Keywords: K3 Surfaces, Pure Mathematics, Computer Science, Python, Sage, Scipy, Multiprocessing, Pool, Automorphisms, Rational curves, Algebraic Geometry, Projective models, Parallelism, Borcherds' method, K3surfaces.com Computing

A davit

Je soussigné, Cédric MAZET, déclare par la présente que le travail présenté dans ce manuscrit est mon propre travail, réalisé sous la direction scienti que du Professeur Xavier ROULLEAU, dans le respect des principes d'honnêteté, d'intégrité et de responsabilité inhérents à la mission de recherche. Les travaux de recherche et la rédaction de ce manuscrit ont été réalisés dans le respect à la fois de la charte nationale de déontologie des métiers de la recherche et de la charte d'Aix-Marseille Université relative à la lutte contre le plagiat.

Ce travail n'a pas été précédemment soumis en France ou à l'étranger dans une version identique ou similaire à un organisme examinateur.

Résumé

Les objectifs initialement xés pour cette thèse consistaient à déterminer les groupes d'automorphismes ainsi que des bornes supérieures sur le nombre d'orbites de courbes rationnelles sur les surfaces K3 appartenant à la famille des surfaces ayant un groupe de Néron-Severi isomorphe au réseau entier avec matrice de Gram

   2t 0 0 0 -2 0 0 0 -2    avec 1 ≤ t ≤ 50
par rapport à une base xée. Nous avons pour cela mis l'outil informatique au service des mathématiques fondamentales en implémentant des solutions algorithmiques tirant parti d'outils modernes et variés. Les programmes qui ont découlé de cette démarche nous ont non seulement permis de mener une étude complète de ces surfaces en calculant explicitement leurs automorphismes, orbites de (-2)-courbes sous l'action de ces derniers, modèles projectifs, unirationalité des espaces des modules, dépassant ainsi largement notre objectif initial d'étude, mais ont aussi un champ d'application allant bien au-delà de ces surfaces. Depuis le début de cette thèse, nous avons en e et été motivés par la volonté de toujours dépasser les cas particuliers et spéci cités a n de produire des solutions ayant une portée généraliste assumée. Notre entreprise a ainsi résulté en la production de nombreuses solutions mettant l'outil informatique au service de la géométrie algébrique et des surfaces K3 qui, nous l'espérons, ouvriront de nouvelles perspectives d'étude pour ces dernières. Nous tenons à mentionner que tous les programmes réalisés pendant cette thèse sont accessibles via K3surfaces.com et que leur utilisation y est expliquée en détails.

Mots-clés : Surfaces K3, Maths pures, Informatique, Python, Sage, Scipy, Multiprocessing, Pool, Automorphismes, Courbes rationnelles, Géométrie Algébrique, modèles projectifs, méthode de Borcherds, K3surfaces.com

Introduction

Denote by X an algebraic K3 surface over the eld of complex numbers.

Two classical results were established by Sterk in his article [START_REF] Sterk | Finiteness results for algebraic K3 surfaces[END_REF]Theorem 0.1] Finiteness results for algebraic K3 surfaces:

Aut(X) is a nitely generated group.

The number of orbits of (-2)-curves under the action of Aut(X) is nite.

These results enabled our advisor to throw at us the main challenge to be accomplished in order to achieve this doctoral project: For 1 ≤ t ≤ 50, we had to determine a generating set of the automorphism group of the K3 surface X t with Néron-Severi group isomorphic to the integral lattice with Gram matrix

   2t 0 0 0 -2 0 0 0 -2   
with respect to a xed basis. We were also tasked with nding an upper bound on the number of orbits of smooth rational curves on each such surface by using the acquired knowledge of their respective automorphism groups to our advantage. It is worth mentioning that Xavier Roulleau provided us with constant support, many ideas and gave us leeway in terms of the approaches and techniques to be used in order to reach the goals he had set for this thesis. We made the most of this opportunity by using an innovative computer-based algorithmic approach to the study of K3 surfaces. As will be shown in this dissertation, the solutions developed and implemented during this thesis have a reach that goes far beyond the scope of the above-mentioned family of K3 surfaces X t . The content available on K3surfaces.com bears witness to this fact. We dwell on this in more detail in the introduction to Part I of this thesis.

Our computer-based algorithmic approach opens news doors not only for the study of automorphism groups and orbits of smooth rational curves on complex K3 surfaces, but also for the study of their projective models. Our computerbased algorithmic approach enables us to o er a new perspective on a classical result due to Saint-Donat & Morrison which is known to provide a precise description of the role of ample classes regarding embeddings of K3 surfaces into projective spaces. Our approach also takes advantage of the fact that Xavier Roulleau released a Magma implementation of a quite special algorithm along with the publication of his 2019 article [START_REF] Roulleau | On the geometry of K3 surfaces with nite automorphism group and no elliptic brations[END_REF]. Let X be a K3 surface. Roulleau's program takes as input a Gram matrix of the Néron-Severi group S = NS(X), an ample class P 0 , integers d and u b , to output the set

{C ∈ NS(X) | C, C S = d, C, P 0 ≤ u b }
of classes C of divisors of self-intersection C, C S = d having an intersection product with P 0 less than or equal to u b . When d = -2, Prof. Roulleau's program is capable of identifying classes of smooth rational curves C P 1 among the classes of self-intersection -2. This tool provides a gateway to knowledge of concrete data on classes of curves having a prescribed self-intersection, and more speci cally on classes of smooth rational curves, which are known to play a central role on K3 surfaces. We thus made use of Prof. Roulleau's program to produce a large database of classes of not only smooth rational curves, but also of classes having any prescribed self-intersection on the surfaces we were tasked to study. Taking advantage of this mass-produced data, we pushed onto the path devised by Roulleau in [START_REF] Roulleau | An atlas of K3 surfaces with nite automorphism group[END_REF][START_REF] Roulleau | On the geometry of K3 surfaces with nite automorphism group and no elliptic brations[END_REF] and used a computer-based algorithmic approach to implement Roulleau's methods on an industrial scale. This endeavor resulted in the production of our proj mod suite which o ers tools such as CGS, PModChecker or an universal ampleness tester AmpTester. These solutions will hopefully open doors to other researchers and encourage them to take up the torch on the computer-based study of K3 surfaces. We did our best to ensure that this thesis can be used as a sound, safe and accessible ground for others to obtain even further developments in the future.

Introduction to Part I of this thesis

Denote by X t a complex K3 surface with Néron-Severi group isomorphic to the integral lattice with Gram matrix

   2t 0 0 0 -2 0 0 0 -2   
where the parameter t is assumed to be a positive integer. As mentioned earlier, we were tasked with the study of these surfaces for 1 ≤ t ≤ 50. We now introduce the various solutions implemented during this thesis in order to deal with the challenges of explicitly computing the automorphism group and determining the orbits of smooth rational curves under its action on each of these surfaces. It turns out that the reach of these solutions goes well beyond the scope of these surfaces and gives a very general scope of application to the content of this thesis. We start by presenting the context in which our work ts as a development. Fields medalist Richard E. Borcherds introduced a method to compute the generators of the automorphism group of Lorentzian lattices with possible applications to K3 surfaces in two articles [START_REF] Borcherds | Automorphism groups of Lorentzian lattices[END_REF] and [START_REF] Borcherds | Coxeter groups, Lorentzian lattices, and K3 surfaces[END_REF] published in the late eighties and early nineties. Borcherds' method was then applied for the rst time to K3 surfaces in 1998 with Shigeyuki Kondō's groundbreaking article [START_REF] Kondō | The automorphism group of a generic Jacobian Kummer surface[END_REF]. From this moment and until the end of the rst decade of our century, mathematicians such as Ujikawa, Dolgachev, Keum, and Kondō again ([START_REF] Kondō | Algebraic K3 surfaces with nite automorphism groups[END_REF][START_REF] Keum | The automorphism groups of Kummer surfaces associated with the product of two elliptic curves[END_REF][START_REF] Dolgachev | A supersingular K3 surface in characteristic 2 and the Leech lattice[END_REF][START_REF] Masashi | The automorphism group of the singular K3 surface of discriminant 7[END_REF]) made use of Borcherds' method to compute automorphism groups of various K3 surfaces. In 2013, Professor Ichiro Shimada gave a new life to Richard E. Borcherds' threedecades-old material in his article An algorithm to compute the automorphism groups of K3 surfaces [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF]. Carried out as part of a publication grant entitled Computational study of K3 surfaces (2013/2016) and followed by another grant, this time entitled Computational study of algebraic geometry, Shimada's article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] is unquestionably a massive step toward the full automation of the computation of generators of the automorphism groups of K3 surfaces. Professor Ichiro Shimada, founding father of the computer-based algorithmic approach to the study of K3 surfaces, thus provided a sound theoretical background and outlined many of the essential procedures and building blocks required in order to carry out Borcherds' method as an algorithmic method. However, neither a functional program nor a single line of code was released since the publication of Prof. Shimada's article. Almost a decade has passed since Shimada's article, and no signi cant progress on the subject has been made. As mentioned by Giacomo Mezzedimi in his PhD thesis, defended in 2021, "Shimada presents an algorithm to compute the automorphism group of these K3 surfaces; however the full automorphism group can only be computed for a nite number of Picard lattices [...] When the automorphism group becomes in nite, very little is known. For example, we can describe the full automorphism group only of some K3 surfaces. "

Giacomo Mezzedimi [START_REF] Mezzedimi | Elliptic K3 surfaces and their moduli dynamics, geometry and arithmetic[END_REF], PhD thesis, October 2021. Indeed, Shimada's article was not generalist and focused on examples without explicitly highlighting a general application framework for Borcherds' method. In addition, many grey areas surrounded the steps that have to be taken to implement essential procedures described in Shimada's article. Various fundamental aspects essential to the generalization, optimization and implementation of the processes were o en ignored or treated in a minimalist way. Shimada's article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] was not intended to be a manual for the implementation of the various procedures that can be found therein. As a result, many challenges had to be overcome. First, we had to familiarize ourselves with Shimada's super fast-paced style to make the best possible use of the invaluable information contained in his article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF]. Moreover, many procedures from this article involve material from another article [START_REF] Shimada | Projective models of the supersingular K3 surface with Artin invariant 1 in characteristic 5[END_REF] due to Shimada, which therefore also had to be mastered. We then had to determine whether a general and precisely de ned framework of application for Borcherds' method could be devised from Shimada's work. The answer is positive: It is indeed possible to do so. We, therefore, had to identify the holes to be lled and missing pieces in order to bring to life and fully automate all the material which can be found in Shimada's article. These holes and missing pieces seem to have obstructed the path to a generalized implementation of the method for almost ten years. At the time we write these lines, we cannot nd any trace of an implementation of Shimada's material on the internet that could rival what has been produced during this thesis. To be precise, there is nothing. Despite Shimada's article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] being published almost a decade ago, i.e., in 2013, no sign of an elementary, limited or even partial implementation can be found. When released in 2022, our thesis put an end to this situation. Going back to our story, we have to mention that the rst stage of our endeavor was carried out while having in mind our goal of producing a generalized implementation of Borcherds' method. That is, an implementation whose scope of application goes much beyond a handful of particular cases. Our desire for generality drove us to identify explicit conditions of applicability for Borcherds' method from the sound foundations laid by Shimada in 2013, and naturally led us to design and implement automated procedures enabling us to test whether a given K3 complex algebraic surface satis es these conditions. We then had to move on to the implementation of the method itself. For versatility and exibility purposes, our language of choice was naturally Python. We extensively used the Sage library, which includes many advanced mathematical features. This library was so convenient for us that we worked most of the time within a Sage / Python 3.8.5 environment through a Sage terminal. We have been careful to produce exible and accessible solutions requiring only a bare minimum of input data to be executed. Furthermore, our programs provide complete automation. For instance, no matter if it is to set up the ambient conditions required to execute the method, test whether Borcherds' method can be applied, or execute the method itself, everything is performed automatically. We also did our best to ensure that Borcherds' method can bene t from every ounce of computational power available on the machine on which it is executed. Indeed, we live in an era during which most machines take advantage of parallel processing. What would be the point of making daily use of expensive pieces of hardware to not even use the full extent of their processing power for mathematical research? We, therefore, redesigned all our solutions with parallel computing in mind. Having used Python from the start enabled us to make a smooth transition to the use of process-based parallelism, thus enabling us to make the best possible use of the processing power of the central processing units on our machines by deploying various internal procedures of Borcherds' method in parallel. In particular, we fully took advantage of the Pool object from the Python multiprocessing library. This object, as indicated in the o cial Python documentation, o ers a convenient means of parallelizing the execution of a function across multiple input values. Doing so enabled us to produce a modernized version of Borcherds' method: The Poolized Borcherds' method. Through the use of the Pool object, the burden of executing various computationally intensive procedures which are part of Borcherds' method is distributed over various worker processes in such a way as to take advantage of the multi-core architecture of modern CPUs. Doing so thus leads to a signi cant decrease in computation times. We were still hungry for challenge and wanted to push our enterprise of parallelizing Borcherds' method even further. This aspiration naturally led us to take a step forward toward parallelizing the Borcherds' method at a broader scale. To this end, we implemented solutions to parallelize the exploration of the chamber structure and the computation of the sets of walls of chambers. This approach, detailed both online and in the section 1.11 of this document, is a rst step that will hopefully open many doors, broaden the perspectives regarding the parallel deployment of Borcherds' method and, more generally, enable this thesis to reinforce the interface between pure mathematics and computer science.

Before proceeding further, we have to mention that all the solutions presented in this manuscript exist as fully functional computer-based solutions.

There is nothing conceptual in our work: K3surfaces.com testi es to this fact.

We now introduce the subject matter covered in the rst part of this document.

Let X be a complex K3 surface with Picard number ρ X < 20 and Néron-Severi lattice S = NS(X) with Gram matrix G S with respect to a xed basis B S for S. Denote by P S the connected component of {x ∈ S | x, x S > 0} containing ample classes. We build on the solid foundations which have been laid by Shimada in [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] regarding Borcherds' method: The Néron-Severi group S = NS(X) of the complex algebraic K3 surface X under study should be embedded into a suitable even hyperbolic lattice L chosen according to the value of the Picard number of X, as indicated below:

When possible, we recommend picking the ambient lattice L having the smallest possible rank among the three possible lattices displayed in this table. Indeed, choosing an ambient lattice of higher rank than what is recommended in the above table will decrease the performance of Borcherds' method. Before we go any further, we need to clarify some notational conventions. We will o en write ρ instead of ρ X . Let N = rank(L) and assume that a basis B S = {s 1 , s 2 , . . . , s ρ } for S and a basis B L = {l 1 , l 2 , . . . , l N } for the lattice L are xed. We use the notation [γ 1 , γ 2 , . . . , γ ρ] S to denote the row vector of coordinates with respect to the basis B S of the element

γ 1 s 1 + γ 2 s 2 + • • • + γ ρ s ρ ∈ S.
Similarly, we denote by [β 1 , β 2 , . . . , β N] L the vector of coordinates with respect to B L of the element

β 1 l 1 + β 2 l 2 + • • • + β N l N ∈ L.
We assume that the Néron-Séveri group of the surface under study has been primitively embedded into a suitable ambient even hyperbolic lattice L. That is, we assume known the data of elements

v i = N j=1 η (i) j l j
for 1 ≤ i ≤ N such that a mapping ι : S → L embedding S primitively into L can be de ned by

ι : s i -→ v i .
That is,

ι : γ 1 s 1 + γ 2 s 2 + • • • + γ ρ s ρ ∈ S -→ γ 1 v 1 + γ 2 v 2 + • • • + γ ρ v ρ ∈ L
Note that in terms of coordinates vectors, this mapping is de ned as ι : [γ 1 , γ 2 , . . . , γ ρ] S -→ N j=1 γ j η has two connected components. The connected component containing ι(P S) is called the positive cone of L and denoted by P L . A closed subset D ⊂ P L is called a chamber whenever it has non-empty interior and there exists a set

∆ ⊂ N L = {x ∈ L ⊗ R | x, x L < 0}
such that D can be expressed as

D = {x ∈ L ⊗ R | ∀v ∈ ∆, x, v L ≥ 0} ∩ P L .
We denote by C the topological closure of a set C. The collection

C L = C | C is a connected component of P L \ v∈F (v) ⊥ , Int(C) = ∅
is called a chamber structure on P L , or a P L -chamber structure. Chambers in C L will be referred to as P L -chambers. Let

R L = {x ∈ L | x, x L = -2} .
In practice, we take F = R L to de ne a chamber structure on P L , where L is one of three lattices speci ed in the above-mentioned table. We will o en use the notation D to denote a P Lchamber. A fact that should be highlighted is that a chamber structure on P L induces a chamber structure on the positive cone P S of the Néron-Severi group S, the latter being assumed to be primitively embedded into L. We show in section 1.2 that whenever a P L -chamber structure C L is given, the collection

C S = {D ∩ P S | D ∈ C L , ∃U ⊂ P S , U = ∅, U open s.t. U ⊂ D ∩ P S }
is a chamber structure on P S . Chambers D ∈ C S are called P S -chambers. The intersection of a P L -chamber D with P S thus de nes a P S -chamber whenever the resulting set has non-empty interior. A P L -chamber which induces a P S -chamber is said to be ι(S)-nondegenerate, or is said to possess the ι(S)nondegeneracy property. The ι(S)-pre x is used to emphasize the fact that this property of a P L -chamber depends on the embedding ι : S → L used to embed S into L. A central notion that will be essential throughout our study is the notion of Weyl vector of a P L -chamber. Each such chamber is indeed uniquely characterized by its Weyl vector. See de nition 11 from section 1.1.2 for more details. Whenever a P L -chamber D induces a P S -chamber D = D ∩ P S , the convention is that the induced P S -chamber D inherits the Weyl vector of the chamber D. Another critical attribute of a P S -chamber D with Weyl vector w is its set of walls, denoted by Ω(D). We will see that this set can be obtained from the data of the Weyl vector of D. More generally, many of the computations and procedures involving a P S -chamber D involve its Weyl vector at one time or another. An important thing to point out before proceeding further is that the intersection Nef(X) ∩ P S of the Nef cone of X with the positive cone P S is naturally tiled by chambers of the induced chamber structure C S . This natural chamber substructure covering Nef(X) ∩ P S is moreover cut by walls de ned by the respective orthogonal complements in P S of classes of smooth rational curves on X. Consider the K3 lattice

H 2 (X, Z) U ⊕3 + E 8 (-1) ⊕2
and denote by H the subgroup of transformations in O + (S) li ing to Hodge isometries in H 2 (X, Z). Let Aut H (Nef(X) ∩ P S) = {g ∈ H | g preserves Nef(X) ∩ P S } ⊂ H ⊂ O + (S) ⊂ O(S) be the subgroup of transformations in H preserving Nef(X) ∩ P S . This group is a prominent character in regards to one of our main objects of study: Borcherds' method, whose purpose consists in producing a generating set of Aut H (Nef(X) ∩ P S) by exploring and processing the portion of the induced chamber structure on P S covering Nef(X) ∩ P S . In section 1.7, we explain what the sentence exploring and processing the chamber structure means. In this introduction, specifying the bare minimum required for a good understanding of the method will be enough.

Exploring the portion of the P S -chamber structure over Nef(X) ∩ P S requires the data of an initial P S -chamber D 0 contained in Nef(X) ∩ P S to be used as a starting point to initiate the exploration. As indicated in Shimada's article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF], the classical theory fortunately always provides the Weyl vector w 0 of an initial chamber D 0 of the P L -chamber structure no matter which lattice L is chosen among the three lattices presented in the table introduced earlier.

ι : S → L

There is, however, no guarantee that D 0 will be ι(S)-nondegenerate. Indeed, the ι(S)-nondegeneracy property of D 0 depends on the embedding ι used to embed the Néron-Severi group S of the K3 surface under study into L. In his article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF], Shimada provides a criterion to determine whether a given P L -chamber D is nondegenerate. Our implementation of this criterion is the procedure Degen-Test, whose mechanics are explained in section 1.2. Using this criterion requires the input data of an ample class a 0 and of the Weyl vector of a chamber D 0 . The mechanics behind this test take advantage of the fact that an ample class a 0 is by de nition an element of Nef(X) ∩ P S so that one can determine quite easily whether the image ι(a 0) of the ample class a 0 under the embedding ι : S → L belongs to the interior of D 0 ∩ P S . The intersection D 0 ∩ P S has non-empty interior whenever this is the case, hence ensuring the ι(S)-nondegeneracy of D 0 , and we obtain at the same time that D 0 ∩ P S ⊂ Nef(X) ∩ P S .

In his article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF], Shimada also provides the outline of a procedure, which, in the framework of an embedding ι : S → L and given the input data of the Weyl vector of a P L -chamber D 0 and of an ample class a 0 such that ι(a 0) does not belong to the interior of D 0 ∩ P S , may lead to an isometry τ : L -→ L which can be used to de ne an updated embedding τ • ι : S → L under which the chamber D 0 possesses the property of (τ • ι) (S)-nondegeneracy. A favorable outcome to Shimada's procedure will indeed make the image of a 0 under the updated embedding satisfy

(τ • ι) (a 0) ∈ Int(D 0 ∩ P S)
thus ensuring the (τ • ι) (S)-non-degeneracy of D 0 and the fact that the chamber it induces is contained in Nef(X) ∩ P S . We have to mention that Shimada's embedding update procedure outlined in [19, Section 8] has probably been for almost a decade one of the major obstructions to the production of a functional and generalized implementation of Borcherds' method. Building on Shimada's original procedure, we worked our way toward a modernized embedding update procedure, which, once implemented, brings many improvements compared to our implementation of Shimada's original procedure. Going back to Borcherds' method, note that as soon as a suitable initial chamber P S -chamber contained in Nef(X) ∩ P S is obtained, the exploration can begin. We start by focusing on explaining how Borcherds' method moves inside of the chamber structure. It is essential to have in mind the fact that chamber structure can be viewed as a tiling over Nef(X) ∩ P S , as illustrated in the following gure.

A fundamental concept related to the tiling of Nef(X) ∩ P S is the notion of level for chambers, which enables us to layer the chamber structure over Nef(X)∩P S with respect to a reference point. Fix an initial P S -chamber D 0 . The notion of level for chambers is de ned iteratively, as follows:

The initial chamber D 0 is the only level 0 chamber.

A chamber adjacent to a level l -1 chamber but not adjacent to a level l -2 chamber is said to be of level l.

The gure above depicts a genuine representation of a portion of the chamber structure over Nef(X) ∩ P S , where X is the K3 surface X 42 in Picard 3 and where an initial chamber, green-colored and located at the center of the picture, has been chosen as a reference point. In terms of level, the chamber structure in this picture can be described as follows:

The chamber colored in green at the center is the initial chamber of level 0 used as a reference point for the chamber structure's layering. There is only one chamber of level 0.

Chambers colored in clear blue are the chambers of level 1.

Chambers colored in bright purple are the chambers of level 2.

Chambers colored in yellow are the chambers of level 3.

Chambers colored in red are the chambers of level 4.

Chambers colored in a grey / blueish color are the chambers of level 5.

Chambers colored in orange are the chambers of level 6.

We already mentioned that Borcherds' method is an iterative procedure during which a portion of the chamber structure over Nef(X)∩P S is explored and processed. We will soon give more details about the method itself. The fact is that the method can be viewed as an entity evolving in the chamber structure and processes each chamber visited in order to produce some output. We believe that it is essential to approach things in a down-to-earth way and will therefore use a smiley to represent Borcherds' method as a hamster exploring and processing a chamber structure, like a hamster in a maze, except that our hamster obeys strict rules, described in section 1.7. The hamster in this illustration is pictured as located inside of the initial chamber, colored in green. We can therefore assume that Borcherds' method just started its execution. We start by focusing on how the method navigates within the chamber structure.

Internal procedures DeltaW and SetOfWalls, both introduced in section 1.5 enable Borcherds' method to compute the set of walls of a P S -chamber from the input data of its Weyl vector. When the set of walls of a chamber has been computed, Borcherds' method enforces the procedure RatDetect to identify walls associated with classes of self-intersection -2, which are usually referred to as (-2)-walls. Such walls, if crossed, would make Borcherds' method leave the chamber structure over Nef(X) ∩ P S and should therefore be avoided at all costs. When the data of the non (-2)-walls of a chamber D has been obtained, Borcherds' method is allowed to enter the chambers adjacent along these walls, that is, to cross the wall to enter the chamber adjacent along this wall to the chamber where it is currently located. The hamster located in the green chamber is thus allowed to visit the adjacent blue chambers as soon the non (-2)-walls of the green chamber are determined. Assume given a P S -chamber D such that the following data is available:

The Weyl vector w D of D A wall of the chamber D, Using this data as input, the procedure WeylAdj introduced in section 1.7.2 outputs the Weyl vector w of the chamber D adjacent to D along the wall which has been speci ed in the input data. We have seen the basic principles governing Borcherds' method movement inside of the P S -chamber structure over Nef(X) ∩ P S . A table listing all the procedures involved within Borcherds' method can be found by clicking here. Let us outline how the method processes the chambers it explores in order to ful ll its purpose, which consists in Processing the chamber structure consists in using brute force avored procedures in order to exhibit generators of Aut H (Nef(X) ∩ P S) from the data of the chambers explored by Borcherds' method. Generators are obtained in two ways:

For each P S -chamber D explored, by computing a generating set of the group

Aut H (D) = {g ∈ H | D g = D} ⊂ H ⊂ O + (S) of transformations in H preserving D ⊂ Nef(X) ∩ P S .
To this end, the brute-force procedure AutChamber from section 1.7.3 takes as input the data of the walls of D and outputs a generating set of Aut H (D) ⊂ Aut H (Nef(X) ∩ P S).

By testing whether two P S -chambers D, D ⊂ Nef(X) ∩ P S are H-congruent. That is, by determining whether there exists a transformation g ∈ H such that

D g = D .
Doing so is the purpose of the procedure CongChecker detailed in the section 1.7.4 of this document. This procedure takes as input the data of the respective sets of walls Ω(D) and Ω(D) of P S -chambers D, D and determines whether the two chambers are H-congruent. When this is the case, this brute-force avored procedure returns at least one transformation establishing the H-congruency.

That is, an element g ∈ H such that

D = D g = {xg | x ∈ D}
The CongChecker procedure has a central role within the algorithmic structure of the classical Borcherds' method. One of the innovations brought by this thesis is that, as we will see in section 1.11.1, the CongChecker congruence testing procedure is deployed in parallel over CongChecker blocks by using processbased parallelism, which yields huge performance improvements and led us to a modernization of Borcherds' method called the Poolized Borcherds' method, also introduced in section 1.11.1. Note that CongChecker and AutChamber both integrate a feature enabling them to test transformations for membership in H. Knowledge of a membership criterion for H is therefore necessary. In his article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF], Shimada's approach to issues related to the membership criterion may lead his readers to think that it is necessary to handcra a speci c criterion for each surface on which Borcherds' method is to be applied, thus potentially discouraging people from venturing down this path. By studying the clues on this issue le by Shimada in [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF], we provide in proposition 24 of section 1.6.2 a generalized membership criterion for H. The result of this endeavor is the MemberCrit procedure, which takes as input the (ρ × ρ)-sized matrix of a transformation generated by CongChecker or AutChamber, and determines whether it belongs to H. Assume given a complex K3 surface X with Néron-Severi primitively embedded into a suitable even hyperbolic lattice and that Borcherds' method, which has not been discussed yet, has been executed and produced a generating set of Aut H (Nef(X) ∩ P S).

What about the automorphism group of X?

We can now provide an answer to this fundamental interrogation. We start by denoting by T the transcendental lattice of X, that is, the orthogonal complement of S = NS(X) in

H 2 (X, Z) U ⊕3 ⊕ E 8 (-1) ⊕2 .
Consider the natural morphism

η T : O(T) -→ O(T ∨ /T)
which realizes isometries of T as isometries of its discriminant group T ∨ / T . It turns out that if the complex K3 surface X under study satis es

ρ X < 20 and -1 / ∈ Ker(η T)
then there is an isomorphism Aut(X) Aut H (Nef(X) ∩ P S).

From the beginning, the logical structure leading to this result was contained in Shimada' article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF]. Obtaining this result amounted to assembling a jigsaw puzzle while always bearing in mind the goal of exhibiting a generalized framework of application for Borcherds' method. We were stunned that this result had not yet been explicitly formulated. However, more had still to be done. Such a result is worthless if one does not provide a general procedure to check whether

-1 / ∈ Ker(η T)
holds. Let us brie y explain how we proceeded in order to ll this gap. Before proceeding further, we have to mention that in case the above condition is not satis ed, i.e., when -1 ∈ Ker(η T), then nothing prevents us from executing Borcherds' method. However, obtaining a generating set of Aut(X) is not guaranteed. For sure, we will obtain a generating set of Aut H (Nef(X) ∩ P S), but asserting anything about a generating set of Aut(X) when -1 ∈ Ker(η T) is outside the scope of this thesis. We now go back to our initial discussion: Note that any embedding of S into

L = U ⊕ E 8 (-1) or into L = U ⊕ E 8 (-1) ⊕ E 8 (-1)
can be easily extended to an embedding of S into

H 2 (X, Z) U ⊕3 + E 8 (-1) ⊕2 .
A Gram matrix G T of the orthogonal complement of S into H 2 (X, Z) can then be easily obtained. Details and examples are provided on K3surfaces.com. In case the surface under study has Picard rank 18 or 19, obtaining an embedding of S into the K3 lattice from the data of the embedding of S into

L = U ⊕ E 8 (-1) ⊕ E 8 (-1) ⊕ E 8 (-1)
is not guaranteed and this matter will have to be investigated on a case-by-case basis. Computing a Gram matrix G T of the transcendental lattice T will thus be a straightforward job when the K3 surface under study has a Picard number less than or equal to 17 and has already been embedded into either

L = U ⊕ E 8 (-1) or L = U ⊕ E 8 (-1) ⊕ E 8 (-1).
Denote by GL 22-ρ (Z) the group of invertible (22 -ρ) × (22 -ρ)-sized matrices with integer coe cients. The following criterion can be used to determine whether -1 / ∈ Ker(η T) as soon as a Gram matrix G T for the lattice T has been computed. We show in proposition 25 of section 1.6.3 that

2G -1 T / ∈ GL 22-ρ (Z) =⇒ -Id / ∈ Ker(η T)
and can therefore guarantee that the isomorphism Aut(X) Aut H (Nef(X) ∩ P S)

holds whenever the K3 surface under study has a transcendental lattice T with Gram matrix G T satisfying

2G -1 T / ∈ GL 22-ρ (Z).
Performing this check is the purpose of our procedure KerChecker, backed by proposition 25 from section 1.6.3. At the program level, everything is automated so that the user will never have to perform by hand the above-mentioned check for complex K3 surfaces with Picard number less than or equal to 17. We have made an overview of most of the procedures required to execute Borcherds' method. The following table provides a correspondence between Shimada' original procedures which have been outlined in his 2013 article and our modernized implementations of these procedures, which enabled us to produce a fully operational and automated version of Borcherds' method. We did not stop there and even raised the stakes, as we will discuss in section 1.11.

Ref. in this thesis

Ref. in Shimada's work

Procedure DegenTest, section 1.2 Criterion 5.9 in [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] Procedure EmbUpdater, section 1.8 -Procedure RatDetect, section 1.7.1 Algorithm 6.1 in [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] Procedure DeltaW, section 1.5 Algorithm 5.8 in [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] Procedure SetOfWalls, section 1.5 Algorithm 3.17 in [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] Procedure WeylAdj, section 1.7.2 Algorithms 5.13 / 5.14 in [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] Procedure MemberCrit, section 1.6 -Procedure AutChamber, section 1.6 Algorithm 3.18 in [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] Procedure CongChecker, section 1.6 Algorithm 3.19 in [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] Procedure ShiVectors, section 1.4 Algorithm 2.1 in [START_REF] Shimada | Projective models of the supersingular K3 surface with Artin invariant 1 in characteristic 5[END_REF] Procedure KerChecker, section 1.6.3 -Note that a more detailed version of this table is available online.

A table describing all the procedures involved in Borcherds' method can be found by clicking here. All the procedures appearing in this table are fully detailed in this thesis, and we made sure to ll the gaps le in the wake of Shimada's 2013 article. We made sure to provide as much detail as possible.

We now get to the heart of the matter and focus on Borcherds' method itself.

Assume given an initial P L -chamber D 0 with Weyl vector w 0 (the latter is fortunately provided by classical theory, see also the section 4, Vinberg-Conway Theory, from Shimada's article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF]) having the properties ι(S)-nondegeneracy and inducing a P S -chamber contained in Nef(X) ∩ P S . That is, the intersection

D 0 = D 0 ∩ P S is a P S -chamber contained in Nef(X) ∩ P S .
In case all we have in hands is the data of a chamber D 0 that does not satisfy the ι(S)-nondegeneracy property, we pick an ample class a 0 and make use of the procedure EmbUpdater, which has been mentioned earlier and is detailed in the section 1.8 of this thesis. If the program associated with the EmbUpdater procedure displays that another ample class should be chosen, it is recommended to do so and to execute EmbUpdater again. We thus assume that a transformation τ : L → L has nally been obtained and enables us to de ne an updated embedding

τ • ι : S → L
under which the P L -chamber D 0 is (τ • ι) (S)-nondegenerate and satis es

D 0 ∩ P S ⊂ Nef(X) ∩ P S .
Before proceeding further, note that in practice, to each P S -chamber is asso-ciated a tuple that characterizes the chamber and provides data which can be processed within an implementation of Borcherds' method, as explained in section 1.7. Hence, a P S -chamber D is realized as a concrete data tuple such as

D = w D , A H (D), Ω(D), Ω(D)
where w D denotes the Weyl vector of D, where A H (D) denotes a generating set of Aut H (D), where Ω(D) denote the set of walls of D and where Ω(D) denotes the set of walls of D with respect to anti-backtracking. More details about anti-backtracking can be found by clicking here. Note that our use of the term classical Borcherds' method refers to Shimada's original vision of Borcherds' method, for which he laid the algorithmic building blocks in his 2013 article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF], which has been a tremendous asset for us during our thesis.

We now explain the iterative mechanics behind the classical Borcherds' method. Full details are provided in section 1.7. Keeping this gure close by may be useful to the reader for what comes next. Note that the niteness of the number of congruence classes of chambers contained in Nef(X) ∩ P S is assured by Shimada, as indicated in his article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF], thus ensuring that Borcherds' method ends its execution at one moment or another. Fix a positive integer k = 0. We assume that Borcherds' method already performed k iterations and is currently at the beginning of its (k + 1)-th iteration. For each positive integer j less than or equal to k, we thus assume that the method produced a set L j containing chambers of level j, each representing their own H-congruence class of chambers of Nef(X) ∩ P S . For example,

L 0 = {D 0 }
since D 0 is by de nition the only chamber of level 0, and is by default chosen as a representative of its H-congruence class because it is the rst chamber explored and processed by the method. Assume that the generators of Aut H (Nef(X)∩P S) which have been detected by the method during the previous iterations have been stored into a set Γ. The (k + 1)-th iteration of Borcherds' method consists in exploring and processing the chambers of level k+1 adjacent to the chambers in L k along their non (-2)-walls in order to identify chambers representing new H-congruence classes. Such chambers are stored into an initially empty set

L k+1 = { }
and their adjacencies explored during the (k+2)-th iteration, provided that L k+1 is not empty at the end of the (k + 1)-th iteration. Borcherds' method otherwise stops and returns all the data collected during its execution. For each chamber D ∈ L k , Borcherds' method detects the (-2)-walls among the elements of the set of walls of D by running the procedure RatDetect and classes in S associated with such walls are stored into the set R rat . As indicated earlier, we denote by Ω(D) the set of walls of D taken with respect to anti-backtracking, i.e., the set Ω(D) from which the walls leading to chambers of level k-1 have been removed (click here for more details about anti-backtracking). For each m ∈ Ω(D), the method uses the procedure RatDetect from section 1.7.1 to determine whether (m) ⊥ is a (-2)-wall. When (m) ⊥ is not a (-2)-wall, Borcherds' method computes the Weyl vector w of the chamber D adjacent to D along the wall (m) ⊥ by using the procedure WeylAdj from section 1.7.2 with the input of m ∈ Ω(D) and of the Weyl vector w of D. Note that Ω(D) can be taken modulo Aut H (D) before performing the computation of the Weyl vectors of adjacent chambers, thus saving resources in some cases. We have to mention that all our implementations of Borcherds' method possess this feature (quite easy to implement with GAP functions), but we deliberately omitted it from our structure diagrams so as not to burden them with a feature which, in practice, is not useful for cases where X has a small Picard number. Indeed, for such surfaces, which have been mainly studied during this thesis, the group Aut H (D) is almost systematically trivial for all chambers. This phenomenon has also been observed by Shimada ten years ago in [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF]. Borcherds' method then computes the set of walls of D by using the Weyl w vector of D as input into the procedure DeltaW, from section 1.5.1. It then uses the output of the latter into the procedure SetOfWalls from section 1.5, which returns the desired set Ω(D) of walls of the chamber D .

A erwards, the set of walls of D is used as input into the procedure AutChamber, from section 1.7.3, which provides Borcherds' method with a set A H (D)

of generators of Aut H (D) = {g ∈ H | D g = D } .
Note that such generators are also generators of Aut H (Nef(X) ∩ P S), hence Borcherds' method stores them into the set Γ. Borcherds' method then determines whether D represents a new H-congruence class of chambers by proceeding as follows: For each chamber If L k+1 = ∅, that is, if representatives of new congruence classes have been detected during the iteration, then Borcherds' method proceeds to its next iteration: It explores and processes chambers of level k + 2 adjacent to chambers in L k+1 by adjacency along non (-2)-walls.

D ∈ L 0 ∪ L 1 ∪ • • • ∪ L k ∪ L k+1
If L k+1 = ∅, i.e., if no representative of new congruence classes have been detected during the iteration, then the methods ends and outputs all the data collected during its execution: Generators of Aut H (Nef(X) ∩ P S), data of the (-2)-walls identi ed during the exploration, data of the representatives of congruence classes, which form a complete set of representatives of H-congruence classes of chambers contained in Nef(X) ∩ P S .

Assume that the complex K3 surface under study satis es -1 / ∈ Ker(η T) and has Picard number ρ X < 20, so that Aut H (Nef(X) ∩ P S) Aut(X) holds, as indicated in theorem 22 from section 1.6. Assume moreover that the condition Aut H (D) = {Id} holds for all chambers D in the complete set of representatives returned by Borcherds' method. We show in proposition 31 from section 1.9 that the union of the set of chambers each representing their own congruence class returned by Borcherds' method is then a fundamental domain for the action of Aut(X) on Nef(X) ∩ P S . In proposition 37, we show that each orbit of smooth rational curves on X under the action of Aut(X) then possesses at least one representative among the classes in S associated with (-2)-walls contained in the set R rat . The cardinality of R rat thus provides an upper bound on the number of orbits of smooth rational curves on X under the action of Aut(X). We provide an algorithmic method in section 1.10 to identify redundant representatives in R rat , thus enabling us to re ne this upper bound. We implemented a complete algorithmic suite for Borcherds' method in Python and made extensive use of mathematical functions from the SageMath library. In order to provide a framework of use that is accessible and familiar to most people, our programs can be launched from a simple Sage console. We did our best to put computer science at the service of pure mathematics. In this perspective, three fully functional instances of Borcherds' method arise from this thesis:

The classical Borcherds' method is an implementation of the method that does not take advantage of the multi-core architecture of a CPU.

The Poolized Borcherds' method is an upgrade of the classical Borcherds' method, which takes advantage of the multi-core architecture of the processor on which it is executed. Most of the procedures have been redesigned so that the workload through them can be distributed over several worker processes. To do so, we made use of Python's multiprocessing library. Note that running the Poolized Borcherds' method with the allocation of a single worker process amounts to running the classical Borcherds' method.

We also implemented parallelism at the level of the method itself. What we did with the Poolized Borcherds' method consisted in adapting the internal procedures of the method so that process-based parallelism can then be used. However, enforcing parallelism at the level the method itself, e.g., by parallelizing the exploration of the chamber structure, requires more e ort than revamping the code to deploy a solution such a Pool. We cover this in section 1.11, Toward a parallelized Borcherds' method.

Note that computers are tools, and that we always strive to make the best possible use of the tools at our disposal. However, the tools should not take over the content. This is why all the discussions in this thesis occur outside of the constrained framework of a particular language. Moreover, it should be noted that not a single explicit reference to the code is used in this entire document. We believe that the classical dissertation format is not adapted to this aspect of our work. We instead provide an online platform on which we deal with all the practical and computer-based considerations: K3surfaces.com. Let us nevertheless conclude the introduction to the rst part of our thesis on a very concrete and practical consideration: Let X be a complex K3 surface of Picard number inferior or equal to 17. Within this framework, we can guarantee full automation for all the procedures. The input data required to set up the environment which will enable us to execute the Borcherds method consists of:

The data of a Gram matrix G S of the Néron-Severi group S := NS(X) of the K3 surface X.

The data of elements v 1 , . . . , v ρ ∈ L such that the mapping de ned by

ι : [α 1 , . . . , α ρ] S ∈ S -→ α 1 v 1 + • • • + α ρ v ρ ∈ L is a primitive embedding of S into either L = U ⊕ E 8 (-1) or L = U ⊕ E 8 (-1) ⊕ E 8 (-1)
depending of the Picard number of the K3 surface X under study.

The data an ample class a 0 := [α 0 , . . . , α ρ] S ∈ NS(X).

The data of a list

[G S , [v 1 , . . . , v ρ] , a 0] ,
where G S is a (ρ × ρ)-sized Sage matrix, where each v i is a lattice vector of L, and where a 0 is (1 × ρ)-sized Sage matrix, is therefore all that is needed to execute our implementation of Borcherds' method.

Let X be a complex K3 surface with Néron-Severi group S = NS(X). The other side of our study takes its roots in the fact that Roulleau produced a Magma program based on an algorithm due to Vinberg, which takes as input a Gram matrix of NS(X), an ample class P 0 , integers d, u b ∈ Z, and outputs the set

{C ∈ S | C, C S = d, C, P 0 S ≤ u b } of classes of curves C of self-intersection C 2 =
  2t 0 0 0 -2 0 0 0 -2   
with respect to a xed basis, and even discuss the unirationality of their moduli spaces. Here again, the tools produced during our thesis to do so have a scope of application which extends far beyond these K3 surfaces. Our PModChecker program bears witness to this fact. The fact is that the computer-based algorithmic approach we adopted led us to produce innovative tools. For example, we combined various algorithmic pieces provided by Shimada in his article [START_REF] Shimada | Projective models of the supersingular K3 surface with Artin invariant 1 in characteristic 5[END_REF] in order to produce:

Universal ampleness tester for classes of divisors on K3 surfaces:

Given an ample class a 0 ∈ S and a Gram Matrix G S for S, our program AmpTester can determine whether any class D ∈ S is ample or not. This program makes use of algorithmic material due to Shimada [START_REF] Shimada | Projective models of the supersingular K3 surface with Artin invariant 1 in characteristic 5[END_REF].

The following theorem incorporates results from Saint-Donat [START_REF] Saint-Donat | Projective models of K-3 surfaces[END_REF] & Morrison and can be found in the latter's 1988 Cortona lectures [START_REF] David | The geometry of K3 surfaces[END_REF] and provides characterizations of the projective models which can be obtained from the data of an ample class on a K3 surface. We state it in its formulation by Debarre

Part I Automorphisms groups and orbits

of smooth rational curves on K3 surfaces

1 Automorphism groups and orbits of (-2)-curves

Generalities

The following section introduces the main theoretical tools, notions, and concepts with which the reader should be familiar before pursuing the study further.

The basics

We recall that a free Z-module L of nite rank with a non-degenerate symmetric bilinear form

, L : L × L -→ Z
is called an integral lattice. In the following, we will use the term lattice to refer to an integral lattice. A lattice L is said to be even if

x 2 := x, x L ∈ 2Z
holds for any lattice element x ∈ L. The Gram matrix of a lattice L of rank N with basis b 1 , . . . , b N is de ned as the matrix

G L = b i , b j L 1≤i,j≤N
Denote by n + the number of positive eigenvalues and by n -the number of negative eigenvalues of G L . The pair of integers

(n + , n -) is called the signature of L. A lattice L is said to be hyperbolic when L ⊗ R is of signature (1, n -1).
The determinant of a lattice L is de ned as the determinant of the Gram matrix G L of L . An unimodular lattice is an integral lattice of determinant ±1. Let L be an hyperbolic lattice. One of the two connected components of the set

x ∈ L ⊗ R | x 2 > 0
is called a positive cone of L and is denoted by P L . It inherits the topology from the vector space L ⊗ R. When the lattice under study is chosen to be the Néron-Severi lattice S := NS(X) of a K3 surface X, the positive cone P S is chosen as the connected component of

x ∈ S ⊗ R | x 2 >
O + (L).
Let L be an even lattice. An element r ∈ L such that r 2 = -2 is called a root. To each root r ∈ L can be associated a re ection

s : L -→ L de ned by s r : x -→ x + x, r r.
Note that s r is an involution. That is,

s r • s r = Id
holds. The subgroup of O + (L) generated by all the re ections s r with respect to the roots is denoted by W (L) and called the Weyl Group of L. The quotient L ∨ /L is called the discriminant group of the lattice L. The discriminant group is endowed with a non-degenerate quadratic form

q : L ∨ /L -→ Q/2Z
de ned by

q : x mod L -→ x 2 mod 2Z.
The form q L is called the discriminant form of L. We use the notation (L ∨ /L, q L) in order to refer to the discriminant group and to its associated quadratic form at the same time. The group of isometries of (L ∨ /L, q) is denoted by O(q L).

There is a natural homomorphism

η : O(L) → O(q L)
between the group of isometries of L and the group of isometries of (L ∨ /L, q L).

Chamber structure and walls

Let L be an even hyperbolic lattice and let P L be a positive cone of L De nition 1. Let ∆ ⊂ L. The set

Σ L (∆) = {x ∈ L ⊗ R | ∀v ∈ ∆, x, v L ≥ 0} ,
is called the positive cone associated with ∆.

It is also referred to as the ∆-positive cone. De ne

N L = {x ∈ L ⊗ R | x, x L < 0} .
A closed subset D of P L is called a chamber if it has non-empty interior and if there exists a subset ∆ ⊂ N L such that

D = Σ L (∆) ∩ P L . (1.1)
Such a subset ∆ is called a de ning set of the chamber D. Note that the de nition of a chamber does not prohibit the fact that a chamber can be associated with more than one de ning set. Keeping this fact in mind is necessary to understand the path leading to the notion of set of walls of a chamber, introduced in section 1.1.2 of this thesis.

De nition 2.

A subset ∆ ⊂ N L is a called a de ning set of a chamber D whenever the equality D = Σ L (∆) ∩ P L holds.

That is, an element x ∈ P L is contained in a chamber D = Σ L (∆) ∩ P L if and only if the inequalities

x, v L ≥ 0 for all v ∈ ∆.
De nition 3. Let v ∈ L ⊗ R. We denote by (v) ⊥ the orthogonal complement in (L ⊗ R) ∩ P L of the element v . That is,

(v) ⊥ := {x ∈ L ⊗ R | x, v L = 0} ∩ P L .
We recall that a collection of subsets of a topological space is said to be locally nite if each point of the space has a neighborhood intersecting only nitely many sets in the collection. Let F ⊂ N L be a subset such that the collection

(v) ⊥ | v ∈ F
of orthogonal complements in P L of elements of F is a locally nite collection in P L . The positive cone P L of the lattice L can be decomposed as follows:

P L = (P L \ v∈F (v) ⊥) ∪ v∈F (v) ⊥ . (1.2)
Let C be a connected component of

(P L \ v∈F (v) ⊥) = v∈F P L \ (v) ⊥ .
Then

C = Σ L (∆ C) ∩ P L ,
where

Σ L (∆ C) = {x ∈ L ⊗ R | ∀v ∈ ∆ C , v, x L ≥ 0} .
In virtue of de nition 1, the set D := C is a chamber. We thus obtained:

Proposition 4. The closure C in P L of a connected component C of P L \ v∈F (v) ⊥ is a chamber. Moreover, there exists a nite subset ∆ ⊂ F such that C = Σ L (∆) ∩ P L . To any chamber D = Σ L (∆) ∩ P L with ∆ ⊂ F can be associated a connected component C of P L \ v∈F (v) ⊥ such that D = C.
We now assume xed a subset F ⊂ N L having the property that

(v) ⊥ | v ∈ F
is locally nite.

De nition 5. The collection

C F = C := Σ L (∆ C) ∩ P L | C connected component of P L \ v∈F (v) ⊥
is called a chamber structure on the positive cone P L of the lattice L.

Assume that a chamber structure C F has been set on P L . We now introduce the important notion of walls of a chamber. Denote by Int(D) the topological interior of a chamber D of C F .

De nition 6. a hyperplane (v) ⊥ of P L , with v ∈ F, is called a wall of the chamber D whenever both of the following conditions are satis ed: (a) the equality

Int(D) ∩ (v) ⊥ = ∅
holds and (b) there exists a non-empty open subset of (v) ⊥ contained in D∩(v) ⊥ .

For any chamber D, the inclusion

(v) ⊥ | v is a wall of D ⊆ (v) ⊥ | v ∈ ∆
always holds for any de ning set ∆ of D, will o en happen to be a proper inclusion.

Two facts should be underlined:

A de ning set of a chamber D may contain elements that do not have an orthogonal complement de ning a wall of the chamber D.

Distinct elements of a de ning set of a chamber may have the same orthogonal complement, and could thus de ne the same wall of D.

Let us have a short discussion about the fact that a de ning set of a chamber can also contain elements having the same orthogonal complement in P L . In practice, the fact that x 1 = ηx 2 for some η ∈ Z will o en turn out to be the cause of such a situation. Let us show how to deal with elements related by such a relation. Assume that rank(L) = N for some integer N > 0 and x a basis for L. We express elements of L in terms of their coordinates with respect the chosen basis. We let

x 1 = [α 1 , α 2 , . . . , α N] L and x 2 = [β 1 , β 2 , . . . , β N] L
be distinct elements of L belonging to the de ning set of some chamber, where the α i and β i for 1 ≤ i ≤ N are the respective coordinates of x 1 and x 2 with respect to the chosen basis of L. If we assume that x 1 = ηx 2 for some integer η ∈ Z, then the equality

x 1 gcd(α 1 , α 2 , . . . , α N) = x 2 gcd(β 1 , β 2 , . . . , β N) .
obviously holds. Thus, the issue caused by the presence of elements such as

x 1 and x 2 in ∆ can be overcome by replacing the latter by

∆ = x gcd(γ 1 , . . . , γ N) | x := [γ 1 , . . . , γ N] L ∈ ∆ . (1.3)
which is obtained by dividing each element x ∈ ∆ by the greatest common divisor of its coordinates. Given a chamber D, it would be very convenient if we could associate a set Ω(D) containing the elements of L which induce walls of the chamber D. From what we just discussed, the set Ω(D) should by de nition possess the two following properties:

If x ∈ Ω(D), then (x) ⊥ is a wall of D.
No two distinct elements x 1 , x 2 ∈ Ω(D) should have the same orthogonal complement.

In the framework of the classical theory presented by Shimada in [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF], de ning sets possessing these two properties are called minimal de ning sets.

De nition 7.

A de ning set ∆ of a chamber D is said to be a minimal de ning set whenever the two following conditions are satis ed:

(i) For all x ∈ ∆, the orthogonal complement (x) ⊥ is a wall of D.

(ii) Whenever x, y ∈ ∆ are distinct, then (x) ⊥ = (y) ⊥ .

The next question that comes naturally is minimality. The terminology from the classical theory is quite misleading, because the de nition of a minimal de ning set does not insure true minimality. Indeed, note that in case no genuine minimality condition is incorporated into the de nition of a set of walls, then any minimal de ning set of a chamber could be taken as the set of walls of a chamber. For example, assume that {a, b, c, d} is a minimal de ning set of a chamber D. Then the set {99a, b, 40c, 28d} is also a minimal de ning set of D. As we discussed earlier in this section, setting up a chamber structure requires a set F ⊂ N L having the property that the associated collection of hyperplanes

(v) ⊥ | v ∈ F
is locally nite. We have seen that chamber structure C F is then obtained by taking the closure of each connected component of

P L \ v∈F (v) ⊥ .
The walls of the elements of the chamber structure thus originate from respective orthogonal complements in P L of elements of F. It would thus be convenient to require that the elements in the set of walls Ω(D) of a chamber D ∈ C F are elements of F. Ful lling this requirement is the reason why the classical theory, found in Shimada's article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF], introduces the notion of F-minimal de ning set to take this fact into account, as described in [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF].

De nition 8. A minimal de ning set ∆ ⊂ N L ⊂ L ⊗ R of a chamber D satisfying the conditions (i) ∆ ⊂ F, (ii) if x ∈ ∆, then αx / ∈ F for all 0 < α < 1.
is called a F-minimal de ning set of D and is denoted by ∆ F (D).

Assume that ∆ is a de ning set of a chamber D and that ∆ ⊂ F.

In order to turn ∆ into a minimal de ning set, we apply de nition 7. First, we have to make sure that no two distinct elements of ∆ have the same orthogonal complement. The rst step that should be taken in order to reach this goal consists in taking the set ∆ instead of ∆, where the former has been de ned in expression 1.3. It should be noted that in spite of our assumption ∆ ⊂ F, there is absolutely no guarantee that ∆ ⊂ F will also hold. The best way to deal with this issue consists in requiring that the set of walls Ω(D) ⊂ L ⊗ R of a chamber D has the property that its elements cannot be expressed as integer multiples of other elements of L ⊗ R. In order to do so, it is convenient to use the fact that an integral lattice such as L is naturally contained in its dual lattice L ∨ , thus enabling us to work directly within the framework of dual lattices in which the requirement mentioned above can always be ful lled.

The classical theory built, by Shimada in [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF], embodies all these considerations by introducing of the notion of primitively minimal de ning set.

De nition 9. A minimal de ning set ∆ of an F-chamber D such that every v ∈ ∆ is primitive in L ∨ is called a primitively minimal de ning set of D.

In this thesis, the term set of walls refers to a primitively minimal de ning set.

That is, a sentence such as ∆ is a primitively minimal de ning set of D from Shimada's classical theory thus becomes ∆ is the set of walls of D in the framework of our thesis. The notion of a set of walls will come up repeatedly throughout this thesis, and will be central during our entire study. Please remember that the notation Ω(D) denotes the set of walls of a chamber D.

It should be noted that our use of the term set of walls is an abuse of language. Indeed, the set of walls of a chamber, de ned according to its name, should be de ned as

(v) ⊥ | v is a wall of D
with additional minimality conditions, as discussed above. Our justi cation for this abuse lies in the fact that we adopt a computer-based algorithmic approach: Entities involved in the procedures must therefore be de ned so that a computer can process them. Given a minimal de ning set of a chamber D, we, therefore, explain in section 1.5.2 the mechanics behind our version of a procedure originating from Shimada's article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] to compute the set Ω(D) of walls of a chamber D in a practical way. We close this section by asking our readers to keep in mind that, in practice, the rst step leading to the set of walls Ω(D) from a de ning set ∆ of D consists in computing ∆ (see expr. (1.3)).

Induced chamber structure

In this section, we show that a chamber structure on the positive cone P S of a K3 surface X is obtained whenever the two following conditions are satis ed:

The Néron-Severi group S of X has been primitively embedded into an even hyperbolic lattice L in such a way that P S ⊂ P S .

A chamber structure has been set on P L by taking F = R L in the de nition 5 of a chamber structure.

Let X be a complex K3 surface. As before, we denote by S = NS(X) its Néron-Severi group and let ρ X = rank(S) denote the Picard number of X. We assume that S is primitively embedded into a suitable even hyperbolic lattice L chosen according to the value of ρ X , as indicated in the following table : We moreover assume that the embedding ι : S → L is such that the inclusion P S ⊂ P L holds. As before, we denote by

R L = {x ∈ L | x, x L = -2}
the set of (-2)-vectors of L. The local niteness of the collection

(x) ⊥ | x, x L = -2
is established in Shimada's article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF]Lemma 3.4] . We thus apply de nition 1.1.2 with F = R L in order to obtain a chamber structure

C R L = { Ā ⊂ P L | A is a connected component of P L \ v∈R L (v) ⊥ }
on the positive cone P L of the lattice L. Chambers of this chamber structure will be referred to as P L -chambers. In order to identify P L -chambers, we will always make use of the mathcal font with the capital letter D and a numeral as a subscript when necessary. As indicated in the short introduction to this section, we will soon explain how a chamber structure on P L can induce a chamber structure on P S . Chambers belonging to the induced chamber structure on P S will be referred to as P S -chambers, and such chambers will be denoted by using the standard font with a capital D. Denote by R = S ⊥ the orthogonal complement of S into L. More generally, we use many notational conventions exactly as Shimada introduced them in his 2013 article Consider the orthogonal projections

pr S : L ⊗ R -→ S ⊗ R and pr R : L ⊗ R -→ R ⊗ R from L ⊗ R to S ⊗ R and from L ⊗ R to R ⊗ R, respectively.
When appropriate, we will make use of the shorthand notations x S and x R to denote images of an element x ∈ L ⊗ R via the maps pr S and pr R de ned above.

Proposition 10. An element x ∈ R L such that x S = 0 satis es (x) ⊥ ∩ P S = ∅ if and only if x S , x S S < 0.

Proof. Before proceeding, we recall given x ∈ L, we de ne

(x) ⊥ = {y ∈ L | x, y L = 0} ∩ P L .
Let y ∈ (x) ⊥ ∩ P S . Since

y ∈ P S ⊂ S
we have y = y S and y S , y S S > 0.

We obtain

x, y S L = 0 using the fact that y S ∈ (x) ⊥ . Expressing the element x as x R + x S then yields the equality

x S + x R , y S S = 0.
from which we immediately obtain

x S , y S S = 0 where x R is the projection of the element x onto R = S ⊥ . By the Hodge Index theorem, this equality implies that

x S , x S S < 0.

To establish the converse, we now assume that this inequality holds. The orthogonal complement in S of x S is then an hyperbolic lattice: It has rank ρ -1 and signature (1, ρ -2). Thus, there exists an element in the orthogonal complement of x S with strictly positive self-intersection. Such an element then clearly belongs to

(x S) ⊥ ∩ P S ,
and enables us to assert the non-emptiness of this set. Let D be a P L -chamber with R L -minimal de ning set ∆ R L (D) ⊂ R L . By de nition 1 of a chamber, the equality

D = Σ L (∆ R L (D)) ∩ P L (1.4)
holds, where we recall that

Σ L (∆ R L (D)) = {y ∈ L | ∀r ∈ ∆ R L (D), y, r L ≥ 0} . (1.5)
We now introduce the fundamental concept of Weyl vector of a P L -chamber which originates from [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF].

De nition 11. Let D be a P L -chamber. An element w ∈ L is said to be a Weyl

vector of D if its R L -minimal de ning set ∆ R L (D) is given by ∆ R L (D) = {r ∈ R L | w, r L = 1} .
Note that the de nition 1 of a chamber implies that no two distinct chambers can have the same de ning set. Since a minimal de ning set is a de ning set, it is clear that no two distinct chambers can have the same minimal de ning set.

A Weyl vector thus uniquely characterizes a single chamber. We will see in the upcoming sections that the knowledge of the Weyl vector of a chamber enables us to obtain precious information about the chamber such as its set of walls. Let D be a P L -chamber with Weyl vector w ∈ L and assume that D ∩ P S has a non-empty interior. We now show that this intersection can expressed as

D ∩ P S = Σ S (pr S (∆ w)) ∩ P S
for some set ∆ w depending on the Weyl vector of D. Note that the right-hand side of this equality de nes a chamber of P S whenever it has a non-empty interior. This result will pave the way toward a de nition of P S -chambers as chambers of P S obtained by intersecting P L -chambers with P S provided that the resulting intersections have a non-empty interior. We then see that this de nition enables us to obtain a P S -chamber structure from a P L -chamber structure.

Using expressions (1.4) and (1.5), we see that D ∩ P S can be expressed as

D ∩ P S = {y ∈ L ⊗ R | ∀r ∈ ∆ R L (D), y, r L ≥ 0} ∩ P S .
The assumption that it has non-empty interior enables us to express the above equality as

D ∩ P S = {y ∈ L ⊗ R | ∀r ∈ ∆ w , y, r L ≥ 0} ∩ P S
where ∆ w is de ned as

∆ w = x ∈ ∆ R L (D) | (x) ⊥ ∩ P S = ∅ .
Note that this set is non-empty whenever D ∩ P S has non-empty interior and that the equality y, x L = y, pr S (x) S holds for all y ∈ S and all x ∈ L. Thus,

D ∩ P S = {y ∈ L ⊗ R | ∀r ∈ ∆ w , y, r S S ≥ 0} ∩ P S .
We then have

D ∩ P S = {y ∈ L ⊗ R | ∀r ∈ ∆ w , y, r L ≥ 0} ∩ P S = {y ∈ L ⊗ R | ∀r ∈ pr S (∆ w), y, r S S ≥ 0} ∩ P S (1.6)
where we recall that x S is a shorthand for the orthogonal projection pr S (x) of an element of L onto S. We then note that the set Σ S (pr S (∆ w)) is by de nition de ned as

Σ S (pr S (∆ w)) = {y ∈ S ⊗ R | ∀r ∈ pr S (∆ w) , y, r S S ≥ 0} .
Also, note that expression (1.6) is obviously equivalent to

D ∩ P S = {y ∈ S ⊗ R | ∀r ∈ pr S (∆ w), y, r S S ≥ 0} ∩ P S .
Thus, the assumption that D ∩ P S has non-empty interior leads to

D ∩ P S =Σ S (pr S (∆ w)) ∩ P S .
The last expression meets and this hypothesis meet all requirements of the definition 1 of a chamber of P S . When applied within the framework of P S , this de nition indeed states that a chamber D of P S has have non-empty interior can be expressed as

D = Σ S (∆) ∩ P S
for some subset ∆ ⊂ N S , where

N S = {x ∈ S ⊗ R | x, x S < 0} .
We still have to show that pr S (∆ w) ⊂ N S , where we recall that

∆ w = x ∈ ∆ R L (D) | (x) ⊥ ∩ P S = ∅ . (1.7)
To do so, recall that proposition 10 states that an element x ∈ R L satis es (x) ⊥ ∩ P S = ∅ if and only if x S , x S S < 0 holds. We then immediately obtain the inclusion pr S (∆ w) ⊂ N S so that the set pr S (∆ w) is a de ning set of the P S -chamber D = D ∩ P S with Weyl vector w. As is done in Shimada's article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF], we now let

R L|S = x S ∈ S ⊗ Q | x ∈ R L , x 2 S < 0 and R S = x ∈ S | x 2 = -2 .
Note that the inclusion R S ⊂ R L|S obviously holds. Moreover, the equivalence stated in proposition 10 enables us to express R L|S as

R L|S = x S ∈ S ⊗ Q | x ∈ R L , (x) ⊥ ∩ P S = ∅ .
We then immediately see that the set pr S (∆ w) satis es by de nition pr S (∆ w) ⊂ R L|S .

Let D be a P L -chamber with Weyl vector w ∈ L and assume that D ∩ P S has non-empty interior. We have seen that D = D ∩ P S can be expressed as

D = Σ S (pr S (∆ w)) ∩ P S
with ∆ w de ned in expression (1.7), is a P S -chamber, and such that pr S (∆ w) ⊂ R L|S .

Our above discussion led us to the following important proposition Proposition 12. If D is a ι(S)-nondegenerate P L -chamber with Weyl vector w then the set pr S (∆ w) is a de ning set of the induced P S -chamber D = D ∩ P S .

Given an element R L|S , we de ne

(v) ⊥ = {x ∈ S ⊗ R | x, v S = 0} ∩ P S .
In his article [19, section 5], Shimada established that the collection

(v) ⊥ | v ∈ R L|S
is locally nite. It is thus clear that the P S -chambers, which are by de nition induced by P L -chambers, belong to the chamber structure on P S obtained by taking the closure of connected components of

P S \ v∈R L|S (v) ⊥ .
This chamber structure will be referred to as the P S -chamber structure, or as the induced chamber structure. What we discussed is summarized in the following result:

Proposition 13. Assume that C R L is a chamber structure on P L and that S is primitively embedded into L in such a way that P S ⊂ P L . Then the collection

C R L|S := {D ∩ P S | D ∈ C L , ∃U ⊂ P S , U = ∅, U open s.t. U ⊂ D ∩ P S }
is a chamber structure on P S induced by the chamber structure C L on P L .

An important fact regarding de ning sets of induced chamber is provided by [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF]Proposition 5.7]: Proposition 14. For any Weyl vector w ∈ L, the set ∆ w is nite. In particular, any R L|S -chamber D has a nite de ning set.

Recall that we denote by ι the embedding ι : S → L which is assumed to embed S primitively into an even hyperbolic lattice L chosen according to the table provided at the beginning of this section. The following de nition characterizes P L -chambers inducing chambers on P S .

De nition 15.

A P L -chamber D having such that the intersection D ∩ P S has non-empty interior is said to be ι(S)-nondegenerate.

Please keep in mind that the ι(S)-nondegeneracy is a property that depends on the transformation used to embed S into L. We use the pre x ι(S) to emphasize this fact. Note that the classical theory, built by Shimada, instead uses the pre x S, thus neglecting to highlight the dependence of the notion of nondegeneracy on an embedding. It should be noted that Shimada provides in [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF]Criterion 5.7] the following helpful criterion to check whether a P L -chamber is ι(S)-nondegenerate.

Proposition 16. A P L -chamber D with Weyl vector w is ι(S)-nondegenerate if and only if there exists an element v ∈ P S satisfying the nite number of inequalities v, x S > 0 for any x ∈ pr S (∆ w).

This criterion makes perfect sense: Let D be a ι(S)-nondegenerate P S -chamber with Weyl vector w. By de nition, the intersection D = D ∩ P S has non-empty interior. That is, there exists an element v ∈ P S such that v ∈ Int(D ∩ P S). Such an element must satisfy v, q S > 0 for all q ∈ Ω(D), the set of walls of D. Since we have seen in proposition 12 that pr S (∆ w) is a de ning set of D, we have Ω(D) ⊆ pr S (∆ w) by what we have seen in 1.1.2. Thus, if the above inequalities hold for all q ∈ pr S (∆ w), they also hold for all q ∈ Ω(D). Proposition 14 then guarantees the niteness of pr S (∆ w). Thus, there are only a nite number inequalities to be checked. Our implementation of this criterion is the procedure DegenTest, which takes as input the data of the set of pr S (∆ w) associated with a P L -chamber D with Weyl vector w ∈ L, the data of an ample class a 0 ∈ P S , and determines whether the inequalities mentioned above all hold.

We conclude this section with an important remark: By abuse of language, it is customary to say that the Weyl vector w ∈ L of a ι(S)-nondegenerate P Lchamber D is also the Weyl vector of the P S -chamber

D = D ∩ P S
it induces. The scope of the de nition 11 of a Weyl vector is thus extended by inheritance to induced chambers.

Toolbox

Recall that an integral lattice such as the Néron-Severi group S of a K3 surface X is a sublattice of its dual S ∨ , de ned as

S ∨ = {x ∈ S ⊗ R | ∀y ∈ S, x, y ∈ Z} .
We recall that S is assumed to be primitively embedded into one of the three even hyperbolic lattices L displayed in the table presented at the beginning of the previous section. For convenience, most computations in our programs involving S or its orthogonal complement R, both viewed as sublattices of L, are carried out within the framework of their respective duals S ∨ and R ∨ . No matter if we had to calculate sublattices, duals, Gram matrices, orthogonal complements, kernels, it is clear that our extensive use of functions from libraries such as the SageMath library or the SciPy library enabled us to do whatever we wanted without restriction. However, we think that we should still explain the basics mechanics behind these lattice-related functions. We already mentioned numerous times that there are three possible lattices which can be used as ambient lattices depending on the Picard number of X. We detail some basic mechanics in the framework of the ambient lattice L = U ⊕ E 8 (-1) which has rank 10, the smallest rank among the three, so that all the techniques demonstrated in this section can be applied to the two other lattices of rank 18 and

26 since U ⊕ E 8 (-1
) is naturally embedded into them. Denote by E 8 (-1) the integral lattice for which a Gram matrix is

                -2 0 0 1 0 0 0 0 0 -2 1 0 0 0 0 0 0 1 -2 1 0 0 0 0 1 0 1 -2 1 0 0 0 0 0 0 1 -2 1 0 0 0 0 0 0 1 -2 1 0 0 0 0 0 0 1 -2 1 0 0 0 0 0 0 1 -2                
and denote by U the integral lattice for which a Gram matrix is 0 1 1 0 .

These two matrices enable us to obtain a Gram matrix for the direct sum lattice

L = U ⊕ E 8 (-1)
in the obvious way.

Note that Shimada uses a basis u 1 , u 2 for U in his article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] which yields the Gram matrix 0 1 1 -2 for this lattice. The change of basis

u 1 -→ u 1 u 2 -→ u 2 -u 1
enables us to obtain the Gram matrix 0 1 1 0 for U which will be used during this thesis. Please bear in mind that we thus applied the transformation mentioned above to all the results and formulas provided in Shimada's article in order to make things work with our standard basis for U . As shown in this online example, our programs can nevertheless handle input data containing embedding vectors with U -coordinates expressed in terms of the basis for U used by Shimada. Assume that u 1 , u 2 form a basis for U such that the above Gram matrix for this lattice is obtained, and assume given elements e 1 , . . . , e 8 forming a basis for E 8 (-1) in such a way that the latter has the matrix mentioned at the beginning of this section as Gram matrix. As is usually done, the direct sum

L = U ⊕ E 8 (-1)
is endowed with the concatenated basis {u 1 , u 2 , e 1 , . . . , e 8 } .

Let X be a complex K3 surface S of Picard number ρ X < 10 and assume that β 1 , . . . , β ρ form a basis of its Néron-Severi group S with Gram matrix G S . We use the notation

[α 1 , α 2 , . . . , α ρ] S
to denote the coordinates of an element

D = α 1 b 1 + α 2 b 2 + • • • + α ρ b ρ
expressed in terms of the basis b 1 , . . . , b ρ for S. We now assume that S is primitively embedded into the even hyperbolic lattice

L = U ⊕ E 8 (-1)
that is, we assume that there is a primitive embedding of lattices

ι : S → L de ned by ι : α 1 b 1 + α 2 b 2 + • • • + α ρ b ρ -→ α 1 s 1 + α 2 s 2 + • • • + α ρ s ρ
where s 1 , . . . , s ρ ∈ L denote the basis vectors of S viewed as a sublattice of L.

That is, we have

ι(b i) = s i , 1 ≤ i ≤ 10
so that S will be identi ed with its image in L until the very end of this section, and ι can be viewed as an inclusion map of S into L. As an immediate consequence of the fact that we are here dealing with an embedding of lattices, the Gram matrix G S of S is preserved. Denote by R = S ⊥ be the orthogonal complement of S in L and denote by r 1 , . . . , r 10-ρ ∈ L elements forming a basis of the lattice R viewed as a sublattice of L.

Embeddings: Since S is assumed to be primitively embedded into L, expressing elements of S in terms of the basis of L is an important operation. Denote by E S be the (ρ × 10)-sized matrix with rows s 1 , . . . , s ρ . The transformation

x -→ xE S
associated with E S enables us to view this matrix as the matrix associated with the primive embedding ι : S → L of S into L. Let E R be the ((10 -ρ) × 10)-sized matrix with rows r 1 , . . . , r 10-ρ .

Then the transformation

x ∈ R -→ xE R ∈ L
de nes an embedding of R into L. Denote by G L the Gram matrix of the lattice L, and denote by G S and G R the respective Gram matrices of the lattices S and R. As indicated at the beginning of this section, we recall that the dual of a lattice L is the set

L ∨ = {x ∈ L ⊗ R | ∀y ∈ L, x, y L ∈ Z}
and note that an integral lattice is always contained in its dual:

L ⊆ L ∨ .
We hence denote by S ∨ the dual of S and denote by R ∨ the dual of R. Note that S ∨ is a free module of rank ρ over the integers, and if we see it as a submodule of L ⊗ Q it is then spanned by the rows of the matrix G -1 S E S and denote by

s ∨ 1 , . . . , s ∨ ρ ∈ L ⊗ Q
the basis vectors of S ∨ obtained from the rows of this matrix. Similarly, note that R ∨ can be viewed as a free submodule of L ⊗ Q of rank 10 -ρ over the integers spanned by the rows of the matrix

G -1 R E R and denote by r ∨ 1 , . . . , r ∨ 10-ρ ∈ L ⊗ Q
the basis vectors of R ∨ obtained from the rows of this matrix. The respective Gram matrices G S ∨ (resp. G R ∨) of S ∨ (resp. R ∨) relative to the basis s ∨ 1 , . . . , s ∨ ρ (resp. r ∨ 1 , . . . , r ∨ 10-ρ) are given by the formulas:

G S ∨ = G -1 S E S G L (G -1 S E S) t and G R ∨ = G -1 S E S G L (G -1 S E S) t .

Orthogonal Projections onto S and R

We explain how to compute orthogonal projections from L onto S and R. Denote by

A =   s 1 , • • • s ρ , r 1 , • • • , r 10-ρ   
be the (10 × 10)-sized matrix whose columns are taken to be the basis vectors of the lattices S and R. The matrix

P = (A -1) T
is used to de ne a transformation

L ⊗ Q -→ (S ⊗ Q) ⊕ (R ⊗ Q) de ned by x -→ xP = x (1)
S , . . . , x

(ρ) S , x (1)
R , . . . , x

(10-ρ) R
which enables us to obtain the coordinates of an element x ∈ L⊗Q with respect to the basis of

(S ⊗ Q) ⊕ (R ⊗ Q).
The latter is obtained by noting that we have

L ⊂ L ⊗ Q,
so that the basis {s 1 , . . . , s ρ } for S can be viewed as a basis of

S ⊗ Q ⊂ L ⊗ Q.
Similarly, the basis {r 1 , . . . , r 10-ρ } for S can be viewed as a basis of

R ⊗ Q ⊂ L ⊗ Q.
A basis of

(S ⊗ Q) ⊕ (R ⊗ Q)
can thus be obtained from the concatenated basis {s 1 , . . . , s ρ , r 1 , . . . , r 10-ρ } of S ⊕ R. We also note that there is an equality

L ⊗ Q = (S ⊗ Q) ⊕ (R ⊗ Q) .
Denote by P S be the (10 × ρ)-sized matrix obtained by taking as columns the rst ρ columns of the matrix P . The matrix P S is associated with the projection transformation

x ∈ L ⊗ Q -→ xP S ∈ S ⊗ Q from L ⊗ Q onto S ⊗ Q and enables us to obtain coordinates of projections xP S = x (1) S , . . . x (ρ) S
of elements x ∈ L ⊗ Q with respect to the basis of S ⊗ Q. Denote by P R be the (10 × (10 -ρ))-sized matrix obtained by extracting the columns of P ranging from the (ρ + 1)-th to the last one. The matrix P R is the matrix associated with the projection tranformation

x -→ xP R = x (1) R , . . . x (10-ρ) R from L ⊗ Q onto R ⊗ Q enables us to get coordinates of projections onto R of elements x ∈ L with respect to the basis of R ⊗ Q.

Projections onto S ∨ and R ∨

Projections from L onto S ∨ and R ∨ are also common operations. We, however, made use of two distinct bases of S ∨ to consider two ways of de ning projec-

tions from L ⊗ Q into S ∨ .
One basis is denoted by B 1 and made of elements of L ⊗ Q. Using this base makes sense when S and S ∨ are considered within the framework of a primitive embedding of S into L.

The other basis is denoted by B 2 and made of elements of S⊗Q. Using this base makes sense when considering S and S ∨ outside of the framework of the primitive embedding of S into L.

Projections onto S ∨ can indeed be either considered within the framework of the embedding of S into L or by viewing S as a lattice of its own right. The rst approach is especially convenient when using SageMath, whose lattice features enable us to easily de ne S and R as sublattices of L and thus perform all computations in this framework. A basis B 1 for S ∨ is obtained by taking as elements the rows of the matrix G S E S . Note that this basis will be used by Sage for S ∨ whenever S is de ned as a sublattice of L. Consider the (10 × 10)-sized matrix

B =   s ∨ 1 , • • • , s ∨ ρ , r ∨ 1 , • • • , r ∨ 10-ρ   
obtained by taking as columns the elements of the concatenated basis

s ∨ 1 , . . . , s ∨ ρ , r ∨ 1 , . . . , r ∨ 10-ρ of the direct sum S ∨ ⊕ R ∨ . The matrix Q := (B -1) t then yields a transformation L ⊗ Q -→ S ∨ ⊕ R ∨ de ned by x -→ xQ = x (1) S ∨ , . . . , x (ρ)
S ∨ , x (1)
R ∨ , . . . , x

(10-ρ) R ∨
which the coordinates of elements x ∈ L⊗Q with respect to the above-mentioned basis concatenated basis for S ∨ ⊕ R ∨ . Obtaining the coordinates of the projections onto S ∨ and R ∨ is easy:

• x (1) S ∨ , . . . , x (ρ)
S ∨ are the coordinates of the projection of x into S ∨ .

• x

(1) R ∨ , . . . , x (10-ρ) R ∨
are the coordinates of the projection of x into R ∨ .

These coordinates can also be obtained by proceeding as follows:

If we let Q B 2 S ∨
be the (10 × ρ)-sized matrix with columns obtained by extracting the rst ρ columns of the matrix Q, then a projection

pr B 2 S ∨ : L ⊗ Q -→ S ∨ de ned by pr B 2 S ∨ : x -→ xQ B 1 S ∨ = x (1) S ∨ , . . . x (ρ) S ∨
is obtained. We can also consider projections into S ∨ endowed with basis

B 2 = col 1 (G -1 S), . . . , col ρ (G -1 S)
obtained by taking the columns of the inverse G -1 S of the Gram matrix of S. Doing so amounts to considering S as a lattice of its own, and not as a primitive sublattice of L. This approach is convenient for computations that occur within procedures that produce transformations of O(S), that is, within the procedures CongChecker and AutChamber described in sections 1.7.4 and 1.7.3. A projection operator pr

B 2 S ∨ : L ⊗ Q -→ S ∨ from L ⊗ Q onto S ∨ endowed with its basis B 2 is obtained by de ning pr B 2 S ∨ : x -→ xG L E T S .
Considering distinct bases as done for S ∨ would make no sense in the case of R ∨ . Indeed, recall that R is de ned as the orthogonal complement of S into L. We therefore have no other choice but to take a basis of R ∨ within the framework of the embedding. Such a basis is obtained by taking as basis elements the rows of the matrix G R E R . De ne Q R ∨ as the 10 × (10 -ρ) matrix whose columns are obtained by extracting the last 10 -ρ columns columns of the matrix

Q. A projection pr B 2 R ∨ : L ⊗ Q -→ R ∨ de ned by pr R ∨ : x -→ xQ R ∨ = x (1) R ∨ , . . . , x (10-ρ) R ∨ is then obtained. Embeddings of S ∨ and R ∨ into L ⊗ R
Denote by

E S ∨ = G -1 S E S
the basis matrix of S ∨ . Note that the rows of this matrix are the elements of B 2 . Let v S ∈ S ∨ with coordinates expressed with respect to this basis. We denote by v L⊗Q S the image of v S ∈ S ∨ under the map

v S -→ v L⊗Q S = v S E S ∨ from S ∨ into L ⊗ Q. Analogously, let E R ∨ = G -1 R E R be the basis matrix of R ∨ . Consider an element v R ∈ R ∨ ⊗ Q with coordinates
expressed with respect to the basis obtained by taking the rows of this matrix. We denote by v L⊗Q R the image of v R under the map

v R ∈ R ∨ -→ v L⊗Q R = v R E R ∨ from R ∨ into L ⊗ Q.
The two following gures summarize the material discussed in this section: We embed S into L by right multiplication by the matrix E S . We can consider projections into S ∨ by either regarding it endowed with its basis B 1 which is denoted by S ∨ B 1 , or with its basis B 2 which is denoted by S ∨ B 2 .

From the framework of the basis S ∨ B 1 , projection into S ⊗ Q requires going back into L ⊗ Q by right multiplication by E S ∨ and then project into S ⊗ Q by right multiplication by P S . Projection into S ⊗ Q requires le multiplication by (G -1 S) t when working in the framework of S ∨ B 2 .

Shimada's enhanced Short Lattice Vectors Enumerator

Among the numerous features of popular computer algebra systems (CAS) can be found short lattice vectors enumeration functions. Given a positive de nite gram matrix Q of a rank n lattice L and an integer c as input data, a short lattice vectors function returns the set of all lattice elements x ∈ L satisfying

xQx T ≤ c. (1.8)
As far as we know, there is no CAS (in 2022) that integrates a function capable of determining the solution set an expression of the form

xQx T + 2xL ≤ c, (1.9)
where L is an n-sized column vector. In his article [18, Section 3.1], Shimada provides an algorithm to determine the solution set of an expression such as (1.9). We used the SageMath Python library in order to produce an implementation of this algorithm. The result is the function ShiVectors, detailed and available for download on K3surfaces.com. In this section, we build on the structure outlined by Shimada in his article [18, Section 3.1] and introduce this key algorithm from a purely pragmatic point of view. Our goal consists in providing guidelines so that the readers can easily implement this algorithm.

De nition 17.

A quadratic triple of n variables is a triple [Q, L, c] where Q is a (n × n)-sized symmetric matrix with rational entries, where L is a column vector of length n with rational entries, and where c is a rational number.

When the matrix Q is positive de nite, the triple

[Q, L, c]
is called a positive quadratic triple. When Q is negative de nite, we bring the problem back to the positive de nite case by substituting -Q to Q.

To any triple QT = [Q, L, c] can be associated a quadratic function

q QT : Q n -→ Q de ned by q QT (x) := xQx t + 2xL + c.
The remainder of this section will be based on the section 3.1 "An algorithm for a positive quadratic triple" from Shimada's article [START_REF] Shimada | Projective models of the supersingular K3 surface with Artin invariant 1 in characteristic 5[END_REF]. We provide the necessary details and clari cations which will enable the readers to easily produce their own implementations of Shimada's algorithm to compute the set

E(QT) = {x ∈ Z n | q QT (x) ≤ 0} .
Also, please remember that we provide our own ready-to-use implementation of this algorithm, which is called ShiVectors, on k3surfaces.com The main routine used in Shimada's algorithm consists in applying sequences of projection operations. The purpose of a projection consists in returning a triple of m -1 variables from the input of a triple of m variable. By repeated applications of projections, we nally obtain a triple of a single variable. The degree 1 equation associated with this triple has a solution set that can be determined without hassle. Let QT = [Q, L, c] be a positive quadratic triple of n variables.

Projection procedure n°1:

Following Shimada's guidelines, we arrange the elements of this triple as follows:

where Q is a (n -1) × (n -1)-sized square matrice, where p and L are column vectors of length n -1, and where r and m are rationals.

Since the matrix Q is assumed to be positive de nite, note that r > 0. Shimada states that a quadratic triple of n -1 variables is then obtained from the triple QT by the formula

pr(QT) := Q - 1 r (p t p), L - m r p , c - m 2 r .
Projection procedure n°2:

We follow Shimada's guidelines and arrange the elements of the triple QT as follows:

where Q is a (n -1) × (n -1)-sized square matrix , where p and L are column vectors of length n -1, and where r and m are rationals. As before, we note that r > 0 due to the assumed positive de niteness of the matrix Q.

Let a ∈ Q be a rational number. Shimada states that a quadratic triple of n -1 variables ι * (a, QT) is then obtained by the formula:

ι * (a, QT) := Q , ap + L , a 2 r + 2am + c . (1.10)
This procedure can be executed more than one time, say m < n times, as follows. Let

a = [a 1 , . . . , a m] ∈ Q m .
A positive quadratic triple ι * (a, QT) of (n -m)-variables is then obtained by m sucessive applications of the formula given in expression (1.10). That is, de ne

QT 0 := QT, QT ν+1 := ι * (a ν+1 , QT ν), ι * (a, QT) := QT m
where ν = 0, . . . , m -1.

ShiVectors -Our implementation of Shimada's SLVE

Assume that an initial positive quadratic triple

QT 0 n := QT
of n-variables is given.

By n -1 applications the projection procedure n°2 described above, compute

QT 0 i-1 = pr(QT 0 i)
for 2 ≤ i ≤ n and note that

QT 0 1 = pr(QT 0 2)
is a triple of a single variable, whose associated degree 1 equation has a solution set which can be easily determined. Denote by S (QT) the set containing these triples:

S (QT) = QT 0 1 , QT 0 2 , . . . , QT 0 n .
Assume given an initial positive quadratic triple QT of n variables. We now state the main procedure behind Shimada's algorithm to compute E(QT). First, we warn the reader that the following procedure is recursive.

Procedure ShiVectors : The input consists of a parameter ν ∈ Z, of sets Z, E and Y, so that the procedure can be formalized as

ShiVectors(ν, Z, Y)

Note that the sets Z and E will initially be taken as empty sets in order to initiate the procedure, while Y will be initially taken as S (QT) and is thus assumed to be a set of triples, as explained earlier. The rst thing that the procedure does consists in taking a look at the value of the parameter ν:

If ν = n + 1
, append the list Z to the list E, return the list E as output, end of story.

Otherwise, denote by X (S (QT)) the solution set of the inequality obtained from the triple a single variable QT 0 1 contained in S (QT), and proceed as follows.

Denote by S * (QT) a copy of the set S (QT) from which the triple of a single variable QT 0 1 has been removed. For each q ∈ X (S (QT)), Shimada instructs to proceed as follows:

(i) Create a copy Z of the set Z and compute the set

S update (QT) := {ι * (q, r) | r ∈ S * (QT)} .
(ii) Append q to the list Z and execute ShiVectors(ν

+ 1, Z , S update (QT), E).
That is all what is to be done. In practice, given a triple

QT = [Q, L, c]
we execute the procedure ShiVectors with

ν = 1, Z = { } . ShiVectors(1, Z = { } , S (QT), E = { })
Shimada then guarantees that the set returned by this procedure is

E(QT) = {x ∈ Z n | q QT (x) ≤ 0} , as desired.

Applications -ShiChecker & ShiBooster

The two following algorithms due to Shimada are applications of ShiVectors. Note that additional details on these applications can be found in [START_REF] Shimada | Projective models of the supersingular K3 surface with Artin invariant 1 in characteristic 5[END_REF] and the second part of this thesis.

Procedure ShiChecker: Let L be a hyperbolic lattice, let v be a vector of L⊗Q satisfying v 2 > 0, let α be a rational number, and let d be an integer. The nite set {x ∈ L | x, v L = α, x, x L = d} can be computed by the method decribed in [18, Section 3.2].

Procedure ShiBooster: Let L be a hyperbolic lattice, let v, h be vectors of

L ⊗ Q such that v, h L > 0, h, h L > 0, v, v L > 0,
and let d be a negative integer. Then the nite set

{x ∈ L | v, x L < 0, h, x L > 0, x, x L = d}
can be computed by the method described in [START_REF] Shimada | Projective models of the supersingular K3 surface with Artin invariant 1 in characteristic 5[END_REF]Section 3.3].

Our implementations of these algorithms due to Shimada are available for download on K3surfaces.com as ShiBooster and ShiChecker, respectively.

Computing the walls of an induced chamber

We have seen in section 1.1.2 that a ι(S)-nondegenerate P L -chamber D induces a P S -chamber

D = D ∩ P S .
Assuming that D has Weyl vector w, which is inherited by the induced chamber D, we have seen in proposition 12 that the set pr S (∆ w) is a de ning set of the induced P S -chamber D = D ∩ P S . The aim of this section consists in providing the procedures which will enable the reader to compute a primitively minimal de ning set of an induced P S -chamber D from the sole input data of its Weyl vector. That is, we provide procedures to compute the data of the walls of a P S -chamber D. To do so, we proceed in two stages:

In section 1.5.1, we present the procedure DeltaW. This procedure is based on Shimada's algorithm 5.8 from [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] and ouputs ∆ w from the input data of the Weyl vector w of a P S -chamber D.

In section 1.5.2, we introduce the procedure SetOfWalls. The latter is based on Shimada's algorithm 3.17 from his article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] and outputs a primitively minimal de ning set from the input data of a de ning set of a P S -chamber.

The computation of the set of walls of a P S -chamber D = D ∩ P S with Weyl vector w can then be performed by proceeding as follows: Using the Weyl vector w of D as input, we use the procedure DeltaW to compute the set ∆ w . By proposition 12, the set pr S (∆ w) is a de ning set of D. We then apply the procedure SetOfWalls to the latter in order to obtain a primitively minimal de ning set of D, i.e., the data of the walls of D.

Procedure DeltaW

As before, we work with a complex K3 surface X. We assume that its Néron-Severi group S = NS(X) has been primitively embedded into a suitable ambient even hyperbolic lattice L by an embedding ι : S → L in such a way that P S ⊂ P L . Assume that a Weyl vector w ∈ L of a P L -chamber D is given. Let R = S ⊥ , the orthogonal complement of S in L. We follow the structure outlined by Shimada in Algorithm 5.8 from his article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] and provide all the necessary additional details which will enable our readers to produce their own implementations of this algorithm without hassle. We also provide our implementation of this algorithm, called DeltaW, available for download and explained on k3surfaces.com We also explain on this website how to compute R, R ∨ , G R , n R ... and all the entities mentioned in this section using the SageMath library. We now state the algorithm provided by Shimada in [19, algorithm 5.8] and then explain how we implemented it. Assume that the Weyl vector w ∈ L of an P L -chamber D is given as input data. The following algorithm returns the set

∆ w = x ∈ ∆ R L (D) | (x) ⊥ ∩ P S = ∅ = x ∈ ∆ R L (D) | x 2
S < 0 (where we used proposition 10)

from the input data of w. Shimada's Algorithm 5.8:

Step n°1 -Compute w S = pr S ∨ (w) ∈ S ∨ , w R = pr R ∨ (w) ∈ R ∨ (see details in section 1.3).
Step n°2: Compute the set

n R = c ∈ Q | d R c ∈ Z, d 2 R c ∈ 2Z, -2 < c ≤ 0 where d R denotes the order of the discriminant group R ∨ /R of R.
De ne ∆ := {} .

Step n°3 -Let

β max = max {|β| | β ∈ n R }. Use a short lattice vectors enumeration solution to compute v ∈ R ∨ | v 2 ≤ β max
and process the data of this set to obtain

R ∨ [β] = v ∈ R ∨ | v 2 = β and a R [β] := { w R , v R ∨ | v ∈ R ∨ [β]} for each β ∈ n R .
Step n°4 -For each pair

(β, α) ∈ n R × a R [β], use algorithm ShiChecker to compute the nite set S ∨ [β, α] = {v ∈ S ∨ | v, w S S ∨ = 1 -α, v, v S ∨ = -2 -β} .
Step n°5 -For each

β ∈ n R , each v R ∈ R ∨ [β], each α ∈ a ∨ R [β] and each v S ∈ S ∨ [β, α] , determine whether the element v S + v R belongs to L.
That is, determine whether the coordinates of v S + v R with respect to the standard basis of L are all integers.

If the answer is positive, append v S + v R to ∆ .

Final step: Output

∆ as ∆ w .
Before explaining this algorithm step-by-step, we have to shed light on the general idea behind Shimada's algorithm 5.8. The endgame consists in obtaining elements of ∆ w as sums

v S + v R of elements v S ∈ S ∨ and v R ∈ R ∨ which satisfy v S , v S S ∨ = -2 -v R , v R R ∨ and v S , w S S ∨ = 1 -v R , w R R ∨ .
To this end, Step n°3 will be used to obtain suitable elements v R ∈ R ∨ , while

Step n°4 will enable us to determine elements v S ∈ S ∨ for which there exist an element v R such that v S +v R satis es the above equalities. Once this is done, we will not be far from obtaining the set ∆ w . Indeed, assume that elements v S ∈ S ∨ and v R ∈ R ∨ satisfying the above equalities have been obtained, that is, such that equalities are given, i.e., satisfy

v S + v R , v S + v R L = -2 and v S + v R , w L = 1. (1.11)
Assume furthermore that v S + v R ∈ L, i.e., that v S + v R has integer coordinates with respect to the standard basis of L, and note that performing this check is the purpose of Step n°5.

De nition 11 states that the Weyl vector w of a P L -chamber D enables us to express the minimal de ning set

∆ R L (D) of D as ∆ R L (D) = {x ∈ L | x, x L = -2, w, x L = 1} , thus, if v S + v R satisfy equalities (1.11) then it is clear that v S + v R ∈ ∆ R L (D).
Moreover, we have by de nition

∆ w = x ∈ ∆ R L (D) | x 2 S < 0 = x ∈ L | x, x L = -2, w, x L = 1, pr S ∨ (x), pr S ∨ (x) S ∨ < 0 .
Hence, it remains to prove that the projection of v S + v R onto S ∨ , which is, by de nition v S , satis es

v S , v S S ∨ < 0, in order to nally obtain that v S + v R ∈ ∆ w . To this end, we can use the assumption v R , v R R ∨ ∈ n R , so that -2 < v R , v R R ∨ ≤ 0 holds. The equality v S , v S S ∨ + v R , v R R ∨ = -2
will then readily allow us to deduce v S , v S S ∨ < 0.

Consequently, we will have nally obtained that

v S + v R ∈ ∆ w
holds, as desired. We follow a step-by-step approach and provide all the details, tips and tricks which enabled us to successfully implement this critical algorithm due to Shimada.

Step n°1 -We start by computing the orthogonal projections of w onto S ∨ and R ∨ , which are respectively denoted by w S and w R . In order to do so, we recommend to make use of the material introduced in the section 1.3 of this thesis.

Step n°2 -We compute the set n R . First, note that the value of d R can be obtained by computing the determinant of the Gram matrix G R of R.

A rational β ∈ Q belongs to n R if and only if there exist integers k 1 , k 2 ∈ Z d R β = k 1 and d 2 R β = 2k 2 such that    -2d R < k 1 ≤ 0 -2d 2 R < 2k 2 ≤ 0. In order to compute n R , de ne A = {k/d R | k ∈ Z, -2d R < k ≤ 0} and B = 2k/d 2 R | k ∈ Z, -2d 2 R < 2k ≤ 0 .
It is clear that there is an equality

n R = A ∩ B
and the knowledge of d R is the only data required in order to compute A and

B. We let ∆ = { } .
Step n°3 -To each element β ∈ n R , Shimada associates the sets

R ∨ [β] = v ∈ R ∨ | v 2 = β and a R [β] := { w R , v R ∨ | v ∈ R ∨ [β]} ,
which, as stated by Shimada in his article, are nite. Since the Gram Matrix of R ∨ is negative de nite, sets such as R ∨ [β] can be easily computed using a short lattice vectors enumeration algorithm. A few tips regarding this task: First, note that nothing guarantees that the Gram matrix of R ∨ has only integer entries. To be safe, we multiply G R ∨ by the least common multiple δ of the denominators of its entries. Also, keep in mind that we have |β| < 2 since β ∈ n R . This implies that a single call for a short lattice vectors function will enable us to obtain the data of all the sets R ∨ [β]. We thus use a short lattice vectors enumerator in such a way that it returns the set

x ∈ R ∨ | -x(δG R ∨)x T < 2δ + 1
from which all the sets R ∨ [β] will be obtained by basic sorting. This set should not be computed every time the procedure to compute ∆ w is executed. Doing so would amount to wasting computational resources. As soon as a Gram matrix for R ∨ is obtained, the above-mentioned set can be computed once and for all.

Assuming given an element β ∈ n R and computing the set R ∨ [β] then enables us to obtain the associated set a R [β] which is formed by computing

w R , v R ∨ for each v ∈ R ∨ [β].
Step n°4 -Fix an element

β ∈ n R , an element α ∈ a R [β] and an element v R ∈ R ∨ [β] .
That is, the equalities (1.12)

β = v R , v R R ∨ and α = v R , w R R ∨
The element

v S = y + c
thus assembled will then be such that

v S , w S S ∨ = y + c, w S S ∨ = 0 + c, w S S ∨ = 1 -α, and
v S , v S S ∨ = y + c, y + c S ∨ = -2 -β, so that v S ∈ S ∨ [β, α],
as desired. Before proceeding further, we want to point out that once a basis

B = s ∨ 1 , . . . , s ∨ ρ
for S ∨ is chosen, an element x ∈ S ∨ can be expressed as

x = x 1 s ∨ 1 + • • • + x ρ s ∨ ρ
where ρ = rank(S) and where x 1 , . . . , x ρ ∈ Z are the coordinates of x with respect to the basis B of S ∨ . The basis B being implicit, the notation

x = [x 1 , . . . , x ρ]
will be used regularly in the remainder of this section. Denote by G S ∨ a Gram matrix for S ∨ .

Implementation of (a) -First, we recall that the projection

w S = w ∨ 1 , . . . , w ∨ ρ
of the Weyl vector w onto S ∨ has been computed in Step n°1. Remember that the section 1.3 of this thesis provides guidelines to compute projections. Solving the equation

x, w S S ∨ = 1 -α obviously amounts to determining integers x 1 , . . . , x ρ satisfying the equality

x 1 . . . x ρ G S ∨     w ∨ 1 . . . w ∨ ρ     = 1 -α.
(1.13)

The le -hand side of this expression can be arranged in such a way that (1.13) can be turned into

ρ i=1 γ i x i = 1 -α
where the γ i are elements of Q. If necessary, clear the denominators on both sides of this expression, so that it takes the form

ρ i=1 µ i x i -γ = 0 (1.14)
where

γ ∈ Z and µ i ∈ Z for i ∈ {1, . . . , ρ}. A basis { 1 , . . . , ρ-1 } ⊂ S ∨
of the (ρ -1)-dimensional solution space of the degree one equation (1.14) of the integer variables x 1 , . . . , x ρ can then be computed using a CAS.

Implementation of (b) -Before describing how we proceeded, let us provide context. The Gram matrix matrix of S ∨ , being inde nite, prevents us from using a short lattice vectors enumeration algorithm in order to determine the set of

elements x ∈ S ∨ satisfying x, x S ∨ = -2 -β.
In order to overcome this obstacle, Shimada's idea consists in determining a sublattice of S ∨ on which the restriction of the bilinear form of S ∨ is de nite. The orthogonal complement (w S) ⊥ of w S in S ∨ matches this requirement. Indeed, a result of Conway & Sloane mentioned in [19, Section 4] guarantees that a Weyl vectors w ∈ L all satisfy w, w L > 0 when the lattice into which S is primitively embedded is

L = U ⊕ E 8 (-1) or L = U ⊕ E 8 (-1) + E 8 (-1
). Since R is negative de nite, this implies that w S , w S S ∨ > 0 for all Weyl vectors in the framework of these two lattices. The Hodge Index theorem then ensures that the restriction of , S ∨ to (w S) ⊥ is negative denite, hence enabling us to apply Shimada's short vectors algorithm described in section 1.4 in order to determine the set of elements

y ∈ (w S) ⊥ ⊂ S ∨ satisfying y, y S ∨ + 2 y, c S ∨ + c, c S ∨ ≤ -2 -β.
We have seen that this algorithm requires a positive quadratic triple as input data. This triple consists of a Gram matrix of (w S) ⊥ , of a column vector, and of a constant. We now explain how to determine such a triple. In order to compute a Gram matrix of (w S) ⊥ , we rst need to compute a basis of this subspace. An element x ∈ S ∨ belongs to (w S) ⊥ if and only if it satis es

x, w S S ∨ = 0.

Solving this equation for x = [x 1 , . . . , x ρ] ∈ S ∨ amounts to determining integers x 1 , . . . , x ρ such that

x 1 . . . x ρ G S ∨     w ∨ 1 . . . w ∨ ρ     = 0. (1.15)
and can be done by proceeding as explained at the beginning of the explanations for the implementation of (a) in order to obtain a basis for (w S) ⊥ . Note that you can also directly use the computer and functions from the SageMath library (or Magma) to do so. Using this basis, we compute a Gram Matrix of (w S) ⊥ . That is, we compute the matrix

ξ i , ξ j S ∨ 1≤i,j≤ρ-1 .
Denote by p α ∈ S ∨ a solution of the equation

x, w S S ∨ = 1 -α.
Such a solution can be obtained using the guidelines we provided in the paragraph dedicated to the implementation of (a). We are now ready to determine to an element y ∈ (w S) ⊥ ⊂ S ∨ satisfying

y + p α , y + p α S ∨ = -2 -β, (1.16)
In order to stay in line with the input data format of Shimada's short lattice vectors algorithm, we start by replacing the = sign in

y + p α , y + p α S ∨ = -2 -β (1.17)
by an ≥ sign. There is no loss of generality in doing so since the data of the vectors y satisfying the equality will be contained in the set returned by the algorithm. We moreover have to remember that the Gram matrix of (w S) ⊥ is negative de ne. This fact forces us to multiply both sides of (1.17) by -1 before applying Shimada's short vectors algorithm ShiVectors, thus nally bringing us into line with the input data format required by this algorithm. Thus, expanding, arranging, and turning the expression (1.17) into an inequality, we obtain:

y, y S ∨ + 2 y, p α S ∨ + p α , p α S ∨ + 2 + β ≥ 0. (1.18)
Since y is here assumed to be an element of (w S) ⊥ , it can be expressed it as

y = y 1 ξ 1 + • • • + y ρ-1 ξ ρ-1
where the ξ i are elements of the basis for (w S) ⊥ which has been explicitly computed earlier. The term 2 y, p α S ∨ in (1.18) can then be expressed as:

2 y, p α S ∨ = 2 y 1 ξ 1 + • • • + y ρ-1 ξ ρ-1 , p α S ∨ = 2(y 1 ξ 1 , p α S ∨ + • • • + y ρ-1 ξ ρ-1 , p α S ∨) = 2 y 1 . . . y ρ-1     ξ 1 , p α S ∨ . . . ξ ρ-1 , p α S ∨     = 2yP
where P is the (ρ -1)-sized column vector thus de ned as

P =     ξ 1 , p α S ∨ . . . ξ ρ-1 , p α S ∨     .
Denoting by G w the Gram matrix of (w S) ⊥ , we see that we established that the inequality

y + p α , y + p α S ∨ ≥ -2 -β is equivalent to y G w y t + 2yP + c ≥ 0 where y = [y 1 , . . . , y ρ-1] and c = p α , p α S ∨ + 2 + β.
By the Hodge Index Theorem, the Gram matrix G w of (w S) ⊥ is negative denite. We thus replace it by its negative -G w and do the same for P and c. We hence obtain an inequality involving a positive quadratic form on the le -hand side, forming an expression fully in line with the input data format required by Shimada's short vectors algorithm:

y (-G w ⊥ S) y t + 2y(-P) + (-c) ≤ 0
The positive quadratic triple to be used as input data into Shimada's short lattice vectors enumerator ShiVectors is therefore given by:

-G w ⊥ S , -L, -c =     -G w ⊥ S , -     ξ 1 , p α S ∨ . . . ξ ρ-1 , p α S ∨     , -p α , p α S ∨ -2 -β     .
Executing this algorithm produces the set of all of elements q ∈ (w S) ⊥ such that

q + p α , q + p α S ∨ ≥ -2 -β,
from which can be extracted the set of elements q ∈ (w S) ⊥ satisfying q + p α , q + p α S ∨ = -2 -β.

Fix such an element, say q 0 , and let

v S = q 0 + p α
The element v S clearly satis es

v S , v S S ∨ = -2 -β.
Since q 0 ∈ (w S) ⊥ , we moreover have

q 0 , w S S ∨ = 0.
Since p α is furthermore assumed to belong to the solution set of

x, w S S ∨ = 1 -α, we have v S , w S S ∨ = q 0 + p α , w S S ∨ = 0 + p α , w S S ∨ = 1 -α. Recall that an element v R ∈ R ∨ such that α = v R , w R R ∨ and β = v R , v R R ∨
is assumed to be given since the beginning of Step n°4.

Step n°5:

Denote by v L⊗Q S (resp. v L⊗Q R) the image of v S (resp. v R) under the transformation which expresses an element of S ∨ ⊂ L (resp R ∨ ⊂ L) in terms of the standard basis of L ⊗ Q. Assume that v L⊗Q S + v L⊗Q R ∈ L.
That is, assume that v L⊗Q S + v L⊗Q R has integer coordinates. Note that the Weyl vector w can be expressed as

w = w L⊗Q S + w L⊗Q R .
We then have

v L⊗Q S + v L⊗Q R , w L = v L⊗Q S + v L⊗Q R , w L⊗Q S + w L⊗Q R L = v L⊗Q S , w L⊗Q S L + v L⊗Q R , w L⊗Q R L = v S , w S S ∨ + v R , w R R ∨ = 1 -α + α = 1 and v L⊗Q S + v L⊗Q R , v L⊗Q S + v L⊗Q R L = v L⊗Q S , v L⊗Q S L + v L⊗Q R , v L⊗Q R L = v S , v S S ∨ + v R , v R S ∨ = -2 -β + β = -2.
Since v R , v R R ∨ is assumed to belong to n R , and since the elements of this set satify by de nition of n R the inequalities

-2 < c ≤ 0,
one can readily deduce from the equality

v S , w S S ∨ + v R , w R R ∨ = 1 established above that v S , v S S ∨ < 0 holds. Consequently, v L⊗Q S + v L⊗Q R ∈ ∆ w ,
as desired, where we recall that

∆ w = {x ∈ L | x, x L = -2, x, w L = 1, x S , x S S ∨ < 0} .

Procedure SetOfWalls

We have seen in the previous section how to compute the set ∆ w from the input data of a Weyl vector w ∈ L of a P S -chamber D. Moreover, proposition 12 from section 1.2 states that pr S (∆ w) is a de ning set of D. Shimada's algorithm 3.17 from [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] enables us to compute the primitively minimal de ning set of D, that is, the set Ω(D) of walls of D, from the input data of pr S (∆ w).

We follow the structure outlined by Shimada in his article and provide additional details to enable our readers to implement this algorithm without hassle. Our implementation SetOfWalls of this algorithm is available for download on our website. We brie y go back within the framework of an unspeci ed even hyperbolic lattice L with a xed positive cone P L . Let D be a P L -chamber. Recall that a hyperplane (v)

⊥ of P L is called of wall of D if (v) ⊥ ∩ Int(D) = ∅
holds and if (v) ⊥ ∩ D contains a non-empty open subset of (v) ⊥ . We begin with the following lemma due to Shimada.

Lemma 18.

Let L be an even hyperbolic lattice. Assume that a de ning set ∆ of a chamber D has the property that any two of its distinct elements

v 1 = v 2 satisfy (v 1) ⊥ = (v 2) ⊥ .
Then the following statements hold for any element v ∈ ∆,

(i) If ∆ \ {v} does not span L ⊗ R, then (v) ⊥ is a wall of D and (ii) the hyperplane (v) ⊥ is a wall of D if and only if Σ L (∆) = Σ L (∆ \ {v}).
This lemma provides criteria to determine whether an element of a de ning set of a chamber D has an orthogonal complement de ning a wall of D. Let ∆ be a de ning set of a P S -chamber D. The assumption that any two of the distinct elements v 1 = v 2 of ∆ satisfy (v 1) ⊥ = (v 2) ⊥ at the beginning of the lemma takes its roots in the de nition 2 of a de ning set. Indeed, this de nition does not prevent the occurrence of distinct elements having the same orthogonal complement, thus potentially de ning the same wall. Such a redundancy is pointless and should be avoided. In practice, situations in which this issue arises are always caused by of elements v, v ∈ ∆ related by an equality of the form

v = kv (1.19)
where k ∈ Z. The best course of action to prevent their occurrence consists in dividing the coe cients of each element of ∆ by their greatest common divisor. Indeed, elements v, v related by an equality such as (1.19) satisfy

v gcd(v) = ± v gcd(v)
where we denote by gcd(v) the greatest common divisor of the coordinates of an element v ∈ S ∨ . We thus substitute the set

∆ = {v/ gcd(v) | v ∈ ∆} ,
to ∆ and make sure that if v ∈ ∆ then -v / ∈ ∆ . We proceed to points (i) and (ii) of the lemma. Enforcing point (i) of Lemma 18 is straightforward: Given an element v ∈ ∆ , we can use SageMath lattice features to determine whether the sublattice of S ∨ spanned by ∆ \ {v} has rank equal to rank(S). We explain how to do this on our website. If this is the case, then the lemma states that (v) ⊥ is not a wall of D. Otherwise, the lemma tells us that (v) ⊥ is a wall of D. Let us take a closer look to (ii), which states that given an element v ∈ ∆, the hyperplane (v) ⊥ is a wall of P L -chamber D if and only if

Σ S (∆) = Σ S (∆ \ {v}).
First, we recall that the positive cone Σ S (∆) associated with ∆ is de ned as

Σ S (∆) = {x ∈ S ⊗ R | ∀v ∈ ∆, x, v S ≥ 0}
and recall that we have by de nition D = Σ S (∆) ∩ P S . To understand the statement of point (ii), let p ∈ ∆ be such that (p) ⊥ is not a wall of D. Since (p) ⊥ is not a wall of D, the data of p is irrelevant and unecessary to de ne the chamber D. Hence, we have

D = Σ S (∆ \ {p}) ∩ P S .
and the positive cone Σ S (∆ \ {p}) cone associated with ∆ \ {p} coincides with the positive cone Σ S (∆) associated with ∆. Let us turn things over and assume that p ∈ ∆ is such that (p) ⊥ is a wall of the chamber D. Then, there exist at least an element v 0 ∈ S ⊗ R such that v 0 , q S ≥ 0 for all q ∈ ∆ \ {p} but satisfying v 0 , p S < 0.

Thus,

v 0 ∈ Σ S (∆ \ {p})
and there is a strict inclusion

Σ S (∆) ⊂ Σ S (∆ \ {p}).
This observation also reveals the two following important facts: If (p) ⊥ is not a wall of D, then the solution x sol obtained by minimizing the function f p (x) = x, p S subject to the constraints x, q S ≥ 0 for all q ∈ ∆ \ {p} satis es f p (x sol) ≥ 0.

If (p) ⊥ is a wall of D, the solution x sol obtained by minimizing the function f p (x) = x, p S subject to the constraints x, q S ≥ 0 for all q ∈ ∆ \ {p} must satisfy f p (x sol) = d with d negative and possibly unbounded toward in nity.

Performing this check can be done using linprog from scipy.optimize. We explain how we proceeded to do so in an online section. We now have all the tools in hand to introduce our user-friendly version of Shimada's Algorithm 5.11 from [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] which encompasses all the material required to obtain the set of walls of a chamber from the only input of its Weyl vector. Procedure SetOfWalls: Let D be a P S -chamber with Weyl vector w.

Step n°1 -Using the procedure DeltaW, compute the set ∆ w .

Step n°2 -Compute the set ∆ = {v/ gcd(v) | v ∈ ∆}.

Step n°3 -For each p ∈ ∆ , proceed as follows: Determine whether the sublattice of S ∨ spanned by ∆ \ {p} has rank equal to rank(S ∨), where the latter is the Picard number of S. If this is the case, then (p) ⊥ is not a wall of D by lemma 18. Delete p from ∆ . Otherwise, the lemma tells us that (p) ⊥ is a wall of D. Then, use linprog from scipy.optimize to solve the following optimization problem: Minimize the function

f p (x) = x, p S
subject to the constraints x, q S ≥ 0 for all q ∈ ∆ \ {p} and denote by x opt the resulting solution.

If f p (x opt) = 0, then (p) ⊥ is not a wall of D. Delete p from ∆ .

If f p (x opt) is strictly negative and possibly unbounded toward in nity, then (p) ⊥ is a wall of D.

Computation of generators of Aut(X) -Background

The article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] in which Shimada introduced his pioneering approach to Borcherds' method was issued almost a decade ago. Nonetheless, it was not until this thesis that a general application framework of application for Borcherds' method was identi ed and explicitly stated. This is undoubtedly one of the reasons that, outside of Shimada's implementation which has never been released to the public, no trace of an implementation of any kind of the Borcherds' method could be found on the internet until the arrival of this thesis in 2022. It was to be expected: Without an algorithmically testable framework of application, what would be the point of implementing Borcherds' method? We put an end to this unfortunate situation in this section: First, we assemble Shimada's puzzle by putting together the pieces which can be found in his article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] to exhibit a general framework of application for Borcherds' method.

Second, from the knowledge of this framework, we determine a concrete criterion to determine whether Borcherds' method can be applied to a given K3 surface and produce a generating set of its automorphism group.

We thus start by acting as investigators motivated by the goal of exhibiting a general framework of application for Borcherds' method from the information contained in Shimada's article. Before proceeding further, let us get things straight about the notations involved in this section:

• We denote by X a complex algebraic K3 surface.

• We denote by S the Néron-Severi group NS(X) of X.

• We denote by P S the positive cone of X, i.e., the connected component of

{x ∈ S | x, x S > 0}
of S containing ample classes.

• We denote by Aut(X) the automorphism group of X.

• We denote by T the transcendental lattice of X. That is, T is the orthogonal complement of S in

H 2 (X, Z) U 3 ⊕ E 8 (-1) 2 .
• We denote by Nef(X) the numerically e ective cone of X. This cone is o en referred to as the Nef cone of X. More appropriate, we use the notation N X in order to denote the intersection Nef(X) ∩ P S .

• We denote by S ∨ /S the discriminant group of S and let

q S : S ∨ /S -→ Q / 2Z
be its associated quadratic form.

• We denote by T ∨ /T the discriminant group of T and

q T : T ∨ /T -→ Q / 2Z
will denote the associated quadratic form.

• We denote by O(S), O(T), O(q S) and O(q T) the respective groups of isometries of the lattices S, T and of the disc. groups S ∨ /S, T ∨ /T .

• Denote by O + (S) the subgroup of O(S) preserving P S .

• The subgroup of O + (S) preserving Nef(X) ∩ P S is denoted by

Aut(Nef(X) ∩ P S) = g ∈ O + (S) | N g X = N X .

Scope of application of Borcherds' method

We still have to mention the two following results that will be useful to us:

It is well-known that an isometry of S (resp. T) induces an isometry of S ∨ /S (resp T ∨ /T) in a canonical way, so that there are natural homomorphisms

η S : O(S) -→ O(S ∨ /S) and η T : O(T) -→ O(T ∨ /T).
As indicated at the beginning of Shimada's [19, section 5], there exists an isomorphism

δ : (S ∨ /S, q S) -→ (T ∨ /T, -q T)
of discriminant forms which in turns induces an isomorphism

ψ : O(S ∨ /S) -→ O(T ∨ /T)
of the groups of isometries of S ∨ / S and of T ∨ / T .

The situation can be summarized as follows

We start by recalling a well-known piece of theoretical material in the eld of study of K3 surfaces: The famous Torelli theorem states that to each e ective Hodge isometry

Φ : H 2 (X, Z) → H 2 (X, Z)
can be uniquely associated an automorphism

f : X → X such that Φ = f * .
Let ω ∈ T ⊗ C be a non-zero holomorphic 2-form and de ne

C T = g ∈ O(T) | ∃λ ∈ C × such that. ω g = λω .
By de nition of C T and of the morphisms η T and η S introduced earlier, an element g ∈ O + (S) extends to an e ective Hodge isometry if and only if

ψ(η S (g)) ∈ η T (C T).
The following result due to Piatetski-Shapiro & Shafarevich [START_REF] Piatetskii-Shapiro | A Torelli theorem for algebraic surfaces of type K3[END_REF] and stated in [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF]Theorem 7.1] will be central for the continuation of our study:

Proposition 19. Via the natural actions of Aut(X) on the lattices S and T, the automorphism group Aut(X) is identi ed with

{(g S , g T) ∈ Aut(Nef(X) ∩ P S) × C T | ψ(η S (g S)) = η T (g T)} .
Since O(q T) is nite, the subgroup

H := g S ∈ O + (S) | ψ(η S (g S)) ∈ η T (C T) of O + (S) has nite index.
It should be understood from the rst part of this theorem that a pair (g S , g T) can be associated with each g ∈ Aut(X) and that its elements g S , g T satisfy

g S ∈ Aut(Nef(X) ∩ P S) ⊂ O(S), g T ∈ C T ⊂ O(T), ψ(η S (g S)) = η T (g T).
That is, the image of the morphism

ϕ X : Aut(X) -→ O(S)
satis es

Im(ϕ X) ⊂ Aut H (Nef(X) ∩ P S)
where Aut H (Nef(X)

∩ P S) = {g ∈ H | g preserves Nef(X) ∩ P S } ⊂ Aut(Nef(X) ∩ P S).
For the remainder of this section, we ask the reader to keep in mind the fact that, in the framework of a complex algebraic K3 surface X, Borcherds' method is a procedure which produces a generating set of Aut H (Nef(X) ∩ P S

Corollary 20. The kernel of ϕ X is isomorphic to Ker(η T) ∩ C T . The image of ϕ X is isomorphic to Aut H (Nef(X) ∩ P S) = {g ∈ H | N g X = N X } ⊂ Aut(Nef(X) ∩ P S)
Shimada also introduced the following proposition in section 8.1 of [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF]:

Proposition 21. If ρ X < 20 and the period ω X of X is very general in T ⊗ C, then C T = {±1} .
Combining this result to the characterization of Ker(ϕ X) provided in corollary 20 enables us to assert that

Ker(ϕ X) ⊂ {±1}
holds whenever the K3 surface X under study is very general and has a Picard number ρ X satisfying ρ X < 20.

Assume that -1 / ∈ Ker(η T) also holds, so that Ker(ϕ X) = {1} . In this case, the morphism ϕ X is injective. Under this assumption, it is clear that the image of the morphism

ϕ X : Aut(X) -→ O(S)
then satis es

Im(ϕ X) Aut(X).
Keeping in mind that corollary 20 states that

Im(ϕ X) Aut H (Nef(X) ∩ P S)
we hence obtain by transitivity that Aut(X) Aut H (Nef(X) ∩ P S).

The pieces of the puzzle can then all be put together: Theorem 22. If X is very general (we will always assume that it is the case), satis es ρ X < 20 and -1 / ∈ Ker(η T), then there is an isomorphism Aut(X) Aut H (Nef(X) ∩ P S).

The above theorem enables us to exhibit a general framework of application of the method for the computation of automorphism groups: Borcherds' method returns a generating set of Aut(X) whenever X is a complex K3 surface of Picard number ρ X < 20 satisfying -1 / ∈ Ker(η T).

The following gure provides a clear view of the situation:

Keep in mind that Borcherds' method, by design, produces a generating set of Aut H (Nef(X) ∩ P S). This is why a generating set of Aut(X) can be obtained for complex K3 surfaces satisfying the above-mentioned conditions. We will soon provide in this section a criterion to determine whether the condition -1 / ∈ Ker(η T) holds. Note that also our program KerChecker is available on our website and will automatically perform this check. Borcherds' method to compute generators of Aut H (Nef(X) ∩ P S), as presented by Shimada ten years ago, is therefore not limited to a handful of special cases of K3 surfaces X for which it will provide generators of Aut(X). There is a clear general framework of application for complex K3 surfaces, opening up very broad prospects for study. Although this framework was not explicitly apparent in Shimada's article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF], all the material used above could be found there. We still have to tackle two issues in order to be able to take advantage of the theorem 22: Issue n°1: We need to provide Borcherds' method with a generalized membership criterion for H.

Issue n°2:

We need to provide a concrete criterion to check whether

-1 / ∈ Ker(η T)
holds. Click here for practical details regarding this matter, this webpage contains an online version of the content of the section 1.6.3.

Finding a generalized membership criterion

We start by providing a solution to the Issue n°1: Let X be a K3 surface X satisfying the conditions of theorem 22. Let g ∈ Aut(X) and consider the associated pair (g S , g T) provided by proposition 19. The latter also states that the element

g S ∈ Aut(Nef(X) ∩ P S) ⊂ O + (S)
satis es

ψ(η S (g S)) ∈ η T (C T),
that is, g S ∈ H. By proposition 21, we have

C T = {±1} .
The group H can then be expressed as

H = h S ∈ O + (S) | ψ(η S (h S)) ∈ {±1} . Since ψ : O(q S) -→ O(q T)
is an isomorphism, the de nition of H can be further re ned as

H = h S ∈ O + (S) | η S (h S) ∈ {±1} ,
where we recall that

η S : O(S) -→ O(q S)
is the natural morphism which turns isometries of S into isometries of its discriminant group S ∨ /S. Thus, an element g S ∈ Aut(Nef(X) ∩ P S) such that η S (g S) ∈ {±1} can be associated with each automorphism g ∈ Aut(X). Conversely, if we let q ∈ Aut(Nef(X) ∩ P S) be such that η S (q) ∈ {±1}, then the correspondence provided by proposition 19 enables us to exhibit an element h ∈ Aut(X) such that q = h S , where

(h S , h T)
is the pair associated with h by this correspondence. A precise characterization of the elements of Aut(Nef(X) ∩ P S) originating from automorphisms thus becomes apparent, and can be formalized in the following proposition:

Proposition 23. Assume that ρ X < 20 and that -1 / ∈ Ker(η T). Then an element h ∈ Aut(Nef(X) ∩ P S) emanates from an automorphism g ∈ Aut(X), i.e., satis es h = g S by the identi cation of proposition 19 if and only if

η S (h) ∈ {±1} .
That is, h ∈ H if and only if its acts on the discriminant group S ∨ /S as ±Id.

Note that a (ρ × ρ)-sized invertible matrix of the form

    a 11 . . . a 1ρ a ρ1 . . . a ρρ     a ij ∈ Z, 1 ≤ i, j ≤ ρ.
can be associated with each element of O(S), in a framework of a given basis B. Such matrices, say g ∈ GL ρ (Z), act from the right on ρ-sized row vectors representing elements of S, e.g.,

v -→ vg,
where v ∈ S. Such matrices satisfy by de nition

gG S g T = G S
where we recall that G S denote the Gram matrix of S with respect to B and where g T denotes the transpose of the matrix g. Note that our previous discussion enables us to assert that whenever the conditions of theorem 22 hold, the subgroup H of O + (S) can be expressed as

H = h S ∈ O + (S) | η S (h S) ∈ {±1} .
In order to obtain a membership criterion for H, we thus have to be able to:

Determine whether an element g ∈ GL ρ (Z) belongs to O + (S).

Determine whether an element of O + (S) acts as ±Id on S ∨ / S.

Dealing with the rst point is an easy task: Let g ∈ GL ρ (Z). Then g ∈ O + (S) if and only if g ∈ O(S) and if g preserves P S . That is, g must satisfy

gG S g T = G S
and determining whether g preserves P S can be done by taking any ample class a 0 ∈ P S and checking whether

(a 0 g)G S a T 0 > 0,
i.e., whether the image of an ample class a 0 ∈ P S by g is still contained in P S .

Note that an element g ∈ O + (S) acts as ±Id on the discriminant group S ∨ / S of S if and only if there exists ∈ {±1} such that

g * t = t
holds for all generators t of S ∨ / S, where g * denotes the transformation of S ∨ / S naturally associated with

g ∈ O + (S) ⊂ O(S)
by the natural morphism which turns elements of O + (S) into transformations of O(S ∨ / S). It is well-known that the columns b i = col i (G -1 S) of the inverse of the matrix G S can be taken as representatives of the generators of S ∨ /S. Thus, an element g ∈ O + (S) acting as +Id or -Id on S ∨ / S must either satisfy the conditions

b i g -b i ∈ Z ρ X for all 1≤ i ≤ ρ X or the conditions b i g -b i ∈ Z ρ X for all 1≤ i ≤ ρ X
This conditions can be reformulated as: An element g ∈ O + (S) acting as +Id or -Id on S ∨ / S must satisfy either

G -1 S g -G -1 S ∈ M ρ (Z) or G -1 S g + G -1 S ∈ M ρ (Z)
where M ρ (Z) denote the group of (ρ × ρ)-sized matrices with integer coecients. We thus established the following proposition:

Proposition 24. Assume that the conditions of theorem 22 are satis ed. An ele-

ment g ∈ O(S) belongs to H if and only if g G S g T = G S a 0 g G S a T 0 > 0 for an ample class a 0 ∈ NS(X)
Either (a) or (b) below hold:

(a) G -1 S g -G -1 S ∈ M ρ (Z) (b) G -1 S g + G -1 S ∈ M ρ (Z)
Our procedure MemberCrit is a direct implementation of this proposition: It takes as input an invertible matrix with integer coe cients and outputs a Boolean value True or False depending on whether the matrix used as input data belongs to H or not.

Checking the kernel condition

We start by recalling that the transcendental lattice T associated with X is the orthogonal complement of S = NS(X) in the rank 22 lattice

H 2 (X, Z) U 3 ⊕ E 8 (-1) 2 .
We also recall that we denote by η T is the natural morphism

η T : O(T) -→ O(T ∨ / T).
which turns isometries of T into isometries of its discriminant group. We note that the rank of T is equal to 22 -ρ, where ρ = rank(S). If we assume a basis xed for T , then an element of GL 22-ρ (Z) can be associated with each transformation of O(T). The element -1 ∈ O(T) can thus be viewed as the matrix -Id 22-ρ . The latter will be denoted by -Id for the remainder of this section. In order to nd a way to check whether -1 / ∈ Ker(η T), we are going to use the same trick that we used to derive a membership criterion for H. Assume that -Id ∈ Ker(η T), i.e., that the matrix -Id ∈ O(T) acts as the identity element of O(T ∨ / T) via the natural morphism η T . Then -Id must preserve each generator of the discriminant group T ∨ / T, where 1 ≤ i ≤ 22 -ρ. Keeping in mind that representatives of basis elements of T ∨ / T are obtained by taking columns of

G -1
T , the inverse of the Gram matrix G T of T , this conditions amounts to

2G -1 T ∈ M 22-ρ (Z).
Thus, if

2G -1 T / ∈ M 22-ρ (Z), then -Id / ∈ Ker(η T).
Proposition 25. Let T be the transcendental lattice of X, that is, T is the orthog-

onal complement of S := NS(X) in H 2 (X, Z) U 3 ⊕ E 8 (-1) 2 . Consider the natural morphism η T : O(T) -→ O(T ∨ / T
) and let G T be the Gram matrix of T . The following statement holds:

2G -1 T / ∈ M 22-ρ (Z) =⇒ -Id / ∈ Ker(η T)
where ρ = rank(S).

Assuming that X has Picard number ρ X ≤ 17, our procedure KerChecker uses the input data of an embedding of S into either

U ⊕ E 8 (-1) or into U ⊕ E 8 (-1) ⊕ E 8 (-1),
computes a Gram matrix G T of T with respect to a xed basis, and then performs the above-mentioned check. KerChecker outputs True whenever

-Id / ∈ Ker(η T)
holds, and False when -Id ∈ Ker(η T).

Click here for more details on the practical and computer-based side of things regarding the procedure KerChecker and more generally, regarding the scope of application of Borcherds' method.

Borcherds' method

Please note that an entire section of K3surfaces.com is devoted to the practical and computer-based side of things regarding Borcherds' method. Click here for more details regarding this matter.

Let X be a K3 surface over the complex numbers. Assume that X has Picard number ρ X and x a primitive embedding ι : S → L of S = NS(X) into an even hyperbolic lattice L chosen as recommended in the following table : We moreover assume that the pritimive embedding ι : S → L is such that ι(P S) ⊂ P L .

Using the material discussed in the previous sections, we proceed as follows:

Following the steps explained in section 1.1.2, we set a P L -chamber structure on the positive cone P L of the ambient lattice L into which is assumed to be embedded in S.

As described in section 1.2, we use the P L -chamber structure to induce a P S -chamber structure on the positive cone P S of S.

In this section and until the remainder of the rst part of our thesis, we will present Borcherds' method and explain how we implemented it. We proceed by using the fundamental building blocks provided by Shimada in his article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] as a basis and present all the details and developments which have been obtained during our study.

Borcherds' method is an algorithmic process that produces a generating set of Aut H (Nef(X)∩P S) by exploring and processing the P S -chamber structure over Nef(X) ∩ P S until a complete set of representatives of H-congruence classes of P S -chambers contained in Nef(X) ∩ P S has been obtained.

Our approach can be decomposed along three axes:

We start by studying the portion of the P S -chamber structure over Nef(X)∩ P S . This structure is a theater where a good part of our story unfolds. It is therefore crucial that we have a clear vision of this portion of the chamber structure.

We introduce the procedures used by Borcherds' method to explore the portion of the chamber structure over Nef(X) ∩ P S .

We introduce the tools that enable Borcherds' method to process this portion of the chamber structure.

We will conclude with a gure which sums up everything regarding Borcherds' method. We provide our ready-to-use implementation of Borcherds' method with multi-core support on our website K3surfaces.com. We used Pool from the Python multiprocessing library to make use of process-based parallelism in our implementation of the method.

Chamber structure over Nef(X) ∩ P S

The rst fact of importance which should be exhibited is that Nef(X) ∩ P S is tiled by chambers of the induced P S -chamber structure.

To see this, we rst have to recall that we have seen in section 1.2 that the walls of the P S -chambers structure all arise by taking the orthogonal complement in P S of elements of the set

R L|S = {x S ∈ S ∨ | x ∈ R L , x S , x S S ∨ < 0} .
Note that any x ∈ S ⊂ S ∨ satisfying

x, x S = -2 also satis es x ∈ R L|S . A fact of importance for the remainder of this section is that this statement also holds for classes of divisors of curves playing a central role on K3 surfaces: Classes of divisors associated with smooth rational curves, also known as classes of (-2)-curves, or as (-2)-curves. Thus, each class of a smooth rational curve can be associated with a wall of some chamber of the P S -chamber structure. Moreover, a classical result which can be found in Huybrechts' book [START_REF] Huybrechts | Lectures on K3 Surfaces[END_REF] states that each class of a smooth rational curve can be associated with a wall of Amp(X). Keeping in mind that Amp(X) and Nef(X) are related by the equality Amp(X) = Int(Nef(X)),

we deduce that no (-2)-curve is super uous for de ning a wall of Nef(X).

What about Nef(X) ∩ P S ?

The answer is provided by a useful result from Huybrechts' book [START_REF] Huybrechts | Lectures on K3 Surfaces[END_REF] with the following characterization of the boundary of Nef(X) ∩ P S .

A class C ∈ S belonging to the boundary of Nef(X) satis es either one of the two following properties:

The equality C 2 = 0 holds.

There exists a class E of a smooth rational curve such that C, E S = 0.

Since all classes in Nef(X) ∩ P S have a strictly positive self-intersection, we deduce that each (-2)-curve on X can be associated with a wall of Nef(X) ∩ P S . Such walls are called (-2)-walls, and bound Nef(X) ∩ P S . The induced P S -chamber structure thus contains a natural chamber substructure covering Nef(X) ∩ P S , and bound by (-2)-walls. Not crossing these walls is a golden rule that Borcherds' method must follow. Indeed, the method would otherwise leave its work area over Nef(X) ∩ P S , thus potentially distorting the data and results obtained. The procedure RatDetect detailed in section 1.7.1 is capable of detecting (-2)-walls. This procedure can be viewed as a compass that allows the method not to get lost during its journey.

Exploring the chamber structure

Borcherds' method pursues the exploration of the chamber structure over Nef(X)∩ P S by moving from chamber to chamber. In order to formalize the movement of Borcherds' method, we rst have to introduce the notion of adjacency for chambers. Let D, D be two P S -chambers having the property of sharing a wall

(v) ⊥ with v ∈ S ⊗ R.
De nition 26. We say that D and D are adjacent along the wall (v) ⊥ whenever the intersection

D ∩ D ∩ (v) ⊥
contains a non-empty open subset of (v) ⊥ . We also say that the chamber D (resp. D) is adjacent to D (resp. D) along the wall (v) ⊥ .

Using a chamber D 0 ⊂ Nef(X) ∩ P S as a reference point, the notion of adjacency is used to layer the chamber structure over Nef(X) ∩ P S into various

The third desired feature of the method is that it should never backtrack.

Assume that D is a chamber of level k, and that Borcherds' method is currently exploring the adjacencies around D. Then, the method should not be allowed to explore adjacencies along walls of D leading to chambers of level k -1. These chambers have indeed already been explored and processed during previous iterations. The method thus also needs an anti-backtracking procedure to immediately recognize the walls of a given chamber leading to a chamber of lower level. We use the notation

Ω(D)
to denote the set of walls of D from which have been removed the walls leading to chambers of level k -1. Explanations regarding our approach to determine Ω(D) can be found by clicking here. This set will o en be referred to (in particular, on gures) as the set of walls of D with respect to anti-backtracking.

Procedure RatDetect

This section is based on Shimada's guidelines which can be found in point 2.2 of Algorithm 6.1 from his article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF]. Let D be a P S -chamber. Determining whether the wall (v) ⊥ associated with an element v ∈ Ω(D) is a (-2)-wall amounts to:

Step n°1 -Determining the integer solution set S v of the equation

x 2 v, v S ∨ = -2 of the variable x ∈ Z.
Step n°2 -If S v = ∅, then (v) ⊥ is not a (-2)-wall. Otherwise, we check whether there exists an element q ∈ S v such that qv ∈ S . If this is the case, then (v) ⊥ is a (-2)-wall. Otherwise, (v) ⊥ is not a (-2)-wall.

Accomplishing the task of Step n°1 should not present any di culty. In order to deal with Step n°2, assume that S v = ∅ an let q ∈ S v . Proceeding as described in section 1.3, we compute the image of qv in L ⊗ R and project it onto S ⊗ R.

If the resulting vector has integer coordinates, then it belongs to S.

Procedure WeylAdj

Given an element v ∈ Ω(D) and the Weyl vector w of P S -chamber D, the algorithms 5.13 and 5.14 outlined in Shimada's article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] can be used to compute the Weyl vector w D of a P S -chamber D adjacent to D along the wall (v) ⊥ . We combined both of these algorithms into a single procedure: The procedure WeylAdj takes as input an element v ∈ Ω(D) and the Weyl vector w of a P Schamber D and outputs the Weyl vector w of the P S -chamber D adjacent to D along the wall (v) ⊥ . We begin by stating Shimada's algorithms in a userfriendly form, and adopt a step-by-step approach. Doing so enables us to provide as many details as possible, thus enabling our readers to easily implement their own versions of this important building block of Borcherds' method. We now present Shimada's procedure to compute the Weyl vector the chamber D adjacent to D along (v) ⊥ where

v ∈ Ω(D) ⊂ {v ∈ S ⊗ Q | v, v S < 0} .
In order to compute a Weyl vector w of D , proceed as follows:

Step n°1: Compute the set

P v = r ∈ R L | (v) ⊥ ⊂ (r) ⊥ .
Step n°2: Choose a complete set of representatives

P v = {r 1 , . . . , r N } of P v / {±1} .
Step n°3:

Choose an element u ∈ L ⊗ Q such that i = j =⇒ u, r i L w, r i L = u, r j L w, r j L .
and sort the elements of P v in such a way that

i < j =⇒ u, r i L w, r i L < u, r j L w, r j L
holds for all r i , r j ∈ P v .

Step n°4: Denote by s i ∈ O + (L) the re ection with respect to r i . Then

w s 1 s 2 ...s N := (s 1 • s 2 • • • • • s N)(w)
is a Weyl vector of D . Note that a proof is given in [19, section 5].

We explain how we implemented Shimada's algorithm, step-by-step. Before proceeding further, recall that given an element v ∈ S ⊗ R, we de ne

(v) ⊥ = {x ∈ S ⊗ R | x, v S = 0} ∩ P S .
Step n°1 -Consider the subspace

V = Rv ⊕ (R ⊗ R) of L ⊗ R.
We denote by pr V (r) the projection onto V of an element r ∈ L. Note that the set

P v = r ∈ R L | (v) ⊥ ⊂ (r) ⊥
can be expressed as

P v = {r ∈ R L | r S ∈ Rv}
where r S denote the orthogonal projection onto S ∨ of an element r ∈ L.

Note that since v ∈ S ∨ and r ∈ L, taking the inclusion

(v) ⊥ ⊂ (r) ⊥
only makes sense if we view (v) ⊥ , which has been initially de ned as a hyperplane of P S , as a hyperplane of P L . The assumption that S is embedded primitively into L in such a way that P S ⊂ P L enables us to do so. We explain how to compute the set P v explicitly. Doing so is the exclusive purpose of Shimada's Algorithm 5.13. We follow his guidelines and provide all the necessary additional details. Shimada starts by de ning an initially empty set P = { } and computes the set

S = α ∈ Q | αv ∈ S ∨ , α 2 v 2 ≥ -2 .
In order to explicitly determine this set, we proceeded as follows: Assume that α ∈ S . Since α is by de nition a rational, we express it as α = p/q with p, q ∈ Z, and q = 0. Denote by s ∨ 1 , . . . , s ∨ ρ a basis for S ∨ (see the Toolbox section 1.3 for guidelines on the choice of a basis for S ∨) and express the element v ∈ Ω(D) ⊂ S ∨ in terms of its coordinates

v i ∈ Z for 1 ≤ i ≤ ρ with respect to this basis, so that v = v 1 s ∨ 1 + • • • + v ρ s ∨ ρ .
Let us take apart the de ning conditions of the set S . We have p/q ∈ S if and only if the two following conditions are satis ed:

The element αv, i.e., (p/q)v, must belong to S ∨ . This important requirement can only be ful lled if the integer q divides each of the coordinates

v i of v. That is, q | v i must be true for 1 ≤ i ≤ ρ.
We thus introduce the set

S 0 = {n ∈ Z | n | v 1 , . . . , n | v ρ }
of all integers satisfying this property. Doing so enables us to know all possible denominators q for p/q.

The condition α 2 v 2 ≥ -2 must hold.

For each q ∈ S 0 we thus solve for x the inequality

x 2 v, v S ∨ ≥ -2q 2
and store the solutions, when such solutions exist, into a set, say, an initially empty set S 1 . It is then clear that

S = α ∈ Q | αv ∈ S ∨ , α 2 v 2 ≥ -2 = {p/q ∈ Q | p ∈ S 1 , q ∈ S 0 } .
In order to explicitly compute the set S 0 , we proceed as follows: Let v max be the largest (in absolute value) of the cordinates of v ∈ S ∨ . De ne

T = {-v max , -v max + 1, . . . , v max -1, v max } ⊂ Z.
The set S 0 can then nally be obtained as

S 0 = {m ∈ T | m divides v i for 1≤ i ≤ ρ} ,
which can be easily computed. Note that if we follow the guidelines available in sections 1.5 and 1.5.2 to compute the set of walls of a chamber, we always obtain

S 0 = {±1}
no matter which element v ∈ Ω(D) or which P S -chamber D is used. Indeed, it follows from the directives contained in these sections that the coordinates

v 1 , . . . , v ρ of elements v ∈ S ⊗ Q inducing walls must satisfy gcd(v 1 , . . . , v ρ) = 1.
We now compute S 1 . To this end, initially de ne it as an empty set S 1 = { } and proceed as follows: For each q ∈ S 0 , solve

x 2 v 2 ≤ -2q 2
for x ∈ Z and store the resulting solutions into the set S 1 . The desired set S is then nally be obtained as

S = {p/q ∈ Q | p ∈ S 1 , q ∈ S 0 } .
For each α ∈ S we then compute

c α = -2 -α 2 v 2
and let

c max = max α∈S (c α).
Recall that we denote by R = S ⊥ the orthogonal complement of S in L. Since R ∨ is negative de nite, we can make use of a short lattice vectors enumeration algorithm to compute the set

{x ∈ R ∨ | x, x R ∨ ≤ c max } .
Knowledge of this set enables us to obtain a set

R ∨ [c α] = {x ∈ R ∨ | x, x R ∨ = c α }
for each α ∈ S . We now have all the necessary ingredients to determine

P v = r ∈ R L | (v) ⊥ ⊂ (r) ⊥ .
For each α ∈ S and u ∈ R ∨ [c α], determine whether αv + u belongs to L. To this end, we use our knowledge of bases of S ∨ and R ∨ made of elements of L to express both v ∈ S ∨ and u ∈ R ∨ as elements of L ⊗ R. If the sum αv + v belongs to L, i.e., has integer coordinates with respect to the standard basis of L, append αv + u to P v . This is thus how the set P v can be computed.

Step n°2 -We then have to compute a complete set of representatives of P v /±1. Create an initially empty set P v and proceed as follows: For each q ∈ P v , if -q / ∈ P v then append q to P v . Assume that the resulting set has cardinality N for some positive integer N and is expressed as:

P v = {r 1 , . . . , r N } ⊂ P v
Step n°3 -We then have to pick an element

u ∈ L ⊗ Q such that i = j implies u, r i L / w, r i L = u, r j L / w, r j L .
This can be done in two ways:

By randomly generating an element of u ∈ L ⊗ Q until the condition

u, r i - w, r i L w, r j L r j = 0 (1.20) is full lled for 1 ≤ i, j ≤ N .
The other way we o er may necessite less attempts to form the set

P = {(r i , r j) | r i , r j ∈ P v , i < j} .
We use the notation p (1) , p (2) to denote elements p ∈ P. In practice, the element

u = r 0 + Card(P) i=1 p (1) i - p∈P w, p (1)
L w, p

L p (2)
i ,

where r 0 is a randomly generated element of L, may satisfy the inequalities (1.20).

If this is not the case, add another randomly generated element r 0 of L to u and determine whether the resulting element u upd = u + r 0 thus obtained satis es the inequalities (1.20). Repeat until these inequalities are satis ed.

Step n°4 -Assume that a suitable element u ∈ L ⊗ Q has been obtained. Shimada then re-labels the elements of P v according to the following rule: If the indices of re-labelled elements r i , r j ∈ P v satisfy i < j then the inequality u, r i L w, r i L < u, r j L w, r j L must hold. Denote by s i the be re ection

s i : x -→ x + x, r i L r i
associated with an element r i ∈ P v . The Weyl vector w D of the chamber adjacent to D along (v) ⊥ can then be obtained from w D as

w D = (s 1 • • • • • s N) (w D) .

Processing the chamber structure

We introduced the tools which enable Borcherds' method to progress within the chamber structure over Nef(X) ∩ P S . We now introduce the tools which enable Borcherds' method to process the portion of this chamber structure it explores, and thus accomplish its purpose: Computing a generating set of Aut H (Nef(X)∩ P S). Before proceeding further, let us review the notational conventions that will be used regarding transformations of O(S): We consider that elements g ∈ O(S) act on elements of S and S ⊗ Q from the right. That is, the image of an element b ∈ S under the action of an element g ∈ O(S) is denoted by bg, or by b g . Similarly, we denote by

D g = {b g | b ∈ D}
the image of a P S -chamber under the action of an element g ∈ O(S). Borcherds' method enforces two courses of action in order to exhibit generators Aut H (Nef(X)∩ P S):

For each P S -chamber D ⊂ Nef(X) ∩ P S it explores, the method can take advantage of the fact that generators of Aut H (Nef(X) ∩ P S) can be obtained by computing a generating set of

Aut H (D) = {g ∈ H | D = D g } ,
which, as established by Shimada in [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF], is a nite subgroup of Aut H (Nef(X) ∩ P S).

From the input data of the set Ω(D) of walls of a P S -chamber D ⊂ Nef(X)∩P S , the procedure AutChamber, which is based on Shimada's Algorithm 3.18 from [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF], is introduced in section 1.7.3 and computes a generating set of Aut H (D).

123

The main course of action followed by Borcherds' method to produce generators of Aut H (Nef(X) ∩ P S) is based on the method's capability to identify relations of H-congruency between P S -chambers contained in Nef(X) ∩ P S .

The relation of H-congruency between chambers will be central for the rest of our study, and is de ned as follows:

De nition 28. Two P S -chambers D and D contained in Nef(X) ∩ P S are said to be H-congruent whenever there exists an isometry of H sending either one of D or D onto the other.

That is, we say that D and D are H-congruent if there exists an element g ∈ H such that D = D g . When this is the case, the chambers D and D both belong to the same H-congruence class of chambers. The procedure CongChecker, based on Shimada's Algorithm 3.19 from [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] and described in section 1.7.4, takes as input the respective sets of walls Ω(D) and Ω(D) of P S -chambers D, D ⊂ Nef(X) ∩ P S and determines whether these chambers belong to the same H-congruence class. When this is the case, the procedure CongChecker outputs at least one transformation g ∈ H such that D = D g . Both procedures AutChamber and CongChecker are based on the same underlying mechanics. As indicated by Shimada in his article, the latter are ultimately brute force avored. Note that massive gains can be realized when repeated use of Con-gChecker is done using process-based parallelism. Our Python implementation of Borcherds' method uses the Pool object from the Python multiprocessing library and can thus take advantage of the multi-core architecture of a CPU. We provide more details about this matter in section 1.11.1, the Poolized Borcherds' method. Shimada's Algorithm 3.18 from [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF], on which is based our implementation of AutChamber, relies on the fact that having knowledge of the set Ω(D) of walls of a P S -chamber D is enough to precisely de ne the domain of possibilities in terms of the generators of Aut H (D). In his article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF], Shimada indeed states that such transformations can be characterized by the fact that they must belong to H and above all must act as permutations of Ω(D). Note that an ad-ditional development brought by this thesis is that a generalized membership criterion for H is provided in section 1.6. From the input data of Ω(D), the procedure AutChamber thus generates all possible transformations acting as permutations of Ω(D) and then tests each of them for membership in H by enforcing the membership criterion given in the proposition 24 from section 1.6. This procedure thus enables Borcherds' method to obtain a generating set of Aut H (D) for any P S -chamber D ⊂ Nef(X) ∩ P S it explores. The procedure CongChecker is based on analogous principles. As demonstrated by Shimada, knowledge of the walls of P S -chambers D and D is enough to precisely dene the domain of possibilities in terms of isometries sending D onto D . Such transformations are characterized by the fact that they must establish a bijection between Ω(D) and Ω(D) while also being elements of H. From the input data of Ω(D) and Ω(D), the procedure CongChecker generates all possible transformations which could send Ω(D) onto Ω(D), and then enforces the membership criterion for H in order to single out the elements sending D onto D . Note that in case sets of walls of the same chambers is are as input into the procedure CongChecker, the latter will behave exactly like the procedure AutChamber and output a generating set of Aut H (D). Both of these procedures could not exist without the following proposition established by Shimada in [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF]: Proposition 29. Any de ning set ∆ of a P S -chamber D spans S ⊗ R.

We have seen in section 1.5 that the set Ω(D) of walls of a P S -chamber D, which is called the primitively minimal de ning set of D by Shimada is by de nition a de ning set of the chamber D. Proposition 29 hence implies that the cardinality of the set of walls Ω(D) of a P S -chamber D is at least equal to the Picard number of the K3 surface under study. We thus form the set

Tups(Ω(D)) = {(m 1 , m 2 , . . . , m ρ) | m i ∈ Ω(D), 1 ≤ i ≤ ρ X }
of ρ-sized tuples of elements of Ω(D) ⊂ S ∨ , from which can be picked a tuple τ gen ∈ Tups(Ω(D)) having the property of being made of elements which span S ⊗ R. Such a tuple τ gen is called a generating tuple. Finding such tuples is the purpose of the procedure GentTup.

Procedure GentTup: Assume given as input the set of walls Ω(D) of a P Schamber D. Compute the set Tups(Ω(D)). For each τ = (m 1 , m 2 , . . . , m ρ) in Tups(Ω(D)), form the (ρ × ρ)-sized matrix obtained by taking as columns the elements of τ and compute its determinant. If the latter is non-zero, then τ is a generating tuple. Otherwise, τ is not a generating tuple. Shimada's proposition 29 ensures that it is always possible to determine a generating tuple. As soon as a tuple with this property, i.e., a generating tuple, is found, the procedure GentTuple outputs it as the generating tuple.

Assume that a generating tuple τ gen of either D or D has thus been obtained, say, a generating tuple of D. We now introduce the procedure TupLink, which is intended to: Enable AutChamber to determine transformations which act as a permutation of the set of walls of a chamber.

Enable CongChecker to determine transformations sending the set of walls Ω(D) of a P S -chamber D onto the set of walls Ω(D) of another

P S -chamber D .
Given a generating tuple τ gen ∈ Ω(D) and a tuple τ ∈ Tups(Ω(D)), the procedure TupLink attempts to produce a (ρ × ρ)-sized matrix M τ,τgen sending τ onto τ gen , where ρ = rank(S), thus trying to link these tuples, as follows:

Procedure TupLink: Assume given tuples

τ 1 = (t 1 , . . . , t ρ) and τ 2 = (v 1 , . . . , v ρ) with t i , v i ∈ S ∨ for 1 ≤ i ≤ ρ.
Assume moreover that either one of τ 1 , τ 2 is a generating tuple. For example, assume that τ 2 is a generating tuple, i.e., that its elements are linearly independent. Our aim consists in determining an invertible (ρ × ρ)-sized matrix M τ 1 ,τ 2 satisfying

M τ 1 ,τ 2 t i = v i for 1 ≤ i ≤ ρ. (1.21)
To this end, we proceed as follows: Let A be the (ρ × ρ)-sized matrix formed by taking the elements of τ 1 as columns, that is,

A =   t 1 | t 2 | • • • | t ρ-1 | t ρ    .
and denote by B the (ρ × ρ)-sized matrix obtained by taking the elements of τ 2 as columns that, is,

B =   v 1 | v 2 | • • • | v ρ-1 | v ρ    .
Note that our assumption on the linear independence of the elements of τ 2 enables us to assert that the matrix B is invertible. We then determine whether

M τ 1 ,τ 2 = AB -1
establishes a one-to-one correspondence between the elements of τ 1 and τ 2 , i.e., satis es the equalities resulting from expression (1.21). When this is the case, output M τ 1 ,τ 2 . We have to take into account the fact that whenever M τ 1 ,τ 2 is expected to be invertible, then the matrix A must also be invertible.

This can only happen if τ 1 is a generating tuple. We thus have to keep in mind that whenever the procedure TupLink is applied with the hope of obtaining invertible transformations, both tuples used as input data should be generating tuples. Time and resources would otherwise be wasted. We denote by Tups gen (Ω(D)) ⊆ Tups(Ω(D))

the set made of all the generating tuples contained in Tups(Ω(D)), which can thus be obtained by testing each tuple with GentTup. We have all the tools required to formalize the procedures AutChamber and CongChecker.

Procedure AutChamber

This procedure, based on Shimada's algorithm 3.18, takes as input the set of walls Ω(D) of a P S -chamber D and outputs a generating set of Aut H (D). De ne an initially empty set A = { } . Apply the procedure GenTup each element of Tups(Ω(D)), in order to obtain the set Tups gen (Ω(D)). Fix a generating tuple τ gen ∈ Tups gen (Ω(D)). For each generating tuple τ = τ gen , use the procedure TupLink to determine whether there exist (ρ × ρ)-sized matrices M sending the set of elements of τ onto the set of elements of τ gen . When this is the case, proceed as follows for each such matrix M thus obtained:

Determine whether all the entries of the matrix M are integers. When this is not the case, discard M .

Determine whether M acts as a permutation on the elements of Ω(D).

That is, determine whether the image of the set Ω(D) under the matrix transformation M coincides with Ω(D) itself. Discard M if it does not ful ll this requirement.

When M acts as a permutation of Ω(D), apply the procedure Member-Crit to M τ,τgen in order to determine whether it belongs to H. When this is the case, append M to the set A.

The article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] from Shimada then ensures that the resulting set A obtained at the end of the procedure satis es

A = Aut H (D).
Note that if A is empty then Aut H (D) = {Id} .

Procedure CongChecker

The Procedure CongChecker is based on Shimada's Algorithm 3.19 from his article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] and relies on the same mechanics than its sister procedure AutChamber. The congruence testing procedure takes as input the data of sets of walls Ω(D) and Ω(D) of P S -chambers D and D and determines whether the latter are H-congruent by proceeding as follows: De ne an initially empty set A = { }. Apply the procedure GentTup to each element of Tups(Ω(D)) until a generating tuple τ gen ∈ Tups(Ω(D)) is obtained. Note that proposition 29 guarantees that obtaining such a tuple is always possible. Compute the set Tups gen (Ω(D)) of all the generating tuples contained in Tups(Ω(D)) by applying GentTuple to each element of the latter. Proposition 29 ensures that this set will contain at least one element. For each τ ∈ Tups gen (Ω(D)), apply the procedure TupLink in order to determine whether there exists at least one matrix (ρ × ρ)-sized matrix M τ,τgen sending the set of elements of τ onto the set of elements of τ gen . If all the coe cients of M τ,τgen are integers and this matrix moreover establishes a one-to-one correspondence between Ω(D) and Ω(D), use the procedure MemberCrit to check whether M τ,τgen belongs to H. If this is the case, append M τ,τgen to A. When all tuples τ ∈ Tups(Ω(D)) have been processed, output the set A. At the end of the process, if A is non-empty and contains at at least one non-trivial element then CongChecker returns a boolean value of True with the data of the elements of A. Such elements thus establish that the P S -chambers D and D belong to the same H-congruence class of chambers. Otherwise, CongChecker outputs a boolean value of False. More details about the way we implemented Shimada's congruence testing procedure can be found by clicking here. Note that developments obtained during this thesis resulted in huge enhancements to Shimada's congruence testing procedure, which has been detailed in [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] almost a decade ago. With e ciency and parallel deployment in mind, we explain on the online support dedicated to this thesis how our approach to congruence testing enabled us to obtain fantastic performance gains. We provide a concrete example where a given chamber had to be tested against 80231 other chambers for congruency. New criteria for congruency combined with parallel deployment enabled us to divide the total computation time for these 80231 tests by 1000 (conservative estimate) compared to the times measured when the 2013 approach from [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] is used to the letter. Click here to access an online section in which are detailed the developments on congruence testing obtained during this thesis.

Borcherds' method

We now possess all the tools required in order to introduce Borcherds' method itself. In this section, we will proceed as follows:

We start by making a precise survey of the framework required in order to successfully execute Borcherds' method and obtain a generating set of the automorphism group a complex K3 surface.

We then explain in terms of tuples and sets how we formalized the data of chambers, which are undeniably objects of paramount importance within Borcherds' method.

Using Shimada's take on Borcherds' method from his 2013 article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF], we then describe how we put together the building blocks that have been introduced so far to successfully implement Borcherds' method. We also describe all the evolutions, improvements and developments obtained during this thesis.

The reader should note that we provide our ready-to-use implementation of Borcherds' method for complex algebraic K3 surfaces on K3surfaces.com. An online section of this thesis also provides a variety of step-by-step examples of applications of Borcherds' method. These examples show how a computerbased algorithmic approach can lead to a wealth of concrete information and results on classical cases, originally obtained by hand when published decades ago. As far as we know, we also provide concrete answers to questions that had been open for many years, in some of these step-by-step examples. Techniques illustrated through these examples can then be used to study other surfaces.

Let X be a K3 surface. The input required in order to use our fully automated implementation of Borcherds' method consists of

• The data of elements v 1 , . . . , v ρ ∈ L such that the map

ι : [x 1 , . . . , x ρ] S -→ x 1 v 1 + • • • + x ρ v ρ
is a primitive embedding of S = NS(X) into one of the three even hyperbolic lattices L mentioned in section 1.1.2 and chosen depending on the Picard number of X. Click here for more details on this matter.

• A Gram matrix G S of S.

• An ample class a 0 ∈ S that will be used to update the embedding of S into L, if necessary.

Before proceeding further, we have to indicate that we choose to refer to Borcherds' method as if it was a system embodied by a small animal obeying certain rules and capable of making decisions within a prede ned framework. Note that we use a hamster emoji in many gures, and that this hamster is meant to embody Borcherds' method. Doing so enables us to illustrate the fundamental concepts, principles, and mechanics behind the method in a simple and accessible way, without ever violating the underlying theory.

For a better understanding of the material presented in this section, it is important to remember the purpose of our object of study: In the framework of complex K3 surfaces, Borcherds' method produces a generating set of Aut H (Nef(X)

∩ P S) = {g ∈ H | ∀x ∈ Nef(X) ∩ P S , gx ∈ Nef(X) ∩ P S }
where we recall that H is a subgroup of O + (S) that can be explicitly characterized by a generalized membership criterion, provided in section 1.6.2 of this thesis. To ful ll its purpose, the method proceeds by exploring and processing the chamber structure over Nef(X) ∩ P S , as discussed at the beginning of section 1.7, until a complete set of representatives of H-congruence classes of chambers of Nef(X) ∩ P S is produced. The niteness of the number of steps to be carried out to reach an end to the overall procedure is guaranteed by the fact that whenever X is a complex K3 surface, as indicated by Shimada in [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF], the number of H-congruence classes of chambers contained in Nef(X) ∩ P S isnite. In order for Borcherds' method to be initiated, it must be provided with an initial chamber D 0 contained in Nef(X) ∩ P S . From this chamber, the method starts its exploration of the chamber structure over Nef(X)∩P S . As stated in the section 4 of Shimada's article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF], classical theory provides a Weyl vector w 0 associated with a P L -chamber D 0 that may induce a suitable initial P S -chamber D 0 = D 0 ∩ P S contained in Nef(X) ∩ P S . When the method is provided with a starting point located within Nef(X)∩P S , we can then be sure that it will never leave the chamber structure over Nef(X) ∩ P S . Indeed, as discussed at the beginning of section 1.7, we know that the chamber structure over Nef(X) ∩ P S is delimited by (-2)-walls. A key rule that the method must obey is that such walls are not to be crossed. Indeed, doing so would make the method leave the Nef(X) ∩ P S area of study. In order to stay within Nef(X) ∩ P S , Borcherds' method relies on the procedure RatDetect, described in section 1.7.1. The purpose of this procedure consists in detecting (-2)-walls, so that the method can know if a wall can be safely crossed or should instead be avoided.

Two requirements have to be ful lled:

Requirement n°1: In order to induce a P S -chamber, the P L -chamber D 0 must be ι(S)-non-degenerate.

Depending on the embedding ι : S → L, such a condition may or may not be ful lled. Shimada provides a non-degeneracy criterion in his article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF]:

Shimada's non-degeneracy criterion: Assume that S is primitively embedded into L by ι : S → L and let a ∈ P S . Let D be a P L -chamber with Weyl vector w. If the inequalities pr S (ι(a)), q S ∨ > 0 hold for every q ∈ pr S (∆ w), then D is ι(S)-nondegerate. Note that a S is contained in the interior of D = D ∩ P S , whenever these inequalities are satis ed, so that D is then a P S -chamber.

Requirement n°2:

Assuming that D 0 is ι(S)-non-degenerate, the induced chamber

D 0 = D 0 ∩ P S must be contained in Nef(X) ∩ P S .
Shimada's non-degeneracy criterion can be applied to D 0 with an ample class a 0 ∈ P S to determine whether this requirement is ful lled. Due to the limited scope of Shimada's non-degeneracy criterion, which is not generalistic, Shimada enforces a straightforward solution: Given an embedding ι : S → L, a P Lchamber D 0 and an ample class a 0 ∈ P S such that the non-degeneracy criterion fails; the section 8.3 of Shimada's article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] contains the outline of a procedure that may produce an updated embedding ι upd : S → L under which the non-degeneracy criterion applied to D 0 and a 0 results in success. We dwell on this matter in section 1.8. Chambers are prominent objects of paramount importance within Borcherds' method.

Then comes the necessity to introduce a convention that will enable us to turn chambers into tangible data that can be processed at the scale of an implementation of Borcherds' method. We associate a tuple

D = w D , A H (D), Ω(D), Ω(D)
to each P S -chamber D explored by Borcherds' method. The elements contained in this tuple can be described as follows:

w D with the Weyl vector of D computed using the procedure WeylAdj from section 1.7.2.

Ω(D) is the set of walls D, computed by applying the procedures DeltaW and SetOfWalls from sections 1.5.2 and 1.5.1, respectively.

A H (D) is a generating set of Aut H (D), computed by AutChamber from section 1.7.3.

Ω(D) is the set of walls of D taken with respect to anti-backtracking. That is, assuming that D is of level k, this set is a copy of Ω(D) from which the walls leading to chambers of level k -1 have been removed.

More details about the notion of anti-backtracking are provided online. We now assume that the Néron-Severi group S = NS(X) of the complex K3 surface X under study has been primitively embedded into a suitable even hyperbolic lattice L and further assume that an initial P S -chamber D 0 with Weyl vector w 0 contained into Nef(X) ∩ P S is known. As indicated at the beginning of section 1.7, the chamber D 0 is used as a reference point in order to layer the chamber structure over Nef(X) ∩ P S into various levels. The notion of level has been introduced in de nition 27, earlier in this section.

Before proceeding further, let us get this straight about the notations that will be used until the end of this section. We denote by: L k the set of chamber of level k. For example, we have L 0 = {D 0 }.

D * the set of sets L k of chambers of various levels explored during the execution of Borcherds' method. Initially, D * = {L 0 } = {{D 0 }} .

Γ an initially empty set into which the generators of Aut H (Nef(X) ∩ P S) detected during the execution of the method will be stored.

R at an initially empty set into which will be stored the classes m ∈ NS(X) associated with the (-2)-walls detected by the procedure RatDetect among the elements of the sets of walls of the chambers explored by Borcherds' method during its execution.

We can now explain the chain of events occuring during an execution of Borcherds' method. Initially, we have

Γ = { } , R rat = { } , D * = {L 0 } and L 0 = {D 0 } .
Initialization -Chamber of level 0: The method starts by processing the initial P S -chamber D 0 with Weyl vector w 0 . This step consists in computing the data tuple

D 0 = w 0 , A H (D 0), Ω(D 0), Ω(D 0)
associated with D 0 . From the input data of w 0 , Borcherds' method calls for the procedure DeltaW described in section 1.5.1 to compute the set ∆ w 0 . The projection pr S (∆ w 0) of ∆ w 0 onto S ∨ is then fed into the procedure SetOfWalls. The latter outputs the set Ω(D 0) of walls of D 0 . The data of Ω(D 0) is then used as input into the procedure AutChamber (section 1.7.3) which produces a generating set A H (D 0) of Aut H (D 0).

Chambers of level 1:

During this iteration, Borcherds' method explores and processes chambers of level 1 adjacent to chambers of level 0 within Nef(X) ∩ P S . That is, it will explore and process chambers adjacent to D 0 along its non (-2)-walls. Create an initially empty set L 1 = { } into which will be stored the chambers of level 1 representing new H-congruence classes of chambers of Nef(X) ∩ P S discovered during this iteration. Note that this stage, the only known congruence class is the class represented by D 0 . The method then uses the procedure RatDetect to identify the (-2)-walls among the elements of Ω(D 0). Borcherds' method stores the classes in S of such walls into the set R rat .

For each non (-2)-wall (m) ⊥ of D 0 , the method computes the Weyl vector w D of the chamber D adjacent to D 0 along (m) ⊥ by calling for the procedure Wey-lAdj with m and w 0 as input data. The data of the Weyl vector w D thus obtained enables the method to compute the set of walls Ω(D) of the chamber D . This is done in two steps.

First, vector w D is fed into DeltaW, which outputs the set ∆ w D .

The projection pr S ∨ (∆ w D) is then used as input into SetOfWalls, which returns the set Ω(D) of walls of the chamber D .

The set Ω(D) is used as input into the procedure AutChamber, which outputs a set A H (D) of generators of Aut H (D). These generators are stored into the set Γ. Borcherds' method then needs to determine whether D represents a brand new H-congruence class: Since at this stage of the execution the class represented by D 0 is the only congruence class inventoried by the method. The only congruence test to be carried out by Borcherds' method during the exploration and processing of chambers of level 1 therefore consists in testing D against D 0 for H-congruency. To this end, the respective sets of walls Ω(D 0) and Ω(D) of D 0 and D are used as input data into the procedure CongChecker:

If CongChecker determines that D 0 and D are not H-congruent, then the chamber D represents a brand new congruence class of chambers, and its associated data tuple

D = w D , A H (D), Ω(D), Ω(D)
is stored into the set L 1 of representatives of congruence classes of chambers of level 1.

If the result of the procedure CongChecker is that D 0 and D are Hcongruent, at least one element of g ∈ H establishing the congruence is provided and stored into the set Γ.

Borcherds' method executes this routine until all the chambers adjacent to D 0 along its other non (-2)-walls have been explored an processed. When this is the case, the set L 1 in stored into D * , so that we have D * = {L 0 , L 1 }. The method then proceeds as follows:

If L 1 = ∅, Borcherds' method ends its execution and outputs all the data collected during its execution.

Shimada indeed states in his article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] that, in this case, the set

D = D *
is a complete set of representatives of H-congruence classes of chambers contained in Nef(X) ∩ P S while the set Γ is a generating set of Aut H (Nef(X) ∩ P S).

If L 1 = ∅, the method proceeds to its second iteration: The exploration and processing of chambers of level 2 by adjacency to chambers in L 1 .

Fast forwarding, we now assume that Borcherds' method has completed its k-th iteration. That is, let us assume that a non-empty set of representatives L j has been obtained for each integer j ≤ k so that D * = {L 0 , L 1 , . . . , L k }. We describe the (k + 1)-th iteration of Borcherds' method.

Chambers of level k + 1: During this iteration, Borcherds' method will explore and process chambers of level k + 1 adjacent to chambers in L k along their respective non (-2)-walls. An empty set L k+1 = { } is created, and will be used to store the H-representatives of new congruence classes of chambers discovered during this iteration. For each D ∈ L k , and each element m ∈ Ω(D), Borcherds' method proceeds as follows:

The procedure RatDetect is used to determine whether (m) ⊥ is a (-2)-wall.

When this is the case, a class in S associated with (m) ⊥ is returned by RatDetect and stored into the set R rat . If RatDetect outputs that (m) ⊥ is not a (-2)-walls, Borcherds' method explores the chamber D adjacent to D along (m) ⊥ . That is, the Weyl vector w of the chamber D adjacent to D along (m) ⊥ is computed by WeylAdj into which is fed the data of m and w. The set of walls of the chamber D is computed in two steps:

The element w D is used as input into DeltaW, which returns ∆ w .

The projection pr S ∨ (∆ w) is then used as input into SetOfWalls, which returns the set Ω(D) of walls of the chamber D .

The data of the set of walls Ω(D) of D is then fed as input into the procedure AutChamber which produces a generating set A H (D) of the group Aut H (D).

The elements of A H (D) are then stored into the set Γ of generators of Aut H (Nef(X) ∩ P S)

which have been detected since the execution of Borcherds' method. The method then determines whether D represents a new H-congruence class. To this end, the method tests D is for H-congruency against each chamber in

D = D * = L 0 ∪ L 1 ∪ • • • ∪ L k ∪ L k+1 .
For each chamber D ∈ D, the data of the respective sets When the exploration and processing of the surroundings of each chamber in L k has been performed, the method stores the set L k+1 into D * and proceeds as follows:

If L k+1 = ∅, Borcherds' method ends its execution and outputs all the data collected during its execution.

Indeed, by Shimada [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF], the set

D = D *
is then a complete set of representatives of H-congruence classes of chambers in Nef(X) ∩ P S while the set Γ is a generating set of Aut H (Nef(X) ∩ P S).

If L k+1 = ∅, the method proceeds to its (k + 2)-th iteration: The exploration and processing of chambers of chambers of level k +2 by adjacency to chambers contained in L k+1 along their respective non (-2)-walls.

Since theorem 3.7 from Shimada's article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] ensures that the number of Hcongruence classes of chambers in Nef(X)∩P S is nite, the execution of Borcherds' method will end at one time or another, and will not run forever. The gure displayed on the following page illustrates the algorithmic structure of Borcherds' method.

Embedding update procedure

We have seen in the previous section that executing Borcherds' method requires the data of a primitive embedding ι : S → L and of an initial P L -chamber D 0 satisfying the two following conditions:

The primitive embedding ι : S → L is such that the initial P L -chamber D 0 is ι(S)-nondegenerate, i.e., satis es Int(D 0 ∩ P S) = ∅ so that it induces a P S -chamber

D 0 = D 0 ∩ P S
which can be used as a starting point for Borcherds' method to explore the chamber structure over Nef(X) ∩ P S .

The induced P S -chamber D 0 must be contained in Nef(X) ∩ P S .

It turns out that it is enough to exhibit an ample class a 0 ∈ P S such that

ι(a 0) ∈ Int(D 0 ∩ P S)
in order to ensure that the two above conditions are satis ed. Checking whether this condition holds can be done by using the procedure Degentest introduced in section 1.7: This procedure checks whether the strict inequality

pr S ∨ (ι(a 0)), q S ∨ > 0 (1.22)
holds for all elements q ∈ pr S ∨ (∆ w 0). When this is the case, the element ι(a 0) then belongs to the interior of D 0 ∩ P S and the two above conditions are thus satis ed. The fact is that exhibiting an ample class a 0 ∈ P S satisfying these conditions in the framework of a given embedding requires much luck. This issue must therefore be approached from another angle. Given an initial primitive embedding

ι : S → L,
an ample class a 0 and the Weyl vector w 0 of the initial chamber D 0 , Shimada provides in the section 8 of his article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] the outline of a procedure which may possibly yield a transformation

τ : L -→ L such that τ • ι : S → L
is an updated primitive embedding under which the inequalities

pr S ∨ ((τ • ι) (a 0)) , q S ∨ > 0 (1.23)
are satis ed for all elements q ∈ pr S ∨ (∆ w 0). That is,

(τ • ι) (a 0) ∈ Int(D 0 ∩ P S).
Note that τ is obtained as the composition of various re ections with respect to carefully chosen elements of R L . The updated embedding

ι upd = τ • ι
thus obtained then provides a framework under which the P L -chamber D 0 is ι upd (S)-nondegenerate and thus induces a P S -chamber D 0 = D 0 ∩P S contained in Nef(X)∩P S . From our point of view, Shimada's approach is the best possible course of action to deal with the issue of nding a non-degenerate chamber by acting at directly on the embedding of S into L. The issue is that this approach may require many attemps, a lot of trials and failures, before eventually resulting in a positive outcome. We took care of this issue.

In this section, we proceed along three axes:

Assuming given an embedding

ι : S → L,
an ample class a 0 ∈ P S and a P L -chamber D 0 , we will start by investigating the causes the failure of the non-degeneracy condition for D 0 .

We will then present Shimada's original idea to update an embedding.

We will nally explain how we modernized and improved Shimada's idea. we see that the condition (1.24) holds if and only if either

ι(a 0) / ∈ Int(D 0) or ι(a 0) / ∈ Int(P S)
Since a 0 is ample and thus belongs to P S by assumption, we see that

ι(a 0) / ∈ Int(D 0)
Two possibilities should then be considered

The element ι(a 0) belongs to the boundary of D 0 , i.e.,

ι(a 0) ∈ D 0 \ Int(D 0)
where we recall that chambers are by de nition closed sets. In this case, there exists at least one q ∈ Ω(D 0) ⊂ R L such that q, ι(a 0) L = 0.

In order words, the element ι(a 0) is stuck in a wall of D 0 . Here we touch on a point which is key to understand why Shimada's idea may fail. In case ι(a 0) belongs to a wall of D 0 , application of re ections which respect to elements of R L will not move ι(a 0) by a single inch since walls of P L -chambers are themselves elements of R L and are by de nition le invariant by such transformations. Keep this fact in mind, it will be useful during the next section. The other possibility to be considered is simple:

The element ι(a 0) does not belong to D 0 . That is, there exists at least one element q ∈ Ω(D 0) such that q, ι(a 0)) L < 0.

In this case, applying re ections with respect to Weyl chosen elements of R L may succeed in order to obtain an updated embedding ι upd such that ι upd (a 0) ∈ D 0 ∩ P S .

Shimada's embedding update procedure

Assume that ι(a 0) / ∈ D 0 , so that ι(a 0) belongs to another P L -chamber D = D 0 . In order to avoid the above-mentioned issue where ι(a 0) would be stuck in a wall, assume furthermore that ι(a 0) ∈ Int(D). Denote by w 0 the Weyl vector of D 0 and recall that the de nition of a Weyl vector implies that the Weyl vector of a P L -chamber is contained in its interior. We therefore have w 0 ∈ Int(D 0). Let

l(t) = (1 -t)ι(a 0) + tw 0 , 0 ≤ t ≤ 1
be the line segment in P L connecting ι(a 0) to w 0 . Since ι(a 0) and w 0 do not belong to the same chamber, this segment must intersect some walls (r i) ⊥ induced by elements r i ∈ R L . In order to have a clear view of what happens, assume that l(t) intersects the walls (r 1) ⊥ , (r 2) ⊥ , (r 3) ⊥ , (r 4) ⊥ induced r 1 , r 2 , r 3 , r 4 ∈ R L so that the situation is illustrated as follows:

We can see that ι(a 0) is located in the interior of a P L -chamber D colored in yellow. We can also see that that w 0 is located in the interior of a P L -chamber D 0 colored in green. The path l(t) connecting ι(a 0) to w 0 in P L is represented as a dashed line, colored in dark blue. Moreover, l(t) is here represented as crossing four walls (r i) ⊥ with r i ∈ R L for i = 1, 2, 3, 4, which have been highlighted as red lines. Note that the locations displayed on this gure imply that w 0 , r i > 0 while ι(a 0), r i < 0 for i = 1, 2, 3, 4. Recall that to each element r ∈ R L can be associated a re ection

s r : L -→ L s r : x -→ x + x, r L r.
with respect to the hyperplane (r) ⊥ . Shimada's idea consists in successively applying the re ections s r i for i ∈ {1, 2, 3, 4} to the embedding ι : S → L so that an updated embedding

τ • ι : S → L with τ = s r 4 • s r 3 • s r 2 • s r 1
is obtained and hopefully provides a framework under which the condition

(τ • ι) (a 0) ∈ Int(D 0 ∩ P S)
is satis ed. More generally, given an ample class a 0 , a P L -chamber D 0 with Weyl vector w 0 and an initial embedding ι : S → L such that

ι(a 0) / ∈ Int(D 0 ∩ P S),
Shimada enforces an approach which consists in proceeding as follows:

Step n°1 -Using Shimada's algorithm 3.3 from his article [START_REF] Shimada | Projective models of the supersingular K3 surface with Artin invariant 1 in characteristic 5[END_REF], compute the set

M = {r ∈ R L | ι(a 0), r L < 0, w 0 , r L > 0}
of elements r ∈ R L such that (r) ⊥ seperates ι(a 0) from w 0 . We implemented this algorithm and named it ShiBooster. More details about the latter are available in the second part of this thesis and on K3surfaces.com.

Step n°2 -Shimada then de nes the line segment

l(t) = (1 -t)ι(a 0) + tw 0 , 0 ≤ t ≤ 1
connecting ι(a 0) to w 0 in P L . For each element r ∈ M, we have to solve

l(t), r L = 0 for 0 ≤ t ≤ 1.
Step n°3 -Elements of M are then re-labelled in such a way that elements r i , r j ∈ M with respective associated solutions t i , t j satisfy i < j if and only if t i < t j .

Note that Shimada requires that all the t i should be distinct, and orders to pick another ample class and try again until this requirement is ful lled. Assume that the elements of M have thus been relabelled in such a way that the set M can be expressed as

M = {r 1 , r 2 , . . . , r N } .
The segment l(t) then intersects the walls (r i) ⊥ according to the order which arises from the labelling of the elements r i ∈ M.

Step n°4: De ne

τ = s r N • s r N -1 • • • • • s r 2 • s r 1
and update the initial embedding as

τ • ι : S → L.
When such a situation occurs, there is no leeway: The mechanics of the embedding update procedure rely on the application of re ections with respect to walls crossing the path between ι(a 0) and w 0 . When ι(a 0) is stuck into a wall of D 0 , there is no wall separating it from w 0 , except the wall into which it is stuck. Since re ections of the form

s r : x -→ x + x, r L r
act as the identity on elements x ∈ (r) ⊥ , we cannot do anything to free ι(a 0) from the wall into which it is stuck. In fact, the only thing that can be done consists in either nding another primitive embedding or nding another ample class. It should be noted that a decade ago, Shimada provided no explanation on why he asked his readers to use another ample class when the procedure outlined in his 2013 article fails. We hope that our explanations provide a better understanding of what is happening behind the scenes.

A new perspective on Shimada's embedding update procedure

We now explain how we improved Shimada's embedding update procedure. As before, we assume given an ample class a 0 ∈ P S , a P L -chamber D 0 and an initial primitive embedding ι : S → L such that ι(a 0) / ∈ D 0 but is instead contained in the interior of a P L -chamber D = D 0 . We also recall that the Weyl vector w 0 of the P L -chamber D 0 satis es w 0 ∈ Int(D 0) and compute the set. We let

l(t) = (1 -t)ι(a 0) + tw 0 , 0 ≤ t ≤ 1
be the line segment connecting ι(a 0) to w 0 in P L . Using our implementation ShiBooster of Shimada's algorithm 3.3 from [START_REF] Shimada | Projective models of the supersingular K3 surface with Artin invariant 1 in characteristic 5[END_REF], we compute the set

M = {r ∈ R L | ι(a 0), r L < 0, w 0 , r L > 0}
of elements r ∈ R L such that (r) ⊥ separates ι(a 0) from w 0 and is thus crossed by the path de ned by l(t). We assume that

M = {r 1 , r 2 , . . . , r N }
and that the elements in M are labelled in such a way that r i , r j ∈ M satisfy i < j if and only if t i < t j where t k is the solution of

l(t k), r k L = 0
The walls induced by elements of M should be considered obstructions on the path de ned by the line segment l(t): As t increases from 0 to 1, the path successively encounters the wall (r 1) ⊥ , then (r 2) ⊥ , . . . , and nally (r N) ⊥ . Applying a re ection

s r i : x -→ x + x, r i L r i
to the embedding ι : S → L amounts to sending ι(a 0) to the other side of the wall (r i) ⊥ , hence clearing the obstruction represented by this wall. For example, assume that the re ection s r 1 with respect to r 1 is applied to the embedding ι, so that we have an updated embedding

s r 1 • ι : S → L
The inequality satis ed ι(a 0), r 1 L < 0 in the framework of the initial embedding can then be turned into

(s r 1 • ι) (a 0), r 1 L > 0
in the framework of the updated embedding s r 1 • ι. It is clear that the wall (r 1) ⊥ associated with r 1 ∈ M is therefore no longer an obstruction. The fundamental di erence between our approach and Shimada's is that we consider the following question: In the framework of the updated embedding s r 1 • ι, are the walls associated with elements of M \ {r 1 } still obstructions? For example, we can legitimately wonder whether (r 2) ⊥ an is still an obstruction separating

(s r 1 • ι) (a 0) from w 0 .
That is, do we need do apply the re ection s r 2 to s r 1 • ι? Another perfectly legitimate consideration consists in wondering whether the application of s r 1 did introduce new obstructions in the framework of the updated embedding? The only way to have answers consists in computing the set M of obstructions again, this time taking into account the fact that embedding has been updated. The result is an iterative procedure: We start by clearing the obstruction closest to ι(a 0) by applying s r 1 . We then compute the updated set of obstructions and clear the obstruction closest to s r 1 • ι(a 0), and continue. When the updated set of obstructions is the empty set, the procedure terminates.

Iteration n°1 -We compute the initial set of obstructions

M 1 = {r ∈ R L | ι(a 0), r L < 0, w 0 , r L > 0}
For each element r ∈ M 1 , we then solve for t the equation

l(t), r L = 0.
We drop Shimada's requirement that no two elements of M should have the same associated solution. We determine the smallest associated solution and randomly pick an element say associated with this solution, say r 1 ∈ M 1 . We then apply the re ection

s r 1 : x -→ x + x, r 1 L r 1
to the embedding ι : S → L so that we have an updated embedding

s r 1 • ι : S → L.
which provides a framework under which (r 1) ⊥ is not an obstruction separating

(s r 1 • ι) (a 0) from w 0 .
Iteration n°2 -We now compute the set of obstructions in order to take into account the fact that the embedding has been updated and that obstructions separating (s r 1 • ι) (a 0) from w 0 may not be the same obstructions than those which separated ι(a 0) from w 0 . We thus compute

M 2 = {r ∈ R L | (s r 1 • ι) (a 0), r L < 0, w 0 , r L > 0} .
If M 2 = ∅, the procedure stops and the updated embedding is

ι upd = s r 1 • ι.
Otherwise, we solve for t the equation l(t), r L = 0

for each element r ∈ M 2 . We then pick one of the elements, say r 2 ∈ M 2 , associated with the smallest solution. We then apply re ection s r 2 to the embedding s r 1 • ι so that we have an updated embedding

s r 2 • s r 1 • ι : S → L
under which the wall (r 2) ⊥ is not an obstruction for (s

r 2 • s r 1 • ι) (a 0), that is, such that (s r 2 • s r 1 • ι) (a 0), r 2 L > 0 holds.
Fast forwarding, we assume that k-th iteration of the procedure has been accomplished so that

τ k • ι : S → L with τ k = s r k • s r k-1 • • • • • s r 2 • s r 1
has been obtained.

(k + 1)-th iteration -In order to compute an updated list of obstructions, we compute

M k+1 = {r ∈ R L | (τ k • ι) (a 0), r L < 0, w 0 , r L > 0} .
If M k+1 = ∅, the procedure terminates and we use

ι upd = τ k • ι.
as our updated embedding. Otherwise, we solve for t the equation l(t), r L = 0

for each element r ∈ M k+1 . We pick an element, say r k+1 ∈ M k+1 associated with the smallest solution obtained and apply the re ection s r k+1 to τ k • ι. That is, we de ne an updated embedding

τ k+1 • ι : S → L with τ k+1 = s r k+1 • τ k .

Fundamental domain, associated cone, Hilbert Basis

Let G be a group and Y a set on which G acts on the le . We denote by gx the image of an element x ∈ Y by an element g ∈ G. Given a subset F ⊂ Y , we denote by

g(F) = {gx | x ∈ F }
the image of F under the action of g ∈ G. We recall that a fundamental domain for the action of a group G on a set Y is a subset F ⊂ Y having the following properties:

g∈G g(F) = Y
The intersection g(F) ∩ h(F) is empty for all g, h ∈ G such that g = h.

Assume that Borcherds' method has been executed and returned a set

D * = {L 0 , L 1 , . . . , L m }
where L j denotes the set of representatives of level j of H-congruence classes of chambers contained in Nef(X) ∩ P S . As indicated in Shimada's article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF] section 6, the union We now establish the following important proposition:

D = L∈D * L = L 0 ∪ L 1 ∪ • • • ∪ L m
Proposition 30. The union D∈D F(D) is a fundamental domain of the action of Aut H (Nef(X) ∩ P S) on Nef(X) ∩ P S .

Proof. In order to simplify the notations, we will make use of the shorthands

N X = Nef(X) ∩ P S and Aut H (N X) = Aut H (Nef(X) ∩ P S)
when necessary. De ne

F = D∈D F(D).
Let us apply the de nition of a fundamental domain stated at the beginning of this section. We establish the two following properties

There is an equality

g∈Aut H (N X) g(F) = Nef(X) ∩ P S .
The implication

g = h =⇒ g(F) ∩ h(F) = ∅ holds for g, h ∈ Aut H (Nef(X) ∩ P S).
Let us begin by establishing the inclusion

Nef(X) ∩ P S ⊆ g∈Aut H (N X) g(F).
Let p 1 ∈ Nef(X) ∩ P S . We have seen at the beginning of section 1.7 that Nef(X) ∩ P S is tiled by P S -chambers. Consequently, we have p 1 ∈ D for some P S -chamber D ⊂ Nef(X) ∩ P S . Assume that

D = {D 0 , D 1 , . . . , D r }
for some integer r ≥ 0. Since D is a complete set of representatives of Hcongruence classes of P S -chambers of Nef(X) ∩ P S , the class of the chamber D possesses a representative D k ∈ D. Moreover, there exists an element

g 1 ∈ Aut H (Nef(X) ∩ P S)
sending D onto the representative of its congruence class, that is, such that

D g 1 = D k .
The transformation g 1 hence sends p 1 ∈ D to an element

p g 1 1 ∈ D k . Let F(D k) ⊂ D k
be the fundamental of the action of Aut H (D k) on D k . By de nition of a fundamental domain, there exists an element

p 2 ∈ F(D k)
and a group element

g 2 ∈ Aut H (D k) such that p 2 = p g 1 g 2 1
.

Hence, we have

p 1 = p g -1 2 g -1 1 2 with g -1 2 g -1 1 ∈ Aut H (Nef(X) ∩ P S).

156

We have

p 2 ∈ F(D k) ⊆ F ⊆ F
and thus

p g -1 2 g -1 1 2 ∈ g∈Aut H (N X) g(F).
We thus established that

p 1 ∈ Nef(X) ∩ P S =⇒ p 1 ∈ g∈Aut H (N X) g(F), that is, Nef(X) ∩ P S ⊆ g∈Aut H (N X)
g(F).

We now establish the reverse inclusion. Let D be a P S -chamber over Nef(X) ∩ P S , that is, D ⊂ Nef(X) ∩ P S .

Let F(D) ⊆ D be a fundamental domain for the action of Aut H (D) on D. By de nition of a fundamental domain, the equality

g∈Aut H (D) g(F(D)) = D
holds. Combining this equality to the fact that

Aut H (D) ⊂ Aut H (Nef(X) ∩ P S) yields g∈Aut H (D) g(F(D)) ⊆ g∈Aut H (N X) g(F(D))
⊆ Nef(X) ∩ P S Since this inclusion holds for any P S -chamber D contained in Nef(X) ∩ P S and thus holds for any chamber D ∈ D, we have

D∈D   g∈Aut H (N X) g(F(D))   ⊂ Nef(X) ∩ P S .
(1.25)

In the section 6 of [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF], Shimada establishes that D is a nite set. Using the fact that the closure of a nite union of sets is equal to the union of closures, we have

F = D∈D F(D) = D∈D F(D).
Hence, there is an equality

g∈Aut H (N X) g(F) = g∈Aut H (N X) g D∈D F(D) = g∈Aut H (N X) D∈D gF(D).
Combining this equality to the inclusion of expression (1.25) leads us to

g∈Aut H (N X) g(F) ⊆ Nef(X) ∩ P S .
Since we established ealier the opposite direction of this inclusion, we deduce that

g∈Aut H (N X) g(F) = Nef(X) ∩ P S ,
as desired. We will use a proof by contradiction to establish that

g(F) ∩ h(F) = ∅
holds for any two distinct elements g, h ∈ Aut H (Nef(X) ∩ P S). Assume that there exist elements g, h ∈ Aut H (Nef(X) ∩ P S), with g = h such that

g(F) ∩ h(F) = ∅.
Let p ∈ g(F) ∩ h(F). Then there exist P S -chambers D, D ∈ D such that

p ∈ g(F(D)) ⊆ g(D) and p ∈ h(F(D)) ⊂ h(D).
That is,

g(D) ∩ h(D) = 0.
Recall that D, D ∈ D and that D is assumed to be a complete set of representatives of H-congruence classes of chambers contained in Nef(X) ∩ P S . Hence

g(F) ∩ h(F) = ∅.
The union

F = D∈D F(D)
is therefore a fundamental domain of the action of Aut H (Nef(X) ∩ P S) onto Nef(X) ∩ P S , as desired.

Assume that Aut H (D) = {Id} holds for all elements of D. In this case, the equality

F(D) = D
holds for all D ∈ D. An immediate consequence of proposition 30 is then that the union D∈D D is a fundamental domain of the action of Aut H (Nef(X) ∩ P S) on Nef(X) ∩ P S .

Recall that whenever the K3 surface X under study satis es ρ X < 20 and -1 / ∈ Ker(η T) theorem 22 states that there is an isomorphism Aut(X) Aut H (Nef(X) ∩ P S).

In this case, the assumption that Aut Assume that an execution of Borcherds' method returned a set

D = {D 0 , D 1 , D 2 , . . . , D r }
of representatives of H-congruence classes of chambers of Nef(X) ∩ P S . We moreover assume that the conditions of corollary 31 hold, so that

D∈D D = D 0 ∪ • • • ∪ D r
is a fundamental domain of the action of Aut(X) onto Nef(X) ∩ P S . From now on, we will o en refer to this fundamental domain as the fundamental domain. We now introduce the notions which will enable the reader to Produce graphical representations of the fundamental domain. These graphical representations are visually expressive and meaningful for cases where X has Picard number 3. Click here to view a few examples.

Associate a cone to the fundamental domain and determine whether it is possible to compute its associated Hilbert basis.

To do so, it is important to characterize precisely the boundary of the fundamental domain.

De nition 32.

A chamber D ∈ D is said to be at the boundary of the fundamental domain if there exists a chamber D adjacent to D such that D / ∈ D.

Such a situation happens whenever there exists an element m ∈ Ω(D) such that the chamber adjacent to D along (m) ⊥ does not belong to D. In this case, we say that (m) ⊥ is a boundary wall of the fundamental domain.

De nition 33.

We say that a boundary wall (m) ⊥ is a local boundary wall if there exist chambers D, D ∈ D adjacent to each other along (m) ⊥ .

De nition 34. A boundary wall of the fundamental domain which is not a local boundary wall is called a global boundary wall

The facts exposed at the beginning of section 1.7 enable us to immediately deduce that (-2)-walls are by de nition boundary walls since they form the boundary of Nef(X) ∩ P S .

Recall that we denote by Ω * (D) the set of non (-2)-walls of a P S -chamber D. An HB-ready fundamental domain yields a convex polytope de ned by the inequalities

x ∈ Q ρ-1 | for all m ∈ B dry , x, m S ∨ ≥ 0 in (ρ -1)-dimensional space. SageMath features related to convex cones can be used to compute a Hilbert basis for the cone associated with this polytope. When the conditions of corollary 31 (that can be automatically checked by our implementation of Borcherds' method), our program fundamentalizer is capable of processing the data produced a er an execution of Borcherds' method to carry out a study of the fundamental domain thus produced.

Graphical representation of the chamber structure of the fundamental domain.

In this section, we explain how to produce graphical representations in (ρ -1)dimensional space of the fundamental domain of the action of Aut(X) onto

(m) ⊥ = {x ∈ S ⊗ R | x, m S ∨ = 0} ∩ P S
is associated with the hyperplane in (ρ -1)-dimensional space de ned as the solution set of the equation

a 0 + a 1 x 1 + a 2 x 2 + . . . a ρ-2 x ρ-2 + a ρ-1 x ρ-1 = 0
This approach is particularly meaningful and visually unequivocal when the surface under study has Picard number 3: In this case, the wall associated with an element [a 0 , a 1 , a 2] S ∨ ∈ S ∨ is associated with the straight line de ned by the equation a 0 + a 1 x + a 2 y = 0 in two-dimensional space. More precisely:

If a 2 = 0 holds, then the wall de ned by the orthogonal complement [a 0 , a 1 , a 2] ∈ S ∨ is realized in to-dimensional space as an a ne line with equation

y = - a 0 a 2 - a 1 a 2 x.
If a 2 = 0 and a 1 = 0, then the wall is associated with the vertical line x = -a 0 a 1 .

Computing the (-2)-curves modulo Aut(X)

Assume that X is a K3 complex surface such that ρ X < 20 and -1 / ∈ Ker(η T). Theorem 22 then states that there is an isomorphism Aut(X) Aut H (Nef(X) ∩ P S).

An execution of Borcherds' method thus provides a generating set for Aut(X) and outputs as complete set D of Aut(X)-congruence classes of chambers contained in Nef(X) ∩ P S . If we assume moreover that Aut H (D) = {Id} holds for each D ∈ D then Corollary 31 then ensures that D∈D D is a fundamental domain of the action of Aut(X) onto Nef(X) ∩ P S . Borcherds' method also provides additional information regarding this fundamental domain: Recall that the set of walls Ω(D) of each chamber D explored by the method is processed by RatDetect to identify the (-2)-walls among it. Classes of smooth rational curves thus identi ed are then stored into the set R rat returned at the end of the execution of Borcherds' method. In this section, we establish two important facts: Each element of R rat represents an orbit of the set smooth rational curves on X under the action of Aut(X), and each such orbit possesses a representative in R rat . The cardinality Card(R rat) of the set R rat therefore provides an upper bound on the number of orbits of smooth rational curves on X under the action of Aut(X).

Regarding the niteness of the number of orbits of the set of smooth rational curves under the action of the automorphism group on K3 surfaces, we appeal to the following classical result due to Sterk [START_REF] Sterk | Finiteness results for algebraic K3 surfaces[END_REF]: assert that there exists a transformation g ∈ Aut(X) such that

D g = D ∈ D.
In this case, the transformation g thus sends D onto a chamber D ∈ D. Recall that the class C ∈ S is assumed to be the class of a smooth rational curve on X. Since an automorphism sends the class of a smooth rational curve onto the class of a smooth rational curve, the image of the class C ∈ S, by the transformation g must be sent to an element of R rat . We therefore have

C g ∈ R rat .
We thus established the following proposition: Proposition 37. Assume that X satis es the conditions of Theorem 22 and that Aut H (D) = {Id} holds for every D ∈ D. Each orbit of the set of smooth rational curves on X possesses at least one representative contained in the set R rat .

The set R rat may, however, contain more than one representative of orbits. Denote by S orb the set of orbits of smooth rational curves on X under the action of Aut(X). Proposition 37 then implies that Card (S orb) ≤ Card(R rat)

(1.26) so that Card(R rat) is an upper bound on the number of orbits of smooth rational curves. We now explain how this upper bound can be re ned. We start by reviewing the means which could be used as leverage to do so. Denote by

O(C) = {C g | g ∈ Aut(X)}
the orbit of a class C ∈ S of a curve on X under the action of Aut(X) . For any

two distinct elements C i , C j ∈ R rat such that O(C i) = O(C j),
we have

O(C i) ∩ O(C j) = ∅.
since the very de nition of an orbit which implies that any two distinct orbit must have an empty intersection. Before proceeding further, let us discuss practical considerations: Note that K3 surfaces with nite automorphism groups have already been studied in detail, a wealth of information on these surfaces can be found in Roulleau's atlas of K3 surfaces with nite automorphism group [START_REF] Roulleau | An atlas of K3 surfaces with nite automorphism group[END_REF]. We, therefore, focus on K3 surfaces with in nite automorphism group. For such surfaces, orbits of elements of S = NS(X) under the action of Aut(X) are by de nition in nite sets. It is thus impossible to explicitly compute the orbit O(C) of any element C ∈ S. Our computer-based algorithmic approach is indeed bound by the fact that we must con ne ourselves to dealing with nite objects. Taking this fact into account, we now reformulate what we just discussed in terms of nite sets: Assume given distinct elements C i , C j ∈ S. Then it is clear that the assumption

O(C i) = O(C j)
implies that for all subsets

A ⊆ O(C i) and B ⊆ O(C j)
we have

A ∩ B = ∅.
Taking the contrapositive of this implication leads us to the fact that nding nite subsets

A ⊆ O(C i) and B ⊆ O(C j) satisfying A ∩ B = ∅
is enough in order to establish the equality

O(C i) = O(C j).
We thus introduce the notion of partial orbit: Given a nite subset Aut par (X) ⊂ Aut(X), the partial orbit of an element C ∈ S is the nite subset of O(C) de ned as

O par (C) = C g | g ∈ Aut par (X) .
We then recall that Borcherds' method returns a generating set Γ of Aut(X) and de ne

Γ * = Γ ∪ g -1 | g ∈ Γ ∪ {Id} ,
to be the extended generating set obtained by adding inverses and the identity to Γ. In order to re ne the upper bound Card(R rat) on the number of orbits of smooth rational curves under the action of Aut(X),we proceed by enforcing the following procedure :

Upper bound re nement procedure:

We compute a nite subset Aut par (X) of Aut(X).

We then use this subset to compute the partial orbit

O par (C) = C g | g ∈ Aut par (X)
for each C ∈ R rat and form the set of partial orbits of elements of R rat .

For each C ∈ R rat we then proceed as follows: For each C ∈ R rat \ {C}:

If O par (C) ∩ O par (C) = ∅ then clearly O(C) = O(C)
as discussed earlier in this section. Either one of C or C is then removed from R rat so that the upper bound is decreased by 1.

If O par (C) ∩ O par (C) = ∅ then for each element g ∈ Γ * \ {Id} we compute the sets

O par (C) g = xg | x ∈ O par (C) and O par (C) g = xh | x ∈ O par (C)
and determine whether there exist elements g, h ∈ Γ * \ {Id} such that

O par (C) g ∩ O par (C) h = ∅ When this is the case, then O(C) = O(C).
As before, the upper bound is then decreased by 1 and either one of C, C is removed from the set R rat .

Assume that this procedure has been executed and that R rat has thus been updated. That is, we assume that the procedure returned an updated set R rat ⊆ R rat . Then for any two distinct elements C, C ∈ R rat and any two distinct elements g, h ∈ Γ * \ {Id} , the equality O par (C) g ∩ O par (C) h = ∅ holds. We can thus assert the non-existence of elements of Aut(X) acting as a non-trivial permution on the set of partial orbits of the elements of R rat . We then take Card(R rat) as our re ned upper bound on the number of orbits of smooth rational curves on X under the action of Aut(X) and consider than no further re nement can be easily obtained from the data of Aut par (X). In case we desire to re ne the upper bound further, we need to compute a more extensive set of elements of Aut(X) and apply the above procedure again. We now explain how we proceed in order to compute nite subsets Aut par (X) ⊂ Aut(X). Our procedure to do so is motivated by the fact that, as far as we know, there is currently no computer-based solution in public access that takes as input a set of generators of an in nite group G, an integer p > 0, and outputs a set of elements of this group having cardinality equal to p. Fix a strictly positive integer p. We show how to explicitly compute a subset Aut par (X) ⊆ Aut(X) such that Card(Aut par (X)) ≥ p, that is, a subset having cardinality at least equal to p.

Procedure AutParGen: Denote by

W(Γ * , β) = {a 1 . . . a β | a i ∈ Γ * 1 ≤ i ≤ β}
the set of words of length less than or equal to β in the free group over the set Γ * . Obiously, we have W(Γ * , β) ⊂ Aut(X) no matter the value of β. Recall that Γ * has been as de ned as Γ ∪ Γ -1 minus the identity. Thus, there are strict inclusions W(Γ * , γ) ⊂ W(Γ * , β) whenever α < β, with α and β positive integers. Also, note that Card(W(Γ * , β)) ≤ Card(Γ *) β holds. Before proceeding further, we recall that the oor and ceiling functions are both functions taking real values as input and returning integers de ned as

oor : x ∈ R -→ max {m ∈ Z | m ≤ x} and ceiling : x ∈ R -→ min {m ∈ Z | x ≤ m} .
Denote by β 0 be the greatest integer N such that Card(Γ *) N ≤ p, that is:

β 0 = oor(log(p) log(Card (Γ *))))
We then compute W(Γ * , β 0), which , as indicated above, satis es

Card(W(Γ ext , β 0)) ≤ p.
In order to reach our goal of obtaining a nite subset of Aut(X) having cardi-nality superior or equal to p, we still have to compute at least

p -Card(W(Γ * , β))
additional elements of Aut(X). To do so, we compute a sequence of sets W j :

De ne W 0 as a copy of W(Γ 0 , β *).

Assume that W j has been computed and proceed as follows:

If Card(W j) ≥ p holds, then the goal of obtaining a subset of Aut(X) of cardinality at least equal to p has been achieved, the procedure stops.

Otherwise, we compute W j+1 . We start by de ning

δ j+1 = ceiling(p Card(W j)
).

There are two possibilities:

• If δ j+1 < Card(Γ *), pick a subset S j+1 ⊂ Γ * \ {Id} such that Card(S j+1) = δ j+1 .
• Otherwise, de ne S j+1 as a copy of Γ * .

We then compute the set

W j+1 = {ab | a ∈ W j , b ∈ S j+1 }
and go back at the beginning of this procedure with W j+1 as input data.

A er a few iterations, a set W m satisfying Card(W m) ≥ p will be obtained for some integer m. We set Aut par (X) = W m .

The structure of the procedure AutParGen can be summarized as follows :

The whole upper bound re nement procedure introduced in this section can be schematized as follows:

Toward a parallelized Borcherds' method

In order to compute a generating set of Aut(X), Borcherds' method enforces means which are brute force avored, by design. As discussed in section 1.7.4 and even mentioned by Shimada himself in his article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF], the mechanics on which relies the congruence testing procedure CongChecker testify to this fact.

Using brute force, however, has a price in terms of resources and computation times. Due to the large amount of data that has to be processed depending on the K3 under study, executing Borcherds' method may require time. For instance, when computing a generating set of Aut(X t) for a K3 surface X t with Picard number 5, i.e., having a Néron-Severi group with Gram matrix

        2t 0 0 0 0 0 -2 0 0 0 0 0 -2 0 0 0 0 0 -2 0 0 0 0 0 -2        
with respect to a xed basis, we observed that whenever t ≥ 5 Borcherds' method has to deal with more than 80.000 representatives of congruence classes of chambers during the nal stages of its execution. Since each newly explored chamber has to be tested for congruency against each such representative, the method has to perform tens of thousands of congruence tests for each newly discovered chamber. When t ≥ 7, the number of representatives is way over 100.000. Our idea to deal with this issue is based on common sense principles:

We modernized the method in such a way that procedures such as congruence testing can be deployed in parallel over various worker processes. Let us use an example to illustrate this idea : Assume that Borcherds' method is exploring a chamber D and that this chamber has to be tested for congruency against the elements of the set

S = {D 0 , D 1 , . . . , D 79999 }
That is, Borcherds' method has to apply CongChecker 80.000 times: First, D has to be tested against D 0 , then against D 1 , then against D 2 ,..., and nally tested for congruency against D 79999 . The congruence testing part of the classical Borcherds' method, as described by Shimada in his article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF], almost a decade ago, was intended to be implemented over a single for loop, i.e., for each chamber

D k ∈ {D 0 , D 1 , . . . , D 79999 } run CongChecker(D, D k).
We cannot abide by such an old-fashioned approach in 2022. Common sense dictates that instead of performing 80.000 congruence tests in series, this workload should be split over, say, 16 processes P j , 1 ≤ j ≤ 16, in parallel, where each process is expected to perform 1/16th of the overall workload, that is, 5000 congruence tests. Formally, we take the set S and split it into 16 subsets S j for j ∈ {1, 2, . . . , 16} of cardinality 5000. We here assume that a machine having a CPU with at least 16 logical cores is available, thus enabling the OS scheduler to dispatch each of these 16 worker processes over a dedicated core for parallel execution, making the best possible use of the CPU resources available. In fact, things are quite simple : Enforcing this approach amounts to running 16 for loop in parallel : Each loop iterates 5000 times, instead of a single for loop iterating 80000 times.

(Process P j) for each chamber

D ∈ S j ,
run CongChecker(D, D).

One remark : In an online section, we explain that Shimada's approach to congruence testing can be massively modernized. These enhancements, combined with parallel deployment of congruence testing, enabled us to obtain astonishing results for cases involving a he y number of representatives of cong. classes.

The Python multiprocessing package includes a major asset which suits perfectly our needs: The Pool object. As indicated in the Python o cial documentation, the Pool object o ers a convenient means of parallelizing the execution of a function across multiple input values, distributing the input data across processes (data parallelism). We thus made use of the Pool object to parallelize many procedures within our implementation of Borcherds' method, thus achieving massive performance improvements compared to our early implementations of Borcherds' method produced by following to the letter the guidelines from Shimada's that can be found in [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF]. We expand on this matter in the section 1.11 of this thesis. Since we always try to make the most out of the hardware at our disposal, we have to mention that our rst attempt to speed up our implementation of Borcherds' method consisted in using GPU computing to perform the matrix multiplications which occur during an execution of Borcherds' method. However, the small size (at most 26 × 26) of the matrices involved in Borcherds' method does not allow GPU computing to express all its power. Our experiment initially consisted in managing to be able to perform CUDA operations in Sage's Python environment, with an old RX580. Guidelines on how to reproduce this experiment are provided on the website K3surfaces.com. We ended by setting the GPU approach aside and focused on parallelism involving CPU computing for the remainder of our study. In this section, we proceed as follows:

In section 1.11.1, we start by introducing the basic principles behind processbased parallelism. We then provide a quick overview of the internal procedures of Borcherds' method under the viewpoint of parallel deployment, focusing on those suitable for doing so. We then introduce the structure of a modernized version of Borcherds' method : The Poolized Borcherds' method, which arises due to the enforcement of process-based parallelism with the Pool object from multiprocessing.

In section 1.11.2, we explain how we applied parallelism at the scale of Borcherds' method itself, thus opening new concrete perspectives.

The Poolized Borcherds' method

Assume that a massive pile of sand has to be cleared from the entrance of a town building. A city worker arrives in front of the disaster and can either clear the pile on its own or bring reinforcements by calling his colleagues and mobilizing a team of municipal workers. In practice, a team of workers should be much more e cient than a single individual in clearing a huge pile of sand. Working e ciently as a team, however, requires coordination. To this end, tasks must be precisely de ned and distributed evenly across the team of workers, which are assumed to be endowed with equal abilities. Assume that the pile of sand is the nite set S = {q 1 , q 2 , . . . , q M } , with M integer. Assume that clearing the pile of sand consists in applying a procedure f to the elements of this set. Mobilizing only one worker to clear the pile of sand amounts to performing f (q 1), f (q 2), . . . , f (q M) in series. One worker, alone and on his own, digs out the sand, shovel by shovel. Depending on the size of the pile, the clearing process may take a lot of time. An analogous situation on a computer would be the execution of a single process, i.e., of a sequence of tasks, performed one by one, in series, sequentially, on a single core at any given time. On the other hand, mobilizing a team of workers and evenly splitting the workload between all the team members will reduce the amount of time required to clear the pile of sand. On a computer, the sequence of tasks to be accomplished would then be distributed over more than one process, running in parallel and making the best possible use of available resources.

Note that clearing a pile of sand with a team made of various workers can be done without de ning any particular order. Distributing the work between Regarding Borcherds' method, what are the tasks for which the order does not count? Taking a look at the gure depicting the algorithmic structure of the method, an obvious candidate stands out: Congruence Testing, that is, the procedure CongChecker. Indeed, when a newly explored chamber D has to be tested for congruency against each of the representatives of congruences classes of chambers previously discovered. The order in which the tests are performed does not matter. Similarly, when RatDetect is applied to the set of walls of a chamber, wall by wall, order does not count. Another example is the computation of the Weyl vectors of chambers adjacent to a given chamber along its non-(-2)-walls (w.r.t. anti-backtracking) : The order to which WeylAdj is applied to these walls is irrelevant. We thus have already identi ed at least three internal procedures of Borcherds' method which are obvious and suitable candidates for deployment in parallel over various worker processes. Congruence testing, due to its computationally intensive brute-force nature, is the one for which we have the most to gain by enforcing process-based parallelism, e.g., by deploying CongChecker in parallel over various worker processes. Assume that N worker processes P 1 , . . . , P N can be mobilized in parallel, each and that some procedure f has to be applied to each element of a nite set S. We assume that the overall result of the whole operation is not impacted by the order to which the elements of S are processed. How should we proceed to distribute the workload of having to process the elements of S to take advantage of our N worker processes?

If Card(S) < N , we call for a number Card(S) of workers and assign one element of S to each of them. The other N -Card(S) workers idle.

If Card(S) ≥ N then we split S into N subsets S 1 , . . . , S N and assign each of them to a worker S j -→ P j which applies the procedure f to each element of S j .

Example. Assume that Borcherds' method is at the beginning of its 53th iteration during the computation of a generating set of Aut(X 5) where X 5 is the K3 with Picard number ve in the case where t = 5, with Gram matrix presented at the beginning of section 1.11. The rst newly discovered chamber D has to be tested for H-congruency against 80.218 representatives of congruence classes. Thus, we have Card(S) = 80128. Assume that we have a CPU with at least 16 logical cores, so that we can execute 16 worker processes in parallel without hassle. We set N = 16. Proceeding as above, we have We thus split the workload into 6 subsets having each cardinality 5013, and 10 other subsets each having cardinality 5014.

We introduced the main ideas and basic concepts behind process-based parallelism. We now introduce the tools that enabled us to enforce these concepts with a computer-based approach. The Pool object from the Python multiprocessing library is an e cient, exible and reliable tool that can be used to make a Python program bene t from the use of process-based parallelism, thus enabling us to take full advantage of the multi-core architecture of a CPU. Adapting our code in order to take advantage of the Pool object was worth the e ort. The key do so consists of having a clear and global view of the algorithmic structure under study. Critical points that can bene t from deployment of procedures in parallel can then be readily identi ed. Going into precise details on how we made use of Pool and produced the Poolized Borcherds' method is a battle that cannot be fought in this PDF, but can be fought online. Nevertheless, we will provide a few bits of advice and explain where we used Pool within Borcherds' method. First, we had to identify the tasks and procedures which can lead to noticeable performance gains when deployed in parallel.

For instance, the for loops in which time and resource expensive functions are repeatedly executed are usually critical spots on which performance gains can be obtained by enforcing process based-parallelism. Within Borcherds' method, we used process-based parallelism at the level of the procedures mentioned below. Note that doing so led us to the Poolized Borcherds method.

Detection of (-2)-walls: In order to identify the (-2)-walls among the elements of the set of walls of a chamber, the procedure RatDetect described in section 1.7.1 can be deployed in parallel.

Computation of Weyl vectors:

The procedure WeylAdj can be deployed in parallel to compute the Weyl vector of each chamber adjacent to a chamber along its non (-2)-walls.

Computation of the set of walls:

The procedure DeltaW repeatedly calls the Shimada's custom ShortVectors algorithm ShiVectors (described in section 1.4. These calls can be distributed over various worker processes. Within SetOfWalls, the chunk of code involving linprog from scipy.optimize, used to deal with Shimada's LP problem, is deployed in parallel over various worker processes, through Pool.

Congruence tests: As discussed previously, Borcherds' method may have to perform congruence tests by repeatedly applying the procedure Con-gChecker described in section 1.7.4. Tens of thousands of congruence tests may have to be performed for each newly discovered chamber. It, therefore, makes perfect sense to distribute the resulting workload over multiple worker processes, each running a CongChecker block and processing a chunk of the total workload. We took great care in optimizing and enhancing for execution in series Shimada's 2013 congruence testing procedure before proceeding to parallel deployment. Parallel deployment should not be done blindly. We recommend at least trying to get the most out of the procedures, deployed in series, and then starting thinking parallel. Doing so enabled us to obtain substantial gains.

Enforcing parallelism at the scale of Borcherds' method

We introduced the basic principles of process-based parallelism. These principles enabled us to implement Borcherds' method while taking advantage of modern hardware. We now explain the most straightforward way to make use of parallelism on a broader scale. Instead of using process-based parallelism inside of the method, that is, at the level of its internal procedures, we will use it at the level Borcherds' method itself. We rst have to remember that the method relies on two core components to ful ll its ultimate purpose:

One component enables the method to explore the chamber structure over Nef(X) ∩ P S .

The other enables the method to process this chamber structure in order to obtain generators of Aut H (Nef(X) ∩ P S).

Using process-based parallelism within the method enables us to obtain massive improvements on the processing component of Borcherds' method. Indeed, we have seen in the previous section that a solution such as Pool can be used to deploy in parallel or enhance procedures such as CongChecker, DeltaW or RatDetect. We now focus on using parallelism on the exploration component of Borcherds' method. Going back to the end of section 1.7 and taking a look at the gure depicting the structure of the classical Borcherds' method, it is clear that the backbone of the algorithmic structure of Borcherds' method is a toplevel for loop: For each chamber D ∈ L k , the set of level-k representatives of congruence classes of chambers, Borcherds' method discovers chambers of level k + 1 by exploring the surroundings of D along its non (-2)-walls. On paper, the most straightforward course of action consists in distributing the workload represented by L k over various worker processes. Let's visualize this idea by using a picture. We keep things simple : During its execution, Borcherds' method can be viewed as a hamster exploring a chamber structure. The following gure is based on a genuine representation of a chunk of the chamber structure over Nef(X) ∩ P S when X is the K3 surface with Néron-Séveri S = NS(X) having Gram matrix equal to

   84 0 0 0 -2 0 0 0 -2   
with respect to a xed basis.

Assume that :

The green-colored chamber is the initial chamber.

Chambers in blue are chamber of level 1.

Chambers in purple are chambers of level 2.

Chambers in yellow are chambers of level 3.

Chambers in red are chambers of level 5.

Assume that Borcherds' method is represented by the hamster emoji, as pictured above. Furthermore, we assume that the method starts exploring and processing chambers of level 4, colored in red, by adjacency to chambers of level 3, in yel-low. Please note that we assume that each chamber in yellow represents its own congruence class of chambers, i.e., we assume that L 3 contains all the chambers in yellow. Our idea merely consists in distributing over multiple processes the workload represented by exploring and computing the walls of chambers adjacent to chambers in L 3 . For example, we can split L 3 , which contains the 8 yellow chambers, into four subsets

L (1) 3 , L (2) 3 , L (3) 3 , L (4) 3 .
each containing 2 chambers. We then assign each of these subsets L Each one of the four hamsters pictured above would thus receive an assignment of two yellow chambers, and would have to explore and process their adjacencies. In practice, many issues arise when such a straightforward parallelized approach of Borcherds' method is implemented. If we assume that each hamster is capable of fully enforcing the features of Borcherds' method, we have to avoid and mitigate the consequences of the two following issues : Issue n°1 -The pitfall of unrestricted nested parallelism: Assume that we launch in parallel N instances of a program capable of enforcing all the internal procedures of Borcherds' method. Assume that each such instance can deploy these features with a process-based parallelism solution such as the Pool object. That is, we assume each instance can mobilize its own dedicated team of workers, e.g., M dedicated worker processes, that can be mobilized to deploy procedures such as RatDetect, WeylAdj or CongChecker with process-based parallelism. We then have to keep a rm eye on resources. The question is then : Is our machine powerful enough to handle a total number of M × N resource-hungry processes running in parallel? Taking modest values such as N = M = 4 already yields a total of 16 processes, each potentially mobilizing the full power of a logical core. We could be facing a CPU bottleneck situation. Due to the state of technology when this thesis was produced, such a situation would then have been a severe issue for most consumer-grade machines. We have to carefully pick the values of M and N to e ciently allocate the available resources and thus obtain the best performance ratio.

Issue n°2 -Communication is necessary to work e ciently as a team:

Assume that the burden of exploring and processing chambers of level k + 2 by adjacency to chambers of level k+1 has been distributed over various processes. We thus assume that L k+1 has been split into N subsets L (j) k+1 each assigned to a worker process P j which will explore and process the chambers of level k+1 adjacent to chambers in L (j) k+1 along their non (-2)-walls for 1 ≤ j ≤ N . Assume that

A chamber D 1 ∈ L (1)
k+1 is discovered by process P 1 at time t 1 .

A chamber D 2 ∈ L (2)
k+1 is discovered by process P 2 at time t 2 > t 1 . D 1 and D 2 are distinct and congruent.

Process P 1 computes the set of walls of D 1 and test it for congruence against all the representatives of congruence classes of chambers which are already known. Assume that D 1 represents a new congruence class. We have to make sure that processes share information and communicate through a shared database. Indeed, Process P 2 needs to be informed of the existence of D 1 so that the chamber D 2 it discovers can be tested against D 1 for congruency. The chamber D 2 will otherwise be classi ed as representing a new congruence class. A dramatic consequence of this situation is that a new generator of Aut H (Nef(X) ∩ P S) which could have been obtained by testing D 2 against D 1 for congruency with Con-gChecker could here remain undiscovered forever, thus skewing the purpose, intent, and results of the execution of Borcherds' method. We thus see that enforcing parallelism at the scale of Borcherds' method cannot be done while ignoring the issue of communication between processes. Indeed, some tasks imperatively require communication between processes, as we just discussed in the case of congruence testing. We did not have enough time to produce an implementation of Borcherds' method involving various processes capable of performing their own congruence tests while being synchronized and communicating through a common database. We, however, urge people to go in this direction in the future. Enabling processes to conduct their own congruence tests while sharing data in real-time is undoubtedly one of the signi cant challenges regarding the future of Borcherds' method. We must however concede that in order to deal with most surfaces with small Picard number, using parallelism at the internal scale of a single instance of Borcherds' method, e.g., enforcing congruence testing over a pool of 16 or 20 worker processes is more than enough to complete an execution of the method in a reasonable amount of time. Indeed, the cardinality of the complete set of representatives of congruence classes of chambers of Nef(X) ∩ P S obtained at the end of an execution of Borcherds' method on such surfaces does not usually exceed a few thousand chambers, at most. As indicated on K3surfaces.com, generating sets of the respective automorphism groups of various famous surfaces with Picard number 3 or 4 can be obtained in a matter of seconds, minutes at worst, and yield a com-plete set of representatives of small cardinality. Regarding the less straightforward cases, our extensive use of process-based parallelism at the internal level of the method, combined with a substantial preliminary e ort to optimize the procedures themselves nevertheless enabled us to obtain signi cant improvements. For instance, during an application of the method on a K3 of Picard number ve, which involved more than tens of thousands of representatives of congruence classes, we observed that testing a given chamber for congruency against 80231 other chambers was 1000 times faster with our modernized approach than when we used our programs implemented by following to the letter Shimada's guidelines from his 2013 article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF]. Despite these improvements, we observed that a severe limiting factor in terms of computation times still had to be considered and put under control: The computation time of the sets of walls of a chamber. Our idea to deal with this issue consisted in enforcing parallelism at the level of Borcherds' method itself, as discussed earlier, but this time with an approach focused on the parallel deployment of various processes to perform the exploration of the chamber structure and of the computation of the sets of walls of chambers. To this end, we adopted a strategy based on the use of a primary process P 0 and of auxiliary processes P 1 , . . . , P N , as follows:

The primary process P 0 is a full instance of Borcherds' method.

Worker processes P 1 , . . . , P N are endowed with Borcherds' method features RatDetect and WeylAdj to navigate within the chamber structure and of DeltaW and SetOfWalls to compute the respective sets of walls of chambers.

All processes are synchronized by level and communicate through a common shared database.

All processes are allowed to deploy their internal procedures using processbased parallelism to accomplish their duties.

The mechanics behind this approach can be described as follows: At the beginning of each iteration, say the (k + 2)-th iteration, the set L k+1 containing the chambers whose adjacencies are to be explored and processed is split into N subsets L (j) k+1 for j ∈ {1, . . . , N } . We set L (0) k+1 = L k+1 and assign to each process P j :

A subset L (j) k+1 ⊆ L k+1 A set R (j)
k+1 containing the sets of walls which will be computed by P j .

A set E (j) k+1 containing the data of the Weyl vector of chambers whose set of walls have been computed by P j .

As soon as the process P j has computed the Weyl vector w D of a chamber D of level k + 2 adjacent to a chamber in L (j) k+1 along a non (-2)-wall , P j checks whether the condition

w D ∈ N i=0 E (i) k+1
(1.27) holds. That is, the auxiliary process P j checks whether D has already been explored and processed earlier by another process. Two possibilities then arise:

If the boolean value associated with the expression (1.27) is true, then the process P j either proceeds to its next task in line or idles until the next iteration if P j has already completed the exploration of the adjacencies of all chambers in its assigned share of the workload L (j) k+1 .

If the boolean value associated with the expression (1.27) is false, then P j knows that D has never been explored before, and thus takes care of the computation of the set of walls of D. As soon as P j completes the computation of Ω(D), it stores a copy of this set into R (j) k+1 , and stores a copy the Weyl vector w D of D into the set E (j) k+1 so that other processes can know that Ω(D) has indeed been already been computed by P j during the (k + 2)-th iteration, and should not be computed again.

We hence see that the two main purposes of the auxiliary processes P j consist in (a) exploring the chambers adjacent to chambers in their respective assigned share L (j) k+1 of the entire workload L k+1 , and (b) computing the respective sets of walls of these chambers if these sets have not been computed earlier.

Auxiliary processes P j = P 0 thus work to the bene t of the primary process P 0 . The latter is a full instance of the Poolized Borcherds' method. Whenever the mechanics of Borcherds' method would require the primary process P 0 to compute the set of walls Ω(D) of a P S -chamber D with Weyl vector w D , the impact of our new approach lies in the fact that P 0 now checks whether

w D ∈ N i=0 E (i) k+1
holds. When this is the case, the primary process P 0 retrieves Ω(D) from

N i=0 R (i) k+1
and thus does not have to spend time and resources on the computation of this set of walls. Otherwise, the primary process P 0 computes the set of walls Ω(D) of D, stores a copy of Ω(D) into R We devised this strategy in such a way that Borcherds' method can be fully executed by the primary process P 0 no matter what auxiliary processes produce. Even if the execution of all the auxiliary processes P j = P 0 is interrupted, the primary process P 0 can thus continue running Borcherds' method all by itself. The situation is illustrated in the following gure.

We thus represent the primary process as a giant hamster. The path of this giant hamster inside the chamber structure does not depend on the behavior of the tiny hamsters. During the iteration, the giant hamster explores each of the red chambers adjacent to the yellow chambers. However, the tiny hamsters, which represent auxiliary processes, work in sync to the bene t of the primary process. These smaller hamsters compute the sets of walls of red chambers, which have been assigned speci cally to each of them at the beginning of the iteration by the giant hamster, and thus enable the latter to have direct access to the data of these sets of walls when needed, thus minimizing the workload over the giant hamster's shoulders in terms of the computation of sets of walls. We now formally explain how we enforced this approach. In order to enable the primary process P 0 to communicate with the auxiliary processes through a shared database, we swap the Walls computation block, from the Poolized Borcherds' method, also displayed on the following page, for a new functional block, called the Poolized Functional Block. A PFB block takes a Weyl vector w D of a chamber D as input, determines whether the set of walls of D has already been computed by a worker process, and computes its set of walls whenever this is not the case. Hence, a PFB block can test whether the condition

w D ∈ N i=0 E (i) k+1
holds. As we already discussed, two possibilities then arise: Whenever this condition holds, PFB retrieves the data of Ω(D) from

N i=0 R (i) k+1 .
The PFB block otherwise computes Ω(D) with DeltaW and SetOfWalls.

The inner workings of a PFB block are depicted in the gure above, while the updated algorithmic structure of the Poolized Borcherds' method augmented with a PFB block is illustrated in the following gure.

We still have to precisely formalize the mechanics behind the auxiliary processes P j = P 0 . Before proceeding further, recall that we assume that Borcherds' method is starting its (k + 2)-th iteration and that the primary process P 0 splits L k+1 into subsets L each assigned to an auxiliary process P j . Such a auxiliary process P j must be able to:

Identify (-2)-walls among the walls of chambers in L (j)

k+1 so that chambers of level k + 1 adjacent along such walls will not be visited. Thus, auxiliary processes must be able to execute the procedure RatDetect.

Compute the Weyl vector of the chambers of level k + 1 adjacent to chambers in L (j) k+1 along their non (-2)-walls. Auxiliary processes, therefore, need to include the procedure WeylAdj among their features.

Consult the shared database to determine whether the set of walls of a given chamber has already been computed.

Compute the set of walls of a chamber so that the procedures DeltaW and SetOfWalls have to be among the procedures that can be executed by auxiliary processes.

We formalize these requirements by introducing an enhanced version of the PFB block, called the Autonomous Poolized Functional Block, or APFB. This block is obtained by combining RatDetect and WeylAdj to a PFB block, thus making the latter autonomous by enabling it to safely navigate within the portion of the chamber structure assigned to the auxiliary process over which it is executed. An important thing to remember is that both PFB and APFB can deploy their respective internal procedures using process-based parallelism with Pool, hence the P in their respective abbreviated names, for Poolized.

Enforcing parallelism with this state of mind can be pushed a little further to bring an additional improvement to Borcherds' method. A fundamental principle of Borcherds' method is that the data tuple associated with a chamber D of level k + 2 adjacent to a chamber in L k+1 along a non (-2)-wall is stored into L k+2 whenever D represents a new congruence class. Another basic rule of Borcherds' method is that the adjacencies of such chambers, i.e., the adjacencies of chambers discovered during the (k + 1)-th iteration, are explored during the (k + 2)-th iteration, and not earlier.

Viewing things in terms of parallel deployment enables us to bend this rule and think ahead. Indeed, delaying the exploration of the adjacencies of chambers adjacent to chambers discovered during the (k + 2)-th iteration, i.e., the exploration of chambers of level k + 3, until the next iteration no longer makes sense when parallelism can be enforced. We thus introduce an extra auxiliary process P N +1 tasked with the computation of the respective sets of walls of chambers of level k + 3 adjacent to chambers in L k+2 along their non (-2)-walls, during the (k + 2)-th iteration, and proceeding by the FIFO principle: First In, First Out. The process P N +1 is an instance of APFB. As soon as the primary process P 0 stores a chamber into L k+2 , the process P N +1 explores its adjacencies along its non (-2)-walls and computes their respective sets of walls, following the mechanics of APFB. Sets of walls computed by P N +1 are stored into a set

R N +1
k+1 , while the Weyl vectors of the corresponding chambers are stored into a set E N +1 k+1 . Both sets are part of the shared database and will be at the disposal of all processes during the (k + 2)-th iteration. In terms of scalability, it is of course possible to assign additional processes to this task.

Our approach, in this thesis, toward a parallelized Borcherds' method can thus be summarized in the following gure:

The above structure is a not just a concept: It is fully operational, illustrated on concrete examples and explained on our website. The PFB / APFB strategy illustrated by the gure above can also be deployed at the network level to take advantage from the processing power of several machines.

There is no doubt that massive improvements can be brought to Borcherds' method by enforcing theoretical material related to the eld of study of complex systems involving synchronization, parallelism, concurrency, sequencing and con ict management between processes.

The following diagram illustrates, in a concrete manner, our global approach toward a parallelized Borcherds' method. We did our best to provide a sound and safe starting point, a beachhead. We sincerely believe that everything remains to be done with regards to the deployment of Borcherds' method in parallel. We kindly ask our readers to keep in mind that the initial goal of this thesis consisted in studying automorphism groups and orbits of (-2)-curves on K3 surfaces X t with Picard number 3 for various values of the parameter t ∈ Z. Ultimately, we provided computer-based solutions that enabled us to ful ll our end of the deal with full automation. These solutions have a much larger scope of application and thus opened many doors for further study. However, studying the parallel deployment of Borcherds' method was by no means the aim of this thesis. We did our best, with the tools at our disposal, and within the time constraints imposed by this doctoral project, to bring our ideas to life. We, nevertheless, write it again: Everything remains to be done on the subject of parallelism & Borcherds' method and there is huge potential for development on the subject if this endeavor is carried out from an HPC perspective.

Parallelism and the Borcherds' method -Online content Part II A computer-based algorithmic approach to the study of projective models of K3 surfaces and unirationality of their moduli spaces

Projective models & unirationality

Smooth rational curves C P 1 are central objects of study in the eld of K3 surfaces. The term (-2)-curves is o en used to refer to classes of smooth rational curves on K3 surfaces. Note that in this entire dissertation, we willingly make no distinction between a (-2)-curve and its class in the Néron-Severi group. In 2019, Pierre Lairez and Emre Can Sertöz published an article [START_REF] Lairez | A numerical transcendental method in algebraic geometry : Computation of Picard groups and related invariants[END_REF] in which can be found an algorithm to compute classes of smooth rational curves on K3 surfaces. This algorithm, which mobilizes material from Vinberg [START_REF] Vinberg | Discrete sub groups of Lie groups and applications to Moduli[END_REF] and Shimada [START_REF] Shimada | Projective models of the supersingular K3 surface with Artin invariant 1 in characteristic 5[END_REF], inspired our advisor Professor Xavier Roulleau to produce an implementation which was then released along with the publication of his article [START_REF] Roulleau | On the geometry of K3 surfaces with nite automorphism group and no elliptic brations[END_REF] in 2019. Given the Gram matrix of the Néron-Severi group NS(X) of a K3 surface X, an integer m and an ample class P 0 ∈ NS(X), Roulleau's program SmoothRationalCurves outputs the set of classes C ∈ NS(X) of all smooth rational curves on X such that C • P 0 ≤ m. Roulleau designed his program in such a way that modifying a few lines of code and adding an input parameter d is enough to make his program capable of returning the set of all classes of curves D satisfying D 2 = d and D • P 0 ≤ m. We have to mention how important this program was to us during during the early days of this thesis. Had this program never been produced by Roulleau, it is probable that our study would then have never been oriented toward the use of computer-based solutions for the study of K3 surfaces. We used Sage's Pythonic interface to Magma in order to integrate Roulleau's program into a Pythonic environment. We present the mechanics and the algorithmic structure behind this program in section 2.1. Our adaptation of this program is named CGS, for Classes of any Given Square, and can be found under the same name in our proj mod suite. We produced a real Python port of CGS, but this port did not bring any performance improvement over the version adapted from Roulleau's Magma program. The reason is that implementing this program requires short lattice vectors enumeration tools, a ground on which Magma (with ShortVectors, ShortVectorsProcess) crushed all the alternatives we had on hand during our thesis. The program CGS enabled us to start studying K3 surfaces by enforcing a computer-based algorithmic ap-proach. For various positive integer values of an integer parameter t > 0, we were initially tasked with the study of projective models surfaces belonging to the family of K3 surfaces X t with a Néron-Severi group having Gram matrix

   2t 0 0 0 -2 0 0 0 -2   
with respect to a xed basis. We put Roulleau's program to good use by combining it with existing results in order to uncover a wealth of information on these surfaces: Determination of projective models of these surfaces, criterion for the unirationality of their moduli spaces, computation a generating set of their automorphism group Aut(X t) (see the Part 1 to this thesis, or click here), study of a fundamental domain of the action of Aut(X t) onto Nef(X) ∩ P S , determination of explicit equation for these surfaces. In section 2.6, we build on a technique, used by Roulleau in his articles [START_REF] Roulleau | An atlas of K3 surfaces with nite automorphism group[END_REF] and [START_REF] Roulleau | On the geometry of K3 surfaces with nite automorphism group and no elliptic brations[END_REF], which consists in taking advantage of the knowledge of a con guration of the form

   C 1 + C 2 = n 1 D C 3 + C 4 = n 2 D
with C 1 , C 2 , C 3 , C 4 ∈ NS(X) classes of smooth rational curves and D an ample class in order to study projective models of K3 surfaces and study the unirationality of their moduli spaces. Such con gurations will be referred to as systems, see de nition 42. Note that the procedure CGS presented in section 2.1 enables us to obtain concrete data regarding classes of smooth rational curves and divisors on K3 surfaces. For convenience, we produced a program to automatically form systems, as de ned above, on a K3 surface. This program is called SysFinder and is available for download on K3surfaces.com.

A famous result that incorporates material from Saint-Donat [START_REF] Saint-Donat | Projective models of K-3 surfaces[END_REF] and Morrison [START_REF] David | The geometry of K3 surfaces[END_REF], stated as Theorem 41 in this thesis, gives a precise characterization of the projective models that can be obtained from the morphism into projective space obtained associated with the complete the linear system |D| of an ample class D of self-intersection 2, 4, 6 or 8 and satisfying various prescribed conditions of base-point freeness and non-hyperellipticity. This approach presented two challenges that could only be overcome by producing new tools: How can we determine if a given class is ample or not, using a fully computer-based solution that can be deployed on any complex K3 surface? Our answer to this challenge is AmpTester.

How can we deal with the base-point freeness and hyperellipticity conditions of the classical SDM Theorem so that we can escape the burden of handcra ing criteria for these notions speci c to each surface under study? Our answer is PModChecker, for Projective Models Checker.

We thus ultimately produced tools that turned out to have a framework of application going way beyond the above-mentioned family of K3 surfaces. To deal with the rst challenge, we produced a universal ampleness tester for classes of divisors on K3 surfaces, as explained in the section 2.2 of this thesis. As our thesis was nearing its end, we realized that we had all the algorithmic material in hand to give a full computer-based incarnation to Theorem 41 for the study of projective models. This classical and well-known theorem, widely known under its classical formulation involving the notions of based-point freeness and non-hyperellipticity, also possesses an equivalent formulation in terms of purely numerical conditions, that can be fully tested using a computer-based approach. Following this path, we took care of the second challenge. We give more details about this in the section 2.6, in which we illustrate all the solutions implemented during this portion of our thesis by applying them to the study of projective models and of the unirationality of moduli spaces of the K3 surfaces X t with Néron-Severi group isomorphic to the integral lattice with Gram matrix diag(2t, -2, -2) with respect to a xed basis. In section 2.4, we establish that the discriminant group of these surfaces has no isotropic elements whenever the parameter t can be expressed as a product of distinct primes and satis es t ≡ 3 (mod 4). As shown in section 2.6, this result is useful when studying the unirationality of the moduli spaces of these surfaces. We have to mention that we took advantage of algorithmic material that can be found in Shimada's article [START_REF] Shimada | Projective models of the supersingular K3 surface with Artin invariant 1 in characteristic 5[END_REF] to deal with both challenges. Let us sum things up before going into the heart of the matter:

In section 2.1, we introduce the mechanics behind the procedure CGS.

In section 2.2, we present the inner workings of the universal ampleness tester, which requires as sole input the data of a Gram matrix of NS(X), of a known ample class, and of the class to be tested.

In section 2.3, we explain how to exhibit an initial ample class on a given surface and provide a step-by-step example. Such an ample class can then be used as an ambient parameter for universal ampleness tester AmpTester.

In section 2.4, we establish the result mentioned above on discriminant groups of surfaces X t for cases where t is a product of distinct primes and satis es t ≡ 3 (mod 4).

In section 2.5, we quickly review basic formulas on dimensions of linear systems of curves and hypersurfaces in projective spaces.

We nally introduce PModChecker in section 2.6 and display how all these tools can be mobilized to determine projective models of K3 surfaces. We also put these tools to use to create concrete openings for the study of the unirationality of moduli spaces of the familiar K3 surfaces X t with Néron-Severi group isomorphic to the integral lattice with Gram matrix diag(2t, -2, -2) with respect to a xed basis.

Procedure CGS -Computing Classes of a Given Square

As indicated in the introduction to this thesis, the SmoothRationalCurves Magma program due to Roulleau had a substantial positive impact on our work in 2019 and was a key factor that helped us to put this thesis on track by adopting a computer-based approach to the study of K3 surfaces. Roulleau designed his program in such a way that only a few alterations in the code can widen its scope of application and turn this tool into a generator of data on classes of divisors D having a self-intersection D 2 = d and satisfying D • P 0 ≤ m, where integers d, m, and an ample class P 0 are speci ed as input data by the user. The result of such an update is our program CGS, a generalized version of the initial program. As suggested by the name SmoothRationalCurves, Roulleau's initial Magma program, can identify classes of (-2)-curves among the elements of a set of (-2)-classes by enforcing an algorithm due to Vinberg [START_REF] Vinberg | Discrete sub groups of Lie groups and applications to Moduli[END_REF]. The program CGS naturally inherits this feature when d = -2. We now present the algorithm behind the SmoothRationalCurves program. Note that the article [START_REF] Lairez | A numerical transcendental method in algebraic geometry : Computation of Picard groups and related invariants[END_REF] from Pierre Lairez and Emre Sertöz is authority content this matter. This subsection will hence be based on their material and formulated in the general case where the classes to be produced have self-intersection d ≥ -2. Before proceeding further, let us get things straight about the notations used in this section:

The capital letter S is used as a shorthand to denote the Néron-Severi group NS(X) of X.

The greek letter ρ is used to denote the Picard number of X. That is, we set ρ = rank(S).

We denote by P S the positive cone of X, that is, P S is the connected component of

D ∈ NS(X) ⊗ R | D 2 > 0 containing ample classes.
We denote by G S a Gram matrix of S with respect to a xed basis. therefore holds for all D ∈ Γ. That is, the Gram Matrix G Λ of Λ is negative de nite. We then let α = P 0 , P 0 S .

Using a short lattice vectors enumerator, we compute

L = D ∈ Λ | -D, D Λ ≤ -dα 2 + αm 2 .
The enumerator will return elements of L as vectors with coordinates expressed in terms of the basis of Λ which has been computed earlier. This is however not a problem, since we have a basis B for Λ made of elements of S which enables us to express elements of L with respect to the standard basis of S. We assume that elements of L have thus been exprimed with respect to the standard basis of S. Let Indeed, we have:

Θ(D), Θ(D) S = 1 α (m D P 0 + D), 1
N m = R m
holds. The fact that N m is computable recursively thus provides a mean to identify classes of (-2)-curves among sets of (-2)-classes. Roulleau's Magma program SmoothRationalCurves relies on these mechanics.

Universal Ampleness Tester

Let X be K3 surface over C with Néron-Severi group S = NS(X). When working with surfaces on which lie a nite number of smooth rational curves, determining whether a class is ample or not is a non-issue. Indeed, it is well-known that a class D ∈ NS(X) is ample if and only if it satis es D, C S > 0 for all classes D of smooth rational curves on X. Only a nite number of intersection products have therefore to be computed in order to get an answer on the ampleness of a class D on a K3 surface on which lie a nite number of smooth rational curves, i.e., having a nite automorphism group. However, this approach is pointless when the K3 surface under study has an in nite number of smooth rational curves lying on it, that is, on surfaces for which Aut(X) is in nite. For such surfaces, li ing the veil on the ampleness or non-ampleness of classes has always been a problem until now. Our solution to this issue is based on the fact that Shimada fortunately devoted eight lines of his 2013 article [19, p.31/32] to outline a characterization of ampleness which led us to produce a universal ampleness tester capable of testing whether any class D ∈ S is ample or not provided that we have prior knowledge of one ample class. We thus smashed the door slightly opened by Shimada's almost a decade ago and gave life to a universal ampleness tester: AmpTester. Note that starting from this line, we stop using capital letters to denote classes in S and do so for the sake of clarity until the end of this section. Assume known an ample class a 0 ∈ S. Shimada states that a class v ∈ S is ample if and only if the three following conditions are satis ed:

Condition AC1: Both inequalities v, v S > 0 and v, a 0 > 0 hold, so that v ∈ P S .

ShiChecker -Checking AC2

Let L be a lattice and u ∈ L such that u, u L > 0

Let α and δ be integers. We now explain how we implemented the algorithm to compute sets of the form

H = {x ∈ L | x, u L = α, x, x L = δ} outlined by Shimada in his article [18, Algorithm 3.2].
Our implementation of this algorithm is called ShiChecker and is available for download on K3surfaces.com. The general strategy to do so is based on the fact that an element v ∈ H can be obtained by Implementation of (i): An element x ∈ S can be represented by a coordinate vector

x = [x 1 , . . . , x ρ] S
where ρ = rank(S). Solving the equation

x, u S ∨ = α for x ∈ S amounts to determining integers x 1 , . . . , x ρ such that

x 1 . . . x ρ G S     u 1 . . . u ρ     = α. (2.3)
The le -hand side of this expression can be expanded an re-arranged so that equality (2.3) can be written as an expression of the form

ρ i=1 γ i x i = α
where the γ i are elements of Q. Clearing the eventual denominators on both sides of this expression yields an equality of the form

ρ i=1 µ i x i -γ = 0 (2.4)
where γ ∈ Z and µ i ∈ Z for 1 ≤ i ≤ ρ. The resolution of this degree 1 multivariate equation is then accomplished using a CAS such as Sage and gives us a basis { 1 , . . . , ρ-1 } of the (ρ -1)-dimensional solution space of this equation. That is, solutions of (2.4) are generated by

(t 0 , . . . , t ρ-1) = 1 t 1 + • • • + ρ-1 t ρ-1 (2.5)
where

t i ∈ Z for 1 ≤ i ≤ ρ -1.

Implementation of (ii):

We have seen how to generate solutions of the equation x, u S = α. Assume such a solution c ∈ S xed. We now explain Shimada's procedure to obtain an element y ∈ u ⊥ ⊂ S satisfying y + c, y + c S = δ.

Since a Gram matrix of S = NS(X) is by design inde nite, we cannot use a short lattice vectors enumeration algorithm to determine elements x ∈ S satisfying x, x S = δ . Shimada's idea to overcome this obstacle consists in nding a particular sublattice of S on which the restriction of the bilinear form is de nite. We have u, u S > 0 by assumption, hence the Hodge Index theorem gives us that the restriction of , S ∨ to the orthogonal complement u ⊥ of u in S is negative de nite. Recall that we explained in section 1.4 how to proceed to implement Shimada's short lattice vectors enumeration algorithm from his article [18, Section 3.1] to determine solutions of expressions of the form.

xQx t + 2xL + c ≤ 0
This tool then enables us to determine elements y ∈ u ⊥ ⊂ S satisfying the equality y, y S + 2 y, c S + c, c S = δ.

Since S is an integral lattice, it is contained in its dual, i.e., S ⊂ S ∨ . By de nition, an element x ∈ S belongs to u ⊥ if and only if x, u S = 0. Solving this equation amounts to determining integers x 1 , . . . , x ρ such that

x 1 . . . x ρ G S     u 1 . . . u ρ     = 0 (2.6)
Expanding and clearing the denominators, we obtain from the above equality a rst-degree multivariate linear equation of the form

ρ i=1 γ i x i = 0.
which can easily be solved for integral solutions using a CAS. We thus obtain a basis {ξ 1 , . . . , ξ ρ-1 } of the solution space of this equation, so that its solutions can be generated using

ξ(t 1 , . . . , t ρ-1) = ξ 1 t 1 + • • • + ξ ρ-1 t ρ-1 ,
where the t i are integers for 0 ≤ i ≤ ρ -1. Using the basis of u ⊥ that we now have at our disposal enables us to compute a Gram Matrix G u ⊥ , which is negative de nite. That is, we compute the matrix with entries ξ i , ξ j S for 1 ≤ i, j ≤ ρ -1. Let p α ∈ S denote a xed solution of the equation x, u S = α, whose resolution was explained earlier when we dealt with point (i). We now determine an element y ∈ u ⊥ ⊂ S such that y + p α , y + p α S = δ.

(2.7)

As mentioned previously, the element v = y + p α will then satisfy v, v S = δ and v, u S = α so that we will have v ∈ H. We have seen in section 1.4 that Shimada's Short lattice vectors custom algorithm ShiVectors takes a positive quadratic triple

[Q, P, c]
as input data, where Q is a n × n-sized symmetric positive de nite integral matrix, P is a (1 × n)-sized column vector with integer entries, c is a rational parameter.

We recall that Shimada ensures that the procedure ShiVectors outputs the nite set

{x ∈ Z n | q QT (x) ≤ 0}
of solutions of

xQx t + 2xP + c ≤ 0
Let us arrange (2.7) to make it comply with this format. We rst replace the equality sign in

y + p α , y + p α S = -2 -β (2.8)
by an ≤ sign, and note that there is no loss of generality in doing so. We expand and arrange (2.8) to obtain: y, y S + 2 y, p α S + p α , p α S -δ ≤ 0.

(2.9)

Recall that we obtained a basis {ξ 1 , . . . , ξ ρ-1 } for u ⊥ earlier. Since the element y is assumed to belong to u ⊥ , any short lattice vectors enumerator executed using the Gram matrix of u ⊥ will return elements having coordinates given with respect to the basis of u ⊥ from which the Gram matrix was obtained, which, in our case, is the above-mentioned basis. Denote by y 1 , . . . , y ρ-1 the coordinates of y with respect to the latter. That is,

y = y 1 ξ 1 + • • • + y ρ-1 ξ ρ-1 .
The term 2 y, p α S ∨ in expression (2.9) can then be re-arranged as follows: Again, we recall that the input data format for Shimada's algorithm ShiVec-tors algorithm consists in a positive quadratic triple [Q, L, c] used to de ne a quadratic function of the form

2 y, p α S = 2 y 1 ξ 1 + • • • + y ρ-1 ξ ρ-1 , p α S = 2(y 1 ξ 1 , p α S + • • • + y ρ-1 ξ ρ-1 , p α S) = 2 y 1 . . . y ρ-1     ξ 1 , p α S . . .
yQy t + 2yL + c, (2.10)
where Q is required to be a positive de nite matrix. Since the Gram matrix G u ⊥ of u ⊥ is negative de nite (Hodge Index Theorem), we will use -G u ⊥ , which is positive de nite, as input for the short lattice vectors algorithm ShiVectors instead of G u ⊥ . Anyways, taking the negative of expression 2.10 with

Q = G u ⊥ gives y(-G u ⊥)y t + 2y(-L) + (-c)
and we thus obtain that the triple to be used as input data for Shimada's algorithm ShiVectors is

[-G u ⊥ , -L, -c] =     -G u ⊥ , -     ξ 1 , p α S . . . ξ ρ-1 , p α S     , -p α , p α S + δ     .
This algorithm provides the data of elements q ∈ u ⊥ satisfying q + p α , q + p α S ≤ δ, from which we can readily obtain the elements q ∈ u ⊥ satisfying the equality q + p α , q + p α S = δ.

Let v = q + p α . It is clear that we have v, v S = δ. The fact that q ∈ u ⊥ gives us that q, u S = 0. Since p α is assumed to be a solution of x, u S = α, we have

p α , u S = α. Hence v, u S = q + p α , u S = 0 + p α , u S = α.
We thus see that this procedure indeed enables us to obtain elements of the set

H = {x ∈ L | x, u L = α, x, x L = δ} .

ShiBooster -Checking AC3

Assume that vectors v, h ∈ S satisfying v, v S > 0, h, h S > 0 and h, v S > 0 are given. In his article [18, Section 3.3], Shimada describes an algorithm to compute the set

F = {r ∈ S | r, h S > 0, r, v S < 0, r, r S = d} .
Our implementation of Shimada's algorithm is named ShiBooster. Note that it is available for download on K3surfaces.com. We follow Shimada's guidelines available in his article [START_REF] Shimada | Projective models of the supersingular K3 surface with Artin invariant 1 in characteristic 5[END_REF]. We start by computing the orthogonal complement

W = (h) ⊥
in S of the element h ∈ S which is assumed to be given. We then de ne a projection pr

W : S ⊗ Q -→ W ⊗ Q sending an element b ∈ S ⊗ Q to its projection pr W (b) onto W ⊗ Q.
For convenience, we will work in the framework of the duals S ∨ and W ∨ of the lattices S and W until the end of this subsection. Let

x = [x 1 , . . . , x ρ-1]
be a (ρ -1)-sized row vector made of formal variables x i for 1 ≤ i ≤ ρ -1.

Consider the negative inhomogenous quadratic function

f : W → Q de ned by f (x) : x -→ x, x W + h, h S v, h 2 S x, pr W (h) 2 W .
We then formally expand the expression on the right-hand side, collect the terms, and form a negative de nite matrix

M f = [a ij]
where a ij is the coe cient of the term x i x j , 1 ≤ i, j ≤ ρ -1, in the expanded expression of f . The matrix -M f is positive de nite, and we let L f be the lattice with Gram Matrix -M f . Using a short lattice vectors enumerator, we compute the set

S = b ∈ L f | b, b L f ≤ 2
Due to the fact that M f has been obtained by taking the coe cients of f , the set S coincides with the set

{b ∈ W | f (b) ≥ -2} .
We associate the quantity During ampleness testing, the initial ample class plays the role of h while class whose ampleness is to be determined plays v. Combining the programs Shi-Booster and ShiChecker, we obtain our universal ampleness tester for classes of divisors on K3 surfaces, described in a gure on the following page.

η b = -2 -b, b W h, h S

Finding an initial ample class

Having prior knowledge of an ample class is a prerequisite to executing many of the procedures encountered in this thesis. For example, an initial ample class is needed to test whether the initial chamber used in Borcherds' method is nondegenerate, an initial ample class is required to use the universal ampleness tester. Therefore, it is a matter of decency that we provide guidelines to determine an initial ample class. Assume given a complex K3 surface X with Néron-Severi group S = NS(X) and assume that we have no prior knowledge of any ample class. Given a class v ∈ S satisfying v, v S > 0, a classical result that can be found in Huybrechts' book [START_REF] Huybrechts | Lectures on K3 Surfaces[END_REF] states that there exists a transformation ω in the Weyl group of X such that ±ω(v) is ample whenever the set

{r ∈ S | v, r S = 0, r, r = -2}
is empty. In this case, the class v ∈ S can thus be viewed as ample up to transformations in the Weyl group. We show how this strategy can be executed on a concrete example. Assume that the K3 under study is a surface X t with Néron-Severi group S t = NS(X t) having Gram matrix

   2t 0 0 0 -2 0 0 0 -2   
with respect to some xed basis, and that the integer parameter t satis es t > 1.

Let us show that the class

P 0 = [2, -1, -1] .
can be taken as ample in NS(X t) for all t > 1. We start by checking whether this class has strictly positive self-intersection. We have P 0 , P 0 St = 8t -4 which is a strictly positive quantity when t > 1. Let us show that the set

C ∈ S t | P 0 , C St = 0, C, C St = -2
is empty whenever t > 1. Before proceeding further, note that what comes next can be done in a matter of seconds using a computer. We, however, proceed by hand for the sake of completeness of this thesis. Let us compute a basis of

(P 0) ⊥ = C ∈ S t | P 0 , C St = 0
and then show that elements C ∈ (P 0) ⊥ of self-intersection -2 cannot exist. In order to compute a basis for (P 0) ⊥ St we x a class

D = [x, y, z]
in S t with x, y, z integers not all equal to zero and assume that D ∈ (P 0) ⊥ . From P 0 , D St = 0

we readily obtain that z = -tx -y so that D can be expressed as

D = [x, y, -tx -y] St = x [1, 0, -t] + y [0, 1, -1] = xB 1,t + yB 2
For all t ≥ 1, the data of an ample class P 0 enables us to enforce AmpTester to test any class in NS(X) for ampleness. Practical applications of our program AmpTester are extensively detailed on K3surfaces.com.

A useful result on the discriminant group of NS(X t)

A result from Curtis T. McMullen's article [START_REF] Mcmullen | K3 surfaces, entropy and glue[END_REF] states that given an even lattice, there is a one-to-one correspondence between the set of its overlattices and the set of subgroups of its discriminant group on which the restriction of the associated quadratic form vanishes. Assume that L is an even lattice having the property that its discriminant group L ∨ / L has no non-trivial isotropic elements. Any element x 0 ∈ L ∨ / L satisfying q L (x 0) = 0, is then necessarily the identity element of L ∨ / L, i.e., x 0 ∈ L. In this case, the result mentioned above enables us to assert that L has no proper overlattices. This result will be key to us in order to exhibit K3 surfaces X t for which the unirationality of the moduli space can be asserted: We enforce a technique due to Roulleau in [START_REF] Roulleau | On the geometry of K3 surfaces with nite automorphism group and no elliptic brations[END_REF] and show that under special conditions a quartic surface Q such that NS(X t) ⊆ NS(Q) can be built from scratch using projective parameters. These conditions, when ful lled, enable us to assert that the discriminant group of NS(X t) has no nontrivial isotropic elements. As we just discussed, it is then be possible to assert that NS(X t) has no proper overlattices so that the above inclusion becomes We now provide a rigorous proof of this result. Before proceeding, recall that S t is a shorthand for NS(X t) and that a Gram matrix with respect to some xed basis for the latter is assumed to be equal to

   2t 0 0 0 -2 0 0 0 -2    .
The diagonal shape of this matrix enables us to immediately state the following quite obvious result: Proposition 39. There is an isomorphism

S ∨ t / S t (Z/2tZ) × (Z/2Z) × (Z/2Z) .
Before proceeding further, let us see how things work regarding elements of the discriminant group of S t . Let t > 2 be an integer, and assume that it can be expressed a product of distinct primes. We use the classical coordinate vectors notation to represent elements of x ∈ S t as

x = x 1 v 1 + x 2 v 2 + x 3 v 3 = [x 1 , x 2 , x 3] S
where the elements

v 1 = [1, 0, 0] S , v 2 = [0, 1, 0] S and v 3 = [0, 0, 1] S
are assumed to form a basis for S t with the above-mentioned Gram matrix.

Applying the de nition of the dual of a lattice which states that S ∨ t is formally de ned as

S ∨ t = {x ∈ S ⊗ Q | ∀y ∈ S t ,
x, v 1 St = 2tx 1 ∈ Z, x, v 2 St = -2x 2 ∈ Z and x, v 3 St = -2x 3 ∈ Z.
That is, there exist integers a, b and c such that

x 1 = a 2t , x 2 = - b 2 and x 3 = - c 2 .
The quotient S ∨ t / S t can thus be expressed as

S ∨ t /S t = a 2t , - b 2 , - c 2 | a, b, c ∈ Z / (Z [1, 0, 0] S +[0, 1, 0] S +Z [0, 0, 1] S).
We use the notation w to denote the class in S ∨ t / S t of an element

w = a 2t , - b 2 , - c 2 ∈ S ∨ t .
Since S t is an even lattice, the Z-valued symmetric bilinear form on S t extends to a Q-valued symmetric bilinear form on S ∨ t . The latter in turns de nes a quadratic form

q : S ∨ t / S t -→ Q/2Z de ned by q : x -→ x 2 mod 2Z
where x is the class in S ∨ t / S t of an element x ∈ S ∨ . By de nition, an element

x ∈ S ∨ t / S t is said to be isotropic whenever it satis es

q(x) = 0 ∈ Q/2Z, that is, whenever x, x St ∈ 2Z. Let w = β 1 2t , -β 2 2 , -β 3 2 ∈ S ∨ t / S t
be a non-trivial isotropic element of S ∨ t / S t . By non-trivial, it should be understood that w is not equal to the zero element of (Z/2tZ) × (Z/2Z) × (Z/2Z).

That is, we thus assume that ¬ (2t | β 1 and 2 | β 2 and 2 | β 3)

(2.12) holds. Since w is assumed to be an isotropic element of S ∨ t / S t , the quantity

q(w) = β 1 /2t +β 2 /2 +β/2    2t 0 0 0 -2 0 0 0 -2       β 1 /2t β 2 /2 β 3 /2    + 2Z = (β 2 1 2t - β 2 2 2 - β 2 3 2) + 2Z.
is the zero element of Q/2Z, that is, there exists an integer k ∈ Z such that

β 2 1 2t - β 2 2 2 - β 2 3 2 = 2k ∈ 2Z. (2.13)
Multiplying both sides of this equality by 2 leads us to

β 2 1 t = 4k + β 2 2 + β 2 3 .
(2.14)

Since the right-hand side of this equality is an integer, it is clear that we must have t | β 2 1 . Since t is assumed to be strictly greater than two and equal to the product distinct primes, the fact that We assume that at least one of the three β i is non-zero in each case, so that all the conditions above make sense.

We proceed as follows for the remainder of this section: From each one of the above-mentioned case, we will exhibit a contradiction and will then be able to assert that an isotropic element

w = β 1 2t , -β 2 2 , -β 3 2 ∈ S ∨ t / S t ,
is necessarily trivial whenever t is a product of distinct primes such that t ≡ 3 (mod 4) .

Case (a) -Assume that the conditions 2t β 1 , 2 β 2 , 2 β 3 hold. That is, the integers β 2 and β 3 are odd and can respectively be expressed as

β 2 = 2k 2 + 1 and β 3 = 2k 3 + 1.
Squaring the expressions for β 2 and β 3 , we obtain

β 2 2 = 4k
+ 2k 3 + 1 2) = 2(k + k 2 2 + k 2 3 + k 2 + k 3) + 1.
Multiplying both sides of this equality by 2t enables us to obtain that β 2 1 is even. Since β 1 ∈ Z, we immediately obtain that β 1 is even . That is, there exists an integer n ∈ Z such that The fact that q(w) ∈ 2Z is equivalent to the congruence We see that the two following possibilities arise from this congruence:

β 2 1 /2t -
• Either t ≡ 3 (mod 4)

• or t ≡ 1 (mod 4).

First possibility: When t ≡ 3 (mod 4), we have -t ≡ 1 (mod 4)

and expression (2.16) turns into β 2 1 + β 2 2 + β 2 3 ≡ 0 (mod 4).

(2.17)

All possible modular solutions (β 1 , β 2 , β 3) of this equation are listed below: We see that none of above-mentioned solutions (β 1 , β 2 , β 3) of 2.17 satisfy the conditions

β 1 ≡ 0,
2t β 1 , 2 β 2 , 2 | β 3 of case (b).
Similarly, there is no solution satisfying the conditions Squaring both sides of each of theses inequalities yields The expression (2.13) can therefore be expressed as

β 2 1 = t 2 • 2 2 • n 2 , β 2 2 = 4k
β 2 3 = 4tk 2 1 -4k 2 2 -4k,
and we deduce that β 2 3 an even integer. Since the square of an odd integer is necessarily odd, it is clear β 3 cannot be odd. The equality (2.13) can then be turned into The equality (2.13) can then be turned into

β 2 1 = 4tk
β 2 2 = 4tk 2 1 -4k 2 3 -4k,
thus making apparent the fact that β 2 2 an even integer. As indicated earlier, the square of an odd integer is necessarily odd. Thus β 2 cannot be odd. We therefore deduce that 2 | β 2 , contradicting our initial assumption on β 2 . Note that β 2 and β 3 have a symmetric role in expression 2.13 and in cases (e) and (f), hence the proofs for these two cases follow the same pattern. We hence established that whenever t is assumed to be equal to a product of distinct primes greater such that t ≡ 3 (mod 4) , then assuming the existence of a non-trivial isotropic element w ∈ S ∨ t / S t leads to a contradiction. Hence, the discriminant group S ∨ t / S t of S t = NS(X t) has no non-trivial isotropic elements whenever the integer parameter t satis es the above-mentioned conditions.

The linear system Γ n d (s 0 , . . . , s r-1) of hypersurfaces of degree d in P n containing the point s 0 , . . . , s r-1 has dimension More details and examples can be found by clicking here.

Computer-based study of projective models and unirationality of moduli spaces

We now explain how we made use of the material introduced in the previous sections to study projective models of K3 surfaces. In order to deal with our initial objective, which consisted in studying projective models and the unirationality of the moduli spaces of K3 surfaces with Néron-Severi group isomorphic to the integral lattice with Gram matrix

   2t 0 0 0 -2 0 0 0 -2    ,
we produced solutions that turned out to have a much wider scope of application. The following result, that can be traced back to Morisson's 1988 Cortona summer lectures with elements from Saint-Donat [START_REF] Saint-Donat | Projective models of K-3 surfaces[END_REF] and stated below in its form due to Debarre in his lectures [START_REF] Debarre | Surfaces K3 -Graduate Course -Spring[END_REF], is of great importance for our study: This theorem is fascinating because it provides precise and explicit numerical criteria and conditions which must be ful lled in order for an ample class on a K3 to be associated with a projective model of this surface . Had we had the opportunity to travel back in time to 1988, we would probably have to face to the fact that using such a theorem with some degree of automation would have been quite di cult. Indeed, decades ago, the state of technology did not allow researchers to mobilize hardware endowed with the processing power that we enjoy today. This theorem is o en used in its classical and equivalent formulation, and it is even still the case today. This formulation, which involves the notions of base-point freeness and non-hyperellipticity, was probably favored by researchers at the time. The two formulations, classic and modern, of the theorem, are nevertheless logically equivalent. Indeed, various results which can be traced back to Saint-Donat state that given an ample class D ∈ NS(X), the non-existence of classes F such that F 2 = 0 and F • D = 1 is equivalent to the base-point freeness of D. Likewise, for classes such that D 2 ≥ 4, establishing the non-hyperellipticity of D ensures that there does not exist a class F ∈ NS(X) such that F • D = 2. We can therefore assume without taking a considerable risk that, in the past, in order to make use of the vintage SDM theorem, people had to:

Handcra base-point freeness, ampleness and non-hyperellipticity criteria speci c to each K3 surface under study.

Find a class D ∈ NS(X) satisfying these criteria.

Doing so was without any doubt not an easy task, and all these constraints reduced the possibilities of study to a handful of cases. Almost four decades later, the situation is radically di erent. Nothing stands in the way of full automation:

The program CGS is capable of producing an abundance of data on classes D ∈ NS(X) of any desired self-intersection D 2 .

We can determine whether a class D ∈ NS(X) is ample using the program AmpTester.

Thus, the procedure CGS from section 2.1 enables us to obtain data on classes D ∈ NS(X) of divisors of self-intersection D 2 = 2, 4, 6 or 8, while the procedure AmpTester from section 2.2 enables us to identify ample classes among the data on classes produced by the procedure CGS. The only requirement to be ful lled to execute this strategy consists in nding an initial ample class. We show in the section 2.3 of this thesis how this can be done. We, moreover, have material to deal with conditions of existence or non-existence of classes of divisors F on X such that F 2 = 0, F • D ∈ {1, 2, 3}. Indeed, given an ample class D ∈ NS(X) and integers n 1 , n 2 > 0, the procedure ShiChecker detailed in section 2.2.1 is capable of computing sets of the form

{F ∈ NS(X) | F, D = n 1 , F, F = n 2 } .
We, therefore, have in our hands all the necessary ingredients to give life to the SDM theorem: We can now determine whether any class D ∈ NS(X) can be associated with a projective model of X in virtue of this theorem. The resulting tool is PModChecker, for Projective Models Checker. We introduce and explain how to use this tool on our website. Assuming given a Gram matrix of NS(X) with respect to a xed basis and an ample class a 0 ∈ NS(X) as ambient parameters, PModChecker takes as input a class D ∈ NS(X) and determines whether it ts within the framework of one of the cases of the SDM theorem. When this is the case, it returns the precise information on the nature of the projective model which can be obtained from the knowledge of the class D.

We return to our initial objective: Exhibiting values of t and conditions under which a quartic in P 3 with Néron-Severi group isomorphic to NS(X t) can be built from scratch, that is, establishing the unirationality of the moduli space of the surfaces X t , for these values of t. Reaching this goal requires the addition of a geometrical avor to our approach. To do so, we use Roulleau's technique from his articles [START_REF] Roulleau | An atlas of K3 surfaces with nite automorphism group[END_REF] and [START_REF] Roulleau | On the geometry of K3 surfaces with nite automorphism group and no elliptic brations[END_REF] as a starting point. In order to study projective models of a K3 surface while putting emphasis on a genuine geometric aspect, Roulleau enforces a technique which consists in:

Establishing criteria of non-hyperellipticity and base-point freeness for classes in NS(X), to then apply the vintage SDM theorem.

Using the data produced by his program SmoothRationalCurves to handcra a con guration of smooth rational curves associated with an ample, base-point free and non-hyperelliptic class.

As discussed earlier, our program PModChecker enables us to disregard all considerations involving the notions of non-hyperellipticity and base-point freeness by using numerical criteria instead. We thus focus on the second point. A prototypical example of the con gurations found in Roulleau's atlas of K3 surfaces [START_REF] Roulleau | An atlas of K3 surfaces with nite automorphism group[END_REF] is of the following type:

   C 1 + C 2 = n 1 D C 3 + C 4 = n 2 D (2.20)
where the class D is ample, n 1 , n 2 are positive integers and C 1 , C 2 , C 3 , C 4 are distinct classes in NS(X) of smooth rational curves on X. Such a con guration can be formalized by introducing the notion of system:

De nition 42. Let D be an ample class. We use the term system to refer to a nite collection {L j } of linear combinations of classes of smooth rational curves each satisfying L i = n i D for some positive integer n i with the additional properties that:

All linear combinations are made of the same number of (-2)-curves.

All curves involved in a linear combination are distinct.

No class of smooth rational curve (-2)-curve can be involved in more than one linear combination.

The de nition of a system has a wide scope and encompasses many types of con gurations, such as a con guration made of a single linear combination involving three classes of (-2)-curves, e.g., and many other possible forms. There are so many possibilities that we have introduce a precisely de ned framework to purse our study.

C 1 + C 2 + C 3 = nD
We follow Roulleau's steps by focusing on systems involving two linear combinations, each made of two classes of (-2)-curves per linear combination, that is:

   C 1 + C 2 = n 1 D C 3 + C 4 = n 2 D
(2.21)

In order to obtain such systems on a K3 surface, we use our program SysFinder, detailed and available for download on K3surfaces.com. From the input data of a Gram matrix of the Néron-Severi group NS(X) of a K3 surface, of an ample class a 0 ∈ NS(X), and of an integer c > 0, our program SysFinder takes advantage of the procedure CGS to produce data on classes of smooth rational curves and on classes of divisors having squares 2, 4, 6 or 8. The program SysFinder then calls for AmpTester to identify ample classes and nally processes all this data to exhibit systems of the form (2.21) . Assume that a system

   C 1 + C 2 = n 1 D C 3 + C 4 = n 2 D (2.22)
with D 2 = 4 has thus been obtained. By de nition 42 of a system, D ∈ NS(X) is assumed to be ample. Assume moreover than an application of PModChecker with D as input data returned that ϕ D : X → P 3 realizes X as a quartic in P 3 . We now explain how the data of a system can lead to the explicit construction of such a quartic. First, note that each linear combination which is part of a system can be viewed as a sub-system of the system under study:

• The sub-system

C 1 + C 2 = n 1 D (sub-system I)
may be realized in P 3 as the intersection of a quartic surface with a hypersurface of degree n 1 . When this is the case, such an intersection can be expressed as the union of curves A 1 and A 2 such that

deg(A 1) = C 1 • D and deg(A 2) = C 2 • D.
• Similarly, the sub-system

C 3 + C 4 = n 2 D (sub-system II)
may be realized in P 3 as the intersection of a quartic surface with a hy-persurface of degree n 2 . When this is the case, this intersection then decomposes as the union of curves A It would be convenient to construct both sub-systems I and II in such a way that the respective intersections they de ne are both contained on the same quartic surface Q in P 3 and in such a way that all the A i are smooth rational curves, i.e., A i P 1 for i ∈ {1, 2, 3, 4} .

To this end, we proceed as follows: Let A 1 P 1 and A 3 P 1 be rational normal curves in P 3 having respectively degree We check whether there exists a quartic in P 3 containing A 1 and A 3 by computing the projective dimension of the linear system of quartic surfaces in P 3 containing the curves A 1 and A 3 and checking whether this dimension is superior or equal to zero. We thus introduce the Condition LS1:

4 + 3 3 -1 -(4 deg(A 1) + 1) -(4 deg(A 3) + 1) + C 1 • C 3 ≥ 0
Assume that LS1 is satis ed and pick a quartic Q in the above-mentioned linear system. By intersecting Q with a degree n 1 hypersurface H 1 containing the curve A 1 , we produce a residual rational normal curve A 2 P 1 such that

A 1 + A 2 = n 1 H 1 ,
thus mimicking sub-system I within of a quartic P 3 . However, we rst have to determine whether the linear system of surfaces of degree n 1 containing the curve A 1 has a projective dimension superior or equal to zero. This is Condition LS2:

n 1 + 3 3 -1 -(n 1 deg(A 1) + 1) ≥ 0
Assume that Condition LS2 holds. We still have to nd a curve A 4 P 1 in P 3 which will play the role of the curve associated with the class C 4 . This can be done by intersecting Q with a degree n 2 section containing C 3 , thus producing a residual rational normal curve A 4 P 1 such that

deg(A 4) = C 4 • D.
As before, such an operation can only be performed when the linear system of surfaces of degree n 2 containing the curve A 3 has a projective dimension superior or equal to zero. This is Condition LS3:

dim Γ(P 3 , n 2 | A 3) = n 2 + 3 3 -1 -(n 2 deg(A 3) + 1) ≥ 0
When conditions LS1, LS2 and LS3 hold, it can be established that the Néron-Severi group NS(Q) of the quartic Q surface thus constructed in P 3 contains a copy of the Néron-Severi group NS(X) of the surface under study, i.e.,

NS(X) ⊆ NS(Q).

Before proceeding further, note that conditions LS1, LS2, and LS3 only depend on parameters that can be obtained from the data of the system under study. Our program SystemFinder is capable of identifying systems satisfying these three conditions and discard the others. If we show that the discriminant group of NS(X) does not contain non-trivial isotropic elements, then the result mentioned at the beginning of section 2.4 enables us to deduce that NS(X) cannot have a proper overlattice, i.e.,

NS(Q) NS(X)

hence establishing the unirationality of the moduli space of K3 surfaces with Néron-Severi group NS(X) due to the explicit construction of the quartic performed in projective space. Indeed, constructing a surface such as X amounts to constructing rational normal curves A 1 and A 3 in P 3 with prescribed intersection value C 1 • C 3 and then taking a quartic in the linear system of quartic surfaces containing them if the latter is non-empty. Such a construction can be realized as a result of conditions LS1, LS2 and LS3 being assumed to hold. This construction is moreover done with rational parameters. We enforced this strategy in order to study the family of surfaces X t with Néron-Severi group isomorphic to the integral lattice with Gram matrix

   2t 0 0 0 -2 0 0 0 -2   
with respect to a xed basis, where we restricted to cases for which the positive integer parameter t satis es t ≡ 3 (mod 4) and can be expressed as a product of distinct primes.

SysFinder is used to generate systems of the form (2.22) each associated with a class D with D 2 = 4 and satisfying conditions LS1, LS2 and LS3.

Such classes are tested against the SDM theorem with PModChecker so that only systems associated with classes D such that ϕ D : X t → P 3 realizes X t as a quartic are considered, and all others discarded.

Recall that PModChecker integrates AmpTester. Thus, determining whether any given class is ample or not ample can be done without hassle. Assume that the positive integer t 0 is chosen in such a way as to satisfy t 0 ≡ 3 (mod 4) and as being expressible as a product of distinct primes. Assume that a system satisfying all the conditions mentioned above has been found. We show on K3surfaces.com that a quartic Q in P 3 such that NS(X t 0) ⊆ NS(Q) can then be constructed. From the assumption that t 0 satis es t 0 ≡ 3 (mod 4) and is a product of distinct primes, proposition 38 enables us to assert that the discriminant group of NS(X t 0) has no isotropic elements, so that NS(X t 0) has no overlattice. In this case, we obtain NS(X t 0) NS(Q)

and are then able to assert the unirationality of the moduli space of K3 surfaces with Néron-Severi group isomorphic to NS(X t 0) .

Note that the approach we used regarding unirationality is fully compliant with the strategy devised by Professor Xavier Roulleau to do so. We thus have the duty to emphasize the fact that we merely applied his methods, and that the innovation lies in the fact that we enforced them using a computer-based algorithmic approach and determined conditions and concrete tools to exhibit explicit constructions leading to unirationality in the framework of the family of K3 surfaces X t , whose automorphism groups and orbits of smooth rational curves had to be studied in order to achieve this doctoral project. In practice, checking whether these conditions indeed hold amounts to nding a suitable system satisfying LS1, LS2, LS3 with SysFinder (which involves CGS, PModChecker and AmpTester) with the additional requirements that the integer parameter t must satisfy t ≡ 3 (mod 4) and can be expressed as a product of distinct primes. When this is the case, we have

NS(X t) NS(Y)

where Y is the quartic constructed in P 3 .

 ⊗ R | x, x L > 0}

 Borcherds' method uses the respective sets of walls of D and of D as input data into the procedure CongChecker from section 1.7.4. The latter then uses bruteforce to determine whether D and D are H-congruent. When the chambers D and D are indeed H-congruent, the procedure CongChecker provides at least one element g ∈ H establishing the congruence between D and D . Note that such transformations are generators of Aut H (Nef(X) ∩ P S) and are stored into the set Γ. If D is not H-congruent to a chamber in k+1 j=0 L j then D represents a new congruence class of chambers. Borcherds' method hence stores the data tuple w , A H (D), Ω(D), Ω(D) associated with the chamber D into the set L k+1 which contains the chambers of level k +1 each representating a new congruence class discovering during the current iteration, i.e. (k + 1)-th iteration. When the chambers of level k + 1 adjacent to chambers in L k have all been explored and processed, two possibilities arise:

 in his Master's course [3, Section 3.4]: SDM Theorem. Let X be a K3 surface and D ∈ S an ample class. (a) If D 2 = 2 and there does not exist a class F ∈ NS(X) such that F 2 = 0 and F • D = 1 then ϕ D : X -→ P 2 is a double cover. (b) If D 2 = 4 and there does not exist a class F ∈ NS(X) on X such that F 2 = 0 and F • D ∈ {1, 2} then ϕ D : X -→ P 3 embeds X as a quartic surface in P 3 . (c) If D 2 = 6 and there does not exist a class F on X such that F 2 = 0 and F • D ∈ {1, 2} then ϕ D : X -→ P 4 embeds X as a degree 6 surface in P 4 . (d) If D 2 = 8 and there does not exist a class F on X such that F 2 = 0 and F • D ∈ {1, 2, 3} then ϕ D : X -→ P 5 either embeds X as a generically transverse intersection of three quadrics in P 5 with only rational double points, or ϕ D realizes X as double cover of a Veronese surface. This theorem led us to produce and implement the following tool: PModChecker (SDM theorem tester): Given an ample class a 0 ∈ S and a Gram Matrix G S for S, our program PModChecker can determine whether a given class D ∈ S can enter within the framework of the abovementioned SDM theorem. When this is the case, PModChecker speci es which projective model of the K3 surface under study can be obtained thanks to the map into projective space associated with ϕ D , in virtue of the Saint-Donat / Morrison Theorem. This program extensively relies on an algorithmic routine which was originally intended for other purposes and can be found in Shimada's article [18]. More information and detailed examples are available online: AmpTester: K3surfaces.com/amptester PModChecker: K3surfaces.com/pmodchecker

 hold. The procedure to obtain an element v S ∈ S ∨ [β, α] can be broken down into two stages: (a) First, we determine a solution c ∈ S ∨ of the equation x, w S S ∨ = 1 -α. (b) We then determine an element y ∈ (w S) ⊥ ⊂ S ∨ satisfying y + c, y + c S ∨ = -2 -β, i.e., satisfying y, y S ∨ + 2 y, c S ∨ + c, c S ∨ = -2 -β.

 of walls of D and D is used as input into the procedure CongChecker.If D is not H-congruent to at least one chamber in D then the chamber D represents a new congruence class of chambers, and its associated data tupleD = w D , A H (D), Ω(D), Ω(D) is stored into the set L k+1 of level k +1 representatives of H-congruence classes.Otherwise, for each chamber D to which D is H-congruent, the associated elements g ∈ H returned by CongChecker are stored into the set Γ.

1. 8 . 1

 81 Failure of the non-degeneracy condition, a quick survey Assume that an initial embedding ι : S → L, a P L -chamber D 0 and an ample class a 0 ∈ P S such that ι(a 0) / ∈ Int(D 0 ∩ P S) (1.24) are given. Using the elementary fact that Int(D 0 ∩ P S) = Int(D 0) ∩ Int(P S)

 is a complete set of representatives of Aut H (Nef(X)∩P S)-congruence classes of chambers, i.e., of H-congruence classes of chambers contained in Nef(X) ∩ P S . The set D thus contains exactly one representative of each H-congruence class of chambers contained in Nef(X) ∩ P S . Let D ∈ D. We denote by F(D) ⊂ D a fundamental domain of the action of Aut H (D) ⊂ Aut H (Nef(X) ∩ P S) on D.

1 . 9 . 1

 191 H (D) = {Id} holds for all D ∈ D combined with proposition 30 implies that D∈D D is a fundamental domain of the action of Aut(X) on Nef(X) ∩ P S , that is Corollary 31. Assume that X satis es the conditions of theorem 22 and that Aut H (D) = {Id} holds for all D ∈ D. Then the union D∈D D is a fundamental domain of the action of Aut(X) on Nef(X) ∩ P S . Boundary walls, local boundary walls, global boundary walls.

 Given a chamber D ∈ D, we use the following procedure in order to identify boundary walls among the elements of Ω(D) and determine whether such walls are local boundary walls or a global boundary walls: De ne initially empty sets B dry = { } and L oc = { } . Let D ∈ D. For each m ∈ Ω * (D), check whether the chamber D adjacent to D along the wall (m) ⊥ belongs to D and proceed as follows: If D ∈ D, then (m) ⊥ is a boundary wall of the fundamental domain. In this case, we store the element m into B dry . If D / ∈ D and the wall (m) ⊥ has already been identi ed has a boundary wall during the processing of another chamber of D, i.e., m ∈ B dry , then (m) ⊥ is classi ed as a local boundary wall and stored into L oc . Once all the chambers of D have thus been processed, then The set B dry is the set of boundary walls. The set L oc is the set of local boundary walls. The set G lo = B dry \ L oc is the set of global boundary walls. De nition 35. The fundamental domain is said to be Hilbert Basis ready (HBready) whenever all its boundary walls are global boundary walls.

 Nef(X) ∩ P S which is produced by Borcherds' method when Aut H (D) = {Id} holds for all D ∈ D. Let D ∈ D and m ∈ Ω(D). Assume that m is expressed in terms of its coordinates m = [a 0 , a 1 , . . . , a ρ-1] S ∨ with respect to the basis of S ∨ . The principle enabling us to produce representations is straightforward: The wall

 80218 = 5013 • 16 + 10 = 5013 • (6 + 10) + 10 = 5013 • 6 + 5014 • 10

 (j)k to a process, each represented by a hamster Emoji, in charge of exploring and processing red chambers adjacent to the chambers in L (j) k . We illustrate the situation by updating our previous gure :

 k+1 , and a copy of w D into E (0) k+1 .

A = -dα 2 +

 2 αy 2 | y ∈ [0 . . . m] To each D ∈ L is then associated the rational m D = D, D Λ + dα 2 / √ α. De ne L = D ∈ L | -D, D Λ ∈ A and 1 α (m D P 0 + D) ∈ S . and note that the condition 1 α (m D P 0 + D) ∈ S holds for an element D ∈ L if and only if α divides each of the coordinates (w.r.t the basis of S) of m D P 0 + D. To each element D ∈ L can be associated an element Θ(D) ∈ S satisfying Θ(D) • P 0 ≤ m and Θ(D), Θ(D) S = d where Θ is the transformation Θ : L -→ S de ned by Θ : D -→ 1 α (m D P 0 + D).

2 k = - 2 .

 22 α (m D P 0 + D) S = 1 α 2 (m 2 D P 0 , P 0 S + D, D S) = 1 α 2 (-D, D S + dα 2 + D, D S) = d and Θ(D), P 0 S = 1 α (m D P 0 + D), P 0where we used the fact that P 0 , D S = 0 becauseD ∈ L ⊂ P ⊥ 0 ∩ (αNS(X) + ZP 0).Note that the assumption D ∈ L implies that 0 ≤ m D ≤ m. We can thus compute the setC(m, d) = 1 α (m D P 0 + D) | D ∈ L ,and this set is the desired set of classes of self-intersection d on X having intersection product with P 0 less than or equal to m. Whend = -2,the procedure outputs C(m, d) and stops. Otherwise, C(m, -2) is the set of (-2)-classes having intersection product with P 0 less than or equal to m. Further processing is thus needed in order to identify classes of (-2)-curves among the (-2)-classes forming this set. LetC m = {D ∈ NS(X) | D, D S = -2and D, P 0 S = m} and de neN m = {D ∈ C m | ∀p < m, ∀D ∈ N p , D, D S ≥ 0} .Note that N 1 = C 1 holds, and that N m can be computed recursively. Let R m be the set of classes of smooth rational curves having intersection product with P 0 less than or equal to m. We show that there is a bijection between the sets N m and R m . It is well-known that any two classes D, D of irreducible curves satisfyD, D S ≥ 0. Thus, if D ∈ R m , then D ∈ N m .The set R m is therefore a subset of the set N m , i.e., we haveR m ⊆ N m .(2.1)Let C ∈ N m . The Riemann-Roch theorem for surfaces gives that one of the strict inequalitiesdim H 0 (X, O X (C)) > 0 or dim H 0 (X, O X (-C)) > 0 must hold. That is, either C or -Cis the class of an e ective curve. Since C ∈ N m , we have C, P 0 S = m > 0 and deduce that C must be the class of an e ective curve, because otherwise the intersection product of C with P 0 would not be positive. Using the fact that the class of an e ective curve can we written as the sum of classes of distinct irreducible curves, we can express C as C = i β i C i where all the coe cients satisfy β i > 0 and the classes in this formal sum are such that C i , C j S ≥ 0 whenever i = j. Since the class C has self-intersection -2, there exists an integer k such that the strict inequality C, C k S < 0. holds. The adjunction formula then ensures that C k satis es C The class C k being of self-intersection -2 and irreducible is therefore the class of a smooth rational curve on X. Let m = C k , P 0 S . holds. Since the set R m is a subset of N m , we moreover have C k ∈ N m . However, the fact that C k , C S < 0 contradicts the de nition of N m . Hence m = m and C k = C This pattern of proof by contradiction enables us to assert that each element of N m is in fact the class of a smooth rational curve, hence contained in R m . Thus, we have N m ⊆ R m and deduce from (2.1) that the equality

(i)

 i determining a solution c ∈ S of the equation x, u S = α and then (ii) determining an element y ∈ u ⊥ ⊂ S satisfying y + c, y + c S = δ, that is, satisfying y, y S + 2 y, c S + c, c S = δ. (2.2) The data of c and y can then be used to assemble an element v = y + c which will then satisfy v, u S = y + c, u S = 0 + c, u S = α and v, v S = y + c, y + c S = δ, so that v ∈ H, as desired.

ξ ρ- 1 ,y

 1 + p α , y + p α S ≤ -2 -β can therefore be written as y G u ⊥ y t + 2yP + c ≤ 0 where y = [y 1 , . . . , y ρ-1] and c = p α , p α S -δ.

 to each element b ∈ S , where we note that -2 -b, b W > 0 holds since b ∈ S , and that h, h S > 0 holds by assumption. Denote by M W ∨ the matrix formed by taking as row vectors the basis elements ω ∨ 1 , . . . , ω ∨ ρ-1 ∈ S ⊗ R of W ∨ , which can quickly be obtained with a computer. Assuming that an element b ∈ S is represented as a (ρ -1)-sized column vector containing its coordinates with respect to the basis of W ∨ mentioned above, we send an element b ∈ W ∨ to an element b S⊗R ∈ S ⊗ R by the map b -→ bM W ∨ . De ne an initially empty set F = { }. For each b ∈ S , we de ne b * = √ η b h + b S⊗R . If b * satis es the three following conditions b * ∈ S, b * , h S > 0, b * , v S < 0, then we append b * to F. When all b ∈ S have thus been tested, Shimada ensures that the set F coincides with the desired set {r ∈ S | r, h S > 0, r, v L < 0, r, r L = d} .

t | β 2 1 enables us to deduce that t | β 1 a 3 (f) 2t β 1 , 2 | β 2 , 2 | β 3 and (g) 2t | β 1 , 2 β 2 , 2 |

 11312223122 er a simple application of Euclid's lemma. The non-triviality condition displayed in, expression (2.12) is a negation of conjunction, and can thus be expressed as a disjunction of negations, i.e.,¬ (2t | β 1) or ¬ (2 | β 2) or ¬ (2 | β 3)from which arise the following seven cases:(a) 2t β 1 , 2 β 2 , 2 β 3 (b) 2t β 1 , 2 β 2 , 2 | β 3 (c) 2t β 1 , 2 | β 2 , 2 β 3 (d) 2t | β 1 , 2 β 2 , 2 β 3 (e) 2t | β 1 , 2 | β 2 , 2 β β 3 .

2n = β 1 235

 1 We have shown earlier that t | β 1 , that is, there exists m ∈ Z such that tm = β 1 Hence, we have2n = tm.Since t is assumed to be a product of distinct primes and such that t > 2, there exists p ∈ Z such thatm = 2p thus 2n = 2pm = β 1We thus obtained that 2t | β 1 , which contradicts our initial assumption on β 1 .Case (b), Case (c) -Assume that 2t β 1 , 2 β 2 , 2 | β 3 or that 2t β 1 , 2 | β 2 , 2 β 3 .

β 2 ≡

 2 0, β 3 ≡ 0 (mod 4),β 1 ≡ 0, β 2 ≡ 0, β 3 ≡ 2 (mod 4), β 1 ≡ 0, β 2 ≡ 2, β 3 ≡ 0 (mod 4), β 1 ≡ 0, β 2 ≡ 2, β 3 ≡ 2 (mod 4), β 1 ≡ 2, β 2 ≡ 0, β 3 ≡ 0 (mod 4), β 1 ≡ 2, β 2 ≡ 0, β 3 ≡ 2 (mod 4), β 1 ≡ 2, β 2 ≡ 2, β 3 ≡ 0 (mod 4), β 1 ≡ 2, β 2 ≡ 2, β 3 ≡ 2 (mod 4).

2t β 1 , 2 | β 2 , 2 β 3

 1223 of case (c).Thus, a non-trivial isotropic element satisfying the conditions of cases (b) or (c) cannot exist when t ≡ 3 (mod 4).Second possibility:When t ≡ 1 (mod 4) we have -t ≡ 3 (mod 4) and expression (2.16) becomes β 2 1 + 3β 2 2 + 3β 2 3 ≡ 0 (mod 4). (2.18) of case (c). The existence of isotropic elements is therefore a possibility whenever t ≡ 1 (mod 4) the conditions of cases (b) and (c) are satis ed. See the following examples. Example. Assume t = 13. Then it is clear that t ≡ 1 (mod 4). The integers β 1 = 60437, β 2 = 90517 and β 3 = 26316 satisfy the conditions of case (b), are such that β 1 ≡ 1, β 2 ≡ 1, β 3 ≡ 0 (mod 4) and hence satisfy the modular equation (2.18). They thus de ne an isotropic element of the lattice S ∨ 13 / S 13 . Example. When t = 17, we have t ≡ 1 (mod 4). The integers β 1 = 44625, β 2 = 72230, β 3 = 39285 satisfy the conditions of case (c), are such that β 1 ≡ 1, β 2 ≡ 2, β 3 ≡ 1 (mod 4) and hence satisfy the modular equation (2.18). They therefore de ne an isotropic element of the lattice S ∨ 17 / S 17 . Case (d) -Assume that the conditions 2t | β 1 , 2 β 2 , 2 β 3 hold. That is, there exist integers n, k 1 , k 2 ∈ Z such that β 1 = 2tn, β 2 = 2k 2 + 1 and β 3 = 2k 3 + 1.

Hence 2 |

 2 β 3 , contradicting our initial assumption on β 3 .Case (f) -Assume that the conditions2t β 1 , 2 | β 2 , 2 | β 3 hold. There exist integers k 1 , k 2 such that β 2 = 2k 1 and β 3 = 2k 2 .

1 - 2 •

 12 dim Γ n d (s 0 , . . . , s r-1) = n + d n -1 -r.The linear system Γ n d (C) of hypersurfaces of degree d in P n containing a general curve C of degree m has dimension given by the formuladim Γ n d (C) = n + d n -1 -(m • d + 1).The linear system Γ n d (C 0 , C 1) of hypersurfaces of degree d in P n containing two general curves C 0 and C 1 of degree m intersecting transversely has dimensiondim Γ n d (C 0 , C 1) = n + d n -1 -(2(m • d + 1) -C 0 • C 1).The linear system Γ n d (C 0 , . . . , C r-1) of hypersurfaces of degree d in P n containing general curves C 0 , . . . , C r-1 of degree m intersecting transversely has dimensiondim Γ n d (C 0 , . . . , C r-1) = n + d n -1 -(r(m • d + 1) -(i<j C i • C j)).Example 40. Let C 1 , C 2 be two disjoint conics in P 3 . The linear system Γ 1 of quartics containing C 1 and C 2 is 16 dimensional. Indeed, we have (2 • 4 + 1) = 35 -1 -18 = 16

Theorem 41 .

 41 (SDM -Saint-Donat / Morrison) Let X be a K3 surface and let D ∈ NS(X) be an ample class. (a) If D 2 = 2 and there does not exist a class F ∈ NS(X) such that F 2 = 0 and F • D = 1 then ϕ D : X -→ P 2 is a double cover. (b) If D 2 = 4 and there does not exist a class F ∈ NS(X) on X such that F 2 = 0 and F • D ∈ {1, 2} then ϕ D : X -→ P 3 embeds X as a quartic surface in P 3 . (c) If D 2 = 6 and there does not a divisor F on X such that F 2 = 0 and F • D ∈ {1, 2} then ϕ D : X -→ P 4 embeds X as a degree 6 surface in P 4 . (d) If D 2 = 8 and there does not exist a class F on X such that F 2 = 0 and F • D ∈ {1, 2, 3} then ϕ D : X -→ P 5 either embeds X as a generically transverse intersection of three quadrics in P 5 with only rational double points, or ϕ D realizes X as double cover of a Veronese surface.

C 1 + 4 = n 1 DC 5 + C 6 + C 7 + C 8 = n 2 DC 9 +

 14156829 or con gurations with three linear combinations and four classes of (-2)-curves per linear combination, e.g.,C 2 + C 3 + C C 10 + C 11 + C 12 = n 3 D

3 and A 4

 4 such thatdeg(A 3) = C 3 • D and deg(A 4) = C 4 • D.

deg(A 1)A 1 •

 11 = C 1 • D and deg(A 3) = C 3 • D and satisfying A 3 = C 1 • C 3 .

 d and for which the value of their intersection product with P 0 is less than or equal to u

b . We took advantage of Sage's interface to Magma in order to bring Roulleau's program directly into the practical world of Python. Combining this tool with Saint-Donat's & Morisson's results on projective models of K3 surfaces enabled us to study projective models of K3 surfaces with Néron-Severi group isomorphic to the integral lattice with Gram matrix 

Table of Contents Contents 1 Automorphism groups and orbits of

	1.8 Embedding update procedure .
	1.8.1 Failure of the non-degeneracy condition, a quick survey
	1.8.2 Shimada's embedding update procedure
	1.8.3 A new perspective on Shimada's embedding update pro-
	cedure .
	1.9 Fundamental domain, associated cone, Hilbert Basis
	1.9.1 Boundary walls, local boundary walls, global boundary
	walls. .
	1.9.2 Graphical representation of the chamber structure of the
	fundamental domain. .
	1.10 Computing the (-2)-curves modulo Aut(X)
	1.11 Toward a parallelized Borcherds' method
	1.11.1 The Poolized Borcherds' method
	1.11.2 Enforcing parallelism at the scale of Borcherds' method
	2 Projective models & unirationality
	2.1 Procedure CGS -Computing Classes of a Given Square
	1.4.1 ShiVectors -Our implementation of Shimada's SLVE . . 2.2 Universal Ampleness Tester .
	1.4.2 Applications -ShiChecker & ShiBooster 2.2.1 ShiChecker -Checking AC2
	1.5 Computing the walls of an induced chamber 2.2.2 ShiBooster -Checking AC3
	1.5.1 Procedure DeltaW . 2.3 Finding an initial ample class
	1.5.2 Procedure SetOfWalls 2.4 A useful result on the discriminant group of NS(X t)
	1.6 Computation of generators of Aut(X) -Background 2.5 About dimension of linear systems
	1.6.1 Scope of application of Borcherds' method 2.6 Computer-based study of projective models and unirationality
	1.6.2 Finding a generalized membership criterion of moduli spaces .
	1.6.3 Checking the kernel condition
	1.7 Borcherds' method .
	1.7.1 Procedure RatDetect .
	1.7.2 Procedure WeylAdj .
	1.7.3 Procedure AutChamber
	1.7.4 Procedure CongChecker
	1.7.5 Borcherds' method .

(-2)-curves 1.1 Generalities . 1.1.1 The basics . 1.1.2 Chamber structure and walls 1.2 Induced chamber structure . 1.3 Toolbox . 1.4 Shimada's enhanced Short Lattice Vectors Enumerator

 there exists a subset ∆ C ⊂ F such that an element p ∈ P L belongs to C if and only if the strict inqualities p, v L > 0 are satis ed for all v ∈ ∆ C . Similary, if we denote by C the topological closure of C then an element p ∈ P L belongs to C if and only if p, v L ≥ 0 holds for all v ∈ ∆ C . We hence see that C can be expressed as

 Corollary 7.2] which formalizes the consequences of proposition 19 and brings an additional characterization of Ker(ϕ X) to the table:

). Following proposition 19, Shimada introduced in

[START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF]

the following corollary in

[19,

 NS(X t) NS(Q)hence establishing the unirationality of the moduli space of K3 surfaces with Néron-Severi group isomorphism to NS(X t). Combining basing arithmetic and advanced computer-based algorithmic solutions, we will provide examples for which such a situation occurs. Our rst objective consists in determining conditions under which the discriminant group of NS(X t) has no isotropic element. We established the following result which enables us to assert that NS(X t) has no strict overlattices for in nitely many values of the parameter t :

	Proposition 38. If t is a product of distinct primes satisfying t ≡ 3 (mod 4), then
	discriminant group S ∨ t / S

t of the lattice S t = NS(X t) has no isotropic element.

 x, y St ∈ Z} . we see that an element x ∈ S t ⊗ Q expressed as [x 1 , x 2 , x 3] S satis es x ∈ S ∨ t if and only if x, y St ∈ Z holds for all y ∈ S t . That is, if and only if

 holds if and only if gcd(n, m) = 1, and this formula extends to the case where more than two primes are involved, that is,Z/(n 1 n 2 . . . n r)Z (Z/n 1 Z) × (Z/n 2 Z) × • • • × (Z/n r Z) .Since t is assumed to be equal to a product of distinct primes, we havet = t 1 t 2 . . . t mfor distinct primes t i with 1 ≤ i ≤ m, and hence can write Z/4tZ asZ/ (4t 1 t 2 . . . t m) Z (Z/4Z) × (Z/t 1 Z) × • • • × (Z/t m Z)thus making a Z/4Z modular factor apparent. The latter enables us to express (2.15) modulo 4:

	β 2 1 -tβ 2 2 -tβ 2 3 ≡ 0 (mod 4).	(2.16)
	β 2 2 /2 -β 2 3 /2 = 0 (mod 2)	
	which, multiplying both sides by 2t,turns into	
	β 2 1 -tβ 2 2 -tβ 2 3 ≡ 0 (mod 4t).	(2.15)
	Keeping in mind that	
	Z/(nm)Z Z/nZ × Z/mZ	

 Since the le -hand side of this equality is even, while its right-hand side is odd, we see that the assumptions2t | β 1 , 2 β 2 , 2 β 3lead us to a contradiction. Thus, an isotropic element de ned by β 1 , β 2 , β 3 cannot be non-trivial if the above conditions are satis ed. Assume that the conditions2t | β 1 , 2 | β 2 , 2 β 3hold. Then there exist integers k 1 , k 2 such thatβ 1 = 2tk 1 and β 2 = 2k 2 .

	Case (e) -		
	2 2 + 4k 2 + 1	and	β 2 3 = 4k 2 3 + 4k 3 + 1.
	The equality (2.14) thus becomes		
	2tn 2 = 2k + 2k 2 2 + 2k 2 + 2k 2 3 + 2k 3 + 1.	(2.19)

 Keeping in mind that t | β 1 always hold, we hence see that2t | β 1 ,thus contradicting our initial assumption 2t β 1 . Assume that the conditions2t | β 1 , 2 β 2 , 2 | β 3 hold. There exist integers k 1 , k 2 such that β 1 = 2tk 1 and β 3 = 2k 3 .

	turns implies that
	2 | β 1 .
	Case (g) -
	2 1 + 4k 2 2 + 4tk,
	thus making apparent the fact that β 2 1 an even integer, that is, 2 | β 2 1 , which in
	241

available workers is enough: Order does not matter. Tasks for which order is irrelevant should thus be considered rst when enforcing parallelism.

Acknowledgments

None of this would have been possible without Professor Xavier Roulleau. I was fortunate to be able to bene t from his ideas, expertise and knowledge which enabled me to overcome any obstacle. He invested a considerable amount of time on me, much more than a student should expect from an advisor. I deeply thank Professor Roulleau for his support during my time as an MSc & PhD student. I want to express my profound gratitude to the reviewers of my thesis, Professor Alice Garbagnati & Doctor Davide Cesare Veniani, for the time spent reviewing my thesis and their positive feedback. I want to thank my longtime friend Théo Petropoulos for his encouragement and advice as an expert web developer and cyber security professional regarding the online aspects of this thesis.

More than anything, I want to thank from the bottom of my heart my mother, my father and my sister for their love and support.

to the research mission. The research work and the writing of this manuscript have been carried out in compliance with both the French national charter for Research Integrity and the Aix-Marseille University

More information and detailed examples are available online:

Guide: K3surfaces.com/aut-groups

Examples: K3surfaces.com/examples-borcherds

The following gures summarize all the material discussed in this section :

The mechanics are similar regarding R and its dual R ∨ , except that we only consider a single basis made of vectors of L ⊗ Q for the latter. levels. The chamber D 0 will o en be referred to as the initial chamber.

De nition 27. The notion of level is de ned iteratively:

The initial chamber D 0 is the only level 0 chamber.

A chamber adjacent to a level l -1 chamber but not adjacent to a level l -2 chamber is said to be of level l.

The notion of level enables us to give a precise characterization of our object of study: Starting from an initial chamber D 0 contained in Nef(X) ∩ P S , Borcherds' method is an iterative process that explores and processes the chambers of Nef(X) ∩ P S , level by level, until a complete set of representatives of Hcongruence classes of chambers has been produced. In order to navigate within the chamber structure on Nef(X) ∩ P S , Borcherds' method must possess the three following features: Borcherds' method must be able to move from chamber to chamber.

To this end, Borcherds' method leans on the procedure WeylAdj presented in section 1.7.2. Given the Weyl vector w of a chamber D and the data of an element v ∈ S ∨ such that (v) ⊥ is a wall of D, the procedure WeylAdj computes the Weyl vector w of the chamber D adjacent to D along (v) ⊥ .

Borcherds' method must possess the ability to detect (-2)-walls, that is, walls (v) ⊥ where v satis es v, v S = -2 and v ∈ S. Doing so is the purpose of the procedure RatDetect, from section 1.7.1, which takes as input an element v ∈ S ∨ and determines whether (v) ⊥ is a (-2)-wall. Indeed, we have seen that the chamber structure over Nef(X) ∩ P S is bounded by (-2)-walls. Hence, in case the method crosses a (-2)-wall, it leaves the chamber structure over Nef(X)∩P S . Crossing such walls must be avoided at all costs. We recall that the set of walls of a P S -chamber D is denoted by Ω(D) and contained in the set R L|S of elements of S ⊗Q having negative self-intersection.

Step n°5: Use Shimada's non-degeneracy criterion (procedure DegenTest from section 1.7) to D 0 and (τ • ι) (a 0) in order to check whether

holds under the framework of the updated embedding. We explain in the following section how Shimada's embedding update procedure can be improved. His procedure su ers from the fact that many attempts with various ample classes a 0 may be required before eventually obtaining a positive result. Also, the procedure may not work at all, and no explanation regarding this fact is provided in Shimada's article [START_REF] Shimada | An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces[END_REF]. If we remember our discussion from section 1.8.1, we see that Shimada's procedure will fail whenever ι(a 0) ∈ (r) ⊥ for some r ∈ R L . In such cases, we say that ι(a 0) is stuck into a wall. It is therefore important to make sure that the set

is empty before enforcing Shimada's embedding update procedure with. The situation is otherwise especially problematic when ι(a 0) is stuck into a wall of the initial P L -chamber D 0 , as illustrated in the gure below.

Theorem 36. Let X be a K3 surface. The set of (-2)-curves up to automorphisms

is nite, i.e., there is a nite number of orbits of smooth rational curves.

This result is here stated in the form under which it can be found in Huybrechts' book [START_REF] Huybrechts | Lectures on K3 Surfaces[END_REF], in which a proof is also provided. The second point addressed in this section consists in providing an operational template for an algorithmic method to re ne the upper bound Card(R rat).

We will thus see that the upper bound Card(R rat) on the number of orbits of smooth rational curves on X under the action of Aut(X) can be re ned.

Indeed, the set R rat can contain more than one representative for a given orbit. We thus provide an algorithmic solution to detect redundant representatives in R rat . A much more precise bound on the number of orbits will hence be obtained. Assume that

for some s > 0 and let C ∈ S be the class some smooth rational curve on X. We recall that have seen at the beginning of section 1.7 that no class of smooth rational curve is super uous for cutting out Nef(X) ∩ P S . An immediate consequence of this fact is that there exists at least a P S -chamber

having (C) ⊥ amongst its walls, i.e., such that C ∈ Ω(D). Two possibilities arise:

If D ∈ D, then C must be an element of R rat , i.e., C must have been detected by Borcherds' method during its execution.

If D / ∈ D, then the fact that D is a complete set of representatives of Aut(X)-congruence classes of chambers of Nef(X) ∩ P S enables us to This is as simple as it looks.

In order to determine the cardinality Card(S j) of each of the N subsets S j ⊂ S in such a way that

Card(S j) = Card(S), we can proceed as follows. We start by performing the euclidean division of Card(S) by N . There exist integers q and r with r < N such that Card(S) = N q + r.

Moreover, the assumption r < N enables us to nd an integer δ N,r such that

We can thus express Card(S) as:

A natural way of partitioning S into N = r + δ N,r subsets thus appears.

The set S is split into: r subsets each containing q + 1 elements.

δ N,r subsets each containing q elements. We use the notation P 0 to denote a xed ample class in S = NS(X).

Given the input data of G S , of an ample class P 0 and of integers d and m, the following procedure due to Shimada [START_REF] Shimada | Projective models of the supersingular K3 surface with Artin invariant 1 in characteristic 5[END_REF] and Vinberg [START_REF] Vinberg | Discrete sub groups of Lie groups and applications to Moduli[END_REF] outputs the list of classes C ∈ NS(X) such that

Procedure CGS: Assume that a basis for S is xed. This basis will be referred to as the standard basis for S. We start by computing (e.g., by using a function from the SageMath library) a basis

of the rank ρ -1 sublattice

of S Z 3 and then compute its Gram Matrix

where M B is the ((ρ -1) × ρ)-sized matrix whose rows are taken to be the elements of B. Since Λ ⊂ P ⊥ 0 , and since the ample class P 0 by de nition satis es P 0 , P 0 S > 0 the Hodge Index Theorem ensures that the restriction to Λ of the intersection form of S is negative de nite. The strict inequality

is empty.

Condition AC3:

The set

is empty. That is, the line segment in P S connecting a 0 and v does not intersect any hyperplane (r) ⊥ perpendicular to some (-2)-class r ∈ S.

Checking whether condition AC1 holds is not a problem. Things are not as simple regarding conditions AC2 and AC3. In his article [START_REF] Shimada | Projective models of the supersingular K3 surface with Artin invariant 1 in characteristic 5[END_REF], Shimada fortunately provides algorithms that can be used to compute the sets involved in verifying these conditions. Algorithms 3.1 and 3.2 from [START_REF] Shimada | Projective models of the supersingular K3 surface with Artin invariant 1 in characteristic 5[END_REF] can be used to check whether AC2 holds. We already know Shimada's Algorithm 3.1 as ShiVectors, described in the section 1.4 of this thesis. We gave the name ShiChecker to our implementation of Shimada's Algorithm 3.2 and explain how to implement it in section 2.2.1.

Algorithms 3.1 and 3.3 from [START_REF] Shimada | Projective models of the supersingular K3 surface with Artin invariant 1 in characteristic 5[END_REF] can be used in order to check whether AC3 holds. Let us give the name ShiBooster to algorithm 3.3. We explain how to deal with its implementation in section 2.2.2.

We took on the challenge and gave life to Shimada's idea of a universal ampleness tester. The result is AmpTester, detailed and available on K3surfaces.com We also combined Shimada's idea with Roulleau's program SmoothRational-Curves in order to make the program AmpTester capable of returning classes C of smooth rational curves such that D • C ≤ 0 whenever D is not ample and has positive self-intersection, thus providing an additional and concrete evidence of the non-ampleness of D thus supporting the ndings of AmpTester.

where

The orthogonal complement (P 0) ⊥ can thus be viewed as a sublattice of S t spanned by the elements B 1,t and B 2 of S t . A Gram matrix

of this sublattice is then computed. Assume than an element C = [u, v], with u, v ∈ Z not both equal to zero, belongs to (P 0) ⊥ and has self-intersection -2.

Using the Gram matrix of (P 0) ⊥ to compute this self-intersection, we see that this assumption is equivalent to

Note that the right-hand side of this equality is odd. Two possibilities arise regarding the le -hand side of this expression:

Assume that t = 2k ± 1 for some k ∈ Z, that is, assume that t is an odd integer. Then t -1 is even so that tu 2 (t -1) is also even.

Assume that t is even. Then tu 2 (t -1) is even.

No matter the value of t > 1, the le -hand side of the equality (2.11) is therefore even, as a sum of even quantities. The le -hand side of (2.11) being odd, we see that assuming the existence of a non-trivial element in (P 0) ⊥ having selfintersection -2 leads to a contradiction. We therefore deduce that the set

is empty. The result mentioned at the beginning of this section then enables us to consider the class P 0 = [2, -1, -1] as ample in S t for all t > 1, up to transformations in the Weyl group of X. When t = 1, proceeding analogously yields that P 0 = [1, -1, -1] can be taken as ample.

All possible modular solutions (β 1 , β 2 , β 3) of this equation are listed below: mod 4)

,

,

We see that the solutions

satisfy the conditions

The solutions

satisfy the conditions

About dimension of linear systems

Let k be an algebraically closed eld. Denote by P n the n-dimensional projective space over k. It is well-known that for any integer d > 0, there is a bijection between the linear system of hypersurfaces of degree d in P n and the projectivization of the set

of global sections of O(d). That is, there is a bijection between the linear system of hypersurfaces of degree d in P n and set of degree d homogenenous polynomials. The linear system Γ n d of hypersurfaces of degree d in P n has therefore projective dimension equal to

Points s 0 , s 1 , . . . , s r-1 in P n are said to be in general position whenever the following conditions are satis ed:

If r < n + 1, then the vectors de ned by the homogenous coordinates of these r points are linearly independent.

for r = n + 1, any n points are linearly independent.

Assume that s 0 , s 1 , . . . , s r-1 are r points in general position in P n .

Remark. From now on until the end of this thesis, all curves are considered general, and in general position. When de ning a curve, for instance, a curve C in P 3 , one should start by xing a certain number of points in general position in P 3 and then require that C passes through them so that a hypersurface containing the points must contain the curve. All the curves involved should thus be de ned by imposing that they pass through a su ciently low number of generic points. Additionally, intersections are always supposed transverse.

The following statements hold:

Note that nding a suitable system is the purpose of our program SysFinder from the proj mod suite.

The overall procedure can be summarized as indicated in the following gure:

More details about the practical and computer-based side of this procedure can be found as additional online content. We illustrate the methods and techniques presented in this section by using the case of the K3 surface X 7 as an example. This content can be accessed by clicking here. One last time, we have to mention that dealing with the computer-based aspect of this thesis cannot be done in a conventional manuscript. We kindly ask our readers to keep in mind that K3surfaces.com has been created to make up for the limitations of this PDF le.

A detailed table containing all the references used in this thesis can be found by clicking here.

All the gures used in this thesis can be found in high resolution by clicking here.

A table summarizing all the procedures related to Borcherds' method can be found by clicking here.