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INTRODUCTION EN FRANCAIS

Contexte

L’ingénierie logicielle moderne consiste essentiellement a utiliser les langages de
programmation les mieux adaptés a une tache donnée, ce qui suppose de disposer du
support d’outils permettant d’utiliser ces langages efficacement. Les environnements
de développement intégrés (IDE) ont été initialement concus comme un moyen de
rassembler dans un seul logiciel les différents services d’'un langage donné (par exemple,
les services d’édition, de débogage, de vérification, de compilation, ...). Cependant, nous
voyons de plus en plus de projets tirer parti des avantages de plusieurs langages de
programmation en méme temps, que ce soit pour des parties isolées (par exemple, dans
le cadre de développements full-stacks, ou pour des architectures microservices) ou
méme dans la méme base de code avec la tendance récente du développement polyglotte
[37], [80]. Par conséquent, il est aujourd’hui nécessaire d’avoir acces aux services de
plusieurs langages au sein d'un méme environnement.

Pour éviter le développement de services de langages spécifiques pour chaque IDE
existant, les protocoles de langage sont devenus ces dernieres années un sujet d’intérét
dans la communauté de l'ingénierie des langages ([21], [65], [68]). En communiquant
par le biais de protocoles bien définis, les principaux services de langage peuvent étre
réutilisés dans les différents IDE supportant ces protocoles. Une conséquence directe est
que la responsabilité de fournir un support approprié pour un langage spécifique n’est
plus du ressort du fabricant de 'IDE, mais incombe aux mainteneurs de langages qui
développent les services indépendamment de toute plateforme particuliere. Le premier
protocole de langage, a savoir le Language Server Protocol (LSP) !, a été proposé par
Microsoft dans le cadre du développement de VS Code 2. Le réle de LSP est de prendre
en charge les services d’édition communs de n’importe quel langage en fournissant
une implémentation de serveur de langage conforme a des spécifications ouvertes et
consultables librement. Il a été concu autour d’'un ensemble de services qui ont été

1. cf. https://microsoft.github.io/language-server-protocol/
2. cf. https://code.visualstudio.com/
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extraits d’éditeurs de code spécialisés pour les langages généraux les plus couramment
utilisés. LSP, le Debug Adapter Protocol (DAP) 3, et la plupart des autres protocoles de
langage que nous voyons aujourd’hui spécifient la structure des données échangées entre
un client unique (un composant de I'interface utilisateur d’'un IDE) et un serveur unique
(backend fournissant ’ensemble des services nécessaires au client), ainsi que les requétes
et les événements qui peuvent étre envoyés de 'un a 'autre. La plupart des messages sont
inclus dans ce que I'on appelle les « capabilities ». L’ensemble des capabilities est défini et
fixé par les spécifications du protocole. L'idée est que les clients et les serveurs peuvent
choisir d’implémenter un sous-ensemble des capabilities et d’en informer les autres, qui
devraient étre en mesure d’utiliser tous les messages correspondants, conformément a la
spécification.

Enoncé du Probléme

Avec le succes de LSP et de DAP, nous voyons apparaitre de nouveaux protocoles
de langage pour de nouveaux cas d’utilisation (par exemple, le Build Server Protocol *
ou le Test Adapter Protocol®) et pour des fonctionnalités spécifiques mal prises en
charge par les protocoles existants (par exemple, 'utilisation d’'une syntaxe graphique
dans LSP [68]). Le cas de la syntaxe graphique est particulierement intéressant car il a
conduit a la définition de deux protocoles différents pour le méme objectif : le Graphical
Language Server Protocol ° et le Graphical Server Protocol’. Une autre facon d’étendre
les fonctionnalités de LSP, qui a été utilisée dans des travaux tels que [60] et [50],
consiste a ajouter arbitrairement le support de nouveaux messages a un serveur et a un
client, et a considérer que toutes les implémentations existantes les ignoreront si elles
ne les supportent pas. Bien que ces deux travaux apportent des contributions tres utiles,
une telle implémentation souléve des problemes de maintenabilité et d’interopérabilité,
ce qui motive davantage notre travail.

Sur le long terme, il serait contre-productif de continuer a créer des protocoles
indépendants pour chaque cas d’utilisation, car cela irait a I’encontre de I'objectif de
la définition de ces protocoles, a savoir : assurer un support approprié des différents

cf. https://microsoft.github.io/debug-adapter-protocol/

cf. https://build-server-protocol.github.io/

cf. https://github.com/microsoft/vscode-debugadapter-node/issues/154
cf. https://www.eclipse.org/glsp/

cf. https://obeonetwork.github.io/GraphicalServerProtocol/

N pw
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services dans tous les environnements de développement. Dans une situation réelle, cela
déplacerait le défi sur la composabilité et la compatibilité des protocoles existants, qui
ne sont actuellement pas pris en compte. Par conséquent, au lieu d’avoir un serveur qui
englobe tous les services pour un langage donné, nous explorons I'idée de le décomposer
en services individuels interagissant les uns avec les autres. Pour assurer la communica-
tion entre ces services et le(s) client(s), ainsi que leur chorégraphie, nous considérons les
spécifications requises explicitement pour supporter toutes leurs interactions. Ainsi, au
lieu de définir un protocole de langage a partir de zéro, lié a un cas d’utilisation spéci-
fique, nous envisageons la définition d'un méta-protocole de langage a partir duquel nous
pourrons dériver les instanciations les plus pertinentes (c’est-a-dire les configurations des
services de langage). Grace a cette approche, certaines parties des protocoles existants
qui sont en fait génériques pourraient étre séparées, et leurs impémentations mieux
exploitées en étant réutilisées dans de multiples configurations de services. Cela apporte
également plus de flexibilité a 'architecture globale : les services spécialisés peuvent
étre déplacés vers d’autres machines ou remplacés en fonction du cas d’utilisation, des
fonctionnalités peuvent étre ajoutées ou supprimées a tout moment, et il devient possible
de controler finement le déploiement de chaque service indépendamment. Nous appelons
cette vision IDE as Code (ou « Environnements de Développement Programmables »).

Comme l’illustre la Figure 1, nous attendons des concepteurs de langage qu’ils
fournissent non seulement les spécifications de leur langage, mais aussi des informations
sur les interactions protocolaires requises par les différents services. A partir de 13, nous
pouvons obtenir des « paquets de services de langage » qui sont des services de langage,
indépendants et minimaux, qui interagissent les uns avec les autres. En utilisant ces
paquets, les utilisateurs devraient pouvoir spécifier la configuration et le déploiement
de leur IDE (ou utiliser des IDE prédéfinis) pour mettre en place un environnement de
développement adapté a leurs besoins, en fonction de leur environnement de travail et
de leur cas d’utilisation.

Les développeurs ont besoin d’'un acces optimal aux services de langage, quels que
soient leur lieu de travail et leur équipement. Avec la pandémie de COVID-19, il est
devenu encore plus évident qu’il n’est pas toujours possible d’assurer 'acceés a un environ-
nement de travail stable, et de plus en plus d’efforts sont consacrés au développement
d’IDEs infonuagiques footnotecf. https://ecdtools.eclipse.org/events/idesummit/2021/.
Bien qu’ils permettent a leurs utilisateurs d’accéder a un environnement de développe-
ment persistant depuis n’importe o, ils présentent également des défauts qui doivent

11
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encore étre abordés : la nécessité d’un acces Internet stable et rapide, qui peut forte-
ment fluctuer dans des situations telles que des voyages, une personnalisation limitée,
et une mise a I’échelle insuffisante pour offrir a tous leurs utilisateurs une expérience
transparente en méme temps. Des travaux tels que [25] ont déja pris en compte ces
limitations et ont exploré 'idée de séparer les services de langage en microservices,
avec des mécanismes de redéploiement dynamique, soit localement soit sur différents
serveurs, comme solution a ces problémes.

En ce qui concerne la prise en charge de différents cas d’utilisation, nous pouvons
par exemple considérer les experts de domaine habitués a travailler avec un langage
dédié via une syntaxe graphique, qui n’ont pas besoin d’'une représentation textuelle
ni des services pour la manipuler. Plusieurs études telles que [69] soutiennent que les
professionnels peuvent souvent se sentir dépassés par leurs environnements lorsque
ceux-ci offrent trop d’outils et de services. Cela peut étre contre-productif car il est
difficile de mettre en valeur les fonctionnalités les plus utiles lorsque les utilisateurs
sont noyés sous les fonctionnalités inutiles. Par conséquent, 'un des objectifs de cette
approche est de permettre aux utilisateurs de disposer d’'un environnement propre et
minimaliste ou ils n’ont acces qu’aux outils qu’ils utilisent réellement. D’autre part, la
connaissance que peuvent apporter les concepteurs de langages, en ce qui concerne
I'ensemble des fonctionnalités les mieux adaptées a un cas d’utilisation particulier,
est également précieuse, de sorte qu’ils devraient pouvoir spécifier des configurations
d’environnements par défaut.

Les composants que I'on peut trouver dans un environnement de développement sont
nombreux. IlIs peuvent aller d’'un analyseur syntaxique pour la syntaxe textuelle d'un
langage a un débogueur pour I'exécution d'un programme. Dans cette thése, nous mettons
I'accent sur les composants d’exécution, c’est-a-dire les composants qui permettent et
dirigent 'exécution des programmes (par exemple, les interpréteurs ou les débogueurs),
dans le contexte des environnements interactifs. Nous abordons trois défis dans ce
contexte :

— Le premier concerne directement la maniere dont ces différents composants vont
communiquer entre eux. Une simple approche client/serveur avec des protocoles
fixes n’est pas suffisante pour supporter la customisation d’un tel environnement.
Par conséquent, il est nécessaire de manipuler directement les protocoles de lan-
gage comme des objets de premiere classe, tout comme les composants qui les
implémentent.

13
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— La seconde consiste a établir une hiérarchie entre les différents composants d’exé-
cution, et d’en déduire le plus basique qui peut étre utilisé pour diriger les autres.
L’objectif principal est d’améliorer la réutilisation des implémentations de services,
tout en permettant de les standardiser autour d’APIs minimales et bien définies.
Cela signifie également que nous devons spécifier les dépendances entre ces com-
posants et définir les protocoles dont ils ont besoin pour interagir les uns avec les
autres.

— Et la troisiéme consiste a produire réellement les composants du langage qui ré-
pondent aux spécifications des protocoles, en utilisant les informations qui existent
déja dans les spécifications des langages et en appliquant un processus possiblement

génératif.

Contributions

La contribution principale de cette these est le concept d’IDE as Code. Nous discutons
d’'une implémentation possible d’outils de langage et de fonctionnalités fournis sous
forme de microservices indépendants, qui peuvent étre déployés a la demande par les
utilisateurs pour adapter leur environnement de développement a leurs besoins. La
configuration de 'environnement étant externe a toute plateforme spécifique, elle peut
étre utilisée pour mettre en place n’importe quelle infrastructure, qu’il s’agisse d’'un
IDE entierement local ou d’'un environnement dans le web, lié a un dépot de code
dans une forge telle que GitLab®. En manipulant les protocoles de langage comme
des objets de premiere classe, nous pouvons tirer parti de la réutilisabilité des services
qui les implémentent, et méme définir une hiérarchie avec des protocoles spécifiques
étendant ou utilisant une composition d’autres protocoles. Ceci est particulierement
intéressant lorsque nous prenons en compte les nombreux outils d’exécution qui peuvent
étre nécessaires pour un DSL donné, tels que : exécution complete d’'un programme,
interpréteur REPL et débogage. Ainsi, une deuxieme contribution de cette these est la
définition du composant le plus élémentaire qui peut diriger d’autres outils d’exécution
de langage, et son protocole. Au-dessus de ce composant, nous pouvons fournir des
outils d’exécution génériques pour chaque mode d’exécution identifié. Comme troisieme
contribution, nous décrivons une approche générative pour créer des interpréteurs REPL
a partir de spécifications de langages dédiés, en utilisant le protocole mentionné ci-dessus.

8. cf. https://gitlab.com/gitlab-org/gitlab
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Cela permet d’utiliser les langages dédiés dans des environnements de développement
interactifs et modernes, tels que Jupyter Notebook, avec un minimum d’efforts, tout en
assurant la cohérence de la sémantique avec les autres interpréteurs existants.

Implémentations et Evaluation

Les implémentations abordées dans ce manuscrit visent spécifiquement les langages
dédiés (DSLs). A partir des spécifications de DSL existants, nous proposons une approche
générative pour dériver un interpréteur REPL, un outil d’exécution de langage capable
d’exécuter de maniére incrémentale des programmes partiels. Un tel interpréteur peut
étre utilisé dans des environnements comme des notebooks (par exemple, Jupyter
Notebook) que nous désignons comme « environnements de programmation interactifs ».
Ces environnements reposent sur un processus de développement incrémental dans
lequel le développeur peut écrire et documenter de petits bouts de code indépendants et
obtenir des retours, ce qui mélange les approches de la programmation exploratoire [45]
et de la programmation lettrée [49].

Les DSLs que nous avons utilisés pour évaluer cette implémentation offraient éga-
lement des fonctionnalités de débogage avancées. En essayant de les intégrer dans de
tels environnements, nous avons toutefois remarqué certains conflits entre les approches
utilisées pour implémenter ces débogueurs et nos interpréteurs REPL. Dans certains cas,
ils fournissaient touts les deux les mémes fonctionnalités, et dans d’autres, ils se génaient
mutuellement. Cela a conduit & une définition de la hiérarchie des outils d’exécution,
avec les interpréteurs REPL et les débogueurs s’appuyant sur une seule implémentation
d’'un composant exposant une sémantique opérationnelle formalisée. Par la suite, nous
avons dérivé une autre approche pour obtenir ledit composant, soit implémenté ma-
nuellement par un ingénieur du langage, soit dérivé générativement d’une sémantique
opérationnelle existante. Nous présentons ensuite les autres outils d’exécution comme
des implémentations génériques, interagissant avec ce composant via un protocole de
langage spécifique.

Pour motiver notre vision et évaluer nos implémentations, nous considérons dans
cette these un environnement de programmation interactif qui fournit des possibilités de
débogage omniscient a partir d'une trace d’exécution, similaire a I'approche présentée
dans [18]. Afin de fournir le support d'un débogueur omniscient a plusieurs plateformes
différentes, nous pourrions en pratique utiliser DAP puisqu’il spécifie une requéte step-
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Back. Cependant, le mécanisme de retour en arriere tel qu’introduit dans [18] donne
plus de controle que le simple retour en arriere : par exemple, on peut décider de reve-
nir soit a l'intérieur soit a lextérieur de fonctions/méthodes. A 'heure actuelle, aucun
protocole de langage ne prend en charge un mécanisme de retour en arriere a ce niveau
de granularité.

En outre, la génération et le stockage de la trace d’exécution est un processus tres
coliteux qui ne devrait pas étre activé en permanence et qui gagnerait a étre exécuté sur
un hoéte dédié. Idéalement, son activation devrait étre contrdlable tout au long d’une
session de débogage, et les protocoles de langage actuels n’offre aucune requéte pour
gérer cela.
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CHAPTER 1

INTRODUCTION

1.1 Context

Modern software engineering consists heavily in using the programming languages
most suitable for the task, which relies on having the tool support to use these languages
efficiently. Integrated Development Environments (IDEs) have been initially designed
as a way to gather in a single software the various services of a given language (e.g.
facilities for editing, debugging, checking, compiling). However, we tend to see more and
more projects leveraging on the benefits of multiple programming languages at the same
time, either for isolated parts (e.g. full stack development, microservices architectures)
or even in the same codebase with the recent trend of polyglot development [37], [80].
As a consequence, there is a need to have access to the services of several languages in
the same environment.

To prevent the development of specific language services for each existing IDE,
language protocols have become in the recent years a topic of interest in the language
engineering community ([21], [65], [68]). By communicating through well-defined
protocols, the main language services can be reused across the various IDEs supporting
said protocols. A direct consequence is that the responsibility to provide a proper support
for a specific language is no longer a concern of the IDE manufacturer, but befalls on the
language maintainers developing the services independently. The first language protocol,
namely the Language Server Protocol (LSP) !, was proposed by Microsoft in the context
of the development of VS Code 2. The role of LSP is to support common editing services
of any language providing a language server implementation that conforms to given
open source specifications. It was designed around a set of services that was extracted
from specialized code editors for the most commonly used general purposes languages.
As a consequence, nowadays, any code editor can provide the same level of language
support for GPLs that have a LSP implementation, e.g., both VS Code and NeoVIM * offer

1. cf. https://microsoft.github.io/language-server-protocol/
2. cf. https://code.visualstudio.com/
3. cf. https://neovim.io
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the same syntax highlighting, symbols documentation, type checking and refactoring
capabilities for Python programs through Pyright*. LSP, the Debug Adapter Protocol
(DAP) °, and most of the other language protocols we see nowadays (for e.g., graphical
syntax, compilation, testing) specify the structure of the data exchanged between a single
client (a UI component of an IDE) and a single server (backend providing the set of
services needed by the client), and the requests and events that can be sent from one
to the other. Most messages are included in what is referred to as “capabilities”. The
set of capabilities is set and fixed by the specifications of the protocol. The idea is that
both clients and servers can choose to implement a subset of the capabilities and notify
the other, which should be able to use all the corresponding messages according to the
specification.

1.2 Problem Statement

Fixing the set of services at the level of the protocol means that it might not fit every
use-case. For example, when considering domain specific languages (DSLs), we often
find some unusual features that can be tied to either the meta-language approach used
to design the language (e.g., generic services [17]), the language itself (e.g., paradigm,
syntax), or even the program being developed (e.g., current state representation). While
we could argue that it would be pertinent to add some of these features as new capabilities
to the existing protocols, it would be inconceivable to cover all specific use cases inside a
single generic protocol. Still, the adoption of DSLs would greatly benefit from support
by multiple major IDEs, as they would integrate better in the workflow of the users.
Protocols are making this situation possible, although some features would be lost in the
process [21].

With the success of LSP and DAP, we see new language protocols emerging for both
new use cases (e.g., Build Server Protocol ©, Test Adapter Protocol 7) and specific features
not properly supported by the existing ones (e.g. using a graphical syntax in LSP [68]).
The case of the graphical syntax is particularly interesting, because it led to the definition
of two different protocols for the same purpose: the Graphical Language Server Protocol ®

cf. https://github.com/microsoft/pyright

cf. https://microsoft.github.io/debug-adapter-protocol/

cf. https://build-server-protocol.github.io/

cf. https://github.com/microsoft/vscode-debugadapter-node/issues/154
cf. https://www.eclipse.org/glsp/
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and the Graphical Server Protocol’. Another way to extend the features of LSP that
was used in works such as [60] and [50] consists in arbitrarily adding support for new
messages to a server and a client, and consider that all existing implementations will
ignore them if they don’t support them. While these two works provide very useful contri-
butions, such an implementation raises concerns of maintainability and interoperability,
which further motivates our work.

In the long run, it would be counter-productive to keep making independent protocols
for every use-case, as this would defeat the purpose of defining these protocols, i.e. to
ensure proper support in all development environments. In a real-world situation, this
would shift the challenge on the composability and compatibility of existing protocols,
which is currently not addressed. Hence, instead of having a server that encompasses all
services for a given language, we explore the idea of breaking it down into individual
services interacting with each other. To ensure the communication between these services
and the client(s), as well as their choreography, we consider the specifications required
explicitly to support all their interactions. Thus, instead of defining a language protocol
from the ground-up, tied to a specific use-case, we envision the definition of a meta
language protocol from which we can derive the most pertinent instantiations (i.e., lan-
guage services configurations). With this approach, some parts of existing protocols that
are actually generic could be separated, and their implementations leveraged better by
being reused in multiple services configurations. This also provides more flexibility to the
overall architecture: specialized services could be moved to other machines or replaced
depending on the use-case, features could be added or removed at any moment, and it
would become possible to finely control the deployment of each service independently.
We refer to this vision as IDE as Code.

As illustrated by Figure 1.1, we expect language designers to not only provide their
language specifications but also information about the protocol interactions required
for the different services. From there, we can obtain “language service packages” which
are minimal independent language services interacting with each other. Using these
packages, users should be able to specify the configuration and the deployment of their
IDE (or use predefined ones) to set up a development environment in the way they need
according to both their work environment and use case.

Developers require optimal access to language services no matter their workplace and
equipment. With the COVID-19 pandemic, it became even more apparent that relying

9. cf. https://obeonetwork.github.io/GraphicalServerProtocol/
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Figure 1.1 — Vision Overview for IDE as Code

20



1.2. Problem Statement

on a stable work environment is not always sustainable, and more and more efforts are
put towards the development of Cloud-based IDEs °. While they allow their users to
access a persistent development environment from anywhere, they also possess flaws
that still require to be addressed: the need for a stable and fast Internet access, which
can greatly fluctuate in situations such as travels, limited customization, and insufficient
scaling to offer all their users a seamless experience at the same time. Works such as [25]
already took these limitations into account and explored the idea of separating language
services into microservices, with mechanisms for dynamic re-deployment either locally
or on different servers, as a solution to these issues.

On the topic of supporting different use cases, we can for example consider domain
experts used to working with a DSL through a graphical syntax, that do not require a
textual representation nor the services to manipulate it. Several studies such as [69] argue
that professionals can often feel overwhelmed by their environments when they offer too
many tools and services. This can be counterproductive as it is hard to properly showcase
the most useful features when the users are drowned in useless ones. Consequently, a
goal of this approach is to let users have a clean and minimalist environment where
they have access to only the tools they actually use. On the other hand, the input of
language designers in regard to the set of features best suited to a particular use-case is
also valuable, so they should be able to specify default environment configurations. Thus,
we consider the following research question: How to provide a fully customizable
development environment that empowers both DSL designers and users?

The components that can be found in a development environment are numerous.
They can range from a parser for the textual syntax of a language to a debugger for the
execution of a program. In this thesis, we put the focus on runtime components, meaning
the components that permit and drive the execution of programs (e.g., interpreters,
debuggers), in the context of interactive environments. We address three challenges in
this context:

— The first one relates directly to the way these different components will communi-
cate with each other. A simple client/server approach with fixed protocols is not
enough to support the customization of such an environment. As a consequence,
it is necessary to manipulate directly the language protocols as first class citizens,
much like the components implementing them.

— The second one consists in establishing a hierarchy between the different runtime

10. cf. https://ecdtools.eclipse.org/events/idesummit/2021/
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components, and deriving the most basic one that can be used to drive the others.
The main goal is to improve the reuse of implementations of services, while also
permitting to standardize them around minimal and well-defined APIs. This also
means that we need to specify the dependencies between these components and
define the protocols they require in order to interact with one another.

— And the third one is to actually produce the language components that meet the
protocol specifications, by making use of the information that already exists in the
specifications of the languages and applying a possibly generative process.

1.3 Contributions

The main contribution of this thesis is the concept of IDE as Code. We discuss a possible
implementation of language tools and features provided as independent microservices,
that can be deployed on demand by users to tailor their development environment
to their needs. The configuration of the environment being external to any specific
platform, it can be used to set up any infrastructure, either a fully local IDE or a basic
web environment tied to a code repository in a forge such as GitLab '!. By manipulating
language protocols as first class citizens, we can leverage on the reusability of the services
implementing them, and even define a hierarchy with specific protocols extending or
using a composition of others. This is particularly interesting when we consider the
multiple execution tools that can be required for a given DSL, e.g. complete program
execution, REPL interpreter and debugging. As such, a second contribution of this
thesis is the definition of the most basic component that can drive multiple language
execution tools, and its protocol. On top of this component, we can provide generic
execution tools for each identified execution mode. As a third contribution, we describe
a generative approach to create REPL interpreters from DSL specifications, making
use of the aforementioned protocol. This makes it possible to use DSLs in modern
interactive development environments such as Jupyter Notebook with minimal efforts,
while assuring the consistency of the semantics with other existing interpreters.

11. cf. https://gitlab.com/gitlab-org/gitlab
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1.4 Implementations & Evaluation

The implementations addressed in this manuscript are targeting specifically domain-
specific languages. From existing DSL specifications, we provide a generative approach
to derive a REPL interpreter, a language execution tool able to incrementally run partial
programs. Such an interpreter can be used in environments like notebooks (e.g., Jupyter
Notebook) that we identify as “interactive programming environment”. These environ-
ments rely on an incremental development process in which the developer can write
and document small independent code snippets and get feedback, which mixes the
approaches of both exploratory programming [45] and literate programming [49].

The DSLs we used to evaluate this implementation also offered advanced debugging
features. By trying to integrate them in such environments however, we noticed some
conflicts between the approaches used to implement these debuggers and our REPL
interpreters. In some instances, they would both provide the same features, and in others
they would clash with one another. This lead to a proper definition of the hierarchy
of execution tools, with both REPL interpreters and debuggers leveraging on a single
implementation of a component exposing formalized operational semantics. As such, we
derived another approach to obtain said component, either implemented manually by a
language engineer or generatively derived from an existing operational semantics. We
then introduce the other execution tools as generic implementations, interacting with
this component through a specific language protocol.

To motivate our vision and evaluate our implementations, we consider in this thesis
an interactive programming environment that provides omniscient debugging capabilities
from an execution trace, similar to the one presented in [18]. In their approach, Bousse et
al. rely on a debugger and a trace manager that are highly coupled. However, generating
and storing the execution trace is a very expensive process, and as a result their debugger
has trouble scaling for very large models. Considering a distributed approach based on
microservices would make a lot of sense in this scenario, as we could imagine splitting
the management of the full trace between several services, possibly hosted on separate
hosts, and for which the activation could be finely controlled whenever needed. In order
to provide support for an omniscient debugger to multiple platforms, in practice we
could use DAP since it specifies a stepBack request. However, the backtracking mechanism
as introduced in [18] gives more control than simply stepping back: for example, one
can step inside and outside functions/methods. There is currently no language protocol
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supporting such fine-grained backtracking mechanism.

1.5 Outline

The remainder of this thesis is structured in six chapters. Chapter 2 provides the
background required to follow the rest of the manuscript. It discusses the evolution of
IDEs and the challenges, both past and current, they face, while covering the current state
of the art on the topics of IDE modularity and DSL integration. Chapter 3 further details
the vision of IDE as Code introduced in this thesis and discusses possible implementations
for configuring and deploying a development environment. Since we put the focus
on program execution and interactive development environments, one of the main
components that we need to support in our infrastructure is a REPL interpreter. We
introduce the concept of REPL interpreters in Chapter 4 where we discuss the knowledge
gained from studying existing implementations, and derive a principled approach to
define them. Chapter 5 deals with the integration of services of executable DSLs in
interactive environments, and presents a generative approach to derive REPL interpreters
based on the principled approach. Chapter 6 defines a hierarchy between execution
components, including REPL interpreters and debuggers, and presents our proposal
for a language protocol dedicated to language runtimes that leverages on a unique
definition of operational semantics. And finally, Chapter 7 concludes this manuscript
with a research agenda following up on the work covered in this thesis and on the vision
of IDE as Code as a whole.

1.6 Publications List

In this section we list all the publications made as part of this thesis, either accepted
or still ongoing.

1.6.1 In-Press Publications

This section focuses on the accepted publications that are strictly related to this
manuscript:

IDE as Code: Reifying Language Protocols as First-Class Citizens (Conference Paper)
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Pierre Jeanjean, Benoit Combemale, Olivier Barais. In 14th Innovations in Software

Engineering Conference, 2021 [40].

A Principled Approach to REPL Interpreters (Conference Paper) L. Thomas van Bins-
bergen, Mauricio Verano Merino, Pierre Jeanjean, Tijs van der Storm, Benoit Combemale,
Olivier Barais. In Proceedings of the 2020 ACM SIGPLAN International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Software, Onward!,
2020 [15].

From DSL Specification to Interactive Computer Programming Environment (Con-
ference Paper) Pierre Jeanjean, Benoit Combemale, Olivier Barais. In Proceedings of the
12th ACM SIGPLAN International Conference on Software Language Engineering (SLE),
2019 [39].

1.6.2 Work in Progress

In this section, we list ongoing work initiated as part of this thesis but not published
yet:

A Protocol for Decoupling Execution Services from Language Runtimes Pierre Jeanjean,

L. Thomas van Binsbergen, Mauricio Verano Merino, Tijs van der Storm, Gurvan Le Guer-
nic, Olivier Barais, Benoit Combemale.

A Language Independent Protocol for Exploratory Programming Mauricio Verano
Merino, L. Thomas van Binsbergen, Pierre Jeanjean, Damian Frolich, Joey Lai, Tijs van

der Storm, Benoit Combemale, Olivier Barais.

1.6.3 Others

This section includes accepted publications that explored other related topics to this
PhD:

From Monolithic to Microservice Architecture: The Case of Extensible and Do-
main- Specific IDEs (Workshop Paper) Romain Belafia, Pierre Jeanjean, Olivier Barais,
Gurvan Le Guernic, Benoit Combemale. In DevOps@MODELS 2021: ACM/IEEE 24th
International Conference on Model Driven Engineering Languages and Systems, 2021

[7].
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Opportunities in intelligent modeling assistance (Journal Paper) Gunter Mussbacher,
Benoit Combemale, Jorg Kienzle, Silvia Abrahao, Hyacinth Ali, Nelly Bencomo, Marton
Bur, Loli Burguefio, Gregor Engels, Pierre Jeanjean, Jean-Marc Jézéquel, Thomas Kiihn,

Sébastien Mosser, Houari Sahraoui, Eugene Syriani, Daniel Varré, Martin Weyssow.
Software and Systems Modeling 19.5, 2020 [58].

Runtime Monitoring for Executable DSLs (Journal Paper) Dorian Leroy, Pierre Jean-
jean, Erwan Bousse, Manuel Wimmer, Benoit Combemale. In J. Object Technol. 19.2,
2020 [52].
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CHAPTER 2

BACKGROUND & STATE OF THE ART

In this chapter, we introduce the background necessary to follow the rest of
the manuscript, and explore the related state of the art. We first present a
brief history of the evolution of IDEs (Section 2.1). Next, we cover domain-
specific languages (Section 2.2) that will be one of the main study subjects in
this thesis, followed by an overview of the requirements to execute programs
in different development environments (Section 2.3). Then, we consider more
globally language services and the issues to integrate them in multiple IDEs
(Section 2.4). We also mention REPL interpreters, which are another core concept
of our contributions, and we provide some background and examples on them
(Section 2.5). Finally, we present past research works on protocols engineering,
that shaped our thoughts on what a protocol for an IDE should look like and
how it should be defined (Section 2.6).

2.1 Integrated Development Environments

The first mention to an Integrated Development Environment can be traced back to
the work of P.S. Newman published in 1982 [59]. Such an environment should provide
to a developer all the necessary documentation to understand the system either currently
in development or being operated. In this paper, the author argues that the lack of
system documentation at the time was partly due to development tool fragmentation: the
lack of coordination between tools coupled with the absence of a unified environment
giving access to them made it hard for developers to know what features they could
use, and even if they did, there would be almost no interoperability. The higher cost of
maintaining an unintegrated set of tools is also a strong argument in favor of integrated
environments.

In those times, developers would mostly write source code through simple text editors
such as vi or Emacs. Due to their efficiency at text editing, such tools are still popular
today, but they have definitely evolved significantly throughout the years. For example,
vi has been replaced almost exclusively by an “improved” version known as vim, which is
itself slowly being supplanted by neovim. The integration of support for external plug-ins
in these editors makes them still relevant for development purposes and not just basic
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text editing. This in turns make them similar in nature to IDEs, as noted in [73].

As both programming languages and programs became more and more complex,
environments following the IDE ideology did the same by integrating more and more
complex and numerous language tools. This leads to two consequences:

— IDEs such as Eclipse ! and IntelliJ IDEA 2 have so many features that their users can
feel overwhelmed, to the point of not knowing about some of the most basic such
as References ([69]);

— Developers who are satisfied with their IDEs are opposed to switching to others,
even when they offer some useful specific features. So new tools need to be
implemented for multiple environments in order to be used globally: development
tool fragmentation has been replaced by development environment fragmentation.

The trend of IDEs is now switching towards cleaner and more user-friendly interfaces.
At the same time, new concerns are emerging as today’s developers need an environment
offering support for multiple languages, sometimes even in the same project with polyglot
programming ([37]), and accessible from anywhere. Modern IDEs such as Microsoft’s
VS Code?®, Eclipse Theia* or JupyterLab® are consequently implemented using web
technologies, and support multiple languages through the implementation of newly
defined language protocols such as LSP® and DAP”.

2.2 Domain Specific Languages

Domain Specific Languages (DSLs) are software languages specifically designed to
handle a specific application domain. As opposed to General-Purpose Languages (GPLs)
such as C or Java, that are Turing complete languages aiming to be usable in any context,
the role of DSLs is to capture the semantics of a given domain and only expose to their
users the concepts they require to solve a specific problem. While DSLs may end up
being Turing complete in some instances, this is usually not a goal when designing them.
Examples of DSLs include e.g. markup languages such as LaTeX®, a language used to

cf. https://www.eclipse.org/

cf. https://www.jetbrains.com/idea/

cf. https://code.visualstudio.com/

cf. https://theia-ide.org/

cf. https://jupyter.org/

cf. https://microsoft.github.io/language-server-protocol/
cf. https://microsoft.github.io/debug-adapter-protocol/
cf. https://www.latex-project.org/
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annotate text documents with the necessary information to generate a consistent and
standardized output (this thesis’ manuscript was written entirely in LaTeX), modeling
languages such as SysML “, a language for specifying and analyzing complex systems, and
programming languages such as SQL to interact with relational databases or alda '° for
music composition. The examples given previously are called “External” DSLs, because
they use their own independent interpreter and/or compiler, and their editors rely on a
parser dedicated to their specific syntax. Other kinds of DSLs are called “Internal” DSLs,
and also consist in defining a grammar but on top of a host language to add domain-
specific elements to it. These leverage on the existing tool support for the host language,
both for edition and execution. Examples of Internal DSLs include Fluent APIs, APIs that
are designed to be used mainly through methods chaining which makes their particular
syntax explicit and easily readable, and language extensions that add new programming
concepts to the host language such as multi-stage programming frameworks ([76]).

Throughout this thesis, we will focus on external DSLs that provide a specification
designed to drive the development of a comprehensive development environment. A
language specification defines all the concepts available to the language users through
an abstract syntax, a metamodel whose instances are the programs written by the
users. In order to actually manipulate the language, developers have access to one or
several concrete syntaxes which map the concepts of the abstract syntax to concrete
representations that they can reason with. Semantics then map the abstract concepts to
actual behaviors within the context of the domain, making the language either executable
or translatable to another executable language. The specifications considered here usually
involve a concrete syntax definition in the form of a BNF-like description, an operational
semantics in the form of an interpreter (or any variant such as a visitor pattern), and static
semantics, that define all the context conditions ensuring statically correct conforming
programs. In such a definition, the language usually encompasses a single execution
entry point, a finely tuned execution context and an interpreter which defines a particular
traversal of a given syntax tree to manipulate and update the execution context over the
execution.

Such a language definition is now well-supported by advanced language workbenches
that help language engineers to develop language tools such as structured editors, de-
buggers and simulators. For instance, tools like Xtext !! support the generation of an

9. cf. https://www.omgsysml.org/
10. cf. https://alda.io/
11. cf. https://www.eclipse.org/Xtext/

29


https://www.omgsysml.org/
https://alda.io/
https://www.eclipse.org/Xtext/

Chapter 2 — Background & State of the Art

advanced editor with a parser, syntactic validation, and all the features of modern code
editors (e.g., syntax coloring, auto-completion, etc.). Others, such as the GEMOC Stu-
dio '2, help to complement the language tooling with advanced execution engines and
debugging facilities. A study of the main features provided by some language work-
benches (e.g., MPS, Rascal, Spoofax) can be found in [28]. Most of these workbenches
are now mature enough to be included in industrial settings, and allow language engi-
neers to automate the development of the tools for the main scenarios of the expected
language users.

Let us consider for example the language Logo '°, illustrated in Figure 2.1. Logo is
an educational language whose main focus is the animation of turtle graphics. As such,
most of the statements are accompanied by feedback which is an action from the turtle,
and this is part of what makes it interesting for teaching purposes. An abstract syntax
of Logo specify that Program is made out of several instructions, that may also contain
multiple kinds of expressions. Figure 2.2 shows the metamodel associated to a very
minimal subset of this language. The associated concrete syntax is textual, and maps
the instructions to the keywords FORWARD, RIGHT and LEFT, while also ensuring parsing
of sums of integers to binary expressions and constants. Operational semantics define
how the execution of each instruction will affect the movements of the turtle. From
a comprehensive definition of the language, it is possible to automatically generate a
dedicated and structured editor that supports the definition of complete logo programs,
including a functional architecture and an explicit execution flow across the architecture.

2.3 Executability in Software Languages

Modern development environments support programming paradigms that differ from
the traditional edit-compile-run loop process. As an example, notebooks, that merge REPL
interpreters with the practice of literate programming, have recently gained popularity in
many fields (e.g., education [83], collaboration [81], domain exploration [71]) through
the Jupyter initiative [48]. At its core, a Jupyter notebook requires a language kernel
built on top of a REPL interpreter. Most of the popular languages nowadays provide REPL
interpreters implementations [15], such as Java with the JShell tool officially maintained
by Oracle. This makes these languages usable inside notebook environments. However,

12. cf. http://gemoc.org/studio.html
13. cf. https://en.wikipedia.org/wiki/Logo_(programming language)
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Figure 2.1 — Example of a free Logo Interpreter (https://www.calormen.com/jslogo)

with a few exceptions such as Python, these tools are usually implemented and managed
independently of the other “more traditional” compilers or interpreters. They might reuse

parts of the existing semantics implementations, but cannot guarantee behaviors fully
consistent with the others. Tool support is also lacking: Oracle considers debugging as a
non-goal for JShell 14, which also means that notebooks based on this tool will not be

able to provide debugging facilities.

14. https://openjdk.java.net/jeps/222
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When considering Domain-Specific Languages, these issues are even worse because it
is quite often unrealistic in terms of resources to develop and properly maintain multiple
implementations of the semantics for one language. Targeting one is already challenging
enough, and would depend greatly on the habits of the users and the tools they require
at a given time.

Besnard et al. studied such inconsistencies in [9] in the context of designing and
deploying cyber-physical systems. At the time the current practice was to derive multiple
semantics implementations from a first semantics definitions, each compatible with
a specific diagnosis tool. However, all the generated semantics would end up being
different from the one actually deployed on the target platform, which might invalidate
the results of the different diagnosis obtained pre-deployment. To mitigate this, they
contributed an approach based on a modular and reusable semantics implementation,
and a generic API akin to a protocol in order to adapt it for the different analysis tools.

In recent years, language protocols have become a topic of interest in the language
engineering community. The Language Server Protocol (LSP) provides an open source
unified specification of language features for textual concrete syntax. Through its adop-
tion in various development environments (e.g., VS Code, Eclipse, Jupyter) language
designers only require a single implementation of a language server to provide the same
textual language features (e.g., completion, formatting, validation) for users of different
platforms. The Debug Adapter Protocol (DAP) similarly permits using a single debugger
implementation in different environments.

A Foundational Subset for Executable UML Models (fUML [35]) was defined in order
to leverage on unified semantics and execution tools for modeling concepts shared by
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multiple domains (e.g., activity diagrams, state machines). The specifications of fUML
are very detailed and have been a great asset in the modeling community to support
semantics and tool reuse for many years. However, one of their main limitations is that
they do not, as yet, specify execution processes at a granularity low enough to handle
debugging scenarios, as already noted by works such as [36] or [51].

In [17], Bousse et al. introduced the concept of Execution Engine to leverage on a
single implementation of an operational semantics that follows a given interface. This
approach allows the definition of generic Engine Addons to support different runtime
scenarios. One of the addons contributed is a generic omniscient debugger (allowing
both forward stepping and back in time exploration of the executed steps) that can
be used by any sequential language interpreter that fits the interface. While sound in
design, we argue that the proposed interface is too restrictive for emerging execution
tools and frameworks: an Execution Engine expects a complete program as input, which
is not compatible with the process of incremental building and exploration offered by
notebooks.

2.4 Language Services

The term Language Service describes all the tools that can help users make an efficient
use of a language. Program formatters, refactoring utilities and advanced debuggers can
all be labeled as language services. Nowadays, the adoption of a programming language

is directly tied to the tool support available to the users, i.e., the language services.

2.4.1 Language Workbenches

The term Language Workbench was first introduced by Martin Fowler in 2005 ([32])
to describe the tools supporting the practice of Language Oriented Programming, namely
software development that defines and makes use of multiple domain specific languages.

The point of these workbenches is to ease the design and implementation of DSLs,
and to automatically derive the language services necessary for users to be, at least, as
efficient with the DSLs that they would be with GPLs offering professional tool support. In
practice, this translates into designing and creating a fully fledged IDE, tuned specifically
for the target DSL, and making it available to users.

While language workbenches have existed and been continuously improving for years,
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proper integration of the resulting DSLs into developers’ workflow has only recently
become a research focus. Providing a completely set up and ready to use IDE to users
might seem sound, but it also means that the users need to learn how to use a completely
new environment. Possibly, they might not even be able to import the settings that
they’ve been using for years prior. In a blog post published in 2017, Meinte Boersma
([16]) addresses the different reasons holding back a more widespread adoption of
language workbenches. He argues that the main issue is a “lack of integration with
existing software development practices”, and next that “even with a suitable language
workbench, creating/finding and implementing a good DSL is not easy”.

2.4.2 IDE Portability

A first improvement for integration is to provide support for the DSLs to the environ-
ment currently used by the targeted developers. Most language workbenches generate
features and tools that can only be deployed on specific environments. This phenomenon
is most generally observed for any IDE plug-in, and is known as the IDE portability
problem. Keidel et al. addressed this issue in [44] and proposed a solution based on an
intermediate representation of plug-in implementations. Environments require a Monto
Plug-In made specifically for them. This Plug-In interacts with a message broker by
sending a source message, containing the source code, at any change, and receiving
product messages, that contain data formatted as Monto IR that translate to visual
representations. The broker can interact with several environment independent language
services, such as parsers or linters, by sending forwarding them the source messages
and/or product messages obtained from other services.

The Asf+Sdf meta-environment [20] was probably the first language-parametric
IDE system that used decoupled architecture, both for static aspects of a language
definition [46], and for dynamic aspects such as debugging [19]. The approach uses an
architecture based on ToolBus, a programmable bus made to connect different software,
to coordinate heterogeneous components such as a parser, a text editor, or an interpreter.

A more recent approach to solve the IDE portability problem is the Language Server
Protocol (LSP) proposed by Microsoft, that we already introduced in Section 2.3. A SWOT
analysis of LSP with regard to DSLs was performed in [21]. LSP brings an opportunity to
quickly deploy domain specific languages in multiple environments, either IDEs favored
by the targeted developers or more simple and lightweight environments for user that are
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not programming experts. However, it was designed around general purposes languages
and is missing important features in order to really drive the deployment of DSLs, such
as projectional editing. It is in theory possible to add these features through custom
capabilities, but it would require implementing custom clients for each environment.
The results of the SWOT analysis highlight potential limitations for the scalability of
such an approach. They consider that each client requires the instantiation of complete
independent server for each language used, and the lack of modularity and reusability of
language features.

Similarly, the Debug Adapter Protocol (DAP) provides debugging support to multiple
development environments, but targets general purposes languages and does not offer
specific extensibility mechanisms for domain-specific concerns. The concept of moldable
debuggers ([24]), i.e., generic debuggers that provide a protocol to support domain-
specific extensions, could provide an elegant solution to these limitations. But it would
still require to first extend DAP with moldable capabilities.

2.5 REPL Interpreters

The acronym REPL stands for “Read-Eval-Print-Loop”. A REPL interpreter is a lan-
guage interpreter based on this principle of continuously reading user inputs as partial
program, evaluating them in the same execution context, and printing feedback after
each interpretation. These interpreters have a long history, and documentation on this
history is scattered across sources. The Flexowriter system of Lisp I from 1960 is perhaps
the oldest REPL implementation [54]. An early description of REPL behavior can be
found in Peter Deutsche’s memo on PDP-1 LISP [27]:

Each S-expression typed in will be evaluated, and its value printed out.

The PILOT system [79] is one of the earliest and most advanced interactive REPL sys-
tems, also based on a LISP, in that it supports fully incremental and interactive evolution
of programs. Teitelman writes that REPL-style interaction with Interlisp happened with
the introduction of time-sharing at MIT in 1964 [78]. It is very well possible, however,
that earlier Lisps and pre-1968 FORTH implementations [66] had REPL interfaces as well.
The earliest programming language REPL that is not a Lisp we could find documentation
of is the JOHNNIAC Open-Shop System (JOSS) [72]. Figure 2.3 shows an example of
interaction with JOSS.
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U: T e 2+20
J: P 2+2 = 4
U: Set x=3.
Type X.

J: X = 3
U: Type x+2, x-2, 2:X, x/2, x*2,
J: x+2 = 5

X-2 = 1

2.x = 6

x/2 = 1.5

X*2 = 9
U: Type [(]x-5]-3+4)-2-15]-3+10,
J: [)(’-Tx-SI «3+4)-2-15]-3+10 = 25

Figure 2.3 — Early user interaction using JOSS [72]

On their own, REPLs are useful tools to explore the possibilities offered by a language,
since they enable trying small code snippets and getting instantly the results of the
evaluation (including parsing and runtime errors), obtaining feedback on their effects
(e.g., by explicitly detailing the values changed in the execution context), and even
navigating the execution context interactively after the initial evaluation. But they can
also be used to drive more complex interactive environments such as computational
notebooks, which were pioneered in the Mathematica system [82]. More recently, this
style has been adopted in the context of other programming languages. [Python [62]
and Jupyter [48] provide a means for computational story telling, where cells containing
code are interleaved with output and prose cells. The language workbench framework

Bacatd allows a language engineer to provide a notebook feature by reusing existing
language specifications [55].

2.6 Protocols Engineering

Providing a language for specifying protocols and interactions and providing a com-
pliance relationship to that protocol has been done for a while. Indeed, in the field of
components based software engineering, Plasil et al. [63] provides within their architec-
ture description language a way to specify this behavioral contract of each component.
Software designers can define component’s behavior. The paper defines a protocol con-
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formance relation. Using these concepts, the designer can check the adherence of a
component’s implementation to its specification at runtime, while the correctness of
refining the specification can be verified at design time. In the multi-agents community,
several agent-oriented programming languages such as JADEL [8] provide abstractions to
define agents interaction protocols. In the networking domain, Burgy et al. [22] proposes
a new language-based approach for developing protocol-handling layers, to improve
their robustness without compromising their performance. The approach is based on
the use of a domain-specific language to specify the protocol-handling layer of network
applications that use textual HTTP-like application protocols.

An earlier definition of a meta-protocol can be found in [1]. The approach aimed
at providing a higher level of flexibility in protocol-based communications. Multiple
protocol specifications are available inside a repository, and two parties can decide on
which one to use during a negotiation phase. From the agreed upon specification, the
actual implementation of the protocol is generated on the fly for the programming

language used to define the component.
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CHAPTER 3

THE VISION OF IDE As CODE

In this chapter, we present an overview of the “IDE as Code” vision. We start
by making clear the context and motivation behind the vision (Section 3.1).
Then, we consider language protocols and how to specify them in order to
obtain independent language services components (Section 3.2). And finally, we
discuss a preliminary architecture implementation based around the concept of
microservices (Section 3.3). This chapter is based on our ISEC’2021 publication

([401).

3.1 Motivation

Our vision aims at providing more customizable and adaptable IDEs for the end
users through language services that are independent of any client. It is driven both by
the need to support domain-specific language services in multiple environments and to
accommodate language users with a programming experience better tailored to their
needs and technical background.

When we consider programming languages in the large, including both general-
purpose and domain-specific languages, we need to account for an ever-growing number
of language services. In contrast, at a given time, an IDE can only manage a subset of
these. Since protocols such as LSP and DAP were designed around the features available
in Visual Studio Code, it made perfect sense for Microsoft to also fix the set of the
capabilities offered by these protocols to ensure that all the features would be fully
supported in their IDE. However, the absence of a proper extension mechanism prevents
the integration of additional services, such as the ones we can expect to find in new
(domain-specific) languages.

Instead of fixing a priori the set of services that a user can use in the IDE, we envision
a more open approach where all services are made available at any time, and the user can
customize the IDE, possibly at runtime, based on a functional subset of these services. The
customization could also be managed externally to provide to the users a development
environment fully configured, and ready to use in the context of a specific use case.

To this end, in addition to their language specifications and the associated language
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services, we expect language designers to also provide information about the protocol
interactions and dependencies required to deploy and use the different services. This
chapter focuses mainly on this part, starting with Section 3.2. From there, “language
service packages”, which are minimal independent language services interacting with
each other, can be obtained and composed to instantiate the environment both required
and wanted by a given language user. The deployment of these packages could also
be finely controlled, for example to run some language services on suitable platforms,
e.g., with vast amounts of memory for execution logging or with powerful CPUs for
compilation.

3.2 Specifying Language Protocols

In order to obtain usable and composable “language service packages”, we first need
to unify the specifications of the language protocols they will expose to communicate,
both between them and with the environment accessible to the users. Current language
protocols are basically provided as bidirectional APIs. While the data-flow between
servers and clients is precisely specified, the control-flow is not explicit and can only
be deduced from processing the documentation available in natural language. As a
consequence, even though maintainers for servers and clients should be free of any
specific implementation, in practice they end up relying on Visual Studio Code as a
reference !. Here, we propose that the control-flow between language services should
be formalized and become a part of the protocol specification. Whatever the implemen-
tations of “language service packages” end up being, they need to be agnostic to any
technical concerns related to data transport.

As illustrated in Figure 3.1, individual “language service packages” should have
their interactions properly specified in a language protocol. The left side of the figure
represents the current practices in language engineering, where language services and
their implementations can be automatically derived from a language specification, and
the right side shows a conceptual metamodel of the specifications required to obtain
“language service packages”. Language services are provided as “language capabilities”,
and the corresponding UI components as “Ul services”. In addition, packages that are
mandatory for development environments are reified as first-order concepts, like the
notion of workspace for example. We make the assumption that language services can

1. https://www.reddit.com/r/vim/comments/b3yzq4
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3.2. Specifying Language Protocols
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Figure 3.1 — Protocol Specification for IDE as Code
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derive their implementations from a dependency to the language specification (e.g., sim-
ilarly to [25]), as their actual implementation is not the focus of this chapter. From a
given language protocol specification, a generative approach supports the automatic
creation and deployment of the language packages.

For customization purposes, “language service packages” can be replaced by more
specialized implementations depending on the use-case. Services can be dynamically
deployed, as long as the proposed deployment is coherent in regard to the dependencies
and the protocol specifications. They might also specify particular hardware requirements,
such as a need for RAM or disk storage, which would later drive the deployment on
specific machines on a network infrastructure. Such an architecture is flexible enough
to also support reusing existing language server components, such as existing LSP
implementations, but since these implementations are usually monolithic they might
not benefit from this approach as much as components specifically designed for it. For
example, the overall scalability might suffer from using monolithic services ([25]).

3.3 Implementations

In this section, we discuss some implementation choices that we envisioned to illus-
trate the vision. We present a specific IDE architecture, using the scenario of integrating
an environment that relies on an omniscient debugger.

Considering that they target to answer very specific problems, the added value of DSLs
in comparison to general purpose languages resides primarily in the specific features they
offer. As such, domain-specific language designers need the ability to provide specific
language capabilities. An example of such is omniscient debugging, as introduced by
[18]. The debug adapter protocol (DAP), a protocol that should address every debugging
concern, is lacking in features in regard to this specific approach of omniscient debugging:
it requires support for execution traces management, and a backtracking interface that
makes the distinction between stepping into and stepping over statements.

However, DAP is still a very valuable and well needed contribution to unify the
interfaces of different debuggers. For most of the capabilities it offers, it is in fact adapted
for the different services needed to debug most textual DSLs. The main issue is the
absence of a proper extension mechanism, that could make up for the missing features.
As things stand, if one wanted to extend this protocol, they would have to define yet
another protocol to wrap it that would end up being very specific to their use-case.
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This raises concerns for both integration in environments, and compatibility with other
services. Ideally, it should be possible to “import” an existing debug adapter as a language
service, and specify its interactions with other services to deploy them as “language
services packages”. We could argue that this debug adapter could also, and should, be
refined into smaller packages, but the re-usability of existing language servers is a major
concern at this stage.

Thus, we propose an extensible architecture that can support existing language server
implementations, as illustrated by Figure 3.2. In order to support resource scaling for
web IDEs that need to serve multiple clients at the same time, the concept of “language
services packages” is implemented as microservices. Microservices are minimal services
providing a single feature to a global architecture, either through choreography or
orchestration, and designed to be started and stopped on demand depending on the
available resources and the required quality of service. An event broker lets both language
microservices and UI microservices interact as part of a choreography. In the figure, Ul
microservices are all included in the same environment, but technically they could also be
distributed and deployed independently: the service displaying the execution trace could
very well be embedded inside a completely separate web page, or as part of a notebook
that could also expose the necessary APIs to run analysis on the running context. Other
implementation approaches such as OSGi plugins (targeting the Eclipse ecosystem) or
Visual Studio Code extensions could also be considered, but comparing them is out of the
scope of this work. Here, we also made the decision to use JSON serialization in order to
stay close to LSP implementations, as well as websockets for the transport layer, but we
have not yet evaluated sufficiently this setup and cannot comment on how pertinent this
decision actually is.

The debug adapter microservice serves as a bridge between an existing debug adapter
and the rest of the microservices. Its main goal is to turn the requests of DAP into
events exchanges, in order to interact with the debug UI microservice. This particular
microservice showcases that this architecture is flexible enough to include existing
protocols and language servers.

The trace manager microservice receives events that consist of the different logical
steps reached during the execution, and the data changes corresponding to each of them.
Its role is then to build the execution trace and expose it to the rest of the environment.
The events received by this service are sent by an execution microservice that has direct
access to the program interpreter, and thus the execution context. The omniscient debug
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Figure 3.2 — Example of a Microservice Choreography for Omniscient Debugging (double
arrows represent interactions)
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microservice can make use of this trace to reset the execution context to the state it
should have whenever the user needs to step back. The trace Ul microservice provides
feedback to the user about the execution trace and the current state of the program.

While the omniscient debug microservice relies on the trace manager, the configura-
tion of microservices presented here is not fixed. As a choreography, every microservice
is aware of the addition or removal of the others, and is able to react if there is an impact
on their workflow. So it is possible to only provide the “normal” debugging services from
the debug adapter depending on the resources available at a given time. It is also possible
to generate the trace for only parts of the execution, and thus enable the omniscient
debugger on the condition that a trace is indeed available.

A domain-specific language would help in defining and maintaining the specifications
of these microservices. We are aware that a language to specify a service-oriented
architecture is nothing new, but one dedicated to manage language services is yet to exist
and would assist tremendously in the adoption of such an architecture. As such, we are
considering a metalanguage designed to specify language services and their protocols,
that provides constructs specific to IDEs, such as workspaces, development resources
(files), and run configurations for example. It also drives the choreography by letting the
microservices define complete workflows in their protocol specification.

Figure 3.3 shows an example of using such a language. Data structures can be
specified, and used as arguments for the different events. By separating events into
several blocks, multiple communication channels can be managed inside the event
broker that will deliver them. The different packages can explicitly declare that they
require other packages in order to be relevant, through a mechanism of dependencies.
Then, their workflow when receiving events is explicitly defined, and the tasks can consist
in waiting for other events, sending events, or calling methods from imported language
services.
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data {

TraceState {
backInto: Step
backOver: Step
backOut: Step

}
Step { ... }
}
events {
trace {
state
stateResult (TraceState)
b
stepBackIn
stepBackInDone
setState (Step)
setStateDone
¥
packages {
tracemanager depends on execution listens trace {
recv step —> call updateState(Step)
recv trace/state —> call getStateResult(result)
—> send trace/stateResult(result)
¥
omniscientdebug listens trace
depends on execution, debugadapter, tracemanager {
recv stepBackin —> send trace/state
—> recv trace/stateResult(traceState)
—> send setState(traceState.backInto)
—> recv setStateDone
—> send stepBacklnDone
¥
¥

Figure 3.3 — Protocol Specification for Step Back In Service




CHAPTER 4

A PRINCIPLED APPROACH TO REPL
INTERPRETERS

In this chapter, we provide an approach to build REPL interpreters. We start
by motivating the need for such a principled approach based on language
engineering principles (Section 4.1). Next, we discuss the knowledge obtained by
analyzing existing REPL implementations of popular programming languages
(Section 4.2). Then, we go into details on the methodology to obtain a REPL
interpreter from language implementations (Section 4.3). Finally, we validate
the approach through different REPL interpreters implementations (Section 4.4,).
We close this chapter discussing the limitations and threats to validity of the
approach (Section 4.5). This chapter is based on our Onward!2020 publication

([15D).

4.1 Motivation

Read-Eval-Print-Loops (REPLs, also known as command-line interfaces, or interactive
shells) are a popular way for programmers to interact with programming languages.
They allow incremental definition of abstractions, testing out snippets of code with
immediate feedback, debugging executions, and exploration of APIs.

Even if a REPL can, in practice, be defined for any kind of programming languages,
some such as scripting languages or interpreted languages are more naturally compatible
with the REPL mode of interaction, and the different styles of programming that it
enables (and that programmers have come to expect). For example, a sequence of valid
code snippets written in the REPL of Python is itself a valid Python program. This enables
an exploration workflow where the programmer can incrementally write a fully working
program in environments based on REPLs, such as Jupyter Notebook, before exporting
the source code as-is and integrate it easily inside another code base. On the other
hand, JShell, for instance, allows programmers to write expressions, statements, variable
declarations and method declarations as code snippets, even though these constructs are
not allowed at the top-level in Java programs.
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Consider the following example JShell interaction (every line is a code snippet sent
separately):
class Example {}
Example obj = new Example();

class Example { public int meth() { return var; } }
int var = 1;

This example raises several questions : Can classes be redefined? Is obj still accessible
after Example has been redefined? Or would obj be migrated to the new class definition
and, if so, what methods would it have? And if meth is still available, would a call to
obj.meth() return 1? Without giving answers here, this example shows that the relations
between a programming language and the behavior of its REPL are sometimes not
obvious at all. The above questions are fundamentally about language design: several
sensible answers are possible, and the answers have a significant impact on programmer
experience down the line.

In some sense, JShell can be seen to implement its own language, which, even though
strongly reminiscent of Java, is markedly different. In this chapter, and more generally
the rest of this manuscript, we take this observation and run with it: we assume that a
REPL interpreter for L effectively defines its own language R, often as an extension or a
modification of £, whose programs are sequences of valid code snippets according to the
REPL.

To this end we identify and define the class of languages that drive REPL interpreters
as sequential languages. The essence of sequential languages is that the concatenation of
two programs is again a program. Ot, to put it more precisely, a language is sequential if
it features an associative sequencing operator g, such that the following equation holds:

[p1 8 pa] = [p2]l o [p1]

The meaning of a sequence of program fragments is defined by composing the mean-
ings of the individual fragments, including the possible side effects of executing these
fragments.

This chapter discusses a methodology to obtain a sequential language from another
existing language, which could in turn serve as the basis for a sound REPL interpreter. In

particular, the contributions include:

— a feature-based analysis of the landscape of REPLs for a selection of the most
popular programming languages (Section 4.2);
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— a methodology for developing REPL interpreters by sequentializing languages with
a definitional interpreter (Section 4.3);

— case studies to illustrate the feasibility of the approach (Section 4.4).

4.2 REPL Domain Analysis

. — . — = — ‘
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— — <
Syntax- | Hierarchy- Type- Multiple Access Access
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Legend: All Last Help Command Definition
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Figure 4.1 — Feature Model for REPL Interpreters

This section provides a study of existing REPL interpreters and their main features.
We have studied freely available REPL implementations, listed in Table 4.1, for the 15
most popular languages from the TIOBE index !, except for Visual Basic for which we
could not find a freely available implementation. For MATLAB, we have selected GNU
Octave as a substitute. We performed a feature-oriented domain analysis [43], resulting
in the feature model presented as Figure 4.1. In the following we briefly describe the
main mandatory and optional features we identified.

Mandatory Features An interpreter must have certain features to be considered a
REPL. In particular, a REPL has the ability to execute multiple code snippets across

1. https://www.tiobe.com/tiobe-index/ (accessed May, 22nd, 2020)
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Table 4.1 — Surveyed REPL implementations

REPL Reference

CLing (C/C++) https://cdn.rawgit.com/root-project/cling/master/www/index.html
JShell (Java) http://openjdk.java.net/jeps/222

Python https://docs.python.org/3/tutorial/interpreter.html

C# https://mono-project.com/docs/tools+libraries/tools/repl/
Node.js (JavaScript) https://nodejs.org/api/repl.html

PHP https://php.net/manual/en/features.commandline.interactive.php
PsySH (PHP) https://psysh.org/

SQLite (SQL) https://sqlite.org/

R https://r-project.org/

Swift https://swift.org/11db/

Gore (Go) https://github.com/motemen/gore

GNU Octave https://gnu.org/software/octave/

Rappel (assembly) https://github.com/yrp604/rappel

iRB (Ruby) https://github.com/ruby/irb

multiple interactions in a single session (as opposed to executing one full program
per session). In most of the investigated REPL implementations, the REPL maintains
a unique execution context and executes snippets incrementally (this is the behavior
that we call “Incremental”, alternative of the “Snippet Execution” feature). Optionally, a
REPL may provide a way to undo the execution of snippets (roll-back). An alternative to
incremental execution is composing all the snippets into a single program and execute the
program from scratch from a clean execution context (what we call the “Full” alternative).
REPLs are expected to provide feedback after evaluating each snippet, showing at least
the snippet’s printed output, and perhaps any changes in the runtime values or newly
declared types (“Summary of Snippet Effects”).

Optional Features Next to these mandatory features, the investigated REPLs implement
several additional features, such as providing auto-completion for the new snippets
(“Snippet Completion”). This can target either language keywords or previously defined
identifiers. Completion can take into account the syntactic context in which the user is
typing, can be extended to fully qualified identifiers, and may also take into account the
type of identifiers (through either static typing, or type hinting in the case of dynamically
typed languages).

Even though the language itself might not support modifying an existing definition,
most REPLs allow this behavior to some extent (“Definition Modification”). Common
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ways include overriding the previous definition, either through accepting a snippet with
a new definition or by editing the existing one from an external text editor. Other REPLs
also allow opening up definitions (such as classes) for additions (“Open & Extend”).

Another common feature is the help (meta-)command (“Help Command”), which can
document either the language, the REPL and its meta-commands, or both. The history
of commands (including previously executed snippets) is usually made available to the
user, in order to find and resubmit previous commands (“Command History”). It can be
consulted sequentially through the arrow keys, but often includes a search facility as
well. Some REPLs assign identifiers to commands in order to retrieve them arbitrarily.
Some REPLs support saving and loading sessions (“Save and Load Session”). This may
involve storing the execution context, or simply storing all user inputs to reproduce the
execution context after loading. For some languages, the session can also be saved as a
valid program executable outside the REPL.

REPLs behave differently when multiple code snippets are entered at once in a
sequence (“Multiple Input”). Output is either provided for all the snippets from the
sequence, or only for the last snippet (which could result in no output at all). Most REPLs
allow the user to inspect the current execution context (“Summary of Current State”).
And finally, some REPLs allow the results of previous snippets to be used in new snippets
(“Access to Previous Results”), either for the last executed snippet or for all, for instance
by assigning result values to special variables.

Feature Support of Existing REPLs Table 4.2 shows how the investigated REPLs
support the features identified in the feature model of Figure 4.1. The table illustrates
that no two REPLs share the same set of features. IPython supports most of the features,
whereas PHP only supports a minimal set. Interestingly, PHP is the only REPL that does
not print computed output values. The Go REPL (Gore) is the only REPL that simulates
incremental execution by compiling a complete compilation unit in the background. Type-
aware completion is not applicable to Node.js and R since the languages are dynamically
typed and do not support type hinting. Sessions exported from SQLite and R include the
snippets to reproduce data, but not the ones that query the data, so it is not possible to
fully reproduce a session through this mechanism. Octave exports variables and their
values, but not declared methods. Only three REPLs support exporting sessions as valid
programs. Although IPython provides additional commands, they are all implemented in
Python and can therefore be exported as well. As explained before, a valid Go program
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Table 4.2 — REPL Interpreter Features (@= full, @ = partial, — = not applicable)

g e g 5= &7 2 £ Bos B3
-5 8 8 5 T8 52
=
Snippet Execution Incremental e 6 6 6 6 6 o o o o o e O o
Full [ ]
Undo ®
Summary of Current State e o e o e o e o
Summary of Snippet Effects e 6 6 o o o e 6 6 o o o o o
Access to Previous Results Access to last e o [ ) () [ (]
Access to all [ ] [ [ ]
Multiple Input Last output () e o o [ ) [ e o o
All outputs o o e o
Snippet Completion Keywords (] e o (] e o o { (
Syntax-aware ) o [
Identifiers ® 6 6 6 o6 o6 o6 o o o o o o [ ]
Type-aware [ ] — - -
Hierarchy-aware e 6 6 o o o [ ] [ ] o o -
Definition Modification Redefine o @ o o o o o o — o
Open & Extend o
Help Command REPL commands e 6 6 o o o e o e o )
Language use o o [ e o
Command History (User Access)  Sequential e 6 6 6 6 6 ¢ o6 6 o o o o o o
Search e 6 6 6 6 o o o o o o o [ ]
Arbitrary [ [ [ ]
Save and Load Session Current state o o -
REPL code snippets [ [ [ ] ¢ @
Valid programs [ J [ e @ [ ]

1 The previous definition can be opened in an external editor for editing

is produced as part of every interaction with Gore.

The interactive interpreter for Swift also provides debugging facilities. This feature
was observed but not discussed as a REPL feature because the two behaviors are accessed
by running the interpreter in different ‘modes’. Interestingly, the decision to provide both
modes in a single tool was made from observing that they shared similar features, such
as expression evaluation, data monitoring and step by step execution.

The wealth of features and diversity observed in REPLs motivated us to study the
foundations of REPLs.

4.3 Methodology

In [15], we introduce and formalize the concepts of sequential language and exploring
interpreter. Essentially, a sequential language is a language offering a “sequence operator”,
whose semantics follow the property that executing two code snippets delimited by this
operator achieves the same results as executing these same two snippets independently
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with a context preserved from one execution to the other. An exploring interpreter is a
generic algorithm that creates and maintains an execution graph, where each node is
a valid configuration, or a state of the execution context, and each edge corresponds
to a program affecting the context and thus transitioning to a new state. Operations
available to an exploring interpreter are executing a program (which potentially creates
a new node and a new edge), reverting to a previous state, and displaying the current
representation of the graph with an emphasis on the differences between the current
state and the others.

In this section we propose a methodology for developing REPL interpreters based on
these definitions. The methodology proposes to build a REPL on top of an exploring in-
terpreter for a sequential language. In the event that the language targeted is not already
sequential, a new sequential language can be defined as an extension of, or modification
to, the base language. An exploring interpreter is essentially a bookkeeping device on
top of a definitional interpreter and provides the “Incremental Snippet Execution” and
“Undo” features directly (cf. Section 4.2). Additional motivation for using the exploring
interpreter (for a sequential language) is that it promotes certain design principles while
preserving the ability to implement many desirable features. These principles and their
consequences are discussed in this section, together with a summary of the proposed
methodology.

The core principles underlying our methodology are:

— the effects of a code snippet manifest as changes to an explicit state representation
(a configuration),

— the effects of a code snippet are determined by the definitional interpreter used by
the exploring interpreter,

— the effects of a sequence of code snippets is the composition of the effects of the
individual snippets,

— and only code snippets change configurations.

For users of the REPL, the most important consequence of these principles it that an
understanding of the definitional interpreter is enough to understand the precise behavior
of the REPL for the language. In practical terms: to know the effects of code snippets, a
user needs to understand the base language and the possible extension or modification
introduced in its sequential variant. The extension or modification is made explicit by the
definitional interpreter and should be communicated clearly (as precise documentation,
a formal semantics, or an open-source implementation).
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For engineers of the REPL, the most important consequence of the principles is that
every feature (on top of “Incremental Snippet Execution” and “Undo”) is implemented
either:

— as a language extension (e.g., the features “Definition Modification” and “Access to
Previous Results”),

— as a series of interactions with the exploring interpreter (e.g., “Multiple Input”,
explained below),

— based on information stored in the execution graph (e.g., “Summary of Snippet
Effects”, “Summary of Current State” and “Snippet Completion”),

— or independently of the exploring interpreter, when the feature does not involve
snippet execution (e.g., “Help Command” and other meta-commands).

The methodology presented here is based on the hypothesis that many of the features of
existing REPLs, including at least those in Figure 4.1, fall into the four categories listed
above. This hypothesis is tentatively supported by the various feature implementations
described across Section 4.4.

The methodology for developing a REPL for any base language £ is formulated as
the following steps:

1) Definitional Interpreter Formulate £ as a language in terms of its concrete and
abstract syntax, and a definitional interpreter that captures the effects of programs as a
function over some set of configurations. If the language is sequential at this point, then
steps 2-5 can be skipped.

2) Phrase Nonterminal To define a sequential variant £’ of £, reuse the syntax defini-
tions of the previous step to define a new sort phrase with an alternate for each of the
sorts of £ that describe the syntax of a valid code snippet of the envisioned REPL. The
syntax can also have other extensions or modifications, as long as phrase is the entry
point of the syntax (the first syntactic component of a language).

3) Phrase Interpreter Define a definitional interpreter for £’ to capture the semantics
of phrases, reusing as much as possible the definitional interpreter of step 1, ideally
by applying modular extension mechanisms (e.g., Object Algebras [61, 33], Rascal’s
extend [6]). Special consideration needs to be given to the effects of phrases to ensure
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the next phrase is executed in the right context. For example, if the result value of a
phrase needs to be available to the next phrase through a binding, this binding needs to
be introduced as one of the effects of the first phrase.

4) “;”-Phrase Extend the sort phrase with an alternate that combines two valid phrases
to form a phrase. For example, with the semicolon as a separator, let p; ¢ be a valid
phrase if p and ¢ are valid phrases.

5) Interpreter for “;” Extend the definitional interpreter of £’ such that the effect
of a phrase formed by combining two phrases is the composition of the effects of the
combined phrases, e.g., I,, = I, o I,. The language L' is sequential by definition as a
result of this and the previous step.

6) Instantiate Explorer Obtain an exploring interpreter for £’ by instantiating the
generic exploring interpreter algorithm with the definitional interpreter for £'. The
implementation may be simplified compared to our definition, in that it maintains a
simpler form of execution graph, if desirable. Instead of an exploring interpreter, the
definitional interpreter for £’ can also be used directly. In fact, any implementation that
respects the semantics of the definitional interpreter can be used, e.g., an implementation
with real rather than simulated effects.

The interpreter can then be offered through various user interfaces, such as command-
line interfaces, network services, or computational notebooks. The interface displays
visualizations of the effects of phrases, e.g., by showing output, computed values and
new bindings, and can optionally implement additional REPL features.

4.3.1 Pragmatics

In the context of language workbenches [28] and DSLs [56], a common language
implementation strategy is to define interpreters, consisting of functions traversing an
abstract syntax tree whilst modifying a propagated configuration to express effects (fol-
lowing the Visitor design pattern). The case studies of the next section include such
interpreters. The REPLs in these case studies are obtained through generic implemen-
tations of the exploring interpreter algorithm (in Java and in Haskell) that are easily
specialized by providing the entry points of the abstract syntax and the interpreter. The
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presented methodology is based on an exploring interpreter because it is a relatively
natural and simple layer to add on top of the described definitional interpreters typ-
ically built with Rascal [47, 6]. Moreover, the generic exploring interpreter forms a
suitable abstraction for reasoning about sequences of interactions between programmer
and REPL - e.g., saving and loading sessions and extracting base language programs —
and for implementing advanced REPL and notebook features that support exploratory
programming and live programming.

In theory, our approach can also be used for developing REPLs for (general-purpose)
programming languages, as m