
HAL Id: tel-03883690
https://theses.hal.science/tel-03883690

Submitted on 4 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A computer-based algorithmic approach to the study of
automorphism groups, orbits of smooth rational curves,

unirationality & projective models of K3 surfaces
Cedric Mazet

To cite this version:
Cedric Mazet. A computer-based algorithmic approach to the study of automorphism groups, orbits
of smooth rational curves, unirationality & projective models of K3 surfaces. Mathematics [math].
AMU - Aix Marseille Université, 2022. English. �NNT : 2022AIXM0226�. �tel-03883690�

https://theses.hal.science/tel-03883690
https://hal.archives-ouvertes.fr




A�davit

I, undersigned, Cédric MAZET, hereby declare that the work presented in this

manuscript is my own work, carried out under the scienti�c direction of Profes-

sor Xavier ROULLEAU, in accordance with the principles of honesty, integrity

and responsibility inherent to the research mission. The research work and the

writing of this manuscript have been carried out in compliance with both the

French national charter for Research Integrity and the Aix-Marseille University

charter on the �ght against plagiarism.

This work has not been submitted previously either in this country or in another

country in the same or in a similar version to any other examination body.

Marseille, May 31, 2022.

2



A�davit

Je soussigné, Cédric MAZET, déclare par la présente que le travail présenté

dans ce manuscrit est mon propre travail, réalisé sous la direction scienti�que

du Professeur Xavier ROULLEAU, dans le respect des principes d’honnêteté,

d’intégrité et de responsabilité inhérents à la mission de recherche. Les travaux

de recherche et la rédaction de ce manuscrit ont été réalisés dans le respect à

la fois de la charte nationale de déontologie des métiers de la recherche et de la

charte d’Aix-Marseille Université relative à la lutte contre le plagiat.

Ce travail n’a pas été précédemment soumis en France ou à l’étranger dans une

version identique ou similaire à un organisme examinateur.

Fait à Marseille le 31 Mai 2022.

3



Abstract
The initial aim of this thesis consisted in determining automorphism groups and

upper bounds on the number of orbits of smooth rational curves on surfaces in

the family ofK3 surfaces having a Néron-Severi group isomorphic to the lattice

with Gram matrix 2t 0 0

0 −2 0

0 0 −2

 with 1≤ t ≤ 50

with respect to a �xed basis. To this end, we put computer science at the service

of pure mathematics and implemented various computer-based algorithmic

solutions that take advantage of a wide array of tools and modern techniques.

These solutions not only enabled us to perform a complete study of the family

of K3 surfaces mentioned above by determining projective models, computing

automorphism groups, studying the orbits of smooth rational curves, and

discussing the unirationality of their moduli spaces, hence enabling us to

provide results far exceeding the objectives which had been set for this thesis,

but also turn out to have a framework of application which goes far beyond

the family of surfaces mentioned earlier. From the outset of this thesis, we

indeed had in mind to develop solutions with a broad scope of application.

This endeavor resulted in the production of many computer-based solutions

for the study of K3 surfaces that will hopefully open up new perspectives

and help popularize even more the �eld of study of K3 surfaces. Please note

that all programs produced during this thesis are released in public access: All

computer-based solutions produced during this thesis are detailed and available

for download on K3surfaces.com.

Keywords: K3 Surfaces, Pure Mathematics, Computer Science, Python,

Sage, Scipy, Multiprocessing, Pool, Automorphisms, Rational curves, Algebraic

Geometry, Projective models, Parallelism, Borcherds’ method, K3surfaces.com

4

https://k3surfaces.com
https://k3surfaces.com


Résumé
Les objectifs initialement �xés pour cette thèse consistaient à déterminer les

groupes d’automorphismes ainsi que des bornes supérieures sur le nombre

d’orbites de courbes rationnelles sur les surfaces K3 appartenant à la famille

des surfaces ayant un groupe de Néron-Severi isomorphe au réseau entier avec

matrice de Gram 2t 0 0

0 −2 0

0 0 −2

 avec 1 ≤ t ≤ 50

par rapport à une base �xée. Nous avons pour cela mis l’outil informatique

au service des mathématiques fondamentales en implémentant des solutions

algorithmiques tirant parti d’outils modernes et variés. Les programmes qui ont

découlé de cette démarche nous ont non seulement permis de mener une étude

complète de ces surfaces en calculant explicitement leurs automorphismes,

orbites de (−2)-courbes sous l’action de ces derniers, modèles projectifs,

unirationalité des espaces des modules, dépassant ainsi largement notre objectif

initial d’étude, mais ont aussi un champ d’application allant bien au-delà de ces

surfaces. Depuis le début de cette thèse, nous avons en e�et été motivés par la

volonté de toujours dépasser les cas particuliers et spéci�cités a�n de produire

des solutions ayant une portée généraliste assumée. Notre entreprise a ainsi

résulté en la production de nombreuses solutions mettant l’outil informatique

au service de la géométrie algébrique et des surfaces K3 qui, nous l’espérons,

ouvriront de nouvelles perspectives d’étude pour ces dernières. Nous tenons

à mentionner que tous les programmes réalisés pendant cette thèse sont

accessibles via K3surfaces.com et que leur utilisation y est expliquée en détails.

Mots-clés : Surfaces K3, Maths pures, Informatique, Python, Sage, Scipy,

Multiprocessing, Pool, Automorphismes, Courbes rationnelles, Géométrie

Algébrique, modèles projectifs, méthode de Borcherds, K3surfaces.com

5

https://k3surfaces.com
https://k3surfaces.com


Acknowledgments
None of this would have been possible without Professor Xavier

Roulleau. I was fortunate to be able to bene�t from his ideas, exper-

tise and knowledge which enabled me to overcome any obstacle.

He invested a considerable amount of time on me, much more than

a student should expect from an advisor. I deeply thank Professor

Roulleau for his support during my time as an MSc & PhD student.

I want to express my profound gratitude to the reviewers of my

thesis, Professor Alice Garbagnati & Doctor Davide Cesare Veniani,

for the time spent reviewing my thesis and their positive feedback.

I want to thank my longtime friend Théo Petropoulos for his en-

couragement and advice as an expert web developer and cyber se-

curity professional regarding the online aspects of this thesis.

More than anything, I want to thank from the bottom of my heart

my mother, my father and my sister for their love and support.

6

https://www.i2m.univ-amu.fr/perso/xavier.roulleau/Site_Pro_English/Welcome.html
https://www.i2m.univ-amu.fr/perso/xavier.roulleau/Site_Pro_English/Welcome.html
https://sites.google.com/site/alicegarbagnati/
https://www.idsr.uni-stuttgart.de/en/team/team/Veniani/
https://theo-petropoulos.students-laplateforme.io/


Introduction

Denote by X an algebraic K3 surface over the �eld of complex numbers.

Two classical results were established by Sterk in his article [20, Theorem 0.1]

Finiteness results for algebraic K3 surfaces:

I Aut(X) is a �nitely generated group.

I The number of orbits of (−2)-curves under the action of Aut(X) is �nite.

These results enabled our advisor to throw at us the main challenge to be ac-

complished in order to achieve this doctoral project: For 1 ≤ t ≤ 50, we had

to determine a generating set of the automorphism group of the K3 surface Xt

with Néron-Severi group isomorphic to the integral lattice with Gram matrix2t 0 0

0 −2 0

0 0 −2


with respect to a �xed basis. We were also tasked with �nding an upper bound

on the number of orbits of smooth rational curves on each such surface by using

the acquired knowledge of their respective automorphism groups to our advan-

tage. It is worth mentioning that Xavier Roulleau provided us with constant

support, many ideas and gave us leeway in terms of the approaches and tech-

niques to be used in order to reach the goals he had set for this thesis. We made

the most of this opportunity by using an innovative computer-based algorith-

mic approach to the study of K3 surfaces. As will be shown in this dissertation,

the solutions developed and implemented during this thesis have a reach that

goes far beyond the scope of the above-mentioned family of K3 surfaces Xt.

The content available on K3surfaces.com bears witness to this fact. We dwell on

this in more detail in the introduction to Part I of this thesis.

7

https://k3surfaces.com
https://k3surfaces.com
https://K3surfaces.com


Our computer-based algorithmic approach opens news doors not only for the

study of automorphism groups and orbits of smooth rational curves on complex

K3 surfaces, but also for the study of their projective models. Our computer-

based algorithmic approach enables us to o�er a new perspective on a classical

result due to Saint-Donat & Morrison which is known to provide a precise de-

scription of the role of ample classes regarding embeddings of K3 surfaces into

projective spaces. Our approach also takes advantage of the fact that Xavier

Roulleau released a Magma implementation of a quite special algorithm along

with the publication of his 2019 article [15]. Let X be a K3 surface. Roulleau’s

program takes as input a Gram matrix of the Néron-Severi group S = NS(X),

an ample class P0, integers d and ub, to output the set

{C ∈ NS(X) | 〈C,C〉S = d, 〈C,P0〉 ≤ ub}

of classes C of divisors of self-intersection 〈C,C〉S = d having an intersection

product with P0 less than or equal to ub. When d = −2, Prof. Roulleau’s pro-

gram is capable of identifying classes of smooth rational curves C ' P1 among

the classes of self-intersection −2. This tool provides a gateway to knowledge

of concrete data on classes of curves having a prescribed self-intersection, and

more speci�cally on classes of smooth rational curves, which are known to play

a central role on K3 surfaces. We thus made use of Prof. Roulleau’s program

to produce a large database of classes of not only smooth rational curves, but

also of classes having any prescribed self-intersection on the surfaces we were

tasked to study. Taking advantage of this mass-produced data, we pushed onto

the path devised by Roulleau in [16, 15] and used a computer-based algorithmic

approach to implement Roulleau’s methods on an industrial scale. This endeavor

resulted in the production of our proj mod suite which o�ers tools such as CGS,

PModChecker or an universal ampleness tester AmpTester. These solutions

will hopefully open doors to other researchers and encourage them to take up

the torch on the computer-based study ofK3 surfaces. We did our best to ensure

that this thesis can be used as a sound, safe and accessible ground for others to

obtain even further developments in the future.

8

https://k3surfaces.com/aut-groups/
https://k3surfaces.com/sdm-theorem/
https://k3surfaces.com/sdm-theorem/
https://k3surfaces.com/smoothrationalcurves/
https://k3surfaces.com/projective-models/
https://k3surfaces.com/amptester


Introduction to Part I of this thesis

Denote by Xt a complex K3 surface with Néron-Severi group isomorphic to

the integral lattice with Gram matrix2t 0 0

0 −2 0

0 0 −2


where the parameter t is assumed to be a positive integer. As mentioned ear-

lier, we were tasked with the study of these surfaces for 1 ≤ t ≤ 50. We now

introduce the various solutions implemented during this thesis in order to deal

with the challenges of explicitly computing the automorphism group and de-

termining the orbits of smooth rational curves under its action on each of these

surfaces. It turns out that the reach of these solutions goes well beyond the scope

of these surfaces and gives a very general scope of application to the content of

this thesis. We start by presenting the context in which our work �ts as a devel-

opment. Fields medalist Richard E. Borcherds introduced a method to compute

the generators of the automorphism group of Lorentzian lattices with possible

applications toK3 surfaces in two articles [1] and [2] published in the late eight-

ies and early nineties. Borcherds’ method was then applied for the �rst time to

K3 surfaces in 1998 with Shigeyuki Kondō’s groundbreaking article [8]. From

this moment and until the end of the �rst decade of our century, mathematicians

such as Ujikawa, Dolgachev, Keum, and Kondō again ([7, 6, 4, 10]) made use of

Borcherds’ method to compute automorphism groups of variousK3 surfaces. In

2013, Professor Ichiro Shimada gave a new life to Richard E. Borcherds’ three-

decades-old material in his article An algorithm to compute the automorphism
groups of K3 surfaces [19]. Carried out as part of a publication grant entitled

Computational study of K3 surfaces (2013/2016) and followed by another grant,

this time entitled Computational study of algebraic geometry, Shimada’s article

[19] is unquestionably a massive step toward the full automation of the com-

putation of generators of the automorphism groups of K3 surfaces. Professor

9

https://en.wikipedia.org/wiki/Richard_Borcherds
http://www.math.sci.hiroshima-u.ac.jp/shimada/
https://arxiv.org/abs/1304.7427
https://arxiv.org/abs/1304.7427
https://app.dimensions.ai/details/grant/grant.6109463
https://app.dimensions.ai/details/grant/grant.5904015
http://www.math.sci.hiroshima-u.ac.jp/shimada/
http://www.math.sci.hiroshima-u.ac.jp/shimada/


Ichiro Shimada, founding father of the computer-based algorithmic approach

to the study of K3 surfaces, thus provided a sound theoretical background and

outlined many of the essential procedures and building blocks required in order

to carry out Borcherds’ method as an algorithmic method. However, neither a

functional program nor a single line of code was released since the publication

of Prof. Shimada’s article. Almost a decade has passed since Shimada’s article,

and no signi�cant progress on the subject has been made. As mentioned by

Giacomo Mezzedimi in his PhD thesis, defended in 2021,

“Shimada presents an algorithm to compute the automorphism
group of theseK3 surfaces; however the full automorphism group can
only be computed for a �nite number of Picard lattices [ ... ]

When the automorphism group becomes in�nite, very little is known.
For example, we can describe the full automorphism group only of
some K3 surfaces.”

Giacomo Mezzedimi [12], PhD thesis, October 2021.

Indeed, Shimada’s article was not generalist and focused on examples without

explicitly highlighting a general application framework for Borcherds’ method.

In addition, many grey areas surrounded the steps that have to be taken to imple-

ment essential procedures described in Shimada’s article. Various fundamental

aspects essential to the generalization, optimization and implementation of the

processes were o�en ignored or treated in a minimalist way. Shimada’s arti-

cle [19] was not intended to be a manual for the implementation of the various

procedures that can be found therein. As a result, many challenges had to be

overcome. First, we had to familiarize ourselves with Shimada’s super fast-paced

style to make the best possible use of the invaluable information contained in his

article [19]. Moreover, many procedures from this article involve material from

another article [18] due to Shimada, which therefore also had to be mastered.

We then had to determine whether a general and precisely de�ned framework of

application for Borcherds’ method could be devised from Shimada’s work. The

answer is positive: It is indeed possible to do so. We, therefore, had to identify

10

http://www.math.sci.hiroshima-u.ac.jp/shimada/
http://www.math.sci.hiroshima-u.ac.jp/shimada/
https://sites.google.com/view/giacomomezzedimi/home?authuser=0
https://sites.google.com/view/giacomomezzedimi/home?authuser=0
https://drive.google.com/file/d/1JNmzcfB2g0saqDxCZXgOyLjeQnWw3OZ6/view


the holes to be �lled and missing pieces in order to bring to life and fully auto-

mate all the material which can be found in Shimada’s article. These holes and

missing pieces seem to have obstructed the path to a generalized implementa-

tion of the method for almost ten years. At the time we write these lines, we

cannot �nd any trace of an implementation of Shimada’s material on the internet

that could rival what has been produced during this thesis. To be precise, there is

nothing. Despite Shimada’s article [19] being published almost a decade ago, i.e.,

in 2013, no sign of an elementary, limited or even partial implementation can be

found. When released in 2022, our thesis put an end to this situation. Going back

to our story, we have to mention that the �rst stage of our endeavor was carried

out while having in mind our goal of producing a generalized implementation

of Borcherds’ method. That is, an implementation whose scope of application

goes much beyond a handful of particular cases. Our desire for generality drove

us to identify explicit conditions of applicability for Borcherds’ method from

the sound foundations laid by Shimada in 2013, and naturally led us to design

and implement automated procedures enabling us to test whether a given K3

complex algebraic surface satis�es these conditions. We then had to move on to

the implementation of the method itself. For versatility and �exibility purposes,

our language of choice was naturally Python. We extensively used the Sage li-

brary, which includes many advanced mathematical features. This library was

so convenient for us that we worked most of the time within a Sage / Python

3.8.5 environment through a Sage terminal. We have been careful to produce

�exible and accessible solutions requiring only a bare minimum of input data to

be executed. Furthermore, our programs provide complete automation. For in-

stance, no matter if it is to set up the ambient conditions required to execute the

method, test whether Borcherds’ method can be applied, or execute the method

itself, everything is performed automatically. We also did our best to ensure

that Borcherds’ method can bene�t from every ounce of computational power

available on the machine on which it is executed. Indeed, we live in an era dur-

ing which most machines take advantage of parallel processing. What would

be the point of making daily use of expensive pieces of hardware to not even

11

https://k3surfaces.com/comments-intro-sec-1-6/
https://k3surfaces.com/comments-intro-sec-1-6/


use the full extent of their processing power for mathematical research? We,

therefore, redesigned all our solutions with parallel computing in mind. Having

used Python from the start enabled us to make a smooth transition to the use of

process-based parallelism, thus enabling us to make the best possible use of the

processing power of the central processing units on our machines by deploy-

ing various internal procedures of Borcherds’ method in parallel. In particular,

we fully took advantage of the Pool object from the Python multiprocessing
library. This object, as indicated in the o�cial Python documentation, o�ers a

convenient means of parallelizing the execution of a function across multiple in-

put values. Doing so enabled us to produce a modernized version of Borcherds’

method: The Poolized Borcherds’ method. Through the use of the Pool object,

the burden of executing various computationally intensive procedures which

are part of Borcherds’ method is distributed over various worker processes in

such a way as to take advantage of the multi-core architecture of modern CPUs.

Doing so thus leads to a signi�cant decrease in computation times. We were

still hungry for challenge and wanted to push our enterprise of parallelizing

Borcherds’ method even further. This aspiration naturally led us to take a step

forward toward parallelizing the Borcherds’ method at a broader scale. To this

end, we implemented solutions to parallelize the exploration of the chamber

structure and the computation of the sets of walls of chambers. This approach,

detailed both online and in the section 1.11 of this document, is a �rst step that

will hopefully open many doors, broaden the perspectives regarding the par-

allel deployment of Borcherds’ method and, more generally, enable this thesis

to reinforce the interface between pure mathematics and computer science.

Before proceeding further, we have to mention that all the solutions presented

in this manuscript exist as fully functional computer-based solutions.

There is nothing conceptual in our work: K3surfaces.com testi�es to this fact.

We now introduce the subject matter covered in the �rst part of this document.

12

https://docs.python.org/3/library/multiprocessing.html
https://k3surfaces.com/parallelism-borcherds/
https://k3surfaces.com/parallelism-borcherds/
https://K3surfaces.com


Let X be a complex K3 surface with Picard number ρX < 20 and Néron-Severi

lattice S = NS(X) with Gram matrix GS with respect to a �xed basis BS for S.

Denote by PS the connected component of

{x ∈ S | 〈x, x〉S > 0}

containing ample classes. We build on the solid foundations which have been

laid by Shimada in [19] regarding Borcherds’ method: The Néron-Severi group

S = NS(X) of the complex algebraic K3 surface X under study should be em-

bedded into a suitable even hyperbolic lattice L chosen according to the value

of the Picard number of X , as indicated below:

When possible, we recommend picking the ambient latticeL having the smallest

possible rank among the three possible lattices displayed in this table. Indeed,

choosing an ambient lattice of higher rank than what is recommended in the

above table will decrease the performance of Borcherds’ method. Before we go

any further, we need to clarify some notational conventions. We will o�en write

ρ instead of ρX . Let N = rank(L) and assume that a basis

BS = {s1, s2, . . . , sρ}

for S and a basis

BL = {l1, l2, . . . , lN}

13



for the lattice L are �xed. We use the notation

[γ1, γ2, . . . , γρ]S

to denote the row vector of coordinates with respect to the basis BS of the ele-

ment

γ1s1 + γ2s2 + · · ·+ γρsρ ∈ S.

Similarly, we denote by

[β1, β2, . . . , βN ]L

the vector of coordinates with respect to BL of the element

β1l1 + β2l2 + · · ·+ βN lN ∈ L.

We assume that the Néron-Séveri group of the surface under study has been

primitively embedded into a suitable ambient even hyperbolic lattice L. That is,

we assume known the data of elements

vi =
N∑
j=1

η
(i)
j lj

for 1 ≤ i ≤ N such that a mapping

ι : S ↪→ L

embedding S primitively into L can be de�ned by

ι : si 7−→ vi.

That is,

ι : γ1s1 + γ2s2 + · · ·+ γρsρ ∈ S 7−→ γ1v1 + γ2v2 + · · ·+ γρvρ ∈ L

14



Note that in terms of coordinates vectors, this mapping is de�ned as

ι : [γ1, γ2, . . . , γρ]S 7−→

[
N∑
j=1

γjη
(j)
1 ,

N∑
j=1

γjη
(j)
2 , . . . ,

N∑
j=1

γjη
(j)
N

]
.

The set

{x ∈ L⊗ R | 〈x, x〉L > 0}

has two connected components. The connected component containing ι(PS) is

called the positive cone of L and denoted by PL. A closed subset D ⊂ PL is

called a chamber whenever it has non-empty interior and there exists a set

∆ ⊂ NL = {x ∈ L⊗ R | 〈x, x〉L < 0}

such that D can be expressed as

D = {x ∈ L⊗ R | ∀v ∈ ∆, 〈x, v〉L ≥ 0} ∩ PL.

We denote by C the topological closure of a set C . The collection

CL =

{
C | C is a connected component of PL \

⋃
v∈F

(v)⊥, Int(C) 6= ∅

}

is called a chamber structure on PL, or a PL-chamber structure. Chambers in

CL will be referred to as PL-chambers. Let

RL = {x ∈ L | 〈x, x〉L = −2} .

In practice, we take

F = RL

to de�ne a chamber structure on PL, where L is one of three lattices speci�ed

in the above-mentioned table. We will o�en use the notation D to denote a PL-

chamber. A fact that should be highlighted is that a chamber structure on PL

induces a chamber structure on the positive cone PS of the Néron-Severi group

15

https://k3surfaces.com/lattices-table/


S, the latter being assumed to be primitively embedded into L. We show in

section 1.2 that whenever a PL-chamber structure CL is given, the collection

CS = {D ∩ PS | D ∈ CL,∃U ⊂ PS, U 6= ∅, U open s.t. U ⊂ D ∩ PS}

is a chamber structure on PS . Chambers D ∈ CS are called PS-chambers. The

intersection of a PL-chamber D with PS thus de�nes a PS-chamber when-

ever the resulting set has non-empty interior. A PL-chamber which induces

a PS-chamber is said to be ι(S)-nondegenerate, or is said to possess the ι(S)-

nondegeneracy property. The ι(S)-pre�x is used to emphasize the fact that this

property of a PL-chamber depends on the embedding ι : S ↪→ L used to em-

bed S into L. A central notion that will be essential throughout our study is the

notion of Weyl vector of a PL-chamber. Each such chamber is indeed uniquely

characterized by its Weyl vector. See de�nition 11 from section 1.1.2 for more

details. Whenever a PL-chamber D induces a PS-chamber D = D ∩ PS , the

convention is that the induced PS-chamber D inherits the Weyl vector of the

chamberD. Another critical attribute of a PS-chamberD with Weyl vector w is

its set of walls, denoted by Ω(D). We will see that this set can be obtained from

the data of the Weyl vector of D. More generally, many of the computations

and procedures involving a PS-chamber D involve its Weyl vector at one time

or another. An important thing to point out before proceeding further is that

the intersection Nef(X)∩PS of the Nef cone of X with the positive cone PS is

naturally tiled by chambers of the induced chamber structure CS . This natural

chamber substructure covering Nef(X) ∩ PS is moreover cut by walls de�ned

by the respective orthogonal complements in PS of classes of smooth rational

curves on X . Consider the K3 lattice

H2(X,Z) ' U⊕3 + E8(−1)⊕2

and denote by H the subgroup of transformations in O+(S) li�ing to Hodge

16

https://k3surfaces.com/weyl-vector/


isometries in H2(X,Z). Let

AutH(Nef(X) ∩ PS) = {g ∈ H | g preserves Nef(X) ∩ PS}

⊂ H ⊂ O+(S) ⊂ O(S)

be the subgroup of transformations in H preserving Nef(X)∩PS . This group is

a prominent character in regards to one of our main objects of study: Borcherds’

method, whose purpose consists in producing a generating set of

AutH(Nef(X) ∩ PS)

by exploring and processing the portion of the induced chamber structure onPS
covering Nef(X) ∩ PS . In section 1.7, we explain what the sentence exploring
and processing the chamber structure means. In this introduction, specifying the

bare minimum required for a good understanding of the method will be enough.

Exploring the portion of the PS-chamber structure over Nef(X)∩PS requires

the data of an initial PS-chamber D0 contained in Nef(X) ∩ PS to be used as a

starting point to initiate the exploration. As indicated in Shimada’s article [19],

the classical theory fortunately always provides the Weyl vector w0 of an initial

chamber D0 of the PL-chamber structure no matter which lattice L is chosen

among the three lattices presented in the table introduced earlier.

ι : S ↪→ L

There is, however, no guarantee thatD0 will be ι(S)-nondegenerate. Indeed, the

ι(S)-nondegeneracy property ofD0 depends on the embedding ι used to embed

the Néron-Severi group S of the K3 surface under study into L. In his article

[19], Shimada provides a criterion to determine whether a given PL-chamberD
is nondegenerate. Our implementation of this criterion is the procedure Degen-
Test, whose mechanics are explained in section 1.2. Using this criterion requires

the input data of an ample class a0 and of the Weyl vector of a chamberD0. The

17

https://k3surfaces.com/lattices-table/


mechanics behind this test take advantage of the fact that an ample class a0 is

by de�nition an element of Nef(X)∩PS so that one can determine quite easily

whether the image ι(a0) of the ample class a0 under the embedding ι : S ↪→ L
belongs to the interior of D0 ∩ PS . The intersection D0 ∩ PS has non-empty

interior whenever this is the case, hence ensuring the ι(S)-nondegeneracy of

D0, and we obtain at the same time that

D0 ∩ PS ⊂ Nef(X) ∩ PS.

In his article [19], Shimada also provides the outline of a procedure, which, in

the framework of an embedding

ι : S ↪→ L

and given the input data of the Weyl vector of aPL-chamberD0 and of an ample

class a0 such that ι(a0) does not belong to the interior of D0 ∩ PS , may lead to

an isometry τ : L −→ L which can be used to de�ne an updated embedding

τ ◦ ι : S ↪→ L

under which the chamberD0 possesses the property of (τ ◦ ι) (S)-nondegeneracy.

A favorable outcome to Shimada’s procedure will indeed make the image of a0

under the updated embedding satisfy

(τ ◦ ι) (a0) ∈ Int(D0 ∩ PS)

thus ensuring the (τ ◦ ι) (S)-non-degeneracy of D0 and the fact that the cham-

ber it induces is contained in Nef(X)∩PS . We have to mention that Shimada’s

embedding update procedure outlined in [19, Section 8] has probably been for

almost a decade one of the major obstructions to the production of a functional

and generalized implementation of Borcherds’ method. Building on Shimada’s

original procedure, we worked our way toward a modernized embedding update

procedure, which, once implemented, brings many improvements compared to

18



our implementation of Shimada’s original procedure. Going back to Borcherds’

method, note that as soon as a suitable initial chamber PS-chamber contained

in Nef(X) ∩ PS is obtained, the exploration can begin. We start by focusing on

explaining how Borcherds’ method moves inside of the chamber structure. It

is essential to have in mind the fact that chamber structure can be viewed as a

tiling over Nef(X) ∩ PS , as illustrated in the following �gure.

A fundamental concept related to the tiling of Nef(X)∩PS is the notion of level

for chambers, which enables us to layer the chamber structure over Nef(X)∩PS
with respect to a reference point. Fix an initial PS-chamber D0. The notion of

level for chambers is de�ned iteratively, as follows:

I The initial chamber D0 is the only level 0 chamber.

I A chamber adjacent to a level l − 1 chamber but not adjacent to a level

l − 2 chamber is said to be of level l.

The �gure above depicts a genuine representation of a portion of the chamber

structure over Nef(X) ∩ PS , where X is the K3 surface X42 in Picard 3 and

19

https://static.k3surfaces.com/content/mega-tiling-dark.png


where an initial chamber, green-colored and located at the center of the picture,

has been chosen as a reference point. In terms of level, the chamber structure

in this picture can be described as follows:

I The chamber colored in green at the center is the initial chamber of level

0 used as a reference point for the chamber structure’s layering. There is

only one chamber of level 0.

I Chambers colored in clear blue are the chambers of level 1.

I Chambers colored in bright purple are the chambers of level 2.

I Chambers colored in yellow are the chambers of level 3.

I Chambers colored in red are the chambers of level 4.

I Chambers colored in a grey / blueish color are the chambers of level 5.

I Chambers colored in orange are the chambers of level 6.

We already mentioned that Borcherds’ method is an iterative procedure during

which a portion of the chamber structure over Nef(X)∩PS is explored and pro-

cessed. We will soon give more details about the method itself. The fact is that

the method can be viewed as an entity evolving in the chamber structure and

processes each chamber visited in order to produce some output. We believe

that it is essential to approach things in a down-to-earth way and will therefore

use a smiley to represent Borcherds’ method as a hamster exploring and pro-

cessing a chamber structure, like a hamster in a maze, except that our hamster

obeys strict rules, described in section 1.7. The hamster in this illustration is pic-

tured as located inside of the initial chamber, colored in green. We can therefore

assume that Borcherds’ method just started its execution. We start by focusing

on how the method navigates within the chamber structure.

20



Internal procedures DeltaW and SetOfWalls, both introduced in section 1.5

enable Borcherds’ method to compute the set of walls of aPS-chamber from the

input data of its Weyl vector. When the set of walls of a chamber has been com-

puted, Borcherds’ method enforces the procedure RatDetect to identify walls

associated with classes of self-intersection −2, which are usually referred to as

(−2)-walls. Such walls, if crossed, would make Borcherds’ method leave the

chamber structure over Nef(X) ∩ PS and should therefore be avoided at all

costs. When the data of the non (−2)-walls of a chamber D has been obtained,

Borcherds’ method is allowed to enter the chambers adjacent along these walls,

that is, to cross the wall to enter the chamber adjacent along this wall to the

chamber where it is currently located. The hamster located in the green chamber

is thus allowed to visit the adjacent blue chambers as soon the non (−2)-walls

of the green chamber are determined. Assume given a PS-chamber D such that

the following data is available:

I The Weyl vector wD of D

I A wall of the chamber D,

Using this data as input, the procedure WeylAdj introduced in section 1.7.2

outputs the Weyl vector w′ of the chamber D′ adjacent to D along the wall

which has been speci�ed in the input data. We have seen the basic principles

governing Borcherds’ method movement inside of the PS-chamber structure

over Nef(X)∩PS . A table listing all the procedures involved within Borcherds’

method can be found by clicking here. Let us outline how the method processes

the chambers it explores in order to ful�ll its purpose, which consists in

Computing a generating set of AutH(Nef(X) ∩ PS).

21

https://static.k3surfaces.com/content/mega-tiling-dark.png
https://k3surfaces.com/moving/


Processing the chamber structure consists in using brute force �avored proce-

dures in order to exhibit generators of

AutH(Nef(X) ∩ PS)

from the data of the chambers explored by Borcherds’ method. Generators are

obtained in two ways:

I For each PS-chamber D explored, by computing a generating set of the

group

AutH(D) = {g ∈ H | Dg = D}

⊂ H ⊂ O+(S)

of transformations in H preserving D ⊂ Nef(X) ∩ PS .

To this end, the brute-force procedure AutChamber from section 1.7.3 takes as

input the data of the walls of D and outputs a generating set of

AutH(D) ⊂ AutH(Nef(X) ∩ PS).

I By testing whether two PS-chambers

D,D′ ⊂ Nef(X) ∩ PS

are H-congruent. That is, by determining whether there exists a transfor-

mation g ∈ H such that

Dg = D′.

Doing so is the purpose of the procedure CongChecker detailed in the section

1.7.4 of this document. This procedure takes as input the data of the respective

sets of walls Ω(D) and Ω(D′) ofPS-chambersD,D′ and determines whether the

two chambers are H-congruent. When this is the case, this brute-force �avored

procedure returns at least one transformation establishing the H-congruency.

22



That is, an element g ∈ H such that

D′ = Dg

= {xg | x ∈ D}

The CongChecker procedure has a central role within the algorithmic structure

of the classical Borcherds’ method. One of the innovations brought by this thesis

is that, as we will see in section 1.11.1, the CongChecker congruence testing

procedure is deployed in parallel over CongChecker blocks by using process-

based parallelism, which yields huge performance improvements and led us to

a modernization of Borcherds’ method called the Poolized Borcherds’ method,

also introduced in section 1.11.1. Note that CongChecker and AutChamber
both integrate a feature enabling them to test transformations for membership

in H. Knowledge of a membership criterion for H is therefore necessary. In

his article [19], Shimada’s approach to issues related to the membership crite-

rion may lead his readers to think that it is necessary to handcra� a speci�c

criterion for each surface on which Borcherds’ method is to be applied, thus po-

tentially discouraging people from venturing down this path. By studying the

clues on this issue le� by Shimada in [19], we provide in proposition 24 of sec-

tion 1.6.2 a generalized membership criterion for H. The result of this endeavor

is the MemberCrit procedure, which takes as input the (ρ× ρ)-sized matrix

of a transformation generated by CongChecker or AutChamber, and deter-

mines whether it belongs to H. Assume given a complex K3 surface X with

Néron-Severi primitively embedded into a suitable even hyperbolic lattice and

that Borcherds’ method, which has not been discussed yet, has been executed

and produced a generating set of AutH(Nef(X) ∩ PS).

What about the automorphism group of X?

23

https://k3surfaces.com/classical-borcherds/
https://k3surfaces.com/classical-borcherds/
https://k3surfaces.com/congchecker-block/
https://k3surfaces.com/poolized-borcherds-method-structure/


We can now provide an answer to this fundamental interrogation. We start by

denoting by T the transcendental lattice of X, that is, the orthogonal comple-

ment of S = NS(X) in

H2(X,Z) ' U⊕3 ⊕ E8(−1)⊕2.

Consider the natural morphism

ηT : O(T ) −→ O(T∨/T )

which realizes isometries of T as isometries of its discriminant group T∨/ T . It

turns out that if the complex K3 surface X under study satis�es

ρX < 20 and − 1 /∈ Ker(ηT )

then there is an isomorphism

Aut(X) ' AutH(Nef(X) ∩ PS).

From the beginning, the logical structure leading to this result was contained

in Shimada’ article [19]. Obtaining this result amounted to assembling a jigsaw

puzzle while always bearing in mind the goal of exhibiting a generalized frame-

work of application for Borcherds’ method. We were stunned that this result had

not yet been explicitly formulated. However, more had still to be done. Such a

result is worthless if one does not provide a general procedure to check whether

−1 /∈ Ker(ηT )

holds. Let us brie�y explain how we proceeded in order to �ll this gap. Before

proceeding further, we have to mention that in case the above condition is not

satis�ed, i.e., when −1 ∈ Ker(ηT ), then nothing prevents us from executing

Borcherds’ method. However, obtaining a generating set of Aut(X) is not guar-

anteed. For sure, we will obtain a generating set of AutH(Nef(X) ∩ PS), but

24

https://k3surfaces.com/natural-morphisms/
https://k3surfaces.com/isomorphism/


asserting anything about a generating set of Aut(X) when −1 ∈ Ker(ηT ) is

outside the scope of this thesis. We now go back to our initial discussion: Note

that any embedding of S into

L = U ⊕ E8(−1) or into L = U ⊕ E8(−1)⊕ E8(−1)

can be easily extended to an embedding of S into

H2(X,Z) ' U⊕3 + E8(−1)⊕2.

A Gram matrix GT of the orthogonal complement of S into H2(X,Z) can then

be easily obtained. Details and examples are provided on K3surfaces.com. In

case the surface under study has Picard rank 18 or 19, obtaining an embedding

of S into the K3 lattice from the data of the embedding of S into

L = U ⊕ E8(−1)⊕ E8(−1)⊕ E8(−1)

is not guaranteed and this matter will have to be investigated on a case-by-case

basis. Computing a Gram matrix GT of the transcendental lattice T will thus

be a straightforward job when the K3 surface under study has a Picard number

less than or equal to 17 and has already been embedded into either

L = U ⊕ E8(−1) or L = U ⊕ E8(−1)⊕ E8(−1).

Denote by GL22−ρ(Z) the group of invertible (22 − ρ) × (22 − ρ)-sized matri-

ces with integer coe�cients. The following criterion can be used to determine

whether −1 /∈ Ker(ηT ) as soon as a Gram matrix GT for the lattice T has been

computed. We show in proposition 25 of section 1.6.3 that

2G−1
T /∈ GL22−ρ(Z) =⇒ −Id /∈ Ker(ηT )

25

https://k3surfaces.com/


and can therefore guarantee that the isomorphism

Aut(X) ' AutH(Nef(X) ∩ PS)

holds whenever the K3 surface under study has a transcendental lattice T with

Gram matrix GT satisfying

2G−1
T /∈ GL22−ρ(Z).

Performing this check is the purpose of our procedure KerChecker, backed

by proposition 25 from section 1.6.3. At the program level, everything is auto-

mated so that the user will never have to perform by hand the above-mentioned

check for complexK3 surfaces with Picard number less than or equal to 17. We

have made an overview of most of the procedures required to execute Borcherds’

method. The following table provides a correspondence between Shimada’ orig-

inal procedures which have been outlined in his 2013 article and our modernized

implementations of these procedures, which enabled us to produce a fully oper-

ational and automated version of Borcherds’ method. We did not stop there and

even raised the stakes, as we will discuss in section 1.11.

Ref. in this thesis Ref. in Shimada’s work

Procedure DegenTest, section 1.2 Criterion 5.9 in [19]

Procedure EmbUpdater, section 1.8 -

Procedure RatDetect, section 1.7.1 Algorithm 6.1 in [19]

Procedure DeltaW, section 1.5 Algorithm 5.8 in [19]

Procedure SetOfWalls, section 1.5 Algorithm 3.17 in [19]

Procedure WeylAdj, section 1.7.2 Algorithms 5.13 / 5.14 in [19]

Procedure MemberCrit, section 1.6 -

Procedure AutChamber, section 1.6 Algorithm 3.18 in [19]

Procedure CongChecker, section 1.6 Algorithm 3.19 in [19]

Procedure ShiVectors, section 1.4 Algorithm 2.1 in [18]

Procedure KerChecker, section 1.6.3 -

26



Note that a more detailed version of this table is available online.

A table describing all the procedures involved in Borcherds’ method can be

found by clicking here. All the procedures appearing in this table are fully

detailed in this thesis, and we made sure to �ll the gaps le� in the wake of

Shimada’s 2013 article. We made sure to provide as much detail as possible.

We now get to the heart of the matter and focus on Borcherds’ method itself.

Assume given an initial PL-chamber D0 with Weyl vector w0 (the latter is for-

tunately provided by classical theory, see also the section 4, Vinberg-Conway
Theory, from Shimada’s article [19]) having the properties ι(S)-nondegeneracy

and inducing a PS-chamber contained in Nef(X)∩PS . That is, the intersection

D0 = D0 ∩ PS

is a PS-chamber contained in Nef(X) ∩ PS . In case all we have in hands is the

data of a chamberD0 that does not satisfy the ι(S)-nondegeneracy property, we

pick an ample class a0 and make use of the procedure EmbUpdater, which has

been mentioned earlier and is detailed in the section 1.8 of this thesis. If the pro-

gram associated with the EmbUpdater procedure displays that another ample

class should be chosen, it is recommended to do so and to execute EmbUpdater
again. We thus assume that a transformation

τ : L→ L

has �nally been obtained and enables us to de�ne an updated embedding

τ ◦ ι : S ↪→ L

under which the PL-chamber D0 is (τ ◦ ι) (S)-nondegenerate and satis�es

D0 ∩ PS ⊂ Nef(X) ∩ PS.

Before proceeding further, note that in practice, to each PS-chamber is asso-

27

https://k3surfaces.com/correspondence-table/
https://k3surfaces.com/procedures/
https://k3surfaces.com/stdweyl/
https://k3surfaces.com/stdweyl/


ciated a tuple that characterizes the chamber and provides data which can be

processed within an implementation of Borcherds’ method, as explained in sec-

tion 1.7. Hence, a PS-chamber D is realized as a concrete data tuple such as

D =
(
wD,AH(D),Ω(D),Ω(D)

)
where wD denotes the Weyl vector of D, where AH(D) denotes a generating

set of AutH(D), where Ω(D) denote the set of walls of D and where Ω(D) de-

notes the set of walls ofD with respect to anti-backtracking. More details about

anti-backtracking can be found by clicking here. Note that our use of the term

classical Borcherds’ method refers to Shimada’s original vision of Borcherds’

method, for which he laid the algorithmic building blocks in his 2013 article

[19], which has been a tremendous asset for us during our thesis.

We now explain the iterative mechanics behind the classical Borcherds’ method.

Full details are provided in section 1.7. Keeping this �gure close by may be use-

ful to the reader for what comes next. Note that the �niteness of the number

of congruence classes of chambers contained in Nef(X)∩PS is assured by Shi-

mada, as indicated in his article [19], thus ensuring that Borcherds’ method ends

its execution at one moment or another. Fix a positive integer k 6= 0. We as-

sume that Borcherds’ method already performed k iterations and is currently at

the beginning of its (k + 1)-th iteration. For each positive integer j less than or

equal to k, we thus assume that the method produced a set Lj containing cham-

bers of level j, each representing their own H-congruence class of chambers of

Nef(X) ∩ PS . For example,

L0 = {D0}

sinceD0 is by de�nition the only chamber of level 0, and is by default chosen as a

representative of its H-congruence class because it is the �rst chamber explored

and processed by the method. Assume that the generators of AutH(Nef(X)∩PS)

which have been detected by the method during the previous iterations have

been stored into a set Γ. The (k + 1)-th iteration of Borcherds’ method consists

28

https://k3surfaces.com/more-remarks/#anti-backtracking
https://k3surfaces.com/classical-borcherds/


in exploring and processing the chambers of level k+1 adjacent to the chambers

inLk along their non (−2)-walls in order to identify chambers representing new

H-congruence classes. Such chambers are stored into an initially empty set

Lk+1 = { }

and their adjacencies explored during the (k+2)-th iteration, provided thatLk+1

is not empty at the end of the (k + 1)-th iteration. Borcherds’ method otherwise

stops and returns all the data collected during its execution. For each chamber

D ∈ Lk, Borcherds’ method detects the (−2)-walls among the elements of the

set of walls of D by running the procedure RatDetect and classes in S associ-

ated with such walls are stored into the setRrat. As indicated earlier, we denote

by Ω(D) the set of walls ofD taken with respect to anti-backtracking, i.e., the set

Ω(D) from which the walls leading to chambers of level k−1 have been removed

(click here for more details about anti-backtracking). For each m ∈ Ω(D), the

method uses the procedure RatDetect from section 1.7.1 to determine whether

(m)⊥ is a (−2)-wall. When (m)⊥ is not a (−2)-wall, Borcherds’ method com-

putes the Weyl vector w′ of the chamber D′ adjacent to D along the wall (m)⊥

by using the procedure WeylAdj from section 1.7.2 with the input ofm ∈ Ω(D)

and of the Weyl vector w of D. Note that Ω(D) can be taken modulo AutH(D)

before performing the computation of the Weyl vectors of adjacent chambers,

thus saving resources in some cases. We have to mention that all our implemen-

tations of Borcherds’ method possess this feature (quite easy to implement with

GAP functions), but we deliberately omitted it from our structure diagrams so

as not to burden them with a feature which, in practice, is not useful for cases

whereX has a small Picard number. Indeed, for such surfaces, which have been

mainly studied during this thesis, the group AutH(D) is almost systematically

trivial for all chambers. This phenomenon has also been observed by Shimada

ten years ago in [19]. Borcherds’ method then computes the set of walls ofD′ by

using the Weyl w′ vector of D′ as input into the procedure DeltaW, from sec-

tion 1.5.1. It then uses the output of the latter into the procedure SetOfWalls
from section 1.5, which returns the desired set Ω(D′) of walls of the chamberD′.

29

https://k3surfaces.com/more-remarks/#anti-backtracking
https://k3surfaces.com/more-remarks/#orb-finder
https://k3surfaces.com/more-remarks/#orb-finder


A�erwards, the set of walls ofD′ is used as input into the procedure AutCham-
ber, from section 1.7.3, which provides Borcherds’ method with a set AH(D′)

of generators of

AutH(D′) = {g ∈ H | D′ g = D′} .

Note that such generators are also generators of AutH(Nef(X) ∩ PS), hence

Borcherds’ method stores them into the set Γ. Borcherds’ method then deter-

mines whether D′ represents a new H-congruence class of chambers by pro-

ceeding as follows: For each chamber

D′′ ∈ L0 ∪ L1 ∪ · · · ∪ Lk ∪ Lk+1

Borcherds’ method uses the respective sets of walls ofD′ and ofD′′ as input data

into the procedure CongChecker from section 1.7.4. The latter then uses brute-

force to determine whether D′ and D′′ are H-congruent. When the chambers

D′ and D′′ are indeed H-congruent, the procedure CongChecker provides at

least one element g ∈ H establishing the congruence between D′ and D′′. Note

that such transformations are generators of

AutH(Nef(X) ∩ PS)

and are stored into the set Γ. If D′ is not H-congruent to a chamber in

k+1⋃
j=0

Lj

then D′ represents a new congruence class of chambers. Borcherds’ method

hence stores the data tuple

(
w′,AH(D′),Ω(D′),Ω(D)

)
associated with the chamber D′ into the set Lk+1 which contains the chambers

of level k+1 each representating a new congruence class discovering during the

30



current iteration, i.e. (k + 1)-th iteration. When the chambers of level k+ 1 ad-

jacent to chambers in Lk have all been explored and processed, two possibilities

arise:

I If Lk+1 6= ∅, that is, if representatives of new congruence classes have

been detected during the iteration, then Borcherds’ method proceeds to its

next iteration: It explores and processes chambers of level k + 2 adjacent

to chambers in Lk+1 by adjacency along non (−2)-walls.

I If Lk+1 = ∅, i.e., if no representative of new congruence classes have been

detected during the iteration, then the methods ends and outputs all the

data collected during its execution: Generators of AutH(Nef(X) ∩ PS),

data of the (−2)-walls identi�ed during the exploration, data of the repre-

sentatives of congruence classes, which form a complete set of represen-

tatives of H-congruence classes of chambers contained in Nef(X) ∩ PS .

Assume that the complex K3 surface under study satis�es −1 /∈ Ker(ηT ) and

has Picard number ρX < 20, so that

AutH(Nef(X) ∩ PS) ' Aut(X)

holds, as indicated in theorem 22 from section 1.6. Assume moreover that the

condition

AutH(D) = {Id}

holds for all chambers D in the complete set of representatives returned by

Borcherds’ method. We show in proposition 31 from section 1.9 that the union

of the set of chambers each representing their own congruence class returned

by Borcherds’ method is then a fundamental domain for the action of Aut(X)

on Nef(X) ∩ PS . In proposition 37, we show that each orbit of smooth rational

curves on X under the action of Aut(X) then possesses at least one represen-

tative among the classes in S associated with (−2)-walls contained in the set

Rrat. The cardinality of Rrat thus provides an upper bound on the number of

orbits of smooth rational curves on X under the action of Aut(X). We provide

31



an algorithmic method in section 1.10 to identify redundant representatives in

Rrat, thus enabling us to re�ne this upper bound. We implemented a complete

algorithmic suite for Borcherds’ method in Python and made extensive use of

mathematical functions from the SageMath library. In order to provide a frame-

work of use that is accessible and familiar to most people, our programs can be

launched from a simple Sage console. We did our best to put computer science

at the service of pure mathematics. In this perspective, three fully functional

instances of Borcherds’ method arise from this thesis:

I The classical Borcherds’ method is an implementation of the method that

does not take advantage of the multi-core architecture of a CPU.

I The Poolized Borcherds’ method is an upgrade of the classical Borcherds’

method, which takes advantage of the multi-core architecture of the pro-

cessor on which it is executed. Most of the procedures have been re-

designed so that the workload through them can be distributed over sev-

eral worker processes. To do so, we made use of Python’s multiprocess-

ing library. Note that running the Poolized Borcherds’ method with the

allocation of a single worker process amounts to running the classical
Borcherds’ method.

I We also implemented parallelism at the level of the method itself. What

we did with the Poolized Borcherds’ method consisted in adapting the

internal procedures of the method so that process-based parallelism can

then be used. However, enforcing parallelism at the level the method itself,

e.g., by parallelizing the exploration of the chamber structure, requires

more e�ort than revamping the code to deploy a solution such a Pool.
We cover this in section 1.11, Toward a parallelized Borcherds’ method.

Note that computers are tools, and that we always strive to make the best pos-

sible use of the tools at our disposal. However, the tools should not take over

the content. This is why all the discussions in this thesis occur outside of the

constrained framework of a particular language. Moreover, it should be noted

32



that not a single explicit reference to the code is used in this entire document.

We believe that the classical dissertation format is not adapted to this aspect of

our work. We instead provide an online platform on which we deal with all the

practical and computer-based considerations: K3surfaces.com. Let us neverthe-

less conclude the introduction to the �rst part of our thesis on a very concrete

and practical consideration: Let X be a complex K3 surface of Picard number

inferior or equal to 17. Within this framework, we can guarantee full automa-

tion for all the procedures. The input data required to set up the environment

which will enable us to execute the Borcherds method consists of:

I The data of a Gram matrix GS of the Néron-Severi group S := NS(X) of

the K3 surface X .

I The data of elements v1, . . . , vρ ∈ L such that the mapping de�ned by

ι : [α1, . . . , αρ]S ∈ S 7−→ α1v1 + · · ·+ αρvρ ∈ L

is a primitive embedding of S into either

L = U ⊕ E8(−1) or L = U ⊕ E8(−1)⊕ E8(−1)

depending of the Picard number of the K3 surface X under study.

I The data an ample class a0 := [α0, . . . , αρ]S ∈ NS(X).

The data of a list

[GS, [v1, . . . , vρ] , a0] ,

where GS is a (ρ× ρ)-sized Sage matrix, where each vi is a lattice vector of

L, and where a0 is (1× ρ)-sized Sage matrix, is therefore all that is needed to

execute our implementation of Borcherds’ method.

33

https://K3surfaces.com


More information and detailed examples are available online:

Guide: K3surfaces.com/aut-groups

Examples: K3surfaces.com/examples-borcherds

34

https://k3surfaces.com/aut-groups
https://k3surfaces.com/examples-borcherds


LetX be a complexK3 surface with Néron-Severi group S = NS(X). The other

side of our study takes its roots in the fact that Roulleau produced a Magma

program based on an algorithm due to Vinberg, which takes as input a Gram

matrix of NS(X), an ample class P0, integers d, ub ∈ Z, and outputs the set

{C ∈ S | 〈C,C〉S = d, 〈C,P0〉S ≤ ub}

of classes of curvesC of self-intersectionC2 = d and for which the value of their

intersection product with P0 is less than or equal to ub. We took advantage of

Sage’s interface to Magma in order to bring Roulleau’s program directly into the

practical world of Python. Combining this tool with Saint-Donat’s & Morisson’s

results on projective models ofK3 surfaces enabled us to study projective mod-

els of K3 surfaces with Néron-Severi group isomorphic to the integral lattice

with Gram matrix 2t 0 0

0 −2 0

0 0 −2


with respect to a �xed basis, and even discuss the unirationality of their moduli

spaces. Here again, the tools produced during our thesis to do so have a scope of

application which extends far beyond these K3 surfaces. Our PModChecker
program bears witness to this fact. The fact is that the computer-based algorith-

mic approach we adopted led us to produce innovative tools. For example, we

combined various algorithmic pieces provided by Shimada in his article [18] in

order to produce:

I Universal ampleness tester for classes of divisors on K3 surfaces:

Given an ample class a0 ∈ S and a Gram Matrix GS for S, our program

AmpTester can determine whether any classD ∈ S is ample or not. This

program makes use of algorithmic material due to Shimada [18].

35



The following theorem incorporates results from Saint-Donat [17] & Morrison

and can be found in the latter’s 1988 Cortona lectures [13] and provides char-

acterizations of the projective models which can be obtained from the data of

an ample class on a K3 surface. We state it in its formulation by Debarre in his

Master’s course [3, Section 3.4]:

SDM Theorem. Let X be a K3 surface and D ∈ S an ample class.

(a) If D2 = 2 and there does not exist a class F ∈ NS(X) such that F 2 = 0

and F ·D = 1 then ϕD : X −→ P2 is a double cover.

(b) If D2 = 4 and there does not exist a class F ∈ NS(X) on X such that

F 2 = 0 and F · D ∈ {1, 2} then ϕD : X −→ P3 embeds X as a quartic

surface in P3.

(c) If D2 = 6 and there does not exist a class F on X such that F 2 = 0 and

F ·D ∈ {1, 2} then ϕD : X −→ P4 embeds X as a degree 6 surface in P4.

(d) If D2 = 8 and there does not exist a class F on X such that F 2 = 0 and

F · D ∈ {1, 2, 3} then ϕD : X −→ P5 either embeds X as a generically

transverse intersection of three quadrics in P5 with only rational double

points, or ϕD realizes X as double cover of a Veronese surface.

36



This theorem led us to produce and implement the following tool:

I PModChecker (SDM theorem tester): Given an ample class a0 ∈ S and

a Gram Matrix GS for S, our program PModChecker can determine

whether a given classD ∈ S can enter within the framework of the above-

mentioned SDM theorem. When this is the case, PModChecker speci�es

which projective model of the K3 surface under study can be obtained

thanks to the map into projective space associated with ϕD, in virtue of

the Saint-Donat / Morrison Theorem. This program extensively relies on

an algorithmic routine which was originally intended for other purposes

and can be found in Shimada’s article [18].

More information and detailed examples are available online:

AmpTester: K3surfaces.com/amptester

PModChecker: K3surfaces.com/pmodchecker

37

https://k3surfaces.com/amptester
https://k3surfaces.com/pmodchecker/


Table of Contents

Contents

1 Automorphism groups and orbits of (−2)-curves 41
1.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.1.1 The basics . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.1.2 Chamber structure and walls . . . . . . . . . . . . . . . 43

1.2 Induced chamber structure . . . . . . . . . . . . . . . . . . . . . 51

1.3 Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

1.4 Shimada’s enhanced Short Lattice Vectors Enumerator . . . . . 71

1.4.1 ShiVectors - Our implementation of Shimada’s SLVE . . 74

1.4.2 Applications - ShiChecker & ShiBooster . . . . . . . . . 76

1.5 Computing the walls of an induced chamber . . . . . . . . . . . 77

1.5.1 Procedure DeltaW . . . . . . . . . . . . . . . . . . . . . 77

1.5.2 Procedure SetOfWalls . . . . . . . . . . . . . . . . . . . 92

1.6 Computation of generators of Aut(X) - Background . . . . . . . 96

1.6.1 Scope of application of Borcherds’ method . . . . . . . . 98

1.6.2 Finding a generalized membership criterion . . . . . . . 103

1.6.3 Checking the kernel condition . . . . . . . . . . . . . . 107

1.7 Borcherds’ method . . . . . . . . . . . . . . . . . . . . . . . . . 110

1.7.1 Procedure RatDetect . . . . . . . . . . . . . . . . . . . . 115

1.7.2 Procedure WeylAdj . . . . . . . . . . . . . . . . . . . . . 116

1.7.3 Procedure AutChamber . . . . . . . . . . . . . . . . . . 128

1.7.4 Procedure CongChecker . . . . . . . . . . . . . . . . . . 129

1.7.5 Borcherds’ method . . . . . . . . . . . . . . . . . . . . . 130

38



1.8 Embedding update procedure . . . . . . . . . . . . . . . . . . . . 141

1.8.1 Failure of the non-degeneracy condition, a quick survey 143

1.8.2 Shimada’s embedding update procedure . . . . . . . . . 144

1.8.3 A new perspective on Shimada’s embedding update pro-

cedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

1.9 Fundamental domain, associated cone, Hilbert Basis . . . . . . . 154

1.9.1 Boundary walls, local boundary walls, global boundary

walls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

1.9.2 Graphical representation of the chamber structure of the

fundamental domain. . . . . . . . . . . . . . . . . . . . . 162

1.10 Computing the (−2)-curves modulo Aut(X) . . . . . . . . . . . 164

1.11 Toward a parallelized Borcherds’ method . . . . . . . . . . . . . 174

1.11.1 The Poolized Borcherds’ method . . . . . . . . . . . . . 177

1.11.2 Enforcing parallelism at the scale of Borcherds’ method 184

2 Projective models & unirationality 202
2.1 Procedure CGS - Computing Classes of a Given Square . . . . . 206

2.2 Universal Ampleness Tester . . . . . . . . . . . . . . . . . . . . 213

2.2.1 ShiChecker - Checking AC2 . . . . . . . . . . . . . . . . 215

2.2.2 ShiBooster - Checking AC3 . . . . . . . . . . . . . . . . 222

2.3 Finding an initial ample class . . . . . . . . . . . . . . . . . . . 226

2.4 A useful result on the discriminant group of NS(Xt) . . . . . . . 230

2.5 About dimension of linear systems . . . . . . . . . . . . . . . . 243

2.6 Computer-based study of projective models and unirationality

of moduli spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

39



Part I

Automorphisms groups and orbits

of smooth rational curves

on K3 surfaces

40



1 Automorphism groups and orbits of (−2)-curves

1.1 Generalities

The following section introduces the main theoretical tools, notions, and con-

cepts with which the reader should be familiar before pursuing the study further.

1.1.1 The basics

We recall that a freeZ-moduleL of �nite rank with a non-degenerate symmetric

bilinear form

〈 , 〉L : L× L −→ Z

is called an integral lattice. In the following, we will use the term lattice to refer

to an integral lattice. A lattice L is said to be even if

x2 := 〈x, x〉L ∈ 2Z

holds for any lattice element x ∈ L. The Gram matrix of a lattice L of rank N

with basis b1, . . . , bN is de�ned as the matrix

GL =
[
〈bi, bj〉L

]
1≤i,j≤N

Denote by n+ the number of positive eigenvalues and by n− the number of

negative eigenvalues of GL. The pair of integers (n+, n−) is called the signature
of L. A lattice L is said to be hyperbolic when L⊗ R is of signature (1, n− 1).

The determinant of a lattice L is de�ned as the determinant of the Gram matrix

GL of L . An unimodular lattice is an integral lattice of determinant ±1. Let L

be an hyperbolic lattice. One of the two connected components of the set

{
x ∈ L⊗ R | x2 > 0

}
is called a positive cone of L and is denoted by PL. It inherits the topology from

the vector space L⊗R. When the lattice under study is chosen to be the Néron-

41



Severi lattice S := NS(X) of a K3 surface X , the positive cone PS is chosen as

the connected component of

{
x ∈ S ⊗ R | x2 > 0

}
containing ample classes. Denote byO(L) the group of isometries of a lattice L.

We view elements ofO(L) as matrix transformations of size rank(L)× rank(L)

and use the convention that elements of L are represented as row vectors of size

rank(L). That is, the image of an element v ∈ L by a transformation g ∈ O(L)

is a row vector of size rank(L) and given by

v 7−→ vg.

Representing elements ofL as row vectors instead of column vectors may seem a

bit unusual in a classical setting. It is, however, perfectly suitable when working

with a CAS such as Magma or Sage, in which lattice elements are realized as

row vectors. Regarding elements ofO(L), note that an invertible matrix g is the

matrix of a transformation of O(L) if and only if it preserves the bilinear form,

that is, if and only if

gGLg
T = GL

holds. The stabilizer subgroup of the positive cone PL in O(L) is denoted by

O+(L). Let L be an even lattice. An element r ∈ L such that r2 = −2 is called

a root. To each root r ∈ L can be associated a re�ection

s : L 7−→ L

de�ned by

sr : x 7−→ x+ 〈x, r〉r.

Note that sr is an involution. That is,

sr ◦ sr = Id

42



holds. The subgroup of O+(L) generated by all the re�ections sr with respect

to the roots is denoted by W (L) and called the Weyl Group of L. The quotient

L∨/L is called the discriminant group of the lattice L. The discriminant group

is endowed with a non-degenerate quadratic form

q : L∨/L −→ Q/2Z

de�ned by

q : x mod L 7−→ x2 mod 2Z.

The form qL is called the discriminant form ofL. We use the notation (L∨/L, qL)

in order to refer to the discriminant group and to its associated quadratic form

at the same time. The group of isometries of (L∨/L, q) is denoted by O(qL).

There is a natural homomorphism

η : O(L)→ O(qL)

between the group of isometries of L and the group of isometries of (L∨/L, qL).

1.1.2 Chamber structure and walls

Let L be an even hyperbolic lattice and let PL be a positive cone of L

De�nition 1. Let ∆ ⊂ L. The set

ΣL(∆) = {x ∈ L⊗ R | ∀v ∈ ∆, 〈x, v〉L ≥ 0} ,

is called the positive cone associated with ∆.

It is also referred to as the ∆-positive cone. De�ne

NL = {x ∈ L⊗ R | 〈x, x〉L < 0} .

A closed subset D of PL is called a chamber if it has non-empty interior and if

43



there exists a subset ∆ ⊂ NL such that

D = ΣL(∆) ∩ PL. (1.1)

Such a subset ∆ is called a de�ning set of the chamberD. Note that the de�nition

of a chamber does not prohibit the fact that a chamber can be associated with

more than one de�ning set. Keeping this fact in mind is necessary to understand

the path leading to the notion of set of walls of a chamber, introduced in section

1.1.2 of this thesis.

De�nition 2. A subset ∆ ⊂ NL is a called a de�ning set of a chamber D when-

ever the equality D = ΣL(∆) ∩ PL holds.

That is, an element x ∈ PL is contained in a chamber D = ΣL(∆) ∩ PL if and

only if the inequalities

〈x, v〉L ≥ 0

for all v ∈ ∆.

De�nition 3. Let v ∈ L ⊗ R. We denote by (v)⊥ the orthogonal complement

in (L⊗ R) ∩ PL of the element v . That is,

(v)⊥ := {x ∈ L⊗ R | 〈x, v〉L = 0} ∩ PL.

We recall that a collection of subsets of a topological space is said to be locally
�nite if each point of the space has a neighborhood intersecting only �nitely

many sets in the collection. Let F ⊂ NL be a subset such that the collection{
(v)⊥ | v ∈ F

}
of orthogonal complements in PL of elements of F is a locally �nite collection

in PL. The positive cone PL of the lattice L can be decomposed as follows:

PL = (PL \
⋃
v∈F

(v)⊥) ∪
⋃
v∈F

(v)⊥. (1.2)

44



Let C be a connected component of

(PL \
⋃
v∈F

(v)⊥) =
⋂
v∈F

PL\ (v)⊥.

Then there exists a subset ∆C ⊂ F such that an element p ∈ PL belongs to C

if and only if the strict inqualities

〈p, v〉L > 0

are satis�ed for all v ∈ ∆C . Similary, if we denote by C the topological closure

of C then an element p ∈ PL belongs to C if and only if

〈p, v〉L ≥ 0

holds for all v ∈ ∆C . We hence see that C can be expressed as

C = ΣL(∆C) ∩ PL,

where

ΣL(∆C) = {x ∈ L⊗ R | ∀v ∈ ∆C , 〈v, x〉L ≥ 0} .

In virtue of de�nition 1, the set D := C is a chamber. We thus obtained:

Proposition 4. The closure C in PL of a connected component C of

PL \
⋃
v∈F

(v)⊥

is a chamber. Moreover, there exists a �nite subset ∆ ⊂ F such thatC = ΣL(∆)∩
PL. To any chamberD = ΣL(∆)∩PL with ∆ ⊂ F can be associated a connected
component C of

PL \
⋃
v∈F

(v)⊥

such that D = C .

45



We now assume �xed a subset F ⊂ NL having the property that

{
(v)⊥ | v ∈ F

}
is locally �nite.

De�nition 5. The collection

CF =

{
C := ΣL(∆C) ∩ PL | C connected component of PL \

⋃
v∈F

(v)⊥

}

is called a chamber structure on the positive cone PL of the lattice L.

Assume that a chamber structure CF has been set on PL. We now introduce

the important notion of walls of a chamber. Denote by Int(D) the topological

interior of a chamber D of CF .

De�nition 6. a hyperplane (v)⊥ ofPL, with v ∈ F , is called a wall of the cham-

ber D whenever both of the following conditions are satis�ed: (a) the equality

Int(D) ∩ (v)⊥ = ∅

holds and (b) there exists a non-empty open subset of (v)⊥ contained inD∩(v)⊥.

For any chamber D, the inclusion{
(v)⊥ | v is a wall of D

}
⊆
{

(v)⊥ | v ∈ ∆
}

always holds for any de�ning set ∆ of D, will o�en happen to be a proper

inclusion.

46



Two facts should be underlined:

I A de�ning set of a chamber D may contain elements that do not have an

orthogonal complement de�ning a wall of the chamber D.

I Distinct elements of a de�ning set of a chamber may have the same or-

thogonal complement, and could thus de�ne the same wall of D.

Let us have a short discussion about the fact that a de�ning set of a chamber

can also contain elements having the same orthogonal complement in PL. In

practice, the fact that x1 = ηx2 for some η ∈ Z will o�en turn out to be the

cause of such a situation. Let us show how to deal with elements related by

such a relation. Assume that rank(L) = N for some integer N > 0 and �x a

basis for L. We express elements of L in terms of their coordinates with respect

the chosen basis. We let

x1 = [α1, α2, . . . , αN ]L and x2 = [β1, β2, . . . , βN ]L

be distinct elements of L belonging to the de�ning set of some chamber, where

the αi and βi for 1 ≤ i ≤ N are the respective coordinates of x1 and x2 with

respect to the chosen basis of L. If we assume that x1 = ηx2 for some integer

η ∈ Z, then the equality

x1

gcd(α1, α2, . . . , αN)
=

x2

gcd(β1, β2, . . . , βN)
.

obviously holds. Thus, the issue caused by the presence of elements such as

x1and x2 in ∆ can be overcome by replacing the latter by

∆′ =

{
x

gcd(γ1, . . . , γN)
| x := [γ1, . . . , γN ]L ∈ ∆

}
. (1.3)

which is obtained by dividing each element x ∈ ∆ by the greatest common

divisor of its coordinates. Given a chamberD, it would be very convenient if we

could associate a set Ω(D) containing the elements of L which induce walls of

47



the chamber D. From what we just discussed, the set Ω(D) should by de�nition

possess the two following properties:

I If x ∈ Ω(D), then (x)⊥ is a wall of D.

I No two distinct elements x1, x2 ∈ Ω(D) should have the same orthogonal

complement.

In the framework of the classical theory presented by Shimada in [19], de�ning

sets possessing these two properties are called minimal de�ning sets.

De�nition 7. A de�ning set ∆ of a chamber D is said to be a minimal de�ning
set whenever the two following conditions are satis�ed:

(i) For all x ∈ ∆, the orthogonal complement (x)⊥ is a wall of D.

(ii) Whenever x, y ∈ ∆ are distinct, then (x)⊥ 6= (y)⊥.

The next question that comes naturally is minimality. The terminology from the

classical theory is quite misleading, because the de�nition of a minimal de�ning

set does not insure true minimality. Indeed, note that in case no genuine min-

imality condition is incorporated into the de�nition of a set of walls, then any

minimal de�ning set of a chamber could be taken as the set of walls of a cham-

ber. For example, assume that {a, b, c, d} is a minimal de�ning set of a chamber

D. Then the set {99a, b, 40c, 28d} is also a minimal de�ning set of D. As we

discussed earlier in this section, setting up a chamber structure requires a set

F ⊂ NL having the property that the associated collection of hyperplanes

{
(v)⊥ | v ∈ F

}
is locally �nite. We have seen that chamber structure CF is then obtained by

taking the closure of each connected component of

PL \
⋃
v∈F

(v)⊥.

48



The walls of the elements of the chamber structure thus originate from respec-

tive orthogonal complements in PL of elements of F . It would thus be conve-

nient to require that the elements in the set of walls Ω(D) of a chamberD ∈ CF
are elements ofF . Ful�lling this requirement is the reason why the classical the-

ory, found in Shimada’s article [19], introduces the notion of F-minimal de�n-

ing set to take this fact into account, as described in [19].

De�nition 8. A minimal de�ning set ∆ ⊂ NL ⊂ L ⊗ R of a chamber D

satisfying the conditions

(i) ∆ ⊂ F ,

(ii) if x ∈ ∆, then αx /∈ F for all 0 < α < 1.

is called a F-minimal de�ning set of D and is denoted by ∆F(D).

Assume that ∆ is a de�ning set of a chamber D and that ∆ ⊂ F .

In order to turn ∆ into a minimal de�ning set, we apply de�nition 7. First,

we have to make sure that no two distinct elements of ∆ have the same orthog-

onal complement. The �rst step that should be taken in order to reach this goal

consists in taking the set ∆′ instead of ∆, where the former has been de�ned

in expression 1.3. It should be noted that in spite of our assumption ∆ ⊂ F ,

there is absolutely no guarantee that ∆′ ⊂ F will also hold. The best way to

deal with this issue consists in requiring that the set of walls Ω(D) ⊂ L⊗R of

a chamber D has the property that its elements cannot be expressed as integer

multiples of other elements of L ⊗ R. In order to do so, it is convenient to use

the fact that an integral lattice such as L is naturally contained in its dual lattice

L∨, thus enabling us to work directly within the framework of dual lattices in

which the requirement mentioned above can always be ful�lled.

The classical theory built, by Shimada in [19], embodies all these considerations

by introducing of the notion of primitively minimal de�ning set.

49



De�nition 9. A minimal de�ning set ∆ of an F-chamber D such that every

v ∈ ∆ is primitive in L∨ is called a primitively minimal de�ning set of D.

In this thesis, the term set of walls refers to a primitively minimal de�ning set.

That is, a sentence such as

∆ is a primitively minimal de�ning set of D

from Shimada’s classical theory thus becomes

∆ is the set of walls of D

in the framework of our thesis. The notion of a set of walls will come up repeat-

edly throughout this thesis, and will be central during our entire study. Please

remember that the notation Ω(D) denotes the set of walls of a chamber D.

It should be noted that our use of the term set of walls is an abuse of language.

Indeed, the set of walls of a chamber, de�ned according to its name, should be

de�ned as {
(v)⊥ | v is a wall of D

}
with additional minimality conditions, as discussed above. Our justi�cation for

this abuse lies in the fact that we adopt a computer-based algorithmic approach:

Entities involved in the procedures must therefore be de�ned so that a computer

can process them. Given a minimal de�ning set of a chamber D, we, therefore,

explain in section 1.5.2 the mechanics behind our version of a procedure origi-

nating from Shimada’s article [19] to compute the set Ω(D) of walls of a chamber

D in a practical way. We close this section by asking our readers to keep in mind

that, in practice, the �rst step leading to the set of walls Ω(D) from a de�ning

set ∆ of D consists in computing ∆′ (see expr. (1.3)).

50



1.2 Induced chamber structure

In this section, we show that a chamber structure on the positive cone PS of a

K3 surface X is obtained whenever the two following conditions are satis�ed:

I The Néron-Severi group S of X has been primitively embedded into an

even hyperbolic lattice L in such a way that PS ⊂ PS .

I A chamber structure has been set on PL by taking F = RL in the de�ni-

tion 5 of a chamber structure.

LetX be a complexK3 surface. As before, we denote by S = NS(X) its Néron-

Severi group and let ρX = rank(S) denote the Picard number of X . We assume

that S is primitively embedded into a suitable even hyperbolic lattice L chosen

according to the value of ρX , as indicated in the following table:

We moreover assume that the embedding

ι : S ↪→ L

is such that the inclusion PS ⊂ PL holds. As before, we denote by

RL = {x ∈ L | 〈x, x〉L = −2}

51



the set of (−2)-vectors of L. The local �niteness of the collection{
(x)⊥ | 〈x, x〉L = −2

}
is established in Shimada’s article [19, Lemma 3.4] . We thus apply de�nition

1.1.2 with F = RL in order to obtain a chamber structure

CRL = {Ā ⊂ PL | A is a connected component of PL \
⋃
v∈RL

(v)⊥}

on the positive cone PL of the lattice L. Chambers of this chamber structure

will be referred to as PL-chambers. In order to identify PL-chambers, we will

always make use of the mathcal font with the capital letterD and a numeral as

a subscript when necessary. As indicated in the short introduction to this sec-

tion, we will soon explain how a chamber structure onPL can induce a chamber

structure on PS . Chambers belonging to the induced chamber structure on PS
will be referred to as PS-chambers, and such chambers will be denoted by using

the standard font with a capital D. Denote by R = S⊥ the orthogonal comple-

ment of S into L. More generally, we use many notational conventions exactly

as Shimada introduced them in his 2013 article Consider the orthogonal projec-

tions

prS : L⊗ R −→ S ⊗ R and prR : L⊗ R −→ R⊗ R

from L⊗R to S⊗R and from L⊗R toR⊗R, respectively. When appropriate,

we will make use of the shorthand notations xS and xR to denote images of an

element x ∈ L⊗R via the maps prS and prR de�ned above.

Proposition 10. An element x ∈ RL such that xS 6= 0 satis�es (x)⊥ ∩ PS 6= ∅
if and only if

〈xS, xS〉S < 0.

52



Proof. Before proceeding, we recall given x ∈ L, we de�ne

(x)⊥ = {y ∈ L | 〈x, y〉L = 0} ∩ PL.

Let y ∈ (x)⊥ ∩ PS . Since

y ∈ PS ⊂ S

we have

y = yS and 〈yS, yS〉S > 0.

We obtain

〈x, yS〉L = 0

using the fact that yS ∈ (x)⊥. Expressing the element x as xR + xS then yields

the equality

〈xS + xR, yS〉S = 0.

from which we immediately obtain

〈xS, yS〉S = 0

where xR is the projection of the element x onto R = S⊥. By the Hodge Index

theorem, this equality implies that

〈xS, xS〉S < 0.

To establish the converse, we now assume that this inequality holds. The orthog-

onal complement in S of xS is then an hyperbolic lattice: It has rank ρ− 1 and

signature (1, ρ− 2). Thus, there exists an element in the orthogonal comple-

ment of xS with strictly positive self-intersection. Such an element then clearly

belongs to

(xS)⊥ ∩ PS,

and enables us to assert the non-emptiness of this set. Let D be a PL-chamber

withRL-minimal de�ning set ∆RL(D) ⊂ RL. By de�nition 1 of a chamber, the

53

https://k3surfaces.com/hit/
https://k3surfaces.com/hit/


equality

D = ΣL(∆RL(D)) ∩ PL (1.4)

holds, where we recall that

ΣL(∆RL(D)) = {y ∈ L | ∀r ∈ ∆RL(D), 〈y, r〉L ≥ 0} . (1.5)

We now introduce the fundamental concept of Weyl vector of a PL-chamber

which originates from [19].

De�nition 11. Let D be a PL-chamber. An element w ∈ L is said to be a Weyl
vector of D if itsRL-minimal de�ning set ∆RL(D) is given by

∆RL(D) = {r ∈ RL | 〈w, r〉L = 1} .

Note that the de�nition 1 of a chamber implies that no two distinct chambers

can have the same de�ning set. Since a minimal de�ning set is a de�ning set, it

is clear that no two distinct chambers can have the same minimal de�ning set.

A Weyl vector thus uniquely characterizes a single chamber. We will see in the

upcoming sections that the knowledge of the Weyl vector of a chamber enables

us to obtain precious information about the chamber such as its set of walls. Let

D be a PL-chamber with Weyl vector w ∈ L and assume that D ∩ PS has a

non-empty interior. We now show that this intersection can expressed as

D ∩ PS = ΣS(prS(∆w)) ∩ PS

for some set ∆w depending on the Weyl vector of D. Note that the right-hand

side of this equality de�nes a chamber of PS whenever it has a non-empty inte-

rior. This result will pave the way toward a de�nition of PS-chambers as cham-

bers of PS obtained by intersecting PL-chambers with PS provided that the re-

sulting intersections have a non-empty interior. We then see that this de�nition

enables us to obtain a PS-chamber structure from a PL-chamber structure.

54



Using expressions (1.4) and (1.5), we see that D ∩ PS can be expressed as

D ∩ PS = {y ∈ L⊗ R | ∀r ∈ ∆RL(D), 〈y, r〉L ≥ 0} ∩ PS.

The assumption that it has non-empty interior enables us to express the above

equality as

D ∩ PS = {y ∈ L⊗ R | ∀r ∈ ∆w, 〈y, r〉L ≥ 0} ∩ PS

where ∆w is de�ned as

∆w =
{
x ∈ ∆RL(D) | (x)⊥ ∩ PS 6= ∅

}
.

Note that this set is non-empty whenever D ∩ PS has non-empty interior and

that the equality

〈y, x〉L = 〈y, prS(x)〉S

holds for all y ∈ S and all x ∈ L. Thus,

D ∩ PS = {y ∈ L⊗ R | ∀r ∈ ∆w, 〈y, rS〉S ≥ 0} ∩ PS.

We then have

D ∩ PS = {y ∈ L⊗ R | ∀r ∈ ∆w, 〈y, r〉L ≥ 0} ∩ PS
= {y ∈ L⊗ R | ∀r ∈ prS(∆w), 〈y, rS〉S ≥ 0} ∩ PS (1.6)

where we recall that xS is a shorthand for the orthogonal projection prS(x) of

an element of L onto S. We then note that the set ΣS(prS(∆w)) is by de�nition

de�ned as

ΣS(prS(∆w)) = {y ∈ S ⊗ R | ∀r ∈ prS (∆w) , 〈y, rS〉S ≥ 0} .

55



Also, note that expression (1.6) is obviously equivalent to

D ∩ PS = {y ∈ S ⊗ R | ∀r ∈ prS(∆w), 〈y, rS〉S ≥ 0} ∩ PS.

Thus, the assumption that D ∩ PS has non-empty interior leads to

D ∩ PS =ΣS(prS(∆w)) ∩ PS.

The last expression meets and this hypothesis meet all requirements of the def-

inition 1 of a chamber of PS . When applied within the framework of PS , this

de�nition indeed states that a chamber D of PS has have non-empty interior

can be expressed as

D = ΣS(∆) ∩ PS

for some subset ∆ ⊂ NS , where

NS = {x ∈ S ⊗ R | 〈x, x〉S < 0} .

We still have to show that prS(∆w) ⊂ NS , where we recall that

∆w =
{
x ∈ ∆RL(D) | (x)⊥ ∩ PS 6= ∅

}
. (1.7)

To do so, recall that proposition 10 states that an element x ∈ RL satis�es

(x)⊥ ∩ PS 6= ∅ if and only if 〈xS, xS〉S < 0 holds. We then immediately obtain

the inclusion

prS(∆w) ⊂ NS

so that the set prS(∆w) is a de�ning set of the PS-chamber D = D ∩ PS with

Weyl vector w. As is done in Shimada’s article [19], we now let

RL|S =
{
xS ∈ S ⊗Q | x ∈ RL, x

2
S < 0

}
and

RS =
{
x ∈ S | x2 = −2

}
.

56



Note that the inclusionRS ⊂ RL|S obviously holds. Moreover, the equivalence

stated in proposition 10 enables us to expressRL|S as

RL|S =
{
xS ∈ S ⊗Q | x ∈ RL, (x)⊥ ∩ PS 6= ∅

}
.

We then immediately see that the set prS(∆w) satis�es by de�nition

prS(∆w) ⊂ RL|S.

Let D be a PL-chamber with Weyl vector w ∈ L and assume that D ∩ PS has

non-empty interior. We have seen that D = D ∩ PS can be expressed as

D = ΣS(prS(∆w)) ∩ PS

with ∆w de�ned in expression (1.7), is a PS-chamber, and such that

prS(∆w) ⊂ RL|S.

Our above discussion led us to the following important proposition

Proposition 12. If D is a ι(S)-nondegenerate PL-chamber with Weyl vector w
then the set prS(∆w) is a de�ning set of the induced PS-chamber D = D ∩ PS.

Given an elementRL|S , we de�ne

(v)⊥ = {x ∈ S ⊗ R | 〈x, v〉S = 0} ∩ PS.

In his article [19, section 5], Shimada established that the collection{
(v)⊥ | v ∈ RL|S

}
is locally �nite. It is thus clear that the PS-chambers, which are by de�nition

induced by PL-chambers, belong to the chamber structure on PS obtained by

57



taking the closure of connected components of

PS \
⋃

v∈RL|S

(v)⊥ .

This chamber structure will be referred to as thePS-chamber structure, or as the

induced chamber structure. What we discussed is summarized in the following

result:

Proposition 13. Assume that CRL is a chamber structure on PL and that S is
primitively embedded into L in such a way that PS ⊂ PL. Then the collection

CRL|S := {D ∩ PS | D ∈ CL,∃U ⊂ PS, U 6= ∅, U open s.t. U ⊂ D ∩ PS}

is a chamber structure on PS induced by the chamber structure CL on PL.

An important fact regarding de�ning sets of induced chamber is provided by

[19, Proposition 5.7]:

Proposition 14. For any Weyl vector w ∈ L, the set ∆w is �nite. In particular,
anyRL|S-chamber D has a �nite de�ning set.

Recall that we denote by ι the embedding ι : S ↪→ L which is assumed to embed

S primitively into an even hyperbolic lattice L chosen according to the table

provided at the beginning of this section. The following de�nition characterizes

PL-chambers inducing chambers on PS .

De�nition 15. A PL-chamberD having such that the intersectionD∩PS has

non-empty interior is said to be ι(S)-nondegenerate.

Please keep in mind that the ι(S)-nondegeneracy is a property that depends on

the transformation used to embed S into L. We use the pre�x ι(S) to empha-

size this fact. Note that the classical theory, built by Shimada, instead uses the

pre�x S, thus neglecting to highlight the dependence of the notion of nonde-

generacy on an embedding. It should be noted that Shimada provides in [19,

Criterion 5.7] the following helpful criterion to check whether a PL-chamber is

58



ι(S)-nondegenerate.

Proposition 16. A PL-chamber D with Weyl vector w is ι(S)-nondegenerate if
and only if there exists an element v ∈ PS satisfying the �nite number of inequal-
ities

〈v, x〉S > 0 for any x ∈ prS(∆w).

This criterion makes perfect sense: LetD be a ι(S)-nondegenerate PS-chamber

with Weyl vector w. By de�nition, the intersection D = D∩PS has non-empty

interior. That is, there exists an element v ∈ PS such that v ∈ Int(D ∩ PS).

Such an element must satisfy

〈v, q〉S > 0

for all q ∈ Ω(D), the set of walls of D. Since we have seen in proposition 12

that prS(∆w) is a de�ning set of D, we have Ω(D) ⊆ prS(∆w) by what we

have seen in 1.1.2. Thus, if the above inequalities hold for all q ∈ prS(∆w), they

also hold for all q ∈ Ω(D). Proposition 14 then guarantees the �niteness of

prS(∆w). Thus, there are only a �nite number inequalities to be checked. Our

implementation of this criterion is the procedure DegenTest, which takes as

input the data of the set of prS(∆w) associated with a PL-chamberD with Weyl

vector w ∈ L, the data of an ample class a0 ∈ PS , and determines whether the

inequalities mentioned above all hold.

We conclude this section with an important remark: By abuse of language, it

is customary to say that the Weyl vector w ∈ L of a ι(S)-nondegenerate PL-

chamber D is also the Weyl vector of the PS-chamber

D = D ∩ PS

it induces. The scope of the de�nition 11 of a Weyl vector is thus extended by

inheritance to induced chambers.

59



1.3 Toolbox

Recall that an integral lattice such as the Néron-Severi group S of a K3 surface

X is a sublattice of its dual S∨, de�ned as

S∨ = {x ∈ S ⊗ R | ∀y ∈ S, 〈x, y〉 ∈ Z} .

We recall that S is assumed to be primitively embedded into one of the three

even hyperbolic lattices L displayed in the table presented at the beginning of

the previous section. For convenience, most computations in our programs in-

volving S or its orthogonal complement R, both viewed as sublattices of L,

are carried out within the framework of their respective duals S∨ and R∨. No

matter if we had to calculate sublattices, duals, Gram matrices, orthogonal com-

plements, kernels, it is clear that our extensive use of functions from libraries

such as the SageMath library or the SciPy library enabled us to do whatever

we wanted without restriction. However, we think that we should still explain

the basics mechanics behind these lattice-related functions. We already men-

tioned numerous times that there are three possible lattices which can be used

as ambient lattices depending on the Picard number of X . We detail some basic

mechanics in the framework of the ambient lattice L = U ⊕E8(−1) which has

rank 10, the smallest rank among the three, so that all the techniques demon-

strated in this section can be applied to the two other lattices of rank 18 and

26 since U ⊕ E8(−1) is naturally embedded into them. Denote by E8(−1) the

integral lattice for which a Gram matrix is

−2 0 0 1 0 0 0 0

0 −2 1 0 0 0 0 0

0 1 −2 1 0 0 0 0

1 0 1 −2 1 0 0 0

0 0 0 1 −2 1 0 0

0 0 0 0 1 −2 1 0

0 0 0 0 0 1 −2 1

0 0 0 0 0 0 1 −2


60

https://k3surfaces.com/borcherds-init/#table


and denote by U the integral lattice for which a Gram matrix is(
0 1

1 0

)
.

These two matrices enable us to obtain a Gram matrix for the direct sum lattice

L = U ⊕ E8(−1)

in the obvious way.

Note that Shimada uses a basis u1, u2 for U in his article [19] which yields the

Gram matrix (
0 1

1 −2

)
for this lattice. The change of basis

u1 7−→ u1

u2 7−→ u2 − u1

enables us to obtain the Gram matrix(
0 1

1 0

)

for U which will be used during this thesis. Please bear in mind that we thus

applied the transformation mentioned above to all the results and formulas pro-

vided in Shimada’s article in order to make things work with our standard basis

for U . As shown in this online example, our programs can nevertheless han-

dle input data containing embedding vectors with U -coordinates expressed in

terms of the basis for U used by Shimada. Assume that u1, u2 form a basis for U

such that the above Gram matrix for this lattice is obtained, and assume given

elements e1, . . . , e8 forming a basis for E8(−1) in such a way that the latter has

61

https://k3surfaces.com/shimada-surface/


the matrix mentioned at the beginning of this section as Gram matrix. As is

usually done, the direct sum

L = U ⊕ E8(−1)

is endowed with the concatenated basis

{u1, u2, e1, . . . , e8} .

Let X be a complex K3 surface S of Picard number ρX < 10 and assume that

β1, . . . , βρ form a basis of its Néron-Severi group S with Gram matrix GS . We

use the notation

[α1, α2, . . . , αρ]S

to denote the coordinates of an element

D = α1b1 + α2b2 + · · ·+ αρbρ

expressed in terms of the basis b1, . . . , bρ for S. We now assume that S is prim-

itively embedded into the even hyperbolic lattice

L = U ⊕ E8(−1)

that is, we assume that there is a primitive embedding of lattices

ι : S ↪→ L

de�ned by

ι : α1b1 + α2b2 + · · ·+ αρbρ 7−→ α1s1 + α2s2 + · · ·+ αρsρ

where s1, . . . , sρ ∈ L denote the basis vectors of S viewed as a sublattice of L.

62



That is, we have

ι(bi) = si, 1 ≤ i ≤ 10

so that S will be identi�ed with its image in L until the very end of this section,

and ι can be viewed as an inclusion map of S into L. As an immediate conse-

quence of the fact that we are here dealing with an embedding of lattices, the

Gram matrix GS of S is preserved. Denote by R = S⊥ be the orthogonal com-

plement of S in L and denote by r1, . . . , r10−ρ ∈ L elements forming a basis of

the lattice R viewed as a sublattice of L.

Embeddings: Since S is assumed to be primitively embedded into L, express-

ing elements of S in terms of the basis of L is an important operation. Denote

by ES be the (ρ× 10)-sized matrix with rows s1, . . . , sρ. The transformation

x 7−→ xES

associated with ES enables us to view this matrix as the matrix associated with

the primive embedding

ι : S ↪→ L

of S into L. Let ER be the ((10− ρ)× 10)-sized matrix with rows r1, . . . , r10−ρ.

Then the transformation

x ∈ R 7−→ xER ∈ L

de�nes an embedding of R into L. Denote by GL the Gram matrix of the lattice

L, and denote by GS and GR the respective Gram matrices of the lattices S and

R. As indicated at the beginning of this section, we recall that the dual of a

lattice L is the set

L∨ = {x ∈ L⊗ R | ∀y ∈ L, 〈x, y〉L ∈ Z}

63



and note that an integral lattice is always contained in its dual:

L ⊆ L∨.

We hence denote by S∨ the dual of S and denote by R∨ the dual of R. Note that

S∨ is a free module of rank ρ over the integers, and if we see it as a submodule

of L⊗Q it is then spanned by the rows of the matrix G−1
S ES and denote by

s∨1 , . . . , s
∨
ρ ∈ L⊗Q

the basis vectors of S∨ obtained from the rows of this matrix. Similarly, note

that R∨ can be viewed as a free submodule of L ⊗ Q of rank 10 − ρ over the

integers spanned by the rows of the matrix G−1
R ER and denote by

r∨1 , . . . , r
∨
10−ρ ∈ L⊗Q

the basis vectors of R∨ obtained from the rows of this matrix. The respective

Gram matrices GS∨ (resp. GR∨) of S∨ (resp. R∨) relative to the basis s∨1 , . . . , s
∨
ρ

(resp. r∨1 , . . . , r
∨
10−ρ) are given by the formulas:

GS∨ = G−1
S ES GL(G−1

S ES)t and GR∨ = G−1
S ES GL(G−1

S ES)t.

Orthogonal Projections onto S and R

We explain how to compute orthogonal projections from L onto S and R. De-

note by

A =

s1, · · · sρ, r1, · · · , r10−ρ


be the (10× 10)-sized matrix whose columns are taken to be the basis vectors

of the lattices S and R. The matrix

P = (A−1)T

64



is used to de�ne a transformation

L⊗Q −→ (S ⊗Q)⊕ (R⊗Q)

de�ned by

x 7−→ xP =
[
x

(1)
S , . . . , x

(ρ)
S , x

(1)
R , . . . , x

(10−ρ)
R

]
which enables us to obtain the coordinates of an element x ∈ L⊗Q with respect

to the basis of (S ⊗Q)⊕(R⊗Q). The latter is obtained by noting that we have

L ⊂ L⊗Q,

so that the basis {s1, . . . , sρ} for S can be viewed as a basis of

S ⊗Q ⊂ L⊗Q.

Similarly, the basis {r1, . . . , r10−ρ} for S can be viewed as a basis of

R⊗Q ⊂ L⊗Q.

A basis of

(S ⊗Q)⊕ (R⊗Q)

can thus be obtained from the concatenated basis

{s1, . . . , sρ, r1, . . . , r10−ρ}

of S ⊕R. We also note that there is an equality

L⊗Q = (S ⊗Q)⊕ (R⊗Q) .

Denote by PS be the (10 × ρ)-sized matrix obtained by taking as columns the

�rst ρ columns of the matrix P . The matrix PS is associated with the projection

transformation

x ∈ L⊗Q 7−→ xPS ∈ S ⊗Q

65



from L⊗Q onto S ⊗Q and enables us to obtain coordinates of projections

xPS =
[
x

(1)
S , . . . x

(ρ)
S

]
of elements x ∈ L⊗Q with respect to the basis of S ⊗Q. Denote by PR be the

(10 × (10 − ρ))-sized matrix obtained by extracting the columns of P ranging

from the (ρ+ 1)-th to the last one. The matrix PR is the matrix associated with

the projection tranformation

x 7−→ xPR =
[
x

(1)
R , . . . x

(10−ρ)
R

]
from L⊗Q onto R ⊗Q enables us to get coordinates of projections onto R of

elements x ∈ L with respect to the basis of R⊗Q.

Projections onto S∨ and R∨

Projections from L onto S∨ and R∨ are also common operations. We, however,

made use of two distinct bases of S∨ to consider two ways of de�ning projec-

tions from L⊗Q into S∨.

I One basis is denoted by B1 and made of elements of L ⊗ Q. Using this

base makes sense when S and S∨ are considered within the framework of

a primitive embedding of S into L.

I The other basis is denoted byB2 and made of elements of S⊗Q. Using this

base makes sense when considering S and S∨ outside of the framework

of the primitive embedding of S into L.

Projections onto S∨ can indeed be either considered within the framework of

the embedding of S into L or by viewing S as a lattice of its own right. The �rst

approach is especially convenient when using SageMath, whose lattice features

enable us to easily de�ne S and R as sublattices of L and thus perform all

computations in this framework. A basis B1 for S∨ is obtained by taking as

elements the rows of the matrixGSES. Note that this basis will be used by Sage

66



for S∨ whenever S is de�ned as a sublattice of L. Consider the (10× 10)-sized

matrix

B =

s∨1 , · · · , s∨ρ , r∨1 , · · · , r∨10−ρ


obtained by taking as columns the elements of the concatenated basis

{
s∨1 , . . . , s

∨
ρ , r

∨
1 , . . . , r

∨
10−ρ

}
of the direct sum S∨ ⊕R∨. The matrix

Q := (B−1)t

then yields a transformation

L⊗Q −→ S∨ ⊕R∨

de�ned by

x 7−→ xQ =
[
x

(1)
S∨ , . . . , x

(ρ)
S∨ , x

(1)
R∨ , . . . , x

(10−ρ)
R∨

]
which the coordinates of elementsx ∈ L⊗Qwith respect to the above-mentioned

basis concatenated basis for S∨ ⊕ R∨. Obtaining the coordinates of the projec-

tions onto S∨ and R∨ is easy:

• x(1)
S∨ , . . . , x

(ρ)
S∨ are the coordinates of the projection of x into S∨.

• x(1)
R∨ , . . . , x

(10−ρ)
R∨ are the coordinates of the projection of x into R∨.

These coordinates can also be obtained by proceeding as follows: If we let QB2S∨
be the (10 × ρ)-sized matrix with columns obtained by extracting the �rst ρ

columns of the matrix Q, then a projection

prB2S∨ : L⊗Q −→ S∨

67



de�ned by

prB2S∨ : x 7−→ xQB1S∨ =
[
x

(1)
S∨ , . . . x

(ρ)
S∨

]
is obtained. We can also consider projections into S∨ endowed with basis

B2 =
{

col1(G−1
S ), . . . , colρ(G−1

S )
}

obtained by taking the columns of the inverse G−1
S of the Gram matrix of S.

Doing so amounts to considering S as a lattice of its own, and not as a primi-

tive sublattice of L. This approach is convenient for computations that occur

within procedures that produce transformations ofO(S), that is, within the pro-

cedures CongChecker and AutChamber described in sections 1.7.4 and 1.7.3.

A projection operator

prB2S∨ : L⊗Q 7−→ S∨

from L⊗Q onto S∨ endowed with its basis B2 is obtained by de�ning

prB2S∨ : x 7−→ xGLE
T
S .

Considering distinct bases as done forS∨would make no sense in the case ofR∨.

Indeed, recall that R is de�ned as the orthogonal complement of S into L. We

therefore have no other choice but to take a basis of R∨ within the framework

of the embedding. Such a basis is obtained by taking as basis elements the rows

of the matrix GRER. De�ne QR∨ as the 10 × (10 − ρ) matrix whose columns

are obtained by extracting the last 10− ρ columns columns of the matrix Q. A

projection

prB2R∨ : L⊗Q −→ R∨

de�ned by

prR∨ : x 7−→ xQR∨ =
[
x

(1)
R∨ , . . . , x

(10−ρ)
R∨

]
is then obtained.

68



Embeddings of S∨ and R∨ into L⊗ R

Denote by

ES∨ = G−1
S ES

the basis matrix of S∨. Note that the rows of this matrix are the elements of B2.

Let vS ∈ S∨ with coordinates expressed with respect to this basis. We denote

by vL⊗QS the image of vS ∈ S∨ under the map

vS 7−→ vL⊗QS = vSES∨

from S∨ into L⊗Q. Analogously, let

ER∨ = G−1
R ER

be the basis matrix of R∨. Consider an element vR ∈ R∨ ⊗Q with coordinates

expressed with respect to the basis obtained by taking the rows of this matrix.

We denote by vL⊗QR the image of vR under the map

vR ∈ R∨ 7−→ vL⊗QR = vRER∨

from R∨ into L ⊗ Q. The two following �gures summarize the material dis-

cussed in this section: We embed S into L by right multiplication by the matrix

ES . We can consider projections into S∨ by either regarding it endowed with

its basisB1 which is denoted byS∨B1 , or with its basisB2 which is denoted by S∨B2 .

From the framework of the basis S∨B1 , projection into S ⊗ Q requires going

back into L⊗Q by right multiplication byES∨ and then project into S⊗Q by

right multiplication by PS . Projection into S ⊗ Q requires le� multiplication

by (G−1
S )t when working in the framework of S∨B2 .

69



The following �gures summarize all the material discussed in this section :

The mechanics are similar regarding R and its dual R∨, except that we only

consider a single basis made of vectors of L⊗Q for the latter.

70



1.4 Shimada’s enhanced Short Lattice Vectors Enumerator

Among the numerous features of popular computer algebra systems (CAS) can

be found short lattice vectors enumeration functions. Given a positive de�nite

gram matrixQ of a rank n lattice L and an integer c as input data, a short lattice

vectors function returns the set of all lattice elements x ∈ L satisfying

xQxT ≤ c. (1.8)

As far as we know, there is no CAS (in 2022) that integrates a function capable

of determining the solution set an expression of the form

xQxT + 2xL ≤ c, (1.9)

whereL is ann-sized column vector. In his article [18, Section 3.1], Shimada pro-

vides an algorithm to determine the solution set of an expression such as (1.9).

We used the SageMath Python library in order to produce an implementation of

this algorithm. The result is the function ShiVectors, detailed and available for

download on K3surfaces.com. In this section, we build on the structure outlined

by Shimada in his article [18, Section 3.1] and introduce this key algorithm from

a purely pragmatic point of view. Our goal consists in providing guidelines so

that the readers can easily implement this algorithm.

De�nition 17. A quadratic triple of n variables is a triple [Q,L, c] where Q is

a (n × n)-sized symmetric matrix with rational entries, where L is a column

vector of length n with rational entries, and where c is a rational number.

When the matrix Q is positive de�nite, the triple

[Q,L, c]

is called a positive quadratic triple. When Q is negative de�nite, we bring the

problem back to the positive de�nite case by substituting −Q to Q.

71

https://k3surfaces.com


To any triple QT = [Q,L, c] can be associated a quadratic function

qQT : Qn −→ Q

de�ned by

qQT (x) := xQxt + 2xL+ c.

The remainder of this section will be based on the section 3.1 “An algorithm for a
positive quadratic triple” from Shimada’s article [18]. We provide the necessary

details and clari�cations which will enable the readers to easily produce their

own implementations of Shimada’s algorithm to compute the set

E(QT ) = {x ∈ Zn | qQT (x) ≤ 0} .

Also, please remember that we provide our own ready-to-use implementation

of this algorithm, which is called ShiVectors, on k3surfaces.com The main rou-

tine used in Shimada’s algorithm consists in applying sequences of projection

operations. The purpose of a projection consists in returning a triple of m − 1

variables from the input of a triple of m variable. By repeated applications of

projections, we �nally obtain a triple of a single variable. The degree 1 equa-

tion associated with this triple has a solution set that can be determined without

hassle. Let QT = [Q,L, c] be a positive quadratic triple of n variables.

Projection procedure n°1:

Following Shimada’s guidelines, we arrange the elements of this triple as fol-

lows:

72

https://k3surfaces.com/


whereQ is a (n−1)× (n−1)-sized square matrice, where p′ and L′ are column

vectors of length n− 1, and where r′ and m′ are rationals.

Since the matrix Q is assumed to be positive de�nite, note that r′ > 0. Shi-

mada states that a quadratic triple of n − 1 variables is then obtained from the

triple QT by the formula

pr(QT ) :=

[
Q′ − 1

r′
(p′ tp′), L′ − m′

r′
p′, c− m′2

r′

]
.

Projection procedure n°2:

We follow Shimada’s guidelines and arrange the elements of the triple QT as

follows:

where Q′′ is a (n − 1) × (n − 1)-sized square matrix , where p′′ and L′′ are

column vectors of length n − 1, and where r′′and m′′ are rationals. As before,

we note that r′′ > 0 due to the assumed positive de�niteness of the matrix Q.

Let a ∈ Q be a rational number. Shimada states that a quadratic triple of n− 1

variables ι∗(a,QT ) is then obtained by the formula:

ι∗(a,QT ) :=
[
Q′′, ap′′ + L′′, a2r′′ + 2am′′ + c

]
. (1.10)

This procedure can be executed more than one time, saym < n times, as follows.

Let

a = [a1, . . . , am] ∈ Qm.

A positive quadratic triple ι∗(a, QT ) of (n−m)-variables is then obtained bym

73



sucessive applications of the formula given in expression (1.10). That is, de�ne

QT 0 := QT, QT ν+1 := ι∗(aν+1, QT
ν), ι∗(a, QT ) := QTm

where ν = 0, . . . ,m− 1.

1.4.1 ShiVectors - Our implementation of Shimada’s SLVE

Assume that an initial positive quadratic triple

QT 0
n := QT

of n-variables is given.

By n− 1 applications the projection procedure n°2 described above, compute

QT 0
i−1 = pr(QT 0

i )

for 2 ≤ i ≤ n and note that

QT 0
1 = pr(QT 0

2 )

is a triple of a single variable, whose associated degree 1 equation has a solution

set which can be easily determined. Denote by S (QT ) the set containing these

triples:

S (QT ) =
{
QT 0

1 , QT
0
2 , . . . , QT

0
n

}
.

Assume given an initial positive quadratic triple QT of n variables. We now

state the main procedure behind Shimada’s algorithm to computeE(QT ). First,

we warn the reader that the following procedure is recursive.

74



Procedure ShiVectors : The input consists of a parameter ν ∈ Z, of sets Z , E
and Y , so that the procedure can be formalized as

ShiVectors(ν,Z,Y)

Note that the setsZ and E will initially be taken as empty sets in order to initiate

the procedure, while Y will be initially taken as S (QT ) and is thus assumed to

be a set of triples, as explained earlier. The �rst thing that the procedure does

consists in taking a look at the value of the parameter ν:

I If ν = n + 1, append the list Z to the list E , return the list E as output,

end of story.

I Otherwise, denote by X (S (QT )) the solution set of the inequality ob-

tained from the triple a single variable QT 0
1 contained in S (QT ), and

proceed as follows.

Denote by S ∗(QT ) a copy of the set S (QT ) from which the triple of a single

variable QT 0
1 has been removed. For each q ∈ X (S (QT )), Shimada instructs

to proceed as follows:

(i) Create a copy Z ′ of the set Z and compute the set

Supdate(QT ) := {ι∗(q, r) | r ∈ S ∗(QT )} .

(ii) Append q to the listZ ′ and execute ShiVectors(ν + 1,Z ′,Supdate(QT ), E).

That is all what is to be done. In practice, given a triple

QT = [Q,L, c]

we execute the procedure ShiVectors with

ν = 1, Z = { } .

75



ShiVectors(1,Z = { } ,S (QT ), E = { })

Shimada then guarantees that the set returned by this procedure is

E(QT ) = {x ∈ Zn | qQT (x) ≤ 0} ,

as desired.

1.4.2 Applications - ShiChecker & ShiBooster

The two following algorithms due to Shimada are applications of ShiVectors.

Note that additional details on these applications can be found in [18] and the

second part of this thesis.

Procedure ShiChecker: Let L be a hyperbolic lattice, let v be a vector of L⊗Q
satisfying v2 > 0, let α be a rational number, and let d be an integer. The �nite

set

{x ∈ L | 〈x, v〉L = α, 〈x, x〉L = d}

can be computed by the method decribed in [18, Section 3.2].

Procedure ShiBooster: Let L be a hyperbolic lattice, let v, h be vectors of

L⊗Q such that

〈v, h〉L > 0, 〈h, h〉L > 0, 〈v, v〉L > 0,

and let d be a negative integer. Then the �nite set

{x ∈ L | 〈v, x〉L < 0, 〈h, x〉L > 0, 〈x, x〉L = d}

can be computed by the method described in [18, Section 3.3].

Our implementations of these algorithms due to Shimada are available for down-

load on K3surfaces.com as ShiBooster and ShiChecker, respectively.

76

https://K3surfaces.com


1.5 Computing the walls of an induced chamber

We have seen in section 1.1.2 that a ι(S)-nondegenerate PL-chamberD induces

a PS-chamber

D = D ∩ PS.

Assuming thatD has Weyl vectorw, which is inherited by the induced chamber

D, we have seen in proposition 12 that the set prS(∆w) is a de�ning set of the

induced PS-chamberD = D∩PS . The aim of this section consists in providing

the procedures which will enable the reader to compute a primitively minimal

de�ning set of an induced PS-chamber D from the sole input data of its Weyl

vector. That is, we provide procedures to compute the data of the walls of a

PS-chamber D. To do so, we proceed in two stages:

I In section 1.5.1, we present the procedure DeltaW. This procedure is

based on Shimada’s algorithm 5.8 from [19] and ouputs ∆w from the input

data of the Weyl vector w of a PS-chamber D.

I In section 1.5.2, we introduce the procedure SetOfWalls. The latter is

based on Shimada’s algorithm 3.17 from his article [19] and outputs a

primitively minimal de�ning set from the input data of a de�ning set of a

PS-chamber.

The computation of the set of walls of a PS-chamber D = D ∩ PS with Weyl

vector w can then be performed by proceeding as follows: Using the Weyl vec-

tor w of D as input, we use the procedure DeltaW to compute the set ∆w. By

proposition 12, the set prS(∆w) is a de�ning set of D. We then apply the proce-

dure SetOfWalls to the latter in order to obtain a primitively minimal de�ning

set of D, i.e., the data of the walls of D.

1.5.1 Procedure DeltaW

As before, we work with a complex K3 surface X . We assume that its Néron-

Severi groupS = NS(X) has been primitively embedded into a suitable ambient

77



even hyperbolic lattice L by an embedding

ι : S ↪→ L

in such a way thatPS ⊂ PL.Assume that a Weyl vectorw ∈ L of aPL-chamber

D is given. Let R = S⊥, the orthogonal complement of S in L. We follow the

structure outlined by Shimada in Algorithm 5.8 from his article [19] and provide

all the necessary additional details which will enable our readers to produce their

own implementations of this algorithm without hassle. We also provide our

implementation of this algorithm, called DeltaW, available for download and

explained on k3surfaces.com We also explain on this website how to computeR,

R∨, GR, nR... and all the entities mentioned in this section using the SageMath

library. We now state the algorithm provided by Shimada in [19, algorithm 5.8]

and then explain how we implemented it. Assume that the Weyl vector w ∈ L
of an PL-chamberD is given as input data. The following algorithm returns the

set

∆w =
{
x ∈ ∆RL(D) | (x)⊥ ∩ PS 6= ∅

}
=
{
x ∈ ∆RL(D) | x2

S < 0
}

(where we used proposition 10)

from the input data of w. Shimada’s Algorithm 5.8:

I Step n°1 - Compute wS = prS∨(w) ∈ S∨, wR = prR∨(w) ∈ R∨ (see

details in section 1.3).

I Step n°2: Compute the set

nR =
{
c ∈ Q | dRc ∈ Z, d2

Rc ∈ 2Z,−2 < c ≤ 0
}

where dR denotes the order of the discriminant group R∨/R of R.

De�ne ∆′ := {} .

I Step n°3 - Let βmax = max {|β| | β ∈ nR}. Use a short lattice vectors

78

https://k3surfaces.com


enumeration solution to compute

{
v ∈ R∨ | v2 ≤ βmax

}
and process the data of this set to obtain

R∨ [β] =
{
v ∈ R∨ | v2 = β

}
and aR [β] := {〈wR, v〉R∨ | v ∈ R∨ [β]}

for each β ∈ nR.

I Step n°4 - For each pair (β, α) ∈ nR× aR [β], use algorithm ShiChecker
to compute the �nite set

S∨ [β, α] = {v ∈ S∨ | 〈v, wS〉S∨ = 1− α, 〈v, v〉S∨ = −2− β} .

I Step n°5 - For each β ∈ nR, each vR ∈ R∨ [β], each α ∈ a∨R [β] and each

vS ∈ S∨ [β, α] , determine whether the element vS + vR belongs to L.

That is, determine whether the coordinates of vS + vR with respect to the

standard basis of L are all integers.

If the answer is positive, append vS + vR to ∆′.

I Final step: Output ∆′ as ∆w.

Before explaining this algorithm step-by-step, we have to shed light on the gen-

eral idea behind Shimada’s algorithm 5.8. The endgame consists in obtaining

elements of ∆w as sums vS + vR of elements vS ∈ S∨ and vR ∈ R∨ which

satisfy

〈vS, vS〉S∨ = −2− 〈vR, vR〉R∨ and 〈vS, wS〉S∨ = 1− 〈vR, wR〉R∨ .

To this end, Step n°3 will be used to obtain suitable elements vR ∈ R∨, while

Step n°4 will enable us to determine elements vS ∈ S∨ for which there exist an

element vR such that vS+vR satis�es the above equalities. Once this is done, we

79



will not be far from obtaining the set ∆w. Indeed, assume that elements vS ∈ S∨

and vR ∈ R∨ satisfying the above equalities have been obtained, that is, such

that equalities are given, i.e., satisfy

〈vS + vR, vS + vR〉L = −2 and 〈vS + vR, w〉L = 1. (1.11)

Assume furthermore that vS + vR ∈ L, i.e., that vS + vR has integer coordinates

with respect to the standard basis of L, and note that performing this check is

the purpose of Step n°5.

De�nition 11 states that the Weyl vector w of a PL -chamber D enables us to

express the minimal de�ning set ∆RL
(D) of D as

∆RL(D) = {x ∈ L | 〈x, x〉L = −2, 〈w, x〉L = 1} ,

thus, if vS + vR satisfy equalities (1.11) then it is clear that

vS + vR ∈ ∆RL(D).

Moreover, we have by de�nition

∆w =
{
x ∈ ∆RL(D) | x2

S < 0
}

=
{
x ∈ L | 〈x, x〉L = −2, 〈w, x〉L = 1, 〈prS∨(x), prS∨(x)〉S∨ < 0

}
.

Hence, it remains to prove that the projection of vS + vR onto S∨, which is, by

de�nition vS , satis�es

〈vS, vS〉S∨ < 0,

in order to �nally obtain that vS + vR ∈ ∆w. To this end, we can use the

assumption 〈vR, vR〉R∨ ∈ nR, so that

−2 < 〈vR, vR〉R∨ ≤ 0

80



holds. The equality

〈vS, vS〉S∨ + 〈vR, vR〉R∨ = −2

will then readily allow us to deduce

〈vS, vS〉S∨ < 0.

Consequently, we will have �nally obtained that

vS + vR ∈ ∆w

holds, as desired. We follow a step-by-step approach and provide all the details,

tips and tricks which enabled us to successfully implement this critical algo-

rithm due to Shimada.

Step n°1 - We start by computing the orthogonal projections of w onto S∨ and

R∨, which are respectively denoted by wS and wR. In order to do so, we recom-

mend to make use of the material introduced in the section 1.3 of this thesis.

Step n°2 - We compute the set nR. First, note that the value of dR can be ob-

tained by computing the determinant of the Gram matrix GR of R.

A rational β ∈ Q belongs to nR if and only if there exist integers k1, k2 ∈ Z

dRβ = k1 and d2
Rβ = 2k2

such that −2dR < k1 ≤ 0

−2d2
R < 2k2 ≤ 0.

In order to compute nR, de�ne

A = {k/dR | k ∈ Z, −2dR < k ≤ 0}

81



and

B =
{

2k/d2
R | k ∈ Z, −2d2

R < 2k ≤ 0
}
.

It is clear that there is an equality

nR = A ∩B

and the knowledge of dR is the only data required in order to compute A and

B. We let ∆′ = { } .

Step n°3 - To each element β ∈ nR, Shimada associates the sets

R∨ [β] =
{
v ∈ R∨ | v2 = β

}
and aR [β] := {〈wR, v〉R∨ | v ∈ R∨ [β]} ,

which, as stated by Shimada in his article, are �nite. Since the Gram Matrix of

R∨ is negative de�nite, sets such asR∨ [β] can be easily computed using a short

lattice vectors enumeration algorithm. A few tips regarding this task: First, note

that nothing guarantees that the Gram matrix ofR∨ has only integer entries. To

be safe, we multiplyGR∨ by the least common multiple δ of the denominators of

its entries. Also, keep in mind that we have |β| < 2 since β ∈ nR. This implies

that a single call for a short lattice vectors function will enable us to obtain the

data of all the setsR∨ [β]. We thus use a short lattice vectors enumerator in such

a way that it returns the set

{
x ∈ R∨ | −x(δGR∨)xT < 2δ + 1

}
from which all the sets R∨ [β] will be obtained by basic sorting. This set should

not be computed every time the procedure to compute ∆w is executed. Doing so

would amount to wasting computational resources. As soon as a Gram matrix

for R∨ is obtained, the above-mentioned set can be computed once and for all.

Assuming given an element β ∈ nR and computing the set R∨ [β] then enables

82



us to obtain the associated set aR [β] which is formed by computing

〈wR, v〉R∨

for each v ∈ R∨ [β].

Step n°4 - Fix an element β ∈ nR, an element α ∈ aR [β] and an element

vR ∈ R∨ [β] . That is, the equalities

β = 〈vR, vR〉R∨ and α = 〈vR, wR〉R∨

hold. The procedure to obtain an element vS ∈ S∨ [β, α] can be broken down

into two stages:

(a) First, we determine a solution c ∈ S∨ of the equation 〈x,wS〉S∨ = 1− α.

(b) We then determine an element y ∈ (wS)⊥ ⊂ S∨ satisfying

〈y + c, y + c〉S∨ = −2− β,

i.e., satisfying

〈y, y〉S∨ + 2〈y, c〉S∨ + 〈c, c〉S∨ = −2− β. (1.12)

The element

vS = y + c

83



thus assembled will then be such that

〈vS, wS〉S∨ = 〈y + c, wS〉S∨
= 0 + 〈c, wS〉S∨
= 1− α,

and

〈vS, vS〉S∨ = 〈y + c, y + c〉S∨
= −2− β,

so that vS ∈ S∨ [β, α], as desired. Before proceeding further, we want to point

out that once a basis

B =
{
s∨1 , . . . , s

∨
ρ

}
for S∨ is chosen, an element x ∈ S∨ can be expressed as

x = x1s
∨
1 + · · ·+ xρs

∨
ρ

where ρ = rank(S) and where x1, . . . , xρ ∈ Z are the coordinates of x with

respect to the basis B of S∨. The basis B being implicit, the notation

x = [x1, . . . , xρ]

will be used regularly in the remainder of this section. Denote by GS∨ a Gram

matrix for S∨.

Implementation of (a) - First, we recall that the projection

wS =
[
w∨1 , . . . , w

∨
ρ

]
of the Weyl vector w onto S∨ has been computed in Step n°1. Remember that

the section 1.3 of this thesis provides guidelines to compute projections. Solving

84



the equation

〈x,wS〉S∨ = 1− α

obviously amounts to determining integers x1, . . . , xρ satisfying the equality

[
x1 . . . xρ

]
GS∨


w∨1

...

w∨ρ

 = 1− α. (1.13)

The le�-hand side of this expression can be arranged in such a way that (1.13)

can be turned into
ρ∑
i=1

γixi = 1− α

where the γi are elements of Q. If necessary, clear the denominators on both

sides of this expression, so that it takes the form

ρ∑
i=1

µixi − γ = 0 (1.14)

where

γ ∈ Z and µi ∈ Z

for i ∈ {1, . . . , ρ}. A basis

{ε1, . . . , ερ−1} ⊂ S∨

of the (ρ − 1)-dimensional solution space of the degree one equation (1.14) of

the integer variables x1, . . . , xρ can then be computed using a CAS.

Implementation of (b) - Before describing how we proceeded, let us provide

context. The Gram matrix matrix of S∨, being inde�nite, prevents us from using

a short lattice vectors enumeration algorithm in order to determine the set of

85

https://k3surfaces.com


elements x ∈ S∨ satisfying

〈x, x〉S∨ = −2− β.

In order to overcome this obstacle, Shimada’s idea consists in determining a sub-

lattice of S∨ on which the restriction of the bilinear form of S∨ is de�nite. The

orthogonal complement (wS)⊥ of wS in S∨ matches this requirement. Indeed, a

result of Conway & Sloane mentioned in [19, Section 4] guarantees that a Weyl

vectors w ∈ L all satisfy

〈w,w〉L > 0

when the lattice into which S is primitively embedded is L = U ⊕ E8(−1) or

L = U ⊕ E8(−1) + E8(−1). Since R is negative de�nite, this implies that

〈wS, wS〉S∨ > 0

for all Weyl vectors in the framework of these two lattices. The Hodge Index

theorem then ensures that the restriction of 〈 , 〉S∨ to (wS)⊥ is negative de�-

nite, hence enabling us to apply Shimada’s short vectors algorithm described in

section 1.4 in order to determine the set of elements

y ∈ (wS)⊥ ⊂ S∨

satisfying

〈y, y〉S∨ + 2〈y, c〉S∨ + 〈c, c〉S∨ ≤ −2− β.

We have seen that this algorithm requires a positive quadratic triple as input

data. This triple consists of a Gram matrix of (wS)⊥, of a column vector, and of

a constant. We now explain how to determine such a triple. In order to compute

a Gram matrix of (wS)⊥, we �rst need to compute a basis of this subspace. An

86

https://k3surfaces.com/hit/
https://k3surfaces.com/hit/


element x ∈ S∨ belongs to (wS)⊥ if and only if it satis�es

〈x,wS〉S∨ = 0.

Solving this equation for x = [x1, . . . , xρ] ∈ S∨ amounts to determining inte-

gers x1, . . . , xρ such that

[
x1 . . . xρ

]
GS∨


w∨1

...

w∨ρ

 = 0. (1.15)

and can be done by proceeding as explained at the beginning of the explanations

for the implementation of (a) in order to obtain a basis for (wS)⊥ . Note that you

can also directly use the computer and functions from the SageMath library (or

Magma) to do so. Using this basis, we compute a Gram Matrix of (wS)⊥. That

is, we compute the matrix

[
〈ξi, ξj〉S∨

]
1≤i,j≤ρ−1

.

Denote by pα ∈ S∨ a solution of the equation

〈x,wS〉S∨ = 1− α.

Such a solution can be obtained using the guidelines we provided in the para-

graph dedicated to the implementation of (a). We are now ready to determine

to an element y ∈ (wS)⊥ ⊂ S∨ satisfying

〈y + pα, y + pα〉S∨ = −2− β, (1.16)

In order to stay in line with the input data format of Shimada’s short lattice

vectors algorithm, we start by replacing the = sign in

〈y + pα, y + pα〉S∨ = −2− β (1.17)

87



by an ≥ sign. There is no loss of generality in doing so since the data of the

vectors y satisfying the equality will be contained in the set returned by the

algorithm. We moreover have to remember that the Gram matrix of (wS)⊥ is

negative de�ne. This fact forces us to multiply both sides of (1.17) by −1 before

applying Shimada’s short vectors algorithm ShiVectors, thus �nally bringing us

into line with the input data format required by this algorithm. Thus, expanding,

arranging, and turning the expression (1.17) into an inequality, we obtain:

〈y, y〉S∨ + 2〈y, pα〉S∨ + 〈pα, pα〉S∨ + 2 + β ≥ 0. (1.18)

Since y is here assumed to be an element of (wS)⊥, it can be expressed it as

y = y1ξ1 + · · ·+ yρ−1ξρ−1

where the ξi are elements of the basis for (wS)⊥ which has been explicitly com-

puted earlier. The term 2〈y, pα〉S∨ in (1.18) can then be expressed as:

2〈y, pα〉S∨ = 2〈y1ξ1 + · · ·+ yρ−1ξρ−1, pα〉S∨

= 2(y1〈ξ1, pα〉S∨ + · · ·+ yρ−1〈ξρ−1, pα〉S∨)

= 2
[
y1 . . . yρ−1

]
〈ξ1, pα〉S∨

...

〈ξρ−1, pα〉S∨


= 2yP

where P is the (ρ− 1)-sized column vector thus de�ned as

P =


〈ξ1, pα〉S∨

...

〈ξρ−1, pα〉S∨

 .
Denoting by Gw the Gram matrix of (wS)⊥, we see that we established that the

88



inequality

〈y + pα, y + pα〉S∨ ≥ −2− β

is equivalent to

y Gw y
t + 2yP + c ≥ 0

where

y = [y1, . . . , yρ−1] and c = 〈pα, pα〉S∨ + 2 + β.

By the Hodge Index Theorem, the Gram matrix Gw of (wS)⊥ is negative de�-

nite. We thus replace it by its negative −Gw and do the same for P and c. We

hence obtain an inequality involving a positive quadratic form on the le�-hand

side, forming an expression fully in line with the input data format required by

Shimada’s short vectors algorithm:

y (−Gw⊥S
) yt + 2y(−P ) + (−c) ≤ 0

The positive quadratic triple to be used as input data into Shimada’s short lattice

vectors enumerator ShiVectors is therefore given by:

[
−Gw⊥S

,−L,−c
]

=

−Gw⊥S
,−


〈ξ1, pα〉S∨

...

〈ξρ−1, pα〉S∨

 ,−〈pα, pα〉S∨ − 2− β

 .
Executing this algorithm produces the set of all of elements q ∈ (wS)⊥ such that

〈q + pα, q + pα〉S∨ ≥ −2− β,

from which can be extracted the set of elements q ∈ (wS)⊥ satisfying

〈q + pα, q + pα〉S∨ = −2− β.

89

https://k3surfaces.com/hit/


Fix such an element, say q0, and let

vS = q0 + pα

The element vS clearly satis�es

〈vS, vS〉S∨ = −2− β.

Since q0 ∈ (wS)⊥, we moreover have

〈q0, wS〉S∨ = 0.

Since pα is furthermore assumed to belong to the solution set of

〈x,wS〉S∨ = 1− α,

we have

〈vS, wS〉S∨ = 〈q0 + pα, wS〉S∨
= 0 + 〈pα, wS〉S∨ = 1− α.

Recall that an element vR ∈ R∨ such that

α = 〈vR, wR〉R∨ and β = 〈vR, vR〉R∨

is assumed to be given since the beginning of Step n°4.

Step n°5: Denote by vL⊗QS (resp. vL⊗QR ) the image of vS (resp. vR) under the

transformation which expresses an element of S∨ ⊂ L (resp R∨ ⊂ L) in terms

of the standard basis of L⊗Q. Assume that

vL⊗QS + vL⊗QR ∈ L.

That is, assume that vL⊗QS + vL⊗QR has integer coordinates. Note that the Weyl

90



vector w can be expressed as

w = wL⊗Q
S + wL⊗Q

R .

We then have

〈
vL⊗QS + vL⊗QR , w

〉
L =

〈
vL⊗QS + vL⊗QR , wL⊗Q

S + wL⊗Q
R

〉
L

=
〈
vL⊗QS , wL⊗Q

S

〉
L +

〈
vL⊗QR , wL⊗Q

R

〉
L

= 〈vS, wS〉S∨ + 〈vR, wR〉R∨
= 1− α + α

= 1

and

〈
vL⊗QS + vL⊗QR , vL⊗QS + vL⊗QR

〉
L =

〈
vL⊗QS , vL⊗QS

〉
L +

〈
vL⊗QR , vL⊗QR

〉
L

= 〈vS, vS〉S∨ + 〈vR, vR〉S∨
= −2− β + β

= −2.

Since 〈vR, vR〉R∨ is assumed to belong to nR, and since the elements of this set

satify by de�nition of nR the inequalities

−2 < c ≤ 0,

one can readily deduce from the equality

〈vS, wS〉S∨ + 〈vR, wR〉R∨ = 1

established above that

〈vS, vS〉S∨ < 0

91



holds. Consequently,

vL⊗QS + vL⊗QR ∈ ∆w,

as desired, where we recall that

∆w = {x ∈ L | 〈x, x〉L = −2, 〈x,w〉L = 1, 〈xS, xS〉S∨ < 0} .

1.5.2 Procedure SetOfWalls

We have seen in the previous section how to compute the set ∆w from the input

data of a Weyl vector w ∈ L of a PS-chamberD. Moreover, proposition 12 from

section 1.2 states that prS(∆w) is a de�ning set of D. Shimada’s algorithm 3.17

from [19] enables us to compute the primitively minimal de�ning set of D, that

is, the set Ω(D) of walls of D, from the input data of prS(∆w).

We follow the structure outlined by Shimada in his article and provide additional

details to enable our readers to implement this algorithm without hassle. Our

implementation SetOfWalls of this algorithm is available for download on our

website. We brie�y go back within the framework of an unspeci�ed even hy-

perbolic lattice L with a �xed positive cone PL. Let D be a PL-chamber. Recall

that a hyperplane (v)⊥ of PL is called of wall of D if

(v)⊥ ∩ Int(D) = ∅

holds and if (v)⊥∩D contains a non-empty open subset of (v)⊥. We begin with

the following lemma due to Shimada.

Lemma 18. Let L be an even hyperbolic lattice. Assume that a de�ning set ∆ of
a chamberD has the property that any two of its distinct elements v1 6= v2 satisfy
(v1)⊥ 6= (v2)⊥. Then the following statements hold for any element v ∈ ∆,

(i) If ∆ \ {v} does not span L⊗ R, then (v)⊥ is a wall of D and

(ii) the hyperplane (v)⊥ is a wall of D if and only if ΣL(∆) 6= ΣL(∆ \ {v}).

92



This lemma provides criteria to determine whether an element of a de�ning

set of a chamber D has an orthogonal complement de�ning a wall of D. Let

∆ be a de�ning set of a PS-chamber D. The assumption that any two of the

distinct elements v1 6= v2 of ∆ satisfy (v1)⊥ 6= (v2)⊥ at the beginning of the

lemma takes its roots in the de�nition 2 of a de�ning set. Indeed, this de�nition

does not prevent the occurrence of distinct elements having the same orthogo-

nal complement, thus potentially de�ning the same wall. Such a redundancy is

pointless and should be avoided. In practice, situations in which this issue arises

are always caused by of elements v, v′ ∈ ∆ related by an equality of the form

v = kv′ (1.19)

where k ∈ Z. The best course of action to prevent their occurrence consists in

dividing the coe�cients of each element of ∆ by their greatest common divisor.

Indeed, elements v, v′ related by an equality such as (1.19) satisfy

v

gcd(v)
= ± v′

gcd(v′)

where we denote by gcd(v) the greatest common divisor of the coordinates of

an element v ∈ S∨. We thus substitute the set

∆′ = {v/ gcd(v) | v ∈ ∆} ,

to ∆ and make sure that if v ∈ ∆′ then −v /∈ ∆′. We proceed to points (i) and

(ii) of the lemma. Enforcing point (i) of Lemma 18 is straightforward: Given

an element v ∈ ∆′, we can use SageMath lattice features to determine whether

the sublattice of S∨ spanned by ∆′ \ {v} has rank equal to rank(S). We explain

how to do this on our website. If this is the case, then the lemma states that

(v)⊥ is not a wall of D. Otherwise, the lemma tells us that (v)⊥ is a wall of D.

Let us take a closer look to (ii), which states that given an element v ∈ ∆, the

93



hyperplane (v)⊥ is a wall of PL-chamber D if and only if

ΣS(∆) 6= ΣS(∆ \ {v}).

First, we recall that the positive cone ΣS(∆) associated with ∆ is de�ned as

ΣS(∆) = {x ∈ S ⊗ R | ∀v ∈ ∆, 〈x, v〉S ≥ 0}

and recall that we have by de�nition D = ΣS(∆) ∩ PS. To understand the

statement of point (ii), let p ∈ ∆ be such that (p)⊥ is not a wall of D. Since

(p)⊥ is not a wall of D, the data of p is irrelevant and unecessary to de�ne the

chamber D. Hence, we have

D = ΣS(∆ \ {p}) ∩ PS.

and the positive cone ΣS(∆ \ {p}) cone associated with ∆ \ {p} coincides with

the positive cone ΣS(∆) associated with ∆. Let us turn things over and assume

that p ∈ ∆ is such that (p)⊥ is a wall of the chamber D. Then, there exist at

least an element v0 ∈ S ⊗ R such that

〈v0, q〉S ≥ 0

for all q ∈ ∆ \ {p} but satisfying

〈v0, p〉S < 0.

Thus,

v0 ∈ ΣS(∆ \ {p})

and there is a strict inclusion

ΣS(∆) ⊂ ΣS(∆ \ {p}).

This observation also reveals the two following important facts:

94



I If (p)⊥ is not a wall of D, then the solution xsol obtained by minimizing

the function fp(x) = 〈x, p〉S subject to the constraints 〈x, q〉S ≥ 0 for all

q ∈ ∆ \ {p} satis�es fp(xsol) ≥ 0.

I If (p)⊥ is a wall ofD, the solution xsol obtained by minimizing the function

fp(x) = 〈x, p〉S subject to the constraints 〈x, q〉S ≥ 0 for all q ∈ ∆ \ {p}
must satisfy fp(xsol) = d with d negative and possibly unbounded toward

in�nity.

Performing this check can be done using linprog from scipy.optimize. We ex-

plain how we proceeded to do so in an online section. We now have all the tools

in hand to introduce our user-friendly version of Shimada’s Algorithm 5.11 from

[19] which encompasses all the material required to obtain the set of walls of a

chamber from the only input of its Weyl vector. Procedure SetOfWalls: Let D

be a PS-chamber with Weyl vector w.

Step n°1 - Using the procedure DeltaW, compute the set ∆w.

Step n°2 - Compute the set ∆′ = {v/ gcd(v) | v ∈ ∆}.

Step n°3 - For each p ∈ ∆′, proceed as follows: Determine whether the sub-

lattice of S∨ spanned by ∆′ \ {p} has rank equal to rank(S∨), where the latter

is the Picard number of S. If this is the case, then (p)⊥ is not a wall of D by

lemma 18. Delete p from ∆′. Otherwise, the lemma tells us that (p)⊥ is a wall of

D. Then, use linprog from scipy.optimize to solve the following optimization

problem: Minimize the function

fp(x) = 〈x, p〉S

subject to the constraints

〈x, q〉S ≥ 0

for all q ∈ ∆ \ {p} and denote by xopt the resulting solution.

95

https://k3surfaces.com/shimadas-lp-problem/
https://k3surfaces.com/shimadas-lp-problem/


I If fp(xopt) = 0, then (p)⊥ is not a wall of D. Delete p from ∆′.

I If fp(xopt) is strictly negative and possibly unbounded toward in�nity,

then (p)⊥ is a wall of D.

1.6 Computation of generators of Aut(X) - Background

The article [19] in which Shimada introduced his pioneering approach to Borcherds’

method was issued almost a decade ago. Nonetheless, it was not until this the-

sis that a general application framework of application for Borcherds’ method

was identi�ed and explicitly stated. This is undoubtedly one of the reasons that,

outside of Shimada’s implementation which has never been released to the pub-

lic, no trace of an implementation of any kind of the Borcherds’ method could

be found on the internet until the arrival of this thesis in 2022. It was to be

expected: Without an algorithmically testable framework of application, what

would be the point of implementing Borcherds’ method? We put an end to this

unfortunate situation in this section:

I First, we assemble Shimada’s puzzle by putting together the pieces which

can be found in his article [19] to exhibit a general framework of applica-

tion for Borcherds’ method.

I Second, from the knowledge of this framework, we determine a concrete

criterion to determine whether Borcherds’ method can be applied to a

givenK3 surface and produce a generating set of its automorphism group.

We thus start by acting as investigators motivated by the goal of exhibiting

a general framework of application for Borcherds’ method from the informa-

tion contained in Shimada’s article. Before proceeding further, let us get things

straight about the notations involved in this section:

• We denote by X a complex algebraic K3 surface.

• We denote by S the Néron-Severi group NS(X) of X .

96

https://k3surfaces.com/comments-intro-sec-1-6/
https://k3surfaces.com/comments-intro-sec-1-6/


• We denote by PS the positive cone ofX , i.e., the connected component of

{x ∈ S | 〈x, x〉S > 0}

of S containing ample classes.

• We denote by Aut(X) the automorphism group of X .

• We denote by T the transcendental lattice of X . That is, T is the orthog-

onal complement of S in

H2(X,Z) ' U3 ⊕ E8(−1)2.

• We denote by Nef(X) the numerically e�ective cone of X . This cone

is o�en referred to as the Nef cone of X . More appropriate, we use the

notation NX in order to denote the intersection Nef(X) ∩ PS .

• We denote by S∨/S the discriminant group of S and let

qS : S∨/S 7−→ Q / 2Z

be its associated quadratic form.

• We denote by T∨/T the discriminant group of T and

qT : T∨/T 7−→ Q / 2Z

will denote the associated quadratic form.

• We denote by O(S), O(T ), O(qS) and O(qT ) the respective groups of

isometries of the lattices S, T and of the disc. groups S∨/S, T∨/T .

• Denote by O+(S) the subgroup of O(S) preserving PS .

97



• The subgroup of O+(S) preserving Nef(X) ∩ PS is denoted by

Aut(Nef(X) ∩ PS) =
{
g ∈ O+(S) | N g

X = NX
}
.

1.6.1 Scope of application of Borcherds’ method

We still have to mention the two following results that will be useful to us:

I It is well-known that an isometry of S (resp. T ) induces an isometry of

S∨/S (resp T∨/T ) in a canonical way, so that there are natural homomor-

phisms

ηS : O(S) −→ O(S∨/S) and ηT : O(T ) −→ O(T∨/T ).

I As indicated at the beginning of Shimada’s [19, section 5], there exists an

isomorphism

δ : (S∨/S, qS) −→ (T∨/T,−qT )

of discriminant forms which in turns induces an isomorphism

ψ : O(S∨/S) −→ O(T∨/T )

of the groups of isometries of S∨/ S and of T∨/ T .

The situation can be summarized as follows

98



We start by recalling a well-known piece of theoretical material in the �eld of

study of K3 surfaces: The famous Torelli theorem states that to each e�ective

Hodge isometry

Φ : H2(X,Z)→ H2(X,Z)

can be uniquely associated an automorphism

f : X → X

such that

Φ = f ∗.

Let ω ∈ T ⊗ C be a non-zero holomorphic 2-form and de�ne

CT =
{
g ∈ O(T ) | ∃λ ∈ C× such that. ωg = λω

}
.

By de�nition of CT and of the morphisms ηT and ηS introduced earlier, an ele-

ment g ∈ O+(S) extends to an e�ective Hodge isometry if and only if

ψ(ηS(g)) ∈ ηT (CT ).

The following result due to Piatetski-Shapiro & Shafarevich [14] and stated in

[19, Theorem 7.1] will be central for the continuation of our study:

99



Proposition 19. Via the natural actions of Aut(X) on the lattices S and T, the
automorphism group Aut(X) is identi�ed with

{(gS, gT ) ∈ Aut(Nef(X) ∩ PS)× CT | ψ(ηS(gS)) = ηT (gT )} .

Since O(qT ) is �nite, the subgroup

H :=
{
gS ∈ O+(S) | ψ(ηS(gS)) ∈ ηT (CT )

}
of O+(S) has �nite index.

It should be understood from the �rst part of this theorem that a pair (gS, gT )

can be associated with each g ∈ Aut(X) and that its elements gS, gT satisfy

I gS ∈ Aut(Nef(X) ∩ PS) ⊂ O(S),

I gT ∈ CT ⊂ O(T ),

I ψ(ηS(gS)) = ηT (gT ).

That is, the image of the morphism

ϕX : Aut(X) −→ O(S)

satis�es

Im(ϕX) ⊂ AutH(Nef(X) ∩ PS)

where

AutH(Nef(X) ∩ PS) = {g ∈ H | g preserves Nef(X) ∩ PS}

⊂ Aut(Nef(X) ∩ PS).

For the remainder of this section, we ask the reader to keep in mind the fact that,

in the framework of a complex algebraic K3 surface X , Borcherds’ method is

a procedure which produces a generating set of AutH(Nef(X) ∩ PS). Follow-

ing proposition 19, Shimada introduced in [19] the following corollary in [19,

100



Corollary 7.2] which formalizes the consequences of proposition 19 and brings

an additional characterization of Ker(ϕX) to the table:

Corollary 20. The kernel of ϕX is isomorphic to Ker(ηT )∩CT . The image of ϕX
is isomorphic to

AutH(Nef(X) ∩ PS) = {g ∈ H | N g
X = NX}

⊂ Aut(Nef(X) ∩ PS)

Shimada also introduced the following proposition in section 8.1 of [19]:

Proposition 21. If ρX < 20 and the period ωX of X is very general in T ⊗ C,
then

CT = {±1} .

Combining this result to the characterization of Ker(ϕX) provided in corollary

20 enables us to assert that

Ker(ϕX) ⊂ {±1}

holds whenever the K3 surface X under study is very general and has a Picard

number ρX satisfying

ρX < 20.

Assume that−1 /∈ Ker(ηT ) also holds, so that Ker(ϕX) = {1} . In this case, the

morphism ϕX is injective. Under this assumption, it is clear that the image of

the morphism

ϕX : Aut(X) −→ O(S)

then satis�es

Im(ϕX) ' Aut(X).

101



Keeping in mind that corollary 20 states that

Im(ϕX) ' AutH(Nef(X) ∩ PS)

we hence obtain by transitivity that

Aut(X) ' AutH(Nef(X) ∩ PS).

The pieces of the puzzle can then all be put together:

Theorem 22. If X is very general (we will always assume that it is the case),
satis�es ρX < 20 and −1 /∈ Ker(ηT ), then there is an isomorphism

Aut(X) ' AutH(Nef(X) ∩ PS).

The above theorem enables us to exhibit a general framework of application of

the method for the computation of automorphism groups: Borcherds’ method

returns a generating set of Aut(X) whenever X is a complex K3 surface of Pi-

card number ρX < 20 satisfying −1 /∈ Ker(ηT ).

The following �gure provides a clear view of the situation:

102



Keep in mind that Borcherds’ method, by design, produces a generating set

of AutH(Nef(X) ∩ PS). This is why a generating set of Aut(X) can be ob-

tained for complex K3 surfaces satisfying the above-mentioned conditions. We

will soon provide in this section a criterion to determine whether the condition

−1 /∈ Ker(ηT ) holds. Note that also our program KerChecker is available on

our website and will automatically perform this check. Borcherds’ method to

compute generators of AutH(Nef(X)∩PS), as presented by Shimada ten years

ago, is therefore not limited to a handful of special cases of K3 surfaces X for

which it will provide generators of Aut(X). There is a clear general framework

of application for complex K3 surfaces, opening up very broad prospects for

study. Although this framework was not explicitly apparent in Shimada’s arti-

cle [19], all the material used above could be found there. We still have to tackle

two issues in order to be able to take advantage of the theorem 22:

I Issue n°1: We need to provide Borcherds’ method with a generalized

membership criterion for H.

I Issue n°2: We need to provide a concrete criterion to check whether

−1 /∈ Ker(ηT )

holds. Click here for practical details regarding this matter, this webpage

contains an online version of the content of the section 1.6.3.

1.6.2 Finding a generalized membership criterion

We start by providing a solution to the Issue n°1: Let X be a K3 surface X

satisfying the conditions of theorem 22. Let g ∈ Aut(X) and consider the as-

sociated pair (gS, gT ) provided by proposition 19. The latter also states that the

element

gS ∈ Aut(Nef(X) ∩ PS) ⊂ O+(S)

103

https://k3surfaces.com/borcherds-scope/


satis�es

ψ(ηS(gS)) ∈ ηT (CT ),

that is, gS ∈ H. By proposition 21, we have

CT = {±1} .

The group H can then be expressed as

H =
{
hS ∈ O+(S) | ψ(ηS(hS)) ∈ {±1}

}
.

Since

ψ : O(qS) −→ O(qT )

is an isomorphism, the de�nition of H can be further re�ned as

H =
{
hS ∈ O+(S) | ηS(hS) ∈ {±1}

}
,

where we recall that

ηS : O(S) −→ O(qS)

is the natural morphism which turns isometries of S into isometries of its dis-

criminant group S∨/S. Thus, an element gS ∈ Aut(Nef(X) ∩ PS) such that

ηS(gS) ∈ {±1}

can be associated with each automorphism g ∈ Aut(X). Conversely, if we let

q ∈ Aut(Nef(X) ∩ PS) be such that ηS(q) ∈ {±1}, then the correspondence

provided by proposition 19 enables us to exhibit an element h ∈ Aut(X) such

that q = hS , where

(hS, hT )

is the pair associated with h by this correspondence. A precise characterization

of the elements of Aut(Nef(X)∩PS) originating from automorphisms thus be-

comes apparent, and can be formalized in the following proposition:

104

https://k3surfaces.com/remark-section-1-6-2/


Proposition 23. Assume that ρX < 20 and that −1 /∈ Ker(ηT ). Then an
element h ∈ Aut(Nef(X) ∩ PS) emanates from an automorphism g ∈Aut(X),
i.e., satis�es h = gS by the identi�cation of proposition 19 if and only if

ηS(h) ∈ {±1} .

That is, h ∈ H if and only if its acts on the discriminant group S∨/S as ±Id.

Note that a (ρ× ρ)-sized invertible matrix of the form
a11 . . . a1ρ

... . . . ...

aρ1 . . . aρρ

 aij ∈ Z, 1 ≤ i, j ≤ ρ.

can be associated with each element of O(S), in a framework of a given basis

B. Such matrices, say g ∈ GLρ(Z), act from the right on ρ-sized row vectors

representing elements of S, e.g.,

v 7−→ vg,

where v ∈ S. Such matrices satisfy by de�nition

gGSg
T = GS

where we recall that GS denote the Gram matrix of S with respect to B and

where gT denotes the transpose of the matrix g. Note that our previous discus-

sion enables us to assert that whenever the conditions of theorem 22 hold, the

subgroup H of O+(S) can be expressed as

H =
{
hS ∈ O+(S) | ηS(hS) ∈ {±1}

}
.

105



In order to obtain a membership criterion for H, we thus have to be able to:

I Determine whether an element g ∈ GLρ(Z) belongs to O+(S).

I Determine whether an element of O+(S) acts as ±Id on S∨/ S.

Dealing with the �rst point is an easy task: Let g ∈ GLρ(Z). Then g ∈ O+(S) if

and only if g ∈ O(S) and if g preserves PS . That is, g must satisfy

gGSg
T = GS

and determining whether g preserves PS can be done by taking any ample class

a0 ∈ PS and checking whether

(a0g)GSa
T
0 > 0,

i.e., whether the image of an ample class a0 ∈ PS by g is still contained in PS .

Note that an element g ∈ O+(S) acts as ±Id on the discriminant group S∨/ S

of S if and only if there exists ε ∈ {±1} such that

g∗t = ε t

holds for all generators t ofS∨/ S, where g∗ denotes the transformation ofS∨/ S

naturally associated with

g ∈ O+(S) ⊂ O(S)

by the natural morphism which turns elements of O+(S) into transformations

of O(S∨/ S). It is well-known that the columns bi = coli(G−1
S ) of the inverse of

the matrix GS can be taken as representatives of the generators of S∨/S. Thus,

an element g ∈ O+(S) acting as +Id or −Id on S∨/ S must either satisfy the

conditions

big − bi ∈ ZρX for all 1≤ i ≤ ρX

106



or the conditions

big − bi ∈ ZρX for all 1≤ i ≤ ρX

This conditions can be reformulated as: An element g ∈ O+(S) acting as +Id

or −Id on S∨/ S must satisfy either

G−1
S g −G−1

S ∈Mρ(Z) or G−1
S g +G−1

S ∈Mρ(Z)

where Mρ(Z) denote the group of (ρ × ρ)-sized matrices with integer coe�-

cients. We thus established the following proposition:

Proposition 24. Assume that the conditions of theorem 22 are satis�ed. An ele-
ment g ∈ O(S) belongs toH if and only if

I g GS g
T = GS

I a0 g GS a
T
0 > 0 for an ample class a0 ∈ NS(X)

I Either (a) or (b) below hold:

(a) G−1
S g −G−1

S ∈Mρ(Z)

(b) G−1
S g +G−1

S ∈Mρ(Z)

Our procedure MemberCrit is a direct implementation of this proposition: It

takes as input an invertible matrix with integer coe�cients and outputs a Boolean

value True or False depending on whether the matrix used as input data belongs

to H or not.

1.6.3 Checking the kernel condition

We start by recalling that the transcendental lattice T associated with X is the

orthogonal complement of S = NS(X) in the rank 22 lattice

H2(X,Z) ' U3 ⊕ E8(−1)2.

107



We also recall that we denote by ηT is the natural morphism

ηT : O(T ) −→ O(T∨/ T ).

which turns isometries of T into isometries of its discriminant group. We note

that the rank of T is equal to 22− ρ, where ρ = rank(S). If we assume a basis

�xed for T , then an element of GL22−ρ(Z) can be associated with each trans-

formation of O(T ). The element −1 ∈ O(T ) can thus be viewed as the matrix

−Id22−ρ. The latter will be denoted by −Id for the remainder of this section. In

order to �nd a way to check whether −1 /∈ Ker(ηT ), we are going to use the

same trick that we used to derive a membership criterion for H. Assume that

−Id ∈ Ker(ηT ), i.e., that the matrix −Id ∈ O(T ) acts as the identity element of

O(T∨/ T ) via the natural morphism ηT . Then−Id must preserve each generator

of the discriminant group T∨/ T, where 1 ≤ i ≤ 22 − ρ. Keeping in mind that

representatives of basis elements of T∨/ T are obtained by taking columns of

G−1
T , the inverse of the Gram matrix GT of T , this conditions amounts to

2G−1
T ∈M22−ρ(Z).

Thus, if

2G−1
T /∈M22−ρ(Z),

then

−Id /∈ Ker(ηT ).

Proposition 25. Let T be the transcendental lattice ofX , that is, T is the orthog-
onal complement of S := NS(X) in H2(X,Z) ' U3 ⊕ E8(−1)2. Consider the
natural morphism ηT : O(T ) −→ O(T∨/ T ) and let GT be the Gram matrix of
T . The following statement holds:

2G−1
T /∈M22−ρ(Z) =⇒ −Id /∈ Ker(ηT )

where ρ = rank(S).

108



Assuming thatX has Picard number ρX ≤ 17, our procedure KerChecker uses

the input data of an embedding of S into either

U ⊕ E8(−1) or into U ⊕ E8(−1)⊕ E8(−1),

computes a Gram matrixGT of T with respect to a �xed basis, and then performs

the above-mentioned check. KerChecker outputs True whenever

−Id /∈ Ker(ηT )

holds, and False when

−Id ∈ Ker(ηT ).

Click here for more details on the practical and computer-based side of things

regarding the procedure KerChecker and more generally, regarding the scope

of application of Borcherds’ method.

109

https://k3surfaces.com/borcherds-scope/


1.7 Borcherds’ method

Please note that an entire section of K3surfaces.com is devoted to the practical

and computer-based side of things regarding Borcherds’ method. Click here for

more details regarding this matter.

Let X be a K3 surface over the complex numbers. Assume that X has Picard

number ρX and �x a primitive embedding

ι : S ↪→ L

of S = NS(X) into an even hyperbolic lattice L chosen as recommended in the

following table:

We moreover assume that the pritimive embedding ι : S ↪→ L is such that

ι(PS) ⊂ PL.

Using the material discussed in the previous sections, we proceed as follows:

I Following the steps explained in section 1.1.2, we set a PL-chamber struc-

ture on the positive conePL of the ambient latticeL into which is assumed

to be embedded in S.

I As described in section 1.2, we use the PL-chamber structure to induce a

PS-chamber structure on the positive cone PS of S.

110

https://K3surfaces.com
https://k3surfaces.com/aut-groups/
https://k3surfaces.com/aut-groups/


In this section and until the remainder of the �rst part of our thesis, we will

present Borcherds’ method and explain how we implemented it. We proceed by

using the fundamental building blocks provided by Shimada in his article [19] as

a basis and present all the details and developments which have been obtained

during our study.

Borcherds’ method is an algorithmic process that produces a generating set of

AutH(Nef(X)∩PS) by exploring and processing thePS-chamber structure over

Nef(X)∩PS until a complete set of representatives of H-congruence classes of

PS-chambers contained in Nef(X) ∩ PS has been obtained.

Our approach can be decomposed along three axes:

I We start by studying the portion of thePS-chamber structure over Nef(X)∩
PS . This structure is a theater where a good part of our story unfolds. It is

therefore crucial that we have a clear vision of this portion of the chamber

structure.

I We introduce the procedures used by Borcherds’ method to explore the

portion of the chamber structure over Nef(X) ∩ PS .

I We introduce the tools that enable Borcherds’ method to process this por-

tion of the chamber structure.

We will conclude with a �gure which sums up everything regarding Borcherds’

method. We provide our ready-to-use implementation of Borcherds’ method

with multi-core support on our website K3surfaces.com. We used Pool from

the Python multiprocessing library to make use of process-based parallelism in

our implementation of the method.

111

https://k3surfaces.com


Chamber structure over Nef(X) ∩ PS

The �rst fact of importance which should be exhibited is that Nef(X) ∩ PS is

tiled by chambers of the induced PS-chamber structure.

To see this, we �rst have to recall that we have seen in section 1.2 that the walls

of the PS-chambers structure all arise by taking the orthogonal complement in

PS of elements of the set

RL|S = {xS ∈ S∨ | x ∈ RL, 〈xS, xS〉S∨ < 0} .

Note that any x ∈ S ⊂ S∨ satisfying

〈x, x〉S = −2

also satis�es x ∈ RL|S . A fact of importance for the remainder of this section

is that this statement also holds for classes of divisors of curves playing a cen-

tral role on K3 surfaces: Classes of divisors associated with smooth rational

curves, also known as classes of (−2)-curves, or as (−2)-curves. Thus, each

class of a smooth rational curve can be associated with a wall of some chamber

of the PS-chamber structure. Moreover, a classical result which can be found

in Huybrechts’ book [5] states that each class of a smooth rational curve can be

associated with a wall of Amp(X). Keeping in mind that Amp(X) and Nef(X)

are related by the equality

Amp(X) = Int(Nef(X)),

we deduce that no (−2)-curve is super�uous for de�ning a wall of Nef(X).

What about Nef(X) ∩ PS?

The answer is provided by a useful result from Huybrechts’ book [5] with the

following characterization of the boundary of Nef(X) ∩ PS .

112



A class C ∈ S belonging to the boundary of Nef(X) satis�es either one of the

two following properties:

I The equality C2 = 0 holds.

I There exists a class E of a smooth rational curve such that 〈C,E〉S = 0.

Since all classes in Nef(X) ∩ PS have a strictly positive self-intersection, we

deduce that each (−2)-curve on X can be associated with a wall of Nef(X) ∩
PS . Such walls are called (−2)-walls, and bound Nef(X) ∩ PS . The induced

PS-chamber structure thus contains a natural chamber substructure covering

Nef(X) ∩ PS , and bound by (−2)-walls. Not crossing these walls is a golden

rule that Borcherds’ method must follow. Indeed, the method would otherwise

leave its work area over Nef(X) ∩ PS , thus potentially distorting the data and

results obtained. The procedure RatDetect detailed in section 1.7.1 is capable

of detecting (−2)-walls. This procedure can be viewed as a compass that allows

the method not to get lost during its journey.

Exploring the chamber structure

Borcherds’ method pursues the exploration of the chamber structure over Nef(X)∩
PS by moving from chamber to chamber. In order to formalize the movement

of Borcherds’ method, we �rst have to introduce the notion of adjacency for

chambers. LetD,D′ be two PS-chambers having the property of sharing a wall

(v)⊥ with v ∈ S ⊗ R.

De�nition 26. We say thatD andD′ are adjacent along the wall (v)⊥ whenever

the intersection

D ∩D′ ∩ (v)⊥

contains a non-empty open subset of (v)⊥. We also say that the chamber D

(resp. D′) is adjacent to D′ (resp. D) along the wall (v)⊥.

Using a chamber D0 ⊂ Nef(X) ∩ PS as a reference point, the notion of ad-

jacency is used to layer the chamber structure over Nef(X) ∩ PS into various

113



levels. The chamber D0 will o�en be referred to as the initial chamber.

De�nition 27. The notion of level is de�ned iteratively:

I The initial chamber D0 is the only level 0 chamber.

I A chamber adjacent to a level l − 1 chamber but not adjacent to a level

l − 2 chamber is said to be of level l.

The notion of level enables us to give a precise characterization of our ob-

ject of study: Starting from an initial chamber D0 contained in Nef(X) ∩ PS ,

Borcherds’ method is an iterative process that explores and processes the cham-

bers of Nef(X)∩PS , level by level, until a complete set of representatives of H-

congruence classes of chambers has been produced. In order to navigate within

the chamber structure on Nef(X) ∩ PS , Borcherds’ method must possess the

three following features:

I Borcherds’ method must be able to move from chamber to chamber.

To this end, Borcherds’ method leans on the procedure WeylAdj presented in

section 1.7.2. Given the Weyl vectorw of a chamberD and the data of an element

v ∈ S∨ such that (v)⊥ is a wall ofD, the procedure WeylAdj computes the Weyl

vector w′ of the chamber D′ adjacent to D along (v)⊥ .

I Borcherds’ method must possess the ability to detect (−2)-walls, that is,

walls (v)⊥ where v satis�es 〈v, v〉S = −2 and v ∈ S. Doing so is the

purpose of the procedure RatDetect, from section 1.7.1, which takes as

input an element v ∈ S∨ and determines whether (v)⊥ is a (−2)-wall.

Indeed, we have seen that the chamber structure over Nef(X) ∩ PS is bounded

by (−2)-walls. Hence, in case the method crosses a (−2)-wall, it leaves the

chamber structure over Nef(X)∩PS . Crossing such walls must be avoided at all

costs. We recall that the set of walls of a PS-chamberD is denoted by Ω(D) and

contained in the setRL|S of elements of S⊗Q having negative self-intersection.

114



I The third desired feature of the method is that it should never backtrack.

Assume that D is a chamber of level k, and that Borcherds’ method is currently

exploring the adjacencies aroundD. Then, the method should not be allowed to

explore adjacencies along walls of D leading to chambers of level k − 1. These

chambers have indeed already been explored and processed during previous it-

erations. The method thus also needs an anti-backtracking procedure to imme-

diately recognize the walls of a given chamber leading to a chamber of lower

level. We use the notation

Ω(D)

to denote the set of walls ofD from which have been removed the walls leading

to chambers of level k − 1. Explanations regarding our approach to determine

Ω(D) can be found by clicking here. This set will o�en be referred to (in partic-

ular, on �gures) as the set of walls of D with respect to anti-backtracking.

1.7.1 Procedure RatDetect

This section is based on Shimada’s guidelines which can be found in point 2.2

of Algorithm 6.1 from his article [19]. Let D be a PS-chamber. Determining

whether the wall (v)⊥ associated with an element v ∈ Ω(D) is a (−2)-wall

amounts to:

I Step n°1 - Determining the integer solution set Sv of the equation

x2 〈v, v〉S∨ = −2

of the variable x ∈ Z.

I Step n°2 - If Sv = ∅, then (v)⊥ is not a (−2)-wall. Otherwise, we check

whether there exists an element q ∈ Sv such that qv ∈ S . If this is the

case, then (v)⊥ is a (−2)-wall. Otherwise, (v)⊥ is not a (−2)-wall.

Accomplishing the task of Step n°1 should not present any di�culty. In order to

deal with Step n°2, assume that Sv 6= ∅ an let q ∈ Sv. Proceeding as described

115

https://k3surfaces.com/antibacktracking
https://k3surfaces.com/anti-backtracking/


in section 1.3, we compute the image of qv in L⊗ R and project it onto S ⊗ R.

If the resulting vector has integer coordinates, then it belongs to S.

1.7.2 Procedure WeylAdj

Given an element v ∈ Ω(D) and the Weyl vector w of PS-chamber D, the algo-

rithms 5.13 and 5.14 outlined in Shimada’s article [19] can be used to compute

the Weyl vector wD′ of a PS-chamber D′ adjacent to D along the wall (v)⊥.

We combined both of these algorithms into a single procedure: The procedure

WeylAdj takes as input an element v ∈ Ω(D) and the Weyl vector w of a PS-

chamber D and outputs the Weyl vector w′ of the PS-chamber D′ adjacent to

D along the wall (v)⊥. We begin by stating Shimada’s algorithms in a user-

friendly form, and adopt a step-by-step approach. Doing so enables us to pro-

vide as many details as possible, thus enabling our readers to easily implement

their own versions of this important building block of Borcherds’ method. We

now present Shimada’s procedure to compute the Weyl vector the chamber D′

adjacent to D along (v)⊥ where

v ∈ Ω(D) ⊂ {v ∈ S ⊗Q | 〈v, v〉S < 0} .

In order to compute a Weyl vector w′ of D′, proceed as follows:

I Step n°1: Compute the set

Pv =
{
r ∈ RL | (v)⊥ ⊂ (r)⊥

}
.

I Step n°2: Choose a complete set of representatives

P ′v = {r1, . . . , rN}

of Pv / {±1} .

116



I Step n°3: Choose an element u ∈ L⊗Q such that

i 6= j =⇒ 〈u, ri〉L
〈w, ri〉L

6=
〈u, rj〉L
〈w, rj〉L

.

and sort the elements of P ′v in such a way that

i < j =⇒ 〈u, ri〉L
〈w, ri〉L

<
〈u, rj〉L
〈w, rj〉L

holds for all ri, rj ∈ P ′v.

I Step n°4: Denote by si ∈ O+(L) the re�ection with respect to ri. Then

ws1s2...sN := (s1 ◦ s2 ◦ · · · ◦ sN)(w)

is a Weyl vector of D′. Note that a proof is given in [19, section 5].

We explain how we implemented Shimada’s algorithm, step-by-step. Before

proceeding further, recall that given an element v ∈ S ⊗ R, we de�ne

(v)⊥ = {x ∈ S ⊗ R | 〈x, v〉S = 0} ∩ PS.

Step n°1 - Consider the subspace

V = Rv ⊕ (R⊗ R)

of L⊗R. We denote by prV(r) the projection onto V of an element r ∈ L. Note

that the set

Pv =
{
r ∈ RL | (v)⊥ ⊂ (r)⊥

}
can be expressed as

Pv = {r ∈ RL | rS ∈ Rv}

where rS denote the orthogonal projection onto S∨ of an element r ∈ L.

117



Note that since v ∈ S∨ and r ∈ L, taking the inclusion

(v)⊥ ⊂ (r)⊥

only makes sense if we view (v)⊥ , which has been initially de�ned as a hy-

perplane of PS , as a hyperplane of PL. The assumption that S is embedded

primitively into L in such a way that PS ⊂ PL enables us to do so. We explain

how to compute the set Pv explicitly. Doing so is the exclusive purpose of Shi-

mada’s Algorithm 5.13. We follow his guidelines and provide all the necessary

additional details. Shimada starts by de�ning an initially empty set P = { } and

computes the set

S =
{
α ∈ Q | αv ∈ S∨, α2v2 ≥ −2

}
.

In order to explicitly determine this set, we proceeded as follows: Assume that

α ∈ S . Since α is by de�nition a rational, we express it as

α = p/q

with p, q ∈ Z, and q 6= 0. Denote by

{
s∨1 , . . . , s

∨
ρ

}
a basis for S∨ (see the Toolbox section 1.3 for guidelines on the choice of a basis

for S∨) and express the element v ∈ Ω(D) ⊂ S∨ in terms of its coordinates

vi ∈ Z for 1 ≤ i ≤ ρ with respect to this basis, so that

v = v1s
∨
1 + · · ·+ vρs

∨
ρ .

Let us take apart the de�ning conditions of the set S . We have p/q ∈ S if and

only if the two following conditions are satis�ed:

I The element αv, i.e., (p/q)v, must belong to S∨. This important require-

ment can only be ful�lled if the integer q divides each of the coordinates

118



vi of v. That is,

q | vi

must be true for 1 ≤ i ≤ ρ.

We thus introduce the set

S0 = {n ∈ Z | n | v1, . . . , n | vρ}

of all integers satisfying this property. Doing so enables us to know all possible

denominators q for p/q.

I The condition α2v2 ≥ −2 must hold.

For each q ∈ S0 we thus solve for x the inequality

x2 〈v, v〉S∨ ≥ −2q2

and store the solutions, when such solutions exist, into a set, say, an initially

empty set S1. It is then clear that

S =
{
α ∈ Q | αv ∈ S∨, α2v2 ≥ −2

}
= {p/q ∈ Q | p ∈ S1, q ∈ S0} .

In order to explicitly compute the set S0, we proceed as follows: Let vmax be the

largest (in absolute value) of the cordinates of v ∈ S∨. De�ne

T = {−vmax ,−vmax + 1, . . . , vmax − 1, vmax} ⊂ Z.

The set S0 can then �nally be obtained as

S0 = {m ∈ T | m divides vi for 1≤ i ≤ ρ} ,

which can be easily computed. Note that if we follow the guidelines available in

119



sections 1.5 and 1.5.2 to compute the set of walls of a chamber, we always obtain

S0 = {±1}

no matter which element v ∈ Ω(D) or which PS-chamber D is used. Indeed,

it follows from the directives contained in these sections that the coordinates

v1, . . . , vρ of elements v ∈ S ⊗Q inducing walls must satisfy

gcd(v1, . . . , vρ) = 1.

We now compute S1. To this end, initially de�ne it as an empty set S1 = { }
and proceed as follows: For each q ∈ S0, solve

x2v2 ≤ −2q2

for x ∈ Z and store the resulting solutions into the set S1. The desired set S

is then �nally be obtained as

S = {p/q ∈ Q | p ∈ S1, q ∈ S0} .

For each α ∈ S we then compute

cα = −2− α2v2

and let

cmax = max
α∈S

(cα).

Recall that we denote by R = S⊥ the orthogonal complement of S in L. Since

R∨ is negative de�nite, we can make use of a short lattice vectors enumeration

algorithm to compute the set

{x ∈ R∨ | 〈x, x〉R∨ ≤ cmax} .

120



Knowledge of this set enables us to obtain a set

R∨ [cα] = {x ∈ R∨ | 〈x, x〉R∨ = cα}

for each α ∈ S . We now have all the necessary ingredients to determine

Pv =
{
r ∈ RL | (v)⊥ ⊂ (r)⊥

}
.

For each α ∈ S and u ∈ R∨ [cα], determine whether αv + u belongs to L. To

this end, we use our knowledge of bases of S∨ and R∨ made of elements of L
to express both v ∈ S∨ and u ∈ R∨ as elements of L ⊗ R. If the sum αv + v

belongs to L, i.e., has integer coordinates with respect to the standard basis of

L, append αv + u to Pv. This is thus how the set Pv can be computed.

Step n°2 - We then have to compute a complete set of representatives ofPv /±1.

Create an initially empty set P ′v and proceed as follows: For each q ∈ Pv, if

−q /∈ P ′v

then append q to P ′v. Assume that the resulting set has cardinality N for some

positive integer N and is expressed as:

P ′v = {r1, . . . , rN} ⊂ Pv

Step n°3 - We then have to pick an element u ∈ L⊗Q such that i 6= j implies

〈u, ri〉L / 〈w, ri〉L 6= 〈u, rj〉L / 〈w, rj〉L .

This can be done in two ways:

I By randomly generating an element of u ∈ L⊗Q until the condition〈
u, ri −

〈w, ri〉L
〈w, rj〉L

rj

〉
6= 0 (1.20)

121



is full�lled for 1 ≤ i, j ≤ N .

I The other way we o�er may necessite less attempts to form the set

P = {(ri, rj) | ri, rj ∈ P ′v, i < j} .

We use the notation
(
p(1), p(2)

)
to denote elements p ∈ P . In practice, the

element

u = r0 +

Card(P)∑
i=1

p
(1)
i −

∑
p∈P

〈
w, p(1)

〉
L

〈w, p(2)〉L
p

(2)
i ,

where r0 is a randomly generated element of L, may satisfy the inequali-

ties (1.20).

If this is not the case, add another randomly generated element r′0 of L to u and

determine whether the resulting element uupd = u + r′0 thus obtained satis�es

the inequalities (1.20). Repeat until these inequalities are satis�ed.

Step n°4 - Assume that a suitable element u ∈ L ⊗ Q has been obtained. Shi-

mada then re-labels the elements of P ′v according to the following rule: If the

indices of re-labelled elements ri, rj ∈ P ′v satisfy i < j then the inequality

〈u, ri〉L
〈w, ri〉L

<
〈u, rj〉L
〈w, rj〉L

must hold. Denote by si the be re�ection

si : x 7−→ x+ 〈x, ri〉L ri

associated with an element ri ∈ Pv. The Weyl vector wD′ of the chamber adja-

cent to D along (v)⊥ can then be obtained from wD as

wD′ = (s1 ◦ · · · ◦ sN) (wD) .

122



Processing the chamber structure

We introduced the tools which enable Borcherds’ method to progress within the

chamber structure over Nef(X)∩PS . We now introduce the tools which enable

Borcherds’ method to process the portion of this chamber structure it explores,

and thus accomplish its purpose: Computing a generating set of AutH(Nef(X)∩
PS). Before proceeding further, let us review the notational conventions that

will be used regarding transformations of O(S): We consider that elements g ∈
O(S) act on elements of S and S ⊗ Q from the right. That is, the image of an

element b ∈ S under the action of an element g ∈ O(S) is denoted by bg, or by

bg. Similarly, we denote by

Dg = {bg | b ∈ D}

the image of aPS-chamber under the action of an element g ∈ O(S). Borcherds’

method enforces two courses of action in order to exhibit generators AutH(Nef(X)∩
PS):

I For each PS-chamber D ⊂ Nef(X) ∩ PS it explores, the method can

take advantage of the fact that generators of AutH(Nef(X) ∩ PS) can be

obtained by computing a generating set of

AutH(D) = {g ∈ H | D = Dg} ,

which, as established by Shimada in [19], is a �nite subgroup of

AutH(Nef(X) ∩ PS).

From the input data of the set Ω(D) of walls of aPS-chamberD ⊂ Nef(X)∩PS ,

the procedure AutChamber, which is based on Shimada’s Algorithm 3.18 from

[19], is introduced in section 1.7.3 and computes a generating set of AutH(D).

123



I The main course of action followed by Borcherds’ method to produce gen-

erators of AutH(Nef(X) ∩ PS) is based on the method’s capability to

identify relations of H-congruency between PS-chambers contained in

Nef(X) ∩ PS .

The relation of H-congruency between chambers will be central for the rest of

our study, and is de�ned as follows:

De�nition 28. Two PS-chambers D and D′ contained in Nef(X)∩PS are said

to be H-congruent whenever there exists an isometry of H sending either one

of D or D′ onto the other.

That is, we say thatD andD′ are H-congruent if there exists an element g ∈ H

such that D′ = Dg. When this is the case, the chambers D and D′ both belong

to the same H-congruence class of chambers. The procedure CongChecker,

based on Shimada’s Algorithm 3.19 from [19] and described in section 1.7.4,

takes as input the respective sets of walls Ω(D) and Ω(D′) of PS-chambers

D,D′ ⊂ Nef(X) ∩ PS and determines whether these chambers belong to the

same H-congruence class. When this is the case, the procedure CongChecker
outputs at least one transformation g ∈ H such that D′ = Dg. Both procedures

AutChamber and CongChecker are based on the same underlying mechan-

ics. As indicated by Shimada in his article, the latter are ultimately brute force

�avored. Note that massive gains can be realized when repeated use of Con-
gChecker is done using process-based parallelism. Our Python implementation

of Borcherds’ method uses the Pool object from the Python multiprocessing
library and can thus take advantage of the multi-core architecture of a CPU. We

provide more details about this matter in section 1.11.1, the Poolized Borcherds’
method. Shimada’s Algorithm 3.18 from [19], on which is based our implemen-

tation of AutChamber, relies on the fact that having knowledge of the set Ω(D)

of walls of aPS-chamberD is enough to precisely de�ne the domain of possibil-

ities in terms of the generators of AutH(D). In his article [19], Shimada indeed

states that such transformations can be characterized by the fact that they must

belong to H and above all must act as permutations of Ω(D). Note that an ad-

124



ditional development brought by this thesis is that a generalized membership

criterion for H is provided in section 1.6. From the input data of Ω(D), the

procedure AutChamber thus generates all possible transformations acting as

permutations of Ω(D) and then tests each of them for membership in H by en-

forcing the membership criterion given in the proposition 24 from section 1.6.

This procedure thus enables Borcherds’ method to obtain a generating set of

AutH(D) for any PS-chamber D ⊂ Nef(X) ∩ PS it explores. The procedure

CongChecker is based on analogous principles. As demonstrated by Shimada,

knowledge of the walls of PS-chambers D and D′ is enough to precisely de-

�ne the domain of possibilities in terms of isometries sending D onto D′. Such

transformations are characterized by the fact that they must establish a bijection

between Ω(D) and Ω(D′) while also being elements ofH. From the input data of

Ω(D) and Ω(D′), the procedure CongChecker generates all possible transfor-

mations which could send Ω(D) onto Ω(D′), and then enforces the membership

criterion for H in order to single out the elements sendingD ontoD′. Note that

in case sets of walls of the same chambers is are as input into the procedure

CongChecker, the latter will behave exactly like the procedure AutChamber
and output a generating set of AutH(D). Both of these procedures could not

exist without the following proposition established by Shimada in [19]:

Proposition 29. Any de�ning set ∆ of a PS-chamber D spans S ⊗ R.

We have seen in section 1.5 that the set Ω(D) of walls of aPS-chamberD, which

is called the primitively minimal de�ning set of D by Shimada is by de�nition a

de�ning set of the chamberD. Proposition 29 hence implies that the cardinality

of the set of walls Ω(D) of aPS-chamberD is at least equal to the Picard number

of the K3 surface under study. We thus form the set

Tups(Ω(D)) = {(m1,m2, . . . ,mρ) | mi ∈ Ω(D), 1 ≤ i ≤ ρX}

125



of ρ-sized tuples of elements of Ω(D) ⊂ S∨, from which can be picked a tuple

τgen ∈ Tups(Ω(D))

having the property of being made of elements which span S ⊗R. Such a tuple

τgen is called a generating tuple. Finding such tuples is the purpose of the pro-

cedure GentTup.

Procedure GentTup: Assume given as input the set of walls Ω(D) of a PS-

chamber D. Compute the set Tups(Ω(D)). For each τ = (m1,m2, . . . ,mρ) in

Tups(Ω(D)), form the (ρ× ρ)-sized matrix obtained by taking as columns the

elements of τ and compute its determinant. If the latter is non-zero, then τ is a

generating tuple. Otherwise, τ is not a generating tuple. Shimada’s proposition

29 ensures that it is always possible to determine a generating tuple. As soon

as a tuple with this property, i.e., a generating tuple, is found, the procedure

GentTuple outputs it as the generating tuple.

Assume that a generating tuple τgen of either D or D′ has thus been obtained,

say, a generating tuple of D. We now introduce the procedure TupLink, which

is intended to:

I Enable AutChamber to determine transformations which act as a per-

mutation of the set of walls of a chamber.

I Enable CongChecker to determine transformations sending the set of

walls Ω(D) of a PS-chamber D onto the set of walls Ω(D′) of another

PS-chamber D′.

Given a generating tuple τgen ∈ Ω(D) and a tuple τ ∈ Tups(Ω(D′)), the pro-

cedure TupLink attempts to produce a (ρ × ρ)-sized matrix Mτ,τgen sending τ

onto τgen, where ρ = rank(S), thus trying to link these tuples, as follows:

126



Procedure TupLink: Assume given tuples

τ1 = (t1, . . . , tρ) and τ2 = (v1, . . . , vρ)

with ti, vi ∈ S∨ for 1 ≤ i ≤ ρ. Assume moreover that either one of τ1, τ2

is a generating tuple. For example, assume that τ2 is a generating tuple, i.e.,

that its elements are linearly independent. Our aim consists in determining an

invertible (ρ× ρ)-sized matrix Mτ1,τ2 satisfying

Mτ1,τ2ti = vi for 1 ≤ i ≤ ρ. (1.21)

To this end, we proceed as follows: Let A be the (ρ× ρ)-sized matrix formed by

taking the elements of τ1 as columns, that is,

A =

t1 | t2 | · · · | tρ−1 | tρ

 .

and denote by B the (ρ× ρ)-sized matrix obtained by taking the elements of τ2

as columns that, is,

B =

v1 | v2 | · · · | vρ−1 | vρ

 .

Note that our assumption on the linear independence of the elements of τ2 en-

ables us to assert that the matrix B is invertible. We then determine whether

Mτ1,τ2 = AB−1

establishes a one-to-one correspondence between the elements of τ1 and τ2, i.e.,

satis�es the equalities resulting from expression (1.21). When this is the case,

output Mτ1,τ2 . We have to take into account the fact that whenever Mτ1,τ2 is

expected to be invertible, then the matrix A must also be invertible.

127



This can only happen if τ1 is a generating tuple. We thus have to keep in mind

that whenever the procedure TupLink is applied with the hope of obtaining

invertible transformations, both tuples used as input data should be generating

tuples. Time and resources would otherwise be wasted. We denote by

Tupsgen(Ω(D)) ⊆ Tups(Ω(D))

the set made of all the generating tuples contained in Tups(Ω(D)), which can

thus be obtained by testing each tuple with GentTup. We have all the tools

required to formalize the procedures AutChamber and CongChecker.

1.7.3 Procedure AutChamber

This procedure, based on Shimada’s algorithm 3.18, takes as input the set of

walls Ω(D) of aPS-chamberD and outputs a generating set of AutH(D). De�ne

an initially empty set A = { } . Apply the procedure GenTup each element of

Tups(Ω(D)), in order to obtain the set Tupsgen(Ω(D)). Fix a generating tuple

τgen ∈ Tupsgen(Ω(D)). For each generating tuple τ 6= τgen, use the procedure

TupLink to determine whether there exist (ρ× ρ)-sized matrices M sending

the set of elements of τ onto the set of elements of τgen. When this is the case,

proceed as follows for each such matrix M thus obtained:

I Determine whether all the entries of the matrix M are integers. When

this is not the case, discard M .

I Determine whether M acts as a permutation on the elements of Ω(D).

That is, determine whether the image of the set Ω(D) under the matrix

transformation M coincides with Ω(D) itself. Discard M if it does not

ful�ll this requirement.

I When M acts as a permutation of Ω(D), apply the procedure Member-
Crit to Mτ,τgen in order to determine whether it belongs to H. When this

is the case, append M to the set A.

128



The article [19] from Shimada then ensures that the resulting set A obtained at

the end of the procedure satis�es

A = AutH(D).

Note that if A is empty then

AutH(D) = {Id} .

1.7.4 Procedure CongChecker

The Procedure CongChecker is based on Shimada’s Algorithm 3.19 from his ar-

ticle [19] and relies on the same mechanics than its sister procedure AutCham-
ber. The congruence testing procedure takes as input the data of sets of walls

Ω(D) and Ω(D′) of PS-chambers D and D′ and determines whether the lat-

ter are H-congruent by proceeding as follows: De�ne an initially empty set

A = { }. Apply the procedure GentTup to each element of Tups(Ω(D′)) un-

til a generating tuple τgen ∈ Tups(Ω(D′)) is obtained. Note that proposition

29 guarantees that obtaining such a tuple is always possible. Compute the set

Tupsgen(Ω(D)) of all the generating tuples contained in Tups(Ω(D)) by apply-

ing GentTuple to each element of the latter. Proposition 29 ensures that this

set will contain at least one element. For each τ ∈ Tupsgen(Ω(D)), apply the

procedure TupLink in order to determine whether there exists at least one ma-

trix (ρ× ρ)-sized matrix Mτ,τgen sending the set of elements of τ onto the set

of elements of τgen. If all the coe�cients of Mτ,τgen are integers and this matrix

moreover establishes a one-to-one correspondence between Ω(D) and Ω(D′),

use the procedure MemberCrit to check whetherMτ,τgen belongs to H. If this is

the case, append Mτ,τgen toA. When all tuples τ ∈ Tups(Ω(D′)) have been pro-

cessed, output the set A. At the end of the process, if A is non-empty and con-

tains at at least one non-trivial element then CongChecker returns a boolean

value of True with the data of the elements of A. Such elements thus estab-

lish that the PS-chambers D and D′ belong to the same H-congruence class of

129



chambers. Otherwise, CongChecker outputs a boolean value of False. More

details about the way we implemented Shimada’s congruence testing procedure

can be found by clicking here. Note that developments obtained during this the-

sis resulted in huge enhancements to Shimada’s congruence testing procedure,

which has been detailed in [19] almost a decade ago. With e�ciency and par-

allel deployment in mind, we explain on the online support dedicated to this

thesis how our approach to congruence testing enabled us to obtain fantastic

performance gains. We provide a concrete example where a given chamber had

to be tested against 80231 other chambers for congruency. New criteria for con-

gruency combined with parallel deployment enabled us to divide the total com-

putation time for these 80231 tests by 1000 (conservative estimate) compared

to the times measured when the 2013 approach from [19] is used to the letter.

Click here to access an online section in which are detailed the developments

on congruence testing obtained during this thesis.

1.7.5 Borcherds’ method

We now possess all the tools required in order to introduce Borcherds’ method

itself. In this section, we will proceed as follows:

I We start by making a precise survey of the framework required in order

to successfully execute Borcherds’ method and obtain a generating set of

the automorphism group a complex K3 surface.

I We then explain in terms of tuples and sets how we formalized the data of

chambers, which are undeniably objects of paramount importance within

Borcherds’ method.

I Using Shimada’s take on Borcherds’ method from his 2013 article [19], we

then describe how we put together the building blocks that have been in-

troduced so far to successfully implement Borcherds’ method. We also de-

scribe all the evolutions, improvements and developments obtained dur-

ing this thesis.

130

https://k3surfaces.com/congchecker/
https://k3surfaces.com/cong-testing-pool/
https://k3surfaces.com/cong-testing-pool/


The reader should note that we provide our ready-to-use implementation of

Borcherds’ method for complex algebraic K3 surfaces on K3surfaces.com. An

online section of this thesis also provides a variety of step-by-step examples

of applications of Borcherds’ method. These examples show how a computer-

based algorithmic approach can lead to a wealth of concrete information and

results on classical cases, originally obtained by hand when published decades

ago. As far as we know, we also provide concrete answers to questions that had

been open for many years, in some of these step-by-step examples. Techniques

illustrated through these examples can then be used to study other surfaces.

Let X be a K3 surface. The input required in order to use our fully automated

implementation of Borcherds’ method consists of

• The data of elements v1, . . . , vρ ∈ L such that the map

ι : [x1, . . . , xρ]S 7−→ x1v1 + · · ·+ xρvρ

is a primitive embedding of S = NS(X) into one of the three even hyper-

bolic lattices L mentioned in section 1.1.2 and chosen depending on the

Picard number of X . Click here for more details on this matter.

• A Gram matrix GS of S.

• An ample class a0 ∈ S that will be used to update the embedding of S

into L, if necessary.

Before proceeding further, we have to indicate that we choose to refer to Borcherds’

method as if it was a system embodied by a small animal obeying certain rules

and capable of making decisions within a prede�ned framework. Note that we

use a hamster emoji in many �gures, and that this hamster is meant to embody

Borcherds’ method. Doing so enables us to illustrate the fundamental concepts,

principles, and mechanics behind the method in a simple and accessible way,

without ever violating the underlying theory.

131

https://k3surfaces.com
https://k3surfaces.com/examples-borcherds/
https://k3surfaces.com/wehler-picard-3/
https://k3surfaces.com/wehler-picard-3/
https://k3surfaces.com/borcherds-init/#table


For a better understanding of the material presented in this section, it is im-

portant to remember the purpose of our object of study: In the framework of

complex K3 surfaces, Borcherds’ method produces a generating set of

AutH(Nef(X) ∩ PS) = {g ∈ H | ∀x ∈ Nef(X) ∩ PS, gx ∈ Nef(X) ∩ PS}

where we recall that H is a subgroup of O+(S) that can be explicitly charac-

terized by a generalized membership criterion, provided in section 1.6.2 of this

thesis. To ful�ll its purpose, the method proceeds by exploring and process-

ing the chamber structure over Nef(X) ∩ PS , as discussed at the beginning of

section 1.7, until a complete set of representatives of H-congruence classes of

chambers of Nef(X)∩PS is produced. The �niteness of the number of steps to

be carried out to reach an end to the overall procedure is guaranteed by the fact

that whenever X is a complex K3 surface, as indicated by Shimada in [19], the

number of H-congruence classes of chambers contained in Nef(X) ∩ PS is �-

nite. In order for Borcherds’ method to be initiated, it must be provided with an

initial chamber D0 contained in Nef(X) ∩ PS . From this chamber, the method

starts its exploration of the chamber structure over Nef(X)∩PS.As stated in the

section 4 of Shimada’s article [19], classical theory provides a Weyl vector w0

associated with aPL-chamberD0 that may induce a suitable initialPS-chamber

D0 = D0 ∩PS contained in Nef(X)∩PS . When the method is provided with a

starting point located within Nef(X)∩PS,we can then be sure that it will never

leave the chamber structure over Nef(X) ∩ PS . Indeed, as discussed at the be-

ginning of section 1.7, we know that the chamber structure over Nef(X) ∩ PS
is delimited by (−2)-walls. A key rule that the method must obey is that such

walls are not to be crossed. Indeed, doing so would make the method leave the

Nef(X) ∩ PS area of study. In order to stay within Nef(X) ∩ PS , Borcherds’

method relies on the procedure RatDetect, described in section 1.7.1. The pur-

pose of this procedure consists in detecting (−2)-walls, so that the method can

know if a wall can be safely crossed or should instead be avoided.

132



Two requirements have to be ful�lled:

I Requirement n°1: In order to induce a PS-chamber, the PL-chamberD0

must be ι(S)-non-degenerate.

Depending on the embedding ι : S ↪→ L, such a condition may or may not be

ful�lled. Shimada provides a non-degeneracy criterion in his article [19]:

Shimada’s non-degeneracy criterion: Assume that S is primitively embed-

ded into L by ι : S ↪→ L and let a ∈ PS . LetD be aPL-chamber with Weyl vec-

tor w. If the inequalities 〈prS(ι(a)), q〉S∨ > 0 hold for every q ∈ prS(∆w), then

D is ι(S)-nondegerate. Note that aS is contained in the interior ofD = D∩PS ,

whenever these inequalities are satis�ed, so that D is then a PS-chamber.

I Requirement n°2: Assuming that D0 is ι(S)-non-degenerate, the in-

duced chamber

D0 = D0 ∩ PS

must be contained in Nef(X) ∩ PS .

Shimada’s non-degeneracy criterion can be applied to D0 with an ample class

a0 ∈ PS to determine whether this requirement is ful�lled. Due to the limited

scope of Shimada’s non-degeneracy criterion, which is not generalistic, Shimada

enforces a straightforward solution: Given an embedding ι : S ↪→ L, a PL-

chamberD0 and an ample class a0 ∈ PS such that the non-degeneracy criterion

fails; the section 8.3 of Shimada’s article [19] contains the outline of a procedure

that may produce an updated embedding

ιupd : S ↪→ L

under which the non-degeneracy criterion applied to D0 and a0 results in suc-

cess. We dwell on this matter in section 1.8. Chambers are prominent objects of

paramount importance within Borcherds’ method.

133



Then comes the necessity to introduce a convention that will enable us to turn

chambers into tangible data that can be processed at the scale of an implemen-

tation of Borcherds’ method. We associate a tuple

D =
(
wD,AH(D),Ω(D),Ω(D)

)
to eachPS-chamberD explored by Borcherds’ method. The elements contained

in this tuple can be described as follows:

I wD with the Weyl vector of D computed using the procedure WeylAdj
from section 1.7.2.

I Ω(D) is the set of wallsD, computed by applying the procedures DeltaW
and SetOfWalls from sections 1.5.2 and 1.5.1, respectively.

I AH(D) is a generating set of AutH(D), computed by AutChamber from

section 1.7.3.

I Ω(D) is the set of walls ofD taken with respect to anti-backtracking. That

is, assuming thatD is of level k, this set is a copy of Ω(D) from which the

walls leading to chambers of level k − 1 have been removed.

More details about the notion of anti-backtracking are provided online. We now

assume that the Néron-Severi group S = NS(X) of the complex K3 surface X

under study has been primitively embedded into a suitable even hyperbolic lat-

tice L and further assume that an initial PS-chamber D0 with Weyl vector w0

contained into Nef(X) ∩ PS is known. As indicated at the beginning of section

1.7, the chamber D0 is used as a reference point in order to layer the chamber

structure over Nef(X) ∩ PS into various levels. The notion of level has been

introduced in de�nition 27, earlier in this section.

Before proceeding further, let us get this straight about the notations that will

be used until the end of this section. We denote by:

134

https://k3surfaces.com/more-remarks/#anti-backtracking


I Lk the set of chamber of level k. For example, we have L0 = {D0}.

I D∗ the set of sets Lk of chambers of various levels explored during the

execution of Borcherds’ method. Initially, D∗ = {L0} = {{D0}} .

I Γ an initially empty set into which the generators of AutH(Nef(X)∩PS)

detected during the execution of the method will be stored.

I Rat an initially empty set into which will be stored the classesm ∈ NS(X)

associated with the (−2)-walls detected by the procedure RatDetect among

the elements of the sets of walls of the chambers explored by Borcherds’

method during its execution.

We can now explain the chain of events occuring during an execution of Borcherds’

method. Initially, we have

Γ = { } , Rrat = { } , D∗ = {L0} and L0 = {D0} .

Initialization - Chamber of level 0: The method starts by processing the

initial PS-chamber D0 with Weyl vector w0. This step consists in computing

the data tuple

D0 =
(
w0,AH(D0),Ω(D0),Ω(D0)

)
associated with D0. From the input data of w0, Borcherds’ method calls for the

procedure DeltaW described in section 1.5.1 to compute the set ∆w0 . The pro-

jection prS(∆w0) of ∆w0 onto S∨ is then fed into the procedure SetOfWalls.
The latter outputs the set Ω(D0) of walls of D0. The data of Ω(D0) is then used

as input into the procedure AutChamber (section 1.7.3) which produces a gen-

erating set AH(D0) of AutH(D0).

Chambers of level 1: During this iteration, Borcherds’ method explores and

processes chambers of level 1 adjacent to chambers of level 0 within Nef(X) ∩
PS . That is, it will explore and process chambers adjacent to D0 along its non

(−2)-walls. Create an initially empty set L1 = { } into which will be stored

135



the chambers of level 1 representing new H-congruence classes of chambers

of Nef(X) ∩ PS discovered during this iteration. Note that this stage, the only

known congruence class is the class represented by D0. The method then uses

the procedure RatDetect to identify the (−2)-walls among the elements of

Ω(D0). Borcherds’ method stores the classes in S of such walls into the setRrat.

For each non (−2)-wall (m)⊥ of D0, the method computes the Weyl vector wD′

of the chamberD′ adjacent toD0 along (m)⊥ by calling for the procedure Wey-
lAdj withm andw0 as input data. The data of the Weyl vectorwD′ thus obtained

enables the method to compute the set of walls Ω(D′) of the chamber D′. This

is done in two steps.

I First, vector wD′ is fed into DeltaW, which outputs the set ∆wD′
.

I The projection prS∨(∆wD′
) is then used as input into SetOfWalls, which

returns the set Ω(D′) of walls of the chamber D′.

The set Ω(D′) is used as input into the procedure AutChamber, which outputs

a setAH(D′) of generators of AutH(D′). These generators are stored into the set

Γ. Borcherds’ method then needs to determine whether D′ represents a brand

new H-congruence class: Since at this stage of the execution the class repre-

sented by D0 is the only congruence class inventoried by the method. The only

congruence test to be carried out by Borcherds’ method during the exploration

and processing of chambers of level 1 therefore consists in testingD′ againstD0

for H-congruency. To this end, the respective sets of walls Ω(D0) and Ω(D′) of

D0 and D′ are used as input data into the procedure CongChecker:

I If CongChecker determines that D0 and D′ are not H-congruent, then

the chamber D′ represents a brand new congruence class of chambers,

and its associated data tuple

D′ =
(
wD′ ,AH(D′),Ω(D′),Ω(D′)

)
is stored into the set L1 of representatives of congruence classes of cham-

bers of level 1.

136



I If the result of the procedure CongChecker is that D0 and D′ are H-

congruent, at least one element of g ∈ H establishing the congruence is

provided and stored into the set Γ.

Borcherds’ method executes this routine until all the chambers adjacent to D0

along its other non (−2)-walls have been explored an processed. When this is

the case, the set L1 in stored into D∗, so that we have D∗ = {L0,L1}. The

method then proceeds as follows:

I If L1 = ∅, Borcherds’ method ends its execution and outputs all the data

collected during its execution.

Shimada indeed states in his article [19] that, in this case, the set

D =
⋃

D∗

is a complete set of representatives of H-congruence classes of chambers con-

tained in Nef(X)∩PS while the set Γ is a generating set of AutH(Nef(X)∩PS).

I If L1 6= ∅, the method proceeds to its second iteration: The exploration

and processing of chambers of level 2 by adjacency to chambers in L1.

Fast forwarding, we now assume that Borcherds’ method has completed its k-th

iteration. That is, let us assume that a non-empty set of representatives Lj has

been obtained for each integer j ≤ k so that D∗ = {L0,L1, . . . ,Lk}.
We describe the (k + 1)-th iteration of Borcherds’ method.

Chambers of level k + 1: During this iteration, Borcherds’ method will ex-

plore and process chambers of level k + 1 adjacent to chambers in Lk along

their respective non (−2)-walls. An empty set Lk+1 = { } is created, and will

be used to store the H-representatives of new congruence classes of chambers

discovered during this iteration. For eachD ∈ Lk, and each elementm ∈ Ω(D),

Borcherds’ method proceeds as follows:

137



The procedure RatDetect is used to determine whether (m)⊥ is a (−2)-wall.

When this is the case, a class inS associated with (m)⊥ is returned by RatDetect
and stored into the setRrat. If RatDetect outputs that (m)⊥ is not a (−2)-walls,

Borcherds’ method explores the chamber D′ adjacent to D along (m)⊥. That is,

the Weyl vector w′ of the chamberD′ adjacent toD along (m)⊥ is computed by

WeylAdj into which is fed the data ofm and w. The set of walls of the chamber

D′ is computed in two steps:

I The element wD′ is used as input into DeltaW, which returns ∆w′ .

I The projection prS∨(∆w′) is then used as input into SetOfWalls, which

returns the set Ω(D′) of walls of the chamber D′.

The data of the set of walls Ω(D′) of D′ is then fed as input into the procedure

AutChamber which produces a generating setAH(D′) of the group AutH(D′).

The elements of AH(D′) are then stored into the set Γ of generators of

AutH(Nef(X) ∩ PS)

which have been detected since the execution of Borcherds’ method. The method

then determines whether D′ represents a new H-congruence class. To this end,

the method tests D′ is for H-congruency against each chamber in

D =
⋃

D∗

= L0 ∪ L1 ∪ · · · ∪ Lk ∪ Lk+1.

For each chamber D′′ ∈ D, the data of the respective sets

Ω(D′) and Ω(D′′)

of walls of D′ and D′′ is used as input into the procedure CongChecker.

138



If D′ is not H-congruent to at least one chamber in D then the chamber D′

represents a new congruence class of chambers, and its associated data tuple

D′ =
(
wD′ ,AH(D′),Ω(D′),Ω(D′)

)
is stored into the setLk+1 of level k+1 representatives of H-congruence classes.

Otherwise, for each chamber D′′ to which D′ is H-congruent, the associated el-

ements g ∈ H returned by CongChecker are stored into the set Γ.

When the exploration and processing of the surroundings of each chamber in

Lk has been performed, the method stores the set Lk+1 into D∗ and proceeds as

follows:

I IfLk+1 = ∅, Borcherds’ method ends its execution and outputs all the data

collected during its execution.

Indeed, by Shimada [19], the set

D =
⋃

D∗

is then a complete set of representatives of H-congruence classes of chambers

in Nef(X) ∩ PS while the set Γ is a generating set of AutH(Nef(X) ∩ PS).

I If Lk+1 6= ∅, the method proceeds to its (k + 2)-th iteration: The explo-

ration and processing of chambers of chambers of level k+2 by adjacency

to chambers contained in Lk+1 along their respective non (−2)-walls.

Since theorem 3.7 from Shimada’s article [19] ensures that the number of H-

congruence classes of chambers in Nef(X)∩PS is �nite, the execution of Borcherds’

method will end at one time or another, and will not run forever. The �gure dis-

played on the following page illustrates the algorithmic structure of Borcherds’

method.

139



140



1.8 Embedding update procedure

We have seen in the previous section that executing Borcherds’ method requires

the data of a primitive embedding ι : S ↪→ L and of an initial PL -chamber D0

satisfying the two following conditions:

I The primitive embedding ι : S ↪→ L is such that the initial PL-chamber

D0 is ι(S)-nondegenerate, i.e., satis�es

Int(D0 ∩ PS) 6= ∅

so that it induces a PS-chamber

D0 = D0 ∩ PS

which can be used as a starting point for Borcherds’ method to explore

the chamber structure over Nef(X) ∩ PS .

I The induced PS-chamber D0 must be contained in Nef(X) ∩ PS .

It turns out that it is enough to exhibit an ample class a0 ∈ PS such that

ι(a0) ∈ Int(D0 ∩ PS)

in order to ensure that the two above conditions are satis�ed. Checking whether

this condition holds can be done by using the procedure Degentest introduced

in section 1.7: This procedure checks whether the strict inequality

〈prS∨(ι(a0)), q〉S∨ > 0 (1.22)

holds for all elements q ∈ prS∨(∆w0). When this is the case, the element ι(a0)

then belongs to the interior of D0 ∩ PS and the two above conditions are thus

satis�ed. The fact is that exhibiting an ample class a0 ∈ PS satisfying these

conditions in the framework of a given embedding requires much luck. This is-

sue must therefore be approached from another angle. Given an initial primitive

141



embedding

ι : S ↪→ L,

an ample class a0 and the Weyl vector w0 of the initial chamber D0, Shimada

provides in the section 8 of his article [19] the outline of a procedure which may

possibly yield a transformation

τ : L −→ L

such that

τ ◦ ι : S ↪→ L

is an updated primitive embedding under which the inequalities

〈prS∨ ((τ ◦ ι) (a0)) , q〉S∨ > 0 (1.23)

are satis�ed for all elements q ∈ prS∨(∆w0). That is,

(τ ◦ ι) (a0) ∈ Int(D0 ∩ PS).

Note that τ is obtained as the composition of various re�ections with respect to

carefully chosen elements ofRL. The updated embedding

ιupd = τ ◦ ι

thus obtained then provides a framework under which the PL-chamber D0 is

ιupd(S)-nondegenerate and thus induces aPS-chamberD0 = D0∩PS contained

in Nef(X)∩PS . From our point of view, Shimada’s approach is the best possible

course of action to deal with the issue of �nding a non-degenerate chamber by

acting at directly on the embedding of S into L. The issue is that this approach

may require many attemps, a lot of trials and failures, before eventually resulting

in a positive outcome. We took care of this issue.

In this section, we proceed along three axes:

142



I Assuming given an embedding

ι : S ↪→ L,

an ample class a0 ∈ PS and a PL-chamberD0, we will start by investigat-

ing the causes the failure of the non-degeneracy condition for D0.

I We will then present Shimada’s original idea to update an embedding.

I We will �nally explain how we modernized and improved Shimada’s idea.

1.8.1 Failure of the non-degeneracy condition, a quick survey

Assume that an initial embedding

ι : S ↪→ L,

a PL-chamber D0 and an ample class a0 ∈ PS such that

ι(a0) /∈ Int(D0 ∩ PS) (1.24)

are given. Using the elementary fact that

Int(D0 ∩ PS) = Int(D0) ∩ Int(PS)

we see that the condition (1.24) holds if and only if either

ι(a0) /∈ Int(D0) or ι(a0) /∈ Int(PS)

Since a0 is ample and thus belongs to PS by assumption, we see that

ι(a0) /∈ Int(D0)

Two possibilities should then be considered

143



I The element ι(a0) belongs to the boundary of D0, i.e.,

ι(a0) ∈ D0\ Int(D0)

where we recall that chambers are by de�nition closed sets. In this case,

there exists at least one q ∈ Ω(D0) ⊂ RL such that 〈q, ι(a0)〉L = 0.

In order words, the element ι(a0) is stuck in a wall of D0. Here we touch on

a point which is key to understand why Shimada’s idea may fail. In case ι(a0)

belongs to a wall of D0, application of re�ections which respect to elements of

RL will not move ι(a0) by a single inch since walls of PL-chambers are them-

selves elements of RL and are by de�nition le� invariant by such transforma-

tions. Keep this fact in mind, it will be useful during the next section. The other

possibility to be considered is simple:

I The element ι(a0) does not belong to D0. That is, there exists at least one

element q ∈ Ω(D0) such that 〈q, ι(a0))〉L < 0.

In this case, applying re�ections with respect to Weyl chosen elements of RL

may succeed in order to obtain an updated embedding ιupd such that

ιupd(a0) ∈ D0 ∩ PS.

1.8.2 Shimada’s embedding update procedure

Assume that ι(a0) /∈ D0, so that ι(a0) belongs to another PL-chamber D 6= D0.

In order to avoid the above-mentioned issue where ι(a0) would be stuck in a

wall, assume furthermore that ι(a0) ∈ Int(D). Denote by w0 the Weyl vector of

D0 and recall that the de�nition of a Weyl vector implies that the Weyl vector

of a PL-chamber is contained in its interior. We therefore have w0 ∈ Int(D0).

Let

l(t) = (1− t)ι(a0) + tw0, 0 ≤ t ≤ 1

144



be the line segment in PL connecting ι(a0) to w0. Since ι(a0) and w0 do not be-

long to the same chamber, this segment must intersect some walls (ri)
⊥ induced

by elements ri ∈ RL. In order to have a clear view of what happens, assume

that l(t) intersects the walls

(r1)⊥ , (r2)⊥ , (r3)⊥ , (r4)⊥

induced r1, r2, r3, r4 ∈ RL so that the situation is illustrated as follows:

We can see that ι(a0) is located in the interior of a PL-chamber D colored in

yellow. We can also see that that w0 is located in the interior of a PL-chamber

D0 colored in green. The path l(t) connecting ι(a0) tow0 inPL is represented as

a dashed line, colored in dark blue. Moreover, l(t) is here represented as cross-

ing four walls (ri)
⊥ with ri ∈ RL for i = 1, 2, 3, 4, which have been highlighted

as red lines. Note that the locations displayed on this �gure imply that

〈w0, ri〉 > 0

while

〈ι(a0), ri〉 < 0

145



for i = 1, 2, 3, 4. Recall that to each element r ∈ RL can be associated a re�ec-

tion

sr : L −→ L

sr : x 7−→ x+ 〈x, r〉L r.

with respect to the hyperplane (r)⊥. Shimada’s idea consists in successively

applying the re�ections sri for i ∈ {1, 2, 3, 4} to the embedding

ι : S ↪→ L

so that an updated embedding

τ ◦ ι : S ↪→ L with τ = sr4 ◦ sr3 ◦ sr2 ◦ sr1

is obtained and hopefully provides a framework under which the condition

(τ ◦ ι) (a0) ∈ Int(D0 ∩ PS)

is satis�ed. More generally, given an ample class a0, a PL-chamber D0 with

Weyl vector w0 and an initial embedding ι : S ↪→ L such that

ι(a0) /∈ Int(D0 ∩ PS),

Shimada enforces an approach which consists in proceeding as follows:

Step n°1 - Using Shimada’s algorithm 3.3 from his article [18], compute the

set

M = {r ∈ RL | 〈ι(a0), r〉L < 0, 〈w0, r〉L > 0}

of elements r ∈ RL such that (r)⊥ seperates ι(a0) from w0. We implemented

this algorithm and named it ShiBooster. More details about the latter are avail-

able in the second part of this thesis and on K3surfaces.com.

146

https://k3surfaces.com


Step n°2 - Shimada then de�nes the line segment

l(t) = (1− t)ι(a0) + tw0, 0 ≤ t ≤ 1

connecting ι(a0) to w0 in PL. For each element r ∈M, we have to solve

〈l(t), r〉L = 0

for 0 ≤ t ≤ 1.

Step n°3 - Elements of M are then re-labelled in such a way that elements

ri, rj ∈M with respective associated solutions ti, tj satisfy

i < j if and only if ti < tj.

Note that Shimada requires that all the ti should be distinct, and orders to pick

another ample class and try again until this requirement is ful�lled. Assume

that the elements ofM have thus been relabelled in such a way that the setM
can be expressed as

M = {r1, r2, . . . , rN} .

The segment l(t) then intersects the walls (ri)
⊥ according to the order which

arises from the labelling of the elements ri ∈M.

Step n°4: De�ne

τ = srN ◦ srN−1
◦ · · · ◦ sr2 ◦ sr1

and update the initial embedding as

τ ◦ ι : S ↪→ L.

147



Step n°5: Use Shimada’s non-degeneracy criterion (procedure DegenTest from

section 1.7) to D0 and (τ ◦ ι) (a0) in order to check whether

(τ ◦ ι) (a0) ∈ Int(D0 ∩ PS)

holds under the framework of the updated embedding. We explain in the follow-

ing section how Shimada’s embedding update procedure can be improved. His

procedure su�ers from the fact that many attempts with various ample classes

a0 may be required before eventually obtaining a positive result. Also, the pro-

cedure may not work at all, and no explanation regarding this fact is provided

in Shimada’s article [19]. If we remember our discussion from section 1.8.1, we

see that Shimada’s procedure will fail whenever ι(a0) ∈ (r)⊥ for some r ∈ RL.

In such cases, we say that ι(a0) is stuck into a wall. It is therefore important to

make sure that the set

{r ∈ RL | 〈ι(a0), r〉L = 0}

is empty before enforcing Shimada’s embedding update procedure with. The

situation is otherwise especially problematic when ι(a0) is stuck into a wall of

the initial PL-chamber D0, as illustrated in the �gure below.

148



When such a situation occurs, there is no leeway: The mechanics of the em-

bedding update procedure rely on the application of re�ections with respect to

walls crossing the path between ι(a0) and w0. When ι(a0) is stuck into a wall of

D0, there is no wall separating it from w0, except the wall into which it is stuck.

Since re�ections of the form

sr : x 7−→ x+ 〈x, r〉L r

act as the identity on elements x ∈ (r)⊥, we cannot do anything to free ι(a0)

from the wall into which it is stuck. In fact, the only thing that can be done

consists in either �nding another primitive embedding or �nding another ample

class. It should be noted that a decade ago, Shimada provided no explanation

on why he asked his readers to use another ample class when the procedure

outlined in his 2013 article fails. We hope that our explanations provide a better

understanding of what is happening behind the scenes.

1.8.3 A new perspective on Shimada’s embedding update procedure

We now explain how we improved Shimada’s embedding update procedure. As

before, we assume given an ample class a0 ∈ PS , aPL-chamberD0 and an initial

primitive embedding ι : S ↪→ L such that ι(a0) /∈ D0 but is instead contained

in the interior of a PL-chamber D 6= D0. We also recall that the Weyl vector w0

of the PL-chamber D0 satis�es w0 ∈ Int(D0) and compute the set. We let

l(t) = (1− t)ι(a0) + tw0 , 0 ≤ t ≤ 1

be the line segment connecting ι(a0) to w0 in PL. Using our implementation

ShiBooster of Shimada’s algorithm 3.3 from [18], we compute the set

149



M = {r ∈ RL | 〈ι(a0), r〉L < 0, 〈w0, r〉L > 0}

of elements r ∈ RL such that (r)⊥ separates ι(a0) from w0 and is thus crossed

by the path de�ned by l(t). We assume that

M = {r1, r2, . . . , rN}

and that the elements inM are labelled in such a way that ri, rj ∈M satisfy

i < j if and only if ti < tj

where tk is the solution of

〈l(tk), rk〉L = 0

The walls induced by elements ofM should be considered obstructions on the

path de�ned by the line segment l(t): As t increases from 0 to 1, the path succes-

sively encounters the wall (r1)⊥, then (r2)⊥, . . . , and �nally (rN)⊥. Applying a

re�ection

sri : x 7−→ x+ 〈x, ri〉L ri

to the embedding ι : S ↪→ L amounts to sending ι(a0) to the other side of the

wall (ri)
⊥, hence clearing the obstruction represented by this wall. For example,

assume that the re�ection sr1 with respect to r1 is applied to the embedding ι,

so that we have an updated embedding

sr1 ◦ ι : S ↪→ L

The inequality satis�ed

〈ι(a0), r1〉L < 0

150



in the framework of the initial embedding can then be turned into

〈(sr1 ◦ ι) (a0), r1〉L > 0

in the framework of the updated embedding sr1 ◦ ι. It is clear that the wall

(r1)⊥ associated with r1 ∈ M is therefore no longer an obstruction. The fun-

damental di�erence between our approach and Shimada’s is that we consider

the following question: In the framework of the updated embedding sr1 ◦ ι, are

the walls associated with elements ofM\ {r1} still obstructions? For example,

we can legitimately wonder whether (r2)⊥ an is still an obstruction separating

(sr1 ◦ ι) (a0) from w0. That is, do we need do apply the re�ection sr2 to sr1 ◦ ι?
Another perfectly legitimate consideration consists in wondering whether the

application of sr1 did introduce new obstructions in the framework of the up-

dated embedding? The only way to have answers consists in computing the set

M of obstructions again, this time taking into account the fact that embedding

has been updated. The result is an iterative procedure: We start by clearing

the obstruction closest to ι(a0) by applying sr1 . We then compute the updated

set of obstructions and clear the obstruction closest to sr1 ◦ ι(a0), and continue.

When the updated set of obstructions is the empty set, the procedure terminates.

Iteration n°1 - We compute the initial set of obstructions

M1 = {r ∈ RL | 〈ι(a0), r〉L < 0, 〈w0, r〉L > 0}

For each element r ∈M1, we then solve for t the equation

〈l(t), r〉L = 0.

We drop Shimada’s requirement that no two elements of M should have the

same associated solution. We determine the smallest associated solution and

randomly pick an element say associated with this solution, say r1 ∈ M1. We

151



then apply the re�ection

sr1 : x 7−→ x+ 〈x, r1〉L r1

to the embedding ι : S ↪→ L so that we have an updated embedding

sr1 ◦ ι : S ↪→ L.

which provides a framework under which (r1)⊥ is not an obstruction separating

(sr1 ◦ ι) (a0) from w0.

Iteration n°2 - We now compute the set of obstructions in order to take into

account the fact that the embedding has been updated and that obstructions

separating (sr1 ◦ ι) (a0) from w0 may not be the same obstructions than those

which separated ι(a0) from w0. We thus compute

M2 = {r ∈ RL | 〈(sr1 ◦ ι) (a0), r〉L < 0, 〈w0, r〉L > 0} .

IfM2 = ∅, the procedure stops and the updated embedding is

ιupd = sr1 ◦ ι.

Otherwise, we solve for t the equation

〈l(t), r〉L = 0

for each element r ∈M2. We then pick one of the elements, say r2 ∈M2, asso-

ciated with the smallest solution. We then apply re�ection sr2 to the embedding

sr1 ◦ ι so that we have an updated embedding

sr2 ◦ sr1 ◦ ι : S ↪→ L

under which the wall (r2)⊥ is not an obstruction for (sr2 ◦ sr1 ◦ ι) (a0), that is,

152



such that

〈(sr2 ◦ sr1 ◦ ι) (a0), r2〉L > 0

holds.

Fast forwarding, we assume that k-th iteration of the procedure has been ac-

complished so that

τk ◦ ι : S ↪→ L with τk = srk ◦ srk−1
◦ · · · ◦ sr2 ◦ sr1

has been obtained.

(k + 1)-th iteration - In order to compute an updated list of obstructions, we

compute

Mk+1 = {r ∈ RL | 〈(τk ◦ ι) (a0), r〉L < 0, 〈w0, r〉L > 0} .

IfMk+1 = ∅, the procedure terminates and we use

ιupd = τk ◦ ι.

as our updated embedding. Otherwise, we solve for t the equation

〈l(t), r〉L = 0

for each element r ∈ Mk+1. We pick an element, say rk+1 ∈ Mk+1 associated

with the smallest solution obtained and apply the re�ection srk+1
to τk ◦ ι. That

is, we de�ne an updated embedding

τk+1 ◦ ι : S ↪→ L

with

τk+1 = srk+1
◦ τk.

153



1.9 Fundamental domain, associated cone, Hilbert Basis

Let G be a group and Y a set on which G acts on the le�. We denote by gx the

image of an element x ∈ Y by an element g ∈ G. Given a subset F ⊂ Y , we

denote by

g(F ) = {gx | x ∈ F}

the image of F under the action of g ∈ G. We recall that a fundamental domain

for the action of a group G on a set Y is a subset F ⊂ Y having the following

properties:

I
⋃
g∈G g(F ) = Y

I The intersection g(F ) ∩ h(F ) is empty for all g, h ∈ G such that g 6= h.

Assume that Borcherds’ method has been executed and returned a set

D∗ = {L0,L1, . . . ,Lm}

where Lj denotes the set of representatives of level j of H-congruence classes

of chambers contained in Nef(X) ∩ PS . As indicated in Shimada’s article [19]

section 6, the union

D =
⋃
L∈D∗
L

= L0 ∪ L1 ∪ · · · ∪ Lm

is a complete set of representatives of AutH(Nef(X)∩PS)-congruence classes of

chambers, i.e., of H-congruence classes of chambers contained in Nef(X)∩PS .

The set D thus contains exactly one representative of each H-congruence class

of chambers contained in Nef(X) ∩ PS . Let D ∈ D. We denote by

F(D) ⊂ D

a fundamental domain of the action of AutH(D) ⊂ AutH(Nef(X) ∩ PS) on D.

154



We now establish the following important proposition:

Proposition 30. The union
⋃
D∈DF(D) is a fundamental domain of the action

of AutH(Nef(X) ∩ PS) on Nef(X) ∩ PS .

Proof. In order to simplify the notations, we will make use of the shorthands

NX = Nef(X) ∩ PS

and

AutH(NX) = AutH(Nef(X) ∩ PS)

when necessary. De�ne

F =
⋃
D∈D

F(D).

Let us apply the de�nition of a fundamental domain stated at the beginning of

this section. We establish the two following properties

I There is an equality ⋃
g∈AutH(NX)

g(F ) = Nef(X) ∩ PS.

I The implication

g 6= h =⇒ g(F ) ∩ h(F ) 6= ∅

holds for g, h ∈ AutH(Nef(X) ∩ PS).

Let us begin by establishing the inclusion

Nef(X) ∩ PS ⊆
⋃

g∈AutH(NX)

g(F ).

Let p1 ∈ Nef(X) ∩ PS . We have seen at the beginning of section 1.7 that

Nef(X) ∩PS is tiled by PS-chambers. Consequently, we have p1 ∈ D for some

155



PS-chamber D ⊂ Nef(X) ∩ PS . Assume that

D = {D0, D1, . . . , Dr}

for some integer r ≥ 0. Since D is a complete set of representatives of H-

congruence classes of PS-chambers of Nef(X) ∩ PS, the class of the chamber

D possesses a representative Dk ∈ D. Moreover, there exists an element

g1 ∈ AutH(Nef(X) ∩ PS)

sending D onto the representative of its congruence class, that is, such that

Dg1 = Dk.

The transformation g1 hence sends p1 ∈ D to an element pg11 ∈ Dk. Let

F(Dk) ⊂ Dk

be the fundamental of the action of AutH(Dk) on Dk. By de�nition of a funda-

mental domain, there exists an element

p2 ∈ F(Dk)

and a group element

g2 ∈ AutH(Dk)

such that

p2 = pg1g21 .

Hence, we have

p1 = p
g−1
2 g−1

1
2

with

g−1
2 g−1

1 ∈ AutH(Nef(X) ∩ PS).

156



We have

p2 ∈ F(Dk) ⊆ F ⊆ F

and thus

p
g−1
2 g−1

1
2 ∈

⋃
g∈AutH(NX)

g(F ).

We thus established that

p1 ∈ Nef(X) ∩ PS =⇒ p1 ∈
⋃

g∈AutH(NX)

g(F ),

that is,

Nef(X) ∩ PS ⊆
⋃

g∈AutH(NX)

g(F ).

We now establish the reverse inclusion. Let D be a PS-chamber over Nef(X)∩
PS , that is,

D ⊂ Nef(X) ∩ PS.

Let F(D) ⊆ D be a fundamental domain for the action of AutH(D) on D. By

de�nition of a fundamental domain, the equality⋃
g∈AutH(D)

g(F(D)) = D

holds. Combining this equality to the fact that

AutH(D) ⊂ AutH(Nef(X) ∩ PS)

yields ⋃
g∈AutH(D)

g(F(D)) ⊆
⋃

g∈AutH(NX)

g(F(D))

⊆ Nef(X) ∩ PS

Since this inclusion holds for any PS-chamberD contained in Nef(X)∩PS and

157



thus holds for any chamber D ∈ D, we have

⋃
D∈D

 ⋃
g∈AutH(NX)

g(F(D))

 ⊂ Nef(X) ∩ PS. (1.25)

In the section 6 of [19], Shimada establishes that D is a �nite set. Using the fact

that the closure of a �nite union of sets is equal to the union of closures, we have

F =
⋃
D∈D

F(D) =
⋃
D∈D

F(D).

Hence, there is an equality

⋃
g∈AutH(NX)

g(F ) =
⋃

g∈AutH(NX)

g

(⋃
D∈D

F(D)

)
=

⋃
g∈AutH(NX)

⋃
D∈D

gF(D).

Combining this equality to the inclusion of expression (1.25) leads us to⋃
g∈AutH(NX)

g(F ) ⊆ Nef(X) ∩ PS.

Since we established ealier the opposite direction of this inclusion, we deduce

that ⋃
g∈AutH(NX)

g(F ) = Nef(X) ∩ PS,

as desired. We will use a proof by contradiction to establish that

g(F ) ∩ h(F ) = ∅

holds for any two distinct elements g, h ∈ AutH(Nef(X) ∩ PS). Assume that

158



there exist elements g, h ∈ AutH(Nef(X) ∩ PS), with g 6= h such that

g(F ) ∩ h(F ) 6= ∅.

Let p ∈ g(F ) ∩ h(F ). Then there exist PS-chambers D,D′ ∈ D such that

p ∈ g(F(D)) ⊆ g(D) and p ∈ h(F(D′)) ⊂ h(D′).

That is,

g(D) ∩ h(D′) 6= 0.

Recall that D,D′ ∈ D and that D is assumed to be a complete set of representa-

tives of H-congruence classes of chambers contained in Nef(X) ∩ PS . Hence

g(F ) ∩ h(F ) = ∅.

The union

F =
⋃
D∈D

F(D)

is therefore a fundamental domain of the action of AutH(Nef(X) ∩ PS) onto

Nef(X) ∩ PS , as desired.

Assume that AutH(D) = {Id} holds for all elements of D. In this case, the

equality

F(D) = D

holds for all D ∈ D. An immediate consequence of proposition 30 is then that

the union ⋃
D∈D

D

is a fundamental domain of the action of AutH(Nef(X) ∩PS) on Nef(X) ∩PS .

Recall that whenever the K3 surface X under study satis�es

ρX < 20 and − 1 /∈ Ker(ηT )

159



theorem 22 states that there is an isomorphism

Aut(X) ' AutH(Nef(X) ∩ PS).

In this case, the assumption that AutH(D) = {Id} holds for allD ∈ D combined

with proposition 30 implies that ⋃
D∈D

D

is a fundamental domain of the action of Aut(X) on Nef(X) ∩ PS , that is

Corollary 31. Assume that X satis�es the conditions of theorem 22 and that
AutH(D) = {Id} holds for all D ∈ D. Then the union

⋃
D∈DD is a fundamental

domain of the action of Aut(X) on Nef(X) ∩ PS .

1.9.1 Boundary walls, local boundary walls, global boundary walls.

Assume that an execution of Borcherds’ method returned a set

D = {D0, D1, D2, . . . , Dr}

of representatives of H-congruence classes of chambers of Nef(X) ∩ PS . We

moreover assume that the conditions of corollary 31 hold, so that⋃
D∈D

D = D0 ∪ · · · ∪Dr

is a fundamental domain of the action of Aut(X) onto Nef(X)∩PS . From now

on, we will o�en refer to this fundamental domain as the fundamental domain.

We now introduce the notions which will enable the reader to

I Produce graphical representations of the fundamental domain. These graph-

ical representations are visually expressive and meaningful for cases where

X has Picard number 3. Click here to view a few examples.

160

https://k3surfaces.com/nice-fd/


I Associate a cone to the fundamental domain and determine whether it is

possible to compute its associated Hilbert basis.

To do so, it is important to characterize precisely the boundary of the funda-

mental domain.

De�nition 32. A chamber D ∈ D is said to be at the boundary of the funda-

mental domain if there exists a chamber D′ adjacent to D such that D′ /∈ D.

Such a situation happens whenever there exists an elementm ∈ Ω(D) such that

the chamber adjacent to D along (m)⊥ does not belong to D. In this case, we

say that (m)⊥ is a boundary wall of the fundamental domain.

De�nition 33. We say that a boundary wall (m)⊥ is a local boundary wall if

there exist chambers D,D′ ∈ D adjacent to each other along (m)⊥.

De�nition 34. A boundary wall of the fundamental domain which is not a local

boundary wall is called a global boundary wall

The facts exposed at the beginning of section 1.7 enable us to immediately de-

duce that (−2)-walls are by de�nition boundary walls since they form the bound-

ary of

Nef(X) ∩ PS.

Recall that we denote by Ω∗(D) the set of non (−2)-walls of a PS-chamber D.

Given a chamber D ∈ D, we use the following procedure in order to identify

boundary walls among the elements of Ω(D) and determine whether such walls

are local boundary walls or a global boundary walls: De�ne initially empty sets

Bdry = { } and Loc = { } .

Let D ∈ D. For each m ∈ Ω∗(D), check whether the chamber D′ adjacent to D

along the wall (m)⊥ belongs to D and proceed as follows:

I If D′ ∈ D, then (m)⊥ is a boundary wall of the fundamental domain. In

this case, we store the element m into Bdry.

161



I If D′ /∈ D and the wall (m)⊥ has already been identi�ed has a boundary

wall during the processing of another chamber of D, i.e., m ∈ Bdry, then

(m)⊥ is classi�ed as a local boundary wall and stored into Loc.

Once all the chambers of D have thus been processed, then

I The set Bdry is the set of boundary walls.

I The set Loc is the set of local boundary walls.

I The set

Glo = Bdry\Loc

is the set of global boundary walls.

De�nition 35. The fundamental domain is said to be Hilbert Basis ready (HB-
ready) whenever all its boundary walls are global boundary walls.

An HB-ready fundamental domain yields a convex polytope de�ned by the in-

equalities {
x ∈ Qρ−1 | for allm ∈ Bdry, 〈x,m〉S∨ ≥ 0

}
in (ρ− 1)-dimensional space. SageMath features related to convex cones can

be used to compute a Hilbert basis for the cone associated with this polytope.

When the conditions of corollary 31 (that can be automatically checked by our

implementation of Borcherds’ method), our program fundamentalizer is ca-

pable of processing the data produced a�er an execution of Borcherds’ method

to carry out a study of the fundamental domain thus produced.

1.9.2 Graphical representation of the chamber structure of the funda-
mental domain.

In this section, we explain how to produce graphical representations in (ρ− 1)-

dimensional space of the fundamental domain of the action of Aut(X) onto

162



Nef(X) ∩ PS which is produced by Borcherds’ method when

AutH(D) = {Id}

holds for all D ∈ D. Let D ∈ D and m ∈ Ω(D). Assume that m is expressed in

terms of its coordinates

m = [a0, a1, . . . , aρ−1]S∨

with respect to the basis of S∨. The principle enabling us to produce represen-

tations is straightforward: The wall

(m)⊥ = {x ∈ S ⊗ R | 〈x,m〉S∨ = 0} ∩ PS

is associated with the hyperplane in (ρ− 1)-dimensional space de�ned as the

solution set of the equation

a0 + a1x1 + a2x2 + . . . aρ−2xρ−2 + aρ−1xρ−1 = 0

This approach is particularly meaningful and visually unequivocal when the

surface under study has Picard number 3: In this case, the wall associated with

an element [a0, a1, a2]S∨ ∈ S∨ is associated with the straight line de�ned by the

equation a0 + a1x+ a2y = 0 in two-dimensional space. More precisely:

I If a2 6= 0 holds, then the wall de�ned by the orthogonal complement

[a0, a1, a2] ∈ S∨ is realized in to-dimensional space as an a�ne line with

equation

y = −a0

a2

− a1

a2

x.

I If a2 = 0 and a1 6= 0, then the wall is associated with the vertical line

x = −a0

a1

.

163

https://k3surfaces.com/nice-fd/


1.10 Computing the (−2)-curves modulo Aut(X)

Assume that X is a K3 complex surface such that ρX < 20 and −1 /∈ Ker(ηT ).

Theorem 22 then states that there is an isomorphism

Aut(X) ' AutH(Nef(X) ∩ PS).

An execution of Borcherds’ method thus provides a generating set for Aut(X)

and outputs as complete set D of Aut(X)-congruence classes of chambers con-

tained in Nef(X) ∩ PS . If we assume moreover that

AutH(D) = {Id}

holds for each D ∈ D then Corollary 31 then ensures that⋃
D∈D

D

is a fundamental domain of the action of Aut(X) onto Nef(X)∩PS . Borcherds’

method also provides additional information regarding this fundamental do-

main: Recall that the set of walls Ω(D) of each chamber D explored by the

method is processed by RatDetect to identify the (−2)-walls among it. Classes

of smooth rational curves thus identi�ed are then stored into the set Rrat re-

turned at the end of the execution of Borcherds’ method. In this section, we

establish two important facts:

I Each element ofRrat represents an orbit of the set smooth rational curves

on X under the action of Aut(X), and each such orbit possesses a repre-

sentative inRrat. The cardinality Card(Rrat) of the setRrat therefore pro-

vides an upper bound on the number of orbits of smooth rational curves

on X under the action of Aut(X).

Regarding the �niteness of the number of orbits of the set of smooth rational

curves under the action of the automorphism group on K3 surfaces, we appeal

to the following classical result due to Sterk [20]:

164



Theorem 36. LetX be aK3 surface. The set of (−2)-curves up to automorphisms

{
C ⊂ X | C ' P1

}
/Aut(X)

is �nite, i.e., there is a �nite number of orbits of smooth rational curves.

This result is here stated in the form under which it can be found in Huybrechts’

book [5], in which a proof is also provided. The second point addressed in this

section consists in providing an operational template for an algorithmic method

to re�ne the upper bound Card(Rrat).

I We will thus see that the upper bound Card(Rrat) on the number of orbits

of smooth rational curves onX under the action of Aut(X) can be re�ned.

Indeed, the set Rrat can contain more than one representative for a given orbit.

We thus provide an algorithmic solution to detect redundant representatives in

Rrat. A much more precise bound on the number of orbits will hence be obtained.

Assume that

Rrat = {C1, . . . , Cs} , for some s > 0

and let C ∈ S be the class some smooth rational curve on X . We recall that

have seen at the beginning of section 1.7 that no class of smooth rational curve

is super�uous for cutting out Nef(X) ∩ PS. An immediate consequence of this

fact is that there exists at least a PS-chamber

D ⊂ Nef(X) ∩ PS

having (C)⊥ amongst its walls, i.e., such thatC ∈ Ω(D). Two possibilities arise:

I If D ∈ D, then C must be an element of Rrat, i.e., C must have been

detected by Borcherds’ method during its execution.

I If D /∈ D, then the fact that D is a complete set of representatives of

Aut(X)-congruence classes of chambers of Nef(X) ∩ PS enables us to

165



assert that there exists a transformation

g ∈ Aut(X)

such that

Dg = D′ ∈ D.

In this case, the transformation g thus sends D onto a chamber D′ ∈ D. Recall

that the class C ∈ S is assumed to be the class of a smooth rational curve on X .

Since an automorphism sends the class of a smooth rational curve onto the class

of a smooth rational curve, the image of the class C ∈ S, by the transformation

g must be sent to an element ofRrat. We therefore have

Cg ∈ Rrat.

We thus established the following proposition:

Proposition 37. Assume that X satis�es the conditions of Theorem 22 and that
AutH(D) = {Id} holds for every D ∈ D. Each orbit of the set of smooth rational
curves on X possesses at least one representative contained in the setRrat.

The setRrat may, however, contain more than one representative of orbits. De-

note by Sorb the set of orbits of smooth rational curves on X under the action

of Aut(X). Proposition 37 then implies that

Card (Sorb)≤ Card(Rrat) (1.26)

so that Card(Rrat) is an upper bound on the number of orbits of smooth rational

curves. We now explain how this upper bound can be re�ned. We start by

reviewing the means which could be used as leverage to do so. Denote by

O(C) = {Cg | g ∈ Aut(X)}

the orbit of a class C ∈ S of a curve on X under the action of Aut(X) . For any

166



two distinct elements Ci, Cj ∈ Rrat such that

O(Ci) 6= O(Cj),

we have

O(Ci) ∩ O(Cj) = ∅.

since the very de�nition of an orbit which implies that any two distinct orbit

must have an empty intersection. Before proceeding further, let us discuss prac-

tical considerations: Note that K3 surfaces with �nite automorphism groups

have already been studied in detail, a wealth of information on these surfaces

can be found in Roulleau’s atlas ofK3 surfaces with �nite automorphism group

[16]. We, therefore, focus on K3 surfaces with in�nite automorphism group.

For such surfaces, orbits of elements of S = NS(X) under the action of Aut(X)

are by de�nition in�nite sets. It is thus impossible to explicitly compute the or-

bit O(C) of any element C ∈ S. Our computer-based algorithmic approach is

indeed bound by the fact that we must con�ne ourselves to dealing with �nite
objects. Taking this fact into account, we now reformulate what we just dis-

cussed in terms of �nite sets: Assume given distinct elements Ci, Cj ∈ S. Then

it is clear that the assumption

O(Ci) 6= O(Cj)

implies that for all subsets

A ⊆ O(Ci) and B ⊆ O(Cj)

we have

A ∩B = ∅.

Taking the contrapositive of this implication leads us to the fact that �nding

�nite subsets

A ⊆ O(Ci) and B ⊆ O(Cj)

167



satisfying

A ∩B 6= ∅

is enough in order to establish the equality

O(Ci) = O(Cj).

We thus introduce the notion of partial orbit: Given a �nite subset

Autpar(X) ⊂ Aut(X),

the partial orbit of an element C ∈ S is the �nite subset of O(C) de�ned as

Opar(C) =
{
Cg | g ∈ Autpar(X)

}
.

We then recall that Borcherds’ method returns a generating set Γ of Aut(X) and

de�ne

Γ∗ = Γ ∪
{
g−1 | g ∈ Γ

}
∪ {Id} ,

to be the extended generating set obtained by adding inverses and the identity

to Γ. In order to re�ne the upper bound Card(Rrat) on the number of orbits of

smooth rational curves under the action of Aut(X),we proceed by enforcing the

following procedure :

Upper bound re�nement procedure:

I We compute a �nite subset Autpar(X) of Aut(X).

I We then use this subset to compute the partial orbit

Opar(C) =
{
Cg | g ∈ Autpar(X)

}
for each C ∈ Rrat and form the set of partial orbits of elements ofRrat.

For each C ∈ Rrat we then proceed as follows: For each C ′ ∈ Rrat \ {C}:

168



I If Opar(C) ∩ Opar(C
′) 6= ∅ then clearly O(C) = O(C ′) as discussed

earlier in this section. Either one of C or C ′ is then removed fromRrat so

that the upper bound is decreased by 1.

I If Opar(C) ∩ Opar(C
′) = ∅ then for each element g ∈ Γ∗ \ {Id} we

compute the sets

Opar(C)g =
{
xg | x ∈ Opar(C)

}
and Opar(C

′)g =
{
xh | x ∈ Opar(C

′)
}

and determine whether there exist elements g, h ∈ Γ∗ \ {Id} such that

Opar(C)g ∩ Opar(C
′)h 6= ∅

When this is the case, then O(C) = O(C ′). As before, the upper bound is

then decreased by 1 and either one of C,C ′ is removed from the setRrat.

Assume that this procedure has been executed and that Rrat has thus been up-

dated. That is, we assume that the procedure returned an updated set R′rat ⊆
Rrat. Then for any two distinct elements C,C ′ ∈ R′rat and any two distinct el-

ements g, h ∈ Γ∗ \ {Id} , the equality Opar(C)g ∩ Opar(C
′)h = ∅ holds. We

can thus assert the non-existence of elements of Aut(X) acting as a non-trivial

permution on the set of partial orbits of the elements of R′rat. We then take

Card(R′rat) as our re�ned upper bound on the number of orbits of smooth ra-

tional curves on X under the action of Aut(X) and consider than no further

re�nement can be easily obtained from the data of Autpar(X). In case we desire

to re�ne the upper bound further, we need to compute a more extensive set of

elements of Aut(X) and apply the above procedure again. We now explain how

we proceed in order to compute �nite subsets Autpar(X) ⊂ Aut(X). Our proce-

dure to do so is motivated by the fact that, as far as we know, there is currently

no computer-based solution in public access that takes as input a set of gener-

ators of an in�nite group G, an integer p > 0, and outputs a set of elements

of this group having cardinality equal to p. Fix a strictly positive integer p. We

169



show how to explicitly compute a subset Autpar(X) ⊆ Aut(X) such that

Card(Autpar(X)) ≥ p,

that is, a subset having cardinality at least equal to p.

Procedure AutParGen: Denote by

W(Γ∗, β) = {a1 . . . aβ | ai ∈ Γ∗ 1 ≤ i ≤ β}

the set of words of length less than or equal to β in the free group over the set

Γ∗. Obiously, we haveW(Γ∗, β) ⊂ Aut(X) no matter the value of β. Recall that

Γ∗ has been as de�ned as Γ ∪ Γ−1 minus the identity. Thus, there are strict

inclusionsW(Γ∗, γ) ⊂ W(Γ∗, β) whenever α < β, with α and β positive inte-

gers. Also, note that Card(W(Γ∗, β)) ≤ Card(Γ∗)β holds. Before proceeding

further, we recall that the �oor and ceiling functions are both functions taking

real values as input and returning integers de�ned as

�oor : x ∈ R 7−→ max {m ∈ Z | m ≤ x}

and

ceiling : x ∈ R 7−→ min {m ∈ Z | x ≤ m} .

Denote by β0 be the greatest integer N such that Card(Γ∗)N ≤ p, that is:

β0 = �oor(
log(p)

log(Card (Γ∗)))
)

We then computeW(Γ∗, β0), which , as indicated above, satis�es

Card(W(Γext, β0)) ≤ p.

In order to reach our goal of obtaining a �nite subset of Aut(X) having cardi-

170



nality superior or equal to p, we still have to compute at least

p− Card(W(Γ∗, β))

additional elements of Aut(X). To do so, we compute a sequence of setsWj :

I De�neW0 as a copy ofW(Γ0, β
∗).

Assume thatWj has been computed and proceed as follows:

I If Card(Wj) ≥ p holds, then the goal of obtaining a subset of Aut(X) of

cardinality at least equal to p has been achieved, the procedure stops.

I Otherwise, we computeWj+1. We start by de�ning

δj+1 = ceiling(
p

Card(Wj)
).

There are two possibilities:

• If δj+1 < Card(Γ∗), pick a subset Sj+1 ⊂ Γ∗ \ {Id} such that

Card(Sj+1) = δj+1.

• Otherwise, de�ne Sj+1 as a copy of Γ∗.

We then compute the set

Wj+1 = {ab | a ∈ Wj, b ∈ Sj+1}

and go back at the beginning of this procedure withWj+1 as input data.

A�er a few iterations, a setWm satisfying Card(Wm) ≥ p will be obtained for

some integer m. We set

Autpar(X) =Wm.

The structure of the procedure AutParGen can be summarized as follows :

171



172



The whole upper bound re�nement procedure introduced in this section can be

schematized as follows:

173



1.11 Toward a parallelized Borcherds’ method

In order to compute a generating set of Aut(X), Borcherds’ method enforces

means which are brute force �avored, by design. As discussed in section 1.7.4

and even mentioned by Shimada himself in his article [19], the mechanics on

which relies the congruence testing procedure CongChecker testify to this fact.

Using brute force, however, has a price in terms of resources and computation

times. Due to the large amount of data that has to be processed depending on the

K3 under study, executing Borcherds’ method may require time. For instance,

when computing a generating set of Aut(Xt) for a K3 surface Xt with Picard

number 5, i.e., having a Néron-Severi group with Gram matrix
2t 0 0 0 0

0 −2 0 0 0

0 0 −2 0 0

0 0 0 −2 0

0 0 0 0 −2


with respect to a �xed basis, we observed that whenever t ≥ 5 Borcherds’

method has to deal with more than 80.000 representatives of congruence classes

of chambers during the �nal stages of its execution. Since each newly explored

chamber has to be tested for congruency against each such representative, the

method has to perform tens of thousands of congruence tests for each newly

discovered chamber. When t ≥ 7, the number of representatives is way over

100.000. Our idea to deal with this issue is based on common sense principles:

We modernized the method in such a way that procedures such as congruence

testing can be deployed in parallel over various worker processes. Let us use an

example to illustrate this idea : Assume that Borcherds’ method is exploring a

chamber D and that this chamber has to be tested for congruency against the

elements of the set

S = {D0, D1, . . . , D79999}

174



That is, Borcherds’ method has to apply CongChecker 80.000 times: First, D

has to be tested against D0, then against D1, then against D2,..., and �nally

tested for congruency against D79999. The congruence testing part of the clas-

sical Borcherds’ method, as described by Shimada in his article [19], almost a

decade ago, was intended to be implemented over a single for loop, i.e.,

for each chamber

Dk ∈ {D0, D1, . . . , D79999}

run CongChecker(D,Dk).

We cannot abide by such an old-fashioned approach in 2022. Common sense

dictates that instead of performing 80.000 congruence tests in series, this work-

load should be split over, say, 16 processes Pj , 1 ≤ j ≤ 16, in parallel, where

each process is expected to perform 1/16th of the overall workload, that is, 5000

congruence tests. Formally, we take the set S and split it into 16 subsets Sj for

j ∈ {1, 2, . . . , 16} of cardinality 5000. We here assume that a machine having

a CPU with at least 16 logical cores is available, thus enabling the OS scheduler

to dispatch each of these 16 worker processes over a dedicated core for paral-

lel execution, making the best possible use of the CPU resources available. In

fact, things are quite simple : Enforcing this approach amounts to running 16

for loop in parallel : Each loop iterates 5000 times, instead of a single for loop

iterating 80000 times.

(Process Pj)
for each chamber

D′ ∈ Sj,

run CongChecker(D,D′).

One remark : In an online section, we explain that Shimada’s approach to con-

gruence testing can be massively modernized. These enhancements, combined

with parallel deployment of congruence testing, enabled us to obtain astonishing

results for cases involving a he�y number of representatives of cong. classes.

175

https://k3surfaces.com/cong-testing-pool/
https://k3surfaces.com/cong-testing-pool/#table-reduc-times
https://k3surfaces.com/cong-testing-pool/#table-reduc-times


The Python multiprocessing package includes a major asset which suits per-

fectly our needs: The Pool object. As indicated in the Python o�cial documen-

tation, the Pool object o�ers a convenient means of parallelizing the execution

of a function across multiple input values, distributing the input data across

processes (data parallelism). We thus made use of the Pool object to parallelize

many procedures within our implementation of Borcherds’ method, thus achiev-

ing massive performance improvements compared to our early implementations

of Borcherds’ method produced by following to the letter the guidelines from

Shimada’s that can be found in [19]. We expand on this matter in the section 1.11

of this thesis. Since we always try to make the most out of the hardware at our

disposal, we have to mention that our �rst attempt to speed up our implemen-

tation of Borcherds’ method consisted in using GPU computing to perform the

matrix multiplications which occur during an execution of Borcherds’ method.

However, the small size (at most 26×26) of the matrices involved in Borcherds’

method does not allow GPU computing to express all its power. Our experiment

initially consisted in managing to be able to perform CUDA operations in Sage’s

Python environment, with an old RX580. Guidelines on how to reproduce this

experiment are provided on the website K3surfaces.com. We ended by setting

the GPU approach aside and focused on parallelism involving CPU computing

for the remainder of our study. In this section, we proceed as follows:

I In section 1.11.1, we start by introducing the basic principles behind process-

based parallelism. We then provide a quick overview of the internal proce-

dures of Borcherds’ method under the viewpoint of parallel deployment,

focusing on those suitable for doing so. We then introduce the structure

of a modernized version of Borcherds’ method : The Poolized Borcherds’
method, which arises due to the enforcement of process-based parallelism

with the Pool object from multiprocessing.

I In section 1.11.2, we explain how we applied parallelism at the scale of

Borcherds’ method itself, thus opening new concrete perspectives.

176

https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://k3surfaces.com/sage-pool-cuda/


1.11.1 The Poolized Borcherds’ method

Assume that a massive pile of sand has to be cleared from the entrance of a town

building. A city worker arrives in front of the disaster and can either clear the

pile on its own or bring reinforcements by calling his colleagues and mobilizing

a team of municipal workers. In practice, a team of workers should be much

more e�cient than a single individual in clearing a huge pile of sand. Working

e�ciently as a team, however, requires coordination. To this end, tasks must be

precisely de�ned and distributed evenly across the team of workers, which are

assumed to be endowed with equal abilities. Assume that the pile of sand is the

�nite set

S = {q1, q2, . . . , qM} ,

with M integer. Assume that clearing the pile of sand consists in applying a

procedure f to the elements of this set. Mobilizing only one worker to clear the

pile of sand amounts to performing

f(q1), f(q2), . . . , f(qM)

in series. One worker, alone and on his own, digs out the sand, shovel by shovel.

Depending on the size of the pile, the clearing process may take a lot of time. An

analogous situation on a computer would be the execution of a single process,

i.e., of a sequence of tasks, performed one by one, in series, sequentially, on a

single core at any given time. On the other hand, mobilizing a team of workers

and evenly splitting the workload between all the team members will reduce the

amount of time required to clear the pile of sand. On a computer, the sequence

of tasks to be accomplished would then be distributed over more than one pro-

cess, running in parallel and making the best possible use of available resources.

Note that clearing a pile of sand with a team made of various workers can

be done without de�ning any particular order. Distributing the work between

available workers is enough: Order does not matter. Tasks for which order is

irrelevant should thus be considered �rst when enforcing parallelism.

177



Regarding Borcherds’ method, what are the tasks for which the order does not

count? Taking a look at the �gure depicting the algorithmic structure of the

method, an obvious candidate stands out: Congruence Testing, that is, the

procedure CongChecker. Indeed, when a newly explored chamberD has to be

tested for congruency against each of the representatives of congruences classes

of chambers previously discovered. The order in which the tests are performed

does not matter. Similarly, when RatDetect is applied to the set of walls of a

chamber, wall by wall, order does not count. Another example is the compu-

tation of the Weyl vectors of chambers adjacent to a given chamber along its

non-(−2)-walls (w.r.t. anti-backtracking) : The order to which WeylAdj is ap-

plied to these walls is irrelevant. We thus have already identi�ed at least three

internal procedures of Borcherds’ method which are obvious and suitable can-

didates for deployment in parallel over various worker processes. Congruence

testing, due to its computationally intensive brute-force nature, is the one for

which we have the most to gain by enforcing process-based parallelism, e.g.,

by deploying CongChecker in parallel over various worker processes. Assume

that N worker processes

P1, . . . , PN

can be mobilized in parallel, each and that some procedure f has to be applied

to each element of a �nite set S . We assume that the overall result of the whole

operation is not impacted by the order to which the elements of S are processed.

How should we proceed to distribute the workload of having to process the

elements of S to take advantage of our N worker processes?

I If Card(S) < N , we call for a number Card(S) of workers and assign

one element of S to each of them. The other N − Card(S) workers idle.

I If Card(S) ≥ N then we split S into N subsets S1, . . . ,SN and assign

each of them to a worker Sj 7−→ Pj which applies the procedure f to

each element of Sj .

178

https://static.k3surfaces.com/content/Borcherds-method-structure-April-10-scaled.jpg
https://static.k3surfaces.com/content/Borcherds-method-structure-April-10-scaled.jpg


This is as simple as it looks.

In order to determine the cardinality Card(Sj) of each of the N subsets Sj ⊂ S
in such a way that

N∑
j=1

Card(Sj) = Card(S),

we can proceed as follows. We start by performing the euclidean division of

Card(S) by N . There exist integers q and r with r < N such that

Card(S) = Nq + r.

Moreover, the assumption r < N enables us to �nd an integer δN,r such that

N = r + δN,r.

We can thus express Card(S) as:

Card(S) = (r + δN,r)q + r

= (q + 1)r + qδN,r.

A natural way of partitioning S into N = r + δN,r subsets thus appears.

The set S is split into:

I r subsets each containing q + 1 elements.

I δN,r subsets each containing q elements.

179



Example. Assume that Borcherds’ method is at the beginning of its 53th itera-

tion during the computation of a generating set of Aut(X5) where X5 is the K3

with Picard number �ve in the case where t = 5, with Gram matrix presented at

the beginning of section 1.11. The �rst newly discovered chamber D has to be

tested for H-congruency against 80.218 representatives of congruence classes.

Thus, we have Card(S) = 80128. Assume that we have a CPU with at least

16 logical cores, so that we can execute 16 worker processes in parallel without

hassle. We set N = 16. Proceeding as above, we have

80218 = 5013 · 16 + 10

= 5013 · (6 + 10) + 10

= 5013 · 6 + 5014 · 10

We thus split the workload into 6 subsets having each cardinality 5013, and 10

other subsets each having cardinality 5014.

We introduced the main ideas and basic concepts behind process-based paral-

lelism. We now introduce the tools that enabled us to enforce these concepts

with a computer-based approach. The Pool object from the Python multipro-
cessing library is an e�cient, �exible and reliable tool that can be used to make a

Python program bene�t from the use of process-based parallelism, thus enabling

us to take full advantage of the multi-core architecture of a CPU. Adapting our

code in order to take advantage of the Pool object was worth the e�ort. The

key do so consists of having a clear and global view of the algorithmic structure

under study. Critical points that can bene�t from deployment of procedures in

parallel can then be readily identi�ed. Going into precise details on how we

made use of Pool and produced the Poolized Borcherds’ method is a battle that

cannot be fought in this PDF, but can be fought online. Nevertheless, we will

provide a few bits of advice and explain where we used Pool within Borcherds’

method. First, we had to identify the tasks and procedures which can lead to

noticeable performance gains when deployed in parallel.

180

https://k3surfaces.com/gen-set-case-5-pic-5/
https://k3surfaces.com/parallelism-borcherds/


For instance, the for loops in which time and resource expensive functions are

repeatedly executed are usually critical spots on which performance gains can be

obtained by enforcing process based-parallelism. Within Borcherds’ method, we

used process-based parallelism at the level of the procedures mentioned below.

Note that doing so led us to the Poolized Borcherds method.

I Detection of (−2)-walls: In order to identify the (−2)-walls among the

elements of the set of walls of a chamber, the procedure RatDetect de-

scribed in section 1.7.1 can be deployed in parallel.

I Computation of Weyl vectors: The procedure WeylAdj can be de-

ployed in parallel to compute the Weyl vector of each chamber adjacent

to a chamber along its non (−2)-walls.

I Computation of the set of walls: The procedure DeltaW repeatedly

calls the Shimada’s custom ShortVectors algorithm ShiVectors (described

in section 1.4. These calls can be distributed over various worker pro-

cesses. Within SetOfWalls, the chunk of code involving linprog from

scipy.optimize, used to deal with Shimada’s LP problem, is deployed in

parallel over various worker processes, through Pool.

I Congruence tests: As discussed previously, Borcherds’ method may have

to perform congruence tests by repeatedly applying the procedure Con-
gChecker described in section 1.7.4. Tens of thousands of congruence

tests may have to be performed for each newly discovered chamber. It,

therefore, makes perfect sense to distribute the resulting workload over

multiple worker processes, each running a CongChecker block and pro-

cessing a chunk of the total workload. We took great care in optimizing

and enhancing for execution in series Shimada’s 2013 congruence testing

procedure before proceeding to parallel deployment. Parallel deploy-
ment should not be done blindly. We recommend at least trying to

get the most out of the procedures, deployed in series, and then starting

thinking parallel. Doing so enabled us to obtain substantial gains.

181

https://k3surfaces.com/poolized-borcherds-method-structure/
https://k3surfaces.com/cong-testing-pool/


182



The following �gure illustrates the structure of a CongChecker block:

183



1.11.2 Enforcing parallelism at the scale of Borcherds’ method

We introduced the basic principles of process-based parallelism. These prin-

ciples enabled us to implement Borcherds’ method while taking advantage of

modern hardware. We now explain the most straightforward way to make use

of parallelism on a broader scale. Instead of using process-based parallelism in-

side of the method, that is, at the level of its internal procedures, we will use it at

the level Borcherds’ method itself. We �rst have to remember that the method

relies on two core components to ful�ll its ultimate purpose:

I One component enables the method to explore the chamber structure

over Nef(X) ∩ PS .

I The other enables the method to process this chamber structure in order

to obtain generators of AutH(Nef(X) ∩ PS).

Using process-based parallelism within the method enables us to obtain massive

improvements on the processing component of Borcherds’ method. Indeed, we

have seen in the previous section that a solution such as Pool can be used to

deploy in parallel or enhance procedures such as CongChecker, DeltaW or

RatDetect. We now focus on using parallelism on the exploration component

of Borcherds’ method. Going back to the end of section 1.7 and taking a look at

the �gure depicting the structure of the classical Borcherds’ method, it is clear

that the backbone of the algorithmic structure of Borcherds’ method is a top-

level for loop: For each chamber D ∈ Lk, the set of level-k representatives of

congruence classes of chambers, Borcherds’ method discovers chambers of level

k + 1 by exploring the surroundings of D along its non (−2)-walls. On paper,

the most straightforward course of action consists in distributing the workload

represented byLk over various worker processes. Let’s visualize this idea by us-

ing a picture. We keep things simple : During its execution, Borcherds’ method

can be viewed as a hamster exploring a chamber structure. The following �gure

is based on a genuine representation of a chunk of the chamber structure over

Nef(X)∩PS when X is the K3 surface with Néron-Séveri S = NS(X) having

184



Gram matrix equal to 84 0 0

0 −2 0

0 0 −2


with respect to a �xed basis.

Assume that :

I The green-colored chamber is the initial chamber.

I Chambers in blue are chamber of level 1.

I Chambers in purple are chambers of level 2.

I Chambers in yellow are chambers of level 3.

I Chambers in red are chambers of level 5.

Assume that Borcherds’ method is represented by the hamster emoji, as pictured

above. Furthermore, we assume that the method starts exploring and processing

chambers of level 4, colored in red, by adjacency to chambers of level 3, in yel-

185



low. Please note that we assume that each chamber in yellow represents its own

congruence class of chambers, i.e., we assume that L3 contains all the chambers

in yellow. Our idea merely consists in distributing over multiple processes the

workload represented by exploring and computing the walls of chambers ad-

jacent to chambers in L3. For example, we can split L3, which contains the 8

yellow chambers, into four subsets

L(1)
3 ,L(2)

3 ,L(3)
3 ,L(4)

3 .

each containing 2 chambers. We then assign each of these subsets L(j)
k to a pro-

cess, each represented by a hamster Emoji, in charge of exploring and processing

red chambers adjacent to the chambers inL(j)
k . We illustrate the situation by up-

dating our previous �gure :

Each one of the four hamsters pictured above would thus receive an assignment

of two yellow chambers, and would have to explore and process their adjacen-

cies. In practice, many issues arise when such a straightforward parallelized

approach of Borcherds’ method is implemented. If we assume that each ham-

ster is capable of fully enforcing the features of Borcherds’ method, we have to

186



avoid and mitigate the consequences of the two following issues :

Issue n°1 - The pitfall of unrestricted nested parallelism: Assume that we

launch in parallelN instances of a program capable of enforcing all the internal

procedures of Borcherds’ method. Assume that each such instance can deploy

these features with a process-based parallelism solution such as the Pool ob-

ject. That is, we assume each instance can mobilize its own dedicated team of

workers, e.g., M dedicated worker processes, that can be mobilized to deploy

procedures such as RatDetect, WeylAdj or CongChecker with process-based

parallelism. We then have to keep a �rm eye on resources. The question is

then : Is our machine powerful enough to handle a total number of M × N

resource-hungry processes running in parallel? Taking modest values such as

N = M = 4 already yields a total of 16 processes, each potentially mobilizing

the full power of a logical core. We could be facing a CPU bottleneck situation.

Due to the state of technology when this thesis was produced, such a situation

would then have been a severe issue for most consumer-grade machines. We

have to carefully pick the values ofM andN to e�ciently allocate the available

resources and thus obtain the best performance ratio.

Issue n°2 - Communication is necessary to work e�ciently as a team:

Assume that the burden of exploring and processing chambers of level k+ 2 by

adjacency to chambers of level k+1 has been distributed over various processes.

We thus assume that Lk+1 has been split intoN subsets L(j)
k+1 each assigned to a

worker processPj which will explore and process the chambers of level k+1 ad-

jacent to chambers in L(j)
k+1 along their non (−2)-walls for 1 ≤ j ≤ N . Assume

that

I A chamber D1 ∈ L(1)
k+1 is discovered by process P1 at time t1.

I A chamber D2 ∈ L(2)
k+1 is discovered by process P2 at time t2 > t1.

I D1 and D2 are distinct and congruent.

187



Process P1 computes the set of walls of D1 and test it for congruence against all

the representatives of congruence classes of chambers which are already known.

Assume that D1 represents a new congruence class. We have to make sure that

processes share information and communicate through a shared database. In-

deed, ProcessP2 needs to be informed of the existence ofD1 so that the chamber

D2 it discovers can be tested against D1 for congruency. The chamber D2 will

otherwise be classi�ed as representing a new congruence class. A dramatic con-

sequence of this situation is that a new generator of AutH(Nef(X)∩PS) which

could have been obtained by testing D2 against D1 for congruency with Con-
gChecker could here remain undiscovered forever, thus skewing the purpose,

intent, and results of the execution of Borcherds’ method. We thus see that

enforcing parallelism at the scale of Borcherds’ method cannot be done while

ignoring the issue of communication between processes. Indeed, some tasks

imperatively require communication between processes, as we just discussed

in the case of congruence testing. We did not have enough time to produce

an implementation of Borcherds’ method involving various processes capable

of performing their own congruence tests while being synchronized and com-

municating through a common database. We, however, urge people to go in

this direction in the future. Enabling processes to conduct their own congru-

ence tests while sharing data in real-time is undoubtedly one of the signi�cant

challenges regarding the future of Borcherds’ method. We must however con-

cede that in order to deal with most surfaces with small Picard number, using

parallelism at the internal scale of a single instance of Borcherds’ method, e.g.,

enforcing congruence testing over a pool of 16 or 20 worker processes is more

than enough to complete an execution of the method in a reasonable amount of

time. Indeed, the cardinality of the complete set of representatives of congru-

ence classes of chambers of Nef(X) ∩ PS obtained at the end of an execution

of Borcherds’ method on such surfaces does not usually exceed a few thousand

chambers, at most. As indicated on K3surfaces.com, generating sets of the re-

spective automorphism groups of various famous surfaces with Picard number

3 or 4 can be obtained in a matter of seconds, minutes at worst, and yield a com-

188

https://k3surfaces.com


plete set of representatives of small cardinality. Regarding the less straightfor-

ward cases, our extensive use of process-based parallelism at the internal level

of the method, combined with a substantial preliminary e�ort to optimize the

procedures themselves nevertheless enabled us to obtain signi�cant improve-

ments. For instance, during an application of the method on a K3 of Picard

number �ve, which involved more than tens of thousands of representatives of

congruence classes, we observed that testing a given chamber for congruency

against 80231 other chambers was 1000 times faster with our modernized ap-

proach than when we used our programs implemented by following to the letter

Shimada’s guidelines from his 2013 article [19]. Despite these improvements, we

observed that a severe limiting factor in terms of computation times still had to

be considered and put under control: The computation time of the sets of walls

of a chamber. Our idea to deal with this issue consisted in enforcing parallelism

at the level of Borcherds’ method itself, as discussed earlier, but this time with

an approach focused on the parallel deployment of various processes to perform

the exploration of the chamber structure and of the computation of the sets of

walls of chambers. To this end, we adopted a strategy based on the use of a

primary process P0 and of auxiliary processes P1, . . . , PN , as follows:

I The primary process P0 is a full instance of Borcherds’ method.

I Worker processes P1, . . . , PN are endowed with Borcherds’ method fea-

tures RatDetect and WeylAdj to navigate within the chamber structure

and of DeltaW and SetOfWalls to compute the respective sets of walls

of chambers.

I All processes are synchronized by level and communicate through a com-

mon shared database.

I All processes are allowed to deploy their internal procedures using process-

based parallelism to accomplish their duties.

The mechanics behind this approach can be described as follows: At the be-

ginning of each iteration, say the (k + 2)-th iteration, the set Lk+1 containing

189

https://k3surfaces.com/cong-testing-pool/
https://k3surfaces.com/cong-testing-pool/


the chambers whose adjacencies are to be explored and processed is split into

N subsets L(j)
k+1 for j ∈ {1, . . . , N} . We set L(0)

k+1 = Lk+1 and assign to each

process Pj :

I A subset L(j)
k+1 ⊆ Lk+1

I A setR(j)
k+1 containing the sets of walls which will be computed by Pj .

I A set E (j)
k+1 containing the data of the Weyl vector of chambers whose set

of walls have been computed by Pj .

As soon as the process Pj has computed the Weyl vector wD of a chamber D

of level k + 2 adjacent to a chamber in L(j)
k+1 along a non (−2)-wall , Pj checks

whether the condition

wD ∈
N⋃
i=0

E (i)
k+1 (1.27)

holds. That is, the auxiliary process Pj checks whether D has already been

explored and processed earlier by another process. Two possibilities then arise:

I If the boolean value associated with the expression (1.27) is true, then the

process Pj either proceeds to its next task in line or idles until the next

iteration if Pj has already completed the exploration of the adjacencies of

all chambers in its assigned share of the workload L(j)
k+1.

I If the boolean value associated with the expression (1.27) is false, then

Pj knows that D has never been explored before, and thus takes care of

the computation of the set of walls of D. As soon as Pj completes the

computation of Ω(D), it stores a copy of this set into R(j)
k+1, and stores a

copy the Weyl vector wD of D into the set E (j)
k+1 so that other processes

can know that Ω(D) has indeed been already been computed by Pj during

the (k + 2)-th iteration, and should not be computed again.

190



We hence see that the two main purposes of the auxiliary processes Pj consist

in (a) exploring the chambers adjacent to chambers in their respective assigned

share L(j)
k+1 of the entire workload Lk+1, and (b) computing the respective sets

of walls of these chambers if these sets have not been computed earlier.

Auxiliary processes Pj 6= P0 thus work to the bene�t of the primary process

P0. The latter is a full instance of the Poolized Borcherds’ method. Whenever

the mechanics of Borcherds’ method would require the primary process P0 to

compute the set of walls Ω(D) of a PS-chamber D with Weyl vector wD, the

impact of our new approach lies in the fact that P0 now checks whether

wD ∈
N⋃
i=0

E (i)
k+1

holds. When this is the case, the primary process P0 retrieves Ω(D) from

N⋃
i=0

R(i)
k+1

and thus does not have to spend time and resources on the computation of this

set of walls. Otherwise, the primary process P0 computes the set of walls Ω(D)

of D, stores a copy of Ω(D) intoR(0)
k+1, and a copy of wD into E (0)

k+1.

We devised this strategy in such a way that Borcherds’ method can be fully ex-

ecuted by the primary process P0 no matter what auxiliary processes produce.

Even if the execution of all the auxiliary processes Pj 6= P0 is interrupted, the

primary process P0 can thus continue running Borcherds’ method all by itself.

The situation is illustrated in the following �gure.

191



We thus represent the primary process as a giant hamster. The path of this

giant hamster inside the chamber structure does not depend on the behavior

of the tiny hamsters. During the iteration, the giant hamster explores each of

the red chambers adjacent to the yellow chambers. However, the tiny hamsters,

which represent auxiliary processes, work in sync to the bene�t of the primary

process. These smaller hamsters compute the sets of walls of red chambers,

which have been assigned speci�cally to each of them at the beginning of the

iteration by the giant hamster, and thus enable the latter to have direct access

to the data of these sets of walls when needed, thus minimizing the workload

over the giant hamster’s shoulders in terms of the computation of sets of walls.

We now formally explain how we enforced this approach. In order to enable

the primary process P0 to communicate with the auxiliary processes through

a shared database, we swap the Walls computation block, from the Poolized

Borcherds’ method, also displayed on the following page,

192

https://k3surfaces.com/poolized-borcherds-method-figure/
https://k3surfaces.com/poolized-borcherds-method-figure/


for a new functional block, called the Poolized Functional Block. A PFB block

takes a Weyl vector wD of a chamber D as input, determines whether the set of

walls of D has already been computed by a worker process, and computes its

set of walls whenever this is not the case. Hence, a PFB block can test whether

the condition

wD ∈
N⋃
i=0

E (i)
k+1

holds. As we already discussed, two possibilities then arise:

I Whenever this condition holds, PFB retrieves the data of Ω(D) from

N⋃
i=0

R(i)
k+1.

I The PFB block otherwise computes Ω(D) with DeltaW and SetOfWalls.

193



The inner workings of a PFB block are depicted in the �gure above, while the

updated algorithmic structure of the Poolized Borcherds’ method augmented

with a PFB block is illustrated in the following �gure.

194



195



We still have to precisely formalize the mechanics behind the auxiliary pro-

cessesPj 6= P0. Before proceeding further, recall that we assume that Borcherds’

method is starting its (k + 2)-th iteration and that the primary process P0 splits

Lk+1 into subsets

L(1)
k+1, . . . ,L

(N)
k+1

each assigned to an auxiliary process Pj . Such a auxiliary process Pj must be

able to:

I Identify (−2)-walls among the walls of chambers inL(j)
k+1 so that chambers

of level k+1 adjacent along such walls will not be visited. Thus, auxiliary

processes must be able to execute the procedure RatDetect.

I Compute the Weyl vector of the chambers of level k+1 adjacent to cham-

bers in L(j)
k+1 along their non (−2)-walls. Auxiliary processes, therefore,

need to include the procedure WeylAdj among their features.

I Consult the shared database to determine whether the set of walls of a

given chamber has already been computed.

I Compute the set of walls of a chamber so that the procedures DeltaW
and SetOfWalls have to be among the procedures that can be executed

by auxiliary processes.

We formalize these requirements by introducing an enhanced version of the PFB
block, called the Autonomous Poolized Functional Block, or APFB. This block

is obtained by combining RatDetect and WeylAdj to a PFB block, thus making

the latter autonomous by enabling it to safely navigate within the portion of the

chamber structure assigned to the auxiliary process over which it is executed.

An important thing to remember is that both PFB and APFB can deploy their

respective internal procedures using process-based parallelism with Pool, hence

the P in their respective abbreviated names, for Poolized.

196



197



Enforcing parallelism with this state of mind can be pushed a little further to

bring an additional improvement to Borcherds’ method. A fundamental prin-

ciple of Borcherds’ method is that the data tuple associated with a chamber D

of level k + 2 adjacent to a chamber in Lk+1 along a non (−2)-wall is stored

into Lk+2 whenever D represents a new congruence class. Another basic rule

of Borcherds’ method is that the adjacencies of such chambers, i.e., the adjacen-

cies of chambers discovered during the (k + 1)-th iteration, are explored during

the (k + 2)-th iteration, and not earlier.

Viewing things in terms of parallel deployment enables us to bend this rule and

think ahead. Indeed, delaying the exploration of the adjacencies of chambers

adjacent to chambers discovered during the (k + 2)-th iteration, i.e., the explo-

ration of chambers of level k+ 3, until the next iteration no longer makes sense

when parallelism can be enforced. We thus introduce an extra auxiliary process

PN+1 tasked with the computation of the respective sets of walls of chambers

of level k + 3 adjacent to chambers in Lk+2 along their non (−2)-walls, dur-

ing the (k + 2)-th iteration, and proceeding by the FIFO principle: First In, First

Out. The process PN+1 is an instance of APFB. As soon as the primary pro-

cess P0 stores a chamber into Lk+2, the process PN+1 explores its adjacencies

along its non (−2)-walls and computes their respective sets of walls, following

the mechanics of APFB. Sets of walls computed by PN+1 are stored into a set

RN+1
k+1 , while the Weyl vectors of the corresponding chambers are stored into a

set EN+1
k+1 . Both sets are part of the shared database and will be at the disposal

of all processes during the (k + 2)-th iteration. In terms of scalability, it is of

course possible to assign additional processes to this task.

Our approach, in this thesis, toward a parallelized Borcherds’ method can thus

be summarized in the following �gure:

198



The above structure is a not just a concept: It is fully operational, illustrated

on concrete examples and explained on our website. The PFB / APFB strategy

illustrated by the �gure above can also be deployed at the network level to take

advantage from the processing power of several machines.

There is no doubt that massive improvements can be brought to Borcherds’

method by enforcing theoretical material related to the �eld of study of com-

plex systems involving synchronization, parallelism, concurrency, sequencing

and con�ict management between processes.

199

https://k3surfaces.com/bm-parallel-pt-1/
https://k3surfaces.com/bm-parallel-pt-1/
https://k3surfaces.com/bm-network-deployment/
https://k3surfaces.com/bm-network-deployment/


The following diagram illustrates, in a concrete manner, our global approach to-

ward a parallelized Borcherds’ method. We did our best to provide a sound and

safe starting point, a beachhead. We sincerely believe that everything remains

to be done with regards to the deployment of Borcherds’ method in parallel.

We kindly ask our readers to keep in mind that the initial goal of this thesis

consisted in studying automorphism groups and orbits of (−2)-curves on K3

surfaces Xt with Picard number 3 for various values of the parameter t ∈ Z.

Ultimately, we provided computer-based solutions that enabled us to ful�ll our

end of the deal with full automation. These solutions have a much larger scope

of application and thus opened many doors for further study. However, study-

ing the parallel deployment of Borcherds’ method was by no means the aim of

this thesis. We did our best, with the tools at our disposal, and within the time

constraints imposed by this doctoral project, to bring our ideas to life.

We, nevertheless, write it again: Everything remains to be done on the subject

of parallelism & Borcherds’ method and there is huge potential for development

on the subject if this endeavor is carried out from an HPC perspective.

Parallelism and the Borcherds’ method - Online content

200

https://k3surfaces.com/results/
https://k3surfaces.com/parallelism-borcherds/


Part II

A computer-based

algorithmic approach

to the study of projective models

of K3 surfaces and unirationality

of their moduli spaces

201



2 Projective models & unirationality

Smooth rational curves C ' P1 are central objects of study in the �eld of K3

surfaces. The term (−2)-curves is o�en used to refer to classes of smooth ratio-

nal curves on K3 surfaces. Note that in this entire dissertation, we willingly

make no distinction between a (−2)-curve and its class in the Néron-Severi

group. In 2019, Pierre Lairez and Emre Can Sertöz published an article [9] in

which can be found an algorithm to compute classes of smooth rational curves

onK3 surfaces. This algorithm, which mobilizes material from Vinberg [21] and

Shimada [18], inspired our advisor Professor Xavier Roulleau to produce an im-

plementation which was then released along with the publication of his article

[15] in 2019. Given the Gram matrix of the Néron-Severi group NS(X) of a K3

surface X, an integer m and an ample class P0 ∈ NS(X), Roulleau’s program

SmoothRationalCurves outputs the set of classes C ∈ NS(X) of all smooth

rational curves on X such that C · P0 ≤ m. Roulleau designed his program in

such a way that modifying a few lines of code and adding an input parameter

d is enough to make his program capable of returning the set of all classes of

curves D satisfying D2 = d and D · P0 ≤ m. We have to mention how impor-

tant this program was to us during during the early days of this thesis. Had this

program never been produced by Roulleau, it is probable that our study would

then have never been oriented toward the use of computer-based solutions for

the study of K3 surfaces. We used Sage’s Pythonic interface to Magma in order

to integrate Roulleau’s program into a Pythonic environment. We present the

mechanics and the algorithmic structure behind this program in section 2.1. Our

adaptation of this program is named CGS, for Classes of any Given Square, and

can be found under the same name in our proj mod suite. We produced a real

Python port of CGS, but this port did not bring any performance improvement

over the version adapted from Roulleau’s Magma program. The reason is that

implementing this program requires short lattice vectors enumeration tools, a

ground on which Magma (with ShortVectors, ShortVectorsProcess) crushed all

the alternatives we had on hand during our thesis. The program CGS enabled

us to start studyingK3 surfaces by enforcing a computer-based algorithmic ap-

202

https://pierre.lairez.fr/
https://emresertoz.com/
https://k3surfaces.com/projective-models/


proach. For various positive integer values of an integer parameter t > 0, we

were initially tasked with the study of projective models surfaces belonging to

the family of K3 surfaces Xt with a Néron-Severi group having Gram matrix2t 0 0

0 −2 0

0 0 −2


with respect to a �xed basis. We put Roulleau’s program to good use by com-

bining it with existing results in order to uncover a wealth of information on

these surfaces: Determination of projective models of these surfaces, criterion

for the unirationality of their moduli spaces, computation a generating set of

their automorphism group Aut(Xt) (see the Part 1 to this thesis, or click here),

study of a fundamental domain of the action of Aut(Xt) onto Nef(X)∩PS , de-

termination of explicit equation for these surfaces. In section 2.6, we build on

a technique, used by Roulleau in his articles [16] and [15], which consists in

taking advantage of the knowledge of a con�guration of the formC1 + C2 = n1D

C3 + C4 = n2D

with C1, C2, C3, C4 ∈ NS(X) classes of smooth rational curves andD an ample

class in order to study projective models of K3 surfaces and study the unira-

tionality of their moduli spaces. Such con�gurations will be referred to as sys-

tems, see de�nition 42. Note that the procedure CGS presented in section 2.1

enables us to obtain concrete data regarding classes of smooth rational curves

and divisors on K3 surfaces. For convenience, we produced a program to au-

tomatically form systems, as de�ned above, on a K3 surface. This program is

called SysFinder and is available for download on K3surfaces.com.

203

https://k3surfaces.com/aut-groups/
https://k3surfaces.com/aut-groups/
https://k3surfaces.com


A famous result that incorporates material from Saint-Donat [17] and Morrison

[13], stated as Theorem 41 in this thesis, gives a precise characterization of the

projective models that can be obtained from the morphism into projective space

obtained associated with the complete the linear system |D| of an ample class

D of self-intersection 2, 4, 6 or 8 and satisfying various prescribed conditions

of base-point freeness and non-hyperellipticity. This approach presented two

challenges that could only be overcome by producing new tools:

I How can we determine if a given class is ample or not, using a fully

computer-based solution that can be deployed on any complex K3 sur-

face? Our answer to this challenge is AmpTester.

I How can we deal with the base-point freeness and hyperellipticity con-

ditions of the classical SDM Theorem so that we can escape the burden

of handcra�ing criteria for these notions speci�c to each surface under

study? Our answer is PModChecker, for Projective Models Checker .

We thus ultimately produced tools that turned out to have a framework of appli-

cation going way beyond the above-mentioned family of K3 surfaces. To deal

with the �rst challenge, we produced a universal ampleness tester for classes of

divisors on K3 surfaces, as explained in the section 2.2 of this thesis. As our

thesis was nearing its end, we realized that we had all the algorithmic material

in hand to give a full computer-based incarnation to Theorem 41 for the study

of projective models. This classical and well-known theorem, widely known

under its classical formulation involving the notions of based-point freeness

and non-hyperellipticity, also possesses an equivalent formulation in terms of

purely numerical conditions, that can be fully tested using a computer-based

approach. Following this path, we took care of the second challenge. We give

more details about this in the section 2.6, in which we illustrate all the solutions

implemented during this portion of our thesis by applying them to the study of

projective models and of the unirationality of moduli spaces of the K3 surfaces

Xt with Néron-Severi group isomorphic to the integral lattice with Gram matrix

diag(2t,−2,−2) with respect to a �xed basis. In section 2.4, we establish that

204

https://k3surfaces.com/amptester/
https://k3surfaces.com/pmodchecker/


the discriminant group of these surfaces has no isotropic elements whenever

the parameter t can be expressed as a product of distinct primes and satis�es

t ≡ 3 ( mod 4). As shown in section 2.6, this result is useful when studying

the unirationality of the moduli spaces of these surfaces. We have to mention

that we took advantage of algorithmic material that can be found in Shimada’s

article [18] to deal with both challenges. Let us sum things up before going into

the heart of the matter:

I In section 2.1, we introduce the mechanics behind the procedure CGS.

I In section 2.2, we present the inner workings of the universal ampleness

tester, which requires as sole input the data of a Gram matrix of NS(X),

of a known ample class, and of the class to be tested.

I In section 2.3, we explain how to exhibit an initial ample class on a given

surface and provide a step-by-step example. Such an ample class can then

be used as an ambient parameter for universal ampleness tester AmpTester.

I In section 2.4, we establish the result mentioned above on discriminant

groups of surfacesXt for cases where t is a product of distinct primes and

satis�es t ≡ 3 ( mod 4).

I In section 2.5, we quickly review basic formulas on dimensions of linear

systems of curves and hypersurfaces in projective spaces.

I We �nally introduce PModChecker in section 2.6 and display how all

these tools can be mobilized to determine projective models of K3 sur-

faces. We also put these tools to use to create concrete openings for the

study of the unirationality of moduli spaces of the familiar K3 surfaces

Xt with Néron-Severi group isomorphic to the integral lattice with Gram

matrix diag(2t,−2,−2) with respect to a �xed basis.

205



2.1 Procedure CGS - Computing Classes of a Given Square

As indicated in the introduction to this thesis, the SmoothRationalCurves
Magma program due to Roulleau had a substantial positive impact on our work

in 2019 and was a key factor that helped us to put this thesis on track by adopting

a computer-based approach to the study of K3 surfaces. Roulleau designed his

program in such a way that only a few alterations in the code can widen its scope

of application and turn this tool into a generator of data on classes of divisors

D having a self-intersection D2 = d and satisfying D · P0 ≤ m, where integers

d,m, and an ample class P0 are speci�ed as input data by the user. The result of

such an update is our program CGS, a generalized version of the initial program.

As suggested by the name SmoothRationalCurves, Roulleau’s initial Magma

program, can identify classes of (−2)-curves among the elements of a set of

(−2)-classes by enforcing an algorithm due to Vinberg [21]. The program CGS
naturally inherits this feature when d = −2. We now present the algorithm

behind the SmoothRationalCurves program. Note that the article [9] from

Pierre Lairez and Emre Sertöz is authority content this matter. This subsection

will hence be based on their material and formulated in the general case where

the classes to be produced have self-intersection d ≥ −2. Before proceeding

further, let us get things straight about the notations used in this section:

I The capital letter S is used as a shorthand to denote the Néron-Severi

group NS(X) of X .

I The greek letter ρ is used to denote the Picard number of X . That is, we

set ρ = rank(S).

I We denote by PS the positive cone of X , that is, PS is the connected

component of {
D ∈ NS(X)⊗ R | D2 > 0

}
containing ample classes.

I We denote by GS a Gram matrix of S with respect to a �xed basis.

206

https://hal.archives-ouvertes.fr/hal-01932147/document
https://hal.archives-ouvertes.fr/hal-01932147/document


I We use the notation P0 to denote a �xed ample class in S = NS(X).

Given the input data of GS , of an ample class P0 and of integers d and m, the

following procedure due to Shimada [18] and Vinberg [21] outputs the list of

classes C ∈ NS(X) such that

C2 = d and C · P0 ≤ m.

Procedure CGS: Assume that a basis for S is �xed. This basis will be referred

to as the standard basis for S. We start by computing (e.g., by using a function

from the SageMath library) a basis

B = {λ1, . . . , λρ−1}

of the rank ρ− 1 sublattice

Λ = P⊥0 ∩ (〈P0, P0〉S S ⊕ ZP0)

of S ' Z3 and then compute its Gram Matrix

GΛ = MBGSM
T
B ,

where MB is the ((ρ − 1) × ρ)-sized matrix whose rows are taken to be the

elements ofB. Since Λ ⊂ P⊥0 , and since the ample class P0 by de�nition satis�es

〈P0, P0〉S > 0

the Hodge Index Theorem ensures that the restriction to Λ of the intersection

form of S is negative de�nite. The strict inequality

−〈D,D〉Λ > 0

207

https://k3surfaces.com/hit/


therefore holds for all D ∈ Γ. That is, the Gram Matrix GΛ of Λ is negative

de�nite. We then let

α = 〈P0, P0〉S .

Using a short lattice vectors enumerator, we compute

L =
{
D ∈ Λ | − 〈D,D〉Λ ≤ −dα

2 + αm2
}
.

The enumerator will return elements ofL as vectors with coordinates expressed

in terms of the basis of Λ which has been computed earlier. This is however not

a problem, since we have a basis B for Λ made of elements of S which enables

us to express elements of L with respect to the standard basis of S. We assume

that elements of L have thus been exprimed with respect to the standard basis

of S. Let

A =
{
−dα2 + αy2 | y ∈ [0 . . .m]

}
To each D ∈ L is then associated the rational

mD =
√
〈D,D〉Λ + dα2/

√
α.

De�ne

L′ =
{
D ∈ L | − 〈D,D〉Λ ∈ A and

1

α
(mDP0 +D) ∈ S

}
.

and note that the condition

1

α
(mDP0 +D) ∈ S

holds for an element D ∈ L if and only if α divides each of the coordinates

(w.r.t the basis of S) of mDP0 + D. To each element D ∈ L′ can be associated

an element Θ(D) ∈ S satisfying

Θ(D) · P0 ≤ m and 〈Θ(D),Θ(D)〉S = d

208

https://k3surfaces.com/shortvectors/


where Θ is the transformation

Θ : L′ −→ S

de�ned by

Θ : D 7−→ 1

α
(mDP0 +D).

Indeed, we have:

〈Θ(D),Θ(D)〉S =

〈
1

α
(mDP0 +D),

1

α
(mDP0 +D)

〉
S

=
1

α2
(m2

D 〈P0, P0〉S + 〈D,D〉S)

=
1

α2
(−〈D,D〉S + dα2 + 〈D,D〉S)

= d

and

〈Θ(D), P0〉S =

〈
1

α
(mDP0 +D), P0

〉
S

=
1

α
mD 〈P0, P0〉S +

1

α
〈P0, D〉S

=
1

α
mDα + 0

= mD

where we used the fact that 〈P0, D〉S = 0 because

D ∈ L ⊂ P⊥0 ∩ (αNS(X) + ZP0).

Note that the assumption D ∈ L′ implies that 0 ≤ mD ≤ m. We can thus

compute the set

C(m, d) =

{
1

α
(mDP0 +D) | D ∈ L′

}
,

209



and this set is the desired set of classes of self-intersection d on X having inter-

section product with P0 less than or equal to m. When

d 6= −2,

the procedure outputs C(m, d) and stops. Otherwise, C(m,−2) is the set of

(−2)-classes having intersection product with P0 less than or equal to m. Fur-

ther processing is thus needed in order to identify classes of (−2)-curves among

the (−2)-classes forming this set. Let

Cm = {D ∈ NS(X) | 〈D,D〉S = −2 and 〈D,P0〉S = m}

and de�ne

Nm = {D ∈ Cm | ∀p < m, ∀D′ ∈ Np, 〈D,D′〉S ≥ 0} .

Note that N1 = C1 holds, and that Nm can be computed recursively. Let Rm

be the set of classes of smooth rational curves having intersection product with

P0 less than or equal to m. We show that there is a bijection between the sets

Nm and Rm. It is well-known that any two classes D,D′ of irreducible curves

satisfy

〈D,D′〉S ≥ 0.

Thus, ifD ∈ Rm, thenD ∈ Nm. The setRm is therefore a subset of the setNm,

i.e., we have

Rm ⊆ Nm. (2.1)

Let C ∈ Nm. The Riemann-Roch theorem for surfaces gives that one of the

strict inequalities

dim H0(X,OX(C)) > 0 or dim H0(X,OX(−C)) > 0

210

https://k3surfaces.com/riemann-roch


must hold. That is, either C or −C is the class of an e�ective curve. Since

C ∈ Nm, we have

〈C,P0〉S = m

> 0

and deduce that C must be the class of an e�ective curve, because otherwise

the intersection product of C with P0 would not be positive. Using the fact that

the class of an e�ective curve can we written as the sum of classes of distinct

irreducible curves, we can express C as

C =
∑
i

βiCi

where all the coe�cients satisfy βi > 0 and the classes in this formal sum are

such that

〈Ci, Cj〉S ≥ 0

whenever i 6= j. Since the class C has self-intersection −2, there exists an

integer k such that the strict inequality

〈C,Ck〉S < 0.

holds. The adjunction formula then ensures that Ck satis�es

C2
k = −2.

The class Ck being of self-intersection −2 and irreducible is therefore the class

of a smooth rational curve on X . Let

m′ = 〈Ck, P0〉S .

211



Since, by assumption, we have 〈C,P0〉S = m, it is clear that

0 < m′ ≤ m

holds. Since the setRm′ is a subset of Nm′ , we moreover have

Ck ∈ Nm′ .

However, the fact that

〈Ck, C〉S < 0

contradicts the de�nition of Nm. Hence

m′ = m and Ck = C

This pattern of proof by contradiction enables us to assert that each element of

Nm is in fact the class of a smooth rational curve, hence contained inRm.

Thus, we have

Nm ⊆ Rm

and deduce from (2.1) that the equality

Nm = Rm

holds. The fact thatNm is computable recursively thus provides a mean to iden-

tify classes of (−2)-curves among sets of (−2)-classes. Roulleau’s Magma pro-

gram SmoothRationalCurves relies on these mechanics.

212



2.2 Universal Ampleness Tester

LetX beK3 surface over C with Néron-Severi group S = NS(X). When work-

ing with surfaces on which lie a �nite number of smooth rational curves, deter-

mining whether a class is ample or not is a non-issue. Indeed, it is well-known

that a class D ∈ NS(X) is ample if and only if it satis�es

〈D,C〉S > 0

for all classes D of smooth rational curves on X . Only a �nite number of in-

tersection products have therefore to be computed in order to get an answer

on the ampleness of a class D on a K3 surface on which lie a �nite number of

smooth rational curves, i.e., having a �nite automorphism group. However, this

approach is pointless when the K3 surface under study has an in�nite number

of smooth rational curves lying on it, that is, on surfaces for which Aut(X) is

in�nite. For such surfaces, li�ing the veil on the ampleness or non-ampleness of

classes has always been a problem until now. Our solution to this issue is based

on the fact that Shimada fortunately devoted eight lines of his 2013 article [19,

p.31/32] to outline a characterization of ampleness which led us to produce a

universal ampleness tester capable of testing whether any class D ∈ S is am-

ple or not provided that we have prior knowledge of one ample class. We thus

smashed the door slightly opened by Shimada’s almost a decade ago and gave

life to a universal ampleness tester: AmpTester. Note that starting from this

line, we stop using capital letters to denote classes in S and do so for the sake

of clarity until the end of this section. Assume known an ample class a0 ∈ S.

Shimada states that a class v ∈ S is ample if and only if the three following

conditions are satis�ed:

I Condition AC1: Both inequalities

〈v, v〉S > 0 and 〈v, a0〉 > 0

hold, so that v ∈ PS .

213

https://k3surfaces.com/shimada-amp-pages/
https://k3surfaces.com/ampleness-tester/


I Condition AC2: The set

{r ∈ S | 〈v, r〉S = 0, 〈r, r〉S = −2}

is empty.

I Condition AC3: The set

{r ∈ S | 〈v, r〉S < 0, 〈a0, r〉S > 0, 〈r, r〉S = −2}

is empty. That is, the line segment in PS connecting a0 and v does not

intersect any hyperplane (r)⊥ perpendicular to some (−2)-class r ∈ S.

Checking whether condition AC1 holds is not a problem. Things are not as sim-

ple regarding conditions AC2 and AC3. In his article [18], Shimada fortunately

provides algorithms that can be used to compute the sets involved in verifying

these conditions.

I Algorithms 3.1 and 3.2 from [18] can be used to check whether AC2 holds.

We already know Shimada’s Algorithm 3.1 as ShiVectors, described in

the section 1.4 of this thesis. We gave the name ShiChecker to our im-

plementation of Shimada’s Algorithm 3.2 and explain how to implement

it in section 2.2.1.

I Algorithms 3.1 and 3.3 from [18] can be used in order to check whether

AC3 holds. Let us give the name ShiBooster to algorithm 3.3. We explain

how to deal with its implementation in section 2.2.2.

We took on the challenge and gave life to Shimada’s idea of a universal ample-

ness tester. The result is AmpTester, detailed and available on K3surfaces.com

We also combined Shimada’s idea with Roulleau’s program SmoothRational-
Curves in order to make the program AmpTester capable of returning classes

C of smooth rational curves such that D · C ≤ 0 whenever D is not ample

and has positive self-intersection, thus providing an additional and concrete ev-

idence of the non-ampleness of D thus supporting the �ndings of AmpTester.

214

https://k3surfaces.com/ampleness-tester/


2.2.1 ShiChecker - Checking AC2

Let L be a lattice and u ∈ L such that

〈u, u〉L > 0

Let α and δ be integers. We now explain how we implemented the algorithm to

compute sets of the form

H = {x ∈ L | 〈x, u〉L = α, 〈x, x〉L = δ}

outlined by Shimada in his article [18, Algorithm 3.2].

Our implementation of this algorithm is called ShiChecker and is available for

download on K3surfaces.com. The general strategy to do so is based on the fact

that an element v ∈ H can be obtained by

(i) determining a solution c ∈ S of the equation 〈x, u〉S = α and then

(ii) determining an element y ∈ u⊥ ⊂ S satisfying

〈y + c, y + c〉S = δ,

that is, satisfying

〈y, y〉S + 2〈y, c〉S + 〈c, c〉S = δ. (2.2)

The data of c and y can then be used to assemble an element

v = y + c

215

https://k3surfaces.com


which will then satisfy

〈v, u〉S = 〈y + c, u〉S
= 0 + 〈c, u〉S
= α

and

〈v, v〉S = 〈y + c, y + c〉S
= δ,

so that v ∈ H, as desired.

Implementation of (i): An element x ∈ S can be represented by a coordi-

nate vector

x = [x1, . . . , xρ]S

where ρ = rank(S). Solving the equation

〈x, u〉S∨ = α

for x ∈ S amounts to determining integers x1, . . . , xρ such that

[
x1 . . . xρ

]
GS


u1

...

uρ

 = α. (2.3)

The le�-hand side of this expression can be expanded an re-arranged so that

equality (2.3) can be written as an expression of the form

ρ∑
i=1

γixi = α

216



where the γi are elements of Q. Clearing the eventual denominators on both

sides of this expression yields an equality of the form

ρ∑
i=1

µixi − γ = 0 (2.4)

where γ ∈ Z and µi ∈ Z for 1 ≤ i ≤ ρ. The resolution of this degree 1 multi-

variate equation is then accomplished using a CAS such as Sage and gives us a

basis {ε1, . . . , ερ−1} of the (ρ − 1)-dimensional solution space of this equation.

That is, solutions of (2.4) are generated by

ε(t0, . . . , tρ−1) = ε1t1 + · · ·+ ερ−1tρ−1 (2.5)

where ti ∈ Z for 1 ≤ i ≤ ρ− 1.

Implementation of (ii): We have seen how to generate solutions of the equa-

tion 〈x, u〉S = α. Assume such a solution c ∈ S �xed. We now explain Shi-

mada’s procedure to obtain an element y ∈ u⊥ ⊂ S satisfying

〈y + c, y + c〉S = δ.

Since a Gram matrix of S = NS(X) is by design inde�nite, we cannot use

a short lattice vectors enumeration algorithm to determine elements x ∈ S

satisfying 〈x, x〉S = δ . Shimada’s idea to overcome this obstacle consists in

�nding a particular sublattice of S on which the restriction of the bilinear form

is de�nite. We have 〈u, u〉S > 0 by assumption, hence the Hodge Index theorem

gives us that the restriction of 〈 , 〉S∨ to the orthogonal complement u⊥ of u in

S is negative de�nite. Recall that we explained in section 1.4 how to proceed

to implement Shimada’s short lattice vectors enumeration algorithm from his

article [18, Section 3.1] to determine solutions of expressions of the form.

xQxt + 2xL+ c ≤ 0

217

https://k3surfaces.com/hit/


This tool then enables us to determine elements y ∈ u⊥ ⊂ S satisfying the

equality

〈y, y〉S + 2〈y, c〉S + 〈c, c〉S = δ.

SinceS is an integral lattice, it is contained in its dual, i.e., S ⊂ S∨. By de�nition,

an element x ∈ S belongs to u⊥ if and only if 〈x, u〉S = 0. Solving this equation

amounts to determining integers x1, . . . , xρ such that

[
x1 . . . xρ

]
GS


u1

...

uρ

 = 0 (2.6)

Expanding and clearing the denominators, we obtain from the above equality a

�rst-degree multivariate linear equation of the form

ρ∑
i=1

γixi = 0.

which can easily be solved for integral solutions using a CAS. We thus obtain a

basis {ξ1, . . . , ξρ−1} of the solution space of this equation, so that its solutions

can be generated using

ξ(t1, . . . , tρ−1) = ξ1t1 + · · ·+ ξρ−1tρ−1,

where the ti are integers for 0 ≤ i ≤ ρ − 1. Using the basis of u⊥ that we

now have at our disposal enables us to compute a Gram Matrix Gu⊥ , which

is negative de�nite. That is, we compute the matrix with entries 〈ξi, ξj〉S for

1 ≤ i, j ≤ ρ−1. Let pα ∈ S denote a �xed solution of the equation 〈x, u〉S = α,

whose resolution was explained earlier when we dealt with point (i). We now

determine an element y ∈ u⊥ ⊂ S such that

〈y + pα, y + pα〉S = δ. (2.7)

218



As mentioned previously, the element v = y + pα will then satisfy

〈v, v〉S = δ and 〈v, u〉S = α

so that we will have v ∈ H. We have seen in section 1.4 that Shimada’s Short

lattice vectors custom algorithm ShiVectors takes a positive quadratic triple

[Q,P, c]

as input data, where

I Q is a n× n-sized symmetric positive de�nite integral matrix,

I P is a (1× n)-sized column vector with integer entries,

I c is a rational parameter.

We recall that Shimada ensures that the procedure ShiVectors outputs the �nite

set

{x ∈ Zn | qQT (x) ≤ 0}

of solutions of

xQxt + 2xP + c ≤ 0

Let us arrange (2.7) to make it comply with this format. We �rst replace the

equality sign in

〈y + pα, y + pα〉S = −2− β (2.8)

by an≤ sign, and note that there is no loss of generality in doing so. We expand

and arrange (2.8) to obtain:

〈y, y〉S + 2〈y, pα〉S + 〈pα, pα〉S − δ ≤ 0. (2.9)

Recall that we obtained a basis

{ξ1, . . . , ξρ−1}

219



for u⊥ earlier. Since the element y is assumed to belong to u⊥, any short lattice

vectors enumerator executed using the Gram matrix of u⊥ will return elements

having coordinates given with respect to the basis of u⊥ from which the Gram

matrix was obtained, which, in our case, is the above-mentioned basis. Denote

by y1, . . . , yρ−1 the coordinates of y with respect to the latter. That is,

y = y1ξ1 + · · ·+ yρ−1ξρ−1.

The term 2〈y, pα〉S∨ in expression (2.9) can then be re-arranged as follows:

2〈y, pα〉S = 2〈y1ξ1 + · · ·+ yρ−1ξρ−1, pα〉S
= 2(y1〈ξ1, pα〉S + · · ·+ yρ−1〈ξρ−1, pα〉S)

= 2
[
y1 . . . yρ−1

]
〈ξ1, pα〉S

...

〈ξρ−1, pα〉S


= 2yP

where

P =


〈ξ1, pα〉S

...

〈ξρ−1, pα〉S

 .
The inequality

〈y + pα, y + pα〉S ≤ −2− β

can therefore be written as

y Gu⊥ y
t + 2yP + c ≤ 0

where

y = [y1, . . . , yρ−1] and c = 〈pα, pα〉S − δ.

Again, we recall that the input data format for Shimada’s algorithm ShiVec-

220



tors algorithm consists in a positive quadratic triple [Q,L, c] used to de�ne a

quadratic function of the form

yQyt + 2yL+ c, (2.10)

whereQ is required to be a positive de�nite matrix. Since the Gram matrixGu⊥

of u⊥ is negative de�nite (Hodge Index Theorem), we will use −Gu⊥ , which

is positive de�nite, as input for the short lattice vectors algorithm ShiVectors
instead of Gu⊥ . Anyways, taking the negative of expression 2.10 with Q = Gu⊥

gives

y(−Gu⊥)yt + 2y(−L) + (−c)

and we thus obtain that the triple to be used as input data for Shimada’s algo-

rithm ShiVectors is

[−Gu⊥ ,−L,−c] =

−Gu⊥ ,−


〈ξ1, pα〉S

...

〈ξρ−1, pα〉S

 ,−〈pα, pα〉S + δ

 .
This algorithm provides the data of elements q ∈ u⊥ satisfying

〈q + pα, q + pα〉S ≤ δ,

from which we can readily obtain the elements q ∈ u⊥ satisfying the equality

〈q + pα, q + pα〉S = δ.

Let v = q+pα. It is clear that we have 〈v, v〉S = δ. The fact that q ∈ u⊥ gives us

that 〈q, u〉S = 0. Since pα is assumed to be a solution of 〈x, u〉S = α, we have

〈pα, u〉S = α. Hence

〈v, u〉S = 〈q + pα, u〉S
= 0 + 〈pα, u〉S = α.

221

https://k3surfaces.com/hit/


We thus see that this procedure indeed enables us to obtain elements of the set

H = {x ∈ L | 〈x, u〉L = α, 〈x, x〉L = δ} .

2.2.2 ShiBooster - Checking AC3

Assume that vectors v, h ∈ S satisfying

〈v, v〉S > 0, 〈h, h〉S > 0 and 〈h, v〉S > 0

are given. In his article [18, Section 3.3], Shimada describes an algorithm to

compute the set

F = {r ∈ S | 〈r, h〉S > 0, 〈r, v〉S < 0, 〈r, r〉S = d} .

Our implementation of Shimada’s algorithm is named ShiBooster. Note that it

is available for download on K3surfaces.com. We follow Shimada’s guidelines

available in his article [18]. We start by computing the orthogonal complement

W = (h)⊥

in S of the element h ∈ S which is assumed to be given. We then de�ne a

projection

prW : S ⊗Q 7−→ W ⊗Q

sending an element b ∈ S⊗Q to its projection prW (b) onto W ⊗Q. For conve-

nience, we will work in the framework of the duals S∨ and W∨ of the lattices S

and W until the end of this subsection. Let

x = [x1, . . . , xρ−1]

be a (ρ− 1)-sized row vector made of formal variables xi for 1 ≤ i ≤ ρ− 1.

222

https://k3surfaces.com


Consider the negative inhomogenous quadratic function

f : W → Q

de�ned by

f(x) : x 7−→ 〈x, x〉W +
〈h, h〉S
〈v, h〉2S

〈x, prW (h)〉2W .

We then formally expand the expression on the right-hand side, collect the

terms, and form a negative de�nite matrix

Mf = [aij]

where aij is the coe�cient of the term xixj , 1 ≤ i, j ≤ ρ − 1, in the expanded

expression of f . The matrix−Mf is positive de�nite, and we letLf be the lattice

with Gram Matrix −Mf . Using a short lattice vectors enumerator, we compute

the set

S =
{
b ∈ Lf | 〈b, b〉Lf

≤ 2
}

Due to the fact that Mf has been obtained by taking the coe�cients of f , the

set S coincides with the set

{b ∈ W | f(b) ≥ −2} .

We associate the quantity

ηb =
−2− 〈b, b〉W
〈h, h〉S

to each element b ∈ S , where we note that

−2− 〈b, b〉W > 0

holds since b ∈ S , and that 〈h, h〉S > 0 holds by assumption. Denote by MW∨

223



the matrix formed by taking as row vectors the basis elements

ω∨1 , . . . , ω
∨
ρ−1 ∈ S ⊗ R

of W∨, which can quickly be obtained with a computer. Assuming that an el-

ement b ∈ S is represented as a (ρ − 1)-sized column vector containing its

coordinates with respect to the basis of W∨ mentioned above, we send an ele-

ment b ∈ W∨ to an element bS⊗R ∈ S ⊗ R by the map

b 7−→ bMW∨ .

De�ne an initially empty set F = { }. For each b ∈ S , we de�ne

b∗ =
√
ηb h+ bS⊗R.

If b∗ satis�es the three following conditions

b∗ ∈ S, 〈b∗, h〉S > 0, 〈b∗, v〉S < 0,

then we append b∗ toF .When all b ∈ S have thus been tested, Shimada ensures

that the set F coincides with the desired set

{r ∈ S | 〈r, h〉S > 0, 〈r, v〉L < 0, 〈r, r〉L = d} .

During ampleness testing, the initial ample class plays the role of h while class

whose ampleness is to be determined plays v. Combining the programs Shi-
Booster and ShiChecker, we obtain our universal ampleness tester for classes

of divisors on K3 surfaces, described in a �gure on the following page.

224



225



2.3 Finding an initial ample class

Having prior knowledge of an ample class is a prerequisite to executing many of

the procedures encountered in this thesis. For example, an initial ample class is

needed to test whether the initial chamber used in Borcherds’ method is nonde-

generate, an initial ample class is required to use the universal ampleness tester.

Therefore, it is a matter of decency that we provide guidelines to determine an

initial ample class. Assume given a complex K3 surface X with Néron-Severi

group S = NS(X) and assume that we have no prior knowledge of any ample

class. Given a class v ∈ S satisfying

〈v, v〉S > 0,

a classical result that can be found in Huybrechts’ book [5] states that there

exists a transformation ω in the Weyl group of X such that ±ω(v) is ample

whenever the set

{r ∈ S | 〈v, r〉S = 0, 〈r, r〉 = −2}

is empty. In this case, the class v ∈ S can thus be viewed as ample up to trans-

formations in the Weyl group. We show how this strategy can be executed on a

concrete example. Assume that the K3 under study is a surface Xt with Néron-

Severi group St = NS(Xt) having Gram matrix2t 0 0

0 −2 0

0 0 −2


with respect to some �xed basis, and that the integer parameter t satis�es t > 1.

Let us show that the class

P0 = [2,−1,−1] .

226



can be taken as ample in NS(Xt) for all t > 1. We start by checking whether

this class has strictly positive self-intersection. We have

〈P0, P0〉St
= 8t− 4

which is a strictly positive quantity when t > 1. Let us show that the set

{
C ∈ St | 〈P0, C〉St

= 0, 〈C,C〉St
= −2

}
is empty whenever t > 1. Before proceeding further, note that what comes next

can be done in a matter of seconds using a computer. We, however, proceed by

hand for the sake of completeness of this thesis. Let us compute a basis of

(P0)⊥ =
{
C ∈ St | 〈P0, C〉St

= 0
}

and then show that elements C ∈ (P0)⊥ of self-intersection −2 cannot exist.

In order to compute a basis for (P0)⊥St
we �x a class

D = [x, y, z]

in St with x, y, z integers not all equal to zero and assume that D ∈ (P0)⊥ .

From

〈P0, D〉St
= 0

we readily obtain that

z = −tx− y

so that D can be expressed as

D = [x, y,−tx− y]St

= x [1, 0,−t] + y [0, 1,−1]

= xB1,t + yB2

227



where

B1,t = [1, 0,−t] and B2 = [0, 1,−1] .

The orthogonal complement (P0)⊥ can thus be viewed as a sublattice of St
spanned by the elements B1,t and B2 of St. A Gram matrix(

2t(1− t) −2t

−2t −4

)

of this sublattice is then computed. Assume than an element C = [u, v], with

u, v ∈ Z not both equal to zero, belongs to (P0)⊥ and has self-intersection −2.

Using the Gram matrix of (P0)⊥ to compute this self-intersection, we see that

this assumption is equivalent to

tu2(t− 1) + 2tuv + 2v2 = 1. (2.11)

Note that the right-hand side of this equality is odd. Two possibilities arise

regarding the le�-hand side of this expression:

I Assume that t = 2k ± 1 for some k ∈ Z, that is, assume that t is an odd

integer. Then t− 1 is even so that tu2(t− 1) is also even.

I Assume that t is even. Then tu2(t− 1) is even.

No matter the value of t > 1, the le�-hand side of the equality (2.11) is therefore

even, as a sum of even quantities. The le�-hand side of (2.11) being odd, we

see that assuming the existence of a non-trivial element in (P0)⊥ having self-

intersection −2 leads to a contradiction. We therefore deduce that the set

{
C ∈ St | 〈P0, C〉St

= 0, 〈C,C〉St
= −2

}
is empty. The result mentioned at the beginning of this section then enables us

to consider the class P0 = [2,−1,−1] as ample in St for all t > 1, up to trans-

formations in the Weyl group ofX . When t = 1, proceeding analogously yields

that P0 = [1,−1,−1] can be taken as ample.

228



For all t ≥ 1, the data of an ample class P0 enables us to enforce AmpTester
to test any class in NS(X) for ampleness. Practical applications of our program

AmpTester are extensively detailed on K3surfaces.com.

229

https://k3surfaces.com


2.4 A useful result on the discriminant group of NS(Xt)

A result from Curtis T. McMullen’s article [11] states that given an even lattice,

there is a one-to-one correspondence between the set of its overlattices and the

set of subgroups of its discriminant group on which the restriction of the as-

sociated quadratic form vanishes. Assume that L is an even lattice having the

property that its discriminant groupL∨/L has no non-trivial isotropic elements.

Any element x0 ∈ L∨/L satisfying

qL(x0) = 0,

is then necessarily the identity element of L∨/L, i.e., x0 ∈ L. In this case, the

result mentioned above enables us to assert that L has no proper overlattices.

This result will be key to us in order to exhibit K3 surfaces Xt for which the

unirationality of the moduli space can be asserted: We enforce a technique due

to Roulleau in [15] and show that under special conditions a quartic surface Q
such that

NS(Xt) ⊆ NS(Q)

can be built from scratch using projective parameters. These conditions, when

ful�lled, enable us to assert that the discriminant group of NS(Xt) has no non-

trivial isotropic elements. As we just discussed, it is then be possible to assert

that NS(Xt) has no proper overlattices so that the above inclusion becomes

NS(Xt) ' NS(Q)

hence establishing the unirationality of the moduli space of K3 surfaces with

Néron-Severi group isomorphism to NS(Xt). Combining basing arithmetic and

advanced computer-based algorithmic solutions, we will provide examples for

which such a situation occurs. Our �rst objective consists in determining condi-

tions under which the discriminant group of NS(Xt) has no isotropic element.

230



We established the following result which enables us to assert that NS(Xt) has

no strict overlattices for in�nitely many values of the parameter t :

Proposition 38. If t is a product of distinct primes satisfying t ≡ 3 (mod 4), then
discriminant group S∨t / St of the lattice St = NS(Xt) has no isotropic element.

We now provide a rigorous proof of this result. Before proceeding, recall that

St is a shorthand for NS(Xt) and that a Gram matrix with respect to some �xed

basis for the latter is assumed to be equal to2t 0 0

0 −2 0

0 0 −2

 .

The diagonal shape of this matrix enables us to immediately state the following

quite obvious result:

Proposition 39. There is an isomorphism

S∨t / St ' (Z/2tZ)× (Z/2Z)× (Z/2Z) .

Before proceeding further, let us see how things work regarding elements of the

discriminant group of St. Let t > 2 be an integer, and assume that it can be

expressed a product of distinct primes. We use the classical coordinate vectors

notation to represent elements of x ∈ St as

x = x1v1 + x2v2 + x3v3

= [x1, x2, x3]S

where the elements

v1 = [1, 0, 0]S , v2 = [0, 1, 0]S and v3 = [0, 0, 1]S

are assumed to form a basis for St with the above-mentioned Gram matrix.

231



Applying the de�nition of the dual of a lattice which states that S∨t is formally

de�ned as

S∨t = {x ∈ S ⊗Q | ∀y ∈ St, 〈x, y〉St ∈ Z} .

we see that an element x ∈ St⊗Q expressed as [x1, x2, x3]S satis�es x ∈ S∨t if

and only if

〈x, y〉St
∈ Z

holds for all y ∈ St. That is, if and only if

〈x, v1〉St = 2tx1 ∈ Z, 〈x, v2〉St = −2x2 ∈ Z and 〈x, v3〉St = −2x3 ∈ Z.

That is, there exist integers a, b and c such that

x1 =
a

2t
, x2 = − b

2
and x3 = − c

2
.

The quotient S∨t / St can thus be expressed as

S∨t /St =

{(
a

2t
,− b

2
,− c

2

)
| a, b, c ∈ Z

}
/ (Z [1, 0, 0]S+[0, 1, 0]S+Z [0, 0, 1]S).

We use the notation w to denote the class in S∨t / St of an element

w =

(
a

2t
,− b

2
,− c

2

)
∈ S∨t .

Since St is an even lattice, the Z-valued symmetric bilinear form on St extends

to a Q-valued symmetric bilinear form on S∨t . The latter in turns de�nes a

quadratic form

q : S∨t / St −→ Q/2Z

de�ned by

q : x 7−→ x2 mod 2Z

where x is the class in S∨t / St of an element x ∈ S∨. By de�nition, an element

232



x ∈ S∨t / St is said to be isotropic whenever it satis�es

q(x) = 0 ∈ Q/2Z,

that is, whenever

〈x, x〉St
∈ 2Z.

Let

w =

(
β1

2t
,
−β2

2
,
−β3

2

)
∈ S∨t / St

be a non-trivial isotropic element of S∨t / St. By non-trivial, it should be under-

stood that w is not equal to the zero element of

(Z/2tZ)× (Z/2Z)× (Z/2Z).

That is, we thus assume that

¬ (2t | β1 and 2 | β2 and 2 | β3) (2.12)

holds. Since w is assumed to be an isotropic element of S∨t / St, the quantity

q(w) =
(
β1/2t +β2/2 +β/2

)2t 0 0

0 −2 0

0 0 −2


β1/2t

β2/2

β3/2

+ 2Z

= (
β2

1

2t
− β2

2

2
− β2

3

2
) + 2Z.

is the zero element of Q/2Z, that is, there exists an integer k ∈ Z such that

β2
1

2t
− β2

2

2
− β2

3

2
= 2k ∈ 2Z. (2.13)

Multiplying both sides of this equality by 2 leads us to

β2
1

t
= 4k + β2

2 + β2
3 . (2.14)

233



Since the right-hand side of this equality is an integer, it is clear that we must

have t | β2
1 . Since t is assumed to be strictly greater than two and equal to the

product distinct primes, the fact that

t | β2
1

enables us to deduce that

t | β1

a�er a simple application of Euclid’s lemma. The non-triviality condition dis-

played in, expression (2.12) is a negation of conjunction, and can thus be ex-

pressed as a disjunction of negations, i.e.,

¬ (2t | β1 ) or ¬ (2 | β2) or ¬ (2 | β3)

from which arise the following seven cases:

(a) 2t - β1, 2 - β2, 2 - β3

(b) 2t - β1, 2 - β2, 2 | β3

(c) 2t - β1, 2 | β2, 2 - β3

(d) 2t | β1, 2 - β2, 2 - β3

(e) 2t | β1, 2 | β2, 2 - β3

(f) 2t - β1, 2 | β2, 2 | β3

and

(g) 2t | β1, 2 - β2, 2 | β3.

We assume that at least one of the three βi is non-zero in each case, so that all

the conditions above make sense.

We proceed as follows for the remainder of this section: From each one of the

234



above-mentioned case, we will exhibit a contradiction and will then be able to

assert that an isotropic element

w =

(
β1

2t
,
−β2

2
,
−β3

2

)
∈ S∨t / St,

is necessarily trivial whenever t is a product of distinct primes such that

t ≡ 3 ( mod 4) .

I Case (a) - Assume that the conditions

2t - β1, 2 - β2, 2 - β3

hold. That is, the integers β2 and β3 are odd and can respectively be expressed

as

β2 = 2k2 + 1 and β3 = 2k3 + 1.

Squaring the expressions for β2 and β3, we obtain

β2
2 = 4k2

2 + 4k2 + 1 and β2
3 = 4k2

3 + 4k3 + 1.

Feeding these expressions of β2
1 and β2

2 into equality (2.13) yields

β2
1

2t
= 2k + (2k2

2 + 2k2 +
1

2
) + (2k2

3 + 2k3 +
1

2
)

= 2(k + k2
2 + k2

3 + k2 + k3) + 1.

Multiplying both sides of this equality by 2t enables us to obtain that β2
1 is even.

Since β1 ∈ Z, we immediately obtain that β1 is even . That is, there exists an

integer n ∈ Z such that

2n = β1

235



We have shown earlier that t | β1, that is, there exists m ∈ Z such that

tm = β1

Hence, we have

2n = tm.

Since t is assumed to be a product of distinct primes and such that t > 2, there

exists p ∈ Z such that

m = 2p

thus

2n = 2pm = β1

We thus obtained that 2t | β1, which contradicts our initial assumption on β1.

I Case (b), Case (c) - Assume that

2t - β1, 2 - β2, 2 | β3 or that 2t - β1, 2 | β2, 2 - β3.

The fact that q(w) ∈ 2Z is equivalent to the congruence

β2
1/2t− β2

2/2− β2
3/2 = 0 (mod 2)

which, multiplying both sides by 2t,turns into

β2
1 − tβ2

2 − tβ2
3 ≡ 0 (mod 4t). (2.15)

Keeping in mind that

Z/(nm)Z ' Z/nZ× Z/mZ

holds if and only if gcd(n,m) = 1, and this formula extends to the case where

236



more than two primes are involved, that is,

Z/(n1n2 . . . nr)Z ' (Z/n1Z)× (Z/n2Z)× · · · × (Z/nrZ) .

Since t is assumed to be equal to a product of distinct primes, we have

t = t1t2 . . . tm

for distinct primes ti with 1 ≤ i ≤ m, and hence can write Z/4tZ as

Z/ (4t1t2 . . . tm)Z ' (Z/4Z)× (Z/t1Z)× · · · × (Z/tmZ)

thus making a Z/4Z modular factor apparent. The latter enables us to express

(2.15) modulo 4:

β2
1 − tβ2

2 − tβ2
3 ≡ 0 (mod 4). (2.16)

We see that the two following possibilities arise from this congruence:

• Either t ≡ 3 (mod 4)

• or t ≡ 1 (mod 4).

First possibility: When t ≡ 3 (mod 4), we have

−t ≡ 1 (mod 4)

and expression (2.16) turns into

β2
1 + β2

2 + β2
3 ≡ 0 (mod 4). (2.17)

All possible modular solutions (β1, β2, β3) of this equation are listed below:

β1 ≡ 0, β2 ≡ 0, β3 ≡ 0 (mod 4),

β1 ≡ 0, β2 ≡ 0, β3 ≡ 2 (mod 4),

237



β1 ≡ 0, β2 ≡ 2, β3 ≡ 0 (mod 4),

β1 ≡ 0, β2 ≡ 2, β3 ≡ 2 (mod 4),

β1 ≡ 2, β2 ≡ 0, β3 ≡ 0 (mod 4),

β1 ≡ 2, β2 ≡ 0, β3 ≡ 2 (mod 4),

β1 ≡ 2, β2 ≡ 2, β3 ≡ 0 (mod 4),

β1 ≡ 2, β2 ≡ 2, β3 ≡ 2 (mod 4).

We see that none of above-mentioned solutions (β1, β2, β3) of 2.17 satisfy the

conditions

2t - β1, 2 - β2, 2 | β3

of case (b).

Similarly, there is no solution satisfying the conditions

2t - β1, 2 | β2, 2 - β3

of case (c).

Thus, a non-trivial isotropic element satisfying the conditions of cases (b) or (c)
cannot exist when

t ≡ 3 (mod 4).

Second possibility: When t ≡ 1 (mod 4) we have

−t ≡ 3 (mod 4)

and expression (2.16) becomes

β2
1 + 3β2

2 + 3β2
3 ≡ 0 (mod 4). (2.18)

238



All possible modular solutions (β1, β2, β3) of this equation are listed below:

β1 ≡ 0, β2 ≡ 0, β3 ≡ 0 (mod 4)

β1 ≡ 0, β2 ≡ 0, β3 ≡ 2 (mod 4),

β1 ≡ 0, β2 ≡ 2, β3 ≡ 0 (mod 4),

β1 ≡ 0, β2 ≡ 2, β3 ≡ 2 (mod 4),

β1 ≡ 1, β2 ≡ 0, β3 ≡ 1 (mod 4),

β1 ≡ 1, β2 ≡ 0, β3 ≡ 3 (mod 4),

β1 ≡ 1, β2 ≡ 1, β3 ≡ 0 (mod 4),

β1 ≡ 1, β2 ≡ 1, β3 ≡ 2 (mod 4),

β1 ≡ 1, β2 ≡ 2, β3 ≡ 1 (mod 4),

β1 ≡ 1, β2 ≡ 2, β3 ≡ 3 (mod 4).

We see that the solutions

β1 ≡ 1, β2 ≡ 1, β3 ≡ 0 (mod 4) and β1 ≡ 1, β2 ≡ 1, β3 ≡ 2 (mod 4)

satisfy the conditions

2t - β1, 2 - β2, 2 | β3

of case (b).

The solutions

β1 ≡ 1, β2 ≡ 2, β3 ≡ 1 (mod 4) and β1 ≡ 1, β2 ≡ 2, β3 ≡ 3 (mod 4)

satisfy the conditions

2t - β1, 2 | β2, 2 - β3

239



of case (c). The existence of isotropic elements is therefore a possibility when-

ever t ≡ 1 ( mod 4 ) the conditions of cases (b) and (c) are satis�ed. See the

following examples.

Example. Assume t = 13. Then it is clear that t ≡ 1 (mod 4). The integers

β1 = 60437, β2 = 90517 and β3 = 26316 satisfy the conditions of case (b),
are such that β1 ≡ 1, β2 ≡ 1, β3 ≡ 0 (mod 4) and hence satisfy the modular

equation (2.18). They thus de�ne an isotropic element of the lattice S∨13/ S13.

Example. When t = 17, we have t ≡ 1 (mod 4). The integers β1 = 44625,

β2 = 72230, β3 = 39285 satisfy the conditions of case (c), are such that β1 ≡
1, β2 ≡ 2, β3 ≡ 1 (mod 4) and hence satisfy the modular equation (2.18). They

therefore de�ne an isotropic element of the lattice S∨17/ S17.

I Case (d) - Assume that the conditions

2t | β1, 2 - β2, 2 - β3

hold. That is, there exist integers n, k1, k2 ∈ Z such that

β1 = 2tn, β2 = 2k2 + 1 and β3 = 2k3 + 1.

Squaring both sides of each of theses inequalities yields

β2
1 = t2 · 22 · n2, β2

2 = 4k2
2 + 4k2 + 1 and β2

3 = 4k2
3 + 4k3 + 1.

The equality (2.14) thus becomes

2tn2 = 2k + 2k2
2 + 2k2 + 2k2

3 + 2k3 + 1. (2.19)

Since the le�-hand side of this equality is even, while its right-hand side is odd,

we see that the assumptions

2t | β1, 2 - β2, 2 - β3

240



lead us to a contradiction. Thus, an isotropic element de�ned by β1, β2, β3 can-

not be non-trivial if the above conditions are satis�ed.

I Case (e) - Assume that the conditions

2t | β1, 2 | β2, 2 - β3

hold. Then there exist integers k1, k2 such that

β1 = 2tk1 and β2 = 2k2.

The expression (2.13) can therefore be expressed as

β2
3 = 4tk2

1 − 4k2
2 − 4k,

and we deduce that β2
3 an even integer. Since the square of an odd integer is

necessarily odd, it is clear β3 cannot be odd.

Hence 2 | β3, contradicting our initial assumption on β3.

I Case (f) - Assume that the conditions

2t - β1, 2 | β2, 2 | β3

hold. There exist integers k1, k2 such that

β2 = 2k1 and β3 = 2k2.

The equality (2.13) can then be turned into

β2
1 = 4tk2

1 + 4k2
2 + 4tk,

thus making apparent the fact that β2
1 an even integer, that is, 2 | β2

1 , which in

241



turns implies that

2 | β1.

Keeping in mind that t | β1 always hold, we hence see that

2t | β1,

thus contradicting our initial assumption 2t - β1.

I Case (g) - Assume that the conditions

2t | β1, 2 - β2, 2 | β3

hold. There exist integers k1, k2 such that

β1 = 2tk1 and β3 = 2k3.

The equality (2.13) can then be turned into

β2
2 = 4tk2

1 − 4k2
3 − 4k,

thus making apparent the fact that β2
2 an even integer. As indicated earlier, the

square of an odd integer is necessarily odd. Thus β2 cannot be odd. We therefore

deduce that 2 | β2, contradicting our initial assumption on β2. Note that β2 and

β3 have a symmetric role in expression 2.13 and in cases (e) and (f), hence the

proofs for these two cases follow the same pattern. We hence established that

whenever t is assumed to be equal to a product of distinct primes greater such

that

t ≡ 3 ( mod 4) ,

then assuming the existence of a non-trivial isotropic element w ∈ S∨t / St

leads to a contradiction. Hence, the discriminant group S∨t / St of St = NS(Xt)

has no non-trivial isotropic elements whenever the integer parameter t satis�es

the above-mentioned conditions.

242



2.5 About dimension of linear systems

Let k be an algebraically closed �eld. Denote by Pn the n-dimensional projective

space over k. It is well-known that for any integer d > 0, there is a bijection

between the linear system of hypersurfaces of degree d in Pn and the projec-

tivization of the set

H0(Pn,O(d))

of global sections ofO(d). That is, there is a bijection between the linear system

of hypersurfaces of degree d in Pn and set of degree d homogenenous polyno-

mials. The linear system Γnd of hypersurfaces of degree d in Pn has therefore

projective dimension equal to

dim Γnd = dim H0(Pn,O(d))− 1

=

(
d+ n

n

)
− 1.

Points s0, s1, . . . , sr−1 in Pn are said to be in general position whenever the fol-

lowing conditions are satis�ed:

I If r < n + 1, then the vectors de�ned by the homogenous coordinates of

these r points are linearly independent.

I for r = n+ 1, any n points are linearly independent.

Assume that s0, s1, . . . , sr−1 are r points in general position in Pn.

Remark. From now on until the end of this thesis, all curves are considered gen-

eral, and in general position. When de�ning a curve, for instance, a curve C in

P3, one should start by �xing a certain number of points in general position in

P3 and then require that C passes through them so that a hypersurface contain-

ing the points must contain the curve. All the curves involved should thus be

de�ned by imposing that they pass through a su�ciently low number of generic

points. Additionally, intersections are always supposed transverse.

The following statements hold:

243



I The linear system Γnd(s0, . . . , sr−1) of hypersurfaces of degree d in Pn con-

taining the point s0, . . . , sr−1 has dimension

dim Γnd(s0, . . . , sr−1) =

(
n+ d

n

)
− 1− r.

I The linear system Γnd(C) of hypersurfaces of degree d in Pn containing a

general curve C of degree m has dimension given by the formula

dim Γnd(C) =

(
n+ d

n

)
− 1− (m · d+ 1).

I The linear system Γnd(C0, C1) of hypersurfaces of degree d in Pn contain-

ing two general curves C0 and C1 of degree m intersecting transversely

has dimension

dim Γnd(C0, C1) =

(
n+ d

n

)
− 1− (2(m · d+ 1)− C0 · C1).

I The linear system Γnd(C0, . . . , Cr−1) of hypersurfaces of degree d in Pn

containing general curves C0, . . . , Cr−1 of degree m intersecting trans-

versely has dimension

dim Γnd(C0, . . . , Cr−1) =

(
n+ d

n

)
− 1− (r(m · d+ 1)− (

∑
i<j

Ci · Cj)).

Example 40. Let C1, C2 be two disjoint conics in P3. The linear system Γ1 of

quartics containing C1 and C2 is 16 dimensional. Indeed, we have

dim Γ3
4(C1, C2) =

(
4 + 3

3

)
− 1− 2 · (2 · 4 + 1) = 35− 1− 18 = 16

More details and examples can be found by clicking here.

244

https://k3surfaces.com/linsysdim/


2.6 Computer-based study of projective models and unira-
tionality of moduli spaces

We now explain how we made use of the material introduced in the previous sec-

tions to study projective models of K3 surfaces. In order to deal with our initial

objective, which consisted in studying projective models and the unirationality

of the moduli spaces of K3 surfaces with Néron-Severi group isomorphic to the

integral lattice with Gram matrix2t 0 0

0 −2 0

0 0 −2

 ,

we produced solutions that turned out to have a much wider scope of applica-

tion. The following result, that can be traced back to Morisson’s 1988 Cortona

summer lectures with elements from Saint-Donat [17] and stated below in its

form due to Debarre in his lectures [3], is of great importance for our study:

Theorem 41. (SDM - Saint-Donat / Morrison) Let X be a K3 surface and let
D ∈ NS(X) be an ample class.

(a) If D2 = 2 and there does not exist a class F ∈ NS(X) such that F 2 = 0

and F ·D = 1 then ϕD : X −→ P2 is a double cover.

(b) If D2 = 4 and there does not exist a class F ∈ NS(X) on X such that
F 2 = 0 and F · D ∈ {1, 2} then ϕD : X −→ P3 embeds X as a quartic
surface in P3.

(c) If D2 = 6 and there does not a divisor F on X such that F 2 = 0 and
F ·D ∈ {1, 2} then ϕD : X −→ P4 embeds X as a degree 6 surface in P4.

(d) If D2 = 8 and there does not exist a class F on X such that F 2 = 0 and
F · D ∈ {1, 2, 3} then ϕD : X −→ P5 either embeds X as a generi-
cally transverse intersection of three quadrics in P5 with only rational double
points, or ϕD realizes X as double cover of a Veronese surface.

245



This theorem is fascinating because it provides precise and explicit numerical

criteria and conditions which must be ful�lled in order for an ample class on a

K3 to be associated with a projective model of this surface . Had we had the

opportunity to travel back in time to 1988, we would probably have to face to

the fact that using such a theorem with some degree of automation would have

been quite di�cult. Indeed, decades ago, the state of technology did not allow

researchers to mobilize hardware endowed with the processing power that we

enjoy today. This theorem is o�en used in its classical and equivalent formu-

lation, and it is even still the case today. This formulation, which involves the

notions of base-point freeness and non-hyperellipticity, was probably favored

by researchers at the time. The two formulations, classic and modern, of the

theorem, are nevertheless logically equivalent. Indeed, various results which

can be traced back to Saint-Donat state that given an ample class D ∈ NS(X),

the non-existence of classes F such that F 2 = 0 and F · D = 1 is equivalent

to the base-point freeness of D. Likewise, for classes such that D2 ≥ 4, estab-

lishing the non-hyperellipticity of D ensures that there does not exist a class

F ∈ NS(X) such that F · D = 2. We can therefore assume without taking

a considerable risk that, in the past, in order to make use of the vintage SDM
theorem, people had to:

I Handcra� base-point freeness, ampleness and non-hyperellipticity crite-

ria speci�c to each K3 surface under study.

I Find a class D ∈ NS(X) satisfying these criteria.

Doing so was without any doubt not an easy task, and all these constraints

reduced the possibilities of study to a handful of cases. Almost four decades later,

the situation is radically di�erent. Nothing stands in the way of full automation:

I The program CGS is capable of producing an abundance of data on classes

D ∈ NS(X) of any desired self-intersection D2.

I We can determine whether a classD ∈ NS(X) is ample using the program

AmpTester.

246

https://k3surfaces.com/sdm-classic/
https://k3surfaces.com/sdm-classic/


Thus, the procedure CGS from section 2.1 enables us to obtain data on classes

D ∈ NS(X) of divisors of self-intersection D2 = 2, 4, 6 or 8, while the proce-

dure AmpTester from section 2.2 enables us to identify ample classes among

the data on classes produced by the procedure CGS. The only requirement to

be ful�lled to execute this strategy consists in �nding an initial ample class. We

show in the section 2.3 of this thesis how this can be done. We, moreover, have

material to deal with conditions of existence or non-existence of classes of di-

visors F on X such that F 2 = 0, F · D ∈ {1, 2, 3}. Indeed, given an ample

class D ∈ NS(X) and integers n1, n2 > 0, the procedure ShiChecker detailed

in section 2.2.1 is capable of computing sets of the form

{F ∈ NS(X) | 〈F,D〉 = n1, 〈F, F 〉 = n2} .

We, therefore, have in our hands all the necessary ingredients to give life to the

SDM theorem: We can now determine whether any class D ∈ NS(X) can be

associated with a projective model of X in virtue of this theorem. The result-

ing tool is PModChecker, for Projective Models Checker. We introduce and

explain how to use this tool on our website. Assuming given a Gram matrix of

NS(X) with respect to a �xed basis and an ample class a0 ∈ NS(X) as ambient

parameters, PModChecker takes as input a class D ∈ NS(X) and determines

whether it �ts within the framework of one of the cases of the SDM theorem.

When this is the case, it returns the precise information on the nature of the

projective model which can be obtained from the knowledge of the class D.

247

https://k3surfaces.com


The structure of the procedure PModChecker can be illustrated as follows :

248



We return to our initial objective: Exhibiting values of t and conditions under

which a quartic in P3 with Néron-Severi group isomorphic to NS(Xt) can be

built from scratch, that is, establishing the unirationality of the moduli space of

the surfaces Xt, for these values of t. Reaching this goal requires the addition

of a geometrical �avor to our approach. To do so, we use Roulleau’s technique

from his articles [16] and [15] as a starting point. In order to study projective

models of a K3 surface while putting emphasis on a genuine geometric aspect,

Roulleau enforces a technique which consists in:

I Establishing criteria of non-hyperellipticity and base-point freeness for

classes in NS(X), to then apply the vintage SDM theorem.

I Using the data produced by his program SmoothRationalCurves to hand-

cra� a con�guration of smooth rational curves associated with an ample,

base-point free and non-hyperelliptic class.

As discussed earlier, our program PModChecker enables us to disregard all

considerations involving the notions of non-hyperellipticity and base-point free-

ness by using numerical criteria instead. We thus focus on the second point. A

prototypical example of the con�gurations found in Roulleau’s atlas of K3 sur-

faces [16] is of the following type:C1 + C2 = n1D

C3 + C4 = n2D
(2.20)

where the class D is ample, n1, n2 are positive integers and C1, C2, C3, C4 are

distinct classes in NS(X) of smooth rational curves on X . Such a con�guration

can be formalized by introducing the notion of system:

249



De�nition 42. Let D be an ample class. We use the term system to refer to a

�nite collection {Lj} of linear combinations of classes of smooth rational curves

each satisfying Li = niD for some positive integer ni with the additional prop-

erties that:

I All linear combinations are made of the same number of (−2)-curves.

I All curves involved in a linear combination are distinct.

I No class of smooth rational curve (−2)-curve can be involved in more

than one linear combination.

The de�nition of a system has a wide scope and encompasses many types of

con�gurations, such as a con�guration made of a single linear combination in-

volving three classes of (−2)-curves, e.g.,

C1 + C2 + C3 = nD

or con�gurations with three linear combinations and four classes of (−2)-curves

per linear combination, e.g.,
C1 + C2 + C3 + C4 = n1D

C5 + C6 + C7 + C8 = n2D

C9 + C10 + C11 + C12 = n3D

and many other possible forms. There are so many possibilities that we have

introduce a precisely de�ned framework to purse our study.

We follow Roulleau’s steps by focusing on systems involving two linear combi-

nations, each made of two classes of (−2)-curves per linear combination, that

is: C1 + C2 = n1D

C3 + C4 = n2D
(2.21)

In order to obtain such systems on aK3 surface, we use our program SysFinder,

250



detailed and available for download on K3surfaces.com. From the input data of

a Gram matrix of the Néron-Severi group NS(X) of a K3 surface, of an ample

class a0 ∈ NS(X), and of an integer c > 0, our program SysFinder takes advan-

tage of the procedure CGS to produce data on classes of smooth rational curves

and on classes of divisors having squares 2, 4, 6 or 8. The program SysFinder
then calls for AmpTester to identify ample classes and �nally processes all this

data to exhibit systems of the form (2.21) . Assume that a systemC1 + C2 = n1D

C3 + C4 = n2D
(2.22)

withD2 = 4 has thus been obtained. By de�nition 42 of a system,D ∈ NS(X) is

assumed to be ample. Assume moreover than an application of PModChecker
with D as input data returned that ϕD : X ↪→ P3 realizes X as a quartic in P3.

We now explain how the data of a system can lead to the explicit construction of

such a quartic. First, note that each linear combination which is part of a system

can be viewed as a sub-system of the system under study:

• The sub-system

C1 + C2 = n1D (sub-system I)

may be realized in P3 as the intersection of a quartic surface with a hy-

persurface of degree n1. When this is the case, such an intersection can

be expressed as the union of curves A1 and A2 such that

deg(A1) = C1 ·D and deg(A2) = C2 ·D.

• Similarly, the sub-system

C3 + C4 = n2D (sub-system II)

may be realized in P3 as the intersection of a quartic surface with a hy-

251

https://k3surfaces.com


persurface of degree n2. When this is the case, this intersection then de-

composes as the union of curves A3 and A4 such that

deg(A3) = C3 ·D and deg(A4) = C4 ·D.

It would be convenient to construct both sub-systems I and II in such a way that

the respective intersections they de�ne are both contained on the same quartic

surfaceQ in P3 and in such a way that all theAi are smooth rational curves, i.e.,

Ai ' P1 for i ∈ {1, 2, 3, 4} .

To this end, we proceed as follows: LetA1 ' P1 andA3 ' P1 be rational normal

curves in P3 having respectively degree

deg(A1) = C1 ·D and deg(A3) = C3 ·D

and satisfying

A1 · A3 = C1 · C3.

We check whether there exists a quartic in P3 containing A1 and A3 by com-

puting the projective dimension of the linear system of quartic surfaces in P3

containing the curves A1 and A3 and checking whether this dimension is supe-

rior or equal to zero. We thus introduce the Condition LS1:(
4 + 3

3

)
− 1− (4 deg(A1) + 1)− (4 deg(A3) + 1) + C1 · C3 ≥ 0

Assume that LS1 is satis�ed and pick a quarticQ in the above-mentioned linear

system. By intersecting Q with a degree n1 hypersurface H1 containing the

curve A1, we produce a residual rational normal curve A2 ' P1 such that

A1 + A2 = n1H1,

thus mimicking sub-system I within of a quartic P3. However, we �rst have

252



to determine whether the linear system of surfaces of degree n1 containing the

curveA1 has a projective dimension superior or equal to zero. This is Condition
LS2: (

n1 + 3

3

)
− 1− (n1 deg(A1) + 1) ≥ 0

Assume that Condition LS2 holds. We still have to �nd a curve A4 ' P1 in P3

which will play the role of the curve associated with the class C4. This can be

done by intersecting Q with a degree n2 section containing C3, thus producing

a residual rational normal curve A4 ' P1 such that

deg(A4) = C4 ·D.

As before, such an operation can only be performed when the linear system

of surfaces of degree n2 containing the curve A3 has a projective dimension

superior or equal to zero. This is Condition LS3:

dim Γ(P3, n2 | A3) =

(
n2 + 3

3

)
− 1− (n2 deg(A3) + 1) ≥ 0

When conditions LS1, LS2 and LS3 hold, it can be established that the Néron-

Severi group NS(Q) of the quartic Q surface thus constructed in P3 contains a

copy of the Néron-Severi group NS(X) of the surface under study, i.e.,

NS(X) ⊆ NS(Q).

Before proceeding further, note that conditions LS1, LS2, and LS3 only depend

on parameters that can be obtained from the data of the system under study.

Our program SystemFinder is capable of identifying systems satisfying these

three conditions and discard the others. If we show that the discriminant group

of NS(X) does not contain non-trivial isotropic elements, then the result men-

tioned at the beginning of section 2.4 enables us to deduce that NS(X) cannot

have a proper overlattice, i.e.,

NS(Q) ' NS(X)

253



hence establishing the unirationality of the moduli space of K3 surfaces with

Néron-Severi group NS(X) due to the explicit construction of the quartic per-

formed in projective space. Indeed, constructing a surface such as X amounts

to constructing rational normal curves A1 and A3 in P3 with prescribed inter-

section value C1 · C3 and then taking a quartic in the linear system of quartic

surfaces containing them if the latter is non-empty. Such a construction can

be realized as a result of conditions LS1, LS2 and LS3 being assumed to hold.

This construction is moreover done with rational parameters. We enforced this

strategy in order to study the family of surfaces Xt with Néron-Severi group

isomorphic to the integral lattice with Gram matrix2t 0 0

0 −2 0

0 0 −2


with respect to a �xed basis, where we restricted to cases for which the positive

integer parameter t satis�es t ≡ 3 ( mod 4) and can be expressed as a product

of distinct primes.

I SysFinder is used to generate systems of the form (2.22) each associated

with a class D with D2 = 4 and satisfying conditions LS1, LS2 and LS3.

I Such classes are tested against the SDM theorem with PModChecker so

that only systems associated with classes D such that ϕD : Xt ↪→ P3

realizes Xt as a quartic are considered, and all others discarded.

Recall that PModChecker integrates AmpTester. Thus, determining whether

any given class is ample or not ample can be done without hassle. Assume that

the positive integer t0 is chosen in such a way as to satisfy t0 ≡ 3 ( mod 4) and

as being expressible as a product of distinct primes.

254



Assume that a system satisfying all the conditions mentioned above has been

found. We show on K3surfaces.com that a quartic Q in P3 such that

NS(Xt0) ⊆ NS(Q)

can then be constructed. From the assumption that t0 satis�es t0 ≡ 3 ( mod 4)

and is a product of distinct primes, proposition 38 enables us to assert that the

discriminant group of NS(Xt0) has no isotropic elements, so that NS(Xt0) has

no overlattice. In this case, we obtain

NS(Xt0) ' NS(Q)

and are then able to assert the unirationality of the moduli space ofK3 surfaces

with Néron-Severi group isomorphic to NS(Xt0) .

Note that the approach we used regarding unirationality is fully compliant with

the strategy devised by Professor Xavier Roulleau to do so. We thus have the

duty to emphasize the fact that we merely applied his methods, and that the in-

novation lies in the fact that we enforced them using a computer-based algorith-

mic approach and determined conditions and concrete tools to exhibit explicit

constructions leading to unirationality in the framework of the family of K3

surfaces Xt, whose automorphism groups and orbits of smooth rational curves

had to be studied in order to achieve this doctoral project. In practice, check-

ing whether these conditions indeed hold amounts to �nding a suitable system

satisfying LS1, LS2, LS3 with SysFinder (which involves CGS, PModChecker
and AmpTester) with the additional requirements that the integer parameter

t must satisfy t ≡ 3 ( mod 4 ) and can be expressed as a product of distinct

primes. When this is the case, we have

NS(Xt) ' NS(Y )

where Y is the quartic constructed in P3.

255

https://k3surfaces.com
https://k3surfaces.com/unirationality/


Note that �nding a suitable system is the purpose of our program SysFinder
from the proj mod suite.

The overall procedure can be summarized as indicated in the following �gure:

More details about the practical and computer-based side of this procedure can

be found as additional online content. We illustrate the methods and techniques

presented in this section by using the case of the K3 surface X7 as an example.

This content can be accessed by clicking here. One last time, we have to mention

that dealing with the computer-based aspect of this thesis cannot be done in

a conventional manuscript. We kindly ask our readers to keep in mind that

K3surfaces.com has been created to make up for the limitations of this PDF �le.

256

https://k3surfaces.com/case-7-projmod/
https://k3surfaces.com


A detailed table containing all the references used in
this thesis can be found by clicking here.

All the �gures used in this thesis
can be found in high resolution by clicking here.

A table summarizing all the procedures related to
Borcherds’ method can be found by clicking here.

257

https://k3surfaces.com/references/
https://k3surfaces.com/figures/
https://k3surfaces.com/procedures/


References

[1] Richard Borcherds. Automorphism groups of Lorentzian lattices. Journal
of Algebra, 111(1):133–153, 1987.

[2] Richard Borcherds. Coxeter groups, Lorentzian lattices, and K3 surfaces.

International Mathematics Research Notices, Volume 1998, Issue 19, Pages
1011-1031, 1998.

[3] Olivier Debarre. Surfaces K3 - Graduate Course - Spring 2019.

[4] Igor Dolgachev and S. Kondō. A supersingular K3 surface in characteristic

2 and the Leech lattice. International Mathematics Research Notices, 2003,

01 2002.

[5] Daniel Huybrechts. Lectures on K3 Surfaces. Cambridge Studies in Ad-

vanced Mathematics. Cambridge University Press, 2016.

[6] Jonghae Keum and S. Kondō. The automorphism groups of Kummer sur-

faces associated with the product of two elliptic curves. Transactions of the
American Mathematical Society, 353:1469–1487, 01 2001.

[7] Shigeyuki Kondō. AlgebraicK3 surfaces with �nite automorphism groups.

Nagoya Mathematical Journal, 116:1 – 15, 1989.

[8] Shigeyuki Kondō. The automorphism group of a generic Jacobian Kummer

surface. Journal of Algebraic Geometry, 7:589–609, 1998.

[9] Pierre Lairez and Emre Can Sertöz. A numerical transcendental method in

algebraic geometry : Computation of Picard groups and related invariants.

SIAM Journal on Applied Algebra and Geometry, 3(4):559–584, 2019.

[10] Ujikawa Masashi. The automorphism group of the singular K3 surface of

discriminant 7. 2013.

[11] Curtis McMullen. K3 surfaces, entropy and glue. Journal für die Reine und
Angewandte Mathematik, 658, 09 2009.

258



[12] Giacomo Mezzedimi. Elliptic K3 surfaces and their moduli dynamics, ge-
ometry and arithmetic. PhD thesis, Hannover : Gottfried Wilhelm Leibniz

Universität,, 2021.

[13] David R. Morrison. The geometry of K3 surfaces. Lectures delivered at
the Scuola Matematica Interuniversitaria, Cortona, Italy, July 31 - August 27,

1988.

[14] I. R. Piatetskii-Shapiro, I. Shafarevich. A Torelli theorem for algebraic sur-

faces of type K3. Math. USSR Izv., 35 (1971) 530-572, 1971.

[15] Xavier Roulleau. On the geometry of K3 surfaces with �nite automorphism

group and no elliptic �brations. 2019.

[16] Xavier Roulleau. An atlas of K3 surfaces with �nite automorphism group.

April 2020.

[17] Bernard Saint-Donat. Projective models of K-3 surfaces. American Journal
of Mathematics, 96(4):602–639, 1974.

[18] Ichiro Shimada. Projective models of the supersingular K3 surface with

Artin invariant 1 in characteristic 5. Journal of Algebra, 403:273–299, 2014.

[19] Ichiro Shimada. An algorithm to compute automorphism groups of K3 sur-

faces and an application to singular K3 surfaces. International Mathematics
Research Notices, 2015.

[20] Hans Sterk. Finiteness results for algebraic K3 surfaces. Mathematische
Zeitschri�, 189:507–514, 1985.

[21] E. B. Vinberg. Some arithmetic discrete groups in Lobachevskii spaces.

“Discrete sub groups of Lie groups and applications to Moduli”, Tata-Oxford
(1975), 323–348., 1975.

259


	Automorphism groups and orbits of (-2)-curves 
	Generalities
	The basics
	Chamber structure and walls 

	Induced chamber structure
	Toolbox
	Shimada's enhanced Short Lattice Vectors Enumerator
	ShiVectors - Our implementation of Shimada's SLVE
	Applications - ShiChecker & ShiBooster

	Computing the walls of an induced chamber 
	Procedure DeltaW
	Procedure SetOfWalls

	Computation of generators of Aut(X) - Background
	Scope of application of Borcherds' method
	Finding a generalized membership criterion 
	Checking the kernel condition 

	Borcherds' method
	Procedure RatDetect
	Procedure WeylAdj
	Procedure AutChamber 
	Procedure CongChecker 
	Borcherds' method

	Embedding update procedure
	Failure of the non-degeneracy condition, a quick survey
	Shimada's embedding update procedure
	A new perspective on Shimada's embedding update procedure

	Fundamental domain, associated cone, Hilbert Basis
	Boundary walls, local boundary walls, global boundary walls.
	Graphical representation of the chamber structure of the fundamental domain.

	Computing the (-2)-curves modulo Aut(X) 
	Toward a parallelized Borcherds' method 
	The Poolized Borcherds' method 
	Enforcing parallelism at the scale of Borcherds' method 


	Projective models & unirationality
	Procedure CGS - Computing Classes of a Given Square 
	Universal Ampleness Tester 
	ShiChecker - Checking AC2 
	ShiBooster - Checking AC3

	Finding an initial ample class 
	A useful result on the discriminant group of NS(Xt)
	About dimension of linear systems 
	Computer-based study of projective models and unirationality of moduli spaces


