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Then even nothingness was not, nor existence.
There was no air then, nor the heavens beyond it.
What covered it? Where was it? In whose keeping?
Was there then cosmic water, in depths unfathomed?

But after all, who knows, and who can say,
Whence it all came, and how creation happened?

The gods themselves are later than creation,
so who truly knows whence it has arisen?

Whence all creation had its origin,
He, whether He fashioned or whether He did not,
He, who surveys it all from the highest heaven,
He knows, or maybe even He does not know.

–Excerpt from Nasadiya Sukta,
an ancient hymn from the Rig Veda
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Technical abstract

Over the past few decades, several models of databases have emerged to address
commercial and consumer needs. Data models such as relational databases,
graph databases, and object-oriented databases each have their own database
management systems as well as associated query formalisms. An age-old prob-
lem in database theory is that of query evaluation, which, given an input pair
of query and database, asks for the set of answers of the query evaluated on the
database. Query evaluation has been studied with respect to various measures of
complexity; the combined complexity takes as input the query and the database,
while the data complexity treats the query size as fixed and the database as the
input [117].

In this thesis, we focus on studying path queries on graph databases.
Broadly speaking, a path query operates on an edge-labeled graph – we call the
labels letters. Thus, a path between two nodes in a labeled graph is labeled by
the word formed by concatenating the edge labels along those paths. A path
query, then, is a condition on a labeled graph that describes a set of nodes con-
nected by paths whose labels belong to certain sets, called languages. Among
the various sub-formalisms of path queries that we consider, we only use sub-
sets of the class of regular languages – these are languages specifying patterns in
words defined by simple machines called finite automata. Regular conditions on
path labels can be generalized to tuples of paths. In this case, the query specifies
that the resulting tuple of labels belongs to a relation over words. A language
is a special case of a relation, of arity 1. We study two topics in this thesis:
(i) the query evaluation problem for the formalism of path queries, and (ii) a
language-theoretic and logical characterization of the relations used in them.

Relational databases are modeled mathematically using tuples of elements,
sets, and relations (which are sets of tuples). This data model was introduced
by E.F. Codd in 1970 [33]. Under set semantics, query evaluation and other
database operations take on the form of algebraic operators on relations (rela-
tional algebra) or standard set-theoretic transformations (relational calculus).
Associated with these are Conjunctive Queries (CQs), a well-known class of
queries that are modeled as first order formulæ with (i) free as well as ex-
istentially quantified variables (like ∃x1 ∃x2 . . . ), representing elements in the
database, and (ii) relation symbols (like R(y1, . . . , yn)), representing relations
in the database signature.

Evaluation of CQs was shown to be NP-complete by Chandra and Merlin
[28]. Yannakakis suggested that parameterized complexity (where query size is
parameterized and the database is the input) might be a better measure to study
the evaluation problem [120]. However, Papadimitriou and Yannakakis showed
that the parameterized complexity of CQ evaluation is W[1]-hard [91], which

9
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is the parameterized analogue of NP-hardness. Naturally, the question arises
as to which subclasses of CQs might have tractable evaluation. An early result
of Yannakakis shows that acyclic CQs can be evaluated in PTime [121]. This
relies on the notion of shape of a query, which is given by its Gaifman graph
or Gaifman abstraction. The tree-width of a query refers to the tree-width of
its Gaifman graph; Chekuri and Rajaraman showed that bounded tree-width
queries admit tractable evaluation [29]. An equivalent formalism of this result
was given by Kolaitis and Vardi [70], and it was made more precise by Gottlob
et al. who showed that for each fixed tree-width k, the evaluation of CQs of
tree-width k is LogCFL-complete [54]. Finally, the converse to Chekuri and
Rajaraman’s result was given by Grohe et al., who showed that a subclass of
CQs abstracted by some class of graphs C is tractable if, and only if C has
bounded tree-width [57].

Following the relational model, several other models were developed to ad-
dress a wide variety of data modeling challenges. In this thesis, we study a
prominent data model called the graph data model, which employs databases
called graph databases. These databases are used in contexts where the in-
terrelationships between real-world objects are prioritized and queried at the
same level as those objects themselves. Mathematically, these databases are ab-
stracted as labeled graphs. Simply put, a graph database is a graph D = (G, η),
where G = (V,E) is a graph and η : E → A is a labeling function which assigns
to every edge e a label η(e) belonging to a finite alphabet A. The most ubiqui-
tous query formalism on these databases is that of a path query, which specifies
a reachability condition on nodes and paths along with an additional condition
on the path labels. The simplest kind of path queries are called regular path
queries, or RPQs. An RPQ is of the form

x
π−→ y ∧ L(π)

which is interpreted as “find all pairs of nodes (x, y) such that there is a path
π from x to y whose label satisfies some regular expression L”. Conjunctions
of RPQs, called CRPQs, constitute an important formalism that finds many
applications associated with the Semantic Web [60, 93], biological networks
[75, 86] and social networks [101, 102]. In practice, however, it is found that a
statistical majority of CRPQs do not utilize the full power of regular expressions,
instead relying on a small fraction of them in their usage [18]. These subclasses
of regular languages correspond to “small fragments” of the first-order logic
FO(<) which characterizes the set of aperiodic languages [84].

CRPQs have been extended by allowing path labels to conform to relations
as opposed to languages. These extended CRPQ, abbreviated ECRPQ, use
synchronous relations, a class of word relations which is analogous to regular
languages in higher dimensions. A simple ECRPQ (which uses only binary
relations) is of the form

x1
π1−→ y1 ∧ x2

π2−→ y2 ∧R(π1, π2)

interpreted as “find all tuples (x1, y1, x2, y2) such that there are paths π1, π2
connecting x1 to y1 and x2 and y2 respectively, and the labels on π1, π2 conform
to the synchronous relation R” (for example, they have the same length).

While ECRPQs enjoy greater expressive power than CRPQs, they are also
significantly harder to evaluate. The combined complexity of CRPQ evaluation
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is NP-complete, and that of ECRPQs is PSpace-complete, which was proved
by Libkin et al. [15]. In the present work, we study the ECRPQ evaluation
problem in the same spirit as was done for CRPQ and CQ evaluation. In other
words, our goal is to find a graph-based abstraction for ECRPQs, similar to the
Gaifman graph abstraction for CQs, and introduce measures on it (similar to
the tree-width measure for CQs).

The resulting abstraction is called a two-level-multi-hypergraph or a 2L-
graph; the first level abstracts the reachability subquery (nodes and their con-
necting paths) using a multi-graph, and the second level abstracts the relational
subquery (relations on the paths) using a multi-hypergraph. In addition to the
tree-width measure on the first level graph (which plays a similar role to CQ
evaluation), we introduce connectivity measures on the second level hypergraph.
By putting a bound on these measures, we obtain a theorem similar to CQ eval-
uation, where we give precise conditions on ECRPQ subclasses such that their
evaluation is in PSpace, NP or PTime. Our results generalize prior results
that were only known for CRPQs and CQs.

The second part of this thesis is devoted to studying synchronous relations
in greater depth. In particular, we consider a result of Eilenberg, Elgot, and
Shepherdson [43], which gives a logical characterization of synchronous relations.
This is the first order theory of finite words with the prefix, equal length, and
last letter predicates, which we denote by FO[σ]. Recognized by finite multi-
tape automata with synchronous movement of heads, this class of relations has
robust closure properties that are reflected in its first order characterization. We
study the quantifier alternation hierarchy of this logic, which is a standard way
to stratify first order formulæ into classes defined by their syntactic complexity.

An FO formula written in first order logic over any signature can be re-
written in its prenex normal form, which is produced by moving all its quan-
tifiers to the left-hand side, leaving a quantifier-free formula to the right. The
quantifiers form alternating blocks of ∃∗ and ∀∗ respectively, and when a for-
mula admits a prenex normal form with at most i alternating blocks beginning
with a (possibly empty) ∃∗ block, we call it a Σi formula (with Πi being the
set of negations of Σi). In the case of FO(<), the first order logic characteriz-
ing aperiodic languages, the lower levels of the hierarchy Σ1(<),Σ2(<),Σ3(<)
as well as the Boolean closures BΣ1(<) and BΣ2(<) correspond to classes of
regular languages that have interesting combinatorial and algebraic properties.
Moreover, the membership problem – which asks whether a given regular lan-
guage is definable by a formula in a subset F of FO(<) – is decidable for these
lower levels. It remains open for higher levels.

Coming back to synchronous relations, a closer look at the proof of Eilen-
berg et al’s theorem reveals that every synchronous relation is definable in
Σ3, the third level in the first order quantifier alternation hierarchy. Thus
the expressive power of FO[σ] collapses to Σ3[σ]. The natural question that
arises is: what are the relations definable in the lower levels Σ1[σ] and Σ2[σ],
as well as their Boolean closures BΣ1[σ],BΣ2[σ]? Moreover, we investigate
the relational membership problem – given a synchronous relation R, is it
decidable to check whether R is definable by a formula in F , where F ∈
{Σ1[σ],BΣ1[σ],Σ2[σ],BΣ2[σ]}?

In this thesis, we provide an effective characterization of Σ1[σ]-definable re-
lations that parallels the characterization of Σ1(<)-definable languages in its
description; the latter relies on the subword relation while the former uses syn-
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chronized subword, an extension of subword that we introduce specifically to
characterize these relations. This parallel extends to the characterization of
BΣ1[σ]-definable relations and BΣ1(<)-definable languages as well. The second
levels Σ2[σ] and Σ2(<) are linked even more closely: we show that a relation
is Σ2[σ]-definable if and only if its synchronized language is Σ2(<)-definable.
This result directly extends to BΣ2[σ]-definable relations as well. Thus we ob-
tain the decidability of the relational membership problem for every level of the
FO[σ] quantifier alternation hierarchy.



Chapter 1

Introduction

1.1 Technical preliminaries

1.1.1 Notation
Let S be any set. For any k ∈ N, we denote by Sk the set of all length k
sequences of elements in S. S0 is defined to be {ε}, where ε is the empty
sequence. We define the set

S∗ =
∞⋃
k=0

Sk

We denote by P(S) the powerset of S, and for any n ∈ N we denote by Pn(S)
the set of elements of P(S) of size n. An alphabet A is a finite set comprising
of elements {a1, . . . , am} called letters. A word w over A is any element in A∗,
written as w = a1a2 . . . an, where n ≥ 0 (with the empty word ε having length
0 since it contains no letters). We denote by |w| the length of w, and for all
non-empty w and 1 ≤ i ≤ |w| we denote by w[i] the letter at position i in w. A
language L over A is any subset of A∗.

1.1.2 Complexity classes
A decision problem is a function that takes an input (in some domain) and
returns a YES or NO value as the output. A good example is SAT, which
takes as input a Boolean formula and decides whether it is satisfiable, or in
other words, there exists some assignment of variables that makes the formula
evaluate to true. SAT is known to be NP-complete (see definition below).

The complexity of a decision problem yields a measure of its computational
hardness by placing it in the hierarchy of complexity classes. Several decision
problems related to queries are studied in the field of database theory, including
query evaluation, query containment, and query satisfiability. In our study
of the query evaluation problems, we deal with the standard complexity classes
PTime,NP,PSpace. Additionally, we recollect some definitions from the world
of parameterized complexity.

A problem is said to be in polynomial time (or PTime), if there exists some
k ∈ N such that a Turing machine decides it using O(nk) (of the order of nk)
units of time, where n is the size of the input. Similarly, we say that a problem

13



14 CHAPTER 1. INTRODUCTION

is in polynomial space (or PSpace), if there exists some k ∈ N such that a
Turing machine decides it using O(nk) units of memory in its execution.

By NP we refer to the class of algorithms/problems which are solvable using
a non-deterministic Turing machine in running time O(nk), for some k ∈ N.
By NPSpace we refer to the class of algorithms/problems which are solvable
using a non-deterministic Turing machine that uses O(nk) units of space, for
some k ∈ N. It is a well-known result that NPSpace is equivalent to PSpace
(Savitch, 1970 [103]).

Given decision problems P, P ′, a polynomial time (Karp) reduction from P
to P ′ refers to an algorithm that takes as input an instance x of P and produces
in polynomial time an “equivalent” instance x′ of P ′ – that is, x ∈ P if and
only if x′ ∈ P ′. A problem P ′ is said to be NP-complete if P ′ ∈ NP and for
every problem P ∈ NP there exists a polynomial time reduction from P to P ′.
Similarly, a problem P ′ is said to be PSpace-complete if P ′ ∈ PSpace and for
every problem P ∈ PSpace there exists a polynomial time reduction from P to
P ′.

A parameterized problem is a special kind of decision problem which takes
an input along with a parameter, which is typically an integer. The complexity
of a parameterized problem, called its parameterized complexity, is evaluated in
terms of the input as well as its parameter. A parameterized problem is said to
be fixed parameter tractable (FPT for short) if and only if there exists a com-
putable function f and a constant c such that every instance (x, k) ∈ A∗×N of
the problem can be solved in time f(k) · |x|c.

Let P, P ′ be parameterized problems. A (many-to-one) FPT reduction from
P to P ′ (denoted by P ≤fpt P ′) is an algorithm along with computable functions
f, g : N → N and a constant c, which, given an instance (x, k) of P , computes
an instance (x′, k′) of P ′ such that

- (x, k) ∈ P if and only if (x′, k′) ∈ P ′

- k′ ≤ g(k)

- The algorithm runs in time f(k) · |x|c

We also consider the complexity class W[1] which is the parameterized analogue
of NP. It contains a lot of natural computational problems. Although this
class is originally defined using Boolean circuits, we define it here using the
Parameterized Independent Set problem. A detailed treatment of parameterized
complexity classes can be found in the textbook of Downey and Fellows [41].

In graph theory, an independent set refers to a set of nodes in a graph such
that no two nodes in the set are connected by an edge. A clique refers to a
set of graph nodes such that any two elements in the set are connected by an
edge. Now, Parameterized Independent Set (p-IS) is the parameterized
problem of checking whether an input graph contains an independent set of
size (parameter) k. We define the class W[1] to be the set of all parameterized
problems that are fixed-parameter reducible to p-IS.

Another W[1]-complete problem is deciding whether a given graph contains
a clique of size (parameter) k. In this thesis, we show that for a specific subclass
of path queries on graph databases, the parameterized query evaluation problem
is W[1]-complete (see Chapter 4: Propositions 2 and 3, Corollary 1 and (2) of
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Theorem 2).

Finally, we recollect that the parameterized complexity class XNL, intro-
duced in [40] and studied in [31] as [Uniform-XNL]FPT, is the closure under
FPT-reductions of the class of parameterized problems P such that there exists
a computable function that assigns to each parameter k an NL algorithm for
the decision problem

{x : (x, k) ∈ P}

Parameterized Intersection Emptiness (p-IE) is an example of a XNL-
complete problem (see Lemma 8 in Chapter 4) [118].

For the above mentioned parameterized complexity classes we have

FPT ⊆W[1] ⊆ XNL

with the containments conjectured to be strict.

1.2 Thesis overview
We live in times of unprecedented technological progress. Each day civilization
benefits more and more from the development of artificial intelligence. Energy,
transportation, and logistics rely crucially on a network of automated systems,
hardware devices, and Internet servers running simultaneously to ensure our
cities and countries keep running productively. 5G, satellite internet, and other
more efficient incarnations of the Internet are evolving as we speak, provid-
ing greater accessibility to millions more every day. This influx of new users,
amplified by the burgeoning mobile internet industry, brings with it a massive
outpouring of data. The collection, processing, maintenance, and analysis of
this data poses a continuous challenge to programmers and computer scientists.

Machine learning and data mining are disciplines that have traditionally
dealt with classifying, analyzing, and generating useful knowledge from a col-
lection of data points. To enable the meaningful classification of any data, it has
to be arranged and stored in a database of some form. Simply put, a database
is a set of data entries equipped with a set of operations. The most commonly
used operations are searching (querying), and the option to update or modify
the data in a particular entry.

Example 1. Consider an online dictionary comprised of a set of words and
their definitions. The dictionary allows a “search” feature, by which one can
enter a word w and obtain a list of all words which have w as their prefix, as
well as their synonyms. Observe that this is exactly how we look up words in a
regular dictionary, by prefix-searching our required word letter-by-letter. �

For commercial applications, data is stored and queried in software called
database management systems (DBMSs). Users can create database instances
using a DBMS, and various operations like querying, updating, and sorting can
be carried out on the data entries in an instance. DBMSs were in development
as early as 1973 1. Since then, their ubiquity has grown. OracleDB, MySQL,
and Neo4j are some well-known DBMSs in use today.

1see System R and INGRES
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When modeling data in a real-world scenario, a one-size-fits-all approach
does not work. Several data models exist to address the various needs of com-
mercial and technological applications. These models can be distinguished based
on the data structures and querying mechanisms they allow. For example, in
the context of administration, relational DBMSs are used in offices, banks, and
universities because the raw data needs to be processed or viewed as tables.
Therefore it is convenient to model these tables as relations containing tuples
of objects, and relational DBMSs like Oracle DB or MySQL are well-suited for
this purpose. When dealing with a large number of highly interconnected data
values, the use of graph databases might be more appropriate. Thus spatial and
engineering applications may need a graph DMBS like Neo4j compared to, say,
a relational DBMS.

The graph data model represents data via graph-related structures. The
popularity of this model peaked in the early 90s before fading away with the
appearance of XML, semantic, and object-oriented databases. However, graph
databases have made a resurgence in the modern era in applications related to
social networks, big-data and computational biology. We use labeled graphs as
a theoretical representation of graph databases. We discuss these applications
in more detail in Section 2.3 of Chapter 2. We discuss various data models in
Section 1.3 of this chapter.

An important feature of DBMSs is the ability to query database instances.
A query is a command or instruction which fetches a set of answers when it is
evaluated on a database instance. These queries are written in special languages
called query languages. However, here we do not deal with query languages
directly. Instead, we deal with mathematical representations of these queries;
these are given as first-order logic formulæ using free variables and relation
symbols to specify the querying conditions. We discuss these query formalisms
in more detail in Section 1.4 of this chapter.

In this thesis, we study the query evaluation problem corresponding to a
family of graph database querying formalisms called path queries. The essential
function of a path query is to extract a set of nodes and paths that are connected
by a reachability condition, such that the labels on the paths conform to a given
pattern. Every atom in this reachability condition is of the form

x
π−→ y

which states that a path π connects node x to node y. Regular path queries
(RPQs) restrict these reachability conditions to paths whose labels conform
to a given regular expression (see Definition 1). Allowing conjunctions of RPQ
atoms with shared node variables produces an expressive formalism analogous to
Conjunctive Queries (CQs) over relational databases. In fact, these conjunctive
regular path queries (CRPQs) have good expressive power while maintaining
the computational complexity of CQ evaluation. CRPQs have been further
extended by adding relational conditions on path labels, that is, only allowing
tuples of paths whose labels conform to a given word relation. In order to
guarantee good algorithmic properties, we restrict our attention to the extension
of CRPQs that use so-called synchronous relations. These relations generalize
regular languages in higher dimensions as they are recognized by multi-tape
finite automata with synchronous movement of tape heads [17]. We define
synchronous relations and illustrate their properties in Section 1.5.5 of this
chapter.
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CRPQs extended with synchronous relations produce a query formalism
called extended conjunctive regular path queries, or ECRPQs [15]. This the-
sis studies the query evaluation problem for the ECRPQ formalism. We define
CQs and path queries in Sections 2.2.1 and 2.3.2 of Chapter 2 respectively. A
common theme in the study of CQs and other first-order logic-based formalisms
is to characterize the evaluation problem based on the underlying structure of
queries. This structure or ‘shape’ of a query is often defined in terms of the
Gaifman graph of its formula. Restricting queries by their shape produces sub-
classes of queries whose evaluation is tractable. The paradigmatic example is
the tree-width of the Gaifman graph of a CQ; the complexity of CQ evaluation
falls from NP to PTime when restricted to CQs of bounded tree-width, a result
which is true for CRPQs as well [58]. The general ECRPQ evaluation problem
is known to be PSpace-complete [15]. Naturally, we may wonder about the
underlying structure of an ECRPQ. Can such a result – which rigorously spec-
ifies the kind of queries that are evaluated in lower complexity – be given for
ECRPQs as well? This thesis tackles these questions and answers them in the
affirmative.

While restricting path queries by their shape proves to be beneficial for
lowering the complexity of their evaluation, restricting them by only allowing
a small subset of regular expressions (as opposed to the full power of regular
languages) is useful in real-world scenarios. Consider the implementation of CR-
PQs in SPARQL, a widely used graph query language. An analysis of SPARQL
query logs over Wikidata archives [18] revealed that among organic2 queries,
35% use regular languages of the form AB∗ and 25% use A∗ (where A,B are
finite alphabets). Among robotic queries, the same analysis revealed that 67 %
of them used the regular languages a∗, a+ and ab∗ (where a, b are letters). The
languages used in the majority of robotic and organic queries are polynomials,
which have the general form⋃

A∗1a1A
∗
2a2 . . . A

∗
nan

Polynomials constitute a small subclass of aperiodic regular languages. They
are logically characterized by the fragment Σ2(<), the second level of the quan-
tifier alternation hierarchy of FO(<) on finite words. We formally define this
hierarchy in Chapter 5 (see Definition 5.2.3). The significant presence of polyno-
mials in SPARQL instances necessitates a deeper study of languages belonging
to “small” fragments.

Anticipating that the phenomenon of less expressive classes of languages be-
ing overrepresented in real-life use-cases holds for ECRPQs as well, we broaden
our focus from languages to relations. In particular, we are interested in finding
“small” subclasses of synchronous relations, analogous to polynomials within
regular languages. We ask if there are subclasses of synchronous relations that
have desirable theoretical properties and are defined by small fragments of some
logical structure. Synchronous relations are not captured by any extension of
FO(<). Therefore we must turn to other logics for finding relational equivalents
of polynomials. Here we consider a paper by Eilenberg, Elgot, and Shepherdson
that introduces a logic that characterizes synchronous relations [43].

2organic queries are asked by human users, while robotic queries are data crawls generated
by scripts or bots (see [82])
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Over any finite alphabet A, consider the first order theory of A∗ words
equipped with a set of predicates σ containing prefix (�), equal length eq and
last letter {`a}a∈A. We denote this logic by FO[σ] here. A simple formula in
this logic, over the free variables x, y, z, is

∀x′((x′ � x) ∧ (x′ � y)) ⇐⇒ (x′ � z)

Note that this formula naturally defines the relation

{(x, y, z) ∈ (A∗)3 : z is the longest common prefix of x and y}

In fact, up to permutation of the entries in a tuple, each formula with k free
variables defines a k-ary relation. We define the syntax and semantics of this
logic formally in Section 5.3 of Chapter 5 (see Definition 31).

Eilenberg et al. showed that a relation is definable in FO[σ] if and only
if it is synchronous [43]. To obtain the polynomial-like “small fragments” of
synchronous relations, we exploit the quantifier alternation hierarchy of this
logic. As a result, we obtain certain well-behaved subsets of relations that
correspond to the lower levels of this hierarchy. In fact, we prove that FO[σ] is
equal in expressive power to Σ3[σ], the third level in the hierarchy. Moreover,
we characterize the relations definable in all levels of this hierarchy and establish
a profound link with the regular languages definable in the lower levels of the
quantifier alternation hierarchy of FO(<).

Organization. We continue this introduction with a brief look at some data
models in Section 1.3. Following that, in Section 1.4, we introduce the query
evaluation problem for querying formalisms on relational databases and graph
databases. Then, in Section 1.5, we define regular languages, finite automata,
and word relations definable using automata. We state our research goals in
Section 1.6. Finally, the plan of the thesis is outlined in Section 1.7, which
contains details on the contents of each subsequent chapter.

1.3 A history of data models
A database model, or simply data model, is comprised of a set of conceptual
tools used to model entities in the real world and their interrelationships [108].
Notable data models include the relational model, the graph model, semantic
and object-oriented databases, and semi-structured databases. To understand
the evolution of database theory, let us go back in time to the early ‘60s and
look at how the earliest computers operated.

Computers sequentially carried out instructions on input stored in punch
cards and magnetic tapes. The first databases in the world used sequential file
technology. Each record in the file was associated with a primary key: a unique
identifier like social security number or purchase order number. Searching was
carried out as follows: to find a record, run the whole file through the core
memory until a record with a matching or higher key value is found. Although
sequential file technology was suitable for most tasks in its time, its drawbacks
were apparent: (i) spontaneous record retrieval3 was impossible because each

3i.e. random access
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search operation required the computer to run the whole file again, and (ii)
primary data keys had to be unique IDs, so natural attributes like names of
people or places could not be used.

Physical models. Two early models for managing large collections of
data were the hierarchical database model (Tsichritzis and Lochovsky,
1976) [116] and the network model (Taylor and Frank, 1976) [113]. They
were called physical models, because they directly operated on the level
of data records and pointers, making it hard to distinguish the data
model from its implementation. Further, database navigation was done
through low-level operations on the records.

As storage technology evolved, magnetic tapes gave way to magnetic disks.
These removed the limitations of sequential access and allowed programmers to
mitigate the problems of sequential file technology. This new kind of database
was called a navigational database, a term coined by Charles Bachman in his
seminal paper that introduced this data model [12] (originally published in
1973). Bachman was given the Turing award for his outstanding contributions
to database theory. He had also created Integrated Data Store (IDS), one of
the world’s first navigational databases, developed for General Electric in the
1960s. Programmers using navigational databases, equipped with the techniques
of randomized access (aka hashing) and index sequential access, could retrieve
data more efficiently. Index sequential access allowed the programmer to extract
a record using its primary key, which was more efficient than sifting through
every single record in the input. This caused a shift in the mindset of data
programmers: input data was no longer seen as being fed into the computer, but
rather into the database. The database was seen as an independent entity that
could be independently accessed by multiple programmers, updated, and queried
whenever necessary. Data became independent from the computer applications
that used it.

The need then emerged for commercial database management systems, that
would not only handle data retrieval but also update the database whenever
required. Programs running on navigational databases maintained currency in-
dicators, which was a set of global variables, serving as the “current” pointer
which moved back and forth in the database. Executing commands like [GET
NEXT] and [GET PREVIOUS] would move this pointer to the desired record
that was being queried. This imposed, either implicitly or explicitly, a proce-
dural structure on navigational databases.

Ultimately, the procedural structure of navigational interfaces proved to
be a limitation for the paradigm, as more declarative paradigms like SQL
emerged in the early 80s. Arguably the most extensively used query language
paradigm to date, Structured Query Language or SQL was developed for rela-
tional databases. The ubiquity of SQL and its variants has made it an indis-
pensable part of any discussion on relational databases. The relational model
was developed by E.F. Codd in an attempt to formalize tabular data collection
via logical abstraction [33, 34]. This model separated the physical and logical
representation of data, both in terms of storage and database operations.
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Relational databases. The relational data model is one of the most
widely used frameworks underlying database management systems, to
date. Mathematically, a relational database consists of a set of tables
that are represented using relations over sets of attributes. Each table
consists of rows interlinking attributes via tuples, and each column rep-
resents a particular kind of attribute. The logical representation of data
ensures that its access, retrieval, and manipulation are independent of
changes in its physical storage mechanism. The relational model ensures
that arbitrarily structured input data is represented and queried in a con-
sistent fashion, making it highly suitable for the majority of commercial
applications.

In the relational model, data manipulation and query evaluation rest on two
equivalent formalisms: relational algebra and relational calculus. The former
uses a set of operators which transform one or more input relations into an
output relation, whereas the latter uses symbolic logic, in particular predicate
calculus, in order to compute the results of queries.

The early 90s saw the emergence of new types of databases like spatial and
engineering databases. Relational calculus was not sufficiently expressive to
query these complex databases. A new approach was needed, which allowed
for a simpler design, easier scalability to large clusters of machines, and greater
control over availability4. Two models emerged in the eighties and nineties to
address the limitations of the relational model: the semantic data model and
the object-oriented data model. The former emerged because there was a need
to improve database design by allowing a richer set of semantics. Relational
databases of that time were efficient for certain tasks, but there were a lot of
real-world models too complex for a relational model to be mapped onto.

Semantic databases. The semantic data model addressed this prob-
lem by assigning semantics, or meanings, to objects and relationships
in the database. Some examples of this data model are the entity-
relationship model (Chen, 1976) [30], IFO (Abiteboul and Hull, 1984) [3]
and the eponymous Semantic Data Model (Hammer and McLeod, 1978)
[64]. This data model is tied to the development of graph databases,
as the structure generated by the interrelationships of the objects in a
semantic database is fundamentally graph-based.

Another limitation of relational databases was the inability to handle data-
intensive domains like knowledge bases and engineering applications. This ne-
cessitated the development of the object-oriented data model.

4Simply put, availability of a system is the degree with which it will reliably run at any
arbitrary time. It is the extent to which a system is “battle-ready”.
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Object-oriented databases. Object-oriented databases (also known
as O-O databases), used in computer graphics, CAD/CAM software,
information retrieval, and various other applications, represent data as a
collection of objects organized into classes, along with complex associated
values and methods. This model also allows manipulation of local data
values via methods, not unlike object-oriented programming languages.
The object-oriented perspective of the world is, as one would expect,
a set of complex objects possessing a certain set of states, with data
interaction being done via method passing. This is in contrast with the
graph database view of the world, where the domain is a network of
objects and relations with an emphasis on their interconnections.

Moreover, the development of non-relational database paradigms like Not
Only SQL (NoSQL) was underway. These query languages were designed to
support SQL-like operations, while also allowing more complex algebraic oper-
ations like transitive closure to be carried out. NoSQL contained procedural
elements within it, reminiscent of the navigational databases of the early 60s.
Navigational interfaces found a re-emergence in problems relating to big-data
and online networks via the development of graph databases.

Graph databases. The graph data model is characterized by the us-
age of graph-based structures containing nodes and edges equipped with
properties. Graph databases are suited for applications involving real-
world objects with complex interrelationships; edges are considered as
“first-class citizens” in the graph model. Queries on graph databases
take on the form of reachability conditions on nodes along with speci-
fications of path properties. Query answering involves graph traversal,
covering nodes relevant to the query and ignoring other parts of the
graph. These databases are sometimes implemented using tables, which
introduces an additional layer of abstraction via relational structures.
Neo4j, Oracle Spatial and Graph, and OrientDB are some of the more
popular graph database management software.

1.4 Querying formalisms
A querying formalism is a mathematical framework to represent queries. Study-
ing queries within this formal framework allows us to quantify their expressive
power and investigate several algorithmic problems on them, independent of the
query language in which they are implemented. We deal with two broad query
formalisms in this thesis. They are: (i) Conjunctive Queries (CQs) on rela-
tional databases and (ii) Path Queries (PQs) on graph databases, comprising of
Regular Path Queries and their extensions.

Conjunctive Queries
Conjunctive Queries are widely used to query relational databases, owing to
their succinct mathematical representation and efficient evaluation algorithms.
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A CQ is of the form

∃x1∃x2 . . . ∃xnR1(x̄i) ∧R2(x̄2) · · · ∧Rm(x̄m)

where each x̄i is a tuple of variables, some of them among x1, . . . , xn. These are
evaluated over instances of relational databases, with each relation symbol in
the CQ being associated with a relation of elements in the database. We work
with set semantics, treating relations as sets of tuples of elements of fixed size,
called the arity of the relation. For example, the query “is there a person whose
father is a teacher?” can be encoded as

∃x∃y Father(x, y) ∧ Teacher(y)
We formally define relational databases and CQs in Section 2.2 and Section

2.2.1 of Chapter 2 respectively.

Path Queries
We abstract graph databases with labeled graphs; these are graphs whose edges
are labeled by letters in a given alphabet A. As paths are sequences of edges,
their labels are simply defined as the concatenation of labels of edges occurring
along them. Therefore, paths are labeled by elements of A∗. As stated in Section
1.2, a regular path query (RPQ) takes the form

x
π−→ y ∧ L(π)

and searches for pairs of nodes (x, y) in a graph database such that there is a
path π going from x to y whose label belongs to a regular language L ⊆ A∗. A
common extension to CQs and RPQs is the Conjunctive Regular Path Query
(CRPQ) formalism. A CRPQ (without any quantified node variables) takes the
form

x1
π1−→ y1 ∧ · · · ∧ xm

πm−−→ ym ∧ L1(π1) ∧ · · · ∧ Lm(πm)
where x1, y1, . . . , xm, ym are (not necessarily pairwise distinct) node variables,
π1, . . . , πm are pairwise distinct path variables, and L1, . . . , Lm are regular lan-
guages. This is interpreted as follows:

Do there exist pairs of nodes {(xi, yi)}1≤i≤m such that for every i ∈ {1, . . . ,m},
there exists a path πi from xi to yi that is labeled by a word in Li?

We formally define regular languages in Section 1.5 of this chapter, and CR-
PQs in Section 2.3.2 of Chapter 2 (see Definition 11). The CRPQ formalism
can be further extended to produce ECRPQs, or extended CRPQs, which con-
tain relational atoms of the form R(π̄), where R is a synchronous relation over
words and π̄ is a tuple of path variables. These relational atoms are interpreted
naturally – a tuple of paths π̄i in a graph database satisfies a relational atom if
its labels belong to the relation. Now, an ECRPQ (without any quantified node
variables) takes the form

x1
π1−→ y1 ∧ · · · ∧ xm

πm−−→ ym ∧R1(π̄1) ∧ · · · ∧Rm(π̄n)

which is interpreted as follows:
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Do there exist triples (xi, yi, πi) (for every 1 ≤ i ≤ m) where πi is a path
going from xi to yi, such that for every 1 ≤ j ≤ n, the tuple of labels of the
paths π̄j conform to the relation Rj?

In addition to regular languages, Section 1.5 of this chapter also contains the
formal definition of synchronous relations. Meanwhile, ECRPQs are defined in
2.3.4 of Chapter 2 (see Definition 12). In the same section, we also re-define
CRPQs as a subclass of ECRPQs (see Definition 13).

Algorithmic problems on querying formalisms
A query q evaluated on a database D returns a set of answers, denoted by
ans(q,D). Based on this formal structure, several algorithmic problems associ-
ated with query formalisms have been studied in the literature. The prominent
ones are as follows:

• Query evaluation: Given a query q and a database D, the query evaluation
problem involves the computation of the answer set ans(q,D).

• Query satisfiability: Given a query q, the query satisfiability problem asks
if there exists a database D such that q evaluated on D produces a non-
empty set of answers (in other words, D satisfies q).

• Query containment: Given queries q1, q2 (belonging to the same formalism
and operating over the same set of variables), we say that q1 is contained in
q2 (denoted by q1 ⊆ q2) if for every database D, ans(q1, D) ⊆ ans(q2, D).
The query containment problem for a given input (q1, q2) asks whether
q1 ⊆ q2.

We focus on the query evaluation problem in this thesis. The query satisfia-
bility problem is a special case of the query evaluation problem since a query is
satisfiable if and only if it can be evaluated on the trivial database. Although
studying the query containment problem is beyond the scope of the present
work, we include a discussion on it in Section 4.4.2 of Chapter 4. Now, given
a query formalism Q, we formally state the decision problem underlying query
evaluation as follows:

Query evaluation (eval-(Q)); Q is a query formalism
Input: A query q ∈ Q, a database D, and a tuple v̄ of database

elements.
Question: Does v̄ belong to ans(q,D)?

The complexity of query evaluation, especially in the context of CQs and
CRPQs, has been studied with respect to four measures. If all the node variables
of a query q are quantified, then it is said to be a Boolean query. We study the
complexity of the query evaluation problem under varying conditions on what
is considered to be an input or parameter.

The complexity of query evaluation when the input is the query and database
pair (q,D), is referred to as combined complexity. Using this measure of com-
plexity, eval-CQ and eval-CRPQ are NP-complete [28] problems and eval-
ECRPQ is a PSpace-complete problem [15].
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The combined complexity serves well as a general theoretical measure for
query evaluation. However, in practice, it is observed that arbitrarily large
databases are often queried with “short” queries whose size is minuscule com-
pared to the size of the database they are evaluated on. This motivates the
study of the data complexity of the algorithm, where the size of the query is
taken to be a constant, and the input is the database. A related measure is the
parameterized complexity, where the query size is the parameter and the input
is, again, the database. It is known that eval-CQ, and consequently eval-
CRPQ, is W[1]-complete in parameterized complexity [58] (see Propositions 2,
3 and Corollary 1).

Additionally, by query complexity we mean the complexity measure when
the database size is considered to be fixed. It is known that eval-CQ and
eval-CRPQ are both NP-complete in query complexity; however, the data
complexity jumps from LogSpace to NL-complete when going from CQ eval-
uation to CRPQ evaluation [28].

1.5 Languages and relations on words
In this section, we present a short introduction to automata, regular languages,
and word relations. Regular languages are expressible via many formalisms and
we briefly discuss some of them.

1.5.1 Finite automata
DFAs are a class of simple machines that recognize regularities in words. A
DFA contains a set of states Q and a transition function δ : Q×A→ Q. It also
contains a starting state s and a set of final states F . When a DFA reads a
word, it starts at s and reads each letter, moving its states as dictated by the
transition function. When the word ends, the DFA ends up at some state q. If
q ∈ F , then the word is said to be recognized by the DFA, if not it is rejected.
The language of words recognized by a DFA is called a regular language. The
set of regular languages is denoted by Reg.

Example 2. The following DFA accepts all words in {a, b}∗ which contain an
odd number of a’s. The initial state is marked by an incoming edge from “start”,
and the final state is marked by a double ring.

q1start q2
a

bb

a

NFAs, or nondeterministic finite automata, are another class of machines
in which we have a finite set of states, and δ ⊆ Q × A × Q is a relation (as
opposed to a function). NFAs and DFAs have equal expressive power, despite
NFAs being very succinct.

Example 3. Here is an NFA over {a, b} which accepts the same language as
the DFA above. We use the same convention as Example 2 to denote initial and
final states.
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evenstart odd

a

a

1.5.2 Regular expressions
Regular expressions are an alternative formalism to defining regular languages.
A regular expression (also known as a rational expression) is a string written
in a given syntactic format that defines a pattern on words. These expressions
are implemented as Regex strings and are most commonly used in algorithms to
search, find and replace words in documents. Search engines, query languages,
and text editors implement regular expressions in various syntactic formats.
The origin of regular expressions lies in the work of Kleene (1956) [69] who
formalized the notion of a regular language. In formal language theory, regular
expressions are defined as follows:

Definition 1. A regular expression over A is a string constructed
recursively using the operators +, · and ∗. To every regular expression r
we associate a language L(r) ⊆ A∗.

• ∅ is a regular expression and L(∅) = ∅.

• For every letter a ∈ A, a is a regular expression with L(a) = {a}.

• If r1 and r2 are regular expressions, then r1 + r2 is a regular ex-
pression and L(r1 + r2) = L(r1) ∪ L(r2).

• If r1 and r2 are regular expressions, then r1 · r2 is a regular expres-
sion and L(r1 · r2) = L(r1) · L(r2).

• If r is a regular expression, then r∗ is a regular expression and
L(r∗) = (L(r))∗.

While using regular expressions in queries, we use the negation operator ¬
for succinctness (we are allowed to do so as Reg is closed under complement).
Its semantics are defined as follows (as an addition to Definition 1): ¬r is a
regular expression and L(¬r) = A∗ \ L(r).

Regular expressions which do not use the Kleene star (∗), but use com-
plement (¬) and intersection (∧) are called star-free regular expressions. The
regular languages defined by these expressions are called star-free languages.

1.5.3 Monadic Second Order (MSO(<)) logic
In addition to finite automata and regular expressions, regular languages are
also characterized via Monadic Second Order logic over words (MSO(<)). It
was shown by Büchi in 1960 that the set of sentences written in Monadic Second
Order logic on finite words, denoted by MSO(<), precisely characterizes Reg
[20]. MSO formulæ are composed using:

- first order variables written in lowercase (x, y, z, . . . ) and second order
variables written in uppercase (X,Y, Z, . . . );
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- the universal and existential quantifiers (∀ and ∃ respectively), used to
write formulæ of the form ∃xϕ,∃Xϕ, ∀xϕ,∀Xϕ;

- atomic formulæ of the form x < y and a(x), for all first order variables
x, y and letters a ∈ A;

- Boolean combinations of formulæ written as ϕ1 ∨ϕ2(disjunction), ϕ1 ∧ϕ2
(conjunction), and ¬ϕ (negation).

An MSO sentence is a formula without free variables. A MSO sentence ϕ is
interpreted over a word w ∈ A∗ using semantic rules that assign to first order
variables positions within w (i.e. elements of {1, . . . , |w|}), and to second order
variables subsets of {1, . . . , |w|}. Every MSO sentence ϕ defines a set of words
|ϕ| ⊆ A∗, called the language of ϕ. For example, the set of all words that begin
with the letter a is defined by the sentence

∃x(a(x) ∧ ∀y(x < y ∨ x = y))

Büchi’s theorem states that a language L ⊆ A∗ is regular if and only if L is
defined by an MSO sentence. We formally define the syntax and semantics of
MSO in Chapter 5, Section 5.2.1.

1.5.4 Algebraic characterization of regular languages
Regular languages have been studied extensively from an algebraic point of view
[44, 95, 111, 53, 68]. Below we provide a brief introduction of this field of study,
popularly referred to as algebraic automata theory. First, we lay down some
definitions.

A semigroup is a structure (S, ◦), where S is a set equipped with an binary
operation

◦ : S × S → S

such that for all elements p, q, r ∈ S, we have (p ◦ q) ◦ r = p ◦ (q ◦ r). A monoid
is a semigroup (M, ◦) containing an identity element 1 ∈M such that for every
element p ∈M , 1◦p = p◦1 = p. When it is clear what the underlying operation
◦ is, we abuse notation and refer to the semigroup (respectively monoid) as its
underlying set S (respectively M).
Example 4. Some examples of infinite semigroups are:
• The set of all positive integers N\{0} forms a semigroup under the addition

operation +.

• A finite alphabet A generates the monoid A∗, called a free monoid (where
the monoid operation is word concatenation, and the identity element is
the empty word ε).

Some examples of finite semigroups are:
• The set {−1, 0, 1} forms a monoid under multiplication.

• For any n ∈ N such that n > 1, we denote by Z/nZ the set {0, 1 . . . , (n−
1)}, which forms a monoid under the operation (p, q) 7→ (p+ q)mod n. �

A monoid homomorphism between two monoids (M1, ◦1) and (M2, ◦2) is a
function h : M1 → M2 such that (1) h maps the identity element of M1 to the
identity element of M2, and (2) for all p, q ∈M1, we have h(p◦1q) = h(p)◦2h(q).
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Languages recognized by monoids

Let A be a finite alphabet. For any language L ⊆ A∗, the relation ≈L⊆ A∗×A∗,
defined as

x ≈L y if and only if for all u, v ∈ A∗, uxv ∈ L ⇐⇒ uyv ∈ L

is an equivalence relation. This relation is called the syntactic congruence of L.
A well-known theorem of Myhill and Nerode states that the syntactic congruence
of a language has finite index (that is, it has finitely many equivalence classes)
if and only if the language is regular [42].

For any language L, the set of equivalence classes {[w]}w∈A∗ of ≈L consti-
tutes a monoid under the operation ([x], [y]) 7→ [xy] (with identity element [ε]).
This is known as the syntactic monoid of L. The syntactic monoid was first
conceptualized by Schützenberger [104], and it was independently established
by Rabin and Scott (who credited it to Myhill) that a language is regular if and
only if its syntactic monoid is finite [100]. This fundamental result opened up a
bridge between the world of finite semigroups and regular languages, beginning
with the notion of word languages recognized by monoids. We formally define
this below.

Definition 2. Given a finite monoid M , we say that M recognizes a language
L if there exists a homomorphism η : A∗ → M and a subset X ⊆ M such that
L = η−1(X).

For example, the language of even length words is recognized by Z/2Z =
{0, 1} as the inverse image of {0} under the homomorphism

w 7→

{
0 if |w| is even
1 otherwise

If a finite monoid M recognizes a regular language L ⊆ A∗ via a homomor-
phism h and recognizing set X ⊆ M , it also functions as a DFA for L. The
states of this DFA are the elements of M , the starting state is h(ε), the set of
final states is X, and the transition function is given by δ(q, a) = q ◦ h(a).

Combinatorial properties of languages sometimes translate to algebraic prop-
erties of the monoids recognizing them. One of the earliest non-trivial instances
of such a result was Schützenberger’s characterization of star-free languages by
the class of aperiodic monoids. We say that a monoid M is aperiodic if there
exists an integer n such that for every p ∈ M , pn = pn+1. Schützenberger
showed in 1965 that a language is star-free if and only if its syntactic monoid is
finite and aperiodic [105].

Regular expressions over monoids

Regular expressions can be defined more generally over monoids. Let (M, ·)
be a monoid and X1, X2 be arbitrary subsets of it. We define X1 · X2 to be
{x1 · x2 : x1 ∈ X1, x2 ∈ X2}. Therefore, (P(M), ·) is a monoid whose identity
element is {1M}. We now inductively define the set of regular expressions over
M such that each expression r generates a subset of X(r) of M , as follows:

• ∅ is a regular expression and X(∅) = ∅.
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• For every element m ∈M , m is a regular expression with X(m) = {m}.

• If r1 and r2 are regular expressions, then r1 + r2 is a regular expression
and X(r1 + r2) = X(r1) ∪X(r2).

• If r1 and r2 are regular expressions, then r1 ·r2 is a regular expression and
L(r1 · r2) = X(r1) ·X(r2).

• If r is a regular expression, then r∗ is a regular expression and X(r∗) is
the submonoid generated by the elements of X(r).

We observe that given a finite alphabet A, the set of classical regular expres-
sions over A define the same languages as the set of regular expressions over the
free monoid A∗.

1.5.5 Automata-definable word relations
A k-tuple of elements of S is an element s̄ ∈ Sk, that is s̄ = (s1, . . . , sk) with
s1, . . . , sk ∈ S. For each 1 ≤ i ≤ k, we denote by s̄(i) the element si. A relation
over S is a subset of Sk for some k ∈ N. A word relation is a relation over A∗.

Going beyond languages, the formalisms of finite automata and regular ex-
pressions can be modified to define relations over words. However, multiple
models of relations are definable using automata. We illustrate a few of them
here, using a survey on word relations by Choffrut as our reference [32].

Recognizable relations

Let k ∈ N. Consider a morphism η from the monoid (A∗)k (whose operation is
(u1, . . . , uk)◦ (v1, . . . , vk) 7→ (u1v1, . . . , ukvk)) to a finite monoid M . Let X be a
subset of M . Now, the set η−1(X) is a k-ary relation over words in A∗. We see
that defining relations using monoids generalizes the algebraic characterization
of regular languages. These relations are called recognizable, and we denote the
set of all recognizable relations (of all arities) by Rec. An unpublished result
attributed to Mezei by Eilenberg (see [42], p. 75) characterizes recognizable
relations as finite unions of Cartesian products of regular languages (given in
[42], Proposition 12.2).

Recognizable relations are quite limited in terms of expressivity. Even the
equality relation Eq = {(u, u) : u ∈ A∗} is not recognizable, as can be seen from
the following argument: if Eq is a union of products Li × L′i, then for each i,
Li, L

′
i are singleton languages, forcing the union to be infinite.

Rational relations

Let A be a finite alphabet. For all k ∈ N, consider the monoid ((A∗)k, ·) whose
operation is defined as

(u1, . . . , uk) · (v1, . . . , vk) = (u1v1, . . . , ukvk)

for all ui, vi ∈ A∗. We define Ratk(A) to be the set of k-ary relations over A∗

given by regular expressions over (A∗)k. We call these k-ary rational relations.
The class of all rational relations is denoted by

Rat =
⋃
k∈N

Ratk
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The class Rat has been studied extensively in the literature, albeit char-
acterized by different models of automata. It was characterized by Rabin and
Scott (1959) as the set of relations recognized by one-way single-tape automata
accepting tuples of words [100]. A study of the properties of these relations was
carried out by Elgot and Mezei (1965) [45]. The main decision problems were
addressed by Fischer and Rosenberg (1968) [49].

Every recognizable relation is rational. To see why, consider the following
argument: given regular languages L1, . . . , Lk ⊆ A∗ defined by regular expres-
sions r1, . . . , rk, a regular expression defining L1 × · · · ×Lk may be constructed
as follows:
• For every i ∈ {1, . . . , k}, we produce a regular expression r′i that defines

(A∗)i−1 × Li × (A∗)k−i

by replacing, for every a ∈ A, each instance of a in ri with⋃
(a1, . . . , ai−1, a, ai+1, . . . , ak)

where the union ranges over all tuples (a1, . . . , ai−1, ai+1, . . . , ak) ∈ Ak−1.

• Now r = r′1 ∧ · · · ∧ r′k defines the set

{(w1, . . . , wk) : wi ∈ Li for every i ∈ {1, . . . , k}}

In other words r is a regular expression that defines L1 × · · · × Lk.
Since regular expressions are closed under finite union, the above observation
shows that every recognizable relation can be defined by a regular expression
over (A∗)k. Therefore Rec ⊆ Rat. A more general result can be stated in
terms of finitely generated monoids. We say that N is a generator for a monoid
M if N contains the identity element of M and every element in M can be
written as a monoid product of elements in N . Thus (A∗)k is finitely generated
for every k ∈ N. McKnight’s theorem states that recognizable subsets of finitely
generated monoids are rational (see Theorem 2.14 on p. 81 in [95]).

Further examples of rational relations over the two letter alphabet A = {a, b}
include the suffix relation {(u, vu) : u, v ∈ A∗}, given by

((ε, a) + (ε, b))∗ · ((a, a) + (b, b))∗

over the alphabet A = {a, b}, and the subword relation

{(a1 . . . an, u1a1 . . . unanun+1) : a1, . . . , an ∈ A, u1, . . . , un+1 ∈ A∗}

given by the expression

((ε, a) + (ε, b) + (a, a) + (b, b))∗

It is known that Rat is not closed under intersection [16]. Furthermore,
several key problems on rational relations are undecidable, such as checking
whether two rational relations have a non-empty intersection [16], or if a given
rational relation has a non-empty intersection with a given synchronous relation
[14]. However, the class of synchronous relations – which is a strict subset of
Rat (see Lemma 2) – proves to be a robust class from a theoretical as well as
application point of view. It covers Rec and can be seen as a natural extension
of Reg in higher dimensions, owing to its equivalence to the relations recognized
by synchronous automata.
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Synchronous relations

Synchronous relations are defined by synchronous automata. These are multi-
tape DFAs with synchronous movement of tape heads. These automata can
be conceptualized as DFAs over synchronized words – originally presented by
Blumensath and Grädel (2000) in their work on automatic structures [17].

A synchronized word is a way of representing a tuple of words (w1, . . . , wk) as
a single word, written as w1⊗· · ·⊗wk. This is sometimes called the convolution
of w1 ⊗ · · · ⊗ wk. We formally define this as follows:

Definition 3. Let B be a finite alphabet. For any word
w = b1 . . . bn ∈ B∗, and i ∈ {1, . . . , n} we denote by w[i] the let-
ter bi. Further for all 1 ≤ i < j ≤ n let w[i . . . j] denote the word
bi . . . bj . Given a tuple s̄ = (s1, . . . , sk), for each 1 ≤ i ≤ k, we denote by
s̄(i) the element si.

Let A be a finite alphabet and ⊥ be a symbol not in A. We denote by
Ak⊥ the set (A∪̇{⊥})k \ {(⊥, . . . ,⊥︸ ︷︷ ︸

k times)

}. Every element ā = (a1, . . . , ak) of

Ak⊥ is called a k-synchronized letter. For every i ∈ {1, . . . , k}, we let
ā(i) = ai.

For each k-tuple (w1, . . . , wk) ∈ (A∗)k the synchronized word of
(w1, . . . , wk), written w̄ = w1 ⊗ · · · ⊗ wk, is the unique word w̄ ∈ (Ak⊥)∗

such that:

- |w̄| = max
1≤i≤k

|wi|

- For every i ∈ {1, . . . , k} and j ∈ {1, . . . , |w|},

w̄[j](i) =
{
wi[j] if j ≤ |wi|
⊥ otherwise

Let us consider some examples of synchronized words over the alphabet
A = {a, b, c}.

• abaa⊗ bab = (a, b)(b, b)(a, b)(a,⊥).

• Let n ∈ N, and let ūn = an⊗ b2n⊗ c3n+1 = (a, b, c)n(⊥, b, c)n(⊥,⊥, c)n+1.
Then

– ūn[n](1) = a

– ūn[2n](2) = b

– ūn[3n](3) = c.
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We denote by SWk the set of all k-synchronized words. Formally,

SWk = {w1 ⊗ · · · ⊗ wk : (w1, . . . , wk) ∈ (A∗)k}

For each k-ary relation R ⊆ (A∗)k we denote by LR the SWk subset

{w1 ⊗ · · · ⊗ wk : (w1, . . . , wk) ∈ R}

called the synchronized language of R. Then, R is called a synchronous
relation if and only if LR is a regular language. We denote by Sync
the set of all synchronous relations.

Example 5. Let k ∈ N and A be an alphabet. The universal k-ary relation

A∗ × · · · × A∗︸ ︷︷ ︸
k times

denoted by Uk(A), is a synchronous relation given by the synchronized language
SWk.

Example 6. Fix an alphabet A, consider the alphabet A2
⊥. Let A1 = A ×

{⊥},A2 = {⊥}×A,A∆ = {(a, a) : a ∈ A}. Consider the equal length and prefix
binary relations:

Reqlen ={(w1, w2) ∈ A∗ × A∗ : |w1| = |w2|}
Rpref ={(w1, w2) ∈ A∗ × A∗ : w1 is a prefix of w2}

Let Leqlen, Lpref be the synchronized languages of these relations. They are
represented by the regular expressions

Leqlen =(A× A)∗

Lpref =A∗∆ · (A∗1 + A∗2)

So, the prefix and equal length relations are synchronous relations.

Due to the closure properties of regular languages, Sync is closed under
Boolean operations like union, intersection and complement. Moreover, syn-
chronous relations are also closed under projections, which we define below:

Definition 4. For any subset {s1, . . . , sn} ⊆ {1, . . . , k}, where s1 <
s2 < · · · < sn, we define the S-projection on SWk as

πS : SWk → SWn

w1 ⊗ · · · ⊗ wk 7→ ws1 ⊗ · · · ⊗ wsn

and when S = {i}, we simply denote πS as πi. This notion is lifted to
sets of synchronized words as:

πS(L) = {πS(w̄) : w̄ ∈ L}
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Lemma 1. Regular synchronized languages are closed under projections.

Proof. Let A be a DFA recognizing a k-synchronized language L, and let S =
{s1, . . . , sn} be a subset of {1, . . . , k}. To show that πS(L) is also a synchronized
language, we construct a DFA A′ for it. Let Q be the set of states of A, with
q0 as its initial state and F the set of its final states. Further, let δ be the
transition function of A. Now, we define A′ to be the DFA which has the same
set of states as Q, including its initial state and final states, with the transition
function

δ′ = {(q, πS(ā), q′) : (q, ā, q′) ∈ δ}

By definition, A′ accepts exactly those synchronized words ū such that ū =
πS(w̄) for some w̄ accepted by A. In other words, A′ accepts the language
πS(L), and therefore πS(L) is a regular n-synchronized language.

An example of a rational but not synchronous relation is the subword rela-
tion.

Definition 5. Let u = a1 . . . an, v = b1 . . . bm ∈ A∗. We say u is a
(scattered) subword of v, denoted by u v v, if and only if there exists
an increasing function p : {1, . . . , n} → {1, . . . ,m} (called the witness
function) such that for every 1 ≤ i ≤ n, bp(i) = ai. For any S ⊆ A∗, we
let

↑S = {v ∈ A∗ : there exists u ∈ S such that u v v}

Lemma 2. The subword relation is in Rat \ Sync.

Proof. The subword relation v is given by the regular expression( ⋃
a∈A

(ε, a) + (a, a)
)∗

Therefore, v is a rational relation. To show that v relation is not synchronous,
we proceed by contradiction and assume that the synchronized language of v
is regular. We use the well-known pumping lemma of regular languages, first
proved by Rabin and Scott [100]. This is stated below.

For any regular language L, there exists an integer n (called its pumping
length) such that for all words x ∈ L of length at least n, then there exist
u, v, w ∈ A∗ such that x = uvw, and :

- |uv| ≤ n,

- |v| ≥ 1, and

- for all i ∈ N, uviw ∈ L.

Going back to the subword relation, let us assume that the synchronized lan-
guage of v is a regular language L whose pumping length is n. The word
an ⊗ cnan = (a, c)n(⊥, a)n is in L as an is a subword of cnan. By the pumping
lemma, there exist synchronized words u, v, w such that uvw = (a, c)n(⊥, a)n
and

- |uv| ≤ n,
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- |v| ≥ 1, and

- for all i ∈ N, uviw ∈ L.

Let m = |v|. By the pumping lemma, uviw ∈ L for each i ∈ N. In particular,

uv2w = uv.v.w = (a, c)m+n(⊥, a)n ∈ L

Therefore, am+n ⊗ cm+nan ∈ L. However, am+n is not a subword of cm+nan.
This leads to a contradiction and we conclude that v is not in Sync.

1.6 Research goals
We pursue research goals on two topics: evaluation of ECRPQs, and the logical
characterization of synchronous relations. We now outline these goals.

1.6.1 ECRPQ evaluation
A common theme in the study of query evaluation is to find subclasses of queries
where the evaluation problem has lower complexity than in the general case. It
was shown by Chandra and Merlin (1997) that eval-CQ is NP-complete [28].
The problem was simplified by Chekuri and Rajaraman (1997) and Kolaitis and
Vardi (1998) who showed that by restricting the shape of CQs (that is, the
tree-width of its Gaifman graph), we obtain subclasses whose evaluation is in
polynomial time (that is, bounded tree-width CQs). The graph abstraction-
based approach was formalized by Grohe et al. (2001) [58], who completely
characterized CQ evaluation using Gaifman abstractions.

The tree-width of a graph is a number associated with it that determines
its degree of connectivity. It is a metric that plays a fundamental role in many
algorithmic problems on graphs and graph-related structures. The Gaifman
graph of a Conjunctive Query is an undirected graph over its variables, with
two variables sharing an edge if and only if they occur in some relational atom.
Thus it is an abstraction of a CQ, a rough approximation of its shape, with all
its relation atoms stripped away.

The tractability of the evaluation problem for bounded tree-width query
subclasses extends to CRPQs as well, with a similar notion of the Gaifman
graph and its tree-width. As stated earlier, CRPQs use reachability atoms of
the form x

π−→ y in place of relation atoms, and regular expressions to specify
conditions on path labels. Therefore, their Gaifman graphs abstract away the
regular languages to produce a rough approximation of their shape.

What can be said about ECRPQ evaluation? We know that the general
problem is PSpace-complete [15]. The goal, then, is to simplify the problem
using the techniques used in CQ and CRPQ evaluation. This entails that we
identify a good abstraction for ECRPQs, in the form of a graph-based structure.
Moreover, we need to identify measures on this abstraction (similar to tree-width
in the case of CRPQ and CQ evaluation) such that when these measures are
bounded, they yield subclasses that have tractable evaluation.

We analyze the underlying structure of ECRPQs and formalize it using a
graph-based abstraction which we call two-level multi-hypergraphs, or 2L-graphs
for short. A 2L-graph abstracts an ECRPQ via an underlying labeled graph,
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which models the reachability subquery, as well as a second level hypergraph
over the edges of the graph, which models the relations used in the ECRPQ. By
defining measures or quantities over a 2L-graph, we can talk about classes of
ECRPQs with specific structural properties. Based on these properties, we can
talk about the complexity of the evaluation problem for these subclasses, and
stratify them according to various levels of hardness. We study the combined
complexity as well as the parameterized complexity of ECRPQ evaluation in this
way, building upon the results of CRPQ evaluation. The 2L-graph-based analy-
sis reveals the role that relations play in making the general ECRPQ evaluation
problem significantly harder than CRPQ evaluation.

We have formalized our results on ECRPQ evaluation in a paper submitted
to the Principles of Database Systems (PODS) conference, which was subse-
quently accepted to be published in the 2022 proceedings. A pre-print can be
found in Figueira and Ramanathan[47].

1.6.2 Logical characterization of synchronous relations
The class of regular languages has been characterized in many different ways,
including regular expressions, finite automata, finite monoids, and Monadic Sec-
ond Order (MSO) logic over finite words. As discussed earlier, regular expres-
sions are used in path queries to specify conditions on path labels. The set of
first order formulæ of MSO(<), denoted as FO(<), defines a subclass of Reg
which coincides with the star-free languages (McNaughton and Papert, 1971)
[84]. How is this connected to regular path queries? As mentioned earlier, the
practical implementation of CRPQs in SPARQL reveals a pattern that a major-
ity of human and script-generated queries only use regular languages definable
in “small fragments” of FO(<).

These small fragments are defined in terms of levels of the quantifier alterna-
tion hierarchy of FO(<). Simply put, any first order formula can be re-written
by putting all of its quantifiers (∃,∀) to the left, leaving a quantifier-free formula
prefixed by alternating blocks of quantifiers of the form ∃∗ and ∀∗. This is called
its prenex normal form. Σi is the set of formulæ whose prenex normal form is
in

∃∗∀∗ . . .︸ ︷︷ ︸
i alternating blocks

(a quantifier free formula)

and Πi is the set of formulæ whose prenex normal form is in

∀∗∃∗ . . .︸ ︷︷ ︸
i alternating blocks

(a quantifier free formula)

Since ECRPQs extend CRPQs with word relations, a natural question is
whether there exist subclasses of relations analogous to those subclasses of Reg
that correspond to lower levels of the FO(<) quantifier alternation hierarchy.
Fortunately, a first order logical characterization of synchronous relations given
by Eilenberg et al. in 1969 proves useful here. This logic is the first order
theory of finite words with the prefix, equal length, and last letter predicates
[43]. A close look at the proof of the characterization theorem reveals that any
synchronous relation can be defined by a formula in the third level of the alter-
nation hierarchy of this logic, which implies that the logic collapses in expressive
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power to its Σ3 fragment. This result raises the question of characterizing levels
one and two of the quantifier alternation hierarchy of this logic.

Our results show that the relations definable in these lower levels are similar
in combinatorial description to the regular languages definable in the corre-
sponding levels of the FO(<) quantifier alternation hierarchy. We further prove
that the membership problem for these “small fragments” of relations is decid-
able. These results are published in Figueira, Ramanathan, Weil 2019 [48].

1.7 Plan of the thesis
This thesis consists of two parts comprising three and two chapters respectively.
Part I introduces the graph and relational data models and associated querying
formalisms. We formally define Conjunctive Queries and Regular Path Queries.
Following that, we look at various extensions to RPQs, including Conjunctive
RPQs (CRPQs) and Extended CRPQs (ECRPQs) which add to the expressive
power of the path query formalism. We also explore the graph-based abstrac-
tions of these formalisms that have been used to determine the complexity of
evaluating path queries. Finally, we present our results in the form of two theo-
rems characterizing ECRPQ evaluation, pertaining to combined complexity and
parameterized complexity respectively.

Part II deals with Sync, the set of synchronous relations. This is the class of
word relations that CRPQs are equipped with to produce ECRPQs. We build
upon a result by Eilenberg, Elgot, and Shepherdson which states that Sync
is characterized by the first order logic on words with the prefix, equal length,
and last letter predicates. We show that this logic collapses to the third level
in its quantifier alternation hierarchy. This raises the question of characterizing
the subsets of relations definable in the lower levels of the hierarchy and their
Boolean combinations. We show that these classes of relations can be effec-
tively characterized and admit decidable membership. Moreover, we show how
the combinatorial description of these classes of relations reveals a significant
connection with the lower levels of the FO(<) quantifier alternation hierarchy.

We now describe the content in each chapter, along with references to the
sections containing the topics we discuss.

Part I: Queries
This part consists of Chapters 2,3 and 4.

Chapter 2 introduces the key concepts associated with databases and query
formalisms. We define relational databases and conjunctive queries in Sections
2.2 and 2.2.1 respectively. Following that, we define graph databases in Sec-
tion 2.3 and discuss their applications. In Section 2.3.1 we introduce labeled
graphs as our chosen abstraction to study graph databases. Then, we formally
introduce path queries in Section 2.3.2. After defining RPQs and CRPQs in
this section, we discuss some well-known extensions of CRPQs in Section 2.3.3.
This leads us to the motivation behind ECRPQs, their definition as well as
semantics, which is addressed in Section 2.3.4.

Following this, we discuss the ECRPQ evaluation problem in Section 2.4,
touching upon its state-of-the-art with respect to CQs and CRPQs. Here we
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discuss how and why queries are abstracted, i.e. reduced to their essential shape
in the form of a graph or hypergraph-based structure. The chapter concludes
with a discussion on abstracting ECRPQs, keeping in mind the goal of obtain-
ing a complexity theorem similar to the ones associated with CQ and CRPQ
evaluation.

Chapter 3 defines the structure which serves as the ECRPQ abstraction.
This is called the two-level-multi-hypergraph, or 2L-graph in short. We formally
define 2L-graphs and ECRPQ abstraction in Section 3.1.1. We also define mea-
sures on 2L-graphs, which are numerical quantities associated with classes of
2L-graphs that allow us to formulate the theorem statements. These measures
are defined in Sections 3.2.1 and 3.2.2. Finally, we state our results with respect
to these measures and discuss how the theorems are proved in Section 3.3.

Chapter 4 serves as the technical portion of Part I, containing the state-
ments and full proofs of all the theorems, lemmas, and propositions required
to establish our results. We begin this chapter by establishing some technical
preliminaries, in Section 4.1. The lemmas needed to prove the main theorems
are given in Section 4.2, which is divided into the lemmas on upper bounds (in
Section 4.2.2) and the lemmas on lower bounds (given in Section 4.2.3). The
final proofs of the theorems are given in Section 4.3. The chapter concludes
with a discussion on related work (Section 4.4), which includes a discussion on
non-Boolean queries as well as potential avenues for adapting these ideas for the
query containment problem.

Part II: Relations
This part deals with synchronous relations and their logical characterization. It
consists of Chapters 5 and 6.

Chapter 5 covers concepts pertaining to languages, word relations, and logic,
an overview of which is given in Section 5.1. This is followed by Section 5.2 which
discusses the characterization of regular languages using logic and algebra. We
define the syntax and semantics of the logic MSO(<) in Section 5.2.1. In Sec-
tions 5.2.2 and 5.2.3, we define aperiodic languages and take a closer look at the
structure of first order formulæ from the perspective of quantifier alternation.
Some subclasses of Reg defined by small fragments of FO(<) are discussed in
Sections 5.2.4 and 5.2.5.

The logical characterization of synchronous relations by Eilenberg et al. is
explained in Section 5.3. The chapter concludes with Section 5.4, which contains
the statements of our contributions on this topic.

Chapter 6 is the technical portion of Part II. In Section 6.1 we define the
notion of type sequences of synchronized words, an important concept that plays
a crucial role in the proof of our results. Following that, in Section 6.2, we show
(via a proof of Eilenberg’s result) that FO[σ] is equal in expressivity to the third
level in its quantifier alternation hierarchy. The task that remains then is to
characterize the subsets of Sync corresponding to levels one and two, and their
Boolean closures.
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The results pertaining to the characterization and membership problem of
Σ1[σ] and BΣ1[σ]-definable relations are given in 6.3. In Section 6.4 we cover the
results pertaining to the characterization and membership of Σ2[σ] and BΣ2[σ]-
definable relations, thus giving a complete picture of the quantifier alternation
hierarchy of FO[σ]. We conclude this chapter with a discussion on the separation
problem for synchronous relations, which is given in 6.5.
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Chapter 2

Databases and Queries

2.1 Introduction

2.1.1 General concepts
Informally, a database is understood to be a repository capable of storing, updat-
ing, and modifying data. Database entries or records stored within the database
can be retrieved via certain commands called queries. These queries are con-
ceptualized as mathematical formulæ and expressed in special languages called
query languages. For example, Structured Query Language (SQL) is well-known
for its wide range of applications in querying relational databases. Data orga-
nization is the practice of categorizing and classifying data in order to extract
meaningful information from it.

As discussed in Chapter 1 (see Section 1.3), various data models are used
for a variety of applications. We study query formalisms associated with two of
these models: the relational model and the graph model. Relational databases
store data in tables (called relations), and query them with simple declarative
statements. Conjunctive Queries (CQs) constitute a well known querying for-
malism on relational databases.

In contrast, the graph data model has graph-based data structures in its un-
derlying framework. Graph databases consist of nodes, representing data points,
and labeled edges, which carry data representing the relationships between those
data points. These find applications in real-world scenarios where the intercon-
nections between objects are equally or even more important than the objects.
For theoretical exploration, graph databases are commonly represented via edge
labeled graphs. In software applications, however, these databases are modeled
via formats like RDF or property graphs [9]. In the current work, we focus
on path queries, which output tuples of nodes connected by paths whose labels
satisfy some regular language or relation.

A database management system (DBMS) is a software that allows end-users
to create, control and access databases [35]. Some of the well-known DBMSs are
Microsoft Access, Microsoft SQL Server, and Oracle DB; all of these are based
on the relational data model so they are called RDBMSs (relational DBMSs).
Among the DBMSs that use the graph data model, Neo4j and OrientDB are
widely applied.

Formal methods refer to the analysis of a digital system from a mathemati-
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cal perspective, that is, studying devices, systems, or algorithms using theoret-
ical models to describe their behavior. The formal treatment of databases and
queries is useful for two reasons: (i) it helps to design efficient query evaluation
algorithms, and determine their complexity in the best and worst case, and (ii)
the expressive power of these queries can be quantified in precise terms, which
allows for better database design.

2.1.2 Queries and languages
The term query generally refers to a command to modify or retrieve data from
a database. In this thesis, we only focus on queries involved in data retrieval.
Queries are sometimes modeled as formulæ in First Order (FO) logic, using
variables and logical operators like ∃ and ∀. Moreover, relations over tuples of
variables are represented using special symbols, called relation symbols.

Associated with each data model there are various types of queries. For
example, CQs are written in FO logic using only relational symbols and the
existential operator ∃. We discuss this querying mechanism in more detail in
Section 2.2.1.

RPQs constitute the standard querying formalism on graph databases. As
stated earlier, an RPQ evaluated on a graph database extracts all pairs of nodes
such that there exists a path between them labeled by a word in a given regular
language. These languages are specified as regular expressions over the label-
ing alphabet. A common extension to RPQs and CQs is the query formalism
Conjunctive Regular Path Queries (CRPQs), which are conjunctions of RPQs
with shared node variables and projection. CRPQs are involved in the ongoing
standardization effort for Graph Query Languages (GQL) [37, 1] and G-core [7].
While RPQs and CRPQs find direct application in Neo4j and SPARQL queries,
they are limited by the inability to compare labels on paths using relations.
Further, they do not allow paths as output. Libkin et al. proposed extending
CRPQs by allowing synchronous relations on paths [15]. As mentioned earlier,
these word relations are recognized by multi-tape automata with synchronous
movement of heads [43, 32]. This class of queries is called ECRPQ, which
stands for Extended CRPQ. The expressive power of ECRPQs allows versatile
application for many problems including those in the domain of Semantic Web
and biological sequences. We discuss CRPQs and ECRPQs in more detail in
Section 2.3.2.

2.1.3 Topic of research
In this part of the thesis we focus on the query evaluation problem for queries
on graph databases. This problem is central to both theory and practice; the
logical properties of queries can be exploited to obtain an algorithm for their
evaluation. Given the increasingly large volumes of data that modern DBMSs
are confronted with, optimizing query evaluation continues to be a central theme
of research in the field of database theory. We only deal with the mathematical
abstractions of databases and queries, as this allows us to discuss general query
evaluation algorithms without being cluttered by the specifics of different query
languages or DBMSs.

Given a query q and database D as input, the query evaluation problem
involves the computation of the answer set ans(q,D). The evaluation problem
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has been extensively studied for several types of queries on different data models,
including CQs [58], CRPQs and ECRPQs [15]. In this part of the thesis, we
study the ECRPQ evaluation problem in depth, which is an algorithmic problem
stated as follows:

ECRPQ-evaluation (eval-ECRPQ)
Input: An ECRPQ q, a graph database D, and a pair (v̄, p̄) of

nodes and paths in D.
Question: Does (v̄, p̄) belong to ans(q,D)?

In the introductory chapter (see Section 1.4), we talked about several com-
plexity measures for the query evaluation algorithm. Recall that the combined
complexity measure considers both the query and the database as the input
whereas the parameterized complexity measure considers the database to be
the input and query size as a parameter. We study ECRPQ evaluation with
respect to these two measures. The parameterized ECRPQ evaluation problem
is stated as follows:

Parameterized ECRPQ evaluation (p-eval-ECRPQ)
Input: An ECRPQ q, a graph database D, and a pair (v̄, p̄) of

nodes and paths in D.
Question: Does (v̄, p̄) belong to ans(q,D)?
Parameter: The size of the query, |q|.

The data complexity, which is the complexity measure when query size is
constant, is NL-complete for CRPQs and ECRPQs [15].

2.1.4 Contributions
The complexity of the query evaluation problem has been investigated in depth
for many query formalisms. For instance, CQ evaluation is known to be NP-
complete [28], a result that leads to CRPQ evaluation also being NP-complete
by way of a simple polynomial time reduction (which is formally proved in
Corollary 1). A central theme of research is to identify the subclasses of queries
whose evaluation is tractable – in other words in PTime – and to characterize
the structural properties of such subclasses. In the case of CQs, the tree-width
measure on their graph representation provides a solution: the evaluation prob-
lem is tractable for any subclass of CQs whose underlying graph abstractions
have bounded tree-width [29, 70]. Indeed, tractability is retrieved in the case of
bounded tree-width CRPQs as well.

For ECRPQs, the general evaluation problem is known to be PSpace-
complete [15]. In order to simplify the problem, we define a new abstraction
for ECRPQs called two-level graphs, or 2L-graphs. Every class C of 2L-graphs
corresponds to a class of ECRPQs abstracted by members of C, which is denoted
by ECRPQ(C). Under some mild hypothesis, we give precise criteria for C such
that the complexity of evaluating ECRPQ(C) is in PTime, NP or PSpace.
Unsurprisingly, we find that tree-width plays a role in evaluating ECRPQs,
similar to CQs and CRPQs. However, we go beyond tree-width and define ad-
ditional measures on 2L-graphs that give a full picture of ECRPQ evaluation.
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We also characterize the parameterized evaluation problem, specifying precisely
the classes C where the parameterized problem for ECRPQ(C) is in FPT (fixed
parameter tractable), W[1]-complete (the parameterized complexity equivalent
of NP) or XNL-complete.

2.1.5 Organization

In the current chapter we introduce data models, relational databases, graph
databases, and queries. Following that, we formally state the decisions problems
studied in this work, chiefly the ECRPQ evaluation problem. Finally, we explain
our goals in regard to ECRPQ evaluation and the methodology we employ to
achieve them.

In Chapter 3 we introduce 2L-graphs and corresponding measures on them.
We illustrate how this abstraction naturally arises from an analysis of the
PSpace-hardness of the general evaluation problem. We end Chapter 3 with
a statement of our results, which take the form of two theorems characterizing
the combined as well as parameterized complexity of ECRPQ evaluation. Full
proofs of these theorems are provided in Chapter 4, which serves as the technical
section of this part of the thesis.

2.2 Relational databases

In 1970, while working for IBM, an English computer scientist called E. F.
Codd revolutionized the field of database theory by proposing a new data model
called the relational model [33]. A relational database consists of a set of tables
(called relations), whose rows represent instances of some entity (like names of
customers or products) and columns represent values or attributes of that entity
(like ages of customers, or prices of products).

The introduction of relational databases signified a paradigm shift in data
modeling; using the mathematical notion of a relation one could express differ-
ent properties of an object. Structured Query Language or SQL is the paradig-
matic and most well-known query language for relational databases. The re-
lational model is best suited for applications where the structure of the data,
or its schema, is fixed. Relational databases are applied ubiquitously in real-
world scenarios, including but not limited to administrative and commercial
software. However, this model has a limitation: databases with different un-
derlying schema cannot be integrated, making it difficult to combine or extend
them. Further, the query languages over relational databases are not expressive
enough to specify the subtler, more implicit relationships between elements of
the database like paths, neighborhoods, and patterns.

Example 7. The following relational database StudentActivityList records
the participation of students in certain sports activities1:

1Image courtesy of http://www.databasedev.co.uk/table design tips.html
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Now, if we wanted to know students with names x1, x2 participating in the
same activity, we could write a query SameActivity(x1, x2):

SameActivity(x1, x2) = ∃y1, y2, z : StudentsTable(x1, y1) ∧ StudentsTable(x2, y2)∧
ParticipantsTable(y1, z) ∧ ParticipantsTable(y2, z)

SameActivity is an example of a conjunctive query – it uses only existen-
tially quantified variables y1, y2, z and the relations given in the database.

Codd proposed a wide range of operations on relations on databases, in-
cluding permutation, projection, composition, and so on [33]. His model also
specified precise conditions to check for redundancy, consistency, and data in-
tegrity. While SQL is the dominant query language paradigm in the realm of
relational databases, it does deviate from Codd’s proposed model by allowing
duplicate rows, columns, and the NULL entry in any cell. However, for our pur-
poses, we study a purely mathematical abstraction of relational databases which
employs tuples and relations, with set semantics.

The definition of relational databases (given in Definition 6 below) is bor-
rowed from the textbook of Abiteboul et al. [4]. We introduce some termi-
nology first. Let us fix infinite, disjoint sets Dom,Rel, called the domain and
the set of relation names respectively. A signature is a set of relation names
R = {R1, . . . , Rn} ⊆ Rel and a set of arities arity(R1), . . . , arity(Rn) ∈ N asso-
ciated with them. For any finite set V ⊆ Dom and every relation R belonging
to a signature R, an interpretation of R over V associates to R a relation
[R] ⊆ V arity(R).

Definition 6. A relational database consists of (i) a pair D = (V,R)
where V ⊆ Dom is a finite set (called the active domain of D) and R is
a signature, and (ii) an interpretation [Ri] ⊆ V arity(Ri) for every Ri ∈ R.

Example 8. The database StudentActivityList given in Example 7 is ex-
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plicitly written as (V,R), where:

V = {‘John Smith’,‘Jane Bloggs’,‘Mark Antony’,
‘084’,‘100’,‘182’,‘219’,
‘Golf’,‘Sailing’,‘Squash’,‘Swimming’,‘Tennis’,
‘$15’,‘$36’,‘$40’,‘$47’,‘$50’}

R consists of the relation names

{StudentsTable,ParticipantsTable,ActivitiesTable}

interpreted as:

[StudentsTable] = {(‘John Smith’,‘084’),(‘Jane Bloggs’,’100’),(‘John Smith’,‘182’),
(‘Mark Antony’,‘219’)}

[ParticipantsTable] = {(‘084’,‘Swimming’),(‘084’,‘Tennis’),(‘100’,‘Squash’),(‘100’,‘Swimming’)
(‘182’,‘Golf’),(‘219’,‘Golf’),(‘219’,‘Swimming’),(‘219’,‘Squash’)}

[ActivitiesTable] = {(‘Golf’,‘$47’),(‘Sailing’,‘$50’),(‘Squash’,‘$40’)
(‘Swimming’,‘$15’,),(‘Tennis’,‘$36’)}

2.2.1 Conjunctive Queries
Conjunctive Queries are the elements of the relational calculus that are express-
ible using only existentially quantified variables and conjunctions of relation
atoms. In a practical setting, CQs make up a large portion of the queries posed
to relational databases. Moreover, this class of queries enjoys many desirable
theoretical properties such as the decidability of problems like query evaluation
and containment, which is not the case for larger subclasses of the relational
calculus.

In relational algebra, CQs are expressed as queries that only use the op-
erators {select, join, project}. Within SQL, Conjunctive Queries are ex-
pressed using the command SELECT FROM WHERE such that the condition that
follows only uses conjunctions of equality atoms.

Definition

Let us formalize the notion of Conjunctive Queries. Fix an infinite set of vari-
ables V = {x, y, z . . . }.

Definition 7. A Conjunctive Query (CQ) over a signature
{R1, . . . , Rn} is a first order formula of the form

q(x̄) = ∃ȳR1(z̄1) ∧ · · · ∧Rn(z̄n)

where x̄ and ȳ are pairwise disjoint tuples of variables in V , called free
and bound variables respectively, with tuples z̄1, . . . , z̄n from x̄∪ ȳ (pos-
sibly repeated). Further, R1, . . . , Rn are called the relation atoms of
q.
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In addition to SameActivity(x1, x2) defined on StudentActivityList given
in Example 7, let us look at some more examples of CQs:

Example 9. Here we have CQs listing the names of all students who sail, and
pairs of students (y1, y2) who have the same name.

StudentSailor(x) =∃y StudentsTable(x, y) ∧ ParticipantsTable(y, ‘Sailing’)
SameName(y1, y2) =∃x StudentsTable(x, y1) ∧ StudentsTable(x, y2)

Intuitively, evaluating StudentSailor on the database StudentActivityList
should yield the empty set, because there is no occurrence of ‘Sailing’ in any
entry in ParticipantsTable. Meanwhile, evaluating SameName(y1, y2) on the
same database yields {(‘084’,‘182’)}, with ‘John Smith’ being the repeated
name. Now we formalize the notion of CQ evaluation.

Definition 8. Let q be a CQ with relation atoms R1, . . . , Rn and
D = (V,R) be a relational database where {R1, . . . , Rn} ⊆ R. A
valuation of q on D is a function σ from the set of variables of q to V .
One can extend σ to tuples of variables in the natural way.

We say that (D, σ) satisfies q if and only if there exists a valuation σ
of q on D such that for every relation atom Ri of q, Ri(σ(z̄i)) holds in
D. We say D satisfies q, written D � q, if there exists some valuation
σ such that (D, σ) satisfies q.

Let x̄q be the tuple of free variables of q. We define the set of answers
of q evaluated on D as the set

ans(q,D) = {σ(x̄q) ∈ V |x̄q| : (D, σ) satisfies q}

Finally, a CQ is called binary if it has exactly two free node variables.

Conjunctive Query evaluation (stated below) is known to be NP-complete
[28] in combined complexity, and W[1]-hard in parameterized complexity [91].

Conjunctive Query evaluation (eval-CQ)
Input: A CQ q, a relational database D = (V,R) and a tuple v̄

of elements in V .
Question: Does v̄ belong to ans(q,D)?

For simplicity, we only consider Boolean CQs, CRPQs, and ECRPQs. Boolean
queries are those that do not contain any free variables, thus returning true
or false when evaluated on a database. Our results on query evaluation are
introduced in Chapter 3 and proved in Chapter 4. Under certain conditions,
these results may be extended to non-Boolean ECRPQs with and without free
path variables – we discuss this topic in Section 4.4.1.

(Boolean) CQ evaluation
Input: A Boolean CQ q and a relational database D.
Question: Does D � q?
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It was shown in [121] that CQs whose shape is acyclic have tractable eval-
uation. This shape is given by the Gaifman graph of a CQ: for any CQ q, its
Gaifman abstraction is a graph over its variables which contains an edge x→ y
if and only if x, y appear in some atom of q. Chekuri and Rajaraman proved
that evaluation is tractable for any class of CQs whose Gaifman graphs have
bounded tree-width [29]. Gottlob et al. further improved this result by showing
that for all k ∈ N, evaluating CQs of tree-width k is LogCFL-complete [54].

2.3 Graph databases
Graph databases use graph structures to store and model data. They are used
in scenarios where there is a need to name and specify semantic properties on
the interrelationships between objects (i.e. paths in the graph) in addition to
object properties. One of the earliest instances of this model was in the form
of the graph oriented object database model (GOOD), introduced by Gyssens
et al. [62], who observed that graphs were already an integral part of the
design of semantic and object-oriented data models. Aside from having desirable
theoretical properties and powerful query formalisms associated with it, the
graph data model also finds various real-world applications due to having several
advantages over prior data models. We outline some of these applications below.

- The graph data model improves upon prior data models like relational,
network and hierarchical databases [71], whose limitations in representing
data connectivity, restricted semantics, and difficulty in modeling complex
relationships between database objects are addressed by graph databases
[76]. Moreover, the query formalisms associated with prior data models
suffer from the same restrictions concerning expressivity – graph databases
come equipped with better formalisms suited to handle applications of
greater complexity [92].

- Compared to relational databases, graph databases are better suited in
applications pertaining to spatially embedded networks like roads and
public transport [81], and other transportation networks like air routes,
telecommunications, and waterworks [61].

- Graph databases offer a higher degree of functionality than object-oriented
databases in many applications including CAD, image processing, and
scientific data analysis software [99].

- Since the early 2000s, graph databases have addressed the need for man-
aging huge amounts of data connected via networks, in various domains.
These are called complex networks and have been classified and studied in
great depth [89, 39, 6]. These networks are grouped into four categories:
social, information, technological, and biological networks. In social net-
works, a set of persons or groups of people are modeled using nodes linked
by various interpersonal relationships [65, 119, 107, 19]. Information net-
works involve representing the flow of information, most importantly in
hypertext networks such as the World Wide Web (see Florescu et al. [50]
for a survey) and peer-to-peer networks [88]. Technological networks are
those complex networks that are characterized by geographical and/or
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spatial components, such as servers and nodes on the Internet, air routes,
power grids, delivery networks. These are also sometimes classified un-
der the term geographical information systems (GISs) [106, 85]. Biological
networks pertain to biological systems, chiefly in the areas of genome se-
quences, food webs, and neural networks [56, 63, 90].

- The various formalisms of path queries on graph databases are used in
many applications associated with semistructured data, Semantic Web,
and biological sequences [21, 10, 74, 73]. We discuss the applications of
path queries in more detail in Sections 2.3.2 and 2.3.4.

We now define the theoretical abstraction of graph databases that we work
with. Following that, we define path queries on graph databases, whose evalu-
ation is the topic of our study.

2.3.1 Abstraction with labeled graphs

There are two theoretical models for graph databases: labeled graphs and prop-
erty graphs [8]. While labeled graphs are graphs whose edges are labeled with
letters from a finite alphabet, property graphs extend this formalism by allow-
ing nodes to be labeled and edges to possess additional properties as well. The
simpler abstraction for studying path queries is the labeled graph formalism.
From now on, we simply consider all graph databases to be labeled graphs over
some alphabet A.

Definition 9. A graph database over a finite alphabet A is a tuple
D = (V,E, η) where (V,E) is an directed graph and η : E → A is a
labeling function which assigns to every edge e a label η(e) ∈ A (where
A is a finite alphabet).

A non-empty path is a sequence of edges (e1, e2, . . . , en) in E such that
for all 1 ≤ i ≤ n−1, the edges ei and ei+1 are consecutive, i.e. the target
vertex of ei is the same as the source vertex of ei+1. An empty path
consists of a single vertex v ∈ V and contains no edges. The labeling
function η is extended to paths

η : E∗ → A∗

η(e1 · · · en) = η(e1) · · · η(en)

thus assigning to every path p a word η(p). The label of an empty path
is the empty word ε.

Let us look at an example of a graph database represented as a labeled graph.
Our example database is a family tree where the nodes represent persons, and
the edges labeled by s and d stand for the relationships ‘son’ and ‘daughter’
respectively.

Example 10. Below we have a family tree modeled with a labeled graph
Windsor:
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The above graph has 12 nodes and 11 edges. Therefore, it expresses 11 ‘basic
atoms’ of information, each concerning a pair of nodes and whether the edge
between them is labeled by s or d.

2.3.2 Path Queries on graph databases
A crucial feature of graph database query languages is the ability to extract pairs
of nodes connected according to some rule or condition. This is the essential
function of a Regular Path Query.

Definition 10. An RPQ is a formula

q(x, y) = ∃π x π−→ y ∧ L(π)

where x and y are node variables, π is a path variable, and L is a language
given by some regular expression.

RPQs were proposed as a tool for information extraction and knowledge
representation in large semistructured databases such as the World Wide Web,
which is not characterized by a well-defined schema (Buneman 1997 [21], Cal-
vanese et al. 1999 [23]). Since their introduction, RPQs and their extensions
have come to play a similar role in graph databases as CQs do in relational
databases [26, 5, 2].

Example 11. Recall the graph database Windsor defined in Example 10, where
the edge labels s and d refer to ‘son’ and ‘daughter’ respectively. Formally, we
represent these relationships with the RPQs:

isSon(x, y) =∃π x π−→ y ∧ Ls(π);Ls = s

isDaughter(x, y) =∃π x π−→ y ∧ Ld(π);Ld = d

isAncestor(x, y) =∃π x π−→ y ∧ L1(π);L1 = (s+ d)+

Informally, a graph database satisfies an RPQ if it contains a pair of nodes
and a path between them labeled by the given regular language (as defined in
the RPQ). As our topic of study is ECRPQs, which is a much more general
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formalism containing RPQs, we skip the formal definition of RPQ semantics for
now. Definition 12 covers the syntax and semantics of ECRPQs.

The output of an RPQ on a graph database is limited to pairs of nodes.
In order to extract larger tuples of nodes with more complex interconnections,
conjunctions of RPQs with shared node variables are considered. This query-
ing formalism, called Conjunctive Regular Path Queries (CRPQs), serves as a
common extension to RPQs as well as CQs.

Definition 11. A Conjunctive Regular Path Query, or CRPQ, is
a formula

q(x̄) = ∃ȳ ∃π̄ z1
π1−→ z′1 ∧ · · · ∧ zn

πn−−→ z′n ∧ L1(π1) ∧ · · · ∧ Ln(πn)

where the πi’s are pairwise distinct, zi’s are among the xi’s and yi’s
and Li’s are regular languages. Further, the variables in x̄ are called
free variables and those in ȳi are called bound variables. We denote by
CRPQ the set of all CRPQ.

Although CQs and CRPQs operate on different data models, CRPQs contain
CQs in terms of expressivity. To demonstrate this fact, consider a single relation
CQ, say q = ∃z̄R(z1, . . . , zn). Then the CRPQ (over the singleton alphabet {R})

q̂ = ∃x̄ ∃ȳ x1
R−→ y1 ∧ · · · ∧ xn

R−→ yn

is “equivalent to” q, that is, evaluating q over a relational database D is equiv-
alent to evaluating q̂ over a graph database D̂ via a polynomial time trans-
formation D → D̂. In general, if a CQ has ` relations and k variables, then
the corresponding CRPQ translation has 2k variables, over an alphabet of size
` consisting of the relation names of the CQ. We formally define this trans-
formation in Chapter 4 (see Corollary 1) and show that it can be achieved in
polynomial time.

RPQs and CRPQs may be evaluated under different semantics. The default
mode of evaluating path queries is with arbitrary path semantics: the query
return pairs of nodes connected by any path whose label belongs to the given
regular expression. A CRPQ evaluated under trail semantics only output nodes
connected by trails – paths with no repeated edges – whose labels satisfy the
regular conditions. A further restriction is to consider only simple paths, i.e.
paths without any repeating nodes; this is called simple path semantics. The
choice of semantics plays a role in the complexity of query evaluation. For
example, RPQ evaluation is NL-complete under arbitrary path semantics, but
NP-complete under trail and simple path semantics [13, 83].

The default semantics for CRPQ evaluation is understood intuitively from
the semantics of CQ evaluation – the relational atoms in a CQ are replaced by
reachability atoms in a CRPQ. However, we formally define it in Definition 14,
where we contextualize CRPQs as a subclass of the more general formalism of
Extended CRPQs.

Example 12. The following CRPQ, when evaluated on Windsor, returns triples
(x, y, z) such that x is some ancestor of y and z.

commonAncestor(x, y, z) =∃π1 ∃π2 x
π1−→ y ∧ x π2−→ z ∧ L(π1) ∧ L(π2);L = (s+ d)+ �
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.

There are several ways in which CRPQs can be extended to obtain more
expressive querying formalisms.

2.3.3 Extending CRPQs with two-wayness and union
The disjunction of n CRPQs {q1, q2, . . . , qn} – all operating on the same set of
node variables {x1, . . . , xm} – is written as q1∨· · ·∨qn. This is an instance of an
extended query formalism called UCRPQ (which stands for unions of CRPQs).
The interpretation of q = q1 ∨ · · · ∨ qn on a graph database D = (G,E, η) is
as follows: a tuple of nodes (v1, . . . , vm) ∈ Gm is in ans(q,D) if and only if
(v1, . . . , vm) ∈ ans(qi, D) for some i ∈ {1, . . . , n}.

To see that UCRPQs are strictly more expressive than CRPQs, consider two
CRPQs

q1(x, y, z) = x
a−→ y ∧ x b−→ z

q2(x, y, z) = x
b−→ y ∧ x a−→ z

We show by contradiction that q1 ∨ q2 is not equivalent to any CRPQ. Assume
there exists a CRPQ q that produces the same set of answers on every graph
database D as q1 ∨ q2. Then it must contain x, y, z as its free node variables,
with conditions on paths connecting x to y and x to z, with no “intermediate”
quantified node variables (since the conditions on paths in q1 and q2 force their
length to be 1). Therefore it must be of the form

q(x, y, z) = x
π1−→ y ∧ x π2−→ z ∧ L1(π1) ∧ L2(π2)

Moreover, both L1 and L2 must contain {a, b} as a subset. Therefore the fol-
lowing graph database

px

py px

a
a

satisfies q but not q1∨ q2. It follows that q1∨ q2 is not equivalent to any CRPQ.
Thus, UCRPQs are stronger than CRPQs in expressive power. Formally, a
UCRPQ is a query of the form Q1 ∨ Q2 ∨ · · · ∨ Qn, where Q1, Q2, . . . , Qn are
CRPQs with shared free variables, all using relations of the same arity. This
is a standard extension and all the major results pertaining to CRPQ decision
problems also hold for the UCRPQ formalism [24].

Models of RPQs with two-way or backward traversal of paths have also been
studied in depth [24, 25]. A 2RPQ over an alphabet A uses regular expressions
over A∪̇A−, where A− = {a−}a∈A is a copy of A containing ‘reverse’ letters.
The occurrence of a letter a in a path is seen as a forward step reading a in the
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graph database, whereas reading a− amounts to traveling one step back along
the edge reading a. For example, the 2RPQ

x
(a+b−)∗−−−−−→ y

says that y can be reached from x via a path which reads a going forwards
and b going backwards. This mode of traversal in a graph database makes this
formalism much more useful in real-world scenarios, especially in the context of
dealing with unstructured and semistructured data [22, 21, 87]. Similar to its
one-way counterpart, the 2RPQ formalism is also extended using conjunction
(Conjunctive 2RPQs or C2RPQs) and further, their closure under finite union
to produce UC2RPQs. Decision problems on these formalisms using two-way
automata have also been explored in detail [24].

2.3.4 Word relations in path queries
The regular expressions used in a CRPQ impose conditions on path labels some-
what independently – each path label is in a given regular language or not, with
no relation to the other paths. Therefore, a natural extension of CRPQs is
to allow path labels to conform to a given word relation. For example, to the
reachability condition

reach(x, y1, y2) = ∃π1 ∃π2 x
π1−→ y1 ∧ x

π2−→ y2

we may add the condition of a binary relation R̂ on path labels

rel(π1, π2) = (label(π1), label(π2)) ∈ R̂, where
R̂ = (aA∗ × bA∗) ∪ (bA∗ × aA∗)

The resulting query

q̂ = ∃π1 ∃π2 x
π1−→ y1∧

π2−→ y2 ∧ R̂((label(π1), label(π2)))

can be seen as a member of the class “CRPQ+{R̂}” whose syntax extends that
of CRPQ with a relation symbol R̂, and whose semantics can be understood
intuitively. We call reach(x, y1, y2) the reachability part of q̂, and rel(π1, π2) its
relational part. Evaluated over a graph database, q̂ returns triples (x, y, z) of
nodes such that there are paths (π1, π2) from x to y1 and x to y2 whose labels
begin with (a, b) or (b, a). Note that this property can be expressed in a UCRPQ
as well. In fact, each query in CRPQ+{R̂} is equivalent to a UCRPQ.

Example 13. Consider the CRPQ

∃π1 ∃π2 x
π1−→ y ∧ x π2−→ z ∧ L(π) ∧ L(π2);L = (s+ d)∗

over the alphabet {s, d}, to be evaluated on the graph database Windsor given
in Example 10. Let us denote by equal-length(π1, π2) the relation which is true
if and only if the paths π1, π2 have equal length. Then the query

equal-ancestor-depth(x, y, z) = ∃π1 ∃π2 x
π1−→ y ∧ x π2−→ z ∧ L(π) ∧ L(π2)

∧ equal-length(π1, π2)
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is a member of CRPQ+{equal-length}. The query equal-ancestor-depth col-
lects all (x, y, z) such that x is a common ancestor of y and z of the same depth,
i.e. y, z are both children of x, or grandchildren of x, or great-grandchildren of
x, and so on. �

This notion is further lifted by (i) by allowing relations of arbitrary arity,
and (ii) by allowing sets of relations. For a set of relations R, the formalism
CRPQ+R contains queries of the form

∃π1 . . . ∃πn x1
π1−→ y1 ∧ · · · ∧ xn

πn−−→ yn ∧R1(π̄1) ∧ · · · ∧Rm(π̄m)

where each π̄i ranges over a arity(Ri)-sized subset of {π1, . . . , πn} andR1, . . . , Rm ∈
R. Recall that taking direct products of regular languages and closing them un-
der union gives us the class Rec of recognizable relations, and the relation R̂
used in q̂ (defined above) is in this class.

It is a folklore result that UCRPQ contains CRPQ+Rec in terms of expres-
sivity. Given that Rec does not even contain the equality relation {(w,w) : w ∈
A∗}, it is an apparently weak class. More expressive classes of word relations
have been considered to extend CRPQs. As defined earlier in Chapter 1 (see
Section 1.5.5), rational relations (denoted by Rat) constitute a superclass of
Rec with many useful relations like subsequence, prefix and suffix. Therefore
CRPQ+Rat is a powerful class of queries in terms of expressivity. However,
Rat is an unwieldy class of relations in many respects. It is not closed under in-
tersection. Many decision problems involving rational relations are undecidable,
including the evaluation problem for CRPQ+Rat [15].

When extending CRPQs with relations a balance must be struck between
efficiency of query evaluation and expressive power of the resulting formalism.
The class of synchronous relations (denoted as Sync) serves as an ideal candi-
date for this purpose. We define synchronous relations in Chapter 1 (see Section
1.5.5). Considered the analogue of Reg in higher dimensions, Sync is strictly
sandwiched between recognizable and rational relations

Rec ( Sync ( Rat

containing relations like equality and prefix but not suffix and subsequence.
Moreover, it is a Boolean algebra with robust properties like closure under pro-
jection and homomorphism. It also admits a first-order logical characterization,
whose study is the subject of Part II (see Chapter 5). The query formalism
CRPQ+Sync is also called Extended CRPQ, or ECRPQ. The properties of
this query formalism make it suitable for application in a variety of fields, in-
cluding approximate sequence matching [55] and computational biology [59].
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Definition 12. An Extended Conjunctive Regular Path Query
(ECRPQ) is a formula q with free variables x̄ of the form

q(x̄) = ∃ȳ ∃π̄ qreach(x̄, ȳ, π̄) ∧ qrel(π̄)

where

- qreach, called the reachability subquery of q, is a formula

z1
π1−→ z′1 ∧ z2

π2−→ z′2 ∧ · · · ∧ zn
πn−−→ z′n

where z̄, z̄′ are variables ranging over x̄∪ ȳ (not necessarily pairwise
distinct), and for all 1 ≤ i ≤ n, πi appears in exactly one atom in
qreach.

- qrel, called the relation subquery of q, is a formula

R1(π̄1) ∧ · · · ∧Rm(π̄m)

where each π̄i ⊆ π̄ is a tuple of size arity(Ri) of pairwise distinct
path variables. Furthermore, R1, . . . , Rm are relation symbols as-
sociated to synchronous relations, each relation Ri given as an NFA
over (A∪̇{⊥})arity(Ri), for some fixed alphabet A.

In their original definition, ECRPQs allow path variables to be free, thus
permitting the output of paths along with nodes when evaluated on graph
databases. Since paths can be arbitrarily long, this poses some difficulties in
producing a finite output. Therefore, for simplicity, we quantify all path vari-
ables and treat paths as implicit objects. We can now define CRPQs as special
cases of ECRPQs, as follows:

Definition 13 (Alternative definition for CRPQs). A Conjunctive
Regular Path Query is an ECRPQ q such that

• Every relation atom in qrel has arity 1, i.e. each is a regular lan-
guage.

• Each path variable appears in exactly one atom of qrel.

The query equal-ancestor-depth given in Example 13 is a member of
CRPQ+Sync, as the relation equal-length used in it is synchronous. Therefore
equal-ancestor-depth is an ECRPQ. We now define ECRPQ semantics before
looking at more examples.
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Definition 14. Let D = (V,E, η) be a graph database and q be an
ECRPQ with node variables x̄∪ ȳ and path variables π̄. A valuation of
q on D is a pair of functions σ = (σnode, σpath) where σnode sends node
variables to elements in V and σpath sends variables in π̄ to paths in E∗.
We further extend σnode to tuples of node variables in the usual way.
Now, we say (D,σ) satisfies q, if:

• For all atoms x π−→ y in qreach, σpath(π) is a path from σnode(x) to
σnode(y).

• for every relation symbol R(π1, . . . , πm) in qrel,
(η(σpath(π1)), . . . , η(σpath(πm))) ∈ R.

If there exists some valuation σ for which (D,σ) satisfies q for some
valuation σ, we say D satisfies q and denote it as D � q. Moreover, σ
is said to witness D � q. Let x̄q be the tuple of free (node) variables
of q. Then the set of answers of q evaluated on D, denoted ans(q,D), is
defined as:

{σnode(x̄q) ∈ V |x̄q| : (D,σ) satisfies q}

Example 14. Let us consider a network of 5 nodes and 2 servers communicating
via processes {p1, p2, p3}, modeled using the following graph database D:

 

 

 

 

   

3

2

2

22

2

3

3

John wants to know if there exists some path in this network which reads only
p1 and p2. So he queries the database with the following CRPQ:

q = ∃π x π−→ y ∧ L1(π);L1 = (p1 + p2)∗

The algorithm returns all vertices (x, y) such that a path from x to y labeled
by {p1, p2}∗ exists in D. These include the pairs

(Node A,Node A),(Node A,Node C),(Server 2,Server 2)

Emily wants to know if there exist pairs of paths π1, π2 such that

• π1 goes from x to y and π2 goes from y to x
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• π1 only reads p1, p2, π2 only reads p2, p3

• π1 and π2 have the same length

She modifies John’s query by adding an equal length condition to the paths, to
produce an ECRPQ q′ as follows:

q′ = ∃π1 ∃π2 x
π1−→ y ∧ y π2−→ x ∧ L1(π1) ∧ L2(π2) ∧ eq-length(π1, π2);

L1 = (p1 + p2)∗, L2 = (p2 + p3)∗

The pair (Node A,Node E) is in ans(q,D) due to the existence of the paths

π1 =Node A p1−→ Server 1 p2−→ Server 2 p1−→ Node E

π2 =Node E p2−→ Server 2 p3−→ Server 1 p2−→ Node A �

Boolean queries

It was mentioned earlier that (i) a CQ or ECRPQ with no free variables is
called a Boolean query, and (ii) for technical brevity we shall only work with
Boolean CQs and ECRPQs. However, all our results can be easily extended to
non-Boolean ECRPQs (see Section 4.4.1 in Chapter 4 for a discussion on this).
The Boolean ECRPQ evaluation problem is formally stated as:

(Boolean) ECRPQ-evaluation (eval-ECRPQ)
Input: An ECRPQ q and a graph database D.
Question: Does D � q?

We also consider the parameterized version of the Boolean ECRPQ problem,
which is stated as:

(Boolean) Parameterized ECRPQ evaluation (p-eval-ECRPQ)
Input: An ECRPQ q and a graph database D.
Question: Does D � q?
Parameter: The size of the query, |q|.

2.4 ECRPQ evaluation
Before we discuss the evaluation problem for ECRPQs, let us look at the state-
of-the-art of the general query evaluation problem for various formalisms, with
respect to the different complexity measures (introduced in Section 1.4 of Chap-
ter 1). We know that:

• eval-ECRPQ is PSpace-complete [15], whereas eval-CQ and eval-
CRPQ are both NP-complete [28].

• p-eval-CQ is W[1]-complete [28] and p-eval-CRPQ is W[1]-hard.

• Data complexity of CQ evaluation is in LogSpace [28], whereas the data
complexity of CRPQ and ECRPQ evaluation is NL-complete [15].
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The evaluation problem for ECRPQs was tackled by Libkin et al. [15].
The strategy used to evaluate an ECRPQ q on a graph database D was to
construct a product database Dn and a CRPQ q′, such that the evaluation of
q′ on Dn coincided with the evaluation of q on D. Here n is the maximum
arity of relations used in q. In other words, using elements of ans(q′, Dn), the
set ans(q,D) can be constructed. This is a PSpace procedure in combined
complexity, while keeping the data complexity unchanged from that of CRPQ
evaluation (NL-complete).

In the case of both CQs and CRPQs there exist abstractions that allow us to
simplify the evaluation problem. What do we mean by this? Abstractions allow
us to simplify a query to some essential shape or form. Then, by restricting the
structural properties of this shape, we can extract sub-classes of queries that
may be limited in their expressivity but yield easy query evaluation, owing to
their well-defined structural properties.

First, we will discuss these abstractions and see if they can shape our in-
tuition in simplifying eval-ECRPQ. We consider the Gaifman abstraction for
CQs and multi-graph abstraction for CRPQs, beginning with the formal defini-
tions of these graph structures.

Definition 15. A multi-hypergraph is a structure G = (V,H, η)
where V is a finite set of vertices, H is a finite set of hyper-edges and
η : H → P(V ). If range(η) ⊆ P1(V ) ∪ P2(V ), then we say G is a
multigraph.

If further η is injective, then we say G is a simple graph, writing it as
G = (V,E), where E = {η(h) : h ∈ H}.

Abstracting CQs with Gaifman graphs
Consider a CQ q with a set of variables V . Let Gq be the graph whose vertices
are V , with the edge set

{x→ y : x and y appear in some relational atom of q}

Then Gq is called the Gaifman graph or the Gaifman abstraction of q. Formally,

Definition 16. Let q ∈ CQ. A graph G = (V,E) is said to be the
Gaifman abstraction of q, or simply the abstraction of q if and only
if:

• V is the set of variables of q.

• E = {{x, y} : x and y appear in some relational atom of q}.

Let C be any class of simple graphs. We define CQ(C) to be the set of
all CQs q whose Gaifman abstraction is in C.

Then the corresponding query evaluation problem eval-CQ(C) takes as in-
put (q,D) where q is CQ whose Gaifman graph is in C and a D is a relational
database, and determines whether D � q.
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Why are Gaifman graphs important? It turns out that query evaluation
is in polynomial time for classes of CQs whose Gaifman graphs have bounded
tree-width [29, 70]. Since this result, the Gaifman abstraction as well as other
graph-based abstractions for CQs have been explored in great detail. We will
formally define tree-width and elaborate on these results in the next chapter.

Multi-graph abstraction for CRPQs
For any CRPQ q let Gq be the multigraph which has an edge (x, y) labeled π

if and only if x π−→ y is an atom in qreach. Then Gq is called the multi-graph
abstraction of q. Now, for a class C of multi-graphs we have its corresponding
class of queries

CRPQ(C) = {q ∈ CRPQ : Gq ∈ C}

as well as the corresponding decision problem eval-CRPQ(C). It was shown
in [15] that using the previously established result of tractability of bounded
tree-width conjunctive queries we can obtain tractability of bounded tree-width
CRPQs as well. The following is also proved in the present work, as a corollary
to Proposition 2 in Section 4.2 of Chapter 4.

Abstracting ECRPQs
We introduce a data structure called a two-level graph, or 2L-graph, which cap-
tures the underlying structure of ECRPQs. Assuming C is a class of 2L-graphs,
ECRPQ(C) denotes the set of queries whose abstractions lie in C, and eval-
ECRPQ(C) denotes the corresponding decision problem. We aim to find a
measure for C (similar to tree-width for graphs) so that we can make an asser-
tion of the form

eval-ECRPQ(C) is tractable if and only if 〈measure〉(C) is bounded

We define two-level graphs and their measures, and state our results in the
next chapter (Chapter 3). We provide full proofs of our theorems in Chapter 4.
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Chapter 3

A two-level abstraction for
ECRPQs

At the end of the previous chapter we talked about a two-level structure for
abstracting ECRPQs with respect to their evaluation. We dubbed these struc-
tures 2L-graphs, short for two-level multi-hyper-graphs. This chapter formally
introduces 2L-graphs and the measures which play a role in ECRPQ evaluation.
We first state our results. Following that, we examine the underlying structure
of an ECRPQ. Next, we formally define 2L-graphs and show how they abstract
ECRPQs. We also define the corresponding graph measures. We end the chap-
ter with a discussion of our results, as well as the reductions used in them.
Chapter 4 contains the full proofs of these theorems, and concludes Part I of
this thesis.

Recall that, for simplicity, we work only with Boolean queries (among CQs,
CRPQs, and ECRPQs). These results can be extended to non-Boolean queries
as well. A discussion of this along with other easy extensions of our results can
be found in Section 4.4 of Chapter 4. We now state our results.

Evaluation theorems
Informally, a 2L-graph is a structure that has three components: a set of vertices
V , a set of “first level” edges E ⊆ V × V connecting those vertices, and a set
of “second level” hyperedges H ⊆ 2E spanning over first level edges. We say
that this 2L-graph“abstracts” an ECRPQ q if there exists a mapping which
associates the node variables of q to V , its path variables to E, and its relations
to H, such that this mapping respects the structure of the query. The formal
definition of 2L-graphs and ECRPQ abstractions can be found in Definitions
17, 18, in Section 3.1.

Recall that for every 2L-graph G, we denote by ECRPQ(G) the set of
ECRPQs abstracted by it. Similarly, a class of 2L-graphs C the set of ECRPQ
abstracted by its elements is denoted as ECRPQ(C).

Given a 2L-graphG, we associate to it the quantities ccvertex(G), cch-edge(G) ∈
N, which we call measures. These are dependent upon the first and second
level edges of G, and we cover them formally in Section 3.2.1 (see Definition

61
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20). Moreover, we associate a notion of treewidth of a 2L-graph, written as
tw(G) ∈ N. These measures are lifted to classes of 2L-graphs in the natu-
ral way: for ? ∈ {ccvertex, cch-edge, tw}, we define ?(C) to be the maximum of
{?(G)}G∈C whenever it exists, and ∞ otherwise. Now our results can be stated
as follows:

Theorem. [Combined complexity] Let C be a class of 2L-graphs. Under some
mild assumption1 on C, and assuming W[1] 6= FPT, we have:

(1) if ccvertex(C) =∞ or cch-edge(C) =∞, then eval-ECRPQ(C) is PSpace-
complete,

(2) if ccvertex(C), cch-edge(C) < ∞ and tw(C) = ∞, then eval-ECRPQ(C) is
in NP and not in polynomial time, and

(3) if ccvertex(C), cch-edge(C), tw(C) <∞ then eval-ECRPQ(C) is in polyno-
mial time.

Theorem. [Parameterized complexity] Let C be a class of 2L-graphs. Assuming
W[1] 6= FPT, we have:

(1) if ccvertex(C) =∞ then p-eval-ECRPQ(C) is XNL-complete,

(2) if ccvertex(C) < ∞ and tw(C) = ∞, then p-eval-ECRPQ(C) is W[1]-
complete,

(3) if ccvertex(C), tw(C) <∞ then p-eval-ECRPQ(C) is FPT.

These results are formally stated towards the end of this chapter, in Section
3.3.

3.1 Underlying structure of ECRPQs

Recall that in an ECRPQ, every path variable appears in exactly one atom in
the reachability subquery, but it may be re-used in any number of relations in
the relational subquery. To understand the underlying structure of ECRPQs,
we first look at the way the relational structure of a CQ is abstracted with
hypergraphs. Note that this abstraction is different from the Gaifman graph
abstraction for CQs.

The hypergraph-based abstraction of CQs works as follows: a CQ over the
variables x1, . . . , xn with relations R1, . . . , Rm is abstracted by a hypergraph
whose nodes are x1, . . . , xn, with hyperedges h1, . . . , hm such that each hi cor-
responds to Ri and consists of the variables over which Ri ranges.

Example 15. The CQ ∃x1, x2, x3, x4R1(x2, x3)∧R2(x1, x3, x4)∧R3(x1, x2, x4)
is abstracted by the hypergraph

1this is called cc-tameness and we cover it in Section 3.2.1 (see Definition 21)
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where hyperedges are denoted by the colors of their corresponding relations.

In the case of CRPQs, abstracting away the regular languages yields the
underlying graph, whose nodes are node variables of the CRPQ, and edges are
named by the paths between those nodes as specified in the CRPQ.

An ECRPQ contains a reachability subquery and a relational subquery. The
reachability subquery can be simply seen as a trivial CRPQ, that is, a CRPQ
which only uses A∗ in its regular expressions. Therefore a multigraph is sufficient
to abstract this subquery. This forms the “first level” of the 2L-graph structure,
i.e. a set of nodes with level one edges connecting them. Next, the relational
subquery is a conjunction of relations, each ranging over a subset of the path
variables. Similar to the hypergraph abstraction of CQs, these relations are
represented as hyperedges over the path variables. In other words, we have
“second level” hyperedges covering first level edges. This is the idea behind
2L-graphs. We illustrate this underlying structure in Example 16 below.

Example 16. Let q = qreach ∧ qrel be an ECRPQ where

qreach =x1
π1−→ y1 ∧ x1

π2−→ y1 ∧ y1
π3−→ x1

∧ y1
π4−→ x2 ∧ x2

π5−→ y2

qrel =R1(π1, π5) ∧R2(π2, π3, π4) ∧R3(π3, π4, π5)

Then q can be represented with a graph-based structure Gq:

3.1.1 Defining 2L-graphs
We now define 2L-graphs formally.
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Definition 17. A two-level multi-hypergraph, or 2L-graph for
short, is a structure G = (V,E,H, η, ν) where (V,E, η) is a multigraph
and (E,H, ν) is a multi-hypergraph. We consider E to be a set of “first
level” edges connecting pairs of elements in V via

η : E →P2(V )

and H a set of “second level” hyper-edges connecting (non-empty) sets
of elements in E via

ν : H →P(E) \ {∅}

Moreover, for all h ∈ H the size of h refers to the cardinality of the set
ν(h). (For clarity, we always assume E ∩H = ∅).

Notation: Unless mentioned otherwise, we will denote vertices of a 2L graph
as {v1, v2, . . . } and first level edges as {π1, π2, . . . }. In the context of queries, the
πi’s also denote path variables in an ECRPQ. However, our goal is to abstract
ECRPQs with 2L-graphs, where ECRPQ path variables are identified with their
first level edges. So this is not a total abuse of notation.

Example 17. Recall the query q of Example 16 and its graph-based represen-
tation Gq. Then Gq is a 2L-graph.

Next, we formalize the abstraction of ECRPQs by 2L-graphs.

Definition 18. Let q be an ECRPQ and G be a 2L-graph. We say
G = (V,E,H, η, ν) abstracts q, or G is the abstraction of q if:

• V is the set of node variables of q.

• E is the set of path variables of q.

• H is the set of relation atoms of q.

• For all π ∈ E, η(π) = {z, z′} if and only if z π−→ z′ is an atom in
qreach.

• For all h ∈ H, ν(h) = {π1, . . . , πn} if and only if h corresponds to
an atom R(π1, . . . , πn) in qrel.

Example 18. The ECRPQ q of Examples 16 and 17 is abstracted by the 2L-
graph Gq.

Proposition 1. Every 2L-graph abstracts some ECRPQ.

Proof. Let G = (V,E,H, η, ν) be a 2L-graph. For every π ∈ E such that
η(π) = {x, y}, let tπ be the atom x

π−→ y. Further, for every h ∈ H where ν(h) =
{π1, . . . , πm}, let Rh = Um be the universal m-ary relation over π1, . . . , πm.
Then

q =
∧
π∈E

tπ ∧
∧
h∈H

Rh

is an ECRPQ whose abstraction is G.
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In the following examples, C, C′ denote classes of 2L-graphs with some care-
fully chosen parameters. The observations on the number of hyperedges and
hyperedge size of the classes will make sense in a later section, when we analyze
measures on 2L-graphs, in Section 3.2.

Example 19. Let C = {Gi = (Vi, Ei, Hi, ηi, νi)}i∈N be a set of 2L-graphs such
that for every i ∈ N:

• Vi = {x1, y1, . . . , xi, yi}

• Ei = {π1, . . . , πi} such that ηi(πj) = {xj , yj} for all 1 ≤ j ≤ i.

• Hi = {h} such that νi(h) = {π1, . . . , πi}.
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Note that C is a class of 2L-graphs with

(i) unbounded hyperedge size, i.e., for all n ∈ N there exists some 2L-graph
G ∈ C containing some hyperedge of size at least n, and

(ii) there exists a bound k on the number of hyperedges in any member of C;
in this case k = 1. �

A “skeletal” ECRPQ is defined only with its relational atoms, without spec-
ifying the actual synchronous relations corresponding to the atoms. We now
note that in Example 19, for any i ∈ N, Gi abstracts the skeletal ECRPQ

∃π1 . . . ∃πi x1
π1−→ y1 ∧ · · · ∧ xi

πi−→ yi ∧R(π1, . . . , πi)

Example 20. Let C′ = {G′i = (V ′i , E′i, H ′i, η′i, ν′i)}i∈N be a set of 2L-graphs such
that for every i ∈ N:

• V ′i = {x, y}

• E′i = {π} such that ηi(π) = {x, y}

• H ′i = {h1, h2, . . . , hi} such that νi(hj) = {π} for all 1 ≤ j ≤ i.
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In contrast to C, we see that C′ has bounded hyperedge size (which is 1), as
opposed to the hyperedge size of C being unbounded. Further, the maximum
number of hyperedges in any member of C was 1, in case of C′ it is unbounded.
Each hyperedge is shown in a different shade of blue, covering the path variable
π. �

In Example 20, for every integer i, we note that Gi abstracts the skeletal
ECRPQ

∃π x π−→ y ∧R1(π) ∧ · · · ∧Ri(π)

We now formally define ECRPQ abstraction, and lift this notion to classes
of 2L-graphs in the natural way:

Definition 19. Let C be a class of 2L-graphs and G be an arbitrary
member of it. We define:

ECRPQ(G) = {q ∈ ECRPQ : G abstracts q}
CRPQ(G) = {q ∈ CRPQ : G abstracts q}

ECRPQ(C) =
⋃
G∈C

ECRPQ(G)

CRPQ(C) =
⋃
G∈C

CRPQ(G)

Our decision problems, with respect to the combined complexity and param-
eterized complexity measures, are stated as follows:

ECRPQ(C) evaluation (eval-ECRPQ(C)); C is a class of 2L-graphs
Input: A query q ∈ ECRPQ(C) and a graph database D.
Question: Does D � q?

Parameterized ECRPQ(C) evaluation (p-eval-ECRPQ(C))
Input: A query q ∈ ECRPQ(C) and a graph database D.
Question: Does D � q?
Parameter: The size of the query, |q|.

Recall C and C′, the classes of 2L-graphs of Examples 19 and 20. Let Q =
ECRPQ(C) and Q′ = ECRPQ(C′). What can be said about the complexity
of eval-Q and eval-Q′? Both are PSpace-complete, as it turns out from
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the analysis of the complexity of the general problem eval-ECRPQ. We can
make much more general assertions, by introducing measures on 2L-graphs –
hyperedge size being an example of one of these measures.

We state our theorems in Section 3.3. For a given class C of 2L-graphs, we
use our 2L-graph measures to specify the conditions under which ECRPQ(C)
is in PTime, NP or PSpace.

3.2 Measures on 2L-graphs
The relevant measure in simplifying eval-CQ is the tree-width of the Gaifman
graph of a CQ. We now define measures on 2L-graphs to state a similar result
for eval-ECRPQ.

3.2.1 Relational hypergraph and PSpace-hardness
We begin by showing that eval-ECRPQ is PSpace-hard [15], via a reduc-
tion from the Intersection Emptiness (IE) for DFA, which is a well-known
PSpace-complete problem [72].

INTERSECTION EMPTINESS (IE)
Input: A set of DFA S
Question: Is

⋂
A∈S

L(A) 6= ∅?

Reduction 1 (Many path variables). Let A1, . . . ,An ⊆ A∗ be DFAs. For each
1 ≤ i ≤ n, consider the synchronous relation

Ri = Ui−1(A)× L(Ai)× Un−i(A)

where for all k ∈ N, Uk(A) is the k-ary universal relation on A∗. A DFA
A′i for Ri can be constructed trivially: simply ignore every component of the
synchronized letters except i and run Ai on the i’th projection of the input.
Now, let q1 be the ECRPQ

∃x̄ ∃ȳ x1
π1−→ y1 ∧ · · · ∧ xn

πn−−→ yn ∧R1 ∧ · · · ∧Rn ∧Rneq

where Rneq = {(w, . . . , w) ∈ Un(A) : w ∈ A∗}. Now the trivial database (which
contains a single node v and edges v a−→ v for all a ∈ A) satisfies q1 if and only
if L(Ai) ∩ · · · ∩ L(An) 6= ∅. �

Note that an instance of IE which has n languages requires an ECRPQ
with n path variables for this reduction to go through. What if we only allowed
ECRPQs with a limited number of path variables? Would the complexity of
evaluating such ECRPQs be lower than the general case? Unfortunately, the
answer turns out to be no.
Reduction 2 (Single path variable). Consider reducing an instance {Ai}1≤i≤n
of IE to evaluating the ECRPQ

q2 = ∃x ∃y x π−→ y ∧ L1(π) ∧ · · · ∧ Ln(π)

(where for all 1 ≤ i ≤ n, Li = L(Ai)), on the trivial database D = ({v}, {v a−→
v : a ∈ A}) . Here too we have that D � q2 if and only if L1 ∩ · · · ∩ Ln 6= ∅. �
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Remark 1. Recall the 2L-graph classes C, C′ defined in Examples 19 and 20.
Also recall that the classes of ECRPQ which they abstract are called Q,Q′. We
observe that

- In Reduction 1, the ECRPQ q1 constructed has a single relation of ar-
bitrary arity (equal to the number of DFAs in the IA instance). The
2L-graphs in C also have hyperedges of arbitrary size. Therefore, q1 ∈
ECRPQ(C) = Q.

- Reduction 2 uses an ECRPQ q2 with arbitrarily many relations (again,
equal to the number of DFAs in the IA instance). Meanwhile C′ contains
2L-graphs of arbitrarily many hyperedges. Therefore, q2 ∈ Q′.

Therefore, from the PSpace-completeness of Intersection Emptiness [72],
we conclude that eval-Q and eval-Q′ are both PSpace-complete. �

Note that the conditions leading to PSpace-hardness of Q and Q′ only
depend upon the relational subqueries of the ECRPQs. Therefore, the measures
we introduce now will be centered around the relational hypergraph, which we
define now.

Definition 20. Let q be an ECRPQ with

qrel = R1(π̄1) ∧ · · · ∧Rn(π̄n)

Then the relational hypergraph of q is the hyper-graph

Gqrel = ({π1, . . . , πn}, {R1, . . . , Rn}, ν)

where (i) π1, . . . , πn are the path variables used in qrel, and (ii) for all
1 ≤ i ≤ n, ν(Ri) = {π : π occurs in π̄i}. Moreover, let C be the set of
connected components of G, and for every c ∈ C let vertex(c) denote the
set of path variables in c and hyperedge(c) denote the set of hyperedges
in c. Then we define

ccvertex(G) = max
c∈C
|vertex(c)|

cch-edge(G) = max
c∈C
|hyperedge(c)|

Furthermore, for any class of 2L-graphs C, let

ccvertex(C) = sup
G∈C

ccvertex(G) (if it exists, and ∞ otherwise)

cch-edge(C) = sup
G∈C

cch-edge (if it exists, and ∞ otherwise)

Example 21. Recall the ECRPQ q in Example 16 whose 2L-abstraction Gq is
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Then the relational hypergraph of q, shown here

has one connected component with five vertices and three hyperedges. Therefore
ccvertex(Gq) = 5, cch-edge(Gq) = 3.

Clearly, the evaluation problem is no longer PSpace-hard, when consider-
ing classes of 2L-graphs with bounded ccvertex and cch-edge. However, this is
not a sufficient condition for tractability. In order to evaluate ECRPQ(C) in
polynomial time, we also need the additional condition of bounded treewidth.
In the case of a CQ or a CRPQ, the notion of tree-width is simple enough and
relies on the Gaifman graph of the query. However, in the case of ECRPQs and
2L-graphs, we find that the appropriate tree-width notion relies on both the
reachability and the relational subquery.

While stating our results in the chapter introduction, we mentioned a “mild
assumption” on 2L-graphs. This is called the cc-tameness property.

Definition 21. We say a class C of 2L-graphs is cc-tame if there exists
a function f : N → C computable in polynomial time such that either
ccvertex(f(n)) + cch-edge(f(n)) < ∞, or for all n ∈ N, ccvertex(f(n)) +
cch-edge(f(n)) ≥ n.

The tree-width of a 2L-abstraction G is defined on the basis of its node graph,
which we denote by Gnode. We define it as follows:

Definition 22. Let C be a class of 2L-graphs and G be some element in
C.

• Any v1, v2 ∈ V are said to be cc-close if and only if there exist
π1, π2 ∈ E in the same connected component of Grel such that
v1 ∈ η(π1), v2 ∈ η(π2).

• We denote by Gnode the graph (V,Enode), where Enode is the set
of all cc-close pairs.

• Cnode = {Gnode : G ∈ C}.
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Below we have a 2L-graph G and its corresponding graph Gnode:

3.2.2 Tree-width of an ECRPQ

We rely on the notion of tree-width, building upon the corresponding theorem
for eval-CQ.
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Definition 23. A tree-decomposition of a graph G = (V,E) is a tree
T = (V ′, E′) along with a function λ : V ′ →P(V ) such that:

(1) for every {u, v} ∈ E, there exists s ∈ V ′ such that {u, v} ⊆ λ(s).

(2) For every v ∈ V , the subgraph of T induced by {s ∈ V ′ : v ∈ λ(s)}
is a tree.

For any s ∈ V ′, we refer to λ(s) as the bag of s. The width of T is the
maximum size of its bags, i.e. max

s∈V ′
|λ(s)|.

The treewidth of G, denoted as tw(G), is the minimum width among all
its tree-decompositions. The tree-width of a class of graphs C is defined
as tw(C) = sup

G∈C
tw(G) if it exists, and ∞ otherwise.

For any class C of 2L-graphs, the tree-width of C is defined as tw(C) =
tw(Cnode).

Example 22. Below we have a graph and one of its tree-decompositions:

In Lemma 6, we use an alternative definition of tree-decomposition which is
easier to work with. This can be found in Section 4.2.3 of Chapter 4.

3.3 Theorem statements
With the definition of 2L-graphs and their measures, we are ready to state our
results in full formality. Following that, we give a sketch of their proofs.

Theorem. [Combined complexity] Let C be a cc-tame class of 2L-graphs. As-
suming W[1] 6= FPT:

(1) if ccvertex(C) =∞ or cch-edge(C) =∞, then eval-ECRPQ(C) is PSpace-
complete, and
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(2) if ccvertex(C), cch-edge(C) < ∞ and tw(C) = ∞, then eval-ECRPQ(C) is
in NP and not in polynomial time, and

(3) if ccvertex(C), cch-edge(C), tw(C) <∞ then eval-ECRPQ(C) is in polyno-
mial time.

Theorem. [Parameterized complexity] Let C be a cc-tame class of 2L-graphs.
Assuming W[1] 6= FPT:

(1) if ccvertex(C) =∞ then p-eval-ECRPQ(C) is XNL-complete, and

(2) if ccvertex(C) < ∞ and tw(C) = ∞, then p-eval-ECRPQ(C) is W[1]-
complete, and

(3) if ccvertex(C), tw(C) <∞ then p-eval-ECRPQ(C) is FPT.

Proof sketch. We provide a general idea of the reductions used to prove these
theorems. The full proofs of theorems and all the lemmas cited below can be
found in Chapter 4.

-When ccvertex and cch-edge are both unbounded, the proof of PSpace-
hardness is essentially contained in Reductions 1 and 2 (see Remark 1). In
the proof of Lemma 5 we consider both reductions as separate cases, in order
to obtain the PSpace lower bound.

-When ccvertex is bounded, we give a procedure that serves as an FPT re-
duction from p-eval-ECRPQ(C) to p-eval-CQ(Cnode) (see Lemma 4). Upon
adding the condition of bounded cch-edge, the same procedure reduces an in-
stance of eval-ECRPQ(C) to an instance of eval-CQ(Cnode). Therefore we
obtain the NP upper bound for the combined complexity.

-When ccvertex, cch-edge, tw are all bounded, we treat the resultant ECRPQs
as CRPQs with languages over a product alphabet (with the arity of the product
being bounded by cch-edge and ccvertex). Then, we apply the reduction from
eval-CRPQ to eval-CQ and use the bounded tree-width property of CQ
evaluation to obtain tractability.

In the upcoming chapter, we state and prove the lemmas to establish these
theorems. The proofs involve reductions between instances of eval-CQ and
eval-ECRPQ. These same reductions will also yield fixed parameter tractabil-
ity when query size is considered to be fixed.



Chapter 4

Theorems and proofs

We ended Chapter 3 with two theorem statements, concerning the combined
complexity and the parameterized complexity. The upcoming section establishes
some technical preliminaries. Following that, we state and prove some lemmas
divided according to the results associated with combined and parameterized
complexity. Finally, we put all the lemmas together to prove the two theorems.
We conclude with a section on future research on these topics.

4.1 Technical preliminaries

4.1.1 The collapse multigraph

We use the following construction in the proofs of Lemmas 6 and 7.

Definition 24. Let G = (V,E,H, η, ν) be a 2L-graph, and let C be the
set of connected components of Grel. We define a multigraph Gcollapse =
(Vcol, Ecol, ηcol) where:

• For each c ∈ C, we introduce a new vertex vc and define VC =
{vc}c∈C . Then Vcol = V ∪̇VC .

• For every π ∈ E (with η(π) = {v1, v2}), we introduce edges π1, π2

connecting {v1, vc}, {v2, vc} respectively, where c ∈ C is the con-
nected component containing the hyperedge in which π occurs.
Then

Ecol =
⋃
π∈E
{π1, π2}

where ηcol(π1) = {v1, vc}, ηcol(π2) = {v2, vc} such that η(π) =
{v1, v2} and π is in c.

Example 23. The following picture shows a 2L-graph and its collapse:

73
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<latexit sha1_base64="BAMpNDAedPnZ/xr4DlLohpBhQYQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKX8eCF48VTFtoQ9lsJ+3SzSbsboRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0N/NbT6g0T+SjGacYxHQgecQZNVbyuynvXfXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzslZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYlugwmXaWZQssWiKBPEJGT2OelzhcyIsSWUKW5vJWxIFWXG5lOyIXjLL6+SZq3qXVdrD5eV+nkeRxFO4BQuwIMbqMM9NMAHBhye4RXeHOm8OO/Ox6K14OQzx/AHzucPdpWOYA==</latexit>⇡5
<latexit sha1_base64="NFYuJ8yNdmQ1mTzMPyTnxUmk8PM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKVI8FLx4rmLbQhrLZbtqlm03YnQil9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dgobm1vbO8Xd0t7+weFR+fikZZJMM+6zRCa6E1LDpVDcR4GSd1LNaRxK3g7Hd3O//cS1EYl6xEnKg5gOlYgEo2glv5eKfr1frrhVdwGyTrycVCBHs1/+6g0SlsVcIZPUmK7nphhMqUbBJJ+VepnhKWVjOuRdSxWNuQmmi2Nn5MIqAxIl2pZCslB/T0xpbMwkDm1nTHFkVr25+J/XzTC6DaZCpRlyxZaLokwSTMj8czIQmjOUE0so08LeStiIasrQ5lOyIXirL6+TVq3q1au1h+tK4zKPowhncA5X4MENNOAemuADAwHP8ApvjnJenHfnY9lacPKZU/gD5/MHeBmOYQ==</latexit>⇡6

<latexit sha1_base64="z/ZZle02L9Fk8CosA54h6OAdI5U=">AAAB6nicbVBNS8NAEJ34WetX1aOXxaJ4KkkR9Vjw4rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qnn9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxbusVO8uyrWzPI4CHMMJnIMHV1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEFjo2L</latexit>x1

<latexit sha1_base64="VhkA7nzOs8yYC9zjXSKar5jHi8c=">AAAB6nicbVBNS8NAEJ34WetX1aOXxaJ4KkkR9Vjw4rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4bWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrVindZqd5dlGtneRwFOIYTOAcPrqAGt1CHBjAYwDO8wpsjnRfn3fmYt644+cwR/IHz+QMHEo2M</latexit>x2
<latexit sha1_base64="GFvaPn6FRrOXTkE0tO6LiiTI1yQ=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4Irto1COJF48Y5ZEAIbNDL0yYnd3MzBrJhk/w4kFjvPpF3vwbB9iDgpV0UqnqTneXHwuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLV8qlGwSXWDTcCW7FCGvoCm/7oZuo3H1FpHskHM46xG9KB5AFn1Fjp/ql33iuW3LI7A1kmXkZKkKHWK351+hFLQpSGCap123Nj002pMpwJnBQ6icaYshEdYNtSSUPU3XR26oScWKVPgkjZkobM1N8TKQ21Hoe+7QypGepFbyr+57UTE1x3Uy7jxKBk80VBIoiJyPRv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8BZfXiaNStm7LFfuLkrV0yyOPBzBMZyBB1dQhVuoQR0YDOAZXuHNEc6L8+58zFtzTjZzCH/gfP4ACJaNjQ==</latexit>x3

<latexit sha1_base64="Ts4Vr66MXazhHT10IeHe64SbKRU=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4IruEqEcSLx4xyiOBDZkdemHC7OxmZtZICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX7RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7LFfuqqXaeRZHHk7gFC7AgyuowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AChqNjg==</latexit>x4

<latexit sha1_base64="svm3tnygjqcvQCCXcr2SeT68Z/k=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4IrvE15HEi0eM8kiAkNmhFybMzm5mZo1kwyd48aAxXv0ib/6NA+xBwUo6qVR1p7vLjwXXxnW/ndzK6tr6Rn6zsLW9s7tX3D9o6ChRDOssEpFq+VSj4BLrhhuBrVghDX2BTX90M/Wbj6g0j+SDGcfYDelA8oAzaqx0/9S76BVLbtmdgSwTLyMlyFDrFb86/YglIUrDBNW67bmx6aZUGc4ETgqdRGNM2YgOsG2ppCHqbjo7dUJOrNInQaRsSUNm6u+JlIZaj0PfdobUDPWiNxX/89qJCa67KZdxYlCy+aIgEcREZPo36XOFzIixJZQpbm8lbEgVZcamU7AheIsvL5NGpexdlit356XqaRZHHo7gGM7Agyuowi3UoA4MBvAMr/DmCOfFeXc+5q05J5s5hD9wPn8AC56Njw==</latexit>x5
<latexit sha1_base64="kRd3fzjbPIQugm5KcetaDPPvIT8=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4IrvEoEcSLx4xyiOBDZkdemHC7OxmZtZICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX7RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStmrlit3l6XaeRZHHk7gFC7AgyuowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8ADSKNkA==</latexit>x6

<latexit sha1_base64="Mw24Kcm/6W1Va6QL2w4xRxMfrqI=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPiKewGUfEU8KDHKOYBSQizk95kyOzsMjMrhCV/4MWDIl79I2/+jZNkD5pY0FBUddPd5ceCa+O6305uZXVtfSO/Wdja3tndK+4fNHSUKIZ1FolItXyqUXCJdcONwFaskIa+wKY/upn6zSdUmkfy0Yxj7IZ0IHnAGTVWeri97hVLbtmdgSwTLyMlyFDrFb86/YglIUrDBNW67bmx6aZUGc4ETgqdRGNM2YgOsG2ppCHqbjq7dEJOrNInQaRsSUNm6u+JlIZaj0PfdobUDPWiNxX/89qJCa66KZdxYlCy+aIgEcREZPo26XOFzIixJZQpbm8lbEgVZcaGU7AheIsvL5NGpexdlCv356XqaRZHHo7gGM7Ag0uowh3UoA4MAniGV3hzRs6L8+58zFtzTjZzCH/gfP4AEvWM+g==</latexit>

G :
<latexit sha1_base64="VJgNSQ1S3G5I/wQy8j51PIDNjl4=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2BRXJWZIiquCi50WcE+oB1LJr1tQzOZIcmIZZyFv+LGhSJu/Q13/o1pOwttPRA4nHNPcnP8iDOlHefbyi0sLi2v5FcLa+sbm1v29k5dhbGkUKMhD2XTJwo4E1DTTHNoRhJI4HNo+MPLsd+4B6lYKG71KAIvIH3BeowSbaSOvXd1l7Q1PJhoYm7jJFKQphcdu+iUnAnwPHEzUkQZqh37q90NaRyA0JQTpVquE2kvIVIzyiEttGMFEaFD0oeWoYIEoLxksn+KD43Sxb1QmiM0nqi/EwkJlBoFvpkMiB6oWW8s/ue1Yt079xImoliDoNOHejHHOsTjMnCXSaCajwwhVDKzK6YDIgnVprKCKcGd/fI8qZdL7mmpfHNSrBxldeTRPjpAx8hFZ6iCrlEV1RBFj+gZvaI368l6sd6tj+lozsoyu+gPrM8f39OWkg==</latexit>

Gcollapse :

4.2 Lemmata
First, we state some folklore results which we use in our proofs. Then, we state
and prove two sets of lemmas concerning upper and lower bounds respectively
of the complexity of eval-ECRPQ(C) for various conditions on C (see Sections
4.2.2 and 4.2.3).

4.2.1 Folklore
We shall use the following well-established results:

Proposition 2. ([58]) Let C be a computably enumerable class of graphs. Then,

(1) if tw(C) <∞ then eval-CQ(C) is in polynomial time.

(2) otherwise, p-eval-CQ(C) is W[1]-complete.

Proposition 3. (Theorem 17, [58]) Let C be a computably enumerable class of
multigraphs such that tw(C) =∞. Then, p-eval-CQbin(C) is W[1]-complete.

Corollary 1. Let C be a computably enumerable class of graphs. Then,

(1) if tw(C) <∞ then eval-CRPQ(C) is in polynomial time.

(2) otherwise, p-eval-CRPQ(C) is W[1]-complete.

Proof. For (1) we show a polynomial time reduction from eval-CRPQ(C) to
eval-CQ(C). Let (q,D) be an instance of eval-ECRPQ, where

q = ∃x̄ ∃yi ∃π̄
i=n∧
i=1

xi
πi−→ yi ∧ Li(πi)

and D is a graph database (V,E, η). We construct a CQ

q′ = ∃z̄ ∃z̄′
i=n∧
i=1

Ri(zi, z′i)

where for each 1 ≤ i ≤ n,

Ri = {(v, v′) ∈ V×V : there exists a path from v to v′ labeled by some word in Li}

is a relation that can be computed in polynomial time. Let D′ be the relational
database (V, {R1, . . . , Rn}). By definition of the query q′, any valuation that
witnesses D � q produces a valuation witnessing D′ � q′, and vice-versa. There-
fore, D � q if and only if D′ � q′. This completes the proof of (1).



4.2. LEMMATA 75

For (2), we give a polynomial time reduction from p-eval-CQbin to p-eval-
CRPQ which preserves tree-width. More precisely, given a binary CQ q of
tree-width k and a relational database D = (V, {R1, . . . , Rn}), we produce in
polynomial time a CRPQ q′ of tree-width k and a graph database D′ such that
D � q if and only if D′ � q′. Let q be of the form

∃x̄∃ȳ R1(x1, y1) ∧R2(x2, y2) . . . Rn(xn, yn)

Now, let q′ be the CRPQ

∃x̄∃ȳ ∃π̄
i=n∧
i=1

(xi
πi−→ yi ∧ Li(πi))

where for each 1 ≤ i ≤ n, Li is the regular language {Ri} over the alphabet
{R1, . . . , Rn}. Further, let D′ be the graph database (V,E, η) where v, v′ have
an edge labeled Ri if and only if Ri(v, v′) holds in D. Then by definition, D � q
if and only if D′ � q′. Further, q and q′ have the same tree-width as they have
the same underlying graph.

Proposition 4. [57] Let Q be a computably enumerable class of CQs. Then,

(1) if for some k ∈ N every q ∈ Q is equivalent to some CQ q′ of treewidth at
most k, then eval-Q is in polynomial time.

(2) otherwise, p-eval-Q is W[1]-complete.

4.2.2 Upper bounds
Next, we prove the upper bound results for the complexity of eval-ECRPQ
and p-eval-ECRPQ.

Lemma 3. p-eval-ECRPQ is in XNL.

Proof. We describe a procedure which takes an ECRPQ q and generates an NL
algorithm for {D : D � q}. Fix a graph database D and an ECRPQ q with
abstraction G. We transform q into an equivalent query q̂ with a 2L abstraction
Ĝ such that every connected component in Ĝrel contains only one hyper-edge.
There are two steps in this transformation: (i) for every connected component
of Ĝrel, the hyper-edges occurring in it are coalesced into a single “large” hyper-
edge by taking the union of their constituent vertex sets, and (ii) the “join”
of the synchronous relations corresponding to these hyper-edges is computed
to produce one synchronous relation per connected component, which is then
associated to the large hyper-edge. As an example, consider the query q = γ∧ρ
where

γ = x
π1−→ y ∧ y π4−→ z ∧ z π2−→ t ∧ t π3−→ y

ρ = U(π1) ∧ S(π1, π2) ∧ T (π2, π3) ∧ L(π4)

Now, we produce q̂ = γ∧ρ′ where ρ′ = R(π1, π2, π3)∧L(π4) and R is the “join”
relation

{(u1, u2, u3) ∈ A∗ × A∗ × A∗ : u1 ∈ U, (u1, u2) ∈ S, (u2, u3) ∈ T}
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Note that these joins can be computed in PSpace.
Having computed q̂ (along with Ĝ), we describe the NL algorithm for {D : D �

q̂} (since q, q̂ are equivalent, {D : D � q} = {D : D � q̂}). Let D = (V,E, η) be
the input graph database. We guess a valuation σ such that σnode sends each
node variable in q̂reach to nodes inD (this can be done in NSpace(|q̂|·log(|D|)))).
For every atom R(π1, . . . , πn) ∈ q̂rel (with corresponding node variables xi, yi
for all 1 ≤ i ≤ n), we

- non-deterministically guess simultaneous paths pi from σnode(xi) to σnode(yi)
(for all i).

- verify the paths labels correspond to R, i.e. (η(p1), . . . , η(pn)) ∈ R.

This suffices because, by construction, no path variable in q̂ occurs in more than
one relation.

Lemma 4. Let C be a class of 2L-graphs such that ccvertex(C) <∞.

(1) there is an FPT reduction from p-eval-ECRPQ(C) to p-eval-CQ(Cnode)

(2) Furthermore if cch-edge(C) <∞, then there is a polynomial time reduction
from eval-ECRPQ(C) to eval-CQ(Cnode).

Proof. The following procedure will establish both (1) and (2) (we elaborate
upon this in the last paragraph of the proof). First, we describe it below:

Let G ∈ C abstracting some ECRPQ q and let D = (V,E, η) be a graph
database. We produce a CQ q′ in polynomial time (depending on only q) ,
and a relational database D′ in polynomial space (depending only q and D),
such that Gnode is the underlying graph of q′ and D � q if and only if D′ � q′.
Furthermore, we guarantee that if cch-edge(G) < ∞ then this procedure is in
polynomial time.

Just like in the proof of Lemma 3, we begin by producing a query q̂ equivalent
to q by merging the relations in every connected component of the latter into a
single relation per connected component. We also mentioned in that proof that
this is a PSpace operation. Note, however, that if ccvertex(C) and cch-edge(C) are
both bounded, then we only need to join a constant number of join operations
to produce q̂. In this case, the operation to produce q̂ takes polynomial time.
Henceforth we will use q and q̂ interchangeably as necessary, given that they are
equivalent and have the same node and path variables.

Next we outline how q′ is produced from q. For every relation symbol
R(π1, . . . , πn) ∈ q̂rel, we introduce a relation symbol

R′(x1, y1, x2, y2 . . . , xn, yn)

where for all 1 ≤ i ≤ n, xi, yi are such that xi
πi−→ yi ∈ qreach. Define the CQ

q′ = ∃x̄∃ȳ
∧

R∈q̂rel

R′
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Note that q′ is dependent only on q. Recall D = (V,E, η). Let D′ be the
relational database (V, {R′ : R ∈ q̂}), where each R′ is interpreted as

R′ = {(u1, v1, . . . , un, vn) ∈ V 2n : for all i, there exists a path
ui → vi in D with label wi ∈ A∗ such that (w1, . . . , wn) ∈ R}

It immediately follows that D � q if and only if D′ � q′. Here q′ uses
relations of arity at most 2 · ccvertex(G). Thus D′ can be constructed from q̂
in O(|D|2ccvertex(G)), (i.e. in polynomial time). Therefore, it takes time f(|q|) ·
|D|2·ccvertex(G) to compute D′, where f is the time taken to compute q̂ from q.
Seen as a reduction from p-eval-ECRPQ(C) to p-eval-CQ(C), this reduction
is FPT. Further, if cch-edge(C) is finite, f is a polynomial. Therefore the classical
eval-ECRPQ(C) to eval-CQ(C) reduction is polynomial time when ccvertex(C)
and cch-edge(C) are both bounded (for this we use the fact that Gnode is the
Gaifman graph of q′, this follows easily from the merging of hyper-edges by
which we produced q̂ from q).

4.2.3 Lower bounds
We state and prove the hardness results here, which yield the required lower
bounds.

Lemma 5. Let C be a cc-tame class with ccvertex(C) = ∞ or cch-edge(C) = ∞.
Then eval-ECRPQ(C) is PSpace-complete.

Proof. We know that eval-ECRPQ is in PSpace (see [15]). Now we need
to show that if ccvertex(C) = ∞ or cch-edge(C) = ∞ then eval-ECRPQ(C)
is PSpace-hard. We will do this by giving a reduction from the Intersection
Emptiness problem (IE) for regular languages, which we recall here:

INTERSECTION EMPTINESS (IE)
Input: A set of DFA S
Question: Is

⋂
A∈S

L(A) 6= ∅?

It is well-known that IE is PSpace-complete [72]. Now, fix an instance
{A1,A2, . . . ,An} of IE. For all i, let Li = L(Ai). We construct, in polynomial
time, a graph database D and ECRPQ q whose abstraction G ∈ C, such that
D � q if and only if {A1,A2, . . . ,An} is a yes instance of IE, i.e. L1∩· · ·∩Ln 6= ∅.

Recall that C is cc-tame, so either ccvertex(C) + cch-edge(C) < ∞ or there
exists a computable function f : N→ C such that for all k ∈ N, ccvertex(f(k)) +
cch-edge(f(k)) ≥ n. Here ccvertex(C) + cch-edge(C) < ∞ clearly does not hold
(because either ccvertex(C) = ∞ or cch-edge(C) = ∞). So there exists a com-
putable function f such that for all k ∈ N, ccvertex(f(k)) + cch-edge(f(k)) ≥ n.
Let G = f(n+ (n− 1)2).

We argue that Grel contains a connected component c which has either (i) at
least n vertices, or (ii) at least one vertex incident to n hyper-edges. If (i) is not
true, then every connected component of Grel will have at most (n−1) vertices,
so ccvertex(G) ≤ n − 1. Further, if (ii) is not true, then every vertex in Grel is
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incident to at most (n−1) hyper-edges, so cch-edge(G) ≤ (n− 1)2. Therefore, the
largest possible value of ccvertex(G) +cch-edge(G) is (n−1) +(n− 1)2. However,
G = f(n+ (n− 1)2) and by definition f satisfies

ccvertex(f(n+ (n− 1)2)) + cch-edge(f(n+ (n− 1)2)) ≥ n+ (n− 1)2)

This is a contradiction. Therefore either (i) or (ii) is true. In both cases, we
construct in polynomial time an ECRPQ q whose abstraction is G, and a graph
database D such that D � q if and only if L1 ∩ · · · ∩ Ln 6= ∅.

Case (i): Say Grel has a connected component c with vertices {π1, . . . , πm},
where m ≥ n. In fact, we can assume m = n (otherwise we just extend the IE
instance with (m − n) ‘dummy’ languages A∗). Fix c. Let qc ∈ ECRPQ(G)
with the following relations:

- For every hyper-edge h in c with ν(hR) = {πi1 , . . . , πik}, the relation
symbol Rh corresponds to the relation

Rh(πi1 , . . . , πik ) = {($u#i1$, . . . , $u#ik $) : u ∈ A∗}

Note that an NFA recognizingRh can be constructed inO(max{i1, . . . , ik})
states. We describe this construction below.

- Additionally, for every hyper-edge h not in c of some size k, Rh is set to
Uk(A), i.e. the universal relation on A∗ of arity k.

We now construct an NFA A that recognizes

Rh(πi1 , . . . , πik ) = {($u#i1$, . . . , $u#ik $) : u ∈ A∗}

in polynomial time, and establishes thatRh is synchronous. Let n = max{i1, . . . , ik}.
Then A is an NFA over the alphabet (A∪̇{#, $,⊥})k whose states are

{q0, q1, . . . , qn+1, qf}

with its initial and final states being q0 and qf respectively. Its transition
relation δ has the following transitions:

• q0
($,...,$)−−−−−→ q1

• q1
(a,...,a)−−−−−→ q1 for every a ∈ A

• qi
(z1,...,zk)−−−−−−→ qi+1 for each 1 ≤ i ≤ n, where for each j:

- zj = # if i ≤ ij , and
- zj = $ if i = ij + 1, and
- zj = ⊥ otherwise.

• qn+1
(z1,...,zk)−−−−−−→ qf , where for each j:

- zj = $ if n = ij , and
- zj = ⊥ otherwise.
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Note that A can be constructed in polynomial time and accepts the set of all
synchronized words of the form

($u# · · ·#︸ ︷︷ ︸
i1

, . . . , $u# · · ·#︸ ︷︷ ︸
ik

)

that is, it accepts the relation Rh. This completes the construction of qc. Next
we construct the graph database D. To do this, we will define sub-databases
{Di}1≤i≤n, whose vertices are all mutually disjoint except for one distinguished
vertex v which belongs to each Di. For each 1 ≤ i ≤ n, let Di be a graph
database which contains:

• a copy ofAi, along with additional vertices v1, . . . , vi and the distinguished
vertex v

• a path v1 → v2 · · · → vi reading #i−1

• an edge from every final state of Ai to v1 reading #, and an edge from vi
to v of Ai reading $

We illustrate Di as follows:

Diego Figueira and Varun Ramanathan

and thus that D |= q; and since ℓ is bounded by a constant, this last
step is also in NL. □

Lemma 4.3. Given a class C of 2L graphs such that ccvertex (C) < ∞
(1) there is an FPT reduction from p-eval-ECRPQ(C) to p-eval-

CQ(Cnode);
(2) if further cchedge (C) < ∞, there is polynomial time reduction

from eval-ECRPQ(C) to eval-CQ(Cnode).

Proof. Let G ∈ C be the abstraction of an ECRPQ q and D be a
graph database over an alphabet A. We show how to produce a CQ
q′ (depending only on q) and a relational database D ′ (depending
on q and D) such that
• D |= q iff D ′ |= q′,
• the underlying Gaifman graph of q′ is Gnode, and
• all relations used in q′ have arity ≤ 2 · ccvertex (G ).

Further, if cchedge (C) < ∞, the construction runs in polynomial
time. We first produce an equivalent query q̂ ≡ q having Ĝ as
abstraction using Lemma 4.1, which is in PSpace, or in polynomial
time if ccvertex (G ) and cchedge (G ) are constant.

We now show how to build q′, which will have one atom with
relation R′ for each atom with relation R in the relation subquery
of q̂. Let R (π1, . . . ,πn ) be an atom of the relation subquery of q̂,
where for every i there is an atom xi

πi
−−→ yi in the reachability

subquery of q. We then produce the atom R′(x1,y1, . . . ,xn ,yn ) in
q′. The CQ q′ is obtained as the conjunction of all such atoms R′.
Observe that the Gaifman graph of q′ is precisely Gnode.

Finally, the relational database D ′ is built using these relations
R′, where we populate each relation R′ of arity 2n as follows

R′ = {(u1,v1, . . . ,un ,vn ) : for every i there is a path from ui to vi
in D with labelwi ∈ A

∗ such that (w1, . . . ,wn ) ∈ R}

We then obtain that D |= q iff D ′ |= q′. Since ccvertex (G ) is bounded
by a constant, so is the arity of the relations inq′ and q̂. Thus,D ′ can
be produced from q̂ inO ( |D |2·ccvertex (G ) ), that is, in polynomial time.
That is, D ′ is built in time f ( |q |) · |D |2·ccvertex (G ) , where f is the time
needed to compute q̂ fromq. In other words, this is an FPT reduction
or even a polynomial reduction if we assume that cchedge (G ) is
bounded by a constant (and thus that f is polynomial). □

5 LOWER BOUNDS
5.1 Combined complexity
We begin with identifying the hardest, PSpace-complete, cases of
eval-ECRPQ. As a consequence of Lemma 4.3(2) of the previous
section, as soon as ccvertex (C) and cchedge (C) are bounded, the eval-
uation problem becomes an NP problem. We now show that, under
cc-tameness, the remaining case is PSpace-complete.

Lemma 5.1. For every cc-tame class C of 2L graphs, if ccvertex (C)+
cchedge (C) = ∞ then eval-ECRPQ(C) is PSpace-complete.

Proof. Since eval-ECRPQ is in PSpace by Proposition 2.2, the
statement boils down to showing that eval-ECRPQ(C) is PSpace-
hard. We reduce from the PSpace-complete problem of intersection
non-emptiness (IE) for regular languages over a fixed alphabet A.

Let the IE instance be given as n regular languages L1, . . . ,Ln . It
follows that there exists a computable 2L graph G ∈ C such that
Grel contains a ‘big’ connected component C , having either (1) at
least n vertices, or (2) at least one vertex incident to n hyper-edges
(see Lemma A.1 in appendix). In both cases we will construct, in
polynomial time, an ECRPQ q whose abstraction is G and a graph
database D such that the following holds.

Claim 5.1. D |= q if, and only if, L1 ∩ · · · ∩ Ln , ∅.

Case (1) If C has m vertices π1, . . . ,πm with m ≥ n, we define
each relation R (πi1 , . . . ,πik ) corresponding to a k-ary hyperedge
{πi1 , . . . ,πik } to be the set of all k-tuples

($u # · · · #︸︷︷︸
i1

$, . . . , $u # · · · #︸︷︷︸
ik

$) ∈ (A ∪̇{$, #})∗k

for every u ∈ A∗. It is easy to see that each such R is a synchronous
relation which can be built in polynomial time (see appendix for
more details). All other relations, corresponding to hyperedges
outside C , are simply ‘universal’. That is, we define the relation
R′(π ′1, . . . ,π

′
ℓ
) corresponding to a hyperedge outside the connected

componentC to be (A ∪̇{$, #})∗ℓ . In this way we have produced, in
polynomial time, an ECRPQ q whose abstraction is G.

Without loss of generality we assume that n =m, note that this
can be guaranteed by extending the intersection problemwithm−n
‘dummy’ languagesA∗. For each language Li let us define the graph
database Di as the transition graph of the NFA recognizing Li , plus:
(1) one distinguished vertex v , (2) i other vertices v1, . . . ,vi , (3)

edges v
$
−→ q0 and vi

$
−→ v , and (4) a path qf

#
−→ v1

#
−→ · · ·

#
−→ vi of

length i , for every final state qf . Here’s an example:

<latexit sha1_base64="MZL2UbAyvfmYzjetWqQ4gsKFY/M=">AAAB6HicbVDLTgJBEOzFF+IL9ehlItF4IrvEqEcSLx4hkUcCGzI79MLI7OxmZpaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj+7nfGqPSPJaPZpKgH9GB5CFn1FipPu4VS27ZXYCsEy8jJchQ6xW/uv2YpRFKwwTVuuO5ifGnVBnOBM4K3VRjQtmIDrBjqaQRan+6OHRGLqzSJ2GsbElDFurviSmNtJ5Ege2MqBnqVW8u/ud1UhPe+VMuk9SgZMtFYSqIicn8a9LnCpkRE0soU9zeStiQKsqMzaZgQ/BWX14nzUrZuylX6tel6mUWRx7O4ByuwINbqMID1KABDBCe4RXenCfnxXl3PpatOSebOYU/cD5/AN0PjOU=</latexit>

v <latexit sha1_base64="Iyp0N7JbMYkpRMdVwEWA+yz6szk=">AAAB6nicbVA9SwNBEJ3zM8avqKXNYlCswl0QtQzYWFhENB+QHGFvM5cs2ds7dveEcOQn2FgoYusvsvPfuEmu0MQHA4/3ZpiZFySCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDP1W0+oNI/loxkn6Ed0IHnIGTVWerjr8V6p7FbcGcgy8XJShhz1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns1Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrz2My6T1KBk80VhKoiJyfRv0ucKmRFjSyhT3N5K2JAqyoxNp2hD8BZfXibNasW7rFTvL8q1szyOAhzDCZyDB1dQg1uoQwMYDOAZXuHNEc6L8+58zFtXnHzmCP7A+fwBF2aNlw==</latexit>

Li
<latexit sha1_base64="P4js+OuxzuizSgBqIGtDGZJjzJ8=">AAAB6XicbVBNS8NAEJ34WetX1aOXxap4KkkR9Vjw4rGK/YA2lM120i7dbMLuRiih/8CLB0W8+o+8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9dE97pbJbcWcgy8TLSRly1Hulr24/ZmmE0jBBte54bmL8jCrDmcBJsZtqTCgb0QF2LJU0Qu1ns0sn5MwqfRLGypY0ZKb+nshopPU4CmxnRM1QL3pT8T+vk5rwxs+4TFKDks0XhakgJibTt0mfK2RGjC2hTHF7K2FDqigzNpyiDcFbfHmZNKsV76pSvb8s187zOApwDCdwAR5cQw3uoA4NYBDCM7zCmzNyXpx352PeuuLkM0fwB87nDxGGjPk=</latexit>

$ <latexit sha1_base64="KQNH8onwq9c4n4TgWwZvdw4gMUk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LAbFU0mKqMeCF49V7Ae0pWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0PO+ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3grGtzO/9cS1EbF6xEnCexEdKhEKRtFKD123X3a9ijcHWSV+TlzIUe+Xv7qDmKURV8gkNabjewn2MqpRMMmnpW5qeELZmA55x1JFI2562fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zOimGN71MqCRFrthiUZhKgjGZvU0GQnOGcmIJZVrYWwkbUU0Z2nBKNgR/+eVV0qxW/KtK9f7SrZ3ncRThBE7hAny4hhrcQR0awCCEZ3iFN2fsvDjvzseiteDkM8fwB87nDxACjPg=</latexit>

#
<latexit sha1_base64="KQNH8onwq9c4n4TgWwZvdw4gMUk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LAbFU0mKqMeCF49V7Ae0pWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0PO+ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3grGtzO/9cS1EbF6xEnCexEdKhEKRtFKD123X3a9ijcHWSV+TlzIUe+Xv7qDmKURV8gkNabjewn2MqpRMMmnpW5qeELZmA55x1JFI2562fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zOimGN71MqCRFrthiUZhKgjGZvU0GQnOGcmIJZVrYWwkbUU0Z2nBKNgR/+eVV0qxW/KtK9f7SrZ3ncRThBE7hAny4hhrcQR0awCCEZ3iFN2fsvDjvzseiteDkM8fwB87nDxACjPg=</latexit>

#
<latexit sha1_base64="KQNH8onwq9c4n4TgWwZvdw4gMUk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LAbFU0mKqMeCF49V7Ae0pWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0PO+ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3grGtzO/9cS1EbF6xEnCexEdKhEKRtFKD123X3a9ijcHWSV+TlzIUe+Xv7qDmKURV8gkNabjewn2MqpRMMmnpW5qeELZmA55x1JFI2562fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zOimGN71MqCRFrthiUZhKgjGZvU0GQnOGcmIJZVrYWwkbUU0Z2nBKNgR/+eVV0qxW/KtK9f7SrZ3ncRThBE7hAny4hhrcQR0awCCEZ3iFN2fsvDjvzseiteDkM8fwB87nDxACjPg=</latexit>

#

<latexit sha1_base64="KQNH8onwq9c4n4TgWwZvdw4gMUk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LAbFU0mKqMeCF49V7Ae0pWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0PO+ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3grGtzO/9cS1EbF6xEnCexEdKhEKRtFKD123X3a9ijcHWSV+TlzIUe+Xv7qDmKURV8gkNabjewn2MqpRMMmnpW5qeELZmA55x1JFI2562fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zOimGN71MqCRFrthiUZhKgjGZvU0GQnOGcmIJZVrYWwkbUU0Z2nBKNgR/+eVV0qxW/KtK9f7SrZ3ncRThBE7hAny4hhrcQR0awCCEZ3iFN2fsvDjvzseiteDkM8fwB87nDxACjPg=</latexit>

#

<latexit sha1_base64="P4js+OuxzuizSgBqIGtDGZJjzJ8=">AAAB6XicbVBNS8NAEJ34WetX1aOXxap4KkkR9Vjw4rGK/YA2lM120i7dbMLuRiih/8CLB0W8+o+8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9dE97pbJbcWcgy8TLSRly1Hulr24/ZmmE0jBBte54bmL8jCrDmcBJsZtqTCgb0QF2LJU0Qu1ns0sn5MwqfRLGypY0ZKb+nshopPU4CmxnRM1QL3pT8T+vk5rwxs+4TFKDks0XhakgJibTt0mfK2RGjC2hTHF7K2FDqigzNpyiDcFbfHmZNKsV76pSvb8s187zOApwDCdwAR5cQw3uoA4NYBDCM7zCmzNyXpx352PeuuLkM0fwB87nDxGGjPk=</latexit>

$

<latexit sha1_base64="uyJBwY/lWXPBsj/XuVZSJAfP+Ac=">AAACGXichVBNS8NAEJ34WetX1KOXYFE8laSIeix48VjBfkBbymYzaZduNmF3I5RQf4YX/4oXD4p41JP/xm2bg7aCDwYe780wM89POFPadb+speWV1bX1wkZxc2t7Z9fe22+oOJUU6zTmsWz5RCFnAuuaaY6tRCKJfI5Nf3g18Zt3KBWLxa0eJdiNSF+wkFGijdSz3U4qApS+JBSz+/8x7tklt+xO4SwSLyclyFHr2R+dIKZphEJTTpRqe26iuxmRmlGO42InVZgQOiR9bBsqSISqm00/GzvHRgmcMJamhHam6s+JjERKjSLfdEZED9S8NxH/8tqpDi+7GRNJqlHQ2aIw5Y6OnUlMTsAkUs1HhhAqmbnVoQNiUtImzKIJwZt/eZE0KmXvvFy5OStVT/I4CnAIR3AKHlxAFa6hBnWg8ABP8AKv1qP1bL1Z77PWJSufOYBfsD6/AdHxpR8=</latexit>| {z }
<latexit sha1_base64="EyMPB9pW9J5lffYZNOWXEXpfY8g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJu+XK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSrlW9q2qteVmpn+dxFOEETuECPLiGOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHyVuM2A==</latexit>

i

<latexit sha1_base64="HYMXtCzDOov6K7hCQNPwlCDZ1hk=">AAAB7XicbVDLSgMxFL1TX7W+qi7dBIviqswUUZcFNy4r2Ae0Q8mkmTY2kxmSO0IZ+g9uXCji1v9x59+YtrPQ1gOBwzn3kHtPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVm8Qown65Ypbdecgq8TLSQVyNPrlLxtkacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/Nt52SM6sMSBhr+xSSufo7kdHImEkU2MmI4sgsezPxP6+bYnjjZ0IlKXLFFh+FqSQYk9npZCA0ZygnllCmhd2VsBHVlKEtqGRL8JZPXiWtWtW7qtbuLyv187yOIpzAKVyAB9dQhztoQBMYPMIzvMKbEzsvzrvzsRgtOHnmGP7A+fwBpt+PGQ==</latexit>· · ·
<latexit sha1_base64="GZtfi67zO7SXHZvaeHHwim0Hy3s=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbFU9ktRcVTQQ8eK9gPaJeSTbNtaJJdkqxQlv4FLx4U8eof8ua/MdvuQVsfDDzem2FmXhBzpo3rfjuFtfWNza3idmlnd2//oHx41NZRoghtkYhHqhtgTTmTtGWY4bQbK4pFwGknmNxmfueJKs0i+WimMfUFHkkWMoJNJt0N2M2gXHGr7hxolXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRW6ieaxphM8Ij2LJVYUO2n81tn6MwqQxRGypY0aK7+nkix0HoqAtspsBnrZS8T//N6iQmv/ZTJODFUksWiMOHIRCh7HA2ZosTwqSWYKGZvRWSMFSbGxlOyIXjLL6+Sdq3qXVZrD/VK4zyPowgncAoX4MEVNOAemtACAmN4hld4c4Tz4rw7H4vWgpPPHMMfOJ8/iRKN0w==</latexit>

Di : <latexit sha1_base64="cd1bD4ZYqfap37P9xOS5/19EKA4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxaJ4KkkR9Vjw4rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnter1R2K+4cZJV4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4LXZTjQllIzrAjqWSRqj9bH7qlJxbpU/CWNmShszV3xMZjbSeRIHtjKgZ6mVvJv7ndVIT3voZl0lqULLFojAVxMRk9jfpc4XMiIkllClubyVsSBVlxqZTtCF4yy+vkma14l1Xqg9X5dpFHkcBTuEMLsGDG6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gACgo2J</latexit>v1
<latexit sha1_base64="CrOCIDG4bOpKaMnwLnKnDX4jMyM=">AAAB6nicbVBNS8NAEJ34WetX1aOXxaJ4KkkR9Vjw4rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdyr9kplt+LOQVaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzyabGbGp5QNqID3rFU0YgbP5ufOiXnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8NbPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2naEPwll9eJc1qxbuuVB+uyrWLPI4CnMIZXIIHN1CDe6hDAxgM4Ble4c2Rzovz7nwsWtecfOYE/sD5/AEEBo2K</latexit>v2

<latexit sha1_base64="goECgF+ZNVLh1/ITQRBUv0R9b5g=">AAAB6nicbVBNS8NAEJ34WetX1aOXxaJ4KkkR9Vjw4rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnu8Vyq7FXcOskq8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFrupxoSyER1gx1JJI9R+Nj91Ss6t0idhrGxJQ+bq74mMRlpPosB2RtQM9bI3E//zOqkJb/2MyyQ1KNliUZgKYmIy+5v0uUJmxMQSyhS3txI2pIoyY9Mp2hC85ZdXSbNa8a4r1Yercu0ij6MAp3AGl+DBDdTgHurQAAYDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwBXYo3B</latexit>vi
q0

<latexit sha1_base64="KQNH8onwq9c4n4TgWwZvdw4gMUk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LAbFU0mKqMeCF49V7Ae0pWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0PO+ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3grGtzO/9cS1EbF6xEnCexEdKhEKRtFKD123X3a9ijcHWSV+TlzIUe+Xv7qDmKURV8gkNabjewn2MqpRMMmnpW5qeELZmA55x1JFI2562fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zOimGN71MqCRFrthiUZhKgjGZvU0GQnOGcmIJZVrYWwkbUU0Z2nBKNgR/+eVV0qxW/KtK9f7SrZ3ncRThBE7hAny4hhrcQR0awCCEZ3iFN2fsvDjvzseiteDkM8fwB87nDxACjPg=</latexit>

#
<latexit sha1_base64="KQNH8onwq9c4n4TgWwZvdw4gMUk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LAbFU0mKqMeCF49V7Ae0pWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0PO+ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3grGtzO/9cS1EbF6xEnCexEdKhEKRtFKD123X3a9ijcHWSV+TlzIUe+Xv7qDmKURV8gkNabjewn2MqpRMMmnpW5qeELZmA55x1JFI2562fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zOimGN71MqCRFrthiUZhKgjGZvU0GQnOGcmIJZVrYWwkbUU0Z2nBKNgR/+eVV0qxW/KtK9f7SrZ3ncRThBE7hAny4hhrcQR0awCCEZ3iFN2fsvDjvzseiteDkM8fwB87nDxACjPg=</latexit>

#

Finally, we define D as the union of D1, . . . ,Dn , which is disjoint
with the sole exception of the distinguished vertex v . We finish this
first part of the proof by showing that Claim 5.1 holds.

If D |= q, consider the satisfying assignment of the m path
variables π1, . . . ,πm in the connected component C . These define
m words u1, . . . ,um ∈ (A ∪̇{$, #})∗ of the form ui = $w#i$ for a
givenw , by definition of the relation R. Further, by the shape of D,
the path πi must go through the subdatabase Di of D, for each i .
Hence w ∈ Li for every i , witnessing that

⋂
i Li , ∅. Conversely,

observe that for anyw ∈
⋂
i Li the assignment sending

• every node variable to v ,
• every path variable πi fromC to the path starting and ending
in v , going through Di along the path reading w from the
initial state to a final state (it exists sincew ∈ Li ), and
• every other path variable π ′ outside C to any arbitrary path
starting and ending in v

is a satisfying assignment, and thus D |= q.
Case (2) If, on the other hand, C contains an element π incident
to n hyperedges h1, . . . ,hn , we define a relation Ri for each hyper-
edge hi as follows. If hi is incident to k ≥ 0 other vertices ν (hi ) =
{π ,π1, . . . ,πk }, we produce an atom Ri (π ,π1, . . . ,πk ) defined by

D is now defined as the union of all Di, which are pairwise disjoint except for
the distinguished vertex v common to all of them. All that remains to be shown
is that D � qc if and only if L(A1) · · · ∩ L(An) 6= ∅.

Say D � qc via a witnessing valuation σ. Recall that c contains n path
variables {π1, . . . , πn}. There exists w ∈ A∗ such that for all 1 ≤ i ≤ n, σ
assigns πi to some path pi in D labeled $w#i$. The shape of D dictates that
for all i, pi must be a path in Di witnessing w ∈ Li. Therefore, w ∈ L1∩· · ·∩Ln.
For the converse, assume there exists some w ∈ Li for all 1 ≤ i ≤ n. Observe
that the assignment which sends:

- every node variable of qc to v

- every path variable of πi of qc in c to some path in Di of the form:

v
$−→ q0

w−→ qf
#−→ v1

#−→ . . .
#−→ vi

$−→ v

(there is guaranteed to be at least one such path, because w ∈ Li)

- every path variable πi not in c to any path in D which starts and ends in
v

is a witness for D � qc.

Case (ii): If c contains a path variable π incident to n hyper-edges h1, . . . , hn,
then we define a synchronous relation Ri for the hyper-edge hi as follows: if hi
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is incident to k ≥ 0 additional vertices such that ν(hi) = {π, π1, . . . , πk}, then
Ri(π, π1, . . . , πk) is defined as the synchronous relation

{(u, u1, . . . , uk) : u ∈ Li and u1, . . . , uk ∈ A∗}

For every hyper-edge not in c, we define the corresponding relation to be the
universal relation of its arity, just like we did in Case (i). All these relations are
constructed in polynomial time. Let q be the ECRPQ whose abstraction is G
containing the synchronous relations defined above. Now we simply define D
to be the trivial graph database that has only one vertex v and a self-loop for
every a ∈ A.

If there exists a witness for D � q, then the path assigned to π is labeled by
some word w which is in every Li by definition of the relations in c. Conversely,
if the non-emptiness of L1∩· · ·∩Ln is witnessed by a word w, then by assigning
to π the path from v to v labeled by w we produce a valuation witnessing D � q.
So in this case also we have D � q if and only if L1 ∩ · · · ∩ Ln 6= ∅.

We now state an alternative definition of tree decomposition which will be
useful in proving Lemma 6 (stated after this definition).

Definition 25 (Alternative definition of tree decomposition). Let G =
(V,E) be a graph, T = (V ′, E′) be a tree and λ : V ′ → P(V ). For all
v ∈ V , a path p in T is called (λ, v)-faithful if and only if for all s ∈ V ′
in p, v ∈ λ(s). Then, T is said to be a tree-decomposition of G if and
only if

(1) for every {u, v} ∈ E, there exists s ∈ V ′ such that {u, v} ⊆ λ(s).

(2) For every v ∈ V contained in the bags of some s1, s2 ∈ V ′, there
exists a (λ, v)-faithful path p from s1 to s2 in T .

The original definition of tree-decomposition (Definition 23) stated that λ
must satisfy: (1) for every {u, v} ∈ E, there exists s ∈ V ′ such that λ(s) ⊆
{u, v}, and (2) for every v ∈ V , the subgraph of T induced by {s ∈ V ′ : v ∈ λ(s)}
is a tree. To show that Definition 25 is indeed an alternative definition of tree-
decomposition, we only need to show that condition (2) of Definition 25 is
equivalent to condition (2) of Definition 23 (since condition (1) is identical for
both definitions).

In other words, for every v ∈ V , we need to show that the subgraph of T
induced by {s ∈ V ′ : v ∈ λ(s)} is a tree if and only if there exists a (λ, v)-faithful
path p from s1 to s2 in T for every s1, s2 ∈ V ′ such that v ∈ λ(s1) ∩ λ(s2).

If the subgraph of T induced by {s ∈ V ′ : v ∈ λ(s)} is a sub-tree, then for
any s1, s2 whose bags contain v, a (λ, v)-faithful path from s1 to s2 can be found
in this sub-tree itself. Conversely, assume that for all s1, s2 ∈ V ′ whose bags
contain v, there exists a (λ, v)-faithful path from s1 to s2. The union of all such
paths is a sub-tree given by {s ∈ V ′ : v ∈ λ(s)}. Therefore, Definition 25 is
indeed an alternative definition of tree-decomposition as given in Definition 23.

Lemma 6. Let C be a class of 2L-graphs with ccvertex(C) <∞ and tw(Cnode) =
∞. Then tw(Ccollapse) =∞.
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Proof. Assume tw(Ccollapse) is finite. We prove that for all G ∈ C,

tw(Gnode) ≤ 2 · ccvertex(C) · tw(Gcollapse)

This is sufficient to show that tw(Ccollapse) = ∞, given that tw(Cnode) = ∞.
Now, fix a 2L-graph G = (V,E,H, η, ν) ∈ C such thatGcollapse = (Vcol, Ecol, ηcol)
and a tree-decomposition T = (Vt, Et, γ) of width k, where

γ : Vt →P(Vcol)

is the bag function witnessing that T is a tree-decomposition of Gcollapse. We
construct a new bag function

γ′ : Vt →P(V )

such that T ′ = (Vt, Et, γ′) will prove to be a tree-decomposition of Gnode of
width 2 · ccvertex(G) · k.

[The transformation γ 7→ γ′] T = (Vt, Et, γ) is transformed into T ′ =
(Vt, Et, γ′) via the transformation γ 7→ γ′ which is as follows: for every s ∈ Vt,
look at the bag γ(s). Now, remove every cc vertex vc in the bag and replace it
with the set of node vertices incident to it, i.e.

node-vertices(vc) = {v ∈ V : µ(π′) = {v, vc} for some π′ ∈ Ecol}

For every connected component c, let Nc = node-vertices(vc) \ {vc}. Moreover,
let N(s) be the union of Nc over all connected components c such that vc ∈ γ(s).
Now, γ′ is formally defined as

γ′(s) = γ(s) ∪N(s)

Next we show that T ′ = (Vt, Et, γ′) is a tree-decomposition of Gnode =
(V,Enode). We need to check that:

(1) for every edge {v1, v2} ∈ Enode, there exists some s ∈ Vt such that
{v1, v2} ⊆ γ(s).

(2) for all v ∈ V , and s1, s2 ∈ Vt, if v ∈ γ′(s1) ∩ γ′(s2) then there exists
a (γ′, v)-faithful path from s1 to s2 in (Vt, Et) (see Definition 25 for the
alternative definition of tree-width).

For (1), let {v1, v2} ∈ Enode. Then there exist e1, e2 ∈ E in some connected
component c such that v1 ∈ η(e1), v2 ∈ η(e2). It directly follows that v1, v2 ∈
node-vertices(vc). Let s ∈ Vt such that vc ∈ γ(s). Then, node-vertices(vc) ⊆
γ′(s), therefore {v1, v2} ⊆ γ′(s).

To show (2), let v ∈ V and s1, s2 ∈ Vt such that v ∈ γ′(s1)∩γ′(s2). Without
loss of generality, three cases arise:

• v ∈ γ(s1)∩γ(s2): We know that (Vt, Et, γ) is a tree-decomposition for Grel.
So, there exists a (γ, v)-faithful path p from s1 to s2. We do not remove
any vertices in V from any of the bags in the transformation γ → γ′.
Therefore, p is (γ′, v)-faithful as well.
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• v ∈ γ(s1) \ γ(s2): In this case, v was present in the γ-bag of s1 but
not of s2. Therefore, v was added in γ′(s2) because there exists some
cc vertex vc ∈ γ(s2) such that v ∈ neighbors(vc). Since (Vt, Et, γ) is
a tree-decomposition of Gcollapse, there exists some s3 ∈ Vt such that
{v, vc} ∈ γ(s3). Further, v ∈ γ(s1) ∩ γ(s3) and vc ∈ γ(s2) ∩ γ(s3). So
there exists a path p1 from s1 to s3 that is (γ, v)-faithful, and a path p2
from s3 to s2 that is (γ, vc)-faithful. As per the transformation γ → γ′,
(i) p2 is also (γ′, v)-faithful because v is added to every bag containing
vc, and (ii) p1 is (γ′, v)-faithful because we never remove any vertex from
V . Therefore, the conjunction p1 · p2 is a path from s1 to s2 that is
(γ′, v)-faithful.

• v /∈ γ(s1)∩γ(s2): In this case, there exist connected components c1, c2 ∈ C
(not necessarily distinct) such that vc1 ∈ γ(s1), vc2 ∈ γ(s2) and v ∈
neighbors(vc1)∩neighbors(vc2). Applying the argument made in the previ-
ous point to vc1 and vc2 , we know that there exist tree-vertices s3, s4 ∈ Vt
such that {v, vc1} ∈ γ(s1)∩γ(s3) and {v, vc2} ∈ γ(s2)∩γ(s4). So there ex-
ist paths p1 from s1 to s3 which is (γ, vc1)-faithful, p2 from s3 to s4 which
is (γ, v)-faithful, and p3 from s4 to s2 which is (γ, vc2)-faithful. After the
transformation γ → γ′, p1 and p2 become (γ′, v)-faithful when v is added
to all the γ-bags containing either vc1 or vc2 . Therefore, the conjunction
p1 · p2 · p3 is a (γ′, v)-faithful path from s1 to s2.

We see that in all three cases, there exists a (γ′, v)-faithful path from s1 to s2.
So T ′ satisfies (1) and (2) and is hence a decomposition of Gnode.

Finally, let k be the tree-width of T . In the transformation γ → γ′, we took
every bag of T , removed at most k cc vertices (the maximum size of the bags
is k), and added a set of size at most 2 · ccvertex(G) for every cc vertex that we
removed. Therefore, the size of any bag in T ′ is at most 2 · ccvertex(G) · k. This
shows that tw(Gnode) ≤ 2 · ccvertex(G) · tw(Gcollapse).

Lemma 7. Let C be a computably enumerable class of 2L-graphs. There exists
an FPT reduction from p-eval-CQbin(Ccollapse) to p-eval-ECRPQ(C).

Proof. Recall that CQbin is the set of all CQs which use only binary relations.
Given q ∈ CQbin(Ccollapse) and a relational database D = (V, {R1, . . . , Rn}),
there exists a 2L-graph G ∈ C such that Gcollapse is the multi-graph abstraction
of q. Moreover, G is computable because C is computably enumerable. The goal
is to produce an ECRPQ q′ ∈ ECRPQ(G) and a graph database D′ such that
D′ � q′ if and only if D � q.

Without loss of generality, we assume that for every relation R in the
database alphabet, its inverse R−1 is also in the database alphabet (interpreted
as {(v, u) : (u, v) ∈ R}).

Recall the definition ofGcollapse given in Definition 24. Gcollapse = (Vcol, Ecol, ηcol)
has two kinds of vertices: the node vertices in V and cc vertices {vc}c∈C , where
C is the set of connected components of Grel. Further, every edge in E named
π with η(π) = {v, v′} is split into π̂ and π̂′ which connect {v, vc} and {v′, vc}
respectively (where c ∈ C contains π in Grel). Here Gcollapse is the underlying
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graph of q. So we partition the variables of q into two sets {x1, x
′
1, . . . , x`, x

′
`}

and {y1, . . . , y`} corresponding to node vertices and cc vertices respectively.
Here the {xi, x′i}i≤` are not necessarily pairwise distinct, and neither are the
{yi}i≤`

The idea is that for every pair of Ecol edges {v, vc}, {v′, vc} named π̂, π̂′

respectively, we pick an i such that the vertices v, v′ are identified with the
node variables xi, x′i and vc is identified with yi. The edge {v, vc} named π̂ is
identified with the relation symbol R and π̂′ is identified with R′. Now we can
re-write q as

q = ∃x̄R1(x1, y1) ∧R′1(y1, x
′
1) ∧ · · · ∧R`(x`, y`) ∧R′`(y`, x′`)

where the xi’s and x′i’s are node variables corresponding to V , and yi’s are cc
variables corresponding to VC . We can rewrite any binary CQ in this form using
inverses while ensuring its underlying multigraph does not change.

Let q′ be some ECRPQ whose abstraction is G. Let A be the alphabet
containing all relation symbols used in qrel, along with two additional symbols
0 and 1. Now we shall precisely define q by associating synchronous relations
to the relation symbols. For every atom R(π1, . . . , πr) ∈ qrel and for every
1 ≤ i ≤ r, there is exactly one atom xji

πi−→ x′j′
i
∈ qreach. Fix the pairs

{(ji, j′i)}πi occurs in R for all R. Then we build the synchronous relation

R = {(Rj1wR
′
j′1
, . . . , Rjr

wR′j′r ) : w ∈ {0, 1}∗}

for every R ∈ qrel. Intuitively, R is defined this way to ensure there exist paths

xji

Rji−−→ yji

R′
j′

i−−→ x′j′
i

where the yji ’s are equal for all 1 ≤ i ≤ r, ensured by the common word
w ∈ {0, 1}∗. This completes the definition of q′. We proceed to define D′.

The graph database D′ is an extension of the relational database D over A,
constructed by adding a simple cycle on every node whose path is labeled with
some word in {0, 1}∗. Let V = {v1, . . . , vn} be the domain of D. To every vertex
vi, add a cycle containing n′ − 1 vertices, where n′ is the dlog(n)e-bit binary
expansion of i. Further, the cycle should be labeled by this binary expansion,
as a word over {0, 1}∗. We provide an example below:
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<latexit sha1_base64="j0KV09rd5FXA86b/obwSJdAQnkk=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYFA8hd0g6jHgxWN85AHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoZuq3nlBpHstHM07Qj+hA8pAzaqz0cN+r9kplt+LOQJaJl5My5Kj3Sl/dfszSCKVhgmrd8dzE+BlVhjOBk2I31ZhQNqID7FgqaYTaz2anTsipVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14bWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6RRuCt/jyMmlWK95lpXp3Ua6d5XEU4BhO4Bw8uIIa3EIdGsBgAM/wCm+OcF6cd+dj3rri5DNH8AfO5w/NH41m</latexit>

R2

<latexit sha1_base64="GlBjbtG77T0ZtJU5Go8ByHRbmAY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4Irto1COJF4/44JHAhswOA0yYnd3M9JqQDZ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJbCoOt+O7mV1bX1jfxmYWt7Z3evuH/QMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMbqZ+84lrIyL1iOOY+yEdKNEXjKKVHu67591iyS27M5Bl4mWkBBlq3eJXpxexJOQKmaTGtD03Rj+lGgWTfFLoJIbHlI3ogLctVTTkxk9np07IiVV6pB9pWwrJTP09kdLQmHEY2M6Q4tAselPxP6+dYP/aT4WKE+SKzRf1E0kwItO/SU9ozlCOLaFMC3srYUOqKUObTsGG4C2+vEwalbJ3Wa7cXZSqp1kceTiCYzgDD66gCrdQgzowGMAzvMKbI50X5935mLfmnGzmEP7A+fwBzqONZw==</latexit>

R3

<latexit sha1_base64="iszxsIogOoPiXeYQ8YLclWLEFow=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4IruEqEcSLx7xwSOBDZkdZmHC7OxmpteEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSKFQdf9dnJr6xubW/ntws7u3v5B8fCoaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3cz81hPXRsTqEccJ9yM6UCIUjKKVHu571V6x5JbdOcgq8TJSggz1XvGr249ZGnGFTFJjOp6boD+hGgWTfFropoYnlI3ogHcsVTTixp/MT52SM6v0SRhrWwrJXP09MaGRMeMosJ0RxaFZ9mbif14nxfDanwiVpMgVWywKU0kwJrO/SV9ozlCOLaFMC3srYUOqKUObTsGG4C2/vEqalbJ3Wa7cVUu18yyOPJzAKVyAB1dQg1uoQwMYDOAZXuHNkc6L8+58LFpzTjZzDH/gfP4A0CeNaA==</latexit>

R4
<latexit sha1_base64="j0KV09rd5FXA86b/obwSJdAQnkk=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYFA8hd0g6jHgxWN85AHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoZuq3nlBpHstHM07Qj+hA8pAzaqz0cN+r9kplt+LOQJaJl5My5Kj3Sl/dfszSCKVhgmrd8dzE+BlVhjOBk2I31ZhQNqID7FgqaYTaz2anTsipVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14bWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6RRuCt/jyMmlWK95lpXp3Ua6d5XEU4BhO4Bw8uIIa3EIdGsBgAM/wCm+OcF6cd+dj3rri5DNH8AfO5w/NH41m</latexit>

R2

<latexit sha1_base64="iszxsIogOoPiXeYQ8YLclWLEFow=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4IruEqEcSLx7xwSOBDZkdZmHC7OxmpteEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSKFQdf9dnJr6xubW/ntws7u3v5B8fCoaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3cz81hPXRsTqEccJ9yM6UCIUjKKVHu571V6x5JbdOcgq8TJSggz1XvGr249ZGnGFTFJjOp6boD+hGgWTfFropoYnlI3ogHcsVTTixp/MT52SM6v0SRhrWwrJXP09MaGRMeMosJ0RxaFZ9mbif14nxfDanwiVpMgVWywKU0kwJrO/SV9ozlCOLaFMC3srYUOqKUObTsGG4C2/vEqalbJ3Wa7cVUu18yyOPJzAKVyAB1dQg1uoQwMYDOAZXuHNkc6L8+58LFpzTjZzDH/gfP4A0CeNaA==</latexit>

R4
<latexit sha1_base64="GlBjbtG77T0ZtJU5Go8ByHRbmAY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4Irto1COJF4/44JHAhswOA0yYnd3M9JqQDZ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJbCoOt+O7mV1bX1jfxmYWt7Z3evuH/QMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMbqZ+84lrIyL1iOOY+yEdKNEXjKKVHu67591iyS27M5Bl4mWkBBlq3eJXpxexJOQKmaTGtD03Rj+lGgWTfFLoJIbHlI3ogLctVTTkxk9np07IiVV6pB9pWwrJTP09kdLQmHEY2M6Q4tAselPxP6+dYP/aT4WKE+SKzRf1E0kwItO/SU9ozlCOLaFMC3srYUOqKUObTsGG4C2+vEwalbJ3Wa7cXZSqp1kceTiCYzgDD66gCrdQgzowGMAzvMKbI50X5935mLfmnGzmEP7A+fwBzqONZw==</latexit>

R3

<latexit sha1_base64="ActkPTn7277CYkutCVBZJT0rfwQ=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYFA8hd0g6jHgxWN85AHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoZuq3nlBpHstHM07Qj+hA8pAzaqz0cN/zeqWyW3FnIMvEy0kZctR7pa9uP2ZphNIwQbXueG5i/Iwqw5nASbGbakwoG9EBdiyVNELtZ7NTJ+TUKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8NrPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadog3BW3x5mTSrFe+yUr27KNfO8jgKcAwncA4eXEENbqEODWAwgGd4hTdHOC/Ou/Mxb11x8pkj+APn8wfLm41l</latexit>

R1

<latexit sha1_base64="GlBjbtG77T0ZtJU5Go8ByHRbmAY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4Irto1COJF4/44JHAhswOA0yYnd3M9JqQDZ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJbCoOt+O7mV1bX1jfxmYWt7Z3evuH/QMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMbqZ+84lrIyL1iOOY+yEdKNEXjKKVHu67591iyS27M5Bl4mWkBBlq3eJXpxexJOQKmaTGtD03Rj+lGgWTfFLoJIbHlI3ogLctVTTkxk9np07IiVV6pB9pWwrJTP09kdLQmHEY2M6Q4tAselPxP6+dYP/aT4WKE+SKzRf1E0kwItO/SU9ozlCOLaFMC3srYUOqKUObTsGG4C2+vEwalbJ3Wa7cXZSqp1kceTiCYzgDD66gCrdQgzowGMAzvMKbI50X5935mLfmnGzmEP7A+fwBzqONZw==</latexit>

R3

<latexit sha1_base64="j0KV09rd5FXA86b/obwSJdAQnkk=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYFA8hd0g6jHgxWN85AHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoZuq3nlBpHstHM07Qj+hA8pAzaqz0cN+r9kplt+LOQJaJl5My5Kj3Sl/dfszSCKVhgmrd8dzE+BlVhjOBk2I31ZhQNqID7FgqaYTaz2anTsipVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14bWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6RRuCt/jyMmlWK95lpXp3Ua6d5XEU4BhO4Bw8uIIa3EIdGsBgAM/wCm+OcF6cd+dj3rri5DNH8AfO5w/NH41m</latexit>

R2

<latexit sha1_base64="GlBjbtG77T0ZtJU5Go8ByHRbmAY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4Irto1COJF4/44JHAhswOA0yYnd3M9JqQDZ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJbCoOt+O7mV1bX1jfxmYWt7Z3evuH/QMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMbqZ+84lrIyL1iOOY+yEdKNEXjKKVHu67591iyS27M5Bl4mWkBBlq3eJXpxexJOQKmaTGtD03Rj+lGgWTfFLoJIbHlI3ogLctVTTkxk9np07IiVV6pB9pWwrJTP09kdLQmHEY2M6Q4tAselPxP6+dYP/aT4WKE+SKzRf1E0kwItO/SU9ozlCOLaFMC3srYUOqKUObTsGG4C2+vEwalbJ3Wa7cXZSqp1kceTiCYzgDD66gCrdQgzowGMAzvMKbI50X5935mLfmnGzmEP7A+fwBzqONZw==</latexit>

R3
<latexit sha1_base64="ZvP1yiEVWDsqbztXNSxmOHYAQ/I=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPiKewGUfEU0IPHKOYBSQizk95kyOzsMjMrhCV/4MWDIl79I2/+jZNkD5pY0FBUddPd5ceCa+O6305uZXVtfSO/Wdja3tndK+4fNHSUKIZ1FolItXyqUXCJdcONwFaskIa+wKY/upn6zSdUmkfy0Yxj7IZ0IHnAGTVWeri97hVLbtmdgSwTLyMlyFDrFb86/YglIUrDBNW67bmx6aZUGc 4ETgqdRGNM2YgOsG2ppCHqbjq7dEJOrNInQaRsSUNm6u+JlIZaj0PfdobUDPWiNxX/89qJCa66KZdxYlCy+aIgEcREZPo26XOFzIixJZQpbm8lbEgVZcaGU7AheIsvL5NGpexdlCv356XqaRZHHo7gGM7Ag0uowh3UoA4MAniGV3hzRs6L8+58zFtzTjZzCH/gfP4ADmaM9w==</latexit>

D :
<latexit sha1_base64="h9R+YY/Zp0+0lL+QNQTFHGxmrK4=">AAAB7nicbVBNS8NAEJ34WetX1aOXxaJ4KkkRFU8FPXisYD+gDWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDv1W09cGxGrRxwn3I/oQIlQMIpWanWHFMndTa9UdivuDGSZeDkpQ456r/TV7ccsjbhCJqkxHc9N0M+oRsEknxS7qeEJZSM64B1LFY248bPZuRNyapU+CWNtSyGZqb8nMhoZM44C2xlRHJpFbyr+53VSDK/9TKgkRa7YfFGYSoIxmf5O+kJzhnJsCWVa2FsJG1JNGdqEijYEb/HlZdKsVrzLSvXholw7y+MowDGcwDl4cAU1uIc6NIDBCJ7hFd6cxHlx3p2PeeuKk88cwR84nz9q2Y7i</latexit>

D̂ :

<latexit sha1_base64="yoSF5ativHyLpti/tZSwAcHC0Ko=">AAAB6nicbVBNS8NAEJ34WetX1aOXxaJ4KkkR9Vjw4rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jntur1R2K+4cZJV4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4LXZTjQllIzrAjqWSRqj9bH7qlJxbpU/CWNmShszV3xMZjbSeRIHtjKgZ6mVvJv7ndVIT3voZl0lqULLFojAVxMRk9jfpc4XMiIkllClubyVsSBVlxqZTtCF4yy+vkma14l1Xqg9X5dpFHkcBTuEMLsGDG6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAA/o2I</latexit>v0

<latexit sha1_base64="cd1bD4ZYqfap37P9xOS5/19EKA4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxaJ4KkkR9Vjw4rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnter1R2K+4cZJV4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4LXZTjQllIzrAjqWSRqj9bH7qlJxbpU/CWNmShszV3xMZjbSeRIHtjKgZ6mVvJv7ndVIT3voZl0lqULLFojAVxMRk9jfpc4XMiIkllClubyVsSBVlxqZTtCF4yy+vkma14l1Xqg9X5dpFHkcBTuEMLsGDG6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gACgo2J</latexit>v1
<latexit sha1_base64="CrOCIDG4bOpKaMnwLnKnDX4jMyM=">AAAB6nicbVBNS8NAEJ34WetX1aOXxaJ4KkkR9Vjw4rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdyr9kplt+LOQVaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzyabGbGp5QNqID3rFU0YgbP5ufOiXnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8NbPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2naEPwll9eJc1qxbuuVB+uyrWLPI4CnMIZXIIHN1CDe6hDAxgM4Ble4c2Rzovz7nwsWtecfOYE/sD5/AEEBo2K</latexit>v2

<latexit sha1_base64="qNm7Y1ssUE9zjFXrOpZqKqf/bn8=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4Irto1COJF48Y5ZHAhswOszBhdnYz00tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUMHGqGa+zWMa6FVDDpVC8jgIlbyWa0yiQvBkM72Z+c8S1EbF6wnHC/Yj2lQgFo2ilx1H3slssuWV3DrJKvIyUIEOtW/zq9GKWRlwhk9SYtucm6E+oRsEknxY6qeEJZUPa521LFY248SfzU6fkzCo9EsbalkIyV39PTGhkzDgKbGdEcWCWvZn4n9dOMbz1J0IlKXLFFovCVBKMyexv0hOaM5RjSyjTwt5K2IBqytCmU7AheMsvr5JGpexdlysPV6XqeRZHHk7gFC7Agxuowj3UoA4M+vAMr/DmSOfFeXc+Fq05J5s5hj9wPn8ABYqNiw==</latexit>v3

<latexit sha1_base64="6dpTBNYh8fhYsXO6Ru/R+Uta+Z4=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4IruEqEcSLx4xyiMBQmaHWZgwO7uZ6SUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dfiyFQdf9dnIbm1vbO/ndwt7+weFR8fikaaJEM95gkYx026eGS6F4AwVK3o41p6Evecsf38391oRrIyL1hNOY90I6VCIQjKKVHif9ar9YcsvuAmSdeBkpQYZ6v/jVHUQsCblCJqkxHc+NsZdSjYJJPit0E8NjysZ0yDuWKhpy00sXp87IhVUGJIi0LYVkof6eSGlozDT0bWdIcWRWvbn4n9dJMLjtpULFCXLFlouCRBKMyPxvMhCaM5RTSyjTwt5K2IhqytCmU7AheKsvr5NmpexdlysP1VLtMosjD2dwDlfgwQ3U4B7q0AAGQ3iGV3hzpPPivDsfy9ack82cwh84nz8HDo2M</latexit>v4
<latexit sha1_base64="PUUKpQFfCr/2PiEXIiAZcGqekX4=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4IrvE15HEi0eM8khgQ2aHWZgwO7uZ6SUhhE/w4kFjvPpF3vwbB9iDgpV0UqnqTndXkEhh0HW/ndza+sbmVn67sLO7t39QPDxqmDjVjNdZLGPdCqjhUiheR4GStxLNaRRI3gyGdzO/OeLaiFg94TjhfkT7SoSCUbTS46h71S2W3LI7B1klXkZKkKHWLX51ejFLI66QSWpM23MT9CdUo2CSTwud1PCEsiHt87alikbc+JP5qVNyZpUeCWNtSyGZq78nJjQyZhwFtjOiODDL3kz8z2unGN76E6GSFLlii0VhKgnGZPY36QnNGcqxJZRpYW8lbEA1ZWjTKdgQvOWXV0mjUvauy5WHy1L1PIsjDydwChfgwQ1U4R5qUAcGfXiGV3hzpPPivDsfi9ack80cwx84nz8Iko2N</latexit>v5

<latexit sha1_base64="EGTaYgZAgRhm+pdMpZlrfqqPHd8=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4IrvEoEcSLx4xyiMBQmaHXpgwO7uZmSUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dfiy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU0eJYthgkYhU26caBZfYMNwIbMcKaegLbPnju7nfmqDSPJJPZhpjL6RDyQPOqLHS46Rf7RdLbtldgKwTLyMlyFDvF7+6g4glIUrDBNW647mx6aVUGc4EzgrdRGNM2ZgOsWOppCHqXro4dUYurDIgQaRsSUMW6u+JlIZaT0PfdobUjPSqNxf/8zqJCW57KZdxYlCy5aIgEcREZP43GXCFzIipJZQpbm8lbEQVZcamU7AheKsvr5NmpexVy5WH61LtMosjD2dwDlfgwQ3U4B7q0AAGQ3iGV3hzhPPivDsfy9ack82cwh84nz8KFo2O</latexit>v6

<latexit sha1_base64="jJ095u5efGKRX2wrt+7q9rGrTIw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4IrvEiEcSLx4xyiMBQmaHXpgwO7uZmSUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dfiy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU0eJYthgkYhU26caBZfYMNwIbMcKaegLbPnju7nfmqDSPJJPZhpjL6RDyQPOqLHS46Rf7RdLbtldgKwTLyMlyFDvF7+6g4glIUrDBNW647mx6aVUGc4EzgrdRGNM2ZgOsWOppCHqXro4dUYurDIgQaRsSUMW6u+JlIZaT0PfdobUjPSqNxf/8zqJCW57KZdxYlCy5aIgEcREZP43GXCFzIipJZQpbm8lbEQVZcamU7AheKsvr5NmpezdlCsP16XaZRZHHs7gHK7AgyrU4B7q0AAGQ3iGV3hzhPPivDsfy9ack82cwh84nz8Lmo2P</latexit>v7

<latexit sha1_base64="ActkPTn7277CYkutCVBZJT0rfwQ=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYFA8hd0g6jHgxWN85AHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoZuq3nlBpHstHM07Qj+hA8pAzaqz0cN/zeqWyW3FnIMvEy0kZctR7pa9uP2ZphNIwQbXueG5i/Iwqw5nASbGbakwoG9EBdiyVNELtZ7NTJ+TUKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8NrPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadog3BW3x5mTSrFe+yUr27KNfO8jgKcAwncA4eXEENbqEODWAwgGd4hTdHOC/Ou/Mxb11x8pkj+APn8wfLm41l</latexit>

R1

<latexit sha1_base64="j0KV09rd5FXA86b/obwSJdAQnkk=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYFA8hd0g6jHgxWN85AHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoZuq3nlBpHstHM07Qj+hA8pAzaqz0cN+r9kplt+LOQJaJl5My5Kj3Sl/dfszSCKVhgmrd8dzE+BlVhjOBk2I31ZhQNqID7FgqaYTaz2anTsipVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14bWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6RRuCt/jyMmlWK95lpXp3Ua6d5XEU4BhO4Bw8uIIa3EIdGsBgAM/wCm+OcF6cd+dj3rri5DNH8AfO5w/NH41m</latexit>

R2

<latexit sha1_base64="GlBjbtG77T0ZtJU5Go8ByHRbmAY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4Irto1COJF4/44JHAhswOA0yYnd3M9JqQDZ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJbCoOt+O7mV1bX1jfxmYWt7Z3evuH/QMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMbqZ+84lrIyL1iOOY+yEdKNEXjKKVHu67591iyS27M5Bl4mWkBBlq3eJXpxexJOQKmaTGtD03Rj+lGgWTfFLoJIbHlI3ogLctVTTkxk9np07IiVV6pB9pWwrJTP09kdLQmHEY2M6Q4tAselPxP6+dYP/aT4WKE+SKzRf1E0kwItO/SU9ozlCOLaFMC3srYUOqKUObTsGG4C2+vEwalbJ3Wa7cXZSqp1kceTiCYzgDD66gCrdQgzowGMAzvMKbI50X5935mLfmnGzmEP7A+fwBzqONZw==</latexit>

R3

<latexit sha1_base64="iszxsIogOoPiXeYQ8YLclWLEFow=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4IruEqEcSLx7xwSOBDZkdZmHC7OxmpteEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSKFQdf9dnJr6xubW/ntws7u3v5B8fCoaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3cz81hPXRsTqEccJ9yM6UCIUjKKVHu571V6x5JbdOcgq8TJSggz1XvGr249ZGnGFTFJjOp6boD+hGgWTfFropoYnlI3ogHcsVTTixp/MT52SM6v0SRhrWwrJXP09MaGRMeMosJ0RxaFZ9mbif14nxfDanwiVpMgVWywKU0kwJrO/SV9ozlCOLaFMC3srYUOqKUObTsGG4C2/vEqalbJ3Wa7cVUu18yyOPJzAKVyAB1dQg1uoQwMYDOAZXuHNkc6L8+58LFpzTjZzDH/gfP4A0CeNaA==</latexit>

R4
<latexit sha1_base64="j0KV09rd5FXA86b/obwSJdAQnkk=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYFA8hd0g6jHgxWN85AHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoZuq3nlBpHstHM07Qj+hA8pAzaqz0cN+r9kplt+LOQJaJl5My5Kj3Sl/dfszSCKVhgmrd8dzE+BlVhjOBk2I31ZhQNqID7FgqaYTaz2anTsipVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14bWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6RRuCt/jyMmlWK95lpXp3Ua6d5XEU4BhO4Bw8uIIa3EIdGsBgAM/wCm+OcF6cd+dj3rri5DNH8AfO5w/NH41m</latexit>

R2

<latexit sha1_base64="iszxsIogOoPiXeYQ8YLclWLEFow=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4IruEqEcSLx7xwSOBDZkdZmHC7OxmpteEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSKFQdf9dnJr6xubW/ntws7u3v5B8fCoaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3cz81hPXRsTqEccJ9yM6UCIUjKKVHu571V6x5JbdOcgq8TJSggz1XvGr249ZGnGFTFJjOp6boD+hGgWTfFropoYnlI3ogHcsVTTixp/MT52SM6v0SRhrWwrJXP09MaGRMeMosJ0RxaFZ9mbif14nxfDanwiVpMgVWywKU0kwJrO/SV9ozlCOLaFMC3srYUOqKUObTsGG4C2/vEqalbJ3Wa7cVUu18yyOPJzAKVyAB1dQg1uoQwMYDOAZXuHNkc6L8+58LFpzTjZzDH/gfP4A0CeNaA==</latexit>

R4
<latexit sha1_base64="GlBjbtG77T0ZtJU5Go8ByHRbmAY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4Irto1COJF4/44JHAhswOA0yYnd3M9JqQDZ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJbCoOt+O7mV1bX1jfxmYWt7Z3evuH/QMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMbqZ+84lrIyL1iOOY+yEdKNEXjKKVHu67591iyS27M5Bl4mWkBBlq3eJXpxexJOQKmaTGtD03Rj+lGgWTfFLoJIbHlI3ogLctVTTkxk9np07IiVV6pB9pWwrJTP09kdLQmHEY2M6Q4tAselPxP6+dYP/aT4WKE+SKzRf1E0kwItO/SU9ozlCOLaFMC3srYUOqKUObTsGG4C2+vEwalbJ3Wa7cXZSqp1kceTiCYzgDD66gCrdQgzowGMAzvMKbI50X5935mLfmnGzmEP7A+fwBzqONZw==</latexit>

R3

<latexit sha1_base64="ActkPTn7277CYkutCVBZJT0rfwQ=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYFA8hd0g6jHgxWN85AHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoZuq3nlBpHstHM07Qj+hA8pAzaqz0cN/zeqWyW3FnIMvEy0kZctR7pa9uP2ZphNIwQbXueG5i/Iwqw5nASbGbakwoG9EBdiyVNELtZ7NTJ+TUKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8NrPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadog3BW3x5mTSrFe+yUr27KNfO8jgKcAwncA4eXEENbqEODWAwgGd4hTdHOC/Ou/Mxb11x8pkj+APn8wfLm41l</latexit>

R1

<latexit sha1_base64="GlBjbtG77T0ZtJU5Go8ByHRbmAY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4Irto1COJF4/44JHAhswOA0yYnd3M9JqQDZ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJbCoOt+O7mV1bX1jfxmYWt7Z3evuH/QMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMbqZ+84lrIyL1iOOY+yEdKNEXjKKVHu67591iyS27M5Bl4mWkBBlq3eJXpxexJOQKmaTGtD03Rj+lGgWTfFLoJIbHlI3ogLctVTTkxk9np07IiVV6pB9pWwrJTP09kdLQmHEY2M6Q4tAselPxP6+dYP/aT4WKE+SKzRf1E0kwItO/SU9ozlCOLaFMC3srYUOqKUObTsGG4C2+vEwalbJ3Wa7cXZSqp1kceTiCYzgDD66gCrdQgzowGMAzvMKbI50X5935mLfmnGzmEP7A+fwBzqONZw==</latexit>

R3

<latexit sha1_base64="j0KV09rd5FXA86b/obwSJdAQnkk=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYFA8hd0g6jHgxWN85AHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoZuq3nlBpHstHM07Qj+hA8pAzaqz0cN+r9kplt+LOQJaJl5My5Kj3Sl/dfszSCKVhgmrd8dzE+BlVhjOBk2I31ZhQNqID7FgqaYTaz2anTsipVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14bWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6RRuCt/jyMmlWK95lpXp3Ua6d5XEU4BhO4Bw8uIIa3EIdGsBgAM/wCm+OcF6cd+dj3rri5DNH8AfO5w/NH41m</latexit>

R2

<latexit sha1_base64="GlBjbtG77T0ZtJU5Go8ByHRbmAY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4Irto1COJF4/44JHAhswOA0yYnd3M9JqQDZ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJbCoOt+O7mV1bX1jfxmYWt7Z3evuH/QMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMbqZ+84lrIyL1iOOY+yEdKNEXjKKVHu67591iyS27M5Bl4mWkBBlq3eJXpxexJOQKmaTGtD03Rj+lGgWTfFLoJIbHlI3ogLctVTTkxk9np07IiVV6pB9pWwrJTP09kdLQmHEY2M6Q4tAselPxP6+dYP/aT4WKE+SKzRf1E0kwItO/SU9ozlCOLaFMC3srYUOqKUObTsGG4C2+vEwalbJ3Wa7cXZSqp1kceTiCYzgDD66gCrdQgzowGMAzvMKbI50X5935mLfmnGzmEP7A+fwBzqONZw==</latexit>

R3

<latexit sha1_base64="Xb5SG96klhYPt3EIa1nTJb4d1Ag=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6V9Va87JSP8/jKMIJnMIFeHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPcveMnw==</latexit>

0

<latexit sha1_base64="WyCkK8BxwuYDw00jRccdji60W+I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6V9Va87JSP8/jKMIJnMIFeHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPdHuMoA==</latexit>

1

<latexit sha1_base64="Xb5SG96klhYPt3EIa1nTJb4d1Ag=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6V9Va87JSP8/jKMIJnMIFeHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPcveMnw==</latexit>

0

<latexit sha1_base64="Xb5SG96klhYPt3EIa1nTJb4d1Ag=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6V9Va87JSP8/jKMIJnMIFeHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPcveMnw==</latexit>

0
<latexit sha1_base64="Xb5SG96klhYPt3EIa1nTJb4d1Ag=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6V9Va87JSP8/jKMIJnMIFeHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPcveMnw==</latexit>

0

<latexit sha1_base64="Xb5SG96klhYPt3EIa1nTJb4d1Ag=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6V9Va87JSP8/jKMIJnMIFeHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPcveMnw==</latexit>

0
<latexit sha1_base64="Xb5SG96klhYPt3EIa1nTJb4d1Ag=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6V9Va87JSP8/jKMIJnMIFeHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPcveMnw==</latexit>

0
<latexit sha1_base64="WyCkK8BxwuYDw00jRccdji60W+I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6V9Va87JSP8/jKMIJnMIFeHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPdHuMoA==</latexit>

1
<latexit sha1_base64="Xb5SG96klhYPt3EIa1nTJb4d1Ag=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6V9Va87JSP8/jKMIJnMIFeHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPcveMnw==</latexit>

0

<latexit sha1_base64="Xb5SG96klhYPt3EIa1nTJb4d1Ag=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6V9Va87JSP8/jKMIJnMIFeHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPcveMnw==</latexit>

0
<latexit sha1_base64="WyCkK8BxwuYDw00jRccdji60W+I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6V9Va87JSP8/jKMIJnMIFeHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPdHuMoA==</latexit>

1
<latexit sha1_base64="WyCkK8BxwuYDw00jRccdji60W+I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6V9Va87JSP8/jKMIJnMIFeHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPdHuMoA==</latexit>

1

<latexit sha1_base64="WyCkK8BxwuYDw00jRccdji60W+I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6V9Va87JSP8/jKMIJnMIFeHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPdHuMoA==</latexit>

1
<latexit sha1_base64="Xb5SG96klhYPt3EIa1nTJb4d1Ag=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6V9Va87JSP8/jKMIJnMIFeHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPcveMnw==</latexit>

0
<latexit sha1_base64="Xb5SG96klhYPt3EIa1nTJb4d1Ag=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6V9Va87JSP8/jKMIJnMIFeHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPcveMnw==</latexit>

0

<latexit sha1_base64="Xb5SG96klhYPt3EIa1nTJb4d1Ag=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6V9Va87JSP8/jKMIJnMIFeHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPcveMnw==</latexit>

0
<latexit sha1_base64="WyCkK8BxwuYDw00jRccdji60W+I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6V9Va87JSP8/jKMIJnMIFeHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPdHuMoA==</latexit>

1
<latexit sha1_base64="WyCkK8BxwuYDw00jRccdji60W+I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6V9Va87JSP8/jKMIJnMIFeHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPdHuMoA==</latexit>

1

<latexit sha1_base64="WyCkK8BxwuYDw00jRccdji60W+I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6V9Va87JSP8/jKMIJnMIFeHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPdHuMoA==</latexit>

1
<latexit sha1_base64="WyCkK8BxwuYDw00jRccdji60W+I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6V9Va87JSP8/jKMIJnMIFeHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPdHuMoA==</latexit>

1
<latexit sha1_base64="Xb5SG96klhYPt3EIa1nTJb4d1Ag=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6V9Va87JSP8/jKMIJnMIFeHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPcveMnw==</latexit>

0

<latexit sha1_base64="WyCkK8BxwuYDw00jRccdji60W+I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6V9Va87JSP8/jKMIJnMIFeHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPdHuMoA==</latexit>

1
<latexit sha1_base64="WyCkK8BxwuYDw00jRccdji60W+I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6V9Va87JSP8/jKMIJnMIFeHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPdHuMoA==</latexit>

1
<latexit sha1_base64="WyCkK8BxwuYDw00jRccdji60W+I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mKqMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IQ3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6V9Va87JSP8/jKMIJnMIFeHANdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPdHuMoA==</latexit>

1

In this way, by adding n · (n′ − 1) new vertices to D, we can construct D′
in polynomial time. This procedure is FPT, because (i) D′ is generated in
polynomial time independent of q, and (ii) the generation of q′ is effective by C
being computably enumerable and independent of D. It remains to show that

Claim 1. D′ � q′ if and only if D � q.
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For ( ⇐= ), assume a valuation σ witnesses D � q. So for every 1 ≤ i ≤ `
we know that Ri(σ(xi), σ(yi)) and R′i(σ(yi), σ(x′i)) hold in D. Recall that G is
the abstraction of q′, and Gcollapse is obtained from G by splitting its edges and
adding component vertices. Consider an atom R(π1, . . . , πr) ∈ q′rel, where for
all 1 ≤ i ≤ r, xjk

πi−→ x′j′
k
∈ qreach. This implies the existence of a subquery

Rjk
(xjk

, yjk
) ∧ R′jk

(yjk
, x′jk

) of q, where yjk
is identified with vci

, the cc vertex
(corresponding to the connected component ci of Grel) in which πi occurs. By
construction, D̂ contains a path

σ(xjk
)
Rjk−−→ σ(yjk

) w−→ σ(yjk
)
R′

j′
k−−→ σ(x′j′

k
)

where w ∈ {0, 1}∗ is the word labeled by the simple cycle attached to σ(yjk
).

In this way we obtain a valuation witnessing D′ � q′.

For the other direction, assume a valuation σ witnesses D′ � q′. To construct
a valuation witnessing D � q, first send every node variable x to σ(x). For a cc
variable y identified with some vc, let π be any path variable of c such that the
the path σpath(π) is labeled by RwR′ for some R,w,R′ ∈ A ∪ {0, 1}∗, with w
being the binary encoding of some integer i. Now, send y to vi. This witnesses
D � q.

Lemma 8. For any computably enumerable class C of 2L-graphs such that
ccvertex(C) =∞, p-eval-ECRPQ(C) is XNL-hard.

Proof. We show an FPT reduction from the parameterized IE problem, which
is known to be XNL-complete under FPT reductions [118].

PARAMETERIZED INTERSECTION EMPTINESS (p-IE)
Input: A set of DFA S
Question: Is

⋂
A∈S

L(A) 6= ∅?

Parameter: |S|

We split the reduction into two cases, depending on the size of hyper-edges
in elements of C.

(1) The size of hyper-edges in {Grel : G ∈ C} is bounded

(2) For every n ∈ N there exists G ∈ C such that Grel contains a hyper-edge
of size ≥ n.

In both cases we will produce an ECRPQ q with abstraction G and a graph
database D such that D � q if and only if L(A1) ∩ · · · ∩ L(Ak) 6= ∅.

Case (1) [Bounded hyper-edges]: First we look for a 2L-graph G such that
Grel contains a connected component with a sufficiently long path. More pre-
cisely, we need a graph G = (V,E,H, η, ν) such that there exist k hyper-edges
h1, . . . , hk ∈ H of size at least 2, and k − 1 edges π1, . . . , πk−1 ∈ E such that
each πi is in hi and hi+1, and nowhere else. Formally, for every i,

πi ∈ ν(hi) ∩ ν(hi+1) \
⋃

j 6=i,i+1
ν(hj)
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We know that ccvertex(C) =∞ and C is computably enumerable, so it is guaran-
teed that we will find a suitable G ∈ C via an effectively computable procedure.

Consider some ECRPQ q abstracted by G, without its synchronous relations
specified. Let hk+1, . . . , hN be the remaining hyper-edges in H. By the choice
of G, qrel would have the form

∧
1≤i≤N

Ri(t̄i), where for all 1 ≤ i ≤ N : (i) Ri

is the relation symbol corresponding to hi spanning over the set given by t̄i,
and (ii) π is the last element of t̄i and the first element of t̄i+1, and it appears
nowhere else. To complete the definition of q, we have to define its synchronous
relations precisely. These will be defined over a new alphabet B = A∪̇{#, $}.
When i ≤ k:

Ri = {(#w$i, u1, . . . , ur−2,#w$i+1) : w ∈ A∗, u1, . . . , ur−2 ∈ B∗}

When i > k, Ri is taken to be the universal relation Uarity(Ri)(B∗).
It is easily verified that each Ri is synchronous and an automaton for it

can be constructed in polynomial time. The final step is to define D, which
we do by defining k sub-databases D1, . . . , Dk and taking their disjoint union
(up to one common vertex v). For every i ≤ k, Di is a graph database over B
which has a copy of the transition graph of Ai along with additional i vertices
v, vi1, . . . , v

i
i−1, one edge from v to the initial state of Ai labeled by #, and for

every final state qf of Ai we construct the path

qf
$−→ vi1

$−→ vi2 . . .
$−→ vii−1

reading $i. Here is an example:

<latexit sha1_base64="oL4OOxGyxgfu7+Yu/vwifeE+8ac=">AAAB9HicbVDLSgMxFL3xWeur6tJNsCiuykwVdVlx47KCfUA7lEyaaUMzmTHJFMrQ73DjQhG3fow7/8ZMOwttPRA4nHMv9+T4seDaOM43WlldW9/YLGwVt3d29/ZLB4dNHSWKsgaNRKTaPtFMcMkahhvB2rFiJPQFa/mju8xvjZnSPJKPZhIzLyQDyQNOibGS1w2JGVIi0ttp76JXKjsVZwa8TNyclCFHvVf66vYjmoRMGiqI1h3XiY2XEmU4FWxa7CaaxYSOyIB1LJUkZNpLZ6Gn+NQqfRxEyj5p8Ez9vZGSUOtJ6NvJLKRe9DLxP6+TmODGS7mME8MknR8KEoFNhLMGcJ8rRo2YWEKo4jYrpkOiCDW2p6ItwV388jJpVivuVaX6cFmuneV1FOAYTuAcXLiGGtxDHRpA4Qme4RXe0Bi9oHf0MR9dQfnOEfwB+vwBmrKR6A==</latexit>A3
<latexit sha1_base64="MZL2UbAyvfmYzjetWqQ4gsKFY/M=">AAAB6HicbVDLTgJBEOzFF+IL9ehlItF4IrvEqEcSLx4hkUcCGzI79MLI7OxmZpaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj+7nfGqPSPJaPZpKgH9GB5CFn1FipPu4VS27ZXYCsEy8jJchQ6xW/uv2YpRFKwwTVuuO5ifGnVBnOBM4K3VRjQtmIDrBjqaQRan+6OHRGLqzSJ2GsbElDFurviSmNtJ5Ege2MqBnqVW8u/ud1UhPe+VMuk9SgZMtFYSqIicn8a9LnCpkRE0soU9zeStiQKsqMzaZgQ/BWX14nzUrZuylX6tel6mUWRx7O4ByuwINbqMID1KABDBCe4RXenCfnxXl3PpatOSebOYU/cD5/AN0PjOU=</latexit>

v

<latexit sha1_base64="KQNH8onwq9c4n4TgWwZvdw4gMUk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LAbFU0mKqMeCF49V7Ae0pWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0PO+ncLa+sbmVnG7tLO7t39QPjxqmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3grGtzO/9cS1EbF6xEnCexEdKhEKRtFKD123X3a9ijcHWSV+TlzIUe+Xv7qDmKURV8gkNabjewn2MqpRMMmnpW5qeELZmA55x1JFI2562fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zOimGN71MqCRFrthiUZhKgjGZvU0GQnOGcmIJZVrYWwkbUU0Z2nBKNgR/+eVV0qxW/KtK9f7SrZ3ncRThBE7hAny4hhrcQR0awCCEZ3iFN2fsvDjvzseiteDkM8fwB87nDxACjPg=</latexit>

#
<latexit sha1_base64="P4js+OuxzuizSgBqIGtDGZJjzJ8=">AAAB6XicbVBNS8NAEJ34WetX1aOXxap4KkkR9Vjw4rGK/YA2lM120i7dbMLuRiih/8CLB0W8+o+8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9dE97pbJbcWcgy8TLSRly1Hulr24/ZmmE0jBBte54bmL8jCrDmcBJsZtqTCgb0QF2LJU0Qu1ns0sn5MwqfRLGypY0ZKb+nshopPU4CmxnRM1QL3pT8T+vk5rwxs+4TFKDks0XhakgJibTt0mfK2RGjC2hTHF7K2FDqigzNpyiDcFbfHmZNKsV76pSvb8s187zOApwDCdwAR5cQw3uoA4NYBDCM7zCmzNyXpx352PeuuLkM0fwB87nDxGGjPk=</latexit>

$<latexit sha1_base64="P4js+OuxzuizSgBqIGtDGZJjzJ8=">AAAB6XicbVBNS8NAEJ34WetX1aOXxap4KkkR9Vjw4rGK/YA2lM120i7dbMLuRiih/8CLB0W8+o+8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9dE97pbJbcWcgy8TLSRly1Hulr24/ZmmE0jBBte54bmL8jCrDmcBJsZtqTCgb0QF2LJU0Qu1ns0sn5MwqfRLGypY0ZKb+nshopPU4CmxnRM1QL3pT8T+vk5rwxs+4TFKDks0XhakgJibTt0mfK2RGjC2hTHF7K2FDqigzNpyiDcFbfHmZNKsV76pSvb8s187zOApwDCdwAR5cQw3uoA4NYBDCM7zCmzNyXpx352PeuuLkM0fwB87nDxGGjPk=</latexit>

$
<latexit sha1_base64="P4js+OuxzuizSgBqIGtDGZJjzJ8=">AAAB6XicbVBNS8NAEJ34WetX1aOXxap4KkkR9Vjw4rGK/YA2lM120i7dbMLuRiih/8CLB0W8+o+8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9dE97pbJbcWcgy8TLSRly1Hulr24/ZmmE0jBBte54bmL8jCrDmcBJsZtqTCgb0QF2LJU0Qu1ns0sn5MwqfRLGypY0ZKb+nshopPU4CmxnRM1QL3pT8T+vk5rwxs+4TFKDks0XhakgJibTt0mfK2RGjC2hTHF7K2FDqigzNpyiDcFbfHmZNKsV76pSvb8s187zOApwDCdwAR5cQw3uoA4NYBDCM7zCmzNyXpx352PeuuLkM0fwB87nDxGGjPk=</latexit>

$
<latexit sha1_base64="P4js+OuxzuizSgBqIGtDGZJjzJ8=">AAAB6XicbVBNS8NAEJ34WetX1aOXxap4KkkR9Vjw4rGK/YA2lM120i7dbMLuRiih/8CLB0W8+o+8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9dE97pbJbcWcgy8TLSRly1Hulr24/ZmmE0jBBte54bmL8jCrDmcBJsZtqTCgb0QF2LJU0Qu1ns0sn5MwqfRLGypY0ZKb+nshopPU4CmxnRM1QL3pT8T+vk5rwxs+4TFKDks0XhakgJibTt0mfK2RGjC2hTHF7K2FDqigzNpyiDcFbfHmZNKsV76pSvb8s187zOApwDCdwAR5cQw3uoA4NYBDCM7zCmzNyXpx352PeuuLkM0fwB87nDxGGjPk=</latexit>

$
<latexit sha1_base64="7cR0fpsRc8opQCSi8TDA8hn/jro=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbFU9mtouKpoAePFewHtEvJptk2NMkuSVYoS/+CFw+KePUPefPfmG33oK0PBh7vzTAzL4g508Z1v53Cyura+kZxs7S1vbO7V94/aOkoUYQ2ScQj1QmwppxJ2jTMcNqJFcUi4LQdjG8zv/1ElWaRfDSTmPoCDyULGcEmk+765zf9csWtujOgZeLlpAI5Gv3yV28QkURQaQjHWnc9NzZ+ipVhhNNpqZdoGmMyxkPatVRiQbWfzm6dohOrDFAYKVvSoJn6eyLFQuuJCGynwGakF71M/M/rJia89lMm48RQSeaLwoQjE6HscTRgihLDJ5Zgopi9FZERVpgYG0/JhuAtvrxMWrWqd1mtPVxU6qd5HEU4gmM4Aw+uoA730IAmEBjBM7zCmyOcF+fd+Zi3Fpx85hD+wPn8ATcEjZ0=</latexit>

D3 :
<latexit sha1_base64="SwIP5d9Zb4RVS2u8CuA1G4y+99E=">AAAB7nicbVDLTgJBEOzFF+IL9ehlItF4Irto1COJF4+YyCOBlcwOA0yYnd3M9JKQDR/hxYPGePV7vPk3DrAHBSvppFLVne6uIJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmM7mZ+c8y1EZF6xEnM/ZAOlOgLRtFKzfFTejntet1iyS27c5BV4mWkBBlq3eJXpxexJOQKmaTGtD03Rj+lGgWTfFroJIbHlI3ogLctVTTkxk/n507JmVV6pB9pWwrJXP09kdLQmEkY2M6Q4tAsezPxP6+dYP/WT4WKE+SKLRb1E0kwIrPfSU9ozlBOLKFMC3srYUOqKUObUMGG4C2/vEoalbJ3Xa48XJWq51kceTiBU7gAD26gCvdQgzowGMEzvMKbEzsvzrvzsWjNOdnMMfyB8/kD8R2POg==</latexit>

v3
1

<latexit sha1_base64="1JIKXV1I9feH0aRLtRnvQ6+bJvY=">AAAB7nicbVDLTgJBEOzFF+IL9ehlItF4Irto1COJF4+YyCOBlcwODUyYnd3MzJKQDR/hxYPGePV7vPk3DrAHBSvppFLVne6uIBZcG9f9dnJr6xubW/ntws7u3v5B8fCooaNEMayzSESqFVCNgkusG24EtmKFNAwENoPR3cxvjlFpHslHM4nRD+lA8j5n1FipOX5KL6fdSrdYcsvuHGSVeBkpQYZat/jV6UUsCVEaJqjWbc+NjZ9SZTgTOC10Eo0xZSM6wLalkoao/XR+7pScWaVH+pGyJQ2Zq78nUhpqPQkD2xlSM9TL3kz8z2snpn/rp1zGiUHJFov6iSAmIrPfSY8rZEZMLKFMcXsrYUOqKDM2oYINwVt+eZU0KmXvulx5uCpVz7M48nACp3ABHtxAFe6hBnVgMIJneIU3J3ZenHfnY9Gac7KZY/gD5/MH8qGPOw==</latexit>

v3
2

D is now the disjoint union of all Di, up to the common vertex v. We have
designed q in such a way that the valuation that maps every node variable of q
to v in D is a witness for D � q if and only if L(A1) ∩ · · · ∩ L(Ak) 6= ∅. On the
other hand, any valuation which maps some node variable to a vertex other than
v will not be a witness for D � q, due to the delimiting symbols #, $. Thus we
have produced D and q such that D, q is a ’yes’ instance of p-eval-ECRPQ(C)
if and only if {Ai}i≤k is a positive instance of p-IE. The size of D is linear with
respect to size of {Ai}i≤k. Further, the size of q depends only on k and C. Since
C is computably enumerable, the size of q is bound by a computable function.
Therefore, this reduction is FPT.

Case (2) [Unbounded hyper-edges]: In this case, we simply adapt the FPT
reduction shown in Case (1) by finding a 2L-graph G with a hyper-edge h of
size r ≥ k. Fix G and h. Next, we intialize an ECRPQ q with abstraction
G. Let R(π1, . . . , πr) be the relation symbol corresponding to h, and define its
corresponding synchronous relation as

R = {#w$,#w$$, . . . ,#w$k : w ∈ A∗} × Ur−k(B∗) ⊆ Ur(B∗)
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Every other relation R′ is defined as the universal relation Uarity(R′)(B∗). All of
these synchronous relations are produced in polynomial time, and D is defined
as in Case (1).

Now, assume D � q. Then there exists a witness tuple of paths (π1, . . . , πr)
whose labels are in R. Moreover, the {1, . . . , k}-projection of their labels is of
the form (#w$,#w$$, . . . ,#w$k) for some w ∈ A∗. Since D is a union of Di

with a common vertex v (see Case (1) for its definition), w ∈ L(Ai) for each
i ∈ {1, . . . , k}. Therefore

L(A1) ∩ · · · ∩ L(Ak) 6= ∅

Conversely, assume L(A1) ∩ · · · ∩ L(Ak) contains some word w. Then for each
i, there exists a path v

πi−→ v in Di labeled by #w$i. Moreover, πk+1, . . . , πr
have some non-empty words as their labels, as do all the path variables of q
which are not π1, . . . , πr. Thus we obtain a valuation that witnesses D � q. We
conclude that D � q if and only if L(A1) . . . L(Ak) 6= ∅.

4.3 Final proofs
Having proven the necessary prerequisites, we put all our lemmas together to
give a final proof of the two ECRPQ evaluation theorems. We begin with the
combined complexity:

Theorem 1. [Combined complexity of eval-ECRPQ] Let C be a cc-tame class
of 2L-graphs. Assuming W[1] 6= FPT:

(1) if ccvertex(C) =∞ or cch-edge(C) =∞, then eval-ECRPQ(C) is PSpace-
complete, or

(2) if ccvertex(C), cch-edge(C) < ∞ and tw(C) = ∞, then eval-ECRPQ(C) is
in NP but not in PTime, or

(3) if ccvertex(C), cch-edge(C), tw(C) <∞ then eval-ECRPQ(C) is in polyno-
mial time.

Proof. We examine each case separately:

(1) By Lemma 5, we know that if ccvertex(C) = ∞ or cch-edge(C) = ∞, then
eval-ECRPQ(C) is PSPACE-hard. It was shown in [15] that eval-
ECRPQ is in PSpace. PSpace-completeness follows by definition.

(2) If eval-ECRPQ(C) was in polynomial time, then p-eval-ECRPQ(C)
would be FPT. However, (2) of Theorem 2 states that if ccvertex(C) = ∞
then p-eval-ECRPQ(C) is W[1]-complete. So eval-ECRPQ(C) being
in PTime would imply FPT = W[1], contradicting our assumption that
FPT 6= W[1]. Therefore, eval-ECRPQ(C) is in NP but not in PTime.
For the upper bound, we know that eval-CQ is in NP. So we use the
polynomial time reduction to eval-CQ detailed in (2) of Lemma 4 to
obtain that eval-ECRPQ(C) is in NP.

(3) We again use the polynomial time reduction to eval-CQ explained in (2)
of Lemma 4. Further, tw(Cnode) = tw(C) < ∞, so eval-CQ(Cnode) is in
polynomial time by (1) of Proposition 2.
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Next, we prove the parameterized ECRPQ evaluation theorem:

Theorem 2. [Parameterized complexity of p-eval-ECRPQ] Let C be a class
of 2L-graphs.

(1) if ccvertex(C) =∞ then p-eval-ECRPQ(C) is XNL-complete, or

(2) if ccvertex(C) < ∞ and tw(C) = ∞, then p-eval-ECRPQ(C) is W[1]-
complete, or

(3) if ccvertex(C), tw(C) <∞ then p-eval-ECRPQ(C) is FPT.

Proof. We again go on a case-by-case basis:

(1) The upper and lower bounds follow from Lemmas 3 and 8 respectively.

(2) Assume ccvertex(C) < ∞ and tw(C) = ∞. By Lemma 6, we know that
tw(Ccollapse) =∞. Corollary 1 implies that p-eval-CQbin(Ccollapse) is W[1]-
complete. To establish the lower bound, we apply the FPT reduction of
Lemma 7 to obtain that p-eval-ECRPQ(C) is W[1]-hard.

For the upper bound, we combine the upper bounds given by (1) of Lemma
4 and (2) of Proposition 2.

(3) When tw(Cnode) < ∞, we know that p-eval-CQ(Cnode) is FPT (by
Proposition 2). Moreover, when when ccvertex(C) < ∞, there exists an
FPT reduction from p-eval-ECRPQ(C) to p-eval-CQ(Cnode) (see (2)
of Lemma 4). Therefore p-eval-ECRPQ(C) is FPT.

4.4 Related work

4.4.1 The case of non-Boolean ECRPQs

In all the instances of the query evaluation problem mentioned above, we only
considered Boolean queries, that is, queries that return only True or False
when evaluated on a database. These queries have free node variables (in the
case of CQs and CRPQs), and free node and path variables in the case of ECR-
PQs. For eval-CQ and eval-CRPQ, all the procedures that we considered
have been extended to non-Boolean queries. We now show how instances of
eval-ECRPQ can be handled when considering non-Boolean ECRPQs. We
split non-Boolean ECRPQs into two groups: queries that have free node vari-
ables only (and hence output only nodes), and queries that have free path
variables as well, outputting nodes and paths. We call the former “node-only
non-Boolean ECRPQs”.
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Node-only non-Boolean ECRPQs

These are ECRPQs whose path variables are all existentially quantified, and
that have a non-empty set of free node variables. Given an ECRPQ q with a set
of k free node variables, and a graph database D, there are only polynomially
many elements in ans(q,D) (bounded by |D|k). Therefore, any polynomial time
reduction from eval-CQ to eval-ECRPQ and vice-versa remains in polyno-
mial time when the non-Boolean version of these problems are considered.

Non-Boolean ECRPQs which output paths

Unlike node-only non-Boolean ECRPQs, the output of a general non-Boolean
ECRPQ q evaluated on a graph database D might be infinite in size. This is
because potentially infinitely many paths may satisfy a reachability condition.
The number of elements in the output ans(q,D) can be restricted, we can either
limit the allowed paths by placing an upper bound on their length, or by asking
for the shortest path which satisfies the conditions of the query. Given a regular
language L which is recognized by a DFA A, the length of the shortest word in
L is bounded above by the number of states in A. Therefore, the length of the
shortest path in a graph database D which appears in ans(q,D) is linear in |q|
and |D|. Thus restricting the output by only allowing the shortest paths is an
effective way to generate an output of finite size from the potentially infinite set
ans(q,D). A precise formulation of these ideas is an avenue for future work.

4.4.2 The containment problem
In the context of query formalisms, query containment is an important decision
problem that has been widely studied alongside query evaluation. We know
that a query q evaluated on a database D yields a set of answers ans(q,D). Let
(q, q′) be a pair of queries (q, q′) belonging to an arbitrary querying formalism.
We say that q is contained in q′, denoted by q ⊆ q′, if for every database
D (corresponding to that formalism), we have ans(q,D) ⊆ ans(q′, D). The
containment problem for a general query formalism Q is stated as follows:

Query Containment (cont-Q); where Q is a set of queries
Input: A pair of queries q, q′ ∈ Q.
Question: Is q ⊆ q′?

The containment problem is useful in several applications related to querying
formalisms. Containment algorithms are crucial in optimizing query evaluation
algorithms [80, 87], knowledge base verification [78, 79] and information inte-
gration [27, 77].

Chandra and Merlin proved that cont-CQ is NP-complete [28]. Chekuri
and Rajaraman introduced the notion of query width of a CQ and gave an
algorithm for Cont-CQ that runs in time polynomial to nk, where n is the size
of the input and k is the query width [29].

In regard to query formalisms in graph databases, it is easy to see that cont-
RPQ is PSpace-complete. This follows from the reduction of cont-RPQ to
the containment problem for regular languages; the containment of x L1−−→ y
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in x
L2−−→ y boils down to checking whether L1 ⊆ L2. The containment prob-

lem for regular languages is known to be PSpace-complete [67]. cont-CRPQ
is known to be significantly harder, being ExpSpace-complete [24, 51]. This
problem continues to remain ExpSpace-hard for classes of CRPQs abstracted
by multigraphs containing only two nodes; the required reduction is obtained
by considering the containment of x L−→ y in

∧
i x

Li−→ y for arbitrary regular
languages {L,L1, . . . , Li}.

It was shown by Libkin et al. that cont-ECRPQ is undecidable [15]. In
fact, deciding whether an ECRPQ q is contained in a CRPQ q′ is undecidable.
An even stronger result can be stated: let (q, q′) be a pair of queries such that one
of them is a CRPQ and the other is an ECRPQ that only uses unary relations
in Reg and the (binary) equal length relation eq, then it is undecidable to check
whether q ⊆ q′ [52]. Therefore any attempt at finding subclasses of ECRPQs
whose containment is decidable is restricted by the class of relations used in
the query class. While the structural conditions to improve the complexity
of CRPQ containment (see [46]) have been identified, no such result has been
given for ECRPQs yet. The task of specifying restrictions on (i) the 2L-graph
abstractions of these subclasses, and (ii) the sets of relations that are used in
them, to obtain decidability of the containment problem, remains open.
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Part II

Relations
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Chapter 5

The theory of synchronous
relations

In Part I, we studied the evaluation problem for Extended CRPQs based upon
an analysis of their structural properties. Recall that ECRPQs extend CRPQs
with the ability to specify synchronous relations on path labels. In characteriz-
ing ECRPQs with 2L-graphs, we abstracted away these relations using relation
symbols. It follows that every 2L-graph abstracts a set of ECRPQs, each de-
termined by a particular choice of synchronous relations assigned to the path
variables.

Consider two ECRPQs having the same underlying 2L-graph, but different
sets of relations mapped onto their common relation symbols. Though struc-
turally identical, these two queries might describe very different properties, de-
pending upon the synchronous relations used in them. We have already studied
ECRPQs by way of their graphical structure; in this part, we focus on studying
the relations used in them.

5.1 Overview
Recall that Synchronous Relations, or Sync, is the class of relations recognized
by synchronous automata. We defined them formally in Section 1.5.5 in Chapter
1. Synchronous automata are finite multi-tape automata whose heads move
synchronously on the tapes. Among the existing models of automata-definable
word relations, Sync is seen as a natural analogue of Reg, the set of regular
languages. It is also related closely to the letter-to-letter transducer model,
as these transducers capture the set of equal length synchronous relations. In
terms of expressive power, synchronous relations cover Rec, or recognizable
relations, which are given by Cartesian products of regular languages closed
under finite union. Meanwhile Sync is a strict subclass of Rat, or rational
relations, which are rational subsets of (A∗)k, over all k ∈ N. Synchronous
relations also have all the robust characteristics of regular languages, being a
Boolean algebra closed under projection and homomorphism. This part of the
thesis is devoted to the study of synchronous relations from the point-of-view
of its logical characterization.

93
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Logic. Traditionally, regular languages have been studied from multiple per-
spectives; language-theoretic, algebraic, and logical characterizations have been
given for Reg in the literature. Büchi showed that Reg is precisely the set
of languages definable in MSO(<), that is, the Monadic Second Order logic
over finite words (with the predicate x < y signifying that x is assigned a prior
position to y in the word) [20]. This seminal result has been the foundation
for much of the study of regular languages. In particular, a lot of attention
has been given to studying the expressivity of fragments of MSO(<); that is
subsets of MSO(<) sentences formed by restricting their structure by imposing
some syntactic conditions. These fragments are important insofar as they have
good closure properties and admit effective characterizations that are interest-
ing from a combinatorial point of view. Moreover, decision problems that are
computationally hard for the full logic may turn out to be tractable for these
smaller fragments.

The set of first order MSO sentences, denoted as FO(<), is one such impor-
tant fragment. It defines the class of star-free or aperiodic languages, given by
regular expressions without using the Kleene star. In the algebraic world, these
languages are captured by aperiodic monoids [105]. Any formula in first order
logic can be translated to its prenex normal form, a standard syntactic for-
mat containing blocks of quantifiers followed by a quantifier-free formula. This
leads to the quantifier alternation hierarchy, whereby the set of FO formulæ is
stratified into subsets called levels of the hierarchy. A formula is in level i in
the hierarchy if its prenex normal form contains i alternating blocks of quan-
tifiers (see Definition 29). The lower levels of the FO(<) quantifier alternation
hierarchy have been effectively characterized.

Our topic of study is the logical characterization of Sync. Eilenberg, Elgot,
and Shepherdson [43] showed that a relation is synchronous if and only if it is
definable by a formula in the first order theory of words with the prefix, equal
length, and last letter predicates in its signature, abbreviated as FO[σ]. We
further explore this result by considering the quantifier alternation hierarchy
of FO[σ]. A corollary that is surprising at first glance is that FO[σ] collapses
to its Σ3[σ] fragment, the third level in the hierarchy. Therefore, the only
members in this hierarchy are Σ1[σ],Σ2[σ],Σ3[σ] - the first, second, and third
levels respectively – as well as the Boolean closures of the first two, denoted by
BΣ1[σ] and BΣ2[σ] respectively. We effectively characterize the set of relations
defined by each of these fragments, focusing on the membership problem, which
asks, for a given relation R and a fragment F , if R is definable by a formula in
F . We show that membership is decidable for all levels of the FO[σ] quantifier
alternation hierarchy.

Contributions. There is an interesting link between the lower levels of the
quantifier alternation hierarchies of FO[σ] and FO(<). It is well-known that
Σ1(<)-definable languages are precisely those which are upward-closed under
the subword relation [115]. We generalize this relation to k-synchronized words,
and call this the synchronized subword. Then we prove a similar characterization
result for Σ1[σ]-definable relations: a synchronous relation is Σ1[σ] if and only
if its synchronized language is upward-closed under the synchronized subword
relation. A similar generalization occurs in the characterization of BΣ1[σ]-
definable relations too. A BΣ1(<) language is totally fixed by fixing its set of
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k-length subwords (for some k which depends on the language). Analogously,
we show that a BΣ1[σ] relation is fixed by fixing a finite set of synchronized
subwords.

The characterization of Σ2[σ] and BΣ2[σ] follows even more directly from
their FO(<) counterparts. We show that a relation is in Σ2[σ]-definable if and
only if its synchronized language is Σ2(<)-definable; as a corollary we get the
corresponding characterization theorem for BΣ2[σ] definable relations as well.

Organization. We begin with a brief discussion on regular languages, logic,
and automata-definable relations. Then, we define FO[σ] and illustrate its quan-
tifier alternation hierarchy in more detail. Finally, we explain our goals and state
our contributions. All the technical details, lemmas, and proofs are presented
in the next chapter (see Chapter 6).

5.2 Characterizing regular languages
5.2.1 Monadic Second Order logic
A standard result in automata theory is the characterization of regular lan-
guages by Monadic Second Order (MSO(<)) formulæ, proved by Büchi in 1960
[20]. MSO(<) formulæ are constructed using first and monadic second order
variables, Boolean operators, as well as the predicates x < y and x ∈ X, where
x, y are first order variables and X is a second order variable.

Definition 26. Fix infinite sets V1 = {x, y, z . . . },V2 = {X,Y, Z . . . }
of first and second order variables respectively. Fix a finite alphabet A.
Let MSO(<) denote the set of all formulæ generated by the production
rules

a(x)a∈A|x ∈ X|x < y|∃xϕ|∃Xϕ|∀xϕ|∀Xϕ|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|¬ϕ

If a variable x (alternatively, X) occurs in ϕ in the form of a subformula
∃xψ or ∀xψ (alternatively, ∃Xψ or ∀Xψ) then its occurrence is said to
be bound within the scope of that quantifier.

The occurrence of x or X in ϕ is said to be free if it is not bound. More-
over, ϕ is said to be a sentence if it has no free variables. If ϕ contains
no bound occurrences of variables, then it is said to be quantifier-free.

Definition 27. FO(<) is precisely the set of MSO(<) formulæ in which
no second order variables occur.

Semantics
Here we use a presentation of MSO(<) semantics given due to Straubing [111].
Fix a word w = a1 . . . an ∈ A∗. Let ϕ be an MSO formula with F and S being
the set of its first order and second order free variable occurrences respectively.
Hereby we conflate the notion of variables and their occurrences in formulæ and
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refer to variables as being “free” or “bound” within the quantifiers in which they
occur.

A (w,F, S)-decorated word is of the form

w̃ = (a1, F1, S1)(a2, F2, S2) . . . (an, Fn, Sn) ∈ (A× P(F )× P(S))∗

where

• Fi ∩ Fj = ∅ whenever i 6= j, and

• F =
⋃n
i=1 Fi

We now inductively define the conditions under which a (w,F, S)-decorated
word w̃ satisfies ϕ. The induction is on the recursive definition of MSO formulæ.
We define the semantics for each subformula ϕ′ of ϕ, whose free first order and
second order variables are, say, F ′ and S′ respectively (with F ⊆ F ′ and S ⊆ S′),
and a (w,F ′, S′)-decorated word w̃′ is mapped to w̃ via the homomorphism

(a, F̂ , Ŝ) 7→ (a, (F̂ \ F ′) ∪ F, (Ŝ \ S′) ∪ S)

extended to (A× P(F ′)× P(S′))∗. Since regular languages are closed under
homomorphism, defining our semantics this way preserves recognizability of
regular languages. We now consider the case when ϕ′ is a quantifier free formula.
The word w̃ = (a1, F1, S1) . . . (an, Fn, Sn) satisfies

- x < y if there exist i, j ∈ {1, . . . , n} such that i < j, x ∈ Fi and y ∈ Fj .

- a(x) for some a ∈ A if there exists i ∈ {1, . . . , n} such that x ∈ Fi and
ai = a.

- x ∈ X if there exists i ∈ {1, . . . , n} such that x ∈ Fi and X ∈ Si.

- ϕ1 ∧ ϕ2 if it satisfies both ϕ1 and ϕ2.

- ϕ1 ∨ ϕ2 if it satisfies either ϕ1 or ϕ2.

- ¬ψ if it does not satisfy ψ (for any subformula ψ of ϕ).

- ∃x.ϕ′ (where ϕ′ is a subformula of ϕ whose first and second order free
variables are F ′, S′ respectively) if there exists some w̃′ which satisfies ϕ′
and w̃ is the image of w̃′ under the homomorphism defined by extending

(a, F̂ , Ŝ) 7→ (a, F̂ \ {x}, f−x(Ŝ))

(where f−x({F1, F2, . . . , F`}) = {F1\{x}, F2\{x}, . . . , F`\{x}}) to (A× P(F ′)× P(S′))∗.

- ∃X.ϕ′ (where ϕ′ is a subformula of ϕ whose first and second order free
variables are F ′, S′ respectively) if there exists some w̃′ which satisfies ϕ′
and w̃ is the image of w̃′ under the homomorphism defined by extending

(a, F̂ , Ŝ) 7→ (a, F̂ , Ŝ \ {X})

to (A× P(F ′)× P(S′))∗.
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Definition 28. The language defined by an MSO(<) formula
ϕ (whose sets of first order and second order free variables are de-
noted by F, S, respectively), denoted |ϕ| is the set of all words in
(A× P(F )× P(S))∗ that satisfy it.

When ϕ is a sentence, F and S are empty. Then we define |ϕ|
be the subset of A∗, given by the homomorphism (a, ∅, ∅) 7→ a extended
over (A× P(∅)× P(∅))∗.

Let F ⊆ MSO(<). Then we define by F the subset of languages

{|ϕ| : ϕ ∈ F}

These semantics establish the correspondence between MSO(<) formulæ and
regular languages over decorated words.

Proposition 5 (Straubing, 1994 [111]). Let F and S be sets of first and second
order variables respectively. A language L over A × P(F ) × P(S) is regular if
and only if L = |ϕ| for some MSO(<) formula ϕ whose first order and second
order free variables are subsets of F and S respectively.

Theorem 3 (Büchi, 1960 [20]). A language L ⊆ A∗ is regular if and only if
L = |ϕ| for some MSO(<) sentence ϕ.

For any F ⊆ MSO(<), we have thereby the F-membership problem, stated
as:

Membership-F (where F ⊆ MSO(<)
Input: A regular language L.
Question: Is L definable by a formula in |F|?

Example 24. For all variables x, y, let x ≤ y be shorthand for x < y ∨ x = y.
Some FO(<) formulæ are

successor(x, y) = x < y ∧ ∀z(z < y =⇒ z ≤ x)
first(x) = ∀y(x ≤ y)
last(x) = ∀y(y ≤ x)

Example 25. The language of all even length words is defined by the sentence

∃Xe∃Xo

((
∃x∃y(first(x) ∧ x ∈ Xo ∧ last(y) ∧ y ∈ Xe)

)
∧ ∀x1, x2(successor(x1, x2) =⇒ (x1 ∈ Xo ∧ x2 ∈ Xe) ∨ (x1 ∈ Xe ∧ x2 ∈ Xo))

)
which encodes the set of even and odd positions in the subset variables Xe, Xo

respectively, using the first order definable formulæ first, last and successor. �
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5.2.2 Regular languages definable in FO(<)
As stated earlier, FO(<) is the subset of MSO(<) formulæ in which no second
order variables occur. It was shown by McNaughton and Papert [84] that the
set of languages definable in FO(<) is precisely the set of star-free languages
(see Section 1.5.2, Definition 1 in Chapter 1 for a definition of star-free regular
expressions). This logical characterization of star-free languages, along with
Schützenberger’s algebraic characterization of them [105], shows that this is
a robust subclass of regular languages with interesting properties. A short
presentation of algebraic characterization of regular languages is given in Section
1.5.4 of Chapter 1.

5.2.3 Quantifier alternation of FO(<)
Using DeMorgan’s laws and semantic rules, any first-order formula ψ can be
re-written as an equivalent formula of the form

{∃,∀}∗.(some quantifier-free formula)

This re-writing is a standard transformation and this is called the prenex normal
form of ψ, unique up to logical equivalence. Two important features of a formula
in prenex normal form are: (i) the alternation of the existential and universal
blocks ∃∗ and ∀∗, and (ii) whether the normal form begins with ∃ or ∀. This
gives rise to the quantifier alternation hierarchy, a stratification of FO formulæ
into levels of increasing complexity. These levels are named Σi and Πi; a formula
is placed in them depending upon its outermost quantifier (Σ denotes ∃ and Π
denotes ∀), and i is the maximum number of (possibly) alternating ∃∗ and ∀∗
blocks. Formally, we have

Definition 29. Let $ be a predicate signature, and FO[$] denote the
set of first order formulæ over it. We define Σ0[$] = Π0[$] to be the set
of quantifier-free formulæ.

For each i ∈ N, we denote by Σi[$] the subset of FO[$] whose
elements have the prenex normal form

∃∗∀∗ . . .︸ ︷︷ ︸
at most i alternating blocks

ϕ

for some quantifier-free formula ϕ. Next, for each i ∈ N, we denote by
Πi[$] the subset of FO[$] whose elements have the prenex normal form

∀∗∃∗ . . .︸ ︷︷ ︸
at most i alternating blocks

ϕ

for some quantifier-free formula ϕ. The set of Boolean combinations of
Σi[$] is denoted by BΣi[$], which equals BΠi[$].

Recall that a sentence is a logical formula without any free variables. For
every i ∈ N, we denote by Σi($) the set of sentences in Σi[$].
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Since the formulæ in Σi[$] can have up to i alternating blocks of quantifiers
in their prenex normal form, we have the inclusions Σi[$] ⊆ BΣi[$] ⊆ Σi+1[$]
and Πi[$] ⊆ BΠi[$] = BΣi[$] ⊆ Πi+1[$] for every i ∈ N. This induces the
quantifier alternation hierarchy

Σ1[$] ⊆ BΣ1[$] ⊆ Σ2[$] ⊆ BΣ2[$] . . .
Π1[$] ⊆ BΣ1[$] ⊆ Π2[$] ⊆ BΣ2[$] . . .

Recall that for any F ⊆ MSO(<), we denote by |F| the set of regular lan-
guages definable by formulæ in F . The problem of characterizing languages
definable in the various levels of the hierarchy has been investigated in great
depth for decades. In particular, the lower levels – Σ1(<),Σ2(<),Σ3(<), and
their Boolean combinations, admit effective combinatorial and algebraic char-
acterizations [115, 109, 112, 110, 114, 11, 96].

5.2.4 Characterizing Σ1(<) with subwords
It was shown by Thomas [115] that every |Σ1(<)| language is a finite union of
languages of the form

A∗a1A∗a2 . . . anA∗

for some a1, . . . , an ∈ A. This result can be restated using the subword relation
(see Definition 5). Recall that we denote the subword relation by v and for any
S ⊆ A∗, ↑S denotes the set of all words having a subword in S.

Theorem 4 ([115]). For any regular language L, L ∈ |Σ1(<)| if and only if
L = ↑L.

In fact, by Higman’s lemma [66], the subword relation is a well-quasi order.
Therefore, the characterization of |Σ1(<)| can be restated as follows:

Theorem 5 ([115, 66]). For any regular language L, L ∈ |Σ1(<)| if and only
if there exists a finite set S ⊆ A∗ such that L = ↑S.

The connection of subwords and Σ1(<)-definable languages extends to
BΣ1(<)-definable languages as well. These languages are called piecewise-
testable and are given by equivalence classes of words that have the same set of
bounded subwords.

Definition 30. For every h ∈ N, we define an equivalence relation ∼h
on A∗ as follows: for all u, v ∈ A∗, u ∼h v if and only if u and v have
the same set of subwords of length at most h. Let [u]∼h

denote the
equivalence class of u generated by ∼h. Further, we denote by B∼h

the
set of finite unions of [ui]∼h

, and let

B∼ =
⋃
h∈N

B∼h

The languages in B∼ are called piecewise testable languages.

The logical characterization of piecewise testable languages via BΣ1(<) sen-
tences easily follows from their definition. The algebraic characterization of this
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class of languages was given by Simon [109], using J-trivial monoids (see Sec-
tion 1.5.4 in Chapter 1 for an introduction to the algebraic characterization of
regular languages).

Theorem 6 (Simon 1975 [109]). It is decidable to check whether a given regular
language is piecewise testable.

Moreover, Straubing and Thérien provided a more enlightening proof of
Simon’s theorem. They also formally proved that membership in piecewise
testable languages is decidable [112]. Stern provided a more efficient algorithm
for membership and showed that it is in PTime [110].

Theorem 7 (Straubing and Thérien ‘88[112], Stern ‘85[110]). Checking whether
a regular language is piecewise testable is decidable in polynomial time.

5.2.5 Characterizing Σ2(<) with polynomials
Finite unions of languages of the form

A∗1a1A∗2 . . . anA∗n; {a1, . . . , an},A1, . . . ,An ⊆ A

are called polynomials. It was first shown by Thomas [114] that the Σ2(<)-
definable languages exactly corresponds to the set of polynomials, and Arfi [11]
gave a decidable characterization of the membership problem for this set. The
algebraic characterization was given by Pin and Weil [94]. Consolidated proofs
can be found in [94] and Diekert et al. [38].

Theorem 8 (Arfi 1987 [11]). It is decidable to check whether a language is a
polynomial.

The characterization of BΣ2(<)-definable is more involved. Decidability of
|BΣ2(<)| membership was proven fairly recently by Place and Zeitoun [96].

Theorem 9 (Place and Zeitoun 2014 [96]). It is decidable to check whether a
language is in |BΣ2(<)|.

5.3 Logically characterizing synchronous relations
We now describe Eilenberg et al.’s logical characterization of synchronous rela-
tions. Fix an alphabet A.

Definition 31. We denote by FO[σ] the set of all first order formulæ
over the signature σ = {�, eql(x, y), {`a}a∈A}, interpreted as:

- (w1, w2) � x � y if and only if w1 is a prefix of w2

- (w1, w2) � eql(x, y) if and only if |w1| = |w2|

- w � `a if and only if w ∈ A∗a

A formula ϕ ∈ FO[σ] with k-free variables defines a k-ary relation which
we denote by ‖ϕ‖.
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Example 26. Let Ra = {(ua, va) : u, v ∈ A∗ and |u| = |v|} for some a ∈ A.
Then Ra is defined by the FO[σ] formula

ϕa(x, y) = `a(x) ∧ `a(y) ∧ eql(x, y)

Theorem 10 (Eilenberg, Elgot, Shepherdson ‘69 [43]). A relation on A∗ is
synchronous if and only if it is definable in FO[σ].

Definition 32. The quantifier alternation hierarchy of FO[σ] consists
of the classes of formulæ

Σ1[σ] ⊆ BΣ1[σ] ⊆ Σ2[σ] ⊆ BΣ2[σ] . . .

along with the classes of their logical complements

Π1[σ] ⊆ BΠ1[σ] ⊆ Π2[σ] ⊆ BΠ2[σ] . . .

We study the membership problem for the various fragments of FO[σ], which
is stated as follows:

Membership-F (where F ⊆ FO[σ]).
Input: A relation R ∈ Sync.
Question: Is R ∈ ‖F‖?

5.4 Contributions
The characterization theorem of Eilenberg et al. states that: (i) every FO[σ]
formula with k free variables defines a k-ary synchronous relation, and (ii) every
synchronous relation is defined by some FO[σ] formula. The easier direction in
its proof is (i), which relies on the atomic predicates - equal length, last letter,
and prefix - all being synchronous relations, as well as some closure properties of
Sync. When proving (ii), we take a DFA recognizing a synchronized language
and build a FO[σ] formula defining the corresponding relation.

In essence, we encode the behavior of the DFA (its transition relation) as a
synchronized word and then describe its properties using FO[σ] formulæ. Here
we come across an interesting observation: irrespective of the DFA, the formula
constructed is always in Σ3[σ], the third level of the quantifier alternation hier-
archy. The corollary of this result is the Σ3[σ] collapse. The detailed proof is
given in Theorem 12, Section 6.2.

Theorem 11. (Extension of [43]) Over any alphabet containing at least two
letters,

‖Σ3[σ]‖ = ‖FO[σ]‖ = Sync

At a first glance, this is a surprising result because such a collapse doesn’t
occur for FO(<). Moreover, it provides an opportunity to characterize the sets of
relations definable in each level of the quantifier alternation hierarchy of FO[σ],
namely Σ1[σ] and Σ2[σ]. In addition to that, we also address the question of
characterizing relations definable in their respective Boolean closures, that is,
BΣ1[σ] and BΣ2[σ].
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5.4.1 The first level
In order to characterize Σ1[σ] and BΣ1[σ], we introduce the notion of synchro-
nized subword. As mentioned previously, this is a generalization of the classical
subword notion. We give formal definitions of both subword and synchronized
subword in Section 6.3 (see Definition 5). For now, we define some notation:

- When ū, v̄ are synchronized words (of tuples of the same arity), we
write u vs v to denote that ū is a synchronized subword of v̄.

- Moreover, if S and S′ are sets of A∗ words and k-ary synchronized
words respectively (for some k), then ↑S and ↑sS′ are defined as:

↑sS′ = {v̄ : there exists ū ∈ S′ such that ū vs v̄}

- Let h ∈ N. We define an equivalence relation on SWk as follows:
w̄ ≡h w̄′ if and only if w̄ and w̄′ have the same set of synchronized
subwords of length at most h. Let [w̄]≡h

denote the equivalence
class of w̄ generated by ≡h, and let B≡h

denote the set of finite
unions of [w̄i]≡h

, and let

B≡ =
⋃
h∈N

B≡h

The relations definable in Σ1[σ] and BΣ1[σ] are characterized. In the fol-
lowing statements, LR refers to the synchronized language of R.

Theorem (Σ1[σ]-characterization). For any relation R, R ∈ ‖Σ1[σ]‖ if and
only if LR = ↑sLR.

Theorem (BΣ1[σ]-characterization). For any relation R, R ∈ ‖BΣ1[σ]‖ if and
only if LR ∈ B≡ .

5.4.2 The second level
The characterization theorems for Σ2[σ] and BΣ2[σ] parallel their classical coun-
terparts much more closely.

Theorem (Σ2[σ]-characterization). For any relation R, R ∈ ‖Σ1[σ]‖ if and
only if LR ∈ |Σ2[<]|.

Theorem (BΣ2[σ]-characterization). For any relation R, R ∈ ‖BΣ2[σ]‖ if and
only if LR ∈ |BΣ2[<]|.

Finally, we have the decidability of the membership problem for all levels of
the quantifier alternation hierarchy of FO[σ], stated as follows:

Theorem (Membership). Let F ∈ {Σ1[σ],Σ2[σ],BΣ1[σ],BΣ2[σ]} be a frag-
ment of FO[σ]. Then membership-F is decidable.

Our results are published in [48]. In the next chapter, we delve into the
proofs of these theorems and other technicalities.



Chapter 6

The FO[σ] quantifier
alternation hierarchy

In this chapter, we give a decidable characterization of every level of the FO[σ]
quantifier alternation hierarchy. We first define the notions of types and type
sequences of synchronized words, which are crucial in proving our results. In
Section 6.2 we give a formal proof of Eilenberg et al.’s theorem, showing in the
process that FO[σ] collapses in expressive power to the third level of its quan-
tifier alternation hierarchy. Following that, in Section 6.3, we characterize the
synchronous relations definable in the Σ1[σ] and BΣ1[σ] fragments. We also
prove that the membership problems for these fragments are decidable. In Sec-
tion 6.4 we characterize the subsets of synchronous relations definable in Σ2[σ]
and BΣ2[σ], and subsequently we show that their corresponding membership
problems are decidable. We conclude Part II with a discussion on future work
on relations, in Section 6.5.

6.1 Types and type sequences

Recall that for a finite alphabet A, and k ∈ N, and a symbol ⊥ /∈ A, we
let A⊥ = A ∪ ⊥ and define the k−synchronized alphabet of A to be Ak⊥ =
{(a1, . . . , ak) : ai ∈ A⊥}. With every k-tuple (w1, . . . , wk) of words in A∗ we
associate its synchronized word w1 ⊗ · · · ⊗ wk, which is a word over A⊥.

This leads to the notion of type of a synchronized word, which is an equiva-
lence relation over the indices of the tuple which carry non-empty words. The
type of a synchronized word indicates which of its constituents are non-empty
and equal to each other. For example, the synchronized word of a pair of non-
empty words (w1, w2) has the type {(1, 1), (2, 2), (1, 2), (2, 1)} if w1 = w2, and
{(1, 1), (2, 2)} otherwise (the presence of (1, 2) and (2, 1) in the type is a nec-
essary and sufficient condition for w1 = w2). We formally define this notion
below:

103
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Definition 33. Let ā = (a1, . . . , ak) ∈ Ak⊥. The type of ā is the subset
of {1, . . . , k}2 given by

type(ā) = {(i, j) : ai = aj ∈ A}

Furthermore, for any w̄ ∈ (Ak⊥)∗ we let type(w̄) =
⋂

p≤|w̄|
type(w̄[p]).

We make the following observations on type:

(1) if ū v ū′, then type(ū) ) type(ū′)

(2) |wi| = |w̄| if and only if (i, i) ∈ type(w̄).

(3) For each type T , let T ? = {(i, j) : (i, i), (j, j) ∈ T}. Then for every ā ∈ Ak⊥
such that T ⊆ type(ā) ⊆ T ?, and for every pair (i, j) ∈ T ?, we have
ai = aj ∈ A.

Definition 34. For each type T, T ′, we define the following sub-
alphabets of Ak⊥:

AT ={ā ∈ Ak⊥ : T ⊆ type(ā) ⊆ T ?})
A−,T ={ā : type(ā) = T}
AT,T ′ ={ā ∈ Ak⊥ : T = T ′ ∩ type(ā)}

Let us look at some examples of synchronized words and their types.

Example 27. Let A = {a, b, c}. Here are the types of two 3-synchronized words

type(ab⊗ ab⊗ ab) = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)}
type(abaac⊗ abaab⊗ ε) = {(1, 1), (2, 2)}

We observe that ā ∈ AT if and only if for all synchronized words w̄ such that
type(w̄) = T , we have type(w̄ā) = T . Put together with the earlier observations,
this leads us to the notion of type sequence of a synchronized word, which is the
(non-repeating) subsequence of types of its prefixes. Formally,

Definition 35. Let w̄ = ā1 . . . ām be an arbitrary synchronized word.
Let

T̂ = {type(ā1 . . . āi)}1≤i≤m
be the sequence of types of successive prefixes of w̄. The type sequence
of w̄ is the longest subsequence T̄ = (T1, . . . , Tn) of T̂ such that each of
the Ti’s are pairwise distinct.

By definition, every synchronized word w̄ = w1 ⊗ · · · ⊗ wk has
exactly one type sequence. Then w̄ can be factorized as w̄ = w̄1 · · · w̄n
(where w̄i is called the i-th type factor of w̄) such that w̄1 is in A∗−,T1
and for every 2 ≤ i ≤ n, w̄i ∈ ATi−1,Ti

A∗Ti
. We say Ti is an end type in

T̄ if |w̄1 . . . w̄i| = |wj | for some 1 ≤ j ≤ k.
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Example 28. The type sequence of a synchronized word ū = aaba ⊗ aab ⊗
aacaba is (T1, T2, T3, T4), as displayed below.

a a b a ⊥ ⊥
a a b ⊥ ⊥ ⊥
a a
T1

c

T2

a

T3

b a

T4

where

T1 = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)}
T2 = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}
T3 = {(1, 1), (3, 3)}
T4 = {(3, 3)}

The type factors of ū are

ū1 = aa⊗ aa⊗ aa
ū2 = b⊗ b⊗ c
ū3 = a⊗ ε⊗ a
ū4 = ε⊗ ε⊗ ba

6.2 FO[σ] collapses to Σ3[σ]
Eilenberg et al. showed that the set of relations defined by FO[σ] is exactly the
set of synchronous relations [43]. We begin by re-proving this result.

Theorem 12 ([43]). Over an alphabet containing at least two letters,

‖FO[σ]‖ = Sync

From now on we assume that the alphabet A in consideration always con-
tains at least two letters. First, we show that every FO[σ] formula defines a
synchronous relation.

Lemma 9. Let ϕ(x1, . . . , xk) be a formula in FO[σ]. Then Lϕ is a regular
language over Ak⊥.

Proof. We proceed by induction on the quantifier depth of FO[σ] formulæ. The
atomic formulæ {�, eq, {`a}a∈A} all define synchronous relations (with `a defin-
ing the regular language A∗a). Further, synchronous relations are closed under
Boolean operations, so every quantifier free FO[σ] formula defines a synchronous
relation. Now we consider the case where

ϕ = ∃xψ(x1, . . . , xk, x)

for some formula ψ of lower quantifier depth, such that ψ defines a (k + 1)-
ary synchronous relation given by a regular language Lψ over Ak+1

⊥ . Now,
Lϕ = πk+1(Lψ) and synchronized regular languages are closed under projection.
This completes the proof.
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Proposition 6. Let R be a synchronous relation. Then there exists some for-
mula ϕ ∈ FO[σ] such that Lϕ = LR.

Proof. Let A be a DFA recognizing LR whose states are Q = {q1, . . . , qn} (with
starting state q1, accepting states F ⊆ Q and transition function δ). Without
loss of generality we assume that A contains the letters 0 and 1. For every i ∈
{1, . . . , n}, we associate with qi the synchronized letter t̄i = (0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

).

Moreover, for any pair of synchronized letters

ā =(a1, . . . , am) ∈ Am⊥
b̄ =(b1, . . . , bm′) ∈ Am

′

⊥

we denote by ā+ b̄ the synchronized letter (a1, . . . , am, b1, . . . bm′) ∈ Am+m′
⊥ .

Now, a synchronized word w̄ = ā1 . . . ām is in LR if and only if there exists
a run ρ of A on w̄ of the form

qi1
ā1−→ qi2 . . . qim

ām−−→ qim+1

where qi1 = q1 and qim+1 ∈ F . If this is the case, we let

w̄ρ = (ā1 + t̄i1) · (ā2 + t̄i2) · · · (ām + t̄im) ∈ Ak+n
⊥

and call it the word witnessing ρ. The idea is to construct a FO[σ] formula of
the form

ϕ(x1, . . . , xk) = ∃v1 . . . ∃vn ψrun(x1, . . . , xk, v1, . . . , vn)

where ψrun encodes the property:(
x1 ⊗ · · · ⊗ xk ⊗ v1 ⊗ · · · ⊗ vk is a word witnessing an accepting run ρ

)
We denote x1 ⊗ · · · ⊗ xk and v1 ⊗ · · · ⊗ vn as x̄ and v̄ respectively. In order for
x̄⊗ v̄ to witness an accepting run ρ, it must satisfy the following properties:

• The word v̄ must encode a sequence of states, that is, for each 1 ≤ i ≤ n,
vi ∈ {0, 1}∗ such that vi[j] = 1 if and only if qi occurs in ρ at position
j, otherwise vi[j] = 0. Thus the vi’s all have the same length, say r, and
for every j ≤ |r|, the synchronized letter v1[j] ⊗ · · · ⊗ vn[j] contains 1 at
exactly one component and 0 in all the others. We encode this property
with the formula:

ψ1(v̄) =
∧
i,j

eq(vi, vj)∧

∀u1, . . . , un

( i=n∧
i=1

(ui � vi)) =⇒
( n∨
i=1

`1(ui) ∧
( ∧
j 6=i

`0(uj)
))

• The starting state must be q1, that is the first letter of v1 is 1. This is
encoded by the formula

ψstart = ∃u(u � v1) ∧ `1(u) ∧ ∀u′((u′ � v ∧ u′ 6= ε) =⇒ u � u′)
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• If ā + t̄j is the last letter of x̄ ⊗ v̄, then there exists a final state qf

such that A contains the transition qj
ā−→ qf . For any pair of states

q, q′ ∈ Q, let S(q, q′) = {ā ∈ Ak⊥ : (q, ā, q′) ∈ δ}. For any ā ∈ Ak⊥ let
τ(ā) = {i ∈ {1, . . . , k} : ai 6= ⊥}. Then the last letter property is encoded
by the formula

ψend =
∧
`1(vj) ∧ `ā(x1, . . . , xk)

where the conjunction ranges over all triples (ā, qj , qf ) with (qj , qf ) ∈
Q× F , ā ∈ S(qj , qf ), and further

`ā(x1, . . . , xk) =
∧

i∈τ(ā)

`ai
(xi)

• The letters ā+ ūj and ā′ + ūj′ occur consecutively in x̄⊗ v̄ if and only if
there exists a δ-transition qij

ā−→ qij+1 . We denote this by the formula

ψtransition =
∧
∀u, u′(u � vj ∧ u′ � vj′ ∧ length-successor(u, u′)

=⇒
( ∧
i∈τ(ā)

∃u′′(`ai
(u′′) ∧ eq(u, u′′) ∧ u′′ � xi)

)

with the conjunction ranging over all triples (j, j′, ā) where j, j′ ≤ n, ā ∈
S(qj , qj′), and length-successor(x, y) is true if and only if |x| + 1 = |y|,
given as

length-successor(x, y) = ∀y′((y′ � y∧y′ 6= y) =⇒ ∃x′(eq(x′, y′)∧x′ � x))

Therefore, ϕ(x̄) = ∃v̄(ψstart ∧ ψend ∧ ψtransition) is the required FO[σ] formula
describing LR. We note that ψstart ∈ Σ1[σ], ψend is quantifier-free and ψtransition ∈
Π2[σ]. Therefore, ϕ(x̄) ∈ Σ3[σ]. This leads to an important corollary.

Corollary 2. Let R be a synchronous relation. Then R is defined by a formula
in Σ3[σ].

This shows that FO[σ] collapses to its Σ3 fragment in terms of expressive
power. Therefore, we have our first characterization result:

Theorem 13. Over any alphabet containing at least two letters,

‖Σ3[σ]‖ = ‖FO[σ]‖ = Sync

It follows that characterizing Σ1[σ] and Σ2[σ]-definable relations and their
Boolean closures yields a complete characterization of FO[σ]. Now we tackle
the characterization results for these smaller fragments. We will also show the
decidability of the membership problem for the classes of relations corresponding
to them.
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6.3 Characterizing ‖Σ1[σ]‖ and ‖BΣ1[σ]‖
Recall the subword relation on words in A∗, which is also sometimes also called
subsequence/scattered subword relation:

Let u = a1 . . . an, v = b1 . . . bm ∈ A∗. We say u is a subword of v,
denoted by u v v, if and only if there exists an increasing function
p : {1, . . . , n} → {1, . . . ,m} (called the witness function) such that for
every 1 ≤ i ≤ n, bp(i) = ai. For any S ⊆ A∗, we let

↑S = {v ∈ A∗ : there exists u ∈ S such that u v v}

It is well known that a regular language L is Σ1(<)-definable if and only if
L = ↑L (see [97]). Higman’s lemma, a corollary of Konig’s lemma on well-quasi
orders, establishes that v is a well-quasi order [66]. Therefore, for every L, there
exists a finite set S such that ↑S = ↑L. We obtain as a corollary that a regular
language is Σ1(<)-definable if and only if it is equal to ↑S for some finite set S.
Now, we define synchronized subwords and state an analogous result.

Definition 36. Let ū = u1⊗ · · · ⊗ uk, v̄ = v1⊗ · · · ⊗ vk ∈ SWk for some
k ∈ N. We say ū is a synchronized subword of v̄, denoted by ū vs v̄,
if and only if ū v v̄ via a witness function p which is:

- type preserving: type(ū[1 . . . i]) = type(v̄[1 . . . p(i)]), for every 1 ≤
i ≤ |ū|

- end preserving: p(|uj |) = |vj | for every 1 ≤ j ≤ k.

For any set S ⊆ SWk we let

↑sS = {v̄ ∈ A∗ : there exists ū ∈ S such that ū vs v̄}

6.3.1 Σ1[σ]-definable relations
Theorem 14 (Σ1[σ]-characterization). For any relation R, R ∈ ‖Σ1[σ]‖ if and
only if LR = ↑sLR.

The proof of this theorem relies on three technical statements:

- If ϕ is a Σ1[σ] formula, then Lϕ is vs-upward closed, i.e. Lϕ = ↑sLϕ (see
Lemma 12).

- For any w̄ ∈ SWk, the relation given by ↑sw̄ is Σ1[σ]-definable (see Lemma
13).

- On SWk, vs is a well-quasi order (see Proposition 7).

These statements are proven below. Now we proceed with the proof of
Theorem 14:

Proof of Theorem 14. Let R ∈ ‖Σ1[σ]‖. Then LR = ↑sLR by Lemma 12.
Conversely, suppose LR = ↑sLR. Let S be a set of vs-minimal elements of
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LR. Then S is finite because vs is a well-quasi order (by Proposition 7). Say
S = {w̄1, . . . , w̄m}. By Lemma 13 there exist Σ1[σ] formulæ ϕ1, . . . , ϕm such

that for every 1 ≤ i ≤ m, Lϕi = ↑sw̄i. Let ϕ =
i=m∨
i=1

ϕi, then

Lϕ =
i=n⋃
i=1

Lϕi
=
i=n⋃
i=1
↑sw̄i

Further, ϕ ∈ Σ1[σ] and we have

Lϕ =
i=n⋃
i=1
↑sw̄i = ↑sS = ↑LR = LR

Next, we move towards the proofs of statements used in the proof of Theorem
14, namely Proposition 7 and Lemmas 12,13.

Lemma 10. Let ū, ū′ ∈ SWk with type sequences are T̄ = (T1, . . . , Tn), T̄ ′ =
(T ′1, . . . , T ′m), and type factors (ū1, . . . , ūn), (ū′1, . . . , ū′m), respectively. Then ū vs
ū′ if and only if T̄ is a subsequence of T̄ ′ whose witness

t : {1, . . . , n} → {1, . . . ,m}

satisfies for every 1 ≤ i ≤ n,

(i) ūi v ū′t(i), and

(ii) if Ti is an end type of T̄ , then ūi and ū′t(i) have the same last letter.

Proof. Assume first that ū vs ū′ via a witness function p : {1, . . . , |u|} →
{1, . . . , |u′|}. For every 1 ≤ i ≤ n, let v̄i = ū1 . . . ūi. Then type(v̄i) = Ti =
type(ū′[1 . . . p(|v̄i|)], which follows from ū vs ū′. This shows that Ti is in some
position in T̄ ′, say Ti = T ′t(i). Consequently, T̄ is a subsequence of T̄ ′, via the
witness t : {1, . . . , n} → {1, . . . ,m}. Now, for every i ≤ n: since p is type pre-
serving, ūi v ū′t(i); since p is end preserving, they have the same last letter if Ti
is an end type of T̄ .

To prove the converse, let T̄ be a subsequence of T̄ ′ via a witness function
t and for every i ≤ n, suppose that the witness function for ūi v ū′t(i) is
pi : {1, . . . , |ūi|} → {1, . . . , |ū′t(i)|}. In order to build a witness p for ū vs ū′, we
let

ni = |ū1|+ · · ·+ |ūi|
mi = |ū′t(1)|+ · · ·+ |ū′t(i)|

for every 1 ≤ i ≤ n. Then p is a ‘concatenation’ of the pi’s which sends every
j ∈ {1, . . . , |ū|} to mi + pi(j′), where

(i, j′) ∈ {1, . . . , n} × {1, . . . , ni+1 − ni}

is the unique pair for which j = ni+j′. Now, we verify that p witnesses ū vs ū′.
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- To prove that p is type preserving, let T = type(ū[1 . . . j]) for some arbi-
trary j ≤ |ū|. Since T̄ is a subsequence of T̄ ′, T = T ′t(j) is the type of some
prefix of ū′. Let (i, j′) be the unique pair for which j = ni + j′. Then
p(j) = mi + j′ and by definition of pi’s, we have

type(ū′[1 . . . p(j)]) = type(ū′[1 . . . (mi + j′)]) = T ′t(j) = T = type(ū[1 . . . j])

- For every i ∈ {1, . . . , n} such that Ti is an end type in T̄ , p(|ni|) = |mi|
(by definition of pi). Therefore, p is end preserving.

Proposition 7. For all k ∈ N, (SWk,vs) is a well-quasi-order.

Proof. Let W = {w̄n}n∈N be an infinite sequence of synchronized words in
SWk. Since the number of type sequences are finite, there exists an infinite
subsequence of W , say W1, in which all the synchronized words have the same
type sequence. Let T̄ = (T1, . . . , Tm) be the type sequence of the elements of
W1. For every w̄i ∈W , let us denote its type factors as w̄1

i , . . . , w̄
m
i . Moreover,

we say that a pair of words w̄i, w̄j ∈W1 are end-similar if and only if for every
end type Tr in T̄ , w̄ri and w̄rj have the same last letter. In other words, if we
write w̄i, w̄j as

w̄i =w1,i ⊗ · · · ⊗ wk,i
w̄j =w1,j ⊗ · · · ⊗ wk,j

then they are end-similar if and only if for every p ∈ {1, . . . , k}, wp,i and wp,j
have the same last letter. Note that end-similarity is an equivalence relation
with a bounded number of classes (at most Am). Therefore, there exists an infi-
nite subsequence of W1, say W2, whose elements are all end-similar (in addition
to having the same type, since they come from W1).

Next we consider the set of {w̄1
i : w̄i ∈ W2}. Since v is a well-quasi order,

there exists an infinite subsequence W3 of W2 which is v-increasing in its first
type factor. To be precise, for each w̄i, w̄j ∈ W3, if i < j then w̄1

i v w̄1
i .

Similarly, there exists an infinite subsequence of W3, call it W4, which is v-
increasing in the second type factor. Iterating this reasoning, we find a chain of
infinite subsequences

Wm+2 ⊆Wm+1 · · · ⊆W1 ⊆W

such that for all pairs of elements w̄i, w̄j ∈ Wm+2 (with i < j), we have, (i)
w̄pi v w̄pj for all p ∈ {1, . . . ,m}, and (ii) w̄i, w̄j are end-similar. By Lemma
10, we have w̄i vs w̄j whenever w̄i, w̄j ∈ Wm+2 and i < j. In particular, there
exists a pair (ū, v̄) of synchronized words in W such that ū vs v̄. This completes
the proof.

Lemma 11. Let w̄ = w1⊗ · · · ⊗wk and w̄′ = w′1⊗ · · · ⊗w′k such that w̄ vs w̄′.
For all u ∈ A∗, there exists u′ ∈ A∗ such that w̄ ⊗ u vs w̄′ ⊗ u′.
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Proof. Let p : {1, . . . , |w̄|} → {1, . . . , |w̄′|} be the function witnessing w̄ vs w̄′.
Let u ∈ A∗. To produce u′ ∈ A∗ such that w̄⊗u vs w̄′⊗u′, we do the following:

Fix ` ∈ {1, . . . , k} such that |u u w`| = max
i≤k
|u u wi|, and let s1 = |u u w`|.

Let s2 = min(|w̄, |u|), and let us denote by a1 . . . am the word u[s1 + 1 . . . s2].
Then

u = (u u w`)(a1 . . . am)(u[s2 + 1 . . . |u|])
where u[s2 + 1 . . . |u|] = ε if |u| ≤ |w̄|.

For every 1 ≤ i ≤ m, let ni = p(s1 + i)− p(s1)− 1, and let nm+1 = |w̄′| − p(s2).
Finally, let z be an arbitrary letter in A. We let

u′ = w′`[1 . . . p(s1)]zn1a1 · · · znmamz
nm+1u[s2 + 1 . . . |u|]

We provide an example of the construction of u′ below:
8 The Quantifier Alternation Hierarchy of Synchronous Relations

` = 2

w1 = a b a b b a
w2 = a b b a b
u = a b b b a a b

w0
1 = a a b b a b b b b a b a

w0
2 = a a b b b a b a b

u0 = a a b b b z z b a a z z b

s1 s2

1 2 3 4 5 6 7 p(1) p(2)p(3) p(4) p(5)p(6)

u u w2 u0 u w0
2

| {z } | {z }
n1 n4n2 = n3 = 0

p0(7)

Now let p′ be the function defined on {1, . . . ,max(|w̄|, |u|)}, which extends p by letting
p′(|w̄|+ j) = |w̄′|+ j for 1 ≤ j ≤ |u| − |w̄|. We show that p′ is a witness for w̄⊗ u vs w̄

′⊗ u′.
By construction, p′ is increasing and (w̄⊗u)[i] = (w̄′⊗u′)[p′(i)] for every i ≤ max(|w̄|, |u|) =

|w̄⊗u|. We must now show that, for each such i, type((w̄⊗u)[1..i]) = type((w̄′⊗u)[1..p′(i)]),
and that p′(|u|) = |u′|. For convenience, we write w̄u for w̄ ⊗ u and w̄′u′ for w̄′ ⊗ u′.

If 1 ≤ i ≤ s1, then p′(i) = p(i), the u-component of each letter of w̄u[1..i] coincides
with its w`-component, and the u′-component of each letter of w̄′u′ [1..p(i)] coincides
with its w′`-component. It follows that type(w̄u[1..i]) is the symmetric transitive closure
of type(w̄[1..i]) ∪ {(`, k + 1)}. Similarly, type(w̄′u′ [1..p(i)]) is the symmetric transitive
closure of type(w̄′[1..p(i)]) ∪ {(`, k + 1)}. Since type(w̄[1..i]) = type(w̄′[1..p(i)]), we have
type(w̄u[1..i]) = type(w̄′u′ [1..p′(i)]). In particular, we have u[i] = w`[i] = w′`[p′(i)] =
u′[p′(i)]. If i = |u|, then s1 = i and, by definition, u′ = w′`[1..p(i)]. It follows that
|u′| = p(i) = p′(i).
If s1 < i ≤ s2, again we have p′(i) = p(i). Moreover, type(w̄u[1..i]) = type(w̄[1..i])∪ {(k+
1, k+1)} since the u-component differs from any other component on at least one position
less than or equal to i. For the same reason, type(w̄′u′ [1..p′(i)]) = type(w̄′[1..p(i)]) ∪ {(k +
1, k + 1)} = type(w̄u[1..i]). Also, by definition of the nj , we get u[i] = u′[p(i)] and, as
above, if i = |u|, we find that p(i) = p(|u′|).
If s2 < i ≤ |u|, then p′(i)− |w̄′| = i− |w̄| = |u[s2 + 1..i]|. In particular, p′(|u|) = |w̄′|+
|u[s2 + 1..i]| = |u′|. Moreover, type(w̄u[1..i]) = {(k + 1, k + 1)} = type(w̄′u′ [1..p′(i)]). J

I Lemma 12. If ϕ is a formula in Σ1[σ], then Lϕ is vs-upward closed.

Proof. First observe that if the synchronized words w̄ = w1⊗· · ·⊗wk and w̄′ = w′1⊗· · ·⊗w′k
satisfy w̄ vs w̄

′, then, for all i, j ∈ {1, . . . , k}, we have:
wi � wj if and only if w′i � w′j ;
|wi| = |wj | if and only if |w′i| = |w′j |;
if |wi| = |w′i| > 0, then wi and w′i have the same last letter.

We now proceed by induction on the number of quantified variables of ϕ. If ϕ is quantifier-free,
these three properties show that Lϕ is vs-upward closed.

If ϕ is not quantifier-free, we have ϕ(y1, . . . , yk) = ∃x ψ(y1, . . . , yk, x) for some ψ ∈ Σ1[σ].
Let w̄, w̄′ ∈ SWk such that w̄ vs w̄

′ and w̄ |= ϕ. Then there is u ∈ A∗ such that w̄ ⊗ u |= ψ.
By Lemma 11, there also exists u′ ∈ A∗ such that w̄ ⊗ u vs w̄

′ ⊗ u′. Since ‖ψ‖ is vs-upward
closed by induction, w̄′ ⊗ u′ |= ψ, and hence w̄′ |= ϕ. This completes the proof. J

I Lemma 13. If w̄ is a synchronized word, then the relation defined by ↑sw̄ is Σ1[σ]-definable.

Proof. Let w̄ = w1 ⊗ · · · ⊗ wk ∈ SWk. We define a formula ϕ(z1, . . . , zk) (dependent on w̄)
whose synchronized language is ↑sw̄, using existential quantification on a set consisting of
one variable for each wi and one for each position within wi. Formally, let X = {xi,j : 1 ≤
i ≤ k, 1 ≤ j ≤ |wi|}. Then ϕ(z1, . . . , zk) = ∃X.ψ(z1, . . . , zk, X), where ψ is the conjunction
of the following formulæ for every i ∈ {1, . . . , k}:
(1) zi = xi,|wi|;
(2) for every 1 ≤ j < |wi|: xi,j ≺ xi,j+1;

We claim that w̄ ⊗ u vs w̄′ ⊗ u′ via the witness function

p′ : {1, . . . ,max(|w̄|, |u|)} → {1, . . . ,max(|w̄′|, |u′|)}

defined as

p′(j) =
{
p(j) if j ≤ |w̄|
|w̄′|+ j otherwise

By construction, p′ is increasing. Further, for every 1 ≤ i ≤ max(|w̄|, |u|),
(w̄ ⊗ u)[i] = (w̄′ ⊗ u′)[p′(i)]. Therefore p′ is a witness for w̄ ⊗ u v w̄′ ⊗ u′.
Since p′(|wj |) = p(|wj |) = |w′j | for every 1 ≤ j ≤ k, to establish that p′ is
end preserving we only need to show that p′(|u|) = |u′|. Further, we need to
show that p′ is type preserving, i.e. for every i, type(w̄ ⊗ u[1 . . . i]) = type(w̄′ ⊗
u′[1 . . . p′(i)]). We denote w̄ ⊗ u as w̄u and w̄′ ⊗ u′ as w̄′u′ for convenience. Let
i ∈ {1, . . . , |w̄u|}. The following cases arise:

• If 1 ≤ i ≤ s1, then p′(i) = p(i), and the u-component and w`-component
of each letter of w̄u[1 . . . i] coincide, as do the u′-component and w′`-
component of each letter of w̄′u′ [1 . . . p(i)]. Therefore type(w̄′u)[1 . . . i] is the
symmetric transitive closure of type(w̄[1 . . . i])∪{(`, k+1)}, and type(w̄′u′)[1 . . . p(i)]
is the symmetric transitive closure of type(w̄′[1 . . . p(i)])∪{(`, k+ 1)}. We
know that type(w̄[1 . . . i]) = type(w̄′[1 . . . p(i)]), therefore

type(w̄u[1 . . . i]) = type(w̄′u′ [1 . . . p′(i)])

Further,
u[i] = w`[i] = w′`[p′(i)] = u′[p′(i)]

If i = |u| then s1 = i and by definition, u′ = w′`[1 . . . p(i)]. It follows that
|u′| = p(i) = p′(i).
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• If s1 < i ≤ s2, then too we have p′(i) = p(i). Note that in this case,

type(w̄u[1 . . . i]) = type(w̄[1 . . . i]) ∪ {(k, k + 1)}

because there exists at least one position not greater than i where the
u-component of w̄u differs from some other component. This also implies
that

type(w̄′u′ [1 . . . p′(i)]) = type(w̄′[1 . . . p(i)]) ∪ {(k, k + 1)} = type(w̄u[1 . . . i])

By definition of the nj ’s, we have u[i] = u′[p(i)], in particular when i = |u|
then p(|u|) = p(i) = p(|u′|).

• If s2 < i ≤ |u|, then p′(i) − |w̄′| = i − |w̄′| = |u[s2 + 1 . . . i]|, in par-
ticular when i = |u|, p′(i) = p′(|u|) = u[s2 + 1 . . . |u|] = |u′|. Further,
type(w̄u[1 . . . i]) = {(k + 1, k + 1)} = type(w̄′u′ [1 . . . p′(i)]).

Observation 1. Let T̄ = (T1, . . . , Tn) be the type sequence of some synchro-
nized word in SWk. Then K(T̄ ) ⊆ SWk, the set of all synchronized words in
SWk whose type-sequence is T̄ , can be written as

K(T̄ ) = A−,T1A∗T1
AT1,T2A∗T2

. . .ATn−1,TnA∗Tn

Lemma 12. Let ϕ be a formula in Σ1[σ]. Then Lϕ is vs-upward closed.

Proof. First we observe that for any pair of synchronized words w̄ = w′1 . . . w
′
k, w̄

′ =
w′1 ⊗ · · · ⊗ w′k, such that w̄ vs w̄′ via a witness function p, we must have, for
every i, j ∈ {1, . . . , k}:

(i) wi � wj if and only if w′i � w′j : Let T = type(w̄[1 . . . |wi|]). By definition
of p, T = type(w̄[1 . . . |w′i|]). Therefore, (i, j) ∈ type(w̄[1 . . . |w′i|]) and
therefore w′i � w′j . The converse holds by the same reasoning.

(ii) |wi| = |wj | if and only if |w′i| = |w′j |: this follows from the fact that p is
end preserving.

(iii) If |wi| > 0 then |w′i| > 0 and wi, w
′
i have the same last letter: this follows

from the fact that p is type preserving and end preserving.

Now we prove the lemma by induction on the number of quantified variables of
ϕ. In the case where ϕ is quantifier-free, the statements (i),(ii),(iii) given above
show that Lϕ is vs-upward closed.

If ϕ is not quantifier-free then it is a positive Boolean combination (using
only ∨ or ∧) of formulæ of the form

∃xψ(y1, . . . , yk, x)

for some ψ ∈ Σ1[σ] such that Lψ is vs-upward closed (by inductive hypothesis).
Let w̄, w̄′ ∈ SWk such that w̄ vs w̄′ and w̄ � ϕ. Then there exists u ∈ A∗ such
that w̄⊗u � ψ. By Lemma 11 there also exists u′ ∈ A∗ such that w̄⊗u vs w̄′⊗u′.
Since Lψ is vs-upward closed, w̄′ ⊗ u′ � ψ. Therefore, w̄′ � ∃xψ. Now, if Lϕ1

and Lϕ2 are both vs-upward closed, then Lϕ1∨ϕ2 and Lϕ1∧ϕ2 are vs-upward
closed. Therefore, Lϕ isvs-upward closed. This completes the proof.
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Corollary 3. Let ϕ ∈ Σ1[σ] be a formula with k free variables. Then there
exists a finite set S ⊂ SWk such that Lϕ = ↑sS.

Proof. Let S be the set of all vs-minimal elements of Lϕ. By Proposition 7, vs
is a well-quasi order. Therefore, S must be finite. Next we show that Lϕ = ↑sS.

By the minimality of S, every element w̄ ∈ Lϕ has a synchronized subword
in S. Therefore, Lϕ ⊆ ↑sS. Finally, S ⊆ Lϕ and Σ1[σ]-definable relations are
vs-upward closed, by Lemma 12. Therefore, ↑sS ⊆ Lϕ. This completes the
proof.

Lemma 13. Let w̄ ∈ SWk. Then the relation given by ↑sw̄ is Σ1[σ]-definable.

Proof. Let w̄ = w1⊗· · ·⊗wk. We define a formula ϕ over free variables z1, . . . , zk
whose synchronized language is ↑sw̄. In order to do this, let us introduce a
variable xi,j for each i ∈ {1, . . . , k} and j ∈ {1, . . . , |wi|}. Then X = {xi,j} is
the set of bound (in this case existentially quantified) variables of ϕ. Formally
we define ϕ(z1, . . . , zk) as ∃X.ψ(z1, . . . , zk, X), where ψ is the conjunction of
the following formulæ for every 1 ≤ i ≤ k:

(i) zi = xi,|wi|;

(ii) for every 1 ≤ j < |wi|: xi,j � xi,j+1;

(iii) for every 1 ≤ j ≤ |wi|: `wi[j](xi,j);

(iv) for every 1 ≤ i′ ≤ k and j ≤ min{|wi|, |wi′ |}: eq(xi,j , xi′,j);

(v) for every 1 ≤ i′ ≤ k and j ≤ min{|wi|, |wi′ |} such that wi[1 . . . j] =
wi′ [1 . . . j]: xi,j = xi′,j .

Let w̄′ = w′1 ⊗ · · · ⊗ w′k. Assume w̄ vs w̄′ via a witness function p, we show
that w̄′ ∈ Lϕ. For each 1 ≤ i ≤ k and 1 ≤ j ≤ |wi|, let xi,j be assigned the
word vi,j = w′i[1 . . . p(j)]. We know that p witnesses w̄ vs w̄′. We see that vi,j ’s
satisfy (ii)-(iv) because p is type-preserving, and (v) because p is end-preserving.
Therefore, (w′1, . . . , w′k) satisfies ϕ(z1, . . . , zk), and we have w̄′ ∈ Lϕ.

To show the converse, let w̄′ ∈ Lϕ. Then (w′1, . . . , w′k) satisfies ϕ via a
witnessing assignment α. We define a function p : {1, . . . , |w|} → {1, . . . , |w′|}
as follows: for every 1 ≤ j ≤ |w̄|, there exists some 1 ≤ i ≤ k such that
j ≤ |wi|; define p(j) to be |α(xi,j)|. We observe that p is well-defined due to the
subformulæ defined in (iv) above. Further, the subformulæ in (ii) show that p
is increasing, and the subformulæ in (iii) show that for every j, w̄[j] = w̄′[p(j)],
so p witnesses w̄ v w̄′. Finally, the subformulæ defined in (i) and (v) show that
p is end preserving and type preserving respectively. Thus p witnesses w̄ vs w̄′.

6.3.2 BΣ1[σ]-definable relations
Recall that for any h ∈ N, the equivalence relations ∼h and ≡h are defined as
follows (on words in A∗ and synchronized words respectively):

- for all u, v ∈ A∗, u ∼h v if and only if u and v have the same set of
subwords of length at most h. Let [u]∼h

denote the equivalence class of u
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generated by ∼h. Furthermore, let B∼h
be the set of unions of ∼h-classes.

Finally we let
B∼ =

⋃
h∈N

B∼h

- for all k-synchronized words ū, v̄, ū ≡h v̄ if and only if ū and v̄ have the
same set of synchronized subwords of length at most h. Let [w̄]≡h

denote
the equivalence class of w̄ generated by ≡h, let B≡h

denote the set of
finite unions of [w̄i]≡h

, and let

B≡ =
⋃
h∈N

B≡h

Theorem 15. For any relation R, R ∈ ‖BΣ1[σ]‖ if and only if LR ∈ B≡ .

Proof. Let ϕ ∈ BΣ1[σ] be a formula defining R, and let L = LR. We use the
standard disjunctive normal form for BΣ1 formulæ and assume ϕ is logically

equivalent to
i=n∨
i=1

ψi ∧ ψ′i where the ψi’s are in Σ1[σ] and the ψ′i’s are in Π1[σ].

By Corollary 3, then, for every 1 ≤ i ≤ n there exist finite sets Si,S ′i ⊂ SWk

such that Lψi = ↑sSi and Lψ′
i

= SWk \ ↑sS ′i. We define

S =
i=n⋃
i=1
Si ∪ S ′i

h = max
w∈S
|w| (exists because S is finite)

Now consider synchronized words w̄, w̄′ ∈ SWk such that w̄ ≡h w̄′. Then, for
every 1 ≤ i ≤ n and ū ∈ Si, ū vs w̄ if and only if ū vs w̄′ because by definition
|ū| ≤ h and w̄ ≡h w̄′. Similarly, w̄ and w̄′ have the same set of synchronized
subwords in S ′i as well, for every 1 ≤ i ≤ n. Therefore, w̄ ∈ Lϕ if and only if
w̄′ ∈ Lϕ. Thus ϕ is a union of ≡h-classes, and hence Lϕ ∈ B≡h

.

Conversely, let h ∈ N such that L = LR ∈ B≡h
. Then L is the finite union

[w̄1]h, . . . , [w̄n]h for some w̄1, . . . , w̄n ∈ SWk. To produce a BΣ1[σ] formula ϕ
which characterizes L, we let Wh ⊂ SWk be the (finite) set of all synchronized
words of length at most h. Further, for every 1 ≤ i ≤ n, let Si ⊆ Wh be
the set of all subwords of w̄i of length at most h, and let S ′i = Wh \ Si; note
that both of these sets are finite. By Theorem 14, there exist Σ1[σ] formulæ
ψ1, . . . , ψn, ψ

′
1, . . . , ψ

′
n such that for every 1 ≤ i ≤ n

Lψi =↑sSi
Lψ′

i
=↑sS ′i

[w̄i]h =↑sSi \ ↑sS ′i = Lψi
\ Lψ′

i

Therefore,

L =
i=n⋃
i=1

[w̄i]h = Lψi
\ Lψ′

i



6.3. CHARACTERIZING ‖Σ1[σ]‖ AND ‖BΣ1[σ]‖ 115

and the BΣ1[σ] formula
i=n∨
i=1

ψi ∧ ¬ψ′i

characterizes L.

6.3.3 Deciding membership in ‖Σ1[σ]‖ and ‖BΣ1[σ]‖
This section deals with the Σ1[σ] and BΣ1[σ] membership problems.

Theorem 16. membership-Σ1[σ] is decidable.

Proof. By Theorem 14, a synchronous relation R is Σ1[σ]-definable if and only if
LR = ↑sLR. To check whether a given relation R is Σ1[σ]-definable, we simply
compute ↑sLR and check whether LR = ↑sLR. In Proposition 8 below, we
show that for any synchronized regular language L, the language ↑sL is regular
and computable. Assuming this proposition holds, we obtain the decidability
of membership-Σ1[σ].

Now we state and prove Proposition 8. We begin with some definitions.

Definition 37. For S ⊆ SWk, we denote by ↑`S the set

{w̄ ∈ SWk : ∃ū ∈ S such that ū v w̄ and ū, w̄ have the same last letter}

Definition 38. Let A = (Q, δ, q0, F ) be a DFA accepting a regular
language L. For all p, r ∈ Q, let A(p, r) denote the DFA (Q, δ, p, {r}),
and let Lang(A(p, r)) be the language accepted by A(p, r).

Moreover, let T̄ = (T1, . . . , Tn) be some type. A sequence
q̄ = (q1, . . . , qn) ∈ Qn is called T̄ -compatible in A if and only if
qn ∈ F and q1 is reachable from q0 by reading a word in A−,T1A∗T1

, q2 is
reachable from q1 by reading a word in AT1,T2A∗T2

, and so on. For any
T̄ -compatible sequence q̄, let

L(T̄ , q̄, 1) = A−,T1A∗T1
∩ Lang(A(q0, q1))

and for every 1 < i ≤ n let

L(T̄ , q̄, i) = ATi−1,Ti
A∗Ti
∩ Lang(A(qi−1, qi))

Observation 2. Let A be a DFA accepting L ⊆ SWk, and let w̄ ∈ SWk. Then
w̄ ∈ L if and only if there exists a T̄ -compatible sequence q̄ ∈ Qn such that

w̄ ∈ L(T̄ , q̄, 1) · · ·L(T̄ , q̄, n)

where T̄ = type(w̄). Further, this factorization of w̄ produces its type factors,
i.e. for every 1 ≤ i ≤ n, the i-th type factor of w̄ is in L(T̄ , q̄, i).
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Observation 3 (Derived from Observation 2). Let A be a DFA accepting
L ⊆ SWk. Then

L =
⋃
L(T̄ , q̄, 1) · · ·L(T̄ , q̄, n)

where the union runs over all type sequences T̄ and all T̄ -compatible state
sequences q̄. Further, this union is finite and computable.

Proposition 8. Let L ⊆ SWk be a regular language. Then its vs-upward
closure ↑sL is regular and computable.

Proof. Let A = (Q, δ, q0, F ) be some DFA recognizing L. For any type T̄ and
T̄ -compatible state sequence q̄ ∈ Qn, we define the language

L̂(T̄ , q̄, i) =
{
↑`L(T̄ , q̄, i) ∩ A∗Ti

if Ti is an end type
↑L(T̄ , q̄, i) ∩ A∗Ti

otherwise

Now we show that
↑sL =

⋃
L̂(T̄ , q̄, 1) · · · L̂(T̄ , q̄, n) (6.1)

where the union ranges over all types T̄ and all T̄ -compatible state sequences
q̄. Showing Equation 6.1 holds is sufficient to prove the proposition, because (i)
↑`K and ↑K are computable for any regular language K, which makes the op-
eration L(T̄ , q̄, i) 7→ L̂(T̄ , q̄, i) computable, and (ii) there are only finitely many
types and type-compatible state sequences, so computing all of the L̂(T̄ , q̄, i)
would yield a DFA for ↑sL.

The arguments made to show Equation 6.1 closely follow those in the proof
of Lemma 10. Let w̄ ∈ ↑sL, that is, there exists ū ∈ L such that ū vs w̄. Let
T̄ = type-seq(ū) = (T1, . . . , Tn) and let q̄ be the T̄ -compatible state sequence
obtained upon A reading ū. By Lemma 11, T̄ v type-seq(w̄) with a witness
function t : {1, . . . , n} → {1, . . . , |type-seq(w̄)|} such that for each 1 ≤ i ≤ n, we
have: ūi v w̄t(i) (where ūi is the i-th type factor of ū and w̄t(i) is the t(i)-th type
factor of w̄), and they have the same last letter if Ti is an end type. Therefore,
ūi v w̄t(i−1)+1 . . . w̄t(i) (where again, the last letter condition holds if Ti is an
end type). Now, ūi ∈ L(T̄ , q̄, i), and therefore w̄t(i−1)+1 . . . w̄t(i) ∈ L̂(T̄ , q̄, i).
This implies w̄ ∈ L̂(T̄ , q̄, 1) · · · L̂(T̄ , q̄, n).

Conversely, let w̄ ∈ L̂(T̄ , q̄, 1) · · · L̂(T̄ , q̄, n), where T̄ is a type sequence and
q̄ is a T̄ -compatible state sequence. In other words, there exists a factorization
of w̄ as w̄ = w̄1 · · · w̄n where for each 1 ≤ i ≤ n, w̄i ∈ L̂(T̄ , q̄, i). So for every
1 ≤ i ≤ n, there exists ūi ∈ L(T̄ , q̄, i) such that ūi v w̄i with witness function
pi. Further, for all end types Ti, we also have pi(|ūi|) = |w̄i|. Then the word
ū = ū1 · · · ūn is in L by construction of the L(T̄ , q̄, i)’s. To produce a witness
function p for ū vs w̄, we ‘concatenate’ the pi’s as we did in the proof of Lemma
10; for every 1 ≤ i ≤ n:

si = |ū1|+ · · ·+ |ūi|
ri = |w̄t(1)|+ · · ·+ |w̄t(i)|

Now, we define the witness function p : j 7→ ri+pi(j′), where (i, j′) ∈ {1, . . . , n}×
{1, . . . , si+1 − si} is the unique pair for which j = si + j′. The argument for p
witnessing ū vs w̄ is identical to that given in the proof of Lemma 10, where
we simply replace ū′ by w̄.
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Theorem 17. membership-BΣ1[σ] is decidable.

We first give an overview of the proof of Theorem 17. We then state and
prove the necessary technical lemmas and return to a formal proof of Theorem
17 at the end of this section.

Proof sketch. Let R be a synchronous relation given as a regular language LR ⊆
SWk. Recall that for any type sequence T̄ , K(T̄ ) denotes the set of synchronized
words in SWk whose type sequence is T̄ . Let L = LR and for every possible type
sequence T̄ on words in SWk, let LT̄ = L ∩K(T̄ ). The proof of this theorem
relies on three lemmas:

- In Lemma 14, we show that for any type sequence T̄ , the set K(T̄ ) is
BΣ1[σ]-definable. As a corollary, we obtain that L ∈ ‖BΣ1[σ]‖ if and
only if for each type sequence T̄ , LT̄ ∈ ‖BΣ1[σ]‖ (see Corollary 4).

- Lemmas 15 and 16 show that it is decidable whether LT̄ ∈ ‖BΣ1[σ]‖, for
each type sequence T̄ .

Below we prove Lemmas 14, 15, and 16.

Lemma 14. Let T̄ be a type sequence. Then K(T̄ ) is BΣ1[σ]-definable.

Proof. For any type T̄ , let ST̄ be the set of vs-minimal elements of K(T̄ ). We
established in Proposition 7 that vs is a well-quasi order, therefore ST̄ is finite.
Now, K(T̄ ) ⊆ ↑sST̄ . Moreover, if ū ∈ ↑sST̄ , then T̄ v type-seq(ū) by Lemma
11. We observe that

K(T̄ ) = ↑sST̄ \
⋃
{↑sST̄ ′ : T̄ v T̄ ′, T̄ 6= T̄ ′}

for every T̄ ′ such that T̄ v T̄ ′, let ψT̄ ′ be the Σ1[σ] formula characterizing
↑sST̄ ′ . Then K(T̄ ) is characterized by the BΣ1[σ] formula

ψT̄ ∧ ¬
( ∨
T̄vT̄ ′,T̄ ′ 6=T̄

ψT̄ ′

)

Corollary 4 (of Lemma 14). For any regular L ⊆ SWk, L ∈ ‖BΣ1[σ]‖ if and
only if for each type sequence T̄ , L ∩K(T̄ ) ∈ ‖BΣ1[σ]‖.

We now fix a type sequence T̄ = (T1, . . . , Tn) and characterize the ‖BΣ1[σ]‖
languages within K(T̄ ).

Definition 39. For each 1 ≤ i ≤ n, let Fi be BΣ1(<,max)(A∗Ti
) if Ti is an

end type in T̄ , and BΣ1(<)(A∗Ti
) otherwise. Further, let

G1 = {A−,T1A∗T1
∩H : H ∈ |F1|}

and for every 2 ≤ i ≤ n, let

Gi = {ATi−1,Ti
A∗Ti
∩H : H ∈ |Fi|}
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Lemma 15. Let AT̄ = (Q, δ, q0, F ) be a DFA defining a regular language L ⊆
K(T̄ ). Then, L ∈ ‖BΣ1[σ]‖ if and only if, for each T̄ -compatible state sequence
q̄ ∈ Qn and 1 ≤ i ≤ n, L(T̄ , q̄, i) ∈ Gi.

Proof. Since T̄ is fixed, we shorten L(T̄ , q̄, i) to L(q̄, i). First assume that for
every 1 ≤ i ≤ n, L(q̄, i) ∈ Gi. In other words, there exists a BΣ1(<)-definable
language H(q̄, i) ⊆ A∗Ti

such that L(q̄, i) = A∗Ti−1,Ti
∩H(q̄, i) (for the case i = 1,

H(q̄, 1) is BΣ1(<,max)-definable and L(q̄, 1) = A∗−,T1
∩H(q̄, 1)). So for every

i, H(q̄, i) is a union of nq̄,i sets of the form

H(q̄, i, j) = ↑S(q̄, i, j)\↑S′(q̄, i, j) (with↑` substituted for ↑ if Ti is an end type in T̄ )

with j ranging over {1, . . . , nq̄,i}, where S(q̄, i, j), S′(q̄, i, j) are finite sets. Con-
sequently, L(q̄, 1) is the union of the

L(q̄, 1, j) = A−,T1A∗T1
∩H(q̄, 1, j)

over all 1 ≤ j ≤ nq̄,1. Further, for every 2 ≤ i ≤ n, L(q̄, 1) is a union of

L(q̄, 1, j) = ATi−1,TiA∗Ti
∩H(q̄, i, j)

over all 1 ≤ j ≤ nq̄,i. For all j̄ = (j1, . . . , jn) where for every 1 ≤ i ≤ n,
ji ∈ {1, . . . , nq̄,i}, we define

L(q̄, j̄) = L(q̄, 1, j1) · · ·L(q̄, n, jn)

Then we can write L as the finite union

L =
⋃
L(q̄, j̄)

Define the sets

S(q̄, j̄) = {w̄ ∈ K(T̄ ) : for every i ∈ {1, . . . , n}, type-factori(w̄) ∈ S(q̄, i, ji)}
S ′(q̄, j̄) = {w̄ ∈ K(T̄ ) : for every i ∈ {1, . . . , n}, type-factori(w̄) ∈ S′(q̄, i, ji)}

Now for all state sequences q̄ and sequences j̄, we have

L(q̄, j̄) = K(T̄ ) ∩
(
↑S(q̄, j̄) \ ↑S ′(q̄, j̄)

)
which is BΣ1[σ]-definable. Thus their finite union L is also BΣ1[σ] definable.

Conversely, let L(q̄, i) /∈ Gi for some T̄ -compatible state sequence q̄ and
1 ≤ i ≤ n. To show that L is not BΣ1[σ]-definable, we use Theorem 15 and
show that L is not a union of ≡h classes for any h ∈ N. Fix h. We only need to
show the existence of words w̄, w̄′ ∈ SWk such that w̄ ∈ L, w̄′ /∈ L and w̄ ≡h w̄′.
We write ū ∼ih v̄ if and only if ū ∼h v̄ and either the first letters of ū and v̄ are
both in ATi−1 or neither is.

Suppose, L(q̄, i) is the finite union of some ∼ih classes [ū1], . . . , [ūm]. Then,
for each i ≤ m, ūi ∈ ATi−1,Ti

A∗Ti
, and by definition of ∼ih, [ūi] = ATi−1,Ti

A∗Ti
∩

[ūi]∼h
. Therefore,

L(q̄, i) = ATi−1,Ti
A∗Ti
∩M
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where M =
⋃
j

[ūj ]∼h
∈ BΣ1(<)(ATi

). This shows that L(q̄, i) ∈ Gi, contradict-

ing our assumption.

This establishes that for every i, L(q̄, i) is not a union of ∼ih classes. So there
exist words ūi, ū′i ∈ ATi−1,TiA∗Ti

such that ūi ∼h ū′i (and if Ti is an end type they
have the same last letter), such that exactly one of them, say ūi, is in L(q̄, i).
Then there exist distinct states qi, q′i ∈ Q such that ūi ∈ Lang(AT̄ (qi−1, qi))
and ū′i ∈ Lang(AT̄ (qi−1, q

′
i)). Without loss of generality, we assume that AT̄ is

minimal for L.
So there exists a word ȳ and states p, p′ (where p ∈ F and p′ /∈ F ) such that

y ∈ Lang(AT̄ (qi, p))∩Lang(AT̄ (q′i, p′)). Let x̄ be any word in L(q̄, 1) · · ·L(q̄, i−1),
and let us define w̄ = x̄ūiȳ, w̄

′ = x̄ū′iȳ. Then w̄ ∈ L and w̄ /∈ L. Since L ⊆ K(T̄ ),
w̄ has type sequence T̄ and hence ȳ must be in A∗Ti

ATi,Ti+1A∗Ti+1
. . .A∗Tn

(A∗Tn

if i = n).
Therefore, w̄′ also has type sequence T̄ , i.e. w̄ and w̄′ have the same type

sequence, and the same type factors with the exception of the i-th one. Fur-
thermore, type-factori(w̄) = ūiū

′ and type-factori(w̄′) = ū′iū
′, where ū′ is the

longest prefix of ū in A∗Ti
. We know that ūi ∼h ū′i, therefore ūiū′ ∼h ū′iū′. Then

w̄ ≡h w̄′ by Lemma 10.

Remark 2. The final step in proving that membership-BΣ1[σ] is decidable
is to show that checking whether L(q̄, i) ∈ Gi is decidable, which amounts to
checking membership in the class WB (defined below in Lemma 16). For this
we rely on the decidability of the BΣ1(<)-separation problem [36].

Lemma 16. Let A be an alphabet, B ⊆ A and

WB = {BA∗ ∩ L : L ∈ |BΣ1(<)|}

Given any regular language K ⊆ BA∗, it is decidable whether K ∈ WB.

Proof. We reduce the problem of deciding whether K ∈ WB to an instance of
the BΣ1(<)-separation problem, stated as follows:

BΣ1(<)-separation
Input: Regular languages (L1, L2) over A such that L1∩L2 = ∅.
Question: Does there exist a language L ∈ |BΣ1(<)| such that L1 ⊆

L and L ∩ L2 = ∅?

BΣ1(<)-separation is known to be decidable [36]. Now, given K ⊆ BA∗,
we show that K ∈ WB if and only if (K,Kc ∩BA∗) has a separator in BΣ1(<
)(A). This serves as an effectively computable procedure to check whether a
given language K ∈ WB . First let us assume that K ∈ WB , that is, K =
BA∗ ∩ L for some L ∈ |BΣ1(<)|. Then K ⊆ L and further,

(Kc ∩BA∗) ∩ L = Kc ∩ (BA∗ ∩ L) = Kc ∩K = ∅

Therefore, L is a BΣ1(<)-definable separator for (K,Kc ∩ BA∗). Conversely,
assume that (K,Kc ∩ BA∗) has a separator L ∈ |BΣ1(<)|. Then K ⊆ L and
hence K = K∩B∗ ⊆ L∩BA∗. Moreover, (Kc∩BA∗)∩L = ∅ = Kc∩(BA∗∩L).
Therefore BA∗ ∩ L ⊆ K and hence K = BA∗ ∩ L, implying K ∈ WB . This
completes the proof.
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We explore the separation problem for synchronous relations in Section 6.5.
We now prove Theorem 17.

Proof of Theorem 17. Let the input R be a k-ary synchronous relation whose
synchronized language LR is recognized by some DFA A. By Corollary 4, R
is BΣ1[σ]-definable if and only if LR ∩K(T̄ ) corresponds to a BΣ1[σ] relation
for every type sequence T̄ . Since there are only finitely many type sequences of
k-synchronized words, it is sufficient to check whether LR ∩K(T̄ ) corresponds
to a BΣ1[σ]-definable relation for every type sequence T̄ . Now we fix a type
sequence T̄ and let LT̄ = LR ∩K(T̄ ). Moreover, let AT̄ be a DFA recognizing
LT̄ .

Now, LT̄ ⊆ K(T̄ ), and by Lemma 15, L ∈ ‖BΣ1[σ]‖ if and only if, for
each T̄ -compatible state sequence q̄ ∈ Qn (of states in AT̄ ) and 1 ≤ i ≤ n,
LT̄ (T̄ , q̄, i) ∈ Gi. Therefore, to check whether LT̄ ∈ ‖BΣ1[σ]‖, we go through
every T̄ -compatible state sequence q̄ and check whether LT̄ (T̄ , q̄, i) ∈ Gi. There
are only finitely many T̄ -compatible state sequences, and checking the member-
ship of a language in Gi is decidable (see Remark 2 and Lemma 16). Therefore,
it is decidable to check whether LT̄ is in ‖BΣ1[σ]‖. This completes the proof.

6.4 Characterizing ‖Σ2[σ]‖ and ‖BΣ2[σ]‖
The classes ‖Σ2[σ]‖ and ‖BΣ2[σ]‖ are closely related to their classical counter-
parts, as shown by the following statements:

Theorem 18. Let R be any relation. Then R ∈ ‖Σ2[σ]‖ if and only if LR ∈
|Σ2(<)|.

The proof of Theorem 18 will be given later in this section. As a direct corol-
lary, we obtain a characterization of ‖BΣ2[σ]‖ relations as well. Furthermore,
the membership problems of Σ2(<) and BΣ2(<) are known to be decidable [97].
Therefore we obtain the following results at no additional cost:

Theorem 19. Let R be any relation, then R ∈ ‖BΣ2[σ]‖ if and only if LR ∈
|BΣ2(<)|.

Theorem 20. membership-Σ2[σ] and membership-BΣ2[σ] are decidable.

We now explain the proof of Theorem 18. Let A be an alphabet, then a
polynomial over A is a language of the form

A∗0a1A
∗
1 . . . A

∗
n−1anA

∗
n

We know that |Σ2(<)| is exactly the set of finite unions of polynomials
[114, 11]. Therefore, we consider polynomials over Ak⊥ as a starting point for
characterizing ‖Σ2[σ]‖. However, not every polynomial over Ak⊥ is a valid syn-
chronized language. Consider for example the case of A = {a, b} and k = 2 and
the subsets Ā1 = {(⊥, a)} and Ā2 = {(b,⊥)}, then the polynomial

Ā∗1(a, a)Ā∗2
contains words such as (⊥, a)(⊥, a)(a, a)(b,⊥) which are not synchronized. There-
fore, we introduce the notion of a ⊥-consistent polynomial, that is a polynomial
over Ak⊥ which is also a synchronized language.
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Definition 40. For any synchronized letter ā = a1 ⊗ · · · ⊗ ak ∈ Ak⊥, we
denote by τ(ā) the set {i ∈ {1, . . . , k} : ai = ⊥}. A non-empty subset
Ā ⊆ Ak⊥ is said to be ⊥-consistent if and only if for every ā1, ā2 ∈ Ā,
τ(ā1) = τ(ā2). In that case, we define τ(Ā) to be τ(ā) for any ā ∈ Ā.
We say that the monomial

Ā∗0ā1Ā
∗
1 . . . ānĀ

∗
n

is ⊥-consistent if and only if all the non-empty sets among
Ā0, Ā1, . . . , Ān are ⊥-consistent and τ(Ā0) ⊆ τ(Ā1) ⊆ · · · ⊆ τ(Ān)
(where the term Āi is skipped if Āi = ∅). We define by P̄ the set of
all ⊥-consistent polynomials, that is, the set of all finite unions of ⊥-
consistent monomials.

Observation 4. Let L be an Ak⊥-monomial. Then L ⊆ SWk if and only if
L ∈ P̄. Furthermore, if L is ⊥-consistent, then for everyS ⊆ {1, . . . , k}, πS(L)
is a ⊥-consistent polynomial as well.

Lemma 17. Let R ∈ ‖Π1[σ]‖. Then LR ∈ P̄.

Proof. Every relation in ‖Π1[σ]‖ is the complement of a relation in ‖Σ1[σ]‖.
By Corollary 3, then, LR = SWk \ ↑sS for some finite set S ⊂ SWk. Since
polynomials are closed under intersection (due to Σ2(<)-definability), we only
need to show that SWk \ ↑sw̄ ∈ P̄ for any synchronized word w̄. Fix w̄ ∈ SWk

and let T̄ = (T1, . . . , Tn) be its type sequence. By Lemma 10, a synchronized
word ū is not a synchronized subword of w̄ if and only if one of the following
holds (note that the conditions are not exclusive):

(i) T̄ 6v type-seq(ū)

(ii) T̄ v type-seq(ū) via a witness t but for some i, w̄i 6v ūt(i)

(iii) T̄ v type-seq(ū) via a witness t, but for some i such that Ti is an end type
for T̄ , w̄i and ūt(i) do not have the same last letter

Let C1, C2, C3 be the sets of synchronized words that satisfy conditions (i), (ii), (iii)
respectively. Then

SWk \ (↑sw̄) = C1 ∪ C2 ∪ C3

It is sufficient to show that each Ci is a ⊥-consistent polynomial to prove that
SWk \ ↑sw̄ ∈ P̄.

Firstly, C1 is equal
⋃
K(T̄ ′), where the union runs over all type sequences

T̄ ′ such that T̄ ′ 6⊆ T̄ . (Recall that K(T̄ ′) is the set of synchronized words whose
type-sequence is T̄ ′). By Observation 1, K(T̄ ) is a ⊥-consistent polynomial for
every type-sequence T̄ . Therefore C1 ∈ P̄.

Next, the set C2 is equal to
i=n⋃
i=1

C2,i, where for every 1 ≤ i ≤ n, C2,i is the

set of words ū such that T̄ v type-seq(ū) via a witness function t such that
w̄i 6v ūt(i). Formally,

C2,i = A−,T1A∗T1
AT1,T2A∗T2

. . .ATi−2,Ti−1A∗Ti−1
LiATi,Ti+1A∗Ti+1

. . .ATn−1,TnA∗Tn
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where Li is the set of elements of ATi−1,Ti
A∗Ti

that do not have w̄i as their
subword. Then Li is Σ1(<)-definable over the alphabet ATi−1,Ti

∪ ATi
, and

hence Σ2(<)-definable. Therefore, Li ∈ P̄ and hence C2,i ∈ P. It follows that
C2 =

⋃
C2,i ∈ P̄.

Lastly, note that C3 is equal to
i=n⋃
i=1

C3,i, where C3,i is the set of words ū such

that T̄ v type-seq(ū) via a witness function t such that w̄i and ūt(i) do not have
the same last letter. For each i we can write this as

C3,i = A−,T1A∗T1
AT1,T2A∗T2

. . .ATi−2,Ti−1A∗Ti−1
L′iATi,Ti+1A∗Ti+1

. . .ATn−1,TnA∗Tn

where L′i = (ATi
\ ATi−1)A∗Ti

∩ A∗Ti
Bi with Bi being the set of letters of ATi

different from the last letter of w̄i. Again we have Li ∈ P̄. This implies C3,i ∈ P̄
for every i. Therefore, C3 ∈ P̄.

Proof of Theorem 18. Let R be a synchronous relation such that R ∈ ‖Σ2[σ]‖.
Then LR = Lϕ for some Σ2[σ] formula ϕ, of the form ∃x̄ψ(x̄) where ψ ∈ Π1[σ].
By Lemma 17, Lψ ∈ P̄. By Observation 4, P̄ is closed under projection, so Lϕ =
πx̄(Lψ) is a ⊥-consistent polynomial as well. Therefore, Lϕ ∈ |Σ2(<)(Ak⊥)|.

Conversely, let R be a synchronous relation such that LR ∈ |Σ2(<)|. Then
LR is a polynomial over Ak⊥. Since LR is also the synchronized language of
R, it must be a ⊥-consistent polynomial. Therefore, LR ∈ P̄. By Lemma 18,
R ∈ ‖BΣ2[σ]‖.

Lemma 18. Let R be a relation such that LR is a ⊥-consistent polynomial.
Then R ∈ ‖Σ2[σ]‖.

Proof. Due to the closure of ‖Σ2[σ]‖ under union, the proof reduces to the
case where LR is a ⊥-consistent monomial Ā∗0ā1 . . . Ā

∗
1 . . . ānĀ

∗
n. We construct

a Σ2[σ] formula ϕ(Z) with free variables Z = {z1, . . . , zk} defining R.
Due to ⊥ -consistency, ā1ā2 . . . ān is a synchronized word. Hence there exist

words w1, . . . , wk ∈ A∗ such that w̄ = w1 ⊗ · · · ⊗ wk = ā1 . . . ān. Let us define
additional sets of variables X = {xi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ |wi|} and Y =
{y1, . . . , yk}. First we define a formula ψ1(X,Z) as a conjunction of the following
formulæ over 1 ≤ i ≤ k:

• for every 1 ≤ j < |wi|: xi,j ≺ xi,j+1

• for every 1 ≤ j ≤ |wi|: `wi[j](xi,j)

• xi,|wi| ≺ zi

• for every 1 ≤ i′ ≤ k and j ≤ min(|wi|, |wi′ |): eq(xi,j , xi′,j)

Note that ∃Xψ1(X,Z) is satisfied by a word ū ∈ SWk if and only if w̄ is a
subword of x̄ with the witness function given by p(j) = |xh,j | for any 1 ≤ h ≤ k.
The k variables in Y represent the k components of a prefix of ū, which is
expressed by the formula ψ2(X,Y ) given as a disjunction over all H ⊆ {1, . . . , k}
(H represents components of ū which are shorter than the prefix y1 ⊗ · · · ⊗ yk),
of the formulæ
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∧
h∈H

(yh � zh∧eq(yh, zh))∧
∧

h,i 6∈H

(yh ≺ zh∧eq(yh, yi))∧
∧

h∈H,i6∈H

∃r(r � yi∧eq(r, yh))

Recall that for a synchronized letter ā ∈ Ak⊥, τ(ā) = {h : πh(ā) = ⊥}. For
all ā ∈ Ak⊥ and Ā ⊆ Ak⊥, we define

ψā(Y ) =
∧

h6∈τ(ā)

`πh(ā)(yh)

ψĀ(Y ) =
∨
ā∈Ā

ψā(Y )

If ȳ is a prefix of u and w̄ is a subword of ū with a witness function p, if for
some 1 ≤ j ≤ n we have |ȳ| = p(j), then ȳ satisfies ψā. Finally we verify that if
p(j) < |ȳ| < p(j + 1) for some 1 ≤ j ≤ n − 1, then ȳ satisfies ψĀj

. We ensure
this by the subformulæ ψ3(X,Y ) = χ0 ∧ χ1 · · · ∧ χn, where

χ0(X,Y ) =
( ∧
h6∈τ(Ā0)

yh ≺ xh,1
)

=⇒ ψĀ0
(Y )

χn(X,Y ) =
( ∧
h6∈τ(Ān)

xh,n ≺ yh
)

=⇒ ψĀn
(Y )

and for every 0 < j < n,

χj(X,Y ) =
( ∧
h6∈τ(Āj)

xh,j ≺ yh ∧ yh ≺ xh,j+1

)
=⇒ ψĀj

(Y )

Finally, we define R with the formula

ϕ(Z) = ∃Xψ1(X,Z) ∧ ∀Y (ψ2(X,Y ) ∧ ψ3(X,Y ))

Now, (w1, . . . , wk) satisfies ϕ if and only if (i) w1 ⊗ · · · ⊗ wk contains ā1 . . . ān
as a subword, say at positions i1, . . . , in, and (ii) the synchronized letters in
w1 ⊗ · · · ⊗ wk between positions ip and ip+1 are in Āp. The positions i1, . . . , in
are fixed by X, (i) is verified by ψ1, and (ii) is verified by ∀Y (ψ2∧ψ3). Therefore,
ϕ defines R.

6.5 Beyond membership: the separation prob-
lem for relations

We consider the separation problem for subclasses of relations. Consider a class
of relations R ⊆ Sync. Then the R-separation problem is:

Separation-R
Input: A pair of synchronous relations (R1, R2) over A such that

R1 ∩R2 = ∅.
Question: Does there exist a relation R ∈ R such that R1 ⊆ R and

R ∩R2 = ∅?
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We consider the separation problem for every level of the FO[σ] quantifier
alternation hierarchy. We show that it is decidable for Σ1[σ],Σ2[σ] and BΣ2[σ],
while it is open for BΣ1[σ]. We begin with the case of Σ1[σ], with a lemma:

Lemma 19. Let (R1, R2) be a pair of synchronous relations such that R1∩R2 =
∅. Then they are separated by a relation in ‖Σ1[σ]‖ if and only if R2∩↑sR1 = ∅.

Proof. Assume first that (R1, R2) have a separator R ∈ ‖Σ1[σ]‖. In other words,
R1 ⊆ R and R ∩R2 = ∅. This implies that

↑sR1 ⊆ ↑sR

Since ↑sR = R (by Theorem 14) and R∩R2 = ∅, it follows that R2 ∩↑sR1 = ∅.

Conversely, assume R2∩↑sR1 = ∅. Then ↑sR1 separates (R1, R2). Moreover,
↑sR1 ∈ ‖Σ1[σ]‖ by Theorem 14.

Corollary 5. Separation-Σ1[σ] is decidable.

Proof. Checking that an input pair (R1, R2) has a separator in ‖Σ1[σ]‖ is equiv-
alent to checking whether ↑sR1 ∩ R2 = ∅ (by Lemma 19). By Proposition 8,
↑sR1 is computable from an NFA for LR1 . This completes the proof.

Theorem 21. Separation-Σ2[σ] and Separation-BΣ2[σ] are decidable.

Proof. The characterization theorems for Σ2[σ] and BΣ2[σ] definable relations
(Theorems 18 and 19) state that a relation is definable in Σ2[σ] (resp. BΣ2[σ])
if and only if its synchronized language is in |Σ2(<)| (resp. BΣ2(<)).

It follows that input pair of relations (R1, R2) has a ‖Σ2[σ]‖ (resp. ‖BΣ2[σ]‖)
separator if and only if (LR1 , LR2) have a separator in |Σ2(<)| (resp. |BΣ2(<)|).

Therefore, each instance of Separation-Σ2(<) reduces to an instance of
Separation-Σ2(<). Similarly, Separation-BΣ2(<) reduces to Separation-
BΣ2(<). It is known that Separation-Σ2(<) and Separation-BΣ2(<) are
decidable [96, 98]. This completes the proof.

The decidability of Separation-BΣ1[σ] remains open.
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