prose cells. The language workbench framework

Bacatá allows a language engineer to provide a notebook feature by reusing existing

language specifications [55].

2.6 Protocols Engineering

Providing a language for specifying protocols and interactions and providing a com-

pliance relationship to that protocol has been done for a while. Indeed, in the field of

components based software engineering, Plasil et al. [63] provides within their architec-

ture description language a way to specify this behavioral contract of each component.

Software designers can define component’s behavior. The paper defines a protocol con-
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formance relation. Using these concepts, the designer can check the adherence of a

component’s implementation to its specification at runtime, while the correctness of

refining the specification can be verified at design time. In the multi-agents community,

several agent-oriented programming languages such as JADEL [8] provide abstractions to

define agents interaction protocols. In the networking domain, Burgy et al. [22] proposes

a new language-based approach for developing protocol-handling layers, to improve

their robustness without compromising their performance. The approach is based on

the use of a domain-specific language to specify the protocol-handling layer of network

applications that use textual HTTP-like application protocols.

An earlier definition of a meta-protocol can be found in [1]. The approach aimed

at providing a higher level of flexibility in protocol-based communications. Multiple

protocol specifications are available inside a repository, and two parties can decide on

which one to use during a negotiation phase. From the agreed upon specification, the

actual implementation of the protocol is generated on the fly for the programming

language used to define the component.
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CHAPTER 3

THE VISION OF IDE AS CODE

In this chapter, we present an overview of the “IDE as Code” vision. We start
by making clear the context and motivation behind the vision (Section 3.1).
Then, we consider language protocols and how to specify them in order to
obtain independent language services components (Section 3.2). And finally, we
discuss a preliminary architecture implementation based around the concept of
microservices (Section 3.3). This chapter is based on our ISEC’2021 publication
([40]).

3.1 Motivation

Our vision aims at providing more customizable and adaptable IDEs for the end

users through language services that are independent of any client. It is driven both by

the need to support domain-specific language services in multiple environments and to

accommodate language users with a programming experience better tailored to their

needs and technical background.

When we consider programming languages in the large, including both general-

purpose and domain-specific languages, we need to account for an ever-growing number

of language services. In contrast, at a given time, an IDE can only manage a subset of

these. Since protocols such as LSP and DAP were designed around the features available

in Visual Studio Code, it made perfect sense for Microsoft to also fix the set of the

capabilities offered by these protocols to ensure that all the features would be fully

supported in their IDE. However, the absence of a proper extension mechanism prevents

the integration of additional services, such as the ones we can expect to find in new

(domain-specific) languages.

Instead of fixing a priori the set of services that a user can use in the IDE, we envision

a more open approach where all services are made available at any time, and the user can

customize the IDE, possibly at runtime, based on a functional subset of these services. The

customization could also be managed externally to provide to the users a development

environment fully configured, and ready to use in the context of a specific use case.

To this end, in addition to their language specifications and the associated language
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services, we expect language designers to also provide information about the protocol

interactions and dependencies required to deploy and use the different services. This

chapter focuses mainly on this part, starting with Section 3.2. From there, “language

service packages”, which are minimal independent language services interacting with

each other, can be obtained and composed to instantiate the environment both required

and wanted by a given language user. The deployment of these packages could also

be finely controlled, for example to run some language services on suitable platforms,

e.g., with vast amounts of memory for execution logging or with powerful CPUs for

compilation.

3.2 Specifying Language Protocols

In order to obtain usable and composable “language service packages”, we first need

to unify the specifications of the language protocols they will expose to communicate,

both between them and with the environment accessible to the users. Current language

protocols are basically provided as bidirectional APIs. While the data-flow between

servers and clients is precisely specified, the control-flow is not explicit and can only

be deduced from processing the documentation available in natural language. As a

consequence, even though maintainers for servers and clients should be free of any

specific implementation, in practice they end up relying on Visual Studio Code as a

reference 1. Here, we propose that the control-flow between language services should

be formalized and become a part of the protocol specification. Whatever the implemen-

tations of “language service packages” end up being, they need to be agnostic to any

technical concerns related to data transport.

As illustrated in Figure 3.1, individual “language service packages” should have

their interactions properly specified in a language protocol. The left side of the figure

represents the current practices in language engineering, where language services and

their implementations can be automatically derived from a language specification, and

the right side shows a conceptual metamodel of the specifications required to obtain

“language service packages”. Language services are provided as “language capabilities”,

and the corresponding UI components as “UI services”. In addition, packages that are

mandatory for development environments are reified as first-order concepts, like the

notion of workspace for example. We make the assumption that language services can

1. https://www.reddit.com/r/vim/comments/b3yzq4
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Figure 3.1 – Protocol Specification for IDE as Code
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derive their implementations from a dependency to the language specification (e.g., sim-

ilarly to [25]), as their actual implementation is not the focus of this chapter. From a

given language protocol specification, a generative approach supports the automatic

creation and deployment of the language packages.

For customization purposes, “language service packages” can be replaced by more

specialized implementations depending on the use-case. Services can be dynamically

deployed, as long as the proposed deployment is coherent in regard to the dependencies

and the protocol specifications. They might also specify particular hardware requirements,

such as a need for RAM or disk storage, which would later drive the deployment on

specific machines on a network infrastructure. Such an architecture is flexible enough

to also support reusing existing language server components, such as existing LSP

implementations, but since these implementations are usually monolithic they might

not benefit from this approach as much as components specifically designed for it. For

example, the overall scalability might suffer from using monolithic services ([25]).

3.3 Implementations

In this section, we discuss some implementation choices that we envisioned to illus-

trate the vision. We present a specific IDE architecture, using the scenario of integrating

an environment that relies on an omniscient debugger.

Considering that they target to answer very specific problems, the added value of DSLs

in comparison to general purpose languages resides primarily in the specific features they

offer. As such, domain-specific language designers need the ability to provide specific

language capabilities. An example of such is omniscient debugging, as introduced by

[18]. The debug adapter protocol (DAP), a protocol that should address every debugging

concern, is lacking in features in regard to this specific approach of omniscient debugging:

it requires support for execution traces management, and a backtracking interface that

makes the distinction between stepping into and stepping over statements.

However, DAP is still a very valuable and well needed contribution to unify the

interfaces of different debuggers. For most of the capabilities it offers, it is in fact adapted

for the different services needed to debug most textual DSLs. The main issue is the

absence of a proper extension mechanism, that could make up for the missing features.

As things stand, if one wanted to extend this protocol, they would have to define yet

another protocol to wrap it that would end up being very specific to their use-case.
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This raises concerns for both integration in environments, and compatibility with other

services. Ideally, it should be possible to “import” an existing debug adapter as a language

service, and specify its interactions with other services to deploy them as “language

services packages”. We could argue that this debug adapter could also, and should, be

refined into smaller packages, but the re-usability of existing language servers is a major

concern at this stage.

Thus, we propose an extensible architecture that can support existing language server

implementations, as illustrated by Figure 3.2. In order to support resource scaling for

web IDEs that need to serve multiple clients at the same time, the concept of “language

services packages” is implemented as microservices. Microservices are minimal services

providing a single feature to a global architecture, either through choreography or

orchestration, and designed to be started and stopped on demand depending on the

available resources and the required quality of service. An event broker lets both language

microservices and UI microservices interact as part of a choreography. In the figure, UI

microservices are all included in the same environment, but technically they could also be

distributed and deployed independently: the service displaying the execution trace could

very well be embedded inside a completely separate web page, or as part of a notebook

that could also expose the necessary APIs to run analysis on the running context. Other

implementation approaches such as OSGi plugins (targeting the Eclipse ecosystem) or

Visual Studio Code extensions could also be considered, but comparing them is out of the

scope of this work. Here, we also made the decision to use JSON serialization in order to

stay close to LSP implementations, as well as websockets for the transport layer, but we

have not yet evaluated sufficiently this setup and cannot comment on how pertinent this

decision actually is.

The debug adapter microservice serves as a bridge between an existing debug adapter

and the rest of the microservices. Its main goal is to turn the requests of DAP into

events exchanges, in order to interact with the debug UI microservice. This particular

microservice showcases that this architecture is flexible enough to include existing

protocols and language servers.

The trace manager microservice receives events that consist of the different logical

steps reached during the execution, and the data changes corresponding to each of them.

Its role is then to build the execution trace and expose it to the rest of the environment.

The events received by this service are sent by an execution microservice that has direct

access to the program interpreter, and thus the execution context. The omniscient debug
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Figure 3.2 – Example of a Microservice Choreography for Omniscient Debugging (double
arrows represent interactions)
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microservice can make use of this trace to reset the execution context to the state it

should have whenever the user needs to step back. The trace UI microservice provides

feedback to the user about the execution trace and the current state of the program.

While the omniscient debug microservice relies on the trace manager, the configura-

tion of microservices presented here is not fixed. As a choreography, every microservice

is aware of the addition or removal of the others, and is able to react if there is an impact

on their workflow. So it is possible to only provide the “normal” debugging services from

the debug adapter depending on the resources available at a given time. It is also possible

to generate the trace for only parts of the execution, and thus enable the omniscient

debugger on the condition that a trace is indeed available.

A domain-specific language would help in defining and maintaining the specifications

of these microservices. We are aware that a language to specify a service-oriented

architecture is nothing new, but one dedicated to manage language services is yet to exist

and would assist tremendously in the adoption of such an architecture. As such, we are

considering a metalanguage designed to specify language services and their protocols,

that provides constructs specific to IDEs, such as workspaces, development resources

(files), and run configurations for example. It also drives the choreography by letting the

microservices define complete workflows in their protocol specification.

Figure 3.3 shows an example of using such a language. Data structures can be

specified, and used as arguments for the different events. By separating events into

several blocks, multiple communication channels can be managed inside the event

broker that will deliver them. The different packages can explicitly declare that they

require other packages in order to be relevant, through a mechanism of dependencies.

Then, their workflow when receiving events is explicitly defined, and the tasks can consist

in waiting for other events, sending events, or calling methods from imported language

services.
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data {
TraceState {

backInto: Step
backOver: Step
backOut: Step

}
Step { ... }

}

events {
trace {

state
stateResult(TraceState)

}
stepBackIn
stepBackInDone
setState(Step)
setStateDone

}

packages {
tracemanager depends on execution listens trace {

recv step −> call updateState(Step)
recv trace/state −> call getStateResult(result)

−> send trace/stateResult(result)
}
omniscientdebug listens trace
depends on execution, debugadapter, tracemanager {

recv stepBackIn −> send trace/state
−> recv trace/stateResult(traceState)
−> send setState(traceState.backInto)
−> recv setStateDone
−> send stepBacklnDone

}
}

Figure 3.3 – Protocol Specification for Step Back In Service



CHAPTER 4

A PRINCIPLED APPROACH TO REPL
INTERPRETERS

In this chapter, we provide an approach to build REPL interpreters. We start
by motivating the need for such a principled approach based on language
engineering principles (Section 4.1). Next, we discuss the knowledge obtained by
analyzing existing REPL implementations of popular programming languages
(Section 4.2). Then, we go into details on the methodology to obtain a REPL
interpreter from language implementations (Section 4.3). Finally, we validate
the approach through different REPL interpreters implementations (Section 4.4).
We close this chapter discussing the limitations and threats to validity of the
approach (Section 4.5). This chapter is based on our Onward!2020 publication
([15]).

4.1 Motivation

Read-Eval-Print-Loops (REPLs, also known as command-line interfaces, or interactive

shells) are a popular way for programmers to interact with programming languages.

They allow incremental definition of abstractions, testing out snippets of code with

immediate feedback, debugging executions, and exploration of APIs.

Even if a REPL can, in practice, be defined for any kind of programming languages,

some such as scripting languages or interpreted languages are more naturally compatible

with the REPL mode of interaction, and the different styles of programming that it

enables (and that programmers have come to expect). For example, a sequence of valid

code snippets written in the REPL of Python is itself a valid Python program. This enables

an exploration workflow where the programmer can incrementally write a fully working

program in environments based on REPLs, such as Jupyter Notebook, before exporting

the source code as-is and integrate it easily inside another code base. On the other

hand, JShell, for instance, allows programmers to write expressions, statements, variable

declarations and method declarations as code snippets, even though these constructs are

not allowed at the top-level in Java programs.
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Consider the following example JShell interaction (every line is a code snippet sent

separately):

class Example {}
Example obj = new Example();
class Example { public int meth() { return var; } }
int var = 1;

This example raises several questions : Can classes be redefined? Is obj still accessible

after Example has been redefined? Or would obj be migrated to the new class definition

and, if so, what methods would it have? And if meth is still available, would a call to

obj.meth() return 1? Without giving answers here, this example shows that the relations

between a programming language and the behavior of its REPL are sometimes not

obvious at all. The above questions are fundamentally about language design: several

sensible answers are possible, and the answers have a significant impact on programmer

experience down the line.

In some sense, JShell can be seen to implement its own language, which, even though

strongly reminiscent of Java, is markedly different. In this chapter, and more generally

the rest of this manuscript, we take this observation and run with it: we assume that a

REPL interpreter for L effectively defines its own language R, often as an extension or a

modification of L, whose programs are sequences of valid code snippets according to the

REPL.

To this end we identify and define the class of languages that drive REPL interpreters

as sequential languages. The essence of sequential languages is that the concatenation of
two programs is again a program. Or, to put it more precisely, a language is sequential if

it features an associative sequencing operator o
9, such that the following equation holds:

Jp1 o
9 p2K = Jp2K ◦ Jp1K

The meaning of a sequence of program fragments is defined by composing the mean-

ings of the individual fragments, including the possible side effects of executing these

fragments.

This chapter discusses a methodology to obtain a sequential language from another

existing language, which could in turn serve as the basis for a sound REPL interpreter. In

particular, the contributions include:

— a feature-based analysis of the landscape of REPLs for a selection of the most

popular programming languages (Section 4.2);
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— a methodology for developing REPL interpreters by sequentializing languages with

a definitional interpreter (Section 4.3);

— case studies to illustrate the feasibility of the approach (Section 4.4).

4.2 REPL Domain Analysis
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Figure 4.1 – Feature Model for REPL Interpreters

This section provides a study of existing REPL interpreters and their main features.

We have studied freely available REPL implementations, listed in Table 4.1, for the 15

most popular languages from the TIOBE index 1, except for Visual Basic for which we

could not find a freely available implementation. For MATLAB, we have selected GNU

Octave as a substitute. We performed a feature-oriented domain analysis [43], resulting

in the feature model presented as Figure 4.1. In the following we briefly describe the

main mandatory and optional features we identified.

Mandatory Features An interpreter must have certain features to be considered a

REPL. In particular, a REPL has the ability to execute multiple code snippets across

1. https://www.tiobe.com/tiobe-index/ (accessed May, 22nd, 2020)
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Table 4.1 – Surveyed REPL implementations
REPL Reference

CLing (C/C++) https://cdn.rawgit.com/root-project/cling/master/www/index.html
JShell (Java) http://openjdk.java.net/jeps/222
Python https://docs.python.org/3/tutorial/interpreter.html
C# https://mono-project.com/docs/tools+libraries/tools/repl/
Node.js (JavaScript) https://nodejs.org/api/repl.html
PHP https://php.net/manual/en/features.commandline.interactive.php
PsySH (PHP) https://psysh.org/
SQLite (SQL) https://sqlite.org/
R https://r-project.org/
Swift https://swift.org/lldb/
Gore (Go) https://github.com/motemen/gore
GNU Octave https://gnu.org/software/octave/
Rappel (assembly) https://github.com/yrp604/rappel
iRB (Ruby) https://github.com/ruby/irb

multiple interactions in a single session (as opposed to executing one full program

per session). In most of the investigated REPL implementations, the REPL maintains

a unique execution context and executes snippets incrementally (this is the behavior

that we call “Incremental”, alternative of the “Snippet Execution” feature). Optionally, a

REPL may provide a way to undo the execution of snippets (roll-back). An alternative to

incremental execution is composing all the snippets into a single program and execute the

program from scratch from a clean execution context (what we call the “Full” alternative).

REPLs are expected to provide feedback after evaluating each snippet, showing at least

the snippet’s printed output, and perhaps any changes in the runtime values or newly

declared types (“Summary of Snippet Effects”).

Optional Features Next to these mandatory features, the investigated REPLs implement

several additional features, such as providing auto-completion for the new snippets

(“Snippet Completion”). This can target either language keywords or previously defined

identifiers. Completion can take into account the syntactic context in which the user is

typing, can be extended to fully qualified identifiers, and may also take into account the

type of identifiers (through either static typing, or type hinting in the case of dynamically

typed languages).

Even though the language itself might not support modifying an existing definition,

most REPLs allow this behavior to some extent (“Definition Modification”). Common
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ways include overriding the previous definition, either through accepting a snippet with

a new definition or by editing the existing one from an external text editor. Other REPLs

also allow opening up definitions (such as classes) for additions (“Open & Extend”).

Another common feature is the help (meta-)command (“Help Command”), which can

document either the language, the REPL and its meta-commands, or both. The history

of commands (including previously executed snippets) is usually made available to the

user, in order to find and resubmit previous commands (“Command History”). It can be

consulted sequentially through the arrow keys, but often includes a search facility as

well. Some REPLs assign identifiers to commands in order to retrieve them arbitrarily.

Some REPLs support saving and loading sessions (“Save and Load Session”). This may

involve storing the execution context, or simply storing all user inputs to reproduce the

execution context after loading. For some languages, the session can also be saved as a

valid program executable outside the REPL.

REPLs behave differently when multiple code snippets are entered at once in a

sequence (“Multiple Input”). Output is either provided for all the snippets from the

sequence, or only for the last snippet (which could result in no output at all). Most REPLs

allow the user to inspect the current execution context (“Summary of Current State”).

And finally, some REPLs allow the results of previous snippets to be used in new snippets

(“Access to Previous Results”), either for the last executed snippet or for all, for instance

by assigning result values to special variables.

Feature Support of Existing REPLs Table 4.2 shows how the investigated REPLs

support the features identified in the feature model of Figure 4.1. The table illustrates

that no two REPLs share the same set of features. IPython supports most of the features,

whereas PHP only supports a minimal set. Interestingly, PHP is the only REPL that does

not print computed output values. The Go REPL (Gore) is the only REPL that simulates

incremental execution by compiling a complete compilation unit in the background. Type-

aware completion is not applicable to Node.js and R since the languages are dynamically

typed and do not support type hinting. Sessions exported from SQLite and R include the

snippets to reproduce data, but not the ones that query the data, so it is not possible to

fully reproduce a session through this mechanism. Octave exports variables and their

values, but not declared methods. Only three REPLs support exporting sessions as valid

programs. Although IPython provides additional commands, they are all implemented in

Python and can therefore be exported as well. As explained before, a valid Go program
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Table 4.2 – REPL Interpreter Features ( = full, G# = partial, − = not applicable)

C
Ling

JShell

Python

IPython

C
#

R
EPL

N
ode.js

PH
P

PsySH

SQ
Lite

R Sw
ift

G
ore

O
ctave

R
appel

iR
B

Snippet Execution Incremental               
Full  
Undo  

Summary of Current State         
Summary of Snippet Effects               
Access to Previous Results Access to last       

Access to all    
Multiple Input Last output          

All outputs     
Snippet Completion Keywords          

Syntax-aware    
Identifiers               
Type-aware  − − −
Hierarchy-aware           −

Definition Modification Redefine  1   1   1    1 −  
Open & Extend −  

Help Command REPL commands            
Language use      

Command History (User Access) Sequential                
Search              
Arbitrary    

Save and Load Session Current state   G#

REPL code snippets    G# G#

Valid programs   G# G#  

1 The previous definition can be opened in an external editor for editing

is produced as part of every interaction with Gore.

The interactive interpreter for Swift also provides debugging facilities. This feature

was observed but not discussed as a REPL feature because the two behaviors are accessed

by running the interpreter in different ‘modes’. Interestingly, the decision to provide both

modes in a single tool was made from observing that they shared similar features, such

as expression evaluation, data monitoring and step by step execution.

The wealth of features and diversity observed in REPLs motivated us to study the

foundations of REPLs.

4.3 Methodology

In [15], we introduce and formalize the concepts of sequential language and exploring

interpreter. Essentially, a sequential language is a language offering a “sequence operator”,

whose semantics follow the property that executing two code snippets delimited by this

operator achieves the same results as executing these same two snippets independently
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with a context preserved from one execution to the other. An exploring interpreter is a

generic algorithm that creates and maintains an execution graph, where each node is

a valid configuration, or a state of the execution context, and each edge corresponds

to a program affecting the context and thus transitioning to a new state. Operations

available to an exploring interpreter are executing a program (which potentially creates

a new node and a new edge), reverting to a previous state, and displaying the current

representation of the graph with an emphasis on the differences between the current

state and the others.

In this section we propose a methodology for developing REPL interpreters based on

these definitions. The methodology proposes to build a REPL on top of an exploring in-

terpreter for a sequential language. In the event that the language targeted is not already

sequential, a new sequential language can be defined as an extension of, or modification

to, the base language. An exploring interpreter is essentially a bookkeeping device on

top of a definitional interpreter and provides the “Incremental Snippet Execution” and

“Undo” features directly (cf. Section 4.2). Additional motivation for using the exploring

interpreter (for a sequential language) is that it promotes certain design principles while

preserving the ability to implement many desirable features. These principles and their

consequences are discussed in this section, together with a summary of the proposed

methodology.

The core principles underlying our methodology are:

— the effects of a code snippet manifest as changes to an explicit state representation

(a configuration),

— the effects of a code snippet are determined by the definitional interpreter used by

the exploring interpreter,

— the effects of a sequence of code snippets is the composition of the effects of the

individual snippets,

— and only code snippets change configurations.

For users of the REPL, the most important consequence of these principles it that an

understanding of the definitional interpreter is enough to understand the precise behavior

of the REPL for the language. In practical terms: to know the effects of code snippets, a

user needs to understand the base language and the possible extension or modification

introduced in its sequential variant. The extension or modification is made explicit by the

definitional interpreter and should be communicated clearly (as precise documentation,

a formal semantics, or an open-source implementation).

53



Chapter 4 – A Principled Approach to REPL Interpreters

For engineers of the REPL, the most important consequence of the principles is that

every feature (on top of “Incremental Snippet Execution” and “Undo”) is implemented

either:

— as a language extension (e.g., the features “Definition Modification” and “Access to

Previous Results”),

— as a series of interactions with the exploring interpreter (e.g., “Multiple Input”,

explained below),

— based on information stored in the execution graph (e.g., “Summary of Snippet

Effects”, “Summary of Current State” and “Snippet Completion”),

— or independently of the exploring interpreter, when the feature does not involve

snippet execution (e.g., “Help Command” and other meta-commands).

The methodology presented here is based on the hypothesis that many of the features of

existing REPLs, including at least those in Figure 4.1, fall into the four categories listed

above. This hypothesis is tentatively supported by the various feature implementations

described across Section 4.4.

The methodology for developing a REPL for any base language L is formulated as

the following steps:

1) Definitional Interpreter Formulate L as a language in terms of its concrete and

abstract syntax, and a definitional interpreter that captures the effects of programs as a

function over some set of configurations. If the language is sequential at this point, then

steps 2–5 can be skipped.

2) Phrase Nonterminal To define a sequential variant L′ of L, reuse the syntax defini-

tions of the previous step to define a new sort phrase with an alternate for each of the

sorts of L that describe the syntax of a valid code snippet of the envisioned REPL. The

syntax can also have other extensions or modifications, as long as phrase is the entry

point of the syntax (the first syntactic component of a language).

3) Phrase Interpreter Define a definitional interpreter for L′ to capture the semantics

of phrases, reusing as much as possible the definitional interpreter of step 1, ideally

by applying modular extension mechanisms (e.g., Object Algebras [61, 33], Rascal’s

extend [6]). Special consideration needs to be given to the effects of phrases to ensure
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the next phrase is executed in the right context. For example, if the result value of a

phrase needs to be available to the next phrase through a binding, this binding needs to

be introduced as one of the effects of the first phrase.

4) “;”-Phrase Extend the sort phrase with an alternate that combines two valid phrases

to form a phrase. For example, with the semicolon as a separator, let p; q be a valid

phrase if p and q are valid phrases.

5) Interpreter for “;” Extend the definitional interpreter of L′ such that the effect

of a phrase formed by combining two phrases is the composition of the effects of the

combined phrases, e.g., Ip;q = Iq ◦ Ip. The language L′ is sequential by definition as a

result of this and the previous step.

6) Instantiate Explorer Obtain an exploring interpreter for L′ by instantiating the

generic exploring interpreter algorithm with the definitional interpreter for L′. The

implementation may be simplified compared to our definition, in that it maintains a

simpler form of execution graph, if desirable. Instead of an exploring interpreter, the

definitional interpreter for L′ can also be used directly. In fact, any implementation that

respects the semantics of the definitional interpreter can be used, e.g., an implementation

with real rather than simulated effects.

The interpreter can then be offered through various user interfaces, such as command-

line interfaces, network services, or computational notebooks. The interface displays

visualizations of the effects of phrases, e.g., by showing output, computed values and

new bindings, and can optionally implement additional REPL features.

4.3.1 Pragmatics

In the context of language workbenches [28] and DSLs [56], a common language

implementation strategy is to define interpreters, consisting of functions traversing an

abstract syntax tree whilst modifying a propagated configuration to express effects (fol-

lowing the Visitor design pattern). The case studies of the next section include such

interpreters. The REPLs in these case studies are obtained through generic implemen-

tations of the exploring interpreter algorithm (in Java and in Haskell) that are easily

specialized by providing the entry points of the abstract syntax and the interpreter. The
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presented methodology is based on an exploring interpreter because it is a relatively

natural and simple layer to add on top of the described definitional interpreters typ-

ically built with Rascal [47, 6]. Moreover, the generic exploring interpreter forms a

suitable abstraction for reasoning about sequences of interactions between programmer

and REPL – e.g., saving and loading sessions and extracting base language programs –

and for implementing advanced REPL and notebook features that support exploratory

programming and live programming.

In theory, our approach can also be used for developing REPLs for (general-purpose)

programming languages, as many languages can have their semantics expressed as a

transition function. In practice, however, very few programming languages of this sort

have an interpreter implemented as a pure function, or have a complete operational

semantics from which such an interpreter can be derived. REPLs are not typically

implemented with explicit state representation and few enable backtracking (in our

survey only CLing supports “Undo”). However, an impure interpreter implementation can

be used at step 6 (Instantiate Explorer) of the methodology. Although some advanced

features – such as “Undo” – may then be harder to implement, the most important

principles of our methodology still hold. In particular, the differences between the base

language and its REPL should be formulated as extensions or modifications of the base

language. This is achieved by updating the semantics of the base language such that

repeated execution of its interpreter (i.e., the composition of effects) gives the behavior

expected of a REPL for this language. The details of how this can be achieved depend on

the language and the techniques used to implement the language. Discussed next are

the general patterns that have been observed in our survey.

4.3.2 Common REPL Language Extensions

Languages rarely provide directly an operator that corresponds precisely to the REPL

top level. For example, a snippet with an uncaught exception is not expected to prevent

subsequent snippets from being executed, whereas termination is expected when an

exception occurs within a sequence of (;-separated) statements. Of the surveyed REPLs,

only Gore prevents subsequent snippets from executing once a previous snippet raises

an exception (a consequence of its “Full” execution model). In the other languages,

the REPL top level catches any otherwise uncaught exceptions and presents them to

the programmer after which a subsequent snippet can be executed. In languages with
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constructs for catching and handling exceptions, one might explain or implement this

feature with a top-level catch and a handler that prints the exception. For example,

a snippet {System.out.println(1); (1/0);} can be considered as implicitly wrapped in a

try/catch block in JShell as follows:

try {{System.out.println(1); (1/0);}} catch (Exception e) {
... // print the exception in a helpful format

}

This clarifies, in reference to the Java semantics, that any effects produced by a snippet

before an exception is thrown, but not after, are preserved. However, the translation

is inaccurate as a JShell snippet is not an isolated block, unlike a try-block. Bindings

produced by top-level declarations are active when subsequent snippets are executed,

i.e., all snippets are in the same scope and the top-level catching exceptions does not

change this. In the next JShell fragment, the meta-variable $1 is available to subsequent

snippets despite the exception.

jshell> 5; (1/0);
$1⇒ 5
| Exception java.lang.ArithmeticException: / by zero
| at (#2:1)

This example also highlights the importance of presenting new bindings, assignments,

and any other effects to the programmer, providing the information required by the

programmer to update their mental model of the REPL’s execution state.

Another common example of a modification to the base language is the “Access to

Previous Results” feature available in several REPLs of the survey (demonstrated by

the variable $1 in the above fragment). JShell and IPython (“Access to All”) implement

this feature as follows: whenever a code snippet produces a result value (other than

void), this result value is assigned to a fresh variable. For example, if the second snippet

sent to IPython produces result value 5, then the variable _2 is assigned 5. The behavior

differs between JShell and IPython when a code snippet contains multiple statements. In

IPython (“Last Output”), the result of a sequence of statements is the result of the last

statement 2, e.g., the snippet print(1);2;print(3) prints 1 and 3 but has no result value.

In JShell, the result of a sequence of statements is the result of each statement with

a (non-void) result. If a snippet has multiple results, each result is assigned to a fresh

variable. For example, if 3;2;System.out.println(1); is sent as the first snippet to JShell,

2. Even when void. A possible alternative is to use the last non-void result.
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then the variables $1 and $2 are assigned the values 3 and 2 respectively and 1 is printed.

In Node.js (“Access to Last”), a statement such as console.log(1) produces undefined as

a result, which is then assigned to the variable _. PsySH also assigns the last uncaught

exception to the variable $_e. This feature is helpful in situations where the exception is

not easily reproduced, e.g., when caused by a (rare) non-deterministic, pseudorandom

or timed event.

Most languages of the survey enable definitions to be overridden (“Definition Modifi-

cation”), with only iRB also allowing extensions to existing definitions (“Open & Extend”).

The main challenge to redefining or modifying existing definitions is checking whether

an updated definition is consistent with definitions that depend on it. This is particularly

challenging for statically typed languages such as Java. In JShell, any inconsistencies

are reported when a (now incorrect) definition is used, as shown by the following

interaction:

jshell> class B {int mymethod(){return 0;}}
| created class B
jshell> class A {int mymethod(){return new B().mymethod();}}
| created class A
jshell> class B {long mymethod(){return 0;}}
| replaced class B
jshell> int x = 4; int y = new A().mymethod(); int y = 5;
x⇒ 4
| attempted to use class A which cannot be instantiated or
| its methods invoked until this error is corrected:
| possible lossy conversion from long to int
| class A { int mymethod() { return new B().mymethod(); }}
y⇒ 5

Note that the last snippet is not type-checked nor rejected as a whole, and that the

error does not keep the other statements from being executed. Statements appear to be

type-checked individually, with any errors causing only the individual statement to be

rejected. However, the following JShell interaction shows that this is a simplification:

jshell> int x = 1; new A(); int y = 2;
x⇒ 1
| Error:
| cannot find symbol
| symbol: class A

A downside of showing inconsistencies just before they cause problems is that a
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menial mistake can cause a cascade of avoidable mistakes to go undetected, perhaps

requiring tedious efforts to resolve. A downside of reporting inconsistencies as soon as

they arrive is that they may be considered redundant and a nuisance when a programmer

is aware and about to resolve the inconsistencies.

The C# REPL does not update method definitions affected by an update to another

class. So when, in the example above, mymethod is called on a new instance of A, the

behavior is that of the old mymethod of class B. (A similar example using fields rather than

methods causes the C# REPL to hang.)

A general theme in the discussed language extensions is that they relate to the effects

of code snippets on their successors. A REPL engineer should consider all the different

kinds of (side-)effects code snippets can produce and decide for each effect whether it

should propagate and, if so, how the programmer is informed of the effect, enabling

them to update their mental model of the REPL’s state. To help the programmer further,

the ability to request an overview of the currently active bindings is desirable, especially

together with a mechanism for inspecting (modified) type definitions.

4.4 Case Studies

This section discusses several REPL implementations for a number of languages with

different user interfaces. The section is structured according to three case studies for the

Rascal-defined languages MiniJava and QL, and the Haskell-defined language eFLINT.

The case studies implement novel sequential variants of these languages.

4.4.1 A Jupyter Notebook for MiniJava

The MiniJava language is a subset of Java that retains the essential object-oriented

features of Java [5, 23]. The semantics of a MiniJava program is given by its interpretation

as a Java program. The specific implementation discussed here is implemented as a

definitional interpreter in the Rascal language workbench [47]. The extension to a

sequential MiniJava uses Rascal’s modular extension mechanisms and demonstrates the

methodology of the previous section.

The first part of the extension is choosing the top-level constructs of the language. As

for JShell, these are expressions, statements, variable, class, and method declarations,

and their associative composition. The syntax of MiniJava is extended by adding the
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Phrase construct:

syntax Phrase
= Expression ";" | Statement
| VarDecl | ClassDecl | MethodDecl
| assoc Phrase Phrase;

syntax Statement
= ...
| "throw" "new" StringLiteral ";";

syntax Expression
= ...
| Identifier "(" ExpressionList? ")";

The extension also includes a new method call variant, enabling (global) methods to be

called without a receiver. The throw-keyword is added to demonstrate an implementation

of handling uncaught exceptions. Exception values are simplified to string literals rather

than arbitrary objects.

The definitional interpreter of extended MiniJava is defined in Rascal as the function

Config eval(Phrase, Config), shown 3 in Figure 4.2. The type Config, shared by both

MiniJava interpreters, is defined as the following tuple type:

alias Config = tuple[
Env env, Sto sto,
int seed, Out out,
Val given, MaybeFailure failed,
Val result

];
data MaybeFailure
= failure(FailureType e)
| no_failure()
;

data FailureType
= failed()
| exception(str msg)
;

Configurations have the following fields: the current execution environment (env), the

store (sto), a seed (seed), the output of all executed phrases represented as a list of

strings 4 (out), a given value (given) of type Val used for passing arguments, the field

failed to indicate if and why the execution got ‘stuck’, and a value with the execution’s

3. The notation (NT)‘...‘ is used to pattern match against or construct concrete syntax trees of type
NT, where NT is some nonterminal defined in Rascal’s native grammar formalism; the parts between
fish-angle brackets represent typed holes of the pattern.

4. The implementation converts the integers printed by MiniJava to strings and inserts a newline,
corresponding to Java semantics.
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result (result). The Val ADT (not shown) defines constructors for references, integers,

booleans, vectors (arrays), environments, lists, closures, classes, objects, and null. The

alternative failed() of FailureType indicates the execution got stuck because the evaluated

program is invalid (e.g., due to unbound variables). The alternative exception(str msg)

indicates an exception has been thrown with exception value msg.

The cases of Figure 4.2 that handle declarations (class, variable, or method) first pro-

duce an environment by calling the respective functions declareClass, declareVariables

and declareGlobalMethod. These functions also produce output that informs the program-

mer of the successful binding of the respective class, variable or method. If a class is

redefined, the programmer is also informed. The collectBindings function (not shown)

adds the bindings in the computed environment (result) to the execution environment

(env). The function catchExceptions (not shown) checks whether a phrase has failed or

raised an exception. If so, the failure or exception is reported and removed, ensuring

that the next phrase executes normally. Note that a MiniJava code snippet of the form

1;(2/0);3; is parsed as a sequence of three phrases and not a code block consisting

of three statements. Since the division by zero error is removed, the next phrase (3;)

is executed normally. So, contrary to JShell, there is no distinction between phrases

executed as separate code snippets or as a single, semicolon separated code snippet. This

arguably makes the language more consistent. The behavior of statements separated by

a semicolon in code blocks is unaffected, and an exception will terminate the execution

of a code block when it arises.

The first two cases of Figure 4.2 deal with expression and statement phrases, reusing

the original interpreters for expressions and statements (eval and exec respectively). A

statement, which may be a code block consisting of multiple statements, either computes

null or an environment that contains the bindings for all variables that have been

assigned a (new) value. The function setOutput (not shown) inspects the computed

bindings, if any, and prints the variable and its assigned value, matching the behavior

of JShell. An expression computes a value such as an integer, a boolean or an object

reference. The function createBinding (not shown) assigns the computed value to a fresh

variable, using the seed field of the current configuration, and binds the fresh variable to

the identifier $<i>, where <i> is generated from the seed. The applications of setOutput

and collectBindings ensure that the new binding is reported to the programmer and is

active when the next phrase is executed, matching the behavior of JShell.

The final case confirms that two consecutive phrases are evaluated by function-
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Config eval((Phrase)‘<Expression e> ;‘, Config c)
= catchExceptions(collectBindings(

setOutput(createBinding(eval(c, e)))));

Config eval((Phrase)‘<Statement s>‘, Config c)
= catchExceptions(collectBindings(

setOutput(exec(s, c))));

Config eval((Phrase)‘<ClassDecl cd>‘, Config c)
= catchExceptions(collectBindings(

declareClass(cd, c)));

Config eval((Phrase)‘<VarDecl vd>‘, Config c)
= catchExceptions(collectBindings(

declareVariables(vd, c)));

Config eval((Phrase)‘<MethodDecl md>‘, Config c)
= catchExceptions(collectBindings(

declareGlobalMethod(md, c)));

Config eval((Phrase)‘<Phrase p1> <Phrase p2>‘, Config c)
= eval(p2, eval(p1, c));

Figure 4.2 – Interpreting MiniJava phrases

composition. The implementation of method calls without receiver expression is not

given.

The definitional interpreter of the extended language forms the interface to language

services such as REPLs and computational notebooks. The connection between the

definitional interpreter and Rascal’s notebook framework Bacatá is discussed next.

Exploring Interpreters in Bacatá Bacatá [55] is a generic Jupyter 5 kernel generator

for languages developed within the Rascal Language Workbench. Bacatá is extended to

support notebooks based on exploring interpreters. The generic implementation of the

exploring interpreter maintains a full execution graph (in accordance to the previous

definition). Bacatá relies on the definition of a language repl, a value of the REPL ADT

shown below:

data REPL[&T]
= repl(&T initConfig, &T (str, &T) handler,

Completion (str, int, &T) completor,
Content (&T, &T) printer);

5. cf. http://jupyter.org/
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A value of REPL contains all the information required to build a REPL command-line

interface for a language, or, together with Bacatá, a computational notebook. The type

parameter &T represents the configuration (e.g., Config of MiniJava). The handler takes a

line of input and a configuration and produces a new configuration. The completor can

be provided for tab-completion services. Finally, the printer produces (HTML) content

from the previous and/or current configuration.

Bacatá is used as an interface between a Jupyter server and the language’s REPL.

The workflow that describes the communication among these components is as follows:

Jupyter takes the user’s code snippets and sends them to the language’s interpreter

through Bacatá. Bacatá takes the user’s code and calls the language’s handler (defined in

the repl value), which is responsible for calling the parser and then the interpreter of

the language. Finally, the handler produces a result, which is then displayed to the user,

using the printer.

Figure 4.3 shows a simple notebook for MiniJava, produced with Bacatá. The right

shows the execution graph for exploring the user’s interaction with the notebook. The

active node is colored green. The user can click any other node, to make it active. The

next cell will then be executed in the context of that very configuration, resulting in a

split in the graph if the resulting configuration differs from the activated one.

A Notebook Interface for MiniJava Obtaining a REPL-style command-line or notebook

interface for MiniJava amounts to instantiating the REPL data type with the appropriate

handlers, printers, and completors. In the case of a Bacatá-generated notebook Jupyter

interface, the programmer has access to a visual representation of the execution graph

of the exploring interpreter, as shown in Figure 4.3.

The handler for MiniJava parses the incoming input as a Phrase and calls the extended

definitional interpreter, which returns a new configuration. The printer takes the old

and new configuration and prints relevant output. After a successful execution, the

differences between the out components of the new and old configuration is shown. In

the case of a declaration, the difference between the two env components gives the new

bindings. The completor uses the bindings in its input configuration to suggest possible

completions for identifiers.
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Figure 4.3 – Example of MiniJava in a notebook environment

4.4.2 QL: A DSL for Questionnaires

QL is a small language for defining interactive questionnaires [29, 28], like tax filing

forms or online surveys. A QL form defines a sequence of questions, where each question

has a label, an identifier, a type (boolean, integer, or string), and an optional expression

if the question is computed. Expressions contain the usual arithmetic and comparison

operations, and allow referring to the current value of another question. Furthermore,

questions can be made conditional using if-then and if-then-else constructs.

The goal of a QL program is to be rendered as an interactive GUI program, where

the user enters values for the (non-computed) questions. Depending on this input,

conditional questions may be shown or hidden, and the value of computed questions

may be recomputed, similar to a spreadsheet. A simple example is shown in Figure 4.4,

including its rendering as an interactive UI.

From a REPL perspective, QL is interesting, because a form specifies a conditional

data-flow network rather than a program consisting of instructions. Nevertheless, in this

section we introduce a prototype REPL for QL, both as an instructive thought experiment,

and to stress the concept of sequential language.

Abstractly, the semantics of QL can be described with the following (Rascal) function

signature:
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Figure 4.4 – A QL questionnaire (left) and its rendering (right)

tuple[UI, Env] eval(Form form, Env env, Event evt);

Given a form, an environment mapping question identifiers to values (Env), and a user

event (Event), the function eval produces a rendering (UI) and an updated environment.

Running a QL questionnaire then amounts to constructing an initial rendering, and then

updating the current environment and redrawing the UI after every user action.

To provide a REPL interface for QL, we extend the language with a new start nonter-

minal, Cmd, the definition of which is shown in Figure 4.5. Commands are the snippets

that the user can enter at the command line.

The first four alternatives of Cmd capture constructs to manipulate forms. The user can

define complete forms, append or prepend individual questions to the current form, and

replace questions arbitrarily nested in the form using a positional reference mechanism

(Addr).

The last two alternatives can be used to evaluate expressions, which shows the result,

syntax Cmd
= Form // define form
| Question // append a question
| Question "..." // prepend question
| "@" Addr Question // replace question
| Expr // evaluate expression
| Id "=" Value; // perform user action

syntax Script
= Cmd* commands // batch perform commands

Figure 4.5 – Language extension for ReplizedQL
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or update the value of a (non-computed) question, if the current state of the UI allows

it. The update-value action simulates a user interaction if the form would have been

rendered as a proper UI. Finally, Figure 4.5 defines a Script nonterminal to combine

multiple commands in sequence.

The interpreter for commands is a function that takes a command and the current

configuration and returns a new configuration:

Config eval(Cmd cmd, Config cfg) { ... }

The Config type captures the current environment, the current form, and a list of output

values (UI renderings and expression evaluation results).

That our definition of QL is sequential can be seen from the definition of the inter-

preter for Scripts:

Config eval(Script scr, Config cfg) =
( cfg | eval(cmd, it) | Cmd cmd ← scr.commands );

This function simply composes the eval function for commands for every command in

the script 6. This follows the definition of sequential language introduced earlier.

A Sample Interaction The above interpreter for commands can be hooked to Rascal’s

standard REPL infrastructure to obtain a command-line interface for QL. We illustrate

the semantics of sequential QL below, using a sample user interaction. The code snippets

use > as prompt, the output of a command is shown directly below.

First, let’s define a simple form:

> form simple { }
·

The result is the empty rendering of the UI, indicated by ·. Then we append a (computed

question), labeled “A”, of type integer:

> "A" a: integer = c + b + 1
A ·

The a question is not conditional, so it is shown in the UI rendering; note however that

the value of the question is still undefined because questions c and b have not yet been

defined.

The b question could be defined as follows:

6. The notation (init | ... it ... | gen) is Rascal syntax to write a reduce operation.
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> if (a < 20) "B" b: integer = c + 1
A ·

Since b is still undefined (because c is), a remains undefined as well, and as a result, the

visibility condition of b evaluates to false. This all changes, however, after defining c:

> if (a > 20) "C" c: integer
A 2
B 1

The question c is not computed, so it receives an initial default value (in this case 0).

Both a and b can now be computed, as well as the condition of b, causing b to be shown

in the UI. Now let’s change the value of c:

> c = 10
A 22
C [10]

Setting c to 10 disables b, but changes the visibility condition of c to true, making it

appear in the UI. The square brackets around the value of c indicate it is editable.

Changing the value of c to 5 updates the UI accordingly:

> c = 5
A 12
B 6

Now b becomes visible, and c is hidden again.

It is possible to add questions to the beginning of the form:

> "D" d: integer = 3 * a...
D 36
A 12
B 6

Or using the path-based address notation:

> :form
form simple {
[0] "D" d: integer = 3 * a
[1] "A" a: integer = c + b + 1
[2] if (a < 20)
[2.0] "B" b: integer = c + 1
[3] if (a > 20)
[3.0] "C" c: integer

}
> @2.0 "c + 1 is:" b: integer = c + 1
D 36
A 12
c + 1 is: 6
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The :form meta-command pretty-prints the current form annotated with addresses for

every question. Using the @-notation, the user can replace any question in the form, in

this case to change the label of the b question.

Note that the append-, prepend-, and position-based adding and replacement of

questions can be considered a rather low-level (maybe even pathological) way of editing

a program (reminiscent of the line-based editors of the past). Nevertheless, without

necessesarily claiming this is a realistic way of evolving programs, it does illustrate a

kind of REPL “completeness”, where every program and program change can be realized

using commands at the prompt.

4.4.3 eFLINT: Executable Normative Specifications

eFLINT is a DSL for developing executable normative specifications used to reason

about compliance with regulations, contracts and/or policies [11]. eFLINT programs are

used to simulate or verify normative decision-making processes. The methodology of

Section 4.3 has been applied to develop two REPLs on top of one exploring interpreter

for eFLINT. The implementation of eFLINT is available at GitLab [10].

REPL Interfaces The first REPL is a command-line tool for exploring compliant and

non-compliant behaviors. Figure 4.6 shows an example session where the user explores

the norm “children can ask their parents for help”. As a meta-command, a user can

choose actions and events to trigger from a given list of options. Choosing an action or

event has the effect of updating a database of ‘facts’, representing the state of the world

at a particular moment in time. A fact is said to ‘hold true’ if it is present in the database.

Some facts are reifications of actions and correspond to acceptable behaviors when they

hold true and when they are enabled by their pre-conditions. Disabled actions can be

executed in order to explore non-compliant behaviors (although causing a violation).

Other facts represent duties, which need to be ‘terminated’ before one of their violation

conditions holds true. The phrases of the language are declarations of fact-, act-, event-

and duty-types, action or event triggers, insertion and removal of facts, and queries on

the database. After a phrase is executed, the user is presented with the changes in the

database, newly defined types, any violations and a new list of options.

The second REPL is a TCP server that listens on a chosen port for incoming phrases

and responds with the same information as the command-line REPL (in JSON form). The
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#0 > Fact person. Placeholder parent,child For person
new fact-type person
no enabled actions or events
#3 > +person(Alice). +person(Bob) // introduce persons
+"Alice":person
+"Bob":person
no enabled actions or events
#5 > Fact parent-of Identified by parent * child
new fact-type parent-of
no enabled actions or events
#6 > +parent-of(Alice,Bob)
+("Alice":person,"Bob":person):parent-of
no enabled actions or events
#7 > Act call-for-help Actor child Recipient parent

Holds when parent-of()
new fact-type call-for-help
+("Bob":person,"Alice":person):call-for-help
enabled actions & events:
1. ("Bob":person,"Alice":person):call-for-help
#8 > :choose 1 // Bob asks Alice for help
enabled actions & events:
1. ("Bob":person,"Alice":person):call-for-help
#9 > :revert 7 // to before the action was declared
+("Alice":person,"Bob":person):parent-of
#7 > :current // show the current set of facts
"Alice":person
"Bob":person
("Alice":person,"Bob":person):parent-of
#7 > ?Enabled(call-for-help(Bob,Alice)) // query
undeclared type: call-for-help

Figure 4.6 – A session with the eFLINT command-line REPL

TCP server is used as a general method for connecting other languages with eFLINT to

benefit from the normative specification written in eFLINT. For example, a program can

send queries to the eFLINT server to check whether certain actions are enabled before

actually performing them. In this way, it is possible to develop software that is ‘compliant

by design’.

The REPLs are developed on top of an exploring interpreter for eFLINT, briefly

explained next.

Execution Tree The type Explorer is an alias for functions that receive an Instruction

and return a Response in the IO monad (Haskell’s mechanism for input and output).
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type Explorer = Instruction → IO Response

data Instruction = Execute CPhrase | Revert Int | Display
data Response = Success Node CPhrase Node | ExecError Error

type Node = (Int ,Config)

The values of Instruction correspond to the actions of the generic exploring interpreter

algorithm. There are two types of response, for successful executions and failing execu-

tions respectively. One of the values of Error indicates that the integer given as part of

some revert action does not correspond to a known configuration. The success response

contains the elements of an edge in the execution graph: two nodes and a label (phrase).

The edge gives the effects, in terms of an input and output configuration, of the last

phrase executed by the exploring interpreter. A node is a configuration and an integer

that uniquely identifies the node. The label is a value of type CPhrase, a phrase that has

been compiled.

A configuration contains information about declared types (a type environment), a

database of facts and a list of output holding any reported violations:

data Config = Cfg {tyenv :: TyEnv , state :: Set Fact , out :: [String ]}

The algorithm maintains a tree rather than a graph, and does so in a way that makes

it very simple to find the path from the root to any given configuration in the tree. The

type SIDMap is an alias for a map mapping integers to the configurations with which

they form a node. The type History represents a tree as a collection of edges.

type SIDMap = IntMap Config

type History = IntMap (Int ,CPhrase)

If x maps to (y , p) in the History map, this means that there is an edge ⟨γ, p, γ′⟩ in the

tree where y is the integer identifying γ and x is the integer identifying γ′.

REPL Features The function getPath ::Int → SIDMap → History → [CPhrase ] receives

an integer identifying a node and uses the maps to compute the sequence of phrases

labeling the path from the root of the tree to the node. The function is used to save a

session by pretty-printing and storing the returned phrases in a file.

The definitional interpreter of eFLINT receives compiled phrases (CPhrases) as input.

The tool-set for eFLINT contains a compiler that translates from Phrase to CPhrase.
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The compiler checks whether a Phrase is well-typed and applies conversions to make

explicit certain implicit operator applications. Compilation is performed by the function

compile : TypeEnv → Phrase → CPhrase, receiving as input the type environment of the

current configuration held by the exploring interpreter.

When the command-line or TCP server REPL receives a String for execution, the

string is parsed as a Phrase. If successful, the Phrase is type-checked and compiled to a

CPhrase. The CPhrase is sent as an execute action to the exploring interpreter, which

invokes the definitional interpreter and responds either with an error or with the edge

of its graph representing the latest execution. This edge is given to a function called

effectsOf to compute the effects of executing the phrase. The function effectsOf finds any

new bindings by computing the difference between the two type environments of the

input configurations, finds any created or terminated facts by computing the difference

between the two state components, and finds new violations by computing the difference

between the two output components.

4.5 Discussion

Limitations & Future Work The techniques described in this chapter are applicable

to languages that can be implemented by deterministic interpreters with explicit state

representations. Moreover, if an execution graph is not needed, then state does not have

to be represented explicitly (see Section 4.3.1), as long as the effects of top-level phrases

still compose and are communicated clearly to REPL users. This requirement does not

necessarily rule out concurrent, non-deterministic, compiled or data flow languages. In

some cases it is possible to model the complicating aspects of these languages, e.g., with

thread models, data flow graphs and lists to capture non-deterministic results.

Purely functional interpreters with explicit state representation are, however, further

removed from actual implementations and may be less suitable for developing practical

REPLs. For instance, a definitional interpreter for C can model memory (pointers) rather

than providing real memory access. A REPL for C can also be based on an interpreter that

invokes a C compiler, wrapping current and previous code snippets in int main() {...},

before compiling and executing the resulting program (similar to the Go REPL discussed

in Section 4.2). It is possible to obtain a REPL interface in this way, but it would not

be based on a sequential language and the explorative quality of exploring interpreters

would be lost. The applicability of our approach in the context of such compilation-based
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REPLs is to be investigated further.

The interpreters discussed in this chapter are all implemented in functional program-

ming languages (Rascal and Haskell) with immutable data. Maintaining the execution

graph is therefore easy to implement, but it may come at a cost of performance and

memory footprint. Further research is needed to represent the graph more efficiently, for

instance by maximizing sharing, caching intermediate results, or selectively culling the

graph. The pragmatics of a REPL (small snippets, immediate feedback, etc.), however,

suggest that such optimization might be premature.

Although not shown here, exploring interpreters can also be used to realize additional

features not typically found in REPLs by performing sequences of execute and revert

actions in response to a single user action. For example, if a user edits a cell in a

notebook, this could cause the exploring interpreter to revert to the configuration in

which that cell was originally executed, keeping track of all cells undone this way,

re-executing the (now modified) cell, and executing all the remembered cells in the

order they were first executed. Further research is needed to establish how this relates

to live programming [77, 75]. The QL language described in Section 4.4.2 has a live

programming environment and forms a natural starting point for this study.

The MiniJava notebook discussed in Section 4.4.1 displays the execution graph of

the exploring interpreter, allowing arbitrary rollbacks to explore alternative execution

paths. In future work we will explore the ability of the exploring interpreter to support

exploratory programming. More generally, we aim to describe algebraic operations over

execution graphs for both live and exploratory programming.

The methodology of Section 4.3 starts from a single base language. The methodology

is easily generalized to take multiple languages as a starting point and defining a single

sequential language as an extension of all of them, which is then used as the basis

for a so-called polyglot REPL. The definitional interpreter for the sequential extension

may however not be easy to define when the effects of the phrases of the different

base languages are not easily reconciled. In a future study we hope to formulate and

demonstrate the more general methodology and to show its benefits to developing

polyglot REPLs and notebooks.

Conclusion REPLs provide programmers with a direct interface to a programming

language, supporting exploration, testing, and incremental development. All mainstream

languages have REPL interfaces, which indicates the value they represent to programmers.
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However, the actual language that is accepted by the REPL is often not well-defined, and

engineering REPLs lacks solid design principles.

In this chapter we have surveyed existing REPLs in a feature-oriented domain analysis,

showing a wide diversity in feature support. To make the relation between a REPL and its

language precise, we have defined and formalized the notion of sequential language, and

used it as the basis of a methodology to construct REPL interpreters. The versatility of

the approach has been demonstrated in three case studies, one based on MiniJava, and

two based on DSLs (QL and eFLINT). The case studies show notebook, command-line,

and client-server REPL interfaces, developed using the methodology by extending base

languages and reusing existing interpreters.

The concept of sequential language and its associated language design and engi-

neering guidelines may provide better insight into the essence of REPLs, and promote a

principled approach to the construction of REPLs.

73





CHAPTER 5

FROM DSL SPECIFICATION TO

INTERACTIVE COMPUTER

PROGRAMMING ENVIRONMENT

In this chapter, we explore how to integrate language services of executable
DSLs into interactive computer programming environments through a generative
approach. We start by motivating the need for interactive computer programming
environments for DSLs users (Section 5.1). Next, we give an overview of our
generative approach to use existing DSL specifications in order to derive a REPL
interpreter (Section 5.2). Then, we go into more details about the technical
aspects, and we provide an implementation based on the language workbench
“GEMOC Studio” (Section 5.3). Finally, we evaluate our generative approach
on two DSL specifications (Section 5.4). We close this chapter by discussing
perspectives opened by this contribution (Section 5.5). This chapter presents the
work achieved in our SLE’19 publication ([39]).

5.1 Motivation

It has been recently recognized that the different tasks performed with a given

language, possibly by different stakeholders, would require specific language support

(e.g., dedicated environments with the right facilities) [2]. For instance, while it can

be convenient to have a comprehensive editor for editing complex logo programs, one

would like access to other kinds of environment such as interactive environments that

allow to immediately get the result of the program at the time it is being edited. Such an

environment would be very useful for education purposes, such as learning about the

language or evaluating existing libraries. Generally speaking, it becomes way easier to

introduce a programming language to beginners if they don’t have to conform to the

structure of an entire program when they want to write their very first instructions [31].

Java is a perfect example of this [34, 3], as this is a language that requires to follow

a rather complex process to simply print ‘Hello World!’ in a terminal emulator: the
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programmer needs to define a public class, declare a method both public and static

and give it a specific name, while also specifying that it will require a certain type

of arguments, before finally writing the very first statement of a program. Of course,

the syntax makes perfectly sense, and understanding it will be important in order to

learn how to use the language, but it can be detrimental to introduce it during the first

glimpse at Java programming. An interactive computer programming environment can

be beneficial to simply learn how specific language statements work in practice. In the

case of Logo, introduced in Section 2.2, interactive computer programming environments

would provide immediate feedback from any statement of the language, mainly through

an updating graphical representation of the canvas, and thus help to learn complex

programming concepts. Note that interactive computer programming environments can

be also beneficial for experienced language users, in order to test the behavior of code

snippets at any time. It makes possible to run processes in an arbitrary order while having

access to all the intermediary results, which can be very useful when experiencing a

new API. Beyond learning the different facilities provided by the API, it may also help to

get experience with specific protocols required in the use of the API (e.g., feedback on

advanced behaviors of HTTP when learning how to use a web framework).

Interactive computer programming environment can take various forms, including

a basic language shell where single statements can be executed sequentially, based on

a global context, and possibly with the history of the intermediate states of the built

program. Alternatively, a notebook interface provides a virtual notebook environment

used for literate programming. It supports the definition of a sequence of pieces of

code, with intermediate results, and possibly word processing to document the program

(Jupyter notebooks for example let the user embed both Markdown and LaTeX in-between

their code snippets).

In all cases, an interactive computer programming environment requires a language

interpreter in the form of a read–eval–print loop (REPL), which is able to execute a

program piece by piece. As addressed in Chapter 4, this requires a language supporting

different execution entry-points, and a specific management of the execution context

and flow. The context is usually global (though some scoping rules can still apply),

and the execution flow is sequential, beginning with the starting point defined by the

programmer. Other strategies may exist, in particular regarding the execution flow where

a specific order may be imposed to keep reproducible executions. REPL execution engines

offer facilities such as: history of inputs and outputs, input editing and context specific
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completion over symbols, path names, class names and other objects, as well as help and

documentation for commands.

Nowadays, most general purpose languages take these considerations into account,

and ship their own REPL implementation: Python and C# run in interactive mode by

default, Node.js can execute the “repl” module out of the box, PHP can be run as an

interactive shell with the switch “-a”, Swift offers a REPL directly integrated within Xcode,

Ruby is shipped with the executable “IRb”, and even Java includes its own REPL “JShell”

since the version 9 of JDK.

While interactive computer programming environments have been specifically devel-

oped for general purpose languages, there is currently no approach that helps to turn

an existing DSL specification in a way that a complementary interactive environment

can be automatically generated. Instead, a new specification, either extending another

specification or built from the ground up, must be established for the specific purpose of

driving the development of an interactive environment. Hence, the research question

(RQ) we address in this chapter is the following:

RQ: Is it possible to automate the transformation of an existing textual and
interpreted DSL specification in such a way that an interactive computer
programming environment can be automatically derived?

We consider a DSL specification that includes:

— a syntax described as a grammar defined using a rule language based on “Extended

Backus-Naur Form Expressions”,

— static semantics built from a set of first order logic rules,

— and operational semantics based on a pure interpreter pattern. Pure means that

each interpret method of the interpreter accesses only the current node’s and its

children’s attributes, and the attributes from the context object, but cannot go back

to the node’s parent.

Our approach provides the required abstractions for complementing an existing

DSL specification with the minimal information needed for generating a REPL (i.e., the

expected execution entry points and their associated documentation and output mes-

sages), and automates the transformation of the DSL specification so that an interactive

computer programming environment can be derived. In particular, we automate the

transformation of the syntax to parse separate pieces of code, and the semantics to

support the execution of single statements according to a specific execution context
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and flow. We also propose a unified REPL interface in order to derive different kinds of

environment, e.g., a language shell and a notebook interface.

5.2 Approach Overview

The main objective of our approach is to automatically transform an existing DSL

specification (cf. upper left part in Fig. 5.1) initially used to drive the development of a

comprehensive integrated development environment (cf. lower left part in Fig. 5.1), into

a new one (cf. upper right part in Fig. 5.1) that can be used to automate the development

of interactive computer programming environments (cf. lower right part in Fig. 5.1).

Figure 5.1 – Programming Environment Generation from DSL Specifications

Since we are aiming for a systematic transformation process, we put some restrictions

on the supported DSLs: they need an extended BNF grammar and operational semantics

that follow a pure interpreter pattern. We believe that these characteristics are ones of

the most common, and thus that these are acceptable limitations.

To reach this objective and address the RQ specified in the previous section, we

identified four challenges:

C1 Identification of the different execution entry points that are meaningful for the

corresponding REPL, and the expected outputs and help messages given to the
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user.

C2 Transformation of the syntax so that we can parse and load partial programs

corresponding to the identified execution entry points.

C3 Definition of a sound yet flexible execution context and flow management,

C4 Transformation of the semantics so that we can execute pieces of code correspond-

ing to the identified execution entry points.

Entry-points Identification (C1) We define as language entry-points the constructs

that a language user can use and that can be executed outside of any other context.

With most traditional DSLs, the execution can only handle a complete program and

builds a context for it, that will later be used by all the statements and expressions.

The only entry-point is as such the complete program. Here, we want to provide several

entry-points with a granularity lower than a regular program.

However, the granularity of the new execution entry-points cannot be inferred au-

tomatically. The choice is up to the language engineer. In practice, they correspond to

any expression to be considered as an executable statement within the interactive envi-

ronment. It is therefore necessary to provide within our approach means of specifying

these new entry points, and the underlying framework for loading and saving single

statements.

To report the execution entry-points, relevant abstractions must be provided to the

language engineer for enhancing the initial DSL specification. Abstractions must support

the identification of the relevant statements to be executed independently. Moreover, to

give intermediate feedback to the language user, the new entry-points need to be also

supplied with additional information about the expected outputs (e.g., the user would

expect to get an evaluation result when he inputs a Logo expression), and possibly an

help message.

In addition to the identification of the new execution entry-points in the DSL specifi-

cation, a corresponding framework must be provided to save and load partial programs

corresponding to the possible entry-points. For such a purpose, we transform the syntax

specification in order to make partial programs valid for the parser and the corresponding

syntax tree. We refer to these partial programs as instructions.

Transformation of the Syntax (C2) On the basis of the identified entry-points, the

existing syntax specification must be transformed to enable all of these entry-points as
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valid instructions. A new root rule within the grammar specification and a new root node

for the AST named Interpreter are integrated. The latter contains all the newly defined

valid entry points, and possibly the definitions of additional behaviors to instrument the

execution.

Execution Context and Flow Management (C3) We do not handle complete programs

anymore but independent instructions. In order to keep a consistent execution through

the different iterations of the REPL, a global execution context and its flow along the

independently executed instructions must be managed. This is the role of the proposed

Interpreter, that will instantiate a context then simply pass it to instructions before

executing them. Execution results must also be stored in a specific variable, and an

execution trace manager must be provided to offer a complete history.

We propose a generic interface to interact with (sequences of) instructions, used by

generic interactive computer programming environments such as a language shell and a

notebook interface.

Transformation of the Semantics (C4) The last step of our approach consists in

transforming the DSL semantics, so that the instructions can be executed independently,

over a global context, and according to the proposed interface. In order to automate this

transformation, we make several assumptions about the form of the DSL specification.

In our current approach, we consider operational semantics defined according to the

interpreter design pattern, i.e. an operation associated with each node of the AST, and the

same context object associated with this operation containing all the dynamic information

related to the language semantics. We also assume that the context passed to each nodes

can be instantiated and initialized from the Interpreter node. If the context cannot be

properly initialized on its own, we still give the ability to a language engineer to include

custom rules in the semantics, but we do not try to infer them during the REPL language

generation. Finally, each operation associated to a node of the syntax tree declared as

an entry point must not make assumptions about the execution context other than that

related to the initialization, nor about the structure of the parent nodes. We defined this

property as a pure interpreter pattern.
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5.3 Technical Details and Implementation

This section describes the technical details of the different steps of our approach, and

proposes a particular implementation 1.

The proposed implementation comes in the form of a prototype based on the GEMOC

Studio [17]. The GEMOC Studio is an Eclipse package on top of the Eclipse Modeling

Framework [74], which has been experienced in various industrial projects. Among

others, it offers a language workbench that supports the modular specification of DSLs,

using Ecore for the abstract syntax, Xtext for the textual concrete syntax, OCL or Xtend

for the static semantics and ALE for operational semantics. Other alternatives are also

proposed but not illustrated in the scope of this chapter.

We illustrate both the approach and the implementation using the simple but real-

world Logo language introduced in Section 5.1.

5.3.1 DSL Specification Enhancement

As presented in Section 5.2, we first provide to the language engineer the relevant

abstractions for specifying the multiple execution entry-points:

— Identification of the valid instructions to be executed independently,

— Definition of the expected outputs as intermediate results, and

— Definition of the help messages for the language user.

In practice, these information could be provided either in the syntax or in the

semantics. However, we had to consider that the visitor can be augmented by additional

helpers for a given Ecore object, and there is no way of deciding on which to use. Besides,

the output needs to refer to dynamic information which is mainly available within the

semantics.

In order to identify the required entry-points, the language designer could methodi-

cally:

1. take a look at each rule of the grammar and choose the ones to provide in the REPL

2. decide on the expected outputs for each of the chosen rules

3. factor them in to abstract parent rules if the outputs are the same

1. See our prototype at https://anonymous.4open.science/r/84105ce9-f47c-4dd2-936e-9eb2dd345ad0/
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To let the language engineer define the required information, we introduce a new

metamodel shown in Fig.5.2. It can be seen as a dedicated meta-language to modularly

complement the initial DSL specification with information related to the REPL. The core

element of this metamodel is the Instruction meta-class. It defines three main information

required to generate the REPL:

1. the new entry point in referencing a specific AST and the ALE method that defined

the operational semantics for this node.

2. the help message to display if a user wishes to request help on this specific entry

point.

3. the elements of the semantics to be used as textual outputs of the interpreter. These

elements can be either attributes related to the execution (i.e., attributes of the

operational semantics), calls to existing methods of these semantics, or calls to ALE

methods defined by the language engineer (e.g., evalResult and a set of evalParams
that could target an ALE Expression).

The second main meta-class is Interpreter. It allows language engineers to specialize,

among other things, the initialization of the execution context of the interpreter.

We provide two concrete syntax to populate the model conform to the ReplDefinition
metamodel: a dedicated DSL, and additional annotations to ALE. This model represents

the required information to drive the transformation of the DSL specification.

Using a New DSL The first concrete syntax is a new DSL built as an extension of ALE.

Fig. 5.3 shows the definition of the REPL for the Logo language.

The first part defines the entry points, associated outputs and help messages. It defines

two new entry points: Statement::execute and Expression::compute. It also defines their

associated outputs to display: logo_repl.turtle.toString() and output.toString() (output
refers to the actual value possibly returned by the entry-point). Finally we could define

the help associated with these entry points (it has been done only partially in the Logo

example).

The second part specifies the Interpreter, the specialization of its context of execution

and its initialization. Interpreter will serve as the starting point of the execution of the

REPL and will manage the future instructions. It will contain the same kind of runtime

data as the entry-point of the base DSL, which will define the global context of the

REPL. In the case of Logo, this means the turtle graphics, and a symbol table used to
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Figure 5.2 – ReplDefinition Metamodel

define procedures (using a symbol table for this is simply a design choice of the language

engineer). In order to initialize this global context, the initialization method of the

interpreter will also be the same as the base DSL.

Using Annotations The same kind of information can be defined directly within the

existing ALE operational semantics using a set of annotations. We provided the language

engineer with the following annotation:

@repl__outputtarget__outputcall__...

The output specification here is optional, and represents either an attribute read or a

method call on a semantic object from the global context, or on the result of the operation

being annotated. Note that the syntax is based on underscores because of limitations of

the ALE language, which only supports identifiers as annotations. Using two underscores

as the separator allows for compatibility with semanics using either camel case or snake

case for identifiers.
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1 extend http://www.gemoc.org/logo as logo
2
3 instruction logo.Statement:
4 help right "Turn turtle of ’p’ degrees to the right "
5 help forward "Move turtle of ’p’ units forward"
6 execute(logo_interpreter. turtle , logo_interpreter . st)
7 ⇒ logo_interpreter.turtle.toString();
8 instruction logo.Expression:
9 compute(logo_interpreter.st)

10 ⇒ output.toString();
11
12 interpreter logo_interpreter {
13 attribute Turtle turtle ;
14 attribute SymbolTable st;
15 initmethod def void init() {
16 self . turtle := Turtle.create();
17 self . turtle .xpos := 0.0;
18 /* ... */
19 self . st := SymbolTable.create();
20 self . st . init ();
21 }
22 }

Figure 5.3 – Example of ReplDefinition Model for Logo

The language engineer can also set the help message to display by using a javadoc
like comment:

/**

* keyword: Help message

*/

In the base semantics for Logo, the only additions besides the optional help messages

were the two following annotations (cf. Github repository):

— @repl_turtle_toString for the execute operation of Statement

— @repl_output_toString for the compute operation of Expression

Fig 5.4 shows a code excerpt from the operational semantics of the Logo language

extended with the proposed annotations to define the information required to comple-

ment the DSL specification with an interactive programming environment. The set of

annotations is however less expressive than the DSL. Indeed a language engineer might

want to use a more complex expression as the output of an instruction or specialize the

execution context for the REPL, which could not be done through annotations. One could

still choose to modify the behavior of the base semantics by adding a new ALE operation

that could then contain any kind of ALE expression, and call it in the annotation. This

84



5.3. Technical Details and Implementation

Figure 5.4 – ReplDefinition Annotations Used on Logo

new operation could not, however, have access to the global context of the interpreter,

nor to the intermediary results.

Based on this information, the DSL specification can be transformed so that a REPL

can be derived and used by interactive computer programming environments. It is

defined in three steps I) Abstract Syntax Tree transformation, II) Concrete Syntax

transformation, III) Operational semantics transformation. The next subsections detail

these three transformations applied on the original DSL specification. Finally, we present

the generic REPL interface provided and the clients defined as interactive computer

programming environments: a language shell and a notebook interface.

5.3.2 Abstract Syntax Transformation

During the DSL specification transformation process, we first complement the abstract

syntax with additional concepts.

We first define Interpreter as the REPL entry-point. It owns a reference to the abstract

class InterpretableInstruction which will be set during the execution to always target the

current instruction.

InterpretableInstruction also has a containment to itself, which creates a linked list

of the previously executed instructions, hence keeping the whole execution history in

a single resource. For each instruction I defined in the ReplDefinition model, the new

85



Chapter 5 – From DSL Specification to Interactive Computer Programming Environment

Figure 5.5 – Abstract Syntax Extension for Logo

abstract syntax will include an adapter I_Instruction extending InterpretableInstruction.

Another instruction is the HelpCommand.

An example of the additions made for Logo can be seen in Fig. 5.5. The instructions

that correspond to the new entry-points are Statement and Expression.

5.3.3 Concrete Syntax Transformation

The second step in our approach is to extend the existing concrete syntax to parse

alternatives corresponding to the newly defined instructions. As such, for each instruction

I, we retrieve the corresponding rule from the base grammar of the DSL and we reuse

it for the newly defined adapter I_Instruction. The parsing rule InterpretableInstruction
manages this part.

Another rule is created in order to instantiate an interpreter. Then, the grammar

entry-point will be the parsing rule EntryPoint that will call either Interpreter, Inter-
pretableInstruction or HelpCommand if the user asks for help on a specific subject.

We also add a custom scope provider in order to resolve the cross references between

the previously executed instructions and the current one. When trying to resolve a

cross reference, this scope provider will browse through the linked list of the previous

instructions. If nothing was found, it will finally turn to the resolution mechanisms of

the base grammar.

One of the limitations of this specific implementation is that we use the default Xtext

parser to parse single statements. As such, we do not support non context-free grammars.

If the language has two semantically different instructions that use the same notation,

only one of them can be made into an entry-point. Some possible ways to support non
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context-free grammars would be:

— to use a custom parser that could build a context from the previously executed

instruction (which might add unwanted side effects)

— or to allow the language designer to modify the keywords used by some grammar

rules, in order to remove potential conflicts

Fig. 5.6 depicts an organization of the different artifacts related to the concrete syntax

extension of the language Logo, while Fig. 5.7 details the corresponding Xtext production

rules.

5.3.4 Semantics Transformation

Last, we transform the DSL semantics to incorporate the new execution context and

flow management, and to enable the new instructions to be executed.

Here, we handle operational semantics written in ALE. ALE is a language that allows

to re-open classes from Ecore metamodels to statically introduce fields and operations at

design time. By using the open class syntax, we can define the behavior for the classes

we added in the syntax, and drive the execution with @init and @main annotations on

operations.

We define the runtime data of the execution context and the initialization of the

Interpreter entry-point as described in the ReplDefinition model. When executed, the

interpreter will call the operation interpret on the instruction it is currently referencing.

Every instruction adapter takes care of the mapping defined in the ReplDefinition
model: they become a wrapper that will call the original execution method of the

statement or expression, possibly with the right parameters (the interpreter’s execution

context) and retrieve and display the expected outputs as described in the model.

Fig. 5.8 describes the overall execution flow for the language Logo, while Fig. 5.9

shows the generated ALE code corresponding to this execution flow. The Interpreter, its

initialization method and specialized execution context are derived from the information

provided by the language engineer in the ReplDefinition model (see section 5.3.1). For

each new entry point, an operation is added to manage the semantics. A new operation

is also added to the new HelpCommand meta-class.
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Figure 5.6 – Concrete Syntax Extension for Logo

1 // Import existing Logo definition.
2
3 EntryPoint returns ecore::EObject:
4 InterpretableInstruction | Interpreter ;
5
6 InterpretableInstruction :
7 {Statement_Instruction} original=Statement
8 | {Expression_Instruction} original=Expression
9 | {HelpCommand} ’help’ command=ID;

10
11 Interpreter :
12 {Interpreter}

Figure 5.7 – Generated Extended Grammar Definition for Logo

5.3.5 REPL Interface and Interactive Environments Examples

Having applied the aforementioned transformation process, the DSL is complemented

with a multi entry points parsing of interpretable instructions. In order to build an

interactive environments on top of it, we provide a generic REPL interface protocol and

its underlying systematic execution framework (cf. Fig. 5.10):

1. Create an interpreter and initialize it
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Figure 5.8 – Overall Execution Flow for Logo

2. Read the user input

3. Parse it as an instruction

4. Retrieve the previous instruction and store it

5. Swap the instruction of the interpreter for the new one

6. Run the interpreter

7. Print the relevant output

8. Go back to step 2

From the new generated DSL specification, we automatically generate the entire

GLUE code for integration with two technical environments: Eclipse and Jupyter. For the

first one, we provide a plugin including an eclipse view hosting a shell to communicate

with the Interpreter. This generic view declares an Eclipse extension point type including

among others the name of the REPL language and the qualified name of the interpreter

class. Each REPL language declares this extension point. The generic view allows REPL

users to select the desired DSL and then start an interactive session. This session keeps

track of the executed instructions and offers the ability to reset the interpreter or cancel

the last instructions thanks to the environment provided by Gemoc. The Language Server

Protocol (LSP 2) support provided by Xtext enables intelligent completion within the

2. https://langserver.org/
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Shell. Figure 5.11 shows a screenshot of this integration within Eclipse for the Logo

language.

For Jupyter, an editor specific to ipynb files (Jupyter notebook) has been created and

manually integrated into Jupyter. The purpose of this editor is to replace the default code

cell editor (ace editor 3) with the monaco text editor 4. The latter has the advantage of

natively supporting LSP in order to allow completion, error reporting, etc. A generic glue

code has been added to adapt between Jupyter’s Kernel concept and GEMOC’s execution

engine to control the execution of interpreters. Thus for each new REPL, a connection file

defining the connection URL to the GEMOC execution engines of this REPL is generated.

A descriptor is also generated for Jupyter to register this new kernel.

On the GEMOC side, a class allowing to interface with a ZeroMQ message oriented

middleware is created and makes the link with the execution interface of the GEMOC

engine and the current REPL. The main advantages of the GEMOC integration is to

leverage its execution trace management, debugging facilities and concurrency model

management (e.g., to start from any cell or finely control the flow of execution of the

cells.).

5.4 Evaluation

To address the four challenges identified in Section 5.2, we propose an approach to

automatically generate an interactive computer programming environment from a DSL

specification and an identification of the execution entry points for this REPL. A first

level of validation consists in applying our approach on other DSLs, namely MiniJava
and ThingML, and to reflect on the lessons learnt.

MiniJava is a subset of the general purpose language Java that was created for

teaching purposes, since Java was considered too intimidating for students on various

aspects [67]. The first implementation of MiniJava, released in 2001, was also shipped

with a REPL. This DSL offer a good support to learn Java and test APIs as introduced in

Section 5.1.

We started from an existing implementation in EMF/Xtext/ALE 5. This specific imple-

mentation is a large one, with 80 meta-classes and 200 attributes in the abstract syntax,

3. Cf. https://ace.c9.io/
4. Cf. https://microsoft.github.io/monaco-editor/
5. Cf. https://github.com/manuelleduc/ale-lang/tree/master/languages/minijava
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170 lines of Xtext for the grammar, and more than 1140 lines of ALE as operational

semantics. In order to use real life APIs, we decided to add a support for native Java calls

through the Java JSR-223 API 6. JSR-223 is a standard API for calling scripting frame-

works in Java. It is available since Java 6 and aims at providing a common framework

for calling multiple languages from Java.

We selected nine execution entry-points: Type declarations, Method definitions,

Statement blocks, Variable declarations, Assignments, For loops, While loops, Conditions,

and Expressions. This means that we added nine @repl annotations, including one with

a specific output for the expressions. Considering the initial size of the DSL specification,

these additions are only nine more lines in the semantics, which can be estimated as a

modification of 0.6% to generate a REPL for the existing DSL.

We also added both a Xtext ScopeProvider, to manage the scoping, and a Xtext

Validator, to enforce access rights, to the base definition of MiniJava. Having these two

new elements written with the pure interpreter pattern inside the DSL definition was not

an issue, and they both work as intended for the generated REPL.

The second DSL is an ALE implementation of ThingML. ThingML 7 is a domain specific

modeling language, that combines well-proven software modeling constructs for the

design and implementation of distributed reactive systems:

— statecharts and components (aligned with UML) communicating through asyn-

chronous message passing,

— an imperative platform-independent action language,

— specific constructs targeting IoT applications.

The ThingML language is supported by a set of tools, which include editors, trans-

formations (e.g., export to UML) and an advanced multi-platform code generation

framework, which supports multiple target programming languages (C, Java, Javascript).

Recently a simulator has been designed to emulate the distributed system behavior. The

abstract syntax contains 88 meta-classes, for a total of 240 model elements. The grammar

definition is more than 450 lines long, and writing the operational semantics in ALE

require more than 1800 lines.

Being a dataflow language, it was an interesting case study for us since our approach

was mainly aimed at imperative DSLs.

6. Cf. https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/prog_guide/api.html
7. Cf. https://github.com/TelluIoT/ThingML
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In a ThingML program, a language user can define types and protocols, with some

of those types being “things” that can declare functions and state machines, before

instantiating them inside configurations. A configuration of connected things is a dataflow,

and the operational semantics of ThingML execute it for as long as they have steps to

execute.

The syntax of the DSL offers a way to describe complete dataflows, and our approach

enables the definition of partial programs. However, the concept of partial dataflows is

debatable. Since ThingML uses named elements in a configuration, we could use them

as valid execution entry-points, but a smaller granularity would not make sense:

— We could have instantiations and connections between things outside of configura-

tions, but this would mean either that we execute a partial flow from the beginning

after each change, or that ThingML defines an execute instruction (and it does

not). Running several configurations is honestly just as good.

— The statements used in functions could be available, but at best they could only

be used to interact with completely executed configurations (and their instances if

the concrete syntax provided a definition for qualified names), which would be of

limited use.

— With the two above, we could actually end up with a complete imperative language,

but it would be too far away from the original ThingML to stay in the scope of what

we want to provide.

As such, we decided to use the following 3 entry-points: Type definition, Protocol

definition, and Configuration declaration (and execution). They correspond to 3 more

lines in the semantics, which represent 0.12% of the total DSL specification. Our ThingML
REPL makes it possible to split a program between elements definition and several con-

figuration executions. However, there are a lot more interesting aspects to an interactive

environment for a dataflow language: altering an already existing dataflow with new

nodes and transitions, or controlling the execution step by step for example.

Lessons Learned This experiment on two DSL specifications defined by other language

engineers allowed us to verify several points, and to evaluate our initial RQ and associated

four challenges.

The first lesson learned is the ability of our approach to be used on different DSLs as

long as these specifications conformed to a certain number of expectations. The language
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engineer can specify the new entry points of the DSL, the associated outputs and the

associated help messages in an expressive way. The effort to define these entry points

remains low compared to the level of reuse of the abstract syntax, the grammar and

the operational semantics. Such an approach of automated transformation allows a

language engineer to have significant confidence in the semantics preservation of the

original DSL. Focusing all the tools associated with a DSL only on its specification is

an important way to facilitate the evolution of all these artifacts, and in particular the

associated REPL. The assumptions made about the form of the implementation of static

semantics, the operational semantics, and the different scoping rules are a bit strong.

This means that two things are required at the moment: The definition of new entry

points must be done by a language engineer and it is required to be able to access

the DSL specification in case of issues to correct the parts that do not fully respect the

assumption of a pure interpreter design pattern. Finally, if the approach perfectly fits the

generation of interactive computer programming environments for imperative languages,

many perspectives are opening up in the case of declarative or dataflow languages, and

they lead to considering new opportunities for the interactive parts of these kinds of

languages.

5.5 Discussion & Perspectives

We described in this chapter an approach to automatically transform an existing

specification of a textual and interpreted DSL, into a new specification that drives the

development of an interactive computer programming environment. From additional

information about the allowed entry points and the expected outputs when executed, we

described how to transform the grammar specification and the operational semantics

specification so that we can have multiple execution entry points, and a sound and

extensible management of the execution context and flow. We also defined a unified

interface to be used from different interactive environments such as a language shell

and a notebook interface. The implementation and the evaluation have been done in

the GEMOC Studio, but the proposed approach could be implemented in other language

workbenches.

This approach opens up various perspectives. While our approach is currently expect-

ing operational semantics in the form of an interpreter, we would like to extend it in the

future to also cover translational semantics in the form of a compiler. We would also inves-
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tigate the support of a seamless interoperability [26] between the interactive computer

programming environments and the initial environment. In the long term, we would

like to investigate polyglot interactive environments offering a seamless integration of

heterogeneous languages.
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1 open class Interpreter {
2 logolang::Turtle turtle ;
3 logolang::SymbolTable st;
4
5 @init
6 def void init () {
7 self . turtle := logolang::Turtle.create();
8 self . turtle .xpos := 0.0;
9 self . turtle .ypos := 0.0;

10 self . turtle . direction := 0.0;
11 self . turtle .pendown := false;
12 self . turtle .canvas := logolang::Canvas.create();
13 self . turtle .canvas.segments := Sequence{};
14 self . st := logolang::SymbolTable.create();
15 self . st . init ();
16 }
17
18 @main
19 def void run () {
20 self . instruction . interpret ( self );
21 }
22 }
23
24 open class Expression_Instruction {
25 def void interpret ( Interpreter logo_repl) {
26 ecore::EObject output := self . original .compute(logo_repl.st);
27 output.toString() .log();
28 }
29 }
30
31 open class Statement_Instruction {
32 def void interpret ( Interpreter logo_repl) {
33 self . original .execute(logo_repl. turtle , logo_repl. st);
34 logo_repl. turtle . toString() .log();
35 }
36 }
37
38 open class HelpCommand {
39 def void interpret ( Interpreter logo_repl) {
40 // Call help method of the node
41 }
42 }

Figure 5.9 – Generated Extended Operational Semantics for Logo



Figure 5.10 – REPL Execution

Figure 5.11 – Eclipse Shell Running with Logo REPL



CHAPTER 6

A PROTOCOL FOR DECOUPLING

EXECUTION SERVICES FROM

LANGUAGE RUNTIMES

In this chapter, we analyze different language execution services in order to
organize them into a hierarchy, to leverage on the most minimal language
execution component. We start by motivating the importance of a minimal
execution component in order to ensure semantics consistency between different
execution services (Section 6.1). Next, we detail the protocol to communicate
with such a component, and formalize possible implementations (Section 6.2).
Then, we evaluate its usability through two environments, one based on a
generative approach to obtain compatible operational semantics and the other
using operational semantics made specifically for this use-case (Section 6.3.2).
Finally, we discuss future perspectives opened by this work (Section 6.4).

6.1 Motivation

The famous vision that “software is eating the world” is getting more realistic every

day [4]. The increasing digitalization of education, industry, social and political life is

leading to the increasing appearance of digital data and of programs to create, process,

understand and visualize these data. A natural corollary to the need to create new

programs efficiently is the emergence of many programming languages and the need

for a domain expert to build abstractions related to their domain. These abstractions

could be built within frameworks for existing programming languages or even better

by defining new languages (Domain Specific Languages, or “DSLs”) manipulating these

abstractions as first class entities. Experts could benefit from specialized tools (e.g., rich

text or graphic editor, linter, interpreter) for their abstractions.

To build these specialized tools, the community is looking for a way to define a generic

core that can be specialized from a rich specification of these languages. This investigation

is obviously a trade-off to be found between a rich core that has limited specializations vs.
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a small core with a high degree of specializations. In this trend, approaches such as Debug

Adapter Protocol (DAP) 1 or Language Server Protocol (LSP) 2 have made it possible to

build great core tools for assisted text editing or for advanced debugging. These two

protocols had a real impact on the development of modern Integrated Development

Environments (IDEs) but also on language definition workbenches [30, 47].

In the last few decades, the emergence of notebooks [48] (programs mixing docu-

mentation, code and output visualization cells) to explore and analyze data has created

new needs in terms of debugging, but also in terms of interaction with the execution

environment of a language. In order to capitalize on a small core that could be special-

ized in the definition of a new programming language, this chapter explores the idea of

leveraging from a single operational semantics implementation, by formally describing

possible implementation patterns to follow in order to benefit from a rich execution

environment tooling (such as the integration within a notebook or an advanced debugger

within the notebook). We push the idea to revisit the way we implement an operational

semantics for a programming language in order to inherit a rich execution environment

adapted to an integration in a notebook-like framework. This includes a protocol on top

of the semantics implementation to communicate with the rest of the environment. In

order to demonstrate the pertinence of our formal models and our protocol, we show

that it is possible to implement these rich execution tools, and we propose a generative

process to convert existing operational semantics implementations into ones that follow

the formalization to prove that it is possible to integrate our approach in the current

practices.

The contributions of this chapter include:

— The identification of the minimal set of services required to support three different

execution tools: an execution engine, a REPL interpreter and a debugger,

— The specifications of a protocol that bridges operational semantics and execution

tools,

— And a formalization of three operational semantics styles that can be accessed

through this protocol.

We first motivate in depth the need for our approach in Section 6.1. We then detail how

we identified the minimal set of services required in our protocol in Section 6.2. Sec-

tion 6.3 proves the applicability of this approach by formally describing three operational

1. cf. https://microsoft.github.io/debug-adapter-protocol/
2. cf. https://microsoft.github.io/language-server-protocol/
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semantics styles that can support the presented protocol, and presenting two language

implementations. Finally, we conclude the chapter with Section 6.4.

To illustrate the process of driving multiple generic execution tools from a single

operational semantics implementation, we use MiniJava. MiniJava is a subset of the Java
language, first designed for teaching purposes [67]. Contrary to Java, this language is

usually fully interpreted instead of compiled to bytecode.

Given its teaching nature, we argue that a MiniJava environment should offer offer

similar tools and features as a Java one. If we consider the different ways to run Java

programs, this means that such an environment requires at least three execution tools:

— An interpreter for complete programs that produces the same result as compiling

an equivalent .java source code file using javac and running it on a Java virtual

machine;

— A REPL implementation that behaves similarly to JShell, for integration in notebook-

like tools for example;

— And a debugger that offers the same execution granularity and information as a

JPDA-compliant debugger such as Eclipse JDT Debug 3.

Originally, in the Java ecosystem, these tools were developed independently, but

in practice they share the same language constructs. The main difference between an

interpreter executing a complete Java program and a Java REPL is the entrypoint: in the

first implementation, the semantics require finding the main method defined in the class

executed at top level, and run it with the input arguments after the definition of all the

classes, while in the second one code snippets are interpreted directly and immediate

feedback is given to the user. The constructs that can be used at the top-level in the REPL,

such as method declarations and expressions, need to be given semantics, e.g., the values

of top-level expressions are assigned to fresh variables in JShell. Using an operational

semantics for MiniJava defined around the concept of entrypoints such as in [39] or [15],

it is possible to also support the execution of a complete program in a REPL interpreter

as long as it also supports the injection of the input arguments (e.g., through context

modification or a specific entrypoint). But these approaches do not offer the necessary

granularity for debugging the execution. This would require managing the execution at

the level of an “execution step”, as defined in the approach of [17].

Consequently, an operational semantics for MiniJava that exposes both entrypoints

3. cf. https://www.eclipse.org/eclipse/debug/index.php
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and execution steps could be leveraged to execute a complete program, provide an inter-

active REPL session, and offer a debugging process without modifications. Importantly,

this approach ensures consistency in the behaviors of the language constructs when using

the language through the different tools. The goal of this chapter is to derive from these

approaches the minimal protocol able to support the different usages, and to formally

describe the requirements for operational semantics implementations in order to fit this

protocol. In the end, the different tools are driven by a single common core component,

which could even be defined as generic and reusable for a family of similar languages

since the capabilities of the protocol are fixed.

6.2 A Minimalist Execution Protocol

6.2.1 Services Identification

This contribution expands on the work achieved by Bousse et al. in [17]. Several tools

are based on it such as an implementation of an Execution Engine for Henshin ([84]), a

generic omniscient debugger ([18]), or an efficient runtime monitoring approach ([52]).

This contribution is sound, but too restrictive to properly implement REPLs to realize

exploratory programming styles. It was designed to support the execution of complete

programs but not multiple code snippets in the same execution context, i.e., it only offers

a single possible entrypoint. Our protocol should thus be more fined-grained, allowing

the definition of an Execution Engine whilst allowing a multitude of entrypoints.

In this section, we identify the language services necessary to support each execution

tool:

Execution Engine An Execution Engine is a language-agnostic tool that manages the

execution of a complete program, given the language’s definition with its operational

semantics. Based on the aforementioned work, its interface describes two execution

methods:

— initialize to load the language definition and the program, and to prepare the

execution context,

— execute to run the program, which consists in launching a specific method from

the operational semantics for a given element.
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An Execution Engine can also manage Engine Addons, which are execution tools that can

observe and alter the execution at any “execution step”. Execution steps are explicitly

defined in the operational semantics of the language to represent the observable steps

of an execution in the context of a specific language. Supporting addons requires the

following events:

— engineStarted to notify of the start of the execution, and the need to start the

addons,

— engineStopped to notify of the end and thus clean the addons,

— aboutToExecuteStep before the execution of a step, after which the addons should

each be handed over control on the execution,

— stepExecuted after a step finishes.

This notion of execution step is essential to coordinate the different addons with

the runtimes of different languages. The language designer himself defines what an

observable execution step should be. A debugger implemented as an addon (for example)

could take this information into account to pause the execution on parts that might be of

interest to language users.

REPL A REPL runs model elements at a finer granularity than the ones managed by

an Execution Engine. Another difference is that it is an interactive component, whereas

an engine is single-goal driven: running a full program to completion. When they are

handed over control of the execution, Engine Addons can technically pause it for an

arbitrary time, which is how a generic debugger can be implemented on top of an engine.

However, in the case of a REPL it is necessary to keep user interactions as much as

possible, so an interpreter paused on a step should still be able to receive and interpret

code snippets. In [15], the authors also discuss the importance to notify the users of

every change in the environment introduced by new executed snippets. This feature

requires access to the execution context in order to compute the differences.

As such, the necessary services to implement a REPL can be reduced to:

— interpret, a request that can take as input a code snippet and execute it,

— modified, an event that notifies the environment that parts of the context was

modified, with details on the exact changes.
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Debugger Whether the debugging target is an execution engine or a REPL, a debugger

needs to have control of the execution at the granularity of an execution step. When

paused, the execution stack is visible and all defined symbols are both readable and

writable. This can be done through multiple approaches, one being locking the thread of

the running program whenever a step is reached. However, like mentioned earlier, this is

a bad fit for interactive environments relying on REPLs since it becomes impossible to

interpret new code snippets while the execution is locked.

For this reason, we favor an implementation where it is possible to directly manage

the execution of steps, which boils down to the following services:

— step is a request that executes the next available step of a program,

— stepEnded is an event that notifies that a step has ended, which is necessary to

support multiple stepping strategies with inner steps,

— read is a request that enables fetching values from the execution context,

— write is a request to modify context values.

The next subsection describes the specifications for a protocol that supports all the

three previously described execution tools as demonstrated by the implementation and

the use cases described in the next section. Although not demonstrated by the case

studies, our experiments revealed the protocol can also directly support omniscient
debugging (as described earlier).

6.2.2 Protocol Specification

Considering the nature of the identified services, a protocol to manage them all needs

to expose a “stepwise interpreter”, as formally introduced in section 6.3.1.

We define the step data-structure, that will be exchanged between the interpreter

and the rest of the environment, with the following:

— a unique ID,

— the location of the corresponding syntax element from the program currently

running.

Taking into account the services previously defined, the requirements for the different

tools can be factored into the following messages:
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interpret is a request that can take as a parameter either a complete program or a

code snippet and parse it. It does not start the execution, however. It returns a step data

structure corresponding to the very first observable step available.

step is the request that manages the execution by running the semantics until it reaches

a new step (since observable steps can be defined recursively). It returns a step data

structure corresponding to the newly reached step.

stepEnded is an event notifying that a step has ended, with a reference to that specific

step through its ID.

finished is an event indicating that there is no more steps to run, that also specifies the

kind of termination, e.g., natural or error-related.

read is a request that returns the current state of observable values stored in the

execution context.

write is a request to modify editable context values.

modified is an event notifying that an observable value changed during execution,

unrelated to the use of write.

To realize an execution engine tool, the initialize service connects to the backend

corresponding to the right language through the protocol, and use write requests to

set up the environment. The execute service requires setting the program input, which

can also be done through write requests, before using interpret to send the program

for stepwise execution. Completing an execute request is then a matter of repeating

and managing the execution of steps through step requests and stepEnded events until a

finished event is received.

For a REPL, no initialization is required, and the code snippets can be sent freely

through interpret while managing the completion of steps. By listening to the modified
event, feedback for the user can easily be generated for each snippet by making use of

the read request.

And finally, for a debugger, managing the observable execution steps is quite straight-

forward, and read, write and modified allow to perform any necessary operation on the
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execution context (e.g., managing conditional breakpoints logic and manually editing

values). As an added benefit, the debugger can be safely separated from the tool man-

aging the execution itself, meaning that an execution engine could be told to no longer

loop through the steps and instead give control to a debugger at any point, while also

allowing a REPL to run code snippets for e.g., exploratory programming and omniscient

debugging purposes.

In order to prove the usability of the protocol in actual scenarios, the next section

will describe several operational semantics formalizations and implementations that can

expose the necessary services.

6.3 Implementation & Evaluation

6.3.1 Operational Semantics Formalization

Considering the minimalistic nature of the expressed protocol, we are aware that it

can be implemented in a lot of different ways. As of now, we do not provide guidelines

to obtain the “best” implementation. Each DSL is different, and language engineers

are various and used to different technologies and styles of semantics implementations.

Evaluating the best implementation for a given DSL is not part of the scope of this thesis,

so instead this section describes formally multiple possibilities. One of them, “Procedural

style”, also comes with the specifications of a generative approach that can be applied to

existing operational semantics, but this does not mean that we want to enforce this one in

particular. The generative approach should be seen mainly as an applicability evaluation,

since we consider that implementing the interface should be a design decision above all

else.

In [15], a formal model is developed that characterizes interpreters that naturally

exhibit REPL behavior. In this model, interpreters are transition functions over configura-

tions – deterministic transition relations in the style of Plotkin’s Structural Operational

Semantics (SOS) [64]. The notion of a sequential language is defined, capturing the

class of languages 4 in which a sequence of programs is itself a valid program such

that the effect of the composite program is that of the individual programs executed

one-by-one in order. This behavior naturally corresponds to the behavior of a REPL, in

which a larger program is developed by repeatedly submitting program fragments. In

4. Not necessarily equal to the class of languages that execute non-concurrently.
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addition, the paper proposed a methodology in which, in order to obtain a REPL for

some language L, the language L is extended to a sequential variant of L. The method

involves selecting the ‘entry points’ of the language L – the syntactic categories of which

program fragments should be accepted at the REPL’s prompt – and defining the syntactic

category of “phrases” as the union of the entry points. An interpreter (or operational

semantics) for L can then be reused to define an interpreter (or operational semantics)

for the phrases of L. The interpreter for phrases should express the effects of phrases as

modifications to a given configuration (representing runtime state). To obtain a REPL

with the desired behavior, any effects of a phrase that affect subsequent phrases should

manifest as a modification to the input configuration (e.g., introducing new bindings in

an environment or assignments in a store). The result is an extended language L′ with

phrases as programs and an interpreter that can be used as the basis of a REPL. Here

we show that if the interpreter for L is a stepwise interpreter, executing or evaluating

program fragments step-by-step, then L′ automatically gives rise to an L′′ supporting the

basic features of debugging on top of REPL-style programming.

A stepwise interpreter is defined as follows.

Definition 6.3.1. Given a set of configurations Γ and a set of computations C, a stepwise

interpreter is a function⇝ : C×Γ→ Cdone×Γ, with Cdone = C ∪{done}. The iterative

closure of⇝ is the function 99K : Cdone × Γ→ Γ defined as:

⟨done, γ⟩ 99K γ (6.1)

⟨c1, γ1⟩⇝ ⟨c2, γ2⟩ ⟨c2, γ2⟩ 99K γ3
⟨c1, γ1⟩ 99K γ3

(6.2)

The iterative closure 99K captures the full 5 evaluation of a computation where ⇝

captures step-by-step evaluation.

In [15], a language is considered to define a set of phrases P , a set of configurations Γ,

an ‘initial’ configuration γ0 ∈ Γ and a (definitional) interpreter in the form of a family of

functions I, assigning to each p ∈ P a function Ip : Γ→ Γ. Consider that our hypothetical

language L has m syntactic categories, defined via grammar/production rules, with Si

denoting the set of sentences generated by the i-th category for each 1 ⩽ i ⩽ m (making

5. For simplicity, we ignore that computations may diverge, in which case the iterative closure is not
well-defined.
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no assumptions about whether the sentences are strings, parse trees or otherwise). If

the language is extended to the sequential variant L′ according to the method proposed

in [15], then the categories can be ordered such that there is a 1 ⩽ n ⩽ m for which

holds that the first n categories are the entry points of the language. That is, the syntax

of phrases is defined by the following abstract syntax definition with s ∈ S1 ∪ . . . ∪ Sn:

p ∈ P ::= s | p1; p2

(The alternate p1; p2 denotes the sequential composition of phrases, following the method-

ology of [15].)

Next, we are going to assume the existence of a function sem : S → C that converts

sentences into computations expressing the semantics of sentences and a stepwise

interpreter for evaluating these computations. Under these assumptions, it is possible to

extend L′ with the core debugging constructs step, finish, and debug(s). The syntactic

part of this extension is as follows, defining the set of phrases P ′:

p ∈ P ′ ::= s | p1; p2 | debug(s) | step | finish

The extended language L′′ is then given by the structure ⟨P ′,Γ×Cdone, ⟨γ0,done⟩, I⟩,
with the definitional interpreter Ip (for all p ∈ P ′) defined by the following equations:

Is(⟨γ1, c⟩) = ⟨γ2,done⟩ where ⟨sem(s), γ1⟩ 99K γ2 (6.3)

Ip1;p2(⟨γ1, c1⟩) = Ip2(Ip1(⟨γ1, c1⟩)) (6.4)

Idebug(s)(⟨γ1, c1⟩) = ⟨γ1, sem(s)⟩ (6.5)

Istep(⟨γ1, c1⟩) = ⟨γ2, c2⟩ where ⟨c1, γ1⟩⇝ ⟨c2, γ2⟩ (6.6)

Ifinish(⟨γ1, c1⟩) = ⟨γ2,done⟩ where ⟨c1, γ1⟩ 99K γ2 (6.7)

The main intuition behind these definitions is that the extended language L′′ has an

additional component in its configurations to keep track of (possibly done or otherwise

intermediate) computations. In other words, the evaluation of a phrase can be performed

via more than one step, with remaining steps represented by the computation component

of the configuration (if any). The computation component corresponds to the step data

structure described in the previous section, with the debug phrase serving a similar

purpose as the interpret message of our protocol, readying a program/sentence for future

stepwise execution. In the formalizations of the upcoming subsections, the computation
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component is a stack of procedure calls, a continuation function or a program term as

used in Plotkin’s SOS.

Via the approach described here, intermediate computations are also reflected in the

execution graph underlying the exploring interpreter proposed in [15] for the purposes of

exploratory programming. An exploring interpreter is a bookkeeping device on top of a

definitional interpreter (as defined in [15]) that records the configurations reached by

executing phrases with the definitional interpreter in an execution graph. By combining

these approaches, omniscient debugging [18, 53] is achieved. Strategies for efficient

omniscient debugging with an exploring interpreter are to be investigated in future work.

The connection between the implementations discussed in Section 6.3.2 and the

theory developed here is demonstrated next by discussing both procedural (stack-based)

stepwise interpreters, functional (continuation-based) stepwise interpreters, and inter-

preters derived from SOS specifications.

Procedural style

An operational semantics can be given as a collection of procedures (or methods

in object-oriented languages) with each procedure expressing the effects of evaluating

a code fragment of a particular syntactic category given some (implicit or explicit)

context. The MiniJava description of Section 6.3.2 provides an example of such an

operational semantics in the ALE meta-language. Executing a program corresponds

to calling one of these procedures (depending on the syntactic category to which the

program belongs), which may then call further procedures in a mutually-recursive

fashion. Such an operational semantics can be explained as an instance of a stepwise

interpreter by revealing the call-stack handling the procedure calls and handling all

instructions in a procedure’s body as if they were procedure calls as well. This is the

approach taken in Section 6.3.2 and formalized in the subsequent paragraphs.

In the formalization of the approach, the function sem assigns to every sentence s, the

stack of procedure calls that demand execution in order to evaluate s, with all necessary

information propagated as part of the context between procedure calls. The translation

procedure described in Section 6.3.2 thus forms the basis of sem. If for some hypothetical

language the set of possible procedure calls is P and the context is captured by the

set of configurations Γ, then we can define a stepwise interpreter by taking sequences

of procedure calls as the computations of the stepwise interpreter, i.e., C = P+, done

represents the empty sequence, and ⇝STACK is defined as an instance of ⇝ as follows
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(with ρi ∈ P and ‘[‘ and ‘]‘ delimiting sequences):

⟨[ρ1, . . . , ρk], γ1⟩⇝ STACK⟨s · [ρ2, . . . , ck], γ2⟩ (6.8)

where ⟨γ2, s⟩ = exec(ρ1, γ1)

The situation where s · [ρ2, . . . , ρk] is the empty stack (i.e., the computation is done)

arises when k = 1 and the procedure call ρ1 does not add new elements to the stack (s is

empty). The situation where s · [ρ2, . . . , ρk] is the empty stack arises when k = 1 and the

procedure call ρ1 does not add new elements to the stack (i.e., s is the empty stack). The

relation 99K STACK, derived from⇝ STACK through equations 6.1 and 6.2, is operationalized

by the following (purely functional) pseudocode:

1 loop(stack,context) {
2 if (empty(stack)) {
3 return context;
4 } else {
5 let (c,stack’’) = pop(stack);
6 let (context’,stack’) = exec(c,context);
7 return loop(stack’ ++ stack’’,context’);
8 }
9 }

The implementation described in Section 6.3.2 demonstrates how a procedural oper-

ational semantics (in ALE) can be transformed into stack-based, stepwise interpreter.

The transformation adds specific types of stack-elements that enable user-control over

whether a procedure call halts the current execution and groups certain instructions

together to reduce stack activity for efficiency.

Continuation-passing style

An operational semantics can also be given as a collection of (pure) functions in

continuation-passing style. In this style, functions receive an additional ‘continuation

function’ as an argument to be called with a return value ‘at the end’ of a computational

step, rather than actually returning the value. The continuation function of a called

function thus explicates the next step of the computation following the called function.

Continuation-passing style is commonly employed in compiler optimization steps to

reduce stack activity through tail recursion. However, it can also be used as a (functional)
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alternative to explicit stack-handling, as has been done in functional implementations of

generalized parsing [41, 38, 13]. Similarly, the continuation-passing style can be used

to define a stepwise interpreter, reminiscent of the procedural, stack-based, solution

discussed previously.

In this approach, a continuation function is a function k that given a configuration

returns a configuration and either a continuation function or otherwise done. A continu-

ation function plays the role of ‘computation’ in a stepwise interpreter and is (recursively)

defined as yielding the subsequent computation to be performed (if any), i.e., C is the

set of functions k : Γ→ Γ× Cdone. The relation⇝CPS defines a stepwise interpreter for

continuation-based operational semantics.

⟨k1, γ1⟩⇝CPS ⟨k2, γ2⟩ where ⟨γ2, k2⟩ = k1(γ) (6.9)

Figure 6.1 shows (a simplified version of) the QL interpreter discussed further in

Section 6.3.2 in which stepAll operationalizes the relation 99KCPS derived from ⇝CPS.

The function stepAll is called with the current program (Form), user input inp and the

initial environment. The step function (not shown) evaluates the form to produce the

initial configuration, which, if not done immediately, contains the context ctx and a

continuation function of type K. As such, step implements a combination of sem (turning a

form into a continuation function) and a single transition (step) via⇝CPS. The while-loop

then repeatedly calls consecutive continuations until the result is a done configuration.

The result of stepAll is the final context.

Since QL programs represent interactive forms, the actual implementation (see

Section 6.3.2) runs in the event-loop of the UI, where calling of the step function is

managed by the breakpoints and step/continue actions of the user.

Small-step SOS style

An operational semantics can also be given as a small-step SOS specification [64] in

which a collection of logical inference rules defines a transition relation −→. In a typical

SOS specification, the transition relation is over structures of the form ⟨p, e1, . . . en⟩, with

p the program term under evaluation and e1, . . . , en auxiliary semantic entities (such as

environments, stores, control signals) that provide context to the evaluation of p. The

transition relation −→ captures the (small) steps via which the program term evaluates

to either a term on which further steps can be taken, a fully evaluated term (often a
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1 data Conf = conf(Ctx ctx, K cont) | done(Ctx ctx);
2
3 Ctx stepAll(Form f, Input inp, Env env) {
4 Conf c = step(f, inp, env);
5 while (!(c is done)) {
6 c = c.cont(inp, c.ctxt);
7 }
8 return c.ctx;
9 }

Figure 6.1 – Executing a QL form f for user input inp in environment env by sequentially
executing all steps.

value) or a stuck term (no further steps due to unexpected or undesireable behavior).

If the specification is deterministic, then for every combination of program term and

semantic entities, there is at most one transition, i.e. the transition relation is a (partial)

function.

Under these assumptions, an arbitrary SOS specification giving rise to −→ defines a

stepwise interpreter as follows:

⟨p, ⟨e1, . . . , en⟩⟩⇝SOS ⟨p′, ⟨e′1, . . . , e′n⟩⟩ where (6.10)

⟨p, e1, . . . , en⟩ −→ ⟨p′, e′1, . . . , e′n⟩

⟨p, ⟨e1, . . . , en⟩⟩⇝SOS ⟨done, ⟨e1, . . . , en⟩⟩ otherwise (6.11)

For practical reasons it may be desirable to make a difference between stuck program

terms and fully evaluated program terms. This can be achieved by syntactically defining

the notion of fully evaluated terms (or values) as part of the specification. Alternatively,

(attempted) transitions to (or from) stuck terms can be specified to raise errors.

In the component-based semantics approach of [12], a library of reusable fundamen-

tal constructs (funcons) is defined to reduce the effort of providing formal operational

semantics to programming languages. Both the funcons and the object language are

defined in the meta-language CBS. The funcons-tools project [14] implements a frame-

work in which so-called ‘micro-interpreters’ implement the behavior of individual funcons

having been generated from their definition written in a modular variant of SOS within

CBS. Applying the ideas expressed formally in this section, the funcons-tools frame-

work was easily extended to support both incremental (REPL-style) execution of funcon

terms and stepwise debugging. The extension of the original interpreter involved in
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the order of 50-150 lines of Haskell code, most of which are related to the interactions

between the REPL and its user, e.g. reading input, providing feedback in the form of

output and by describing the meta-commands under ‘help’.

6.3.2 Languages Implementations

This section presents two language implementations that expose the services requires

for the protocol, each based on one of the approaches formalized in Section 6.3.1. The

two follow different strategies, with the first one following a generative approach to

respect the protocol, and the second one being implemented from the start with protocol

support in mind.

Generated Stack-based Semantics

Here we evaluate the support of the proposed protocol through a generative approach

able to transform existing operational semantics written in ALE 6 into a procedural, stack-

based, stepwise interpreter, following the formalization defined in Section 6.3.1.

The supported semantics are of the same nature as the ones used in [39] to generate

REPLs from existing DSL specifications:

— operational semantics written following a pure interpreter pattern in an imperative

action language,

— and operations corresponding to observable execution steps explicitly annotated.

Such a definition can have multiple observable steps called in the same operation

body, which need to be separated in the execution stack. So the general idea is to cut
operation bodies into smaller operations of three different types:

— a big-step-start is an operation that will directly execute a single operation anno-

tated as an observable step,

— a big-step-end serves as an indicator that a started step has ended and can also be

used to obtain return values following the start call,

— a small-step defines every other operation of the operational semantics that is not

an observable step.

6. https://gemoc.org/ale-lang/
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Since we are cutting operation bodies, we need to explicitly define their context and

handle it externally. So additions to the generated semantics include a new runtime class

“Context” for every cut operation, as well as a context instantiation method.

Figure 6.2 illustrates this process using the operator “+” defined as part of the

MiniJava (cf. Section 6.1) ALE semantics:

— The eval method of class Plus is annotated as an observable step, but more than

that, two other step methods are called in its body: left.eval() and right.eval(). As

such, it is necessary to cut the method body around these calls and re-implement

the normal execution flow through the execution stack.

— Plus_Eval_Context is created to store the context of the cut method. It consists

of both the parameters of the method and the variable definitions in its body. The

method newContext can instantiate this new class and initialize the values for the

previous parameters (in this case, s).

— Every reference to the parameters and variables definitions are replaced with

references to the context.

— The items pushed in the execution stack are typed as big steps for the calls to eval,

and small steps for the other inner calls that are not observable.

— Managing operations with return values (such as eval) requires accessing the

context of this operation after it has finished executing. This is why the contexts

instantiated in eval_1 and eval_3 are also stored in c and accessed in the “big-step-

end” methods.

In the case of conditionals, such as a traditional if-then-else structural statement with

bodies that are blocks of statements, the same cutting needs to be done both around

the complete conditional, and around the step calls in the bodies. The reason is that,

just like with a call step, we have to make sure that the statements pre-conditional

and post-conditional are pushed to the stack to keep the expected control flow. If the

step call is in the expression of the conditional, it needs to be extracted with its value

stored in the context of the current method, and the corresponding big-step-end needs

to fetch this value, test it and push on top of the stack a small-step corresponding to

the body to execute. It is not possible to keep loop constructs with this approach, so the

transformation rewrites them using conditionals and recursive functions.

This whole process is generalizable to any operational semantics written in ALE and

using step annotations, by recursively cutting any method calling a step, then any method
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calling a method calling a step, etc.

The execution stack, as shown in Figure 6.3, manages execution items that contain:

— target, the target of the original operation,

— operationName, the name (post cutting) of the operation to execute,

— context, the runtime context corresponding to the operation,

— type, the type of operation as defined earlier.

This requires a method lookup mechanism for every target that will end up being pushed

in this stack. In our example, we automatically added a method “executeOperationFrom-

Name” that takes care of executing the right part of cut operations from their name post

cutting.

With this, it is possible to define an operation in the interpreter to manage the

execution of a big-step, as shown in Figure 6.4. This operation will start by popping

an execution item from the stack and execute it. Then the behavior depends on the

type of the execution item currently at the top of the stack: there is a need to execute

every small-step until the next big-step, so small-steps are simply run inside a loop; if

an operation is a big-step-end, it will also be executed and the environment notified

that a step has finished; if the stack is empty, then the environment is notified that the

execution is finished.

Figure 6.5 shows a current prototype of a notebook leveraging the protocol to offer a

generic debugging framework. As of now, only stepping through cells and displaying the

stack of the current cell are available. We can see that it is possible to run cells in any

order, even when the debugger is paused on another cell (in this case, the 6th one is run

while the 5th one is being debugged). For the REPL, every executed cell offers an output

listing the changes made in the context, even if it is still quite naive and would require

to be specialized with the concepts of the language.

QL: a DSL Questionnaires

QL is a simple DSL for specifying interactive questionnaires, supporting data entry,

computed values, and conditional logic. An example execution of a prototype IDE for QL

is shown in Figure 6.6. The left shows a debugger view (“State”) with widgets for each

field of the questionnaire, affordances for setting break points and stepping through the

execution. The area below the debugger view (“Application”) shows the actual running

questionnaire. The middle shows an editor with an example QL program, inspired by a
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1 open c lass Plus {
2 @step
3 def In tVa lue eva l ( S ta te s ) {
4 IntVa lue l e f t V a l := s e l f . l e f t . eva l ( s ) ;
5 In tVa lue r i g h t V a l := s e l f . r i g h t . eva l ( s ) ;
6 In tVa lue r e s u l t V a l := IntVa lue . c r ea t e () ;
7 r e s u l t V a l . i n t V a l := l e f t V a l . i n t V a l + r i g h t V a l . i n t V a l ;
8 r e s u l t := r e s u l t V a l ;
9 }

10 }

1 open c lass Plus {
2 def Plus_Eval_Context newContext ( S ta te s ) {
3 Plus_Eva l_Context c := Plus_Eva l_Context . c r ea t e () ;
4 c . s := s ;
5 r e s u l t := c ;
6 }
7
8 def void eval_1 ( Execut ionStack s , Context c ) {
9 Context newContext := s e l f . l e f t . newContext ( c . s ) ;

10 c . newContext := newContext ;
11 s . push ( s e l f , ’ eval_2 ’ , c , ’ big−step−end ’ ) ;
12 s . push ( s e l f . l e f t , ’ eval_1 ’ , newContext , ’ big−step−s t a r t ’ ) ;
13 }
14
15 def void eval_2 ( Execut ionStack s , Context c ) {
16 c . l e f t V a l := c . newContext . r e s u l t ;
17 s . push ( s e l f , ’ eval_3 ’ , c , ’ small−step ’ ) ;
18 }
19
20 def void eval_3 ( Execut ionStack s , Context c ) {
21 Context newContext := s e l f . r i g h t . newContext ( c . s ) ;
22 c . newContext := newContext ;
23 s . push ( s e l f , ’ eval_4 ’ , c , ’ big−step−end ’ ) ;
24 s . push ( s e l f . r i gh t , ’ eval_1 ’ , newContext , ’ big−step−s t a r t ’ ) ;
25 }
26
27 def void eval_4 ( Execut ionStack s , Context c ) {
28 c . r i g h t V a l := c . newContext . r e s u l t ;
29 s . push ( s e l f , ’ eval_5 ’ , c , ’ small−s tep ) ;
30 }
31
32 def void eval_5 ( Execut ionStack s , Context c ) {
33 c . r e s u l t V a l := IntVa lue . c r ea t e () ;
34 c . r e s u l t V a l . i n t V a l := c . l e f t V a l . i n t V a l + c . r i g h t V a l . i n t V a l ;
35 c . r e s u l t := r e s u l t V a l ;
36 }
37 }
38
39 c lass Plus_Eval_Context extends Context {
40 Sta te s ;
41 IntVa lue l e f t V a l ;
42 IntVa lue r i g h t V a l ;
43 IntVa lue r e s u l t V a l ;
44 IntVa lue r e s u l t ;
45 Context newContext ;
46 }

Figure 6.2 – Example of Operation Cutting for an Existing Plus Binary Operator

114



6.3. Implementation & Evaluation

1 c lass Execut ionItem {
2 EObject t a r g e t ;
3 S t r i ng operationName ;
4 Context contex t ;
5 S t r i ng type ;
6
7 def void execute ( Execut ionStack s tack ) {
8 s e l f . t a r g e t . executeOperationFromName ( s e l f . operationName , s tack , s e l f . contex t ) ;
9 }

10 }
11
12 c lass Execut ionStack {
13 Sequence ( Execut ionItem ) items ;
14
15 def void i n i t ( ) {
16 s e l f . i tems := Sequence {} ;
17 }
18
19 def void push ( EObject ta rge t , S t r i ng operationName , Context context , S t r i ng type ) {
20 Execut ionItem item := Execut ionItem . c rea t e () ;
21 item . t a r g e t := t a r g e t ;
22 item . operationName := operationName ;
23 item . contex t := contex t ;
24 item . type := type ;
25 s e l f . i tems += item ;
26 }
27
28 def Execut ionItem peek () {
29 i f ( s e l f . items−>s i z e () > 0) {
30 Execut ionItem item := s e l f . items−>l a s t () ;
31 r e s u l t := item ;
32 } else {
33 r e s u l t := nul l ;
34 }
35 }
36
37 def Execut ionItem pop () {
38 i f ( s e l f . items−>s i z e () > 0) {
39 Execut ionItem item := s e l f . items−>l a s t () ;
40 s e l f . i tems −= item ;
41 r e s u l t := item ;
42 } else {
43 r e s u l t := nul l ;
44 }
45 }
46 }

Figure 6.3 – Execution Stack Implementation
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1 open c lass I n t e r p r e t e r {
2 Execut ionStack s ;
3
4 def void i n i t ( ) {
5 s e l f . s := Execut ionStack . c r ea t e () ;
6 s e l f . s . i n i t ( ) ;
7 }
8
9 def void s tep () {

10 boolean done := f a l se ;
11 s e l f . s . pop () . execute ( s e l f . s ) ;
12 while ( not done) {
13 Execut ionStack peeked = s e l f . s . peek () ;
14 i f ( peeked = nul l ) {
15 done := true ;
16 s e l f . n o t i f y F i n i s h e d () ;
17 } else i f ( peeked . type = ’ small−step ’ ) {
18 s e l f . s . pop () . execute ( s e l f . s ) ;
19 } else i f ( peeked . type = ’ big−step−s t a r t ’ ) {
20 done := true ;
21 } else i f ( peeked . type = ’ big−step−end ’ ) {
22 s e l f . s . pop () . execute ( s e l f . s ) ;
23 s e l f . not i fyStepEnd () ;
24 }
25 }
26 }
27 }

Figure 6.4 – Big-Step Loop Execution

Figure 6.5 – Prototype Generic Notebook with Debugger (Running MiniJava)
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tax filing application. Finally, the right shows a REPL for QL as sequential, numbered

cells.

The REPL allows developers to enter commands, e.g., for evaluating expressions

(1), updating fields (2), or navigating a debug session (4–11). Moreover, edit actions

in the center are reflected in the REPL as commands as well, updating the semantic

representation of the running application (3) [75, 70], in this case changing the label

of the privateDebt question. This latter feature supports live programming: the running

questionnaire dynamically adapts to source changes without restarting.

The semantics of QL dictates a spreadsheet-like evaluation model: after every interac-

tion of the user with the questionnaire (or modifying the run-time state in the debugger

view or REPL), the conditions and values of the computed questions (e.g., valueResidue
are recomputed in a fixpoint loop. This is required because QL supports “use before

define”: the value of a question can be referenced before the question is defined in the

questionaire. This is the reason that the debugger halts at the valueResidue breakpoint

twice (cells 8 and 10).

QL is originally implemented as a definitional (big-step) interpreter. However, to

support pausing the execution, the fixpoint and conditional logic have been converted

into continuation-passing style as described in Section 6.3.1. Unlike the case-study of

Section 6.3.2, the interpreter was not automatically derived from the original direct-style

interpreter of QL, although the CPS interpreter reuses the evaluator of QL expression

sub-language.

The key point of this demonstration is that all interaction with either debugger,

code, or running application are reflected and recorded as commands in the REPL. As a

result, the REPL is a syntactic and historic representation of interacting with the generic

execution protocol.

The QL interpreter complies with the basic protocol of Section 6.2.1, restricted to

the part that does not involve call-backs. The basic building blocks are interpret, step,

read, and write. The first two enable full program evaluation (the running questionnaire,

always on in this case) and fine-grained stepping through the evaluation; breakpoints

and continue are implemented on top of step. The latter two requests deal with state

modification, either via the debugger view, or the questionnaire itself.

Furthermore, because at each point the internal data structures (state vector, source

code, continuations, etc.) are saved, the REPL becomes a vehicle for “undo” (the button

with the up-arrow), essentially integrating versioning and back-in-time debugging in a
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unified framework. We leave it as future work to investigate techniques to implement

this behavior efficiently in order to scale to bigger and more realistic languages.

These two implementations showcase how a language designer can benefit from

implementing, at least partially, the proposed protocol to provide an interactive envi-

ronment with support for debugging. Even if the shown environments may not fully

support some real-life scenarios, providing program execution, a REPL interpreter, and

debugging facilities already covers a significant portion of programming activity. Future

works still need to take into account more advanced execution tools, and study how they

would interact with the protocol. But right now, the method from which we derived the

protocol, the formalization of the styles of operational semantics implementations, and

the preliminary results shown in this section demonstrate the worth of this approach,

and we hope that it will serve as a basis for future work on this topic.

6.4 Discussion

In this chapter, we motivated the need for an execution protocol that all operational

semantics should consider in order to support the creation of a generic tool associated

with the execution environment of a language. We defined precisely the boundaries

of such a protocol, and we promoted a formal model to characterize the behavior of

an interpreter supporting it. We highlighted the applicability of the approach to two

different languages and the ability to obtain a REPL that can be integrated in a notebook,

but also the ability to benefit from a rich debugger for these languages. This work also

gives a path to different perspectives. Firstly, as the state of the execution environment is

saved, it is natural to consider this protocol as a vehicle to support undo in an execution

context within a REPL or a notebook. In this context, it is necessary to think about the

efficient implementation of this mechanism. Next, we can also evaluate the addition

of optional extension points within this minimal protocol to enable tool specialization.

In the community of Software Language Engineering, it exists a permanent quest for

designing generic and a highly specializable core for each language services. In this

chapter, the idea is to show that it is possible to obtain completely generic tools as

long as the operational semantics of a language respect a minimal generic protocol. No

doubt that it could be required to specialize some of these tools for a specific domain,

it will then be necessary to evaluate the impact on the proposed protocol. Another
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Figure 6.6 – Prototype IDE for QL: run-time view (left), source code (center), REPL
(right)

research direction relates to the semantics accessed through this protocol. While the set

of exposed services is minimal, they might not all be useful for every scenario. Exploring

the concept of self adaptable semantics ([42]) could provide substantial performance

gains by, e.g., lowering the granularity of steps when debugging is not necessary, while

being invisible to the execution tools that would only interact with the protocol. Finally,

it would be interesting to revisit MSOS [57] to evaluate the effort required to implement

an MSOS operational semantics specification within an interpreter that respects the

protocol proposed in this chapter.
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CHAPTER 7

CONCLUSION & PERSPECTIVES

7.1 Conclusion

The adoption of DSLs relies primarily on their integration in the workflows of their

target users. With the advent of language workbenches, designing, implementing and

maintaining an external DSL has never been as easy as it today. However, the tools

provided to the end users end up being highly dependent on a specific environment

(i.e., modeling workbench) that provides features similar to the environment they are

already used to. At the same time, supporting multiple environments is an arduous

process, as illustrated by previous research works mentioning the IDE portability problem.

In this thesis, we explored the use of language protocols such as LSP and DAP as

a potential solution, and concluded that these approaches were not good fit for the

plethora of peculiar features expected from DSLs. As such, we propose the vision of

IDE as Code, that relies on providing language features as independent services with

explicit dependencies between them. For each language service, a sequence of operations

can be defined to be executed after the reception of a particular message through a

DSL, and the overall communication protocol of the environment can be derived from

these specifications. This answers the first challenge mentioned in Section 1.2. Instead of

either providing multiple environments for each specific language and require the user

to master them all, a fully integrated environment bloated with features they do not use,

or a generic environment missing essential specific features, development environments

should be customizable to integrate and support only the services required for a specific

DSL, both understood and actually used by the target users. In the case of Web IDEs,

this vision also enables the deployment of services on multiple machines, and provides

the benefits of microservices architectures such as on demand scaling and fast upgrade

cycles.

We then applied this ideology to language runtimes. First we defined REPL Interpreters,
which are essential artifacts to drive new programming paradigms such as literate and

exploratory programming, through a generative approach. This relates directly to the
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third challenge mentioned in Section 1.2. Then, we researched the most basic interpreter

required to support multiple runtime tools such as Execution Engines (interpreters sup-

porting the execution of a complete program while providing an interface to connect

addons) and Omniscient Debuggers. With an interpreter of this sort, exposing a very

minimalist protocol, other execution services can be implemented generically, which

ensures semantics consistency between all the different execution services. As generic

services running on top of this protocol, we considered a generic REPL interpreter, a

generic execution engine, and a generic debugger. These generic services should be able

to integrate seamlessly in multiple environments as long as they also expose their own

protocol. This hierarchy established between language components answers the second

challenge mentioned in Section 1.2.

However, the work actually done on the topic of IDE as Code is still at an early

stage. First of all, while we have proven the advantages of the approach for the subset

of runtime components, others have not yet been explored. The advantages of the

microservicization of textual editing services has been researched by Coulon et al. in

[25], and graphical editing services are also starting to be considered ([7]), but others

such as visual representations during animation (like the animation framework presented

in [17]) are still to be addressed. The actual integration of all these services in a popular

IDE such as VS Code would be a valuable contribution to evaluate the overall approach

discussed in this manuscript.

In the rest of this chapter, we will list perspectives for future works on this topic

which we deem necessary before we can safely envision any adoption.

7.2 Perspectives

Our vision, summarized as IDE as Code, places the language protocol specification

in the adaptation loop of the IDE, where language services are packaged and deployed

dynamically, and provided as new capabilities to the user. From our preliminary explored

implementations, we identify and discuss concrete challenges in the following section.

Unified representation of language services specifications As mentioned in Sec-

tion 3.2, this work done on this topic focused mainly on the specification and deployment

of language packages, and their interactions. We do not target a specific representation of

the specifications of languages and their services. In Chapter 6, we consider interactions
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made through the use of JSON-RPC protocols, but it is still too early to suggest this

technology for every language service. At the very least, we require a way to specify the

interactions between services completely independent of any specific technology, and a

generative approach to derive the language service packages from these. A first step in

this direction would be a formalization of the generic concepts offered by multiple data

transport technologies, such as JSON-RPC, GraphQL, and REST.

Domain-specific IDEs concepts Chapter 6 proposed a first categorization of IDE-

specific concepts, such as workspaces and UI services. While we consider these first

concepts sound for full-fledged IDEs, it is not yet clear how traditional UI services trans-

late to other development platforms such as Notebooks, or Terminal UIs like (neo)vi(m)

or Emacs. Subsequent work is required to properly categorize these concepts and intro-

duce them as first-class constructs to specify language protocols.

Stateless vs stateful trade-off Microservice architectures efficiently support resources

scaling. But in practice, it is unlikely that every language package will be stateless. For

instance, a package to manage the workspace definitely requires a concept of session,

and possibly access to a database. To support web-based IDEs in practice, it is necessary

to provide a way to specify the stored context of the different packages, and still be able

to support scaling even with stateful microservices, probably through synchronization

mechanisms that language designers should not have to manage.

Automation of the deployment Our vision revolves around an automatic deployment

of the “language service packages” and their integration into IDEs, based on properly

defined constraints. For “backend” services, this requires either a generative approach,

or an interpreter (possibly with an adaptation loop to automate scaling depending on

the available resources and the demand) to process the protocol specifications. Further

considerations need to be taken into account for UI services, as their deployment would

end up being quite specific to the targeted environment.

Measuring the impact on performances A direct consequence of microservicizing the

different language services will be a multiplication of the number of messages exchanged

to complete any action, and numerous asynchronous waits. Beyond flexibility, scaling and

collaboration, the hit in performances could be significant at the level of a fully-featured
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IDE. A proper study of the possible impacts of this approach to the user experience

is required. It is worth investigating alternatives, such as approaches to automatically

compile different language service packages (possibly dynamically) back into bigger

components when they are deployed on the same machine. Other technical choices

for the serialization format (e.g., XML, protobuf) and the transport layer (e.g., pipes,

WebRTC) should also be considered and chosen dynamically depending on the proximity

with the deployed services.
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Titre : Environnements de Développement Programmables : Réification des Protocoles de
Langage en Objets de Première Classe
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Résumé : L’utilisation de langages de pro-
grammation modernes et complexes néces-
site des environnements de développement
dédiés, capables d’assister les programmeurs.
Les environnements de développement inté-
grés (IDE) sont les environnements les plus
utilisés aujourd’hui, fournissant tous les ou-
tils nécessaires pour utiliser efficacement les
langages qu’ils ciblent. Fournir un IDE com-
plet pour un langage spécifique est cepen-
dant très coûteux, ce qui conduit leurs main-
teneurs à ne se concentrer que sur quelques
langages pour chaque IDE, divisant ainsi leurs
utilisateurs. Afin de rester pertinents, les petits
langages tels que les langages dédiés (DSL)
doivent être correctement intégrés dans l’en-
vironnement de leurs utilisateurs, ce qui né-
cessite de vastes ressources et ne peut pas
prendre en compte la fragmentation entre les
IDEs. Dans cette thèse, nous explorons l’idée
de déployer des environnements de dévelop-

pement adaptés aux besoins de leurs utilisa-
teurs, et de tirer parti d’outils de langages
complètement séparés de tout IDE spécifique.
Nous commençons par considérer les proto-
coles de langage, tels que LSP, et concevons
une alternative modulaire et extensible qui cor-
respond mieux aux spécificités des DSLs. En-
suite, nous nous concentrons sur les interpré-
teurs REPL, des interpréteurs de langage in-
teractifs qui ont une grande valeur pour l’édu-
cation et l’exploration, mais qui ne sont pas
facilement dérivés à partir des techniques d’in-
génierie des langages existantes. Nous propo-
sons une approche formelle pour définir les
REPLs, ainsi qu’une approche générative, et
discutons de leur intégration dans les environ-
nements de développement. Enfin, nous uni-
fions la sémantique de plusieurs outils d’exé-
cution (moteurs d’exécution, REPLs et débo-
gueurs) par la spécification du protocole mini-
mal entre eux.

Title: IDE as Code: Reifying Language Protocols as First-Class Citizens

Keywords: Software engineering, Generators (Computer programs), Domain-specific program-

ming languages, Interpreters (Computer programs)

Abstract: The use of modern and complex
programming languages requires dedicated
development environments to support pro-
grammers. Integrated Development Environ-
ments (IDEs) are the most used environments
today, providing all the necessary tools to use
efficiently the languages they target. Provid-
ing a complete IDE for a specific language
is however very costly, which lead to their

maintainers to only focus on a few languages
for each IDE, splitting their users. In order
to stay relevant, small languages such as
domain-specific languages (DSLs) need to be
properly integrated in the environment of their
users, which requires vast resources and can-
not scale to the fragmentation of IDEs. In
this thesis, we explore the idea of deploying
development environments customized to the



needs of their users, and leveraging language
tools completely separated from any specific
IDE. We start by considering language proto-
cols, such as LSP, and designing a modular
and extensible alternative that is more in line
with the specificities of DSLs. Then, we focus
on REPL interpreters, interactive language in-
terpreters which offer great value for education
and exploration but are not easily derived from

existing language engineering techniques. We
provide a formal approach to define REPLs,
as well as a generative approach, and discuss
their integration in development environments.
Finally, we unify the semantics of several ex-
ecution tools (execution engines, REPLs and
debuggers) through the specification of the
minimal protocol between them.
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