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Résumé

La résolution de systèmes polynomiaux est un domaine de recherche actif situé entre informa-
tique et mathématiques. Il trouve de nombreuses applications dans divers domaines des sciences
de l’ingénieur (robotique, biologie) et du numérique (cryptographie, imagerie, contrôle optimal).
Le calcul formel fournit des algorithmes qui permettent de calculer des solutions exactes à ces
applications, ce qui pourraient être très délicat pour des algorithmes numériques en raison de la
non-linéarité.

La plupart des applications en ingénierie s’intéressent aux solutions réelles. Le développement
d’algorithmes permettant de les traiter s’appuie sur les concepts de la géométrie réelle effective ;
la classe des ensembles semi-algébriques en constituant les objets de base.

Cette thèse se concentre sur trois problèmes ci-dessous, qui apparaissent dans de nombreuses
applications et sont largement étudié en calcul formel :

• Classifier les racines réelles d’un système polynomial paramétrique selon les valeurs des
paramètres ;

• Élimination de quantificateurs ;

• Calcul des points isolés d’un ensemble semi-algébrique.

Nous concevons de nouveaux algorithmes symboliques avec une meilleure complexité que
l’état de l’art. En pratique, nos implémentations efficaces de ces algorithmes sont capables de
résoudre des problèmes hors d’atteinte des logiciels de l’état de l’art.

Mots-clés. calcul formel ; bases de Gröbner ; géométrie algébrique réelle ; systèmes polyno-
miaux paramétriques ; élimination de quantificateurs ; points isolés réels



Abstract

Solving polynomial systems is an active research area located between computer sciences and
mathematics. It finds many applications in various fields of engineering and sciences (robotics,
biology, cryptography, imaging, optimal control). In symbolic computation, one studies and de-
signs efficient algorithms that compute exact solutions to those applications, which could be very
delicate for numerical methods because of the non-linearity of the given systems.

Most applications in engineering are interested in the real solutions to the system. The de-
velopment of algorithms to deal with polynomial systems over the reals is based on the concepts
of effective real algebraic geometry in which the class of semi-algebraic sets constitute the main
objects.

This thesis focuses on three problems below, which appear in many applications and are
widely studied in computer algebra and effective real algebraic geometry:

• Classify the real solutions of a parametric polynomial system according to the parameters’
value;

• Elimination of quantifiers;

• Computation of the isolated points of a semi-algebraic set.

We designed new symbolic algorithms with better complexity than the state-of-the-art. In
practice, our efficient implementations of these algorithms are capable of solving applications
beyond the reach of the state-of-the-art software.

Keywords. symbolic computation ; Gröbner bases ; real algebraic geometry ; parametric poly-
nomial systems ; quantifier elimination ; real isolated points
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Chapter 1

Introduction
1.1 Motivations and problem statements

This thesis focuses on polynomial system solving which is an active research area in between
computational mathematics and computer sciences.

As polynomial equations and inequalities allow to model non-linear phenomena, solving poly-
nomial systems finds many applications in several domains, for example, robotics [45, 163, 201],
control theory [103, 73], optimization [132, 71], cryptography [121, 62], signal processing [90],
biology [186], etc. This problem is intrinsically difficult. For instance, deciding whether a poly-
nomial system has a solution is known to be NP-complete even over a finite field [117].

Polynomial systems are strongly related to algebraic geometry in which one studies algebraic
sets, i.e., the sets of solutions of polynomial equations over an algebraically closed field such as C.
Especially when we focus on solutions over R (or its generalizations, the real closed fields), the
theory of real algebraic geometry becomes useful.

In real algebraic geometry, the central objects are semi-algebraic sets. A basic semi-algebraic
set is the set of real solutions of a polynomial system of type

f1 = · · · = fs = 0, g1 > 0, . . . , gr > 0,

where fi, gj are polynomials with real coefficients. A semi-algebraic set is a finite union of basic
semi-algebraic sets.

Figure 1.1: The semi-algebraic set defined by the polynomial system

x3y + xz3 + y3z + z3 + 7z2 + 5z = 0 ∧ x2 < 25 ∧ y2 < 25 ∧ z2 < 25.
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Various applications in sciences boil down to study properties of semi-algebraic sets. For
this purpose, a branch of real algebraic geometry has been developed to design algorithms to
investigate semi-algebraic sets with the help of computers; this is also a major topic of our research
interest. A few fundamental problems in this direction are

• Computing exactly (at least) one point per connected components of a semi-algebraic set;

• Computing the dimension of semi-algebraic sets;

• Deciding the connectedness between two given points on a semi-algebraic set;

• Computing a description of the projection of a semi-algebraic set.

The design of algorithms for solving these algorithmic problems and many others frequently
follows the so-called critical point method, a classical technique in optimization and Morse theory.
The main principle of this approach is to compute critical points of some well-chosen mapping
on the algebraic set under study. The definition of critical points is recalled below.

Let V ⊂ Cn be an algebraic set defined by a sequence (f1, . . . , fs) ⊂ C[x1, . . . , xn]. Given
(φ1, . . . , φm) ⊂ C[x1, . . . , xn], these polynomials define the mapping

φ : Cn → Cm,
x = (x1, . . . , xn) 7→ (φ1(x), . . . , φm(x)).

Under some assumptions on V (smoothness, equidimensionality,. . . ), the set of critical points of
the restriction of φ to V , denoted by crit(φ, V ) is the simultaneously vanishing set of certain
suitable minors of the Jacobian matrix

∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fs
∂x1

· · · ∂fs
∂xn

∂φ1

∂x1
· · · ∂φ1

∂xn

...
. . .

...
∂φm

∂x1
· · · ∂φm

∂xn


.

In many problems, computations in real algebraic geometry boil down to investigate polyno-
mial systems defining critical points of some well-suited morphisms. Thus, this field of research
motivates also the development of efficient algorithmic tools for studying polynomial systems.

Algorithms for polynomial systems are designed following two main paradigms: numerical
methods (Newton’s method, numerical homotopy continuation method,. . . ) [141, 140, 195, 15]
and symbolic methods (multivariate resultants, triangular sets, rational univariate representation,
geometric resolution, Gröbner bases,. . . ) [35, 4, 166, 87, 58].

While numerical methods can provide efficiently approximations for the answer, certifying
their outputs or guaranteeing the convergence are delicate because of the non-linearity of the
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studied systems. By contrast, the outputs of symbolic computations are exact. Many applications
in motion planning [34, 128], medical imagery [20, 21], program verification [120, 206, 189] and
theorem proving [204, 51] privilege this criterion of exactness. Therefore, in this thesis, we fo-
cus on symbolic algorithms for solving polynomial systems. Depending on the nature of input
systems or demands of applications, the word “solving” can bear various meanings.

When the considered system has a finite number of solutions in an algebraic closure of the
coefficient field, it is called a zero-dimensional system. In symbolic computation, enumerating all
the solutions of a system usually means computing a representation of the solution set. We will
use the following zero-dimensional parametrization which historically goes back to Kronecker
[124] and is widely used in computer algebra (see, e.g., [40, 78, 33, 102, 131, 82, 86, 139, 87]).

Given a zero-dimensional system in Q[x1, . . . , xn] whose set of complex solutions is denoted
by V , a zero-dimensional parametrization representing V consists of

• A square-free polynomial w ∈ Q[u] where u is a new variable;

• A sequence of polynomials (v1, . . . , vn) in Q[u] with deg(vi) < deg(w) such that

V =

{(
v1(u)

w′(u)
, . . . ,

vn(u)

w′(u)

) ∣∣∣∣ w(u) = 0

}
;

• A sequence (λ1, . . . , λn) ∈ Qn such that

u · w′ =

n∑
i=1

λi · vi mod w.

Intuitively, u coincides with the linear form λ1x1 + · · ·+ λnxn over V .

Example 1.1.1. We consider the zero-dimensional system defined by f1 = f2 = 0 (Fig. 1.2) where

f1 = x21 − 2x22 + 2x1 + 2 and f2 = 2x1x2 + x22 + x1 + x2.

A zero-dimensional parametrization for this system consists of (λ1, λ2) = (1, 1) and

w = 7u4 + 26u3 + 31u2 + 8u− 4,

v1 = −2(8u3 + 23u2 + 17u+ 2),

v2 = −2(5u3 + 8u2 − 5u− 10).

Many algorithms have been developed to compute zero-dimensional parametrizations among
which Gröbner bases [29] and geometric resolutions [87] are two notable approaches.

A Gröbner basis is a finite generating set of an ideal with extra properties which make it a
powerful algorithmic tool in computer algebra. They were introduced in Buchberger’s PhD thesis
[29] where he also provided the first algorithm to compute them. Even though the worst-case
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Figure 1.2: f1 = f2 = 0.

complexity of computing Gröbner bases is doubly exponential in the number of variables (see,
e.g., [146]), this behavior is reached on only extremely rare systems which are constructed on
purpose. In recent decades, new complexity results [133, 80, 81, 130, 131, 7] show that the actual
complexity of computing Gröbner is simply exponential in the number of variables for a wide
range of systems. Many algorithmic improvements, namely Faugère’s F4/F5 algorithms [59, 60],
the FGLM algorithm for ordering change [67] and efficient implementations in the libraries FGb
[66], msolve [17] or computer algebra systems (Maple, Magma) reflect the capability of Gröbner
bases in solving non-trivial applications. The resolutions of zero-dimensional systems in [166, 58]
make use of these advances of Gröbner bases.

The geometric resolution algorithm is a probabilistic algorithm for solving zero-dimensional
systems developed by Giusti, Lecerf and Salvy [87]. While the zero-dimensional parametrization
has been used since Kronecker [124] by many authors, its computation depends mostly on using
Gröbner bases and their related tools. In 1995, Giusti, Heintz, Morais and Pardo [86, 158] redis-
covered and improved Kronecker’s approach which does not involve Gröbner bases. Combining
these results with the so-called straight-line program (see, e.g., [84, 83, 85]), [87] presents the ge-
ometric resolution algorithm for solving zero-dimensional systems under some assumptions and
estimates its complexity. This algorithm performs an incremental lifting and intersecting process
to compute a zero-dimensional parametrization. Its complexity is polynomial in the degree of in-
termediate algebraic sets appearing during the process; this degree can be bounded by the Bézout
bound recalled below, which is singly exponential in the number of variables. An implementa-
tion of this algorithm is available in the Kronecker library [96] of the Magma computer algebra
system.

The complexity of algorithms for solving zero-dimensional systems usually depends on three
important factors: the number of variables, the degrees of polynomials appearing during the
computation and the number of solutions of the given system.

The highest degree appearing in the computation of Gröbner bases is known as the degree
of regularity. Estimating this degree is an essential step in many complexity results for Gröbner

7



bases (see, e.g., [69, 7, 187, 65, 70]). The renowned Macaulay bound on the degree of regularity of
a generic zero-dimensional system is due to Lazard [133].

Let f1 = · · · = fn = 0 be a square zero-dimensional system in C[x1, . . . , xn] of total degree
deg(fi). Under some mild assumptions, the degree of regularity of this system is bounded by

n∑
i=1

(deg(fi)− 1) + 1.

On the other hand, Bézout bound provides an upper bound on the number of solutions. By
Heintz’s version of Bézout theorem [101, Theorem 1], the zero-dimensional system (f1, . . . , fs)
given above has at most deg(f1) . . . deg(fs) complex solutions. Moreover, this bound is reached
for a randomly generated dense system.

Positive-dimensional systems are systems with infinitely many solutions. These systems arise
frequently in applications related to geometry or depending on parameters, for e.g., robotics [45,
37], computer vision [63] or geometry [204]. Developing methods for solving parametric polyno-
mial systems is a challenging subject with many research directions (see, e.g., [134, 154, 76, 147]).

Over an algebraically closed field, an analogue of the zero-dimensional parametrization for
algebraic sets of higher dimension is the rational parametrization introduced in [178].

Let f ∈ Q[y][x] with variables x = (x1, . . . , xn) and parameters y = (y1, . . . , yt). A rational
parametrization of f consists of

• A square-free polynomial w ∈ Q(y)[u] where u is a new variable;

• A polynomial h ∈ Q[y];

• A sequence of polynomials (v1, . . . , vn) ⊂ Q(y)[u] such that, for η ∈ Ct and h(η) ̸= 0, η
does not cancel any denominator in (w, v1, . . . , vn) and

V (f(η, ·)) =
{(

v1
∂w/∂u

(η, ϑ), . . . ,
vn

∂w/∂u
(η, ϑ)

) ∣∣∣∣ w(η, ϑ) = 0,
∂w

∂u
(η, ϑ) ̸= 0

}
;

• A sequence (λ1, . . . , λn) ∈ Qn such that

u · w′ =

n∑
i=1

λi · vi mod w

.

The results of [178] provide a proof of existence of such a parametrization and an algorithm, called
parametric geometric resolution, to compute it under some assumptions.

Intuitively, the rational parametrization provides a generic description for the solutions of
f(η, ·) when η ranges over Ct. Note that one can choose the polynomial h ∈ Q[y] above in a
way such that the number of complex solutions of f(η, ·) is invariant as long as η does not cancel
h. However, when considering real solutions, the behavior is more sophisticated.
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Example 1.1.2. We consider the system given by

x21 − x22 − y2 = 2x22 + y2 + y − 1 = 0,

where (x1, x2) are the variables and y is the parameter.
Let ∆ = (y2 + y − 1)(y2 − y + 1). While ∆ ̸= 0, this system always has exactly 4 distinct

complex solutions: (
±
√
y2 − y + 1

2
,±
√
−y2 − y + 1

2

)
.

On the other hand, the number of distinct real solutions depends also on the sign of −y2 − y + 1. It
has 4 distinct real solutions when −y2 − y + 1 > 0 and no real solution when −y2 − y + 1 < 0.

Therefore, to solve parametric polynomial systems over the reals, it requires more algorithmic
results. This field is an important and active domain in both computer algebra and real algebraic
geometry. In this thesis, we focus on two problems in this topic:

• One block quantifier elimination for systems of polynomial equations;

• Real root classification for parametric systems of polynomial equations.

Another problem which comes to our interest is to compute the isolated points of a semi-
algebraic set. Such problems arise frequently in studying rigid mechanisms in material design [95,
75, 22, 23], which are modeled with semi-algebraic constraints. Naturally, isolated points of the
semi-algebraic set under consideration are related to the rigidity. The mathematical foundations
and potential applications of rigid materials are active research fields. In this thesis, we aim to
solve specifically the following algorithmic problem:

• Computing the isolated points of a real algebraic set.

In what follows, we give more precise statements for these problems.

One block quantifier elimination. The most natural question in solving parametric polyno-
mial systems is to ask for which parameter values the given system has at least one real solution.

From a geometric point of view, one can look at the vanishing set of the system in the space
of all variables and parameters. Then the problem boils down to compute a description of the
projection of this vanishing set on the parameter space.

By Tarski’s theorem [192, Theorem 31], the projection of a given semi-algebraic set is also
semi-algebraic. The one block quantifier elimination problem aims to compute a description by
semi-algebraic formulas of this projection. This problem appears in various applications from a
wide range of domains: program verification [120, 189], biology [157, 27, 38], economics [156],
control theory [1, 2]. The precise statement is as follows.
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Given a semi-algebraic formula Ψ(x,y) in the variables x = (x1, . . . , xn) and the parameters
y = (y1, . . . , yt), Ψ defines a semi-algebraic set S ⊂ Rn+t. Let π be the projection on the y-
coordinates, i.e.,

π : (x,y) 7→ y.

We arrive at computing a semi-algebraic formula Φ(y) such that

π(S) = {y ∈ Rt | Φ(y) is true}.

In other words, we need to compute a quantifier-free semi-algebraic formula Φ satisfying the
equivalence below

∃ x : Ψ(x,y)⇐⇒ Φ(y).

This formulation explains the name “one block quantifier elimination”.
In our work, we consider a weaker variant of the one block quantifier elimination problem

for systems of polynomial equations as below.
Let f = (f1, . . . , fs) ⊂ Q[x,y]. We denote by V (f) ⊂ Cn+t the set of complex solutions of

f1 = · · · = fs = 0.

We compute a semi-algebraic formula Φ(y) satisfying
• {y ∈ Rt | Φ(y) is true} ⊂ π(V (f) ∩ Rn+t);

• The Lebesgue measure of π(V (f) ∩ Rn+t) \ {y ∈ Rt | Φ(y) is true} is zero in Rt.
In practice, the parameters are usually given by approximate values containing numerical

errors. Thus, this variant is usually sufficient for solving many applications.
Example 1.1.3. We consider for example the torus given by the following equation

(x2 + y21 + y22 + 8)2 = 36(y21 + y22).

Its projection on the (y1, y2)-coordinate can be written as a quantified formula

∃ x : (x2 + y21 + y22 + 8)2 − 36(y21 + y22) = 0,

which is then equivalent to the quantifier-free semi-algebraic formula

y21 + y22 ≤ 16 ∧ y21 + y22 ≥ 4.

For our variant, we can return the formula

y21 + y22 < 16 ∧ y21 + y22 > 4.

Note that one block quantifier elimination is a particular case of quantifier elimination in
which one receives a formula with blocks of variables nested by quantifiers

◦ x1 ◦ x2 · · · ◦ xℓ : Ω(x1,x2, . . . ,xℓ,y),

where x1, . . . ,xℓ,y are blocks of variables and ◦ is an interlaced sequence of universal and exis-
tential quantifiers {∀,∃}.
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Figure 1.3: The projection of a torus is a semi-algebraic set.

Real root classification. A problem close to quantifier elimination is studied in [202, 203, 134,
143, 142] for the systems which have finitely many real solutions for almost every parameter
values. For those systems, one can ask for which condition the system has a given number of real
solutions.

As a consequence of Hardt’s trivialization theorem [97, Sec. 4], those conditions on the pa-
rameters can be defined by semi-algebraic formulas. The computation of those semi-algebraic
conditions is known as real root classification and appears in many applications such as robotics
[134], computer vision [74, 64], physics [99], control theory [103, 119], etc.

Given f = (f1, . . . , fs) ⊂ Q[x,y] where x = (x1, . . . , xn) are the variables and y =
(y1, . . . , yt) are the parameters, we denote by V (f) ⊂ Cn+t the set of complex solutions of

f1 = · · · = fs = 0

and π is the projection on the y-space, i.e., π : (x,y) 7→ y.
We assume that, for every parameter value η ∈ Ct outside the vanishing set of some polyno-

mial h ∈ C[y], the system
f1(·, η) = · · · = fs(·, η) = 0

has finitely many complex solutions. By Hardt’s triviality theorem [97, Sec. 4], there exists a finite
collection of disjoint semi-algebraic sets S1, . . . ,Sℓ of Rt such that

• The union Si is dense in Rt;

• The cardinality of π−1(η) ∩ V (f) is finite and invariant when η varies over each Si.

We aim to compute a list of tuples

{(Φ1(y), η1, r1), . . . , (Φℓ(y), ηℓ, rℓ)}

where

• Φi(y) are semi-algebraic formulas defining semi-algebraic sets S1 . . . ,Sℓ satisfying the
above properties;
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• ηi is a point belong to Si;

• ri is the number of real solutions of

f1(·, ηi) = · · · = fs(·, ηi) = 0.

A weaker output of the real root classification is the list of only the sample points and the number
of real solutions:

{(η1, r1), . . . , (ηℓ, rℓ)}.

This output is sufficient to identify which numbers of real solutions the input system possibly has.

Example 1.1.4. A complete real root classification of the torus in Example 1.1.3 is

2 solutions : (y21 + y22 < 16) ∧ (y21 + y22 > 4),
1 solution : (y21 + y22 = 16) ∨ (y21 + y22 = 4),
0 solution : (y21 + y22 > 16) ∨ (y21 + y22 < 4).

An admissible output of our variant can be

2 solutions : (y21 + y22 < 16) ∧ (y21 + y22 > 4),
0 solution : (y21 + y22 > 16) ∨ (y21 + y22 < 4).

Computing isolated points of a real algebraic set. Given f ∈ Q[x1, . . . , xn], the set of
complex solutions of the equation f = 0 is denoted by H. A point x ∈ H is an isolated point of
H ∩ Rn if there exists r > 0 such that

H ∩ {η ∈ Rt | ∥x− η∥ < r} = {x},

where ∥ · ∥ means the Euclidean norm in Rn.
The set of isolated points of H ∩ Rn is denoted by I (H). We aim to compute the following

data, which allows to represent symbolically I (H),

• A zero-dimensional parametrization C = (w(u), v1(u), . . . , vn(u)) ⊂ Q[u] such that

I (H) ⊂
{(

v1(η)

w′(η)
, . . . ,

vn(η)

w′(η)

) ∣∣∣∣ η ∈ R : w(η) = 0

}
;

• A set of disjoint intervals I1, . . . , I|I (H)| of rational endpoints such that each Ii contains
exactly one real root ηi of w and

I (H) =
{(

v1(ηi)

w′(ηi)
, . . . ,

vn(ηi)

w′(ηi)

) ∣∣∣∣ 1 ≤ i ≤ |I (H)|
}
.
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Note that the set of real solutions of a system of polynomial equations

f1 = · · · = fs = 0

where f1, . . . , fs ∈ R[x1, . . . , xn] coincides with the real solutions of a single equation

f21 + · · ·+ f2s = 0.

Thus, the problem statement above covers all real algebraic sets.

Example 1.1.5. We consider the algebraic curveH in C2 defined by the equation

x21 = x32 − x22.

The set of real isolated points I (H) ofH contains the unique point {(0, 0)}.

Figure 1.4: Real solution set of x21 = x32 − x22 with an isolated point (0, 0).

As an example for our data representation, we take

C = (u2 − u, 0, u), B = {[−1/2, 1/2]}

to represent the set I (H). The zero-dimensional parametrization C represents two points

(0, 0) =

(
0,

u

2u− 1

)
u=0

and (0, 1) =

(
0,

u

2u− 1

)
u=1

in the given curve. The isolating box [−1/2, 1/2] means that the only root of u2 − u = 0 lying in
[−1/2, 1/2] corresponds to the real isolated point ofH, which means the point (0, 0).

1.2 State-of-the-art

In this section, we go through the prior works, which consist of the state-of-the-art on the com-
plexity and software implementations for the aforementioned problems.
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Throughout the thesis, we take as input elements from the field of rational numbers Q which
allows exact representation for symbolic computation. We measure only the arithmetic complex-
ity of algorithms, i.e., the number of arithmetic operations +,−,×,÷, in the field Q.

We use the standard Landau O notation for the complexity model:

• Let f : Rℓ
+ 7→ R+ be a positive function. We let O(f) denote the class of functions g :

Rℓ
+ → R+ such that there exist C,K ∈ R+ such that for all ∥x∥ ≥ K , g(x) ≤ Cf(x),

where ∥ · ∥ is a norm of Rℓ.

• The notation O˜denotes the class of functions g : Rℓ
+ → R+ such that g ∈ O(f logκ(f))

for some κ > 0.

1.2.1 Cylindrical algebraic decomposition

We start this related work section by recalling the cylindrical algebraic decomposition (CAD) and
the algorithms that compute it. They are the first implemented tools that allow one to compute on
semi-algebraic sets and still being used in computer algebra. These implementations are available
in many computer algebra systems such as Maple/Mathematica or dedicated software like Qepcad
[25], Redlog [183] or SyNRAC [72].

A cylindrical algebraic decomposition adapted to a given semi-algebraic set S ⊂ Rn is a
partition of S into connected cells which are homeomorphic to ]0, 1[i for some 0 ≤ i ≤ n. These
cells are stacked into a cylindrical structure by projections.

Since such a decomposition is quite exhaustive, it provides a lot of information and allows us
to answer many algorithmic questions on semi-algebraic sets.

The first algorithm for computing CAD is due to Collins [41]. Since then, there have been
enormous contributions to improve CAD, for which we can name the works in [148, 107, 149, 24]
that improve the projection operator or the partial CAD [42], a variant of CAD that removes some
redundant computations at each step.

Note that the CAD eliminates a single variable at each step and, after each elimination step,
the degrees of involving polynomials grow quadratically. Therefore, on an input defined by s
polynomials in n variables of degree at most D, computing CAD requires at most

(sD)2
O(n)

arithmetic operations of the underlying field (see, for e.g., [50, 26]). In practice, this complexity
is reached on randomly generated dense systems. Hence, the use of CAD algorithms is usually
limited to only 4 variables for non-trivial problems.

In what follows, we discuss related works for each problem we consider.

1.2.2 One block quantifier elimination

Let f = (f1, . . . , fs) ⊂ Q[x,y] be our input and D be a bound on the degree of each fi.
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Historically, the works of Tarski and Seidenberg [192, 182] provide the first algorithm for
solving quantifier elimination. However, this algorithm is not elementary recursive. The CAD
algorithm of Collins [41] is the first implemented algorithm for solving quantifier elimination. Its
arithmetic complexity for our problem is therefore

(sD)2
O(n+t)

.

In [197], Weispfenning proposed the use of his comprehensive Gröbner systems [198] for
quantifier elimination. This approach was later developed in [190, 199, 54]. A comprehensive
Gröbner system of a parametric polynomial system consists of a finite partition of parameter
space and a set of Gröbner bases corresponding to each of those regions. Once a comprehensive
Gröbner system is acquired, it provides a partition of the y-space that allows one to apply a
real root counting algorithm to each cell. However, the computation of comprehensive Gröbner
systems is known to be expensive in practice and up to our knowledge, there is no complexity
bound given for this computation.

Initiated in [93, 94], another class of quantifier elimination algorithms makes use of the block
structure of quantifiers and the so-called critical point method. On a quantified formula of the
form

∃xℓ ∀ xℓ−1 · · · ∃x1 : Ω(x1,x2, . . . ,xℓ,y)

with blocks of variables x1, . . . ,xℓ,y, these algorithms eliminate a whole block xi at every step,
starting with the block

∃x1 : Ω(x1,x2, . . . ,xℓ,y),

through a reduction to dimension zero. More specifically, it computes a semi-algebraic formula
Φ(x1, . . . ,xℓ,y) such that

• ∃x1 : Ω(x1,x2, . . . ,xℓ,y) is logically equivalent to ∃x1 : Φ(x1,x2, . . . ,xℓ,y).

• For every value η of (x2, . . . ,xℓ,y), Φ(x1, η) has finitely many real solutions in x1.

While the first property reduces the quantifier elimination on Ω to Φ, the first condition allows us
to apply parametric real root counting algorithms to eliminate x1 by considering (x2, . . . ,xℓ,y)
as parameters.

Example 1.2.1. We take

Ω(x1, x2, y) =
(
(x21 + x22 + y2 + 8)2 − 36(x22 + y2) = 0

)
and solve the quantifier elimination problem

∃(x1, x2) : Ω(x1, x2, y).

The semi-algebraic set defined by

Φ(x1, x2, y) =
(
(x21 + x22 + y2 + 8)2 − 36(x21 + x22) = 0

)
∧ (x1 = 0)
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satisfies the properties required above as can be seen in Fig. 1.5.
Geometrically, Ω defines a torus V in R3 and Φ defines a curve S going around this torus. Let

π : (x1, x2, y) 7→ y. We have that

• Every fiber of π intersects the curve S at finitely many points;

• The projections on y of V and S coincide.

Thus, solving the one block quantifier elimination on Φ would also give an output for the same prob-
lem on Ω.

Figure 1.5: Reduction to real root classification.

Following the direction started by Grigor’ev and Vorobjov [93, 94], Heintz, Roy, Solernó [102],
Renegar [164] and Basu, Pollack, Roy [8] introduced algorithms whose complexities are doubly
exponential in only the number of blocks ℓ. Particularly for one block of quantifier, the complexity
of these algorithms is

sn+1DO(nt),

which is singly exponential in the number of variables (see [9, Algo. 14.6]). However, the tech-
niques in use involves several infinitesimals which makes it challenging to be efficiently imple-
mented . The only existing implementations for quantifier elimination are still those of CAD.

In spite of this tremendous progress, many important applications stay out of reach of the
state-of-the-art software of quantifier elimination which are based on CAD. This motivates the
studies of other variants, for instance, generic quantifier elimination [52, 183] and local quantifier
elimination [53]. Generic quantifier elimination computes a quantifier-free formula that is equiv-
alent to the input for almost all parameter values. On the other hand, local quantifier elimination
returns an output which is equivalent to the input over a semi-algebraic set containing a target
parameter values.

Recently, Hong and Safey El Din attempted to obtain a practical algorithm for a variant of
quantifier elimination based on the critical point method in [109, 110]. Even though their algo-
rithm applies under some assumptions, it shows an impressive performance in practice and solves
various challenging stability analysis problems (6 indeterminates).

16



Motivated by these prior works, we aim to design practically efficient algorithms through a
careful complexity driven approach. Moreover, we remark that the semi-algebraic formulas com-
puted by the current algorithms for non-trivial problems are large and difficult to be evaluated.
Therefore, we also want to have a compact representation of the output.

1.2.3 Real root classification

Again, we take (f1, . . . , fs) ⊂ Q[x,y] as input where the degree of fi is bounded by D.
Similar to quantifier elimination, a first approach for solving real root classification would be

to compute a CAD of Rn+t adapted to the input system. The cylindrical structure of the cells will
imply that their projection on the parameters’ space Rt define semi-algebraic sets enjoying the
properties required by the real root classification. However, the complexity

(sD)2
O(n+t)

makes it difficult to use in practice.
The dedicated algorithms for real root classification were first designed for univariate poly-

nomials with parametric coefficients [88, 143, 142]. These algorithms revisit different real root
counting tools such as discriminant sequences or Sturm-Habicht sequences and apply them to
parametric systems. To extend these results to multivariate systems, one relies on an algebraic
elimination procedure to reduce to the univariate case (by, e.g., Gröbner bases or parametric ge-
ometric resolution). However, doing this usually introduces artificial singularities due to projec-
tions.

Another approach consists in computing a polynomial h ∈ Q[y] whose set of real solutions,
denoted by VR(h), contains the boundaries of semi-algebraic sets enjoying the properties required
by the real root classification problem. More precisely, the number of real solutions of f(η, ·) is
invariant when η varies over each semi-algebraic connected component of Rt \ VR(h).

This is actually the direction followed by [203] and [134] in which such a polynomial h is
called respectively border polynomial and discriminant variety. However, while [203] computes
the border polynomials through triangular sets, [134] defines discriminant variety in a more geo-
metric way and relies on eliminating procedures by Gröbner bases. Note that both [203, 134] do
not discuss on the complexity aspect of their first steps.

Such a boundary immediately allows one to compute sample points for the weak output of
real root classification using, e.g., [9, Chap. 13] whose complexity is deg(h)O(t) where deg(h) is
the total degree of h. On a randomly generated dense system f , the polynomial h obtained using
[134] defines the critical values of the restriction of π to V (f) whose degree is n(D − 1)Dn.
Hence, the step of computing sample points of Rt \ VR(h) requires at most DO(nt) arithmetic
operations on these systems.

However, to obtain the full semi-algebraic descriptions, both [134] and [202] compute a CAD
adapted to h ̸= 0. Again, on the generic systems for which deg(h) = n(D−1)Dn, the complexity
for computing CAD of Rt \ VR(h) lie in Dn2O(t) .
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An alternative method would be to use parametric roadmap algorithms to do such compu-
tations using, e.g., [9, Chap. 16] to compute semi-algebraic representations of the connected
components of Rt \V (h). Under the above extra assumptions, this would result in output formu-
las involving polynomials of degree bounded by (n(D − 1)Dn)O(t3) using (n(D − 1)Dn)O(t4)

arithmetic operations (see [9, Theorem 16.13]). Note that the output degrees are by several orders
of magnitude larger than n(D−1)Dn which bounds the degree of critical values of the restriction
of π to V .

1.2.4 Computing isolated points in a real algebraic set

Given as input a polynomial f ∈ Q[x1, . . . , xn] of total degree D, we denote by H the real
algebraic set defined by f = 0.

As far as we know, there is no established algorithm dedicated to the computation of isolated
points in a real algebraic set. However, effective real algebraic geometry provides subroutines
from which such a computation could be done.

Note that the isolated points of H coincide with the connected components of H which are
singletons. By Thom-Milnor bound [150, 193], H has at most D(2D − 1)n−1 connected compo-
nents. This bound serves as an indicator for comparing the following approaches.

The first approach is to compute a CAD and to identify cells which correspond to isolated
points using adjacency information (see e.g. [3]). The complexity of such a procedure is bounded
by D2O(n) , which is doubly exponential in the number of variables n.

The algorithm for computing local dimension in [196] allows to compute isolated points in
time DO(n3).

A better approach is to formulate this problem by a quantified formula and use quantifier
elimination algorithms to solve it. Using algorithms based on critical point method, for e.g. [9,
Alg. 12.41], one obtains a complexity DO(n2).

An alternative method is to use [9, Algorithm 12.16] to compute sample points in each con-
nected component of H ∩ Rn and then decide whether spheres, centered at these points, of
infinitesimal radius, meet H ∩ Rn. Note that these points are encoded with parametrizations
of degree DO(n) (their coordinates are evaluations of polynomials at the roots of a univariate
polynomial with infinitesimal coefficients). Applying [9, Alg. 12.16] on this last real root deci-
sion problem would lead to a complexity DO(n2) since the input polynomials would have degree
DO(n). One can also run [9, Alg. 12.16] modulo the algebraic extension used to define the sample
points. That would lead to a complexity DO(n) but this research direction requires modifications
of [9, Alg. 12.16] since it assumes the input coefficients to lie in an integral domain, which is not
satisfied in our case.

The topological nature of our problem is related to connectedness. Computing isolated points
ofH∩Rn is equivalent to computing those connected components ofH∩Rn which are reduced
to a single point. Hence, one considers computing roadmaps: these are algebraic curves contained
inH which have a non-empty and connected intersection with all connected components of the
real set under study. Once such a roadmap is computed, it suffices to compute the isolated points
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of a semi-algebraic curve inRn. This latter step is not trivial; as many of the algorithms computing
roadmaps output either curve segments (see e.g., [11]) or algebraic curves (see e.g., [174]). Such
curves are encoded through rational parametrizations, i.e., as the Zariski closure of the projection
of the (x1, . . . , xn)-space of the solution set to

w(t, s) = 0, xi =
vi(t, s)

∂w/∂t
(t, s), 1 ≤ i ≤ n

where w ∈ Q[t, s] is square-free and monic in t and s and the vi’s lie in Q[t, s]. As far as we
know, there is no published algorithm for computing isolated points from such an encoding.

Figure 1.6: A roadmap of a torus

Computing roadmaps started with Canny’s (probabilistic) algorithm running in time DO(n2)

on real algebraic sets. Later on, [173] introduced new types of connectivity results enabling more
freedom in the design of roadmap algorithms. This led to [173, 11] for computing roadmaps in
time (nD)O(n1.5). More recently, [10], still using these new types of connectivity results, provides
a roadmap algorithm running in timeDO(n log2 n)nO(n log3 n) for general real algebraic sets (at the
cost of introducing a number of infinitesimals). This is improved in [174], for smooth bounded
real algebraic sets, with a probabilistic algorithm running in time O((nD)12n log2 n).

1.3 Contributions

This section provides an overview of our main contributions for the problems we consider. These
contributions consist of new geometric results, the design of new algorithms with complexity
improvements and implementations which outperform the software of the state-of-the-art. The
main algorithmic tools for achieving these results are mainly based on the critical point method
and the theory of Gröbner bases.

For the presented complexity results, we usually assume that our input polynomial sequence
is generic. Informally, the genericity can be taken in the sense that the coefficients of input poly-
nomials are considered as indeterminates that takes values in a suitable affine space; a rigorous
definition is explained in Section 2.3.
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As our algorithm for the one block quantifier elimination problem makes use of the real root
classification’s one, we begin this section with the contributions for real root classification.

1.3.1 Real root classification

With M. Safey El Din, we design a new algorithm that solves the real root classification problem
on an input f = (f1, . . . , fs) ⊂ Q[x,y] satisfying two assumptions:

• The polynomial sequence f generates a radical ideal in Q[x,y];

• For almost every η ∈ Ct, the system f1(η, ·) = · · · = fs(η, ·) = 0 has finitely many
complex solutions.

Example 1.3.1. For example, the system f = (x21+ y21 + y22 − 1) ⊂ Q[x1, y1, y2] satisfies the both
assumptions above. On the other hand, the system f = (x21 + x22 + y21 − 1) ⊂ Q[x1, x2, y1] fails to
satisfy the second assumption.

(a) x21 + y21 + y22 = 1. (b) x21 + x22 + y21 = 1.

We will see that this algorithm allows us to obtain a degree bound and an arithmetic cost
which are better than the state-of-the-art for a wide range of inputs. To do that, we slightly
generalize the notion of Hermite quadratic forms, a classical tool for counting solutions of zero-
dimensional systems, to parametric systems. Originally introduced by Hermite [106] for counting
real or complex solutions of univariate polynomials, Hermite quadratic forms were then extended
in [160] to multivariate systems; their definition is as follows.

Given a zero-dimensional ideal I ⊂ Q[x], Hermite quadratic forms operates on the finite
dimensional Q-vector space Q[x]/I by

Q[x]/I ×Q[x]/I → Q,
(p, q) 7→ trace(Lp·q),

where Lp·q denotes the endomorphism k 7→ p · q · k.
Once a basis of the vector space Q[x]/I is fixed, such a quadratic form is represented by a

symmetric matrix which is called a Hermite matrix. We will see in Subsection 4.4.3 how to obtain
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a basis of Q[x]/I using a Gröbner basis of I , whose algorithmic properties depend also on the
choice of the monomial ordering for the Gröbner basis.

The main property of Hermite matrices, given in [160, Theorem 2.1], states that: the number
of distinct real (resp. complex) roots of the algebraic set defined by I equals the signature (resp.
rank) of Hermite matrices.

Example 1.3.2. Given the ideal I =
〈
x21 + x2x1 + 2x2 + 3, x22 + 2x1x2 + 3x1 + 1

〉
, the Hermite

matrices of I with respect to the basesB1 = {1, x2, x22, x32} andB2 = {1, x2, x1, x22} of C[x1, x2]/I
are respectively

H1 =


4 5 97 818
5 97 818 7949
97 818 7949 74280
818 7947 74280 701998

 and H2 =


4 5 −1 97
5 97 −49 818
−1 −49 27 −338
97 818 −338 7949

 .
The computation of the bases B1, B2 and the Hermite matrices will be made clear in Subsection 4.4.3
when the preliminaries on Gröbner bases are fully introduced.

Since the both matrices have rank 4 and signature 2, we can deduce that the system

x21 + x2x1 + 2x2 + 3 = x22 + 2x1x2 + 3x1 + 1 = 0

has 4 distinct complex solutions and 2 distinct real solutions.
It is worth noting that the bit-sizes of coefficients in H1 is larger the ones in H2, which makes

the practical behaviors of these two matrices different in computations.

In our problem, we consider Q(y) as the field of coefficients. The finiteness of generic fibers
implies that f generates a zero-dimensional ideal in Q(y)[x]. This allows us to carry out sim-
ilar construction of Hermite’s quadratic forms over Q(y)[x] to obtain what we call parametric
Hermite quadratic forms. The matrices representing them are called parametric Hermite matrices.

Example 1.3.3. We consider the parametric system f = (x21 + x22 − y1, x1x2 + y1x2 + y2).
The parametric Hermite matrix associated to f with respect to the basis B1 = {1, x2, x1, x22} of

Q(y)[x]/ ⟨f⟩ is

H1 =


4 0 −2y1 −2(y21 − y1)
∗ −2(y21 − y1) −4y2 −6y1y2
∗ ∗ 2(y21 + y1) 2(y31 − y21)
∗ ∗ ∗ 2(y41 − 2y31 + y21 − 2y22)

 .
Whereas, using the basis B2 = {1, x2, x22, x32}, we obtain the parametric Hermite matrix

H2 =


4 0 −2(y21 − y1) −6y1y2
∗ ∗ ∗ 2(y41 − 2y31 + y21 − 2y22)
∗ ∗ ∗ 10(y31y2 − y21y2)
∗ ∗ ∗ −2(y61 − 3y51 + 3y41 − 9y21y

2
2 − y31 + 3y1y

2
2)

 .
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We also establish natural specialization properties for these parametric Hermite matrices.
Hence, a parametric Hermite matrix, similar to its zero-dimensional counterpart, allows one to
count respectively the number of roots at any parameters outside a strict algebraic sets of Rt by
evaluating the signature and rank of its specialization.

Based on this property, we derive from parametric Hermite matrices a polynomial w that
plays the same role as the discriminant varieties [134] or the border polynomials [202]. Thus, one
can compute the weak output for real root classification following the steps below.

(a) Compute a parametric Hermite matrix H associated to f ⊂ Q[y][x] and a polynomial
w∞ ∈ Q[y] encoding the non-specialization locus ofH.
We rely on the theory of Gröbner bases to perform this step and also present some remarks
to optimize the implementation of such a computation.

(b) Compute a set of sample points {η1, . . . , ηℓ} in the connected components of the semi-
algebraic set of Rt defined by w ̸= 0 where w is basically the product of det(H) and w∞.
This is done through algorithms based on the critical point method (see e.g. [9, Chap. 12]
and references therein) which are adapted to obtain practically fast algorithms following
[171].

(c) Compute the number ri of real points in V ∩ π−1(ηi) for 1 ≤ i ≤ ℓ.
This can be done by evaluating the signature ofH at the ηi’s.

To return semi-algebraic formulas, we follow a slightly different routine:

(a) Compute a parametric Hermite matrixH associated to f ⊂ Q[y][x].

(b) Compute a set of sample points {η1, . . . , ηℓ} in the connected components of the semi-
algebraic set of Rt defined by ∧δi=1Mi ̸= 0 where theMi’s are the leading principal minors
ofH. Again, this is done by the algorithm given in Section 5.2.

(c) For 1 ≤ i ≤ ℓ, evaluate the sign pattern of (M1, . . . ,Mδ) at the sample point ηi. From this
sign pattern, we obtain a semi-algebraic formula representing the connected component
corresponding to ηi.

(d) Compute the number ri of real points in V ∩ π−1(ηi) for 1 ≤ i ≤ ℓ.
Note that the output formulas are encoded in determinantal forms and can be evaluated
easily through the matrixH.

Example 1.3.4. We continue with the system and the Hermite matrix H1 in Example 1.3.3. The
determinant of its parametric Hermite matrix is

wH = y71 − 3y61 − y41y22 + 3y51 + 20y31y
2
2 − y41 + 8y21y

2
2 − 16y42.
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We notice that wH coincides exactly with the output returned by the procedure DiscriminantVari-
ety of Maple’s commands RootFinding[Parametric] that computes a discriminant variety [134].

Computing at least one point per connected component of the semi-algebraic set R3 \ V (wH)
using RAGlib gives us 12 points. We evaluate the signatures ofH specialized at those points and find
that the input system can have 0, 2 or 4 distinct real solutions when the parameters vary.

Computing the leading principal minors ofH, we obtain

M1 = 4,

M2 = −8y1(y1 − 1),

M3 = −8(y41 + y31 − 2y21 + 8y22),

M4 = −16(y71 − 3y61 − y41y22 + 3y51 + 20y31y
2
2 − y41 + 8y21y

2
2 − 16y42).

Since M1 is constant, we compute at least one point per connected component of the semi-algebraic
set defined by

M2 ̸= 0 ∧M3 ̸= 0 ∧M4 ̸= 0.

The computation using RAGlib outputs a set of 22 sample points and finds the following realizable
sign conditions of (M2,M3,M4):

[−1,−1, 1], [−1,−1,−1], [1, 1, 1], [1,−1, 1], [1, 1,−1], [1,−1,−1].

By evaluating the signature of H at each of those sample points, we deduce the semi-algebraic for-
mulas corresponding to every possible number of real solutions

0 real root →(M2 > 0 ∧M3 < 0 ∧M4 > 0) ∨ (M2 < 0 ∧M3 < 0 ∧M4 > 0)

2 real roots →(M2 > 0 ∧M3 < 0 ∧M4 < 0) ∨ (M2 < 0 ∧M3 < 0 ∧M4 < 0)

∨ (M2 > 0 ∧M3 > 0 ∧M4 < 0)

4 real roots →(M2 > 0 ∧M3 > 0 ∧M4 > 0).

It can be seen in Example 1.3.3 that, when constructing the matrixH, the degrees of polyno-
mials involving in the parametric Hermite matrix depends on the choice of a monomial basis of
the quotient ring of the ideal generated by f in Q(y)[x]. This again depends on the monomial
ordering used for Gröbner bases computations. In our work, we prioritize the so-called graded
reverse lexicographical (grevlex) ordering (which acutally leads to the basis B1 in Example 1.3.3)
whose interest for practical computations is explained in [13]. Notably, the following complexity
statements of our algorithm are established for generic inputs using this grevlex ordering.

GivenD ∈ N, let f = (f1, . . . , fn) ⊂ Q[x,y] (s = n) be a generic polynomial sequence such
that deg(fi) ≤ D and D = n(D − 1)Dn. We prove that

i) Our algorithm computes the sample points for the output of real root classification within

O˜((t+D

t

)
8t n2t+1D2nt+n+2t+1

)
.

arithmetic operations in Q.
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ii) When a complete output with semi-algebraic descriptions is required, this algorithm uses
at most

O˜((t+D

t

)
8t n2t+1D3nt+2(n+t)+1

)
arithmetic operations in Q and the output involves polynomials of degree bounded by D.
We observe that the above degree bound is sharp for randomly generated dense systems.

The proof combines several techniques from the theory of Gröbner bases and algebraic geometry.
First, it makes use of the genericity assumptions to establish some Noether position property for
f . This property allows us to connect the degree of entries in the parametric Hermite matrix with
the degrees appearing in the grevlex Gröbner basis. Through the so-called Hilbert series of f , we
are able to control these latter degrees and deduce a bound for them.

Comparing with the state-of-the-art in [134, 202] which rely on computing a CAD with a
complexity (sD)2

O(t) , our algorithm has a complexity lying in DO(nt).
We implement our algorithm in Maple which uses the FGb library for Gröbner basis compu-

tation, msolve for solving zero-dimensional systems and RAGlib for computing sample points of
semi-algebraic sets.

Table 1.8 below reports on the practical behavior of our algorithms. The columns hermite,
cd and rrc represent respectively the timings of our implementation and the commands CellDe-
composition (Discriminant variety approach) and RealRootClassification (Border polynomial ap-
proach) in Maple. The column deg gives the highest degree of polynomials appearing in our
output.

Our algorithm outperforms the other two state-of-the-art software and is able to solve var-
ious randomly generated dense systems and applications of real root classification which were
not tractable. A particular application of our algorithms is the Kuramoto model [126]. This math-
ematical model, motivated by the behavior of chemical and biological systems, is used to describe
the synchronization of coupled oscillators in many applications [185, 32, 18]. The Kuramoto mod-
els of 2 and 3 oscillators are studied carefully using computer algebra tools in [46]. In [99], the
numerical solution for 4 oscillators is provided. Using our algorithm, we compute a similar an-
swer as the one given by [99] which relies on numerical computation. Moreover, we obtain the
semi-algebraic formulas for which the system has a given number of real solutions. As far as we
known, this is the first symbolic solution for this application.

Especially, since the polynomials in our outputs are obtained as minors of parametric Hermite
matrices, these matrices provide a compact determinantal representation of the output formulas,
which then facilitates their evaluation. We illustrate this claim by reporting in Table 1.9 on the
timings of these two different tasks for 1000 points η:

• Evaluating the signature ofH(η) (the column sign);

• Evaluating the principal minors ofH (the column minors);

• Solving specialized systemsf(η, ·) using msolve, FGb and RootFinding[Isolate] of Maple
(the columns msolve, FGb and isolate).
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System t n D hermite deg cd rrc

Dense

2 2 [2, 2] .4 s. 8 .4 s. 1.1 s.
2 2 [3, 2] 5 s. 18 1 m. 12 s.
2 3 [2, 2, 2] 34 s. 24 17 m. 2 m.
2 2 [3, 3] 3 m. 36 2 h. 4 m.
3 2 [2, 2] 27 s. 8 36 s. 12 m.
3 2 [3, 2] 3 h. 18 86 h. 37 h.
3 3 [2, 2, 2] 32 h. 24 > 240 h. > 120 h.
3 2 [4, 2] 90 h. 32 > 240 h. > 240 h.
4 2 [2, 2] 8 m. 8 > 240 h. > 240 h.

Kuramoto 3 6 [2, . . . , 2] 86 h. 48 > 240 h. > 240 h.

Figure 1.8: Timings of real root classification algorithms.

System t n D sign minors msolve FGb isolate

Dense 2 2 [2, 2] .5 s .2 s 2 s 12 s 33 s
2 3 [2, 2, 2] 2 s 4 s 5 s 15 s 110 s
2 2 [3, 3] 3 s 6 s 4 s 12 s 65 s
2 2 [5, 2] 7 s 18 s 5 s 14 s 55 s
2 2 [4, 3] 10 s 30 s 6 s 15 s 80 s

Dense 2 2 [2, 2] .8 s .4 s 2 s 10 s 16 s
2 3 [2, 2, 2] 6 s 30 s 5 s 15 s 80 s
2 2 [3, 3] 9 s 90 s 4 s 12 s 65 s

Figure 1.9: Timings for evaluating the formulas.

We note that evaluating the signatures of specialized Hermite matrices is faster than evalu-
ating the minors. On the other hand, solving a specialized system would depend strongly on the
number of variables n while evaluating the signatures depends on the number of parameters t.
In the above examples where n = 2 and t = 3, solving the specialized systems is better. Even
though, the only library for solving polynomial systems is faster than evaluating the signatures
on these examples is msolve, which is highly optimized in C.

In a collaboration with D. Manevich and D. Plaumann, we apply our algorithm to an appli-
cation coming from the theory of real algebraic curves. We consider the computation of simple
totally real hyperplane sections, in which one asks for a given algebraic curve of degree δ, whether
there exists a hyperplane with real coefficients that intersect the curve at δ distinct real points.
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Example 1.3.5. For examples, let

f = (x+ 3)(x− y − 3)(x+ y − 3)− 2,

g1 = x2 + y2 + z2 − 10,

g2 = (x+ 1)2 + (y + 1)2 + z2 − 10.

We take the algebraic curves defined by the intersection of the surface defined by f with respectively
g1 and g2. They are two real algebraic curves, each of which has two connected components. Our
algorithm computes for the curve defined by f = g1 = 0 a simple totally real hyperplane section

x+
43

2000
y +

131

25
z + 9 = 0

while it concludes that the curve defined by f = g2 = 0 does not possess any simple totally real
hyperplane section.

(a) f = g1 = 0 (b) f = g2 = 0

Figure 1.10: Examples for the (non)-existence of simple totally real hyperplane sections.

Such a question is motivated by the works on establishing explicit relations between quantities
(degree, genus) of a given algebraic curve and the existence of totally real divisors [111, 152].

Taking the coefficients of the unknown hyperplane as parameters, this problem is naturally
modeled as a real root classification problem. Using our real root classification algorithms, we
illustrate a computational approach for deciding the existence of simple totally real hyperplane
sections on some examples which then leads to the following findings:

1. There exist canonical curves X in P3 with one or two ovals which do not allow simple
totally real hyperplane sections.

2. There exists a curve X in P3 of genus two and degree five having one oval which does not
allow a simple totally real hyperplane section.

3. There are infinitely many plane quartics X with many ovals possessing a (complete) linear
series of degree four which does not contain a totally real divisor.
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1.3.2 One block quantifier elimination

This subsection presents new algorithmic and complexity results of a joint-work with M. Safey
El Din for one block quantifier elimination problem.

Let f = (f1, . . . , fs) ⊂ Q[x,y] where x = (x1, . . . , xn) and y = (y1, . . . , yt) be the input.
The set of complex solutions of

f1 = · · · = fs = 0

is denoted by V ⊂ Cn × Ct and π is the projection (x,y) 7→ y.
Our main result is a new probabilistic algorithm that takes an input f that satisfies some

regularity assumptions and computes a semi-algebraic formula Φ defining a dense subset of the
interior of π(V ∩ Rn+t).

Note that, if almost every fiber π−1(η) ∩ V is finite, any real root classification algorithm
provides immediately a solution of one block quantifier elimination problem. With this in mind,
we reduce the solving of one block quantifier elimination problem on f to certain systems for
which our real root classification can apply.

More precisely, we compute a polynomial system defining an algebraic set S ⊂ V such that
there exists h ∈ Q[y] such that for η ∈ Ct and h(η) ̸= 0, the following holds:

• The fiber π−1(η) ∩ S is finite.

• If η ∈ Rt, π−1(η) ∩ S ∩ Rn+t is empty if and only if π−1(η) ∩ V ∩ Rn+t is empty.

These two properties imply that π(S ∩Rn+t) is a semi-algebraic subset of π(V ∩Rn+t) such that
π(V ∩ Rn+t) \ π(S ∩ Rn+t) has zero Lebesgue measure in Rt.

Hence, it remains to compute a quantifier-free semi-algebraic formula defining a dense subset
in the interior of π(S), for which we call to the real root classification algorithm introduced in
the previous section.

Following this idea, our algorithm for one-block quantifier elimination problem proceeds
through two main steps as follows.

a) We compute a list of polynomial systems S1, . . . , Sd+1 in Q[x,y] that satisfy

– Each Si generates a zero-dimensional ideal in Q(y)[x];
– The union of the algebraic sets defined by Si satisfies the property above.

This reduction is carried out by a parametric variant of the algorithm in [171] which actually
computes at least one point per connected component of a regular real algebraic set. More
specifically, this algorithm relies on the following geometric result [171, Theorem 2].
Let πi be the projection (x1, . . . , xn) 7→ (x1, . . . , xi). For almost every A ∈ GL(n,Q), the
union of the sets

crit(πi,VA) ∩ π−1
i−1((0, . . . , 0)), 1 ≤ i ≤ d+ 1,
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where VA = {A−1 ·x | x ∈ V}, is finite and meets all connected components of VA ∩Rn.
The system Si is taken as a defining system of crit(πi,VA) using Jacobian criterion.

b) For each system Si, our real root classification algorithm outputs a semi-algebraic formula
Φi whose zero set is dense in the interior of the projection of real solutions of Si.
Finally, we return

Φ =
d+1∨
i=1

Φi

as the final output of the one block quantifier elimination.
We illustrate our algorithm by the following example.
Example 1.3.6. We consider the polynomial f = x21 + y1x

2
2 + y2x2 + y3 in Q[y1, y2, y3][x1, x2].

Let ∆ = y22 − 4y1y3. The projection of V (f) ∩ R5 on (y1, y2, y3) is

(∆ ≥ 0 ∧ y1 > 0) ∨ (y1 < 0) ∨ (y1 = 0 ∧ ((y2 ̸= 0) ∨ (y2 = 0 ∧ y3 ≤ 0))) .

Applying the parametric variant of [171] forA taken as the 3×3 identity matrix, we obtain 2 systems

W1 = {2y1x2 + y2, f} and W2 = {f, x1}.

For these systems, we compute w1,∞ = w2,∞ = y1 and the Hermite matrices:

H1 =

(
2 0
0 −2y3 + y22/(2y1)

)
, H2 =

(
2 −y2/y1

−y2/y1 (−2y1y3 + y22)/y
2
1

)
.

The sequences of leading principal minors are respectively [2,∆/y1] and [2,∆/y21].
We compute then 4 points representing 4 connected components of the semi-algebraic set defined

by y1 ̸= 0 ∧ ∆ ̸= 0:

(1, 1/8, 0), (−1, 1/8, 0), (1, 1/8, 1/128), (−1, 1/8,−1/128).

The matrix H2 has non-zero signature over the first and second points, which both lead to the sign
condition ∆ > 0 ∧ y21 > 0. Thus, we have

Φ2 = (∆ > 0 ∧ y21 > 0) ∧ (y1 ̸= 0).

For H1, non-zero signatures are satisfied at the first and fourth points. Evaluating the sign of ∆ and
y1 at those points gives

Φ1 = ((∆ > 0 ∧ y1 > 0) ∨ (∆ < 0 ∧ y1 < 0)) ∧ (y1 ̸= 0).

The final output is therefore Φ = Φ1 ∨ Φ2, which is equivalent to

Φ = (∆ > 0 ∧ y1 > 0) ∨ (∆ < 0 ∧ y1 < 0) ∨ (∆ > 0 ∧ y1 ̸= 0)

= (∆ > 0 ∧ y1 > 0) ∨ (∆ ̸= 0 ∧ y1 < 0).

The difference between π
(
V (f) ∩ R5

)
and the semi-algebraic set defined by Φ is contained in (∆ =

0) ∨ (y1 = 0) which is of zero measure in R3.
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Controlling the complexity of this algorithm leads us to estimate the cost of classifying real
solutions of the systems Si. Similar to the complexity analysis of the real root classification algo-
rithm, this requires a degree bound of the minors of the associated Hermite matrices to Si.

Recall that the complexity result of our real root classification algorithm relies on the gener-
icity of the input system. However, since the systems Si are obtained as minors of some suitable
Jacobian matrices of f , they are not generic but equipped with a determinantal structure. Hence,
we need to establish new complexity results for these structured systems.

When f is generic, determinantal systems constructed from f enjoy many nice properties
(Cohen-Macaulay ring, explicit forms of Hilbert series,. . . ). In order to prove the complexity of our
one block quantifier elimination algorithm, we take advantages of the properties of determinantal
systems to extend the complexity proof of real root classification problem. Our complexity results
are stated as follows.

Our algorithm for one block quantifier elimination, in case of success, computes a semi-
algebraic formula Φ defining a dense subset of the interior of π(V ∩ Rn+t). The output formula
involves polynomials of degree at most

B = Ds(D − 1)n−s

(
2(n− s)(D − 1)

(
n− 1

s− 2

)
+ (n(D − 2) + s)

(
n− 1

s− 1

))
.

The arithmetic cost of this algorithm is bounded by

O˜(8t B3t+2

(
t+B

t

))
.

Even though our complexity result lies in DO(nt) as the ones based on critical point method
(e.g., [9, Algo 14.6]), we obtain explicitly a degree bound on the output formulas and the con-
stant in the big-O notation in the exponent of the complexity. Especially, our degree bound B is
observed to be sharp for generic inputs and, if s is fixed and D = 2, B becomes polynomial in n.

We should emphasize that the other algorithms using critical point method are not imple-
mented. The state-of-the-art software are based on the computation of CAD whose arithmetic
complexity is (sD)2

O(n+t) . Furthermore, our output formulas are evaluated easily through the
parametric Hermite matrices.

Our algorithm is implemented in Maple, which calls to our real root classification algorithm’s
implementation. It uses the libraries FGb for algebraic elimination, msolve for solving zero-
dimensional system and RAGlib for computing sample points.

Table 1.11 reports on the practical behavior of this implementation, comparing with quanti-
fier elimination commands in Maple (QuantifierElimination) and Mathematica (Reduce) on
randomly generated dense and sparse systems. It allows us to solve examples, both generic and
non-generic, that are out of reach of these software (up to 8 indeterminates).
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System t n s hermite deg Maple Mathematica

Dense

2 3 2 4 s. 24 > 120 h. > 120 h.
2 4 2 1.5 m. 40 > 120 h. > 120 h.
2 5 2 20 m. 56 > 120 h. > 120 h.
2 6 2 3 h. 72 > 120 h. > 120 h.
2 7 2 8 h. 88 > 120 h. > 120 h.
3 3 2 1 m. 24 > 120 h. > 120 h.
3 4 2 20 m. 40 > 120 h. > 120 h.
3 5 2 7 h. 56 > 120 h. > 120 h.
3 6 2 24 h. 72 > 120 h. > 120 h.
4 3 2 30 m. 24 > 120 h. > 120 h.
4 4 2 46 h. 40 > 120 h. > 120 h.
5 3 2 14 h. 24 > 120 h. > 120 h.

Sparse

3 3 2 40 s. 22 > 120 h. > 120 h.
3 4 2 15 m. 34 > 120 h. > 120 h.
3 5 2 15 m. 32 > 120 h. > 120 h.
4 3 2 20 m. 22 > 120 h. > 120 h.
4 4 2 20 m. 20 > 120 h. > 120 h.

Figure 1.11: Timings of one block quantifier elimination algorithms.

1.3.3 Computing the isolated points of a real algebraic set

Given a polynomial f ∈ Q[x1, . . . , xn] of total degree D, the set of complex solutions of f is
denoted byH and the set of isolated points ofH ∩ Rn is denoted by I (H).

With M. Safey El Din and T. de Wolff, we design several symbolic algorithms to compute the
set I (H). To our knowledge, they are the first symbolic algorithms dedicated to this problem
despite our restriction to the particular case of real algebraic sets.

All these algorithms share the first step of computing a finite set C of points that contains
I (H) as a subset. We call these points the candidates. The set of candidates is encoded by a
zero-dimensional parametrization

C = (w, v1, . . . , vn)

where w, v1, . . . , vn ∈ Q[u] and

C =

{(
v1(u)

w′(u)
, . . . ,

vn(u)

w′(u)

)
| w(u) = 0

}
.

This step can be done by computing at least one point per connected components ofH using
critical point method algorithms. As we restrict to the case of single equation, we refer to the al-
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gorithm [169] for this computation. The algorithm in [169] is based on the deformation technique
which is formulated mathematically as follows.

Let ε be a transcendental element of R such that ε < r for any positive r ∈ R. Instead of
considering directly the critical points of H, one can compute the critical points of the smooth
algebraic set Hε defined by f = ε. The critical points of H can be obtained by taking the limits
of the critical points of Hε. However, doing computation with infinitesimals is known to be
inefficient in practice. Hence, in [169], an elimination procedure with Gröbner bases is used to
avoid infinitesimals.

Once the zero-dimensional parametrization

C = (w, v1, . . . , vn)

representing the candidates is computed, it remains to decide for each candidate whether it is a
real isolated point ofH. We design in Chapter 8 several routines for this second step.

Our first approach is based on constructing an algebraic curve connecting the candidates that
we specifically define. The identification of real isolated points is then reduced to decide the
connectivity of some points on this curve. The construction of this curve uses the roadmap algo-
rithm given in [174], which has the best known complexity bound (nD)O(n log(n)) for constructing
roadmaps. The complexity of this step leads to an arithmetic complexity bound of

(nD)O(n log(n))

for this approach.
The second approach proposed below leads to an arithmetic complexityDO(n). Moreover, we

present several subroutines in our implementations to avoid as much as possible costly compu-
tations, in particular the computations with infinitesimals or over algebraic extensions.

To identify which candidates are actually isolated, a natural idea is to check whether a sphere
of infinitesimal radius intersects the hypersurfaceH. This approach has two drawbacks.

Recall that the set of candidates C are encoded by a zero-dimensional parametrization

C = (w, v1, . . . , vn),

in which the degree of the polynomials w, v1, . . . , vn is of order O(Dn). This parametrization
is taken as input to the decision problem. Therefore, using classical algorithms (for e.g. [9, Alg.
12.16]) for solving this problem leads to a complexity DO(n2). Moreover, we also want to avoid
the use of infinitesimals which appears in these algorithms for deformation.

A workaround to obtain a complexityDO(n) is to carry out the computation over the quotient
ring Q[T ]/ ⟨w(T )⟩. This leads to solving polynomial systems over Q[t]/ ⟨w(T )⟩ for which we
rely on a variant of geometric resolution given in the appendix of [174]. It should be noted that
extending the geometric resolution to this quotient ring is not obvious since the domain is only
a product of fields (and not necessarily a field).
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To remove the infinitesimals, we compute a sufficiently small rational radius e0 such that for
each candidate η ∈ C, η is an isolated point ofH ∩ Rn if and only if

{x ∈ Rn | ∥x− η∥ = e0} ∩ H = ∅.

The computation of such a value e0 can be done by computing the critical values of the distance
function ∥ • −η∥.

Once an appropriate value e0 is acquired, it remains to solve polynomial systems with rational
coefficients. This is easily done by classical tools from semi-algebraic geometry.

Along with these main algorithms, we introduce several optimizations for avoiding as much
as possible the expensive computations. The optimizations consist of two subroutines which are
launched before the main routines of our algorithms.

• The first subroutine computes a set of points C1 such that C1 ⊂ I (H).

• The second subroutine computes a set of points C2 such that I (H) ⊂ C2 ⊂ C.

Moreover, when |C1| = |C2| or even |C1| = |C|, they coincide with the set of real isolated points
I (H) and we obtain the output without running any heavy computation. This is actually the
case for every example we consider.

Our algorithms are implemented in Maple. We use the FGb library for computing Gröbner
bases to perform algebraic elimination required by our algorithms. Solving zero-dimensional sys-
tems for computing the candidates is done by msolve and the subroutine for deciding emptiness
of semi-algebraic sets calls to RAGlib. We also used our C implementation for bivariate polyno-
mial system solving (based on resultant computations) which we need to analyze connectivity
queries in roadmaps.

We take sums of squares of n random dense quadrics in n variables (with a non-empty inter-
section over R); we obtain dense quartics defining a finite set of points. None of these examples
could be solved by CAD algorithm in Maple within 10 days.

The implementations of our algorithms allow us to solve all of these examples. Timings for
our algorithm using roadmaps are given in the column rm-algo below. The column approx-algo
reports on the timings of our implementation of the algorithm using approximations. Note that
this implementation takes into account the optimizations that we mention above.

Roadmaps are obtained as the union of critical loci of some maps in slices of the input variety
[174]. We report on the highest degree of these critical loci in the column srmp. The column sqri
reports on the maximum degree of the bivariate zero-dimensional system we need to study to
analyze connectivity queries on the roadmap.

We also implemented [9, Alg. 12.16] using the Flint C library with evaluation/interpolation
techniques instead to tackle coefficients involving infinitesimals. This algorithm only computes
sample points per connected components. That implementation was not able to compute sample
points of the input quartics for any of our examples. We then report in the column [BPR] on the
degree of the zero-dimensional system which is expected to be solved by [9, Alg. 12.16]. This is
to be compared with the columns srmp and sqri.
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n rm-algo srmp sqri approx-algo [BPR] maple

4 50 s. 36 359 1 m. 7290 > 10 d.
5 8 h. 108 4 644 12 m. 65 610 > 10 d.
6 20 d. 308 47 952 7 h. 590 490 > 10 d.

Figure 1.12: Timings of computing real isolated points.

1.4 Organization of the thesis

This thesis is composed of two main parts.
Part I (Chapter 2 to Chapter 4) contains the preliminaries that will be used to present our

contributions. Chapters 2 and 3 recall basic definitions and properties in algebraic geometry and
the theory of Gröbner bases that will be used frequently throughout the thesis. Chapter 4 is
dedicated to preliminaries on real algebraic geometry, especially the ones used for critical point
method and real root counting. The results contained in this part are not original. There, we give
the precise references for each result where a proof can be found.

Our contributions are presented in Part II of the thesis, which consists of five chapters below:

• Chapter 5 introduces our algorithms for solving the real root classification using parametric
Hermite matrices.
The content of this chapter is also presented in the paper “Solving parametric systems of
polynomial equations over the reals through Hermite matrices” (Huu Phuoc Le and Mohab
Safey El Din) [136], which is under revision for Journal of Symbolic Computation.

• Chapter 6 contains our contributions for one-block quantifier elimination.
These results are also presented in the conference paper “Faster One Block Quantifier Elim-
ination for Regular Polynomial Systems of Equations” (Huu Phuoc Le and Mohab Safey El
Din) [137], published in the proceeding of ISSAC 2021, St. Petersburg, Russia.

• In Chapter 7, we show how to apply the algorithm presented in Chapter 5 to compute the
totally real hyperplane sections on algebraic curves.
This work is extracted from the computational part of the paper “Computing totally real hy-
perplane sections and linear series on algebraic curves” (Huu Phuoc Le, Dimitri Manevich
and Daniel Plaumann) [135] to be appeared in the journal Le Matematiche. These compu-
tations are my main contributions to this paper.

• Chapter 8 contains our works on the computation of the real isolated points of an algebraic
hypersurface.
It consists of the results presented in the ISSAC 2020 paper “Computing the real isolated
points of an algebraic hypersurface” (Huu Phuoc Le, Mohab Safey El Din and Timo de Wolff)
[138] and also new works in an on-going collaboration with M. Safey El Din.
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Part I

Preliminaries
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Chapter 2

Basic notions of algebra and geometry
In this first chapter, we recall the preliminaries of commutative algebra and algebraic geometry
which will be used in the next chapters. The notions and results presented in this chapter can be
found with more details in the books by Eisenbud [56] and Cox, Little and O’Shea [48].

Throughout this chapter, R is a commutative ring whose zero and unit are denoted respec-
tively by 0R and 1R.

2.1 Ideals

In classical algebraic geometry, we study the solutions of systems of polynomial equations over
an algebraically closed field. These solution sets are related to the ideals of a polynomial ring.
Therefore, we start this chapter by recalling the definition and some properties of ideals.

We start with the definition of ideals of a commutative ring R.

Definition 2.1.1 (Ideals). A subset I of R is called an ideal if and only if I is a subring of R and,
for any r ∈ R, rI ⊂ I .

The ideal generated by a subset S of R is

⟨S⟩ = {r1s1 + · · ·+ rksk | r1, . . . , rk ∈ R, s1, . . . , sk ∈ S, k ∈ N}.

Definition-Proposition 2.1.2. For an ideal I of the commutative ringR, we define the equivalence
relation of elements of R below

r ∼ r′ if and only if r − r′ ∈ I.

The set of equivalent classes [r] for r ∈ R is called the quotient of R by I and denoted as R/I .
It is equipped with a ring structure with the operations inherited from R

[r] + [r′] = [r + r′] and [r] · [r′] = [r · r′].

Example 2.1.3. Let R = Z, every ideal of R has the form ⟨r⟩ for some r ∈ Z. The quotient Z/ ⟨r⟩
is a ring.

The quotient of the polynomial ring R[x, y] by the ideal ⟨x, y⟩ is isomorphic to R.

The following operations are defined for the ideals of R.

Definition-Proposition 2.1.4 ([48, Chap. 4, Sec. 2, 3, 4]). Let I and J be two ideals of R. Then
the following subsets of R are also ideals of R:
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• Sum: I + J = {f + g | f ∈ I, g ∈ J};

• Product: IJ = ⟨fg | f ∈ I, g ∈ J⟩;

• Intersection: I ∩ J ;

• Radical:
√
I = {f | ∃k ∈ Z+ such that fk ∈ I};

• Saturation: I : J∞ = {f ∈ | ∃k ∈ Z+ such that fJk ⊂ I}.

Note that IJ ⊂ I ∩ J and the equality holds if I + J = R.

Example 2.1.5. Taking R = C[x1, x2], let I = ⟨x1⟩ and J = ⟨x1x2⟩. The ideal I ∩ J = ⟨x1x2⟩
while IJ =

〈
x21x2

〉
.

Below are some frequently used definitions.

Definition 2.1.6. Let I be an ideal of R.

• I is a maximal ideal if I ̸= R and there is no ideal J of R such that I ⊊ J ⊊ R.

• I is a prime ideal if I ̸= R and whenever a, b ∈ R and ab ∈ I , then either a ∈ I or b ∈ I .

• I is a primary ideal if for all f, g ∈ R, fg ∈ I implies that f ∈ I or there is k ∈ Z+ such
that gk ∈ I .

• I is a radical ideal if I =
√
I .

Definition 2.1.7 (Noetherian ring). A ring R is noetherian if and only if any increasing chain of
ideals

I0 ⊆ I1 ⊆ · · · ⊆ Is ⊆ . . .

is stationary.

Example 2.1.8. Any field is a noetherian ring as its only ideals are ⟨0⟩ and ⟨1⟩.

Noetherian rings are also characterized by the following property.

Proposition 2.1.9 ([56, Sec. 1.4.]). A ring R is noetherian if and only if every ideal of R is finitely
generated, i.e., it admits a finite generating set.

The theorem below, known as Hilbert’s basis theorem, is a key ingredient to ensure the ter-
mination of algorithms in commutative algebra.

Theorem 2.1.10 (Hilbert’s basis theorem, [56, Theorem 1.2]). If a ring R is noetherian then the
polynomial ring R[x1, . . . , xn] is noetherian. As a consequence, every ideal of R[x1, . . . , xn] is
finitely generated.

To each commutative ring R, one can associate the following notion of Krull dimension.
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Definition 2.1.11 (Krull dimension). The height of a prime ideal p, denoted by height(p), is the
supremum of all integers s such that there exists a chain of distinct prime ideals:

p0 ⊊ p1 ⊊ . . . ⊊ ps = p.

The Krull dimension of R, denoted by dimR, is the supremum of the heights of all prime ideals of
R.

Example 2.1.12. The Krull dimension of any field is 0 as its only prime ideal is ⟨0⟩.
The Krull dimension of R[x1, . . . , xn] is n as we have the maximal chain of prime ideals

⟨0⟩ ⊊ ⟨x1⟩ . . . ⊊ ⟨x1, . . . , xn⟩ .

The Krull dimension of the quotient ring R[x1, x2]/
〈
x1 − x22

〉
is 1 since R[x1, x2]/

〈
x1 − x22

〉
is

isomorphic to R[x2].

Theorem 2.1.13 ([56, Chap. 8, Theorem A]). LetR be an integral domain of finite Krull dimension.
For any p be a prime ideal of R, we have

height(p) + dimR/p = dimR

Example 2.1.14. The ideal I =
〈
x21 − x2, x1

〉
is a prime ideal of C[x1, x2]. It has height 2 as we

have the maximal ascending chain of prime ideals

⟨0⟩ ⊊
〈
x21 − x2

〉
⊊
〈
x21 − x2, x1

〉
.

On the other hand, we have that

C[x1, x2]/
〈
x21 − x2, x1

〉
≃ C[x1]/ ⟨x1⟩ ≃ C

Hence, its Krull dimension is 0. Thus, the equality from Theorem 2.1.13 holds:

height(I) + dimC[x1, x2]/I = dimC[x1, x2].

The following definitions are essential in studying “local” properties of commutative rings.

Definition 2.1.15 (Local ring). A ring R is a local ring if it has a unique maximal ideal.

Example 2.1.16. Any field is a local ring and its unique maximal ideal is ⟨0⟩.

The following construction leads to more interesting local rings.

Definition 2.1.17 (Localization). A subset S of R is called a multiplicative set if 1R ∈ S and for
a, b ∈ S, a · b ∈ S. For a multiplicative set S, we can define an equivalence relation ∼ on R× S by
(a, s) ∼ (a′, s′) if and only if there is an element u ∈ S such that u(as′ − a′s) = 0.
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We denote the equivalence class of a pair (a, s) ∈ R× S by a
s . The set of all equivalence classes

{a/s | a ∈ R and s ∈ S}

is called the localization of R at R \ S, denoted by RR\S . This set RR\S is a ring with addition and
multiplication given by

a

s
+
a′

s′
=
as′ + a′s

ss′
and

a

s
· a

′

s′
=
aa′

ss′
.

Example 2.1.18. For any prime ideal p of a commutative ring R, the set R \ p is a multiplicative
set. The localization Rp of R at p is a local ring whose maximal ideal consists of all elements a/s
with a ∈ p and s ∈ R \ p.

2.2 Affine algebraic sets

Let F be a field and K be an algebraically closed field containing F. Affine algebraic sets of Kn are
defined as solution sets in Kn of systems of polynomial equations of n variables with coefficients
in K.

Definition 2.2.1. Let S be a subset of F[x1, . . . , xn] and L be an extension of F. The subset of Ln

at which the polynomials in S vanish, i.e.,

{(x1, . . . , xn) ∈ Ln | f(x1, . . . , xn) = 0 for any f ∈ S}

is called the affine algebraic set of S over L, denoted by VL(S).

Let ⟨S⟩ be the ideal of L[x1, . . . , xn] generated by S. It is easy to prove that VL(S) = VL(⟨S⟩).
Conversely, for an algebraic set V ⊂ Kn, the subset of F[x1, . . . , xn] of elements vanishing

over V , i.e.,
{f ∈ F[x1, . . . , xn] | for any η ∈ V, f(η) = 0},

is an ideal of F[x1, . . . , xn] and is denoted as I(V ).
Recall that, by Hilbert’s basis theorem (Theorem 2.1.10), the ideals of F[x1, . . . , xn] are finitely

generated.
The case where the ground field is an algebraically closed field is particularly important. In

this case, we have the Hilbert Nullstellensatz theorem.

Theorem 2.2.2 (Weak Nullstellensatz, [184, Prop. A.9]). Let I be an ideal of K[x1, . . . , xn]. The
algebraic set VK(I) is empty if and only if I = ⟨1⟩.

From an algorithmic point of view, deciding the emptiness of an ideal I can be done by testing
whether 1 lies in I . We will see in the theory of Gröbner bases presented in Chapter 3 that this is a
particular instance of the ideal membership problem which can be done effectively by computing
normal forms.

The strong Nullstellensatz theorem below states that the radical
√
I is the set of polynomials

that vanish over VK(I). It is equivalent to the weak Nullstellensatz.
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Theorem 2.2.3 (Strong Nullstellensatz, [48, Chap. 4, Sec. 2, Theorem 6]). Let I be an ideal of
K[x1, . . . , xn]. Then,

I(VK(I)) =
√
I.

We note that the assumption of algebraic closedness of K is crucial in Theorem 2.2.2. For
instance,

〈
x2 + 1

〉
is a proper ideal of R[x] but VR(x2 + 1) = ∅.

Theorem 2.2.4 ([48, Chap. 4, Sec. 5, Theorem 11]). Let η = (η1, . . . , ηn) ∈ Kn. Then we have that

I({η}) = ⟨x1 − η1, . . . , xn − ηn⟩

and this ideal is a maximal ideal of K[x1, . . . , xn].

One can carry out the following operations on ideals of K[x1, . . . , xn].

Proposition 2.2.5 ([48, Chap. 4, Sec. 3]). Let I and J be two ideals of K[x1, . . . , xn]. Then, we
have

• VK(I + J) = VK(I) ∩ VK(J),

• VK(I ∩ J) = VK(I · J) = VK(I) ∪ VK(J),

• VK(I : J∞) = VK(I) \ VK(J).

As a corollary, we immediately have the proposition below.

Proposition 2.2.6 ([48, Chap. 4, Sec. 3]). The sets ∅ andKn are algebraic sets ofKn. The intersection
and finite union of algebraic sets of Kn are also algebraic sets of Kn.

Proposition 2.2.6 implies that the algebraic sets of Kn form the closed sets of a topology of
Kn. This topology is called Zariski topology.

When K = C, this topology is much coarser than the strong (Euclidean) topology of Cn. For
example, the only Zariski closed proper subset of C are finite sets of points.

The Zariski topology also has the following usual notions.

Definition 2.2.7. Given any set S ⊂ Kn, we denote by S the Zariski closure of S, i.e., the smallest
algebraic set of Kn containing S. The set S is said to be Zariski dense in an algebraic set V if V
coincides with the Zariski closure of S.

An algebraic set V ⊂ Kn is irreducible if for any two algebraic sets V1, V2 ⊂ Kn such that

V = V1 ∪ V2,

then either V1 = V or V2 = V .

The proposition below characterizes algebraically irreducible algebraic sets.
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Proposition 2.2.8 ([48, Chap. 4, Sec. 5, Prop. 3]). If V is irreducible, the associated ideal I(V ) is
a prime ideal.

Any algebraic set admits a unique decomposition into irreducible algebraic sets.

Proposition 2.2.9 (Irreducible decomposition). An algebraic set V has a unique decomposition
(up to order) into irreducible algebraic sets

V =

s⋃
i=1

Vi

where Vi ̸⊂ Vj for any i ̸= j.

The above decomposition of an algebraic set is translated to the primary decomposition of a
defining ideal as follows.

Proposition 2.2.10 (Primary decomposition, [48, Chap. 4, Sec. 8]). Consider an ideal I ⊂
K[x1, . . . , xn]. Then, there are primary ideals I1, . . . , Is ∈ K[x1, . . . , xn] such that

I = I1 ∩ · · · ∩ Is,

where
√
Ii ̸=

√
Ij and ∩j ̸=iIj ̸⊂ Ii.

We call the set (I1, . . . , Is) a minimal primary decomposition of I . Note that the ideal I can
admit different minimal primary decompositions. However, those primary decompositions involve
always the same number of primary ideals and the radicals

√
I1, . . . ,

√
Is, which are prime ideals,

are the same. These prime ideals are called the associated primes of K[x1, . . . , xn]/I .

Example 2.2.11. Given an ideal I =
〈
x41 − 2x31 + x21, x

2
1x2 − 2x1x2 + x2

〉
, a minimal primary

decomposition of I is
I =

〈
(x1 − 1)2

〉
∩
〈
x21, x2

〉
.

The algebraic set VC(I) is the union of the line x1 = 1 and the point (0, 0). The radical
√
I =

⟨x1(x1 − 1), x2(x1 − 1)⟩ and has the decomposition
√
I = ⟨x1 − 1⟩ ∩ ⟨x1, x2⟩ .

The decomposition of V into irreducible components corresponds to the primary decompo-
sition of the radical ideal I(V ) associated to V :

I(V ) =

s⋂
i=1

I(Vi).

Definition 2.2.12 (Coordinate ring). Let V be an algebraic set in Kn and I(V ) is the radical ideal
of K[x1, . . . , xn] associated to V . The quotient ring K[x1, . . . , xn]/I(V ) is called the coordinate
ring of V . We denote it by K[V ].

Note also that K[x1, . . . , xn]/I(V ) is also equipped with a structure of K-vector space.
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Intuitively, the coordinate ring K[V ] can be seen as the ring of functions from V to K which
coincide with a polynomial over V .

Definition 2.2.13 (Dimension). Let V be an irreducible variety. The dimension of V is defined as
the Krull dimension of the coordinate ring K[V ] (see Definition 2.1.11).

Let V be an algebraic set of dimension d. It is worth noting that the irreducible components of
V can have different dimensions and the highest dimension among those irreducible components
equals d. We have the following definition.

Definition 2.2.14 (Local dimension). The local dimension of a point η ∈ V is defined as the largest
dimension among the irreducible components of V containing η.

Example 2.2.15. LetV ⊂ C3 be the union of the planeV (x1) and the lineV (x1, x2). The dimension
at (0, 0, 0) is 2 while the dimension at any other point in V (x1, x2) is 1.

Definition 2.2.16. An algebraic set is equidimensional if it is the union of finitely many irreducible
algebraic sets of the same dimension.

The proposition below states every non-empty Zariski open subset of some affine space Kn

is dense in Kn. It allows us to define the notion of genericity in the next section.

Proposition 2.2.17 ([100, Chap. 1, Exercise 1.6]). Let V be an irreducible algebraic set of dimension
d. Then any proper Zariski closed subset of V has dimension at most d−1. Therefore, any non-empty
Zariski open subset of V is Zariski dense in V .

2.3 Genericity and changes of variables

In this thesis, our algorithms rely on certain properties that hold for generic polynomial se-
quences. The definition of genericity is given below.

Definition 2.3.1 (Genericity). A property P over m free variables (u1, . . . , um) which take values
in K is a boolean function

P : Km → {true, false}
(u1, . . . , um) 7→ P (u1, . . . , um).

We say that P is true generically if the subset of Km over which P (u1, . . . , um) is true contains
a non-empty Zariski open subset of Km.

When K = C, since the set over which P does not hold is contained in a proper Zariski closed
subset of Cm, it has zero measure (with the usual Lebesgue measure of Cm).

For D ∈ N, let K[x1, . . . , xn]≤D ⊂ K[x1, . . . , xn] be the set of polynomials of degree at most
D. By considering the coefficients of a polynomial as coordinates, K[x1, . . . , xn]≤D naturally has
the structure of an affine space. In this thesis, our algorithms rely on certain properties that hold
for generic polynomial sequences, i.e., generic properties over these spaces of polynomials.
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Example 2.3.2. Given D1, . . . , Ds ∈ N, the following properties are generic for polynomial se-
quences f = (f1, . . . , fs) ∈

∏s
i=1C[x1, . . . , xn]≤Di .

• The ideal ⟨f⟩ is radical.

• The algebraic set VC(f) ⊂ Cn is smooth.

These two statements can be proved by using Jacobian criterion (Theorem 2.4.4).
We will also see in Proposition 2.7.8 that, a class of polynomial sequences, called homogeneous

regular sequences, is generic among all polynomial sequences.

Another use of genericity is through the changes of variables. In many algorithms, applying
a random linear changes of variables to the input polynomial systems can ensure certain assump-
tions required by the algorithms in use (see, e.g., [87, 171, 178]). Since the changes of variables
will be extensively used in this thesis, we introduce a dedicated notation for it.

We consider the polynomial ring F[x1, . . . , xn]. Let GL(n,F) be the set of invertible matrices
of size n× n with entries in F.

Let p ∈ F[x] be a polynomial. For any A ∈ GL(n,F), we denote by pA the polynomial
p(A · x) ∈ F[x]. This notation applies also to a set of polynomials S ⊂ F[x]

SA = {pA | p ∈ S}.

Given an algebraic set V ⊂ Kn, V A denotes the algebraic set

V ({pA | p ∈ I(V )}) = {A−1 · x | x ∈ V }.

The set GL(n,K) is a non-empty Zariski open subset of the affine space of matrices of size
n. A polynomial system f ⊂ F[x1, . . . , xn] satisfies a property P under a generic change of
variables means that there exists a non-empty Zariski open subset A ⊂ GL(n,K) such that for
any A ∈ A, fA satisfies P .

Example 2.3.3 ([14]). Let I be a zero-dimensional radical ideal of K[x1, . . . , xn]. There exists a
non-empty Zariski open subset A of GL(n,K) such that for any A ∈ A, the reduced Gröbner basis
of IA with respect to the lexicographic ordering x1 ≻ · · · ≻ xn has the form:

{x1 − g1, . . . , xn−1 − gn−1, . . . , gn},

where g1, . . . , gn lie in K[xn].

In Chapter 5 and 6, we consider polynomials in two blocks of indeterminatesx = (x1, . . . , xn)
and y = (y1, . . . , yt). In these cases, we might apply a linear change of variables that acts only
on the variables x and leave y invariant. The matrices associated to these changes of variables
form a subset denoted by GL(n, t,F) of GL(n+ t,F).
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2.4 Tangent spaces and singularities

Similar to differential geometry, we attach to each point in an algebraic set a vector space which
is called tangent space.

Definition 2.4.1 (Tangent spaces). Let V be an algebraic set of Kn and (f1, . . . , fs) be a generating
set of I(V ). The tangent space at a point η ∈ V , denoted by Tη(V ) is the right kernel of the Jacobian
matrix

J =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fs
∂x1

· · · ∂fs
∂xn


evaluated at η.

This definition above does not depend on the choice of the generators f1, . . . , fs.

One can define singular points through the rank of the Jacobian matrix, or equivalently, the
codimension of tangent spaces.

Definition 2.4.2 ([184, Chap. 2, Sec. 1.4, p. 94]). Let V be an algebraic set and f1, . . . , fs ∈
K[x1, . . . , xn] be a generating set of I(V ). We denote by J the Jacobian matrix of f1, . . . , fs with
respect to x1, . . . , xn.

A point η ∈ V of local dimension dη (see Definition 2.2.14) is a regular point of V if rank J =
n− dη . Otherwise, if rank J < n− dη , then η is a singular point of V .

In other words, one can say that a point η is singular if the local dimension of η is smaller
than the dimension of Tη(V ). In fact, an algebraic set V cannot have too many singularities.

Proposition 2.4.3 ([48, Chap. 9, Sec. 6, Theorem 8]). The set of singularities of an algebraic set V
is contained in a proper Zariski closed subset of V .

The following theorem provides a tool to compute the singular points of a given algebraic set.

Theorem 2.4.4 (Jacobian criterion, [56, Theorem 16.19]). Let f = (f1, . . . , fs) be a sequence of
polynomials in K[x1, . . . , xn]. Assume that at any point η of V (f), the Jacobian matrix associated
to f has rank s. Then the ideal generated by f is radical and the algebraic set V (f) is either empty
or smooth and equidimensional of dimension n− s.

Example 2.4.5. We consider the prime ideal
〈
x31 − x22

〉
⊂ C[x1, x2]. By Theorem 2.1.13, we have

that
dimC[x1, x2]/

〈
x31 − x22

〉
= dimC[x1, x2]− height(

〈
x31 − x22

〉
) = 1.

So, the algebraic set of C2 defined by x31 − x22 = 0 has dimension 1. The Jacobian matrix of x31 − x22
with respect to x1, x2 is written [

3x21 −2x2
]
.

The only point where the rank of this Jacobian matrix is smaller than 1 is (0, 0). Thus, (0, 0) is the
only singular point of VC(x31 − x22).
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2.5 Morphisms between affine algebraic sets

Now we study morphisms between algebraic sets.

Definition 2.5.1 (Polynomial morphism). Let V ⊂ Kn andW ⊂ Km be two algebraic sets. A map
φ : V → W is a polynomial morphism if there exist m polynomials φ1, . . . , φm ∈ K[x1, . . . , xn]
such that

φ(η) = (φ1(η), . . . , φm(η))

for any η ∈ V .

Now one can define an equivalence between algebraic sets.

Definition 2.5.2. Two algebraic sets V andW are isomorphic if there exists a polynomial morphism
φ : V →W such that φ is bijective and φ−1 is also a polynomial morphism.

Example 2.5.3. Let V = V (x1 − x22) ⊂ C2. The polynomial morphism φ : C → C2, t 7→ (t, t2)
is an isomorphism from C to V , whose inverse morphism is the projection (x1, x2) 7→ x2.

This is translated to the equivalence between coordinate rings.

Theorem 2.5.4 ([48, Chap.4, Sec. 2, Theorem 7]). Two algebraic sets V and W are isomorphic if
and only if their coordinate rings K[V ] and K[W ] are isomorphic as rings.

Definition 2.5.5 (Dominant morphism). The morphism φ is dominant if and only if the image of
every irreducible component V ′ of V by φ is Zariski dense inW , i.e. φ(V ′) =W .

Example 2.5.6. The equation x1x2 = 1 defines an algebraic curve in C2. The projection of this
curve on the x2-coordinate is C \ {0}, whose Zariski closure is C. Thus, this projection is a dominant
morphism.

The dimension of generic fibers of a dominant morphism is known by this theorem below.

Theorem 2.5.7 (Fiber dimension theorem, [184, Theorem 1.25]). Let φ be a dominant morphism
from V to W . Then,

• For any point η ∈W , the fiber φ−1(η) has dimension at least dimV − dimW .

• There exists a Zariski open subset O of W such that O ⊂ φ(V ) and, for any η ∈ O,

dimφ−1(η) = dimV − dimW.

Finally, we introduce the notion of critical points of a polynomial morphism. They correspond
to the points, named critical values, of the arriving space whose fibers are singular algebraic sets.
The precise definition is given below.
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Definition 2.5.8. Let V ⊂ Kn be an equidimensional algebraic set and φ : V → W be a polyno-
mial morphism.

A point η ∈ V is a critical point of the map φ if η is a regular point of V and the differential of
φ at η, dφη : TηV → Tφ(η)W , is surjective. The image by φ of a critical point is called a critical
value.

The set of all critical points of the restriction of φ to V is denoted by crit(φ, V ).

One can compute the critical points of a smooth equidimensional algebraic set using the vari-
ant of Jacobian criterion below.

Theorem 2.5.9 (Jacobian criterion, [174, Lemma A.2]). Let V ⊂ Kn be an equidimensional alge-
braic set of dimension d and (f1, . . . , fs) be a generating set of the ideal I(V ).

Let φ be a polynomial morphism

φ :
Kn → Km,
η 7→ (φ1(η), . . . , φm(η)).

A point η ∈ V is a critical point of φ if and only if η is a regular point of V and the Jacobian
matrix associated to (f1, . . . , fs, φ1, . . . , φm)

∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fs
∂x1

· · · ∂fs
∂xn

∂φ1

∂x1
· · · ∂φ1

∂xn

...
. . .

...
∂φm

∂x1
· · · ∂φm

∂xn


has rank less than n+m− d at η.

Note that when V is not equidimensional, the locus at which the Jacobian matrix has rank
less than n+m− d contains all irreducible components of V of dimension less than d.

Example 2.5.10. We consider the algebraic curve V defined by

f = x21 − x32 + x22.

and the projection φ : (x1, x2) 7→ x2. As the system

f =
∂f

∂x1
=

∂f

∂x2
= 0

has the unique solution (0, 0), this point is the only singularities of V .
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The Jacobian matrix of (f, φ) with respect to (x1, x2) is

J =

[
2x1 −3x22 + 2x2
0 1

]
.

Requiring rank J < 2 is equivalent to det J = 2x1 = 0. Thus, we obtain the zero-dimensional
system

f = x1 = 0

with two solutions (0, 0) and (0, 1), among which (0, 1) is a regular point. Hence, we conclude that
(0, 1) is a critical point of V with respect to φ.

The following algebraic version of Sard’s theorem ensures that the set of critical values of a
polynomial morphism is not Zariski dense in its target space.

Theorem 2.5.11 (Sard’s theorem, [174, Prop. B.2]). Let V be an equidimensional algebraic subset
of Cn and φ : V → Km be a polynomial mapping. Then, the set of critical values of φ is contained
in a proper Zariski closed subset of Km.

As the critical values are the images of the critical points, to compute them, one can elimi-
nate some variables from the polynomial system defining the critical points obtained by Jacobian
criterion (see Section 3.2). More precisely, let I be the ideal defining crit(φ, V ) and z1, . . . , zm be
new variables, the ideal

(I + ⟨z1 − φ1, . . . , zm − φm⟩) ∩Q[z1, . . . , zm]

defines the Zariski closure of the critical values of φ. Such computation can be done using the
elimination theory of Gröbner bases recalled in Section 3.2.

We also use Thom’s weak transversality theorem for proving certain properties of critical
locus.

Theorem 2.5.12 ([39, Theorem 3.7.4]). Let φ : Kn × Kt → Km be a polynomial mapping. For
y ∈ Kt, we define the partial application

φy : Kn → Km,
x 7→ φ(x,y).

Let X ⊂ Kn be a non-empty Zariski open subset such that 0 ∈ Km is a regular value of φ restricted
to X × Kt. Then there exists a non-empty Zariski open subset Y ⊂ Kt such that for any y ∈ Y ,
0 ∈ Km is a regular value of φy .
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2.6 Projective algebraic sets

Let K be an algebraically closed field. The projective space Pn(K) is the set of equivalent classes
of points in Kn+1 \ {(0, . . . , 0)},

[x0 : x1 : · · · : xn] = {(λx0, . . . , λxn) | λ ∈ K \ {0}}.

When the field K is explicit from the context, we simply write Pn for Pn(K).
A polynomial f ∈ K[x0, x1, . . . , xn] is homogeneous of degree D if its terms have the same

degree D. Note that, if (x0, . . . , xn) is a solution of f , then every point (λx0, . . . , λxn) is also a
solution of f in the affine space Kn+1.

Therefore, we can take the solutions of homogeneous polynomials as points in the projective
space Pn. We have the following definition.

Definition 2.6.1. A projective algebraic set is a subset of Pn that is defined as a vanishing locus of
a system of homogeneous polynomial equations.

As for affine algebraic sets, we associate each projective algebraic set V ⊂ Pn with an ideal

I(V ) = {f ∈ K[x0, x1, . . . , xn] | for any η ∈ V, f(η) = 0}.

Definition 2.6.2. An ideal I of K[x0, x1, . . . , xn] is called homogeneous if it can be generated by a
set of homogeneous polynomials.

Proposition 2.6.3 ([48, Chap. 8, Sec. 2, Prop. 4]). Let V ⊂ Pn be a projective algebraic set. Then
I(V ) is a homogeneous ideal.

The relation between projective algebraic sets and affine algebraic sets can be established
through affine charts.

Definition 2.6.4 (Affine charts). The projective space can be decomposed into

Pn =
n⋃

i=0

An
i ,

where
Ai = {[x0, . . . , xn] ∈ Pn | xi = 1}.

The An
i ’s are called the affine charts of Pn, each of which is an affine space Kn.

The following constructions are used to relate projective spaces with their affine charts.

Definition 2.6.5. We introduce the following notations:

• For a polynomial p ∈ F[x1, . . . , xn], the homogenization hp of p with respect to x0

hp = x
deg(p)
0 p

(
x1
x0
, . . . ,

xn
x0

)
.
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• For a homogeneous polynomial q ∈ F[x0, x1, . . . , xn], the dehomogenization aq of q with
respect to x0

aq = q(1, x1, . . . , xn).

Let I be an ideal of F[x1, . . . , xn] and J be a homogeneous ideal of F[x0, x1, . . . , xn].

• The homogenization ideal of I is the ideal

hI =
〈
hp | p ∈ I

〉
.

• The dehomogenization ideal of J is the ideal

aJ = ⟨aq | q ∈ J⟩ .

These constructions lead to a relation between affine and projective algebraic sets.
Since the map

(x1, . . . , xn) 7→ (1, x1, . . . , xn)

establishes a bijective correspondence between the affine chart A0 of Pn(K) an the affine space
Kn, we obtain easily an affine algebraic set from a projective one by dehomogenization as follows.

Proposition 2.6.6 ([48, Chap.8, Sec.2, Exercise 9]). Let W = V (f1, . . . , fs) ⊂ Pn(K) be a projec-
tive algebraic set defined by homogeneous polynomials fi ∈ K[x0, . . . , xn]. Then, the affine algebraic
set V (af1, . . . ,

afs) ⊂ Kn can be identified with the subset W ∩ A0 of W .

From affine spaces to projective spaces, we go through the following definition of projective
closures.

Definition-Proposition 2.6.7 (Projective closure, [48, Chap. 8, Sec. 4, Prop. 7]). Given an affine
algebraic set V ⊂ Kn, the projective closure of V is the smallest projective variety in Pn(K) con-
taining V .

It is also the projective algebraic set defined by the homogeneous ideal hI(V ) where I(V ) ⊂
K[x1, . . . , xn] is the ideal associated to V .

Proposition 2.6.8 ([48, Chap. 8, Sec. 4, Theorem 8]). Let I be an ideal of K[x1, . . . , xn] . Then the
projective closure of VK(I) is the projective algebraic set associated to the homogenization hI of I .

Homogenizing a generating set (f1, . . . , fs) of an ideal I ⊂ K[x1, . . . , xn] in general does not
give the ideal hI . We only have the inclusion〈

hf1, . . . ,
hfs

〉
⊂ hI.

This can be illustrated in the example below.
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Example 2.6.9. Let I = ⟨f1, f2⟩ =
〈
x2 − x21, x3 − x31

〉
and

J =
〈
hf1,

hf2

〉
=
〈
x2x0 − x21, x3x20 − x31

〉
⊂ R[x0, x1, x2, x3].

Taking f3 = f2 − x1f1 = x3 − x1x2 ∈ I , we obtain a homogeneous polynomial

hf3 = x0x3 − x1x2 ∈ hI.

Assume that hf3 ∈ J , then there exists A1, A2 ∈ R[x0, x1, x2, x3] such that

hf3 = A1 · hf1 +A2 · hf2.

Note that hf1, hf2, and hf3 are homogeneous of degrees 2, 3, and 2 respectively. By looking at the
homogeneous components of A1 and A2, we deduce that hf3 is a constant multiple of hf1. However,
this is clearly false. Thus, by contradiction, we conclude that hf3 ̸∈ J and J ̸= hI .

In Section 3.2, we will see that, by homogenizing the generating set

(x21 − x2, x1x2 − x3,−x1x3 + x22),

which is actually a Gröbner basis of I , we obtain a generating set of the projective closure of a given
affine algebraic set.

2.7 Hilbert series and regular sequences

This section recalls the definition and some properties of Hilbert series and regular sequences.
Hilbert series are generating series encoding many useful information of homogeneous ideals in
polynomial rings, for instance, the Krull dimension of the given ideal, the degree of regularity,
etc. On the other hand, ideals generated by regular sequences over a polynomial ring enjoy many
nice properties. In particular, the Hilbert series of those ideals are explicitly known.

Therefore, these two notions of Hilbert series and regular sequences are used to analyze the
complexities of many algorithms over polynomial rings, especially the algorithms for computing
Gröbner bases (see, e.g., [69, 187, 65, 70]).

In Chapters 5 and 6, we will use Hilbert series to estimate the complexities of our algorithms.
Let F be a field. We consider the decomposition of F[x0, . . . , xn]

F[x0, . . . , xn] =
∞⊕

D=0

F[x0, . . . , xn]D,

where F[x0, . . . , xn]D is a F-vector space of homogeneous polynomials of total degreeD. We call
this decomposition the grading of F[x0, . . . , xn] with respect to the total degree.
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Proposition 2.7.1 ([194, Sec. 1.2]). Let I be a homogeneous ideal of F[x0, . . . , xn]. Then the quo-
tient ring F[x0, . . . , xn]/I can be decomposed into

F[x0, . . . , xn]/I =

∞⊕
D=0

F[x0, . . . , xn]D/(I ∩ F[x0, . . . , xn]D),

where each F[x0, . . . , xn]D/(I ∩ F[x0, . . . , xn]D) is a F-vector space of finite dimension.

Using this grading of F[x0, . . . , xn], one defines the Hilbert series for the homogeneous ideal
I as follows. This series provides many information of the associated homogeneous ideal.

Definition 2.7.2 (Hilbert series). Let I ⊂ F[x0, . . . , xn] be a homogeneous ideal. The Hilbert series
associated to I is defined as

HSI(z) =

∞∑
D=0

dimF[x0, . . . , xn]D/(I ∩ F[x0, . . . , xn]D) · zD,

where the notion of dimension is taken for F-vector spaces.

Let R be a commutative ring. A regular sequence over a ring R is defined as follows.

Definition 2.7.3 (Regular sequence). Let R be a commutative ring. A sequence of elements

r1, . . . , rs ∈ R

is said to be a regular sequence if and only if for any 0 ≤ i ≤ s, ri+1 is not a zero-divisor of
R/ ⟨r1, . . . , ri⟩.

Using Definition 2.7.3 for the polynomial ring R = F[x0, . . . , xn], we define the notion of
regular sequence for homogeneous polynomials.

Definition 2.7.4 (Homogeneous regular sequence). LetF be a field. Given a homogeneous polyno-
mial sequence (f1, . . . , fs) ⊂ F[x0, . . . , xn] with s ≤ n, we say that (f1, . . . , fs) ⊂ F[x0, . . . , xn]
is a regular sequence if for any 1 ≤ i ≤ s, fi is not a zero-divisor in F[x0, . . . , xn]/ ⟨f1, . . . , fi−1⟩.

Let K be an algebraically closed field. Geometrically, the homogeneous regular sequences
over K[x0, . . . , xn] correspond to complete intersections defined as below.

Definition 2.7.5 (Complete intersection). Let V be a projective algebraic set of dimension d in
projective space P(Kn). We call V a complete intersection if the ideal of V can be generated by
exactly n− d elements of K[x0, . . . , xn].

Note that one can define affine regular sequences by simply removing the homogeneity as-
sumption of (f1, . . . , fs) from the above definition. However, as explained in [6, Sec 1.7], many
important properties that hold for homogeneous regular sequences are no longer valid for the
affine ones using this definition. Therefore, we use [6, Definition 1.7.2] of affine regular sequences,
which is more restrictive but allows us to preserve results similar to the homogeneous case.
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Definition 2.7.6 (Affine regular sequence). Let F be a field and (f1, . . . , fs) ⊂ F[x1, . . . , xn]
where s ≤ n. We say that (f1, . . . , fs) ⊂ F[x1, . . . , xn] is an affine regular sequence if the homo-
geneous parts of highest degree of the fi’s form a homogeneous regular sequence.

An important property of a regular sequence (f1, . . . , fs) is that the explicit form of the
Hilbert series associated to (f1, . . . , fs) of I is known.

Proposition 2.7.7 ([6, Prop. 1.7.4]). Let I = ⟨f1, . . . , fs⟩ be a homogeneous ideal of F[x0, . . . , xn].
The Hilbert series of F[x0, . . . , xn]/I satisfies the inequality (coefficient-wise)

HSI(z) ≥
∏s

i=1

(
1− zdeg(fi)

)
(1− z)n

.

The equality occurs if and only if (f1, . . . , fs) forms a homogeneous regular sequence.

Now we consider polynomial ring K[x0, . . . , xn] over an algebraically closed field K. Since
the set K[x0, . . . , xn]D of all homogeneous polynomials of total degreeD over K can be identified
as an affine space K(D+n

n ) (see Section 2.3). The proposition below states that the set of regular
sequences are Zariski dense among all polynomial sequences.

Proposition 2.7.8 ([159]). Fixing D1, . . . , Ds ∈ N. The set of homogeneous regular sequences of∏s
i=1K[x0, . . . , xn]Di contains a non-empty Zariski open subset of

∏s
i=1K[x0, . . . , xn]Di .

2.8 Cohen-Macaulay rings and determinantal ideals

Given a homogeneous regular sequence (r1, . . . , rs) ⊂ F[x0, . . . , xn], the number of elements s
is necessarily smaller than the number of variables n + 1. However, in practice, we encounter
frequently over-determined polynomial systems where the number of equations is larger than
the number of variables. Particularly, such systems appear in the computation of critical points
using Jacobian criterion (see Section 2.5), where the equations are obtained from many minors of
a Jacobian matrix. The properties of regular sequences are no longer applicable for estimating the
complexity for computing Gröbner bases on these systems. Hence, we will need the following
notion of Cohen-Macaulay rings to handle a wider class of polynomial sequences.

Definition 2.8.1 (Cohen-Macaulay ring). Let I be a proper ideal of a commutative Noetherian ring
R. We define the depth of I , denoted by depth(I), as the length of any maximal regular sequence in
I considered as a ring on itself.

A ring R such that, for every maximal ideal m of R,

depth(m) = height(m)

is called a Cohen-Macaulay ring.
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Example 2.8.2. We consider the matrixU = (uk,ℓ)1≤i≤k,1≤j≤ℓ where the ui,j ’s are indeterminates.
For any r ≤ min{k, ℓ}, the set

{η ∈ Ck×ℓ | rank U(η) < r}

is an algebraic set of Ck×ℓ defined by the simultaneous vanishing of the r-minors of U . This set is
called a determinantal variety and the ideal generated by the r-minors of U is called a determinantal
ideal. The quotient ring of this determinantal ideal is a Cohen-Macaulay ring (see [28, Cor. 2.8]).

The property that determinantal ideals are Cohen-Macaulay is used for proving complexity
results for computing critical points of a polynomial function in [69, 187].

The following proposition gives another equivalent characterization for a Cohen-Macaulay
ring through its localizations.

Proposition 2.8.3 ([56, Prop. 18.8]). A ring R is Cohen-Macaulay if and only if, for every prime
ideal p of R, the localization Rp of R at p is Cohen Macaulay.

Example 2.8.4. The quotient ring R = K[x1, x2]/
〈
x21, x1x2

〉
is not a Cohen-Macaulay ring since

the localization Rp of R at the maximal ideal p = ⟨x1, x2⟩R is not Cohen-Macaulay.
Indeed, let m denote the unique maximal ideal ⟨x1, x2⟩Rp of Rp. Every f ∈ m is a zero-divisor

since x1 ̸= 0 and x1f = 0 (as x21 = x1x2 = 0). So, m does not contain any regular sequence, and
therefore, depth(m) = 0. Thus, Rp is not Cohen-Macaulay.

Cohen-Macaulay rings enjoy many nice properties.

Proposition 2.8.5 ([56, Prop. 18.9]). A ring R is Cohen-Macaulay if and only if R[x1, . . . , xn] is
Cohen-Macaulay.

Proposition 2.8.6 ([56, Prop. 18.13]). Let R be a Cohen-Macaulay ring. If I = ⟨r1, . . . , rs⟩ is
an ideal generated by s elements in R such that height(I) = s (the largest value), then R/I is a
Cohen-Macaulay ring.

Theorem 2.8.7 (Unmixedness theorem, [56, Cor. 18.14]). Let R be a ring. If I = ⟨r1, . . . , rs⟩
is an ideal generated by s elements such that height(I) = s, then all minimal primes of I have
codimension s. If R is Cohen-Macaulay, then every associated prime of I is minimal over I .

2.9 Noether position and properness

Definition 2.9.1 (Integral extension). Let S be a ring containing R. An element u ∈ S is integral
over R if there exist d ∈ N and r0, . . . , rd−1 ∈ R such that

ud + ud−1s
d−1 + · · ·+ u0 = 0.

If all elements of S are integral over R, S is called an integral extension of R.
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Example 2.9.2. The variable x1 is integral over the quotient ring C[x1, x2]/
〈
x21 − x2 − 1

〉
as the

monic polynomial x21 − x2 − 1 is 0 in this ring.

Definition 2.9.3 (Noether position). Let f = (f1, . . . , fs) ⊂ F[x1, . . . , xs+t]. The variables
(x1, . . . , xs) are in Noether position with respect to the ideal generated by f if the following proper-
ties are satisfied:

• F[xs+1, . . . , xs+t] ∩ ⟨f⟩ = ⟨0⟩, which implies F[xs+1, . . . , xs+1] ⊂ F[x1, . . . , xs+t]/ ⟨f⟩.

• The canonical images of x1, . . . , xs in the quotient algebra F[x1, . . . , xs+t]/ ⟨f⟩ are integral
over F[xs+1, . . . , xs+t].

For homogeneous ideals, Noether position is strongly related to the regularity.

Proposition 2.9.4 ([194, Prop. 1.44]). Let f = (f1, . . . , fs) be a sequence of homogeneous poly-
nomials in F[x1, . . . , xs+t] and θ be the specialization map that sends xs+1, . . . , xs+t to 0. The
following statements are equivalent:

• The variables (x1, . . . , xs) are in Noether position with respect to the ideal ⟨f⟩.

• The sequence (f1, . . . , fs, xs+1, . . . , xs+t) forms a regular sequence.

• The variables (x1, . . . , xs) are in Noether position with respect to ⟨θ(f1), . . . , θ(fs)⟩.

• The sequence (θ(f1), . . . , θ(fs)) is a regular sequence.

From a geometric point of view, when F = C, Noether position is strongly related to the
notion of proper map below (see [7]).

Definition 2.9.5 (Properness). Let V ⊂ Cs+t be an algebraic set and φ : V → Ct be a polynomial
morphism. The map φ is proper at a point η ∈ Ct if there exists a neighborhood O (in the Euclidean
topology) of η such that φ−1(O) is bounded, where O denotes the closure of O for the Euclidean
topology over Ct

If φ is proper everywhere on its image, we say that the map φ is proper.

Proposition 2.9.6 ([115, Proposition 3.2]). Let f = (f1, . . . , fs) ∈ C[x1, . . . , xs+t]. Assume that
the variables (x1, . . . , xs) is in Noether position with respect to ⟨f⟩. Then, the projection π : V (f)→
Ct,

(x1, . . . , xs+t) 7→ (xs+1, . . . , xs+t)

is proper.

Example 2.9.7. We consider the ideal
〈
x21 + x22 − 1

〉
. As the polynomial x21 + x22 − 1 is monic in

x1, the variable x1 is in Noether position with respect to this ideal.
On the other hand, the variable x1 is not in Noether position with respect to the ideal ⟨x1x2 − 1⟩

as the polynomial x1x2 − 1 is not monic in x1. Geometrically, this is illustrated by the fact the fiber
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of the projection of V (x1x2−1) to the x2-space tends to infinity when the value of x2 is approaching
0.

For the same reason, the variable x1 is not in Noether position with respect to
〈
x2x

2
1 + 2x1 − 1

〉
.

In this example, the fiber over 0 of the projection of V (x2x
2
1 + 2x1 − 1) to the x2-space contains a

point (1/2, 0) and a point at infinity. So, this projection is not proper.

(a) x21 + x22 = 1 (b) x1x2 = 1 (c) x2x21 + 2x1 = 1

Figure 2.1: Examples for properness
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Chapter 3

Gröbner bases
The first sections of Chapter 3 give definitions and properties of Gröbner bases, a foundation tool
of symbolic computation for polynomial systems and algebraic geometry. These bases find many
applications, for instance, solving the ideal membership problem, eliminating variables, comput-
ing projective closure or computing in polynomial quotient rings. The algorithmic properties of
Gröbner bases will be used throughout this thesis.

We refer to the book by Cox, Little and O’Shea [48] for an introductory study on the theory
of Gröbner bases and [9, Chap. 4] for the properties of Gröbner bases in zero-dimensional ideals.

3.1 Preliminaries on Gröbner bases

Let F be a field and K be an algebraic closure of F. We denote by F[x] the polynomial ring with
variables x = (x1, . . . , xn).

In a univariate polynomial ringF[u], Euclidean division and Euclidean algorithm are two basic
operations for manipulating ideals. For instance, computing a generating polynomial of an ideal
⟨q1, . . . , qs⟩ ⊂ F[u] can be done by computing the greatest common divisors of q1, . . . , qs, an
classic application of Euclidean algorithm. Testing whether a polynomial p ∈ F[u] belongs to an
ideal ⟨q⟩ is done by simply checking whether q divides p.

To divide univariate polynomials, one processes successively through all the monomials in
a decreasing order of degrees. However, extending the division to multivariate polynomials of
F[x1, . . . , xn] requires many more ingredients. First, one needs to define orderings among the
monomials of F[x1, . . . , xn], which no longer depend only on the degrees as for univariate poly-
nomials.

Definition 3.1.1 (Monomial ordering [48, Sec. 2.2]). An admissible monomial ordering ≻ over
F[x1, . . . , xn] is a total ordering over the monomials of F[x1, . . . , xn] satisfying the following prop-
erties:

• x ≻ 1 for any non-constant monomial x;

• For any monomials x, y, z such that x ≻ y, then zx ≻ zy.

• Every non-empty subset of monomials of F[x1, . . . , xn] has a smallest element.

Given a monomial ordering≻, for a polynomial p ∈ F[x1, . . . , xn], the monomial terms of p can
be ordered by ≻. Let c · xα1

1 . . . xαn
n (c ∈ F) be the largest monomial term of p with respect to ≻. We

have the following definitions:
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• The constant c ∈ F is the leading coefficient of p with respect to ≻ and is denoted by lc≻(p).

• The monomial xα1
1 . . . xαn

n is the leading monomial of p with respect to ≻ and is denoted by
lm≻(p).

• The monomial term c · xα1
1 . . . xαn

n is the leading term of p with respect to ≻ and is denoted
by lt≻(p).

Example 3.1.2. Let α = xα1
1 · · ·xαn

n and β = xβ1
1 · · ·x

βn
n be two monomials in F[x1, . . . , xn]. We

will use the following monomial orderings:

• Lexicographic ordering lex(x1 ≻ · · · ≻ xn): α ≻ β if and only if the left-most non-zero
coefficient of (α1 − β1, . . . , αn − βn) is positive.

• Reverse graded lexicographic ordering grevlex(x1 ≻ · · · ≻ xn): α ≻ β if and only if degα >
degβ or degα = degβ and the right-most non-zero coefficient of (α1 − β1, . . . , αn − βn)
is negative.

• Elimination ordering: A monomial ordering is called eliminating a subset of variables x′ of
{x1, . . . , xn} if any xi ∈ {x1, . . . , xn} \ x′ is larger than any monomial in x′.

Definition 3.1.3 (Monomial ideals). An ideal I ⊂ F[x1, . . . , xn] is a monomial ideal if it can be
generated by a set (not necessarily finite) of monomials of F[x1, . . . , xn].

The theorem below, known as Dickson’s lemma, states that a monomial ideal admits a finite
generating set consisting of monomials.

Theorem 3.1.4 ([48, Chap. 2, Sec. 4, Theorem 5]). Let I be an ideal of F[x1, . . . , xn] generated by
a set A of monomials. Then I can be generated by a finite subset of A.

We fix a monomial ordering ≻ over F[x1, . . . , xn]. Let p ∈ F[x1, . . . , xn] and (q1, . . . , qs) be
a finite subset of F[x1, . . . , xn]. With this ordering, one can already divide p by (q1, . . . , qn).

Even though this division always terminates, the remainder of this division might depend on
the order of the polynomials q1, . . . , qs. Hence, given an ideal I = ⟨q1, . . . , qs⟩, one may fail
to test the ideal membership of p for I by simply choosing a “wrong” order of (q1, . . . , qs). This
phenomenon can be observed in Example 3.1.5 below.

Example 3.1.5. Let q1 = x1x2−1, q2 = x22−1 with the lexicographic ordering x1 ≻ x2. Dividing
p = x1x

2
2 − x1 by (q1, q2) gives

x1x
2
2 − x1 = x2 · (x1x2 − 1) + 0 · (x22 − 1) + (−x1 + x2).

However, dividing p by (q2, q1), we have

x1x
2
2 − x1 = x1 · (x22 − 1) + 0 · (x1x2 − 1) + 0.

From the second division, we know that p ∈ ⟨q1, q2⟩ while this can not be obtained from the first
division.
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To overcome this weakness, in 1976, Buchberger introduced the notion of Gröbner bases [30]
which then becomes one of the foundations of computer algebra. In what follows, we recall the
definition and some preliminary results of Gröbner bases.

Further, we fix a monomial ordering ≻ over F[x1, . . . , xn]. Let I be an ideal of F[x1, . . . , xn].
The initial ideal of I with respect to the ordering ≻ is the ideal

⟨lm≻(p) | p ∈ I⟩.

Given a set (f1, . . . , fs) of generators of I , in general, the ideal

⟨lm≻(fi) | 1 ≤ i ≤ s⟩

is not equal to the initial ideal of I .

Example 3.1.6. Let f1 = x21 + 2x1x2 + x22 + 2x1 + 1 and f2 = x21 + 2x1x2 + 2x22 + x1 + x2.
Taking the lexicographic ordering x1 ≻ x2, the leading monomials of f1 and f2 are both x21. On the
other hand, since

f3 = x1 − x22 − x2 + 1 = f1 − f2
belongs to ⟨f1, f2⟩, the initial ideal of ⟨f1, f2⟩ contains the leading monomial of f3 which is x1.

Definition 3.1.7 below defines the Gröbner bases of an ideal I ⊂ F[x1, . . . , xn], which are
finite generating sets of I whose leading monomials also generate the initial ideal of I .

Definition 3.1.7 (Gröbner bases). Let I be an ideal of F[x1, . . . , xn]. A Gröbner basis G of I with
respect to the ordering≻ is a finite subset of I such that the set of leading monomials {lm≻(g) | g ∈
G} generates the initial ideal ⟨lm≻(p) | p ∈ I⟩.

Proposition 3.1.8 ([48, Ch. 2, Sec. 5, Cor. 6]). Let G be a Gröbner basis of I with respect to the
ordering ≻. Then, G is a generating set of the ideal I .

Also in [30], Buchberger presented a criterion to decide whether a set of polynomials is a
Gröbner basis. From his criterion, he derived the first algorithm to compute Gröbner bases. These
algorithmic results are based on the construction of S-polynomials and their properties.

Definition 3.1.9 (S-polynomials). Let f, g ∈ F[x1, . . . , xn]. The S-polynomial of f and g is
defined as

S(f, g) = lcm(lm≻(f), lm≻(g))

(
f

lt≻(f)
− g

lt≻(g)

)
.

Proposition 3.1.10 (Buchberger criterion, [48, Chap. 2, Sec. 6, Theorem 6]). Let I be a polynomial
ideal. Then a basis G = {g1, . . . , gs} of I is a Gröbner basis of I if and only if for all pairs i ̸= j,
the remainder on division of S(gi, gj) by G listed in some order is zero.
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Through an iterative procedure, Buchberger algorithm tries to discover new initial terms by
adding more polynomials to the generating set. For each pair (f, g) of polynomials in the current
basis, the algorithm computes the S-polynomial S(f, g) and reduces it by the current basis. If the
remainder of this division is not zero, this remainder is added as a new element to the basis.

The algorithm terminates when no new polynomial can be added and the output is a Gröbner
basis of the input ideal with respect to the considered ordering (see [30] or [48, Chap. 2, Sec. 7,
Theorem 2]). Note that the basic version of Buchberger algorithm we mention above is mostly of
theoretical interest. For practical computations, many additional criteria and optimizations have
been proposed to improve its performance. We will discuss about these variants of Buchberger
algorithm and more efficient algorithms for computing Gröbner bases in Subsection 3.4.

An important property of Gröbner bases is the uniqueness of remainders of polynomial divi-
sions, which provides an algorithm for the ideal membership problem (Proposition 3.1.13).

Proposition 3.1.11 ([48, Chap. 2, Sec. 6, Prop. 1]). Let I be an ideal of F[x1, . . . , xn] and G be a
Gröbner basis of I with respect to some ordering ≻. Given p ∈ F[x1, . . . , xn], the remainder of the
division of p by G using the monomial ordering ≻ is uniquely defined. It is called the normal form
of p with respect to G and is denoted by NFG(p).

We continue with Example 3.1.5.

Example 3.1.12. Let g1 = x1−x2, g2 = x22−1 be two polynomials in C[x1, x2]. Using Buchberger
criterion, one can verify that {g1, g2} is a Gröbner basis of the ideal

〈
x1x2 − 1, x22 − 1

〉
with respect

to the lexicographic ordering x1 ≻ x2.
Dividing p = x1x

2
2 − x1 respectively by (g1, g2) and (g2, g1) we obtain

x1x
2
2 − x1 = (x22 − 1) · (x1 − x2) + x2 · (x22 − 1) + 0,

= x1 · (x22 − 1) + 0 · (x1 − x2) + 0.

The remainders are 0 in the both cases.

Proposition 3.1.13 ([48, Chap. 2, Sec. 6, Cor. 2]). Let I be an ideal of F[x1, . . . , xn] and G be a
Gröbner basis of I with respect to any monomial ordering. Then p ∈ I if and only if NFG(p) = 0.

Definition 3.1.14. Let I be an ideal of F[x1, . . . , xn] and G be a Gröbner basis G of I with respect
to some ordering ≻. We have the following definitions:

• G is called minimal if for every pair gi, gj ∈ G, lt≻(gi) does not divide lt≻(gj).

• G is called reduced if for any polynomial g ∈ G, g is monic and no monomial of g lies in
⟨lt≻(g′) | g′ ∈ G \ {g}⟩.

Proposition 3.1.15 ([48, Chap. 2, Sec. 5, Cor. 6]). Let I be an ideal of F[x1, . . . , xn]. For any
monomial ordering ≻, there exists a unique reduced Gröbner basis G of I with respect to ≻.
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Proposition 3.1.15 gives an algorithm for testing equality between two ideals. An immediate
corollary is a test whether VK(I) is empty.

Proposition 3.1.16. Let I be an ideal of F[x1, . . . , xn]. Then, VK(I) = ∅, i.e., I = ⟨1⟩, if and only
if any Gröbner basis of I contains a non-zero element of F.

3.2 Algebraic elimination using Gröbner bases

We already see from Propositions 3.1.13 and 3.1.15 that Gröbner bases allow one to test the mem-
bership of a polynomial with respect to an ideal or the equality of two polynomial ideals. In this
section, we illustrate how to use Gröbner bases to carry out algebraic elimination.

Theorem 3.2.1 ([48, Chap. 3, Sec. 2, Theorem 2]). Let V ⊂ Kn be an algebraic set and π be the
projection

(x1, . . . , xn) 7→ (xk+1, . . . , xn).

Then, the algebraic set defined by

I ∩K[xk+1, . . . , xn]

is the Zariski closure of π(V ).

Theorem 3.2.2 (Elimination theorem, [48, Chap. 3, Sec. 1, Theorem 2]). Let I be an ideal of
F[x1, . . . , xn] and G be a Gröbner basis of I with respect to an ordering eliminating the variables
x1, . . . , xk.

Then, we have
I ∩ F[xk+1, . . . , xn] = ⟨G ∩ F[xk+1, . . . , xn]⟩ .

Theorems 3.2.1 and 3.2.2 provide an algorithm for computing the Zariski closures of projec-
tions of algebraic sets. One computes a Gröbner basis G of I(V ) with respect to an ordering
eliminating the variables x1, . . . , xk and takes all the elements of G that contains only the vari-
ables xk+1, . . . , xn.

Example 3.2.3. We compute the critical values of the restriction of π : (x1, x2) 7→ x1 to the sphere
V ⊂ C2 defined by

x21 + x22 = 1.

By Jacobian criterion, the set of critical points crit(π,V) can be defined by

x21 + x22 = x2 = 0.

The reduced Gröbner basis of
〈
x21 + x22, x2

〉
with respect to the ordering lex(x2 ≻ x1) is

{x2, x21 − 1}.
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Thus, we obtain the critical values by taking the intersection〈
x2, x

2
1 − 1

〉
∩ C[x1] =

〈
x21 − 1

〉
,

which gives x1 = 1 and x1 = −1.

Algebraic elimination can also be used to compute saturation ideals. Recall that the saturation
ideal I : J∞ where I, J are two ideals of F[x1, . . . , xn] is defined as

I : J∞ = {f ∈ | ∃k ∈ Z+ such that fJk ⊂ I}.

Geometrically, the algebraic set defined by I : J∞ is the Zariski closure of V (I) \ V (J). Propo-
sition 3.2.4 below deduces an algorithm for computing the saturation ideal when J is generated
by one polynomial.

Proposition 3.2.4 ([48, Chap. 4 Sec. 4 Theorem 14.]). Let I = ⟨f1, . . . , fs⟩ be an ideal of
F[x1, . . . , xn] and g ∈ F[x1, . . . , xn]. Then,

I : g∞ = ⟨f1, . . . , fs, ℓ · g − 1⟩ ∩ F[x1, . . . , xn].

There is also an algorithm for computing saturation ideals due to Bayer (see [12] or [56, Chap.
18]) which is known to be faster than the algorithm above.

Another important application of Gröbner bases comes from the following proposition.

Proposition 3.2.5 ([48, Chap. 5, Sec. 3, Prop. 4]). Let I ⊂ F[x1, . . . , xn] be an ideal and G be
a Gröbner basis of I for some monomial ordering. The set of monomials in F[x1, . . . , xn] which are
not reducible by G forms a basis of the F-vector space F[x1, . . . , xn]/I .

From this property, one derives an algorithm for computing representatives of elements in
the quotient ring F[x1, . . . , xn]/I . These representatives allow explicitly arithmetic computations
over F[x1, . . . , xn]/I , especially for a zero-dimensional ideal I that we will see in the next section.

3.3 Gröbner bases and zero-dimensional ideals

Let F be a field and K be an algebraic closure of F.
An ideal I of F[x1, . . . , xn] is said to be zero-dimensional if the algebraic set VK(I) ⊂ Kn is

finite and non-empty. The following proposition characterizes the zero-dimensional ideals.

Theorem 3.3.1 ([48, Sec. 5.3, Theorem 6]). Let I be an ideal of F[x1, . . . , xn]. The following
statements are equivalent:

• The ideal I is zero-dimensional.

• The quotient ring F[x1, . . . , xn]/I is a F-vector space of finite positive dimension.

60



• For every xi, there exists a univariate polynomial pi ∈ F[xi] such that pi ∈ I .

The dimension of F[x1, . . . , xn]/I as F-vector space is called the algebraic degree of I , denoted by
deg(I).

Further in this section, we let f = (f1, . . . , fs) ⊂ K[x1, . . . , xn] be a polynomial sequence
generating a zero-dimensional ideal I = ⟨f⟩ (hence, s ≥ n). We denote by A the quotient ring
K[x1, . . . , xn]/I .

The solution set VK(I) is a finite set. For each η = (η1, . . . , ηn) ∈ VK(I), recall that the ideal
of elements of K[x1, . . . , xn] vanishing at η is the maximal ideal

⟨x1 − η1, . . . , xn − ηn⟩ ⊂ K[x1, . . . , xn].

We denote this ideal by Iη .
The cardinality of VK(I) is at most deg(I), and it is exactly deg(I) if points are counted with

the following notion of multiplicity.
We define now a notion of multiplicity for each point of VK(I).

Definition 3.3.2. Let η ∈ VK(I). The image Iη of Iη in A is also a maximal ideal of A.
The localization of A at Iη is a local ring, denoted by Aη .

The structure of A can be read off from the local rings Aη .

Theorem 3.3.3 ([9, Theorem 4.95]). We have the following ring isomorphism:

A ≃
∏

η∈VK(I)

Aη.

As a consequence, the local ring Aη is a K-vector space of finite dimension.

Definition 3.3.4. We define the multiplicity of η, denoted by µ(η), as the dimension of Aη as K-
vector space.

A point η ∈ VK(I) is a singular zero of f if the rank of the Jacobian matrix
∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fs
∂x1

· · · ∂fs
∂xn


at η is at most n− 1. Otherwise, if this matrix has rank n at η, η is a non-singular zero.

The following proposition states that the singular solutions of I are the ones with multiplici-
ties greater than 1.

Proposition 3.3.5 ([9, Prop. 4.96]). Let f = (f1, . . . , fs) ⊂ K[x1, . . . , xn] be a zero-dimensional
system and η = (η1, . . . , ηn) a zero of f in Kn. The ideal ⟨x1 − η1, . . . , xn − ηn⟩ is denoted by Iη .
Then, the following are equivalent:
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• η is a non-singular zero of f .

• The multiplicity of η is 1.

• Iη ⊂ ⟨f⟩+ I2η .

The theorem below, known as Bézout theorem, gives a bound on the number of complex solu-
tions (counted with multiplicities) of a zero-dimensional ideal through the degrees of its defining
equations.

Theorem 3.3.6 (Bézout theorem, [101, Theorem 1]). Let f = (f1, . . . , fs) ⊂ K[x1, . . . , xn] be a
zero-dimensional system. The dimension of the quotient ring K[x1, . . . , xn]/I as K-vector space is
bounded by deg(f1) . . . deg(fs).

The rest of this section is used to explain how to compute over zero-dimensional ideals. We be-
gin with the computation over the quotient ringF[x1, . . . , xn]/I with the knowledge of a Gröbner
basis of I .

Fixing a monomial ordering ≻ over F[x1, . . . , xn], let G be the reduced Gröbner basis of I
with respect to ≻ and B be the set of monomials in F[x1, . . . , xn] which are not reducible by G.
By Proposition 3.2.5, B is a basis of F[x1, . . . , xn]/I as a F-vector space.

For any p ∈ F[x1, . . . , xn], the normal form of p byG is a linear combination of elements ofB
with coefficients in F. This normal form can be interpreted as the image of p in F[x1, . . . , xn]/I .
Therefore, the operations in the quotient ring F[x1, . . . , xn]/I such as vector additions or scalar
multiplications can be computed explicitly using the normal form reduction.

The finite-dimensional vector space structure of F[x1, . . . , xn] and the computation powered
by Gröbner bases are the main ingredients for the ordering change algorithm FGLM [67] (see
Subsection 3.4.4) and the construction of Hermite matrix (see Subsection 4.4.3).

Now we discuss how to obtain explicitly the solutions of a given zero-dimensional ideal I .
Usually, a Gröbner basis with respect to lexicographic ordering provides a triangular description
of I , which allows one to retrieve the solutions of I coordinate by coordinate. More specifically,
we define the notion shape position.

Definition 3.3.7 (Shape position). A zero-dimensional ideal I ⊂ F[x1, . . . , xn] is in shape position
if the reduced Gröbner basis of I with respect to the lexicographic ordering x1 ≻ · · · ≻ xn has the
following form

{x1 − g1, . . . , xn−1 − gn−1, . . . , gn},

where g1, . . . , gn lie in F[xn].

The following proposition, known as Shape lemma, claims that substituting xn by a generic
linear form will help bring any ideal in shape position.

Proposition 3.3.8 ([14]). Let I be a radical zero-dimensional ideal of F[x1, . . . , xn]. There exists a
non-empty Zariski open subset A of Kn such that for any (λ1, . . . , λn) ∈ A, the ideal

{p(x1, . . . , xn−1, λ1x1 + · · ·λnxn) | p ∈ I}
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is in shape position with respect to x1, . . . , xn.

The data structure we use to represent finite algebraic sets is the following zero-dimensional
parametrization, which uses also the idea of projecting on a generic linear form.

Definition 3.3.9. A zero-dimensional parametrization R of coefficients in Q over Cn consists of

• A square-free polynomial w ∈ Q[u] where u is a new variable;

• A sequence (λ1, . . . , λn) ∈ Qn such that

u · w′ =
n∑

i=1

λi · vi mod w;

• A sequence of polynomials (v1, . . . , vn) in Q[u] with deg(vi) < deg(w).

The solution set of R, denoted by Z(R), is the following finite set

Z(R) =

{(
v1(u)

w′(u)
, . . . ,

vn(u)

w′(u)

) ∣∣∣∣ w(u) = 0

}
.

A zero-dimensional algebraic set V ⊂ Cn is represented by a zero-dimensional parametrization R
if and only if V coincides with Z(R).

Given a polynomial sequence f = (f1, . . . , fs) ⊂ Q[x1, . . . , xn] such that VC(f) is finite,
the knowledge of a zero-dimensional parametrization of VC(f) allows one to extract numerical
values of the solutions of f up to arbitrary precision using root isolating algorithms ([168, 122]).

To compute such parametrizations, we refer to algorithms such as the rational univariate rep-
resentation [166] or the geometric resolution [87]. While the first algorithm relies on computing
a Gröbner basis of the ideal ⟨f⟩, the second one, which is probabilistic, uses a process of incre-
mentally lifting and intersecting curves.

Note that it is possible to retrieve a polynomial parametrization by inverting the derivativew′

modulo w. Still, the parametrization with w′ as denominator is known to be better for practical
computations as it usually involves coefficients with smaller bit size (see [49]).

Example 3.3.10. We consider the system

x21 + 2x22 + 2x1 + 1 = 2x1x2 + 2x22 + x1 + x2 = 0.

A zero-dimensional parametrization with (λ1, λ2) = (1, 2) is

(w, v1, v2) =
(
6u4 + 20u3 + 13u2 − 10u+ 9,−2(8u3 + 17u2 − 7u− 4),−2(u3 − 2u2 − 4u+ 11)

)
.

3.4 On the computation of Gröbner bases

Let f = (f1, . . . , fs) be a polynomial sequence in F[x1, . . . , xn] with a monomial ordering ≻. In
this section, we discuss about algorithms that compute Gröbner bases of ⟨f⟩ with respect to ≻.
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3.4.1 Buchberger algorithm’s drawbacks

As we mentioned in Section 3.1, the first algorithm for computing Gröbner bases is due to Buch-
berger [30]. This algorithm is based on two operations:

• Choosing a pair (f, g) from the current basis and constructing the S-polynomial S(f, g);

• Reducing S(f, g) to the current basis.
It is quickly observed that, most of the reductions of S-polynomials result in zeros and do not
play any further role in the computation. This leads to inefficiency of this algorithm in practice.

On the other hand, from the classical Buchberger algorithm, the pair (f, g) is chosen freely
among the current generating set. This choice affects the run of algorithms.

Therefore, the common ideas for improving Buchberger algorithm are to mitigate the two
weaknesses above, i.e., to avoid as much as possible the useless reductions to zero and to have a
good strategy of choosing critical pairs. This first problem was addressed in [31], where Buch-
berger introduced two extra criteria for his algorithm to filter out some pairs leading to reductions
to zero. Several strategies for the choice of critical pairs are also proposed, for instance, the sugar
strategy [79]. The variants of Buchberger algorithm with these improvements are implemented
in Macaulay2, Singular, Magma or Maple.

F4/F5 algorithms that we discuss in the next subsection also address these two drawbacks.

3.4.2 F4/F5 algorithms

In 1999, Faugère presented F4 algorithm [59], which uses the same mathematical principles as
Buchberger algorithm but with a linear algebra approach. This algorithm constructs a matrix in-
dexed by monomials up to some degree and carry out many S-polynomials reductions at once by
an echelon form reduction of the mentioned matrix. This strategy actually avoids the choice of
critical pairs by processing many of them at once, which surprisingly is very efficient. Showing
an impressive practical behavior, F4 algorithm is widely implemented for applications. Its imple-
mentations are available in libraries such as FGb [66], msolve [17] or compute algebra systems
like Magma or Maple.

Later on in [60], Faugère introduced the signatures of polynomials for avoiding reductions
to zero. This notion leads to a new efficient algorithm, named F5, for computing Gröbner bases.
Especially, when the input system forms a regular sequence (which is true for generic systems),
F5 algorithm does not perform any reduction to zero. In practice, it successfully solved a set of
80 dense polynomials in 80 variables over some finite field [62].

3.4.3 Complexity issues

We now discuss the complexity of computing Gröbner bases.
In a series of works in [146, 80, 151], the worst case complexity of Gröbner bases is proved to

lie in 22
O(n) where n is the number of variables. However, this complexity is only obtained for

extremely rare systems which are constructed on purpose and is not reached by generic systems.
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In practice, it has been observed that the actual behavior of Gröbner basis implementations
can be quite efficient. This motivates the studies of complexity of Gröbner bases, which lead to
nice results for useful special classes of polynomial systems.

It is worth noting that different orderings behave differently in computation. While lexico-
graphic orderings provide an explicit triangular description of a polynomial system, the graded
reversed lexicographic (grevlex) ordering generally yields Gröbner bases of smaller degrees and
coefficients. Algorithms such as F4/F5 are much more efficient when performing with those or-
derings. Therefore, the complexity analysis is mostly carried out for grevlex orderings.

Besides, the complexity of the previous algorithms is difficult to estimate. It mainly depends on
the number of critical pairs remained to be processed at any given step. However, the complexity
of these algorithms can be bounded by studying their matrix variants, replacing S-polynomials
and critical pairs with the construction and reduction of Macaulay matrices.

Matrix-F5 algorithm is designed in [7] as a variant of F5 algorithm which is well-suited for
complexity analysis. This algorithm takes an additional parameter along with the system, a degree
Dmax at which to stop. Formally, what the algorithm computes is a Gröbner basis truncated to
Dmax, which is a set of polynomials containing the polynomials of the reduced Gröbner basis of
I of degree at most Dmax.

Proposition 3.4.1 ([7, Prop. 1]). Let (f1, . . . , fs) be a system of homogeneous polynomials in
F[x1, . . . , xn]. The number of operations in F required to compute a Gröbner basis of ⟨f1, . . . , fs⟩
for grevlex ordering up to degree Dmax is bounded by

O

(
sDmax

(
n+Dmax − 1

Dmax

)ω)
where ω is the exponent of matrix multiplication.

This complexity statement immediately leads to the question of finding the required value of
Dmax to obtain a complete Gröbner basis. The highest degree appearing in a Gröbner basis G is
called the degree of regularity of G.

For zero-dimensional ideals, Lazard has shown in [133] that after a generic linear change of
coordinates, the degree of regularity Dreg for computing a Gröbner basis of grevlex ordering is
bounded by

Dreg ≤
s∑

i=1

(deg(fi)− 1) + 1.

This bound is known as Macaulay’s bound.
In [7], this bound is extended to positive dimensional systems (f1, . . . , fs) under some gener-

icity assumptions to obtain a simply exponential complexity in the number of variables n for
computing Gröbner bases.

Theorem 3.4.2 ([7, Prop. 1, Theorem 12]). Let f = (f1, . . . , fs) ⊂ F[x1, . . . , xn] be a system of
homogeneous polynomials whose degrees are uniformly bounded by D.
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Assume that f is in Noether position with respect to the variables xs+1, . . . , xn. Then, Matrix-F5
algorithm computes a Gröbner basis of ⟨f⟩ for grevlex ordering within

O

(
s2D

(
n+ s(D − 1)

s(D − 1) + 1

)ω)
arithmetic operations in F.

Note also that, more complicated analyses are also given in [7] to refine the exponent ω in
the above complexity. However, these details are not relevant to our thesis so we satisfy with the
complexity established in Theorem 3.4.2.

3.4.4 Change of monomial ordering algorithms

In this subsection, we present a strategy for computing Gröbner bases through changing the
monomial orderings.

As explained in the previous subsection, the grevlex orderings are more suitable for com-
putations while a lex Gröbner basis can provide more geometric information. A natural idea is
to compute a Gröbner basis with respect to the grevlex ordering and then, from this basis, one
calls to an ordering change algorithm to obtain the lex basis. For zero-dimensional ideals, this can
be efficiently done by FGLM algorithm, named after Faugère, Gianni, Lazard and Mora [67], by
exploiting the finite-dimensional vector-space structure of the quotient ring.

Let (f1, . . . , fs) ⊂ F[x1, . . . , xn] that generates a zero-dimensional ideal I and≻1,≻2 be two
monomial orderings in F[x1, . . . , xn]. From a Gröbner basis G1 of I with respect to ≻1, FGLM
algorithm computes a Gröbner basis G2 with respect to ≻2.

More specifically, it proceeds as follows.

• Use G1 to compute the basis B1 of F[x1, . . . , xn]/I with respect to ≻1;

• Compute the multiplication matrices of x1, . . . , xn with respect to B1;

• Compute the staircase of I with respect to ≻2 and derive G2.

The two first steps are performed following the explanation in Section 3.3. The last step is carried
out by constructing a basis B2 of F[x1, . . . , xn]/I using linear algebra in F[x1, . . . , xn]/I .

LetD be a bound on the degree of fi and δ be the dimension of the quotient ring F[x1, . . . , xn]
as a F-vector space. The arithmetic complexity of the original FGLM algorithm is bounded by

O
(
nδ3
)
.

A faster variant of FGLM algorithm is proposed by Faugère and Mou [68]. This new algorithm
takes advantage of the sparsity of multiplication maps Lxi to obtain a complexity

O

(√
6

nπ
δ2+

n−1
n

)
.
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Recently in [58], this variant is improved using fast linear algebra to run within

O
(
(Dnω+1 + log2(δ))δ

ω
)

arithmetic operations in F for a regular sequence (f1, . . . , fn) ⊂ F[x1, . . . , xn]. Combining with
the computation of a grevlex Gröbner basis, [58] results in a faster algorithm for solving any
zero-dimensional system f = (f1, . . . , fn) which generates a radical ideal and forms an affine
regular sequence in Q[x1, . . . , xn]. This algorithm has an arithmetic complexity lying within

O
(
nDωn + (Dnω+1 + log2(δ))δ

ω
)
.
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Chapter 4

Basic notions of real algebraic geometry
Real algebraic geometry studies the solutions of polynomial systems of equations and inequalities
over a real field. It has many different properties compared to the classic algebraic geometry that
focuses on the algebraically closed field.

Chapter 4 presents some basic definitions and results in the real algebraic geometry which
are used in the thesis. Most of the results are presented in the book by Basu, Pollack and Roy [9].

4.1 Real fields

A real field is a field over which one can define an ordering of elements. This type of fields is a
generalization of the field of real numbers R and shares many similar properties with R.

We first give the precise definition of a real field.

Definition 4.1.1 (Real field). An ordering of a field R is a total order relation ≤ satisfying:

• x ≤ y then x+ z ≤ y + z,

• 0 ≤ x, y then 0 ≤ xy.

A field R is a real field if it can be equipped with an ordering.

Example 4.1.2. The fields Q and R are real fields with usual order over R.

Below we give some characterization of real fields.

Proposition 4.1.3 ([19, Theorem 1.18]). The following statements are equivalent

• R is a real field.

• −1 is not a sum of squares of elements of R.

• For any f1, . . . , fs such that
f21 + · · ·+ f2s = 0,

then f1 = . . . = fs = 0.

Definition 4.1.4 (Real closed field [9, Theorem 2.17]). A real field R is called a real closed field if
the extension R[u]/

〈
u2 + 1

〉
is an algebraically closed field.

Example 4.1.5. We name a few examples for real closed fields:
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• The field R is a real closed field.

• A real number is called algebraic if it is a root of some univariate polynomial with integer
coefficients. The field of real algebraic numbers, denoted by Ralg, is a real closed field.

One can define the intermediate value property over an arbitrary real field which is similar
to the classical one in R. It provides a useful tool for proving properties of continuous maps.

Definition 4.1.6 (Intermediate value property). A field R has the intermediate value property if
R is a real field such that, for any p ∈ R[u], if there exist a, b ∈ R such that p(a) · p(b) < 0, then
there exists c ∈ (a, b) such that p(c) = 0.

Theorem 4.1.7 ([9, Theorem 2.17]). A real field R is closed if and only if it has the intermediate
value property.

4.2 Semi-algebraic sets

Let R be a real closed field. We study the solution sets of polynomial systems consisting of equa-
tions and inequalities with coefficients in R; these sets are called semi-algebraic sets.

Definition 4.2.1 (Semi-algebraic sets). A semi-algebraic formula Φ defined over R[x1, . . . , xn] is
a logic formula of the form ∨

i=1

∧
j=1

fi,j •i,j 0,

where fi,j ∈ R[x1, . . . , xn] and •i,j ∈ {>,=}. The polynomials fi,j are called atoms of Φ.
A subset S of Rn is a semi-algebraic set if there exists a semi-algebraic formula Φ defined over

R[x1, . . . , xn] such that
S = {η ∈ Rn | Φ(η) is true}.

When a semi-algebraic set can be defined by equations only, it is called a real algebraic set.

Note that every real algebraic set defined by f1 = · · · = fs = 0 can also be defined by only
one equation f21 + . . .+ f2s = 0.

Definition 4.2.2 (Semi-algebraic maps). Let S ⊂ Rn and S′ ⊂ Rp be two semi-algebraic sets and
φ be a map from S to S′. The graph of φ is defined as the subset

{(η, φ(η)) | η ∈ S}

of S × S′. The map φ is called semi-algebraic if its graph is a semi-algebraic set of Rn ×Rp.

The property below is easily deduced from the definition of semi-algebraic maps.

Lemma 4.2.3. Let φ : S → S′ be a semi-algebraic map which is bijective. Then φ−1 : S′ → S is
also semi-algebraic.
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From the definition, the set of semi-algebraic sets is stable under finite union, intersection
and complement. On the other hand, unlike algebraic sets whose projections are not necessarily
algebraic, the image of a semi-algebraic set by a semi-algebraic map (including projections) is also
a semi-algebraic set. This important result is due to Tarski [192] and Seidenberg [182].

Theorem 4.2.4 (Tarski-Seidenberg theorem, [9, Theorem 2.98]). Given two semi-algebraic sets
S ⊂ Rn, S′ ⊂ Rp and a semi-algebraic map φ : S → S′, then φ(S) ⊂ Rp is semi-algebraic.

Given a semi-algebraic formula Φ whose atoms are in R[x,y] where x = (x1, . . . , xn) and
y = (y1, . . . , yt), this semi-algebraic formula defines a semi-algebraic set S in Rn+t. Let π be the
projection (x,y) → y. By Theorem 4.2.4, the image π(S) of S by π is a semi-algebraic set. This
rises an algorithmic question, known as one-block quantifier elimination, that aims to compute a
semi-algebraic formula Θ defining π(S), i.e.,

∃ x : Φ(x,y) is true ⇔ Θ(y) is true.

This problem is one of the main topics of this thesis. We will go back to this problem and present
our contributions in Chapter 6 of the thesis.

We now recall the topology over Rn. For any real closed field R, one can define a topology
over Rn similar to the Euclidean topology over Rn.

Definition 4.2.5. Let η = (η1, . . . , ηn) ∈ Rn and r ∈ R, r > 0. The open ball B(η, r) centered at
η of radius r is defined as the set

{(x1, . . . , xn) |
√

(η1 − x1)2 + · · ·+ (ηn − xn)2 < r}.

A subset S of Rn is called an open set if for any η ∈ S, there exists an open ball B(η, r) contained
in S. A set is closed if its complement in Rn is open.

A map φ : S → S′ is continuous if the pre-image of any open subset of S′ is an open subset in
S.

Further, we refer to this topology over Rn as the Euclidean topology.

Next, we define the notions of continuous semi-algebraic maps and semi-algebraic homeo-
morphism for the Euclidean topology over Rn.

Definition 4.2.6. A semi-algebraic map φ : S1 → S2 is continuous if the pre-image of any open
set of S2 is an open set of S1.

Two semi-algebraic sets S1 and S2 are semi-algebraically homeomorphic if there exists a bijective
continuous semi-algebraic map φ : S1 → S2 such that φ−1 is also a continuous semi-algebraic map.

The theorem below, known as Hardt’s triviality theorem, implies that the fibers of a given
continuous semi-algebraic map can be classified into finitely many types.
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Theorem 4.2.7 (Hardt’s triviality theorem, [97]). Let S ⊂ Rn, S′ ⊂ Rp be semi-algebraic sets
and φ : S → S′ be a continuous semi-algebraic map. Then there exists a finite partition of S′ into
semi-algebraic sets

S′ =

s⋃
i=1

S′
i

so that for 1 ≤ i ≤ s and any ηi ∈ S′
i, S

′
i×φ−1(ηi) is semi-algebraically homeomorphic toφ−1(S′

i).

Now we discuss two important properties of a topological space: connectedness and com-
pactness. The classical definitions in R cannot be ported completely to a general closed field R.
Below we present the necessary revisions of these notions in the semi-algebraic context.

A subset of a topological space is connected if it cannot be written as the disjoint union of two
open subsets. However, this definition leads to some difficulties while working over real closed
fields as we observe in the example below.

Example 4.2.8. The field Ralg of real algebraic numbers is disconnected as it is the union of two
open subsets (−∞, π) ∩ Ralg and (π,∞) ∩ Ralg.

Therefore, the following notion of semi-algebraic connectedness is more useful.

Definition 4.2.9. A semi-algebraic set S ⊂ Rn is semi-algebraically connected if S is not the
disjoint union of two non-empty semi-algebraic sets that are both open in S.

A semi-algebraic set S is semi-algebraically path connected when for every a, b ∈ S, there exists
a continuous semi-algebraic function ϕ : [0, 1]→ S such that ϕ(0) = x and ϕ(1) = y.

In Example 4.2.8, the subset (−∞, π)∩Ralg is not a semi-algebraic set since π is transcendental
over R.

Proposition 4.2.10 ([9, Prop. 3.9]). A real closed field is semi-algebraically connected.

Note that even in R, the connectedness does not imply the path connectedness. By contrast,
the notions of semi-algebraic connectedness and semi-algebraic path connectedness are equiva-
lent.

Proposition 4.2.11 ([9, Theorem 5.23]). A semi-algebraic set S ⊂ Rn is semi-algebraically con-
nected if and only if it is semi-algebraically path connected.

Proposition 4.2.12 ([9, Theorem 5.21]). Any semi-algebraic set S ⊂ Rn has finitely many semi-
algebraic connected components.

When R = R, the notions of semi-algebraic connectedness and connectedness coincide.

Proposition 4.2.13 ([9, Theorem 5.22]). A semi-algebraic set of Rn is semi-algebraically connected
if and only if it is connected in Rn.
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Unlike R, a closed and bounded semi-algebraic set in R is not necessarily compact. In this
thesis, we replace, when needed, the notion of compactness for semi-algebraic sets by closed and
bounded semi-algebraic sets.

Example 4.2.14. The interval [0, 1] is not compact in Ralg. The family (]0, a[∪]b, 1]) for 0 < a <
π/4 < b < 1, a, b ∈ Ralg is an open cover of [0, 1] by semi-algebraic subsets of Ralg and it is
impossible to extract a finite cover from it.

The definition of proper maps below is similar to Definition 2.9.5 in the context of algebraic
sets.

Definition 4.2.15 (Proper maps). Let S ⊂ Rn+p be a semi-algebraic set and φ : V → Rp be a
semi-algebraic map. The map φ is proper at a point η ∈ Rp if there exists a neighborhood O of η
such that φ−1(O) is bounded, where O denotes the closure of O for the Euclidean topology over Rp.

If φ is proper everywhere on its image, we say that the map φ is proper.

The following important theorem allows to decompose the into part of invariant topology.

Theorem 4.2.16 (Thom’s isotopy lemma, [47]). Let S ⊂ Rn be a semi-algebraic set and φ : S →
Rp be the projection onto the last p coordinates. We assume that

• S is smooth and equidimensional;

• S is locally closed;

• The projection φ is a proper map.

Let S′ ⊂ Rp be a semi-algebraic set that does not contain any critical values of the restriction of φ
to S. Then, for any η ∈ S′, φ−1(S′) is diffeomorphic to φ−1(η)× S′.

Theorem 4.2.16 provides a boundary of semi-algebraic sets in the destination space Rp over
which the fibers of φ are topologically invariant. Using algorithmic tools from computer algebra
(Jacobian criterion, elimination using Gröbner bases), one can compute defining systems of this
boundary following its description given in the theorem.

4.3 Puiseux series

In real algebraic geometry, many algorithms require the smoothness on the input semi-algebraic
sets to work correctly or more efficiently. When the semi-algebraic sets taken as input are singular,
a commonly used technique is the deformation, which consists of basically two steps:

• Deform the input to obtain smooth semi-algebraic sets using some sufficiently small values;

• Taking the limit of these values to 0 to obtain the results on the original input.
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This procedure of deformation is made rigorously by introducing infinitesimals and Puiseux se-
ries, which we recall the definitions and properties in what follows.

We consider an infinitesimal ε, i.e., a transcendental element over R such that 0 < ε < r for
any positive element r ∈ R. The fields of Puiseux series over R and C are defined as follows.

Definition 4.3.1. The field of Puiseux series over R, denoted by R⟨ε⟩, is

R⟨ε⟩ =
{∑

i≥i0
aiε

i/q | i ∈ N, i0 ∈ Z, q ∈ N− {0}, ai ∈ R
}
.

Similarly, one defines C⟨ε⟩ as for R⟨ε⟩ but taking the coefficients of the series in C.
We have that C⟨ε⟩ = R⟨ε⟩[u]/

〈
u2 + 1

〉
.

Theorem 4.3.2 ([9, Theorem 2.113]). The field R⟨ε⟩ is a real closed field. As a consequence, C⟨ε⟩ is
an algebraic closure of R⟨ε⟩.

Definition 4.3.3. Given a Puiseux series

σ =
∑
i≥i0

aiε
i/q ∈ R⟨ε⟩

with ai0 ̸= 0, ai0 is called the initial coefficient of σ.
When i0 ≥ 0, σ is said to be bounded over R. The subset of R⟨ε⟩ of elements which are bounded

over R is denoted by R⟨ε⟩b.

The limit of a Puiseux series is defined algebraically by sending ε to 0.

Definition 4.3.4. Let limε : R⟨ε⟩b → R be the function that maps σ to a0 (which is 0 when i0 > 0)
and writes limε σ = a0. Note that limε is a ring homomorphism from R⟨ε⟩b to R.

All the definitions above extend to R⟨ε⟩n componentwise.
For a semi-algebraic set S ⊂ R⟨ε⟩n, we naturally define the limit of S as

lim
ε
S =

{
lim
ε

x | x ∈ S and x is bounded over R
}
.

For each semi-algebraic set defined over R, we can associate to it a semi-algebraic in R⟨ε⟩n
using the notion of extension below.

Definition 4.3.5. Let S ⊂ Rn be a semi-algebraic set defined by a semi-algebraic formula Φ whose
atoms lie in R[x1, . . . , xn]. We denote by ext(S,R⟨ε⟩) the semi-algebraic set of points which are
solutions of Φ in R⟨ε⟩n, i.e.,

ext(S,R⟨ε⟩) = {η ∈ R⟨ε⟩n | Φ(η) is true}.

Note that the definition of ext(S,R⟨ε⟩) depends only on the semi-algebraic set S and not
on the choice of the defining formula Φ (see [9, Prop. 2.105]). We also have the extension of a
semi-algebraic map.
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Definition-Proposition 4.3.6 ([9, Prop. 2.108]). Let S ⊂ Rn and S′ ⊂ Rp be two semi-algebraic
sets. Given a semi-algebraic map f : S → S′ whose graph is a semi-algebraic set G ⊂ S ×
S′. The extension of f to R⟨ε⟩, denoted by ext(f,R⟨ε⟩), is defined as a semi-algebraic map from
ext(S,R⟨ε⟩) to ext(S′,R⟨ε⟩) whose graph is ext(G,R⟨ε⟩).

The following result is the foundation of the deformation technique we will use further in the
thesis.

Proposition 4.3.7 ([167, Lemma 3.5]). Let f ∈ C[x1, . . . , xn] and ε be an infinitesimal. The
algebraic set of C⟨ε⟩n defined by f = ε (or f = −ε) is a smooth algebraic set.

The following propositions will be useful for taking the limits of deformed semi-algebraic sets.

Proposition 4.3.8 ([9, Prop. 12.49]). If S′ ⊂ R⟨ε⟩n is a semi-algebraic set, then limε S
′ is a

closed semi-algebraic set. Moreover, if S′ ⊂ R⟨ε⟩n is a semi-algebraic set bounded over R and
semi-algebraically connected, then limε S

′ is semi-algebraically connected.

Proposition 4.3.9 ([9, Prop. 12.51]). Given a polynomial f ∈ R[x1, . . . , xn], we introduce the
following notations:

• V denotes the real algebraic subset of Rn defined by f = 0;

• Vε denotes the real algebraic subset of R⟨ε⟩n defined by f2 = ε2;

• Vb ⊂ Rn denotes the union of the semi-algebraically connected components of V which are
bounded over R;

• Vε,b ⊂ R⟨ε⟩n denotes the union of the semi-algebraically connected components of Vε which
are bounded over R.

Then we have
lim
ε
Vε,b = Vb.

4.4 Real root counting

The fundamental theorem of algebra implies that any polynomial of degree D defined over an
algebraically closed field K has exactly D solutions in K counted with multiplicities. However,
for polynomials defined over a real closed field R, the possible number of solutions in R can
vary between 0 and D. In this section, we recall some classical algorithmic tools for counting the
number of real solutions of polynomial equations. Further in Chapter 5, we will extend some of
these tools to the case of polynomial systems depending on parameters.

Throughout this section, R is a real closed field and K = R[T ]/
〈
T 2 + 1

〉
.
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4.4.1 Notations

We start with some definitions that will be commonly used throughout the section.

Definition 4.4.1 (Sign variations). The number of sign variations in a sequence a = (a1, . . . , as)
of elements in R \ {0} is defined by

Var(a1) = 0,Var(a1, . . . , ai+1) =

{
Var(a1, . . . , ai) + 1 if aiai+1 < 0,
Var(a1, . . . , ai) if aiai+1 > 0.

The sign variations of a sequence containing zeros is defined as the sign variations of the same se-
quence with all zeros removed.

Let f = f1, . . . , fs be a sequence of polynomials inR[u] and let a ∈ R∪{−∞,∞}. The number
of sign variations of f at a, denoted by Var(f ; a) is Var(f1(a), . . . , fs(a)) (at−∞ and∞, the signs
to consider are the signs of the leading terms of f1, . . . , fs).

We define Var(p; a, b) = Var(p; a)−Var(p; b).

Example 4.4.2. We have that Var(1,−2, 0, 0, 3, 4, 0,−5, 6) = Var(1,−2, 3, 4,−5, 6) = 4.

Definition 4.4.3 (Tarski’s query). Let f = (f1, . . . , fs) ⊂ R[x1, . . . , xn] and g ∈ R[x1, . . . , xn].
Assume that the system of equations

f1 = · · · = fs = 0

has finitely many solutions in Rn. The Tarski’s query of g for f is defined as

TarskiQuery(f , g) =
∑

η∈VR(f)

sign g(η)

= |{η ∈ VR(f) | g(η) > 0}| − |{η ∈ VR(f) | g(η) < 0}|.

4.4.2 Sturm sequences and Sturm-Habicht sequences

In this subsection, we recall the classical results of real root counting using Sturm sequences and
Sturm-Habicht sequences.

Sturm’s theorems allows us to count the number of real solutions of one polynomial p over
an interval using the signed remainder sequence of p and its derivative p′ defined below.

Definition 4.4.4 (Signed remainder sequence). Given p, q ∈ R[u] with q ̸= 0, we denote the
remainder of the division of p to q by Rem(p, q).

The signed remainder sequence sRem(p, q) of p and q is defined as follows:

• If q = 0, then sRem(p, q) = p.

• If p = 0, then sRem(p, q) = 0, q.
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• If p, q ̸= 0 then
sRem(p, q) = r0, . . . , rs,

where r0 = p, r1 = q and for i ≥ 1, if ri does not divide ri−1 then

ri+1 = −Rem(ri−1, ri)

where s is defined by rs ̸= 0 and Rem(rs−1, rs) = 0.

Theorem 4.4.5 (Sturm’s theorem, [188], [9, Theorem 2.62]). Let p ∈ K[u]. Given a and b in
R ∪ {−∞,+∞} that are not roots of p, we have that

Var(sRem(p, p′); a, b) = |{η ∈ (a, b) | p(η) = 0}|.

Example 4.4.6. Let p = u4 − 5u2 + 4. The signed remainder sequence of p and p′ is

sRem0(p, p
′) = u4 − 5u2 + 4,

sRem1(p, p
′) = 4u3 − 10u,

sRem2(p, p
′) =

5

2
u2 − 4,

sRem3(p, p
′) =

18

5
u,

sRem4(p, p
′) = 4.

The signs of the leading coefficients of the sequence above at +∞ and −∞ are respectively

(+,+,+,+,+) and (+,−,+,−,+).

Hence, Var(sRem(p, p′);−∞,+∞) = 4 − 0 = 4. The polynomial p has actually 4 real roots: 1,
−1, 2, and −2.

A more general variant, known as Tarski’s theorem, counts the number of real solutions of
one polynomial p with respect to the sign condition of a polynomial q using the Sturm sequence
of p and q, which we define below.

Definition 4.4.7 (Sturm sequence). Let p, q ∈ R[u]. The Sturm sequence of p and q, denoted by
Sturm(p, q), is the signed remainder sequence sRem(p, p′q) where p′ denotes the derivative of p.

Theorem 4.4.8 ([9, Theorem 2.73]). Let p, q ∈ K[u]. Given a and b in R ∪ {−∞,+∞} that are
not roots of p. Then, we have that

Var(Sturm(p, q); a, b) = |{η ∈ (a, b) | p(η) = 0, q(η) > 0}|−|{η ∈ (a, b) | p(η) = 0, q(η) < 0}|.

Note that Sturm’s theorem is a particular case of the theorem above by taking q = 1.
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Example 4.4.9. Taking p = u4−5u2+4 (as in Example 4.4.6) and q = u2−2, the Sturm sequence
of p and q, defined as the signed remainder sequence of p and p′ · q, is

sRem0(p, p
′ · q) = u4 − 5u2 + 4,

sRem1(p, p
′ · q) = 4u5 − 18u3 + 20u,

sRem2(p, p
′ · q) = −u4 + 5u2 − 4,

sRem3(p, p
′ · q) = −2u3 − 4u,

sRem4(p, p
′ · q) = −7u2 + 4,

sRem5(p, p
′ · q) = 36

7
u,

sRem6(p, p
′ · q) = −4.

The signs of at +∞ and −∞ are respectively

(+,+,−,−,−,+,−) and (+,−,−,+,−,−,−).

Thus, Var(Sturm(p, q); a, b) = 3− 3 = 0. This corresponds to

{η ∈ (a, b) | p(η) = 0, q(η) > 0} = {2,−2} and {η ∈ (a, b) | p(η) = 0, q(η) < 0} = {1,−1}.

From the algorithmic aspect, using the signed remainder sequences (therefore, Sturm se-
quences) has several disadvantages. Firstly, the bit-size growth of signed remainder sequences
is not well-controlled, which makes estimating the complexity of Sturm sequences difficult. We
can observe this in the example below.

Example 4.4.10. Given p = 75u6 − 92u5 + 6u3 + 74u2 + 72u + 37 and q = −23u4 + 8u3 +
44u2 + 29u+ 98, the leading coefficients of sRem(p, q) is

−45660506
12167

,

11894666533333043

2084881808176036
,

−1424856298844988047595604912488
11628428695585856081319204047

,

−407687090204585473313605266765585776122109512697
108197738617155415021320079773703340240647056

.

Assume now that the coefficients of p and q depends on some parameters, the second weak-
ness of signed remainder sequence is its lack of specialization properties. As computing the se-
quence sRem(p, q) depends on a division process that may involve dividing by some polynomials
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of parameters, one cannot specialize the signed remainder sequence at the values of parameters
which cancel those divisors. Hence, one may need to repeat the whole computation to obtain the
signed remainder sequences of specializations of p and q.

To overcome this inconvenience, in [88], the authors introduced Sturm-Habicht sequences, a
variant of Sturm sequences which provide similar tools for counting the number of real solutions.
These sequences, constructed through the signed subresultant coefficient sequence, are therefore
determinant polynomials of certain matrices. As a consequence, they inherit a specialization
property and well-controlled bit-size growth of the signed subresultant coefficient sequences.

Definition 4.4.11 (Sylvester-Habicht matrix). Let p, q ∈ R[u] of degree k and ℓ respectively with
k ≥ ℓ,

p = aku
k + · · ·+ a0,

q = bℓu
ℓ + · · ·+ b0.

For 0 ≤ j ≤ ℓ, the j-th Sylvester-Habicht matrix of p and q, denoted by SylHaj(p, q) is the matrix

ak . . . . . . . . . . . . a0 0 0

0
. . .

. . . 0
...

. . . ak . . . . . . . . . . . . a0
... 0 bℓ . . . . . . . . . b0
... . .

.
0

0 . .
.

. .
.

. .
. ...

bℓ . . . . . . . . . b0 0 . . . 0


.

It has k + ℓ− j columns and k + ℓ− 2j rows.
The signed subresultant coefficient sequence of p and q, denoted by sRes(p, q), is the sequence

sRes(p, q) = sResk(p, q), . . . , sRes0(p, q),

where

• sResk(p, q) = ak,

• sResk−1(p, q) = bℓ,

• sResj(p, q) = 0 for ℓ < j < k − 1,

• For 0 ≤ j ≤ ℓ, sResj(p, q) is the determinant of the square matrix obtained by taking the
first k + ℓ− 2j columns of SylHaj(p, q).
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The signed subresultant coefficients can be computed through a variant of Euclidean algo-
rithm of p and q in which the dividend of each step is multiplied by some coefficient to avoid
introducing denominators in the division (see [9, Algo. 8.77]). Hence, these signed subresultant
coefficients lie in the ring generated by the coefficients of the polynomials p and q and do not
involve any denominator.

The following proposition gives a specialization property for signed subresultant sequences.

Proposition 4.4.12 ([9, Prop. 8.74]). Let y = (y1, . . . , yt) be the parameters and ϕ be the ring
morphism from R[y][u] to R[u] by assigning y to a value η ∈ Rt. Given p, q ∈ R[y][u] such that
deg(ϕ(p)) = deg(p) and deg(ϕ(q)) = deg(q), then for all j ≤ p,

sResj(ϕ(p), ϕ(q)) = ϕ(sResj(p, q)).

Example 4.4.13. We consider for example the polynomial

p = u4 + y1u
2 + y2u+ y3.

The signed subresultant sequence of p and p′ is formed by the polynomials

sRes4(p, p
′) = u4 + y1u

2 + y2u+ y3,

sRes3(p, p
′) = 4u3 + 2y1u+ y2,

sRes2(p, p
′) = −4(2y1u2 + 3y2u+ 4y3),

sRes1(p, p
′) = 4((8y1y3 − 9y22 − 2y31)u− y21y2 − 12y2y3),

sRes0(p, p
′) = 256y33 − 128y21y

2
2 + 144y1y

2
2y3 + 16y41y3 − 27y42 − 4y31y

2
2.

When specialize a = 0, the subresultant sequence of p0 = u4 + y2u+ y3 and p′0 = 4u3 + y2 is

sRes4(p0, p
′
0) = u4 + y2u+ y3,

sRes3(p0, p
′
0) = 4u3 + y2,

sRes2(p0, p
′
0) = −4(3y2u+ 4y3),

sRes1(p0, p
′
0) = 4(−9y22u− 12y2y3),

sRes0(p0, p
′
0) = 256y33 − 27y42,

which agrees with the specialization of the sequence above at a = 0.

Example 4.4.14 below illustrates the growth of bit-sizes in signed subresultant coefficients.

Example 4.4.14. We take the polynomials

p = 75u6 − 92u5 + 6u3 + 74u2 + 72u+ 37 and q = −23u4 + 8u3 + 44u2 + 29u+ 98
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in Example 4.4.10. The signed subresultant coefficients of p and q is

−529,−199561, 82908687856, 1542839439026884,−51592162747958902864,

which have smaller bit-sizes than the coefficients of the signed remainder sequence in Example 4.4.10.

Using the signed subresultant sequences, we define Sturm-Habicht sequence, a variant of
Sturm sequence with better algorithmic properties.

Definition 4.4.15 (Sturm-Habicht sequence). Let p and q be two polynomials in R[u] and p′ · q
be the remainder of p′ · q by p. The Sturm-Habicht sequence of p and q is the signed subresultant
coefficient sequence sRes(p, p′ · q).

To state the root counting theorem for Sturm-Habicht sequences, we need the following def-
inition.

Definition 4.4.16 (Permanences minus variations). Let a = a0, . . . , as be a sequence of elements
in R such that a0 ̸= 0. Let ℓ < k such that ak−1 = · · · = aℓ+1 = 0 and aℓ ̸= 0 and ã denotes the
subsequence aℓ, . . . , a0.

PmV(a) =


0 if ã = ∅,
PmV(a) + (−1)(k−ℓ)(k−ℓ−1)/2sign(akaℓ) if k − ℓ is odd,
PmV(ã) if k − ℓ is even,

.

Theorem 4.4.17 ([9, Theorem 4.32]). Let p and q be two polynomials in R[u] and p′ · q be the
remainder of p′ · q by p. Then

PmV(sRes(p, p′ · q)) = TarskiQuery(p, q;−∞,+∞).

Example 4.4.18. We continue with the polynomials

p = u4 − 5u2 + 4 and q = u2 − 2.

The remainder of p′ · q by p is r = 2u3 + 4u. Computing the signed subresultants of p and r gives

sRes4(p, r) = u4 − 5u2 + 4,

sRes3(p, r) = 2u3 + 4u,

sRes2(p, r) = 28u2 − 16,

sRes1(p, r)− 1008u,

sRes0(p, r) = 20736.

We deduce that PmV(sRes(p, r)) = 0, which agrees with TarskiQuery(p, q;−∞,+∞) = 0 as in
Example 4.4.9.

80



4.4.3 Hermite quadratic forms

In [106], Hermite introduced a method for counting the solutions of a given univariate polyno-
mial by associating to it a quadratic form. Later on, in [160], Hermite’s quadratic forms were
generalized to multivariate zero-dimensional systems.

Hermite’s quadratic forms are the key ingredient for designing our algorithm for solving para-
metric polynomial systems in Chapter 5. In what follows, we recall the definition and basic prop-
erties of Hermite’s quadratic forms.

Throughout this subsection, R is a real closed field and K = R[T ]/
〈
T 2 + 1

〉
, which is alge-

braically closed.
Given a zero-dimensional ideal I ⊂ R[x] where x = (x1, . . . , xn), the quotient ring R[x]/I

is a R-vector space of finite dimension (Theorem 3.3.1); it dimension is denoted as δ.
We define the multiplication maps of R[x]/I as follows.

Definition 4.4.19. For any p ∈ R[x], the multiplication map Lp is defined as

Lp : R[x]/I → R[x]/I,
q 7→ p · q,

where q and p · q are respectively the classes of q and p · q in the quotient ring R[x]/I .
Note that the map Lp is an endomorphism of R[x]/I as a R-vector space.

We consider a basisB = {b1, . . . , bδ} ofR[x]/I . Such a basisB can be derived from Gröbner
bases as shown in Section 3.3. We fix an admissible monomial ordering ≻ over the set of mono-
mials in the variables x and compute a Gröbner basis G with respect to the ordering ≻ of the
ideal I . Then, the monomials that are not divisible by any leading monomial of elements of G
form a basis of R[x]/I .

Recall that, for an element p ∈ R[x], we denote by p the class of p in the quotient ringR[x]/I .
A representative of the class p can be derived by computing the normal form of p by the Gröbner
basis G, which results in a linear combination of elements of B with coefficients in R.

For any p ∈ R[x], the multiplication map Lp is an endomorphism of R[x]/I . Thus, it admits
a matrix representation with respect to B, whose entries are elements in R.

Example 4.4.20. Let I =
〈
x21 + 2x1x2 + 3x1 + x2 + 1, x22 + x1x2 + 2x2 + 1

〉
.

The reduced Gröbner basis of I with respect to the grevlex(x1 ≻ x2) ordering is

{x32 + 2x22 + x1 + 2x2 + 1, x21 − 2x22 + 3x1 − 3x2 − 1, x1x2 + x22 + 2x2 + 1}.

Then, we derive a basis B = {1, x2, x1, x22} for the R-vector space R[x1, x2]/I . The multiplication
map L1 is the identity endomorphism of R[x1, x2]/I and therefore it is represented by an identity
matrix of size 4× 4.
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We compute the matrix representation of Lx1 in B through these normal form reductions below:

x1 · 1 = x1,

x1 · x2 = −1− 2x2 − x22,
x1 · x1 = 1 + 3x2 − 3x1 + 2x22,

x1 · x22 = 1 + x2 + x1.

Thus, the matrix represents Lx1 with respect to B is
0 0 1 0
−1 −2 0 −1
1 3 −3 2
1 1 1 0

 .
Let V (I) be the finite set of zeros in Kn of I . For each η ∈ V (I), we denote by µ(η) the

multiplicity of η defined in Proposition 3.3.3. The eigenvalues of these multiplication maps provide
information on the zeros of I .

Theorem 4.4.21 ([9, Theorem 4.98]). Let p ∈ R[x1, . . . , xn]. The eigenvalues of the multiplication
map Lp are the p(η)’s for η ∈ V (I), with the multiplicity µ(η) .

Theorem 4.4.22 (Stickelberger’s theorem, [9, Theorem 4.99]). Let I be a zero-dimensional ideal
of R[x1, . . . , xn] and p ∈ R[x1, . . . , xn]. The linear map Lp of R[x1, . . . , xn]/I has the following
properties:

• The trace of Lp is
trace(Lp) =

∑
η∈V (I)

µ(η) · p(η).

• The determinant of Lp is
det(Lp) =

∏
η∈V (I)

p(η)µ(η).

• The characteristic polynomial χ(I, p, T ) of Lp is

χ(I, p, T ) =
∏

η∈V (I)

(T − p(η))µ(η).

Now we define Hermite’s quadratic forms as follows.

Definition 4.4.23 (Hermite’s quadratic forms). Let g ∈ R[x1, . . . , xn]. The Hermite quadratic
form associated to I and g is defined as the bilinear form from R[x]/I × R[x]/I to R[x]/I that
sends

(p, q) 7→ trace(Lp·q·g),
where trace(Lp·q·g) is the trace of Lp·q·g as an endomorphism of R[x]/I .
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With a fixed basis B = {b1, . . . , bδ} of the R-vector space R[x]/I , Hermite’s quadratic form
of the ideal I admits a matrix representation with respect to B. Thus, we also have the definition
of Hermite matrix of I with respect to the basis B.

Definition 4.4.24 (Hermite matrix). Let I ⊂ R[x1, . . . , xn] be a zero-dimensional ideal of degree
δ and g ∈ R[x1, . . . , xn]. For a basis B = {b1, . . . , bδ} of R[x]/I as R-vector space, we define the
Hermite matrix of I with respect to the basis B as the symmetric matrix H = (hi,j)1≤i,j≤δ where

hi,j = trace(Lbi·bj ·g).

Example 4.4.25. When the ideal I is in shape position, using the lexicographic ordering, B is
chosen to be {1, xn, . . . , xδ−1

n }. Thus, the Hermite matrix H = (hi,j)1≤i,j≤δ of I and any g ∈
R[x1, . . . , xn] with respect to this basis has the entry

hi,j = trace
(
L
xi+j−2
n ·g

)
.

Note that H is a Hankel matrix.

Example 4.4.26. Given the ideal I =
〈
x21 + x2x1 + 2x2 + 3, x22 + 2x1x2 + 3x1 + 1

〉
, the reduced

Gröbner basis of I with respect to the lex(x1 ≻ x2) ordering is

Glex = {13x1 + 2x32 − 13x22 − 46x2 − 33, x42 − 5x32 − 36x22 − 51x2 − 28}.

Hence, the basis of C[x1, x2]/I associated to this Gröbner basis is Blex = {1, x2, x22, x32}. The Her-
mite matrix of I with respect to Blex is

Hlex =


4 5 97 818
5 97 818 7949
97 818 7949 74280
818 7947 74280 701998

 .
On the other hand, computing the reduced Gröbner basis of the ideal I with respect to the

grevlex(x1 ≻ x2) ordering, we obtain

Ggrevlex = {2x32− 13x22 +13x1− 46x2− 33, 2x21− x22− 3x1 +4x2 +5, 2x1x2 + x22 +3x1 +1}.

From this Gröbner basis, we derive the basis Bgrevlex = {1, x2, x1, x22} of C[x1, x2]/I and, thus, the
associated Hermite matrix is

Hgrevlex =


4 5 −1 97
5 97 −49 818
−1 −49 27 −338
97 818 −338 7949

 .
We remark that the bit-sizes of entries of Hgrevlex is smaller than the ones of Hlex. A possible expla-
nation is that, the degree of polynomials in Ggrevlex is slightly smaller than the one in Glex, which
leads to the difference in computing the entries through normal form reductions.
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Finally, the theorem below shows how to use Hermite’s matrix to count the number of solu-
tions of a given zero-dimensional system.

Proposition 4.4.27 ([9, Theorem 4.102]). Let f = (f1, . . . , fs) ⊂ R[x1, . . . , xn] such that the
ideal ⟨f1, . . . , fs⟩ is zero-dimensional and g ∈ R[x1, . . . , xn]. Let H be the Hermite matrix of f
with respect to some basis of R[x1, . . . , xn]/ ⟨f1, . . . , fs⟩. Then, we have

• The rank of H equals the number of distinct solutions in Kn of f at which g is non-zero.

• The signature, i.e., the difference between the numbers of positive and negative eigenvalues, of
H equals to the Tarski query TarskiQuery(f , g).

When g is identically 1, we call H the Hermite matrix associated to f for short. In this case,
we have immediately that

• The rank of H equals the number of distinct solutions in Kn of f .

• The signature of H equals to the number of distinct solutions in Rn of f .

Example 4.4.28. We continue with Example 4.4.26. The ideal I has 4 distinct complex roots and 2
distinct real roots. The rank and signature of both Hlex and Hgrevlex are respectively 4 and 2.
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Part II

Contributions
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Chapter 5

Real root classification algorithms
Abstract. In this chapter, we design a new algorithm for solving parametric systems of equa-
tions having finitely many complex solutions for generic values of the parameters.

More precisely, let f = (f1, . . . , fs) ⊂ Q[y][x] where x = (x1, . . . , xn) are variables and
y = (y1, . . . , yt) are parameters. We denote by V ⊂ Cn+t the algebraic set defined by the
simultaneous vanishing of the fi’s and π is the projection

π : Cn+t → Ct, (x,y) 7→ y.

Under the assumptions that f admits finitely many complex solutions when specializing y
to generic values and that the ideal generated by f is radical, we solve the following algorithmic
problem.

On input f , we compute semi-algebraic formulas defining open semi-algebraic sets S1, . . . ,Sℓ
in the parameters’ space Rt such that ∪ℓi=1Si is dense in Rt and, for 1 ≤ i ≤ ℓ, the number of
real points in V ∩ π−1(η) is invariant when η ranges over Si.

Our algorithm exploits special properties of some well chosen monomial bases in the quo-
tient algebra Q(y)[x]/I where I ⊂ Q(y)[x] is the ideal generated by f in Q(y)[x] as well as
the specialization property of the so-called parametric Hermite matrices. This allows us to ob-
tain “compact” representations of the semi-algebraic sets Si. These representations, encoded by
minors of Hermite matrices, have a determinantal nature and are easy to evaluate.

When f satisfies extra genericity assumptions (such as regularity), we use the theory of
Gröbner bases to derive complexity bounds both on the number of arithmetic operations in Q
and the degree of the output polynomials. More precisely, letting D be the maximal degrees of
the fi’s and D = n(D − 1)Dn, we prove that, on a generic input f = (f1, . . . , fn), one can
compute those semi-algebraic formulas with

O˜((t+D

t

)
8t n2t+1D3nt+2(n+t)+1

)
arithmetic operations in Q and that the polynomials involved in these formulas have degree
bounded by D.

Note that the state-of-the-art software for real root classification rely on algorithms which
compute a CAD in the parameter space Rt to obtain the semi-algebraic formulas. Even though
there is no existing complexity analysis for these algorithms, the complexity of computing CAD
alone is already doubly exponential in t. Hence, our algorithm has a better theoretical complexity
of DO(nt).
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We report on practical experiments which illustrate the efficiency of our algorithm, both on
generic parametric systems and parametric systems coming from applications since it allows us
to solve systems which are out of reach on the software of the state-of-the-art.

This is joint-work with M. Safey El Din.

5.1 Introduction

5.1.1 Problem statement

Let f = (f1, . . . , fs) be a sequence of s polynomials in Q[y][x] where the indeterminates y =
(y1, . . . , yt) are considered as parameters and x = (x1, . . . , xn) are considered as variables. We
denote by V ⊂ Cn+t the complex algebraic set defined by

f1 = · · · = fs = 0

and by VR its real trace V ∩ Rn+t. We consider also the projection on the parameter space y

π :
Cn × Ct → Ct,

(x,y) 7→ y.

Further, we say that f satisfies Assumption (5.A) when the following holds.

Assumption 5.A. There exists a non-empty Zariski open subset O ⊂ Ct such that π−1(η) ∩ V is
non-empty and finite for any η ∈ O.

In other words, assuming (5.A) ensures that, for a generic value η of the parameters, the
sequence f(η, ·) defines a finite algebraic set and hence finitely many real points. Note that, it is
easy to prove that one can chooseO in a way that the number of complex solutions to the entries
of f(η, ·) is invariant when η ranges over O (e.g. using the theory of Gröbner basis). This is no
more the case when considering real solutions whose number may vary when η ranges over O.

By Hardt’s triviality theorem (Theorem 4.2.7), there exists a real algebraic proper subset R
of Rt such that, for any non-empty connected open set U of Rt \ R and η ∈ U , π−1(η) × U is
homeomorphic with π−1(U).

This leads us to consider the following real root classification problem.

Problem RRC (Real root classification). On input f satisfying Assumption (5.A), compute semi-
algebraic formulas defining semi-algebraic sets S1, . . . ,Sℓ such that

(i) The number of real points in V ∩ π−1(η) is invariant when η ranges over Si, for 1 ≤ i ≤ ℓ;

(ii) The union of the Si’s is dense in Rt;

as well as at least one sample point ηi in each Si and the corresponding number of real points in
V ∩ π−1(ηi).
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A collection of semi-algebraic formulas sets is said to solve Problem (RRC) for the input f if it
defines a collection of semi-algebraic sets Si satisfies the above properties (i) and (ii).

Our output will have the form {(Φi, ηi, ri) | 1 ≤ i ≤ ℓ} where Φi is a semi-algebraic formula
defining the set Si, ηi ∈ Qt is a sample point of Si and ri is the corresponding number of real roots.

A weak version of Problem (RRC) would be to compute only a set {η1, . . . , ηℓ} of sample
points for a collection of semi-algebraic sets Si solving Problem (RRC) and their corresponding
numbers of real points in V ∩ π−1(ηj).

Example 5.1.1. Consider the equation x2 + y1x+ y2 = 0 where y1 and y2 are the parameters and
x is the unique variable. While y21 − 4y2 ̸= 0, this equation always has exactly two distinct complex
solutions. On the other hand, its number of distinct real solutions can take any value from 0 to 2,
depending on the sign of the discriminant y21 − 4y2. One possible output for Problem (RRC) on this
toy example is the following:

y21 − 4y2 < 0, (0, 1) : 0 real solution,
y21 − 4y2 = 0, (2, 1) : 1 real solution,
y21 − 4y2 > 0, (1, 0) : 2 real solutions.

Note that another possible output is{
y21 − 4y2 < 0, (0, 1) : 0 real solution,
y21 − 4y2 > 0, (1, 0) : 2 real solutions.

as the above two inequalities define semi-algebraic sets whose union is dense in R2. In Fig. 5.1, the
green region is defined by y21 − 4y2 < 0 and the red one corresponds to y21 − 4y2 > 0. We see that
each fiber of π over the red region intersects the real surface defined by x2 + y1x + y2 = 0 at two
distinct points. Whereas, the fibers over the green region are empty.

Figure 5.1: Real root classification of x2 + y1x+ y2 = 0.

A weak output consisting of only sample points is therefore{
(0, 1) : 0 real solution,
(1, 0) : 2 real solutions.
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Problem (RRC) appears in many areas of engineering sciences such as robotics or medical
imagery (see, e.g., [204, 45, 205, 64, 21]). In those applications, the behavior of mechanisms or
complex systems depends on intrinsic parameters that are related by polynomial equations or in-
equalities. Thus, the polynomial systems arising from those applications are naturally parametric
and most of the time the end-user is interested in classifying the number of real roots with respect
to parameters’ values.

5.1.2 Main results

As explained in Subsection 1.2.3, the state-of-the-art software for real root classification rely on
cylindrical algebraic decomposition. Hence, their complexities are doubly exponential in t. In this
chapter, we improve the state-of-the-art by designing algorithms of complexity DO(nt) where D
is a bound on the degree of input polynomials.

We start by revisiting methods based on Sturm-Habicht sequences in a multivariate context.
We basically use the parametric geometric resolution of [178] to compute a rational parametriza-
tion of V = V (f) with respect to the x-variables. More precisely, we compute a sequence of
polynomials (w, v1, . . . , vn) in Q(y)[u] where u is a new variable, such that the constructible set
Z ⊂ Ct × Cn of every point(

η,
v1

∂w/∂u
(η, ϑ), . . . ,

vn
∂w/∂u

(η, ϑ)

)
,

where (η, ϑ) ∈ Ct×C such that w(η, ϑ) = 0 and η does not cancel ∂w/∂u and any denominator
of (w, v1, . . . , vn), is Zariski dense in V , i.e., the Zariski closure of Z coincides with V .

Then, using the bi-rational equivalence between Z and its projection on the (u,y)-space, we
establish that semi-algebraic formulas solving Problem (RRC) can be obtained through the compu-
tation of the subresultant sequence associated to

(
w, ∂w∂u

)
. This is admittedly folklore in symbolic

computation but, as far as we know, is not explicitly written in the literature. In particular, the
analysis of degree bounds derived from this strategy is one of our contributions.

Under some genericity assumptions on the input system, Theorem 5.1.2 establishes the com-
plexity result of our Sturm-Habicht algorithm and also the degree bound for polynomials involved
in the semi-algebraic formulas solving Problem (RRC) obtained this way. Its proof is given in Sec-
tion 5.3, where all the genericity assumptions are clarified.

Theorem 5.1.2. Let f = (f1, . . . , fn) ⊂ Q[y][x] be a generic parametric system and D be the
largest total degree among the deg(fi)’s.

Then, there exists a probabilistic algorithm that computes semi-algebraic descriptions of a set of
semi-algebraic sets solving Problem RRC within

O˜((t+ 2D2n

t

)
25t D5nt+3n

)
arithmetic operations in Q in case of success.
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These semi-algebraic formulas computed by this algorithm involve polynomials in Q[y] of degree
bounded by 2D2n.

When reporting on experimental results, we will see that, even though the complexity bound
we obtain lies in DO(nt), this approach does not allow us to solve problems faster than the state-
of-the-art. One bottleneck comes from the fact that the polynomials of the output semi-algebraic
formulas have degree way higher than the bound n(D − 1)Dn which we will prove to apply
under the same assumptions as Theorem 5.1.2 using different algorithmic strategies.

Note that the above approach as well as the ones which compute polynomials inQ[y] to define
boundaries of semi-algebraic sets in Rt enjoying the properties needed to solve Problem (RRC)
combine two steps of algebraic elimination. The semi-algebraic formulas are obtained through
intermediate data who have been obtained through the first elimination step.

The rest of the chapter focuses on an alternative approach which computes semi-algebraic
formulas solving Problem (RRC) by avoiding interlaced algebraic elimination steps. We will see
(as announced earlier) that under genericity assumptions, this allows us to obtain a degree bound
and an arithmetic cost which are better than the algorithm based on Sturm-Habicht sequences by
one order of magnitude.

To do that, we rely on well-known properties of Hermite quadratic forms to count the real
roots of zero-dimensional ideals (see Subsection 4.4.3).

Given a zero-dimensional ideal I ⊂ Q[x], Hermite’s quadratic form operates on the finite
dimensional Q-vector space A := Q[x]/I as follows:

A×A→ Q
(h, k) 7→ trace(Lh·k),

where Lh·k denotes the endomorphism p 7→ h · k · p of A.
The number of distinct real (resp. complex) roots of the algebraic set defined by I equals

the signature (resp. rank) of Hermite’s quadratic form (Proposition 4.4.27). Recall that such a
quadratic form is represented by a symmetric Hermite matrix of size δ× δ, where δ is the degree
of I , once a basis of the finite dimensional vector space on which the form operates is fixed. Hence,
the signature of a Hermite quadratic form can be computed from this matrix representation.

We first slightly extend the definition of Hermite’s quadratic forms and Hermite’s matrices to
the context of parametric systems; we call them parametric Hermite quadratic forms and paramet-
ric Hermite matrices. This is easily done since the ideal of Q(y)[x] generated by f , considering
Q(y) as the base field, has dimension zero. We also establish natural specialization properties for
these parametric Hermite matrices.

Hence, a parametric Hermite matrix, similar to its zero-dimensional counterpart, allows one
to count respectively the number of distinct real and complex roots at any parameters outside a
proper algebraic sets of Rt by evaluating the signature and rank of its specialization.

Based on this specialization property, we design two algorithms for solving Problem (RRC)
and also its weak version for the input system f which satisfies Assumption (5.A) and generates
a radical ideal.
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Our algorithm for the weak version of Problem (RRC) reduces to the following main steps.

(a) Compute a parametric Hermite matrixH associated to f ⊂ Q[y][x].

(b) Compute a set of sample points {η1, . . . , ηℓ} in the connected components of the semi-
algebraic set of Rt defined by w ̸= 0 where w is derived fromH.
This is done through the so-called critical point method (see e.g. [9, Chap. 12] and references
therein) which are adapted to obtain practically fast algorithms following [171]. We will
explain in detail this step in Section 5.2.
This algorithm takes as input m polynomials of degree D involving t variables and com-
putes sample points per connected components in the semi-algebraic set defined by the
non-vanishing of these polynomials using

O˜((D + t

t

)
mt+123tD2t+1

)
.

(c) Compute the number ri of real points in V ∩ π−1(ηi) for 1 ≤ i ≤ ℓ.
This is done by simply evaluating the signature of the specialization ofH at each ηi.

It is worth noting that, in the algorithm above, we obtain through parametric Hermite matri-
ces a polynomial w that plays the same role as the discriminant varieties of [134] or the border
polynomials of [202]. We will see in the section reporting experiments that our approach out-
performs the other two for computing such a discriminating polynomial on every example we
consider.

To return semi-algebraic formulas, we follow a slightly different routine:

(a) Compute a parametric Hermite matrixH associated to f ⊂ Q[y][x].

(b) Compute a set of sample points {η1, . . . , ηℓ} in the connected components of the semi-
algebraic set of Rt defined by ∧δi=1Mi ̸= 0 where theMi’s are the leading principal minors
ofH. Again, this is done by the algorithm given in Section 5.2.

(c) For 1 ≤ i ≤ ℓ, evaluate the sign pattern of (M1, . . . ,Mδ) at the sample point ηi. From this
sign pattern, we obtain a semi-algebraic formula representing the connected component
corresponding to ηi.

(d) Compute the number ri of real points in V ∩ π−1(ηi) for 1 ≤ i ≤ ℓ.

In Subsection 5.4.4, we will make clear how to perform Step (a) and present some remarks
for optimization. For this, we rely on the theory of Gröbner bases and specialization properties
similar to those already proven in [118]. This leaves some freedom when running the algorithm:
since we rely on Gröbner bases, one may choose monomial orderings which are more convenient
for practical computations.
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In particular, the monomial basis of the quotient ring Q(y)[x]/I where I is the ideal gener-
ated by f in Q(y)[x] depends on the choice of the monomial ordering used for Gröbner bases
computations. We describe the behavior of our algorithm when choosing the graded reverse
lexicographical ordering whose interest for practical computations is explained in [13]. Further,
we denote by grevlex(x) the graded reverse lexicographical ordering applied to the sequence of
the variables x = (x1, . . . , xn) (with x1 ≻ · · · ≻ xn). Further, we also denote by lex(x) the
lexicographical ordering x1 ≻ · · · ≻ xn.

We report, at the end of the chapter, on the practical behavior of this algorithm. In particular,
it allows us to solve instances of Problem (RRC) which were not tractable by the state-of-the-art
as well as the actual degrees of the polynomials in the output formula which are bounded by
n(D − 1)Dn. Using this algorithm, we successfully solve the application of Kuramoto model for
4 oscillators. As far as we know, this is the first symbolic solution for this application, comparing
to [99] in which a numerical solution is given.

We actually prove such a statement under some genericity assumptions. Our main complexity
result is stated below. Its proof is given in Subsection 5.6.2, where the genericity assumptions in
use are given explicitly.

Theorem 5.1.3. Let C[x,y]≤D be the set of polynomials in C[x,y] having total degree bounded by
D and set D = n(D − 1)Dn.

There exists a non-empty Zariski open set F ⊂ C[x,y]n≤D such that for f = (f1, . . . , fn) ∈
F ∩Q[x,y]n, the following holds:

i) There exists a probabilistic algorithm that computes a solution for the weak-version of Problem
(RRC) within

O˜((t+D

t

)
8t n2t+1D2nt+n+2t+1

)
.

arithmetic operations in Q in case of success.

ii) There exists a probabilistic algorithm that returns the formulas of a collection of semi-algebraic
sets solving Problem (RRC) within

O˜((t+D

t

)
8t n2t+1D3nt+2(n+t)+1

)
arithmetic operations in Q in case of success.

iii) The semi-algebraic descriptions output by the above algorithm involves polynomials in Q[y]
of degree bounded by D.

We note that the binomial coefficient
(
t+D
t

)
is bounded from above by Dt ≃ ntDnt+t. Thus,

the complexities given in the items i) and ii) of Theorem 5.1.3 can be bounded respectively by

O˜(8t n3tD3nt
)

and O˜(8t n3tD4nt
)
.
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Both Theorems 5.1.2 and 5.1.3 provide a complexity DO(nt) for the real root classification
problem. To the best of our knowledge, there is no established complexity analysis carried out for
algorithms used in the state-of-the-art software. Those algorithms rely on computing a CAD in
the parameter space Rt to obtain the semi-algebraic formulas. This step of computing CAD alone
leads to a complexity which is doubly exponential in t.

Note that the complexity results given Theorem 5.1.3 provides a complexity with smaller con-
stant in the exponent comparing with Theorem 5.1.2. Moreover, the degree of output polynomials
in Theorem 5.1.3 is of order O(Dn) comparing to O(D2n) of Theorem 5.1.2.

Organization of the chapter. First, we present a dedicated algorithm for computing at least
one point per connected component of a semi-algebraic defined by a list of inequations in Sec-
tion 5.2. This algorithm and its complexity result are used in Step (b) of our algorithms. In Section
5.3, we discuss an algorithm based on Sturm-Habicht sequences for solving real root classifica-
tion problem. This provides an overview on the drawbacks and potential improvements of this
approach. Section 5.4 lies the definition and some useful properties of parametric Hermite matri-
ces. There, we also present an algorithm with some optimizations to compute such a matrix. In
Section 5.5, we describe our algorithm for solving the real root classification problem using this
parametric Hermite matrix. The complexity analysis of the algorithms mentioned above is given
in Section 5.6. Finally, in Section 5.7, we report on the practical behavior of our algorithms and
illustrate its practical capabilities.

5.2 Computing sample points in semi-algebraic sets defined by
the non-vanishing of polynomials

In this section, we study the following algorithmic problem. Given (g1, . . . , gm) in Q[y1, . . . , yt],
compute at least one sample point per connected component of the semi-algebraic set S ⊂ Rt

defined by
g1 ̸= 0, . . . , gm ̸= 0.

Such sample points will be encoded with zero-dimensional parametrizations.
The main result of this section which will be used in the sequel of this paper is the following.

Theorem 5.2.1. Let (g1, . . . , gm) in Q[y1, . . . , yt] with D ≥ max1≤i≤m deg(gi) and S ⊂ Rt be
the semi-algebraic set defined by

g1 ̸= 0, . . . , gm ̸= 0.

There exists a probabilistic algorithm, which we name SamplePoints, which on input (g1, . . . , gm)
outputs a finite family of zero-dimensional parametrizations R1, . . . ,Rk, all of them of degree
bounded by (2D)t, which encode at most (2mD)t points such that ∪ki=1Z(Ri) meets every con-
nected component of S using

O˜((D + t

t

)
mt+18tD2t+1

)
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arithmetic operations in Q.

The rest of this section is devoted to the proof of this theorem.

Proof. By [64, Lemma 1], there exists a non-empty Zariski open setA×E ⊂ Cm×C such that for
(a = (a1, . . . , am), e) ∈ A×E∩Rm×R, the following holds. For I = {i1, . . . , iℓ} ⊂ {1, . . . ,m}
and σ = (σ1, . . . , σm) ∈ {−1, 1}m, the algebraic sets V I,σ

a,e ⊂ Ct defined by

gi1 + σi1ai1e = · · · = giℓ + σiℓaiℓe = 0

are, either empty, or (t−ℓ)-equidimensional and smooth, and the ideal generated by their defining
equations is radical.

Note that by the transfer principle (see, e.g., Section 4.3, [9, Theorem 2.98]), one can choose
instead of a scalar e an infinitesimal ε so that the algebraic sets V I,σ

a,ε and their defining set of
equations satisfy the above properties. When, in the above equations, one leaves ε as a variable,
one obtains equations defining an algebraic set in Ct+1. We denote by VI,σ

a,ε the union of the
(t+ 1− ℓ)-equidimensional components of this algebraic set.

Further we also assume that the ai’s are chosen positive.
Denote by S(ε) the extension of the semi-algebraic set S to R⟨ε⟩t ; similarly, the extension of

any connected component C of S to R⟨ε⟩t is denoted by C(ε).
Now, remark that any connected component C(ε) of S(ε) contains a connected component of

the semi-algebraic set S(ε)a defined by:

(−a1ε ≥ g1 ∨ g1 ≥ a1ε) ∧ · · · ∧ (−amε ≥ gm ∨ gm ≥ amε)

Hence, we are led to compute sample points per connected component of S(ε)a . These will be
encoded with zero-dimensional parametrizations with coefficients in Q[ε].

By [9, Proposition 13.1], in order to compute sample points per connected component in S(ε)a ,
it suffices to compute sample points in the real algebraic sets V I,σ

a,ε ∩ Rt. To do that, since the
algebraic setsV I,σ

a,ε satisfy the above regularity properties, we can use the algorithm and geometric
results of [171]. To state these results, one needs to introduce some notation.

Let Q be a real field, R be a real closure of Q and C be an algebraic closure of R. For an
algebraic set V ⊂ Ct defined by h1 = · · · = hℓ = 0 (hi ∈ Q[y] with y = (y1, . . . , yt)) and
M ∈ GL(t,R), we denote by VM the set {M−1 · x | x ∈ V } and, for 1 ≤ i ≤ ℓ, by hiM
the polynomial hi(M · y) and by πi the canonical projection (y1, . . . , yt) 7→ (y1, . . . , yi) (π0
will simply denote (y1, . . . , yt) 7→ {•}). By slightly abusing notation, we will also denote by πi
projections from VI,σ

a,ε to the first i coordinates (y1, . . . , yi).
We will consider the set of critical points of the restriction of πi to V and will denote this set

by crit(πi, V ) for 1 ≤ i ≤ ℓ. By [171, Theorem 2], for a generic choice of M ∈ GL(t,R), the
union of VM ∩ π−1

t−ℓ(0) with the sets crit(πi, V
M ) ∩ π−1

i−1(0) (for 1 ≤ i ≤ t − ℓ) is finite and
meets all connected components of VM ∩Rt. Because V satisfies the aforementioned regularity

94



assumptions, crit(πi, VM ) ∩ π−1
i−1(0) is defined as the projection on the y-space of the solution

set to the polynomials

hM , (λ1, . . . , λℓ).jac(h
M , i), u1λ1 + · · ·+ uℓλℓ = 1, y1 = · · · = yi−1 = 0,

where h = (h1, . . . , hℓ), λ1, . . . , λℓ are new variables (called Lagrange multipliers), jac(hM , i)
is the Jacobian matrix associated to hM truncated by forgetting its first first i columns and the
ui’s are generically chosen (see also [174, App. B]).

Recall that D denotes the maximum degree of the hj ’s and let E be the length of a straight-
line program evaluating h. Observe now that, setting the yj ’s to 0 (for 1 ≤ j ≤ i− 1), and using
[175, Theorem 1] combined with the degree estimates in [175, Section 5], we obtain that such
systems can be solved using

O

(((
t− i
ℓ

)
Dℓ(D − 1)t−(i−1)−ℓ

)2

(E + (t+ ℓ)D + (t+ ℓ)2)(t+ ℓ)

)

arithmetic operations in Q and have at most(
t− i
ℓ

)
Dℓ(D − 1)t−(i−1)−ℓ

solutions.
Going back to our initial problem, one then needs to solve polynomial systems which encode

the set crit(πi, V I,σ
a,ε ) of critical points of the restriction of πi toV I,σ

a,ε . Note that these systems have
coefficients in Q[ε]. To solve such systems, we rely on [178], which consists in specializing ε to a
generic value v ∈ Q and compute a zero-dimensional parametrization of the solution set to the
obtained system (within the above arithmetic complexity over Q) and next use Hensel lifting and
rational reconstruction to deduce from this parametrization a zero-dimensional parametrization
with coefficients in Q(ε). By [178, Corollary 1] and multi-homogeneous bounds on the degree of
the critical points of πi to VI,σ

a,ε as in [175, Section 5], this lifting step has a cost

O˜(((t+ ℓ)4 + (t+ ℓ+ 1)E)

((
t− i
ℓ

)
Dℓ(D − 1)t−(i−1)−ℓ

)2
)
.

Hence, all in all computing one zero-dimensional parametrization for one critical locus uses

O˜(((t+ ℓ)4D + (t+ ℓ+ 1)E)

((
t− i
ℓ

)
Dℓ(D − 1)t−(i−1)−ℓ

)2
)

arithmetic operations in Q. Note that, following [178], the degrees in ε of the numerators and
denominators of the coefficients of these parametrizations are bounded by

(
t
ℓ

)
Dℓ(D − 1)t−ℓ.
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Summing up for all critical loci and using

t−ℓ∑
i=0

(
t− i
ℓ

)
=

(
t+ 1

ℓ+ 1

)
,

the computation for a fixed V I,σ
a,ε uses

O˜(((t+ ℓ)4D + (t+ ℓ+ 1)E)

(
t+ 1

ℓ+ 1

)2 (
Dℓ(D − 1)t−ℓ

)2)

arithmetic operations in Q. Also, the number of points computed this way is dominated by(
t+ 1

ℓ+ 1

)(
Dℓ(D − 1)t−ℓ

)
.

Note that the above quantity is upper bounded by (2D)t and bounds the degree of the output
zero-dimensional parametrizations.

Taking the sum for all possible algebraic sets V I,σ
a,ε and remarking that

• the sum of number of indices of cardinality ℓ for 0 ≤ ℓ ≤ t is bounded by mt,

• the number of sets σ for a given ℓ is bounded by 2t,

• the sum
∑t

ℓ=0

(
t+1
ℓ+1

)2 equals 2
(
2t+1
t

)
− 1,

one deduces that all these zero-dimensional parametrizations can be computed within

O˜(mt2t
(
2t+ 1

t

)(
(2t)4D + (2t+ 1)E

)
D2t

)
arithmetic operations in Q (recall that E bounds the length of a straight line program evaluating
all the polynomials defining our semi-algebraic set S) which we simplify to

O˜(E mt 8t D2t+1
)
.

Similarly, using the above simplifications, the total number of points encoded by these zero-
dimensional parametrizations is bounded above by (2mD)t.

At this stage, we have just obtained zero-dimensional parametrizations with coefficients in
Q(ε).

The above bound on the number of returned points is done but it remains to show how to
specialize ε in order to get sample points per connected components in S . To do that, given a
parametrization Rε = (w, v1, . . . , vt) ⊂ Q(ε)[u]t+1, we need to find a specialization value e for
ε to obtain a parametrization Re such that
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• the number of real roots of the zero set associated to Re is the same as the number of real
roots of the zero set associated to Rε;

• when η ranges over the interval ]0, e] the signs of the gi’s at the zero set associated to η
does not vary.

To do that, it suffices to choose e such that it is smaller than the smallest positive root of the
resultant associated to

(
w, ∂w∂u

)
and the smallest positive roots of the resultant associated to w

and gi
(

v1
∂w/∂u , . . . ,

vt
∂w/∂u

)
. The algebraic cost (i.e. the resultant computations) are dominated

by the complexity estimates of the previous step.
Finally, note that E can be bounded by s

(
D+t
t

)
when the gi’s are given in an expanded form

in the monomial basis. Therefore, the arithmetic complexity for computing sample points of the
semi-algebraic set defined by g1 ̸= 0, . . . , gm ̸= 0 can be bounded by

O˜((D + t

t

)
mt+1 8t D2t+1

)
.

Remark 5.2.2. Observe that the coefficients of the rational parametrizations with coefficients inQ[ε]
have bit size depending both on the maximum bit size τ of the coefficients of the input polynomials
g1, . . . , gm and the bit size of the generically chosen ai’s.

When substituting the infinitesimal ε by a small enough rational number e ∈ Q, one obtains
zero-dimensional parametrizations with coefficients in Q of bit size depending on the one of e also.
Admissible values for e depend on the magnitude of the real roots of the univariate resultant we
exhibit in the above proof. Because we start with rational parametrizations of degree bounded by
O(D)t, assuming that the bit size of the ai’s is bounded by O(D)t (following the reasoning like the
one in [57]), one could show using standard quantitative results that the bit size of e may be τ DO(t)

(because e is obtained through the isolation of real roots of a univariate polynomial of degreeDO(t)).
However, this is a worst case analysis and most of the time, we observe in practice that one can choose
for e values of reasonable bit size.

We end this section with a corollary which is a consequence of the proof of [9, Theorem 13.18].
Basically, once we have the parametrizations computed by the algorithm on which Theorem 5.2.1
relies, one can compute sample points per connected components of the semi-algebraic set S
within the same arithmetic complexity bounds. The idea is just to evaluate the gi’s at these ratio-
nal parametrizations and use bounds on the minimal distance between two roots of a univariate
polynomial such as [9, Prop. 10.22]. Hence, the proof of the corollary below follows mutatis
mutandis the same steps as the one of [9, Theorem 13.18].

Corollary 5.2.3. Let (g1, . . . , gm) in Q[y1, . . . , yt] with D ≥ max1≤i≤m deg(gi) and S ⊂ Rt be
the semi-algebraic set defined by

g1 ̸= 0, . . . , gm ̸= 0.
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There exists a probabilistic algorithm which on input (g1, . . . , gm) outputs a finite set of points P in
Qt of cardinality at most (2mD)t points such that P meets every connected component of S using

O˜((D + t

t

)
mt+18tD2t+1

)
.

arithmetic operations in Q.

Note that, by contrast with Theorem 5.2.1, the above corollary shows how to obtain output
points with coordinates in Q.

5.3 Algorithm based on Sturm-Habicht sequences

In this section, we describe an algorithm based on Sturm-Habicht sequences for solving Problem
(RRC) and discuss its shortcomings.

We consider a sequence f = (f1, . . . , fs) ⊂ Q[y][x] where y = (y1, . . . , yt) and x =
(x1, . . . , xn). Let D be an upper bound of the total degree of the fi’s. We require that the input
system f satisfies the properties below.

Assumption 5.B. Let f be the above parametric polynomial system and V be the algebraic set
defined by f . We say that f satisfies Assumptions (5.B) if the following properties hold.

(B1) The ideal generated by f is radical.

(B2) The algebraic set V is equidimensional of dimension t.

(B3) The restriction of π : (y,x) 7→ y to V is dominant.

It is well-known that the above assumptions are satisfied by sufficiently generic systems (see
e.g. [175]).

In what follows, we rely on the existence of a parametric geometric resolution due to Schost
[178] to reduce our initial multivariate problem to a univariate one.

Using [178, Proposition 2] with Assumption (B1), there exists a non-empty open Zariski set
A of Cn such that, for (a1, . . . , an) ∈ Qn ∩ A, there exists a parametric geometric resolution
(wa, v1, . . . , vn) ∈ Q(y)[u]n of f that satisfies the following properties.

• wa is a square-free polynomial in Q[y][u].

• u =
∑n

i=1 aixi.

• There exists a non-empty Zariski open subset Ya ⊂ Ct such that, for η ∈ Ya, we have that

V (f(η, ·)) =
{(

v1
∂wa/∂u

(η, ϑ), . . . ,
vn

∂wa/∂u
(η, ϑ)

) ∣∣∣∣ wa(η, ϑ) = 0,
∂wa

∂u
(η, ϑ) ̸= 0

}
.

The set Ya can be chosen as the set where the leading coefficient of wa, the resultant of
wa and ∂wa/∂u, and the denominators appearing in the coefficients of v1, . . . , vn do not
vanish.
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As a consequence, for η ∈ Ya, the number of complex solutions of f(η, ·) is invariant and equals
the partial degree ofwa in u. We denote by ∆ the partial degree ofwa in u. By Bézout’s inequality
(see e.g. [101]), ∆ is bounded above by Dn.

Let η ∈ Ct and wa(η, ·) be the specialization of the y variables in wa at η. From the existence
of such a parametric resolution, we deduce that, for η ∈ Ya, the map

φ : (x1, . . . , xn) 7→
n∑

i=1

aixi

is a bijection between the complex roots of f(η, ·) and wa(η, ·).

Lemma 5.3.1. Let f be a parametric system satisfying Assumption (5.B) andwa be the eliminating
polynomial in the parametric geometric resolution of f as above. Then, we have

V (⟨f1, . . . , fs, u−
n∑

i=1

aixi⟩ ∩Q[y][u]) = V (wa).

Consequently, the total degree of wa is at most Dn.

Proof. We prove that, under Assumption (5.B), there exists a square-free polynomialw ∈ Q[y][x]
satisfying

V (⟨f1, . . . , fs, u−
n∑

i=1

aixi⟩ ∩Q[y][u]) = V (w).

Let πu : Ct+n+1 → Ct+1, (y,x, u) 7→ (y, u) and Vu be the algebraic set defined by ⟨f , u −∑n
i=1 aixi⟩. Note that V and Vu are isomorphic taking the map (y,x) 7→ (y,x,

∑n
i=1 aixi)

as an isomorphism between them. Then, as the algebraic set V satisfies Assumption (5.B), Vu
is equidimensional of dimension t and the restriction of Π : Ct+n+1 → Ct, (y,x, u) 7→ y to
Vu is dominant. Therefore, the Zariski closure of πu(Vu) is an equidimensional algebraic set of
dimension t. Hence, there exists a square-free polynomialw ∈ Q[y][u] such that V (w) = πu(Vu).
Therefore, we obtain V (⟨f1, . . . , fs, u−

∑n
i=1 aixi⟩ ∩Q[y][u]) = πu(Vu) = V (w).

It remains to show that wa equals to w up to a constant. By the definition of parametric geo-
metric resolution, for η ∈ Ya, then wa(η, ·) and w(η, ·) share the same complex roots. Therefore,
wa equals tow up to a factor in Q[y]. However, bothwa andw do not contain such kind of factor.

By Bézout’s inequalities, the degree of V (f1, . . . , fs, u −
∑n

i=1 aixi) is at most Dn. Hence,
the degree of πu(Vu) is also bounded by Dn. Therefore, the total degree of wa is bounded by
Dn.

Recall that Ya is the non-empty Zariski open subset of Ct where the leading coefficient ofwa,
the resultant ofwa and ∂wa/∂u, and the denominators appearing in the coefficients of v1, . . . , vn
do not vanish. Lemma 5.3.2 shows that the numbers of real roots of f(η, ·) and wa(η, ·) also
coincide over Ya.
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Lemma 5.3.2. Let Ya be as above. Then, for η ∈ Ya ∩Rt, the numbers of real solutions of wa(η, ·)
and f(η, ·) are equal.

Proof. Let η ∈ Rt ∩ Ya. By definition of Ya, the restriction of φ : (x1, . . . , xn) 7→
∑n

i=1 aixi to
V (f(η, ·)) is a bijection between the complex roots of f(η, ·) and wa(η, ·).

As the sequence f(η, ·) contains polynomials of coefficients in R, the non-real complex roots
of f(η, ·) appears as pairs of conjugate complex points of Cn. Assume that there exists a non-real
root whose image by φ is a real root of wa(η, ·), then its conjugate is also mapped to the same
real root. This contradicts the bijectivity of φ. Therefore, the numbers of real solutions of f(η, ·)
and wa(η, ·) coincide.

For h ∈ Q[y][u] of degree ∆ in u, we denote by

Σ

(
h,
∂h

∂u

)
= (s0, . . . , s∆) ⊂ Q[y]

the leading coefficients of the signed subresultant sequence associated to (h, ∂h/∂u) (see [9, No-
tation 4.21]). Here we enumerate this sequence in a way such that s0 is the leading coefficient of
h as a polynomial in u and s∆ is the resultant of h and ∂h/∂u.

We recall the specialization property of signed subresultant coefficients (Proposition 4.4.12).
For η ∈ Rt that does not cancel the leading coefficient of h as a polynomial in u, then the signed
subresultant coefficients of h(η, ·) and ∂h(η, ·)/∂u are exactly the evaluation of (s0, . . . , s∆) at
η.

By Theorem 4.4.17, the number of real roots of h(η, ·) equals the generalized permanences
minus variations (see Definition 4.4.16) of (s0, . . . , s∆)η . Note that this value is uniquely defined
upon a sign pattern of (s0, . . . , s∆)η .

We can now describe Algorithm 5.1 which takes as input a parametric polynomial sequence
f = (f1, . . . , fs) ⊂ Q[y][x] satisfying Assumption (5.B) and it outputs semi-algebraic formulas
solving Problem (RRC).

It uses the following subroutines:

• EliminatingPolynomial which takes as input f and outputs an eliminating polynomial wa,
i.e., the first polynomial in a parametric geometric resolution of f .
Such an algorithm can be derived from the probabilistic algorithm given in [178] that com-
putes parametric geometric resolutions.

• SignedSubresultantCoefficients which takes as input wa and outputs Σ(wa, ∂wa/∂u) =
(s0, . . . , s∆).
We refer to [9, Algo. 8.77] for the explicit description of such an algorithm.

• SamplePointswhich takes as input the signed subresultant coefficients (s0, . . . , s∆) ⊂ Q[y]
and outputs at least one point per connected components of the semi-algebraic set defined
by {si ̸= 0 | 1 ≤ i ≤ ∆, si is not a constant}.
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We refer to Theorem 5.2.1 in Section 5.2 for the explicit description of such an algorithm
and its complexity.

• PermanencesMinusVariations which takes as input a sequence (s0, . . . , s∆)η and return its
generalized permanences minus variations.
The generalized permanences minus variations can be computed using its definition given
in Definition 4.4.16 (see also [9, Algo. 9.4]).

Algorithm 5.1: RRC-Sturm-Habicht
Input: A parametric system f ⊂ Q[y][x] satisfying Assumption (5.B)
Output: Semi-algebraic descriptions solving Problem (RRC) for the input f

1 wa ← EliminatingPolynomial(f)
2 (s0, . . . , s∆)← SignedSubresultantCoefficients (wa, ∂wa/∂u, u)
3 L← SamplePoints({si ̸= 0 | 1 ≤ i ≤ ∆, si is not a constant})
4 for η ∈ L do
5 rη ← PermanencesMinusVariations((s0, . . . , s∆)η)
6 end
7 return {(sign(s0, . . . , s∆)η, η, rη) | η ∈ L}

Theorem 5.1.2. Let f = (f1, . . . , fn) ⊂ Q[y][x] be a parametric system andD be the largest total
degree among the deg(fi)’s. We assume that f satisfies Assumption (5.B).

Then, Algorithm 5.1, which is probabilistic, computes semi-algebraic formulas solving Problem
RRC within

O˜((t+ 2D2n

t

)
32t D5nt+3n

)
arithmetic operations in Q. These semi-algebraic formulas contain polynomials in Q[y] of degree
bounded by 2D2n.

Proof. We start with the correctness statement. Recall that s0 is the leading coefficient of wa

as a polynomial in u. By [9, Proposition 8.74], for η ∈ Ct that does not cancel s0, the signed
subresultant coefficients of wa(η, ·) and ∂wa(η, ·)/∂u is the specialization of (s0, . . . , s∆) at η.
Therefore, from [9, Theorem 4.33], the number of real roots of wa(η, ·) can be derived from the
sign of the sequence (s0, . . . , s∆)η for η ̸∈ V (s0).

On the other hand, the semi-algebraic set S defined by

{si ̸= 0 | 1 ≤ i ≤ ∆, si is not a constant}

is composed of open semi-algebraic connected components, namely S1, . . . ,Sℓ. Over each of
them, the signed subresultant coefficients si are sign-invariant. Thus, the number of distinct real
roots of wa(η, ·) is invariant when η varies in Si for each 1 ≤ i ≤ ℓ.
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Recall that Ya ⊂ Ct is the non-empty Zariski open set in Lemma 5.3.2 such that for η ∈ Ya,
the numbers of real roots of f(η, ·) and wa(η, ·) coincide. Therefore, the number of real solutions
of f(η, ·) is also invariant when η varies in Si ∩ Ya.

Let L be the set of sample points of S . We deduce from the above arguments that the semi-
algebraic sets defined by

∆∧
i=1

sign(si) = sign(si(η))

for η ∈ L satisfy the requirement of Problem RRC. The correctness of our algorithm is proven.
By Lemma 5.3.1, the total degree of wa is bounded above by dn. Using [9, Proposition 8.71]

on the polynomial wa and ∂wa/∂u, we obtain the bound

deg sj ≤ Dn(2j − 1) ≤ 2Dn

for 0 ≤ j ≤ ∆. Using this bound, we are now able to analyze the complexity of Algorithm 5.1.
By [178, Corollary 1], running EliminatingPolynomial on input f = (f1, . . . , fn) where the

total degree of each fi is bounded by d takes

O˜((4Dn + t

t

)
Dn

)
arithmetic operations in Q.

The signed subresultant coefficients ofwa and ∂wa/∂u can be computed using an evaluation-
interpolation scheme as follows.

As the degree of si is bounded by 2D2n, we need to compute the signed subresultant co-
efficients of the evaluation of (wa, ∂wa/∂u) at

(
t+2D2n

t

)
distinct points. Note that

(
t+2D2n

t

)
is

bounded by 2tD2nt.
Using [9, Algo. 8.77], it yields an arithmetic complexity O

(
D2n

)
for each of those signed

subresultant computations. Hence, in total, the specialized signed subresultant coefficients can
be computed by

O
(
2tD2nt+2n

)
arithmetic operations in Q.

Next, the cost of interpolating the si’s can be bounded by

O˜(∆ 2tD2nt
)
≃ O˜(2tD2nt+n

)
using the interpolation given in [36]. Thus, the arithmetic complexity of SignedSubresultantCo-
efficients lies in

O˜(2tD2nt+n
)
.

We rely on Corollary 5.2.3 for estimating the complexity of SamplePoints. Using the al-
gorithm of Section 5.2 (see Theorem 5.2.1 and Corollary 5.2.3) on the sequence (s0, . . . , s∆),
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one can compute sample points per connected components of the semi-algebraic set defined by
{si ̸= 0 | 1 ≤ i ≤ ∆, si is not a constant} in time

O˜((t+ 2D2n

t

)
t4Dnt+n8t

(
2D2n

)2t+1
)
≃ O˜((t+ 2D2n

t

)
32t D5nt+3n

)
.

By Corollary 5.2.3, this subroutine outputs a finite subset of Qt whose cardinal is bounded by
4tD3nt. Using [9, Algorithm 9.4] to compute the permanences minus variations leads to an arith-
metic complexity of

O
(
4tD3nt+n

)
.

Summing up all the partial costs, we conclude that Algorithm 5.1 runs within

O˜((t+ 2D2n

t

)
32t D5nt+3n

)
arithmetic operations in Q.

Example 5.3.3. We will illustrate the algorithms of this paper using the sequence

f = (x21 + x22 − y1, x1x2 + y2x2 + y3x1).

We choose u = x2 when running Algorithm 5.1 (in a reasonable implementation, one would pick
randomly a linear form but we choose this one to obtain smaller data).

We obtain the following rational parametrization (w, v1, v2) with

w = u4 + 2y3u
3 + (y22 + y23 − y1)u2 − 2y1y3u− y1y23,

v2 = 2 y3 u
3 +

(
2 y2

2 + 2 y3
2 − 2 y1

)
u2 − 6 y1 y3 u− 4 y1 y3

2,

v1 = 2 y2 u
3 + 2 y1 y3 y2.

The signed subresultant coefficients associated to
(
w, ∂w∂u

)
are:

s0 = 1, s1 = 1, s2 = −2y22 + y23 + 2y1,

s3 = −y62 − 2y42y
2
3 − y22y43 + 3y1y

4
2 − 14y1y

2
2y

2
3 + y1y

4
3 − 3y21y

2
2 − 2y21y

2
3 + y31 ,

s4 = (y2y3)
2y1(−y62 − 3y42y

2
3 − 3y22y

4
3 − y63 + 3y1y

4
2 − 21y1y

2
2y

2
3 + 3y1y

4
3 − 3y21y

2
2 − 3y21y

2
3 + y31).

Since s0 and s1 are constants, we then compute at least one point per connected component of the
semi-algebraic set defined by

s2 ̸= 0 ∧ s3 ̸= 0 ∧ s4 ̸= 0.

This is done using e.g. RAGlib (the Real Algebraic Geometry library) [170] (because it implements an
algorithm which is easy to use for sampling points in semi-algebraic sets). We obtain 35 points and
find that the realizable sign conditions for (s2, s3, s4) are

[−1,−1,−1], [−1,−1, 1], [−1, 1, 1], [1,−1,−1], [1,−1, 1], [1, 1,−1], [1, 1, 1].
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Applying [9, Theorem 4.32], we deduce the corresponding numbers of real roots to these sign patterns

0 real root → (s2 < 0 ∧ s3 < 0 ∧ s4 > 0) ∨ (s2 < 0 ∧ s3 > 0 ∧ s4 > 0) ∨ (s2 > 0 ∧ s3 < 0 ∧ s4 > 0),

2 real roots → (s2 < 0 ∧ s3 < 0 ∧ s4 < 0) ∨ (s2 > 0 ∧ s3 < 0 ∧ s4 < 0) ∨ (s2 > 0 ∧ s3 > 0 ∧ s4 < 0),

4 real roots → (s2 > 0 ∧ s3 > 0 ∧ s4 > 0).

Note that the maximum degree of the polynomials involved in the above formulas is 11. By contrast,
observe that the restriction of the projection π : (x,y) → y to the real algebraic set defined by
f is proper. Hence, applying a semi-algebraic variant of Thom’s isotopy lemma as in [21], one can
deduce that the set of critical values of this map discriminates the regions of the parameters’ space
over which the number of real roots of f remains invariant.

Using immediate Gröbner bases computations, one obtains that the Zariski closure of this set of
critical values is defined by the vanishing of

y1(−y62 − 3y42y
2
3 − 3y22y

4
3 − y63 + 3y1y

4
2 − 21y1y

2
2y

2
3 + 3y1y

4
3 − 3y21y

2
2 − 3y21y

2
3 + y31)

which has only degree 7.

5.4 Parametric Hermite matrices

In this section, we adapt the construction of Hermite matrices to the context of parametric sys-
tems and describe an algorithm for computing those parametric Hermite matrices. We will use
these matrices to obtain a better algorithm than the one presented in Section 5.3 for real root
classification.

5.4.1 Definition

In this subsection, we present the definition of our parametric Hermite matrix and prove some
properties which will be used further in this chapter.

Let f = (f1, . . . , fs) be a polynomial sequence in Q[y][x]. We take the rational function field
Q(y) as the base field K and denote by ⟨f⟩K the ideal generated by f in K[x]. We require that
the system f satisfies Assumption (5.A).

This leads to the following lemma, which is the foundation for the construction of our para-
metric Hermite matrices.

Lemma 5.4.1. Assume that f satisfies Assumption (5.A). Then the ideal ⟨f⟩K is zero-dimensional.

Proof. Assume that there exists a coordinate xi for 1 ≤ i ≤ n such that ⟨f⟩ ∩ C[y, xi] = ⟨0⟩.
We denote respectively by πi and π̃i the projections (y,x) 7→ (y, xi) and (y, xi) 7→ y. By the
assumption above, πi(V) is the whole space Ct+1. Then, we have the identity

Ct+1 =
(
π̃i

−1(O) ∪ π̃i−1(Ct \ O)
)
∩ πi(V),
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where O be the dense Zariski open subset of Ct required in Assumption (5.A).
Since π̃i is a map fromCt+1 toCt, its fibers are of dimension at most 1. Therefore, we have that

dim π̃i
−1(Ct\O) ≤ 1+dim(Ct\O) ≤ t. As Assumption (5.A) holds and dim π̃−1

i (Ct\O) ≤ t, we
have that dim π̃i

−1(O) ∩ πi(V) = t. This contradicts to the above identity above. We conclude
that, for 1 ≤ i ≤ n, ⟨f⟩ ∩ C[y, xi] ̸= ⟨0⟩.

On the other hand, by Assumption (5.A), the Zariski-closure of π(V) is the whole parameter
space Ct. Thus, we have that ⟨f⟩ ∩ C[y] = ⟨0⟩. Since ⟨f⟩ ∩ C[y] = (⟨f⟩ ∩ C[y, xi]) ∩ C[y] for
every 1 ≤ i ≤ n, there exists a polynomial pi ∈ ⟨f⟩ ∩ C[y, xi] whose degree with respect to xi
is non-zero. Clearly, pi is an element of the ideal ⟨f⟩K. Thus, there exists di such that xdii is a
leading term in ⟨f⟩K. Hence, ⟨f⟩K is a zero-dimensional ideal.

Lemma 5.4.1 allows us to apply the construction of Hermite matrices described in Section 4.4.3
to parametric systems as follows.

Since the ideal ⟨f⟩K is zero-dimensional by Lemma 5.4.1, its associated quotient ring AK =
K[x]/⟨f⟩K is a finite dimensional K-vector space (Theorem 3.3.1). Let δ denote the dimension of
AK as a K-vector space.

We consider a basis B = {b1, . . . , bδ} of AK, where the bi’s are taken as monomials in the
variables x. Such a basis can be derived from Gröbner bases as follows. We fix an admissible
monomial ordering ≻ over the set of monomials in the variables x and compute a Gröbner basis
G with respect to the ordering≻ of the ideal ⟨f⟩K. Then, the monomials that are not divisible by
any leading monomial of elements of G form a basis of AK.

For an element p ∈ K[x], we denote by p the class of p in the quotient ringAK. A representa-
tive of p can be derived by computing the normal form of p by the Gröbner basisG, which results
in a linear combination of elements of B with coefficients in Q(y). The map of multiplication by
p, denoted by Lp, is an endomorphism of AK defined as

Lp : AK → AK,
q 7→ p · q.

Recall that Hermite’s quadratic form of the ideal ⟨f⟩K is defined as the bilinear form that sends
(p, q) ∈ AK ×AK to the trace of Lp·q .

Assume now the basis B of AK is fixed. Every multiplication map Lp admits a matrix repre-
sentation with respect toB, whose entries are elements in Q(y). The trace ofLp can be computed
as the trace of the matrix representing it. Similarly, Hermite’s quadratic form of ⟨f⟩K can be rep-
resented by a matrix with respect to B. This leads to the following definition.

Definition 5.4.2. Given a parametric polynomial system f = (f1, . . . , fs) ⊂ Q[y][x] satisfying
Assumption (5.A). Let K = Q(y), we fix a basis B = {b1, . . . , bδ} of the vector space K[x]/⟨f⟩K.
The parametric Hermite matrix of f with respect to the basis B is defined as the symmetric matrix

H = (hi,j)1≤i,j≤δ,

where hi,j = trace(Lbi·bj ).
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It is important to note that the definition of parametric Hermite matrices depends both on the
input system f and the choice of the monomial basis B.
Example 5.4.3. We consider the same system f = (x21 + x22 − y1, x1x2 + y2x2 + y3x1) as in
Example 5.3.3. The parametric Hermite matrix H1 associated to f with respect to the basis B1 =
{1, x2, x1, x22} is

4 −2y3 −2y2 −2(y22 + y23 + y1)
∗ −2(y22 + y23 + y1) 4y2y3 2(3y22y3 − y33)
∗ ∗ 2(y22 − y23 + y1) 2(y32 − 3y2y

2
3 − y1y2)

∗ ∗ ∗ 2y42 − 12y22y
2
3 + 2y43 − 4y1y

2
2 + 2y21

 .
Whereas, using the lexicographical ordering x1 ≻ x2, we obtain the basis B2 = {1, x2, x22, x32}. The
matrixH2 associated to f with respect to B2 is the following Hankel matrix:

4 −2y3 −2y2
2 + 2y2

3 + 2y1 6y2
2y3 − 2y3

3

∗ ∗ ∗ 2y4
2 − 12y2

2y
2
3 + 2y4

3 − 4y1y
2
2 + 2y2

1

∗ ∗ ∗ −10y4
2y3 + 20y2

2y
3
3 − 2y5

3 + 10y1y
2
2y3

∗ ∗ ∗ −2y6
2 + 30y4

2y
2
3 − 30y2

2y
4
3 + 2y6

3 + 6y1y
4
2 − 18y1y

2
2y

2
3 − 6y2

1y
2
2 + 2y3

1

 .

We remark that all the entries of the matrices above lie in Q[y] and that the entries of the second
matrix are of higher degree than the first one’s. Moreover, writing the basis change from B1 to B2,
we obtain the factorization ofH2 = P T · H1 · P where

P =


1 0 0 y1y3
0 1 0 −y22 + y1
0 0 0 −y2y3
0 0 1 −y3

 .
5.4.2 Gröbner bases and parametric Hermite matrices

In the previous subsection, we have defined parametric Hermite matrices assuming one knows
a Gröbner basis G with respect to some monomial ordering of the ideal ⟨f⟩K where K = Q(y)
and ⟨f⟩K is the ideal of K[x] generated by f .

Computing such a Gröbner basis may be costly as this would require to perform arithmetic
operations over the field Q(y) (or Z/pZ(y) where p is a prime when tackling this computational
task through modular computations). In this paragraph, we show that one can obtain parametric
Hermite matrices by considering some Gröbner bases of the ideal ⟨f⟩ ⊂ Q[x,y] (hence, enabling
the use of efficient implementations of Gröbner basis algorithms such as the F4/F5 algorithms
[59, 60]).

Since the graded reverse lexicographical ordering (grevlex for short) is known for yielding
Gröbner bases of relatively small degree comparing to other orders, we prefer using this ordering
to construct our parametric Hermite matrices. Further, we will use the notation grevlex(x) for the
grevlex ordering among the variables x (with x1 ≻ · · · ≻ xn) and grevlex(x) ≻ grevlex(y) (with
y1 ≻ · · · ≻ yt) for the elimination ordering. We denote respectively by lmx(p) and lcx(p) the
leading monomial and the leading coefficient of p ∈ K[x]with respect to the ordering grevlex(x).
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Lemma 5.4.4. Let G be the reduced Gröbner basis of ⟨f⟩ with respect to the elimination ordering
grevlex(x) ≻ grevlex(y). Then G is also a Gröbner basis of ⟨f⟩K with respect to the ordering
grevlex(x).

Proof. Since G is a Gröbner basis of the ideal ⟨f⟩, every polynomial fi of f can be written as
fi =

∑
g∈G cg · g where cg ∈ Q[x,y]. Therefore, any element of ⟨f⟩K can also be written as a

combination of elements of G with coefficients in Q(y)[x]. In other words, G is a set of generators
of ⟨f⟩K.

Let p be a polynomial in K[x], p is contained in ⟨f⟩K if and only if there exists a polynomial
q ∈ Q[y] such that q · p ∈ ⟨f⟩. Thus, the leading monomial of p as an element of K[x] with
respect to the grevlex ordering grevlex(x) is contained in the ideal ⟨lmx(g) | g ∈ G⟩. Therefore,
G is a Gröbner basis of ⟨f⟩K.

Hereafter, we denote by G the reduced Gröbner basis of ⟨f⟩ with respect to the elimination
ordering grevlex(x) ≻ grevlex(y). Let B be the set of all monomials in x that are not reducible
by G, which is finite by Lemmas 5.4.1 and 5.4.4. The set B actually forms a basis of the K-vector
space K[x]/⟨f⟩K. Then, we denote by H the parametric Hermite matrix associated to f with
respect to this basis B.

We consider the following assumption on the input system f .

Assumption 5.C. For g ∈ G, the leading coefficient lcx(g) does not depend on the parameters y.

As the computations in the quotient ring AK are done through normal form reductions by G,
the lemma below is straight-forward.

Lemma 5.4.5. Under Assumption (5.C), the entries of the parametric Hermite matrixH are elements
of Q[y].

Proof. Since Assumption (5.C) holds, the leading coefficients lcx(g) do not depend on parameters
y for g ∈ G. The normal form reduction inAK of any polynomial in Q[y][x] returns a polynomial
in Q[y][x]. Thus, each normal form can be written as a linear combination ofB whose coefficients
lie inQ[y]. Hence, the multiplication mapLbi·bj for 1 ≤ i, j ≤ δ can be represented by polynomial
matrices in Q[y] with respect to the basis B. As an immediate consequence, the entries of H, as
being the traces of those multiplication maps, are polynomials in Q[y].

The next proposition states that Assumption (5.C) is satisfied by a generic system f . It implies
that the entries of the parametric Hermite matrix of a generic system with respect to the basis B
derived from G completely lie in Q[y]. We postpone the proof of Proposition 5.4.6 to Subsection
5.6.1 where we prove a more general result (see Proposition 5.6.1).

Proposition 5.4.6. Let C[x,y]≤D be the set of polynomials in C[x,y] having total degree bounded
by D. There exists a non-empty Zariski open subset FC of C[x,y]n≤D such that Assumption (5.C) is
satisfied by any f ∈ FC ∩Q[x,y]n.
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5.4.3 Specialization property of parametric Hermite matrices

Recall that G is the reduced Gröbner basis of ⟨f⟩ with respect to the ordering grevlex(x) ≻
grevlex(y) andB is the basis ofK[x]/⟨f⟩K derived fromG as discussed in the previous subsection.
Then,H is the parametric Hermite matrix associated to f with respect to the basis B.

Let η ∈ Ct and ϕη : C(y)[x] → C[x], p(y,x) 7→ p(η,x) be the specialization map that
evaluates the parameters y at η. Then f(η, ·) = (ϕη(f1), . . . , ϕη(fs)). We denote by H(η) the
specialization (ϕη(hi,j))1≤i,j≤δ ofH at η.

Recall that, for a polynomial p ∈ C(y)[x], the leading coefficient of p considered as a poly-
nomial in the variables x with respect to the ordering grevlex(x) is denoted by lcx(p). In this
subsection, for p ∈ C[x], we use lm(p) to denote the leading monomial of p with respect to the
ordering grevlex(x).

LetW∞ ⊂ Ct denote the algebraic set ∪g∈GV (lcx(g)). In Proposition 5.4.8, we prove that,
outside W∞, the specialization H(η) coincides with the classical Hermite matrix of the zero-
dimensional ideal f(η, ·) ⊂ Q[x]. This is the main result of this subsection.

Since the operations over the K-vector space AK rely on normal form reductions by the
Gröbner basis G of ⟨f⟩K, the specialization property of H depends on the specialization prop-
erty of G. Lemma 5.4.7 below, which is a direct consequence of [118, Theorem 3.1], provides the
specialization property of G. We give here a more elementary proof for this lemma than the one
in [118].

Lemma 5.4.7. Let η ∈ Ct \ W∞. Then the specialization G(η, ·) := {ϕη(g) | g ∈ G} is a Gröbner
basis of the ideal ⟨f(η, ·)⟩ ⊂ C[x] generated by f(η, ·) with respect to the ordering grevlex(x).

Proof. Since η ∈ Ct \ W∞, the leading coefficient lcx(g) does not vanish at η for every g ∈ G.
Thus, lmx(g) = lm(ϕη(g)).

We denote byM the set of all monomials in the variables x and

MG := {m ∈M | ∃g ∈ G : lmx(g)|m} = {m ∈M | ∃g ∈ G : lm(ϕη(g))|m}.

For any p ∈ ⟨f⟩ ⊂ Q[x,y], we prove that lm(ϕη(f)) ∈ MG. If p is identically zero, there is
nothing to prove. So, we assume that p ̸= 0, p is then expanded in the form below:

p =
∑

m∈MG

cm ·m+
∑

m∈M\MG

cm ·m,

where the cm’s are elements of Q[y]. Since p is not identically zero, there exists m ∈ MG such
that cm ̸= 0.

Since G is a Gröbner basis of ⟨f⟩K, any monomial inMG can be reduced by G to a unique
normal form in K[x]. These divisions involve denominators, which are products of some powers
of the leading coefficients of G with respect to the variables x. We write

NFG(p) =
∑

m∈MG

cm ·NFG(m) +
∑

m∈M\MG

cm ·m.
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As p ∈ ⟨f⟩K, we have that NFG(p) = 0, which implies∑
m∈M\MG

cm ·m = −
∑

m∈MG

cm ·NFG(m).

Therefore, we have the identity

p =
∑

m∈MG

cm · (m−NFG(m))

Since η does not cancel any denominator appearing in NFG(m), we can specialize the identity
above without any problem:

ϕη(p) =
∑

m∈MG

ϕη(cm) · (m− ϕη(NFG(m))).

If at least one of the ϕη(cm) does not vanish, then the leading monomial of ϕη(f) is inMG .
Otherwise, if all the ϕη(cm) are canceled, then ϕη(p) is identically zero, and there is not any new
leading monomial appearing either. So, the leading monomial of any p ∈ ⟨fη⟩ is contained in
MG , which means G(η, ·) is a Gröbner basis of ⟨f(η, ·)⟩ with respect to grevlex(x).

Proposition 5.4.8. For any η ∈ Ct\W∞, the specializationH(η) coincides with the classic Hermite
matrix of the zero-dimensional ideal ⟨f(η, ·)⟩ ⊂ C[x].

Proof. As a consequence of Lemma 5.4.7, each computation in AK derives a corresponding one
in C[x]/⟨f(η, ·)⟩ by evaluating y at η in every normal form reduction by G. This evaluation is
allowed since η does not cancel any denominator appearing during the computation. Therefore,
we deduce immediately the specialization property of the Hermite matrix.

Using Proposition 5.4.8 and [9, Theorem 4.102], we obtain immediately the following corol-
lary that allows us to use parametric Hermite matrices to count the root of a specialization of a
parametric system.

Corollary 5.4.9. Let η ∈ Ct \ W∞, then the rank of H(η) is the number of distinct complex roots
of f(η, ·). When η ∈ Rt \W∞, the signature of H(η) is the number of distinct real roots of f(η, ·).

Proof. By Proposition 5.4.8, H(η) is a Hermite matrix of the zero-dimensional ideal ⟨f(η, ·)⟩.
Then, [9, Theorem 4.102] implies that the rank (resp. the signature) ofH(η) equals to the number
of distinct complex (resp. real) solutions of f(η, ·).

We finish this subsection by giving some explanation for what happens above W∞, where
our parametric Hermite matrixH does not have good specialization property.

Lemma 5.4.10. LetW∞ be defined as above. ThenW∞ contains the following sets:
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• The non-proper points of the restriction of π to V .

• The set of points η ∈ Ct such that the fiber π−1(η) ∩ V is infinite.

• The image by π of the irreducible components of V whose dimensions are smaller than t.

Proof. The claim for the set of non-properness of the restriction of π to V is already proven in
[134, Theorem 2]. We focus on the two remaining sets.

Using the Hermite matrix, we know that for η ∈ Ct \ W∞, the system f(η, ·) admits a non-
empty finite set of complex solutions. On the other hand, for any η ∈ Ct such that π−1(η) ∩ V
is infinite, f(η, ·) has infinitely many complex solutions. Therefore, the set of such points η is
contained inW∞.

Let V>t be the union of irreducible components of V of dimension greater than t. By the
fiber dimension theorem [184, Theorem 1.25], the fibers of the restriction of π to V>t must have
dimension at least one. Similarly, the components of dimension twhose images by π are contained
in a Zariski closed subset of Ct also yield infinite fibers. Therefore, as proven above, all of these
components are contained in π−1(W∞).

We now consider the irreducible components of dimension smaller than t. Let V≥t and V<t

be respectively the union of irreducible components of V of dimension at least t and at most t−1.
We have that V = V≥t∪V<t. Let I ⊂ Q[x,y] denote the ideal generated by f . Using the primary
decomposition of I (see e.g. [48, Sec. 4.8]), we have that I is the intersection of two ideals I≥t

and I<t such that V (I≥t) = V≥t and V (I<t) = V<t. We write

I = I≥t ∩ I<t.

We denote by R the polynomial ring Q(y)[x]. Then, the above identity is transferred into R:

I ·R = (I≥t ·R) ∩ (I<t ·R).

Since dim(π(V<t)) ≤ t − 1, then there exists a non-zero polynomial p ∈ I<t ∩ Q[y]. As p is a
unit in Q(y), the ideal I<t ·R is exactly R. So,

I ·R = I≥t ·R.

Note that, by Lemma 5.4.4, G is a Gröbner basis of I ·R, then it is also a Gröbner basis of I≥t ·R.
Therefore, the Hermite matrices associated to I and I≥t (with respect to the basis derived from
G) coincide. So, for η ̸∈ W∞, the ranks of those matrices are equal and so are the number of
complex points in π−1(η) ∩ V and π−1(η) ∩ V≥t. As π−1(η) ∩ V≥t ⊂ π−1(η) ∩ V , we have that
π−1(η) ∩ V = π−1(η) ∩ V≥t. This leads to

π−1(Ct \W∞) ∩ V≥t = π−1(Ct \W∞) ∩ V.

Then, π−1(Ct\W∞)∩V<t = ∅ or equivalently, V<t ⊂ π−1(W∞), which concludes the proof.
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5.4.4 Computing parametric Hermite matrices

Given f = (f1, . . . , fs) ∈ Q[y][x] satisfying Assumption (5.A). We keep on denoting K = Q(y).
Let G be the reduced Gröbner basis of ⟨f⟩ with respect to the ordering grevlex(x) ≻ grevlex(y)
and B be the set of all monomials in the variables x which are not reducible by G. The set B then
forms a basis of the K-vector space K[x]/⟨f⟩K.

In this subsection, we focus on the computation of the parametric Hermite matrix associated
to f with respect to the basis B.

Note that one can design an algorithm using only the definition of parametric Hermite ma-
trices given in Subsection 5.4.1. More precisely, for each bi · bj ∈ B (1 ≤ i, j ≤ δ), one computes
the matrix representing Lbi·bj in the basis B by computing the normal form of every bi · bj · bk
for 1 ≤ k ≤ δ. Therefore, in total, this direct algorithm requires O(δ3) normal form reductions
of polynomials in K[x].

In Algorithm 5.2 below, we present another algorithm for computingH. It uses the following
subroutines:

• GrobnerBasis that takes as input the system f and computes the reduced Gröbner basis G of
⟨f⟩with respect to the ordering grevlex(x) ≻ grevlex(y) and the basisB = {b1, . . . , bδ} ⊂
Q[x] of Q(y)[x]/ ⟨f⟩Q(y) derived from G.
Such an algorithm can be obtained using any general algorithm for computing Gröbner
basis, which we refer to F4/F5 algorithms [59, 60].

• ReduceGB that takes as input the Gröbner basis G and outputs a subset G′ of G which is
still a Gröbner basis of ⟨f⟩K with respect to the ordering grevlex(x).
This subroutine aims to remove the elements in G that we do not need. Even though G is
reduced as a Gröbner basis of ⟨f⟩ with respect to grevlex(x) ≻ grevlex(y), it is not nec-
essarily the reduced Gröbner basis of ⟨f⟩K with respect to grevlex(x). Using [48, Lemma
3, Sec. 2.7], we can design ReduceGB to remove all the elements of G which have duplicate
leading monomials (in x). We obtain as output a subset G′ of G which is also a Gröbner
basis G′ for ⟨f⟩K with respect to grevlex(x). Note that this tweak reduces not only the car-
dinality of the Gröbner basis in use but also the size of the setW∞ introduced in Subsection
5.4.3 (as we have less leading coefficients).

• XMatrices that takes as input (G′,B) and computes the matrix representation of the multi-
plication maps Lxi (1 ≤ i ≤ n) with respect to B.
This computation is done directly by reducing every xi · bj (1 ≤ i ≤ n, 1 ≤ j ≤ δ) to its
normal form in K[x]/⟨f⟩K using G′.

• BMatrices that takes as input the matrices representing (Lx1 , . . . ,Lxn) andB and computes
the matrices representing the Lbi ’s (1 ≤ i ≤ δ) in the basis B.
We design BMatrices in a way that it constructs the matrices of Lbi ’s inductively in the
degree of the bi’s as follows.
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At the beginning, we have the multiplication matrices of 1 and the xi’s; those are the ma-
trices of the elements of degree zero and one. Note that, for any element b of B. At the
step of computing the matrix of an element b ∈ B, we remark that there exist a variable xi
and a monomial b′ ∈ B such that b = xi · b′ and the matrix of b′ is already computed (as
deg(b′) < deg(b). Therefore, we simply multiply the matrices of Lxi and Lb′ to obtain the
matrix of Lb.

• TraceComputing that takes as input the multiplication matricesLb1 , . . . ,Lbδ and computes
the matrix (trace(Lbi·bj ))1≤i≤j≤δ . This matrix is actually the parametric Hermite matrixH
associated to f with respect to the basis B. To design this subroutine, we use the following
remark given in [166].
Let p, q ∈ K[x]. The normal form p of p by G can be written as p =

∑δ
i=1 ci · bi where the

ci’s lie in K. Then, we have the identity

trace(Lp·q) =
δ∑

i=1

ci · trace(Lq·bi),

Hence, by choosing p = bi ·bj and q = 1, we can compute hi,j using the normal form bi · bj
and trace(Lb1), . . . , trace(Lbδ).
Note that trace(Lbi) is easily computed from the matrix of the map Lbi . On the other hand,
the normal form bi · bj can be read off from the j-th row of the matrix representing Lbi ,
which is already computed at this point.
It is also important to notice that there are many duplicated entries in H. Thus, we should
avoid all the unnecessary re-computation. This is done easily by keeping a list tracking
distinct entries ofH.

The pseudo-code of Algorithm 5.2 is presented below. Its correctness follows simply from our
definition of parametric Hermite matrices.

Besides the parametric Hermite matrix H, we return a polynomial w∞ which is the square-
free part of lcmg∈G(lcx(g)) for further usage. Note that V (w∞) =W∞.

Algorithm 5.2: DRL-HermiteMatrix
Input: A parametric polynomial system f = (f1, . . . , fs)
Output: A parametric Hermite matrixH associated to f with respect to the basis B

1 G,B ← GröbnerBasis(f , grevlex(x) ≻ grevlex(y))
2 G′ ← ReduceGB(G)
3 w∞ ← sqfree(lcmg∈G(lcx(g)))
4 (Lx1 , . . . ,Lxn)← XMatrices(G′,B)
5 (Lb1 , . . . ,Lbδ)← BMatrices((Lx1 , . . . ,Lxn),B)
6 H ← TraceComputing(Lb1 , . . . ,Lbδ)
7 return [H,w∞]

112



Removing denominators. Note that, through the computation in the quotient ring AK, the
entries of our parametric Hermite matrix possibly contains denominators that lie in Q[y]. As the
algorithm that we introduce in Section 5.5 will require us to manipulate the parametric Hermite
matrix that we compute, these denominators can be a bottleneck to handle the matrix. Therefore,
we introduce an extra subroutine RemoveDenominator that returns a parametric Hermite matrix
H′ of f without denominator.

• RemoveDenominator that takes as input the matrix H computed by DRL-HermiteMatrix
and outputs a matrix H′ which is the parametric Hermite matrix associated to f with re-
spect to a basis B′ that will be made explicit below.
As we can freely choose any basis of the form {ci · bi | 1 ≤ i ≤ δ} where the ci’s are
elements of Q[y], we should use a basis that leads to a denominator-free matrix. To do this,
we choose ci as the denominator of trace(Lbi) (which lies in the first row of the matrix
H computed by TraceComputing). Then, for the entry of H that corresponds to bi and bj ,
we can multiply it with ci · cj . The output matrix H′ is the parametric Hermite matrix
associated to f with respect to the basis {ci · bi | 1 ≤ i ≤ δ}.
We observe in many examples that this subroutine returns either a denominator-free matrix
or a matrix with smaller degree denominators. Thus, it facilitates further computations on
the output matrix.

Evaluation & interpolation scheme for generic systems. Here we assume that the input
system f satisfies Assumption (5.C). By Lemma 5.4.5, the entries of H are polynomials in Q[y].
Suppose that we know beforehand a value Λ that is larger than the degree of any entry ofH, we
can computeH by an evaluation & interpolation scheme as follows.

We start by choosing randomly a set E of
(
t+Λ
t

)
distinct points in Qt. Then, for each η ∈ E ,

we use DRL-HermiteMatrix (Algorithm 5.2) on the input f(η, ·) to compute the classical Hermite
matrix associated to f(η, ·) with respect to the ordering grevlex(x). These computations involve
only polynomials in Q[x] and not in Q(y)[x]. Finally, we interpolate the parametric Hermite
matrixH from its specialized imagesH(η) computed previously.

Since Assumption (5.C) holds, thenW∞ is empty. By Proposition 5.4.8, the Hermite matrix of
f(η, ·) with respect to grevlex(x) is the imageH(η) ofH. Therefore, the above scheme computes
correctly the parametric Hermite matrixH.

We also remark that, in the computation of the specializationsH(η), we can replace the sub-
routine XMatrices in DRL-HermiteMatrix by a linear-algebra-based algorithm described in [58].
That algorithm constructs the Macaulay matrix and carries out matrix reductions to obtain simul-
taneously the normal forms that XMatrices requires.

In Section 5.6, we will estimate the complexity of this evaluation & interpolation scheme when
the input system f satisfies some generic assumptions.
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5.5 Algorithms for real root classification

We present in this section two algorithms targeting the real root classification problem through
parametric Hermite matrices. The one described in Subsection 5.5.1 aims to solve the weak version
of Problem (RRC). The second algorithm, given in Subsection 5.5.2 outputs the semi-algebraic
formulas of the cells Si that solves Problem (RRC). Further, in Section 5.6, we will see that,
for a generic sequence f , the semi-algebraic formulas computed by this algorithm consist of
polynomials of degree bounded by n(D − 1)Dn, which is better than the degree bound 2D2n

obtained by Algorithm 5.1 and all previously known bounds.
Throughout this section, our input is a parametric polynomial system f = (f1, . . . , fs) ⊂

Q[y][x]. We require that f satisfies Assumptions (5.A) and that the ideal ⟨f⟩ is radical.
Let G be the reduced Gröbner basis of the ideal ⟨f⟩ ⊂ Q[x,y] with respect to the ordering

grevlex(x) ≻ grevlex(y). Let K denote the rational function field Q(y). We recall that B ⊂ Q[x]
is the basis of K[x]/⟨f⟩K derived from G and H is the parametric Hermite matrix associated to
f with respect to the basis B.

5.5.1 Algorithm for weak real root classification

From Subsection 5.4.3, we know that, outside the algebraic setW∞ := ∪g∈GV (lcx(g)), the para-
metric matrix H possesses good specialization properties (see Proposition 5.4.8). We denote by
w∞ the square-free part of lcmg∈G lcx(g). This polynomial w∞ is returned as an output of Algo-
rithm 5.2. Note that V (w∞) =W∞.

Lemma 5.5.1. When Assumption (5.A) holds and the ideal ⟨f⟩ is radical, the determinant of H is
not identically zero.

Proof. Recall thatK denotes the rational function fieldQ(y). We prove that the ideal ⟨f⟩K ⊂ K[x]
is radical.

Let p ∈ K[x] such that there exists k ∈ N satisfying pk ∈ ⟨f⟩K. Therefore, there exists a
polynomial q ∈ Q[y] such that q · pk ∈ ⟨f⟩. Then, (q · p)k ∈ ⟨f⟩. As ⟨f⟩ is radical, we have that
q · p ∈ ⟨f⟩. Thus, p ∈ ⟨f⟩K, which concludes that ⟨f⟩K is radical.

By Lemma 5.4.1, ⟨f⟩K is a radical zero-dimensional ideal in Q(y). Since H is also a Hermite
matrix (in the classic sense) of ⟨f⟩K,H is full rank. Therefore, det(H) is not identically zero.

Let wH := n/ gcd(n,w∞) where n is the square-free part of the numerator of det(H). We
denote byWH the vanishing set of wH. By Lemma 5.5.1,WH is a proper Zariski closed subset of
Ct. Our algorithm relies on the following proposition.

Proposition 5.5.2. Assume that Assumption (5.A) holds and the ideal ⟨f⟩ is radical. Let S be a
connected component of the semi-algebraic set Rt \ (W∞ ∪ WH). The number of real solutions of
f(η, ·) is invariant when η varies over S .

Proof. By Lemma 5.4.10,W∞ contains the following sets:
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• The non-proper points of the restriction of π to V .

• The point η ∈ Ct such that the fiber π−1(η) ∩ V is infinite.

• The image by π of the irreducible components of V whose dimensions are smaller than t.

Now we consider the set

K(π,V) := sing(V) ∪ crit(π,V).

Let∆ := jac(f ,x) be the Jacobian matrix of f with respect to the variablesx. The ideal generated
by the n×n-minors of ∆ is denoted by I∆. Note that, since f is radical, K(π,V) is the algebraic
set defined by the ideal ⟨f⟩+ I∆.

By Proposition 5.4.8, for η ∈ Ct \ W∞, ⟨f⟩ is a zero-dimensional ideal and the quotient ring
C[x]/⟨f(η, ·)⟩ has dimension δ. Moreover, if η ∈ Ct \ (W∞ ∪ WH), the system f(η, ·) has δ
distinct complex solutions as the rank ofH(η) is δ. Therefore, every complex root of f(η, ·) is of
multiplicity one (we use the definition of multiplicity given by Proposition 3.3.3).

Now we prove that, for such a point η, the fiber π−1(η) does not intersect K(π,V). Assume
by contradiction that there exists a point (η, χ) ∈ Ct+n lying in π−1(η) ∩K(π,V). Note that χ
is a solution of f(η, ·), i.e., f(η, χ) = 0.

As (η, χ) ∈ K(π,V), then it is contained in V (I∆). Hence, as the derivation in ∆ does not
involve y, χ cancels all the n × n-minors of the Jacobian matrix jac(f(η, ·),x). [9, Proposition
4.16] implies that χ has multiplicity greater than one. This contradicts the claim that f(η, ·)
admits only complex solutions of multiplicity one.

Therefore, we conclude that, for η ∈ Ct \ (W∞ ∪WH), π−1(η) does not intersect K(π,V).
So, using what we prove above and Lemma 5.4.10, we deduce that, for η ∈ Rt \ (W∞ ∪WH),

then there exists an open neighborhood Oη of η for the Euclidean topology such that π−1(Oη)
does not intersect K(π,V) ∪ π−1(W∞).

Therefore, by Thom’s isotopy lemma [47], the restriction of the projection π to V realizes a
locally trivial fibration over Rt \ (W∞∪WH). So, for any connected component C of Rt \ (W∞∪
WH) and any η ∈ C, we have that π−1(C)∩V∩Rt+n is homeomorphic to C×(π−1(η)∩V∩Rt+n).

As a consequence, the number of distinct real solutions of f(η, ·) is invariant when η varies
over each connected component of Rt \ (W∞ ∪WH).

To describe Algorithm 5.3, we need to introduce the following subroutines:

• CleanFactors which takes as input a polynomial p ∈ Q[y,x] and the polynomial w∞. It
computes the square-free part of p with all the common factors with w∞ removed.

• Signature which takes as input a symmetric matrix with entries in Q and evaluates its
signature.

• SamplePoints which takes as input a set of polynomials g1, . . . , gs ∈ Q[y] and computes a
finite subset R of Qt that intersects every connected component of the semi-algebraic set
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defined by ∧si=1gi ̸= 0. An explicit description of SamplePoints is given in the proof of
Theorem 5.2.1 in Section 5.2.

The pseudo-code of Algorithm 5.3 is below. Its proof of correctness follows immediately from
Proposition 5.5.2 and Corollary 5.4.9.

Algorithm 5.3: Weak-RRC-Hermite
Input: A polynomial sequence f ∈ Q[y][x] such that ⟨f⟩ is radical and Assumptions

(5.A) holds.
Output: A set of sample points and the corresponding numbers of real solutions solving

the weak version of Problem (RRC)
1 [H,w∞]← DRL-HermiteMatrix(f)
2 wH ← CleanFactors(numer(det(H)),w∞)
3 L← SamplePoints(wH ̸= 0 ∧w∞ ̸= 0)
4 for η ∈ L do
5 rη ← Signature(H(η))
6 end
7 return {(η, rη) | η ∈ L}

Example 5.5.3. We continue with the system in Example 5.4.3. The determinant of its parametric
Hermite matrix is

wH = 16y1(−y62 − 3y42y
2
3 − 3y22y

4
3 − y63 + 3y1y

4
2 − 21y1y

2
2y

2
3 + 3y1y

4
3 − 3y21y

2
2 − 3y21y

2
3 + y31).

We notice that wH coincides exactly with the output returned by the procedure DiscriminantVari-
ety of Maple’s package RootFinding[Parametric] that computes a discriminant variety [134].

Computing at least one point per connected component of the semi-algebraic set R3 \ V (wH)
using RAGlib gives us 28 points. We evaluate the signatures ofH specialized at those points and find
that the input system can have 0, 2 or 4 distinct real solutions when the parameters vary.

Remark 5.5.4. As we have seen, Algorithm 5.3 obtains a polynomial which serves similarly as dis-
criminant varieties [134] or border polynomials [203] through computing the determinant of para-
metric Hermite matrices. The two latter strategies rely on algebraic elimination based on Gröbner
bases to compute the projection of crit(π,V) on the y-space. Since it is well-known that the compu-
tation of such a Gröbner basis could be expensive, our algorithm has a chance to be more practical.
In Section 5.7, we provide experimental results to support this claim.

Remark 5.5.5. It is worth noticing that, even though the design of Algorithm 5.3 employs the grevlex
monomial ordering where x1 ≻ · · · ≻ xn, we can replace it by any grevlex ordering with another
lexicographical order among the x’s. For instance, we can use the monomial ordering grevlex(xn ≻
· · · ≻ x1). While the theoretical claims hold for both of these orderings, their practical behaviors
could be different. We demonstrate this remark in Example 5.5.6 below.
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Example 5.5.6. We consider the polynomial sequence (f1, f2, f3) ⊂ Q[y1, y2, y3][x1, x2, x3]

f1 = x1x2 − x3,
f2 = x31 + 4x21x3 + 2x32 − x22x3 + x2x

2
3 − 2x33 + 3x21 − x1x3 − 3x22 − 3x23 − x2 + 4x3 + 4,

f3 = y3x1x2 + y1x1 + y2x2 + 1.

By computing the reduced Gröbner basis of the ideal generated by f1, f2, f3 with respect to the or-
dering grevlex(x1 ≻ x2 ≻ x3) ≻ grevlex(y1 ≻ y2 ≻ y3), one note that this system above does not
satisfy Assumption (5.C). Hence, the algebraic setW∞ defining the locus over which our parametric
Hermite matrix does not well specialize is non-empty.

The polynomials w∞ and wH computed in Algorithm 5.3 with respect to the monomial ordering
grevlex(x1 ≻ x2 ≻ x3) have respectively the degrees 13 and 18.

On the other hand, using the monomial ordering grevlex(x3 ≻ x2 ≻ x1) in Algorithm 5.3, one
obtains a polynomial w̃∞ of degree 7 and the same polynomial wH as above.

Therefore, the degree of the input given to the subroutine SamplePoints is reduced by using the
second ordering (25 compared with 31). In practice, this choice of ordering accelerates significantly
the computation of sample points.

5.5.2 Computing semi-algebraic formulas

By Corollary 5.4.9, the number of real roots of the system f(η, ·) for a given point η ∈ Rt \W∞
can be obtained by evaluating the signature of the parametric Hermite matrix H. We recall that
the signature of a matrix can be deduced from the sign pattern of its leading principal minors.
More precisely, we recall the following criterion, introduced in [191] and [114] (see [77] for a
summary of these works).

Lemma 5.5.7. [77, Theorem 2.3.6] Let S be a δ × δ symmetric matrix in Rδ×δ and, for 1 ≤ i ≤ δ,
Si be the i-th leading principal minor of S, i.e., the determinant of the sub-matrix formed by the first
i rows and i columns of S. By convention, we denote S0 = 1.

We assume that Si ̸= 0 for 0 ≤ i ≤ δ. Let k be the number of sign variations between Si and
Si+1. Then, the numbers of positive and negative eigenvalues of S are respectively δ−k and k. Thus,
the signature of S is δ − 2k.

This criterion leads us to the following idea. Assume that none of the leading principal minors
ofH is identically zero. We consider the semi-algebraic subset of Rt defined by the non-vanishing
of those leading principal minors. Over a connected component S ′ of this semi-algebraic set, each
leading principal minor is not zero and its sign is invariant. As a consequence, by Lemma 5.5.7
and Corollary 5.4.9, the number of distinct real roots of f(η, ·) when η varies over S ′ \ W∞ is
invariant.

However, this approach does not apply directly if one of the leading principle minors ofH is
identically zero. We bypass this obstacle by picking randomly an invertible matrixA ∈ GL(δ,Q)
and working with the matrix HQ := QT · H · Q. The lemma below states that, with a generic
matrix Q, all of the leading principal minors ofHQ are not identically zero.
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Lemma 5.5.8. There exists a Zariski dense subset Q of GL(δ,Q) such that for Q ∈ Q, all of the
leading principal minors ofHQ := QT · H ·Q are not identically zero.

Proof. For 1 ≤ r ≤ δ, we denote by Mr the set of all r × r minors ofH.
Let η ∈ Qt\W∞∪WH. We have thatH(η) is a full rank matrix inQδ×δ and, forQ ∈ GL(δ,R),

HQ(η) = QT · H(η) ·Q.
We prove that there exists a Zariski dense subset Q of GL(δ,Q) such that, for Q ∈ Q, all of

the leading principal minors of HQ(η) are not zero. Then, as an immediate consequence, all the
leading principal minors ofHQ are not identically zero.

We consider the matrix Q = (qi,j)1≤i,j≤δ where q = (qi,j) are new variables. Then, the r-th
leading principal minor Mr(q) of QT · H(η) ·Q can be written as

Mr(q) =
∑

m∈Mr

qm ·m(η),

where the qm’s are elements of Q[q].
As H(η) is a full rank symmetric matrix by assumption, there exists a matrix Q ∈ GL(δ,R)

such that QT · H(η) ·Q is a diagonal matrix with no zero on its diagonal. Hence, the evaluation
of q at the entries ofQ givesMr(q) a non-zero value. As a consequence, Mr(q) is not identically
zero.

Let Qr be the non-empty Zariski open subset of GL(δ,Q) defined by Mr(q) ̸= 0. Then, the
set of the matrices Q ∈ Qr such that the r × r leading principal minor of QT · H(η) · Q is not
zero.

Taking Q as the intersection of Qr for 1 ≤ r ≤ δ, then, for Q ∈ Q, none of the leading
principal minors of QT · H(η) · Q equals zero. Consequently, each leading principal minor of
QT · H ·Q is not identically zero.

Our algorithm (Algorithm 5.4) for solving Problem (RRC) through parametric Hermite ma-
trices is described below. As it depends on the random choice of the matrix Q, Algorithm 5.4 is
probabilistic. Note that one can easily detect the cancellation of the leading principal minors for
each choice of Q.
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Algorithm 5.4: RRC-Hermite
Input: A polynomial sequence f ⊂ Q[y][x] such that the ideal ⟨f⟩ is radical and f

satisfies Assumption (5.A)
Output: The descriptions of a collection of semi-algebraic sets Si solving Problem (RRC)

1 H,w∞ ← DRL-HermiteMatrix(f)
2 Choose randomly a matrix Q in GL(δ,Q)
3 HQ ← QT · H ·Q
4 (M1, . . . ,Mδ)← LeadingPrincipalMinors(HQ)
5 (m1, . . . ,mδ)← Numerators(M1, . . . ,Mδ)

6 L← SamplePoints
((
∧δi=1mi ̸= 0

)
∧w∞ ̸= 0

)
7 for η ∈ L do
8 rη ← Signature(H(η))
9 end

10 wf ← w∞ ·m1 · . . . ·mδ

11 return {(sign(M1(η), . . . ,Mδ(η)), η, rη) | η ∈ L} and wf

Proposition 5.5.9. Assume that f satisfies Assumptions (5.A) and that the ideal ⟨f⟩ is radical.
Let Q be a matrix in GL(δ,Q) such that all of the leading principal minors M1, . . . ,Mδ of HQ :=
QT · H · Q are not identically zero. Then, Algorithm 5.4 computes correctly a solution for Problem
(RRC).
Proof. Note that for η ∈ Rt \W∞, we have thatHQ(η) = QT ·H(η) ·Q. Therefore, the signature
ofH(η) equals to the signature ofHQ(η).

Let M1, . . . ,Mδ be the leading principal minors of HQ and S be the algebraic set defined
by ∧δi=1Mi ̸= 0. Over each connected component S ′ of S , the sign of each Mi is invariant and
not zero. Therefore, by Lemma 5.5.7, the signature of HQ(η), and therefore of H(η), is invariant
when η varies over S ′ \ W∞. As a consequence, by Corollary 5.4.9, the number of distinct real
roots of f(η, ·) is also invariant when η varies over S ′ \ W∞. We finish the proof of correctness
of Algorithm 5.4.

Example 5.5.10. From the parametric Hermite matrixH computed in Example 5.4.3, we obtain the
sequence of leading principal minors below:

M1 = 4,

M2 = 4(−2y22 + y23 + 2y1),

M3 = 8(−y42 − 2y22y
2
3 − y43 − y1y22 − y1y23 + 2y21),

M4 = 16y1(−y62 − 3y42y
2
3 − 3y22y

4
3 − y63 + 3y1y

4
2 − 21y1y

2
2y

2
3 + 3y1y

4
3 − 3y21y

2
2 − 3y21y

2
3 + y31).

Since M1 is constant, we compute at least one point per connected component of the semi-algebraic
set defined by

M2 ̸= 0 ∧M3 ̸= 0 ∧M4 ̸= 0.
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The computation using RAGlib outputs a set of 48 sample points and finds the following realizable
sign conditions of (M2,M3,M4):

[−1, 1, 1], [−1,−1, 1], [1,−1,−1], [−1,−1,−1], [1, 1,−1].

By evaluating the signature of H at each of those sample points, we deduce the semi-algebraic for-
mulas corresponding to every possible number of real solutions

0 real root →(M2 < 0 ∧M3 > 0 ∧M4 > 0) ∨ (M2 < 0 ∧M3 < 0 ∧M4 > 0),

2 real roots →(M2 > 0 ∧M3 < 0 ∧M4 < 0) ∨ (M2 < 0 ∧M3 < 0 ∧M4 < 0)

∨ (M2 > 0 ∧M3 > 0 ∧M4 < 0),

4 real roots →(M2 > 0 ∧M3 > 0 ∧M4 > 0).

We recall that the semi-algebraic formulas obtained in Example 5.3.3 involve the subresultant coef-
ficients s2, s3 and s4 of degree 2, 6 and 11 respectively. Whereas, the degrees of the minors M2, M3

and M4 that we obtain from the parametric Hermite matrix are only 2, 4 and 7.

5.6 Complexity analysis

This section is devoted to the complexity analysis of Algorithms 5.2, 5.3 and 5.4. Under some
genericity assumptions, we provide degree bounds for entries of parametric Hermite matrices
constructed using grevlex ordering and polynomials involving in our output semi-algebraic for-
mulas, which are actually minors of those matrices. Using these bounds, we prove that our algo-
rithms run within DO(nt) arithmetic operations in Q on generic inputs.

5.6.1 Degree bounds of parametric Hermite matrices on generic input

We consider an affine regular sequence f = (f1, . . . , fn) ⊂ Q[y][x] according to the variables x,
i.e., the homogeneous components of largest degree in x of the fi’s form a homogeneous regular
sequence. Additionally, we require that f satisfies Assumptions (5.A) and (5.C).

LetD be the highest value among the total degrees of the fi’s. Since the homogeneous regular
sequences are generic among the homogeneous polynomial sequences (Proposition 2.7.8), the
same property of genericity holds for affine regular sequences (thanks to the definition we use).

As in previous sections, G denotes the reduced Gröbner basis of ⟨f⟩ with respect to the or-
dering grevlex(x) ≻ grevlex(y). Let δ be the dimension of the K-vector space K[x]/⟨f⟩K where
K = Q(y). By Bézout’s inequality, δ ≤ Dn. We derive from G a basis B = {b1, . . . , bδ} of
K[x]/⟨f⟩K consisting of monomials in the variables x. Finally, the parametric Hermite matrix of
f with respect to B is denoted byH = (hi,j)1≤i,j≤δ .

For a polynomial p ∈ Q[y,x], we denote by deg(p) the total degree of p in (y,x) and degx(p)
the partial degree of p in the variables x.

As Assumption (5.C) holds, by Lemma 5.4.5, the entries of the parametric Hermite matrix H
associated to f with respect to the basis B are elements of Q[y]. To establish a degree bound on
the entries ofH, we need to introduce the following assumption.
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Assumption 5.D. For any g ∈ G, we have that deg(g) = degx(g).

Proposition 5.6.1 below states that Assumption (5.D) is generic. Its direct consequence is a
proof for Proposition 5.4.6.

Proposition 5.6.1. Let C[x,y]≤D be the set of polynomials in C[x,y] having total degree bounded
byD. There exists a non-empty Zariski open subset FD ofC[x,y]nD such that Assumption (5.D) holds
for f ∈ FD ∩Q[x,y]n.

Consequently, for f ∈ FD ∩Q[x,y]n, f satisfies Assumption (5.C).

Proof. Let yt+1 be a new indeterminate. For any polynomial p ∈ Q[x,y], we consider the ho-
mogenized polynomial ph ∈ Q[x,y, yt+1] of p defined as follows:

hp = y
deg(p)
t+1 p

(
x1
yt+1

, . . . ,
xn
yt+1

,
y1
yt+1

, . . . ,
yt
yt+1

)
.

Let hC[x,y, yt+1]D be the set of homogeneous polynomials in C[x,y, yt+1] whose degrees are
exactly D. By Proposition 2.7.8, there exists a non-empty Zariski subset hFD of hC[x,y, yt+1]

n
D

such that the variables x is in Noether position with respect to hf for every hf ∈ hFD .
For hf ∈ hFD , let hG be the reduced Gröbner basis of hf with respect to the grevlex ordering

grevlex(x ≻ y ≻ yt+1). By [7, Proposition 7], if the variables x is in Noether position with
respect to hf , then the leading monomials appearing in hG depend only on x.

Let f and G be the image of hf and hG by substituting yt+1 = 1. We show that G is a
Gröbner basis of f with respect to the ordering grevlex(x ≻ y).

Since hG generates ⟨hf⟩, G is a generating set of ⟨f⟩. As the leading monomials of elements
in hG do not depend on yt+1, the substitution yt+1 = 1 does not affect these leading monomials.

For a polynomial p ∈ ⟨f⟩ ⊂ Q[x,y], then p writes

p =
n∑

i=1

ci · fi,

where the ci’s lie in Q[x,y]. By homogenizing each polynomial ci · fi on the right hand side, we
obtain a homogeneous polynomial hP ∈ ⟨hf⟩:

hP =
n∑

i=1

y•t+1 · hci · hfi

where y•t+1 means some suitable power of yt+1.
Note that hP is not necessarily the homogenization hp of p but only the product of hp with

a power of yt+1. Then, there exists a polynomial hg ∈ hG such that the leading monomial of hg
divides the leading monomial of hP . Since the leading monomial of hg depends only on x, it also
divides the leading monomial of hp, which is the leading monomial of p. So, the leading monomial
of the image of hg inG divides the leading monomial of p. We conclude thatG is a Gröbner basis
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of f with respect to the ordering grevlex(x ≻ y) and the set of leading monomials inG depends
only on the variables x.

Let FD be the subset of C[x,y]n≤D such that for every f ∈ FD , its homogenization hf is
contained in hFD .

Since the two spaces hC[x,y, yt+1]
n
D and C[x,y]n≤D are both isomorphic to the affine space

C(
d+n+t
n+t )×n (by considering each monomial coefficient as a coordinate), FD is also a non-empty

Zariski open subset of C[x,y]n≤D .
Assume now that the polynomial sequence f belongs to FD . We consider the two monomial

orderings over Q[x,y] below:

• The elimination ordering grevlex(x) ≻ grevlex(y) is abbreviated by O1. The leading
monomial of p ∈ Q[x,y] with respect to O1 is denoted by lm1(p). The reduced Gröbner
basis of f with respect to O1 is G.

• The grevlex ordering grevlex(x ≻ y) is abbreviated by O2. The leading monomial of p ∈
Q[x,y] with respect to O2 is denoted by lm2(p). The reduced Gröbner basis of f with
respect to O2 is denoted by G2.

As proven above, the set {lm2(g2) | g2 ∈ G2} does not depend on y. With this property, we will
show, for any g2 ∈ G2, there exists a polynomial g ∈ G such that lm1(g) divides lm2(g2).

By definition, lm2(g2) is greater than any other monomial of g2 with respect to the ordering
O2. Since lm2(g2) depends only on the variables x, it is then greater than any monomial of g2
with respect to the ordering O1. Hence, lm2(g2) is also lm1(g2). Consequently, since G is a
Gröbner basis of f with respect to O1, there exists a polynomial g ∈ G such that lm1(g) divides
lm1(g2) = lm2(g2).

Next, we prove that for every g ∈ G, lm1(g) is also lm2(g). For this, we rely on the fact that
G is reduced. Assume by contradiction that there exists a polynomial g ∈ G such that lm1(g) ̸=
lm2(g). Thus, lm2(g) must contain both x and y. Let tx be the part in only variables x of lm2(g).
Note that lm1(g) is greater than tx with respect to O1. There exists an element g2 ∈ G2 such that
lm2(g2) divides lm2(g). Since lm2(g2) depends only on the variables x, we have that lm2(g2)
divides tx. Then, by what we proved above, there exists g′ ∈ G such that lm1(g) divides lm2(g2),
so lm1(g) divides tx. This implies that G is not reduced, which contradicts the definition of G.

So, lm1(g) = lm2(g) for every g ∈ G and, consequently, deg(g) = degx(g).
We conclude that there exists a non-empty Zariski open subset FD (as above) of C[x,y]n≤D

such that Assumption (5.D) holds for every f ∈ FD ∩Q[x,y]n.
Additionally, one easily notices that Assumption (5.D) implies Assumption (5.C). As a conse-

quence, f also satisfies Assumption (5.C) for any f ∈ FD ∩Q[x,y]n.

Recall that, when Assumption (5.C) holds, by Lemma 5.4.5, the trace of any multiplication
map Lp is a polynomial in Q[y] where p ∈ Q[y][x]. We now estimate the degree of trace(Lp).
Since the map p 7→ trace(Lp) is linear, it is sufficient to consider p as a monomial in the variables
x.
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Proposition 5.6.2. Assume that Assumption (5.D) holds. Then, for any monomialm in the variables
x, the degree in y of trace(Lm) is bounded by deg(m). As a consequence, the total degree of the
entry hi,j = trace(Lbi·bj ) ofH is at most the sum of the total degrees of bi and bj , i.e.,

deg(hi,j) ≤ deg(bi) + deg(bj).

Proof. Let m be a monomial in Q[x]. The multiplication matrix Lm is built as follows. For 1 ≤
i ≤ δ, the normal form of bi ·m as a polynomial in Q(y)[x] writes

NFG(bi ·m) =
δ∑

j=1

ci,j · bj .

Note that this normal form is the remainder of the successive divisions of bi ·m by polynomials
in G. As Assumption (5.D) holds, Assumption (5.C) also holds. Therefore, those divisions do not
introduce any denominator. So, every term appearing during these normal form reductions are
polynomials in Q[y][x].

Let p ∈ Q[y][x]. For any g ∈ G, by Assumption (5.D), the total degree in (y,x) of every term
of g is at most the degree of lmx(g). Thus, a division of p by g involves only terms of total degree
deg(p). Thus, during the polynomial division of p to G, only terms of degree at most deg(p) will
appear. Hence the degree of NFG(p) is bounded by deg(p).

Note that trace(Lm) =
∑δ

i=1 ci,i. As the degree of ci,i · bi is bounded by deg(bi) + deg(m),
the degree of ci,i is at most deg(m). Then, we obtain that deg(trace(Lm)) ≤ deg(m).

Finally, the degree bound of hi,j follows immediately:

deg(hi,j) = deg(trace(Lbi·bj )) ≤ deg(bi · bj) = deg(bi) + deg(bj).

Lemma 5.6.3. Assume that f satisfies Assumption (5.D). Then the degree of a minor M consisting
of the rows (r1, . . . , rℓ) and the columns (c1, . . . , cℓ) ofH is bounded by

ℓ∑
i=1

(deg(bri) + deg(bci)) .

Particularly, the degree of det(H) is bounded by 2
∑δ

i=1 deg(bi).

Proof. We expand the minors M into terms of the form (−1)sign(σ)hr1,σ(c1) . . . hrℓ,σ(cℓ), where σ
is a permutation of {c1, . . . , cℓ} and sign(σ) is its signature. We then bound the degree of each
of those terms as follows using Proposition 5.6.2:

deg

(
ℓ∏

i=1

hri,σ(ci)

)
=

ℓ∑
i=1

deg(hri,σ(ci))

≤
ℓ∑

i=1

(
deg(bri) + deg(bσ(ci))

)
=

ℓ∑
i=1

(deg(bri) + deg(bci)) .
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Hence, taking the sum of all those terms, we obtain the inequality:

deg(Mi) ≤
ℓ∑

i=1

(deg(bri) + deg(bci)) .

When M is taken as the determinant ofH, then

deg(det(H)) ≤ 2

δ∑
i=1

deg(bi).

Proposition 5.6.2 implies that, when Assumption (5.D) holds, the degree pattern ofH depends
only on the degree of the elements of B = {b1, . . . , bδ}. We rearrange B in the increasing order
of degree, i.e., deg(bi) ≤ deg(bj) for 1 ≤ i < j ≤ δ. So, b1 = 1 and deg(b1) = 0. The degree
bounds of the entries ofH are expressed by the matrix below

0 deg(b2) . . . deg(bδ)
deg(b2) 2 deg(b2) . . . deg(bδ) + deg(b2)

...
...

. . .
...

deg(bδ) deg(bδ) + deg(b2) . . . 2 deg(bδ)

 .
Moreover, using the regularity of f , we are able to establish explicit degree bounds for the

elements of B and then, for the minors ofH.

Lemma 5.6.4. Assume that f is an affine regular sequence and let B be the basis defined as above.
Then the highest degree among the elements of B is bounded by n(D − 1) + 1 and

2

δ∑
i=1

deg(bi) ≤ n(D − 1)Dn.

Proof. For p ∈ K[x], let hp ∈ K[x1, . . . , xn+1] be the homogenization of p with respect to the
variable xn+1, i.e.,

hp = x
degx(p)
n+1 p

(
x1
xn+1

, . . . ,
xn
xn+1

)
.

The dehomogenization map α is defined as:

α : K[x1, . . . , xn+1]→ K[x1, . . . , xn],

p(x1, . . . , xn+1) 7→ p(x1, . . . , xn, 1).

Also, the homogeneous component of largest degree of p with respect to the variables x is
denoted by Hp. Throughout this proof, we use the following notations:
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• I = ⟨f⟩K and G is the reduced Gröbner basis of I with respect to grevlex(x1 ≻ · · · ≻ xn).

• hI = ⟨hf1, . . . , hfn⟩K and hG is the reduced Gröbner basis of hI with respect to the ordering
grevlex(x1 ≻ · · · ≻ xn+1).

The Hilbert series of the homogeneous ideal hI writes

HShI(z) =

∞∑
r=0

(
dimKK[x]r − dimK(

hI ∩K[x]r)
)
· zr,

where K[x]r = {p | p ∈ K[x] : degx(p) = r}.
Since f is an affine regular sequence, by definition, Hf = (Hf1, . . . ,

Hfn) forms a homoge-
neous regular sequence. Equivalently, by [194, Proposition 1.44], the homogeneous polynomial
sequence (hf1, . . . ,

hfn, xn+1) is regular. Particularly, (hf1, . . . , hfn) is a homogeneous regular
sequence and, by [155, Theorem 1.5], we obtain

HShI(z) =

∏n
i=1

(
1− zdeg(fi)

)
(1− z)n+1 =

∏n
i=1

(
1 + . . .+ zdeg(fi)−1

)
1− z

.

On the other hand, as (hf1, . . . , hfn, xn+1) is a homogeneous regular sequence, by [7, Propo-
sition 7], the leading terms of hG with respect to grevlex(x1 ≻ · · · ≻ xn+1) do not depend on
the variables xn+1. Thus, the dehomogenization map α does not affect the set of leading terms of
hG. Besides, α(hG) is a Gröbner basis of I with respect to grevlex(x) (see, e.g., the proof of [187,
Lemma 27]). Hence, the leading terms of hG coincides with the leading terms of G.

As a consequence, the set of monomials in (x1, . . . , xn+1) which are not contained in the
initial ideal of hI with respect to grevlex(x1 ≻ · · · ≻ xn+1) is exactly

{b · xjn+1 | b ∈ B, j ∈ N}.

Therefore, we have the following equality

dimKK[x]r − dimK(
hI ∩K[x]r) = {b ∈ B | deg(b) ≤ r} =

r∑
j=0

|B ∩K[x]j |.

Let H(z) =
∑∞

r=0 |B ∩K[x]r| · zr . We have that

(1− z) ·HShI(z) = (1− z)
∞∑
r=0

r∑
j=0

|B ∩K[x]j | · zr =
∞∑
r=0

|B ∩K[x]r| · zr = H(z).

Then,

H(z) =

n∏
i=1

(
1 + . . .+ zdeg(fi)−1

)
.
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As a direct consequence, we obtain the bound

max
1≤i≤δ

deg(bi) ≤
n∑

i=1

deg(fi)− n ≤ n(D − 1).

Let G1 and G2 be two polynomials in Z[z]. We write G1 ≤ G2 if and only if for any r ≥ 0,
the coefficient of zr in G2 is greater than or equal to the one in G1.

Since deg(fi) ≤ d for every 1 ≤ i ≤ n, then

H(z) =
n∏

i=1

(
1 + . . .+ zdeg(fi)−1

)
≤

n∏
i=1

(
1 + . . .+ zD−1

)
.

As a consequence,

H ′(z) =
∞∑
r=1

(r |B ∩K[x]r|) · zr−1 ≤

(
n∏

i=1

(
1 + . . .+ zD−1

))′

.

Expanding G′(z), we obtain

H ′(z) ≤
n
(
1 + . . .+ zD−1

)n−1 (
1 + . . .+ zD−1 − dzD−1

)
1− z

= n
(
1 + . . .+ zD−1

)n−1
D−2∑
i=0

zi − zD−1

1− z

= n
(
1 + . . .+ zD−1

)n−1
D−2∑
i=0

zi
(
1 + . . .+ zD−i−2

)
.

By substituting z = 1 in the above inequality, we obtain

H ′(1) ≤ nDn−1
D−2∑
i=0

(D − i− 1) =
n(D − 1)Dn

2
.

Thus, we have that
δ∑

i=1

deg(bi) =
∞∑
r=0

r |B ∩K[x]r| = H ′(1) ≤ n(D − 1)Dn

2
.

Corollary 5.6.5 below follows immediately from Lemmas 5.6.3 and 5.6.4.

Corollary 5.6.5. Assume that f is a regular sequence that satisfies Assumption (5.D). Then the
degree of any minor ofH is bounded by n(D − 1)Dn.
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Example 5.6.6. We consider again the system f = (x21+x
2
2−y1, x1x2+y2x2+y3x1) in Example

5.4.3. Note that f forms a regular sequence.
The Gröbner basis G of f with respect to the ordering grevlex(x) ≻ grevlex(y) is

G = {x32 + y3x
2
2 + (y22 − y1)x2 + y2y3x1 − y1y3, x21 + x22 − y1, x1x2 + x1y3 + x2y2}.

So, f satisfies Assumption (5.D). The matrix with respect to the basis B1 = {1, x2, x1, x22} has the
following degree pattern: 

0 1 1 2
1 2 2 3
1 2 2 3
2 3 3 4

 .
This degree pattern agrees with the result of Proposition 5.6.2. The determinant of this matrix is of
degree 7, which is indeed smaller than n(D − 1)Dn = 8

Whereas, using the basis B2 = {1, x2, x22, x32} leads to another parametric Hermite matrix of
different degrees. For 1 ≤ i, j ≤ 4, the degree of its (i, j)-entry, which is equals to trace(L

xi+j−2
2

),

is bounded by deg(xi−1
2 ) + deg(xj−1

2 ) = i+ j − 2 using Proposition 5.6.2. Applying Lemma 5.6.3,
the determinant is bounded by 2

∑3
i=0 deg(x

i
2) = 12.

By computing the parametric Hermite matrix of f with respect to B2, we obtain the degree
pattern 

0 1 2 3
1 2 3 4
2 3 4 5
3 4 5 6


on its entries and a determinant of degree 11. Again, both of our theoretical bounds hold for this
matrix.

Remark 5.6.7. Note that Assumption (5.D) requires a condition on the degrees of polynomials in
the Gröbner basis G of ⟨f⟩. We remark that it is possible to establish similar bounds for the degrees
of entries of our parametric Hermite matrix and its minors when the system f satisfies a weaker
property than Assumption (5.D) (we still keep the regularity assumption).

Indeed, we only need to assume that, for any g ∈ G, the homogeneous component of the highest
degree in x of g does not depend on the parameters y. Let Dy be an upper bound of the partial
degrees in y of elements of G. Under the change of variables xi 7→ x

Dy

i , f is mapped to a new
polynomial sequence that satisfies Assumption (5.D). Therefore, we easily deduce the two following
bounds, which are similar to the ones of Proposition 5.6.2 and Corollary 5.6.5.

• deg(hi,j) ≤ Dy(deg(bi) + deg(bj));

• The degree of any minor ofH is bounded by Dy n(D − 1)Dn.
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Even though these bounds are not sharp anymore, they still allow us to compute the parametric Her-
mite matrices using evaluation & interpolation scheme and control the complexity of this computation
in the instances for which Assumption (5.D) does not hold.

5.6.2 Complexity analysis of our algorithms

In this subsection, we analyze the complexity of our algorithms on generic systems.
Let f = (f1, . . . , fn) ⊂ Q[x,y] be a regular sequence, where y = (y1, . . . , yt) and x =

(x1, . . . , xn), satisfying Assumptions (5.A) and (5.D). We denote by G the reduced Gröbner basis
of f with respect to the ordering grevlex(x) ≻ grevlex(y). The basis B is taken as all the
monomials in x that are irreducible by G. Then, H is the parametric Hermite matrix associated
of f with respect to B.

We start by estimating the arithmetic complexity for computing the parametric Hermite ma-
trixH and its minors. We denote λ := n(D − 1) and D := n(D − 1)Dn.

Proposition 5.6.8. Assume that f = (f1, . . . , fn) ⊂ Q[y][x] is a regular sequence that satis-
fies Assumptions (5.A) and (5.D). Let δ be the dimension of the K-vector space K[x]/⟨f⟩K where
K = Q(y). Let H be the parametric Hermite matrix associated to f constructed using grevlex(x)
ordering. Then, by Lemma 5.4.5, the entries of the parametric Hermite matrixH lie in Q[y].

Using the evaluation & interpolation scheme, one can computeH within

O˜((t+ 2λ

t

)(
n

(
D + n+ t

n+ t

)
+ nω+2Dωn+1 +D(ω+1)n

))
arithmetic operations in Q, where, by Bézout’s bound, δ is bounded by Dn.

Moreover, each minor (including the determinant) ofH can be computed using

O˜((t+D

t

)(
δ2
(
t+ 2λ

t

)
+ δω

))
arithmetic operations in Q.

Proof. By Lemma 5.6.4 and Proposition 5.6.2, the highest degree among the entries of the Hermite
matrix H is bounded by 2λ = 2n(D − 1). The evaluation & interpolation scheme of Subsec-
tion 5.4.4 requires computing

(
t+2λ
t

)
specialized Hermite matrices. We first analyze the complex-

ity for computing each of those specialized Hermite matrices.
The evaluation of f at each point η ∈ Qt costs O

(
n
(
D+n+t
n+t

))
arithmetic operations in Q.

As the highest degree in the Gröbner basis of f(η, ·) with respect to the grevlex(x) ordering
is bounded by n(D − 1), the computation of this Gröbner basis can be done within O (nDωn)
arithmetic operations in Q (see [58, Theorem 5.1]).

Next, we compute the matrices representing the Lxi ’s. Using [58, Algo. 4], we obtain an
arithmetic complexity ofO(Dnω+2δω) ([58, Theorem 5.1]) for computing such nmatrices, where
ω is the exponential constant for matrix multiplication.

128



The traces of these matrices are then computed using nδ additions in Q. The subroutine
BMatrices consists of essentially δ multiplication of δ× δ matrices (with entries in Q). This leads
to an arithmetic complexity O(δω+1). Next, the computation of each entry hi,j is simply a vector
multiplication of length δ, whose complexity is O(δ). Doing so for δ2 entries, TraceComputing
takes in overall O(δ3) arithmetic operations in Q.

Thus, as δ ≤ Dn, the complexity of the evaluation step lies in

O

((
t+ 2λ

t

)(
n

(
D + n+ t

n+ t

)
+ nω+2Dωn+1 +D(ω+1)n

))
.

Finally, we interpolate δ2 entries which are polynomials in Q[y] of degree at most 2λ. Us-
ing the multivariate interpolation algorithm of [36], the complexity of this step therefore lies in
O
(
δ2
(
t+2λ
t

)
log2

(
t+2λ
t

)
log log

(
t+2λ
t

))
.

Summing up the both steps, we conclude that the parametric Hermite matrix H can be ob-
tained within

O˜((t+ 2λ

t

)(
n

(
D + n+ t

n+ t

)
+ nω+2Dωn+1 +D(ω+1)n

))
arithmetic operations in Q.

Similarly, the minors ofH can be computed using the technique of evaluation & interpolation.
By Corollary 5.6.5, the degree of every minor of H is bounded by D. We specialize H at

(
t+D
t

)
points in Qt and compute the corresponding minor of each specialized Hermite matrix. This step
takes

O

((
t+D

t

)(
δ2
(
t+ 2λ

t

)
+ δω

))
arithmetic operations in Q. Finally, using the multivariate interpolation algorithm of [36], it
requires

O

((
t+D

t

)
log2

(
t+D

t

)
log log

(
t+D

t

))
arithmetic operations in Q to interpolate the final minor. Therefore, the whole complexity for
computing each minor ofH lies within

O˜((t+D

t

)(
δ2
(
t+ 2λ

t

)
+ δω

))
.

Finally, we state our main result, which is Theorem 5.1.3 below. It estimates the arithmetic
complexity of Algorithms 5.3 and 5.4.

Theorem 5.1.3. Let f ⊂ Q[x,y] be a regular sequence such that the ideal ⟨f⟩ is radical and
f satisfies Assumptions (5.A) and (5.D). Recall that D denotes n(D − 1)Dn. Then, we have the
following statements:
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i) The arithmetic complexity of Algorithm 5.3 lies in

O˜((t+D

t

)
23t n2t+1D2nt+n+2t+1

)
.

ii) Algorithm 5.4, which is probabilistic, computes a set of semi-algebraic descriptions solving
Problem (RRC) within

O˜((t+D

t

)
23t n2t+1D3nt+2(n+t)+1

)
arithmetic operations in Q in case of success.

iii) The semi-algebraic descriptions output by Algorithm 5.4 consist of polynomials in Q[y] of
degree bounded by D.

Proof. As Assumption (5.D) holds, we have that w∞ = 1 and wH is the square-free part of
det(H).

Therefore, after computing the parametric Hermite matrixH and its determinant, whose com-
plexity is given by Proposition 5.6.8, Algorithm 5.3 essentially consists of computing sample points
of the connected components of the algebraic set Rt \ V (det(H)).

By Corollary 5.6.5, the degree of det(H) is bounded by D. Applying Corollary 5.2.3, we obtain
the following arithmetic complexity for this computation of sample points

O˜((t+D

t

)
23tD2t+1

)
≃ O˜((t+D

t

)
23t n2t+1D2nt+n+2t+1

)
.

Also by Corollary 5.2.3, the finite subset of Qt output by SamplePoints has cardinal bounded by
2tDt. Thus, evaluating the specializations ofH at those points and their signatures costs in total
O
(
2tDt

(
δ2
(
2λ+t
t

)
+ δω+1/2

))
arithmetic operations in Q using [9, Algorithm 8.43].

Therefore, the complexity of SamplePoints dominates the whole complexity of the algorithm.
We conclude that Algorithm 5.3 runs within

O˜((t+D

t

)
23t n2t+1D2nt+n+2t+1

)
arithmetic operations in Q.

For Algorithm 5.4, we start by choosing randomly a matrix Q and compute the matrixHQ =
QT ·H·Q. Then, we compute the leading principal minorsM1, . . . ,Mδ ofHQ. Using Proposition
5.6.8, this step admits the arithmetic complexity bound

O˜(δ (t+D

t

)(
δ2
(
t+ 2λ

t

)
+ δω + log2

(
t+D

t

)))
.
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Next, Algorithm 5.4 computes sample points for the connected components of the semi-
algebraic set defined by∧δi=1Mi ̸= 0. Since the degree of eachMi is bounded byD, Corollary 5.2.3
gives the arithmetic complexity

O˜((t+D

t

)
Dnt+n 23t D2t+1

)
≃ O˜((t+D

t

)
23t n2t+1D3nt+2(n+t)+1

)
.

It returns a finite subset of Qt whose cardinal is bounded by (2δD)t. The evaluation of the
leading principal minors’ sign patterns at those points has the arithmetic complexity lying in
O
(
2tδt+1D2t

)
≃ O

(
2tn2tD3nt+n+2t

)
.

Again, the complexity of SamplePoints dominates the whole complexity of Algorithm 5.4.
The proof of Theorem 5.1.3 is then finished.

Probability aspect. Here, we give some short remarks on the probabilistic aspect of Algo-
rithms 5.3 and 5.4.

These two algorithms rely on the geometric resolution algorithm of [87] for solving zero-
dimensional systems appearing in the computation of sample points per connected components
described in Section 5.2. Recall that the geometric resolution is a probabilistic algorithm, which
makes various random choices (changes of variables, generic points to specialize) to ensure certain
properties of the intermediate systems.

As explained in [87], the bad choices are enclosed in strict algebraic subsets of certain affine
spaces, which implies that almost any set of random choices leads to a correct result. In general,
even though one can check whether the points output by geometric resolution are solutions of
the input system, some solutions can be missing. Thus, the geometric resolution is not Las Vegas.
It is worth note that, by replacing the geometric resolution algorithm by an algorithm for solving
zero-dimensional system using Gröbner basis, we obtain a deterministic version of the subroutine
SamplePoints.

Besides, Algorithm 5.4 depends also on the choice of the matrix Q. By Lemma 5.5.8, any
choice ofQ from a prescribed dense Zariski open subset of GL(n,C) will work. As the purpose of
choosingQ is to ensure that none of the leading principal minors ofQT ·H·Q are identically zero.
One can check easily whether a good matrix Q is found. Again, this can be made deterministic.

5.7 Practical implementation & Experimental results

5.7.1 Remark on the implementation of Algorithm 5.4

Recall that Algorithm 5.4 leads us to compute sample points per connected components of the
non-vanishing set of the leading principal minors (M1, . . . ,Mδ). Comparing to Algorithm 5.3 in
which we only compute sample points for Rt \V (Mδ), the complexity of Algorithm 5.4 contains
an extra factor of Dnt due to the higher number of polynomials given as input to the subroutine
SamplePoints. Even though the complexity bounds of these two algorithms both lie inDO(nt), the
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extra factorDnt mentioned above sometimes becomes the bottleneck of Algorithm 5.4 for tackling
practical problems. Therefore, we introduce the following optimization in our implementation of
Algorithm 5.4.

We start by following exactly the steps (1-4) of Algorithm 5.4 to obtain the leading principal
minors (M1, . . . ,Mδ) and the polynomial w∞. Then, by calling the subroutine SamplePoints
on the input Mδ ̸= 0 ∧ w∞ ̸= 0, we compute a set of sample points (and their corresponding
numbers of real roots) {(η1, r1), . . . , (ηℓ, rℓ)} that solves the weak-version of Problem (RRC). We
obtain from this output all the possible numbers of real roots that the input system can admit.

For each value 0 ≤ r ≤ δ, we define

Φr = {σ = (σ1, . . . , σδ) ∈ {−1, 1}δ | the sign variation of σ is (δ − r)/2}.

If r ̸≡ δ (mod 2), Φr = ∅.
For σ ∈ Φr and η ∈ Rt \ V (w∞) such that sign(Mi(η)) = σi for every 1 ≤ i ≤ δ, the

signature ofH(η) is r. As a consequence, for any η in the semi-algebraic set defined by

(w∞ ̸= 0) ∧ (∨σ∈Φr(∧δi=1sign(Mi) = σi)),

the system f(η, .) has exactly r distinct real solutions.
Therefore, (Sri)1≤i≤ℓ is a collection of semi-algebraic sets solving Problem (RRC). Then, we

can simply return {(Φri , ηi, ri) | 1 ≤ i ≤ ℓ} as the output of Algorithm 5.4 without any further
computation. Note that, by doing so, we may return sign conditions which are not realizable.

We discuss now about the complexity aspect of the steps described above. For r ≡ δ (mod 2),
the cardinal of Φr is

(
δ

(δ−r−2)/2

)
. In theory, the total cardinal of all the Φri ’s (1 ≤ i ≤ ℓ) can go

up to 2δ−1, which is doubly exponential in the number of variables n. However, in the instances
that are actually tractable by the current state of the art, 2δ is still smaller than δ3t. And when it
is the case, following this approach has better performance than computing the sample points of
the semi-algebraic set defined by ∧δi=1Mi ̸= 0. Otherwise, when 2δ exceeds δ3t, we switch back
to the computation of sample points.

This implementation of Algorithm 5.4 does not change the complexity bound given in Theo-
rem 5.1.3.

5.7.2 Experiments

This subsection reports on the practical performance of several real root classification algorithms
on various test instances and applications.

The computation is carried out on a computer of Intel(R) Xeon(R) CPU E7-4820 2GHz and 1.5
TB of RAM. The timings are given in seconds (s.), minutes (m.) and hours (h.). The symbol ∞
means that the computation cannot finish within 240 hours.

We implement Algorithm 5.3 and 5.4 in Maple. This implementation relies on the library
FGb [66] for carrying out the Gröbner basis computation required to compute Hermite matrices
(Algorithm 5.2). It also calls to the library RAGlib to compute sample points of semi-algebraic
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sets, which makes use of the library msolve for solving zero-dimensional systems appearing in
those computations.

Throughout this subsection, the column hermite reports on the computational data of our
algorithms based on parametric Hermite matrices described in Section 5.5. It uses the notations
below:

- mat: the timing for computing a parametric Hermite matrixH.

- det: the runtime for computing the determinant ofH.

- min: the timing for computing the leading principal minors ofH .

- sp: the runtime for computing at least one points per each connected component of the
semi-algebraic set Rt \ V (det(H)).

- deg: the highest degree among the leading principal minors ofH.

Generic systems. In this paragraph, we report on the results obtained with generic inputs, i.e.,
randomly chosen dense polynomials (f1, . . . , fn) ⊂ Q[y1, . . . , yt][x1, . . . , xn]. The total degrees
of input polynomials are given as a list D = [deg(f1), . . . ,deg(fn)].

We first compare the algorithms using Hermite matrices (Section 5.5) with the Sturm-based
algorithm (Section 5.3) for solving Problem (RRC). The column sturm of Fig. (5.2) shows the
experimental results of the Sturm-based algorithm. It contains the following sub-columns:

- elim: the timing for computing the eliminating polynomial.

- sres: the timing for computing the subresultant coefficients in the Sturm-based algorithm.

- sp-s: the timing for computing points per connected component of the non-vanishing set
of the last subresultant coefficient.

- deg-s: the highest degree among the subresultant coefficients.

We observe that the sum of mat-h and min-h is smaller than the sum of elim and sres. Hence,
obtaining the input for the sample point computation in hermite strategy is easier than in sturm
strategy. We also remark that the degree deg-h is much smaller than deg-s, that explains why
the computation of sample points using Hermite matrices is faster than using the subresultant
coefficients.

We conclude that the parametric Hermite matrix approach outperforms the Sturm-based one
both on the timings and the degree of polynomials in the output formulas.

In Fig. (5.3), we compare our algorithms using parametric Hermite matrices with two Maple
packages for solving parametric polynomial systems: RootFinding[Parametric] [76] and Reg-
ularChains[ParametricSystemTools] [202]. The new notations used in Fig. (5.3) are explained
below.
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t D hermite sturm
mat min sp total deg elim sres sp-s total deg-s

2 [2, 2] .07 s .01 s .3 s .4 s 8 .01 s .1 s 2 s 2.2 s 12
2 [3, 2] .1 s .12 s 4.8 s 5 s 18 .05 s .5 s 15 s 16 s 30
2 [2, 2, 2] .3 s .3 s 33 s 34 s 24 .08 s 2 s 8 m 8 m 56
2 [3, 3] .3 s .8 s 3 m 3 m 36 .1 s 3 s 20 m 20 m 72

3 [2, 2] .1 s .02 s 26 s 27 s 8 .07 s .1 s 40 s 40 s 12
3 [3, 2] .2 s .2 s 3 h 3 h 18 .1 s 1 s ∞ ∞ 30
3 [2, 2, 2] .5 s 7 s 32 h 32 h 24 .15 s 10 m ∞ ∞ 56
3 [4, 2] .6 s 12 s 90 h 90 h 32 .2 s 12 m ∞ ∞ 56
3 [3, 3] 1 s 27 s ∞ ∞ 36 .2 s 15 m ∞ ∞ 72

Figure 5.2: Generic random dense systems

• The column rf stands for the RootFinding[Parametric] package. To solve a parametric
polynomial systems, it consists of computing a discriminant varietyD and then computing
an open CAD of Rt \D. This package does not return explicit semi-algebraic formulas but an
encoding based on the real roots of some polynomials.

This column contains:

- dv : the runtime of the command DiscriminantVariety that computes a set of poly-
nomials defining a discriminant variety D associated to the input system.

- cad : the runtime of the command CellDecomposition that outputs semi-algebraic
formulas by computing an open CAD for the semi-algebraic set Rt \ D.

• The column rc stands for Maple’s library RegularChains[ParametricSystemTools]. The
algorithms implemented in this package is given in [202]. It also contains two sub-columns:

- bp : the runtime of the command BorderPolynomial that returns a set of polynomi-
als.

- rrc : the runtime of the command RealRootClassification. We call this command
with the option output=‘samples’ to compute at least one point per connected com-
ponent of the complementary of the real algebraic set defined by border polynomials.

Note that, in a strategy for solving the weak-version of Problem (RRC), DiscriminantVariety
and BorderPolynomial can be completely replaced by parametric Hermite matrices.

On generic systems, the determinant of our parametric Hermite matrix coincides with the
output of DiscriminantVariety, which we denote by w. Whereas, because of the elimination
BorderPolynomial returns several polynomials, one of them is w.

In Fig. (5.3), the timings for computing a parametric Hermite matrix is negligible. Comparing
the columns det, dv and bp, we remark that the time taken to obtain w through the determinant
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of parametric Hermite matrices is much smaller than using DiscriminantVariety or Border-
Polynomial.

For computing the polynomial w, using parametric Hermite matrices allows us to reach the
instances that are out of reach of DiscriminantVariety, for example, the instances {t = 3, D =
[2, 2, 2]}, {t = 3 D = [4, 2]}, {t = 3, D = [3, 3]} and {t = 4, D = [2, 2]} in Fig. (5.3)
below. Moreover, we succeed to compute the semi-algebraic formulas for {t = 3, D = [2, 2, 2]},
{t = 3 D = [4, 2]} and {t = 4, D = [2, 2]}. Using the implementation in Subsection 5.7.1, we
obtain the semi-algebraic formulas of degrees bounded by deg(w).

Therefore, for these generic systems, our algorithm based on parametric Hermite matrices
outperforms DiscriminantVariety and BorderPolynomial for obtaining a polynomial that de-
fines the boundary of semi-algebraic sets over which the number of real solutions are invariant.
Moreover, using the minors of parametric Hermite matrices, we can compute semi-algebraic for-
mulas of problems that are out of reach of CellDecomposition and RealRootClassification.

t d hermite rf rc
mat det sp total deg dv cad total bp rrc total

2 [2, 2] .07 s .01 s .3 s .4 s 8 .1 s .3 s .4 s .1 s 1 s 1.1 s
2 [3, 2] .1 s .2 s 4.8 s 5 s 18 1 m 5 s 1 m .3 s 12 s 12 s
2 [2, 2, 2] .3 s .3 s 33 s 34 s 24 17m 32 s 17m 23 s 2 m 2 m
2 [3, 3] .3 s .8 s 3 m 3 m 36 2 h 4 m 2 h 8 s 4 m 4 m

3 [2, 2] .1 s .02 s 26 s 27 s 8 1 s 35 s 36 s .2 s 12m 12m
3 [3, 2] .2 s .2 s 3 h 3 h 18 2 h 84 h 86 h 3 s 37 h 37 h
3 [2, 2, 2] .5 s 7 s 32 h 32 h 24 ∞ ∞ ∞ 20m ∞ ∞
3 [4, 2] .6 s 12 s 90 h 90 h 32 ∞ ∞ ∞ 12m ∞ ∞
3 [3, 3] .7 s 27 s ∞ ∞ 36 ∞ ∞ ∞ 15m ∞ ∞

4 [2, 2] .2 s .1 s 8 m 8 m 8 4 s ∞ ∞ 1 s ∞ ∞

Figure 5.3: Generic random dense systems

Especially, since the polynomials in our outputs are obtained as minors of parametric Hermite
matrices, these matrices provide a compact determinantal representation of the output formulas,
which then facilitates their evaluation. We illustrate this claim by reporting in Table 5.4 on the
timings of these two different tasks for 1000 points η:

• Evaluating the signature ofH(η) (the column sign);

• Evaluating the principal minors ofH (the column minors);

• Solving specialized systemsf(η, ·) using msolve, FGb and RootFinding[Isolate] of Maple
(the columns msolve, FGb and isolate).

We note that evaluating the signatures of specialized Hermite matrices is faster than evalu-
ating the minors. On the other hand, solving a specialized system would depend strongly on the

135



System t n D sign minors msolve FGb isolate

Dense 2 2 [2, 2] .5 s .2 s 2 s 12 s 33 s
2 3 [2, 2, 2] 2 s 4 s 5 s 15 s 110 s
2 2 [3, 3] 3 s 6 s 4 s 12 s 65 s
2 2 [5, 2] 7 s 18 s 5 s 14 s 55 s
2 2 [4, 3] 10 s 30 s 6 s 15 s 80 s

Dense 2 2 [2, 2] .8 s .4 s 2 s 10 s 16 s
2 3 [2, 2, 2] 6 s 30 s 5 s 15 s 80 s
2 2 [3, 3] 9 s 90 s 4 s 12 s 65 s

Figure 5.4: Timings for evaluating the formulas.

number of variables n while evaluating the signatures depends on the number of parameters t.
In the above examples where n = 2 and t = 3, solving the specialized systems is better. Even
though, the only library for solving polynomial systems is faster than evaluating the signatures
on these examples is msolve, which is highly optimized in C.

In what follows, we consider the systems coming from some applications as test instances.
These examples allow us to observe the behavior of our algorithms on non-generic systems.

Kuramoto model. This application is introduced in [126], which is a dynamical system used to
model synchronization among some given coupled oscillators. Here we consider only the model
constituted by 4 oscillators. The maximum number of real solutions of steady-state equations of
this model was an open problem before it is solved in [99] using numerical homotopy continuation
methods. However, to the best of our knowledge, there is no exact algorithm that is able to
solve this problem. We present in what follows the first solution using symbolic computation.
Moreover, our algorithm can return the semi-algebraic formulas defining the regions over which
the number of real solutions is invariant.

As explained in [99], we consider the system f of the following equations{
yi −

∑4
j=1(sicj − sjci) = 0

s2i + c2i = 1
for 1 ≤ i ≤ 3,

where (s1, s2, s3) and (c1, c2, c3) are variables and (y1, y2, y3) are parameters. We are asked to
compute the maximum number of real solutions of f(η, .) when η varies over R3. This leads us
to solve the weak version of Problem (RRC) for this parametric system.

We first construct the parametric Hermite matrix H associated to this system. This matrix 1

1The matrix is available at https://github.com/huuphuocle/Kuramoto4.
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is of size 14× 14 and has the following degree pattern:

0 3 3 0 0 0 6 4 3 3 6 3 4 9
3 6 6 3 3 3 9 7 6 6 9 6 7 12
3 6 6 3 3 3 9 7 6 6 9 6 7 12
0 3 3 2 2 2 6 4 5 5 6 5 4 9
0 3 3 2 2 2 6 4 5 5 6 5 4 9
0 3 3 2 2 2 6 4 5 5 6 5 4 9
6 9 9 6 6 6 12 10 9 9 12 9 10 15
4 7 7 4 4 4 10 8 7 7 10 7 8 13
3 6 6 5 5 5 9 7 8 8 9 8 7 12
3 6 6 5 5 5 9 7 8 8 9 8 7 12
6 9 9 6 6 6 12 10 9 9 12 9 10 15
3 6 6 5 5 5 9 7 8 8 9 8 7 12
4 7 7 4 4 4 10 8 7 7 10 7 8 13
9 12 12 9 9 9 15 13 12 12 15 12 13 18



.

The polynomial w∞ has the factors y1 + y2, y2 + y3, y3 + y1 and y1 + y2 + y3. The polynomial
wH has degree 48 (c.f. [99]). We denote by w the polynomial w∞ ·wH.

Note that the polynomial system has real roots only if |yi| ≤ 3 (c.f. [99]). So we only need
to consider the compact connected components of R3 \ V (w). Since the polynomial w is in-
variant under any permutation acting on (y1, y2, y3), we exploit this symmetry to accelerate the
computation of sample points.

Following the critical point method, we compute the critical points of the map (y1, y2, y3) 7→
y1+y2+y3 restricted to R3\V (w); this map is also symmetric. We apply the change of variables

(y1, y2, y3) 7→ (e1, e2, e3),

where e1 = y1 + y2 + y3, e2 = y1y2 + y2y3 + y3y1 and e3 = y1y2y3 are elementary symmetric
polynomials of (y1, y2, y3). This change of variables reduces the number of distinct solutions of
zero-dimensional systems involved in the computation and, therefore, reduces the computation
time.

From the sample points obtained by this computation, we derive the possible number of real
solutions and conclude that the system f has at most 10 distinct real solutions when (y1, y2, y3)
varies overR3\V (w). This agrees with the result given in [99]. We show below a list of parameter
values such that the system has respectively 2, 4, 6, 8 and 10 distinct real solutions.

Number of solutions (y1, y2, y3)

2 solutions [−2,−0.03, 0.22]
4 solutions [1,−0.09, 0.16]
6 solutions [0,−0.7,−0.48]
8 solutions [0.08,−0.03, 0.22]
10 solutions

[
274945023031
2199023255552 ,

−68723139707
549755813888 ,

−549808278091
4398046511104

]
137



Fig. (5.5) reports on the timings for computing the parametric Hermite matrix (mat), for
computing its determinant (det) and for computing the sample points (sp). We stop both of the
commands DiscriminantVariety and BorderPolynomial after 240 hours without obtaining
the polynomial w.

hermite dv bp
mat det sp total
2 m 1 h 85 h 86 h ∞ ∞

Figure 5.5: Kuramoto model for 4 oscillators

Static output feedback. The second non-generic example comes from the problem of static
output feedback [105]. Given the matrices A ∈ Rℓ×ℓ, B ∈ Rℓ×2, C ∈ R1×ℓ and a parameter

vector P =

[
y1
y2

]
∈ R2, the characteristic polynomial of A+BPC writes

f(s,y) = det(sIℓ −A−BKC) = f0(s) + y1f1(s) + y2f2(s),

where s is a complex variable.
We want to find a matrix P such that all the roots of f(s,y) must lie in the open left half-

plane. By substituting s by x1 + ix2, we obtain the following system of real variables (x1, x2)
and parameters (y1, y2): 

ℜ(f(x1 + ix2,y)) = 0
ℑ(f(x1 + ix2,y)) = 0
x1 < 0

Note that the total degree of these equations equals ℓ.
We are now interested in solving the weak-version of Problem (RRC) on the system ℜ(f) =

ℑ(f) = 0. We observe that this system satisfies Assumptions (5.A) and (5.C). Let H be the
parametric Hermite matrix H of this system with respect to the usual basis we consider in this
paper. This matrixH behaves very differently from generic systems.

Computing the determinant of H (which is an element of Q[y]) and taking its square-free
part allows us to obtain the same output w as DiscriminantVariety. However, this direct ap-
proach appears to be very inefficient as the determinant appears as a large power of the output
polynomial.

For example, for a value ℓ, we observe that the system consists of two polynomials of degree
ℓ. The determinant of H appears as w2ℓ, where w has degree 2(ℓ − 1). The bound we establish
on the degree of this determinant is 2(ℓ− 1)ℓ2, which is much larger than what happens in this
case. Therefore, we need to introduce the optimization below to adapt our implementation of
Algorithm 5.3 to this problem.
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We observe that, on these examples, the polynomial w can be extracted from a smaller minor
instead of computing the determinant H. To identify such a minor, we reduce H to a matrix
whose entries are univariate polynomials with coefficients lying in a finite field Z/pZ as follow.

Let u be a new variable. We substitute each yi by random linear forms in Q[u] inH and then
computeH mod p. Then, the matrixH is turned into a matrixHu whose entries are elements of
Z/pZ[u]. The computation of the leading principal minors of Hu is much easier than the one of
H since it involves only univariate polynomials and does not suffer from the growth of bit-sizes
as for the rational numbers.

Next, we compute the sequence of the leading principal minors of Hu in decreasing order,
starting from the determinant. Once we obtain a minor, of some size r, that is not divisible by
wu, we stop and take the index r+1. Then, we compute the square-free part of the (r+1)×(r+1)
leading principal minor of H, which can be done through evaluation-interpolation method. This
yields a Monte Carlo implementation that depends on the choice of the random linear forms in
Q[u] and the finite field to compute the polynomial w.

In Fig. (5.6), we report on some computational data for the static output feedback problem.
Here we choose the prime p to be 65521 so that the elements of the finite field Z/pZ can be
represented by a machine word of 32 bits. We consider different values of ℓ and the matrices
A,B,C are chosen randomly. On these examples, our algorithm returns the same output as the
one of DisciminantVariety. Whereas, BorderPolynomial (bp) returns a list of polynomials
which contains our output and other polynomials of higher degree.

The timings of our algorithm are given by the two following columns:

• The column mat shows the timings for computing parametric Hermite matricesH.

• The column comp-w shows the timings for computing the polynomials w from H using
the strategy described as above.

We observe that our algorithm (mat + comp-w) wins some constant factor comparing to Dis-
criminantVariety (dv). On the other hand, BorderPolynomial (bp) performs less efficiently
than the other two algorithms in these examples.

Since the degrees of the polynomials w here (given as deg-w) are small comparing with the
bounds in the generic case. Hence, unlike the generic cases, the computation of the sample points
in these problems is negligible as being reported in the column sp.

ℓ hermite dv bp sp deg-w
mat comp-w total

5 2 s 1 s 3 s 30 s 1.5 m .2 s 8
6 12 s 5 s 17 s 90 s 30 m .4 s 10
7 1 m 6 m 7 m 16 m 4 h 1 s 12
8 4 m 50 m 1 h 1.5 h 34 h 3 s 14

Figure 5.6: Static output feedback
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Chapter 6

One block quantifier elimination for regular
polynomial systems of equations
Abstract. Quantifier elimination over the reals is a central problem in computational real al-
gebraic geometry, polynomial system solving and symbolic computation. Given a semi-algebraic
formula (whose atoms are polynomial constraints) with quantifiers on some variables, it consists
in computing a logically equivalent formula involving only unquantified variables. When there
is no alternation of quantifiers, one has a one block quantifier elimination problem.

We study in this chapter a variant of the one block quantifier elimination in which we compute
an almost equivalent formula of the input.

Our main contribution is a new probabilistic efficient algorithm for solving this variant when
the input is a system of polynomial equations satisfying some regularity assumptions. When
the input is generic, involves s polynomials of degree bounded by D with n quantified variables
and t unquantified ones, we prove that this algorithm outputs semi-algebraic formulas of degree
bounded by B using

O˜(8t B3t+2

(
t+B

t

))
arithmetic operations in the ground field where

B = Ds(D − 1)n−s

(
2(n− s)(D − 1)

(
n− 1

s− 2

)
+ (n(D − 2) + s)

(
n− 1

s− 1

))
.

This complexity result extends the real root classification complexity of Chapter 5 to generic de-
terminantal systems.

Even though our algorithm has the same complexityDO(nt) as the ones based on critical point
method (e.g., [9, Algo 14.6]), we make explicitly the exponent constant hidden by the above big-O
notation. Especially, we provide a degree bound for polynomials in the output. This degree bound
B is observed to be sharp for generic inputs and, if s is fixed and D = 2, B becomes polynomial
in n.

We also emphasize that the other algorithms using critical point method are not implemented.
The state-of-the-art software are based on the CAD and have a complexity (sD)2

O(n+t) . Unlike
those software which returns only explicit complicated formulas, our output formulas are encoded
through the minors of parametric Hermite matrices, which are easy to be evaluated.

To support our theoretical claim, we report on the practical performance of our implemen-
tation comparing with quantifier elimination in Maple and Mathematica for both generic and
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non-generic instances. Our algorithm allows us to solve quantifier elimination problems which
are out of reach of these state-of-the-art software (up to 8 variables).

This is joint-work with M. Safey El Din.

6.1 Introduction

6.1.1 Problem statement

Let f = (f1, . . . , fs) ⊂ Q[x,y]withx = (x1, . . . , xn) andy = (y1, . . . , yt). Given the quantified
semi-algebraic formula Ψ(x,y) below

Ψ(x,y) : ∃ x ∈ Rn : f1(x,y) = · · · = fs(x,y) = 0,

the x variables are called quantified variables and the y variables are called parameters.
Solving a classical quantifier elimination problem consists in computing a logically equiva-

lent quantifier-free semi-algebraic formula Φ(y), i.e. Φ is a finite disjunction of conjonctions of
polynomial constraints in Q[y] which is true if and only if the above quantified formula is true.
Geometrically, Φ describes the projection on the y-space of the real algebraic set VR ⊂ Rn+t

defined by the simultaneous vanishing of the fi’s.
In this thesis, we aim at solving the following variant of quantifier elimination over the reals.

Problem QE (One block quantifier elimination). Let Ψ(x,y) be the quantified semi-algebraic
formula defined as above and π : (x,y) 7→ y.

Design an algorithm to compute a quantifier-free semi-algebraic formula Φ(y) such that Φ(y)
is almost equivalent with Ψ(x,y), i.e., Φ(y) defines a semi-algebraic subset of Rt which is dense in
the interior of π(VR).

Example 6.1.1. We consider the toy example of the real algebraic set in R2 defined by x2 = y3−y2
(see Fig. 6.1). Its projection on the y coordinate is described by the quantifier-free formula

y3 − y ≥ 0.

For our variant quantifier elimination problem, an admissible output is

y3 − y > 0.

The three endpoints y = 0, y = −1 and y = 1 are dropped.

Except for proving theorems, this is sufficient for many applications of quantifier elimination
in engineering sciences (see, e.g., [144, 108, 109, 110]) where either the output formula only needs
to define a sufficiently large subset of the π(VR) or is evaluated with parameter values which are
subject to numerical noise.
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Figure 6.1: Projection of V (x2 − y3 + y) on y-axis.

6.1.2 Main results

We require that the input f = (f1, . . . , fs) satisfies the two assumptions below.

Assumption 6.A.

• The ideal of Q[x,y] generated by f is radical.

• The algebraic set V ⊂ Ct+n of f is equidimensional of dimension d + t for some d ∈ N. Its
singular locus has dimension at most t− 1.

Assumption 6.B. The Zariski closure π(V) of π(V) is the whole parameter space Ct and π(VR) is
not of zero-measure in Rt.

The first result of this chapter is a new probabilistic algorithm for solving the aforementioned
variant of the quantifier elimination on such an input f .

Our algorithm proceeds through two main steps as follows.

a) We compute a list of polynomial systems S1, . . . , Sd+1 in Q[x,y] that satisfy

– Each Si generates a zero-dimensional ideal in Q(y)[x];
– For almost every η ∈ Rt,

d+1⋃
i=1

(V (Si(η, ·)) ∩ Rn)

is empty if and only if V (f(η, ·)) ∩ Rn is empty.

This reduction is carried out by a parametric variant of the algorithm in [171] which actually
computes at least one point per connected component of a regular real algebraic set. More
specifically, this algorithm relies on the geometric result below, which is an extension of
[171, Theorem 2].
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Let πi be the projection (x1, . . . , xn) 7→ (x1, . . . , xi). Recall that GL(n, t,C) denotes the
change of variables that act only on x. We prove that there exists a non-empty Zariski open
subsetA of GL(n, t,C)×Cn such that, for (A,α) ∈ GL(n, t,Q)×Qn ∩A, the following
holds.
There exists a non-empty Zariski open subset Y of Ct such that, for y ∈ Y ∩Rt, the union
of the sets

crit
(
πi, V (f(η, ·)A)

)
∩ π−1

i−1(α), 1 ≤ i ≤ d+ 1,

contains finitely many points and meets all connected components of V
(
f(η, ·)A

)
∩ Rn.

By considering Q(y) as the ground field, the system Si is taken as a defining system of
crit

(
πi, V (fA)

)
using Jacobian criterion.

b) For each system Si, we use the real root classification algorithm described in Chapter 5 to
compute a semi-algebraic formulaΦi whose zero set is dense in the interior of the projection
of real solutions of Si.
Finally, we return

Φ =

d+1∨
i=1

Φi

as the final output of the one block quantifier elimination.

A similar outline is also presented in [199, 54], in which the author computes an expensive
comprehensive Gröbner systems [198] to analyze all cases before applying the real root counting
algorithm of [160]. In these algorithms, the computation of comprehensive Gröbner systems and
the reduction to dimension zero are known to be impractical. Whereas, our algorithm relies on
the regularity assumptions of the input and the relaxation of the output to reduce to dimension
zero efficiently through Safe El Din - Schost algorithm [171].

Our second goal is to analyze the complexity of this new algorithm. For generic inputs, we
bound the degree of the outputs and establish a complexity result which depends on this bound.
Our complexity result is then stated below. Recall that, for a fixed D ∈ N, C[x,y]≤D denotes the
set of all polynomials in C[x,y] of total degree at most D.

Theorem 6.1.2. Let

B = Ds(D − 1)n−s

(
2(n− s)(D − 1)

(
n− 1

s− 2

)
+ (n(D − 2) + s)

(
n− 1

s− 1

))
.

There exists a non-empty Zariski open subset F of C[x,y]s≤D such that, for every f ∈ F , our
algorithm (Algorithm 6.1), in case of success, computes a semi-algebraic formula Φ defining a dense
subset of the interior of π(VR) within

O˜(8t B3t+2

(
t+B

t

))
arithmetic operations in Q and Φ involves only polynomials in Q[y] of degree at most B.
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Even though our algorithm has the same complexity DO(nt) as the ones based on the critical
point method (e.g., [9, Algo 14.6]), we make explicitly the exponent constant hidden by the big-O
notation. Especially, we provide also a degree bound for polynomials in the output. This degree
bound B is observed to be sharp for generic inputs and, if s is fixed and D = 2, B becomes
polynomial in n.

Note that the other algorithms using critical point method are not implemented. The state-
of-the-art software are based on the CAD and therefore have a complexity (sD)2

O(n+t) . Unlike
those software which returns only explicit complicated formulas, our output formulas are encoded
through the minors of parametric Hermite matrices, which are easy to be evaluated.

On the practical aspect, our implementation in Maple of this algorithm outperforms real
quantifier elimination functions in Maple and Mathematica. It allows us to solve examples,
both generic and non-generic, that are out of reach of these software (up to 8 indeterminates).
These timings are reported in Section 6.5. The degrees of polynomials involving in the output we
observe from these examples agree with our theoretical bound.

Organization of the chapter. In Section 6.2, we recall the algorithm for real root finding of
[171]. Also in the same section, we prove some auxiliary results in order to apply this algorithm
parametrically. Next, we dedicate Section 6.3 for the description of our algorithm for solving the
targeted problem and proving its correctness. The complexity of this algorithm is analyzed in
Section 6.4. Finally, we report on some experimental results in Section 6.5.

6.2 Algorithm for real root finding

6.2.1 Safey El Din-Schost algorithm

We recall the algorithm in [171], which we refer to as the S2 algorithm, that computes at least
one point per connected component of a smooth real algebraic set.

Let f = (f1, . . . , fs) be a polynomial sequence in R[x1, . . . , xn] that defines an algebraic set
V ⊂ Cn. For 1 ≤ i ≤ d, let ϕi be the projection

ϕi : (x1, . . . , xn) 7→ (x1, . . . , xi).

We denote by crit(ϕi,V) the set of critical points of the restriction of ϕi to V .
When f generates a radical ideal and V is a smooth equidimensional algebraic set, one can

build a polynomial system using appropriate minors of jac(f) to define crit(ϕi,V). Note that the
critical loci are nested

crit(ϕ1,V) ⊂ crit(ϕ2,V) ⊂ · · · ⊂ crit(ϕd,V) ⊂ crit(ϕd+1,V) = V.

Note also that in generic coordinates crit(ϕi,V) has expected dimension i− 1 (see [171, Theorem
2]). The algorithm in [171] then exploits stronger properties of these critical loci under some
genericity assumption on the coordinate system (which are satisfied through a generic linear
change of coordinates).
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Proposition 6.2.1. [171, Theorem 2] Assume that f defines a smooth equidimensional algebraic set
and generates a radical ideal.

Then, there exists a non-empty Zariski open set Af ∈ GL(n,C) such that for A ∈ Af the
following holds:

• the restriction of ϕi−1 to crit(ϕi,VA) is proper;

• the set crit(ϕi,VA) is either empty or of dimension i− 1 for 1 ≤ i ≤ d+ 1.

The first assertion in Proposition 6.2.1 implies the second one. The index in the notation Af

indicates that the non-empty Zariski open set depends on f . Algorithm S2 considers fibers of the
above critical loci with the convention π0 : x→ •. Proposition 6.2.1 is the cornerstone of the S2

algorithm which can be derived from the following one.

Proposition 6.2.2. [171, Theorem 2] Assume that f defines a smooth equidimensional algebraic set
and generates a radical ideal.

Let Af be as in Proposition 6.2.1. For A ∈ Af ∩ GL(n,Q) and α = (α1, . . . , αd) ∈ Rd, the
union of the sets

crit(ϕi,VA) ∩ ϕ−1
i−1((α1, . . . , αi−1)), 1 ≤ i ≤ d+ 1

is finite and meets all connected components of V ∩ Rn.

Example 6.2.3. Let V be the smooth surface defined by x21 − x22 − x23 = 1. The Jacobian matrix
jac(f) writes simply (2x1,−2x2,−2x3). It turns out that the identity matrix lies in the set A
defined in Proposition 6.2.1. Taking α = (0, 0), we obtain 3 zero-dimensional systems:

• crit(ϕ1,V): {−2x2,−2x3, x21 − x22 − x23 − 1},

• crit(ϕ2,V) ∩ ϕ−1
1 (0): {−2x3, x21 − x22 − x23 − 1, x1},

• V ∩ ϕ−1
2 (0): {x21 − x22 − x23 − 1, x1, x2}.

The first system admits two real solutions (1, 0, 0) and (−1, 0, 0). The other systems do not have any
real solution. The two points (1, 0, 0) and (−1, 0, 0) intersect the two connected components of V .

Of course, on general examples, one would need to perform a randomly chosen linear change of
variables but this example illustrates already how the algorithm works.

6.2.2 Parametric variant of Safey El Din - Schost algorithm

In this subsection, we describe a parametric variant of S2 algorithm. We now let f = (f1, . . . , fs)
be a polynomial sequence in Q[y][x] where y = (y1, . . . , yt) are considered as parameters and
x = (x1, . . . , xn) are variables. The algebraic set defined by f is denoted by V ⊂ Ct ×Cn. Let π
denote the projection (x,y) 7→ y and πi denote the projection (y,x) 7→ (y, x1, . . . , xi).

145



Considering Q(y) as the ground field, the parametric variant of S2 computes on the input f
a list of finite subsets of Q[y][x], each of which generates a zero-dimensional ideal of Q(y)[x].
These subsets are basically

fA ∪∆A
i ∪ {x1 − α1, . . . , xi−1 − αi−1},

where (A,α) is randomly chosen in GL(n, t,Q)×Qn and ∆A
i is the set of all (n− d)-minors of

the Jacobian matrix of fA with respect to xi, . . . , xn.
The rest of this subsection is devoted to the auxiliary results that allow us to use the S2

algorithm parametrically as above.

Lemma 6.2.4. When Assumptions (6.A) and (6.B) hold, there exists a non-empty Zariski open sub-
set B of Ct such that for every η ∈ B, the specialization f(η, ·) of f at η generates a radical
equidimensional ideal whose algebraic set is either empty or has dimension d.

Proof. Under Assumption (6.B), by the fiber dimension theorem (Theorem 2.5.7), there exists a
non-empty Zariski open subset B′ of Ct such that π−1(η)∩V is an algebraic set of dimension d.

LetW denote the set of points of V at which the Jacobian matrix jacx(f) of f with respect
to x has rank at most n−d−1. We note thatW = crit(π,V)∪ sing(V). The algebraic version of
Sard’s theorem [174, Proposition B2] implies that π(crit(π,V)) is contained in a proper Zariski
closed subset of Ct. On the other hand, as Assumptions (6.A) hold, the dimension of π (sing(V))
is less than t. Thus, it is also contained in a proper Zariski closed subset of Ct.

Hence, the Zariski closure of π(W) is a proper Zariski closed subset of Ct. Let B be the
intersection of the complement in Ct of this Zariski closure with B′. For η ∈ B, the set

{x ∈ Cn | f(η,x) = 0, rank jacx(f)(η) < n− d}

is empty. Since the dimension of π−1(η)∩ V is d and the Jacobian matrix jacx(f)(η, ·) of f(η, ·)
with respect to the variables x is of rank n − d for every (η,x) ∈ V ∩ π−1(η), the ideal f(η, ·)
is radical and defines a smooth and equidimensional set of dimension d by Jacobian criterion [56,
Theorem 16.19].

Lemma 6.2.4 shows that when specializing y = (y1, . . . , yt) to a generic point η ∈ B ∩ Rt

in f , one obtains f(η, ·) satisfying the assumptions of Proposition 6.2.1. One could then apply
Safey El Din-Schost algorithm to f(η, ·) to grab sample points in the real algebraic set it defines.
However, proceeding this way would lead us to use a change of variables encoded by a matrix A
depending on η. The result below shows that choosing one generic change of variables will be
valid for most of parameters’ values.

Proposition 6.2.5. Assume that Assumptions (6.A) and (6.B) hold. There exists a dense Zariski open
subset O of GL(n, t,C) such that for every A ∈ O ∩GL(n, t,Q) the following holds.

There exists a dense Zariski open subset YA of Ct such that YA is a subset of the Zariski open
set B in Lemma 6.2.4 and A lies in the Zariski open set Af(η,.) defined in Proposition 6.2.1 for every
η ∈ YA.
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Proof. Let C(y) denote the algebraic closure of C(y). We consider C(y) as the coefficient field.
The proof of [171, Theorem 1] is purely algebraic and then is valid over the based field C(y).
Hence, there exists a non-empty Zariski open subset Õ of GL(n, t,C(y)) such that for A ∈
Õ ∩ GL(n, t,Q), the variables (x1, . . . , xi−1) is in Noether position with respect to the ideal in
Q(y)[x] generated by fA +∆A

i for 1 ≤ i ≤ d+ 1 where ∆A
i is the set of maximal minors of the

truncated Jacobian matrix of jac(fA) with all the partial derivatives with respect to y and xj for
1 ≤ j ≤ i being removed (hence these minors are the ones defining crit(πi,V) ∪ sing(V)).

This is equivalent to the following. For 1 ≤ i ≤ d + 1, i ≤ j ≤ n, there exist the poly-
nomials pi,j ∈ Q(y)[x1, . . . , xi−1, xj ] such that each pi,j lies in the ideal of Q(y)[x] generated
by fA ∪ ∆A

i and it is monic when considering xj as the only variable (with the coefficients in
Q(y)[x1, . . . , xi−1]).

The denominators of pi,j are then polynomials in Q[y]. We choose YA to be the intersection
of the non-empty Zariski open set B defined in Lemma 6.2.4 and the non-empty Zariski open set
defined by the non-vanishing of all the denominators appeared in the pi,j ’s. Thus, for η ̸∈ YA,
pi,j(η, ·) ∈ Q[x1, . . . , xi−1, xj ] is monic in xj . Consequently, (xi, . . . , xn) is in Noether position
with respect to the ideal of C[x] generated by fA(η, ·) ∪ ∆A

i (η, ·). Finally, taking O = Õ ∩
GL(n, t,C), the conclusion follows.

6.3 One-block quantifier elimination algorithm

6.3.1 Description

In this subsection, we describe our algorithm for solving our variant of the quantifier elimination
problem. The input is a polynomial sequence f = (f1, . . . , fs) ⊂ Q[x,y] satisfying Assump-
tions (6.A) and (6.B). Recall that π denotes the projection (x,y) 7→ y.

Further, we denote by Z(Ψ) the set of real zeros of any quantifier-free semi-algebraic formula
Ψ in the variables y, i.e.,

Z(Ψ) = {y ∈ Rt | Ψ(y) is true}.

By Assumptions (6.A) and (6.B), the fiber dimension theorem [184, Theorem 1.25] implies that
there exists a non-empty Zariski open subset of Ct such that π−1(η) has dimension d. The idea
is to apply the parametric variant of Safey El Din - Schost algorithm with Q(y) as a ground field.

More precisely, we start by picking randomly (A,α) inGL(n, t,Q)×Qn and apply the change
of variables x 7→ A · x to the input f to obtain a new sequence fA. As A acts only on x,
π(V (fA) ∩ Rn+t) = π(VR). Hence, a quantifier-free formula that solves our problem for fA is
also a solution of the same problem for f .

Let jacx(fA) be the Jacobian matrix of fA with respect to the variables x = (x1, . . . , xn).
The columns of jacx(fA) is denoted by J1, . . . , Jn. We define a subroutine (n − d)Minors that
takes as input a matrix whose coefficients are in Q[x,y] and computes all of its (n− d)-minors.

For each 1 ≤ i ≤ d, we define the system

WA,α
i = {fA} ∪ (n− d)Minors([Ji+1, . . . , Jn]) ∪ {x1 − α1, . . . , xi−1 − αi−1}.
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In particular, WA,α
d+1 denotes

fA ∪ {x1 − α1, . . . , xd − αd}.

We prove later in Lemma 6.3.2 that, for generic (A,α), the ideals of Q(y)[x] generated by
WA,α

i are radical and zero-dimensional.
We now solve the one block quantifier elimination problem for each of WA,α

i . For this step,
we slightly modify Algorithm 5.4 to a subroutine called ZeroDimProjection.

This subroutine takes as input a polynomial sequence F ⊂ Q[y][x] such that the ideal of
Q(y)[x] generated by F is radical and zero-dimensional and computes a quantifier-free formula
ΦF and a polynomial wF ∈ Q[y] that satisfies:

• Z(ΦF ) ⊂ π(V (F ) ∩ Rn+t),

• Z(ΦF ) \ V (wF ) = π(V (F ) ∩ Rn+t) \ V (wF ).

Recall that Algorithm 5.4 classifies the real solutions of the system F outside a proper Zariski
closed subset of the space of parameters. Its output contains a polynomial wF defining the locus
to be excluded and a list of pairs

{(ri,Φi) | 1 ≤ i ≤ ℓ},

where ri ∈ N and the Φi’s are quantifier-free semi-algebraic formula in y.
For η ∈ Rt, if Φi(η) is true, the system F (η, ·) has exactly ri distinct real solutions.
By simply returning the disjunction of Φi corresponding to ri > 0, we obtain the desired

output for ZeroDimProjection.
Calling the subroutine ZeroDimProjection on the inputs WA,α

i gives us the lists of semi-
algebraic formulas Φi. Finally, we return

Φ =
d+1∨
i=1

Φi

as the output of our algorithm.
The pseudo-code in Algorithm 6.1 below summarizes our algorithm, in which the subrou-

tine GenericDimension takes the sequence f as input and computes the dimension of the ideal
generated by f in Q(y)[x].
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Algorithm 6.1: One-block quantifier elimination
Input: A polynomial sequence f ∈ Q[y][x] satisfying Assumptions (6.A) and (6.B).
Output: A quantifier-free semi-algebraic formula Φ in the variables y such that Z(Φ) is

dense in the interior of π(VR).
1 Choose randomly (A,α) ∈ GL(n,Q)×Qn

2 fA ← f(A · x)
3 [J1, . . . , Jn]← jacx(f

A)
4 d← GenericDimension(fA)
5 for 1 ≤ i ≤ d+ 1 do
6 WA,α

i ← {fA} ∪ (n− d) Minors([Ji+1, . . . , Jn]) ∪ {x1 − α1, . . . , xi−1 − αi−1}
7 Φi ← ZeroDimProjection(WA,α

i )

8 return Φ← ∨d+1
i=1Φi

We end this subsection by an example to illustrate our algorithm.

Example 6.3.1. We consider the polynomial f = x21 + y1x
2
2 + y2x2 + y3 in Q[y1, y2, y3][x1, x2].

Let ∆ = y22 − 4y1y3. The projection of V (f) ∩ R5 on (y1, y2, y3) is

(∆ ≥ 0 ∧ y1 > 0) ∨ (y1 < 0) ∨ (y1 = 0 ∧ ((y2 ̸= 0) ∨ (y2 = 0 ∧ y3 ≤ 0))) .

Applying the parametric variant of Safey El Din-Schost algorithm for A = I3 and α = (0, 0), we
obtain 2 systems

W1 = {2y1x2 + y2, f} and W2 = {f, x1}.

Next, we call ZeroDimProjection on these systems, choosing Q = I2 to simplify the calculation. We
obtain then w1,∞ = w2,∞ = y1 and the Hermite matrices:

H1 =

(
2 0
0 −2y3 + y22/(2y1)

)
, H2 =

(
2 −y2/y1

−y2/y1 (−2y1y3 + y22)/y
2
1

)
.

The sequences of leading principal minors are respectively [2,∆/y1] and [2,∆/y21].
We compute then 4 points representing 4 connected components of the semi-algebraic set defined

by y1 ̸= 0 ∧ ∆ ̸= 0:

(1, 1/8, 0), (−1, 1/8, 0), (1, 1/8, 1/128), (−1, 1/8,−1/128).

The matrix H2 has non-zero signature over the first and second points, which both lead to the sign
condition ∆ > 0 ∧ y21 > 0. Thus, we have

Φ2 = (∆ > 0 ∧ y21 > 0) ∧ (y1 ̸= 0).

For H1, non-zero signatures are satisfied at the first and fourth points. Evaluating the sign of ∆ and
y1 at those points gives

Φ1 = ((∆ > 0 ∧ y1 > 0) ∨ (∆ < 0 ∧ y1 < 0)) ∧ (y1 ̸= 0).
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The final output is therefore Φ = Φ1 ∨ Φ2, which is equivalent to

Φ = (∆ > 0 ∧ y1 > 0) ∨ (∆ < 0 ∧ y1 < 0) ∨ (∆ > 0 ∧ y1 ̸= 0)

= (∆ > 0 ∧ y1 > 0) ∨ (∆ ̸= 0 ∧ y1 < 0).

It is straight-forward to see that Z(Φ) is a dense subset of π
(
V (f) ∩ R5

)
.

6.3.2 Correctness

We start by proving that the polynomial sequencesWA,α
i generate radical zero-dimensional ideals

of Q(y)[x], which is the assumption required by RealRootClassification.

Lemma 6.3.2. Assume that Assumptions (6.A) and (6.B) hold. Let O be the Zariski open subset of
GL(n, t,C) defined in Proposition 6.2.5 andA ∈ O ∩GL(n, t,Q). There exists a non-empty Zariski
open subset X of Cd such that for α ∈X ∩Qd, the ideal of Q(y)[x] generated by WA,α

i is radical
and either empty or zero-dimensional.

Proof. By Proposition 6.2.5, the algebraic set defined by WA,α
i (η, ·) is finite when η varies over

a non-empty Zariski open subset YA of Ct. Thus, the ideal of Q(y)[x] generated by WA,α
i is

zero-dimensional. Now we prove that the ideal generated by WA,α
i is radical.

Let MA
1 , . . . ,M

A
ℓ be the (n − d) minors of the Jacobian matrix J associated to fA when

considering only the partial derivatives with respect to xi+1, . . . , xn. Recall that WA,α
i is the

union of fA with theMA
1 , . . . ,M

A
ℓ with x1−α1, . . . , xi−1−αi−1. Further, we denote byW ′A

i ⊂
Q(y)[x] the ideal generated by fA,MA

1 , . . . ,M
A
ℓ .

The idea is to follow [174, Definitions 3.2 and 3.3] where charts and atlases are defined for
algebraic sets defined by the vanishing of fA and MA

1 , . . . ,M
A
ℓ .

Let m be a (n− d− 1) minor of J . Without loss of generality we assume that it is the upper
left such minor and let MA

1 , . . . ,M
A
d−(i−1) be the (n− d) minors of J obtained by completing m

with the n − d-th line of J and the missing column. We denote by Q(y)[x]m the localized ring
where divisions by powers of m are allowed.

By [174, Lemma B.12] there exists a non-empty Zariski open set O ′
m,n−d such that for A ∈

GL(n, t,C), the localization of the ideal generated by fA1 , . . . , fAn−d,M
A
1 , . . . ,M

A
d−(i−1) in the

ring Q(y)[x]m is radical and coincides with the localization of W ′A
i in Q(y)[x]m. By [174, Prop.

3.4], there exists a non-empty Zariski open set O ′′ ⊂ GL(n, t,C) such that for A ∈ O ′′, any
irreducible component of the algebraic set defined byW ′A

i contains a point at which a (n−d−1)
minor of J does not vanish. This implies that any primary component W ′A

i whose associated
algebraic set contains such a point is radical and then prime.

Now define Ω as the intersection of O (defined in Proposition 6.2.5), all non-empty Zariski
open sets O ′

m,k and O ′′. Hence, we then deduce that W ′A
i generates a radical ideal. It re-

mains to prove that there exists a non-empty Zariski open set Xi ⊂ Ci−1 such that for α =
(α1, . . . , αi−1) ∈ Xi, ⟨W ′A

i ⟩ + ⟨x1 − α1, . . . , xi−1 − αi−1⟩ is radical in Q(y)[x]. Choosing α
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outside the set of critical values of πi restricted to the algebraic set defined by W ′A
i in Q(y)

n is
enough. By Sard’s theorem, this set of critical values is contained in the vanishing set of a non-
zero polynomial ν ∈ Q[y][x]. Now note that it suffices to define Xi as the complement of the
vanishing set of the coefficients of ν when it is seen in Q[x][y] and X = ∩d+1

i=1 Xi.

We prove the correctness of Algorithm 6.1 in Proposition 6.3.3 below.

Proposition 6.3.3. Assume that Assumptions (6.A) and (6.B) hold. Let O ⊂ GL(n, t,C) and
X ⊂ Cd be defined respectively in Proposition 6.2.5 and Lemma 6.3.2. Then forA ∈ O∩GL(n, t,Q)
and α ∈ X ∩ Qd, the formula Φ computed by Algorithm 6.1 defines a dense subset of the interior
of π(VR).

Proof. By Lemma 6.3.2, WA,α
i satisfies the assumptions of RealRootClassification. Thus, the calls

to RealRootClassification on WA,α
i are valid and return the formulas Φi and the polynomials

wi,∞. As A acts only on x, π(VAR ) = π(VR). Thus,

Z(Φi) ⊂ π(V (WA,α
i ) ∩ Rn+t) ⊂ π(VAR ) = π(VR).

Therefore, Z(Φ) = ∪d+1
i=1Z(Φi) ⊂ π(VR).

By the description of Φi, for 1 ≤ i ≤ d+ 1,

Z(Φi) \ V (wi,∞) = π(V (WA,α
i ) ∩ Rn+t) \ V (wi,∞).

Let YA be the non-empty Zariski open subset ofCt in Proposition 6.2.5 (YA depends on the matrix
A). We denote

W = ∪d+1
i=1 V (wi,∞) ∪ (Ct \ YA).

We will show that, for η ∈ π(VAR ) \W , η ∈ Z(Φ).
Since η ∈ π(VAR ), V (fA(η, ·))∩Rn is not empty. On the other hand, as η ∈ YA, fA(η, ·) gen-

erates a radical equidimensional ideal whose algebraic set is either empty or smooth of dimension
d. By Proposition 6.2.2, V (fA(η, ·)) ∩ Rn is not empty if and only if ∪d+1

i=1 V (WA,α
i (η) ∩ Rn) is

not empty either. We deduce that η ∈ ∪d+1
i=1 π(V (WA,α

i ) ∩ Rn+t) \W . We have that

∪d+1
i=1 π(V (WA,α

i ) ∩ Rn+t) \W = ∪d+1
i=1 (π(V (WA,α

i ) ∩ Rn+t) \W)

= ∪d+1
i=1 (Z(Φi) \W) = (∪d+1

i=1Z(Φi)) \W.

Therefore,Z(Φ)\W = π(VR)\W andπ(VR)\Z(Φ) is of measure zero inRt. By Assumption (6.B),
we conclude that Z(Φ) is a dense subset of the interior of π(VR).

6.4 Complexity analysis

We now estimate the arithmetic complexity of Algorithm 6.1 once A ∈ O ∩ GL(n, t,Q) and
α ∈X ∩Qn as in Proposition 6.2.5 are chosen randomly.
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In this section, the input f forms a regular sequence of Q[x,y] (then, s = n − d) satisfying
Assumptions (6.A) and (6.B). As the calls to RealRootClassification on the systems WA,α

i are the
most costly parts of our algorithm, we focus on estimating their complexities. To this end, we
introduce the following assumption, which will be proved to be generic below.

Assumption 6.C. Let F ⊂ Q[x,y] and G be the reduced Gröbner basis of F with respect to the
grevlex(x) ≻ grevlex(y) order. Then F is said to satisfy Assumption (6.C) if and only if for any
g ∈ G, the total degree of g in both x and y equals the degree of g with respect to only x.

Note that, in Section 5.6, a similar assumption is introduced to establish the complexity result
for solving real root classification problem on a generic input.

It is proved in Proposition 5.6.2 that, on an input F satisfying Assumption (6.C), the polyno-
mial w∞ in RealRootClassification is simply 1 and the entries of the Hermite matrix HF are in
Q[y]. Therefore, the SamplePoints subroutine is called on the sequence of leading principal mi-
nors of the parametric Hermite matrices. Then, under Assumption (6.C), a degree bound for these
leading principal minors can be derived from Hilbert series of Q(y)[x]/ ⟨F ⟩ which is explicitly
known by Proposition 2.7.7 (see Lemma 5.6.3 and Lemma 5.6.4).

Following this outline, one obtains the complexity bound for RealRootClassification for a
sequence F when Assumption 6.C holds. Finally, in Proposition 5.6.1, Assumption (6.C) is proved
to hold for a generic input F .

However, the systems WA,α
i are not generic but equipped with a determinantal structures

(since they are constructed using minors of some Jacobian matrices). Hence, some of the theoret-
ical claims of Section 5.6.1 are no longer valid for these systems.

When Assumption (6.C) holds for WA,α
i , one can follow similar steps of Lemma 5.4.5 and

Proposition 5.6.2 to bound the degree of polynomials given into SamplePoints. The main differ-
ences will happen in two steps:

• Can we derive explicit formulas of the degree bound from Hilbert series of WA,α
i ?

• For which assumptions on f do the systems WA,α
i satisfy Assumption (6.C)?

To bypass these difficulties, we make use of nice properties of determinantal systems. Some nota-
tions that will be used further are introduced below.

Let D be a bound of the total degree of elements of f . The zero-dimensional ideal of Q(y)[x]

generated by WA,α
i is denoted by

〈
WA,α

i

〉
. The quotient ring Q(y)[x]/

〈
WA,α

i

〉
is a finite di-

mensional Q(y)-vector space (Theorem 3.3.1).
Let Gi be the reduced Gröbner basis of the ideal of Q[x,y] generated by WA,α

i with respect
to the ordering grevlex(x) ≻ grevlex(y) and Bi be the monomial basis of Q(y)[x]/

〈
WA,α

i

〉
constructed with Gi as explained in Section 4.4.3.

We start with the following lemma.

Lemma 6.4.1. When Assumption (6.C) holds for WA,α
i , any leading principal minor of the matrix

Hi has degree bounded by 2
∑

b∈Bi
deg(b).
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Proof. Fixing an index 1 ≤ i ≤ d + 1, we denote by {bi,1, . . . , bi,δ} the elements of the basis Bi

defined as above. The parametric Hermite matrix of Si with respect to the basis Bi is

Hi = (hi,j,k)1≤j,k≤δ.

As Assumption (6.C) holds for Si, by Lemma 5.4.5, we deduce that the entries of Hi are ele-
ments of Q[y].

Moreover, by Proposition 5.6.2, since Si satisfies Assumption (6.C), we obtain the bound

deg(hi,j,k) ≤ deg(bi,j) + deg(bj,k).

Hence, we can bound the degree of any minor of Hi by

2
δ∑

b∈Bi

deg(b).

It remains to estimate the sum
∑

b∈Bi
deg(b). A bound is obtained by simply taking the

product of the highest degree appeared in Bi and its cardinality. As the Hilbert series of the
quotient ring Q(y)[x]/

〈
WA,α

i

〉
when f is a generic system are known (see, e.g., [69, 187]),

explicit bounds of these quantities are easily obtained.

Lemma 6.4.2. Let Bi be defined as above. There exists a non-empty Zariski open subset Q of
C[x,y]s≤D such that, for f ∈ Q, the following inequality holds for 1 ≤ i ≤ d+ 1:

∑
b∈Bi

deg(b) ≤ Ds(D − 1)n−i+1−s

(
(n− s)(D − 1)

(
n− i
s− 2

)
+

1

2
(n(D − 2) + s)

(
n− i
s− 1

))
.

Proof. By [61, Proposition 1], there exists a dense Zariski open subset Q1 ⊂ C[x,y]s≤D such that
for f ∈ Q1, the Hilbert series of

〈
WA,α

1

〉
is

HS1(z) =
det(P (zD−1))

z(D−1)(s−1
2 )

(1− zD)s(1− zD−1)n−s

(1− z)n

where P (z) is the (s− 1)× (s− 1) matrix whose (i, j)-th entry is
∑

k

(
s−i
k

)(
n−1−j

k

)
zk.

On the other hand, by [16, Corollary 14], the above Hilbert series HS1(z) can be expressed as(
s−1∑
i=0

(
n− s− 1 + i

i

)
zi(D−1)

)(
1 + z + · · ·+ zD−1

)s (
1 + z + · · ·+ zD−2

)n−s
.
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Using similar arguments as in Lemma 5.6.4, we have that∑
b∈B1

deg(b) ≤ HS′(1).

We now aim to simplify HS′1(1).
Let A(z), B(z), C(z) denote respectively three factors of HS1(z). Then,

HS′1(1) = A′(1)B(1)C(1) +A(1)B′(1)C(1) +A(1)B(1)C ′(1).

As the B′(z) and C ′(z) are simple and the formula of A(1) is well-known, we have that

A(1)(B′(1)C(1) +B(1)C ′(1)) =
1

2

(
n− 1

s− 1

)
Ds(D − 1)n−s (s(D − 1) + (n− s)(D − 2)) .

Hence, it remains to simplify

A′(1) = (D − 1)
s−1∑
i=0

i

(
n− s− 1− i

i

)
.

This can be done as follows:
s−1∑
i=0

(s− 1− i)
(
n− s− 1− i

i

)
=

s−2∑
i=0

i∑
j=0

(
n− s− 1− j

j

)

=

s−2∑
i=0

(
n− s− i

i

)
=

(
n− 1

s− 2

)
.

Therefore, we obtain

A′(1)B(1)C(1) = Ds(D − 1)n−s+1

(
(s− 1)

(
n− 1

s− 1

)
−
(
n− 1

s− 2

))
and

HS′1(1) = Ds(D − 1)n−s

(
(n− s)(D − 1)

(
n− 1

s− 2

)
+

1

2
(n(D − 2) + s)

(
n− 1

s− 1

))
.

For 1 ≤ i ≤ d, the system WA,α
i can also be interpreted as the system defining the critical

locus of the projection (xi, . . . , xn) 7→ xi restricted to V
(
fA(α1, . . . , αi−1, xi, . . . , xn)

)
. There-

fore, by replacing n by n− i+ 1 in the above bound, we deduce that, for 1 ≤ i ≤ d, there exists
a dense Zariski open subset Qi ⊂ C[x,y]s≤D such that

∑
b∈Bi

deg(b) ≤ Ds(D − 1)n−i+1−s

(
(n− s)(D − 1)

(
n− i
s− 2

)
+

1

2
(n(D − 2) + s)

(
n− i
s− 1

))
.
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For i = d+ 1, we can use the bound established in Lemma 5.6.4∑
b∈Bd+1

deg(b) ≤ sD(D − 1)s

2
.

Thus, the bound holds for i = d+ 1. Taking Q = ∩d+1
i=1 Qi, we conclude the proof.

Further, we set

B = Ds(D − 1)n−s

(
2(n− s)(D − 1)

(
n− 1

s− 2

)
+ (n(D − 2) + s)

(
n− 1

s− 1

))
.

Now we show that Assumption (6.C) holds generically.

Proposition 6.4.3. There exists a dense Zariski open subset P ⊂ C[x,y]s≤D such that, for every
f ∈P , there exists a dense Zariski open subset Kf ⊂ GL(n, t,C)×Cn such that for (A,α) ∈ Kf ,
Assumption (6.C) holds for every system WA,α

i .

Proof. Let yt+1 be a new variable and hQ[x,y, yt+1]D be the set of homogeneous polynomials in
Q[x,y, yt+1] of degree D. For F ⊂ Q[x,y], we denote by hF ⊂ Q[x,y, yt+1] the homogeniza-
tion of F with respect to all the variables (x,y), that means

hF = y
deg(p)
t+1 · F

(
x1
yt+1

, . . . ,
xn
yt+1

,
y1
yt+1

, . . . ,
yt
yt+1

)
for each p ∈ F . Further,

〈
hF
〉
h

denotes the ideal of C[x,y, yt+1] generated by hF .
We consider the following property (C1): The leading terms appearing in the reduced Gröbner

basis of
〈
hF
〉
h

with respect to grevlex(x ≻ y ≻ yt+1) do not involve any of the variables
y1, . . . , yt+1. By the proof of Proposition 5.6.1, the property (C1) implies Assumption (6.C).

Following the proof of [7, Prop. 7], if yj+1 is not a zero-divisor of the quotient ring

C[x,y, yt+1]/
〈
hF, y1, . . . , yj

〉
h

for every 0 ≤ j ≤ t, then F satisfies the property (C1). This property means that (y1, . . . , yt+1)
forms a regular sequence in the quotient ring C[x,y, yt+1]/

〈
hF
〉
h
. We name this property as

(C2).
From the proof of [187, Lemma 2.1, Lemma 2.2] and [56, Proposition 18.13], there exists a

dense Zariski open subset P1 ⊂ C[x,y]s≤D such that for f ∈ P1, there exists a dense Zariski
open subset Kf ,1 ⊂ GL(n, t,C)× Cn such that for (A,α) ∈ Kf ,1,

• The quotient ring C[x,y, yt+1]/
〈
hWA,α

1

〉
h

is a Cohen-Macaulay ring of dimension t+ 1;

• The ideal
〈
hWA,α

1 , y1, . . . , yt+1

〉
h

has dimension 0.
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By the unmixedness theorem [56, Corollary 18.14], (y1, . . . , yt+1) is a regular sequence over
C[x,y, yt+1]/

〈
hWA,α

1

〉
h
. Thus, WA,α

1 satisfies the property (C2) and Assumption (6.C) holds.
Similar for 2 ≤ i ≤ d + 1, we obtain dense Zariski subsets Pi ⊂ C[x,y]s≤D and Kf ,i ⊂

GL(n, t,C) × Cn for each f ∈ Pi. Taking P = ∩d+1
i=1 Pi and Kf = ∩d+1

i=1 Kf ,i ends the
proof.

Finally, using all the established ingredients, we finish the proof of Theorem 6.1.2 stated in
the introduction.

Proof of Theorem 6.1.2. It is well-known that Assumptions (6.A) and (6.B) are generic. Also, the set
of regular sequences is dense in C[x,y]s≤D . Thus, there exists a dense Zariski open subset R ⊂
C[x,y]s≤D such that for any f ∈ R, f forms a regular sequence satisfying Assumptions (6.A)
and (6.B). As V (f) has dimension d+ t and f forms a regular sequence in Q[x,y], d = n− s.

It remains to estimate the cost of RealRootClassification. Algorithm 6.1 consists of (d + 1)
calls to RealRootClassification on WA,α

i .
Let P be the dense Zariski open set in Proposition 6.4.3 and Q = P ∩R. Then, for f ∈ Q,

SamplePoints is called on a list of polynomials in Q[y] of degree bounded by B. The number of
principal minors is equal to the dimension of the quotient ring Q(y)[x]/

〈
WA,α

i

〉
, which is also

bounded by B. Applying Theorem 5.2.1, each call to RealRootClassification on WA,α
i costs at

most
O˜(8t B3t+2

(
t+B

t

))
arithmetic operations in Q. In total, the arithmetic complexity of Algorithm 6.1 is bounded by

O˜(8t B3t+2

(
t+B

t

))
.

6.5 Experiments

We compare the practical behavior of Algorithm 6.1 with the commands QuantifierElimination
(maple’s RegularChains) and Resolve (mathematica) on an Intel(R) Xeon(R) Gold 6244 3.60GHz
machine of 754GB RAM. The timings are given in seconds (s.), minutes (m.) and hours (h.). The
symbol ∞ means that the computation is stopped after 240 hours without getting the result.
We use our maple implementation for Hermite matrices, in which FGb package [66] is used for
Gröbner bases computation. The computation of sample points is done by RAGlib [170] which
uses msolve [17] for polynomial system solving.

For RealRootClassification, we use the following notations:

• hm: timings of computing Hermite matrices and their minors.
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• sp: total timings of computing the sample points.

• size: the largest size of the Hermite matrices.

• deg: the highest degree of the polynomials in the output which agrees with our theoretical
bound. formulas.

We start with random dense systems. We fix the total degree D = 2 and run our algorithm
for various (t, n, s). In Table 6.2, SamplePoints accounts for the major part of our timings. While
our algorithm can tackle these examples, neither maple nor mathematica finish within 120h.
The theoretical degree bound agrees with the practical observations. This agrees with the bound
given in our complexity result (Theorem 6.1.2). On smaller problems, we observe that formu-
las computed by maple and mathematica have larger degrees than our output. Hence, these
implementations, based on CAD, suffer from its doubly exponential complexity while our imple-
mentation takes advantage of the singly exponential complexity of our algorithm.

t n s hm sp size deg maple mathematica

2 3 2 .2 s. 3 s. 8 24 ∞ ∞
2 4 2 9 s. 1 m. 12 40 ∞ ∞
2 5 2 2 m. 15 m. 16 56 ∞ ∞
2 6 2 20 m. 2.5 h. 20 72 ∞ ∞
2 7 2 1.5 h. 6 h. 24 88 ∞ ∞

3 3 2 6 s. 1 m. 8 24 ∞ ∞
3 4 2 5 m. 15 m. 12 40 ∞ ∞
3 5 2 2 h. 5 h. 16 56 ∞ ∞
3 6 2 8 h. 16 h. 20 72 ∞ ∞

4 3 2 40 s. 30 m. 8 24 ∞ ∞
4 4 2 6 h. 40 h. 12 40 ∞ ∞

5 3 2 5 m. 14 h. 8 24 ∞ ∞

Table 6.2: Generic systems with D = 2

Table 6.3 shows the timings for sparse systems. Each polynomial is generated withD = 2 and
has 2n terms. Even when Assumption (6.C) is not satisfied, our algorithm still applies. Thanks
to the sparsity, the size and degree of the matrices in our algorithm are smaller than in the dense
cases. Thus, our algorithm runs faster here than in Table 6.2 while these examples are out of reach
of maple and mathematica. We observe that the degrees of output polynomials are smaller than
our theoretical bound.

Table 6.4 gives the timings for structured systems. We separate the variables x into blocks of
total degree 1; [i, n− i] means that the degree in [x1, . . . , xi] and [xi+1, . . . , xn] are respectively
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t n s hm sp size deg maple mathematica

3 3 2 3 s. 37 s. 7 22 ∞ ∞
3 4 2 2 m. 10 m. 9 34 ∞ ∞
3 5 2 2 m. 10 m. 9 32 ∞ ∞

4 3 2 20 s. 20 m. 7 22 ∞ ∞
4 4 2 15 s. 18 m. 5 20 ∞ ∞

Table 6.3: Sparse systems with D = 2

1. Here, entries of the Hermite matrices have non-trivial denominators with high degree. Com-
putation those matrices takes the major part. However, our algorithm still outperforms the two
other software. Again, the degrees of output formulas are smaller than the theoretical bound.

t n s Block hm sp size deg maple mathematica

3 3 2 [1, 2] 5 s. 45 s. 4 20 ∞ ∞
3 4 2 [2, 2] 4 m. 1 m. 8 32 ∞ ∞
3 5 2 [2, 3] 2 h. 9 m. 8 40 ∞ ∞
3 6 2 [3, 3] 30 h. 45 m. 14 60 ∞ ∞

Table 6.4: Structured systems

158



Chapter 7

Computing totally real hyperplane sections on
algebraic curves
In this chapter, we study the following computational problem. Given an algebraic curve, embed-
ded in projective space, we decide whether there exists a hyperplane meeting the curve in real
points only. This translates into a particular type of parametrized real root counting problem that
we wish to solve exactly. Combining the real root classification algorithm presented in Chapter 5
with some additional remarks, we solve a number of examples, which we can compare to the best
known bounds for some classes of real algebraic curves.

Our computational method leads to the following findings:

1. There exist canonical curves X in P3 with one or two ovals which do not allow any simple
totally real hyperplane section (Example 7.4.1).

2. There exists a curve X in P3 of genus two and degree five having one oval which does not
allow any simple totally real hyperplane section (Example 7.4.2).

3. There are infinitely many plane quartics X with many ovals possessing a (complete) linear
series of degree four which does not contain any totally real divisor (Example 7.5.2).

These results demonstrate the capability of our algorithm for solving applications in experimental
mathematics, in particular real algebraic geometry.

This is joint-work with D. Manevich and D. Plaumann.

7.1 Introduction

This chapter is devoted to study the application of computing totally real hyperplane section using
our real root classification described in Chapter 5.

Throughout this chapter, by a real (algebraic) curve X , we mean a smooth projective alge-
braic set of dimension 1 defined over R such that the set X (R) of real points is non-empty (and
therefore Zariski-dense in X). Our main problem is stated as follows.

LetX be a real algebraic curve of degree d embedded into some projective space. We consider
the computational problem of deciding whether there exists a real hyperplane meeting X in a
prescribed number r of real points. Of particular interest is the case r = d, i.e., hyperplanes
meeting X in real points only.

This problem is a special instance of the following more general problem. Given any divisor
D on X defined over R, and thus consisting of real points and complex-conjugate pairs, we may

159



Figure 7.1: A real space curve of degree 6 with a totally real hyperplane section.

ask whether the linear series |D| (see Section 7.2 for definition) contains an effective divisor with
totally real support. When D is a hyperplane section of a suitably embedded curve, it boils down
to our main problem.

A number of general results have been obtained in this direction: The answer is known to
be positive for any divisor of sufficiently high degree (see [123] and [177]). However, the precise
degree required, relative to the genus ofX , is the subject of several results and conjectures, some
of which we will investigate from a computational point of view. Explicit bounds are only known
if the real locus X(R) has many connected components (the so-called M -curves or (M − 1)-
curves), by results due to Huisman [112] and Monnier [152]. On the other hand, very little is
known about curves whose number of connected components is not close to maximal. Of course,
the computational problem makes sense for any given curve and divisor, regardless of whether
or not there is a general result covering all curves and divisors of the given kind.

A computational solution for computing a totally real hyperplane section can be achieved
by classifying real roots of polynomial systems whose coefficients depend on parameters. More
precisely, by considering the coefficients of the hyperplane’s equation as parameters, one then
associates a hyperplane to a point in the space of parameters. The number of real points at the
intersection of the considered hyperplane with the curve may vary depending on the parameters,
while the number of complex intersection points between the curve and the hyperplane is equal
to the degree d for generic values of the parameters. (If the points are counted with intersection
multiplicities and the curve is not contained in a hyperplane, this complex intersection number
is equal to d for all values of the parameters.) Hence, from a computational point of view, we are
considering a polynomial system, depending on parameters such that, when these parameters
take generic values, the solution set over the complex numbers is finite.

When the input system generates a radical ideal, we use Algorithm 5.3, which is detailed in
Chapter 5. Recall that this algorithm computes a finite partition of the parameter space into semi-
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algebraic sets such that the number of real simple solutions (i.e., without multiplicities) to the
input system is invariant for any value of parameters chosen in one of these sets. This allows us
to derive the possible number of real roots to the input system with respect to the parameters.

From the computation, our main findings can be summarized as follows.

1. There exist canonical curves X in P3 with one or two ovals which do not allow any simple
totally real hyperplane section (Example 7.4.1).

2. There exists a curve X in P3 of genus two and degree five having one oval which does not
allow any simple totally real hyperplane section (Example 7.4.2).

3. There are infinitely many plane quartics X with many ovals possessing a (complete) linear
series of degree four which does not contain any totally real divisor (Example 7.5.2).

Organization of the chapter. Section 7.2 is devoted to preliminaries; we recall basic defini-
tions and properties which will be used specifically in this chapter. Section 7.3 describes how we
adapt the algorithm of Chapter 5 to solve parametric polynomial systems representing the hy-
perplane sections. In Section 7.4, we carry out the computation on (canonical) space curves using
our method. In Section 7.5, we determine the real divisor bound for certain plane quartics.

7.2 Preliminaries

In this section, we fix some terminology concerning real algebraic curves, divisors and linear
series. As general references, we suggest [145, Chap. 7] for the theory of divisors (covering also
curves defined over non-algebraically closed fields) and [100, Chap. 7] for linear series.

Recall that a real algebraic curve X is an integral, smooth and projective algebraic curve de-
fined over R such that the setX (R) of real points is non-empty. Note that a smooth curve means
without any singularities, real or complex.

In particular, the set X(R) is an analytic manifold and decomposes into a finite number of
connected components, which are called the branches of X . If X is embedded into the projective
space Pn, a branch of X is an oval if it meets every real hyperplane in Pn in an even number of
real points (counted with multiplicities), while the ones that meet hyperplanes in an odd number
of points are called pseudo-lines. In particular, a pseudo-line has non-empty intersection with
any hyperplane. By Harnack’s inequality [98], we have s ≤ g + 1, where s is the number of
branches and g is the genus of X . The curves with g + 1 (resp. g) connected components are
called M -curves (resp. (M − 1)-curves).

A totally real hyperplane section of a curve X of degree d is a hyperplane defined over R
that intersects X at d real points counted with multiplicities. After discussing the algorithms in
Section 7.3, we will examine the following problem.

Problem 7.2.1. Given a real curve X embedded in projective space, decide whether X admits a
totally real hyperplane section.
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This problem arises in a more general context of real algebraic curves in which totally real
divisors are studied.

A divisor onX is a formal Z-linear combination of some distinct points P1, . . . , Pm ofX , i.e.,

D = µ1P1 + · · ·+ µmPm,

where µi ∈ Z \ {0}. The set {P1, . . . , Pm} is called the support of D, the numbers µ1, . . . , µm
the multiplicities and

∑m
i=1 µi the degree.

If all multiplicities in D are non-negative, the divisor D is called effective. If all multiplicites
are equal to 1, the divisor is called simple.

The support of a divisor on a real curve may consist of real or complex points. However,
we will only consider divisors that are defined over R and hence conjugation-invariant, i.e., for
any point in the support, its complex-conjugate appears with equal multiplicity. In particular,
the non-real part of a divisor is of even degree. An effective divisor D is called totally real if its
support consists of real points only.

For any non-zero real rational function f ∈ R(X) on X , the divisor of zeros and poles
(counted with positive or negative multiplicities, respectively) is denoted div(f). Two divisors
D and E are called linearly equivalent if E = D + div(f) for some f ∈ R(X)∗. The principal
divisors div(f) have degree 0, hence linear equivalence preserves the degree.

The complete linear series associated to D, denoted by |D|, is the set of effective divisors on X
which are linearly equivalent to D. A complete linear series carries the structure of a projective
space (see e.g. [100, Prop. II.7.7]). Any linear subspace for the projective space structure of a
complete linear series is called a linear series. A linear series is called totally real if it contains a
totally real (effective) divisor.

A base point of a given linear series is a point contained in the support of all divisors of the
linear series. A linear series is called base-point-free if it has no base point.

For a real curveX embedded into projective spacePn with degree d, any hypersurfaceZ ⊂ Pn

of degree e not containing X defines an effective intersection divisor X ·Z of degree de. The set
of all intersections with hypersurfaces of a fixed degree forms a linear series onX , which may or
may not be complete. Clearly, such a linear series is always base-point-free.

We are interested in determining the real divisor bound of a given real algebraic curve.

Problem 7.2.2. Given a real curve X , determine the smallest natural number N(X) ∈ N∗ such
that any divisor D of degree at least N(X) is linearly equivalent to a totally real divisor, i.e., |D| is
totally real. The number N(X) is called the real divisor bound of X .

It was shown by Krasnov [123, Thm. 2.2] and Scheiderer [177, Cor. 2.10] that the real divisor
bound is always finite. Furthermore, upper and lower bounds for N(X) were found by Huisman
[112] and Monnier [152] for special classes of curves, which depend on the genus g of X only.
For example, if X is an M -curve or an (M − 1)-curve, then we have

N(X) ≤ 2g − 1.
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However, it seems difficult to find upper bounds for curves with few branches.
An easy way to determine lower bounds for N(X) is to find a linear series with a pair of

complex-conjugate base points, i.e., a non-real point that is fixed throughout the linear series.
With this idea, Monnier [152, Cor. 6.2] proved the inequality

N(X) ≥ g + 1

for a curve X with any number of branches.
On the other hand, when one considers only base-point-free linear series, it seems that no

such lower bound is known. At the end of Section 7.5, we will construct an example of such a
linear series on a plane quartic curve.

Note that according to Bertini’s theorem, the generic element of a linear series onX is simple
away from the base locus (see [92, Ch. 1, p. 137]). However, it may happen that a linear series
contains a totally real divisor, but no simple one.

For example, the linear series of lines on the plane quarticX = V (x4+y4−z4) ⊂ P2 contains
the totally real line section

X · V (x− z) = 4 · [1 : 0 : 1]

which corresponds to the intersection of X and the hyperplane x = z at [1 : 0 : 1] with multi-
plicity 4. On the other hand, it is easy to see that there is no simple totally real line section. This
leads us to study also the simple totally real divisors.

Problem 7.2.3. Given a real curve X , determine the smallest natural number N ′(X) ∈ N∗ such
that any divisor of degree at least N ′(X) is linearly equivalent to a simple totally real divisor.

We call N ′(X) the simple real divisor bound of X . It was first introduced in [5, p. 29]. Ob-
viously, we have N(X) ≤ N ′(X) and a first non-trivial result comparing N(X) and N ′(X) is
obtained in [5, Prop. 2.1.2], namely N ′(X) ≤ 2N(X). However, it appears to be unknown if
N(X) and N ′(X) can ever actually be different.

One reason for the importance of the simple real divisor bound comes from the possibility of
transfering results from smooth to singular curves (see [153, Thm. 4.3]). Basically, the algorithm
we present in Section 7.3, which is an adapted version of the one in Chapter 5, computes simple
totally real hyperplane sections. When we are mainly interested in the non-existence of totally
real divisors within a linear series, i.e., in lower bounds forN(X), this algorithm can be modified
in a way explained in Section 7.3 to handle totally real hyperplane sections in general.

7.3 Algorithm for computing totally real hyperplane sections

Given (f1, . . . , fs) ⊂ Q[x] where x = (x1, . . . , xn), we assume that

• The sequence (f1, . . . , fs) generates a radical ideal in Q[x].

• The affine algebraic set defined by f1 = · · · = fs = 0 is equidimensional of dimension 1 in
Cn of degree d.
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We consider the problem whether there exists a hyperplane with real coefficients that intersects
the curve at d distinct real points; such an intersection is called a simple totally real hyperplane
intersection.

The hyperplane is modeled by a polynomial

h = y1x1 + · · ·+ ynxn + yn+1

where the coefficients (y1, . . . , yn+1) are considered as parameters. The problem is therefore
equivalent to decide whether there exists (y1, . . . , yn+1) ∈ Rn+1 such that the parametric system

f1 = · · · = fs = h = 0

has d distinct real solutions. Further, f denotes the system (f1, . . . , fs, h).
We assume that for any η ⊂ Cn+1, the number of complex solutions to f(η,x) is finite. Thus,

the above problem can be solved by a real root classification of f .
Since the polynomial h is homogeneous in the parameters y, one can dehomogenize the sys-

tem above by these successive substitutions:

y1 → 1;
y1 → 0, y2 → 1;

...
y1 → 0, . . . , yn−1 → 0, yn → 1.

.

In what follows, we consider only the first substitution y1 → 1, so the actual parameters are
y = (y2, . . . , yn+1). The other computations are handled in a similar way.

In this chapter, we rely on Algorithm 5.3 to identify the possible number of real solutions of
the given system. Briefly, this algorithm follows three main steps below.

(a) We start by computing a parametric Hermite matrixH associated to (f , h) ⊂ Q[y][x] and
derive two polynomials: w∞ encoding the non-specialization locus ofH and wH which is
basically the numerator of det(H). The product w∞ ·wH is denoted by w.
The details of this step is explained in Subsection 5.4.4.

(b) Next, we compute a set of points {a1, . . . ,aℓ} that intersects every connected component
of the semi-algebraic set of Rn defined by w ̸= 0. This step is usually the most expensive
as the polynomial w may have large degree (exponential in the number of variables n).
By Proposition 5.5.2, for any η varying over the connected component containing a sample
point ai, the number of real solutions to f(η,x) is the same as the number of real solutions
to f(ai,x).

(c) For 1 ≤ i ≤ ℓ, evaluate the signature of the specialized Hermite matrixH(ai), which gives
the number ri of real solutions to f(ai,x).
This output gives all the possible numbers of real solutions of the system f over Rn\V (w).
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In most of the cases, Algorithm 5.4 is sufficient to compute a hyperplane that intersects the given
curve at only real points if such a hyperplane exists. However, as the resulting classification holds
only for the parameters at which w ̸= 0, one still needs to investigate the vanishing locus of w
to obtain a complete root classification, i.e., the number of real solutions of f for every η ∈ Rt.

Theoretically, this can be done using a similar routine. This consists of classifying the solutions
of f over the vanishing locus of w. There are several possible approaches, for instance, comput-
ing over the algebraic extension Q[y]/⟨w⟩ or calling the algorithm above on with w added to the
input system. The first approach usually leads to high arithmetic costs while the second induces
Hermite matrices of large size (depending on the degree of w). One can also try to compute the
sign conditions of the leading principal minors of H while imposing a rank deficiency on the
matrix. This results in deciding the emptiness of a semi-algebraic set whose defining atoms are
minors of the Hermite matrix. To the best of our knowledge, these methods can be computation-
ally difficult in practice.

Note that, for η ∈ V (wH) \ V (w∞), the system f(η, ·) has less than d distinct complex
solutions. Thus, if we restrict to only the simple totally real hyperplane sections, it remains only
to classify the real roots for the parameters belong V (w∞)∩Rn. In the examples we consider, the
polynomials w∞ correspond to the hyperplanes which intersect the given curves at infinity and
are factorized into polynomials of small degree (at most 3). Thus, they can be treated by calling
the algorithm on the input f adding each factor of w∞. Looking closer, these factors can be
simplified before being sent to the above algorithm to accelerate the computation. For examples,
linear factors can be handled through substitutions of variables or the quadratic factors which are
sums of squares can be replaced by linear equations. Further, these processes will be explained in
detail for each example.

On the contrary, handling the solutions of wH, where the system f has multiple roots, re-
quires expensive computations as mentioned above. Therefore, our algorithm is limited at the
moment to computing simple totally real hyperplane sections.

In the particular case of one-parameter (see the examples in Section 7.5), we can obtain easily
the complete root classification by evaluating the signs of leading principal minors of the matrix
H at real solutions of w using exact algorithms for real root isolation [200, 122].

We illustrate how to obtain a complete real root classification using our algorithm in the case
of one parameter by the following example.
Example 7.3.1. We consider the parametric system

f = {x21 + x22 − y, x21 + x1x2 − yx2 + x1 + y2},

where (x1, x2) are variables and y is the parameter. Using the ordering grevlex(x1 ≻ x2) ≻ y, we
obtain the basis {1, x2, x1, x22} for the quotient ring Q[y][x1, x2]/⟨f⟩ and the symmetric Hermite
matrix associated to this basis

H =


4 −y − 1 y − 1 2y2 + 5y
∗ 2y2 + 5y −3y2 − y + 1 y3/2− 6y2 − 3y + 1/2
∗ ∗ −2y2 − y 7y3/2 + 4y2 − y − 1/2
∗ ∗ ∗ −5y4/2 + 5y3 + 23y2/2 + y − 1/2

 .
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The non-specialization polynomial w∞ in this example is identically 1. The determinant of this
Hermite matrix is

w = wH = 41y8 + 43y7 − 59y6 − 204y5 − 60y4 + 20y3 + 4y2 − y.

This polynomial has two real solutions: 0 and ỹ ≈ 1.714. So, the semi-algebraic set defined by w ̸= 0
has three connected components and the number of distinct real solutions of f is invariant over each
of those connected components. More precisely,

y < 0 : f has 0 real solution,

0 < y < ỹ : f has 2 real solutions,

ỹ < y : f has 0 real solution.

It remains to study the roots of f over two real roots of w.
For y = 0, we specialize y to 0 in the leading principal minors of the matrix H and obtain the

sign pattern (1,−1,−1, 0). Thus, the system has three distinct complex solutions but only one real
solution when y = 0.

It is more sophisticated for y = ỹ as this solution is not in Q. We evaluate the signs of the leading
principal minors ofH at y = ỹ using e.g. the command RootFinding[Isolate] in Maple (see [200]). We
obtain the sign sequence (1,−1, 1, 0) for the leading principal minors specialized at y = ỹ. Hence,
the system has three distinct complex solutions but no real solution. Note that evaluating numerical
approximation of ỹ inH could also give the same sign pattern but one needs to certify this output.

7.4 Real algebraic curves in P3

In this section, we show how our algorithm is applied to compute totally real hyperplane sections
for several curves inP3. The computations are carried out by our implementation of Algorithm 5.3
on a machine of Intel(R) Xeon(R) Gold 6244 3.60GHz with 754GB RAM.

In this section, X is always assumed to be a real curve and g stands for the genus of X . If X
is a real rational or real elliptic curve, by [152, Prop. 3.1], N(X) = 1. Hence, we assume g ≥ 2.

We first consider canonical curves: If X ⊂ Pg−1 is a canonical curve having s ≥ g − 1
branches, then the canonical linear series, which is equal to the hyperplane linear series, is totally
real. Since there are no canonical curves of genus g ≤ 2, the minimal examples are plane quartic
curves, i.e., (d − 1)(d − 2)/2 = g = 3. In this case, the question of whether a plane quartic
curve consisting of only one oval possesses a totally real line section is related to the undulation
invariant (see [162, Thm. 4.2]). In what follows, we look at canonical curves in P3 with g = 4.

Example 7.4.1. In this example, we consider a finite sequence of canonical curves Xk in P3; these
curves arise as complete intersections of a cubic and a quadric. Their genus is 4 and their degree is 6.
In affine coordinates, we fix the real cubic polynomial

f = (x+ 3)(x− y − 3)(x+ y − 3)− 2.
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1. We set

g5 = x2 + y2 + z2 − 100,

g4 = (x+ 3)2 + (y + 2)2 + z2 − 60,

g3 = x2 + y2 + z2 − 50.

Let Xk be the algebraic curve defined by the affine ideal Ik = ⟨f, gk⟩ for k = 3, 4, 5. The
curve Xk has k ovals.

Figure 7.2: The curves X5, X4, and X3.

Computing parametric Hermite matrices on each Ik gives a boundary polynomial w of degree
18 within 5 seconds. After 10 minutes of computing of sample points for each example, we
obtain affine hyperplanes which intersect the curveXk in real points only, such as the following
three hyperplanes:

H5 = x+ 15307y − 8072z + 6472,

H4 = x− 14842y − 25786z − 61192,

H3 = x+ 55704y − 26379z − 19751.

Each hyperplane Hk intersects Xk in 6 (distinct) real points.

2. Setting
g2 = x2 + y2 + z2 − 10,

let X2 be the algebraic curve defined by the affine ideal I2 = ⟨f, g2⟩. This curve has 2 ovals.
From the theoretical point of view and in contrast to the first examples, it is a priori not clear
whether this curve possesses a totally real hyperplane section. Running the algorithm for about
40 minutes on I2, the result is that this curve does possess a totally real hyperplane section.
More precisely, the hyperplane

H2 = x+
43

2000
y +

131

25
z + 9,

intersects X2 in 6 (distinct) real points.
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Figure 7.3: Intersecting curves and planes: Xi ∩Hi for i = 5, 4, 3.

Figure 7.4: The curve X2 and its intersection with the plane H2.

3. Setting
g′2 = (x+ 1)2 + (y + 1)2 + z2 − 10,

let X ′
2 be the algebraic curve defined by the affine ideal I ′2 = ⟨f, g′2⟩. This curve has 2 ovals.

We compute a Hermite matrix of size 6 × 6 in three parameters. From this matrix, we derive
a boundary polynomial w of degree 18 with 715 monomials. These computations are done
within 10 seconds.

The algorithm then computes points per connected component of the semi-algebraic set defined
by w∞ ·wH ̸= 0. This computation takes almost 2 hours. In contrast to the second example,
this Hermite matrix does not attain signature 6 at any of those points. Besides, the hyperplanes
that correspond to the real solutions of w∞ intersect X ′

2 at non-real points at infinity. Thus,
these hyperplanes do not give any totally real hyperplane section.

We conclude that X ′
2 has no simple totally real hyperplane section. Consequently, we have

N ′(X ′
2) ≥ 7.
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Figure 7.5: The curve X ′
2.

4. For the next example, let us take the Clebsch cubic surface

f0 = x3 + y3 + z3 + 1− (x+ y + z + 1)3,

g1 = (x+ 1)2 + y2 + z2 − 2.

The algebraic curve X1 defined by the affine ideal I1 = ⟨f0, g1⟩ has only 1 oval.

Our algorithm computes a 6 × 6 parametric Hermite matrix in 30 seconds, from which we
derive a boundary polynomial of degree 18 with 1324 monomials. Computing the sample
points takes 2 hours and gives the hyperplane

H1 = x− 4468y − 32932z − 10164

which intersects X1 in 6 (distinct) real points.

Figure 7.6: The curve X1 and its intersection with the plane H1.

5. Finally, taking
g′1 = (x+ 2)2 + y2 + z2 − 2,

let X1 be the algebraic curve defined by the affine ideal I ′1 = ⟨f, g′1⟩. This curve has only 1
oval, too. Again, it is a priori not clear whether this curve has a totally real hyperplane section.
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Figure 7.7: The curve X ′
1.

On this example, our algorithm behaves similarly as in the third example. We compute a 6×6
Hermite matrix in three parameters. The boundary polynomial w has degree 18, contains 385
monomials.

The computation of sample points of the semi-algebraic set defined by w ̸= 0 takes 2 hours and
none of the computed sample points gives the Hermite matrix a signature of 6. Moreover, the
solutions of w∞ here are the same as in the third example and do not correspond to a totally
real hyperplane section.

Thus, there is no simple totally real hyperplane section in this case. Consequently, we have
N ′(X ′

1) ≥ 7.

Of course, it takes much effort to show or disprove the existence of a canonical curve X in
P3 with 1 or 2 ovals and N(X) ≤ 6. The existence would imply that the real divisor bound
N(X) cannot depend on the main topological parameters of a real curve (the genus, the number
of connected components, and whether or not the curve is of dividing type) only.

As already mentioned, it is a challenging problem to find upper bounds for N(X) in the case
of curves with few branches. However, assuming a conjecture proposed by Huisman in [113,
Conjecture 3.4] to be true, Monnier [152, Thm. 3.7] established new bounds for curves with g− 1
connected components depending on the genus only, which is

• N(X) ≤ 3g − 1 if g is even;

• N(X) ≤ 3g if g is odd.

Recently, a family of counterexamples to Huisman’s conjecture has been constructed for n =
3 (see [125]). These counterexamples explicitly contradict the bound found by Monnier in the
case of g = 2. In the following example, we revisit two examples given in [125] through a
computational approach. We will see that their construction relies on a deformation technique
parameterized by a small number ε > 0. For each example, we determine different parameters ε
for which there exists (and for which there does not exist) a simple totally real hyperplane section.
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Example 7.4.2. For the first example, we consider the same polynomials as in [125, Ex. 3]. We obtain
a curve of genus 4, and degree 6, which has 1 oval. In the second example, we construct a hyperelliptic
curve of genus 2 and degree 5, which has 1 pseudo-line.

1. Let q = x0x3 + x1x2 be the Segre quadric. We consider p = x30 + x31 + x32 − x33 and

h = 3x30 +3x0x
2
1 − x20x2 − 3x0x

2
2 + x32 +4x20x3 − x0x1x3 +4x21x3 − x22x3 − 3x0x

2
3 + x2x

2
3 − x33.

It is shown in [125] that the curve

Xε = V (q, h+ εp)

does not have a totally real hyperplane section for some small parameter ε > 0. On the one
hand, the algorithm shows that for ε = 2−4, there is a totally real hyperplane section. For
example, we can take the hyperplane H defined by

x1 −
323139221492926521

1152921504606846976
x2 +

562919939027

1099511627776
x3 +

902330031190717857

1152921504606846976
x0 = 0.

For ε = 2−5, our algorithm computes a 6 × 6 Hermite matrix in three parameters. The poly-
nomial w∞ has two factors: one is linear in the parameters and the other is a univariate
polynomial of degree 3 in one parameter. The boundary polynomial w has degree 22. Com-
puting points per connected component of the semi-algebraic set defined by w ̸= 0 takes about
4 hours and does not return any point that gives the Hermite matrix a signature 6.

Figure 7.8: The curve X2−4 ; the intersections X2−4 ∩H and X2−5 ∩H .

It remains to classify the solutions when the parameters are real solutions of w∞. For the linear
factor, we simply substitute one parameter by the others in the system to solve and use the same
algorithm (with one less parameter). Finally, we call our algorithm over the algebraic extension
by the univariate factor of w∞ to classify the solutions in this case. These computations do not
return any totally real hyperplane section.

So, we conclude that X2−5 does not have any simple totally real hyperplane section. Thus, we
have N ′(X2−5) ≥ 7.
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2. In general, if X is a hyperelliptic curve, then it is known that N(X) ≥ 2g − 1. If X has at
least g branches, then equality holds (see [152, Cor. 6.4]).

Following [125, Cons. 1], we can construct a curve of genus 2, degree 5 with 1 pseudo-line and
prescribed intersection behavior with any real hyperplane. This leads to a curve X2−8 below
that contradicts the bound N(X) ≤ 5 of [152, Thm. 3.7]. Using our algorithm, we show that
N ′(X2−8) ≥ 6.

To be precise, the polynomials

q = x0x3 − x1x2,
f = −x20x1 − x31 + 2x20x2 − x0x22 + 2x0x1x3 + x0x2x3 − x0x23 + x1x

2
3,

g = 2x0x
2
2 − x32 − x20x3 − x21x3 + x22x3 + 2x0x

2
3 − x2x23 + x33,

h1 = x30 + x31 + x0x
2
2 − x1x23,

h2 = x20x2 + x21x3 + x32 − x33

define parametrized curves Xε = V (q, f + εh1, g + εh2) for ε > 0. For a small parameter
ε > 0, the curve Xε does not have a totally real hyperplane section.

On the other hand, our algorithm shows that for ε = 2−4, a totally real hyperplane section for
X2−4 is given by

x1 −
17437072795246590045

9223372036854775808
x2 +

8493698730591

8796093022208
x3 −

59021162281721

1125899906842624
= 0.

For ε = 2−8, our algorithm computes a 5 × 5 Hermite matrix in three parameters with a
boundary polynomial w of degree 15. Particularly, the non-specialization polynomial w∞ is
a product of three linear polynomials of the parameters. Computing the sample points for the
set defined by w ̸= 0 takes 3 minutes and returns no point which gives a signature 5 to the
Hermite matrix.

When the parameters are real solutions of w∞, which has only linear factors, we substitute
one parameter by the others in the parametric system. This gives us new parametric systems
depending on only two parameters. Using the same algorithm, we classify the solutions of these
new systems and obtain no totally real hyperplane section when w∞ = 0. So, we conclude
that there is no simple totally real hyperplane section forX2−8 . Thus, we haveN ′(X2−8) ≥ 6.

From the above examples, one may wonder whether it is possible to determine a largest num-
ber ε0 > 0 such that, for any ε ∈]0, ε0[, the curve Xε has no totally real hyperplane section.
This computation can also be carried out by the algorithm we present in Section 7.3 but ε is now
considered as a parameter. However, the boundary polynomial depends on 4 indeterminates and
has degree up to 35. So, the computation of sample points becomes out of reach.
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7.5 Plane quartics

Let X ⊂ P2 be a plane quartic curve. If X has many branches, i.e., if s ∈ {3, 4}, we know that
4 ≤ N(X) ≤ 5. We would expect N(X) = 5, so we would like to have a possibility to check if
certain linear series of degree 4 do not contain a totally real divisor. The general expectation is
N(X) = 2g− 1 for curves of genus g having many branches (see [112, p. 92]). IfD is a divisor of
degree 4 onX having odd degree on at least one branch ofX , then |D| can be shown to be totally
real. Hence, we are interested in divisors of degree 4 having even degree on every branch. For
such a divisor D, there are two possibilities. If D is special, then |D| is the canonical linear series
and must be totally real. If D is non-special, then |D| defines a morphism to P1 and in particular,
D cannot be very ample. With the help of the algorithm, we are able to check whether each fibre
of X → P1 contains a complex-conjugate pair.

If the plane quartic curve X has s ∈ {1, 2} ovals, we would like to consider very ample
divisors of high degree, which give an embedding into a high-dimensional projective space. In
this case, we need to check whether the hyperplane linear series of the embedded curve is totally
real. For the computations, one can use the divisor package [181] in Macaulay2 [89].

Remark 7.5.1. Given a plane quartic curve X with only one oval, no upper bound for N(X) is
known. For two ovals, it is possible to conclude N(X) ≤ 9 under the assumption of an unsolved
case of [113]. In particular, it is interesting to check whether every divisor of degree 10 defines a
totally real linear series. If not, a new case of the conjecture is disproved. Since divisors of degree 9 on
plane quartic curves are very ample, one can use the aforementioned divisor package in Macaulay2 to
compute the embedding into a high-dimensional projective space. Then, one can check the existence
of a totally real hyperplane section of the image curve.

If we take a plane quartic curveX (with s ∈ {3, 4} branches) and a special divisorD of degree
4, then the linear series |D| defines a morphism φ : X → P1. Using the algorithm, we can check
whether there exists a real point [c : d] ∈ P1(R) which has a totally real fibre. If so, the linear
series |D| is totally real. If there is no such a point, then |D| is not totally real. By perturbing the
equation of the quartics (and the circles, if necessary), we get infinitely many plane quartics with
many components where the real divisor bound is determined.

In what follows, we consider some examples of this type to illustrate the computation. By
dehomogenizing the projective point [c : d], we solve a polynomial system depending on one
parameter. Hence, we can obtain a complete root classification of the system by the additional
steps using root isolating algorithms as mentioned at the end of Section 7.3.

Example 7.5.2. We continue with plane quartic curves with many branches and consider divisors
of degree 4. These examples involve real root classification problems of only one parameter; our
algorithm solves each of them within 2 minutes.

1. We can use the method described above to get a lower bound for N(X) on the curve X =
V (x4 + y4 − z4). The linear series of lines is an example for a linear series which contains a
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totally real divisor, but does not contain a simple totally real one. Hence, we have N ′(X) ≥ 5.
We consider the divisor

D = [1 : 0 : 1] + [0 : 1 : i] + [0 : 1 : −i] + [0 : 1 : 1]

which defines a morphism

X → P1, [x : y : z] 7→ [xy + xz − yz − z2 : x2 − xz].

The algorithm shows that there is no totally real fibre. Even more, each fibre has of at most 2
real points. Hence, we have N(X) ≥ 5.

2. In this example, we construct an explicit plane quartic curve with three ovals and a base-point-
free linear series of degree four which is not totally real.

Generally, ifX is a plane quartic curve andD is a special divisor of degree 4, then the morphism
to P1 is given by conics. Since the intersection of a quartic and a conic consists of eight points
(counted with multiplicity), linear equivalence within |D| is given by a fraction of two conics
having four points in common. Conversely, fixing four (real) points onX , we may consider the
set of conics going trough these points. The four residual points define a linear series of degree
4. Our goal is to find a linear series which is not totally real. First, we construct a plane quartic
curve X with the desired topology. (There are several ways to achieve this; we use a linear
determinantal representation and exploit the relation between the Cayley octad, the number
of real bitangents, and the number of branches of X ; see [161]).

For example, we can take the equation of X to be

f = 9x4 − 30x3y + 161x2y2 − 116xy3 − 8y4 + 46x3z − 80x2yz + 202xy2z

− 116y3z + 59x2z2 − 80xyz2 + 185y2z2 − 6xz3 − 50yz3 − 11z4.

Next, we take the circle c = x2 +
(
y − z

10

)2 − 2z2

10 and fix the four real intersection points.
The real vector space V = Lin(Q1, Q2) of conics through these points is generated by

Q1 = 0.31100521007570264x2 − 0.4569339120067826xy

+ 0.7395296982938114y2 + 0.01692042897825057xz

− 0.3797243325905672yz − 0.05573253113981307z2,

Q2 = 0.7303803360779876x2 + 0.5870985535950933xy

+ 0.17978406689755905y2 − 0.021740473005624657xz

+ 0.2618986086207364yz − 0.14308743118437495z2.

The computational problem is to check whether there is a conic in V intersecting X in only
real points. As in the first example, we solve a polynomial system of one parameter using the
algorithm of Section 7.3.
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Figure 7.9: The plane quartic X and the circle c.

We start by computing a Hermite matrix of size 8×8 and a boundary polynomial w of degree
24 (degw∞ = 4, degwH = 20). Each fiber over the semi-algebraic set defined by w ̸= 0
contains 8 distinct complex points but at most 6 real points.

Next, we isolate the real solutions of wH and evaluate the signs of the leading principal minors
of H at those solutions. These sign patterns allow us to count the number of real and complex
points at the real solutions of wH. This handles the case when the parameter takes values that
satisfy wH = 0. For the vanishing locus of w∞, we call the algorithm over its associated
algebraic extension. In both of these cases, we do not find any totally real fiber.

So, our algorithm shows that there is no conic in V intersecting X in real points only. Hence,
taking the four residual points of any intersectionQ·X withQ ∈ V (i.e., leaving the four fixed
points out), we get a divisor of degree four which does not define a totally real linear series.
Furthermore, this linear series is base-point-free. The plane quartic X is an explicit example
where the bound N(X) = 5 is determined.

3. Analogously, we can consider the plane quartic curve X defined by

f = (81x4)/4− (135x3y)/4 + (1953x2y2)/16 + (297xy3)/2 + 69y4

+ (9x3z)/2 + (57x2yz)/2 + (431xy2z)/8− (85y3z)/6− (179x2z2)/4

+ (67xyz2)/2− (4685y2z2)/48− (16xz3)/3− (1433yz3)/36 + (917z4)/36.

The curve X consists of four ovals.
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Figure 7.10: The plane quartic X and conics going through four fixed points.

Summing up, the conics

Q1 = 0.47127272928773783x2 + 0.6598453341260914xy

− 0.13447226903447518y2 + 0.4868883263821278xz

− 0.24467908024400253yz + 0.16581695886185108z2

Q2 = −0.09774545786950306x2 + 0.4442913360602867xy

− 0.5056096052652832y2 − 0.2532574091360106xz

+ 0.6653828276536204yz − 0.17474649814093252z2

define the real vector space through the four fixed real points.

In this example, our algorithm computes a Hermite matrix H of size 8 × 8 and a boundary
polynomial w of degree 20 (w∞ = 1, degwH = 20). Again, the algorithm shows that there
is no conic in this vector space intersecting X in real points only. Hence, we have N(X) = 5.
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Chapter 8

Computing the set of isolated points of a real
algebraic set
Abstract. Let f ∈ Q[x1, . . . , xn] be a polynomial of degreeD defining an algebraic setH ⊂ Cn.
We consider the problem of computing the isolated points of the real algebraic set H ∩ Rn. This
problem plays an important role for studying rigidity properties of mechanism in material designs.
In this chapter, we design several algorithms for solving this computational problem.

Our algorithms share a common outline. We start with computing a finite superset of the real
isolated points; the elements of this set are named the “candidates”. Such a computation is done by
using the critical point method. Once the candidates are computed, it remains to identify, among
them, which ones are truly real isolated points ofH. For this identification of isolated points, we
propose two different approaches.

The first approach follows the idea of roadmaps; it constructs a real algebraic curve connecting
the candidates inH∩Rn whenever it is possible. The identification of isolated points boils down
to answer connectivity queries in such a real algebraic curve. Using the best known bound for the
complexity for computing roadmaps in [174], we obtain a probabilistic algorithm for computing
the real isolated points that runs within (nD)O(n log(n)) arithmetic operations in Q.

The second approach decides whether a ball centered at each candidate of infinitesimal radius
intersects H ∩ Rn. However, doing this in a naive way would lead to complexity issue since the
candidates are encoded by a zero-dimensional parametrization C of degree O(Dn). To bypass
this difficulty, we rely on the geometric resolution algorithm over the quotient ring Q[t]/ ⟨w(t)⟩
wherew(t) is the eliminating polynomial of C . This leads to an algorithm that usesO˜(64nD8n

)
arithmetic operations in Q and a real root isolation call on a polynomial of degree bounded by
2n+2D2n for computing the real isolated points.

Furthermore, we also propose a variant of this algorithm to avoid partly the computations
over Q[t]/ ⟨w(t)⟩ by using “approximations” of the candidates. This variant allows us to obtain an
arithmetic complexity, which lies inO˜(D6n+3

)
with two real root isolation calls on a polynomial

of degree 2D(D − 1)n−1 and also provides a better practical performance.
Another contribution of this chapter contains several optimizations in order to achieve an ef-

ficient implementation for solving this problem. Our implementation allows us to solve instances
which are out of reach of the state-of-the-art.

This chapter contains joint-works with M. Safey El Din and T. de Wolff.
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8.1 Introduction

8.1.1 Problem statement

Let f ∈ Q[x1, . . . , xn] andH ⊂ Cn be the hypersurface defined by f = 0. We aim at computing
the real isolated points of H, i.e. the set of points x ∈ H ∩ Rn such that for some positive r, the
open ball centered at x of radius r intersects H ∩ Rn at only x. We shall denote this set of real
isolated points by I (H).

This problem is a particular instance of the more general one of computing the isolated points
of a semi-algebraic set. Such problems arise naturally and frequently in the design of rigid mech-
anisms in material design. Those are modeled canonically with semi-algebraic constraints, and
isolated points to the semi-algebraic set under consideration are related to rigidity properties of
the mechanism. A particular example is the study of auxetic materials, i.e., materials that shrink in
all directions under compression. These materials appear in nature (first discovered in [129]) e.g.,
in foams, bones or propylene; see e.g. [207], and have various potential applications. They are an
active field of research, not only on the practical side, e.g., [95, 75], but also with respect to mathe-
matical foundations; see e.g. [22, 23]. On the constructive side, these materials are closely related
to tensegrity frameworks, e.g., [165, 44], which can possess various sorts of rigidity properties.

Hence, we aim to provide a practical algorithm for computing these real isolated points in
the particular case of real traces of complex hypersurfaces first. This simplification allows us
to significantly improve the state-of-the-art complexity for this problem and to establish a new
algorithmic framework for such computations.

8.1.2 Main results

We provide several randomized algorithms which take as input f ∈ Q[x1, . . . , xn] and compute
the set of isolated points I (H) ofH ∩ Rn. A few remarks on the data-structure are in order.

Our algorithms compute a zero-dimensional parametrization C = (w, v1, . . . , vn) encoding
a finite algebraic set

C = Z(C ) = {(v1(t), . . . , vn(t)) | w(t) = 0}

such that C contains I (H) and a set B = (I1, . . . , Is) of intervals in R that satisfies:

• The endpoints of each interval Ii lie in Q.

• Each interval Ii contains exactly one real root of w(t), namely ti.

• The set of isolated points ofH is exactly

{(v1(ti), . . . , vn(ti)) | 1 ≤ i ≤ ℓ}.

This output represents symbolically the set of isolated points ofH in the sense that, for every x ∈
I (H), one can derive from the pair (C ,B) a numerical representation of x with any required
precision.
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We sketch now the geometric ingredients which allow us to compute the real isolated points
of an algebraic hypersurface defined by f = 0.

Assume that f is non-negative over Rn (if this is not the case, just replace it by its square)
and let x ∈ I (H). Since x is isolated and f is non-negative over Rn, the intuition is that for
e > 0 and small enough, the real solution set to f = e looks like a ball around x, hence a bounded
and closed connected component Cx. Then Cx contains certain critical points of the restriction
of every projection on the xi-axis to the algebraic set He ⊂ Cn defined by f = e. When e tends
to 0, these critical points in Cx “tend to x”. This first process allows us to compute a superset
of candidate points in H ∩ Rn containing I (H). Of course, one would like that this superset is
finite and this will be the case up to some generic linear change of coordinates, using e.g. [169].
The elements of this finite set is called the “candidates” and are encoded by a zero-dimensional
parametrization C .

The next step is to identify the real isolated points of H among the candidates. For this step,
we follow two different strategies. The first one is based on the use of roadmaps to decide the
connectivity of points over the given real algebraic set. Whereas, the second strategy aims to
decide whether a ball centered of each candidate of “small” radius intersects H ∩ Rn. In both of
these strategies, we make clear the details of the algorithms.

Constructing roadmaps. Note that the candidates lie on “curves of critical points” which are
obtained by letting e vary in the polynomial systems defining the aforementioned critical points.
Assume now thatH∩Rn is bounded, hence contained in a ball B. Then, for e′ small enough, the
real algebraic set defined by f = 0 is “approximated” by the union of the connected components
of the real set defined by f = e′ which are contained in B. Besides, these “curves of critical
points”, that we just mentioned, hit these connected components when one fixes e′. We actually
prove that two distinct points of our set of “candidate points” are connected through these “curves
of critical points” and those connected components defined by f = e′ in B if and only if they
do not lie in I (H). Hence, we use computations of roadmaps of the real set defined by f = e′

to answer those connectivity queries. Then, advanced algorithms for roadmaps and polynomial
system solving allows us to achieve the announced complexity bound.

Many details are hidden in this description. In particular, we use infinitesimal deformations
and techniques of semi-algebraic geometry. While infinitesimals are needed for proofs, they are
difficult to use in practice. On the algorithmic side, we go further exploiting the geometry of the
problem to avoid using infinitesimals.

Our complexity result for this algorithm is as follows.

Theorem 8.1.1. Let f ∈ Q[x1, . . . , xn] of degree D and H ⊂ Cn be the algebraic set defined
by f = 0. There exists a probabilistic algorithm which, on input f , computes a zero-dimensional
parametrization C and isolating intervals B which encode I (H) using (nD)O(n log(n)) arithmetic
operations in Q in case of success.
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Solving over the quotient ring. Recall that, at this stage, we dispose of a zero-dimensional
parametrization C = (w(t), v1(t), . . . , vn(t)) that encodes candidate points. One would naturally
check whether a ball of infinitesimal radius centered of each candidate intersects the algebraic set
H. More precisely, let η = (η1, . . . , ηn) ∈ C∩Rn be a candidate. We want to decide whether the
system

f(x1, . . . , xn) =

n∑
i=1

(xi − ηi)2 − ε = 0 (8.1)

has at least one solution in Rn.
However, this direct approach faces immediately two difficulties. Writing a quantified for-

mula to solve this decision problem raises complexity issues since those points are encoded by
zero-dimensional parametrizations of degreeDO(n). Besides, using an infinitesimal radius would
prevent one from obtaining an efficient algorithm in practice. To bypass this difficulty, we carry
out the computation over the quotient ring Q[t]/⟨w(t)⟩.

This computation relies on the results of [174, Appendix J], which provide an adaptation of
the geometric resolution [87] to polynomial systems with coefficients in Q[t]/⟨w(t)⟩. Using this
version of geometric resolution, the resolution of polynomial systems over Q[t]/⟨w(t)⟩ induces
only an additional cost of O (̃deg(w)) arithmetic operations of Q comparing to the classic geo-
metric resolution. We will see that the degree of w(t) is actually bounded by 2D(D−1)n−1. This
allows us to obtain an algorithm that uses DO(n) arithmetic operations in Q.

On the algorithmic side, we go further exploiting the geometry of the problem to avoid using
infinitesimals. We apply the algorithm to compute a rational number e0 > 0 that replaces the
infinitesimals in the system above.

These ingredients allow us to obtain the complexity result below.

Theorem 8.1.2. Let f ∈ Q[x1, . . . , xn] of degree D and H ⊂ Cn be the algebraic set defined by
f = 0. There exists a probabilistic algorithm which, on input f , computes a data (C ,B) encoding
I (H) in case of success using O ˜(64nD8n

)
arithmetic operations in Q and one call of real root

isolation on a univariate polynomial of degree bounded by 22n+2D3n.

Furthermore, we propose an alternative variant that leads to a more efficient algorithm in
practice. Once the rational number e0 is computed, this variant replaces the candidates by their
approximations of coordinates in Q and solves a similar decision problem as the one given by the
system (8.1) for these approximations. Such a strategy allows us to avoid the computation over
Q[t]/ ⟨w(t)⟩. In Subsection 8.4.5, we will define rigorously this notion of approximations.

Since this variant makes use of univariate real root isolating algorithms, a complete com-
plexity analysis would require a bound on the bit-size of polynomials given to real root isolating
algorithms. However, we observe that in practice these real root isolating steps are negligible
compared to the computation over Q[t]/ ⟨w(t)⟩, this variant is therefore much more efficient in
practice. A complexity estimate of this variant is given as below.

Theorem 8.1.3. Let f ∈ Q[x1, . . . , xn] of degree D and H ⊂ Cn be the algebraic set defined by
f = 0. There exists a probabilistic algorithm which, on input f , computes a data (C ,B) encoding
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I (H) in case of success using O˜(D6n+3
)

arithmetic operations in Q and two real root isolating
calls on a univariate polynomial of degree bounded by 2D(D − 1)n−1.

Another contribution of this chapter consists of multiple optimization subroutines introduced
for implementation. These subroutines try to avoid as much as possible the most costly compu-
tations in our algorithm. Taking into account these optimizations, we implement our algorithms
in Maple using the libraries FGb, RAGlib and msolve. In Section 8.6, we report on practical ex-
periments showing that they already allow us to solve non-trivial problems which are actually
out of reach of [9, Alg. 12.16] which computes sample points inH∩ Rn only. Unfortunately, the
real-life applications coming from material designs still remain intractable.

Organization of the chapter. In Section 8.2, we identify the set of candidates and show how
to compute them. Sections 8.3 and 8.4 are respectively dedicated to present theoretical results,
the descriptions and complexity analyses of our algorithms. In Section 8.5, we describe the opti-
mizations which are used to achieve an efficient implementation. Finally, Section 8.6 reports on
the practical performance of our implementation.

8.2 Candidates for isolated points

8.2.1 Identification of the candidates

This section is devoted to prove the ingredients required for computing a set of candidates. These
ingredients will be used in both algorithms presented in the next sections.

As above, let f ∈ Q[x1, . . . , xn] andH ⊂ Cn be the algebraic hypersurface defined by f = 0.
Recall that I (H) denotes the set of isolated points of the real algebraic setH ∩ Rn.

Lemma 8.2.1. The set I (H) is the (finite) union of the semi-algebraically connected components
ofH ∩ Rn which are a singleton.

Proof. Recall that real algebraic sets have a finite number of semi-algebraically connected com-
ponents [9, Theorem 5.21]. Let C be a semi-algebraically connected component ofH ∩ Rn.

Assume that C is not a singleton and take x and y in C with x ̸= y. Then, there exists a
semi-algebraic continuous map γ : [0, 1] → C such that γ(0) = x and γ(1) = y. Besides, since
x ̸= y, there exist t ∈]0, 1[ such that γ(t) ̸= x. By continuity of γ and the norm function, any
ball B centered at x contains γ(t) ∈ C and γ(t) ̸= x. Then, any x ∈ C is not isolated inH∩Rn.

Now assume that C = {x}. Observe that (H ∩ Rn) \ {x} is closed (since semi-algebraically
connected components of real algebraic sets are closed). Then, the map y → ∥y − x∥2 reaches a
minimum over (H ∩ Rn) \ {x}. Let e be this minimum value. We deduce that any ball centered
at x of radius less than e does not meet (H ∩ Rn) \ {x}.

To compute those connected components of H ∩ Rn which are singletons, we use classical
objects of optimization and Morse theory which are mainly polar varieties.
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Let K be an algebraically closed field, let φ ∈ K[x1, . . . , xn] which defines the polynomial
mapping

(x1, . . . , xn) 7→ φ(x1, . . . , xn)

and V ⊂ Kn be a smooth equidimensional algebraic set. We denote by crit(φ, V ) the set of critical
points of the restriction of φ to V . If c is the codimension of V and (g1, . . . , gs) generates the
vanishing ideal associated to V , then crit(φ, V ) is the subset of V at which the Jacobian matrix
associated to (g1, . . . , gs, φ) has rank less than or equal to c (see Chapter 4).

In particular, the case where φ is replaced by the canonical projection on the i-th coordinate

πi : (x1, . . . , xn) 7→ xi,

is excessively used throughout this chapter.
In our context, we do not assume that H is smooth. Hence, to exploit strong topological

properties of polar varieties, we retrieve a smooth situation using deformation techniques through
Puiseux series (see Section 4.3).

Let ε be an infinitesimal of R. By Theorem 4.3.2, the field R⟨ε⟩ of Pusieux series is a real
closed field and C⟨ε⟩ = R⟨ε⟩[T ]/

〈
T 2 + 1

〉
is its algebraic closure. We refer to Section 4.3 for the

notations of initial coefficients and boundedness over R
The set of bounded elements of R⟨ε⟩ is denoted by R⟨ε⟩b. The function limε : R⟨ε⟩b → R

that maps σ to its initial coefficient is a ring homomorphism. All these definitions extend to R⟨ε⟩n
componentwise. For a semi-algebraic set S ⊂ R⟨ε⟩n, we naturally define the limit of S as

lim
ε
S =

{
lim
ε

x | x ∈ S and x is bounded over R
}
.

Given a semi-algebraic set S ⊂ Rn defined by a semi-algebraic formula Φ, ext(S,R⟨ε⟩) denotes
the (semi-algebraic) set of solutions of Φ in R⟨ε⟩n.

We denote byHε ⊂ C⟨ε⟩n the algebraic set defined by f2 = ε2. By Proposition 4.3.7,Hε is a
smooth algebraic set in C⟨ε⟩n.

Below, we give two lemmas which will be used regularly in this paper.

Lemma 8.2.2 ([167, Lemma 3.6]). For every x ∈ H ∩ Rn, there exists a point xε ∈ Hε ∩ R⟨ε⟩n
such that xε is bounded over R and limε xε = x.

Lemma 8.2.3 ([9, Proposition 12.51]). Given a point x lying in a bounded connected component C
ofH∩Rn, let xε ∈ Hε ∩R⟨ε⟩n be a point such that xε is bounded over R and limε xε = x. Let Cε
be the connected component ofHε ∩ R⟨ε⟩n containing xε. Then, Cε is bounded over R.

Proof. The proof presented in what follows are extracted from the proof of [9, Proposition 12.51].
We recall it here for the completeness of the thesis.

We prove that Cε is bounded over R by contradiction. Let r ∈ R such that C is contained in the
open ballB(x, r). Let C′ε be the semi-algebraically connected component of Cε∩ext(B(x, r),R⟨ε⟩);
note that C′ε contains xε.
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We assume that Cε \ C′ε ̸= ∅. Let z ∈ Cε \ C′ε, we take a semi-algebraically connected path
γ : ext([0, 1],R⟨ε⟩) → Cε with γ(0) = xε and γ(1) = z. Since z ̸∈ C′ε, the image of γ is not
contained in ext(B(x, r),R⟨ε⟩).

Let t0 be the smallest t ∈ ext([0, 1],R⟨ε⟩) such that γ(t) ̸∈ ext(B(x, r),R⟨ε⟩) and notice
that y = γ(t0) ∈ ext(S(x, r),R⟨ε⟩) where S(x, r) is the boundary sphere of B(x, r). Then
limε γ([0, t0]) is connected and contained in C. Hence, limε y lies in S(x, r) and C at the same
time. This contradicts C ⊂ B(x, r) and ends the proof.

The following proposition allows us to obtain a subset ofH that contains I (H). Further, we
denote this subset by C and call its elements the candidates.

Proposition 8.2.4. Assume that I (H) is not empty and let x ∈ I (H). There exists a semi-
algebraically connected component Cε that is bounded overR ofHε∩R⟨ε⟩n such that limε Cε = {x}.

Consequently, for 1 ≤ i ≤ n, there exists an xε ∈ crit(πi,Hε) ∩ Cε such that limε xε = x. Let
C := ∩ni=1 limε crit(πi,Hε). Then, we have

I (H) ⊂ C ∩ Rn.

Proof. By Lemma 8.2.2, there exists xε ∈ Hε such that limε xε = x. Assume that xε ∈ Hε and
let Cε be the connected component of Hε containing xε. Again, by Lemma 8.2.3, Cε is bounded
over R. We prove that limε Cε = {x} by contradiction.

Assume that there exists a point yε ∈ Cε such that limε yε = y and y ̸= x. Since Cε is
semi-algebraically connected, there exists a semi-algebraically continuous function

γ : ext([0, 1],R⟨ε⟩)→ Cε

such that γ(0) = xε and γ(1) = yε. By [9, Proposition 12.49], limε Im(γ) is connected and con-
tainsx andy. As limε is a ring homomorphism, f(limε γ(t)) = limε f(γ(t)) = 0, so limε Im(γ) is
contained inH∩Rn. This contradicts the isolatedness of x, then we conclude that limε Cε = {x}.

Since Cε is a semi-algebraically connected component of the real algebraic setHε, it is closed.
Also, Cε is bounded overR. Hence, for any 1 ≤ i ≤ n, the projectionπi reaches its extrema over Cε
[9, Proposition 7.6], which implies that Cε∩crit(πi,Vε) is non-empty. Takexε ∈ crit(πi,Hε)∩Cε,
then xε is bounded over R and its limit is x. Thus, I (H) ⊂ limε crit(πi,Vε) ∩ R⟨ε⟩nb for any
1 ≤ i ≤ n, which implies I (H) ⊂ ∩ni=1 limε crit(πi,Vε) ∩ R⟨ε⟩nb .

8.2.2 Computation of candidates

This subsection is devoted to describe a subroutine Candidates to compute a zero-dimensional
parametrization C encoding the candidates defined in Proposition 8.2.4.

By Proposition 8.2.4, the set

C = ∩ni=1 limε
crit(πi,Hε)
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contains the real isolated points ofH. To ensure that this set is finite, we use a generically chosen
linear change of coordinates.

Given a matrix A ∈ GL(n,Q), let fA = f(A · x) and HA = V (fA) ⊂ Cn. The algebraic
subset of C⟨ε⟩n defined by

(
fA − ε

)
·
(
fA + ε

)
= 0 is denoted byHA

ε .
Let y be a new variable. For 1 ≤ i ≤ n, Ii denotes the ideal of Q[y, x1, . . . , xn] generated by

the set of polynomials {
y · ∂f

A

∂xi
− 1,

∂fA

∂xj
for all j ̸= i

}
.

Our subroutine Candidates relies on the geometric results presented in [171] and [169]. In
[171], it is proved that every crit(πi,HA

ε ) is a finite set when A is taken outside a prescribed
proper Zariski closed subset of GL(n,C).

Moreover, asA is assumed to be generically chosen, [169, Theorem 1] shows that the algebraic
set associated to the ideal 〈

fA
〉
+ (Ii ∩Q[x1, . . . , xn])

is finite and contains limε crit(πi,HA
ε ).

Note that, for any matrix A, the real isolated points of HA is the image of I (H) by the
linear mapping associated to A−1. Thus, in practice, we will choose randomly a matrix A ∈
GL(n,Q), compute the real isolated points of HA, and then go back to I (H) by applying the
change of coordinates induced byA−1. This random choice ofAmakes the subroutineCandidates
probabilistic.

In our problem, the intersection of limε crit(πi,HA
ε ) is needed rather than each limit itself.

Hence, we use the inclusion

I (HA) ⊂
n⋂

i=1

lim
ε

crit(πi,HA
ε ) ⊂ V

(〈
fA
〉
+

n∑
i=1

Ii ∩Q[x1, . . . , xn]

)
.

Using the algorithm of [169], we can compute the algebraic set on the right-hand side as follows:

1. For each 1 ≤ i ≤ n, compute a set Gi of generators of the ideal Ii ∩Q[x1, . . . , xn].

2. Compute a zero-dimensional parametrization C of the system consisting of{
fA
}
∪G1 ∪ . . . ∪Gn.

Such computations mimic those in [169]. The complexity of this algorithm of course depends on
the algebraic elimination procedure we use. For the complexity analysis in Sections 8.3.4 and 8.4.6,
we employ the geometric resolution [87].

It basically consists in computing a one-dimensional parametrization of the curve defined by
Ii and next computes a zero-dimensional parametrization of the finite set obtained by intersecting
this curve with the hypersurface defined by f = 0.

We call ParametricCurve a subroutine that, taking the polynomial f and 1 ≤ i ≤ n, computes
a one-dimensional parametrization Gi of the curve defined above. Also, let IntersectCurve be
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a subroutine that, given a one-dimensional rational parametrization Gi and f , outputs a zero-
dimensional parametrization Ci of their intersection.

Finally, we use a subroutine Intersection that, from the parametrizations Ci’s, computes a
zero-dimensional parametrization of ∩ni=1Z(Ci). The output C of Candidates is obtained by
reversing the change of variables.

Algorithm 8.1: Algorithm Candidates
Input: f ∈ Q[x1, . . . , xn], A ∈ GL(n,Q)
Output: A zero-dimensional parametrization C

1 for 1 ≤ i ≤ n do
2 Gi ← ParametricCurve(fA, i)
3 Ci ← IntersectCurve(Gi, f)

4 C ← Intersection(C1, . . . ,Cn)
5 C ← C−A

6 return C

8.3 The algorithm using roadmaps

8.3.1 Simplification

We introduce in this subsection a method to reduce our problem to the case where H ∩ Rn is
bounded for all x ∈ Rn. Such assumptions are required to prove the results in Subsection 8.3.2.
Our technique is inspired by [9, Section 12.6]. The idea is to associate to the possibly unbounded
algebraic set H ∩ Rn a bounded real algebraic set whose isolated points are strongly related to
I (H). The construction of such an algebraic set is as follows.

Let xn+1 be a new variable and 0 < ρ ∈ R such that ρ is greater than the Euclidean norm ∥ ·∥
of every isolated point of H ∩ Rn. Note that such a ρ can be obtained from a finite set of points
containing the isolated points ofH ∩ Rn. We explain in Subsection 8.2.2 how to compute such a
finite set.

We consider the algebraic set V defined by the system

f = 0, x21 + . . .+ x2n + x2n+1 − ρ2 = 0.

Let ψ be the projection (x1, . . . , xn, xn+1) 7→ (x1, . . . , xn). The real counterpart of V is the
intersection ofH lifted toRn+1 with the sphere of center 0 and radius ρ. Therefore, V is a bounded
real algebraic set in Rn+1. Moreover, the restriction of ψ to V ∩Rn+1 is exactlyH∩B(0, ρ). By
the definition of ρ, this image contains all the real isolated points ofH. Lemma 8.3.1 below relates
I (H) to the isolated points of V ∩ Rn+1.

Lemma 8.3.1. Let V and ψ as above. We denote by I (V) ⊂ Rn+1 the set of real isolated points of
V with non-zero xn+1 coordinate. Then, ψ(I (V)) = I (H).
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Proof. Note that ψ(V ∩ Rn+1) = (H ∩ Rn) ∩ B(0, ρ). We consider a real isolated point x′ =
(α1, . . . , αn, αn+1) of V with αn+1 ̸= 0 and x = ψ(x′) = (α1, . . . , αn). Assume by con-
tradiction that x ̸∈ I (H), we will prove that x′ ̸∈ I (V), i.e., for any r > 0, there exists
y′ = (β1, . . . , βn, βn+1) ∈ V ∩Rn+1 such that ∥y′−x′∥ < r. Since x is not isolated, there exists
a point y ̸= x such that

∥y − x∥ < r

1 + 2ρ/|αn+1|
.

Let y′ ∈ ψ−1(y) such that αn+1βn+1 ≥ 0. We have that ∥x∥2 + α2
n+1 = ∥y∥2 + β2n+1 = ρ2.

Now we estimate

|∥y∥2 − ∥x∥2| = (∥x∥+ ∥y∥) · |∥y∥ − ∥x∥| ≤ 2ρ · ∥y − x∥,

|αn+1 − βn+1| ≤
|α2

n+1 − β2n+1|
|αn+1|

=
|∥y∥2 − ∥x∥2|
|αn+1|

≤ 2ρ · ∥y − x∥
|αn+1|

.

Finally,

∥y′ − x′∥ ≤ ∥y − x∥+ |αn+1 − αn+1| ≤
(
1 +

2ρ

|αn+1|

)
∥y − x∥ < r.

So, x′ is not isolated in V ∩ Rn+1. This contradiction implies that ψ(I (V)) ⊂ I (H).
It remains to prove that I (H) ⊂ ψ(I (V)). For any x ∈ I (H), we consider a ball

B(x, r′) ⊂ B(0, ρ) ⊂ Rn

such that B(x, r′) ∩H = {x}. We have that

ψ−1(B(x, r′)) ∩ V ∩ Rn+1 = ψ−1(x) ∩ V ∩ Rn+1,

which is finite. So, all the points inψ−1(B(x, r′))∩V∩Rn+1 are isolated. Since I (H) ⊂ B(0, ρ),
we deduce that I (H) is contained in ψ(I (V)).

Thus, we conclude that ψ(I (V)) = I (H).

Note that the condition xn+1 ̸= 0 is crucial. For a connected component C of H ∩ Rn that
is not a singleton, its intersection with the closed ball B(0, ρ) can have an isolated point on the
boundary of the ball, which corresponds to an isolated point of V ∩Rn+1. This situation depends
on the choice of ρ and can be easily detected by checking the vanishing of the coordinate xn+1.

8.3.2 Geometric results

By Proposition 8.2.4, the real points of

n⋂
i=1

lim
ε

crit(πi,Hε)
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are potential isolated points ofH ∩ Rn. We study now how to identify, among those candidates,
which points are truly isolated.

We use the same g = x21 + . . .+ x2n+1 − ρ2 and V = V (f, g) ⊂ Cn+1 as in Subsection 8.3.1.
Let Vε = V (f2 − ε2, g) ⊂ C⟨ε⟩n+1; it is the union of two algebraic sets defined respectively by
f − ε = g = 0 and f + ε = g = 0.

Lemma 8.3.2. Let x ∈ V ∩ Rn+1 such that its xn+1-coordinate is non-zero. Then, x is not an
isolated point of V ∩ Rn+1 if and only if there exists a semi-algebraically connected component Cε
of Vε ∩ R⟨ε⟩n+1, bounded over R, such that {x} ⊊ limε Cε.

Proof. Letx = (α1, . . . , αn+1) ∈ V∩Rn+1 such thatαn+1 ̸= 0. As f(α1, . . . , αn) = 0, by Lemma
8.2.3, there exists a point xε = (β1, . . . , βn+1) ∈ R⟨ε⟩n+1 such that (β1, . . . , βn) ∈ Hε ∩ R⟨ε⟩n
and limε(β1, . . . , βn) = (α1, . . . , αn). Since αn+1 ̸= 0, we can choose βn+1 such that g(xε) = 0.
Therefore, for any x as above, there exists xε ∈ Vε ∩ R⟨ε⟩n+1 such that limε xε = x.

Since Vε∩R⟨ε⟩n+1 lies on the sphere (in R⟨ε⟩n+1) defined by g = 0, every connected compo-
nent of Vε ∩R⟨ε⟩n+1 is bounded over R. Hence, the points of V ∩Rn+1 whose xn+1-coordinates
are not zero are contained in limε Vε ∩ R⟨ε⟩n+1.

Let x be a non-isolated point of V ∩Rn+1 whose xn+1-coordinate is not zero. We assume by
contradiction that for any semi-algebraically connected component Cε of Vε ∩R⟨ε⟩n+1 (which is
bounded over R by above), then it happens that either limε Cε = {x} or x ̸∈ limε Cε.

Since Vε ∩R⟨ε⟩n+1 has finitely many connected components, the number of connected com-
ponents of the second type is also finite. Since V ∩ Rn+1 is not a singleton (by the existence of
x), the connected components of the second type exist. So, we enumerate them as C1, . . . , Ck and
x ̸∈ limε Cj for 1 ≤ j ≤ k.

As x is not isolated in V ∩ Rn+1 with non-zero xn+1-coordinate by assumption, there ex-
ists a sequence of points (xi)i≥0 in V ∩ Rn+1 of non-zero xn+1-coordinates that converges to
x. Since there are finitely many Ci, there exists an index j such that limε Cj contains a sub-
sequence of (xi)i≥0. By [9, Proposition 12.49], the limit of the semi-algebraically connected com-
ponent Cj (which is bounded over R) is a closed and connected semi-algebraic set. It follows
that x ∈ limε Cj , which is a contradiction. Therefore, there exists a semi-algebraically connected
component of Vε ∩ R⟨ε⟩n+1, bounded over R, such that {x} ⊊ limε Cε.

It remains to prove the reverse implication. Assume that {x} ⊊ limε Cε for some semi-
algebraically connected component Cε of Vε ∩ R⟨ε⟩n+1 that is bounded over R. As limε Cε is
connected, we finish the proof.

Lemma 8.3.3. Let x ∈ V ∩ Rn+1 whose xn+1-coordinate is non-zero. Assume that x is not an
isolated point of V ∩ Rn+1. For any semi-algebraically connected component Cε of Vε ∩ Rn+1,
bounded over R, such that {x} ⊊ limε Cε, there exists 1 ≤ i ≤ n such that Cε ∩ crit(πi,Vε)
contains a point x′

ε which satisfies limε x
′
ε ̸= x.

Proof. Let Cε be semi-algebraically connected component of Vε∩R⟨ε⟩n+1, bounded over R, such
that {x} ⊊ limε Cε. Lemma 8.3.2 ensures the existence of such a connected component Cε.
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Now let xε and yε be two points contained in Cε such that limε xε = x, limε yε = y and
x ̸= y. Let x = (α1, . . . , αn+1) and y = (β1, . . . , βn+1). Since x ̸= y, there exists 1 ≤
i ≤ n + 1 such that αi ̸= βi. Note that if (α1, . . . , αn) = (β1, . . . , βn) for any y ∈ limε Cε,
then limε Cε contains at most two points (by the constraint g = 0). However, since limε Cε is
connected and contains at least two points, it must be an infinite set. So, we can choose y such
that (α1, . . . , αn) ̸= (β1, . . . , βn).

As Cε is closed in R⟨ε⟩n+1 (as a connected component of an algebraic set) and bounded over R
by definition, its projection on the xi-coordinate is a closed interval [a, b] ⊂ R⟨ε⟩ (see [9, Theorem
3.23]), which is bounded over R (because Cε is). Also, since [a, b] is closed, there exist x′

a and x′
b

in R⟨ε⟩n+1 such that x′
a ∈ π−1

i (a) ∩ Cε ∩ crit(πi,Vε) and x′
b ∈ π

−1
i (b) ∩ Cε ∩ crit(πi,Vε). Since

αi ̸= βi both lying in R, {αi, βi} ⊂ [limε a, limε b] implies that limε a ̸= limε b. It follows that
limε x

′
a ̸= limε x

′
b. Thus, at least one point among limε x

′
a and limε x

′
b does not coincide with x.

Hence, there exists a point x′
ε in Cε ∩ crit(πi,Vε) such that limε x

′
ε ̸= x.

We can easily deduce from Lemma 8.3.2 and Lemma 8.3.3 the following proposition, which is
the main ingredient of our algorithm.

Proposition 8.3.4. Let x ∈ ∩ni=1 limε crit(πi,Vε) ∩ R⟨ε⟩n+1
b whose xn+1-coordinate is non-zero.

Then, x is not an isolated point of V ∩ Rn+1 if and only if there exist 1 ≤ i ≤ n and a connected
component Cε of Vε ∩ R⟨ε⟩n+1, which is bounded over R, such that Cε ∩ crit(πi,Hε) contains xε,
x′
ε satisfying x = limε xε ̸= limε x

′
ε.

8.3.3 Description of the algorithm

Our algorithm takes as input a polynomial f ∈ Q[x1, . . . , xn] and computes a data consisting of:

• A zero-dimensional parametrization C such that I (H) is a subset of the zeros of C .

• A finite set B of isolating intervals of solutions of w(t) that corresponds to I (H).

The first step computes a zero-dimensional parametrization C encoding a finite set of points
which contains I (H). This is done by the subroutine Candidates described in Subsection 8.2.2.

The next step consists of identifying those of the candidates which are isolated in H ∩ Rn.
This step relies on Proposition 8.3.4. To reduce our problem to the context where Proposition
8.3.4 can be applied, we use Lemma 8.3.1. One needs to compute ρ ∈ R, such that ρ is larger
than the maximum norm of the real isolated points we want to compute. This value of ρ can be
easily obtained by isolating the real roots of the zero-dimensional parametrization encoding the
candidates. Further, we call GetNormBound a subroutine which takes as input C and returns ρ
as we just sketched.

We let g = x21 + · · ·+ x2n + x2n+1 − ρ2. By Lemma 8.3.1, I (H) is the projection of the set of
real isolated points of the algebraic set V defined by f = g = 0 at which xn+1 ̸= 0. Let X be the
set of points of V projecting to the candidates encoded by C .
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The remain of this subsection is devoted to describe the identification of the real isolated
points among the candidates C ∩ Rn. Let

P = {x = (x1, . . . , xn+1) ∈ Rn+1 | (x1, . . . , xn) ∈ C, g(x) = 0, xn+1 ̸= 0}.

Proposition 8.3.4 would lead us to compute crit(πi,VAε ) as well as a roadmap of VAε . As
explained in the introduction, this induces computations over the ground field R⟨ε⟩ which we
want to avoid. Hence, in what follows, we replace the infinitesimal ε by a sufficiently small e ∈ R
then adapt the results of Subsection 8.3.2 to Ve.

Let t be a new variable,

Vt = {(x, t) ∈ Rn+1 × R | fA(x) = t, g(x) = 0},

πx : (x, t) 7→ x and πt : (x, t) 7→ t. Note that Vt is smooth. Recall that the set of critical values
of the restriction of πt to Vt is finite by the algebraic Sard’s theorem (Theorem 2.5.11). Given a
semi-algebraic set S ⊂ Rn+1 × R in the (x, t)-coordinates and a subset I of R, the notation SI
stands for the fiber π−1

t (I) ∩ S .
Let Ve ∈ Cn+1 denote the algebraic set defined by

(fA − e) · (fA + e) = g = 0

for a number e ∈ R. By definition, Ve ∩ Rn+1 is compact for any e ∈ R. Hence, the restriction
of πt to Vt is proper. Then, by Thom’s isotopy lemma [47], πt realizes a locally trivial fibration
over any open connected subset of R which does not intersect the set of critical values of the
restriction of πt to Vt. Let η ∈ R such that the open set ] − η, 0[∪]0, η[ does not contain any
critical value of the restriction of πt to the algebraic set Vt. Hence, Ve is non-singular for e ∈]0, η[,
(Ve ∩ Rn+1)× (]− η, 0[∪]0, η[) is diffeomorphic to Vt,]−η,0[∪]0,η[.

We need to mention that crit(πi,He) corresponds to the critical points of πi restricted to Ve
with non-zero xn+1-coordinate. Further, we use crit(πi,Ve) to address those latter critical points.

Now, for 1 ≤ i ≤ n, we defineWi as the closure of

Vt ∩
{
(x, t) ∈ Rn+1 × R

∣∣∣∣ ∂f∂xi (x) ̸= 0,
∂f

∂xj
(x) = 0 for j ̸= i, xn+1 ̸= 0

}
.

SinceA is assumed to be generically chosen,Wi is either empty or one-equidimensional (because〈
y · ∂f

∂xi
− 1,

∂f

∂xj
for j ̸= i

〉
either defines an empty set or a one-equidimensional algebraic set by [169]). This implies that the
set of singular points ofWi is finite.

By [116], the set of non-properness of the restriction of πt toWi is finite. Using again [116],
the restriction of πt toWi realizes a locally trivial fibration over any connected open subset which
does not meet the union of the images byπt of the singular points ofWi, the set of non-properness,
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and the set of critical values of the restriction of πt toWi. We let η′i be the minimum of the absolute
values of the points in this union.

We choose now 0 < e0 < min(η, η′1, . . . , η
′
n). We call SpecializationValue a subroutine that

takes as input f and g and returns such a rational number e0. Note that SpecializationValue
is easily obtained from elimination algorithms solving polynomial systems (from which we can
compute critical values) and from [172] to compute the set of non-properness of some map.

With e0 as above, we denote I =]−e0, 0[∪]0, e0[. LetWi,I is semi-algebraically diffeomorphic
to Wi,e × I for every e ∈ I . As Ve is nonsingular, the critical locus crit(πi,Ve) is guaranteed
to be finite by the genericity of the change of variables A (henceWi,e is) and that crit(πi,Ve) ∩
Rn+1 coincides with πx(Wi,e). Thus, the above diffeomorphism implies that, for any connected
component C of Wi,I , C is diffeomorphic to an open interval in R. Moreover, if C is bounded,
then C \ C contains exactly two points which satisfy respectively f = 0 and f2 = e20. We now
consider

Li =
{
x ∈ Rn+1 | 0 < f < e0, g = 0,

∂f

∂xj
= 0 for j ̸= i, xn+1 ̸= 0

}
.

It is the intersection of the Zariski closure Ki of the solution set to{
∂f

∂xi
̸= 0,

∂f

∂xj
= 0 for j ̸= i, xn+1 ̸= 0

}
with the semi-algebraic set defined by 0 < f < e0. Note that Ki is either empty or one-
equidimensional. As Ve is nonsingular for e ∈ I , Li and Lj are disjoint for i ̸= j. Since the
restriction of πx to Vt is an isomorphism between the algebraic sets Vt and Rn+1 with the inverse
map x 7→ (x, f(x)), the properties ofWI mentioned above are transferred to its image Li by the
projection πx.

Further, we consider a subroutine ParametricCurve which takes as input f and i ∈ [1, n] and
returns a rational parametrization Ki of Ki. Also, let Union be a subroutine that takes a family of
rational parametrizations K1, . . . ,Kn to compute a rational parametrization encoding the union
of the algebraic curves defined by the Ki’s. We denote by K the output of Union ; it encodes
K = ∪ni=1Ki. We refer to [174, Appendix J.2] for these two subroutines.

Lemma 8.3.5 below establishes a well-defined notion of limit for a point xe ∈ crit(πi,Ve)
when e tends to 0.

Lemma 8.3.5. Let e0 and Li be as above. For e ∈]0, e0[ and xe ∈ crit(πi,Ve) ∩Rn+1, there exists
a (unique) connected component C of Li containing xe. If C is bounded, let x be the only point in C
satisfying f(x) = 0, then x ∈ limε crit(πi,Vε) ∩ R⟨ε⟩n+1. Thus, we set lim0 xe = x.

Moreover, the extension ext(C,R⟨ε⟩) contains exactly one point xε such that f(xε)
2 = ε2 and

limε xε = x.

Proof. Sincexe ∈ crit(πi,Ve)∩Rn+1 and 0 < e < e0, we havexe ∈ Li, the existence of C follows
naturally. Let x be the unique point of C satisfying f = 0. Then, the notion lim0 is well-defined.
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From the proof of [9, Theorem 12.43], we have that

lim
ε

crit(πi,Vε) ∩ R⟨ε⟩n+1 = πx
(
W(0,+∞) ∩ V (t)

)
.

As πx
(
W(0,+∞) ∩ V (t)

)
is the set of points corresponding to f = 0 of Li, we deduce that x ∈

limε crit(πi,Vε) ∩ R⟨ε⟩n+1.
Since the extension ext(C,R⟨ε⟩) is a connected component of ext(Li,R⟨ε⟩) and homeomor-

phic to an open interval in R⟨ε⟩, there exists xε ∈ ext(C,R⟨ε⟩) such that f(xε)
2 = ε2. Moreover,

since 0 = limε f(xε)
2 = f(limε xε)

2 and x is the only point in C satisfying f = 0, we conclude
that limε xε = x.

Now, letRe be a roadmap associated to the algebraic set Ve, i.e. Re is contained in Ve∩Rn+1,
of at most dimension one and has non-empty intersection with every connected component of
(Ve ∪ V−e) ∩Rn+1. We also require thatRe contains ∪ni=1(crit(πi,Ve) ∪ crit(πi,V−e)) ∩Rn+1.
The proposition below is the key of our algorithm.

Proposition 8.3.6. Given e ∈]0, e0[ and I =] − e0, 0[∪]0, e0[ as above. Let L = ∪ni=1Li and
x ∈ P . Then x is not isolated in V ∩Rn+1 if and only if there exists x′ ∈ P such that x and x′ are
connected in P ∪ L ∪Re.

Proof. Assume first that x is not isolated. By Proposition 8.3.4, there exists 1 ≤ i ≤ n and a
connected component Cε of Vε ∩ R⟨ε⟩n+1, which is bounded over R, such that Cε ∩ crit(πi,Vε)
contains xε and x′

ε satisfying x = limε xε ̸= limε x
′
ε. By the choice of e0, there exist a diffeomor-

phism θ : Vt,I → Ve × I such that θ(Wi,I) = θ(Wi,e)× I . Using [9, Exercise 3.2], ext(θ,R⟨ε⟩)
is a diffeomorphism between:

ext(Vt,I ,R⟨ε⟩) ∼= ext(Ve,R⟨ε⟩)× ext(I,R⟨ε⟩),
ext(Wi,I ,R⟨ε⟩) ∼= ext(Wi,e,R⟨ε⟩)× ext(I,R⟨ε⟩).

As πx is an isomorphism from Vt to Rn+1, there exists a (unique) bounded connected component
Ce of Ve∩Rn+1 s.t. Cε is diffeomorphic to ext(Ce,R⟨ε⟩). Moreover, let L and L′ be the connected
components of ext(Li,R⟨ε⟩) containing xε and x′

ε respectively and xe and x′
e (∈ ext(Ce,R⟨ε⟩))

be the intersections of ext(Ce,R⟨ε⟩) with L and L′ respectively. Then, limε xε (limε L
′) connects

limε xe (limε x
′
e) to x (x′). As limε xe and limε x

′
e are connected in Ce, we conclude that x and x′

are also connected inP∪L∪Re. The reverse implication is immediate using the above techniques

From Lemma 8.3.5 and Proposition 8.3.6, any e lying in the interval ]0, e0] defined above can be
used to replace the infinitesimal ε. So, we simply take e = e0. For 1 ≤ i ≤ n, we use a subroutine
ZeroDimSolve which takes as input

{
f − e0, g, ∂f

∂xj
for all j ̸= i

}
to compute a zero-dimensional

parametrization Qi such that crit(πi,Ve) = {x ∈ Z(Qi)|xn+1 ̸= 0}.
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To use Proposition 8.3.6, we need to computeRe0/2, which we refer to the algorithmRoadmap
in [174]. This algorithm allows us to compute roadmaps for smooth and bounded real alge-
braic sets, which is indeed the case of Ve0 ∩ Rn+1. First, we call (another) Union that, on the
zero-dimensional parametrizationsQi, computes a zero-dimensional parametrizationQ encoding
∪ni=1Z(Qi). Given the polynomials f , g, the value e0/2 and the parametrization Q, a combination
of Union and Roadmap returns a one-dimensional parametrization R representingRe0/2.

Deciding connectivity over P ∪ L ∪ Re is done as follows. We use Union to compute a
rational parametrization S encoding K∪Re. Then, with input S, C , xn+1 ̸= 0 and the inequal-
ities 0 < f < e0, we use Newton Puiseux expansions and cylindrical algebraic decomposition
(see [55, 180]) following [173], taking advantage of the fact that polynomials involved in rational
parametrizations of algebraic curves are bivariate. We denote by ConnectivityQuery the subrou-
tine that takes those inputs and returns C and isolating boxes of the points defined by C which
are not connected to other points of C .

Once the real isolated points of VA is computed, we remove the boxes corresponding to points
at which xn+1 = 0 and project the remaining points on the (x1, . . . , xn)-space to obtain the iso-
lated points ofHA. This whole step uses a subroutine which we call Remove (see [174, Appendix
J]). Finally, we reverse the change of variable by applying A−1 to get I (H).

We compute a roadmapRe for VAe ∩Rn+1 for a small e > 0. From this roadmap, we construct
a semi-algebraic curve K containing X such that x ∈ X is isolated in VA ∩Rn+1 if and only if it
is not connected to any other x′ ∈ X by K. We call IsIsolated the subroutine that takes as input
C , fA and g and returns C with isolating boxes B of the real points of defined by C which are
isolated in VA ∩ Rn+1.

The pseudo-code in Algorithm 8.2 below summarizes the details of our first algorithm for
computing the real isolated point of an algebraic hypersurface.
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Algorithm 8.2: IsolatedPoints-RoadMap
Input: A polynomial f ∈ Q[x1, . . . , xn]
Output: A zero-dimensional parametrization C and a set B of isolating intervals

1 A chosen randomly in GL(n,Q)
2 C ← Candidates(f,A)
3 ρ← GetNormBound(C )
4 g ← x21 + · · ·+ x2n + x2n+1 − ρ2
5 e0 ← SpecializationValue(fA, g)
6 for 1 ≤ i ≤ n do
7 Qi ← ZeroDimSolve

({
fA − e0, g, ∂f

A

∂xj
for all j ̸= i

})
8 Ki ← ParametricCurve(fA, i)
9 end

10 K← Union(K1, . . . ,Kn)
11 Q← Union(Q1, . . . ,Qn)
12 R← Union(RoadMap(fA − e0, g,Q),RoadMap(fA + e0, g,Q))
13 S← Union(K,R)
14 B ← ConnectivityQuery(S,C , xn+1 ̸= 0, 0 < fA < e0)
15 C ,B ← Removes(C ,B, xn+1)

16 C ,B ← CA−1
,BA−1

17 return (C ,B)

8.3.4 Complexity analysis

This section is dedicated to the complexity analysis of Algorithm 8.2 for an input polynomial
f ∈ Q[x1, . . . , xn] of degree D. All complexity results are given in the number of arithmetic
operations in Q. Hereafter, we assume that a generic enough matrix A is found from a random
choice.

We start with the subroutine Candidates. Since crit(πi,HA
ε ) is finite and defined by

(fA − ε) · (fA + ε) = 0,
∂fA

∂xj
= 0 for all j ̸= i,

its degree is bounded by 2D(D − 1)n−1 using Bézout bound. Consequently, the degree of the
output zero-dimensional parametrization is bounded by 2D(D − 1)n−1.

Using [169, Theorem 4] (which is based on the geometric resolution algorithm in [87]), each
zero-dimensional parametrization of crit(πi,HA

ε ) is computed within O ˜(D3n
)

arithmetic op-
erations in Q. The last step which takes intersections of those parametrizations is done using the
algorithm in [174, Appendix J.1] ; it does not change the asymptotic complexity.

We have seen that GetNormBound reduces to isolate the real roots of a zero-dimensional
parametrization of degree DO(n). This can be done within DO(n) operations by Uspensky’s algo-
rithm [168].
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Each call to SpecializationValue reduces to computing critical values of πi of a smooth alge-
braic set defined by polynomials of degree at most D. This is done using (nD)O(n) arithmetic
operations in Q (see [91]). Using [87] for ZeroDimSolve and [179] for ParametricCurve does not
increase the overall complexity. The loop is performed n times ; hence the complexity lies in
(nD)O(n). All output zero-dimensional parametrizations have degree bounded by DO(n). Run-
ning Union on these parametrizations does not increase the asymptotic complexity. One gets
then parametrizations of degree bounded by nDO(n). Finally, using [174] for Roadmap uses
(nD)O(n log(n)) arithmetic operations in Q and outputs a rational parametrization of degree lying
in (nD)O(n log(n)). The call to ConnectivityQuery, done as explained in [173] is polynomial in the
degree of the roadmap.

The final steps which consist in calling Removes and undoing the change of variables does
not change the asymptotic complexity.

Summing up altogether the above complexity estimates, one obtains an algorithm using
(nD)O(n log(n))

arithmetics operations in Q at most. This ends the proof of Theorem 8.1.1.

8.4 The algorithm of complexity DO(n)

This section is dedicated to design an algorithm whose arithmetic complexity lies in DO(n), thus
better than the one described in the previous section. We first establish some geometric ingredi-
ents which will be used by our second algorithm.

8.4.1 Geometric results

Once the set of candidates C is acquired, these results allow us to identify the candidates which
are the real isolated points ofH.

Given a candidate η = (η1, . . . , ηn) ∈ C∩Rn, we want to check whether η is an isolated point
of H ∩ Rn. A direct way to do so is to check whether the sphere centered at η of infinitesimal
radius intersects the real algebraic setH. This can be done by solving the system

f(x1, . . . , xn) =
n∑

i=1

(xi − ηi)2 − ε = 0

over the field of Puiseux series R⟨ε⟩. However, this approach leads to computations involving
infinitesimal, which could prevent us from obtaining a practically efficient algorithm. Therefore,
we present in what follows a workaround to avoid the infinitesimals.

Let a = (a1, . . . , an) be a n-uple of positive rational numbers. We consider the function
da : Rn × Rn → R defined by

(x,y) 7→ da(x,y) =

√√√√ n∑
i=1

ai(xi − yi)2
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where x = (x1, . . . , xn) and y = (y1, . . . , yn). Note that da is a metric function in Rn and that
it also extends to a metric over R⟨ε⟩n. Further, we use the notations below to respectively denote
spheres, open balls and closed balls with respect to the metric da:

• S(x, r) = {y ∈ Rn | da(x,y) = r},

• B(x, r) = {y ∈ Rn | da(x,y) < r},

• B(x, r) = {y ∈ Rn | da(x,y) ≤ r}.

For each η = (η1, . . . , ηn) ∈ C⟨ε⟩n, we consider the map δη of distance to η:

δη : C⟨ε⟩n → C⟨ε⟩,
x = (x1, . . . , xn) 7→

∑n
i=1 ai(xi − ηi)2.

SinceHε is a smooth algebraic hypersurface, by Sard’s theorem [19, Theorem 9.6.2], the crit-
ical values of the restriction of δη to the algebraic set Hε ⊂ C⟨ε⟩n is a finite subset of C⟨ε⟩.
Therefore, for every η ∈ C ∩ Rn, the set

{δη(lim
ε

xε) | xε ∈ crit(δη,Hε) ∩ R⟨ε⟩nb , limε xε ̸= η}

is a finite set of positive elements of R. Note that the above set can be empty, we use the lemma
below to handle specifically this situation.

Lemma 8.4.1. Assuming that there exists η ∈ H ∩ Rn such that the set

{xε ∈ crit(δη,Hε) ∩ R⟨ε⟩nb , limε xε ̸= η}

is empty, then, exactly one among the two statements below holds:

i) H ∩ Rn is connected and not bounded;

ii) H ∩ Rn is a single point η.

Proof. Assume that H ∩ Rn is the union of at least two connected components. Then, there
exists a connected component of Hε ∩ R⟨ε⟩n that does not contain any point whose limit is
η. Therefore, the restriction of δη to this connected component admits a critical point over this
connected component. As a consequence, {xε ∈ crit(δη,Hε) ∩ R⟨ε⟩nb , limε xε ̸= η} is not
empty, which contradicts the assumption in Lemma 8.4.1. Therefore, H ∩ Rn has exactly one
connected component.

Now we assume thatH∩Rn is bounded and that it is not a single point η. As a consequence
of Lemma 8.2.3, there exists a connected component Cη,ε, that is bounded over R, ofHε ∩R⟨ε⟩n
such that {η} ⊊ limε Cη,ε. Thus, the distance function δη attains its maximum, which is non-zero,
overH∩Rn. This also contradicts the assumption that {xε ∈ crit(δη,Hε)∩R⟨ε⟩nb , limε xε ̸= η}
is empty. Thus, the proof of Lemma 8.4.1 is finished.
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When {yε ∈ crit(δx,Hε)∩R⟨ε⟩nb , limε yε ̸= x} is not empty, we prove the following criteria
to identify whether the point x is isolated inH.

Lemma 8.4.2. Let x be a point of H ∩ Rn, Cx be the connected component of H ∩ Rn containing
x and δx is the function defined as above.

Assuming that

{δx(lim
ε

yε) | yε ∈ crit(δx,Hε) ∩ R⟨ε⟩nb , limε yε ̸= x}

is a non-empty finite set, we define a positive real number ex as

ex = min{δx(lim
ε

yε) | yε ∈ crit(δx,Hε) ∩ R⟨ε⟩nb , limε yε ̸= x}.

Then, the following statements are equivalent:

i) x is an isolated point ofH ∩ Rn.

ii) There exists e ∈]0, ex[ such thatH ∩ S(x,
√
e) = ∅.

iii) For every e ∈]0, ex[,H ∩ S(x,
√
e) = ∅.

Moreover, if x is not an isolated point ofH ∩ Rn, then Cx intersects S(x,
√
e) for every e ∈]0, ex[.

Proof. By the definition of real isolated points, we immediately have that (i) implies (ii) and (iii)
implies (i). It remains to demonstrate that (iii) is a consequence of (ii), which we separate into
two statements: (ii) leads to (i) and then (i) leads to (iii).

We now show that (ii) implies (i) by contradiction. We assume that the point x is not a real
isolated point of H. If Cx is not bounded, Cx intersects S(x,

√
e) for every e > 0 and there is

nothing to be proved. We now assume that Cx is bounded.
By Lemma 8.2.2, there exists a point xε such that xε is bounded over R and limε xε = x. Let

Cε ⊂ R⟨ε⟩n be a connected component of the real algebraic setHε containingxε. By Lemma 8.2.3,
Cε is bounded over R. Thus, by [9, Proposition 12.49], its limit is connected in Rn. Consequently,
limε Cε is a connected subset of Cx.

Moreover, as Cε is closed and bounded, δx admits a maximum point yε over Cε (see [19,
Theorem 2.5.8]). Note that yε ∈ crit(δx,Hε) ∩ R⟨ε⟩n. So, we have that δx(limε yε) ≥ ex.
Therefore, for any e ∈]0, ex[, the closed ball B(x,

√
e) does not contain limε yε. Since limε Cε is

connected in Rn and contains x and limε yε, there exists a semi-algebraic continuous function γ :
[0, 1]→ limε Cε such that γ(0) = x and γ(1) = limε yε. As δx(x) = 0 and δx(limε yε) ≥ ex, by
the intermediate value property [9, Proposition 3.5], there exists t0 ∈]0, 1[ such that δx(γ(t0)) = e
for any e ∈]0, ex[. Therefore, the connected component Cx intersects S(x,

√
e) at γ(t0).

So, (ii) does not hold either when Cx is bounded. We conclude that (ii) leads to (i).
Finally, it remains to show that (i) implies (iii). Again, we prove this by contradiction. Assume

that there exists e ∈]0, ex[ such that H ∩ S(x,
√
e) ̸= ∅. Equivalently, there exists a point z ∈

H ∩ Rn such that δ(z) = e ∈]0, ex[.
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By Lemma 8.2.2, there exists a point zε ∈ Hε ∩ R⟨ε⟩n such that limε zε = z. Let Cz,ε be the
connected component ofHε ∩ R⟨ε⟩n containing zε.

In the closed and connected semi-algebraic set Cz,ε, there exists a point z′
ε at which the re-

striction of δx to Cz,ε reaches it minimum. So, z′
ε belongs to crit(δx,Hε). Thus, we have that

δx(lim
ε

z′
ε) ≤ δx(limε zε) < ex.

Using the definition of ex, we deduce that δx(limε z
′
ε) = 0, which is equivalent to limε z

′
ε = x.

So, both zε and z′
ε lie in the connected component Cz,ε of Hε ∩ R⟨ε⟩n and limε z

′
ε = x.

If Cz,ε is not bounded over R, by Lemma 8.2.3, we have that Cx is not bounded, which implies
immediately that x is not an isolated point ofH ∩ Rn.

Otherwise, when Cz,ε is bounded over R, by [9, Proposition 12.49], limε Cz,ε is a connected
subset of H ∩ Rn that contains x and z. In this case, we also conclude that x is not isolated in
H ∩ Rn. Therefore, (i) leads to (iii), which finishes our proof.

For x ∈ C ∩ Rn, when {yε ∈ crit(δx,Hε) ∩ R⟨ε⟩nb , limε yε ̸= x} is empty, we define

ex = min{δx(lim
ε

yε) | yε ∈ crit(δx,Hε) ∩ R⟨ε⟩nb , limε yε ̸= x} = +∞.

Let e0 ∈ R such that
0 < e0 < ex

for every x ∈ C ∩ Rn. We deduce from Lemmas 8.4.1 and 8.4.2 the following proposition, which
is our main criteria for designing our second algorithm.

Proposition 8.4.3. For any a = (a1, . . . , an) ∈ Rn such that ai > 0 for 1 ≤ i ≤ n, we define a
value e0 ∈ R (depending on a) as above. Then, for any candidate η = (η1, . . . , ηn) ∈ C ∩ Rn, η is
an isolated point ofH ∩ Rn if and only if the following polynomial system

f(x1, . . . , xn) =

n∑
i=1

ai(xi − ηi)2 − e0 = 0

admits at least one solution in Rn.

Proof. We assume first that {yε ∈ crit(δx,Hε)∩R⟨ε⟩nb , limε yε ̸= x} is not empty. Using Lemma
8.4.2, we have that η is an isolated point ofH if and only ifH intersects the sphere S(η,√e0).

Otherwise, while {yε ∈ crit(δx,Hε) ∩ R⟨ε⟩nb , limε yε ̸= x} is empty, by Lemma 8.4.1, then
H is either a single point η or an unbounded connected component containing η. The similar
conclusion follows immediately, which ends our proof.
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8.4.2 Outline of the algorithm

In this subsection, we give the outline of an algorithm that identifies the real isolated points ofH
based on the results of Subsection 8.4.1.

We start by choosing randomly from Qn
+ a n-uple a = (a1, . . . , an). Recall that Proposition

8.4.3 requires us to compute a value e0 ∈ Q such that

0 < e0 < min{δη(lim
ε

xε) | xε ∈ crit(δη,Hε) ∩ R⟨ε⟩n, lim
ε

xε ̸= η},

for every η ∈ C ∩ Rn, where δη is defined as

(x1, . . . , xn) 7→ a1(x1 − η1)2 + . . .+ an(xn − ηn)2.

We call ComputeE0 a subroutine that takes as input the polynomial f ∈ Q[x1, . . . , xn] and a
n-uple a ∈ Qn and returns such an e0 ∈ Q. The explicit description of ComputeE0 is given in
Subsection 8.4.3.

With e0 obtained by ComputeE0, by Proposition 8.4.3, identifying whether a candidate η ∈
C ∩ Rn is an isolated point ofH ∩ Rn can be done by deciding whetherH ∩ S(η,√e0) = ∅.

Our algorithm will have the following outline in which IsIsolated is a subroutine that takes
as input f , C , a and e0 and computes the isolating intervals B.

Algorithm 8.3: IsolatedPoints
Input: A polynomial f ∈ Q[x1, . . . , xn]
Output: A zero-dimensional parametrization C and a set B of intervals of R

1 A chosen randomly in GL(n,Q)
2 C ← Candidates(f,A)
3 a chosen randomly in Qn

+

4 e0 ← ComputeE0(f,C ,a)
5 B ← IsIsolated(f,C ,a, e0)
6 return (C ,B)

In what follows, we describe briefly two variants of IsIsolated; one allows us to obtain an
algorithm whose arithmetic complexity lies in DO(n) and the other is designed to obtain better
practical performance. Both of these variants, in general, solve the polynomial system below over
Rn for each candidate η = (η1, . . . , ηn) ∈ C ∩ Rn:

f(x1, . . . , xn) = a1(x1 − η1)2 + . . .+ an(xn − ηn)2 − e0 = 0. (8.2)

However, since the candidates are encoded by the zero-dimensional parametrization C , we cannot
treat directly the system (8.2) and need some workarounds.

Assume that the zero-dimensional parametrization C is given under polynomial form, i.e.,

Z(C ) = {(v1(t), . . . , vn(t)) | w(t) = 0}.
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The first variant of IsIsolated considers the system

f(x1, . . . , xn) = a1(x1 − v1(t))2 + . . .+ an(xn − vn(t))2 − e0 = w(t) = 0. (8.3)

We now need to identify for which real roots of w(t), the above system has at least one real
solution. To do so, we basically compute a polynomialQ(t, z) ∈ Q[t, z] such thatQ(t0, z) admits
real solutions for the real root t0 of w(t) if and only if the system (8.3) has at least one solution
with t = t0. The problem is therefore reduced to a bivariate setting, which is easily solved by
classical real root counting algorithms. The details for designing this subroutine is explained in
Subsection 8.4.4.

For the second variant of IsIsolated, taking advantage of the knowledge of e0, we replace the
candidate η in the system (8.2) by an “approximation” η̃ of η whose coordinates lie in Q and
establish a similar result as Proposition 8.4.3 for these approximations (see Lemma 8.4.6).

Informally, we claim that a candidate η is a real isolated point ofH if and only if the system

f(x1, . . . , xn) = a1(x1 − η̃1)2 + . . .+ an(xn − η̃n)2 −
e0
4

= 0 (8.4)

has no real solution. Therefore, once those approximations are identified, one can solve the system
above over the reals using real root finding algorithms (see, e.g., [9, Chap. 16]).

The design of this variant is explained in Subsection 8.4.5.

8.4.3 Computing a value for e0
In this subsection, we present an algorithm that computes a value e0 introduced in Proposition
8.4.3. This value allows us to remove the use of infinitesimals in the identification of isolated
points later.

We recall that, for each η = (η1, . . . , ηn) ∈ Cn, the function δη is defined as

δη : Cn → C,
x = (x1, . . . , xn) 7→

∑n
i=1 ai(xi − ηi)2.

To apply Lemma 8.4.2, we need to compute a value e0 ∈ Q such that

0 < e0 < min{δη(lim
ε

xε) | xε ∈ crit(δη,Hε) ∩ R⟨ε⟩nb , limε xε ̸= η}

for every η ∈ C∩Rn. In the lemma below, we show that, for a generic choice of a, every critical
locus crit(δη,Hε) is finite.

Lemma 8.4.4. Let η ∈ C be a candidate. Then there exists a non-empty Zariski open subset A of
Cn such that, for a = (a1, . . . , an) ∈ A ∩Qn

+, the critical locus of δη restricted toHε is finite.

Proof. Since f = ε defines a smooth algebraic subset V (f − ε) of C⟨ε⟩n, the critical locus of the
restriction of δη to V (f − ε)

f − ε = y · ∂f
∂x1
− 2ai(x1 − η1) = · · · = y · ∂f

∂xn
− 2an(xn − ηn) = 0. (8.5)
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Now we consider a = (a1, . . . , an) and y as indeterminates. Let φ : Cn × Cn × C be the
polynomial mapping defined as

(x,a, y) 7→
(
f − ε, y · ∂f

∂x1
− 2a1(x1 − η1), . . . , y ·

∂f

∂xn
− 2an(xn − ηn)

)
.

Let X be the non-empty Zariski open subset of C defined as

(x1 − η1) · · · (xn − ηn) ̸= 0.

The Jacobian matrix of φ with respect to (x,a, y)
∂f
∂x1

· · · ∂f
∂xn

0 0 · · · 0

∗ · · · ∗ ∂f
∂x1

−2(x1 − η1) · · · 0
...

. . . ∗
...

...
. . .

...

∗ · · · ∗ ∂f
∂xn

0 · · · −2(xn − ηn)


has full rank when x ∈ X and

f − ε = y · ∂f
∂x1
− 2ai(x1 − η1) = · · · = y · ∂f

∂xn
− 2an(xn − ηn) = 0.

By Thom’s weak transversality theorem (Theorem 2.5.12), there exists a non-empty Zariski
open subset A∅ of Cn such that, for a ∈ A∅, 0 is a regular value of the restriction of φa to X .
Thus, for a ∈ A∅, by Jacobian criterion, the restriction of the solutions of

f − ε = y · ∂f
∂x1
− 2ai(x1 − η1) = · · · = y · ∂f

∂xn
− 2an(xn − ηn) = 0

to X is a finite set, i.e., crit(δη, V (f − ε)) ∩ X is finite.
Now we study the restriction of crit(δη, V (f − ε)) to Cn \ X . We choose a ∈ Qn

+. Let I be
a non-empty proper subset of {1, . . . , n} and XI be the subset of Cn defined by

xi = ηi for i ∈ I and xi ̸= ηi for i ̸∈ {1, . . . , n} \ I.

Let x ∈ crit(δη, V (f − ε))∩XI . As f(η) = 0, η ̸∈ V (f − ε) and x ̸= η. Hence, y ̸= 0 in the
system (8.5). Hence, y · ∂f

∂xi
− 2a1(xi − ηi) = 0 implies that ∂f

∂xi
= 0. Since V (f − ε) is smooth,

∂f
∂xi

for i ∈ {1, . . . , n} \ I cannot vanish simultaneously at x. This means

{x | x ∈ crit(δη, V (f − ε)), xi = ηi for i ∈ I}

coincides with the critical locus crit(δη,I , V (fI − ε)) where

δη,I : (xj)j∈{1,...,n}\I 7→
∑

j∈{1,...,n}\I

aj(xj − ηj)2
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and fI is the polynomial obtained from f by substituting xi = ηi for i ∈ I . Therefore, we can use
the same arguments as above to prove the following.

There exists a non-empty Zariski open subset AI of Cn such that for a ∈ AI ∩ Qn
+, the

restriction of crit(δη, V (f − ε)) to XI is finite.
Let A+ = ∩I⊊{1,...,n}AI which is a non-empty Zariski open subset of Cn. Given any a ∈

A+ ∩Qn
+, crit(δη, V (f − ε) is a finite set. Similarly for V (f + ε), we obtain a non-empty Zariski

open subset A−. Taking the intersection A = A+ ∩ A− ends the proof.

Since the set of candidates C is encoded by a zero-dimensional parametrization C , we do the
whole computation at once through the function δ defined as

δ : Cn × C → C,
(x1, . . . , xn, t) 7→

∑n
i=1 ai(xi − vi(t))2.

The following lemma is immediate.

Lemma 8.4.5. Let Hε,t ⊂ C⟨ε⟩n+1 be the algebraic set defined by f2 − ε2 = w(t) = 0. Then, the
set of critical values δ(crit(δ,Hε,t)) is the union of δη(crit(δη,Hε)) for η ∈ C.

Proof. The set crit(δ,Hε,t) are defined by the points ofHε,t at which the matrix∂f2

∂x1
. . . ∂f2

∂xn
0

∂δ
∂x1

. . . ∂δ
∂xn

∂δ
∂t

0 . . . 0 w′(t)


has rank at most 2.

As w(t) is square-free, for every t0 such that w(t0) = 0, w′(t0) is not zero. Therefore, the
condition above restricted toHε,t is equivalent to

rank

[
∂f2

∂x1
. . . ∂f2

∂xn
∂δ
∂x1

. . . ∂δ
∂xn

]
≤ 1.

For every complex root t0 of w(t), let η0 = (v1(t0), . . . , vn(t0)). By fixing t = t0, the rank
deficiency above is reduced to

rank

[
∂f2

∂x1
. . . ∂f2

∂xn
∂δη0
∂x1

. . .
∂δη0
∂xn

]
≤ 1,

which defines the set crit(δη0 ,Hε).
Thus, crit(δ,Hε,t) = ∪w(t0)=0{(x, t0) | η0 = (v1(t0), . . . , vn(t0)), x ∈ crit(δη0 ,Hε)}. This

concludes the proof.
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Now we aim to compute the limit of the critical points and their corresponding values of the
restriction of δ to the algebraic set Hε,t defined by f2 − ε2 = w(t) = 0. Note that Lemmas 8.4.4
and 8.4.5 imply that, for a generic a ∈ Qn

+, the set of critical points crit(δ,Hε,t) is finite.
By [169, Theorems 1, 2], for generic values of a ∈ Qn, we have that

lim
ε

crit(δ,Hε,t) ⊂ ⟨f⟩+
〈
w(t), y · ∂f

∂xi
− ∂δ

∂xi
for every 1 ≤ i ≤ n

〉
∩Q[x, t]

and the ideal on the right-hand side is zero-dimensional.
From the above inclusion, one can follow a similar computation as in Algorithm 8.1 using the

geometric resolution algorithm [87]. However, as the degree ofw(t) is bounded by 2D(D−1)n−1

(see Subsection 8.3.4), such a computation would lead to an arithmetic complexity DO(n2).
A workaround to obtain a better complexity is to use a variant of geometric resolution over the

quotient ring A = Q[t]/⟨w(t)⟩ as explained in [174, Appendix J]. Note thatw(t) is not necessarily
irreducible, the extension A is only a product of fields and doing the computation over the ring A
is not trivial. We will see in Subsection 8.4.6 that this approach allows us to obtain an algorithm
with arithmetic complexity lying in DO(n).

Our subroutine ComputeE0 is designed as follows.

a) First, we call a subroutine ParametricCurve that takes as input f , C , a ∈ Qn
+ and i ∈

{1, . . . , n} and computes a one-dimensional parametrization Ji over Q[t]/⟨w(t)⟩ of the
system (

∂δ

∂xj
· ∂f
∂xi
− ∂δ

∂xi
· ∂f
∂xj

= 0

)
j∈{1,...,n}\{i}

and ∂f

∂xi
̸= 0.

An explicit description of this subroutine can be found in [174, Appendix J.5].

b) Next, we compute a zero-dimensional parametrization Ei of the intersection of H = V (f)
with the sets of solutions defined by the parametrizations Ji above.
This is done by calling a subroutine IntersectCurve on the input Ji and f , which is de-
scribed also in [174, Appendix J.5].

c) We then call a subroutine Union that computes a zero-dimensional parametrization E that
defines ∪ni=1Z(Ei).

d) Finally, taking as input the zero-dimensional parametrization E , we call a subroutine GetE0
that computes the required value e0. This can be done by calling FGLM algorithm [67] to
compute a polynomial P (e) whose solutions encode the values e =

∑
i=1 ai(xi − vi(t))2

for x ∈ Z(E ) and w(t) = 0. Next, we evaluate a lower bound of the minimal distance
between the roots of P (e) using [9, Proposition 10.23].
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Algorithm 8.4: ComputeE0
Input: f ∈ Q[x1, . . . , xn], C = (w(t), v1(t), . . . , vn(t)) and a ∈ Qn

+

Output: e0 ∈ Q
1 δ ← a1(x1 − v1(t))2 + . . .+ an(xn − vn(t))2
2 for 1 ≤ i ≤ n do
3 Ji ← ParametricCurve(f,a,C , i)
4 Ei ← IntersectCurve(Ji, f)

5 E ← Union(E1, . . . ,En)
6 e0 ← GetE0(E )
7 return e0

8.4.4 The first variant of IsIsolated

In this subsection, we explain the details of the first variant of IsIsolated.
Using the value e0 output by Algorithm 8.4, Proposition 8.4.3 allows one to identify the iso-

lated points ofH among the candidates by checking whether the polynomial system

f(x1, . . . , xn) =
n∑

i=1

ai(xi − ηi)2 − e0 = 0

admits real solutions for each candidate η = (η1, . . . , ηn) ∈ C∩Rn. Again, one can consider the
system

f(x1, . . . , xn) =

n∑
i=1

ai(xi − vi(t))2 − e0 = w(t) = 0 (8.6)

to handle all the candidates at once.
LetWt ⊂ Cn+1 be the algebraic set defined the equation (8.6). Our strategy is to compute a

finite subset ofWt ∩ Rn+1 that intersects every connected component ofWt ∩ Rn+1. Then, all
the real t-coordinates of those sample points correspond to the isolated points ofH ∩ Rn.

We consider the polynomial

F = f(x1, . . . , xn)
2 +

(
n∑

i=1

ai(xi − vi(t))2 − e0

)2

.

Note that F + w(t)2 defines also the real algebraic setWt ∩ Rn+1. Therefore, the sample points
above can be computed using the algorithm of [169] on the input F + w(t)2 ⊂ Q[t, x1, . . . , xn].
Such an algorithm returns a zero-dimensional parametrization over Q that defines a finite set
intersects every connected component ofWt. Since the total degree of F + w(t)2 can go up to
O(Dn), this computation faces the same complexity issue as in Subsection 8.4.3. Again, we can
bypass this problem by solving over A[x1, . . . , xn] where A = Q[t]/⟨w(t)⟩.
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Let B be a matrix randomly chosen from GL(n,Q) and FB(x) = F (B · x). We apply the
geometric resolution algorithm over A on the system of equations:

FB = 0,
∂FB

∂xj
= 0,

∂FB

∂x1
̸= 0.

This algorithm returns a zero-dimensional parametrization (U(z), V1(z), . . . , Vn(z)) over the ring
A, which means that V1, . . . , Vn and U are elements of A[z], such that, for any real solution t0 of
w(t), the finite set defined by

{(V1(t0, z), . . . , Vn(t0, z)) | z ∈ R, U(t0, z) = 0}

intersects every connected component of

f(x1, . . . , xn) =
n∑

i=1

ai(xi − vi(t0))2 − e0 = 0.

Hence, the isolated points ofH ∩ Rn are indeed

{(v1(t), . . . , vn(t)) | (t, z) ∈ R2 : w(t) = U(t, z) = 0}.

Our problem boils down to solving the bivariate system w(t) = U(t, z) = 0 over R2.
In Algorithm 8.5 below, we introduce two subroutines:

• BivariatePolynomial takes as input the polynomials F andw(t) and returns the eliminating
polynomial U(t, z). It uses the geometric resolution algorithm over A described in [174,
Appendix J].

• BivariateSolve takes as inputw(t) andU(t, z) and returns the set B of intervals that isolate
the real roots ofw(t) corresponding to I (H). Such a subroutine can be designed efficiently
with resultants.

Algorithm 8.5: The first variant of IsIsolated
Input: f , C = (w(t), v1(t), . . . , vn(t)), a and e0
Output: A set B of isolating intervals

1 F ← f(x1, . . . , xn)
2 +

(∑n
i=1 ai(xi − vi(t))2 − e0

)2
2 U(t, z)← BivariatePolynomial(F,w(t))
3 B ← BivariateSolve(w(t), U(t, z))
4 return B
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8.4.5 Approximations of the candidates

This subsection is devoted to the design of the second variant of IsIsolated. Note that this variant
does not require solving polynomial systems in the quotient ring Q[t]/⟨w(t)⟩. Further, we will
see that it is based mostly on isolating candidates from the zero-dimensional parametrization
C . Moreover, handling the candidates through the zero-dimensional parametrization C means
that we include every complex point of C into the computation, which could be an overkill. The
subroutine presented in what follows (see Algorithm 8.6) considers only the real points of C.

The main idea is to replace the candidate η in the criteria provided by Proposition 8.4.3 by
a rational point η̃ ∈ Qn, which can be thought of an approximation of η. To do so, we need
to identify how close the points η and η̃ need to be. The lemma below shows that requiring
da(η, η̃) <

√
e0/2 is enough.

Lemma 8.4.6. Let η be a candidate and η̃ be a point in Rn satisfying da(η, η̃) <
√
e0/2. Then, η

is an isolated point ofH ∩ Rn if and only ifH does not intersect the sphere S(η̃,
√
e0/2).

Proof. If the set {xε ∈ crit(δη ∩ R⟨ε⟩nb ,Hε), limε xε ̸= η} is empty, then, by Lemma 8.4.1,H is
either a single point η or an unbounded connected set containing η. In either case, the conclusion
of Lemma 8.4.6 is immediate. Thus, in what follows, {xε ∈ crit(δη,Hε) ∩ R⟨ε⟩nb , limε xε ̸= η}
is assumed to be non-empty.

We prove now the necessary implication. Assume that η is an isolated point of H ∩ Rn. By
Lemma 8.4.2, the intersection of H and S(η,

√
e) is empty for every e ∈]0, e0[. So, η is the only

point ofH lying in the open ball B(η,
√
e0).

Since da(η, η̃) <
√
e0/2, the candidate η does not lie on the sphere S(η̃,√e0/2). Moreover,

S(η̃,
√
e0/2) is contained in the open ball B(η,

√
e0). Then, we have that S(η̃,√e0/2)∩H = ∅.

Now we turn to the sufficient implication. Assume by contradiction that η is not isolated in
H ∩ Rn. By Lemma 8.4.2, the connected component Cη of H containing η intersects the sphere
S(η,

√
e0). So, there exists a semi-algebraic continuous function γ : [0, 1]→ Cη such that γ(0) =

η and γ(1) lying on the sphere S(η,√e0).
We have that

da(γ(1), η̃) ≥ da(γ(1),η)− da(η, η̃) >
√
e0 −

√
e0/2 =

√
e0/2.

As da(γ(0), η̃) <
√
e0/2 and da(γ(1), η̃) >

√
e0/2, by the intermediate value property [9,

Proposition 3.5], there exists t0 ∈]0, 1[ such that da(γ(t0), η̃) =
√
e0/2. This implies that the

intersection ofH and S(η̃,√e0/2) is not empty, which concludes our proof.

Let tη be the real root of w(t) that corresponds to η, i.e., η = (v1(tη), . . . , vn(tη)). To apply
Lemma 8.4.6, we need to choose tη̃ ∈ Q such that the rational point η̃ = (v1(tη̃), . . . , vn(tη̃))
satisfies that da(η, η̃) <

√
e0/2. This leads us to identify ρ > 0 such that |tη − tη̃| < ρ implies

a1(v1(tη)− v1(tη̃))2 + . . .+ an(vn(tη)− vn(tη̃))2 <
e0
4
.

Lemma 8.4.7 below allows us to compute explicitly an appropriate value for ρ.
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Lemma 8.4.7. Let {t1, . . . , tℓ} be the distinct real roots of w(t) = 0 and {η1, . . . ,ηℓ} be the
corresponding candidates.

We consider a set of intervals (Ij)1≤j≤ℓ such that

• The intervals Ij are pairwise disjoint.

• The interval Ij contains only tj as a real root of w(t).

For each 1 ≤ i ≤ n, let Ki = maxℓj=1maxt∈Ij |v′i(t)|. Then, for any 1 ≤ j ≤ ℓ and tθ such that

tθ ∈ Ij and |tθ − tj | < 1
Ki
·
√

e0
4nai

, we have the following inequality:

|vi(tθ)− vi(tj)| <
√

e0
4nai

.

Let ρ ≤ minni=1
1
Ki
·
√

e0
4nai

. For any real root tη of w(t) and tθ ∈ Ij such that |tθ − tη| < ρ, we

have that

da(θ,η) <

√
e0
2
.

Proof. For 1 ≤ j ≤ ℓ and any tθ ∈ Q, we have that

vi(tθ)− vi(tj) = v′i(t̃j)(tθ − tj),

where t̃j ∈ R lies between tθ and tj .
For t ∈ Ij =]rj , sj [, by the definition of Ki, we have |v′i(t)| ≤ Ki. Then, for tθ ∈ Ij such that

|tθ − tj | < 1
Ki
·
√

e0
4nai

, we have

|vi(tθ)− vi(tj)| = |v′i(t̃j) · (tθ − tj)| ≤ Ki · |tθ − tj | <
√

e0
4nai

.

Now we take ρ ≤ minni=1
1
Ki
·
√

e0
4nai

. If tθ ∈ Ij and |tθ − tj | < ρ, then we have

da(θ,ηj) =

√√√√ n∑
i=1

ai(vi(tθ)− vi(tj))2 <

√√√√ n∑
i=1

e0
4n

=

√
e0
2
.

Lemmas 8.4.6 and 8.4.7 provides us the ingredients to design Algorithm 8.6. It requires us to
introduce two subroutines Isolate and MaxOverInterval below.

• We need two versions of Isolate. The first one takes as input a polynomial p ∈ Q[t] and
returns a set of disjoint intervals of rational extremities isolating the real roots of p.
Besides the polynomial p ∈ Q[t], the second version of Isolate requires a positive ρ ∈ Q as
input and returns the intervals of length at most ρ that isolate the real roots of p.
The explicit descriptions of both of these real root isolating algorithms are given in [168].
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• MaxOverInterval takes as input a polynomial p ∈ Q[t] and an interval [r, s] where r, s ∈ Q
and returns an upper bound of maxt∈[r,s] |p(t)|. Such a subroutine can be implemented
using the following naive bound:

max
t∈[r,s]

|p(t)| ≤
deg(p)∑
i=0

|ci|

where p ((s− r)t+ r) = c0 · tdeg(p) + · · ·+ cdeg(p).

Algorithm 8.6 proceeds through these following steps:

a) We call Isolate on the input w(t) to obtain a set of intervals Ij that isolate the real roots of
w(t) and compute Ki = maxℓj=1maxt∈Ij |v′i(t)| using the subroutine MaxOverInterval on
the input v′i(t) and each interval Ij .

b) We then compute ρ ∈ Q such that 0 < ρ ≤ minni=1
1
Ki
·
√

e0
4nai

and use Isolate on the

polynomialw(t) and the precision ρ to obtain a set of intervals Ĩj such that each Ĩj contains
exactly one real root of w(t) and |Ĩj | < ρ.

c) For 1 ≤ j ≤ ℓ, we choose a point t̃j in Ij ∩ Ĩj ∩Q and evaluate η̃j = (v1(t̃j), . . . , vn(t̃j)).
The set C̃ of the approximations is taken as {(η̃j , Ij | 1 ≤ j ≤ ℓ}.

d) Finally, we decide whether the system

f(x1, . . . , xn) =

n∑
i=1

ai(xi − η̃i)2 −
e0
4

= 0

has a real solution for each approximation η̃ and return those which do not.

We summarize Section 8.4 in Algorithm 8.6 below, which is our second variant of IsIsolated.
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Algorithm 8.6: Algorithm IsIsolated-Approx
Input: f , C = (w(t), v1(t), . . . , vn(t)), a ∈ Qn

+ and e0 ∈ Q
Output: A set of isolating interval B

1 {I1, . . . , Iℓ} ← Isolate(w(t))
2 for i ∈ {1, . . . , n} do
3 Ki ← maxℓj=1MaxOverInterval(v′i(t), Ij)

4 {Ĩ1, . . . , Ĩℓ} ← Isolate
(
w(t), ρ = minni=1

1
Ki
·
√

e0
4nai

)
5 for j ∈ {1, . . . , ℓ} do
6 t̃j ∈ Ij ∩ Ĩj
7 η̃j ← (v1(t̃j), . . . , vn(t̃j))

8 C̃← {(η̃j , Ij) | 1 ≤ j ≤ ℓ}, B ← ∅
9 for (η̃, Iη) ∈ C̃ do

10 if HasRealSolutions(η̃, f,a, e0) = false then
11 B ← B ∪ Iη

12 return B

Remark for more efficient implementation. From a computational point of view, checking
the intersection of H ∩ Rn with a sphere defined by a quadric would increase the bit-size coef-
ficients appearing originally in f . Actually, we can take any hypercube such that it contains the
candidate η in its interior and is contained in the ball B(η, e0) and check whether the boundary
of this hypercube intersects H ∩ Rn. This leads us to check the emptiness of semi-algebraic sets
defined by f = 0 and some linear polynomial inequalities; the polynomials involve in such a
computation have smaller degrees and bit-sizes than the ones for computing with the sphere.

8.4.6 Complexity analysis

The main objective of this subsection is to establish the complexity results for two variants of Al-
gorithm 8.3, which use respectively Algorithm 8.5 and Algorithm 8.6 for the subroutine IsIsolated.
We start with the complexity estimate for Algorithm 8.5.

Theorem 8.1.2. Let f ∈ Q[x1, . . . , xn]. Then, the variant of Algorithm 8.3 which uses Algorithm 8.5
computes the real isolated points of the algebraic hypersurface defined by f within O ˜(64nD8n

)
arithmetic operations in Q and one call of real root isolation on a univariate polynomial of degree
bounded by 2n+2D2n.

Proof. Recall that, in Subsection 8.3.4, it is proved that computing the parametrization C encoding
the candidates can be done within O˜(D3n

)
arithmetic operations in Q and the degrees of the

polynomials w(t), v1(t), . . . , vn(t) are bounded by 2D(D − 1)n−1. It remains to estimate the
arithmetic complexity of the subroutines ComputeE0 and IsIsolated.
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Let κ be the degree of w(t). Algorithm 8.4 (ComputeE0) relies on computing the limit of
crit(δ,Hε,t) ∩ C⟨ε⟩nb , whereHε,t is the algebraic set defined by

(f − ε) · (f + ε) = 0, w(t) = 0 (8.7)

and δ is the distance function

(x1, . . . , xn) 7→
n∑

i=1

ai(xi − vi(t))2

We use the algorithm of [169] on the function δ for the resolution of polynomial systems in
the quotient ring Q[t]/⟨w(t)⟩. Using Bézout’s bound on the system

f2 − ε2 = y · ∂f
∂x1
− ∂δ

∂x1
= · · · = y · ∂f

∂xn
− ∂δ

∂xn
= 0

defining crit(δ,Hε,t) over A, the degree of crit(δ,Hε,t) in C⟨ε⟩n is bounded by 2Dn+1κ ≤
4Dn+2(D − 1)n−1 ≈ 4D2n+1.

By [174, Appendix J.5], the arithmetic operations over A can be done using O (̃κ) opera-
tions in Q. Thus, applying [169, Theorem 5], we obtain the complexity bound O˜(κ ·D3n+2

)
≈

O˜(D4n+2
)

for obtaining the zero-dimensional parametrization E in Algorithm 8.4.
The call to GetE0 computes from the zero-dimensional parametrization E a univariate poly-

nomial P (e) ∈ Q[e] whose solutions are the critical values of δ restricted to Vε. Since the degree
of P (e) is bounded by 4D2n+1, this can be done using FGLM algorithm [67] within O˜(D6n+3

)
arithmetic operations over Q. Next, it computes the minimal distance between the real roots of
P (e) using [9, Proposition 10.23]. The complexity of this computation is linear in the degree of
P (E). Thus, it does not change the asymptotic complexity of Algorithm 8.4.

Therefore, Algorithm 8.4 can be done within O (̃D6n+3) arithmetic operations in Q.
Algorithm 8.5 is basically computing sample points of the hypersurface

F = f(x1, . . . , xn)
2 +

(
n∑

i=1

ai(xi − vi(t))2 − e0

)2

over the quotient ring Q[t]/⟨w(t)⟩. Again, we follow the algorithm of [169] on the input F with
the extended version of geometric resolution to the quotient ring A. By [169, Theorem 6] with
the overcost O (̃κ) of arithmetic operations over A, we obtain the complexity bound

O˜(κ · (2D)3n+2
)
≈ O˜(8nD4n+2

)
for MinimalPolynomial.

The output polynomial U(t, z) has degree at most (2D)n in z and κ in t so its total degree is
bounded by (2D)n + κ. Therefore, solving the bivariate system

w(t) = U(t, z) = 0
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can be done within

O˜(((2D)n + κ)4 κ2 ((2D)n + κ)2
)
≈ O˜(64nD8n

)
arithmetic operations in Q using geometric resolution. In the end, one needs to isolate the real
roots of the eliminating polynomial output by the geometric resolution. That polynomial has
degree bounded by κ((2D)n + κ) ≤ 2n+2D2n.

Adding up all the steps, we obtain the arithmetic complexity of Algorithm 8.3, which lies in
O˜(64nD8n

)
with a call to real root isolation on a polynomial of degree bounded by 2n+2D2n.

Note that for implementing our algorithm, we would mainly rely on Algorithm 8.6 (IsIsolated-
Approx). Hence, we dedicate the rest of this subsection to discuss its complexity. The complexity
result of our algorithm using Algorithm 8.6 is stated as follows.

Theorem 8.1.3. Let f ∈ Q[x1, . . . , xn]. Then, the variant of Algorithm 8.3 which uses Algorithm 8.6
requires O ˜(D6n+3

)
arithmetic operations in Q and two real root isolating calls on a univariate

polynomial of degree bounded by 2D(D − 1)n−1.

Proof. Recall that Algorithm 8.6 computes an approximation η̃ = (η̃1, . . . , η̃n) for each candidate
η ∈ C ∩ Rn and decides whether the system

f(x1, . . . , xn) =

n∑
i=1

ai(xi − η̃i)2 −
e0
4

= 0

has a real solution. The arithmetic complexity for solving each of those decision problems lies in
O˜(8nD3n+2

)
using [169]. Since the cardinality of C is bounded by 2D(D−1)n−1, Algorithm 8.6

runs within
O˜(8nD4n+2

)
arithmetic operations in Q.

Note that all the complexities above are dominated by the complexity

O˜(D6n+3
)

of ComputeE0 (Algorithm 8.4).
It remains to estimate the complexity of computing the approximations, whose main steps

consist of calling MaxOverInterval and isolating the real roots of the eliminating polynomialw(t)
in the zero-dimensional parametrization encoding C.

The subroutineMaxOverInterval is calledn times for the polynomials v′i(t); this would require
O (̃deg(w)) ≈ O (̃Dn) arithmetic operations over Q.

Since each of ℓ evaluations η̃j ←
(
v1(t̃j , . . . , vn(t̃j)

)
takes O (nDn) arithmetic operations,

the cost of getting the approximations is bounded by

O
(
nD2n

)
.
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The real root isolation is called twice in Algorithm 8.6 on the polynomial w(t).
Summing up the above discussion, we conclude that Algorithm 8.6 requires

O˜(8nD4n+2
)

arithmetic operations inQ and two calls of real root isolation on a univariate polynomial of degree
bounded by 2D(D − 1)n−1.

Furthermore, the complexity of real root isolation algorithms depends on the degree of the
input polynomial, which is w(t) in our case, and its bit-size of coefficients. For instance, using
the algorithm of [176], we obtain a bit complexity

O˜(deg(w)3τ2)
where τ is the largest bit-size of coefficients of w(t). While the degree of w(t) is already bounded
by 2D(D − 1)n−1, τ is not estimated yet in this thesis. To identify a bound of τ , one needs to
estimate the bit complexity of Algorithm 8.1 (Candidates), especially the algorithm for computing
at least one point per connected component of a real algebraic set given in [169]. This topic will
be studied in future research.

8.5 Optimizations

Even though computing the constant e0 requires at most DO(n) arithmetic operations in Q, its
performance depends heavily on an efficient implementation of the geometric resolution algo-
rithm over Q[t]/⟨w(t)⟩, which remains challenging to obtain. Thus, we aim to avoid such a com-
putation as much as possible. In what follows, we present two subroutines which are launched
to test whether it is necessary for computing e0. In most of the case, with theses subroutines, our
algorithm will return the set of isolated points without doing any further computation.

8.5.1 Simple identification of real isolated points

The optimization subroutine described in what follows computes efficiently a subset of the can-
didates whose elements are real isolated points of H. To do this, we identify for each candidate
x a ball B ∈ Rn such that when the intersection of the boundary of B and H ∩ Rn is empty, x
is isolated inH ∩ Rn (but not the inverse). This allows us to avoid the computation of e0.

We start with defining the set

C2 =

n⋃
i=1

lim
ε

crit(πi,Hε) ∩ C⟨ε⟩nb .

Note that the set of candidates C is a subset of C2. We have the following lemmas.

211



Lemma 8.5.1. For every bounded connected component C of H ∩ Rn that is not a singleton, there
exist at least two points in C2 that belong to C.

Proof. Let C1, . . . , Ck be the connected components of Hε ∩ R⟨ε⟩n such that limε Ci ⊂ C. By
Lemma 8.2.3, since C is bounded, the Ci’s are bounded over R. Then, by [9, Proposition 12.49],
limε Ci is connected. On the other hand, ∪ki=1 limε Ci = C. As C is not a singleton, there exists
1 ≤ i ≤ k such that limε Ci is not a singleton either.

Now, since Ci is a connected component of Hε ∩ R⟨ε⟩n that is bounded over R and not a
singleton. Then, there exists a coordinate xj such that the projection of limε Ci on xj is an interval
which is not a point. Consequently, the projection of Ci on the xj-coordinate is a closed interval
[α, β] ⊂ R⟨ε⟩. Then, there exist two points xα and xβ such that xα and xβ are in crit(πj ,Hε)∩Ci
and π(xα) = α and π(xβ) = β. Since πj(limε xα) ̸= πj(limε xβ), limε xα ̸= limε xβ . Then
limε xα and limε xβ are two distinct points of C ∩ limε crit(πj ,Hε). As a consequence, there
exists two distinct points in C2 that lie on C.

Proposition 8.5.2. Let C2 be defined as above. Let x ∈ C ∩ Rn and B ⊂ Rn be a ball such that
C2 ∩B = {x} and x is contained in the interior of B. Then, if the intersection of the boundary of B
andH ∩ Rn is empty, x is an isolated point ofH ∩ Rn.

Proof. Let C be the connected component of H ∩ Rn containing x. If C is unbounded, then x is
not an isolated point and the intersection of the boundary B withH∩Rn is not empty. We now
assume that C is bounded.

We assume by contradiction that C is not a singleton. By Lemma 8.5.1, there exists a point
y ∈ C2 ∩ Rn such that y ̸= x and y ∈ C. Since x and y lie on different sides of B. Hence,
by intermediate value theorem, the intersection of the boundary of B and H ∩ Rn is not empty,
which ends the proof.

Recall that, in the subroutine Candidates, the zero-dimensional parametrization encoding
limε crit(πi,Hε) ∩ R⟨ε⟩nb are already computed. Therefore, the union C2 can be obtained easily
by taking the union of those zero-dimensional parametrizations. Next, we isolate the candidates
in C ∩ Rn by balls such that each of them contains exactly on point of C2 ∩ Rn.

Algorithm 8.7 contains the description of the subroutine SimpleIdentification. We call to a
subroutine BoxIsolate that takes as input a zero-dimensional parametrization encoding a subset
of Cn and computes isolating boxes for its real zeros.

212



Algorithm 8.7: SimpleIdentification
Input: A zero-dimensional parametrization C2

Output: A set B1 of intervals of R
1 B1 ← ∅
2 Boxes← BoxIsolate(C2)
3 for box ∈ Boxes do
4 if box ∩H = ∅ then
5 B1 ← B1 ∪ {t-coordinate of box}

6 return B1

By Proposition 8.5.2, for each x ∈ C such that the intersection of the ball isolating x with H
is empty, we conclude that x is an isolated point of H. For the non-empty intersections, we
cannot decide whether x is isolated yet. The problem arises when the isolating boxes are not
small enough so that they intersect not only the connected component of H ∩ Rn containing x
but also some other connected component. When this happens, one could try a smaller size of
isolating boxes.

8.5.2 Limits of critical curves

To compute a set of candidates, we consider the critical loci crit(πi,Hε) for 1 ≤ i ≤ n. Our
second optimization considers the critical loci of the projections on the plane; especially, the
limits of those critical loci are curves in Rn whose real isolated points contain the isolated points
ofH∩Rn. Thus, one can compute a superset of I (H) through computing the real isolated points
of limits of critical curves.

More precisely, for 1 ≤ i < j ≤ n, we denote by πi,j the projection

πi,j : (x1, . . . , xn) 7→ (xi, xj).

Recall thatHε is a smooth algebraic set defined by

(f − ε) · (f + ε) = 0.

Lemma 8.5.3. Let A ∈ GL(n,Q). For every 1 ≤ i < j ≤ n, the set of isolated points ofHA ∩ Rn

is contained in set of real isolated points of limε crit(πi,j ,HA
ε ).

Proof. Let x be an isolated point of HA ∩ Rn. By Proposition 8.2.4, x ∈ limε crit(πi,HA
ε ). Since

crit(πi,HA
ε ) ⊂ crit(πi,j ,HA

ε ), we obtain x ∈ limε crit(πi,j ,HA
ε ). Note that limε crit(πi,j ,HA

ε ) is
a subset ofHA. Thus, if x is isolated inHA∩Rn, it is also isolated in limε crit(πi,j ,HA

ε )∩Rn.

Remark 8.5.4. Note that a real isolated point of limε crit(πi,j ,Hε) is not necessarily isolated in
H ∩ Rn. Take for example the degenerate torus, given by the equation

(x21 + x22 + x3)
2 − 4(x21 + x22) = 0.
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The real trace of limε crit(π1,2,Hε) is the union of the point (0, 0) and the circle given by

x21 + x22 − 4 = x3 = 0.

Hence, Lemma 8.5.3 allows us to obtain a superset of I (H) only.

By [171, Theorem 2], for a generic change of variables A, the critical locus crit(πi,j ,HA
ε ) is

an equidimensional algebraic set of dimension one defined by

(f − ε) · (f + ε) = 0,
∂f

∂xk
= 0 for 1 ≤ k ≤ n and k ̸= i, j.

The computation of limε crit(πi,j ,HA
ε ) can be done using a similar subroutine of Subsection 8.2.2.

For each 1 ≤ i, j ≤ n, we denote by Ji,j the ideal〈
∂f

∂xk
= 0 for 1 ≤ k ≤ n, k ̸= i, j

〉
.

Lemma 8.5.5. Let πi,j be defined as above. There exists a non-empty Zariski open subset A of
GL(n,C) such that, for any A ∈ A ∩GL(n,Q), the algebraic set C defined by

V

(〈
fA
〉
+ Jk :

(
∂fA

∂xi

)∞

∩ Jk :

(
∂fA

∂xj

)∞)
is equi-dimensional of dimension 1 and contains limε crit(πi,j ,HA

ε ).
As a consequence, any isolated point ofHA ∩ Rn is also isolated in C ∩ Rn.

Proof. The proof of the first statement follows a similar outline of the proof of [169, Theorem 1
and Theorem 2]. From the inclusion

I (HA) ⊂ lim
ε

crit
(
πi,j ,HA

ε

)
⊂ C ∩ Rn ⊂ HA ∩ Rn,

we deduce that every real isolated point ofHA ∩ Rn is also an isolated point of C ∩ Rn.

We define the subroutine CurveLimitCheck that takes as input f ∈ Q[x1, . . . , xn] and A ∈
GL(n,Q) and returns a set of isolating boxes B2. It calls to two subroutines:

• CurveLimit that takes as input f , A and a pair of index (i, j) and returns the eliminating
polynomial of a rational parametrization encoding limε crit(πi,j ,HA

ε ). The design of this
subroutine follows Lemma 8.5.5.

• BivariateIsolated that takes as input a bivariate polynomial Ui,j and computes the boxes
isolating the real isolated points of V (Ui,j). This can be done by computing a cylindrical
algebraic decomposition adapted to Ui,j = 0.
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Algorithm 8.8: CurveLimitCheck
Input: f ∈ Q[x1, . . . , xn], A ∈ GL(n,Q)
Output: A set B2 of intervals of R

1 for 1 ≤ i < j ≤ n do
2 Ui,j ← CurveLimit(f,A, (i, j))
3 boxesi,j ← BivariateIsolated(Ui,j)

4 B2 ← ∩1≤i,j≤nboxesi,j
5 return B2

Summary. To conclude this section, we show below the pseudo-code of our implementation.
The subroutine Candidates is modified so that it returns, besides C encoding the candidates, a
zero-dimensional parametrization C2 encoding the finite set C2.

Algorithm 8.9: Implementation of IsolatedPoints
Input: A polynomial f ∈ Q[x1, . . . , xn]
Output: A zero-dimensional parametrization C and a set B of intervals of R

1 A chosen randomly in GL(n,Q)
2 C ,C2 ← Candidates(f,A)
3 B1 ← SimpleIdentification(C2)
4 if |B1| = |C ∩ Rn| then
5 return B1

6 B2 ← CurveLimitCheck(f,A)
7 if |B1| = |B2| then
8 return B1

9 a chosen randomly in Qn
+

10 e0 ← ComputeE0(f,C ,a)
11 B ← IsIsolated-Approx(f,C ,a, e0)
12 return (C ,B)

8.6 Experimental results

In this section, we report on practical performances of our algorithms. Computations were done
on an Intel(R) Xeon(R) CPU E7-4820 2GHz and 1.5 TB of RAM. We take sums of squares of n
random dense quadrics in n variables (with a non-empty intersection over R); we obtain dense
quartics defining a finite set of points. Timings are given in seconds (s.), minutes (m.), hours (h.)
and days (d.).

Table 8.1 shows the timings of Algorithm 8.2. Timings for Algorithm 8.1 (Candidates) are
given in the column cand below. Timings for the computation of the roadmaps are given in the
column rmp and timings for the analysis of connectivity queries are given in the column qri.
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We use FGb library for computing Gröbner bases in order to perform algebraic elimination
in our algorithms. We also used our C implementation for bivariate polynomial system solving
(based on resultant computations) which we need to analyze connectivity queries in roadmaps.

Roadmaps are obtained as the union of critical loci of some maps in slices of the input variety
[174]. We report on the highest degree of these critical loci in the column srmp. The column sqri
reports on the maximum degree of the bivariate zero-dimensional system we need to study to
analyze connectivity queries on the roadmap.

None of the examples we considered could be tackled using the implementation of CAD al-
gorithm in Maple within 10 days.

We also implemented [9, Alg. 12.16] using the Flint C library with evaluation/interpolation
techniques instead to tackle coefficients involving infinitesimals. This algorithm only computes
sample points per connected components. That implementation was not able to compute sample
points of the input quartics for any of our examples. We then report in the column [BPR] on the
number of complex solutions of the zero-dimensional system which is expected to be solved by
[9, BPR]. This is to be compared with the columns srmp and sqri.

n cand rmp qri total srmp sqri [BPR]
4 1 s. 15 s. 33 s. 50 s. 36 359 7290
5 20 s. 1h. 7h. 8 h. 108 4644 65 610
6 30 m. 2 d. 18 d. 20 d. 308 47952 590 490

Figure 8.1: Timings of Algorithm 8.2.

Table 8.2 below reports on the timings of Algorithm 8.9. Our implementation uses FGb li-
brary to perform algebraic elimination in our algorithms. The subroutine HasRealSolutions in
Algorithm 8.6 is done by RAGlib. Solving of zero-dimensional systems in the whole algorithm is
done by msolve and real root isolation is done by the command RootFinding[Isolate] in Maple.

The column cand2 shows the timings for computing the zero-dimensional parametrization C2

and isolates its zeros (see Subsection 8.5.1). The column |real sols.|/ deg(w) shows the number of
real candidates among the total number of candidates. This motivates the use of approximations,
which runs only on candidates in Rn, instead of computing over Q[t]/ ⟨w(t)⟩ which takes into
account all candidates.

The column test1 reports on the timings of the first optimization (Algorithm 8.7). Exploiting
the fact that isolating boxes are given by linear inequalities, we tweak RAGlib for solving the
associated decision problems. As explained in the end of Subsection 8.5.1, by isolating C2 with a
small enough boxes in the subroutine SimpleIdentification, one can also obtain a certified output
without computing e0. In our examples, it is the case and we do not need to carry out further
computations. Timings of other steps are given as an indication for further researches.

Timings for ComputeE0 are given in the column e0. The columns approx and RAGlib re-
spectively give the timings for computing the approximations and solving the decision problem
by RAGlib. Note that the implementation used for two columns approx and RAGlib checks the
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emptiness of intersections ofH∩Rn with hypercubes (as explained in the end of Subsection 8.4.5).
This computation is similar to the one of test1 with the main difference coming from the fact
that the isolating boxes computed in approx requires more precision. This results in linear poly-
nomials, that define hypercubes, of larger bit-sizes, which makes the column RAGlib slower than
test1.

At the moment, we do not dispose of a geometric resolution algorithm for Q[t]/ ⟨w(t)⟩. The
implementation of ComputeE0 relies on available tools such as FGb, msolve that work over the
rational numbers only. The complexity of this subroutine is actually bounded by DO(n2) and the
timings show that it is not practical. The value e0 in these examples is obtained since we know in
advance that the real algebraic set is finite.

n cand cand2 |real sols.|/ deg(w) test1 total e0 apprx RAGlib
2 .1 s .1 s 1/4 .1 s .3 s 3 s .1 s .1 s
3 .2 s .3 s 4/8 6 s 7 s 1 m .1 s 10 s
4 1 s 4 s 2/16 1 m 1 m 20 h .1 s 2 m
5 20 s 90 s 2/32 10 m 12 m > 10 d .2 s 15 m
6 30 m 2.5 h 2/64 4 h 7 h > 10 d 20 s 6 h

Figure 8.2: Timings of Algorithm 8.9.
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Chapter 9

Topics for future research
In the short and medium term, my research plan is to improve and generalize the results obtained
in this thesis and to apply them to practical problems. Some research directions for each problem
are presented in what follows.

9.1 Resolution of parametric polynomial systems

Concerning parametric polynomial systems, we can develop the results we obtained for real root
classification and one block quantifier elimination in many aspects.

Generalization to semi-algebraic sets. The algorithms we presented in Chapters 5 and 6 are
restricted to the case of polynomial systems of equations. One next step is to study how to deal
with polynomial inequalities. Note that an inequality, strict or not, can be reformulated as an
equation by using an extra variable

g ≥ 0→ g − z2 = 0,

g > 0→ z2 · g − 1 = 0.

This approach allows us to apply straight-forwardly our algorithms in Chapters 5 and 6 to handle
inequalities. However, this method increases the number of variables and also the degree of the
system taken as input. In practice, this affects the complexity of the algorithms and usually leads
to inefficient computation.

When the input system involves one inequality, one can still rely on the classical theory of
Hermite quadratic forms. More precisely, let I be a zero-dimensional ideal of Q[x1, . . . , xn] and
g ∈ Q[x1, . . . , xn]. The quadratic form defined by

H(I, g) : Q[x1, . . . , xn]/I ×Q[x1, . . . , xn]/I → Q,
(p, q) 7→ trace(Lp·q·g)

allows one to compute the Tarski’s query of I and g (Definition 4.4.3):

TarskiQuery(I, g) = |{η ∈ V (I) ∩ Rn | g(η) > 0}| − |{η ∈ V (I) ∩ Rn | g(η) < 0}|.

To obtain only |{η ∈ V (I)∩Rn | g(η) > 0}| or |{η ∈ V (I)∩Rn | g(η) < 0}|, one can combine
H(I, 1),H(I, g) andH(I, g2) that provide respectively their sum and difference. Hence, counting
the number of points of V (I) ∩ Rn at which g > 0 or g < 0 requires three Hermite matrices.
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Using a similar construction over the ground field Q(y), we can naturally extend this defini-
tion to parametric polynomial systems which contain one inequality.

When the given system contains multiple inequalities g1, . . . , gm, one can consider 3m Her-
mite matricesH(I, gσ1

1 · · · gσm
m ) where σi ∈ {0, 1, 2}. Those Hermite matrices allow us to identify

all the realizable sign conditions of (g1, . . . , gm). However, such an approach would lead to an
exponential complexity in m, which is not satisfying since the state-of-the-art complexity of one
block quantifier elimination is only polynomial in the number of polynomials defining the input
formula.

In [9, Chap. 10], a workaround is presented to avoid the exponential number of Tarski’s query
required for zero-dimensional ideals without parameters. It uses the so-called adapted family
which detects and removes sign conditions that are not realizable along the computation. We
would like to investigate further this direction to apply it to our algorithms for solving parametric
systems with polynomial inequalities.

The structure of Hermite matrices. As observed in Chapter 5, we know that a parametric
Hermite matrix with respect to the lexicographic ordering is a Hankel matrix. Therefore, such a
matrix of size δ × δ can be defined by only 2δ − 1 elements.

Using grevlex ordering, we obtain a symmetric matrix with entries of smaller degrees but drop
the structure of Hankel matrices. Even though, the number of distinct entries of those matrices
can be much smaller than δ(δ+1)

2 . Actually, for generic systems of n polynomials in Q[x1, . . . , xn]
of degree 2, we have the following table:

n Distinct entries 2n−1(2n + 1) Ratio

2 9 10 90%
3 27 36 75%
4 78 136 57%
5 224 528 42%

This structure depends on the staircase of the Gröbner basis with respect to the grevlex or-
dering of the input system. Therefore, a careful study of the combinatorics of those staircases
would help to accelerate the computation with Hermite matrices, for instance, computing their
determinants or signatures. We can rely on the results of the structure of staircases of generic
systems [155, 159] or determinantal systems [43, 16] to study the structure of Hermite matrices.

Another research direction is to look at the geometric meaning of Hermite matrices. Recall
that the rank of a Hermite matrix is equal to the number of distinct complex solutions of a zero-
dimensional system. For a parametric polynomial system, the rank deficiency of its associated
parametric Hermite matrix naturally leads to a partition of the parameter space.

To be precise, let f = (f1, . . . , fs) ⊂ Q[x,y] and H be the parametric Hermite matrix of
f with respect to the grevlex ordering. We denote the size of H by δ. One can decompose the
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parameter space Ct into

Ct =
δ⋃

i=1

(Di \Di−1)

where
Dr = {η ∈ Ct | rank H(η) ≤ r}.

The setDr is actually an algebraic set defined by (r+1)-minors ofH . Moreover, when f is taken
to be a randomly generated dense system, we observe thatDr has dimension r for δ−t+1 ≤ r ≤ δ
and Dr = ∅ for r ≤ δ − t. We should emphasize that this behavior is different from generic
matrices as in the example below.

Example 9.1.1. We consider the polynomial f = x3 + y1x
2 + y2x + y3. The parametric Hermite

matrix of ⟨f⟩ with respect to the basis {1, x, x2} is the Hankel matrix

H =

 3 −y1 y21 − 2y2
−y1 y21 − 2y2 −y31 + 3y1y2 − 3y3

y21 − 2y2 −y31 + 3y1y2 − 3y3 y41 − 4y21y2 + 4y1y3 + 2y22

 .
The locus at which the rank of H is at most 1 is an algebraic set of codimension 2 defined by〈
y21 − 3y2, y1y2 − 9y3

〉
.

On the other hand, such rank deficiency of a Hankel matrixM = (mi,j)1≤i,j≤3 where themi,j ’s
are indeterminates leads to an algebraic set of codimension 3 (see, e.g., [104]).

Recall that the most costly step of our algorithms for real root classification and one block
quantifier elimination is the computation of sample points on the non-vanishing locus of some
minors of Hermite matrices. Such a computation boils down to the resolution of zero-dimensional
systems encoding some critical locus (see Section 5.2).

Since the complexity of solving zero-dimensional systems is polynomial in the number of
solutions, decomposing these systems into new systems with smaller numbers of solutions would
accelerate our algorithm. Therefore, we expect to be able to improve the computation of sample
points by exploiting the decomposition of Ct as above.

Complexity results for non-generic inputs. Recall that the complexity results provided in
Chapters 5 and 6 rely on the genericity of the input f , namely the Noether position of the homog-
enization of f . Particularly, under this genericity assumption, the entries of the Hermite matrices
are elements in Q[y] and we obtain a bound on the degrees of these entries (see Section 5.6).

However, in general, the entries of parametric Hermite matrices are rational functions in y.
They contain denominators coming from the leading coefficients (with respect to the x variables)
in Gröbner bases used in their construction. We illustrate this by the following toy example.

Example 9.1.2. We consider the system

f = {2x21 + 2x1x2 + 2x1y + 4x2 + 2y + 1, 3x21 + 4x2y + y2 + x1 + y}.
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The parametric Hermite matrix of f associated to the basis {1, x2, x1}
3 −43y2+49y−30

12y
4y−7
3

−43y2+49y−30
12y

1225y4−3566y3+4933y2−3384y+900
144y2

−92y3+241y2−248y+90
18y

4y−7
3

−92y3+241y2−248y+90
18y

34y2−62y+37
9

 .
Studying the behavior of these denominators would help to control their degrees and could

also allow us to tweak the algorithm to remove them. This research direction is therefore essential
to obtain a complexity result and better practical performance for our algorithm in non-generic
cases.

Let f be a polynomial sequence in Q[x,y], G be the reduced Gröbner basis of f with respect
to the ordering grevlex(x ≻ y) and H be the parametric Hermite matrix of f associated to G.

Recall that the non-specialization polynomial of H is defined as

w∞ =
∏
g∈G

lcx(g).

Since the denominators inH appear as products of certain lcx(g), a reasonable approach to bound
the degrees of denominators in H should start with controlling the degrees of those leading co-
efficients.

For instance, let g ∈ G. As Q(y) is considered as the ground field, we can actually replace
g by g/lcx(g) in G. By substituting formally each lcx(g)

−1 by a new parameter zg , one obtains
polynomials in Q[x,y, z] where z = {zg | g ∈ G}. Using similar techniques as the ones in
Section 5.6, we may be able to control the degrees of (y, z) during the normal form reductions
(which operate mainly on the variables x) in the construction of Hermite matrices.

The approach above could allow us to obtain a complexity result parameterized by the degrees
of lcx(g) for non-generic systems. Hence, estimating the degree of those leading coefficients
lcx(g) is an important question to be investigated.

In this research direction, we can also investigate input systems equipped with special struc-
tures such as symmetry or sparsity. Designing algorithms which are tailored for structured sys-
tems is important in computer algebra.

9.2 Total real intersection by hyperplanes

Computing totally real hyperplane sections with higher multiplicities. At this moment,
using our real root classification algorithm, we are able to answer the (non-)existence of simple
totally real hyperplane sections for multiple real algebraic curves. That is to decide for a real
curve X whether there exists a hyperplane H defined over R such that the intersection H ∩X
contains only real points of multiplicity 1. These results lead to certain bounds of the simple real
divisor bound for those examples. The next step is therefore to extend our algorithm to compute
totally real hyperplane sections in general, i.e., the intersections with higher multiplicities.
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Constructing a Hermite matrix associated to the parametric system under study, one can re-
quire that the rank of the Hermite matrix is equal to its signature, which is to say that the numbers
of distinct complex and real solutions of that system are equal. This condition is then modeled by
semi-algebraic formulas whose atoms are minors of the Hermite matrix. Hence, deciding the ex-
istence of totally real hyperplane sections is reduced to checking the emptiness of semi-algebraic
sets defined by those formulas.

For instance, given a parametric Hermite matrix H constructed as explained in Section 7.3
and r ∈ N, a real point of parameters at which the (r + 1)-minors of H vanish and the first r
leading principal minors are positive would give a totally real hyperplane section of r points. This
problem of deciding the emptiness leads to computations which are out-of-reach of classical tools
and current libraries.

For instance, computing a general totally real hyperplane section of the curve X ′
2 in Exam-

ple 7.4.1 would require to decide the emptiness of a semi-algebraic set in R3 defined by one equa-
tion of degree 18 and 4 inequalities of degree 8, 10, 16 and 18. For the curve X1 of Example 7.4.1,
we need to carry out similar computations on a semi-algebraic set in R3 defined by an equation
of degree 18 and 4 inequalities of degree 10, 12, 16 and 22.

We aim to design new algorithms that exploit the determinantal structure of those semi-
algebraic sets in order to carry out those computations.

Determining the deformation value. Recall that, in Example 7.4.2, we revisit the counter-
examples for Huisman’s conjecture given in [125]. In these counterexamples, they construct a
family of curvesXε ∈ P3 parameterized by ε > 0 using deformation such that for a small enough
ε > 0, Xε admits no totally real hyperplane section. Clearly, obtaining an explicit curve without
totally real hyperplane section from the family Xε requires an appropriate value of ε > 0 which
we want to identify automatically.

More specifically, we raise the computational problem to determine a number ε0 ∈ R+ such
that any 0 < ε < ε0 will lead to a curveXε without totally real hyperplane section. Representing
ε by a new variable E, the family of curves Xε is modeled by a surface in R4 with coordinates
(x1, x2, x3, E). Taking also the parameterized hyperplane

y1x1 + y2x2 + y3x3 + 1 = 0

into the defining system ofXε, we obtain a system of 7 indeterminates which defines an algebraic
set that we name E in C7.

Let πE be the projection (x,y, E) 7→ E. We want to compute a value ε0 such that for any
ε ∈ (0, ε0), the fiber π−1

E (ε)∩E∩R7 contains at least one real point. Such a computation can be
done by classifying the real solutions of the above system.

Another approach for solving this computational problem is to go through the generalized
critical values of the restriction of πE to E∩R7 (see, e.g., [127] for this definition). The knowledge
of those generalized critical values would allow us to identify an ε0 > 0 such that there exists a
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homeomorphism (
π−1
E (ε) ∩ E ∩ R7

)
× (0, ε0) ≃ πE((0, ε0)) ∩ E ∩ R7

for every ε ∈ (0, ε0). Consequently, this value e0 obtained from the generalized critical values
provides the deformation value for our problem.

We want to investigate further the computation of ε0 by both approaches presented above.

9.3 Computing real isolated points

Extension to semi-algebraic sets. The algorithms presented in Chapter 5 allow us to compute
the isolated points of a given real algebraic set. Recall that those algorithms take as input a single
equation. When the given real algebraic set is known as the real solutions of a system of multiple
equations

f1 = · · · = fs = 0,

one needs to do the computation through the sum of squares f21 + · · · + f2s . However, doing
so may increase the dimension of the underlying complex algebraic set and therefore makes the
computation more difficult.

Therefore, it will be nice if our algorithms can be adapted to deal directly with systems of
polynomial equations. Such an algorithm would requires a variant of [169] that computes at least
one point per connected component for a singular algebraic set defined by multiple equations.

Furthermore, to compute isolated points of semi-algebraic sets in general, one would need
an algorithm that computes points per connected component of a given semi-algebraic set. Even
though those algorithms exist, they handle the singular semi-algebraic sets through the deforma-
tion technique using infinitesimals. This would lead to inefficient implementation which cannot
be used for solving applications. On the other hand, we currently reformulate the inequality con-
straints as equations with new variables. This direct method could lead to non-regular systems
for which the computation of Gröbner bases is not practical.

As we aim to tackle applications in material sciences, we are interested in searching for a better
approach to deal with inequalities and designing a practical algorithm for computing points per
connected component of a singular semi-algebraic set.

Bit-complexity of our algorithms. In the implementation (Algorithm 8.9) of our algorithm
for computing the real isolated points presented in Section 8.5 , we make use of approximations
of the candidates to avoid partly the computation over Q[t]/ ⟨w(t)⟩. Moreover, we introduce the
optimization subroutine SimpleIdentification (Algorithm 8.7); this subroutine is able to replace the
remaining computation of o in many cases. These subroutines lead to an algorithm with better
practical performance. However, they both rely on isolating the real solutions of the univariate
polynomial w(t) in the zero-dimensional parametrization encoding the candidates. Whereas, the
complexity of real root isolating depends on the bit-size of the coefficients of the eliminating
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polynomial w(t) which is not yet analyzed in this thesis. Therefore, we want to estimate the bit
complexity of our algorithms in the future. For this direction of research, we can refer to [57] for
the bit complexity of the algorithm that computes sample points in [171].
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Gröebner bases. In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 5th
International Conference, AAECC-5, Menorca, Spain, June 15-19, 1987, Proceedings, pages
247–257, 1987.

[79] A. Giovini, T. Mora, G. Niesi, L. Robbiano, and C. Traverso. “one sugar cube, please”or
selection strategies in the buchberger algorithm. In Proceedings of the 1991 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’91, page 49–54, New York, NY,
USA, 1991. Association for Computing Machinery.

[80] M. Giusti. Some effectivity problems in polynomial ideal theory. In J. Fitch, editor, EU-
ROSAM 84, pages 159–171, Berlin, Heidelberg, 1984. Springer Berlin Heidelberg.

[81] M. Giusti. A note on the complexity of constructing standard bases. In B. F. Caviness,
editor, EUROCAL ’85, pages 411–412, Berlin, Heidelberg, 1985. Springer Berlin Heidelberg.
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données. extrait d’une lettre á m. borchardt. J. Reine Angew. Math., 52:39–51, 1856.

[107] H. Hong. An improvement of the projection operator in Cylindrical Algebraic Decomposi-
tion. In Proceedings of the International Symposium on Symbolic and Algebraic Computation,
ISSAC ’90, page 261–264, New York, NY, USA, 1990. Association for Computing Machinery.

[108] H. Hong, R. Liska, and S. Steinberg. Testing stability by quantifier elimination. Journal of
Symbolic Computation, 24(2):161–187, Aug. 1997.

[109] H. Hong and M. Safey El Din. Variant real quantifier elimination: Algorithm and applica-
tion. In Proceedings of the 2009 International Symposium on Symbolic and Algebraic Com-
putation, ISSAC ’09, page 183–190, New York, NY, USA, 2009. Association for Computing
Machinery.

[110] H. Hong and M. Safey El Din. Variant quantifier elimination. J. Symb. Comput., 47(7):883
– 901, 2012. International Symposium on Symbolic and Algebraic Computation (ISSAC
2009).

[111] J. Huisman. On the geometry of algebraic curves having many real components. Rev. Mat.
Complut., 14(1):83–92, 2001.

[112] J. Huisman. On the geometry of algebraic curves having many real components. Rev. Mat.
Complut., 14(1):83–92, 2001.

[113] J. Huisman. Non-special divisors on real algebraic curves and embeddings into real projec-
tive spaces. Ann. Mat. Pura Appl. (4), 182(1):21–35, 2003.

[114] C. G. Jacobi. Uber eine elementare transformation eins in bezug auf jedes von zwei
variablen-systemen linearen und homogenen ausdrucks. Journal fur die reine und ange-
wandte Mathematik 53., pages 265 – 270, 1857.

[115] Z. Jelonek. Testing sets for properness of polynomial mappings. Mathematische Annalen,
315:1–35, Sept. 1999.

233



[116] Z. Jelonek and K. Kurdyka. Quantitative generalized bertini-sard theorem for smooth affine
varieties. Discrete & Computational Geometry, 34(4):659–678, 2005.

[117] J. Joos Heintz and J. Morgenstern. On the intrinsic complexity of elimination theory. Journal
of Complexity, 9(4):471–498, 1993.
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für die reine und angewandte Mathematik, 92:1–122, 1882.

[125] M. Kummer and D. Manevich. On Huisman’s conjectures about unramified real curves.
Preprint arXiv:1909.09601, 2019.

[126] Y. Kuramoto. Self-entrainment of a population of coupled non-linear oscillators. In
H. Araki, editor, International Symposium on Mathematical Problems in Theoretical Physics,
pages 420–422, Berlin, Heidelberg, 1975. Springer Berlin Heidelberg.

[127] K. Kurdyka, P. Orro, and S. Simon. Semialgebraic sard theorem for generalized critical
values. Journal of Differential Geometry, 56:67–92, 09 2000.

[128] G. Lafferriere, G. Pappas, G. Schneider, and S. Yovine. Parameter synthesis in robot motion
planning using symbolic reachability computations. In Proceedings of the 8th IEEE Mediter-
ranean Conference on Control and Automation. Citeseer, 2000.

[129] R. Lakes. Foam structures with a negative poisson’s ratio. Science, 235(4792):1038–1040,
1987.

234



[130] Y. N. Lakshman. A Single Exponential Bound on the Complexity of Computing Gröbner Bases
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Erné, Oxford Science Publications.

[146] E. W. Mayr and A. R. Meyer. The complexity of the word problems for commutative semi-
groups and polynomial ideals. Advances in Mathematics, 46(3):305–329, 1982.

[147] M. M. Maza, B. Xia, and R. Xiao. On solving parametric polynomial systems. Mathematics
in Computer Science, 6(4):457–473, 2012.

[148] S. McCallum. An improved projection operation for Cylindrical Algebraic Decomposition
of three-dimensional space. Journal of Symbolic Computation, 5(1):141 – 161, 1988.

[149] S. McCallum. On projection in CAD-based quantifier elimination with equational con-
straint. In Proceedings of the 1999 International Symposium on Symbolic and Algebraic Com-
putation, ISSAC ’99, page 145–149, New York, NY, USA, 1999. Association for Computing
Machinery.

[150] J. Milnor. On the Betti numbers of real varieties. Proceedings of the American Mathematical
Society, 15:275–280, 1964.

[151] H. M. Möller and F. Mora. Upper and lower bounds for the degree of groebner bases.
In J. Fitch, editor, EUROSAM 84, pages 172–183, Berlin, Heidelberg, 1984. Springer Berlin
Heidelberg.

[152] J.-P. Monnier. Divisors on real curves. Adv. Geom., 3(3):339–360, 2003.

[153] J.-P. Monnier. On real generalized Jacobian varieties. J. Pure Appl. Algebra, 203(1-3):252–
274, 2005.
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