
HAL Id: tel-03882284
https://theses.hal.science/tel-03882284

Submitted on 2 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated verification and synthesis of distributed
systems : in particular applied to SDN-IoT platform

Abdul Majith Noordheen

To cite this version:
Abdul Majith Noordheen. Automated verification and synthesis of distributed systems : in particular
applied to SDN-IoT platform. Networking and Internet Architecture [cs.NI]. Université Rennes 1,
2022. English. �NNT : 2022REN1S035�. �tel-03882284�

https://theses.hal.science/tel-03882284
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES 1

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : « l’informatique »

Par

« Abdul Majith NOORDHEEN »
« Automated Verification and Synthesis of Distributed Systems »

« Applied to SDN and SDN-based IoT platform »

Thèse présentée et soutenue à Rennes, le 7 Juin 2022
Unité de recherche : « SUMO Team, Inria, Bretagne »

Composition du Jury :
Présidente : Sophie PINCHINAT Professeure, Université de Rennes
Rapporteurs : Thi-Mai-Trang NGUYEN Maitresse de conférence, HDR, LIP6, Sorbonne Université

Gwen SALAUN Professeur, CONVECS, LIG, Université de Grenoble
Examinateurs : Béatrice BÉRARD Professeure, LIP6, Sorbonne Université

Stefan Haar DR Inria, INRIA, LSV, ENS Paris-Saclay,
Dir. de thèse : Hervé MARCHAND Chargé de Recherche, HDR, INRIA, Rennes
Co-dir. de thèse : Dinh Thai BUI Nokia Bell Labs France
Co-dir. de thèse : Ocan SANKUR Chargé de Recherche, CNRS, Université de Rennes

RÉSUMÉ

1 - Introduction

Notre principale motivation pour ce travail est l’automatisation de la mise à jour cohérente et
l’intégration incrémentale de nouvelles fonctionnalités pour des applications distribuées. Un
système distribué est une collection d’entités communicantes qui sont en général complexes.
Chaque entité est unique en termes de comportement, de type de matériel, de procédure inté-
grée et de contraintes locales. La collection de ces diverses entités doit satisfaire des exigences
globales tout en respectant leurs contraintes locales. Concevoir, maintenir et mettre à jour des
fonctionnalités supplémentaires dans l’application du système distribué sans erreur est un défi
en lui-même. Dans le cadre de ce document, nous utilisons des schémas de vérification for-
melle pour vérifier que le système distribué satisfait aux exigences globales. Afin d’effectuer
la vérification formelle d’un système distribué par rapport aux exigences globales, nous modé-
lisons l’ensemble d’entités communicantes comme un système de transitions distribué. Nous
utilisons la composition d’automates et de systèmes de transition symbolique communicants
pour modéliser le système distribué donné. Les exigences globales du système distribué sont
modélisés par l’intermédiaire de logique temporelle linéaire (LTL). Dans le but d’intégrer de
nouvelles fonctionnalités dans l’application distribuée de manière incrémentale, nous utilisons
des techniques de synthèse modulaire et compositionnelle. Nous modélisons les fonctionnalités
correspondantes dans un modèle abstrait et ses exigences comme une spécification de sécu-
rité. Basé sur le modèle distribué, en utilisant la technique de synthèse réactive, nous générons
des contrôleurs de supervision pour ce nouveau modèle. Le contrôleur de supervision produit
contrôle ce nouveau modèle, de sorte que celui-ci soit cohérent et satisfasse les spécifications
globales. En général, la génération du contrôleur de synthèse pour les modèles distribués donnés
est coûteuse en termes d’exigences de mémoire et de temps de calcul. Afin de générer le contrô-
leur en temps réel et d’ouvrir la possibilité d’intégrer de nouvelles fonctionnalités de manière
incrémentale, nous utilisons des techniques de synthèse compositionnelle et modulaire.

Nous sommes particulièrement intéressés par l’application des techniques de vérification
formelle et de synthèse vis-a vis du réseau Software Design Design (SDN) qui coordonne l’ap-
plication de l’internet des objets (IoT). L’application SDN-IoT est un système distribué qui est
bien adapté pour se fonder sur la synthèse et la vérification formelle. Les applications IoT ont
un important impact dans divers domaines comme l’industrie, les appareils ménagers, la télé-
surveillance, etc. Les systèmes distribués permettent un mécanisme de contrôle économique et
flexible permettant l’application de mise en réseau permettant de coordonner diverses applica-

3

tions IoT dans une plate-forme commune.
Pour montrer l’utilité de la synthèse de contrôle réactif et générer automatiquement les

contrôleurs de supervision pour les différentes entités dans l’application SDN-IoT, nous pre-
nons le comportement abstrait du véhicule pour tout ce qui est application et spécification V2X,
et le modélisons dans l’outil de synthèse réactif BZR. Nous avons généré un contrôleur de
supervision pour le modèle V2X ainsi que diverses spécifications de sécurité. En utilisant le
même outil, nous avons généré le code C du contrôleur à partir du modèle et des spécifications
correspondants. Cette façon de modéliser et de générer le code implémentable ouvre la voie
à l’automatisation de l’intégration de nouvelles fonctionnalités à partir de comportements de
fonctionnalités abstraites d’une manière cohérente.

2 - Vérification et contrôle de systèmes distribués

Les applications des systèmes distribués sont omniprésentes dans notre monde moderne. Pre-
nons l’exemple des rovers martiens : depuis la terre, on peut commander un dispositif d’ac-
tionnement sur une autre planète et recueillir diverses données scientifiques. Ces boucles de
commande et d’actions sont rendues possibles par la communication de divers dispositifs infor-
matiques, capteurs et actionneurs. Un système distribué est un mot-clé vague et ambigu utilisé
dans toute la littérature informatique. Lorsque nous mentionnons un système distribué (DS),
nous voulons surtout dire ce qui suit :

Un système distribué est une coordination de plusieurs éléments in-
formatiques autonomes qui apparaissent à ses utilisateurs comme un
seul système cohérent. Chaque élément informatique autonome est ca-
pable de se comporter de manière indépendante et peut être un disposi-
tif matériel ou un processus logiciel. Du point de vue de l’application,
cette coordination de multiples éléments autonomes peut être considé-
rée comme un système unique.

Systèmes Distribués

2.1 - Modèle de systèmes distribués

Dans un DS donné, deux entités quelconques communiquent via des files d’attente synchrones
ou asynchrones. Ces files d’attente synchrones sont des canaux de réseaux locaux à haut débit
qui transfèrent efficacement le message instantanément à l’autre, ce qui nécessite souvent un
canal de connexion dédié entre la paire d’entités informatiques dans le DS. En revanche, les files
d’attente asynchrones ne sont pas à haut débit et ces types de files d’attente sont le plus souvent
du type FIFO, de sorte qu’une seule entité informatique centralisée peut répondre aux demandes

4

de nombreux utilisateurs en disposant d’un seul canal de file d’attente, ce qui constitue une
solution rentable dans les services de réseaux typiques [ST16]. En théorie, les communications
entre n’importe quelle paire d’entités dans le DS seront soit synchrones soit asynchrones.

Dans ce document, nous considérons l’aspect synchrones et asynchrone. Nous utilisons la
composition d’automates et de modèles de systèmes de transitions symboliques pour modéliser
les divers composants. Pour les files d’attente asynchrones FIFO, nous avons défini le modèle
de systèmes de transitions symboliques communicants avec des canaux FIFO. Nous considé-
rons les systèmes composés de plusieurs systèmes qui communiquent de manière asynchrone
au moyen de canaux FIFO supposés non limités et fiables (c’est-à-dire que nous ne sommes pas
intéressés par le temps exact que prend un événement pour être transmis mais plutôt par le fait
qu’il se produise) [Kal+14][PP91][MW08][LJJ06]. Le fait de choisir des canaux FIFO est mo-
tivé par le fait que nous nous intéressons aux systèmes distribués, dans lesquels les actions sont
transmises d’un composant à un autre. Nous supposons que chaque composant est modélisé

FIGURE 1 : Exemple de systèmes distribués communicant via des canaux FIFO
par un système de transitions symbolique. Ainsi, chaque composant du système est un système
de transition avec des variables, dont le domaine peut être infini, et est composé de transitions
symboliques. Chaque transition possède une garde sur les variables du système et une fonction
de mise à jour qui indique l’évolution des variables lorsque la transition est déclenchée. De plus,
les transitions sont étiquetées avec des symboles pris dans un alphabet fini. Ce modèle permet
la représentation compacte de systèmes infinis lorsque la modélisation du système distribué et
les variables d’exigences prennent leurs valeurs dans un domaine infini.

2.2 - Vérification de systèmes distribués

Dans le cadre général des systèmes distribués, pour analyser la correction du système vis-à-vis
des exigences du système, on peut utiliser un schéma de vérification formelle, c’est-à-dire le
principe du model checking pour les applications critiques de sécurité. Le principe de vérifica-
tion de modèle peut être vu comme suit :

Pour un ensemble donné de spécifications : si le système satisfait les
spécifications, alors il produit le résultat disant que le système est cor-
rect par rapport aux spécifications données. Si ce n’est pas le cas, la
vérification notifie l’utilisateur avec un contre exemple : une trace de la
séquence d’actions effectuée dans le système qui viole la spécification.

Model-checking

5

Model A

System

Model A

Requirement

Temporal logic
Specification

φ =¬EF fail

Model Checker
A |= φ ?

No
yes

Counter Example

FIGURE 2 : Vérification formelle du système

L’expression des spécifications est importante dans le processus de model checking, pour
exprimer les exigences du système. Il existe de nombreuses façons d’exprimer celles-ci ; l’une
d’entre elles est la logique temporelle linéaire (LTL) [Pnu77], un langage qui convient bien aux
systèmes basés sur l’état (comme les automates).

Comme nous considérons les systèmes distribués, nous devons trouver un moyen de faire
face à l’explosion de l’espace d’état due à la composition parallèle des différents composants
des systèmes distribués. Le raisonnement compositionnel apparaît naturellement lors de la
conception d’un système distribué, puisque le concepteur conçoit souvent des spécifications
pour chaque composant du système sur lequel des exigences globales doivent être vérifiées.
Le raisonnement compositionnel nous permet de vérifier les propriétés de chaque sous-système
séparément, et de combiner ces règles pour déduire les propriétés du système global.

Étant donné un automate A et des formules de sécurité LTL φ ,ψ , nous désignons par
〈φ〉A 〈ψ〉 un triple tel que φ représente l’hypothèse que l’on peut faire sur l’environnement
de A , tandis que ψ représente la garantie que A fournit sous l’hypothèse que l’environnement
satisfait φ .

ψ φ φ ∧ψ A 〈φ〉A 〈ψ〉

FIGURE 3 : 〈φ1〉A 〈φ2〉 illustration

En résumé et sans donner de conditions sur les différents composants et spécifications, ce que
nous voulons prouver est le suivant :

6

〈φas〉A1〈φI〉 〈φI〉A2〈φguar〉
〈φas〉A1‖A2〈φguar〉

(1)

l’équation (1) signifie que, si, sous l’hypothèse que A1 |= φas, A1 |= φI et de même pour A2

par rapport à φI , où φI est une spécification intermédiaire et φguar, alors il entraîne que, si, sous
l’hypothèse que le système composé A1‖A2 |= φas, alors ce système vérifie φguar.

Dans le document, nous avons considéré ce cadre de deux points de vue

• techniques de raisonnement compositionnel basées sur le langage

• techniques de raisonnement compositionnel basées sur des spécifications LTL

2.3 - Contrôle de systèmes distribués

Dans le processus d’automatisation visant à faire fonctionner correctement le modèle de sys-
tème en cas de violation de la spécification du système, on peut utiliser la technique de synthèse
de contrôle réactif, qui repose sur le principe du contrôle des actions contrôlables du système de
manière à ce que le comportement du système modélisé satisfasse la spécification du système
en désactivant les actions spécifiques à certains instants spécifiques. Un schéma de synthèse
abstrait est le suivant :

Model A

System I

Model A

Requirement

Temporal logic
Specification

φ =¬EF fail

Supervisory
Control

A S |= φ

Implementation
of S ,

connection to I

Assuming
I ∼A

Means
of control

and observation

FIGURE 4 : Principe de la synthèse de contrô-
leur

Model A
Supervisor

S

Observation
Obs

S (Obs)
Set of disabled events

FIGURE 5 : Contrôle par boucle fermée

7

Cette théorie permet l’utilisation de méthodes constructives assurant, a
priori, et au moyen du contrôle, les propriétés requises sur le compor-
tement d’un système. Étant donné un modèle A d’un système (qui est
censé représenter correctement le comportement d’une implémentation)
et une spécification φ (c’est-à-dire des exigences), un contrôleur S doit
être dérivé par divers moyens de sorte que le comportement résultant du
système en boucle fermée réponde aux exigences.

Synthèse de Contrôleur

Dans ce document, nous avons d’abord étendu la théorie du contrôle de supervision pour des
spécifications LTL, puis nous avons considéré le contrôle modulaire ainsi que le raisonnement
compositionnel pour la théorie du contrôle décrite comme suit :

Étant donné deux automates A1 et A2 et deux spécifications de sécurité LTL φ et ψ , alors

• Contrôle Modulaire
(A φ

1)Sφ |= φ (A ψ

2)Sψ |= ψ

((A φ

1)Sφ‖(A ψ

2)Sψ) |= φ ∧ψ

• Raisonnement compositionnel

〈φ1〉((A1)
Sφ1⇒φ2)〈φ2〉 〈φ2〉((A2)

Sφ2⇒φ3)〈φ3〉
〈φ1〉((A1)

Sφ1⇒φ2)‖((A2)
Sφ2⇒φ3)〈φ3〉

Les deux techniques de contrôle ci-dessus ouvrent la voie à l’intégration de nouvelles fonction-
nalités distribuées de manière incrémentale et cohérente.

3 - Software Defined Networks.

Dans ce manuscrit, nous nous intéressons particulièrement aux software defined networks contrô-
lant la coordination des applications de l’internet des objets. Nous avons appliqué le schéma de
vérification et de synthèse formelles à cette plateforme SDN-IoT. Les méthodes de la vérifica-
tion formelle et de la synthèse des systèmes distribués que nous fournissons ici ne soient pas
limités à la plate-forme SDN-IoT, ils peuvent être appliqués à des systèmes distribués géné-
riques.

SDN fournit une manière flexible de mettre en réseau les applications. Grâce à l’indépen-
dance du contrôleur par rapport au réseau de traitement des données, l’entité de contrôle peut
mettre en œuvre des algorithmes complexes propriétaires. Il fonctionne sur le principe de l’abs-
traction des applications, des services réseau. Elle contrôle les événements du réseau et planifie

8

les ressources du réseau à partir d’une vue abstraite et d’informations sur les réseaux de données
à grande échelle et les utilisateurs du réseau. Une telle vue abstraite du principe de contrôle du
réseau permet aux contrôleurs SDN de coordonner les divers utilisateurs et applications dans
une plate-forme commune.

Un tel mécanisme de contrôle abstrait de SDN permet d’orchestrer diverses applications IoT.
Les dispositifs IoT sont des systèmes intégrés qui sont intrinsèquement diversifiés et utilisés de
manière intensive dans les applications industrielles, les appareils domestiques intelligents et
les applications à distance à des fins diverses.

La figure 6 illustre l’architecture typique d’un SDN orchestrant les applications IoT. Le

FIGURE 6 : Exemple d’une architecture SDN

data plane représente la couche contenant les Open Flow Virtual commutateurs, les clients
agissant comme des sources et des terminaux. Les clients peuvent être un serveur, un ordina-
teur portable, un ordinateur personnel ou tout autre dispositif IoT (capteurs, actionneurs, etc.).
Le gestionnaire d’applications réseau héberge un certain nombre de politiques réseau et IoT

et communique avec le plan de contrôle SDN par le biais d’une interface de programmation
d’applications ouverte, l’interface concernant l’état du réseau et ses exigences. Les contrôleurs,
situés dans le data plane, dictent des règles d’acheminement aux éléments d’acheminement des
données (commutateurs Open Flow Virtual) par le biais d’une API. Les fonctionnalités typiques
de la couche du plan de gestion (ou couche du gestionnaire d’application) consistent à définir
divers accès de contrôle du réseau, un planificateur de ressources, l’établissement de chemins
de données sûrs et sécurisés entre diverses politiques de dispositifs authentifiés. Elle maintient
également des informations de niveau abstrait sur les dispositifs IoT et leurs diverses exigences

9

d’application. En utilisant ces informations abstraites, il affine les politiques de réseau de ni-
veau fin. En outre, en utilisant les politiques de réseau de niveau fin, il donne des instructions
au plan de contrôle du SDN pour mettre en œuvre les politiques dans le plan de données et les
utilisateurs du réseau.

Dans un tel contexte, nous utilisons des méthodes de vérification formelle pour assurer la sé-
curité d’un environnement SDN. En particulier, nous prenons le protocole spécifique SDN conçu
par Nokia-Bell labs. L’une des principales difficultés était de comprendre ce protocole particu-
lier et de le modéliser de manière formelle, afin de pouvoir vérifier l’exactitude du système par
rapport aux spécifications de sécurité du système. Pour vérifier l’exactitude, nous avons choisi
de modéliser le protocole dans l’outil de model checking SPIN. Lorsque les appareils connectés
aux réseaux ont une position fixe, nous avons pu prouver que certaines propriétés fondamentales
sont remplies par le protocole Nokia. Pour un cas dynamique (c’est-à-dire lorsque les appareils
peuvent se déplacer d’une partie à l’autre ou quitter et revenir au réseau), nous avons constaté
que le protocole viole l’objectif requis (exactement une propriété de confidentialité des don-
nées). Nous avons alors proposé avec l’aide de Nokia une solution pour éviter un tel scénario.
Nous avons ajouté une telle solution dans notre modèle et testé le modèle final en vérifiant qu’il
répondait bien à la spécification requise. Pendant la phase de vérification, nous avons également
rencontré une explosion de l’espace d’état dans notre processus de vérification du modèle SDN.
Pour éviter l’énorme espace d’état dans la vérification, nous avons utilisé le raisonnement par
composition. Nous avons écrit un article sur la modélisation d’un tel protocole SDN et sa véri-
fication automatisée, intitulé "Compositional model checking of an SDN platform", publié lors
de la conférence Design of Reliable Communication Network,2021 Milan, Italie.

A partir de ce travail, nous sommes passés à la synthèse de commande réactive pour la gé-
nération automatisée de contrôleurs. L’étude des règles de raisonnement compositionnel dans
notre dernier travail nous a aidé à proposer une "technique de synthèse compositionnelle" pour
réduire le problème d’explosion de l’espace d’état dans la synthèse de contrôle discret. Nous
avons décrit un cadre détaillé et une preuve de correction concernant la synthèse composi-
tionnelle des systèmes distribués. Cette technique de synthèse compositionnelle ainsi que les
techniques modulaires peuvent être utilisées pour trouver des superviseurs pour chaque entité
locale d’un système distribué de manière efficace et en temps réel. Afin de montrer l’utilité de
l’application de la synthèse, nous avons modélisé le comportement abstrait de V2X. En utilisant
la synthèse de contrôle avec une approche compositionnelle et modulaire, nous avons généré le
code implémentable de bas niveau de ces contrôleurs en utilisant un outil de contrôleur réactif
synchronisé BZR comprenant l’outil Heptagon pour exprimer le modèle du système et ReaX

pour automatiser la technique de synthèse afin de générer le contrôleur réactif.

10

TABLE OF CONTENTS

1 Introduction 15
1.1 Road Map To Thesis . 16

1.2 Distributed Systems . 17

1.3 Challenges . 19

2 Software-Defined Networks and IoT Platforms 21
2.1 Introduction to SDN . 23

2.2 IoT Devices and Related Applications . 26

2.3 Orchestration of IoT Platform using SDN Concept 28

2.4 Nokia SDN-IoT Platform . 30

2.4.1 General Problem and Assumptions . 31

2.4.2 Cluster of IoT Devices or Virtual Space 32

2.4.3 Decentralized Nokia-SDN Network 33

2.4.4 Communication Procedures . 34

2.5 Chapter Conclusion . 38

3 Modeling the Distributed System and Requirements 39
3.1 Modeling Notations . 39

3.1.1 Languages . 39

3.1.2 Automaton . 40

3.2 Symbolic Transition System . 45

3.3 Formal Verification of Distributed system . 52

3.3.1 Expressing the System Requirements as Specifications 52

3.3.2 Verification of Monolithic System . 55

3.3.3 Formal Verification of Distributed System 57

3.4 Control Synthesis of Distributed system . 58

3.4.1 Control Synthesis of Finite State System 60

3.4.2 Control Synthesis of LTL Safety Specifications 63

3.4.3 Synthesis of Finite State Distributed System 65

3.4.4 Extending the Synthesis concept to the Infinite System 71

3.5 Chapter Conclusion . 73

11

4 State Space Reduction Techniques 75
4.1 State Space Explosion Problem in Formal Verification and Synthesis 75
4.2 Partial Order Reduction for Model Checking Process 76
4.3 Avoiding State Space Explosion Problem by Compositional Reasoning 78

4.3.1 Introduction to Compositional Reasoning 81
4.3.2 Compositional Reasoning from a language-based point view 82
4.3.3 Compositional Reasoning for LTL Specification 84

4.4 Extending Compositional Reasoning to Control Synthesis of LTL Specifications 87
4.5 Chapter Conclusion . 92

5 Formal Verification Scheme for Nokia SDN-IoT Platform 95
5.1 Existing Modelisation and Verification of SDN systems 95

5.1.1 VERIFLOW . 96
5.1.2 KUAI . 98
5.1.3 VERICON . 100

5.2 Model checking Tool . 101
5.2.1 Promela Language . 101
5.2.2 SPIN . 104

5.3 Nokia-SDN platform . 106
5.3.1 Architecture Building Blocks . 106
5.3.2 The User’s Intent . 107
5.3.3 Device Discovery via MAC Learning 107
5.3.4 Packet Forwarding . 108

5.4 Modelisation of SDN . 109
5.5 Generated Automata Models . 111

5.5.1 Automaton for Devices . 111
5.5.2 Automaton for Switches . 112
5.5.3 Automaton for Controllers . 114
5.5.4 Automaton for Managers . 115
5.5.5 SDN specification . 116
5.5.6 Experimental Results . 118

5.6 Chapter Conclusion . 123

6 Discrete Control Synthesis for an SDN-IoT platform 125
6.1 Existing Synthesis of Network Services . 126

6.1.1 Synthesis of Consistence updates . 126
6.1.2 Guided Network Synthesis . 128
6.1.3 SMT based Synthesis of SDN . 134

6.2 Synthesis Tool . 134

12

6.3 Control Synthesis of a typical SDN Application - A Modular Approach 141
6.3.1 An Application Scenario : Edge Computing V2X communications . . . 141
6.3.2 Abstract Specifications and Model . 144

6.4 Compositional Control Synthesis Framework for the Layered SDN Architecture 148
6.4.1 Global Properties to be fulfilled by the SDN platform 149
6.4.2 Properties that have to be fulfilled by the Manager 150
6.4.3 Properties that has to be fulfilled by Devices 153

6.5 Chapter Conclusion . 154

Conclusion 157

Bibliography 161

13

CHAPITRE 1

INTRODUCTION

This document is a result of collaborative work between Nokia Bell Labs, Paris-Saclay IoT-
Control network team and Inria, Rennes Sumo team within the ADR Sapiens project. The main
theme of this project is the automation of an Software-Defined Network (SDN) based architec-
ture which serves as support for an Internet of Things (IoT) platform. This automation could
be applied to the creation of the user interfaces to specific user’s application in the platform
or to the integration of new functionalities into the platform in real-time. In a more generic
view, we aim to create high level models for various and useful functionalities, providing the
tools and methods to convert the model into low-level machine code and ensuring the consistent
integration of functionalities to the existing platform. This document is about the exploration
of theoretical and implementable possibilities of the above themes. In particular, we are using
automated model checking to verify that the system is working correctly with respect to the
various functionalities requirements (process of verification) and providing the working metho-
dology for introducing high level functionalities model and integrating the same to the existing
real time platform by means of synthesis controller.

Readers Digestion : In this introduction chapter, we will introduce various terminologies rela-
ted to SDN, model-checking and synthesis without much explanation, definitions or references.
We choose to do this way so that it does not complicate the readers and gets involved into the
specific details. It will also help to understand the overall contents with little details but the main
theme of this thesis. We do this with the consideration of many papers published in the litera-
ture of distributed systems, SDN, IoT, model checking and control synthesis. These fields are
wide and also have many subtle variations in the definitions, design, procedures and so on. We
strongly believe that if one thinks of the interesting subject in a more abstract way will help to
bring the core of the problem. The advantage of thinking about the core problem in an abstract
way is it allows us to choose the well aligned modeling framework and propose the solution
in a simplistic yet the best implementable procedures or designs. This introduction chapter will
slowly introduce various concepts of model checking, synthesis, distributed system concepts in
this chapter and the following chapters. Please continue to read this chapter with common sense
rather than expecting formal definitions for each notion or notation. We will progressively intro-
duce each notion formally and give comprehensive comments with examples in the following
chapters.

Brief introduction about the working teams : Sumo team is a research team that mainly works

15

Part , Chapitre 1 – Introduction

on theoretical studies in the fields of Model-Checking, Synthesis of Discrete Event System,
Game Theory, Fault Tolerant and Diagnosis, Markov process/chain etc. Nokia, Paris-Saclay
IoT Control network team works on 5G network, IoT system, SDN etc and concentrate on
design, testing and implementation.

1.1 Road Map To Thesis

In this ADR project, we were interested in the automated procedure of Verification and Synthesis

of Distributed Systems, and we focused on the Software defined networks (SDN) application
to the Internet of things (IoT) platform. Software Defined Networks is an example of such a
Distributed system. The modeling and technique we used in this document is not particular for
SDN or IoT, it can be used for any generic distributed systems. In the path of our work, we also
tackled the state space explosion, which appears to be a severe problem in the verification and
synthesis process. We provide our contribution from the theoretical side to avoid this state space

explosion problem. In order to overcome this state space explosion, we revisited the composition
technique (assume-guarantee technique) and generalized little but enough to use for postponing
the state space explosion in the process of SDN verification and control synthesis. Based on our
knowledge, State space explosion problem can’t be avoided completely, can only be postponed.

In chapter 2, we will go through the overall working nature of SDN system, IoT platform
and we will also mention short notes about Nokia,Nozay SDN-IoT platform design.

In chapter 3, we will give a generic modeling scheme for the distributed system to do veri-
fication and discrete control synthesis. Most of them are from literature but some of them are
further improved by the author and advisors. Main improvements are in the direction of synthe-
sis of safety LTL specifications (temporal properties about the system) for the automaton model
of monolithic and distributed systems.

In chapter 4, we will state the important problem of verification and synthesis related to
’State Space Explosion’ and we go through some of the techniques from the literature and
authors contribution in this aspect to reduce the state space to limit the state space explosion
effects on the experimentation of model checking and discrete control synthesis procedure. In
the same chapter, we developed compositional control synthesis of LTL safety specifications.

In chapter 5, we model the specific Nokia-SDN platform as an automaton and express the
system requirements as LTL specifications and do the verification experiments using the model
checking tool SPIN.

In chapter 6, in the direction of producing the discrete controller for the expressed model
and specification of the SDN-IoT platform as a demonstration, we state some of the specific
functionalities of SDN-IoT platform and model them in high level language called Heptagon (a
reactive modeling of distributed system) and produce the control synthesis using BZR-ReaX and
translate them into classical high level languages like C and Java and provide the possibility of

16

1.2. Distributed Systems

integrating the produced control model with real time systems.

1.2 Distributed Systems

A Distributed system [ST16] is a vague and ambiguous keyword used throughout the computer
science literature. When we mention distributed system (DS), we mostly mean the following :

A distributed system is a coordination of multiple autonomous compu-
ting elements that appear to its users as a single coherent system. Each
autonomous computing element is able to behave independently and
can be either hardware devices or software processes. From the appli-
cation side, these coordination of multiple autonomous elements can be
viewed as a single system.

Distributed systems

FIGURE 1.1 : A Typical Distributed System (DS) : Image downloaded from
https ://www.icar.cnr.it/en/sistemi-distribuiti-e-internet-delle-cose/

There are two main characteristics that can be referred to from the above definition.

1 It is a collection of computing elements able to behave independently of each other.

17

Part , Chapitre 1 – Introduction

2 It is believed as a single system by the users (being people or applications).

Autonomous computing entities of the distributed system might be either a super computer,
a personal computer or smaller computing devices or even a software process. This of course in-
cludes server farms, supercomputers, sensor networks, organizational Intranet, and the Internet,
but also our laptop in which many components have some independence. In principle, they are
acting independently from each other and their aims were to achieve common or separate (indi-
vidual) goals. DS (and also distributed computing) captures a wide variety of situations which
includes computers or processes and also serves as a model for numerous phenomena in the na-
tural sciences. Clearly, this is a vast and heterogeneous field. Meanwhile, they are programmed
to communicate with each other by exchanging messages to realize specific applications. How
to establish this communication channel i.e collaborations between computing processors is at
the heart of developing the distributed systems.

In a given DS any two entities communicate via synchronous or asynchronous queues. These
synchronous queues are high speed Local-area networks channels which effectively transfer the
message instantly to one another which often needs the dedicated connection channel between
the pair of computing entities in DS. Where-us the asynchronous queues are not high speed and
these queue types are mostly First In First Out (FIFO), so that a single centralized computing
entity can serve many user’s requests by having a single queue channel which is a cost effec-
tive solution in typical network services [ST16]. In theory, communications between any pair
of entities in DS will fall into either synchronous or asynchronous. In an asynchronous setting,
DS reads messages by some polling mechanism or FIFO manner ; it is specific about the archi-
tecture and protocol. In synchronous setting, reading and sending a message action based on
either shared variables (common memory block access) between the processors or by means of
a dedicated synchronous channel (RDV channel). This communication can be assumed reliable
(meaning the message sent by some processor never fails to reach the receiver). In case of asyn-
chronous FIFO communication, one can assume the queue length is bounded (in the real system
this is the case, but in the theoretical model one typically assumes unbounded queue length).
However, When dealing with DS, one can not assume the existence of a global clock in all the
entities in the considered distributed system. This leads to the fundamental problem of synchro-
nization and coordination of common actions and progress in the computation process within
a distributed system. The information one computing entity expects from another computing
entity may be delayed in an unbounded way, so there is no way to guarantee that such a compu-
ting entity is simply slow, completely broken, or maliciously refusing to cooperate at this point.
Even when all messages from other computing entities eventually arrive, message arrival order
may be arbitrary. Note that asynchronous is a real headache : it can arise from computational
differences between the computing entities, properties of the underlying communication chan-
nel between them or other reasons, and hence must be dealt with care. This issue is so central
that even this sub-field of asynchronous distributed systems is large [Lyn96 ; AW04; Wig17].

18

1.3. Challenges

When a distributed system is designed with a set of coordinated computing elements that
have to meet certain requirements, the goals of a DS we mention here after as either network

wide-invariant or specifications in the rest of the document. In fact, it is the designer’s respon-
sibility to design the communications interface between each computing element as well as the
behavior of each computing element of the DS to meet the required specifications. It is important
to ensure the correct behavior of the designed DS to meet required specifications. Since in our
Nokia-Inria (ADR) project, we are interested in automating techniques, we are using Verification
and Synthesis mechanisms to check and correct the designed DS for the given specifications.

There are some well known reasons in the literature as mentioned in the survey [ST16],
why the design of DS fails to meet the required specifications, even-though it is designed by
experienced designers. To name some of them : assuming that the network communication
between the different entities is reliable and secure with respect to a given architecture, i.e the
connection of network among the entities is stable with zero latency together with an unbounded
bandwidth, then there is only one controller for each autonomous computing entity, and its
computing speed are same of the given DS components.

1.3 Challenges

In the automated verification and control synthesis of DS systems, there are a couple of chal-
lenges which depend on the kind of distributed system one is considering, since distributed
systems itself is a vast and highly diverse field. One of the main problems of verification and
control synthesis of a given distributed system is State Space Explosion, a problem that arises
when one tries to trace all possible execution paths of given DS. In our case, a DS contains
too many components, and/or the communications between the components of DS are asyn-
chronous i.e communicating via FIFO queues which makes the formal analysis very difficult
to complete the process. There are some techniques to avoid this brute force analysis to name
few : partial order technique [BK08], assume guarantee technique [HQR98 ; Sta85], abstrac-

tion [Cla+18] of the system in case of verification process. For the synthesis purpose, one can
use modular nature of property and the system, a well known technique to reduce state space

explosion in the literature [WR88]. We will provide more details of these techniques in the fol-
lowing chapters. Our main contribution to alleviate the state space explosion in this document
is the compositional reasoning for verification and control synthesis for DS. This compositional
reasoning technique is inspired from the rely-guarantee technique introduced by [Sta85]. Apart
from this theoretical result, the main works towards the automation apart from the mathematical
framework (or definition) involves in this thesis as follows :

1 Properly understanding the design SDN-IoT of Nokia, Nozay team, so that it can be
formally modeled to proceed with model checking and control synthesis schemes.

19

Part , Chapitre 1 – Introduction

2 Identifying the set of requirements and expressing them as a specification so that we can
test the model with respect to the specification.

3 Providing the use case in the direction of proposing the high level model description
and producing the control synthesis for the proposed model design automatically and
converting them into classical high level language so that one can integrate the produced
high level codes with real working SDN system.

Digestion of Proposed Automated Procedure : First and foremost import things to stress that
what we are doing is automated verification and synthesis, and every automatic scheme where
there is a hidden automated procedure. The usefulness of an automatic scheme purely depends
on robustness and adaptability of the written automated procedure. If one wants to maintain a
distributed system that works without errors, then it will hugely depends on one’s knowledge
and envision capability about the kind of environment the proposed system or design will going
to work and the expected applications from the design and unsafe states can possibly occurs in
the proposed design so that one can express and quantify the required properties and check the
proposed design with the expressed properties in the model checking process i.e Verification of
proposed system model with respect to various expected properties. In case of synthesis, one
should check the limitation of control synthesis techniques and the kind of properties control
synthesis solution can support to the DS system and making the DS system to work without
reaching an error state (unsafe situation) and also in non-blocking way (i.e have to work and
provide useful application rather than just avoiding the error states).

20

CHAPITRE 2

SOFTWARE-DEFINED NETWORKS AND

IOT PLATFORMS

Data networks are made up of many routers, data forwarding switches, firewalls and so on. Such
communication networks are complex and dynamic in nature i.e the multiple events (like mo-
bility of users, requirement changes, traffic in the routing path) that can occur simultaneously
throughout the network. The main objective of the network operators is to control the communi-
cation network and respond to a wide range of network events such as intrusions, loss of traffic
in the data path and so on. The difficulties in operating the networks lies in its scale (number
of users, number of network nodes). In traditional IP networks (both wired and wireless), the
network controller and the network fabric are tightly coupled within a network node. Such a
network node architecture is quite effective in terms of network performance but the outcome
is a complex and relatively static overall architecture [Kre+15].

Such a tightly bundled control and data plane collocated within the network node often
makes it difficult to operate (e.g. upgrade) the network and generate high operational cost as
one has to perform the same operation on all nodes associated with the control plane. Adding
a new application to such a static architecture is not to be a cost effective one, since it often
requires the reconfiguration of the control plane on all the network nodes spread across the
network topology. The operational cost of maintaining a network infrastructure is significant to
the expenditure capabilities of network service providers, which does not provide more space
for innovation.

Thus, it is preferable to have stable network fabrics and data plane, but a dynamic program-
mable control plane with an abstraction level to serve various applications. In such a case, an
architecture that makes most sense could consist in network controllers that program the net-
work fabrics based on network manager instructions e.g. automated system to implement the
network dynamic policies. Within this architecture, the network manager plays the role of the
abstraction level which interfaces with various applications and which translates high-level poli-
cies received from the latter into low-level network policies. This is part of the Software-Defined

Network (abbreviated as SDN) framework.

Within such a framework, one can centralize the control software (e.g. within a data cen-
ter) for ease of upgrade/update and make the network node a white box. As a result, a simple
white box network node can be bought from any vendor (i.e. off the shelf) with simple data

21

Part , Chapitre 2 – Software-Defined Networks and IoT Platforms

plane functionalities that leads to a reduction in network node complexity and thus network
operational cost. The programmability and the flexibility of the network relies on the control
plane software which communicates with network nodes in a much standardized way via open
application program interfaces (API).

Additionally, the advent of IoT technology and its applications impose important new constraints
on the communication network. Indeed, the latter network also has to handle the scale related to
a huge number of IoT devices. Roughly we have more than 15 billion IoT devices (like various
sensors signaling, GPS system of cars, smart phones and their application, RFID, Google glass,
smart home, and so on) connected to the internet and this number is expected to grow exponen-
tially with more and more interactions between devices due to smart applications brought by
the IoT technologies and platforms.

For both fixed and wireless communication networks, which have to effectively support the
’Internet of Things’ (IoT will be introduced later in this chapter), they are expected to sup-
port a wide range of applications coming from autonomous communication among sensors and
actuators as well as the interactions between users (humans) and machines, like smart cities,
intelligent mobility, industry automation just to name a few. It is clear that modern networks
have to face human-type and machine-type interactions. Heterogeneous characteristics of the
applications (sensors, actuators, control entities) together with a large range of qualities of ser-
vice are part of the set of requirements. There should be enough flexibility in the network to deal
with such heterogeneous applications. In contrast with hardware-based deployments of previous
generations, the design of new communication networks took the advantage of softwarization

and virtualization.

Softwarization is a paradigm which runs, defines and dynamically updates the functionalities
via software rather than via pre-programmed hardware. It guarantees a high degree of flexibi-
lity and reconfigurability by solely updating software code rather than adding or removing the
existing hardware from the service. This leads to a cost effective solution.

Virtualization is a concept of creating abstract entities for the hardware platforms, operating
systems, storage devices and data network resources that exploit the low cost virtual machines
instead of dedicated hardware for various intended network applications. Virtualization offers
different applications and services that share a pool of configurable resources in a cloud en-
vironment. A cloud environment provides the processing, storage, and networks resources to
the users. The network users can deploy their applications in this cloud environment and use
the underlying cloud infrastructure and services. It is noted that virtualization is an enabler for
softwarization.

From the network point of view, Software-Defined Network is considered as a main reali-
zation of softwarization concept [LKR14]. Another key concept in recent network architecture
is the Network Function or NF [LKR14],[Kre+15]. The latter is defined as "a functional block
within a network infrastructure with well-defined interfaces and well-defined behavior". The

22

2.1. Introduction to SDN

NF can be physical (i.e. implemented by hardware) or virtual (i.e. software-based). The latter
could be placed and migrated across physical network infrastructure according to the needs of
network operator and traffic management, providing room for making the independence of net-
work functions from hardware i.e. a Virtual Network Function (VNF) can be decoupled from
hardware and placed in different hardware locations to maintain the services without interrup-
tion. This is called the Network Function Virtualization (NFV) paradigm. Together with the
NFV framework, the SDN framework allows to partition the operator network infrastructure
into isolated logical networks of varying sizes and structures with each of them dedicated to a
different type of services. This allows for multiple usages and tenants sharing the same operator
network infrastructure lead to network cost optimization.

2.1 Introduction to SDN

Software-Defined Network [Kre+15] is an emerging network architecture that decouples net-
work control function from network forwarding functions, enabling the network control to be-
come directly programmable. In such a case, the underlying network infrastructure has to be
abstracted for applications and network services.

SDN and NFV are complementary in the softwarization of the network. While the former
decouples the network control functions from the network forwarding functions, the latter aims
essentially at decoupling any network function from the hardware on which it runs. Both fa-
cilitate the network design and help the infrastructure to be virtualized and abstracted with
different software building blocks. SDN uses NFV infrastructure (e.g. virtual machines) to run
the network control functions so that the latter can easily be deployed on different network in-
frastructures. The aforementioned list of virtualization functions are intensively deployed on an
NFV infrastructure as SDN network controller functions to set the data forwarding rules on the
network nodes (both physical and virtual switches or routers).

SDN architecture consists generally of three building blocks : network managers (or ma-
nagement plane), network controllers (or control plane) and data forwarding elements (or data
plane) as depicted in Figure 2.1.

Data Plane : Network Elements [Kre+15] A data plane or data forwarding plane contains a
set of network elements that receives data packets on its (communication) ports and performs
few simple network operations on them. For example, the network device may forward a recei-
ved packet, drop it, alter the packet header (source, destination information about junk of data
piece), and so on (refer the figures 2.1, 2.2). The network elements are, for example, routers
which operate generally at the Internet Protocol i.e IP layer. Additional examples include net-
work elements that may operate at a layer above IP such as firewalls, load balancers, and video
transcoders or below IP such as Layer 2 switches and optical or microwave network elements.

23

Part , Chapitre 2 – Software-Defined Networks and IoT Platforms

FIGURE 2.1 : SDN infrastructure with layered connections

Network elements can be implemented in hardware or software and can be either physical or
virtual.

Switch

FIGURE 2.2 : Simple Network Switch

. Packet_header,In port Action
rule1 10*** , pt1 pt′3 forward
rule2 111** , pt3 drop
rule3 101** , pt2 modify.packet.header
. . .
. . .
rulek 01*** , pt4 ask controller

TABLE 2.1 : Forward table of switch S

Control Plane [Kre+15] The control plane is a logical decision implementer of SDN net-
work manager instruction to the data plane. The control plane, usually a set of control entities,
is responsible for the configuration of forwarding elements in the data plane by communica-
ting via the (Control-plane) South bound Interface (SI) protocol[Kre+15]. The control plane
is responsible for instructing data plane elements about how to handle network (data) packets.
A control plane entity, called as SDN controller, translates a new request from the application
into a sequence of instructions that will implement new forwarding rules on network devices
via Southbound interfaces [Kre+15] (an API’s refer the figure 2.3). Communication between
control-plane entities (i.e between SDN controllers), referred as "east-west" interface, is usually
implemented through gateway protocols such as Border Gateway Protocol (BGP) or protocols
such as Path Computation Element (PCE) [Kre+15] and so on. These corresponding protocol
messages are usually exchanged in-band and subsequently redirected by the forwarding plane

24

2.1. Introduction to SDN

to the control plane for further processing. Control plane functionalities usually include : topo-
logy discovery (i.e data plane and various network users/clients), data packet route selection,
path fail-over mechanisms in case of dynamic change of physical network or change in traffic.
Control plane southbound interface SI is usually defined with following characteristics : time-
critical interface that requires low latency with higher bandwidth in order to perform many
operations in a short-time period, oriented towards wire efficiency (efficient machine readable
and function activation code) and device representation instead of human readability. Examples
include fast- and high-frequency of flow table updates, and robustness for packet handling and
events. Control plane SI can be implemented using a protocol, an API, or even inter-process
communication. If the control plane and the network device are not collocated, then this inter-
face is certainly a protocol. Examples of control plane SI are the ForCES and the OpenFlow

protocols. Control-plane service examples include a virtual private LAN (local area network)
service, service tunnels, topology services, etc. The control plane also has a North Bound Inter-
face NI via which it communicates the system state, the quality of network services and high
level information about the data plane to the management plane.

The SDN controller algorithms are designed to catch up and implement various instructions
from the SDN manager. Some of the main activities of an SDN controller are listed below :

1 Shortest Path Forwarding rule : to set the communication path between various users in
the data plane by constantly monitoring the traffic scenario and the data plane network
switches availability,

2 Security Mechanisms : set the routing data packet rule such that it avoids from reaching
the data to malicious users,

3 Monitoring the data plane topology and users positions in the data plane,

4 Process the data plane events, intent requests and inform the same to manager,

5 and so on.

Management Plane [Kre+15] The management plane is a logical decision maker and decides
the functionalities of SDN usage which aims to introduce constraints to the network functions
and ensures that the network as a whole runs optimally by communicating with the network
controllers using a Management-Plane Northbound Interface. Management-plane functiona-
lities are typically initiated, based on an overall network view, and traditionally have been
human-centric. However, artificial intelligence algorithms are lately replacing several human
interventions. Management plane functionalities include fault monitoring, configurations of the
data plane users and services availability in addition. Its functionalities may also include entities
such as orchestrators, Virtual Network Function Managers and so on.

25

Part , Chapitre 2 – Software-Defined Networks and IoT Platforms

The typical management plane roles are listed below, but it may vary depending on the ap-
plications

1 Classify user-defined policies,

2 translate the above policies to network policies,

3 provide to the users various network virtualization functions which could change dyna-
mically according to the requirements or based on requests from these users,

4 and many more depending on the applications.

Communications between and within SDN layers [Kre+15] In the set up of well separated
layers as in SDN architecture, there should be a clear communication protocol defined between
each pair of layers and one defined between entities within each layer. For each of these protocol
frameworks, data and information models should be specified. In the literature there are various
protocols that are defined to build the communication links between and within SDN layers - i.e.
northbound, southbound, east-and-westbound interface protocols are available. For Northbound
API’s (i.e. communication between the control plane and the management plane) we have ad-

hoc API’s, RESTful API’s, etc. For Southbound API’s (i.e. communication between the control
plane and the data plane) we have OpenFlow, ForCES and OVSDB, just to name a few. The East-
and-Westbound (essentially between controllers when we have distributed controllers compared
to centralized controllers) communication API’s totally depends on the kind of controllers, the
details of the data abstraction used in those controllers for communication. Just to name a few
examples of SDN controllers : Onix, Beacon, Floodlight, OpenDaylight, ONOS and etc. The
fig. 2.3 explains the overall working nature of various SDN entities and interfaces.

That’s the end of SDN introductory notes, now we move on to the introduction about IoT

devices and its applications.

2.2 IoT Devices and Related Applications

Thing in the Internet of things or IoT devices that can communicate via a communication net-
work. IoT is the set of physical objects like sensors, actuators, vending machine, automatic
teller machine (ATM), etc (mentioned as things) can be primarily characterized as embedded
system (smart electronic devices) that are used for the purpose of connecting and exchanging
data with other (IoT) devices and systems via Internet (or local network services) or mobile net-
works. IoT has evolved a lot thanks to the help of the evolution of Internet (including wireless
technologies) like LAN, sub-net, Ad-hoc network and mobile networks.

26

2.2. IoT Devices and Related Applications

SDN MANAGER
High level dynamic network policies and constraints
To provide various real-time functionalities
Interface to Users and translate them to Policies

Northbound Protocol
Communication Interface

Ex : RESTful, REST,
RESTCONF,
Ad-hoc API etc

SDN Controller Algorithm
Translate high level network polices

to network forwarding rules
EX : ONOS, OpenDaylight, Beacon, etc

Southbound Protocol
Communication Interface

Ex : OpenFlow, BGP,
NETCONF,
ForCES etc

Data plane Network and Connected devices a.k.a clients

Translated Data plane Info
and its requests

Instruction to provide
Functionalities

Abstracted Data plane
Info and Requests Translated Instructions

Translated Intent Requests
and Topology Positions

Forwarding Rules

Network Events,
Intent Requests

Deployment of
translated Rules

FIGURE 2.3 : SDN Entities and its Working Nature

Traditional IoT devices are embedded systems, wireless sensors, control systems, automa-
tion systems (home, building, car, ship, airplane, industrial automation, and so on), and others,
all contribute to enable the ’Internet of things’. IoT technologies are sets of products pertaining
to the concept of smart devices, including devices and appliances (such as lighting fixtures,
thermostats, home security systems and cameras, and other home appliances) of a common
platform, and can be controlled via devices associated with that platform, such as smartphones
and smart speakers. The concept of first smart devices emerged from Carnegie Mellon univer-
sity where computer science network geeks played around the coca-cola vending machine to
monitor from a remote server the current availability of coke canes and its temperature by ac-
cessing sensors installed on the machine. These traditional embedded systems devices used to
be high energy consuming entities due to direct point-to-point connections (i.e. long range wi-
reless communication). With the ubiquity of the internet nowadays, one can go for low-energy
consuming and short-range wireless communication devices. This is one of the benefits of mo-
dern network to IoT applications.

As by the European Telecommunications Standards Institute (ETSI) the IoT applications
are projected for smart devices, smart cities, smart grids, the connected car, eHealth, home
automation and energy management, public safety and remote industrial process control. Apart
from the wide applications of IoT, it is important to emphasize the fact that IoT devices are

27

Part , Chapitre 2 – Software-Defined Networks and IoT Platforms

highly heterogeneous and not a unique type of electronic devices. They vary depending on the
type of hardware they are using (Micro-controller, micro-processes), computing power, energy
consumption, action-behavior response with respect to environment (in case of actuators), the
data handling devices and so on. In such heterogeneous types of IoT devices, it is important
to coordinate them to make an application secure and safe. In the sense that actuating a wrong
actuator or providing open access to sensitive data handling devices can cause severe damage
either physically or economically, also brings privacy related issues. These are the challenges
faced (or has to) by the IoT applications developer for coordinating such heterogeneous devices
using global controlled software in a common platform.

2.3 Orchestration of IoT Platform using SDN Concept

In the modern ’communication network’ era, the communication network is highly connected.
It provides global network control framework for discovering, deploying various IoT devices,
applications and its interactions with humans. In such a scenario it needs smart control, actua-
tion and automation to manage the global network control mechanism. The main challenges of
global network control mechanisms is the realization of IoT applications which involve the in-
teroperability among various IoT entities. The fact of applying SDN (layered network) concept
to coordination (orchestration) of IoT devices is not new, for example the paper [Sar+14] gave
brief summary about realization of IoT application using SDN framework. The reason for using
such layered network architecture is mainly for quick response to the dynamic network ins-
tances using data abstraction from bottom to top layer of SDN network. SDN inter-operable
architecture for IoT, is assumed to overcome most of the obstacles in the process of large scale
expansion of IoT. It specifically addresses heterogeneity of IoT devices, and enables seamless
addition of new devices across applications. Large number (approx. a billion) of IoT devices are
going to be connected with Internet within a few years, which will generate enormous amounts
of data and exchanges of those data among IoT devices and various applications. Using a glo-
bal centralized (or co-ordinated) SDN controller paves the way to minimize the delay and load
balancing in IoT applications network.

In a complex highly connected network operation, knowing the fine details of the network
and connected devices is very difficult especially as a network user. Maybe an expert level or
an experienced network user can manage the network integration but as a layman it’s not as
trivial. As a result, most end-users do not share their connected devices and do not benefit from
IoT services which could result from rich associations. To benefit from some popular services,
most end-users purchase connected devices for their application without being aware of all
the services they could benefit from, provided their IoT services are associated with devices
belonging to other smart environments. This situation is explained by considering human skills
required to face complexity in terms of [Sar+14] :

28

2.3. Orchestration of IoT Platform using SDN Concept

• Awareness of IoT services and ability to select suitable connected objects.

• Ability to deploy and configure all functions to make expected services work. This parti-
cularly involves the configuration of the network layer to support IoT services involving
different physical functions spanning multiple smart environments.

The scope of SDN to coordinate IoT devices can be illustrated with the following three key
concepts,

1 Discovery and positioning the IoT resources :
SDN working nature naturally provides the functionalities of discovering various IoT de-
vices and its current position in the given application network. It keeps track of the real
time position of various IoT devices and its operation conditions and modes.

2 Allocation of IoT resources in an IoT services :
Based on the tracking of IoT positions, operational modes and requirements, it provides
the external resources to those devices like allocating the virtual hardware to support the
computation required by the IoT devices.

3 Dynamic grouping of IoT devices :
This is one major advantage of providing dynamic grouping of various IoT devices in
the required applications, which make use of the resources efficiently to serve various
functionalities in real time.

EXAMPLE 2.1 Typical SDN architecture to orchestrate the IoT applications is depicted in fi-

gure 2.4. The data plane represents the layer holding the Open Flow Virtual switches, the clients

acting as traffic sources and sinks. The clients can be a server, laptop, personal computer or

any IoT devices (sensors, actuators etc.). The network applications manager hosts the number

of IoT policies and communicates with the SDN control plane through open northbound Appli-

cation Programming Interface. Interface regarding the status of the network and its particular

requirements. The controllers, situated in the control plane, dictate forwarding rules to the data

forwarding devices through open southbound API.

The typical functionalities in the manager plane layer (or application layer) will be net-

work control access, resource scheduler, establishing safe and secure data path between

various authenticated devices. Maintaining abstract level information about IoT devices

involved in various applications. Further this abstract information can be about the per-

formance of those devices or status about its working nature, etc. �

The next section explains a particular SDN-IoT platform developed by Nokia, France 5G
network team.

29

Part , Chapitre 2 – Software-Defined Networks and IoT Platforms

FIGURE 2.4 : Example of SDN architecture orchestrating the IoT applications

2.4 Nokia SDN-IoT Platform

Here, we will describe the general principle behind the Nokia SDN architecture. We will give
a very narrow and general intention of SDN- IoT platform constructed by the Nokia Bell Labs
team. For our modelization, verification and synthesis scheme, we only focus on a specific part
of Nokia SDN-IoT platform; more details will be given in the respective forthcoming chapters.

Before going into the further details of Nokia SDN design, we will recall here three charac-
teristics of distributed systems that are universally desirable that we call CAP theorem.

1 Consistency (information should be consistent throughout the network), in the sense that
system should responds identically no matter which node (i.e in our case decentralized
SDN controllers and manager) receives the request from the data plane.

2 Availability (response to the requests) means that system (in our case SDN controller and
manager) should responds to a query (in our case intend requests although the response
may not be consistent or correct)

3 Partition Tolerance in case of communication failure of any one of the node (either
switch, controller or manager) system should continue to function. Although this specific
partition tolerance is not considered or analyzed in detail in the forthcoming chapters.
Nonetheless, it is an important criteria to consider in the distributed environments.

In the distributed community [GL02], it was identified only any two of above three characteris-
tics can be full-filled at any given time but not all three. It was first conjectured by Eric Brewer

30

2.4. Nokia SDN-IoT Platform

later proved by Gilbert and Lynch. It is also important to note that the CAP theorem not only
applies to asynchronous but also synchronous distributed systems.

Network switches, SDN controllers and managers all are computational entities. In case of
a switch - slave computation entity which receives and forward the data packets, and receives
and sends the intent request to update the forward rule table. Controller receives and processes
the data plane requests and follows the instruction from the manager plane to satisfy various
specifications. Whereas the manager observes the abstract information about the data plane and
its requests also for the needs of application, it dynamically changes the network policies. CAP

theorem naturally applies to the working nature of SDN.

In the context of the CAP theorem, if one considers partition tolerance of paramount im-
portance, traditional control-plane operations are usually local and fast (available, and it goes
to inconsistent state for a shorted period of time once in a while), while management-plane
operations are usually centralized (consistent) and may be slow (can’t available all the time so
naturally slow in response to the requests). In this theoretical limitations, when we build such
complex distributed system, it is important to analyze the safety-critical specifications (this is
one of the reason ADR sapiens (who is funding my Phd thesis) project choose to do model
checking of Nokia SDN-IoT platform) (properties or requirements) with respect to CAP’s avai-

lability, consistency and partition tolerance.

2.4.1 General Problem and Assumptions

Smart devices are simply connected logical objects interconnected with other logical objects
via the service links provided by the network operators through network routers or switches.
The connected entities are objects that can produce, receive, forward or process data. These
connected objects can be a physical object, an application, a piece of software, etc. Such a col-
lection of smart devices communicating with each via an established network are referred as
IoT application. In the presence of a large number of heterogeneous smart devices to make an
IoT application works for various requirements either Industrial automation or smart home ap-
pliance or some other applications which involves controlling the blend of virtual and physical
systems together. Manually, managing such a complex system because of the sheer number and
heterogeneous device types involved in the applications.In such a complex enterprise applica-
tion, SDN-IoT platform facilitates heterogeneous behavior of IoT devices with a unified way
of data communication protocol. They can advantageously be used in smart and complex ap-
plications scenarios to group similar devices while enforcing safe and secure IoT applications.
Apart from the heterogeneous nature of IoT devices, the proposed SDN solution should be able
to handle the sheer number of IoT devices involved in the application. That is SDN solution
should be well scaled to handle latency problem, quick action responses to the IoT applications.
In order to scale down the problem of controlling the bigger network and variety and too many

31

Part , Chapitre 2 – Software-Defined Networks and IoT Platforms

numbers of IoT devices involved in the application, two major concepts were introduced to
control. These concepts are Virtual Places and Virtual Spaces.

Virtual Places, concept of partitioning and classifying the cyber-physical system volunta-
rily to respond to the controllers instructions in fast and also network manager can monitor the
global system in an efficient manner. Challenges in realizing such a concept lie in the definition
and implementation of the companion cloud infrastructure and network gateways, realizing a
distributed test bed allowing to easily provision, deploy and dynamically extend to multiple
geographical locations, and interconnect these Virtual Places. Virtual Spaces concepts are to
create secured, dynamic collections of resources regrouped by usage, and interconnecting these
resources over one or more Virtual Places (i.e., crossing multiple administrative domains). Rea-
lizing those Virtual Spaces requires on the one hand a mix of mechanisms to automatically
adapt their content according to their definition and the current context.

It is important to note that Virtual Places is defined so that the SDN network is to control and
monitor the data plane in a scalable manner. Furthermore, concept of partitioning the entire data
plane into number of Virtual Places is not just a blind partition based on the number of network
routers in each Virtual Places but it is depends on pre-evolution of the application requirements
on each virtual places and targeting different kinds of user’s devices. In the following texts,
we interchangeably use domain for the Virtual Place because the domain name we used in
our SDN model checking work earlier compared to the original name Virtual Place as in the
paper [Bou+18].

Apart from the above assumptions, in terms of building the protocol, it has the following
technical assumption.

One of the Nokia IoT Platform assumptions is that devices connected to the platform
communicate via at least the IEEE 802.3 MAC layer. This allows for deploying MAC
learning algorithms and forwarding rules based on IEEE 802.3 MAC header - for devices
not supporting IEEE 802.3 MAC protocol, they can connect to the platform via a IEEE
802.3-enabled gateway. Platform design also assumes that applications are running over
IP which is the case of most applications nowadays.

2.4.2 Cluster of IoT Devices or Virtual Space

In order to enable communications among the group of devices which itself is dynamic based
on the real-time intended requests from various smart devices, it will be better to keep track
of clusters of devices, to maintain and update them in real time. Within the dynamic nature of
intended requests, keeping high-level information about the clusters of devices by the manage-
ment plane will guide to generate a high level instruction set. This set of instructions will be
used by the SDN control plane to enforce in the data plane communication connections among
the devices from the same cluster. Such a cluster of devices is called as Virtual Spaces or shortly

32

2.4. Nokia SDN-IoT Platform

vSpaces.

EXAMPLE 2.2 For an example, the set of IoT Devices := {Da ,Db ,Dc ,Dd ,De } are connec-

ted to the data plane layer Switches, let say {Da,Db}, {Dc ,Dd} and {De} forms the clusters

of devices or vSpaces i.e vSpace1, vSpace2 and vSpace3 respectively. There should be commu-

nication links enabled between devices of each vSpace’s. The management plane only knows

the unique identity number for each device and the one for each vSpace. It provides high-level

instructions to the controller to enforce communication links between devices of each vSpace.

The control plane sets up such communication links by enforcing forwarding rules on the data

plane switches.

As mentioned earlier, cluster of IoT devices i.e set of vSpaces are defined so that not all the IoT

devices can communicate but only the common devices belongs to some vSpace can communi-
cate via the data plane. These sets of vSpaces are dynamically defined by the manager based on
the applications and devices intent request.

2.4.3 Decentralized Nokia-SDN Network

Apart from the separation of control, management and data plane layers in SDN, Nokia SDN

architecture further partitioned the data plane into n number of domains as mentioned in the
earlier texts as Virtual Places. Each domain contains a set of network switches connected to-
gether in a tree-like topology (i.e. loop-free topology) with the root of the tree being played
by a network switch called the root switch. Such loop-free topology aims at simplifying the
controller algorithms which are focusing on the core functionalities, namely device discovery
and network isolation between vSpaces. The global data plane is a connected topology with a
unique root switch for each domain and with all the root switches from various domains connec-
ted together in a full mesh fashion. The communication link between any two switches within
the same domain is referred as Infra link and the related communication ports on the switches
are called Infra ports. Communication links between any pair of root switches are referred to
as Inter links and related communication ports on the root switches are called as Inter ports.
To scale the controllability of the data plane, each vPlace (or domain) is controlled by a unique
SDN controller. One such instance is illustrated in the following example.

EXAMPLE 2.3 For an example, take 3 domains, and root1 = sw1, root2 = sw2 and root3 = sw3

are the root switches of the domains domain1 = {sw1,sw4,sw5}, domain2 = {sw2,sw6,sw8} and

domain3 = {sw3,sw7,sw9} respectively forms a fully connected components in the data plane

topology. Schematic picture is shown in 2.5.

As mentioned earlier, we split the entire data plane into n number of domains (i.e. Virtual

Places) to control the SDN network in a scalable manner.

33

Part , Chapitre 2 – Software-Defined Networks and IoT Platforms

Cont1 Cont2 Cont3

manger2

manger1 manger3

sw1

sw2

sw3

sw4 sw5

sw6

sw7

sw8

sw9Infra

Inter

FIGURE 2.5 : Nokia-SDN Architecture

2.4.4 Communication Procedures

Here, we present various types of communication between SDN layers for the device discovery
and setting up the various network services

MAC learning via MAC Protocol : whenever an IoT device connects to a vPlace SDN net-
work, the vPlace SDN controller should be able to monitor in real time the IoT device position
(i.e. the switch communication port it is connected) in the data plane in order to provide the de-
vice with global communication services. In the rest of the document whenever a user connects
to the network we mean a user’s device connects to the network.

Users connect to Data plane switches In all domains, we have a set of open access ports
(IoT ports) : a service link for external users (or say client). If an external user wants to use the
SDN’s services, it has to connect to one of the free available open access ports in the data plane
topology. Users have to choose freely available ports based on its needs.

EXAMPLE 2.4 One such example of external user joining to the SDN network by connecting to

the open access port op2 of the switch Sw which has three open access port op1 ,op2 ,op3 (IoT

ports) is depicted in figure 2.6.

Communication Links : The Control Plane and its interaction with Management Plane :
The control plane is responsible for building the correct data packet transfer path in the data
plane such that it satisfies the management plane properties (set of vSpaces). Each controller
maintains a list of devices connected together from its perspective and reports this list to the
management plane. Further, it stores the information about vSpace properties and the list of
devices that satisfy the set vSpace properties and their current domain locations. Based on this
information, each controller updates/adds the rules in its respective domain to eventually satisfy

34

2.4. Nokia SDN-IoT Platform

sw

device

op2 op1

op3

FIGURE 2.6 : An example of external user’s device connecting to SDN network via Open access
port

the required properties imposed by the management plane (connectivity data path among the
same vSpace users and so on).

Interaction between switches and Controllers : The interaction between switches and
controllers is essential for discovering SDN network devices (referred as MAC learning) and
updating the flow table of switches based on the locations of SDN network user’s devices in the
data plane.

Device Discovery and Related Position Monitoring : Let’s assume a user’s device connects
to a switch (sw∈ domaini) and sends its first packet into the SDN network. In order to notify the
controller about the arrival of a user in the data plane, the controller adds a default rule (MAC
learning) to all switches. This rule consists in a condition for switches to forward messages
with unknown MAC source addresses to the controller. MAC media access control address is
a unique identifier assigned to a network interface controller for use as a network address in
communications within a network segment. This use is common in most IEEE 802 networking
technologies, including Ethernet, Wi-Fi, and Bluetooth (source Wikipedia).

In the SDN network, communication is the primary reason for building such a network, and
this communication is usually made by transferring the data packets between various entities
contained in the SDN network. It is important to have the data packet with appropriate header

field information. The header field information varies among different data packets depending
on the communication protocol. For a new device arriving or changing its position in the data
plane, it should communicate to the SDN manager, for that it sends the data packet which
contains the header field information about its MAC ID and the port in which it is connected in
the data plane. In case of communicating with another device in the SDN network, it sends the
data packet with header field information contains about its MAC ID (i.e. source MAC ID) and
the other device MAC ID (i.e. destination MAC ID). In the case of a group of users (multicast
communication) instead of a single destination user, data packet contains a reserved multicast
MAC address. The SDN controller is responsible for building the multicast path to the correct
devices within the same vSpace.

35

Part , Chapitre 2 – Software-Defined Networks and IoT Platforms

DEFINITION 2.1 MAC Learning Rule :

source == MAC ID and incoming port : == pt actions−−−−→ send MAC ID and pt number to Conti
and send MAC ID to all outgoing Infra ports of the switch sw ∈ domaini.

Where conti is a controller from control plane topology and MAC is the unique Identity for the

user i.e each user has a unique MAC Identity number. �

Building the Data Path Between connected Devices : MAC learning is an algorithm, ensu-
ring that a new user’s device or an existing user’s device location (domain number and switch
id and port it is connected to) should be noted correctly by the controller. The controller also
reports the existing users and its connected domain position to its manager. With this MAC
learning algorithm, SDN manager gathers the information about various devices and its current
position in the data plane and using this information it instructs the SDN controller about es-
tablishing the data path among various devices in the data plane. To build data paths between
various devices, SDN controllers set up (deploy) the Unicast and Multicast rules in the network
switches presented in the data plane.

When a new user’s device joins the network by connecting to sw ∈ domaini via open access
port z, sw will forwards this information to all its outgoing FIFO queues within the domain
domaini and controller conti of the domain i this is a default rule (MAC learning rule) described
above.

The controller of that domain answers by updating the flow table by adding multicast and uni-

cast rules, which are described in the following texts.

• Unicast rule : This rule is to forward the given data packet to a single host.
Further, we refer to a data packet as a unicast data packet when it is sent by an user and
has to be received by an user.

• Multicast rule : This rule is to forward the given data packet to multiple hosts.
Further, we refer to a data packet as a multicast data packet when it is sent by a user and
has to be received by multiple users.

Unicast Rule Recall that each controller knows the list of devices connected to its domain. The
controller of each domain has a local perspective of device connections and has the information
about the list of vSpacei for all i and devices which belong to it. With all the information in hand,
the controller adds/updates a unicast type rule appropriately in the flow table of the respective
switch. For each i, and pair of user’s devices in the network, the controller adds the following
rule if the given pair of users at least one of them is connected to that switch.

DEFINITION 2.2 Unicast Rule :

source==MAC ID(userY), incoming port :== pt
′
and destination==MAC ID(userX) actions−−−−→

36

2.4. Nokia SDN-IoT Platform

send the data packet to the port pt.

Where userX (connected to the switch sw via the port pt) and userY in the vSpacei for some

i ∈ {1,2, .., l} and the data packet contains the header information of source id, destination id

of userY and userX respectively. �

Multicast Rule is a broadcast message type which allows to transfer a data packet from a user
to all the users which belongs to the same vSpacei for some i ∈ {1,2, ..., l}.

DEFINITION 2.3 Multicast Rule :

source == MAC ID(userY) and userY in the vSpacei
actions−−−−→ send the data packet to the ports

pt1 , pt2 ...ptk.

Where switch has users which are in the vSpacei connected through these ports pt1 , pt2 ...ptk.

The data packet contains the header field information about the source id userY and vSpacei

group name. �

Switch Flow table

The overall simplified decision tree to execute various rules from the flow table of a given switch
looks as in figure 2.7.

Table 1 : Is the data packets has correct format?

Table 2 : drop the data packet. Table 3 : Is MAC of the new device?

Table 4 : Send MAC address to controller and all other Infra ports

Table 5 : Is data packet has Unicast type?

Table 6 : Follow Unicast rule stored in the Flow table

Table 7 : Follow Multicast rule stored in the Flow table

No
Yes

Yes No

Yes No

FIGURE 2.7 : Decision Structures of Network switch Flow Table

A switch is a slave machine in the SDN architecture in the sense that it refreshes its flow
table by adding, deleting the existing flow table rule based on the instruction from the respective
SDN controllers. When the data packet arrives at one of its incoming ports it takes the data
packet header and compares it against the condition structure of the flow table rules as referred
in 2.7 and executes the actions related to the rule which condition structure best matches the
packet header. action command can either be dropping, modifying the packet header, and/or
forwarding the data packet to the particular outgoing ports.

37

Part , Chapitre 2 – Software-Defined Networks and IoT Platforms

Initially, the Flow table of each switch has empty Unicast, Multicast rules, and has default
Mac learning rules. As SDN controller instructions, each switch gets updated on the Unicast,
Multicast and Mac rules in their flow table.

2.5 Chapter Conclusion

The general goal of Nokia-SDN-IoT platform is to control the complex and large scale data
plane network. Also to control the data plane in a more scalable way while realizing the appli-
cation with the help of dynamically re-grouping the set of IoT devices (vSpaces) based on the
real time requests and global application requirements. In such a complex large scale data plane
network, in order to process the intent requests fast and scale down the computation process,
Nokia SDN platform uses the decentralized controllers and splits the data plane into n num-
ber of domains (Virtual Places). Normally each controller knows the local information about
the particular data plane domain rather than the entire data plane configuration (topology and
positions of different IoT devices). In order to have the global data plane configurations, the
manager plane forms the cluster and gathers the global data plane configuration by enquiring
each controller in the decentralized controllers set and inform each controller to implement the
global specifications. To obtain the local configuration of the IoT devices in the data plane (po-
sition), it uses the MAC learning protocol continuously and regularly updates the information
about each data plane domain and informs the managers for global monitoring of the data plane
configurations.

Now, we proceed to mathematical modeling of distributed systems and model the specific
details of the Nokia SDN platform to perform model checking (verification) and synthesize
various SDN functionalities.

38

CHAPITRE 3

MODELING THE DISTRIBUTED SYSTEM

AND REQUIREMENTS

In this chapter, we will see how to model a Distributed System (or DS) and express its requi-
rements as temporal Specifications. We will demonstrate with small examples on how we are
intended to do formal verification and generate supervisors by using control synthesis technique
to apply it for a real distributed system DS in the following chapters.

3.1 Modeling Notations

In this section, we provide notations and known results that will be used throughout this docu-
ment. We introduce the notion of languages and a model of an automaton as well as some basic
transformations associated with this model. They are borrowed or adapted mostly from [CL08],
[BCC98], [Kal+14], [Kal+12].

3.1.1 Languages

We assume a given finite alphabet set Σ = {σ1, ..,σl} for some l ∈ N. The set of finite words
over Σ is denoted by Σ∗ (finite sequence of the alphabets from Σ forms the word), with ε being
an empty word. For each w,w′ ∈ Σ∗ of the form w = σ1 . . .σn and w′ = σ ′1 . . .σ

′
m (n,m ∈N), the

concatenation of w and w′ is again a word defined by w.w′ = σ1 . . .σn.σ
′
1 . . .σ

′
m. The length of

w ∈ Σ∗ is denoted |w| (the length of the empty word is zero). We let Σn with n ∈ N denote the
words of length n over Σ. A set L of finite words over Σ, L ⊆ Σ∗, is called a language over Σ.

Given a finite alphabet set Σ1 ⊆ Σ, we define the projection operator on finite words, PΣ1 :
Σ∗ → Σ∗1, that removes in a word of Σ∗ all the events that do not belong to Σ1. Formally, PΣ1

is recursively defined as follows : PΣ1(ε) = ε and for σ ∈ Σ,w ∈ Σ∗, PΣ1(w.σ) = PΣ1(w).σ if
σ ∈ Σ1 and PΣ1(w) otherwise. Let L ⊆ Σ∗ be a language. The definition of projection for words
extends to languages : PΣ1(L) = {PΣ1(s) | s ∈L }.

Conversely, let L ⊆ Σ∗1. The inverse projection of L with respect to Σ, with Σ1 ⊆ Σ, is
P−Σ

Σ1
(L) = {w ∈ Σ∗ | PΣ1(w) ∈ L }. For example given string s = σ1σ2...σn ∈ Σ1 ∈ Σ∗1, the

set of all possible inverse projection for this string (i.e P−Σ

Σ1
(s)) is (Σ \Σ1)

∗σ1(Σ \Σ1)
∗σ2(Σ \

39

Part , Chapitre 3 – Modeling the Distributed System and Requirements

Σ1)
∗...σn(Σ\Σ1)

∗. Here we make the inverse projection of the word s ∈ Σ∗1 with respect to the
alphabet set Σ. When clear from the context, we will simply denote P−Σ

Σ1
by P−1

Σ1
.

3.1.2 Automaton

Eventhough languages are very useful to describe the behavior of a given system, it is more
convenient to use a finite and compact representation to model it. To this effect, the model of
automata is commonly used to represent the behavior of systems at a very abstract level. It is
composed of a (possibly infinite) number of states (or configurations) and transitions between
those states, labeled by actions representing the atomic evolution of the system as well as a set
of atomic propositions attached to each state representing the fact that some particular proper-
ties/requirements hold in that state.

DEFINITION 3.1 c �

Action set : For a given automaton, Σ refers to possible actions that can be triggered by
the automaton to move from one state to another state. These actions represent the execution
behaviour of modelled system while the states represent the current evaluation of modelled
system variables.

Atomic Predicates Roughly speaking, the set L(q)⊆ AP corresponds to the atomic proposi-
tions that holds in q ∈ Q. AP is nothing but set of atomic proposition to represents the various
properties that hold in a state of the given automaton. For example, L(q) = {a,b} for q ∈ Q,
{a,b} ⊆ AP of an automaton indicates that the state q which satisfying the atomic predicates
{a,b} and not satisfying atomic predicates AP \ {a,b}. To be more precise, an atomic propo-
sition a = (x ≤ i), with x a variable and i a numerical constant express an arithmetic relation
condition on the value assigned to the variable x. Atomic propositions are used to create various
properties. We can introduce an atomic proposition b to express an existence of path between
two vertices u,v in a given graph G = 〈V,E〉, so that b is true or false based on the existence of
path between vertices u and v. The importance and needs of these atomic propositions is purely
based on the kind of properties we want to express about the state of the given system model
which we are interested in.

EXAMPLE 3.1 For example, figure 3.1 describes an automaton A , Q = {q0,q1,r1,B1,B2},
Σ = {a,b}, AP = {P1,P2} with L(q0) = /0, L(q1) = {P1}, L(r1) = {P2}, L(B1) = {P1,P2},
L(B2) = {P2}, whereas Figure 3.2 is an automaton that models the device that can break down

during its normal evolution and further be repaired, where the atomic propositions c,d respec-

tively represent the fact that this device is connected and disconnected. �
�

40

3.1. Modeling Notations

q0

q1,{P1}

B1,{P1,P2}

r1, {P2}

B2,{P2}

a
b

a

b

b

a

b

a

a

b

FIGURE 3.1 : Automaton Example

I,{d}

W,{c} R,{d}
Connect

repair

breakdown

Disconnect

FIGURE 3.2 : Example of the behavior a simple device.

For simplicity, we write ∆(q,σ ,q′) for (q,σ ,q′) ∈ ∆. We extend ∆ to arbitrary sequences by
setting : ∆(q,ε,q), and ∆(q,wσ ,q′) whenever ∆(q,w,q′′) and ∆(q′′,σ ,q′) for some q′′ ∈ Q.
Similarly, ∆(q,σ) = {q′ ∈ Q | (q,σ ,q′) ∈ ∆}, which is naturally extended to a sequence w and
denoted by ∆(q,w) which corresponds to the set of states that can be reached by triggering w in
A starting from the q. A transition δ = (q,σ ,q′) ∈ ∆ will also be written as q σ−→∆ q′ (or q σ−→ q′

if ∆ is clear from the context). A is deterministic whenever ∀q σ−→ q′ and q σ−→ q′′ then q′ = q′′.
For an automaton A = (Q, q0, Σ, ∆, AP,L), a finite run is run = q0

σ1−→ q1
σ2−→ ...qn−1

σn−→ qn

for some n ∈ N s.t ∀i ∈ [1, ..,n], qi−1
σi−→ qi ∈ ∆. We denote the set of all possible finite runs as

Run(A).
A language of an automaton A is denoted as L (A) := {w | w ∈ Σ∗∧ /0 6= ∆(q0,w)⊆ Q},

where ∆(q0,w) is the extended transition of ∆ transition in automaton A that starts from the
initial state q0 through the sequence w.

EXAMPLE 3.2 For example, in the automaton in example 3.1, one such word in the language

of L (A) is w := aab (for the run run = q0
a−→ q1

a−→ q1
b−→ B1). �

In the sequel, we will often need to distinguish a subset F ⊆ Q to denote final states. Such
states can be used to encode configurations of the system satisfying some properties (e.g. an
atomic proposition becomes true). The language of (finite) words LF(A) is the set of words
accepted by A , i.e., LF(A) = {w ∈ Σ∗ | ∆(q0,w)⊆ F}.

For a given finite run = q0
σ1−→ q1

σ2−→qn−1
σn−→ qn ∈ Run(A), with n ∈ N, we define the

sequence of a run as seq(run) = σ1 . . .σn. Note that for any given finite run from an automaton
A starts from the initial state q0 i.e run ∈ Run(A), the corresponding seq(run) belongs to the
language of A , i.e ∀run ∈ Run(A), seq(run) ∈L (A). Run(A ,q) represents all the runs of
A that start from the state q, where q ∈ Q.

Instead of considering only the run run = q0
σ1−→ q1

σ2−→qn−1
σn−→ qn, we might be interes-

ted in the sequence the set of atomic propositions that are true along this run,

41

Part , Chapitre 3 – Modeling the Distributed System and Requirements

i.e. L(q0).L(q1).L(q2) . . .L(qn).

DEFINITION 3.2 For a given run run = q0
σ1−→ q1

σ2−→ ...qn−1
σn−→ qn ∈ Run f (A), the trace of

run is defined by

trace(run) = L(q0).L(q1).L(q2) . . .L(qn) ∈ AP∗

and the set of traces of the automaton is defined by Tr(A) := {trace(run) | run ∈ Run(A)} ⊆
AP∗ the set of traces of A . �

EXAMPLE 3.3 For example, given the automaton in example 3.1, one such possible finite run

is

run := q0
a−→ q1

a−→ q1
b−→ B1

a−→ q1,

and the corresponding trace of this run is

trace(run) = L(q0).L(q1).L(q1).L(B1).L(q1) = /0{P1}.{P1}.{P1,P2}.{P1}

�

For w ∈ Tr(A), we define Runw as

Runw = {run | trace(run) = w∧ run ∈ Run(A)}

as the set of runs such that each trace of each run is equal to w. Note that for an automaton A

and w ∈ Tr(A), there exists run ∈ Run(A) such that trace(run) = w and seq(run) ∈L (A).

Let us now introduce some more notations that will be useful in the sequel. We are interested
in computing set of states that are not reachable from the set of initial states of an automaton
A , or dually that a set of states is always reachable from its sets of initial states by triggering
events of Σ′ ⊆ Σ.

Given a set of states E ⊆ Q of an automaton A , the functions PostA
Σ′ , PreA

Σ′ from 2Q→ 2Q

are defined as follows :

PreA
Σ′ (E) = {q ∈ Q | ∃σ ∈ Σ

′,∆(q,σ)∩E 6= /0} (3.1)

PostA
Σ′ (E) = {q′ ∈ Q | ∃σ ∈ Σ

′,q′ ∈ E, ∆(q,σ ,q′)} (3.2)

The states of PreA
Σ′ (E) are such that at least one immediate successor belongs to E by Σ′,

whereas PostA
Σ′ (E) corresponds to the immediate successors of E in A .

Given an automaton A , CoReachA
Σ′ (E) is the set of states from which E is reachable by

triggering a sequence of Σ′. It is given by the following least fix-point

42

3.1. Modeling Notations

{
E0 = E

Ei+1 = Ei∪PreA
Σ′ (Ei)

(3.3)

Note that by Tarski’s theorem [Tar55], since the E ∪PreA
Σ′ (E) is monotonic, the limit of the

fix-point actually exists (but may be uncomputable as the state space is possibly infinite).

E2 E1 E0 Q

FIGURE 3.3 : Monotonic of Pre set

EXAMPLE 3.4 For example, given automaton in example 3.1 take E0 = {B2} and Σ′ = {a}.
Then E1 = {B2,r1} and Ei = E1 for all i≥ 2, so that we have a fix point for E0 ; here E = E1. �

Similarly, ReachA
Σ′ (E) is the set of states that can be reached from E by (Σ′)∗{

E0 = E

Ei+1 = Ei∪PostA
Σ′ (Ei)

(3.4)

If E = {q0} then we obtain the set of reachable states in A by only triggering events in Σ′.

E2E1E0 Q

FIGURE 3.4 : Monotonic Post set

EXAMPLE 3.5 For example, given automaton in example 3.1 take E0 = {q0} and Σ′ = {a,b},
then post of E is {q1,r1} so that we have E1 = {q0,q1,r1} and we have E2 = {q0,q1,r1,B1,B2},
and so on such that we have Ei = E2 for i≥ 2, we finally get E = Q for the automaton given in

the example 3.1. �

Composition of automata In most situations, a system is initially given by a set of compo-
nents modeled by automata that interact with each other by sharing common events. Its glo-
bal behavior is obtained by composing these automata together using the parallel composition
operator that represents the concurrent behavior of the automata with synchronization on the
common events (for example sending a message from one component to another component,
and receiving the message by one component).

43

Part , Chapitre 3 – Modeling the Distributed System and Requirements

DEFINITION 3.3 Given two automata Ai = (Qi, q0,i, Σi, ∆i, APi,Li), i ∈ {1, 2} as in defini-

tion 3.1, the composition of these two automata is defined as,

A := A1 ‖ A2 = (Q, q0, Σ, ∆, AP,L), where Q := Q1×Q2, q0 := q0,1× q0,2, Σ := Σ1 ∪ Σ2,

∆⊆ Q×Σ×Q, s.t for all σ ∈ (Σ1 \Σ2) and symmetrically for all σ ∈ (Σ2 \Σ1) :

q1
σ−→ q′1 ∈ ∆1,q2 ∈ Q2

(q1,q2)
σ−→ (q′1,q2) ∈ ∆

q2
σ−→ q′2 ∈ ∆2,q1 ∈ Q1

(q1,q2)
σ−→ (q1,q′2) ∈ ∆

and for all σ ∈ Σ1∩Σ2

q1
σ−→ q′1 ∈ ∆1,q2

σ−→ q′2 ∈ ∆2

(q1,q2)
σ−→ (q′1,q

′
2)

AP := AP1×AP2, L := Q→ 2AP1×2AP2 where L(q1,q2) := (L1(q1),L2(q2)), for all (q1,q2) ∈
Q. �

EXAMPLE 3.6 Let A1 and A2 be two automata over respectively Σ1 = {a,u1,b} and Σ2 =

{a,u2} represented in Fig. 1(a). The automaton A1‖A2 obtained by composing these two auto-

mata is depicted in Fig. 1(b),

q0,{a0}

q1,{a1}

q2,{a2}

q′0,{b0}

q′1,{b1}

q′2,{b2}

u1 a

b

a

u2

(a) A1 and A2

(q0,q0),({a0},{b0})

(q1,q′0),({a1},{b0}) (q1,q′1),({a1},{b1})

(q2,q′0),({a2},{b0})

(q2,q′1),({a2},{b1})(q1,q′2),({a1},{b2})

(q2,q′2),({a2},{b2})

u1 a

b b

u2

u2

b

(b) A1‖A2

FIGURE 3.5 : Parallel composition of two automata

Using the projection PΣi : Σ∗→ Σ∗i , i = 1,2, we can characterize the language resulting from the
parallel composition as follows :

L (A1‖A2) = P−1
Σ1

(L (A1))∩P−1
Σ2

(L (A2)) (3.5)

Equivalently, we can state that

L (A1‖A2) = {s ∈ Σ
∗ | PΣ1(s) ∈L (A1)∧PΣ2(s) ∈L (A2)} (3.6)

44

3.2. Symbolic Transition System

Moreover, if the two automata are equipped with a set of final states (F1 and F2), then we have :

LF1×F2(A1‖A2) = P−1
Σ1

(LF1(A1))∩P−1
Σ2

(LF2(A2)) (3.7)

DEFINITION 3.4 Given the composition of two automata A1 ‖A2, and a run = (q0,1,q0,2)
σ1−→

(q1,1,q1,2), ...,
σn−→ (qn,1,qn,2) ∈ Run f (A1 ‖A2). The projection of such a run over Σi (alphabet

of automata Ai) for some i ∈ {1,2} is denoted as run ↓Ai := q0,i
σ ′1−→ q1,i, ...,

σ ′n−→ qn,i such that :

for all j ∈ [1, ..,n]
If σ j ∈ Σi and q j−1,i

σ j−→ q j,i ∈ ∆i then σ ′j = σ j

If σ j 6∈ Σi then q j−1,i
ε−→ q j,i ∈ ∆i and σ ′j = ε where ε is an empty transition and q j−1,i = q j,i. �

3.2 Symbolic Transition System

Automata are the basic way to represent the behaviour of systems and to analyse them. However
they suffer from different drawbacks :

• Nowadays, when modelling realistic systems, it is often convenient to manipulate state
variables instead of simply atomic states, allowing a compact way to specify systems
handling data. For example, one can consider a system where the number of system states
is infinite but can be generated by finite actions [Kal+14][Kal+12].
Within this framework, a state of the underlying state machine can be seen as a particular
instantiating of a vector of variables. If the domain of the variables are infinite, the se-
mantics of such a system is therefore given by a potentially infinite automaton where the
states are valuations of the variables. Other interests are that modeling such systems in a
symbolic way avoids a state space explosion due to the fact that numerical aspects have
to be taken into account and that it eases the modeling of these systems.

• As already mentioned, the system we are considering is most of the time defined by seve-
ral components. Definition 3.3 gives a way to compose such components in a single way
with the limitation that the communications are synchronous (i.e. take zero time), which
obviously is not the case in many applications (when there is asynchronous communica-
tion between the components in the DS). In other words, when considering asynchronous
distributed systems, the communication delays between the components of the system
must also be taken into account, whereas, at the same time since we can reason about
them without considering the actual size of the queues
To tackle such considerations, one can consider a timed automaton [Alu99] allowing to
consider the delays between the transmission and the reception of an action. In this docu-
ment, we do prefer to consider systems that are composed of several systems that com-
municate asynchronously by means of FIFO channel that are assumed to be unbounded

45

Part , Chapitre 3 – Modeling the Distributed System and Requirements

and reliable (i.e., we are not interested by the exact time an event takes to be transmit-
ted but rather than it takes some delays) [Kal+14][PP91][MW08][LJJ06]. The fact that
we choose FIFO channels is motivated by the fact that we are interested in distributed
systems, in which actions are transmitted from one component to another one.

FIGURE 3.6 : Example of Distributed System Communicating via FIFO Queues

From now on, we shall consider Symbolic Transition Systems that communicate with each
other via FIFO channels. Each component of the system is a transition system with variables,
whose domain can be infinite, and is composed of symbolic transitions. Each transition has a
guard on the variables of the system and an update function which indicates the evolution of the
variables when the transition is fired. Furthermore, transitions are labeled with symbols taken
from a finite alphabet. This model allows the representation of infinite systems whenever the
variables take their values in an infinite domain. It has a finite structure and offers a compact
way to specify systems handling data.

Symbolic System The system models are created by writing symbolic transitions of the sys-
tem. We have already seen an automaton model to capture the behavior of a given system, but
it’s an extremely tedious job to capture the behaviour of the system by automaton model. We do
have automated tools to create such an automaton model from the given symbolic transition mo-
del, writing the symbolic transition model of the system is relatively easy and it’s more practical
than writing extensive and detailed models in automaton form. So here we introduce what is a
symbolic transition model, these definitions are borrowed from the paper [Kal+14],[Kal+12].

Let us define a system model T with a set of variables V = 〈v1,v2, ...,vn〉 and whose as-
signment range over DV = ∏i∈[1,..,n] Dvi . The valuation of n-tuple variable belongs in DV :=

∏i∈[1,..,n] Dvi (this set represents all possible values of V). A valuation of variable V is denoted
ν ∈ DV , and corresponds to a predicate value of the variable V . The set of initial conditions is
denoted by Θ⊆DV . This model finite set of actions Σ and transition set ∆ and finite number of
FIFO queues Q =Qin∪Qout where Qin is a finite number of incoming queues and Qout is a finite
number of outgoing queues for some l ∈N, each queue can hold an infinite number of messages
from the message set M (note that M can carry the values on some variables as far as number
of variables are finite). The action involves in sending a message a ∈ M to the output queue
q ∈ Qout indicated by (q, !,a), reading a message (b ∈ M) action from an input queue q ∈ Qin

indicated by (q,?,b). It is stressed to mention that reading a message and receiving a message

46

3.2. Symbolic Transition System

differ by taking the header message and appending the message to the tail of the current queue
content respectively.

We now shall introduce more formally a symbolic communicating transition model for the
system in the following definition. This definition is adapted from [Kal+14] and [Kal+12].

DEFINITION 3.5 A symbolic communicating transition system (SCTS) is a tuple of

T := 〈V, Θ, M, Q, L, l0,U, AP, Σ, ∆〉, where

• V := 〈v1,v2, ..,vn〉 is a n-tuple variable, valuation of this n-tuple variable belongs in

DV := ∏i∈[1,..,n]Dvi (this set represents all possible assignment to the variable V),

• Θ⊆DV a set of initial condition on the assignments to the variable V ,

• M a finite set of messages,

• Q := Qin∪Qout, s.t |Qin|= |Qout|= l and each queue in q ∈ Q is a FIFO queue can hold

infinite number of messages from the set M,

• L is a nonempty, finite set of locations and l0 ∈ L is the initial location,

• AP set of atomic predicates to represent the set of proposition will be useful to represents

the current nature of the system state, U : L×D→D×2AP is the labeling function which

set the atomic propositions of the system based on the current location and the valuation

of the system variable V ,

• Σ := (Q× {?, !} ×M)∪ Σint is a finite set of alphabets, where (qin,i,?,m) represents

reading the message m from the queue header qin,i, (qout, j, !,m) represents sending the

message m (or adding the message m at the tail) to the queue qout, j,

• ∆ is a finite set of symbolic transitions, each transition δ ∈ ∆ is a tuple δ = 〈l,σ ,G,A, l
′〉

where a location l ∈ L, called the origin location of δ transition, an action σ ∈ Σ cal-

led the action of δ transition, G ⊆ DV a predicate set called as guard of δ transition,

A : DV → DV is an update function, which update the assignments to the variable V , a

location l
′ ∈ L, called the target location of δ transition.

�

As you may note, by definition, the atomic predicates set AP can also be the condition on the va-
riables V with specific values from the domain set DV . One such example given in forthcoming
texts (Example 3.7).

Furthermore, we can compose any two given communicating transition system T1, T2 as
follows :

47

Part , Chapitre 3 – Modeling the Distributed System and Requirements

DEFINITION 3.6 Given two symbolic communicating transition systems

T1 = 〈V1,Θ1,M1,Q1,L1, l0,1,U1,AP1,Σ1,∆1〉, T2 = 〈V2,Θ2,M2,Q2,L2, l0,2,U2,AP2,Σ2,∆2〉,
T := T1 ‖T2 defined as,

• V = (V1,V2),

• L := L1×L2,

• Θ := Θ1×Θ2,

• M, := M1∪M2,

• l0 := (l0,1, l0,2),

• U = (U1,U2), such that U := (L1×D1×L2×D2)→D1×2AP1×D2×2AP2 ,

• Q := Qin∪Qout (= Qin,1∪Qin,2∪Qout,1∪Qout,2),

• and furthermore qin1,2 = qout2,1 and qin2,1 = qout1,2 , Σ := Σ1∪Σ2 and Σ1∩Σ2 = /0, finite set

of transition are as follows,

∆ :=
{〈(l1, l2),σ1,G,A,(l

′
1, l2)〉 | σ1 ∈ Σ1∧〈l1,σ1,G,A, l

′
1〉 ∈ ∆1∧ l2 ∈ L2}

∪{〈(l1, l2),σ2,G,A,(l1, l
′
2)〉 | σ2 ∈ Σ2∧〈l2,σ2,G,A, l

′
2〉 ∈ ∆2∧ l1 ∈ L1}

�

In the sequel, we will define a set of distributed systems {T1,T2, ..,Tm}, communication bet-
ween those subsystems Ti, for all i ∈ [1, ..,m]

DEFINITION 3.7 (Distributed System) : For a fixed m number of SCTS systems Ti, i∈ [1, ..,m],

the resulting distributed system is given by T :=‖i∈[1,..,m] Ti, i.e the product of each Ti acting

in parallel and exchanging information through FIFO channels. �

This operation is associative and commutative up to state renaming.

EXAMPLE 3.7 For example, let see two such communicating transition system T1,T2 and its

composition T = T1 ‖T2 in fig. 3.7 and fig. 3.7 respectively. �

48

3.2. Symbolic Transition System

l1,0

l1,2

l1,1

v1==⊥
(a,!,qout1,2)

v1 = a

v1==a
(b,?,qout2,1)

v1 = b

v1==b
σ1∈Σint,1

v1 =⊥

(a) T1

l2,0 l2,1

〈(a, ?,qout1,2),G = (v2 ==⊥),A(v2) = a〉

〈(b, !,qout2,1),G = (v2 == a),A(v2) =⊥〉

(b) T2

FIGURE 3.7 : Two Symbolic Transition Systems T1, T2

(l1,0, l2,0) (l1,1, l2,0) (l1,2, l2,0)

(l1,0, l2,1) (l1,1, l2,1) (l1,2, l2,1)

v1==⊥
(a,!,qout1,2)v1 = a

v2==⊥
(a,?,qout1,2)

v2 = a

v2==a
(b,!,qout2,1)

v2 =⊥

v1==a
(b,?,qout2,1)

v1 = b

v1==b
σ1∈Σint,1

v1 =⊥

v2==⊥
(a,?,qout1,2)

v2 = a v2==a
(b,!,qout2,1)

v2 =⊥

v1==⊥
(a,!,qout1,2)

v1 = a

v1==a
(b,?,qout2,1)

v1 = b

v2==a
(b,!,qout2,1)

v2 =⊥

v1==b
σ1∈Σint,1

v1 =⊥

v2==⊥
(a,?,qout1,2)

v2 = a

FIGURE 3.8 : Composition of communicating transition systems T = T1 ‖T2.

49

Part , Chapitre 3 – Modeling the Distributed System and Requirements

For the above SCTS system definition 3.5, we are introducing the semantics as follows,

DEFINITION 3.8 The semantics of an SCTS T := 〈V, Θ, M, Q, L, l0, , Σ, ∆,U,AP〉 is an au-

tomaton [T] := 〈X , X0, Σ,→,U,AP〉, where

• the set of states are X := L ×DV ×q∈Q {wq | wq ∈M∗} where wq ∈M∗ for all queue

q ∈ Q,

• the set of initial state are X0 := { l0 }×Θ×q∈Q wε
q, where wε

q = ε an empty string,

• the set of action labels are Σ, and

• the transition relation→=
⋃

δ∈∆ ⊆ X×∆×X, such that

(l,ν ,wq) ∈ X ,δ = 〈l,σ ,G,A, l
′〉 ∈ ∆∧σ = (q, !,a)∧ν ∈ G(

(l,ν ,wq) ,σ ,(l ′,A(ν), wq.a)
)
∈→

In the above transition only q-th queue content will change, remaining queues content

will be the same.

(l,ν ,wq) ∈ X ,δ = 〈l,σ ,G,A, l
′〉 ∈ ∆∧σ = (q,?,a)∧wq = a.w′q∧ν ∈ G(

(l,ν ,wq) ,σ ,(l ′,A(ν), w′q)
)
∈→

In the above transition only q-th queue content will change, remaining queues content

will be the same.

(l,ν ,wq) ∈ X ,δ = 〈l,σ ,G,A, l
′〉 ∈ ∆∧σ ∈ Σint∧ν ∈ G(

(l,ν ,wq) ,σ ,(l ′,A(ν), wq)
)
∈→

In the above transition all the queue contents will remain the same.

• Finally, the labeling function U : X → D × 2AP, based on the current valuation of the

system variable and location, keeps the atomic predicates which are true in the current

state of the system.

�

EXAMPLE 3.8 Let’s take an example, SCTS : T := 〈V = {x,c}, Θ = {(x = 0, c = 0)},M =

{a,b,c},Q = Qin(= {q2,1,q3,1}) ∪Qout(= {q1,2}),L = { l0 }, l0,Σ = {σ1 = (b,?,q2,1),σ2 =

(a, !,q1,2),σ3 =(c,?,q3,1)},∆= {〈l0,σ1, true,x= x+1, l0〉,〈l0,σ2,(x> 0),x= x−1, l0〉,〈l0,σ3, true,c=

c+ 1, l0〉}〉, for the transitions 〈l0,σ1, true,x = x+ 1, l0〉 the guard is always true and update

function is A(x) = x+ 1, 〈l0,σ2,(x > 0),x = x− 1, l0〉 guard is (x > 0) and update function is

A(x)= x−1, 〈l0,σ3, true,c= c+1, l0〉} guard is always true and update function is A(c)= c−c,

and we will build corresponding [T] showed in the figure 3.9. The q1,2 is outgoing queue and

q2,1,q3,1 are incoming queues for the defined SCTS T .

50

3.2. Symbolic Transition System

The action σ1 = (b,?,q2,1) indicates the reading of message b from the queue q2,1, σ2 =

(a, !,q1,2) indicates sending the message a to the queue q1,2 and σ3 = (c,?,q2,1) indicates the

reading of message c from the queue q3,1.

Although the transition 〈l0,σ1, true,(x = x+1), l0〉 has guard true, this transition can only

happen if the message channel q2,1 has message b in its head.

Similarly the transition 〈l0,σ3, true,(c = c+1), l0〉 has guard true, this transition can only hap-

pen if the message channel q3,1 has message c in its head. The symbolic communicating transi-

tion system (SCTS) and corresponding semantics are depicted in fig. 3.9.

l0

x>0
σ2

x = x−1

true
σ1

x = x+1

true
σ3

c = c+1

(a) T

l0,(x = 0,c = 0)

l0,(x = 0,c = 1)

.

l0,(x = 1,c = 0) l0,(x = 2,c = 0) .

l0,(x = 1,c = 1)

.

l0,(x = 2,c = 1) .l0,(x = 2,c = 1)

.

.

σ3

σ3

σ3

σ3

σ3

σ3

σ1

σ3

σ1 σ1

σ2 σ2

σ2 σ2

σ2

σ2

σ3

(b) LTS of T

FIGURE 3.9 : Automaton [T] of T

�

By understanding the transition in the semantics of SCTS [T] (or for simplicity we represent
them as [T]), we can extend the concept of reachable and co-reachable as mentioned in equa-
tions 3.1, 3.2 for automata to the semantics of symbolic transition systems as follows. For a
given set Y ⊆ X , and the transition set ∆′ ⊆ ∆, the reachable and co-reachable sets are defined
as

ReachT
∆′ (Y) :=

⋃
n≥0

(PostT
∆′ (Y))

n (3.8)

Co-reachT
∆′ (Y) :=

⋃
n≥0

(PreT
∆′ (Y))

n (3.9)

Note the difference in equations 3.8,3.9 compare to 3.1, 3.2 : in the earlier case we have ∆′ in
computing the Post and Pre set, and in the latter case we use Σ′ to compute Post and Pre set,
where PreT

∆′ (Y) := {x′ ∈ X |∃x ∈ Y, ∃δ ∈ ∆′ : x′ δ−→ x ∈→} is the set of states from which doing
an execution from the transition ∆′ set to reach a state in Y ⊆ X ,
PostT

∆′ (Y) := {x′ ∈ X |∃x ∈ Y,∃δ ∈ ∆′ : x δ−→ x′ ∈→} is the set of possible states in X can be

51

Part , Chapitre 3 – Modeling the Distributed System and Requirements

reachable by doing an execution from the transition ∆′ set from one of the state of the set
Y ⊆ X . (PreT

∆′ (Y))
n and (PostT

∆′ (Y))
n are computed by computing recursively n times from the

set Y . The eq. (3.9) is undecidable only if the set [T] is infinite.

3.3 Formal Verification of Distributed system

We have seen so far how we intend to model the distributed system DS using automata and
symbolic transition systems. Now we will move on to express the system requirements as a set
of specifications. The overall formal verification of system scheme is illustrated in figure 3.3.

Model A

System

Model A

Requirement

Temporal logic
Specification

φ =¬EF fail

Model Checker
A |= φ ?

No
yes

Counter Example

FIGURE 3.10 : Formal Verification of System

Verification or Model checking [BK08] is the process of verifying and simulating a given
system .

For the given required specifications, in the verification mode : if the
system satisfies the specifications, then it produces the result saying that
the system is correct to the given specifications. If not then verification
will notify the user with a counter example : a trace of sequence of
actions performed in the system that violates the specification.

Model-checking :

3.3.1 Expressing the System Requirements as Specifications

Expressing specification is very important in the model checking process, to express the correct-
ness of the system. If we are not expressing the specification (or requirements) of the concerned
system, we are not going to find the correctness or failure of the expressed (modelled) system.
There are many ways to express the expected specified specification ; one such scheme is Li-
near Temporal Logic (LTL) [Pnu77] a language which is well suited for state-based systems
(like automata).

52

3.3. Formal Verification of Distributed system

Linear Temporal Logic Specification

LTL is built over propositional logic (based on Boolean operators ¬,∨,∧) by adding the no-
tion of discrete (i.e natural number) timeline and temporal operators such as the following
{�, ♦, X , U } just to name a few : �ψ means ψ is True in all future moments, ♦ψ means
ψ is True in some future moments. Xψ means that the formula ψ is true in all the possible next
states. φU ψ means φ must remain true until ψ becomes true.

LTL formulas are built over a finite set of propositional variables referred to as Atomic

Propositions (AP) combined with aforementioned Boolean and temporal operators. Temporal
operators can be nested. For instance �♦φ refers to executions in which at all moments, there
is a moment in future where φ holds ; thus, φ holds at infinitely many points in time. Formula
♦�φ refers to executions in which there is a moment in time after which φ holds at all positions ;
thus φ becomes an invariant after a while.

Within the Model Checking (MC) framework, to verify that system A satisfies the specifi-
cation φ (i.e A � φ) there are available software tools such as Spin [Hol97], NuSMV [Cim+02].
A � φ means that all the traces from the system A satisfy the formula φ . If this is not the case,
then we write A 2 φ , i.e whenever there is a trace violating φ in A , we have A 2 φ .

EXAMPLE 3.9 Let’s say that a safety property φ :=�(a→ b), and say a finite trace trace1 =

{ /0},{a,b}, ..{b}, then this trace satisfies the formula φ . Now, let’s take the trace trace2 =

{},{}, ...,{a, ¬b}, then this trace does not satisfy the formula φ . Iff such a trace can be trigge-

ring in the automaton A , then A does not satisfies the safety property φ . �

Let us give some more details about the LTL framework.

The Linear Temporal Logic LTL over infinite traces was originally proposed in computer
science as a specification language for concurrent programs which is the fragment of first order
logic (FO). Let AP be a set of atomic predicates or propositions. Expressions in LTL can either
be state formulas or path formulas. The set of path formulas can be defined inductively as
follows :

• Every LTL state formula is also a LTL path formula

• For every LTL path formula ψ , we have that ¬ψ,�ψ,♦ψ and Xψ (read ¬,�,♦,X as
negation, always, eventually and next respectively) are also path formulas

• For all LTL path formulas φ ,ψ , we have that ψU φ ,ψ ∧φ and φ ∨ψ are also LTL path
formulas.

The set of state formulas is defined as follows :

• For every p ∈ AP, p is a LTL state formula

53

Part , Chapitre 3 – Modeling the Distributed System and Requirements

• For all LTL state formulas φ and ψ , we have that φ ∧ψ,φ ∨ψ and ¬ψ are also LTL state
formulas

Given an automaton A and set of state of automaton Q with atomic predicates AP,

• For a path LTL formula φ 〈A ,q〉� φ if and only if for all the run∈Run(A ,q), trace(run)�
φ

• 〈A ,q〉 � p for some p ∈ AP if p ∈ L(q)

• 〈A ,q〉 � ¬φ if and only if not 〈A ,q〉 � φ where φ a LTL formula over atomic predicates
AP

• 〈A ,q〉 � φ ∨ψ if and only if 〈A ,q〉 � φ or 〈A ,q〉 � ψ

• 〈A ,q〉 � φ ∧ψ if and only if 〈A ,q〉 � φ and 〈A ,q〉 � ψ

• Any LTL formula φ , 〈A ,q0〉 � φ where q0 initial state of automaton A then we denote
them as A � φ .

For given safety regular property expressed in LTL, we can construct a non-deterministic
finite automaton NFA details can be referred to in the model checking book [BK08] chapter 4.

DEFINITION 3.9 Non Deterministic Finite automaton(NFA) M := 〈S,s0,Σ,∆,B〉, where S is

a finite set of states, s0 an initial state, Σ a finite set of action alphabets, finite set of transitions

denoted as ∆⊆ S×Σ×S, and B ⊆ S is the set of bad state for the NFA. �

For the given NFA M , Run(M), seq(run), and L (M) can be defined analogously as defined
for the automaton A . For any regular safety property expressed in LTL φ formed over atomic
predicate set APφ , there exist an NFA model Mφ := 〈S,s0,Σφ ,∆φ ,Bφ 〉 with Σφ = 2APφ the set
of actions, S is the set of states, s0 is an initial state and Bφ ⊆ S is the set of bad states and
s0 6∈Bφ . The transition set ∆φ ⊆ S×Σφ × S. Constructing such models can be referred to the
book [BK08]. It is important to note here that there won’t be a unique model Mφ for a given
specification φ , but in terms of the trace behaviour (i.e Tr(Mφ)) all the NFA model will be same
for given LTL specifications formed over the atomic predicates set AP.

We denote the set of runs for NFA Mφ for the given specification φ as Run(Mφ) and the set

of bad runs as RunBφ
(Mφ)⊆ Run(Mφ) so that ∀run ∈ RunBφ

(Mφ) such that run = s0
APφ ,1−−−→

s1...
APφ ,n−−−→ sn, where each APφ ,i ⊆ APφ and there exist s j ∈Bφ for some j ∈ {1, ...,n} in this

run. The sequence of such run seq(run) =APφ ,1APφ ,2....APφ ,n does not satisfy the specification
φ (i.e APφ ,1APφ ,2....APφ ,n 6� φ). This is by the construction of Mφ . Note here the specification
φ characterizes the sequence of the model Mφ .

54

3.3. Formal Verification of Distributed system

EXAMPLE 3.10 Let’s define one such NFA model for the given LTL specification. Let’s take

the simplest specification : φ = �(a) (always a should be satisfied in the given trace). The

respective model (NFA) is shown in fig. 3.11 (double round on the state s1 indicates that it is a

bad state).

s0 s1

{a}

{¬a}

FIGURE 3.11 : An illustrative example of the model for the given Specification

3.3.2 Verification of Monolithic System

In order to check that the automaton A satisfies a certain regular safety property specification
φ , that is, whether all the traces in the automaton A satisfy the specification φ , we have to
introduce the synchronized product [BK08] notion between automata and the specification. We
also construct a synchronized product between an automaton A and an NFA model Mφ for the
corresponding regular safety LTL specification φ as follows.

DEFINITION 3.10 Synchronized Product : A φ := A ⊗Mφ = 〈Qφ ,qφ

0 ,Σ,∆
φ ,Lφ ,APφ (= S)〉

with bad states Bφ = Q×Bφ ⊆ Qφ , where Qφ = Q× S (set of states), qφ

0 = (q0,s′0) (initial

state) where s0
L(q0)↓APφ−−−−−−→ s′0 ∈ ∆φ , Σ is same as from the automaton A , the rest will be as

follows,

• the set of transition ∆φ

q1
σ−→ q2 ∈ ∆ q1,q2 ∈ Q,s1

L(q2)↓APφ−−−−−−→ s2 ∈ ∆φ s1,s2 ∈ S

(q1,s1)
σ−→ (q2,s2) ∈ ∆φ

• Lφ (q,s) := s for all (q,s) ∈ Qφ .

�

In order to do the model checking of monolithic system i.e formal verification of system
modelled in an automaton and checking its correctness with respect to the safety specification
φ , we have the following theorem borrowed from the book [BK08] (theorem 4.19).

THEOREM 3.1 (Verification of Regular Safety Properties) Consider the given system model

as automaton A := (Q,q0,Σ,∆,L,AP) and a regular safety specification φ over the alphabet

AP. The following statements are equivalent

55

Part , Chapitre 3 – Modeling the Distributed System and Requirements

- A � φ i.e all the traces in Tr(A) satisfy the specification φ (Tr(A) � φ).

- Tr(A)∩L (Mφ) = /0, where Mφ is a non-deterministic automaton model for the given

safety property φ .

�

From the above theorem, we infer the following lemma using run notation.

LEMMA 3.1 For given automaton A and specification φ formed over atomic predicates APφ ⊆
AP, corresponding NFA model Mφ and the synchronized product A φ =A ⊗Mφ , if RunBφ (A φ)=

/0 then Tr(Run(A)) ↓ APφ � φ .

Proof : Let’s say that we have run ∈ RunBφ (A φ), run = (q0,s′0)
σ1−→ (q1,s1)

σ2−→ ...
σn−→ (qn,sn).

Then for some j ∈ {1, ..,n}, (q j,s j) ∈Bφ (by definition also s j ∈Bφ for the specification φ

NFA model Mφ). For any run ∈ Run(A ⊗Mφ) projected into the run of automaton and spe-

cification model as run ↓A = q0
σ1−→ q1

σ2−→ ...
σn−→ qn and run ↓Mφ = s′0

L(q1)↓APφ−−−−−−→ s1
L(q2)↓APφ−−−−−−→

...
L(qn)↓APφ−−−−−−→ sn respectively and considering the NFA run from its initial state we have run(Mφ ,s0)=

s0
L(q0)↓APφ−−−−−−→ s′0

L(q1)↓APφ−−−−−−→ s1
L(q2)↓APφ−−−−−−→ ...

L(qn)↓APφ−−−−−−→ sn.

If there is a run from RunBφ (A ⊗Mφ) then seq(run(Mφ ,s0)) 6� φ which means trace(run ↓
A) ↓ APφ 6� φ . �

Here after we denote that given A � φ if RunBφ (A ⊗Mφ) = /0 (which also means that for
all trace ∈ Tr(Run(A)) ↓ APφ trace � φ).

Let us see one such example, the following German traffic light protocol example taken
from the book [BK08].

EXAMPLE 3.11 (German Traffic Light Model and Specification) Let’s take a specification

φ :=�(¬(¬r∧¬y⇒ Xr)) (read r,y,g as red, yellow and green respectively). This specification

indicates that there should not be two consecutive red signal states and red signal state should

be preceded by yellow signal state. One such NFA for the given specification φ is constructed

and denoted by Mφ in fig. 3.12. The typical German traffic light routing is modeled as an

automaton and denoted as A , the respective synchronized product is constructed as A ⊗M .

Note that in the final synchronized product, there is no double rectangle states (i.e there is no

state of the form (q,s2) in A ⊗Mφ that can be reached for any state q ∈Q from the automaton

A) which indicates that the German traffic light system model does satisfy the specification φ .

Now we will move on to extend the verification of distributed system in the following sec-
tion.

56

3.3. Formal Verification of Distributed system

q0,{g}

q1,{y} q2,{r,y}

q3,{r} s0

s1 s2

σ1 σ2

σ3 σ4

¬r∧¬y

y∧¬r

r

y

¬y∧ r

(a) A and Mφ

(q0,s0) (q2,s0)

(q1,s1)) (q3,q0)

σ2

σ1

σ3

σ4

(b) A ⊗Mφ

FIGURE 3.12 : Synchronized product construction of the automaton and the given NFA Model

3.3.3 Formal Verification of Distributed System

For a given distributed system DS, we model it either by the composition of automata as men-
tioned in the section 3.1 or generating such composition of automaton by translating the written
distributed model description in symbolic transition system as mentioned in section 3.2. For
both cases, we have to carefully introduce a set of predicates which is suitable for the kind
of requirements we expect from the designed distributed system (please refer to both sections
3.1 and 3.2). Finally express the distributed system requirements as mentioned in section 3.3.
In general, when we model the system as either automaton or symbolic transition system, we
have to carefully construct system model and specification otherwise we end up either checking
the irrelevant specification or checking the relevant specification to the not correctly modelled
system or maybe both.

Let say that we modelled the given distributed system as the composition of automaton
ADS := A1 ‖ A2... ‖ An and expressed the set of requirements as LTL specification φ , in
order to do verification process, what we have to do is checking all the traces of the com-
position of automaton satisfies the specification φ . In order to do that we have to check all
the traces in Tr(Run(ADS ⊗Mφ)) and its satisfaction to the expressed specification φ (i.e
∀tr ∈ Tr(Run(ADS⊗Mφ)), check whether tr � φ or tr � ¬φ). If all the traces do satisfy the
specification (i.e ∀tr∈Tr(Run(ADS⊗Mφ)) tr� φ) then the distributed system DS satisfy the ex-
pressed requirements. If there is a trace which violate the specification (i.e ∃tr ∈ Tr(Run(ADS⊗
Mφ)) tr � ¬φ), we found the counter example (trace and corresponding run) which violate the
expressed specification, hence the DS failed to satisfy the requirement φ . More importantly if
the counter example produced, it gives the reason why the given DS failed to satisfy the re-
quirements, which can be used to refine the system or correct the system (i.e redesigning it)
manually.

EXAMPLE 3.12 Let’s give an imaginative distributed system denoted by A = A1 ‖ A2 as in

the figure 3.13. The specification we are interested is the system never reaches the state which

assigns the variable value to 2 i.e φ := �¬(x = 2) Here, the given composition of automaton

57

Part , Chapitre 3 – Modeling the Distributed System and Requirements

q0, x = 0 q1, x = 1

q2, x = 2

a

b
c

(a) A1

q′0, /0 q′1, /0

q′2, /0 q′3, /0

a

cb

(b) A2

FIGURE 3.13 : An imaginative distributed system for Illustration purpose

3.13 the only possible trace of this A =A1 ‖A2 composition of automaton is for the run run =

(q0,q′0)
a−→ (q1,q′1) which is tr = ((x = 0), /0)((x = 1), /0), and it does satisfy the specification φ .

�

In case, we model the given distributed system DS in terms of SCTS TDS :=‖i∈[1,..,m] Ti,
then for each Ti generate the [Ti] and by the relation of semantics representation of symbo-
lic communicating transition system with automata (A = [TDS]) check for all traces in the
Tr(Run(A)) satisfy the specification (i.e ∀tr ∈ Tr(Run([TDS])), tr � φ). Note by this method,
we can only handle the finite state space size of the generated [TDS] from the given symbolic
communicating transition system T .

In order to formal verification of distributed system, we can use the monolithic technique
by modifying the labelling function for the distributed case as L(q1,q2, ..qn) = ∪i∈{1,..,n}L(qi)

instead of earlier notation L(q1,q2, ..qn) = (L1(q1), ...,L(qn)). Using this definition, we express
the distributed specification in LTL and verify the DS as mentioned in Verification of Monolithic

System. By doing a monolithic verification to the distributed system (or any concurrent system)
is highly inefficient reason is state space explosions (explained in detail in the next chapter).
To avoid such state space explosions and verify the DS in efficient way there are couple of
sophisticated techniques exists in the model checking literature, some of the techniques are
mentioned in next chapter.

3.4 Control Synthesis of Distributed system

Discrete Control theory, introduced in the 80’s by Ramadge and Wonham [WR88] is now a
well-established theory (see [CL08] for a detailed review). Compared to model-checking, the
discrete supervisory control problem is to correct the model of the system w.r.t. some require-
ments. This theory allows the use of constructive methods ensuring, a priori and by means of
control, required properties on a system’s behavior. Roughly speaking, given a model A of the
system (that is supposed to correctly represent the behaviour of an implementation) and some
requirements φ (modelled as formal properties expressed in LTL or CTL w.r.t. the specifica-
tion), a supervisor S must be derived by various means such that the resulting behavior of the
closed-loop system meets requirements.

58

3.4. Control Synthesis of Distributed system

Given a model of the system A and the supervisor S for the system such that A S satisfies
the required property φ , the closed loop system A S here means that S captures the entire set
of possible behaviors of the system A and it disables some controllable actions and observing
all uncontrollable actions such that the closed loop system can be satisfies the property φ .

Model A

System I

Model A

Requirement

Temporal logic
Specification

φ =¬EF fail

Supervisory
Control

A S |= φ

Implementation
of S ,

connection to I

Assuming
I ∼A

Means
of control

and observation

FIGURE 3.14 : Discrete Supervisory Control principle

It is assumed that some actions of the system can be controlled (i.e. can be disabled) based
on the observation one can have on the system, while some others, called uncontrollable, cannot
be prevented from occurring but observable. In this document, we assume that the model of the
system is completely observable and that only a part of the actions are controllable meaning
these can be disabled by a supervisor.

The observations made by the supervisor can be a subset of the actions performed by the
system or an estimation of the global system states in which it can be. This is the latter choice we
shall consider in the sequel. A supervisor S takes the decision of disabling some controllable
events based on this observation as illustrated in figure 3.15.

Model A
Supervisor

S

Observation
Obs

S (Obs)
Set of disabled events

FIGURE 3.15 : Closed-loop Feedback Control

59

Part , Chapitre 3 – Modeling the Distributed System and Requirements

This theory allows the use of constructive methods ensuring, a priori,
and by means of control, required properties on a system’s behavior. Gi-
ven a model A of a system (that is supposed to correctly represent the
behavior of an implementation) and a specification φ (modeled as for-
mal property expressed in LTL or CTL (computation Tree Logic) w.r.t.
the specification), a controller S must be derived by various means
such that the resulting behavior of the closed-loop system meets requi-
rements.

Supervisory control

3.4.1 Control Synthesis of Finite State System

For the elementary discrete event system and synthesizing supervisors are introduced by first
defining the system in terms of finite discrete event system (or finite state machine FSM) rather
than automaton, automaton model are involved with clear specification of atomic predicates,
but FSM are denoted without atomic predicates rather it is system states are denoted with either
safe or unsafe for the system to reach. The systems actions set are partitioned into controllable
and uncontrollable events, further going into the details, we have to partition the system actions
into controllable and uncontrollable and set of states into observable and non-observable sets.
In this entire document we partition the system actions into controllable and uncontrollable sets,
and assume all the system states and actions are observable.

Synthesis of Finite State Machine We first describe the synthesis of simplest finite state
machine here and gradually we will develop the theory based on the existing literature for the
composition of many finite state synchronous system later in this sections.

DEFINITION 3.11 We will define a finite state discrete event system as automaton A (finite

state machine-FSM) with minor modification. A = 〈Q, q0, Σ, ∆,L,AP〉 with AP = {Bad},
where Q a finite set of states, q0 an initial state, Σ a finite set of action alphabets such that

Σ = Σc ∪ Σuc, Σuc denotes the set of uncontrollable actions, Σc denotes the set of control-

lable actions (Σc ∩ Σuc = /0), ∆ ⊆ Q× Σ×Q a finite set of transition relation, and B ⊆ Q

is {q | L(q) = {Bad}}. �

For simplicity in the sequel we shall denote A by 〈Q,q0,Σ,∆,B〉 when it is clear from the
context. In the definition of FSM, we seek for a supervisor such that behaviour of A is limited
by disabling some of the controllable actions such that A won’t reach (or enter) a bad state (i.e
a state q ∈ Q where L(q) = {Bad}).

60

3.4. Control Synthesis of Distributed system

DEFINITION 3.12 A state-based supervisor S for a FSM A is a function S : Q→ 2Σc s.t S

blocks the controllable actions S (q)⊆ Σc (i.e disable) at system state q ∈ Q. �

DEFINITION 3.13 For the given FSM A and the state based supervisor S , the controlled

FSM A S is an automaton (FSM). A S = 〈Q,q0,Σ,∆
′,B〉 where ∆′ ⊆ ∆, if σ 6∈ S (q) and

(q,σ ,q′) ∈ ∆ then (q,σ ,q′) ∈ ∆′. �

EXAMPLE 3.13 Let’s take a simple FSM A = 〈Q= {q0,q1,q2}, q0, Σ= {a,b,c}, ∆= {(q0
a−→

q1),(q0
c−→ q2),(q1

b−→ q2)},B = {q2}〉 denoted in figure 3.13. Here all the actions from the set

Σ are controllable. For such a FSM, the state based supervisor for A is a function S such that

q0 q1

q2

a

bc

FIGURE 3.16 : A simple FSM

S (q0) = {c},S (q1) = {b},S (q2) = /0. So here, for the given FSM, we do have the state based

supervisor S to control it to avoid reaching a bad state. �

The computation of such supervisors S are well-known in the community ; we briefly recall
it, and refer to [CL08] for details. In a nutshell, one have to compute the set of states IBad =

CoReachA
Σuc

(Bad) that can reach in an uncontrollable way the set Bad (i.e global bad states B

of the given system A) ; that is, this is the set of states from which, some uncontrollable actions
lead the system to Bad independently from the choice of the controllable actions. The supervisor
S is then computed by disabling in any subset E ∈Q, the events that lead to IBad. We will show
you some illustrative examples in the following texts.

EXAMPLE 3.14 The following example explains how IBad is computed from the set of Bad
states and when the supervisor S avoids to reach any state of IBad. The state 1 has to be

Q

q
1σ ′cs σ∗uc
σc

Bad
IBad

FIGURE 3.17 : Intuition behind IBad and S computations

disabled as a bad state can be reached by triggering σ∗uc ∈ Σ∗uc, so it belongs to IBad. The dashed

transitions represent the events that are disabled by the supervisor S , i.e. S ({q}) = {σc,σ
′
c}

as they may lead to IBad by triggering one of these two events. �

61

Part , Chapitre 3 – Modeling the Distributed System and Requirements

qo q1 q2 q6

q3 q4 q5

IBad

a b

u

c

u

b
b

a

uu

a

u u

FIGURE 3.18 : example of Control

EXAMPLE 3.15 To illustrate this, let us consider the following FSM A , with Σc = {a,b,c},
Σuc = {u} and Bad = {q6}.

It is easy to see that IBad = {q2,q4,q5,q6} as the path

q2
u−→ q4

u−→ q5
u−→ q6

is an uncontrollable path (i.e. q6 can be reached from q2 by triggering only uncontrollable

events. By supervision A S is then reduced to the automaton inside the green circle, with S

defined as follows : S (q0) = /0, S (q1) = {b,c} and S (q3) = {a}. �

We say a valid supervisor exists if and only if Ibad 6= Q.

THEOREM 3.2 Given an Automaton A A = (Q,q0,Σ = (σc∪Σuc),∆,B), then, the supervisor

S such that

S (q) = {σ ∈ Σc | (q,σ ,q′) ∈ ∆∧q′ ∈ Ibad}

is such that A S avoids B. �

An important concept in the synthesis of supervisor theory is maximal permissiveness, the fact
that the supervisor S must disable actions in the system model A only when it is strictly neces-
sary to enforce the closed system A S to avoid bad states, meaning that it forces the supervisors
to disable the controllable actions as little as possible. An important feature of synthesis super-
visor theory of finite system is that there is a unique maximally-permissive supervisor, but when
the system model is infinite, the existence of a unique maximal permissive supervisor can not
be guaranteed but we can compare any two supervisors S1,S2 to the system model A with
respect to the permissive nature.

DEFINITION 3.14 (State-based) Given a FSM and two supervisors S1,S2. S1 is more per-

missive than S2 when S2(q)⊆S1(q) for all state q ∈ Q of the FSM A . �

We call strictly S1 more permissive than S2 when S2(q)⊆S1(q) for all state q ∈Q and there
exist a state q ∈ Q s.t S2(q)(S1(q).

Permissiveness definition can be easily extended to languages :

62

3.4. Control Synthesis of Distributed system

DEFINITION 3.15 Given a FSM A , S is maximally permissive whenever there does not exist

a valid supervisor S ′ such that L (A S ′
)⊆L (A S). �

3.4.2 Control Synthesis of LTL Safety Specifications

To synthesis the safety regular LTL specifications formed over the atomic predicates set AP on
the generic automaton A , we have to know the set of states and also the set of traces which
violates the specification φ , in order to construct supervisor which avoids not just bad states
but also all the traces which violates the specification φ , we have to build the model for the
specification. We will use NFA model for the given specification φ and construct the control
synthesis for the automaton A as follows.

Synthesis of safety LTL properties. When dealing with safety regular property φ , as for
model checking, we first build the NFA model Mφ with a subset of system states Bφ ⊆ S (state
of the model Mφ) representing the states that do not fulfill the property (i.e. all the runs that do
not cross a state in Bφ satisfies φ). We then perform the synchronized product between A and
Mφ : A φ = A ⊗Mφ and we denote by Bφ the set of states of the form Q×Bφ . A supervisor
Sφ avoiding Bφ can then be computed on A φ and the resulting automaton (A φ)Sφ defined as
in Definition 3.13 fulfills the property φ .

For the given automaton A , and for the specification φ , we have NFA model Mφ , and then
we construct the automaton A φ := A ⊗Mφ , the main objective of the supervisor Sφ is to
avoid the co-reach of bad states Bφ = Q×Bφ .

ALGORITHM 3.1 (Synthesis LTL Specification)

• Given an automaton A and LTL regular safety specification φ , construct NFA model

Mφ = 〈Sφ ,s0,Σφ ,∆φ ,Bφ 〉 (can be constructed automatically, even SPIN software has

interface to do this task).

• Construct the synchronized automaton A φ := A ⊗M = 〈Qφ ,qφ

0 ,Σ,∆
φ ,Lφ ,APφ (= Sφ)〉

with bad states Bφ = Q×Bφ .

• Compute the co-reach of the bad states Q×Bφ (we denote it as IBad = CoReachA φ

Σuc
(Bφ))

by triggering the uncontrollable actions Σuc.

• Compute the supervisor Sφ avoiding IBad states in the automaton A φ .

�

THEOREM 3.3 The algorithm 3.1 for constructing the control synthesis S (if exists) for the

specification φ for the automaton A , then (A φ)Sφ � φ . �

63

Part , Chapitre 3 – Modeling the Distributed System and Requirements

The proof is trivial. Arguments as follows, supervisor Sφ avoids the automaton A φ to reach the
bad state Bφ , if the automaton (A φ)Sφ wont enter the bad states Bφ then RunBφ ((A φ)Sφ)= /0
then by lemma 3.1 we have Tr(RunBφ ((A φ)Sφ)) � φ hence the theorem.

We denote (A ,Sφ) to refer the automaton (A φ)Sφ , and this supervisor Sφ : Q×Sφ → 2Σc ,
i.e by knowing the current states of the automaton A and the model Mφ , supervisor Sφ blocks
the set of controllable actions Sφ (q,s)⊆ Σc for all (q,s) ∈ Q×Sφ .

Note that the methodology is very similar to the one used in language-based approach of
control synthesis [CL08]. The main difference is that we make use of LTL properties versus
language-based properties. We thus benefit from the know-how of the model checking commu-
nity, in particular to model the properties in a high-level setting.

Relation Between Synthesis and Verification Process Verification process is mostly on che-
cking correctness of given expressed system model with respect to the required specifications
where-us the synthesis is about computing the controller so that the expressed system model
satisfy the given specification.

Synthesis to Verification

In case of synthesis the given finite state machine (FSM) modeled as an automaton A =

〈Q,q0,Σ = (Σc∪Σuc),∆,B〉 can be equally expressed as an automaton A = 〈Q,q0,Σ,∆,L,AP〉
with AP = {Bad} and we modify the labelling function L as L(q) = {} if q 6∈B and L(q) =

{Bad} if q ∈B as by definition 3.11.

The redefined automaton A should not enter into bad state is the requirement in case of
synthesis. Such requirement can be expressed in LTL safety specification as �(¬Bad). So fin-
ding a supervisor S for FSM automaton A , such that A S never enters the bad state B. If
there is a valid supervisor, then the resultant FSM A S (it is a FSM by definition 3.13) satisfies
A S � �(¬Bad) by theorem 3.2.

Verification to Synthesis

In converse, suppose we have an automaton A = 〈Q,q0,Σ,∆,AP,L〉 and its action set Σ can
be partitioned into controllable and uncontrollable action sets. We want the automaton A to
satisfy the specification φ (LTL specification formed over the atomic predicates AP). For any
safety LTL property, we can construct synchronized product of the automaton A and the model
Mφ for the given specification φ as by definition 3.10. In the automaton A φ , the state space
can be partitioned as Qφ = (Q× (S \Bφ))t (Q×Bφ) indicating that in the automaton (i.e in
the synchronized product) A φ the states (q,s) ∈ (Q× (S \Bφ)) not violating the specification
φ and the states (q,s) ∈ (Q×Bφ) violating the specification.

64

3.4. Control Synthesis of Distributed system

Now, use the A φ to construct FSM (say F for not to confuse the notation) for the given
synchronized product A φ = A ⊗Mφ by excluding the labelling function L and the atomic
predicates AP, and defining the bad set of states B = (Q×Bφ).

A supervisor S is build to avoid IBad = CoReachF
Σuc

(B) for the FSM F , if there exists Sφ

then we have FSφ � φ (i.e constructed FSM never enters the defined bad state hence all the
trace from this finite state machine FSφ satisfies the specification φ). The same constructed
supervisor Sφ used in the automaton A φ ≡ A ⊗Mφ by disabling the controllable action as
defined by the supervisor Sφ , then we have (A φ)Sφ � φ . That is the automaton A ⊗Mφ

controlled by the supervisor Sφ never enters the state Q×Bφ then we have all the traces
Tr(Run((A ⊗Mφ)

Sφ ↓A)) � φ (i.e all the traces of run from Run((A ⊗Mφ)
Sφ) projected

to the automaton A satisfy the specification φ)

3.4.3 Synthesis of Finite State Distributed System

We will see the simplest synthesis of distributed systems with synchronous communications
by introducing the finite discrete event system way of modelling the distributed system DS in
this section and more involved synthesis scheme model and property will be developed in later
sections and also in chapter 4.

In case of defining the composition of automaton for the control synthesis of distributed
system which is communicating in synchronous way (there is no queue concept) we have to
define the controllable and uncontrollable events and also the actions shared between various
sub-systems. We will revisit the composition of automaton for the control synthesis case as
follows,

DEFINITION 3.16 Given set of finite state machines A1, ...,An, where each i ∈ {1, ..,n} Ai =

〈Qi, q0,i, Σi, ∆i, Bi 〉
the composition of these FSM’s is A = (||i∈{1,..,n}Ai) = 〈Q, q0, Σ, ∆, B 〉,
where Q,q0,Σ,∆ as defined in definition 3.3

• Each subsystem Ai partition the set of actions Σi into controllable and uncontrollable

actions i.e Σi = Σc,itΣuc,i (Σc,i∩Σuc,i = /0)

• B := ∏i∈[1,..,n]Bi where Bi ⊆ Qi.

�

Note : In the above definition, we can consider the following assumptions depends on the
system we model and synthesis.

• There can be common actions shared with more than two different sub FSM’s and if any
one of the FSM’s trigger that common action in the composition of FSM’s all the sub

65

Part , Chapitre 3 – Modeling the Distributed System and Requirements

FSM’s which has this action should trigger the same action (well that is because of the
composition of automata definition not because of the limitation of distributed system).

• Suppose for the given action σ ∈ Σi1,Σi2, ...Σil for i1, i2, ..., il ∈ {1, ..,n} then it is control-
lable by only one automaton i.e for the common action (synchronous action) σ shared
among the processors {i1, i2, ..., il} then it is at-most controllable by only one processor.
This is the case if the distributed system is reactive in nature, i.e the system sends com-
mand actions - more like sending a command message in a synchronous (rendezvous)
queue.

• To define global controllable actions, if there is a subsystem which can control an action
σ ∈ Σ then that action can be considered as a global controllable action. Because if the
local subsystem controls that action (i.e disable) then this particular action σ can’t be trig-
gered by any of the subsystems because of the composition of the automaton. Moreover
if we consider that any shared actions between a set of subsystems from {A1, ...An}
it can be at-most controllable by one subsystem. That is to say if σ ∈ Σc,i for some
i ∈ {1, ..,n} then for all j 6= i σ 6∈ Σc, j. The global controllable actions can be defined
as Σc = ∪i∈{1,..,n}Σc,i and global uncontrollable actions is Σuc = Σ\Σc.

• Although, there can be more than two automata can synchronize a shared action, but
in real system I suppose that common action is triggered by (controlled) one processor
and all other sub-processors has that action will do handshake and execute that common
actions but it requires atomicity of executing that handshake by all the sub-processors,
maybe we can redefine the above definition by saying at-most only two process can share
any actions in the alphabet Σ. This is the case for the reactive system.

When it comes to the set of FSM as in the definition 3.16, finding the local supervisor Si

controlling FSM Ai knows about FSM Ai state, but in the presence of many FSM’s and the
common action triggered among many FSM’s, the local supervisor Si has to estimate the cur-
rent global state i.e (q1,q2...qn) ∈Q (not just qi ∈Qi). In order to do that, each local supervisor
Si should have a global state estimator to have the knowledge on the current position of the
global system, for that we are going to introduce the state estimator inspired from the work
[Kal+14].

DEFINITION 3.17 A State estimate procedure E j for a specific local FSM A j of given system

A = ||i∈{1,..,n}Ai is a function E j : 2Q→ 2Q such that for any Q′ ⊆ Q set of states, E j(Q′)⊆ Q

which contains the possible current global state of the system A . �

Here after for the sake of simplicity, we use E j for the current global states for the automaton
A j at any given instant instead of explicitly mention it as E j(Q′) where Q′ is the previous global
state estimation for the subsystem A j.

66

3.4. Control Synthesis of Distributed system

DEFINITION 3.18 A local supervisor Si is a function Si := Ei× Ibad→ 2Σi,c , such that Ei is

the state estimate for a system Ai (according to Si) which estimate the global state Q′ ⊆ Q,

and Ibad ⊆ Q is co-reach of bad states B i.e B1 × ...Bi× ...Bn reached by triggering the

uncontrollable global action set Σuc and computed by Ibad = CoReachA
Σuc(B1× ...Bi× ...Bn).

The function Si(Ei, Ibad) are the set of controllable actions are blocked for Ai for the given

global state estimation Ei. �

Note, the above local supervisor aim is to compute the possible global current state by using
the state estimator Ei and co-reach of global bad states B i.e CoReachA

Σuc(B1× ...Bi× ...Bn).
We have the assumption of if σ ∈ Σc,i for some i ∈ {1, ..,n} then for all j 6= i σ 6∈ Σc, j. The
set of global controllable action set Σc = ∪i∈{1,..,n}Σc,i and global uncontrollable action set
Σuc = Σ\Σc.

In our setting, we explicitly computing a local supervisor for each FSM involved in the com-
position of automata A = ||i∈{1,..,n}Ai, the earlier work in the literature has the same notation
with different control architecture. For example [GM05] computes one global supervisor for
the composition of automata, their technique is almost the same as the technique mentioned
here. The main difference is in the control architecture of given composition of system and the
assumption about the shared common actions between subsystems they have the assumption
that for any two subsystem i, j ∈ {1, ..,n} Σc,i ∩Σuc, j = /0 that is if a subsystem Ai control an
action σ and it is also an action in subsystem A j that should be controllable. They find one glo-
bal supervisor by first computing product of co-reach of bad states Ibad = Ibad1× ...Ibadn where
Ibadi = CoReachAi

Σuc,i
(Bi) and the detail architecture depicted in the figure 3.19. Since the global

supervisor is aware of the current local state of all subsystem in the given FSM A , it don’t need
the local state estimator, and directly control each FSM involves in the automata (A)S .

A1 A2

A3

S

S (Ibad ,q) S (Ibad,q)

S (Ibad ,q)

here q = (q1,q2,q3)

FIGURE 3.19 : A Centralized Control architecture for a Synchronous distributed system

DEFINITION 3.19 Given composition of FSM A = ||i∈{1,..,n}Ai, the set of distributed super-

visors S := {Si | i∈ {1, ..,n}}, and for each Ai finite state machine, the local supervisor Si is

67

Part , Chapitre 3 – Modeling the Distributed System and Requirements

a function Si : Ei× Ibadi → 2Σc,i . The resulting supervisor S = (S1, ..Sn) with global system

A is A S := ||i∈{1,..,n}A
Si

i again a FSM. �

PROBLEM 3.1 Distributed State avoidance control problem : Given a composition of finite

state machine A = ||i∈{1,..,n}Ai = 〈Q, q0, Σ, ∆, B 〉 and the set of forbidden states B, the

distributed state avoidance control problem consists in synthesizing a distributed supervisors

S := {Si | i∈ {1, ..,n}} such that each controlled execution of the system Ai under the control

of Si avoids the forbidden states B. �

Let us give one such state estimate procedure for a local FSM Ai of given global system
A =‖i∈{1,2...n} Ai, we recall that the reachable and co-reachable for a given set Q′ ⊆ Q and
for the action alphabets Σ′ ⊆ Σ can be defined in the same way as in equations 3.1 and 3.2
respectively. We state the pseudo algorithm below for the state estimator.

The basic idea here it will be finding the local supervisor Si for each subsystem Ai so that
the global bad state B is avoided in the global system A = ||i∈{1,..,n}Ai the simplistic view is
presented in the figure 3.20.

S1 A1 A2 S2

A3

S3

S1(E1, Ibad) S2(E2, Ibad)

S3(E3, Ibad)

FIGURE 3.20 : A Decentralized Architecture for a Synchronous Distributed System

Here after we refer there exists a valid supervisors S = {S1, ...,Sn} for FSM (i.e the
composition of automata) A = ||i∈{1,..,n}Ai if {(q0,1, ..q0,n)} ∈ Ibad, where (q0,1, ..q0,n) is an
initial state of A .

ALGORITHM 3.2 (State Estimator) We compute the state estimate procedure E j for the local

FSM A j of given system A recursively as follows,

• At the starting instant, E j(/0) = {(q0,1, ..,q0,n)} which contains only the initial state of the

system A ,

• for an internal actions alphabets in A j is fired i.e σ ∈ Σ j \Σ then for given Q′ ⊆ Q,

E j(Q′) = {(q1,q2, ..,q′j, ..,qn) | (q1,q2, ..,q j, ..,qn) ∈ Q′∧ (q j,σ ,q′j) ∈ ∆ j }

68

3.4. Control Synthesis of Distributed system

• for a synchronized transition σ ∈ Σ j shared in the set Σi1 ∩Σi2..∩Σik for {i1, i2, .., ik} ⊆
{1, ..,n} and for given Q′ ⊆ Q

take A= {(q1,q2, ..,q′i1, ..,q
′
i2, ..q

′
ik , ..,qn) | (q1,q2, ..,qi1, ..,qi2, ..qik , ..,qn)∈Q′∧(ql,σ ,q′l)∈

∆l∀l ∈ { i1, i2, .., ik }},
E j(Q′) = ReachA

Σ\Σ j
(A).

�

For the sake of notation simplicity, we refer E j for the current global state estimation of
the given local system A j without explicitly mentioning that E j(Q′) where Q′ is the previous
instant of the global state estimated by the state estimator E j for the same local system.

Note that for any given state estimator Ei, all the possible states in this estimation, the i-th
co-ordinate will be the same and equal to current state of the automaton Ai.

Now we will give one simple algorithm for computing the local supervisor Si for the given
automaton Ai of the composed system A = ||i∈[1,..,n]Ai.

ALGORITHM 3.3 (Local Supervisor) Given composition of automaton (FSM) A = ||i∈[1,...,n]Ai,

finding the local supervisor S j for the automaton A j with state estimator E j as mentioned in

algorithm 3.2 with co-reach of global bad state Ibad = CoReachA
Σuc

(B1× ...B j × ...Bn), the

local supervisor is computed as follows,

- At any given instant, when the state estimator E j ⊆ Q (subset of global state) is non-

empty when it is intersected with Ibad i.e E j ∩ Ibad 6= /0 and the local state of A j is q j then

S j(E j, Ibad) = Σc, j ∩{σ | (q j,σ ,q′j) ∈ ∆ j ∧σ ∈ Σc, j} (i.e all the controllable action Σc, j

possible from the state q j),

- If E j∩ Ibad = /0 then

S j(E j, Ibad) = {σ | σ ∈ Σc, j∧PostAσ (E j)∩ Ibad 6= /0}

(i.e all the controllable actions leads to the sate Ibad from the state in state estimation E j)

�

THEOREM 3.4 (Control Synthesis for finite distributed system) Given the composition of FSM

A = ||i∈{1,...,n}Ai, using the algorithm 3.3 there exists a valid supervisors S = {S1, ..,Sn}.
Then the system ||i∈{1,..,n}A

Si
i never enters the bad state B and solves the problem 3.1. �

The argument as follows, Suppose let say that the computed supervisors with their respective
state estimator reaches the bad state B.

Take a minimum length run
run=(q0,1, ..q0,n)

σ1−→
σl−→ (ql,0, ..ql,n)∈Run(A S)=Run(||i∈{1,..,n}A

Si
i) such that (ql,0, ..ql,n)

a first state to enter into Ibad.

69

Part , Chapitre 3 – Modeling the Distributed System and Requirements

claim σl should be an uncontrollable action i.e σ ∈ Σuc. Suppose let say that σl ∈ Σc,i for
some i ∈ {1, ..,n} i.e σ ∈ Σc then we will have (ql−1,0, ..ql−1,n) ∈ Ibad which contradicts the
assumption that run a minimum length run which enters the set Ibad

By the above claim we have σ ∈ Σc more precisely it is controllable by one such subsys-
tem, say A j. If that is the case then the supervisor S j knowing the state estimation E j such that
((ql−1,0, ..ql−1,n)) ∈ E j then the supervisor Si would have blocked the controllable action σl

and if it is controllable action by the subsystem A j it would not be controllable by any other
subsystem Ai for any i 6= j ∈ {1, ...,n} and because of the composition definition, if that parti-
cular action σ disabled in the subsystem A j then it can’t be triggered by any other subsystem.
�

Note : From the argument of above theorem, it clearly indicates that the produced supervisor
might be blocking but will not let the system A controlled by supervisor S will reach global
bad state B.

The proof of this theorem is trivial, since each local supervisor Si with their global state
estimator Ei avoids to enter the bad state Ibad at any given instant, then the global bad state
B never be reached in the composition of global system A controlled by set of supervisors
{S1,S2, ...,Sn}.

The control of distributed finite state machine as mentioned in our texts is not new, for instant
the paper [GM04] discuss in depth of this problem and solves without using state estimator for
each local system A j for the given global system A = ||i∈{1,..,n}Ai. Although their settings is
more general in one sense and less general in another sense. The settings in [GM04] is that
common actions between any two subsystem is empty but in our case the distributed system
communicating in synchronous way and we allow the non-empty actions between any collection
subsystems.

It may be useful to study the permissive nature between our control synthesis of distribu-
ted system with respect to the control synthesis of the work [GM04]. We might consider this
possible direction in our future work.

EXAMPLE 3.16 Let’s take an hypothetical distributed system modelled as FSM denoted in the

figure 3.21. In this model A1 = 〈Q1 = {q0,q1,q2}, q0, Σ1 = {a,b,c}, ∆1 = {(q0
a−→ q1),(q1

b−→
q2),(q2

c−→ q0)}, B1 = /0〉 and T2 = 〈Q2 = {q′0,q′1,q′2}, q′0, Σ2 = {a,b,c}, ∆2 = {(q′0
a−→ q′1),(q1

b−→
q′2),(q

′
2

c−→ q′0)}, B2 = {q′2}〉. Take here Σ1c = {b,c} (controllable actions for FSM A1) and

Σ2c = {c} (controllable actions for FSM A2). In this example, the global bad states are Q1×
{q′2}. Note : In this distributed FSM, it is not trivial to introduce state based supervisor as

mentioned in the Example 3.14. Because, here for each local system, it has to maintain the

global state estimator, so the supervisor is not just a function from Qi (domain) to power set of

controllable actions Σic for i ∈ {1,2}. In this simplest example if we find the supervisors based

on the algorithm as mentioned in algorithm 3.2 and the local controller as mentioned in 3.18,

S1(q1,Q′2) = {b} for all Q′2 ⊆Q2 and for all other q ∈Q1 \{q1}S1(q,Q′2) = /0. Similarly, for

70

3.4. Control Synthesis of Distributed system

q0 q1

q2

a

b
c

(a) A1

q′0 q′1

q′2

a

b
c

(b) A2

FIGURE 3.21 : An imaginative distributed system as FSM’s

FSM A2, S2(Q′1,q
′) = /0 for all Q′1 ⊆ Q1, all q′ ∈ Q2. Further, the current global state has to

be computed by the local state estimator Ei for i ∈ {1,2}. �

As mentioned earlier, the problem and algorithm we presented in this section to generate syn-
thesis may not be maximal permissive ; it can even be a deadlock controller. This problem arises
due to the fact that each local state estimator computes the set of possible global current state by
using Reach computation, and also the fact that our local controllers {S1, ...Sn} do not com-
municate with each other. In order to get a better controller in-terms of permissive nature, we
can use piggyback technique as introduced in the paper [Kal+14]. The main idea of piggyback
is whenever there is an exchange of messages between two subsystems, along with the actions,
it appends its current state information. In this case, the actions set have to be modified slightly.
It should be defined as Σ j = Σ?

j ∪Σ!
j ∪Σint, j where Σint, j is purely an internal action set, Σ?

j is
the set of message receiving actions, when such action is triggered, it receives a message from
say Ai, along with the message it also receives the current state of the system Ai. The message
sending actions set Σ!

j, when it is triggered, it sends a message to say Ak it appends the current
state with this message so that system Ak knows the current state of A j. By regularly sending
the current state of each local automaton to one another and updating the state estimator for
each E j using this information can given the better (narrow) possible global states which may
leads to better controller compared to the method we mentioned in our document.

3.4.4 Extending the Synthesis concept to the Infinite System

Finite state machine definition is good for the control synthesis of finite state system, in order to
extend the control synthesis concept to infinite case, we have to describe the interested distribu-
ted system DS in terms of symbolic transition (we know why it is good idea to express infinite
system in terms of symbolic transition system which was mentioned in section 3.2) with clear
partition of the action set Σ into controllable and uncontrollable action set in the definition 3.8.

Once we partitioned the action set Σ into controllable action set Σc and uncontrollable action
set Σuc, using this partition we can naturally partition the transition ∆ into controlled transition
(will be denoted by ∆c) and uncontrolled transition (denoted by ∆uc). Execution of controlled
transition by the controllable action Σc and execution of uncontrolled transition by the uncon-
trollable action Σuc.

71

Part , Chapitre 3 – Modeling the Distributed System and Requirements

It is important to emphasize the fact given two symbolic transition system T1,T2 and their
action set Σ1,Σ2 respectively, the intersections of this action set is empty Σ1∩Σ2 = /0. In other
word, given composition of symbolic transition system T =‖i∈{1,..,n} Ti for any two i 6= j ∈
{1, ..,n} Σi∩Σ j = /0. In addition to that all the reading action will be under uncontrollable action
set in the sense that whenever there is a message in the incoming FIFO queues (q ∈ Q) reading
the messages from that incoming queues should be uncontrollable. So the controllable actions
are almost all the sending message actions via outgoing queues q ∈ Q and all other actions
excluding the sending, receiving and reading messages.

We have to describe here the bad states of the given SCTS T . For a given SCTS [T] =

〈V,Θ,M,Q,L, l0,Σ(= Σc ∪Σuc),∆,U,AP〉, the bad states B is the subset of domain of the set
DV (B ⊆ DV). The generated labelled transition system (semantic representation of the given
T) [T] for given SCTS T the bad states in terms of the system state represented as Xb ⊆
L×B×q∈Q {wq | wq ∈M∗}. It is important to notice here that bad system state is based only
on the system state variable values i.e B ⊆DV and it does not depends on the system location
L and the queue content wq for any queue from queue set Q.

For a given set of symbolic transition system Ti = 〈Vi, Θi, Mi, Qi, Li, l0,i,U1, AP1, Σi(=

Σi,c∪Σi,uc), ∆i〉 where i ∈ {1, ..,n} and Σi,c∩Σi,uc = /0. The composition of the symbolic com-
municating transition system as mentioned in definition 3.7 is T =‖i∈{1,..,n} Ti. The correspon-
ding semantics of SCTS is [T] =‖i∈{1,..,n} [Ti]. The set of bad states are Bi for each Ti and
corresponding bad system states are Xb,i = Li×Bi×q∈Qi

{wq | wq ∈M∗}. For further details
one can refer [Kal+12] and [Kal+14].

PROBLEM 3.2 Distributed State avoidance control problem for SCTS : Given a composition of

symbolic transition system T = ||i∈{1,..,n}Ti, corresponding semantics of the system [T] =‖i∈{1,..,n}

[Ti] and the set of forbidden states (global system states) B = ∪i∈{1,..,l}∏ j∈{1,..,n}B
i
j dis-

junction of global bad states where Bi
j ∈ X j for all j ∈ {1, ..,n} and i ∈ {1, .., l} for some

l ∈ N, the distributed state avoidance control problem consists in synthesizing a distributed su-

pervisors S := {Si | i∈ {1, ..,n}} such that each controlled execution of the system [Ti] under

the control of Si avoids the global system bad states B. �

If the state space of the semantics of given composition of SCTS ([T]) is finite, we can use
the state estimator 3.17 and procedure 3.2 to find the local supervisor for each subsystem Ti.

If the state space of the semantics is infinite, then to find the local supervisor for each
symbolic communicating transition system Ti, we need state estimator with little modification
to the definition 3.17 and the state estimator procedure 3.2 with little modification, although
I mentioned them as little modification in order to do this little modification we have to do
over-approximation and abstraction on the state space.

Over-Approximation by Abstraction For the synthesis of composition of SCTS (i.e distribu-
ted system modelled in SCTS as T =‖i∈{1,..,n}T and respective semantic model [T] =‖i∈{1,..,n}

72

3.5. Chapter Conclusion

[Ti]), the procedure mentioned in algorithm 3.2 a global state estimator for each local super-
visor Si won’t terminate for infinite system (the state space of the semantics of given SCTS is
infinite). This general problem is undecidable [Kal+14]. The main reason for the undecidability
nature for this problem is because the procedure mentioned in algorithm 3.2 for the infinite state
space X of given semantics [T] to compute Reach, CoReach operators will not terminate. The
abstract interpretation-based techniques [CC77] allows us to compute infinite number of steps
to compute the over-approximations of Reach,CoReach operators, and thus of the set I(Bad)
and the global state estimator Ei for each local supervisor Si, i ∈ {1, ...,n}.

For the SCTS, one such over-approximation techniques is the abstract interpretation of the
incoming and outgoing queues content by a regular language, and each such regular language
expression can be expressed as a finite automaton, which makes a way to approximate the state
estimator procedure to compute the Ibad state, and gives a sound local supervisor Si for each
subsystem model Ti.

3.5 Chapter Conclusion

In this chapter, we introduced and reviewed various model definitions to represent the distri-
buted system DS in an abstract way. In the model checking process i.e verification, we need
automaton model for the DS, but for the bigger system, it is tedious task to create such automa-
ton model, so we stated the symbolic transition system (SCTS) definition to model DS in more
compact way, from this SCTS we can generate automaton model by using existing software
tools like SPIN, NuSMV, etc. In fact, in our verification process, we wrote SCTS model for our
Nokia SDN architecture and protocol in Promela language and correspondingly generated the
automaton model using the tool SPIN (more details given in chapter 5). Using this generated
automaton model we (well actually the model checking tool) perform the verification, more
details about the model checking SDN can be found in chapter 5. Although our mathematical
model in this section can also handle infinite behavior, we are concerned only for the finite sized
automaton in the experimental section presented in chapter 5.

In case of synthesis, the distributed system model DS is defined with controllable and uncon-
trollable action sets, the FSM modeling or SCTS modeling one can do the synthesis supervisor
for the expressed DS by solely controlling the controllable action executions i.e disable some
controllable actions to avoid reaching system bad states. In case the modeled FSM has an in-
finite number of states, we have to use over-approximation via abstraction. The experimental
case study for the control synthesis of SDN application provided in chapter 6.

73

CHAPITRE 4

STATE SPACE REDUCTION TECHNIQUES

In this chapter, we state one of the biggest problems in model checking as well as the synthesis
of discrete control systems which is state space explosion [Cla08], we will state the problem and
some of the literature techniques to reduce the drastic state space explosion. More specifically
the partial order reduction and assume guarantee techniques. We present our contribution in the
assume guarantee techniques in the direction of compositional reasoning for distributed system
verification and synthesis concepts.

4.1 State Space Explosion Problem in Formal Verification
and Synthesis

Formal Schemes are costly in the sense that while verifying system correctness by verification
process and while generating the supervisors using discrete control synthesis techniques, we
have to explore all the possible states for the modelled system (either the automaton or the
semantics of Symbolic Communicating Transition System for the given distributed system) and
the trace through that each state is reached, a same state can be reached by multiple traces. For
example, in a given system having two variables say x,y, at initial state both are assigned to
zero and each step (or timestamp) it increment either x or y value by one, in order to reach a
system state x = 1,y = 1. The system can reach this state by first increment x, second step to
increment y, and vice versa. But these two ways of reaching the same state have to be explored
by going along all possible traces. Generally, not just the enormous system states that creates
the computational (in terms of memory and time consumption in these procedures) inefficiency
for generating the control synthesis and performing the model checking process, it’s also the
possible number of traces i.e the sequence of steps it does internally to reach the given states
of the system. Of course, depending on the properties and system model, we could avoid some
of the traces to limit the brute force analysis in formal methods. In literature, this problem is
referred to as ’state-space explosion’.

In order to tackle such state-space explosion, model checking and discrete event system
communities build various techniques such as partial order reduction, abstraction, Bisimulation,
Compositional reasoning, modularity nature of properties and the system and so on. In our work,
we applied compositional reasoning [Maj+21] to overcome such ’state-space explosion’ during

75

Part , Chapitre 4 – State Space Reduction Techniques

the formal verification SDN protocol on the device discovery using MAC Learning scheme. We
also extended this compositional reasoning concept to synthesize the supervisor and applied it
to the SDN platform to make sure it satisfies the given required properties.

4.2 Partial Order Reduction for Model Checking Process

Partial Order Reduction To tackle enormous computation time and memory to automati-
cally verify the proposed model of the given distributed system, partial order reduction uses
the concept of commutative between concurrently executable transitions in the proposed distri-
buted model. We will give brief notes on the partial order reduction for linear temporal logic
specification. This concept can be used for CTL logic as well [Cla+18] (Chapter 6). Partial or-
der reduction puts constraints on the order of transition events while verifying the model with
respect to the specification.

The model checking the distributed system correctness w.r.t the set of requirements can
easily become intractable because of huge State space explosion. Compare to the traditional
mathematical way of proving the correctness of proposed algorithmic solution (like proving
the correctness of Practical Byzantine Fault Tolerance using consensus and Proactive Recovery
method [CL02], of course this method needs human ingenuity !, but we are here only care about
how to prove the system correctness by automated way. But in this automated way i,e model
checking procedure suffers from ’state space explosion problem’. In the model checking (i.e
verification) process, the number states of the model grows exponentially (drastically) with the
number of components (entities) in the modelled distributed system. The key concept in this
partial order reduction is the kind of property we are expressing as a specification that does
not depend on some transitions execution order (of course we have to be careful in choosing
the list of transitions whose order of sequence do not matter for the given specification, in
particular this partial order reduction used to reduce the state space while proving the SDN

protocol correctness [MDW14a]).

Given automaton A = (Q,q0,Σ,∆,AP,L), an action σ ∈ Σ is enabled from the state q∈Q if
there exists q′ ∈Q and δ ∈∆ s.t δ = q σ−→ q′ such set of actions we will denote here as enabled(q)
(i.e set of actions that are enabled from q). Now we will define the independence relation set : I⊆
Σ×Σ. For a state q ∈ Q, δ1(= q

σ1−→ q1),δ2(= q
σ2−→ q2) ∈ ∆ and (σ1,σ2) ∈ I such that σ1,σ2 ∈

enabled(q) with the following condition : σ2 ∈ enabled(q1), σ1 ∈ enabled(q2) i.e independent
actions cannot disable each other and q

σ1−→ q1
σ2−→ q3 and q

σ1−→ q2
σ1−→ q3 i.e executing two

enabled independent actions in any order results the same global state. We will present this idea
in the following figure 4.2 borrowed from the handbook of model checking [Cla+18].

For example, two local transitions in different automata of a given composition of automata
that do not use any global variables and doing two different updates in the systems are inde-
pendent of each other. In an asynchronous distributed system, sending and receiving by two

76

4.2. Partial Order Reduction for Model Checking Process

q0

q f

σ1

σ2

σ2

σ1

(a) Full state space

q0

q f

σ2

σ1

(b) Reduced
state space using
commutative
and Independent
conditions

FIGURE 4.1 : Concept of Partial Order Reduction

different components of the given distributed system are independent.

We will denote a transition δ = q σ−→ q′ is invisible if L(q) = L(q′). In the presence of
an invisible transition in the run we can define shutter equivalent as follows, for given two
runs run1 6= run2 ∈ Run(A) such that trace(run1) = trace(run2) then these two runs are shutter
equivalent. For example given run such that trace(run) = (a)(a)(a∧b) will be shutter equivalent
to the run′ ∈Run(A) whose trace(run′)= (a)(a∧b). The reason is two runs which are stuttering
equivalent sequences can not be distinguished by the LTL specification [PW97]. We now give
the basic partial order reduction technique for LTL specification borrowed from the handbook
of model checking [Cla+18] for more detailed and sophisticated methods. Please refer to the
same book or even google search will give you dozens of papers on this technique.

Reduction for LTL In order to do the partial order reduction technique, we have to define
the ample set for each q ∈ Q, denoted as ample(s) ⊆ ∆ this set is calculated on the fly while
doing partial order reduction, please refer the book [Cla+18] for more details about this ample
set. The basic partial order reduction algorithms are usually described as a variant of classic
depth first search DFS. The procedure hash is a standard hashing of its parameter in a hash
table to keep track of the set of states already visited in the model checking procedure. One
can check whether that value was hashed i.e was visited already. The simple DFS algorithm for
model checking process procedure (yes model checking is an algorithm to do certain things) is
depicted in fig. 4.2.

The partial order reduction have to rely on calculating subset of enabled transitions i.e
ample(q) ⊆ enabled(q) for each state q ∈ Q of the automaton model. The revised model che-
cking algorithm fig. 4.2 with partial order technique is shown in fig. 4.3. Model checking by
exploring the ample(q) rather than enabled(q) for the state q ∈ Q reduces the state space by
partial order reduction concept, condition to evaluate the ample set and the proof of this concept
can be found in the model checking handbook [Cla+18].

77

Part , Chapitre 4 – State Space Reduction Techniques

proc DFS(q) ;
local variable q′ ;
hash(q) ;
for each δ ∈ enabled(q) do

Let q′ be such that q σ−→ q′ = δ

if ¬hashed(q′) then DFS(q′) ;
end DFS(q) ;

FIGURE 4.2 : DFS to explore the state space of the automaton model

proc DFS(q) ;
local variable q′ ;
hash(q) ;
Calculate ample(q)
for each δ ∈ ample(q) do

Let q′ be such that q σ−→ q′ = δ

if ¬hashed(q′) then DFS(q′) ;
end DFS(q) ;

FIGURE 4.3 : DFS to explore the reduced state space using partial order reduction technique

4.3 Avoiding State Space Explosion Problem by Compositio-
nal Reasoning

Before presenting the compositional reasoning technique, we will give short notes on Rely-

Guarantee technique introduced by Stark W.Eugene [Sta85] and Interface theory written by
E.M Clarke [CLM89].

A Proof Technique for Rely-Guarantee Properties [Sta85]. This methodology allows to
reduce the huge state space arising in the verification process when several components are used
to model the system. It is a state based model and each processor contains a set of variables and
the actions are the assignment on the variables and the communication is based on the shared
variable assignment made between the processors. The idea is to encode the protocol invariant
as a LTL formula and encode the fairness assumption in the LTL formula if needed and then
check the global specification. Further, the technique called as Rely/Guarantee style method

of proving the global liveness (informally, eventually some good things happens globally, like
producing the useful result to the user) property by checking the local liveness property and the
logical approach of how to infer the global liveness property from the local liveness property.

Formally, assume given a finite number of processors P1,P2, ... that form a synchronous
and non-blocking processors P =‖0<i<inf Pi. The goal is to check the global liveness property
P�R→G call R,G as rely/guarantee specification. Asking the question by proving P�Ri→Gi

78

4.3. Avoiding State Space Explosion Problem by Compositional Reasoning

for all the processors does it imply P � R→G?. Here Ri,Gi is local rely/guarantee specification
for the processor Pi. The answer is yes by checking additional sets of constraints. Here we refer
to a processor model for the system which has a set of variables, possible assignments to these
variables, and a set of actions triggered based on the guard of the variable values.

DEFINITION 4.1 [Sta85] For a given set I = {1,2, ...,n} , set of finite number of processors

{Pi|0 < i < inf} and the program P =‖0<i<inf Pi and specifications R, G, {Ri,Gi|i ∈ I}. Let

define a cut set for the program P : {RGi, j|i, j ∈ I∪{ext}} a set of specifications if

P � R→
∧
j∈I

RGext, j (4.1)

P �
∧
i∈I

RGi,ext→ G (4.2)

P �
∧

i∈I∪{ext}
RGi, j→ R j, ∀ j ∈ I (4.3)

and

P � Gi→
∧

j∈I∪{ext}
RGi, j, ∀i ∈ I (4.4)

�

In the above definition i, j ∈ I, specification RGi, j should be thought of what processor Pi gua-
rantees to the processor Pj or what processor Pj relies on the processor Pi. The specification
RGext, j express what environment guarantees to the processor Pj and RGi,ext express what pro-
cessor Pi guarantees to the environment.

DEFINITION 4.2 [Sta85] For the given finite set I from definition 4.1, define a cycle as

{(i1, i2),(i2, i3), ...,(im−1, im)} for some 1≤ m≤ n where all il ∈ I, l ∈ [1, ..,m] such that im =

i1.

We say that the cut set collection from definition 4.1 is acyclic if :

P �
∨

k∈[1,..,m−1]

RGik,ik+1

for all cycles of I. �

Importantly the cut set should be hand made by the programmer who wants to do compositio-
nal model check on the program P to verify the required property. In the above definition the

79

Part , Chapitre 4 – State Space Reduction Techniques

paper [Sta85] introduced for the reason that at-least in the given cycle of indices, any one of the
local rely/guarantee is true means, by the cyclic nature of inference rule one by one rest of the
rely/guarantee will become true and keep repeating the specification.

THEOREM 4.1 [Sta85] Rely/Guarantee Proof Rule- Suppose P is a program, I is a finite index

set, and the collection RG = {RGi, j | i, j ∈ I ∪{ext}} is an acyclic cut set for program P and

specifications R,G, {Ri,Gi | i ∈ I}. Then to prove the statement P � R→ G, it suffices to show

P � Ri→ Gi, for all i ∈ I. �

Interface Theory Here, we will give a short presentation of interface theory used by [CLM89]
to derive the compositional reasoning for Computation Tree logic (CTL). Let P be a set of fi-
nite state processes, and assume that we know what it means for two processes P1 and P2 to be
equivalent (P1 ≡ P2 means have same behavior w.r.t the action set i.e L (P1) = L (P2)). Each
process will have associated with it a certain set of atomic propositions that are used in distin-
guishing states and transitions. ΣP will denote the set associated with the process P. The set of
propositions associated with the parallel composition of two process will be the union of the
sets associated with the individual processes : Σ = Σ1∪Σ2,P ↓ Σ1 will be the restriction of P to
Σ1. This process is obtained by hiding all of the symbols in ΣP that are not in Σ1.

The interface rule deals with the parallel composition of two processes P1 and P2. Let A1,A2

be the interface processes after hiding the transition words Σ2 \Σ1, Σ1 \Σ2 for P1 and P2 respec-
tively. Let φ ,ψ are a formula formed over the transition alphabets of the processor P in a CTL
logic (L).

Interface rule from the paper[CLM89] is as follows,

P1 ↓ Σ1∩Σ2 ≡ A1∧
φ ∈L (Σ2)∧
A1 ‖ P2 � φ =⇒
P1 ‖ P2 � φ

Similarly,
P2 ↓ Σ1∩Σ2 ≡ A2∧
ψ ∈L (Σ1)∧
P1 ‖ A2 � ψ =⇒
P1 ‖ P2 � ψ

where by P1 ↓ Σ1∩Σ2≡A1, it refers to PΣ1∩Σ2L (P1) and A1||P2 � φ refers to L (A1||P2) |= φ

(i.e all the sequences from this language set satisfy the specification φ).
The soundness of the above interface rule can be derived from the following properties as

mentioned in the paper [CLM89] :

• Suppose Σ1 = Σ2, then P1 ≡ P2 implies ∀φ ∈L (Σ1)[P1 � φ ↔ P2 � φ].

80

4.3. Avoiding State Space Explosion Problem by Compositional Reasoning

That is when the actions set between the processors P1,P2 are same (Σ) and there lan-
guage behaviour is also same then for any specification formed over the action set Σ

such that all the sequences from the language of P1 satisfy this specification then all the
sequence from the language of P2 do satisfy this specification and converse also true.

• If P1 ≡ P2 and Q is another process, then P1 ‖ Q≡ P2 ‖ Q.

That is to say that when the behaviour of P1,P2 are same in terms of language, then
composing the processor Q with either P1 or P2 gives the same language behaviour i.e
L (P1||Q) = L (P2||Q).

• (P1 ‖ P2) ↓ Σ1 ≡ P1 ‖ (P2 ↓ Σ1) and similarly
(P1 ‖ P2) ↓ Σ2 ≡ (P1 ↓ Σ2) ‖ P2.

That is to say that for any other processor Q such that L (Q) = PΣ1(L (P2)) so that
PΣ1(L (P1||P2)) = L (P1||Q).

• If φ ∈L (Σ
′
) and Σ

′ ⊆ Σ, then P � φ iff P ↓ Σ
′
� φ .

That is to say that for the any specification formed over the action set Σ′ then L (P) |= φ

if and only if PΣ′(L (P)) |= φ .

The above four properties (as mentioned in the paper) are used to derive the inference rule in the
paper [CLM89]. A similar technique can be used to show the soundness of simple rules like :
the above ’interface rule’ can be derived to infer the rule P1 ‖ P2 � φ ∧ψ as well.

The above two results i.e Rely-guarantee and Interface rule inspired us to frame the following
compositional rule for our purposes.

4.3.1 Introduction to Compositional Reasoning

Compositional reasoning appears naturally while designing a distributed system, since the de-
signer often designs specifications for each component of the system on whose global requi-
rements have to be verified. Compositional reasoning allows us to verify properties of each
sub-systems separately, and combine these rules to infer properties for the global system.

Given an automaton A and LTL safety formulas φ ,ψ , let us denote by 〈φ〉A 〈ψ〉 a triple
such that φ represents the assumption that can be made on the environment of A , while ψ

represents the guarantee that A provides under the assumption that environment satisfies φ .
In a nutshell and without giving any conditions on the various components and specifications,
what we want to prove is the following :

81

Part , Chapitre 4 – State Space Reduction Techniques

ψ φ φ ∧ψ A 〈φ〉A 〈ψ〉

FIGURE 4.4 : 〈φ1〉A 〈φ2〉 illustration

〈φas〉A1〈φI〉 〈φI〉A2〈φguar〉
〈φas〉A1‖A2〈φguar〉

(4.5)

(4.5) means that, if under the assumption that A1 |= φas, A1 |= φI and similarly for A2 w.r.t. φI ,
where φI is an intermediate specification and φguar, then it entails that, if, under the assumption
that the composed system A1‖A2 |= φas, then this system verifies φguar.

In the sequel, we shall consider this framework from different points of view

• Model-checking of DS system using

– language-based compositional reasoning techniques

– LTL compositional reasoning techniques

in the next two subsections.

• Synthesis of supervisors ensuring

– Language-based specifications

– LTL specifications

in the section 3.4 using compositional reasoning techniques

4.3.2 Compositional Reasoning from a language-based point view

In this section, we will see the behaviour of composition of automata A1‖A2 in-terms of lan-
guages and how its coordinates with respect to the common actions set (i.e Σ1 ∩ Σ2). In the
spirit of rely/guarantee and inference rule, we shall try to locally prove some global properties
by proving local properties on each component.

LEMMA 4.1 For Σ′ ⊆ Σ and a prefix-closed language L ⊆ (Σ′)∗, then ∀s ∈ Σ∗, if PΣ′(s) ∈L ,

then we have s ∈ P−Σ

Σ′ (L)⊆ Σ∗ �

82

4.3. Avoiding State Space Explosion Problem by Compositional Reasoning

LEMMA 4.2 (Language Projection) Consider two automata A1, A2 and A = A1 ‖A2 (defi-

nition 3.3). Then, ∀i ∈ {1, 2}, PΣi(L (A)) ⊆L (Ai).

Proof : According to definition 3.3, L (A) = P−1
Σ1

(L (A1))∩P−1
Σ2

(L (A2)) which can be re-
phrased as L (A1‖A2) = {s∈ Σ∗ | PΣ1(s)∈L (A1)∧PΣ2(s)∈L (A2)}. This entails that, given
s ∈L (A), PΣi(s) ∈L (Ai), i = 1,2. Hence the result �

LEMMA 4.3 Given w ∈ (Σ1∪Σ2)
∗, and L ⊆ Σ∗1. If w ∈ P−Σ2

Σ1
(L) then PΣ1(w) ∈L . �

THEOREM 4.2 Given composition of automata A = A1 ‖A2, where L (Ai)⊆ Σ∗i and specifi-

cations language Las⊆ Σ∗1, LI ⊆ (Σ1∩Σ2)
∗ and Lguar⊆ Σ∗2 with respect the LTL specifications

Φas, ΦI and Φguar respectively, then the following modus ponen (or inference rule) will hold

(1) PΣ1∩Σ2(L (A1)∩Las)⊆LI (2) P−Σ2
Σ1∩Σ2

(LI)∩L (A2)⊆Lguar

P−Σ2
Σ1

(Las)∩L (A1‖A2)⊆ P−Σ1
Σ2

(Lguar)
(4.6)

�

Equation 4.6 rephrases the equation 4.5 in a language based perspective.

Before seeing the argument for the above Theorem, let us explain the meaning of equa-
tion 4.6

• (1) means that whenever a sequence in L (A1) is within the assumption specification
language Las, then this sequence projected on Σ1 ∩Σ2 also belongs to the intermediate
specification language LI .

• (2) means that whenever a sequence in L (A2) is within the inverse projection of the
intermediate specification LI wr.t. Σ2 then it also belongs to the guarantee specification
language Lguar.

Let us now prove Theorem 4.2 :

Proof : Lets s ∈ P−Σ2
Σ1

(Las) ∩L (A1‖A2), then by lemma 4.2, we have PΣi(s) ∈ L (Ai)

for i ∈ {1,2}. As s ∈ P−Σ2
Σ1

(Las) ∩L (A1‖A2) that means we have s ∈ P−Σ2
Σ1

(Las). If s ∈
P−Σ2

Σ1
(Las) by lemma 4.3 we have PΣ1(s) ∈ Las. As PΣ1(s) ∈ Las and PΣ1(s) ∈ L (A1) then

by (1), PΣ1∩Σ2(PΣ1(s)) = PΣ1∩Σ2(s) ∈LI . Furthermore, let us call s′ = PΣ2(s). As PΣ1∩Σ2(s) =

PΣ1∩Σ2(s
′), PΣ1∩Σ2(s

′) ∈ LI . If PΣ1∩Σ2(s
′) ∈ LI , then we have s′ ∈ P−Σ2

Σ1∩Σ2
(LI) by lemma 4.1.

Hence PΣ2(s) ∈ P−Σ2
Σ1∩Σ2

(LI). Since we already established that PΣ2(s) ∈ L (A2) by using se-
cond premise (2), we can state that PΣ2(s) ∈ Lguar. Finally, as PΣ2(s) ∈ Lguar then it is tri-
vial to notice P−Σ1

Σ2
(PΣ2(s)) ⊆ P−Σ1

Σ2
(Lguar). Finally as s ∈ P−Σ1

Σ2
(PΣ2(s)), we can conclude that

s ∈ P−Σ1
Σ2

(Lguar). Hence the Theorem. �

83

Part , Chapitre 4 – State Space Reduction Techniques

4.3.3 Compositional Reasoning for LTL Specification

We will now focus on compositional reasoning of LTL specifications, but first we need to intro-
duce some new concepts. In the rest of the chapter it is always assumed that for all the actions
σ ∈ Σ, we consider an atomic proposition Sync(σ) ∈AP. In the given automaton A , whenever
there is a transition q σ−→ q′ then we have Sync(σ) ∈ L(q′).

ASSUMPTION 4.1 When we consider the composition of two automata A1, A2, we always

assume that {Sync(σ) | σ ∈Σ1∩Σ2 }=AP1∩AP2 =A, and |L1(qi,1)∩A| ≤ 1, |L2(q j,2)∩A| ≤ 1
for all states qi,2 ∈ Q1, q j,2 ∈ Q2.

REMARK 4.1 Such an assumption is not new. For example, paper [BCC98] mentions this res-

triction while using compositional reasoning to reduce the state-space complexity for asynchro-

nous communicating system where the actions triggered in synchronized and specifications are

expressed in CTL logic. That is to say in the given composition automata A1 ‖ A2, Ai for

i ∈ {1,2}, if (q
σ1−→ q′) ∈ ∆i and (q′′

σ2−→ q′) ∈ ∆i either σ1 = σ2 or for the sake of modeling

we introduce the new state q2 to the automaton state Qi such that q
σ1−→ q′ ∈ ∆i and removing

the transition q′′
σ2−→ q′ and then adding the transitions q′′

σ2−→ q2,q2
ε−→ q′ ∈ ∆i so that we have

at most one Sync(σ) belongs to any labelling of automaton state (i.e |Li(qi)∩A| ≤ 1 for all

qi ∈ Qi). �

OBSERVATION 4.1 In the composition of automata A1 ‖ A2, run ∈ Run(A1 ‖ A2), run =

(q1,0,q2,0)
σ1−→ (q1,1,q2,1)

σ2−→ ...
σn−→ (q1,n,q2,n) with the assumption 4.1, it is always true that

L1(q1, j)∩A = L2(q2, j)∩A for all j ∈ {1, ...,n}. �

In the question of A1 ‖ A2 � φas ⇒ φguar where φas is the assumption specification to the
automaton A1, and φguar is the property expected (expected specification) from the automaton
A2.

In the automaton A1 working under the assumption φas such that it guarantee the language
specification φI , under such guarantee, when such automaton is in the composition with an
automaton A2, and this automaton under φI , we have to check that the automaton A2 satisfy the
specification φI ⇒ φguar i.e A2 � φI ⇒ φguar in order to guarantee that A1 ‖ A2 � φas⇒ φguar.
So that we can guaranty equation 4.5.

Before that we will define some notations to build the compositional reasoning in assume
guarantee way for state based specification. Before stating the compositional reasoning we
slowly grasp the meaning and behaviour of the automaton and its trace behaviour for the speci-
fication formed over the actions (Σ) and atomic predicates (AP) set.

DEFINITION 4.3 For given Atomic predicates sets AP, AP′ and in the given sequence w ∈
(2AP)∗, w ↓AP′ is the restriction of sequence w to AP′. I.e for the given trace w=AP1.AP2...APn

restriction with respect to the atomic predicates set AP′ as w ↓ AP′ = (AP1 ∩ AP′).(AP2 ∩
AP′)...(APn∩AP′). �

84

4.3. Avoiding State Space Explosion Problem by Compositional Reasoning

LEMMA 4.4 (Stutter-Invariant for the Atomic Predicate Specification) Consider atomic pre-

dicates set AP and a LTL \X formula φ formed over atomic predicates set APφ ⊆ AP. For all

traces w ∈ (2AP)∗, w |= φ if, and only if w ↓ APφ |= φ . �

Proof This is immediate from the semantics of LTL since atomic propositions in AP\APφ do
not influence the satisfaction. �.

LEMMA 4.5 (Run Projection :) Consider any two given automata A1, A2 and A = A1‖A2

as defined in definition 3.3. Then we have for all i ∈ {1, 2}, Run(A) ↓Ai ⊆ Run(Ai). �

Proof : Let’s take a run from Run(A1‖A2), run = (q0,1,q0,2)
σ1−→ ..

σn−→ (qn,1,qn,2), take the
projection of this run to the automaton A1 run ↓A1 as by the definition 3.4, then this is trivially
true that run ↓A1 ∈ Run(A1), so this is similarly true for the automaton A2 hence the lemma. �

COROLLARY 4.1 From the definition of the synchronized product between the automaton A

and model of any LTL specification φ as by the definition 3.10, the Run(A) = Run(A ⊗Mφ) ↓
A . �

The notation Run(A ⊗Mφ) ↓ A simply refers to discard the specification NFA model states
(because transition actions are the super-set of the atomic predicates AP of automaton A and
the A ⊗Mφ does not block any of the transition in A).

LEMMA 4.6 (Stutter-Invariant for Language Specification) Consider an automaton

A = (Q,q0,Σ,∆,L,AP) and a LTL\X (i.e LTL specification without next state operator) speci-

fication formed over the action set Σ′ ⊆ Σ. Then, for all sequence σ ∈ Σ∗, if σ ↓ Σ′ � φ (here the

specification φ classify the language a subset of (Σ′)∗), we have σ � φ (here the specification φ

classify the language a subset of (Σ)∗). �

Proof : Since the specification φ is without next state operator, the semantics of LTL without
next state operator applies to the Stutter-Invariant [PW97] for the language specification. �

THEOREM 4.3 (Compositional Reasoning Theorem for State Based Specification) Given com-

position of automata A1 ‖ A2, with global specification φas ⇒ φguar where the safety critical

specifications LTL\X (i.e LTL specification without next state operator) φas,φguar formed over

the atomic predicate set AP1,AP2 respectively. If there exists a LTL\X language specification

φI formed over the atomic predicates set {Sync(σ) | σ ∈ Σ1∩Σ2 }(= AP1∩AP2) then we have

the following inference rule holds.

〈φas〉A1〈φI〉 〈φI〉A2〈φguar〉
〈φas〉A1‖A2〈φguar〉

85

Part , Chapitre 4 – State Space Reduction Techniques

The meaning of above equation is

RunBφas⇒φI (A1⊗Mφas⇒φI) = /0 RunBφI⇒φguar (A2⊗MφI⇒φguar) = /0
RunBφas⇒φguar ((A1 ‖A2)⊗Mφas⇒φguar) = /0

(4.7)

�

Proof : Let’s take run from Run((A1‖A2)⊗Mφas⇒φguar) and say that this run is
in RunBφas⇒φguar ((A1‖A2)⊗Mφ1⇒φguar), then by the corollary 4.1, this run excluding the model
states (Sφas⇒φguar) will be in Run(A1‖A2).

By lemma 4.5, the projected run run ↓A1 ∈ Run(A1), run ↓A2 ∈ Run(A2), if the run run ↓
A1 does not satisfy φas then this run trivially satisfy φas ⇒ φguar, so assume that trace(run ↓
A1) � φas.

By the premise RunBφas⇒φI (A1⊗Mφas⇒φI)= /0, trace(run ↓A1)� φas⇒ φI , hence trace(run ↓
A1) � φI . By the observation 4.1, trace(run ↓A2) � φI because the specification φI formed over
the atomic predicates set {Sync(σ) | σ ∈ Σ1∩Σ2}.

By the premise RunBφI⇒φguar (A2⊗MφI⇒φguar)= /0, projected run to the automaton A2 satisfy
the specification φguar (trace(run ↓A2) � φI ⇒ φguar) hence the theorem. �

REMARK 4.2 In the theorem 4.3,

1 : Next state operator is removed for a simple reason, let’s take an simple example. In the

q0,{a}

q1,{b}

σ1

(a) A1

q,{c}

σ2

(b) A2

FIGURE 4.5 : example

automaton, the specification φ := a→ X{b} is hold (i.e automaton trace(Run(A1)) � φ)

but in the composition of automaton A1 ‖A2 the specification not holds trace(Run(A1 ‖
A2) ↓ Σ1) 6� φ . On the other hand ψ := a→ ♦{b} holds for both (trace(Run(A1)) � ψ

and trace(Run(A1 ‖A2) ↓ Σ1) � ψ) with fairness condition i.e both automaton can able

to trigger their internal actions from the current state (if exists) with out struck in that

position for ever. Because of our chosen formalism to verify the trace of the composition

of automata, the next state operator X is not behaving well as opposed to the eventual
operator ♦. This is the reason why we remove the next state operator in the last theorem.

2 : In order to use the compositional reasoning technique we also have to keep in mind the

following statement.

86

4.4. Extending Compositional Reasoning to Control Synthesis of LTL Specifications

Remember that two automata in the composition product, they communicate (share or

trigger) each other to assign a value to the variable by doing the common actions, not ba-

sed on the common atomic predicates. It is completely valid to have a state q = (q1,q2) ∈
Q s.t L1(q1) =¬p and L2(q2) = p. We choose this definition to use the compositional rea-

soning (defined and elaborated in the next chapter), in the application of compositional

model checking. We avoid such (i.e L((q1,q2)) = (p,¬p)), by introducing AP1∩AP2 = /0
but to use the compositional reasoning in an assume guarantee way, we are introducing

the concept of Sync(σ) for all the common actions (i.e σ ∈ Σ
′
= Σ1 ∩Σ2) between two

automaton in the composition automaton, as introduced in [BCC98]. So that there won’t

be a state in the composition product we don’t have L((q1,q2)) = (Sync(σ),¬Sync(σ))

i.e all the reachable state in the composition of automaton A = A1 ‖A2, (q1,q2) ∈ Q, if

Sync(σ) ∈ L1(q1), then we will have Sync(σ) ∈ L2(q2) and vice versa.

3 : Even though, we stated in the theorem 4.3 the intermediate specification can be formed

over the atomic predicates of type Sync(Σ), we can express the intermediate specifica-

tion formed over the normal atomic predicates along with the sync of common actions

set provided that those normal atomic predicates should be from global predicates set

in the sense that those global predicates are common to all the automaton involves in

the composition of automata and at any instant (state) of the composition of automata,

all the sub-processor or automaton agrees with the global atomic predicates that is if

a ∈GlobalPredicates then if a ∈ L1(q1) then it should be the case a ∈ L2(q2) for the state

(q1,q2) ∈Q1×Q2 of the given composition of automata A1||A2 in the sense that if a is a

global atomic predicate and given the composition of automata A1||A2, there wont be a

state (q1,q2) ∈ Q1×Q2 such that a ∈ L1(q1) and a 6∈ L2(q2) or vice versa.

In our experimental section in the next chapter we use this particular remark to make

the intermediate specification.

4.4 Extending Compositional Reasoning to Control Synthe-
sis of LTL Specifications

In this section, we will show how to apply the compositional reasoning technique in synthesis of
supervisors, especially the synthesising the regular safety property specification expressed LTL

without next state operator. Synthesizing the LTL safety specification of system as mentioned
in the last chapter is dealt only with a single automaton (finite state machine). The computation
of the supervisors S are well-known in the community [CL08] for either single automaton or
composition of automata when the bad state are expressed as B = ∪i∈{1,..,n}Q1× ...Bi...×Q.

87

Part , Chapitre 4 – State Space Reduction Techniques

In a nutshell, one have to compute the set of states IBad = CoReachA
Σuc

(B) that can reach in an
uncontrollable way the set B ; that is, this is the set of states from which some uncontrollable
actions lead the system to B independently from the choice of the controllable actions. The
supervisor S is then computed by disabling in any subset E ⊆ Q, the events that lead to IBad.

Recall the section 3.4, when it comes to find the supervisor for the LTL specification, rea-
ching a particular state can’t be tagged as bad state to reach rather it depends on the sequence
of states are traversed before reaching that particular state, in other words recall that temporal
logic like LTL can express not just state based property but also path specification for the system
execution.

Compositional reasoning technique is a proof rule for checking the model correctness in-
troduced by the model checking community to tackle the state-space explosion problem in the
verification of models. We believe that this same technique can be used to ensure properties on
a modular system with the spirit of finding the supervisors to assume some properties on each
subsystem and guarantee some properties for the given global model.

We first tackle the problem of finding a supervisor as follows.

PROBLEM 4.1 Given an automaton A with atomic propositions {Sync(σ) | σ ∈ Σ} ⊆ AP, and

two LTL\X safety formula φ1 and φ2 over AP1,AP2 ⊆ AP compute a supervisor S such that

〈φ1〉(A φ)Sφ 〈φ2〉, where φ := φ1 ⇒ φ2. In other words compute the supervisor S φ such that

RunBφ ((A ⊗Mφ)
Sφ) = /0 �

THEOREM 4.4 With the notations of Problem 4.1, and the supervisor S computed as in Algo-

rithm 3.1, then 〈φ1〉(A φ1⇒φ2)Sφ1⇒φ2 〈φ2〉 i.e Tr((Run(A φ1⇒φ2)Sφ1⇒φ2)) � φ1⇒ φ2. �

Proof The proof is immediate from lemma 3.1, the results of section 3.4.2 as well as the expla-
nations given in theorem 3.3. �

We shall now turn our attention to the synthesis of supervisors for compositional automata
based on the compositional reasoning techniques described in section 4.3.1.

PROBLEM 4.2 Given two automata A1 and A2 with the atomic predicates in AP1 and AP2,

and two LTL f \X formulas φ1 and φ3 over the atomic predicates set AP1 and AP3, compute a

supervisor Sφ1⇒φ3 such that 〈φ1〉((A1‖A2)⊗Mφ1⇒φ3)
Sφ1⇒φ3 〈φ3〉. �

A basic solution to this problem would be to compute the automaton A φ := (A1‖A2)⊗Mφ

where φ := φ1⇒ φ3 and compute a supervisor Sφ such that RunBφ (((A1‖A2)⊗Mφ)
Sφ) =

/0, which might lead to state-space explosion since this means computing the whole system.
Instead, we would like to use the result of Theorem 4.3 in order to split the computation of
the supervisor into several ones in order to avoid building the whole system. In the rest of the
section, we present an algorithm providing a compositonal computation of supervisors avoiding
the whole computation of the system.

88

4.4. Extending Compositional Reasoning to Control Synthesis of LTL Specifications

ALGORITHM 4.1 Given automata A1 and A2 with the atomic predicates in AP1 and AP2, and

two LTL f \X specification φ1 and φ3 over the subset of atomic predicate sets AP1 and AP2 :

• Step1 : Guess an intermediate specification φ2 over the atomic predicates set {Sync(σ) |
σ ∈ Σ1∩Σ2 }= AP1∩AP2 (an assumptions of Theorem 4.3)

Compute the supervisor Sφ1⇒φ2 by solely knowing the automata and the specification

φ1⇒ φ2 model Mφ1⇒φ2 using the algorithm 3.1 s.t RunBφ1⇒φ2 ((A1⊗Mφ1⇒φ2)
Sφ1⇒φ2) =

/0

• Step2 : Based on φ2, compute a supervisor Sφ2⇒φ3 by solely knowing the automata and

the specification φ2⇒ φ3 model Mφ2⇒φ3 using the algorithm 3.1, s.t RunBφ2⇒φ3 ((A1⊗
Mφ1⇒φ2)

Sφ2⇒φ3) = /0

�

THEOREM 4.5 (Compositional Synthesis) Under the assumption of Theorem 4.3 with the no-

tations of Algorithm 4.1, we have that

〈φ1〉((A1)
Sφ1⇒φ2)〈φ2〉 〈φ2〉((A2)

Sφ2⇒φ3)〈φ3〉
〈φ1〉((A1)

Sφ1⇒φ2)‖((A2)
Sφ2⇒φ3)〈φ3〉

In other words

RunBφ1⇒φ2 ((A1⊗Mφ1⇒φ2)
Sφ1⇒φ2) = /0 RunBφ2⇒φ3 ((A2⊗Mφ2⇒φ3)

Sφ2⇒φ3) = /0

RunBφ1⇒φ3 ((A
φ1⇒φ2

1)Sφ1⇒φ2‖(A φ2⇒φ3
2)Sφ2⇒φ3) = /0

In other words when we have RunBφ1⇒φ2
((A1⊗Mφ1⇒φ2)

Sφ1⇒φ2) = /0,

RunBφ2⇒φ3
((A2⊗Mφ2⇒φ3)

Sφ2⇒φ3)= /0 then the trace in Tr(Run((A φ1⇒φ2
1)Sφ1⇒φ2‖(A φ2⇒φ3

2)Sφ2⇒φ3))

is projected to the atomic predicates AP1 satisfies the specification φ1 then the same trace projec-
ted to the atomic predicates AP2 satisfies the specification φ3. In other words the automaton A1

controlled by the supervisor with the model Mφ1⇒φ2 guarantee the specification φ2, and the au-
tomaton A2 controlled by the supervisor with the model Mφ2⇒φ3 guarantee the specification φ3.
Hence the composition of the automata A1,A2 controlled by the supervisors Sφ1⇒φ2,Sφ2⇒φ3

with the NFA model Mφ1⇒φ2 ,Mφ2⇒φ3 respectively satisfy the specification φ1⇒ φ3.
Proof The above theorem follows from the previous Theorems 4.3, 3.3 and 4.4 �.

Note that this result is sound but is not complete since it depends on the choice of interme-
diate specification φ2.

Modularity Aspects As usual, when dealing with several safety LTL specifications φ and ψ

without next state operator, we can decompose the problem into computation of two supervisors
to satisfy specifications φ and ψ .

89

Part , Chapitre 4 – State Space Reduction Techniques

PROPOSITION 4.1 (Modular Synthesis of LTL Specifications) Given an automaton A , and

two regular safety specifications φ and ψ such that APφ , APψ ⊆ AP, such that there exists

supervisors Sφ and Sψ such that (A φ)Sφ � φ and (A ψ)Sψ � ψ then the supervisor S =

Sφ ∪Sψ is such that (A φ∧ψ)S � φ ∧ψ . �

The proof of this proposition is well-known for prefix-closed language-based properties [WR88]
and can be easily extended to our framework.
Proof : This proposition is true can be revealed with simple arguments, but importantly it re-
veals how the supervisors works for the given LTL regular safety property specification. First
the supervisor Sφ for the given automaton A and the NFA model Mφ for the given safety
property φ can be viewed as Sφ : Q×Sφ → 2Σc for the automaton A φ that is to say the super-
visor observes the system state of the automaton A and updates the specification model state
(Sφ) accordingly, and by knowing the current state of automaton A and model Mφ it blocks
the subset of controllable actions Σc so that the co-reach of bad states Q×Bφ never reached
uncontrollably.

Similarly, the supervisor Sψ is a function Sψ : Q×Sψ → 2Σc where Sψ is the system state
of NFA model Mψ of the specification ψ .

The resultant supervisor S : Sφ ∪Sψ is a function S : Q× Sφ × Sψ → 2Σc , such that
S (q,s1,s2) = Sφ (q,s1)∪Sψ(q,s2) for all (q,s1,s2) ∈ Q×Sφ ×Sψ �

The above proposition 4.1 can be extended to conjunction of many safety properties as
depicted in the figure 4.6.

(A φ1∧φ2...∧φn)S � φ1∧ ...φn

(A φ1)Sφ1 � φ1 (A φn)Sφn � φn

(A φi)Sφi � φi

FIGURE 4.6 : Modular Synthesis of Specifications

When dealing with modular systems specifications, we have this result, borrowed from [WH91] :

PROPOSITION 4.2 (LTL Synthesis of Modular System) Given two automata A1 and A2 and

two safety LTL specifications without next state operator φ and ψ over AP1 and AP2, with

AP1∩AP2 = /0, then
(A φ

1)Sφ |= φ (A ψ

2)Sψ |= ψ

((A φ

1)Sφ‖(A ψ

2)Sψ) |= φ ∧ψ

�

This proposition holds whenever the global property is separable into two properties that need
to be ensured on each component. However, if the global property is not separable, then one

90

4.4. Extending Compositional Reasoning to Control Synthesis of LTL Specifications

has to find some other techniques to reduce the complexity of the supervisor synthesis of this
property like of compositional reasoning or any other method. �

The above proposition 4.2 can be extended to conjunction of many safety properties as
depicted in the figure 4.7.

((A1||..An)⊗Mφ1∧..φn)
S � φ1∧ ...φn, i, j ∈ [1, ..,n]APi∩AP j = /0

(A1⊗Mφ1)
Sφ1 � φ1 (An⊗Mφn)

Sφn � φn

(Ai⊗Mφi)
Sφi � φi

FIGURE 4.7 : Specification Synthesis of Modular Systems

State Space Reduction Techniques for Control Synthesis of Distributed Finite State Ma-
chines

In this section we will presents the literature results about solving the state space explosion
problem in computing the set of supervisors for the given distributed system DS using the
modular nature of the system and properties in terms of the language.

Given a distributed system DS modeled as a set of finite state machines (FSM) A =‖i∈{1...n}

Ai as in definition 3.16. Computing the global supervisor S = {S1,S2...Sn } remember from
last chapter section 3.4, for finding local supervisor Si for each FSM Ai, we have to use global
state estimator Ei, this procedure is somewhat expensive in the sense that when n is too large
then the computational steps and memory needed for each state estimator Ei can grow dramati-
cally [WR88]. In order to avoid such drastic state space explosions, we can use the concurrent
nature of given distributed system DS and modular property of set of requirements.

In the rest of this section we will show the literature in this aspect in some details but not
comprehensive.

Modular synthesis by Property [WR88] For the given system model as FSM A . Consi-
der the safety property as a set of words formed over the action alphabet set Σ. Producing
synthesis inductively uses the fact that often the desired behavior is specified with a collec-
tion of requirements i.e collection of {φ1,φ2...φn} prefix closed properties {L1,L2, ...,Ln}.
Each φi express the condition on the language in the sense that Li ⊆ Σ so that ∀w ∈Liw � φi.
In producing control synthesis of such constraint instead of finding the supervisor such that
L (A S) �

∧
i∈{1,2,..,n}φi. Finding the supervisors L (A Si) � φi (which blocks the controllable

actions as defined in definition 3.14) for each i ∈ {1,2, ..,n}, so that resulting supervisor will be
S = {S1,S2, ...,S2} acting on the FSM A ∩i∈{1,2,...,n}Si where S (q) = ∪i∈{1,2,...,n}Si(q) such

91

Part , Chapitre 4 – State Space Reduction Techniques

that A S �
∧

i∈{1,2,..,n}φi. Such techniques were already used successfully in the synthesis of
supervisory controllers. For instance please refer [Goo+21].

PROPOSITION 4.3 Given a FSM A , and two safety critical prefix language L1,L2. If there

exists supervisors S1 and S2 such that A S1 ⊆L1 and A S2 ⊆L2 then there exists S such

that L (A S)⊆L1∩L2.

Proof argument The supervisor S := ∪i∈{1,2}Si will block the controllable actions already
blocked by supervisor S1 and S2 for the given state q ∈ Q of the FSM A . Hence the proposi-
tion. �

Modular Synthesis by System When dealing with modular systems, we have this result,
borrowed from [WH91]. Given composition of FSM A =‖i∈{1,..,n} Ai, and the set of safety
prefix closed languages Li ⊆ Σ∗i , in order to find the supervisor such that A S = (‖i∈{1,..,n}

Ai)
S �

∧
j∈{1,..,n}φ j. Note that each specification language Li is the property of local actions

Σi.

PROPOSITION 4.4 Given two FSM A1 and A2 and two safety prefix closed languages L1, L2,

with L1 ⊆ Σ∗1, L2 ⊆ Σ∗2 and Σ1∩Σ2 = /0, then

L (A S1
1)⊆L1 L (A S2

2)⊆L2

L (A S1
1 ‖A

S2
2)⊆ P−Σ2

Σ1
(L1)∩P−Σ1

Σ2
(L2)

�

Proof argument is trivial, as we see the property L1 is local to the FSM A1 similarly
property L2 is local to the FSM A2 if we have supervisors S1,S2 such that L (A S1

1) ⊆L1

and L (A S2
2)⊆L2. The intersection these two languages will be P−Σ2

Σ1
(L1)∩P−Σ1

Σ2
(L2)⊆ Σ∗

where the action set Σ = Σ1∪Σ2.
Take a generic w ∈L (A S1

1 ‖A
S2

2) by lemma 4.2 PΣi(w) ∈L (A Si
i) for i ∈ {1,2}.

If PΣ1(w)∈L1 then w∈ P−Σ2
Σ1

(L1) by lemma 4.1. Similarly if PΣ2(w)∈L2 then w∈ P−Σ1
Σ2

(L2)

Hence the proposition.

4.5 Chapter Conclusion

Compositional Reasoning for Distributed System : Nature of the distributed system makes
the collections of computing entities work independently for their own specified task and make
them communicate with each other to meet the specific global application or goal. In this task,
expecting every component to move at the same speed or move together coherently is too am-
bitious because of intrinsic computing power, diversity of hardware, and the difference in kind

92

4.5. Chapter Conclusion

of procedures involved for each assigned function. Naturally, DS can’t be taken as one single
computing entity and at the same time we want DS to fulfill the global application needs. In this
setting, it is very natural to expect that each entity does and satisfies the specific assigned task
and satisfies specific local goals. When each such entity satisfies the specific local goals then as
a DS designer we can achieve the required application (global goal) requirements by setting the
communication between those individual computing entities. Compositional reasoning exactly
makes the distributed system achieve the common global goal by making each entity satisfy
specific local specifications.

For the given distributed system modeled as composition of finite state machines i.e auto-
maton, in order to verify the global specification φ on the given distributed system, instead of
computing the global system as ADS = A1||A2, we keep only the local system as A1,A2 and
inferring the global specification φ by introducing the local specification φI .

One can note that (4.5) is of limited to 2 components but can be used for several sub-
systems with a methodology as depicted in the figure 4.8.

〈φas〉A1||A2||....||An〈φguar〉

〈φas〉A1||...||Ai〈I1〉 〈I1〉Ai+1||...||An〈φguar〉

〈φas〉A1||...||A j〈I2〉 〈I2〉A j+1||...||Ai〈I1〉 〈I1〉Ai+1||...||Ak〈I3〉 〈I3〉Ak+1||...||An〈φguar〉

FIGURE 4.8 : Recursive usage of Compositional Reasoning

The intermediate specifications I1, I2, I3 mentioned in the figure 4.8 should be formed over
{Sync(σ) |σ ∈ (∪p∈[1,..,i]Σp)∩(∪q∈[i+1,..,n]Σq)}, {Sync(σ) |σ ∈ (∪p∈[1,.., j]Σp)∩(∪q∈[j+1,..,i]Σq)}
and {Sync(σ) | σ ∈ (∪p∈[i+1,..,k]Σk)∩ (∪q∈[k+1,..,n]Σq)} respectively.

Advantage to Verification and Synthesis of SDN There is a natural reason in applying Com-
positional reasoning rules to Software defined networking in the case of verification and synthe-
sis process, as we know that verification and synthesis struggles a lot to complete the process
because of state space explosion. Even though there are a couple of techniques to avoid the
state space explosion, it’s really difficult to apply them while you are encoding your system of
interest either as a symbolic transition system definition 3.5 or definition 3.1. In order to use the
techniques like abstraction or partial order reduction techniques or modular aspects, we have
to write the code (modeling of our system) more explicitly on the kind of abstraction or partial
order techniques we are intended to use for our system verification and synthesis process. So-
metimes we have to prove (manually) that the applied abstraction or partial order techniques are

93

Part , Chapitre 4 – State Space Reduction Techniques

correct to the system we are interested in. Even when we want to use compositional reasoning,
we have to describe the intermediate specification. That is to say to verify 〈φas〉A1 ‖A2〈φguar〉,
we have to find the intermediate specification φI so that we can verify the whole system cor-
rectness by checking the sub properties (local specification) 〈φas〉A1〈φI〉 and 〈φI〉A2〈φguar〉.
Although, as we are human, when we build the distributed system DS, we do know what the
system properties we are trying to resolve by building the DS. This knowledge for sure will
give the hint at intermediate specification (formula) when we want to use the compositional
reasoning techniques in the verification and synthesis process. We have to recall that, SDN is
the composition of three layers, Manager, controller and the data plane layers. Have to be aware
of why we build such layers and what we expect from each layer, which will give us hints at
producing the intermediate specification in the process of verification of SDN with the help of
compositional reasoning technique.

Guessing the specification φI as mentioned in the algorithm 4.1, it is not exactly guessing,
it’s all about formulating appropriate intermediate specifications. Usually it is attached to the
design principle not really in the logical construction. By using the compositional reasoning it
is safe enough to bring the intermediate specifications between SDN manager and controller as
well as between SDN and data plane devices (i.e clients) since there is no direct communication
between SDN manager and data plane devices. In case of synthesis, we can also hugely benefit
from the modularity aspects such use can be trivially visible in our synthesis experiment case
as mentioned in this document chapter 6 and also used in chapter 5.

94

CHAPITRE 5

FORMAL VERIFICATION SCHEME FOR

NOKIA SDN-IOT PLATFORM

Before diving into our formal verification scheme for the SDN-based IoT platform designed
by Nokia Bell Labs, we will review some of the existing verification analysis of SDN-based
systems.

The aim of the following subsection is not to be exhaustive on the topic which is both very
active and very large, but to describe the most important works as per my knowledge and close
enough to the present manuscript in terms of SDN verification.

5.1 Existing Modelisation and Verification of SDN systems

The closest to our work is that of [MDW14b] which presents a tool called Kuai. The latter
applies optimizations based on partial-order reduction to simplify (more exactly to reduce the
state space explosion in verification process) models of SDN protocols, and presents several
model checking benchmarks to assess the performance of its optimizations. The tool translates
formal models given in the Murphi format and uses PReach [Bin+10] for distributed model che-
cking. In [El-+16], the authors study the concurrency in the semantics of SDNs and present the
tool SDNRacer which is a dynamic analyzer. Algorithms based on an extension of Petri nets for
verifying network configurations and concurrent updates were given in [Fin+19]. Several other
works consider the formal analysis of SDN-based systems. For instance, [KVM12] provides
a static analysis of header spaces which detect inconsistencies in routing tables. However, the
work does not consider more dynamic behaviors and complex issues due to interleavings as it
is done in [MDW14b] and in our work.

[MDW14b] references to KUAI and solves the protocol correctness using the partial order re-
duction techniques. It is superior to the previous one because it models SDN as an asynchro-
nous system. FIFO queues and barrier messages in switch incoming message channels (from
the controller) are particularly used.

A similar approach was adopted in [Mai+11]. A modeling language called FlowLog tailored for

95

Part , Chapitre 5 – Formal Verification Scheme for Nokia SDN-IoT Platform

SDN-based systems was given in [Nel+13]. In this work, the authors present model checking
experiments with the Spin model checker [Hol04] but no particular optimizations are presented.
In [Can+12], model checking and symbolic execution are combined in order to check the most
popular SDN protocol OpenFlow (OF) for a given number of packets. The paper [SNM13]
presents data and network abstractions applied on SDN models combined with a manual refine-
ment process based on non-interference lemmas.

In [Bal+14], the authors develop a framework where the system is modeled using first-order
logic, and user-provided inductive invariants are checked to prove correctness. This allows for
checking the system correctness for all network topologies, and for an unbounded number of
exchanged packets. The approach developed in [Khu+13] consists in checking the effect of rule
updates in real-time, without affecting the system performance. This is complementary to off-

line verification approaches which analyze the system globally before execution. Abstractions
and other transformations that preserve the properties of networks for rendering the verification
are presented in [Plo+16].

5.1.1 VERIFLOW

Verifying Network-Wide In-variants in Real Time The paper [Khu+13] discusses the pos-
sibility of checking network-wide in-variants in real time, as the network evolves. An example
of invariants property consists in checking the absence of routing loops in the data plane. This
would enable it to check updates before data plane rules update its flow table, thus raising
alarms, or even prevent bugs as they occur by blocking problematic changes (updates). For
such real time verification the automated techniques should operate on timescales of seconds
otherwise the automated verification introduces latency between the network updates computed
by the SDN controller and while its deployment the same in the data plane. That is to say that
delaying updates for processing (automated checks) can harm consistency of network state,and
reduce reaction time of protocols with real-time requirements such as routing and fast failover.

In this verification process, an SDN system comprises at a high level :[1] a standardized
and open interface to read and write the data plane elements such as switches and routers [2] a
controller, logically centralized element that can run the custom code and it is responsible for
transmitting commands to the data plane elements. Veriflow consists of a shim layer between
the controller and the network data plane as depicted in the figure 5.1. It observes all required
forwarding rule modifications performed by the SDN controller, and has full knowledge of data
plane element forwarding tables.

That is controller changes dynamically the network routing rules based on the request made
by the host, and get verified by the Veriflow (real-time verification process) that changes made
by the SDN controller do satisfy the network-wide invariants before applying the changes to the

96

5.1. Existing Modelisation and Verification of SDN systems

FIGURE 5.1 : VeriFlow : Checks the SDN controller updates rules on the data plane.

data plane elements.
Working mechanism of VeriFlow involves three steps :

1 Generating the Equivalence classes of data packets : First, the network is sliced into a
set of equivalence classes of packets (say EC). Packets belonging to an EC experience the
same forwarding actions throughout the network. Intuitively, each change in the network
will typically only affect a very small number of equivalence classes. Therefore, finding
the set of equivalence classes whose operations could be altered by a new rule, and veri-
fying network invariants is only reduced to those classes.
EC is a set P of data packets s.t for any p1, p2 ∈ P and any data plane network elements
S (like switches), the forwarding action is identical for p1, p2 at S. Separating the entire
packet space into individual equivalence classes allows VeriFlow to pinpoint the affected
set of packets in case a bug is discovered.
Veriflow uses the prefix-tree or tire data structure (tree type data structure for strings) to
keep and update the set of equivalence classes in the data plane. More detail about the tire
data structure and maintaining the equivalence classes can be found in the book [Var05]
chapter 11 and 12.

2 Generating or Updating the Forwarding graphs : VeriFlow builds individual forwar-
ding graphs for every EC using the current data network state.
Veriflow has a forwarding graph for each equivalence class computed in the previous
step. This forwarding graph is a representation of how data packets within an EC will be
forwarded. The set of nodes and directed edges in this forwarding graph represents the
set of data plane elements and forwarding actions to corresponding equivalence. There

97

Part , Chapitre 5 – Formal Verification Scheme for Nokia SDN-IoT Platform

is a directed edge from node u to node v if according to the forwarding table at network
elements A represented by the node u, the next hop (i.e network switch or router) for
the equivalence class is network elements B represented by the node v. For generating
the forwarding graph for each equivalence class, the Veriflow traverses the tree structure
(abstracted data tree for each equivalence class) to find the data plane network elements
and rules that match packets from that equivalence class, and builds the graph using this
information.

3 Run Queries : VeriFlow traverses these forwarding graphs to determine the status of the
invariants for various equivalence classes. Here, veriflow won’t check all the forwarding
graphs, but the forwarding graphs changed or modified for the new set of rules provided
by the SDN controller.

5.1.2 KUAI

Labelled Transition Model for checking the SDN Property Correctness in Offline Unlike
Veriflow, Kuai is not a real-time verification but an offline verification process. The main hurdle
in the verification [MDW14b] of SDN controller algorithms within a given network topology
(to prove correctness of working SDN controller and controllable network topology of switches
or finding the bugs in the SDN controller) is scalability since the state space grows very quickly.
This well-known problem in model checking community[Cla08] which is often mentioned as
the state-space explosion issue. However, one does not need to verify all possible sequences of
orders of update or movement of data packets within the network if the events are independent.
Partial order reduction techniques as already seen in the previous chapter could be applied to
reduce the verification state space.

An SDN switch contains many input and output ports. It receives and transmits data packets
with a header which has information about source and destination addresses. Let say a switch
S1 receives a packet pkt in the port pt (say) number i, then switch S1 should have some forward
rules containing the info about where to send this data packet pkt. These rules are installed with
the instruction from the SDN controller. So, each switch contains some set of rules, where each
rule contains the packet header type, incoming port number and the outgoing port number with
some priority. A switch on a single packet header arrived in port i may have many matching
rules. Switch chooses the highest priority rule (by best-match mechanism) to match the data
packet and action rule from its flow table.

Whenever the switch lacks the rule for the specific data packet header and such a data packet
is waiting in that switch, it asks the controller for a rule to process this data packet. Each switch
S contains the set of incoming ports, outgoing ports, and set of data packets waiting in the queue
pq (packet queue) to be processed. It also contains the set of forwarded messages in the output
port of the switch denoted as fq (forward queue). Apart from the data packets, switch contains

98

5.1. Existing Modelisation and Verification of SDN systems

the list of control commands forwarded by the SDN controller waiting in the controller queue
cq, set of installed rules called flow tables ft. It also has a boolean variable wait (a switch internal
action to wait to process the data packets before updating the controller’s new forward rules.

Each switch picks one of the data packet in the packet queue pq and perform the
bestmatch(sw, rules,pkt), it outputs the highest priority rule existed in the flow table of that
switch for the given packet header. If there is no match (i.e no rule existed) it sends the
no-match(sw,pkt) to the SDN controller and enters the wait mode i.e set wait = 1. If there is a
match found by bestmatch mechanism (i.e. result will be the matching rule with possible highest
priority rule) then fwd (i.e. forward the packet based on this bestmatch).

So the controller stores each such request from the switch or hosts in its queue, picks them
in some fashion either some pre-fixed order or polling mechanism or even some random order
based on the controller updating algorithm. The controller replies with commands like add (to
add the rule in the existed flow table of that switch), delete (to delete the existed rule if it is
there in the flow table of that switch) for the request made by various switch in the data plane
networks.

Based on the command sequences in the controller queue cq, the switch performs add or
delete the rules in its forwarding table. There is a special command from the SDN controller
to the switch denoted as Barries. If this Barries command is sent to a switch, then that switch
has to perform all the command sequence queues from the cq until the first barries message.
During this operation the switch does not forward any data packet. Kuai also uses the following
optimization techniques apart from the partial order reduction to reduce the state space and
complete the verification process.

Barrier Optimization

When a switch has barrier control message in its control queue cq, then it’s not really matter in
which order the switch updates the control commands upto the first barrier control command,
so no need to check which order a switch executing the commands instructed by the controller
of this switch. This reduces the state space by not considering the switch updates the command
sequence up to the first barrier command.

Client Optimization

When two different switches receive the packet in one of its ports pt. It is not important to know
which switch received the packet and stored it in its incoming data packet queue pq first and
second. These are independent actions in the network topology. This will make us not consider
which order the switches receive the data packet in the verification process.

99

Part , Chapitre 5 – Formal Verification Scheme for Nokia SDN-IoT Platform

All Packets in One Shot Abstraction

When a switch has a number of rules which match a given set of data packets in its packet
queue pq, then it considers all the match actions for this data packet set in one shot instead of
considering the match actions for each individual packet separately. This contributes to reducing
the state space in the verification process.

Controller Optimization

The idea here is while considering the intent requests from data plane switches, no need to
consider which order the controller performs the calculation for the incoming intent request
in the incoming controller queues. Controller takes one request at a time, analyze it. Further
controllers evaluate the required flow tables changes one at a time by knowing the existing flow
tables rules of the data plane network.
Apart from the previous listed optimization and abstraction, Kuai also uses (0,∞)-abstractions
on packet queue contents which consist in storing whether a given packet is absent (0) or present
an unknown number of times (∞).

In a nutshell, Kuai consists in using the partial order reduction technique as well as various
queue abstraction and optimization techniques to verify the security properties of SDN systems.

In our work, we model the SDN system almost the same way as this Kuai technique but we
use the compositional reasoning technique (introduced later in this chapter) to reduce the state
space explosion problem in the verification process. The use of compositional reasoning is more
natural for SDN system (explained later in this chapter), which is new compared to [MDW14b].
Moreover, we consider models with a management plane which renders systems to be analyzed
more comprehensive and more complex.

5.1.3 VERICON

Vericon [Bal+14] is also an offline verification process. It uses a different framework as com-
pared to Kuai. Vericon does not take the account of latency between the SDN controller and
the data plane. That is vericon can be used to check the SDN system correctness with respect
to specifications which are not affected by the latency between SDN controller and the data
plane. (because in Vericon there is no concept of queues between any pairs of SDN entities).
VeriCon claims to be the first solution capable of verifying that an SDN program is correct on
all admissible topologies and for all possible (infinite) sequences of network events. VeriCon,
unlike finite state model checking, verifies that the invariants (i.e specification) hold under
any admissible network topology of any size. By default, the admissible topologies are all
the possible network graphs.

100

5.2. Model checking Tool

Vericon either confirms the correctness of the controller program on all admissible network
topologies or outputs a concrete counter-example. Vericon uses first-order logic (FOL) to spe-
cify admissible network topologies and desired network-wide in-variants. It implements classi-
cal Floyd Hoare-Dijkstra deductive verification using Z3 software tool (an application in Python

programming language). The problem with Vericon approach is that both switch and controller
events are executed atomically (i.e synchronous updation). This assumption won’t hold if there
is a limited bandwidth between the data plane and controller plane (or having non-negligible
latency between data plane and controller plane) in general SDN system. Vericon approach is an
efficient method to check the correctness of SDN system correctness when there is no problem
of latency between controller and data plane. With Vericon techniques, one has to be careful that
First order logic can express network topology invariants but it can’t express the connectivity
of the arbitrary size of network topology. In the sense that for each network topology one has to
introduce the specific atomic predicates to express the connectivity of the given network.
For example, the invariant T3 := rcvthis(S,P, I) =⇒ path(S, I,P.src) meaning packets arrive from
reachable hosts, which asserts that packets cannot be received from disconnected hosts. In this
expression path(S, I,P.src) its an atomic predicate to express the existence of a path between
the switch S and the port I. The authors of VeriCon are very well aware about the limitation of
the expressiblity of FOL, made a statement in the experimentation part of the paper [Bal+14]
(not in the background theoretical part) that for a given topology invariant expressing the graph
connectivity, they made a library of possible networks (i.e. wrote explicitly, not generated by
the software tool) for the given topology in-variants.
For the expressed topology in-variants, Vericon verifying non-blockingness of the data packets
(connectivity between the two secure hosts in the data plane) and safety property (only trusted
host can send the data and reach other hosts).

5.2 Model checking Tool

In order to do model checking of the system to verify the system correctness with respect to the
specification, we need to build the abstract model of the respective system, there are quite a lot
of model checking tools that are available among them SPIN [Hol97], NuSMV [Cim+02] are
the most used tools in academic literature. The choice of choosing SPIN model checking tool
will be made clear after knowing the model describer language Pro mela for the SPIN model
checker in the following subsection.

5.2.1 Promela Language

Pro Mela is an acronym for Process Meta-Language. The specification language is intended
to make it easier to find good abstractions of systems designs. Promela is not meant to be an

101

Part , Chapitre 5 – Formal Verification Scheme for Nokia SDN-IoT Platform

implementation language but a systems description language. The features of promela are in-
tended to facilitate the construction of high-level models of distributed systems which supports
non-deterministic control structures, rich set of primitives for inter-process communication. A
Promela model is constructed from three basic types of objects Processes, Data objects, and
Massage channels.

Processes

Processes are instantiations of proctypess, and are used to define behavior of each subsystem of
a model.

Let see couple of examples which are taken from book "The SPIN MODEL CHECKER"[Hol97].

EXAMPLE 5.1 Creating two similar processes

active [2] proctype you_run()

{
printf("my pid is : ", _pid)

}

This creates two processes of type you_run and each process prints its activation pid id a unique

pid number for each process.

EXAMPLE 5.2 Creating two different processes which communicate via global variable with

provided functionality

bool toogle = true /* global variables*/

short cnt ; /* visible to A and B */

active proctype A() provided (toggle == true)

{
L : cnt++ ; /* means : cnt = cnt +1*/

printf("A : cnt = %d",cnt) ;

toggle = false ; /* yield control to B */

goto L

}

active proctype B() provided (toggle == false)

{
L : cnt−− ; /* means : cnt = cnt −1*/

printf("B : cnt = %d",cnt) ;

toggle = true ; /* yield control to B */

goto L

}

102

5.2. Model checking Tool

A process cannot take any step unless its provided clause evaluates to true. An absent provided

clause defaults to the expression true, imposing no additional constraints on process execution.

Data objects There are only two levels of scope in Promela models : global and local process.
Scope of local variables cannot be referred by another process. Basic data types are bit (0,1),
bool (true, false), byte (0...255), chan (1..255), mtype (1..255, same as enum type in C program-
ming), pid (0...255), short, int, unsigned are same as in C programming. From these basic data
types one can also define derived data structures same as struct in C programming.

Message Channels Message channels are used to model the exchange of data between pro-
cesses. They are declared either locally or globally. For example, in the declaration message
channel chan quene_name = [16] of { short, byte, bool } the type name chan introduces a chan-
nel declaration. In this case, the channel is named ’queue_name’ and is declared to be capable
of storing up to sixteen messages. And each message has three fields : the first is declared
to be of type short, the second is of type byte, and the last is of type bool. The statement
’queue_name!expr1,expr2,expr3’ sends a message with the values of the three expressions
listed to the channel that we just created. Similarly for reading the message from the queue
’queue_name?var1,var2,var3’ So we have seen the FIFO bounded queues definition between
any two processes. For the Rendezvous communication between any two processes, we have
to define the communication link as (for example of communicating byte type values) ’chan
quene_name = [0] of { byte }’

Control Flow : Compound Statements There are various types of compound statements in
Promela language : some of them are Atomic sequences, Selections, and Repetitions sequences.
Atomic Sequences : The simplest compound statement is the atomic sequence. Within a scope
of atomic sequence all the execution steps will be executed continuously and considered as one
instant i.e in the interleaving of process executions, no other process can execute statements
when the statements are executed from defined atomic sequences.

Selection : Using the relative values of two variables say a,b, we can define a choice between
the execution of two different options with a selection structure, as follows :

if

: : (a! = b)−> options1

: : (a == b)−> options2

fi

Only one sequence from the list will be executed based on the truth of the guard statement.
If more than one guard is true in the list, then one of them will be randomly chosen and the
corresponding statement will be executed.

103

Part , Chapitre 5 – Formal Verification Scheme for Nokia SDN-IoT Platform

Repetitions sequences : In this sequence a particular blocks of statement will be executed repe-
titively, the respective code will be

do

{
: : guard1 −> statement1
: : guard2 −> statement2

......
: : guardn −> statementn
}
do

Only one option can be selected for execution at a time. After the options complete, the execu-
tion of the repetition structure is repeated. In order to escape from this repetition of the above
code, we have to use the Escape sequence command break and write with a guard condition in
the above code. For further details of promela language one can refer [Hol04] and "The SPIN
MODEL CHECKER ” book written by the tool developer Gerard J. Holzmann. In this book
you also find the notes on how to install the SPIN software (which is open source !).

5.2.2 SPIN

The tool that we will use to check our model is SPIN, and the specification language that it
accepts is called promela. The name S PIN can be used in two basic modes : as a simulator and
as a verifier. In simulation mode, SPIN can be used to get a quick impression of the types of
behaviour that are captured by a system model, as it is being built.

Here we will an example to see how one can use SPIN for simulation and verification of the mo-
del written in Promela language. For more detail one can refer [Hol04]. The following example
are taken from the same book "The SPIN MODEL CHECKER" [Hol97] but recreated by the
author while learning the tool.

EXAMPLE 5.3 Mutual Exclusion : Dekker’s Algorithm Designing correct coordination schemes

for asynchronously executing processes is the classic mutual exclusion problem. The problem

here is to find a way to grant mutually exclusive access to a shared resource while assuming only

the indivisibility of read and write operations. That is, to solve this problem we cannot assume

the availability of atomic sequences to make a series of tests and set operations indivisible.

You can notice in the verification result (right in the figure 5.3) that the written Mutual

exclusion algorithm (model left in figure 5.3) does satisfies the expressed specification (a assert)
statement in the model code.

104

5.2. Model checking Tool

bit turn ;
bool flag[2] ;
byte cnt ;
active [2] proctype mutex()
{

pid i, j ;
i = _pid ;
j = 1−_pid ;

again :
flag[i] = true;
do
: : flag[i] ->

if
: : turn == j -> flag[i] = false;
: : turn ! = j -> flag[i] = true;
: : else -> skip

if
: : else -> break

od ;
cnt++ ;
assert(cnt == 1) ;
cnt−− ;
turn = j ;
flag[i] = false;
goto again
}

Spin -a mutex.pml
gcc -o pan pan.c
./pan
(Spin Version 6.5.0 – July 2019)

Partial Order Reduction
Full statespace search for :

never claim -(none specified)
assertion violations +
acceptance cycles -(not selected)
invalid end states +

State-vector 28 byte, depth searched 51, errors : 0
some statistics

Stats on memory usage (in Megabytes) :
some statistics

unreached in proctype mutex
mutex.pml :33, state 24, "-end"
(1 of 24 states)

pan : elapsed time 0 seconds

FIGURE 5.2 : Mutual Exclusion Algorithm model and Verification result

105

Part , Chapitre 5 – Formal Verification Scheme for Nokia SDN-IoT Platform

5.3 Nokia-SDN platform

In this section, we build a formal and abstract model of an SDN platform [Bou+15] which is
taken here as a case study object. We think that this SDN platform has a representative archi-
tecture to make our study as generic as possible.

5.3.1 Architecture Building Blocks

As most SDN platforms, the Nokia SDN platform [Bou+15] consists of three layers, namely
a management plane, a control plane and a data plane. The management planes are formed
of entities called ’managers’. Each manager has the role of interfacing with the user and of
converting the user’s intents into high level network policies. The control plane consists of
entities called ’controllers’ which have the role of converting managers’ high level network
policies into fine grain network rules and of enforcing those rules onto the data plane. The data
plane consists of network elements embodied in the selected platform as Open vSwitches (OVS)
[Fou16a]. OVSes are open-source OpenFlow switches [Fou14] controlled by SDN controllers.

The platform is made of several administrative domains with each domain built up with
one manager, one controller and several switches (i.e. OVSes). A given switch can only be
part of one unique domain so that switches of all domains form a partition of the overall data
plane. In order to simplify the controller algorithm in the forwarding of multicast/broadcast
messages, the data plane topology of each domain is loop-free (the LLDP and the spanning-tree
mechanisms should be added to the controller logics if non loop-free topologies are considered).
In this document, such a topology is a tree topology departing from a root switch. The latter is
the domain border switch. Root switches of all domains are interconnected together in a full
meshed topology so that there is only one network hop between any pairs of root switches.
Figure 5.3 provides us with a schematic representation of the SDN platform.

FIGURE 5.3 : SDN Platform Description

106

5.3. Nokia-SDN platform

The data plane is also completed with devices. Each of them can be connected to a switch
port called as an Access-port via a network link called as an Access-link (thin green links). Si-
milarly, switches within a domain are connected together via network links called as Intra-links

(medium-size green links) thanks to their Intra-ports. Root switches from different domains are
interconnected together via Inter-links (thick green links) thanks to their Inter-ports.

5.3.2 The User’s Intent

The user’s intent consists in a set of predicates on device characteristics or device capabilities
[PBB17]. This set of predicates or intent allows the user to select devices and gather them into
a private group called in the following sections as Virtual Space or VS. Devices of the same
VS have to be connected together by controllers on the different domains where these devices
are detected (i.e. via the MAC learning process). A VS is enforced by the control plane as a
network slice in the data plane. While enforcing OpenFlow rules, controllers should make sure
that a pair of devices which do not belong to any common VS are not connected together. This
is defined as the network slice isolation property or isolation property for short (i.e. data traffic
isolation between network slices) in this document. For the sake of simplicity, the user’s intent
will be presented in the rest of the document as a nominative list of devices - e.g. {d1,d2,d3}.
This is done without losing the genericity of our discussions since the present verification work
is not focusing on the consistency of the overall users’ intents but rather on the safety of the
underlying SDN mechanisms. Moreover, we do not present details on how the controller which
identifies a given device by its MAC address, and the associated manager which identifies the
same device by its name, agree with each other on the device identity, as per the limited size of
the document. Please refer to [Bou+15] for further information.

5.3.3 Device Discovery via MAC Learning

The controller implements the well-known MAC learning mechanism as per [Fou16b]. Thanks
to this mechanism, the controller can discover newly connected device (e.g. new MAC address)
and inform the associated manager. In return, it receives from the manager high level network
policies (derived from users’ intents) regarding the new device.

Thus, a MAC learning OF Table (e.g. Table 10) is created by default on each switch by the
domain controller. The default rules with low priority (e.g. priority 0) in this OF Table consists in
forwarding any packet from an ’unknown’ source MAC address to the controller for processing
but also in multicasting the same packet to all neighbor switches of the domain except to the
switch where the packet comes from. Such a multicasting process is called flooding and the
implied packet is called the MAC learning packet in this document. In a first step such flooding

is limited to the domain. It allows for all switches in the domain to receive the MAC learning

packet once. This latter is then forwarded by each switch as per the aforementioned default rules

107

Part , Chapitre 5 – Formal Verification Scheme for Nokia SDN-IoT Platform

to the controller in the form of an OF PacketIn message. Thanks to such OF PacketIn messages,
the controller ’learns’ the ’unknown’ source MAC address ’A’ together with the incoming OF
port ’P’ of the given switch. Port ’P’ is marked by the controller as the relative position of the
new device (identified by MAC address ’A’) with regards to the switch. It can then insert high
priority (e.g. priority 1) OF rules into the OF Table (of the given switch) in order to forward
now on any packet destined to ’A’ to port ’P’. This is done for both unicast and multicast layer-2
packets. The controller also notifies the associated manager that it has detected and located a
new device. In return, it receives from the manager high level network policies (derived from
users’ intents) implying the newly discovered device.

Once the new device has been discovered by the domain controller, the latter ’leaks’ multi-
cast/broadcast packets from the former to all neighbor domains where devices of the same VS
are located (and only to those domains). Such packets are treated as MAC learning packets in
such neighboring domains, meaning that they are flooded within the aforementioned domains
except to their Access-ports. The leaking process is triggered thanks to knowledge coming from
managers which synchronize between them, VS predicate and device location. In order to avoid
forwarding loops during the leaking process, controllers apply a simple algorithm known as the
split horizon algorithm. Within such an algorithm, a root switch never forwards to other root
switches a packet it has received from another root switch. The split horizon algorithm does
properly ensure reachability between domains given that we have a full mesh topology between
root switches.

The work in this document is modeling the above device discovery procedure through MAC
learning at all planes.

5.3.4 Packet Forwarding

A unicast packet with source MAC address ’S’ and destination MAC address ’D’ is forwarded if
MAC addresses ’S’ and ’D’ are considered as part of the same VS (assuming the right mapping
between MAC addresses and device names as discussed previously). Otherwise, the packet is
dropped.

Concerning multicast (including broadcast) packets, the controller derives a multicast tree
for each source MAC address ’S’ [BDB16] based on the different VSes this MAC address ’S’
belongs to. In order to avoid network loops when forwarding multicast packets over Inter-links,
each domain controller implements the well-known split horizon algorithm [Rab+21] taking
into account the full mesh nature of the Inter-links topology. The split horizon algorithm simply
consists in not forwarding to other Inter-links a packet coming from an Inter-link.

Apart from multicast packet forwarding, all the data planes including unicast forwarding
and flooding mechanism which is part of the MAC learning process are modelled during this
work. As it concerns the control plane and the management plane, their essential behaviors are

108

5.4. Modelisation of SDN

completely captured by the models described in this document.

5.4 Modelisation of SDN

Here a transition δ = (q,σ ,q′) ∈ ∆ will also be written as q σ−→ q′ if δ is clear from the context.
Moreover, for better readability, we will use σ ! if σ ∈ Σ is a message sending actions, and σ?
if σ ∈ Σ a message reading actions. This is only to help the reader ; formally the label does not
contain the symbols ? and !.

Important Concepts An instance of the platform is defined by providing the topology for
different planes. Recall that there is exactly one manager associated with each controller. Each
controller only communicates with its own manager and the switches in its domain. Managers
are interconnected together via a complete graph of communication.

Formally, consider a set of controllers Cont = {c1, . . . ,ck}, a set of managers
Man = {man1, . . . ,mank} with the same cardinal, and a set of switches Sw = Sw1∪ . . .∪Swk

given as a partition. Within the selected platform, the switches of Swi belong to the domain i

which is controlled by the controller ci. The latter is itself managed by mani. We consider a
set Dev of devices which can connect to switches of different domains. Since the management
plane topology forms a complete graph, and that there is no link between controllers, these
topologies are considered fixed in our modelling.

In each domain i, there is one designated switch called the root switch, denoted by rooti ∈
Swi. The data plane topology is a graph G = (Sw,E) such that the subgraph restricted to
each Swi is an undirected tree rooted at rooti, and the subgraph induced by the set of roots
{root1, . . . , rootk} is a complete graph.

In our studied platform, we distinguish so-called Access-ports through which devices connect
to switches. We also have Intra-ports which are used to interconnect switches that belong to the
same domain, and Inter-ports which are used to interconnect root switches of different domains.
We also define a finite set Pts which refers to the set of Access-ports available at all switches.

Platform instance : an instance of the studied platform is defined as a tuple (Man,Cont,Sw,G)

where :

• Man = {man1, . . . ,mank},

• Cont = {c1, . . . ,ck},

• Sw =
k⋃

i=1
Swi,

• G = (Sw,E) is the topology graph as explained above.

We also use the function cont : Sw→ Cont which identifies the controller associated to each
switch, thus determining its domain : for all i ∈ {1, . . . ,k} and v ∈ Swi, we have cont(v) = ci.

109

Part , Chapitre 5 – Formal Verification Scheme for Nokia SDN-IoT Platform

Device Positions. We fix a finite set Dev of device identifiers e.g. based on their MAC ad-
dresses. Let Pos = Dev→ (Sw×Pts)∪{⊥} denote the set of device position functions. Such
a function assigns to each device the pair (sw,pt) of switch and port number to which it is
connected, or ⊥ if the device is not connected at any switch.

Virtual Spaces (VSes) : we consider the covering of Dev by the set of Virtual Spaces

VS = {V1,V2, ..,Vf }, with Vi ⊆ Dev for all 1 ≤ i ≤ f , and ∪l
i=1Vi = Dev. Let us define the

function VS(x) = {V ∈ VS | x ∈V} which assigns to each device x the set of VSes to which x

belongs.

In practice, the user can change VS dynamically by creating or deleting VSes for instance.
Similarly, the user can dynamically change V(x) by modifying for instance predicates assigned
to some VSes. The latter then include or exclude the device x. For simplicity, we assume in this
work that VS and all V(x) for all x ∈ Dev are static.

We also assume in this work that VS and all V(x) are known by all managers. As these
former are static, they do not appear amongst states of modeled managers as per section 5.5.4.

Exchanged Data Packets : two types of packets are exchanged between switches and de-
vices. MAC learning packets are sent by devices and forwarded by switches, and they contain
the device identifier ; while ping packets contain the source and target device identifiers.

These are defined, respectively, as MacPkts = {mac} ×Dev and PingPkts = {ping} ×
Dev×Dev. These packets will be written as mac(x) and ping(x,y) respectively, for x,y ∈ Dev.

Exchanged Control Packets : let us define ManPkts = Dev×{1, ..,k}×2VS a set of packets
from the management plane to the controller plane and ContPkts = {(mani,ci)|i ∈ {1, ..,k}}×
Dev is the set of packets from the controller plane to the management plane.

It is noted that MacPkts forwarded by switches to the associated controllers are also part of
exchanged control packets.

OpenFlow Rules : controller sends two types of rule updates to switches.

Rules impacting the forwarding of ping packets are defined as PingRules = Dev×Dev×
(Pts∪Sw) where the triple contains the source and target devices identifiers and the port or the
switch to forward to.

Rules impacting the forwarding of MAC learning packets are MacRules = Dev×Sw where
the pair contains the identifier of the device that has generated the mac learning packet, and the
switch to forward to.

We let Rules = PingRules∪MacRules.

Notice that we use switch identifiers as destinations instead of Intra-port identifier or Inter-

port identifier to which both ping and MAC packets are forwarded to. This is because switch
identifiers are used as port numbers for the communication between switches (see more detailed
in section 5.5.2).

110

5.5. Generated Automata Models

5.5 Generated Automata Models

We now describe the different automata that respectively model devices, switches, controllers,
and managers. We provide descriptive information on the transitions in each model and interac-
tions between SDN. layers

We denote the set of words in the alphabet A by Seq(A) = A∗, while the empty word is ε .
This notation will be used to encode packet queues in the automaton below. Note that we des-
cribe unbounded packet queues in our formal model, although the real platform uses bounded
ones (see below).

5.5.1 Automaton for Devices

We define an automaton A Dev that describes the behaviors of the whole set of devices Dev.
The automaton stores the positions (i.e. the Access-port which a device is connected to) of all
devices, transmits MAC learning and ping packets, receives pings packets and allows devices
to change positions. Moreover, the automaton also stores the set of ping packets that have been
sent, and the set of ping packets that have been received by each device since the start. This
information is used to check whether transmitted and received packets match the verification
specifications. We restrict to the case where each device pings at most once any other device.

The device state space contains :

• a position function pos of type Dev→ (Pts× Sw)∪ {⊥} which assigns each device a
switch and an Access-port if it is connected, and ⊥ otherwise ;

• a set spings⊆ PingPkts which stores send ping packets ;

• a set rpingsx ⊆ PingPkts each device x which stores received ping packets.

Initially, these spings and rpingsx for all x ∈ Dev sets are empty, and pos maps all devices to ⊥.
Intuitively, a device x can send ping or MAC learning packets m to the switch v through port p

(this has the form (x,v, p,(mac,x)) or (x,v, p,(ping,x,y))), and they can receive ping packets m

from switch v via port p (this has the form (v, p,(ping,z,x))). The latter does not contain the
device identifier. In fact, this packet is forwarded by OVS v to port p, and any device that is
connected to this port at that moment receives the packet.

Moreover, a device sends a new MAC learning packet whenever it changes its position.
The automaton A Dev has the following transitions.

IChanging position and sending a MAC learning packet : q
(x,v,p,mac(x))!−−−−−−−−→ q [pos← pos[x 7→ (v, p)]],

for all p ∈ Pts,v ∈ Sw,x ∈ Dev.

I Sending a ping packet :

q
(x,v,p,ping(x,y))!−−−−−−−−−→ q [spings← spings∪{ping(x,y)}],

for all x ∈ Dev and ping(x,y) 6∈ spings,

111

Part , Chapitre 5 – Formal Verification Scheme for Nokia SDN-IoT Platform

I Receiving a ping packet :

q
(v,p,ping(x,y))?−−−−−−−−−→ q

[
rpingsz← rpingsz∪{ping(x,y)}

]
for all v ∈ Sw, p ∈ Pts and pos(z) = (v, p).

5.5.2 Automaton for Switches

Here we define an automaton A Sw that captures the behaviors of all the switches. Remember
that we use switch identifiers as destinations instead of Intra-port identifier or Inter-port iden-
tifier to which both ping and MAC packets are forwarded to. This is because switch identifiers
are used as port numbers for the communication between switches.

For simplicity of modeling and to reduce the state space, we abstract away from port num-
bers for communication between switches, and use switch identifiers instead. For instance,
while flow tables are used to map packets to ports to forward to in the real system, our flow
tables map packets to switch identifiers except when the outgoing port is an Access-port. This is
without loss of generality since a switch identifier determines the port to which it is connected
and vice versa (once the topology between switches is defined). Moreover, as mentioned in the
beginning of this section, we omit outgoing packet queues, and assume that sending a packet
consists in writing directly in the incoming packet queue of the recipient switch.

The automaton contains for each switch v ∈ Sw the following components :

• ping packet forwarding rules pfwdv : Dev×Dev→ Sw∪Pts∪{⊥} that is a partial func-
tion which, for a given ping packet ping(x,y) from device x to device y, assigns a switch
or an Access-port to forward to ;

• MAC learning packet forwarding rules mfwdv : Dev→ 2Sw which gives the set of switches
to which to forward the MAC learning packet received from given device ;

• a data packet queue dquev of type Seq(MacPkts∪ PingPkts) to store packets received
from other switches ;

• and a control packet queue cquev of type Seq(Rules) that stores rule packets coming from
the controller.

The switches receive MAC learning or ping packets from devices (packets of the form (x,v, p,m))
which are put to dquev. They forward MAC learning packets they have received to the controller
(packets of the form
((v,cont(v)),(p,mac(x)))), and receive new rule updates from the controller (packets of the
form (cont(v),v,r)), which are put into cquev.

Initially, pfwdv is empty, and mfwdv maps all devices to the set of neighboring switches of
the same domain, that is, mfwdv(x)= {v′ ∈ Swi | cont(v)= cont(v′)∧(v,v′)∈E} for all x∈Dev.
Moreover, all queues dquev and cquev are empty at the initial state.

112

5.5. Generated Automata Models

When processing a MAC rule, the process pops a packet (x, p) from the queue cquev, updates
and triggers its mfwdv function to forward MAC learning packets for device x to all neighbo-
ring v′ switches. Similarly, when processing a ping rule (x,y, p), the flow table pfwdv function
is updated and triggered so that ping packets from x to y are forwarded to p.

The process forwards MAC learning packets (p,mac(x)) to all neighbor switches v′ (except
the switch p where the packet comes from) in mfwdv(x), but it also forwards it to the controller,
via the synchronizing transition (with label ((v,cont(v)),(p,mac(x))).

When a root switch receives a MAC learning packet from another root switch (i.e. of another
domain), the former only forwards the packet to its domain as per the previously described split

horizon principle in order to avoid loops.
Forwarding ping packets are internal transitions. A packet ping(x,y) is forwarded by pfwdv(x,y)

if this value is defined otherwise the packet is dropped. Transitions for A Sw are defined as fol-
lows.

I Receiving a packet from the controller :

q
((cont(v),v),r)?−−−−−−−−→ q [cquev← cquev · r], for all r ∈ Rules

I Receiving a MAC learning packet from a device :

q
(x,v,p,mac(x))?−−−−−−−−→ q [dquev← dquev · (p,mac(x))]),

for all x ∈ Dev, p ∈ Pts.

I Receiving a ping packet from a device :

q
(x,v,p,m)?−−−−−→ q [dquev← dquev ·m]),

for all x ∈ Dev, p ∈ Pts,m ∈ PingPkts,

I Processing a MAC rule : q [cquev = (x,v′) · cquev]
τ−→

q [mfwdv←mfwdv[x 7→mfwdv(x)∪{v′}]],

I Processing a ping rule : q [cquev = (x,y, p) · cque′v]
τ−→

q [pfwdv← pfwdv[(x,y) 7→ p],cquev← cque′v],
for all x,y ∈ Dev, p ∈ Pts∪Sw.

I Forwarding a MAC learning packet :

q [dquev = (p,mac(x)) ·dque′v]
((v,cont(v),(p,mac(x)))!−−−−−−−−−−−−−→ q

[
dquev← dque′v,∀v′ ∈ S′,

dquev′ ← dquev′ · (v,mac(x))
]
,

if either p ∈ Pts or p ∈ Sw and p is not a root switch with S′ = mfwdv(x)\{v, p} in this case ;
or p = root j for some j and S′ = mfwdv(x)∩Swi \{v} where v ∈ Swi.
where p ∈ Pts ∪ Sw; if p is not a root switch root j, then S′ = mfwdv(x) \ {p}, else S′ =

mfwdv(x)∩Swi with i 6= j. where p∈ Pts∪Sw, and S′=mfwdv(x)∩Swi\{v} such that v∈ Swi

if v ∈ {root1, . . . , rootn}, and S′ = mfwdv(x)\{v} otherwise.

I Forwarding a ping (to OVSs) :
q [dquev = ping(x,y) ·dque′v]

τ−→
q [dquev′ ← dquev′ ·ping(x,y),dquev← dque′v],

113

Part , Chapitre 5 – Formal Verification Scheme for Nokia SDN-IoT Platform

for all v′ = pfwdv(x,y) ∈ Sw,

I Forwarding a ping (to devices) :

q [dquev = ping(x,y) ·dque′v]
(y,v,p,ping(x,y)!−−−−−−−−−→

q [dquev← dque′v], for all p = pfwdv(x,y) ∈ Pts,

Note that in our model, packet communication between switches is modeled by directly
writing in the packet queues of receiving switches.

The state space of the controllers also have Boolean variables toggle to indicate whether a
ping update message has been sent to switches already.

5.5.3 Automaton for Controllers

We define an automaton A Cont that describes the behaviors of the entire control plane.

The state space contains for each controller ci the following components :

• a device relative position function rposi of type Dev×Sw j ⇀ Pts∪Sw∪{⊥}which gives
the position of a given device at the given switch as known to the controller ci, that is, the
port from which the MAC learning packet from the device is received and to which ping
packets for the device are to be forwarded at that switch.

• a device information function dinfoi of type Dev ⇀ {1, . . . ,k}× 2VS which stores the
domain and Virtual Spaces to which each device belongs ;

• a queue cdquei of type Seq(Swi×Pts×MacPkts) that stores packets that arrive from the
data plane,

• and a queue mquei of type Seq(ManPkts) that stores packets that arrive from the mana-
gement plane.

Initially, partial functions rposi and dinfoi, and both queues are empty.

Packets that come from the management plane are put in mquei, while MAC learning pa-
ckets from the data plane are put in cdquei. When processing a MAC learning packet (v, p,mac(x)),
the controller updates its rposi function to store the relative position p of the device x at a gi-
ven switch v. When processing a packet (x,dom,V) from the management plane, the controller
updates its dinfoi function to store the fact that device x belongs to domain dom and VS V . Fur-
thermore, the controller sends ping rule updates of the form (x,y, p) to the switches whenever
devices x and y belong to a common VS, and rposi(y,v) = p. This ensures that ping packets with
destination y be forwarded to p at switch v. Finally, the controller also sends MAC learning rule
updates to root switches. It sends the rule (x, root j) to switch rooti whenever device x is known

114

5.5. Generated Automata Models

to belong to domain i and there exists some device y in domain j which shares a common VS
with x. This ensures that MAC learning packets will be forwarded from domain i to domain j.

The transitions of A Cont are defined as follows.

I Receiving a packet from the management plane :

q
(mani,ci,(x,dom,V))?−−−−−−−−−−−−→ q [mquei←mquei · (x,dom,V)]

for all x ∈ Dev,1≤ dom≤ k,V ⊆ VS.

I Receiving a MAC packet from the data plane :

q
((v,ci),(p,mac(x)))?−−−−−−−−−−−→ q [cdquei← cdquei · (v, p,mac(x))],

for all x ∈ Dev,v ∈ Swi, p ∈ Pts∪Sw.

I Processing a Mac learning packet (from IOT port) :

q [cdquei = (v, p,mac(x)) · cdque′i]
(ci,mani,x)!−−−−−−→

q [rposi← rposi[(x,v) 7→ p], cdquei← cdque′i] ,
toggle = false, for all v ∈ Swi, p ∈ Pts.

I Processing a Mac learning packet (from Non-IOT port) :
q [cdquei = (v, p,mac(x)) · cdque′i]

τ−→
q [rposi← rposi[(x,v) 7→ p], cdquei← cdque′i] ,
toggle = false, for all v ∈ Swi, p ∈ Sw.

I Processing a packet from mani :
q [mquei = (x,dom,V) ·mque′i]

τ−→
q [dinfoi← dinfoi[x 7→ (dom,V)],mquei←mque′i],
toggle = false, for all x ∈ Dev, 1≤ dom≤ k and V ⊆ VS.

I Sending ping rule updates to switches :

q [toggle == false]
(ci,v,(x,y,p))!−−−−−−−→ q [toggle = true]

for all x,y ∈ Dev,v ∈ Swi, rposi(y,v) = p 6= ⊥, and writing dinfoi(x) = (jx,V), dinfoi(y) =

(jy,V ′) and V ∩V ′ 6= /0.

I Sending MAC rule update to rooti :

q
(ci,rooti,(x,root j))!−−−−−−−−−−→ q for all x ∈ Dev such that rposi(x, rooti) 6=⊥ ∧dinfoi(x) = (i,V), and there

exists y ∈ Dev s.t. dinfoi(y) = (j,V ′) with j 6= i and V ∩V ′ 6= /0.

5.5.4 Automaton for Managers

We define automaton A man that describes the behaviors of the entire management plane. The
state space contains for each management node mani the following components :

• a mapping function dinfoi : Dev→{1, . . . ,k}∪{⊥} determining the domain in which the
device is connected.

• a packet queue cquei that stores packets that come from ci ;

115

Part , Chapitre 5 – Formal Verification Scheme for Nokia SDN-IoT Platform

• and a queue mquei for packets from other management nodes.

Initially, both queues are empty and dinfoi maps all devices to ⊥.

The management node mani learns about the domains to which devices belong through pa-
ckets received from the controller ci, and forwards this information to all other management
nodes. More precisely, packets sent by the controllers are put in the queues cquei. When proces-
sing a controller packet for device x ∈Dev, the manager mani sends the packet (x, i) to all other
managers informing them that device x belongs to domain i. This helps all management nodes
to eventually have full information on the domain where each device is located. Moreover, the
management node mani sends to the controller ci the VSes to which each known device belongs
by sending packets of the form (x,dom,V) where x is a device, dom its domain, and V the set
of VSes to which the device x belongs. The transitions of A man are defined as follows.

I Receiving controller packet :

q
(ci,mani,x)?−−−−−−→ q [cquei← cquei · x]. where x ∈ Dev

I Processing a controller packet :
q [cquei = x · cque′i]

τ−→
q
[
∀ j 6= i,mque j←mque j · (i,x),

dinfoi← dinfoi[x 7→ i],cquei← cque′i
]
.

where x ∈ Dev and 1≤ j ≤ k.

I Processing a management packet :
q [mquei = (j,x) ·mque′i]

τ−→
q [dinfoi← dinfoi[x 7→ j],mquei←mque′i].

I Sending device information to controller :

q
(mani,ci,(x, j,V))!−−−−−−−−−−→ q for all x ∈ Dev,1≤ j ≤ k such that dinfo(x) = j and V = VS(x).

5.5.5 SDN specification

We verify two important properties of our platform. The first is a safety property, called the
isolation property. It states that only devices that belong to a common VS can exchange ping
packets and a device not belonging to a particular VS cannot eavesdrop ping packets exchanged
among that VS group. This can be expressed in LTL as follows.

Isolation =�
(∧ x,y∈Dev,

VS(x)∩VS(y)= /0
ping(x,y) 6∈ rpingsy∧

x,y,z∈Dev,
z 6=y

ping(x,y) 6∈ rpingsz

)
.

This LTL formula thus describes the set of executions which never enter a state where a pa-
cket ping(x,y) with VS(x)∩VS(y) = /0 is received, and no device can eavesdrop on the packet
which has to be received by different devices.

116

5.5. Generated Automata Models

The second property is called the connectivity property. It states that whenever a ping packet is
sent to a device that belongs to the same VS group, the packet is eventually received ; however
this property only holds after some point in time, that is, when the MAC learning algorithm
has finished. So the SDN platform eventually allows a common VS group to exchange the data
packets among themselves. This can be expressed in LTL as follows :

Connect =
∧

x,y∈Dev
VS(x)∩VS(y)6= /0

♦
(
ping(x,y) ∈ spings∧
♦ping(x,y) ∈ rpingsy

)
.

In our work we consider two scenarios. In the no-mobility scenario, devices do not change their
respective position once they are connected to an Access-port. In the mobility scenario, devices
can change their position at any time.
The first scenario called as Nomobility can be expressed in LTL as follows :

Nomobility =
∧

x∈Dev,v∈Sw,
p∈Sw∪Pts

�
(
(v, p) = pos(x)→
�(v, p) = pos(x)

)

And to use Theorem 4.3 we need to formally state the specifications for each component in
LTL\X . Finding these properties requires domain knowledge. In fact, one needs to understand
with which intentions the system was designed in order to write these formulas.
The management plane and control plane should work together to satisfy the following require-
ment :

I1 =
∧

1≤i6= j≤k,x,x′∈Dev
VS(x)∩VS(x′)6= /0

v∈Swi,v′∈Sw j
p,p′∈Pts

�
(
pos(x) = (v, p)∧pos(x′) = (v′, p′)

∧(rposi(x, rooti) 6=⊥)→
♦Sync(ci, rooti,(x, root j))

)
.

The above formula says that whenever devices x and x′ are respectively connected at switch-port
pairs (v, p) and (v′, p′) in respectively domains i and j, if the root switch of domain i has received
a MAC learning packet originated from device x, then eventually the root switch will receive a
MAC update rule from the controller to forward MAC packets of device x towards root j. This
I1 captures the fact that the control plane sends appropriate MAC rule updates to the root switch
of its domain, thus to the data plane.

I2 =
∧

1≤i≤k,x,x′∈Dev
VS(x)∩VS(x′)6= /0
v,v′∈Sw,p,p′∈Pts

u∈Swi,q,q′∈Pts∪Sw

�
(
pos(x) = (v, p)∧pos(x′) = (v′, p′)

∧(rposi(u,x) = q)

∧(rposi(u,x
′) = q′)→

♦Sync(ci,u,(x,x′,q′))
)
.

117

Part , Chapitre 5 – Formal Verification Scheme for Nokia SDN-IoT Platform

The above formula states that, given devices x,x′ connected at (v, p) and (v′, p′) respectively,
if another switch u has received and forwarded MAC learning packets to the controller wit-
nessed by (rposi(u,x) = q)∧ (rposi(u,x

′) = q′), then a ping update rule will eventually be sent
to switch u to forward packets ping(x,x′) to q′. Thus, I2 expresses that the control plane sends
appropriate ping rule updates to all the switches and thus to the data plane of its domain.
The above requirements should be satisfied jointly by the management and control planes, that
is, we would like to establish that 〈true〉A man ‖ A Cont〈I1 ∧ I2〉 should be true. However, this
check can still be costly for large topologies. Therefore, we apply again Theorem 4.3 to check
this compositionally.
We need to introduce another intermediate formula I3 between the management plane and
controller plane. This captures that whenever a management node mani receives information
about a device’s position from its controller ci, eventually, all management nodes man j for-
ward this information to their respective controller c j. Thus, the information about a device of
domain i is eventually shared with the controller of other domains j.

I3 =
∧

1≤i≤k,x∈Dev
j∈[1,..,k]

�
(
(dinfoi(x) 6=⊥)→
♦Sync(man j,c j, (x,dinfoi(x),VS(x)))

)
So we can check the satisfaction of 〈true〉A man ‖ A Cont〈I1∧ I2〉 by verifying 〈true〉A man〈I3〉,
and 〈I3〉A Cont〈I1∧ I2〉.

5.5.6 Experimental Results

No-Mobility Scenario Validation

Let us call the Isolation, Connect, and Nomobility as φI , φC and ψ respectively. Recall the in-
termediate formula I1, I2, and I3 We are going to verify, the specified SDN platform satisfies the
Isolation and Connect properties under the assumption of Nomobility property.
We are going to compare the usage of Compositional Reasoning (CR) in verifying the SDN
platform over the monolithic approach. Monolithic approach consists in verifying the entire
system i.e checking whether 〈true〉A man ‖A Cont ‖A Sw ‖A Dev〈ψ→ φI ∧ φC〉 is true or false.
Compositional rule method 1 (CR method 1) consists in splitting the control plane from the
data plane and thus in verifying separately the two automata : 〈true〉A man ‖ A Cont〈I1 ∧ I2〉,
and 〈I1∧ I2〉A Sw ‖A Dev〈ψ → φI ∧ φC〉. Compositional rule method 2 (CR method 2) consists
in further splitting the management plane from the control plane and checking three triples :
〈true〉A man〈I3〉, 〈I3〉A Cont〈I1∧ I2〉, and 〈I1∧ I2〉A Sw ‖A Dev〈ψ → φI ∧ φC〉.
The results for various sizes of the SDN platform topology and the three methods are shown
in Table 5.1. For a given size of SDN platform, we checked all possible SDN constrained to-
pologies as mentioned earlier. and for all possible random choices carried by the devices to

118

5.5. Generated Automata Models

connect to their Access-port positions. Within the Nomobility condition, once the device has
selected its position and sent its first MAC learning packet, it waits for a timeout. After the first
timeout, it sends a second MAC learning packet and waits for the second timeout. After the
second timeout, it sends ping packets to all other devices. In this scenario we check that devices
sharing a common VS can receive ping packets from each other (i.e. Connect property), and
that devices not belonging to this particular VS cannot receive the ping packets from the group
and vice versa (i.e. Isolation property). In order to test these Isolation and Connect properties we
create the following set of VSes, VS = {{d1,d2}, {d3}}, where {d1,d2} is one VS containing
devices d1 and d2 and {d3} the other VS containing a single device d3. We verify that d3 cannot
receive ping packets from devices in {d1,d2} and vice-versa in order to assert that the SDN
platform satisfies the Isolation property. We also verify that eventually d1 and d2 can receive
ping packets from one another to assert that the SDN platform satisfies the Connect property.
For the particular case of no-mobility, the SDN platform satisfies both Isolation and Connect
properties. To shortly capture the SDN platform architecture we adopt for the rest of the do-
cument the following notations. We denote by n,(X ,Y,Z) the set of topologies with n domains
(1≤ n≤ 3 in our case), where (X,Y,Z) refers to the number of OVSes in each domain. For the
single domain with 3, 4, and 5 switches there are respectively two, four and five possible data
plane topologies since we restrict to trees. For the case of two domains (n = 2), the possibilities
are (2,1,−), (3,1,−), (2,2,−), and (3,2,−) ; in this case, there are, respectively, one, two, one,
and two possible data plane topologies. With three domains (n = 3), the possibilities are (1,1,2)
and (1,1,3), in which case there are one and two possible data plane topologies respectively.
In our experiments, we enumerate all topologies that match a given template (X ,Y,Z) to check
exhaustively all possible scenarios. Therefore, the cases with larger numbers of topologies take
more time to check.

We ran our experiments on an Intel i7 processor with 13GB of available RAM. Table 5.1
compares the monolithic and two compositional approaches, called Method 1 and Method 2,
with respect to CPU time and memory usage on SDN topologies of varying sizes.
While the monolithic approach fails to scale above trivial topologies, compositional methods
helped us to complete the verification process up to 3 domains in our experiments. However,
we still fail to complete the verification process for one domain with 6 switches with both CR
methods. The bottleneck during this experiment was checking 〈I1∧ I2〉A Sw ‖A Dev〈φI ∧ φC〉.
CR method 1 and method 2 provide the same performance up to 2 domains. When the number
of domain number 3, CR method 2 gives advantage over the RAM usage and CPU time. Within
CR method 1, for 3 domains, much of its CPU and RAM resources are consumed in checking
〈true〉A man ‖A Cont〈I1∧ I2〉. Thanks to the additional decomposition between the management
plane and the control plane, CR method 2 provides us with better performance. Here the majo-
rity of CPU and RAM resources are consumed in checking 〈I1∧ I2〉A Sw ‖A Dev〈ψ→ φI ∧ φC〉.
The sizes of state space produced in the monolithic method reaches the order of 106 for two

119

Part , Chapitre 5 – Formal Verification Scheme for Nokia SDN-IoT Platform

switches in a single domain, while the compositional approaches produce around 104 states for
the same architecture. However, the compositional approaches still can not manage the model
with 6 switches in a single domain and went out of memory.

n domains, Monolithic Method CR Method1 CR Method2
(X ,Y,Z) OVSes CPU time RAM used CPU time RAM used CPU time RAM used

1, (1,−,−) 0.38s 133MB 0.85s 134MB 1.11s 135MB
1, (2,−,−) 166s 723MB 1.05s 135MB 1.32s 135MB
1, (3,−,−) - - 6.8s 168MB 7s 168MB
1, (4,−,−) - - 2m 34s 532MB 2m 32.4s 531MB
1, (5,−,−) - - 39m 33s 5002MB 39m 40s 5002MB
2, (1,1,−) - - 4.07s 145MB 1.66s 135MB
2, (2,1,−) - - 9.5s 164MB 4.05s 164MB
2, (3,1,−) - - 1m 29s 505MB 1m 10.69s 505MB
2, (2,2,−) - - 47.73s 502MB 35.77s 502MB
2, (3,2,−) - - 15m 21s 4692MB 14m 31.3s 4692MB
3, (1,1,1) - - 18m 25s 4292MB 4.22s 162MB
3, (1,1,2) - - 36m 11s 6982MB 34.62s 472MB
3, (1,1,3) - - 1h 14m 40s 12254MB 13m 50s 4482MB

TABLE 5.1 : Monolithic vs Compositional Approaches (with no-mobility)

Issue with Device Mobility

We now present an interesting part of our formal verification experiments. In the last section,
we found that the studied SDN platform does satisfy the required specifications, namely the
isolation property and the connectivity property. What if we allow devices to move freely but
still use the data plane service to exchange packets ? Given this freedom, devices can select their
new positions wherever and whenever they want.

This freedom makes the SDN system vulnerable w.r.t. the data isolation property. We iden-
tified an error, that is, an execution which violates the isolation property. We can produce the
error simply with our monolithic model checking for one domain and two switches, that is,
〈true〉A man ‖A Cont ‖A Sw ‖A Dev〈φI〉 is violated, where φI the Isolation property.

We find this error by considering VS = {{d1,d2}, {d3}} and the following mobility sce-
nario : once first MAC learning packets are exchanged and ping rules are updated, devices d2

and d3 swap their respective Access-port. After the mobility events, Spin raises an Isolation
violation reporting that device d3 receives a ping packet sent by d1 to d2.

Network Slice Isolation Violation

SPIN reveals a counterexample trace but does not give the probability of its occurrence. In this
section, we discuss an illustrative scenario to derive an estimation of the probability.

120

5.5. Generated Automata Models

Let’s consider δ as the minimum time needed by the controller to receive a given data plane
packet and to respond with a new set of rules to the originating switch (due to the controller
queues cdque and mque). Further, let’s call ε as the time needed by the switch to inform the
controller about the possible reconfiguration of the data plane network topology (due to switch
queues cque and dque). Finally, let’s consider λ as the average number of data packets exchan-
ged per time unit by the switch and devices in the data plane.
With the SDN platform made of a single domain k = 1, we have the controller c in the control
plane, and three devices {d1, d2, d3} and one switch sw which has three ports {1,2,3} in the
data plane. Initially devices d1,d2,d3 are connected respectively to the ports 1,2,3 of switch sw.
The management plane applies the following VS of devices {{d1, d2},{d3}} where {d1, d2}
forms one VS and {d3} is lonely device in another VS. The controller has to ensure that the set
of rules it forwards to the data plane (i.e to the switch sw) prevent devices d3 from receiving pa-
ckets exchanged between d1 and d2. After receiving MAC learning packets from the switch sw,
the controller c forwards ping rules to the latter, enforcing that packets from the port 1 should
be delivered to port 2 and those from port 2 should be delivered to port 1 and any data packet
from the port 3 should be dropped.
When the data plane topology undergoes a transition, such as d2 and d3 are exchanging their
respective position, it takes the controller c a time interval of (δ + ε) before being aware of
the new situation and actually enforcing new rules. During this lap of time, there are possible
scenarios of device d3 being able to receive packets exchanged between devices d1 and d2. For
instance, device d3 occupies now the port 2 of the switch sw and devices d1,d2 occupy respec-
tively ports 1,3. Due to the communication delay between the switch and the controller, the
chance (probability) of device d3 receiving ping packets delivered by d1 to d2 is in the order of
O(λ×(δ +ε)). We are able to reproduce such an Isolation violation with the network simulator
called GNS3.
Thus, the probability of the Isolation violation occurrence is roughly proportional to the pa-
cket data rate (i.e. λ) and the overall latency (i.e. (δ + ε)) between the domain controller and
the switch, called as the control link latency. The first proportionality means that higher band-
width data paths require a faster control plane or smaller control link latency. However, the
latter has its own limitations and is very dependent on the SDN architecture. On the studied
SDN platform, the controller is centralized so that there is a one-to-one mapping between the
controller and the manager in a given domain. This allows for simplifying the synchronization
of user’s intents and device identity between the two components. Unfortunately, this centra-
lization could induce important control link latency. First, it’s about communication delay. As
uplink communications from different switches within the domain are aggregated when they
arrive at the controller, the bandwidth required becomes higher and higher as the number of
controlled switches and the number of connected devices increase. Congestion at the controller
incoming link could occur if the link was not correctly dimensioned - e.g. a massive arrival of

121

Part , Chapitre 5 – Formal Verification Scheme for Nokia SDN-IoT Platform

new devices into the data network leads to a massive arrival of MAC-Learning-related PacketIn
messages at the controller. Second, it’s about processing delays. If the controller was limited
in terms of processing power, then its incoming queues could fill up leading to excessive delay
and even to loss of control messages (i.e. infinite delay). Furthermore, this also illustrates the
fact that the order in which the reading of messages is important for safety properties for SDN
platforms.

Local Controller Solution

In order to work around previous control link latency issues, one possible solution consists in
implementing a hierarchical controller architecture with a new controller embedded together
with each switch that we call as local controller in addition to the existing centralized control-
ler that we call as the central controller. Figure 5.4 illustrates such a controller hierarchical
architecture. The local controller role simply consists in blocking any outgoing traffic towards
a port (e.g. port 2) when the existing device (e.g. d2) is disconnecting from this port (e.g. a port
down status message sent to controllers). It maintains such a blocking rule until a new device
(e.g. d3) is connected to the port and MAC learning messages from this device are processed
by the central controller and new forwarding rules related to the new device are received by the
switch. In order to ensure new rules are actually received by the switch, the local controller is
implemented as an OpenFlow proxy between the switch and the central controller.

As the local controller is colocated with the switch, we can assume a zero control link

latency between the two.
Moreover, the number of devices the local controller should deal with is smaller than the

one the central controller is dealing with by the order of magnitude of the number of switches.
The variability of control message rate is to be smaller from the local controller perspective,
which leads to easier engineering in terms of processing resources. Such a local controller can
be modeled by an automata as A loc.Cont.

FIGURE 5.4 : Local Controller Architecture

Local Controller Solution Validation

In this section, we verify that the proposed local controller solution satisfies the Isolation pro-
perty, i.e 〈true〉A man ‖A Cont ‖A Sw ‖A loc.Cont ‖A Dev〈φI〉, where φI is the Isolation property

122

5.6. Chapter Conclusion

defined in Section 5.5.5 and A loc.Cont proposed local controller method specified previously.
By using the Theorem 4.3, we check 〈true〉A man ‖A Cont〈I1∧ I2〉 and 〈I1∧ I2〉A Sw ‖A loc.Cont ‖
A Dev〈φI〉 to prove 〈true〉A man ‖A Cont ‖A Sw ‖A loc.Cont ‖A Dev〈φI〉, where I1 and I2 are the
intermediate formula defined in Section 5.5.5. The proposed local controller does satisfy the re-
quired isolation property. We carry out the experiment for different topologies of the SDN plat-
form. For each topology, we monitor the computational time and the memory usage. Table 5.2
provides a synthetic view of these experimental data. We made full SDN SPIN model at a
public-access repository1.

n domains,
(X ,Y,Z)
Switches

Compositional reasoning rule
〈I1∧ I2〉A Sw ‖A loc.Cont ‖A Dev〈φI〉

〈true〉A man ‖A Cont〈I1〉 and 〈true〉A man ‖A Cont〈I2〉
Total Computation time Maximum RAM memory used

1, (1,−,−) 4.8sec 188 MB
1, (2,−,−) 8.4sec 224 MB
1, (3,−,−) 1min 2sec 448 MB
1, (4,−,−) 6min 22sec 982 MB
1, (5,−,−) 1hr 5min 8sec 7245 MB
2, (1,1,−) 11sec 214 MB
2, (2,1,−) 33sec 395 MB
2, (3,1,−) 3min 10.3sec 865 MB
2, (2,2,−) 96.5sec 848 MB
2, (3,2,−) 25min 13sec 6327 MB
3, (1,1,1) 19min 9.8sec 4291 MB
3, (1,1,2) 36min 44.39sec 6981 MB
3, (1,1,3) 1hr 24min 3.45sec 12254 MB

TABLE 5.2 : Local Controller Proposal Validation using CR method (mobility scenario)

5.6 Chapter Conclusion

In our modeling case, we explicitly take asynchronous aspect while modeling the SDN sys-
tem and verified the basic requirements (specifications) of network Isolation and Connectivity

property compare to most of the other SDN verification scheme in the literature as mentioned
in the brief literature survey. Although this basic property with the abstracted model, it is not
difficult to come up with proof arguments why those properties are satisfied in the non-mobility
case and why it is not satisfying the safety property i.e Isolation property in the mobility case.
Our aim is to do automated verification, but this verification in a monolithic way took too much
time and memory.It is well known that the Model checking process will take huge time and
memory [Cla08] to finish the verification process. But when we started this verification process,

1. https://gitlab.inria.fr/anoordhe/drcn2021milan

123

https://gitlab.inria.fr/anoordhe/drcn2021milan

Part , Chapitre 5 – Formal Verification Scheme for Nokia SDN-IoT Platform

this huge time and space consumption is not what the ADR sapiens project team expected for
this small sized network. For this huge state space, there are couple of reasons, first of all, the
modeled system is asynchronous, this spin model checker itself a classic verification tools, we
don’t know how well it is optimized in terms of encoding the state and transition, may be recent
model checking tools have better encoding schemes, this we really don’t know, I’m just specula-
ting it. Because of this reason we spent a considerable amount of time in coming up with a state
space reduction technique and found the compositional reasoning a natural fit for well separated
and layered SDN architecture. With the help of the compositional reasoning we managed to ve-
rify the network specifications Isolation and Connectivity for the increased SDN network size.
Maybe a person well trained Model checking (experts) knows the details of the model checking
process, knows sophisticated algorithms and details in depth can give even better experimental
results.

124

CHAPITRE 6

DISCRETE CONTROL SYNTHESIS FOR AN

SDN-IoT PLATFORM

Discrete Control synthesis has not been yet utilized in SDN platform because of the complexity
of control synthesis of various specifications which are at least the complexity of model che-
cking (refer the relation between synthesis and model checking in chapter 3). Hence, discrete
control synthesis for practical purposes is only used for high level model and specification rather
than detailed model or description of distributed systems. However, several theoretical works
related to synthesis have been done to control/supervise a SDN platform. Synthesis supervision
for a SDN platform tackles the synthesis problem of forwarding data packets, updating network
instances and maintaining the network update procedure based on the condition imposed by
the SDN network manager which enforces requirements from end-users. The research works of
papers [FSV19 ; McC+15a ; CWL18a], etc discuss synthesis of various SDN network specifi-
cations. Consistent network updates [FSV19 ; McC+15a], order of network events update with
predefined specifications. Automated Input-output SDN rules refinement [CWL18a] synthesis
scheme to make SDN to generate the safe output for the given input at various times based
on the specification setup. The work [Cvi+13] is towards healthy bandwidth to minimize the
latency of heterogeneous SDN scenarios. More details of the relevant synthesis of SDN works
from the literature are discussed in the following section.

• [JRG21] tackle the synthesis of routing data packets, updating the network instances and
maintain the network update procedure based on the condition imposed by SDN network
manager and requirements from network end-users,

• Consistent network updates [FSV19] and order of network events update [McC+15a] with
predefined specifications,

• Automated Input-output SDN rules refinement [CWL18a],

• Model synthesis to make the SDN work towards healthy bandwidth to minimize the la-
tency [Cvi+13].

• In [Wan+13], reactive synthesis is used to automatically synthesize network update rules
in response to network requests. Other works consider the synthesis of update rules

125

Part , Chapitre 6 – Discrete Control Synthesis for an SDN-IoT platform

that makes sure that the intermediate configurations during the update are all admis-
sible [Rei+12 ; McC+15b], or compute correct network-wide configurations [El-+17].

6.1 Existing Synthesis of Network Services

6.1.1 Synthesis of Consistence updates

Consistent network updates [FSV19 ; McC+15a] discuss the synthesis of consistency updates of
the SDN controller commands on the data plane switches such that the specification on the data
plane remains valid in the update phase. The specification involves connectivity (or existence of
path without disconnection in the update phase) between any two valid secure hosts.

EXAMPLE 6.1 (Problem Statement) When a manager decides to change the path between

two switches (or hosts) due to the traffic or some other reason, during the update phase of

changing the routing between two switches, how to make the connectivity (there should be a

data path) between these end switches (or hosts) in the figure 6.1 between hosts H1,H3.

For instance, in the figure 6.1 we have three highlighted paths

Red path

T1 −→ A1 −→C1 −→ A3 −→ T3

Green path

T1 −→ A1 −→C2 −→ A3 −→ T3

Blue path

T1 −→ A2 −→C1 −→ A4 −→ T3

T1 T2 T3 T4

A1 A2 A3 A4

C1 C2

H1 H2 H3 H4

= ==

FIGURE 6.1 : Consistent Update Synthesis

In order to change the path from red to green, the controller should update the forwarding

table of the switches {A1,C2} in the given network (figure 6.1). For changing the path from

red to blue, the controller should update the forwarding table of switches {T1,A2,C1,A4}. For

changing the red to green path if we update the switches in the following order C2, A1, neither

126

6.1. Existing Synthesis of Network Services

connectivity is lost (i.e in between the updating we have connection form H1 to H2) or consis-

tency is lost (i.e the connection between H1 and H3 is either red path or green path).

Suppose if we want to change the data connectivity path for H1, H3 from red to blue path, we

have to update the switches {T1,A2,C1,A4}, now the question arises in which order we should

update the switches? At first A2 and A4 forwarding tables can be updated any order it won’t

introduce any new path or break the existed red path and followed by T1 and C1 in what order?

Case 1 : Suppose T1 updated and then C1 is updated, there is new path which is neither a red or

blue in between these updates which is

T1 −→ A2 −→C1 −→ A3 −→ T3

of course connectivity holds between H1 and H3 in this transition but it is not consistent in the

update phase (here consistent refers to the strict of following single coloured edges rather then

mixture of coloured edges).

Case 2 : Suppose C1 is updated first before T1, here also there is new path which is neither a

complete red or blue path

T1 −→ A1 −→C1 −→ A4 −→ T3

here too connectivity holds but consistency is not maintained.

From this example, one can understand that guaranteeing such strict consistency by finding

the right order of updating the rules to the switch forwarding tables is not always possible. If

the property is little weaker than this strict consistency property one may find ordering updates

solution !

Let say changing the path from red to blue, in addition to connectivity between the hosts H1

and H3, we also want the connectivity path between these hosts should go through the nodes

A2 or A3 (let say these switches are special nodes, can think in terms of security-way-pointing

switches). So any insecure data transmission between the hosts can be detected and deny the

passage in these special nodes. This is a weak consistency not a strong consistency property.

For such consistency we have the ordering updates (from red to blue path), A2 A3 T1C1 and

A3 A2 T1C1 sequence is fine. That is initially a red path

T1 −→ A1 −→C1 −→ A3 −→ T3

by doing the update of A2 and A3 not creating any new path between H1 to H3, after updating T1

the result is neither a red path nor a blue path but a path which is following the weak consistency

127

Part , Chapitre 6 – Discrete Control Synthesis for an SDN-IoT platform

(which is path should be connected via either A2 or A3).

T1 −→ A2 −→C1 −→ A3 −→ T3

after updating C1 we have the blue path

T1 −→ A2 −→C1 −→ A4 −→ T3

Note : Suppose a packet is forwarded by T1 before it updated its forwarding rule and reached

C1 after it is updated its forwarding rule, then the (weak) condition is violated in order to avoid

such things give a wait time between the updating which make sure that all the data packets

forwarded by the T1 will be reached to corresponding hosts before C1 gets updated. �

The (weak) consistency update problem discussed in the above example is a requirement ex-
pressed as LTL specification and expressing the network topology and semantics of network
events as kripke [Cav+15] structure. Using the variant of Depth First Search algorithm the so-
lution for consistent order of network updates is computed. In my understanding, the proposed
algorithm complexity lies in factorial of number of updates i.e O(n!) where n is the path length
between the hosts in the network.

6.1.2 Guided Network Synthesis

In the network guided synthesis, the topic address about checking the program correctness with
respect to the specification while transforming the core legacy programs into the Domain Speci-

fic Language (basically abstracting and exchanging the data from high level language to another
model) using the synthesis technique with constraints on output for the given input (i.e same as
contract defined in the Heptagon program).

Imperative Programs
C, Java
Command Instruction

Instruction
Transformer

Synthesis

Input-Output
Contract

Translated Instruction

Domain Specific Languages
FlowLog, NDLog

Produced Values
/ Not-Realizable

Request Values
to control

FIGURE 6.2 : A network Guided Synthesis Scheme.

128

6.1. Existing Synthesis of Network Services

The emergence of SDN paved the path for sharing the common resources in multi-tenancy
framework, and global control mechanism and unified communication scheme for the large-
scale network with wide and different kinds of devices and applications. To fully leverage these
SDN platforms, many high-level domain-specific languages (DSL) have been proposed. This
high-level language provides a data abstraction model to communication interfaces between va-
rious entities (also between SDN layers). These include logic-based languages such as declara-

tive networking, FlowLog, functional languages such as Frenetic and Pyretic, and state-machine
based languages Kinetic. These DSL’s enabled many new capabilities not found in traditional
networks ranging from automatic verification, composition, debugging, to consistent updates.
Despite these advantages, DSL’s had not gained wide-spread adoption in practice. There are
many potential reasons (e.g.,performance concerns, limited expressiveness,etc.), but one major
hurdle is the learning curve associated with the new programming paradigm (syntax and se-
mantics). Particularly, declarative DSLs, like FlowLog and ND-Log, would require significant
changes in programmer’s reasoning process, due to the semantic differences between imperative
and declarative programming [CWL18b].

In the guided network synthesis studies, it’s about converting the legacy program into do-
main descriptive language rather than the traditional synthesis of a discrete event system. The
working synthesis methodology for converting high level system instruction from the legacy
programs into the domain specific language as depicted in the figure 6.2 is the theme of net-
work guided synthesis tools like Facon [CWL18b], NetEgg [Yua+15].

Further Discussion : The importance of the instruction transformer in the network guided
synthesis scheme has two-folds,

1 This imperative level instruction coming from the interface of manager or controller is
purely logical based decision instructed either by the network manager (human) and/or
code written by the system designer. This code should be human understandable.

When it comes to deploy such instruction to the data plane, the data plane has to handle
millions of data packets per minute (of-course it depends on the size of data plane). So
it is better the network switches or routers code instruction should be efficient machine
executable code rather than human readable.

This job is solely done by the southbound protocols [Kre+15] (or more general term
data abstraction). It takes the (SDN) manager or controller instruction and converts it into
the data plane machine efficient code in the chosen domain specific language DSL.

2 In the process of translating the instruction from SDN controller to network switches or

129

Part , Chapitre 6 – Discrete Control Synthesis for an SDN-IoT platform

routers in the data plane, there is an opportunity for synthesis and model check the consis-
tency in the updates (deployment) of new instructed rules (i.e translated instruction). So,
it will be useful in storing the partial information about the data plane in the contract
box (Input-output contract) for checking the consistency of network updates and/or syn-
thesis the updates. In fact this is what exactly the Veriflow [Khu+13] does, but it does
elaborate model checking on complex specifications (connectivity for the different hosts,
non-blockingness, data path route cycle), which of course needs much more information
about the data plane and time to process before deploying the new rules into the data
plane (please refer experiment case of the paper [Khu+13] : for more than 170 hosts, the
Veriflow takes more than 20% of the southbound processing time, which will add further
latency in deploying the translated rules). In our understanding, instead of checking the
complex specifications, just checking the safety properties (like necessary and minimal
sanity check) won’t introduce too much lag between the order (forward instruction rule)
from the controller and deploying the translated rule into respective network elements.

The reason why we mentioned the connectivity, non-blockingness and data path route
cycle are complex specification is because of the time complexity (more precisely the
computation time) which is around the order of data plane network size O(n),n= |V (Dataplane)|.
Let’s take the connectivity property between say two user’s devices d1,d2 which locates
in the data plane switches Sw1,Sw2. When the controller plane got the instruction about
setting the data connectivity path between these two users, first it observes the data plane
position (in the data plane network) and to generate the forwarding rule, the controller
has to go through the data plane network (topology) and find the physical network path
and then generate the forwarding rules for the switches involves in the physical network
path between users d1,d2. In this case clearly the time complexity for the controller to
generate the data forwarding path is around O(n) (well it’s only upper bound). Further
this model checking (or Input-output contract check) in the middle layer (i.e Southbound
Interface) to check the connectivity specification, it is very clear that it’s worst complexity
will be O(n) (because it has to receive and read O(n) forward table update rules and fur-
ther do additional computation on checking the correctness). For a small size data plane
network, this complexity is fine but imagine when the size of data plane network is large,
then however smart techniques we have, for sure the computation involves in the input-
output contract in the middle layer (i.e Southbound Interface) will increase the latency
between generated forward table rules in the controller plane and deployment of those
rules (well translated rules) in the data plane switches. This is exactly the reason behind
the increase in computation time in the Veriflow when the number of hosts and or the data
plane switches increases. Here, we mentioned the upper bound complexity only i.e O(n)

where n is the number of nodes in the given data plane, but in some situations, when the

130

6.1. Existing Synthesis of Network Services

data plane network is highly connected in the sense that between any router or switches
the distance will be in the order of log(n), so the actual computation procedure will be
much less, but note one thing for each and every computation, we are not just using the
computing resources but also consuming energy, it is always advised to avoid unneces-
sary consumption of energy so as computation especially in the huge network scale like
mobile, fix or wireless networks and there are dedicated communities works on this pro-
blem about reducing the energy consumption among various service networks [Bol+14],
and IoT applications [Bad+18].

Let’s revisit the idea about the local controller introduced in our SDN Nokia platform
to avoid the security property (or more specifically the ’data privacy’ property) for the
mobility case as described in chapter 5.

Problem of Latency between Control and Data plane : It is important to analyze the la-
tency problem arising with SDN network framework, this latency problem can introduce safety
property violation as mentioned in last chapter section 5.5.6.

In the data plane network, physical connection of users, IoT devices are dynamic in choo-
sing the open access port in the data plane and devices will change their position from time
to time. In such a scenario, the control plane has to observe the network user’s device position
in the data plane and update and deploy networking rules in the data plane routers or switches
instantly otherwise there can be data privacy violation this is the case in mobility of devices in
section 5.5.6 Isolation property violation in section 5.5.5. This violation of Isolation property
made us to introduce an extra local controller to each switch such that before sending a data
packets to the outgoing open access IoT port of the switch, it checks the destination address of
the data packets refer to the current device Id (or more exactly MAC Id) connected to this open
access port. This solution itself is a synthesis solution to data privacy safety specification i.e
Isolation property.

It is important to know that any instruction coming from the SDN controller will be deployed
by south bound interface protocol (see fig. 6.3), it essentially transforms controller instruction
rule into DSL rule and deploy it into the respective switches. When we are going for the SDN

layers concept to configure and reconfigure the networking switches to meet various applica-
tions and deploy in real time, for such a cost effective solutions, it may not possible to avoid
latency completely between the switch intent request and the SDN controller response. In the
sense that, when a switch sends an intent request about the local changes, the SDN controller
has to manage a large number of switches intent’s request and other applications related proce-
dure, it might not respond to the requested intent immediately. Such cases the latency can’t be
simply avoided and may be designed in such a way to reduce the possible latency.

131

Part , Chapitre 6 – Discrete Control Synthesis for an SDN-IoT platform

SDN Controller

Southbound Interface
Instruction
Transformer

Network
Switch

D1

D2

{}

D3

D4

p1

p2

p3

p4

p5

Input-Output
Contract

Synthesis port1 := D1
port2 := D2
port3 := {}
port4 := D3
port5 := D4

Intent’s
requests Forward rule

Intent’s
requests

Deploy rule

Check rule
Ok / No

Update device
positions

Check

Update

FIGURE 6.3 : Synthesis Forwarding Rule

Suppose that a data plane network switch sw has a l number of open access ports refer to
them as { p1, p2, ...p5 }. Let say that d1,d2,d3,d4 are the current devices connected to the open
access ports p1, p2, p4, p5 respectively, whenever a switch got the new device (connection) in
its open access port, it sends an intent request immediately, if the south bound protocol has
state full machine, that for each such intent request from the switch, it stores the current devices
in the respective open ports. Whenever the SDN sends deployment instructions i.e data packet
forwarding rule which contains the source, destination devices id and the incoming, outgoing
ports numbers. The south bound open interface protocol checks the current device id and its
open access position with the destination and outgoing port number from the forwarding rule,
if it matches, it will translate the forwarding rule and deploy it into the respective flow table
switch otherwise drop the rule. Such a solution is depicted in fig. 6.3. Although this solution
does not solve the problem completely, the reason is that an already deployed rule inside the
switch has to be blocked when there is a change of devices in its given port. That is to say
that a device D1 is initially connected to a open access port pi of the switch sw and there is a
(data packet) forwarding rule in the forward table of the switch, and there is change of device
say D1 is disconnected and D2 joined the open access port pi, so that switch sent an intent’s
request for this new connection, but in the meantime of updating the new forwarding rule for
this particular open access port, the switch sw should block any data packet forward to this
particular open access port opi. This mechanism I refer to as the adaptive switch mechanism.
Notice one thing, such an adaptive mechanism is not needed when there is a dedicated local
controller for each switch as in section 5.5.6. So this adaptive switch mechanism is not really
complex just editing the control mechanism (decision structure fig. 2.7 little bit we can ensure
the data privacy property) as explained below :

132

6.1. Existing Synthesis of Network Services

Destination Check Rule :

• In addition to the flow table rule, each switch maintains a list of devices currently connec-
ted to its open access ports the list looks as follows,

connection list : = {port1 : D1,port2 : D2, ...}

• Whenever there is rule matching and switch has to deliver a data packet pkt to the open
access port say porti before delivering the packet pkt to this port, it will check whether
the current device connected to the port porti are the same of the destination address of
the packet pkt.

• The decision structure has to be modified as explained in fig. 6.4.

Table 1 : Is the data packets has correct format?

Table 2 : drop the data packet. Table 3 : Is MAC of the new device?

Table 4 : Send MAC address to controller and all other Infra ports

update the connection list

Table 5 : Is data packet has Unicast type?

Table 6 : Follow Unicast rule stored in the Flow table

Table 7 : Follow Multicast rule stored in the Flow table

Action :Send to open access port Action Other then sending to open access port

Follow the Destination Check Rule Follow the actions as it says

No
Yes

Yes No

Yes No

FIGURE 6.4 : Adaptive Decision Structures of Network switch Flow Table

This solution will help us to save from not sending the action to different actuator in case the
devices are IoT type, it coordinate different sensors and actuators in safe way, so that the data
packets instructions exchanged between the IoT devices are safe and correct.

133

Part , Chapitre 6 – Discrete Control Synthesis for an SDN-IoT platform

6.1.3 SMT based Synthesis of SDN

The most recent work in synthesis of SDN model is supervisory control and data acquisi-
tion [JRG21] (SCADA) network in a smart grid. This work is really recent, author of this
thesis got to know only after we did the experiments for the case study of SDN-IoT platform.
TIt [JRG21] gathers the real-time data (intent requests), SDN topology and produce the network
response (i.e controller) based on the specification which are expressed in satisfiability modulo
theories (SMT) [BT18]. It encodes the specifications of maintaining the connectivity and provi-
ding alternative path in case existing connection fails by constantly monitoring the availability
of switches and connections links, it also encodes bandwidth constraint, priority in handling
the users requests as SMT specifications and using the variant of DPLL algorithm [OC99] it
produces the output for the every input request based on the condition expressed in SMT speci-
fications.

Boolean logic with propositional predicates combined with non-
boolean variables and relational predicates but still less expressive then
first-order or higher order logics [Cla+18]. This trade of compromise
makes SMT problems decidable with great advantage of practical effi-
ciency when it is restricted to the certain symbols of models like theory
of equality, integer, real, arrays, and lists [BFT16].

Satisfiability Modulo Theories (SMT)

In fact the practical efficiency of SMT solvers are very well exploited in this work [JRG21]
as well as model checking of SDN by Vericon [Bal+14] as mentioned in the chapter 5. Al-
though usage of SMT solvers show the practical efficiency, when using it for either synthesis
or verification one has to use it with care i.e have to consider the decomposition of the expres-
sed specifications and the entire system. There are some works on these aspects i.e using SMT

solvers with decomposition [Poz+15] and divide and conquer [McC18] method in synthesis of
network events.

Now we move on to describe the particular reactive synthesis tool we are using for the
experimentation of various SDN-IoT functionalities.

6.2 Synthesis Tool

In our experiments on the synthesis of SDN distributed system, we are using reactive syn-
thesis tool called as BZR have Heptagon [DRM13] for model creation, and specification and
ReaX [BM15; Ber+17] for producing the control synthesis supervisor for the given model and
specification pair.

134

6.2. Synthesis Tool

Heptagon/BZR Reactive Synthesis Tool Heptagon is a reactive synchronous data flow lan-
guage [DRM13] which allows us to describe the composition of automata models of the given
distributed system, with a syntax allowing the expression of control structures.

For a given subsystem of the distributed system DS can be expressed as an automaton by
writing the heptagon code under the name node with inputs and outputs. Syntax for creating
such a given entity of DS will be as follows,

node entity_name(x1 : t1; ..xn : tn) = (y1 : t ′1; ..yp : t ′p)
var z1 : t1”; ..zq : tq” ;

let
Declaration statements

tel

FIGURE 6.5 : Creating the model description of entity of the given distributed system

In this node (figure 6.2), it creates the model for the given entity of the distributed system
with set of inputs {x1,x2, ...,xn} and set of outputs {y1,y2, ...,yp} each variable has certain types
can be either Boolean, integer, enumerated type or the array of these types. Apart from those
input and output variables each entity can also have its own internal variables set, which have to
be declared using the statement var as shown in the figure6.2. The behavior of the entity should
be declared inside the node function let and tel.
The enumerated types can be created for our purpose to describe the behavior of the system.
For example, if we want to create a certain enumerated type to mention the system status being
critical, normal or safe can be created as follows.
type modes = Critical | Normal | Safe
One can create as many as enumerated types to write behavior of the interested distributed
system DS. The node of each entity produces the output based on the input values and current
internal variable values and also the previous values of the same internal variable. For example
when we defined a variable say x as last x : int in the declarative statement when we call x, it
uses the current value of the variable x, when we call it by last x it uses the previous value stored
in the variable x.

The sequence of declaration statements inside the let and tel of a node describes how inputs
are transformed into outputs, with a set of control structure statements. These declaration state-
ments define the values of outputs and internal variables using the current values of the inputs,
and the current state of the node. New values for input values are given at each execution step,
where declarative statements proceed to evaluate all the output and internal variables together
based on the current input values and last internal variable values.

The set of declarative statements one can use for writing the behavior of the distributed
system DS.

• an equation x = e, defining variable x by the expression e at each activation instance.

135

Part , Chapitre 6 – Discrete Control Synthesis for an SDN-IoT platform

• creating a new node to write the code in functional way (y1, ...,yp) = f (e1,e2, ...,en)

defining the variables (y1, ...,yp) by the application of the node f (i.e the node created to
do a specific function) with values (e1,e2,,en) at each activation instants.

• switch, present, reset control structures

• an automaton.

We will give some details about the automaton declaration statement, one is interested to
know the full syntax usage for those control structures refer to the site "heptagon.gforge.inria.fr/pub"
to find the heptagon user manual. In this document you can learn the detailed syntax and proce-
dure to install the Heptagon/BZR tool (which is an open source like SPIN verification tool).

Compared to all other declarative statements which are executed based on the current input,
internal variable values and/or previous values (if that variable is defined with last) set the new
values to the internal variable and output values. The automaton which sets the current state of
the values in the following ways.

automaton
state Up

do x = last x+1
until (last x≥ 10 then Down)

state Down
do x = last x−1
until (last x≤ 0 then Up)

end

FIGURE 6.6 : Automaton example

In this example (as mentioned in the figure 6.6), based on the current state (only one state
is possible at any activation under this node), it will execute the declarative statement written
under this state and then it will go the the statement until condition then State_name, it will
check the condition, if it is true then in the next activation instant of this node, when the auto-
maton executing its statement, it will execute the declaration statements written under the state
State_name.

Contract for Controller Synthesis Contracts are an extension of the Heptagon language,
so as to allow discrete controller synthesis on Heptagon programs. The extended language is
named BZR (pronounced the same way as bizarre !).

The Heptagon associate to each node a contract, which is a program associated with two
outputs : an output eA (assumption condition on the the input variables value) representing
the environment model and an invariance objective eG (requirement condition on the output

136

6.2. Synthesis Tool

variables value) with a set of set of controllable variables {c1,c2,,cn} used for ensuring this
objective.

Declaration of contracts for a given node f looks as follows,

node f (x1 : t1; ..xn : tn) = (o1 : t ′1; ..op : t ′p)
contract

var internal variables for condition declaration
let

equation declaration for internal variables based on input variables value
tel
assume eA
enforce eG
with (c1 : t1”; ..cm : tm”) (* controllable variable *)
var system variables
let

set of output variables values declared based on inputs, system and controllable variables value
i.e distributed entity behaviour here

tel

FIGURE 6.7 : Contract syntax - for System Specification

An abstract view of this synthesis of input-output contract of heptagon model can be depic-
ted as in figure 6.8, These controllable variables are not assigned by the programmer but pro-
duced by the BZR reactive control synthesis tool. This declarative contract statement contains
predicates that the functioning of the system model must always satisfy. These properties are de-
clared as control objectives in the enforce statement. When the system model that describes the
dynamics of the system does not meet the properties, BZR reactive tool ReaX [BM15 ; Ber+17]
generates a controller that enforces the latter when controllable variables are defined in the mo-
del, declared as local variables in the with statement. The generated controller determines the
value to assign to the controllable variables in order to restrain the modeled behaviors to satisfy
the properties.

In order to produce the control synthesis of model of the given distributed system in Hepta-
gon language, we have to translate the heptagon model into the ReaX program, and the Reax tool

BZR Program

Reactive Synthesis
Controller

System Model
with Contract

input output

FIGURE 6.8 : Abstract Input-Output Contract Synthesis

137

Part , Chapitre 6 – Discrete Control Synthesis for an SDN-IoT platform

compute the controller synthesis for the written distributed model and the expressed contract
(specifications), produced Reax controller has to translate back into Heptagon program, conver-
ting system model from heptagon to ReaX and vice versa is automatable i.e Heptagon and Reax

compilers do these translations. Once we have the controller of a written distributed model in
heptagon we can directly use the controller and encapsulated in the Heptagon model. One great
advantage of using the heptagon model is we can convert the written model into conventional
high level programming languages C and Java.

ReaX for producing the controllable variable values ReaX is also a reactive synchronous
data flow language as Heptagon. As in Heptagon, one can write the distributed system in terms
of the composition of automata and STS (symbolic transition system). In ReaX also, one can
write both automaton and STS with arithmetic functions (refer chapter 3 section 3.2 definition
3.5). In addition to that, ReaX tool can generate the synthesize controller for the expressed spe-
cification and model (Input-output contract). For more details about writing distributed models
in ReaX language we refer the reader to read the manual. "http ://reatk.gforge.inria.fr/" a link
where one can find the user manual, installation step and examples. Meanwhile, the important
things is that this STS with optional contract synthesized controller generated by ReaX tool (ei-
ther a predicate over the input, output and system state of the Heptagon program or another
STS) is automatically derived by the Heptagon compiler.

More formally, the derived STS from the Heptagon of 6.8 is given by S f = (X ,Y = Yc ∪
Yuc,T,Θ0) and KΦ = �(ag⇒ eg) (meaning : always guarantee eg if the assumption ag holds)
a state-predicate over X (assuming from simplicity than the latter one is derived from the state
variables of the Heptagon system model) depicted by figure 6.9. X corresponds to the state
variables, Yc (Yuc) are the controllable (resp, uncontrollable) variables whereas T is the transition
relation given by T (X ,Yc,Yuc,X ′).

System S f
Y XKΦ

FIGURE 6.9 : From an Heptagon node to an uncontrolled ReaX STS

From S f and KΦ, ReaX is automatically deriving the controller C ensuring KΦ on S f as
depicted in 6.10 following the scheme of section 3.4.3 for finite or infinite system S f by means
of abstract interpretation in the latter case.

Example For the sake of completeness, we give one example about how to generate the reac-
tive controller for the given Heptagon model using ReaX tool.

138

6.2. Synthesis Tool

System S f
Y X

Yc

Yuc

C

FIGURE 6.10 : The corresponding controllable ReaX STS

EXAMPLE 6.2 We demonstrate the control synthesis for the simplest mutex (mutual exclusive)

to manage the two machines A, B seeks to use a common single resource which can be used by

only one at a single time instant. The written code in the fig. 6.11 left side

Using the BZR tool to compile and generate the controller for the above mutex program

using the command "bzreax -s mutex.ept mutex" will produce the executable program name sim

when we run this program it will show the simulation result for the code in left side of fig. 6.11

generated discrete control synthesis synthesis result as in right side of fig. 6.11 :

In the figure 6.11 right side, the input command Want No refers to the first machine (a) see-

king the common resource and second machine (b) not seeking that resource and No Want refers

to the vice versa. Similarly the input command Want Want refers to both machines seeking the

common resource. Where the output command Ok Nexttime refers to granting the permission

to machine a and Nexttime Ok refers to granting the permission to machine b.

Even though the above program avoids output Ok to both machine (a and b) requests, when

both machines keep sending Want messages, the discrete control output is Ok to machine a only.

In order to avoid such a scenario, we have to refine the mutex model to include the fairness

condition for both machines. �

In the above example, computation involved before producing the executable code (and
simulation) of the model with contract is depicted in the figure6.12.

In the rest of the chapter, we will describe the control synthesis experiments carried out with
the BZR tool.

The use case for the experiments consists of managing the SDN-based network resources
and connectivity knowing the Edge Computing server location to meet the stringent latency
requirements of Vehicle to Everything (abbreviated as V2X) communications. Thus, we will
synthesize a supervisor for the manager allowing the latter to meet the different V2X latency
requirements. The manager here is often called as orchestrator as it manages both the SDN-
based network resources and the Edge Computing compute and storage resources.

139

Part , Chapitre 6 – Discrete Control Synthesis for an SDN-IoT platform

type req = Want | No
type acpt = Ok | Nexttime
node mutex(ma_req,mb_req : req)

return = (ma_acpt,mb_acpt : acpt)
contract
var a1,a2,g : bool ;
let

a1 = (ma_acpt = Ok) ;
a2 = (mb_acpt = Ok) ;
g = a1&a2 ;

tel
assume true
enforce (not g)
with (c :bool)
let

automaton
state Init
do

if ((ma_req = Want)&(mb_req = Want)) then
if c then ma_acpt = Ok;

mb_acpt = Nexttime ;
else ma_acpt = Nexttime ;

mb_acpt = Ok;
end ;

else
if (ma_req = Want) then ma_acpt = Ok;
else ma_acpt = Nexttime ;
end ;
if (mb_req = Want) then mb_acpt = Ok;
else mb_acpt = Nexttime ;
end ;

end ;
until true then Init

end
tel

./sim
Input : Want No
output : Ok Nexttime
Input : No Want
output : Nexttime Ok
Input : Want Want
output : Ok Nexttime

FIGURE 6.11 : Mutex Code with Input-Output Contract (Left) and Simulation result (right)

140

6.3. Control Synthesis of a typical SDN Application - A Modular Approach

Heptagon Model

System Model Node with Input-output Contract

ReaX Model

Generate Synthesis Controller in ReaX

Heptagon Model

System Model with generated Controller

Executable C code (Java is
another option)

Translate into ReaX

Translate into Heptagon

Translate into low level programs

FIGURE 6.12 : Procedure in simulating the Synthesis of Input-output Contract Heptagon Model.

6.3 Control Synthesis of a typical SDN Application - A Mo-
dular Approach

We are interested in the application of synthesis techniques to the SDN system, in particu-
lar the SDN manager to satisfy and impose various specifications in the network node (data
plane) with a set of network users. We illustrate an application scenario of Edge Computing
for V2X [HHK20] application and modelization of the application in particular by expressing
the requirements as a set of synthesis specifications and generating the specifications synthe-
sis controller using the reactive synthesis tool BZR (Heptagon for modelization and ReaX for
generating the controller).

6.3.1 An Application Scenario : Edge Computing V2X communications

Edge computing is a Fog/Multi-access Edge Computing type which
moves cloud resources in proximity of users which provides strong
support for latency-sensitive applications such as V2X communications
and services. V2X framework provides a number of applications such
as maintaining healthy road congestion, safe interactions between ve-
hicles and non-vehicle road users, advanced driving assistance like au-
tonomous vehicle operation, vehicles sharing local sensor data data like
trajectories and maneuvers coordination, and so on.

Edge Computing for V2X Application

Let us now describe a high level application scenario :

141

Part , Chapitre 6 – Discrete Control Synthesis for an SDN-IoT platform

• Edge computing servers are distributed at the network edge in order to offload processing
requirements from user’s devices with limited processing resources.

• The application client is running on the user’s device while the application server is run-
ning on an edge server.

• There are two categories of devices : high-priority ones (with critical applications) and
low-priority ones.

• The application client and the application server should belong to the same vSpace (re-
call the earlier notion of virtual space or VS - group of devices), so that they can have
connectivity with each other via the network.

• Device-to-device communications are also possible. For this purpose, the to-be-interconnected
devices should be part of the same vSpace.

• For critical applications (on high-priority devices), the latency between the client and
the server should be maintained under a maximum defined by the user’s service level
agreement (abbreviated as SLA).

• The manager is aware of each user’s SLA, of the SDN-based network resource consump-
tion and computes resource consumption accordingly to the service requests

• The manager orchestrates the sharing of the SDN-based network and computes resources
between user’s devices to meet high-priority user’s SLAs and to maintain continuity for
the low-priority users services.

• User’s devices are supposed to be in permanent mobility.

For instance, we have a V2X application relying on edge computing offload (i.e. vehicles are
users’ devices in this application). High-priority devices in real situations might be vehicles like
ambulances or patrol vehicles. The low-priority devices will be all the other vehicles. Ambu-
lances and patrol vehicles could be part of the same smart city vSpace group, since there could
be voice/media communications between them. Also, ambulances pertain to the hospital vSpace

and patrol vehicles pertain to the security vSpace, and ambulances and patrol vehicles pertain
to safety vSpace. Other vehicles could be part of a common open public vSpace so that they can
share road information together and other information (e.g. social media).

In the scenario picture 6.13, the Orchestrator/Manager access the status information about
the distributed set of edge computing EC servers via the compute controller and gathers the
various devices requests about creating the VM requests updates via SDN controller. From the
various inputs command and status information Orchestrator/Manager set up (send back) the
commands to full-fill the V2X applications via the Synthesis of supervisors concepts.

142

6.3. Control Synthesis of a typical SDN Application - A Modular Approach

FIGURE 6.13 : Proposed V2X Synthesis Scheme

Application Architecture Let’s the set of devices which use this application denoted as
Dev = UntUs where the set Un = {Dn1,Dn2, ..,Dnm } are normal devices (i.e low-priority de-
vices), whose requirements is connect to the application and create a processor (or we can refer
it as VM (for Virtual Machine)) in one of the edge server available in the network, and the set
Us = {Ds1,Ds2, ..,Dsl } are the Special users (i.e high-priority devices), whose requirements is
connect to the application and create a processor (i.e VM) for its own application in the local
server (nearest server to keep the latency as minimum as possible). In the application, a net-
work has a set of distributed servers ; each server has a constraint in providing the number of
processor’s (i.e VM’s) at any given time. Apart from this basic functionality, the system archi-
tecture has a natural dynamic of its position in the application in the sense that the user joins the
network application via open access port and can change its location by disconnecting from the
current open access port and join the application from other different open access port positions.

In the given SDN layered architecture 6.3.1 with concept of virtual Places (vPlaces), that is
the network application is partitioned into n number of domains. Let’s say the network architec-
ture resource management placed an edge server in each data plane domain which is available
for the users which is connected to the data plane to create an VM (a processing unit). Each
edge server has a limit (obviously each server can have finite memory size and can do finite
computations) on the number of VM services it can provide to the end users.

143

Part , Chapitre 6 – Discrete Control Synthesis for an SDN-IoT platform

Cont1 Cont2 Cont3

Manager

router1

router2

router3E.Server1 E.Server3

E.Server2

FIGURE 6.14 : System Architecture

6.3.2 Abstract Specifications and Model

System Specifications

Here we will list the set of specifications as objective for the synthesis controller. VM Limit Ob-

jective : Each edge server can provide only a limited number of VM’s and should not overload
the server condition by allocating too many VM to the network users. In the set of edge com-
puting servers, each server can accommodate only a limited number of VM to the set of users
(i.e set of devices either special or normal type) that we say the limited number as a normal
condition.

ΦVM =�
∧

vP∈Dom

(vP,Normal) (6.1)

Whenever the special characteristic devices requested to connect to a local edge server and
to create a VM for it, it should be allocated.

Service-Objective Whenever the normal characteristic devices requested to connect to a ser-
ver (may be local or remote) to create VM for it, manager should at least allocate some remote
server for this application, when it comes for the special device, the manager should create the
VM in the requested server and if needed the normal devices VM should be moved to different
server in order to meet the continuity of the service to the normal devices.

ΦPriority =
∧

d∈Dev,vP∈Dom

�
(
(d, reqvm,vP)? ∧ (vP,Normal)
=⇒ (d,acpt,vP) !

) (6.2)

Objective- Connecting vSpace Devices : In the given set of devices and clusters of devices as
vSpace, the manager should sets up the connection request of the device to connect to its com-

144

6.3. Control Synthesis of a typical SDN Application - A Modular Approach

mon vSpace devices to satisfy the communication between various common vSpace devices.

ΦvS =
∧

d1,d2∈Dev

�
(
(VS(d1) == VS(d1)) ∧ (connect,d1,d2)?
=⇒ (acpt,d1,d2) !

) (6.3)

System Model

In the dynamic nature of network architecture (users changing the open access port positions),
Manager has to full-fill the above objectives or specifications.

Manager is a policy maker, by knowing the abstract view on the current system position
(state value of the current network architecture) it produces the set of instruction to the logical
implementer i.e Cont as mentioned in the figure 6.3.1, based on the instruction provided by the
manager, each logical implementer Cont re-route the paths between various users to connect to
servers by setting appropriate routing rules in the network routers.

Routers gather the status of open access position status and pass the users messages to the
manager through the logical implementer i.e SDN controller. Logical implementer gather those
information and abstract the message content by only considering the recent changes and inform
the abstract current network scenario to the manager.

In the following texts, we provide a minimal but the enough description about the model
description to meet the above set of specifications ΦVM,ΦPriority and ΦvS.

The key concepts involved in this model are listed below,

• Device type concept the set of application users referred as device Dev which is fur-
ther partitioned into normal Un := {Dn1,Dn2, ..,Dnm } and special Us := {Ds1,Ds2, ..,Dsl }
devices

• Devices vSpace concept and further we cluster the set of devices as a common vSpace

group VS = {V1,V2, ..,Vf }, with Vi ⊆ Dev for all 1≤ i≤ f , and ∪l
i=1Vi = Dev.

• Domain vPlace concept as in the figure 6.3.1 we have number of domains and each
domain has dedicated edge computing server as mentioned earlier.

• Main function The main function to implement this application for the manager pri-
mary function is reading three different types of inputs from the users namely requesting
an VM creation (Req,dom,device id) to the requested edge computing server, deleting
(Del,dom,device id) an existing VM, and request for building device to device communi-
cation (Conct,device id,destdevice id). Upon receiving one such incoming message, the
main function from the location ReadMes call the following functions,

– For the incoming message of type requesting an VM creation (Req,dom,device id)
it calls the function SyntDecisionVMalloc which has the VM specification equa-
tion 6.1, it responds by either accepting the request (Acpt) or rejecting the request

145

Part , Chapitre 6 – Discrete Control Synthesis for an SDN-IoT platform

ReadMes

SyntDecisionVMalloc

Update SyntDecisionConnectdev

SyntFdislocLow.Prioritydev

DvReqVMret

DvDelVM

ret DvConctdev

ret

(Dv == High.priority)∧RejReq

ret

FIGURE 6.15 : A high level model description.

(Rej). In case there is already an enough number of users using that particular re-
quested domain server and the requested device is a special device type, it will call
the synthesis function SyntFdislocLow.Prioritydev which has the specification
equation 6.2 which find the low priority device i.e normal device type and move its
VM from that particular server to the remote (another) edge computing server. By
this mechanism it accepts the special device type VM requests.

– For the incoming message of type deleting (Del,dom,device id), it call the Update
function to delete the VM and update the system (manager) information.

– For the incoming message of type request for building device to device communica-
tion (Conct,device id,destdevice id), it calls the synthesis function SyntDecisionConnectdev
which has the specification equation 6.3and decide to command the application
Cont’s to build the communication link between the requested device to the des-
tination device destdevice id or reject the requests.

– A short pictorial description of main function calling all above mentioned functions
are depicted in the figure 6.15. Among the list of node composed in the figure 6.15
ReadMes, Update,SyntDecisionVMalloc, SyntFdislocLow.Prioritydev and

SyntDecisionConnectdev, the last three nodes are the node with contracts (spe-
cifications) allocating emphVM for the requested device, low priority device force
to move to different domains to free the space for the high priority devices (priority

146

6.3. Control Synthesis of a typical SDN Application - A Modular Approach

specification), and establishing data connecting path among various devices (vSpace

specification) respectively.

For the sake of completeness, we show one synthesis node function which we used in the
model 6.15. The figure 6.16 is for the contract synthesis node expressed for the
SyntDecisionConnectdev which is the simplest synthesis node among the others. In this mo-
deling, we took the device and server as an abstract entity and their respective intent requests
and response from the manager node via data plane is the respective input and output of the
manager node. One such simple device behaviour is modeled in the next section.

node connectingvSapce_device (devX,devY :vSpace) returns (outm :messageout)
contract

var g1,g2,ab :bool ;
let

ab = (devX = devY)
g1 = (outm = Acpt)
g2 = (outm = Rej)

tel
assume true
enforce (not ab or g1) & (ab or g2)
with (c_m : messageout) (* controllable variable *)
let

outm = c_m
tel

FIGURE 6.16 : Contract Node for connecting the same vSpace devices

Experimental Results

We experimented the above proposed experimentation on our manager modeled in Heptagon
and expressed the above three specifications as Input-output contract, and by using the modu-
larity aspect as mentioned in chapter 3 and 4, we generated the controller supervisors for the
above listed specifications. The produced controller for these three specifications are integra-
ted with the main function node and generated the final C code for the above manager model.
We are showing the detailed compilation stats in the table 6.1 for the written manager model
in heptagon, controller for the above listed specifications and final generation of high level C

programming code.

Now, we will move on proof of concepts of compositional control synthesis applied to the
layered SDN platform.

147

Part , Chapitre 6 – Discrete Control Synthesis for an SDN-IoT platform

Parameter, Code Transformation Reax Generation of synthesis controller C code
Settings Hept to Reax Reax to Hept VM Const VS Con Priority Generation

8 Devices, 3 domains 0.164sec 0.036sec 0.063sec 0.037sec 0.156sec 0.960sec
13 Devices, 3 domains 0.346sec 0.031sec 0.041sec 0.036sec 0.179sec 2.434sec
18 Devices, 3 domains 0.825sec 0.046sec 0.042sec 0.035sec 0.296sec 5.837sec
18 Devices, 4 domains 1.071sec 0.057sec 0.046sec 0.033sec 2.148sec 6.656sec
18 Devices, 5 domains 1.537sec 0.082sec 0.076sec 0.038sec 3.430sec 7.670sec
18 Devices, 6 domains 2.370sec 0.078sec 0.060sec 0.037sec 5.393sec 8.989sec

TABLE 6.1 : Experimental Results on the Modular Synthesis of three specifications

6.4 Compositional Control Synthesis Framework for the Laye-
red SDN Architecture

In this section, instead of taking a specific scenario and apply the compositional reasoning
technique, we will illustrate about the applicability of compositional control synthesis technique
developed in the chapter 4 to the SDN platform a layered structure and synthesis generic high
level SDN manager policies and network users (devices) requirements. With regards to an SDN

platform, we introduce the following specification or the global property for the illustration of
compositional synthesis technique, the local property or the intermediate specification. In this
modeling, we capture the behaviour of manager and devices alone leaving the SDN controller
and data plane network elements as a slave machine in the sense that these latter entities work
based on the instruction provided by the manager and exchange the message coming from
various network user’s device. The decision making and dynamcity are because of the manager
and devices alone.

In the layered SDN as mentioned in the figure 6.17. we are considering the following three
subsections as the list of specifications on the global SDN system, the manager and the set of
devices.

c1 c2 c3

man

sw1

sw2

sw3

sw4 sw5

sw6

sw7

sw8

sw9

d1

d2d3

d4

FIGURE 6.17 : SDN Architecture

148

6.4. Compositional Control Synthesis Framework for the Layered SDN Architecture

6.4.1 Global Properties to be fulfilled by the SDN platform

At the higher level, several global properties/policies needs to be ensured on the global system.
Note that they may be difficult to implement as they may depends of the kinds of devices
connected, the possible routing connections between them, their local policies as well as some
privacy properties. Amongst other, one need to ensure that : Φ := Φ1∧Φ2∧Φ3∧Φ4, where

• Path Building or vSpace connection specification : Φ1 means that there exists a path for
data forwarding between any pair of devices who are sharing a common Vspace Vi ∈ VS
(once the network stabilized) :

Φ1 =

((
∀d1,d2 ∈ Dev,∃Vi ∈ VS, d1,d2 ∈Vi∧
∃i, j ∈ [1, ..,k], d1 ∈ domi,d2 ∈ dom j∧
net_stable

)
=⇒ (d1,d2) ∈ Rout_Path

)
The predicate net_stable refers to the situation where all the devices are connected to an
access position and that the SDN manager is not receiving any new request from other
devices, whereas Rout_Path means that a connection is possible between the two devices.

• Bandwidth specification : Φ2 requests that the network bandwidth, C Domi
max of each do-

main domi is never overloaded.

Φ2 =
(
∀ Domi ∈ Dom, CostDomi ≤ C Domi

max
)

• Priority specification : Φ3 requests that when a high priority device d requests to be
connected to domain domi, then the manager should accept its request if by disconnec-
ting several devices with a lower priority, the new global bandwidth is affordable by the
domain domi.

Φ3 =

((
∃d ∈ Dev Rreq(d, i)∧ (Cd ≤ C Domi

max)∧
∀d ′ ∈ domi(Fprio(d)> Fprio(d

′
))∧

6 ∃ j ∈ [1, ..,k]d ∈ dom j
)
=⇒ d ∈ domi

)
• Exchange data with privacy specification : Φ4 requests that devices that do share a

common Vspace Vi ∈ VS are allowed to exchange encoded messages only (referred as
rcvd,d′ (E.data) and rcvd′ ,d(E.data)).

Φ4 =

((
∀d,d ′ ∈ Dev,∃Vi ∈ VS, {d,d ′} ⊆Vi

)
=⇒ rcvd′ ,d(E.data)∧ rcvd,d′ (E.data)

)
Φ1,Φ2,Φ3 are inherently related to the specification of manager i.e they can be realized by
the manager itself, but Φ4 is a global specification that can’t be ensured by the manager or

149

Part , Chapitre 6 – Discrete Control Synthesis for an SDN-IoT platform

the devices by themselves. Meanwhile, a part of the requested properties can be ensured or
already ensured by the manager by building the appropriate path between devices which share
a common vSpace and should not build the path between the devices which does not share any
common vSpace. The final global specification Φ4 can only be realized by the devices. Overall,
the following problem has to be solved : Find a supervisor such that

〈true〉(Aman ‖i∈[1,..,k] Aci ‖sw j∈Sw Asw j ‖d∈Dev Ad)
S 〈Φ〉

Following the scheme of Problem 4.2, one can decompose the problem as follows : Compute
supervisors such that

〈true〉A Sman
man 〈Ψ∧Φ1∧Φ2∧Φ3〉 (6.4)

〈Ψ∧Φ1∧Φ2∧Φ3〉 ‖d∈Dev A Sd
d 〈Φ4〉 (6.5)

where Ψ is an intermediate formula or local satisfaction property that have to be guessed (See
section 6.4.2) and we obtain the result by compositional synthesis of theorem 4.5. Note that,
we do not have supervisors for controllers and switches since these are just slave machines,
meaning all SDN controllers actions are based on the instructions of the manager and predefined
algorithms, and switches in the data plane just follow the data forward rules implemented by
the sdn controllers. Indeed, all messages between the manager and the devices are not filtered
by the switches and controllers, so we do not take them into account in eq. (6.5). Next we show
how to solve eq. (6.4) and (2) in a modular way :

6.4.2 Properties that have to be fulfilled by the Manager

In order to satisfy the specifications to the manager, first of all we need a model for the manager,
we provide the minimal modelization of the manager so that we can build a synthesis controller
for the manager model with respect to the manager specifications.

Minimal manager behaviour expressed as transition system
where,

• σreq :=
(
req,d, i,Cd

)
? ∈ Σman,uc refers to the incoming message about the request of de-

vice d wants to connect to the domain (vPlace) Domi with service bandwidth of Cd , such
incoming message will be always uncontrollable since it is not decided by the manager.

• σdisconnect :=
(
disconnect,d, i,Cd

)
? ∈ Σman,uc refers to the incoming message about the

disconnection of device d from the domain Domi with its allocated bandwidth Cd such an
message makes the manager to allow the disconnection of device d and free the usage of
previously allocated bandwidth Cd .

150

6.4. Compositional Control Synthesis Framework for the Layered SDN Architecture

l0 l1

true
σreq

con_req := d, i,Cd ,(VS
′
,CVS

′

d)

G
(accept,d, i)!

A

¬G
(reject,d, i)!
con_req = /0

true
σdisconnect

A0

G
′

σBuild_path

A
′

FIGURE 6.18 : Behavior of manager modeled as transition system

• (accept,d, i) !,(reject,d, i) ! ∈ Σman,c refers to the manager’s outgoing message of accep-
ting the device d connection request to the domain Domi, and this message is a control-
lable and decided by the respective bandwidth specification Φ2 controller.

• σBuild_path := (send,c,Build_path(d,d
′
))! ∈ Σman,c refers to the manager’s outgoing mes-

sage of commanding the SDN controllers to build the path between the devices d,d′

and this message is a controllable and decided by the respective vSpace specification φ1

controller.

• G := (CostDomi +Cd ≤ C Domi
max) a guard about the possibility of current bandwidth that

can be provided by the domain Domi.

• A0 :=
(
(domi← domi \ {d})∧ (CostDomi -=Cd)

)
refers to an updating actions which re-

move the device d from the connected devices list to the domain Domi and freeing up the
previously allocated bandwidth Cd to this device d from the bandwidth resource of the
domain Domi.

• A := (domi← domi∪{d})∧ (CostDomi +=Cd)∧ (con_req = /0) refers to an updating ac-
tions which append the device d to the connected devices list to the domain Domi and
allocating the bandwidth Cd to the device d from the bandwidth resource of the domain
Domi.

• G
′
:= ∀d,d ′ ∈Dev,∃i, j ∈ [1, ..,k]d ∈Domid

′ ∈Dom j a guard about checking the connec-
tivity of the devices d,d′ to some domains Domi,Dom j ∈ {Doml | l ∈ [1, ...,k]}.

• A
′
:= Rout_Path← Rout_Path∪{(d,d ′)} its an updating action about the list of path that

should be created between various pairs of devices.

Further, in the given transition system figure 6.4.2 at the location l0, by synthesis scheme it
should satisfy Φ1∧Φ2∧Φ3∧Ψ. So it should disable some sending actions send,c,Build_path(d,d

′
)

such that the controller won’t build the data forwarding path between the devices d and d
′
.

151

Part , Chapitre 6 – Discrete Control Synthesis for an SDN-IoT platform

Note : We added only limited number of transitions in the above transition system figure 6.4.2,
it has more involved transition to instruct the SDN controllers, for simplicity we are not men-
tioned all those transitions here.

For computing supervisors ensuring eq. (6.4), we can use the result of proposition 4.1 to syn-
thesize 4 supervisors, one for each property Ψ, Φ1, Φ2 and Φ3. Apart from Φ1,Φ2,Φ3, which
are known, the manager has to satisfy Ψ, which has to be guessed. In fact, it can be decomposed
as Ψ := φ11∧φ12 these all φ11,φ12 are considered as modular nature of the intermediate speci-
fication Ψ. This intermediate specification is guessed purely based on the knowledge we have
acquired from our earlier study [Maj+21] and with a SDN system expertise within the ADR

sapiens project.

φ11 =

((
∃d ∈ Dev∧∃i ∈ {1, ..,k}, d ∈ domi

)
=⇒ ∀ j(6= i) ∈ {1, ..,k}d 6∈ dom j

)
φ12 =

((
d1,d2 ∈ Dev∧ 6 ∃Vi ∈ VS,{d1,d2} ⊆Vi

)
=⇒ (d2,d1) 6∈ Rout_Path

)
The formula φ11 expresses that manager should not allow device d from Dev to connect to
more than one domain at any given time. The formula φ12 expresses the following property :
if both devices d1,d2 do not belong to any of the clusters of device (vspace), then there is no
network path in the data plane created between d1,d2. In the given synthesis of the specifications
Φ1 ∧Φ2 ∧Φ3 ∧Ψ, it is important to note that when the manage model satisfies Φ1 then it
can be inferred that Ψ i.e Φ1 =⇒ Ψ for the given manager model, so here we have to aim
for the synthesis of the specifications Φ1 ∧Φ2 ∧ φ3. Here again, one can use the results of
proposition 4.1 to compute the corresponding supervisors.

Experiments For the expressed manager model in Heptagon with three specifications Φ1 ∧
Φ2∧Φ3, we got the following experimental results as shown in the table 6.2,

Parameter, Code Transformation Reax Generation of synthesis controller C code
Settings Hept to Reax Reax to Hept Φ1 Φ2 Φ3 Generation

8 Devices, 3 domains 0.100sec 0.036sec 0.037sec 0.055sec 0.234sec 1.024sec
13 Devices, 3 domains 0.229sec 0.037sec 0.034sec 0.056sec 0.187sec 2.467sec
18 Devices, 3 domains 0.727sec 0.066sec 0.061sec 0.047sec 0.314sec 6.011sec
18 Devices, 4 domains 0.714sec 0.059sec 0.037sec 0.050sec 2.549sec 6.706sec
18 Devices, 5 domains 0.748sec 0.080sec 0.067sec 0.053sec 2.659sec 8.111sec
18 Devices, 6 domains 0.809sec 0.093sec 0.067sec 0.091sec 2.737sec 9.570sec

TABLE 6.2 : Experimental Results on the Manager Synthesis

152

6.4. Compositional Control Synthesis Framework for the Layered SDN Architecture

6.4.3 Properties that has to be fulfilled by Devices

In order to satisfy the specification for each local device and the global specification Φ4 inferred
from the intermediate assumption Ψ and the vSpace specification Φ1, we provide a minimal
model for the device as transition system as follows,
Minimal device behaviour expressed as transition system

Start Wait

SyntDataProcess

true
(req,d, i,Cd)!

con_req := d, i,Cd

true
(reject,d, i)?

Status := N.Concd

true
(accept,d, i,Cd)?
Status := Concd, i,Cd

true
(dconct,d, i,Cd)!
Status := N.Concd

FIGURE 6.19 : Behavior of Device modeled as transition system

The various transition notation in the figure 6.4.3 refers,

• From the initial position Start, device d tries to connect to the data plane network of
domain i with bandwidth Cd by sending the request message (req,d, i,Cd) ! to the manager
via the open access port available in the data plane and enters in the state Wait.

• From the state Wait, it either gets the reject message ((reject,d, i)?) and goes back to
the initial state Start or accept message ((accept,d, i,Cd)?) and enters the synthesis data
process node function SyntDataProcess, from this node, it exchanges the data between
various devices via the data plane and authorize the various devices to send the sensitive

data.

• From the state SyntDataProcess, the device can send the disconnect messages ((dconct,d, i,Cd))
and enters into the initial Start state.

From the previous intermediate property we have to find a supervisor such that 〈Ψ∧Φ1∧
Φ2∧Φ3〉 ‖d∈Dev A Sd

d 〈Φ4〉.
Further each device has to fulfill his own property which is not related to the global pro-

perty. Such a local property can be added as an additional property for the device. Indeed, when
a device is a server (e.g. in a data center) d ∈ Dev, it has partition of data sets say sensitive

data (referred as Datad
sens in the specification) and primitive data (referred as Datad

prim in the

153

Part , Chapitre 6 – Discrete Control Synthesis for an SDN-IoT platform

specification). Such a device can share the primitive data to other devices belonging to a com-
mon vspace. For sensitive data, it however requires some authentication mechanism with further
conditions on the devices who request sensitive data. This can be formally expressed as

φ
d
21 =

(
reqd

′

data ∈ Datad
prim
)
=⇒ sendd,d′ (data)

φ
d
22 =

(
reqd

′

data ∈ Datad
sens∧ (Signd′ ,d) 6∈ Authorized

)
=⇒ ¬sendd,d′ (data)

φ d
21 indicates that a device d will send primitive data to device d

′
, if the device d′ requests a data

from the primitive data set. φ d
22 means that, if a device d

′
requests a sensitive data, then device d

will check the signature of device d
′
and verify whether it is authorized or not. A

S
′
d

d � φ d
21∧φ d

22

can be computed according to proposition 4.1, where as proposition 4.2 ensures us the final
result on the set of devices.

6.5 Chapter Conclusion

In the last section, we provided minimal description about the SDN layered architecture and
possibility of using the compositional synthesis technique to model and synthesize constraints
of bandwidth, priority, and vSpace (on providing the data path between various devices) spe-
cifications. These specifications are there for illustrative purposes, we can introduce various
specific applications in an incremental way by expressing associated specifications and models.
In this way one can automate the generation of synthesis controller and implementable code in
an efficient way by using compositional and modular synthesis techniques.

This control synthesis technique implementation using BZR (Heptagon with ReaX controller)
will be suited more for modeling and synthesizing the IoT devices. In the last two sections,
we showed experiments in SDN-IoT typical application. In those experiments we increased
the number of domains, devices and showed the experimental stats (performance in terms of
computation time). The statistics are fairly low (both run time and memory usage), we could
increase the number of devices and domains. It is also fairly simple to do by writing an au-
tomation script (either by writing Makefile or Shell script) to generate the generic high level
model ; it does not affect computation statistics much. But the real issue will come in the length
(number of lines) of generated C code hence the high compilation time statistics (imagine if
the number of devices are 100). Generally speaking, using various data structure concepts, one
can develop a fairly simple and efficient program in C to realize manager automation in this
aspect. But unfortunately as of now, the BZR generated C code does not utilize various data
structure concepts of C programming efficiently. At the same time, when the model does not
have to worry about the parameters like number of devices or domains, but only has to capture

154

6.5. Chapter Conclusion

the behaviour of certain IoT devices, servers, etc, then BZR scheme is a real advantage. By
capturing the complex behaviour pattern by writing the respective behaviour as an automaton
and expressing the requirements as specification (input output contract) and using reaX, one can
produce control synthesis fairly efficiently and can integrate to IoT device in real time.

In this synthesis chapter, we used both modular and compositional synthesis techniques for
the possibility of producing an efficient synthesis controller for various specifications in real-
time for the designed abstract model and integrating the same to the SDN real-time platform.
The advantage of doing a synthesis experiment with reactive synthesis tool BZR is its ability to
model the system behavior in an abstract high level automaton, and produce the control synthe-
sis in real time. Using the model and produced controllers for the various specifications, one can
translate them into high level C and Java programming languages, this produced code can be
directly merged with the working SDN system. Unlike the model checking, here produced syn-
thesize controllers using ReaX tool and converting into high level language are more efficient
because of the high level model specification rather than detailed low level model specification
and/or the tool’s efficient coding scheme. In any case both verification in the last chapter and
synthesis in this chapter are in the realm of ADR sapiens project theme.

155

CONCLUSION

It is through science that we prove, but

through intuition that we discover.

Henri Poincaré

In the last century, humankind benefited enormously from automation. Either a medical,
outer space program, large scale manufacturing, transport, agriculture and so on, there is nothing
that will work as efficiently and precisely as of now without the help of automation.

In the SDN architecture, the management plane has to integrate various network operations
via network controllers (i.e SDN Controllers) and to deploy the rules accordingly into network
elements (i.e data plane switches) to finally provide the service to network users (i.e represen-
ted by their devices). The network management has various optimization constraints such as
resource allocation in case of sharing common resources, keeping the data plane under safe
bandwidth when quality of service is to be guaranteed, and various heterogeneous applications
oriented constraints. On top of such requirements, the management plane has to satisfy the po-
licies that should be handled precisely and efficiently. Due to increased network complexity, the
trend is to implement automation processes at the management plane. Clearly, this is envisioned
by various network operators and standard bodies such as the Internet Engineering Task Force
(IETF), the European Telecommunications Standards Institute (ETSI), and so on.

Within network management automation efforts, the IoT applications appear to take a good
part of the benefits. As we saw in chapter 2, the growth of IoT applications are enormous. As
of now, various standards bodies (like IETF, ETSI, etc) have foreseen numerous key features
and applications for the IoT frameworks. Such a list can not be really exhaustive since the
application of such IoT devices will be limited only by our vision. There will always be room for
further innovation and improvement. One can come up with new developments and schemes, for
example developing IoT application based weather forecast (alert), or an automated feedback
sensor-actuator for the agricultural industry, etc. Clearly there is still a lot of development in the
IoT devices design, technology and innovations in terms of envisioning the application from the
IoT devices.

To solve certain complex automation problems, in recent years, the interest in machine lear-
ning and artificial intelligence took a huge spike among general society after the success of
AlphaGo which defeated the South Korean Go professional. Machine learning/Artificial Intel-
ligence is an active and well-funded research field in academics (existed way back to the date
of development of programming languages like LISP, C program).

157

Part , Chapitre 6 – Conclusion

Furthermore, the encoding scheme of deep learning neural network models started to per-
form better than expert level encoding scheme, for instance the encoding of image (digital
photograph) by deep neural network compared to the JPEG encoding scheme [Gue+18]. The
revolution of deep learning network is very much related to the technology advancement in the
computing power. The interest of using deep learning also intruded into the networking com-
munity, especially in the optimization problem of resource allocations [Zie+19 ; Yrj20] across
the various layers of networking. In fact, advanced 5G and 6G will intensively use AI/ML
to automatise the network management with close-loops [KKC20] 1. The ultimate automa-
tion target is for the autonomous operation driven by high-level policies and rules, enabling
self-configuration, self-monitoring, self-healing and self-optimization – without further human
intervention in the network operation and management.

If there exists an automated procedure to perform a certain task.
Who will prove the working correctness of this automated procedure?

It is easy to make mistake, but very hard

to know something is absolutely true.

Richard Feynman

Within certain use cases (e.g. mission-critical), it is mandatory to exhaustively test the au-
tonomous management of networking applications like SDN-IoT platform especially when it
is driven by ML/AI algorithms, because the latter, as of now, are highly driven by statistical
inference and approximate model generation from the provided data set. They must therefore
be validated before being deployed into the real situations so that they are thrust worthy with
regards to millions of network communication service consumers.

Does the model checking (verification) or in general Formal methods provide the mecha-
nism to validate the ML/AI algorithms? with respect to the safety measures as a specification.
Are the Synthesis controllers able to control the ML/AI algorithms to work in safe boundaries?
These are natural questions that can be posted from the Formal methods communities which in-
tend to work towards the real life applications. There are numerous works which are looking for
combining the power of both statistical and formal methods such as the field of neural symbolic
AI.

While thinking of using formal methods and synthesis of supervisor to certify the ML/AI
model correctness and limits the behaviour to work within safe boundaries, one might deve-
lop a set of constraints as a specification (input-output contract) and automate the validation
of ML/AI model by creating possible inputs satisfying the specification and verify that corres-
ponding ML/AI model output satisfying the input-output contract. Similarly, to avoid unsafe

1. https ://www.etsi.org/newsroom/blogs/entry/a-recent-study-at-etsi-zsm-addresses-potential-security-
threats-to-zero-touch-network-and-service-automation

158

output behaviours (violating the specification), one might use back propagation (or synthesis
the data) extensively and generate the possible unsafe inputs of the ML/AI algorithms. In this
case, one might automatise in generating unsafe output behaviours from expressed input-output
contract specification and in using back propagation techniques of ML/AI model to enumerate
the possible inputs behaviours to understand the MI/AI driven automated schemes.

Formal procedures provide a great deal of what is the core working procedure of the desi-
gned system. At the end of this model creation and expressed specifications, there are compre-
hensive details about the system and the working nature of the proposed system.

Within formal methods ecosystem, the model checking process will verify the system model
with respect to the model specification, and makes us be careful and aware about the kind of
safety properties we should expect from the system. If we are not having the great understanding
about the system model and the kind of hardware under which the written system models, then
the automation process we propose are not to be trustworthy. Here, we should emphasize on
the importance of formal method and the extremely carefulness in modeling the system and in
analysing the system correctness with respect to the safety specifications (safety requirements).

Of course, formal methods alone are not enough to evaluate how good the designed system
is and as well as its real-time performance. In order to evaluate the real-time performance we can
use other theoretical computer science tools like computation complexity (time and memory),
communication complexity, information theory for the quality of encoding procedures involved
in the system design or protocol.

159

BIBLIOGRAPHIE

[Alu99] Rajeev ALUR, “Timed Automata”, in : Computer Aided Verification, sous la dir.
de Nicolas HALBWACHS et Doron PELED, Berlin, Heidelberg : Springer Berlin
Heidelberg, 1999, p. 8-22, ISBN : 978-3-540-48683-1.

[AW04] Hagit ATTIYA et Jennifer WELCH, Distributed Computing : Fundamentals, Si-

mulations and Advanced Topics, Hoboken, NJ, USA : John Wiley & Sons, Inc.,
2004, ISBN : 0471453242.

[Bad+18] Michael BADDELEY, Reza NEJABATI, George OIKONOMOU, Mahesh SOORIYABANDARA

et Dimitra SIMEONIDOU, “Evolving SDN for Low-Power IoT Networks”, in :
2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft),
2018, p. 71-79, DOI : 10.1109/NETSOFT.2018.8460125.

[Bal+14] Thomas BALL, Nikolaj BJØRNER, Aaron GEMBER, Shachar ITZHAKY, Alek-
sandr KARBYSHEV, Mooly SAGIV, Michael SCHAPIRA et Asaf VALADARSKY,
“VeriCon : towards verifying controller programs in software-defined networks”,
in : ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014, 2014,
p. 282-293, DOI : 10.1145/2594291.2594317, URL : https://doi.
org/10.1145/2594291.2594317.

[BCC98] Sergey BEREZIN, Sérgio CAMPOS et Edmund M. CLARKE, “Compositional Rea-
soning in Model Checking”, in : Compositionality : The Significant Difference,
sous la dir. de Willem-Paul de ROEVER, Hans LANGMAACK et Amir PNUELI,
Berlin, Heidelberg : Springer Berlin Heidelberg, 1998, p. 81-102, ISBN : 978-3-
540-49213-9.

[BDB16] D. T. BUI, R. DOUVILLE et M. BOUSSARD, “Supporting multicast and broadcast
traffic for groups of connected devices”, in : 2016 IEEE NetSoft Conference and

Workshops, 2016, p. 48-52.

[Ber+17] N. BERTHIER, F. ALVARES°, H. MARCHAND, G. DELAVAL et É. RUTTEN,
“Logico-numerical control for software components reconfiguration”, in : 2017

IEEE Conference on Control Technology and Applications (CCTA), 2017, p. 1599-
1606.

[BFT16] Clark BARRETT, Pascal FONTAINE et Cesare TINELLI, The Satisfiability Modulo

Theories Library (SMT-LIB), www.SMT-LIB.org, 2016.

161

https://doi.org/10.1109/NETSOFT.2018.8460125
https://doi.org/10.1145/2594291.2594317
https://doi.org/10.1145/2594291.2594317
https://doi.org/10.1145/2594291.2594317

Part , BIBLIOGRAPHIE

[Bin+10] B. BINGHAM, J. BINGHAM, F. M. de PAULA, J. ERICKSON, G. SINGH et M.
REITBLATT, “Industrial Strength Distributed Explicit State Model Checking”,
in : 2010 Ninth Int. Workshop on Parallel and Distributed Methods in Verification,

and Second Int. Workshop on High Performance Computational Systems Biology,
USA, 2010, p. 28-36.

[BK08] Christel BAIER et Joost-Pieter KATOEN, Principles of Model Checking (Repre-

sentation and Mind Series), The MIT Press, 2008, ISBN : 026202649X.

[BM15] N. BERTHIER et H. MARCHAND, “Deadlock-free Discrete Controller Synthesis
for Infinite State Systems”, in : 54th IEEE Conference on Decision and Control,
Osaka, Japan, déc. 2015, p. 1000-1007.

[Bol+14] Raffaele BOLLA, Chiara LOMBARDO, Roberto BRUSCHI et Sergio MANGIALARDI,
“DROPv2 : energy efficiency through network function virtualization”, in : IEEE

Network 28.2 (2014), p. 26-32, DOI : 10.1109/MNET.2014.6786610.

[Bou+15] M. BOUSSARD, D. T. BUI, L. CIAVAGLIA, R. DOUVILLE, M. L. PALLEC, N. L.
SAUZE, L. NOIRIE, S. PAPILLON, P. PELOSO et F. SANTORO, “Software-Defined
LANs for Interconnected Smart Environment”, in : 2015 27th International Tele-

traffic Congress, 2015, p. 219-227.

[Bou+18] Mathieu BOUSSARD, Dinh Thai BUI, Richard DOUVILLE, Pascal JUSTEN, Nico-
las Le SAUZE, Pierre PELOSO, Frederik VANDEPUTTE et Vincent VERDOT, “Fu-
ture Spaces : Reinventing the Home Network for Better Security and Automation
in the IoT Era”, in : Sensors 18.9 (2018), p. 2986, DOI : 10.3390/s18092986,
URL : https://doi.org/10.3390/s18092986.

[BT18] Clark BARRETT et Cesare TINELLI, “Satisfiability Modulo Theories”, in : Hand-

book of Model Checking, sous la dir. d’Edmund M. CLARKE, Thomas A. HENZINGER,
Helmut VEITH et Roderick BLOEM, Cham : Springer International Publishing,
2018, p. 305-343, ISBN : 978-3-319-10575-8, DOI : 10.1007/978-3-319-
10575-8_11, URL : https://doi.org/10.1007/978-3-319-
10575-8_11.

[Can+12] Marco CANINI, Daniele VENZANO, Peter PEREŠINI, Dejan KOSTIĆ et Jennifer
REXFORD, “A NICE Way to Test Openflow Applications”, in : Proceedings of

the 9th USENIX Conference on Networked Systems Design and Implementation,
NSDI’12, San Jose, CA : USENIX Association, 2012, p. 10.

[Cav+15] Ana CAVALCANTI, Wen-ling HUANG, Jan PELESKA et Jim WOODCOCK, “CSP
and Kripke Structures”, in : Theoretical Aspects of Computing - ICTAC 2015,
sous la dir. de Martin LEUCKER, Camilo RUEDA et Frank D. VALENCIA, Cham :
Springer International Publishing, 2015, p. 505-523, ISBN : 978-3-319-25150-9.

162

https://doi.org/10.1109/MNET.2014.6786610
https://doi.org/10.3390/s18092986
https://doi.org/10.3390/s18092986
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11

BIBLIOGRAPHIE

[CC77] Patrick COUSOT et Radhia COUSOT, “Abstract Interpretation : A Unified Lat-
tice Model for Static Analysis of Programs by Construction or Approximation of
Fixpoints”, in : Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages, POPL ’77, Los Angeles, California : As-
sociation for Computing Machinery, 1977, p. 238-252, ISBN : 9781450373500,
DOI : 10.1145/512950.512973, URL : https://doi.org/10.1145/
512950.512973.

[Cim+02] Alessandro CIMATTI, Edmund M. CLARKE, Enrico GIUNCHIGLIA, Fausto GIUNCHIGLIA,
Marco PISTORE, Marco ROVERI, Roberto SEBASTIANI et Armando TACCHELLA,
“NuSMV 2 : An OpenSource Tool for Symbolic Model Checking”, in : Procee-

dings of the 14th International Conference on Computer Aided Verification, CAV
’02, Berlin, Heidelberg : Springer-Verlag, 2002, p. 359-364, ISBN : 3540439978.

[CL02] Miguel CASTRO et Barbara LISKOV, “Practical Byzantine Fault Tolerance and
Proactive Recovery”, in : 20.4 (2002), ISSN : 0734-2071, DOI : 10.1145/
571637.571640, URL : https://doi.org/10.1145/571637.
571640.

[CL08] C. CASSANDRAS et S. LAFORTUNE, Introduction to Discrete Event Systems,
Kluwer Academic Publishers, 2008.

[Cla+18] Edmund M CLARKE, Thomas A HENZINGER, Helmut VEITH et Roderick BLOEM,
Handbook of model checking, t. 10, Springer, 2018.

[Cla08] Edmund M. CLARKE, “The Birth of Model Checking”, in : 25 Years of Model

Checking : History, Achievements, Perspectives, sous la dir. d’Orna GRUMBERG

et Helmut VEITH, Berlin, Heidelberg : Springer Berlin Heidelberg, 2008, p. 1-
26, ISBN : 978-3-540-69850-0, DOI : 10.1007/978-3-540-69850-0_1,
URL : https://doi.org/10.1007/978-3-540-69850-0_1.

[CLM89] E. M. CLARKE, D. E. LONG et K. L. MCMILLAN, “Compositional model che-
cking”, in : Proceedings of the Fourth Annual Symposium on Logic in Computer

Science, IEEE, 1989, p. 353-362.

[Cvi+13] N. CVIJETIC, M. ANGELOU, A. PATEL, PHILIP NAN JI et TING WANG, “De-
fining optical software-defined networks (SDN) : From a compilation of demos
to network model synthesis”, in : 2013 Optical Fiber Communication Conference

and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC),
2013, p. 1-3, DOI : 10.1364/OFC.2013.OTh1H.1.

163

https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/571637.571640
https://doi.org/10.1007/978-3-540-69850-0_1
https://doi.org/10.1007/978-3-540-69850-0_1
https://doi.org/10.1364/OFC.2013.OTh1H.1

Part , BIBLIOGRAPHIE

[CWL18a] Haoxian CHEN, Anduo WANG et Boon Thau LOO, “Towards Example-Guided
Network Synthesis”, in : Proceedings of the 2nd Asia-Pacific Workshop on Net-

working, APNet ’18, Beijing, China : Association for Computing Machinery,
2018, p. 65-71, ISBN : 9781450363952, DOI : 10.1145/3232565.3234462.

[CWL18b] Haoxian CHEN, Anduo WANG et Boon Thau LOO, “Towards Example-Guided
Network Synthesis”, in : Proceedings of the 2nd Asia-Pacific Workshop on Net-

working, APNet ’18, Beijing, China : Association for Computing Machinery,
2018, p. 65-71, ISBN : 9781450363952, DOI : 10.1145/3232565.3234462,
URL : https://doi.org/10.1145/3232565.3234462.

[DRM13] Gwenaël DELAVAL, Éric RUTTEN et Hervé MARCHAND, “Integrating discrete
controller synthesis into a reactive programming language compiler”, in : Dis-

crete Event Dynamic Systems 23.4 (2013), p. 385-418.

[El-+16] Ahmed EL-HASSANY, Jeremie MISEREZ, Pavol BIELIK, Laurent VANBEVER

et Martin VECHEV, “SDNRacer : Concurrency Analysis for Software-Defined
Networks”, in : SIGPLAN Not. 51.6 (juin 2016), p. 402-415, ISSN : 0362-1340,
DOI : 10.1145/2980983.2908124, URL : https://doi.org/10.
1145/2980983.2908124.

[El-+17] Ahmed EL-HASSANY, Petar TSANKOV, Laurent VANBEVER et Martin VECHEV,
“Network-Wide Configuration Synthesis”, in : Computer Aided Verification, sous
la dir. de Rupak MAJUMDAR et Viktor KUNČAK, Cham : Springer International
Publishing, 2017, p. 261-281, ISBN : 978-3-319-63390-9.

[Fin+19] Bernd FINKBEINER, Manuel GIESEKING, Jesko HECKING-HARBUSCH et Ernst-
Rüdiger OLDEROG, “Model Checking Data Flows in Concurrent Network Up-
dates”, in : Automated Technology for Verification and Analysis, sous la dir. d’Yu-
Fang CHEN, Chih-Hong CHENG et Javier ESPARZA, Cham : Springer Internatio-
nal Publishing, 2019, p. 515-533, ISBN : 978-3-030-31784-3.

[Fou14] Open Networking FOUNDATION, OpenFlow Switch Specification - Version 1.5.0,
2014, URL : https://www.opennetworking.org/wp-content/
uploads/2014/10/openflow-switch-v1.5.0.pdf.

[Fou16a] Linux FOUNDATION, Open vSwitch, 2016, URL : https://www.openvswitch.
org/.

[Fou16b] Linux FOUNDATION, Open vSwitch Advanced Features, 2016, URL : http://
docs.openvswitch.org/en/latest/tutorials/ovs-advanced/.

[FSV19] K. FOERSTER, S. SCHMID et S. VISSICCHIO, “Survey of Consistent Software-
Defined Network Updates”, in : IEEE Communications Surveys Tutorials 21
(2019), p. 1435-1461, DOI : 10.1109/COMST.2018.2876749.

164

https://doi.org/10.1145/3232565.3234462
https://doi.org/10.1145/3232565.3234462
https://doi.org/10.1145/3232565.3234462
https://doi.org/10.1145/2980983.2908124
https://doi.org/10.1145/2980983.2908124
https://doi.org/10.1145/2980983.2908124
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.0.pdf
https://www.openvswitch.org/
https://www.openvswitch.org/
http://docs.openvswitch.org/en/latest/tutorials/ovs-advanced/
http://docs.openvswitch.org/en/latest/tutorials/ovs-advanced/
https://doi.org/10.1109/COMST.2018.2876749

BIBLIOGRAPHIE

[GL02] Seth GILBERT et Nancy LYNCH, “Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services”, in : SIGACT News 33.2
(juin 2002), p. 51-59, ISSN : 0163-5700, DOI : 10.1145/564585.564601,
URL : https://doi.org/10.1145/564585.564601.

[GM04] Benoit GAUDIN et Hervé MARCHAND, “Supervisory control of product and hie-
rarchical discrete event systems”, in : European Journal of Control 10.2 (2004),
p. 131-145.

[GM05] Benoit GAUDIN et Hervé MARCHAND, “EFFICIENT COMPUTATION OF SU-
PERVISORS FOR LOOSELY SYNCHRONOUS DISCRETE EVENT SYSTEMS :
A STATE-BASED APPROACH”, in : IFAC Proceedings Volumes 38.1 (2005),
16th IFAC World Congress, p. 145-150, ISSN : 1474-6670, DOI : https://
doi.org/10.3182/20050703-6-CZ-1902.00309, URL : https://
www.sciencedirect.com/science/article/pii/S1474667016363212.

[Goo+21] Martijn GOORDEN, Joanna VAN DE MORTEL-FRONCZAK, Michel RENIERS,
Martin FABIAN, Wan FOKKINK et Jacobus ROODA, “Model properties for ef-
ficient synthesis of nonblocking modular supervisors”, in : Control Engineering

Practice 112 (2021), p. 104830, ISSN : 0967-0661, DOI : https://doi.
org/10.1016/j.conengprac.2021.104830, URL : https://www.
sciencedirect.com/science/article/pii/S0967066121001076.

[Gue+18] Lionel GUEGUEN, Alex SERGEEV, Ben KADLEC, Rosanne LIU et Jason YOSINSKI,
“Faster Neural Networks Straight from JPEG”, in : Advances in Neural Informa-

tion Processing Systems, sous la dir. de S. BENGIO, H. WALLACH, H. LAROCHELLE,
K. GRAUMAN, N. CESA-BIANCHI et R. GARNETT, t. 31, Curran Associates,
Inc., 2018, URL : https://proceedings.neurips.cc/paper/2018/
file/7af6266cc52234b5aa339b16695f7fc4-Paper.pdf.

[HHK20] Shimaa A Abdel HAKEEM, Anar A HADY et HyungWon KIM, “5G-V2X : Stan-
dardization, architecture, use cases, network-slicing, and edge-computing”, in :
Wireless Networks 26.8 (2020), p. 6015-6041.

[Hol04] Gerard J HOLZMANN, The SPIN model checker : Primer and reference manual,
t. 1003, Addison-Wesley Reading, 2004.

[Hol97] G. J. HOLZMANN, “The model checker SPIN”, in : IEEE Transactions on Soft-

ware Engineering 23 (1997), p. 279-295, DOI : 10.1109/32.588521.

[HQR98] Thomas A. HENZINGER, Shaz QADEER et Sriram K. RAJAMANI, “You assume,
we guarantee : Methodology and case studies”, in : Computer Aided Verification,
sous la dir. d’Alan J. HU et Moshe Y. VARDI, Berlin, Heidelberg : Springer Berlin
Heidelberg, 1998, p. 440-451, ISBN : 978-3-540-69339-0.

165

https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/https://doi.org/10.3182/20050703-6-CZ-1902.00309
https://doi.org/https://doi.org/10.3182/20050703-6-CZ-1902.00309
https://www.sciencedirect.com/science/article/pii/S1474667016363212
https://www.sciencedirect.com/science/article/pii/S1474667016363212
https://doi.org/https://doi.org/10.1016/j.conengprac.2021.104830
https://doi.org/https://doi.org/10.1016/j.conengprac.2021.104830
https://www.sciencedirect.com/science/article/pii/S0967066121001076
https://www.sciencedirect.com/science/article/pii/S0967066121001076
https://proceedings.neurips.cc/paper/2018/file/7af6266cc52234b5aa339b16695f7fc4-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/7af6266cc52234b5aa339b16695f7fc4-Paper.pdf
https://doi.org/10.1109/32.588521

Part , BIBLIOGRAPHIE

[JRG21] A. H. M. JAKARIA, Mohammad Ashiqur RAHMAN et Aniruddha GOKHALE,
“Resiliency-Aware Deployment of SDN in Smart Grid SCADA : A Formal Syn-
thesis Model”, in : IEEE Transactions on Network and Service Management 18.2
(2021), p. 1430-1444, DOI : 10.1109/TNSM.2021.3050148.

[Kal+12] Gabriel KALYON, Tristan GALL, Hervé MARCHAND et Thierry MASSART, “Sym-
bolic Supervisory Control of Infinite Transition Systems Under Partial Observa-
tion Using Abstract Interpretation”, in : Discrete Event Dynamic Systems 22.2
(2012), p. 121-161, ISSN : 0924-6703, DOI : 10.1007/s10626-011-0101-
3.

[Kal+14] G. KALYON, T. LE GALL, H. MARCHAND et T. MASSART, “Symbolic Supervi-
sory Control of Distributed Systems with Communications”, in : IEEE Transac-

tion on Automatic Control 59.2 (fév. 2014), p. 396-408.

[Khu+13] Ahmed KHURSHID, Xuan ZOU, Wenxuan ZHOU, Matthew CAESAR et Philip
Brighten GODFREY, “VeriFlow : Verifying Network-Wide Invariants in Real Time”,
in : Proceedings of the 10th USENIX Symposium on Networked Systems De-

sign and Implementation, NSDI 2013, Lombard, IL, USA, April 2-5, 2013, USE-
NIX Association, 2013, p. 15-27, URL : https://www.usenix.org/
conference/nsdi13/technical-sessions/presentation/khurshid.

[KKC20] Enis KARAARSLAN, Eren KARABACAK et Cihat CETINKAYA, “Design and Im-
plementation of SDN-Based Secure Architecture for IoT-Lab”, in : Artificial In-

telligence and Applied Mathematics in Engineering Problems, sous la dir. de
D. Jude HEMANTH et Utku KOSE, Cham : Springer International Publishing,
2020, p. 877-885, ISBN : 978-3-030-36178-5.

[Kre+15] D. KREUTZ, F. M. V. RAMOS, P. E. VERÍSSIMO, C. E. ROTHENBERG, S. AZODOLMOLKY

et S. UHLIG, “Software-Defined Networking : A Comprehensive Survey”, in :
Proceedings of the IEEE 103.1 (2015), p. 14-76, ISSN : 1558-2256, DOI : 10.
1109/JPROC.2014.2371999.

[KVM12] Peyman KAZEMIAN, George VARGHESE et Nick MCKEOWN, “Header Space
Analysis : Static Checking for Networks”, in : 9th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 12), San Jose, CA : USENIX
Association, avr. 2012, p. 113-126, URL : https://www.usenix.org/
conference/nsdi12/technical-sessions/presentation/kazemian.

[LJJ06] Tristan LE GALL, Bertrand JEANNET et Thierry JÉRON, “Verification of Com-
munication Protocols Using Abstract Interpretation of FIFO Queues”, in : Alge-

braic Methodology and Software Technology, sous la dir. de Michael JOHNSON et

166

https://doi.org/10.1109/TNSM.2021.3050148
https://doi.org/10.1007/s10626-011-0101-3
https://doi.org/10.1007/s10626-011-0101-3
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/JPROC.2014.2371999
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian

BIBLIOGRAPHIE

Varmo VENE, Berlin, Heidelberg : Springer Berlin Heidelberg, 2006, p. 204-219,
ISBN : 978-3-540-35636-3.

[LKR14] Adrian LARA, Anisha KOLASANI et Byrav RAMAMURTHY, “Network Innova-
tion using OpenFlow : A Survey”, in : IEEE Communications Surveys Tutorials

16.1 (2014), p. 493-512, DOI : 10.1109/SURV.2013.081313.00105.

[Lyn96] Nancy A LYNCH, Distributed algorithms, Elsevier, 1996.

[Mai+11] Haohui MAI, Ahmed KHURSHID, Rachit AGARWAL, Matthew CAESAR, P. Brigh-
ten GODFREY et Samuel Talmadge KING, “Debugging the Data Plane with An-
teater”, in : Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM
’11, Toronto, Ontario, Canada : Association for Computing Machinery, 2011,
p. 290-301, ISBN : 9781450307970, DOI : 10.1145/2018436.2018470,
URL : https://doi.org/10.1145/2018436.2018470.

[Maj+21] A. MAJITH, O. SANKUR, H. MARCHAND et D. T. BUI, “Compositional model
checking of SDN platform”, in : 17th International Conference on the Design of

Reliable Communication Networks (DRCN), 2021.

[McC+15a] J. MCCLURG, H. HOJJAT, P. ČERNÝ et N. FOSTER, “Efficient Synthesis of Net-
work Updates”, in : Proceedings of the 36th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, Portland, OR, USA : Associa-
tion for Computing Machinery, 2015, p. 196-207, ISBN : 9781450334686.

[McC+15b] Jedidiah MCCLURG, Hossein HOJJAT, Pavol ČERNÝ et Nate FOSTER, “Efficient
Synthesis of Network Updates”, in : SIGPLAN Not. 50.6 (juin 2015), p. 196-207,
ISSN : 0362-1340, DOI : 10.1145/2813885.2737980, URL : https:
//doi.org/10.1145/2813885.2737980.

[McC18] Jedidiah MCCLURG, “Program synthesis for software-defined networking”, thèse
de doct., PhD. thesis, University of Colorado Boulder, USA, 2018.

[MDW14a] R. MAJUMDAR, S. DEEP TETALI et Z. WANG, “Kuai : A model checker for
software-defined networks”, in : 2014 Formal Methods in Computer-Aided De-

sign (FMCAD), oct. 2014, p. 163-170, DOI : 10 . 1109 / FMCAD . 2014 .
6987609.

[MDW14b] R. MAJUMDAR, S. DEEP TETALI et Z. WANG, “Kuai : A model checker for
software-defined networks”, in : 2014 Formal Methods in Computer-Aided De-

sign (FMCAD), oct. 2014, p. 163-170, DOI : 10 . 1109 / FMCAD . 2014 .
6987609.

167

https://doi.org/10.1109/SURV.2013.081313.00105
https://doi.org/10.1145/2018436.2018470
https://doi.org/10.1145/2018436.2018470
https://doi.org/10.1145/2813885.2737980
https://doi.org/10.1145/2813885.2737980
https://doi.org/10.1145/2813885.2737980
https://doi.org/10.1109/FMCAD.2014.6987609
https://doi.org/10.1109/FMCAD.2014.6987609
https://doi.org/10.1109/FMCAD.2014.6987609
https://doi.org/10.1109/FMCAD.2014.6987609

Part , BIBLIOGRAPHIE

[MW08] Anca MUSCHOLL et Igor WALUKIEWICZ, “A lower bound on web services com-
position”, in : Logical Methods in Computer Science Volume 4, Issue 2 (mai
2008), DOI : 10.2168/LMCS-4(2:5)2008, URL : https://lmcs.
episciences.org/824.

[Nel+13] Tim NELSON, Arjun GUHA, Daniel J. DOUGHERTY, Kathi FISLER et Shriram
KRISHNAMURTHI, “A Balance of Power : Expressive, Analyzable Controller
Programming”, in : Proceedings of the Second ACM SIGCOMM Workshop on

Hot Topics in Software Defined Networking, HotSDN ’13, Hong Kong, China :
Association for Computing Machinery, 2013, p. 79-84, ISBN : 9781450321785,
DOI : 10.1145/2491185.2491201, URL : https://doi.org/10.
1145/2491185.2491201.

[OC99] Ming OUYANG et Vasek CHVATAL, “Implementations of the Dpll Algorithm”,
AAI9947888, thèse de doct., USA, 1999, ISBN : 0599501200.

[PBB17] P. PELOSO, D. T. BUI et M. BOUSSARD, “Enforcing users’ constraints in dyna-
mic, software-defined networks of devices”, in : 2017 19th Asia-Pacific Network

Operations and Management Symposium, 2017, p. 106-111.

[Plo+16] Gordon D. PLOTKIN, Nikolaj BJØRNER, Nuno P. LOPES, Andrey RYBALCHENKO

et George VARGHESE, “Scaling Network Verification Using Symmetry and Sur-
gery”, in : Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’16, St. Petersburg, FL, USA :
Association for Computing Machinery, 2016, p. 69-83, ISBN : 9781450335492,
DOI : 10.1145/2837614.2837657, URL : https://doi.org/10.
1145/2837614.2837657.

[Pnu77] A. PNUELI, “The Temporal Logic of Programs”, in : Proceedings of the 18th

Annual Symposium on Foundations of Computer Science, SFCS ’77, 1977, p. 46-
57.

[Poz+15] Francisco POZO, Wilfried STEINER, Guillermo RODRIGUEZ-NAVAS et Hans
HANSSON, “A decomposition approach for SMT-based schedule synthesis for
time-triggered networks”, in : 2015 IEEE 20th Conference on Emerging Tech-

nologies Factory Automation (ETFA), 2015, p. 1-8, DOI : 10.1109/ETFA.
2015.7301436.

[PP91] Wuxu PENG et S. PUROSHOTHAMAN, “Data Flow Analysis of Communicating
Finite State Machines”, in : ACM Trans. Program. Lang. Syst. 13.3 (juill. 1991),
p. 399-442, ISSN : 0164-0925, DOI : 10.1145/117009.117015, URL :
https://doi.org/10.1145/117009.117015.

168

https://doi.org/10.2168/LMCS-4(2:5)2008
https://lmcs.episciences.org/824
https://lmcs.episciences.org/824
https://doi.org/10.1145/2491185.2491201
https://doi.org/10.1145/2491185.2491201
https://doi.org/10.1145/2491185.2491201
https://doi.org/10.1145/2837614.2837657
https://doi.org/10.1145/2837614.2837657
https://doi.org/10.1145/2837614.2837657
https://doi.org/10.1109/ETFA.2015.7301436
https://doi.org/10.1109/ETFA.2015.7301436
https://doi.org/10.1145/117009.117015
https://doi.org/10.1145/117009.117015

BIBLIOGRAPHIE

[PW97] Doron PELED et Thomas WILKE, “Stutter-Invariant Temporal Properties Are Ex-
pressible without the next-Time Operator”, in : Inf. Process. Lett. 63.5 (sept.
1997), p. 243-246, ISSN : 0020-0190, DOI : 10.1016/S0020-0190(97)
00133-6, URL : https://doi.org/10.1016/S0020-0190(97)
00133-6.

[Rab+21] Jorge RABADAN, Kiran NAGARAJ, Wen LIN et Ali SAJASSI, EVPN Multi-Homing

Extensions for Split Horizon Filtering, Internet-Draft draft-ietf-bess-evpn-mh-
split-horizon-02, Work in Progress, Internet Engineering Task Force, oct. 2021,
15 p., URL : https://datatracker.ietf.org/doc/html/draft-
ietf-bess-evpn-mh-split-horizon-02.

[Rei+12] Mark REITBLATT, Nate FOSTER, Jennifer REXFORD, Cole SCHLESINGER et
David WALKER, “Abstractions for network update”, in : ACM SIGCOMM 2012

Conference, SIGCOMM ’12, Helsinki, Finland - August 13 - 17, 2012, 2012,
p. 323-334, DOI : 10.1145/2342356.2342427, URL : https://doi.
org/10.1145/2342356.2342427.

[Sar+14] Chayan SARKAR, S. N. Akshay Uttama NAMBI, R. Venkatesha PRASAD et Ab-
dur RAHIM, “A scalable distributed architecture towards unifying IoT applica-
tions”, in : 2014 IEEE World Forum on Internet of Things (WF-IoT), 2014, p. 508-
513, DOI : 10.1109/WF-IoT.2014.6803220.

[SNM13] D. SETHI, S. NARAYANA et S. MALIK, “Abstractions for model checking SDN
controllers”, in : Formal Methods in Computer-Aided Design, 2013, p. 145-148.

[ST16] Maarten van STEEN et Andrew S. TANENBAUM, “A brief introduction to distri-
buted systems”, in : Computing 98.10 (2016), p. 967-1009, DOI : 10.1007/
s00607-016-0508-7, URL : https://doi.org/10.1007/s00607-
016-0508-7.

[Sta85] Eugene W. STARK, “A Proof Technique for Rely/Guarantee Properties”, in :
Foundations of Software Technology and Theoretical Computer Science, Fifth

Conference, New Delhi, India, December 16-18, 1985, Proceedings, 1985, p. 369-
391, DOI : 10.1007/3-540-16042-6_21, URL : https://doi.org/
10.1007/3-540-16042-6%5C_21.

[Tar55] A. TARSKI, “A Lattice-theoretical Fixpoint Theorem and its applications”, in :
Pacific Journal of Mathematics 5 (1955), p. 285-309.

[Var05] “Front matter”, in : Network Algorithmics, sous la dir. de George VARGHESE,
The Morgan Kaufmann Series in Networking, San Francisco : Morgan Kauf-
mann, 2005, p. i-iii, DOI : https://doi.org/10.1016/B978-0-12-

169

https://doi.org/10.1016/S0020-0190(97)00133-6
https://doi.org/10.1016/S0020-0190(97)00133-6
https://doi.org/10.1016/S0020-0190(97)00133-6
https://doi.org/10.1016/S0020-0190(97)00133-6
https://datatracker.ietf.org/doc/html/draft-ietf-bess-evpn-mh-split-horizon-02
https://datatracker.ietf.org/doc/html/draft-ietf-bess-evpn-mh-split-horizon-02
https://doi.org/10.1145/2342356.2342427
https://doi.org/10.1145/2342356.2342427
https://doi.org/10.1145/2342356.2342427
https://doi.org/10.1109/WF-IoT.2014.6803220
https://doi.org/10.1007/s00607-016-0508-7
https://doi.org/10.1007/s00607-016-0508-7
https://doi.org/10.1007/s00607-016-0508-7
https://doi.org/10.1007/s00607-016-0508-7
https://doi.org/10.1007/3-540-16042-6_21
https://doi.org/10.1007/3-540-16042-6%5C_21
https://doi.org/10.1007/3-540-16042-6%5C_21
https://doi.org/https://doi.org/10.1016/B978-0-12-088477-3.50026-6
https://doi.org/https://doi.org/10.1016/B978-0-12-088477-3.50026-6
https://doi.org/https://doi.org/10.1016/B978-0-12-088477-3.50026-6

Part , BIBLIOGRAPHIE

088477-3.50026-6, URL : https://www.sciencedirect.com/
science/article/pii/B9780120884773500266.

[Wan+13] Anduo WANG, Salar MOARREF, Boon Thau LOO, Ufuk TOPCU et Andre SCEDROV,
“Automated synthesis of reactive controllers for software-defined networks”, in :
2013 21st IEEE International Conference on Network Protocols, ICNP 2013,

Göttingen, Germany, October 7-10, 2013, 2013, p. 1-6, DOI : 10.1109/ICNP.
2013.6733666, URL : https://doi.org/10.1109/ICNP.2013.
6733666.

[WH91] Y. WILLNER et M. HEYMANN, “Supervisory control of concurrent discrete-event
systems”, in : International Journal of Control 54.5 (1991), p. 1143-1169.

[Wig17] Avi WIGDERSON, “Mathematics and Computation”, in : Princeton University

Press (2017).

[WR88] W. M. WONHAM et P. J. RAMADGE, “Modular Supervisory Control of Discrete
Event Systems”, in : Mathematics of Control Signals and Systems 1 (1988), p. 13-
30.

[Yrj20] Seppo YRJOLA, “Technology antecedents of the platform-based ecosystemic bu-
siness models beyond 5G”, in : 2020 IEEE Wireless Communications and Net-

working Conference Workshops (WCNCW), IEEE, 2020, p. 1-8.

[Yua+15] Yifei YUAN, Dong LIN, Rajeev ALUR et Boon Thau LOO, “Scenario-Based Pro-
gramming for SDN Policies”, in : Proceedings of the 11th ACM Conference on

Emerging Networking Experiments and Technologies, CoNEXT ’15, Heidelberg,
Germany : Association for Computing Machinery, 2015, ISBN : 9781450334129,
DOI : 10.1145/2716281.2836119, URL : https://doi.org/10.
1145/2716281.2836119.

[Zie+19] Volker ZIEGLER, Thorsten WILD, Mikko UUSITALO, Hannu FLINCK, Vilho
RÄISÄNEN et Kimmo HÄTÖNEN, “Stratification of 5G evolution and Beyond
5G”, in : 2019 IEEE 2nd 5G World Forum (5GWF), IEEE, 2019, p. 329-334.

170

https://doi.org/https://doi.org/10.1016/B978-0-12-088477-3.50026-6
https://doi.org/https://doi.org/10.1016/B978-0-12-088477-3.50026-6
https://doi.org/https://doi.org/10.1016/B978-0-12-088477-3.50026-6
https://www.sciencedirect.com/science/article/pii/B9780120884773500266
https://www.sciencedirect.com/science/article/pii/B9780120884773500266
https://doi.org/10.1109/ICNP.2013.6733666
https://doi.org/10.1109/ICNP.2013.6733666
https://doi.org/10.1109/ICNP.2013.6733666
https://doi.org/10.1109/ICNP.2013.6733666
https://doi.org/10.1145/2716281.2836119
https://doi.org/10.1145/2716281.2836119
https://doi.org/10.1145/2716281.2836119

Titre : Vérification et synthèse automatisées de systèmes distribués

Mot clés : SDN, IoT platform, Control Synthesis, Verification, Automation

Résumé : Dans le cadre de ce document,
nous nous sommes intéressés à l’automatisa-
tion des plates-formes IoT. Plus précisément,
nous utilisons des techniques d’analyse et de
synthèse formelles pour garantir la sûreté de
fonctionnement du comportement de ces pla-
teformes. Le réseau défini par logiciel (SDN)
consiste en une mise en réseau flexible, et à
faible coût, des différents composants et four-
nit des applications de systèmes distribués dy-
namiques dont les plateformes IoT font partie.
Il existe un fort besoin d’intégration cohérente

et correcte de l’application IoT dans l’environ-
nement SDN, ce qui induit une utilisation de
méthodes de vérification formelles pour ana-
lyser la sécurité d’un environnement SDN-IoT.
Nous fournissons également un cadre de syn-
thèse détaillé pour modéliser le comportement
abstrait de haut niveau des composants IoT
et générer automatiquement le code d’implé-
mentation de bas niveau à intégrer dans ceux-
ci en se basant sur une approche composi-
tionnelle.

Title: Automated Verification and Synthesis of Distributed Systems

Keywords: SDN, IoT platform, Control Synthesis, Verification, Automation

Abstract: Towards the automation of
Software-Defined Network (SDN) based Inter-
net of Things (IoT) platforms, we are using for-
mal analysis and synthesis techniques to en-
sure their safe behaviours. SDN a flexible and
low cost networking principle which provides
dynamic distributed system applications, IoT
is one such kind. There is a strong need for
consistent and correct integration of IoT ap-

plications in SDN environment. Using formal
compositional verification methods for analy-
zing the safety of an SDN-IoT environment,
we provide a detailed synthesis framework to
model the abstract behaviour of IoT devices,
SDN manager and automatically generate low
level implementation code to be integrated
with IoT applications.

	Introduction
	Road Map To Thesis
	Distributed Systems
	Challenges

	Software-Defined Networks and IoT Platforms
	Introduction to SDN
	IoT Devices and Related Applications
	Orchestration of IoT Platform using SDN Concept
	Nokia SDN-IoT Platform
	General Problem and Assumptions
	Cluster of IoT Devices or Virtual Space
	Decentralized Nokia-SDN Network
	Communication Procedures

	Chapter Conclusion

	Modeling the Distributed System and Requirements
	Modeling Notations
	Languages
	Automaton

	Symbolic Transition System
	Formal Verification of Distributed system
	Expressing the System Requirements as Specifications
	Verification of Monolithic System
	Formal Verification of Distributed System

	Control Synthesis of Distributed system
	Control Synthesis of Finite State System
	Control Synthesis of LTL Safety Specifications
	Synthesis of Finite State Distributed System
	Extending the Synthesis concept to the Infinite System

	Chapter Conclusion

	State Space Reduction Techniques
	State Space Explosion Problem in Formal Verification and Synthesis
	Partial Order Reduction for Model Checking Process
	Avoiding State Space Explosion Problem by Compositional Reasoning
	Introduction to Compositional Reasoning
	Compositional Reasoning from a language-based point view
	Compositional Reasoning for LTL Specification

	Extending Compositional Reasoning to Control Synthesis of LTL Specifications
	Chapter Conclusion

	Formal Verification Scheme for Nokia SDN-IoT Platform
	Existing Modelisation and Verification of SDN systems
	VERIFLOW
	KUAI
	VERICON

	Model checking Tool
	Promela Language
	SPIN

	Nokia-SDN platform
	Architecture Building Blocks
	The User's Intent
	Device Discovery via MAC Learning
	Packet Forwarding

	Modelisation of SDN
	Generated Automata Models
	Automaton for Devices
	Automaton for Switches
	Automaton for Controllers
	Automaton for Managers
	SDN specification
	Experimental Results

	Chapter Conclusion

	Discrete Control Synthesis for an SDN-IoT platform
	Existing Synthesis of Network Services
	Synthesis of Consistence updates
	Guided Network Synthesis
	SMT based Synthesis of SDN

	Synthesis Tool
	Control Synthesis of a typical SDN Application - A Modular Approach
	An Application Scenario: Edge Computing V2X communications
	Abstract Specifications and Model

	Compositional Control Synthesis Framework for the Layered SDN Architecture
	Global Properties to be fulfilled by the SDN platform
	Properties that have to be fulfilled by the Manager
	Properties that has to be fulfilled by Devices

	Chapter Conclusion

	Conclusion
	Bibliography

