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Abstract

The initial aim of this thesis consisted in determining automorphism groups and
upper bounds on the number of orbits of smooth rational curves on surfaces in
the family of K3 surfaces having a Neron-Severi group isomorphic to the lattice

with Gram matrix

2t 0 0
0 =2 0 with 1< ¢ <50
0 0 =2

with respect to a fixed basis. To this end, we put computer science at the service
of pure mathematics and implemented various computer-based algorithmic
solutions that take advantage of a wide array of tools and modern techniques.
These solutions not only enabled us to perform a complete study of the family
of K3 surfaces mentioned above by determining projective models, computing
automorphism groups, studying the orbits of smooth rational curves, and
discussing the unirationality of their moduli spaces, hence enabling us to
provide results far exceeding the objectives which had been set for this thesis,
but also turn out to have a framework of application which goes far beyond
the family of surfaces mentioned earlier. From the outset of this thesis, we
indeed had in mind to develop solutions with a broad scope of application.
This endeavor resulted in the production of many computer-based solutions
for the study of K3 surfaces that will hopefully open up new perspectives
and help popularize even more the field of study of K3 surfaces. Please note
that all programs produced during this thesis are released in public access: All
computer-based solutions produced during this thesis are detailed and available

for download on K3surfaces.com.

Keywords: K3 Surfaces, Pure Mathematics, Computer Science, Python,
Sage, Scipy, Multiprocessing, Pool, Automorphisms, Rational curves, Algebraic

Geometry, Projective models, Parallelism, Borcherds’ method, K3surfaces.com
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Résume

Les objectifs initialement fixés pour cette these consistaient a déterminer les
groupes d’automorphismes ainsi que des bornes supérieures sur le nombre
d’orbites de courbes rationnelles sur les surfaces K3 appartenant a la famille
des surfaces ayant un groupe de Néron-Severi isomorphe au réseau entier avec

matrice de Gram

2t 0 0
0O -2 0 avecl <t <50
0 0 =2

par rapport a une base fixée. Nous avons pour cela mis I'outil informatique
au service des mathématiques fondamentales en implémentant des solutions
algorithmiques tirant parti d’outils modernes et variés. Les programmes qui ont
découlé de cette démarche nous ont non seulement permis de mener une étude
complete de ces surfaces en calculant explicitement leurs automorphismes,
orbites de (—2)-courbes sous l'action de ces derniers, modeles projectifs,
unirationalité des espaces des modules, dépassant ainsi largement notre objectif
initial d’étude, mais ont aussi un champ d’application allant bien au-dela de ces
surfaces. Depuis le début de cette these, nous avons en effet été motivés par la
volonté de toujours dépasser les cas particuliers et spécificités afin de produire
des solutions ayant une portée généraliste assumée. Notre entreprise a ainsi
résulté en la production de nombreuses solutions mettant 'outil informatique
au service de la geomeétrie algébrique et des surfaces K3 qui, nous I'espérons,
ouvriront de nouvelles perspectives d’étude pour ces dernieres. Nous tenons
a mentionner que tous les programmes réalisés pendant cette theése sont

accessibles via K3surfaces.com et que leur utilisation y est expliquée en détails.

Mots-clés : Surfaces K3, Maths pures, Informatique, Python, Sage, Scipy,
Multiprocessing, Pool, Automorphismes, Courbes rationnelles, Géomeétrie

Algébrique, modeles projectifs, méthode de Borcherds, K3surfaces.com
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Introduction

Denote by X an algebraic K3 surface over the field of complex numbers.
Two classical results were established by Sterk in his article [20, Theorem 0.1]
Finiteness results for algebraic K3 surfaces:

» Aut(X) is a finitely generated group.

» The number of orbits of (—2)-curves under the action of Aut(X) is finite.

These results enabled our advisor to throw at us the main challenge to be ac-
complished in order to achieve this doctoral project: For 1 < ¢ < 50, we had
to determine a generating set of the automorphism group of the K3 surface X;

with Néron-Severi group isomorphic to the integral lattice with Gram matrix

220 0
0 -2 0
0 0 -2

with respect to a fixed basis. We were also tasked with finding an upper bound
on the number of orbits of smooth rational curves on each such surface by using
the acquired knowledge of their respective automorphism groups to our advan-
tage. It is worth mentioning that Xavier Roulleau provided us with constant
support, many ideas and gave us leeway in terms of the approaches and tech-
niques to be used in order to reach the goals he had set for this thesis. We made
the most of this opportunity by using an innovative computer-based algorith-
mic approach to the study of K 3 surfaces. As will be shown in this dissertation,
the solutions developed and implemented during this thesis have a reach that
goes far beyond the scope of the above-mentioned family of K3 surfaces X;.
The content available on K3surfaces.com bears witness to this fact. We dwell on

this in more detail in the introduction to Part I of this thesis.
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Our computer-based algorithmic approach opens news doors not only for the
study of automorphism groups and orbits of smooth rational curves on complex
K3 surfaces, but also for the study of their projective models. Our computer-
based algorithmic approach enables us to offer a new perspective on a classical
result due to Saint-Donat & Morrison which is known to provide a precise de-
scription of the role of ample classes regarding embeddings of K 3 surfaces into
projective spaces. Our approach also takes advantage of the fact that Xavier
Roulleau released a Magma implementation of a quite special algorithm along
with the publication of his 2019 article [15]. Let X be a K3 surface. Roulleau’s
program takes as input a Gram matrix of the Néron-Severi group S = NS(X),

an ample class F, integers d and wy, to output the set
{C eNS(X) | {C,C)g=d, (C, ) < up}

of classes C of divisors of self-intersection (C, C') ¢ = d having an intersection
product with F less than or equal to u,. When d = —2, Prof. Roulleau’s pro-
gram is capable of identifying classes of smooth rational curves C' ~ P! among
the classes of self-intersection —2. This tool provides a gateway to knowledge
of concrete data on classes of curves having a prescribed self-intersection, and
more specifically on classes of smooth rational curves, which are known to play
a central role on K3 surfaces. We thus made use of Prof. Roulleau’s program
to produce a large database of classes of not only smooth rational curves, but
also of classes having any prescribed self-intersection on the surfaces we were
tasked to study. Taking advantage of this mass-produced data, we pushed onto
the path devised by Roulleau in [16, 15] and used a computer-based algorithmic
approach to implement Roulleau’s methods on an industrial scale. This endeavor
resulted in the production of our proj_-mod suite which offers tools such as CGS,
PModChecker or an universal ampleness tester AmpTester. These solutions
will hopefully open doors to other researchers and encourage them to take up
the torch on the computer-based study of &3 surfaces. We did our best to ensure
that this thesis can be used as a sound, safe and accessible ground for others to

obtain even further developments in the future.
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Introduction to Part I of this thesis

Denote by X; a complex K3 surface with Néron-Severi group isomorphic to

the integral lattice with Gram matrix

220 0
0 -2 0
0 0 =2

where the parameter ¢ is assumed to be a positive integer. As mentioned ear-
lier, we were tasked with the study of these surfaces for 1 < ¢t < 50. We now
introduce the various solutions implemented during this thesis in order to deal
with the challenges of explicitly computing the automorphism group and de-
termining the orbits of smooth rational curves under its action on each of these
surfaces. It turns out that the reach of these solutions goes well beyond the scope
of these surfaces and gives a very general scope of application to the content of
this thesis. We start by presenting the context in which our work fits as a devel-
opment. Fields medalist Richard E. Borcherds introduced a method to compute
the generators of the automorphism group of Lorentzian lattices with possible
applications to /3 surfaces in two articles [1] and [2] published in the late eight-
ies and early nineties. Borcherds’ method was then applied for the first time to
K3 surfaces in 1998 with Shigeyuki Kond6’s groundbreaking article [8]. From
this moment and until the end of the first decade of our century, mathematicians
such as Ujikawa, Dolgachev, Keum, and Kond6 again ([7, 6, 4, 10]) made use of
Borcherds’ method to compute automorphism groups of various K& 3 surfaces. In
2013, Professor Ichiro Shimada gave a new life to Richard E. Borcherds’ three-
decades-old material in his article An algorithm to compute the automorphism
groups of K3 surfaces [19]. Carried out as part of a publication grant entitled
Computational study of K3 surfaces (2013/2016) and followed by another grant,
this time entitled Computational study of algebraic geometry, Shimada’s article
[19] is unquestionably a massive step toward the full automation of the com-

putation of generators of the automorphism groups of K3 surfaces. Professor
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Ichiro Shimada, founding father of the computer-based algorithmic approach
to the study of K3 surfaces, thus provided a sound theoretical background and
outlined many of the essential procedures and building blocks required in order
to carry out Borcherds’ method as an algorithmic method. However, neither a
functional program nor a single line of code was released since the publication
of Prof. Shimada’s article. Almost a decade has passed since Shimada’s article,
and no significant progress on the subject has been made. As mentioned by
Giacomo Mezzedimi in his PhD thesis, defended in 2021,

“Shimada presents an algorithm to compute the automorphism
group of these K 3 surfaces; however the full automorphism group can

only be computed for a finite number of Picard lattices [ ... |

When the automorphism group becomes infinite, very little is known.
For example, we can describe the full automorphism group only of

some K3 surfaces.”

Giacomo Mezzedimi [12], PhD thesis, October 2021.

Indeed, Shimada’s article was not generalist and focused on examples without
explicitly highlighting a general application framework for Borcherds’ method.
In addition, many grey areas surrounded the steps that have to be taken to imple-
ment essential procedures described in Shimada’s article. Various fundamental
aspects essential to the generalization, optimization and implementation of the
processes were often ignored or treated in a minimalist way. Shimada’s arti-
cle [19] was not intended to be a manual for the implementation of the various
procedures that can be found therein. As a result, many challenges had to be
overcome. First, we had to familiarize ourselves with Shimada’s super fast-paced
style to make the best possible use of the invaluable information contained in his
article [19]. Moreover, many procedures from this article involve material from
another article [18] due to Shimada, which therefore also had to be mastered.
We then had to determine whether a general and precisely defined framework of
application for Borcherds’ method could be devised from Shimada’s work. The

answer is positive: It is indeed possible to do so. We, therefore, had to identify
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the holes to be filled and missing pieces in order to bring to life and fully auto-
mate all the material which can be found in Shimada’s article. These holes and
missing pieces seem to have obstructed the path to a generalized implementa-
tion of the method for almost ten years. At the time we write these lines, we
cannot find any trace of an implementation of Shimada’s material on the internet
that could rival what has been produced during this thesis. To be precise, there is
nothing. Despite Shimada’s article [19] being published almost a decade ago, i.e.,
in 2013, no sign of an elementary, limited or even partial implementation can be
found. When released in 2022, our thesis put an end to this situation. Going back
to our story, we have to mention that the first stage of our endeavor was carried
out while having in mind our goal of producing a generalized implementation
of Borcherds’ method. That is, an implementation whose scope of application
goes much beyond a handful of particular cases. Our desire for generality drove
us to identify explicit conditions of applicability for Borcherds’ method from
the sound foundations laid by Shimada in 2013, and naturally led us to design
and implement automated procedures enabling us to test whether a given K3
complex algebraic surface satisfies these conditions. We then had to move on to
the implementation of the method itself. For versatility and flexibility purposes,
our language of choice was naturally Python. We extensively used the Sage li-
brary, which includes many advanced mathematical features. This library was
so convenient for us that we worked most of the time within a Sage / Python
3.8.5 environment through a Sage terminal. We have been careful to produce
flexible and accessible solutions requiring only a bare minimum of input data to
be executed. Furthermore, our programs provide complete automation. For in-
stance, no matter if it is to set up the ambient conditions required to execute the
method, test whether Borcherds’ method can be applied, or execute the method
itself, everything is performed automatically. We also did our best to ensure
that Borcherds’ method can benefit from every ounce of computational power
available on the machine on which it is executed. Indeed, we live in an era dur-
ing which most machines take advantage of parallel processing. What would

be the point of making daily use of expensive pieces of hardware to not even
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use the full extent of their processing power for mathematical research? We,
therefore, redesigned all our solutions with parallel computing in mind. Having
used Python from the start enabled us to make a smooth transition to the use of
process-based parallelism, thus enabling us to make the best possible use of the
processing power of the central processing units on our machines by deploy-
ing various internal procedures of Borcherds’ method in parallel. In particular,
we fully took advantage of the Pool object from the Python multiprocessing
library. This object, as indicated in the official Python documentation, offers a
convenient means of parallelizing the execution of a function across multiple in-
put values. Doing so enabled us to produce a modernized version of Borcherds’
method: The Poolized Borcherds’ method. Through the use of the Pool object,
the burden of executing various computationally intensive procedures which
are part of Borcherds’ method is distributed over various worker processes in
such a way as to take advantage of the multi-core architecture of modern CPUs.
Doing so thus leads to a significant decrease in computation times. We were
still hungry for challenge and wanted to push our enterprise of parallelizing
Borcherds’ method even further. This aspiration naturally led us to take a step
forward toward parallelizing the Borcherds” method at a broader scale. To this
end, we implemented solutions to parallelize the exploration of the chamber
structure and the computation of the sets of walls of chambers. This approach,
detailed both online and in the section 1.11 of this document, is a first step that
will hopefully open many doors, broaden the perspectives regarding the par-
allel deployment of Borcherds’ method and, more generally, enable this thesis

to reinforce the interface between pure mathematics and computer science.

Before proceeding further, we have to mention that all the solutions presented

in this manuscript exist as fully functional computer-based solutions.

There is nothing conceptual in our work: K3surfaces.com testifies to this fact.

We now introduce the subject matter covered in the first part of this document.
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Let X be a complex K3 surface with Picard number px < 20 and Néron-Severi
lattice S = NS(X) with Gram matrix Gs with respect to a fixed basis Bg for S.

Denote by Pg the connected component of
fr eS| (ra)y>0}

containing ample classes. We build on the solid foundations which have been
laid by Shimada in [19] regarding Borcherds’ method: The Néron-Severi group
S = NS(X) of the complex algebraic K3 surface X under study should be em-
bedded into a suitable even hyperbolic lattice I chosen according to the value

of the Picard number of X, as indicated below:

Recommended

Picard number
px ambient lattice

1<px <10 U@ Es(—1)
10 < px <18 U & Eg(—1) ® Es(—1)
18 < px <20 U® FEg(—1)® Es(—1) ® Es(—1)

When possible, we recommend picking the ambient lattice L having the smallest
possible rank among the three possible lattices displayed in this table. Indeed,
choosing an ambient lattice of higher rank than what is recommended in the
above table will decrease the performance of Borcherds’ method. Before we go
any further, we need to clarify some notational conventions. We will often write

p instead of px. Let N = rank(LL) and assume that a basis

Bs ={s1,52,...,5,}

for S and a basis

B]L - {ll,l2,...7lN}

13



for the lattice L are fixed. We use the notation

[717727 s 7fyp}S

to denote the row vector of coordinates with respect to the basis Bg of the ele-
ment

Y181 + Y2S2 -+ VS, € S.

Similarly, we denote by

[B1, B2, - -, BNlL

the vector of coordinates with respect to By, of the element
Bily + Bals + -+ - + Byly € L.

We assume that the Néron-Séveri group of the surface under study has been
primitively embedded into a suitable ambient even hyperbolic lattice [L. That is,

we assume known the data of elements

N .
=S
j=1
for 1 < < N such that a mapping
LS =L
embedding S primitively into L can be defined by
LS —> ;.
That is,

Li’ylSl—i"YQSQ—f—"‘—f—’YpSpES'—>71U1+’72U2+"‘+’YpUpEL

14



Note that in terms of coordinates vectors, this mapping is defined as

N N N
L [717727 s 77}0]5 L 2%779)7 Z/yjnéj)v ey Z’Vﬂ]z(\y/)
7j=1 7j=1 7=1

The set
{reL®R | (z,z), >0}

has two connected components. The connected component containing ¢(Ps) is
called the positive cone of L. and denoted by Pp. A closed subset D C Py, is

called a chamber whenever it has non-empty interior and there exists a set
ACM ={zrclLeR| (z,z) <0}
such that D can be expressed as
D={zeL®R|YveA, (z,v), >0} NPL.

We denote by C the topological closure of a set C.. The collection
CL = {6 | C' is a connected component of P, \ U (v)*+, Int(C) # @}
veF

is called a chamber structure on P, or a Pp-chamber structure. Chambers in

Cr, will be referred to as Pp-chambers. Let
Ry ={zel| (z,z), = —2}.

In practice, we take

F=TRy

to define a chamber structure on Pp, where L is one of three lattices specified
in the above-mentioned table. We will often use the notation D to denote a Py -
chamber. A fact that should be highlighted is that a chamber structure on Py,

induces a chamber structure on the positive cone Pg of the Néron-Severi group

15
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S, the latter being assumed to be primitively embedded into L.. We show in

section 1.2 that whenever a P -chamber structure Cy, is given, the collection
Cs={DNPs|DeCy3UCPs,U=#0,Uopenst.U CDNPs}

is a chamber structure on Pg. Chambers D € Cg are called Pg-chambers. The
intersection of a Pp-chamber D with Pg thus defines a Pg-chamber when-
ever the resulting set has non-empty interior. A Pp-chamber which induces
a Pg-chamber is said to be ¢(S)-nondegenerate, or is said to possess the ¢(.5)-
nondegeneracy property. The ¢(S)-prefix is used to emphasize the fact that this
property of a Pr-chamber depends on the embedding ¢ : S — L used to em-
bed S into L. A central notion that will be essential throughout our study is the
notion of Weyl vector of a Py -chamber. Each such chamber is indeed uniquely
characterized by its Weyl vector. See definition 11 from section 1.1.2 for more
details. Whenever a Pp-chamber D induces a Pg-chamber D = D N Pg, the
convention is that the induced Pg-chamber D inherits the Weyl vector of the
chamber D. Another critical attribute of a Pg-chamber D with Weyl vector w is
its set of walls, denoted by (D). We will see that this set can be obtained from
the data of the Weyl vector of D. More generally, many of the computations
and procedures involving a Pg-chamber D involve its Weyl vector at one time
or another. An important thing to point out before proceeding further is that
the intersection Nef(.X') N Pg of the Nef cone of X with the positive cone Py is
naturally tiled by chambers of the induced chamber structure Cg. This natural
chamber substructure covering Nef(X') N Pg is moreover cut by walls defined
by the respective orthogonal complements in Pg of classes of smooth rational

curves on X. Consider the K3 lattice
H*(X,7) ~ U® 4 Eg(—1)%?

and denote by H the subgroup of transformations in O*(5) lifting to Hodge

16
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isometries in H*(X,Z). Let

Autgr(Nef(X) NPs) = {g € H| g preserves Nef(X) N Pg}
CHCO%(S)cO(9)

be the subgroup of transformations in H preserving Nef(X') NPs. This group is
a prominent character in regards to one of our main objects of study: Borcherds’

method, whose purpose consists in producing a generating set of
Autg (Nef(X) N Pg)

by exploring and processing the portion of the induced chamber structure on Pg
covering Nef(X) N Ps. In section 1.7, we explain what the sentence exploring
and processing the chamber structure means. In this introduction, specifying the

bare minimum required for a good understanding of the method will be enough.

Exploring the portion of the Pg-chamber structure over Nef(X ) N Pg requires
the data of an initial Ps-chamber Dy contained in Nef(X') N Pg to be used as a
starting point to initiate the exploration. As indicated in Shimada’s article [19],
the classical theory fortunately always provides the Weyl vector wy of an initial
chamber Dy of the PL-chamber structure no matter which lattice IL is chosen

among the three lattices presented in the table introduced earlier.
t: 8 =1L

There is, however, no guarantee that D, will be ¢(.5)-nondegenerate. Indeed, the
t(S)-nondegeneracy property of Dy depends on the embedding ¢ used to embed
the Néron-Severi group S of the K3 surface under study into L. In his article
[19], Shimada provides a criterion to determine whether a given P -chamber D
is nondegenerate. Our implementation of this criterion is the procedure Degen-
Test, whose mechanics are explained in section 1.2. Using this criterion requires

the input data of an ample class a( and of the Weyl vector of a chamber D,. The

17
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mechanics behind this test take advantage of the fact that an ample class a is
by definition an element of Nef(.X') N Pg so that one can determine quite easily
whether the image ¢(ao) of the ample class ay under the embedding ¢ : S — L
belongs to the interior of Dy N Pg. The intersection Dy N Pg has non-empty
interior whenever this is the case, hence ensuring the ¢(.5)-nondegeneracy of

Dy, and we obtain at the same time that
Do N'Ps C Nef(X) N Ps.

In his article [19], Shimada also provides the outline of a procedure, which, in

the framework of an embedding
LS =L

and given the input data of the Weyl vector of a Pr -chamber D, and of an ample
class ag such that ¢(ag) does not belong to the interior of Dy N Ps, may lead to

an isometry 7 : . — L which can be used to define an updated embedding
Tor: S —=1L

under which the chamber Dy possesses the property of (7 o ¢) (S)-nondegeneracy.
A favorable outcome to Shimada’s procedure will indeed make the image of a

under the updated embedding satisfy
(T o1)(ap) € Int(Dy N Pg)

thus ensuring the (7 o ¢) (S)-non-degeneracy of D, and the fact that the cham-
ber it induces is contained in Nef(X') N Pg. We have to mention that Shimada’s
embedding update procedure outlined in [19, Section 8] has probably been for
almost a decade one of the major obstructions to the production of a functional
and generalized implementation of Borcherds’ method. Building on Shimada’s
original procedure, we worked our way toward a modernized embedding update

procedure, which, once implemented, brings many improvements compared to
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our implementation of Shimada’s original procedure. Going back to Borcherds’
method, note that as soon as a suitable initial chamber Pg-chamber contained
in Nef(X') N Ps is obtained, the exploration can begin. We start by focusing on
explaining how Borcherds’ method moves inside of the chamber structure. It
is essential to have in mind the fact that chamber structure can be viewed as a

tiling over Nef(X') N Ps, as illustrated in the following figure.

A fundamental concept related to the tiling of Nef(.X') NPg is the notion of level
for chambers, which enables us to layer the chamber structure over Nef(X)NPg
with respect to a reference point. Fix an initial Pg-chamber Dy. The notion of

level for chambers is defined iteratively, as follows:
» The initial chamber D is the only level O chamber.

» A chamber adjacent to a level [ — 1 chamber but not adjacent to a level

| — 2 chamber is said to be of level [.

The figure above depicts a genuine representation of a portion of the chamber
structure over Nef(X) N Pg, where X is the K3 surface X4 in Picard 3 and
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where an initial chamber, green-colored and located at the center of the picture,
has been chosen as a reference point. In terms of level, the chamber structure

in this picture can be described as follows:

» The chamber colored in green at the center is the initial chamber of level
0 used as a reference point for the chamber structure’s layering. There is

only one chamber of level 0.
» Chambers colored in clear blue are the chambers of level 1.
» Chambers colored in bright purple are the chambers of level 2.
» Chambers colored in yellow are the chambers of level 3.
» Chambers colored in red are the chambers of level 4.
» Chambers colored in a grey / blueish color are the chambers of level 5.
» Chambers colored in orange are the chambers of level 6.

We already mentioned that Borcherds’ method is an iterative procedure during
which a portion of the chamber structure over Nef(.X) NP is explored and pro-
cessed. We will soon give more details about the method itself. The fact is that
the method can be viewed as an entity evolving in the chamber structure and
processes each chamber visited in order to produce some output. We believe
that it is essential to approach things in a down-to-earth way and will therefore
use a smiley to represent Borcherds’ method as a hamster exploring and pro-
cessing a chamber structure, like a hamster in a maze, except that our hamster
obeys strict rules, described in section 1.7. The hamster in this illustration is pic-
tured as located inside of the initial chamber, colored in green. We can therefore
assume that Borcherds’ method just started its execution. We start by focusing

on how the method navigates within the chamber structure.
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Internal procedures DeltaW and SetOf Walls, both introduced in section 1.5
enable Borcherds’ method to compute the set of walls of a Pg-chamber from the
input data of its Weyl vector. When the set of walls of a chamber has been com-
puted, Borcherds’ method enforces the procedure RatDetect to identify walls
associated with classes of self-intersection —2, which are usually referred to as
(—2)-walls. Such walls, if crossed, would make Borcherds’ method leave the
chamber structure over Nef(XX') N Pg and should therefore be avoided at all
costs. When the data of the non (—2)-walls of a chamber D has been obtained,
Borcherds’ method is allowed to enter the chambers adjacent along these walls,
that is, to cross the wall to enter the chamber adjacent along this wall to the
chamber where it is currently located. The hamster located in the green chamber
is thus allowed to visit the adjacent blue chambers as soon the non (—2)-walls
of the green chamber are determined. Assume given a Pg-chamber D such that

the following data is available:
» The Weyl vector wp of D
» A wall of the chamber D,

Using this data as input, the procedure WeylAdj introduced in section 1.7.2
outputs the Weyl vector w’ of the chamber D’ adjacent to D along the wall
which has been specified in the input data. We have seen the basic principles
governing Borcherds’ method movement inside of the Pg-chamber structure
over Nef(X') NPg. A table listing all the procedures involved within Borcherds’
method can be found by clicking here. Let us outline how the method processes

the chambers it explores in order to fulfill its purpose, which consists in

Computing a generating set of Auty(Nef(X) N Py).
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Processing the chamber structure consists in using brute force flavored proce-

dures in order to exhibit generators of
AutH (Nef(X) N PS)

from the data of the chambers explored by Borcherds’ method. Generators are

obtained in two ways:

» For each Pg-chamber D explored, by computing a generating set of the
group

Auty(D)={g9 e H| D’ =D}
CHcCO*(9)
of transformations in H preserving D C Nef(X) N Ps.

To this end, the brute-force procedure AutChamber from section 1.7.3 takes as

input the data of the walls of D and outputs a generating set of
Autg (D) C Autg(Nef(X) N Pg).
» By testing whether two Pg-chambers
D, D’ C Nef(X) N Pg

are H-congruent. That is, by determining whether there exists a transfor-
mation g € H such that
DI =1D"

Doing so is the purpose of the procedure CongChecker detailed in the section
1.7.4 of this document. This procedure takes as input the data of the respective
sets of walls (D) and Q(D’) of Pg-chambers D, D’ and determines whether the
two chambers are H-congruent. When this is the case, this brute-force flavored

procedure returns at least one transformation establishing the H-congruency.
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That is, an element ¢ € H such that

D' = D9
={zg |z € D}

The CongChecker procedure has a central role within the algorithmic structure
of the classical Borcherds’ method. One of the innovations brought by this thesis
is that, as we will see in section 1.11.1, the CongChecker congruence testing
procedure is deployed in parallel over CongChecker blocks by using process-
based parallelism, which yields huge performance improvements and led us to
a modernization of Borcherds” method called the Poolized Borcherds’ method,
also introduced in section 1.11.1. Note that CongChecker and AutChamber
both integrate a feature enabling them to test transformations for membership
in H. Knowledge of a membership criterion for H is therefore necessary. In
his article [19], Shimada’s approach to issues related to the membership crite-
rion may lead his readers to think that it is necessary to handcraft a specific
criterion for each surface on which Borcherds’ method is to be applied, thus po-
tentially discouraging people from venturing down this path. By studying the
clues on this issue left by Shimada in [19], we provide in proposition 24 of sec-
tion 1.6.2 a generalized membership criterion for H. The result of this endeavor
is the MemberCrit procedure, which takes as input the (p X p)-sized matrix
of a transformation generated by CongChecker or AutChamber, and deter-
mines whether it belongs to H. Assume given a complex K3 surface X with
Néron-Severi primitively embedded into a suitable even hyperbolic lattice and
that Borcherds’ method, which has not been discussed yet, has been executed
and produced a generating set of Autg (Nef(X) N Pg).

What about the automorphism group of X?
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We can now provide an answer to this fundamental interrogation. We start by
denoting by 7' the transcendental lattice of X, that is, the orthogonal comple-
ment of S = NS(X) in

H*(X,Z) ~ U® @ Eg(—1)%2.
Consider the natural morphism
nr: O(T) — O(TY/T)

which realizes isometries of 7" as isometries of its discriminant group 7/ T It

turns out that if the complex K3 surface X under study satisfies
px <20 and —1 ¢ Ker(nr)

then there is an isomorphism
Aut(X) ~ Auty(Nef(X) N Pg).

From the beginning, the logical structure leading to this result was contained
in Shimada’ article [19]. Obtaining this result amounted to assembling a jigsaw
puzzle while always bearing in mind the goal of exhibiting a generalized frame-
work of application for Borcherds’ method. We were stunned that this result had
not yet been explicitly formulated. However, more had still to be done. Such a

result is worthless if one does not provide a general procedure to check whether

—1 ¢ Ker(nr)

holds. Let us briefly explain how we proceeded in order to fill this gap. Before
proceeding further, we have to mention that in case the above condition is not
satisfied, i.e., when —1 € Ker(nr), then nothing prevents us from executing
Borcherds’ method. However, obtaining a generating set of Aut(X) is not guar-

anteed. For sure, we will obtain a generating set of Auty(Nef(X) N Ps), but
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asserting anything about a generating set of Aut(X) when —1 € Ker(nr) is
outside the scope of this thesis. We now go back to our initial discussion: Note

that any embedding of S into
L=U® Es(—1) or into L=U® Eg(—1) ® Eg(—1)
can be easily extended to an embedding of .S into
H*(X,Z) ~ U® 4 Eg(—1)%2.

A Gram matrix G of the orthogonal complement of S into H?(X,Z) can then
be easily obtained. Details and examples are provided on K3surfaces.com. In
case the surface under study has Picard rank 18 or 19, obtaining an embedding
of S into the K3 lattice from the data of the embedding of S into

L=U® Eg(—1) ® Eg(—1) ® Eg(—1)

is not guaranteed and this matter will have to be investigated on a case-by-case
basis. Computing a Gram matrix G'; of the transcendental lattice 7" will thus
be a straightforward job when the K3 surface under study has a Picard number

less than or equal to 17 and has already been embedded into either

Denote by GLj2_,(Z) the group of invertible (22 — p) x (22 — p)-sized matri-
ces with integer coefficients. The following criterion can be used to determine
whether —1 ¢ Ker(nr) as soon as a Gram matrix G for the lattice 7" has been

computed. We show in proposition 25 of section 1.6.3 that

2G5} ¢ Gl ,(Z) = —1d ¢ Ker(nr)
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and can therefore guarantee that the isomorphism
Aut(X) ~ Autg(Nef(X) N Ps)

holds whenever the K3 surface under study has a transcendental lattice 7" with

Gram matrix G satisfying
2G; ¢ GLyy_,(7Z).

Performing this check is the purpose of our procedure KerChecker, backed
by proposition 25 from section 1.6.3. At the program level, everything is auto-
mated so that the user will never have to perform by hand the above-mentioned
check for complex K 3 surfaces with Picard number less than or equal to 17. We
have made an overview of most of the procedures required to execute Borcherds’
method. The following table provides a correspondence between Shimada’ orig-
inal procedures which have been outlined in his 2013 article and our modernized
implementations of these procedures, which enabled us to produce a fully oper-
ational and automated version of Borcherds’ method. We did not stop there and

even raised the stakes, as we will discuss in section 1.11.

Ref. in this thesis Ref. in Shimada’s work

Procedure DegenTest, section 1.2 Criterion 5.9 in [19]

Procedure EmbUpdater, section 1.8 -

Procedure RatDetect, section 1.7.1 Algorithm 6.1 in [19]
Procedure DeltaW, section 1.5 Algorithm 5.8 in [19]
Procedure SetOf Walls, section 1.5 Algorithm 3.17 in [19]

Procedure WeylAdj, section 1.7.2 | Algorithms 5.13 / 5.14 in [19]

Procedure MemberCrit, section 1.6 -

Procedure AutChamber, section 1.6 Algorithm 3.18 in [19]
Procedure CongChecker, section 1.6 Algorithm 3.19 in [19]
Procedure ShiVectors, section 1.4 Algorithm 2.1 in [18]

Procedure KerChecker, section 1.6.3 -
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Note that a more detailed version of this table is available online.

A table describing all the procedures involved in Borcherds’ method can be
found by clicking here. All the procedures appearing in this table are fully
detailed in this thesis, and we made sure to fill the gaps left in the wake of
Shimada’s 2013 article. We made sure to provide as much detail as possible.
We now get to the heart of the matter and focus on Borcherds’ method itself.
Assume given an initial Pp-chamber D, with Weyl vector wy (the latter is for-
tunately provided by classical theory, see also the section 4, Vinberg-Conway
Theory, from Shimada’s article [19]) having the properties ¢(.S)-nondegeneracy
and inducing a Ps-chamber contained in Nef(X') NPg. That is, the intersection

Dy ="DyNPg

is a Pg-chamber contained in Nef(X') N Ps. In case all we have in hands is the
data of a chamber Dy that does not satisfy the +(S)-nondegeneracy property, we
pick an ample class ay and make use of the procedure EmbUpdater, which has
been mentioned earlier and is detailed in the section 1.8 of this thesis. If the pro-
gram associated with the EmbUpdater procedure displays that another ample
class should be chosen, it is recommended to do so and to execute EmbUpdater

again. We thus assume that a transformation
T:L—=1L
has finally been obtained and enables us to define an updated embedding
Tor: S =1L
under which the P -chamber Dy is (7 o ¢) (S)-nondegenerate and satisfies
Dy NPs C Nef(X) N Ps.
Before proceeding further, note that in practice, to each Pg-chamber is asso-
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ciated a tuple that characterizes the chamber and provides data which can be
processed within an implementation of Borcherds’ method, as explained in sec-

tion 1.7. Hence, a Pg-chamber D is realized as a concrete data tuple such as

D = (wp, Au(D), D), D))

where wp denotes the Weyl vector of D, where Ay (D) denotes a generating
set of Autg(D), where Q(D) denote the set of walls of D and where Q(D) de-
notes the set of walls of D with respect to anti-backtracking. More details about
anti-backtracking can be found by clicking here. Note that our use of the term
classical Borcherds’ method refers to Shimada’s original vision of Borcherds’
method, for which he laid the algorithmic building blocks in his 2013 article

[19], which has been a tremendous asset for us during our thesis.

We now explain the iterative mechanics behind the classical Borcherds’ method.
Full details are provided in section 1.7. Keeping this figure close by may be use-
ful to the reader for what comes next. Note that the finiteness of the number
of congruence classes of chambers contained in Nef(X') N Pg is assured by Shi-
mada, as indicated in his article [19], thus ensuring that Borcherds’ method ends
its execution at one moment or another. Fix a positive integer £ # 0. We as-
sume that Borcherds’ method already performed £ iterations and is currently at
the beginning of its (k + 1)-th iteration. For each positive integer j less than or
equal to k, we thus assume that the method produced a set £; containing cham-
bers of level j, each representing their own H-congruence class of chambers of
Nef(X') N Pg. For example,
Lo = {Do}

since D is by definition the only chamber of level 0, and is by default chosen as a
representative of its H-congruence class because it is the first chamber explored
and processed by the method. Assume that the generators of Auty (Nef(X)NPs)
which have been detected by the method during the previous iterations have
been stored into a set I'. The (k + 1)-th iteration of Borcherds’ method consists
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in exploring and processing the chambers of level k+1 adjacent to the chambers
in L, along their non (—2)-walls in order to identify chambers representing new

H-congruence classes. Such chambers are stored into an initially empty set

£k+1 = {}

and their adjacencies explored during the (k+2)-th iteration, provided that £ 1
is not empty at the end of the (k + 1)-th iteration. Borcherds’ method otherwise
stops and returns all the data collected during its execution. For each chamber
D € Ly, Borcherds’ method detects the (—2)-walls among the elements of the
set of walls of D by running the procedure RatDetect and classes in .S associ-
ated with such walls are stored into the set R,,;. As indicated earlier, we denote
by Q(D) the set of walls of D taken with respect to anti-backtracking, i.e., the set
(D) from which the walls leading to chambers of level £—1 have been removed
(click here for more details about anti-backtracking). For each m € Q(D), the
method uses the procedure RatDetect from section 1.7.1 to determine whether
(m)" is a (—2)-wall. When (m)" is not a (—2)-wall, Borcherds’” method com-
putes the Weyl vector w’ of the chamber D" adjacent to D along the wall (m)L
by using the procedure WeylAdj from section 1.7.2 with the input of m € Q(D)
and of the Weyl vector w of D. Note that (2(D) can be taken modulo Autg (D)
before performing the computation of the Weyl vectors of adjacent chambers,
thus saving resources in some cases. We have to mention that all our implemen-
tations of Borcherds’ method possess this feature (quite easy to implement with
GAP functions), but we deliberately omitted it from our structure diagrams so
as not to burden them with a feature which, in practice, is not useful for cases
where X has a small Picard number. Indeed, for such surfaces, which have been
mainly studied during this thesis, the group Autg (D) is almost systematically
trivial for all chambers. This phenomenon has also been observed by Shimada
ten years ago in [19]. Borcherds’ method then computes the set of walls of D’ by
using the Weyl w’ vector of D’ as input into the procedure DeltaW, from sec-
tion 1.5.1. It then uses the output of the latter into the procedure SetOf Walls
from section 1.5, which returns the desired set €2(D’) of walls of the chamber D'.

29


https://k3surfaces.com/more-remarks/#anti-backtracking
https://k3surfaces.com/more-remarks/#orb-finder
https://k3surfaces.com/more-remarks/#orb-finder

Afterwards, the set of walls of D’ is used as input into the procedure AutCham-
ber, from section 1.7.3, which provides Borcherds’ method with a set Ag(D")
of generators of

Auty(D')={geH|D'9=D"}.

Note that such generators are also generators of Autg(Nef(X) N Pg), hence
Borcherds’ method stores them into the set I'. Borcherds’ method then deter-
mines whether D’ represents a new H-congruence class of chambers by pro-

ceeding as follows: For each chamber
D" e LoULiU---ULLULpy

Borcherds’ method uses the respective sets of walls of D" and of D" as input data
into the procedure CongChecker from section 1.7.4. The latter then uses brute-
force to determine whether D’ and D" are H-congruent. When the chambers
D’ and D" are indeed H-congruent, the procedure CongChecker provides at
least one element g € H establishing the congruence between D’ and D”. Note

that such transformations are generators of
AutH (Nef(X) N Ps)

and are stored into the set I'. If D’ is not H-congruent to a chamber in

then D’ represents a new congruence class of chambers. Borcherds’ method

hence stores the data tuple
(w', Au(D"), UD"), QD))

associated with the chamber D’ into the set £ 1 which contains the chambers

of level £+ 1 each representating a new congruence class discovering during the
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current iteration, i.e. (k + 1)-th iteration. When the chambers of level k£ + 1 ad-
jacent to chambers in £, have all been explored and processed, two possibilities

arise:

» If £;,.1 # 0, that is, if representatives of new congruence classes have
been detected during the iteration, then Borcherds’ method proceeds to its
next iteration: It explores and processes chambers of level k + 2 adjacent

to chambers in £, by adjacency along non (—2)-walls.

» If L)1 = 0, ie.,if no representative of new congruence classes have been
detected during the iteration, then the methods ends and outputs all the
data collected during its execution: Generators of Auty(Nef(X) N Pg),
data of the (—2)-walls identified during the exploration, data of the repre-
sentatives of congruence classes, which form a complete set of represen-

tatives of H-congruence classes of chambers contained in Nef(X) N Ps.

Assume that the complex K3 surface under study satisfies —1 ¢ Ker(nr) and
has Picard number px < 20, so that

Autg (Nef(X) N Pg) ~ Aut(X)

holds, as indicated in theorem 22 from section 1.6. Assume moreover that the
condition
Autg (D) = {I1d}

holds for all chambers D in the complete set of representatives returned by
Borcherds’ method. We show in proposition 31 from section 1.9 that the union
of the set of chambers each representing their own congruence class returned
by Borcherds’ method is then a fundamental domain for the action of Aut(X)
on Nef(X) N Ps. In proposition 37, we show that each orbit of smooth rational
curves on X under the action of Aut(X) then possesses at least one represen-
tative among the classes in S associated with (—2)-walls contained in the set
Rrat- The cardinality of R, thus provides an upper bound on the number of

orbits of smooth rational curves on X under the action of Aut(.X). We provide
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an algorithmic method in section 1.10 to identify redundant representatives in
Rrat, thus enabling us to refine this upper bound. We implemented a complete
algorithmic suite for Borcherds” method in Python and made extensive use of
mathematical functions from the SageMath library. In order to provide a frame-
work of use that is accessible and familiar to most people, our programs can be
launched from a simple Sage console. We did our best to put computer science
at the service of pure mathematics. In this perspective, three fully functional

instances of Borcherds’ method arise from this thesis:

» The classical Borcherds” method is an implementation of the method that

does not take advantage of the multi-core architecture of a CPU.

» The Poolized Borcherds’ method is an upgrade of the classical Borcherds’
method, which takes advantage of the multi-core architecture of the pro-
cessor on which it is executed. Most of the procedures have been re-
designed so that the workload through them can be distributed over sev-
eral worker processes. To do so, we made use of Python’s multiprocess-
ing library. Note that running the Poolized Borcherds’ method with the
allocation of a single worker process amounts to running the classical
Borcherds” method.

» We also implemented parallelism at the level of the method itself. What
we did with the Poolized Borcherds” method consisted in adapting the
internal procedures of the method so that process-based parallelism can
then be used. However, enforcing parallelism at the level the method itself,
e.g., by parallelizing the exploration of the chamber structure, requires
more effort than revamping the code to deploy a solution such a Pool.

We cover this in section 1.11, Toward a parallelized Borcherds’ method.

Note that computers are tools, and that we always strive to make the best pos-
sible use of the tools at our disposal. However, the tools should not take over
the content. This is why all the discussions in this thesis occur outside of the

constrained framework of a particular language. Moreover, it should be noted
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that not a single explicit reference to the code is used in this entire document.
We believe that the classical dissertation format is not adapted to this aspect of
our work. We instead provide an online platform on which we deal with all the
practical and computer-based considerations: K3surfaces.com. Let us neverthe-
less conclude the introduction to the first part of our thesis on a very concrete
and practical consideration: Let X be a complex K3 surface of Picard number
inferior or equal to 17. Within this framework, we can guarantee full automa-
tion for all the procedures. The input data required to set up the environment

which will enable us to execute the Borcherds method consists of:

» The data of a Gram matrix G5 of the Néron-Severi group S := NS(X) of
the K3 surface X.

» The data of elements vy, ..., v, € L such that the mapping defined by
Lo, ap)lg €S aqur + -+, € L
is a primitive embedding of S into either
L=U® Es(-1) or L=U® Es(—1) ® Es(—1)

depending of the Picard number of the K3 surface X under study.
» The data an ample class ag := [, . .., o,]4 € NS(X).

The data of a list

[GS7 [Ulv ce. 7Up] ,CL()],

where G is a (p X p)-sized Sage matrix, where each v; is a lattice vector of
L, and where ag is (1 X p)-sized Sage matrix, is therefore all that is needed to

execute our implementation of Borcherds’ method.
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Running the Poolized Borcherds' method with an allocation of 16 workers since : N minutes / 0.0 hours

Slow mode enabled

The case under study is chafe_apparatus

There is 1 chamber of level © and a single congruence class of chambers has been discovered.
Currently discovering chambers of by adjacency to chambers of level 0 .

There is no other chamber of level 0 to processed during this level !

Generators of Aut(X) have not yet been detected...

Exploring the vicinity of the chamber D with Weyl vector
= Exploring the chamber with Weyl vector [ 31 30 -4 70 - 54 -35 -17] adjacent to D along the wall [
© Testing whether this chamber is congruent to a chamber explored earlier...
v Done in 0 nds !
= Exploring the chamber with Weyl vector [ 3 8 9 1] adjacent to D along the wall
< Testing whether this chamber is congruent to a chamber explored earlier...

v Done in seconds !

» The Néron-Séveri Group of the surface under study has Gram matrix

» There are 10 congruence of chambers !

» The Poolized Bo e method produced a fundamental domain of the action of Aut(X) onto Nef(

» There are at most 2 of smooth rational curves, with representatives : [[0 0 1], [0 1 @]]

met executed with an allocation of 16 workers.
Total elapsed time (in hour s 1 hours

Total elapsed time (im minutes) : 0.42 minutes.

More information and detailed examples are available online:
Guide: K3surfaces.com/aut-groups

Examples: K3surfaces.com/examples-borcherds
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Let X be a complex K3 surface with Néron-Severi group S = NS(X). The other
side of our study takes its roots in the fact that Roulleau produced a Magma
program based on an algorithm due to Vinberg, which takes as input a Gram

matrix of NS(X'), an ample class F, integers d, u, € Z, and outputs the set
{CeS|(C,C)g=d, (C,F)g<u}

of classes of curves C' of self-intersection C* = d and for which the value of their
intersection product with F is less than or equal to u;. We took advantage of
Sage’s interface to Magma in order to bring Roulleau’s program directly into the
practical world of Python. Combining this tool with Saint-Donat’s & Morisson’s
results on projective models of /&3 surfaces enabled us to study projective mod-
els of K3 surfaces with Néron-Severi group isomorphic to the integral lattice

with Gram matrix

2t 0 O
0 -2 0
0 0 =2

with respect to a fixed basis, and even discuss the unirationality of their moduli
spaces. Here again, the tools produced during our thesis to do so have a scope of
application which extends far beyond these K3 surfaces. Our PModChecker
program bears witness to this fact. The fact is that the computer-based algorith-
mic approach we adopted led us to produce innovative tools. For example, we
combined various algorithmic pieces provided by Shimada in his article [18] in

order to produce:

» Universal ampleness tester for classes of divisors on K3 surfaces:
Given an ample class ap € S and a Gram Matrix G's for S, our program
AmpTester can determine whether any class D € S is ample or not. This

program makes use of algorithmic material due to Shimada [18].
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AmpTester(Matrix([5 1))
@ The known ample class amp® is [ 2 -1 -1]

@ The K3 surface under study has Néron-Severi lattice with Gram matrix :

]
]
1

Sk Rk R R Rk ek R R R ek ek R R ek Rk R Rk ek ek
A The class [50 20 40] is NOT AMPLE !
A Note that the (-2)-curves contained in
[[e o 1], [0 1 8]]
are to the ampleness of [50 20 40] !
A Indeed, their intersection product with the class [50 20 40] is strictly negative !

False

The following theorem incorporates results from Saint-Donat [17] & Morrison
and can be found in the latter’s 1988 Cortona lectures [13] and provides char-
acterizations of the projective models which can be obtained from the data of
an ample class on a K3 surface. We state it in its formulation by Debarre in his

Master’s course [3, Section 3.4]:

SDM Theorem. Let X be a K3 surface and D € S an ample class.

(a) If D? = 2 and there does not exist a class F' € NS(X) such that F?> = 0
and F - D = 1 then ¢p : X — P?is a double cover.

(b) If D? = 4 and there does not exist a class F' € NS(X) on X such that
F?=0and F- D € {1,2} then ¢p : X — P3 embeds X as a quartic

surface in P3.

(c) If D? = 6 and there does not exist a class ' on X such that /> = 0 and
F-D € {1,2} then op : X — P* embeds X as a degree 6 surface in P*.

(d) If D? = 8 and there does not exist a class ' on X such that £’ = 0 and
F-D e {1,2,3} then ¢p : X — P® either embeds X as a generically
transverse intersection of three quadrics in P> with only rational double

points, or ¢ p realizes X as double cover of a Veronese surface.
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This theorem led us to produce and implement the following tool:

» PModChecker (SDM theorem tester): Given an ample class ag € S and
a Gram Matrix Gg for S, our program PModChecker can determine
whether a given class D € S can enter within the framework of the above-
mentioned SDM theorem. When this is the case, PModChecker specifies
which projective model of the K3 surface under study can be obtained
thanks to the map into projective space associated with ¢p, in virtue of
the Saint-Donat / Morrison Theorem. This program extensively relies on
an algorithmic routine which was originally intended for other purposes

and can be found in Shimada’s article [18].

GramMats

PModChecker(Matrix([1, 2, 1]))

(D The class under study is D= 1 -2 -1]
The class D =[ 1 -2 -1] 1is ample and has self-intersection 4 !
There does not exi a S(X) ch that F.D €{1,2} and F.F = 0
< By the S S eorem, a embeds X as a quartic in P~3
PModChecker(Matrix([45
® The class under study
A The class [450 50 -20] 1is NOT ample !

A This class cannot be associated with a projective model of the K3 under study !

0

More information and detailed examples are available online:
AmpTester: K3surfaces.com/amptester

PModChecker: K3surfaces.com/pmodchecker
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Automorphisms groups and orbits
of smooth rational curves
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1 Automorphism groups and orbits of (—2)-curves

1.1 Generalities

The following section introduces the main theoretical tools, notions, and con-

cepts with which the reader should be familiar before pursuing the study further.

1.1.1 The basics

We recall that a free Z-module L of finite rank with a non-degenerate symmetric

bilinear form
< , >L Lx L —7Z

is called an integral lattice. In the following, we will use the term lattice to refer

to an integral lattice. A lattice L is said to be even if
2? = (z,1), € 27

holds for any lattice element x € L. The Gram matrix of a lattice L of rank N

with basis by, . .., by is defined as the matrix

G = [(bu bj>L] 1<ij<N

Denote by n, the number of positive eigenvalues and by n_ the number of
negative eigenvalues of G. The pair of integers (n,n_) is called the signature
of L. A lattice L is said to be hyperbolic when L ® R is of signature (1,n — 1).
The determinant of a lattice L is defined as the determinant of the Gram matrix
G, of L . An unimodular lattice is an integral lattice of determinant 1. Let L

be an hyperbolic lattice. One of the two connected components of the set
{reLoR|2*> 0}

is called a positive cone of L and is denoted by Py,. It inherits the topology from
the vector space L ® R. When the lattice under study is chosen to be the Néron-
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Severi lattice S := NS(X) of a K3 surface X, the positive cone Py is chosen as

the connected component of
{reS@R|z*>0}

containing ample classes. Denote by O(L) the group of isometries of a lattice L.
We view elements of O(L) as matrix transformations of size rank(L) x rank(L)
and use the convention that elements of L are represented as row vectors of size
rank(L). That is, the image of an element v € L by a transformation g € O(L)

is a row vector of size rank(L) and given by
v — vg.

Representing elements of L as row vectors instead of column vectors may seem a
bit unusual in a classical setting. It is, however, perfectly suitable when working
with a CAS such as Magma or Sage, in which lattice elements are realized as
row vectors. Regarding elements of O(L), note that an invertible matrix ¢ is the
matrix of a transformation of O(L) if and only if it preserves the bilinear form,
that is, if and only if

9Grg" =Gy

holds. The stabilizer subgroup of the positive cone Py, in O(L) is denoted by
OT(L). Let L be an even lattice. An element 7 € L such that 7? = —2 is called

a root. To each root r € L can be associated a reflection
s: L+—— L

defined by
Sp x> x4+ (T,7)r

Note that s, is an involution. That is,

sro0s, =1d
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holds. The subgroup of O" (L) generated by all the reflections s, with respect
to the roots is denoted by W (L) and called the Weyl Group of L. The quotient
LY /L is called the discriminant group of the lattice L. The discriminant group

is endowed with a non-degenerate quadratic form
q:LY/L — Q/2Z

defined by
q:z mod L +— z? mod 2Z.

The form ¢y, is called the discriminant form of L. We use the notation (LY /L, qr,)
in order to refer to the discriminant group and to its associated quadratic form
at the same time. The group of isometries of (LY/L,q) is denoted by O(qr).

There is a natural homomorphism
n:O(L) = O(qr)

between the group of isometries of L and the group of isometries of (LY /L, qr).

1.1.2 Chamber structure and walls

Let L be an even hyperbolic lattice and let P, be a positive cone of L

Definition 1. Let A C L. The set
Y(A)={z € LR |Vv € A, (z,v)y >0},
is called the positive cone associated with A.

It is also referred to as the A-positive cone. Define
Np={ze€L®R| (z,z), <0}.
A closed subset D of Py, is called a chamber if it has non-empty interior and if

43



there exists a subset A C N} such that
D=%,(A)NPy. (1.1)

Such a subset A is called a defining set of the chamber D. Note that the definition
of a chamber does not prohibit the fact that a chamber can be associated with
more than one defining set. Keeping this fact in mind is necessary to understand
the path leading to the notion of set of walls of a chamber, introduced in section
1.1.2 of this thesis.

Definition 2. A subset A C N, is a called a defining set of a chamber D when-
ever the equality D = >/ (A) NPy, holds.

That is, an element = € Py, is contained in a chamber D = ¥ (A) NPy, if and
only if the inequalities
<I‘, U>L 2 0

for allv € A.

Definition 3. Let v € L ® R. We denote by (v)L the orthogonal complement
in (L ® R) NPy, of the element v . That is,

()" ={ze LoR| (z,v), =0} NPy

We recall that a collection of subsets of a topological space is said to be locally
finite if each point of the space has a neighborhood intersecting only finitely
many sets in the collection. Let 7 C N, be a subset such that the collection

{(v)ﬂvef}

of orthogonal complements in Py, of elements of F is a locally finite collection

in Pr. The positive cone Py, of the lattice L can be decomposed as follows:

Pr=(P.\JwHu " (1.2)

veF vEF
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Let C be a connected component of

P\ J@)"H) = () P\ (o)

veF veF

Then there exists a subset A C F such that an element p € Py, belongs to C'

if and only if the strict inqualities

<p7U>L > 0

are satisfied for all v € Ac. Similary, if we denote by C the topological closure
of C then an element p € Py, belongs to C if and only if

<p7U>L Z O

holds for all v € A¢. We hence see that C' can be expressed as
C=%(Ac)NPy,
where
EL(AC') = {lL" cL®R | Yu € Ag, <U,Z‘>L > 0}

In virtue of definition 1, the set D := C' is a chamber. We thus obtained:

Proposition 4. The closure C' in Py, of a connected component C' of

P\ J@)*

veF

is a chamber. Moreover, there exists a finite subset A C F such that C = X1 (A)N
Ppr. To any chamber D = ¥, (A) NP, with A C F can be associated a connected
component C' of

P\ J@)*

veF

such that D = C.
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We now assume fixed a subset 7 C N7, having the property that

{(v)L |ve .7:}

is locally finite.

Definition 5. The collection

Cr= {6 :=X(Ac) NPr | C connected component of Pr, \ U (v)* }
veF

is called a chamber structure on the positive cone P, of the lattice L.

Assume that a chamber structure Cr has been set on P;. We now introduce
the important notion of walls of a chamber. Denote by Int(D) the topological

interior of a chamber D of C~.

Definition 6. a hyperplane (v)! of P, withv € F, is called a wall of the cham-
ber D whenever both of the following conditions are satisfied: (a) the equality

Int(D) N (v)* =0

holds and (b) there exists a non-empty open subset of (v)* contained in DN (v)*.

For any chamber D, the inclusion
{(v)L | v is a wall of D} C {(v)L |v e A}

always holds for any defining set A of D, will often happen to be a proper

inclusion.
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Two facts should be underlined:

» A defining set of a chamber D may contain elements that do not have an

orthogonal complement defining a wall of the chamber D.

» Distinct elements of a defining set of a chamber may have the same or-

thogonal complement, and could thus define the same wall of D.

Let us have a short discussion about the fact that a defining set of a chamber
can also contain elements having the same orthogonal complement in P;. In
practice, the fact that x1 = 7z, for some 1 € Z will often turn out to be the
cause of such a situation. Let us show how to deal with elements related by
such a relation. Assume that rank(L) = N for some integer N > 0 and fix a
basis for L. We express elements of L in terms of their coordinates with respect
the chosen basis. We let

xlz[alaQQw--yaN]L and xZ:Wl’ﬁQ?"'?BN]L

be distinct elements of L belonging to the defining set of some chamber, where
the o; and f3; for 1 < i < N are the respective coordinates of z; and 5 with
respect to the chosen basis of L. If we assume that x; = nz, for some integer

1 € Z, then the equality

Z1 T2

ged(ar, am, .. ay)  ged(BL, Bar - Bn)

obviously holds. Thus, the issue caused by the presence of elements such as

x1and x5 in A can be overcome by replacing the latter by

A :{ -
ng(fyla -5 IN

)]:c:: [71,...,7N]L€A}. (1.3)

which is obtained by dividing each element z € A by the greatest common
divisor of its coordinates. Given a chamber D, it would be very convenient if we

could associate a set (D) containing the elements of L which induce walls of
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the chamber D. From what we just discussed, the set {2(D) should by definition

possess the two following properties:
» If z € Q(D), then ()" is a wall of D.

» No two distinct elements x, xo € (D) should have the same orthogonal

complement.

In the framework of the classical theory presented by Shimada in [19], defining

sets possessing these two properties are called minimal defining sets.

Definition 7. A defining set A of a chamber D is said to be a minimal defining

set whenever the two following conditions are satisfied:
(i) Forallz € A, the orthogonal complement ()" is a wall of D.
(ii) Whenever z,y € A are distinct, then () # (y)*.

The next question that comes naturally is minimality. The terminology from the
classical theory is quite misleading, because the definition of a minimal defining
set does not insure true minimality. Indeed, note that in case no genuine min-
imality condition is incorporated into the definition of a set of walls, then any
minimal defining set of a chamber could be taken as the set of walls of a cham-
ber. For example, assume that {a, b, ¢, d} is a minimal defining set of a chamber
D. Then the set {99a, b, 40c, 28d} is also a minimal defining set of D. As we
discussed earlier in this section, setting up a chamber structure requires a set

F C N7, having the property that the associated collection of hyperplanes
{(w)*'veF}

is locally finite. We have seen that chamber structure Cr is then obtained by

taking the closure of each connected component of

P\ )"

vEF
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The walls of the elements of the chamber structure thus originate from respec-
tive orthogonal complements in Pp, of elements of F. It would thus be conve-
nient to require that the elements in the set of walls (D) of a chamber D € Cx
are elements of F. Fulfilling this requirement is the reason why the classical the-
ory, found in Shimada’s article [19], introduces the notion of F-minimal defin-

ing set to take this fact into account, as described in [19].

Definition 8. A minimal defining set A € N; C L ® R of a chamber D

satisfying the conditions
(i) A C F,
(i) if x € A, then azx ¢ F forall0 < a < 1.
is called a F-minimal defining set of D and is denoted by Az (D).

Assume that A is a defining set of a chamber D and that A C F.

In order to turn A into a minimal defining set, we apply definition 7. First,
we have to make sure that no two distinct elements of A have the same orthog-
onal complement. The first step that should be taken in order to reach this goal
consists in taking the set A’ instead of A, where the former has been defined
in expression 1.3. It should be noted that in spite of our assumption A C F,
there is absolutely no guarantee that A’ C F will also hold. The best way to
deal with this issue consists in requiring that the set of walls Q(D) C L ® R of
a chamber D has the property that its elements cannot be expressed as integer
multiples of other elements of . @ R. In order to do so, it is convenient to use
the fact that an integral lattice such as L is naturally contained in its dual lattice
LY, thus enabling us to work directly within the framework of dual lattices in

which the requirement mentioned above can always be fulfilled.

The classical theory built, by Shimada in [19], embodies all these considerations

by introducing of the notion of primitively minimal defining set.
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Definition 9. A minimal defining set A of an F-chamber D such that every

v € A is primitive in LY is called a primitively minimal defining set of D.

In this thesis, the term set of walls refers to a primitively minimal defining set.

That is, a sentence such as
A is a primitively minimal defining set of D
from Shimada’s classical theory thus becomes

A is the set of walls of D

in the framework of our thesis. The notion of a set of walls will come up repeat-
edly throughout this thesis, and will be central during our entire study. Please

remember that the notation {2(D) denotes the set of walls of a chamber D.

It should be noted that our use of the term set of walls is an abuse of language.
Indeed, the set of walls of a chamber, defined according to its name, should be
defined as

{(v)L | v is a wall of D}

with additional minimality conditions, as discussed above. Our justification for
this abuse lies in the fact that we adopt a computer-based algorithmic approach:
Entities involved in the procedures must therefore be defined so that a computer
can process them. Given a minimal defining set of a chamber D, we, therefore,
explain in section 1.5.2 the mechanics behind our version of a procedure origi-
nating from Shimada’s article [19] to compute the set (D) of walls of a chamber
D in a practical way. We close this section by asking our readers to keep in mind
that, in practice, the first step leading to the set of walls (D) from a defining
set A of D consists in computing A’ (see expr. (1.3)).
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1.2 Induced chamber structure

In this section, we show that a chamber structure on the positive cone Pg of a

K3 surface X is obtained whenever the two following conditions are satisfied:

» The Néron-Severi group S of X has been primitively embedded into an
even hyperbolic lattice L in such a way that Ps C Ps.

» A chamber structure has been set on P, by taking /' = Ry, in the defini-

tion 5 of a chamber structure.

Let X be a complex K 3 surface. As before, we denote by S = NS(.X) its Néron-
Severi group and let px = rank(.S) denote the Picard number of X. We assume
that S is primitively embedded into a suitable even hyperbolic lattice L. chosen

according to the value of px, as indicated in the following table:

Recommended

Picard number
px ambient lattice

1<px <10 U@ FEg(-1)
10 < px < 18 Ug Es(—1) & Eg(-1)

We moreover assume that the embedding
t:S =L
is such that the inclusion Ps C P, holds. As before, we denote by
Ry ={zel]| (zx,z), = -2}
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the set of (—2)-vectors of L. The local finiteness of the collection

{@" | @), = -2}

is established in Shimada’s article [19, Lemma 3.4] . We thus apply definition

1.1.2 with F = Ry, in order to obtain a chamber structure

Cr, = {A C PL | A is a connected component of Py, \ U (v)"}

VERL

on the positive cone Pr, of the lattice L. Chambers of this chamber structure
will be referred to as Pp-chambers. In order to identify P -chambers, we will
always make use of the mathcal font with the capital letter D and a numeral as
a subscript when necessary. As indicated in the short introduction to this sec-
tion, we will soon explain how a chamber structure on Py, can induce a chamber
structure on Pg. Chambers belonging to the induced chamber structure on Pg
will be referred to as Pg-chambers, and such chambers will be denoted by using
the standard font with a capital D. Denote by R = S+ the orthogonal comple-
ment of S into L. More generally, we use many notational conventions exactly
as Shimada introduced them in his 2013 article Consider the orthogonal projec-

tions
prg :LOR — S®R and prp LR — R®R

fromL®Rto S®R and from L ® R to R ® R, respectively. When appropriate,
we will make use of the shorthand notations x¢ and xy to denote images of an

element v € L ® R via the maps prg and prj defined above.

Proposition 10. An element v € Ry, such that xs # 0 satisfies (x)* N Pg # ()
if and only if
<a?5', $5>S < 0.
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Proof. Before proceeding, we recall given x € L, we define
(@) ={y €L | (x,y) =0} N Py.
Lety € (z)* N Ps. Since
yePsCS

we have

Y =Yg and (Ys,ys)g > 0.
We obtain
<fL', yS>IL = O

using the fact that ys € (). Expressing the element z as 25 + 24 then yields
the equality
<xS + TR, yS>S =0.

from which we immediately obtain

<x57 yS>S =0

where 7 is the projection of the element z onto R = S*. By the Hodge Index
theorem, this equality implies that

<.’L’5, .l‘s>s < 0.

To establish the converse, we now assume that this inequality holds. The orthog-
onal complement in S of zg is then an hyperbolic lattice: It has rank p — 1 and
signature (1, p — 2). Thus, there exists an element in the orthogonal comple-
ment of xg with strictly positive self-intersection. Such an element then clearly
belongs to

(zs)" N Ps,

and enables us to assert the non-emptiness of this set. Let D be a Pp-chamber
with R -minimal defining set Az, (D) C Ry. By definition 1 of a chamber, the
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equality
D = S1(Ar, (D)) N PL (1.4)

holds, where we recall that
ZL(AR_(D)) = {y cL | Vr e ARL(D)v <yaT>L > O} : (1.5)

We now introduce the fundamental concept of Weyl vector of a Pp-chamber

which originates from [19]. O

Definition 11. Let D be a Pr-chamber. An element w € L is said to be a Weyl
vector of D if its Ry -minimal defining set Ag, (D) is given by

Ar, (D) ={r e Ry | (w,r)y =1}.

Note that the definition 1 of a chamber implies that no two distinct chambers
can have the same defining set. Since a minimal defining set is a defining set, it
is clear that no two distinct chambers can have the same minimal defining set.
A Weyl vector thus uniquely characterizes a single chamber. We will see in the
upcoming sections that the knowledge of the Weyl vector of a chamber enables
us to obtain precious information about the chamber such as its set of walls. Let
D be a Pp-chamber with Weyl vector w € L and assume that D N Pg has a

non-empty interior. We now show that this intersection can expressed as
DNPs=2s(prg(Ay)) NPs

for some set A,, depending on the Weyl vector of D. Note that the right-hand
side of this equality defines a chamber of Ps whenever it has a non-empty inte-
rior. This result will pave the way toward a definition of Pg-chambers as cham-
bers of Pg obtained by intersecting P -chambers with Pg provided that the re-
sulting intersections have a non-empty interior. We then see that this definition

enables us to obtain a Pg-chamber structure from a Py -chamber structure.
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Using expressions (1.4) and (1.5), we see that D N Pg can be expressed as
DNPg = {y ceL®R | Vr e ARL(D>7 <y,?">]L > O}QPS.

The assumption that it has non-empty interior enables us to express the above

equality as
DNPs={yeLeR|VreA,, (y,r)y >0} NPs
where A, is defined as
Ay, ={z € Ag (D) | (x)"NPs #0}.

Note that this set is non-empty whenever D N Pg has non-empty interior and

that the equality
(y, ), = (¥, prs(z))g
holds for all y € S and all z € L. Thus,

DNPs={yeL®R|VreA,, (y,rs)s > 0} NPs.
We then have

DNPs={yeLeR|VreA,, (y,r)y >0}NPs
={y c LOR|Vreprg(Ay), (y,75)g > 0} NPg (1.6)

where we recall that zg is a shorthand for the orthogonal projection prg(z) of
an element of L onto S. We then note that the set Xg(prg(A,)) is by definition
defined as

Us(prg(Auw)) ={y € S@R | Vr € prg (Au), (y,75)g > 0} .
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Also, note that expression (1.6) is obviously equivalent to
DNPs={ye SQR|VYrepry(Ay), (y,75)g > 0} N Ps.
Thus, the assumption that D N Pg has non-empty interior leads to
DNPs=Ys(prg(Ay)) N Ps.

The last expression meets and this hypothesis meet all requirements of the def-
inition 1 of a chamber of Ps. When applied within the framework of Pg, this
definition indeed states that a chamber D of Pg has have non-empty interior
can be expressed as

D =3gs(A)NPs

for some subset A C Ng, where
Ng={z e SOR| (z,z)g < 0}.
We still have to show that prg(A,,) C N, where we recall that
Ay ={z € Ag, (D) | (2)" NPs #0}. (1.7)

To do so, recall that proposition 10 states that an element x € Ry satisfies
() NPs # 0 if and only if (zg, z5) g < 0 holds. We then immediately obtain
the inclusion

prg(Ay) C Ns

so that the set pry(A,,) is a defining set of the Pg-chamber D = D N Pg with

Weyl vector w. As is done in Shimada’s article [19], we now let
RL‘5:{$S€S®Q|$ERL,$§<O}

and
Rs={zreS|a*=-2}.
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Note that the inclusion R C Ry obviously holds. Moreover, the equivalence

stated in proposition 10 enables us to express Ry s as
Rus={rs€5®Q|z€ Ry, ()" NPs#0}.
We then immediately see that the set prg(A,,) satisfies by definition
pre(Ay) C Ruys.

Let D be a Pp-chamber with Weyl vector w € L and assume that D N Pg has

non-empty interior. We have seen that D = D N Pgs can be expressed as
D = Ss(prg(A,)) N Ps
with A, defined in expression (1.7), is a Pg-chamber, and such that
prg(Ay) C Ruys.

Our above discussion led us to the following important proposition

Proposition 12. If D is a (S)-nondegenerate Py -chamber with Weyl vector w
then the set prq(A,,) is a defining set of the induced Pg-chamber D = D N Pg.

Given an element Ry,g, we define
()" ={r e SOR| (z,v)4 =0} NPs.
In his article [19, section 5], Shimada established that the collection
{(u)L lve RMS}

is locally finite. It is thus clear that the Pg-chambers, which are by definition
induced by Pp-chambers, belong to the chamber structure on Pg obtained by
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taking the closure of connected components of

Ps\ J .

UER]L‘S

This chamber structure will be referred to as the Pg-chamber structure, or as the
induced chamber structure. What we discussed is summarized in the following

result:

Proposition 13. Assume that Cr, is a chamber structure on Py, and that S is

primitively embedded into L in such a way that Ps C Pp. Then the collection
Crys = {DNPs|DeC,3U CPs,U#DU opens.t. U C DN Ps}

is a chamber structure on Pg induced by the chamber structure Cy, on Py.

An important fact regarding defining sets of induced chamber is provided by
[19, Proposition 5.7]:

Proposition 14. For any Weyl vector w € L, the set A,, is finite. In particular,
any Riys-chamber D has a finite defining set.

Recall that we denote by ¢ the embedding ¢ : S < LL which is assumed to embed
S primitively into an even hyperbolic lattice IL. chosen according to the table
provided at the beginning of this section. The following definition characterizes

Pr-chambers inducing chambers on Pg.

Definition 15. A P-chamber D having such that the intersection D N'Pg has

non-empty interior is said to be ¢(.S)-nondegenerate.

Please keep in mind that the ¢(.S)-nondegeneracy is a property that depends on
the transformation used to embed S into L. We use the prefix ¢(S) to empha-
size this fact. Note that the classical theory, built by Shimada, instead uses the
prefix S, thus neglecting to highlight the dependence of the notion of nonde-
generacy on an embedding. It should be noted that Shimada provides in [19,

Criterion 5.7] the following helpful criterion to check whether a P -chamber is
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t(S)-nondegenerate.

Proposition 16. A Pp,-chamber D with Weyl vector w is 1(S)-nondegenerate if
and only if there exists an element v € Pg satisfying the finite number of inequal-
ities

(v,2)s >0 forany x € prg(A,).

This criterion makes perfect sense: Let D be a ¢(.S)-nondegenerate Pg-chamber
with Weyl vector w. By definition, the intersection D = D NPg has non-empty
interior. That is, there exists an element v € Pg such that v € Int(D N Py).

Such an element must satisfy

<U7 Q>S >0

for all ¢ € Q(D), the set of walls of D. Since we have seen in proposition 12
that pry(A,) is a defining set of D, we have Q(D) C prg(A,) by what we
have seen in 1.1.2. Thus, if the above inequalities hold for all ¢ € prg(A,,), they
also hold for all ¢ € (D). Proposition 14 then guarantees the finiteness of
prg(Ay). Thus, there are only a finite number inequalities to be checked. Our
implementation of this criterion is the procedure DegenTest, which takes as
input the data of the set of pry(A,,) associated with a P -chamber D with Weyl
vector w € L, the data of an ample class ag € Pg, and determines whether the

inequalities mentioned above all hold.

We conclude this section with an important remark: By abuse of language, it
is customary to say that the Weyl vector w € L of a ¢(S)-nondegenerate Py -
chamber D is also the Weyl vector of the Pg-chamber

D =DnNPg
it induces. The scope of the definition 11 of a Weyl vector is thus extended by

inheritance to induced chambers.
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1.3 Toolbox

Recall that an integral lattice such as the Néron-Severi group S of a K3 surface
X is a sublattice of its dual SV, defined as

SV={reSQR|VyeS, (z,y) €Z}.

We recall that S is assumed to be primitively embedded into one of the three
even hyperbolic lattices Il displayed in the table presented at the beginning of
the previous section. For convenience, most computations in our programs in-
volving S or its orthogonal complement R, both viewed as sublattices of L,
are carried out within the framework of their respective duals S¥ and R”. No
matter if we had to calculate sublattices, duals, Gram matrices, orthogonal com-
plements, kernels, it is clear that our extensive use of functions from libraries
such as the SageMath library or the SciPy library enabled us to do whatever
we wanted without restriction. However, we think that we should still explain
the basics mechanics behind these lattice-related functions. We already men-
tioned numerous times that there are three possible lattices which can be used
as ambient lattices depending on the Picard number of X. We detail some basic
mechanics in the framework of the ambient lattice L. = U @ FEg(—1) which has
rank 10, the smallest rank among the three, so that all the techniques demon-
strated in this section can be applied to the two other lattices of rank 18 and
26 since U @ Eg(—1) is naturally embedded into them. Denote by Fg(—1) the

integral lattice for which a Gram matrix is

-2 0 0 0O 0 0 0
0o -2 1 0 0 0 0 O
o 1 -2 1 0 0 0 O
1 0 1 -2 1 0 0 O
o o o0 1 -2 1 0 O
o o o0 o 1 -2 1 O
o 0 o0 o0 o0 1 -2 1
o o o0 o0 o0 0 1 =2



https://k3surfaces.com/borcherds-init/#table

and denote by U the integral lattice for which a Gram matrix is

01
10/
These two matrices enable us to obtain a Gram matrix for the direct sum lattice

L=U® Ey(—1)

in the obvious way.

Note that Shimada uses a basis uy, us for U in his article [19] which yields the

()

for this lattice. The change of basis

Gram matrix

Uy > Uy

Ug > Uz — Uy

enables us to obtain the Gram matrix

(1)

for U which will be used during this thesis. Please bear in mind that we thus
applied the transformation mentioned above to all the results and formulas pro-
vided in Shimada’s article in order to make things work with our standard basis
for U. As shown in this online example, our programs can nevertheless han-
dle input data containing embedding vectors with U-coordinates expressed in
terms of the basis for U used by Shimada. Assume that u;, us form a basis for U
such that the above Gram matrix for this lattice is obtained, and assume given

elements ey, . . ., eg forming a basis for F5(—1) in such a way that the latter has
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the matrix mentioned at the beginning of this section as Gram matrix. As is

usually done, the direct sum
L=U® Es(-1)
is endowed with the concatenated basis
{uy, us,e1,...,e8}.

Let X be a complex K3 surface S of Picard number px < 10 and assume that
B1, ..., B, form a basis of its Néron-Severi group S with Gram matrix Gg. We

use the notation

[(11,0&2, Ce ,Oép]s

to denote the coordinates of an element
D:Oélb1+062b2+"‘+04pbp

expressed in terms of the basis b, ..., b, for S. We now assume that S is prim-

itively embedded into the even hyperbolic lattice
L=U® Es(-1)
that is, we assume that there is a primitive embedding of lattices
LS =L
defined by
L:onby 4 agby + - - b, = sy A ese 4 - s,

where s1,..., 5, € L denote the basis vectors of S viewed as a sublattice of L.
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That is, we have

so that S will be identified with its image in IL until the very end of this section,
and ¢ can be viewed as an inclusion map of S into .. As an immediate conse-
quence of the fact that we are here dealing with an embedding of lattices, the
Gram matrix G5 of S is preserved. Denote by R = S= be the orthogonal com-
plement of S in L. and denote by 71,...,7r9-, € . elements forming a basis of

the lattice R viewed as a sublattice of IL.

Embeddings: Since S is assumed to be primitively embedded into L, express-
ing elements of .S in terms of the basis of LL is an important operation. Denote

by Es be the (p x 10)-sized matrix with rows sy, ..., s,. The transformation
r+— xFEg

associated with Fg enables us to view this matrix as the matrix associated with
the primive embedding
t:S =1L

of Sinto L. Let Er, be the ((10 — p) x 10)-sized matrix with rows ry, ..., r19_,.

Then the transformation
re€ R— xFp el

defines an embedding of R into L. Denote by (G, the Gram matrix of the lattice
L, and denote by G and Gy the respective Gram matrices of the lattices S and
R. As indicated at the beginning of this section, we recall that the dual of a
lattice L is the set

LY={zeLeR|Vy €L, (x,y), €Z}
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and note that an integral lattice is always contained in its dual:
LCLY.

We hence denote by SV the dual of S and denote by R" the dual of R. Note that
SV is a free module of rank p over the integers, and if we see it as a submodule
of L ® Q it is then spanned by the rows of the matrix G5' E5 and denote by

5¥,...,55€L®@

the basis vectors of SV obtained from the rows of this matrix. Similarly, note
that RV can be viewed as a free submodule of L. ® Q of rank 10 — p over the

integers spanned by the rows of the matrix G3,' F and denote by
r}/,...,r}/o_p ceL®Q

the basis vectors of R obtained from the rows of this matrix. The respective

Gram matrices Ggv (resp. Grv) of SV (resp. RY) relative to the basis sy, ..., s)

(resp. 1y, ..., 7]q_,) are given by the formulas:
Gsv = GglES G]L(GElEs)t and GR\/ = GglES GL(GglEs)t.
Orthogonal Projections onto S and R

We explain how to compute orthogonal projections from L. onto S and R. De-

note by

A= s, =+ S5 T1, "+ T

be the (10 x 10)-sized matrix whose columns are taken to be the basis vectors

of the lattices S and R. The matrix
P= (Afl)T
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is used to define a transformation
LaQ— (S®Q) @ (R®Q)

defined by

T 2P = [mg)w--aﬂUk(gp),CUg),...,ng*p)}

which enables us to obtain the coordinates of an element = € L. ®Q with respect
to the basis of (S ® Q) ® (R ® Q). The latter is obtained by noting that we have

LcL®Q,
so that the basis {s1,...,s,} for S can be viewed as a basis of
S®QcLeQ.
Similarly, the basis {71, ...,719_,} for S can be viewed as a basis of
R®QCL®Q.

A basis of
$®Q e (RxeQ)

can thus be obtained from the concatenated basis
{81,....8p, 71, ..., T10-p}
of S @ R. We also note that there is an equality
LeQ=(S®Q) & (R®Q).

Denote by Ps be the (10 x p)-sized matrix obtained by taking as columns the
first p columns of the matrix P. The matrix Pg is associated with the projection
transformation

2EL®Qr— 2PseS®Q
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from L ® Q onto S ® Q and enables us to obtain coordinates of projections
zPg = [xg), . .xgp)}

of elements x € L ® Q with respect to the basis of S ® QQ. Denote by Py be the
(10 x (10 — p))-sized matrix obtained by extracting the columns of P ranging
from the (p + 1)-th to the last one. The matrix Py is the matrix associated with

the projection tranformation

T+ xPp = [xg), . 'xg()—p)}
from L ® Q onto R ® Q enables us to get coordinates of projections onto R of
elements x € L with respect to the basis of R ® Q.

Projections onto SY and R"

Projections from IL onto SV and R" are also common operations. We, however,
made use of two distinct bases of S to consider two ways of defining projec-
tions from L ® Q into SV.

» One basis is denoted by B; and made of elements of L. ® Q. Using this
base makes sense when S and SV are considered within the framework of

a primitive embedding of S into L.

» The other basis is denoted by B, and made of elements of S®Q. Using this
base makes sense when considering S and SV outside of the framework

of the primitive embedding of S into L.

Projections onto SV can indeed be either considered within the framework of
the embedding of S into IL or by viewing S as a lattice of its own right. The first
approach is especially convenient when using SageMath, whose lattice features
enable us to easily define S and R as sublattices of L. and thus perform all
computations in this framework. A basis B; for SV is obtained by taking as

elements the rows of the matrix G¢FEg. Note that this basis will be used by Sage
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for SV whenever S is defined as a sublattice of L. Consider the (10 x 10)-sized

matrix

— v \Y % v
B_ 81 ... ’S /r'l ’...’ TlO—p

obtained by taking as columns the elements of the concatenated basis

{sy,...;s),m, ...}
of the direct sum SV @& R". The matrix
Q= (B7)
then yields a transformation
LeQ— S"® R

defined by

T — 2Q = [qulv),...,xgpv),mgg,...,xgg_p)}

which the coordinates of elements v € L&®Q with respect to the above-mentioned
basis concatenated basis for SV @ R". Obtaining the coordinates of the projec-

tions onto SV and R is easy:

. x(slv), e ,xgpv) are the coordinates of the projection of z into S".
° 1;5%3, . ,xgsfp ) are the coordinates of the projection of x into RY.

These coordinates can also be obtained by proceeding as follows: If we let Qg%
be the (10 x p)-sized matrix with columns obtained by extracting the first p

columns of the matrix (), then a projection
prg’Qv LeQ— SY
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defined by

prey s ax — 2Q5, = [yc(slv), . .x(Spv)]

is obtained. We can also consider projections into S* endowed with basis
By = {col; (Gg"),...,col,(G5")}

obtained by taking the columns of the inverse Gg' of the Gram matrix of S.
Doing so amounts to considering S as a lattice of its own, and not as a primi-
tive sublattice of L. This approach is convenient for computations that occur
within procedures that produce transformations of O(S), that is, within the pro-
cedures CongChecker and AutChamber described in sections 1.7.4 and 1.7.3.
A projection operator

pret L@ Qs SY

from L ® Q onto S¥ endowed with its basis B is obtained by defining
pr?% cx — 2GLEY.

Considering distinct bases as done for SV would make no sense in the case of R".
Indeed, recall that R is defined as the orthogonal complement of S into L.. We
therefore have no other choice but to take a basis of R" within the framework
of the embedding. Such a basis is obtained by taking as basis elements the rows
of the matrix Gr Eg. Define Qv as the 10 x (10 — p) matrix whose columns
are obtained by extracting the last 10 — p columns columns of the matrix (). A
projection
pr%v LeQ — RY

defined by

pPrpv i@ +— Qg = [x;ﬁ, .. .,xgi’*p)}

is then obtained.
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Embeddings of S¥ and R” into L ® R
Denote by
Esv = G5'Es

the basis matrix of SV. Note that the rows of this matrix are the elements of Bs.
Let vg € SY with coordinates expressed with respect to this basis. We denote

by v5°? the image of vg € SV under the map

Q

Vg — U%® = vgFEgv
from SV into L ® Q. Analogously, let
Erv = Gy Eg

be the basis matrix of R". Consider an element vz € RY ® Q with coordinates
expressed with respect to the basis obtained by taking the rows of this matrix.

We denote by U%@Q the image of vz under the map

VR € RY — U%@Q = vrFEgv

from RY into L ® Q. The two following figures summarize the material dis-
cussed in this section: We embed S into LL by right multiplication by the matrix
Es. We can consider projections into SV by either regarding it endowed with

its basis 3; which is denoted by Sgl, or with its basis 3, which is denoted by S g2 .

From the framework of the basis Sy , projection into S ® Q requires going
back into L ® Q by right multiplication by Esv and then project into S ®Q by
right multiplication by Ps. Projection into S ® Q requires left multiplication

by (G5')" when working in the framework of S, .
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The following figures summarize all the material discussed in this section :

B
S c ES L PTgv 51\3/1 ES\/ L@ Q

The mechanics are similar regarding R and its dual R, except that we only

consider a single basis made of vectors of L. ® Q for the latter.

R c Er L PIrv R\/ Erv L@Q
P

R Pa

R®Q
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1.4 Shimada’s enhanced Short Lattice Vectors Enumerator

Among the numerous features of popular computer algebra systems (CAS) can
be found short lattice vectors enumeration functions. Given a positive definite
gram matrix () of a rank n lattice £ and an integer c as input data, a short lattice

vectors function returns the set of all lattice elements © € L satisfying
T
xQx" <ec. (1.8)

As far as we know, there is no CAS (in 2022) that integrates a function capable

of determining the solution set an expression of the form
rQz’ +22L < ¢, (1.9

where L is an n-sized column vector. In his article [18, Section 3.1], Shimada pro-
vides an algorithm to determine the solution set of an expression such as (1.9).
We used the SageMath Python library in order to produce an implementation of
this algorithm. The result is the function ShiVectors, detailed and available for
download on K3surfaces.com. In this section, we build on the structure outlined
by Shimada in his article [18, Section 3.1] and introduce this key algorithm from
a purely pragmatic point of view. Our goal consists in providing guidelines so

that the readers can easily implement this algorithm.

Definition 17. A quadratic triple of n variables is a triple [Q, L, ¢c| where @ is
a (n x n)-sized symmetric matrix with rational entries, where L is a column

vector of length n with rational entries, and where c is a rational number.

When the matrix () is positive definite, the triple

[Q7 L? C}

is called a positive quadratic triple. When () is negative definite, we bring the

problem back to the positive definite case by substituting —() to Q).
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To any triple QT = [Q, L, c] can be associated a quadratic function
gor : Q" —Q

defined by
qor(z) = zQx" + 2z L + c.

The remainder of this section will be based on the section 3.1 “An algorithm for a
positive quadratic triple” from Shimada’s article [18]. We provide the necessary
details and clarifications which will enable the readers to easily produce their

own implementations of Shimada’s algorithm to compute the set
E(QT) ={z € Z" | gor(z) < 0}.

Also, please remember that we provide our own ready-to-use implementation
of this algorithm, which is called ShiVectors, on k3surfaces.com The main rou-
tine used in Shimada’s algorithm consists in applying sequences of projection
operations. The purpose of a projection consists in returning a triple of m — 1
variables from the input of a triple of m variable. By repeated applications of
projections, we finally obtain a triple of a single variable. The degree 1 equa-
tion associated with this triple has a solution set that can be determined without

hassle. Let QT = [@, L, c| be a positive quadratic triple of n variables.

Projection procedure n°1:

Following Shimada’s guidelines, we arrange the elements of this triple as fol-

lows:
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where ) isa (n — 1) x (n — 1)-sized square matrice, where p’ and L' are column

vectors of length n — 1, and where 7’ and m’ are rationals.

Since the matrix () is assumed to be positive definite, note that »* > 0. Shi-
mada states that a quadratic triple of n — 1 variables is then obtained from the
triple Q7 by the formula

1 ' m
PI‘(QT) = |Q — F(Pl P’)a L' — FP,’C T

Projection procedure n°2:

We follow Shimada’s guidelines and arrange the elements of the triple Q7" as

follows:

r P m

1 | [ 12

Q - p// Q// ’ L= "

where Q" is a (n — 1) x (n — 1)-sized square matrix , where p” and L” are
column vectors of length n — 1, and where r"”and m” are rationals. As before,
we note that ” > 0 due to the assumed positive definiteness of the matrix Q).
Let a € Q be a rational number. Shimada states that a quadratic triple of n — 1
variables (*(a, QT) is then obtained by the formula:

H(a,QT) == [Q",ap” + L", a®r" + 2am” + ] . (1.10)

This procedure can be executed more than one time, say m < n times, as follows.
Let

a=/lay,...,a, € Q™.

A positive quadratic triple t*(a, QT') of (n — m)-variables is then obtained by m
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sucessive applications of the formula given in expression (1.10). That is, define
QT° := QT, QT = 1*(ay11,QT"), (a,QT) :=QT™
where v =0,...,m — 1.

1.4.1 ShiVectors - Our implementation of Shimada’s SLVE

Assume that an initial positive quadratic triple
QTY = QT

of n-variables is given.

By n — 1 applications the projection procedure n°2 described above, compute

QT = pr(QT})

for 2 < ¢ < n and note that

QTY = pr(QT;)

is a triple of a single variable, whose associated degree 1 equation has a solution
set which can be easily determined. Denote by .(QT') the set containing these
triples:

Z(QT) = {QTY,QTy,.... QT } .

Assume given an initial positive quadratic triple Q7" of n variables. We now
state the main procedure behind Shimada’s algorithm to compute F(QT). First,

we warn the reader that the following procedure is recursive.
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Procedure ShiVectors : The input consists of a parameter v € Z, of sets Z, £

and ), so that the procedure can be formalized as
ShiVectors(v, Z,))

Note that the sets Z and £ will initially be taken as empty sets in order to initiate
the procedure, while ) will be initially taken as .(QT') and is thus assumed to
be a set of triples, as explained earlier. The first thing that the procedure does

consists in taking a look at the value of the parameter v:

» If v = n + 1, append the list Z to the list £, return the list £ as output,
end of story.

» Otherwise, denote by X' (7 (QT)) the solution set of the inequality ob-
tained from the triple a single variable Q77 contained in .(QT), and

proceed as follows.

Denote by .Z*(QT) a copy of the set .(QT') from which the triple of a single
variable Q77 has been removed. For each ¢ € X((QT)), Shimada instructs

to proceed as follows:

(i) Create a copy Z’ of the set Z and compute the set

Fpdate(QT) = {¢* (¢, ) | r € (QT)} -

(ii) Append g to thelist Z’ and execute ShiVectors(v + 1, 2, A pdate(QT), E).
That is all what is to be done. In practice, given a triple
QT =1Q, L,
we execute the procedure ShiVectors with
v=1 Z={}.
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ShiVectors(1,Z = {},L(QT),£ ={})

Shimada then guarantees that the set returned by this procedure is
E(QT) ={z € Z" | qor(z) < 0},
as desired.

1.4.2 Applications - ShiChecker & ShiBooster

The two following algorithms due to Shimada are applications of ShiVectors.
Note that additional details on these applications can be found in [18] and the

second part of this thesis.

Procedure ShiChecker: Let L be a hyperbolic lattice, let v be a vector of L& Q
satisfying v? > 0, let « be a rational number, and let d be an integer. The finite
set

{rel|(z,v), =, (x,z), =d}

can be computed by the method decribed in [18, Section 3.2].

Procedure ShiBooster: Let L be a hyperbolic lattice, let v, h be vectors of
L ® Q such that

(v,h); >0, (h,h), >0, (v,v);, >0,
and let d be a negative integer. Then the finite set
{.I' € L | <Uax>L < 07 <h7x>L > 07 <x7$>L = d}

can be computed by the method described in [18, Section 3.3].

Our implementations of these algorithms due to Shimada are available for down-

load on K3surfaces.com as ShiBooster and ShiChecker, respectively.
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1.5 Computing the walls of an induced chamber

We have seen in section 1.1.2 that a (.5)-nondegenerate P -chamber D induces
a Pg-chamber
D =DnN7Ps.

Assuming that D has Weyl vector w, which is inherited by the induced chamber
D, we have seen in proposition 12 that the set pry(A,,) is a defining set of the
induced Pg-chamber D = DN Pg. The aim of this section consists in providing
the procedures which will enable the reader to compute a primitively minimal
defining set of an induced Pg-chamber D from the sole input data of its Weyl
vector. That is, we provide procedures to compute the data of the walls of a

Ps-chamber D. To do so, we proceed in two stages:

» In section 1.5.1, we present the procedure DeltaW. This procedure is
based on Shimada’s algorithm 5.8 from [19] and ouputs A, from the input
data of the Weyl vector w of a Pg-chamber D.

» In section 1.5.2, we introduce the procedure SetOf Walls. The latter is
based on Shimada’s algorithm 3.17 from his article [19] and outputs a
primitively minimal defining set from the input data of a defining set of a

Ps-chamber.

The computation of the set of walls of a Pg-chamber D = D N Pg with Weyl
vector w can then be performed by proceeding as follows: Using the Weyl vec-
tor w of D as input, we use the procedure DeltaW to compute the set A,,. By
proposition 12, the set prg(A,,) is a defining set of D. We then apply the proce-
dure SetOf Walls to the latter in order to obtain a primitively minimal defining
set of D, i.e., the data of the walls of D.

1.5.1 Procedure DeltaW

As before, we work with a complex K3 surface X. We assume that its Néron-

Severi group S = NS(X) has been primitively embedded into a suitable ambient
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even hyperbolic lattice . by an embedding
t:S =L

in such a way that Pg C Pr. Assume that a Weyl vector w € L of a P1.-chamber
D is given. Let R = S+, the orthogonal complement of S in .. We follow the
structure outlined by Shimada in Algorithm 5.8 from his article [19] and provide
all the necessary additional details which will enable our readers to produce their
own implementations of this algorithm without hassle. We also provide our
implementation of this algorithm, called DeltaW, available for download and
explained on k3surfaces.com We also explain on this website how to compute R,
RY, GR, ng... and all the entities mentioned in this section using the SageMath
library. We now state the algorithm provided by Shimada in [19, algorithm 5.8]
and then explain how we implemented it. Assume that the Weyl vector w € LL
of an P-chamber D is given as input data. The following algorithm returns the

set

A, ={z € A (D) | (z)~ N Ps # 0}
={z € Ax (D) | 25 < 0} (where we used proposition 10)

from the input data of w. Shimada’s Algorithm 5.8:

» Step n°1 - Compute wg = prgv(w) € SY, wgr = prpv(w) € RY (see

details in section 1.3).

» Step n°2: Compute the set
nR:{CEQ|dRc€Z,d?%c€2Z,—2<c§0}
where dp denotes the order of the discriminant group R"/R of R.
Define A’ := {} .
» Step n°3 - Let B = max {|5| | 5 € nr}. Use a short lattice vectors
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enumeration solution to compute
{ve R | v* < B}
and process the data of this set to obtain
R'[Bl={veR"|v*=p3} and ag|f]:={{wr,v)r|veER"[B]}

for each € ng.

» Step n°4 - For each pair (3, «) € ng X ag (], use algorithm ShiChecker

to compute the finite set

SVIB,al={ve S| (vws)sy =1—a, (v,0)sv =—2—f}.

» Step n°5 - For each 5 € ng, each vy € RY [f], each a € a}, [5] and each
vs € SY[B,a], determine whether the element vg + vy belongs to L.
That is, determine whether the coordinates of vg + v with respect to the

standard basis of L are all integers.

If the answer is positive, append vg + vg to A’
» Final step: Output A" as A,

Before explaining this algorithm step-by-step, we have to shed light on the gen-
eral idea behind Shimada’s algorithm 5.8. The endgame consists in obtaining
elements of A, as sums vg + v of elements vg € SV and vp € RY which

satisfy
<1)5, Us>5v = -2 <’UR, UR>RV and <Ug,w5>5v =1- <’UR, wR>Rv.

To this end, Step n°3 will be used to obtain suitable elements vy € R, while
Step n°4 will enable us to determine elements vg € SV for which there exist an

element vy such that vg+vp satisfies the above equalities. Once this is done, we
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will not be far from obtaining the set A,,. Indeed, assume that elements vg € SV
and vg € RY satisfying the above equalities have been obtained, that is, such

that equalities are given, i.e., satisfy
(vs + VR, Vs + VR) = —2 and (vs + Vg, w)y = 1. (1.11)

Assume furthermore that vg +vi € L, i.e., that vg + v has integer coordinates
with respect to the standard basis of I, and note that performing this check is
the purpose of Step n°5.

Definition 11 states that the Weyl vector w of a P, -chamber D enables us to
express the minimal defining set Az, (D) of D as

Aw, (D) = {z €L | {z.a), = —2, (w,x), =1},
thus, if vg + vp satisfy equalities (1.11) then it is clear that
vs +vg € Ag, (D).
Moreover, we have by definition

A, ={z € Ag, (D) |zt <0}
={zel]|(zz),=-2 (wz), =1, (pre.(z),pre.(z))g <0}.

Hence, it remains to prove that the projection of vg + vz onto SV, which is, by

definition vg, satisfies

(vg,vg)gv <0,

in order to finally obtain that vg + vg € A,. To this end, we can use the

assumption (vg, Ug) pv € Ny, so that

-2 < <UR7UR>RV <0
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holds. The equality

<US’ vS>SV + <UR’ 2)R>RV = =2

will then readily allow us to deduce
(vg,v5)gv < 0.
Consequently, we will have finally obtained that
vs +vr € Ay

holds, as desired. We follow a step-by-step approach and provide all the details,
tips and tricks which enabled us to successfully implement this critical algo-

rithm due to Shimada.

Step n°1 - We start by computing the orthogonal projections of w onto S¥ and
RY, which are respectively denoted by wg and wg. In order to do so, we recom-

mend to make use of the material introduced in the section 1.3 of this thesis.

Step n°2 - We compute the set np. First, note that the value of di can be ob-

tained by computing the determinant of the Gram matrix G'; of R.

A rational 5 € QQ belongs to np if and only if there exist integers &y, ks € Z
dRﬁ = k’l and d%ﬁ = 2k2

such that
—2dR < ]{71 <0

—2d% < 2ky < 0.

In order to compute ng, define

A:{k/dR’kGZ,—QdR<k§O}
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and
B={2k/dy | k € Z, —2d3, < 2k < 0}.

It is clear that there is an equality
nrp = ANB

and the knowledge of dp is the only data required in order to compute A and
B.Welet A"={}.

Step n°3 - To each element 3 € np, Shimada associates the sets
R[] ={ve R"|v*=3} and ag[B]:={(wg,v)r |veR"[F]},

which, as stated by Shimada in his article, are finite. Since the Gram Matrix of
RY is negative definite, sets such as R [] can be easily computed using a short
lattice vectors enumeration algorithm. A few tips regarding this task: First, note
that nothing guarantees that the Gram matrix of R" has only integer entries. To
be safe, we multiply G zv by the least common multiple  of the denominators of
its entries. Also, keep in mind that we have || < 2 since 8 € ng. This implies
that a single call for a short lattice vectors function will enable us to obtain the
data of all the sets R [/3]. We thus use a short lattice vectors enumerator in such

a way that it returns the set
{z € R | —2(0Gp )z <206 +1}

from which all the sets R" [/5] will be obtained by basic sorting. This set should
not be computed every time the procedure to compute A, is executed. Doing so
would amount to wasting computational resources. As soon as a Gram matrix

for RY is obtained, the above-mentioned set can be computed once and for all.

Assuming given an element 5 € ng and computing the set R [] then enables
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us to obtain the associated set ag [] which is formed by computing

<wR> U>RV

for eachv € RY [f].

Step n°4 - Fix an element 5 € ng, an element o € ar[f] and an element
vg € RY [f]. That is, the equalities

f = (Vr, UR) pv and « = (UR, WR) v

hold. The procedure to obtain an element vg € SY [, a] can be broken down

into two stages:
(a) First, we determine a solution ¢ € SV of the equation (x, wg)sv = 1 — av.

(b) We then determine an element i € (wg)" C SV satisfying

(y+cy+cs =—2-5,
i.e., satisfying

(y,y)sv + 2{y,c)sv + (¢, c)gv = —2 — f. (1.12)

The element

vg =Y +cC
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thus assembled will then be such that

(vs,ws)gv = (Y + ¢, Wws) gv
=0+ (c,ws)gv

=1-aq,
and

<vSa US>5V = <y +cy+ C>sv
=—-2- /67

so that vg € SV [, a], as desired. Before proceeding further, we want to point

out that once a basis

B={s{,....s]

p

for SV is chosen, an element = € S can be expressed as
\4 \Y%
T =218 + -+ T8,

where p = rank(S) and where z1,...,2, € Z are the coordinates of = with

respect to the basis B of SV. The basis B being implicit, the notation
T =x1,...,2,)

will be used regularly in the remainder of this section. Denote by Gsv a Gram

matrix for SV.

Implementation of (a) - First, we recall that the projection

ws = [wy,... w)]

of the Weyl vector w onto SV has been computed in Step n°1. Remember that

the section 1.3 of this thesis provides guidelines to compute projections. Solving
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the equation

(x,wg)sv =1—«

obviously amounts to determining integers x, . . ., x, satisfying the equality
wy
[xl xp} Gov | + | =1—q. (1.13)
\Y%
Wp

The left-hand side of this expression can be arranged in such a way that (1.13)

p
Z%xi =l-oa
=1

where the v; are elements of Q. If necessary, clear the denominators on both

can be turned into

sides of this expression, so that it takes the form

P
ZW% —7=0 (1.14)
=1

where
v e L and Wi €72

fori € {1,...,p}. Abasis
{61, R ,Epfl} c s

of the (p — 1)-dimensional solution space of the degree one equation (1.14) of

the integer variables x1, ..., x, can then be computed using a CAS.
Implementation of (b) - Before describing how we proceeded, let us provide

context. The Gram matrix matrix of S, being indefinite, prevents us from using

a short lattice vectors enumeration algorithm in order to determine the set of
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elements x € SV satisfying

<xax>3\/ =—-2- 6

In order to overcome this obstacle, Shimada’s idea consists in determining a sub-
lattice of SV on which the restriction of the bilinear form of SV is definite. The
orthogonal complement (wg)" of wg in SV matches this requirement. Indeed, a
result of Conway & Sloane mentioned in [19, Section 4] guarantees that a Weyl

vectors w € L all satisfy
(w, w), >0

when the lattice into which S is primitively embedded is L = U & Es(—1) or
L =U & Eg(—1) + Es(—1). Since R is negative definite, this implies that

<w5, w5>sv >0

for all Weyl vectors in the framework of these two lattices. The Hodge Index
theorem then ensures that the restriction of ( , Jgv to (wg)" is negative defi-
nite, hence enabling us to apply Shimada’s short vectors algorithm described in

section 1.4 in order to determine the set of elements
y e (ws)" c 8V
satisfying

<y>y>5\/ + 2<ya C>SV + <C) C>SV <-2- B

We have seen that this algorithm requires a positive quadratic triple as input
data. This triple consists of a Gram matrix of (wg)l, of a column vector, and of
a constant. We now explain how to determine such a triple. In order to compute

a Gram matrix of (wg)*, we first need to compute a basis of this subspace. An

86


https://k3surfaces.com/hit/
https://k3surfaces.com/hit/

element = € SY belongs to (ws)™ if and only if it satisfies

<l‘, w5>sv = 0.

Solving this equation for z = [z1,...,z,] € S amounts to determining inte-
gers ri, ..., x, such that
wy
o x| G| 1] =0 (1.15)
\Y%
Wp

and can be done by proceeding as explained at the beginning of the explanations
for the implementation of (a) in order to obtain a basis for (ws)L . Note that you
can also directly use the computer and functions from the SageMath library (or
Magma) to do so. Using this basis, we compute a Gram Matrix of (wg)". That

is, we compute the matrix
[<§z> £j>SV] 1<i,j<p—1"
Denote by p, € SV a solution of the equation
<$,w5>sv =1-—oq.

Such a solution can be obtained using the guidelines we provided in the para-
graph dedicated to the implementation of (a). We are now ready to determine

to an element y € (wg)" C SV satisfying

(Y + Do ¥ + Da)sv = —2 =B, (1.16)

In order to stay in line with the input data format of Shimada’s short lattice

vectors algorithm, we start by replacing the = sign in

(Y4 Pary + Pa)sv = —2—0 (1.17)
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by an > sign. There is no loss of generality in doing so since the data of the
vectors y satisfying the equality will be contained in the set returned by the
algorithm. We moreover have to remember that the Gram matrix of (ws)L is
negative define. This fact forces us to multiply both sides of (1.17) by —1 before
applying Shimada’s short vectors algorithm ShiVectors, thus finally bringing us
into line with the input data format required by this algorithm. Thus, expanding,

arranging, and turning the expression (1.17) into an inequality, we obtain:

<y7y>SV + 2<yapa>sv + <poupa>SV +2+ /6 Z 0. (118)

Since y is here assumed to be an element of (wg)l, it can be expressed it as

y=y&+ -+ Y1

where the &; are elements of the basis for (wg)L which has been explicitly com-

puted earlier. The term 2(y, p,)sv in (1.18) can then be expressed as:

2<y7p04>5\/ = 2<y1£1 et yp—lgp—17pa>sv
= 2(y1 (&, pa)sv + -+ yp—1<§p—1apoz>5'\/)

(€1, Pa)sv
=2y ... yp—lj| '

<§p71,pa>sv
=2yP

where P is the (p — 1)-sized column vector thus defined as

<€1 ) pa>SV
pP— .

<€p71apa>5\/

Denoting by G,, the Gram matrix of (wg)", we see that we established that the
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inequality
(Y +Pary +Pa)sv 2 —2—

is equivalent to
yGuy +2yP+c¢>0

where
Y = [yla-.~,yp—l] and C:<pa7pa>5'\/+2+ﬁ.

By the Hodge Index Theorem, the Gram matrix G, of (wg)" is negative defi-
nite. We thus replace it by its negative —G,, and do the same for P and c¢. We
hence obtain an inequality involving a positive quadratic form on the left-hand
side, forming an expression fully in line with the input data format required by

Shimada’s short vectors algorithm:
Y (=Gui)y' +2y(=P) + (—¢) <0

The positive quadratic triple to be used as input data into Shimada’s short lattice

vectors enumerator ShiVectors is therefore given by:

<£1apa>SV
[_Gwév_Lv _C:| = _Gwéa_ 7_<pa7pa>5\/ _2_5
<£p—1>pa>SV

Executing this algorithm produces the set of all of elements ¢ € (wg)™ such that

(@ +Darq+Dpa)sv > —2— 7,

from which can be extracted the set of elements ¢ € (wg)" satisfying

<Q+pa7Q+pa>SV = _2_5
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Fix such an element, say ¢, and let
Us = qo + Pa
The element vg clearly satisfies
(vg,vs)sv = —2 — 3.
Since ¢y € (ws)", we moreover have
<QO7 wS>sv =0.
Since p,, is furthermore assumed to belong to the solution set of
(z,ws)sv =1 —a,
we have

<U57w5>sv = <q0 +pa7w5>sv

=0+ (pa,ws)sv =1 —a.
Recall that an element vy € RY such that
a = (Vg, WR) R and B = (R, VR)Rv
is assumed to be given since the beginning of Step n°4.

Step n°5: Denote by Uﬂé®@ (resp. vﬂé@)(@) the image of vg (resp. vgr) under the

transformation which expresses an element of SV C L (resp R C L) in terms
of the standard basis of . ® Q. Assume that

v%@’(@ + v];@@ e L.
That is, assume that v%@@ + vﬂé@)(@ has integer coordinates. Note that the Weyl
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vector w can be expressed as

L L
w— wS®Q + wR®@

We then have

< ®Q+UL®Q > L®Q+UIL®Q %®Q+wL®Q>L

(v
(V552 B0 g (90 Leey
=

Vs, wS>SV <UR7 wR>Rv

o+«

1-—
=1
and

<UH§®Q + Uﬂé@@, U%@Q + U%®Q>L — <U%®Q ®Q>]L + <UL®Q L®Q>L

= (vg,vs)gv + (UR, VR) gv
—-2-F+f
= —2.

Since (vg, Ug) pv is assumed to belong to ng, and since the elements of this set

satify by definition of np the inequalities
—2<c<0,
one can readily deduce from the equality
(vg, wg) gv + (Vr, WR) pv =1

established above that
<Us, Us> v < 0
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holds. Consequently,
vg‘@)(@ + vﬂé®Q €Ay,

as desired, where we recall that

Ay ={z el | (z,z), = -2, (z,w), =1, (rg,25) g <0}.

1.5.2 Procedure SetOf Walls

We have seen in the previous section how to compute the set A, from the input
data of a Weyl vector w € L of a Pg-chamber D. Moreover, proposition 12 from
section 1.2 states that prg(A,,) is a defining set of D. Shimada’s algorithm 3.17
from [19] enables us to compute the primitively minimal defining set of D, that
is, the set (D) of walls of D, from the input data of pry(A,,).

We follow the structure outlined by Shimada in his article and provide additional
details to enable our readers to implement this algorithm without hassle. Our
implementation SetOf Walls of this algorithm is available for download on our
website. We briefly go back within the framework of an unspecified even hy-
perbolic lattice L with a fixed positive cone Pr. Let D be a Pr-chamber. Recall
that a hyperplane (v)" of Py is called of wall of D if

(v)" N Int(D) =0

holds and if (v)" N D contains a non-empty open subset of (v)". We begin with

the following lemma due to Shimada.

Lemma 18. Let L be an even hyperbolic lattice. Assume that a defining set A of
a chamber D has the property that any two of its distinct elements v, # vy satisfy
(v1)* # (v2)*. Then the following statements hold for any elementv € A,

(i) IfFA\{v} does not span L @ R, then (v)* is a wall of D and
(ii) the hyperplane (v)* is a wall of D if and only if S (A) # S (A\ {v}).
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This lemma provides criteria to determine whether an element of a defining
set of a chamber D has an orthogonal complement defining a wall of D. Let
A be a defining set of a Pg-chamber D. The assumption that any two of the
distinct elements v; # vy of A satisfy (v1)" # (v2)" at the beginning of the
lemma takes its roots in the definition 2 of a defining set. Indeed, this definition
does not prevent the occurrence of distinct elements having the same orthogo-
nal complement, thus potentially defining the same wall. Such a redundancy is
pointless and should be avoided. In practice, situations in which this issue arises

are always caused by of elements v, v’ € A related by an equality of the form
v = kv (1.19)

where k£ € 7Z. The best course of action to prevent their occurrence consists in
dividing the coefficients of each element of A by their greatest common divisor.

Indeed, elements v, v’ related by an equality such as (1.19) satisfy

v v’

ged(v) god(v)
where we denote by ged(v) the greatest common divisor of the coordinates of

an element v € SV. We thus substitute the set
A= {u/ ged(v) | v € A},

to A and make sure that if v € A’ then —v ¢ A’. We proceed to points (i) and
(ii) of the lemma. Enforcing point (i) of Lemma 18 is straightforward: Given
an element v € A/, we can use SageMath lattice features to determine whether
the sublattice of SV spanned by A"\ {v} has rank equal to rank(S). We explain
how to do this on our website. If this is the case, then the lemma states that
(v)" is not a wall of D. Otherwise, the lemma tells us that (v)" is a wall of D.

Let us take a closer look to (ii), which states that given an element v € A, the
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L

hyperplane (v)~ is a wall of P -chamber D if and only if

Es(A) # Zs(A\{v}).
First, we recall that the positive cone Y ¢(A) associated with A is defined as
Ys(A)={r e S@R|VYveA, (x,v)s >0}

and recall that we have by definition D = Yg(A) N Pg. To understand the
statement of point (ii), let p € A be such that (10)L is not a wall of D. Since
(p)l is not a wall of D, the data of p is irrelevant and unecessary to define the

chamber D. Hence, we have
D =Xg5(A\ {p}) N Ps.

and the positive cone Xg(A \ {p}) cone associated with A\ {p} coincides with
the positive cone Y5(A) associated with A. Let us turn things over and assume
that p € A is such that (p)L is a wall of the chamber D. Then, there exist at
least an element vy € S ® R such that

<U0a q>S Z 0
forall ¢ € A\ {p} but satisfying

(vo,p) g < 0.

Thus,
vo € Es(A\ {p})

and there is a strict inclusion

Es(A) € Zs(A\ A{p})-

This observation also reveals the two following important facts:
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» If (p)" is not a wall of D, then the solution 2, obtained by minimizing
the function f,(x) = (z,p) 4 subject to the constraints (x, ¢) ¢ > 0 for all
q € A\ {p} satisfies f,(zs01) > 0.

» If (p)Lisawall of D, the solution x, obtained by minimizing the function
fp(x) = (x,p) 4 subject to the constraints (z,q)s > 0forall ¢ € A\ {p}
must satisfy f,(2s1) = d with d negative and possibly unbounded toward

infinity.

Performing this check can be done using linprog from scipy.optimize. We ex-
plain how we proceeded to do so in an online section. We now have all the tools
in hand to introduce our user-friendly version of Shimada’s Algorithm 5.11 from
[19] which encompasses all the material required to obtain the set of walls of a
chamber from the only input of its Weyl vector. Procedure SetOf Walls: Let D

be a Pg-chamber with Weyl vector w.
Step n°1 - Using the procedure DeltaW, compute the set A,
Step n°2 - Compute the set A’ = {v/ ged(v) | v € A}.

Step n°3 - For each p € A’, proceed as follows: Determine whether the sub-
lattice of SV spanned by A’\ {p} has rank equal to rank(S"), where the latter
is the Picard number of S. If this is the case, then (p)L is not a wall of D by

1

lemma 18. Delete p from A’. Otherwise, the lemma tells us that (p)— is a wall of

D. Then, use linprog from scipy.optimize to solve the following optimization

problem: Minimize the function

fo(@) = (z,p)s

subject to the constraints
<$7 Q>S 2 O

forall g € A\ {p} and denote by z,; the resulting solution.
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» If f,(zopt) = 0, then (p)™" is not a wall of D. Delete p from A,

» If f,(@op) is strictly negative and possibly unbounded toward infinity,
then (p)l is a wall of D.

1.6 Computation of generators of Aut(X) - Background

The article [19] in which Shimada introduced his pioneering approach to Borcherds’
method was issued almost a decade ago. Nonetheless, it was not until this the-
sis that a general application framework of application for Borcherds’ method
was identified and explicitly stated. This is undoubtedly one of the reasons that,
outside of Shimada’s implementation which has never been released to the pub-
lic, no trace of an implementation of any kind of the Borcherds’ method could
be found on the internet until the arrival of this thesis in 2022. It was to be
expected: Without an algorithmically testable framework of application, what
would be the point of implementing Borcherds’ method? We put an end to this

unfortunate situation in this section:

» First, we assemble Shimada’s puzzle by putting together the pieces which
can be found in his article [19] to exhibit a general framework of applica-

tion for Borcherds’ method.

» Second, from the knowledge of this framework, we determine a concrete
criterion to determine whether Borcherds’ method can be applied to a

given /3 surface and produce a generating set of its automorphism group.

We thus start by acting as investigators motivated by the goal of exhibiting
a general framework of application for Borcherds’ method from the informa-
tion contained in Shimada’s article. Before proceeding further, let us get things

straight about the notations involved in this section:
e We denote by X a complex algebraic K 3 surface.
e We denote by S the Néron-Severi group NS(.X) of X.

96


https://k3surfaces.com/comments-intro-sec-1-6/
https://k3surfaces.com/comments-intro-sec-1-6/

We denote by Pg the positive cone of X, i.e., the connected component of
{r eS| (x,x)g >0}

of S containing ample classes.

We denote by Aut(X) the automorphism group of X.

We denote by T the transcendental lattice of X. That is, 7" is the orthog-

onal complement of S in

H*(X,7) ~ U* ® Es(—1)2.

We denote by Nef(X) the numerically effective cone of X. This cone
is often referred to as the Nef cone of X. More appropriate, we use the
notation Ny in order to denote the intersection Nef(X) N Pg.

We denote by SV /S the discriminant group of S and let
gs: S"/S — Q27

be its associated quadratic form.

We denote by T /T the discriminant group of 7" and
gr:TV/T+— Q/2Z

will denote the associated quadratic form.

We denote by O(S), O(T'), O(gs) and O(gr) the respective groups of
isometries of the lattices S, T" and of the disc. groups SV/S, TV/T.

Denote by O™ (S) the subgroup of O(S) preserving Ps.
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e The subgroup of O (S) preserving Nef(X) N Pg is denoted by

Aut(Nef(X) NPg) = {g € OF(S) | N§ = Nx}.

1.6.1 Scope of application of Borcherds’ method

We still have to mention the two following results that will be useful to us:

» It is well-known that an isometry of S (resp. 7') induces an isometry of
SV /S (resp TV /T) in a canonical way, so that there are natural homomor-

phisms

ns : O(S) — O(SY/S) and nr: O(T) — O(TY/T).

» Asindicated at the beginning of Shimada’s [19, section 5], there exists an
isomorphism

0:(8%/8,q5) — (TV/T, —qr)
of discriminant forms which in turns induces an isomorphism
Y :0(8Y/S) — O(TY)T)
of the groups of isometries of SV /S and of TV/T.
The situation can be summarized as follows

O(T) —— Auwt(X) —2X 5 0(8)

nr ns

o(TY/T) 0(S"/ S)
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We start by recalling a well-known piece of theoretical material in the field of
study of K3 surfaces: The famous Torelli theorem states that to each effective
Hodge isometry

®: H*(X,Z) — H*(X,7Z)

can be uniquely associated an automorphism
f: X=X

such that
o= f*.

Let w € T'® C be a non-zero holomorphic 2-form and define

Cr ={g € O(T) | 3\ € C* such that. w? = \w}.

By definition of C'r and of the morphisms 1y and 7g introduced earlier, an ele-

ment g € O (S) extends to an effective Hodge isometry if and only if

¥(ns(g)) € nr(Cr).

The following result due to Piatetski-Shapiro & Shafarevich [14] and stated in

[19, Theorem 7.1] will be central for the continuation of our study:
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Proposition 19. Via the natural actions of Aut(X) on the lattices S and T, the
automorphism group Aut(X) is identified with

{(gs, 97) € Aut(Nef(X) NPs) x Cr | ¥(ns(gs)) = nr(gr)} -

Since O(qr) is finite, the subgroup

H := {gs € O*(S) | ¥(ns(gs)) € nr(Cr)}
of O*(S) has finite index.

It should be understood from the first part of this theorem that a pair (gs, gr)
can be associated with each g € Aut(X) and that its elements gg, g7 satisfy

» gs € Aut(Nef(X) NPg) C O(S),
» gr € Cr C O(T),
> U(ns(gs)) = nr(gr)-

That is, the image of the morphism

ox  Aut(X) — O(S)

satisfies
Im(g@x) C AutH(Nef(X) N Ps)

where

Auty (Nef(X) NPs) = {g € H| g preserves Nef(X) N Pgs}
C Aut(Nef(X) N Ps).

For the remainder of this section, we ask the reader to keep in mind the fact that,
in the framework of a complex algebraic K3 surface X, Borcherds’ method is
a procedure which produces a generating set of Auty(Nef(X) N Pg). Follow-
ing proposition 19, Shimada introduced in [19] the following corollary in [19,
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Corollary 7.2] which formalizes the consequences of proposition 19 and brings

an additional characterization of Ker(¢x) to the table:

Corollary 20. The kernel of px is isomorphic to Ker(ny) N Cp. The image of px

is isomorphic to

Autg(Nef(X)NPs) ={g € H| N{ = Nx}
C Aut(NeflX) N Ps)

Shimada also introduced the following proposition in section 8.1 of [19]:

Proposition 21. If px < 20 and the period wx of X is very general inT' ® C,
then
Cr = {£1}.

Combining this result to the characterization of Ker(¢x) provided in corollary

20 enables us to assert that
Ker(px) C {£1}

holds whenever the /'3 surface X under study is very general and has a Picard
number px satisfying

px < 20.

Assume that —1 ¢ Ker(nr) also holds, so that Ker(px) = {1} . In this case, the
morphism @y is injective. Under this assumption, it is clear that the image of

the morphism
ex : Aut(X) — O(S)

then satisfies
Im(py) ~ Aut(X).
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Keeping in mind that corollary 20 states that

Im(px) ~ Autg(Nef(X) N Pg)
we hence obtain by transitivity that

Aut(X) ~ Autg(Nef(X) N Pg).

The pieces of the puzzle can then all be put together:

Theorem 22. If X is very general (we will always assume that it is the case),

satisfies px < 20 and —1 ¢ Ker(nr), then there is an isomorphism
Aut(X) ~ Autir(Nef(X) N Ps).

The above theorem enables us to exhibit a general framework of application of
the method for the computation of automorphism groups: Borcherds’ method
returns a generating set of Aut(.X ) whenever X is a complex K 3 surface of Pi-

card number px < 20 satisfying —1 ¢ Ker(nr).

The following figure provides a clear view of the situation:

He 507 () — 5 0(S) — 5 0(5"/9)

D¢
. _ h.
Autg (Nef(X) N Pg) V;Zfopr)‘; j‘;o Aut(X) )
and
—1 ¢ Ker(nr)

oy — T s oY/ 1)
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Keep in mind that Borcherds’ method, by design, produces a generating set
of Auty(Nef(X) N Pg). This is why a generating set of Aut(X) can be ob-
tained for complex /3 surfaces satisfying the above-mentioned conditions. We
will soon provide in this section a criterion to determine whether the condition
—1 ¢ Ker(nr) holds. Note that also our program KerChecker is available on
our website and will automatically perform this check. Borcherds’ method to
compute generators of Auty (Nef(XX') NPg), as presented by Shimada ten years
ago, is therefore not limited to a handful of special cases of K3 surfaces X for
which it will provide generators of Aut(.X). There is a clear general framework
of application for complex K3 surfaces, opening up very broad prospects for
study. Although this framework was not explicitly apparent in Shimada’s arti-
cle [19], all the material used above could be found there. We still have to tackle

two issues in order to be able to take advantage of the theorem 22:

» Issue n°1l: We need to provide Borcherds’ method with a generalized

membership criterion for H.

» Issue n°2: We need to provide a concrete criterion to check whether

—1 ¢ Ker(nr)

holds. Click here for practical details regarding this matter, this webpage

contains an online version of the content of the section 1.6.3.

1.6.2 Finding a generalized membership criterion

We start by providing a solution to the Issue n°1: Let X be a K3 surface X
satisfying the conditions of theorem 22. Let ¢ € Aut(X) and consider the as-
sociated pair (gs, gr) provided by proposition 19. The latter also states that the
element

gs € Aut(Nef(X) NPg) C OF(S5)
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satisfies

¥(ns(gs)) € nr(Cr),

that is, g¢ € H. By proposition 21, we have
Cr = {£1}.
The group H can then be expressed as

H = {hs € OF(S) | ¢(ns(hs)) € {£1}}.
Since
¥ : O(gs) — Olqr)

is an isomorphism, the definition of H can be further refined as
H = {hs € O"(S) | ns(hs) € {£1}},

where we recall that

ns : O(S) — O(qs)

is the natural morphism which turns isometries of S’ into isometries of its dis-

criminant group SV /S. Thus, an element gg € Aut(Nef(X') N Pg) such that

ns(gs) € {£1}

can be associated with each automorphism g € Aut(X). Conversely, if we let
q € Aut(Nef(X) N Ps) be such that ns(q) € {£1}, then the correspondence
provided by proposition 19 enables us to exhibit an element A € Aut(X) such
that ¢ = hg, where

(hS’ hT)

is the pair associated with h by this correspondence. A precise characterization
of the elements of Aut(Nef(.X') NPgs) originating from automorphisms thus be-

comes apparent, and can be formalized in the following proposition:
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Proposition 23. Assume that px < 20 and that —1 ¢ Ker(nr). Then an
element h € Aut(NeflX) N 'Ps) emanates from an automorphism g € Aut(X),
i.e., satisfies h = gg by the identification of proposition 19 if and only if

ns(h) € {£1}.

That is, h € H if and only if its acts on the discriminant group SV /S as +1d.

Note that a (p x p)-sized invertible matrix of the form

a; €4, 1<i,j<p.

can be associated with each element of O(S), in a framework of a given basis
B. Such matrices, say g € GL,(Z), act from the right on p-sized row vectors

representing elements of S, e.g.,
v —> g,
where v € S. Such matrices satisfy by definition
9Gsg" =G

where we recall that G'g denote the Gram matrix of S with respect to B and
where g7 denotes the transpose of the matrix g. Note that our previous discus-
sion enables us to assert that whenever the conditions of theorem 22 hold, the

subgroup H of O (S) can be expressed as

H-= {hs € O+(S) | ns(hs) € {:l:l}} .
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In order to obtain a membership criterion for H, we thus have to be able to:
» Determine whether an element g € GL,(Z) belongs to O (5).
» Determine whether an element of O (S) acts as +Id on SV/ S.

Dealing with the first point is an easy task: Let g € GL,(Z). Then g € O*(S) if
and only if ¢ € O(S) and if g preserves Ps. That is, g must satisfy

9Gsg" = Gs

and determining whether g preserves Pg can be done by taking any ample class

ag € Ps and checking whether
(GOQ)GS%T > 07

i.e., whether the image of an ample class @y € Pg by g is still contained in Ps.
Note that an element g € O"(S) acts as £1d on the discriminant group SV/ S
of S if and only if there exists € € {£1} such that

g't=c¢et

holds for all generatorst of SV / S, where ¢g* denotes the transformation of SV / S

naturally associated with
g€ Ot (S)cO(S)

by the natural morphism which turns elements of O () into transformations
of O(SY/ S). It is well-known that the columns b; = col;(Gg') of the inverse of
the matrix G g can be taken as representatives of the generators of SV /S. Thus,
an element g € O7(5) acting as +Id or —Id on S/ S must either satisfy the
conditions

big — b; € ZX for all 1<i < px
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or the conditions
big — b; € ZPX for all 1<i < px

This conditions can be reformulated as: An element g € O™ (S) acting as +1d
or —Id on SY/ S must satisfy either

Gs'lg— Gyl e My(Z)  or Gs'g+ Gg' € M,(Z)

where M ,(Z) denote the group of (p x p)-sized matrices with integer coeffi-
cients. We thus established the following proposition:

Proposition 24. Assume that the conditions of theorem 22 are satisfied. An ele-
ment g € O(S) belongs to H if and only if

> gGsg" =Gs
» apgGsal >0 foran ample class ag € NS(X)
» Either (a) or (b) below hold:

(a) G5'g — Gg' € M,(Z)

(b) Gg'g+Gg' € M,(Z)

Our procedure MemberCrit is a direct implementation of this proposition: It
takes as input an invertible matrix with integer coefficients and outputs a Boolean
value True or False depending on whether the matrix used as input data belongs

to H or not.

1.6.3 Checking the kernel condition

We start by recalling that the transcendental lattice 7" associated with X is the
orthogonal complement of S = NS(X) in the rank 22 lattice

H*(X,7) ~ U & Es(—1)>2.
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We also recall that we denote by 7y is the natural morphism
nr: O(T) — O(TY/T).

which turns isometries of 7" into isometries of its discriminant group. We note
that the rank of 7" is equal to 22 — p, where p = rank(S). If we assume a basis
fixed for T, then an element of GLys_,(Z) can be associated with each trans-
formation of O(T'). The element —1 € O(T') can thus be viewed as the matrix
—Idgo—,. The latter will be denoted by —Id for the remainder of this section. In
order to find a way to check whether —1 ¢ Ker(ny), we are going to use the
same trick that we used to derive a membership criterion for H. Assume that
—Id € Ker(nr), i.e., that the matrix —Id € O(T') acts as the identity element of
O(T"Y/ T) via the natural morphism 7. Then —Id must preserve each generator
of the discriminant group 7/ T, where 1 < i < 22 — p. Keeping in mind that
representatives of basis elements of 7/ T are obtained by taking columns of

G;l, the inverse of the Gram matrix Gt of T, this conditions amounts to
2G;' € My (7).

Thus, if
2G7" ¢ Myy_,(Z),
then

—Id ¢ Ker(nr).

Proposition 25. Let T be the transcendental lattice of X, that is, T' is the orthog-
onal complement of S := NS(X) in H*(X,Z) ~ U® & Eg(—1)%. Consider the
natural morphism ny : O(T) — O(T"/T) and let G be the Gram matrix of
T'. The following statement holds:

2G7" ¢ My ,(Z) = —Id ¢ Ker(nr)

where p = rank(.S).
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Assuming that X has Picard number px < 17, our procedure KerChecker uses

the input data of an embedding of S into either
U@ Es(—1) or into U Eg(—1) @ Es(—1),

computes a Gram matrix G of 7" with respect to a fixed basis, and then performs

the above-mentioned check. KerChecker outputs True whenever

—Id ¢ Ker(nr)

holds, and False when
—Id € Ker(nyr).

Click here for more details on the practical and computer-based side of things
regarding the procedure KerChecker and more generally, regarding the scope

of application of Borcherds” method.

load('init_emb_no_remarks.sage')

/ The embedding of NS(X) into U+E8(-1) used as input data is primitive !

/ The ECL heap-size limit has been removed !

/ A suitable global namespace has sfully been defined !

/ Up to 20 workers will be mobilized by Pool during operations involving process-based parallelism !

GramMats

load('ker_checker.sage')

B R R R R R R R R R L R T T R R Rt b R E e S L L L S e e R R R Ty

A -Id BELONGS to Ker(n) !

A It cannot be guaranteed that the Borcherds' method will return a generating set of Aut(X) !

S s e e e e o o e e e e e ok ok ok e e o e ok ok ok ok o o ek ok o ko ok o e e e ok ok o e e e e ok ok ok s o o o e ek ok ok ok o o e ek ok ok e e

BOOL_KERCHECKER
False
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1.7 Borcherds’ method

Please note that an entire section of K3surfaces.com is devoted to the practical
and computer-based side of things regarding Borcherds’ method. Click here for

more details regarding this matter.

Let X be a K3 surface over the complex numbers. Assume that X has Picard

number px and fix a primitive embedding
t:S—=1L

of S = NS(X) into an even hyperbolic lattice I chosen as recommended in the

following table:

Recommended

Picard b
tearc numbet px ambient lattice

1<px <10 U Ey(—1)
10 < px < 18 U@ Es(—1) ® Es(—1)
18 < px < 20 U@ Es(—1) @ Es(—1) @ Eg(—1)

We moreover assume that the pritimive embedding ¢ : S — L is such that
L(Ps) C PL.

Using the material discussed in the previous sections, we proceed as follows:

» Following the steps explained in section 1.1.2, we set a Pr-chamber struc-

ture on the positive cone Py, of the ambient lattice I into which is assumed

to be embedded in S.

» As described in section 1.2, we use the Pr-chamber structure to induce a

‘Ps-chamber structure on the positive cone Pg of .S.
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In this section and until the remainder of the first part of our thesis, we will
present Borcherds’ method and explain how we implemented it. We proceed by
using the fundamental building blocks provided by Shimada in his article [19] as
a basis and present all the details and developments which have been obtained

during our study.

Borcherds’ method is an algorithmic process that produces a generating set of
Autyy (Nef(X)NPs) by exploring and processing the Pg-chamber structure over
Nef(X') NPg until a complete set of representatives of H-congruence classes of
Ps-chambers contained in Nef(.X') N Ps has been obtained.

Our approach can be decomposed along three axes:

» We start by studying the portion of the Pg-chamber structure over Nef( X )N
‘Ps. This structure is a theater where a good part of our story unfolds. It is
therefore crucial that we have a clear vision of this portion of the chamber

structure.

» We introduce the procedures used by Borcherds” method to explore the
portion of the chamber structure over Nef(X') N Pg.

» We introduce the tools that enable Borcherds’ method to process this por-

tion of the chamber structure.

We will conclude with a figure which sums up everything regarding Borcherds’
method. We provide our ready-to-use implementation of Borcherds” method
with multi-core support on our website K3surfaces.com. We used Pool from
the Python multiprocessing library to make use of process-based parallelism in

our implementation of the method.
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Chamber structure over Nef(X) N Pg

The first fact of importance which should be exhibited is that Nef(X) N Py is

tiled by chambers of the induced Pg-chamber structure.

To see this, we first have to recall that we have seen in section 1.2 that the walls
of the Pg-chambers structure all arise by taking the orthogonal complement in

Pg of elements of the set
Rus ={zs €S’ |z e Ry, (xs,25)gv <O0}.
Note that any x € S C SV satisfying
(@, ) g = —2

also satisfies z € Ry s. A fact of importance for the remainder of this section
is that this statement also holds for classes of divisors of curves playing a cen-
tral role on K3 surfaces: Classes of divisors associated with smooth rational
curves, also known as classes of (—2)-curves, or as (—2)-curves. Thus, each
class of a smooth rational curve can be associated with a wall of some chamber
of the Pg-chamber structure. Moreover, a classical result which can be found
in Huybrechts’ book [5] states that each class of a smooth rational curve can be
associated with a wall of Amp(X). Keeping in mind that Amp(.X ') and Nef(X)
are related by the equality

Amp(X) = Int(Nef(X)),
we deduce that no (—2)-curve is superfluous for defining a wall of Nef(X).

What about Nef(X') N Pg?

The answer is provided by a useful result from Huybrechts’ book [5] with the
following characterization of the boundary of Nef(.X) N Ps.
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A class C' € S belonging to the boundary of Nef(X) satisfies either one of the

two following properties:
» The equality C? = 0 holds.
» There exists a class £ of a smooth rational curve such that (C, E) ; = 0.

Since all classes in Nef(.X') N Pg have a strictly positive self-intersection, we
deduce that each (—2)-curve on X can be associated with a wall of Nef(X) N
Ps. Such walls are called (—2)-walls, and bound Nef(X) N Pg. The induced
Ps-chamber structure thus contains a natural chamber substructure covering
Nef(X) N Pg, and bound by (—2)-walls. Not crossing these walls is a golden
rule that Borcherds’ method must follow. Indeed, the method would otherwise
leave its work area over Nef(X') N Pg, thus potentially distorting the data and
results obtained. The procedure RatDetect detailed in section 1.7.1 is capable
of detecting (—2)-walls. This procedure can be viewed as a compass that allows

the method not to get lost during its journey.

Exploring the chamber structure

Borcherds’ method pursues the exploration of the chamber structure over Nef( X )N
Ps by moving from chamber to chamber. In order to formalize the movement
of Borcherds’ method, we first have to introduce the notion of adjacency for
chambers. Let D, D’ be two Pg-chambers having the property of sharing a wall
(v)" withv € S®R.

Definition 26. We say that D and D' are adjacent along the wall (U)J_ whenever
the intersection
DND N(v)*

contains a non-empty open subset of (v)-. We also say that the chamber D
(resp. D') is adjacent to D’ (resp. D) along the wall (v)™.

Using a chamber Dy C Nef(X) N Pg as a reference point, the notion of ad-

jacency is used to layer the chamber structure over Nef(XX') N Pg into various
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levels. The chamber D, will often be referred to as the initial chamber.

Definition 27. The notion of level is defined iteratively:
» The initial chamber D is the only level O chamber.

» A chamber adjacent to a level [ — 1 chamber but not adjacent to a level

[ — 2 chamber is said to be of level [.

The notion of level enables us to give a precise characterization of our ob-
ject of study: Starting from an initial chamber Dy contained in Nef(X') N Pg,
Borcherds’ method is an iterative process that explores and processes the cham-
bers of Nef(X') N Pg, level by level, until a complete set of representatives of H-
congruence classes of chambers has been produced. In order to navigate within
the chamber structure on Nef(X) N Pg, Borcherds’ method must possess the

three following features:
» Borcherds’ method must be able to move from chamber to chamber.

To this end, Borcherds’ method leans on the procedure WeylAdj presented in
section 1.7.2. Given the Weyl vector w of a chamber D and the data of an element
v € SV such that (v)L isawall of D, the procedure WeylAdj computes the Weyl

vector w’ of the chamber D’ adjacent to D along (v)™

» Borcherds’ method must possess the ability to detect (—2)-walls, that is,
walls (v)" where v satisfies (v,v)g = —2and v € S. Doing so is the
purpose of the procedure RatDetect, from section 1.7.1, which takes as

input an element v € SV and determines whether (v)" is a (—2)-wall.

Indeed, we have seen that the chamber structure over Nef(X') N Ps is bounded
by (—2)-walls. Hence, in case the method crosses a (—2)-wall, it leaves the
chamber structure over Nef(.X') NPg. Crossing such walls must be avoided at all
costs. We recall that the set of walls of a Pg-chamber D is denoted by (D) and

contained in the set Ry |5 of elements of S® Q having negative self-intersection.
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» The third desired feature of the method is that it should never backtrack.

Assume that D is a chamber of level £, and that Borcherds’ method is currently
exploring the adjacencies around D. Then, the method should not be allowed to
explore adjacencies along walls of D leading to chambers of level £ — 1. These
chambers have indeed already been explored and processed during previous it-
erations. The method thus also needs an anti-backtracking procedure to imme-
diately recognize the walls of a given chamber leading to a chamber of lower

level. We use the notation
Q(D)

to denote the set of walls of D from which have been removed the walls leading
to chambers of level £ — 1. Explanations regarding our approach to determine
Q(D) can be found by clicking here. This set will often be referred to (in partic-

ular, on figures) as the set of walls of D with respect to anti-backtracking.

1.7.1 Procedure RatDetect

This section is based on Shimada’s guidelines which can be found in point 2.2
of Algorithm 6.1 from his article [19]. Let D be a Pg-chamber. Determining
whether the wall (v)" associated with an element v € Q(D) is a (—2)-wall

amounts to:

» Step n°1 - Determining the integer solution set .7, of the equation
2 —
° (v, v) gy = =2

of the variable z € Z.

» Step n°2 - If ./, = ), then (v)" is not a (—2)-wall. Otherwise, we check
whether there exists an element ¢ € .7, such that gqv € S . If this is the

case, then (v)* is a (—2)-wall. Otherwise, (v)" is not a (—2)-wall.

Accomplishing the task of Step n°1 should not present any difficulty. In order to
deal with Step n°2, assume that ., # () an let ¢ € .. Proceeding as described
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in section 1.3, we compute the image of ¢gv in L. ® R and project it onto S ® R.

If the resulting vector has integer coordinates, then it belongs to 5.

1.7.2 Procedure WeylAdj

Given an element v € (D) and the Weyl vector w of Pg-chamber D, the algo-
rithms 5.13 and 5.14 outlined in Shimada’s article [19] can be used to compute
the Weyl vector wp, of a Pg-chamber D’ adjacent to D along the wall (U)L.
We combined both of these algorithms into a single procedure: The procedure
WeylAdj takes as input an element v € Q(D) and the Weyl vector w of a Pg-
chamber D and outputs the Weyl vector w’ of the Pg-chamber D’ adjacent to
D along the wall (v)i. We begin by stating Shimada’s algorithms in a user-
friendly form, and adopt a step-by-step approach. Doing so enables us to pro-
vide as many details as possible, thus enabling our readers to easily implement
their own versions of this important building block of Borcherds’ method. We

now present Shimada’s procedure to compute the Weyl vector the chamber D’

adjacent to D along (v)" where
veQD)Cc{vesS®Q| (v,v)g <0}.

In order to compute a Weyl vector w’ of D', proceed as follows:

» Step n°1: Compute the set

P, = {7‘ eRy| ()" C (r)l}.

» Step n°2: Choose a complete set of representatives
P ={r,...,r5}
of P,/ {£1}.
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» Step n°3: Choose an element © € L ® QQ such that

holds for all r;,r; € P,.
» Step n°4: Denote by s; € OT(LL) the reflection with respect to ;. Then
w2 N = (5108900 sy)(w)

is a Weyl vector of D’. Note that a proof is given in [19, section 5].

We explain how we implemented Shimada’s algorithm, step-by-step. Before

proceeding further, recall that given an element v € S ® R, we define

()" ={r e SOR| (z,v)4 =0} NPs.

Step n°1 - Consider the subspace
V=Rv® (R®R)

of L ® R. We denote by pr,,(r) the projection onto V of an element r € L. Note
that the set

P={reRe| (" c ()}

can be expressed as
P,={reRy|rs € Ru}

where rg denote the orthogonal projection onto SV of an element r € LL.
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Note that since v € SV and r € L, taking the inclusion
()" ()"

only makes sense if we view (v)", which has been initially defined as a hy-
perplane of Pg, as a hyperplane of Pp. The assumption that S is embedded
primitively into LL in such a way that Ps C Py, enables us to do so. We explain
how to compute the set P, explicitly. Doing so is the exclusive purpose of Shi-
mada’s Algorithm 5.13. We follow his guidelines and provide all the necessary
additional details. Shimada starts by defining an initially empty set P = { } and

computes the set
S ={aeQlaves’ o’ >-2}.

In order to explicitly determine this set, we proceeded as follows: Assume that

a € .. Since « is by definition a rational, we express it as

a=p/q
with p, ¢ € Z, and ¢ # 0. Denote by

\% \Y
{sl,...,sp

a basis for SV (see the Toolbox section 1.3 for guidelines on the choice of a basis
for SV) and express the element v € Q(D) C SY in terms of its coordinates

v; € Z for 1 <i < p with respect to this basis, so that
v =115 + -+ U8,

Let us take apart the defining conditions of the set .. We have p/q € . if and

only if the two following conditions are satisfied:

» The element aw, i.e., (p/q)v, must belong to SV. This important require-

ment can only be fulfilled if the integer ¢ divides each of the coordinates

118



v; of v. That is,
q | V;

must be true for 1 <7 < p.

We thus introduce the set
Fo={n€Z | nlv,....,n|v,}

of all integers satisfying this property. Doing so enables us to know all possible

denominators ¢ for p/q.
» The condition o?v? > —2 must hold.

For each ¢ € .# we thus solve for x the inequality
2* (v,v)gv > —2¢"

and store the solutions, when such solutions exist, into a set, say, an initially

empty set .7]. It is then clear that

S ={aeQ|aves’ a**> -2}
={p/eeQ| pe A,qe A}

In order to explicitly compute the set .7, we proceed as follows: Let v,, be the

largest (in absolute value) of the cordinates of v € SV. Define
T ={Vmaxs —Vmax + 1, -, Umax — 1, Umax } C Z.
The set .# can then finally be obtained as
o ={m €T | m dividesv; for 1<i < p},

which can be easily computed. Note that if we follow the guidelines available in
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sections 1.5 and 1.5.2 to compute the set of walls of a chamber, we always obtain

no matter which element v € (D) or which Pg-chamber D is used. Indeed,
it follows from the directives contained in these sections that the coordinates

v1,...,v, of elements v € S ® QQ inducing walls must satisfy
ged(vy,...,v,) = 1.

We now compute .. To this end, initially define it as an empty set .} = { }

and proceed as follows: For each ¢ € ., solve

r?? < —2¢°

for x € 7 and store the resulting solutions into the set .#;. The desired set .7
is then finally be obtained as

S ={plqeQ| pe A,qe HA}.

For each o € . we then compute

Co = —2 — a0?
and let

Cmax = Max(cy).
acd

Recall that we denote by R = S+ the orthogonal complement of .S in L. Since
RY is negative definite, we can make use of a short lattice vectors enumeration

algorithm to compute the set

{x € RY ’ <xax>Rv < Cmax}-
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Knowledge of this set enables us to obtain a set
RY[col ={z € R | (z,2)pv = cu}
for each o € .. We now have all the necessary ingredients to determine
P={reRru|@" c)'}.

For each @ € . and u € R" [c,], determine whether av + u belongs to L. To
this end, we use our knowledge of bases of SV and R" made of elements of IL
to express both v € S¥ and u € RY as elements of L ® R. If the sum av + v
belongs to L, i.e., has integer coordinates with respect to the standard basis of

L, append av + u to P,. This is thus how the set P, can be computed.

Step n°2 - We then have to compute a complete set of representatives of P, /£ 1.

Create an initially empty set P, and proceed as follows: For each ¢ € P,, if
—q ¢ P,

then append ¢ to P,. Assume that the resulting set has cardinality /N for some

positive integer N and is expressed as:
Pé:{rl,...,TN} CPD
Step n°3 - We then have to pick an element v € L ® Q such that i # j implies

(w,ri)y, [ (wyri)y, # (wsry)y, [ {w, ),

This can be done in two ways:

» By randomly generating an element of © € L. ® Q until the condition

<u, ri — {w, ri)ﬂ“rj> #0 (1.20)

<w7T1>L
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is fullfilled for 1 <i,5 < N.

» The other way we offer may necessite less attempts to form the set
P = {(Ti,T’j) | T, T € qu, 1 <j}

We use the notation (p(l),p(2)) to denote elements p € P. In practice, the

element o
Card(Z (1)
(M <w, p >]L 2)
u =7+ e D T LI
2 S ),
where 7y is a randomly generated element of I, may satisfy the inequali-
ties (1.20).

If this is not the case, add another randomly generated element 7, of L to v and
determine whether the resulting element u,,q = u + 7, thus obtained satisfies

the inequalities (1.20). Repeat until these inequalities are satisfied.

Step n°4 - Assume that a suitable element © € L ® Q has been obtained. Shi-

mada then re-labels the elements of P according to the following rule: If the

indices of re-labelled elements 7;,7; € P, satisfy ¢ < j then the inequality

must hold. Denote by s; the be reflection
Si x> x+ (T, )T

associated with an element r; € P,. The Weyl vector wp of the chamber adja-

cent to D along (v)" can then be obtained from wp, as

wp = (sy0---0sy)(wp).
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Processing the chamber structure

We introduced the tools which enable Borcherds’ method to progress within the
chamber structure over Nef(X') N’Ps. We now introduce the tools which enable
Borcherds’ method to process the portion of this chamber structure it explores,
and thus accomplish its purpose: Computing a generating set of Autg (Nef(X)N
Ps). Before proceeding further, let us review the notational conventions that
will be used regarding transformations of O(S): We consider that elements g €
O(S) act on elements of S and S ® Q from the right. That is, the image of an
element b € S under the action of an element g € O(S) is denoted by bg, or by

bY. Similarly, we denote by
D9 ={b?|be D}

the image of a Pg-chamber under the action of an element g € O(S). Borcherds’

method enforces two courses of action in order to exhibit generators Autg (Nef(X )N

Ps):

» For each Pg-chamber D C Nef(X) N Py it explores, the method can
take advantage of the fact that generators of Auty (Nef(X) N Pg) can be

obtained by computing a generating set of
Autg(D) ={9 € H| D = D%},
which, as established by Shimada in [19], is a finite subgroup of

Autyy (Nef(X) N Ps).

From the input data of the set (D) of walls of a Pg-chamber D C Nef(X)NPg,
the procedure AutChamber, which is based on Shimada’s Algorithm 3.18 from

[19], is introduced in section 1.7.3 and computes a generating set of Autg (D).

123



» The main course of action followed by Borcherds” method to produce gen-
erators of Autg(Nef(X) N Pg) is based on the method’s capability to
identify relations of H-congruency between Pg-chambers contained in
Nef(X) N Pg.

The relation of H-congruency between chambers will be central for the rest of

our study, and is defined as follows:

Definition 28. Two Ps-chambers D and D’ contained in Nef(X') N Pg are said
to be H-congruent whenever there exists an isometry of H sending either one
of D or D’ onto the other.

That is, we say that D and D’ are H-congruent if there exists an element g € H
such that D' = DY. When this is the case, the chambers D and D’ both belong
to the same H-congruence class of chambers. The procedure CongChecker,
based on Shimada’s Algorithm 3.19 from [19] and described in section 1.7.4,
takes as input the respective sets of walls {2(D) and Q(D’) of Pg-chambers
D, D" C Nef(X) N Ps and determines whether these chambers belong to the
same H-congruence class. When this is the case, the procedure CongChecker
outputs at least one transformation g € H such that D’ = D9Y. Both procedures
AutChamber and CongChecker are based on the same underlying mechan-
ics. As indicated by Shimada in his article, the latter are ultimately brute force
flavored. Note that massive gains can be realized when repeated use of Con-
gChecker is done using process-based parallelism. Our Python implementation
of Borcherds’ method uses the Pool object from the Python multiprocessing
library and can thus take advantage of the multi-core architecture of a CPU. We
provide more details about this matter in section 1.11.1, the Poolized Borcherds’
method. Shimada’s Algorithm 3.18 from [19], on which is based our implemen-
tation of AutChamber, relies on the fact that having knowledge of the set (D)
of walls of a Pg-chamber D is enough to precisely define the domain of possibil-
ities in terms of the generators of Autg (D). In his article [19], Shimada indeed
states that such transformations can be characterized by the fact that they must

belong to H and above all must act as permutations of {2(D). Note that an ad-
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ditional development brought by this thesis is that a generalized membership
criterion for H is provided in section 1.6. From the input data of Q(D), the
procedure AutChamber thus generates all possible transformations acting as
permutations of (D) and then tests each of them for membership in H by en-
forcing the membership criterion given in the proposition 24 from section 1.6.
This procedure thus enables Borcherds’ method to obtain a generating set of
Auty (D) for any Pg-chamber D C Nef(X) N Pg it explores. The procedure
CongChecker is based on analogous principles. As demonstrated by Shimada,
knowledge of the walls of Ps-chambers D and D’ is enough to precisely de-
fine the domain of possibilities in terms of isometries sending D onto D’. Such
transformations are characterized by the fact that they must establish a bijection
between (D) and Q2(D’) while also being elements of H. From the input data of
Q(D) and Q(D'), the procedure CongChecker generates all possible transfor-
mations which could send (D) onto (D), and then enforces the membership
criterion for H in order to single out the elements sending D onto D’. Note that
in case sets of walls of the same chambers is are as input into the procedure
CongChecker, the latter will behave exactly like the procedure AutChamber
and output a generating set of Autg (D). Both of these procedures could not

exist without the following proposition established by Shimada in [19]:
Proposition 29. Any defining set A of a Ps-chamber D spans S ® R.

We have seen in section 1.5 that the set (D) of walls of a Pg-chamber D, which
is called the primitively minimal defining set of D by Shimada is by definition a
defining set of the chamber D. Proposition 29 hence implies that the cardinality
of the set of walls (D) of a Ps-chamber D is at least equal to the Picard number
of the K3 surface under study. We thus form the set

Tups(Q(D)) = {(m1, mo,...,m,) | m; € AD),1 <i<px}
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of p-sized tuples of elements of (D) C SV, from which can be picked a tuple
Teen € Tups($2(D))

having the property of being made of elements which span S ® R. Such a tuple
Tgen 15 called a generating tuple. Finding such tuples is the purpose of the pro-

cedure GentTup.

Procedure GentTup: Assume given as input the set of walls (D) of a Pg-
chamber D. Compute the set Tups(€2(D)). For each 7 = (my,ma,...,m,) in
Tups(2(D)), form the (p x p)-sized matrix obtained by taking as columns the
elements of 7 and compute its determinant. If the latter is non-zero, then 7 is a
generating tuple. Otherwise, 7 is not a generating tuple. Shimada’s proposition
29 ensures that it is always possible to determine a generating tuple. As soon
as a tuple with this property, i.e., a generating tuple, is found, the procedure

GentTuple outputs it as the generating tuple.

Assume that a generating tuple 7,, of either D or D’ has thus been obtained,
say, a generating tuple of D. We now introduce the procedure TupLink, which

is intended to:

» Enable AutChamber to determine transformations which act as a per-

mutation of the set of walls of a chamber.

» Enable CongChecker to determine transformations sending the set of
walls Q(D) of a Pg-chamber D onto the set of walls 2(D’) of another
Pg-chamber D',

Given a generating tuple 7z, € €2(D) and a tuple 7 € Tups(£2(D’)), the pro-
cedure TupLink attempts to produce a (p x p)-sized matrix M- ., sending 7

onto Tgen, Where p = rank(.5), thus trying to link these tuples, as follows:
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Procedure TupLink: Assume given tuples
T = (t1,...,t,) and Ty = (v1,...,0,)

with ¢;,v; € SY for 1 < i < p. Assume moreover that either one of 7,
is a generating tuple. For example, assume that 7, is a generating tuple, i.e.,
that its elements are linearly independent. Our aim consists in determining an

invertible (p x p)-sized matrix M., ,, satisfying
M. ot =v; for 1<i<p. (1.21)

To this end, we proceed as follows: Let A be the (p X p)-sized matrix formed by

taking the elements of 77 as columns, that is,

A=t [t | - [ ta | 4

and denote by B the (p X p)-sized matrix obtained by taking the elements of 7,

as columns that, is,

B={|v [ v | -+ Up-1 Yp
Note that our assumption on the linear independence of the elements of 7, en-
ables us to assert that the matrix B is invertible. We then determine whether

M,, ., = AB™!

establishes a one-to-one correspondence between the elements of 77 and 7, i.e.,
satisfies the equalities resulting from expression (1.21). When this is the case,
output M, .,. We have to take into account the fact that whenever M, ., is

expected to be invertible, then the matrix A must also be invertible.
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This can only happen if 7y is a generating tuple. We thus have to keep in mind

that whenever the procedure TupLink is applied with the hope of obtaining

invertible transformations, both tuples used as input data should be generating

tuples. Time and resources would otherwise be wasted. We denote by
Tups,.,(2(D)) € Tups(2(D))

the set made of all the generating tuples contained in Tups(€2(D)), which can

thus be obtained by testing each tuple with GentTup. We have all the tools

required to formalize the procedures AutChamber and CongChecker.

1.7.3 Procedure AutChamber

This procedure, based on Shimada’s algorithm 3.18, takes as input the set of
walls Q(D) of a Ps-chamber D and outputs a generating set of Autg (D). Define
an initially empty set A = { } . Apply the procedure GenTup each element of
Tups(€2(D)), in order to obtain the set Tups, (£2(D)). Fix a generating tuple

gen

Teen € Tups,, (€2(D)). For each generating tuple 7 # Ty, use the procedure

gen
TupLink to determine whether there exist (p X p)-sized matrices M sending
the set of elements of 7 onto the set of elements of 7,.,. When this is the case,

proceed as follows for each such matrix M thus obtained:

» Determine whether all the entries of the matrix M are integers. When
this is not the case, discard M.

» Determine whether )M acts as a permutation on the elements of Q(D).
That is, determine whether the image of the set {2(D) under the matrix
transformation M coincides with Q(D) itself. Discard M if it does not

fulfill this requirement.

» When M acts as a permutation of Q(D), apply the procedure Member-
Crit to M, ., in order to determine whether it belongs to H. When this
is the case, append M to the set A.
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The article [19] from Shimada then ensures that the resulting set .A obtained at

the end of the procedure satisfies
A = Auty (D).
Note that if A is empty then

Auty(D) = {1d}.

1.7.4 Procedure CongChecker

The Procedure CongChecker is based on Shimada’s Algorithm 3.19 from his ar-
ticle [19] and relies on the same mechanics than its sister procedure AutCham-
ber. The congruence testing procedure takes as input the data of sets of walls
Q(D) and Q(D’) of Pg-chambers D and D’ and determines whether the lat-
ter are H-congruent by proceeding as follows: Define an initially empty set
A = {}. Apply the procedure GentTup to each element of Tups(€2(D’)) un-
til a generating tuple 7., € Tups(§2(D’)) is obtained. Note that proposition
29 guarantees that obtaining such a tuple is always possible. Compute the set
Tups,,, (2(D)) of all the generating tuples contained in Tups(§2(D)) by apply-
ing GentTuple to each element of the latter. Proposition 29 ensures that this
Q(D)), apply the

procedure TupLink in order to determine whether there exists at least one ma-

set will contain at least one element. For each 7 € Tups,,,(
trix (p x p)-sized matrix M. . sending the set of elements of 7 onto the set
of elements of 7ge,. If all the coefficients of M. ;. are integers and this matrix
moreover establishes a one-to-one correspondence between §2(D) and 2(D’),
een DElONgs to H. If this is
to .A. When all tuples 7 € Tups(£2(D’)) have been pro-
cessed, output the set A. At the end of the process, if A is non-empty and con-

use the procedure MemberCrit to check whether M
the case, append M ..,
tains at at least one non-trivial element then CongChecker returns a boolean
value of True with the data of the elements of \A. Such elements thus estab-

lish that the Pg-chambers D and D’ belong to the same H-congruence class of
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chambers. Otherwise, CongChecker outputs a boolean value of False. More
details about the way we implemented Shimada’s congruence testing procedure
can be found by clicking here. Note that developments obtained during this the-
sis resulted in huge enhancements to Shimada’s congruence testing procedure,
which has been detailed in [19] almost a decade ago. With efficiency and par-
allel deployment in mind, we explain on the online support dedicated to this
thesis how our approach to congruence testing enabled us to obtain fantastic
performance gains. We provide a concrete example where a given chamber had
to be tested against 80231 other chambers for congruency. New criteria for con-
gruency combined with parallel deployment enabled us to divide the total com-
putation time for these 80231 tests by 1000 (conservative estimate) compared
to the times measured when the 2013 approach from [19] is used to the letter.
Click here to access an online section in which are detailed the developments

on congruence testing obtained during this thesis.

1.7.5 Borcherds’ method

We now possess all the tools required in order to introduce Borcherds’ method

itself. In this section, we will proceed as follows:

» We start by making a precise survey of the framework required in order
to successfully execute Borcherds’ method and obtain a generating set of

the automorphism group a complex K3 surface.

» We then explain in terms of tuples and sets how we formalized the data of
chambers, which are undeniably objects of paramount importance within
Borcherds’ method.

» Using Shimada’s take on Borcherds’ method from his 2013 article [19], we
then describe how we put together the building blocks that have been in-
troduced so far to successfully implement Borcherds’ method. We also de-
scribe all the evolutions, improvements and developments obtained dur-

ing this thesis.
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The reader should note that we provide our ready-to-use implementation of
Borcherds” method for complex algebraic K3 surfaces on K3surfaces.com. An
online section of this thesis also provides a variety of step-by-step examples
of applications of Borcherds’ method. These examples show how a computer-
based algorithmic approach can lead to a wealth of concrete information and
results on classical cases, originally obtained by hand when published decades
ago. As far as we know, we also provide concrete answers to questions that had
been open for many years, in some of these step-by-step examples. Techniques

illustrated through these examples can then be used to study other surfaces.

Let X be a K3 surface. The input required in order to use our fully automated

implementation of Borcherds” method consists of

e The data of elements vy, ..., v, € L such that the map
vifxy, o xp)g P v s 2,0,

is a primitive embedding of S = NS(.X) into one of the three even hyper-
bolic lattices . mentioned in section 1.1.2 and chosen depending on the

Picard number of X. Click here for more details on this matter.
e A Gram matrix Gg of S.

e An ample class ap € S that will be used to update the embedding of S

into L, if necessary.

Before proceeding further, we have to indicate that we choose to refer to Borcherds’
method as if it was a system embodied by a small animal obeying certain rules
and capable of making decisions within a predefined framework. Note that we
use a hamster emoji in many figures, and that this hamster is meant to embody
Borcherds’ method. Doing so enables us to illustrate the fundamental concepts,
principles, and mechanics behind the method in a simple and accessible way,

without ever violating the underlying theory.
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For a better understanding of the material presented in this section, it is im-
portant to remember the purpose of our object of study: In the framework of

complex K3 surfaces, Borcherds’ method produces a generating set of
Autg(Nef(X) NPg) = {g € H | V& € Nef(X) N Pg, gz € Nef(X) N Ps}

where we recall that H is a subgroup of O"(S) that can be explicitly charac-
terized by a generalized membership criterion, provided in section 1.6.2 of this
thesis. To fulfill its purpose, the method proceeds by exploring and process-
ing the chamber structure over Nef(XX') N Pg, as discussed at the beginning of
section 1.7, until a complete set of representatives of H-congruence classes of
chambers of Nef(.X') NPy is produced. The finiteness of the number of steps to
be carried out to reach an end to the overall procedure is guaranteed by the fact
that whenever X is a complex K3 surface, as indicated by Shimada in [19], the
number of H-congruence classes of chambers contained in Nef(X') N Py is fi-
nite. In order for Borcherds’ method to be initiated, it must be provided with an
initial chamber Dy contained in Nef(X') N Pg. From this chamber, the method
starts its exploration of the chamber structure over Nef( X ) NPs. As stated in the
section 4 of Shimada’s article [19], classical theory provides a Weyl vector wy
associated with a PL-chamber D, that may induce a suitable initial Pg-chamber
Dy = Dy N Pg contained in Nef(X') N Pg. When the method is provided with a
starting point located within Nef(.X') NPg, we can then be sure that it will never
leave the chamber structure over Nef(X') N Pg. Indeed, as discussed at the be-
ginning of section 1.7, we know that the chamber structure over Nef(X') N Pg
is delimited by (—2)-walls. A key rule that the method must obey is that such
walls are not to be crossed. Indeed, doing so would make the method leave the
Nef(X) N Pg area of study. In order to stay within Nef(X') N Pg, Borcherds’
method relies on the procedure RatDetect, described in section 1.7.1. The pur-
pose of this procedure consists in detecting (—2)-walls, so that the method can

know if a wall can be safely crossed or should instead be avoided.
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Two requirements have to be fulfilled:

» Requirement n°1: In order to induce a Pg-chamber, the P -chamber D,

must be ¢(.S)-non-degenerate.

Depending on the embedding ¢ : S — L, such a condition may or may not be

fulfilled. Shimada provides a non-degeneracy criterion in his article [19]:

Shimada’s non-degeneracy criterion: Assume that S is primitively embed-
dedintoL by ¢: S — L andleta € Pg . Let D be a Pr-chamber with Weyl vec-
tor w. If the inequalities (pry(.(a)), ) g > 0 hold for every ¢ € pry(A,,), then
D is 1(S)-nondegerate. Note that ag is contained in the interior of D = DN P,

whenever these inequalities are satisfied, so that D is then a Pg-chamber.

» Requirement n°2: Assuming that Dy is ¢(S)-non-degenerate, the in-
duced chamber
DO = DO N PS

must be contained in Nef(X) N Ps.

Shimada’s non-degeneracy criterion can be applied to D, with an ample class
ag € Pg to determine whether this requirement is fulfilled. Due to the limited
scope of Shimada’s non-degeneracy criterion, which is not generalistic, Shimada
enforces a straightforward solution: Given an embedding ¢ : S — L, a Pp-
chamber Dy and an ample class ay € Pg such that the non-degeneracy criterion
fails; the section 8.3 of Shimada’s article [19] contains the outline of a procedure

that may produce an updated embedding
Lupd 1 S — L

under which the non-degeneracy criterion applied to D, and a, results in suc-
cess. We dwell on this matter in section 1.8. Chambers are prominent objects of

paramount importance within Borcherds” method.
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Then comes the necessity to introduce a convention that will enable us to turn
chambers into tangible data that can be processed at the scale of an implemen-

tation of Borcherds’ method. We associate a tuple
D = (wp, Au(D), (D), (D))

to each Pg-chamber D explored by Borcherds’ method. The elements contained

in this tuple can be described as follows:

» wp with the Weyl vector of D computed using the procedure WeylAdj

from section 1.7.2.

» QD) is the set of walls D, computed by applying the procedures DeltaW
and SetOf Walls from sections 1.5.2 and 1.5.1, respectively.

» Au (D) is a generating set of Autg (D), computed by AutChamber from

section 1.7.3.

» (D) is the set of walls of D taken with respect to anti-backtracking. That
is, assuming that D is of level k, this set is a copy of (D) from which the

walls leading to chambers of level £ — 1 have been removed.

More details about the notion of anti-backtracking are provided online. We now
assume that the Néron-Severi group S = NS(X) of the complex K3 surface X
under study has been primitively embedded into a suitable even hyperbolic lat-
tice I and further assume that an initial Pg-chamber Dy with Weyl vector wy
contained into Nef(.X') N Pg is known. As indicated at the beginning of section
1.7, the chamber Dy is used as a reference point in order to layer the chamber
structure over Nef(X) N Pg into various levels. The notion of level has been

introduced in definition 27, earlier in this section.

Before proceeding further, let us get this straight about the notations that will
be used until the end of this section. We denote by:
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» L, the set of chamber of level k. For example, we have Ly = {Dy}.

» DD the set of sets £ of chambers of various levels explored during the
execution of Borcherds’ method. Initially, D* = {L} = {{Do}}.

» I an initially empty set into which the generators of Autg (Nef(X) N Ps)

detected during the execution of the method will be stored.

» R, aninitially empty set into which will be stored the classes m € NS(X)
associated with the (—2)-walls detected by the procedure RatDetect among
the elements of the sets of walls of the chambers explored by Borcherds’

method during its execution.

We can now explain the chain of events occuring during an execution of Borcherds’

method. Initially, we have
F={}, Rm={},D"={Lo} and Lo={Do}.

Initialization - Chamber of level 0: The method starts by processing the
initial Pg-chamber D, with Weyl vector w,. This step consists in computing
the data tuple

Do = (wo, Au(Dy), (Do), U(Dy))

associated with D. From the input data of wy, Borcherds’ method calls for the
procedure DeltaW described in section 1.5.1 to compute the set A,,,. The pro-
jection prg(A,,) of A, onto S is then fed into the procedure SetOf Walls.
The latter outputs the set 2(Dg) of walls of Dy. The data of (D) is then used
as input into the procedure AutChamber (section 1.7.3) which produces a gen-
erating set Ay (Dy) of Autg(Dy).

Chambers of level 1: During this iteration, Borcherds’ method explores and
processes chambers of level 1 adjacent to chambers of level 0 within Nef(X') N
Ps. That is, it will explore and process chambers adjacent to Dy along its non

(—2)-walls. Create an initially empty set £; = {} into which will be stored
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the chambers of level 1 representing new H-congruence classes of chambers
of Nef(X) N Pg discovered during this iteration. Note that this stage, the only
known congruence class is the class represented by Dj. The method then uses
the procedure RatDetect to identify the (—2)-walls among the elements of
Q2(Dy). Borcherds’ method stores the classes in S of such walls into the set R .
For each non (—2)-wall (m)" of Dy, the method computes the Weyl vector wpy
of the chamber D’ adjacent to D, along (m)L by calling for the procedure Wey-
1Adj with m and wy as input data. The data of the Weyl vector wp thus obtained
enables the method to compute the set of walls 2(D’) of the chamber D’. This

is done in two steps.
» First, vector wpr is fed into DeltaW, which outputs the set A,, o

» The projection prg, (A,,,,) is then used as input into SetOf Walls, which
returns the set Q(D’) of walls of the chamber D'.

The set (D) is used as input into the procedure AutChamber, which outputs
aset Ag(D’) of generators of Autg(D’). These generators are stored into the set
I'. Borcherds’ method then needs to determine whether D’ represents a brand
new H-congruence class: Since at this stage of the execution the class repre-
sented by Dy is the only congruence class inventoried by the method. The only
congruence test to be carried out by Borcherds’ method during the exploration
and processing of chambers of level 1 therefore consists in testing D’ against D,
for H-congruency. To this end, the respective sets of walls (D) and Q(D’) of

Dy and D’ are used as input data into the procedure CongChecker:

» If CongChecker determines that Dy and D’ are not H-congruent, then
the chamber D’ represents a brand new congruence class of chambers,

and its associated data tuple
D, = (UJD/, AH(D/), Q(D’),Q(D/))

is stored into the set £; of representatives of congruence classes of cham-

bers of level 1.
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» If the result of the procedure CongChecker is that Dy and D’ are H-
congruent, at least one element of ¢ € H establishing the congruence is

provided and stored into the set I'.

Borcherds’ method executes this routine until all the chambers adjacent to Dy
along its other non (—2)-walls have been explored an processed. When this is
the case, the set £, in stored into D*, so that we have D* = {L,£;}. The

method then proceeds as follows:

» If £, = (), Borcherds’ method ends its execution and outputs all the data

collected during its execution.

Shimada indeed states in his article [19] that, in this case, the set

D:UW

is a complete set of representatives of H-congruence classes of chambers con-
tained in Nef(.X ) N'Ps while the set I is a generating set of Auty (Nef(X) NPg).

» If £; # (), the method proceeds to its second iteration: The exploration

and processing of chambers of level 2 by adjacency to chambers in £;.

Fast forwarding, we now assume that Borcherds’ method has completed its k-th
iteration. That is, let us assume that a non-empty set of representatives £; has
been obtained for each integer j < k so that D* = {L¢, L4, ..., Ly}

We describe the (k + 1)-th iteration of Borcherds’ method.

Chambers of level k£ + 1: During this iteration, Borcherds’ method will ex-
plore and process chambers of level £ + 1 adjacent to chambers in £ along
their respective non (—2)-walls. An empty set L1 = { } is created, and will
be used to store the H-representatives of new congruence classes of chambers
discovered during this iteration. For each D € L, and each element m € Q(D),

Borcherds’ method proceeds as follows:
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The procedure RatDetect is used to determine whether (m)" is a (—2)-wall.
When this is the case, a class in S associated with (m) ™ is returned by RatDetect
and stored into the set R, If RatDetect outputs that (m)™ is not a (—2)-walls,
Borcherds’ method explores the chamber D’ adjacent to D along (m)L That is,
the Weyl vector w’ of the chamber D’ adjacent to D along (m)" is computed by
WeylAdj into which is fed the data of m and w. The set of walls of the chamber

D’ is computed in two steps:
» The element wpy is used as input into DeltaW, which returns A,

» The projection prg, (A,) is then used as input into SetOf Walls, which
returns the set Q(D’) of walls of the chamber D’.

The data of the set of walls Q(D’) of D’ is then fed as input into the procedure
AutChamber which produces a generating set Ay (D’) of the group Auty (D).

The elements of Ay (D’) are then stored into the set I" of generators of
Auty (Nef(X) N Ps)

which have been detected since the execution of Borcherds’ method. The method
then determines whether D’ represents a new H-congruence class. To this end,

the method tests D’ is for H-congruency against each chamber in

D:U]D)*

=LoULy U ULpULpy.
For each chamber D” € D, the data of the respective sets
QD) and Q(D")

of walls of D" and D" is used as input into the procedure CongChecker.
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If D' is not H-congruent to at least one chamber in D then the chamber D’

represents a new congruence class of chambers, and its associated data tuple
D’ = (U)D/, AH(D,), Q(Dl), Q(D,))

is stored into the set £, of level £+ 1 representatives of H-congruence classes.
Otherwise, for each chamber D” to which D’ is H-congruent, the associated el-

ements ¢ € H returned by CongChecker are stored into the set I'.

When the exploration and processing of the surroundings of each chamber in
L has been performed, the method stores the set £, ; into D* and proceeds as

follows:

» If L, = (), Borcherds’ method ends its execution and outputs all the data

collected during its execution.

Indeed, by Shimada [19], the set

D:UW

is then a complete set of representatives of H-congruence classes of chambers
in Nef(X') N Ps while the set I is a generating set of Auty (Nef(X) N Ps).

» If Li11 # 0, the method proceeds to its (k + 2)-th iteration: The explo-
ration and processing of chambers of chambers of level k£ +2 by adjacency

to chambers contained in £ along their respective non (—2)-walls.

Since theorem 3.7 from Shimada’s article [19] ensures that the number of H-
congruence classes of chambers in Nef( X )P is finite, the execution of Borcherds’
method will end at one time or another, and will not run forever. The figure dis-
played on the following page illustrates the algorithmic structure of Borcherds’

method.
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for each D € Ly, :
for each m € Q(D) :

N AutChamber
is (m)~ a (—2)-wall? Q(D/) Computation of
a generating set

RatDetect of Autg(D')

True | False Cenerators thus

obtained are stored
into the set I

Weyl vector w of D
m € Q.(D) y
for each D" ¢ UD*
are D' and D"

. H-congruent ?
WeylAdj =
CongChecker
‘When False l for all D" for
Weyl vector w’ of the chamber D’ for all D7 which it s True
o ) . CongChecker
adjacent to D along the wall (m) append returns at loast
D to L one g € H
Ak such that D' = D9
‘N 7 Such transformations
De]'ta are then stored
into the set I

! |

prSV(Aw’) : O ___________—————————:
|

\|' | in L. When done, !
! |

' |

Process the other chambers |
continue as follows
SetOfWalls \[

I » If £L;.1 =0, then

» RatDetect returns an the Borcherds’ method ends.
associated class in S which .
is then stored into Rpas. » If L1 # 0, apply this

» Process the other walls of D. procedure to the

» If all walls and chambers chambers in L.

have been processed,
go to the next block...
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1.8 Embedding update procedure

We have seen in the previous section that executing Borcherds’ method requires
the data of a primitive embedding ¢ : S < L and of an initial P, -chamber D,

satisfying the two following conditions:

» The primitive embedding ¢ : S < L is such that the initial P -chamber

Dy is ¢(S)-nondegenerate, i.e., satisfies
Int(Dy N Ps) # 0
so that it induces a Pg-chamber
Dy =Dy NPs

which can be used as a starting point for Borcherds’ method to explore
the chamber structure over Nef(X) N Ps.

» The induced Pg-chamber Dy must be contained in Nef(X) N Ps.

It turns out that it is enough to exhibit an ample class ay € Pg such that
t(ag) € Int(Dy N Ps)

in order to ensure that the two above conditions are satisfied. Checking whether
this condition holds can be done by using the procedure Degentest introduced

in section 1.7: This procedure checks whether the strict inequality

{prgv(t(ao)), q)gv > 0 (1.22)

holds for all elements ¢ € prg, (A,,). When this is the case, the element ¢(a)
then belongs to the interior of Dy N Pg and the two above conditions are thus
satisfied. The fact is that exhibiting an ample class ay € Pg satisfying these
conditions in the framework of a given embedding requires much luck. This is-

sue must therefore be approached from another angle. Given an initial primitive
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embedding
t: S =1L,

an ample class ay and the Weyl vector wy of the initial chamber Dj, Shimada
provides in the section 8 of his article [19] the outline of a procedure which may

possibly yield a transformation
7:L—L

such that
T0oL:5 =L

is an updated primitive embedding under which the inequalities

{prgv ((T04) (a0)), q)gv >0 (1.23)

are satisfied for all elements g € prg, (A, ). That is,
(T o) (ap) € Int(Dy N Ps).

Note that 7 is obtained as the composition of various reflections with respect to

carefully chosen elements of Ry.. The updated embedding
lupd = T O L

thus obtained then provides a framework under which the Pp-chamber D is
Lupd (S)-nondegenerate and thus induces a Ps-chamber Dy = DyNPs contained
in Nef(X') NPg. From our point of view, Shimada’s approach is the best possible
course of action to deal with the issue of finding a non-degenerate chamber by
acting at directly on the embedding of S into L. The issue is that this approach
may require many attemps, a lot of trials and failures, before eventually resulting
in a positive outcome. We took care of this issue.

In this section, we proceed along three axes:
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» Assuming given an embedding
t: S =1L,

an ample class ay € Pg and a Pp-chamber Dy, we will start by investigat-

ing the causes the failure of the non-degeneracy condition for D.
» We will then present Shimada’s original idea to update an embedding.

» We will finally explain how we modernized and improved Shimada’s idea.

1.8.1 Failure of the non-degeneracy condition, a quick survey

Assume that an initial embedding
t: S =1L,
a Pp-chamber Dy and an ample class ay € Pg such that
t(ag) ¢ Int(Dy N Ps) (1.24)

are given. Using the elementary fact that

Int(Dy N Pg) = Int(Dy) N Int(Py)
we see that the condition (1.24) holds if and only if either

t(ag) ¢ Int(Dy) or (ag) ¢ Int(Ps)
Since a is ample and thus belongs to Pg by assumption, we see that
t(ap) ¢ Int(Dy)

Two possibilities should then be considered
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» The element ¢(ag) belongs to the boundary of Dy, i.e.,
L(CL()) S Do\ Il’lt(Do)

where we recall that chambers are by definition closed sets. In this case,
there exists at least one ¢ € Q(Dy) C Ry, such that (g, t(ag)); = 0.

In order words, the element ¢(ag) is stuck in a wall of Dy. Here we touch on
a point which is key to understand why Shimada’s idea may fail. In case ¢(ag)
belongs to a wall of D, application of reflections which respect to elements of
Ry, will not move ¢(ag) by a single inch since walls of Py -chambers are them-
selves elements of Ry, and are by definition left invariant by such transforma-
tions. Keep this fact in mind, it will be useful during the next section. The other

possibility to be considered is simple:

» The element ¢(ag) does not belong to D,. That is, there exists at least one
element ¢ € Q(Dy) such that (g, ¢t(ap))); < 0.

In this case, applying reflections with respect to Weyl chosen elements of Ry,

may succeed in order to obtain an updated embedding ¢,pq such that

tupd(ao) € Dy N Ps.

1.8.2 Shimada’s embedding update procedure

Assume that «(ag) ¢ Dy, so that ¢(ag) belongs to another Pr-chamber D # D,.
In order to avoid the above-mentioned issue where +(ag) would be stuck in a
wall, assume furthermore that ¢(ag) € Int(D). Denote by w, the Weyl vector of
Dy and recall that the definition of a Weyl vector implies that the Weyl vector
of a P -chamber is contained in its interior. We therefore have wy € Int(Dj).
Let

1(t) = (1 —t)e(ag) + two, 0<t<1
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be the line segment in Py, connecting ¢(ag) to wy. Since ¢(ag) and wy do not be-
long to the same chamber, this segment must intersect some walls (T’i)L induced
by elements r; € Ry. In order to have a clear view of what happens, assume
that [(¢) intersects the walls

(r) " (r2) ™ () (ra)

induced 71, 9, 73,74 € Ry so that the situation is illustrated as follows:

>

D,
(ra)* )
2 wo —
— ,/
i(t) -~
(r3)* =
///

We can see that «(ag) is located in the interior of a P -chamber D colored in
yellow. We can also see that that wy is located in the interior of a P -chamber
Dy colored in green. The path /() connecting ¢(ag) to wy in Py, is represented as
a dashed line, colored in dark blue. Moreover, [(t) is here represented as cross-
ing four walls (r;)" with r; € Ry fori = 1,2, 3,4, which have been highlighted
as red lines. Note that the locations displayed on this figure imply that

<UJO, Ti> >0

while
(t(ag),ri) <0
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fori = 1,2, 3,4. Recall that to each element r € R, can be associated a reflec-
tion

s, : L — L
Sp x> x4+ (T, ) T

with respect to the hyperplane (T)L. Shimada’s idea consists in successively

applying the reflections s, for i € {1,2,3,4} to the embedding
t:S =1L
so that an updated embedding
Totr:S—=L with T = Sy, O Spy O Spy O Sy
is obtained and hopefully provides a framework under which the condition
(1 ot)(ap) € Int(Dy N Pg)

is satisfied. More generally, given an ample class ay, a Pp-chamber D, with

Weyl vector wy and an initial embedding ¢ : S < L such that
t(ag) ¢ Int(Dy N Py),

Shimada enforces an approach which consists in proceeding as follows:

Step n°1 - Using Shimada’s algorithm 3.3 from his article [18], compute the
set

M ={r e Ry | («ag), ) <0, (wy,r); >0}

of elements € Ry, such that (r)" seperates ¢(aq) from w,. We implemented
this algorithm and named it ShiBooster. More details about the latter are avail-

able in the second part of this thesis and on K3surfaces.com.
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Step n°2 - Shimada then defines the line segment
I(t) = (1 —t)e(ag) + twy, 0<t<1
connecting ¢(ap) to wy in Pr. For each element r € M, we have to solve
{(t),r)y, =0
for) <t <1.

Step n°3 - Elements of M are then re-labelled in such a way that elements

i, 7; € M with respective associated solutions ¢;,¢; satisfy
1< j ifandonlyif ¢; <t;.

Note that Shimada requires that all the ¢; should be distinct, and orders to pick
another ample class and try again until this requirement is fulfilled. Assume
that the elements of M have thus been relabelled in such a way that the set M
can be expressed as

M ={ry,ry,....,Tn}.

The segment [(t) then intersects the walls (r;)" according to the order which

arises from the labelling of the elements r; € M.

Step n°4: Define

T =38y O8ry_1 O 0805

and update the initial embedding as

Tour: S = L.
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Step n°5: Use Shimada’s non-degeneracy criterion (procedure DegenTest from

section 1.7) to Dy and (7 o ¢) (ag) in order to check whether
(To1)(ag) € Int(Dy N Pg)

holds under the framework of the updated embedding. We explain in the follow-
ing section how Shimada’s embedding update procedure can be improved. His
procedure suffers from the fact that many attempts with various ample classes
ap may be required before eventually obtaining a positive result. Also, the pro-
cedure may not work at all, and no explanation regarding this fact is provided
in Shimada’s article [19]. If we remember our discussion from section 1.8.1, we
see that Shimada’s procedure will fail whenever ¢(ao) € (r)" for some r € Ry.
In such cases, we say that ¢(ag) is stuck into a wall. It is therefore important to

make sure that the set

{r € Ru | («(ao),r)y, = 0}

is empty before enforcing Shimada’s embedding update procedure with. The
situation is otherwise especially problematic when ¢(qy) is stuck into a wall of

the initial Pp-chamber Dy, as illustrated in the figure below.

D,
Lo (CL[)) 0

l(t‘)“.wo —
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When such a situation occurs, there is no leeway: The mechanics of the em-
bedding update procedure rely on the application of reflections with respect to
walls crossing the path between ¢(a) and w,. When ¢(ay) is stuck into a wall of
D, there is no wall separating it from wy, except the wall into which it is stuck.

Since reflections of the form
Sprx > x+ (T, )T

act as the identity on elements = € (r)*, we cannot do anything to free ¢(ay)
from the wall into which it is stuck. In fact, the only thing that can be done
consists in either finding another primitive embedding or finding another ample
class. It should be noted that a decade ago, Shimada provided no explanation
on why he asked his readers to use another ample class when the procedure
outlined in his 2013 article fails. We hope that our explanations provide a better

understanding of what is happening behind the scenes.

1.8.3 A new perspective on Shimada’s embedding update procedure

We now explain how we improved Shimada’s embedding update procedure. As
before, we assume given an ample class ag € Pg, a Pr-chamber D and an initial
primitive embedding ¢ : S < L such that ¢(ag) ¢ Dy but is instead contained
in the interior of a Pp-chamber D # D,. We also recall that the Weyl vector wy
of the P-chamber D, satisfies wy € Int(Dy) and compute the set. We let

(1) = (1—tlao) +twy, 0<t<1

be the line segment connecting ¢(ag) to wy in PL. Using our implementation

ShiBooster of Shimada’s algorithm 3.3 from [18], we compute the set
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M ={reRy| (ap),r) <0, (wp,r), >0}

of elements 7 € Ry, such that (r)" separates (ag) from wy and is thus crossed
by the path defined by /(¢). We assume that

M ={ri,re,...,rn}
and that the elements in M are labelled in such a way that r;, r; € M satisfy
t <y ifandonlyif ¢; <t;

where ¢, is the solution of
<l<tk)7 rk>]L =0

The walls induced by elements of M should be considered obstructions on the
path defined by the line segment [(): As t increases from 0 to 1, the path succes-
sively encounters the wall (r;)", then (r5)", .. ., and finally (ry)". Applying a
reflection

Sy, 1 T T+ (T, ) T

to the embedding ¢ : S — L amounts to sending ¢(ao) to the other side of the
wall (r;)*, hence clearing the obstruction represented by this wall. For example,
assume that the reflection s,, with respect to r; is applied to the embedding ¢,

so that we have an updated embedding
Spp 008 =L

The inequality satisfied
(t(ag), 1)y <0
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in the framework of the initial embedding can then be turned into

((sr, 0¢) (ag), 1)y, >0

in the framework of the updated embedding s,, o «. It is clear that the wall

(7"1)L

damental difference between our approach and Shimada’s is that we consider

associated with ; € M is therefore no longer an obstruction. The fun-

the following question: In the framework of the updated embedding s,, o ¢, are
the walls associated with elements of M \ {r} still obstructions? For example,
we can legitimately wonder whether (7”2)L an is still an obstruction separating
(sy, 0 t) (ag) from wy. That is, do we need do apply the reflection s,, to s,, o ¢?
Another perfectly legitimate consideration consists in wondering whether the
application of s,, did introduce new obstructions in the framework of the up-
dated embedding? The only way to have answers consists in computing the set
M of obstructions again, this time taking into account the fact that embedding
has been updated. The result is an iterative procedure: We start by clearing
the obstruction closest to ¢(ag) by applying s,,. We then compute the updated
set of obstructions and clear the obstruction closest to s,, o ¢(ag), and continue.

When the updated set of obstructions is the empty set, the procedure terminates.

Iteration n°1 - We compute the initial set of obstructions

My ={r e Ry | (ap), )y, <0, (wp,r);, >0}

For each element » € M;, we then solve for ¢ the equation

{U(t), ), =0

We drop Shimada’s requirement that no two elements of M should have the
same associated solution. We determine the smallest associated solution and

randomly pick an element say associated with this solution, say r € M;. We
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then apply the reflection
Syt x> x4+ (T, 7)1
to the embedding ¢ : S < L so that we have an updated embedding
Sppot: S — L.

which provides a framework under which (7“1)L is not an obstruction separating

(8y, 0 ¢t) (ag) from wy.

Iteration n°2 - We now compute the set of obstructions in order to take into
account the fact that the embedding has been updated and that obstructions
separating (s,, o ¢) (ag) from wy may not be the same obstructions than those

which separated ¢(ag) from wy. We thus compute
My ={re R | (s ot)(ap), )y <0, (wo,r)y >0}.
If My = (), the procedure stops and the updated embedding is
Lupd = Sp, © L.
Otherwise, we solve for ¢ the equation
(1t).r),, = 0

for each element r € M. We then pick one of the elements, say 7, € Mo, asso-
ciated with the smallest solution. We then apply reflection s,.,, to the embedding

Sr, © ¢ so that we have an updated embedding
Spy 08 001 S = 1L

under which the wall (r5)" is not an obstruction for (s,, o s,, o) (ag), that is,
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such that

((sr, 0 57, 01) (ag),r2)y, > 0

holds.

Fast forwarding, we assume that k-th iteration of the procedure has been ac-

complished so that
Trot:S—L with Tk = Sy, O S,y O+ O Spy O Sy,

has been obtained.

(k + 1)-th iteration - In order to compute an updated list of obstructions, we

compute
My ={re Ry | ((mhot)(ap),r) <0, (wp,r); >0}.
If My 1 = 0, the procedure terminates and we use
lupd = Tk O L.
as our updated embedding. Otherwise, we solve for ¢ the equation
{U(t),r), =0

for each element r € M. ;. We pick an element, say ry,1 € My, associated
with the smallest solution obtained and apply the reflection s,, ,, to 75 o ¢. That

is, we define an updated embedding
Tgrr10t: S =1L
with

Tk+1 = Sryqq © Tk
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1.9 Fundamental domain, associated cone, Hilbert Basis

Let G be a group and Y a set on which G acts on the left. We denote by gz the
image of an element € Y by an element g € G. Given a subset ' C Y, we

denote by
g(F) ={gz [z € F}

the image of F' under the action of g € GG. We recall that a fundamental domain
for the action of a group G on a set Y is a subset F' C Y having the following

properties:
> Ugeq9(F) =Y
» The intersection g(F') N h(F') is empty for all g, h € G such that g # h.

Assume that Borcherds’ method has been executed and returned a set
D* ={Lo, L1,..., L}

where £; denotes the set of representatives of level j of H-congruence classes
of chambers contained in Nef(X') N Ps. As indicated in Shimada’s article [19]

section 6, the union

D= ] ¢

Leh*
=LyULiU---UL,

is a complete set of representatives of Auty (Nef(X' ) NPgs)-congruence classes of
chambers, i.e., of H-congruence classes of chambers contained in Nef(.X') N Pg.
The set D thus contains exactly one representative of each H-congruence class
of chambers contained in Nef(X) N Ps. Let D € D. We denote by

F(D)cD
a fundamental domain of the action of Autg (D) C Autg(Nef(X) N Ps) on D.
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We now establish the following important proposition:

Proposition 30. The union |, F(D) is a fundamental domain of the action
of Autir(Nef(X) NPs) on Nef(.X) N Ps.

Proof. In order to simplify the notations, we will make use of the shorthands
Nx = Nef(X) N Ps
and
AutH (Nx) = AutH (Nef(X) N Ps)

when necessary. Define

7 =J F(D).

DeDb
Let us apply the definition of a fundamental domain stated at the beginning of

this section. We establish the two following properties

» There is an equality

U  9(F) =Nef(X) nPs.

gEAutH(NX)
» The implication
g#h=g(F)NMF)#

holds for g, h € Auty (Nef(X) N Ps).

Let us begin by establishing the inclusion

Nef(X)NnPs € |J 9%

gEAutH (NX )

Let p; € Nef(X) N Ps. We have seen at the beginning of section 1.7 that
Nef(X) N Py is tiled by Pg-chambers. Consequently, we have p; € D for some
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Ps-chamber D C Nef(X) N Ps. Assume that
D = {D07D17~~-yDr}

for some integer 7 > 0. Since DD is a complete set of representatives of H-
congruence classes of Pg-chambers of Nef(X) N Pg, the class of the chamber

D possesses a representative Dy, € . Moreover, there exists an element
g1 € Autg (Nef(X) N Pg)
sending D onto the representative of its congruence class, that is, such that
D% = Dy.
The transformation g; hence sends p; € D to an element pi* € Dj,. Let
F(Dy) C Dy,

be the fundamental of the action of Autg(Dy) on Dy. By definition of a funda-

mental domain, there exists an element
P2 € F (Dk)

and a group element
go € AutH(Dk)

such that
b2 = p?192~
Hence, we have L
P = p? .

with
g5 g7t € Autg(Nef(X) N Ps).
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We have

9

p2 € F(Dy) € F C

and thus

-1 _—1 -
e |J 9(@)
gEAutH(NX)

We thus established that

pENef(X)NPs=p e |J) o9&
g€Auty (Nx)

that is,
Nef(X)NnPsC | 9(Z)

gEAutyy (Nx)

We now establish the reverse inclusion. Let D be a Pg-chamber over Nef(X) N
Pg, that is,
D C Nef(X) N Ps.

Let 7(D) C D be a fundamental domain for the action of Autg (D) on D. By

definition of a fundamental domain, the equality

U 9FD)=D

gE€Autg (D)
holds. Combining this equality to the fact that
Autg (D) C Autg(Nef(X) N Pg)
yields
U «FDyc U 9FD)
g€Auty (D) gE€Auty (Nx)

C Nef(X) N Ps

Since this inclusion holds for any Pg-chamber D contained in Nef(.X' ) NPg and

157



thus holds for any chamber D € D, we have

U U  9(FD)) | cNef(X)NPs. (1.25)

DeD \ geAutyg (Nx)

In the section 6 of [19], Shimada establishes that D is a finite set. Using the fact

that the closure of a finite union of sets is equal to the union of closures, we have

7 =\JFw) =] FD.
DeD DeD
Hence, there is an equality

J &= U g(m>

gEAutyy (Nx) g€Auty (Nx) DeD

= U Usro).

gEAuty (Nx) DeD

Combining this equality to the inclusion of expression (1.25) leads us to

U 9(F) S Nef(X) N Ps.

gEAutyy (Nx)

Since we established ealier the opposite direction of this inclusion, we deduce
that
U 9(F) =Nef(X)nPs,

gEAuty (Nx)

as desired. We will use a proof by contradiction to establish that
g(F)Nh(F)=10

holds for any two distinct elements g, h € Autg(Nef(X) N Pg). Assume that
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there exist elements g, h € Autg(Nef(X) N Pg), with g # h such that
g(F) N h(F) #0.
Let p € g(-#) N h(.Z). Then there exist Ps-chambers D, D" € D such that
pEGFD) CoD) and  peh(FD)) Ch(D').

That is,
9(D) (D) #0.

Recall that D, D’ € D and that D is assumed to be a complete set of representa-

tives of H-congruence classes of chambers contained in Nef(X') N Pg. Hence
9(F)Nh(F)=0.

The union

7 =|J F(D)

DeD
is therefore a fundamental domain of the action of Auty(Nef(X) N Pg) onto
Nef(X') N Pg, as desired. O

Assume that Autg (D) = {Id} holds for all elements of D. In this case, the
equality
F(D)=D

holds for all D € . An immediate consequence of proposition 30 is then that

Uno

DeD

is a fundamental domain of the action of Autg (Nef(X) N Pg) on Nef(X) N Pg.
Recall that whenever the K 3 surface X under study satisfies

the union

px <20 and —1 ¢ Ker(nr)
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theorem 22 states that there is an isomorphism
Aut(X) ~ Autg(Nef(X) N Pg).

In this case, the assumption that Autg (D) = {Id} holds for all D € D combined
with proposition 30 implies that

UD
DeD

is a fundamental domain of the action of Aut(X') on Nef(X) N Pg, that is

Corollary 31. Assume that X satisfies the conditions of theorem 22 and that
Auty (D) = {Id} holds for all D € . Then the union |, D is a fundamental
domain of the action of Aut(X) on NeflX) N Ps.

1.9.1 Boundary walls, local boundary walls, global boundary walls.

Assume that an execution of Borcherds’ method returned a set
]D) — {D07D17D2a . '7D7”}

of representatives of H-congruence classes of chambers of Nef(X) N Pg. We

moreover assume that the conditions of corollary 31 hold, so that

UD=Dou---uD,
DeD
is a fundamental domain of the action of Aut(.X') onto Nef(X) N Pg. From now

on, we will often refer to this fundamental domain as the fundamental domain.

We now introduce the notions which will enable the reader to

» Produce graphical representations of the fundamental domain. These graph-
ical representations are visually expressive and meaningful for cases where

X has Picard number 3. Click here to view a few examples.
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» Associate a cone to the fundamental domain and determine whether it is

possible to compute its associated Hilbert basis.

To do so, it is important to characterize precisely the boundary of the funda-

mental domain.

Definition 32. A chamber D € D is said to be at the boundary of the funda-
mental domain if there exists a chamber D’ adjacent to D such that D’ ¢ D.

Such a situation happens whenever there exists an element m € (D) such that
the chamber adjacent to D along (m)L does not belong to D. In this case, we

say that (m)" is a boundary wall of the fundamental domain.

Definition 33. We say that a boundary wall (m)L is a local boundary wall if
there exist chambers D, D’ € D adjacent to each other along (m)™.

Definition 34. A boundary wall of the fundamental domain which is not a local

boundary wall is called a global boundary wall

The facts exposed at the beginning of section 1.7 enable us to immediately de-
duce that (—2)-walls are by definition boundary walls since they form the bound-
ary of

Nef(X) N Ps.

Recall that we denote by 2*(D) the set of non (—2)-walls of a Pg-chamber D.
Given a chamber D € D, we use the following procedure in order to identify
boundary walls among the elements of {2(D) and determine whether such walls

are local boundary walls or a global boundary walls: Define initially empty sets

Bary = { } and Loe=1{}.

Let D € D. For each m € Q*(D), check whether the chamber D’ adjacent to D

along the wall (m)" belongs to D and proceed as follows:

» If D' € D, then (m)l is a boundary wall of the fundamental domain. In

this case, we store the element m into Byyy.
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» If D' ¢ D and the wall (m)" has already been identified has a boundary
wall during the processing of another chamber of I, i.e., m € By, then

(m)* is classified as a local boundary wall and stored into L,..
Once all the chambers of D have thus been processed, then
» The set By, is the set of boundary walls.
» The set £, is the set of local boundary walls.

» The set
glo = Bdry\ £oc

is the set of global boundary walls.

Definition 35. The fundamental domain is said to be Hilbert Basis ready (HB-

ready) whenever all its boundary walls are global boundary walls.

An HB-ready fundamental domain yields a convex polytope defined by the in-
equalities
{z € Q7! |forallm € Bay, (x,m)q >0}

in (p — 1)-dimensional space. SageMath features related to convex cones can
be used to compute a Hilbert basis for the cone associated with this polytope.
When the conditions of corollary 31 (that can be automatically checked by our
implementation of Borcherds’ method), our program fundamentalizer is ca-
pable of processing the data produced after an execution of Borcherds’ method

to carry out a study of the fundamental domain thus produced.

1.9.2 Graphical representation of the chamber structure of the funda-

mental domain.

In this section, we explain how to produce graphical representations in (p — 1)-

dimensional space of the fundamental domain of the action of Aut(X) onto
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Nef(X) N Pg which is produced by Borcherds’ method when
Auty (D) = {I1d}

holds for all D € D. Let D € D and m € (D). Assume that m is expressed in

terms of its coordinates

m = |ag,as, ..., G,—1]g

with respect to the basis of SV. The principle enabling us to produce represen-

tations is straightforward: The wall
(m)* ={z € SR | (z,m)g =0} NPy

is associated with the hyperplane in (p — 1)-dimensional space defined as the

solution set of the equation
ap + a1T1 + asTo + ... ap_2Tp2+ ap_17,-1 =0

This approach is particularly meaningful and visually unequivocal when the
surface under study has Picard number 3: In this case, the wall associated with
an element [ag, a1, as]q, € SV is associated with the straight line defined by the

equation ag + @12 + axy = 0 in two-dimensional space. More precisely:

» If a; # 0 holds, then the wall defined by the orthogonal complement
[ag, a1, as] € SY is realized in to-dimensional space as an affine line with

equation
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1.10 Computing the (—2)-curves modulo Aut(X)

Assume that X is a K'3 complex surface such that py < 20 and —1 ¢ Ker(ny).

Theorem 22 then states that there is an isomorphism
Aut(X) ~ Auty(Nef(X) N Pg).

An execution of Borcherds’ method thus provides a generating set for Aut(X)
and outputs as complete set D of Aut(X )-congruence classes of chambers con-

tained in Nef(.X') N Pg. If we assume moreover that
Auty (D) = {1d}

holds for each D € D then Corollary 31 then ensures that

D

DeD
is a fundamental domain of the action of Aut(.X') onto Nef(X') N Ps. Borcherds’
method also provides additional information regarding this fundamental do-
main: Recall that the set of walls (D) of each chamber D explored by the
method is processed by RatDetect to identify the (—2)-walls among it. Classes
of smooth rational curves thus identified are then stored into the set R,y re-
turned at the end of the execution of Borcherds’ method. In this section, we

establish two important facts:

» Each element of R, represents an orbit of the set smooth rational curves
on X under the action of Aut(.X'), and each such orbit possesses a repre-
sentative in R 4. The cardinality Card(R,4) of the set R, therefore pro-
vides an upper bound on the number of orbits of smooth rational curves
on X under the action of Aut(X).

Regarding the finiteness of the number of orbits of the set of smooth rational
curves under the action of the automorphism group on K3 surfaces, we appeal

to the following classical result due to Sterk [20]:
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Theorem 36. Let X be a K3 surface. The set of (—2)-curves up to automorphisms
{CcX|C~P} /Au(X)
is finite, i.e., there is a finite number of orbits of smooth rational curves.

This result is here stated in the form under which it can be found in Huybrechts’
book [5], in which a proof is also provided. The second point addressed in this
section consists in providing an operational template for an algorithmic method
to refine the upper bound Card(R..).

» We will thus see that the upper bound Card(R ;) on the number of orbits

of smooth rational curves on X under the action of Aut(.X) can be refined.

Indeed, the set R, can contain more than one representative for a given orbit.
We thus provide an algorithmic solution to detect redundant representatives in
Rrat- A much more precise bound on the number of orbits will hence be obtained.
Assume that

Reat = {Ch,...,Cs}, for some s > 0

and let C' € S be the class some smooth rational curve on X. We recall that
have seen at the beginning of section 1.7 that no class of smooth rational curve
is superfluous for cutting out Nef(X') N Pg. An immediate consequence of this

fact is that there exists at least a Pg-chamber
D C Nef(X)NPg
having (C')* amongst its walls, i.e., such that C' € Q(D). Two possibilities arise:

» If D € D, then C must be an element of R, i.e., C' must have been

detected by Borcherds” method during its execution.

» If D ¢ D, then the fact that D is a complete set of representatives of
Aut(X)-congruence classes of chambers of Nef(.X) N Pg enables us to
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assert that there exists a transformation
g € Aut(X)

such that
DY = D" e€D.

In this case, the transformation g thus sends D onto a chamber D’ € ID. Recall
that the class C' € S is assumed to be the class of a smooth rational curve on X.
Since an automorphism sends the class of a smooth rational curve onto the class
of a smooth rational curve, the image of the class C' € S, by the transformation

g must be sent to an element of R,,;. We therefore have
CY € Rea
We thus established the following proposition:

Proposition 37. Assume that X satisfies the conditions of Theorem 22 and that
Autyg (D) = {Id} holds for every D € D. Each orbit of the set of smooth rational

curves on X possesses at least one representative contained in the set R ;.

The set R, may, however, contain more than one representative of orbits. De-
note by Sy, the set of orbits of smooth rational curves on X under the action
of Aut(X). Proposition 37 then implies that

Card (Son) < Card(Rar) (1.26)

so that Card(R,4) is an upper bound on the number of orbits of smooth rational
curves. We now explain how this upper bound can be refined. We start by

reviewing the means which could be used as leverage to do so. Denote by
O(C) ={C? | g € Aut(X)}
the orbit of a class C' € S of a curve on X under the action of Aut(X) . For any
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two distinct elements C;, C; € R,y such that
0(C;) # 0(Cy),

we have

O(C) N O(C;) = 0.

since the very definition of an orbit which implies that any two distinct orbit
must have an empty intersection. Before proceeding further, let us discuss prac-
tical considerations: Note that K3 surfaces with finite automorphism groups
have already been studied in detail, a wealth of information on these surfaces
can be found in Roulleau’s atlas of /&3 surfaces with finite automorphism group
[16]. We, therefore, focus on K3 surfaces with infinite automorphism group.
For such surfaces, orbits of elements of S = NS(X') under the action of Aut(X)
are by definition infinite sets. It is thus impossible to explicitly compute the or-
bit O(C) of any element C' € S. Our computer-based algorithmic approach is
indeed bound by the fact that we must confine ourselves to dealing with finite
objects. Taking this fact into account, we now reformulate what we just dis-
cussed in terms of finite sets: Assume given distinct elements C;, C; € S. Then

it is clear that the assumption
O(Ci) # 0(C5)
implies that for all subsets
AC O and B C O(Cy)

we have
AN B =0.

Taking the contrapositive of this implication leads us to the fact that finding
finite subsets
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satisfying
ANB#)

is enough in order to establish the equality

We thus introduce the notion of partial orbit: Given a finite subset
Autp, (X) C Aut(X),
the partial orbit of an element C' € S is the finite subset of O(C') defined as
Opar(C) = {CY| g € Autye(X)}.

We then recall that Borcherds’ method returns a generating set I" of Aut(X') and
define
I“=Tu{g'|gel}u{ld},

to be the extended generating set obtained by adding inverses and the identity
to I'. In order to refine the upper bound Card(R,,) on the number of orbits of
smooth rational curves under the action of Aut(.X'),we proceed by enforcing the

following procedure :

Upper bound refinement procedure:
» We compute a finite subset Aut,,(X) of Aut(X).
» We then use this subset to compute the partial orbit
Opar(C) = {C’g g e Autpar(X)}
for each C' € R, and form the set of partial orbits of elements of R ;.

For each C' € R, we then proceed as follows: For each C' € R,y \ {C}:
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> If Op(C) N Opar(C') # O then clearly O(C) = O(C") as discussed
earlier in this section. Either one of C' or (" is then removed from R, so

that the upper bound is decreased by 1.

> If Opar(C) N Opar(C') = (0 then for each element g € T\ {Id} we

compute the sets
Opue( O = {29 | 7 € Opue(C)} and Opue(C')? = {h | & € Opu )}
and determine whether there exist elements g, h € I'*\ {Id} such that
Opae(C)7 N Opae(C')" # 0

When this is the case, then O(C) = O(C"). As before, the upper bound is

then decreased by 1 and either one of C, C” is removed from the set R 4.

Assume that this procedure has been executed and that R, has thus been up-
dated. That is, we assume that the procedure returned an updated set R,,, C
Riar- Then for any two distinct elements C, C' € R, and any two distinct el-
ements g,h € T*\ {Id}, the equality Opa(C)? N Oper(C')" = 0 holds. We
can thus assert the non-existence of elements of Aut(X) acting as a non-trivial
permution on the set of partial orbits of the elements of R.,. We then take

rat*
Card(R!

'.+) as our refined upper bound on the number of orbits of smooth ra-

tional curves on X under the action of Aut(X) and consider than no further
refinement can be easily obtained from the data of Autp,(X). In case we desire
to refine the upper bound further, we need to compute a more extensive set of
elements of Aut(X') and apply the above procedure again. We now explain how
we proceed in order to compute finite subsets Aut,, (X)) C Aut(X). Our proce-
dure to do so is motivated by the fact that, as far as we know, there is currently
no computer-based solution in public access that takes as input a set of gener-
ators of an infinite group G, an integer p > 0, and outputs a set of elements

of this group having cardinality equal to p. Fix a strictly positive integer p. We
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show how to explicitly compute a subset Aut,,(X) C Aut(X) such that
Card(Auty, (X)) > p,

that is, a subset having cardinality at least equal to p.

Procedure AutParGen: Denote by
wrg)={ay...ap | a; €I 1<i<pB}

the set of words of length less than or equal to 3 in the free group over the set
['*. Obiously, we have W(I™*, ) C Aut(X ) no matter the value of /3. Recall that
I'* has been as defined as I' U I'"! minus the identity. Thus, there are strict
inclusions W(I'™*,v) € W(I'™*, ) whenever o < 3, with a and /3 positive inte-
gers. Also, note that Card(W(T'*, 3)) < Card(I'*)? holds. Before proceeding
further, we recall that the floor and ceiling functions are both functions taking

real values as input and returning integers defined as
floor: x € R— max{m € Z | m < x}
and
ceiling: x e R— min{m € Z | z <m}.
Denote by 3 be the greatest integer N such that Card(I'*)" < p, that is:

log(p) )

fo = floor (e ard (T7)))

We then compute W(I™, 3y), which , as indicated above, satisfies
Card(W (Lext; 5o)) < p.

In order to reach our goal of obtaining a finite subset of Aut(X') having cardi-
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nality superior or equal to p, we still have to compute at least
p — Card(W(I™, 5))

additional elements of Aut(.X). To do so, we compute a sequence of sets W;:
» Define W as a copy of W(I'y, 5*).
Assume that WW; has been computed and proceed as follows:

» If Card(W;) > p holds, then the goal of obtaining a subset of Aut(X') of

cardinality at least equal to p has been achieved, the procedure stops.
» Otherwise, we compute W, . We start by defining

P
Card(W;)"

6j+]_ = ceiling(
There are two possibilities:
o If 0,41 < Card(I'*), pick a subset S; ;1 C I'*\ {Id} such that

Card(Sj41) = dj41-

e Otherwise, define S;.; as a copy of I'*.

We then compute the set
Wj+1 = {ab | a € Wj, be 8j+1}

and go back at the beginning of this procedure with WV, as input data.

After a few iterations, a set W, satisfying Card()V,,) > p will be obtained for

some integer m. We set
Autp, (X)) =W,,.

The structure of the procedure AutParGen can be summarized as follows :
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AutParGen (7 + 1)-th iteration
p
does W <17
True
\; False
output

Autpar(X) = Wj

5j+1 = Celhng( W
J

True does 0j41 < Card(I'™) 7 False

pick a subset S;11 C I'"\{Id}

Sjp1=I"
such that Card(Sjy1) = d;41 g+l

Wj_|_1 = {ab ’ a € Wj, be Sj_|_1}

go to (j + 2)-th iteration
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The whole upper bound refinement procedure introduced in this section can be

schematized as follows:

pE L
Generating set I' of Aut(X)

AutParGen
v

Set Autpar (X) C Aut(X)
such that Card(Autp., (X)) >p
used to compute partial orbits Opa,(C) for C' € Rya

initial set
+
Rrat - {017 cee 705} updated Ryat

for each C' € R, :
for each C" € Ryat\ {C} :
for each distinct g,h € T*\{Id} :
if  Opar(C)? N Opar (CY" £ 0
update Riat = Rrat\ {C'}
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1.11 Toward a parallelized Borcherds’ method

In order to compute a generating set of Aut(.X), Borcherds’ method enforces
means which are brute force flavored, by design. As discussed in section 1.7.4
and even mentioned by Shimada himself in his article [19], the mechanics on
which relies the congruence testing procedure CongChecker testify to this fact.
Using brute force, however, has a price in terms of resources and computation
times. Due to the large amount of data that has to be processed depending on the
K3 under study, executing Borcherds’ method may require time. For instance,
when computing a generating set of Aut(X,) for a K3 surface X; with Picard

number 5, i.e., having a Néron-Severi group with Gram matrix

2t 0 0 0 0
0 —2 0 0 0
0 —2 0
0 0 —2 0

0 0 0 -2

with respect to a fixed basis, we observed that whenever ¢ > 5 Borcherds’
method has to deal with more than 80.000 representatives of congruence classes
of chambers during the final stages of its execution. Since each newly explored
chamber has to be tested for congruency against each such representative, the
method has to perform tens of thousands of congruence tests for each newly
discovered chamber. When ¢ > 7, the number of representatives is way over
100.000. Our idea to deal with this issue is based on common sense principles:
We modernized the method in such a way that procedures such as congruence
testing can be deployed in parallel over various worker processes. Let us use an
example to illustrate this idea : Assume that Borcherds’ method is exploring a
chamber D and that this chamber has to be tested for congruency against the
elements of the set
S ={Dy, D1, ..., Drogoo}

174



That is, Borcherds’ method has to apply CongChecker 80.000 times: First, D
has to be tested against Dy, then against D, then against Ds,..., and finally
tested for congruency against D7gg99. The congruence testing part of the clas-
sical Borcherds’ method, as described by Shimada in his article [19], almost a

decade ago, was intended to be implemented over a single for loop, i.e.,

for each chamber

Dy, € {D()’ Dy, ... ,D79999}

run CongChecker(D, Dy,).

We cannot abide by such an old-fashioned approach in 2022. Common sense
dictates that instead of performing 80.000 congruence tests in series, this work-
load should be split over, say, 16 processes F;, 1 < j < 16, in parallel, where
each process is expected to perform 1/16th of the overall workload, that is, 5000
congruence tests. Formally, we take the set S and split it into 16 subsets S; for
j €41,2,...,16} of cardinality 5000. We here assume that a machine having
a CPU with at least 16 logical cores is available, thus enabling the OS scheduler
to dispatch each of these 16 worker processes over a dedicated core for paral-
lel execution, making the best possible use of the CPU resources available. In
fact, things are quite simple : Enforcing this approach amounts to running 16
for loop in parallel : Each loop iterates 5000 times, instead of a single for loop

iterating 80000 times.

(Process P;)
for each chamber
= Sj,

run CongChecker(D, D').

One remark : In an online section, we explain that Shimada’s approach to con-
gruence testing can be massively modernized. These enhancements, combined
with parallel deployment of congruence testing, enabled us to obtain astonishing

results for cases involving a hefty number of representatives of cong. classes.
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The Python multiprocessing package includes a major asset which suits per-
fectly our needs: The Pool object. As indicated in the Python official documen-
tation, the Pool object offers a convenient means of parallelizing the execution
of a function across multiple input values, distributing the input data across
processes (data parallelism). We thus made use of the Pool object to parallelize
many procedures within our implementation of Borcherds’ method, thus achiev-
ing massive performance improvements compared to our early implementations
of Borcherds’ method produced by following to the letter the guidelines from
Shimada’s that can be found in [19]. We expand on this matter in the section 1.11
of this thesis. Since we always try to make the most out of the hardware at our
disposal, we have to mention that our first attempt to speed up our implemen-
tation of Borcherds’ method consisted in using GPU computing to perform the
matrix multiplications which occur during an execution of Borcherds’ method.
However, the small size (at most 26 x 26) of the matrices involved in Borcherds’
method does not allow GPU computing to express all its power. Our experiment
initially consisted in managing to be able to perform CUDA operations in Sage’s
Python environment, with an old RX580. Guidelines on how to reproduce this
experiment are provided on the website K3surfaces.com. We ended by setting
the GPU approach aside and focused on parallelism involving CPU computing

for the remainder of our study. In this section, we proceed as follows:

» Insection 1.11.1, we start by introducing the basic principles behind process-
based parallelism. We then provide a quick overview of the internal proce-
dures of Borcherds” method under the viewpoint of parallel deployment,
focusing on those suitable for doing so. We then introduce the structure
of a modernized version of Borcherds” method : The Poolized Borcherds’
method, which arises due to the enforcement of process-based parallelism

with the Pool object from multiprocessing,.

» In section 1.11.2, we explain how we applied parallelism at the scale of

Borcherds’ method itself, thus opening new concrete perspectives.
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1.11.1 The Poolized Borcherds’ method

Assume that a massive pile of sand has to be cleared from the entrance of a town
building. A city worker arrives in front of the disaster and can either clear the
pile on its own or bring reinforcements by calling his colleagues and mobilizing
a team of municipal workers. In practice, a team of workers should be much
more efficient than a single individual in clearing a huge pile of sand. Working
efficiently as a team, however, requires coordination. To this end, tasks must be
precisely defined and distributed evenly across the team of workers, which are
assumed to be endowed with equal abilities. Assume that the pile of sand is the

finite set

S:{qlquv"'7q1W}7

with M integer. Assume that clearing the pile of sand consists in applying a
procedure f to the elements of this set. Mobilizing only one worker to clear the

pile of sand amounts to performing

f(Q1)> f(%); ceey f(QM)

in series. One worker, alone and on his own, digs out the sand, shovel by shovel.
Depending on the size of the pile, the clearing process may take a lot of time. An
analogous situation on a computer would be the execution of a single process,
i.e,, of a sequence of tasks, performed one by one, in series, sequentially, on a
single core at any given time. On the other hand, mobilizing a team of workers
and evenly splitting the workload between all the team members will reduce the
amount of time required to clear the pile of sand. On a computer, the sequence
of tasks to be accomplished would then be distributed over more than one pro-

cess, running in parallel and making the best possible use of available resources.

Note that clearing a pile of sand with a team made of various workers can
be done without defining any particular order. Distributing the work between
available workers is enough: Order does not matter. Tasks for which order is

irrelevant should thus be considered first when enforcing parallelism.
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Regarding Borcherds’ method, what are the tasks for which the order does not
count? Taking a look at the figure depicting the algorithmic structure of the
method, an obvious candidate stands out: Congruence Testing, that is, the
procedure CongChecker. Indeed, when a newly explored chamber D has to be
tested for congruency against each of the representatives of congruences classes
of chambers previously discovered. The order in which the tests are performed
does not matter. Similarly, when RatDetect is applied to the set of walls of a
chamber, wall by wall, order does not count. Another example is the compu-
tation of the Weyl vectors of chambers adjacent to a given chamber along its
non-(—2)-walls (w.r.t. anti-backtracking) : The order to which WeylAdj is ap-
plied to these walls is irrelevant. We thus have already identified at least three
internal procedures of Borcherds’ method which are obvious and suitable can-
didates for deployment in parallel over various worker processes. Congruence
testing, due to its computationally intensive brute-force nature, is the one for
which we have the most to gain by enforcing process-based parallelism, e.g.,
by deploying CongChecker in parallel over various worker processes. Assume
that N worker processes

P, ..., Px

can be mobilized in parallel, each and that some procedure f has to be applied
to each element of a finite set S. We assume that the overall result of the whole
operation is not impacted by the order to which the elements of S are processed.
How should we proceed to distribute the workload of having to process the

elements of S to take advantage of our NV worker processes?

» If Card(S) < N, we call for a number Card(S) of workers and assign
one element of S to each of them. The other N — Card(S) workers idle.

» If Card(S) > N then we split S into N subsets Sy, ..., Sy and assign
each of them to a worker §; —— P; which applies the procedure f to

each element of S;.
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This is as simple as it looks.

In order to determine the cardinality Card(S;) of each of the N subsets S; C S

in such a way that
N
Z Card(S;) = Card(S),
j=1

we can proceed as follows. We start by performing the euclidean division of
Card(S) by N. There exist integers ¢ and r with » < N such that

Card(S) = Nq + .
Moreover, the assumption 7 < N enables us to find an integer 0y, such that
N=1r+0n,.
We can thus express Card(S) as:

Card(S) = (r+ony)q + 7
= (q + 1)T + q(SNJ“

A natural way of partitioning S into N = r + 0, subsets thus appears.

The set S is split into:
» 1 subsets each containing ¢ + 1 elements.

» Oy, subsets each containing ¢ elements.
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Example. Assume that Borcherds’ method is at the beginning of its 53th itera-
tion during the computation of a generating set of Aut(X5) where Xj is the K3
with Picard number five in the case where ¢ = 5, with Gram matrix presented at
the beginning of section 1.11. The first newly discovered chamber D has to be
tested for H-congruency against 80.218 representatives of congruence classes.
Thus, we have Card(S) = 80128. Assume that we have a CPU with at least
16 logical cores, so that we can execute 16 worker processes in parallel without

hassle. We set NV = 16. Proceeding as above, we have

80218 = 5013 - 16 + 10
= 5013 - (6 + 10) + 10
=5013-6+5014-10

We thus split the workload into 6 subsets having each cardinality 5013, and 10
other subsets each having cardinality 5014.

We introduced the main ideas and basic concepts behind process-based paral-
lelism. We now introduce the tools that enabled us to enforce these concepts
with a computer-based approach. The Pool object from the Python multipro-
cessing library is an efficient, flexible and reliable tool that can be used to make a
Python program benefit from the use of process-based parallelism, thus enabling
us to take full advantage of the multi-core architecture of a CPU. Adapting our
code in order to take advantage of the Pool object was worth the effort. The
key do so consists of having a clear and global view of the algorithmic structure
under study. Critical points that can benefit from deployment of procedures in
parallel can then be readily identified. Going into precise details on how we
made use of Pool and produced the Poolized Borcherds’ method is a battle that
cannot be fought in this PDF, but can be fought online. Nevertheless, we will
provide a few bits of advice and explain where we used Pool within Borcherds’
method. First, we had to identify the tasks and procedures which can lead to

noticeable performance gains when deployed in parallel.
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For instance, the for loops in which time and resource expensive functions are
repeatedly executed are usually critical spots on which performance gains can be
obtained by enforcing process based-parallelism. Within Borcherds’ method, we
used process-based parallelism at the level of the procedures mentioned below.
Note that doing so led us to the Poolized Borcherds method.

» Detection of (—2)-walls: In order to identify the (—2)-walls among the
elements of the set of walls of a chamber, the procedure RatDetect de-

scribed in section 1.7.1 can be deployed in parallel.

» Computation of Weyl vectors: The procedure WeylAdj can be de-
ployed in parallel to compute the Weyl vector of each chamber adjacent

to a chamber along its non (—2)-walls.

» Computation of the set of walls: The procedure DeltaW repeatedly
calls the Shimada’s custom ShortVectors algorithm ShiVectors (described
in section 1.4. These calls can be distributed over various worker pro-
cesses. Within SetOf Walls, the chunk of code involving linprog from
scipy.optimize, used to deal with Shimada’s LP problem, is deployed in

parallel over various worker processes, through Pool.

» Congruence tests: As discussed previously, Borcherds’ method may have
to perform congruence tests by repeatedly applying the procedure Con-
gChecker described in section 1.7.4. Tens of thousands of congruence
tests may have to be performed for each newly discovered chamber. It,
therefore, makes perfect sense to distribute the resulting workload over
multiple worker processes, each running a CongChecker block and pro-
cessing a chunk of the total workload. We took great care in optimizing
and enhancing for execution in series Shimada’s 2013 congruence testing
procedure before proceeding to parallel deployment. Parallel deploy-
ment should not be done blindly. We recommend at least trying to
get the most out of the procedures, deployed in series, and then starting

thinking parallel. Doing so enabled us to obtain substantial gains.
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for each D' adjacent to D along an element of (D)

ats N [ ]
Data t‘upk’_ Weyl vector w’ -
(wp, Au (D), (D), (D)) of the chamber D’ Computation of
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I —2)-walls of D P =
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: Pool is used to apply : J/ worker processes.
I RatDetect to Q(D) | That is,
b= \r _______ - SetOfWalls U D"is split into
sot T, (D) of non improved by internal Ciy...,Cy
(=2)-walls of D use of Pool each of which is
wrt anti-backtracking assigned to a worker
set (D) of walls
i e of the chamber D’ CongChecker
Computgtlon of the Weyl_ block
vector of each chamber of

Pool with M worker processes

Pool is used to apply
WeylAdj to Q.(D)

|
I
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|
|
|

[ |

e l o l ¢; J o J Cur

‘Worker 1 Worker j ‘Worker M
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Rosults from all workers are collected and returned

L1 and I' are updated if necessary

Process the other chambers in
L. until all chambers have been
processed. When this is the case,

|
|
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I
|
|
|
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pursue as follows...

» If L4 =0, then the Borcherds
method ends.

» If L1 #0, apply this
procedure to the chambers in Ly 4.
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The following figure illustrates the structure of a CongChecker block:

Chamber D,
list of chambers Z.
Each chamber D' € T
will be tested against D
for H-congruency

CongChecker block

for each D' € T :

such that D = DY

I !
I !
i l
I !
i are D and D’ |
: H-congruent ? i
I !
i CongChecker |
| |
| i
| |
. False True |
| :
I !
I CongChecker :
: returns at least i
i one g€ H :
| |
I !
I !
' !
l !

Results are stored
and returned when
all of the elements of 7
have been processed

Note that in case all CongChecker blocks report

that D is not H-congruent to a chamber in the list
T assigned to them then the Poolized Borcheds’ method
stores D into Ly41, as a representive of a new congruence class

183



1.11.2 Enforcing parallelism at the scale of Borcherds’ method

We introduced the basic principles of process-based parallelism. These prin-
ciples enabled us to implement Borcherds” method while taking advantage of
modern hardware. We now explain the most straightforward way to make use
of parallelism on a broader scale. Instead of using process-based parallelism in-
side of the method, that is, at the level of its internal procedures, we will use it at
the level Borcherds’ method itself. We first have to remember that the method

relies on two core components to fulfill its ultimate purpose:

» One component enables the method to explore the chamber structure
over Nef(X) N Pg.

» The other enables the method to process this chamber structure in order
to obtain generators of Auty(Nef(X) N Ps).

Using process-based parallelism within the method enables us to obtain massive
improvements on the processing component of Borcherds’ method. Indeed, we
have seen in the previous section that a solution such as Pool can be used to
deploy in parallel or enhance procedures such as CongChecker, DeltaW or
RatDetect. We now focus on using parallelism on the exploration component
of Borcherds’ method. Going back to the end of section 1.7 and taking a look at
the figure depicting the structure of the classical Borcherds’ method, it is clear
that the backbone of the algorithmic structure of Borcherds’ method is a top-
level for loop: For each chamber D € L, the set of level-k representatives of
congruence classes of chambers, Borcherds’ method discovers chambers of level
k + 1 by exploring the surroundings of D along its non (—2)-walls. On paper,
the most straightforward course of action consists in distributing the workload
represented by £, over various worker processes. Let’s visualize this idea by us-
ing a picture. We keep things simple : During its execution, Borcherds’ method
can be viewed as a hamster exploring a chamber structure. The following figure
is based on a genuine representation of a chunk of the chamber structure over
Nef(X') NPs when X is the K3 surface with Néron-Séveri S = NS(X') having
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Gram matrix equal to

8 0 0
0 -2 0
0 0 =2

with respect to a fixed basis.

o

Assume that :
» The green-colored chamber is the initial chamber.
» Chambers in blue are chamber of level 1.
» Chambers in purple are chambers of level 2.
» Chambers in yellow are chambers of level 3.
» Chambers in red are chambers of level 5.

Assume that Borcherds’ method is represented by the hamster emoji, as pictured
above. Furthermore, we assume that the method starts exploring and processing

chambers of level 4, colored in red, by adjacency to chambers of level 3, in yel-
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low. Please note that we assume that each chamber in yellow represents its own
congruence class of chambers, i.e., we assume that £3 contains all the chambers
in yellow. Our idea merely consists in distributing over multiple processes the
workload represented by exploring and computing the walls of chambers ad-
jacent to chambers in £3. For example, we can split L3, which contains the 8

yellow chambers, into four subsets
£, e e L.

each containing 2 chambers. We then assign each of these subsets L’,(gj toa pro-
cess, each represented by a hamster Emoji, in charge of exploring and processing
red chambers adjacent to the chambers in E,(gj ). We illustrate the situation by up-

dating our previous figure :

5 t5

Z 8

Each one of the four hamsters pictured above would thus receive an assignment
of two yellow chambers, and would have to explore and process their adjacen-
cies. In practice, many issues arise when such a straightforward parallelized
approach of Borcherds’ method is implemented. If we assume that each ham-

ster is capable of fully enforcing the features of Borcherds’ method, we have to
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avoid and mitigate the consequences of the two following issues :

Issue n°1 - The pitfall of unrestricted nested parallelism: Assume that we
launch in parallel /V instances of a program capable of enforcing all the internal
procedures of Borcherds’ method. Assume that each such instance can deploy
these features with a process-based parallelism solution such as the Pool ob-
ject. That is, we assume each instance can mobilize its own dedicated team of
workers, e.g., M dedicated worker processes, that can be mobilized to deploy
procedures such as RatDetect, WeylAdj or CongChecker with process-based
parallelism. We then have to keep a firm eye on resources. The question is
then : Is our machine powerful enough to handle a total number of M x N
resource-hungry processes running in parallel? Taking modest values such as
N = M = 4 already yields a total of 16 processes, each potentially mobilizing
the full power of a logical core. We could be facing a CPU bottleneck situation.
Due to the state of technology when this thesis was produced, such a situation
would then have been a severe issue for most consumer-grade machines. We
have to carefully pick the values of M and N to efficiently allocate the available

resources and thus obtain the best performance ratio.

Issue n°2 - Communication is necessary to work efficiently as a team:
Assume that the burden of exploring and processing chambers of level k + 2 by
adjacency to chambers of level £+ 1 has been distributed over various processes.
We thus assume that £, has been split into /V subsets E,(jll each assigned to a
worker process F; which will explore and process the chambers of level £+1 ad-
jacent to chambers in [,,(lel along their non (—2)-walls for 1 < j < N. Assume
that

» A chamber D, € 519421 is discovered by process P; at time ;.

» A chamber D, € C,(jzl is discovered by process P, at time t5 > ;.

» D; and D, are distinct and congruent.
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Process P, computes the set of walls of D; and test it for congruence against all
the representatives of congruence classes of chambers which are already known.
Assume that D; represents a new congruence class. We have to make sure that
processes share information and communicate through a shared database. In-
deed, Process P needs to be informed of the existence of D; so that the chamber
D, it discovers can be tested against D; for congruency. The chamber D, will
otherwise be classified as representing a new congruence class. A dramatic con-
sequence of this situation is that a new generator of Auty (Nef(X) N Pg) which
could have been obtained by testing Ds against D for congruency with Con-
gChecker could here remain undiscovered forever, thus skewing the purpose,
intent, and results of the execution of Borcherds’ method. We thus see that
enforcing parallelism at the scale of Borcherds” method cannot be done while
ignoring the issue of communication between processes. Indeed, some tasks
imperatively require communication between processes, as we just discussed
in the case of congruence testing. We did not have enough time to produce
an implementation of Borcherds’ method involving various processes capable
of performing their own congruence tests while being synchronized and com-
municating through a common database. We, however, urge people to go in
this direction in the future. Enabling processes to conduct their own congru-
ence tests while sharing data in real-time is undoubtedly one of the significant
challenges regarding the future of Borcherds’ method. We must however con-
cede that in order to deal with most surfaces with small Picard number, using
parallelism at the internal scale of a single instance of Borcherds’ method, e.g.,
enforcing congruence testing over a pool of 16 or 20 worker processes is more
than enough to complete an execution of the method in a reasonable amount of
time. Indeed, the cardinality of the complete set of representatives of congru-
ence classes of chambers of Nef(X') N Pg obtained at the end of an execution
of Borcherds” method on such surfaces does not usually exceed a few thousand
chambers, at most. As indicated on K3surfaces.com, generating sets of the re-
spective automorphism groups of various famous surfaces with Picard number

3 or 4 can be obtained in a matter of seconds, minutes at worst, and yield a com-
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plete set of representatives of small cardinality. Regarding the less straightfor-
ward cases, our extensive use of process-based parallelism at the internal level
of the method, combined with a substantial preliminary effort to optimize the
procedures themselves nevertheless enabled us to obtain significant improve-
ments. For instance, during an application of the method on a K3 of Picard
number five, which involved more than tens of thousands of representatives of
congruence classes, we observed that testing a given chamber for congruency
against 80231 other chambers was 1000 times faster with our modernized ap-
proach than when we used our programs implemented by following to the letter
Shimada’s guidelines from his 2013 article [19]. Despite these improvements, we
observed that a severe limiting factor in terms of computation times still had to
be considered and put under control: The computation time of the sets of walls
of a chamber. Our idea to deal with this issue consisted in enforcing parallelism
at the level of Borcherds’ method itself, as discussed earlier, but this time with
an approach focused on the parallel deployment of various processes to perform
the exploration of the chamber structure and of the computation of the sets of
walls of chambers. To this end, we adopted a strategy based on the use of a

primary process P and of auxiliary processes P, ..., Py, as follows:
» The primary process F is a full instance of Borcherds’ method.

» Worker processes P, ..., Py are endowed with Borcherds’ method fea-
tures RatDetect and WeylAdj to navigate within the chamber structure
and of DeltaW and SetOf Walls to compute the respective sets of walls

of chambers.

» All processes are synchronized by level and communicate through a com-

mon shared database.

» Allprocesses are allowed to deploy their internal procedures using process-

based parallelism to accomplish their duties.

The mechanics behind this approach can be described as follows: At the be-

ginning of each iteration, say the (k + 2)-th iteration, the set L5, containing
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the chambers whose adjacencies are to be explored and processed is split into
N subsets E;fll for j € {1,...,N}. We set [,,(321 = L+ and assign to each

process P; :
» A subset L’;ﬁl C Lim
> Aset Rgil containing the sets of walls which will be computed by P;.

> A set 5&)1 containing the data of the Weyl vector of chambers whose set

of walls have been computed by P;.

As soon as the process P; has computed the Weyl vector wp of a chamber D
of level k + 2 adjacent to a chamber in ﬁ,(il)rl along a non (—2)-wall, P; checks
whether the condition v
wp € | J &L, (1.27)
i=0
holds. That is, the auxiliary process P; checks whether D has already been

explored and processed earlier by another process. Two possibilities then arise:

» If the boolean value associated with the expression (1.27) is true, then the
process P; either proceeds to its next task in line or idles until the next
iteration if P; has already completed the exploration of the adjacencies of

all chambers in its assigned share of the workload ﬁ,(gll.

» If the boolean value associated with the expression (1.27) is false, then
P; knows that D has never been explored before, and thus takes care of
the computation of the set of walls of D. As soon as P, completes the
computation of (D), it stores a copy of this set into R,(lel, and stores a
copy the Weyl vector wp of D into the set 8,&21 so that other processes
can know that (D) has indeed been already been computed by P; during
the (k + 2)-th iteration, and should not be computed again.
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We hence see that the two main purposes of the auxiliary processes P; consist
in (a) exploring the chambers adjacent to chambers in their respective assigned
share ﬁ,(i)rl of the entire workload Ly 1, and (b) computing the respective sets

of walls of these chambers if these sets have not been computed earlier.

Auxiliary processes P; # P, thus work to the benefit of the primary process
P,. The latter is a full instance of the Poolized Borcherds’ method. Whenever
the mechanics of Borcherds” method would require the primary process Fj to
compute the set of walls Q(D) of a Pg-chamber D with Weyl vector wp, the

impact of our new approach lies in the fact that /) now checks whether

N
Wp € U &
i=0

holds. When this is the case, the primary process P, retrieves (2(D) from

N .
URiL
i=0

and thus does not have to spend time and resources on the computation of this
set of walls. Otherwise, the primary process P computes the set of walls (D)

of D, stores a copy of (D) into R,(gl, and a copy of wp into 5,&?21.

We devised this strategy in such a way that Borcherds’ method can be fully ex-
ecuted by the primary process F;) no matter what auxiliary processes produce.
Even if the execution of all the auxiliary processes P; # F, is interrupted, the
primary process Fy can thus continue running Borcherds’ method all by itself.

The situation is illustrated in the following figure.

191



15 15
s L&
Primary process Auxiliary processes
.
5 5

We thus represent the primary process as a giant hamster. The path of this
giant hamster inside the chamber structure does not depend on the behavior
of the tiny hamsters. During the iteration, the giant hamster explores each of
the red chambers adjacent to the yellow chambers. However, the tiny hamsters,
which represent auxiliary processes, work in sync to the benefit of the primary
process. These smaller hamsters compute the sets of walls of red chambers,
which have been assigned specifically to each of them at the beginning of the
iteration by the giant hamster, and thus enable the latter to have direct access
to the data of these sets of walls when needed, thus minimizing the workload
over the giant hamster’s shoulders in terms of the computation of sets of walls.
We now formally explain how we enforced this approach. In order to enable
the primary process I} to communicate with the auxiliary processes through
a shared database, we swap the Walls computation block, from the Poolized

Borcherds’ method, also displayed on the following page,
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Weyl vector w
of the chamber D

Walls computation block
DeltaW

improved by internal
use of Pool

l

prov(Ay)

SetOfWalls

improved by internal
use of Pool

set Q(D) of walls

of the chamber D

for a new functional block, called the Poolized Functional Block. A PFB block
takes a Weyl vector wp of a chamber D as input, determines whether the set of
walls of D has already been computed by a worker process, and computes its
set of walls whenever this is not the case. Hence, a PFB block can test whether
the condition

N

wp € U 51521
i=0

holds. As we already discussed, two possibilities then arise:

» Whenever this condition holds, PFB retrieves the data of (D) from

N .
R
1=0

» The PFB block otherwise computes (D) with DeltaW and SetOf Walls.
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Poolized Functional Block (PFB) (Aux. process P;)

Weyl vector w’ ‘
of the chamber D’ Weyl vector w’
\l/ False of the chamber D’
Has Q(D’) already
been computed by ‘Walls computation block
by another process 7 l/
N
ie., does w' e U 5](;)1 ? : Deltaw
— improved by internal
use of Pool
True prav (M)
- p SetOfWalls
TELTiEe Q(D ) improved by internal
i (i) use of Pool
from U Ry

i=1

set Q(D’") of walls
of the chamber D’

Database
update

» Store (D')into joll

» Store w’ into 5,?_21

S
g

The inner workings of a PFB block are depicted in the figure above, while the
updated algorithmic structure of the Poolized Borcherds’ method augmented

with a PFB block is illustrated in the following figure.
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Primary process iteration

for each D € Ly 4

|
for each new chamber D’ adjacent to D
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|
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|
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pursue as follows... :
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|
|
|
:
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
J/ : set Q(D') of walls
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
:
|

» If £y =0, then the Borcherds’
method ends.

» If Ly # 0, apply this
procedure to the chambers in Ly4o.
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We still have to precisely formalize the mechanics behind the auxiliary pro-
cesses P; # Fy. Before proceeding further, recall that we assume that Borcherds’
method is starting its (k + 2)-th iteration and that the primary process P, splits
L} 11 into subsets

LW

M
L k+1

k+1o -

each assigned to an auxiliary process P;. Such a auxiliary process F; must be
able to:

©)
k+
of level k£ + 1 adjacent along such walls will not be visited. Thus, auxiliary

» Identify (—2)-walls among the walls of chambersin £, ; so that chambers

processes must be able to execute the procedure RatDetect.

» Compute the Weyl vector of the chambers of level k4 1 adjacent to cham-
bers in E,(jll along their non (—2)-walls. Auxiliary processes, therefore,

need to include the procedure WeylAdj among their features.

» Consult the shared database to determine whether the set of walls of a

given chamber has already been computed.

» Compute the set of walls of a chamber so that the procedures DeltaW
and SetOf Walls have to be among the procedures that can be executed

by auxiliary processes.

We formalize these requirements by introducing an enhanced version of the PFB
block, called the Autonomous Poolized Functional Block, or APFB. This block
is obtained by combining RatDetect and WeylAdj to a PFB block, thus making
the latter autonomous by enabling it to safely navigate within the portion of the
chamber structure assigned to the auxiliary process over which it is executed.
An important thing to remember is that both PFB and APFB can deploy their
respective internal procedures using process-based parallelism with Pool, hence

the P in their respective abbreviated names, for Poolized.
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Autonomous Poolized Functional Block (APFB) (Aux. process Pj)

List L,(lel' of chambers

for each D e £Y),

—>} for each D’ adjacent to D along an element of Q. (D)

Poolized Functional Block (PFB)

Data tuple

vector of each chamber of
level k+2 adjacent to D

set QD) of walls
of the chamber D’

Database
update

Pool is used to apply
WeylAdj to Q,(D)

|
|
\
|
|
|
|
|
|
|
|
l
I (wp, Au(D),Q(D),Q(D)) Weyl vector w’
| associated to D of the chamber D’ Fal Weyl vector w'
| alse s o wv D'
: which has been computed of the chamber [
q AW N
! during the previous iteration HE‘“ Q@ ) already -
een computed ‘Walls computation block
: l by another process ? J/
| N
o N __ . , O DeltaW
~ A ie., does w' €| )& ?
: : Detection of the : ' 7!, ket improved by internal
I I (—2)-walls of D | | use of Pool
: : Pool is used to apply i Tr l
Il RatDetect to QD) R prov(Awr)
L e |
set )
! a5 £1,(1) of non , , SetOfWalls
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| I Computation of the Weyl ]
|
|
|
|
|
|
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» Store Q(D') into Riyjl

» Store w’ into £

QD) |
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Enforcing parallelism with this state of mind can be pushed a little further to
bring an additional improvement to Borcherds’ method. A fundamental prin-
ciple of Borcherds’ method is that the data tuple associated with a chamber D
of level k + 2 adjacent to a chamber in £, along a non (—2)-wall is stored
into L2 whenever D represents a new congruence class. Another basic rule
of Borcherds’ method is that the adjacencies of such chambers, i.e., the adjacen-
cies of chambers discovered during the (k + 1)-th iteration, are explored during
the (k + 2)-th iteration, and not earlier.

Viewing things in terms of parallel deployment enables us to bend this rule and
think ahead. Indeed, delaying the exploration of the adjacencies of chambers
adjacent to chambers discovered during the (k + 2)-th iteration, i.e., the explo-
ration of chambers of level £ + 3, until the next iteration no longer makes sense
when parallelism can be enforced. We thus introduce an extra auxiliary process
Py tasked with the computation of the respective sets of walls of chambers
of level k + 3 adjacent to chambers in L5 along their non (—2)-walls, dur-
ing the (k + 2)-th iteration, and proceeding by the FIFO principle: First In, First
Out. The process Py is an instance of APFB. As soon as the primary pro-
cess Py stores a chamber into £ o, the process Py explores its adjacencies
along its non (—2)-walls and computes their respective sets of walls, following
the mechanics of APFB. Sets of walls computed by Py, are stored into a set
Ry J:rll, while the Weyl vectors of the corresponding chambers are stored into a
set 5,?5:{1. Both sets are part of the shared database and will be at the disposal
of all processes during the (k + 2)-th iteration. In terms of scalability, it is of

course possible to assign additional processes to this task.

Our approach, in this thesis, toward a parallelized Borcherds’ method can thus

be summarized in the following figure:
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Primary process Py

PFB-enhanced

» processes Cigzl =Ly

At the beginning of each iteration,
Primary process Py splits the workload

Lys1 into sublists E/(CIJZP Efflp 55911)1 » updates Ry}, and &,
which are distributed across Aux. processes » updates Lyio
v
,,,,,,, ux. process
Shared datm E)NH)
> P
Sets of walls : ((JR{)) UR APFB
i=0

» processes Ly

N

Weyl vectors : (U 5;221) U g}f‘ff')
i=0

» updates R,(C‘XTU

» updates E,Elifrl)

I w1 HEeY |
(1) | J (V) 1
R I I Ryt ! : Rk+1!
Aux. process | Aux. process : Aux. process
pm ! pU) i pv)
b DroCoSSeS e ) osses V)
processes L, » processes L/, » processes Ly )
» updates Rilll » updates RL’L » updates ’R;?I
» updates 5,5,?1 » updates S,Si)l » updates 8}(1:
(1 () (N)
Ly Ly Ly

The above structure is a not just a concept: It is fully operational, illustrated
on concrete examples and explained on our website. The PFB / APFB strategy
illustrated by the figure above can also be deployed at the network level to take

advantage from the processing power of several machines.

There is no doubt that massive improvements can be brought to Borcherds’
method by enforcing theoretical material related to the field of study of com-
plex systems involving synchronization, parallelism, concurrency, sequencing

and conflict management between processes.
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The following diagram illustrates, in a concrete manner, our global approach to-
ward a parallelized Borcherds’ method. We did our best to provide a sound and
safe starting point, a beachhead. We sincerely believe that everything remains

to be done with regards to the deployment of Borcherds’ method in parallel.

Toward a Parallelized Borcherds' method,
a three-dimensional approach

Deployment of the PFB / APFB N
model at the Network / Cloud level

Implementation of the PFB / APFB model
as an extension of the PBM
- Partial parallel deploy. of the PBM

Parallelism at the internal level
of the Borcherds' method with Pool
- Poolized Borcherds' method (PBM)

We kindly ask our readers to keep in mind that the initial goal of this thesis
consisted in studying automorphism groups and orbits of (—2)-curves on K3
surfaces X; with Picard number 3 for various values of the parameter ¢t € Z.
Ultimately, we provided computer-based solutions that enabled us to fulfill our
end of the deal with full automation. These solutions have a much larger scope
of application and thus opened many doors for further study. However, study-
ing the parallel deployment of Borcherds’ method was by no means the aim of
this thesis. We did our best, with the tools at our disposal, and within the time
constraints imposed by this doctoral project, to bring our ideas to life.

We, nevertheless, write it again: Everything remains to be done on the subject
of parallelism & Borcherds’ method and there is huge potential for development

on the subject if this endeavor is carried out from an HPC perspective.

Parallelism and the Borcherds’ method - Online content
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Part II
A computer-based
algorithmic approach
to the study of projective models
of K3 surfaces and unirationality

of their moduli spaces
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2 Projective models & unirationality

Smooth rational curves C' ~ P! are central objects of study in the field of K3
surfaces. The term (—2)-curves is often used to refer to classes of smooth ratio-
nal curves on K3 surfaces. Note that in this entire dissertation, we willingly
make no distinction between a (—2)-curve and its class in the Néron-Severi
group. In 2019, Pierre Lairez and Emre Can Sert6z published an article [9] in
which can be found an algorithm to compute classes of smooth rational curves
on K3 surfaces. This algorithm, which mobilizes material from Vinberg [21] and
Shimada [18], inspired our advisor Professor Xavier Roulleau to produce an im-
plementation which was then released along with the publication of his article
[15] in 2019. Given the Gram matrix of the Néron-Severi group NS(X) of a K3
surface X, an integer m and an ample class Py € NS(X), Roulleau’s program
SmoothRationalCurves outputs the set of classes C' € NS(X) of all smooth
rational curves on X such that C' - F; < m. Roulleau designed his program in
such a way that modifying a few lines of code and adding an input parameter
d is enough to make his program capable of returning the set of all classes of
curves D satisfying D? = d and D - Py < m. We have to mention how impor-
tant this program was to us during during the early days of this thesis. Had this
program never been produced by Roulleau, it is probable that our study would
then have never been oriented toward the use of computer-based solutions for
the study of K3 surfaces. We used Sage’s Pythonic interface to Magma in order
to integrate Roulleau’s program into a Pythonic environment. We present the
mechanics and the algorithmic structure behind this program in section 2.1. Our
adaptation of this program is named CGS, for Classes of any Given Square, and
can be found under the same name in our proj_mod suite. We produced a real
Python port of CGS, but this port did not bring any performance improvement
over the version adapted from Roulleau’s Magma program. The reason is that
implementing this program requires short lattice vectors enumeration tools, a
ground on which Magma (with ShortVectors, ShortVectorsProcess) crushed all
the alternatives we had on hand during our thesis. The program CGS enabled

us to start studying K 3 surfaces by enforcing a computer-based algorithmic ap-
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proach. For various positive integer values of an integer parameter ¢ > 0, we
were initially tasked with the study of projective models surfaces belonging to

the family of K3 surfaces X; with a Néron-Severi group having Gram matrix

2t 0 O
0 -2 0
0 0 =2

with respect to a fixed basis. We put Roulleau’s program to good use by com-
bining it with existing results in order to uncover a wealth of information on
these surfaces: Determination of projective models of these surfaces, criterion
for the unirationality of their moduli spaces, computation a generating set of
their automorphism group Aut(X,) (see the Part 1 to this thesis, or click here),
study of a fundamental domain of the action of Aut(X;) onto Nef(X) N Pg, de-
termination of explicit equation for these surfaces. In section 2.6, we build on
a technique, used by Roulleau in his articles [16] and [15], which consists in

taking advantage of the knowledge of a configuration of the form

Cl +Cg = nlD
Cs3+ Cy =nyoD

with C, Cy, C3, Cy € NS(X) classes of smooth rational curves and D an ample
class in order to study projective models of K3 surfaces and study the unira-
tionality of their moduli spaces. Such configurations will be referred to as sys-
tems, see definition 42. Note that the procedure CGS presented in section 2.1
enables us to obtain concrete data regarding classes of smooth rational curves
and divisors on K3 surfaces. For convenience, we produced a program to au-
tomatically form systems, as defined above, on a K3 surface. This program is

called SysFinder and is available for download on K3surfaces.com.
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A famous result that incorporates material from Saint-Donat [17] and Morrison
[13], stated as Theorem 41 in this thesis, gives a precise characterization of the
projective models that can be obtained from the morphism into projective space
obtained associated with the complete the linear system |D| of an ample class
D of self-intersection 2,4, 6 or 8 and satisfying various prescribed conditions
of base-point freeness and non-hyperellipticity. This approach presented two

challenges that could only be overcome by producing new tools:

» How can we determine if a given class is ample or not, using a fully
computer-based solution that can be deployed on any complex K3 sur-

face? Our answer to this challenge is AmpTester.

» How can we deal with the base-point freeness and hyperellipticity con-
ditions of the classical SDM Theorem so that we can escape the burden
of handcrafting criteria for these notions specific to each surface under
study? Our answer is PModChecker, for Projective Models Checker.

We thus ultimately produced tools that turned out to have a framework of appli-
cation going way beyond the above-mentioned family of K3 surfaces. To deal
with the first challenge, we produced a universal ampleness tester for classes of
divisors on K3 surfaces, as explained in the section 2.2 of this thesis. As our
thesis was nearing its end, we realized that we had all the algorithmic material
in hand to give a full computer-based incarnation to Theorem 41 for the study
of projective models. This classical and well-known theorem, widely known
under its classical formulation involving the notions of based-point freeness
and non-hyperellipticity, also possesses an equivalent formulation in terms of
purely numerical conditions, that can be fully tested using a computer-based
approach. Following this path, we took care of the second challenge. We give
more details about this in the section 2.6, in which we illustrate all the solutions
implemented during this portion of our thesis by applying them to the study of
projective models and of the unirationality of moduli spaces of the /K3 surfaces
X with Néron-Severi group isomorphic to the integral lattice with Gram matrix

diag(2t, —2, —2) with respect to a fixed basis. In section 2.4, we establish that
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the discriminant group of these surfaces has no isotropic elements whenever

the parameter ¢ can be expressed as a product of distinct primes and satisfies

t =

3 (mod 4). As shown in section 2.6, this result is useful when studying

the unirationality of the moduli spaces of these surfaces. We have to mention

that we took advantage of algorithmic material that can be found in Shimada’s

article [18] to deal with both challenges. Let us sum things up before going into
the heart of the matter:

>

>

In section 2.1, we introduce the mechanics behind the procedure CGS.

In section 2.2, we present the inner workings of the universal ampleness
tester, which requires as sole input the data of a Gram matrix of NS(X),

of a known ample class, and of the class to be tested.

In section 2.3, we explain how to exhibit an initial ample class on a given
surface and provide a step-by-step example. Such an ample class can then

be used as an ambient parameter for universal ampleness tester AmpTester.

In section 2.4, we establish the result mentioned above on discriminant
groups of surfaces X; for cases where ¢ is a product of distinct primes and
satisfies t = 3 (mod 4).

In section 2.5, we quickly review basic formulas on dimensions of linear

systems of curves and hypersurfaces in projective spaces.

We finally introduce PModChecker in section 2.6 and display how all
these tools can be mobilized to determine projective models of K3 sur-
faces. We also put these tools to use to create concrete openings for the
study of the unirationality of moduli spaces of the familiar K3 surfaces
X; with Néron-Severi group isomorphic to the integral lattice with Gram

matrix diag(2¢, —2, —2) with respect to a fixed basis.
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2.1 Procedure CGS - Computing Classes of a Given Square

As indicated in the introduction to this thesis, the SmoothRationalCurves
Magma program due to Roulleau had a substantial positive impact on our work
in 2019 and was a key factor that helped us to put this thesis on track by adopting
a computer-based approach to the study of K3 surfaces. Roulleau designed his
program in such a way that only a few alterations in the code can widen its scope
of application and turn this tool into a generator of data on classes of divisors
D having a self-intersection D? = d and satisfying D - Py < m, where integers
d, m, and an ample class F, are specified as input data by the user. The result of
such an update is our program CGS, a generalized version of the initial program.
As suggested by the name SmoothRationalCurves, Roulleau’s initial Magma
program, can identify classes of (—2)-curves among the elements of a set of
(—2)-classes by enforcing an algorithm due to Vinberg [21]. The program CGS
naturally inherits this feature when d = —2. We now present the algorithm
behind the SmoothRationalCurves program. Note that the article [9] from
Pierre Lairez and Emre Sertoz is authority content this matter. This subsection
will hence be based on their material and formulated in the general case where
the classes to be produced have self-intersection d > —2. Before proceeding

further, let us get things straight about the notations used in this section:

» The capital letter S is used as a shorthand to denote the Néron-Severi
group NS(X) of X.

» The greek letter p is used to denote the Picard number of X. That is, we
set p = rank(95).

» We denote by Pg the positive cone of X, that is, Pg is the connected

component of

{DeNS(X)®R|D*>0}
containing ample classes.
» We denote by G5 a Gram matrix of S with respect to a fixed basis.
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» We use the notation F, to denote a fixed ample class in S = NS(X).

Given the input data of Gg, of an ample class I and of integers d and m, the
following procedure due to Shimada [18] and Vinberg [21] outputs the list of
classes C' € NS(X) such that

C?=d and C-FPy<m.

Procedure CGS: Assume that a basis for S is fixed. This basis will be referred
to as the standard basis for S. We start by computing (e.g., by using a function
from the SageMath library) a basis

B={\,.... 1}
of the rank p — 1 sublattice
A =Py NPy, Po)gS®LP)
of S ~ Z? and then compute its Gram Matrix
G = MgGgM},

where Mp is the ((p — 1) X p)-sized matrix whose rows are taken to be the

elements of BB. Since A C Py, and since the ample class P by definition satisfies
(Po, Po)s >0

the Hodge Index Theorem ensures that the restriction to A of the intersection

form of S is negative definite. The strict inequality
—(D,D), >0
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therefore holds for all D € I'. That is, the Gram Matrix G5 of A is negative
definite. We then let
o = <P07 P0>S .

Using a short lattice vectors enumerator, we compute
L={DeA|—(D,D), < —do*+am?}.

The enumerator will return elements of £ as vectors with coordinates expressed
in terms of the basis of A which has been computed earlier. This is however not
a problem, since we have a basis B for A made of elements of S which enables
us to express elements of £ with respect to the standard basis of S. We assume
that elements of £ have thus been exprimed with respect to the standard basis
of S. Let

A={-do*+ay’ |ye0...m]}

To each D € L is then associated the rational

mp = \/(D, D), + da?/Va.
Define
1
L= {D el|—-(D,D), € Aand —(mpPy+ D) € S}.
«
and note that the condition
1
a(mDPO + D) es

holds for an element D € L if and only if o divides each of the coordinates
(w.r.t the basis of S) of mp Py + D. To each element D € L’ can be associated
an element ©(D) € S satisfying

O(D)-Py<m and (O(D),6(D))g=d
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where © is the transformation
e:L —S

defined by
1
©:Dvw+— —(mpPy+ D).
a

Indeed, we have:

(©(D),8(D))s = { Zmp Py + D), Lmo P+ D))

Q|+

S

= %(m% <P0,PO>S + <D7D>S)
= L ((D.D)y+da? + (D, D)y)

and

(O(D), Ry)g = <é(mDPo + D), P0>S

1 1
= amD (Po, Po)g + p (Po, D) g
= —mDa—i—O

o
:mD

where we used the fact that (P, D)4 = 0 because
D€ L C Pin(aNS(X)+ZF).

Note that the assumption D € L’ implies that 0 < mp < m. We can thus

compute the set

C(m, d) {é(wpo +D)|De c’} ,
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and this set is the desired set of classes of self-intersection d on X having inter-

section product with F; less than or equal to m. When
d# -2,

the procedure outputs C(m, d) and stops. Otherwise, C(m, —2) is the set of
(—2)-classes having intersection product with P less than or equal to m. Fur-
ther processing is thus needed in order to identify classes of (—2)-curves among

the (—2)-classes forming this set. Let
Cn ={D e NS(X) | (D,D)g = —2 and (D, Fy)g = m}
and define
Np={D €Cp, | Vp <m,¥D" € N, (D,D')5 > 0}.

Note that A} = C; holds, and that ,, can be computed recursively. Let R,,
be the set of classes of smooth rational curves having intersection product with
Py less than or equal to m. We show that there is a bijection between the sets
N, and R,,. It is well-known that any two classes D, D’ of irreducible curves
satisfy

(D,D"y¢ > 0.

Thus, if D € R,,, then D € N,,. The set R,, is therefore a subset of the set A,
i.e., we have

R C No. (2.1)

Let C' € N,,. The Riemann-Roch theorem for surfaces gives that one of the

strict inequalities

dim H°(X,0x(C)) >0  or  dim H°X,Ox(-0C)) >0
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must hold. That is, either C' or —C' is the class of an effective curve. Since
C € N,,, we have

<C,P()>S =m

>0

and deduce that C' must be the class of an effective curve, because otherwise
the intersection product of C' with I would not be positive. Using the fact that
the class of an effective curve can we written as the sum of classes of distinct

irreducible curves, we can express C as
C= E BiC;
i

where all the coefficients satisfy 3; > 0 and the classes in this formal sum are
such that
<Ci7 Cj>S >0

whenever ¢ # j. Since the class C has self-intersection —2, there exists an

integer k such that the strict inequality
(C,Cryg < 0.
holds. The adjunction formula then ensures that C}; satisfies
Ct=-2.

The class C}, being of self-intersection —2 and irreducible is therefore the class

of a smooth rational curve on X. Let

m' = <Ck,P0>S.
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Since, by assumption, we have (C, ) g = m, it is clear that
0<m <m
holds. Since the set R, is a subset of A,,/, we moreover have
Cr € No.

However, the fact that
<Ck7 C>S <0

contradicts the definition of V,,. Hence
m =m and C,=0C

This pattern of proof by contradiction enables us to assert that each element of

N, is in fact the class of a smooth rational curve, hence contained in R,,,.

Thus, we have

and deduce from (2.1) that the equality
N =R,

holds. The fact that V,, is computable recursively thus provides a mean to iden-
tify classes of (—2)-curves among sets of (—2)-classes. Roulleau’s Magma pro-

gram SmoothRationalCurves relies on these mechanics.
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2.2 Universal Ampleness Tester

Let X be K3 surface over C with Néron-Severi group S = NS(X). When work-
ing with surfaces on which lie a finite number of smooth rational curves, deter-
mining whether a class is ample or not is a non-issue. Indeed, it is well-known
that a class D € NS(X) is ample if and only if it satisfies

(D,C)g >0

for all classes D of smooth rational curves on X. Only a finite number of in-
tersection products have therefore to be computed in order to get an answer
on the ampleness of a class D on a K3 surface on which lie a finite number of
smooth rational curves, i.e., having a finite automorphism group. However, this
approach is pointless when the K3 surface under study has an infinite number
of smooth rational curves lying on it, that is, on surfaces for which Aut(X) is
infinite. For such surfaces, lifting the veil on the ampleness or non-ampleness of
classes has always been a problem until now. Our solution to this issue is based
on the fact that Shimada fortunately devoted eight lines of his 2013 article [19,
p.31/32] to outline a characterization of ampleness which led us to produce a
universal ampleness tester capable of testing whether any class D € S is am-
ple or not provided that we have prior knowledge of one ample class. We thus
smashed the door slightly opened by Shimada’s almost a decade ago and gave
life to a universal ampleness tester: AmpTester. Note that starting from this
line, we stop using capital letters to denote classes in S and do so for the sake
of clarity until the end of this section. Assume known an ample class ay € S.
Shimada states that a class v € S is ample if and only if the three following

conditions are satisfied:
» Condition AC1: Both inequalities
(v,v)g >0 and (v,ap) >0

hold, so that v € Pg.
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» Condition AC2: The set
{T €S | <U7T>S = 07 <T7 T>S = _2}

is empty.

» Condition AC3: The set
{resS|(vrg<0, (ap,r)g >0, (r,r)g = =2}

is empty. That is, the line segment in Pg connecting a( and v does not

intersect any hyperplane ()" perpendicular to some (—2)-class r € S.

Checking whether condition AC1 holds is not a problem. Things are not as sim-
ple regarding conditions AC2 and AC3. In his article [18], Shimada fortunately
provides algorithms that can be used to compute the sets involved in verifying

these conditions.

» Algorithms 3.1 and 3.2 from [18] can be used to check whether AC2 holds.
We already know Shimada’s Algorithm 3.1 as ShiVectors, described in
the section 1.4 of this thesis. We gave the name ShiChecker to our im-
plementation of Shimada’s Algorithm 3.2 and explain how to implement

it in section 2.2.1.

» Algorithms 3.1 and 3.3 from [18] can be used in order to check whether
AC3 holds. Let us give the name ShiBooster to algorithm 3.3. We explain

how to deal with its implementation in section 2.2.2.

We took on the challenge and gave life to Shimada’s idea of a universal ample-
ness tester. The result is AmpTester, detailed and available on K3surfaces.com
We also combined Shimada’s idea with Roulleau’s program SmoothRational-
Curves in order to make the program AmpTester capable of returning classes
C of smooth rational curves such that D - C' < 0 whenever D is not ample
and has positive self-intersection, thus providing an additional and concrete ev-

idence of the non-ampleness of D thus supporting the findings of AmpTester.
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2.2.1 ShiChecker - Checking AC2

Let L be a lattice and © € L such that
(u,uy; >0

Let o and 9 be integers. We now explain how we implemented the algorithm to

compute sets of the form
H = {I €L | <$au>L =, <'Tax>L :5}

outlined by Shimada in his article [18, Algorithm 3.2].

Our implementation of this algorithm is called ShiChecker and is available for
download on K3surfaces.com. The general strategy to do so is based on the fact

that an element v € ‘H can be obtained by
(7) determining a solution ¢ € S of the equation (z,u)gs = « and then

(ii) determining an element y € u® C S satisfying
<y+c,y+c>5 = 57
that is, satisfying

(Y, y)s +2(y,c)s + {c,c)s = 6. (2.2)

The data of ¢ and y can then be used to assemble an element

v=y+c

215


https://k3surfaces.com

which will then satisfy
(v, U>S =({y+c, U>S
=0+ (c,u)g
and

<U7U>S = <y +Cay +C>S

I
=S

so that v € H, as desired.

Implementation of (i): An element x € S can be represented by a coordi-

nate vector

r=[21,...,2))

where p = rank(S). Solving the equation

(x,u)sv = v

for x € S amounts to determining integers x1, . .., z, such that
Uy
[xl . xp] Gg|:| =a. (2.3)
Up

The left-hand side of this expression can be expanded an re-arranged so that

equality (2.3) can be written as an expression of the form

P
E Vit = &
i=1
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where the v; are elements of Q. Clearing the eventual denominators on both

sides of this expression yields an equality of the form

P
Z iy —y =0 (2.4)
i=1

where v € Z and p; € Z for 1 <i < p. The resolution of this degree 1 multi-
variate equation is then accomplished using a CAS such as Sage and gives us a
basis {€1,...,€,_1} of the (p — 1)-dimensional solution space of this equation.

That is, solutions of (2.4) are generated by
E(to, e ,tp_l) = Eltl + -+ Ep_ltp_l (2.5)

wheret; € Zfor1 <i:<p—1.

Implementation of (ii): We have seen how to generate solutions of the equa-
tion (z,u)s = . Assume such a solution ¢ € S fixed. We now explain Shi-

mada’s procedure to obtain an element y € u' C S satisfying
(y+ey+os=4

Since a Gram matrix of S = NS(X) is by design indefinite, we cannot use
a short lattice vectors enumeration algorithm to determine elements x € S
satisfying (z,z), = J . Shimada’s idea to overcome this obstacle consists in
finding a particular sublattice of S' on which the restriction of the bilinear form
is definite. We have (u, u) 4 > 0 by assumption, hence the Hodge Index theorem
gives us that the restriction of ( , )gv to the orthogonal complement u* of u in
S is negative definite. Recall that we explained in section 1.4 how to proceed
to implement Shimada’s short lattice vectors enumeration algorithm from his

article [18, Section 3.1] to determine solutions of expressions of the form.

Q' +2xL 4+ ¢ <0
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This tool then enables us to determine elements y € ut C S satisfying the
equality
(W, 9)s +2{y, c)s + (¢, )5 = 0.

Since S is an integral lattice, it is contained in its dual, i.e., S C SV. By definition,

an element x € S belongs to u* if and only if (z, u) ¢ = 0. Solving this equation

amounts to determining integers x4, ..., x, such that
Uy
[xl . xp] Gol|:| =0 (2.6)
Up

Expanding and clearing the denominators, we obtain from the above equality a

first-degree multivariate linear equation of the form

p
i=1

which can easily be solved for integral solutions using a CAS. We thus obtain a
basis {&1,...,&,_1} of the solution space of this equation, so that its solutions

can be generated using

g(tlu s 7tp71> = gltl e gpfltpfla

where the ¢; are integers for 0 < ¢ < p — 1. Using the basis of u'l that we
now have at our disposal enables us to compute a Gram Matrix GG,,1, which
is negative definite. That is, we compute the matrix with entries (;,&;) ¢ for
1<14,j <p-—1.Letp, € S denote a fixed solution of the equation (x,u)s = a,
whose resolution was explained earlier when we dealt with point (i). We now

determine an element y € u C S such that

(Y + Par Y + Da)s = 0. (2.7)
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As mentioned previously, the element v = y + p, will then satisfy
(v,v)s =196 and (v,u)s = «v

so that we will have v € H. We have seen in section 1.4 that Shimada’s Short

lattice vectors custom algorithm ShiVectors takes a positive quadratic triple

[Q, P, ]
as input data, where
» () isan X n-sized symmetric positive definite integral matrix,
» Pisa (1 x n)-sized column vector with integer entries,
» cis a rational parameter.

We recall that Shimada ensures that the procedure ShiVectors outputs the finite

set
{r €Z" | qqr(x) < 0}

of solutions of
Q' +22P +¢ <0

Let us arrange (2.7) to make it comply with this format. We first replace the
equality sign in

(Y +Pary +Pa)s =—2—0 (2.8)

by an < sign, and note that there is no loss of generality in doing so. We expand

and arrange (2.8) to obtain:

(Y, y)s + 2(Y, Pa)s + (ParPa)s — 0 < 0. (2.9)

Recall that we obtained a basis

{517 cee 7§p—1}
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for u™ earlier. Since the element ¥ is assumed to belong to u', any short lattice
vectors enumerator executed using the Gram matrix of u* will return elements
having coordinates given with respect to the basis of u from which the Gram
matrix was obtained, which, in our case, is the above-mentioned basis. Denote

by y1,...,y,—1 the coordinates of y with respect to the latter. That is,

y=1&+ -+ yp—1&-1-

The term 2(y, p,)sv in expression (2.9) can then be re-arranged as follows:

2(Y, Pa)s = 2(n& + -+ Yp—1&p-1,Pa)s
= 2(y1<§17po¢>5 + -+ yp—1<£p—1>pa>5)

<§17p04>8
:2|:y1 yp—l} :
<§p—1apa>5
=2yP
where
<§1>po¢>5
P = :
<€p—1;po¢>5

The inequality
(Y +Pary +Pa)s <=2

can therefore be written as
yGuy' +2yP + ¢ <0

where

Yy=1[Y1,Yp-1] and ¢ = (Pas Pa)s — 0.

Again, we recall that the input data format for Shimada’s algorithm ShiVec-
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tors algorithm consists in a positive quadratic triple [Q), L, | used to define a

quadratic function of the form
yQy' +2yL +c, (2.10)

where () is required to be a positive definite matrix. Since the Gram matrix G, «
of ut is negative definite (Hodge Index Theorem), we will use —G,., which
is positive definite, as input for the short lattice vectors algorithm ShiVectors
instead of G, . Anyways, taking the negative of expression 2.10 with ) = G+
gives

y(=Gur)y' +2y(=L) + (—0)

and we thus obtain that the triple to be used as input data for Shimada’s algo-

rithm ShiVectors is

<€17pa>S
[_Guiv _La _C] = _Gui7 - y _<pa7pa>5 + o

(€p-1,Da)s
This algorithm provides the data of elements ¢ € u' satisfying
{4+ Do g + Pa)s <6,
from which we can readily obtain the elements ¢ € u™ satisfying the equality
{4+ Do ¢ + Pa)s = 6.

Let v = g+ p,. Itis clear that we have (v, v)s = d. The fact that ¢ € u* gives us
that (¢, u)y = 0. Since p, is assumed to be a solution of (x,u)s = «, we have

(Payu)s = . Hence

<U,U>S = <q+paau>5
=0+ (pa,u)s = a.
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We thus see that this procedure indeed enables us to obtain elements of the set

H={zel|(z,u); =, (v,x), =0}.

2.2.2 ShiBooster - Checking AC3

Assume that vectors v, h € S satisfying
(v,v)g >0, (h,h)g>0 and (h,v)g>0

are given. In his article [18, Section 3.3], Shimada describes an algorithm to

compute the set
F={reS|(rh)g>0(rvg<0 (rrgs=d}.

Our implementation of Shimada’s algorithm is named ShiBooster. Note that it
is available for download on K3surfaces.com. We follow Shimada’s guidelines

available in his article [18]. We start by computing the orthogonal complement
W = (h)*

in S of the element A € S which is assumed to be given. We then define a
projection
pry SQQ— W RQ

sending an element b € S ® Q to its projection pry;, (b) onto W @ Q. For conve-
nience, we will work in the framework of the duals SV and WV of the lattices S
and W until the end of this subsection. Let

T =[T1,...,2,1]

be a (p — 1)-sized row vector made of formal variables x; for 1 <i < p — 1.
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Consider the negative inhomogenous quadratic function
fW—=Q

defined by
<h7 h>S

x,pry, (h 12,[,
o )

f(z):x— (z,2)y +

We then formally expand the expression on the right-hand side, collect the

terms, and form a negative definite matrix

My = |ai;]

where a;; is the coefficient of the term z;z;, 1 < ¢, j < p — 1, in the expanded

expression of f. The matrix —M; is positive definite, and we let L be the lattice

with Gram Matrix — M. Using a short lattice vectors enumerator, we compute

the set
S = {bELf [ (b0, §2}

Due to the fact that M has been obtained by taking the coefficients of f, the

set . coincides with the set
{beW | f(b) > —-2}.

We associate the quantity

=2, b)y,
"= <hvh>S

to each element b € .¥, where we note that

—2—(b,b)y, >0

holds since b € .7, and that (h, h) 4 > 0 holds by assumption. Denote by My
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the matrix formed by taking as row vectors the basis elements
\Y% \
wyyew, g ES®OR

of WV, which can quickly be obtained with a computer. Assuming that an el-
ement b € . is represented as a (p — 1)-sized column vector containing its
coordinates with respect to the basis of WV mentioned above, we send an ele-
ment b € WV to an element b°®F ¢ S ® R by the map

b— bMyv.
Define an initially empty set 7 = { }. For each b € ., we define
b = \fi b+ bSSE.
If b* satisfies the three following conditions
b* €S, (b*,h)g >0, (b*,v)¢ <0,

then we append 0* to /. When all b € § have thus been tested, Shimada ensures
that the set F coincides with the desired set

{reS|(rh)g>0(rv), <0/ (rr), =d}.

During ampleness testing, the initial ample class plays the role of & while class
whose ampleness is to be determined plays v. Combining the programs Shi-
Booster and ShiChecker, we obtain our universal ampleness tester for classes

of divisors on K3 surfaces, described in a figure on the following page.
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AmpTester

A\ Prior knowledge of one (and only one) ample class ag € NS(X) is required in order to use AmpTester /A

Class v € NS(X) n \L
ShiChecker
l S False
) s the set ——> v is not ample
False Does {res|{wr)s=0, (rris=-2}
v is not ample €«—— (v,0)s >0 empty ?
hold ?
10ld Trne
l True
ShiBooster
False ( Dojs s the sot False
v is not ample €—— v,a0)g >0 a ——> v is not ample
hold ? {reS|{vr)s <0, {a,r)s >0, (r,r)s =2} !
T empty ?
rue
True

The class v is ample

NB : We use the shorthand S =NS(X)
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2.3 Finding an initial ample class

Having prior knowledge of an ample class is a prerequisite to executing many of
the procedures encountered in this thesis. For example, an initial ample class is
needed to test whether the initial chamber used in Borcherds’ method is nonde-
generate, an initial ample class is required to use the universal ampleness tester.
Therefore, it is a matter of decency that we provide guidelines to determine an
initial ample class. Assume given a complex K3 surface X with Néron-Severi
group S = NS(X) and assume that we have no prior knowledge of any ample

class. Given a class v € S satisfying
(v,v)g >0,

a classical result that can be found in Huybrechts’ book [5] states that there
exists a transformation w in the Weyl group of X such that £w(v) is ample

whenever the set

{resS|(v,r)g=0, (r,r)=-2}

is empty. In this case, the class v € S can thus be viewed as ample up to trans-
formations in the Weyl group. We show how this strategy can be executed on a
concrete example. Assume that the K3 under study is a surface X; with Néron-

Severi group S; = NS(X}) having Gram matrix

2t 0 O
0 -2 0
0 0 =2

with respect to some fixed basis, and that the integer parameter ¢ satisfies ¢ > 1.
Let us show that the class
Py=12,—-1,-1].
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can be taken as ample in NS(X;) for all ¢ > 1. We start by checking whether

this class has strictly positive self-intersection. We have
(Po, Po)g, = 8t —4
which is a strictly positive quantity when ¢ > 1. Let us show that the set
{C eS| (R, C)yg =0 (CChg =—2}

is empty whenever ¢t > 1. Before proceeding further, note that what comes next
can be done in a matter of seconds using a computer. We, however, proceed by

hand for the sake of completeness of this thesis. Let us compute a basis of
(o)t ={C €S, |(P,C)g, =0}

and then show that elements C' € (Po)L of self-intersection —2 cannot exist.

In order to compute a basis for (Po)ét we fix a class
D = [z,y, z]

in S; with z,y, z integers not all equal to zero and assume that D € (PO)L .

From

<PO7D>S,5 - 0

we readily obtain that

z=—tr—y

so that D can be expressed as

D = [z,y,—tx — ylg,

=x[1,0,—t] +y[0,1, —1]
=aB; +yBs
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where
Bl,t = [1, O, —ﬂ and BQ = [O, 1, —]_] .

The orthogonal complement (Po)L can thus be viewed as a sublattice of S;

spanned by the elements B, ; and B; of S;. A Gram matrix

(1 —t) —2t
—2t 4

of this sublattice is then computed. Assume than an element C' = [u, v], with
u,v € Z not both equal to zero, belongs to (PO)L and has self-intersection —2.
Using the Gram matrix of (P,)" to compute this self-intersection, we see that

this assumption is equivalent to

tu(t — 1) + 2tuv + 20 = 1. (2.11)
Note that the right-hand side of this equality is odd. Two possibilities arise
regarding the left-hand side of this expression:

» Assume that ¢ = 2k + 1 for some k € 7Z, that is, assume that ¢ is an odd

integer. Then ¢ — 1 is even so that tu?(t — 1) is also even.
» Assume that ¢ is even. Then tu?(t — 1) is even.

No matter the value of ¢ > 1, the left-hand side of the equality (2.11) is therefore
even, as a sum of even quantities. The left-hand side of (2.11) being odd, we
see that assuming the existence of a non-trivial element in (PO)L having self-

intersection —2 leads to a contradiction. We therefore deduce that the set
{C eS| (R, C) =0,(C,C)g =—2}

is empty. The result mentioned at the beginning of this section then enables us
to consider the class Py = [2, —1, —1] as ample in S; for all £ > 1, up to trans-
formations in the Weyl group of X. When ¢ = 1, proceeding analogously yields
that Py = [1, —1, —1] can be taken as ample.
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For all ¢ > 1, the data of an ample class I, enables us to enforce AmpTester
to test any class in NS(X') for ampleness. Practical applications of our program

AmpTester are extensively detailed on K3surfaces.com.

amp® - Matrix([2, 1,-11)
AmpTester(Matrix([ 2,-11))

(@ The known ample class amp® is [ 2 -1 -1]
(@ The K3 surface under study has Néron-Severi lattice with Gram matrix

1
1
1

AR AR AR R AR AR AR AR AR R AR AR AR AR AR AR R AR AR AR AR AR R AR AR ARARA AR AR AR ARAR AR AR AR AR AR AR % *

v The class [122 -2 -1] is ample !

AmpTester Boolean value is : True

AmpTester(Matrix([2
@ The known ample cl amp0 1is
urface under study has Néron-Severi lattice with Gram matrix :

4 0]

[
[
[
[
[

]
-2 0]
0 -2]

e e s e e o e R o R R R R R R R R R R R R R R R R R R R Rk R
The class [2000 51 355 55 999] is NOT AMPLE !
A Note that the (-2)-curves contained in
[[0060B61], [00106], [O610], [0610600]]
are to the ampleness of [2000 51 355 55 999] !
Indeed, their intersection product with the class [2000 51 355 55 999] is strictly negative !

False
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2.4 A useful result on the discriminant group of NS(X})

A result from Curtis T. McMullen’s article [11] states that given an even lattice,
there is a one-to-one correspondence between the set of its overlattices and the
set of subgroups of its discriminant group on which the restriction of the as-
sociated quadratic form vanishes. Assume that L is an even lattice having the
property that its discriminant group L"/ L has no non-trivial isotropic elements.

Any element o € LY/ L satisfying

qr(xo) =0,

is then necessarily the identity element of LY/ L, i.e., 2o € L. In this case, the
result mentioned above enables us to assert that L has no proper overlattices.
This result will be key to us in order to exhibit K3 surfaces X; for which the
unirationality of the moduli space can be asserted: We enforce a technique due
to Roulleau in [15] and show that under special conditions a quartic surface Q
such that

NS(X;) € NS(Q)

can be built from scratch using projective parameters. These conditions, when
fulfilled, enable us to assert that the discriminant group of NS(.X;) has no non-
trivial isotropic elements. As we just discussed, it is then be possible to assert

that NS(.X;) has no proper overlattices so that the above inclusion becomes
NS(X;) ~ NS(Q)

hence establishing the unirationality of the moduli space of K3 surfaces with
Néron-Severi group isomorphism to NS(X;). Combining basing arithmetic and
advanced computer-based algorithmic solutions, we will provide examples for
which such a situation occurs. Our first objective consists in determining condi-

tions under which the discriminant group of NS(X;) has no isotropic element.
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We established the following result which enables us to assert that NS(.X;) has

no strict overlattices for infinitely many values of the parameter ¢ :

Proposition 38. If t is a product of distinct primes satisfyingt = 3 (mod 4), then
discriminant group S,/ S; of the lattice S; = NS(X}) has no isotropic element.

We now provide a rigorous proof of this result. Before proceeding, recall that
S} is a shorthand for NS(X;) and that a Gram matrix with respect to some fixed

basis for the latter is assumed to be equal to

2t 0 O
0 -2 0
0 0 =2

The diagonal shape of this matrix enables us to immediately state the following

quite obvious result:

Proposition 39. There is an isomorphism

SY/ S, ~ (ZJ2AT) x (Z/2Z) x (Z/2T).

Before proceeding further, let us see how things work regarding elements of the
discriminant group of S;. Let ¢ > 2 be an integer, and assume that it can be
expressed a product of distinct primes. We use the classical coordinate vectors

notation to represent elements of z € S; as

T = T1U1 + ToU + T3V3

- [xly o, I3]S
where the elements
vy =1[1,0,0]4, vy =1[0,1,0]4 and vs = [0,0,1]4

are assumed to form a basis for S; with the above-mentioned Gram matrix.
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Applying the definition of the dual of a lattice which states that S, is formally
defined as
S/ ={zxeS®Q|VyeS, (vr,y)s, € Z}.

we see that an element z € S; ® Q expressed as [x1, T, x3] ¢ satisfies z € S} if

and only if
<.Z’, y>St €L

holds for all y € S;. That is, if and only if
(x,v)s, =2ty €Z, (x,v9)5, = —2x9 €7Z and (x,v3)s, = —2x3 € Z.

That is, there exist integers a, b and c such that

a b d c
= — = —— n = ——.
T 57" To 5 a T3 5

The quotient S/ S; can thus be expressed as

b
SY/S, = {(% -5 —%) la,b,c € Z} J(Z[1,0,0]4+[0,1,0]5+Z[0,0,1]).

We use the notation w to denote the class in S’/ S; of an element

a b ¢
w=|=,—-,—=]€85/ .
(Zt’ 2’ 2) !
Since S; is an even lattice, the Z-valued symmetric bilinear form on .S; extends
to a Q-valued symmetric bilinear form on 5. The latter in turns defines a

quadratic form

defined by
q: T +— 2% mod 2Z

where T is the class in S;'/ S; of an element x € SV. By definition, an element
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T € 5)/ S, is said to be isotropic whenever it satisfies

q(T) =0 € Q/2Z,

that is, whenever

(z,7)g, € 2Z.
Let
(B =B —Ps v
w_<2t’ 2y ) €55

be a non-trivial isotropic element of S)'/ S;. By non-trivial, it should be under-

stood that w is not equal to the zero element of
(Z)2tZ) x (Z)27) x (Z.]27Z).
That is, we thus assume that
= (2t | By and 2| 52 and 2 | f33) (2.12)

holds. Since w is assumed to be an isotropic element of S’/ S;, the quantity

2t 0 0 B/2t

q(w>=<61/2t +02/2 +6/2> 0 -2 0 Bo)2 | +2Z
0 0 =2 Bs/2

: B8
Qi =% )

Pos B
BL_2 B _gpeaz. 2.1
2 22 FE @13)

Multiplying both sides of this equality by 2 leads us to

5—%:4k+52+62 (2.14)
n 2 3 :
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Since the right-hand side of this equality is an integer, it is clear that we must
have ¢ | 7. Since ¢ is assumed to be strictly greater than two and equal to the

product distinct primes, the fact that

t| B

enables us to deduce that

t| b

after a simple application of Euclid’s lemma. The non-triviality condition dis-
played in, expression (2.12) is a negation of conjunction, and can thus be ex-

pressed as a disjunction of negations, i.e.,

= (2t B1) or = (2] B2) or = (2] fs)

from which arise the following seven cases:
(@) 2t1 51, 21 B2, 21 B3

(b) 2t 151, 2132, 2| Bs
(c) 2t 1 P1, 2] B2, 2155
(d) 2t | B1, 21 B2, 21 5
(e) 2t | S, 2| P2, 21 Ps
(F) 2t 151,252, 2| Ps

and

(g) 2t ’ ﬁla 2T627 2 ‘ 63'

We assume that at least one of the three 3; is non-zero in each case, so that all

the conditions above make sense.

We proceed as follows for the remainder of this section: From each one of the
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above-mentioned case, we will exhibit a contradiction and will then be able to

assert that an isotropic element

N AR
(5 502) e sivs.

is necessarily trivial whenever ¢ is a product of distinct primes such that
t=3 (mod4).
» Case (a) - Assume that the conditions

2t 1 1,214 2,21 B3

hold. That is, the integers 3, and (3 are odd and can respectively be expressed
as
ﬁg :2k2+1 and ﬁ3:2/€3—|—1

Squaring the expressions for 35 and 3, we obtain
B2 =4k3+4ky+1  and 2 = 4kZ 4+ ks + 1.

Feeding these expressions of 37 and /33 into equality (2.13) yields

I

1 1
5y = 2k + (2k3 + 2ks + 5) + (2k3 + 2k3 + =)

2
=2(k+k3+ki+ky+ks)+ 1.

Multiplying both sides of this equality by 2¢ enables us to obtain that 37 is even.
Since 3 € 7Z, we immediately obtain that j; is even . That is, there exists an
integer n € Z such that

2n =
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We have shown earlier that ¢ | 5, that is, there exists m € Z such that
tm = b

Hence, we have

2n = tm.

Since ¢ is assumed to be a product of distinct primes and such that ¢ > 2, there
exists p € Z such that
m=2p

thus
2n = 2pm = [
We thus obtained that 2t | 3, which contradicts our initial assumption on /.
» Case (b), Case (c) - Assume that
201 P1, 2482, 2| B3 orthat 201 51,2] 52,21 Bs.
The fact that ¢(w) € 2Z is equivalent to the congruence
Bi/2t = B3/2 — B3/2 = 0 (mod 2)

which, multiplying both sides by 2¢,turns into

B7 —tB5 —tB85 = 0 (mod 4t). (2.15)
Keeping in mind that

Z](nm)Z ~ Z/nZ X L] mZ

holds if and only if ged(n, m) = 1, and this formula extends to the case where
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more than two primes are involved, that is,
Z](nang ... n )L~ (Z)nZ) X (Z/nsZ) X -+ X (Z/n,Z) .
Since ¢ is assumed to be equal to a product of distinct primes, we have
t=11ly...tm
for distinct primes t; with 1 < i < m, and hence can write Z/4tZ as
7] (dtrty .. b)) 2~ (ZJAZL) X (ZJtZ) X - -+ X (L]t 7)

thus making a Z/47Z modular factor apparent. The latter enables us to express
(2.15) modulo 4:
Bf —tBs —tB3 =0 (mod4). (2.16)

We see that the two following possibilities arise from this congruence:

e Eithert =3 (mod4)

e ort =1 (mod4).
First possibility: When ¢t = 3 (mod 4), we have

—t =1 (mod4)
and expression (2.16) turns into
B2+ 2+ 2 =0 (mod4). (2.17)
All possible modular solutions (31, 82, 33) of this equation are listed below:
1 =0,8=0,8; =0 (mod4),

/81 = 07/62 = Oaﬁi’) =2 (m0d4)a
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61507525276350 m0d4a

b1 =0,08,=2,03 =2 (mod4),

br=2,0,=0,03 =2 (mod4

9

( )
( )
f1=2,8,=0,03=0 (mod4),
( )
B =2, =2, =0 (mod4),

( )

b1 =2,0,=2,03=2 (mod4).

We see that none of above-mentioned solutions (1, B2, #3) of 2.17 satisfy the

conditions

of case (b).

2t 1 1,21 2,2 | Bs

Similarly, there is no solution satisfying the conditions

of case (c).

2t 1 51,2 | B2, 21 B3

Thus, a non-trivial isotropic element satisfying the conditions of cases (b) or (c)

cannot exist when

t =3 (mod4).

Second possibility: When ¢ = 1 (mod 4) we have

—t =3 (mod4)

and expression (2.16) becomes

B2 4362 + 362 =0 (mod4).
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All possible modular solutions (31, B2, 53) of this equation are listed below:

We see that the solutions
61 = 1752 = 1’63 = O (m0d4)

satisfy the conditions

2t 1 (1,214 2,2 | B5

of case (b).

The solutions

satisfy the conditions

2t4 51,2 | 2,21 fs

and
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of case (c). The existence of isotropic elements is therefore a possibility when-
ever t = 1 (mod 4 ) the conditions of cases (b) and (c) are satisfied. See the

following examples.

Example. Assume ¢ = 13. Then it is clear that ¢ = 1 (mod4). The integers
B1 = 60437, B, = 90517 and 53 = 26316 satisfy the conditions of case (b),
are such that 5 = 1,0, = 1, 3 = 0(mod4) and hence satisfy the modular
equation (2.18). They thus define an isotropic element of the lattice S)5/ Si3.

Example. When ¢t = 17, we have t = 1 (mod4). The integers 5, = 44625,
B2 = 72230, B3 = 39285 satisfy the conditions of case (c), are such that 5, =
1,82 = 2,53 = 1 (mod 4) and hence satisfy the modular equation (2.18). They

therefore define an isotropic element of the lattice S}/ S17.

» Case (d) - Assume that the conditions
2t | B1,21 B2, 21 B3
hold. That is, there exist integers n, k1, k2 € Z such that
b1 =2tn, [y =2ky+1 and B3 = 2ks + 1.
Squaring both sides of each of theses inequalities yields
B2 =t*.2%.n? B2 =4ks +4ky+1  and 2 =4k3 +4ks + 1.
The equality (2.14) thus becomes
2tn? = 2k + 2k3 + 2ky + 2k3 + 2k3 + 1. (2.19)

Since the left-hand side of this equality is even, while its right-hand side is odd,

we see that the assumptions

2t | 41,21 2,21 B3
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lead us to a contradiction. Thus, an isotropic element defined by 3, 35, 83 can-

not be non-trivial if the above conditions are satisfied.

» Case (e) - Assume that the conditions
2t 1,2 | f2,21 Ps
hold. Then there exist integers ki, ko such that
b1 = 2tk and by = 2ks.
The expression (2.13) can therefore be expressed as
B3 = 4tk? — 4k3 — 4k,

and we deduce that 32 an even integer. Since the square of an odd integer is

necessarily odd, it is clear 3 cannot be odd.
Hence 2 | 33, contradicting our initial assumption on .

» Case (f) - Assume that the conditions
21 51,2 B2, 2| Bs
hold. There exist integers k1, k2 such that
By = 2k and B3 = 2k,.
The equality (2.13) can then be turned into
By = Atk] + 4k3 + 4tk,

thus making apparent the fact that 37 an even integer, that is, 2 | 47, which in
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turns implies that

2| pr.

Keeping in mind that ¢ | §; always hold, we hence see that

2t ‘ /817

thus contradicting our initial assumption 2t 1 /3.

» Case (g) - Assume that the conditions

2t’ﬁ172+6272‘53

hold. There exist integers k1, ko such that
B = 2tk and B3 = 2ks.
The equality (2.13) can then be turned into
Bs = 4tk] — 4k3 — 4k,

thus making apparent the fact that 33 an even integer. As indicated earlier, the
square of an odd integer is necessarily odd. Thus f; cannot be odd. We therefore
deduce that 2 | 5, contradicting our initial assumption on /3,. Note that $; and
B3 have a symmetric role in expression 2.13 and in cases (e) and (f), hence the
proofs for these two cases follow the same pattern. We hence established that
whenever ¢ is assumed to be equal to a product of distinct primes greater such
that
t =3 (mod 4),

then assuming the existence of a non-trivial isotropic element w € S,/ S,
leads to a contradiction. Hence, the discriminant group S,’/ S; of S; = NS(X})
has no non-trivial isotropic elements whenever the integer parameter ¢ satisfies

the above-mentioned conditions.
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2.5 About dimension of linear systems

Let k be an algebraically closed field. Denote by P" the n-dimensional projective
space over k. It is well-known that for any integer d > 0, there is a bijection
between the linear system of hypersurfaces of degree d in P" and the projec-

tivization of the set

H(P", 0(d))

of global sections of O(d). That is, there is a bijection between the linear system
of hypersurfaces of degree d in P" and set of degree d homogenenous polyno-
mials. The linear system I/ of hypersurfaces of degree d in P" has therefore

projective dimension equal to

dim T = dim H°(P", O(d)) — 1
_ (d+n) L
n

Points sy, s1, ..., S,—1 in P" are said to be in general position whenever the fol-

lowing conditions are satisfied:

» If r < n + 1, then the vectors defined by the homogenous coordinates of

these r points are linearly independent.
» for r = n + 1, any n points are linearly independent.
Assume that s, s1, ..., s,_1 are r points in general position in P".

Remark. From now on until the end of this thesis, all curves are considered gen-
eral, and in general position. When defining a curve, for instance, a curve C' in
IP3, one should start by fixing a certain number of points in general position in
P2 and then require that C' passes through them so that a hypersurface contain-
ing the points must contain the curve. All the curves involved should thus be
defined by imposing that they pass through a sufficiently low number of generic

points. Additionally, intersections are always supposed transverse.

The following statements hold:
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» The linear system I")(so, ..., s,—1) of hypersurfaces of degree d in P" con-

taining the point s, ..., s,_1 has dimension
: n—+d
dim I'(sg,...,8—-1) = ( )—1—r.
n

» The linear system ["}(C) of hypersurfaces of degree d in P" containing a

general curve C' of degree m has dimension given by the formula

n+d
n

dim FZ(C’):( )—1—(m-d+1).
» The linear system I'’}(Cy, C) of hypersurfaces of degree d in P" contain-
ing two general curves () and C of degree m intersecting transversely

has dimension

n+d
n

» The linear system I'}(Cy,...,C,_1) of hypersurfaces of degree d in P"
containing general curves Cy, ..., C,_; of degree m intersecting trans-

versely has dimension

dim T%(Cy, ..., Cp_y) = (”+d> —1=(r(m-d+1)= (> _C;-Cy)).

n —

1<J
Example 40. Let C}, C; be two disjoint conics in P2, The linear system I'; of
quartics containing C and C5 is 16 dimensional. Indeed, we have

4+3

)—1—2-(2-4+1):35—1—18:16

More details and examples can be found by clicking here.
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2.6 Computer-based study of projective models and unira-

tionality of moduli spaces

We now explain how we made use of the material introduced in the previous sec-
tions to study projective models of K 3 surfaces. In order to deal with our initial
objective, which consisted in studying projective models and the unirationality
of the moduli spaces of K3 surfaces with Néron-Severi group isomorphic to the

integral lattice with Gram matrix

2t 0 O
0 -2 0],
0 0 =2

we produced solutions that turned out to have a much wider scope of applica-
tion. The following result, that can be traced back to Morisson’s 1988 Cortona
summer lectures with elements from Saint-Donat [17] and stated below in its

form due to Debarre in his lectures [3], is of great importance for our study:

Theorem 41. (SDM - Saint-Donat / Morrison) Let X be a K3 surface and let
D € NS(X) be an ample class.

(a) If D* = 2 and there does not exist a class F € NS(X) such that F? = 0
and - D = 1 then pp : X — P? is a double cover.

(b) If D*> = 4 and there does not exist a class ' € NS(X) on X such that
F?=0and F - D € {1,2} then pp : X — P3 embeds X as a quartic

surface in P3.

(c) If D* = 6 and there does not a divisor F' on X such that F* = 0 and
F-D € {1,2} then op : X — P* embeds X as a degree 6 surface in P*.

(d) If D* = 8 and there does not exist a class F' on X such that F? = 0 and
F-D € {1,2,3} then op : X —> P5 either embeds X as a generi-
cally transverse intersection of three quadrics in P> with only rational double

points, or @p realizes X as double cover of a Veronese surface.
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This theorem is fascinating because it provides precise and explicit numerical
criteria and conditions which must be fulfilled in order for an ample class on a
K3 to be associated with a projective model of this surface . Had we had the
opportunity to travel back in time to 1988, we would probably have to face to
the fact that using such a theorem with some degree of automation would have
been quite difficult. Indeed, decades ago, the state of technology did not allow
researchers to mobilize hardware endowed with the processing power that we
enjoy today. This theorem is often used in its classical and equivalent formu-
lation, and it is even still the case today. This formulation, which involves the
notions of base-point freeness and non-hyperellipticity, was probably favored
by researchers at the time. The two formulations, classic and modern, of the
theorem, are nevertheless logically equivalent. Indeed, various results which
can be traced back to Saint-Donat state that given an ample class D € NS(X),
the non-existence of classes F' such that F> = 0 and F' - D = 1 is equivalent
to the base-point freeness of D. Likewise, for classes such that D? > 4, estab-
lishing the non-hyperellipticity of D ensures that there does not exist a class
F € NS(X) such that F' - D = 2. We can therefore assume without taking
a considerable risk that, in the past, in order to make use of the vintage SDM

theorem, people had to:

» Handcraft base-point freeness, ampleness and non-hyperellipticity crite-

ria specific to each K3 surface under study.
» Find a class D € NS(X) satisfying these criteria.

Doing so was without any doubt not an easy task, and all these constraints
reduced the possibilities of study to a handful of cases. Almost four decades later,

the situation is radically different. Nothing stands in the way of full automation:

» The program CGS is capable of producing an abundance of data on classes
D € NS(X) of any desired self-intersection D?.

» We can determine whether a class D € NS(.X) is ample using the program
AmpTester.
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Thus, the procedure CGS from section 2.1 enables us to obtain data on classes
D € NS(X) of divisors of self-intersection D? = 2,4, 6 or 8, while the proce-
dure AmpTester from section 2.2 enables us to identify ample classes among
the data on classes produced by the procedure CGS. The only requirement to
be fulfilled to execute this strategy consists in finding an initial ample class. We
show in the section 2.3 of this thesis how this can be done. We, moreover, have
material to deal with conditions of existence or non-existence of classes of di-
visors F' on X such that F? = 0, F - D € {1,2,3}. Indeed, given an ample
class D € NS(X) and integers ny,ny > 0, the procedure ShiChecker detailed

in section 2.2.1 is capable of computing sets of the form
{F e NS(X) | (F,D) =ny, (F,F) =ns}.

We, therefore, have in our hands all the necessary ingredients to give life to the
SDM theorem: We can now determine whether any class D € NS(X) can be
associated with a projective model of X in virtue of this theorem. The result-
ing tool is PModChecker, for Projective Models Checker. We introduce and
explain how to use this tool on our website. Assuming given a Gram matrix of
NS(X') with respect to a fixed basis and an ample class ay € NS(X) as ambient
parameters, PModChecker takes as input a class D € NS(X) and determines
whether it fits within the framework of one of the cases of the SDM theorem.
When this is the case, it returns the precise information on the nature of the

projective model which can be obtained from the knowledge of the class D.
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The structure of the procedure PModChecker can be illustrated as follows :

PModChecker

A\ Prior knowledge of one (and only one) ample class is required in order to use AmpTester

Class D € NS(X) - True | ¢p : X < P? embeds X
D2—9 ShiChecker as a double cover of P?
\L — Is the set
FeNS(X)|F?=0,F-D=1 q
AmpTester { ( llnpry ? ! % Discard D, return False

Is D ample 7

True op X < P? embeds X

ShiChecker I
False True D% =4 To ho ol as a quartic
FeNS(X)|F2=0,F-De{l1,2 g
X ‘ | empty ? i % Discard D, return False
Does D satisfy True -
2 2
D*=2,4,6 or 87 TS True | ¢p: X < P* embeds X
False Dr=¢ LRceher as a degree 6 surface

Is the set

NS 2=0,F- A S
{(FeNS@) | F F-Deflay % Discard D, return False

empty 7

5
s True @p : X < P° embeds X
ShiChecker ) i i
2 as a generically transverse
D=8 Is the set . . .
. ‘ intersection of 3 quadrics or
Discard D {FeNS(X)|F? =0, F-D e {1,2,3}}|False & doubl ¢
return False empty ¢ as a double (‘,Ovlor ol a
Veronese surface

Discard D, return False
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We return to our initial objective: Exhibiting values of ¢ and conditions under
which a quartic in P? with Néron-Severi group isomorphic to NS(X;) can be
built from scratch, that is, establishing the unirationality of the moduli space of
the surfaces X;, for these values of ¢. Reaching this goal requires the addition
of a geometrical flavor to our approach. To do so, we use Roulleau’s technique
from his articles [16] and [15] as a starting point. In order to study projective
models of a K3 surface while putting emphasis on a genuine geometric aspect,

Roulleau enforces a technique which consists in:

» Establishing criteria of non-hyperellipticity and base-point freeness for
classes in NS(X), to then apply the vintage SDM theorem.

» Using the data produced by his program SmoothRationalCurves to hand-
craft a configuration of smooth rational curves associated with an ample,

base-point free and non-hyperelliptic class.

As discussed earlier, our program PModChecker enables us to disregard all
considerations involving the notions of non-hyperellipticity and base-point free-
ness by using numerical criteria instead. We thus focus on the second point. A
prototypical example of the configurations found in Roulleau’s atlas of K3 sur-

faces [16] is of the following type:

Cl +Cg = nlD
Cs3+ Cy =nyeD

(2.20)

where the class D is ample, n;, n, are positive integers and C, Cs, C5, Cy are
distinct classes in NS(X) of smooth rational curves on X. Such a configuration

can be formalized by introducing the notion of system:
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Definition 42. Let D be an ample class. We use the term system to refer to a
finite collection {£;} of linear combinations of classes of smooth rational curves
each satisfying £; = n;D for some positive integer n; with the additional prop-

erties that:
» All linear combinations are made of the same number of (—2)-curves.
» All curves involved in a linear combination are distinct.

» No class of smooth rational curve (—2)-curve can be involved in more

than one linear combination.

The definition of a system has a wide scope and encompasses many types of
configurations, such as a configuration made of a single linear combination in-

volving three classes of (—2)-curves, e.g.,
Cl + 02 + 03 =nD

or configurations with three linear combinations and four classes of (—2)-curves

per linear combination, e.g.,

Ci+Cy+C34+Cy = mD
Cs + Cs+ C7 4+ Cy = nD
Co+Cio+Cni+Ci2 = nsD

and many other possible forms. There are so many possibilities that we have

introduce a precisely defined framework to purse our study.

We follow Roulleau’s steps by focusing on systems involving two linear combi-
nations, each made of two classes of (—2)-curves per linear combination, that
is:

01 + CQ = nlD

03 + 04 = ngD

(2.21)

In order to obtain such systems on a & 3 surface, we use our program SysFinder,
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detailed and available for download on K3surfaces.com. From the input data of
a Gram matrix of the Néron-Severi group NS(X) of a K3 surface, of an ample
class ay € NS(X), and of an integer ¢ > 0, our program SysFinder takes advan-
tage of the procedure CGS to produce data on classes of smooth rational curves
and on classes of divisors having squares 2,4, 6 or 8. The program SysFinder
then calls for AmpTester to identify ample classes and finally processes all this

data to exhibit systems of the form (2.21) . Assume that a system

Ci+Cy=nD
C3+C4 :nzD

(2.22)

with D? = 4 has thus been obtained. By definition 42 of a system, D € NS(X) is
assumed to be ample. Assume moreover than an application of PModChecker
with D as input data returned that ¢ : X < P3 realizes X as a quartic in P,
We now explain how the data of a system can lead to the explicit construction of
such a quartic. First, note that each linear combination which is part of a system

can be viewed as a sub-system of the system under study:

e The sub-system
Ci+Cy=nD (sub-system I)

may be realized in P as the intersection of a quartic surface with a hy-
persurface of degree n;. When this is the case, such an intersection can

be expressed as the union of curves A; and A, such that
deg(A)) =C1- D and deg(Ay) = Cy - D.
e Similarly, the sub-system
C3+ Cy =neD (sub-system II)
may be realized in IP? as the intersection of a quartic surface with a hy-
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persurface of degree ny. When this is the case, this intersection then de-

composes as the union of curves A3 and A, such that

deg(A3) =C5-D and deg(Ay) =Cy - D.

It would be convenient to construct both sub-systems I and II in such a way that
the respective intersections they define are both contained on the same quartic

surface Q in P? and in such a way that all the A; are smooth rational curves, i.e.,
A ~P' for i€ {1,2,3,4}.

To this end, we proceed as follows: Let A; ~ P! and A3 ~ P! be rational normal

curves in P3 having respectively degree
deg(Al) = Cl -D and deg(Ag) = 03 -D

and satisfying
Al'A;g:Cl'Cg.

We check whether there exists a quartic in P® containing A; and A3 by com-
puting the projective dimension of the linear system of quartic surfaces in 3
containing the curves A; and A3 and checking whether this dimension is supe-

rior or equal to zero. We thus introduce the Condition LS1:

(4 s 3) — 1= (4deg(Ar) + 1) = (4deg(Ag) +1) +C1 - C > 0

Assume that LS1 is satisfied and pick a quartic Q in the above-mentioned linear
system. By intersecting O with a degree n; hypersurface H; containing the

curve A, we produce a residual rational normal curve A, ~ P! such that
Ay + Ay =mnHy,
thus mimicking sub-system I within of a quartic P>. However, we first have
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to determine whether the linear system of surfaces of degree n; containing the
curve A has a projective dimension superior or equal to zero. This is Condition
LS2:

(m;r 3) —1—(n1deg(A1) +1) >0

Assume that Condition LS2 holds. We still have to find a curve A, ~ P! in P?
which will play the role of the curve associated with the class C,. This can be
done by intersecting Q with a degree ny section containing (', thus producing

a residual rational normal curve A4 ~ P! such that
deg(Ay) = Cy - D.

As before, such an operation can only be performed when the linear system
of surfaces of degree ny containing the curve Aj has a projective dimension

superior or equal to zero. This is Condition LS3:
3
dim F(Pg,ng ’ Ag) = (n2;_ ) —1- (ng deg(Ag) + 1) Z 0

When conditions LS1, LS2 and LS3 hold, it can be established that the Neron-
Severi group NS(Q) of the quartic Q surface thus constructed in P contains a
copy of the Néron-Severi group NS(X) of the surface under study, i.e.,
NS(X) € NS(Q).

Before proceeding further, note that conditions LS1, LS2, and LS3 only depend
on parameters that can be obtained from the data of the system under study.
Our program SystemFinder is capable of identifying systems satisfying these
three conditions and discard the others. If we show that the discriminant group
of NS(X') does not contain non-trivial isotropic elements, then the result men-
tioned at the beginning of section 2.4 enables us to deduce that NS(X') cannot

have a proper overlattice, i.e.,
NS(Q) ~ NS(X)
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hence establishing the unirationality of the moduli space of K3 surfaces with
Néron-Severi group NS(X') due to the explicit construction of the quartic per-
formed in projective space. Indeed, constructing a surface such as X amounts
to constructing rational normal curves A; and Az in P? with prescribed inter-
section value C - C3 and then taking a quartic in the linear system of quartic
surfaces containing them if the latter is non-empty. Such a construction can
be realized as a result of conditions LS1, LS2 and LS3 being assumed to hold.
This construction is moreover done with rational parameters. We enforced this
strategy in order to study the family of surfaces X; with Néron-Severi group

isomorphic to the integral lattice with Gram matrix

220 0
0 -2 0
0 0 =2

with respect to a fixed basis, where we restricted to cases for which the positive
integer parameter ¢ satisfies t = 3 (mod 4) and can be expressed as a product

of distinct primes.

» SysFinder is used to generate systems of the form (2.22) each associated
with a class D with D? = 4 and satisfying conditions LS1, LS2 and LS3.

» Such classes are tested against the SDM theorem with PModChecker so
that only systems associated with classes D such that ¢p : X; — P?

realizes X; as a quartic are considered, and all others discarded.

Recall that PModChecker integrates AmpTester. Thus, determining whether
any given class is ample or not ample can be done without hassle. Assume that
the positive integer ¢, is chosen in such a way as to satisfy £y, = 3 (mod 4) and

as being expressible as a product of distinct primes.
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Assume that a system satisfying all the conditions mentioned above has been

found. We show on K3surfaces.com that a quartic Q in P* such that
NS(X:,) € NS(Q)

can then be constructed. From the assumption that ¢, satisfies ¢ty = 3 (mod 4)
and is a product of distinct primes, proposition 38 enables us to assert that the
discriminant group of NS(X%,) has no isotropic elements, so that NS(X},) has

no overlattice. In this case, we obtain
NS(X,) ~ NS(Q)

and are then able to assert the unirationality of the moduli space of K3 surfaces

with Néron-Severi group isomorphic to NS(Xy,) .

Note that the approach we used regarding unirationality is fully compliant with
the strategy devised by Professor Xavier Roulleau to do so. We thus have the
duty to emphasize the fact that we merely applied his methods, and that the in-
novation lies in the fact that we enforced them using a computer-based algorith-
mic approach and determined conditions and concrete tools to exhibit explicit
constructions leading to unirationality in the framework of the family of K3
surfaces X, whose automorphism groups and orbits of smooth rational curves
had to be studied in order to achieve this doctoral project. In practice, check-
ing whether these conditions indeed hold amounts to finding a suitable system
satisfying LS1, LS2, LS3 with SysFinder (which involves CGS, PModChecker
and AmpTester) with the additional requirements that the integer parameter
t must satisfy t = 3 (mod 4) and can be expressed as a product of distinct

primes. When this is the case, we have
NS(X;) ~ NS(Y)

where Y is the quartic constructed in P2,
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Note that finding a suitable system is the purpose of our program SysFinder

from the proj_mod suite.

The overall procedure can be summarized as indicated in the following figure:

o h
SysFinder >
powered by
CGS, AmpTester C ] ) ]P)g
& onstruction in
PModChecker A
T T T T T T T T T The data of rational normal curves
is used to produce a system
Oyt Cy=niD Ay, Ag such that deg(A;) = deg)(Cy),
Cy+ Cy=myD deg(Asz) = degp(C3) and Degree(A; N Az) = Cy - Cs
such that - is then enough to constr;ct a
» C4,C,C5,Cy are classes of (—2)-curves Quartlc QinP
» The class D is certified by PModChecker N such that NS(Xt) =~ NS( Q)
as being such that ¢p : X, < P* whenever ¢ = 3 mod 4 holds

embeds X; as a quartic in P?
» Conditions LS1,LS2, LS3 are satisfied

More details about the practical and computer-based side of this procedure can
be found as additional online content. We illustrate the methods and techniques
presented in this section by using the case of the K3 surface X; as an example.
This content can be accessed by clicking here. One last time, we have to mention
that dealing with the computer-based aspect of this thesis cannot be done in
a conventional manuscript. We kindly ask our readers to keep in mind that

K3surfaces.com has been created to make up for the limitations of this PDF file.
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A detailed table containing all the references used in
this thesis can be found by clicking here.

All the figures used in this thesis

can be found in high resolution by clicking here.

A table summarizing all the procedures related to
Borcherds” method can be found by clicking here.
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