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Résumé: Cette thèse traite de l’analyse de sen-
sibilité des modèles stochastiques. Ces mod-
èles sont souvent entachés d’incertitudes qui
proviennent principalement de deux sources :
l’incertitude paramétrique liée à la méconnais-
sance des paramètres et l’aléa intrinsèque qui
représente le bruit inhérent au modèle provenant
de la façon dont le hasard intervient dans la de-
scription du phénomène modélisé. La présence
de l’aléa intrinsèque constitue un défi en anal-
yse de sensibilité car, d’une part, il est en
général caché et donc ne peut pas être carac-
térisé et, d’autre part, il agit comme un bruit
lorsqu’on évalue l’impact des paramètres sur la
sortie du modèle. Or, dans un domaine comme
l’épidémiologie, les enjeux associés à la sensibil-
ité d’un modèle peuvent être importants dans
la gestion des épidémies car impactant les dé-
cisions prises sur la base de ce modèle. Cette
thèse étudie des approches d’analyse de sen-
sibilité des modèles stochastiques tels que les
modèles épidémiologiques basés sur des proces-
sus stochastiques, dans le cadre de l’analyse
basée sur la variance. Dans un contexte général,
nous introduisons une méthode qui optimise
le compromis entre le nombre de valeurs de
paramètres des modèles et le nombre de répli-
cations des évaluations en ces valeurs à consid-
érer dans l’estimation des indices de sensibil-
ité. Pour cette méthode, nous considérons la
classe des quantités d’intérêt de la sortie des
modèles stochastiques qui sont sous la forme
d’espérances conditionnelles par rapport aux
paramètres. Dans le cadre de l’estimation des
indices de sensibilité par la méthode de Monte-
Carlo, nous contrôlons le risque quadratique des
estimateurs, montrons sa convergence et trou-
vons un compromis entre le biais lié à la présence
de l’aléa intrinsèque et la variance. Dans le

contexte spécifique des modèles compartimen-
taux stochastiques en épidémiologie, nous car-
actérisons l’aléa intrinsèque associé aux pro-
cessus stochastiques sur lesquels ces modèles
sont basés. Ces processus stochastiques peu-
vent être Markoviens ou non-Markoviens. Pour
les processus Markoviens, nous utilisons les al-
gorithmes de Gillespie pour expliciter l’aléa in-
trinsèque et le séparer de l’aléa paramétrique.
Et dans le cas des processus non-Markoviens,
nous étendons à une classe large de modèles
compartimentaux la construction de Sellke qui
permettait à l’origine de décrire les dynamiques
du modèle épidémiologique SIR dans un cadre
non nécessairement Markovien. Cette exten-
sion a permis d’élaborer un algorithme de sim-
ulation permettant de générer des trajectoires
exactes dans un cadre non-Markovien d’une
large gamme de modèles compartimentaux mais
aussi de pouvoir séparer l’aléa intrinsèque de
l’aléa paramétrique dans la sortie de ces mod-
èles. Ainsi, pour les deux types de proces-
sus, Markoviens et non-Markoviens, la sépara-
tion des deux sources d’aléas a été obtenue et
elle permet d’écrire la sortie du modèle comme
fonction déterministe des paramètres incertains
et des variables représentant l’aléa intrinsèque.
Lorsque l’incertitude sur les paramètres est sup-
posée indépendante de l’aléa intrinsèque, cette
représentation permet d’évaluer les contribu-
tions de l’aléa intrinsèque sur les sorties du mod-
èle, en plus des contributions des paramètres.
Il est également possible de caractériser les dif-
férentes interactions. Cette thèse a contribué
à développer une approche d’estimation des in-
dices de sensibilité et à évaluer la contribution
de l’aléa intrinsèque dans les modèles comparti-
mentaux en épidémiologie basés sur des proces-
sus stochastiques.
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Abstract: This thesis focuses on the sensitiv-
ity analysis of stochastic models. These models
include uncertainties that originate mainly from
two sources: the parametric uncertainty due to
the lack of knowledge of parameters and the in-
trinsic randomness that represents the noise in-
herent to the model coming from the way chance
intervenes in the description of the modeled phe-
nomenon. The presence of intrinsic randomness
is a challenge in sensitivity analysis because, on
the one hand, it is generally hidden and there-
fore cannot be characterized and, on the other
hand, it acts as noise when evaluating the im-
pact of the parameters on the model output
However, in epidemiology, the issues associated
with the sensitivity of a model can be important
in the control of epidemics because they impact
the decisions made on the basis of this model.
This thesis studies approaches for sensitivity
analysis of stochastic models such as epidemi-
ological models based on stochastic processes,
in the framework of variance-based analysis. In
a general context, we introduce a method for
estimating sensitivity indices that optimizes the
trade-off between the number of input parame-
ter values of the model and the number of repli-
cations of model evaluation in each of these val-
ues. For this method, we consider the class of
quantities of interest of stochastic model out-
puts that are in the form of conditional expec-
tations with respect to uncertain parameters.
In the context of estimation of sensitivity in-
dices by the Monte Carlo method, we control the
quadratic risk of the estimators, show its con-
vergence and find a trade-off between the bias
related to the presence of the intrinsic random-
ness and the variance. In the specific context

of stochastic compartmental models in epidemi-
ology, we characterize the intrinsic randomness
of the stochastic processes on which these mod-
els are based. These stochastic processes can
be Markovian or non-Markovian. For Marko-
vian processes, we use Gillespie algorithms to
make explicit the intrinsic randomness and to
separate it from uncertain parameters. Regard-
ing non-Markovian processes, we extend to a
large class of compartmental models the Sellke
construction, which was originally introduced to
describe epidemic dynamics of the SIR model
in a framework that is not necessarily Marko-
vian. This extension has allowed us to develop
an algorithm that generates exact trajectories
in a non-Markovian framework for a large class
of compartmental models but also to be able
to separate intrinsic randomness from parame-
ter uncertainty in the output of these models.
Thus, for both types of processes, Markovian
and non-Markovian, the separation of the two
sources of uncertainty has been obtained and it
allows to represent model outputs as a determin-
istic function of the uncertain parameters and
the variables representing the intrinsic random-
ness. When the uncertainty on the parameters is
assumed to be independent of the intrinsic ran-
domness, this representation allows to assess the
contributions of the intrinsic randomness on the
model outputs, in addition to the contributions
of the parameters. It is also possible to char-
acterize different interactions. This thesis has
contributed to develop an approach to estimate
sensitivity indices and to evaluate the contribu-
tion of intrinsic randomness in compartmental
models in epidemiology based on stochastic pro-
cesses.
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1.1 General considerations on modeling epi-
demic spread

Infectious diseases, whether they affect human, animal or plant populations
can be associated with serious societal, economical and environmental issues
which may directly concern human survival. Unfortunately, nowadays, it is not
difficult to witness the potential costs of an epidemic. Indeed, the COVID-19
pandemic caused by SARS-CoV-2 is responsible of millions of deaths around
the world according to World Health Organization (WHO). This pandemic re-
sulted in food crisis, economic impact and recession and it led to huge social
upheavals. This crisis highlighted the role and the relevance of analysis and
prediction tools for infectious diseases. In particular, mathematical epidemic
modeling has proven to be a valuable tool not only in understanding the spread
of SARS-CoV-2 but also in decision-making and management policies. Long
before the outbreak of the COVID-19 pandemic, the contribution of math-
ematical models in understanding and controlling epidemics was underlined.
For example, Becker (1979), after a brief review of epidemic models, compared
them and concluded to their usefulness. The question of usefulness was also
discussed in the paper of de Jong (1995) which defends the use of these mod-
els despite criticisms of them. More recent studies highlighting the role of

11
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mathematical modeling can be mentioned (Kao, 2002). When the COVID-19
pandemic occurred, the interest in mathematical models increased consider-
ably and even far beyond the scientific sphere (Thompson, 2020; James et al.,
2021).

Indeed, mathematical models provide useful insights into epidemic dynam-
ics and enable to point out unsuspected phenomena such as, transmission ways
or immunity duration... or underlying processes (e.g. temporal or spatial pat-
terns) hidden behind observed dynamics. In addition to fields such as medicine,
biology or microbiology which study pathogens, epidemic modeling enables to
better understand the mechanisms by which pathogens spread within a pop-
ulation or between populations. The mathematical study of epidemics is not
recent. It goes back at least to the 18th century with the study of smallpox by
Bernoulli (1760). The development of this discipline has led to the emergence
of different approaches for modeling the spread of epidemics, among which the
ones relying on agent-based models or compartmental models are the most
popular.

Agent-based models focus on the individuals in the population in which an
infection spreads and it consists in tracking individual behaviors and interac-
tions in order to infer the evolution of the epidemic dynamics, (for instance,
see Perez and Dragicevic (2009); Hoertel et al. (2020)). Their construction re-
lies on rules and characteristics of individuals to describe their behaviors and
how these affect dynamics of the disease at population scale. Therefore, the
great advantage of these models is that they provide a detailed description to
understand the determinants of epidemic propagation on various aspects: en-
vironment, decisions, interactions, etc. However, they can easily get complex
and their simulation can be computationally expensive in practice.

The compartmental approach took off from the work of Kermack et al.
(1927). Today, it turns out to be the most widely used modeling method (Het-
hcote, 2000; Allen, 2008). Consider a population within which an infectious
disease spreads. Moreover, suppose that, for such infection, different health
statuses with respect to the disease are observed such as susceptible, infected
and/or infectious, immunized, hospitalized, etc. These statuses are connected
to each other according to the way the different stages of infection occur. Then,
compartmental modeling consists in dividing individuals into usually disjoint
classes with respect to their status and then in studying the evolution over time
of the number or the proportion of individuals in the different classes consid-
ered. The resulting model is represented by compartments corresponding to
classes of health statuses and arrows which schematize the different types of
transitions that can occur between health statuses. A schematic representation
of such models is proposed in Figure 1.1.
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· · · αk1 αk2 αk3 · · ·

Figure 1.1 – Schematic representation of a compartmental model. αk1 , αk2 and
αk3 are three compartments corresponding to three different health statuses.
Arrows represent transitions between compartments: for example, the arrow
αk1 −→ αk2 means that individuals with status αk1 can switch to status αk2 .

This modeling approach can be refined or extended in various points. For
example, structured population and meta-population approaches can be men-
tioned. The structured population approach is a refinement of compartmental
modeling that consists in setting up categories or structures for individuals
such as age (Gurtin and Maccamy, 1974; Castillo-Chavez et al., 1989; Balab-
daoui and Mohr, 2020), predisposition to infection (Omame et al., 2021), social
structures (Andersson, 1997; Pellis et al., 2012; Hilton and Keeling, 2019; Li
et al., 2021) such as households , workplaces, transports... In this case, it is
assumed that the infection characteristics differ with respect to the categories
or structures considered. For example, in age-dependent models, infections
or recoveries could depend on the range of ages of individuals. The meta-
population approach is an extension of compartmental modeling to a group or
a network of populations with different characteristics or located at different
areas. Thus, this approach consists in studying not only the epidemic dynam-
ics within each population using compartmental models but also the way the
infectious disease spreads from a population to another as individual move-
ment flows or contacts between individuals of different populations can occur
within the network. This allows to take into account for example the spatial
distribution of populations and enables to describe epidemics at larger scale
(Sattenspiel and Dietz, 1995; Pastor-Satorras et al., 2015; Molina and Stone,
2012; Shao and Han, 2022; Ball et al., 2015).

1.2 Formal framework of the thesis

1.2.1 Compartmental models in epidemiology

Like any mathematical model, compartmental models can be classified into
two categories according to the way they manage the hazard: there are deter-
ministic and stochastic models.

Deterministic models rely on functions which depend only on epidemic
parameters in order to describe dynamics. Let denote by θ the collection of
epidemic parameters and by y the outputs of such models. Then, by disre-
garding the possible dynamic nature (e.g. time series, functional outputs) of
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these model outputs for illustration purpose, y is under the form:

y = f(θ), (1.1)

where f is some deterministic function. Hence, the resulting outputs cannot
vary unless initial conditions or epidemic parameters change. Among those
models, ordinary differential equations (ODE) are widely used (Brauer et al.,
2012). In that case, epidemic dynamics are ruled by some ODE system which
depends only on parameters. Besides, there are also models based on integro-
differential equations or partial differential equations (Chalub and Souza, 2011;
Medlock and Kot, 2003).

Regarding stochastic compartmental models, even when initial conditions
and epidemic parameters are set, transitions in health statuses of individuals
are assumed to occur at random times. Therefore, the evolution over time of
the epidemic dynamics is random, yielding stochastic processes (Allen, 2008;
Britton et al., 2019). Let Z denote a random variable or a collection of ran-
dom variables and Z(ω) a realization of Z where ω belongs to the measurable
space on which Z is defined. Recall that θ denotes the collection of epidemic
parameters. Therefore, for fixed value of θ, outputs of such models still vary
at any evaluation. A realization y(ω) of model output is under the form:

y(ω) = f (θ, Z(ω)) , (1.2)

where f is a deterministic function. Thus, two model evaluations at the same
θ yield f(θ, Z(ω1)) and f(θ, Z(ω2)) where realizations Z(ω1) and Z(ω2) of Z
are not necessarily equal. The stochasticity of outputs, regardless of variation
of θ, is inherited from Z, hence Z is referred to as the intrinsic randomness
of the model. Resulting processes belong to two main families: the Markovian
processes and the non-Markovian processes (Gani, 1973; Anderson, 2012; Feng
et al., 2019). The difference between those two families lies in the fact that
for Markovian processes, future dynamic depends only on the current state of
the process and not on past dynamic, which does not hold for non-Markovian
processes.

1.2.2 Uncertainty quantification and sensitivity anal-
ysis in epidemic modeling

In practice, epidemic models are intended to address a certain number of ques-
tions including: are we able to predict epidemic trajectories? What are the key
factors of the epidemic spread? What are the possible strategies to control the
infectious disease spread? What are the potential impacts of these strategies?
So many questions for which the accuracy of the answers strongly depends
on the accuracy and reliability of the model. This requires knowing epidemic
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parameters as accurately as possible. However, the true values of these param-
eters are generally unknown. Then, those models suffer from uncertainties. In
order to improve their reliability and usefulness in decision-making or setting
control and management policies, it is necessary to study and quantify uncer-
tainties (Taghizadeh et al., 2020; Marion et al., 2022; Swallow et al., 2022).
Uncertainties for stochastic models can be classified into two categories: the
parameter uncertainty and the intrinsic randomness. Parameter uncertainty
occurs when model parameters are unknown or poorly known. Regarding the
intrinsic randomness, it is inherent to the model and it is responsible for the
variability of the output of the model even when the parameters are perfectly
known. As a part of uncertainty quantification (UQ), sensitivity analysis aims
at evaluating the part due to each parameter or group of parameters in the
variability of the model output. Such a study could have several objectives:
identification of key parameters, model reduction, optimization, model calibra-
tion. Hence, sensitivity analysis provides a better understanding of the model
regarding input-output relation. For instance, Wu et al. (2013) reviewed some
sensitivity analysis methods for epidemic models. In Courcoul et al. (2011) and
Rimbaud et al. (2018), sensitivity analysis was used to identify key parameters
of disease propagation within animal and plant populations respectively. It has
been naturally used in human epidemiology (Blower and Dowlatabadi, 1994)
and especially in recent years to study epidemic models of COVID-19 (Lu and
Borgonovo, 2021; Wang and Aydin, 2020; Da Veiga et al., 2021b).

Sensitivity analysis of deterministic models consists in varying model pa-
rameters and then quantifying the effects on the output in terms of variability.
To assess the impact of a parameter or a set of parameters, the latter is varied
and the corresponding variation of the output is measured. There are vari-
ous ways to vary parameters and measure output variations, corresponding to
various methods of sensitivity analysis. These methods belong to two main
families: the so-called local methods and the so-called global methods. Local
methods fix nominal or reference parameters θ∗, perturb these values with ∆θ

and evaluate the output at θ∗ and θ∗+ ∆θ: f(θ∗) and f(θ∗+ ∆θ). Depending
on the choice of the perturbation, various indices can be constructed using
differences f(θ∗ + ∆θ)− f(θ∗): derivative based indices (Capaldo and Pandis,
1997; Helton, 1993), Morris indices (Morris, 1991), derivative based global sen-
sitivity measures (Sobol’ and Kucherenko, 2010) which are globalized versions
of local indices, etc. These methods allow to account locally for the influential
parameters.

The so-called global methods are based on an exploration of the parameter
space, unlike the local methods, to construct sensitivity indices. These methods
include those based on Sobol’ indices (Sobol’, 1993), Shapley effects (Iooss
and Prieur, 2019), moment-independent indices (Borgonovo, 2007; Da Veiga
et al., 2021a) etc. Variations in outputs can be quantified using variance or
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discriminant measures.

1.2.3 Brief overview of variance-based sensitivity anal-
ysis framework

A common way to measure variability is variance. The variance-based sensi-
tivity analysis is an approach that measures the contribution of a parameter
or group of parameters to the global variance of the output. This approach,
which is one of the most widely used, was developed from the works of Sobol’
and Saltelli (Sobol’, 1993; Homma and Saltelli, 1996; Archer et al., 1997) and
has its source in the work of Hoeffding (1948) on the representation of square
integrable functions. The idea is to decompose the global variance of the out-
put as a sum of variances related to the variation of each possible combination
of model parameters. The higher the variance related to the variation of a
parameter, the more this parameter is influential on the output of the model.

In stochastic model framework, i.e, models under the form (1.2), the cor-
respondence θ 7→ f(θ, Z) is no longer a deterministic mapping because the
output is no longer uniquely determined by θ but also by Z which is random.
Two sets of parameters θ and θ̃ respectively yield f(θ, Z(ω)) and f(θ̃, Z(ω̃)).
Thus, when a parameter is varied, the resulting variation in output derives
from both the variation in this parameter and the variation in the intrinsic
randomness Z.

For variance-based sensitivity analysis, uncertainty is propagated in the
model by sampling parameters using a random vector X. Thus, output Y
yields: Y = f (X, Z) , where Z is the intrinsic randomness, given by a collec-
tion of hidden random variables and supposed independent of X. Then, the
variance of random variable Y obtained in output is then decomposed to sep-
arate the contributions of the parameters and the effects of their interactions.
But here, Var(f(X, Z)) also captures the effects of variation of Z. In most
stochastic models used in practice, the intrinsic randomness Z is hidden and
uncontrollable in the sense that it is not explicitly characterized and its distri-
bution is unknown. Thus, contributions and interactions of the parameters or
groups of parameters can be "corrupted" by effects of an uncontrolled noise,
i.e. Z. Hence, the challenge is to assess the impact of parameters in presence
of intrinsic randomness.

1.3 Main objectives and structure of the the-
sis

Faced with the challenge of intrinsic randomness of stochastic models, in par-
ticular those in epidemic modeling, several questions arise in the context of
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sensitivity analysis.

Q1. How to accurately estimate variance-based indices for stochastic models
despite the presence of intrinsic randomness?

Q2. How to separate effects of intrinsic randomness from those of uncertain
parameters in variance-based sensitivity analysis for stochastic compart-
mental models?

Q3. How to assess contributions of intrinsic randomness to the global variance
of stochastic compartmental models?

This PhD thesis addresses these issues. In the context of variance-based sen-
sitivity analysis, the aim is to develop well-suited approaches to stochastic
models, in particular the stochastic compartmental models used in epidemiol-
ogy. This manuscript presents the different results according to the following
plan. Chapter 2 reviews the state of the art around the two main themes of
this thesis: compartmental modeling of epidemics and sensitivity analysis. A
review of compartmental models is provided. In addition, simulation methods
of stochastic models are discussed in both Markovian and non-Markovian con-
texts. Regarding sensitivity analysis, the framework of deterministic models is
briefly presented in the univariate and multivariate cases: sensitivity indices
and estimators. The framework of stochastic models, which is the focus of
this work, is detailed according to current main approaches or techniques of
sensitivity analysis. Finally, the problems studied in this thesis and our contri-
butions are presented. In Chapter 3 (related to question Q1), the work carried
out to control the quadratic risk of Monte Carlo estimators of Sobol’ indices
in the framework of stochastic models is presented. This chapter addresses
the issue of accurate estimation of sensitivity indices for averaged quantities of
interest in presence of intrinsic randomness. The problems of quadratic con-
vergence of estimators and bias-variance trade-off encountered in estimation
procedures are discussed. In Chapter 4 (related to questions Q2 and Q3), we
address the issue of separating intrinsic randomness and parameter uncertainty
in compartmental models based on continuous-time Markov chains. The pro-
cedure we propose consists in adapting exact simulation algorithms so that the
intrinsic randomness becomes an input of the algorithms. Regarding Chapter 5
(related to questions Q2 and Q3), it deals with the same questions as Chapter
4 but in the framework of non-Markovian models. It describes a method for
simulating compartmental models that are not necessarily Markovian, which
allows to characterize the intrinsic randomness, to separate it from the param-
eter uncertainty and to evaluate its effects. In Chapter 6, a conclusion to this
thesis as well as the perspectives opened by this work are presented.
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2.1 Compartmental modeling in epidemiol-
ogy

Compartmental modeling of infectious diseases consists in describing a disease
spread by defining classes or compartments of individuals with respect to dif-
ferent health statuses and then studying the dynamics over time of the number
or proportion of individuals in these compartments. The definition of different
compartments and connections between them is based on the knowledge of
the different stages of infection or symptoms and how they are related to each
other.
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Several types of models can be built relying on what is known about the
disease characteristics and dynamics (such as: rate of transmission of the in-
fection, incubation periods, infectiousness periods...) and the characteristics
of the population (like its size, its heterogeneity...) within which it spreads.
Depending on modeling assumptions and context, models can be determin-
istic (i.e. predictions do not change from one simulation to another unless
characteristics or initial conditions change) or stochastic (i.e. predicted dy-
namics incorporate randomness and can therefore change from one simulation
to another).

2.1.1 Simple compartmental models in deterministic
framework

This section aims at describing simple epidemic models corresponding to dif-
ferent basic constructions (different arrangement of compartments) in the lit-
erature. Throughout this section, a population of size N is considered. Indi-
viduals are supposed to mix perfectly so that the whole population is supposed
homogeneous.

One of the most widely used method for describing epidemic dynamics in
the deterministic framework relies on ordinary differential equations (ODE)
(Kermack et al., 1927; Kermack and McKendrick, 1991; Hethcote, 2000, 1989)
under the form: 

d
dtw(t) = F (w(t))

w(0) = w0

t ≥ 0

(2.1)

where w(t) represents the number or proportion of individuals in different
compartments at time t ≥ 0 and F is a function. In ODE epidemic modeling,
to obtain the system (2.1), the principle is to describe and to quantify the
interactions between the different compartments and their evolution over time.
Depending on the number of compartments and of the nature and strength of
interactions, different models can be obtained.

2.1.1.1 The simple SIR model

The SIR (Susceptible-Infected-Recovered) model is one of the first models stud-
ied (Kermack et al., 1927) and by far one of the most famous. This model
assumes the existence of three health statuses: Susceptible (healthy individual
who can contract the disease), Infected (infected and contagious individual)
and Recovered (former infected individuals who are declared healed). Two
types of events affect individual health statuses: an infection represented by
the arrow S → I and a recovery represented by I → R (see Figure 5.1).
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Infections depend on the capacity of the pathogen to spread and also on con-
tacts between infected and susceptible individuals. The simple SIR model is
schematized in Figure 5.1.

S I R

β
N
wIwS γwI

Figure 2.1 – The classical SIR model. Functions wS and wI denote the respec-
tive number of individuals in compartment S and I. Rates β

NwIwS and γIwI ,
with β > 0 and γ > 0, denote respectively the instantaneous proportion of
individuals that are infected and recovered. Parameter β is the transmission
rate and characterizes both the infectivity of the spreading pathogen and the
propensity of a susceptible individual to become infected. Besides, parameter
γ is such that 1/γ represents the average duration in infectious stage.

In the context of ODE modeling, epidemic dynamics of the simple SIR
model t 7→ (wS(t), wI(t), wR(t)) are given by:

d
dtwS(t) = − β

NwS(t)wI(t)
d
dtwI(t) = β

NwS(t)wI(t)− γwI(t)
d
dtwR(t) = γwI(t).

t ≥ 0. (2.2)

Notice that in this model, a recovered individual acquires long-life immunity.
This model is therefore well-suited for epidemics for which recovering results in
permanent immunity, as in the case of childhood diseases such as chickenpox,
smallpox, mumps, measles (Giraldo and Palacia, 2008; Bjørnstad et al., 2002;
Hethcote, 2000, 1989).

The SIR can be simplified into the simpler SI model in the case where re-
covery is not possible once an individual contracts the disease. This is the case
for diseases such as AIDS, herpes, cytomegalovirus (Rana and Nitin Sharma,
2020; Han, 2007; Yadav and Akhter, 2021). This model is the simplest com-
partmental model that can be constructed in epidemiology. The ODE system
of the SI model that governs epidemics is identical to that of the SIR model
given by system (2.2) except that γ = 0.

2.1.1.2 The simple SEIR model

The SEIR (Susceptible-Exposed-Infected-Recovered) model is an extension of
the SIR model that differentiates infected individuals into two classes: exposed
individuals who are infected but not yet infectious and infectious individuals
who are able to infect susceptible individuals. Thus, this model includes one
more compartment than the SIR: the compartment E which contains exposed
individuals. Such a generalization allows to take into account the incubation
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or latency period of diseases in epidemic dynamics, that is, the period of mul-
tiplication phase of the pathogen within hosts.

Three types of events can change health statuses: infection S → E, acti-
vation E → I and recovery I → R. Infections induce transitions of individuals
from susceptible to exposed whereas activations trigger switches from non-
contagious to contagious for exposed individuals. And recoveries correspond
to transitions from I to R (see Figure 2.2).

S E I R

β
N
wIwS δwE γwI

Figure 2.2 – The classical SEIR model. Functions wS , wE , wI and wR de-
note respectively the number of individuals in compartments S, E , I and
R. Parameters β and γ have the same meaning as in the simple SIR model.
The parameter δ is such that 1/δ is the mean incubation time. Infections,
activations and recoveries occur respectively at rates (β/N)wSwI , δwE and
γwI .

In such a model, epidemic dynamics t 7→ (wS(t), wE(t), wI(t), wR(t)) with
initial condition w0 are described by:

d
dtwS(t) = − β

NwS(t)wI(t)
d
dtwE(t) = β

NwS(t)wI(t)− δwE(t)
d
dtwI(t) = δwE(t)− γwI(t)
d
dtwR(t) = γwI(t)

t ≥ 0. (2.3)

This model is well-suited to study long incubation diseases such as tuberculosis
(Das et al., 2021) and chronic hepatitis (Side et al., 2017).

2.1.1.3 The simple SEIAR model

The simple SEAIR model (Susceptible-Exposed-Asymptomatic infectious- symp-
tomatic Infectious-Recovered) is a generalization the SEIR model that consists
in categorizing infectious individuals into two groups: individuals who show
symptoms (I) and those who do not (A). This differentiation implies that
the two groups do not have the same characteristics such as the average dura-
tion in infectious stage. For example, in the model of Figure 2.3, symptomatic
individuals spend an average duration of 1/γI units of times in I where asymp-
tomatic individuals spend an average duration of 1/γA. Moreover a proportion
p ∈ (0, 1) of exposed individuals is assumed to become symptomatic.

This model can also be used to describe an epidemic caused by a pathogen
with two strains which are simultaneously spreading. In this case, compart-
ments I and A would rather correspond to the compartments containing indi-
viduals infected by each strain.
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S E

A

I

R

β
N
wS(wI + wA)

(1− p)δEwE γAwA

pδEwE γIwI

Figure 2.3 – The simple SEIAR model. This model includes five types of tran-
sitions: infection S → E, activation to symptomatic E → I and asymptomatic
E → A, recovery of symptomatic I → R and asymptomatic A → R. Asymp-
tomatic and symptomatic individuals share the same transmission rate β but
their infectious stage periods are different as stated above. A proportion p of
exposed individuals becomes symptomatic and 1− p asymptomatic.

Epidemic dynamics in this model are ruled by the following ODE with
initial condition w0:



d
dtwS(t) = − β

NwS(t) (wI(t) + wA(t))
d
dtwE(t) = β

NwS(t) (wI(t) + wA(t))− δEwE(t)
d
dtwI(t) = pδEwE(t)− γIwI(t)
d
dtwA(t) = (1− p)δEwE(t)− γAwA(t)
d
dtwR(t) = γIwI(t) + γAwA(t)

t ≥ 0. (2.4)

Such a model and its extensions have been widely used to model the COVID-
19 epidemic since a significant proportion of people who contracted CoVID-19
had no symptoms (De la Sen et al., 2020; Jia and Chen, 2021; Basnarkov,
2021). It was also used to study other diseases like Influenza A (H1N1) (Jin
et al., 2011).

2.1.2 Some extensions of classical compartmental mod-
els in deterministic framework

This section focuses on some extensions of simple compartmental models that
allow to study epidemics under more realistic conditions as: loss of immunity,
demographic dynamics and various cases of heterogeneity in the composition
of the population or its spatial distribution (Bjørnstad et al., 2020).
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2.1.2.1 Models with reinfection

In general, immunity induced by recovery is not permanent. Apart from a few
exceptions such as childhood diseases, reinfections are possible. For example,
loss of immunity occurred in tetanus, influenza or COVID-19 (WHO, 2017,
2018; Kojima and Klausner, 2022).

In compartmental modeling, the loss of immunity can be modeled by en-
abling recovered individuals to become susceptible again. Therefore, at least
one arrow from a compartment of recovered individuals to a compartment of
susceptible ones is included in the compartmental model. As an illustration,
to allow reinfection in the simple SIR model, it suffices to add the type of
transitions R→ S. Thus, the resulting model (SIRS) is schematized in Figure
2.4.

S I R

β
N
wIwS γwI

µRwR

Figure 2.4 – The simple SIRS model.

Consider the simple SIRS model represented in Figure 2.4. In addition to
infection and recovery transitions, a third type of transitions is included and
corresponds to reinfection. Recovered individuals are assumed to be immunized
only during 1/µR units of time. This generates a flow of individuals from R

to S with a rate denoted µR. Epidemic dynamics t 7→ (wS(t), wI(t), wR(t)) of
this model can be described by the following ODE system:

d
dtwS(t) = − β

NwS(t)wI(t) + δwR(t)
d
dtwI(t) = β

NwS(t)wI(t)− γwI(t)
d
dtwR(t) = γwI(t)− δwR(t)

t ≥ 0.

This type of models enables to account for endemic diseases and to study
persistence of epidemics, infection waves... (Kusmawati and Chandra, 2021;
Li et al., 2009; Zhang and Zhou, 2019).

2.1.2.2 Models with demography

Populations are naturally subject to vital (or demographic) dynamics such as:
births, deaths, migrations. These dynamics can affect their size and when an
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epidemic spreads, they can change the number of individuals in the model com-
partments. So, those dynamics should be taken into account in order to better
study epidemics especially regarding the issues of persistence or extinction of
diseases (Cunniffe and Gilligan, 2010).

Under vital dynamics, the population is no longer closed. Its size becomes
a function of time like the number of individuals in the compartments of the
model under consideration. In the case of compartmental models, these dy-
namics can be modeled by adding demographic events in addition to events
related to the infection spread. An example of a SIR model with demography
is provided in Figure 2.5.

S I R

β
N
wSwI

µwS

αN

γwI

µwI µwR

Figure 2.5 – A SIR model with demography.

A SIR model with demography is shown in Figure 2.5. Such a model
considers that on the population scale, there is in average one birth every 1/α

units of time and one death every 1/µ units of time. The size of the population
is given by N : t 7→ N(t) := wS(t) + wI(t) + wR(t). The epidemic dynamics
are described by:

d
dtwS(t) = − β

N(t)wS(t)wI(t) + αN(t)− µwS(t)
d
dtwI(t) = β

N(t)wS(t)wI(t)− γwI(t)− µwI(t)
d
dtwR(t) = γwI(t)− µwS(t)

t ≥ 0.

Models with demographics have been widely used in the literature, for ex-
ample to study smallpox in England (Duncan et al., 1994; Duncan and Duncan,
1997).

2.1.2.3 Models in structured-population

In general, a population is not homogeneous because individuals do not share
the same characteristics. For instance, some groups of individuals may have a
higher or lower risk of contracting a disease, or developing severe symptoms,
etc. This can depend on different factors such as age, comorbidity, gender,
sexual orientation or many other factors. Thus, individuals can be divided into



26 CHAPTER 2. STATE OF THE ART

groups or classes according to different characteristics vis-à-vis the spreading
epidemic or their behavior: this is called stratification. In compartmental
modeling, in order to account for stratification, compartments of the model
are subdivided into sub-compartments corresponding to the different classes
and then the types of transitions between the sub-compartments are added
regarding modeling hypotheses. This type of models is used to study diseases
like: measles (Tudor, 1985), AIDS (Ghosh et al., 2018), COVID-19 (Bentout
et al., 2021; Duan et al., 2022) etc.

One of the most used structuring feature is the age of individuals, leading
to so-called age-dependent or age-structured models. For illustration, consider
a SIR model with a population structured into two groups.

S1

S2

I1

I2

R1

R2

wS1
N

(β11wI1 + β21wI2)

wS2
N

(β12wI1 + β22wI2) γ2wI2

µSwS1

γ1wI1

µIwI1 µRwR1

Figure 2.6 – An example of structured-population model with two classes.

The model presented in Figure 2.6 is a SIR model for a population divided
into two classes 1 and 2 with transfers from class 1 to class 2. This model can
be seen as an age-dependent model that categorizes the population into youth
(pre-puberty) and adults (post-puberty) in a case study of sexually transmitted
diseases. Parameters βi,j for i, j ∈ {1, 2} define transmission rate in infection
of individuals of class j due to individuals of class i. Parameters µS , µI , µR
denote the rates at which individuals in compartment S1, I1 and R1 moves to
respective compartments in class 2. Epidemic dynamics of classes 1 and 2 are
described by (wS1 , wI1 , wR1) and (wS2 , wI2 , wR2) respectively such that:

d
dtwS1(t) = −wS1 (t)

N (β11wI1(t) + β21wI2(t))− µSwS1(t)
d
dtwI1(t) =

wS1 (t)

N (β11wI1(t) + β21wI2(t))− γ2wI1(t)− µIwI1
d
dtwR1(t) = γ2wI1(t)− µRwR1(t)
d
dtwS2(t) = −wS2 (t)

N (β12wI1(t) + β22wI2(t)) + µSwS1(t)
d
dtwI2(t) =

wS2 (t)

N (β12wI1(t) + β22wI2(t))− γ2wI1(t) + µIwI1(t)
d
dtwR2(t) = γ2wI2(t) + µRwR1(t)

t ≥ 0.

(2.5)
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2.1.2.4 Models in meta-populations

The metapopulation modeling meets the necessity to consider spatially frag-
mented populations in epidemic modeling. Fragmented population is com-
posed of interacting homogeneous groups or patches located at different areas.
The metapopulation approach proposes to study the spread of epidemics both
within and between groups or patches. This enables to study epidemic spread
at large scale: understanding the mechanisms of spatial spread of an infectious
disease, the specificity of epidemic dynamics in a given subgroup, assessing
global control measures, etc. In particular, this type of models enables to
analyze the epidemic dynamics on networks through the movements of indi-
viduals within sub-populations and between them. The case of the spread of
SARS-CoV-2 during the COVID-19 pandemic first in China and then in the
rest of the world is an illustration of the usefulness of these models. Different
levels can be used in this approach: individual level, community level, or larger
levels. Such an approach was for instance studied by Keeling et al. (2004) and
used by Bolker and Grenfell (1995) to model measles in England. It is also
used in Cristancho Fajardo et al. (2021) to study epidemic dynamics in animal
trade networks and provided as follows.

Consider J sub-populations noted P1, · · · , PJ . In each sub-population,
Pi, the epidemic dynamics (wSi , wIi , wRi) is described by a SIR model with
demography (see Figure 2.5) where the birth rate is αi, the death rate µi. and
recovery rate γi. The rate at which individuals in Pi infect individuals in Pj is
given by βi,j . Between two distinct sub-populations Pi and Pj the movement of
individuals takes place with a transfer rate of δi,j . The resulting ODE system
is given by:


d
dt
wSi

(t) = αiNi(t)−
wSi

(t)

Ni(t)

∑J
j=1 βijwIj (t)− µiwSi

(t)−
∑P
j 6=i δijwSi

(t) +
∑J
j=1 δjiwSj

(t)

d
dt
wIi (t) =

wSi
(t)

Ni(t)

∑J
j=1 βijwIj (t)− µiwIi (t)− γiwIi (t)−

∑P
j=1 δijwIi (t) +

∑J
j=1 δjiwIj (t)

d
dt
wRi

(t) = γiwIi (t)− µiwRi
(t)−

∑P
j=1 δijwRi

(t) +
∑J
j=1 δjiwRj

(t)

t ≥ 0,

(2.6)

where Ni(t) = wSi(t) + wIi(t) + wRi(t) for any i = 1, · · · , J .

2.1.3 Stochastic modeling of transitions between com-
partments

Stochastic modeling describes epidemic dynamics by accounting for the vari-
ability in individual characteristics with respect to infection, in their behaviors,
environmental factors, etc. From this point of view, in practice, it can better
account for the real dynamics of an epidemic because it includes randomness.
With this approach, the health status of each individual is random, resulting
in stochastic dynamics. In this section, a concise description of the stochastic
processes obtained from compartmental models is proposed.
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Consider a compartmental model with d compartments and define W θ =

(W θ
1 , · · · ,W θ

d ) such thatW θ
i := {W θ

i (t); t ≥ 0} describes over time the number
of individuals in the ith compartment, where θ is the collection of epidemic
parameters. Random elementary events induce the variation of the number of
individuals in compartments so that for each i, the process W θ

i := {W θ
i (t); t ≥

0} is stochastic. For a given compartment, each random event that occurs
results in either the exit of an individual from the compartment or the entrance
of an individual, unless the compartment is not involved. Therefore, for each
process W θ

i , at a given time t such that W θ
i (t) = wi ∈ N, a transition is always

of the form wi → wi + εi, where:

εi =


−1 if an individual leaves compartment i
+1 if an individual enters compartment i
0 otherwise.

Consequently, the process W θ is stochastic such that at each time t, W θ(t) ∈
Nd. Let E ⊂ Nd be the state space of such a process. Due to the form of the
transitions of processes Wi, i = 1, · · · , d, each transition of W θ is under the
form: ξ → ξ+u where ξ belongs to E and u is under the form u = (ε1, · · · , εd)
such that ξ + u belong also to E .

The different vectors u characterize the types of transitions, i.e. the types
of events that can induce a movement of an individual from a compartment
to another. Let T be the set of such vectors u of the compartmental model.
Note that any transition of W θ is linked to the realization of a specific type of
events.

The different types of events can affect individual health statuses (e.g.
infection, immunization, recovering, hospitalization...). This is illustrated on
the simple SIR model.

In the case of the simple SIR model, the epidemic process is given byW θ =

(WS ,WI ,WR) where θ = (β, γ) and WS(t), WI(t), WR(t) denote respectively
the number of individuals in S, I and R at time t. This model includes two types
of events: infection and recovery. AssumeW θ is in a state (s, i, r). An infection
triggers a transition of the type (s, i, r)→ (s−1, i+1, r) = (s, i, r)+(−1,+1, 0)

because a susceptible individual becomes infected and switches to compartment
I. A recovery results in a transition of type (s, i, r) → (s, i − 1, r + 1) =

(s, i, r) + (0,−1,+1) because an infected individual recovers and moves from
I to R.

Also, some types of events can be demographic such as births, deaths,
migrations, so that they directly impact the number of individuals in compart-
ments. They can originate from other sources depending on the model under
study.

In the SIS model with demography, the epidemic process W θ = (WS ,WI)

is ruled by five types of events:
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• infection: (s, i)→ (s− 1, i+ 1) = (s, i) + (−1,+1)

• recovery: (s, i)→ (s+ 1, i− 1) = (s, i) + (+1,−1)

• birth in S: (s, i)→ (s+ 1, i) = (s, i) + (+1, 0)

• death in S: (s, i)→ (s− 1, i) = (s, i) + (−1, 0)

• death in I: (s, i)→ (s, i− 1) = (s, i) + (0,−1)

The different types of events, depending on the order in which they occur
and the times at which they take place, determine trajectories of the process
W θ. So, the process W θ is characterized by the probabilities that a specific
event happens at a given time. These probabilities can influence the process
behaviors. For example, they may not depend on previous states of the pro-
cess but only on the current state. In such a case, the process is said to be
Markovian. Otherwise, it is a non-Markovian process.

2.1.4 Markovian process based models and their sim-
ulation

In this section, we discuss compartmental epidemic models based on Markov
chains. For this, we briefly introduce Markov chains, then Markovian stochastic
processes for epidemic modeling, and finally we discuss numerical algorithms
for simulating epidemics in the Markovian framework.

2.1.4.1 Continuous-time Markov chains

Consider a stochastic process H = {H(t), t ≥ 0} defined on some probabil-
ity space (Ω,B,P) with states in E ⊂ Nd (or some arbitrary discrete state
space). The process H is said to be a continuous-time Markov chain (CTMC)
if for any p ∈ N∗, for any t0 := 0 ≤ · · · ≤ tp and ξ0, · · · , ξp ∈ E such that
P (H(tp−1) = ξp−1, · · ·H(t0) = ξ0) > 0, it holds that:

P (H(tp) = ξp | H(tp−1) = ξp−1, · · ·H(t0) = ξ0) = P (H(tp) = ξp | H(tp−1) = ξp−1) .

(2.7)
The property in Equation (2.7) is called Markov property and determines the
finite-dimensional distributions of H, i.e. the probabilities
P (H(tp) = ξp, · · ·H(t1) = ξ1). These probabilities are summarized with a fam-
ily of matrices {P t(h) = P tξ,ξ′(h) : ξ, ξ′ ∈ E} for t, h ≥ 0 such that:

P tξ,ξ′(h) = P
(
H(t+ h) = ξ′ | H(t) = ξ

)
and called the transition matrices of the process. Remark that for h = 0, the
matrix P t(0) is the identity matrix on E defined as I =

(
1ξ=ξ′

)
ξ,ξ′∈E . The
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family of transition matrices is a family parameterized by time t except in the
case of homogeneous CTMC where P t(h) is independent of t for any h, i.e.,
P t(h) = P 0(h) = P (H(h) = ξ′ | H(0) = ξ) for any h ≥ 0 and ξ, ξ′ ∈ E .

Hereafter, assume H is homogeneous with transition matrix denoted by
P (h) for h ≥ 0.
A fundamental property of the transition matrix follows: for any h, h′ ≥ 0,
P (h+h′) = P (h) ·P (h′) = P (h′) ·P (h), where · denotes the matrix multiplica-
tion. Such a property is known as Chapman-Kolmogorov equations. Note that
for any ω ∈ Ω, for h ≥ 0, transition matrices satisfy P (h) → I as h → 0 for
any t ≥ 0. Moreover, if Q := limh→0

P (h)−I
h exists, then Q = (Q(ξ, ξ′))ξ,ξ′∈E

is called the generator or the infinitesimal matrix of H. Note that such a
matrix is independent of h but enables to characterize the finite-dimensional
distributions of H like the transition matrices because it satisfies:{

d
dhP (h) = Q · P (h) = P (h) · Q
P (0) = I

h ≥ 0,

and thereby defines completely the transition matrices. The entries of the
matrix Q are called the transition rates of H.

Since the state space of H is discrete, then the changes of states of H that
are called state transitions correspond to jumps. As a continuous-time process
on a discrete state space, two elements characterize trajectories {H(t, ω), t ≥ 0}
of H, for ω ∈ Ω: the jump times, i.e., instants at which the jumps occur and
the jumps that are performed. The jump times are then state change times
and thus given by the recurrent system:{

T0 = 0

Tn+1(ω) = inf{t > Tn(ω) | H(t) 6= H(Tn(ω))}.

Therefore, jump times {Tn, n ≥ 1} form a non-decreasing sequence of random
variables. They are entirely determined by the random sequence (∆n)n≥1

defined by ∆n := Tn − Tn−1, with n ≥ 1 and T0 = 0. Note that each ∆n is
positive and represents the time it takes the processH to perform the transition
H(Tn−1) to H(Tn): it is called the waiting time or the holding time. The
sequence of states described by H with respect to jump times {Tn, n ≥ 1} is
given by {Hn := H(Tn), n ≥ 0}. Such a sequence is a discrete Markov process
called the embedded Markov chain of H. It is shown that the two sequences
{Hn := H(Tn), n ≥ 0} and (∆n)n≥1 satisfy:

P
(
Hn+1 = ξ′ | Hn = ξ

)
=
Q(ξ, ξ′)

|Q(ξ, ξ)|
Conditionally to Hn, ∆n+1 ∼ Exp (|Q(ξ, ξ)|) ,

where Exp (|Q(ξ, ξ)|) is the exponential distribution with mean 1/|Q(ξ, ξ)|.
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The study of CTMCs and more generally of Markovian processes, whether
in continuous or discrete time, with continuous or discrete state space, has
been very prolific (Ethier and Kurtz, 2011). Numerous works allow to under-
stand the behavior of these processes such as their convergence to limits in
various modes, their links with other mathematical objects such as differential
equations, partial differential equations or other stochastic processes such as
stochastic differential equations. All these studies provide a wide range of tools
to understand theoretically Markov chains but also various phenomena that
are modeled using these processes. This explains the success of Markov chains
in the mathematical modeling of epidemics.

2.1.4.2 Markovian epidemic models

Consider a compartmental model with d compartments such that W θ, as de-
fined in Section 2.1.3, counts over time the numbers of individuals in each
compartment. In order to model the epidemic dynamics with a homogeneous
continuous time Markov chain, one can define the transition probabilities re-
lated to each type of transition of the process, or equivalently, the transition
rates associated to these transitions. This yields:

P
(
W θ(s+ h) = ξ + u |W θ(s) = ξ

)
= qu(ξ)h+ o(h) (2.8)

and thus:

P
(
W θ(s+ h) 6= ξ |W θ(s) = ξ

)
=

(∑
u∈T

qu(ξ)

)
h+ o(h), (2.9)

where qu : E → R+ are positive functions and o(h) is a negligible quantity as
h→ 0. Therefore:

lim
h→0

P
(
W θ(s+ h) = ξ + u |W θ(t) = ξ

)
h

= qu(ξ)

lim
h→0

P
(
W θ(s+ h) = ξ |W θ(s) = ξ

)
− 1

h
= −

∑
u∈T

qu(ξ).

Hence, the generator Qθ associated with the CTMC W θ is defined as:

Qθ(ξ, ξ′) =


0 if ∀u ∈ T , ξ′ 6= ξ + u

−
∑

u∈T qu(ξ) if ξ′ = ξ

qu(ξ) if ∃u ∈ T : ξ′ = ξ + u.

Example 1. Consider the simple SIR model as given in Section 2.1.1.1. Let
θ := (β, γ) and E = {(s, i, r) ∈ N3 : s+i+r = N}. Dynamics can be modeled by
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a CTMC W θ := {(WS(t),WI(t),WR(t) : t ≥ 0} with the following transition
probabilities:

P
(
W θ(t+ h) = (s− 1, i+ 1, r) |W θ(t) = (s, i, r)

)
=

β

N
si× h+ o(h)

P
(
W θ(t+ h) = (s, i− 1, r + 1) |W θ(t) = (s, i, r)

)
= γi× h+ o(h),

for h > 0 small enough. Then, the generator of such a CTMC is a parameter-
ized matrix Qθ with entries:

Qθ
(
(s, i, r), (s′, i′, r′)

)
=


β
N si if (s′, i′, r′) = (s− 1, i+ 1, r)

γi if (s′, i′, r′) = (s, i− 1, r + 1)

− β
N si− γi if (s′, i′, r′) = (s, i, r)

0 otherwise.

However, it should be underlined that the modeling of epidemics using
Markovian processes does not necessarily satisfy epidemiological relevance (e.g.
assuming that recovery does not depend on the time since infection is not a
realistic assumption). This approach remains a modeling choice and therefore
an approximation. However, Markov processes facilitate theoretical studies
and allow a better understanding of certain phenomena observed in epidemics,
such as the endemic character, early extinction, etc.

2.1.4.3 Gillespie Stochastic Simulation Algorithms (SSA)

Markovian processes enable theoretical studies of epidemics, but in practice,
it is necessary to predict trajectories of epidemic dynamics, to evaluate im-
pacts of control measures, to anticipate worst-case scenarios of propagation,
etc. All this requires numerical simulations and therefore methods or algo-
rithms to simulate processes. If nowadays there are many methods to simulate
Markovian processes, they are relatively recent, because these methods have
been developed since late 70s with the works of D.T. Gillespie (Gillespie, 1976,
1977).

Gillespie Algorithm: Direct Method

Let t ≥ 0 and suppose thatW θ(t) = ξ ∈ E . In order to simulate the next jump
of W θ, we have to determine the instant of the jump and the transition to
execute. It is thus equivalent to find the waiting time of the system before the
next jump and the type of transition which will take place at the end of the
waiting time. We introduce τ the random waiting time or holding time from t

and T a random variable defined on the set of transition types T whose value
corresponds to the next type of transition to be performed. To characterize
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the couple (τ,T), Gillespie (1977) proposed to compute their joint density
conditionally to the current state of the system, i.e. W θ(t) = ξ.

Indeed, if τ is the waiting time then between instants t and t + τ , the
process W θ does not make any transition. But for any infinitesimal quantity
dτ , between instants t + τ and t + τ + dτ , a jump occurs. Let f(τ,T) be the
joint density of (τ,T) conditionally to W θ(t) = ξ. Thus:

f(τ,T)(s,u) = lim
ds→0

P
(
τ ∈ [s, s+ ds[,T = u |W θ(t) = ξ

)
ds

= lim
ds→0

P
(
W θ(t+ s+ ds) = ξ + u |W θ(t+ s) = ξ

)
ds

× P
(
W θ(t+ s) = ξ |W θ(t) = ξ

)
= qu(ξ)P

(
W θ(t+ s) = ξ |W θ(t) = ξ

)
,

using Equation (2.8). The explicit formula of P(W θ(t + s) = ξ | W θ(t) = ξ)

remains to be found. For this intending, let us introduce the following result:

Proposition 1. For any ξ ∈ E and for all t, s ≥ 0:

P
(
W θ(t+ s) = ξ |W θ(t) = ξ

)
= exp

(
−s
∑
u∈T

qu(ξ)

)
.

Relying on Proposition 1 (refer to Gillespie (1977) for the proof), it holds
that f(τ,T)(s,u) = qu(ξ)e−s

∑
u∈T qu(ξ). By deducing the marginal densities, it

appears that, conditionally toW θ(t) = ξ, τ follows an exponential distribution
of mean 1/

∑
u∈T qu(ξ) while T is distributed under a multinomial distribution

on T with parameters
{qu(ξ)/

∑
v∈T qv(ξ),u ∈ T }. Thus, Gillespie introduced a method that simu-

lates continuous-time Markov chain by sequentially generating waiting times
with exponential distributions and transitions with multinomial distributions.
This method is known as the Direct Method and is presented in Algorithm 1.

Gillespie Algorithm: First Reaction Method

Let us focus on the different types of transition or types of events u ∈ T of
the model. To each type of transition u, there can be associated a counting
process Nu := {Nu(t), t ≥ 0} where Nu(t) gives the number of times that the
type of transition u has been executed before time t. Since every transition
of the system is of the form ξ → ξ + u then W θ can be fully described by
processes Nu in the following way:

W θ(t) = W θ(0) +
∑
u∈T

Nu(t)u. (2.10)
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Algorithm 1 Direct Method (Gillespie, 1977)
Require: ξ0, T, {qu,u ∈ T }
1: t← 0
2: ξ ← ξ0

3: while t < T do
4: for u ∈ T do
5: Compute proportion pu ← qu(ξ)/

∑
v∈T qv(ξ)

6: end for
7: Draw unext with a multinomial with parameters {pu,u ∈ T }
8: Draw τ with exponential distribution with mean 1/

∑
v∈T qv(ξ)

9: t← t+ τ
10: ξ ← ξ + unext
11: end while

Let t ≥ 0 and assume that W θ(t) = ξ. Equation (2.8) ensures that transitions
ξ → ξ + u occur at rate qu(ξ), thus, conditionally to W θ(t) = ξ, it yields:

P
(
Nu(t+ h)−Nu(t) = 1 |W θ(t) = ξ

)
= qu(ξ)h+ o(h), (2.11)

for any sufficiently small h > 0.
If the set of transition types was a singleton: T = {u}, i.e., the compart-

mental model had only one transition type which is u, then it would follow
that:

W θ(t) = W θ(0) +Nu(t)u. (2.12)

For example, this is the case of the simple SI model. Assuming that W θ is
under the form (2.12), then, using the same analysis as in Direct Method, it
appears that, conditionally to W θ(t) = ξ, the waiting time τu of the process
Nu and thus of W θ is distributed under an exponential distribution with mean
1/qu(ξ).

From such an observation, Gillespie proposed a second method of simula-
tion by considering independently the processes {Nu,u ∈ T }. The principle
is to focus on each Nu and to assume that it is the only process able to per-
form the next transition. In other words, it is assumed that W θ is reduced to
W θ(0) +Nu(t)u. Thus, the waiting time corresponds to τu with distribution
given by the exponential with mean 1/qu(ξ). For the global process W θ, this
yields putative waiting times: τu,u ∈ T . The actual waiting time of W θ is
defined as: τu := min{τu,u ∈ T }. Therefore, the type of transition to be per-
formed is given by u whose waiting time is τu. Such a method is the so-called
Gillespie First Reaction Method. It is provided in Algorithm 2.

Furthermore, Gillespie showed that the First Reaction Method and the
Direct Method are both equivalent. Indeed, considering the First Reaction
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Algorithm 2 First Reaction Method (Gillespie, 1977)
Require: ξ0, T, {qu,u ∈ T }
1: t← 0
2: ξ ← ξ0

3: while t < T do
4: for u ∈ T do
5: Draw τu with exponential distribution with mean 1/qu(ξ)
6: end for
7: τ ← min{τu,u ∈ T }
8: unext ← argmin{τu,u ∈ T }
9: t← t+ τ

10: ξ ← ξ + unext
11: end while

Method, the density of the couple (τ,T) conditionally to W θ(t) = ξ as defined
in Section 2.1.4.3 yields:

f(τ,T)(s,u) = lim
ds→0

P
(
τu ∈ [t+ s, t+ s+ ds[, τv > t+ s, for all v 6= u |W θ(t) = ξ

)
ds

=
P
(
τu ∈ (t+ s, t+ d+ ds) |W θ(t) = ξ

)
ds

×
∏
v 6=u

P
(
τv > t+ s |W θ(t) = ξ

)

= qu(ξ) exp (−squ(ξ))
∏
v 6=u

exp (−sqv(ξ)) = qu(ξ) exp

(
−s
∑
v∈T

qu(ξ)

)
,

which corresponds well to what is obtained with the Direct Method.

2.1.4.4 Other variants of Gillespie SSA

Since Gillespie’s work, other studies have been carried out on the simulation
of Markovian processes in order to develop more and more efficient methods.
In this section, we will briefly present two of these methods which also enable
to simulate exact trajectories for continuous-time Markov chains. These two
methods are: the Next Reaction Method (Gibson and Bruck, 2000) and the
Modified Next Reaction Method (Anderson, 2007).

The Next Reaction Method detailed in Algorithm 3 is an equivalent scheme
to Gillespie’s First Reaction Method from which it is in fact derived. The idea
of this method is to avoid systematically simulating all the putative waiting
times {τu,u ∈ T } at each iteration as it is the case in the First Reaction
Method. For this purpose, Gibson and Bruck (2000) proposed to simulate
only one random variable per iteration so that only the putative waiting time
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of the type of transition executed in the current iteration is simulated to sample
the corresponding next waiting time (refer to instructions 18-19 in Algorithm
3).

Algorithm 3 Next Reaction Method (Gibson and Bruck, 2000)
Require: ξ0, T, {qu,u ∈ T }
1: t← 0
2: ξ ← ξ0

3: for u ∈ T do
4: Compute au ← qu(ξ)
5: Draw tu with exponential distribution with mean 1/au
6: end for
7: while t < T do
8: τ ← min{tu,u ∈ T }
9: unext ← argmin{tu,u ∈ T }

10: t← τ
11: ξ ← ξ + unext
12: for u ∈ T do
13: Compute au ← qu(ξ)
14: end for
15: for u 6= unext do
16: Compute tu ← (au/au)(tu − τ) + τ
17: end for
18: Draw r with exponential distribution with mean 1/aunext
19: Compute τunext ← τ + r
20: for u ∈ T do
21: Compute au ← au
22: end for
23: end while

This method differs from the First Reaction Method in: storing rates au
and putative jump times tu, reusing them and simulating only one random
variable per transition. In this manner, Algorithm 3 is more efficient.

Before introducing the Modified Next Reaction Method, let us discuss first
a representation of the W θ process using Poisson processes. Consider the W θ

process under the form:

W θ(t) = W θ(0) +
∑
u∈T

Nu(t)u.

Based on Equation (2.11) Kurtz (Ethier and Kurtz, 2011) showed that there
exist independent unit-rate Poisson processes {Pu,u ∈ T } such that:

W θ(t) = W θ(0) +
∑
u∈T

Pu

(∫ t

0
qu(W θ(s))ds

)
u, (2.13)
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provided that the functions qu satisfy
∑

u∈T qu(ξ) < +∞, for all ξ ∈ E . Such
a condition ensures that the process W θ does not perform an infinite number
of jumps in finite time. Such a decomposition corresponds to a time change
that allows to describe the processes Nu as inhomogeneous Poisson processes:
it is called the random-time change (Ethier and Kurtz, 2011; Anderson and
Kurtz, 2011). Then, each process Nu has its own internal clock that rules
jump times and denoted tu. Let (su) denote the process of jump times of
the unit-rate Poisson process Pu. Relying on decomposition (2.13), Anderson
(2007) introduced a variant of the Next Reaction Method called the Modified
Next Reaction Method and provided in Algorithm 4. This algorithm combines
the jump times (su) of unit-rate Poisson processes and the internal times (tu)

to describe the jump times of W θ. Note that, like the Next Reaction Method,
it samples only one random variable per transition.

2.1.4.5 Link between Markovian models and ODE-based mod-
els

This section describes the link between Markovian and ODE-based models.
Moreover, a comparison of deterministic and stochastic formalisms is proposed
in order to highlight their advantages and their limitations in epidemic mod-
eling.

Assume the population is closed and includes N individuals. Consider the
process W θ under the form:

W θ(t) = W θ(0) +
∑
u∈T

Pu

(∫ t

0
qu(W θ(s))ds

)
u,

provided that
∑

u∈T qu(ξ) < +∞ for all ξ ∈ E . Assume that positive func-
tions qu are defined over Rd+, with d the number of compartments of the
model. Moreover, assume thatW θ is a density-dependent process, i.e., qu(x) =

Nqu( xN ). Define the processW θ
N indexed by N , the size of the population such

that W θ
N (t) = 1

NW
θ. Thus, W θ

N satisfies:

W θ
N (t) = W θ

N (0) +
∑
u∈T

Pu

(
N

∫ t

0
qu(W θ

N (s))ds

)
u.

So,W θ
N is a process of the same nature asW θ but whose jumps are proportional

to 1/N . Thus, the larger N becomes, the smaller the amplitude of the jumps
of W θ

N gets. Heuristically, W θ
N could tend to a potentially smooth limit when

N becomes large. The mathematical study of the limit of W θ
N with respect to

different types of convergence and approximations was mainly carried out by
Kurtz (1971, 1976, 1978); Barbour (1980); Ethier and Kurtz (2011).
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Algorithm 4 Modified Next Reaction Method (Anderson, 2007)
Require: ξ0, T, {qu,u ∈ T }
1: t← 0
2: ξ ← ξ0

3: for u ∈ T do
4: Compute tu ← 0
5: Compute su ← 0
6: Compute au ← qu(ξ)
7: end for
8: for u ∈ T do
9: Draw ru with exponential distribution with mean 1

10: Compute su ← ru
11: end for
12: while t < T do
13: for u ∈ T do
14: Compute ∆u ← (su − tu)/au
15: end for
16: ∆← min{∆u,u ∈ T }
17: unext ← argmin{∆u,u ∈ T }
18: t← t+ ∆
19: ξ ← ξ + unext
20: for u ∈ T do
21: Compute tu ← tu + ∆au
22: end for
23: Draw r with exponential distribution with mean 1
24: Compute sunext ← sunext + r
25: for u ∈ T do
26: Compute au ← qu(ξ)
27: end for
28: end while
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If F : x 7→ F (x) =
∑

u∈T qu(x)u is Lipschitz, let w : t 7→ w(t) be the
solution of the ODE system:{

d
dtw(t) = F (w(t))

w(0) = limN→+∞W
θ
N (0).

(2.14)

Kurtz (1978) proved that limN→+∞ sups≤t ‖W θ
N (s)−w(s)‖ = 0 almost surely

for all t ≥ 0. The function w solution of (2.14) is called the scale limit or the
large population limit of W θ

N .
Thus, it turns out that deterministic models based on ODE are limit mod-

els of Markovian models. These limits describe large-scale trends that emerge
from individual behaviors and epidemic characteristics, regardless of effects
of randomness. These limits therefore provide an approximation of epidemic
dynamics when the population size is large enough. Moreover, they have the
advantage of facilitating further theoretical analysis as there are numerous tools
for studying ODE systems in the literature. This allows to study epidemic dy-
namic equilibrium (e.g. convergence to endemic equilibrium), characteristics
of the epidemic such as the basic reproduction number R0 (the average number
of susceptible individuals that can be infected by one infectious individual in
an entirely susceptible population), etc. However, approximating epidemic dy-
namics with ODEs can fail even when the population is large enough. Indeed,
at the beginning of epidemics, the number of infected individuals is gener-
ally small. Then, the epidemic dynamics depend strongly on the behavior
(contacts, interactions) of initial infected. For example, in the SIR model,
the approximation of (WS(t)/N ;WI(t)/N ;WR(t)/N) by the SIR dynamic sys-
tem is valid from a time which is random, complex and with approximate
dominant term log(N)/(β − γ) (Barbour and Reinert, 2013), provided that
WI(t) = O(N). So, the quality of the ODE approximation depends not only
on the size of the population but also on the proportion of infected individuals
at the beginning.

Conversely, Markovian models and more generally stochastic models al-
low a description of epidemic dynamics in both small and large populations.
Unlike deterministic models, they allow to study questions related to the ex-
tinction of epidemics: the probability of such an event, the extinction time,
the distribution of the final size of the epidemic (total number of infected indi-
viduals during the outbreak), etc. Indeed, stochastic models integrate chance
and therefore allow the realization of events that cannot be described by de-
terministic models (Dangerfield et al., 2009). For example, they can explain
early extinction of the epidemics. Furthermore, even when deterministic mod-
els predict a long-term equilibrium, extinctions can still occur due to chance.
Through the theory of large deviations (Kratz and Pardoux, 2018), stochastic
models can explain these phenomena. Nevertheless, these two modeling ap-
proaches are complementary. But as Andersson and Britton (2000a) pointed
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out, "stochastic models should be preferred when their analysis is possible".

2.1.5 Non-Markovian process based models and their
simulation

2.1.5.1 Non-Markovian processes

As mentioned before, modeling epidemics by Markovian processes is most of
the time not realistic but only suitable for theoretical explorations. In con-
trast, using the non-Markovian framework is more realistic but often theo-
retically intractable. As pointed out in van Kampen (1998), "Non-Markov
is the rule, Markov is the exception". Indeed, "most stochastic processes are
non-Markovian" (Gillespie, 2000) and then challenging. This challenge already
starts with the characterization of non-Markovian processes: all that can be
said is that they do not satisfy the Markov property. There are various ways
of not satisfying such a property. And so, there are various ways to build
non-Markovian models. A direct implication of Markovian models is that the
distributions of the sojourn times in the different compartments are necessar-
ily exponential probability distributions. So, the simplest and by far the most
used way to be in the non-Markovian framework is to consider sojourn times
with general probability distributions other than exponential. This technique
has been used several times in the literature. One could mention the use of
Weibull distribution (Van Mieghem and van de Bovenkamp, 2013), lognormal
distribution (Nowzari et al., 2015), the Gamma distributions (Riaño, 2020).

The challenge of models based on non-Markovian processes is also reflected
in the difficulty of their simulation. If Equations (2.8) and (2.9) allow to de-
duce the probability distributions of waiting times and probability of transi-
tion types occurrence in the Markovian setting, it is not necessarily the case
for non-Markovian processes for which equations of type (2.8) and (2.9) are
not generally available. In order to simulate non-Markovian processes, meth-
ods proposed can be divided into two main approaches. Either Gillespie-type
algorithms can be built in particular cases where one can take advantage of
the knowledge of the mechanisms of transitions (knowledge of the underlying
processes for each type of transitions, distributions of the sojourn times in
the compartments etc.), or an individual-centered approach can be adopted in
which the process is simulated from the evolution of the health states of each
individual.

2.1.5.2 Gillespie-type simulators

Let t ≥ 0 and suppose that W θ(t) = ξ ∈ E . The idea of Gillespie algorithms
and its variants in the Markovian framework is based on the principle of char-
acterizing the distribution of waiting times. In non-Markovian setting, explicit
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formula for the probability densities of waiting times cannot be obtained in
general. But, as Boguñá et al. (2014) and Masuda and Rocha (2018) pointed
out, if each process Nu as introduced in (2.10) is a renewal process, then sim-
ulation algorithms similar to those of Gillespie for the non-Markovian process
can be deduced.

Assume that {Nu,u ∈ T } are renewal processes, i.e. defined as Nu :=

sup{n ≥ 1 | Su
1 + · · · + Su

n ≤ t} with Su
1 , · · · , Su

n a sequence of i.i.d variables
with finite variance. Moreover, for each type of transition u ∈ T , inter-event
duration Su

1 , · · · , Su
n are assumed to be distributed under the probability dis-

tributions with density ϕu and survival function Ψu, i.e. Ψu(s) = P(Su
1 > s),

for s ≥ 0.
Let λu : s 7→ ϕu(s)/Ψu(s). Denote by tu the time elapsed since the

last transition of type u. Boguñá et al. (2014) noted that conditionally to
{tu,u ∈ T }, the waiting τ of W θ admits the probability distribution function:

s 7→
∏
v∈T

Ψv(tv + s)

Ψv(tv)
(2.15)

and moreover, at time s, the probability to perform a type of transition u at
the next transition conditionally to {tu,u ∈ T }, is given by:

λu(tu + s)∑
v∈T λv(tv + s)

. (2.16)

From Equation (2.15), it follows that
∏

v∈T
Ψv(tv+τ)

Ψv(tv) is distributed under
a standard uniform distribution over [0, 1]. Therefore, sampling τ at each
transition of W θ comes down to solve the problem:∏

v∈T

Ψv(tv + τ)

Ψv(tv)
= u, (2.17)

for u ∈ (0, 1).
Notice that (2.17) defines a non-linear equation with functions Ψv which

can be eventually complex. So, solving such a problem at each transition ofW θ

can be analytically intractable and computationally expensive. To circumvent
this challenge, Boguñá et al. (2014) proposed to compute approximate solutions
of (2.17). For this purpose, the authors make the following approximation:∏

v∈T

Ψv(tv + τ)

Ψv(tv)
= exp

(
−
∑
v∈T

log
Ψv(tv)

Ψv(tv + τ)

)

≈ exp

(
−τ
∑
v∈T

ϕu(tv)

Ψv(tv)

)
,

Therefore, the problem (2.17) yields:

τ = − log(u)∑
v∈T

ϕu(tv)
Ψv(tv)

= − log(u)∑
v∈T λv(tv)

(2.18)



42 CHAPTER 2. STATE OF THE ART

Furthermore, Boguñá et al. (2014) derive Algorithm 5 to simulate non-Markovian
processes. Note that Algorithm 5 generalizes the Direct Method of Gillespie

Algorithm 5 Non-Markovian Gillespie Algorithm
Require: ξ0, T, {ϕu,Ψu,u ∈ T }
1: t← 0
2: ξ ← ξ0

3: for u ∈ T do
4: tu ← 0
5: end for
6: for u ∈ T do
7: Compute λu(tu)← ϕu(tu)/Ψu(tu)
8: end for
9: while t < T do

10: Draw u with uniform distribution over [0, 1]

11: Compute τ ← − log(u)∑
v∈T λv(tu)

12: for u ∈ T do
13: Compute λu(tu + τ)← ϕu(tu + τ)/Ψu(tu + τ)
14: end for
15: for u ∈ T do
16: Compute proportions pu ← λu(tu + τ)/

∑
v∈T λv(tv + τ)

17: end for
18: Draw unext with a multinomial with parameters {pu,u ∈ T }
19: t← t+ τ
20: ξ ← ξ + unext
21: tunext ← 0
22: for u ∈ T \ {unext} do
23: tu ← tu + τ
24: end for
25: end while

(Algorithm 1). Indeed, in Markovian setting, inter-events are distributed under
exponential distributions and thus, ratios ϕu(tu)/Ψu(tu) are given by param-
eters of exponential distributions.

However, the solution in (2.18) is not exact (Masuda and Rocha, 2018) and
then Algorithm 5 is not exact in general. It only provides approximate trajec-
tories of non-Markovian processes. Masuda and Rocha (2018) studied the cases
where the approximate solution (2.18) is actually exact. The authors showed
that if processes {Nu,u ∈ T } are event-modulated Poisson processes, i.e. mix-
tures of Poisson processes of different rates, then (2.18) is exact. Furthermore,
a variant of Algorithm 5 adapted to simulate event-modulated Poisson pro-
cesses was introduced and it allows to generate statistically exact trajectories
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in this particular setting.

2.1.5.3 An individual-based approach: Sellke construction

In order to overcome the difficulty of characterizing waiting time distributions,
agent-based approaches offer an alternative for simulating non-Markovian pro-
cesses. In this section, Sellke construction (Sellke, 1983), an approach to re-
constructing epidemic dynamics based on characteristics of individuals in the
population with respect to infection, is presented. This construction of the
SIR model proposes a re-interpretation of infection mechanism.

Assume that the population considered is closed and includes N individu-
als. At the initial time (t = 0), each individual is labeled with a unique label
which enables the identification throughout the study. Each initially suscep-
tible individual (i.e. susceptible at time t = 0) is assigned with a tolerance
threshold which gives the maximum level of exposure to the infection beyond
which the individual becomes infected. If WI(t) denotes the number of indi-
viduals infected at time t and β the transmission rate, the level of exposure at
time t is given by the infection pressure P defined as:

P (t) =
β

N

∫ t

0
WI(s)ds.

An initially susceptible individual with a tolerance threshold Q remains sus-
ceptible as long as Q > P (t) for t ≥ 0. He or she becomes infected at time tinf
such that Q = P (tinf ). Regarding recoveries, they are managed by a mech-
anism of sojourn times in the compartment I. Indeed, at the initial time, all
susceptible and infected individuals are equipped with a sojourn time in the
compartment I. These durations correspond to the time that each of these
individuals will spend in the infectious state before recovery if he or she ever
becomes infected. If an individual with sojourn time ∆ is initially in I, i.e., at
instant t = 0 or if he or she enters I at some instant t > 0, then it leaves this
compartment at time t+ ∆ to reach R.

The characteristics of the individuals combined with the transition mech-
anisms allow to fully describe epidemic dynamics of the SIR model. In par-
ticular, when the tolerance thresholds are distributed independently according
to an exponential distribution with parameter 1 and sojourn durations in I

are independent and identically distributed according to a certain exponential
distribution, then the resulting model is equivalent to the simple Markovian
SIR model. This makes this construction a general approach to consider the
SIR model in both Markovian and non-Markovian contexts.

Given the flexibility of this construction regarding the choice of distri-
butions of individual tolerance thresholds and sojourn durations, it is used
to study various non-Markovian formulations of the simple SIR model such
as: dependence between tolerance thresholds and sojourn durations (Reinert,
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1995), the use of the Weibull distribution for sojourn durations (Streftaris and
Gibson, 2012), etc. It was also used in refinements of the SIR model such as:
SIR-multitype epidemics (Andersson and Britton, 2000b), age-dependent SIR
(Di Lauro et al., 2022) or SIR model with finite heterogeneous populations
(House, 2014). However, to our knowledge, apart from the extension to the
SEIR model (Britton et al., 2019), this construction has not been generalized
to other types of compartmental models.

2.2 Global sensitivity analysis

This section presents and discusses some variance-based sensitivity analysis ap-
proaches with respect to both deterministic and stochastic model frameworks.
Throughout this section, models whether they are deterministic or stochastic
are assumed to include p ∈ N∗ uncertain parameters. In addition, the pa-
rameter uncertainty is propagated through the model by modeling uncertain
parameters with a random vector X := (X1, · · · , Xp) distributed under PX, a
supposedly known probability distribution on the model input space. Finally,
Assumption 1 is assumed in all what follows.

Assumption 1. Random variables X1, · · · , Xp are mutually independent.

2.2.1 Variance-based sensitivity analysis for deter-
ministic models

Let (X ,B) and (Y,F) be two nonempty measurable spaces such that X takes
its values on X . A deterministic model with inputs X and output Y ∈ Y is
defined as a deterministic function f : X → Y (i.e. to each x ∈ X corresponds
a unique y ∈ Y) such that Y = f(X). Therefore, Y is random and depending
on the type of output space Y, Y can be scalar, multivariate or functional.
In the following, X can be referred to as inputs or parameters or even input
parameters and the output of the model f can be denoted by Y or f(X)

depending on the convenience.
The variance-based sensitivity analysis aims at expanding the variance of Y

into contributions of the different combinations Xu = {Xj , j ∈ u} of X, where
u ⊆ {1, · · · , p}. A way to obtain such a decomposition is to expand f(X)

into a sum of mutually uncorrelated functions fu (Xu). Such an expansion
is proposed in Hoeffding (1948), Efron and Stein (1981), Sobol’ (1993) and
known as the Sobol’-Hoeffding decomposition of f or the functional ANOVA
decomposition. This decomposition is introduced in the following.

Assume that f ∈ L2 (X ,PX), i.e. f is square integrable. Then, there exists
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a unique decomposition of f(X) under the form:

f(X) =
∑

u⊆{1,··· ,p}

fu (Xu) , (2.19)

where fu are functions of Xu, u ⊆ {1, · · · , p} such that E [fu (Xu) | Xv] = 0

for any u ⊆ {1, · · · , p} and v ( u. Moreover, the expansion (2.19) satisfies:

i) f∅ = E (f(X)),

ii) fu (Xu) = E [f (X) | Xu]−
∑

v(u fv (Xv).

iii) E (fu (Xu) fu′ (Xu′)) = 0, for any distinct subsets u and u′ of {1, · · · , p}.

The univariate functions f1(X1), · · · , fp(Xp) are the so-called main effects of
X1, · · · , Xp respectively. The bivariate functions fi,j(Xi, Xj) for any distinct
i and j in {1, · · · , p} are second-order interactions whereas other multivariate
functions are referred to as high order interactions. An illustration of Sobol’-
Hoeffding decomposition is given in Example 2.

Example 2. Let X = (X1, X2) be distributed under a centered bivariate Gaus-
sian distribution with variance-covariance matrix given by the identity matrix
of dimension 2× 2. Let f(X) := X1 +X2 +X2

1X
2
2 . It holds that:

f∅ = E (f(X)) = 1

f1(X1) = E [f(X) | X1]− 1 = X1 +X2
1 − 1

f2(X2) = E [f(X) | X2]− 1 = X2 +X2
2 − 1

f1,2(X1, X2) = E [f(X) | X1, X2]− f1(X1)− f2(X2)− 1 = X2
1X

2
2 −X2

1 −X2
2 + 1.

The decomposition (2.19) has the following characteristics. It is valid re-
gardless the nature of the output of f : scalar, multivariate or functional. It
is finite as it contains exactly 2p terms. Moreover, its terms are orthogonal,
referring to property iii) above.

2.2.1.1 Variance-based sensitivity indices

Assume that f(X) ∈ R such that Var(f(X)) > 0. Based on decomposition
(2.19), Sobol’ (1993) introduced the so-called Sobol’ indices. Indeed, the or-
thogonality of the terms in (2.19) yields:

Var (f(X)) =
∑

u⊆{1,··· ,p},u6=∅

Var (fu (Xu)) . (2.20)

The Sobol’ index associated to a set of parameters Xu for a non-empty subset
u of {1, · · · , p} is defined as:

Su :=
Var (fu (Xu))

Var (f(X))
. (2.21)
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Notice that indices Su, u ⊆ {1, · · · , p} \ ∅ sum up to one. In the case u = {i}
where i ∈ {1, · · · , p}, the corresponding index is given by

Si =
Var (fi (Xi))

Var (f(X))
=

Var (E [f(X) | Xi])

Var (f(X))
(2.22)

and known as the first-order Sobol’ index associated to Xi (Sobol’, 1993). This
index measures the proportion of Var(f(X)) due to the variation of the input
Xi only. Thus, if Si = 1, the global variance is entirely explained by the
variation of Xi only. In fact, the higher the index Si, the more Xi contributes
to the model output uncertainty. So, first-order Sobol’ indices allow to classify
uncertain parameters according to their importance in the global variability
of the output and thereby to identify key parameters of models: this is factor
prioritization.

Furthermore, in the case u = {i, j} with i 6= j, it yields that:

Si,j = Sj,i =
Var (fi,j (Xi, Xj))

Var (f(X))
=

Var (E [f(X) | Xi, Xj ])

Var (f(X))
− Si − Sj .

Index Si,j represents the second-order interaction of Xi, Xj , i.e. the combined
effect of Xi and Xj on the model output excluding their main effects. Higher
order interactions can be obtained by considering u with more inputs.

Note that the first-order Sobol’ indices do not include interactions ofXi, i =

1, · · · , p with other inputs Xj , j 6= i although they also represent contributions
of Xi to the variance of f(X). In order to measure the total influence of Xi

by itself or in interaction with other input parameters, Homma and Saltelli
(1996) introduced the total Sobol’ indices as follows:

STu =
∑

v⊆{1,··· ,p}:u∩v 6=∅

Var (fv (Xv))

Var (f(X))
. (2.23)

In the case where u = {i} for any i = 1, · · · , p, the total Sobol’ index of Xi is
given by:

STi = 1− Var (E [f(X) | X∼i])
Var (f(X))

,

where ∼ i denotes the set {1, · · · , p}\{i}. This index aggregates all the Sobol’
indices of sets of parameters of X in which Xi is involved. Therefore, STi
accounts for all the contributions of input Xi.

If STi = 0, then Var (E [f(X) | X∼i]) = Var (f(X)). The global variance
is therefore totally due to X∼i. This implies that Xi is not an influential
parameter of the model since its main effect and any of its interactions with
other parameters are null. Such a parameter can be frozen without modifying
the variance of the model output: this is factor fixing. Hence, total indices can
contribute to model reduction through factor fixing.



2.2. Global sensitivity analysis 47

Now, let us assume that Y is multivariate, i.e. Y ∈ Rq, with q ≥ 2.
The variance decomposition (2.20) still holds. In such a case, the variance-
covariance matrix of Y , denoted Γ := Var (f(X)) is a matrix of dimension
q × q and can be decomposed as follows:

Γ =
∑

u⊆{1,··· ,p},u6=∅

Γu, (2.24)

where Γu = Var (fu(Xu)) is a matrix since fu(Xu) is a q-dimensional random
vector. However, unlike the scalar case, sensitivity indices cannot be defined in
unique way based on (2.24). Indeed, as pointed out by Gamboa et al. (2014),
using Equation (2.24), different indices can be introduced because of partic-
ular properties of matrix calculus such as the non-commutativity of matrix
multiplication operation.

Let M be any matrix of dimension q × q such that Trace(MΓ) 6= 0, where
Trace(·) denotes the trace, i.e., the linear function that returns the sum of
diagonal elements of matrices. Gamboa et al. (2014) introduced M -sensitivity
measures SMu as:

SMu =
Trace (MΓu)

Trace (MΓ)
, (2.25)

for u ⊆ {1, · · · , p} \ {∅}. This index coincides with Su in the scalar output
framework. The particular choice of M = Id leads to a sensitivity index
invariant by isometric transformation (i.e. preserving the distance) of the
model output. This index was first introduced in Lamboni et al. (2011) in
the framework of a discretized functional model output.

Actually, in the case where the output of the model is functional, i.e., Y =

{Y (t) := f(t,X), t ∈ T}, where T is a non-empty set, sensitivity indices can be
defined in several ways. Dynamical indices can be introduced by considering
each Y (t) with t ∈ T and using sensitivity indices defined in (2.21). Also,
spectral methods can be used to reduce to the multivariate setting: Principal
Component Analysis (Lamboni et al., 2011; Campbell et al., 2006), Vector
projection (Xu et al., 2019), Polynomial Chaos Expansion (Garcia-Cabrejo
and Valocchi, 2014), Karhunen-Loève decomposition (Li et al., 2020), wavelet
decomposition (Xiao et al., 2018), etc. Then, Sobol’ indices are defined from
(2.25) on the vector coefficients in the multivariate decomposition.

2.2.1.2 Estimation of variance-based indices

In this section, Y is assumed to be scalar until further notice. In practice, func-
tion f that represents the deterministic model may not have simple analytical
expression or even it may be given as computer code. In this case, analytical
computation of sensitivity indices is impossible because moments of the model
output are not tractable. Therefore, one can rely on estimation to assess sen-
sitivity indices. In general, Monte Carlo methods are used to approximate
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expectations of the model output, i.e. quantities under the form E(φ(Y )),
where φ is an integrable function defined on Y. This consists in sampling the
input space X using PX to generate samples: X(1), · · · ,X(n), where n ≥ 1,
and then estimating E(φ(Y )) with empirical means: 1

n

∑n
l=1 φ(f(X(l))). Sev-

eral methods enable to sample spaces: Monte Carlo Sampling (Janssen, 2013),
Quasi-Monte Carlo Sampling (Morokoff and Caflisch, 1995), Latin Hypercube
Sampling (Michael Stein, 1987)...

Pick-freeze estimator

Consider the first-order Sobol’ index Si of input Xi for any i = 1, · · · , p. It
holds that:

Si =
E
(
E [f(X) | Xi]

2
)
− (E (f(X)))2

E (f(X)2)− (E (f(X)))2 .

Let Di := E
(
E [f(X) | Xi]

2
)
for any i = 1, · · · , p, D := E

(
f(X)2

)
and µ :=

E (f(X)). Then, it follows that Si = (Di − µ2)/(D − µ2) for any i = 1, · · · , p.
Note that D and µ can be estimated by the moment estimators given by
empirical means of f(X) and f(X)2 respectively. Unlike, Di includes the
squared conditional expectation E [f(X) | Xi]

2 which makes estimation a little
more complicated. To overcome this difficulty, E [f(X) | Xi]

2 is decoupled
in the following way. Let X̃ be an independent copy of X, it appears that
E[f(X) | Xi]

2 = E[f(X)f(Xi, X̃∼i) | Xi]. Hence: Di = E(f(X)f(Xi, X̃∼i)) for
any i = 1, · · · , p. Thus, Di, µ and D can be respectively estimated by:

D̂i :=
1

n

n∑
j=1

f(X(j))f
(
X

(j)
i , X̃

(j)
∼i

)
µ̂ :=

1

n

n∑
j=1

f(X(j))

D̂ :=
1

n

n∑
j=1

f(X(j))2

so that the first-order Sobol’ index Si is estimated by:

Ŝi :=
D̂i − µ̂2

D̂ − µ̂2
(2.26)

for any i ∈ {1, · · · , p}. Estimator Ŝi is the so-called pick-freeze estimator
of Si. Other forms of such an estimator can be considered. Noticing that
Var(E [f(X) | Xi]) is also the covariance cov(f(X), f(Xi, X̃∼i)), then, Si can
be estimated by:

S̃
(1)
i :=

D̂i − µ̂× µ̃i
D̂ − µ̂2
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where µ̃i := 1
n

∑n
j=1 f

(
X

(j)
i , X̃

(j)
∼i

)
. Also:

S̃
(2)
i :=

D̂i −
(
µ̂+µ̃i

2

)2

(
D̂+D̃i

2

)2
−
(
µ̂+µ̃i

2

)2 ,

with D̃i := 1
n

∑n
j=1 f

(
X

(j)
i , X̃

(j)
∼i

)2
, can be used to take advantage of available

model evaluations in order to improve estimations. The two estimators were
introduced in Homma and Saltelli (1996); H. Monod (2006) and studied by
Janon et al. (2014a); Gamboa et al. (2016). Both are implemented in the
R-package sensitivity (Iooss et al., 2020).

Statistical properties of estimators Ŝi, i = 1, · · · , p were studied in Homma
and Saltelli (1996) and are recalled in the following. Let g : (x1, x2, x3) 7→
(x3 − x2

2)/(x1 − x2
2) defined over D = {(x1, x2, x3) : x1 > x2

2}. Denote
θi = (D,µ,Di) and θ̂i = (D̂, µ̂, D̂i) so that Si = g(θi) and Ŝi = g(θ̂i) for
i = 1, · · · , p. Note that each θ̂i is an empirical mean of i.i.d. square inte-
grable random vectors such that E(θ̂i) = θi. Thus, the law of large numbers
yields that θ̂i converges in probability to θi. This implies that Ŝi converges
in probability to Si since g is continuous. Moreover, based on the central
limit theorem,

√
n(θ̂i − θi) converges in distribution to N (0, Vi), for some

matrix Vi. As g is differentiable such that ∇g(θi) 6= 0 then using the so-
called delta-method,

√
n(Ŝi − Si) converges in distribution to N (0, σ2

i ), where
σ2
i = ∇g(θi)

TVi∇g(θi). Estimators S̃(1)
i and S̃

(2)
i share also those properties

of consistency and asymptotic normal distribution. Moreover, Janon et al.
(2014a) showed that S̃(2)

i is asymptotically efficient.
For total Sobol’ indices, following Equation (2.23), it is possible to derive

an estimator similar to (2.26), by freezing all the inputs in X∼i (Homma and
Saltelli, 1996). Jansen (1999) introduced later a new estimator using the iden-
tity: E(Var[f(X) | Xu]) = E(f(X)− f(Xu, X̃∼u))2/2. This estimator is later
improved by Saltelli et al. (2010) and is given by:

ŜT i :=

1
2n

∑n
j=1

(
f(X(j))− f(X

(j)
i X̃

(j)
∼i )
)2

1
n

∑n
j=1 f(X(j))2 −

(
1
n

∑n
j=1 f(X(j))2

)2 , i = 1, · · · , p.

Now, assume that Y is multivariate or functional. In such a case, Gam-
boa et al. (2014) introduced pick-freeze estimators generalizing those used in
the scalar case (Gamboa et al., 2016) to estimate sensitivity indices defined
in (2.25). In particular, their estimator generalizing S̃

(2)
i is still consistent,

asymptotically normally distributed and asymptotically efficient.
Overall, accurate estimation of sensitivity indices is an important issue

in sensitivity analysis. Many studies have been conducted on this subject:
Sobol’ and Myshetskaya (2008); Saltelli (2002); Azzini et al. (2021). Aside,
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non-parametric methods were introduced (Da Veiga and Gamboa, 2013; Solís,
2021; Heredia et al., 2021) in order to provide alternatives to Monte-Carlo
methods. Also methods based on spectral tools for example in Cukier et al.
(1978); Saltelli et al. (1999); Tissot and Prieur (2012) were used to improve
rate of convergence under regularity assumptions on f .

Besides, it is possible to replace a model by a metamodel (see, e.g., Sudret
(2008); Marrel et al. (2009)) to approximate indices. This approach allows
either to compute analytically approximations of Sobol’ indices or to estimate
them with cheap surrogates using pick-freeze estimators.

2.2.2 Variance-based sensitivity analysis for stochas-
tic models

Recall that (X ,B) and (Y,F) are two nonempty measurable spaces. Let us
introduce a new measurable space (Z,G) and define f : X ×Z → Y a measur-
able function. In the following, we say that f is a stochastic model with inputs
X = (X1, · · · , Xp) and output Y if there exists a latent random variable or
a collection of latent random variables denoted Z with values on Z such that
Y = f(X, Z). The random element Z is called the intrinsic randomness of the
model. It should be noted that Z plays a role different from input vector X

as it is generally an uncontrolled latent variable. Hereafter, let us make the
following assumption:

Assumption 2. X and Z are independent.

Ideally, the input vector X can be extended with Z, yielding Xext :=

(X, Z), so that the model defined by f with inputs Xext and output Y is
deterministic. In such a case, using Assumptions 1 and 2, the Sobol’-Hoeffding
decomposition holds:

f(X, Z) = f(Xext) =
∑

v⊆{1,··· ,p+1}

fv
(
Xext
v

)
, (2.27)

where Xext
p+1 := Z. Therefore, it is possible to decompose the variance of Y , to

define and to assess Sobol’ indices especially the first-order Sobol’ index of the
intrinsic randomness:

SZ = Var(E[f(X,Z)|Z])
Var(f(X,Z))

and interactions between intrinsic randomness and Xu:

SXu,Z =
Var (E [f(X, Z) | Xu, Z])

Var (f(X, Z))
− SZ − SXu ,

with u ⊆ {1, · · · , p}.
For many practical settings, it is possible to get realizations of f(x, Z) for

any x ∈ X , however it is not possible to compute f(x, z) for (x, z) ∈ X × Z
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and the probability distribution PZ is unknown. Then, decomposition (2.27)
cannot be used in general. Hence, different methods have been introduced to
perform sensitivity analysis of stochastic models. A review of these methods
is proposed in the following.

2.2.2.1 Basic approach

Even though f cannot be decomposed as in (2.27), the law of total variance
still provides a decomposition of the variance Var (f(X, Z)):

Var (f(X, Z)) = Var (E [f(X, Z) | X]) + E (Var [f(X, Z) | X]) . (2.28)

In practice, this leads to considering naturally the conditional mean e(X) =

E[f(X, Z) | X] and the conditional variance v(X) = Var[f(X, Z) | X] for the
sensitivity analysis of f . Note that both e and v define deterministic models.
Thus, such an approach amounts to assessing the Sobol’ indices of the set of
parameters Xu, u ⊆ {1, · · · , p} \ {∅} for both e and v. This is illustrated in
Example 3.

Example 3. Let be X = (X1, X2) distributed under the centered bivariate
Gaussian distribution with variance-covariance matrix given by the identity
matrix and Z distributed under the uniform distribution on [−L,L], with L > 0

such that X and Z are independent. Consider f(X, Z) = X1 + X2Z. Then:
e(X) = X1 and v(X) = X2

2 E(Z2).
Denote by Se1 and Sv1 the Sobol’ indices of X1 for outputs e(X) and v(X)

respectively and Se2 and Sv2 those of X2. We get Se1 = 1, Se2 = 0, Sv1 = 0 and
Sv2 = 1.

In general, e(X) and v(X) need to be estimated or metamodeled in order to
estimate the variance of Y , as far as the influence of uncertain parameters on
either e(X) or v(X). For example, Iooss and Ribatet (2009) and Marrel et al.
(2012) estimate not only Sobol’ indices of uncertain parameters but also the
total Sobol’ index of Z. However, their approach based on joint metamodeling
of e and v, does not allow to estimate the main effect of Z on Y nor the
interaction between Xu and Z for a particular set u ⊆ {1, · · · , p} such that
u 6= ∅.

2.2.2.2 More general averaged quantities of interest

In Section 2.2.2.1, two quantities of interest (QoIs) were introduced: e(X)

and v(X). More generally, one can consider QoIs under the form Q(X) =

E[φ(f(X, Z)) | X], where φ is a measurable transformation. For example, we
can have: conditional moments Q(X) = E[f(X, Z)r | X], r ≥ 1, the probability
Q(X) = E[1f(X,Z)∈B | X] for a measurable set B, or other quantities such as
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expectation of some exit time (Étoré et al., 2020), etc. Some examples in
epidemiology are provided in Example 4.

Example 4. Consider a closed population with size N and the classical SIR
model and W θ = (WS ,WI ,WR) the epidemic process with θ = (β, γ). We
classically introduce the following QoIs:

i. The extinction probability: pext = P(WI(t) = 0), t > 0.

ii. The mean extinction time E(τext | θ) where τext = inf{t ≥ 0 |WI(t) = 0}.

iii. The mean of the peak of infections: E(τmax | θ) where τmax = max{WI(t), t ≥
0}.

Another example of QoI in uncertainty quantification is given by differential
entropy. Assume that for each x ∈ X , the output f(x, Z) is a random variable
with probability density function px. The differential entropy of f(x, Z) is
defined as:

H(x) = −E (px (log f(x, Z))) , (2.29)

and hence H(X) = −E [pX (log f(X, Z)) | X]. The quantity (2.29) is a mea-
sure of uncertainty that informs about the way the output f(x, Z) disperses
the randomness, i.e., the way it is scattered on the output space Y. Differential
entropy was used in the place of the variance in sensitivity analysis of determin-
istic models, e.g. in Kala (2021); Auder and Iooss (2008); Hall (2006). More
recently, Azzi et al. (2020) proposed to use (2.29) to perform the sensitivity
analysis of stochastic models.

Overall, as function of X only, Q defines a deterministic model. Then, sen-
sitivity analysis can be handled based on the Sobol’-Hoeffding decomposition,
provided that E(Q(X)2) < +∞. As already said in Section 2.2.2.1, it is not
always possible to compute explicitly Q(X), thus estimation or metamodel-
ing is needed. Estimating such conditional quantities requires having samples:
f(x, Z(1)), · · · , f(x, Z(m)) with m ≥ 1, given X = x. This comes down to
setting X = x and repeating m times the model evaluation at x. Therefore,
estimation of Sobol’ indices of Q(X) needs not only exploration of parameter
space to generate samples of X but also repetitions of the model evaluations
at each sample of X. Since the estimation of Q(X) can introduce bias, a bias-
variance issue arises when estimating Sobol’ indices. Such a problem can be
all the more important as the computation budget is limited. To address this
problem, Mazo (2021) proposed a bias-variance trade-off by studying the mean
ranking error of Sobol’ index estimators.

Anyway, with this manner of dealing with stochastic models, the intrinsic
randomness is averaged. Unless this is relevant to the study being conducted,
other approaches which would best preserve the intrinsic randomness of these
models should be considered. One such approach introduced by Hart et al.
(2017) is presented in the next section.
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2.2.2.3 Parameterized Sobol’-Hoeffding decomposition

Recall that the intrinsic randomness Z of the stochastic model f takes values
on Z. To perform sensitivity analysis for f by leveraging available tools of the
deterministic framework, Hart et al. (2017) suggested to change the way the
stochastic model and its intrinsic randomness Z are viewed. Instead of dealing
with Z as a noise, Hart et al. (2017) proposed to consider it as a parameter.
The stochastic model is then a family of deterministic models parameterized
by z ∈ Z so that for Z frozen at some z, the output of the deterministic model
is given by:

Y (z) = f(X, z) =: fz(X).

Therefore, fz is a deterministic model with inputs X such that fz is square
integrable. It follows that the Sobol’-Hoeffding decomposition (2.19) holds and
thereby Sobol’ indices can be defined. The parameterized first-order Sobol’
index of parameter Xi is given by:

Si(z) =
Var (E [fz(X) | Xi])

Var (fz(X))
,

for any i = 1, · · · , p. As Z is random, then so is Si(Z) random. Therefore,
for i = 1, · · · , p, Hart et al. (2017) defined the first-order sensitivity index of
parameter Xi as follows:

SHi = E (Si(Z)) . (2.30)

For illustration, consider the stochastic model given in Example 3 and let us
compute sensitivity indices in (2.30):

Example 5. Consider the stochastic model f with inputs X and intrinsic
randomness Z as defined in Example 3, with L > 0. For Z = z, it holds that
f(X, z) = X1 + X2z and thus E[f(X, z) | X1] = X1, E[f(X, z) | X2] = zX2.
Then, S1(z) = 1/(1 + z2) and S2(z) = z2/(1 + z2). Therefore:

SH1 = E
(

1

1 + Z2

)
=

arctanL

L

SH2 = 1− SH1 = 1− arctanL

L
.

It can be noticed that SH1 and SH2 depend on L which is proportional to the
amplitude of the range of variation of Z. This helps to see how the noise may
affect the effects of the parameters on model output.

Even if indices in (2.30) have the advantage of highlighting the link between
the intrinsic randomness and the contributions of the uncertain parameters
(refer to Example 5), they do not help in quantifying the influence of the
intrinsic randomness on output.
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2.2.3 Beyond the variance-based approach

More recently, stochastic models were re-interpreted as deterministic models,
depending only on unknown parameters X, with values in a set of probability
distributions. In the following, we give an overview on the recent literature on
the topic.

2.2.3.1 Probability distribution based approach

Let M be the set of probability distribution functions (p.d.f) on the output
space. In Fort et al. (2021), authors consider the function:

ϕ : X −→M
x 7−→ ϕ(x) = µx,

where µx is the p.d.f. of f(x, Z). The function ϕ defines a deterministic model
with values inM. Thus, such a function allows to switch from the stochastic
framework to the deterministic one. Note that the spaceM is not Euclidean
and is then a much more complex space than the usual space Rq (q ≥ 1). So,
defining sensitivity indices for a model with outputs in M can be challeng-
ing. But, this is addressed through different approaches. Two approaches are
presented: the approach of Fort et al. (2021) which builds indices based on
the Wasserstein metric and the kernel-based approach developed by Da Veiga
(2021) using dependence measures on Hilbert spaces.

Sensitivity analysis based on test functions

In Gamboa et al. (2021, 2022), the authors considered a family of real-valued
test functions parameterized by the output space, which is assumed to be a
metric space. Then, they performed a Sobol’-Hoeffding decomposition on the
parameterized test functions and integrated over parameters describing the
test functions. Now, assume that M is the Wasserstein space of probability
measures on R which have second order moment. The Wasserstein distance
W2 between two probability measures µ1 and µ2 is defined as:

W2(µ1, µ2) = E
(
F−1
µ1 (U)− F−1

µ2 (U)
)2
,

where F−1
µ1 and F−1

µ2 are the quantile functions of µ1 and µ2 respectively and
U is distributed under the uniform distribution over [0, 1]. In this frame-
work, Fort et al. (2021) introduced the family of test functions Tν1,ν2(µ) =

1W2(ν1,µ)≤W2(ν1,ν2), for ν1, ν2 ∈M. Such a family, known as Wasserstein balls,
characterizes the probability distribution of elements of M (Gamboa et al.,
2018). Consider the real-valued random variables hν1,ν2(X) := Tν1,ν2 (ϕ(X)) =
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Tν1,ν2(µX), for ν1, ν2 ∈ M. Note that hν1,ν2(X) is bounded and then square
integrable so that the Sobol’-Hoeffding decomposition yields:

Var (hν1,ν2(X)) =
∑

u⊆{1,··· ,p},u6=∅

Var
(
huν1,ν2 (Xu)

)
.

Let us introduce µY the p.d.f of the model output Y . In order to make this
decomposition independent of the choice of ν1 and ν2, expectation is taken
with respect to µY :

E
(ν1,ν2)∼µ⊗2

Y

(Var (hν1,ν2(X))) =
∑

u⊆{1,··· ,p},u 6=∅

E
(ν1,ν2)∼µ⊗2

Y

(
Var

(
huν1,ν2 (Xu)

))
.

Thus, for any u ⊆ {1, · · · , p}, the sensitivity index of Xu is defined as:

SGu =
E

(ν1,ν2)∼µ⊗2

Y

(
Var

(
huν1,ν2 (Xu)

))
E

(ν1,ν2)∼µ⊗2

Y

(Var (hν1,ν2(X)))
. (2.31)

Three different methods of estimation of indices SGu were discussed in Fort et al.
(2021): pick-freeze procedure (Janon et al., 2014a), U-statistics (Gamboa et al.,
2021) and rank-based estimators (Gamboa et al., 2022).

Kernel-based sensitivity analysis

In the following, we first consider the general framework with Ỹ denoting any
output space. Then we will specify the methodology for Ỹ ⊆ M, the set of
pdfs on Y in the framework of stochastic models.

In Da Veiga (2021) (see also Barr and Rabitz (2022)), a kernel-based
ANOVA decomposition is introduced using dependence measures in Repro-
ducible Kernel Hilbert Space (RKHS). Recall that a Hilbert space H of func-
tions g : Ỹ → R is said to be a RKHS with respect to Ỹ if there exists a
kernel function kỸ : Ỹ × Ỹ → R such that for all g ∈ H and for all y ∈ Ỹ,
g(y) = 〈f(·), kỸ(·, y)〉.

Let P and Q be two pdfs on Ỹ. The idea used in Da Veiga (2021) is to mea-
sure the discrepancy between P and Q with the maximum mean discrepancy
(MMD). For the RKHS H, it is given by:

MMD(P,Q) = ‖EU∼P
(
kỸ(U, ·)

)
− EU∼Q

(
kỸ(U, ·)

)
‖H,

with ‖ · ‖H the Hilbert norm in the RKHS H.
Consider Xu, u ⊆ {1, · · · , p} a set of parameters of a stochastic model f

with output Y . Let us denote by µY and µY |Xu
the probability distribution of

Y and the one of Y conditionally to Xu respectively. Using the distance MMD,
Da Veiga (2021) introduced the MMD-based sensitivity indices as follows:

SMMD
u =

EXu

(
MMD2(µY , µY |Xu

)
)∑

v⊆{1,··· ,p} EXv

(
MMD2(µY , µY |Xv

)
) ,
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for u ⊆ {1, · · · , p}. These indices generalize Sobol’ indices because the latter
can be obtained by choosing as kernel kỸ(u, u′) = uu′. In addition, total Sobol’
indices can be defined based on MMD distance as usual, i.e by adding contri-
butions in which the considered parameter or set of parameters is involved.

A second type of kernel-based sensitivity indices is defined using the Hilbert-
Schmidt Independence Criterion (HSIC) (Gretton et al., 2005). Considering a
couple (Xu, Y ), the HSIC criterion consists in evaluating the dissimilarity be-
tween the joint probability distribution µ(Xu,Y ) of this couple and the product
of their marginal probability distributions µXu⊗µY . This allows to assess how
the output Y is dependent on Xu. This criterion is defined as:

HSIC(Xu, Y ) = MMD2
(
µ(Xu,Y ), µXu ⊗ µY

)
,

with MMD the maximum mean discrepancy associated to a RKHS H of func-
tions g : X × Ỹ → R. The resulting sensitivity index is given by:

SHSIC
u =

HSIC(Xu, Y )∑
v⊆{1,··· ,p}HSIC(Xv, Y )

.

Kernel-based sensitivity analysis requires the choice of reproducible kernels: in
the case of MMD-based indices, a kernel defined on Ỹ is needed whereas for
HSIC indices two kernels are required, one on X and the other on Ỹ. Note
that for stochastic models, Ỹ is a subset of the set of pdfs on Y. Da Veiga
(2021) mentioned two kernels for stochastic models: k(P,Q) = σ2e−λMMD2(P,Q)

and k(P,Q) = σ2e−λW
2
2 (P,Q), where λ, σ2 are two positive quantities called

hyperparameters, and with P and Q two pdfs on Y, that is, with P,Q ∈ Ỹ.
The merit of probability distribution based approaches is that they deal

with stochastic models in a suitable framework, which takes into account the
stochastic nature of the output. However, these approaches may depend on
choices that can affect the sensitivity analysis results. For example, the choice
of a family of test functions in the approach of Gamboa et al. (2021) and the
choice of kernels in the approach of Da Veiga (2021).

2.2.3.2 Metamodel-based approach

In the various approaches presented so far, sensitivity analysis requires numer-
ous evaluations of a deterministic QoI defined from the stochastic model or of
the stochastic model itself. The idea behind metamodeling is to replace evalu-
ations of Q(X) = E[φ(f(X, Z)) | X] or f(X, Z) by a surrogate, much cheaper
to evaluate. In the literature, there are various ways to build metamodels:
Polynomial chaos expansion (Sudret, 2008), Gaussian processes (Marrel et al.,
2012), Splines such as MARS (Hart et al., 2017), Machine learning: Support
Vector Regression (Cheng et al., 2017), Neural Networks (Kala et al., 2019; Li
et al., 2016), etc. Only two approaches, the most used in sensitivity analysis,
are presented: PCE and Gaussian processes.
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Polynomial Chaos Expansion

Consider the deterministic framework, with f a model with inputsX = (X1, · · · ,
Xp) and output Y such that Y = f(X) is a random variable of finite variance.
Then, Y belongs to the Hilbert space of square-integrable variables and can
be represented as:

Y =
∑
α∈Np

cαΨα(X), (2.32)

where Ψα(x) =
∏p
i=1 ϕ

(i)
αi (xi) with {ϕ(i)

j , j ∈ N} a family of univariate or-
thonormal polynomials (see Sudret (2008) for examples). Such a decompo-
sition (2.32) was introduced by Wiener (1938) and known as the polynomial
chaos expansion of Y .

Let A be a finite subset of Np, in order to build the metamodel f̃ (such
that Y = (̃X) + ε), set:

Y =
∑
α∈A

cαΨα(X) + ε,

where ε =
∑

α/∈A cαΨα(X). Then, the goal is to find coefficients cα such that
ε is minimal. This comes down to a classic regression problem:

{cα, α ∈ A} = argmin
rα,α∈A

E

(
Y −

∑
α∈A

rαΨα(X)

)2

. (2.33)

In practice, the problem (2.33) cannot be directly solved as theoretical quan-
tities are generally unknown. Estimation is therefore required based on sam-
ples of X. Solving yields approximate coefficients {ĉα, α ∈ A}, hence, f̃ =∑

α∈A ĉαΨα(X).
Ultimately, computation of sensitivity indices is performed using the sur-

rogate f̃ . But, by combining the orthogonality of the terms of the Sobol’-
Hoeffding decomposition and that of the terms of the PCE, analytical ex-
pressions of the Sobol’ indices can be deduced and their computation can be
performed without additional computational effort (Sudret, 2008).

PCE are commonly used in uncertainty quantification and sensitivity anal-
ysis. For deterministic models, the following works can be mentioned: Sudret
(2008); Le Gratiet et al. (2017); Mara and Becker (2021). In the framework of
stochastic models, it has been mainly studied for sensitivity analysis of models
based on stochastic differential equations (SDE) (see, e.g., Le Maître and Knio
(2015); Jimenez et al. (2017); Étoré et al. (2020)).

In the general case of models that are not necessarily based on SDEs,
PCE can be coupled with other approaches to emulate the model output
and perform sensitivity analysis. In Zhu and Sudret (2020, 2021a,b), it is
proposed to build surrogates for stochastic models by relying on a family
of distributions called generalized lambda distributions (Freimer et al., 1988)
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with known quantile function Q parameterized by four functions λ1, λ2, λ3, λ4

that control different characteristics of the distribution, so that for any input
x, the original stochastic model f(x, Z) is assumed to be distributed under
Q(U, λ1(x), λ2(x), λ3(x), λ4(x)). In practice, characteristics λ1(x), λ2(x), λ3(x),
λ4(x) are approximated by using PCE. More recently in Zhu and Sudret (2022),
an approach to perform sensitivity analysis with stochastic models with a
stochastic version of PCE was introduced. The idea is to decompose model
output f(x, Z) =

∑
α∈Np+1 cαΨα(x, Z) and then to rely on a Gaussian ap-

proximation of the probability distribution of f(x, Z) ≈
∑

α∈A cαΨα(x, Z)+ε,
where ε is a centered Gaussian distribution and A is a finite set of Np+1. In
practice, the metamodel is built by estimating coefficients using maximum
likelihood estimator and Sobol’ indices are deduced analytically.

Gaussian Process regression

Let W be a nonempty set. A stochastic process {G(w), w ∈ W} is said to
be Gaussian if for any finite set J ⊂ W, the random vector {G(w), w ∈ J} is
distributed under some Gaussian distribution. Such a process is fully charac-
terized by its mean m(w) = E(G(w)) and its covariance function C(w,w′) :=

E(G(w)G(w′))−m(w)m(w′).
Consider a deterministic model f with input vector X. Metamodeling by

Gaussian processes consists in assuming that for any input x of the model, the
output f(x) is a response of a Gaussian process of the form: f0(x)+G(x) where
f0 is a known deterministic function and G is a centered Gaussian process of
covariance function of the form σ2R(x, x′). The function R is often given as
a function of the distance between points x and x′. In practice, one relies on
samples of X : X(1), · · · ,X(N) and their respective outputs Y (1), · · · , Y (N) to
approximate the Gaussian process. Let x be an input of the model and denote
Rx := (R(x,X(1), · · · , R(x,X(N))>, ΣN := (R(X(i),X(j))1≤i,j≤N and ∆N :=

(Y (1) − f0(X(1), · · · , Y (N) − f0(X(N))>. Then, the a posteriori probability
distribution of f(x) is:

f(x) | {(X(1), Y (1)), · · · , (X(N), Y (N))} ∼ N (mN (x), VN (x)) , (2.34)

where:

mN (x) = f0(x) +R>x Σ−1
N ∆N

VN (x) = σ2
(

1−R>x Σ−1
N Rx

)
.

Thus, in sensitivity analysis, the model f is substituted by the Gaussian process
given in (2.34). The Gaussian character of the process facilitates the calculation
of the conditional expectations and consequently estimation of Sobol’ indices.

In the stochastic model framework, metamodels based on Gaussian pro-
cesses can be obtained as in the deterministic case through a transforma-
tion of the covariance function. This transformation consists in adding some
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Dirac function in order to take into account effects of the intrinsic random-
ness. Therefore, for a stochastic model f with inputs X and intrinsic random-
ness Z, it holds that for any input x, f(x, Z) is supposedly distributed under
f0(x) +G(x), where f0 is a known deterministic function and G is a centered
Gaussian process with covariance function under the form Cov(G(x), G(x′)) =

σ2(R(x− x′) + εδ(x− x′)), where:

δ(u) =

{
1 if u = 0

0 otherwise,

and R a correlation function (Chiles and Delfiner, 2009). In Marrel et al.
(2012), this approach is used to study the sensitivity of stochastic models by
focusing on contributions of uncertain parameters to the variances of the quan-
tities of interest given by the conditional expectation and variance. Browne
et al. (2016) used Gaussian metamodel to emulate stochastic model and to
perform sensitivity analysis for quantity of interest given by quantiles.

Metamodeling error

The metamodel-based approach replaces the original model f with a surrogate
f̃ up to some error ε and computes the sensitivity indices instead on the output
of f̃ . In general, by using techniques such as cross-validation, one can make
sure that f̃ is accurate enough in approximating f , and it holds that: f̃ ≈ f .
But performing the sensitivity analysis on f̃ suggests that the implication:
f̃ ≈ f =⇒ Su(f) ≈ Su(f̃), for u ⊆ {1, · · · , p} holds, where Su(f) and Su(f̃)

denote respectively the Sobol’ index of parameter or group of parameters Xu

with respect to models f and f̃ .

Studies have been conducted to quantify metamodel errors impacts on
sensitivity index estimations. We can mention: Janon et al. (2014a,b); Panin
(2021). On the one hand, in Janon et al. (2014a), an approach to estimate the
impact of the metamodel error ε on the indices is proposed when metamodel
pointwise error bound is provided. On the other hand, Janon et al. (2014b)
studied conditions on the metamodel error ε for which estimators of Su(f̃)

converge to Su(f) and satisfy a central limit theorem. In Panin (2021), bounds
on the distance between Su(f) and Su(f̃) have been obtained and the accuracy
of estimators of Sobol’ indices based on PCE or using polynomial interpolation
techniques are reviewed.

However, even if metamodels can reduce computational costs, it is some-
times possible to work with the exact model, leading to a more accurate un-
derstanding of underlying phenomena.
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2.2.4 Formulation of problems and contributions of
the thesis

This PhD thesis is devoted to sensitivity analysis of stochastic models by lever-
aging variance-based sensitivity analysis tools for deterministic models with
scalar or multivariate output.

In the first part (Chapter 3), our objective is to develop a method to
accurately estimate Sobol’ indices of parameters, in the general framework of
stochastic models, for deterministic QoI under the form: Q(X) = E(φ(f(X, Z)).
Given X = x, an estimator of Q is defined as: Q̂m(x) := 1

m

∑m
k=1 φ(f(x, Z(k)))

and then depends on outputs f(x, Z(1)), · · · , f(x, Z(m)) with m ≥ 1. Those
outputs are obtained by repeating m times the model evaluation at input
X = x. Moreover, estimation of first-order Sobol’ indices for Q requires to
draw n samples X(1), · · · ,X(n) from X. At each sample X(i), the model f is
evaluated m times so that the first-order Sobol’ index of Xj given by:

Sj =
Var (E [Q(X) | Xj ])

Var (Q(X))

is estimated by:

Ŝj;n,m =

1
n

∑n
i=1 Q̂m(X(i))Q̂m

(
X

(i)
j , X̃

(i)
∼j

)
−
(

1
n

∑n
i=1 Q̂m(X(i))

)2

1
n

∑n
i=1 Q̂m(X(i))2 −

(
1
n

∑n
i=1 Q̂m(X(i))

)2

for any j = 1, · · · p, with: Q̂m(X(i)) = 1
m

∑m
k=1 φ

(
f(X(i), Z(i,k))

)
where

{Z(i,k), i = 1, · · ·n; k = 1, · · · ,m} are i.i.d.
Note that estimating the first-order Sobol’ indices of p inputs has a total

cost of n ×m × (p + 1) multiplied by the computational cost of each call to
f . The larger n and m are, the more precise the estimator is. But this is not
a feasible strategy when each evaluation of f is expensive. So in a context
of a limited total number of model evaluations, this PhD thesis studies what
trade-off should be made between n and m to ensure that the mean squared
error of the estimator Ŝj;n,m is small.

Contribution of the PhD thesis to the study of Sobol’ index esti-
mators for stochastic models In this thesis, we study the bias-variance
trade-off problem in estimating Sobol’ indices for aforementioned quantities
of interest Q. Our approach is based on a tractable bound for the mean
squared error of sensitivity index estimator, leading to two main results. First,
the convergence of mean squared error of estimator Ŝj;n,m is proved. This
result extends de facto to the deterministic framework and ensures that the
pick-freeze estimator converges in quadratic mean. On the other hand, un-
der the constraint that the total number of calls to the model is fixed, i.e.
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nm = T , we introduce a new strategy for choosing n and m allowing to reduce
simultaneously both the bias and the variance. This is detailed in Chapter 3.
This contribution is submitted for publication in an international peer-reviewed
journal.

The other works carried out in this thesis concern compartmental epidemic
models based on stochastic processes. These stochastic processes, whether they
are Markovian or not, are under the form: W θ(ω) = {W θ(t, ω); t ∈ [0, T ]}
where T ∈ (0,+∞), θ is a vector containing unknown or partially known
epidemic parameters, ω ∈ (Ω,F ,P) which is a probability space. It is assumed
that for any ω ∈ Ω and t ∈ [0, T ], W θ(t, ω) ∈ E ⊆ Nd, with d ≥ 1 and θ is a
vector of dimension p such that θ ∈ X . To model the parametric uncertainty,
we introduce a random vector X := (X1, · · · , Xp) defined on (Ω,F ,P) with
values in (X ,B(X )) a measurable space equipped with the Borel set B(X ) and
independent from the internal noise of the process. The resulting process is a
random field WX.

For epidemic models, the internal noise is issued from various sources de-
pending on the model considered: chance in the characteristics of individuals,
in their behaviors, in their decisions and interactions, environmental factors,
etc. This randomness has a well-defined meaning in epidemic models. Its ef-
fects can be detected in the variability of epidemic dynamics even when the
initial conditions and epidemic parameters are fixed. It can explain the early
extinction of epidemics even when the conditions for the explosion of infections
are met. In sum, it impacts the model and it would therefore be important to
measure its influence on model outputs.

In this PhD thesis, we want to assess the sensitivity of stochastic com-
partmental models with respect to both uncertain epidemic parameters and
intrinsic randomness, without appealing to surrogate models, as metamodel-
ing is not common practice in epidemiology. In order to achieve this goal, we
seek for a representation of WX under the form:

WX = f(·,X, Z) := {f(t,X, Z); t ∈ [0, T ]}, (2.35)

where f is a deterministic function and Z is a random variable or group of
random variables such that X and Z are independent.

A representation under the form (2.35) was proposed and used by Le Maître
et al. (2015); Navarro Jimenez et al. (2016). Indeed, based on the represen-
tation of continuous-time Markov chains with unit-rate independent Poisson
processes (Pu,u ∈ T ), as introduced in Section 2.1.4.4, Le Maître et al. (2015)
deduced that WX = F (·,X, Z) where Z = {Pu,u ∈ T } and F is given by the
decomposition (2.13).

In such a representation, Z is non-trivial and is independent of X. More-
over, each component Pu represents the intrinsic randomness of the process
associated with the type transitions u. Thus Pu accounts for the stochasticity
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characterizing the occurrence of transitions of u in the dynamics of W θ. Re-
lying on this representation, Le Maître et al. (2015); Navarro Jimenez et al.
(2016) obtained different contributions of Z and of its components in the global
variance of WX. In their works, simulations of the Markov chains were per-
formed via the Modified Next Reaction Method Algorithm (Algorithm 4). But
in epidemiology, the widespread methods for simulating epidemic dynamics are
the Gillespie algorithms (Algorithms 1 and 2). Besides, to our knowledge, no
representation under the form (2.35) has been proposed so far in the non-
Markovian setting.

Contribution of the PhD thesis to the sensitivity analysis for
stochastic compartmental models based on continuous-time Markov
chains We propose in this PhD thesis two representations of compartmen-
tal epidemic models based on continuous-time Markov chain using the two
Gillespie algorithms namely: Direct Method (Algorithm 1) and First Reaction
Method (Algorithm 2). This allows to separate the intrinsic randomness from
the parametric uncertainty and to put the model output under the form of a
deterministic function of uncertain parameters and variables representing the
intrinsic randomness. As a result, we can assess contributions of both uncertain
parameters and intrinsic randomness. In addition, we propose a comparison
between the representation based on the Gillespie algorithm and the represen-
tation used in Le Maître et al. (2015); Navarro Jimenez et al. (2016) which is
based on the Modified Next Reaction Method Algorithm. It turns out that
some results of the sensitivity analysis are different. This enables us to show
that the choice of the representation influences the results of sensitivity anal-
ysis. All these results are detailed in Chapter 4 and in an article which is
submitted for publication in an international peer-reviewed journal.

Contribution of the PhD thesis to the sensitivity analysis of
non-Markovian epidemic models by extending the Sellke con-
struction In the non-Markovian framework, in order to compensate the
lack of algorithms on which to rely to obtain a representation of WX, we ex-
tend the Sellke construction to closed population compartmental models. This
construction, originally introduced for the SIR model, is generalized to mod-
els with an arbitrary number of compartments and arrows. We show that in
the Markovian case, it coincides with the usual setting. We propose a new
algorithm with R for exact simulation. Above all, from this construction, we
deduce a representation of WX that is used to perform sensitivity analysis, to
evaluate various contributions of the intrinsic randomness and to make com-
parison between Markovian and non-Markovian models. All this is detailed in
Chapter 5 and a corresponding paper is in preparation.
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This chapter deals with the general context of stochastic models and focuses
on the problem of accurate estimation of sensitivity indices. This problem is
treated for the widely used class of quantities of interest under the form of
conditional expectations of functions of model outputs with respect to uncertain
parameters. The goal is to study the mean-squared error of index estimators
based on Monte-Carlo method, to find a bound for it and to exploit this bound
to build accurate estimators.

3.1 Introduction

Sensitivity analysis (SA) provides useful insight into mathematical models.
However, in SA, stochastic models are challenging. Indeed, such models in-
clude two sources of uncertainty: parameter uncertainty and intrinsic random-
ness. This intrinsic randomness is a collection of hidden random variables that
can make challenging the definition of meaningful sensitivity indices and their
efficient estimation.

Several methods have been introduced to deal with stochastic models.
Apart from metamodel-based approach (Étoré et al., 2020; Jimenez et al.,
2017; Fort et al., 2013; Zhu and Sudret, 2021a), usual SA methods for stochas-
tic models may be divided into about three approaches. The first approach,
proposed by Hart et al. (2017), considers random Sobol’-Hoeffding decomposi-
tions (Sobol’, 1993) of stochastic model outputs and defines sensitivity indices
of such models as expectations of the resulting random Sobol’ indices. The
second approach focuses on deterministic quantities of interest (QoIs) such as
conditional expectations or conditional variances (Courcoul et al., 2011; Mazo,
2021). By conditioning with respect to the uncertain parameters, the aim is to
smooth the intrinsic randomness out and hence to deal with quantities under
the form of deterministic functions of the uncertain parameters only, so that SA
methods for deterministic models can be applied. The third approach includes
recently developed methods (Fort et al., 2021; Gamboa et al., 2021; Da Veiga,
2021) that see stochastic output models as deterministic function with values
in probability distribution spaces. Various sensitivity indices are defined on
such spaces in order to measure contributions of uncertain parameters.

For all these approaches, it appears that not only should the model be
evaluated at many points in the input space (it is said that the input space
is explored), but also it should be repeated at each of those explorations to
estimate conditional expectations. In the first approach, these repetitions are
performed when approximating the expectations of the random Sobol’ indices.
In the second and third approaches, model outputs are repeated when esti-
mating the QoIs and the probability distributions, respectively. Therefore, the
larger the number of explorations and the number of repetitions, the more
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accurate the sensitivity index estimators. This leads to large numbers of runs
of the model. However, in practice, models could be complex and a run could
have a high computational cost so that computational issue could rise very
quickly.

Therefore, the study of the choice of a number of explorations and a number
of repetitions under the constraint of a computational cost or that of the pre-
cision of estimations, takes more and more importance beyond the sensitivity
analysis but more globally in the fields which are interested in the stochastic
simulators. It can be mentioned the works of Chen and Zhou (2014, 2017)
which proposes various strategies of sequential design based on the Integrative
Mean Squared Error (IMSE) for stochastic kriging. More recently still with
metamodels based on Gaussian processes, Binois et al. (2018, 2019) explored
different methods for optimal design also using IMSE criteria.

In Mazo (2021), the author studied this problem for estimation of sensi-
tivity indices for stochastic models. In that paper, two QoIs were considered:
the exact model output and its conditional expectation with respect to the
uncertain parameters. Depending on the QoI, two types of Sobol’ indices were
defined and the so-called pick-freeze estimators Gamboa et al. (2016) were
used. Those estimators are based on a double (or nested) Monte-Carlo sam-
pling scheme and require the choice of the number of explorations, n, and the
number of repetitions, m. Such procedure is the so-called Nested Monte Carlo.
To better estimate such indices without increasing the computation cost, Mazo
(2021) supposed that the total number of runs of the model is fixed and then
proposed under such constraint a choice of n and m based on the minimization
of some bound of the so-called mean ranking error (MRE) of the estimators.
This error measures the gap between the ranks of the theoretical indices and
those of the estimators. However, a small MRE does not necessarily imply
that estimations are close to their theoretical values.

Accurate and efficient estimation of Sobol’ indices is a major concern in SA .
This is linked to the problem of accurately estimating expectation of functions
of conditional moments, which is a problem that arises in wider framework
than SA. Many studies have been conducted to address this issue. In global
sensitivity analysis, Da Veiga and Gamboa (2013) addressed the problem with
a semi-parametric estimation approach (see also Da Veiga et al. (2017)) in
the case of deterministic models while Mycek and De Lozzo (2019) proposed
methods based on Multilevel Monte-Carlo. In the case of metamodel based
SA, Janon et al. (2014b); Panin (2021) studied the risk of estimators and
provide error bounds. Regarding stochastic models, Castellan et al. (2020)
discussed the accurate non-parametric estimation of first-order Sobol’ indices
for bounded stochastic models by relying on wavelet-based estimator approach.
More generally, beyond SA, Rainforth et al. (2018) studied the nested Monte
Carlo and its computational cost. Giles and Haji-Ali (2019); Giorgi et al. (2020)
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discussed efficiency and convergence rates of Multilevel nested Monte-Carlo.
In this paper, we consider deterministic QoIs that are under the form of

conditional expectations of some transformations of the stochastic model out-
put with respect to the inputs. This class of QoIs includes the much used
conditional expectation and conditional variance of the stochastic model out-
put with respect to the inputs. We focus on variance-based indices such as
first-order and total Sobol’ indices for inputs or groups of inputs. The estima-
tion of those indices is based on the pick-freeze method by using n explorations
of the input space and m model repetitions. We study mean-squared errors
(MSEs) of sensitivity index estimators and propose tractable upper bounds
that depend on both n and m. Then, under the constraint that n = T 1−η and
m = T η, η ∈ [0, 1), with T → ∞, the bias-variance trade-off is studied using
those upper-bounds and the optimal allocation parameter η is deduced.

The main interest of this work lies in three points. First, up to some mild
assumptions on the model outputs, pick-freeze estimators of first-order and
total Sobol’ indices are shown to converge in quadratic means. (We note that
a byproduct of this result is the convergence in quadratic mean of the “usual”
Sobol’ index estimators for deterministic models.) Second, the scope of this
study is large. It takes into account a large class of QoIs of stochastic model
outputs and it includes two widely-used sensitivity indices. Finally, algorithms
are provided for practical implementation of our results. These algorithms are
expected to give better estimations of Sobol’ indices.

This paper is organized as follows. Section 3.2 presents the general frame-
work of stochastic models and QoI-based sensitivity indices. In Section 3.3,
the MSE of a general class of estimators that contains our sensitivity indices is
considered and its asymptotic behavior presented. Section 3.4 is dedicated to
studying the MSE of some variance-based sensitivity indices. The bias-variance
trade-off is discussed and the optimal allocation for m and n is given here. A
practical procedure is implemented through two algorithms and illustrated on
two toy models in Section 3.5. A conclusion closes the paper.

3.2 Sensitivity index estimators

A stochastic model with inputs X = (X1, . . . , Xp) ∈ Rp and output Y ∈ R is
modeled as a function f of X and some collection of random variables, denoted
by Z, independent of X such that

Y = f (X, Z) . (3.1)

The stochasticity of the model originates from Z since the output of the model
evaluated at an input X = x is a random variable f(x, Z). The distribution of
Z is generally unknown.



3.2. Sensitivity index estimators 67

In the context of SA, a way to deal with stochastic models consists in
carrying out SA for deterministic models given by deterministic QoIs. This
allows to switch from a stochastic model to some deterministic models for
which many SA methods are studied in the literature.

We consider QoIs of the form

Q(X) = E [ϕ(X, Z) | X] , (3.2)

where ϕ(X, Z) is a function of X and Z as a transformation of f . For in-
stance, if ϕ = f then Q(X) is the conditional expectation of the model and if
ϕ(X, Z) = (f(X, Z)− E [f(X, Z) | X])2 then Q(X) is the conditional variance,
two common choices in practice.

If u is a subset of {1, . . . , p}, denote by Xu the group of inputs {Xi, i ∈ u}
and X∼u the group of inputs {Xi, i 6∈ u}. The Sobol’ and total indices of the
input vector Xu with respect to the function Q are defined as

Su =
Var (E [Q(X) | Xu])

Var (Q(X))
(3.3)

Tu = 1− Var (E [Q(X) | X∼u])

Var (Q(X))
= 1− S∼u. (3.4)

The sensitivity index Su (and hence Tu) can be expressed in terms of a
function g linking the components of some parameter vector. Let X̃ be an
independent copy of X, independent of Z. Denote by X̃∼u the subvector of X̃
whose components are those of X̃ not indexed by u. (For instance, if p = 4

and u = {1, 4} then X̃∼u = (X̃2, X̃3).) If θ = (θ1, θ2, θ3) with θ1 = E(Q(X)2),
θ2 = E(Q(X)) and θ3 = E(E [Q(X) | Xu]2) = E(Q(X)Q(X̃∼u,Xu)) =

E(Q(X∼u,Xu)Q(X̃∼u,Xu)) then

Su = g(θ) =
θ3 − θ2

2

θ1 − θ2
2

.

An estimator of Su is built by the method-of-moments (pick-freeze proce-
dure). Let {X(i); i = 1, . . . , n} and {X̃(i); i = 1, . . . , n} be independent Monte
Carlo samples from the law of X. For each i, denote by X

(i)
u the subvector of

X(i) whose components are those of X(i) indexed by u. Likewise, denote by
X

(i)
∼u the subvector of X(i) whose components are those of X(i) not indexed by

u, and denote by X̃
(i)
∼u the subvector of X̃(i) whose components are those of

X̃(i) not indexed by u. An estimator of Su is given by

Ŝu = g(θ̂) =
θ̂3 − θ̂2

2

θ̂1 − θ̂2
2

where
θ̂1 = 1

n

∑n
i=1 Q̂m(X(i))2

θ̂2 = 1
n

∑n
i=1 Q̂m(X(i))

θ̂3 = 1
n

∑n
i=1 Q̂m(X(i))Q̃m(X̃

(i)
∼u,X

(i)
u )

 (3.5)
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and

Q̂m(X(i)) =
1

m

m∑
k=1

ϕ
(
X(i), Z(i,k)

)
Q̃m(X̃(i)

∼u,X
(i)
u ) =

1

m

m∑
k=1

ϕ(X̃(i)
∼u,X

(i)
u , Z̃

(i,k));

here the objects {Z(i,k), Z̃(i,k); k = 1, · · · ,m; i = 1, · · · , n}, are independent
and identically distributed random variables, independent of {X(i), X̃(i); i =

1, . . . , n}, representing the randomness of the user’s model. For more details,
see Mazo (2021).

The estimator Ŝu may be asymptotically biased, depending on the rate at
which m, the number of repetitions, increases with respect to n, the number
of explorations. It was shown in Mazo (2021) that, if m is fixed, then

√
n

(
Ŝu − Su

[
1− E Var(ϕ(X, Z)|X)

E Var(ϕ(X, Z)|X) +mVar E(ϕ(X, Z)|X)

])
converges to a centered normal distribution with some variance σ2

m depending
on m. To get rid of the bias, it is needed that m→∞ such that

√
n/m→ 0, in

which case
√
n(Ŝu − Su) goes to a centered normal distribution with variance

limm→∞ σ
2
m.

The statistical performance of the estimator Ŝu goes hand in hand with
the computation effort one is ready to spend. The computation of Ŝu requires
a number of model evaluations proportional to mn. Given a fixed number of
evaluations—and hence mn is fixed—it is of interest to find the couple (m,n)

that most increases the estimator’s performance. In Mazo (2021), a bound on
an error that penalizes bad rankings of the sensitivity indices S1, . . . , Sp was
minimized, leading to a theoretically-guided choice for m and n. However,
it is more natural to consider the MSE E((Ŝu − Su)2) as the quantity to be
controlled.

3.3 Mean-squared error control for smooth
functions

In this section, we study the MSEs of some estimators and give bounds and a
rate of convergence. The aim is to characterize a class of estimators that include
variance-based sensitivity index estimators and then to define conditions under
which their MSEs admit tractable upper bounds.

For sake of generality, let us consider a convex domain D ⊂ Rq with q ≥ 1.
For each m ∈ N∗, let θ̃(1)

m , · · · θ̃(n)
m be n i.i.d. random vectors whose common
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probability distribution depends only on m. Denote µm = E(θ̃
(1)
m ) and

Σm = E
(

(θ̃
(1)
m − µm)(θ̃

(1)
m − µm)>

)
. Let θ ∈ D and assume that

θ̂(n,m) =
1

n

n∑
i=1

θ̃(i)
m (3.6)

is an estimator of θ. Let bm be the bias of θ̂(n,m). Thus: bm = µm − θ.
For the sake of simplicity, hereafter, θ̂(n,m) is denoted θ̂. If m is fixed then
E(θ̂) = µm 6= θ as soon as bm is non-null. In particular, estimator θ̂ belongs to
the class of Nested Monte-Carlo estimators if for i = 1, · · · , n, θ̃(i)

m are under
the form

θ̃(i)
m = φ

(
1

m

m∑
k=1

η̃(i,k)

)
, (3.7)

where φ is some measurable function with values onD and {η̃(i,k); i = 1, · · · , n; k =

1, · · · ,m} is an array of identically distributed random vectors such that
{η̃(i,k), k = 1, · · · ,m} and {η̃(j,k), k = 1, · · · ,m} are mutually independent
as soon as i 6= j. The MSE of θ̂ is given by E ‖θ̂ − θ‖2 and then, the variance
bias decomposition yields:

E ‖θ̂ − θ‖2 =
1

n
Trace (Σm) + ‖bm‖2. (3.8)

Make the following assumption:

Assumption 3. bm → 0 and Σm → Σ as m→ +∞.

Under Assumption 3, it holds that limn,m→+∞ E ‖θ̂− θ‖2 = 0 and thereby
θ̂ converges in quadratic means to θ. Mazo (2021) showed that Assumption 3
is satisfied by Sobol’ index estimators introduced in Section 2. More generally,
this assumption is fulfilled in the case Nested Monte Carlo estimators provided
that θ = Eφ(η̃), with η̃ the limit (provided it exists) of

∑m
k=1 η̃

(1,k)/m, and
that the function φ in Equation (3.7) has good properties such as boundedness
and smoothness (Giorgi et al., 2020; Rainforth et al., 2018).

The form of the MSE in Equation (3.8) allows to control this error through
the choice of n and m. Indeed, this enables to show convergence, to obtain
convergence rates and to study optimal convergence strategies. For instance,
in the framework of Nested Monte Carlo estimators, Hong and Juneja (2009)
showed that for a real-valued function φ (introduced in (3.7)) at least third
differentiable such that the third derivative is uniformly bounded, the MSE
defined in (3.8) is of order O(1/n+ 1/m2) and they deduced that the optimal
convergence rate is O(T−2/3) if T = mn denotes the computational effort.
Thus, it is useful to have either the mean-squared error or at least an upper
bound of this error under the form in (3.8).
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Now, given a non-constant function g : D → R, assume that θ̂ is mapped
to g(θ̂) so that g(θ̂) converges in probability to g(θ) as n,m→∞. Therefore,
the main concern is to know if, as θ̂, the MSE of g(θ̂), i.e. E (g(θ̂) − g(θ))2

converges to 0, or if it admits an upper bound under the form in (3.8) that
converges to 0 as n,m → ∞. Introducing g makes the study of the related
MSE more challenging than the usual cases one could deal with, especially in
the Nested Monte Carlo estimator framework (Giles, 2018; Giorgi et al., 2020).
The obstacles to obtaining such upper bound for E (g(θ̂)− g(θ))2 are multiple
and involve both θ̂ and g: issues related to boundedness or smoothness of g,
or to the probability distribution of θ̂ and its support, etc. Hence, responses
to the main concern depend generally on both θ̂ and g. For instance, assume
g is linear or more generally g is Lipschitz continuous, then there exists an
constant L such that |g(x′)− g(x)| ≤ L‖x′ − x‖, for all x, x′ ∈ D. Thus:

E
(
g(θ̂)− g(θ)

)2
≤ L2E ‖θ̂ − θ‖2,

and thereby such MSE admits upper bound of the form in (3.8).
However, it can be difficult to get an exact upper bound in this form.

Very often, in practice, the function g does not have good enough properties
to obtain an exact bound. In this case, one could look for an approximate
bound of the form (3.8), i.e. which is the sum of a quantity of the form (3.8)
and a certain quantity negligible when n,m go to infinity. For example, let
g be a twice continuously differentiable such that its Hessian matrix denoted
∇2g is uniformly bounded. Then, up to existence of some moments of θ̂, and
combining Taylor-Lagrange expansion and convexity inequality yields:

E
(
g(θ̂)− g(θ)

)2
≤ 2E

(
∇g(µm)>

(
θ̂ − µm

))2
+ 2 (g(µm)− g(θ))2

+O
(
E‖θ̂ − µm‖4

)
.

Thus, the MSE of g(θ̂) admits an upper bound. In addition, assume that
the following condition is satisfied:

Assumption 4. As n,m→∞, it holds that:

E
(
‖θ̂ − µm‖8

)
(
E
(
∇g (µm)>

(
θ̂ − µm

))2
)2 = o(1).

Under Assumption 4, it appears that:

E
(
g(θ̂)− g(θ)

)2
≤ 2(1 + o(1))E

(
∇g(µm)>

(
θ̂ − µm

))2
+ 2 (g(µm)− g(θ))2

(3.9)
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and therefore the E (g(θ̂)−g(θ))2 has approximately the form in (3.8) as n,m→
∞. Though, the uniform boundedness of ∇2g is a very strong condition. A
way to weaken such a condition consists in having:

sup
λ∈(0,1)

E
(
‖∇2g

(
λθ̂ + (1− λ)µm

)
‖4F
)

= O(1) as n,m→∞, (3.10)

where ‖ · ‖F denotes the Frobenius norm. Under condition in (3.10), the ap-
proximate decomposition (3.9) of the MSE into a sum of variance and squared
bias holds. Therefore, the bias-variance trade-off problem can be likely ad-
dressed more easily since the terms of the upper bound are more tractable.
Also, a well-informed choice for the (n,m) can be likely found to reduce the
MSE.

Relying on Rosenthal inequality (Yuan and Li, 2015) and Marcinkiewicz
–Zygmund inequality (Marcinkiewicz and Zygmund, 1937), Assumption 4 can
be satisfied up to existence of moments of θ̂. However, once again, even the
condition provided in Equation (3.10) is still strong in general since this could
impose a strong constraint on the probability distribution of θ̂ which is gener-
ally unknown. For instance, in the case of Sobol’ index estimators defined in
Section 3.2, condition (3.10) comes down to provide upper bounds for quanti-
ties under the form E[(θ̂1 − θ̂2

2)−α] with α > 0 whereas the probability distri-
bution of θ̂1 − θ̂2

2 is unknown and even the existence of such quantities is not
guaranteed.

Faced with this issue, we propose a weaker condition than the one in Equa-
tion (3.10), which relaxes a little more the constraint on θ̂. The idea is to
introduce a "slight perturbation" gh of the function g so that the condition of
Equation (3.10) holds with g = gh and limh→0 gh(x) = g(x) pointwise. The
advantage of having such a family of functions is that E(gh(θ̂) − gh(θ))2, the
“perturbed MSE”, could be bounded with an approximate upper bound in the
form of Equation (3.9) with g = gh. But the counterpart is that to control the
“true” MSE, we also need to control ∆n,m(h) := E(g(θ̂)− gh(θ̂))2 which mea-
sures the distance between the “true” estimator g(θ̂) and its modified version
gh(θ̂). Thus, the difficulty is to find such a family for which this gap ∆n,m(h)

can also be controlled.
Let us fix u ∈ Rq such that ‖u‖ = 1 and for all x ∈ D, x + hu ∈ D for

any h ∈ (0, 1). Henceforth, we shall focus on the family defined by functions
gh(x) = g(x + hu) which enables to control ∆n,m(h) under Assumption 5 as
n,m→∞.

Assumption 5. There exists a constant C independent of h such that, for all
h ∈ (0, 1):

lim sup
n,m→∞

sup
λ∈[0,1]

E
(
‖∇2g(λθ̂ + (1− λ)µm + hu)‖4F

)
≤ C.
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Introducing translations x 7→ x + hu can be thought as a way to "trans-
port" the original estimator θ̂ to regions of D where control of moments of g(θ̂)

is possible without additional conditions on θ̂. Concretely, the goal of Assump-
tion 5 is to “get away” from certain regions of the parameter space where the
Hessian of g may explode. Notice that the supremum over λ is taken over the
closed interval [0, 1]. The choice of h affects the approximation for the bound,

as shown in Theorem 1. Recall that ∆n,m(h) := E
(
g(θ̂)− g(θ̂ + hu)

)2
and

let Vn,m(h) := E(∇g (µm + hu)> (θ̂−µm))2 and Bm(h) := g (µm + hu)−g(θ).

Theorem 1. Under Assumptions 3, 4 and 5, there exists C̃ > 0 independent
of h such that for every h ∈ (0, 1):

E
(
g(θ̂)− g(θ)

)2
≤ 3 (1 + pn,m(h))

(
∆n,m(h) + Vn,m(h) +Bm(h)2

)
, (3.11)

where lim supn,m→∞ pn,m(h) = 0 and

∆n,m(h) ≤ p̃n,m(h)h2, (3.12)

where lim supn,m→∞ p̃n,m(h) ≤ C̃.

Theorem 1 is the analog of (3.9), except that a term ∆n,m(h) has appeared
to control the gap between g(θ̂+hu) and g(θ̂). The quantity Vn,m(h)+Bm(h)2

can be rewritten to make the bias-variance trade-off appear. Indeed, Vn,m(h) =

n−1∇g(µm + hu)>Σm∇g(µm + hu), which is of order O(n−1) as n,m → ∞,
regardless of h. Moreover, we have Bm(h)2 = ((bm + hu)>∇g(θn,m))2 for
some θn,m lying between θ and θ + bm + hu, and hence Bm(h)2 is bounded
by (‖bm‖ + h2) times some universal constant. Therefore, up to a universal
multiplicative constant, it holds that ∆n,m(h) + Vn,m(h) +Bm(h)2 is bounded
by h2(p̃n,m(h)+1)+1/n+‖bm‖2, where 1/n+‖bm‖2 represents the bias-variance
tradeoff, which is similar to (3.8).

Letting n,m→∞ and then h→ 0 in (3.11), the convergence of the MSE
can be shown, as stated in Corollary 1.

Corollary 1. Under the conditions of Theorem 1, it holds that:

lim
n,m→∞

E
(
g(θ̂)− g(θ)

)2
= 0.

3.4 Application to sensitivity index estima-
tors

This section aims at studying the MSE of estimators of Sobol’ indices intro-
duced in Section 3.2. Let θ̂ = (θ̂1, θ̂2, θ̂3) be as in (3.5) and (3.6), where θ̂(i)

m =
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(θ̂
(i)
m1, θ̂

(i)
m2, θ̂

(i)
m3) = (Q̂m(X(i))2, Q̂m(X(i)), Q̂m(X(i))Q̃m(X̃

(i)
∼u,X

(i)
u ). Recall that

θ1 = E(Q(X)2), θ2 = E(Q(X)), θ3 = E(E [Q(X) | Xu]2) = E(Q(X)Q(X̃∼u,Xu)),
so that
µm = (µm1, µm2, µm3) = (θ1+bm1, θ2+bm2, θ3+bm3) and bm = (bm1, bm2, bm3) =

(EVar [ϕ(X, Z) | X] /m, 0, 0). Recall that the function

g : (x1, x2, x3) 7→ (x3 − x2
2)/(x1 − x2

2) (3.13)

is a twice-continuously differentiable function over its definition domain. But
unfortunately, g is unbounded. The form of such a function makes the study
of the MSE of Monte Carlo based Sobol index estimators almost impossible
unless strong conditions are imposed on the output distribution of the model.
This could explain why until now, to our knowledge, there is almost no study
of the quadratic convergence of such estimators. The approach introduced
in Section 3.3 allows to bypass the unbounded issue and thus, to establish
the quadratic convergence of these estimators and to provide an approximate
bound from which a strategy for optimizing convergence rate of the MSE is
developed. Throughout this section, it is assumed that E

(
Q(X)16

)
< +∞.

3.4.1 Control of the MSE

In order to provide an upper bound for E(g(θ̂)− g(θ))2 as in Theorem 1, it is
necessary to fulfill Assumption 3, 4 and 5. Assumption 3 is trivially satisfied.
Since the estimator θ̂ is an empirical mean of i.i.d. random vectors, we can
show that Assumption 4 is satisfied—see Theorem 2.

Theorem 2. In the context of Section 3.4 with g given by (3.13), Assumption
4 is satisfied.

To check Assumption 5, we need to find a direction u that satisfies the
required properties.

Theorem 3. If u = (1, 0, 0), then, under the conditions of Theorem 1, As-
sumption 5 holds. Therefore, there is a constant C̄ independent of h such that,
for every h ∈ (0, 1),

E
(
g(θ̂)− g(θ)

)2
≤ p̄n,m(h)

((
1

n
+

(
E (Var [ϕ(X, Z) | X])

m

)2
)

+ h2p̄′n,m(h)

)
,

where the supremum limits of p̄n,m(h) and p̄′n,m(h) as n,m→∞ are less than
C̄.

Theorem 3 provides a bound for the MSE of the pick-freeze estimator g(θ̂)

of Sobol’ indices. This bound allows an asymptotic control of the MSE in a
general context. The interest of this result can be summarized in the following
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points. First, the asymptotic bound of the MSE depends on tractable quanti-
ties, which enables analysis. Second, this result is also valid in the deterministic
framework, in other words, it is a general control of the MSE of pick-freeze es-
timators of Sobol’ indices in both the stochastic and the deterministic case
where m = 1 and E (Var [ϕ(X, Z) | X]) = 0. Finally, to our knowledge, this is
the first result of this kind in sensitivity analysis. A direct consequence of the
Theorem is the convergence in quadratic mean of the studied estimators. This
is stated in Corollary 2.

Corollary 2. Under the conditions of Theorem 2, we have limn,m→∞ E(g(θ̂)−
g(θ))2 = 0.

Corollary 2 immediately follows from Corollary 1, Theorem 2 and Theo-
rem 3.

3.4.2 Asymptotically optimal bias-variance tradeoff
between repetitions and explorations

The Monte-Carlo estimation of sensitivity indices based on pick-freeze method
requires a total number of model evaluations under the form: nm × (Cp + 1)

where Cp is a constant that depends on p and the function ϕ only. Let T ∈ N∗

and η ∈ [0, 1] such that m = T η and n = T 1−η and hence T = mn. So η allows
to control the ratio between the number of exploration n and the number of
repetitions m. It was shown in Corollary 2 and Theorem 3 that the MSE
converges to zero as n,m → ∞ and that the bias-variance tradeoff (BVT) is
of order T η−1 + T−2η.

Proposition 2. As T →∞, the BVT convergence rate toward zero is optimal
for η = 1/3.

Thus, choosing m of order T 1/3 and n of order T 2/3 ensures that the BVT
converges at a rate at least T 2/3 when T →∞.

Let us notice that the MSE cannot vanish at a faster rate than T 2/3 in
general, as Proposition 3 shows.

Proposition 3. If m is of order T 1/3 and n is of order T 2/3 then, under the
constraint mn = T , there exist a random vector X and a stochastic model f
such that limT 2/3E(g(θ̂)− g(θ))2 > 0 as T →∞.

3.5 Practical algorithms
In Section 3.4, it turned out that the number of repetitions m should be of
order T 1/3 under the constraint nm = T in order to guarantee that the BVT
converges at optimal rate.
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However, an asymptotic order is not a specific value. To guide the choice
of m in practice, notice that m should be linked to the intrinsic randomness
of ϕ(X, Z), since the probability distribution of Q(X) depends on that of Z.
Therefore, we expect that the greater the intrinsic noise is, the larger m should
be. Thus, in this section, the goal consists in proposing a value of m that takes
into account the importance of the intrinsic randomness.

Under the constraint nm = T , the optimal convergence rate of the BVT is
obtained when nopt is of order T 2/3 andmopt is of order T 1/3. Letmopt = κT 1/3

where κ > 0. Then, nopt = κ−1T 2/3. Thus:

BVT = κT−2/3 +
EVar(ϕ(X, Z))2

κ2
T−2/3.

Coefficient κ can be chosen such that κT−2/3 + EVar(ϕ(X,Z))2

κ2
T−2/3 is the

smallest over κ > 0. The minimum of such a quantity is reached at κopt =(
2 EVar(ϕ(X, Z))2

)1/3. Therefore:
mopt =

(
2 E (Var [ϕ(X, Z) | X])2

)1/3
T 1/3 (3.14)

=

(
1√
2
E
([
ϕ (X, Z)− ϕ

(
X, Z̃

)]2
))2/3

T 1/3.

Therefore, the number of repetitions suggested above ensures that the BVT
converges at optimal rate and then it provides a good variance-bias trade-off
so as not to have an imbalance in the rate of convergence of the variance and
the bias that would reduce the global rate. Furthermore, it is noticeable that
mopt depends on E(ϕ(X, Z)−ϕ(X, Z̃))2. Relying on the law of total variance:

Var (ϕ(X, Z)) = Var (E [ϕ(X, Z) | X]) + E (Var [ϕ(X, Z) | X]) ,

it follows that E(ϕ(X, Z)−ϕ(X, Z̃))2 quantifies the part of the total variance
Var (ϕ(X, Z)) that is not attributed to the inputs X; and so, that measures
the influence of the intrinsic noise of the stochastic model ϕ(X, Z). Thus,
mopt(T ) takes into account the intensity of the intrinsic noise of the stochastic
model so that the higher the intrinsic noise impact, the higher the number
of repetitions should be, and therefore sufficient repetitions of the model are
provided in order to reduce the bias bm.

Finally, it also appears that mopt(T ) depends on both T and the function
ϕ. The dependence with respect to T guarantees that mopt(T ) grows as T gets
large. Besides, the dependence with respect to ϕ means that even if mopt(T )

remains proportional to T 1/3, it also varies with respect to the chosen QoI of
the stochastic model f .
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3.5.1 Algorithms

This section is devoted to the practical implementation of the bias-variance
trade-off strategy when performing SA for some QoI of a stochastic model.
Recall that f is a stochastic model as in (3.1) and we are interested in carrying
out SA of a QoI under the form (3.2), that is, Q(X) = E [ϕ (X, Z) | X] in order
to measure the impact of some groups of inputs ui ⊂ {1, . . . , p}, i = 1, . . . , l.
In other words, we are interested in estimating Su1 , . . . , Sul . We shall use
at most T × (l + 1) evaluations of ϕ(X, Z). Under the constraint nm = T ,
the number of repetitions mopt found in 3.14 depends on ρ := E(ϕ(X, Z) −
ϕ(X, Z̃))2. However, in practice, C is often unknown. So, before sensitivity
index estimation, C needs to be estimated.

Consider r0 i.i.d. samples of X, denoted by X(1), · · · ,X(r0), and generate
two outputs at each sample X(i):

(
ϕ(X(1), Z(1,1)), ϕ(X(1), Z(1,2))

)
, · · · ,(

ϕ(X(r0), Z(r0,1)), ϕ(X(r0), Z(r0,2))
)
. Thus:

ρ̂ =
1

r0

r0∑
i=1

(
ϕ(X(i), Z(i,1))− ϕ(X(i), Z(i,2))

)2

is a consistent and unbiased estimator of ρ. It appears that the estimation
of C requires 2r0 evaluations of the model ϕ(X, Z). However, the maximal
number of evaluations is T × (l + 1). So, for index estimation procedure, at
most T × (l + 1)− 2r0 model evaluations are allowed.

Therefore, our strategy consists in leveraging the model outputs used to
estimate ρ and then plugging and completing those outputs in order to compute
sensitivity index estimates. This strategy relies on two algorithms: Algorithm
6 and Algorithm 7. Algorithm 6 enables to generate complementary outputs
in addition to outputs already available after estimation of ρ. This allows to
satisfy the constraint of the maximal number of model evaluations T × (l+ 1).
This part helps to optimize the whole estimation procedure by using the model
outputs already generated. Regarding Algorithm 7, it effectively estimates
indices in three steps based on pick-freeze procedure. First, it estimates ρ
and thereby compute mopt and nopt = T/mopt. Then, in the second step, by
relying on Algorithm 6, complementary outputs required for estimations are
generated. In the final step, sensitivity index estimates are computed with
respect to inputs or groups of inputs specified by the user.

Algorithm 7 requires: r0, T, ϕ,w and input samples. The transformation ϕ
of the stochastic model is supplied as well as w the set of inputs or groups of
inputs whose indices are estimated. In practice, r0, T and c must be chosen.
We recommend to take r0 with respect to T so as not to waste a large part
of the budget only in the first stage of Algorithm 7. Indeed, the estimator ρ̂
has enough good statistical properties for efficient estimation of ρ with not too
large value of r0. Regarding T , it follows T should be taken as large as possible
depending on the computational cost of a run of both ϕ and the original model
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Algorithm 6 Completing model evaluations
Inputs: n,m, ϕ, l,

(
X(1), · · · ,X(T )

)
Data: (ϕ(X(1),Z(1,1)),ϕ(X(1),Z(1,2))),··· ,(ϕ(X(r0),Z(r0,1)),ϕ(X(r0),Z(r0,2)))

1: if n ≥ r0 then
2: if m ≥ 2 then
3: for i = 1, · · · , r0 do
4: for k = 3, · · · ,m do
5: Compute ϕ

(
X(i), Z(i,k)

)
6: end for
7: end for
8: for i = r0 + 1, · · · , n do
9: for k = 1, · · · ,m do

10: Compute ϕ
(
X(i), Z(i,k)

)
11: end for
12: end for
13: end if
14: if m = 1 then
15: for i = r0 + 1, · · · , n− r0 − dr0/(l + 1)e do
16: Compute ϕ

(
X(i), Z(i,1)

)
17: end for
18: end if
19: end if
20: if n < r0 then
21: if m > 2 + 2d1/(l + 1) ∗ (−1 + r0/n)e then
22: for i = 1, · · · , n do
23: for k = 3, · · · ,m− 2d1/(l + 1) ∗ (−1 + r0/n)e do
24: Compute ϕ

(
X(i), Z(i,k)

)
25: end for
26: end for
27: end if
28: if m ≤ 2 + 2d1/(l + 1) ∗ (−1 + r0/n)e then
29: Exit: Budget already consumed
30: end if
31: end if
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Algorithm 7 Estimation of Sobol’ indices

Inputs: r0, T, ϕ, w = {u1, · · · , ul},
(
X(1), · · · ,X(T )

)
,
(
X̃(1), · · · , X̃(T )

)
1: for i = 1, · · · , r0 do
2: for k = 1, 2 do
3: Compute ϕ

(
X(i), Z(i,k)

)
4: end for
5: end for
6: Compute ρ̂← 1

r0

∑r0
s=1

(
ϕ
(
X(i), Z(i,1)

)
− ϕ

(
X(i), Z(i,2)

))2

7: Compute m̂opt according to Equation (3.14)
8: n̂opt ←

⌊
T/m̂opt

⌋
9: Run Algorithm 6 with m = m̂opt, n = n̂opt to complete samples
ϕ
(
X(1), Z(1,1)

)
, · · · , ϕ

(
X(r0), Z(r0,2)

)
.

10: for j = 1, · · · , l do
11: for i = 1, · · · , n̂opt do
12: for k = 1, · · · , m̂opt do
13: Compute ϕ

(
(X̃

(i)
∼uj ,X

(i)
uj ), Z̃

(i,k)
)

14: end for
15: end for
16: end for
17: Compute sensitivity index estimates
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f . Furthermore, to ensure that the MSE has a precision ε ∈ (0, 1) with h2 � ε,
T must be roughly chosen larger than ε−3/2 since the BVT is O

(
T−2/3

)
. This

provides approximations for practical choice of T .

3.5.2 Illustrations

This subsection presents the performance of the estimators of first-order and
total indices computed by Algorithm 7 in the case of two toy stochastic models
for which analytical values of indices are known: a linear model f(X1, X2, Z) =

1 + X1 + 2X2 + σZ with σ > 0 and a stochastic version of the Ishigami
function f ′(X1, X2, X3, Z) = sinX1 + a sin2X2 + bX4

3 sinX1Z
2 with a, b > 0

(Ishigami and Homma, 1990). For each value of T = nm, the estimators of
Algorithm 7 are compared with two other arbitrary choices, namely, (n,m) =

(T/5, 5) and (n,m) = (T 1/2, T 1/2). For each choice of the couple (n,m),
N = 100 replications of estimations are carried out so that the global MSE∑p

j=1 E(g(θ̂j,n,m)− g(θj))
2 is estimated by using samples

p∑
j=1

(
g(θ̂

(l)
j,n,m)− g(θj)

)2
, l = 1, · · · , 100 (3.15)

where g(θ̂
(l)
j,n,m) is the lth replication of estimator g(θ̂j,n,m) of the jth input

sensitivity index g(θj) and p is the number of inputs.

The two additional choices above represent two different situations. The
choice (n,m) = (T/5, 5) presents a case where the number of repetitions is
constant and independent of T . This illustrates the situation where the bias
does not get reduced so that it disturbs estimations no matter how large T is.
Regarding (n,m) = (T 1/2, T 1/2), it shows that the case where the variance is
not sufficiently reduced since there are not enough input samples. So, both
choices enable to highlight the trade-off strategy implemented in Algorithm 7
and to confirm its performance regarding accuracy.

For illustrations, the product T = mn is chosen in the set T ∈ {103, 104, · · · ,
107}. The tuning parameter r0 is set to 10. Thus, 2r0 = 20 model evaluations
are used to get the estimates ρ̂, n̂opt, m̂opt in the first part of Algorithm 7, and
then T −2r0 ∈ {103−20, 104−20, · · · , 107−20} model evaluations are used to
get the sensitivity index estimators with n = n̂opt and m = m̂opt. For both toy
stochastic models, the QoI considered is the conditional expectation so that
ϕ = f or ϕ = f ′ depending on the model. For each value of T , the boxplots
of the global MSE samples given by (3.15) for each of the three choices are
plotted.
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Linear model

Let f(X1, X2, Z) = 1+X1 +2X2 +σZ where σ > 0 and X1, X2 and Z are i.i.d.
under the standard normal distribution. Such model includes two uncertain
parameters X1 and X2 with respective first-order Sobol’ indices S1 = 1/5 and
S2 = 4/5. Two values of σ are considered: σ = 1 and σ = 5.

Figure 3.1 shows that the estimations obtained with Algorithm 7 are more
accurate as T gets large because both bias and variance are efficiently reduced.
Boxplots highlight that the strategies m = 5 and m = T 1/2 suffer respectively
from bias and variance. Notice that in the case of the linear model under
study, E(Var(f(X1, X2, Z) | (X1, X2))) = 2σ2; so the bias depends on σ.
This explains why in the case σ = 5 (Figure 3.1), even for large value of
T , estimations resulting of the choice m = 5 seem not to decrease but are
rather concentrated around about 0.18 which is very large compared to what
is obtained in the two other strategies. Focusing on strategies m = mopt and
m = T 1/2, a zoom of the plot of Figure 3.1 for the case σ = 5, given in Figure
3.A.1 in Appendix 3.A, enables to compare them and then to confirm that the
strategy implemented in Algorithm 7 provide more accurate estimations as T
increases.

A stochastic Ishigami function

Let f ′(X1, X2, X3, Z) = sinX1 + a sin2X2 + bX4
3 sinX1Z

2 such that with
a, b > 0, X1, X2, X3 and Z are independent with X1, X2, X3 distributed under
U ([−π, π]) and Z ∼ N (0, 1). The model f ′ is a modified version of bench-
mark function known as the Ishigami function in SA. For this model, first-
order Sobol’ indices of inputs X1, X2, and X3 for the QoI E(f ′(X1, X2, X3, Z) |

X1, X2, X3) are respectively given by S1 = 1
2

(
1+ bπ4

5

)2
a2

8
+ bπ4

5
+ b2π8

18
+ 1

2

, S2 =
a2

8
a2

8
+ bπ4

5
+ b2π8

18
+ 1

2

and S3 = 0. Parameters a and b are chosen with respect to Sobol’ and Levitan
(1999): a = 7, b = 0.05 and Marrel et al. (2009): a = 7, b = 0.1.

Figure 3.2 also reveals that estimations obtained by using Algorithm 7 are
more accurate for large T . Besides, remark that the term bX4

3 sinX1 that
multiplies the intrinsic noise term Z2 includes b so that |bX4

3 sinX1| ≤ bπ4.
Then, b allows to control the magnitude of the intrinsic noise term of the
model. This explains why estimations in the case b = 0.1 present much more
variability compared to the case b = 0.05. Nonetheless, in both cases the
strategy implemented in Algorithm 7 has better results.

Overall, Figures 3.1 and 3.2 lead to the same conclusion: the strategy
of Algorithm 7 provides better estimations and its MSE estimates decrease
faster and are generally smaller compared to those of the two other estimators.
In the particular case of m = 5, it is noticeable that errors do not decrease
when T gets larger but rather they are quite constant. This is explained by
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Figure 3.1 – Boxplots of global MSE estimates for the linear model for different
values of T and σ. Three strategies of choice of m are compared: m = 5 (in
red), m = mopt given by the trade-off strategy of Algorithm 7 (in green) and
m = T 1/2 (in blue).
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Figure 3.2 – Boxplots of global MSE estimates for the stochastic version of
Ishigami function for different values of T and b. Three strategies of choice of
m are compared: m = 5 (in red), m = mopt given by the trade-off strategy of
Algorithm 7 (in green) and m = T 1/2 (in blue).
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the fact that the bias is constant since m is constant. This illustrates the
importance of varying the number of repetition when the total computational
budget grows. Regarding the case m = T 1/2, it turns out that MSEs are not
minimal compared to the case m = mopt due the variance part of those errors.
Indeed, with m = T 1/2, the variance part of the BVT converges to 0 at rate
T 1/2 while the squared-bias converges at rate T . Then, the global convergence
rate of the BVT is T 1/2 that is slower than the rate T 2/3 of estimators built
by Algorithm 7. These two cases clearly illustrate the bias-variance trade-off
problem in Sobol’ index estimation for stochastic models and they allow to
show that the strategy proposed in this paper performs well.

3.6 Conclusion

This paper focuses on variance-based SA of stochastic models relying on the
approach that consists in performing SA on some deterministic QoIs. Specifi-
cally, it deals with QoIs under the form of conditional expectations with respect
to the uncertain parameters of some transformation of the original stochastic
model output. For such deterministic quantities, estimation of Sobol’ indices
through Monte-Carlo methods (pick-freeze procedure) requires not only to
sample the input space but also to estimate conditional expectations by making
repetitions. Therefore, the resulting estimators depend on both the number
of explorations n and the number of repetitions m. This study pointed out
that the MSE of such estimators can be bounded by tractable quantities that
depend on both n and m. This had two implications. First, the bounds enable
to ensure that the MSE converges to zero when both n,m → +∞. Straight-
forwardly, this establishes that the estimators of Sobol’ indices converge in
quadratic mean. Secondly, A strategy can be developed for controlling the
bias-variance trade-off that arises when the product nm is fixed. Indeed, the
bias and the variance decrease respectively when m → +∞ and n → +∞.
Under the constraint nm = T and T → +∞, the numbers m and n should
be chosen such that both the variance and the bias vanish at the fastest rate
possible. This problem is discussed and this study showed that taking m of
order T 1/3 and n of order T 2/3 guarantees that quantity BVT representing
the bias-variance tradeoff in the MSE converges at rate at least T 2/3. Further-
more, the minimization of some upper bounds of the MSE under the constraint
nm = T provides a choice of m and n that adapts to the intrinsic randomness
of the stochastic model. This strategy is implemented through two algorithms
dedicated to Sobol’ index estimation based on the pick-freeze procedure. The
comparison of this strategy to two others was carried out using two toy stochas-
tic models. It turned out that the strategy proposed in this paper performs
well.

For further works, it could be interesting to couple the iterative estimation
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approach of Gilquin et al. (2021) to the algorithms implemented in this study
in order to build an adaptive version which could perform estimation with
respect to a given precision. Furthermore, it would be interesting to compare
the optimal BVT convergence rate of sensitivity index estimators based on
basic Monte Carlo sampling with the rates one could get with other approaches,
such as multilevel Monte Carlo methods (Mycek and De Lozzo (2019); Giles
and Haji-Ali (2019)). Finally, although a convergence rate for the BVT has
been found, that of the whole MSE remains an open problem.

Appendix
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Figure 3.A.1 – Zoom of boxplots of Figure 3.1 .

3.B Proof of Theorem 1

Using convexity inequality, for all h ∈ (0, 1) and m ≥ 1, it holds:

E
(
g
(
θ̂
)
− g (θ)

)2
≤ 3E

(
g
(
θ̂
)
− g

(
θ̂ + hu

))2
+ 3E

(
g
(
θ̂ + hu

)
− g (µm + hu)

)2
+

3 (g (µm + hu)− g (θ))2 .
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Applying a Taylor-Lagrange expansion to g at points θ̂ + hu and µm + hu

yields:

E
(
g
(
θ̂ + hu

)
− g (µm + hu)

)2

= E
(
∇g (µm + hu)>

(
θ̂ − µm

)
+

1

2

(
θ̂ − µm

)>
∇2g

(
λθ̂ + (1− λ)µm + hu

)(
θ̂ − µm

))2

≤ E
(
∇g (µm + hu)>

(
θ̂ − µm

))2

+
1

4
E
((

θ̂ − µm
)>
∇2g

(
λθ̂ + (1− λ)µm + hu

)(
θ̂ − µm

))2

+

√
E
(
∇g (µm + hu)>

(
θ̂ − µm

))2

×

√
E
((

θ̂ − µm
)>
∇2g

(
λθ̂ + (1− λ)µm + hu

)(
θ̂ − µm

))2

for some λ ∈ (0, 1). Thus:

E
(
g
(
θ̂ + hu

)
− g (µm + hu)

)2

E
(
∇g (µm + hu)>

(
θ̂ − µm

))2

≤ 1 +
1

4

E
((

θ̂ − µm
)>
∇2g

(
λθ̂ + (1− λ)µm + hu

)(
θ̂ − µm

))2

E
(
∇g (µm + hu)>

(
θ̂ − µm

))2

+

√√√√√√√E
((

θ̂ − µm
)>
∇2g

(
λθ̂ + (1− λ)µm + hu

)(
θ̂ − µm

))2

E
(
∇g (µm + hu)>

(
θ̂ − µm

))2 .

Let φ : x 7→ x/4 +
√
x and

pn,m(h) := φ

 sup
λ∈[0,1]

E
((

θ̂ − µm
)>
∇2g

(
λθ̂ + (1− λ)µm + hu

)(
θ̂ − µm

))2

E
(
∇g (µm + hu)>

(
θ̂ − µm

))2

 .

(3.16)
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then the ratio E
(
g
(
θ̂ + hu

)
− g (µm + hu)

)2
/E
(
∇g (µm + hu)>

(
θ̂ − µm

))2

is bounded by 1 + pn,m(h). Therefore:

E
(
g
(
θ̂ + hu

)
− g (µm + hu)

)2
=

E
(
g
(
θ̂ + hu

)
− g (µm + hu)

)2

E
(
∇g (µm + hu)>

(
θ̂ − µm

))2

× E
(
∇g (µm + hu)>

(
θ̂ − µm

))2

≤ (1 + pn,m(h))Vn,m(h).

Now, let us show that pn,m(h) → 0 as n,m → ∞. For this purpose, it is

sufficient to have that supλ∈[0,1]

E
(
(θ̂−µm)

>∇2g(λθ̂+(1−λ)µm+hu)(θ̂−µm)
)2

E(∇g(µm+hu)>(θ̂−µm))
2 = o(1)

as n,m→ +∞. A first use of Cauchy-Schwarz inequality yields that:

((
θ̂ − µm

)>
∇2g

(
λθ̂ + (1− λ)µm + hu

)(
θ̂ − µm

))2

≤ ‖∇2g
(
λθ̂ + (1− λ)µm + hu

)
‖2F

× ‖θ̂ − µm‖4.

By a second use of Cauchy-Schwarz inequality, the argument of φ in Equation
(3.16) is bounded by

√
sup
λ∈[0,1]

E
(
‖∇2g

(
λθ̂ + (1− λ)µm + hu

)
‖4F
)
×

√
E
(
‖θ̂ − µm‖8

)
E
(
∇g (µm + hu)>

(
θ̂ − µm

))2 .

As n,m → ∞, the first term of the product above is bounded by a constant
independent of h, uniformly in λ, by Assumption 5. The second term is given
by: √

E
(
‖θ̂ − µm‖8

)
E
(
∇g (µm + hu)>

(
θ̂ − µm

))2 =

√
E
(
‖θ̂ − µm‖8

)
E
(
∇g (µm)>

(
θ̂ − µm

))2

×
E
(
∇g (µm)>

(
θ̂ − µm

))2

E
(
∇g (µm + hu)>

(
θ̂ − µm

))2

≤

√
E
(
‖θ̂ − µm‖8

)
E
(
∇g (µm)>

(
θ̂ − µm

))2

× sup
h∈(0,1)

E
(
∇g (µm)>

(
θ̂ − µm

))2

E
(
∇g (µm + hu)>

(
θ̂ − µm

))2 .

(3.17)
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The first term in the right-hand side in (3.17) is of order o(1) by Assumption
4 and does not depend on h. Moreover, since ∇g is continuous, we have

suph∈(0,1)
E(∇g(µm)>(θ̂−µm))

2

E(∇g(µm+hu)>(θ̂−µm))
2 = O(1) as n,m→∞. Therefore, the quantity

in (3.16) is of order φ(o(1)) = o(1), and hence

E
(
g(θ̂)− g (θ)

)2
≤ 3 (1 + pn,m(h))

(
∆n,m(h) + Vn,m(h) +Bm(h)2

)
,

where limn,m→+∞ pn,m(h) = 0.

Let us focus on ∆n,m(h) = E
(
g(θ̂)− g(θ̂ + hu)

)2
. For this purpose, let

h ∈ (0, 1). Using convexity inequality, the Taylor-Lagrange expansion provides
that:

g(θ̂)− g(θ̂ + hu) = h∇g(θ̂ + hu)>u +
1

2
h2u>∇2g(θ̂ + hλu)u,

E
(
g(θ̂)− g(θ̂ + hu)

)2
≤ 2h2

(
E
(
∇g(θ̂ + hu)>u

)2
+
h2

4
E
(
u>∇2g(θ̂ + hλu)u

)2
)
,

for some λ ∈ (0, 1). It appears that:

E
(
u>∇2g(θ̂ + hλu)u

)2
≤ ‖u‖4E

(
‖∇2g(θ̂ + hλu)‖2F

)
.

Since hλ ∈ (0, 1), the right-hand side is bounded by a constant independent

of h and λ, as n,m→∞ (by Assumption 5). Regarding E
(
∇g(θ̂ + hu)>u

)2
,

an additional Taylor-Lagrange expansion of ∇g(θ̂ + hu)>u yields:

∇g(θ̂+hu)>u = ∇g(µm +hu)>u+
(
θ̂ − µm

)>
∇2g(λθ̂+ (1−λ)µm +hu)u

E
(
∇g(θ̂ + hu)>u

)2
≤
(
∇g(µm + hu)>u

)2
+ ‖u‖2

√
E
(
‖θ̂ − µm‖4

)
×√

sup
λ∈[0,1]

E
(
‖∇2g(λθ̂ + (1− λ)µm + hu)‖4F

)
Then:

E
(
g(θ̂)− g(θ̂ + hu)

)2
≤ p̃n,m(h)h2,

where:

p̃n,m(h) = 2

√ sup
λ∈[0,1]

E
(
‖∇2g(λθ̂ + (1− λ)µm + hu)‖4F

)
+
(
∇g(µm + hu)>u

)2
+

√
E
(
‖θ̂ − µm‖4

)
×
√

sup
λ∈[0,1]

E
(
‖∇2g(λθ̂ + (1− λ)µm + hu)‖4F

) .

Note that:

lim sup
n,m→∞

p̃n,m(h) ≤ 2

(
√
C + sup

h∈(0,1)
‖∇g(θ + hu)‖2

)
=: C̃ < +∞.
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3.C Proof of Theorem 2

To prove Theorem 2, the following result is required.

Lemma 3.C.1. Let X(1), · · · ,X(n) be n i.i.d. copies of X and Z(1,1), · · · , Z(n,m)

be n×m i.i.d. copies of Z such that (X(1), · · · ,X(n)) and (Z(1,1), · · · , Z(n,m))

are independent. Then, for all q ∈ N: m−qE
(∑m

k=1 ϕ(X(1), Z(1,k))
)q is poly-

nomial in m−1 of degree q − 1 with constant E (E [ϕ(X, Z) | X])q.

First, let us bound the numerator of the ratio in Assumption 4; we have

E
(
‖θ̂ − µm‖8

)
≤ 27

3∑
j=1

E
(
‖θ̂j − µmj‖8

)
,

where θ̂j and µmj denote the jth component of θ̂ and µm, respectively. By
Marcinkiewicz and Zygmund (1937) and Jensen inequalities, we have for every
j that

E
(
‖θ̂j − µmj‖8

)
≤ B8

n4
E
(∣∣∣θ̂(1)

mj − µmj
∣∣∣8) ,

where here B8 is a universal constant.
The case j = 2 is the simplest. Notice that µm2 does not depend on m,

then the expansion of E(|Q̂m(X(1)) − µm2|8) through Newton formula yields
terms of the form µkm2E(Q̂8−k

m ), k = 0, . . . , 8. Using Lemma 3.C.1 provides
that those terms are polynomial in m−1.

Let us deal with the case j = 1. Expanding the power 8 through Newton’s
formula and bounding its terms yields

E
(∣∣∣Q̂m(X(1))2 − µm1

∣∣∣8) ≤ (µ8
m1 ∨ 1)

(
8

4

)(
E
(
Q̂m(X(1))16

)
+ 1
)
. (3.18)

Denoting ϕ(X(1), Z(1,k)) = Y (1,k), we have

E
(∣∣∣Q̂m(X(1))

∣∣∣16
)

= E

∣∣∣∣∣ 1

m

m∑
k=1

Y (1,k)

∣∣∣∣∣
16


=
1

m16

m∑
k1,...,k16=1

E
(
Y (1,k1) · · ·Y (1,k16)

)
.

The expectation in the right-hand side is symmetric in k1, . . . , k16, and hence,
from Lemma 3.C.1, the sum is a polynomial in m of degree 16. Therefore, the
right-hand side in (3.18) is bounded uniformly in m.
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Let us deal with the case j = 3. Proceeding as in (3.18), we have

E
(∣∣∣Q̂m(X(1))Q̃m(X̃(1)

∼u,X
(1)
u )− µm3

∣∣∣8)
≤ (µ8

m3 ∨ 1)

(
8

4

)(
E
(∣∣∣Q̂m(X(1))Q̃m(X̃(1)

∼u,X
(1)
u )
∣∣∣8)+ 1

)
≤ (µ8

m3 ∨ 1)

(
8

4

)(
E
(

1

2
Q̂m(X(1))16 +

1

2
Q̃m(X̃(1)

∼u,X
(1)
u )16

)
+ 1

)
,

and this is also bounded uniformly in m. (Again by Lemma 3.C.1.)
We now deal with the root of the denominator of the ratio in Assumption 4.

We have

E
(
∇g (µm)T

(
θ̂ − µm

))2

=
3∑

j1,j2=1

∇g(µm)j1∇g(µm)j2E(θ̂ − µm)j1(θ̂ − µm)j2

=
1

n

3∑
j1,j2=1

∇g(µm)j1∇g(µm)j2

(
Eθ̂(1)

mj1
θ̂

(1)
mj2
− µmj1µmj2

)
. (3.19)

The infimum of the sum in (3.19) is reached for some m and greater than
zero. Therefore, the numerator in Assumption 4 is less than 1/n4 times a
constant not depending on m or n and the denominator is equal to 1/n2 times
a quantity greater than zero. Therefore, the supremum over m of the ratio in
Assumption 4 is of order O(n−2). The proof is complete.

Proof of Lemma 3.C.1

It holds that:

E

(
1

m

m∑
k=1

ϕ(X(1), Z(1,k))

)q
=

1

mq
E

 m∑
k1=1

· · ·
m∑

kq=1

ϕ(X(1), Z(1,k1)) · · ·ϕ(X(1), Z(1,kq))


=

1

mq

m∑
k1=1

· · ·
m∑

kq=1

E
(
ϕ(X(1), Z(1,k1)) · · ·ϕ(X(1), Z(1,kq))

)
.

Denote by λ : {1, . . . ,m}q → N the map which with each k := (k1, . . . , kq)

associates the number of distinct indices among k1, . . . , kq. If 1 ≤ l ≤ q then
denote by ρl : λ−1(l) → {1, . . . , q}l the map which with each k ∈ λ−1(l)

associates (r1, . . . , rl), where ri = |{j : kj = kji}| for every i = 1, . . . , l and
kj1 , . . . , kjl are the distinct indices found among k1, . . . , kq. Obviously, r1 +
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· · ·+ rl = q. We have

m∑
k1=1

· · ·
m∑

kq=1

E
(
ϕ(X(1), Z(1,k1)) · · ·ϕ(X(1), Z(1,kq))

)
=

m∑
k1=1

· · ·
m∑

kq=1

f(k)

=

q∑
l=1

 ∑
(r1,...,rl)∈{1,...,q}l:r1+···+rl=q

 ∑
k∈λ−1(l):ρl(k)=(r1,...,rl)

f(k)

 . (3.20)

Now, since

E
(
ϕ(X(1), Z(1,k1)) · · ·ϕ(X(1), Z(1,kq))

)
= E

(
ϕ(X(1), Z(1,kj1 ))r1 · · ·ϕ(X(1), Z(1,kjl ))rl

)
= E

(
l∏

s=1

E
[
ϕ(X(1), Z(1,kjs ))rs | X(1)

])

is symmetric in r1, . . . , rl, it holds that

∑
(r1,...,rl)∈{1,...,q}l:r1+···+rl=q

 ∑
k∈λ−1(l):ρl(k)=(r1,...,rl)

f(k)


= c(l, (r1, . . . , rl),m)E

(
l∏

s=1

E
[
ϕ(X(1), Z(1,kjs ))rs | X(1)

])

where

c(l, (r1, . . . , rl),m) =

(
q

r1

)(
q − r1

r2

)
· · ·
(
q − r1 − · · · − rl−1

rl

)
m(m− 1) · · · (m− l + 1). (3.21)

Notice that the expression in the right-hand side of (3.21) is invariant by per-
mutation of r1, . . . , rl. Therefore, the sum (3.20) is a polynomial inm of degree
q with constant zero and hence E

(
1
m

∑m
k=1 ϕ(X(1), Z(1,k)

)q is a polynomial
in 1

m of degree q − 1 with constant limm→+∞ E
(

1
m

∑m
k=1 ϕ(X(1), Z(1,k)

)q
=

E (E [ϕ(X, Z) | X])q.

3.D Proof of Theorem 3

The following lemma will be needed:
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Lemma 3.D.1. For all α > 0 and all h ∈ (0, 1),

lim
n,m→+∞

E

 1(
h+ θ̂1 − θ̂2

2

)α
 =

1

(h+ Var (Q(X)))α
≤ Var (Q(X))−α . (3.22)

Note that the function g is infinitely differentiable over its domain D and
then its gradient is given by:

∇g (θ1, θ2, θ3) =

(
− θ3 − θ2

2

(θ1 − θ2
2)2

2θ2(θ3 − θ1)

(θ1 − θ2
2)2

,
1

θ1 − θ2
2

)>
.

Furthermore, the hessian matrix of g yields:

∇2g(θ1, θ2, θ3) =


2(θ3−θ22)

(θ1−θ22)3
2θ2(θ1−2θ3+θ22)

(θ1−θ22)3
−1

(θ1−θ22)2

2θ2(θ1−2θ3+θ22)

(θ1−θ22)3
2(θ3−θ1)(θ1+3θ22)

(θ1−θ22)3
2θ2

(θ1−θ22)2

−1
(θ1−θ22)2

2θ2
(θ1−θ22)2

0

 .

For any (θ1, θ2, θ3) ∈ D, the matrix∇2g(θ1, θ2, θ3) is under the form∇2g(θ1, θ2, θ3) =

B(θ1, θ2, θ3)/(θ1 − θ2
2)3 where B(θ1, θ2, θ3) is the matrix:

B(θ1, θ2, θ3) =

 2(θ3 − θ2
2) 2θ2(θ1 − 2θ3 + θ2

2) −(θ1 − θ2
2)

2θ2(θ1 − 2θ3 + θ2
2) 2(θ3 − θ1)(θ1 + 3θ2

2) 2θ2(θ1 − θ2
2)

−(θ1 − θ2
2) 2θ2(θ1 − θ2

2) 0

 .

Notice that B(θ1, θ2, θ3) includes only multivariate polynomials of variables
θ1, θ2 and θ3.

Let us check Assumption 5. Let λ ∈ [0, 1] and h ∈ (0, 1). We have

∇2g
(
λθ̂ + (1− λ)µm + hu

)
=

B
(
λθ̂ + (1− λ)µm + hu

)
(
h+ λθ̂1 + (1− λ)µm1 −

(
λθ̂2 + (1− λ)µm2

)2
)3 .

E
(
‖∇2g

(
λθ̂ + (1− λ)µm + hu

)
‖4F
)

= E

 ‖B
(
λθ̂ + (1− λ)µm + hu

)
‖4F(

h+ λθ̂1 + (1− λ)µm1 −
(
λθ̂2 + (1− λ)µm2

)2
)12



≤

√√√√√√√√E

 1(
h+ λθ̂1 + (1− λ)µm1 −

(
λθ̂2 + (1− λ)µm2

)2
)24


×
√

E
(
‖B
(
λθ̂ + (1− λ)µm + hu

)
‖8F
)



92 CHAPTER 3. ASYMPTOTIC CONTROL OF THE MSE

∇2g
(
λθ̂ + (1− λ)µm + hu

)
≤

√√√√√√E

 1(
h+ λ

(
θ̂1 − θ̂2

2

)
+ (1− λ)(µm1 − µ2

m1)
)24


×
√

E
(
‖B
(
λθ̂ + (1− λ)µm + hu

)
‖8F
)

(convexity)

≤

√√√√√√E

 λ(
h+

(
θ̂1 − θ̂2

2

))24

+
1− λ

(h+ µm1 − µ2
m1)24

×
√

E
(
‖B
(
λθ̂ + (1− λ)µm + hu

)
‖8F
)

(convexity)

≤

√√√√√√E

 1(
h+

(
θ̂1 − θ̂2

2

))24

+
1

(h+ µm1 − µ2
m1)24

×
√

sup
λ∈[0,1]

E
(
‖B
(
λθ̂ + (1− λ)µm + hu

)
‖8F
)

≤

√√√√√√E

 1(
h+

(
θ̂1 − θ̂2

2

))24

+ sup
h∈(0,1)

1

(h+ µm1 − µ2
m1)24

×
√

sup
h∈(0,1)

sup
λ∈[0,1]

E
(
‖B
(
λθ̂ + (1− λ)µm + hu

)
‖8F
)
.

One should remark that suph∈(0,1)
1

(h+µm1−µ2m1)24
≤ 1

(Var(E[ϕ(X,Z)|X]))24
<

+∞. Moreover, the matrix B is composed with polynomials of three variables.
Since E

(
Q(X)16

)
< +∞ then by using Lemma 3.C.1 and by continuity of poly-

nomial functions, it yields that suph∈(0,1) supλ∈[0,1] E
(
‖B
(
λθ̂ + (1− λ)µm + hu

)
‖8F
)

is bounded. Finally, by relying on Lemma 3.D.1, E(h+θ̂1−θ̂2
2)−24 is a bounded

by 1
(Var(E[ϕ(X,Z)|X]))24

as n,m→ +∞. Therefore, Assumption 5 is satisfied.

Proof of Lemma 3.D.1

Let h ∈ (0, 1) be fixed. The function βh : x 7→ 1/(h + x)α is continuously
differentiable such that its first derivative is uniformly bounded on R+ by
1/hα+1 then it is Lipschitz. Therefore:

E
(
βh(θ̂1 − θ̂2

2)− βh(θ1 − θ2
2)
)2
≤ 1

h2α+2
E
(
θ̂1 − θ̂2

2 − θ1 + θ2
2

)2

≤ 2

h2α+2

(
Var(θ̂1) + Var(θ̂2

2) +
(
E(θ̂2

2)− θ2
2

)2
)
,
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using convexity inequality. Based on Marcinkiewicz-Zygmund inequality (see
Theorem 3.H.1) and Lemma 3.C.1, it follows that

lim
n,m→∞

(
(Var(θ̂1) + Var(θ̂2

2) +
(
E(θ̂2

2)− θ2
2

)2
)

= 0.

Straightforwardly:

lim
n,m→∞

E

(
1

(h+ (θ̂1 − θ̂2
2)α

)
=

1

(h+ θ1 − θ2
2)α
≤ 1

Var(Q(X))α
.

3.E Proof of Corollary 1

Relying on Theorem 1 , it holds that:

lim sup
n,m→∞

E
(
g(θ̂)− g(θ)

)2
≤ 3 lim sup

n,m→∞
(1 + pn,m(h))

(
∆n,m(h) + Vn,m(h) +Bm(h)2

)
≤ 3

(
C̃h2 + (g(θ + hu)− g(θ))2

)
.

Notice that the MSE is independent of h. Moreover, C̃ is also independent of
h. Thus, relying on the continuity of g and taking the limit as h → 0 yields
that:

lim sup
n,m→∞

E
(
g(θ̂)− g(θ)

)2
= 0.

Hence limn,m→∞ E
(
g(θ̂)− g(θ)

)2
= 0.

3.F Proof of Proposition 2

The problem of optimal rate comes down to find βmax = max{β ≥ 0 |
T βBVT = O(1)}. Using BVT = O(T η−1+T−2η) yields T βBVT = O(T β+η−1+

T β−2η). Thus, to obtain condition T βBVT = O(1), it suffices that:{
β + η − 1 ≤ 0

β − 2η ≤ 0
(3.23)

The maximal value of β that satisfies the system (3.23) is βmax = 2/3. This
maximal value corresponds to to η = 1/3. Therefore, m and n are respectively
of order T 1/3 and T 2/3.
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3.G Proof of Proposition 3

Choose f , ϕ and a law for X such that ϕ(X, Z) ∈ (a, b) almost surely, where
0 < a < b. Thus, there exists C > 0 such that θ̂1 − θ̂2

2 ≤ 1
C . Hence:

E
(
g(θ̂)− g(θ)

)2
≥ C E

(
θ̂3 − θ̂2

2 − g(θ)(θ̂1 − θ̂2
2

)2
(3.24)

Let: 
ε̂1 = θ̂1 − θ1

ε̂2 = θ̂2
2 − θ2

2

ε̂3 = θ̂3 − θ3

Using the definition of g, Equation (3.24) leads to:

E
(
g(θ̂)− g(θ)

)2
≥ C E (−g(θ)ε̂1 − (1− g(θ))ε̂2 + ε̂3)2 . (3.25)

Tedious but standard calculations show that

E (ε̂1)2 =
P1( 1

m)

n
+

(
cste

m

)2

E (ε̂2ε̂1) =
P

(1)
2 ( 1

m)

n2
+
P

(2)
2 ( 1

m)

n

E (ε̂3ε̂1) =
P3( 1

m)

n

E ((1− g(θ))ε̂2 − ε̂3)2 =
P

(1)
4 ( 1

m)

n2
+
P

(2)
4 ( 1

m)

n

where P (j)
i ( 1

m), i = 1, . . . , 4, j = 1, 2, are polynomials in 1
m of degree at most

3. Hence, letting R( 1
m) be a polynomial in 1

m of degree at most 3, the MSE
satisfies:

E
(
g(θ̂)− g(θ)

)2
≥
R( 1

m)

n
+

(
cste

m

)2

+O(n−2).

Since the lower bound has rate T 2/3 with m = T 1/3 and n = T 2/3, it follows
that, under the constraint nm = T and for T →∞, the rate of the MSE is at
least T 2/3.

3.H The Marcinkiewicz-Zygmund inequality

Theorem 3.H.1 (Marcinkiewicz and Zygmund (1937)). Let U1, · · · , Un be
i.i.d. random variables such that E(U1) = 0 and E|U1|q < +∞, where 1 ≤ q <
+∞. There exist Aq and Bq depending only on q such that:

AqE

( n∑
i=1

|Ui|2
) q

2

 ≤ E

(∣∣∣∣∣
n∑
i=1

Ui

∣∣∣∣∣
q)
≤ BqE

( n∑
i=1

|Ui|2
) q

2
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Furthermore, there exists Cq independent from n such that:

E

(∣∣∣∣∣ 1n
n∑
i=1

Ui

∣∣∣∣∣
q)
≤ Cq

n
q
2

. (3.26)
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This chapter discusses the specific context of stochastic models in epidemiol-
ogy. It is devoted to compartmental epidemic models based on continuous-time
Markov chains. The pursued goal is to evaluate the contributions of both uncer-
tain parameters and intrinsic randomness. In order to do so, an approach that
allows to separate the intrinsic randomness from uncertain parameters using
Gillespie algorithms is presented.

4.1 Introduction

The increasing use of mathematical modeling leads to an enhanced complexity
of computational models. These models can be seen as mappings which take
inputs and return random or deterministic outputs. If the output is random,
two evaluations of the model at the same input generate different realizations:
the model is said to be stochastic. Otherwise, the model is deterministic.

Stochastic models are often used in epidemiology. Indeed, in order to study
and control the spread of infectious diseases in populations (humans, animals
or plants), stochastic compartmental models enable to describe epidemic dy-
namics by incorporating randomness associated with biological and contact
events. They consist in dividing the population into disjoint groups with re-
spect to the different health statuses that are considered. The groups form
the compartments of the model. As health statuses of individuals change over
time, there are transitions between compartments. These transitions occur
at random times and depend on numerous uncertain parameters (also called
the input hereafter). Even by fixing uncertain parameters, the number of
individuals in each compartment varies randomly over time. Therefore, the
corresponding process is stochastic and under some modeling assumptions it
is a continuous-time Markov chain (CTMC).

Very often, transition parameters of CTMC are poorly known. In order
to better characterize and predict epidemic spread and assess corresponding
control strategies, it is important to identify key parameters of the infection
spread accounting parameter uncertainty. For this purpose, global sensitivity
analysis (GSA) can be used. GSA enables to assess influence of uncertain pa-
rameters on the model output. However, performing GSA for stochastic model
output is challenging. Unlike deterministic models, stochastic models include
two sources of uncertainty: parameter uncertainty and intrinsic randomness.
Indeed, intrinsic randomness originates from latent random variables that are
generally assimilated to noise when performing sensitivity analysis. So far,
several approaches have been introduced.

The pragmatic approach for this purpose consists in performing GSA on
both conditional expectation and conditional variance of the model output
with respect to uncertain parameters. Both quantities are averaged quantities
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over the intrinsic randomness of the stochastic model. In practice, this comes
down to estimate Sobol’ indices (Sobol’, 1993) for two deterministic models.
This approach is often used in practice in various applications, for instance in:
Courcoul et al. (2011) to identify key parameters of a model describing the
spread of an animal disease in a cattle herd; Rimbaud et al. (2018) for a model
describing the spatio-temporal spread of plant pathogens; Richard et al. (2021)
for a SARS-CoV-2 spread model,
Cristancho Fajardo et al. (2021) for a theoretical metapopulation model. How-
ever, this approach can suffer from inconsistent conclusions. Since GSA is per-
formed separately on conditional mean and conditional variance, a parameter
can appear to be important for a quantity and not for the other one. One can
check this on the toy example given by Y = X1 +X2Z with X1, X2, Z i.i.d. un-
der standard normal distribution such that X1, X2 are the inputs and Z stands
for the intrinsic randomness variable. In this example, the first-order indices
of X1 and X2 of the conditional expectation are respectively SX1 = 1 and
SX2 = 0 whereas those of the conditional variance are SX1 = 0 and SX2 = 1.
Moreover, in Mazo (2021) it is shown that the Monte-Carlo estimator of first
order Sobol’ indices for conditional mean with respect to input is biased. So,
estimation accuracy issues arise.

In addition, conditional expectations with respect to inputs require an av-
eraging over the intrinsic randomness variable since the law of the latter is
unknown. This induces a loss of information as this averaging affects inputs
that interact with intrinsic randomness. In order to avoid this loss, Hart et al.
(2017) introduced new sensitivity indices. For this purpose, Sobol’-Hoeffding
decomposition is interpreted as a random decomposition, where the random-
ness is due to the intrinsic noise; corresponding Sobol’ indices can also be
considered as random. The sensitivity indices proposed by Hart et al. (2017)
are then defined as expectations of the random Sobol’ indices. However, they
do not fully reflect interactions between intrinsic randomness and uncertain
parameters.

Recently, new methods have been developed for stochastic models. They
rely on a paradigm shift in the way of dealing with intrinsic stochasticity. The
stochastic model is interpreted as a deterministic model with values in the set
of probability distributions on the original output space. Fort et al. (2021)
and Da Veiga (2021) consider this approach and define new sensitivity indices
well-suited to deterministic models with output valued in a set of probability
distributions. This approach has the advantage of setting a framework in which
stochastic output models are deterministic but it does not allow to assess the
interactions between the intrinsic randomness and uncertain parameters.

Furthermore, it should be noted that even though stochastic models are
less studied than deterministic ones, not all types of stochastic models have
received the same attention from the sensitivity analysis community. The most
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studied stochastic models are based on stochastic differential equation (see, e.g.
Le Maître and Knio (2015), Jimenez et al. (2017), Étoré et al. (2020)). For
these types of models, methods based on Polynomial Chaos Expansion meta-
modeling have been proposed. Conversely, there are few GSA methods for
models based on jump processes (Poisson processes, Markov chains, piecewise-
deterministic jump processes). Generally, for these models, black-box or meta-
model based GSA are proposed (e.g. Marrel et al. (2012), Zhu and Sudret
(2021a)).

In this paper, we focus on continuous-time Markov based models. We de-
velop an approach for performing GSA for such models. This approach consists
first in representing the model outputs as deterministic functions of a random
vector of uncertain parameters and intrinsic randomness with known proba-
bility distribution and then in exploiting the resulting representation for GSA.
This enables to put model output under a deterministic form so that contribu-
tion of uncertain parameters and intrinsic randomness as well as interaction of
both can be assessed. Concretely, we study the continuous-time Markov chain
given by the stochastic process that counts over time the number of individuals
in each compartment of epidemic compartmental models. We rely on Gillespie
Stochastic Simulation Algorithm (Gillespie, 1977) allowing exact simulation
of Markov chains from which we derive a new representation. Furthermore,
we include a second representation, the random time change introduced by
(Kurtz, 1982) and studied in Navarro Jimenez et al. (2016) so as to achieve
comparison of GSA results between the two representations. We apply the two
approaches to a SARS-CoV-2 spread model.

The paper is organized as follows. In Section 4.2 we set the framework
of stochastic models and associated representations. The definition of Sobol’
indices is reminded and dependence of GSA results on the choice of the rep-
resentation is discussed. Section 4.3 is dedicated to the description of repre-
sentations of continuous-time Markov chains. For this purpose, we describe
compartmental models and we discuss two different representations: Gillespie
and Kurtz. In Section 4.4, we present the application of our approach to a
SARS-CoV-2 spread model. This section includes a description of the model,
the GSA results and comparison elements between the results obtained with
the two different representations of the model introduced in Section 4.3.

4.2 The general approach

This section is devoted to introducing (Subsection 4.2.2) the concept of stochas-
tic model representation under a deterministic form. Under such a form, GSA
methods for deterministic models can be applied to perform sensitivity anal-
ysis. For this, the definition of the so-called Sobol’ indices is briefly reminded
in Subsection 4.2.1 in the context of deterministic models with scalar or func-
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tional outputs. In Subsection 4.2.3, we discuss the question of the dependence
of GSA results to the choice of the representation of the stochastic model.

4.2.1 Global sensitivity analysis for deterministic func-
tions

Let us consider a deterministic model g with input X = (X1, · · · , Xm) and
output Y = g (X) so that E

[
‖g (X) ‖2

]
< +∞ and X1, · · · , Xm are mutu-

ally independent. For such a model, the definition of first-order and total
Sobol’ indices (Homma and Saltelli, 1996) is reminded according to two frame-
works: a scalar output Y = g (X) ∈ R and a functional output g (X) =

(q(t,X); t ∈ {t0, · · · , T}) for which dynamical and aggregated Sobol’ indices
are introduced.

In scalar case, first-order and total Sobol’ indices (Sobol’, 1993) associated
to each input Xj , j = 1, · · · ,m are defined as:

SXj =
Var (E [g (X) | Xj ])

Var (g (X))
,

STXj = 1− Var (E [g (X) | X1, · · · , Xj−1, Xj+1, · · · , Xm])

Var (g (X))
.

In the functional case, we focus on two types of indices: dynamical Sobol’
indices and aggregated Sobol’ indices. Considering each random variable q(t,X),
sensitivity indices such as first-order Sobol’ indices and total Sobol’ indices can
be obtained as in scalar case for each time t as E

[
q(t,X)2

]
is finite. Regarding

aggregated Sobol’ indices, note that output g(X) is multidimensional so that
according to Lamboni et al. (2011) and Gamboa et al. (2014), first-order and
total Sobol’ indices associated to each input Xj , j = 1, · · · ,m are respectively
given by:

GSIXj =
Trace [Var (E [g (X) | Xj ])]

Trace [Var (g (X))]
,

GSITXj = 1− Trace [Var (E [g (X) | X1, · · · , Xj−1, Xj+1, · · · , Xm])]

Trace [Var (g (X))]
,

where Var (E [g (X) | Xj ]) and Var (g (X)) are the variance-covariance matrices
of the random vectors E [g (X) | Xj ] and g(X), respectively.

4.2.2 Deterministic representations of stochastic mod-
els

In the following, a stochastic model g is defined as a random function taking
θ ∈ Θ ⊂ Rp as input and producing an output g(θ) which is a random variable
with values in a set Y. If f : Θ × Z −→ Y is a deterministic function and Z
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is a random element valued in a set Z such that (X, g (X)) and (X, f (X, Z))

are identically distributed, then the couple (f, Z) is said to be a deterministic
representation of the stochastic model g. An example of stochastic model with
two representations is provided in Example 6.

Example 6 (Toy example). Let U ∼ U ([0, 1]) independent of (X, Z, Z1, Z2) ∼
N (0R4 , Id4). Consider the stochastic model g with input X and output g(X) =

X+Z. This model can be represented by using f(X, Z1, Z2) = X+ 1√
2

(Z1 + Z2)

or f ′(X, U) = X+ Φ−1(U), where Φ is the cumulative distribution function of
the standard normal distribution.

The function f is not necessarily explicit. It can correspond to an algo-
rithm. Proposition 4 (see Appendix 4.B for the proof) provides a sufficient
condition for a couple (f, Z) to be a representation of a stochastic model g.

Proposition 4. Assume that X and Z are independent. Moreover, assume
that for all θ ∈ Θ, g(θ) and X are independent and the probability distributions
of g(θ) and f(θ, Z) are identical. Then (f, Z) is a deterministic representation
of the stochastic model g.

Representing stochastic models under deterministic form is useful in GSA.
If both the probability distribution of Z and the function f are known, then the
stochastic model becomes a deterministic model with inputs (X, Z). Hence,
all the standard methods of GSA such as those presented in Subsection 4.2.1
can be applied. Therefore, contribution of Z and its interaction with uncertain
parameters can be assessed.

However, as already discussed (see Example 6), a stochastic model may
admit several representations. Indeed, the way to simulate a random vari-
able is not unique, leading to different stochastic simulators. Considering
two distinct representations (f, Z) and (f ′, Z ′) of the same stochastic model
necessarily yields that the joint probability distributions of (X, f(X, Z)) and
(X, f ′(X, Z ′)) are identical. However, the intrinsic randomness elements Z and
Z ′ and functions f and f ′ may differ from one representation to the other. A
natural question is then whether GSA results depend on the chosen represen-
tation. The answer is yes; this point is discussed in Subsection 4.2.3.

4.2.3 Dependence of global sensitivity analysis on
model representation

In Subsection 4.2.2, it appears that representation always preserves the prob-
ability distribution of (X, g(X)). Our aim in this section is to prove that the
results of GSA depends on the choice of representation.

Let us consider (f, Z) and (f ′, Z ′) two distinct representations of the stochas-
tic model g with input X = (X1, · · · , Xm) and output g(X). By definition,



4.2. Deterministic representations 103

(X, g(X)) ∼ (X, f(X, Z)) ∼ (X, f ′(X, Z ′)). If u is a subset of {1, · · · ,m},
then:
E [f(X, Z) | Xu] = E [f ′(X, Z ′) | Xu] almost surely with Xu = {Xj , j ∈ u}
(see Mazo (2021)). So, it yields:

Var (E [f(X, Z) | Xu])

Var (f(X, Z))
=

Var (E [f ′(X, Z ′) | Xu])

Var (f ′(X, Z ′))
.

It implies that closed Sobol’ indices associated to Xu, u ⊆ {1, · · · ,m} are
representation-free, i.e. they do not depend on the chosen representation.
A straightforward consequence is the invariance of first-order Sobol’ indices
associated to each Xj , j = 1, · · · ,m, and of the total Sobol’ index associated
to Z with respect to the choice of the representation.

However, E [f(X, Z) | (Xu, Z)] and E [f ′(X, Z ′) | (Xu, Z
′)] may have dif-

ferent probability distributions. Indeed, since (f, Z) 6= (f ′, Z ′), the way each
function f or f ′ combines its relative intrinsic randomness variable with in-
put X to generate outputs is different. So, differences can appear on some
quantities such as conditional expectations with respect to a group of random
variables that includes the intrinsic randomness variable. This is illustrated in
Example 7.

Example 7. Let X be a random variable independent of Z and Z ′ where Z
and Z ′ are i.i.d. under N (0, 1). Define two functions: f(X,Z) = XZ and
f ′(X,Z ′) = X2Z ′. If X is distributed such that P (X = −1) = P (X = 1) = 1

2

then (X, f(X,Z)) ∼ (X, f ′(X,Z ′)). So (f, Z) and (f ′, Z ′) represent the same
stochastic model but:

E [f(X,Z) | Z] = 0 E
[
f ′(X,Z ′) | Z ′

]
= Z ′.

First-order Sobol’ indices of intrinsic randomness in the two representations

are given by: SZ(f) :=
Var (E [f(X,Z) | Z])

Var (f(X,Z))
= 0 while SZ(f ′) :=

Var (E [f ′(X,Z ′) | Z ′])
Var (f ′(X,Z))

= 1. And total Sobol’ indices of X in the two represen-

tations are different: STX(f) = 1 − SZ(f) = 1 and STX(f ′) = 1 − SZ(f ′) = 0.
Consequently, first-order Sobol’ index associated to intrinsic randomness de-
pends on the choice of the representation.

Via a counter-example (see Example 7) and theoretical elements, we showed
that GSA results depend on the choice of the representation. This point is
illustrated in Section 4.4 in the context of GSA of continuous-time Markov
chain based models, which are the models of interest in this paper.
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4.3 Deterministic representations of CTMC
stochastic compartmental models

In this section, we discuss two different representations for CTMC stochastic
compartmental models. The section is organized as follows. In Subsection
4.3.1, we provide a description of the CTMC under study by using graph for-
malism to represent compartmental models. In Subsection 4.3.2, we present
the representation detailed in Navarro Jimenez et al. (2016) and then we intro-
duce a new representation based on Gillespie Stochastic Simulation Algorithm
(SSA).

4.3.1 CTMC stochastic compartmental models

Consider a closed population that includes N individuals (i.e. N remains
constant over time). Assume that an epidemic outbreaks within this popula-
tion. Individuals can be susceptible or at various stages of infections. So, at
each time, each individual is in a certain health status. Then, individuals are
grouped according to their health status. The resulting groups form a par-
tition (compartment). Let V be the set of compartments. As health status
of each individual can change over time, transitions can take place between
compartments. A transition always involves two different compartments, say
α, β ∈ V such that α 6= β. A pair of compartments (α, β) between which
transitions are possible defines a type of transition occurring in the direction
α → β. So, the pair (α, β) forms an arrow. An individual can move from a
compartment α to another β only if there is an arrow from α to β. To each
arrow is associated a vector uα,β ∈ {−1, 0,+1}cardV whose components are
zero except at the components corresponding to α and β which are equal to
−1 and +1 respectively. Denote E the set of arrows and nE its cardinal. The
couple G = (V,E) is a directed graph with vertices V and edges E.

The intensities of transitions between compartments depend on the spe-
cific parameters θ of the epidemic. As θ is generally unknown, let Θ ⊂ Rd

be the set of all possible parameters θ. We are interested in the dynam-
ics of the number of individuals in each compartment over time, which are
stochastic since transitions occur at random times. Let W θ

α(t) denote the
number of individuals in compartment α at time t and suppose that the initial
state ξ0 ∈ {0, · · · , N}card V of the process W θ :=

{ (
W θ
α (t)

)
α∈V ; t ≥ 0

}
is

known. Assume that for each θ ∈ Θ, the stochastic process W θ is a homo-
geneous continuous-time Markov chain with state space E defined as the the
smallest subset of {0, · · · , N}cardV that contains all the vectors of the form
ξ0 +

∑n
i=1 uα(i),β(i) where n ∈ N and

(
α(i), β(i)

)
∈ E for all i = 1, · · · , n. The

generator Qθ ofW θ is characterized by nonnegative rate functions gα,β defined
by:
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gα,β(θ, ξ) = limε→0
1
εP
(
W θ(s+ ε) = ξ + uα,β |W θ(s) = ξ

)
for ξ ∈ E and s ≥ 0

so that the element of the generator at the row correspoding to ξ ∈ E and col-
umn corresponding to ξ′ ∈ E is given by:

Qθ(ξ, ξ′) =


gα,β(θ, ξ) if ξ′ = ξ + uα,β

−
∑

(α′,β′)∈E gα′,β′(θ, ξ) if ξ′ = ξ

0 otherwise.

Every transition ξ → ξ + uα,β of type (α, β) ∈ E occurs at rate gα,β(θ, ξ).

Example 8. Let us consider the classical SIR model:

S I R

β
N
WIWS γIWI

There are three compartments V = {S, I,R} and two types of transitions:
infection (S, I) and removal (I,R) so that E = {(S, I), (I,R)}. Infection is
characterized by transition vector uS,I = (−1,+1, 0) and rate function gS,I =
β
NWIWS. Removal has transition vector uI,R = (0,−1,+1) and rate function
gI,R = γIWI .

Commonly, Gillespie direct method is used to simulate continuous-time
Markov chains. Algorithm 8 provides instructions intended to simulating paths
of the process W θ for a given θ ∈ Θ.

Algorithm 8 Gillespie SSA (direct method)
Inputs: θ

Require: ξ0, T, {gα(j),β(j) ,uα(j),β(j) ; j = 1, · · · , nE}
1: t← 0, W (t)← ξ0

2: while t < T do
3: λ←

∑nE
j=1 gα(j),β(j) (θ,W (t))

4: Draw τ with exponential distribution with mean 1/λ
5: for j = 1 · · ·nE do
6: pj ← gα(j),β(j) (W (t), θ) /λ
7: end for
8: Draw U with standard uniform distribution
9: Pick l ∈ {1, · · · , nE} with distribution (p1, · · · , pnE) using U

10: W (t+ τ)← W (t) + uα(l),β(l)

11: t← t+ τ
12: end while



106 CHAPTER 4. EXPLOITING DETERMINISTIC ALGORITHMS

4.3.2 Deterministic representations

Assume that the random vector X models the parameter uncertainty. Then,
consider the stochastic model (X,WX). For simplicity, let denote WX by
W. We seek deterministic representations (f, Z) of (X,W), i.e. such that the
probability distribution of Z is known. For this aim, thanks to Proposition
4, it is sufficient to find Z independent of X and f such that: for all θ ∈ Θ,
W θ ∼ f(·, θ, Z) = {f(t, θ, Z); t ∈ [0, T ]}. In the following, we discuss two
representations of (X,W). We present the random-time change representation
studied in Le Maître et al. (2015) and Navarro Jimenez et al. (2016) and
introduce the new representation based on Gillespie algorithm.

4.3.2.1 Random time change representation

The random time change representation is based on the random time change
decomposition of the process W θ for each θ ∈ Θ. This decomposition has
been introduced by Ethier and Kurtz (1986). Consider the vector ZK =

(Zα,β)(α,β)∈E of independent unit-rate Poisson processes Zα,β(·). Kurtz (1982)
showed that there exists a function fK satisfying

fK(t, θ, ZK) = ξ0 +
∑

(α,β)∈E

Zα,β

(∫ t

0
gα,β

(
θ, fK(s, θ, zK)

)
ds

)
uα,β,

which defines a continuous-time Markov chain with initial state ξ0 and genera-
tor Qθ. So, fK(·, θ, ZK) ∼W θ for all θ ∈ Θ. In addition, ZK does not depend
on Θ. By construction, X and ZK are independent. Hence (fK , Z

K) defines
a representation of (X,W).

For each (α, β) ∈ E, Zα,β stands for the intrinsic noise of the reaction
or type of transition (α, β). So, ZK includes intrinsic noise of each reaction
channel or type of transition. Since the Poisson processes Zα,β, (α, β) ∈ E that
compose ZK are mutually independent, then this representation enables to as-
sess contribution of intrinsic noise of each reaction channel or type of transition
as well as that of the whole intrinsic randomness ZK . Le Maître et al. (2015)
and Navarro Jimenez et al. (2016) used this representation to perform GSA for
chemical reaction network models in order to estimate contribution of uncer-
tain parameters and reaction channel intrinsic noises. In practice, simulation
of this representation relies on the Modified Next Reaction Method (MNRM)
developed by Anderson (2007) and provided in Algorithm 9 (Navarro Jimenez
et al., 2016).



4.3. Deterministic representations 107

Algorithm 9 Modified Next Reaction Method
Inputs: θ

Require: ξ0, T, {gα(j),β(j) ,uα(j),β(j) ; j = 1, · · · , nE}
1: for j = 1 · · ·nE do
2: Draw rj from RGj

3: tj ← 0, t+j ← − log(rj)
4: end for
5: t← 0, W (t)← ξ0

6: while t < T do
7: for j = 1 · · ·nE do
8: Evaluate aj = gα(j),β(j) (θ,W (t)) and dtj =

t+j −tj
aj

9: end for
10: s← argminjdtj
11: W (t+ dts)← W (t) + uα(s),β(s)

12: t← t+ dts
13: for j = 1 · · ·nE do
14: tj ← tj + aj · dts
15: end for
16: Get rs from RGs and set t+s ← t+s − log(rs)
17: end while

4.3.2.2 Gillespie representation

Gillespie SSA is widely used to simulate Markov chains. Especially, in epi-
demiology, many CTMC model simulators are based on this algorithm. Both
Gillespie SSA and the Modified Next Reaction Method generate statistically
exact paths of CTMC including W θ: they are stochastically equivalent. How-
ever, representations of (X,W) derived from these two algorithms can lead to
different sensitivity analysis results corresponding to different information as
the interpretation of intrinsic as noise is not the same for both representations.
In the following, we introduce a representation of (X,W) based on Gillespie
SSA.

Gillespie SSA simulates two processes: the jump process that provides the
jump times of W θ and the embedded chain that describes successive states
of W θ. Given two independent sequences of i.i.d. standard uniform variables
U1 = (U1

1 , U
1
2 , · · · ) and U2 = (U2

1 , U
2
2 , · · · ), assume that the jump process is

simulated from U1 and the embedded chain from U2. In practice, U1 and
U2 are respectively assimilated to two numbers RG1 and RG2 which are used
as a seed for the random number generator so that setting seed to a value
enables to stream random numbers. The resulting algorithm that is detailed
in Algorithm 10 is a modification of the Gillespie SSA provided in Algorithm
8:



108 CHAPTER 4. EXPLOITING DETERMINISTIC ALGORITHMS

Algorithm 10
Inputs: θ, Z = (RG1, RG2)

Require: ξ0, T, {gα(j),β(j) ,uα(j),β(j) ; j = 1, · · · , nE}
1: t← 0, W (t)← ξ0, i← 1
2: while t < T do
3: for k = 1 · · · 2 do
4: Pick Uk

i from RGk

5: end for
6: λ←

∑nE
j=1 gα(j),β(j) (θ,W (t))

7: t∗ ← − log(U1
i )/λ

8: for j = 1 · · ·nE do
9: pj ← gα(j),β(j) (W (t), θ) /λ

10: end for
11: Pick l such that

∑l−1
j=1 pj ≤ U2

i <
∑l

j=1 pj
12: W (t+ t∗)← W (t) + uα(l),β(l)

13: t← t+ t∗

14: i← i+ 1
15: end while

Let ZG be the vector
(
U1,U2

)
. If fG

(
t, θ, ZG

)
denotes the output of

Algorithm 10 at time t for input (θ, ZG), then the following result holds:

Proposition 5. Denote L ([0, 1]) the space of sequences on [0, 1]. The func-
tion:

fG : R+ ×Θ×L ([0, 1])2 −→ E
(t, θ, zG) 7−→ fG(t, θ, zG)

is such that the continuous-time Markov chains W θ and fG(·, θ, ZG) :={
fG
(
t, θ, ZG

)
; t ≥ 0

}
have the same finite-dimensional distributions.

The proof of Proposition 5 is detailed in Appendix 4.B. Note that ZG does
not depend on θ so that ZG and X are independent. Therefore, Propositions 4
and 5 ensure that (fG, Z

G) is a representation of (X,W). The random vector
ZG =

(
U1,U2

)
stands for the intrinsic randomness variable. ZG includes two

intrinsic noises U1 and U2 that correspond to intrinsic noises of the jump time
process and the embedded discrete chain.

Algorithm 10 aggregates all the types of transition processes to generate the
sequence of jump times and the discrete chain. So, intrinsic noise associated
to each type of transition (α, β) ∈ E cannot be identified with this algorithm.
Therefore, it is not possible to assess contribution of intrinsic noises of type
of transition processes. To overcome this insufficiency, we can rely on the first
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reaction method studied by Gillespie (1977) to build a representation allowing
to separate the intrinsic noises associated to each type of transition processes.

For this purpose, let ZG be the random vector (Uα,β, (α, β) ∈ E) where
each Uα,β is a sequence of i.i.d. standard uniform variables and assume that
each component of ZG is identified to a number RGj with j = 1, · · · , nE . A
modification of Gillespie first reaction method algorithm in a similar way as
Gillespie direct method yields Algorithm 11:

Algorithm 11
Inputs: θ, Z = (RG1, · · · , RGnE)

Require: ξ0, T, θ, {gα(j),β(j) ,uα(j),β(j) ; j = 1, · · · , nE}
1: t← 0, W (t)← ξ0, i← 1
2: while t < T do
3: for j = 1 · · ·nE do
4: Pick U i

α(j),β(j) from RGj

5: Evaluate dtj =
− log

(
U i
α(j),β(j)

)
g
α(j),β(j)

(θ,W (t))

6: end for
7: end while
8: l = argminjdtj
9: W (t+ dtl)← W (t) + uα(l),β(l)

10: t← t+ dtl
11: i← i+ 1

If fG
(
t, θ, ZG

)
denotes the output of Algorithm 11 at time t and input

(θ, ZG), it yields:

Proposition 6. Denote L ([0, 1]) the space of sequences on [0, 1]. The func-
tion:

fG : R+ ×Θ×L ([0, 1])nE −→ E
(t, θ, zG) 7−→ fG(t, θ, zG)

is such that the continuous-time Markov chains W θ and fG(·, θ, ZG) :={
fG
(
t, θ, ZG

)
; t ≥ 0

}
have the same finite-dimensional distributions.

Proposition 6 provides a new representation of (X,W) since X and ZG

are independent. This representation allows to separate intrinsic randomness
into independent intrinsic noises of type of transition processes. The proof of
Proposition 6 is detailed in Appendix 4.B.

The intrinsic randomness captures all the variability of the model which
does not depend on epidemic parameters. From an epidemiological point of
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view, it encompasses the random behavior of individuals and their social inter-
actions, as well as the biological variability between individuals with respect
to infection.

4.4 Application to an epidemic model

In this section, we implement our method on a parsimonious SARS-CoV-
2 spread model inspired by the literature (Cazelles et al., 2021). We per-
form variance-based GSA using the two representations: the one analyzed in
Navarro Jimenez et al. (2016) and based on the random time change (described
in Section 4.3.2.1) and the new one we introduced in Section 4.3.2.2 based on
the modification of Gillespie algorithm provided in Proposition 6. The model
considered in this section, although not necessarily the most refined from the
point of view of application, remains very relevant. Moreover, it should be
noted that our approach is generic and can therefore be applied to any other
compartmental model.

4.4.1 Description of the model of SARS-CoV-2 spread

The compartmental model in Figure 4.1 is used to describe the spread of
SARS-CoV-2 within a closed population with size N . This model includes
seven compartments corresponding to seven health states and nine transitions
between these states. Indeed, in this model, an individual can be susceptible
(S), exposed (E) (i.e. infected but not yet infectious), asymptomatic infectious
(A), symptomatic infectious (I), hospitalized (H), recovered (R) or dead (D).
Two modeling assumptions can be mentioned. First, infection is neglected
within hospitals so that hospitalized individuals cannot infect. Secondly, it is
assumed that recovered individuals get perfectly immunized, so they cannot be
susceptible after recovering. This assumption is valid on short time intervals.

We are interested in the process
{

(WS(t),WE(t),WA(t),WI(t),WH(t),

WR(t),WD(t)) ; t ∈ [0, T ]
}
that takes values in E ⊂ {0, · · · , N}7 and counts

over time the number of individuals in each compartment, where N is the size
of the population and T ∈ (0,+∞] is the final time of the study. The set of
compartments is given by V = {S,E,A, I,H,R,D}. The different types of
transitions and their characteristics (rate function gα,α′ and transition vector
uα,α′ , where (α, α′) denotes a type of transition of the model) are described in
Table 4.1.

Rate functions depend on the vector parameter θ =
(
β, γE , γA, γI , γH , p(E,A),

p(I,H), p(I,D), p(H,D)

)
. The interpretation of each of these parameters and their

ranges of variation in the sensitivity analysis are provided in Table 5.2.
The process under study is: W θ = {(Wα(t))α∈V ; t ∈ [0, T ]}. Let Θ be

the set of all possible values of θ. For all θ ∈ Θ, W θ is assumed to be a
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Figure 4.1 – Compartmental model of the spread of SARS-CoV-2 within a
population, comprising seven health states (S,E,A,I,H,R,D) and corresponding
transition rates. Wα with α ∈ {S,E,A, I,H,R,D} denotes the number of
individuals in compartment α.
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Table 4.1 – Description of the model transitions between states
{S,E,A, I,H,R,D}.
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Table 4.2 – Model parameter nominal values and their range of variation in the
sensitivity analysis (values are plausible with current knowledge e.g. Knock
et al. (2021)).
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continuous-time Markov chain.
Let denote pI the vector (p(I,H), p(I,D)). For GSA purposes, we focus on

the group of inputs pI instead of p(I,H) and p(I,D) separately for two reasons.
The first reason is related to the assumption of mutual independence of inputs
that is necessary for Sobol’-Hoeffding decomposition. Since p(I,H) and p(I,D)

are correlated, they are grouped as one input in order to ensure input indepen-
dence. The second reason is that we are interested in the global influence of the
probability distribution (p(I,H), p(I,D), 1−p(I,H)−p(I,D)) that is represented by
pI . Therefore, in the context of sensitivity analysis, there are eight parameter
inputs considered: β, γE , γA, γI , γH , p(E,A), pI , p(H,D). Let us model the uncer-
tainty by introducing the random vectorX =

(
β, γE, γA, γI, γH,p(E,A),pI,p(H,D)

)
such that components are mutually independent with uniform distributions on
intervals specified in Table 4.2. Specifically, the vector input pI is drawn from
a multidimensional uniform on [10−3, 0.2]× [10−3, 0.1].

We study two types of outputs that are our quantities of interest (QoIs):
a scalar QoI and a functional one. The scalar QoI considered is the extinction
time Yext of the epidemic. Yext is defined as the first time when there are no
more individuals E able to get infected or individuals A or I able to maintain
infection by infecting new susceptible individuals:

Yext = inf{t ≥ 0 : WE(t) +WA(t) +WI(t) = 0}.

Note that for all θ ∈ Θ, Yext is well-defined, i.e. Yext < +∞. Indeed, by
considering the compartmental model described in Figure 4.1, after a finite
number of transitions, the stochastic process will necessarily reach an absorbing
state where there is no individual in compartments E,A and I. A boxplot of
n = 2000 simulations of Yext with parameter inputs set to nominal values given
in Table 4.2 is showed in Figure 4.A.1.

The functional QoI is given by the dynamic of the number of symptomatic
infectious individuals:

YI = {WI(t), t ∈ [0, T ]}.

The quantities Yext and YI are functions of the random field W = {WX(t), t ∈
[0, T ]}, so they inherit its representations.

By relying on Subsection 4.3.2, we obtained two representations of W: the
Gillespie representation (X,W) ∼

(
X, fG

(
X, ZG

))
where ZG =

(
U1, · · · ,U9

)
is a vector of nine independent sequences (one for each type of transition) of
i.i.d. standard uniform variables and the Random time change representa-
tion (X,W) ∼

(
X, fK

(
X, ZK

))
where ZK =

(
Z1, · · · , Z9

)
is a vector of nine

independent unit-rate Poisson processes. For sensitivity analysis, intrinsic ran-
domness variables ZG and ZK are treated as one input each. We are interested
in the global influence of (X, Z) where Z denotes ZG or ZK depending on the
representation.



4.4. Application to an epidemic model 115

4.4.2 Numerical setting for sensitivity analysis

We consider a population of N = 2005 individuals including five exposed
individuals at the start of the epidemics t = 0, so that for all θ ∈ Θ the CTMC
W θ has the initial state:

ξ0 = (WS(0) = 2000,WE(0) = 5,WA(0) = 0,WI(0) = 0 ,

WH(0) = 0,WR(0) = 0,WD(0) = 0) .

For the quantity of interest Yext, the final time T of the study is set to T = +∞.
In practice, this means that trajectories of W θ are simulated until they reach
absorbing states, i.e. extinction. Concerning YI , T is set to T = 60 days. This
choice is motivated by the outputs of YI obtained with the nominal values of
parameters and displayed in Figure 4.A.2. This figure shows that trajectories
do not much vary after 60 days and about two-thirds of them reach extinction
right after T = 60 days which is the 32th percentile of extinction times (see
boxplot of Figure 4.A.1). Therefore, YI is studied on the interval [0, 60] that
is discretized into 1000 equidistant time points for GSA purposes.

Regarding sensitivity index estimation, we drawn n = 2000 samples of
each input with respect to uniform distributions over ranges specified in Table
4.2. The parameter space exploration is performed by using Latin Hypercube
Sampling as the dimension of Θ is quite large. We simulate W θ through Algo-
rithm 9 for random time change representation and Algorithm 11 for Gillespie
representation. In both cases, the intrinsic randomness variable is a vector
of nine components. Nine integers are drawn independently and uniformly in
{1, · · · , 109} to serve as seeds for the random number generator with the aim
to stream random numbers.

In practice, simulations are carried out with R. We use the R package
DiceDesign (Dupuy et al. (2015)) for Latin Hypercube Sampling. Sensitivity
indices are estimated by using functions soboljansen and sobol2007 of the R
package sensitivity (Iooss et al. (2020)). The function soboljansen is used for
total Sobol’ index estimation while sobol2007 is used for first-order Sobol’ index
estimation.

4.4.3 Sensitivity index estimation

GSA is performed for the two outputs. For Yext, first-order and total Sobol’
indices of the nine inputs are estimated. For each representation, 50 replica-
tions of these indices are provided. Regarding YI , dynamical and aggregated
Sobol’ indices are estimated.
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Figure 4.2 – Boxplots of 50 replications of first-order Sobol’ indices (a) and
total Sobol’ indices (b) for Yext with respect to Gillespie representation (red)
and Random time change representation (RTC) (blue). Each index estimation
is obtained with n = 2000 samples of inputs.

4.4.3.1 Sensitivity analysis results for Yext

Figure 4.2 suggests that, considering first-order indices, only two parameters
influence the variability of Yext: β and γE . Also, there is no significant dif-
ference in the input sensitivity indices between the two model representations.
Regarding total indices, results point out strong interactions between inputs.
Thus, one can notice that almost all the inputs have non-zero total effects ex-
cept p(H,D) in the case of the Gillespie representation. Two main points can be
emphasized: first, the total Sobol’ index estimations of Z for the two represen-
tations are very close. Indeed, the total Sobol’ index of Z is theoretically the
same for the two representations (see Section 4.2.3). That is why estimations
are equal up to sampling errors. Secondly, there are significant differences be-
tween the estimations for Gillespie and Random time change representations,
and the three most influential inputs (more than 25% of variance each) are:
β, γE and Z. The intrinsic randomness interacts strongly with uncertain pa-
rameters. This explains the difference that appears between main and total
effects.

The ranking of inputs with respect to total Sobol’ indices for Gillespie rep-
resentation yields β, Z, γE , γA, γI , p(E,A), pI , γH , p(H,D) while that of Random
time change representation is β, γE , Z, γA, p(E,A), γI , pI , γH , p(H,D). From one
representation to another, rankings of inputs γE , Z, γI , p(E,A) have switched.
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So, in practice, GSA conclusions relative to ranking depend on representation.
In order to confirm statistically the difference between indices, we carry

out asymptotic statistical tests of comparison of means of two samples. For
each input, the test consists in comparing the total Sobol’ indices renormalized
by the total variance (i.e. numerator of total Sobol’ index formula defined in
Subsection 4.2.1) obtained for the two representations. The samples derive
from the total Sobol’ index samples used for the boxplots in Figure 4.2.

The null hypothesis (H0) is rejected for inputs γE , γA, γI , γH , pEA, pI and
pHD with p-values less than 2.2 × 10−16 but not for inputs β and Z as their
corresponding p-values 0.75 and 0.85 are greater than 5%. There is no surprise
that the test for β is inconclusive since boxplots overlap (see Figure 4.2b).

Results provided in Subsection 4.4.3 reveal that differences can occur be-
tween GSA responses for the two representations. In particular, for total Sobol’
indices of uncertain parameters, intrinsic randomness distributions are explic-
itly involved in formulas and consequently estimations for the two representa-
tions do not seem to be distributed around the same theoretical value. Even
though these differences may legitimately exist, they can have significant reper-
cussions in practice. For this model, we could indeed choose to adopt Gillespie
representation as interactions with intrinsic noise are much less important for
this representation. However, the most important message to keep in mind is
that the intrinsic randomness varies from one representation to another, thus
different representations yield different information. And in practice, this can
impact GSA conclusions and even resulting decisions.

4.4.3.2 Sensitivity analysis results for YI

Dynamical Sobol’ indices

As showed in Figure 4.3, both dynamical first-order and total Sobol’ index
estimation indicate that the most important input over time is β, followed by
γE , and p(E,A), except at the very beginning of the epidemic where γE is the
most important parameter. These conclusions are valid for both representa-
tions. First-order and total Sobol’ indices of Z are the highest from the start
until day 5, meaning that the intrinsic stochasticity influence exceeds that of
uncertain parameters at the beginning of epidemics. This reflects the fact
that intrinsic stochasticity rules the dynamics especially at the beginning of
outbreaks when the number of infectious is low.

Aggregated Sobol’ indices

The aggregated Sobol’ indices enable to summarize over the whole time interval
the impact of inputs. So, for both first-order and total indices, the transmission
parameter β remains the most important input, followed by γE , p(E,A) and Z.
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Figure 4.3 – Dynamical first-order and total Sobol’ indices for YI with respect
to Gillespie representation (a) & (c) and Random time change representation
(b) & (d). At each of the 1000 discretization time points in [0, 60], first-order
Sobol’ indices are estimated with n = 2000 samples of inputs.

The impact of Z is again noticeable when considering total effects, due to its
interactions with other inputs.

With the aim of validating the differences between total Sobol’ indices
for the two representations, statistical tests are carried out as in the case of
the scalar output Yext by using samples that allowed to generate boxplots of
Figure 4.4. The null hypothesis that states the equality between total Sobol’
indices of input parameters for the two representations is rejected with p-values
smaller than 2.2 × 10−16 except parameters β and γE for which the p-values
are respectively 2.24×10−4 and 2.6×10−14. The test for Z does not reject the
null hypothesis with a p-value of 0.76. Overall, the conclusions of these tests
perfectly match with the theoretical analysis detailed in Subsection 4.2.3.

4.5 Conclusions
In this work, we developed an approach of sensitivity analysis for stochas-
tic compartmental models described by continuous-time Markov chains. This
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Figure 4.4 – Aggregated first-order (a) and total (b) Sobol’ indices for YI with
respect to Gillespie representation (red) and Random time change representa-
tion (blue). Indices are obtained with the 1000 discretization time points in
[0, 60] and n = 2000 samples of inputs.

approach consists in separating intrinsic randomness from parameter uncer-
tainty by building exact deterministic representations of the model outputs as
functions of uncertain parameters and explicit intrinsic randomness. For this
purpose, we rely on Gillespie SSA to propose a deterministic representation
of continuous-time Markov chains. We present two versions of the new Gille-
spie SSA based representation: the direct method (see Proposition 5) and the
first reaction method (see Proposition 6). The latter representation enables
to highlight the impact of intrinsic noise of each type of transition or reaction
channel of the model. Regarding the representation based on direct method,
it has the advantage to be computationally faster and most commonly used in
practice.

This approach is applied to a stochastic compartmental model of SARS-
CoV-2 spread and is compared to an approach based on random time change
analyzed in Navarro Jimenez et al. (2016). GSA is performed for two quantities
of interest. The first QoI studied is the extinction time of epidemics. The
Gillespie and random time change representations reveal that the transmission
parameter (β) is the most important input and that the intrinsic randomness
(Z) much interacts with uncertain parameters. The second QoI is functional
and given by the dynamics of number of symptomatic infectious individuals.
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For both representations, sensitivity analysis highlights again the main role
of transmission parameter (β) and incubation mean duration parameter (γE)
and the slight influence of the intrinsic randomness (Z), except at the very
beginning of the epidemic. Estimating Sobol’ indices of intrinsic randomness
allowed to point out not only the different phases of the epidemic, regarding
the influence of the intrinsic randomness, but also its global influence on the
whole epidemic dynamic.

Overall, our approach allows to estimate sensitivity indices for the main
effect of intrinsic randomness as well as for its interactions with uncertain pa-
rameters. This additional information is complementary to the one on the
influence of uncertain parameters. We also highlighted the fact that GSA
results depend on the chosen representation. In practice, this impacts con-
clusions resulting from GSA. Nevertheless, the different results between the
representations provide interesting information; for instance, choosing a rep-
resentation which has lower interaction between the intrinsic randomness and
the uncertain parameters. This may allow to estimate uncertain parameter
values with a better accuracy.

In future research, the approach proposed in this study could be extended
to compartmental models based on non-Markovian stochastic processes based
on Sellke construction (Sellke, 1983).

Appendix

4.A Some simulations of QoIs Yext and YI

Case of Yext
For uncertain parameters set to nominal values (see Table 4.2), we simulate
n = 2000 outputs of Yext. The outcomes are presented under the form of
boxplot in Figure 4.A.1.

50

60

70

80

90

E
x

ti
n

c
ti

o
n

 t
im

e
s
 (

Y
e
x
t)

Figure 4.A.1 – Boxplot of n = 2000 outputs of Yext
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Case of YI

Figure 4.A.2 shows 20 trajectories of the number of symptomatic infectious
individuals corresponding to 20 outputs of the model for parameters set to
nominal values (see Table 4.2).
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(a) Gillespie representation
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(b) Random time change representation

Figure 4.A.2 – 20 trajectories of number of symptomatic infectious per repre-
sentations

4.B Proofs

Proof of Proposition 4

The proof is provided for a case of stochastic process so that it can be adapted
to real or multidimensional output stochastic models. Assume that for all
θ ∈ Θ, g(θ) is a stochastic process {g(θ, t), t ≥ 0} over a discrete state space
E and independent of X. Let A1, · · · , Ad and B be Borel sets. Assume X

has a probability distribution µ. Consider 0 ≤ t1 ≤ · · · ≤ td. Note that
P (X ∈ B, g (X, t1) ∈ A1, · · · , g (X, td) ∈ Ad) yields:

E

[
1X∈BE

[
d∏
i=1

1g(X,ti)∈Ai | X

]]
= P (X ∈ B, f(t1,X, Z) ∈ A1, · · · , f(tp,X, Z) ∈ Ad)

since E
[
1X∈BE

[∏d
i=1 1g(X,ti)∈Ai | X

]]
=
∫
B E

[∏d
i=1 1f(ti,θ,Z)∈Ai

]
µ(dθ).
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Construction of Gillespie representation and Proof of
Proposition 5

For all θ ∈ Θ, W θ is a CTMC on the finite state space E with generator Qθ.
The jump sequence {Tn;n ≥ 0} of W θ is defined as:
T0 = 0

Tn+1 − Tn ∼ Exp
(∑

(α,β)∈E gα,β(θ,W θ(Tn))
)

Conditionally to {W θ(Tn), n ≥ 0}, (Tn+1 − Tn) are mutually independent

The sequence {W θ(Tn);n ≥ 0} is the embedded chain ofW θ i.e. a discrete-
time Markov chain on E with initial state ξ0 and transition probabilities given
by:

∀ ξ, ξ′ ∈ E , pξ,ξ′ = P
(
W θ(Tn+1 = ξ′ |W θ(Tn) = ξ

)

=


gα′,β′ (θ,ξ)∑

(α,β)∈E gα,β(θ,ξ) if ∃ (α′, β′) ∈ E : ξ′ − ξ = uα′,β′

0 otherwise.

(4.1)

Therefore, W θ can be rewritten under the form:

W θ(t) =
+∞∑
n=0

W θ(Tn) · 1[Tn,Tn+1[(t).

Consider a discrete-time Markov chain Dθ = {Dθ
n;n ≥ 0} with transition

probabilities
(
pξ,ξ′

)
(ξ,ξ′)∈E×E defined in Eq. (4.1) and initial state ξ0. If the

sequence {τn;n ≥ 0} satisfies:
τ0 = 0

τn+1 − τn ∼ Exp
(∑

(α,β)∈E gα,β(θ,Dθ
n)
)

Conditionally to Dθ, (τn+1 − τn) are mutually independent

(4.2)

then the stochastic process Hθ =
{∑+∞

n=0D
θ
n · 1[τn,τn+1[(t); t ≥ 0

}
defines a

continuous-time Markov chain with generator Qθ, state space E and initial
state ξ0. Since E is finite then:

∀ θ ∈ Θ, W θ f.d.d.= Hθ. (4.3)

Equation (4.3) implies that the two processes are stochastically equivalent.
The discrete chain Dθ and sequence {τn;n ≥ 0} can be arbitrarily chosen. Let
us construct an example of Dθ and sequence {τn;n ≥ 0} using two indepen-
dent sequences U1 =

(
U1

1 , U
1
2 , · · ·

)
and U2 =

(
U2

1 , U
2
2 , · · ·

)
of i.i.d. standard

uniform variables.
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Note that E is finite as V is finite. Recall that nE the cardinal of E.
So, we order the elements of E with respect to an arbitrarily order: E =

{(α(1), β(1)), · · · , (α(nE), β(nE))}. Let us introduce the function:

φθ : E × [0, 1] −→ E

(ξ, v) 7−→ ξ +

nE∑
k=1

uα(k),β(k) × 1
v∈
[∑k−1

j=1 pξ,ξ+u
α(j),β(j)

,
∑k
j=1 pξ,ξ+u

α(j),β(j)

[
(4.4)

The discrete chain built by the recursion:{
D0 = ξ0

Dθ
n = φθ

(
Dθ
n−1, U

1
n

)
, n ≥ 1

(4.5)

is a Markov chain with transition probabilities
(
pξ,ξ′

)
(ξ,ξ′)∈E×E . Furthermore,

the sequence:

τ0 = 0

τn+1 − τn = − log(U2
n)∑

(α,β)∈E gα,β(θ,Dθn)

(4.6)

satisfies conditions of Eq. (4.2.) Therefore the discrete chain in Eq. (4.5) and
the sequence in Eq. (4.6) define a CTMC stochastically equivalent to W θ in
the sense of finite dimensional distributions.

Let define the function:

Φθ : L ([0, 1]) −→ EN

u = (u1, u2, · · · , ) 7−→ Φθ(u) =
(
ξ0, φ

θ(ξ0, u1), φθ(φθ(ξ0, u1), u2), · · ·
)

By construction Φθ
(
U1
)

= {Φθ
n

(
U1
)

= Dθ
n, n ≥ 0}. If λn =

∑
(α,β)∈E gα,β

(
θ,Φθ

n

(
U1
))

then the following function:

fG:R+×Θ×L ([0,1])2 −→ E

(t, θ, z1, z2) 7−→ fG(t, θ, z1, z2) =

∞∑
n=0

Φθ
n (z1)1

t∈
[∑n

j=1

− log(z2,j)

λj−1
,
∑n+1
j=1

− log(z2,j)

λj−1

[

is such that fG(, θ, ZG) is stochastically equivalent toW θ with ZG =
(
U1,U2

)
.

Moreover, since X and ZG are independent and fG(, θ, ZG) ∼ W θ then
the equivalence (X,W) ∼

(
X, fG(·,X, ZG)

)
is proved in the same way as in

Proposition 1.
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Second construction of Gillespie representation and
Proof of Proposition 6

We consider the vector of sequences of i.i.d. standard random variables:
(Uα,β, (α, β) ∈ E) where Uα,β =

(
U1
α,β, U

2
α,β, · · ·

)
. Given the following re-

cursive system:


Dθ

0 = ξ0

snα,β = − log(Unα,β)
gα,β(θ,Dθn−1)

∀(α, β) ∈ E

Dθ
n = Dθ

n−1 + uα,β1snα,β=min{snα,β ;(α,β)∈E}

(4.7)

(Uα,β, (α, β) ∈ E) is a vector of sequences of i.i.d. standard random vari-
ables where Uα,β =

(
U1
α,β, U

2
α,β, · · ·

)
. We have the following system:


Dθ

0 = ξ0

snα,β = − log(Unα,β)
gα,β(θ,Dθn−1)

∀(α, β) ∈ E

Dθ
n = Dθ

n−1 + uα,β1snα,β=min{snα,β ;(α,β)∈E}

1. Set Un = {Unα,β; (α, β) ∈ E}. {Un;n ≥ 1} is a sequence of i.i.d. random
vectors with distribution

⊗nE
i=1 U ([0, 1]). Given the function:

ϕθ : E × [0, 1]nE −→ E(
ξ, u = unα,β; (α, β) ∈ E

)
7−→ ξ + uα,β1

sn
α,β

=min{−
log(unα,β)
gα,β(θ,ξ)

;(α,β)∈E}

it yields Dn = ϕθ (Dn−1, Un). So, {Dθ
n, n ≥ 0} defines a Markov chain

with initial state ξ0. Let us find the transition probabilities of this chain.
Let ξ′ and ξ be two states such that ξ′ 6= ξ. We shall discuss two cases.

• Case 1: ξ′ 6= ξ + uα,β for all (α, β) ∈ E. In this case, we have:

P
(
Dθ
n+1 = ξ′ | Dθ

n = ξ
)

= P
(
ξ′ = ξ + uα,β1snα,β=min{snα,β ;(α,β)∈E} | Dθ

n = ξ
)

= P
(
ξ′ = ξ + uα,β1snα,β=min{snα,β ;(α,β)∈E}

)
= 0
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• Case 2: ∃ (α̂, β̂) ∈ E such that ξ′ = ξ+uα̂,β̂ . In this case, we have:

P
(
Dθ
n = ξ′ | Dθ

n−1 = ξ
)

= P
(
ξ′ = ξ + uα,β1snα,β=min{snα,β ;(α,β)∈E} | Dθ

n−1 = ξ
)

= P
(
uα̂,β̂ = uα,β1snα,β=min{snα,β ;(α,β)∈E} | Dθ

n−1 = ξ
)

= P
(
sn
α̂,β̂

= min{snα,β; (α, β) ∈ E} | Dθ
n−1 = ξ

)
= P

(
sn
α̂,β̂
≤ snα,β; (α, β) ∈ E \ (α̂, β̂) | Dθ

n−1 = ξ
)

= E

exp

−sn
α̂,β̂
×

∑
(α,β)∈E\(α̂,β̂)

gα,β (θ, ξ)

 | Dθ
n−1 = ξ


=

gα̂,β̂ (θ, ξ)∑
(α,β)∈E gα,β (θ, ξ)

.

It turns out that {Dθ
n, n ≥ 0} has transition matrix

(
pξ,ξ′

)
(ξ,ξ′)∈E×E .

2. It is straightforward since {Unα,β; (α, β) ∈ E} are i.i.d. and snα,β are
exponential variables.

3. The construction of fG is similar to the one of the proof of Proposition
2 by using ZG = (Uα,β, (α, β) ∈ E) and φθ = ϕθ.
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This chapter deals with compartmental models based on non-Markovian pro-
cesses. It is also related to the context of epidemic models and completes the
study started in Chapter 4 concerning models based on continuous time Markov
chains. In this context, the goal is still to find an approach allowing to evaluate
various contributions of parameters and of the intrinsic randomness. Here, to
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achieve this, we will rely on Sellke construction which we will generalize. The
generalized construction allows to separate the intrinsic randomness from the
uncertain parameters for a large class of compartmental models.

5.1 Introduction

The last two years, COVID-19 pandemic has shown the importance of mathe-
matical epidemic modeling. Mathematical models in epidemiology, as complex
as they are varied, have been proposed to predict the evolution of the pan-
demic and guide policy-making. However, the potential impact of decisions
made based on these models highlights the necessity to understand these mod-
els in their diversity and complexity. Among the epidemic models, one of the
most used categories is the stochastic compartmental models. These models
are based on a simple principle: a group of health statuses is defined so that
individuals in the population are divided into compartments with respect to
their health status and then random changes in health statuses that may oc-
cur during the epidemic are ruled by mechanistic rules. Epidemic dynamics
are then described by stochastic processes that track over time the number of
individuals in the different compartments considered. Depending on the mod-
eling choices, these continuous-time stochastic processes can be Markovian (in
particular continuous-time Markov chains) or non-Markovian. In the Marko-
vian case, the future dynamics of the stochastic process only depends on its
current state and not on the past; this does not hold for non-Markovian pro-
cesses where there is a memory effect. Markovian processes and the resulting
ordinary differential equations are less complex to study and simulate. In ad-
dition, they provide good approximations in epidemic modeling, but they have
limitations in practice because of the lack-of-memory property. For example,
they fail to account for temporal characteristics of real epidemics, memory ef-
fects or when delays are involved (Nowzari et al., 2015; Großmann et al., 2021;
Sofonea et al., 2021; Saeedian et al., 2017), etc. Thus, models based on non-
Markovian processes turn out to be more general class of model. They can be
obtained in multiple ways: using non-exponential distributions (Van Mieghem
and van de Bovenkamp, 2013; Streftaris and Gibson, 2012), using systems with
delays (Brett and Galla, 2013), etc. Sellke (1983) introduced a construction
of the classical SIR (Susceptible-Infectious-Recovered) model, a new way to
simulate SIR epidemic process. This enabled to approximate the final size
of epidemics, i.e. the total number of individuals who have ever contracted
the infection during outbreak. This construction relies on an individual-based
approach and it has the advantage to enable the simulation of SIR epidemic
process in both Markovian and non-Markovian frameworks. Since then, it has
been studied and extended in many ways.
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Reinert (1995) studied Sellke construction in the case where tolerance
thresholds to infection and sojourn time variables in compartment I of sus-
ceptible individuals are not independent and provided convergence results for
the resulting stochastic process. Andersson and Britton (2000b) extended Sel-
lke approach to SIR-multitype epidemics. In Streftaris and Gibson (2012),
the unit-rate exponential distribution of thresholds is changed to Weibul dis-
tribution. Moreover, still in the case of SIR model, House (2014) general-
ized the construction to the case of finite heterogeneous population while
Di Lauro et al. (2022) focused on age-dependent SIR model. An extension
to the classical SEIR (Susceptible-Exposed-Infectious-Recovered) model was
detailed in Britton et al. (2019). This extension is straightforward because
on one hand the jumps from the compartment E follow the same transi-
tion mechanism as those from compartment I and on the other hand indi-
viduals in compartment E are not infectious. However, in the view of all
these works, it appears that so far, various uses or generalizations of the con-
struction focus mainly on SIR model but under different modeling assump-
tions. For example, none of these works consider models with reinfection
and more generally compartmental models that include branching compart-
ments (like SEIAR: Susceptible-Exposed-Infectious-Asymptomatic-Recovered)
or such that their corresponding graph includes cycles (or loops) like the clas-
sical SIS (Susceptible-Infectious-Susceptible).

This study proposes an extension of Sellke construction to a more general
class of compartmental models for closed populations. This class includes SIR-
type models (a series of compartments in one row), SEIAR-type (a series of
compartments in several rows), models with cycles etc. This new construction
proposes a reformulation of epidemic processes with respect to Sellke construc-
tion. The extended construction yields non-Markovian stochastic processes.
Furthermore, as in the case of the original Sellke construction, the extended
one we propose is equivalent to corresponding Markovian model under certain
conditions on probability distributions of construction variables. This paper
aims at modeling and simulating epidemics using this new construction and
is not intended to provide a probabilistic study of resulting stochastic pro-
cesses. Thus, we provide an algorithm to simulate epidemic based on such
construction.

One of the advantages of this construction and also of the one of Sellke
is that they enable to clearly identify the intrinsic randomness of epidemic
processes through the behaviors and the characteristics of individuals. This
allows us to investigate the impact of intrinsic randomness for non-Markovian
epidemic processes. For this, we deduce a representation of epidemic processes
in the form of a deterministic function of uncertain epidemic parameters and
intrinsic randomness. In a previous work (Kouye et al., 2022), such a repre-
sentation was derived for Markovian epidemic processes simulated by Gillespie
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algorithm (Gillespie, 1977). Therefore, in addition to non-Markovian epidemic
processes, the new construction investigated in this document provides also
an alternative way to represent Markovian processes obtained with stochastic
compartmental models. An application is proposed for the SEI1I2RS model.

This document is structured as follows. Section 5.2 discusses the extended
construction that we propose. For this intending, the original Sellke construc-
tion is reminded in Subsection 5.2.1. Subsection 5.2.2 describes the class of
compartmental models to which this construction detailed later in Subsection
5.2.3 is intended. Section 5.3 presents our algorithm for simulating epidemic
processes and also gives some illustrations on the SEI1I2RS model. Regard-
ing Section 5.4, it deals with the deterministic representation of epidemic pro-
cesses based on the extended construction and presents an application to the
SEI1I2RS. This application consists in estimating some variance-based sensi-
tivity indices of both uncertain epidemic parameters and intrinsic randomness
in the view of assessing impact of the intrinsic randomness in non-Markovian
modeling framework.

5.2 Extending Sellke construction

This section introduces an extension of Sellke construction. It is divided into
three subsections intended to present the original construction, to define the
class of compartmental models we are interested in and to detail mechanisms
of the extension we propose.

5.2.1 Sellke construction

Consider the classical SIR model (see Figure 5.1) and assume that the popu-
lation is closed and comprises N individuals.

S I R

β
N
WIWS γIWI

Figure 5.1 – The classical SIR model. WS(t) and WI(t) denote the respective
number of individuals in compartment S and I at time t ≥ 0.

In order to describe general epidemic dynamics corresponding to the model,
Sellke proposed an individual-based construction. For this construction, at the
start of the epidemic (t = 0), each individual of the population of size N is
labeled (i = 1, · · · , N) and depending on his or her initial health status, he
or she is given a set of variables that characterize individual behavior toward
infection. Indeed, if the individual with label i is initially susceptible, then he
or she is given a threshold Qi > 0 and a sojourn duration Li > 0 in I. If this
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individual is initially infectious, then only sojourn duration Li in compartment
I is attributed.

The evolution of health status depends on two kinds of events: an infection
or a recovering (or removal). Infection events depend on the dynamic of a
function called the infection pressure and defined as P (t) = β

N

∫ t
0 WI(s)ds so

that if the individual with label i is initially susceptible, he or she remains
susceptible as long as Qi > P (t) for t ≥ 0. This function is proportional to
the cumulative number of infectious individuals and accounts for the pressure
exerted on susceptible individuals. Thus, as soon as Qi ≤ P (t) he or she
gets infected and moves to compartment I (see Figure 5.2). Individuals with
thresholds which remain greater than the value of the infection pressure escape
infection.

Q(1)

Q(2)

Q(3)

τS(2) τS(3)

Q(4)

P (t)

τS(1) τS(4)

�

�

�

�

Figure 5.2 – An illustration of evolution of infection pressure t 7→ P (t). Marks
� denote points where infections have occurred. Quantities 0 ≤ Q(1) < Q(2) <

Q(3) < Q(4) are tolerance thresholds. Instants τS(1), · · · , τ
S
(4) denote respectively

infection times of susceptible individuals with thresholds Q(1), · · · , Q(4).

Regarding recovery events, they are based on sojourn duration of individ-
uals. Suppose the individual with label i is initially infected (t = 0) or enters
compartment I at time t > 0. If he has a sojourn duration in I equals to Li,
then at time t+ Li he leaves I and move to R where he will stay forever.

This construction was originally introduced to study the distribution of the
final size of epidemics modeled by the SIR model. Therefore, the approach is
specific to the simple SIR model.
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5.2.2 Description of general compartmental models

This subsection aims at presenting compartmental models in more generality.
Modeling assumptions and notation necessary in the following are introduced.

Assume given a closed population of N individuals among which an epi-
demic outbreaks at time t = 0. Individuals present various health statuses that
are listed in a set denoted V. Health statuses partition the population into
distinct groups. Individuals with health status α ∈ V belong to the group or
compartment α. Hereafter, we shall refer to health status α as compartment
α and vice-versa. If individuals with health status α can switch from α to a
different health status β, then compartments α and β are linked. This link
defines the type of transition (α, β) in the direction α→ β, which means that
individuals of compartment α can jump to β. Denote E the set of all types of
transitions between compartments of V. General compartmental models are
under the form of a directed graph G = (V,E) where V stands for the set of
vertices and E represents the set of edges.

Over time, the health status of an individual can change, which defines
a transition. Assume that each of the N individuals of the population is
labeled: 1, 2, · · · , N at time t = 0. Consider the individual with label i and
denote Xi(t) his health status at time t. Transitions occur randomly so that
for each t > 0, Xi(t) is a random variable on the set V. The evolution of
Xi(t) over time depends on some intrinsic characteristics of the individual i
and also on epidemic parameters that are denoted θ. Let α ∈ V. For a
time t ≥ 0, W θ

α(t) =
∑N

i=1 1Xi(t)=α defines the number of individuals with
health status α, i.e. the number of individuals in compartment α. The global
configuration of the population at time t is given by W θ(t) =

(
W θ
α(t)

)
α∈V.

Thus, W θ = {W θ(t), t ∈ [0, T ]} is a stochastic process that describes the
epidemic dynamic in the population from the initial time 0 to a final time
T ∈ (0,+∞]. From the definition of W θ

α, the global process W θ takes values
on the set E = {w = (wα)α∈V ∈ NcardV |

∑
α∈V wα = N}. The set E is called

the state space of process W θ. Henceforth, assume that W θ is càdlàg.
Let β ∈ V such that (α, β) ∈ E. Assume that the transition of type (α, β)

occurs at time τ > 0, i.e. an individual exits α and ends up in β. Denote τ−

the instant right before τ . Then, the following equations hold:
W θ
α(τ) = W θ

α(τ−)− 1

W θ
β (τ) = W θ

β (τ−) + 1

W θ
γ (τ) = W θ

γ (τ−) ∀ γ ∈ V \ {α, β}.
(5.1)

Thus, from Equation (5.1) it yields that W θ(τ) = W θ(τ−) + uα,β where uα,β
is a vector with card V elements that includes -1 and +1 at positions cor-
responding respectively to α and β and 0 anywhere else. The vector uα,β is
called a transition vector and characterizes transitions of type (α, β), i.e. any
transition of type (α, β) is under the form: w → w + uα,β for w ∈ E .
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For α ∈ V, define the following sets: Pα = {γ ∈ V | (γ, α) ∈ E} and
Cα = {γ ∈ V | (α, γ) ∈ E}. Compartments α ∈ V can be classified into three
categories depending on whether corresponding sets Pα and Cα are empty
or not: source compartments (Pα = ∅,Cα 6= ∅), transient compartments
(Pα 6= ∅,Cα 6= ∅) and sink compartments (Pα 6= ∅,Cα = ∅). Notice that
the category (Pα = ∅,Cα = ∅) is excluded because such compartments are
completely isolated from others and thus irrelevant in modeling the epidemic
dynamic.

Example 9. The SEI1I2RS model includes 5 compartments and 6 types of
transitions such that: V = {S,E, I1, I2, R} and
E = {(S,E), (E, I1), (E, I2), (I1, R), (I2, R), (R,S)}. For instance, the transi-
tion vector of the type of transition S → E is (−1,+1, 0, 0, 0) while that of
E → I2 is (0,−1, 0,+1, 0). Moreover PE = {S},CE = {I1, I2} etc.

S E

I2

I1

R

Figure 5.3 – An example of compartmental model: SEI1I2RS model

5.2.3 Extension of Sellke construction to general com-
partmental models

This subsection details a Sellke-type construction which extends the original
Sellke construction to general compartmental models as described in Subsec-
tion 5.2.2. Like the original construction, the transition mechanisms of this
approach depend on the type of compartments involved. But in addition,
these mechanisms are now formulated in a more general way so as to address
larger class of models such that: models with multitype health statuses (mul-
tiple compartments of susceptibles, infected or infectious etc.), models with
"branching compartments" from which more than 2 types of transitions are
possible (e.g. compartment E in the SEI1I2RS model in Figure 5.3, models
with loops (e.g. models with reinfection SIS, SIRS, SEI1I2RS, ...).

A transition consists in a switch from a health status to another one for
an individual within the population. At the level of compartmental models,
this results in a jump from a compartment to another. The jumps are ruled by
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transition mechanisms which are supposed to be of two types: infection mech-
anism and sojourn duration mechanism. These two mechanisms are detailed
in the following.

5.2.3.1 Infection mechanism

Let α ∈ V such that α is a compartment composed of susceptible individuals
(i.e. individuals who can contract the disease). Then infection events from α

are driven by a function Pα called infection pressure defined as:

t 7→ Pα(t) =

∫ t

0
ψα

(
θ,W θ(s)

)
ds,

where ψα is a non-negative function so that Pα is a non-decreasing function.
For example, in the original Sellke construction, ψI

(
θ,W θ(t)

)
= (β/N) ×

WI(t).
Infection pressure can be seen as a measure of the level of exposure to infec-

tion over time. With respect to the level of exposure, each individual present
in the compartment has a tolerance (or resistance). This tolerance is given by
a positive number. Assume that the individual with label i enters the com-
partment α at time ηαi > 0 or is initially present in α, i.e. ηαi = 0. Then, he or
she is systematically assigned a positive value Qαi > 0 called tolerance thresh-
old. The thresholds Qαi , i = 1, · · · , N for any compartment α of susceptible
individuals are drawn with positive continuous probability distributions (e.g.
exponential distributions, Weibul distributions etc.). Individual with label i
leaves α as soon as:

Pα(t) ≥ Pα(ηαi ) +Qαi , t ≥ ηαi . (5.2)

In particular, if the individual with label i is initially present in α (i.e. at time
0, this individual belongs to α), then ηαi = 0 and the condition of jump from
α in Equation (5.2) yields:

Pα(t) ≥ Qαi , t ≥ 0. (5.3)

To better understand Equation (5.2), note that an individual who becomes
susceptible at ηαi has necessarily tolerance threshold greater than the infection
pressure level at this time. Hence, the exit time of the individual with label i
from compartment α is given by:

ταi = inf{t ≥ 0 | Pα(t) ≥ Pα(ηαi ) +Qαi }. (5.4)

Since Pα is a non-decreasing function, then ταi is well-defined in [0,+∞] and
satisfies:

ταi ≥ t⇐⇒ Pα(ηαi ) +Qαi ≥ Pα(t), t ≥ 0. (5.5)



5.2. Extending Sellke construction 135

Straightforwardly, if ηαi ≤ t < ταi , then Xi(t) = α.
It appears that this infection mechanism generalizes the one used in the

original Sellke construction since the latter corresponds to the particular case
ηαi = 0 given in Equation (5.3). This case implies that individuals can only
leave the compartment of susceptibles. This new mechanism suggests to assign
a threshold to an individual with respect to the pressure level at the time he
or she becomes susceptible.

Furthermore, a compartment of susceptibles may have several pressure
functions. This can appear when several pathogens or different strains of a
pathogen are simultaneously spreading within a population. In such case,
modelers could assume that each pathogen or each strain has a specific pres-
sure function. Therefore, susceptible individuals are given tolerance thresh-
olds with respect to each spreading pathogen or strain. An illustration of such
mechanism is provided in Example 10.

Let us focus on models containing at least one loop, i.e. in such models,
it is possible for an individual to leave a compartment and return back to it
later after a finite number of transitions. In this case, for a given individual
with label i and a given compartment α, the variable ηαi which gives the entry
time of the individual i in α can take different values over time, depending on
the number of times the individual returns to the compartment. So, it defines
a function ηαi : t 7→ ηαi (t) := sup{s ≤ t | Xi(s) = α} of the time when ηαi (t)

gives the more recent instant when the individual i was in α. Notice that by
construction, it is an increasing and piecewise-constant function. In the specific
case of models with reinfections, the return to a compartment of susceptible
individuals means that the individual has a new tolerance threshold, i.e. a new
value Qαi . Thus, Qαi is variable over time, that makes it a function of time.
Such a function is positive and piecewise-constant. Therefore, when the model
contains loops, then construction variables for each individual can vary over
time. As a consequence, it is not generally possible to know in advance for an
individual the number of values of construction variables to use except in the
case of models without loops.

5.2.3.2 Sojourn duration mechanism

Let α ∈ V and suppose that the individual with label i enters α at time ηαi ≥ 0.
Then, he or she is automatically assigned a sojourn duration variable Lαi > 0

so that he or she leaves α at time ηαi +Lαi , where L
α
i is distributed with respect

to a positive continuous probability distribution. Thus, individual i remains
in α during time interval [ηαi , η

α
i + Lαi [. Hence:

∀ t ∈ [ηαi , η
α
i + Lαi [, Xi(t) = α, (5.6)

and the exit time of i from α is ταi = ηαi + Lαi .
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In particular, if α is a sink compartment (Cα = ∅), then any individual
that enters α is "trapped" indefinitely. Indeed, since Cα = ∅, no transition
from α is possible. Therefore, if the individual with label i enters α at time
ηαi ≥ 0, then the sojourn duration of i in α is +∞ so that the exit time of
individual i from α is: ταi = +∞.

5.2.3.3 Transition choice mechanism

Let α ∈ V such that card Cα ≥ 2 (α is said to be a "branching" compartment).
This means that at least two types of transitions from compartment α are
possible. For example, in the SEI1I2RS model, one has card CE = 2.

Assume that the individual with label i jumps from α. Thus, card Cα types
of transitions can be performed. Let pα,γ ∈ (0, 1) such that

∑
γ∈Cα

pα,γ = 1

be the probability to choose the type of transitions (α, γ) among the card Cα
possibilities during a transition from α. Thus, in order to define the type of
transition to execute during a transition of the individual with label i from
compartment α, a variable Mα

i distributed under a multinomial distribution
Mα valued on {(α, γ), γ ∈ Cα} with parameters (pα,γ)γ∈Cα is simulated, where
pα,γ = P(Mα = (α, γ)). This mechanism enables to deal with models with
"branching" compartments in our construction. Therefore, a larger class of
compartmental models can be described compared to the original Sellke ap-
proach.

It should be noted that in the particular case of compartments of sus-
ceptible individuals, specific transition choice mechanism can be introduced
depending on the epidemic modeling. For instance, consider the following
model:

S

I2

I1

R

Figure 5.4 – Example of compartmental model: SI1I2R model

Example 10. In this model, CS = {I1, I2} so that two kinds of infectious
individuals are considered. Two types of infection mechanism can be considered:

• Mechanism based on global pressure
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If infection events are ruled by one infection pressure PS then each indi-
vidual in compartment S is assigned with one tolerance threshold. When
infection occurs, the choice between (S, I1) and (S, I2) is made by sim-
ulating a Bernoulli variable with parameter p1, where p1 denotes the
probability that an infected individual ends up in I1.

• Mechanism based on two pressure functions

Consider that infection events are driven by two infection pressures P (1)
S

and P (2)
S so that susceptible individuals are given two tolerance thresh-

olds. Assume that the individual with label i is susceptible and has toler-
ance thresholds Q(1)

i and Q(2)
i with respect to P (1)

S and P (2)
S respectively.

If this individual gets infected at time t, the type of transition (S, I1) is
executed if P (1)

S (t) = Q
(1)
i and Q(2)

i > P
(2)
S and in the same way (S, I2)

is chosen if P (2)
S (t) = Q

(2)
i and Q(1)

i > P
(1)
S . Hence, the type of transi-

tion to perform is given by the infection whose corresponding infection
function reaches first the associated tolerance.

5.2.3.4 Description of the underlying stochastic process

Suppose that the following assumption holds:

Assumption 6. Tolerance thresholds and sojourn time variables are distributed
with respect to continuous nonnegative probability distributions.

At the start of the epidemic (t = 0), in each compartment α ∈ V, the
number of individuals is given by:

W θ
α(0) =

N∑
i=1

1Xi(0)=α

At time t > 0, each compartment α ∈ V contains at most two categories of
individuals: initially present individuals who have never left α and individuals
that have ended up in α by jumping from a compartment γ ∈Pα. The second
category corresponds to individuals whose health status has switched from a
previous status to α. Assume that the individual with label i is in α. Recall
that ταi denotes the exit time of i from compartment α. Then, the number of
individuals W θ

α(t) in compartment α at time t ≥ 0 is given by:

W θ
α(t) =

N∑
i=1

1ταi >t,Xi(0)=α +
N∑
i=1

∑
γ∈Pα

1τγi ≤t<ταi ,Mα
i =(γ,α) (5.7)

Example 11. Consider the classical SIR-model presented in Figure 5.1. We
have θ = (β, γI), PS = ∅, PI = {S} and PR = {I} and CR = ∅. Assume the
size of the population is N such that WS(0) + WI(0) = N . For an individual
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with label i, instants τSi and τ Ii denote exit times from compartments S and I
respectively. Note that if Xi(0) = I, τSi = 0. Thus, the number of individuals
in each compartment at time t ≥ 0 is given by:

WS(t) =
N∑
i=1

1τSi >t,Xi(0)=S

WI(t) =
N∑
i=1

1τIi >t,Xi(0)=I +
N∑
i=1

1τSi ≤t<τIi

WR(t) =

N∑
i=1

1τIi ≤t

By splitting WR(t) into two sums, it could be noted that WS(t)+WI(t)+WR(t)

yields:

N∑
i=1

1τSi >t,Xi(0)=S +

(
N∑
i=1

1τIi ≤t,Xi(0)=S +
N∑
i=1

1τSi ≤t<τIi

)

+

(
N∑
i=1

1τIi >t,Xi(0)=I +
N∑
i=1

1τIi ≤t,Xi(0)=I

)
= N,

because the second term of the sum in the left hand side yields
∑N

i=1 1τIi ≤t,Xi(0)=S+∑N
i=1 1τSi ≤t<τIi

=
∑N

i=1 1τSi ≤t,Xi(0)=S .

Each process W θ
α defined as the number of individuals in compartment α

at time t ≥ 0 is a stochastic jump process with jumps −1 and +1. Jumps −1

and +1 occur when an individual leaves or enters α respectively. Let focus
on the jump -1 from some compartment distinct of α. Let t ≥ 0 and assume
that the individual with label i is such that Xi(t) = α. Let ταi be its exit
time from α. Therefore, the time at which an individual exits α is given
min{ταi | Xi(t) = α, i = 1, · · · , N}. This corresponds to the smallest exit time
among exit times of individuals present in the compartment α at time t.

Therefore, relying on Equation (5.7), the global stochastic process W θ

is entirely described by tolerance thresholds, sojourn times and multinomial
variables. For such a jump process, the following recursive system describes
the sequence of jump times (Tn)n≥0 of the process W θ:T0 = 0

Tn+1 := min
α∈V
{min{ταi , i = 1, · · · , N | Xi(Tn) = α}} (5.8)

Equation (5.8) states that conditionally to Tn, the next jump time of the
process W θ is given by the smallest exit time from all the compartments.
Notice that the sequence (Tn)n≥0 is non-decreasing since for any compartment
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α ∈ V and any individual with label i = 1, · · · , N such that Xi(Tn) = α, it
holds: ταi ≥ Tn.

Under specific probabilistic conditions, the processW θ is a continuous-time
Markov chain. This result is detailed in Proposition 7.

Proposition 7. Recall that for a compartment α of susceptible individuals,
infection pressure function is under the form Pα(t) =

∫ t
0 ψα

(
θ,W θ(s)

)
ds where

ψ is a nonnegative function. Assume that:

i. the tolerance thresholds variables, the sojourn time variables and the multi-
nomial variables are independent,

ii. the tolerance thresholds are i.i.d. variables distributed under an exponential
distribution with mean 1,

iii. the sojourn times are i.i.d. variables distributed under some exponential
distribution,

iv. the multinomial variables are iid,

In the context of Markovian epidemic modeling, for any epidemic parameter θ,
the extended Sellke construction yields a homogeneous continuous-time Markov
chain W θ characterized by the generator Q(ξ, ξ′)ξ,ξ′∈E defined as follows:

Q(ξ, ξ′) =


Q(ξ, ξ + uα,β) if ∃ (α, β) ∈ E : ξ′ = ξ + uα,β

−
∑

(α,β)∈EQ(ξ, ξ + uα,β) if ξ′ = ξ

Q(ξ, ξ′) = 0 otherwise
(5.9)

where:

Q(ξ, ξ + uα,β) = lim
ε→0

P
(
W θ(s+ ε) = ξ + uα,β |W θ(s) = ξ

)
ε

(5.10)

=

{
pα,β · ξα · ψα (θ, ξ) if (α, β) is an infection transition
pα,β · ξα · λα otherwise

(5.11)

and s ≥ 0, ξ = (ξα)α∈V ∈ E, λα is the mean sojourn duration in compartment
α and pα,β denotes the probability to perform the type of transitions (α, β).

Proposition 7 ensures that when conditions are fulfilled, the resulting model
of Sellke construction is a Markovian model with rates given in Equation (5.11).
Note that these conditions regarding independence and exponential distribu-
tions as specified above, are necessary to obtain Markovian processes. For
example, it is sufficient that a sojourn variable is not distributed under expo-
nential distribution for the resulting process to be non-Markovian.
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5.3 Simulation algorithm based on extended
Sellke construction

This section is devoted to building an algorithm to simulate the process W θ

= {W θ(t), 0 ≤ t ≤ T} for a given final time T > 0. For this purpose, in
Subsection 5.3.1, we provide a recursive description of dynamics of W θ and
then derive an algorithm. In Subsection 5.3.2, some simulations of dynamics
for an SEI1I2RS model are carried out in order to illustrate our method.

5.3.1 Algorithm

Let t ≥ 0 and ξ0 ∈ E . Recall that (Tn)n≥1 denotes the sequence of jump times
of the process W θ and ταi the exit time of an individual with label i from com-
partment α. Let (α(n+1), β(n+1)) be the type of transitions performed at jump
time Tn+1 for n ≥ 0. Finally, letMα

i be a sample of a multinomial distribution
Mα with parameters (cardCα = k; pα,γ1 , · · · , pα,γk) such that pα,γl > 0 for all
l = 1, · · · , k and

∑k
l=1 pα,γl = 1.

Then, the dynamic of the process W θ is entirely described by the following
recursive system:

T0 = 0

W θ(T0) = ξ0

Tn+1 = min
α∈V
{min{ταi , i = 1, · · · , N | Xi(Tn) = α}}

α(n+1) = argmin
α∈V

{min{ταi , i = 1, · · · , N | Xi(Tn) = α}}

i∗ = argmin
i:Xi(Tn)=α(n+1)

τα
(n+1)

i

β(n+1) = argmax
β∈C

α(n+1)

1M i∗
α(n+1)

=(α(n+1),β)

W θ(Tn+1) = W θ(Tn) + uα(n+1),β(n+1)

for n ≥ 0.

(5.12)
Let α ∈ V. To describe the simulation of multinomial variables, let us

suppose that Cα 6= ∅ with Cα = {γ1, · · · , γk} where k = card Cα ≥ 1. Denote
pα,γj the probability to pick the type of transitions (α, γj) where j = 1, · · · , k.
Let U be standard uniform variable, then M i

α is simulated by:

k∑
j=1

γj1U∈[
∑j−1
l=1 pα,γl ,

∑j
l=1 pα,γl [

.

Regarding the computation of next exit times from a compartment α ∈ V,
let assume that the process is in state W θ(Tn) at time t ≥ Tn. The way of
computing next exit times depends on the type of compartment. Let κα denote
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the next exit time from compartment α conditionally that the current state of
the system (Tn,W

θ(Tn)) remains unchanged.
Assume that α is not a compartment of susceptible individuals. Thus,

the transition mechanism is based on sojourn time and κα = min{ταi , i =

1, · · · , N | Xi(Tn) = α}. Otherwise, if α is a compartment of susceptible
individuals, then α is characterized by a pressure function Pα. Conditionally
to the current state of the system

(
Tn,W

θ(Tn)
)
, the function Pα is affine on

[Tn, κ
α[ and satisfies:

Pα(s) = Pα(Tn) + ψα

(
θ,W θ(Tn)

)
· (s− Tn) , (5.13)

for all s ∈ [Tn, κ
α[.

Denote Qαi the tolerance threshold of individual i such that Xi(Tn) = α

and let Qαmin = min{Qαi , i = 1, · · · , N | Xi(Tn) = α}. According to the
infection mechanism, the transition occurs when Pα reaches the resistance Qα.
The putative next exit time from α (i.e. not necessarily the true next exit
time) is the exit time of the individual with tolerance Qαmin:

κα =

Tn +
Qαmin−Pα(Tn)

ψα(θ,W θ(Tn))
if ψα

(
θ,W θ(Tn)

)
> 0

+∞ otherwise.
(5.14)

Note that κα ≥ Tn since Qαmin > Pα(Tn). Therefore Equation (5.14) provides
a recursive equation that enables to compute the next exit time from a suscep-
tible status compartment α conditionally to the current time and state of the
process, i.e.

(
Tn,W

θ(Tn)
)
. Let T be the final time of the study. Note that T

is choosen may not necessarily be the extinction time of the epidemic.
Before showing the algorithm, let us introduce some notation.

Notation:

• S denotes the set of all compartments of susceptible individuals

• T is the set of all compartments which are not sink compartments and
which do not contain susceptible individuals

• Qαi denotes the tolerance of individual i in α ∈ S . Assume Qαi are
distributed under a nonnegative continuous distribution Qα.

• Lαi is the sojourn time of individual i in α ∈ T .Assume Lαi are dis-
tributed under a nonnegative continuous distribution Lα.

Algorithm 12 is based on the following principle. At each transition, pu-
tative exit times of the compartments are computed and the transition to be
performed is given by the one associated with the minimum exit time at the
scale of the whole system. This principle is that of the Gillespie First Reaction
Method Algorithm 2. Moreover, this algorithm only considers the exit times
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Algorithm 12 Simulation algorithm
Inputs: θ

Require: ξ0, {ψα, α ∈ S },{uα,β, (α, β) ∈ E}, T
1: t← 0, w(t)← ξ0

2: Pα(t)← 0
3: for i such that Xi(0) = α do
4: Draw Qα

i under Qα

5: end for
6: for α ∈ T do
7: Draw Lαi under Lα
8: ταi ← Lαi
9: end for

10: while t < T do
11: for α ∈ S do
12: Qα

min ← min{Qα
i , i = 1, · · · , N | Xi(t) = α}

13: Aα ← ψα(θ, w(t))
14: κα ← t+ (Qα

min − Pα(t)) /Aα
15: end for
16: for α ∈ T do
17: κα ← min{ταi , i = 1, · · · , N | Xi(t) = α}
18: end for
19: κ← min{κα, α ∈ S ∪T }
20: α∗ ← argmin

α∈S∪T
κα

21: for α ∈ T do
22: Pα(κ)← Pα(t) + Aα × (κ− t)
23: end for
24: if α∗ ∈ S then
25: i∗ ← argmin

{i|Xi(t)=α∗}
Qα∗
i

26: Remove Qα∗
i∗

27: end if
28: if α∗ ∈ T then
29: i∗ ← argmin

{i|Xi(t)=α∗}
τα
∗

i

30: Remove τα∗i∗
31: end if
32: Draw U under U([0, 1])
33: β∗ ← argmax

γj∈Cα∗
1U∈[

∑j−1
l=1 pα∗,γl ,

∑j
l=1 pα∗,γl [

34: w(κ)← w(t) + uα∗,β∗
35: t← κ
36: if β∗ ∈ S then
37: Draw Qnew under Qβ∗

38: Qβ∗

i∗ ← Pβ∗(t) +Qnew

39: end if
40: if β∗ ∈ T then
41: Draw Lnew under Lβ∗

42: τβ
∗

i∗ ← t+ Lnew

43: end if
44: end while
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of the individuals. At a given time, it is not possible to know the compartment
in which a given individual is located. This makes it more computationally ef-
ficient. Actually, Algorithm 12 is not an agent-based algorithm because it does
not track individuals. The related complexity that is between the complexity
of Gillespie First Reaction Method Algorithm associated to the compartmental
model and that of the associated agent-based algorithm.

5.3.2 Simulations

In this subsection, Algorithm 12 is used to simulate dynamics of an SEI1I2RS

model (see Figure 5.3). This model enables to describe the propagation of an
epidemic within a population with the following characteristics: existence of an
incubation period for the infected individuals, the presence of two categories
of infectious individuals and the absence of total immunity (possible reinfec-
tion). For instance, it could allow to model the spread of SARS-CoV-2 by
considering individuals in compartment I1 as symptomatic people and those
in compartment I2 as asymptomatic people. Such a model includes six types
of transitions detailed in Table 5.1.

Type of transition Type Transition vector
(S,E) infection (−1, 1, 0, 0, 0)

(E, I1)
first type

infection activation (0,−1, 1, 0, 0)

(E, I2)
second type

infection activation (0,−1, 0, 1, 0)

(I1, R)
first type
recovery (0, 0,−1, 0, 1)

(I2, R)
second type
recovery (0, 0, 0,−1, 1)

(R, S) reinfection (1, 0, 0, 0,−1)

Table 5.1 – Description of the model transitions between states {S,E, I1, I2, R}.

Model dynamics depend on six epidemic parameters provided in Table 5.2.
Let us denote θ the vector of all parameters and choose T ∈ (0,+∞). We
study the process W θ = {(WS(t),WE(t),WI1(t),WI2(t),WR(t)), t ∈ [0, T ]}
that counts over time in each compartment the number of individuals. In this
modeling, it is assumed that only one pathogen agent is spreading. In addition,
the transmission parameter β is assumed to be the same for individuals in
compartment I1 and I2 so that the infection pressure is given by:

PS(t) =
β

N

∫ t

0
(WI1(s) +WI2(s))ds.
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Table 5.2 – Model parameter nominal values and their probability distributions
with ranges of variation (Knock et al., 2021)
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Moreover, it is assumed that tolerance thresholds towards PS are distributed
under exponential with mean 1.

For illustration purpose, parameters are set to their nominal values (see
Table 5.2) and simulations are carried out with respect to two cases: Markovian
and non-Markovian. The difference between the two cases lies in the fact that
the probability distributions of tolerance thresholds, sojourn time variables are
exponential or not. The two cases are presented in the following.

5.3.2.1 Markovian case

In Markovian case, sojourn times in E, I1, I2 and R are respectively distributed
under exponential distributions with mean 1/µE , 1/µ1, 1/µ2 and 1/δ. More-
over, tolerance thresholds are drawn from an exponential distribution with
mean 1. The associated model is a continuous-time Markov chain with rates
given in Table 5.3.

Type of transition Rates
(S,E) β

N
·WS · (WI1 +WI2)

(E, I1) p · µE ·WE

(E, I2) (1− p) · µE ·WE

(I1, R) µ1 ·WI1

(I2, R) µ2 ·WI2

(R, S) δ ·WR

Table 5.3 – Transition rates for the Markovian model.

The scale limit of such a model as N →∞ is an ODE system which is noth-
ing but the corresponding SEI1I2RS deterministic model given in Equation
(5.15):



d
dtwS(t) = δwR(t)− β

NwS(t)× (wI1(t) + wI2(t))
d
dtwE(t) = β

NwS(t)× (wI1(t) + wI2(t))− µEwE(t)
d
dtwI1(t) = p× µE × wE(t)− µ1wI1(t)
d
dtwI2(t) = (1− p)× µE × wE(t)− µ2wI2(t)
d
dtwR(t) = µ1wI1(t) + µ2wI2(t)− δwR(t)

(5.15)

In order to compare fluctuations of paths generated by Algorithm 12 to the
theoretical mean trajectories in Markovian case, the ODE system is solved
and solutions (wS , wE , wI1 , wI2 , wR) are displayed together with Algorithm 1
outputs.
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5.3.2.2 Non-Markovian case

The non-Markovian character of the model originates from the use of Gamma
distributions with shapes distinct of 1 to simulate sojourn time variables in
compartments E, I1 and I2. Indeed, if shapes were equal to 1, Gamma dis-
tributions would actually coincide with exponential distributions. Therefore,
from Proposition 7, it follows that the resulting model would be Markovian.
The use of Gamma distributions including Erlang distributions to describe
sojourn in compartments is common in non-Markovian epidemic modeling.
One could refer to Pellis et al. (2015); Rost et al. (2016); Vajdi et al. (2021);
Di Lauro et al. (2022), etc. Here, the probability distributions used in the
non-Markovian case are listed in Table 5.4.

Variables Probability distributions
Tolerance thresholds Exponential with mean 1
Sojourn time in E Gamma with shape ρE and rate ρE × µE
Sojourn time in I1 Gamma with shape ρ1 and rate ρ1 × µ1

Sojourn time in I2 Gamma with shape ρ2 and rate ρ2 × µ2

Sojourn time in R Gamma with shape ρR and rate ρR × δ

Table 5.4 – Probability distributions of thresholds and sojourn times. It should
be noted that gamma distribution shapes: ρE , ρ1, ρ2 and ρR are arbitrarily
chosen.

Note that the mean sojourn times in compartments E, I1, I2 and R re-
main the same in both Markovian and non-Markovian cases. Indeed, given
ρ > 0 and µ > 0, the Gamma distribution with shape ρ and rate ρ × µ (de-
noted G (ρ, ρ× µ)) and the Exponential distribution with mean 1/µ (denoted
Exp(µ)) share the same mean, that is, ρ/(ρ × µ) = 1/µ. However, variances
of these two distributions are different if ρ 6= 1. It appears that the variance of
G (ρ, ρ× µ) is VG = 1/(ρ× µ2) while that of Exp(µ) is VE = 1/µ2. Therefore,
if ρ < 1, VG > VE and conversely, if ρ > 1 then VG < VE . Hence, depending on
the choice of shape ρ, different behavior of the process W θ could be expected.

For this non-Markovian model, the scale limit when N → ∞ is no longer
an ODE system but rather a system of integrodifferential equations (IDE) as
studied in Pang and Pardoux (2022); Forien et al. (2021a). It turns out that the
IDE system is complex so that even a numerical solving was not considered.
Instead, the empirical mean of a set of trajectories is used to heuristically
illustrate the limit.

5.3.2.3 Numerical setting and simulations

For simulation purposes, a population of N = 2005 individuals is considered.
At t = 0, it is assumed that 5 individuals are exposed while the 2000 remaining
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individuals are all susceptible. Epidemic dynamic is observed over the interval
[0, 500] (i.e. T = 500 days) and in addition epidemic parameters are set to
nominal values provided in Table 5.2.

Figure 5.5 shows epidemic dynamics in Markovian case (this corresponds
to the case where every shape of various sojourn time distributions is equal
to 1). One could note that trajectories fluctuate well around the theoretical
mean given by the solution of the ODE system in Equation 5.15. This en-
sures that up to randomness, our stochastic simulator returns correct process
realizations. The dynamics shown in this figure are emergent trajectories, i.e.
trajectories obtained conditionally to non-extinction of the epidemic. By re-
lying on extinction time defined as the first time when WE = 0,WI1 = 0 and
WI2 = 0 (here empirically defined here as extinction before day 125), it oc-
curs that the proportion of early extinction of epidemics among 50 epidemic
dynamics reaches 20%, i.e., empirically, one epidemic scenario out of 5 leads
to early extinction.

In the non-Markovian framework, two cases are considered regarding Gamma
distribution shapes: ρE = 50 and and ρE = 1/50. This means that only the
sojourn durations in compartment E are not distributed under exponential
laws. Note that the choice of shape parameters are not necessarily realistic
(Forien et al., 2021b). They are simply used for illustration purposes.

The main point that arises when analyzing Figure 5.6 is that each output
WE ,WI1 andWR, dynamics are different from one case to another. On average,
the model with ρE = 50 predicts more expositions to infection than that
of shapes equal to ρE = 1/50. It also occurs that the proportion of early
extinction of epidemics rises to 80% before day 125 in the case ρE = 1/50

whereas it is below 10% in the case ρE = 50. This is in agreement with previous
findings in modeling of infectious diseases, where the level of extinction was
shown to be higher when variance of the sojourn time distribution was also
higher (see for instance Keeling and Grenfell (2002)).

To understand why in the case ρE = 1/50, the model predicts fewer num-
ber of exposed, consider densities of the Gamma distributions (refer to Figure
5.A.1). One could notice that when the shape parameter of a Gamma distri-
bution is lower than 1, its density is decreasing and maximal at point 0. This
means that the distribution is such that small values have larger weights. Thus,
when drawing the sojourn duration in compartment E with such a distribu-
tion, a large proportion of samples are close to 0 (refer to Figure 5.A.2). As a
result, individuals only have short stays in E. This explains the low number
of exposed individuals since they do not accumulate in E.
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Figure 5.5 – 15 trajectories over [0, 500] of number of individuals in compart-
ments S,E, I1, I2 and R in the given Markovian case. The black curve cor-
responds to the solutions of the ODE defined in Equation (5.15). Epidemic
parameters are equal and set to nominal values in Table 5.2.
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Figure 5.6 – 15 trajectories over [0, 500] of number of individuals in compart-
ments S, I1 and R in the non-Markovian case, where f ρE = 1/50, ρ1 = ρ2 =
ρR = 1 (a,c,e) and the case ρE = 50, ρ1 = ρ2 = ρR = 1 (b, d, f). For both
cases, epidemic parameters are equal and set to nominal values provided in
Table 5.2. The black curve corresponds to empirical time-wise mean over the
15 trajectories.
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5.4 Sensitivity analysis
This section aims at performing global sensitivity analysis of some quantities
of interest defined from outputs of W θ. In particular, we are interested in
contributions of the intrinsic randomness of the non-Markovian process W θ

under different conditions. For this purpose, we introduce a deterministic
representation of W θ as in Kouye et al. (2022), that is, W θ is put under the
form of a deterministic function of θ and of a collection of random variables
with known distributions that models the intrinsic randomness.

5.4.1 Deterministic representation

Let α ∈ V and t ≥ 0. Based on Equation (5.7), the number of individuals
in compartment α at time t, W θ

α(t), is a function of exit times of individuals
and multinomial variables. However, exit times of individuals can be written
as sums of sojourn time variables and some functions of tolerance thresholds.
More precisely, latter functions are defined as generalized inverses of pressure
functions. Let us illustrate statements above through an example.

Example 12. Consider the SEI1I2RS model. Then, health statuses are:
S,E, I1, I2 and R. Assume that the individual with label i is initially sus-
ceptible, i.e., that Xi(0) = S. In addition, suppose that this individual will
transit through the compartment I1. For such an individual, let us denote
QSi , L

E
i , L

I1
i , L

R
i his or her tolerance threshold, sojourn time variable in E and

I1 respectively. Thus, the first four exit times of individual with label i are
given by:

τSi = inf{s ≥ 0 | PS(s) ≥ QSi } = P
(−1)
S (QSi )

τEi = τSi + LEi = P
(−1)
S (QSi ) + LEi

τ I1i = τSi + LEi + LI1i = P
(−1)
S (QSi ) + LEi + LI1i

τRi = τSi + LEi + LI1i + LRi = P
(−1)
S (QSi ) + LEi + LI1i + LRi

Therefore, it appears that any exit time is entirely function of multi-
nomial variables, tolerance thresholds and sojourn time variables. Assume
that this collection is simulated by using a sequence U of i.i.d. standard
uniform variables. Let denote by (L([0, 1]),Ω) a measurable space of se-
quences on [0, 1]. Let Θ the set of all parameters and (Θ,B (Θ)) a measur-
able space. Thus, for all i = 1, · · · , N and for α ∈ V, there exists a function
g

(i)
α : (θ, u) ∈ Θ × L([0, 1]) 7→ g

(i)
α (θ, u) such that ταi = g

(i)
α (θ, u) for some

u ∈ L([0, 1]). From Equation (5.7), it is straightforward that, for all t ≥ 0:

W θ
α(t) =

N∑
i=1

1
g
(i)
α (θ,U)>t,Xi(0)=α

+

N∑
i=1

∑
γ∈Pα

1
g
(i)
γ (θ,U)≤t<g(i)α (θ,U),F−1

Mα (Ui)=(γ,α)

:= fα(t, θ, Z),
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where U1, · · · , UN are i.i.d. standard uniform variables independent from
U , Z = (U1, · · · , UN , U) and F−1

Mα is the quantile function of the multino-
mial distribution Mα, where Mα is independent of any other random vari-
able. Hence W θ(t) can be seen as a function f of (t, θ, Z) where f(t, θ, Z) =

((fα(t, θ, Z))α∈V).
To understand from a practical point of view what the function f repre-

sents, assume that Algorithm 12 is modified so that instead of simulating the
variables during executions, a sequence Z of i.i.d. uniform variables is given as
input. Then, the elements in this sequence are used sequentially to simulate
any required random variables within the algorithm. Hence, f(t, θ, Z) can be
seen as outputs of such modified version of Algorithm 12. Such modification
is purely algorithmic so that the probability distribution of W θ is preserved.
The advantage of such representation lies in the fact that if parameters θ ∈ Θ

are uncertain and drawn from a random vector X such that X and Z are
independent, then the resulting random field WX satisfies:

WX = {f(t,X, Z), t ∈ [0, T ]}, (5.16)

Therefore, the couple (f, Z) is said to be a representation of WX in the sense
of Kouye et al. (2022). Notice that if θ is fixed and Z is set to z, then the
corresponding trajectory {f(t, θ, z), t ∈ [0, T ]} is no longer random but deter-
ministic. Hence (f, Z) is a said to be a deterministic representation. If θ is
fixed, the randomness of the process is entirely due to Z. Then, Z represents
the intrinsic randomness of W θ.

5.4.2 Results of sensitivity analysis

Assume that the components ofX are mutually independent. Thus, the Sobol’-
Hoeffding decomposition (Sobol’, 1993) allows to point out contributions of
both parameter inputs X and intrinsic randomness Z. Relying on such a
representation, variance-based sensitivity indices of inputs X and Z of some
outputs of the epidemic process are assessed under different conditions. In
particular, in this study, we focus on total indices (Homma and Saltelli, 1996).
This kind of variance-based indices accounts for global impact of inputs, that
is, both main contributions to the global variance and interactions with other
inputs are taken into account.

For the SEI1I2RS model, we consider two types of quantities of interest
(QoIs): a scalar QoI given by max{WE(t), t ∈ [0, 250]} and dynamical outputs
WS ,WE ,WI1 ,WI2 ,WR over [0, 250]. Regarding dynamical outputs, two total
variance-based indices are introduced: dynamical total indices and aggregated
indices (Lamboni et al., 2011). Dynamical total indices are actually total
indices computed over time so that they define functions of time. Besides,
aggregated indices are positive numbers in [0, 1] given by ratios of sum over
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time of weighted contributions and sum over time of global variances. Those
indices are estimated using pick-freeze procedure (Jansen, 1999).

We estimate indices for epidemic inputs and intrinsic randomness: β, p, µE ,
µ1, µ2, δ, ρE , ρ1, ρ2, ρR and Z. Recall that epidemic inputs are sampled with
uniform distributions. The ranges of variations of β, p, µE , µ1, µ2, δ are given
in Table 5.2 wheres parameters ρE , ρ1, ρ2, ρR are supposed to vary on either
[0, 1] or [4, 5] depending on the case considered. For estimations, we consider
n = 1500 samples of inputs. Notice that each sample of Z is a sequence of i.i.d.
standard uniform variables. In practice, each sample of Z is associated with an
integer that is used to set the random number generator seed so that as the seed
is fixed, then it is possible to simulate an arbitrary number of uniform variables.
In addition, estimations are performed by invoking the function soboljansen of
the R-package sensitivity (Iooss et al., 2020). Each estimation is replicated
N = 50 times in order to build 50 i.i.d. samples. Those index samples enable
to show boxplots of total indices (see Figure 5.7) and aggregated total indices
(refer to Figure 5.9).

5.4.2.1 Scalar output

Figure 5.7 shows boxplots of total indices of epidemic parameters and intrinsic
randomness in three cases: the Markovian case and two non-Markovian cases
depending on whether shapes are inferior to 1 or superior to 1. It appears that,
except for the Markovian case for which the shape parameters have a null total
contribution as expected, the results are consistent between the cases because
input rankings are globally the same. However, in the case where shapes
superior to 1, the total indices are globally higher than those in the two other
cases. Either when the shape parameters are superior to 1, interactions are
more pronounced, or as the shape parameters become smaller, there is more
extinction and thus less variability. Anyhow, the results of the sensitivity
analysis are different.

5.4.2.2 Dynamical outputs

Figure 5.8 shows the evolution over time of dynamical total indices. It follows
that differences appear between the two cases. For instance, until day 50, the
total indices of β, µ1 and δ in the case shapes where inferior to 1 show faster
growth than those in the case of shapes superior to 1. The most noticeable
difference is observed in the intrinsic randomness (Z) dynamical indices. Thus,
with respect to our numerical setting, the sensitivity analysis reveals the influ-
ence of Z decreases between days 0 and 250 unlike that of uncertain epidemic
parameters. But, even when the impact of Z decreases in both cases, the
decrease rate is much greater in the case of shapes inferior to 1.
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Figure 5.7 – Total indices of maxWE . In both cases, boxplots are obtained
with 50 samples.

The boxplots displayed in Figure 5.9 confirm the conclusion drawn from
Figure 5.8. Better, they show a clear difference in the global impact of Z
and shape parameters ρE , ρ1, ρ2, ρR between the two cases. Indeed, for each
process WS ,WE ,WI1 ,WI2 and WR, the aggregated indices of Z are at least
twice greater in the case of shapes superior to 1 and those of shape parameters
are globally twice high.

By analyzing main contributions of inputs (see Figure 5.B.1), it follows that
the high values of total indices are also due to interactions. This implies that
the intrinsic randomness and the shape parameters interact with other inputs
much more in the case where shapes are superior to 1. Overall, GSA results
enable to conclude that depending on the choice of those shapes, influence
of the intrinsic randomness of epidemic process can get reduced or magnified.
Indeed, since non-Markovian processes have memory, the choice of shapes could
modulate the memory of the process (Forien et al., 2021b). All of these results
are consistent with studies in the literature which show that differences appear
when the distributions of sojourn times change (Wilkinson and Sharkey, 2018).
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5.5 Conclusion

This work extended the Sellke construction to more complex models. Like the
original construction, the proposed one is also an individual-based approach
that allows to describe epidemic models in both Markovian and non-Markovian
frameworks. An algorithm is derived and allows to generate exact paths of
stochastic epidemic processes. In addition, separating intrinsic randomness of
such processes from uncertain epidemic parameters is then possible because, as
a consequence of the use of individual-based approach, the intrinsic randomness
can be characterized. The intrinsic randomness originates from noises due to
individual particularities toward infections and their behaviors or choices and
furthermore this makes dynamics of epidemics random even when epidemic
parameters are totally known. This separation of uncertainties leads to see
model outputs as deterministic functions of uncertain epidemic parameters
and intrinsic randomness. In practice, such function is provided by Algorithm
12 up to slight modification.

Through a global sensitivity analysis, the impact of this intrinsic random-
ness in non-Markovian framework has been quantified on different versions of
the SEI1I2RS model. The non-Markovian SEI1I2RS was obtained by consid-
ering that sojourn times in compartments E, I1, I2 and R are distributed under
Gamma distributions with shapes distinct of 1. The first case considers that
all the shapes are inferior to 1 whereas the second case assumes that all the
shapes are superior to 1. Estimation of total indices reveals that the impact of
the intrinsic randomness is sensitive to the range of variation of shapes. This
impact gets reduced or magnified depending on whether shapes are inferior to
1 or not. Note that the study non-Markovian models with shapes inferior 1
versus shapes superior to 1 was performed to understand the impact of this
choice on epidemic dynamics and on sensitivity indices, but in practice the
choice of shapes inferior to 1 is not realistic (Forien et al., 2021b). Indeed,
for such a choice, the variance of the sojourn times in the different compart-
ments would be greater than for the exponential distribution. But this is not
what data suggest (Manica et al., 2022). In future work, interactions between
inputs could be estimated in order to identify or confirm which uncertain pa-
rameters much interact with intrinsic randomness and shape inputs. Also, the
non-Markovian models derived from the extended Sellke construction could
be compared to other non-Markovian models (e.g. Vestergaard and Génois
(2015); Boguñá et al. (2014); Masuda and Rocha (2018)). Since those algo-
rithms are different, the results of variance-based sensitivity analysis can be
different as well, as it is shown in Kouye et al. (2022). Therefore, it could
be interesting to point out in the non-Markovian case, how the difference in
simulation algorithms affects outputs and also the influence of both uncertain
parameters and intrinsic randomness.
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Appendix

5.A Reminder

Gamma distributions

A gamma distribution G (ρ, ρ× µ) with shape ρ and rate ρ×µ is the probability
distribution with density fρ,µ(x) = (ρµ)ρ

Γ(ρ) x
ρ−1 exp (−ρµx). The trivial case

ρ = 1 is an exponential distribution with mean 1/µ. In addition, the mean of
G (ρ, ρµ) is 1/µ, i.e. it is the same expectation as an exponential distribution
with mean 1/µ. Figure 5.A.1 shows density curves of some gamma distributions
and highlights the effect of the shape on the density.
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Figure 5.A.1 – Density of gamma distributions in the case ρ = 0.1, 0.5, 1, 4.5, 10
and µ = 2. The vertical line corresponds to x = 1/µ the theoretical mean of
those distributions.

5.B Plots
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(a) Case ρE = 50

(b) Case ρE = 1/50

Figure 5.A.2 – Histograms of durations in compartment E

5.C Proof of Proposition

Proof of Proposition 7

Under assumptions of Proposition 7, independence of sojourn variables and
resistance thresholds and the loss of memory property of exponential distribu-
tions ensure that the resulting process is a continuous-time Markov chain.

Let ξ = (ξγ)γ∈V. Denote p(ε) = P
(
W θ(ε) = ξ + uα,β |W θ(0) = ξ

)
. We

aim to compute limε→0
p(ε)
ε . For this, remark that:

p(ε) = P

 ⋃
i:Xi(0)=α

{ταi ≤ ε,Mα
i = (α, β)} ∩

⋂
j 6=i:Xj(0)=γ

{τγj > ε}


=

∑
i:Xi(0)=α

P (Mα
i = (α, β))P

{ταi ≤ ε} ∩ ⋂
j 6=i:Xj(0)=γ

{τγj > ε}


p(ε) = pα,β ×

∑
i:Xi(0)=α

P (ταi ≤ ε)
∏
γ∈V

∏
j 6=i:Xj(0)=γ

P
(
τγj > ε

)

Two cases are studied with respect to the type of compartment α.
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• If α is a compartment of susceptible individuals, then:
P (ταi ≤ ε) = P (Qi ≤ Pα(ε)). So:

p(ε) = pα,β × (1− exp [−Pα(ε)])
∑

i:Xi(0)=α

∏
γ∈V

∏
j 6=i:Xj(0)=γ

P
(
τγj > ε

)

Thus, limε→0
P(W θε)=ξ+uα,β |W θ(0)=ξ)

ε yields:

pα,β × lim
ε→0

(1− exp [−Pα(ε)])

ε
× lim
ε→0

∑
i:Xi(0)=α

∏
γ∈V

∏
j 6=i:Xj(0)=γ

P
(
τγj > ε

)
.

Hence limε→0
P(W θ(ε)=ξ+uα,β |W θ(0)=ξ)

ε = pα,β×ψα (θ, ξ)×card ({i : Xi(0) = α}) =

pα,β × ψα (θ, ξ)× ξα.

• If α is not a compartment of susceptible individuals, then exit time from
α for the individual with label i is under the form:

ταi =


Lαi + τγi if Pα 6= ∅
Lαi if Pα = ∅
+∞ if Cα = ∅,

where γ ∈ Pα, τ
γ
i is the exit time of the individual with label i from

γ and Lαi is distributed under the exponential distribution with mean
1/λα. Therefore: P (ταi ≤ ε) = P (Lαi ≤ ε) = 1− e−λαε.

It yields:

p(ε) = pα,β ×
(

1− e−λαε
)∑
i∈αs

∏
γ∈V

∏
j 6=i:Xj(s)=γ

P
(
τγj > ε

)
.

It follows that limε→0
P(W θ(ε)=ξ+uα,β |W θ(0)=ξ)

ε = pα,β×λα×card ({i : Xi(0) = α}) =

pα,β × λα × ξα.
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This thesis studies the sensitivity analysis of stochastic models. Indeed, un-
like deterministic models which only include parametric uncertainty, stochastic
models include an additional source of uncertainty given by intrinsic random-
ness. The intrinsic randomness that characterizes this type of models is re-
sponsible for the randomness of outputs even when parameters are perfectly
known.

In epidemiology where stochastic models are commonly used as they pro-
vide useful insights of disease spread, sensitivity analysis is crucial because it
is associated with reliability issue. Sensitivity analysis helps to better under-
stand models, to highlight the role of uncertain epidemic parameters, to make
decisions, etc.

During this thesis, we developed sensitivity analysis approaches to deal
with the influence of intrinsic randomness in stochastic models in general and
in compartmental epidemic models based on stochastic processes in particular.
Precisely, the goal was to find methods to manage more efficiently the noise

161
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originating from the intrinsic randomness in the estimation of sensitivity in-
dices and to build approaches to deal with stochastic models in a paradigm
where intrinsic randomness is no longer a noise but an input of models to be
taken into account. The works carried out led to different main contributions
discussed in the following.

6.1 Main contributions

6.1.1 Bias-variance trade-off in estimation of Sobol’
indices for averaged quantities of interest

The first contribution of this thesis, detailed in Chapter 3, concerns the esti-
mation of Sobol’ indices for quantities of interest (QoIs) of stochastic models
defined as averages with respect to the intrinsic randomness. Our contribu-
tion consisted in developing a strategy based on the mean squared error of
estimators of sensitivity indices that helps to find a new trade-off between the
number of repetitions of model evaluations and the number of input samples
to consider. On one hand, the study of this error, which accounts for estimator
accuracy, led to convergence results in the mean-squared sense as both number
of repetitions and number of input samples increase. On the other hand, rely-
ing on an upper bound of the error, we deduced a trade-off of numbers of input
sample and number of repetitions. Finally, an algorithm based on this trade-off
was proposed to estimate Sobol’ indices, which adapts to the magnitude of the
intrinsic randomness of the considered stochastic model.

6.1.2 Deterministic representation for compartmen-
tal models based on continuous-time Markov
chains

The second contribution discussed in Chapter 4 aims at performing the global
sensitivity analysis of continuous-time Markov chain based models so that the
contribution of both uncertain parameters and intrinsic randomness can be
assessed. For this, we investigated the deterministic representation of such
model outputs. This consisted in writing outputs as deterministic functions
of uncertain parameters and intrinsic randomness. To obtain this represen-
tation for CTMC based models, we separated uncertain epidemic parameters
from the variables involved in the simulation of chain jumps and those of jump
times. Indeed, these variables are responsible for the randomness of outputs.
To do that, we modified Gillespie algorithms (Gillespie, 1977) for simulation of
CTMCs: Direct Method (see Algorithm 1) and First Reaction Method (refer
to Algorithm 2). It was then possible to represent CTMCs under determinis-
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tic form and to estimate the contributions of both uncertain parameters and
intrinsic randomness in the case of an epidemic model of SARS-CoV-2 spread
as an application. Finally, we compared this approach to an equivalent ap-
proach proposed in the literature (Le Maître et al., 2015; Navarro Jimenez
et al., 2016). This led to highlight that the choice of the deterministic function
and the random variables representing the intrinsic randomness influences the
results of sensitivity analysis of stochastic models.

6.1.3 Extension of Sellke construction to perform the
sensitivity analysis for non-Markovian epidemic
models

The third contribution presented in Chapter 5 is related to the sensitivity anal-
ysis of compartmental models based on non-Markovian processes. For this cat-
egory of models, the chosen approach is similar to the one used for models based
on continuous time Markov chains. In other words, we wrote the outputs of
these models as deterministic functions of uncertain parameters and variables
representing the intrinsic randomness. While the availability of a wide range
of analysis and simulation tools facilitates the sensitivity analysis approach we
chose for Markov chain models, this is not the case for non-Markovian models.
To bypass this issue, we described the epidemic models using a Sellke-type
construction (Sellke, 1983). To our knowledge, Sellke construction was focused
mainly on the simulation of SIR based models so far.

In this thesis, we extended it to more complex compartmental models with
an arbitrary number of compartments and transitions in a non-Markovian
framework with the size of the population assumed to remain constant. We
showed that this construction leads to the Markovian model under specific
assumptions and we developed an algorithm to simulate in practice epidemic
dynamics based on such an approach. Finally, we performed sensitivity anal-
ysis and assessed contributions of the intrinsic randomness in a Markovian
and non-Markovian frameworks based on Sellke extension. An application was
carried out for the SEI1I2RS model.

6.2 Perspectives

This thesis and the contributions therein raised several points that could be
addressed in future works.
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6.2.1 About the bias-variance trade-off in estimation
of Sobol’ indices

Rate of convergence of the mean squared error

In this work, we considered the function g : (x1, x2, x3) 7→ (x3 − x2
2)/(x1 − x2

2)

to define first-order Sobol’ indices and their estimators respectively under the
form g(θ) and g(θ̂n,m), where n denotes the number of input samples and m
represents the number of repetitions of model evaluations at each input sample.
In order to get tractable upper bound for the MSE given by E(g(θ̂n,m)−g(θ))2,
we introduced a family of functions gh parameterized by h ∈ (0, 1) defined as
gh : (x1, x2, x3) 7→ (x3 − x2

2)/(h + x1 − x2
2). For fixed h, we deduced upper

bound of the MSE. However, this bound provides only an asymptotic control,
i.e. when n,m → ∞. Moreover, because of the dependence of n and m

on the choice of h, we were not able to deduce the rate of convergence of the
MSE. So, it would be interesting to conduct further investigation regarding the
convergence rate and to compare it to the optimal rate in (nm)2/3 suggested
by the bias-variance trade-off on the bound. Furthermore, one could look for
a non-asymptotic control of the MSE.

Sequential adaptive algorithm

The scheme we proposed to simulate the Sobol’ indices using the bias-variance
trade-off is for a fixed computational budget T , i.e, the total number of model
evaluations allowed. One perspective to consider is to introduce an accuracy
criterion on the MSE in combination with the total number of model evalua-
tions. In that case, a desired precision on estimation could be fixed and then,
required number of inputs and number of repetitions are performed untill the
total budget is reached or the precision is reached. Moreover, a sequential algo-
rithm could be developed as in (Binois et al., 2019). This sequential algorithm
would choose at each step either to consider a new input sample or to repeat
an evaluation according to what enables to reduce more the MSE.

Multilevel Monte-Carlo for Nested simulation

In Chapter 3, estimation of moments of stochastic model outputs is based
on a double Monte-Carlo procedure called Nested Monte-Carlo . On the one
hand, in Giles (2018), authors developed a multilevel approach to estimate the
moments of the form E(ϕ(E[h(Y | X)])) where ϕ and h are two functions and
X,Y are two random variables. This approach consists in using a sequence
of estimators with increasing accuracy and computational cost. On the other
hand, in Mycek and De Lozzo (2019) , the multilevel approach is applied to
covariance estimators. Thus, considering Sobol’ indices as ratios of covariances,
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authors deduced a multilevel approach for estimating Sobol’ indices. Hence, it
would be of interest to combine these two approaches to estimate Sobol’ indices
in the case of stochastic models. This would take advantage of computation
efficiency and accuracy of multilevel estimators.

6.2.2 About the deterministic representation of continuous-
time Markov chains

Considering other indices

In Chapter 4, we represented under deterministic form the output of a continuous-
time Markov chain from compartmental epidemic models. The sensitivity
analysis method used is that based on the variance, that is, the Sobol’ in-
dices. However, the use of the variance as a measure of uncertainty can be
subject to criticism as the variance only characterizes the moment of order
2 of a distribution and not even the higher moments. In this sense, it does
not fully characterize distributions. For this, other types of indices can be
used: moment-independent indices (Borgonovo, 2007; Borgonovo and Taran-
tola, 2008), Kernel-based indices (Da Veiga, 2021; Barr and Rabitz, 2022),etc.
depending on what is possible given the model under consideration. It would
be of interest to extend the scope of use of the deterministic representation to
other sensitivity analysis methods in order to see from other perspectives the
way the intrinsic randomness affects model output.

Studying the dependence on representation

An important point that emerges from this study is that the results of sensitiv-
ity analysis depend on the choice of the deterministic representation, i.e., the
choice of the deterministic function and the random variables representing the
intrinsic randomness. This makes equivocal sensitivity indices for stochastic
models in the framework of variance-based analysis since they could depend on
simulation algorithms. It would be interesting to investigate, given a model,
which simulation algorithm should be preferred depending on which charac-
teristics of the underlying process one wishes to better understand.

6.2.3 About the extension of Sellke construction

All the perspectives mentioned in Section 6.2.2 regarding the deterministic
representation of continuous-time Markov chains are also valid in the case of
deterministic representation of non-Markovian processes resulting from com-
partmental models. But in addition, we could mention some specific perspec-
tives on the Sellke extension and its simulation.
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Extension to open population models

In Chapter 5, the construction that extends Sellke’s assumes that the popula-
tion is closed, that is, the total number of individuals remains constant over
time. This assumption simplifies the construction because phenomena such as
population vital dynamics are not taken into account. Therefore, only transi-
tions between compartments related to the infection are modeled. But it would
be interesting to extend the framework of this construction to more realistic
models such as models with demography and metapopulation models. This
could increase the scope of this construction and thereby that of the related
algorithm because the latter would enable to simulate a wide range of com-
partmental models within both Markovian and non-Markovian frameworks.

Improving algorithms

The algorithm related to the generalized construction is based on the following
principle: at each transition, every type of transitions is considered and the
putative jump times are computed and then compared in order to determine
transition to be executed. Hence, the complexity of this algorithm increases if
at least one of the following parameters increases: the size of population, the
number of types of transitions or the number of compartments of the model.
Then, either a more efficient algorithm should be introduced or the current
algorithm should be optimized. One way to optimize the current algorithm
would be to consider parallel implementation techniques.

6.3 Conclusion
This thesis studied approaches to perform sensitivity analysis of stochastic
models by taking advantage of sensitivity analysis tools for deterministic mod-
els. For this, two main axes were considered: the estimation of Sobol’ indices
for averaged quantities of interest with respect to intrinsic noise and the rep-
resentation under deterministic form of stochastic compartmental epidemic
models by modeling explicitly intrinsic randomness. Concerning the first axis,
we stated theoretical results leading to an estimation strategy based on a new
trade-off between exploration and repetition. Regarding the second axis, we
proposed new algorithms to perform sensitivity analysis of Markovian and
non-Markovian compartmental models, assessing in particular the influence of
the intrinsic randomness, by itself or in interaction with any subset of input
parameters on model outputs. The results of this PhD thesis are theoretical
(study of the mean squared errors of estimators and quadratic convergence),
methodological (approaches of sensitivity analysis of stochastic models) and
computational (algorithms for simulation of epidemiological models and sensi-
tivity analysis).
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7.1 Introduction à la modélisation en épidémi-
ologie

Les maladies infectieuses, qu’elles surviennent dans les populations humaines,
animales ou végétales, peuvent avoir de graves conséquences sociétales (crise
sanitaire, alimentaire, etc.), économiques ( récession, etc.) ou environnemen-
tales (destruction d’écosystèmes, pollutions environnementales, etc.). Mal-
heureusement, de nos jours, la pandémie de la COVID-19 causée par le SARS-
CoV-2, qui a frappé le monde entier en 2019, a montré combien les dégâts
suite à la propagation d’un agent pathogène, nouveau de surcroit, peuvent
être énormes. Durant cette crise, les outils de modélisation mathématique de
la propagation des épidémies se sont illustrés comme des instruments de choix
pour comprendre la propagation, prédire les dynamiques d’infections, analyser
les scénarios épidémiques, aider à prendre des décisions pour la gestion de
l’épidémie.

En effet, les modèles mathématiques facilitent la compréhension de la
dynamique des épidémies et permettent de mettre en évidence de nouveaux
phénomènes en lien, par exemple, avec les modes de transmission ou la durée
de l’immunité... ou des processus sous-jacents à la dynamique observée. En
complément aux domaines tels que la médecine, la biologie ou la microbiolo-
gie qui étudient les agents pathogènes, la modélisation épidémique permet de
mieux comprendre les mécanismes par lesquels les agents pathogènes se propa-
gent au sein d’une population ou entre les populations. Le développement

167



168 CHAPTER 7. RÉSUMÉ LONG

de cette discipline a conduit à l’émergence de différentes approches pour la
modélisation de la propagation des épidémies, parmi lesquelles la modélisation
compartimentale (Kermack et al., 1927). Le principe de cette approche est le
suivant. Considérons une population au sein de laquelle se propage une mal-
adie infectieuse. De plus, supposons que, pour cette infection, différents états
de santé vis-à-vis de la maladie sont observés, tels que : sensible (sain), infecté
et/ou infectieux, immunisé, hospitalisé, etc. Ces états sont reliés entre eux en
fonction de la manière dont se déroulent les différentes phases de l’infection. La
modélisation compartimentale consiste alors à diviser les individus en classes
généralement disjointes suivant leur statut, puis à étudier l’évolution au cours
du temps du nombre ou de la proportion d’individus dans les différentes classes
considérées. Le modèle résultant est schématisé par des compartiments don-
nés par des classes d’état de santé et des flèches qui représentent les différents
types de transitions qui peuvent se produire entre les états de santé.

7.2 Contexte de l’analyse de sensibilité de
modèles stochastiques, en particulier en
épidémiologie et objectifs

Du point de vue de la manière dont ils considèrent l’aléa, les modèles compar-
timentaux peuvent être classés en deux catégories: les modèles déterministes
et les modèles stochastiques. Les modèles déterministes (Brauer et al., 2012;
Chalub and Souza, 2011; Medlock and Kot, 2003) reposent sur des fonctions
déterministes qui ne dépendent que des paramètres épidémiques pour décrire la
dynamique. Quant aux modèles stochastiques à compartiments, même lorsque
les conditions initiales et les paramètres épidémiques sont fixés, les transi-
tions dans les états de santé des individus sont supposées se produire à des
temps aléatoires. Par conséquent, l’évolution dans le temps de la dynamique
épidémique est aléatoire, ce qui génère en sortie des processus stochastiques
(Allen, 2008; Britton et al., 2019). Ces processus peuvent être Markoviens
ou non-Markoviens (Gani, 1973; Feng et al., 2019) selon que leurs évolutions
dépendent du passé ou non.

En pratique, les modèles épidémiologiques visent à répondre à un certain
nombre de questions, notamment : comment prédire la dynamique épidémique
? Quels sont les facteurs clés de la propagation de l’épidémie ? Quelles sont
les stratégies possibles pour contrôler la propagation ? Quels sont les impacts
potentiels de ces stratégies ? Autant de questions pour lesquelles la précision
des réponses dépend fortement de la précision et de la fiabilité du modèle.
Pour cela, il faut parfaitement connaître les paramètres de l’épidémie. Or, les
vraies valeurs de ces paramètres sont généralement inconnues. Ces modèles
souffrent alors d’incertitudes. Afin d’améliorer la fiabilité de ces modèles, il est
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nécessaire d’étudier et de quantifier les incertitudes (Taghizadeh et al., 2020;
Marion et al., 2022; Swallow et al., 2022).

Les incertitudes dans les modèles stochastiques peuvent être classées en
deux catégories : incertitude sur les paramètres et aléa intrinsèque. L’incertitude
sur les paramètres survient lorsque les paramètres du modèle sont inconnus ou
mal connus. Quant à l’aléa intrinsèque, il est inhérent au modèle et il est re-
sponsable de la variabilité de la sortie du modèle même lorsque les paramètres
sont parfaitement connus. Dans le cadre de la quantification des incertitudes,
l’analyse de sensibilité des modèles vise à évaluer la part de chaque paramètre
ou groupe de paramètres dans la variabilité de la sortie du modèle. Une telle
étude peut viser plusieurs objectifs : l’identification des paramètres influents,
la réduction de modèle, l’optimisation, le calibrage de modèle, etc. L’analyse
de sensibilité permet donc de mieux comprendre le modèle en ce qui concerne
la relation entre les entrées et les sorties.

Pour les modèles déterministes, la relation entre les entrées notées θ et la
sortie notée y est donnée par y = f(θ) où f est une fonction déterministe.
L’analyse de sensibilité de ces modèles consiste à faire varier θ, puis à quan-
tifier les effets sur la sortie y. Plus la variation d’un paramètre induit une
grande variation de la sortie, plus ce paramètre est influent. Diverses méth-
odes ont été élaborées pour mesurer les impacts des paramètres: des méthodes
locales où l’on considère de petites perturbations des paramètres autour de
valeurs nominales (Helton, 1993; Morris, 1991) ou des méthodes globales où
l’on quantifie la variation de la sortie en considérant l’ensemble des valeurs
possibles des paramètres (Sobol’, 1993; Iooss and Prieur, 2019).

Dans le cadre des modèles stochastiques, c’est-à-dire sous la forme : θ 7→
f(θ, Z), où Z est aléatoire, la sortie n’est plus déterminée uniquement par θ
mais aussi par Z. Deux entrées du modèle θ et θ̃ donnent respectivement
f(θ, Z(ω)) et f(θ̃, Z(ω̃)), avec Z(ω) et Z(ω′) deux réalisations de Z. Ainsi,
lorsqu’on fait varier un paramètre, la variation de la sortie qui en résulte
provient à la fois de la variation de ce paramètre et celle de l’aléa intrinsèque
Z. Cependant, dans la plupart des modèles stochastiques utilisés en pratique,
l’aléa intrinsèque Z est caché et incontrôlable dans le sens où il n’est pas ex-
plicitement caractérisé et où sa distribution de probabilité est inconnue. Ainsi,
le défi est d’évaluer l’impact des paramètres en présence de l’aléa intrinsèque.

Face au défi de l’aléa intrinsèque des modèles stochastiques, notamment
en modélisation des épidémies, plusieurs questions se posent dans le cadre
de l’analyse de sensibilité. Comment estimer avec précision les indices basés
sur la variance pour les modèles stochastiques malgré la présence de l’aléa
intrinsèque ? Comment séparer les effets de l’aléa intrinsèque de ceux des
paramètres incertains dans l’analyse de sensibilité des modèles stochastiques
compartimentaux ? Comment évaluer les contributions de l’aléa intrinsèque à
la variance globale de ces modèles ? Dans le contexte de l’analyse de sensibilité
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basée sur la variance, cette thèse aborde ces questions et vise à développer
des approches adaptées aux modèles stochastiques, en particulier les modèles
stochastiques à compartiments utilisés en épidémiologie.

7.3 Contributions à l’analyse de sensibilité
de modèles stochastiques

Contribution à l’estimation d’indices de paramètres
de quantitiés d’intérêt

La première contribution de cette thèse, détaillée dans le Chapitre 3, concerne
l’estimation des indices de Sobol’ pour des quantités d’intérêt (QoIs) de mod-
èles stochastiques. Pour cette étude, les QoIs considérées sont des espérances
conditionnelles par rapport aux paramètres incertains de fonctions de la sortie
de modèle stochastique. Pour de telles quantités, l’estimation des indices de
Sobol’ est précédée de l’estimation des QoIs, étant donné que les expressions
analytiques sont généralement inconnues. L’estimation de ces espérances con-
ditionnelles par Monte-Carlo requiert pour chaque jeu de paramètres du modèle
stochastique un certain nombre de répétitions de l’évaluation du modèle. Par
la suite, les estimateurs ainsi construits remplacent les quantités théoriques
dans l’estimation des indices. Pour estimer ces indices, on se donne un certain
nombre d’échantillons de valeurs paramètres du modèle et on approche les dif-
férentes variances encore par Monte-Carlo. Ainsi, pour cette procédure double
Monte-Carlo, le nombre total d’évaluations du modèle est proportionnel au
produit du nombre de répétitions et du nombre d’échantillons de valeurs de
paramètres du modèle. Donc, plus on cherche à être précis dans les estimations,
plus ce produit est élevé; ce qui peut devenir très vite insoutenable sur le plan
de calcul. Une solution est de limiter le nombre total d’évaluations du modèle
et de chercher pour un budget de calcul T donné les nombres de répétitions
et d’échantillons d’entrées optimaux permettant d’avoir une meilleure préci-
sion dans les estimations. Un tel problème renvoie à un problème classique
de compromis biais-variance. Ici, le biais est généré par l’erreur commise en
remplaçant les quantités d’intérêt par des estimateurs, alors que la variance
vient des estimateurs des indices.

Notre contribution a consisté à mettre au point une stratégie basée sur
l’erreur quadratique des estimateurs des indices permettant de trouver un com-
promis entre le nombre de répétitions et le nombre d’échantillons à considérer.
L’étude de cette erreur, qui mesure la précision des estimations, nous a per-
mis, d’une part, de montrer qu’elle converge vers 0. C’est dire qu’en moyenne
les estimateurs considérés s’approchent des vraies valeurs des indices lorsque
les nombres de répétitions et d’échantillons augmentent. D’autre part, à par-
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tir d’une borne de l’erreur que nous avons calculée, nous avons déduit une
stratégie en minimisant une somme de biais au carré et de variance dans cette
borne pour trouver les nombres associés qui permettent de réduire l’erreur
quadratique. Il en ressort que le nombre optimal d’échantillons est de l’ordre
de T 2/3 et le nombre optimal de répétitions de T 1/3 lorsqu’on considère un
budget total T . Enfin, un algorithme basé sur cette stratégie a été proposé.
Cet algorithme permet d’estimer les indices de Sobol’ en utilisant la stratégie
mise au point et en s’adaptant à l’amplitude de l’aléa intrinsèque du modèle
stochastique considéré.

Contribution à l’analyse de sensibilité de modèles basés
sur des chaînes de Markov à temps continu

La deuxième contribution présentée dans le Chapitre 4 traite de l’analyse de
sensibilité des modèles épidémiologiques compartimentaux stochastiques basés
sur des chaînes de Markov à temps continu. Pour gérer l’aléa intrinsèque de
ces modèles et faire l’analyse de sensibilité, l’approche que nous proposons est
d’écrire la sortie stochastique de ces modèles comme des fonctions détermin-
istes de paramètres incertains et des variables aléatoires représentant l’aléa
intrinsèque. Mettre la sortie sous cette forme a de nombreux avantages. Pre-
mièrement, cela permet d’utiliser les nombreux outils d’analyse de sensibilité
disponibles dans le cadre des modèles déterministes. Deuxièmement, cette écri-
ture permet de caractériser l’aléa intrinsèque et de le considérer comme une
entrée du modèle de sorte que ses contributions telles que les effets principaux
sur la variance et les interactions avec les paramètres incertains peuvent être
évaluées. De telles informations permettent de mieux comprendre le rôle de
l’aléa dans le modèle et ses relations avec les paramètres incertains.

Pour obtenir une telle représentation pour les modèles basés sur les chaînes
de Markov à temps continu, nous avons réécrit les chaînes de façon à séparer
les paramètres incertains des variables qui interviennent dans la simulation
des sauts et des instants de sauts, responsables du caractère aléatoire des sor-
ties. Par ailleurs, nous avons modifié les algorithmes de Gillespie (Gillespie,
1977): Direct Method (voir Algorithme 1) and First Reaction Method (voir
Algorithme 2) qui permettent de réaliser des simulations exactes des chaînes
de sorte à tenir compte de la séparation entre les paramètres incertains et des
variables relatives à l’aléa intrinsèque. Ainsi, il a été possible de représenter
les chaînes de Markov à temps continu sous forme déterministe et d’évaluer les
contributions des paramètres incertains et de l’aléa intrinsèque dans le cas d’un
modèle épidémiologique de propagation du SARS-CoV-2. Enfin, nous avons
comparé cette approche à une approche équivalente proposée dans la littéra-
ture (Le Maître et al., 2015; Navarro Jimenez et al., 2016). Cela nous a permis
de mettre en évidence que dans la représentation déterministe, le choix de la
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fonction déterministe et des variables aléatoires représentant l’aléa intrinsèque
influence les résultats d’analyse de sensibilité.

Contribution à l’analyse de sensibilité de modèles com-
partimentaux basés sur des processus non-Markoviens

La troisième contribution présentée au Chapitre 5 concerne l’analyse de sensi-
bilité des modèles compartimentaux basés sur des processus non-Markoviens.
Pour cette catégorie de modèles, l’approche choisie est identique à celle utilisée
pour les modèles basés sur les chaînes de Markov à temps continu. Autrement
dit, nous avons cherché à écrire les sorties de ces modèles sous la forme de fonc-
tions déterministes de paramètres incertains et de variables représentant l’aléa
intrinsèque. Si pour les modèles basés sur les chaînes de Markov la disponibil-
ité d’une gamme variée d’outils d’analyse et de simulation facilite l’approche
d’analyse de sensibilité que nous avons choisie, ce n’est pas le cas des mod-
èles non-Markoviens. Pour contourner cette difficulté, nous avons décrit les
modèles épidémiologiques à l’aide d’une construction de type Sellke. Cette
construction est introduite dans (Sellke, 1983) pour décrire le modèle SIR
(Sain-Infecté-Remis) avec une approche centrée sur les individus de la pop-
ulation. Cela consiste à affecter à chaque individu et selon son état de santé
au temps initial des variables qui décrivent son seuil de tolérance à l’infection,
sa durée d’infection s’il devient infecté. La description du nombre d’individus
dans chaque compartiment du modèle en fonction du temps et des variables
caractéristiques des individus permet d’écrire la sortie du modèle comme une
fonction déterministe des paramètres incertains et des variables représentant
l’aléa intrinsèque. Nous avons donc étendu cette construction aux modèles
compartimentaux plus complexes avec un nombre arbitraire de compartiments
et de transitions entre compartiments. Cela a permis de décrire les modèles
stochastiques compartimentaux dans un cadre non-Markovien en population
fermée (dont la taille est constante). Par la suite, nous avons montré que cette
construction est équivalente au modèle Markovien sous certaines conditions
et nous avons élaboré un algorithme permettant de simuler les dynamiques
épidémiques en se basant sur une telle approche. Enfin, cela a permis de faire
l’analyse de sensibilité et d’évaluer les contributions de l’aléa intrinsèque aussi
bien dans un cadre Markovien que non-Markovien. Une application a été faite
sur le modèle SEI1I2RS.

7.4 Conclusion
Cette thèse propose les approches permettant de réaliser des analyses de sen-
sibilité de modèles stochastiques en tirant avantage des outils d’analyse de
sensibilité pour les modèles déterministes. Pour ce faire, deux axes principaux
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ont été considérés : l’estimation des indices de sensibilité pour des quantités
d’intérêt déterministes et la représentation sous forme déterministe des sorties
stochastiques des modèles épidémiques compartimentaux.

Ces travaux ont contribué à développer une approche d’estimation d’indices
de sensibilité et à évaluer les contributions de l’aléa intrinsèque dans les mod-
èles compartimentaux basés sur des processus stochastiques. Ils mettent en
avant une nouvelle façon d’étudier la sensibilité des modèles stochastiques.
Les retombées de ce travail sont d’ordre théorique (étude du risque quadratique
des estimateurs et de la convergence quadratique), méthodologique (approches
d’analyse de sensibilité de modèles stochastiques) et computationnel (algo-
rithmes de simulation de modèles épidémiologiques et d’estimation d’indices
de sensibilité).
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