
HAL Id: tel-03882666
https://theses.hal.science/tel-03882666v1

Submitted on 2 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault tolerance in FaaS environments
Yasmina Bouizem

To cite this version:
Yasmina Bouizem. Fault tolerance in FaaS environments. Other [cs.OH]. Université Rennes 1, 2022.
English. �NNT : 2022REN1S036�. �tel-03882666�

https://theses.hal.science/tel-03882666v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES 1

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Yasmina BOUIZEM
Fault Tolerance in FaaS Environments

Thèse présentée et soutenue à Rennes, le 8 juin 2022
Unité de recherche : Inria Rennes - Bretagne Atlantique
Thèse No : « si pertinent »

Rapporteurs avant soutenance :

Sébastien MONNET Professeur, Université Savoie Mont Blanc
Thomas ROPARS Maître de conférences, Université Grenoble Alpes

Composition du Jury :
Président : Eric RENAULT Professeur, ESIEE
Examinateurs : Eric RENAULT Professeur, ESIEE

Sébastien MONNET Professeur, Université Savoie Mont Blanc
Thomas ROPARS Maître de conférences, Université Grenoble Alpes

Dir. de thèse : Christine MORIN Directrice de recherche, Inria Rennes – Bretagne Atlantique
Co-enc. de thèse : Djawida DIB Maître de conférences, Université de Tlemcen

Nikos PARLAVANTZAS Maître de conférences, INSA Rennes

In memory of my mother who could not see this thesis completed

To my father for his ongoing love and support

ACKNOWLEDGEMENT

First of all I would like to express my highly gratitude to all the jury members of
the thesis for taking interest on my research work, especially, Thomas Ropars and Se-
bastien Monnet for accepting the task of reviewing my thesis. Thanks to Eric Renault for
presiding the jury. I enjoyed every minute of the defense and this is particularly due to
your organization flow of this important moment. I’m deeply grateful to my CSID com-
mittee members Guillaume Pierre and Thomas Ropars for their constructive comments,
suggestions, and support throughout this work.

I would also like to express my heartfelt thanks to my supervisors Christine Morin,
Djawida Dib and Nikos Parlavantzas for allowing me to do research work under their
guidance, patience, support and inspiration. I am very grateful for their constant optimism
and encouragement throughout this long walk with all its “ups and downs”. I will never
forget how they helped me, especially when i have been struggling with financial issues. I
could not have made it through without their help.

Special thanks to César Viho for providing me the chance to teach some classes and
believing in my abilities. Thank you so much for your support and valuable advices.

I would like to thank all the members of Myriads team at Inria for their kindness,
support, and precious feedback. A word of thanks also goes out to my friends for their
friendship and emotional support through all these last years.

I want also to thank all parties that granted me financial help to perform my research
and live in France, especially Inria which was generous enough for me to stay longer in
France. In particular, i want to thank Myriam Vinouze, a member of the HR service of
Inria for her kindness and her precious help to get the funding during the pandemic.

Utmost gratitude and heartfelt appreciation for my parents for their unconditional
love and never ending supply of prayers and encouragement and support, especially, my
dearest darling mommy who could not see this thesis completed. Thank you, mommy, for
believing in me. You inspired me to work harder, and because of that, i have achieved
what seemed to be an impossible task. I also owe my special thanks to my beloved sister
and brothers who always strengthened my morale by standing by me in all situations.
Their belief in me has kept my spirits and motivation high during my thesis.

3

TABLE OF CONTENTS

1 Introduction 13
1.1 Context . 13
1.2 Objective . 14
1.3 Main Contributions . 14
1.4 Thesis Organization . 15

2 Background 17
2.1 Basic Concepts of Cloud Computing . 17

2.1.1 Service Types . 17
2.1.2 Deployment Models . 19

2.2 Virtualization . 21
2.2.1 Hardware Virtualization . 21
2.2.2 Operating Sysem-level Virtualization 22

2.3 Containerization . 22
2.3.1 Container Technologies . 23
2.3.2 Container Orchestration . 24

2.4 Fault Tolerance . 24
2.4.1 Fault Tolerance Definition . 25
2.4.2 Fault Types . 25
2.4.3 Fault Detection . 26
2.4.4 Fault Tolerance Approaches . 26

2.5 Replication Strategies . 28
2.5.1 Active Replication . 29
2.5.2 Passive Replication . 29

2.6 Fault Tolerance Metrics . 29
2.7 Fault Tolerance in Cloud Layers . 30
2.8 Summary . 30

5

TABLE OF CONTENTS

3 Function as a Service 33
3.1 Function as a Service Definition . 33

3.1.1 Features of FaaS . 33
3.1.2 Execution Process of FaaS . 35

3.2 Benefits . 36
3.3 Challenges . 37
3.4 Use Cases . 41
3.5 FaaS Platforms . 43

3.5.1 Commercial Platforms . 43
3.5.2 Open Source Platforms . 45

3.6 Fault Tolerance in FaaS . 46
3.7 Summary . 51

4 Choosing a FaaS Framework 53
4.1 Criteria . 53
4.2 Overview of Kubernetes . 54

4.2.1 Kubernetes Architecture . 54
4.2.2 Kubernetes Features Used by FaaS 56

4.3 Kubernetes-native FaaS Frameworks . 58
4.3.1 Fission . 58
4.3.2 Kubeless . 60
4.3.3 OpenFaaS . 62

4.4 Performance Evaluation . 63
4.4.1 Environment Setup . 64
4.4.2 Workload Setup . 64
4.4.3 Metrics . 64
4.4.4 Results Analysis . 65

4.5 Overall Framework Comparison . 66
4.6 Summary . 68

5 Fault Tolerance Approaches For High Availability in FaaS 71
5.1 Retry Mechanism in Fission . 71
5.2 Active-Standby in Fission . 72

5.2.1 Description . 72
5.2.2 Implementation in Fission . 73

6

TABLE OF CONTENTS

5.3 Request Replication in Fission . 74
5.3.1 Description . 75
5.3.2 Implementation in Fission . 75

5.4 Summary . 76

6 Evaluation 79
6.1 Experimental Setup . 79

6.1.1 Environment . 79
6.1.2 Applications . 80
6.1.3 Workload . 80
6.1.4 Failure Scenarios . 80
6.1.5 Metrics . 81

6.2 Experiment 1: Active-Standby with CoreDNS versus Retry 82
6.2.1 Performance Results . 82
6.2.2 Availability Results . 85
6.2.3 Resource Consumption Analysis . 87

6.3 Experiment 2: Active-Standby with Router versus Request Replication and
Retry . 89
6.3.1 Performance Results . 89
6.3.2 Availability Results . 93
6.3.3 Resource Consumption Analysis . 97

6.4 Lessons Learned . 99
6.5 Summary . 100

7 Conclusion and Perspectives 101

Conclusion 101
7.1 Conclusion . 101
7.2 Perspectives . 103

7.2.1 Short-Term Perspectives . 103
7.2.2 Mid-Term Perspectives . 103
7.2.3 Long-Term Perspectives . 104

Bibliography 105

7

LIST OF FIGURES

2.1 Overview of cloud services models . 19
2.2 Virtualization architecture . 23
2.3 Overview of fault tolerance approaches in cloud computing 28
2.4 Fault tolerance in cloud layers . 31

3.1 Responsibilities of application developers and FaaS providers 34
3.2 Execution process of FaaS . 36
3.3 Cold start . 38
3.4 Overview of the challenges in FaaS . 41

4.1 Kubernetes architecture . 55
4.2 Relation between the FaaS frameworks and Kubernetes 58
4.3 Fission architecture . 60
4.4 Kubeless architecture . 62
4.5 OpenFaaS architecture . 63
4.6 The throughput for Fission with 1, 5 and 20 function replicas. 65
4.7 The throughput for Kubeless with 1, 5 and 20 function replicas 66
4.8 The throughput for OpenFaaS with 1, 5 and 20 function replicas 66
4.9 Response time for concurrency of 200 with one function replica for three

FaaS frameworks . 67

5.1 Retry mechanism in Fission . 72
5.2 Sequential diagram of Active-Standby mechanism using the Kubernetes

CoreDNS . 74
5.3 Overview of the Active-Standby mechanism in Fission (Implementation 2) 74
5.4 Sequential diagram of Active-Standby mechanism using a router 75
5.5 Overview of the Request Replication mechanism in Fission 76
5.6 Sequential diagram of Request Replication mechanism in Fission 76

6.1 Fibonacci application without failures . 83

9

LIST OF FIGURES

6.2 Guestbook application without failures . 83
6.3 Fibonacci application with pod failures . 84
6.4 Guestbook application with pod failures 84
6.5 Fibonacci application with node failure . 85
6.6 Guestbook application with node failure 86
6.7 Recovery time in vanilla . 86
6.8 Recovery time in AS . 86
6.9 Resource consumption of Fibonacci in Fission vanilla and AS without and

with pod and node failures . 88
6.10 Resource consumption of Guestbook application in Fission vanilla and AS

without and with pod and node failures . 88
6.11 Response time of AS, vanilla and RR with no failure 90
6.12 Throughput of Fission vanilla, AS, and RR with pod failure 91
6.13 Response time of Fission vanilla, AS, and RR with pod failure 91
6.14 Throughput of Fission vanilla, AS, and RR with node failure 92
6.15 Response time of Fission vanilla, AS, and RR with node failure 92
6.16 Response time with 50ms of latency . 93
6.17 Response time with 100ms of latency . 93
6.18 Response time with 200ms of latency . 94
6.19 Recovery time in AS . 94
6.20 Recovery time in RR . 95
6.21 CPU consumption without and with pod and node failures 98
6.22 Memory consumption without and with pod and node failures 98
6.23 CPU consumption per node in vanilla with pod failure 98
6.24 CPU consumption per node in AS with pod failure 99
6.25 CPU consumption per node in RR with pod failure 99

10

LIST OF TABLES

3.1 Comparison of fault-tolerant solutions in FaaS environments 50

4.1 The percentage of requests response time in milliseconds (ms) 67
4.2 Comparison of Fission, Kubeless, and OpenFaaS 68

6.1 Recovery time in Fission vanilla and AS with pod failures 87
6.2 Recovery time in Fission vanilla and AS with node failures 87
6.3 Recovery time of AS, vanilla and RR with pod failure 95
6.4 Recovery time of AS, vanilla and RR with node failure 96
6.5 Error rate in Fission vanilla, AS and RR with pod failures 96
6.6 Error rate in Fission vanilla, AS and RR with node failure 96

11

Chapter 1

INTRODUCTION

This chapter details the context of our study and defines the PhD thesis objective and
key contributions. Finally, it gives an overview of the remainder of the document.

1.1 Context

Cloud computing is a popular paradigm that has been evolving over years. It en-
ables developers to scale their applications that are no longer hosted on local computing
resources but on shared resources obtained on demand and without provisioning a dat-
acenter. Yet, deploying and managing cloud applications is complex and costly. Many
efforts have been made to take the cloud model forward to a new model called Function
as a Service (FaaS). This emerging paradigm is based on functions and has been recently
gaining a lot of interest from users because of its simplicity. According to this paradigm,
all the operational responsibility is transferred to the cloud providers. Thus, developers do
not need to be anymore concerned about managing the underlying server infrastructure to
deploy their functions and they pay only for the resources used during function execution.

FaaS is on-demand computing wherein processing is performed on remote comput-
ers; therefore, failures may occur due to communication delays or hardware failures. For
example, in the event of a compute node failure, the user may experience performance
instability until the failure is recovered. This means that failures should be handled in
FaaS systems to guarantee high availability for functions.

In the context of FaaS, fault tolerance is managed by the FaaS provider, hence, ensur-
ing the availability of the deployed functions in case of failures. Indeed, high availability
and built-in fault tolerance are touted as main features of commercial FaaS platforms
(e.g.,[10]). Most current FaaS platforms support a basic form of fault tolerance through
retrying executions of idempotent functions [81], [51], [9], [73], [142]. This means that
the function will return the same result when it is called multiple times with the same
input data. However, while the retry mechanism allows coping with network delays, it

13

Part , Chapter 1 – Introduction

incurs delays in recovering from other kinds of failures such as node failures. Other fault
tolerance approaches have different availability, performance, and resource consumption
properties, making them appropriate for different types of faults and different scenar-
ios. For instance, replication approaches that use function instances deployed on multiple
nodes are appropriate for handling node failures. The active replication approach, in par-
ticular, favours performance and is appropriate for latency-sensitive applications. The
passive replication approach favours reduced resource consumption and is appropriate for
resource-constrained environments [68]. Therefore, FaaS platforms should support addi-
tional fault tolerance approaches to ensure the smooth execution of FaaS functions in the
presence of different types of failures, while maintaining performance and recovering from
failures without significantly impacting user experience.

1.2 Objective

Our main objective is to propose fault tolerance solutions to maintain correct execu-
tion despite the presence of failures for the deployed applications in FaaS environments.
More specifically, in this thesis we assume that functions are idempotent, which is also
the assumption of commercial FaaS platforms, and aim at tolerating both transient and
permanent failures (such as node failures) so that the faults do not affect the execution
of an application.

1.3 Main Contributions

To fulfill the aim of the study described in the previous section, this thesis makes the
following key contributions:

• Comprehensive state of the art of FaaS environments emphasizing the fault tolerance
techniques they offer;

• Comparison of open source FaaS frameworks in order to select one of them for the
experimental evaluation of fault tolerance approaches;

• Study of the integration of two replication schemes (passive and active replication)
in a FaaS environment where the first one is applied in an active-standby mode, and
the second is configured in an active-active mode;

14

1.4. Thesis Organization

• Implementation of the replication schemes in an open-source FaaS framework, namely
Fission;

• Comparative experimental evaluation according to performance, availability and
resource consumption of Fission vanilla (native retry mechanism), Fission Active-
Standby, and Fission Request Replication, using a stateless computational applica-
tion both in normal functioning and in various failure scenarios, including function
and node failures and network delays.

1.4 Thesis Organization

The remainder of this document is organized as follows:

• In Chapter 2 we introduce cloud computing and its basic concepts including ser-
vice models, deployment models, virtualization, and containerization. This chapter
also presents fault models, fault detection techniques and different approaches to tol-
erate faults. In addition, various replication strategies, metrics, and fault tolerance
architectures are discussed.

• In Chapter 3 we present in detail the Function as a Service model, including
its main features, execution process, benefits, challenges, and use cases. A brief
description of FaaS platforms is also given. We also present a survey of the existing
fault tolerance approaches in FaaS systems, a summary of the related works, and a
comparison with our work.

• In Chapter 4 we start with a discussion of a set of requirements used to select a
suitable FaaS framework for our work. To select a framework that meets all the dis-
cussed requirements, we introduce and evaluate three open source FaaS frameworks
that are all based on the Kubernetes container orchestration platform, which is also
described. Finally, we conclude the chapter with a comparative analysis of the three
frameworks.

• In Chapter 5 we first present the existing fault tolerance mechanism in the Fis-
sion FaaS framework selected for our experimental evaluation of fault tolerance
strategies. This framework uses a retry mechanism to provide fault tolerance. Then,
we describe the two replication-based fault tolerance approaches, namely the ac-
tive standby and the request replication approaches, and their implementation in
Fission.

15

Part , Chapter 1 – Introduction

• In Chapter 6 we present an experimental study aimed at evaluating the per-
formance, availability, and resource consumption of the proposed fault tolerance
approaches under different failure scenarios and compare them with the basic retry
mechanism natively implemented in Fission. The interpretation of the results is also
presented. We conclude this chapter with lessons learnt from the evaluation of the
fault tolerance approaches.
Finally, the last chapter concludes this thesis by summarizing our main contributions
and lessons learnt from our work. We also present some future research perspectives.

16

Chapter 2

BACKGROUND

In this chapter, we provide the necessary background to understand this manuscript.
We first introduce the concept of cloud computing, its service categories, and its deploy-
ment models in Section 2.1. We also present virtualization in Section 2.2. The containeriza-
tion technologies used in cloud computing environments are presented in Section 2.3. We
provide an overview of different fault tolerance approaches in Section 2.4 and an overview
of replication strategies in Section 2.5 since replication is the fault tolerance mechanism
used in our work. Finally, fault tolerance metrics, fault tolerance in cloud layers, and the
summary of this chapter are presented in Sections 2.6, 2.7, and 2.8.

2.1 Basic Concepts of Cloud Computing

According to the National Institute of Standards and Technology (NIST), cloud com-
puting is defined as "a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers, stor-
age, applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction" [132]. Cloud computing is composed
of different layers of services and deployment models, that we discuss in the following.

2.1.1 Service Types

The different types of cloud services offered to users can be grouped in four categories
as shown in Figure 2.1: Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
Function as a Service (FaaS), and Software as a Service (SaaS).

1. Infrastructure as a Service (IaaS)
In the IaaS model, a high level of control is given to users. It gives access to various
computing infrastructure resources such as, virtual machines, storage, and network-
ing components. IaaS users can configure and manage the systems in terms of op-

17

Part , Chapter 2 – Background

erating systems, applications and middleware, although IaaS providers still manage
and control the underlying cloud infrastructure [92]. This type of service is accessible
via the Internet using a pay-per-use model, where users pay only for the consumed
resources based on the capacity and the time of use. Microsoft Azure, IBM cloud,
and Amazon Web Services (AWS) are examples of IaaS.

2. Platform as a Service (PaaS)
In the PaaS model, resources are offered by providers through a platform to the
software developers. These resources include runtime environments with various
programming languages (e.g., Java, PHP, Ruby) to develop applications, applica-
tion frameworks to facilitate application development (e.g., Joomla, WordPress,
Spring), and databases such as MongoDB, Redis to enable communication with the
applications. Developers utilize these services to develop, deploy, and manage their
applications without having to worry about the underlying infrastructure. It is the
responsibility of the provider to provision, manage and maintain all the required
hardware and software resources [92]. Just as in IaaS, PaaS is provided through a
pay-per-use model. Examples of PaaS include, Google App Engine, Heroku, and
CloudFoundry.

3. Function as a Service (FaaS)
In the FaaS model, a platform is provided to developers to build, run, and manage
serverless applications. A serverless application is decomposed into a set of indepen-
dent pieces called functions that are triggered to execute a request. These functions
are executed in a virtualized container and rely on other services like object storage,
databases, or messaging. In contrast to other computing models, a FaaS function in-
stance is created only when the function is called and is terminated after processing
a request. Developers pay only for the resources used during the function execution,
thus saving costs. FaaS adds an additional abstraction layer to the existing cloud
paradigms while relieving developers from managing and configuring servers. All
the server provisioning, operational responsibilities, and administration tasks are
done by the cloud provider. Many big companies have adopted and offered FaaS
such as Amazon’s AWS Lambda, Google Cloud Functions, and Microsoft Azure
Functions [103].

4. Software as a Service (SaaS)
In the SaaS model, a software application is hosted and managed remotely by cloud
providers, and delivered to end-users as a service. These software services are deliv-

18

2.1. Basic Concepts of Cloud Computing

ered on-demand through the Internet. In this type of service, the client does not need
to maintain or download the software on their own machine. The software mainte-
nance, management, and system administration are done at the provider side. SaaS
provides a subscription-based pricing models for customers. This means that users
need to pay monthly or annual subscription fee in order to use the software. Some
examples of SaaS are: Salesforce, Slack, Zoom, and Gmail.

Figure 2.1 – Overview of cloud services models

2.1.2 Deployment Models

Four deployment models have been identified in cloud computing: public cloud, private
cloud, hybrid cloud, and community cloud [92].

1. Public Cloud
A public cloud is a computing model where all resources are available to the public
remotely over the Internet. In this model, services run on servers managed by the
cloud provider. The provider also has other responsibilities such as maintenance
and security. In a public cloud, the pool of computing resources is shared between
multiple customers with limited configuration, availability variances, and security
protections. Additionally, users are typically charged based on the pay-as-you-go
model. The main advantages of this model are high availability, security, and easy

19

Part , Chapter 2 – Background

scalability. The most popular public clouds include Amazon Web Services, Google
AppEngine, and Microsoft Azure [92], [183].

2. Private Cloud

A private cloud is a cloud service which is inaccessible to the general public. It is
dedicated to a single organization (e.g., a company). In a private cloud environ-
ment, the cloud infrastructure is owned and controlled either by the organization
itself, a third party, or some combination of them, and it may be implemented on
or off premises. Cloud users who have access to a private cloud can utilize and
store information in the private cloud from any place, similarly to public clouds.
A private cloud is not delivered on a pay-as-you-go basis. The billing usually is on
a subscription basis. Private clouds share many benefits of cloud computing with
public clouds, such as scalability, elasticity, and flexibility. In the private cloud, the
level of information security is quite high as compare to public cloud. Examples of
private cloud providers include IBM, VMware, and HP [92], [183].

3. Hybrid Cloud

A hybrid cloud combines a private cloud with a public cloud. It is designed to en-
able communication between both clouds by standardized or proprietary technology
that allows data and application to work across the two deployments. For example,
cloud bursting for load balancing between clouds. The hybrid setup is suitable for
a business or an organization that needs to leverage the benefits of both public and
private cloud environments. For example, the scalability power of the public cloud
with the control and security of the private cloud [92], [183].

4. Community Cloud

A community cloud infrastructure is dedicated to a specific community where only
its members have access to cloud services. This model allows community members
who share the same issues (e.g., mission, security requirements, policy, and compli-
ance considerations) to solve them by integrating the services offered by different
types of cloud solutions. Similarly to private clouds, a community cloud is owned
and managed by one or multiple organizations in the community or by a third party
provider, and can be either on or off premises. The community cloud is widely used
by healthcare organizations, financial service firms, and other professional commu-
nities [92], [183].

20

2.2. Virtualization

2.2 Virtualization

The virtualization technology was first developed by IBM in the 1960s to enable con-
current access to a mainframe computer [133]. Conceptually, virtualization, as the name
suggests, is a method to create a virtual version of different types of computing resources
and to allow users to interact with them as if they were real resources. For example, the
implementation of virtual memory allows processes to use much more memory than phys-
ically available. In the same way, virtualization can be implemented across multiple IT
infrastructure layers; operating systems, storage, networking, computation and applica-
tions. Virtualization uses specialized software to simulate the hardware functionality and
create virtual resources [50] [185].

Virtualization is applied within the four cloud layers. In IaaS for example, a virtual
version of resources is created, such as a server or a storage device. In PaaS, the operating
system environment is virtualized. In the case of SaaS, the software applications are also
virtualized. In FaaS, virtualization enables developers to run function instances on top of
a virtualized execution environment, which runs in an isolated manner to provide rapid
scalability and better resource utilization.

There are several forms of virtualization, such as operating system virtualization,
hardware virtualization, desktop virtualization, application virtualization, storage virtu-
alization, and network virtualization.

In the next paragraphs, we present the two most popular virtualization technologies:
hardware virtualization (virtual machines) and operating system-level virtualization (con-
tainers), (see Figure 2.2).

2.2.1 Hardware Virtualization

Hardware virtualization is a method which allows to run several operating systems on
the same physical computer by creating virtual machines (VMs). This means, when using
hardware virtualization, an abstraction layer between the software and the underlying
hardware is created by a software module called a hypervisor or Virtual Machine Monitor
(VMM) (see Figure 2.2a). The hypervisor sits between the host and the guest operating
system to allow access to physical resources and provides resource sharing, performance
isolation, and security between VMs. There are two types of hypervisors [138]:

• Type 1 - Native or Bare-metal Hypervisor:

21

Part , Chapter 2 – Background

Type 1 hypervisors run directly on the physical hardware of the host machine with-
out the need for any base server operating system, meaning that the hypervisor has
direct access to hardware resources (like CPU, memory, network and physical stor-
age). Some examples of this type of hypervisor are VMware ESXi, Citrix XenServer
and Microsoft Hyper-V hypervisor [93].

• Type 2 - Hosted Hypervisor:

Type 2 hypervisors run as an application on a host operating system. The hypervisor
abstracts guest operating systems from the host operating system. Some well-known
examples of this kind of hypervisor are VMware Player and Parallels Desktop [93].

2.2.2 Operating Sysem-level Virtualization

Operating system-level virtualization, also known as container-based virtualization or
containerization, is a method that allows the use of kernel features such as cgroups, names-
paces, chroot to create distinct user space instances known as containers. The containers
run on top of a shared host machine’s kernel and include all the needed components to
run a specific application as shown in Figure 2.2b. Unlike a virtual machine which runs a
full operating system, a container does not require its own version of an operating system;
instead it uses the same OS kernel as the host. This makes containers lightweight com-
pared to virtual machines. As a result, OS-level virtualization reduces the overall CPU,
memory, and networking overhead [160]. LinuX Containers (LXC) [123], Docker [59] and
Rocket (Rkt) [162] are examples of OS-level virtualization.

More details about containerization are given in the next section.

2.3 Containerization

The first implementation of containerization dates back to 1979 in UNIX operating
system with the development of Unix chroot command [106]. The chroot command made
it possible to isolate system processes by changing the apparent root directory for a
running process and its children. Then, the containerization technology evolved and other
features were added to isolate file systems, users, and networking. This led to the creation
of LXC [123] in 2008. In 2013, Docker [59] emerged with a full ecosystem to manage
containers. These technologies gained a huge popularity and many cloud providers are
using them to isolate applications. In the following subsections, we present the container

22

2.3. Containerization

Figure 2.2 – Virtualization architecture

technologies and orchestrators.

2.3.1 Container Technologies

Container technologies, such as LXC and Docker, have evolved over time and are today
used to pack any application as a lightweight, portable container.

1. LXC

LXC is the first complete container technology providing virtualization at the oper-
ating system level and without emulating the physical hardware. It uses the features
of the Linux kernel to create an isolated environment for the containers. Essentially,
LXC containers are isolated by kernel namespaces and can access only their own
set of namespaces. Namespaces are also used to provide the container with its own
network device and virtual IP address. Another kernel mechanism called cgroups is
implemented to limit and isolate the resources used by a group of processes.

2. Docker

Docker is an open source software framework that enables packaging applications
in portable containers. All the required dependencies to run the application are
added in the container, such as code, runtime, system tools, and libraries. Initially,
Docker was using LXC technology; starting from version 0.9, LXC was replaced
with Docker’s libcontainer library to access the Linux kernel’s features [137]. Like
any container technology, Docker containers run processes in isolation and control

23

Part , Chapter 2 – Background

the processes’ access to CPU, memory, and disk space. Docker uses images and
templates to create containers. The created container is then an instance of a specific
image. Images can be created from Dockerfiles, which consist of specific instructions
to build a Docker image.

2.3.2 Container Orchestration

Since the release of Docker in 2013, containers exploded in popularity and have become
the choice of many developers to isolate their applications, because they are easy to deploy
and thus reduce the complexity to manage applications. As the number of containerized
applications has increased, managing them has become more challenging and complex.
This led to the rise of container orchestration technologies. Container orchestration enables
cloud and application providers to decide how to select, deploy, monitor, and dynamically
control the configuration of many containerized applications in the cloud [155].

Container orchestrators make the complexity of the container life cycle easily man-
ageable by automating different tasks such as, provisioning and deployment, scaling con-
tainers based on the load, placing containers on the desired nodes, allocating resources
among containers, load balancing, and health monitoring of containers and hosts.

In the landscape of container orchestration, several platforms exist. Kubernetes [111],
for example, is currently the most popular container orchestration system. It is an open
source orchestrator for Docker containers, able to handle scheduling and manage work-
loads, depending on the demand (see Section 4.2). Besides Kubernetes, other container
orchestration tools exist, such as Docker Swarm [60] and Mesosphere Marathon [130].
Docker Swarm is the native clustering system for Docker, which allows users to manage
multiple containerized applications across multiple nodes. Mesosphere Marathon is also
an open source container orchestration tool for Apache Mesos [17]. It provides various
features to make it easier to deploy and manage containerized applications similarly to
Kubernetes and Docker Swarm.

2.4 Fault Tolerance

This section defines the fault tolerance concept, presents a classification of fault types
in cloud computing systems, introduces the fault detection techniques, and discusses ex-
isting fault tolerance approaches used in cloud computing.

24

2.4. Fault Tolerance

2.4.1 Fault Tolerance Definition

Fault tolerance is the feature that enables a system to fulfill its intended function
regardless of the occurrence or the presence of faults. Such a system could be a computer
system, a network, or a cloud infrastructure. In other words, fault tolerance means that
if a failure occurs, the system must be able to detect, identify, and recover from that
failure. Fault tolerance is generally implemented by error detection and subsequent system
recovery. To recover from failures, actions should be taken during normal functioning of
the system. A fault-tolerant system must be capable of detecting individual hardware or
software failures, power failures or other types of unexpected disasters and still fulfill its
specification [63], [49].

2.4.2 Fault Types

A fault is the adjudged or hypothesized cause of the deviation of the system’s state
from the correct state. The deviation is called an error that may cause a system failure.
A failure is recognized when the system doesn’t perform according to its specification
or because the specification doesn’t adequately describe its function [24]. Examples of
faults are: a short-circuit between two adjacent interconnects, a broken pin, or a software
bug [63].

Various faults can occur in cloud computing. These faults can be classified into three
main categories: transient faults, intermittent faults and permanent faults.

• Transient Faults

A transient fault is a type of fault with a limited duration. It appears as a result of
some temporary condition affecting the normal operation of the system. These faults
include the momentary loss of network connectivity to components and services,
the temporary unavailability of a service, or timeouts that arise when a service is
busy [180]. However, by rolling back the system to a previous state like restarting a
program or retransmitting a message, these faults are corrected [163].

• Intermittent Faults

An intermittent fault is a type of fault that occurs randomly at irregular intervals
then suddenly disappears, making the system switch between normal and faulty
behaviors. This fault usually resembles a malfunction of a system, hardware device
or component. Intermittent faults are difficult to diagnose and repair. An example

25

Part , Chapter 2 – Background

is a hard disk that has become inoperable due to temperature fluctuations, but at
some point returns to normal functioning [140], [40].

• Permanent Faults

A permanent fault is a type of fault that persists (i.e., the system remains in a
malfunctioning state) unless fixed by some external intervention. Generally, a per-
manent fault occurs due to a subsystem failure, physical damage, or design errors.
This type of fault can be associated with recovery events (repair/replacement),
which are controllable and observable. The term failure is usually used to refer to
permanent faults [140], [40].

In the remainder of this thesis, the terms fault and failure refer to the same concept, that
is, the deviation from the regular behavior of the system.

2.4.3 Fault Detection

Different types of faults may occur in cloud computing, impacting the performance of
the cloud system. Fault detection techniques are used to monitor and detect faults, thus
helping maintain the continuity of cloud service operations. The most common detection
technique used in cloud systems is heartbeat, which functions by periodically sending a
signal to determine the reachability and liveness of a specific component. Normally, a
heartbeat is sent periodically by a sender, which is the component requiring a health
check. If a receiver, which is the component expecting and listening for heartbeats, does
not receive a heartbeat after a user defined waiting period, called timeout, then the sender
is considered in failure status. This method is employed for permanent hardware fault
detection, where the detection is concentrated on finding the crashed nodes [118], [169].
Heartbeats are frequently used to detect the liveness of a target cloud system. For instance,
Gokhroo et al. [79] applied the heartbeat mechanism to detect VM liveness. Rahman et
al. [156] and Yadav et al. [197] also deployed this mechanism to detect physical host
and network connection liveness. Xinming et al. [194] and Soualhia et al. [171] used the
heartbeat mechanism to detect cloud service liveness.

2.4.4 Fault Tolerance Approaches

Fault tolerance in cloud computing can be achieved using a range of approaches. These
approaches are mainly divided into two categories: proactive and reactive approaches [49].

26

2.4. Fault Tolerance

These approaches have been proposed and used in cloud systems. Main fault tolerance
approaches are discussed in the following and illustrated in Figure 2.3.

1. Proactive Approaches
Proactive fault tolerance is the capability to predict faults and replace the suspected
components by other healthy components [12]. To prevent complete outage of the
system, these approaches continually monitor and predict faults so that the effects
of faults are prevented before they occur [140]. Proactive fault tolerance in cloud en-
vironments can be achieved through self-healing, preemptive migration, and system
rejuvenation methods.

• Self-Healing is the system’s ability to autonomously recover from faults by
implementing specific failover procedures consisting of supervision tasks to min-
imize degradation effects [164]. A system can identify the faulty conditions
without human intervention and can make its own decisions to restore itself to
normalcy and function as it was before disruption [78]. This technique was used
to automatically handle failures of application instances that run in multiple
virtual machines [12].

• Preemptive Migration is a method that transfers the execution of programs
from one machine to another in real time. It prevents fault occurrence from
impacting the performance of the system. This is achieved through monitoring
and moving components away from nodes that are predicted to fail to more
stable nodes [140]. This method follows the feedback-loop mechanism principle,
which continuously analyzes and monitors an application [12].

• System Rejuvenation is a process of performing periodic reboots for the
system. After each reboot, the system is restarted with a clean state to prevent
the occurrence of more severe faults, such as crashes or software malfunction-
ing [41].

2. Reactive Approaches
Reactive fault tolerance is the capability of the system to reduce the impact of
failures after they have occurred. Methods based on the reactive fault tolerance
approach include checkpoint/restart, job migration, task resubmission, retry, and
replication.

• Checkpoint/Restart is a method that periodically records the system’s state.
In the event of a failure, the system is restarted from the last saved state instead

27

Part , Chapter 2 – Background

of restarting it from the beginning. This method is suitable for long-running
applications [140].

• Job Migration is a method for migrating the job from a faulty machine to
another healthy machine when a fault occurs.

• Task Resubmission is a technique that is mostly used in scientific work-
flow management systems. In this method, if a failed task is detected, it is
resubmitted either to the same or to a different machine for execution [152].

• Retry consists of retrying a failed request multiple times with a configurable
delay between attempts. The use of this method requires distributed services
and applications to be idempotent. Idempotence means that calling the service
once or many times with the same request parameters gives the same result.
This method is effective for random and infrequent faults like temporary net-
work glitches [44], [157].

• Replication is a process where some system components are duplicated on
different resources, so that if a failure occurs, a replicated component called
replica is available to ensure the continuous execution of tasks. This method
makes the system robust, increases availability, and guarantees the execution
of jobs [140].
In our work, we focus on the replication approach that we outline in the next
section.

Figure 2.3 – Overview of fault tolerance approaches in cloud computing

2.5 Replication Strategies

Replication has been widely used to tolerate permanent faults. There are mainly two
types of replication: active and passive, that we present in the following subsections.

28

2.6. Fault Tolerance Metrics

2.5.1 Active Replication

In active replication [69], all replicas are concurrently invoked and each replica pro-
cesses the same request at the same time. To guarantee consistency, all replicas have to
execute the same requests in the same total order deterministically, so that every replica
traverses the same sequence of states and produces the same output. This method makes
failures fully hidden from clients, since if a replica fails, the requests are still handled by
the other replicas. The major drawback of active replication is the determinism constraint,
which makes this approach not suitable for a wide range of applications. Additionally, the
redundancy of processing requires high resource usage.

2.5.2 Passive Replication

In passive replication [69], only one replica (the primary replica) executes the client’s
requests and sends update messages to the backups. If the primary replica fails, one of the
backup replicas takes over the execution process. This method consumes less resources
than active replication and tolerates to a larger extent non-determinism, and therefore it
is more flexible. However, the passive replication incurs high reconfiguration cost in the
case of primary failure (i.e., the cost of electing a new primary).

2.6 Fault Tolerance Metrics

Fault tolerance techniques in cloud computing are evaluated using various metrics.
These metrics are used to identify how the system performs in normal functioning and
the event of failures. The main used metrics are: throughput, response time, availability,
recovery time, and associated overheads [125] [148].

• Throughput: this metric is used to calculate the total number of executed tasks
per unit of time.

• Response Time: this metric measures the amount of time required by a system,
an algorithm, or a component to respond to a request.

• Availability: it is a measure of the delivery of correct service over a specific period
of time with respect to the alternation of correct and incorrect service [24].

• Recovery Time: is the time that it takes the system to recover from a failure.

29

Part , Chapter 2 – Background

• Overhead: is the amount of extra resources (CPU, memory, etc.) involved while
executing a fault tolerance algorithm. Overhead is usually due to task movements,
inter-process or inter-processor communication. This should be minimized so that a
fault tolerance technique can be utilized efficiently.

2.7 Fault Tolerance in Cloud Layers

Cloud computing services are organized into different layers (as see in Section 2.1.1)
which can be affected by various types of faults. Faults in a particular layer usually affect
the services provided by the layers above it. For instance, if the operating system in
the PaaS crashes, the applications running on top of the operating system at the SaaS
layer will stop working. Similarly, faults in the physical hardware of the IaaS layer will
conduct to a fault in the functions of the FaaS layer, which in turn will impact SaaS
services. Therefore, fault tolerance in cloud computing is applied according to the layered
architecture where faults in IaaS may impact its upper layers (i.e; PaaS, FaaS and SaaS) as
shown in Figure 2.4. Fault tolerant techniques may be implemented in the different layers
in order to guarantee the availability of the delivered services. In IaaS, for example, many
proactive and reactive fault tolerance approaches are used to maintain the availability of
the components. For example, some of them are preemptive migration approach handles
the VM failures by replacing the faulty virtual machine with a non-faulty virtual machine,
VM checkpointing periodically saves the states of a virtual machine and restarting the VM
execution from the last checkpoint in case of failures. Various researchers have proposed
fault tolerance solutions for cloud systems. For instance, J.Cao et al. [43] have proposed a
checkpoint as a service in a VM for automatic checkpointing of long running applications.

In this thesis, we focus on the fault tolerance approaches that can be integrated in the
FaaS layer. In the next chapter, we present a state-of-the-art of fault tolerance techniques
applied in the FaaS layer.

2.8 Summary

Cloud computing is the delivery of multiple services over the Internet. These services
are classified into four categories: Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), Function as a Service (FaaS), and Software as a Service (SaaS), which provide in-
frastructure resources, application platform, and software as services to the users. A cloud

30

2.8. Summary

Figure 2.4 – Fault tolerance in cloud layers

can be public, private, hybrid, or a community cloud and relies on virtualization and or-
chestration technologies. Virtualization creates a virtual version of computing resources
using software technologies such as virtual machines (VMs) and containers. Container or-
chestrators automate and manage the deployment of a cluster of containers. For example,
Kubernetes is the widely used container orchestration tool in cloud environments.

In cloud computing, faults may occur and they can be transient, intermittent or perma-
nent faults. Depending on the type of faults, several fault tolerance approaches can be used
to deal with them such as proactive and reactive approaches. The proactive approaches
avoid recovery from faults by predicting and replacing the suspected components. These
approaches include self-healing, preemptive migration, and system rejuvenation. The re-
active approaches reduce the effect of faults when they occur in the system. Reactive fault
tolerance can be implemented using checkpoint/restart, job migration, task resubmission,
retry, and replication (i.e., active and passive replication).

The next chapter presents the Function as a Service cloud service model, providing
an overview of its core features, benefits, challenges and its existing fault tolerance ap-
proaches.

31

Chapter 3

FUNCTION AS A SERVICE

Function as a Service (FaaS) is a service model of cloud computing that enables de-
velopers to execute functions without server management. This chapter is organized as
follows. In Section 3.1, we first define FaaS and its main features. Then, in Section 3.2
we present the benefits of FaaS. In Section 3.3, we discuss the challenges in FaaS and
the proposed solutions to overcome each challenge. In Section 3.4, we present various use
cases of FaaS. In Section 3.5, we introduce the existing FaaS platforms. In Section 3.6, we
provide representative works about fault tolerance in FaaS and compare them with the
work of this thesis. Finally, in Section 3.7 we summarize the chapter.

3.1 Function as a Service Definition

Function as a Service (FaaS) is a new cloud service model that abstracts away servers
and infrastructure management from developers. The developers focus on writing the code
of the application while the responsibility of managing and configuring the underlying
resources is left to the FaaS provider. In this model, applications are in the form of
functions. Functions are pieces of code that execute a specific task. In FaaS, functions are
short-lived and run in a stateless container that is event-triggered. Also, these functions
can automatically scale and are billed only for the resources used during their execution.
This definition captures the main features of FaaS that are explained next.

Figure 3.1 shows the different responsibilities of FaaS providers and application devel-
opers.

3.1.1 Features of FaaS

The main features of the FaaS model are:

33

Part , Chapter 3 – Function as a Service

Figure 3.1 – Responsibilities of application developers and FaaS providers

Stateless

In the context of FaaS, stateless means that functions do not retain state across invo-
cations and invocations are completely independent from each other. Stateless function
are usable in different scenarios, such as isolated data processing. However, if shared state
is required, then functions can make use of external services such as object stores (e.g.
Amazon S3 [11]) to store shared state across requests. We call such FaaS functions that
persist state in external storage services stateful functions (see [200]).

Event-trigger

Functions in FaaS are event-driven. A function listens for particular events which
trigger its execution, i.e. when an event is received, a function instance is spun up and the
request is processed. Many events can be used, such as HTTP requests, database events,
queue services, monitoring alerts, file uploads, scheduled events.

Short-lived

Unlike typical server-based applications that are always up and running, waiting for
requests, FaaS applications are designed to be short-lived processes and executed on de-
mand. Therefore, functions can only run for a few milliseconds to a few minutes when
called and then shut down until the next invocation happens. Some FaaS providers set
a maximum lifetime for the function before they kill it. For example, Amazon Lambda
functions can run for up to 15 minutes [115], Microsoft Azure Functions for up to 10
minutes [31], and Google Cloud Functions have a timeout of 9 minutes [77].

34

3.1. Function as a Service Definition

Pay as you go

As opposed to Infrastructure as a Service deployments, where developers pay for the
reserved resources even when the application is not running, FaaS uses a different pricing
approach based on pay-per-use billing model. The users only pay for resources that had
been used during the execution of their function and not for idle time. As the execution
time of functions is short, users are charged in fine-grained time units (such as hundreds
of milliseconds).

3.1.2 Execution Process of FaaS

When using the FaaS model, the developer has to focus on writing code and deploying
it in a managed environment. A typical execution process of the FaaS function is depicted
in Figure 3.2 and described as follows:

• Preparing function code: the developer writes the application code as a set of
functions and gives it to the FaaS provider. One function only performs one specific
task. Functions are written in any programming language, such as Java, Python,
and Go.

• Setting up an event: the developer configures an event to trigger the execution of
her function. There are a wide variety of events. The HTTP event is the commonly
used one.

• Triggering the execution: the user sends a request and waits for the response.

• Executing the function: the function execution is the responsibility of the FaaS
provider (it creates a container, loads user code, prepares a runtime). When the
event is received, the provider either uses an existing function instance, or, if there
is no instance currently running, it starts a new one to execute the function. After
the execution is completed, the function instance is killed and the resources are
released.

• Sending the response to the user: the user receives the result of the executed
function.

35

Part , Chapter 3 – Function as a Service

Figure 3.2 – Execution process of FaaS

3.2 Benefits

The FaaS service model offers numerous benefits to its users. These benefits include
simplified development, ease of deployment and updates, cost effectiveness, and scalability.

Simplified development

FaaS offers a high level of abstraction to the application developers, which means the
developers do not need to concern themselves with the low-level details related to infras-
tructure management including network, servers, operating systems, or storage. The FaaS
provider takes care of most operational concerns of managing servers and other resources,
such as provisioning, monitoring, maintenance, scalability, and fault tolerance. This makes
developers focus more on the development of the functions defining the application, thus
increasing their productivity and reducing development time.

Ease of deployment and updates

FaaS facilitates application deployment as the provider manages all deployment-related
dependencies. Additionally, the code can be quickly deployed, since the application is
composed of independent functions. If any update is required or a new feature must be
added to the application, it is not necessary to make changes to the whole application,
only the function implementing this feature has to be updated, which saves time.

Cost effectiveness

FaaS employs a flexible pricing model where customers are charged only for the re-
sources consumed during the execution of their functions. There is no cost while their
functions are in an idle state. The cloud providers reduce the operational costs required
to execute functions. This saves user operating costs for tasks such as installation, main-
tenance, patching, and support.

36

3.3. Challenges

Auto-scaling

Developers benefit from the FaaS model by not worrying about the application scal-
ability, because the cloud provider takes over this responsibility and handles all of the
scaling on demand. Scaling in FaaS happens at the function level. If there are several si-
multaneous requests to a function, then the provider will start up new function instances
to handle the load. The function automatically scales down, when demand drops. This
dynamic nature of auto-scaling allows more workloads to run and leads to an efficient use
of resources.

3.3 Challenges

Besides all the benefits of abstracting away from the underlying “server” infrastructure
that the FaaS offering brings, there are many hidden challenges. Let’s take a look at the
following challenges with FaaS and how they can be overcome.

Vendor Lock-in

One major concern that has appeared with FaaS is vendor lock-in. Lock-in tends
to involve mainly the vendor-specific features and services, like, databases and storage.
If a user decides to switch vendors, she will need to change the code and update her
deployment scripts to use the Command Line Interface (CLI) of the new provider. This
is because each provider has his own CLI to package and publish functions. Additionally,
the technical differences and their associated pricing that vary from vendor to vendor
make switching difficult and costly. For instance, AWS Lambda functions cannot run on
Google Cloud Function because Amazon’s S3 and Google’s Cloud Storage do not have
the same back-end mechanisms and APIs.

A few research studies have tackled this issue. In [199] the authors focused on analyzing
and classifying the different lock-in types encountered during the migration of FaaS-
based applications across commercial providers. A method for assessing the portability of
FaaS-based applications is presented in [198]. It checks the portability for a chosen cloud
provider and analyses the included source code artifacts to identify possible migration
issues.

37

Part , Chapter 3 – Function as a Service

Cold Start Delay

FaaS functions face a significantly increased start-up latency, also known as cold start.
A FaaS function is encapsulated in containers. When a user invokes a function that has
not been executed for a long time, this requires the creation of a new container, and
the initialization of the execution environment. As a result, the request will take a long
time to be executed. This phenomenon also happens when scaling up function instances
to handle traffic. Each function instance creation incurs a delay until the instance can
process requests. This can lead to performance issues and have a significant impact on
the user’s response time.

The concept of cold start is depicted in Figure 3.3.

Figure 3.3 – Cold start

In the last few years, cold-start delays have became a key issue and one of the most
measured metric to evaluate FaaS providers. A series of research works have investigated
the cold start latencies of major FaaS platforms (i.e., AWS, Azure and Google platforms).
For example, McGrath et al. [131] have studied the cold start times for popular FaaS ven-
dors while developing their serverless computing platform model. Mikhail [54] compared
the three cloud providers in terms of cold start. Other studies have analyzed the factors
that contribute to cold start delays. Wang et al. [189], Jackson et al. [98] and Manner
et al. [128] found that the cold-start execution times can be impacted by many factors
such as, language runtime, the size of the function, and the sandbox technology used for
function instances.

Numerous research studies have proposed solutions to optimize the cold start problem.
Some works [62], [184], [177], [42], [72] use snapshotting techniques to reduce the start-up
latencies of functions. This consists of storing the image of a fully-booted function on disk
in order to enable a faster invocation instead of booting a function from scratch. Another
approach has been proposed, based on using the container pool strategy [135], [196], [122]
that keeps a pool of containers that are already initialized with the software environment.
If a request comes in, the function code is loaded directly into these containers, without
having to deploy a new container.

38

3.3. Challenges

Limited Execution Time

FaaS functions are designed to be short-lived processes and are limited in their execu-
tion time. This limits the kinds of applications that can run in FaaS environments because
there are some scenarios where long-running logic is necessary, such as machine learning
algorithms.

To extend the use of FaaS for long-running applications, it is possible to decompose
long-running applications into smaller functions that individually take less time to run.
For this, FaaS providers come with orchestration frameworks to organize chained work-
flows of functions and to facilitate communication between them when they have data
dependencies. AWS Step Functions [27], Azure Durable Functions [32] and IBM Com-
poser [95] are examples of these orchestration tools. Baldini et al. [35] presented also a
solution for sequential compositions on top of Apache OpenWhisk.

Debugging, Logging and Monitoring

FaaS has changed the way applications are designed and built, and that changed the
debugging process as well. Debugging a FaaS application becomes much more challeng-
ing and complex compared to monolithic front-ends, because it involves many functions.
When multiple functions or services are integrated, debugging becomes difficult in a local
environment since most environmental dependencies are only available at runtime [119].
Additionally, remote debugging is not an option, as FaaS platforms do not allow access
to the server and operating system levels. In this context, the most used method to de-
bug errors is logging, but since FaaS functions are short-lived, the state of the function
container cannot be preserved and subsequent calls to the same function will not be able
to access the data from the previous runs. In this case it is hard to collect the required
information for debugging.

This problem led commercial vendors to build tools that address the challenges of
FaaS development. For example, Epsagon [65] and Thundra [179] are used to monitor,
debug, and help troubleshoot problems. Manner et al. [129] also addressed this issue and
proposed an approach that combines monitoring and logging. It is based on alerts and
appropriate log messages to provide semi-automatic troubleshooting for cloud functions.

39

Part , Chapter 3 – Function as a Service

Security Concerns

FaaS applications raise certain security concerns. As applications are integrated with
database services, back-end cloud services, and connected through networks and events,
they are susceptible to a variety of security vulnerabilities. For example, event-data in-
jection [66] happens when an untrusted and unauthorized data entry is passed to an
application and executed without validation. This type of injection can attack the source
code and other secrets of functions stored in the container. Insecure deployment con-
figuration and broken access control allow an attacker to launch Denial of Service or
Denial-of-Wallet [61] attacks. These attacks exploit functions with long timeouts to cause
increased cost or get unauthorized access to function resources. Another regular vulner-
ability in libraries and platform code, referred to as poisoning the well attacks [190], is
where a malicious code is inserted into a library that many applications depend on.

Several commercial security solutions exist to solve some of these problems [170, 21,
176, 175]. For example, Snyk [170] is one of the popular solutions used to secure the
FaaS applications by finding, fixing, and tracking potential vulnerabilities in open-source
dependencies. Aqua [21] is a tool that continually scans container images and function’s
code to ensure that developers don’t introduce vulnerabilities in a library, embedded
secrets (keys and tokens), or permissions. Sysdig [176] is a platform that provides runtime
threats detection and response to secure function containers. SteamAlert [175] is a real-
time data analysis framework built upon Amazon Lambda and used to scan log data for
incident detection and response.

Researchers has also tackled the security issues and proposed various solutions [165,
100, 80, 58]. In [165], the authors developed a workflow-sensitive authorization model for
FaaS applications. It proactively checks external requests’ permissions for all functions of a
workflow. This allows the application to reject illegal requests as soon as possible, thereby
reducing the attack surface of the application. Jegan et al. [100] present SecLambda, an
extensible security framework for performing sophisticated security tasks to protect a
FaaS application and achieve control flow integrity, credential protection, and DoS rate
limiting. In [80], the authors propose a security and privacy-based lightweight framework
called iFaaSBus, that processes the data coming from IoT devices. Datta et al. [58] propose
valve, a transparent solution that enables fine-grained control of information flows of
functions and provides security guarantees.

Figure 3.4 summarizes the mentioned FaaS issues, such as cold start and vendor lock-in.
We discuss the challenge of fault tolerance and potential ways to address it in Section 3.6.

40

3.4. Use Cases

Figure 3.4 – Overview of the challenges in FaaS

3.4 Use Cases

The FaaS model is typically used in various use cases. These use cases include different
classes of applications. This section attempts to cover some of these applications, namely,
video processing, scientific computing, internet of things, and machine learning.

Video Processing

Just after the rise of FaaS, experts and researchers started giving a lot of interest in
how to use FaaS for video processing. For instance, Ao et al. [13] proposed Sprocket, a
framework that allows developers to orchestrate functions in video processing and achieve
high parallelism, low latency, and low cost. A measurement study is presented in [201]
to analyze the impact of function resource configurations and function implementation
schemes on the performance of video processing applications.

Scientific Computing

A lot of efforts have been done to identify the possible ways to deploy FaaS for scientific
applications. Existing studies, such as [47] demonstrated the feasibility of using the FaaS
model for scientific and high-performance computing by presenting various prototypes and
their respective measurements. In [172], the authors proposed a high-performance FaaS
platform that enables the execution of scientific applications. Shankar et al. [167] designed
a system for executing linear algebra programs on FaaS architectures. A prototype for

41

Part , Chapter 3 – Function as a Service

executing the scientific workflows in FaaS environments has been developed and evaluated
by Malawski et al. [127].

Internet of Things (IoT) and Edge Applications

The FaaS model has been exploited in many IoT applications. Herrera-Quintero et
al. [88] used microservices and FaaS functions in their smart IoT approach to implement
an intelligent transportation system. A fog function programming model for data-intensive
IoT services is proposed in [48] to improve efficiency and flexibility of existing frameworks.
In another work, Persson et al. [150] proposed Kappa, a framework that uses the FaaS
model for IoT to push computation to the very edge of the network.

Many FaaS platforms have been developed to deploy functions at the edge [151, 158,
187]. For example, Pfandzelter et al. [151] proposed a lightweight FaaS platform adapted
to edge computing for faster execution. Rausch et al. [158] proposed and implemented
a platform to develop and operate edge AI functions in edge cloud systems. Wang et
al. [187] developed a platform that applies model-driven resource management algorithms
for running latency-sensitive applications on edge resources. Amazon has also joined this
field and allowed application developers to place Lambda functions in edge nodes with
Lambda@Edge [116].

Machine Learning (ML)

The benefits of FaaS have triggered a growing interest on how to use it in machine
learning. Recently, research from both academia and industrial communities have focused
their attentions toward the FaaS model for those applications. For instance, Xu et al. [195]
found that deep neural networks could benefit from the FaaS paradigm, since users are
allowed to decompose complex model training into multiple functions without managing
the server. A novel FaaS architecture for the deployment of neural networks is discussed
in [182]. Furthermore, various frameworks have been proposed to deploy machine learning
in FaaS environments. For example, SIREN [188] is an asynchronous distributed machine
learning framework based on FaaS. AWS [7] also provided one example of ML training
in AWS Lambda using SageMaker [6] and AutoGluon [23]. SageMaker [6], is a fully man-
aged service that provides the necessary tools to create, train, and deploy ML models.
AutoGluon [23], is an open-source library that automates the ML tasks.

42

3.5. FaaS Platforms

3.5 FaaS Platforms

FaaS platforms are systems that implement the FaaS service model. At the beginning
of 2014, only the major cloud providers like Amazon offered such a service, but since 2016,
many open-source frameworks have been created. In this section, we present an overview
of the most well-known platforms.

3.5.1 Commercial Platforms

Many cloud providers have adopted the FaaS service model and offered their own so-
lutions, namely, AWS Lambda [10], Google Cloud Functions [52], Microsoft Azure Func-
tions [33], IBM Cloud Functions [94], Oracle Functions [146], and Alibaba Functions [3].

Below is the description of three widely used platforms provided by Amazon, Microsoft,
and Google.

1. AWS Lambda

AWS Lambda [10] was the first public FaaS platform, released in 2014 by Amazon.
Lambda functions are deployed via isolated Linux containers and executed on a
multi-tenant cluster of machines managed by AWS. The platform provides support
for many languages and runtimes, including Java, C#, Python and Node.js. Each
lambda function can be deployed in a particular region and invoked using variety
of event sources (e.g,. DynamoDB [4], S3 object storage [5]). When the number of
events increases, Lambda scales automatically to process each trigger individually.
Functions are charged based on the amount of memory allocated and for every 100
milliseconds of usage. The usage is measured in GB-second (Gigabyte-second), which
is the number of seconds multiplied by the number of GB of memory consumed.

2. Microsoft Azure Functions

Azure Functions [33] is a public FaaS platform, launched by Microsoft in 2016. It
was designed to extend the existing Azure application platform with capabilities to
load user function code in containers. The loaded functions can be written in C#,
F#, Node.js, Python, PHP, batch. The NuGet open source package manager and
the Node Package Manager for JavaScript are also supported, allowing developers
to use popular libraries. Similarly to AWS, Azure Functions can be triggered by
Azure services, such as Azure Blob storage [28], the Azure SQL database [30], and
the Azure Queue storage [29]. Azure Functions offer automatic scaling. When the

43

Part , Chapter 3 – Function as a Service

traffic increases, the function is automatically scaled out and when it is reduced,
the number of function instances is scaled down. Azure has identical free monthly
quotas and charges customers in the same way as AWS. Besides, Microsoft does not
charge for allocated memory but for used memory.

3. Google Cloud Functions
Google released its own FaaS platform in 2016, called Google Cloud Functions [52].
It offers a very similar set of features compared to AWS and Azure. Each Function
runs in gVisor [87] container sandboxes. GVisor is a sandboxed container runtime
that provides secure isolation for containers. Google Cloud Functions supports func-
tions developed in JavaScript, Python 3, Go, and Java runtimes. Functions can be
triggered by several events, such as HTTP, Cloud Pub/Sub, and other sources like
Firebase [71], and in response to Google Cloud Logging events. Google Cloud Func-
tions implement automatic scaling, which allows to scale up as many instances as
needed based on load, and scale down to zero when there is no traffic. Google Cloud
Functions offers 1 million extra free requests per month compared to AWS and
Azure, but it is considered more expensive for high-volume.

There has been an increasing interest of the academic community in comparing dif-
ferent FaaS platform solutions. Lee et al. [117] investigated the performance of Amazon
Lambda, Microsoft Azure Functions, Google Functions, and IBM OpenWhisk regarding
the CPU performance, network bandwidth, and file I/O throughput. They also presented
a comparison of their features. They found that AWS Lambda outperforms other public
cloud solutions. Lynn et al. [124] presented a detailed high-level technical comparison of
seven enterprise computing platforms, including AWS Lambda, Microsoft Azure Func-
tions, and Google Cloud Functions. In another study by Figiela et al. [70], a framework
for performance evaluation of cloud functions has been developed and applied to AWS
Lambda, Azure Functions, and Google Cloud Functions. Similiary, Timon et al. [34] devel-
oped and used a microbenchmark to evaluate the performance and cost model of popular
public FaaS solutions.

The increasing interest to understand the performance behavior of the different com-
mercial FaaS platforms has resulted in developing benchmark suites and tools. For exam-
ple, a FaaS benchmarking framework was developed by Pellegrini et al. [149] to evaluate
the performance of FaaS platforms. It allows to collect different metrics including ex-
ecution time, routing time, throughput, and response time. It offers micro-benchmarks
and application-based functions. Martin et al. [84] also designed BeFaaS, an extensible

44

3.5. FaaS Platforms

benchmark framework for FaaS environments. It allows to evaluate arbitrarily complex
deployments in which functions are deployed on multiple FaaS platforms and distributed
across cloud, edge, and fog nodes.

Kim et al. [107] proposed FunctionBench, a benchmark suite that allows users to
evaluate various cloud FaaS functions. In addition to micro-benchmarks, FunctionBench
offers realistic application-based functions. The source code of functions is customized
for AWS Lambda, Google Cloud Functions, and Azure Functions. Another benchmark
suites for FaaS called FaaSdom [126] and SeBS [55] have been proposed to assess the
performance of AWS lambda, Google Cloud Functions, and Azure Functions.

3.5.2 Open Source Platforms

Unlike existing commercial FaaS platforms, open-source FaaS frameworks allow de-
velopers to deploy and manage functions on self-hosted clouds with no vendor lock-in
by using technologies, such as Docker Swarm and Kubernetes. For example, the most
well-known solutions are Kubeless [110], Fission [73], OpenFaaS [143], Knative [108], and
OpenWhisk [19]. In this section we describe Knative [108], and OpenWhisk [19]. We dis-
cuss Kubeless, Fission, and OpenFaaS in more detail in Chapter 4.

1. Knative
Knative [108] is an open-source FaaS framework, developed by Google in 2018. It
runs on top of Kubernetes, which is an orchestration tool for container management.
The platform consists of three main components: Build, Eventing, and Serving. Build
is a deployment tool that helps in building container images from source code, and
deploying them via Kubernetes. Eventing is a component that provides an event
driven framework to manage and deliver events between containers. Serving consists
of a request-driven model for serving workloads. This component enables automatic
scaling of containers based on the received requests. Knative also uses the Istio [97]
service mesh networking framework for efficient and flexible traffic routing. Knative
functions can be written in many programming languages, such as, C#, Go, Java,
Node.js, PHP, Python, Ruby, and Rust. Multiple eventing sources can be configured
to invoke functions, such as GitHub, Apache CouchDB, Cron, Kafka, Camel, and
SQS.

2. Apache OpenWhisk
Apache OpenWhisk [19] is an open-source FaaS platform, that is a part of Apache

45

Part , Chapter 3 – Function as a Service

Software Foundation [178]. It was developed by a research group at IBM and was
released in 2016. It is built on top of Kubernetes. In the context of OpenWhisk,
a function is named action, and a trigger represents an event that can occur from
different sources. A rule associates a trigger to an action. OpenWhisk includes many
components: a controller component, an invoker component, an Nginx webserver, an
Apache Kafka component, and a CouchDB database for storing the configuration
data. The controller component manages the different entities, handles triggers and
routes requests to the invoker. The invoker launches isolated containers to execute
the actions. The Nginx webserver acts as the reverse proxy for the system. The Kafka
component controls the connection between the controller and invokers. OpenWhisk
supports the execution of actions written in Node.js, Java, Python, Go, Swift, PHP
and Ruby. Actions can be triggered by different event sources, including databases,
timers, message queues, or websites like Slack or GitHub.

After the FaaS frameworks were released, they received attention from the scientific com-
munity, resulting in several comparative studies. For example, Mohanty et al. [136] pre-
sented a feature comparison and performance evaluation of Kubeless, OpenFaaS, Fission,
and Apache OpenWhisk. They also provided an insight into the design choices of each
framework. In [121] the authors focused on the architectural blocks that impact the per-
formance of the open-source FaaS frameworks. Li et al. [120] provided a comprehensive
analysis of the performance and the impact of the supported scaling algorithms of open-
source FaaS frameworks.

3.6 Fault Tolerance in FaaS

We identified in Section 3.3 the key challenges of FaaS and the various solutions
proposed to overcome each challenge. In this section, we consider the fault tolerance
challenge in the context of FaaS and the used mechanisms to recover from failures. In terms
of related work, and considering how recently FaaS was introduced, existing literature on
the subject of fault tolerance is relatively limited and most FaaS platforms do not pay
enough attention to fault tolerance, which is crucial especially for real time applications
like safety-critical IoT applications [147].

The commonly used mechanism to handle function failures is the retry mechanism. All
major commercial platforms, such as AWS Lambda [9, 25], Google Cloud Functions [81]
and Microsoft Azure Functions [51] provide automatic retry functionality to handle fail-

46

3.6. Fault Tolerance in FaaS

ures and timeouts. For instance, AWS Lambda retries asynchronous invocations up to
two times with a delay between the retries. Some open-source FaaS platforms also sup-
port the retry mechanism, including Fission and OpenFaaS, which retries asynchronous
invocations with an exponential back-off [75, 142].

Fault tolerance in FaaS systems can also be supported through using further services
provided by cloud platforms. For instance, using Azure load-balancing and event ingestion
services, developers can deploy functions in different regions in an active-active or active-
passive pattern, which provides protection against disaster scenarios [26]. Using AWS
services, developers can mitigate against a regional disaster by replicating applications
across regions in an active-active and active-passive setup [1, 2].

Using FaaS orchestration services (such as Google Workflows [82], AWS Step Func-
tions [27], or Azure Durable Functions [32]), developers can define workflows that coordi-
nate functions, automatically retry failed or timed-out invocations, and run custom code
to handle different types of errors. For instance, using AWS Step Functions, developers
can resume failed workflows from the state at which they failed [161]. Azure Durable
Functions also handles failures by periodically checkpointing execution history into stor-
age tables. The used storage tables use eventual consistency patterns, which guarantee
that no data is lost in the event of a crash or loss of connection during a checkpoint [91].

Fault tolerance is also provided by open-source orchestration frameworks, such as
Apache OpenWhisk Composer [20] or Faas-flow for OpenFaaS [67] that create a workflow
which can re-execute a function if a failure occurs.

Recent research works are investigating fault tolerance for stateful FaaS applications,
composed of multiple functions and interacting with storage services. Sreekanti et al. [173]
propose inserting a layer between commodity FaaS platforms and key-value stores to
ensure atomic visibility of storage updates. The proposed system assures fault tolerance
by enforcing the read atomic consistency guarantee when retrying function executions.
Zhang et al. [200] describes a library and runtime for building transactional, fault-tolerant
workflows on existing FaaS platforms. The system supports transactions within and across
functions through applying a log-based fault tolerance approach. Jia et al. [101] provide
also Boki, a FaaS runtime that offers an API for stateful applications. The API enables
the applications to manage their state and uses a log-based mechanism to achieve fault
tolerance.

Wu et al. [192] present HydroCache, a distributed cache layer for FaaS systems, which
provides transactional causal consistency for stateful functions. The system relies on Anna

47

Part , Chapter 3 – Function as a Service

storage [191], a key-value state backend that supports fault tolerance. To ensure fault
tolerance, transactions are retried with the same key version in case of storage node failure
or network delay. Additionally, the node failure is detected by the heartbeat mechanism
and unfinished functions of the failed node are re-scheduled on another node.

Another recent work presented in [89], Heus et al. introduce and implement a pro-
gramming model for transactions across stateful FaaS functions. The solution is built on
top of Apache Flink StateFun [15], an open-source platform for stateful FaaS functions to
manage state and provide fault tolerance. The system deals with failures via checkpoint-
ing/snapshots to achieve exactly-once-processing guarantees.

Zhang et al. [202] propose Kappa, a programming framework that facilitates FaaS
functions development and periodically checkpoints function results in order to enable
failure recovery. In [45], Carver et al. present a framework called Wukong for building
parallel FaaS applications atop AWS Lambda. In case of failure, the automatic retry
mechanism of AWS Lambda is used to re-execute the failed function. Karhula et al. [105]
use Docker and CRIU (Checkpoint/Restore In Userspace) for checkpointing and resuming
long-running functions that run on IoT devices as well as for migrating these functions
to different IoT devices. These mechanisms could be used as building blocks for a fault-
tolerant FaaS system, but this work does not provide a complete, practical implementation
of such a system.

In Table 3.1, we provide a summary of the aforementioned related work and our
solution, which will be described in detail in Chapter 5. We compare them based on a
set of features, namely, the environment type, the targeted applications, the fault type,
the fault tolerance mechanism, and the additional services requirement. The proposed
solutions rely on reactive-based fault tolerance approaches including retry, checkpointing,
and migration to tolerate transient and permanent faults. Among the discussed studies,
some of them focused on state consistency of stateful applications in the face of transient
and permanent faults [173], [192]. Their solutions mitigate the problem of duplicated
data if a function is retried. Other solutions [89], [202] apply the checkpoint mechanism
to deal with transient and permanent failures for stateful applications. All the solutions
explicitly targeting stateful applications rely on programming models and that are not
included in the core FaaS model, which only supports dispatching functions in response
to events. In the table, a solution is considered to require additional services when it relies
on services beyond those provided by the core FaaS model; for example, when it relies
on load balancing, event injection, and workflow orchestration services [27, 32, 82], or

48

3.6. Fault Tolerance in FaaS

specialized, state-aware programming models [173, 200, 101, 192, 89, 202, 45].
The solution proposed in this thesis relies on having the replicas at different nodes in

active-active and active-passive setup to achieve high availability for FaaS functions in
case of transient and permanent faults. Our solution differs from the other solutions in
one major way; that is, their design involves additional services working in conjunction,
while our solution does not use any additional services. Such solutions impose complexity
on FaaS developers.

In short, the table shows that there is no existing solution that handles both transient
and permanent faults and supports fault tolerance mechanisms beyond retry without
imposing the use of services outside those of the core FaaS model. Our solution is the only
one that has these characteristics, integrating two fault tolerance mechanisms (active and
passive replication) within the FaaS runtime without imposing additional complexity to
developers.

49

Part , Chapter 3 – Function as a Service

Ta
bl

e
3.

1
–

C
om

pa
ris

on
of

fa
ul

t-
to

le
ra

nt
so

lu
tio

ns
in

Fa
aS

en
vi

ro
nm

en
ts

50

3.7. Summary

3.7 Summary

FaaS is a new paradigm of cloud computing that enables developers to execute their
functions in response to events. With FaaS, the developers do not have to worry about
the management of infrastructure and their functions are scaled automatically as needed.
FaaS also offers a pay-per-use billing model where customers pay only for the resources
used during the execution of the function. Despite all these benefits, FaaS is still immature
and suffers from multiple limitations. For example, FaaS providers have a vendor-lock in
problem. There is also a lack of tools that help debugging and managing FaaS applications.
Another major issue in FaaS environments is the cold start of functions. FaaS offers
support for a wide variety of use cases, including video processing, scientific computing
and IoT applications. Additionally, FaaS is offered by many big companies like Amazon,
Google and Microsoft. Some open source frameworks also have been released to use the
FaaS model. Most of the existing FaaS platforms have a retry mechanism to tolerate
faults. We analysed existing studies that discuss fault tolerance in FaaS environment and
identified their limitations. We found that there is no system that sufficiently supports
fault tolerance and does not require complex configurations for FaaS users. In the next
chapter, we evaluate three Kubernetes-native FaaS frameworks and we select one of them
for our work.

51

Chapter 4

CHOOSING A FAAS FRAMEWORK

This chapter presents our method to select a suitable FaaS framework in order to
integrate FaaS fault tolerance mechanisms. We first provide a list of criteria in Section 4.1
that we have used to make a first selection among available open source FaaS frameworks.
The selected frameworks offer the feature of no vendor lock-in and are all based on Kuber-
netes [111]. At the time of doing this work in 2018, the selected frameworks were gaining
large-scale adoption within the community. We evaluated their performance and decided
which framework is best suited for our work.

This chapter is organized as follows. Section 4.1 provides the list of selection criteria.
Section 4.2 provides an overview of Kubernetes. Section 4.3 presents a structured overview
of the three frameworks. Section 4.4 presents their evaluation. Section 4.5 elaborates on
selecting the most appropriate framework for our use case. Finally, Section 4.6 concludes
this chapter.

4.1 Criteria

In order to choose the framework to use in our work, we started by making a first
selection of frameworks among available ones. Afterwards, we evaluated them. The first
selection was based on the following criteria.

• Open source: We only considered open-source frameworks that do not incur vendor
lock-in. This allows us to make modifications to source code and add new features.
In 2018, several open source FaaS frameworks have emerged based on open-source
containerization technologies, such as Docker [59] and Kubernetes.

• Popularity and Community Size: We considered the frameworks that have an
active development community that contributes to testing, developing, and releasing
new versions. As all open-source FaaS frameworks are hosted on GitHub, we can
easily check the number of GitHub stars of each framework to get an idea of its

53

Part , Chapter 4 – Choosing a FaaS Framework

popularity.

• Documentation and Support: We considered frameworks having an official tech-
nical documentation to guide in the use of the framework. If a technical documenta-
tion exists, it has to be updated and easily accessible to provide detailed information
on the framework’s architecture. The framework should also have community sup-
port on forums or chat channels, such as Slack channels, to provide some help or
allows chatting with contributors.

• Extensibility: As we want to integrate a fault tolerance strategy, we needed an
extensible framework with code available in a public repository to allow making the
required changes for our work.

• Ease of Use: We considered frameworks that offer ease of use and simplicity and
provide a CLI interface to manage functions.

Taking into account the defined criteria, we selected three FaaS frameworks: Fis-
sion [73], Kubeless [110], and OpenFaaS [143]. At the time of choosing, the three frame-
works were the first FaaS open source offerings and they have gained large-scale adoption
within the community. Therefore, from the popularity/community point of view, the three
frameworks have an active community. For example, at the time of writing, the number
of GitHub stars is 6545 for Fission, 6813 for Kubeless and 20547 for OpenFaaS. Each
framework has also many programmers contributing to its development. The number of
Github contributors is 135 for Fission, 116 for Kubeless, and 174 for OpenFaaS. The code
source of each framework is publicly available on GitHub (i.e., Fission [74], Kubeless [109]
and OpenFaaS [145]).

4.2 Overview of Kubernetes

In this section, we present Kubernetes, a container orchestration platform. The three
selected FaaS frameworks, Fission, Kubeless, and OpenFaaS are specifically designed to
operate on Kubernetes.

4.2.1 Kubernetes Architecture

Kubernetes [111] is an extensible open source platform used to orchestrate and man-
age containerized applications. Kubernetes uses pods, deployments, and services to run
applications on a cluster.

54

4.2. Overview of Kubernetes

1. Pods: are the smallest deployable units of an application in Kubernetes. They
encapsulate either a single container or a group of containers that are running in
the same execution environment and sharing an IP address.

2. Deployments: are one of the Kubernetes objects used to describe how to run an
application container as a pod and control the number of replicas.

3. Services: are abstractions that maintain a set of pods in the cluster and define a
policy for accessing them. Every service defined in the cluster can be referenced by
name that corresponds to one or more pods. The service names are resolved by the
Kubernetes DNS server, called CoreDNS [56]. The CoreDNS is a service discovery
solution that resolves any DNS request to an IP address. It listens for service events
and updates its DNS records as needed. These events are triggered when a user
creates, updates or deletes the services and their associated pods.

As shown in Figure 4.1, we can distinguish two types of nodes in a Kubernetes cluster:
master and worker nodes. We describe in the following the main components of each kind
of node.

Figure 4.1 – Kubernetes architecture

A) Master Node Components
The master node is responsible for managing the cluster. Its main components are:
kube-apiserver, etcd, kube-controller-manager, and kube-scheduler.

• Kube-apiserver: it receives all REST requests, validates them, and modifies
data for API objects, including pods and services.

55

Part , Chapter 4 – Choosing a FaaS Framework

• Etcd: it is a key-value store database used to store and replicate the Kuber-
netes cluster state.

• Kube-controller-manager: it is a daemon that manages a collection of con-
trollers in Kubernetes. A controller is a control loop that continually watches
the state of the cluster via the API server. Examples of controllers are the repli-
cation controller that controls the number of pods replicas, the node controller
that identifies changes that happen in nodes, and the endpoint controller that
watches pod lifecycle events and updates endpoints.

• kube-scheduler: it determines whether new pods should be deployed and
where they should be placed.

B) Worker Node components
The worker nodes are used to host and execute the pods. Below are the main com-
ponents of a worker node:

• Kubelet: it is an agent process that runs on each worker node and ensures
that pods and their containers are healthy.

• Kube-proxy: it is a proxy service on each worker node that maintains the
network rules and exposes services to the external world. It performs load
balancing for services running on a node.

• Container runtime: it is a software used to run user-defined containers (e.g.,
Docker [59], rkt [162]).

4.2.2 Kubernetes Features Used by FaaS

Kubernetes offers a series of features that are particularly useful for the execution
of FaaS applications: auto-scaling, scheduling, load-balancing, health checking, and self-
healing of containers.

• Auto-scaling: it is one of the major automation capabilities of Kubernetes, useful
for responding quickly to peaks in demand. One of the well-known scaling mecha-
nisms is the Horizontal Pod Autoscaler (HPA). The HPA is used to automatically
scale up and down the number of pods belonging to the same application based on
the current usage of resources, such as CPU or memory utilization.

• Scheduling: it is a process to determine the most suitable node for pod placement
performed by the kube-scheduler. When the kube-scheduler has a pod to deploy,

56

4.2. Overview of Kubernetes

it makes sure that the assigned node meets all specific requirements of the pod
such as the CPU and memory resource requirements. To achieve that, it first starts
by filtering the appropriate nodes using a set of filters. For example, it uses some
affinity and anti-affinity rules, which consist of labels and annotations that define
constraints on pod placement. Second, the kube-scheduler ranks each node and
accords a higher score to nodes with higher affinity and a lower score to nodes with
higher anti-affinity. Lastly, the pod is assigned to the node with the highest score.

• Load-balancing: it is the process of efficiently dispatching the traffic across mul-
tiple pods of a specific service. The traffic sent to a Kubernetes service is routed by
the kube-proxy component. The kube-proxy implements a virtual IP for a service
via iptables rules and uses by default the random selection mode, which means that
when a request is received, it goes to a randomly chosen pod within a service. There
are many ways used to expose services externally; the most flexible one is Ingress,
which runs as a controller in a specialized pod and provides routing rules to manage
the access to the Kubernetes services.

• Health checking: is a simple method that Kubelet constantly performs on pods to
determine information about their current state. The health check can be based on
the readiness probes [112]. A readinesss probe determines if the pods are healthy and
ready to start receiving traffic. A pod is considered ready when all the containers
inside the pod are ready. When a pod is not ready, it is deleted from service load
balancers. There are three ways of implementing the readiness probe: an HTTP
request; a TCP socket, where a TCP check is performed against the container’s
IP/port; and a user-defined command.

• Self-healing: it is an automated recovery method that Kubernetes uses to ensure
that the actual state of the cluster is healthy. It consists of auto-placement, auto-
restart, and auto-replication. For example if a pod crashes, Kubernetes restarts a
new one, and if a node goes down, Kubernetes reschedules all the pods from the
broken node onto other healthy nodes as soon as it realizes that the node is no
longer available (which may take up to 5 minutes).

To take advantage of the rich Kubernetes system, many open source FaaS frameworks
move the responsibility of container orchestration functionality to Kubernetes and focus
only on FaaS features, as shown in Figure 4.2.

57

Part , Chapter 4 – Choosing a FaaS Framework

Figure 4.2 – Relation between the FaaS frameworks and Kubernetes

4.3 Kubernetes-native FaaS Frameworks

This section provides a description of the three popular open source Kubernetes-based
FaaS frameworks, Fission [73], Kubeless [110], and OpenFaas [143], that we selected for
our evaluation.

4.3.1 Fission

Fission [73] is an open-source FaaS framework, released in 2017 and built on top of
Kubernetes.

A) Architecture

The core Fission components are: Function Pods, Router, and Executor (see Fig-
ure 4.3).

• Function Pods: they contain function-specific containers to serve requests
coming from users.

• Router: it routes a function call to the corresponding function pod and retries
the call in case of failures.

• Executor: it creates and controls the lifecycle of function pods. It provides the
requested function pods in two different ways according to the used Executor
type: PoolManager or NewDeploy.

58

4.3. Kubernetes-native FaaS Frameworks

(a) PoolManager: it maintains pools of warm generic containers and warm
function containers in order to provide low cold start latencies [168] and
start functions quickly (see Message 3.a in Figure 4.3). However, PoolMan-
ager does not allow selecting multiple pods per function, which limits its
usefulness during high traffic.

(b) NewDeploy: it creates a Kubernetes service to loadbalance the requests
between function pods. It uses a Horizontal Pod Autoscaler (HPA) to exe-
cute a function and adjust the number of pods to the traffic (see Message
3.b in Figure 4.3).

B) Features

• Language Runtimes: Fission supports most of the popular languages such
as Go, Node.js, Python, Java, Ruby, Binary, C#, .Net, Perl, and PHP. It can
be extended to support other languages.

• Function Triggers: Functions are invoked using numerous types of trig-
gers like HTTP triggers, timer triggers (cron), message queue triggers (Kafka,
NATS, and Azure queues), and Kubernetes watch triggers.

• Function Monitoring: Fission automatically tracks various function metrics
via Prometheus [154], a monitoring and alerting toolkit that collects and stores
metrics. The collected metrics are the number of requests, function execution
time, success/failure rate metrics, and more. The Grafana tool [83] can be used
with Prometheus to visualize all the metrics.

• Function Auto-scaling: Fission scales functions using the Kubernetes HPA.
The user needs to set the initial and maximum CPU utilization for a func-
tion and target CPU utilization at which autoscaling will be triggered. When
the CPU utilization thresholds are reached, the HPA triggers the creation of
additional pods to handle the load.

• Routing: function invocations in Fission are routed by the Router compo-
nent. When the Router receives a function call (see Message 1 in Figure 4.3),
it first checks if this request already has a running pod and forwards it to the
corresponding function pod, if it exists (see Message 2.a in Figure 4.3). Other-
wise, the Router requests a function pod from the Executor (see Message 2.b
in Figure 4.3) and then forwards the function call to the address (see Message
4 in Figure 4.3, the address is the service address in case of using NewDeploy

59

Part , Chapter 4 – Choosing a FaaS Framework

or the IP of the pod in case of using PoolManager) returned by the Executor
(see Message 5 in Figure 4.3). If a service address is returned by NewDeploy
to the router, then the requests are balanced across all function pods using the
service.

• Fault Tolerance: Fission uses the retry policy to tolerate faults. It is imple-
mented in the Router and triggered if a request fails.

• Pooling Technique: Fission runs a pool of warm containers to host func-
tions. The pool size could be configured by the user and is managed by the
PoolManager executor. This method is used to reduce function startup latency.

Figure 4.3 – Fission architecture

4.3.2 Kubeless

Kubeless [110] is an open source FaaS framework, released in 2018 and built on top of
Kubernetes.

A) Architecture
Kubeless relies on Kubernetes abstractions, such as service, pods and controllers.
It uses Kubernetes Custom Resource Definition (CRDs) which are extensions of
the Kubernetes API to create functions. The functions are managed by the CRD
controller and exposed as a Kubernetes service. To make the functions publicly
accessible, Ingress resources are used such as Nginx [141], which is a web server
acting as a reverse proxy for a controller. Figure 4.4 describes the key components
in Kubeless.

60

4.3. Kubernetes-native FaaS Frameworks

B) Features

• Language Runtimes: Kubeless supports different languages: Node.js, Ruby,
Python, Golang, PHP, .NET, Ballerina, and custom runtimes.

• Function Triggers: there are three possible types of mechanisms to trigger a
function in Kubeless: HTTP triggers, Publish-Subscribe triggers, and Schedule
triggers. HTTP triggers use the Ingress controller to make the functions avail-
able to the public. Publish-Subscribe triggers use the messages published to
Pub/Sub topics to trigger the function. Kubeless supports events from Kafka
and NATS messaging systems. Schedule triggers use Kubernetes CronJob [57]
to trigger the function, following a given schedule.

• Function Monitoring: Kubeless uses the Prometheus toolkit to monitor func-
tion metrics such us function call rate, function failure rate and execution du-
ration. These metrics are collected automatically by a runtime and visualized
on the Grafana dashboard.

• Function Auto-scaling: as each Kubeless function is deployed into a Kuber-
netes deployment, it relies on the HPA to automatically scale up and down
based on the defined workload metrics. Currently, the auto-scaling supported
by Kubeless is based on two indicators: the CPU usage and the queries per sec-
ond (QPS). For example, if a developer needs to autoscale her function based
on CPU usage, she has to deploy the corresponding function with the CPU
request limit set using the cpu parameter, so that the HPA can control the
number of pods that run this function, and maintain the average CPU usage.

• Routing: in order to create routes for functions, Kubeless leverages Kuber-
netes Ingress, which is responsible for routing the HTTP events to functions.
For example when using the Nginx Ingress Controller, the function is available
to the public and every request to the Kubeless infrastructure is first processed
by Nginx, and then transferred to the corresponding service of the function
based on the routing rules defined in the Ingress sources. At last, the request
is transmitted to the back-end pods according to the load balancing rule (e.g.,
round-robin) for processing.

• Fault Tolerance: to the best of our knowledge, Kubeless does not provide
any fault tolerance service.

• Pooling Technique: Kubeless does not provide a pool of warm containers.

61

Part , Chapter 4 – Choosing a FaaS Framework

Figure 4.4 – Kubeless architecture

4.3.3 OpenFaaS

OpenFaaS [143] is an open source framework, released for the first time in 2017.

A) Architecture
OpenFaaS supports Docker Swarm and Kubernetes orchestration engines. As shown
in Figure 4.5, it consists of the following components: API Gateway, Function Watch-
dog, AlertManager, and Prometheus.

• API Gateway: it provides an external route for all functions and it is con-
nected with a respective plugin for the chosen orchestrator. For instance, faas-
netes [144] for Kubernetes.

• Function Watchdog: it is packaged together with the function and is respon-
sible for forwarding the requests to the functions and starting a new process
for each incoming request.

• AlertManager: it manages the alerts received from Prometheus and triggers
auto-scaling.

• Prometheus: it is used for collecting various function metrics which are avail-
able via the Gateway’s API and enables auto-scaling through AlertManager.

B) Features

• Language Runtimes: OpenFaaS allows developers to build functions from a
set of supported language templates including Java, C#, Node.js, Python, Go,
and PHP.

• Function Triggers: OpenFaaS functions can be triggered using many event-
trigger types. These include the HTTP triggers, the publish-subscribe triggers
and the schedule triggers. Different connectors can be used by OpenFaaS such
as Apache Kafka [16], Minio [134], CloudEvents [53], AWS SNS [8], IFTTT [96],
VMware vCenter [186], and Redis [159].

62

4.4. Performance Evaluation

• Function Monitoring: function metrics are available via the Gateway’s API
and monitored by Prometheus. Prometheus allows to monitor Rate, Duration
and Error metrics for each function. All the metrics can be visualized with the
Grafana dashboard.

• Function Auto-scaling: OpenFaaS allows to auto-scale function replicas
based on CPU and/or memory utilization by using the HPA. It also sup-
ports auto-scaling based on the number of RPS (requests per second) using
the AlertManager.

• Routing: each request to the function is routed by the OpenFaas API Gate-
way which provides an external route into the functions. The requests are
distributed between function instances using the load-balancing implemented
by service instances.

• Fault Tolerance: OpenFaaS provides a retry mechanism only for asynchronous
functions [142].

• Pooling Technique: OpenFaaS does not have a pool of warm containers.

Figure 4.5 – OpenFaaS architecture

4.4 Performance Evaluation

We evaluated the previously-described Kubernetes-native FaaS frameworks, Fission,
Kubeless and OpenFaaS, in terms of performance. This allowed us to understand how the
FaaS frameworks can be utilized and how they take advantage of the different services

63

Part , Chapter 4 – Choosing a FaaS Framework

provided by Kubernetes. The main focus of this evaluation is to compare them and inves-
tigate the factors, such as concurrency, that influence their performance. The purpose of
conducting the comparison was to select the most appropriate framework for hosting our
fault tolerance approaches (see Chapter 5). More specifically, we wanted a framework that
provides a fault tolerance mechanism and can be easily extended to add new fault toler-
ance mechanisms; it should also provide good performance (i.e., throughput and response
time).

4.4.1 Environment Setup

We ran our experiments on an environment composed of 6 nodes from the Lyon site
(nova cluster) of the Grid’5000 [85] testbed, an experimental platform that supports re-
search on all areas of computer science, including Cloud. This testbed provides a large
amount of resources which makes it suitable to carry out our experiments. Each node is
equipped with 2 CPUs Intel Xeon E5-2620 v4 with 8 cores/CPU and 64 GB memory.
We installed Kubernetes 1.11.0 with one master and four worker nodes. We also set up a
node that plays the user role to invoke the function deployed on the Kubernetes cluster.
The three frameworks we tested are: Kubeless version 0.5.0, Fission version 0.6.0 and
OpenFaaS version 0.6.1 (the latest version available at the time of our experiments back
in 2018).

4.4.2 Workload Setup

We deployed the hello world function in Python and made some modifications to
conform to the programming templates of each framework. The function is triggered by
HTTP requests.

The testing load is generated with Apache Bench [14], an HTTP server benchmarking
tool. For the measurements, we sent 1, 50, 200, 500, and 1000 concurrent requests.

4.4.3 Metrics

We evaluate the performance of the three frameworks using the throughput and re-
sponse time metrics. The throughput is the number of requests served per second, and
the response time is the time between a user request and the system response.

64

4.4. Performance Evaluation

4.4.4 Results Analysis

Figures 4.6, 4.7, and 4.8 show the throughput under different levels of concurrent
requests for Fission, Kubeless and OpenFaas with 1, 5 and 20 function replicas. We
observe that Fission has the highest throughput compared to Kubeless and OpenFaaS
in all scenarios. This can be attributed to the simplest routing method used by Fission,
as we know that Fission maintains its own router. Thus, when the router receives the
HTTP requests, it routes them directly to the function instances. The routing used by
the API Gateway of OpenFaaS and the Nginx Ingress controller of Kubeless incurs more
overhead, as every function call has to go through multiple components to get it routed to
the function pod. We also notice that the throughput of OpenFaaS is significantly lower
than the others.

Figure 4.6 – The throughput for Fission with 1, 5 and 20 function replicas.

Figure 4.9 and Table 4.1 show the response time for a concurrency level of 200 with
one function replica for the considered frameworks.

Regarding the time spent processing the requests, the average Fission response time is
161 ms and all responses are received within 13091 ms (13 sec). We notice that response
times jump up, peaking around 98531 ms at 99% and 60001 ms at 90% in Kubeless
and OpenFaaS, respectively. Kubeless and OpenFaaS suffer from higher average response
times compared to Fission, with a value of 1984 ms for Kubeless and 11549 ms for Open-
FaaS. This is due to queuing requests at both the gateway and watchdog components in
OpenFaaS and at the Ingress controller component in Kubeless. Overall, Fission has the
best average responsiveness.

As a conclusion, Fission exhibits the best performance among the three frameworks,

65

Part , Chapter 4 – Choosing a FaaS Framework

Figure 4.7 – The throughput for Kubeless with 1, 5 and 20 function replicas

Figure 4.8 – The throughput for OpenFaaS with 1, 5 and 20 function replicas

both in terms of throughput and average response time.

4.5 Overall Framework Comparison

This section provides a comparative analysis of the discussed FaaS frameworks. The
objective of this analysis is to choose a suitable framework for our study.

Table 4.2 summarizes the complete comparison of the selected frameworks. The com-
parison shows that the frameworks offer similar features. For instance, all the frame-
works have the principal autoscaling mechanism, based on the Kubernetes HPA feature.
Contrary to Kubeless and OpenFaaS, Fission has additional useful features, such as the
pooling feature, where a pool of warm containers is maintained to reduce cold starts of

66

4.5. Overall Framework Comparison

Percentage Time (ms)
Fission Kubeless OpenFaaS

50% 5 11 19
66% 150 14 24
75% 219 289 37
80% 247 303 18023
90% 304 402 60001
95% 565 500 60002
98% 1601 3321 60006
99% 1659 98531 60012
100% 13091 105876 61009
Min 1 2 1
Mean 161 1984 11549
Max 13091 105876 61009

Table 4.1 – The percentage of requests response time in milliseconds (ms)

Figure 4.9 – Response time for concurrency of 200 with one function replica for three
FaaS frameworks

functions (cold start is a well-known challenge in FaaS platforms as seen in Section 3.3).
Fission also supports fault tolerance with applying a basic retry mechanism to re-execute
a function when an error is detected. In terms of performance, based on our experi-
ments, Fission outperforms the two other frameworks. After evaluating and analyzing the
different features offered by each framework, we were convinced that the most suitable
framework for our use case was Fission not only because of the good performance pro-
vided, but also because it had an integrated fault tolerance mechanism (retry) that we
intended to compare with our fault tolerance approaches.

67

Part , Chapter 4 – Choosing a FaaS Framework

Features/
Frameworks Fission Kubeless OpenFaaS

Licence Open-source Open-source Open-source

Orchestration Kubernetes Kubernetes Kubernetes and
Docker Swarm

Function Runtimes

Go, Node.js, Python,
Java, Ruby, Binary,
C#, .Net, Perl and
PHP

Node.js, Python
.NET, Ruby, Balle-
rina, and PHP

Java, C#, Node.js,
Python, Go, PHP and
Dockerfile

Function Triggers
HTTP, timer, message
queue and Kubernetes
watch

HTTP, scheduled,
Pub/Sub

HTTP, scheduled,
Pub/Sub

Function Autoscal-
ing HPA HPA HPA/AlertManager

Function Monitor-
ing Prometheus+Grafana Prometheus+Grafana Prometheus+Grafana

Function Runtime
Pooling Yes No No

Routing Router/Ingress Con-
troller Ingress Controller API Gateway/Ingress

Controller
Fault Tolerance Yes (Retry) No Yes (Retry)
Performance High Medium Low

Table 4.2 – Comparison of Fission, Kubeless, and OpenFaaS

4.6 Summary

In this chapter, we presented three open source FaaS frameworks based on Kuber-
netes, namely, Fission, Kubeless and OpenFaaS. We selected the frameworks based on a
set of criteria such as public availability, popularity and community support. Then, we
evaluated them with a focus on the end-user’s perception of performance. Specifically, we
compared their throughput and response time. Results showed that the performance of
Fission increases with the number of function replicas and it has the best throughput and
response time compared to Kubeless and OpenFaaS. We found that OpenFaaS has poor
performance regardless of the number of function replicas.

As a conclusion, we ended up choosing Fission due to its ease of deployment, flexibility
and good performance. Fission gives the possibility to create functions in two different
ways by using the PoolManager and NewDeploy executors. Fission has also an integrated
fault tolerance mechanism (retry) that we intend to compare with our fault tolerance

68

4.6. Summary

solutions.
In the next chapter, we describe the basic retry mechanism used in Fission. We also

present our proposed fault tolerance approaches and their integration in Fission.

69

Chapter 5

FAULT TOLERANCE APPROACHES FOR

HIGH AVAILABILITY IN FAAS

In FaaS environments, retrying function executions in case of failures is a common
strategy for tolerating faults. The retry mechanism is well-suited for transient faults.
However, it is not effective for handling other types of faults, such as node failures, a
frequent type of fault in underlying infrastructures. This motivates the need for other fault
tolerance approaches. In our work, we propose to integrate two fault tolerance approaches
in FaaS frameworks in order to make failures transparent to the applications. The proposed
approaches are based on replication (i.e., active and passive).

The remainder of the chapter is organized as follows. In Section 5.1, we describe
the retry mechanism, the native fault tolerance mechanism in Fission. In Section 5.2,
we present the first proposed fault-tolerance approach, namely Active-Standby and its
implementation in Fission. The second approach, called Request Replication with its
implementation is presented in Section 5.3. Finally, Section 5.4 provides a summary.

5.1 Retry Mechanism in Fission

We present in this section the native retry mechanism implemented in most FaaS
platforms including Fission. The retry fault tolerance mechanism consists basically in
restarting the entire submission process of a failed request. In Fission the retry mechanism
works as shown in Figure 5.1. When a function call is received, the Router first checks
whether a function service record exists in its cache. If it doesn’t, it asks the Executor to
get a new service for the function. Once the new record is returned, the Router forwards
the request to the function. If the function execution fails, the Router retries to forward
again the function call until receiving a response from the function execution or reaching
the maximum number of retries set by the administrator [75]. If all the retries fail or
the received response is an error, Fission assumes that the function pod doesn’t exist

71

Part , Chapter 5 – Fault Tolerance Approaches For High Availability in FaaS

Router Executor
function call

function address exists in cache ?
Opt

get new service for function
 function servicecreate

add service address to cache

forward request

 function service

response

[function service doesn’t exist in cache]

Alt [failure] && [retries < maxRetries]

[(failure) & (retries ≥ maxRetries)] OR [network dial error]
remove service cache entry

[other]deliver

1

2

Ref Go to 1

Ref Go to 2

retries++

Figure 5.1 – Retry mechanism in Fission

anymore. Thus, the Router asks the Executor for a new service for the function. Then, it
retries to forward the function call to the new function service and so on until the request
is served.

5.2 Active-Standby in Fission

In this section, we present the Active-Standby approach, along with details of its
implementation in the Fission framework.

5.2.1 Description

In the context of FaaS, the Active-Standby (AS) mechanism consists in creating two
function service instances. The first one is active and serves all requests during normal
usage. The second one is passive (on standby). The two instances are connected by a
heartbeat mechanism that continuously checks their connectivity and status. If the heart-
beat of one instance is not received within a configured amount of time, an action is
triggered depending on the identity of the unreachable instance. If the passive instance
is unreachable, another passive instance is created. If the active instance is unreachable,
the standby instance is activated to serve incoming requests and another passive instance
is created.

72

5.2. Active-Standby in Fission

5.2.2 Implementation in Fission

To implement the AS mechanism in Fission, we use the NewDeploy executor type as
it supports creating replicas of function pods. In this approach, two function pods are
created (i.e., active and passive) and both support the Kubernetes readiness probe that
indicates when the container is ready to receive requests. For instance, the active pod is
marked in ready state and is therefore ready to receive and serve traffic. The passive pod
is in standby and is marked in not-ready state, so no traffic is forwarded to it. Both active
and standby pods exchange heartbeats for health checks. The heartbeats are performed
each second (the minimum configurable value using Kubernetes readiness probes). When
the active pod is healthy, the passive pod fails the readiness probe and keeps running in
a not-ready state. If the active pod fails, the health checks performed by the passive pod
detects the failure and the passive pod becomes active. Another pod is then created to
replace the passive pod. The same action happens if the passive pod fails.

We implemented this approach in Fission in two different ways: The first implemen-
tation relies on a component from Kubernetes, and the second one is based on using a
router component. The two implementations are described in the following.

• Implementation 1: Active-Standby with Kubernetes CoreDNS
In the first implementation, we use a specific component from Kubernetes, a DNS
server called CoreDNS, to get the IP address of the active pod. The approach works
as follows as shown in Figure 5.2. The Kubernetes CoreDNS receives the function
call and returns the IP address of the active pod to the user. The user forwards her
request directly to the active pod.

• Implementation 2: Active-Standby with a Router
In the second implementation, we implemented a new router, called Router Active-
Standby (Router AS), and used it instead of the default Fission Router (this is what
makes this implementation different from the previous one). The Router AS forwards
all received function calls specifically to the active pod, as shown in Figure 5.3.
This approach works as shown in Figure 5.4. While the request is being processed,
both active and standby pods exchange heartbeats for health checks.

The two implementations of AS use a different component to route requests. In the
first implementation, the architecture makes use of the CoreDNS of Kubernetes to get
the IP address of the active pod and then route the traffic to that address. The second
implementation involves a router component instead of the CoreDNS. The second imple-

73

Part , Chapter 5 – Fault Tolerance Approaches For High Availability in FaaS

deliver

 function service
(active instance)

 function service
(passive instance)

Kubernetes
CoreDNS

Par

[active instance failure]

update Pod IP

turn on “ready state”

 function service
(passive instance)

create

 function service
(active instance)

function call

forward request

Pod IP

heartbeats

Alt

 function service
(passive instance)

create

[passive instance failure]

NewDeploy
Executor

Figure 5.2 – Sequential diagram of Active-Standby mechanism using the Kubernetes
CoreDNS

Figure 5.3 – Overview of the Active-Standby mechanism in Fission (Implementation 2)

mentation of AS was useful to enable a fair comparison with the retry and the Request
Replication approaches, which also use a router (see Chapter 6).

5.3 Request Replication in Fission

In this section, we present the Request Replication approach, along with details of its
implementation in Fission framework.

74

5.3. Request Replication in Fission

deliver

 function service
(active instance)

 function service
(passive instance)

Router AS

Par

[active instance failure]

update Pod IP

turn on “ready state”

 function service
(passive instance)

create

 function service
(active instance)

function call
forward request

heartbeats

Alt

 function service
(passive instance)

create

[passive instance failure]

NewDeploy
Executor

 response

Figure 5.4 – Sequential diagram of Active-Standby mechanism using a router

5.3.1 Description

Request Replication consists in having a number of replicas processing a request at
the same time. The number of replicas depends on the number of simultaneous failures
to be tolerated. The Request Replication (RR) solution is divided into two phases. First,
the client sends a request, and the request is received and processed simultaneously by
all replicas. Second, the first response produced by any replica is delivered to the client.
The client can thus receive a response despite the failure of some replicas.

5.3.2 Implementation in Fission

To implement the RR approach in Fission, we used the NewDeploy Executor as it
allows to create many pod replicas. We replaced the default Router with a new one,
called Router Request Replication (Router RR). This Router replicates each received
request on all function pod replicas, in order to process it in parallel. Then it sends the
first received response to the user, as shown in Figure 5.5. To tolerate K failures using
this approach, it is necessary to have a minimum of K+1 replicas, so that the Router
can ensure that the user always receives a response. If one of the pods fails, then another
one is created to replace the failed one. Figure 5.6 illustrates the implementation of the
request replication approach in Fission.

75

Part , Chapter 5 – Fault Tolerance Approaches For High Availability in FaaS

Figure 5.5 – Overview of the Request Replication mechanism in Fission

 first response

deliver

 function service
(Pod 1)

 function service
(Pod 2)

Router RR

[Pod 1 failure]

 function service
(new pod)

create

function call

 replicate request

NewDeploy
Executor

Alt

 first response

deliver

[no failure]

Figure 5.6 – Sequential diagram of Request Replication mechanism in Fission

5.4 Summary

In this chapter, we covered the proposed fault tolerance approaches for FaaS and their
implementation in an open source FaaS framework, namely Fission. Fission implements
a built-in retry mechanism. This technique deals with transient failures (e.g., network
failures) by transparently retrying a failed request. However, ensuring high availability
of FaaS functions requires the use of other fault tolerance techniques such as replication
strategies. Two replication-based approaches and their implementation in Fission were
discussed in this chapter. The first approach, called Active-Standby is based on the use of

76

5.4. Summary

passive replication. It consists of creating two function replicas, one is active and another
is standby. This approach was implemented in two versions: the first version uses the Ku-
bernetes CoreDNS component to communicate directly with the active pod, the second
version uses an implemented router component to send requests to the active pod. The
second fault tolerance approach, named Request Replication is based on the active repli-
cation. It relies on replicating requests in which every request is executed concurrently by
every function replica. We present a comparative evaluation of these approaches in the
next chapter.

77

Chapter 6

EVALUATION

This chapter presents the evaluation of the fault tolerance approaches presented in the
previous chapter. Our experiments evaluate the effectiveness of the proposed FaaS fault
tolerance approaches and compare them with the retry mechanism in the context of their
implementation in Fission.

In the following, we describe an experimental study which is conducted on the Grid’5000
testbed. Two different experiments are performed. In the first experiment, we compare
the first implementation of the Active-Standby approach, which uses the Kubernetes
CoreDNS service, with the retry mechanism. In the second experiment, we evaluate the
second implementation of the Active-Standby approach, which uses a router component,
with the Request Replication approach and the retry mechanism.

The chapter is organized as follows. Section 6.1 provides a detailed description of the
setup of the two experiments. Section 6.2 discusses the results of the first experiment.
Section 6.3 analyses the results of the second experiment. Section 6.4 provides the lessons
learned from our experiments. Section 6.5 summarizes the chapter.

6.1 Experimental Setup

6.1.1 Environment

We used 5 nodes on the Lyon site, each node having 2 CPUs Intel Xeon E5-2620
v4 with 8 cores/CPU and 64 GB memory, to deploy Kubernetes [111] (version 1.11 in
Experiment 1 and version 1.19 in Experiment 2). In this cluster, we have one node for the
Kubernetes master and one node is used for Fission components. The three other nodes
are workers, where the function pod is placed. For each experiment we use either Fission
AS (Active-Standby), Fission RR (Request-Replication) or the original version of Fission
(vanilla) with version 1.5.0 in Experiment 1 and version 1.10.0 in Experiment 2 (the latest
stable release at the time of their implementation). We set up 2 additional nodes; one is

79

Part , Chapter 6 – Evaluation

used as a client in order to invoke functions and another one to inject faults.
We used the same environment as the one used in the Experiment 1. However, we

updated the version of Kubernetes to a more recent version (version 1.19) and we im-
plemented the AS and the Request Replication approaches in a more recent version of
Fission (version 1.10.0).

6.1.2 Applications

(a) Experiment 1
We used two applications. The first one is a CPU-intensive HTTP-triggered function
that computes the Fibonacci sequence (a series of numbers where each number is the
sum of the two preceding ones). The function takes n=15 as an input, computing the
15th term of the sequence. The second one is the Guestbook application, composed
of two functions GET and ADD to read and write text messages, which are stored
in a Redis database [86].

(b) Experiment 2
In this experiment, we used only the Fibonacci function because the Guestbook
application code would need to be modified to handle the duplicated requests to
Redis when using it with the Request Replication approach.

6.1.3 Workload

(a) Experiment 1
In this experiment, we generated 3000 requests during 5 minutes.
The workload is generated with Tsung [181], an open source load testing tool writ-
ten in Erlang. Tsung allows to test the scalability and performance of applications
and databases, ect. It can be used to stress HTTP, WebDAV, SOAP, PostgreSQL,
MySQL, LDAP, and Jabber/XMPP servers.

(b) Experiment 2
In this experiment, we used Tsung to generate 60000 requests during 10 minutes
with 100 concurrent users created every second.

6.1.4 Failure Scenarios

(a) Experiment 1

80

6.1. Experimental Setup

• Pod failure: the application failure is due to a pod failure. In this scenario,
we use the PowerfulSeal tool [153], a failure injection tool for Kubernetes to
inject faults to pods. The failure is simulated by killing the function pod at
a random time between 30 seconds and 60 seconds from the beginning of the
workload execution. The failure is injected randomly in the active and passive
pod for AS.

• Node failure: the application failure is due to a node failure. In this scenario,
we use a script to crash nodes. The failure is simulated by killing the node
hosting the function instance 30 seconds after the beginning of the workload
execution.

(b) Experiment 2

• Pod failure: in this scenario, the function pod is killed at the 5th minute from
the beginning of the workload execution.

• Node failure: in this scenario, a script is executed to kill the node hosting
the function instance 5 minutes after the beginning of the workload execution.

• Network delay: in this scenario, we injected latency at the 5th minute and
it lasts for 10 seconds. The injected latency values are 50 ms, 100 ms, and 200
ms. We note that the injected latency causes a delay for all responses coming
from the function pod. We added this scenario in this experiment to see how
the three approaches react to network issues.
To execute the pod failure and the network delay scenario, we used the Chaos
Mesh tool [46]. It is an open source tool for injecting various failure scenarios
including the network delay. The network delay scenario is not available in
the experiment list of PowerfulSeal tool. For that reason, we used Chaos Mesh
instead of PowerfulSeal.
In the three scenarios, the failure is injected in the active pod for AS and in
one of the two pods for RR.

Each scenario was repeated at least 5 times with the deployed applications in Fission
vanilla, AS, and RR. The averages of the measurements are shown in the figures
and tables of this chapter.

6.1.5 Metrics

• Performance: The performance is measured using throughput and response time

81

Part , Chapter 6 – Evaluation

values.

• Availability: The availability is measured using the recovery time, which is the time
between the first reaction to failure and the time when the service is available again.

• Resource consumption: The resource consumption is measured as the amount of
CPU and memory consumed by the 5 nodes (i.e., the master and the 4 workers)
during the execution of the workload.

• Error rate: The error rate is measured based on the failed requests (those with HTTP
5xx response code). This metric is a useful measure of the approaches’ performance
(only used in Experiment 2).

6.2 Experiment 1: Active-Standby with CoreDNS ver-
sus Retry

In this experiment we compare the first implementation of the Active-Standby ap-
proach using the CoreDNS service with the native retry mechanism in Fission. Sub-
section 6.2.1 provides the performance results. Subsection 6.2.2 presents the availability
results. Subsection 6.2.3 discusses the resource consumption results.

6.2.1 Performance Results

This section presents the result analysis of throughput and response time of the per-
formed experiments with and without failures.

(a) Results without Failures

Figures 6.1 and 6.2 present the throughput and average response time of the Fi-
bonacci and Guestbook applications deployed with both Fission vanilla and AS
without failures. From Figure 6.1a and Figure 6.2a, we can observe that the through-
put for the two functions in the two versions of Fission are quite similar. AS and
vanilla are both capable of processing in average 11 requests per second. Figures 6.1b
and 6.2b show the response times of the two functions in AS and vanilla. Both func-
tions, Fibonacci and Guestbook, have a lower response time with Fission AS; the
difference is about 2 ms and 16 ms respectively. The higher response time obtained
with Fission vanilla is due to the use of the Router component to route the request

82

6.2. Experiment 1: Active-Standby with CoreDNS versus Retry

to function instances. AS performs better than vanilla in this scenario and provides
faster response times.

(a) Throughput (b) Response Time

Figure 6.1 – Fibonacci application without failures

(a) Throughput (b) Response Time

Figure 6.2 – Guestbook application without failures

(b) Results with Failures

1) Pod Failure Scenario
Figures 6.3 and 6.4 show the throughput and average response time of the
Fibonacci and Guestbook applications with Fission vanilla and AS, with pod
failures. We see that AS and vanilla react to the failure differently. This can

83

Part , Chapter 6 – Evaluation

be explained by the fact that vanilla retries many times the function execution
until reaching the maximum number of attempts, then removing the function
instance from the cache and recreating a new one. In vanilla, recreating a new
function instance involves initialization of the function environment, which
results in increased latency (the requests are queued for longer amounts of
time) compared to AS, where the standby instance is prepared to take over at
any time and serves requests.

(a) Throughput (b) Response Time

Figure 6.3 – Fibonacci application with pod failures

(a) Throughput (b) Response Time

Figure 6.4 – Guestbook application with pod failures

84

6.2. Experiment 1: Active-Standby with CoreDNS versus Retry

2) Node Failure Scenario
Figures 6.5 and 6.6 show the throughput and average response time of Fi-
bonacci and Guestbook applications with Fission vanilla and AS, with node
failures. In Figure 6.5a and Figure 6.6a, we notice peaks in the throughput
for both functions in vanilla. This can be explained as follows. After a node
crash, requests are queued, creating unbalanced traffic. Thus, the waiting time
of queued requests is increased and consequently their response time, as can
be seen in Figures 6.5b and 6.6b. However, in Fission AS the response rate is
almost constant as the requests are just redirected to the standby instance.

(a) Throughput (b) Response Time

Figure 6.5 – Fibonacci application with node failure

6.2.2 Availability Results

The recovery time is the required time for a service to recover from failures and
become available again. This covers the time between failure detection and resuming
service operation. The recovery time is measured for the two approaches as follows. For
vanilla, after the failure, the pod becomes unhealthy (see Figure 6.7). In reaction to that
failure, the router retries the failed requests. When the maximum number of retries is
reached, the pod is considered as failed and the service URL is deleted from the router
cache. The service becomes available again when a new pod is created and added to the
router cache.

For AS, the failure is detected by the heartbeat mechanism (see Figure 6.8). The
reaction is the failover to the standby pod and the update of the CoreDNS cache. Once

85

Part , Chapter 6 – Evaluation

(a) Throughput (b) Response Time

Figure 6.6 – Guestbook application with node failure

the CoreDNS cache is updated with the IP address of the active pod (Active-IP), the
service becomes available.

Figure 6.7 – Recovery time in vanilla

Figure 6.8 – Recovery time in AS

86

6.2. Experiment 1: Active-Standby with CoreDNS versus Retry

1) Pod Failure Scenario
The recovery time (RT) in Fission vanilla and AS with pod failures is shown in
Table 6.1. We can see that the RT of Fibonacci and Guestbook functions under
AS is 1.814 seconds and 1.528 seconds, respectively, whereas under vanilla is 2.840
seconds and 3.614 seconds, respectively. These results show that AS enables faster
recovery than the retry mechanism used in vanilla. This is because in AS, the failover
is triggered immediately just after the active pod failure is detected. However, vanilla
takes time to recover from pod failure, since recovery requires the recreation of a
new function instance from scratch.

Table 6.1 – Recovery time in Fission vanilla and AS with pod failures

Fission vanilla Fission AS
Fibonacci Function 2.840s 1.814s

Guestbook Application 3.614s 1.528s

2) Node Failure Scenario
The recovery time in Fission vanilla and AS with node failures is shown in Table 6.2.
We can see that RT of Fibonacci and Guestbook functions under AS is 6.384 seconds
and 6.194 seconds, respectively, whereas under vanilla is 3 minutes and 7 seconds
and 2 minutes and 39 seconds, respectively. We clearly see that AS performs much
better than vanilla in terms of availability.

Table 6.2 – Recovery time in Fission vanilla and AS with node failures

Fission vanilla Fission AS
Fibonacci Function 3min7s 6.384s

Guestbook Application 2min39s 6.194s

6.2.3 Resource Consumption Analysis

Figure 6.9 and Figure 6.10 show the resource consumption (CPU, memory) in the
Kubernetes cluster for Fibonacci and Guestbook applications executed on top of Fission
AS and vanilla without and with pod and node failures. In the scenarios without and with
pod failures, we measured the overall CPU and memory usage of the 5 nodes during the
execution of the workload. In the node failure scenario, we took measures of only 4 nodes

87

Part , Chapter 6 – Evaluation

(we excluded the consumption of the failed node). We notice that for both functions the
cluster uses more CPU and memory with AS compared to vanilla in the three scenarios.
For example, when there are no failures, the overhead of using AS is up to 15% in CPU
and 12% in memory consumption. This is due to the creation of two instances of each
deployed function in Fission AS instead of one in vanilla.

(a) CPU consumption (b) Memory consumption

Figure 6.9 – Resource consumption of Fibonacci in Fission vanilla and AS without and
with pod and node failures

(a) CPU consumption (b) Memory consumption

Figure 6.10 – Resource consumption of Guestbook application in Fission vanilla and AS
without and with pod and node failures

88

6.3. Experiment 2: Active-Standby with Router versus Request Replication and Retry

6.3 Experiment 2: Active-Standby with Router ver-
sus Request Replication and Retry

In this experiment, we compare the second implementation of the Active-Standby ap-
proach based on the router with the request replication approach and the native retry
mechanism in Fission. Subsection 6.3.1 presents the performance results. Subsection 6.3.2
discusses the availability results. Subsection 6.3.3 analyses the resource consumption re-
sults.

6.3.1 Performance Results

This section presents the results obtained from the experimental comparison of our
proposed fault tolerance strategies AS and RR with the native retry mechanism of Fission.

(a) Results with no Failures
Figure 6.11 shows the response time of Fission AS, vanilla, and RR with no failures.
From this figure we can notice that Fission RR is faster than Fission AS and vanilla
because it has two replicas doing the job and once it receives the first response
from one of the function replicas, it forwards it to the user. Vanilla is slower than
AS and RR. This may be explained by the fact that the router of vanilla uses the
Kubernetes service to send the request to the pod belonging to the function, which
adds another hop compared to AS and RR. In AS and RR the request is sent directly
to the function pod by the router.
For the throughput, Fission vanilla, AS, and RR handle the same throughput with
values around 100 request/second (the expected throughput).
As a conclusion we can say that RR performs better than AS and vanilla in terms
of response time when there are no failures.

(b) Results with Failures

1) Pod Failure Scenario
Figures 6.12 and 6.13 illustrate the throughput and response time of Fission
vanilla, AS, and RR with only one pod failure. In Figure 6.12, we can observe a
small degradation in the throughput of AS. This is because of the failover of the
active pod to the standby pod. We also notice a degradation in the throughput
of vanilla when the pod fails after 300 seconds as there is no available pod to

89

Part , Chapter 6 – Evaluation

Figure 6.11 – Response time of AS, vanilla and RR with no failure

serve the requests. RR provides stable throughput despite the pod failure since
all traffic is executed by the healthy replica.

In Figure 6.13, we notice some spikes in the response time of vanilla during
almost 30 seconds. This is attributed to the fact that once the pod failure is
detected, the router starts the retries. When the function pod recovers, we see
that the response time drops off at around 7 ms. In contrast, RR and AS pro-
vide stable response times with values around 5 ms.

2) Node Failure Scenario

Figures 6.14 and 6.15 present performance results of Fission vanilla, AS, and
RR with a node failure. Figure 6.14 shows a degradation in the throughput
with AS when the node hosting the active pod crashes. This is because of the
required actions to switch the passive pod to the active state. In vanilla, the
throughput drops when the function pod stops serving requests. The router
then starts the retries and the requests are queued until a new pod starts
running on a healthy node. This causes a spike in throughput that reaches
1300 requests/sec, and then drops back to a normal state. The throughput of
RR remains constant because the failure is masked by the presence of the other
replica that continues to process the user’s requests.

Figure 6.15 shows spikes in the latency of vanilla. This is because the router re-

90

6.3. Experiment 2: Active-Standby with Router versus Request Replication and Retry

Figure 6.12 – Throughput of Fission vanilla, AS, and RR with pod failure

Figure 6.13 – Response time of Fission vanilla, AS, and RR with pod failure

tries many requests, where the wait time is increased exponentially after every
attempt. We deduce that the response time of the queued requests is increased
when the pod recovers. The response time of AS and RR is stable since the
requests are served by the standby pod in AS and by the second replica in RR.

3) Network Delay Scenario

Figures 6.16, 6.17, and 6.18 show the response time of Fission vanilla, AS, and

91

Part , Chapter 6 – Evaluation

Figure 6.14 – Throughput of Fission vanilla, AS, and RR with node failure

Figure 6.15 – Response time of Fission vanilla, AS, and RR with node failure

RR respectively with the injected latency values. When we increase the value
of latency, we can see a significant change in the response time of vanilla. For
example, 200ms of latency doubles the response time of vanilla from 500ms
to 1000ms (see Figures 6.17 and 6.18). The reason for this behaviour is that
the router retries requests with exponential backoff, increasing the waiting
time between retries which leads to performance degradation. Looking at the
response time of AS, we notice a peak when the latency is added because the
active pod responds too late.

92

6.3. Experiment 2: Active-Standby with Router versus Request Replication and Retry

In RR, we see no impact on the response time when we add latency on one of
the replicas, because the delay of a single replica is masked by the response of
the other replica.

Figure 6.16 – Response time with 50ms of latency

Figure 6.17 – Response time with 100ms of latency

6.3.2 Availability Results

In this section, we present the recovery time and the error rate of Fission vanilla, AS,
and RR with pod and node failures.

93

Part , Chapter 6 – Evaluation

Figure 6.18 – Response time with 200ms of latency

a) Recovery time
The recovery time for vanilla is measured the same way as described in Experiment
1 (see Figure 6.7). For AS, the same method as the one described in Experiment
1 is used to measure the recovery time. The only difference is the update of the
router cache instead of the CoreDNS cache (see Figure 6.19). For RR, no recovery
is necessary as the failure of one of the replicas does not affect service availability
(see Figure 6.20). The service remains available because the second pod serves the
requests.

Figure 6.19 – Recovery time in AS

1) Pod Failure Scenario
Table 6.3 presents the recovery time of Fission vanilla, AS, and RR with a pod
failure. The measured recovery time of AS is significantly lower than the one

94

6.3. Experiment 2: Active-Standby with Router versus Request Replication and Retry

Figure 6.20 – Recovery time in RR

of vanilla. The reason is that with AS, there is already a standby pod, and
the service is recovered and becomes active as soon as the standby detects the
failure of the active pod. In contrast, the recovery in vanilla depends on the
replacement of the failed pod. For RR, the second replica continues to serve
requests. Therefore, in this approach, the recovery time is zero.

Table 6.3 – Recovery time of AS, vanilla and RR with pod failure

Fission vanilla Fission AS Fission RR
7s 1.81s 0s

2) Node Failure Scenario
Table 6.4 presents the recovery time of Fission vanilla, AS, and RR with node
failure. The recovery time of vanilla is significantly higher than that of AS
and RR for similar reasons for the pod failure scenario. The retry mechanism
spends time retrying to submit the request before recreating a new pod. AS
takes less than 3 seconds to recover from a node crash, whereas vanilla takes
more than 2 minutes. RR recovery time is 0 as there is no unavailability of the
service.

b) Error Rate
In the following, we present the error rate of Fission vanilla, AS, and RR with pod
and node failures. To measure the rate of requests that fail, we count the number
of requests that return a HTTP status with a response of 5xx (means the request

95

Part , Chapter 6 – Evaluation

Table 6.4 – Recovery time of AS, vanilla and RR with node failure

Fission vanilla Fission AS Fission RR
2m19s 2.80s 0s

cannot be fulfilled due to a server error). However, if a request has been successfully
handled, the HTTP status code returned in the response is from the 2xx class of
status code.

1) Pod Failure Scenario

Table 6.5 shows the error rates in Fission vanilla, AS, and RR with pod failures.
Vanilla has a 0.01% error rate (i.e., some HTTP requests failed with code 502
bad gateway error) which indicates that the router can’t reach the requested
pod. The error rate for AS and RR is 0% (i.e., all requests succeeded with a
returned code 200).

Table 6.5 – Error rate in Fission vanilla, AS and RR with pod failures

Fission vanilla Fission AS Fission RR
0.01% 0% 0%

2) Node Failure Scenario

Table 6.6 shows the error rate in Fission vanilla, AS, and RR with a node
failure.
In this scenario, request errors occur due to the node crash. In vanilla, the error
rate is 1.26%. Once the requests are retried, some of them return a 502 status
code. The error rate in AS and RR is 0%, as both tolerate better a node crash
because of the presence of a replica. Thus, all requests are served with success
and return the code 200.

Table 6.6 – Error rate in Fission vanilla, AS and RR with node failure

Fission vanilla Fission AS Fission RR
1.26% 0% 0%

96

6.3. Experiment 2: Active-Standby with Router versus Request Replication and Retry

6.3.3 Resource Consumption Analysis

We measured CPU and memory usage in order to analyse the amount of resources
required to support fault tolerance in each approach. Figures 6.21 and 6.22 show CPU
and memory consumption in Fission vanilla, AS, and RR without and with pod and
node failures. The numbers shown are the overall CPU and memory usage of the 5 nodes
hosting Kubernetes and the Fission platform during the execution of the workload.

In the three scenarios (i.e., no failure, pod failure, and node failure), we observe that
RR consumes more CPU and memory compared to vanilla and AS. When there are no
failures, the overhead of using RR is 180% in CPU and 52% in memory consumption
compared to vanilla. This is because of the additional resources allocated to the second
replica. In vanilla, only one replica executes requests. AS has an overhead of 141% in CPU
consumption and 39% in memory consumption compared to vanilla. Note that in AS, the
standby replica is hot, which means that it is loaded in memory. The replica does not
process requests (like the active replica of RR), but it does perform regular heartbeats,
which consumes resources.

Figures 6.23, 6.24, and 6.25 show the average CPU consumption over time separately
for each node: the Kubernetes master node, the Fission node, and the 3 worker nodes for
all approaches with a pod failure.

The CPU consumption of AS and RR are similar and vanilla shows the lowest CPU
utilization. We notice that on average, the coordinator nodes (i.e., master and Fission
nodes) need more resources compared to the worker nodes because the services that
manage the cluster are located in the master and the services that manage the functions
are located in the Fission node. Especially for AS and RR, their coordinator nodes are
experiencing high CPU usage compared to vanilla. This is due to the CPU consumption
of the Router in the Fission node when calling the Kubernetes API server to get updates
on the IP addresses of the function pods.

Regarding the CPU consumption of worker 2 and worker 3 in AS (see Figure 6.24), we
note that after the failure, worker 3 starts to consume more CPU while worker 2 consumes
less CPU, which shows the behavior of the failover to the standby pod.

In RR, when the pod 1 fails, another one is created in the same node (worker 2) for
that reason we observe a short peak in the CPU usage at the 6th minute, as shown in
Figure 6.25.

97

Part , Chapter 6 – Evaluation

Figure 6.21 – CPU consumption without and with pod and node failures

Figure 6.22 – Memory consumption without and with pod and node failures

Figure 6.23 – CPU consumption per node in vanilla with pod failure

98

6.4. Lessons Learned

Figure 6.24 – CPU consumption per node in AS with pod failure

Figure 6.25 – CPU consumption per node in RR with pod failure

6.4 Lessons Learned

From our experimental comparison of the three fault tolerance approaches (i.e., retry,
Active-Standby and Request Replication), we note that each approach has different prop-
erties and is most effective under different conditions. The retry mechanism is well suited
for transient faults that last a short time. This approach consumes less resources than
the Active-Standby and the Request Replication approaches. The Active-Standby ap-
proach offers better availability (independently of the implementation) in the presence of
long-lasting faults, compared to the retry approach, but at the cost of higher resource
consumption. For instance, in our experiments, the Active-Standby approach consumes
more than two times the CPU consumed by the retry approach. The Request Replication
approach offers the best availability for any kind of failure. Indeed, when the fault does
not affect all replicas, there is almost no impact on the overall availability. This approach

99

Part , Chapter 6 – Evaluation

also offers the best, and most stable performance. On the other hand, the Request Repli-
cation approach incurs the highest resource consumption. In general, we observe that
availability and resource consumption in the three approaches are inversely related. The
recommended type of functions to use with the three approaches is idempotent functions,
that is, functions that give the same output when called multiple times with the same
input. This type of function is useful to prevent inconsistent, duplicated, and lost data in
the application.

6.5 Summary

In this chapter, we presented an experimental study to evaluate three fault tolerance
approaches (i.e., retry, Active-Standby and Request Replication) implemented in Fission
FaaS framework. The experiments were carried out using several failures scenarios and
metrics (performance, availability, and resource consumption) in order to evaluate the
ability of each approach to tolerate faults. The obtained results show that the Request
Replication approach performs better in the three sets of failure scenarios (pod failure,
node failure and network delay scenarios) pointing to its effectiveness. This approach is
able to ensure a high availability of functions, compared to the Active-Standby and retry
approaches. However, Request Replication requires a significant amount of extra resources
to achieve fault-tolerant FaaS applications.

The next chapter concludes this thesis providing an outlook of future research direc-
tions in the field.

100

Chapter 7

CONCLUSION AND PERSPECTIVES

In this chapter, we conclude the presented work and give an overview of some future
research directions.

7.1 Conclusion

Function as a Service offers many benefits to its users, including the facility of deploying
applications without having to manage servers. It also provides an attractive pay-per-
use pricing model. As a result, an increasing number of customers are rapidly adopting
the FaaS model. However, an important aspect of the FaaS environment, namely fault
tolerance, requires a deeper study. Since fault tolerance is handled by the FaaS provider,
the provider has to ensure high availability for the deployed functions. Indeed, most FaaS
systems support a basic form of fault tolerance through retrying function executions.
This makes them lack the ability to tolerate failures of different types, such as permanent
failures. For example, if a function execution fails due to an infrastructure failure, then
the function request would be pointlessly retried many times. In addition, the recovery of
FaaS systems after such a failure was not covered in the literature and was thus addressed
in our work.

In our work, we investigated the current fault tolerance mechanisms used in FaaS
systems; we found that there is a limited support for fault tolerance and most platforms
do not provide any mechanism to tolerate permanent faults such as node failures. This is an
important limitation for attaining high availability of functions. Therefore, we studied the
existing open source FaaS frameworks in order to select the appropriate one for hosting
our approaches, based on a defined set of criteria, including extensibility, popularity,
documentation and community size. We selected Fission for our work because it is flexible
and allows modifying the source code. Fission uses the retry fault tolerance mechanism,
which consists basically in restarting the entire submission process of a failed request and
that we compared with our approaches.

101

The next step was to study the applicability of existing replication-based strategies
in FaaS systems. Our first decision was to use a passive replication approach (Active-
Standby) that provides a standby replica to take over when the active replica fails. How-
ever, this approach has a slow reaction to failures because when the active replica fails, the
failure must be detected by the standby replica. In order to make the functions available
and the failures masked to users, it is desirable to provide fault tolerance mechanisms
that allow the functions to continue executing requests with no interruption in the event
of failures. For doing so, we proposed another approach also based on replication but this
time on an active mode (Request Replication), where the requests are executed by all the
function replicas.

The proposed fault tolerance approaches were presented in Chapter 5, as well as an
overview of their integration in Fission. Based on our implementation of the two replication
approaches in Fission, we experimentally compared them with the basic retry mechanism
natively implemented in Fission, in terms of different metrics, and under different failure
scenarios.

The obtained results highlighted the differences among the three approaches, especially
in terms of their reaction to failures. Notably, they showed that the retry mechanism is
not sufficient for providing high availability of functions. The reason is that the default be-
havior of the retry mechanism results in a high recovery time in the event of node failures.
The retry mechanism is better suited for transient failures as seen in the network delay
scenario. With Active-Standby (AS), the recovery time is decreased because the service
becomes available shortly after the standby replica detects the failure of the active replica.
With Request-Replication (RR), the service always remains available as long as another
replica continues to respond to users and recovery does not depend on replacing the faulty
replica. Both replication approaches use more resources than the retry mechanism.

Based on the previous discussion, each of the fault tolerance approaches has its own
advantages and disadvantages and can be employed for specific fault tolerance scenarios.
We can see that choosing the appropriate fault tolerance approach in the context of FaaS
depends necessarily on the requirements that must be addressed. If the emphasis is on
good performance (e.g., for latency sensitive applications), the preferred approach is RR;
if it is on reduced resources (e.g., for resource-constrained environments, such as edge)
and need for high availability, the preferred approach is AS. Retry can be used when the
requirement is for resource saving and limited availability.

102

7.2 Perspectives

There are many possibilities to enrich our research in various aspects. In this section,
we suggest future work directions to extend the work presented in this thesis.

7.2.1 Short-Term Perspectives

Chapter 6 covered the resource consumption measurements of the proposed approaches
and the retry mechanism. However, energy consumption has not been measured in this
work. It would be interesting to measure how much energy the approaches need to provide
fault tolerance for FaaS functions. Therefore, an evaluation in terms of energy consump-
tion is a recommendation for future work that could be done by using the Kwollect
framework [114] included in the Grid’5000 platform.

In our experiments, the three approaches were tested with a computational application
that computes a Fibonacci sequence. Nevertheless, to strengthen the value of this work,
it is important to test the presented approaches using stateless applications from different
domains (e.g., IoT, video processing, and machine learning). In this way, further flaws of
each approach could be identified and addressed.

Another avenue for future work is related to cold starts. With cold start being a
frequently discussed topic among FaaS challenges [128, 135], it is of interest to deeply
investigate what is the proper way to mitigate cold starts in the event of failures. If a
function fails, subsequent invocations may lead to cold starts, which delay execution. Thus,
a further measurement of cold start after failures to determine the best fault tolerance
approach could serve as a useful contribution to the topic.

7.2.2 Mid-Term Perspectives

Another direction for future work is related to how the FaaS model can be applied in
the context of edge computing while ensuring the availability of functions. Edge computing
is a distributed architecture that enables computation to be as close as possible to end
users. This allows users to benefit from faster response times. With FaaS, there is no
need for developers to maintain servers or instances, which provides efficient resource
usage and associated cost savings. These benefits could make the FaaS model well-suited
for adoption in edge computing. For instance, in [102], [22] the authors found that FaaS
would be particularly beneficial for edge computing and enables developers to use edge

103

resources with less complexity and effort. However, the fault tolerance of FaaS functions
in edge computing environments is still an open issue. More research is required to adapt
the fault tolerance techniques of FaaS platforms to the edge context and thereby provide
an effective solution to improve the fault tolerance of functions deployed in the edge.

7.2.3 Long-Term Perspectives

In our work, we considered stateless and idempotent applications, where the same
input always gives the same output. To satisfy further use cases, FaaS architectures and
offerings are recently evolving to address state. Therefore, it will be highly desirable to de-
sign fault tolerance approaches for stateful FaaS applications. With stateful applications,
a state is typically maintained in external storage services, such as NoSQL databases [200].
Using the Request Replication approach for such applications seems challenging. The rea-
son is that concurrent accesses increase the load on the storage service and introduce
overhead for maintaining consistency. This may result in reduced performance in the case
of normal, fault-free operation compared to using the Active-Standby or retry approaches.
Integrating caching into stateful functions could mitigate this problem [174].

With this thesis’s focus on different fault tolerance approaches, a natural extension
would be to design a fault tolerant system for FaaS that simultaneously supports mul-
tiple approaches, such as retry, Active-Standby and Request Replication, and uses one
or another according to specific factors while meeting users’s requirements (e.g., perfor-
mance, availability, resource consumption). These factors may include application types
(e.g., stateful or stateless) and operating conditions (e.g., fault rates, network latencies).

In this thesis, the proposed approaches are both based on the replication. Hence, it
would be interesting to extend the work presented in this thesis by further investigation
of other fault tolerance strategies that are available in the literature and have also been
mentioned in Chapter 2, such as checkpointing. This technique is typically used to tolerate
failures by periodically saving an application’s state, known as checkpoint, to be used in
the presence of a failure. In the context of FaaS, some works [202] and [105] propose the
usage of checkpointing to restart functions from where they timed out, which is useful
for functions that execute long-running computations. It would be useful to study the
applicability of checkpointing to typical FaaS functions, the majority of which currently
run for under one minute [64]. One interesting idea could be implementing the check-
pointing mechanism in FaaS environments with an adaptive checkpoint interval that uses
the timings of already occurred failures to estimate the occurrences of the next ones [37].

104

BIBLIOGRAPHY

[1] Building a Multi-region Serverless Application with Amazon API Gateway and
AWS Lambda, https://aws.amazon.com/blogs/compute/building-a-multi-
region - serverless - application - with - amazon - api - gateway - and - aws -
lambda/, [Online; accessed 10-january-2022].

[2] Implementing Multi-Region Disaster Recovery Using Event-Driven Architecture,
https : / / aws . amazon . com / blogs / architecture / implementing - multi -
region- disaster- recovery- using- event- driven- architecture/, [Online;
accessed 10-january-2022].

[3] Alibaba Functions, https://www.alibabacloud.com/fr/product/function-
compute, [Online; accessed 07-november-2021].

[4] Amazon DynamoDB, https://aws.amazon.com/fr/dynamodb/, [Online; accessed
04-november-2021].

[5] Amazon S3, https://aws.amazon.com/fr/s3/, [Online; accessed 04-november-
2021].

[6] Amazon SageMaker, https://aws.amazon.com/pm/sagemaker/, [Online; ac-
cessed 8-january-2022].

[7] Amazon Serverless ML Training, https://aws.amazon.com/fr/blogs/machine-
learning/code-free-machine-learning-automl-with-autogluon-amazon-
sagemaker-and-aws-lambda/, [Online; accessed 07-november-2021].

[8] Amazon SNS, https://aws.amazon.com/sns/?whats-new-cards.sort-by=
item.additionalFields.postDateTime&whats-new-cards.sort-order=desc,
[Online; accessed 4-january-2022].

[9] Error Handling and Automatic Retries in AWS Lambda, https://docs.aws.
amazon.com/lambda/latest/dg/invocation-retries.html, [Online; accessed
07-july-2021], 2020.

[10] AWS Lambda Features, https://aws.amazon.com/lambda/features/, [Online;
accessed 07-july-2021], 2020.

105

https://aws.amazon.com/blogs/compute/building-a-multi-region-serverless-application-with-amazon-api-gateway-and-aws-lambda/
https://aws.amazon.com/blogs/compute/building-a-multi-region-serverless-application-with-amazon-api-gateway-and-aws-lambda/
https://aws.amazon.com/blogs/compute/building-a-multi-region-serverless-application-with-amazon-api-gateway-and-aws-lambda/
https://aws.amazon.com/blogs/architecture/implementing-multi-region-disaster-recovery-using-event-driven-architecture/
https://aws.amazon.com/blogs/architecture/implementing-multi-region-disaster-recovery-using-event-driven-architecture/
https://www.alibabacloud.com/fr/product/function-compute
https://www.alibabacloud.com/fr/product/function-compute
https://aws.amazon.com/fr/dynamodb/
https://aws.amazon.com/fr/s3/
https://aws.amazon.com/pm/sagemaker/
https://aws.amazon.com/fr/blogs/machine-learning/code-free-machine-learning-automl-with-autogluon-amazon-sagemaker-and-aws-lambda/
https://aws.amazon.com/fr/blogs/machine-learning/code-free-machine-learning-automl-with-autogluon-amazon-sagemaker-and-aws-lambda/
https://aws.amazon.com/fr/blogs/machine-learning/code-free-machine-learning-automl-with-autogluon-amazon-sagemaker-and-aws-lambda/
https://aws.amazon.com/sns/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc
https://aws.amazon.com/sns/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc
https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html
https://aws.amazon.com/lambda/features/

[11] AWS S3, https://https://aws.amazon.com/fr/s3/, [Online; accessed 19-
october-2021].

[12] Zeeshan Amin, Harshpreet Singh, and Nisha Sethi, « Review on fault tolerance
techniques in cloud computing », in: International Journal of Computer Applica-
tions 116.18 (2015).

[13] Lixiang Ao, Liz Izhikevich, Geoffrey M Voelker, and George Porter, « Sprocket: A
serverless video processing framework », in: Proceedings of the ACM Symposium
on Cloud Computing, 2018, pp. 263–274.

[14] Apache, https://httpd.apache.org/docs/2.4/programs/ab.html, [Online;
accessed 29-september-2021].

[15] Apache Flink StateFu, https://flink.apache.org/stateful-functions.html,
[Online; accessed 14-november-2021].

[16] Apache Kafka, https://kafka.apache.org/, [Online; accessed 4-january-2022].

[17] Apache Mesos, http://mesos.apache.org/, [Online; accessed 29-november-2021].

[18] Apache OpenWhisk, https://openwhisk.apache.org, [Online; accessed 07-july-
2021].

[19] Apache OpenWhisk, https://openwhisk.apache.org/, [Online; accessed 07-
november-2021].

[20] Apache OpenWhisk Composer, https://github.com/apache/openwhisk-composer,
[Online; accessed 07-july-2021].

[21] Aqua, https://www.aquasec.com/aqua-cloud-native-security-platform/,
[Online; accessed 02-november-2021].

[22] Mohammad S Aslanpour et al., « Serverless edge computing: vision and chal-
lenges », in: 2021 Australasian Computer Science Week Multiconference, 2021,
pp. 1–10.

[23] AutoGluon, https://auto.gluon.ai/stable/index.html, [Online; accessed
8-january-2022].

[24] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr, « Basic concepts
and taxonomy of dependable and secure computing », in: IEEE transactions on
dependable and secure computing 1.1 (2004), pp. 11–33.

106

https://https://aws.amazon.com/fr/s3/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://flink.apache.org/stateful-functions.html
https://kafka.apache.org/
http://mesos.apache.org/
https://openwhisk.apache.org
https://openwhisk.apache.org/
https://github.com/apache/openwhisk-composer
https://www.aquasec.com/aqua-cloud-native-security-platform/
https://auto.gluon.ai/stable/index.html

[25] Using AWS Serverless Technology as an Enabler for Cloud Adoption, https://
aws.amazon.com/blogs/apn/using- aws- serverless- technology- as- an-
enabler-for-cloud-adoption/, [Online; accessed 07-july-2021], 2019.

[26] Azure Functions geo-disaster recovery, https : / / docs . microsoft . com / en -
us/azure/azure- functions/functions- geo- disaster- recovery, [Online;
accessed 16-november-2021], 2020.

[27] AWS Step Functions, https : / / aws . amazon . com / step - functions, [Online;
accessed 07-july-2021].

[28] Azure Blob Storage, https://azure.microsoft.com/en-us/services/storage/
blobs/, [Online; accessed 04-november-2021].

[29] Azure Queue Storage, https://docs.microsoft.com/en- us/azure/azure-
functions/functions-bindings-storage-queue, [Online; accessed 8-january-
2022].

[30] Azure SQL Database, https://azure.microsoft.com/en-us/products/azure-
sql/database/, [Online; accessed 04-november-2021].

[31] Azure Functions Timeout, https://docs.microsoft.com/en-us/azure/azure-
functions/functions-scale#timeout, [Online; accessed 19-october-2021].

[32] Azure Durable Functions, https://docs.microsoft.com/en-us/azure/azure-
functions/durable, [Online; accessed 07-july-2021].

[33] Azure Functions, https://azure.microsoft.com/fr-fr/services/functions/,
[Online; accessed 07-july-2021], 2020.

[34] Timon Back and Vasilios Andrikopoulos, « Using a microbenchmark to compare
function as a service solutions », in: European Conference on Service-Oriented and
Cloud Computing, Springer, 2018, pp. 146–160.

[35] Ioana Baldini, Perry Cheng, Stephen J Fink, Nick Mitchell, Vinod Muthusamy,
Rodric Rabbah, Philippe Suter, and Olivier Tardieu, « The serverless trilemma:
Function composition for serverless computing », in: Proceedings of the 2017 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software, 2017, pp. 89–103.

[36] David Balla, Markosz Maliosz, and Csaba Simon, « Open Source FaaS Performance
Aspects », in: 2020 43rd International Conference on Telecommunications and
Signal Processing (TSP), IEEE, 2020, pp. 358–364.

107

https://aws.amazon.com/blogs/apn/using-aws-serverless-technology-as-an-enabler-for-cloud-adoption/
https://aws.amazon.com/blogs/apn/using-aws-serverless-technology-as-an-enabler-for-cloud-adoption/
https://aws.amazon.com/blogs/apn/using-aws-serverless-technology-as-an-enabler-for-cloud-adoption/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-geo-disaster-recovery
https://docs.microsoft.com/en-us/azure/azure-functions/functions-geo-disaster-recovery
https://aws.amazon.com/step-functions
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://azure.microsoft.com/en-us/products/azure-sql/database/
https://azure.microsoft.com/en-us/products/azure-sql/database/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale#timeout
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale#timeout
https://docs.microsoft.com/en-us/azure/azure-functions/durable
https://docs.microsoft.com/en-us/azure/azure-functions/durable
https://azure.microsoft.com/fr-fr/services/functions/

[37] Mohamad Imran bin Bandan, Subhasis Bhattacharjee, Dhiraj K Pradhan, and
Jimson Mathew, « Adaptive checkpoint interval algorithm considering task dead-
line and lifetime reliability for real-time system », in: Procedia Computer Science
70 (2015), pp. 821–828.

[38] Daniel Barcelona-Pons, Marc Sánchez-Artigas, Gerard Parı́s, Pierre Sutra, and Pe-
dro Garcı́a-López, « On the FaaS Track: Building Stateful Distributed Applications
with Serverless Architectures », in: Proceedings of the 20th International Middle-
ware Conference, Middleware ’19, Davis, CA, USA: Association for Computing Ma-
chinery, 2019, pp. 41–54, isbn: 9781450370097, doi: 10.1145/3361525.3361535,
url: https://doi.org/10.1145/3361525.3361535.

[39] Yasmina Bouizem, Djawida Dib, Nikos Parlavantzas, and Christine Morin, « Active-
Standby for High-Availability in FaaS », in: Sixth International Workshop on Server-
less Computing (WoSC6) 2020, Delft, Netherlands, Dec. 2020, doi: 10 . 1145 /
3429880.3430097, url: https://hal.inria.fr/hal-03043479.

[40] Abderraouf Boussif, Mohamed Ghazel, and Joao Carlos Basilio, « Intermittent
fault diagnosability of discrete event systems: an overview of automaton-based
approaches », in: Discrete Event Dynamic Systems 31.1 (2021), pp. 59–102.

[41] Dario Bruneo, Salvatore Distefano, Francesco Longo, Antonio Puliafito, and Marco
Scarpa, « Workload-based software rejuvenation in cloud systems », in: IEEE
Transactions on Computers 62.6 (2013), pp. 1072–1085.

[42] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger, and Jonathan
Appavoo, « SEUSS: skip redundant paths to make serverless fast », in: Proceedings
of the Fifteenth European Conference on Computer Systems, 2020, pp. 1–15.

[43] Jiajun Cao, Matthieu Simonin, Gene Cooperman, and Christine Morin, « Check-
pointing as a service in heterogeneous cloud environments », in: 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, IEEE, 2015,
pp. 61–70.

[44] John Carnell and Illary Sanchez, Spring microservices in action, Simon and Schus-
ter, 2021.

[45] Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar, Panruo Wu, and Yue
Cheng, « Wukong: A scalable and locality-enhanced framework for serverless paral-

108

https://doi.org/10.1145/3361525.3361535
https://doi.org/10.1145/3361525.3361535
https://doi.org/10.1145/3429880.3430097
https://doi.org/10.1145/3429880.3430097
https://hal.inria.fr/hal-03043479

lel computing », in: Proceedings of the 11th ACM Symposium on Cloud Computing,
2020, pp. 1–15.

[46] chaos-mesh, https://github.com/chaos-mesh/chaos-mesh, [Online; accessed
5-may-2021].

[47] Ryan Chard, Tyler J Skluzacek, Zhuozhao Li, Yadu Babuji, Anna Woodard, Ben
Blaiszik, Steven Tuecke, Ian Foster, and Kyle Chard, « Serverless supercomputing:
High performance function as a service for science », in: arXiv preprint arXiv:1908.04907
(2019).

[48] Bin Cheng, Jonathan Fuerst, Gurkan Solmaz, and Takuya Sanada, « Fog function:
Serverless fog computing for data intensive iot services », in: 2019 IEEE Interna-
tional Conference on Services Computing (SCC), IEEE, 2019, pp. 28–35.

[49] Mehdi Nazari Cheraghlou, Ahmad Khadem-Zadeh, and Majid Haghparast, « A
survey of fault tolerance architecture in cloud computing », in: Journal of Network
and Computer Applications 61 (2016), pp. 81–92.

[50] Susanta Nanda Tzi-cker Chiueh and Stony Brook, « A survey on virtualization
technologies », in: Rpe Report 142 (2005).

[51] Retry pattern, https://docs.microsoft.com/en-us/azure/architecture/
patterns/retry, [Online; accessed 07-july-2021], 2020.

[52] Cloud Functions, https : / / cloud . google . com / functions, [Online; accessed
04-november-2021].

[53] CloudEvents, https://cloudevents.io/, [Online; accessed 4-january-2022].

[54] Mikhail Shilkov, Comparison of Cold Starts in Serverless Functions across AWS,
Azure, and GCP, https://mikhail.io/serverless/coldstarts/big3/, [Online;
accessed 29-october-2021].

[55] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Podstawski, and Torsten
Hoefler, « Sebs: A serverless benchmark suite for function-as-a-service computing »,
in: Proceedings of the 22nd International Middleware Conference, 2021, pp. 64–78.

[56] CoreDNS: DNS and Service Discovery, https://coredns.io/, [Online; accessed
20-march-2022].

109

https://github.com/chaos-mesh/chaos-mesh
https://docs.microsoft.com/en-us/azure/architecture/patterns/retry
https://docs.microsoft.com/en-us/azure/architecture/patterns/retry
https://cloud.google.com/functions
https://cloudevents.io/
https://mikhail.io/serverless/coldstarts/big3/
https://coredns.io/

[57] Running Automated Tasks with a CronJob, https : / / kubernetes . io / docs /
tasks/job/automated-tasks-with-cron-jobs/, [Online; accessed 07-october-
2021].

[58] Pubali Datta, Prabuddha Kumar, Tristan Morris, Michael Grace, Amir Rahmati,
and Adam Bates, « Valve: Securing function workflows on serverless computing
platforms », in: Proceedings of The Web Conference 2020, 2020, pp. 939–950.

[59] Docker, https://www.docker.com/, [Online; accessed 26-november-2021].

[60] Docker Swarm, https://docs.docker.com/engine/swarm/, [Online; accessed
29-november-2021].

[61] Many-faced threats to Serverless security, https : / / hackernoon . com / many -
faced- threats - to- serverless- security - 519e94d19dba, [Online; accessed
02-november-2021].

[62] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin, Qix-
uan Wu, and Haibo Chen, « Catalyzer: Sub-millisecond startup for serverless com-
puting with initialization-less booting », in: Proceedings of the Twenty-Fifth In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, 2020, pp. 467–481.

[63] Elena Dubrova et al., « Fault tolerant design: An introduction », in: Department
of Microelectronics and Information Technology, Royal Institute of Technology,
Stockholm, Sweden (2008), pp. 22–3.

[64] Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger, Johannes
Grohmann, Nikolas Herbst, Cristina Abad, and Alexandru Iosup, « The State
of Serverless Applications: Collection, Characterization, and Community Consen-
sus », in: IEEE Transactions on Software Engineering (2021).

[65] Epsagon, https://epsagon.com/, [Online; accessed 02-november-2021].

[66] Event Injection: Protecting your Serverless Applications, https://www.jeremydaly.
com/event- injection- protecting- your- serverless- applications/, [On-
line; accessed 02-november-2021].

[67] Faas-flow, https://github.com/s8sg/faas- flow, [Online; accessed 07-july-
2021].

110

https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/
https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/
https://www.docker.com/
https://docs.docker.com/engine/swarm/
https://hackernoon.com/many-faced-threats-to-serverless-security-519e94d19dba
https://hackernoon.com/many-faced-threats-to-serverless-security-519e94d19dba
https://epsagon.com/
https://www.jeremydaly.com/event-injection-protecting-your-serverless-applications/
https://www.jeremydaly.com/event-injection-protecting-your-serverless-applications/
https://github.com/s8sg/faas-flow

[68] Pascal Felber, Xavier Défago, Patrick Eugster, and André Schiper, « Replicating
CORBA objects: a marriage between active and passive replication », in: IFIP
International Conference on Distributed Applications and Interoperable Systems,
Springer, 1999, pp. 375–387.

[69] Pascal Felber and Priya Narasimhan, « Experiences, strategies, and challenges in
building fault-tolerant CORBA systems », in: IEEE transactions on Computers
53.5 (2004), pp. 497–511.

[70] Kamil Figiela, Adam Gajek, Adam Zima, Beata Obrok, and Maciej Malawski,
« Performance evaluation of heterogeneous cloud functions », in: Concurrency and
Computation: Practice and Experience 30.23 (2018), e4792.

[71] Firebase, https://firebase.google.com/, [Online; accessed 04-november-2021].

[72] Firecracker Snapshotting, https://github.com/firecracker-microvm/firecracker/
blob/main/docs/snapshotting/snapshot-support.md, [Online; accessed 29-
october-2021].

[73] Fission, https://docs.fission.io/docs/, [Online; accessed 07-july-2021], 2019.

[74] Fission, https://github.com/fission/fission/tree/master, [Online; accessed
04-october-2021].

[75] Fission Router, https : / / godoc . org / github . com / fission / fission / pkg /
router, [Online; accessed 07-july-2021], 2020.

[76] Fission Workflows, https://github.com/fission/fission-workflows, [Online;
accessed 30-september-2021].

[77] Google Cloud Quotas, https://cloud.google.com/functions/quotas, [Online;
accessed 19-october-2021].

[78] Debanjan Ghosh, Raj Sharman, H Raghav Rao, and Shambhu Upadhyaya, « Self-
healing systems—survey and synthesis », in: Decision support systems 42.4 (2007),
pp. 2164–2185.

[79] Mohit Kumar Gokhroo, Mahesh Chandra Govil, and Emmanuel S Pilli, « Detecting
and mitigating faults in cloud computing environment », in: 2017 3rd International
Conference on Computational Intelligence & Communication Technology (CICT),
IEEE, 2017, pp. 1–9.

111

https://firebase.google.com/
https://github.com/firecracker-microvm/firecracker/blob/main/docs/snapshotting/snapshot-support.md
https://github.com/firecracker-microvm/firecracker/blob/main/docs/snapshotting/snapshot-support.md
https://docs.fission.io/docs/
https://github.com/fission/fission/tree/master
https://godoc.org/github.com/fission/fission/pkg/router
https://godoc.org/github.com/fission/fission/pkg/router
 https://github.com/fission/fission-workflows
https://cloud.google.com/functions/quotas

[80] Muhammed Golec, Ridvan Ozturac, Zahra Pooranian, Sukhpal Singh Gill, and Ra-
jkumar Buyya, « iFaaSBus: A Security and Privacy based Lightweight Framework
for Serverless Computing using IoT and Machine Learning », in: IEEE Transac-
tions on Industrial Informatics (2021).

[81] Retrying Background Functions, https://cloud.google.com/functions/docs/
bestpractices/retries, [Online; accessed 07-july-2021], 2019.

[82] Google Cloud Workflows, https://cloud.google.com/workflows, [Online; ac-
cessed 07-july-2021].

[83] Grafana, https://grafana.com/, [Online; accessed 31-january-2022].

[84] Martin Grambow, Tobias Pfandzelter, Luk Burchard, Carsten Schubert, Max Zhao,
and David Bermbach, « Befaas: An application-centric benchmarking framework
for faas platforms », in: 2021 IEEE International Conference on Cloud Engineering
(IC2E), IEEE, 2021, pp. 1–8.

[85] Grid5000, https : / / www . grid5000 . fr / w / Grid5000 : Home, [Online; accessed
07-july-2021], 2020.

[86] Guestbook Application, https://github.com/fission/examples/tree/master/
python/guestbook, [Online; accessed 30-december-2021].

[87] gVisor, https://gvisor.dev/, [Online; accessed 04-november-2021].

[88] Luis Felipe Herrera-Quintero, Julian Camilo Vega-Alfonso, Klaus Bodo Albert
Banse, and Eduardo Carrillo Zambrano, « Smart its sensor for the transportation
planning based on iot approaches using serverless and microservices architecture »,
in: IEEE Intelligent Transportation Systems Magazine 10.2 (2018), pp. 17–27.

[89] Martijn de Heus, Kyriakos Psarakis, Marios Fragkoulis, and Asterios Katsifodimos,
« Distributed transactions on serverless stateful functions », in: Proceedings of the
15th ACM International Conference on Distributed and Event-based Systems, 2021,
pp. 31–42.

[90] Kelsey Hightower, Brendan Burns, and Joe Beda, Kubernetes: up and running:
dive into the future of infrastructure, " O’Reilly Media, Inc.", 2017.

[91] History Table, https://docs.microsoft.com/en-us/azure/azure-functions/
durable/durable-functions-orchestrations?tabs=csharp#history-table,
[Online; accessed 14-november-2021].

112

https://cloud.google.com/functions/docs/bestpractices/retries
https://cloud.google.com/functions/docs/bestpractices/retries
https://cloud.google.com/workflows
https://grafana.com/
https://www.grid5000.fr/w/Grid5000:Home
https://github.com/fission/examples/tree/master/python/guestbook
https://github.com/fission/examples/tree/master/python/guestbook
https://gvisor.dev/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-orchestrations?tabs=csharp#history-table
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-orchestrations?tabs=csharp#history-table

[92] Michael Hogan, Fang Liu, Annie Sokol, and Jin Tong, « Nist cloud computing
standards roadmap », in: NIST Special Publication 35 (2011), pp. 6–11.

[93] Hypervisor, https://www.geeksforgeeks.org/hypervisor/, [Online; accessed
26-november-2021].

[94] IBM Cloud Functions, https://www.ibm.com/cloud/functions, [Online; ac-
cessed 07-november-2021].

[95] IBM Composer, https://github.com/ibm-functions/composer, [Online; ac-
cessed 01-november-2021].

[96] IFTTT, https://ifttt.com/, [Online; accessed 4-january-2022].

[97] Istio, https://istio.io/, [Online; accessed 04-november-2021].

[98] David Jackson and Gary Clynch, « An investigation of the impact of language run-
time on the performance and cost of serverless functions », in: 2018 IEEE/ACM
International Conference on Utility and Cloud Computing Companion (UCC Com-
panion), IEEE, 2018, pp. 154–160.

[99] Amir Javadpour, Sanaz Kazemi Abharian, and Guojun Wang, « Feature selection
and intrusion detection in cloud environment based on machine learning algo-
rithms », in: 2017 IEEE international symposium on parallel and distributed pro-
cessing with applications and 2017 IEEE international conference on ubiquitous
computing and communications (ISPA/IUCC), IEEE, 2017, pp. 1417–1421.

[100] Deepak Sirone Jegan, Liang Wang, Siddhant Bhagat, Thomas Ristenpart, and
Michael Swift, « Guarding Serverless Applications with SecLambda », in: arXiv
preprint arXiv:2011.05322 (2020).

[101] Zhipeng Jia and Emmett Witchel, « Boki: Stateful Serverless Computing with
Shared Logs », in: Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles CD-ROM, 2021, pp. 691–707.

[102] Runyu Jin, Qirui Yang, and Ming Zhao, « Is faas suitable for edge computing »,
in: USENIX Association, June (2020).

[103] Eric Jonas et al., « Cloud programming simplified: A berkeley view on serverless
computing », in: arXiv preprint arXiv:1902.03383 (2019).

113

https://www.geeksforgeeks.org/hypervisor/
https://www.ibm.com/cloud/functions
https://github.com/ibm-functions/composer
https://ifttt.com/
https://istio.io/

[104] Shannon Joyner, Michael MacCoss, Christina Delimitrou, and Hakim Weather-
spoon, « Ripple: A Practical Declarative Programming Framework for Serverless
Compute », in: arXiv:2001.00222 [cs.DC], Jan. 2020.

[105] Pekka Karhula, Jan Janak, and Henning Schulzrinne, « Checkpointing and Migra-
tion of IoT Edge Functions », in: Proceedings of the 2nd International Workshop
on Edge Systems, Analytics and Networking, EdgeSys ’19, Dresden, Germany: As-
sociation for Computing Machinery, 2019, pp. 60–65, isbn: 9781450362757, doi:
10.1145/3301418.3313947, url: https://doi.org/10.1145/3301418.3313947.

[106] B. W. Kernighan and M. D. McIlroy, UNIX Time-Sharing System: UNIX Pro-
grammer’s Manual (7th ed.) Bell Telephone Laboratories, 1979.

[107] Jeongchul Kim and Kyungyong Lee, « Functionbench: A suite of workloads for
serverless cloud function service », in: 2019 IEEE 12th International Conference
on Cloud Computing (CLOUD), IEEE, 2019, pp. 502–504.

[108] Knative, https://knative.dev/docs/, [Online; accessed 04-november-2021].

[109] Kubeless, https : / / github . com / kubeless / kubeless, [Online; accessed 04-
october-2021].

[110] Kubeless, https://kubeless.io/, [Online; accessed 07-october-2021].

[111] Kubernetes, https://kubernetes.io/, [Online; accessed 5-may-2021].

[112] Configure Liveness, Readiness and Startup Probes, https://kubernetes.io/
docs/tasks/configure- pod- container/configure- liveness- readiness-
startup-probes/, [Online; accessed 07-july-2021].

[113] Priti Kumari and Parmeet Kaur, « A survey of fault tolerance in cloud comput-
ing », in: Journal of King Saud University-Computer and Information Sciences
33.10 (2021), pp. 1159–1176.

[114] Kwollect, https://gitlab.inria.fr/grid5000/kwollect, [Online; accessed
22-febuary-2022].

[115] Lambda Quotas, https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-
limits.html, [Online; accessed 19-october-2021].

[116] Lambda@Edge, https://aws.amazon.com/fr/lambda/edge/, [Online; accessed
04-november-2021].

114

https://doi.org/10.1145/3301418.3313947
https://doi.org/10.1145/3301418.3313947
https://knative.dev/docs/
https://github.com/kubeless/kubeless
https://kubeless.io/
https://kubernetes.io/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://gitlab.inria.fr/grid5000/kwollect
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://aws.amazon.com/fr/lambda/edge/

[117] Hyungro Lee, Kumar Satyam, and Geoffrey Fox, « Evaluation of production server-
less computing environments », in: 2018 IEEE 11th International Conference on
Cloud Computing (CLOUD), IEEE, 2018, pp. 442–450.

[118] Yen-Lin Lee, Deron Liang, and Wei-Jen Wang, « Optimal Online Liveness Fault
Detection for Multilayer Cloud Computing Systems », in: IEEE Transactions on
Dependable and Secure Computing (2021).

[119] Philipp Leitner, Erik Wittern, Josef Spillner, and Waldemar Hummer, « A mixed-
method empirical study of Function-as-a-Service software development in indus-
trial practice », in: Journal of Systems and Software 149 (2019), pp. 340–359.

[120] Junfeng Li, Sameer G Kulkarni, KK Ramakrishnan, and Dan Li, « Analyzing
Open-Source Serverless Platforms: Characteristics and Performance », in: arXiv
preprint arXiv:2106.03601 (2021).

[121] Junfeng Li, Sameer G Kulkarni, KK Ramakrishnan, and Dan Li, « Understanding
open source serverless platforms: Design considerations and performance », in:
Proceedings of the 5th International Workshop on Serverless Computing, 2019,
pp. 37–42.

[122] Ping-Min Lin and Alex Glikson, « Mitigating cold starts in serverless platforms: A
pool-based approach », in: arXiv preprint arXiv:1903.12221 (2019).

[123] LXC: Linux container, https://linuxcontainers.org/, [Online; accessed 26-
november-2021].

[124] Theo Lynn, Pierangelo Rosati, Arnaud Lejeune, and Vincent Emeakaroha, « A
preliminary review of enterprise serverless cloud computing (function-as-a-service)
platforms », in: 2017 IEEE International Conference on Cloud Computing Tech-
nology and Science (CloudCom), IEEE, 2017, pp. 162–169.

[125] Iran Mahallat, « Fault-tolerance techniques in cloud storage: a survey », in: Int J
Database Theory Appl 8.4 (2015), pp. 183–190.

[126] Pascal Maissen, Pascal Felber, Peter Kropf, and Valerio Schiavoni, « Faasdom:
A benchmark suite for serverless computing », in: Proceedings of the 14th ACM
International Conference on Distributed and Event-based Systems, 2020, pp. 73–84.

115

https://linuxcontainers.org/

[127] Maciej Malawski, Adam Gajek, Adam Zima, Bartosz Balis, and Kamil Figiela,
« Serverless execution of scientific workflows: Experiments with hyperflow, aws
lambda and google cloud functions », in: Future Generation Computer Systems
110 (2020), pp. 502–514.

[128] Johannes Manner, Martin Endreß, Tobias Heckel, and Guido Wirtz, « Cold start
influencing factors in function as a service », in: 2018 IEEE/ACM International
Conference on Utility and Cloud Computing Companion (UCC Companion), IEEE,
2018, pp. 181–188.

[129] Johannes Manner, Stefan Kolb, and Guido Wirtz, « Troubleshooting serverless
functions: a combined monitoring and debugging approach », in: SICS Software-
Intensive Cyber-Physical Systems 34.2 (2019), pp. 99–104.

[130] Marathon, https://mesosphere.github.io/marathon/, [Online; accessed 28-
febuary-2022].

[131] Garrett McGrath and Paul R Brenner, « Serverless computing: Design, imple-
mentation, and performance », in: 2017 IEEE 37th International Conference on
Distributed Computing Systems Workshops (ICDCSW), IEEE, 2017, pp. 405–410.

[132] Peter Mell, Tim Grance, et al., « The NIST definition of cloud computing », in:
(2011).

[133] Richard A. Meyer and Love H. Seawright, « A virtual machine time-sharing sys-
tem », in: IBM Systems Journal 9.3 (1970), pp. 199–218.

[134] Minio, https://min.io/, [Online; accessed 4-january-2022].

[135] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti, Naren Nayak,
and Vadim Sukhomlinov, « Agile cold starts for scalable serverless », in: 11th
{USENIX} Workshop on Hot Topics in Cloud Computing (HotCloud 19), 2019.

[136] Sunil Kumar Mohanty, Gopika Premsankar, Mario Di Francesco, et al., « An Eval-
uation of Open Source Serverless Computing Frameworks. », in: CloudCom, 2018,
pp. 115–120.

[137] Roberto Morabito, « Power consumption of virtualization technologies: an empir-
ical investigation », in: 2015 IEEE/ACM 8th International Conference on Utility
and Cloud Computing (UCC), IEEE, 2015, pp. 522–527.

116

https://mesosphere.github.io/marathon/
https://min.io/

[138] Roberto Morabito, Jimmy Kjällman, and Miika Komu, « Hypervisors vs. lightweight
virtualization: a performance comparison », in: 2015 IEEE International Confer-
ence on Cloud Engineering, IEEE, 2015, pp. 386–393.

[139] Mukosi Abraham Mukwevho and Turgay Celik, « Toward a Smart Cloud: A Review
of Fault-Tolerance Methods in Cloud Systems », in: IEEE Transactions on Services
Computing 14.2 (2021), pp. 589–605, doi: 10.1109/TSC.2018.2816644.

[140] Mukosi Abraham Mukwevho and Turgay Celik, « Toward a smart cloud: A review
of fault-tolerance methods in cloud systems », in: IEEE Transactions on Services
Computing 14.2 (2018), pp. 589–605.

[141] Nginx, https://www.nginx.com/, [Online; accessed 24-october-2021].

[142] Asynchronous Functions, https : / / docs . openfaas . com / reference / async/,
[Online; accessed 05-january-2022], 2021.

[143] OpenFaaS, https://www.openfaas.com, [Online; accessed 08-october-2021].

[144] faas-netes, https://github.com/openfaas/faas-netes, [Online; accessed 28-
september-2021].

[145] OpenFaas, https://github.com/openfaas/faas, [Online; accessed 04-october-
2021].

[146] Oracle Functions, https://docs.oracle.com/en-us/iaas/Content/Functions/
home.htm, [Online; accessed 07-november-2021].

[147] Andrei Palade, Aqeel Kazmi, and Siobhán Clarke, « An evaluation of open source
serverless computing frameworks support at the edge », in: 2019 IEEE World
Congress on Services (SERVICES), vol. 2642, IEEE, 2019, pp. 206–211.

[148] Prasenjit Kumar Patra, Harshpreet Singh, and Gurpreet Singh, « Fault tolerance
techniques and comparative implementation in cloud computing », in: Interna-
tional Journal of Computer Applications 64.14 (2013).

[149] Roland Pellegrini, Igor Ivkic, and Markus Tauber, « Function-as-a-service bench-
marking framework », in: arXiv preprint arXiv:1905.11707 (2019).

[150] Per Persson and Ola Angelsmark, « Kappa: serverless iot deployment », in: Pro-
ceedings of the 2nd International Workshop on Serverless Computing, 2017, pp. 16–
21.

117

https://doi.org/10.1109/TSC.2018.2816644
https://www.nginx.com/
https://docs.openfaas.com/reference/async/
https://www.openfaas.com
https://github.com/openfaas/faas-netes
https://github.com/openfaas/faas
https://docs.oracle.com/en-us/iaas/Content/Functions/home.htm
https://docs.oracle.com/en-us/iaas/Content/Functions/home.htm

[151] Tobias Pfandzelter and David Bermbach, « tinyfaas: A lightweight faas platform for
edge environments », in: 2020 IEEE International Conference on Fog Computing
(ICFC), IEEE, 2020, pp. 17–24.

[152] Kassian Plankensteiner, Radu Prodan, and Thomas Fahringer, « A new fault toler-
ance heuristic for scientific workflows in highly distributed environments based on
resubmission impact », in: 2009 Fifth IEEE International Conference on e-Science,
IEEE, 2009, pp. 313–320.

[153] PowerfulSeal, https://powerfulseal.github.io/powerfulseal/, [Online; ac-
cessed 30-december-2021].

[154] Prometheus, https://prometheus.io/, [Online; accessed 26-october-2021].

[155] Antonio Puliafito and Kishor S Trivedi, Systems Modeling: Methodologies and
Tools, Springer, 2018.

[156] M Saifur Rahman, Md Yusuf Sarwar Uddin, Tahmid Hasan, M Sohel Rahman, and
M Kaykobad, « Using adaptive heartbeat rate on long-lived TCP connections »,
in: IEEE/ACM Transactions on Networking 26.1 (2017), pp. 203–216.

[157] Ganesan Ramalingam and Kapil Vaswani, « Fault tolerance via idempotence », in:
Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, 2013, pp. 249–262.

[158] Thomas Rausch, Waldemar Hummer, Vinod Muthusamy, Alexander Rashed, and
Schahram Dustdar, « Towards a serverless platform for edge {AI} », in: 2nd {USENIX}
Workshop on Hot Topics in Edge Computing (HotEdge 19), 2019.

[159] Redis, https://redis.io/, [Online; accessed 4-january-2022].

[160] Elena Reshetova, Janne Karhunen, Thomas Nyman, and N Asokan, « Security of
OS-level virtualization technologies », in: Nordic Conference on Secure IT Systems,
Springer, 2014, pp. 77–93.

[161] Resume AWS Step Functions from Any State, https://aws.amazon.com/blogs/
compute/resume- aws- step- functions- from- any- state/, [Online; accessed
07-july-2021].

[162] Rkt, https://coreos.com/rkt/, [Online; accessed 26-november-2021].

118

https://powerfulseal.github.io/powerfulseal/
https://prometheus.io/
https://redis.io/
https://aws.amazon.com/blogs/compute/resume-aws-step-functions-from-any-state/
https://aws.amazon.com/blogs/compute/resume-aws-step-functions-from-any-state/
https://coreos.com/rkt/

[163] Lakshmi Prasad Saikia and Yumnam Langlen Devi, « Fault tolerance techniques
and algorithms in cloud computing », in: International Journal of Computer Sci-
ence & Communication Networks 4.1 (2014), pp. 01–08.

[164] Ruben Salvador, Andres Otero, Javier Mora, Eduardo de la Torre, Lukas Sekan-
ina, and Teresa Riesgo, « Fault tolerance analysis and self-healing strategy of au-
tonomous, evolvable hardware systems », in: 2011 International Conference on
Reconfigurable Computing and FPGAs, IEEE, 2011, pp. 164–169.

[165] Arnav Sankaran, Pubali Datta, and Adam Bates, « Workflow Integration Alleviates
Identity and Access Management in Serverless Computing », in: Annual Computer
Security Applications Conference, 2020, pp. 496–509.

[166] Muhammad Asim Shahid, Noman Islam, Muhammad Mansoor Alam, M.S. Mazli-
ham, and Shahrulniza Musa, « Towards Resilient Method: An exhaustive survey
of fault tolerance methods in the cloud computing environment », in: Computer
Science Review 40 (2021), p. 100398, issn: 1574-0137, doi: https://doi.org/
10.1016/j.cosrev.2021.100398, url: https://www.sciencedirect.com/
science/article/pii/S1574013721000381.

[167] Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram Venkataraman,
Ion Stoica, Benjamin Recht, and Jonathan Ragan-Kelley, « Numpywren: Serverless
linear algebra », in: arXiv preprint arXiv:1810.09679 (2018).

[168] Mikhail Shilkov, What Is a Cold Start?, https://mikhail.io/serverless/
coldstarts/define/, [Online; accessed 10-october-2021], 2019.

[169] Mounya Smara, Makhlouf Aliouat, Al-Sakib Khan Pathan, and Zibouda Aliouat,
« Acceptance test for fault detection in component-based cloud computing and
systems », in: Future Generation Computer Systems 70 (2017), pp. 74–93.

[170] Snyk, https://snyk.io/, [Online; accessed 02-november-2021].

[171] Mbarka Soualhia, Foutse Khomh, and Sofiène Tahar, « A dynamic and failure-
aware task scheduling framework for hadoop », in: IEEE Transactions on Cloud
Computing 8.2 (2018), pp. 553–569.

[172] Josef Spillner, Cristian Mateos, and David A Monge, « Faaster, better, cheaper:
The prospect of serverless scientific computing and hpc », in: Latin American High
Performance Computing Conference, Springer, 2017, pp. 154–168.

119

https://doi.org/https://doi.org/10.1016/j.cosrev.2021.100398
https://doi.org/https://doi.org/10.1016/j.cosrev.2021.100398
https://www.sciencedirect.com/science/article/pii/S1574013721000381
https://www.sciencedirect.com/science/article/pii/S1574013721000381
https://mikhail.io/serverless/coldstarts/define/
https://mikhail.io/serverless/coldstarts/define/
https://snyk.io/

[173] Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati, Joseph E. Gonzalez, Joseph
M. Hellerstein, and Jose M. Faleiro, « A Fault-Tolerance Shim for Serverless Com-
puting », in: Proceedings of the Fifteenth European Conference on Computer Sys-
tems, EuroSys ’20, Heraklion, Greece: Association for Computing Machinery, 2020,
isbn: 9781450368827, doi: 10.1145/3342195.3387535, url: https://doi.org/
10.1145/3342195.3387535.

[174] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,
Jose M Faleiro, Joseph E Gonzalez, Joseph M Hellerstein, and Alexey Tumanov,
« Cloudburst: Stateful functions-as-a-service », in: arXiv preprint arXiv:2001.04592
(2020).

[175] SteamAlert, https : / / www . streamalert . io/, [Online; accessed 02-november-
2021].

[176] Sysdig, https://sysdig.com/products/secure/, [Online; accessed 02-november-
2021].

[177] Yue Tan, David Liu, Nanqinqin Li, and Amit Levy, « How Low Can You Go? Prac-
tical cold-start performance limits in FaaS », in: arXiv preprint arXiv:2109.13319
(2021).

[178] The Apache Software Foundation, https://www.apache.org/, [Online; accessed
07-november-2021].

[179] Thundra, https://www.thundra.io/, [Online; accessed 02-november-2021].

[180] Transient Fault Handling, https : / / docs . microsoft . com / en - us / azure /
architecture/best-practices/transient-faults, [Online; accessed 03-december-
2021].

[181] Tsung, http://tsung.erlang-projects.org/user_manual/, [Online; accessed
5-may-2021].

[182] Zhucheng Tu, Mengping Li, and Jimmy Lin, « Pay-per-request deployment of neu-
ral network models using serverless architectures », in: Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Demonstrations, 2018, pp. 6–10.

[183] Blair Felter, The Different Types of Cloud Computing and How They Differ, https:
//www.vxchnge.com/blog/different-types-of-cloud-computing, [Online;
accessed 23-november-2021].

120

https://doi.org/10.1145/3342195.3387535
https://doi.org/10.1145/3342195.3387535
https://doi.org/10.1145/3342195.3387535
https://www.streamalert.io/
https://sysdig.com/products/secure/
https://www.apache.org/
https://www.thundra.io/
https://docs.microsoft.com/en-us/azure/architecture/best-practices/transient-faults
https://docs.microsoft.com/en-us/azure/architecture/best-practices/transient-faults
http://tsung.erlang-projects.org/user_manual/
https://www.vxchnge.com/blog/different-types-of-cloud-computing
https://www.vxchnge.com/blog/different-types-of-cloud-computing

[184] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris
Grot, « Benchmarking, analysis, and optimization of serverless function snap-
shots », in: Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp. 559–572.

[185] Virtualization Overview, https://www.vmware.com/pdf/virtualization.pdf,
[Online; accessed 23-november-2021].

[186] VMware vCenter Server, https://www.vmware.com/products/vcenter-server.
html, [Online; accessed 4-january-2022].

[187] Bin Wang, Ahmed Ali-Eldin, and Prashant Shenoy, « LaSS: Running Latency
Sensitive Serverless Computations at the Edge », in: Proceedings of the 30th In-
ternational Symposium on High-Performance Parallel and Distributed Computing,
2020, pp. 239–251.

[188] Hao Wang, Di Niu, and Baochun Li, « Distributed machine learning with a server-
less architecture », in: IEEE INFOCOM 2019-IEEE Conference on Computer
Communications, IEEE, 2019, pp. 1288–1296.

[189] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael Swift,
« Peeking behind the curtains of serverless platforms », in: 2018 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 18), 2018, pp. 133–146.

[190] What is Serverless Security?, https://www.checkpoint.com/cyber-hub/cloud-
security / what - is - serverless - security/, [Online; accessed 02-november-
2021].

[191] Chenggang Wu, Jose Faleiro, Yihan Lin, and Joseph Hellerstein, « Anna: A kvs for
any scale », in: IEEE Transactions on Knowledge and Data Engineering (2019).

[192] Chenggang Wu, Vikram Sreekanti, and Joseph M Hellerstein, « Transactional
causal consistency for serverless computing », in: Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, 2020, pp. 83–97.

[193] Shelly Xiaonan Wu and Wolfgang Banzhaf, « The use of computational intelligence
in intrusion detection systems: A review », in: Applied soft computing 10.1 (2010),
pp. 1–35.

[194] Lai Xinming, Wang Haitao, Zhao Jing, Zhang Fan, Zhao Chao, and Wu Gang,
« Research on High Availability Architecture of Cloud Platform », in: Journal of
Physics: Conference Series, vol. 1345, 2, IOP Publishing, 2019, p. 022044.

121

https://www.vmware.com/pdf/virtualization.pdf
https://www.vmware.com/products/vcenter-server.html
https://www.vmware.com/products/vcenter-server.html
https://www.checkpoint.com/cyber-hub/cloud-security/what-is-serverless-security/
https://www.checkpoint.com/cyber-hub/cloud-security/what-is-serverless-security/

[195] Fei Xu, Yiling Qin, Li Chen, Zhi Zhou, and Fangming Liu, « lambda DNN: Achiev-
ing Predictable Distributed DNN Training with Serverless Architectures », in:
IEEE Transactions on Computers (2021).

[196] Zhengjun Xu, Haitao Zhang, Xin Geng, Qiong Wu, and Huadong Ma, « Adaptive
function launching acceleration in serverless computing platforms », in: 2019 IEEE
25th International Conference on Parallel and Distributed Systems (ICPADS),
IEEE, 2019, pp. 9–16.

[197] Rimmy Yadav and Avtar Singh Sidhu, « Fault tolerant algorithm for replication
management in distributed cloud system », in: 2015 IEEE 3rd International Con-
ference on MOOCs, Innovation and Technology in Education (MITE), IEEE, 2015,
pp. 78–83.

[198] Vladimir Yussupov, Uwe Breitenbücher, Ayhan Kaplan, and Frank Leymann, « SEA-
PORT: Assessing the Portability of Serverless Applications. », in: CLOSER, 2020,
pp. 456–467.

[199] Vladimir Yussupov, Uwe Breitenbücher, Frank Leymann, and Christian Müller,
« Facing the unplanned migration of serverless applications: A study on portabil-
ity problems, solutions, and dead ends », in: Proceedings of the 12th IEEE/ACM
International Conference on Utility and Cloud Computing, 2019, pp. 273–283.

[200] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and Vincent
Liu, « Fault-tolerant and transactional stateful serverless workflows », in: 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
20), Banff, Alberta: USENIX Association, Nov. 2020, url: https://www.usenix.
org/conference/osdi20/presentation/zhang-haoran.

[201] Miao Zhang, Yifei Zhu, Cong Zhang, and Jiangchuan Liu, « Video processing with
serverless computing: A measurement study », in: Proceedings of the 29th ACM
workshop on network and operating systems support for digital audio and video,
2019, pp. 61–66.

[202] Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker, « Kappa: A pro-
gramming framework for serverless computing », in: Proceedings of the 11th ACM
Symposium on Cloud Computing, 2020, pp. 328–343.

122

https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran

[203] Junlong Zhou, Mingyue Zhang, Jin Sun, Tian Wang, Xiumin Zhou, and Shiyan
Hu, « Drheft: Deadline-constrained reliability-aware heft algorithm for real-time
heterogeneous mpsoc systems », in: IEEE Transactions on Reliability (2020).

123

RÉSUMÉ EN FRANÇAIS

Introduction

Il y a encore quelques années les organisations devaient posséder et gérer leurs pro-
pres serveurs physiques pour exécuter leurs logiciels, ce qui entraînait des coûts en termes
d’investissement et de maintenance. Le cloud computing a introduit de nouveaux services
et de nouvelles solutions pour l’accès aux ressources informatiques. Récemment, un nou-
veau modèle de service de cloud a émergé, appelé Fonction en tant que Service (FaaS),
qui permet aux développeurs de créer et d’exécuter des applications sans avoir à gérer des
serveurs. Les développeurs se concentrent sur l’écriture du code de l’application tandis que
le fournisseur de plateforme FaaS est responsable de la gestion et de la configuration de
l’infrastructure. Dans ce modèle, les applications se présentent sous la forme de fonctions.
Les fonctions sont des fragments de code qui exécutent une tâche spécifique. Dans le mod-
èle FaaS, les fonctions ont une courte durée de vie et s’exécutent dans un conteneur sans
état qui est déclenché par des événements. Le passage à l’échelle des fonctions est géré
automatiquement et les clients ne sont facturés que pour les ressources utilisées pendant
l’exécution des fonctions.

Les principaux fournisseurs de cloud offrent une plateforme FaaS. Par exemple, Ama-
zon et Google fournissent respectivement Lambda et Google Functions. De plus, plusieurs
environnements open source pour le déploiement d’applications FaaS ont émergé, tels que
Fission, OpenFaaS et Knative. Le modèle FaaS attire un nombre croissant d’utilisateurs
du cloud qui l’ont adopté pour différentes classes d’applications, à savoir le traitement
de vidéos, le calcul scientifique, l’internet des objets et les applications d’apprentissage
automatique.

Bien qu’un environnement FaaS offre de nombreux avantages, il présente un certain
nombre de limites, notamment du point de vue de la tolérance aux fautes. Étant donné
que la tolérance aux fautes est gérée par le fournisseur de service FaaS, ce dernier doit as-
surer une haute disponibilité pour les fonctions déployées. La plupart des environnements
FaaS fournissent un mécanisme basique de tolérance aux fautes qui consiste à relancer
l’exécution des fonctions en l’absence de réponse. Toutefois, si le mécanisme de relance

124

permet de faire face aux délais induits par le réseau, il entraîne de longs délais de recou-
vrement lorsqu’il s’agit de traiter d’autres types de fautes. Ainsi, le mécanisme de relance
ne permet pas de tolérer des fautes permanentes. Par exemple, si l’exécution d’une fonc-
tion échoue en raison de la défaillance d’un nœud, la requête sera relancée inutilement
plusieurs fois.

D’autres approches de tolérance aux fautes présentent des propriétés de disponibilité,
de performance et de consommation des ressources différentes, ce qui les rend appropriées
pour différents scénarios de défaillance. Par exemple, les approches de réplication qui
utilisent des instances de fonction déployées sur plusieurs nœuds sont appropriées pour
gérer les pannes franches des nœuds. En particulier, l’approche de réplication active fa-
vorise les performances et convient aux applications sensibles à la latence. L’approche de
réplication passive favorise une consommation de ressources réduite et convient aux envi-
ronnements dont les ressources sont limitées [68]. Par conséquent, notre objectif principal
dans cette thèse est de permettre aux plateformes FaaS de supporter des approches de
tolérance aux fautes supplémentaires afin d’assurer l’exécution fiable des fonctions FaaS en
présence de différents types de fautes, tout en maintenant les performances et en réparant
le système après une faute sans affecter de manière significative l’expérience utilisateur.

Tolérance aux fautes dans les environnements FaaS

Dans les environnements FaaS, des défaillances peuvent se produire en raison de dif-
férents types de dysfonctionnement tels que des délais de communication ou des défail-
lances matérielles. Par exemple, en cas de panne franche d’un nœud de calcul, l’utilisateur
peut subir une instabilité des performances jusqu’à la réparation du système. Les défail-
lances doivent être prises en compte dans les systèmes FaaS afin de garantir la haute
disponibilité des fonctions. Le mécanisme couramment utilisé pour gérer les défaillances
des fonctions dans les plateformes FaaS est le mécanisme de relance. Les principales
plateformes commerciales, telles que AWS Lambda [9], Google Cloud Functions [81] et
Microsoft Azure Functions [51], fournissent toutes une fonctionnalité de relance automa-
tique pour gérer les défaillances et les délais. Par exemple, AWS Lambda réessaye des
invocations asynchrones jusqu’à deux fois avec un délai entre les tentatives. Certaines
plateformes FaaS open source offrent également le mécanisme de relance comme Fission
et OpenFaaS, qui relancent les invocations asynchrones avec un délai exponentiel [75,
142].

125

La tolérance aux fautes dans les systèmes FaaS peut également être réalisée en utilisant
des services supplémentaires fournis par les plateformes de cloud computing. Par exemple,
en utilisant les services d’équilibrage de charge et d’ingestion d’événements d’Azure, les
développeurs peuvent déployer des fonctions dans différentes régions selon un modèle actif-
actif ou actif-passif, ce qui offre une protection contre les scénarios de catastrophe [26]. À
l’aide des services d’orchestration FaaS (tels que Google Workflows [82], AWS Step Func-
tions [27] ou Azure Durable Functions [32]), les développeurs peuvent définir des workflows
qui coordonnent les fonctions, relancent automatiquement les invocations qui ont échoué
ou dont le délai est dépassé et exécutent un code personnalisé pour gérer différents types
d’erreurs. Par exemple, à l’aide d’AWS Step Functions, les développeurs peuvent repren-
dre les workflows ayant échoué à partir de l’état dans lequel ils ont échoué [161]. Des
capacités similaires sont fournies par des environnements d’orchestration open source,
tels que Apache OpenWhisk Composer [20] ou Faas-flow pour OpenFaaS [67]. Notre tra-
vail se concentre sur les mécanismes de tolérance aux fautes mis en œuvre au sein des
plateformes FaaS sans impliquer de services externes.

Des recherches récentes étudient la tolérance aux fautes pour les applications FaaS
avec état, composées de plusieurs fonctions et interagissant avec des services de stockage.
Sreekanti et al. [173] proposent d’insérer une couche entre la plateforme FaaS et un système
de stockage clé-valeur pour assurer la visibilité atomique des mises à jour dans le système
de stockage. Le système proposé assure la tolérance aux fautes en appliquant la garantie
de cohérence atomique en lecture. Zhang et al. [200] décrivent une bibliothèque et un
environnement d’exécution (runtime) pour créer des workflows transactionnels et tolérants
aux fautes sur les plateformes FaaS existantes. Le système prend en charge les transactions
au sein et entre des fonctions en appliquant une approche de tolérance aux fautes fondée
sur des journaux (logs). Jia et al. [101] proposent Boki, un runtime FaaS qui offre une API
pour les applications à état. L’API permet aux applications de gérer leur état et utilise
un mécanisme fondé sur des logs pour assurer la tolérance aux fautes. Wu et al. [192]
présentent HydroCache, une couche de cache distribuée pour les systèmes FaaS, qui fournit
une cohérence causale transactionnelle pour les fonctions à état. Le système s’appuie sur le
système de stockage Anna [191], un backend d’état clé-valeur qui supporte la tolérance aux
fautes. Pour garantir la tolérance aux fautes, les transactions sont relancées avec la même
version de clé en cas de défaillance du nœud de stockage ou de délais de transmission
dans le réseau. Les défaillances des nœuds sont détectées à l’aide d’un mécanisme de
heartbeat et les fonctions non terminées du nœud défaillant sont reprogrammées sur un

126

autre nœud. Contrairement à ces systèmes, notre travail se concentre sur la garantie de la
tolérance aux fautes pour les fonctions individuelles et idempotentes plutôt que pour les
compositions de fonctions avec état, et n’impose pas l’utilisation d’API supplémentaires
aux développeurs d’applications FaaS.

Un autre travail récent [89] introduit un modèle de programmation et une mise en
œuvre associée pour la prise en charge des transactions entre les fonctions FaaS avec
état. Ce travail s’appuie sur Apache Flink StateFun [15], une plateforme open source
pour les fonctions FaaS avec état qui utilise un moteur de flux de données en continu.
La plateforme gère les défaillances via des points de reprise ou snapshots pour obtenir
la garantie de l’unicité de traitement. Le modèle de programmation StateFun prend en
charge l’encapsulation de l’état dans les instances de fonction, ce qui n’est pas permis
dans le modèle FaaS classique.

Zhang et al. [202] proposent Kappa, un environnement de programmation pour la
construction d’applications FaaS parallèles. Cet environnement vérifie périodiquement les
résultats des fonctions afin de permettre la reprise après défaillance. Carver et al. [45]
présentent Wukong, un environnement pour construire des applications FaaS parallèles
au-dessus de AWS Lambda. En cas de défaillance, le mécanisme de relance automatique
d’AWS Lambda est utilisé pour ré-exécuter la fonction qui a échoué. Ces deux systèmes
proposent des bibliothèques construites au-dessus d’une plateforme FaaS non modifiée
(AWS Lambda) alors que les mécanismes que nous proposons dans cette thèse sont intégrés
dans la plateforme FaaS elle-même.

Karhula et al. [105] proposent d’utiliser Docker et CRIU (Checkpoint/Restore in Userspace)
pour la sauvegarde de points de reprise et le recouvrement des fonctions de longue durée
qui s’exécutent sur des dispositifs IoT ainsi que pour la migration des fonctions entre
différents dispositifs IoT. Bien que ces mécanismes puissent être utilisés comme blocs de
base pour la construction d’un système FaaS tolérant aux fautes, ce travail n’a pas abouti
à une mise en œuvre complète d’un tel système.

En résumé, il existe plusieurs solutions qui proposent des mécanismes de tolérance aux
fautes au-delà du mécanisme basique de relance de l’exécution des requêtes. Cependant,
toutes ces solutions nécessitent l’utilisation d’API et de primitives en dehors de celles
fournies par le modèle FaaS de base, qui ne prend en charge l’appel de fonctions qu’en
réponse à des événements. Par exemple, ces solutions nécessitent l’utilisation de services
d’équilibrage de charge [26], de services d’orchestration de workflow [161] ou de modèles
de programmation spécialisés pour des fonctions à état [173, 200, 101, 192, 89]. À notre

127

connaissance, notre travail est le premier à intégrer des mécanismes de tolérance aux
fautes dans une plateforme FaaS sans dévier du modèle FaaS originel et donc sans ajouter
de complexité pour les développeurs.

Contributions principales

Comparaison de plateformes FaaS diffusées en open source

Dans notre thèse, nous avons commencé par une étude de trois plateformes FaaS open
source, à savoir Fission, Kubeless et OpenFaaS, afin de sélectionner la plateforme la plus
appropriée pour intégrer de nouveaux mécanismes de tolérance aux fautes. Notre sélection
est fondée sur un ensemble défini de critères, notamment l’extensibilité et la popularité
de la plateforme, la qualité de la documentation et la taille et l’activité de la communauté
open source. Nous avons évalué les performances des trois environnements FaaS open
source qui s’appuient tous sur la plateforme d’orchestration de conteneurs Kubernetes.
Parmi les environnements FaaS évalués, nous avons sélectionné Fission car il est très
représentatif des plateformes FaaS existantes et offre de bonnes performances. En outre,
Fission met en œuvre le mécanisme de relance pour la tolérance aux fautes, consistant
essentiellement à redémarrer l’ensemble du processus de soumission d’une requête ayant
échoué. Nous avons ainsi pu comparer les approches de tolérance aux fautes que nous avons
intégrées à Fission avec l’approche classiquement mise en œuvre dans les plateformes FaaS.

Proposition d’approches de tolérance aux fautes pour environ-
nements FaaS et leur intégration dans Fission

Dans les environnements FaaS, la ré-exécution des fonctions en cas de défaillance est
une stratégie courante pour tolérer les fautes. Le mécanisme de relance est bien adapté
aux fautes transitoires. Cependant, il n’est pas efficace pour gérer d’autres types de fautes,
comme les fautes permanentes, un type de faute fréquent dans les infrastructures sous-
jacentes. Cela motive le besoin d’autres approches de tolérance aux fautes pour assurer
la haute disponibilité des fonctions FaaS en cas de défaillance.

Dans notre travail, nous avons proposé l’intégration dans une plateforme FaaS de deux
approches de tolérance aux fautes à base de réplication des calculs afin de rendre les fautes
transparentes pour les applications. La première approche, appelée Active-Standby (AS)
est fondée sur l’utilisation de la réplication passive. Elle consiste à créer deux répliques

128

(replica) d’une fonction, l’une active et l’autre en veille prenant le relais en cas de défail-
lance de la réplique active. La seconde approche, appelée Réplication de Requête (RR), est
fondée sur la réplication active. Elle consiste à créer deux répliques actives d’une fonction
et à envoyer toutes les requêtes aux deux répliques, chacune exécutant les requêtes reçues.
Les deux approches ont été intégrées dans Fission en utilisant l’exécuteur NewDeploy pour
créer les répliques de fonction et de nouveaux routeurs ont été implémentés et utilisés à la
place du routeur mis en œuvre nativement dans Fission. Dans l’approche AS, le routeur
transmet tous les appels de fonction reçus spécifiquement au pod actif. Dans l’approche
RR, le routeur réplique chaque requête reçue sur toutes les répliques de fonction, afin de
la traiter en parallèle. Il envoie ensuite la première réponse reçue à l’utilisateur et ignore
la seconde.

Évaluation des approches de tolérance aux fautes proposées

Après l’intégration des deux approches de tolérance aux fautes à base de répliquetion
des calculs dans Fission, nous les avons comparées expérimentalement avec le mécanisme
basique de relance implémenté nativement dans Fission (vanilla). Les expériences ont été
menées sur la plateforme d’expérimentation de systèmes distribués Grid’5000. Nous avons
utilisé plusieurs métriques telles que la performance, la disponibilité et la consommation de
ressources, à la fois en fonctionnement normal et dans divers scénarios de défaillance. Nous
avons considéré les scénarios suivants : défaillance d’un pod Kubernetes, défaillance d’un
nœud de l’infrastructure et différents délais de transmission des messages dans le réseau.
Les résultats obtenus montrent que l’approche RR est plus performante que les autres
dans les trois scénarios de défaillance indiquant son efficacité. Cette approche est capable
d’assurer une haute disponibilité des fonctions, par rapport aux approches AS et vanilla
(mécanisme de relance). Cependant, l’approche RR nécessite une quantité importante de
ressources supplémentaires pour atteindre la tolérance aux fautes des applications FaaS.
Dans le cas où il n’y a pas de défaillance, la surcharge de l’utilisation de RR est de 180% en
termes de consommation de CPU et de 52% en termes de consommation de mémoire par
rapport à vanilla dans nos expériences. Cela est dû aux ressources supplémentaires allouées
à la deuxième réplique. Dans l’approche vanilla, une seule réplique exécute les requêtes.
L’approche AS a un surcoût de 141% en consommation CPU et de 39% en consommation
de mémoire par rapport à l’approche vanilla. Il faut noter que dans l’approche AS, la
réplique en veille est chaude, c’est-à-dire qu’elle est chargée en mémoire. Contrairement à
la réplique active de la stratégie RR, la réplique en veille de l’approche AS ne traite pas

129

les requêtes, mais elle transmet des heartbeats réguliers, ce qui consomme des ressources.

Leçons tirées de l’étude

D’après notre comparaison expérimentale des trois stratégies de tolérance aux fautes
(mécanisme basique de relance, approche Active-Standby, réplication des requêtes), nous
constatons que les approches étudiées ont des propriétés différentes et qu’elles sont donc
intéressantes dans des conditions différentes. Le mécanisme de relance est bien adapté
aux fautes transitoires qui durent peu de temps, notamment les délais de transmission des
réseaux. Cette approche consomme moins de ressources que l’approche Active-Standby et
que la stratégie de réplication des requêtes. L’approche Active-Standby offre une meilleure
disponibilité en présence de défaillances de longue durée par rapport à l’approche de re-
lance mais au prix d’une consommation de ressources plus élevée. Par exemple, dans
nos expériences, l’approche Active-Standby consomme plus de deux fois le CPU con-
sommé par l’approche de relance. L’approche de réplication des requêtes offre la meilleure
disponibilité pour tout type de faute. En effet, lorsque la défaillance n’affecte pas toutes
les répliques, il n’y a quasiment aucun impact sur la disponibilité globale des fonctions.
Cette approche offre également des performances de meilleur niveau et d’une plus grande
stabilité que les autres stratégies. Enfin, la stratégie de réplication des requêtes engendre la
plus grande consommation de ressources. En général, nous observons que la disponibilité
et la consommation de ressources dans les trois approches sont inversement liées.

Chacune des approches de tolérance aux fautes a ses propres avantages et inconvénients
et peut être utilisée pour des scénarios spécifiques de tolérance aux fautes. Le choix
de l’approche de tolérance aux fautes appropriée dans le contexte des plateformes FaaS
dépend des exigences qui doivent être respectées. Si l’accent est mis sur les bonnes perfor-
mances (par exemple, pour les applications sensibles à la latence), l’approche privilégiée
est la réplication de requêtes (RR). Si l’accent est mis sur la réduction des ressources,
par exemple pour les environnements limités en ressources, comme à la bordure du réseau
(edge computing), et le besoin de haute disponibilité, l’approche privilégiée est ActiveS-
tandy (AS). Le mécanisme de relance peut être utilisé lorsqu’il s’agit d’économiser des
ressources et que le besoin de disponibilité est limité.

130

Conclusion et perspectives

Bilan des travaux effectués

Dans cette thèse, nous avons identifié le défi de la tolérance aux fautes dans les environ-
nements FaaS. Nous avons remarqué que le mécanisme de relance est couramment utilisé
pour offrir de la tolérance aux fautes dans les plateformes FaaS. Cependant, ce mécanisme
n’est pas efficace pour faire face aux fautes permanentes, par exemple la panne franche
d’un nœud de l’infrastructure de calcul. Dans cette thèse, nous avons étudié d’autres
approches de tolérance aux fautes, à savoir des approches fondées sur la réplication des
calculs. Nous avons intégré la réplication active (réplication de requêtes) et la réplication
passive (Active-Standby) dans la plateforme Fission et nous avons comparé expérimen-
talement ces deux approches avec le mécanisme de relance mis en œuvre nativement dans
Fission.

La comparaison expérimentale des trois approches a mis en évidence les forces et
les faiblesses de chacune d’entre elles et leur comportement face aux défaillances. Les
résultats expérimentaux ont notamment montré que le mécanisme de relance n’est pas
suffisant pour assurer une haute disponibilité des fonctions en cas de défaillances de longue
durée telles que les pannes franches de nœuds. En effet, le comportement par défaut du
mécanisme de relance entraîne un temps de recouvrement élevé en cas de défaillance d’un
nœud. Avec l’approche Active-Standby (AS), le temps de recouvrement est réduit car le
service devient disponible peu après que la réplique en veille ait détecté la défaillance de la
réplique active. Avec la réplication des requêtes (RR), le service reste disponible tant qu’au
moins une réplique continue à répondre aux utilisateurs et le recouvrement ne dépend pas
du remplacement de la réplique défectueuse. Les deux approches de réplication utilisent
plus de ressources que le mécanisme de relance.

Perspectives

Le travail effectué dans cette thèse a ouvert de nouvelles perspectives. Par exemple,
dans nos expériences, les trois approches ont été testées avec une application qui calcule
la suite de Fibonacci. Néanmoins, pour renforcer notre étude, il est important de tester
les approches présentées en utilisant des applications sans état de différents domaines (i.e.
IoT, traitement vidéo, apprentissage automatique).

Une autre direction pour les travaux futurs est liée à la façon d’adapter les tech-

131

niques de tolérance aux fautes des plateformes FaaS au contexte du edge computing. Dans
cet environnement, les ressources sont limitées et le taux de fautes permanentes des pé-
riphériques est élevé. Par conséquent, le mécanisme de relance n’est pas bien adaptée car
la plupart des défaillances sont permanentes. L’approche de réplication des requêtes (RR)
semble également inappropriée car les ressources à la périphérie du réseau sont limitées et
coûteuses. Des recherches complémentaires sont donc nécessaires pour fournir une solution
efficace afin d’améliorer la tolérance aux fautes des fonctions déployées à la périphérie du
réseau dans le contexte du edge computing.

Dans notre travail, nous avons considéré des applications sans état et idempotentes, où
la même entrée donne toujours la même sortie. Pour satisfaire d’autres cas d’utilisation,
les architectures et les offres FaaS ont évolué récemment pour prendre en compte l’état des
applications. Par conséquent, il serait souhaitable de concevoir des approches de tolérance
aux fautes pour les applications FaaS avec état. Avec les applications à état, un état est
généralement maintenu dans des services de stockage externes, tels que des bases de don-
nées NoSQL [200]. L’utilisation de l’approche de réplication des requêtes pour de telles
applications semble difficile. En effet, les accès concurrents augmentent la charge sur le
service de stockage et introduisent un surcoût important pour maintenir la cohérence.
Cela peut entraîner des performances réduites dans le cas d’un fonctionnement normal
(sans fautes) par rapport à l’utilisation de l’approche Active-Standby ou du mécanisme
de relance. L’intégration de caches dans les fonctions à état pourrait atténuer ce prob-
lème [174].

Avec cette thèse axée sur différentes approches de tolérance aux fautes, une exten-
sion naturelle serait de concevoir un système de tolérance aux fautes pour FaaS qui of-
fre simultanément plusieurs approches, telles que le mécanisme de relance, l’approche
Active-Standby et la stratégie de réplication des requêtes, et qui utilise l’une ou l’autre
en fonction de facteurs spécifiques tout en répondant aux besoins des utilisateurs (i.e.,
performance, disponibilité, consommation de ressources). Ces facteurs peuvent inclure les
types d’application (i.e., avec ou sans état) et les conditions de fonctionnement (i.e., taux
de défaillance, latence réseau).

132

Titre : Tolérance aux fautes dans les environnements FaaS

Mot clés : Fonction en tant que service, Cloud, Tolérance aux fautes, Haute disponibilité

Résumé : Fonction en tant que service (FaaS)
est un modèle de programmation émergent
pour construire des applications cloud dans
lesquelles la gestion de l’infrastructure est
abstraite pour le développeur. L’un des princi-
paux défis des systèmes FaaS est de fournir la
tolérance aux fautes des fonctions déployées.
Le mécanisme de tolérance aux fautes de
base dans les plates-formes FaaS actuelles
consiste à réessayer automatiquement les in-
vocations de fonctions. Bien que ce méca-
nisme soit bien adapté aux fautes transitoires,
il entraîne des délais dans le recouvrement
en présence d’autres types de fautes comme
les fautes permanentes. Notre objectif est de
fournir la haute disponibilité des applications

FaaS quel que soit le type de fautes. Dans
cette thèse, nous proposons l’intégration dans
les plates-formes FaaS d’approches de tolé-
rance aux fautes fondées sur des schémas
de réplication passive et active. Nous décri-
vons comment nous avons réalisé cette inté-
gration dans Fission, un environnement open
source bien connu. Nous analysons les résul-
tats d’une évaluation expérimentale approfon-
die comparant les mécanismes proposés avec
le mécanisme de relance des invocations de
fonction en termes de performance, de dispo-
nibilité et de consommation de ressources, à
la fois en fonctionnement normal et sous diffé-
rents scénarios de défaillance.

Title: Fault Tolerance in FaaS Environments

Keywords: Function as a Service, Cloud, Fault Tolerance, High Availability

Abstract: Function as a Service (FaaS) is
an emerging programming model for build-
ing cloud applications where the infrastruc-
ture management is abstracted away from
the developer. One of the main challenges
of FaaS systems is providing fault tolerance
for the deployed functions. The basic fault
tolerance mechanism in current FaaS plat-
forms is automatically retrying function invo-
cations. Although the retry mechanism is well-
suited for transient faults, it incurs delays in
recovering from other types of faults such as
permanent faults. Our objective is to provide

high availability for FaaS applications regard-
less of the type of faults. In this thesis, we
propose the integration of fault tolerance ap-
proaches based on passive and active replica-
tion schemes in FaaS platforms. We describe
how we performed this integration in Fission,
a well-known, open source framework. Fur-
thermore, we provide a detailed experimental
comparison of the proposed mechanisms with
the retry mechanism in terms of performance,
availability, and resource consumption, both in
normal functioning and under different failure
scenarios.

	Introduction
	Context
	Objective
	Main Contributions
	Thesis Organization

	Background
	Basic Concepts of Cloud Computing
	Service Types
	Deployment Models

	Virtualization
	Hardware Virtualization
	Operating Sysem-level Virtualization

	Containerization
	Container Technologies
	Container Orchestration

	Fault Tolerance
	Fault Tolerance Definition
	Fault Types
	Fault Detection
	Fault Tolerance Approaches

	Replication Strategies
	Active Replication
	Passive Replication

	Fault Tolerance Metrics
	Fault Tolerance in Cloud Layers
	Summary

	Function as a Service
	Function as a Service Definition
	Features of FaaS
	Execution Process of FaaS

	Benefits
	Challenges
	Use Cases
	FaaS Platforms
	Commercial Platforms
	Open Source Platforms

	Fault Tolerance in FaaS
	Summary

	Choosing a FaaS Framework
	Criteria
	Overview of Kubernetes
	Kubernetes Architecture
	Kubernetes Features Used by FaaS

	Kubernetes-native FaaS Frameworks
	Fission
	Kubeless
	OpenFaaS

	Performance Evaluation
	Environment Setup
	Workload Setup
	Metrics
	Results Analysis

	Overall Framework Comparison
	Summary

	Fault Tolerance Approaches For High Availability in FaaS
	Retry Mechanism in Fission
	Active-Standby in Fission
	Description
	Implementation in Fission

	Request Replication in Fission
	Description
	Implementation in Fission

	Summary

	Evaluation
	Experimental Setup
	Environment
	Applications
	Workload
	Failure Scenarios
	Metrics

	Experiment 1: Active-Standby with CoreDNS versus Retry
	Performance Results
	Availability Results
	Resource Consumption Analysis

	Experiment 2: Active-Standby with Router versus Request Replication and Retry
	Performance Results
	Availability Results
	Resource Consumption Analysis

	Lessons Learned
	Summary

	Conclusion and Perspectives
	Conclusion
	Conclusion
	Perspectives
	Short-Term Perspectives
	Mid-Term Perspectives
	Long-Term Perspectives

	Bibliography

