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Abstract

This thesis investigates aeroelastic instability phenomena arising in coupled fluid–structure interactions, considering
the flow around a rigid airfoil mounted on a torsion spring. The focus is on the laminar separation flutter phenomenon,
namely a self-sustained pitch oscillation detected experimentally on a NACA0012 airfoil in the transitional Reynolds
number regime (Re ∈ [

104 −105]
) at low incidences, characterised by the separation of an initially laminar boundary

layer followed by its transition and subsequent reattachment. The main objective of this thesis is to explain this
phenomenon in terms of instability concepts. For this, a combination of numerical approaches involving two- and
three-dimensional Navier–Stokes simulations—the latter referred to as Direct Numerical Simulations (DNS)—along
with linear stability analyses (LSA) around a mean flow or a periodic flow (Floquet analysis) is employed. A second
objective is to numerically explore the different nonlinear regimes appearing in the low-to-moderate Reynolds number
regime. The first part of this thesis is devoted to the characterisation of the fluid flow around the airfoil considering fixed
incidences. Two-dimensional time-marching simulations are first employed, showing the emergence of high frequency
vortex shedding oscillations for Re≈ 8000. A hydrodynamic stability analysis (Floquet) is then employed to characterise
the transition to a three-dimensional flow and DNS is eventually used to characterise both instantaneous and averaged
flow quantities at Re= 50000. An analysis of the mean forces exerted on a fixed-incidence wing allows to detect a negative
aerodynamic stiffness (torque-to-incidence ratio) in the range |α|. 2◦, indicating a static instability. The second part
of this thesis is devoted to the characterisation of the primary instability of the coupled fluid–structure system using
LSA around the mean and periodic flow fields. Considering the symmetrical equilibrium position α= 0◦, the analyses
show the presence of an unstable static mode, in accordance with the existence of a negative aerodynamic stiffness.
In the third part of this thesis, the emergence of self-sustained flutter oscillations is investigated via two-dimensional
aeroelastic simulations. The investigation shows that the system first transitions towards a pitch oscillation around
the nonsymmetrical equilibrium position (α 6= 0◦), with coexistence of chaotic and quasi-periodic solutions for the same
structural parameters, and subsequently transitions towards a pitch oscillation around the symmetrical position (α= 0◦)
as the Reynolds number increases. In the last part of this thesis, an attempt is made to explain the destabilisation of the
nonsymmetrical equilibrium positions leading to a quasi-periodic behaviour using LSA around the mean and periodic
flow fields at fixed incidences. Even if these analyses are unable to predict an unstable eigenmode, we conclude that the
inclusion of the Reynolds stress term in the mean flow perturbation dynamics has an important effect.

Keywords — Aeroelastic instabilities, transitional Reynolds number, laminar separation flutter, linear stability, Floquet analysis.
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Résumé

Cette thèse porte sur l’étude de l’instabilité aéroélastique provenant de l’interaction fluide–structure, dans le cas d’une
aile rigide montée sur un ressort en torsion. L’étude est centrée sur le phénomène de flottement dû à un décollement
laminaire, et plus précisément sur les oscillations (en torsion) auto-entretenues détectées expérimentalement pour
un profil NACA0012 à faible incidence, dans la gamme de nombre de Reynolds dits transitionnels (Re ∈ [

104 −105]
),

caractérisé par un décollement de la couche limite initialement laminaire, suivi d’une transition et d’un rattachement.
L’objectif principal de cette thèse est d’expliquer ce phénomène en se basant sur des concepts d’instabilité. Pour
ce faire, différentes approches numériques ont été conduites: des simulations numériques bidimensionnelles et des
simulations numériques tridimensionnelles (DNS). Ces approches ont en suite servi de base à des analyses de stabilité
linéaire (LSA) autour d’un champ moyen ou d’un champ périodique (analyse de Floquet). Le deuxième objectif vise à
explorer les différents régimes non linéaires qui apparaissent dans cette gamme de Reynolds. La première partie de
cette thèse est consacrée à la caractérisation de l’écoulement autour de l’aile pour des angles d’incidence fixes. Des
simulations temporelles bidimensionnelles montrent l’apparition d’oscillations à haute fréquence associées à la separation
tourbillonnaire en aval du profil à partir de Re≈ 8000. Une analyse de stabilité hydrodynamique (Floquet) est réalisée
pour caractériser la transition vers un écoulement tridimensionnel. Des simulations tridimensionnelles sont ensuite
réalisées pour Re= 50000 afin de caractériser l’écoulement instantané et moyenné. L’analyse des forces moyennes exercées
sur l’aile à incidence fixe permettent de détecter une rigidité aérodynamique négative (rapport moment-incidence) pour
la gamme |α|. 2◦, indiquant une instabilité aéroélastique statique. La deuxième partie de cette thèse concerne la
caractérisation de l’instabilité primaire fluide–structure en utilisant une analyse LSA autour des champs moyen et
périodique. En considérant la position d’équilibre symétrique α= 0◦, l’analyses montrent la présence d’un mode statique
instable, en accord avec l’existence d’une rigidité aérodynamique négative. Dans une troisième partie, l’émergence de
l’oscillation de flottement est étudiée via des simulations aéroélastiques bidimensionnelles. Cette investigation montre
que l’apparition des oscillations se fait dans un premier temps autour d’une position d’équilibre non nulle (α 6= 0◦), où des
solutions chaotiques et quasi-périodiques coexistent pour les mêmes paramètres structuraux, et évolue vers un régime
où les oscillations se font autour de α= 0◦. La dernière partie de cette thèse essaie d’expliquer la déstabilisation des
positions d’équilibre non nulles conduisant à un comportement quasi-périodique à l’aide d’analyses LSA autour des
champs moyens et périodiques à incidence fixe. Même si ces analyses sont incapables de prédire un mode propre instable,
nous concluons que l’inclusion du terme des contraintes de Reynolds dans la dynamique de perturbation de l’écoulement
moyen a un effet important.

Mots-Clés — Instabilités aéroélastiques, nombres de Reynolds transitionnelles, flottement dû à un décollement laminaire, stabilité

linéaire, analyse de Floquet.
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Introduction

Aeroelastic phenomena have strongly shaped the course of the aircraft evolution since the earliest days of flight. One
of the first incidents associated to aeroelastic phenomena was the failed attempted flight of Professor Samuel Langley at
the beginning of the 20th century, on its tandem monoplane, illustrated in figure 1a. Langley’s failure has been attributed
to the overall lack of structural rigidity, especially torsional rigidity of the wing and fuselage. Later on, other structural
failures were observed in the early days of aircraft design, namely during the flights of the First World War German
airplanes Albatros D.III and Fokker D.VIII. In these cases, the structural cracks that often resulted on the airplanes’
crash, had their origin on the divergent twist of the wing’s aircraft during flight, notably over a dive manoeuvre (Garrick
et al., 1981).

The appearance of these aeroelastic instabilities was a direct consequence of the aircraft design evolution, by seeking
better rate-of-climb and manoeuvrability, higher velocity and autonomy, in detriment of a more solid structural construc-
tion, where these incidents could have been potentially avoided. The reason why this happened and, most importantly,
the solution to these failures only arrived during the 1930s with the pioneer works of Glauert (1930), Theodorsen (1935)
and von Kármán et al. (1938). Their investigation shed a light on the understanding of the main features associated to
the aeroelastic phenomena encountered on the early aircraft designs.

The subsequent works of Collar (1946) enabled to view aeroelasticity as a physical phenomenon resulting from

(a) (b)

Figure 1 – On the left, first attempt of Professor Langley to launch its Aerodrome aircraft (Auriti et al., 2004). On
the right, in-flight aeroelastic tests performed with the SB-9 glider in 1970 (from Akaflieg Braunschweig website).
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Divergence and flutter instabilities

the interaction of aerodynamic, elastic and inertial forces from a flow field acting on a structure. More generally, this
fluid–structure interaction is present in a wide range of domains, from the motion of insects, fish and birds to flows around
turbomachinery blades, flexible pipes, bridges, buildings and aircraft.

Most aeroelastic phenomena are of an undesirable character, compromising not only the long term durability of the
wing structure, but also the operational safety, flight performance, design effectiveness and energy efficiency of the
aircraft. However, in recent years, the beneficial effects of aeroelasticity have received greater attention, e.g., with the
exploitation of the morphing capacities of the aircraft’s wing to create aerodynamically efficient designs for multiple flight
regimes. Further, aeroelastic instabilities can also be exploited for energy production. For example, this is the case in
marine engineering, where numerous researches are devoted to exploit the excitation of oscillation modes on flexible
membranes by a current and/or a wave for energy harvesting (Achour, 2022).

The need for a lightweight design of aircraft often results in flexible structures, prone to deformation under load. Such
deformations change the aerodynamic load distribution, which in turn changes back the deformations. This interacting
feedback process may lead to numerous aeroelastic instabilities, namely to flutter, illustrated in figure 1b, a self-excited
oscillation, often destructive, wherein energy from the fluid flow is absorbed by the structure. In this thesis, we are
particularly interested in describing and understanding these different fluid–structure instabilities that may arise in
wings whose boundary layer is mostly laminar. This laminarity is desired from the aircraft design perspective, with
the aim of reducing the skin friction drag and therefore reducing the aviation’s climate impact and carbon footprint of
Humanity on environment.

Divergence and flutter instabilities

Aeroelastic instabilities are generally categorised into two very different categories, namely static instabilities and
dynamic instabilities (Bisplinghoff et al., 1955), depending on whether the behaviour is non-oscillatory or oscillatory.
Both kinds of instabilities are illustrated in figure 2 in the simplest case where the structure is modelled by a rigid wing
mounted on a torsion spring.

One example of a static instability is the divergence instability, illustrated in figure 2a. This instability arises
whenever the aerodynamic moment exerted by the flow onto the wing cannot be counterbalanced by the elastic stiffness of
the structure (Fung, 2008), resulting in a non-oscillatory deviation of the wing incidence, α, from its equilibrium position.

t

α

α

(a) Divergence instability, characterised by a non-oscillatory
deviation from the equilibrium position.

t

α

α

(b) Flutter instability, characterised by an oscillatory deviation
from the equilibrium position towards a limit cycle.

Figure 2 – Schematic representation of the divergence and flutter instabilities of a NACA0012 airfoil with a pitch
degree of freedom.

2 Introduction



Divergence and flutter instabilities

Its occurrence can be simply predicted using a static criterion, stating that a divergence instability occurs whenever the
total stiffness (including structural stiffness and aerodynamic stiffness) is negative. At lower flight speeds, the presence
of a torsion spring has a small effect on the wing dynamics, often leading to a different equilibrium state of the wing
incidence, which in this case is stable. However, at higher flight speeds, the presence of a torsion spring and its effect may
become so serious as to lead to large amplitude oscillations, to render a control surface ineffective, or even to reverse the
sense of control. In the case of Langley’s airplane or the German fighters, this phenomenon led to the fatal failure of the
structure. For modern aircraft, the critical flight speeds at which divergence sets in are usually higher than those of other
aeroelastic instabilities, as for the flutter instability, described next.

Flutter is a classical example of a dynamic instability, illustrated in figure 2b. This instability arises in situations
where the aerodynamic damping is negative, and sufficiently strong to counterbalance the structural damping (which
is always positive, for the structural model considered here), leading to a total negative damping scenario. In these
situations, one finds, at the leading order, an oscillatory behaviour of the structure. Indeed, the aerodynamic forces
exerted on the wing depend on its unsteady motion and not only on its instantaneous incidence. In particular, this
aerodynamic force contains an aerodynamic damping which is proportional to the rotational velocity of the wing.

Based on a linear approach, it is known that flutter instability appears at a certain aircraft velocity, often called
critical reduced velocity or critical flutter speed. Close to that threshold, the nonlinear limit cycle oscillations appear for
either lower or upper reduced velocities, depending on the nature of the bifurcation (Thomas et al., 2002; Moulin et al.,
2022). In the case of a soft or supercritical bifurcation scenario, flutter can only appear for velocities higher than the
critical flutter speed, whereas for a hard or subcritical bifurcation scenario, nonlinear oscillations may appear below the
linear threshold if disturbances are sufficiently large.

The major types of flutter encountered on aircraft can often be analysed in terms of idealised models having only a
small number of degrees of freedom. An even greater simplification is the replacement of the three-dimensional wing
model by an equivalent two-dimensional airfoil model, where several types of flutter can be investigated and categorised,
as the coupled-mode flutter, the transonic flutter, the stall flutter, the single-degree-of-freedom pitching flutter or the
laminar separation flutter. The present thesis will focus on the last type of flutter. Prior to this, we will review the
literature devoted to the other types of flutter.

Coupled-mode flutter, also called classical or coalescence flutter, is a phenomenon where at least two structural
normal modes (classically the bending and torsion modes) are coupled and excited through the time-dependent aerody-
namic loads (Hancock et al., 1985). The phenomenon was firstly treated using linear unsteady inviscid formulations,
valid on a high chord-based Reynolds number and fully attached flow framework, predicting the critical conditions for the
generic case of a two-degree-of-freedom pitch-plunge wing (Theodorsen, 1935; Sears, 1941). This phenomenon was also
reported and treated by Rocard (1943), describing the coupling of the bending and torsion modes on a clamped wing. In
subsequent works, Barmby et al. (1951) extended Theodorsen theory to swept wings, while Yates Jr. (1966) extended it to
subsonic, supersonic and hypersonic flows, both validating the theoretical results with experiments. While flutter for low
subsonic attached flows can, in general, be accurately predicted with these seminal linearised theories, such methods fail
for separated or transonic flows where the traditional small-disturbance formulation is inherently nonlinear (see, for
example, Ueda et al. (1984)). This nonlinear behaviour is not particular to the classical flutter, but can also be found for
example in laminar separation flutter or transonic flutter phenomena.

Several studies have tried to better understand the nonlinear regime of flutter phenomena. The nonlinearity sources
can be either structural or aerodynamic. In the structural side, the main sources are: (i) geometric, where the system
response is altered due to the significant changes in the initial shape of the structure; (ii) damping, where the damping
forces of the structure contribute to the nonlinear response. For example, Lee et al. (1999) studied the effect of a cubic
structural restoring force on the flutter characteristics of a two-dimensional airfoil placed in an incompressible flow and,
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more recently, Patil et al. (2004) carried out a nonlinear aeroelastic analysis for high-aspect-ratio wings. Concomitantly,
the main sources of aerodynamic nonlinearities are: (i) flow separation, either due to an increase of the angle of attack
of a wing or to a laminar separation of the boundary layer; (ii) appearance of a shock in the transonic flow regime,
where the discontinuity in the pressure distribution interacts with the boundary layer, causing separation. As an
example, Bendiksen (2011) made a review on unsteady transonic aerodynamics and its relevance on understanding
the flutter, divergence, and control reversal phenomena of transonic aircraft. Beedy et al. (2003) developed a nonlinear
method of stall flutter analysis based on an ONERA aerodynamic model (Tran et al., 1980).

Unlike the classical flutter, stall flutter is a self-excited limit cycle oscillation caused by the interaction of a dynamic
stall event with the inertial and elastic characteristics of a wing. In its turn, dynamic stall is defined as an unsteady
aerodynamic phenomenon, characterised by the abrupt loss of aerodynamic loads (lift and/or pitching moment) due
to flow separation on wings undergoing unsteady motions (Halfman et al., 1951). Stall flutter is a nonlinear dynamic
phenomenon that can even be found when considering only the torsional degree of freedom (Corke et al., 2015). This
phenomenon can be encountered in a variety of situations, such as helicopter rotor blades (Tang et al., 1992), wind turbine
blades (Hansen et al., 2006) or flexible wings (Razak et al., 2011).

Concerning the experimental literature, Amandolese et al. (2013) studied the dynamical response of a two-degree-
of-freedom flat plate undergoing classical coupled-mode flutter in a wind tunnel at low-to-moderate Reynolds number
(Re≈ 2.5×104). Dimitriadis et al. (2009) studied a NACA0012 airfoil undergoing stall flutter oscillations in a low-speed
wind tunnel, characterising the local bifurcation behaviour of the dynamic system. Razak et al. (2011) investigated the
stall flutter of a rectangular wing through pressure, acceleration, and Particle Image Velocimetry (PIV) measurements,
finding that the dynamic stall mechanism has significant influence on the occurrence and on the characteristics of stall
flutter oscillations.

In addition to the previous aeroelastic phenomena, one can find the Single-Degree-Of-Freedom (SDOF) pitching
flutter, which is a flutter instability that appears for attached flows around an airfoil oscillating in the pitch direction with
an amplitude of approximatively α= 0.5◦. This type of flutter was first discovered by Glauert (1930) and subsequently
investigated by Kiergan et al. (1942) and Smilg (1949) for attached potential flows under a two-dimensional incompressible
hypothesis. Additionally, this phenomenon was reported for supersonic regimes by Garrick et al. (1946). Runyan (1951)
and Runyan et al. (1952) further explored the effect of the compressibility on subsonic regimes and the position of the axis
of rotation. These works included a set of experimental results, confirming the existence of a SDOF pitching flutter for
unswept wings with very high values of inertia.

Figure 3 illustrates the instability zone predicted by the linearised theory, for three different Mach numbers. These
results show a destabilising trend for when the Mach number is increased. Further, it was noted that the reduction of
the wing’s aspect ratio was strongly stabilising, as well as the increase of the structural damping. Despite the initial
interest on this flutter phenomenon, the case was considered only as an academic case study and with little practical
interest, since it required the moment of inertia to be several orders of magnitude higher than the one typically found on
an aircraft (Bisplinghoff et al., 1955, p. 617).

The extension of the linearised theory to the compressible inviscid attached flows was only accomplished several years
later by Jones et al. (1997) which noted that thicker airfoils may achieve SDOF flutter under more realistic conditions.
The extension to viscous flows was investigated in Kakkavas (1998), using a URANS model, closed with a Baldwin–Lomax
model (Baldwin et al., 1978), for a Reynolds number of 106. Among their findings, they note that viscous flow effects had
a stabilising influence, reducing the possibility of SDOF flutter.

At the same time, the SDOF pitching flutter was also observed for transonic and low supersonic speeds regimes.

4 Introduction



Transitional flow regime

Figure 3 – Graphic extracted from Runyan (1951), plotting the critical reduced velocity for the SDOF pitching
flutter versus the moment of inertia about the leading edge of a wing for various Mach numbers. For each case, the
unstable region is located on the right of the corresponding curve. The vertical asymptotes, on the left limit of the
unstable zone, indicate the smallest value of the inertia parameter at which the oscillation can occur.

Experimental evidence of this phenomenon at the bottom of the transonic dip1 was obtained during the late 1950s and
into the 1960s in wind tunnel tests by Bratt et al. (1954) and Bratt et al. (1962). A recent review is presented in section 7
of Bendiksen (2011) on the general features of the transonic SDOF pitching flutter. Recently, Gao et al. (2016), studied this
phenomenon with a reduced-order model, arguing that transonic flutter, differently from the classical flutter, emerge from
the coupling of a structural and a fluid mode. Transonic SDOF flutter can also be observed in control surfaces (Lambourne,
1968), denoted “buzz”, characterised by a self-excited and sudden vibration of the aileron yielding large amplitudes,
potentially leading to permanent damage of the aircraft structure.

In this thesis, we will investigate and describe a similar flutter phenomenon, also characterised by only the pitch
degree of freedom, but observed for subsonic regimes (in particular incompressible regimes) and for lower Reynolds
numbers, where the separation of the boundary layer plays an important role. The phenomenon was recently discovered
and labelled laminar separation flutter. To introduce this phenomenon, we first proceed to a physical description of the
transitional flow regime around a NACA0012 airfoil.

Transitional flow regime

For conventional commercial aircraft wings, usually in transonic regimes and whose Reynolds number exceeds a
million, a turbulent flow regime is readily triggered from upstream locations near the leading edge, leading to a boundary
layer that remains attached to the wing’s surface for a relatively high range of angles of attack. However, for lower

1Transonic dip represents a flight envelope region where a sharp drop of the critical flutter speed is found as the flow reaches a transonic regime.
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(a) (b)

Figure 4 – Schematic illustration of a two-dimensional laminar boundary layer separation (left) and of a laminar
separation bubble (right). Adapted from Busquet (2020).

Reynolds and Mach numbers, corresponding for instance to the flight regimes of drones and gliders, the transition location
moves downstream, originating a laminar boundary layer over a considerable portion of the wing. For a low-to-moderate
Reynolds number range, 104 ≤ Re ≤ 106, the boundary layer is characterised by the coexistence of laminar, transition
and turbulent regions, where complex viscous phenomena can occur, such as the formation of a laminar separation
bubble (Mueller, 1951).

Laminar separation bubble

Laminar boundary layer separation over an airfoil describes the phenomenon where a laminar attached boundary
layer separates from the surface of the airfoil. This results from a strong adverse pressure gradient in the streamwise
direction, present downstream of the point of minimum pressure. After separation, the resulted shear flow is usually
very unstable and prone to transition to a turbulent state, as a result of the amplification of velocity disturbances
present immediately after the separation. As for example described in Busquet (2020), two scenarios can be encountered.
The first case is illustrated in figure 4a. The laminar separation of the boundary layer occurs at the section SS′. The
separation point, S, represents an inflection point beyond which the flow velocity close to the airfoil surface has an
upstream direction. On the separated boundary layer, a transition of the flow field to a turbulent state can occur. In this
scenario, the boundary layer remains separated up to the end of the surface. As a consequence, a large wake is formed
downstream the trailing edge, which is usually associated to large values of aerodynamic resistance/drag. In a second
scenario, illustrated in figure 4b, the rise in pressure of the shear flow due to turbulent mixing is sufficiently high to
cause the reattachment of the separated flow, at the point R, located before the trailing edge. From the section RR′

onwards, a turbulent attached boundary layer is formed. The region formed under the separated shear layer, between
the airfoil surface and the dividing streamline, is termed Laminar Separation Bubble (LSB). Figure 4b presents a
classical model of the time-averaged structure of a laminar separation bubble, proposed by Horton (1968). The transition
of the separated shear layer is reduced to the section TT ′, rather than a spatial region, in order to simplify the exposure.

As an example of the latter scenario, we present in figure 5 the distribution of the friction and pressure coefficients
along the airfoil surfaces for a time- and spanwise-averaged solution of a Direct Numerical Simulation (DNS) at Re= 50000
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Figure 5 – Time- and spanwise-averaged distributions of the friction coefficient C f (left) and the pressure coefficient
Cp (right) associated to DNS simulations at Re = 50000 and α = 5◦, from Jones et al. (2008). The solid and
dashed blue lines represent the distribution along the upper and lower surfaces, respectively. The separation and
reattachment points are noted S and R, respectively. The transition point is graphically estimated and noted T.
The grey zone for 0.099< x < 0.607 represents the region where the laminar separation bubble is present.

and α= 5◦, from Jones et al. (2008). The presence of a laminar separation bubble is observed in the upper surface of the
airfoil, represented by the solid blue line. At these conditions, the flow transitions to (well resolved in the simulations)
turbulence, with a laminar separation bubble forming on the first half of the airfoil (0.099< x < 0.607). The separation
and reattachment points are characterised by a null friction stress at the wall. The recirculation region on the LSB can
be divided into two sub-regions relative to the average position of transition. The first sub-region is located between
the separation point S and the transition location T and is characterised by a slow-moving reverse flow. As a result,
the streamwise pressure gradient is nearly zero, resulting in a plateau on the pressure distribution of the airfoil upper
surface. Concomitantly, the friction coefficient is characterised by the slightly negative value. This region is usually called
the “dead air” region. The second sub-region is located between the averaged transition position T and the reattachment
point R. This region is characterised by a vortical structure with a strong circulation, called reverse-flow vortex. This
recirculation causes a drop in the friction coefficient upstream of the reattachment point. The abrupt reattachment of the
shear layer leads to a rapid increase in surface pressure.

Laminar separation bubbles appear in numerous aerodynamic applications, such as low Reynolds number flying
vehicles, high-altitude long-endurance unmanned aerial vehicles (Shimoyama et al., 2017), Mars exploration aerial
vehicles (Anyoji et al., 2014) or dynamic stall characteristics of wings (Chen et al., 2021), to cite a few. The existence
of a laminar separation bubble for a certain airfoil shape is dependent on the Reynolds number, angle of attack and
freestream turbulence level. In fact, the LSB on an airfoil can be eliminated completely by enforcing transition upstream
of the point of separation (e.g., Lei et al. (2020)). In many applications, this is not desirable since it results in a turbulent
boundary layer over a large portion of the airfoil, leading to an increase of the skin friction coefficient and larger values of
the total drag coefficient.

The interest on separation bubbles firstly arose from their occurrence on the upper surface of an airfoil at incidence,
playing an important role on its stalling characteristics (Jones, 1934). In particular, the LSB was associated to a
thin-airfoil stall occurrence (McCullough et al., 1951), characterised by a laminar flow separation near the leading edge
with reattachment at a point which moves progressively rearward, towards the trailing edge, with the increase of the
angle of attack.

Classically, the laminar separation bubbles were classified into two types: short and long bubbles (Owen et al., 1955).
Short bubbles were defined as possessing a bubble length approximately 102 times the displacement thickness of the
boundary layer at the separation point, corresponding only to a few percent points of the airfoil chord. On the other hand,
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(a) (b) (c)

Figure 6 – Representation of different types of laminar separation bubbles: a short bubble (left), a long bubble
(centre) and a trailing-edge bubble (right), from Xia et al. (2021).

long bubbles were defined as having a length of order 104 times the displacement thickness of the boundary layer at
the separation point, corresponding to more than 20% of the entire airfoil. One of the earliest studies on the issue was
conducted by Tani (1964), who observed that the length of short bubbles decreased with the angle of attack at small
incidences until a critical state was reached, where the bubble suddenly increases in length. This sudden transition from
short to long bubbles, or even to a fully separated state of the boundary layer with no reattachment is known as a bubble
“bursting”.

An example of the structure of short and long bubbles is shown in figures 6a and 6b, extracted from a recent review of
the aerodynamic characteristics of a flow field over different airfoils at low Reynolds number (Xia et al., 2021). In addition
to these two types of laminar separation bubbles, a third type of bubble was recently introduced in the literature by Bai
et al. (2016), the trailing-edge LSB, presented in figure 6c (also referred as open bubble, e.g., in ElAwad et al. (2019)).
They reported the presence of a trailing-edge LSB for a symmetric SD8020 airfoil at Re = 40000. The trailing-edge
LSB precedes the emergence of a long LSB as the angle of attack increases. This type of bubble can also be found in
the previous publications, although categorised as a long LSB or just as a separated flow regime (e.g., Kojima et al.
(2013)). The trailing-edge LSB is topologically different from the classic long LSB. The former is characterised by a
main vortex located above the trailing edge, in contrast to the reverse-flow vortex of a long LSB, located above the upper
surface of the airfoil. Additionally, the separated shear layer above a trailing-edge LSB does not present a time-averaged
reattachment point, in contrast to the long LSB shear layer, that reattaches before the trailing edge. In the present thesis,
the emergence of a laminar separation bubble will be investigated for different time- and spanwise-averaged solutions of
Direct Numerical Simulations over a NACA0012 airfoil at different fixed incidences, discussing, among other topics, its
impact on global coefficients such as the aerodynamic moment. The next paragraphs introduce the characteristics of
these global coefficients on a low-to-moderate Reynolds number.

Negative lift and aerodynamic moment at small angles of attack

In the low-to-moderate Reynolds number regime, the laminar boundary layer separation phenomenon has been
associated to a counter-intuitive behaviour of the global coefficients, such as drag, lift and aerodynamic moment coefficients,
as function of the angle of attack. We illustrate this phenomenon in figure 7, by the drag and lift evolutions with the angle
of attack, from the literature (Ohtake et al., 2007; Mueller et al., 1982). Concerning the drag coefficient, the presence of a
laminar boundary layer on a considerable part of the airfoil enables one to obtain a much lower skin friction component,
when compared to the values obtained with a turbulent boundary layer found in the general aviation and commercial
transport aircraft. This leads to the presence of a low drag regime for a range of angles of attack, due to a predominance of
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(a) (b)

Figure 7 – On the left, evolution of the drag coefficient with the angle of attack for different Reynolds numbers,
from the experiments of Ohtake et al. (2007). On the right, evolution of the lift coefficient with the angle of attack for
Re= 130000, from the experiments of Mueller et al. (1982). In this case, three sets of data are plotted: the circles
represent the unperturbed experiments, where a negative lift is observed on the range 0◦ < α < 3◦, the triangles
represent the experiments where the boundary layer was tripped at the leading edge, and the square, where the flow
was acoustically excited.

the laminar flow, often called “drag bucket”. This phenomenon can be observed in figure 7a, on the range −11◦.α. 11◦.
Concerning the lift coefficient evolution (figure 7b), one can readily note the presence of an initial negative region of this
coefficient for an incidence range well bellow the stall angles. This nonlinear behaviour could not be predicted using linear
theories, such as the inviscid thin-airfoil theory, which predicts a linear evolution of the lift coefficient, with a positive
slope of 2π. Mueller et al. (1982) were the first team to experimentally describe this phenomenon, for the symmetric
NACA663-018 airfoil at Re = 130000. They found this negative region of the lift coefficient in the range 0◦ < α < 3◦,
followed by a change in sign as the angle of attack increases. Bellow and above this Reynolds number, no negative lift
was observed. This nonlinear behaviour is represented by the black line and the circles marks. The phenomenon was
completely removed by addition of surface roughness (triangle marks) and also by acoustic excitation (square mark).
With these modifications on the flow, no laminar boundary layer separation is found. The results of Mueller et al. (1982),
associated to this nonlinear behaviour of the lift global coefficient, appeared isolated in the literature at the time.

The same observations were only described in the recent years for a NACA0012 airfoil. Ohtake et al. (2007) observed
this phenomenon in a low-speed wind tunnel, for Reynolds numbers between Re = 25000 and Re = 70000. One year
later, Yonemoto et al. (2008) investigated this phenomenon using two-dimensional Navier–Stokes computations, proposing
that the emergence of a negative lift is due to a reverse flow on the upper surface at the trailing edge, that accelerates
the boundary layer on the lower surface. A review on the basic understanding of airfoil characteristics at low Reynolds
numbers is presented in Winslow et al. (2018), where this phenomenon was reported. A comparison between the
experimental and numerical results on the literature for different airfoils was carried out by Tank et al. (2017a,b), and
studied by Pranesh et al. (2019) on the NACA0012 airfoil using two-dimensional RANS computations, with a SST k–ω
closure model, used in conjunction with a γ–Reθ transition model.

As reported in Pranesh et al. (2019), the flow field around the NACA0012 airfoil at Re = 50000 and α = 0◦ is
characterised by a laminar separated boundary layer, that transitions while separated, and does not reattach. As the
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angle of attack increases, the separation point moves upstream. For α = 4◦, the turbulent separated boundary layer
reattaches, forming a long LSB on the upper surface. They further report that an increase of α beyond 4◦ resulted in a
shorter LSB, moving towards the leading edge. Finally, we note that this change in the topology of the flow field as the
incidence increases has a similar effect on the evolution of the aerodynamic moment coefficient, which was also reported
in the cited literature.

The above considerations were made for fixed airfoil configurations, where no structure was taken into account. In this
thesis, we will investigate a fluid–structure instability, the laminar separation flutter, in which the laminar separation
and the negative aerodynamic moment phenomena play an important role on the structure oscillations. In that way, we
continue in the next section our discussion on this type of fluid–structure instability.

Laminar separation flutter

The pioneer experimental investigation of Poirel et al. (2008) reported a new aeroelastic phenomenon, labelled
Laminar Separation Flutter (LSF), described as the self-sustained pitch oscillation of an airfoil mounted on a torsional
spring system. These oscillations, reported on a NACA0012 airfoil for the Reynolds number range of 45000≤Re≤ 130000,
are characterised by a Strouhal frequency around StLSF = 0.06 (based on the airfoil chord) and a maximum amplitude
of oscillation of αmax ≈ 5.5◦, around the equilibrium position at α= 0◦. The authors suggested that the loss of stability
of the airfoil at its equilibrium position and, consequently, the dynamics of the pitch oscillations, were governed by the
laminar separation of the boundary layer over the airfoil, either due to a trailing edge separation or to the presence of a
laminar separation bubble.

The phenomenon was numerically reproduced by Poirel et al. (2011), where two-dimensional coupled time-marching
aeroelastic simulations were performed for 50000<Re< 150000. The authors adopted a purely two-dimensional laminar
fluid model and a URANS fluid model, the latter associated to a SST k–ω turbulence model with a low-Reynolds-number
correction. The investigation confirmed that the laminar separation of the boundary layer near the trailing edge plays a
critical role in initiating and sustaining the pitch oscillations. For this reason, the phenomenon is labelled as laminar
separation flutter. The authors also showed that the turbulence viscosity tends to inhibit the existence of the instability.
In subsequent studies, this instability was investigated by Barnes et al. (2016, 2018), where Implicit Large-Eddy
Simulations (ILES), coupled with the structural dynamics, were performed. Among the findings, the authors found the
existence of the flutter limit cycle oscillation beyond the initial Reynolds number range investigated by Poirel et al. (2008),
77000 ≤ Re ≤ 200000, at which the pitch instability was observed after imposing an initial disturbance on the airfoil
incidence. They also reported a reduction on the size of the LSB with the increase of the Reynolds number.

The different phenomena associated to the flow dynamics on the limit cycle oscillation of the LSF are explored in
figure 8a, taken from Barnes et al. (2016). The figure represents different instantaneous flow fields during half of a
flutter oscillation period, between the maximum and minimum incidences, i.e., during a pitch-down phase. The flow
fields are associated to the lower airfoil surface, with the same phenomena appearing on the upper airfoil surface for the
pitch-up phase. During the first stages of the flutter oscillation period, illustrated by the first instantaneous flow fields
in the figure, a laminar separation is formed on the rear portion of the wing. Eventually, as the angular displacement
continues to decrease, the separated shear layer becomes unstable, transitions to turbulence, and reattaches at the
trailing edge. This process imparts a brief spike in the moment coefficient which tends to damp the limit cycle oscillation.
The long laminar separation bubble is then observed up to the minimum incidence instant, characterised by the presence
of spanwise coherent boundary layer vortices, as displayed in the figure. This flow pattern alternates between the upper
and lower surfaces in subsequent strokes.
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(a) (b)

Figure 8 – On the left, three-dimensional view of instantaneous Q-criterion isosurfaces from ILES simulations of
the lower airfoil surface for Re= 77000 and Kdim

s = 0.3Nm, at several phases of the pitch-down motion, between the
maximum and minimum incidences (Barnes et al., 2016). On the right, time history of the pitching oscillations at
Re= 77000 for Kdim

s = 0.003, 0.3, 1 and 3Nm (Barnes et al., 2019). An initial disturbance on the structural model
was introduced on the two last cases.

The influence of the structural stiffness on the LSF phenomenon was investigated in more detail in Barnes et al.
(2019) for Re= 77000 and Re= 110000, where the LSF is shown to persist over several orders of magnitude of structural
rigidity. Figure 8b, taken from this reference, presents the time history of the angular displacement for different values of
the structural stiffness, Kdim

s . The simulations were initiated from a time-marching solution at a static angle of α= 0◦.
For the lower values of Kdim

s , represented on the top evolutions, the self-sustained oscillations appear readily after a
few convective time units. A first exponential growth of the incidence is observed, followed by the limit cycle oscillations,
whose maximum amplitude decreases with the increase of Kdim

s . In the two last time evolutions, for higher values of
Kdim

s , an initial disturbance on the aerodynamic moment was introduced at the beginning of the simulations in order to
prompt the limit cycle oscillations. As noted by the authors, this perturbation was introduced in the “Cases which do
not oscillate on their own [...]”. This suggests the existence of different stable solutions for the same values of structural
stiffness. In the last time evolution, the value of the structural stiffness is sufficiently high to cause the airfoil to remain
on its equilibrium position at α= 0◦.

The authors further concluded that the effect of the structural rigidity at a fixed Reynolds number exhibited a similar
behaviour as the effect of Reynolds number at a fixed stiffness. More precisely, both parameters influence the timing of
transition events relative to the pitch limit cycle, with, for example at high stiffness values, a turbulent reattachment
that occurs at a later phase of the cycle. Further, as the stiffness increased, the LSB was reported to increasingly be
dominated by laminar—rather than turbulent—reattachment. This shift in the flow structure resulted in an increasingly
nonlinear behaviour of the aerodynamic moment over the flutter oscillation. Likewise, the same effects were observed to
occur when the Reynolds number was decreased at a fixed stiffness in Barnes et al. (2018).

Finally, although the phenomenon was initially identified considering a single degree of freedom, the pitching, several
subsequent analyses also detected it in cases with two degrees of freedom, pitching and heaving. These studies include
the experiments of Poirel et al. (2012, 2014), numerical LES simulations from Yuan et al. (2013), among others.
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In all the above references, the lower Reynolds number limit of the LSF oscillations was reported to be around
Re ≈ 50000. Below this value, the literature reports negligible incidence oscillations of the FSI configuration around
α= 0◦. With that in mind, in this thesis we will investigate both the nonlinear regimes for the Reynolds number range
where the LSF was reported in the literature, as well as the nonlinear regimes that arise for lower Reynolds numbers,
which precede the LSF oscillations. This investigation will be performed with a fluid–structure time-marching scheme,
where the fluid will be modelled by the two-dimensional Navier–Stokes equations. The parametric space will be explored
by varying both the structural stiffness and the Reynolds number. The onset of these fluid–structure oscillations will also
be investigated in a linear stability analysis framework, presented in the next paragraphs.

Fluid–structure linear stability analysis

Linear Stability Analysis (LSA) theory has been of central importance in fluid mechanics ever since the observation
that the property of a flow state being a solution of the governing equations is no guarantee that it will actually be
realised in practice. The linear stability theory started on a hydrodynamic framework at the late 19th century with the
controlled experiments of Reynolds (Reynolds, 1883) and the works of Rayleigh (1879) and Kelvin (1887). The concept of
linear stability was later extended to coupled fluid–structure systems, where the primordial aim was to delimit the flight
envelope of military and commercial aircraft cruise flights, whose Reynolds number often exceeds a million (Bisplinghoff
et al., 1955; Clark et al., 2004).

The notion of stability is intimately related to the evolution of an infinitesimal perturbation imposed to an equilibrium
point of a dynamic system. In particular, in a modal approach, used in this thesis, we are interested on the long-term
evolution of these perturbations that are decomposed as the sum of linearly independent modes. The linear stability
of an equilibrium point is then obtained from a spectral analysis of the linearised equations governing the dynamic
system. A stable equilibrium point is one where a perturbation decays in time and the system returns to its equilibrium
state. On the other hand, considering an unstable equilibrium point, this same perturbation grows exponentially in time,
eventually leading the system to a different attractor solution (which may be for instance another stable equilibrium
point, a limit cycle, or a chaotic attractor) (Schmid et al., 2012).

A classical example of hydrodynamic instability is the emergence of a vortex shedding behind a rigid circular cylinder
immersed in a low Reynolds number flow. This instability arises from a Hopf bifurcation (Provansal et al., 1987;
Sreenivasan et al., 1987), for a Reynolds number around 46.7. Below this threshold, the flow is steady in time. In contrast,
above this threshold, an unsteady von Kármán vortex wake is observed. The bifurcation threshold is predicted via a
LSA around an equilibrium state that corresponds to the steady solution of the Navier–Stokes equations, also known as
base flow solution. After the onset of the vortex shedding, the physics of the flow is usually described via a LSA around
the mean flow state, rather than the base flow, as the former more accurately predicts some of the flow characteristics,
e.g., the vortex shedding frequency (Barkley, 2006; Sipp et al., 2007). A further increase in the Reynolds number results
in secondary instabilities leading to three-dimensional vortices, which can be investigated via hydrodynamic Floquet
linear stability analyses, where the dynamic equilibrium state corresponds to the periodic flow solution vibrating at the
frequency of the vortex shedding (Barkley et al., 1996; Williamson, 1996a). In the context of this thesis, both hydrodynamic
mean flow and Floquet analyses around a NACA0012 airfoil at α = 0◦ will be performed. The former will be used to
understand the role of the fluid modes on the FSI instabilities, while the latter will be used to investigate the onset of
three-dimensional perturbations on the wing’s spanwise direction.

Concerning fluid–structure systems, a classical benchmark on the low Reynolds number regime is the case of the spring-
mounted circular cylinder, where vortex-induced vibrations may be observed below the fixed cylinder threshold (Cossu
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Figure 9 – Aeroelastic eigenvalues of a mean flow LSA for different Reynolds numbers at α = 0◦ and Kdim
s =

0.15Nm. A complex pair of low frequency eigenvalues associated to a hydrodynamic analysis for a stationary wing
at Re= 77000 and α= 0◦, is also plotted, noted NOFSI. All results are from Negi et al. (2021).

et al., 2000; Meliga et al., 2011; Zhang et al., 2015b; Navrose et al., 2016; Kou et al., 2017; Sabino et al., 2020). Below the
fixed cylinder threshold, even if the flow by itself and the structure do not present intrinsic instability mechanisms, their
mutual interaction may result in unstable scenarios. In particular, due to the presence of the additional degree of freedom
of the structure, the fluid–structure instabilities were shown to be triggered for Reynolds numbers as low as 20. Among
other fluid–structure studies, Assemat et al. (2012); Tchoufag et al. (2014a,b) examined the case of two-dimensional rigid
bodies falling or rising freely in a viscous fluid, Pfister et al. (2020); Furquan et al. (2021) carried out a LSA on a flexible
splitter plate attached to a rigid circular cylinder and Moulin et al. (2021) investigated the case of a rectangular plate
mounted on heave and torsion springs.

After a primary bifurcation leading to a time-periodic limit cycle, fluid–structure systems may also be affected
by secondary instabilities. The latter may be detected using a Floquet linear stability analysis, which represents a
generalisation of the base/mean flow analyses presented above. In this case, rather than investigating the long-term
perturbation evolution of a steady state, we study the growth or decay of a perturbation over one oscillation period. If
the system is unstable, perturbations will grow progressively shifting the system away from its periodic equilibrium. In
this case, the system is expected to transition to a behaviour which remains periodic, with the same period or with a
doubled period, or to a quasi-periodic behaviour. Regarding the literature, Elston et al. (2004) employed this method
to determine the onset of two-dimensional symmetry breaking in a quiescent fluid of an oscillating circular cylinder.
More recently, Jallas et al. (2017) studied the symmetry breaking in time-periodic propulsive wakes for imposed flapping
airfoils. Benetti Ramos et al. (2021) investigated the role of linear mechanisms in the emergence of nonlinear horizontal
self-propelled states of a heaving foil in a quiescent fluid.

Concerning the low-to-moderate Reynolds number regime and, in particular, the linear stability studies investigating
the laminar separation flutter phenomenon, the literature is rather scarce. The only study was conducted by Negi et al.
(2021), performing a mean flow fluid–structure LSA over a NACA0012 airfoil configuration with a torsional degree of
freedom. The mean flow fields were obtained from time- and spanwise-averaged solutions of DNS simulations at α= 0◦.
They have shown that the spontaneous onset of the laminar separation flutter is due to a linearly unstable mode of the
coupled fluid–structure interaction problem.

One of their main results is reproduced in figure 9, where the FSI eigenvalues are sketched in a spectrum representa-
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tion for different Reynolds numbers. The growth rate of the eigenvalues, λ, is represented on the horizontal axis, while
their corresponding frequency, ω, can be found on the vertical axis. An eigenvalue is deemed unstable if its growth rate is
positive: λ> 0. Negi et al. (2021) concluded that the onset of pitch oscillations is caused by the emergence of a purely real
eigenvalue, between the Reynolds numbers 40000 and 50000 (for a structural stiffness of Kdim

s = 0.15Nm). However, the
divergence mode is only expected to lead to a diverging behaviour instability (as sketched in figure 2a), and not to an
oscillating behaviour (as sketched in figure 2b). Hence, these results alone are unable to explain the existence of the
self-sustained oscillations associated to the LSF, since no frequency is associated to the divergence mode.

In their investigation, Negi et al. (2021) suggested that the frequency selection of the self-sustained oscillations came
from the linearly stable low frequency mode, whose frequency (ω≈ 0.5) was in accordance with the frequency of the LSF
observed experimentally. In that way, they concluded that “[...] the observed LCO frequency is likely to arise due to the
nonlinear modification of the linearly stable aeroelastic mode, while the onset itself is caused by the divergence instability
with zero frequency.”. They also compared the FSI results with the results from a hydrodynamic analysis, present in the
figure, highlighting the fact that no unstable modes were found when the pitching degree of freedom of the structure was
not considered.

In light of these results, the present thesis will readdress the laminar separation phenomenon with different linear
stability analysis strategies. In a first part, we will study the onset of the static instability of the airfoil configuration
at α= 0◦, associated to the presence of this linearly unstable divergence mode. We will extend the investigation from
a mean flow analysis to the FSI Floquet analysis, where the presence of the divergence mode is studied for a periodic
equilibrium state. Further, the influence of the low frequency modes of the hydrodynamic spectrum will be investigated
in order to better understand the role of the additional torsional degree of freedom and to construct a simplified model
to predict the fluid–structure eigenmodes. In a second part, both linear stability analyses will be used to explore the
stability of a secondary equilibrium position of the fluid–structure system that may exist for α 6= 0◦.

Organisation of the manuscript

The remaining pages of this thesis are divided in six chapters, organised as follows:

• Chapter 1 introduces in detail the fluid and structure models used in this thesis. First, the non-dimensional
Navier–Stokes equations are expressed on a non-inertial reference frame. This is followed by the presentation
of the dimensional and non-dimensional equations governing the pitch motion of the right body airfoil. Then,
the formulation associated to the FSI Floquet linear stability analysis is introduced, along with the considered
hypotheses. Two variants of the mean flow LSA are derived, where we highlight the simplifications made with
respect to the Floquet formulation. The technical details on the finite element spatial discretisation of the
Navier–Stokes equations are provided, as well as the details of the SUPG and grad-div stabilisation techniques
employed. The different time-marching schemes used through this thesis are then introduced. Finally, preliminary
results concerning the validation of some key aspects of the numerical implementation presented above are explored.
This chapter is mostly meant to offload the rest of the manuscript from the cumbersome technical details, e.g., the
derivation of the Navier–Stokes equations on a non inertial reference frame or the derivation of the Floquet and
mean flow linear stability analyses.

• In chapter 2, we describe the flow field around a NACA0012 profile wing and the corresponding aerodynamic forces
acting on it from a Reynolds number of Re = 1000 to Re = 65000, at different angles of attack. No interaction
between the fluid and the wing is taken into account as the wing incidence is fixed to a static position for each
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simulation. In a first part, we consider the flow as being model by the two-dimensional Navier–Stokes equations,
where we explore the onset of a vortex shedding on the wake of a NACA0012 airfoil and the notions of base and mean
flow solutions. We then characterise the emergence of the three-dimensional instabilities in the airfoil spanwise
direction, by the means of a hydrodynamic Floquet stability analysis. In a second part, we characterise both
instantaneous and spectral properties associated to three-dimensional Direct Numerical Simulations carried out at
Re= 50000 for five angles of attack, between 0◦ and 2◦. In particular, time- and spanwise-averaged solutions are
obtained from these simulations, that are later used for the mean flow stability analyses. In a third part, we present
an alternative approach to evaluate the aerodynamic moment of the airfoil, based on the spatial distribution of the
different terms of the Navier–Stokes equations, rather than the classic approach based on the stress integration
over the fluid–solid interface.

• Chapter 3 is dedicated to the presentation and implementation of different methods for the computation of the FSI
eigenpairs of the mean flow linear stability problem. The first type of methods is based on the exact formulation
of the mean flow eigenvalue problem, where the inversion of the fluid–structure Jacobian is obtained by solely
inverting the fluid Jacobian and by some additional matrix-vector product operations. The second type of methods is
based on several relevant simplifications of the original problem. In particular, the results of the exact formulation
are first compared to a quasi-steady formulation, where classic aeroelastic added coefficients are computed. Then,
the FSI eigenmodes are approximated with the help of a rational function expansion solely based on the most
relevant hydrodynamic eigenvalues.

• Chapter 4 explores the linear stability of the coupled fluid–structure system on the primary equilibrium position at
α= 0◦. We start by characterising the emergence of the divergence eigenmode, responsible for the departure of the
structure from this equilibrium position. This analysis is based on the mean flow formulations present in the first
chapter. We then investigate the influence of the structure parameters on both divergence and flutter eigenmodes,
as well as the influence of the elastic centre position, Reynolds number and airfoil thickness. The FSI eigenmodes
obtained with a mean flow from two-dimensional computations are then compared to the ones obtained with a
time- and spanwise-averaged flow from three-dimensional computations. Finally, the emergence of the primary FSI
instability is analysed via a Floquet FSI analysis, where a comparison with the results of the mean flow analyses
and a comparison with the fluid–structure behaviour found for nonlinear time-marching simulations are carried
out.

• Chapter 5 aims at investigating the different nonlinear behaviours arising in the present fluid–structure system,
considering a two-dimensional model. First, we illustrate the different equilibrium positions admissible by the
structure, retrieved from the quasi-steady mean aerodynamic moment curve evolution with the angle of attack.
Secondly, we use nonlinear simulations of the coupled FSI problem to identify different possible regimes. By varying
the structural stiffness and keeping the Reynolds number constant, we identify five different regimes. Third, a
bifurcation diagram is sketched, highlighting different stable branches for the same values of structural stiffness.
In particular, for a finite range of structural stiffness values, a bistable behaviour is identified characterised by
the coexistence of chaotic and quasi-periodic solutions. Finally, we explore the different regimes appearing for
Re≥ 50000, keeping the structural parameters constant, that ultimately lead to the global limit cycle oscillations
referred to as laminar separation flutter.

• At the end of this thesis, in chapter 6, we revisit the different mean flow and Floquet linear stability analyses to
investigate the stability of a secondary equilibrium position that may exist for certain values of structural stiffness.
In a first part, we investigate the stability of these second equilibrium positions. In particular, we are interested
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in predicting the emergence of the quasi-periodic solutions reported in the previous chapter. In a second part,
we perform mean flow FSI analyses for the secondary equilibrium positions of the time- and spanwise-averaged
solutions issued from three-dimensional simulations.
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Chapter 1

Problem description and numerical tools

The characteristics of a flow field and the generated aerodynamic forces and moments on a body immersed in it are
generally assessed by either experimental essays or by the means of numerical simulations. When these aerodynamic
forces and moments are strong enough, they can induce deformations and displacements on the structure, which must
be taken into account when modelling a fluid–structure problem. In the present thesis, we study this fluid–structure
interaction via numerical simulations. In that way, this chapter is divided in five parts. In a first part, the mathematical
formulation associated to the present problem is presented. The flow field is described by the two-/three-dimensional
incompressible Navier–Stokes equations, the latter referred to as Direct Numerical Simulations (DNS). In a second
part, the formulation associated to the rigid-body model is presented, with a spanwise torsional degree of freedom of
the wing. In a third part, we summarise the fluid–structure formalism, introducing the slow and fast time scales and
studying the solid response to a harmonic forcing. These developments serve as basis for the derivation of the linearised
fluid–structure equations, introduced in a fourth part. The linearisation is first based on the fast time scale dynamics,
with a Floquet FSI and mean flow FSI linear stability analyses. Then, an alternative derivation is made for the mean
flow FSI stability analysis, based on the slow time scale dynamics. In a fifth part, the spatial discretisation, based on the
Finite Element Method (FEM), and the time discretisations of the aforementioned equations are detailed, along with a
description of the meshing procedure and the numerical details associated to the numerical stabilisation. The chapter
ends with the presentation of several preliminary results associated to the numerical validation.

We start this chapter by introducing the inertial and non-inertial frames of reference in which the different formula-
tions are based on.

1.1 Incompressible flow model

1.1.1 Inertial and non-inertial reference frames

A number of challenging problems arises when treating the coupling between a structure and the fluid flow, namely
the fact that the domain occupied by the fluid is time-dependent. Several methods can be found in the literature in order
to take into account this displacement, e.g., the Immersed Boundary Methods (IBM) (Mittal et al., 2005) or the Arbitrary
Lagrangian–Eulerian (ALE) methods (Donea et al., 2004). For a rigid-body configuration, as considered throughout this
thesis, the flow field is modelled in a frame of reference attached to the body, such that the fluid–solid interface does not
depend on the time (Mougin et al., 2002). This reference frame is usually non-inertial due to the rigid-body motion.
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Figure 1.1 – Schematic illustration of the transformation between the inertial and non-inertial frames, with the
reference airfoil velocity vector, U∞, in blue.

The implementation of this last approach starts with the introduction of three orthonormal direct Cartesian reference
frames. First, an absolute reference frame, noted Ra = (

O, ex, ey, ez
)
, assumed inertial and where the fluid is at rest

far away from the wing, is defined, with an arbitrary origin O. At the same time, a second reference frame, noted Rr′ =
(O, eX ′ , eY ′ , eZ′ ), is defined, following the wing’s rotation. Finally, a third reference frame, noted Rr = (L, eX , eY , eZ), is
introduced, following both wing’s rotation and translation, with L the mid-span point at the leading edge of the wing. The
last two references are referred to as relative or non-inertial reference frames.

The Cartesian coordinates of a generic point P can be represented in the frames Ra and Rr, using x= [x, y, z]T and
X (t)= [X (t), Y (t), Z(t)]T , respectively, with t ≥ 0 the time variable. We note that the position vector X (t) is time-dependent,
since the reference frame Rr is non-inertial. The connection between the inertial and rotated frames is accomplished
with the help of the rotation matrix, noted as R[θ(t)]. For a rotation around a spanwise axis passing through the point
EC, this matrix only depends on the absolute angular displacement of the relative frame, θ, which depend on the time, t.
The angular displacement is positive in the anticlockwise direction, whereas the angle of incidence or angle of attack, α,
is positive in the clockwise direction, having θ =−α. In this way, the relation between x and X is given by:

(X − XEC)=R[θ(t)]T (x− xEC) with R[θ(t)]=




cos[θ(t)] −sin[θ(t)] 0
sin[θ(t)] cos[θ(t)] 0

0 0 1


 , (1.1)

where xEC and XEC represent the absolute and relative positions of the wing’s elastic centre axis, respectively, around
which the rotation is performed. This transformation can be visualised with the help of figure 1.1. The next sections are
dedicated to the derivation of the fluid equations, projected on the non-inertial frame of reference that follows the rotation
of the wing, but not its translation.

1.1.2 Inertial frame formulation

Physically, the general motion of a non-reactive continuum fluid is governed by a set of partial differential equations,
commonly called Navier–Stokes equations (Landau et al., 1987). For an incompressible fluid, where the fluid density ρ is

18 Chapter 1 – Problem description and numerical tools



Section 1.1 – Incompressible flow model

constant, this set of equations can be posed in a nondimensional form1, with respect to the inertial frame Ra, as:

∂u
∂t

+ (u·∇)u−∇·σ(u, p)= 0 ,

∇·u = 0,

(1.2a)

(1.2b)

where u(x, t) = [u, v, w]T is the absolute fluid velocity and σ(u, p) the stress tensor, depending on the fluid pressure,
p(x, t), with x ∈Ω f ,t. The fluid domain Ω f ,t, represented in the absolute frame of reference, is considered to be moving
due to the displacement of the fluid–solid interface. These equations were first described by Navier (1827), but their
adequate physical justification was given only later on the work of Stokes (1845).

We assume an isotropic Newtonian fluid, where the viscous stress varies linearly with the velocity rate. The fluid
dynamic viscosity coefficient, µ, is considered to be a positive constant, not varying with temperature and pressure—and
hence with the position. Furthermore, the temperature of the fluid is also considered constant and Stokes’ hypothesis is
considered to hold2. With these hypotheses, the stress tensor is given by

σ(u, p)=−p1+ 2
Re

S(u) ,

S(u)= 1
2

(
∇u+ (∇u)T

)
,

where S is the strain rate tensor and 1 the identity operator. The Reynolds number, used to characterise the ratio between
the inertial and viscous forces within the fluid, is defined as Re = ρU∞c/µ, with U∞ the reference velocity and c the
constant chord of the unswept wing. The Reynolds number can also be written in terms of the fluid kinematic viscosity
coefficient, ν=µ/ρ, as Re=U∞c/ν. The values U∞ and c are both fixed at 1. Therefore, the Reynolds number is varied by
modifying the values of ν.

The pressure field is defined up to a constant and this constant is fixed in the numerical description (section 1.7). In the
case of an incompressible flow, the pressure gradient corresponds to a more relevant physical quantity, representing a force
per unit volume. Indeed, the pressure field in incompressible flows is not a thermodynamic variable and can be viewed,
from an optimisation point of view, as a Lagrange multiplier associated with the isochoric constraint (equation 1.2b),
which constrains the velocity field to remain divergence-free.

The problem is considered closed after taking into account the initial and boundary conditions. Physically, this means
that, at infinity, the flow field tends to an unperturbed flow field at rest, with a velocity that tends to zero, while at the
wing surface, Γw, the fluid velocity tends to the wing velocity such that the velocity continuity at the interface is respected
(no-slip condition). These conditions can be posed as

u(x, 0)=u0(x) x ∈Ω f ,t ,

u(x, t)→0 ‖x‖→∞ ,

u(x, t)=uw x ∈Γw(t) ,

(1.3a)

(1.3b)

(1.3c)

with u0 the given initial fluid velocity at t = 0 (respecting the boundary conditions and the divergence-free condition
and hence prescribing the initial pressure) and uw the wing velocity. The wing velocity uw is composed by a component

1The nondimensional Navier–Stokes equations are derived from their dimensional form, using dimensional analysis (Buckingham, 1914). The
demonstration can be found in most of the introductory fluid mechanics books (e.g., White (1991), pp. 81–89).

2Stating these hypotheses, the classical energy equation and the thermodynamic relations connecting the thermodynamic variables (density, specific
internal energy and temperature) and the pressure are not considered in this thesis.
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coming from the wing translation, given by U∞ =−U∞ex (see blue arrow in figure 1.1), and a component coming from
the wing rotation, detailed later. As stated previously, we note that Ω f ,t and Γw are both time-dependent. This situation
can pose a series of numerical complications, as the ill-posedness of the time derivative at a point sufficiently near the
interface between the fluid and the wing. To circumvent this time-dependency, the above equations are projected into the
non-inertial frame, rotating with the wing, but with no translation velocity. This operation is conducted in two steps:

• In a first step, the space operators are rewritten with an explicit dependency on the relative space position, i.e., not
depending explicitly on the absolute coordinates, x, but on the relative ones, X ;

• In a second step, the resulting system of equations is projected into the relative frame of reference rotating with the
wing, Rr′ .

1.1.3 Space derivatives on the non-inertial frame

The explicit dependence on the state variables on space coordinates of the system Rr is written as u(x, t)= u(X , t)
and p(x, t)= p(X , t). Further, the projection of the absolute velocity into the relative frames, U(X , t), is defined with the
help of the rotation matrix in equation 1.1, yielding:

U(X , t)=RT u(X , t) .

Each space derivative operation present in equations 1.2 can then be rewritten as (see appendix A for the detailed
derivations):

Space derivative w.r.t. x ⇒ Space derivative w.r.t. X

(u·∇)u ⇒ R [(U ·∇)U] ,

∇·σ(u, p) ⇒ R [∇·σ(U , p)] ,

∇·u ⇒ ∇·U ,

where henceforward, the gradient operator, ∇, represents the space derivative with respect to the relative space coordi-
nates, [X , Y , Z]T .

1.1.4 Time derivative on the non-inertial frame

Concerning the time derivative, one can write

∂t [u(x, t)]
∣∣∣
x
= ∂t [u(X (t), t)]

∣∣∣
x
= ∂t [u(X , t)]

∣∣∣
X
+

(
d(X − XEC)

dt

∣∣∣∣
x
·∇

)
u(X , t) ,

where the term d(X − XEC) /dt represents the frame velocity vector projected on the relative frame. Since the domain is
not deformable, d(X −XEC) /dt also corresponds to the velocity of any point on the domain. Furthermore, if these points
are considered to be on the wing surface, this term will also correspond to the wing velocity. Using equation 1.1, it can be
developed3 as

d(X − XEC)
dt

=−Ω× (X −XEC)− ẊEC , (1.4)

3See Identity 5, in appendix A.
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where ẊEC represents a velocity field, corresponding to the pure translation velocity of the frame (and the wing), on the
relative frame, and Ω(t)= [0, 0,Ω(t)]T its angular velocity vector, with a sole component on the ez-direction. The former
is defined as

ẊEC ≡U∞ =−U∞ex =−U∞ (cos(θ)eX −sin(θ)eY ) .

Injecting the previous developments into the Navier–Stokes momentum equation, one arrives to:

∂u
∂t

− ([
Ω× (X − XEC)+ ẊEC

] ·∇)
u+R [(U ·∇)U]−R [∇·σ(U , p)]= 0 .

We can identify the rigid-body velocity field Uw, defined in every point in space, corresponding to the motion of the relative
frame with respect to the inertial frame, as

Uw =Ω× (X − XEC)+ ẊEC ,

where the first term accounts for the angular velocity, whereas the second term accounts for the translation velocity.

The final stage passes through the projection of the governing equations into the relative frame:

RT ∂u
∂t

−RT [(Uw·∇)u]+RTR [(U ·∇)U]−RTR [∇·σ(U , p)]= 0 .

The development of the time derivative reads

RT ∂u
∂t

= ∂RT u
∂t

−u
dRT

dt
= ∂U

∂t
− dRT

dθ
dθ
dt

u = ∂U
∂t

+Ω×U ,

where an additional term appears, Ω×U , which is associated to the rotational acceleration of the wing. The term
associated to the rigid-body velocity field Uw is simplified as

RT ([Uw·∇]u)=∇·
[
RT u⊗Uw

]
−RT u���

�:0
(∇·Uw) =∇· [U ⊗Uw]= [Uw·∇]U +U���

�:0
(∇·Uw)

⇒RT ([Uw·∇]u)= [Uw·∇]U .

1.1.5 Non-inertial frame formulation

Finally, the previous developments lead to the incompressible Navier–Stokes equations projected on the relative frame

∂U
∂t

+Ω×U + ([U −Uw] ·∇)U −∇·σ(U , p)= 0 ,

∇·U = 0,

(1.5a)

(1.5b)

with X ∈ Ω f , where Ω f is the fixed reference domain with respected to the relative frame, not depending on time.
The fluid velocity, U(X , t) = [U , V , W]T , represents the absolute velocity field as function of the relative coordinates,
X = [X , Y , Z]T , and projected into the non-inertial frame, rotating with the wing, but with no translation velocity. As
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Figure 1.2 – Schematic illustration of the damped spring-mounted NACA0012 airfoil.

present in equations 1.3, the initial and boundary conditions are posed as

U(X , 0)=U0(X ) X ∈Ω f ,

U(X , t)→0 ‖X‖→∞ ,

U(x, t)=Uw X ∈Γw ,

(1.6a)

(1.6b)

(1.6c)

where this time, the fluid–solid interface, Γw, does not vary with time. Hence, we recover the formulation of the equations
given in Mougin et al. (2002), associated to a rigid-body motion. When comparing with the Navier–Stokes equations
written in an inertial frame of reference, two additional terms appear: the rotational accelerationΩ×U and a modification
of the convective velocity by the rigid-body velocity field, defined as

Uw =Ω× (X −XEC)+ ẊEC with ẊEC =U∞[−cos(θ) , sin(θ) , 0]T .

Note that this formulation should not be confused with the more classical formulation in terms of relative velocities in a
relative frame, which features a Coriolis term in the form 2Ω×U (see, e.g., Landau et al. (1987), p. 40). This term should
not be confused with the non-inertial terms appearing in the present formulation.

1.2 Torsion rigid-body model

The inherent complexity of a flexible airplane structure can be modelled by a two-dimensional airfoil section, a
NACA0012 airfoil of chord c, whose geometry generation is detailed in appendix A. The airfoil is considered as a rigid
body, allowed to rotate around its elastic centre, XEC . The pitching motion is characterised by the instantaneous angular
displacement, or pitch angle, θ(t), and by the angular velocity, Ω(t), both considered positive for a nose-down displacement.
As stated before, the angle of attack is defined simply as α=−θ. The motion being purely two-dimensional, Ω(t) represents
the ez-component of the vectorial angular velocity Ω=Ω ez. The schematic representation of the airfoil mounted on a
torsional spring is presented in figure 1.2.

The temporal evolution of the airfoil can be described by a simple damped harmonic oscillator, governed by the
first-order dimensional system:

Idim
s

dΩ
dt

+Ddim
s Ω+Kdim

s θ = mdim
z (U , p) ,

dθ
dt

−Ω= 0,

(1.7a)

(1.7b)

where Idim
s , Ddim

s and Kdim
s are the dimensional moment of inertia around the elastic centre position, structural damping
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XEC(% of chord) ρ(kg/m2) µ(Ns/m2) c(m) Idim
s (kgm2 or Nms2) Ddim

s (Nms) Kdim
s (Nm)

0.186 1.189 1.85×10−5 0.156 0.00135 0.002 0.15

Table 1.1 – Nominal dimensional fluid–structure parameters, along with the reference values used by Poirel et al.
(2008) for retrieving the nondimensional fluid–structure parameters.

and structural stiffness per unit span, respectively, and mdim
z the dimensional ez-component of the aerodynamic moment,

mdim = mdim
z ez per unit span, measured around the elastic centre. The latter is defined as

mdim(U , p)=
∫

Γw

(X −XEC)× (σ(U , p)·nw) dΓw , (1.8)

where dΓw is an infinitesimal increment along the airfoil’s boundary with nw its outward unit normal vector. As an
alternative to the definition based on a surface integral, we explore in section 2.3 (page 104) a definition of the pressure
component of the aerodynamic moment based on a volume integral. The pressure component is demonstrated to be
dominant in the present scenarios, when compared to the friction component.

We note that the fluid interaction with the solid motion is taken into account by the aerodynamic moment, which
depends on the fluid state variables, [U , p]T . The initial conditions for the first order system 1.7 are usually set as
[θ,Ω]T = [0, 0]T for t = 0. Following the present convention, a positive moment corresponds to a moment that forces the
airfoil to pitch-down, decreasing the angle of attack, α. In all the developments present in this thesis, we assume that all
the structural parameters are zero or positive quantities. The nominal structural parameters are present in table 1.1, in
accordance with the experimental values used in Poirel et al. (2008).

In this thesis, the structural equations are made nondimensional using the reference parameters taken into account
by Poirel et al. (2008) and reported in table 1.1. Note that these reference values are only used to retrieve the nondimen-
sional structure parameters that are then considered throughout this thesis, since that, for the nondimensionalisation of
the fluid equations, U∞ and c were fixed at 1. In that way, the nondimensional version of the system 1.7 is given by:

Is
dΩ
dt

+DsΩ+Ksθ = mz(U , p) ,

dθ
dt

−Ω= 0.

(1.9a)

(1.9b)

The relation between the dimensional and nondimensional aforementioned variables is defined as

Is =
Idim

s
1
2ρc4

, Ds =
Ddim

s
1
2ρU∞c3

, Ks =
Kdim

s
1
2ρU∞2c2

, mz =
mdim

z
1
2ρU∞2c2

. (1.10)

For the simplified case where the structure is in vacuum, the movement is governed by the homogeneous ordinary
differential equation Isθ̈+Dsθ̇+Ksθ = 0. The general solution of this equation can be search in a normal form θ =(
eσs t +c.c.

)
/2, where σs represents the fundamental decay (real part) and frequency (imaginary part) of the structure,

defined as

σs =λs +ωsi with λs =− Ds

2Is
and ωs =±

√
Ks

Is
−λ2

s . (1.11)

The dimensional value of σs is given by σdim
s =σsU∞/c. The numerical values of σdim

s and σs for the current nominal

Chapter 1 – Problem description and numerical tools 23



Section 1.2 – Torsion rigid-body model

σs fs ωn ζ

Dimensional value 0.74074+10.51487i 1.67349 10.54093 —

Nondimensional value at Re= 10000 0.11586+ 1.64461i 0.26175 1.64869 0.07027
Nondimensional value at Re= 20000 0.05793+ 0.82231i 0.13087 0.82434 0.07027
Nondimensional value at Re= 50000 0.02317+ 0.32892i 0.05235 0.32974 0.07027

Table 1.2 – Structural dimensional and nondimensional parameters for different Reynolds numbers.

parameters are reported in table 1.2. Any positive value of the damping coefficient results into a negative structural
growth rate (λs < 0) damping any structure oscillation, which returns to a stable equilibrium position. We further define
the frequency of the structure as fs =ωs/(2π), also reported in table 1.2 (with f dim

s = fsU∞/c). Here, ωs is assumed real,
corresponding to the case studied in this thesis. The different regimes that may arise on a structure in vacuum are
described in the following paragraphs, for completeness of the manuscript.

We can rewrite the structure equation in terms of the damping ratio, ζ, and the natural frequency of the structure, ωn,
defined as

ζ= Ds

2Isωn
= Ds

2
√

KsIs
and ωn =

√
Ks

Is
.

Their numerical values for the current nominal parameters are reported in table 1.2 (with ωdim
n =ωnU∞/c). The damping

ratio corresponds to ratio between the actual damping Ds and the critical damping ratio 2
√

KsIs (when Ds = 2
√

KsIs, we
have ζ= 1), while the natural frequency corresponds to the frequency at which the system would oscillate if the damping
coefficient was zero. Therefore, the structure equation can be written as

d2θ

dt2 +2ζωn
dθ
dt

+ (ωn)2θ = 1
Is

mz(U , p) . (1.12)

With the definitions of ζ and ωn, the eigenvalues of the structure (in vacuum) can be categorised into four cases:

• first, if the system is undamped (ζ= 0), the eigenvalues are complex conjugate and located on the imaginary axis,
with ωs =ωn;

• second, if 0< ζ< 1, the system is referred to as underdamped, and the eigenvalues are complex conjugate, lying on
the stable side of the spectrum (λs < 0). The eigenvalue frequency and growth rate are given by ωs =±ωn

√
1−ζ2

and λs =−ζωn, respectively. The quantity ζωn is usually termed attenuation;

• third, if ζ= 1, the eigenvalues coincide on the real axis, having a zero frequency and a growth rate of λs =−ωn. The
system is referred to as critically damped;

• forth, if ζ > 1, the eigenvalues are positioned at two distinct locations of the real axis, on the stable side of the
spectrum: λs = −

(
ζ−

√
ζ2 −1

)
ωn and λs = −

(
ζ+

√
ζ2 −1

)
ωn. For ζ ≥ 1, the spring-damped system exhibits an

exponential decay behaviour in the time domain is referred to as overdamped. In the limit as ζ tends to infinity, one
of the eigenvalues will approach the origin, while the other one will tend to −∞.

Considering the reference values given in table 1.1, the nondimensional structural parameters depend upon the
Reynolds number as follows:

Is = 3.8343, Ds = 0.0888(Re/105)
−1

, Ks = 0.1042(Re/105)
−2

.
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Re Is Ds Ks Sts St f Stt
s Stt

f

10000 3.83428 0.88846 10.42220 0.26175 2.50627 0.03141 0.30075
20000 3.83428 0.44423 2.60555 0.13087 3.35578 0.01570 0.40269
50000 3.83428 0.17769 0.41689 0.05235 4.87173 0.00628 0.58460

Table 1.3 – Fluid–structure nondimensional parameters for different Reynolds numbers, along with the structural
and fluid Strouhal numbers. The last two columns are based on the airfoil thickness.

The values of the nondimensional structure parameters are given in table 1.3 for three Reynolds numbers. Similarly,
the structural frequency, f dim

s , can be represented by a structural Strouhal number, also depending upon the Reynolds
number as:

Sts =
f dim
s c
U∞ = 0.0262(Re/105)

−1
.

This Strouhal number can be compared to the Strouhal number characterising vortex shedding phenomenon, St f . The
latter is estimated to be on the range

St f ≈ [2−5].

Table 1.3 reports these two Strouhal numbers for three Reynolds numbers, with St f associated to the vortex shedding
of two-dimensional simulations at α= 0◦ (explored in chapter 2). By comparing Sts and St f , we infer that the problem
is characterised by two different time scales. Additionally, we report these values based on the airfoil thickness, noted
Stt

s and Stt
f . In view of the different order of magnitude between the solid and fluid frequencies, one can expect the

fluid–structure dynamics to be decomposed into a fast time scale, corresponding to the vortex shedding, and a slow time
scale corresponding to motion of the airfoil. This decomposition is further justified and explored in the following sections
in order to be exploited in the linear stability analyses.

1.3 Fluid–structure formalism

One of the main goals of the present thesis is to access the stability of a fluid flow around an airfoil, taking into
account their interaction. For that, several points are discussed in this section. First, we introduce a triple decomposition
of the state variables, isolating the slow and fast time scale dynamics of the present fluid–structure system. Second, we
study the response of the structure to a harmonic forcing in order to make some hypotheses concerning the fast time
scale dynamics of the structure. Finally, we end this section by explaining the equilibrium positions admissible by the
fluid–structure system. All these considerations serve as basis for the linear stability analyses, introduced in subsequent
sections. Since the analyses are made in a two-dimensional domain, the ez-component of the different vectorial quantities
is omitted from the notation. We recall the nonlinear fluid–structure system:

∂U
∂t

+Ω [ez ×U]+ ([U −Uw] ·∇)U −∇·σ(U , p)= 0 ,

∇·U = 0,

Is
dΩ
dt

+DsΩ+Ksθ = mz(U , p) ,

dθ
dt

−Ω= 0,

(1.13a)

(1.13b)

(1.13c)

(1.13d)
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mz 〈mz〉

=

t

mz

+

t

mz,sl

+

t

mz, f t

t

Figure 1.3 – Illustration of the triple decomposition of the aerodynamic moment coefficient, with mz and its phase
average, 〈mz〉, on the left. The former corresponds to the sum of the mean component, mz, the slow time scale
fluctuations, mz,sl , and the fast time scale fluctuations, mz, f t, such that mz = mz +mz,sl +mz, f t.

where U = [U , V ]T is the fluid velocity and Uw the rigid-body velocity field defined as

Uw(X , t)=Ω(t) [ez × (X − XEC)]+U∞[−cos(θ(t)) , sin(θ(t))]T . (1.14)

The initial and physical boundary conditions read

U(X , 0)=U0(X ) X ∈Ω f ,

U(X , t)→0 ‖X‖→∞ ,

U(x, t)=Uw X ∈Γw .

(1.15a)

(1.15b)

(1.15c)

In the previous section, we have observed that the problem is characterised by two very different time scales: a fast
time scale associated the flow dynamics (vortex shedding on the airfoil wake) and a slow time scale characterising the
motion of the structure. Further, we note that in many situations the flow dynamics can be considered as a periodic
phenomenon. With that in mind, we proceed to the formal introduction of the triple decomposition of the state variables.

1.3.1 Triple decomposition of the state variables

In this paragraph, we introduce the formalism associated to the separation of the slow and fast time scales present in
our fluid–structure problem. Inspired in Hussain et al. (1970); Reynolds et al. (1972), we introduce a triple decomposition
of the fluid and solid fluctuating variables as

[ U , p ]T (X , t) =
[

U , p
]T

(X ) + [ U sl , psl ]T (X , t) +
[

U f t, p f t
]T (X , t) ,

[ θ, Ω ]T (t) =
[
θ, 0

]T
+ [ θsl , Ωsl ]T (t) + [

θ f t, Ω f t
]T (t) ,

(1.16a)

(1.16b)

where the notation • is associated to a mean (time-averaged) quantity, the subscript •sl is associated to the slow time
scale fluctuations and the subscript • f t is associated to the fast time scale fluctuations. We note that the mean component
of the angular velocity is zero, since dθ/dt ≡ 0. This decomposition, used by the aforementioned references on a turbulent
flow framework, is justified here by the incommensurability of frequencies of the slow and fast time scales.

This decomposition can be visualised on the aerodynamic moment coefficient, mz, with the help of figure 1.3. The
phase average of mz is represented by the blue line. Although we are interested in considering the fast fluctuation as a
periodic signal, the fast fluctuation can be, in a general case, a random signal. To take into account this behaviour in the
illustrations, the fast fluctuations are represented by a periodic signal, modulated both in amplitude and frequency.
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We also define a phase average (e.g., for mz) as

〈mz(t)〉 = lim
N→∞

1
N

N∑
n=0

mz(t+nTsl) , (1.17)

where Tsl represents the period of the slow time scale oscillation. The phase average represents the average of the values
of mz at a particular phase of the slow time scale cycle, fixed by t. The phase average can also be constructed as the sum
of the time average and the slow time scale fluctuating components as

[ 〈U〉 , 〈p〉 ]T (X , t) =
[

U , p
]T

(X ) + [ U sl , psl ]T (X , t) ,

[ 〈θ〉 , 〈Ω〉 ]T (t) =
[
θ, 0

]T
+ [ θsl , Ωsl ]T (t) .

(1.18a)

(1.18b)

On the other hand, we can define the mean plus the fast time fluctuations, using the notation •̃, as

[
Ũ , p̃

]T (X , t) =
[

U , p
]T

(X ) + [
U f t, p f t

]T (X , t) ,

[
θ̃, Ω̃

]T (t) =
[
θ, 0

]T
+ [

θ f t, Ω f t
]T (t) .

(1.19a)

(1.19b)

Some useful properties that follow from the definitions of time and phase average for two generic f and g scalar quantities
are

〈 f f t〉 = 0, f f t = 0, f sl = 0, 〈 fsl g f t〉 = 0.

The first property states that the phase average of the fast fluctuations is zero. The second and third properties state that
the time average of either slow or fast time scale components is zero. The last property states that the phase average of
the product between slow and fast time scale signals is zero.

To illustrate this last property, used in several derivations of the subsequent sections, we sketch on figure 1.4 the slow
and fast time scale components of the simplified signal used previously, along with their product. The representation is
made in the time domain, on the top figures, and in the frequency domain, on the lower figures, obtained from a Fast
Fourier Transform (FFT) of the different signals. The phase average of the different signals is represented by the dashed
blue lines. As expected, the phase average of mz,sl coincides with its signal, while phase-averaging mz, f t gives a function
that is null for any t. This is due to the fact that the frequencies of the slow and fast time scales are incommensurable.
Similarly, the phase average of mz,sl mz, f t also gives a null function in time. To better understand why, we observe the
frequency content of the different signals. The FFT of mz,sl presents a single peak at a very low frequency, while the
FFT of mz, f t presents a range of significant peaks at a very high frequency. The presence of this range of peaks, rather
than a single peak, is associated to the modulation made on the original periodic fast time scale signal. Further, this
FFT is symmetric with respect to the original periodic signal frequency, highlighted by vertical dashed line. The FFT of
the product mz,sl mz, f t, which can be obtained by the periodic convolution of the frequency content of mz,sl and mz, f t is
presented on the lower right figure. The result corresponds to the linear combination of the low frequency of mz,sl with
the different high frequencies of mz, f t. Due to the difference in the order of magnitude of the frequencies associated to
mz,sl and mz, f t, the result presents a range of peaks only in the high frequency zone. Since the phase average of a fast
time scale signal is zero, this corroborates the last property of the previous equation: 〈 fsl g f t〉 = 0.
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mz,sl

Time
domain

Frequency
domain

〈mz,sl〉

t

mz, f t 〈mz, f t〉

t

mz,sl mz, f t 〈mz,sl mz, f t〉

t

ω ω ω

Figure 1.4 – Illustration of the slow and fast time scale components of a signal (left and centre figures, respectively),
e.g., the aerodynamic moment coefficient, on the time and frequency domains (top and bottom figures, respectively),
along with their product in the time domain, corresponding to their convolution in the frequency domain (right
figures). The phase average of the different signals is represented by the dashed blue lines in the top figures. The
vertical dashed lines in the frequency domain figures represent the frequency of the original periodic signal that
was then modulated to generate the fast time scale fluctuation.

1.3.2 Response of the structure to a harmonic forcing

In the following paragraphs, we study the response of the structure to a harmonic forcing. In particular, we quantity
the contributions of the fast time scale fluid oscillations on the structure dynamics, namely on the angular displacement
and velocity, [θ,Ω]T . The oscillations of the fluid components, associated to the vortex shedding, usually correspond to
a high forcing frequency, when compared with the fundamental frequency of the structure, fs. In particular, the fluid
oscillations are reflected in the aerodynamic moment, mz(U , p), which corresponds to the forcing term in the structure
equation. These quantities are in general nonperiodic. However, for the sake of simplicity, we consider aerodynamic
moment coefficient, the angular displacement and the angular velocity as periodic in time, and dominated by the
fundamental component vibrating at the frequency ω f , such that:

θ = θ̂eiω f t +c.c.
2

, Ω= iω f θ̂eiω f t +c.c.
2

and mz =
m̂zeiω f t +c.c.

2
. (1.20)

Injecting the above decompositions on the structural equation 1.12 leads to

d2

dt2

(
θ̂eiω f t

)
+2ζωn

d
dt

(
θ̂eiω f t

)
+ω2

n

(
θ̂eiω f t

)
= 1

Is

(
m̂zeiω f t

)
.

By isolating the displacement term, one obtains

θ̂ = 1

Is

(
−ω2

f +2ω fωnζi+ω2
n

) m̂z . (1.21)

We note that, when the frequencies ω f and ωn are significantly different, as discussed in the previous section, the
denominator on the right-hand side of 1.21 has a high value and the harmonic content present in mz is not reflected in θ.
Therefore, the fast time scale fluctuations on the aerodynamic moment only conduct to small fast time scale fluctuations
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of the pitching angle, i.e., there is no resonant interaction between the fast time scale fluctuations of the aerodynamic
moment and the fast time scale component of the airfoil oscillation, the amplitude of the latter being consequently very
small.

To illustrate the relation between θ̂ and m̂z, we define the transfer function Hθ(ω f ) as

Hθ(ω f )≡ θ̂

m̂z
= 1

Is

(
−ω2

f +2ω fωnζi+ω2
n

) such that
∣∣Hθ(ω f )

∣∣= 1

Is

√(
ω2

n −ω2
f

)2
+ (

2ω fωnζ
)2

, (1.22)

which represents a low-pass filter of second order. With this function, we estimate the magnitude of the solid displacement
induced by the fluctuations of the aerodynamic moment. We sketch in figure 1.5 the magnitude of Hθ(ω f ) (in its
dimensional form) as function of the forcing frequency4, which represents any forcing frequency of the flow dynamics. A
dimensional representation is chosen in order to be independent of the Reynolds number.

We first observe a resonance peak near the point where the fluid frequency, ω f , corresponds to the structural frequency,
ωs. In this region, we identified the natural frequency of the structure, ωn, with a vertical line. The exact value of the
resonant frequency is slightly inferior to ωs and ωn and can be found by computing the frequency corresponding to the
maximum of

∣∣Hθ(ω f )
∣∣. For that, we differentiate

∣∣Hθ(ω f )
∣∣ with respect to ω f and set the result to zero. After some algebra

(see Meirovitch (2001), p. 115), the resonant frequency ωr and corresponding |Hθ(ωr)| are given by

ωr =ωn

√
1−2ζ2 and |Hθ(ωr)| = 1

2ζω2
nIs

√
1−ζ2

,

with the dimensional numerical values of ωdim
r = 10.489s−1 and

∣∣Hdim
θ

(ωr)
∣∣ = 47.552(Nm)−1. One can note that, as ζ

tends to zero, the magnitude of Hθ(ωr) tends to infinity, while ωr tends to ωn. On the other hand, one can note from the
first equality of the above equations that the resonant peak disappears for ζ≥ 1/

p
2≈ 0.7075.

From the resonating frequency, a decay of
∣∣Hθ(ω f )

∣∣ is observed. The decay is hyperbolic in a linear plot and is linear
with a negative slope in a log-log plot, the latter case being represented in the figure. The slope has a value of −40dB
per decade6, characteristic of second order transfer functions. The coloured dots represent transfer function value at
the vortex shedding frequencies ωV S for two-dimensional simulations at α= 0◦ (explored in chapter 2), whose Strouhal
numbers are reported in table 1.3. The gain associated to

∣∣Hθ(ω f =ωV S)
∣∣ (in its dimensional form), obtained at the

different frequencies, is reported in table 1.4. We can observe that this gain is small. In that way, we henceforward
assume that the fast time scale component of the angular displacement are associated to an infinitesimal amplitude
Aθ ¿ 1.

The same exercise can be made for the angular velocity, Ω, where we denote its transfer function as HΩ(ω f ). The
magnitude of the corresponding transfer function can be directly calculated as

∣∣HΩ(ω f )
∣∣ =

∣∣ω f Hθ(ω f )
∣∣, due to the

relation Ω= dθ/dt. These values are reported in the last column of table 1.4. One can note that gain associated to the
transfer function of HΩ at the vortex shedding frequencies is non negligible, although it decreases as the Reynolds
number increases. Despite these results, the terms associated to the fast fluctuations of Ω are neglected in the following
developments, as an approximation. The presence of theΩ f t terms is observed and discussed for the nonlinear simulations
(chapter 5), in order to measure the strength of this hypothesis. The amplitude associated to Ω f t is termed AΩ. In that

4This representation is termed Bode magnitude diagram, in electrical engineering and control theory.
5For the value of ζ= 1/

p
2, the filter is termed Butterworth filter.

6A decade corresponds to a ratio of 10 on a logarithmic scale between two frequencies. The decibel is defined as 1dB= 20log(H1/H2), with H1 and
H2 two different amplitudes of the transfer function.
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ωdim
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∣∣∣Hdim
θ

(ωdim
f )

∣∣∣

10−2 10−1 100 101 102 ω f /ωn

Re
∣∣Hdim

θ
(ωdim

V S )
∣∣ ∣∣Hdim

Ω
(ωdim

V S )
∣∣

10000 0.07560 7.61140

20000 0.01020 2.75007

50000 0.00077 0.75347

Figure 1.5 & Table 1.4 – Evolution of the magnitude of the transfer function Hdim
θ

with the forced frequency.
The vortex shedding frequency for three Reynolds numbers is represented by the three dots: Re = 10000 (black),
Re= 20000 (blue) and Re= 50000 (red). The vertical dashed line represents the natural frequency of the structure,
ωdim

n . On the right, the table reports the numerical values of the magnitude of the transfer functions Hdim
θ

(units:
1/(Nm)) and Hdim

Ω
(units: 1/(Nms)) for the three Reynolds numbers at the corresponding vortex shedding frequencies.

way, we henceforward assume that the fast time scale components of the solid variables
[
θ f t,Ω f t

]T are associated to Aθ

and AΩ, having

[ θ, Ω ]T (t) =
[
θ, 0

]T
+ [ θsl , Ωsl ]T (t) + [

Aθθ f t, AΩΩ f t
]T (t) . (1.23)

At the same time, since the structure does not respond to fast time scale fluctuations of the aerodynamic moment, this
term is neglected on the solid motion equation, and is henceforward associated to a small amplitude A, having

mz(U , p)= mz(〈U〉 , 〈p〉)+ Amz
(
U f t, p f t

)
,

where we assume the aerodynamic moment to be a linear operator (valid on an incompressible flow framework). Further,
due to the linearity of the aerodynamic moment, we have mz(〈U〉 , 〈p〉)= 〈mz(U , p)〉.

Finally, we note that the above transfer functions are adimensionalised as

Hθ = Hdim
θ

1
2
ρU∞2c2 and HΩ = Hdim

Ω

1
2
ρU∞c3 .

The values of Hθ and HΩ are computed in chapter 5 for different values of Ks and compared with the actual ratios θ̂/m̂z

and Ω̂/m̂z given by their harmonic content on the nonlinear FSI temporal simulations.

1.3.3 Quasi-steady equilibrium positions of the fluid–structure system

In this paragraph, we define the quasi-steady equilibrium positions admissible by the present fluid–structure system.
These points are given by the structural equation, where the aerodynamic moment is associated to the time-averaged
flow field obtained for static incidence simulations. From equation 1.13c, the quasi-steady equilibrium positions must
respect the equation

Ksθ = mz

(
U , p

)
. (1.24)

We can see that the previous equality can give us the values of a nonzero aerodynamic moment that counterbalances the
moment generated by the torsional spring. Alternatively, one can define the admissible equilibrium angles of incidence as
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θ = mz

(
U , p

)
/Ks. For the case Ks = 0, the quasi-steady equilibrium angles of incidence correspond to the configurations

where the aerodynamic moment is also null.
The above equality gives us a first equilibrium angle at θ = 0◦, admissible for any value of the structure stiffness. We

denote this point as the primary equilibrium position. Then, depending on the value of Ks, a second equilibrium angle,
characterising a secondary equation position, can be found. These points are introduced in the subsequent chapters. In
the present thesis, several DNS were performed at fixed incidences, explored in chapter 2. The number of simulations
was limited, due to their computational time cost. In these cases, the structural stiffness that ensures the equilibrium of
a FSI configuration can be retrieved by posing Ks = mz

(
U , p

)
/θ. Again, for the case θ = 0◦, any structural stiffness will

ensure that the null incidence is a solution of the FSI configuration.

1.4 Linear stability analyses based on fast time scale dynamics

The linear mechanisms responsible by the onset of self-sustained pitch oscillations can be determined by investigating
the nature of small amplitude perturbations of particular state field. For that, we derive in this section the formulation
associated to fluid–structure linear stability analyses, based on the fast time scale dynamics. The general idea is to apply
a linear stability approach to the present FSI system in order to characterise the evolution of the perturbations that
may arise along the slow time scale, considering either the fast-oscillating state (Floquet analysis) or the mean state
(mean flow analysis) as the base solution. For that, in a first part, we introduce the governing equations of the fast time
scale dynamics, by neglecting the slow time scale fluctuations of all state variables. In a second part, we introduce the
linearised equations of the nonlinear FSI system. In a third part, we introduce the Floquet FSI linear stability analysis
formalism. Finally, in a forth part, we derive the mean flow FSI linear stability analysis formalism from the Floquet
equations, highlighting the terms that are neglected. This last formalism is labelled classical formulation, in contrast
with the Reynolds stress formulation introduced in a subsequent section.

1.4.1 Equations governing a periodic flow

In this paragraph, we describe the governing equations associated to the fast time scale dynamics of a flow field around
an airfoil at a fixed incidence. The solution of these equations corresponds to the periodic flow solution around which the
Floquet linear stability analysis is carried out, as presented in a subsequent paragraph. For that, we assume a periodic
flow, oscillating with a fast time scale frequency and we neglect the slow time scale oscillations. This is accomplished by
assuming a small amplitude of the fast time scale fluctuations as Asl , having the fluid–solid state variables decomposed
as

[ U , p, θ, Ω ]T = [
Ũ , p̃, θ̃, Ω̃

]T + Asl[ U sl , psl , θsl , Ωsl ]T . (1.25)

We start by injecting the decomposition 1.25 into the rigid-body velocity field definition (equation 1.14), having

Uw = Ω̃ [ez × (X −XEC)]+U∞[−cos
(
θ̃
)
, sin

(
θ̃
)]T + AslΩsl [ez × (X −XEC)]+ AslθslU∞[

sin
(
θ̃
)
, cos

(
θ̃
)]T

=U∞
[
−cos

(
θ
)
, sin

(
θ
)]T

+ AΩΩ f t [ez × (X −XEC)]+ Aθθ f tU∞
[
sin

(
θ
)
, cos

(
θ
)]T

+AslUw,sl

≈U∞
[
−cos

(
θ
)
, sin

(
θ
)]T

+ AslUw,sl .

In the last line of the above developments, we neglect the fast time oscillations of θ̃ and Ω̃ (as discussed in section 1.3.2),
represented in red, while we represent in grey the terms associated to the slow time scale variations. By neglecting the
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latter term, where Asl intervenes, we conclude that the angular displacement is time-independent (equal to θ) and the
angular velocity is zero, which implies that the rigid-body velocity field is approximated by a time-independent field,
corresponding to a translation velocity, noted Uw. Next, we inject the decomposition 1.25 into the momentum and mass
equations of the system 1.13, having

∂U
∂t

+Ω [ez ×U]+ ([U −Uw] ·∇)U −∇·σ(U , p)= ∂Ũ
∂t

+
([

Ũ −Uw

]
·∇

)
Ũ −∇·σ(

Ũ , p̃
)+ Asl

(
∂U sl

∂t
−∇·σ(U sl , psl)

)

+ Asl

(
Ωsl

[
ez ×Ũ

]+
([

Ũ −Uw

]
·∇

)
U sl +

([
U sl −Uw,sl

] ·∇)
Ũ

)

+ A2
sl

(
Ωsl [ez ×U sl]+

([
U sl −Uw,sl

] ·∇)
U sl

)

+ AΩΩ f t
([

ez ×Ũ
]+ Asl [ez ×U sl]

)
,

∇·U =∇·Ũ + Asl∇·U sl .

By neglecting the AΩ and Asl terms, the momentum and mass equations become

∂Ũ
∂t

+
([

Ũ −Uw

]
·∇

)
Ũ −∇·σ(

Ũ , p̃
)= 0 and ∇·Ũ = 0.

The same procedure can be made for the structural equation 1.13c, having

Is
dΩ
dt

+DsΩ+Ksθ−mz(U , p)= Ksθ−mz

(
U , p

)
+ Asl

(
Is

dΩsl

dt
+DsΩsl +Ksθsl −mz(U sl , psl)

)
.

After neglecting the Asl terms, we note that aerodynamic moment present on the structure equation is time-independent,
being associated to the mean component of the flow field for a fixed incidence θ.

Gathering both fluid and solid equations, the system governing a periodic flow vibrating on a fast time scale frequency
can be put in the form

∂Ũ
∂t

+
([

Ũ −Uw

]
·∇

)
Ũ −∇·σ(

Ũ , p
)= 0 ,

∇·Ũ = 0,

Ksθ = mz

(
U , p

)
.

(1.26a)

(1.26b)

(1.26c)

This system of equations is associated to the periodic state vector
[
Ũ , p̃, θ, 0

]T
. The solution of this system represents

a periodic flow solution around an airfoil with the incidence fixed by the ratio between the quasi-steady aerodynamic
moment and the structural stiffness, such that θ = mz

(
U , p

)
/Ks, as discussed in section 1.3.3. For the case Ks = 0, the

equilibrium incidence corresponds to the configurations where the moment is also null.

1.4.2 Linearised equations

In the following paragraphs, we present the linearisation of the nonlinear FSI equations. For that, we start by
decomposing the fluid–solid state variables [U , V , p, θ,Ω]T as a base equilibrium state solution and an infinitesimal
perturbation:

[ U , p, θ, Ω ]T = [ Ub, pb, θb, Ωb ]T + ε
[

U ′, p′, θ′, Ω′ ]T ,
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with ε¿ 1. The above base equilibrium state is decomposed into a mean component and a fast and slow time scale
components, such that

[ Ub, pb, θb, Ωb ]T =
[

Ub, pb, θb, 0
]T

+ [
U f t,b, p f t,b, Aθθ f t,b, AΩΩ f t,b

]T + Asl
[

U sl,b, psl,b, θsl,b, Ωsl,b
]T .

Neglecting the terms associated to Aθ, AΩ and Asl , one obtains a base equilibrium state that is governed by the
equations 1.26, describing a periodic flow at fixed incidence. With respect to equations 1.26, one has the following
equivalence:

[ Ub, pb, θb, Ωb ]T =
[

Ũ , p̃, θ, 0
]T

.

Since that, with the above simplifications, θb is time-independent, we henceforward denoted it as θb. As showed, the
slow time scale fluctuations are not taken into account in the periodic flow equations. However, no hypotheses are made
regarding the time scales associated to the perturbation.

Injecting these decompositions into the FSI governing equations 1.13 and retaining the terms at order ε, we obtain a
linearised system that satisfies

∂U ′

∂t
+Ω′ [ez ×Ub]+

([
U ′−U ′

w
] ·∇)

Ub +
([

Ub −Uw

]
·∇

)
U ′−∇·σ(

U ′, p′)= 0 ,

∇·U ′ = 0,

Is
dΩ′

dt
+DsΩ

′+Ksθ
′ = mz

(
U ′, p′) ,

dθ′

dt
−Ω′ = 0.

(1.27a)

(1.27b)

(1.27c)

(1.27d)

The first two equations represent the linearised momentum and mass equations governing the fluid velocity and pressure
perturbations. They are coupled to the structure perturbation via three terms: first, the bulk term Ω′ [ez ×Ub], that
modifies the production of fluid perturbation in the momentum equation via a perturbation of the airfoil angular velocity;
second, the bulk term U ′

w·∇Ub, that also modifies the production of fluid perturbation by modifying the perturbed
convective velocity; third, a term in the boundary condition at the airfoil surface Γw, where we impose U ′ =U ′

w. The
third and forth equations represent the linearised structural equations, which are inherently linear. They are coupled to
the fluid variables via the aerodynamic moment associated to the fluid perturbation. The linearisation of the rigid-body
velocity is given by

U ′
w =Ω′ [ez × (X − XEC)]+U∞

[
sin

(
θb

)
, cos

(
θb

)]T
θ′ ,

where the following trigonometric developments were used

cos
(
θb +εθ′

)
= cos

(
θb

)
cos

(
εθ′

)−sin
(
θb

)
sin

(
εθ′

)≈ cos
(
θb

)
−εsin

(
θb

)
θ′ ,

sin
(
θb +εθ′

)
= sin

(
θb

)
cos

(
εθ′

)+cos
(
θb

)
sin

(
εθ′

)≈ sin
(
θb

)
+εcos

(
θb

)
θ′ .
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1.4.3 Floquet FSI linear stability analysis

The linearised FSI system 1.27 can be represented in a compact form as

∂q′

∂t
= L

(
qb(X , t)

)
q′ , (1.28)

where qb(X , t)=
[
Ub(X , t), pb(X , t), θb, 0

]T
is the periodic flow vector and q′(X , t)=

[
U ′(X , t), p′(X , t), θ′(t),Ω′(t)

]T the
fluid–solid perturbation. Since the flow around which we conduct our analysis is T-periodic, the linear operator L

(
qb

)
is

also T-periodic. Thus, according to Floquet theory (Floquet, 1883), the solution of the linear system 1.28 can be found, in
a modal approach, as a superposition of Floquet form signals as

q′(X , t)= q̂(X , t)eσt +c.c.
2

, (1.29)

where q̂ is a T-periodic function, called Floquet eigenmodes of L
(
qb

)
, and σ= λ+ωi is the complex Floquet exponent.

The Floquet eigenmode is formed from a fluid and a solid components as q̂ = [
q̂ f , θ̂, Ω̂

]T , with q̂ f = [
Û , V̂ , p̂

]T . The
Floquet eigenmode is associated to the fast time scale, whereas σ can be associated to either slow or fast time scales,
depending on its frequency. The real part of the Floquet exponent, λ quantifies the growth/decay of an infinitesimal
perturbation that may develop around the periodic flow solution, while the imaginary part, ω, represents its frequency. It
is usual to describe the Floquet growth/decay over a period T via the Floquet multipliers7 µ= eσT . A Floquet multiplier
represents the complex amplitude gain of the periodic Floquet eigenmode over one period, i.e., q̂(X , t+T)=µq̂(X , t). The
polar decomposition of a Floquet multiplier reads µ=

∣∣µ
∣∣eφi, where the modulus

∣∣µ
∣∣ quantifies the growth/decay of the

corresponding Floquet eigenmode over the period and φ represents its phase shift over the same period. The stability
of the periodic flow is then addressed by considering the modulus of the Floquet multipliers. A Floquet eigenmode is
stable (respectively, unstable) when the corresponding Floquet multiplier lies inside (respectively, outside) the unit circle∣∣µ

∣∣< 1 (respectively,
∣∣µ

∣∣> 1) on the complex plane. When one Floquet eigenmode becomes unstable, the time-periodic flow
becomes unstable.

Additionally, when a Floquet multiplier is real (φ= 0), the Floquet eigenmode is synchronous and the perturbation
evolves in time with the period of the flow without a phase shift. On the other hand, when a Floquet multiplier is complex
(φ 6= 0), the Floquet eigenmode is asynchronous and the perturbation evolves in time with the period of the flow and a
phase shift of φ at each period.

Injecting the Floquet form decomposition into the linearised FSI equations 1.27, one arrives to the periodic eigenvalue
problem

σÛ + ∂Û
∂t

+ Ω̂ [ez ×Ub]+
([

Û −Ûw
] ·∇)

Ub +
([

Ub −Uw

]
·∇

)
Û −∇·σ(

Û , p̂
)= 0 ,

∇·Û = 0,

Is

(
σΩ̂+ dΩ̂

dt

)
+DsΩ̂+Ksθ̂−mz

(
Û , p̂

)= 0,

σθ̂+ dθ̂
dt

− Ω̂= 0,

(1.30a)

(1.30b)

(1.30c)

(1.30d)

7The same Greek letter µ is used for the fluid dynamic viscosity coefficient, introduced in section 1.1.2, which is a real constant, and the complex
valued Floquet multiplier. However, as they represent distinct quantities, we hope no confusion is made.

34 Chapter 1 – Problem description and numerical tools



Section 1.4 – Linear stability analyses based on fast time scale dynamics

with
Ûw = Ω̂ [ez × (X − XEC)]+U∞

[
sin

(
θb

)
, cos

(
θb

)]T
θ̂ .

These equations describe the evolution of periodic eigenmodes associated to a perturbation that may arise around the fast
time scale periodic solution (with the period being associated to the vortex shedding frequency).

Spectral components of the Floquet eigenmodes

The harmonic content of a Floquet eigenmode can be obtained through time-integration of the linearised equations,
where the term −λMq̂ is added to the right-hand side of equation 1.28, having

M
∂q̂
∂t

= L
(
qb(X , t)

)
q̂−λMq̂ . (1.31)

The matrix M, as it will see later, is associated to the spatial discretisation of the Navier–Stokes equations, while L is
the discretisation of the fluid–structure Jacobian matrix. The time-integration is performed over one vortex shedding
cycle, using as initial condition the instantaneous Floquet eigenmode solution associated to one particular instant of the
periodic flow limit cycle. The growth rate of the Floquet eigenmode λ being known, the right-hand side term appropriately
counteracts the temporal growth (respectively decay) of the unstable (respectively stable) Floquet eigenmode. From this
time-integration, one can obtain the mean and first harmonic components of the Floquet eigenmode, which are denoted
q̂0 and q̂1, respectively. These components are computed and discussed in section 4.3.2.

1.4.4 Mean flow FSI linear stability analysis: classical formulation

In the following paragraphs, we derive the equations associated to the fluid–structure linear stability analysis around
a mean flow state. The aim is to characterise the fluid–structure linear perturbations, associated to any time scale
frequency, that may arise around the mean component of the flow solution. This derivation is done from the Floquet
stability equations, in order to understand which terms are neglected in this analysis. The present mean flow stability
formalism is labelled classical formulation, in contrast with the Reynolds stress formulation introduced in a subsequent
section.

We start from the Floquet FSI eigenvalue problem and we decompose the Floquet eigenmodes into a time-averaged
component plus a harmonic content as

Û(X , t)=Û(X )+δÛ(X , t) ,

p̂(X , t)=p̂(X )+δ p̂(X , t) ,

θ̂(t)=θ̂+δθ̂(t) ,

Ω̂(t)=Ω̂+δΩ̂(t) .

The same decomposition is applied to the fluid components of the periodic flow, already present in equation 1.19, such
that:

[ Ub, pb ]T (X , t) =
[

Ub, pb

]T
(X ) +

[
Ub, f t, pb, f t

]T (X , t) .

We inject the above decompositions in the different terms of the system 1.30 (i.e., in the Floquet LSA equations).
Concerning the fluid equations, we separate the linearised terms that do not depend on the periodic flow from the
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rotational term and the two convective terms:

σÛ + ∂Û
∂t

−∇·σ(
Û , p̂

)=σÛ −∇·σ
(
Û , p̂

)
+σδÛ + ∂δÛ

∂t
−∇·σ(

δÛ , δ p̂
)
,

Ω̂ [ez ×Ub]= Ω̂
[
ez ×Ub

]
+δΩ̂

[
ez ×Ub

]
+ Ω̂[

ez ×Ub, f t
]+δΩ̂[

ez ×Ub, f t
]
,

([
Û −Ûw

] ·∇)
Ub =

([
Û −Ûw

]
·∇

)
Ub +

([
Û −Ûw

]
·∇

)
Ub, f t +

([
δÛ −δÛw

] ·∇)
Ub+

([
δÛ −δÛw

] ·∇)
Ub, f t ,

([
Ub −Uw

]
·∇

)
Û =

([
Ub −Uw

]
·∇

)
Û +

([
Ub −Uw

]
·∇

)
δÛ + (

Ub, f t·∇
)
Û+(

Ub, f t·∇
)
δÛ ,

∇·Û =∇·Û +∇·δÛ .

The first terms of the right-hand side of each equation, in black, correspond to the linearised contributions that are
time-independent, i.e., where only the time-averaged component of the Floquet eigenmode is retained. At the same time,
we grouped, with a grey colour, three types of terms: (i) the terms that correspond to the linear harmonic contributions of
the Floquet eigenmode (on the terms that do not depend on Ub); (ii) the terms that correspond to the interaction between
the mean flow and the harmonic content of the Floquet eigenmodes (on the rotational and on the two convective terms);
(iii) the terms that correspond to the interaction between the harmonics of the periodic flow and the mean components of
the Floquet eigenmodes (on the rotational and on the two convective terms). The red terms correspond to the interactions
between the harmonic contributions of the periodic flow and of the Floquet eigenmodes.

After time-averaging the above terms, the grey terms vanish and the momentum equation reads

σÛ + Ω̂
[
ez ×Ub

]
+

([
Û −Ûw

]
·∇

)
Ub +

([
Ub −Uw

]
·∇

)
Û −∇·σ

(
Û , p̂

)

+δΩ̂[
ez ×Ub, f t

]+ ([
δÛ −δÛw

] ·∇)
Ub, f t +

(
Ub, f t·∇

)
δÛ= 0 . (1.32)

The first line of the above equation corresponds to the contribution of the time-averaged components of the Floquet
eigenmode to the eigenproblem momentum equation. In the second line, three terms appear. The first term is associated
to the time-averaged interaction between the harmonics of the Floquet eigenmode angular velocity and the harmonics
of the periodic flow. The second and third terms correspond to the interaction between the harmonics of the Floquet
eigenmode velocity field and the harmonics of the periodic flow. For the mean flow FSI linear stability analysis, we assume
that all three terms present in the second line of equation 1.32 are negligible. After the above simplifications, we arrive to
the momentum and mass equations associated to the mean flow FSI linear stability analysis:

σÛ + Ω̂
[
ez ×Ub

]
+

([
Û −Ûw

]
·∇

)
Ub +

([
Ub −Uw

]
·∇

)
Û −∇·σ

(
Û , p̂

)
= 0 ,

∇·Û = 0.

The same procedure of injecting the Fourier decomposition into the Floquet eigenproblem can be applied for the solid
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equations 1.30c and 1.30d, whose terms do not depend on the periodic flow. In that way, we obtain:

Is

(
σΩ̂+ dΩ̂

dt

)
+DsΩ̂+Ksθ̂−mz

(
Û , p̂

)= IsσΩ̂+DsΩ̂+Ksθ̂−mz

(
Û , p̂

)
+ Is

(
σδΩ̂+ d

(
δΩ̂

)

dt

)
+DsδΩ̂+Ksδθ̂−mz

(
δÛ , δ p̂

)
,

σθ̂+ dθ̂
dt

− Ω̂=σθ̂− Ω̂+σδθ̂+ dδθ̂
dt

−δΩ̂ .

Once again, the first terms of the right-hand side of each equation, in black, correspond to the linearised contributions
of the Floquet eigenmode solid components that are time-independent, whereas, in grey, we have their harmonic
contributions. After time averaging the above equations, all the grey terms vanish.

After the above simplifications, the eigenproblem associated to a mean flow FSI linear stability analysis can be written
as

σÛ + Ω̂
[
ez ×Ub

]
+

([
Û −Ûw

]
·∇

)
Ub +

([
Ub −Uw

]
·∇

)
Û −∇·σ

(
Û , p̂

)
= 0 ,

∇·Û = 0,

IsσΩ̂+DsΩ̂+Ksθ̂−mz

(
Û , p̂

)
= 0,

σθ̂− Ω̂= 0,

(1.33a)

(1.33b)

(1.33c)

(1.33d)

with the time-averaged component of the linearisation of the rigid-body velocity field defined as

Ûw = Ω̂ [ez × (X − XEC)]+U∞
[
sin

(
θb

)
, cos

(
θb

)]T
θ̂ .

Similar to the Floquet FSI analysis, the mean flow eigenpair (q̂, σ) (solution of the system 1.33) is part of the mean
flow perturbation, written in the form of a global mode as

q′(X , t)= q̂(X )eσt +c.c.
2

, (1.34)

where q̂ is a complex time-independent eigenmode representing the spatial distribution of the perturbation, associated to

the eigenvalue σ=λ+ωi. The mean flow eigenmode is formed from a fluid and a solid components as q̂ =
[
q̂ f , θ̂, Ω̂

]T
, with

q̂ f =
[
Û , V̂ , p̂

]T
. The real part λ represents the growth rate of the mean flow perturbation, indicating if the perturbation

linearly grows (unstable perturbation, with λ > 0) or decays (stable perturbation, with λ < 0) in time, whereas the
imaginary part ω corresponds to the frequency at which the eigenmode oscillates. The case λ= 0 describes a marginally
stable scenario, where a perturbation neither is amplified nor damped. On the other hand, the cases where ω = 0
correspond to static eigenmodes, which diverge or converge linearly, but without oscillating.

As indicated earlier, the present system of equations is identified as the classical formulation. The mean flow
eigenvalue problem can be put in a matrix form σMq̂ = Lq̂:

σ




M f 0 0

0 1 0

0 0 Is







q̂ f

θ̂

Ω̂



=




L f

(
Ub

)
vθ vΩ

0 0 1

mT −Ks −Ds







q̂ f

θ̂

Ω̂




, (1.35)
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where M f is the fluid mass operator, later associated to the spatial discretisation, L f the fluid Jacobian operator and vθ, vΩ
the linearised vector components of the solid motion. We note that the fluid–structure Jacobian matrix is non-hermitian,
i.e., L 6= LH . Therefore, the above eigenproblem corresponds to a right generalised non-Hermitian eigenvalue problem.
The term “right” comes from the fact that the eigenvectors q̂ are the right eigenvectors of the present problem. The term
“generalised” comes from the presence of a matrix M, different from the identify matrix. Further, as detailed below, this
matrix is singular, due to the zero coefficients of M f on the degrees of freedom of the pressure component.

The vector vθ represents a unitary linear angular displacement of the airfoil structure, whereas vΩ represents a
unitary linear angular velocity, both on an anticlockwise direction. The fluid mass and Jacobian operators are defined as:

M f =



1 0

0 0


 and L f q̂ f =−




(
Û ·∇

)
Ub +

([
Ub −Uw

]
·∇

)
Û −∇·σ

(
Û , p̂

)

∇·Û


 ,

while the linearised vectors vθ, vΩ are defined as

vθ =U∞







sin
(
θb

)

cos
(
θb

)


 ·∇


Ub and vΩ =−




−V b

Ub


+







−(Y −YEC)

(X − XEC)


 ·∇


Ub ,

with the physical boundary conditions applied on the left-hand side of the system 1.35 as

Û(X )→0 ‖X‖→∞ ,

Û(X )=1 X ∈Γw ,

vθ = −U∞[sin(θb ), cos(θb )]
T

X ∈Γw ,

vΩ = − [−(Y −YEC), (X − XEC)]T X ∈Γw .

(1.36a)

(1.36b)

(1.36c)

(1.36d)

1.5 Linear stability analysis based on slow time scale dynamics

In this section, we concentrate our attention on the slow time scale dynamics of the fluid–structure system. Therefore,
we introduce in a first part the equations governing the slow time scale dynamics of our problem. In a second and third
parts, we linearise these equations in order to arrive to the equations associated to the mean flow state at a fixed incidence
and to the mean flow FSI linear stability eigenproblem. This formulation of the stability equations is denoted Reynolds
stress formulation, due to the fact that we take into account the variation of the Reynolds stress terms with respect to the
state variables, as discussed in the following paragraphs.

1.5.1 Equations governing the slow time scale dynamics

In the following paragraphs, we describe the governing equations associated to the phase-averaged state variables.
For that, we recall that the fluid–solid variables are decomposed into a phase-averaged and a fast time scale contributions
as

[ U , p, θ, Ω ]T = [ 〈U〉 , 〈p〉 , 〈θ〉 , 〈Ω〉 ]T + [
U f t, p f t, Aθθ f t, AΩΩ f t

]T . (1.37)
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We start by injecting this decomposition into the rigid-body velocity field definition (equation 1.14), having

Uw =Ω [ez × (X −XEC)]+U∞[−cos(θ) , sin(θ)]T = 〈Ω〉 [ez × (X − XEC)]+U∞[−cos(〈θ〉) , sin(〈θ〉)]T

+ AΩΩ f t [ez × (X − XEC)]+ Aθθ f tU∞[sin(〈θ〉) , cos(〈θ〉)]T ,

which can be written as

Uw = 〈Uw〉+ AUw, f t

= 〈Uw〉+ AθUθ
w, f t + AΩUΩ

w, f t ,

where we separate the fast time scale contributions of the angular displacement and velocity. The black terms correspond
to the slow time scale contributions, while the red terms correspond to the fast time scale contributions, associated to the
small amplitudes Aθ and AΩ. For clarify, the following trigonometric developments were used on the translation velocity
component:

cos
(〈θ〉+ Aθθ f t

)= cos(〈θ〉)cos
(
Aθθ f t

)−sin(〈θ〉)sin
(
Aθθ f t

)≈ cos(〈θ〉)− Aθθ f t sin(〈θ〉) ,

sin
(〈θ〉+ Aθθ f t

)= sin(〈θ〉)cos
(
Aθθ f t

)+cos(〈θ〉)sin
(
Aθθ f t

)≈ sin(〈θ〉)+ Aθθ f t cos(〈θ〉) .

Next, we inject the decomposition 1.37 into the momentum and mass equations of the system 1.13. For a better
understanding of the decomposition, we separate the linear terms of the momentum equation, from the nonlinear terms,
having

∂U
∂t

−∇·σ(U , p)= ∂〈U〉
∂t

−∇·σ(〈U〉 , 〈p〉)+
∂
(
U f t

)

∂t
−∇·σ(

U f t, p f t
)
,

([U −Uw] ·∇)U = ([〈U〉−〈Uw〉] ·∇)〈U〉+ ([〈U〉−〈Uw〉] ·∇)U f t +
([

U f t − AUw, f t
] ·∇)〈U〉+(

U f t·∇
)
U f t − A

(
Uw, f t·∇

)
U f t ,

Ω [ez ×U]= 〈Ω〉 [ez ×〈U〉]+〈Ω〉[ez ×U f t
]+ AΩΩ f t [ez ×〈U〉]+AΩΩ f t

[
ez ×U f t

]
,

∇·U =∇·〈U〉+∇·U f t .

The first terms of the right-hand side of each equation, in black, correspond to the phase-averaged contributions, evolving
on the slow time scale. The grey terms correspond to the fast time scale contributions (on the linear terms) and to the
interaction between the slow and fast time scale contributions (on the nonlinear terms). The red terms correspond to the
nonlinear contributions depending exclusively on the fast time scale terms. After phase-averaging the above terms, the
grey terms vanish (since they correspond to the phase average of a fast time scale signal or to the phase average of a
product between a fast and a slow time scale signals) and the momentum equation reads

∂〈U〉
∂t

+〈Ω〉 [ez ×〈U〉]+ ([〈U〉−〈Uw〉] ·∇)〈U〉−∇·σ(〈U〉 , 〈p〉)=−
〈(

U f t·∇
)
U f t

〉

+Aθ

〈(
Uθ

w, f t·∇
)
U f t

〉
+ AΩ

〈(
UΩ

w, f t·∇
)
U f t

〉
− AΩ

〈
Ω f t

[
ez ×U f t

]〉
.

By taking Aθ = AΩ = 0 (as discussed in section 1.3.2), we neglect the red terms present in the second line of the above
equation, corresponding to the effect of the fast time scale solid fluctuations onto the slow time scale dynamics. However,
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the red term of the first line is not neglected. This term corresponds to the effect of the fast time scale flow fluctuations
onto the slow time scale dynamics, in the form of the divergence of the Reynolds stress tensor. This term can be rewritten
as

〈
∇·[U f t ⊗U f t

]〉
.

The same procedure of injecting the decomposition 1.37 into the nonlinear FSI equations system can be applied to the
solid equations 1.13c and 1.13d, whose terms are linear. In that way, we obtain:

Is
dΩ
dt

+DsΩ+Ksθ−mz(U , p)= Is
d〈Ω〉

dt
+Ds 〈Ω〉+Ks 〈θ〉−〈mz(U , p)〉+ AΩ

(
Is

dΩ f t

dt
+DsΩ f t

)
+ AθKsθ f t − Amz

(
U f t, p f t

)
,

dθ
dt

−Ω= d〈θ〉
dt

−〈Ω〉+ Aθ

dθ f t

dt
− AΩΩ f t .

After phase-averaging the above terms, the grey terms vanish. In that way, the fluid–solid equations governing the slow
time scale dynamics can be put in the form

∂〈U〉
∂t

+〈Ω〉 [ez ×〈U〉]+ ([〈U〉−〈Uw〉] ·∇)〈U〉−∇·σ(〈U〉 , 〈p〉)=−
〈
∇·[U f t ⊗U f t

]〉
,

∇·〈U〉 = 0,

Is
d〈Ω〉

dt
+Ds 〈Ω〉+Ks 〈θ〉 = mz(〈U〉 , 〈p〉) ,

d〈θ〉
dt

−〈Ω〉 = 0.

(1.38a)

(1.38b)

(1.38c)

(1.38d)

This set of equations is very similar to the original nonlinear system 1.13, excepting the forcing term on the right-hand
side of the momentum equation. This system is used in the following paragraphs to derive the equations associated to the
Reynolds stress formulation of the FSI linear stability analysis around a mean flow solution.

1.5.2 Mean flow FSI linear stability analysis: Reynolds stress formulation

In the following paragraphs, we derive the equations associated to the mean flow state and the linear stability
equations. For that, we start by decomposing the slow time scale fluid–solid variables [〈U〉 , 〈V 〉 , 〈p〉 , 〈θ〉 , 〈Ω〉]T as a base
equilibrium state solution and an infinitesimal perturbation:

[ 〈U〉 , 〈p〉 , 〈θ〉 , 〈Ω〉 ]T = [ Ub, pb, θb, Ωb ]T + ε
[

U ′, p′, θ′, Ω′ ]T ,

with ε ¿ 1. The above base equilibrium state corresponds to the mean flow solution obtained for fixed incidence
simulations at θb, having

[ Ub, pb, θb, Ωb ]T =
[

Ub, pb, θb, 0
]T

.

We inject the above decomposition into the momentum and mass equations of the slow time scale equations, given by
system 1.38. For a better understanding of the decomposition, we separate the linear terms on the momentum equation,
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from the nonlinear terms (the rotational, convection and Reynolds stress terms), having

∂〈U〉
∂t

−∇·σ(〈U〉 , 〈p〉)=−∇·σ
(
Ub, pb

)
+ε

[
∂U ′

∂t
−∇·σ(

U ′, p′)
]

,

〈Ω〉 [ez ×〈U〉]= εΩ′
[
ez ×Ub

]
+ε2Ω′ [ez ×U ′] ,

([〈U〉−〈Uw〉] ·∇)〈U〉 =
([

Ub −Uw,b

]
·∇

)
Ub +ε

[([
U ′−U ′

w
] ·∇)

Ub +
([

Ub −Uw,b

]
·∇

)
U ′

]
+ε2 ([

U ′−U ′
w
] ·∇)

U ′ ,

−
〈
∇·[U f t ⊗U f t

]〉
=−∇·[U f t ⊗U f t

]−εf
(
U ′, p′, θ′,Ω′) ,

∇·〈U〉 =∇·Ub +ε∇·U ′ .

In black, one finds the leading order terms, associated to the mean flow equation, while in grey, one finds the terms
at orders ε and ε2. In the forth line, we present the decomposition associated to the Reynolds stress term, with the
time-averaged component at the leading order, in black, and the linearised component, in grey, represented by the variable
f , defined in a subsequent paragraph.

The same procedure can be made for the structure equation 1.38c, having

Is
d〈Ω〉

dt
+Ds 〈Ω〉+Ks 〈θ〉−mz(〈U〉 , 〈p〉)= Ksθb −mz

(
Ub, pb

)
+ε

(
Is

dΩ′

dt
+DsΩ

′+Ksθ
′−mz

(
U ′, p′)

)
.

Mean flow governing equations

Gathering the leading order terms present in the above fluid and solid decompositions, one arrives to the equations
governing the mean flow state at a fixed incidence:

([
Ub −Uw,b

]
·∇

)
Ub −∇·σ

(
Ub, pb

)
+∇·[U f t ⊗U f t

]= 0 ,

∇·Ub = 0,

Ksθb = mz

(
Ub, pb

)
.

(1.39a)

(1.39b)

(1.39c)

The term ∇·[U f t ⊗U f t
]

corresponds to the divergence of the Reynolds stress tensor. If the nonlinearity is sufficiently
small, the Reynolds stress tensor can be neglected and equations 1.39 are reduced to the base flow equations, describing a
steady solution of the Navier–Stokes equations.

Mean flow FSI eigenproblem equations

The perturbation
[
U ′, p′, θ′,Ω′]T is written in the form of a global mode as in equations 1.29 and 1.34:

q′(X , t)= q̂(X )eσt +c.c.
2

.
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With this definition, and gathering the terms at order ε in the above decompositions, one arrives to the equations of the
mean flow FSI eigenvalue problem, written as

σÛ + Ω̂
[
ez ×Ub

]
+

([
Û −Ûw

]
·∇

)
Ub +

([
Ub −Uw

]
·∇

)
Û −∇·σ

(
Û , p̂

)
=−f

(
Û , p̂, θ̂, Ω̂

)
,

∇·Û = 0,

IsσΩ̂+DsΩ̂+Ksθ̂−mz

(
Û , p̂

)
= 0,

σθ̂− Ω̂= 0.

(1.40a)

(1.40b)

(1.40c)

(1.40d)

The red term corresponds to the linearisation of the phase-averaged component of the fast time scale Reynolds stress
contribution, which is viewed here as a forcing term. The difference between the two mean flow eigenproblem formulations
(equations 1.33 and 1.40) is precisely this term. In its general form, this term depends on all the fluid–solid state variables.
Denoting g =∇·[U f t ⊗U f t

]
, the linearised term can be explicitly written as:

f
(
Û , p̂, θ̂, Ω̂

)
= Û

∂g
∂U

∣∣∣∣
U=Ub

+ p̂
∂g
∂p

∣∣∣∣
p=pb

+ θ̂ ∂g
∂θ

∣∣∣∣
θ=θb

+ Ω̂ ∂g
∂Ω

∣∣∣∣
Ω=Ωb

.

We note that, if one uses a RANS formulation, rather than the Navier–Stokes formulation present in this chapter,
the Reynolds stress tensor is a function of the state variables due to the Boussinesq approximation (cf. equation E.7).
Consequently, the linearisation of the RANS modelling explicitly takes into account the first term, while the other
terms do not exist (due to the fact that the modelling only depends on U). In that way, a RANS formulation presents
a methodological advantage, when compared to the present formulation, independently of choice for the model closure.
The different aspects associated to the RANS model are explored in appendix E and serve as basis for future works. For
the Navier–Stokes formulation, we considerer that this term only depends on the angular displacement component θ̂.
Further, we estimate this contribution via a finite difference scheme for two fixed angular displacements, such that

f
(
Û , p̂, θ̂, Ω̂

)
≈ f

(
θ̂
)
= θ̂ ∂g

∂θ

∣∣∣∣
θ=θb

≈ θ̂ g(θb +δθb)− g(θb)

δθb
. (1.41)

The influence of this term in the mean flow linear stability results is analysed in sections 4.2.5 (149) and 6.1.2 (190). This
new formulation for the mean flow problem can be put in a matrix form σMq̂ = Lq̂, like equation 1.35, as

σ




M f 0 0

0 1 0

0 0 Is







q̂ f

θ̂

Ω̂



=




L f

(
Ub

)
v f
θ

vΩ

0 0 1

mT −Ks −Ds







q̂ f

θ̂

Ω̂




, (1.42)

where the term v f
θ

corresponds to v f
θ
= vθ− f .

1.6 Quasi-steady fluid approximation

Up until now, the linear stability analyses rely on an exact linearisation. Thus, all the couplings between the fluid and
structural perturbations are taken into account. In this section, a first estimation of the eigenvalues of either Floquet
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or mean flow FSI linear stability analyses is achieved using a quasi-steady approximation of the fluid flow state on the
linear formulations. The aim is to identify the linear mechanisms at play in the destabilisation of the fully coupled modes
using a simpler approach. In a quasi-steady approximation, the fluid time scale of the linearised problem is assumed to
be slow compared to the solid time scale. The fluid–solid eigenvalue problem can then be reduced to a solid vibration
problem where the fluid effect is taken into account with added inertia, added damping and added stiffness coefficients,
as is stated in classical aeroelasticity (Dowell, 2004).

We start by explicitly writing the fluid component of the mean flow eigenvector (from the classical formulation) as
function of the angular displacement. For that, we rearrange the first line of the matrix system 1.35, arriving to

q̂ f =
(
σM f −L f

)−1 ·
(
vθθ̂+vΩΩ̂

)
.

The matrix inversion represents the fluid resolvent operator, noted

R f (σ)= (
σM f −L f

)−1 .

With these developments, we can eliminate the fluid variable from the system 1.35, obtaining an equivalent nonlinear
eigenvalue problem of reduced-size, which can be posed as


σ




1 0

0 Is


+




0 −1

Ks Ds









θ̂

Ω̂


=




0 0

mTR f (σ)vθ mTR f (σ)vΩ






θ̂

Ω̂


 . (1.43)

Noting that Ω̂=σθ̂, we obtain an equation for θ̂ only

(
Isσ

2 +Dsσ+Ks
)
θ̂ = mTR f (σ) (vθ+σvΩ) θ̂ . (1.44)

Note that the above equation still represents the exact mean flow linear stability analysis described previously for the
classical formulation. The right-hand side represents how a linear rigid-body displacement influences the solid modal
problem after having “travelled” in the fluid. The term (vθ+σvΩ) θ̂ represents the linearised forcing present in the fluid,
due to the pitch oscillations of the structure. This forcing is composed by the contribution vθ, representing a unitary
angular displacement perturbation, and by the contribution vΩ, representing a unitary angular velocity perturbation. The
term R f (σ) represents the linearised fluid response to this forcing term, transforming the forcing into a fluid perturbation.
Finally, the term mT extracts the constraints exerted by the fluid onto the solid at the fluid–solid interface, represented
by the aerodynamic moment associated to the linearised fluid response to the forcing term.

In a quasi-steady approximation, where the fluid time scale is assumed to be slow compared to the solid time scale, we
can approximate the resolvent operator by a Taylor expansion around σ= 0 (as done recently in Pfister et al. (2020)). In
this way, the right-hand side of the above equation can be developed as

mT(
σM f −L f

)−1 (vθ+σvΩ) θ̂

≈mT
[
−L−1

f −σL−1
f M f L

−1
f −σ2

(
L−1

f M f

)2
L−1

f + . . .
]

(vθ+σvΩ) θ̂

≈mT
[
−L−1

f vθ −
(
L−1

f vΩ+L−1
f M f L

−1
f vθ

)
σ −

((
L−1

f M f

)2
L−1

f vθ+L−1
f M f L

−1
f vΩ

)
σ2 + . . .

]
θ̂ .

(1.45a)

(1.45b)

(1.45c)
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This development can be put in a synthetic way as −Iaσ
2 −Daσ−Ka, where Ia, Da and Ka are the added inertia, added

damping and added stiffness coefficients, respectively, defined as

Ka = mTL−1
f vθ ,

Da = Dθ
a +DΩ

a = mTL−1
f M f L

−1
f vθ+mTL−1

f vΩ ,

Ia = Iθa + IΩa = mT
(
L−1

f M f

)2
L−1

f vθ+mTL−1
f M f L

−1
f vΩ .

Concerning the added damping and added inertia coefficients, we separate the contributions associated to the angular
displacement perturbation from the ones coming from an angular velocity perturbation. In that way, problem 1.44 is
approximated as [

(Is + Ia)σ2 + (Ds +Da)σ+ (Ks +Ka)
]
θ̂ = 0. (1.46)

The added inertia, Ia, may be understood as the inertia added to the oscillating system due to the fact that the accelerating
structure moves a certain volume of surrounding fluid as it moves through it. In a similar way, one may consider that the
volume of surrounding fluid displaced by the oscillating structure increases the damping and the stiffness of the system
by a factor of Da and Ka, respectively. The magnitude of these effects depends on the structure geometry and physical
properties of the fluid and are evaluated in chapter 3.

We denote a quasi-steady approximation of order 2 when all the added coefficients are taken into account, an
approximation of order 1 when only the terms Da and Ka are taken into account and an approximation of order 0 when
only Ka is taken into account. For θ̂ 6= 0, the solution of the above second order scalar equation, denoted σQS , reads

σQS =− Ds +Da

2(Is + Ia)
±

√(
Ds +Da

2(Is + Ia)

)2
− Ks +Ka

Is + Ia
. (1.47)

When the quantity inside the square root is negative, σQS corresponds to a pair of complex conjugate eigenvalues. On
the other hand, if the quantity inside the square root is positive, the quasi-steady approximation will predict two static
modes.

In a quasi-steady approximation, a relation between the added stiffness and the static slope of the aerodynamic
moment versus the incidence can be made. Indeed, the moment around the position θb +εθ′ can be written as

mz

(
θb +εθ′

)
= mz

(
θb

)
+εmθ

zθ
′ with mθ

z =
∂mz

∂θ

∣∣∣∣
θ=θb

.

Here, we neglect the dependence of the aerodynamic moment variation with the angular velocity and acceleration. By
supposing the perturbation as being written in a normal form in the above equation, θ′ =

(
θ̂eσt +c.c.

)
/2, the linearised

structure equation reads:
σ2Isθ̂+σDsθ̂+Ksθ̂ = mθ

zθ̂ ,

where on the left-hand side we find the added stiffness term Ka =−mθ
z.

In this case, a stability criterion can be written in terms of stiffness and added stiffness coefficients. For the limiting
case Ds = 0, which can be viewed as a conservative approximation of the actual problem, the quasi-steady approximation
can predict the presence of an unstable static eigenvalue in terms of Ks and mθ

z:

if − (Ks +Ka)> 0⇔ Ks < mθ
z : Existence of an unstable static eigenvalue. (1.48)
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Due to the problem symmetry with respect the angular displacement, α=−θ, the above relation can be rewritten as

if Ks <−mα
z : Existence of an unstable static eigenvalue. (1.49)

1.7 Numerical discretisation

After the presentation of the mathematical models for describing the physics of the flow and structure behaviours, this
section introduces the numerical tools employed for the discretisation of the present problem. In a first part, we introduce
the space discretisation of the incompressible Navier–Stokes equations, where no degree of freedom is associated to the
structure, as an example of the models presented before, whereas in a second part, we present the time discretisation
associated to the two- and three-dimensional time-marching schemes. The time discretisation could alternatively be
performed using time spectral methods, not explored in this manuscript (see Moulin (2020); Benetti Ramos (2020)).

In this regard, we first introduce the numerical boundary conditions considered. Next, we introduce the weak
formalism associated to the Navier–Stokes equations. This is followed by the mesh generation details, the domain
decomposition and the description of the Finite Element Method (FEM) used to derive the semi-discrete (continuous in
time, discrete in space) formulation of the present problem. We then define the numerical stabilisations associated to this
discretisation and finish by describing the different time-marching scheme discretisations.

Exact solutions of the Navier–Stokes equations are only possible for few particular cases which frequently represent
coarse simplifications of reality8. In most cases, only an approximative numerical solution is possible to achieve.
The resolution of these challenges is often associated to the branch of fluid mechanics called Computational Fluid
Dynamics (CFD).

Various numerical methods can be found on the literature for the discretisation and resolution of the Navier–Stokes
equations. The most common ones are the Finite Difference Methods (Strikwerda, 1984), the Finite Volume Meth-
ods (Eymard et al., 2000), the Finite Element Methods (Girault et al., 1979; Rannacher, 2000) and Spectral Element
Methods (Canuto et al., 2006). Mesh-free methods, including Vortex Methods (Cottet et al., 2000) and Smoothed Particle
Hydrodynamics (Li et al., 2002) can also be found on the literature. All these methods have their own advantages and
disadvantages, making them more or less suitable for the discretisation of a given problem. In the present manuscript, the
discretisation and resolution of our problem is made with the help of a Finite Element Method, a procedure for obtaining
an approximative numerical solution for general problems based on their weak formulation and a decomposition of the
domain into a finite number of elements, as described in the following paragraphs.

1.7.1 Boundary conditions on the numerical domain

Before presenting the weak formulation of the incompressible Navier–Stokes equations, we introduce the numerical
boundary conditions implemented. The unbounded physical domain is restricted upstream by an inlet frontier, labelled
Γin, and restricted on the remaining space directions by an outlet, upper and lower frontiers, labelled Γout. For the
three-dimensional computations, an additional frontier is created on the lateral sides of the wing, denoted Γlat. As
previously noted, the airfoil/wing surface is denoted Γw on the two-/three-dimensional domain. The position of these
different borders can be seen in figure 1.6. Since the airfoil is considered to move forward on a resting fluid, we shall
impose a null fluid velocity at Γin and a continuity velocity requirement at the fluid–solid interface, Γw. At Γout, we

8For the three-dimensional incompressible Navier–Stokes system of equations, and given some initial conditions, mathematicians have not yet
proved that smooth solutions always exist for all time. This is called the Navier–Stokes existence and smoothness problem, one of the seven Millennium
Prize Problems stated by the Clay Mathematics Institute (Jaffe, 2006).
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Figure 1.6 – Schematic illustration of the computational domain for the two-dimensional (left) and the three-
dimensional (right) simulations.

impose a natural stress-free condition (a Neumann boundary condition). Finally, at Γlat, we impose a symmetric condition
for the normal velocity component, W , and a natural stress-free condition along the remaining space directions. Therefore,
the problem 1.13, is numerically closed with

U(X , t)=0 X ∈Γin ,

U(X , t)=Uw X ∈Γw ,

σ(U , p)·n∞ =0 X ∈Γout ∪Γlat ,

W(X , t)=0 X ∈Γlat ,

(1.50a)

(1.50b)

(1.50c)

(1.50d)

with n∞ the outward unit normal vector of the Γout and Γlat borders. The general dimensions of the domain are fixed at
Lx = 10, L y = 30 and Lz = 0.2.

1.7.2 Weak formulation

Originally, the weak formulation has been introduced by mathematicians to investigate the behaviour of the solution
of partial differential equations, and to prove its existence and uniqueness. Later on, numerical schemes have been based
on this formulation, leading to an approximate solution. The weak formulation is also called the variational formulation,
where the solution satisfies a minimum of energy. Mathematically, the state variables U and p of equations 1.5 are
defined in the trial functional spaces, V 2

U and V 1
p , which can be written as:

U ∈V 2
U with V 2

U =
{
a ∈ [

H 2 (
Ω f

)]D
∣∣∣ a|Γin = 0 ∧ az|Γlat = 0

}
,

p ∈V 1
p with V 1

p =
{
b ∈H 1 (

Ω f
)}

,

(1.51a)

(1.51b)
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where H 1 and H 2 represent the Sobolev spaces9, D the space dimension and az the ez-component of a. As noted
previously, the pressure field is determined up to constant. If only Dirichlet conditions are used to close equations 1.5, an
additional condition for fixing the constant has to be introduced in the definition of the space V 1

p , e.g., that the integral of
the pressure over the entire domain should vanish for all time t (Volker, 2016, p. 20). In the present case, the pressure
constant is fixed naturally by the use of Neumann conditions, as described in the following paragraphs.

Concomitantly, we define the test functions v and q in the test functional spaces V 1
v and L 2 as

v ∈V 1
v with V 1

v =
{
a ∈ [

H 1 (
Ω f

)]D
∣∣∣ a|Γin∪Γw = 0 ∧ az|Γlat = 0

}
,

q ∈L 2 ,

(1.52a)

(1.52b)

where the test function v is set to zero on all Dirichlet conditions, where the solution is known. The weak formulation
can be obtained by multiplying equations 1.5a and 1.5b by the test functions v and q, respectively, followed by their
integration over the domain Ω f , yielding

∫

Ω f

[
∂U
∂t

+Ω×U + ([U −Uw] ·∇)U +∇p− 2
Re

∇·S(U)
]
·v+ [∇·U] q dΩ f = 0.

Applying the integration by parts to the stress tensor terms results10

∫

Ω f

∇p·v dΩ f =−
∫

Ω f

p∇·v dΩ f +

=0, since v=0︷ ︸︸ ︷∫

Γin∪Γw

pv·n dΓ +

=0, Neumann condition︷ ︸︸ ︷∫

Γout

pv·n∞ dΓ ,

−
∫

Ω f

2
Re

[∇·S(U)] ·v dΩ f =
∫

Ω f

2
Re

S(U) : S(v) dΩ f −
∫

Γin∪Γw

2
Re

[S(U)·n] ·v dΓ

︸ ︷︷ ︸
=0, since v=0

−
∫

Γout

2
Re

[S(U)·n∞] ·v dΓ

︸ ︷︷ ︸
=0, Neumann condition

,

with n corresponding to nw or n∞ on Γw or Γin, respectively. As the test function v is supposed with compact form
on all Dirichlet conditions, the terms associated to the border integrals over Γin and Γw are identically equal to zero.
Additionally, the sum of both integrals over Γout vanishes due to the Neumann condition of the present problem. Therefore,
in order to impose a homogeneous Neumann condition on FEM, one has nothing to do, hence the name “do nothing”
condition that is sometimes used in the literature11. Finally, one can note that the integral over Γout on the first equation
contains a contribution from the pressure. This fixes the constant associated to the definition of the pressure field.

The weak formulation is posed as

∫

Ω f

[
∂U
∂t

+Ω×U + ([U −Uw] ·∇)U
]
·v− p∇·v+ 2

Re
S(U) : S(v)+ [∇·U] q dΩ f = 0. (1.53)

9Sobolev space H p is a space of functions equipped with a norm that is a combination of L p-norms (Lebesgue space norms) of the function together
with its derivatives up to the order p.

10To simply the explanation, the integrals over the lateral boundary Γlat are omitted as they correspond to Dirichlet and Neumann conditions,
exemplified by the integrals over the other boundaries.

11While homogeneous Neumann conditions appear naturally in FEM formulation, other methods as spectral collocation or finite difference methods
must enforce this conditions explicitly, which may pollute the accuracy some time discretisations, as the fractional step methods, presented in
section 1.7.7 of Guermond et al. (2006), p. 6036.
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Figure 1.7 – Two-dimensional triangular mesh around the NACA0012 airfoil, at α= 0◦, on the top left, with the
following close-up views: near airfoil surface around mid-chord, on the bottom left, near the leading edge, on the top
right, and near the trailing edge, on the bottom right.

The integration by parts operation reduces the order of the maximum derivative of the problem and U no longer has
to belong to V 2

U , since equation 1.53 only involves first derivatives of U . Also, p no longer has to belong to V 1
p , since no

derivatives are required for the pressure variable. Therefore, the problem can be restricted to the search of functions
U ∈ V 1

U and p ∈L 2 with

V 1
U =

{
a ∈ [

H 1 (
Ω f

)]D
∣∣∣ a|Γin = 0 ∧ az|Γlat = 0

}
.

The solution set has been expanded, hence the denomination weak form. If a solution of this weak form exists, then its
uniqueness is proven by the Lax–Milgram theorem (Boldo et al., 2017), key ingredient used to build the Finite Element
Method.

1.7.3 Mesh generation

Before discussing the Finite Element Method used for the numerical discretisation of the above weak formulation, we
introduce the notions regarding the domain discretisation. Consider the partition of the fluid domain Ω f into a finite
number Nele of closed disjoint12 D-dimensional elements K , forming a discrete domain Ωh

f , such that

Ωh
f =

Nele⋃
e=1

Ke .

12This means that, for l 6= k ⇒Kl ∩Kk =;⊕Kl ∩Kk = {1 vertex}⊕Kl ∩Kk = {1 edge}, with the ⊕ notation representing the exclusive disjunction,
allowing only one of the equalities to be true at a time.
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0 8
0

4

x

y

2D mesh: triangle number 155 752

2D P2 space size 312 576

2D P1 space size 78 412

2D [P2]2 /P1 space size 703 564

3D mesh: tetrahedron number 42 053 040

3D P2 space size 56 576 256

3D P1 space size 7 135 492

3D [P2]3 /P1 space size 176 864 260

Figure 1.8 & Table 1.5 – On the left, visualisation of the three-dimensional mesh, at α = 0◦. The red faces
represent two Y X planes at Z =−0.1 and Z = 0.1. On the right, the simplex number of the 2D and 3D meshes along
with the size of the P2, P1, and Taylor–Hood FEM spaces. The number of tetrahedra on the 3D mesh corresponds to
3Nz times the number of triangles on the 2D mesh.

The meshing procedure is based on a Delaunay triangulation procedure, accomplished by the software FreeFem++ (Hecht,
2012)13, which is an open-source software used to solve partial differential equations, based on a Finite Element Method
discretisation, described in the next section. The elements Ke are restricted to simplex elements by the FreeFem++
software, either to triangles for two-dimensional or to tetrahedra for three-dimensional meshes.

The FreeFem++ software makes possible a local adaptation based on several user defined fields, which allows for an
efficient discretisation technique and an unstructured mesh generation. The adaptation algorithm is described in Hecht
(1998). The resulted mesh has a grid-point distribution determined by a metric matrix based on the Hessian of one
or several user defined fields. The precision of the adaptation (and hence the grid-point density) can be controlled by
specifying the desired interpolation error of the fields on the new mesh. Further parameters can be stipulated, as the
minimum and maximum edge sizes and the anisometric coefficient of the elements of the considered mesh.

The three-dimensional mesh is constructed by disposing several copies of the two-dimensional mesh along the
spanwise direction. The latter is generated in two steps. An example for α = 0◦ is present in figure 1.7. The same
procedure is done for the remaining incidences. In a first step, an initial mesh is generated, with a fine refinement on the
wake region and with the presence of 10 cell layers of fixed thickness around the airfoil surface. These layers are used to
enforce a constant height (in the normal direction to the airfoil surface) of the mesh simplexes, close to the airfoil. The
height of the first cell is fixed to 2 ·10−4, with an expansion ratio of 1.15, so that y+ ∼ O(1) for the flow regimes in the
present manuscript. With this mesh, a first estimation of the two-dimensional flow field at different instances is made.
In a second step, a rectangular region around the airfoil is established (represented by the domain in the upper left of
figure 1.7), in which the initial mesh is adapted to several instantaneous flow fields at different time instances. The
details around the leading edge, trailing edge and at a middle point over the upper surface are present on the zooms of
figure 1.7. The different layers created on the initial mesh around the airfoil force the adaptation procedure to produce
triangles whose vertices remain on theses layers, fixing the maximum height of each layer. The objective of these layers is
to keep an isotropic character in the normal direction of the wall, while having an anisotropic behaviour along the airfoil
surface direction. This effect is clearly seen on the bottom left figure, which represents a close-up on the upper surface of

13The FreeFem++ version used to obtain the results of the present thesis is the 4.400002, found on https://github.com/FreeFem/
FreeFem-sources/commit/7a6f53a44649aba87bb6d8179a062f7fe6da5a09.
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the airfoil. The anisotropic factor given to the FreeFem++ adaptation routine has a value of 10, while the interpolation
error is fixed at 0.008. As stated before, the general dimensions of the domain are fixed at Lx = 10, L y = 30 and Lz = 0.2.

The three-dimensional tetrahedral meshes are then obtained by an extrusion in the spanwise direction, i.e., by
disposing several copies of a two-dimensional mesh along the spanwise direction. This procedure initially generates
a triangular prism for each triangle of two adjacent planes, which is then divided in three tetrahedral. In that way,
the number of tetrahedra on the three-dimensional mesh corresponds to 3Nz times the number of triangles on the
two-dimensional mesh. The nominal number of planes is fixed at Nz = 90. A sliced view near the airfoil is present in
figure 1.8. The number of simplex elements and degrees of freedom associated to the polynomial bases, described in the
following paragraphs, is present in table 1.5.

1.7.4 MPI implementation and domain decomposition

The numerical resolution of the different problems of this thesis benefits from a MPI14 standard, associated to the
partition of the space discretisation. Each partition, obtained from a domain decomposition, is associated to a different
process15.

Domain decomposition, in the context of parallel computing, refers to the partitioning of the computational work
among multiple cores. In the present case, the global mesh is decomposed into NMPI submeshes, each one assigned to a
separate MPI process. The choice of the number of subdomains has a significant effect on the computational time. As
NMPI increases, the computational time tends to decrease, since the work is distributed by a higher number of processes.
However, the increase of NMPI also increases the number of communications to be made between the neighbouring
subdomains. In that sense, the overall computational time can be minimised for an optimal choice of NMPI . This value
can be obtained theoretical for fairly simple scenarios (Chan et al., 1995). However, for practical scientific computing
problems that commonly involve complex domains, no generic rule can be found for its prediction.

Along with the concern on the number of subdomains, one must also avoid a load imbalance in case of a vast difference
in the relative sizes of the subdomains. In this regard, the operation of decomposing the domain into NMPI subdomains,
called partitioning, is often performed in such a way that the resulting subdomains require comparable amounts of
computational effort, with minimal communication costs for handling the subdomain interfaces. This operation is often
done in a “pre-processing” step before the numerical computations and can be accomplished using a graph partitioning
software, such as Chaco (Hendrickson et al., 1994), PT-SCOTCH (Chevalier et al., 2008) or, as in the present case,
ParMETIS (Karypis et al., 1998).

1.7.5 Space discretisation: Finite Element Method

Although the Finite Element Method (FEM) was firstly used by structural engineers in the early 1940s (Courant,
1943), it was introduced in the fluid mechanics community in the late 1970s (Babuška, 1973; Pironneau, 1989). The idea
of FEM is to build up a solution to a differential equation from a sequence of local approximations. In that sense, the
approximations are noted Uh ≈U , ph ≈ p, vh ≈ v, qh ≈ q. We define the subspaces V

1,h
U ⊂ V 1

U , L 2,h ⊂L 2 and V
1,h

v ⊂ V 1
v

where the discrete solutions of equation 1.53 can be searched and the test functions defined. Note that, since the
Lax–Milgram theorem is valid for the continuous formulation of the problem, it is also valid for its discrete version. The

14Message Passing Interface (MPI) is an ad hoc standard for writing parallel programs that defines an application programmer interface (API)
implementing the message-passing programming model (Padua, 2011, p. 1184).

15Typically, for maximum performance, each process, responsible for a fraction of the space domain, is assigned to a single CPU core. This assignment
happens at runtime through the agent that starts the MPI program, mpirun for the present case.
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(a) Degrees of freedom for a continuous piecewise linear finite
element space P1.

(b) Degrees of freedom for a continuous piecewise quadratic
finite element space P2.

Figure 1.9 – Two- and three-dimensional standard element cells: illustration of the number of degrees of freedom
for the P1 and P2 finite element spaces.

semi-discrete form of the weak formulation is therefore written as

∫

Ωh
f

[
∂Uh

∂t
+Ω×Uh +

([
Uh −Uh

w

]
·∇

)
Uh

]
·vh − ph∇·vh + 2

Re
S

(
Uh

)
: S

(
vh

)
+

[
∇·Uh

]
qh dΩh

f = 0. (1.54)

The discretisation of the rigid-body velocity field, noted Uh
w, follows exactly the same reasoning as the discretised fluid

velocity Uh. The discrete variables Uh and ph are now represented as a truncated series expansion, for instance16,

Uh(X , t)=
NU

dof∑
i=1

Ûh
i (t) ¯Φi(X ) and ph(X , t)=

N p
dof∑

i=1
p̂h

i (t)Ψi(X ) ,

where Φi =
[
ΦU

i ,ΦV
i ,ΦW

i
]T and Ψi are analytic functions called trial (or expansion) functions, consisting of piecewise

polynomial functions17, and Ûh
i and p̂h

i are the unknown coefficients for the velocity and pressure solutions. The variables
NU

dof and N p
dof represent the number of unknowns of the problem (with a total of Ndof ), depending on both the number of

elements Nele and the order of the basis function. Upon convergence, as Ndof →∞, the approximative solution
[
Uh, ph]T

approaches the exact solution [U , p]T .
The choice of the basis functions for the velocity and pressure is constrained by the inf-sup or Ladyzhenskaya–Babuška–

Brezzi (known as LBB) condition (see, for instance, Brezzi et al. (1991)) in order to guarantee a stable approximation.
Indeed, the coupling of velocity and pressure in incompressible flow problems does not allow the straightforward use
of arbitrary pairs of finite element spaces. Several stable pairs of finite element spaces have been proposed in the
literature, as the MINI basis for simplex elements [P1+b]D /P1 (piecewise-linear polynomials enriched with local cubic
bubble functions for the discrete velocity and piecewise-linear polynomials for the discrete pressure, see Arnold et al.
(1984)) or the Taylor–Hood basis [Pk+1]D /Pk with k> 1 (the degree of the discrete velocity is one order superior to the
one of the discrete pressure, see Hood et al. (1974)). Note that both basis ensure that the pressure is approximated
by a continuous function. The Taylor–Hood bases are among the most popular, mainly due to its easy implementation
compared to other inf-sup pairs (Volker, 2016, p. 99). We opted for the Taylor–Hood basis [P2]D /P1, whose standard
representation is present in figure 1.9. For a two-dimensional problem, one obtains, for each cell, 3 degrees of freedom

16The notation a¯b stands for the Hadamard or element-wise product, in this case, between two vectors a and b, where each element of the result
product is the product of elements of the original two vectors.

17In practice, each element is mapped into a standard element of unitary size, where local trial functions are defined. The global trial functions are
then constructed using a parametric transformation between the “physical” cell and the reference unit cell (Karniadakis et al., 2013, p. 38).
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for the pressure and 6 degrees of freedom per velocity component, whereas for a three-dimensional problem, one has
4 degrees of freedom for the pressure and 10 degrees of freedom per velocity component. Finally, we note that the
inf-sup requirement can be circumvented by using a proper numerical stabilisation, given for example by the Pressure
Stabilisation Petrov–Galerkin (PSPG) methods (Hughes et al., 1986, 1987), not used in this thesis. The number of degrees
of freedom associated to each computation made are present in table 1.5 (and in table E.1, page 227 for the RANS
computations).

We initially consider the Galerkin method (known as the Bubnov–Galerkin method) for the choice of the test functions.
In this method, the test functions are chosen to be in the bases used to define the trial functions, such that

vh(X )=
NU

dof∑
j=1
Φ j(X ) and qh(X )=

N p
dof∑

j=1
Ψ j(X ) .

A broader class of the Galerkin method, known as the Petrov–Galerkin methods is discussed in section 1.7.6, where the
test functions and the trial functions are not found on the same bases.

Injecting the above decompositions into equation 1.54, one obtains the following discretised problem

[
MU 0

0 0

]
∂

∂t

[
Ûh

p̂h

]
+R

(
Ûh, p̂h

)
= 0, (1.55)

with MU the mass matrix operator, whose entries are given by

MU
i j =

∫

Ωh
f

ΦiΦ j dΩh
f . (1.56)

The residual operator R is defined as

R
(
Ûh, p̂h

)
=

[
AΩ¯Ûh +CÛh +DÛh −BT p̂h

BÛh

]
,

with the entries of the different discrete operators given by

AΩi =
∫

Ωh
f

Ω×Φi dΩh
f , Di j =

∫

Ωh
f

S(Φi) : S
(
Φ j

)
dΩh

f , Bi j =
∫

Ωh
f

Ψ j∇·Φi dΩh
f .

The treatment of the nonlinear convection term C usually passes through a linearised approximation, depending on the
problem to be solved. Its treatment on the different time-marching schemes used in this thesis is detailed in subsequent
paragraphs. Each integral over the discretised domain is further decomposed into a sum of integrals over each element
K . Then, the integrals are evaluated numerically on each element, using a Gauss quadrature integration, available on
the FreeFem++ software.

Numerical treatment of the boundary conditions

We have seen how the natural Neumann conditions directly appear on the variational formulation. Concerning the
Dirichlet conditions, present at the airfoil surface, on the inlet and on the lateral boundaries of the three-dimensional
domain, they are enforced on each degree of freedom of the boundary xi, after the assembly of equation 1.55, typically in
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a matrix form Ax= b. This is done by imposing the value of the condition, g, on the corresponding degree of freedom of
the b vector, as bi = g, and setting all coefficients of the ith line of A to zero, excepting the diagonal value, that is set to 1.
In that way, the degree of freedom xi is forced to the value g on the boundary condition, as desired.

1.7.6 Numerical stabilisations: Streamline Upwind/Petrov–Galerkin (SUPG) and grad-
div

One of the flaws of the standard Galerkin formulation in FEM discretisation is the generation of spurious node to
node oscillations for high Reynolds number problems. These oscillations come from three main sources:

• from the convective term, where oscillations may contaminate the velocity field for high advection problems (i.e.,
where the local Reynolds number, based on the characteristic length of the cell, is high);

• from a possible singularity on the discretised pressure equation, leading to pressure oscillations, associated to
a choice of velocity and pressure finite element pairs that does not satisfy the inf-sup condition. This is usually
treated with a suitable choice of finite element pair or with a PSPG stabilisation (see chapter 6 of Bodnár et al.
(2020) for a recent review on the subject);

• from the discrete violation of the divergence-free constraint, caused by a poor resolution of the pressure variable,
leading to large errors on both velocity and pressure fields.

In the context of variational formulations and weighted residual methods, several strategies to attenuate/suppress
these oscillations can be found in the literature, see for example Braack et al. (2007) for a review of these techniques.
In this thesis, we implement a Streamline Upwind/Petrov–Galerkin (SUPG) and a grad-div stabilisations, in order to
address the first and third points presented above. The second point is solved by a correct choice of a finite element
pair, satisfying the inf-sup condition. The SUPG stabilisation was not necessary for the time-marching Navier–Stokes
computations, but was imperative for the RANS computations to converge (see appendix E). Concerning the grad-div
stabilisation, it was deemed necessary for both fluid models. Further, both stabilisations where used in the stability
analyses presented in sections 1.4 and 1.5. For this sake, a linearisation of the SUPG and grad-div must be computed.
Their formal definition is present in appendix A, section A.4. In the next paragraphs, we detail the formulation associated
to the stabilisation techniques used.

SUPG stabilisation

Historically, the SUPG method was introduced by Brooks et al. (1982) for stabilising convection diffusion equations
with a dominance of the convective term. Later, the stabilisation of the stationary Navier–Stokes equations appeared
with Hansbo et al. (1990), Lube et al. (1990) and Franca et al. (1992). The need for a SUPG stabilisation is related
to the inability to capture the small scales on the velocity field for a given mesh cell. To circumvent the problem, one
could over-refine the mesh, which would lead to an excessive refined mesh. The other option consists in adding a control
parameter, that depends on the strong residual of the momentum equation (plus the Spalart–Allmaras equation, for the
RANS model, see appendix E) on each cell, to the left-hand side of the Galerkin finite element formulation in equation 1.54.
This control term reads

Nele∑
e=1

∫

Ke

τSUPGR·
[([

Uh −Uh
w

]
·∇

)
vh

]
dKe , (1.57)

where R represents the strong semi-discretised residual of equation 1.5a (or equations E.8 and E.9 for RANS computations)
and τSUPG > 0 represents the nonnegative scalar value, called intrinsic time or SUPG parameter, different for each
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mesh element and possibly dependent on the fluid velocity and viscosity at that element. This term is approximated
by piecewise constant functions, belonging to the P0 finite element space. Since this additional term is based on the
strong residual of the problem’s equations, it vanishes as the numerical solution approaches the exact analytical solution,
leading to a consistent formulation.

The addition of the above term can also be interpreted as the use of a different class of weighting functions on the
FEM, defined as,

vh
SUPG = vh +τSUPG

([
Uh −Uh

w

]
·∇

)
vh .

The additional term represents a streamline upwind contribution. Compared to the standard Galerkin method, this
new weighting function, vh

SUPG , is no longer continuous across the inter-element boundaries. The resulting procedure is
known as Petrov–Galerkin formulation. The addition of this term results on a nonsymmetrical mass matrix, represented
in equation 1.56, which can be problematic for some linear solvers.

In regards to the stabilisation parameter τSUPG , different definitions were used in the literature. In this work, two
different definitions were used. The first one was proposed by Tezduyar et al. (1992):

τSUPG,1 =
hK

2
∥∥Uh∥∥

K

ξ (ReK ) with ξ (ReK )=
{

ReK , 06ReK 6 3
1 ReK > 3

and ReK =
∥∥Uh∥∥

K hK

2ν
, (1.58)

where
∥∥Uh∥∥

K corresponds to the element-wise fluid velocity norm, hK represents the characteristic length of the element
and ReK the local Reynolds number. This definition is used in the RANS computations (appendix E). The second definition,
used in the two- and three-dimensional simulations, was proposed in Codina (2000); Sari et al. (2018) and reads

τSUPG,2 =
[(

2
∥∥Uh∥∥

K
hK

)2

+
(

4ν
h2

K

)2]−1/2

. (1.59)

The characteristic length can also have different definitions. For elements that are highly stretched in one particular
direction (anisotropic meshes), this definition becomes paramount. Mittal (2000) compared different definitions of hK on
the SUPG stabilisation of the Navier–Stokes flows, one based on the maximum edge length of each element, one based
on their minimum edge length and one based on the element length along the streamwise direction. Although, their
study was performed at Reynolds numbers of 106Re6 100, they concluded that the maximum edge definition produced
overly diffused solutions, while the one based on the velocity-magnitude produced oscillatory solutions close to the solid
boundary.

Other works have also analysed the effect of hK , as Förster et al. (2009); Micheletti et al. (2003); Sari et al. (2018) with
no definitive definition. In the present thesis, we considered two definitions of hK . The first one is based on the work
of Franceschini (2019),

hK ,1 =
p

2
AK

max(hedge)
, (1.60)

with AK the cell area and hedge the size of the different cell edges. The second one corresponds to the minimum edge size

hK ,2 =min(hedge) . (1.61)

The tests on the different definitions of τSUPG and hK are present in section E.2.5 (page 232). For the results present in
this thesis, we use the definition τSUPG,1 for the RANS simulations and τSUPG,2 for the Navier–Stokes formulation, and
we use the definition hK ,2 for both fluid models.
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Grad-div stabilisation

While dominating advection flows can lead to numerical instabilities addressed by the SUPG stabilisation, there is
another source of numerical oscillations in the finite element discretisation of incompressible flows related to a possible
poor resolution of the pressure field, leading to a loss of accuracy on the velocity approximation and ultimately to a
non-compliance of the discrete divergence-free condition, i.e., of the conservation of mass. One of the options proposed in
the literature to correct this lack of mass conservation passes through the introduction of a penalty term in the Galerkin
finite element formulation, referred to as grad-div (also called Least Square on Incompressibility Constraint (LSIC)). Its
inclusion in incompressible flow problems was first accomplished around the same time as the τSUPG term, by Franca
et al. (1988); Hansbo et al. (1990); Franca et al. (1992); Kobel’kov (1995), and later studied for example in Codina (2000);
Olshanskii (2002); Olshanskii et al. (2009); Sari et al. (2018); Fiordilino et al. (2018). The grad-div term, added to
equation 1.54, reads

sGD =
Nele∑
e=1

∫

Ke

τGD

(
∇·Uh

)(
∇·vh

)
dKe , (1.62)

where τGD > 0 is a nonnegative scalar value, called grad-div coefficient, different for each mesh element, as the τSUPG

parameter, defined as

τGD = (hK /c0)2

4DτSUPG
,

where c0 is a constant corresponding to the velocity space interpolation order (here, fixed at c0 = 2) and D the space
dimension.

Note that when expressed into a strong form instead of a variational form, the grad-div stabilisation is a vector
quantity, added to the left-hand side of the Navier–Stokes momentum equation, with the form

sS
GD =∇

[
τGD

(
∇·Uh

)]
.

This strong form justifies the name “grad-div” for this stabilisation.

In the following paragraphs, we present the schemes associated to the time discretisation, where the grad-div term is
used. In order to simplify the presentation, we reconsider the strong formulation of the Navier–Stokes equations, where
the term sS

GD appears.

Finally, we note that the divergence-free condition can be numerically achieved using pressure-robust space discretisa-
tions to define the basis functions, e.g., the Scott–Vogelius element spaces (Scott et al., 1985; Kean et al., 2021). However,
this choice is followed by several restrictions in the mesh generation and therefore this option was not studied in this
thesis.

1.7.7 Time discretisation of the three-dimensional Navier–Stokes equations

Along with a space discretisation, the time-marching simulations require a temporal numerical scheme to advance
in time. We present the time discretisation here by applying it to the strong form of the Navier–Stokes equations 1.5
with Ω = 0, since the wing is in a static position. The rigid-body velocity field Uw is therefore fixed for each angle of
attack. This numerical scheme will be used for the computations that are presented in chapter 2. The time discretisation
is implemented using a linearised implicit backward differentiation formula (BDF) of 2nd order (Curtiss et al., 1952;
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Quarteroni et al., 1991):

α0

∆t
Uk+1 + (

U?·∇)
Uk+1 −∇·σ

(
Uk+1, pk+1

)
+ sS

GD

(
Uk+1

)
= f k+1 ,

∇·Uk+1 = 0,

(1.63a)

(1.63b)

with X ∈Ω f , where ∆t > 0 is the time step, k the current time step iteration, f k+1 a source term and U? the convective
velocity extrapolated from the previous time steps. The last two terms are defined as

f k+1 =−
(α1

∆t
Uk + α2

∆t
Uk−1

)
,

U? =β1

(
Uk −Uw

)
+β2

(
Uk−1 −Uw

)
.

In all simulations, we adapt the time step such that the Courant–Friedrichs–Lewy (CFL) number is found around 0.66.
The constants α0, α1, α2, β1 and β2 correspond to the BDF coefficients and take the values of α0 = 1, α1 =−1, α2 = 0,
β1 = 1, β2 = 0 for the first time iteration—corresponding to a BDF method of 1st order—and α0 = 3/2, α1 =−2, α2 = 1/2,
β1 = 2, β2 =−1 otherwise—corresponding to a BDF method of 2nd order.

In order to efficiently solve the system 1.63 at each time step, we implemented an incremental projection algorithm,
where the velocity and pressure variables are solved in different substeps of the k

th
time iteration. This separation comes

from the numerical difficulty of solving incompressible flows, where these variables are coupled by the incompressibility
constraint. The interest in using projection methods to overcome this problem started in the late 1960s with the works
of Chorin (1968) and Témam (1969). Further, these methods are not specific to the BDF scheme used in this thesis. A
recent review by Guermond et al. (2006) addressed the different projection methods available on the literature. The
present implementation passes through a pressure-correction scheme, composed of two main substeps. In the first substep,
the pressure is treated explicitly and an intermediate velocity Ũ is calculated by solving the momentum equations only.
As the incompressibility constraint is not taken into account in this substep, the obtained velocity is not divergent-free.
Only in the second substep, this velocity is projected into the pressure space, obtaining, first, a correction for the velocity
field and, second, the pressure field.

The time-discrete momentum equation solved in the first substep can be put as

α0

∆t
Ũ + (

U?·∇)
Ũ − 1

Re
∇2 (

Ũ
)+ sS

GD
(
Ũ

)= f k+1 −∇pk , (1.64)

or, in a matrix form:

Ax= b ⇔




L(Uk+1)+ sS,xx
GD sS,xy

GD sS,xz
GD

sS,yx
GD L(V k+1)+ sS,yy

GD sS,yz
GD

sS,zx
GD sS,zy

GD L(Uk+1)+ sS,zz
GD







Ũ

Ṽ

W̃



=




f k+1
x −∂x pk

f k+1
y −∂y pk

f k+1
z −∂z pk




, (1.65)

where L represents the first three terms of the left-hand side of equation 1.64 and sS,••
GD the different components of the

grad-div term, that depend on each velocity component. One can see that the latter terms are responsible for coupling the
different velocity components of the first substep system. This system is solved using a Generalised Minimum Residual
(GMRES) method (Saad et al., 1986), preconditioned on the right side by a the block lower triangular version of the matrix
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in equation 1.65 (see appendix B for more details on this class of methods):

AP−1Px= b ⇔



AP−1 y= b

Px = y
with P=




L(Uk+1)+ sS,xx
GD 0 0

sS,yx
GD L(V k+1)+ sS,yy

GD 0

sS,zx
GD sS,zy

GD L(Uk+1)+ sS,zz
GD




. (1.66)

The relative tolerance of the unpreconditioned residual is set to 10−9 with a fixed restart parameter of 25. We note
that the addition of the grad-div terms couples the velocity components, decreasing the sparsity of the matrix to invert
and making the preconditioning more difficult. A comparison of the GMRES performance between the cases with and
without the grad-div stabilisation is present in the preliminary results, in section 1.8.4. In contrast, we note that the
preconditioner is diagonally dominant when the time step is small, hence, its performance is expected to increase as ∆t
decreases. This behaviour is not explored in the numerical tests since one of the advantage of the linearised implicit
discretisation (com- pared to semi-implicit discretisation, where the nonlinear convection term is treated explicitly) is
their numerical stability with respect to larger time steps.

The inverse of the preconditioner matrix is accomplished via a forward substitution process, where the inverse of
each diagonal block is performed. The inverse of each diagonal block is approximated by a block Jacobi, where each
block—associated to an individual domain of a MPI process—is solved via an incomplete LU factorisation, ILU(l), where
the fill level set to l = 1. This last parameter changes the amount of coefficients of the original matrix taken into account
in the factorisation. Increasing l leads to a more exact factorisation, with an increase on the computational time. Different
inverse strategies are tested in section 1.8.4.

Concerning the second substep, we use a Standard Incremental Pressure-Correction (SIPC) scheme (van Kan, 1986).
With this scheme, the velocity and pressure fields are corrected by solving the system:

α0

∆t
Uk+1 − α0

∆t
Ũ +∇·(pk+1 − pk)= 0 ,

∇·Uk+1 = 0.

(1.67a)

(1.67b)

Taking the divergence of equation 1.67a and noting dP = pk+1 − pk the pressure correction, one arrives to

α0

∆t
∇·Ũ =∇2dP , (1.68)

with the corrections given by

pk+1 = pk +dP ,

Uk+1 = Ũ + ∆t
α0

∇·dP .

The system 1.68 represents a Laplace equation, which is solved via a left preconditioned Conjugate Gradient (CG) (Málek
et al., 2015) iterative method, taking advantage of the positive-definite character of the discrete Laplace matrix to inverse.
The absolute tolerance of the unpreconditioned residual is set to 10−8 and the preconditioner corresponds to a Geometric
Algebraic Multigrid (GAMG) (Stüben, 2001) preconditioner, with a smoothed aggregation algorithm.
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1.7.8 Time discretisation of the two-dimensional FSI equations

In this section, we present the time discretisation used for the two-dimensional coupled time-marching simulations,
described by the nonlinear set of equations 1.13. This numerical scheme is used for the computations that are presented
in chapter 5. The coupled system is solved via a fully implicit temporal discretisation, using a backward differentiation
formula (BDF) of 2nd order (Curtiss et al., 1952; Quarteroni et al., 1991):

α0Uk+1 +α1Uk +α2Uk−1

∆t
+Ωk+1

[
ez ×Uk+1

]
+

([
Uk+1 −Uk+1

w

]
·∇

)
Uk+1

−∇·σ
(
Uk+1, pk+1

)
+ sS

GD

(
Uk+1

)
= 0 ,

∇·Uk+1 = 0,

Is
α0Ω

k+1 +α1Ω
k +α2Ω

k−1

∆t
+DsΩ

k+1 +Ksθ
k+1 = mz

(
Uk+1, pk+1

)
,

α0θ
k+1 +α1θ

k +α2θ
k−1

∆t
−Ωk+1 = 0.

(1.69a)

(1.69b)

(1.69c)

(1.69d)

In all simulations, we adapt the time step such that the Courant–Friedrichs–Lewy (CFL) number is found between 5 to
10. This nonlinear set of equations is solved with the help of a Newton–Raphson method (see for example Deuflhard
(2011) for a review on these methods). This class of methods has become a popular strategy for solving large systems
of nonlinear equations in the field of CFD due to its ability to provide deep convergence levels for stiff systems such as
the ones found in the discretisation of the Navier–Stokes equations. In short, the Newton methods represent a class of
iterative root-finding algorithms which produces successively better approximations to the roots of the considered system
of equations, given a reasonably close initial guess, which is the case in the current application.

At each time iteration k, the solution at the Newton iteration i+1 is computed as qi+1,k+1 = qi,k+1 +δq. By injecting
this decomposition on equations 1.69, one arrives to a linear system which can be posed in the form:

∂R
∂q

∣∣∣∣
q=qi,k+1

δq =−R
(
qi,k+1

)
.

The superscript •i will be dropped, in order to simplify the notation. The state vector correction δq is computed by solving
the corresponding linearised system, posed in a matrix form as




L f vθ vΩ

0 1
∆t −1

mT Ks

(
Is
∆t +Ds

)







δq f

δθ

δΩ



=−




R f

Rθ

RΩ




, (1.70)
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where the right-hand side terms R f =
[
RU

f , Rp
f

]T
, Rθ and RΩ are the time-discrete residuals, posed as

RU
f = α0Uk+1 +α1Uk +α2Uk−1

∆t
+Ωk+1

[
ez ×Uk+1

]
+

([
Uk+1 −Uk+1

w

]
·∇

)
Uk+1 −∇·σ

(
Uk+1, pk+1

)
+ sS

GD

(
Uk+1

)
,

Rp
f =∇·Uk+1 ,

Rθ =
α0θ

k+1 +α1θ
k +α2θ

k−1

∆t
−Ωk+1 ,

RΩ = α0Ω
k+1 +α1Ω

k +α2Ω
k−1

∆t
+DsΩ

k+1 +KsΩ
k+1 −mT qk+1

f ,

for X ∈Ω f and ∆t > 0. The boundary conditions associated to the right-hand side of equation 1.70 are posed as

Uk+1(X )=0 X ∈Γin ,

Uk+1(X )=Uk+1
w X ∈Γw ,

σ
(
Uk+1, pk+1

)
·n∞ =0 X ∈Γout .

(1.71a)

(1.71b)

(1.71c)

The terms L f , vθ, vΩ correspond to the linearised operators around the state vector qk+1, which are posed as

L f δq f =
[

α0δU
∆t +Ωk+1 [ez ×δU]+

([
Uk+1 −Uk+1

w
] ·∇)

δU + (δU ·∇)Uk+1 −∇·σ(δU , δp)+ sS
GD(δU)

∇·δU

]
,

vθ =−U∞
([

sin
(
θk+1)

cos
(
θk+1)

]
·∇

)
Uk+1 ,

vΩ =
[

−V k+1

Uk+1

]
−

([
−(Y −YEC)

X − XEC

]
·∇

)
Uk+1 ,

for X ∈Ω f and ∆t > 0. The boundary conditions associated to the left-hand side of equation 1.70 are posed as

δU(X )=0 X ∈Γin ,

δU(X )=1 X ∈Γw ,

σ(δU , δp)·n∞ =0 X ∈Γout ,

vθ = −U∞
[
sin

(
θk+1

)
, cos

(
θk+1

)]T
X ∈Γw ,

vΩ = − [−(Y −YEC), (X − XEC)]T X ∈Γw .

(1.72a)

(1.72b)

(1.72c)

(1.72d)

(1.72e)

The convergence of the Newton is achieved when the absolute residual respect ‖R (q)‖ < 10−14.

Chapter 1 – Problem description and numerical tools 59



Section 1.7 – Numerical discretisation

1.7.9 Modular approach for fluid–structure Jacobian inversion

Using several linear algebra manipulations, the inversion of the full Jacobian matrix can be based solely on the
inversion of the fluid Jacobian, L f . The final result can be related to the Schur complement of the fluid Jacobian18.

We start by decomposing the fluid correction state vector into three components:

δq f =−(
δq f , f +δqθδθ+δqΩδΩ

)
,

referred to as the “intrinsic” fluid component, δq f , f , and the “coupled” fluid components, δqθ and δqΩ. From the first
equation of the system 1.70,

δq f =−L−1
f

(
R f +vθδθ+vΩδΩ

)
,

one can identify the three fluid systems to solve in order to obtain the aforementioned components of δq f :

δq f , f = L−1
f R f ,

δqθ = L−1
f vθ ,

δqΩ = L−1
f vΩ .

The corrections on the solid variables come from the second and third lines of the system 1.70, which is posed as




1
∆t −1

Ks + K̃a

(
Is
∆t +Ds + D̃a

)




 δθ

δΩ


=−


 Rθ

RΩ+mTδq f , f


 ,

where K̃a and D̃a are terms similar to the added stiffness and to the added damping coefficients, defined as

K̃a = mT δqθ ,

D̃a = mT δqΩ .

Numerically, the solution obtained with these linear algebra manipulations is only accurate if the matrix L f is
well-conditioned. For this reason, the Newton method based on the solid-reduced eigenproblem developed in chapter 3
mainly targets the fluid–structure eigenvalues (see section 3.2.3, page 121). For completeness of the above paragraphs,
the Schur component of the matrix L f is defined as

S=



1
∆t −1

Ks

(
Is
∆t +Ds

)

−


 0

mT


L−1

f

[
vθ vΩ

]
.

1.7.10 Time discretisation of the linearised two-dimensional FSI equations

We present in this section the method implemented for time-marching the linearised FSI equations, described by
the system 1.27. This is used for the computation of the leading eigenvalues of the Floquet FSI linear stability analysis,
detailed in appendix B, with the results present in chapters 4 and 6.

18In electrical engineering, this linear algebra manipulation is referred to as network reduction or Kron reduction (Bergen et al., 2000, sec. 9.3).
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The linearised system, represented by equations 1.27, is solved via a fully implicit temporal discretisation, using a
backward differentiation formula (BDF) of 2nd order (Curtiss et al., 1952; Quarteroni et al., 1991):

α0U ′k+1 +α1U ′k +α2U ′k−1

∆t
+Ω′k+1

[
ez ×Uk+1

b

]
+

([
U ′k+1 −U ′k+1

w

]
·∇

)
Uk+1

b

+
([

Uk+1
b −Uw

]
·∇

)
U ′k+1 −∇·σ

(
U ′k+1, p′k+1

)
+ sS

GD

(
U ′k+1

)
= 0 ,

∇·U ′k+1 = 0,

Is
α0Ω

′k+1 +α1Ω
′k +α2Ω

′k−1

∆t
+DsΩ

′k+1 +Ksθ
′k+1 = mz

(
U ′k+1, p′k+1

)
,

α0θ
′k+1 +α1θ

′k +α2θ
′k−1

∆t
−Ω′k+1 = 0.

(1.73a)

(1.73b)

(1.73c)

(1.73d)

Note that, since the flow around which the linearisation was carried out is periodic, evolving in time, its corresponding
terms are also implicit, namely the velocity component Uk+1

b . If one denotes
[
δq f , δθ, δΩ

]T = [
U ′k+1, p′k+1, θ′k+1,Ω′k+1]T

,
the time-discretised linear system can be put in a matrix form as




L f vθ vΩ

0 1
∆t −1

mT Ks

(
Is
∆t +Ds

)







δq f

δθ

δΩ



=−




R f

Rθ

RΩ




, (1.74)

where the right-hand side terms R f =
[
RU

f , Rp
f

]T
, Rθ and RΩ are posed as

RU
f = α1U ′k +α2U ′k−1

∆t
,

Rp
f = 0,

Rθ =
α1θ

′k +α2θ
′k−1

∆t
,

RΩ = α1Ω
′k +α2Ω

′k−1

∆t
,

for X ∈Ω f and ∆t > 0. The boundary conditions associated to the right-hand side of equation 1.74 are posed as

U ′k+1(X )=0 X ∈Γin ,

U ′k+1(X )=0 X ∈Γw ,

σ
(
U ′k+1, p′k+1

)
·n∞ =0 X ∈Γout .

(1.75a)

(1.75b)

(1.75c)

The terms L f , vθ, vΩ correspond to the linearised operators around the periodic state
[
Uk+1

b , θb, 0
]T

, which are posed
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as

L f q′k+1
f =

[
α0U ′k+1

∆t + ([
U ′k+1] ·∇)

Uk+1
b +

([
Uk+1

b −Uw

]
·∇

)
U ′k+1 −∇·σ(

U ′k+1, p′k+1)+ sS
GD

(
U ′k+1)

∇·U ′k+1

]

vθ =−U∞



 sin

(
θb

)

cos
(
θb

)

 ·∇


Uk+1

b ,

vΩ =
[

−V k+1
b

Uk+1
b

]
−

([
−(Y −YEC)

X − XEC

]
·∇

)
Uk+1

b ,

for X ∈Ω f and ∆t > 0. The boundary conditions associated to the left-hand side of equation 1.74 are posed as

U ′k+1(X )=0 X ∈Γin ,

U ′k+1(X )=1 X ∈Γw ,

σ
(
U ′k+1, p′k+1

)
·n∞ =0 X ∈Γout ,

vθ = −U∞
[
sin

(
θb

)
, cos

(
θb

)]T
X ∈Γw ,

vΩ = − [−(Y −YEC), (X − XEC)]T X ∈Γw .

(1.76a)

(1.76b)

(1.76c)

(1.76d)

(1.76e)

The inversion of the fluid–solid Jacobian present in system 1.74 is based solely on the inversion of the fluid Jacobian,
as explained in section 1.7.9.

1.8 Preliminary results: numerical validation

This first set of results aims to numerically validate the different methods presented previously. In that way, different
numerical aspects of the two- and three-dimensional simulations are discussed: the mesh convergence, the influence of
the lateral boundary condition, the influence of the numerical stabilisation and the impact on the performance of different
resolution strategies of the velocity substep on the SIPC scheme.

Computations were conducted on “Sator”, an ONERA supercomputer. This cluster is composed by 620 nodes, each one
with two CPU processors Intel Xeon “Broadwell” E5-2680v4, with a clock rate of 2.4GHz. Each processor has 14 cores,
making a total of 28 cores per node.

1.8.1 Mesh convergence

The mesh convergence is firstly done on the two-dimensional case, at Re= 50000 and α= 0◦. Table 1.6 summarises
the details of the five meshes compared and their associated results. We start by comparing the amplitude of oscillation of
the lift signal, C1

L, on the time-marching simulation, followed by the indicators associated to the mean flow solution, the
drag coefficient, CD , the recirculation length, Lrecirc, and the position of the upper surface separation, X up

d . The last
two columns correspond to the numerical values of the divergence and flutter FSI eigenvalues (from a linear analysis
using the classical formulation, around a mean flow from 2D simulations), for the set of nominal structural parameters
indicated in section 1.2, table 1.1. The description of these eigenvalues is made in the subsequent chapters 3, 4 and 6.
The robustness of the results is observed by varying the space resolution and the domain size of the different meshes.
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Mesh # triangles ∆y1 Lx L y C1
L CD Lrecirc X up

d Div. mode Flutter mode

M2D
0 103284 4 ·10−4 10 30 0.024212 0.020658 0.064372 0.698125 0.208479 −0.144575+0.539988i

M2D
1 155752 2 ·10−4 10 30 0.024002 0.020647 0.064903 0.698588 0.208568 −0.144496+0.540228i

M2D
2 239732 1 ·10−4 10 30 0.023644 0.020635 0.065479 0.699387 0.208661 −0.144555+0.540391i

M2D
3 198176 2 ·10−4 20 30 0.023941 0.020649 0.064882 0.698588 0.208560 −0.143634+0.540807i

M2D
4 203396 2 ·10−4 10 60 0.023704 0.020640 0.065162 0.698588 0.208388 −0.139083+0.526076i

Table 1.6 – Convergence of the two-dimensional mesh with respect to the time-marching and mean flow properties
and to the mean flow FSI eigenvalues at Re = 50000 and α= 0◦. Concerning the physical description these FSI
eigenvalues, see chapter 4.

A first comparison is made between meshes M2D
0 , M2D

1 and M2D
2 , where the height of the first cell around the airfoil is

successively divided by two. A second comparison is made between the meshes M2D
1 and M2D

3 , where the influence of the
airfoil distance to the outlet boundary is investigated. Finally, a third comparison is made between the meshes M2D

1 and
M2D

4 , where the influence of the airfoil distance to the upper, lower and inlet boundaries is investigated.

Concerning for example the values of C1
L, the absolute differences are of order 10−4. The same can be said for the mean

flow indicators, with absolute differences of order 10−5, 10−3 and 10−4 for the drag, recirculation length and separation
location, respectively, revealing an overall good agreement of the results. The main differences are observed between
the meshes M2D

1 and M2D
2 , where the height of the first wall cell varies. Concerning the mean flow FSI eigenvalues, the

higher variations appear on the frequency of the flutter eigenvalue. In this case, the distance to the upper, lower and
inlet boundaries appear to have the most influence, where the absolute error on the flutter frequency between meshes
M2D

1 and M2D
4 is of 0.014152. In regards to the present results, mesh M2D

1 is considered to provide the adequate spatial
resolution for the current simulations. The same tests were conducted for the remaining angles of attack studied.

The three-dimensional discretisation was obtained by an extrusion of the 2D mesh in the spanwise direction. The
convergence of the mean flow and FSI eigenvalues with respect to the averaged time (i.e., the time during which the
mean flow was computed) and the number of planes, Nz, is depicted in table 1.7, for the case Re= 50000 and α= 1.5◦.
The number of spanwise planes was found to have a small influence in the present results, with the bigger discrepancies

Averaged time Nz CD CL U(1.2,0.05) Flutter mode Mode from coalesced div. modes

37.25 60 0.023824 0.055870 0.920767 −0.076053+0.405422i −0.322608+0.167439i

7.25 90 0.023406 0.048295 0.919270 −0.073922+0.407158i −0.293129+0.176473i

17.25 90 0.023465 0.046626 0.920188 −0.074141+0.408924i −0.289391+0.174183i

27.25 90 0.023450 0.047374 0.920630 −0.079202+0.407900i −0.285979+0.172037i

37.25 90 0.023440 0.048416 0.920680 −0.080360+0.406060i −0.285003+0.172186i

Table 1.7 – Convergence of the time- and spanwise-averaged flow properties and mean flow FSI eigenvalues for the
three-dimensional simulations at Re= 50000 and α= 1.5◦, with the averaged time and number of planes in the
spanwise direction.
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CD 0.021093 0.021021 7.2·10−5

CL −0.026578 −0.025904 6.7·10−4

mz −0.011496 −0.011343 1.5·10−4

X up
d 0.619973 0.621336 1.4·10−3

Figure 1.10 & Table 1.8 – Comparison of the upper surface friction coefficient distribution, C f , associated to the
time- and spanwise-averaged flow between two computations at Re= 50000 and α= 0.5◦: a first one with lateral
periodic boundary conditions (solid red curve) and a second one with a symmetric boundary condition on the W
velocity component (dashed blue curve). On the right, comparison of several global coefficients and abscissa of the
boundary layer separation point, X up

d , between these two computations.

on the CL coefficient and on the stable eigenvalue from the coalesced divergence eigenvalues. Concerning the averaged
time convergence, the indicators associated to the mean flow solution, CD , CL and the streamwise velocity on the point
(1.2,0.05), have an absolute error of order 10−5, 10−3 and 10−5, respectively. Concerning the results associated to the FSI
eigenvalue, the same reasoning can be made, so that we can conclude that the mean flow is averaged during a sufficient
amount of time.

1.8.2 Influence of the lateral boundary condition on the three-dimensional computations

A comparison between two types of lateral boundary conditions is made for the three-dimensional case at Re= 50000
and α= 0.5◦. We consider a first computation where a periodic boundary condition is imposed by setting

[U , p] (X ,Y , Z = Lz, t)= [U , p] (X ,Y , Z =−Lz, t) ,

and a second computation, where a symmetric boundary condition on the W velocity component is imposed (see equa-
tion 1.50d). The comparison is made on the extracted mean flow. As depicted in the figure 1.10, the C f distributions of the
mean flow over the upper surface of the airfoil field coincide for both computations. The same observation can be made for
the global coefficients, present in table 1.8, where the absolute error does not surpass the 10−3 order of magnitude. We
conclude that, with respect to the mean flow characteristics, the choice of the lateral boundary conditions does not affect
the results.

In this thesis, the choice of symmetric conditions, rather than periodic conditions is due to particular numerical
difficulty, associated to the FreeFem++ software. The difficulty is related to the fact that, every degree of freedom where
the periodic condition has to be imposed should be on the same MPI process, and therefore, on the same domain partition.
This constraint strongly deteriorates the performance of the simulations. In that sense, we choose to apply symmetric
boundary conditions to the lateral boundaries of the domain.

1.8.3 Influence of the SUPG and grad-div stabilisations

The two-dimensional field representations of the SUPG and grad-div stabilisations, τSUPG and τGD , respectively, are
depicted in figure 1.11, for Re = 50000 and α= 0◦. The higher values of these fields are present near the inlet region,
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Figure 1.11 – Spatial structure of the τSUPG (left) and the τGD (right) fields, with a close-up representation near
the airfoil on the bottom plots, for Re= 50000 and α= 0◦.

where the mesh is coarser, with a maximum value of 0.282 for τSUPG and 0.141 for τGD . Near the airfoil, the stabilisation
is around 103 times smaller, associated to the fact that a finer mesh is used in this region in order to capture the desired
physical phenomena. As explained before, the grad-div is used in the time-marching simulations, whereas both SUPG
and grad-div are used in the eigenvalue problem simulations. We first present the influence of the grad-div on the
three-dimensional simulation, followed by the influence of SUPG on the eigenvalue problem.

The impact of the grad-div stabilisation is explored by sketching the discrete divergence of the there-dimensional
velocity field, present in figure 1.12. The fields are computed using discontinuous piecewise-linear finite element functions
(Pdc

1 ) as the discrete divergence corresponds to the space derivative of continuous piecewise-quadratic finite element
functions. The figure represents an isosurface of ∇·Uh = 2 on the upper plots, along with a contour field corresponding
to Z = 0 on the lower plots. The left side corresponds to a computation without considering τGD , whereas on the right
side, τGD is taken into account. The violation of the discrete mass conservation is mainly observed near the leading edge
and on the wake of the wing, with a clear distinction between the two computations. The maximum values of ∇·Uh are
attained at the beginning of the wing’s wake and have values of 207.98 and 42.26 for the computations without and with
τGD , respectively.

The importance of the SUPG stabilisation on a mean flow FSI linear stability analysis is depicted in figure 1.13, using
the classical formulation. The analysis is made around a mean flow from 2D simulations at Re= 50000 and α= 0◦. We
present the results on a spectrum representation (introduced in the next chapter) for the nominal values of the structural
parameters (see table 1.1).

The eigenvalues computed without SUPG stabilisation, represented by the black crosses, are mostly composed of
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Figure 1.12 – Effect of the grad-div stabilisation on the three-dimensional simulations for Re= 50000, α= 0◦ and
Nz = 60, illustrated by the isosurface of ∇·Uh = 2 of a snapshot and the corresponding contour at Z = 0, without
τGD (left) and with τGD (right).

spurious eigenvalues, that remain on the stable side of the spectrum (excluding the two unstable eigenvalues with λ> 0,
corresponding to physical eigenmodes). The value of these spurious eigenvalues varies with the numerical discretisation:
either with the mesh, or with the choice of the finite element pair for the fluid variables. Further, as depicted in the
zoom near the origin, present on the left side of the figure, the physical eigenvalues of interest are mixed with all the
remaining spurious ones, rendering their analysis difficult. One of the methods to discern the physical from the spurious
eigenvalues is to run several computations, usually increasing the mesh refinement, and select the eigenvalues that show
a convergence behaviour towards a fixed value. The observation of the eigenmode field associated to each eigenvalue
also constitutes a qualitative way of selecting the physical modes, as the structure of the spurious eigenmodes is mostly
located near the boundary regions. An alternative way of proceeding passes through the addition of a SUPG stabilisation
to the linear formulations, whose results are represented by the red triangles. As present in the figure, most of the
spurious modes are damped, leading to a more clear picture of the spectrum. Most important, the SUPG spectrum near
the origin only presents the physical modes, enabling the physical discussion present in the next chapter. The influence
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Figure 1.13 – Comparison between the results of a mean flow FSI linear stability analysis around a mean flow from
2D simulations at Re= 50000 and α= 0◦ without SUPG stabilisation (black crosses) and with SUPG stabilisation
(red triangles). On the left, a general view and, on the right, a close-up of the same spectrum near the origin.
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Divergence mode Flutter mode

Without SUPG 0.209414 −0.142875+0.539014i

With SUPG 0.209065 −0.143952+0.540529i

Error 3.49·10−4 1.077·10−3 +1.515·10−3i

Table 1.9 – Influence of the SUPG stabilisation on the divergence and flutter eigenvalues of a mean flow FSI linear
stability analysis around a mean flow from 2D simulations for Re= 50000 and α= 0◦. Last line depicts the absolute
error of the real and imaginary parts of the eigenvalues.

of the SUPG stabilisation on the numerical values of the two eigenmodes of interest is present in table 1.9, where the
absolute error of the real and imaginary parts is at most of order of magnitude 10−3.

Finally, we note that the use of the SUPG stabilisation is also beneficial for the computation of the fluid eigenspectrum.
In particular, this way of identifying the physical eigenvalues enables to have a clear approximation of the fluid transfer
function Y f via a rational approximation, as presented in section 3.

1.8.4 Influence of the three-dimensional time discretisation parameters

A general view of the performance of the three-dimensional time-marching simulations is discussed in the present
paragraph, for Re= 50000, α= 0◦ and Nz = 60. The assembly of all the required matrices is performed via the FreeFem++
software, while their factorisation and inversion are performed using the FreeFem++ interface with the PETSc library
tools (Balay et al., 2022).

The CPU time spent on each stage of a time iteration is depicted in table 1.10, for four different tests. The first test is
conducted without the grad-div stabilisation, whereas the other three tests differ on the number of processors considered,
while using the grad-div stabilisation. This information is contained in the first two lines of table 1.10. The third line
concerns the CPU time spent on the assembly of the preconditioner matrix used in the first substep of the SIPC scheme,
present in equation 1.66. As this matrix does not significantly vary between iterations, its construction is not required at
each time step. In fact, the reconstruction of the preconditioner is based on the deterioration of its relative performance,
which in the present tests, where a transient regime was already surpassed, never occurs. Its contribution is therefore
not taken into account for the total time per iteration on the last line of the table. This represents a relative gain in
performance, as the time of the preconditioner assembly would represent around 60% of the total time of a time iteration
for the first test.

The forth line corresponds to the CPU time spent on the assembly of the matrix used in the matrix-vector product
during the GMRES iterative method, in the first substep of the SIPC scheme, present in equation 1.65. As only the
convection and grad-div coefficient terms vary between time iterations, only these terms are recomputed. The diffusion
and pressure terms of the matrix are computed at the beginning the simulation once. The fifth line corresponds to the
averaged number of GMRES iterations on the first substep resolution, where the CPU times associated to the matrix
application and preconditioner inversion are present in the sixth and seventh lines. For the case where grad-div is not
taken into account, the associated matrix 1.65 is reduced to a block diagonal matrix. The preconditioner in equation 1.66
is therefore mathematically equivalent to the associated matrix and one one GMRES iteration is expected to occur.
However, the approximation is made during the inversion of each block, which is accomplished by an incomplete LU
factorisation, as described in section 1.7.7. This fact explains the number of GMRES iterations of the test one.

The total time spent on the first substep of the SIPC scheme is then depicted. This corresponds to 14% of the total
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Test 1 Test 2 Test 3 Test 4

Grad-div No Yes Yes Yes

NMPI 560 560 840 1120

Preconditioner assembly
(not taken into account) 11.693 s 11.864 s 8.551 s 6.584 s

Convection/Grad-div matrix assembly 3.565 s 3.638 s 2.603 s 1.988 s

# GMRES iterations 6 16 18 18

1 Matrix application 0.045 s 0.108 s 0.083 s 0.062 s

1 Preconditioner inversion 0.089 s 0.107 s 0.077 s 0.054 s

Total time step 1 1.092 s 3.972 s 3.279 s 2.374 s

Total time step 2 0.732 s 0.710 s 0.769 s 0.637 s

Total time step 3 0.532 s 0.493 s 0.343 s 0.282 s

Post-treatment 1.927 s 1.927 s 1.330 s 1.050 s

Total time per time iteration 7.848 s 10.740 s 8.325 s 6.331 s

Table 1.10 – Comparison of the three-dimensional time-marching simulation performance for one time iteration, for
four test cases (varying the inclusion of the grad-div stabilisation and the number of MPI processes), at Re= 50000,
α= 0◦ and Nz = 60. The preconditioner assembly time is not taken into account on the total time per time iteration,
as it is not done at each time iteration.

time for the test 1, compared to 37% for the test 2. The only difference between the two computations is the use of the
grad-div stabilisation, which renders the matrix 1.65 non diagonal and decreases the performance of the lower triangular
preconditioner. This is also related to the number of GMRES iterations, which triplicated with the addition of the grad-div
stabilisation.

The second and third substeps correspond to the pressure equation resolution and velocity correction, not depending
on the use of the stabilisation. The penultimate line corresponds to the post-treatment routines, where the time-averaged
flow and harmonics are computed19, the solution at the current instant is written in disk and the global variables, such
as CL and CD , are computed.

The influence of the GMRES preconditioner used in the first substep of the SIPC scheme is depicted in table 1.11 for
the case test two. The bottleneck of this operation is associated to the inversion of the preconditioner. A first naive choice
would be to perform a LU factorisation of each diagonal block. However, for the three-dimensional simulations, this is not
possible due to the amount of memory required by this operation.

The next step is to approximate each diagonal block of the matrix 1.66 by a block Jacobi, where each block—associated
to an individual domain—is solved either via a LU or an incomplete LU factorisation, ILU(l), where the fill level
representing the amount of coefficients of the original matrix taken into account. The comparison between these
different approaches is detailed in the remaining lines of table 1.11. The comparison is made in terms of the number of
GMRES iterations, and CPU times associated to one diagonal block inversion and to the GMRES solver. For l = 0, the

19The average in the spanwise direction, when needed, is computed on a different post-treatment simulation.
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# GMRES iters. CPU time on 1 diagonal block inversion CPU time on GMRES solver

LU Not enough memory

BJacobi + LU 13 1.30 ·10−1 s 8.726 s

BJacobi + ILU(0) Diverge

BJacobi + ILU(1) 16 2.60 ·10−2 s 3.972 s

BJacobi + ILU(2) 13 5.94 ·10−2 s 5.042 s

BJacobi + ILU(3) 13 1.11 ·10−1 s 7.381 s

Table 1.11 – Influence of the preconditioner inversion strategy on one time iteration for Re= 50000, α= 0◦, Nz = 60
and NMPI = 560.

preconditioner inversion is not well enough approximated in order to correctly solve the system. By increasing the fill
level, the incomplete factorisation tends to the exact factorisation and, for l = 1, the GMRES converges in 16 iterations.
The increase of the fill level to 2 and 3 leads to the same number of GMRES iterations as to the LU factorisation. However,
the time spent on each diagonal block inversion increases significantly. In view of these results, the level fill is set to 1,
reflecting the best compromise between the number of GMRES iterations and the preconditioner inversion CPU time.

Finally, we estimate the CPU time spent on the DNS simulation at Re = 50000 and α= 0◦. The computation was
performed with 560 MPI processes, corresponding to the test 2 on table 1.10, as it represented a good equilibrium between
the number of nodes used, 20, and the number of nodes available on the ONERA cluster, 620. This simulation was
performed for a total physical time of 230 time units. With a total CPU time per time iteration around 10.74s and a time
step of 0.001 time units, we estimate that this simulation took approximatively 2470200, i.e., around 28.59 days.
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Chapter 2

Flow around a fixed NACA0012 profile
wing

This chapter is devoted to the description of the flow field around a NACA0012 profile wing and the corresponding
aerodynamic forces acting on it from a Reynolds number of Re= 1000 to Re= 65000, at different angles of attack. This
chapter is divided in three parts. We start by describing the emergence of the vortex shedding phenomenon on the rear of
the airfoil for α= 0◦, followed by the description of the flow field characteristics as function of the Reynolds number and
incidence. We then characterise the emergence of the negative aerodynamic moment and lift coefficients associated to
the base and mean flow fields. This analysis is carried out with a two-dimensional Navier–Stokes model. Finally, we
characterise the emergence of the three-dimensional instabilities on the spanwise direction, by the means of a classic
purely-hydrodynamic Floquet stability analysis. In a second part, we characterise both instantaneous and spectral
properties associated to three-dimensional Direct Numerical Simulations (DNS) carried out at Re= 50000 for five angles
of attack, between 0◦ and 2◦. In a third part, we proceed to evaluate the aerodynamic moment as function of the incidence,
based on the spatial distribution of the different terms of the Navier–Stokes equations, rather than the classic approach
based on the stress integration over the fluid–solid interface.

2.1 Two-dimensional flow description

2.1.1 Emergence of a vortex shedding at α= 0◦

The vortex shedding phenomenon is characterised by an alternating emission of vortex structures at the rear of
a body from one side to the other, forming a von Kármán vortex street. This shedding generates alternating low-
pressure zones on the structure giving rise to fluctuating forces and moments acting on the body. The emergence of this
phenomenon is well documented for the case of a circular cylinder (a blunt/bluff body), resulting from a supercritical
Hopf bifurcation (Provansal et al., 1987; Dušek et al., 1994). In the case of an airfoil at low incidences (a streamlined
body), few studies have been done specifically on the emergence of the vortex shedding. For example, Elimelech et al.
(2005, 2007) reported the onset of the vortex shedding for a NACA0009 airfoil at Re≈ 20000 for α= 0◦. For the thicker
NACA0012 airfoil, this fluid instability is expected to appear at a lower Re. We studied this onset using two-dimensional
time-marching simulations.
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Figure 2.1 – Spanwise vorticity field of two-dimensional instantaneous flow solutions at α= 0◦ for: Re = 7000
(top), Re= 8000 (centre) and Re= 20000 (bottom). The highlighted streamlines delineate the recirculation zone at
the rear of the airfoil. The yellow dots over the airfoil surface represent the separation points.

The vorticity1 field associated to an instantaneous solution at different Reynolds numbers for α= 0◦ is present in
figure 2.1. In all three considered Reynolds numbers, the flow field exhibits a boundary layer separation in both upper
and lower surfaces of the airfoil. At Re = 7000, the flow field is steady in time, corresponding to a steady solution of
the Navier–Stokes equations. This solution is usually called the base flow solution. Since the flow is symmetric in the
ey-direction with respect to the airfoil chord line, the separation points on both upper and lower surfaces of the airfoil
are located at the same abscissa, Xd = 0.857. For Re= 8000, one can observe a small oscillation of the flow field around
x ≈ 3, with a period of T = 0.433, corresponding to an angular frequency of ωV S = 14.480 and a Strouhal2 of StV S = 2.305
(cf. table 2.1). We therefore estimate the appearance of the vortex shedding around Re = 8000. When based on the
thickness of the airfoil, rather than the chord, one obtains a thickness Strouhal of Stt

V S = 0.276, which is around 2.3 times
greater than the Strouhal associated to the vortex shedding threshold of the cylinder benchmark at Re= 46.7 (Provansal
et al., 1987; Sreenivasan et al., 1987; Fabre et al., 2019a). The high convective character of this instability near the
threshold region, illustrates the numerical difficulty in estimating this threshold for α = 0◦. As one approaches the
threshold, the computational outlet boundary should be located far enough of the rear of the airfoil to not interfere with
the convective instability. For these simulations, the outlet distance was increased to Lx = 20. However, no studies were
further conducted in order to converge this value.

The instability threshold is usually predicted via a purely-hydrodynamic linear stability analysis around the base flow
solution, as classically done for the case of the circular cylinder (see e.g., Fabre et al. (2019a), for a recent review). However,
a crucial difference between these two cases exists, namely the body shape, corresponding to a streamline shape for the
airfoil and to a bluff shape for the cylinder. As a consequence, the perturbations associated to these two cases present a

1Vorticity is a vectorial quantify, defined as the curl of the velocity, Ω= [
Ωx,Ωy,Ωz

]T =∇×U .
2Strouhal is defined as St= cω/(2π)

U∞ , with c and U∞ the airfoil chord and reference velocity, introduced in chapter 1.
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Re Period T Angular frequency ωV S Strouhal number StV S Mean separation point Xd

3300 — — — 1.000
7000 — — — 0.857
8000 0.433 14.480 2.305 0.835

10000 0.333 18.868 3.003 0.817
20000 0.298 21.085 3.356 0.765
50000 0.207 30.354 4.831 0.700

Table 2.1 – Values of the period, angular frequency and Strouhal number associated to the vortex shedding for
different Reynolds numbers at α= 0◦. The last column also reports the abscissa of the time-averaged boundary
layer separation point. For the first two Re, no vortex shedding characteristics are reported, since the flow is steady
in time. The first Re corresponds to the emergence of the separation point at the trailing edge.

very different structure, with the ones associated to the airfoil at α= 0◦ being highly convected. Their structure is similar
to the global perturbations found in shear layer instabilities (Tammisola, 2012; Canton et al., 2017). Since the instability
is highly convected downstream, the position of the outlet boundary condition influences the obtained results that we did
not manage to converge. Lesshafft (2017) discussed the possible emergence of artificial eigenmodes in truncated flow
domains, issued from a numerical feedback of the pressure signal from the outlet to upstream positions. Appendix C
reports the attempts in predicting the threshold of a NACA0012 airfoil at low incidences via a linear stability analysis
around the base flow, and sheds a light in the possible alternatives and modifications that can be adopted in future works
to overcome the present difficulties. Finally, we note that, as the angle of attack increases, the convective character of
the linear perturbations disappears and the threshold can be predicted via the classic base flow linear stability analysis
approach. This is related to the fact that, as the angle of attack increases, the length of the airfoil in the transverse
direction to the flow increases, progressively transforming the streamline shape of the airfoil into a bluff shape, similar to
the cylinder.

With the increase of the Reynolds number, the vortex shedding tends to appear closer to the trailing edge of the airfoil,
with an increased frequency, as observed in the case at Re= 20000, on the bottom of figure 2.1. In this case, the angular
frequency has a value of ωV S = 21.085 (cf. table 2.1). The flow at this incidence and Reynolds number presents a periodic
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Figure 2.2 – On the left, evolution of the vortex shedding frequency present on two-dimensional unsteady simula-
tions with the Reynolds number at α= 0◦. On the right, evolution of the abscissa of the boundary layer separation
point on the airfoil surface at α= 0◦, with the Reynolds number for two-dimensional stable base flow (solid blue),
unstable base flow (dashed blue) and mean flow (solid red) solutions.
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Figure 2.3 – Time history of the aerodynamic moment coefficient around XEC = 0.186 for Re = 20000 at α= 0◦

(left) and α= 3.64◦ (right), with the angular frequencies of ωV S = 21.085 and ωV S = 18.868, respectively. The blue
line represents the mean value.

behaviour in time. This periodicity can be observed in the alternating shed of the vortex structures at the trailing edge of
the airfoil, as well as in the evolution of aerodynamic moment coefficient in time, as present on the left of figure 2.3. In
this latter case, the oscillations occur around the null mean value, with an amplitude of ±1.88 ·10−3.

The evolution of the vortex shedding frequency with the Reynolds numbers for α = 0◦ is sketched on the left of
figure 2.2, where one can note that vortex shedding frequency increases as Re increases. This is associated to the increase
of the momentum and kinetic energy on the flow and consequent decrease of the boundary layer thickness around the
airfoil as the Reynolds number increases.

The presence of the vortex shedding phenomenon enables one to compute a time-averaged quantity, denoted mean
flow, which takes into account the unsteadiness of the flow field. Note that above the threshold corresponding to the onset
of the unsteadiness, the steady solution of the Navier–Stokes equations, i.e., the base flow solution, still exists. However,
above the threshold, this solution is unstable and cannot be obtained using classical time-stepping simulations. On the
other hand, it can be computed directly as a fixed point of the time-independent Navier–Stokes equations. In this thesis,
we compute the base flow solutions using a Newton method, following the classical approach in stability analysis of fluid
flows (see for instance in Fabre et al. (2019a)).

On the right of figure 2.2, one can find the evolution of the abscissa of the boundary layer separation point on the
airfoil surface as function of the Reynolds number, for base and mean flow solutions at α= 0◦. Since that, for α= 0◦,
the flow field is symmetric in the ey-direction with respect to the airfoil chord line, this coordinate characterises the
separation of the boundary layer on both upper and lower surfaces of the airfoil. The separation points associated to
the base flow solution are represented by the blue line, with a solid representation for the stable base flow solutions
and a dashed representation for the unstable ones. At the same time, the separation points associated to the mean flow
solutions are represented by the solid red line. The latter curve starts at Re= 8000, corresponding to the vortex shedding
threshold at α= 0◦, since that, below this Re, both base and mean flow solutions coincide.

The separation of the boundary layer appears at Re= 3300, on the base flow curve, i.e., before the vortex shedding
unsteadiness. This separation point moves upwards with the Reynolds number. For Re = 8000, corresponding to the
onset of the vortex shedding oscillations, the separation is located at Xd = 0.835. From this point, the blue and red curves
divergence from each other, with the base flow predicting an earlier separation when compared to the mean flow solution.
This is associated to the unsteadiness of the flow, taken into account for the computation of the mean flow, which increases
the momentum on the boundary layer and forces the mean separation point to be located at a rearward position, when
compared to base flow separation point. From Re= 45000 to Re= 65000, the mean flow separation point has a roughly
constant value, with a Xd = 0.707 for Re= 45000 and Xd = 0.687 for Re= 65000. Finally, we also note that the value of
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Figure 2.4 – Spanwise vorticity field of two-dimensional base flow (top) and mean flow (bottom) solutions at
Re= 20000 for α= 0◦ (left) and for α= 3.64◦ (right).
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Figure 2.5 – Spanwise vorticity field of mean flow solution at Re= 20000 for α= 3.64◦: close-up on the recirculation
zone of the upper surface. The yellow dots over the airfoil surface represent the different separation and reattachment
points.

Xd does not vary significantly in time. For example, for Re= 50000 and α= 0◦, the difference between the maximum and
minimum abscissa values of the separation points in time is of order 10−3.

2.1.2 Flow field description for α≥ 0◦

In the following paragraphs, we analyse the influence of the increase in the angle of attack on the base and mean
flow solutions, for a fixed Reynolds number. We start by analysing the evolution in time of the aerodynamic moment
coefficient, evaluated around XEC = 0.186 for Re= 20000 and two different angles of attack, α= 0◦ and α= 3.64◦. The
results are present in figure 2.3. We start by noting that, for both angles, the mean aerodynamic moment, represented by
the blue curve, is zero. In contrast, the amplitude of the oscillations has drastically increase between these two angles.
For α= 0◦, the amplitude is ±1.88 ·10−3, while for α= 3.64◦, we have the minimum and maximum values of −3.80 ·10−2

and 4.55 ·10−2, respectively. Despite the fact that the signal remains periodic in time between these two incidences (with
a slight decrease of the vortex shedding frequency), the harmonic content increases as the angle of attack increases. This
increase in the harmonic content is responsible for the difference between the minimum and maximum values of the time
signal for α= 3.64◦, even if the mean value is zero.

The spanwise vorticity associated to the base and mean flow fields at Re= 20000 and two different angles of attack is
present in figure 2.4 (α= 0◦ and α= 3.64◦). For both angles, the base flow solutions, on the left, present an unrealistic
large recirculation length, when compared to the mean flow solutions, on the right. The account for the unsteadiness
on the mean flow computations can be noted on the deviated vorticity zones at the rear of the airfoil. This deviation is
associated to the presence of the Reynolds stress tensor terms in the mean flow solution, resulting in shorter recirculation
zones.
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Figure 2.6 – Distributions of the friction, C f , and pressure, Cp coefficients of two-dimensional mean flow solutions
along the upper (solid) and lower (dashed) surfaces of the airfoil at Re = 20000 for α= 0◦ (green) and α= 3.64◦

(blue).

A close-up near the trailing edge for the mean flow solution at α= 3.64◦ is made in figure 2.5. One can firstly note
that the main separated boundary layer of the upper surface, whose separation point is located at X up

d = 0.397, has not
reattached. On the other hand, the boundary layer of the lower airfoil surface does not present any separation. This
recirculation is characteristic of a trailing-edge laminar separation bubble (LSB), presented on the Introduction of this
thesis (see figure 6). This type of LSB is topologically different from the classic long LSB, mainly due to the fact that the
separated boundary layer does not reattach. As a consequence, the main vortex of the recirculation bubble is located
above the trailing edge, in contrast to the vortex associated to a long LSB, which is usually placed closer to the upper
surface of the airfoil and has a flattened shape. Additionally, we report the presence of two secondary recirculation
bubbles, circulating in the anticlockwise direction, identified as 1 and 2 by the green arrows in the figure. They are
located on the ranges 0.860 < x < 0.951 and 0.982 < x < 1, respectively. The recirculation bubble labelled 1 marks the
end of the “dead air” region, located on the range 0.397. x. 0.860, characterised by low fluid velocities and a roughly
constant (and negative) friction coefficient.

The evolution of the mean friction, C f , and mean pressure, Cp, coefficients along the upper and lower surfaces of the
airfoil, for the same Re and α parameters, is present in figure 2.6. The upper surface distributions are represented by the
solid line, while the lower ones are represented by the dashed lines. No dashed line is observed for α= 0◦, since the upper
and lower distributions coincide. For α= 0◦ (green curve), both lower and upper surfaces present a maximum depression
point, located at x = 0.128, where −Cp is maximum, followed by an adverse pressure gradient regime, up to the trailing
edge. In the cases where the adverse pressure gradient is strong enough, a separation point appears, characterised by a
null friction tension. In the present situation, one can observe this separation point at Xd = 0.765, on the C f zoom, when
the sign of the green curve changes. The fact that the boundary layer does not reattach can also be confirmed by the fact
that the C f distribution remains negative until the trailing edge.

Concerning the case at α= 3.64◦ (blue curve), the separation point on the upper airfoil surface moved upwards to
X up

d = 0.379, when compared to α= 0◦. This is a consequence of the higher adverse pressure gradient, which for this angle
starts at x = 0.037. The presence of the two secondary recirculation bubbles on the upper surface, identified in figure 2.5,
can be identified in the behaviour of the C f curve, in the second half of the airfoil, where it changes sign at the separation
and reattachment points previously reported. The plateau of negative values of C f in the range 0.397. x. 0.860 is
characteristic of the “dead air” region. In this region, a plateau of −Cp can also be discerned. Concerning the boundary
layer over the lower surface, the separation no longer exists, when compared to the case at α = 0◦, with a pressure
coefficient roughly constant for x > 0.3.

The transition between the two angles described above can be observed in figure 2.7, where C f and −Cp are sketched
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Figure 2.7 – Colour map of the distributions of the friction, C f , and pressure, Cp coefficients of two-dimensional
mean flow solutions along the upper and lower surfaces of the airfoil (top and bottom figures, respectively) at
Re = 20000 as function of the angle of attack. The horizontal green and blue lines correspond to α = 0◦ and
α= 3.64◦, respectively.

as function of the angle of attack. The angles analysed in the previous paragraphs are represented by the horizontal
green and blue lines. Concerning the upper surface, one can note the displacement of the separation point upwards (on
the C f graphic). The same occurs to the maximum depression point, whose intensity increases with the angle of attack
(in the −Cp graphic). The emergence of the two smaller recirculation bubbles can also be observed on the C f map. The
recirculation bubble labelled 1 emerges at α= 3.01◦, while the recirculation bubble labelled 2, near the trailing edge,
emerges earlier at α= 1.34◦. Concerning the lower surface, one can observe the separation point moving forward, on
the C f map, with its extinction at α= 1.18◦. In the −Cp map, one can observe the decrease of the maximum depression
intensity with the angle of attack, whose position moves forward.

2.1.3 Characterisation of the base and mean aerodynamic efforts for α≥ 0◦

In this section, we continue our analysis by describing the behaviour of the global aerodynamic forces and moments as
function of the incidence and Reynolds number. As explained in section 1.3.2, in the presence of a high frequency vortex
shedding, the aerodynamic forces exerted on the body comprise both a mean component, which can be directly extracted
from the mean flow, and an unsteady component, oscillating at the high frequency of the vortex shedding. This unstable
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Figure 2.8 – Evolution of the aerodynamic moment around XEC = 0.186 and lift coefficients with the angle of
attack for two-dimensional base flow (dashed blue) and mean flow (solid red) solutions at Re= 20000. The dotted
red curves are associated to the minimum and maximum values of the mz and CL signals.

component is observed to be periodic for the lower incidences. However, this periodic behaviour ceases to exist as the
angle of attack increases. This lost of periodicity is demonstrated at the end of this section for the case at Re= 50000.
At the same time, we have also justified that the motion of an airfoil with a pitch degree of freedom is mostly sensitive
to the mean component of the aerodynamic moment coefficient, for the range of parameters of interest in this thesis.
Hence, in the present section, we document the behaviour of the mean aerodynamic efforts (aerodynamic moment and lift
coefficients), in particular their dependency on the incidence angle and on the Reynolds number.

As previously noted, each time-stepping simulation is performed for a fixed angle of attack. In this section, we stick to
the reference value XEC = 0.186 for the elastic centre, the nominal value used in this thesis (as indicated in section 1.2,
table 1.1). Different values of XEC are considered in the next section.

We consider first the effect of varying the incidence α for a fixed Reynolds number of Re= 20000. Figure 2.8 displays
both the aerodynamic moment and the lift coefficients as function of α. The values associated to the unstable base flow
solutions are represented by the blue dashed lines. The mean flow values are represented by the solid red curves, with
the amplitude of the oscillations represented by the dotted lines envelope. For this value of Re, the base flow is found to
be unstable in all the incidence range, including at α= 0◦, in accordance with the vortex shedding onset predicted at
Re= 8000. However, the base flow solution still exists as an unstable solution of the Navier–Stokes equations, and can be
computed using a Newton method, as explained previously. In the corresponding efforts (dashed blue line), we observe
that the moment coefficient remains negative for the incidence range considered, tending to a constant value. The lift
coefficient presents the same tendency.

The mean flow results (red curves) are computed using time-stepping simulations, followed by a time-average post
processing. Observation of the figure leads to the following findings. First, one finds that the unsteady efforts vary
considerably around the mean value, with this variation increasing as the incidence increases. In particular, one can note
that the amplitude of the oscillation of the aerodynamic moment has same order of magnitude as its mean value. Secondly,
one observes that the efforts obtained from the mean flow are rather different from the ones obtained from the unstable
base flow. This deviation is not surprising, since the base flow is no longer relevant after the onset of unsteadiness, and
very different from the mean flow solution, as previously observed in figure 2.4. The third important observation is that
the mean aerodynamic moment mz becomes a growing function of α just after the onset of oscillation, crossing zero at
α= 3.64◦ and becoming positive for higher values of α.

Considering the lift coefficient associated to the mean flow solutions, one also observes a small region, 0◦ <α< 0.8◦,
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Figure 2.9 – On the left, evolution of the aerodynamic moment coefficient around XEC = 0.186 with the angle
of attack for two-dimensional mean flow solutions at Re= 20000 (black), Re= 30000 (blue), Re= 40000 (yellow)
and Re = 50000 (red). On the right, evolution of the vortex shedding frequency with the angle of attack for
two-dimensional unsteady simulations.

with negative values. This surprising phenomenon was firstly observed by Mueller et al. (1982) on a symmetric NACA663-
018 airfoil at Re= 130000. More recently, the same observations were found for a transitional Reynolds number regime
on a NACA0012 airfoil (Ohtake et al., 2007; Yonemoto et al., 2008; Tank et al., 2017a,b; Pranesh et al., 2019), as reported
on the Introduction of this thesis. Additionally, the same phenomenon was found by Jallas (2018) for a flapping airfoil
configuration (see figure 4.2, page 109). The initial negative aerodynamic moment and lift coefficients was associated to
the laminar separation of the boundary layer. Further, this unusual behaviour disappears for larger values of α where the
lift coefficient becomes positive in accordance with the usual expectation and the predictions of the potential theory. The
change in sign of these coefficients for larger incidences was associated to the reattachment of the separated boundary
layer, forming a laminar separation bubble. The negative lift coefficient region was completely removed by addition of
surface roughness or acoustic excitation, on the experiments, or via transition of the boundary layer before separation, on
the numerical computations. With these modifications, the flow readily transitions to a turbulent state while attached,
exhibiting no separation afterwards. Finally, we observe that the amplitude of the oscillations (red dotted curves) varies
significantly with the incidence. In particular, we observe a change in the amplitude growth rate at α= 2.4◦, mainly
on the lower limit of the oscillations. As it will be discussed next, this change is also associated to a decrease on the
frequency of the vortex shedding oscillations.

We document on the left of figure 2.9, the variation of mz associated to the mean flow with respect to α for larger
values of the Reynolds number. As stated before, the mean flow solutions are obtained from the time averaging of
two-dimensional time-marching simulations. For a fixed Reynolds number, the simulations are carried out by increasing
the angle of attack, with a step of 0.1◦, starting from α= 0◦ and initialising the next simulation with the instantaneous
solution of the previous incidence. The aerodynamic moment associated to each mean flow computation is represented
by a cross in figure 2.9, for four different Reynolds numbers. One can firstly note that the slope at α= 0◦, associated to
an aerodynamic stiffness, while negative, increases (in absolute value) as the Reynolds number increases. The relation
between this slope and a quasi-steady approximation was introduced in chapter 1, page 42, to predict the present of an
unstable static eigenvalue for the FSI configuration equilibrium at α= 0◦. Since the slope is negative, we can predict
from the criterion presented in equation 1.49 that an undamped system will have an unstable static eigenvalue if this
slope is higher (in absolute value) than the structural stiffness considered. Further, it can be inferred that the static
instability of the equilibrium point at α= 0◦ is further destabilised as the Reynolds number increases. The complete
stability analysis of the equilibrium point at α= 0◦ is investigated in chapters 3 and 4 using linear stability analysis.
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Figure 2.10 – Time history of the aerodynamic moment coefficient around XEC = 0.186 for Re= 50000 at different
angles of attack. The blue line represents the mean value.

A second equilibrium point is reached, when mean aerodynamic moment is again zero, for a different incidence. For
the already discussed case at Re= 20000, this point occurs at α= 3.64◦. The linear stability around this point is discussed
in chapter 6. We note that, as the Reynolds number increases, a discontinuity emerges near the end of each curve, where
the mean aerodynamic moment passes suddenly from a negative to a positive value. Therefore, the task of finding a
second equilibrium point for a mean flow solution from two-dimensional simulations at Re> 20000 is nontrivial. The case
at Re= 20000 becomes a pertinent case due to the absence of this discontinuity, that appears outside the incidence range
considered. One can further note that, as the Reynolds number increases, the jump between a negative and a positive
value of the mz occurs at lower incidences.

The jump in the mz coefficient is associated to a period-doubling of the vortex shedding phenomenon. The evolution
of the vortex shedding frequency ωV S with the incidence for the different Reynolds numbers considered is present on
the right of figure 2.9. Concerning the first part of the curves (before the jump in mz), we first confirm that, for a fixed
incidence, the vortex shedding frequency increases as the Re increases (as observed in figure 2.2 for α= 0◦). Secondly, we
note that the frequency is approximately constant with the incidence. However, a slight decrease on ωV S is observed in
all curves when the minimum mz is reached. This decrease in frequency occurs at the same incidence as the change in
the behaviour of the amplitude of the global coefficients mz and CL, reported in figure 2.8. For example, for the case at
Re= 20000, the minimum of mz is found around α= 2.4◦, where the frequency decreases from ωV S = 20.334 at α= 2.4◦

to ωV S = 19.573 at α = 2.5◦. Finally, we note that, in the zone of the mz jump, ωV S decreases until reaching values
that approximately correspond to half of the vortex shedding frequency before the jump. For example, for the case at
Re= 50000, the frequency of the vortex shedding passes from ωV S = 29.54 at α= 1.1◦, evaluated before the jump, to the
value of ωV S = 14.09 at α= 1.9◦. This period-doubling phenomenon was also found recently by Marquet et al. (2022) for a
NACA0012 airfoil in stall conditions at Re= 5000 and α≈ 8◦.

To better understand why this mz jump and period-doubling occurs, we sketch the evolution of the instantaneous
aerodynamic moment as function of time for eight different incidences at Re = 50000 in figure 2.10. The first case, at
α= 1◦, presents a periodic flow with a negative mean value. This scenario is found for the range |α| ≤ 1◦. This point
is located before the jump in the mean aerodynamic moment, having a frequency of ωV S = 29.89. For the next case,
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Figure 2.11 – Spanwise vorticity field near the trailing edge of two-dimensional mean flow solutions at Re= 50000
for α= 1.8◦ (left) and α= 1.9◦ (right).

at α = 1.1◦, the signal becomes quasi-periodic, while keeping the roughly the same amplitude as the previous case.
However, for α= 1.3◦, the amplitude of the quasi-periodic signal increases, and, for α= 1.5◦, the signal regains its periodic
character. Then, suddenly, the signal becomes chaotic (cases 1.6◦ and 1.8◦). This chaoticity is associated to the fact that
the separated boundary layer of the upper surface of the airfoil, associated to the instantaneous flow fields, switches
between a reattachment and a no reattachment scenario at the end of the trailing edge. For a higher incidence case,
the reattachment of the instantaneous boundary layer is observed for all time instants. This is the case for α = 1.9◦.
In this case, the quasi-periodicity is retrieved, but with a double period when compared with the period of the periodic
signal before this transition. For higher angles, as the case at α= 2.3◦, the signal loses again its periodic/quasi-periodic
behaviour. We note that the flow at this Reynolds number is three-dimensional, as explored in the following section. In a
subsequent section, we also show that the aerodynamic moment of a mean flow solution coming from three-dimensional
simulations does not present this jump. Further, we show that the vortex shedding frequency decreases continuously
with the angle of attack.

Finally, we sketch the mean flow solution near the trailing edge before and after the discontinuity on the aerodynamic
moment coefficient curve, for the case at Re= 50000, in figure 2.11. The angles before and after the jump correspond to
α= 1.8◦ and α= 1.9◦, respectively. The case at α= 1.8◦, when the moment coefficient is still negative, presents boundary
layer on the upper surface that separates at X up

d = 0.458 and does not reattach to the airfoil. This situation is similar to
the case at Re= 20000 and α= 3.64◦, analysed in figure 2.4. This is typical of a trailing-edge laminar separation bubble,
as presented on the Introduction of this thesis, in figure 6, where the main vortex structure of the recirculation zone is
located above the trailing-edge. We also note the presence of two secondary bubbles, circulating in the anticlockwise
direction. On the other hand, the case at α= 1.9◦, which presents a positive moment coefficient, has a boundary layer
on the upper surface that separates at X up

d = 0.483 and reattaches at X up
r = 0.980, characteristic of a long laminar

separation bubble. In this case, we note that the secondary bubble located below the main recirculation vortex has a
smaller size, while the secondary bubble at the trailing edge ceased to exist on the attached flow, as observed in the figure.
This drastic change in the topology of the mean flow solution explains the sudden jump on the mz–α curves. Further, we
expect to find a hysteresis behaviour near this topological change, which could be investigated with a series of simulations
carried out by decreasing the angle of attack and initialising the next simulation with the instantaneous solution of the
previous incidence. However, no further investigations were conducted in this direction and we leave this exploration for
a future work.

2.1.4 Characterisation of the aerodynamic stiffness at α= 0◦

As discussed previously, the variation of the mean aerodynamic moment as function of the angle of incidence
considering a fixed airfoil configuration is directly related to the possible occurrence of a static instability of the coupled
fluid–solid system. More specifically, we have justified in section 1.6 that the aerodynamic moment associated to the mean
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Figure 2.12 – Evolution of aerodynamic moment stability derivative mα
z (left) and lift stability derivative Cα

L (right)
for α= 0◦, with the Reynolds number. The solid blue lines are associated to stable base flow solutions, the dashed
blue lines to unstable base flow solutions and the solid red lines to mean flow solutions.

flow can be used to build a quasi-steady model predicting the evolution of the coupled system over the slow time scale.
This model is able to give a first approximation of the static instability that may be present in the coupled fluid–solid
system. In this model, the key quantity is mα

z = ∂mz/∂α, which can be interpreted as an aerodynamic stiffness coefficient.
This quantity is also called a stability derivative or control derivative.

In some of the figures of the previous sections, where we sketch the evolution of the aerodynamic moment with α, the
equilibrium solutions of the FSI configuration correspond to the values of α that respect the equality α=−mz

(
U , p

)
/Ks

(equation 1.24, page 30). At the same time, the quantity mα
z correspond to the slope of the curves at different angles.

In this section, we restrict to the equilibrium solution corresponding to α= 0◦ and examine the mα
z dependency on the

Reynolds number. This will provide simple arguments to predict the onset of a static instability. Note that a similar
discussion could be made considering the value of mα

z for the nonzero equilibrium solutions. We come back to this point in
chapter 6.

We thus plot in figure 2.12 the evolution of mα
z (slope of the aerodynamic moment curve at α= 0◦) with the Reynolds

number. This evolution is documented for the stable and unstable base flow solutions, represented by the solid and
dashed blue curves, respectively, and for the mean flow solutions, represented by the solid red curves. We also document
the evolution of Cα

L, which corresponds to the slope of the lift coefficient curve at α= 0◦. Concerning the slope of the
aerodynamic moment, we first observe that it is positive for the initial values of Re, on the range Re. 1500. From
this point, the value of mα

z remains negative for the remaining Re considered. We note that the change in sign of this
quantity is observed while the base flow solution is still stable, before the onset of the vortex shedding unsteadiness.
The divergence of the base and mean flow curves is observed from Re= 8000 onwards, with a base flow prediction that
tends to a constant value and a mean flow prediction that continues to decrease. The same qualitative behaviour can
be found for the Cα

L–Re curve. However, at the vortex shedding onset, this quantity is still positive, crossing the zero
value at a different Reynolds number for the base and mean flows. We report that, for Re= 50000, we obtain a value of
mα

z =−1.5223. This value is analysed in chapter 3, when discussing the quasi-steady approximation.

The above considerations are valid for an aerodynamic centre located at the nominal value of XEC = 0.186. For this
value, we have seen that the aerodynamic stiffness indicates a possible static instability from Re& 1500 onwards. We
now address the question of the effect of XEC on this static instability criterion.

To address the general case, we can first recognise that the necessary criterion for static instability on mα
z can be

reformulated in a different way. For this, we can refer to the aerodynamic centre XAC , defined as the point along the chord
around which the mean aerodynamic moment is independent of the angle of attack, i.e., mα

z is constant. Alternatively,
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Figure 2.13 – Evolution of the aerodynamic centre location, XAC , with the Reynolds number for two-dimensional
stable base flow (dashed blue), stable base flow (solid blue) and mean flow (solid red) solutions at α= 0◦. The grey
zone represents the streamwise abscissa range occupied by the airfoil. The vertical dashed lines correspond to the
asymptotic values for base and mean flow solutions at Re = 13000 and Re = 18500, respectively. The horizontal
dashed line represents the nominal value of the elastic centre XEC = 0.186.

this point is can be defined as the point of application of the mean aerodynamic efforts. For a symmetric airfoil, since the
mean aerodynamic moment at α= 0◦ is null, the aerodynamic centre corresponds to the situation where mα

z is also null.

With that in mind, the criterion can be reformulated as follows: the equilibrium position is stable whenever Cα
L is

positive and the elastic centre is placed before the aerodynamic centre (XEC < XAC), and unstable when the elastic centre
is placed after the aerodynamic centre (XEC > XAC). When Cα

L becomes negative, the equilibrium position is unstable for
every XEC , as a small increment in α results in a decrease of CL, inducing a negative vertical velocity and reinforcement
of the angular rotation of the airfoil in the clockwise direction. The location of the aerodynamic centre can be deduced
from the values of the aerodynamic moment and lift stability derivatives as follows:

(XEC − XAC)= mα
z

Cα
L

. (2.1)

The variation of the aerodynamic centre position, XAC , with Re is depicted in figure 2.13. The solid and dashed blue
lines correspond to the variation of XAC associated to the stable and unstable base flow solutions, while the solid red
line is associated the aerodynamic centre position of the mean flow solutions. The base and mean flow curves coincide
for Re < 8000, as the flow is steady in time. From this point, at which the base flow becomes unstable, the base and
mean curves diverge from each other. We represent the nominal value of the elastic centre XEC = 0.186 by the horizontal
dashed line.

Concerning the base flow curve, it is first noted that for Re. 1500, the nominal elastic centre XEC = 0.186 is located
behind the aerodynamic centre XAC , confirming the previous results, where a positive mα

z was found. In this regime, one
finds a stable equilibrium position for XEC = 0.186. As the Reynolds number increases, XAC moves upwards, being at
the leading edge for Re= 6000. For the range, 6000<Re< 13000, the aerodynamic centre associated to the base flow is
located behind the leading edge (XAC < 0).

Concerning the base flow solution, a singularity on the location of XAC is found at Re= 13000, where its value passes
from a position ahead of the airfoil to a position behind the airfoil. Concerning the mean flow curve, the results are
qualitatively similar. The singularity is found at a higher Re number, Re = 18500. From this point, the aerodynamic
centre is located behind the airfoil, moving upwards as the Reynolds number increases. The singularity can be understood
by inspecting equation 2.1. For a nonzero value of mα

z , the behaviour of the quantity (XEC − XAC) is governed by the
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behaviour of Cα
L, depicted in figure 2.12. As reported earlier, Cα

L changes sign from positive to negative at Re= 13000 and
Re= 18500 for the base and mean flow, respectively. In this way, the quantity (XEC − XAC) changes sign from negative to
positive at the same Reynolds numbers.

2.1.5 Emergence of three-dimensional structures: hydrodynamic Floquet analysis

Up until now, we investigated the flow field around a NACA0012 airfoil as function of the Re and α parameters via two-
dimensional time-marching simulations, without questioning if the flow is in reality two- or three- dimensional. To address
this question, we investigate in this section the emergence of three-dimensional perturbations on the instantaneous
flow field by the means of a linear Floquet analysis for α = 0◦. This follows the classical Floquet analysis, applied to
purely-hydrodynamic configurations, present in Barkley et al. (1996).

Method and bibliographical elements

In the previous sections, we showed that the two-dimensional flow field was periodic in time at α = 0◦, for the
Re number range considered. Taking advantage of this property, we investigate the emergence of three-dimensional
perturbations on periodic flow field solutions at α= 0◦ by the means of a Floquet analysis (Floquet, 1883), for different
values of Reynolds numbers. This analysis was firstly used by Barkley et al. (1996) to study the onset of three-dimensional
structures on the periodic wake of a cylinder. More recently, Tsiloufas et al. (2009) performed a Floquet analysis around
a massive separated flow at 400≥Re≥ 600 at α= 20◦ on a NACA0012 airfoil, while He et al. (2017) performed similar
analyses on different NACA airfoils. Deng et al. (2017) also used this analysis to investigate the case of a NACA0015
airfoil in post-stall conditions (α= 12.5◦ and α= 15◦).

We note that the Floquet analysis present here aims at investigating three-dimensional perturbations on a purely-
hydrodynamic configuration, in contrast to the FSI Floquet analysis, introduced in chapter 1 and explored in the
subsequent chapters 4 and 6, where the airfoil structure has a pitch degree of freedom. Similarly to the developments
present in section 1.4.3, the Floquet multipliers, µ, are complex numbers quantifying the growth/decay and frequency
of infinitesimal perturbations that may develop on top of an established periodic limit cycle oscillation. This time, the
infinitesimal perturbations are posed as

q′(X , Y , Z, t)=
q̂β(X , Y , t)eσt+iβZ +c.c.

2
,

where q̂β =
[
Ûβ, V̂β, Ŵβ, p̂β

]T is the Floquet eigenmode, corresponding to a T-periodic function, β= 2π/λz is the forcing
spanwise wavenumber and λz is the corresponding spanwise wavelength. The Floquet multipliers are then retrieved from
the identity µ= eσT . The numerical tool used to compute the most unstable Floquet eigenpairs is described in appendix B.

In order to have a better understanding of the phenomenon, we review the main results of Floquet analysis for the
circular cylinder, whose wake undergoes transition to three-dimensionality via three distinct modes: modes A, B and C.
The mode A (Williamson, 1996a,b) instability emerges naturally with the onset of the three-dimensionality for Re& 180
and is characterised by spatially periodic streamwise vortex structures, with a spanwise wavelength of approximately
λz ≈ 4D, where D is the cylinder diameter. For Re& 230, a gradual shift of energy from the mode A to the mode B is
observed, as the Reynolds number increases. Mode B instability is characterised by a distinctly smaller wavelength,
around λz ≈ 1D. Finally, mode C instability is observed in a circular cylinder when the flow is excited via a control
wire placed in the wake, parallel to cylinder axis (Yildirim et al., 2013). The spanwise wavelength is around λz ≈ 2D.
Additionally, a quasi-periodic mode is found on the literature (Blackburn et al., 2005), appearing around Re≈ 380, not
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discussed in the following.

One of the differences between these three modes, is the arrangement of the streamwise vortices from one braid of the
vortex shedding structure to the other. Mode A is characterised by an odd RT-symmetry, where R denotes the reflection
about the wake axis (y= 0) and T denotes the translation in time by T/2. Mathematically, this property can be expressed
in terms of the streamwise vorticity as:

Ωx(X , Y , t)=−Ωx(X , −Y , t+T/2) . (2.2)

Therefore, mode A instability has a staggered arrangement of the streamwise vortices. In contrast, mode B is characterised
by an even RT-symmetry, which can be posed mathematically as

Ωx(X , Y , t)=Ωx(X , −Y , t+T/2) . (2.3)

In this case, the spanwise structures are arranged in-line. On the other hand, mode C does not have a RT-symmetry.
Instead, it exhibits a period-doubling, i.e., the spatial arrangement of the streamwise vortices is the same every 2T time
units. Mathematically, this can be posed as

Ωx(X , Y , t)=−Ωx(X , Y , t+T) . (2.4)

Since both modes A and B preserve the T-symmetry of the periodic flow, they become unstable by crossing the unit circle
with a Floquet exponent of µ= 1. In contrast, since mode C introduces a period-doubling on the periodic flow, it becomes
unstable for a Floquet exponent of µ=−1.

Concerning the three-dimensional transition around a NACA0012 airfoil, Jones et al. (2008) reported that the three-
dimensionality transition for Re= 50000 and α= 5◦ occurs via a mode resembling the mode B instability of the circular
cylinder. A similar conclusion was made by Hoarau et al. (2003) at α= 20◦ for Re= 800 and Re= 1200. For a NACA0015
airfoil, Deng et al. (2017) found that the transition takes place via a mode C instability for (α, Re) = (12.5◦, 1082) and
(α, Re)= (15◦, 730), with λz = 1.38d and λz = 1.62d, d being the characteristic dimension transverse to the freestream,
d = csinα. Finally, Samuthira Pandi et al. (2019) reported the onset of the three-dimensionality of an Eppler 61 airfoil at
α= 10◦ to be around Re= 1280.9 via a mode C instability and hairpin vortex structures with λz = 1.34.

Results

We start our analysis at Re= 30000 and α= 0◦. In figure 2.14a, we present a Floquet spectrum, where 20 Floquet
multipliers were computed for the spanwise wavenumber β= 50. This corresponds to the value of λz = 0.126. A single
Floquet multiplier is found in the unstable zone (

∣∣µ
∣∣> 0). This Floquet multiplier is highlighted by the bigger black circle

and corresponds to a synchronous Floquet eigenmode, with no imaginary part. The corresponding spanwise velocity of the
Floquet eigenmode, Ŵβ, is presented in figure 2.14c. This field is associated to an arbitrary instant of the periodic limit
cycle oscillation around which the stability analysis is carried out. The spanwise vorticity of this instant is represented by
the black isocontour lines, with the negative and positive values represented by the dashed and solid lines, respectively.
We observe that the Floquet eigenmode is mostly located on the cores of the vortex shedding and on the secondary
streamwise vorticity zones.

This analysis can be carried out for different values of β. In that sense, figure 2.14b presents the evolution of
the modulus of the synchronous leading Floquet multiplier as function of the forcing wavenumber β. We are able to
identify a small range 35.β. 60, for which the leading Floquet multipliers are unstable. This means that the periodic
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Figure 2.14 – Floquet analysis around periodic flow solution at Re= 30000 and α= 0◦. (a) 20 Floquet multipliers
computed for the spanwise wavenumber β = 50, represented on the complex plane (µr,µi). The unstable region
outside the unit circle

∣∣µ
∣∣ > 1 is represented by the grey zone. The black bigger circle corresponds to the leading

synchronous Floquet multiplier. (b) Absolute value of the leading Floquet multiplier,
∣∣µ

∣∣, as a function of the
spanwise wavenumber, β. (c) Instantaneous spanwise velocity Ŵβ (colours) of the leading Floquet eigenmode for
β = 50. The black isocontours represent the spanwise vorticity of the corresponding instant of the periodic flow
(Ωz =±4 and Ωz =±16).

two-dimensional flow becomes unstable to spanwise infinitesimal disturbances for a spanwise wavenumber within this
range.

Returning to the case at β= 50, corresponding to λz = 0.126, the wavelength can be based on a characteristic length on
the transverse direction to the freestream (the airfoil thickness), λz = 0.12λt

z, having λt
z = 1.04. When comparing with the

values reported earlier for the circular cylinder case, one finds that this value is in good agreement with the wavelength
found for the mode B. The signature of the mode B can also be discerned on the spatial structure of the Floquet eigenmode.
Based on the equality 2.3, associated to the even RT-symmetry property of the mode B, one can note that the vorticity
surrounding a particular vortex shedding core can be found for the adjacent core but on the symmetric position with
respect to x-axis.

The range for which the leading Floquet multiplier is unstable is identified for different Reynolds numbers in
figure 2.15. We can firstly note that as the Reynolds number increases, the range of wavenumbers for which the periodic
flow solution is unstable increases. One can also note that the wavenumber of the most unstable Floquet multiplier
remains constant at β= 50 with the increase of the Reynolds number. Further, we observe for Re= 50000 the emergence of
a second Floquet multiplier branch at a higher wavenumber, extending the unstable region. The branch could already be
identified for Re= 45000, even if all the corresponding Floquet multipliers are stable. The Floquet multipliers associated
to this new branch are also synchronous. For this new branch, at Re= 50000, the most unstable Floquet multiplier is
found for a wavenumber of β= 90, having λz = 0.069 (λt

z = 0.582).
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The comparison between the eigenmodes of the two branches is made at β= 50. For that, we sketch the spanwise
velocity of the corresponding Floquet eigenmodes, Ŵβ, for the two branches in figure 2.16. As in the previous eigenmode
representation, the spanwise vorticity associated to an instant of the periodic flow is represented by the black isocontour
lines. The topology of the synchronous eigenmode associated to the first branch, in figure 2.16a, resembles the eigenmode
previously described at Re= 30000, presenting values mostly on the cores of the vortex shedding and on the secondary
streamwise vortices. As stated before, this mode is comparable to the mode B of the circular cylinder case.
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Figure 2.15 – Absolute value of the Floquet multiplier,
∣∣µ

∣∣, as a function of the spanwise wavenumber, β, for α= 0◦

and four Reynolds numbers: (a) Re= 35000, (b) Re= 40000, (c) Re= 45000 and (d) Re= 50000. The white circles
in (c) and (d) correspond to a second branch of synchronous Floquet multipliers, unstable for Re= 50000.

(a)

(b)

Figure 2.16 – Instantaneous spanwise velocity Ŵβ of (a) the first synchronous Floquet eigenmode and (b) the second
synchronous Floquet eigenmode at β= 50 for Re= 50000 and α= 0◦. The black isocontours represent the spanwise
vorticity of the corresponding instant of the periodic flow (Ωz =±4 and Ωz =±16).
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Figure 2.17 – Neutral curve in the parameter space Re−β for the first (black circles) and second (white circles)
synchronous Floquet eigenmodes at α= 0◦.

Similarly, the synchronous eigenmode associated to the second branch, present in figure 2.16b presents values of Ŵβ

mostly on the cores of the spanwise vortices and on the secondary streamwise vortices. However, this time we discern an
odd RT-symmetry, characteristic of the mode A. Based on the equality 2.2, one can note that the vorticity surrounding
a particular vortex shedding core can be found for the adjacent core but on the symmetric position with respect to the
x-axis and with the opposite sign. Even if the odd RT-symmetry can be found on both the present eigenmode and on the
mode A of the cylinder case, the spanwise wavelengths are not similar, since the mode A of the cylinder presents a value
of λz ≈ 4D, while the present case presents a wavelength based on the airfoil thickness of λt

z = 0.582.

Finally, taking into account the marginally stable Floquet eigenvalues for each Reynolds number, a neutral curve
can be sketched, as presented in figure 2.17. This curve separates two regions, where each point is characterised by the
parameters (Re, β): a first region, stable, where three-dimensional perturbations are not excited; and a second region,
where the two-dimensional periodic flow is unstable to spanwise infinitesimal disturbances. We note that the region of
instability increases as the Reynolds number increases. Additionally, we represent the marginal Floquet eigenvalues
of the second branch by the white filled circles, at Re = 50000. The inclusion of this second branch on the neutral
curve extends the upper limit of β. The inclusion of more data near the value of Re = 50000 is suggested for future
investigations, in order to better characterise this the neutral curve in this region. Further, we expect the eigenvalue of
this second branch to be dominant as the Reynolds numbers increases beyond the value of Re= 50000.

The Floquet analysis for α> 0◦ is briefly discussed in appendix C, where some additional results are reported for
α = 5◦ and α = 6◦. We obtained the emergence of synchronous Floquet eigenmodes for lower Reynolds numbers as
the incidence increased. This reasoning is in accordance with the results of Deng et al. (2017) and Samuthira Pandi
et al. (2019), who reported the emergence of three-dimensional instabilities at high angles of attack for lower Reynolds
numbers.

2.2 Three-dimensional flow description: Direct Numerical Simulations

In the previous section, we reported the emergence of three-dimensional instabilities on the spanwise direction,
associated to a two-dimensional periodic flow, for a closed spanwise wavelength. These instabilities emerged around
Re= 30000 for α= 0◦. Based on these findings, one can expect the flow field to be three-dimensional for higher Reynolds
numbers. In that way, in this section, we proceed to investigate the three-dimensional flow field by the means of Direct
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Numerical Simulations (DNS). These simulations are conducted at Re= 50000, still considering fixed-wing configurations
with constant values of the incidence α. We start by describing the instantaneous flow field at α= 0◦, both in the time
and frequency domains. The same exercise is then performed for angles of attack up to 2◦, with a step of 0.5◦.

Recently, DNS has been used to study the flow around the symmetric NACA0012 profile wing by Shan et al. (2005),
considering a Reynolds number of Re= 100000 and an angle of attack of α= 4◦. They found that the vortex shedding from
the separated free shear layer was due to a Kelvin–Helmholtz instability. At a higher Reynolds number, Re= 400000, and
α= 5◦, Hosseini et al. (2016) performed the DNS to study the boundary-layer development around a NACA0012 profile
wing under strong adverse pressure gradients. For the same Reynolds number as the present study, Re = 50000, but
for larger incidences (9.25◦ and 12◦) the same case was analysed by Rodríguez et al. (2013), finding that the massive
separation on the suction side of the wing was caused by a combination of leading-edge and trailing-edge stall. Jones et al.
(2008) studied the linear stability of the laminar separation bubble present in the time-averaged flow field at the same
Reynolds number, for α= 5◦ and M = 0.4 (Mach number), suggesting that the two-dimensional vortex shedding behaviour
is absolutely unstable to three-dimensional perturbations, similar to mode B instability observed in the circular cylinder.
At α= 0◦, Jones et al. (2006) studied the behaviour of the NACA0012 airfoil from Re= 10000 to Re= 50000, for different
Mach numbers. They reported that the flow around the airfoil was dominated by vortex shedding from an unstable wake
from around Re= 7000. At Re= 50000, they report an additional high-amplitude low-frequency oscillation for certain
values of the Mach number, which is also found on the incompressible simulation present in the following paragraphs, at
α= 0◦.

2.2.1 Instantaneous flow description at Re= 50000 and α= 0◦

We start by describing the results for α = 0◦. The DNS simulation was initialised from an instantaneous two-
dimensional solution extruded in the spanwise direction. After surpassing a transient regime, the instantaneous flow
fields are plotted via the quantity Q, a widely used method for visualise and classify three-dimensional flow structures3.
This quantity was defined in Hunt et al. (1988) as

Q = 1
2

(∥∥Ωr∥∥2 −‖S‖2
)

, (2.5)

whereΩr and S correspond to the antisymmetric (rotation tensor) and symmetric (shear strain tensor) parts of ∇U , respec-
tively. Accordingly, this quantity represents the local balance between rotation and shear strain rate magnitudes (Kolář,
2007). The Q-criterion corresponds to the representation of a fixed value of Q.

−20

20

Figure 2.18 – Visualisation of the instantaneous vorticity structures of a DNS snapshot by the means of a Q-
isosurface, with Q = 75, coloured by the spanwise vorticity Ωz (left) and the streamwise vorticity Ωx (right) at
Re= 50000 and α= 0◦.

3The use of the vorticity is not considered suitable for the identification of a vortex as it cannot distinguish between pure shearing motions and the
actual swirling motion of a vortex (Jeong et al., 1995).
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Figure 2.18 presents the flow field at a particular time instant. The vortex identification is made via an isocontour
at Q = 75. We first note the presence of the spanwise vortex structures, shed from the trailing edge of the airfoil at an
angular frequency of ωV S = 30.610 (T = 0.205). Additionally, smaller structures are present around these main vortices,
associated to the three-dimensionality of the flow field, owning a hairpin form. In other to better visualise all these
structures, the Q-criterion is coloured by the spanwise vorticity, on the left, and by the streamwise, vorticity on the right.
The main vortex shedding structures are easily identified on the left figure. The alternating coloured pattern is associated
to the sense of rotation of each vortex, with the red ones (positive spanwise vorticity) being shed from the lower surface
and the blue ones (negative spanwise vorticity) being shed from the upper surface of the airfoil. The hairpin structures,
in white, can more easily be discerned on the right figure, where the Q-criterion was coloured by the streamwise vorticity.
These structures are formed at the trailing edge of the airfoil, resulting from the instability of the primary spanwise
vortices.

Time history of the velocity components and force coefficients

The time history of the streamwise and cross-stream velocities at one point located at (x, y, z)= (2, 0.1, 0.05) is present
in figure 2.19 for 370 vortex shedding periods. A simple moving average over five vortex shedding oscillations is computed
for the presented time window and represented by the blue line. One can note that the simple moving average of the
streamwise velocity is always below 1, with an overall mean of U = 0.995, while the cross-stream velocity has a mean
value of V = 0.00864. We also note that the maximum values of both signals present an alternating pattern, varying
between a higher and a lower value. This behaviour presents a periodicity of 2T, being associated to the frequency ωV S /2.

In addition to the phenomena associated to ωV S and ωV S /2, a low frequency can be discerned on both time histories,
with an angular oscillation of ωLF = 0.825 (TLF = 7.315). The period of this low frequency oscillation corresponds to
approximately 37 vortex shedding periods. For the velocities on this point, the influence of the low frequency is mainly
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Figure 2.19 – Time history of the streamwise and cross-stream velocities, U and V, at (x, y, z)= (2, 0.1, 0.05) for
the DNS simulation at Re= 50000 and α= 0◦. The blue line represents the simple moving average over five vortex
shedding periods.
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Figure 2.20 – Time history of the lift and drag coefficients for the DNS simulation at Re= 50000 and α= 0◦. The
blue line represents the simple moving average over five vortex shedding periods.
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Figure 2.21 – On the left, time history of the drag coefficient for the DNS simulation at Re = 50000 and α= 0◦,
highlighting the low frequency oscillation and two regions where the time- and spanwise-averaged flow solutions
where computed, denoted by qtrough and qcrest. On the right, pressure fields associated to qtrough, on the lower
half of the plot, and to qcrest, on the upper half of the plot.

observed in the maximum values of each vortex shedding cycle.
This low frequency can be also discerned on the time history of the global coefficients CL and CD , presented in

figure 2.20. This time, the simple moving average associated to the lift coefficient does not vary in time, presenting a
mean CL value of zero and a root mean square of CRMS

L = 0.0105. The maximum lift coefficient amplitude is found on
the crest of the low frequency cycle, with a value of Ccrest

L,max = 0.0156, while in the trough the maximum corresponds to

Ctrough
L,max = 0.0146, corresponding to a difference of 10−3.

Contrary to the lift coefficient, the evolution of CD presents a different behaviour. The drag coefficient signal is
characterised by an overall mean of 0.020741. However, the simple moving average does not have a constant value, with
a maximum and minimum values of 0.020760 and 0.020722, respectively. The oscillation of the simple moving average
associated to the drag coefficient indicates that the low frequency oscillation of the flow field is associated to a respiration
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of the recirculation zone on the rear of the airfoil. This phenomenon resembles to the meandering reported on a circular
cylinder by Lehmkuhl et al. (2013) at Re= 3900.

To further understand this phenomenon, a close-up on the last 15 time units of the drag coefficient time history
is reproduced on the left of figure 2.21. Two different time- and spanwise-averaged solutions were computed during
five vortex shedding cycles, a first located on the trough of the low frequency cycle, denoted qtrough, and a second one
located on the crest, denoted qcrest. On the right of figure 2.21, a close-up near the trailing edge of these mean flow
solutions is presented, with the pressure quantity being compared. The mean flow qtrough is represented in the lower
half of the figure, while qcrest is represented in the upper half, with a dashed-dotted line separating the two pressure
fields. We note the presence of a negative pressure zone after the trailing edge, associated to the presence of a time-
and spanwise-averaged recirculation zone. We also note that a small discrepancy of the isocontour lines along the axis
y= 0. This discrepancy shows that the mean recirculation zone associated to qcrest is smaller, when compared with the
mean recirculation zone associated to qtrough. This difference in the pressure fields between the two mean flow solutions
illustrates the respiration of the recirculation zone on the rear of the airfoil. For a future work, it would be pertinent to
study the possible interaction between this low frequency and the frequency of the structure, for a configuration where
the pitch degree of freedom is taken into account.

Hairpin description

We concentrate our attention on the hairpin structures present around the main vortex shedding structures, that were
identified on the right of figure 2.18. In figure 2.22, we present a close-up view near the trailing edge of three different
instants, with a three-dimensional view on the left and a top view on the right, separated by T/2 time units, identified
as instants A, B and C. The hairpin structures are highlighted on the top view of instant A, with two pairs of hairpin
structures present on the upper part of the wake, and two other pairs present on the lower part of the wake. Firstly, one
can note that the flow field is qualitatively periodic, with a period T, by comparing the instants A and C. Additionally,
one can observe from the highlighted upper and lower hairpins pairs, that an odd RT-symmetry is present. Following
equation 2.2, this means that the legs of the upper and lower hairpins located at the same spanwise coordinate, have
an opposite streamwise vorticity value. The spanwise wavelength is estimated to be λz = 0.1036, which corresponds to
λt

z = 0.8635 when based on the thickness of the airfoil. These values are obtained from a time-averaged flow, explored
in a subsequent paragraph. When comparing these attributes with the Floquet eigenmodes reported in section 2.1.5,
we conclude that this flow topology corresponds to the onset of three-dimensional perturbations from a synchronous
Floquet eigenmode of the second branch, associated to modes of type A. On this branch of Floquet eigenmodes, an
odd RT-symmetry was also found. Further, the most unstable Floquet eigenmode presented a spanwise wavelength of
λt

z = 0.582, coherent with the spanwise wavelength of the hairpin structures presented here.

In figure 2.22, one can notice a black line, aligned with the z-axis, located at (x, y)= (1.2, 0.02). We proceed to evaluate
the time variation of the cross-stream vorticity on this line, for eight vortex shedding periods. The results are present in
figure 2.23. The black isocontour lines represent the Q-criterion at Q = 75 used in the previous figures. One can firstly
note that only the spanwise vortices shed from the upper surface of the airfoil cross the chosen proben line. This can be
inferred from the nearly vertical Q-isocontour lines, found at each T time units, for example readily before and after the
instant B.

The corresponding cross-stream vorticity on the instants A, B and C of the previous figure are highlighted by the
vertical dashed lines. The intersection of the secondary vortex structures with the considered probe line is illustrated by
the small Q-isocontour circles, present at each T/2 time units. For example, one can note that the probe line at instants A
and C intersects the upper hairpin legs. This can be clearly seen in the three-dimensional view present in figure 2.22.
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Figure 2.22 – Three-dimensional view (left) and top view (right) of three DNS instantaneous flow solutions at
Re = 50000 and α= 0◦, on the rear of the airfoil, for: the time t (top), the time t+T/2 (centre) and the time t+T
(bottom). The visualisation is made via a Q-isosurface, with Q = 75, coloured by streamwise vorticity, Ωx. The
solid black line along the z-direction, located at (x, y) = (1.2, 0.02), is associated to the time history extraction of
figure 2.23.
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Figure 2.23 – Time history of the cross-stream vorticity, Ωy along an axis oriented in the z-direction, located at
(x, y)= (1.2, 0.02). The black isocontours represent the Q-isocontour for Q = 75. The vertical dashed lines correspond
to the three instants present in figure 2.22, distanced of T/2 time units The isocontours highlighted in green and
connected by dashed lines, on the zone 3T < t < 6T, illustrate the 2T periodicity of the spanwise hairpin length.
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Further, we note that around instant B, the legs of the lower hairpins have not cross the probe line yet.
This figure also enables one to track the position of the hairpins legs as function of the time, in particular their

spanwise position. When comparing the position of the hairpins legs at the different instants, one can note a small
oscillation on their spanwise location. This oscillation is highlighted by the dashed lines connecting the green isocontours,
for the centre hairpin legs on the zone 3T < t < 6T. Despite the fact that the flow structure is qualitatively periodic with a
period T, this small oscillation on λz shows a periodicity of 2T. The different frequency components of the flow field are
further analysed in the following paragraphs.

Additionally, we also report the presence of several other smaller structures. These structures appear in general in
pairs and are located between the legs of each main hairpin and in between adjacent hairpins. They rotate in the opposite
sense of the adjacent vortices.

2.2.2 Spectral flow description at Re= 50000 and α= 0◦

As a complement of the time analysis, the spectral representation enables a better understand of the fundamental
frequencies and corresponding harmonics present in different flow quantities. The signals described previously are
here characterised in the frequency space, using a spectral density estimation. The estimation is made using a Welch’s
method (Welch, 1967), in order to reduce the noise obtained from a simple FFT. The Welch’s method estimates the spectral
density of a signal by dividing it into several overlapping segments, performing a FFT on each segment of the data
multiplied by a tapering function, and averaging the results. The zero frequency, associated to a mean value in the time
domain, is removed from the spectral representation for clarity. For the following spectral representations, the signal is
divided into two segments, using 60% of overlap and a Hann tapering function. For further details, the reader in invited
to consult the origin article (Welch, 1967).

Figure 2.24 presents a spectral density estimation of the streamwise velocity and lift coefficient histories. The velocity
spectrum is characterised by an initial peak corresponding to the low frequency ωLF = 0.825, followed by the peaks
associated to the vortex shedding frequency, with the fundamental frequency being ωV S = 30.610. The first of these peaks
appears at ωV S /2. In the time analysis, this period-doubling property can be discerned in two occasions. Firstly, on the
streamwise and cross-stream velocity evolutions (figure 2.19), where an alternating pattern of the maximum values of
both signals was noted, presenting a periodicity of 2T. Secondly, on the variation of the spanwise wavelength of the
hairpin structures, on figure 2.23. The peak at ωV S /2 is followed by the fundamental frequency at ωV S , characteristic of
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Figure 2.24 – Spectral density estimation of the streamwise velocity U at (x, y, z)= (2, 0.1, 0.05) (left) and of the
lift coefficient CL (right) for the DNS simulation at Re= 50000 and α= 0◦. The dashed blue lines correspond to the
−5/3 slope. The dashed grey lines highlight the low frequency, the vortex shedding frequency and its harmonics
(ωLF = 0.825 and ωV S = 30.610).
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Figure 2.25 – Three-dimensional representation of the time-averaged flow solution for the DNS simulation at
Re = 50000 and α = 0◦, with a Q-isosurface at Q = 50, coloured by the streamwise vorticity, Ωx, with a three-
dimensional view (left) and a top view (right).

the vortex shedding phenomenon. The following peaks, with a lower amplitude, correspond to the combination of the
former to frequencies, e.g., ωV S /2+ωV S = 3ωV S /2.

The spectrum of CL presents a less informative content, as only the fundamental frequency ωV S and its harmonic
3ωV S have an important value. This is associated to the fact that the lift coefficient is a global quantity, integrated over
the airfoil surface, which tends to present more smooth and clean results, in contrast to the velocity value at one point in
space.

The dashed blue lines correspond to the Kolmogorov law, which states that homogeneous and isotropic turbulence
energy decays with the frequency at a logarithmic rate of −5/3. As can be seen in the figures, the −5/3 rate of decay is
relatively well approximated for the considered frequency range.

We proceed to the computation of the three-dimensional time-averaged flow. Figure 2.25 presents a close-up near the
trailing edge and a top view of a Q-isosurface at Q = 50, coloured by the streamwise vorticity. Firstly, a close isosurface
near the trailing edge can be discerned on each side of the airfoil, corresponding to the time-averaged recirculation zone.
These isosurfaces are mainly coloured in white, as they are dominated by spanwise vorticity and not streamwise vorticity.
In contrast, the red and blue values of the streamwise vorticity can be seen in the time-averaged hairpin structures.
The odd RT-symmetry can again be seen here, since that for the same spanwise coordinate, the time-averaged hairpin
structures on the lower and upper parts of the wake have opposite spanwise vorticity signs. The top view, on the right,
enables one to compute the time-averaged spanwise wavelength of the hairpin structures. The evaluation is made at
x = 1.3, as the spanwise position of the time-averaged hairpin structures does not vary substantially downstream this
abscissa. The spanwise wavelength of these time-averaged structures is λz = 0.1036 (λt

z = 0.8635).

In addition to the average in time, we compute the first fundamental harmonic of the flow field, based on the vortex

−20

Ωz

20

Figure 2.26 – Three-dimensional representation of the time-averaged and real part of the first harmonic flow
solution for the DNS simulation at Re= 50000 and α= 0◦, with an isosurface of streamwise velocity U = 0.5 for the
time-averaged flow solution (left) and

∥∥∥U
∥∥∥= 0.05 for the first harmonic (right). The isosurfaces are coloured by the

spanwise vorticity, Ωz.
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Figure 2.27 – Time- and spanwise-averaged flow solution at Re= 50000 and α= 0◦: the pressure field around the
airfoil (left) and the spanwise vorticity near the trailing edge (right).
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Figure 2.28 – Fields of the spanwise-averaged Reynolds stress components U ′U ′, U ′V ′ and V ′V ′ at Re = 50000
and α= 0◦. The streamlines enclose the recirculation zone.

shedding frequency ωV S . In this approximation, we neglect the lower frequency ωLF and we suppose that the flow is
periodic in time, with a period T. Figure 2.26 presents an isosurface of streamwise velocity for the time-averaged flow,
on the left, and for the real part of the fundamental harmonic, on the right. This time, the isosurfaces are coloured by
the spanwise vorticity. In both figures 2.25 and 2.26, one can see that the time-averaged flow is not constant along the
spanwise direction.

The time-averaged flow can be further averaged in the spanwise direction in order to obtain a two-dimensional
representation of the mean flow, referred to as the time- and spanwise-averaged flow. The pressure field and spanwise
vorticity of this quantity are represented in figure 2.27. We first observe, on the left plot, that the laminar boundary layer
starting at the leading edge, presents a separation point at Xd = 0.706, represented by the yellow dots over the upper and
lower airfoil surfaces. However, the boundary layer remains separated by the end of the airfoil, forming a recirculation
zone on the rear, enclosed by the black streamlines. Concerning the right plot, the spanwise vorticity shows a negative
vorticity on the separated boundary layer of the upper surface, indicating that the flow is locally rotating in the clockwise
direction, while in the red zone, below the lower airfoil surface, the flow is rotating in the anticlockwise direction.

The time- and spanwise-averaged components of the Reynolds stress tensor are also predicted. The time-averaged
Reynolds stress tensor is accessed via the identify U ′⊗U ′ =U ⊗U −U ⊗U , where the first term of the right-hand side is
computed during the DNS simulation and the second term is obtained during the post-processing phase. The resulting
quantity is then averaged in the spanwise direction. Figure 2.28 presents the U ′U ′, U ′V ′ and V ′V ′ spanwise-averaged
components of the Reynolds stress tensor. As the tensor is averaged in the spanwise direction, the Reynolds stress
components where W ′ intervenes are not plotted. The black isocontour lines enclose the recirculation zone, present at the
rear of the trailing edge of the time- and spanwise-averaged solution. Qualitatively, the predicted Reynolds shear stress
shows agreement with the experimental data reported in the literature (e.g., in Lee et al. (2005)) in terms of pattern
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shape. The Reynolds stress are mainly present on the region of the vortex shedding formation, readily after the end of
the recirculation zone on the rear of the airfoil. The components U ′U ′ and V ′V ′ present a symmetry with respect to the
x-axis, while the component U ′V ′ present an antisymmetric property with respect to the same axis.

2.2.3 Instantaneous and spectral flow descriptions at Re= 50000 and α> 0◦

Our analysis continues at the same Reynolds number, for incidences higher that 0◦. The instantaneous vorticity
structures for four different incidences are present in figure 2.29. The flow fields for the incidences of 0.5◦ and 1◦ present
a coherent vortex shedding emission, as the angle α = 0◦. However, the hairpin vortices present a more disordered
organisation. The angles 1.5◦ and 2◦ present a turbulent region on the wake of the airfoil, with no recognisable pattern
on the wake of the airfoil. One can note that an instantaneous three-dimensional recirculation bubble has emerged on
the second half of the upper surface of the airfoil. A zoom near the trailing edge is made in figure 2.30, where these two
different regimes can be observed, one for α≤ 1 and the other for α≥ 1.5.

The time history and corresponding spectral density estimation of the streamwise velocity located at (x, y, z) =
(2, 0.1, 0.05) are presented in figure 2.31 for the angles α = 0.5◦ and α = 2◦. One can start by noticing that the low
oscillation frequency found for the angle α= 0◦ has disappeared. The streamwise velocity signal at α= 0.5◦ oscillates at a
fundamental frequency ωV S = 29.914, inferior to the case at α= 0◦. The secondary peak at ωV S /2 is still present, as in
the case at α= 0◦. However, the remaining peaks observed at α= 0◦ are no longer discerned at α= 0.5◦, since the flow
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−20
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Figure 2.29 – Visualisation of the instantaneous vorticity structures of DNS snapshots by the means of Q-isosurface,
with Q = 75, coloured by the spanwise vorticity Ωz (left) and the streamwise vorticity Ωx (right) at Re= 50000 and
α> 0◦.
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Figure 2.30 – Visualisation of the instantaneous vorticity structures of DNS snapshots by the means of Q-isosurface,
with Q = 75, coloured by the spanwise vorticity at Re= 50000 and α> 0◦: zoom near trailing edge of the wing.
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Figure 2.31 – Time history (left) and corresponding spectral density estimation (right) of the streamwise velocity at
(x, y, z)= (2, 0.1, 0.05) for Re= 50000, α= 0.5◦ (top) and for α= 2◦ (bottom). The dashed blue lines correspond to
the −5/3 slope. The dashed grey lines highlight the vortex shedding frequency and its harmonics (ωV S = 29.914 for
α= 0.5◦ and ωV S = 21.136 for α= 2◦).
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Figure 2.32 – Time- and spanwise-averaged flow solution at Re= 50000 and α> 0◦: the pressure field around the
airfoil (left) and the spanwise vorticity near the trailing edge (right).

presents a more chaotic behaviour, characteristic of a turbulent flow.

For α= 2◦, the streamwise velocity signal presents a fundamental frequency with a lower value with respect to the
previous incidences (ωV S = 21.136). Contrary to α = 0◦ and α = 0.5◦, the temporal signal of the streamwise velocity
has lost its main periodic characteristics, as the turbulence level increased substantially with the increase of the angle
of attack. Additionally, one can note that the Kolmogorov law, represented by the dashed blue lines is respected up
to a frequency around 400 for both angles of attack, suggesting the presence of a cut-off frequency associated to the
characteristic size of the mesh elements.

The time- and spanwise-averaged flow fields for α> 0◦ are presented in figure 2.32, with the separation and possible
reattachment points represented by the yellow dots. Concomitantly, the corresponding C f and Cp distributions over
the airfoil are presented in figure 2.33. The solid lines correspond to the distributions over the upper surface, while the
dashed lines correspond to the distributions over the lower surface.

The yellow line represents the case at α= 0◦, with a separation point on both upper and lower surfaces of the airfoil
at Xd = 0.706, where the C f has a change in sign. As the angle increases to α= 0.5◦ (red lines), the separation position
of the boundary layer on the upper surface moves upwards (X up

d = 0.621), while the separation position associated to
the boundary layer on the lower surface moves forward (X down

d = 0.845). At α= 1◦ (blue lines), the boundary layer on
the lower surface of the airfoil remains attached (C f always positive), while the separation position on the upper airfoil
surface continues to move upwards (X up

d = 0.560). As the boundary layer on the upper surface does not reattach, a
recirculation zone is formed in the rear of airfoil. This topology is characteristic of a trailing-edge laminar separation
bubble, which was already previously found in the mean flow fields issued from two-dimensional simulations. The same
scenario is found for α= 1.5◦ (green lines). However, this incidence presents a significant drop on the C f distribution at
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Figure 2.33 – Distributions of the friction, C f , and pressure, Cp coefficients of time- and spanwise-averaged flow
solutions along the upper (solid) and lower (dashed) surfaces of the airfoil at Re= 50000 and different incidences:
α= 0◦ (yellow), α= 0.5◦ (red), α= 1◦ (blue), α= 1.5◦ (green) and α= 2◦ (black).

the end of the upper surface, associated to the emergence of a big recirculation in the clockwise direction. This drop on
the C f distribution is intensified for α= 2◦ (black lines). For this last angle, a reattachment of the boundary layer on the
upper surface is observed at X up

r = 0.990, forming a long laminar separation bubble.

The emergence of a smaller bubble inside the main recirculation zone is observed for the angles α= 1.5◦ and α= 2◦.
This zone is bounded on figure 2.32 by the yellow dots inside the main recirculation and can also be discerned on the C f

distributions, right before the drop of C f near the airfoil trailing edge, where the C f distribution has a small range of
positive values. At the same time, a smaller recirculation bubble appears on the lower surface, at α= 2◦, for the range
0.89≤ x ≤ 1.

The Cp distribution is also presented, on the right side of figure 2.33. For the angles α= 0.5◦ and α= 1◦, one can
note that the lower surface −Cp distributions (dashed lines) are located above the upper surfaces distributions (solid
lines), for x& 0.2. This means that, for these angles, it is the lower surface that corresponds to the suction side. This
unusual behaviour is associated to the negative lift coefficient found for small incidences, already discussed for the mean
flow solutions issued from two-dimensional simulations. The peak value of −Cp on the upper surface, where the fluid
velocity is maximum along the airfoil surface, remains approximately constant, as well as its streamwise position, located
at x ≈ 0.1. However, for the angles α= 1.5◦ and α= 2◦, this peak drastically moves upwards, accompanied by an increase
of its magnitude. For α= 1.5◦, corresponding to the green curve, the −Cp distribution of the upper and lower surfaces
still presents a range 0.42≤ x ≤ 0.78 where the lower surface corresponds to the suction surface. However, for α= 2◦, this
is no longer the case, with the lower and upper surfaces corresponding to the so-called pressure and suction surfaces,
respectively. Additionally, the upper surface −Cp distribution for this last angle presents a roughly constant plateau
on the separated zone, with an increase of −Cp around X ≈ 0.9, corresponding to the depression caused by the laminar
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Figure 2.34 – Evolution of the lift and quarter-chord aerodynamic moment coefficients with the angle of attack for
the time- and spanwise-averaged flow solutions at Re= 50000. The comparison is made between the present results
(blue crosses), the experimental data from Ohtake et al. (2007) (black circles) and the experimental data from Tank
et al. (2017a) (black squares).
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Figure 2.35 – Evolution of the aerodynamic moment coefficient around XEC = 0.186, on the left, and the corre-
sponding pressure (black diamonds) and friction (blue triangles) components, on the right, with the angle of attack,
for the time- and spanwise-averaged flow solutions at Re= 50000.

separation bubble.

The CL and m1/4
z global coefficients, resulting from the integration of the local contributions of the lift and moment

coefficients along both surfaces, are presented in figure 2.34, as function of the angle of attack. A comparison is made
with experimental data from the recent studies of Ohtake et al. (2007) and Tank et al. (2017a,b). The present data shows
qualitative agreement with the experimental data reported in the literature, with some discrepancies on the values. The
negative CL and m1/4

z tendency is captured on the present simulations, in accordance with the literature data. Concerning
the CL behaviour, we obtain a negative value for the angles α= 0.5◦ and α= 1◦. This is in accordance with the inversion
of the pressure and suction sides of the −Cp distribution, discussed in the previous paragraph. For α= 1◦, we obtain a lift
coefficient that is still negative, while the literature reports a nearly null value. For α> 1◦, the lift coefficient changes
sign, being positive and increasing as the angle of attack increases. The same behaviour is found for the quarter-chord
aerodynamic moment coefficient, m1/4

z . In this case, the moment is negative for α≤ 1.5◦ and positive for α= 2◦.

The behaviour of the aerodynamic moment with α is also found for the aerodynamic moment around the elastic centre
XEC = 0.186. The results are present in figure 2.35. On the left plot, one can note that mz is negative for the range
α≤ 1.5◦. Additionally, we separate the pressure and friction contributions to the aerodynamic moment coefficient, noted
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mp
z and m f

z , respectively, represented on the right plot. One can note that the overall behaviour of mz is governed by its
pressure component. The friction component, represented with the same scale by the blue coloured symbols, presents
nearly trivial values for all considered incidences. With that in mind, we present in section 2.3 an insight of the mz–α
behaviour, based solely on the decomposition of the pressure component and its evaluation in terms of volume integrals,
rather than in terms of surface integrals, as done up until this point. Prior to this analysis, we present a comparison
between the two- and three-dimensional results for Re= 50000.

2.2.4 Comparison between two- and three-dimensional results for Re= 50000

In the following paragraphs, we compare several features of the two- and three-dimensional simulations at Re= 50000.
We start by comparing the values of the vortex shedding frequency, ωV S , as the angle of attack increases, present in
table 2.2. Concerning the two-dimensional results, this quantity was already plotted on the right side of figure 2.9. We
first observe that in both 2D and 3D simulations, ωV S decreases as the angle of attack increases. Further, for the angles
α= 0◦, α= 0.5◦ and α= 1.5◦ the 3D vortex shedding frequency is very well approximated by the corresponding value of
the 2D simulations. The bigger discrepancy is found for α= 2◦, where for the 2D simulations, we observed the period
doubling phenomenon. This phenomenon in not observed in the 3D simulations, even if a decrease of ωV S is observed as
the incidence increases.

We also report in table 2.2 the aerodynamic moment coefficient associated to the mean flow solutions issued from 2D
and 3D simulations These values were already plotted in figures 2.9 and 2.35. Both curves present a negative region
for the smaller incidences, with a very food agreement of the numerical values for α ≤ 1◦. However, the mz results
associated to the 2D simulations present a discontinuity behaviour around α≈ 1.8◦, already described previously. This
discontinuity is not found in the mz results issued from the 3D simulations. We also report the abscissa of the separation
and reattachment points of the boundary layer on the upper surface as function of the angle of attack. The reattachment
point only exists for the case at α= 2◦, associated to the presence of a long laminar separation bubble. We observe a very
good agreement on the separation points for all the incidences considered. This can be associated to the fact that, in this
region of the space, the flow is mainly two-dimensional, even in the three-dimensional simulations. The reattachment
point for the case at α= 2◦ also presents a very good agreement between the two simulations.

We continue the comparison between the two- and three-dimensional simulations in figure 2.36, where, on the left

α 0◦ 0.5◦ 1◦ 1.5◦ 2◦

2D

ωV S 30.354 30.150 29.891 23.782 15.172
mz 0 −0.01249 −0.02300 −0.02140 0.04751
X up

d 0.700 0.613 0.557 0.505 0.478
X up

r — — — — 0.987

3D

ωV S 30.610 29.914 26.611 23.961 21.136
mz 0 −0.01157 −0.02435 −0.00187 0.04927
X up

d 0.706 0.621 0.560 0.511 0.460
X up

r — — — — 0.990

Table 2.2 – Comparison between two- and three-dimensional simulations at Re= 50000 as function of the angle
of attack: vortex shedding oscillation frequency, ωV S , mean flow aerodynamic moment, mz, and abscissa of the
separation and reattachment points of the upper boundary layer, X up

d and X up
r .
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side, we sketch the C f distribution over the upper surface of the airfoil for the different considered incidences and, on the
right side, we plot the difference between pressure fields of the mean flow solutions issued from 2D and 3D simulations.
Concerning the C f distributions, we observe that the curves associated to the 2D simulations (black curves) are in very
good agreement with the 3D results (green curves). For the lower incidences, the superposition of both curves is observed
for the entire abscissa along the airfoil. The main differences are observed for the angles α= 1.5◦ and α= 2◦, for x& 0.85.

Concerning the difference between the pressure fields, the main differences are located around the trailing edge, where
a close-up is made on the right side of figure 2.36. Additionally, we sketch the streamlines enclosing the recirculation zone
of the mean flow solutions from 3D simulations with solid black lines. The streamlines of the mean flow solutions from
2D simulations are not presented as they are very similar to the ones sketched. Concerning the case at α= 0◦, the main
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Figure 2.36 – Comparison between the two- and three-dimensional mean flow solutions at Re= 50000 as function
of the angle of attack: on the left, a close-up on the C f distribution over the upper surface on the second half of
the airfoil for the mean flow solutions issued from 2D simulations (solid black) and from 3D simulations (dashed
green). On the right, difference between the pressure fields of the mean flow solutions from 2D and 3D simulations.
The solid black lines represent the streamlines enclosing the recirculation zone for a mean flow issued from 3D
simulations.
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differences are located outside the recirculation zone. These differences increase with the angle of attack, but remain
outside the recirculation zone for α≤ 1◦. As a consequence, the values of the aerodynamic moment coefficient of the mean
flow solutions from 2D and 3D simulations present a relatively small difference, as discussed in table 2.2. The case at
α= 1.5◦ presents a difference both located at the rear of the recirculation zone and around the airfoil. As a consequence,
the differences on the aerodynamic moment coefficient are bigger. For the case at α= 2◦, the differences are again mainly
located outside the recirculation zone, with relatively higher values when compared with the lower incidences.

We conclude that the unsteady characteristics of the two- and three-dimensional simulations present significant
differences, not only on the vortex shedding frequency, discussed in this section, but also on the spatial distribution of the
flow solutions, presented in the previous sections. On the other hand, we conclude that the time- and spanwise-averaged
mean flow solution issued from 3D simulations is well approximated by the mean flow solution from 2D simulations, in
particular for the lower incidences.

2.3 Decomposition of the pressure component on the mean aerodynamic
moment

2.3.1 Mathematical formulation

The aim of this section is to quantitatively correlate specific volume contributions of the Navier–Stokes equations,
such as the convective and the Reynolds stress terms, to the behaviour of the aerodynamic moment coefficient. This is
accomplished by defining the moment acting on the airfoil not as a surface integral, but as a volume integral, that takes
into account the spatial distribution of the flow structures. This approach is based on a force decomposition method,
recently used in the works of Zhang et al. (2015a) and Menon et al. (2021a). One of the first works discussing this
idea, Quartapelle et al. (1983), showed that the forces and moments acting on a body immersed in a fluid flow could be
written as integrals of the velocity field and its derivatives by projecting the Navier–Stokes equations onto the gradient of
an auxiliary harmonic potential. This approach is discussed in the following paragraphs.

The mean aerodynamic moment coefficient generated by the airfoil is given by the sum of its pressure and friction
components as:

m= mp +m f , (2.6)

with the ez-components noted as mz = mp
z +m f

z . Hitherto, their value was computed using a surface integral, present in
equation 1.8 (page 23), and adimensionalised using the last expression of equations 1.10. In this section, we present an
equivalent formulation, based on volume integrals, in order to evaluate these quantities.

The evolution of mp
z and m f

z with the angle of attack is illustrated on the right of figure 2.35. As discussed previously,
the total evolution of the mean aerodynamic moment coefficient is mainly governed by its pressure component, mp

z . With
that in mind, we henceforward concentrate our attention on the decomposition of this pressure component. The pressure
component of the mean aerodynamic moment coefficient along the ez-axis can be computed with the integration of the
pressure stress along the airfoil surface as

mp
z =

∫

Γw

[(X − XEC)× (−pnw)] ·ez dΓw . (2.7)

In order to express the same quantity in terms of a volume integral, the first step consists in multiplying the Navier–Stokes
momentum equation associated to the mean flow (equation 1.39a, page 41) by the gradient of a potential function φ,
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followed by an integration of the result over the volume Ω:

−
∫

Ω

∇p∇φdΩ=
∫

Ω

[(U ·∇)U] ·∇φdΩ +
∫

Ω

− 1
Re
∆U ·∇φdΩ +

∫

Ω

∇·
[
U ′⊗U ′

]
·∇φdΩ , (2.8)

where, on the left-hand side, we isolate the pressure component, and, on the right-hand side, the convective, diffusive

and Reynolds stress components. The notation •, identifying
[
U , p

]T
as a mean flow solution, is dropped to simplify the

notation. The boundary conditions are also modified in order to simplify the discussion, such that the velocity at the

airfoil surface is considered zero, while the far field velocity is equal to U∞
[
cos

(
θ
)
, −sin

(
θ
)]T

. In that way, the rigid-body
velocity field drops from the convective term in equation 1.39a.

We further decompose the pressure term as

−
∫

Ω

∇p∇φdΩ=
∫

Ω

p∆φdΩ −
∫

Γw

p∇φ·nin
w dΓw −

∫

Γ∞

p∇φ·n∞dΓ∞ ,

=
∫

Ω

p∆φdΩ +
∫

Γw

p∇φ·nw dΓw −
∫

Γ∞

p∇φ·n∞dΓ∞ ,

(2.9a)

(2.9b)

where nin
w represents the unit normal vector pointing outward of the fluid, i.e., inward of the profile. At the same time,

nw =−nin
w is the outward of the profile unit normal vector, Γ∞ =Γin ∪Γout is the far field boundary and n∞ its outward

unit normal vector. The potential function, φ=φM , associated to the definition of the aerodynamic moment coefficient,
satisfies





∆φM =0 in Ω ,

∇φM ·nw = − [(X − XEC)×nw] ·ez in Γw ,

φM =0 in Γ∞ .

(2.10a)

(2.10b)

(2.10c)

Note that φM represents a potential angular displacement around the elastic centre. The same reasoning could have
been made for the lift and drag coefficients, by choosing the appropriate boundary condition of the potential function
along the airfoil, in equation 2.10b. With the definition of φM , equation 2.9b can be simplified as

−
∫

Ω

∇p∇φM dΩ=
∫

Γw

[(X − XEC)× (−pnw)] ·ez dΓw = mp
z . (2.11)

This equation gives a different way of computing the pressure component of the mean aerodynamic moment coefficient,
by the means of a volume integral.

Further, from equation 2.8, one can note that mp
z can be obtained as a sum of different moment-producing mechanisms:
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mp
z = mp,conv

z +mp,di f f
z +mp,ReStress

z with





mp,conv
z =

∫

Ω

[(U ·∇)U] ·∇φM dΩ ,

mp,di f f
z =

∫

Ω

− 1
Re
∆U ·∇φM dΩ ,

mp,ReStress
z =

∫

Ω

∇·
[
U ′⊗U ′

]
·∇φM dΩ .

(2.12a)

(2.12b)

(2.12c)

As noted by Jeong et al. (1995) and recently by Menon et al. (2021b), the convection term can be rewritten in terms
of the quantity Q, defined in equation 2.5 (page 89). Using integration by parts (see section A.3, for the complete
demonstration), one obtains:

∫

Ω

[(U ·∇)U] ·∇φM dΩ=
��
���

���
�:0∫

Γ

φM [(U ·∇)U] dΓ , −
∫

Ω

φM∇· [(U ·∇)U] dΩ

=
∫

Ω

2φMQ dΩ . (2.13a)

This contribution is interpreted as a vortex-induced term and can be further decomposed into a Q positive part and a Q
negative part as:

∫

Ω

2φMQ dΩ=
∫

Ω

2φMQp dΩ +
∫

Ω

2φMQn dΩ , with Qp = (Q ≥ 0)Q and Qn = (Q < 0)Q . (2.14)

The term with Qp is associated to the spatial regions that contributes to the moment via the rotation of the flow, whereas
the term with Qn is associated to the spatial regions that contributes to the moment via the shear strain of the flow.

In the following sections, we describe the results at Re= 50000, for α= 0.5◦ and α= 1◦ in a first part. We then proceed
to the analysis of the angles α= 1.5◦ and α= 2◦.

2.3.2 Results for α= 0.5◦ and α= 1◦

In equation 2.11, we demonstrated that the pressure component of the aerodynamic moment coefficient can be
computed via the traditional integration of the pressure efforts along the wall, or via a volume integral, where the
gradient of the potential function φM intervenes. The spatial distribution of the term −∇p∇φM , present inside the volume
integral, is plotted in figure 2.37, for the angles α= 0.5◦ and α= 1◦. The important values of this quantity are mainly
present at the leading edge and at the trailing edge. We recall that a volume integral of this field equates for the pressure
component of the aerodynamic moment, mp

z . We first note that the upper and lower side contributions on the leading edge
appear to qualitatively equilibrate each other, with a spatial structure resembling to a dipole. However, such conclusion
is hard to make for the trailing edge zone, where for both angles, the upper side is mainly dominated by a negative
contribution, whereas the lower side is dominated by positive contributions.

In order to better quantify the regions that contributes to this term, we perform the integral of this quantity along
the cross-stream direction, for different values along the streamwise direction. In other words, the volume integral
is decomposed into its two spatial variables, x and y, and the integral is only performed along the y-direction. Then,
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the resulting quantity is plotted as function of the x coordinate. The results are present in figure 2.38, for the range
−0.5≤ x ≤ 1.5. Outside this range, the contributions are trivial, as observed by the tendency of the curves. The integration
of these curves results in the scalar quantity mp

z , as expected.

We first note that the leading edge contribution has negligible values, as suspected before. However, a small negative
contribution is present along the entire chord length, starting readily after the leading edge. Then, a negative peak
followed by a positive peak appear on the trailing zone. The amplitude of these peaks increases with the angle of attack.
In view of these results, we attribute the initial negative moment to this slight difference between the pressure gradient
of the boundary layer contributions to the aerodynamic moment on the lower and upper airfoil surfaces.

We continue our reasoning by separating the above spatial quantity into three main contributions, coming from
the convection, the Reynolds stress and the diffusion terms of the Navier–Stokes momentum equation (as present in
equation 2.12). The convective and Reynolds stress terms are depicted in figure 2.39, for α= 0.5◦ and α= 1◦. The diffusive
term is not plotted due to its negligible values, when compared with the presented terms. Concerning the convective term,
we observe that, at the leading edge, the convective term presents the dipole resemblance found for the −∇p∇φM spatial
structure. However, at trailing edge, both the convective and Reynolds stress terms present significant values. The former
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Figure 2.37 – Spatial distribution of the quantity −∇p∇φM , associated to the time- and spanwise-averaged flow
solutions at Re= 50000 for α= 0.5◦ (top) and α= 1◦ (bottom): view around the airfoil (left) and close-up near the
trailing edge (right).
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Figure 2.38 – Evolution of the y integral along the x direction of the quantity −∇p∇φM , associated to the time- and
spanwise-averaged flow solutions at Re= 50000 for α= 0.5◦ (red) and α= 1◦ (blue). The grey zone represents the x
coordinate range occupied by the airfoil.
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Figure 2.39 – Spatial distribution of the convective and Reynolds stress terms, associated to the time- and
spanwise-averaged flow solutions at Re= 50000 for α= 0.5◦ and α= 1◦.

presents mainly positive values for y > 0 and negative values for y < 0, while the Reynolds stress contributes on the
other sense, with negative and positive values for y> 0 and y< 0, respectively. Observing figure 2.37, we conclude that
the trailing edge zone of −∇p∇φM follows the blue-red pattern dictated by the Reynolds stress term. It is worth noting
that the shape pattern of the Reynolds stress term is similar to the Reynolds stress tensor component U ′V ′, present in
figure 2.28.

We proceed to the volume integration of each of the three terms, contributing to the pressure component of the
aerodynamic moment coefficient. The results are depicted in figure 2.40. The same scale is used for all the plotted
quantities for a better comparison. On the left, we present the sum of the three contributions, noted mp

z , along with the
convective contribution, noted mp,conv

z . On the right, we plot the Reynolds stress and diffusive contributions, mp,ReStress
z

and mp,di f f
z , respectively. The diffusive term has a global negligible contribution, as its spatial form already indicated.

In contrast, the Reynolds stress terms also present a negligible contribution after the domain integration, albeit the
presence of non negligible terms in their spatial representation. From the left plot, we conclude that the dominant term
for the pressure component of the aerodynamic moment coefficient is the convective term, which dictates the increasingly
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Figure 2.40 – Evolution of the three volume integrated terms of the pressure component of the aerodynamic
moment coefficient around XEC = 0.186 with the angle of attack, associated to the time- and spanwise-averaged flow
solutions at Re= 50000: their sum mp

z (black crosses), the convective term mp,conv
z (blue triangles), the Reynolds

stress term mp,ReStress
z (black crosses) and diffusive term mp,di f f

z (blue diamonds).
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negative values for α= 0.5◦, α= 1◦. The remaining values for α> 1◦ are discussed in a subsequent part.

We proceed to further decompose the convective term into a contribution coming from the rotation of the flow, 2φMQp,
and a part coming from the shear strain, 2φMQn. As these two terms complement each other (cf. equation 2.14), we
represent both contributions on the same plot, in figure 2.41. The blue-red colouring represents the spatial structure
of 2φMQp, associated to rotational flow zones, whereas the orange-purple colouring represents the spatial structure of
2φMQn, associated to shear strain flow zones. We first note that the contributions at the leading edge are given by the
term 2φMQn. This is due to the fact that, in this zone, we observe the deviation of the streamlines associated to the
presence of the airfoil. The blue-red contribution appears right after, inside the boundary layer that separates around the
mid-chord, up to the trailing edge, with positive values on the upper side and negative values on the lower side. The
lower side contribution of 2φMQp (in blue) has nontrivial values along all the boundary layer up to the trailing edge. On
the other hand, the upper side contribution of 2φMQp (in red) presents a zone around x ≈ 0.7, where it ceases to exist.
The value matches the position of the boundary layer separation on the upper surface previously reported (X up
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Figure 2.41 – Spatial distribution of the quantities 2φMQp (blue-red colouring) and 2φMQn (orange-purple
colouring), associated to the time- and spanwise-averaged flow solutions at Re= 50000 for α= 0.5◦ (top) and α= 1◦

(bottom): view around the airfoil (left) and close-up near the trailing edge (right).
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Figure 2.42 – Evolution of the y integral along the x direction of the quantities 2φMQp and 2φMQn, associated to
the time- and spanwise-averaged flow solutions at Re= 50000 for α= 0.5◦ (red) and α= 1◦ (blue). The grey zone
represents the x coordinate range occupied by the airfoil.
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for α= 0.5◦ and X up
d = 0.560 for α= 1◦, see table 2.2). A significant negative contribution of 2φMQn (in orange) appears

at x ≈ 1.05. The close-up on the right side of figure 2.41 enables to associate this zone to the deviation of the streamlines
coming from the separated boundary layer on the upper surface.

In order to quantify the contributions along the streamwise direction, the quantities 2φMQp and 2φMQn are integrated
on the y-direction and plotted as function of the x coordinate, as done previously. The results are present in figure 2.42. To
what concerns 2φMQp, on the left, this term presents a negative contribution from the leading edge up to the emergence
of the recirculation zone at the end of the airfoil. Here, a positive peak emerges, associated to the rotation of the flow on
the separated boundary layer. The magnitude of the peak increases as the angle of attack increases, a consequence of the
higher rotational character of the flow on this region. To what concerns 2φMQn, a negligible contribution is reported
up to the end of the airfoil. From there, a negative peak appears, related to the orange colour observed in figure 2.41.
Similarly to the other peaks, its magnitude increases with the increase of the angle of attack.

The total contribution of these two terms is accessed from the integration over the entire volume, present in figure 2.43,
as function of the incidence. The rotation and the shear stress terms appear to have the same importance for the angles
α= 0.5◦, α= 1◦. Both terms are negative, contributing for the initial negative aerodynamic moment found for these small
incidences. We proceed to investigate the angles α= 1.5◦ and α= 2◦.

2.3.3 Results for α= 1.5◦ and α= 2◦

We concentrate our attention on the higher angles α= 1.5◦ and α= 2◦, where the pressure component of the moment
ceases to decrease and becomes positive. In a first part, we present the spatial distribution of the term −∇p∇φM on
figure 2.44. The contributions are mainly located at the leading and trailing edges of the airfoil, as for the lower angles
investigated previously. The leading edge zone continues to present a positive zone and a negative zone on the upper and
lower airfoil sides, respectively, that qualitatively appear to balance each other. On the trailing edge, a more complex
scenario is found, with a significant positive contribution that dominates the recirculation zone and is intensified as the
angle increases.

The values of the cross-stream integration of −∇p∇φM as function of the x coordinate are present in figure 2.45.
Contrary to the lower incidences, a non negligible contribution is found at the leading edge. In this zone, two peaks, one
positive followed by a negative one, are present. The magnitude of the peaks increases with the angle of attack. For
α= 1.5◦, a negative plateau follows these initial oscillations up to the trailing edge. At the trailing edge, a positive peak
is present. For the case α= 2◦, the peaks at the leading edge are followed by an increase of the cross-stream integral up
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Figure 2.43 – Evolution of volume integrated contributions from 2φMQp (black diamonds) and 2φMQn (blue
triangles) with the angle of attack at Re= 50000.
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to a maximum value at the trailing edge.

As done previously, we sketch the convective and Reynolds stress terms, associated to the decomposition of −∇p∇φM

in figure 2.46. The leading edge continues to be dominated by the convective term, while at the trailing edge, both terms
are significant. Further, at the trailing edge, the convective term presents a positive contribution on the separated
boundary layer of the upper surface and a smaller negative contribution on the lower side. On the other hand, the
Reynolds stress term presents again a similar pattern shape as the Reynolds stress tensor component U ′V ′, in figure 2.28.
Additionally, the Reynolds stress terms present negative values inside the laminar separation bubble, which can be also
found on the spatial distribution of −∇p∇φM .

The evolution of the volume integration of the different contributions to mp
z with the angle of attack is present in

figure 2.40, as discussed previously. The case at α= 1.5◦ presents nearly zero values for all contributions, making difficult
to understand which contribution is relevant. However, the case at α= 2◦ establishes again the convective component as
the one that dominates the behaviour of the pressure component of the aerodynamic moment. Since that mp

z is dominated
by the convective term, we once again divide this term into its rotation contribution and its shear stress contribution.
The spatial structures of 2φMQp and 2φMQn are present in figure 2.47 for the angles α= 1.5◦ and α= 2◦. The leading
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Figure 2.44 – Spatial distribution of the quantity −∇p∇φM , associated to the time- and spanwise-averaged flow
solutions at Re= 50000 for α= 1.5◦ (top) and α= 2◦ (bottom): view around the airfoil (left) and close-up near the
trailing edge (right).
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Figure 2.45 – Evolution of the y integral along the x direction of the quantity −∇p∇φM , associated to the time- and
spanwise-averaged flow solutions at Re= 50000 for α= 1.5◦ (green) and α= 2◦ (black). The grey zone represents
the x coordinate range occupied by the airfoil.
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Figure 2.46 – Spatial distribution of the convective and Reynolds stress terms, associated to the time- and
spanwise-averaged flow solutions at Re= 50000 for α= 1.5◦ and α= 2◦.

edge is again firstly dominated by a dipole structure coming from the term 2φMQn (orange-purple colouring), followed
by the contributions of 2φMQp at the emergence of the boundary layer. This time, the positive contribution of 2φMQp

(in red) dominates the entire boundary layer on the upper side, including the separated zone, while the lower side is
dominated by a negative contribution (in blue). On the trailing edge zone, different contributions are found, with a
positive contribution, coming from the rotational term (in red) at the centre of the laminar separation bubble. The
remaining laminar separation bubble presents either no contribution, in the “dead air” region, or a negative contribution
coming from the shear stress term (in orange).

The values of the cross-stream integration of the above terms as function of the x coordinate are present in figure 2.48.
Unlike the lower angles, a first positive peak is found on the 2φMQp at the leading edge, followed by a negative region
between the leading and trailing edge zones. In this latter zone, both angles exhibit a positive peak. Further, for the angle
α= 2◦ (black curve), this positive peak is followed by a negative one, with a lower intensity. Concerning the evolution of
2φMQn, it presents the same behaviour as the lower angles, with a nearly trivial contribution along the entire airfoil and
a negative peak at the trailing edge. This latter contribution is a consequence of the deviation of the streamlines at the
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Figure 2.47 – Spatial distribution of the quantities 2φMQp (blue-red colouring) and 2φMQn (orange-purple
colouring), associated to the time- and spanwise-averaged flow solutions at Re= 50000 for α= 1.5◦ (top) and α= 2◦

(bottom): view around the airfoil (left) and close-up near the trailing edge (right).
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Figure 2.48 – Evolution of the y integral along the x direction of the quantities 2φMQp and 2φMQn, associated to
the time- and spanwise-averaged flow solutions at Re= 50000 for α= 1.5◦ (green) and α= 2◦ (black). The grey zone
represents the x coordinate range occupied by the airfoil.

trailing edge, as illustrated on the right side of figure 2.47 in the orange coloured zone.
The values of the volume integrations of 2φMQp and 2φMQn are present in figure 2.43. In the case α= 1.5◦, both

contributions are significant. Their sum, corresponding to the value of mp
z , has a slightly negative value. Concerning the

case at α= 2◦, one can observe that the rotational term dominates over the shear stress term. We can conclude that the
change in the mp

z behaviour towards the positive values is a consequence of the convective term contribution, in particular
the part that accounts for the rotation of the flow field, as a consequence of the emergence of a laminar separation bubble.
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Chapter 3

Methods for mean flow FSI linear stability
analyses

One of the objectives of this thesis is the investigation of the linear perturbations that may arise on a FSI configuration,
which may explain the onset of nonlinear pitch oscillations of a NACA0012 airfoil. In this regard, this chapter is
consecrated to the presentation and implementation of different methods associated to the linear stability analysis of a
FSI system around a time-averaged fluid–solid state. The chapter is organised as follows. In a first part, we present a
brief introduction of the different approaches found in the literature to solve an eigenvalue problem. In a second part,
we revisit the classical formulation of the mean flow eigenvalue problem for fluid–structure problems, presenting the
different methods used to solve the considered problem: a first type of methods, based on the exact formulation of the
eigenvalue problem and a second type of methods where several relevant simplifications are considered in order to render
the original problem simpler to solve. In particular, we introduce a method for approximating the FSI eigenvalues with
a rational function based on the eigenvalues of the hydrodynamic eigenproblem. In a third part, we implement and
compare the different methods for estimating the eigenvalues and corresponding eigenmodes around a mean flow solution
at Re= 50000 and α= 0◦.

3.1 Introduction

Linear stability theory has been of central importance in fluid mechanics ever since the observation that the property
of a flow state being a solution of the governing equations is no guarantee that it will actually be realised in practice. The
linear stability theory started on a hydrodynamic framework at the late 19th century with the controlled experiments of
Reynolds (Reynolds, 1883) and the works of Rayleigh (1879) and Kelvin (1887). The first investigations were based on local
stability theory, adapted to problems where the flow has a single inhomogeneous spatial direction (generally perpendicular
to the advection direction). This approach was well suited for describing the perturbations present in parallel flows.
However, the advances in computer power and numerical tools allowed for an increase in the flow complexity, extending
the linear stability analysis to two- and three-dimensional flow perturbations (Theofilis, 2003; Chomaz, 2005; Sipp et al.,
2010).

In a linear stability problem, the linearised initial value problem describing how infinitesimal disturbances temporally
evolve on top of a steady reference state is converted into an eigenvalue problem for the (possibly complex) eigenval-
ues of normal modes with an exponential temporal behaviour. Two main approaches are found in the literature to
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numerically solve the above resulting eigenvalue problem. The first one is denominated “time-stepping” or “matrix-free”
approach (Loiseau et al., 2018). In this approach, the Jacobian matrix, associated to the linearisation of the governing
equations, is not fully assembled. Instead, one only needs to evaluate the matrix-vector product in order to generate a
Krylov basis from which the spectral properties of the Jacobian are approximated. This matrix-vector product operation
is usually embedded on pre-existing unsteady nonlinear solvers, as part of the time-stepping procedure. This represents
an advantage, since this procedure is usually efficiently designed for the unsteady simulations. However, one of the
disadvantages is the slow convergence towards the approximative eigenpairs, associated the small values for the time-step
required to converge (Tuckerman et al., 2000).

The second approach present in the literature to numerically solve an eigenvalue problem is denoted “matrix-forming”
or “matrix-based” (Sipp et al., 2010; Iorio et al., 2014). In this case, the Jacobian matrix is usually assembled as a
sparse matrix and inverted using existing parallel libraries that implement a direct sparse LU factorisation (such as
UMFPACK (Davis, 2002), SuperLU (Li, 2005) or MUMPS (Amestoy et al., 2001)). This method has the disadvantage of
running into computational difficulties as the size of the Jacobian matrix increases, associated to the time-consuming step
for its assembling or the memory requirements for its LU factorisation, especially for large-scale problems. On the other
hand, this approach has the advantage of converging towards the leading eigenvalues within a few iterations (depending
on the methods used to solve the eigenvalue problem, see next section).

In this thesis, we apply this “matrix-based” approach to the case of a fluid–structure eigenvalue problem. However,
as we will see, the fluid–structure Jacobian is not fully assembled. Instead, we present a modular approach, where the
inversion of the fluid–structure Jacobian is solely based on the assembling and inversion of the fluid Jacobian. With that
in mind, we start by describing the numerical tools used to compute the eigenpairs of the present problem.

3.2 Methods for mean flow analyses in fluid–structure problems

In this section, we present the different methods used to solve the mean flow FSI linear eigenproblem. We recall that
two different formulations were presented in chapter 1 for the mean flow eigenproblem: a classical formulation and a
Reynolds stress formulation. Since we are only interested in describing the different methods used to solve any of the
formulations, we base the discussion of the present chapter in the classical formulation. In that way, we recall, from
equation 1.35 (page 37), that mean flow FSI eigenvalue problem can be put in a matrix form σMq = Lq. The notation •̂ is
dropped for this chapter to render the equations cleaner:

σ




M f 0 0

0 1 0

0 0 Is







q f

θ

Ω



=




L f

(
Ub

)
vθ vΩ

0 0 1

mT −Ks −Ds







q f

θ

Ω




, (3.1)

where σ is a complex eigenvalue associated to the eigenmode q =
[
q f , θ,Ω

]T
with q f =

[
U , V , p

]T
the velocity and

pressure fields and θ and Ω the pitching angle and velocity, respectively. Ub represents the velocity field of the mean flow
solution. When analysing the fluid–structure stability of the mean flow, one looks for the eigenvalue with largest real
part. Indeed, if one of eigenvalues of the above problem has a positive real part (Re(σ)≡λ> 0), the mean flow is unstable,
while it remains stable if all eigenvalues have a negative real part.

In the following, we describe several methods to compute these eigenvalues. In section 3.2.1, we briefly introduce
a Krylov–Schur method relying on a shift-and-invert transformation that allows to compute any eigenvalue σ in the
spectrum, independently of its frequency Im(σ)≡ω. Both the high frequency eigenvalues associated to the flow dynamics
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and the low frequency eigenvalues associated to the solid dynamics can thus be retrieved. The implementation of a
modular technique avoiding the assembly of the fluid–structure Jacobian and relying on the assembly/factorisation of the
hydrodynamic Jacobian is further described. Next, we introduce three methods that specifically target the computation
of the solid eigenvalues by reformulating the linear eigenvalue problem 3.1 as a nonlinear eigenvalue problem, after
elimination of the flow variables. The first method is simply based on the resolution of this nonlinear eigenvalue problem
using a Newton–Raphson method (section 3.2.3). The second method relies on a quasi-steady approximation, already
presented in section 1.6, based on the separation of the fluid and solid time scales of the linearised problem (section 3.2.4).
The third method relies on the approximation of the resolvent operator (more precisely, the fluid transfer function, as
detailed next) as a sum of rational functions (section 3.2.5).

3.2.1 Method for computing the full eigenvalue spectrum

Krylov–Schur subspace iterative method and shift-and-invert transformation

Several methods can be found in the literature to access the eigenvalues of a matrix system. For small- to medium-
sized dense matrices, their complete spectrum can be calculated via classical algorithms present in common libraries, such
as LAPACK (Anderson et al., 1999). However, for very large and (typically) sparse matrices, found typically in eigenvalue
problems, the choice of the method used to access to their spectrum depends on mathematical properties of the system and
on the trade-off between efficiency and accuracy. Further, one is often interested in a restrict number of eigenvalues, and
not on the complete spectrum. Amongst the first methods employed to solve sparse matrix eigenvalue problems, one can
find the Power Iteration or the Rayleigh Quotient Iteration, capable of converging to a single eigenpair. The generalisation
of these methods enabled to simultaneously reach several eigenpairs, with for example the Subspace/Simultaneous
Iteration method (Bauer, 1957; Duff et al., 1993). However, a much better performance can be achieved by subspace-based
methods, where the solution is approximated on a low-dimensional subspace of the original problem. In this category,
one can find the Lanczos methods (Lanczos, 1950; Saad, 2011), for generalised Hermitian eigenvalue problems, or the
Arnoldi methods (Arnoldi, 1951; Lehoucq et al., 1996; Sorensen, 1992) and Krylov–Schur subspace methods (Stewart,
2001, 2002), for generalised non-Hermitian eigenvalue problems. In the present thesis, the eigenvalues of the system 3.1
are computed via a Krylov–Schur subspace algorithm, available through the SLEPc library tool (Hernandez et al., 2005).

The aforementioned methods provide approximations of the desired eigenvalues within a reasonable number of itera-
tions, when they represent well-separated extremal eigenvalues. Nevertheless, in many cases the desired eigenvalues
are not well separated or do not represent the extremal eigenvalues of the system, which can cause an excessive slow
convergence of the iterative methods, or even their divergence. To circumvent the problem, a spectral transformation of the
system can be employed (also referred to as preconditioning (Saad, 2011, chap. 8)), so that these poorly separated eigenval-
ues are transformed into well-separated extremal eigenvalues of the new transformed system. Among the most popular
spectral transformations, one finds the Cayley (Cliffe et al., 1993) and the shift-and-invert transformations (Christodoulou
et al., 1988), the latter used in the present thesis.

The shift-and-invert transformation analytically modifies the original eigenvalue spectrum to facilitate the extraction
of the certain eigenvalues that are close to a given shift s, in absolute value. The transformation reads

(L− sM)−1Mq = (σ− s)−1q =σshq , (3.2)

where σsh is the shifted eigenvalue of the transformed problem. With this transformation, the eigenvalues closest to
the target shift s become dominant and with a better separation from the remaining eigenvalues than in the original
spectrum. In other words, the shifted eigenvalues with largest magnitude will correspond to the original eigenvalues σ
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that are closest to the targeted shift value, set as an input. Note that the eigenvectors are not altered.
The resolution of the shift-and-invert system using an iterative algorithm, based on the Krylov–Schur subspace of the

matrix (L− sM)−1M, requires the following operations:

• The matrix-vector product with the matrix M, which can be performed in a matrix-free style, where the matrix M f

is assembled;

• The solution qo of the linear system (L− sM) qo = qi for any right-hand side vector qi.

With this method, one can compute any eigenvalue of the system 3.1, by varying the shift value, and the number of
demanded eigenvalues.

Modular inversion of the fluid–structure Jacobian

The bottleneck of this implementation passes through the resolution of the second step. The straightforward way
to solve it is by assembling and inverting the complete fluid–solid Jacobian shifted matrix, which we will refer it as
the full-assembly method. However, a more efficient technique passes through solely assemble and invert the fluid
Jacobian shifted matrix, which we will refer it as the modular method. The latter method is described in section 1.7.9 to
time-marching the unsteady FSI Navier–Stokes equations, and it is here recalled for the inversion of the shifted Jacobian.

We start by expanding the equation (L− sM) qo = qi as




L f − sM f vθ vΩ

0 −s 1

mT −Ks −(Ds + sIs)







qo
f

θo

Ωo



=




qi
f

θi

Ωi




. (3.3)

The fluid component, qo
f , can be decomposed as

qo
f = qo

f , f −θo qo
f ,θ−Ωo qo

f ,Ω . (3.4)

By injecting this decomposition into the fluid equation, i.e., the first line of equation 3.3, one obtains that the “intrinsic”
fluid component qo

f , f satisfies (
L f − sM f

)
qo

f , f = qi
f , (3.5)

while the “coupled” fluid components, qo
f ,θ and qo

f ,Ω, satisfy

(
L f − sM f

)
qo

f ,θ = vθ ,
(
L f − sM f

)
qo

f ,Ω = vΩ .

(3.6a)

(3.6b)

Note that the problem 3.5 depends on the input vector qi, unlike the linear problems 3.6 that can thus be solved once for
all, prior to the iterative eigenvalue algorithm. By injecting now the decomposition 3.4 into the solid equations, i.e., the
second and third lines of problem 3.3, one obtains




−s 1

−(Ks + K̃a) −(Ds + D̃a + sIs)






θo

Ωo


=




θi

Ωi −
(
mT qo

f , f

)


 , (3.7)
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where the complex coefficients K̃a and D̃a are terms similar to the added stiffness and to the added damping coefficients,
defined as

K̃a = mT qo
f ,θ ,

D̃a = mT qo
f ,Ω .

(3.8a)

(3.8b)

In summary, the solution of the coupled fluid–solid system 3.3 is divided into two stages: a first stage independent of
the input vector of the system 3.3, that can be solved before entering the Krylov–Schur subspace iterative process; and a
second stage, to be solved iteratively. The first stage is composed by the following steps:

• Computation of the “coupled” fluid components qo
f ,θ and qo

f ,Ω from equations 3.6;

• Computation of the added coefficients K̃a and D̃a from equations 3.8.

On the other hand, the second stage is composed by the three following steps:

• Resolution of the fluid problem 3.5 to obtain the “intrinsic” fluid component qo
f , f ;

• Resolution of the solid problem 3.7 to obtain the solid components
[
θo,Ωo

]T
;

• Assemblage of the total fluid component qo
f using equation 3.4.

The sparse matrices L f and M f are assembled using the software FreeFem++ (Hecht, 2012). The LU factorisation of the
shifted matrix is performed in parallel via the tool MUMPS (Amestoy et al., 2001), available through the SLEPc library
tool (Hernandez et al., 2005).

3.2.2 Definition of the fluid and solid transfer functions

In this section, we define two transfer functions that take into account the contributions of the fluid and solid
components for the linear eigenvalue problem. For that, we start by noting that the fluid component of the mean flow
eigenvector can be written as function of the solid components (first line of the equation 3.1) as

q f =R f (σ)
(
vθθ+vΩΩ

)
, (3.9)

where we have introduced the fluid resolvent operator, defined as

R f (σ)= (
σM f −L f

)−1 . (3.10)

The fluid resolvent operator, already introduced in section 1.6, is an operator that, for an input perturbation associated to
an eigenvalue σ, outputs the linearised response of the fluid. We note that the input has two contributions, one from an
angular displacement perturbation, proportional to θ and a second contribution from an angular velocity perturbation,
proportional to Ω. The two contributions to the linear perturbation are noted

qθf =R f (σ)vθ ,

qΩf =R f (σ)vΩ ,

so that the fluid eigenmode component can be written as

q f = qθf θ+qΩf Ω . (3.11)
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As seen in section 1.6, the system 3.1 can be written as a nonlinear eigenvalue problem of reduced size as


σ




1 0

0 Is


+




0 −1

Ks Ds









θ

Ω


=




0 0

mT qθf (σ) mT qΩf (σ)






θ

Ω


 . (3.12)

The above system represents a nonlinear eigenvalue problem, since the quantities qθf (σ) and qΩf (σ) depend on the
resolvent operator, which depends on the eigenvalue σ. On the right-hand side, mT qθf = mθ

z is the (complex) moment
generated by the linear flow response qθf to a unitary angular displacement perturbation, while mT qΩf = mΩ

z is the
moment generated by the linear flow response qΩf to a unitary angular velocity perturbation. The sum of these two
contributions gives the total aerodynamic moment associated to the eigenmode q f , which writes

mz
(
q f

)= mθ
zθ+mΩ

z Ω with





mθ
z = mT qθf

mΩ
z = mT qΩf

. (3.13)

The right-hand side of problem 3.12 can also be formulated by defining a fluid transfer function Y f (s), defined here as
the ratio between the (complex) aerodynamic moment mz and the (complex) angular displacement θ. The parameter
s represents a complex value, that corresponds to the fluid–structure eigenvalue when s =σ. The introduction of this
transfer function is inspired on the concept impedance, used in previous publications (Fabre et al., 2019b, 2020; Sabino
et al., 2020), where it is not the angular displacement, but the angular velocity that is used. Here, the use of the angular
displacement is preferable as it more easily enables to separate the contributions to the aerodynamic moment from the
linear response of the angular displacement from the angular velocity. Using the definition of the aerodynamic moment
in equation 3.13, Y f (s) can be expanded as

Y f (s)=
mT q f

θ
= mz

θ
= mθ

zθ+mΩ
z Ω

θ
=

mTR f (s)
(
vθθ+vΩΩ

)

θ
= mTR f (s) (vθ+vΩs) . (3.14)

With this definition, the eigenproblem 3.12 can be written as

(
s2Is + sDs +Ks

)
θ =Y f (s) .

Likewise, one can define a structure transfer function, Y s(s), as the ratio between the moment generated by the structure
and the angular displacement:

Y s(s)=−s2Is − sDs −Ks . (3.15)

Therefore, the linear fluid–structure equation is rewritten as

−Y s(s)=Y f (s) . (3.16)

We further note that, Y f (s) and Y s(s) can be divided into a real and imaginary parts, Y f =Y f
r +Y f

r i and Y s =Y s
r +Y s

r i,
with the latter given by

Y s
r (s)=−(s2

r − s2
i )Is − srDs −Ks ,

Y s
i (s)=−2srsi Is − siDs .
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3.2.3 Newton method for a reduced-size nonlinear eigenproblem

In this paragraph, we present an alternative method to compute the eigenvalues of the fluid–structure eigenproblem.
The method is based on the reduced-size problem, which is solved via a nonlinear iterative procedure. The method is
particularly effective for the computation of the solid eigenvalues, as noted at the end of the section 1.7.9 (page 60), since
the system that has to be inverted is ill-conditioned (the fluid Jacobian matrix) for the eigenvalues that are not affected
by the presence of the structure (e.g., the high frequency eigenvalues).

From the definitions of the fluid and solid transfer functions, Y f (s) and Y s(s), we note that the values of the complex
parameter s for which the sum of transfer functions vanishes correspond to fluid–structure eigenvalues σ, such that the
problem 3.12 can be written as

RFSI (σ)=Y f (σ)+Y s(σ)= 0. (3.17)

This equation can solved via a Newton–Raphson iterative procedure, similar to the one discussed in section 1.7.8,
with which we converge individually to the desired eigenvalues, depending on the initial guess. At each k iteration
of the Newton procedure, the value of σ can be computed by posing σk+1 = σk +γNewtonδσ, where 0 < γNewton ≤ 1 is a
relaxation parameter and δσ is the eigenvalue variation during each Newton iteration. The latter can be found after the
linearisation of equation 3.17, such that:

δσ=
[
2Isσ

k +Ds −
dY f

dσ

∣∣∣∣
σk

]−1 (
RFSI (σk)

)
, (3.18)

with
dY f

dσ

∣∣∣∣
σk

= mT
[ dR f

dσ

∣∣∣∣
σk

(
vθ+σkvΩ

)
+R f (σk)vΩ

]
. (3.19)

The derivative of the resolvent operator with respect to σ, present in this last expression, is found by inserting the
decomposition σ=σ0 +δσ into its definition:

R f (σ)= (
σM f −L f

)−1

= (
σ0M f +δσM f −L f

)−1

=
[(
σ0M f −L f

)(
1+δσ(

σ0M f −L f
)−1

M f

)]−1

= (
1+δσR f (σ0)M f

)−1
R f (σ0)

=
(
1−R f (σ0)M f δσ+ (

R f (σ0)M f
)2(δσ)2 + . . .

)
R f (σ0)

=R f (σ0) −R f (σ0)M f R f (σ0)︸ ︷︷ ︸
dR f /dσ

∣∣
σ0

δσ+ (
R f (σ0)M f

)2
R f (σ0)(δσ)2 + . . . . (3.20)

The parameter γNewton is set to 0.3 in the first five iterations to circumvent the fact that the initial solution is not
sufficiently close to the final solution.

Concerning the computation of the eigenmodes, we note that, if the eigenvalue σ is known, the solid components of
the eigenmode can be retrieved from the eigenvectors of the reduced-size system 3.12. In this process, the eigenmode can
be normalised with respect to the angular displacement, forcing

∣∣∣θ
∣∣∣=

√
θHθ = 1. The fluid component is then retrieved

from equality 3.9.
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Explicit method for the structural divergence instability

From equation 3.17, a simplified method can be formulated to compute the possible static eigenvalues as function of
the structural stiffness, without passing through the Newton iterations. Hitherto, the structural equation was viewed
as an implicit definition of the eigenvalue as function of the structural parameters and of the transfer function Y f (σ).
However, one can rewrite the structure equation 3.17, such that it becomes an explicit function of σ, when solved for the
only term independent of σ, the structural stiffness, Ks. More precisely, if one assumes the existence of a real eigenvalue
σ=λ, one arrives to:

Ks =Y f (λ)−λ2Is −λDs . (3.21)

With this method, the real eigenvalue λ is viewed as parameter. By fixing its value, one can compute Y f (λ) (exactly or
approximatively) and thus obtain a value for Ks via equation 3.21. By repeating this procedure for several values of λ,
one can map Ks as a function of the growth rate of this static eigenvalue. The divergence instability for a given Ks can
finally be determined. This method is clearly adapted when performing a parametric investigation (i.e., varying Ks).

3.2.4 Quasi-steady approximation method

Hitherto, the eigenvalues of the present fluid–structure problem were computed without any assumption on the
fluid. The quasi-steady approximation relies on the assumption that, in the linearised problem, the fluid time scale
is slow compared to the solid time scale. The fluid–solid eigenvalue problem can then be reduced to a solid vibration
problem where the fluid effect is taken into account with added inertia, added damping and added stiffness coefficients,
as explained in section 1.6. In summary, the problem 3.1 is approximated as

(Is + Ia)σ2
QS + (Ds +Da)σQS + (Ks +Ka)= 0,

where Ka, Da and Ia are the added stiffness, the added damping and the added inertia coefficients, defined as

Ka = mTL−1
f vθ ,

Da = Dθ
a +DΩ

a = mTL−1
f M f L

−1
f vθ+mTL−1

f vΩ ,

Ia = Iθa + IΩa = mT
(
L−1

f M f

)2
L−1

f vθ+mTL−1
f M f L

−1
f vΩ .

(3.22a)

(3.22b)

(3.22c)

We denote a quasi-steady approximation of order 2 when all the added coefficients are taken into account, an approximation
of order 1 when only the terms Da and Ka are taken into account and an approximation of order 0 when only Ka is taken
into account. The solution of the above second order scalar equation reads

σQS =− Ds +Da

2(Is + Ia)
±

√(
Ds +Da

2(Is + Ia)

)2
− Ks +Ka

Is + Ia
. (3.23)

This method presents a first approximation of the eigenvalues of the structure. The results based on this approximation
are reported in section 3.3.5.
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3.2.5 Rational function approximation of the fluid transfer function

The computation of the fluid–structure eigenvalues involves the computation of the fluid transfer function, which
in turn involves the calculation of the resolvent operator. For that, an inversion of the linearised fluid operator is
needed, which represents the most consuming step of the fluid transfer function computation. An alternative to the
exact calculation of this inversion is presented in this section. The objective is to approximate the fluid–structure
eigenvalues based on the approximation of the fluid transfer function. In this thesis, several attempts were made in
order to approximate the fluid transfer function. In a first part, a Taylor expansion of the fluid transfer function was
implemented. The results were not satisfactory, since the exact behaviour of the fluid transfer function resembles to a
rational function. The theoretical development and results are summarised in appendix D. In a second part, we try to
approximate the fluid transfer function by a rational function, based on the eigenvalues of the fluid eigenproblem, as
explained in the following.

The use of rational functions to approximate unsteady aerodynamic loads dates back to the 1940s, with the work
of Jones (1940) on the approximation of the Theodorsen function Theodorsen (1935). In its works, Jones built a rational
approximation by placing two poles along the real axis of the s-plane, idealising the time delays inherent to the unsteady
aerodynamic loadings. Following this work, similar approaches are found on the literature (Roger et al., 1975; Roger, 1977;
Vepa, 1977; Edwards, 1979), some of them based on a least squares technique to minimise the difference between the
rational expansion and a set of known data of the aerodynamic loads. The rational approximation is designed to fit these
data along the imaginary axis of the s-plane and is then extrapolated to the entire s-plane. Much of the relevant literature
is summarised by Karpel (1981, 1982), whose own contribution was to develop a transfer function representation of
minimum order for a given level of accuracy for simple harmonic aerodynamic loads. In this thesis, the rational function
approximation is based on the fluid eigenvalue problem, as detailed next.

We want to approximate Y f (s)= mT q f (s)/θ, where q f is the linearised fluid component response to a solid displace-
ment, given by equation 3.9 and rewritten as

q f =R f (s) (vθ+ svΩ)θ . (3.24)

Moreover, the purely-hydrodynamic problem, admits an eigenpair (q0, σ0), solution of the homogeneous problem:

(
σ0M f −L f

)
q0 = 0 . (3.25)

The eigenvalue σ0 corresponds to a pole of the transfer function Y f . This means that the left-hand side operator is
singular, which is a requirement for the existence of a nontrivial solution q0. In the vicinity of the fluid eigenvalue σ0,
the complex parameter s can be expanded as

s =σ0 +εσ1 +ε2σ2 + . . . , (3.26)

where ε¿ 1 is a small (real) parameter indicating that the development is valid close to the eigenvalue σ0. On the other
hand, the ratio between the flow component q f and the angle θ is expanded as

q f

θ
= 1
ε

q0 +q1 +εq2 +ε2q3 + . . . , (3.27)

where the leading term scales as O (1/ε). This scaling reflects that the eigenvalue σ0 is a pole of the fluid transfer function
Y f (s) that diverge when s tends towards σ0. By injecting the previous expansions into equation 3.24, one obtains, at the
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leading orders:

O

(
1
ε

)
:

(
σ0M f −L f

)
q0 = 0 ,

O (1) :
(
σ0M f −L f

)
q1 = (vθ+σ0vΩ)−σ1M f q0 ,

(3.28a)

(3.28b)

and, for the Y f approximation:

Y f (s)= 1
ε

Y0 +Y1 . . . , (3.29)

where Y0 and Y1 are given by Y0 = mT q0 and Y1 = mT q1. Equation 3.28a represents a homogeneous system, associated to
the fluid eigenvalue problem. The arbitrary magnitude and phase of the q0 modes are fixed by imposing the normalisation
condition qH

0 M f q0 = 1, with the superscript •H representing the Hermitian transpose. On the other hand, equation 3.28b
represents a nonhomogeneous system forced by two terms: the first one involves the unitary angular displacement and
velocity fields, while the second one is proportional to the fluid eigenmode q0. Since the operator on the left-hand side is
singular, the right-hand side terms must belong the kernel this operator, in order to respect the solvability condition.
Following the works of Crouch et al. (1993) (see also Pham et al. (2018); McCloughan et al. (2020)), this condition can be
replaced by an orthogonality condition, which can be put as qH

0 M f q1 = 0. Then the latter problem is solved, using an
augmented matrix system by adding the orthogonality condition1 as an extra equation of the system, and declaring σ1 as
an extra unknown, which can be put in the form:




(
σ0M f −L f

)
M f q0

qH
0 M f 0





 q1

σ1


=


 vθ+σ0vΩ

0


 . (3.30)

Pham et al. (2018) proved that the system 3.30 is nonsingular, leading to a unique solution, while Crouch et al. (1993)
demonstrated that the system respects the solvability condition, also called Fredholm alternative (Olver, 2014, p. 350).
This augmented method has the advantage of not requiring the adjoint eigenmodes of the fluid system.

By solving the above augmented problem, we obtain the vector q1 as well as the complex scalar σ1. To obtain the
development of the transfer function, we further note that, by neglecting the second order terms in the expansion 3.26, we
obtain that the small parameter satisfies ε= (s−σ0)/σ1. Once injected in the expansion 3.29 of the fluid transfer function
Y f , we obtain the approximation based on one sided-pole as

Y f (s; σ0) = σ1

s−σ0
Y0 + Y1 . (3.31)

The above approximation is valid around the eigenvalue σ0, but we should also consider the existence of the complex
conjugate σ∗

0 . The development of the transfer function taking into account both poles writes

Y f (s; σ0,σ∗
0 ) = Y f (s; σ0) + Y f (s; σ∗

0 ) . (3.32)

In fact, the transfer function satisfies Y (s; σ∗
0 ) = Y ∗(s; σ0), i.e., the terms Y0 and Y1 associated to the pole σ∗

0 are the
complex conjugate of the terms associated to σ0.

Following the notation that will be introduced in section 3.3.1, we proceed to the approximation of the Y f function

1A different orthogonality condition was tested, q+,H
0 M f q1 = 0, with q+,H

0 the fluid adjoint eigenmode of the adjoint LSA problem, obtaining the
same results.
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based on two fluid eigenvalues, denoted σ f 1 and σ f 2, arriving to

Y f (s; σ f 1,σ∗
f 1,σ f 2,σ∗

f 2) = Y f (s; σ f 1) + Y f (s; σ∗
f 1) + Y f (s; σ f 2) + Y f (s; σ∗

f 2) . (3.33)

We note that the terms of order O (1/ε) have a singularity behaviour around their corresponding pole, whereas the terms
Y1, associated to the order O (1), are complex constants, independent of the distance to the poles. Further, we note that
the sum Y1(σ0)+Y1(σ∗

0 ) for each contribution of a complex pair of a poles represents a real quantity.

We concluded in the results section that, the order O (1) terms, which represent a constant, tended to deviate the
approximation from the exact solution. Therefore, we substituted the Y1 terms by a constant C, designed to calibrate the
model at one point of the complex plane, such that the approximation of Y f (s) reads:

Y f (s; σ f 1,σ∗
f 1,σ f 2,σ∗

f 2)= σ1, f 1

s−σ f 1
Y0(σ f 1)+

σ∗
1, f 1

s−σ∗
f 1

Y0(σ∗
f 1)+ σ1, f 2

s−σ f 2
Y0(σ f 2)+

σ∗
1, f 2

s−σ2
f 2

Y0(σ∗
f 2) + C . (3.34)

One can note that, in order to obtain the approximation of Y f in all points of the complex plane, the system 3.30 only
needs to be inverted one time for each considered pole (in addition to the exact inversion done for the computation of the
calibration constant). This represents a substantial save of computational time with respect to the exact computation of
Y f , since the exact computation needs the inversion of the shifted fluid Jacobian for each position on the complex plane.

With the analytical expression of the approximation of Y f , given be equation 3.34, the fluid–structure eigenvalues are
approximating using the Newton method present previously. For that, the expression of the linearisation of Y f is needed,
which is given, at the Newton iteration k, by

dY f

dσ

∣∣∣∣
sk

=− σ1, f 1(
sk −σ f 1

)2 Y0(σ f 1)−
σ∗

1, f 1(
sk −σ∗

f 1

)2 Y0(σ∗
f 1)− σ1, f 2(

sk −σ f 2
)2 Y0(σ f 2)−

σ∗
1, f 2(

sk −σ2
f 2

)2 Y0(σ∗
f 2) . (3.35)

3.3 Application of the various methods for Re= 50000 and α= 0 ◦

In this section, we implement the different approaches presented previously in section 3.2 to calculate the eigenvalues
of a mean flow FSI eigenproblem. The aim is to discuss the methodological aspects of these different approaches. The
physical discussion, along with the presentation of the FSI eigenmodes, is considered in the next chapter, in section 4.2. In
that way, the mean flow taken into account in this section corresponds to the time-averaged solution of a two-dimensional
time-marching computation, presented in the previous chapter, for Re= 50000 and α= 0◦.

σ f 1 Low frequency eigenvalue 1 −0.1446+ 0.1992i

σ f 2 Low frequency eigenvalue 2 −0.2944+ 0.4441i

σ f 3 Vortex shedding eigenvalue 0.2480+29.2972i

Table 3.1 – Hydrodynamic linear stability analysis of the mean flow: values of the two least stable low frequency
eigenvalues and the unstable vortex shedding eigenvalue for Re= 50000 and α= 0◦.
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3.3.1 Full eigenvalue spectrum: purely-hydrodynamic mean flow analysis

We first present the results of the purely-hydrodynamic mean flow analysis. They are obtained by solving the
purely-hydrodynamic eigenvalue problem

σM f q f = L f (Ub)q f ,

using a Krylov–Schur algorithm and the shift-and-invert strategy described in section 3.2.1. The operator L f corresponds
to the linearisation of the Navier–Stokes equations around the mean flow solution, while q f corresponds to a purely-
hydrodynamic eigenmode. This purely-hydrodynamic analysis is relevant for the understanding of the FSI eigenvalues,
present in the subsequent sections.

The eigenvalue results are presented on a one-sided spectrum in figure 3.1a, with the growth rate on the horizontal
axis and the eigenvalue frequency on the vertical axis. A zoom close to the origin of the graph is plotted in figure 3.1b.
The unstable zone, in grey, corresponds to a positive amplification rate. The eigenmodes are normalised to 1 with respect
to the discrete inner product such that q f ,HM f q f = 1.

The spectrum is characterised by a cloud of stable eigenvalues and a single unstable eigenvalue, labelled 3 and
denoted σ f 3, vibrating at a frequency of ω= 29.30 (table 3.1). This frequency corresponds to the frequency of the vortex
shedding in the wake of the airfoil, detailed in the previous chapter. We note that the spanwise vorticity field of the real
part of the corresponding eigenmode, present in figure 3.2, is concentrated on the convected wake region, far from the
airfoil.

We turn our attention to the fluid eigenvalues near the origin, namely to the two least stable eigenvalues in that
region, labelled 1 and 2 in figure 3.1b and denoted σ f 1 and σ f 2, respectively. The real and imaginary parts of the velocity
and pressure fields of the eigenmode associated to σ f 1 are present in figure 3.3. A similar spatial structure is found for the
low frequency eigenmode associated to σ f 2. In contrast to the vortex shedding eigenmode, the low frequency eigenmodes
do not exhibit a high frequency oscillating spatial structure. While the U component display non negligible values in
the far wake, the V and p components are located near the airfoil. Furthermore, the U and p components present an
antisymmetric structure with respect to the airfoil chord line, whereas the V component is symmetric. Although stable,
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Figure 3.1 – Spectrum of a hydrodynamic mean flow linear stability analysis at Re= 50000 and α= 0◦. On the
left, general view, highlighting an unstable eigenvalue, σ f 3, labelled 3, with a frequency corresponding to the vortex
shedding frequency. On the right, a close-up of the same spectrum near the origin, highlighting the two least stable
low frequency eigenvalues, σ f 1 and σ f 2, labelled 1 and 2.
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Figure 3.2 – Real part of the spanwise vorticity field of the vortex shedding eigenmode (left), with a close-up near
the airfoil (right).

the presence of these low frequency eigenmodes is found to have a major influence on the moment associated to the fluid
response to the solid motion, as discussed in the subsequent sections.

3.3.2 Full eigenvalue spectrum: mean flow FSI analysis

The first methodological approach for computing the eigenvalues of the mean flow FSI eigenproblem is based on the
modular approach of a Krylov–Schur subspace iterative method presented in section 3.2.1. The analysis is carried out for
shift values with a real part located at 0.1 and an imaginary part ranging from 0 to 30, with a step of 0.5. The step is
decreased to 0.2 for frequency values inferior to 1, near the origin. The eigenvalue solver is set to converge 10 eigenvalues
for each shift. This method gives directly the requested eigenvalues as well as the corresponding eigenmodes.

Figure 3.4a shows the one-sided spectrum of the mean flow FSI linear stability analysis. A close-up near the origin is
present in figure 3.4b. The structural eigenvalue, calculated with the help of equation 1.11 (page 23), is represented by a
black cross. This method enables to compute any desired eigenpairs in the vicinity of a given shift. This represents both
an advantage and a disadvantage. The advantage is related to the fact that we can have a clear picture of the spectrum
in the region of interest, namely close to the structural eigenvalue. In the present case, we converged to 650 eigenvalues.
On the other hand, the method does not enable to distinguish the fluid eigenvalues from the eigenvalues associated to the
structure. Additionally, most of the converged eigenvalues will correspond either to spurious modes, associated to the
spatial discretisation, or to stable physical modes that are not pertinent for the present FSI study.

−0.5

U

0.5

0 1 2
−0.25

0.25

x
y

−0.5

U

0.5

0 1 2
−0.25

0.25

x
y

−0.1

V

0.1

0 1 2
−0.25

0.25

x
y

−0.1

V

0.1

0 1 2
−0.25

0.25

x
y

−0.03

p

0.03

0 1 2
−0.25

0.25

x

y

−0.08

p

0.08

0 1 2
−0.25

0.25

x

y

Figure 3.3 – Velocity and pressure fields of the stable low frequency eigenmode associated to the eigenvalue σ f 1:
real part (left) and imaginary part (right).
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As for the fluid spectrum detailed previously, an unstable eigenvalue appears at a frequency of 29.30, which is
associated to the vortex shedding instability. In contrast, a close observation of the spectrum near the origin, in
figure 3.4b, reveals the emergence of two pairs of eigenvalues. The first pair is located along the real axis, presenting
no associated frequency, illustrated by the bigger red circles. The unstable eigenmode has a growth rate of λ= 0.2084,
whereas the other static eigenmode is stable, with a growth rate of λ=−0.2862. The second pair is located at the growth
rate of λ=−0.1465, having a frequency of ω=±0.5386, illustrated by the yellow circles. A summary of these eigenvalues
is present in table 3.2.

Although the complete FSI spectrum can be calculated with this method, the influence of the structure can only be
noted if we also have access to the fluid spectrum (figure 3.1) and to the structural eigenvalue, represented with a cross in
figure 3.4b. This comparison enables us to label the eigenvalue presenting a divergent character as divergence mode, and
the low frequency eigenmode, possibly at the origin of the flutter oscillations, as flutter mode. Further, the interaction
between the structure and the fluid cannot be determined only with this method. Different scenarios can arise from this
interaction. For example, the effect of the fluid on the structural eigenvalues (black cross) could decrease their frequency
such that this complex pair would collide on the real axis and be transformed into the two static eigenvalues (bigger red
circles). A different scenario could also happen, where the fluid would tend to increase the frequency of the structural
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Figure 3.4 – Spectrum of a fluid–structure mean flow linear stability analysis at Re= 50000 and α= 0◦ for the
nominal structure parameters and using the classical formulation. On the left, general view and, on the right, a
close-up of the same spectrum near the origin, highlighting the divergence (bigger red circles) and flutter (yellow
circles) eigenvalues. The remaining eigenvalues are represented by the smaller red circles. The eigenvalue of the
structure equation in vacuum is represented by the black cross.

Unstable divergence eigenvalue 0.2084

Stable divergence eigenvalue −0.2863

Flutter eigenvalue −0.1465+0.5386i

Natural structure eigenvalue −0.0232+0.3289i

Table 3.2 – Divergence and flutter eigenvalues of the complete FSI eigenproblem for Re = 50000 and α = 0◦,
compared to the structure equation eigenvalue.
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Initial guess Converged eigenvalue

0.0000+0.0000i 0.2084

−0.1000+0.0000i −0.2863

−0.0232+0.3289i −0.1465+0.5386i

Table 3.3 – Initial guesses and converged eigenvalues of the Newton procedure.

eigenvalues and to stabilise them, obtaining the flutter eigenvalues, represented by the yellow circles.
From the present results, the association of these modes to the structure is not evident. This is done with the help of

the methods explored in the next paragraphs, where we focus our attention on the computation of the solid eigenvalues,
that will enable us to clarify the above scenarios.

3.3.3 Newton method for a reduced-size nonlinear eigenproblem

In the previous method, the divergence and flutter eigenvalues have been obtained by computing several eigenvalues
of the fluid–structure eigenproblem via a Krylov–Schur method, and have been identified by comparison with the
purely-hydrodynamic and purely-solid spectra. We now present the results obtained by solving the reduced-size nonlinear
eigenvalue problem with a Newton method, as introduced in section 3.2.3. We will demonstrate how it may help in better
understanding the nature of the coupled eigenvalues.

In order to initialise the resolution of the nonlinear system, three guess values are considered, as present in table 3.3,
with the objective to retrieve the divergence and flutter eigenvalues. For that, the first two initial guesses are chosen
along the real axis, where the imaginary part of the nonlinear residual, RFSI , is already zero.

Figure 3.5 shows the evolution of growth rate λ and frequency ω as a function of the Newton iteration, for the
three guess values indicated above. Interestingly, we clearly observe that different converged solutions are obtained
depending on the initial solution. When starting with purely real guess values (red curves), the algorithm converges
within the first 10 iterations towards a real eigenvalue, that is either the unstable divergence eigenvalue (solid red
line) or the stable divergence eigenvalue (dashed red line). Their growth rates (λ= 0.2084 and λ=−0.2863) correspond
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Figure 3.5 – Evolution of the growth rate (left) and frequency (right) eigenvalue solutions with the nonlinear
Newton iterations for three different initial guesses, converging to the stable and unstable divergence modes (dotted
and solid red lines) and to the flutter mode (solid yellow line). The initial guess values, two on the real axis and a
third one corresponding to the structure eigenvalue, are reported in table 3.3.
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Figure 3.6 – Evolution of the eigenvalue solutions on the complex plane as the nonlinear Newton procedure
converges to the unstable divergence (red circle) eigenvalue and to the flutter (yellow circle). The divergence and
flutter eigenvalues are represented by the bigger red and yellow circles, respectively. The remaining FSI eigenvalues
are represented by the smaller red circles. The initial guesses are represented by the black circle and the black cross,
for the divergence and flutter eigenvalues, respectively, see table 3.3.

exactly to those obtained with the Krylov–Schur method. Considering now as guess value the complex eigenvalue of the
purely-solid eigenproblem, we observe (yellow curve) that it converges towards the flutter eigenvalue, whose growth rate
is λ=−0.1465 and frequency is ω= 0.5386.

To better visualize the path of these eigenvalues towards to divergence and flutter eigenvalues, we sketch the evolution
of the first and third guesses on the complex plane in figure 3.6. Concerning the unstable divergence mode, in red, the
path is concentrated in the real axis, as noted before, with a monotonic increase of the growth rate up to convergence.
Concerning the flutter eigenvalue, in yellow, we note that it goes through the unstable zone λ> 0 in the first Newton
iteration, but restabilises for the next iterations. Although complex, this path clearly indicates that the flutter eigenvalue
emerges from the purely-solid (complex) eigenvalue, thus better justifying its denomination as “flutter instability”. The
flow interaction tends to decrease its growth rate and increase its frequency. To better understand this, we examine in

0.0 0.8 1.6 2.4
−0.4

−0.2

0.0

0.2

Ks

λ

Figure 3.7 – Variation of the growth rate of the divergence eigenvalues with Ks, where the red circles represent the
divergence eigenvalues obtained with the Krylov–Schur method and the black line represents the explicit prediction.
The vertical dashed line represents the nominal value of Ks = 0.417.

130 Chapter 3 – Methods for mean flow FSI linear stability analyses



Section 3.3 – Application of the various methods for Re= 50000 and α= 0◦

the next paragraph the fluid and solid transfer functions defined in equations 3.14 and 3.15 (page 120).

The behaviour of the divergence eigenvalues can be explicitly mapped as function of the structural stiffness of the
airfoil, using the method described in at the end of section 3.2.3. With this method, we impose a static eigenvalue, and
search for admissible solutions of the structural stiffness, i.e., for real and positive values of Ks. Figure 3.7 compares the
divergence eigenvalues obtained with the Krylov–Schur method, to the static predictions given by the present method.
Both methods give the same results for the considered range of λ. In particular, we observe that, for the nominal stiffness
value represented by the vertical dashed line, both methods predict a stable and an unstable eigenvalue. We also observe
that no admissible values of Ks are found for λ<−0.354∧λ> 0.298.

3.3.4 Description of the fluid and solid transfer functions

To better understand the influence of the fluid and the structure components on the FSI eigenproblem, we propose to
analyse the behaviour of the fluid and solid transfer functions on the complex plane. We recall that that these transfer
functions are defined for any complex number s as

Y f (s)= mT(
sM f −L f

)−1 (vθ+vΩs) ,

Y s(s)=−s2Is − sDs −Ks .

The fluid–structure eigenvalues σ correspond to complex values s for which the residual vanishes, i.e., RFSI =
Y f (σ)+Y s(σ)= 0. Note also that the purely-fluid eigenvalues are poles of the fluid transfer function that is singular at
those points.

While the solid transfer function is trivial to compute, the fluid transfer function requires the inversion of the matrix(
sM f −L f

)
for several values s, in order to map the complex plane. The computational cost of this method is entirely

dominated by the evaluation of this fluid transfer function. Once it is determined, the effect of the solid parameters onto
the problem can be quickly accessed. However, the prohibitive number of matrix inversions necessary to map the complex
plane makes this method quite inefficient compared to the Newton method discussed before. We will see in the next
section (section 3.3.6) how to reduce this computation cost by approximating the fluid transfer function based on few
fluid eigenvalues. Here, we rather highlight its interest for better understanding the role played by some purely-fluid
eigenvalues on the divergence and flutter eigenvalues.

In figure 3.8, we sketch the fluid and solid transfer functions, along with their sum, RFSI , as function of the complex
variable s = sr + sii. The first column represents the Y f function, the second column represents the Y s function and the
last column represents their sum, RFSI . The isocontours are depicted with thin solid and dashed lines for the positive
and negatives values, respectively. The blue and red colours are also used to represent positive and negative values. The
thick black curves highlight the zero isocontours of the corresponding function.

We start by analysing the fluid transfer function, present in the first column of figure 3.8. The eigenvalues of the
purely-fluid eigenproblem are superposed to the Y f representation using blue circles. On the bottom left plot, we label
the fluid eigenvalues described in section 3.3.1, σ f 1 and σ f 2, as 1 and 2, respectively. In the top left corner, one finds
the real part of Y f , which presents a symmetry with respect to the real axis, with a positive region between the fluid
eigenvalue σ f 1 and the origin. Concomitantly, the zone between the eigenvalues σ f 2 and σ f 1 is dominated by negative
values, for si ≈ 0.4. This negative region has an upper limit around si ≈ 0.8. The highlighted zero isocontour lines are
then separating these positive and negative regions, passing through the fluid eigenvalues, where Y f is not defined.
Concerning the imaginary part of Y f , it presents an antisymmetric behaviour with respect to the real axis. In a similar
way as for the real part, the behaviour of Y f

i is mainly governed by the fluid eigenvalues σ f 1 and σ f 2. This time, a wide
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negative region for a positive si is found near the si axis. Due to its antisymmetric characteristic, Y f
i is zero along the sr

axis. We further note that, as Y f
i is zero along the sr axis, Y f is purely real, which means that a moment generated by a
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Figure 3.8 – Mapping of the functions Y f , Y s and RFSI on the complex plane. The first row represents their real
part, the second row represents their imaginary part and the third row represents the zero isocontours of the real
(solid line) and imaginary (dash-dotted lines) parts. The fluid eigenvalues are represented by the blue circles, with
the two low frequency eigenvalues labelled 1 and 2 highlighted on the bottom left figure. The divergence and flutter
eigenvalues are represented by the bigger red and yellow circles, respectively. The remaining FSI eigenvalues are
represented by the smaller red circles. The eigenvalue of the structure equation in vacuum is represented by the
black cross.

132 Chapter 3 – Methods for mean flow FSI linear stability analyses



Section 3.3 – Application of the various methods for Re= 50000 and α= 0◦

static linear fluid response will be purely real as well.

The zero isocontour lines of both Y f
r and Y f

i functions are presented in the bottom left of figure 3.8. Most of the
intersecting points correspond to purely-fluid eigenvalues (blue circles), where the resolvent operator is singular. Since
they are poles of the fluid transfer function, their amplitude is not defined, instead of being zero. The case where both Y f

r

and Y f
i are zero appears twice in the figure. Based on the definition of the fluid transfer function, Y f = mT q f /θ, the case

where both Y f
r and Y f

i are zero corresponds to the situation where a nonzero angular displacement applied to the airfoil
does not generate a moment on the structure. This situation can be found on bodies where their inertia tends to zero.
Some examples are the fall of tree leaves and the rising of bubbles in a liquid column, as studied for example in Assemat
et al. (2012).

We turn our attention to the solid transfer function, Y s. As for the Y f function, the real and imaginary parts of Y s

exhibit a symmetric and antisymmetric behaviour, respectively. However, these properties are found not only with respect
to the sr axis, but also with respect to a vertical axis at sr = −Ds/(2Is). To better understand the reason behind this
behaviour, one can explicitly write the real and imaginary parts of Y s as:

Y s
r (s)=−(s2

r − s2
i )Is − srDs −Ks ,

Y s
i (s)=−2srsi Is − siDs .

Each one of these equations represents a typical saddle node surface, called a hyperbolic paraboloid, where the saddle
node is located at (sr, si)= (−Ds/(2Is), 0). The intersection of both zero isocontours gives the eigenvalue of the structure

equation in vacuum, given in equation 1.11 (page 23) as λs =−Ds/(2Is) and ωs =±
√

Ks/Is −λ2
s . This solid eigenvalue

is represented by the black cross in the figure. Concerning Y s
r , it can be observed that for the regions close to the

sr =−Ds/(2Is) axis, the term Y s
r increases as the magnitude of si increases. Concomitantly, close to the si = 0 axis, the

term Y s
r decreases as the magnitude of sr increases. The same reasoning can be made for Y s

i , but along directions that
are 45◦ out-of-phase of the above axes.

Finally, we analyse the sum of the fluid and solid functions, depicted on the third column of figure 3.8. The coloured
circles superimposed on the graphs represent the fluid–structure eigenvalues, with the bigger red circles for the divergence
eigenvalues and the yellow circles for the flutter eigenvalue. Concerning the real part of RFSI , the region si & 0.5 is
dominated by the structure term Y s

r . In contrast, Y f
r dominates the behaviour of Rr

FSI near the origin, where the
structure component is small and the influence of the fluid eigenvalue σ f 1 is significant. Between these two regions, the
behaviour of Rr

FSI is nontrivial. Concerning the imaginary part of RFSI , the region si & 0.5 is again dominated by the
structure term Y s

i , while in remaining regions, both fluid and solid transfer functions are significant. The zero isocontour
lines of Rr

FSI and R i
FSI are found on the bottom right of figure 3.8. The intersections of these lines represent the cases

where either RFSI is zero, corresponding to the eigenvalues of the FSI problem, or to cases where RFSI is not defined,
corresponding to the fluid eigenvalues. The former case is highlighted by the red and yellow circles. As depicted in the
figure, the flutter mode is located on the stable side of the spectrum, whereas one of the two highlighted divergence modes
appears on the unstable side.

One can note that the Rr
FSI region where the flutter mode is located is mainly dominated by isocontours oriented on

the horizontal direction, suggesting that the frequency of the flutter mode is selected from Rr
FSI . On the other hand, we

note that the R i
FSI region where the flutter mode is located is mainly dominated by isocontours oriented on the vertical

direction, suggesting that the growth rate of the flutter mode is selected from R i
FSI .

Further, one can note that a small portion of the zero isocontour of Rr
FSI crosses the unstable region, suggesting an

admissible unstable flutter mode, depending on the zero isocontour of R i
FSI . However, both fluid and solid components of

Chapter 3 – Methods for mean flow FSI linear stability analyses 133



Section 3.3 – Application of the various methods for Re= 50000 and α= 0◦

−0.4 −0.2 0.0 0.2
−0.2

0.0

0.4

0.8

1.2

sr

si

Rr
FSI

−0.4 −0.2 0.0 0.2
−0.2

0.0

0.4

0.8

1.2

sr

si

R i
FSI

−0.4 −0.2 0.0 0.2
−0.2

0.0

0.4

0.8

1.2

sr

si

Figure 3.9 – Evolution of the eigenvalue solutions on the complex plane as the nonlinear Newton procedure
converges to the unstable divergence (red circle) eigenvalue and to the flutter (yellow circle). The fluid eigenvalues
are represented by the blue circles. The divergence and flutter eigenvalues are represented by the bigger red and
yellow circles, respectively. The remaining FSI eigenvalues are represented by the smaller red circles. On the left
and centre plots, the isocontour lines of the real and imaginary parts of RFSI , respectively (dotted pattern for the
negative isocontours and solid pattern for the zero and positive isocontours). On the right plot, the corresponding
zero isocontour lines, with a solid line for the real part and a dash-dotted line for the imaginary part of RFSI The
initial guesses are represented by the black circle and the black cross, for the divergence and flutter eigenvalues,
respectively, see table 3.3.

R i
FSI present negative values in the region si > 0 and sr > 0. This causes the flutter mode to be necessarily located in the

stable side of the spectrum.
Concerning the divergence eigenvalue, its growth rate is entirely fixed by the zero isocontour of Rr

FSI . This is due to
the antisymmetric character of the imaginary parts of both Y f and Y s with respect to the sr axis, their value being zero
for si = 0. One way of stabilising this eigenmode is by varying the zero isocontour line associated to Rr

FSI , which in turn
can be modified by the Y s

r behaviour. As detailed in the physical description of these modes, in the next chapter, the Y s
r

behaviour can be modified by varying the stiffness of the structure, Ks.
With the knowledge of the residual behaviour on the complex plane, we turn back our attention to the results presented

with the Newton iterative method, in section 3.3.3. In figure 3.9, we superpose the path of the eigenvalues (computed
with the iterative Newton algorithm) to isocontours of the residual RFSI . Its real and imaginary parts are displayed on
the left and middle figures, while only the zero isocontours are shown on the right figure. Let us first focus on the flutter
eigenvalue displayed in yellow and recall that the guess value corresponds to a purely-solid eigenvalue. We note that
this guess value is close to a zero isocontour of real residual (left figure). The path of the eigenvalue clearly follows that
isocontour because the Newton algorithm looks for zero of the complex residual. For the imaginary part (middle figure),
the behaviour is different because the guess value is away from a zero isocontour. In that case, the path of the eigenvalue
is roughly normal to the isocontours, illustrating the gradient descent direction chosen by the Newton algorithm. This
representation provides a graphical illustration of the role of the purely-fluid eigenvalues on the fluid–structure flutter
eigenvalue. The low frequency fluid eigenvalues (blue circles) both tend to push away the initial guess value (black cross)
in directions normal to the sum of the dipoles formed around them.

Let us now examine the behaviour of the divergence eigenvalue, highlighted with the red colour. The guess value is
here chosen as the origin on the complex plane. The path of the divergence eigenvalue follows the real axis which is a zero
isocontour of the imaginary residual (middle figure). This path is oriented into the destabilising direction because the
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Quasi-steady order Ka Dθ
a DΩ

a Da Iθa IΩa Ia

0 −1.5038 — — — — — —
1 −1.5038 5.4354 −0.6874 4.7480 — — —
2 −1.5038 5.4354 −0.6874 4.7480 5.3882 2.246 7.6342

Table 3.4 – Added coefficients of the quasi-steady approximation for the three first orders at Re= 50000 and α= 0◦.

Quasi-steady order Eigenvalues σQS

0 0.5097 −0.5561
1 0.1920 −1.4766
2 0.1606 −0.5901

Table 3.5 – Summary of eigenvalues predicted by the quasi-steady approximation for the three first orders at
Re= 50000 and α= 0◦.

isocontours of the real residual (left figure) decrease in that direction. This behaviour is clearly induced by the closest pair
of low frequency fluid eigenvalues, thus unravelling its role in the divergence fluid–structure instability. We also remark
that choosing a guess value with a lower real part would lead to a convergence towards the stable static eigenvalue.

3.3.5 Quasi-steady approximation results

In this section, we discuss the results associated to the quasi-steady approximation, present in sections 1.6 (page 42)
and 3.2.4 (page 122). As a reminder, in the quasi-steady approximation, the structural eigenvalues are approximated by
the solution of the following equation:

(Is + Ia)σ2
QS + (Ds +Da)σQS + (Ks +Ka)= 0.

We denote a quasi-steady approximation of order 2 when all the added coefficients are taken into account, an approximation
of order 1 when only the terms Da and Ka are taken into account and an approximation of order 0 when only Ka is taken
into account. Table 3.4 summarises the added coefficients for these three orders. We first note that these coefficients are
real.

Concerning the quasi-steady approximation of order 0, where only the added stiffness is taken into account, several
points are noted. First, we note that Ka is negative. Further, as discussed in section 1.6, Ka corresponds to an
approximation of the slope at α= 0◦ of the aerodynamic moment curve as function of the incidence, noted mα

z . This value
was reported in the previous chapter (cf. figure 2.12, page 82), having a value of mα

z =−1.5223. When comparing with the
value of the added stiffness (Ka =−1.5038) one finds that mα

z at α= 0◦ is very well approximated by the quasi-steady
approximation. Further, Ka can be interpreted as an aerodynamic stiffness, acting on the opposite sense of the structural
stiffness. By neglecting Ds, a stability criterion for the emergence of a static eigenvalue can be posed as (see equation 1.49,
page 45)

if Ks <−Ka : Existence of an unstable static eigenvalue.

Since the nondimensional structural stiffness has a value of Ks = 0.41689 for Re = 50000 (see table 1.3, page 1.3), we
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Figure 3.10 – Comparison between the exact and quasi-steady approximation method at order 2: spectrum
of a fluid–structure mean flow linear stability analysis at Re = 50000 and α = 0◦ for the nominal structure
parameters and using the classical formulation. The exact solution is represented by the circle symbols, highlighting
the divergence (bigger red circles) and flutter (yellow circles) eigenvalues. The approximation of the divergence
eigenvalues is represented by the red triangles.

conclude that the presence of an unstable static eigenvalue can be predicted by a the quasi-steady approximation. This
loss of total stiffness (Ks +Ka) is characteristic of a divergence instability, as discussed on the Introduction of this thesis.
The exact value of this prediction is reported in table 3.5. We observe that the quasi-steady approximation estimates
a more unstable eigenvalue (σQS = 0.5097) than the exact eigenvalue found in the previous sections (σ= 0.2086). The
stable static eigenvalue found in the analysis of the previous sections (σ=−0.2863) is also found in this quasi-steady
approximation (σQS =−0.5561), where we also note significant differences between the exact and approximated value.

We also report the added coefficients and resulting eigenvalues for the quasi-steady approximation at orders 1 and
2, in tables 3.4 and 3.5, respectively. Additionally, figure 3.10 gives a graphical comparison between the eigenvalues
of a quasi-steady approximation of order 2 and the exact eigenvalues. We start by noting that the added damping
coefficient associated to an angular displacement perturbation, Dθ

a, is one order of magnitude larger than the coefficient
DΩ

a , associated to an angular velocity perturbation. Further, they have opposite contributions. Concerning the added
inertia contributions, we also found a more important value of the coefficient associated to the angular displacement
perturbation. One can note that the prediction for the eigenvalues at the orders 1 and 2 is significantly better than the
first prediction at order 0. Interestingly, the order 1 gives a better prediction than the order 2 for the unstable static
eigenvalue, when comparing with the exact value of σ= 0.2086.

With this analysis we conclude that a quasi-steady approximation only gives access to the eigenvalues placed along
the real axis, i.e., to the divergence eigenvalues. Therefore, the next approximative method was developed with the aim of
also approximating the flutter eigenvalues.

3.3.6 Results for the rational function approximation of the fluid transfer function

In this section, we present the results associated to the approximation of the fluid transfer function as a rational
function. This approximation is intended to improve the numerical efficiency of the eigenvalue computation, when
compared to the Krylov–Schur and the Newton methods, where the fluid transfer function is exactly computed. The
theoretical details of this approximation are present in section 3.2.5 (page 123). The approximation is based on two
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Fluid pole σ1 Y0 Y1 Y1 +Y ∗
1 C

σ f 1 =−0.1446+0.1992i 4.4408+0.3607i 0.0121−0.0199i 0.9536+1.0810i 1.9072 −0.0327
σ f 2 =−0.2944+0.4441i −3.6682+2.7432i 0.0056+0.0069i 0.1748−0.0747i 0.3496

Table 3.6 – Constants associated to the Y f approximation, for the two fluid poles considered.
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Figure 3.11 – Mapping of the real and imaginary parts of fluid transfer function Y f on the complex plane: the
exact solution (left), the rational function approximation with one fluid eigenvalue (centre) and with two fluid
eigenvalues (right).

purely-fluid eigenvalues, described in section 3.3.1.

The approximation is given in equations 3.33 and 3.34. The constants σ1 and Y0 are associated to the terms at order
O (1/ε), for each pole, while the constant Y1 is associated to the order O (1) term. Table 3.6 summarises the values of these
constants, as well as the calibration constant C.

The contribution of the order O (1) terms is given by the column Y1 +Y ∗
1 , for each pair of complex conjugate poles. As

remarked earlier, this term constitutes a real constant. Due to its relative high value, we replace these terms by the
constant of calibration C. The calibration constant is chosen such that the model predicts the exact value at the origin
of the complex plane, (sr, si)= (0, 0). The position of the calibration is chosen on the sr axis (si = 0) in order to obtain a
real constant. The value of sr = 0 for the calibration is arbitrary, but it represents a good equilibrium position between
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the divergence and flutter eigenvalues that we ultimately want to approximate. The influence of the calibration on the
results was not studied.

Figure 3.11 presents the complex mapping of the real and imaginary parts of Y f , with the exact solution on the
left column, a 1 pole approximation on the centre column and a 2 pole approximation on the right column. The 1 pole
approximation is based on the fluid eigenvalue σ f 1 and its complex conjugate. We first note that the 1 pole approximation
represents a qualitatively good approximation of the zone near the sr axis, where the static eigenvalues are present, in
particular the divergence mode. However, this approximation is less accurate in the zone si ≈ 0.5, where the flutter mode
is expected to be found. Therefore, we consider a 2 pole approximation, based on the fluid eigenvalues σ f 1 and σ f 2 (and
their complex conjugate), present on the right column of figure 3.11. The addition of this second complex conjugate pair of
eigenvalues does not substantially change the behaviour of the Y f approximation near the sr axis, while better taking
into account the nonlinear character of Y f on the zone si ≈ 0.5.

To better quantify the accuracy of the 2 pole approximation, we sketch the values of Y f
r and Y f

i along the sr and
si axes on figure 3.12. Concerning the sr axis, present on the left, we first note that the Y f

i , represented by the blue
lines, is zero, as expected. On the other hand, Y f

r , represented by the black lines, presents a good agreement between
the exact solution (solid line) and the 2 pole approximation (dashed line). The exact solution presents a discontinuity at
sr =−0.4, due to the presence of a fluid eigenvalue. This discontinuity is not found in the 2 pole approximation, as this
eigenvalue is not taken into account in the approximation. We also note that the solid and dashed lines cross each other
at sr = 0, where the calibration is made. Concerning the si axis, presented on the right of figure 3.12, one can note that
Y f

r (black lines), presents a symmetric behaviour with respect to si = 0, while Y f
i (blue lines) presents an antisymmetric

behaviour. Once again, the approximation is found to be exact at si = 0, where the calibration is made. The absolute error
between the two curves increases with the distance to the origin, which is a consequence of the order truncation of the
development and the fact that only two complex conjugate pairs of poles were taken into account.

With an analytic expression for the Y f approximation (equation 3.34), the fluid–structure eigenvalues can be
approximated using the Newton method presented previously. The accuracy of this prediction directly depends on the
quality of the Y f approximation at the divergence and flutter eigenvalues. We note that, since Y f is approximated, the
location of the divergence and flutter eigenvalues is also approximated. However, we can quantify the relative error
made on the Y f approximation at the exact value of these eigenvalues, since we know their exact location. The aim is to
understand the effect of this approximation on the final values of the fluid–structure eigenvalues. Table 3.7 summarises
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Figure 3.12 – Evolution of Y f
r (black) and Y f

i (blue) along the axes, for the sr axis (left), where si = 0, and for the
si axis (right), where sr = 0. The solid lines represent the exact solution, whereas the dashed lines represent the two
pole approximation calibrated on the point (sr, si)= (0, 0).
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Exact analysis 1 pole approximation 2 pole approximation

Y f at the divergence eigenvalue 0.3114 0.3422 0.3342
Relative error 9.89% 7.32%

Y f at the flutter eigenvalue −0.3129+0.2519i −0.2510+0.2705i −0.3335+0.1858i
Relative error 19.81%+7.35%i 6.57%+26.22%i

Table 3.7 – Exact and approximative values of the fluid transfer function Y f at the divergence and flutter
eigenvalues location.

Divergence eigenvalue Flutter eigenvalue

Exact analysis 0.2084 −0.1465+0.5386i
Approximated analysis (one pole) 0.2420 −0.1619+0.5083i
Approximated analysis (two poles) 0.2330 −0.1136+0.5422i
Relative error (one pole) 16.13% 10.54%+6.67%i
Relative error (two poles) 11.80% 22.45%+0.67%i

Table 3.8 – Comparison of the FSI eigenvalues between the exact and the Y f approximation methods based on one
and two poles, along with the relative error of their real and imaginary parts.

the values of Y f given by the exact and the approximation analysis, at the divergence and flutter eigenvalues.
Concerning the divergence eigenvalue, with an exact location at σ= 0.2084, Y f presents a relative error below 10%

for both 1 and 2 pole approximations. The relative error decreases with the increase of the number of poles taken into
account. The same tendency is expected to be found on the 1 and 2 pole approximation of the divergence eigenvalue.

Concerning the flutter eigenvalue, with an exact location at σ = −0.1465+0.5386i, the relative error is computed
independently for the real and imaginary parts of Y f . For the real part, we see a decrease of the relative error with
the increase of the number of poles taken into account. Interestingly, the opposite behaviour is found for the relative
error associated to Y f

i . From the discussion made in section 3.3.4, we have concluded that the growth rate of the flutter
eigenvalue is mainly governed by the imaginary part of RFSI (where Y f

i is present), whereas the frequency of the flutter
eigenvalue is mainly governed by Rr

FSI (where Y f
r is present). Since we found an increase of the relative error of Y f

i
with the increase of poles considered in the approximation, we expect to find the same tendency on the growth rate of
the flutter eigenvalue. Likewise, a decrease of the relative error is expected to be found on the frequency of the flutter
eigenvalue.

We proceed to the computation of the approximative divergence and flutter eigenvalues, using the Newton method
presented previously. Starting from the same guess values as presented in table 3.3, the approximation of the divergence
and flutter eigenvalues is found for 1 and 2 pole approximations. The spectrum comparison is present in figure 3.13, with
the numerical values and associated relative errors described in table 3.8. Concerning the divergence eigenvalue, we note
that the approximation of the fluid transfer function tends to predict a more unstable divergence mode. The relative
error associated to this prediction decreases from the 1 pole approximation to the 2 pole approximation, as expected from
the reasoning presented in the previous paragraph. Concerning the flutter eigenvalue, we note that the main source of
discrepancy is found on its real part. As expected, the increase in the number of poles taken into account increased the
relative error of the real part and decreased the error of the imaginary part. The latter presents an excellent agreement
with the exact value of the 2 pole approximation, with a relative error inferior to 1%.
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Figure 3.13 – Comparison between the exact and rational function approximation methods: spectrum of a fluid–
structure mean flow linear stability analysis at Re = 50000 and α = 0◦ for the nominal structure parameters
and using the classical formulation. The exact solution is represented by the circle symbols, highlighting the
divergence (bigger red circles) and flutter (yellow circles) eigenvalues. The approximation of the divergence and
flutter eigenvalues based on one fluid pole (left) is represented by the red and yellow triangles, respectively, while
their approximation based on two fluid poles (right) is represented by the diamond symbols.

We conclude that the approximation of the transfer function via a sum of rational functions enable us to approximate
both divergence and flutter eigenvalues, in contrast with the quasi-steady approximation, when only the divergence
eigenvalue is approximated.

Conclusion

This chapter was dedicated to the implementation and comparison of different methods to estimate the eigenvalues
and eigenmodes associated to a fluid–structure mean flow linear stability analysis. The first approach, based on a
Krylov–Schur method, enabled the computation of any eigenvalue in the spectrum, near an established shift value.
The second approach was based on the resolution of an equivalent reduced-size nonlinear eigenvalue problem using a
Newton–Raphson method. This enabled the computation of particular eigenvalues near the zone of interest, where the
fluid–solid eigenvalues were expected to by present. The influence of the fluid on the fluid–structure eigenvalues was
accessed by sketching the behaviour of the fluid transfer function (ratio between the aerodynamic moment associated to
the linearised fluid response to the solid motion and the angular displacement) on the complex plane. In the last part of
this chapter, the exact value of the fluid transfer function on the complex plane was approximated by a rational function,
with which the fluid–structure eigenvalues were approximated.
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Chapter 4

Primary aeroelastic instability

In the chapter, we study the linear stability of the coupled fluid–structure system of a rigid NACA0012 airfoil with
a pitch degree of freedom. The analysis is centred on the primary FSI instability, for the angle of incidence α= 0◦. In
that way, the chapter is organised as follows. In a first part, we describe the emergence of a primary instability of the
FSI system, by the means of a mean flow FSI linear stability analysis. In a second part, the emergence of the primary
FSI instability is analysed via a Floquet FSI analysis. We end the chapter with a comparison of both methods and a
comparison with the fluid–structure behaviour found for nonlinear time-marching simulations.

4.1 Introduction

The linear stability of fluid–solid systems is a classic subject on the aeroelasticity community (Bisplinghoff et al.,
1955; Clark et al., 2004). In the earlier years, the primordial aim was to delimit the flight envelope of military and
commercial aircraft cruise flights, whose Reynolds number often exceeds a million. In these cases, the turbulent flow
regime is readily triggered from upstream locations near the leading edge, leading to a boundary layer that remains
attached to the surface for a relatively hight range of angles of attack. In such situations, the prediction for the flutter
and divergence instabilities can be based on linearised approaches for the fluid, by considering the flow as inviscid and
irrotational, and thus described with potential equations, such as the Theodorsen model (Theodorsen, 1935).

However, as the Reynolds number decreases, the transition location moves downstream, originating a laminar
boundary layer over a considerable portion of the wing. For a low-to-moderate Reynolds number range, 104 ≤Re≤ 106,
the flow regime is characterised by the coexistence of laminar, transition and turbulent regions, where laminar boundary
layer region can lead to complex viscous phenomena, such as the formation of a laminar separation bubble (Mueller,
1951).

In this transitional Reynolds number regime, Poirel et al. (2008) carried out a wind tunnel experimental investigation
of a NACA0012 airfoil mounted on a torsional spring system, demonstrating the existence of self-sustained limit cycle
oscillations within the Reynolds number range of 45000 ≤ Re ≤ 130000. The phenomenon is labelled as Laminar
Separation Flutter (LSF). In this chapter, we perform different linear stability analyses in order to understand the onset
of these self-sustained oscillations.

Regarding the global Linear Stability Analysis (LSA), the aim is to evaluate the linear stability character of the
dynamical system considered. Accordingly, the solution is decomposed as a sum of a base equilibrium state and a
linear perturbation, the latter written as a normal mode with an associated growth rate and frequency. In this thesis,
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two different base equilibrium state solutions are considered. For the mean flow analysis, the base equilibrium state
corresponds to the time-independent solution, denoted mean flow. On the other hand, for the Floquet analysis, the base
equilibrium state corresponds to the periodic solution over one vortex shedding period, denoted periodic flow solution. In
both cases, the equilibrium is deemed unstable if at least one eigenmode has a positive growth rate, corresponding to a
perturbation that grows in time.

In the case of coupled fluid–structure systems, several configurations have been studied in the past years. To what
concerns the very low-Reynolds number regimes, the case of the spring-mounted cylinder represents a classical benchmark.
In this case, the phenomenon of the vortex-induced vibrations is studied (Cossu et al., 2000; Meliga et al., 2011; Zhang
et al., 2015b; Navrose et al., 2016; Kou et al., 2017; Sabino et al., 2020). Among other studies, Assemat et al. (2012);
Tchoufag et al. (2014a,b) examined the case of two-dimensional rigid bodies falling or rising freely in a viscous fluid, Pfister
et al. (2020); Furquan et al. (2021) carried out a LSA on a flexible splitter plate attached to a rigid circular cylinder
and Moulin et al. (2021) investigated the case of a rectangular plate mounted on heave and torsion springs. Concerning
Floquet FSI analyses, Jallas et al. (2017) studied the symmetry breaking in time-periodic propulsive wakes for imposed
flapping airfoils. With similar methods, Benetti Ramos (2020); Benetti Ramos et al. (2021) investigated the role of linear
mechanisms in the emergence of nonlinear horizontal self-propelled states of a heaving foil in a quiescent fluid.

Concerning the laminar separation flutter, the number of linear stability studies is scarce. Negi (2019); Negi et al.
(2021) performed a mean flow FSI linear stability analysis over a NACA0012 airfoil configuration with a pitch degree of
freedom, as the case investigated in this thesis. The mean flow solution was obtained from a time- and spanwise-averaged
solution of DNS simulations at α= 0◦. In their linear stability analysis, they obtained a divergence mode that becomes
unstable for Re≈ 40000 (for the case where Kdim

s = 0.15Nm). However, with these results alone, one cannot explain the
existence of the self-sustained oscillations associated to the LSF, since no frequency is associated to the divergence mode.
The explanation came from the linearly stable low frequency mode, whose frequency is in accordance with the frequency
of the LSF observed experimentally. In that way, they concluded that “[...] the observed LCO frequency is likely to arise
due to the nonlinear modification of the linearly stable aeroelastic mode, while the onset itself is caused by the divergence
instability with zero frequency.”.

With that in mind, we readdress this problem to study the onset of the static instability of the airfoil configuration
at α= 0◦, associated to the presence of a linearly unstable divergence mode. This is accomplished by the means of two
different linear stability formulations of the mean flow eigenproblem, presented in chapter 1, and by the means of a
Floquet FSI analysis. The mean flow analyses are performed around a mean flow coming from a time-averaged solution
of two-dimensional simulations and from a time- and spanwise-averaged solution of three-dimensional simulations, both
at α= 0◦. At the same time, the Floquet analysis is performed around a periodic two-dimensional limit cycle solution,
also at α= 0◦. In a first part, the Reynolds number is fixed at Re= 50000, in accordance with the main works found on
the literature regarding the laminar separation flutter instability. Subsequently, the influence of the Reynolds number
on the fluid–structure eigenvalues is investigated. In the last part, the Floquet analysis is conducted at Re= 20000, in
accordance with the subsequent chapters of this thesis.

4.2 Mean flow analysis of the primary instability at Re= 50000 and α= 0 ◦

We start this section by analysing the eigenmodes of a mean flow FSI linear stability analysis at Re = 50000 and
α= 0◦. Unlike the previous chapter, mainly focus on the methodology to find the eigenvalues of this problem, the present
chapter is rather focused on the physical aspects. This analysis is based on a classical formulation, similar to the one
used by Negi et al. (2021), which is derived from the Floquet analysis (see section 1.4.4, page 35). The comparison with
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Figure 4.1 – Spanwise vorticity field of time-averaged flow solution from two-dimensional simulations at Re =
50000 and α= 0◦. The yellow dots over the airfoil surface represent the separation points.

the Reynolds stress formulation is made in a subsequent section. We start by describing the divergence and flutter
eigenmodes, for the nominal values of the structural parameters (cf. table 1.1, page 23), corresponding to the same
dimensional parameters employed in Poirel et al. (2008) and subsequently used by Negi et al. (2021). We then investigate
the effect of these parameters on the fluid–structure eigenvalues, followed by the effect of the Reynolds number and
the airfoil geometry. These stability analyses are carried out around mean flow solutions issued from two-dimensional
time-marching simulations. For that reason, we then proceed to the comparison of these results with a FSI analysis
around a time- and spanwise-averaged solution from 3D simulations.

4.2.1 Description of the divergence and flutter eigenmodes

We start by reviewing the spatial distribution of the mean flow solution at Re = 50000 and α = 0◦. For that, we
present in figure 4.1 the spanwise vorticity field of the mean flow solution. We observe that the vorticity field is mainly
concentrated on the boundary layer region, and then on the wake of the airfoil. We also note the influence of the time
average of the Reynolds stress components, by observing the deviation of the vorticity field on the wake of the airfoil,
readily after the end of the recirculation zone. A deeper description of the mean flow solutions for different parameters
was discussed in chapter 2. The present FSI stability analysis is carried out around this mean flow.

The fluid–structure eigenvalues can be recalled from figure 3.4 (page 128), are reported again in table 4.1. The

corresponding eigenmodes, noted q =
[
q f , θ,Ω

]T
, are normalised with respect to the angular displacement component,

verifying
∣∣∣θ

∣∣∣=
√
θHθ = 1. As previously noted, an unstable eigenvalue appears at a frequency of 29.30, which is associated

to the hydrodynamic vortex shedding instability. As pointed out, the vorticity field of this eigenmode, present in figure 3.2,
is concentrated on a convected wake region, far from the airfoil. Therefore, the eigenmode is expected to have little

Eigenvalue σ
∥∥q f

∥∥
∣∣∣θ

∣∣∣
∣∣∣Ω

∣∣∣ θ Ω

Vortex shedding mode 0.2480+29.2972i 3.5919 ·106 1 29.2970 0.0175+0.9998i −29.2870+0.7607i

Divergence mode 0.2084 13.0302 1 0.2084 1 0.2084

Flutter mode −0.1465+ 0.5386i 39.2050 1 0.5582 0.9964+0.0845i −0.1915+0.5243i

Table 4.1 – Summary of the vortex shedding, divergence and flutter eigenmodes, with the norm of the fluid, θ
and Ω components, and the corresponding values of θ and Ω, for FSI linear stability analysis of the mean flow at
Re= 50000 and α= 0◦.
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influence on the laminar separation flutter onset. Indeed, one can see in table 4.1 that the norm associated to the fluid
component of the vortex shedding eigenmode is 5 orders of magnitude larger than the ones associated to the divergence
or flutter modes. This fact is in accordance with the conclusions of Poirel et al. (2008), where they found no correlation
between the pitch response and vortex shedding frequency, and in accordance with Negi et al. (2021), where the projection
of the solid variables onto the fluid variables was concluded to be close to zero for all the high frequency eigenmodes.

In addition to the vortex shedding eigenmode, a close observation of the spectrum near the origin, in the previous
chapter, revealed the emergence of two pairs of eigenvalues associated to the structure. The first pair is located along
the real axis, with one eigenvalue on stable side and the other one on the unstable side of the spectrum, presenting no
associated frequency. We denoted these eigenmodes as divergence modes. The second pair corresponds to a stable complex
pair of eigenvalues and were denoted as flutter modes. The solid components of these eigenmodes are reported in the last
two columns of table 4.1. The frequency of the flutter modes is comparable with the one of the purely-solid eigenvalues.
The analytic expression of the real and imaginary parts of the latter is given in equation 1.11 (page 23), with a value of
σs =−0.0232+0.3289i.

The perturbation associated to the FSI eigenmodes as function of time can be reconstructed with the help of
equation 1.34 (page 37). The perturbed field is retrieved by adding the mean flow state to the perturbation, i.e., qb +εq′,
using an arbitrary small value for ε. The evolution in time of the angular displacement and associated aerodynamic
moment is depicted in figure 4.2 for the divergence mode, on the left, and for the flutter mode, on the right. One can first
note that the evolution of the static perturbed variables exhibits no frequency. The exponential growth of the angular
displacement is followed by the exponential growth of the moment, which deviates the airfoil from its equilibrium position
at α= 0◦. This deviation can also be seem in the airfoil position on the left bottom plots, where the spatial structure of
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Figure 4.2 – On top, evolution of the reconstructed angular displacement (solid) and aerodynamic moment
coefficient (dashed), based on their time-averaged quantity plus an infinitesimal perturbation associated to the
divergence (left) and flutter (right) eigenmodes at Re= 50000 and α= 0◦. On the centre and bottom, the reconstructed
pressure field corresponding to two different instants.
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the perturbed pressure field for two instants is present. The amplification of the perturbation can also be seen in the
intensification of the pressure fields between the two considered instants.

At the same time, the flutter perturbed state evolution is present on the right of figure 4.2. As the flutter eigenvalue
has a negative growth rate, the perturbation decays in time, restoring the equilibrium position of the airfoil at α= 0◦.
The angular displacement and aerodynamic moment are out of phase, presenting a phase shift of φ= 141.34◦. This phase
shift ensures a restitutive force from the fluid. The decay of the perturbation can also be seen in the spatial decrement of
the pressure fields between the two considered instants.

4.2.2 Effect of the structural parameters

In this section, we describe the influence of the stiffness, damping and inertia coefficients on the on the fluid–structure
eigenvalues. We start by analysing the influence of the structural rigidity of the airfoil. The evolution of the eigenvalues
near the origin with Ks is depicted in figure 4.3a in a spectrum representation. The arrows represent the increase of Ks

from a value of Ks = 0.417 (corresponding to Kdim
s = 0.15Nm) to Ks = 3.335 (corresponding to Kdim

s = 1.2Nm). Additionally,
figure 4.3b presents the spectrum for three different values of Ks, superimposed to the zero isocontours of the real and
imaginary parts of RFSI . We recall that RFSI represents the residual of the reduced-size nonlinear eigenvalue problem,
corresponding to the sum of the fluid and solid transfer functions (see equation 3.17, page 121). From the definition of the
transfer functions (equations 3.14 and 3.15), we can note that both the fluid transfer function and the imaginary part of
Y s remain constant when Ks changes. Therefore, a change in Ks is only felt on the real part of Y s and consequently on
Rr

FSI . For that reason, only one zero isocontour line of R i
FSI is present in figure 4.3b, represented by the black dash-dotted

line. On the other hand, the three different coloured solid lines represent the zero isocontour lines of Rr
FSI associated to

the three values of Ks. This figure helps to understand that the FSI eigenmodes can be found by intersecting the zero
isocontour lines of Rr

FSI , with the ones from R i
FSI , the latter fixed on the Ks variation.

Concerning the divergence eigenvalues (bigger red circles), one observes that the stable and unstable eigenvalues move
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Figure 4.3 – Influence of the structural stiffness on the FSI eigenvalues: on the left, the spectrum evolution of the
eigenvalues for the range 0.417≤ Ks ≤ 3.335, with the bigger red and yellow circles corresponding to the divergence
and flutter eigenvalues, respectively, and the smaller blue and red circles to the fluid and remaining FSI eigenvalues,
respectively. The increase of Ks is represented by the arrows direction. The numbers 1 and 2 identify the fluid poles
described in section 3.3.1. On the right, the zero isocontour lines of the real (solid lines) and imaginary (dash-dotted
line) parts of RFSI for three values of Ks: Ks = 0.417 (black lines), Ks = 1.668 (orange lines) and Ks = 2.780 (brown
lines). The imaginary part of RFSI does not vary with Ks.
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towards each other, as Ks increases. The least stable eigenvalue passes through the marginal state λ= 0 for a structural
stiffness of Ks = 1.473. This value is well approximated by the quasi-steady approach (see results in section 3.3.5), in
particular by the magnitude of the added stiffness coefficient, |Ka|. In a quasi-steady approach, the stability criterion
defined in equation 1.48 states that Ks =−Ka for a marginally stable static eigenvalue. The value of Ka =−1.5038 is
slightly higher, in magnitude, than the marginal value of Ks, indicating that the neglected terms in a quasi-steady
approximation have the effect of destabilising the divergence mode. Finally, we note that this value corresponds to a
very good approximation of the slope of the aerodynamic moment curve at α= 0◦ as function of the incidence (mα

z ), as
discussed in section 3.3.5.

The coalescence of the two divergence eigenvalues occurs at λ=−0.085, for Ks = 1.750, given rise to a pair of complex
conjugate eigenmodes. The growth rate of this coalescence is directly retrieved from the point where the zero isocontour
line of R i

FSI also leaves the real axis. As the structural stiffness continues to increase, this pair of stable complex
conjugate eigenmodes tends to a fluid pair of complex conjugate eigenvalues, represented by the smaller blue circles. In
this case, the fluid eigenvalues correspond to σ f 1, identified on section 3.3.1.

Concerning the flutter eigenvalue (yellow circle), one observes an increase of its frequency and growth rate, as Ks

increases. From the discussion in section 3.3.4, it was noted that for high frequencies near the axis λ=−Ds/(2Is), the
behaviour of RFSI was dominated by the solid component. Therefore, as Ks increases, the growth rate of the flutter mode
is expected to approach the value of the structure λs =−Ds/(2Is), while the frequency tends to infinity.

We introduce now the variation of the structural damping coefficient on the FSI stability analysis. Unlike the
structural stiffness, Ds appears in both real and imaginary parts of RFSI . We start by discussing the behaviour of the
divergence mode. For that, the method for predicting non-oscillating modes presented in section 3.2.3 is used. With this
method, the existence of static eigenvalues, as the divergence mode, is predicted as function of Ks, for four different
values of Ds, as presented in figure 4.4a. The vertical dashed line corresponds to the nominal value of Ks = 0.417. For
this nominal value, the increase of Ds decreases the growth rate of the unstable divergence mode. Further, the marginal
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Figure 4.4 – Influence of the structural damping on the FSI eigenvalues: on the left, the non-oscillating modes
prediction for Ds = 0.178 (black), Ds = 1.777 (blue), Ds = 5.331 (green) and Ds = 17.769 (brown). The vertical dashed
line represents the nominal value of Ks = 0.417. On the right, the spectrum evolution of the eigenvalues for the range
0 ≤ Ds ≤ 17.769, with the bigger red and yellow circles corresponding to the divergence and flutter eigenvalues,
respectively, and the smaller blue and red circles to the fluid and remaining FSI eigenvalues, respectively. The
increase of Ds is represented by the arrows direction. The numbers 1 and 2 identify the fluid poles described in
section 3.3.1.
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Figure 4.5 – Influence of the structural inertia and elastic centre on the FSI eigenvalues: on the left, the spectrum
representation for three inertia values: Is = 3.834 (corresponding to the nominal value), Is = 4.985 (corresponding
to 1.3 times the nominal value) and Is = 6.902 (corresponding to 1.8 times the nominal value). On the right, the
spectrum representation for three elastic centre values: XEC = 0, XEC = 0.186 and XEC = 0.25. The bigger red and
yellow circles correspond to the divergence and flutter eigenvalues, respectively, while the smaller blue and red
circles correspond to the fluid and remaining FSI eigenvalues, respectively.

divergence mode is found on the intersection of all curves with the axis λ= 0, for the value Ks = 1.473. This value was
already found in a previous paragraph, when the marginal value of Ks was characterised. From this figure, one can also
note that the structural damping does not affect the stable or unstable characteristic of the divergence mode, even if it
affects its growth rate.

Finally, the evolution of the eigenvalues near the origin with Ds is depicted in figure 4.4b in a spectrum representation.
The arrows represent the increase of Ds from a value of Ds = 0 to Ds = 17.769 (corresponding to Ddim

s = 0.2Nms).
Concerning the unstable divergence eigenvalue, one can note that as Ds increases, its value tends to the marginal value
of λ= 0. Concerning the flutter eigenvalue, one notes that as Ds increases, its value tends to the fluid eigenvalue σ f 2.
Therefore, unlike the variation of Ks, the structural damping cannot change the stable or unstable characteristic of the
mean flow FSI spectrum.

Lastly, the influence of the structural inertia Is and the elastic centre XEC are also independently investigated for
the nominal values of structural stiffness and damping coefficients. The results are present in figure 4.5. Concerning
the variation of Is, we first note that an increase of the structural inertia tends to stabilise the divergence mode. The
flutter mode presents roughly the same growth rate and its frequency decreases with the increase of Is. Concerning
the variation of XEC , we considered three different cases: the case where the elastic centre is fixed at the leading edge,
mimicking a rigid flag behaviour, the nominal case XEC = 0.186 and the quarter-chord case XEC = 0.25. We conclude that
the increase of XEC presents the opposite behaviour of the increase of Is. In particular, we note that that the divergence
mode is further destabilised as XEC moves forward. On the other hand, the flutter mode presents a small variation of its
growth rate, while the frequency increases with the increase of XEC .

4.2.3 Effect of the Reynolds number and airfoil geometry

In this section, we investigate the behaviour of the fluid–structure eigenvalues, with the Reynolds number variation,
as well as with a change in the airfoil geometry, for the nominal structural parameters. We start by analysing the effect
of the Reynolds number variation. Figure 4.6a presents the FSI spectrum variation for the range 30000≤Re≤ 65000.
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The spectrum presents a divergence eigenvalue that becomes unstable for a certain value of Re. At the same time, the
flutter mode is always located in the stable side of the spectrum and is not greatly affected by the change in the Reynolds
number. This behaviour can more clearly be analysed in figure 4.6b, where the growth rate of both divergence and flutter
eigenvalues is depicted as function of the Reynolds number. One can see that the divergence eigenvalue becomes unstable
for Re = 32000. As the Reynolds number increases, the growth of the divergence mode continues to increase. For the
last to computations at Re= 60000 and Re= 65000, the divergence growth rate seems to attain a maximum value. The
analysis was not conducted for higher Reynolds numbers, as the mean flow solution from two-dimensional simulations
loses the y symmetry for Re > 65000. Therefore, the approximation of the mean flow solution via the mean flow from
two-dimensional simulations seems no longer pertinent. Concerning the flutter eigenvalue, one can observe that its
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Figure 4.6 – Influence of the Reynolds number on the FSI eigenvalues for nominal values of the structure
parameters: on the left, the spectrum evolution of the eigenvalues for a range 30000≤Re≤ 65000, with the red and
yellow circles corresponding to the divergence and flutter eigenvalues, respectively. On the centre, the evolution
growth rate of the divergence and flutter eigenvalues with the Reynolds number. On the right, the zero isocontour
lines of the real (solid line) and imaginary (dash-dotted line) parts of RFSI for three values of Re: Re = 32000
(orange lines), Re= 50000 (black lines) and Re= 65000 (brown lines).
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Figure 4.7 – Influence of the airfoil geometry on the FSI eigenvalues for nominal values of the structure parameters:
evolution of the growth rate for the divergence (red) and flutter (yellow) eigenvalues for three airfoil geometries: a
NACA0010 (squares), a NACA0012 (circles) and a NACA0014 (triangles).
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growth rate is approximatively constant, through the Re range.

To better understand the position of these eigenvalues on the spectrum as the Reynolds number varies, the zero
isocontour of the real and imaginary parts of RFSI is sketched in figure 4.6c for three Reynolds numbers. One can note
that the imaginary part of RFSI , represented by the dash-dotted lines, is roughly constant for the three considered
Reynolds numbers. This fixes the growth of the flutter mode, as discussed in section 3.3.4. On the other hand, the real
part of RFSI , is greatly affected by Re, in particular near the origin. The zero isocontour lines of Rr

FSI fix the growth rate
of the divergence mode, which is marginally stable for Re= 32000, in the orange lines, and unstable for the two higher
Reynolds numbers.

Finally, the influence of the airfoil geometry on the fluid–structure eigenvalues is presented in figure 4.7. This analysis
is considered relevant as several low-Reynolds number UAV’s use a symmetric NACA airfoil for their vertical tail (Keane
et al., 2017). Three different symmetric airfoils are considered: the nominal case of a NACA0012 airfoil, the thinner
case of a NACA0010 airfoil and the thicker case of a NACA0014 airfoil. For the thinner airfoil, the destabilisation of the
divergence mode appears at Re= 39000, corresponding to a higher value with respect to the nominal case. For the thicker
airfoil, the divergence mode becomes unstable for Re= 26000, corresponding to a lower value with respect to the nominal
case. The flutter eigenvalue remains on the stable side of the spectrum for the three considered geometries, maintaining
a roughly constant growth rate through the Reynolds number range considered. With this analysis, we conclude that the
increase of the thickness of the airfoil tends to destabilise both the divergence and the flutter eigenvalues for a fixed value
of Re. Concerning the study of asymmetrical airfoils, we note that the primary equilibrium point would not be always at
α= 0◦, depending on the airfoil geometry. This investigation is left for a future work. Further, a change in the geometry
should be accompanied by a change in the structural inertia, which was not considered here and is also left for a future
work.

4.2.4 Comparison between analyses around a mean flow from 2D and 3D simulations

Hitherto, the mean flow FSI stability analysis was conducted around a mean flow corresponding to the time-averaged
solution of two-dimensional simulations. Since the instantaneous flow field is three-dimensional for the considered
Reynolds number (as discussed in chapter 2), we perform here a mean flow linear stability analysis with a time- and
spanwise-averaged flow solution issued from a DNS simulation at Re= 50000 and α= 0◦.

A comparison of the spectrum between the two mean flow analyses is made in figure 4.8. One can observe that both
divergence and flutter eigenvalues have a higher growth rate for the mean flow issued from a DNS, when compared with
the one coming from 2D simulations. However, the difference is not significant as illustrated by the relative errors of
both real and imaginary parts of the eigenmodes in table 4.2. We conclude that the results of a mean flow FSI stability
analysis are not significantly influenced by the three-dimensional effects that can be taken into account on the mean flow
computation.

4.2.5 Comparison between classical and Reynolds stress formulations of the mean flow
stability analyses

Up until now, the mean flow results were performed using the formulation derived from the Floquet analysis, i.e.,
with the classical formulation (see section 1.4.4, page 35). On the other hand, we presented section 1.5.2 (page 40) an
alternative formulation, based on the slow time scale dynamics of the fluid–structure system, denoted Reynolds stress
formulation. The results of these two approaches for Re= 50000 are compared in figure 4.9. On the left-hand side, we
compare the eigenvalues near the origin in a spectrum representation, while, on the right-hand side, we report the
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Divergence eigenvalue Flutter eigenvalue

2D mean flow 0.2084 −0.1465+0.5386i

3D mean flow 0.2238 −0.1435+0.5245i

Relative error 6.88% 2.09%+2.69%i

Figure 4.8 & Table 4.2 – On the left, spectrum comparison between analyses around mean flow solutions from
2D (black triangles) and 3D (blue diamonds) simulations at Re = 50000 and α = 0◦, for the nominal structure
parameters. On the right, comparison of the corresponding divergence and flutter eigenvalues, along with the
relative error of their real and imaginary parts.
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Formulation Divergence eigenvalue Flutter eigenvalue

Classical 0.2084 −0.1465+0.5386i

Reynolds stress 0.2081 −0.1461+0.5348i

Relative error 0.14% 0.27%+0.71%i

Figure 4.9 & Table 4.3 – On the left, spectrum comparison between classical (black triangles) and Reynolds
stress (blue diamonds) formulations at Re= 50000 and α= 0◦, for the nominal structure parameters. On the right,
comparison of the corresponding divergence and flutter eigenvalues, along with the relative error of their real and
imaginary parts.

divergence and flutter eigenvalues and corresponding relative error. From the results, we can conclude that the difference
between the two approaches is negligible for α= 0◦. As it will be seen in chapter 6, this difference becomes important for
the mean flow linear stability analyses at α 6= 0◦.

4.3 Floquet analysis of the primary instability at Re= 20000 and α= 0 ◦

In this section, we use the Floquet FSI analysis to investigate the linear fluid–structure stability of a limit cycle
oscillation. The limit cycle oscillation corresponds to one period of the vortex shedding phenomenon, for a fixed incidence
of α = 0◦. This analysis is based on the formulation derived in section 1.4.3 (page 34). Contrary to a mean flow FSI
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Figure 4.10 – Floquet multipliers on the complex plane (µr, µi) for the Floquet FSI analysis at Re= 20000, α= 0◦

and Ks = 0. The red and yellow circles represent the divergence and flutter Floquet multipliers, respectively, while
the remaining Floquet multipliers are represented by the smaller black circles. The unstable region outside the unit
circle

∣∣µ
∣∣> 1 is represented by the grey zone.

analysis, where only the mean component of the limit cycle oscillation is taken into account, the Floquet FSI linear
stability analysis is made around a periodic flow solution, taking into account the fast time scale fluid fluctuations.

The study is carried out at Re= 20000 to keep the coherence with the following chapters, where we conduct the same
analysis at a different incidence. Likewise, the structural stiffness was also decreased to a value of Ks = 0, justified in the
following chapters.

We start by describing the divergence and flutter Floquet eigenmodes, associated to an initial time instant of the
vortex shedding period. We then proceed to the characterisation of the divergence Floquet eigenmode during a complete
period, with the help of its harmonic decomposition, followed by the comparison of the FSI eigenmodes of both mean flow
and Floquet FSI analyses. Finally, a comparison of the growth rate of the divergence mode associated to these analyses is
made with respect to the exponential growth rate observed on time-marching FSI nonlinear simulations. The numerical
approach used to obtain the Floquet multipliers associated to the present Floquet eigenproblem is detailed in appendix B.
As done in the previous sections, the hat notation on the eigenmode is dropped, with respect to chapter 1, to simplify the
notation. In that way, the Floquet eigenmodes are noted q = [

q f , θ,Ω
]T .

4.3.1 Description of the divergence and flutter Floquet eigenmodes

The stability character of the Floquet FSI eigenmodes is usually accessed via the Floquet multipliers. A Floquet
multiplier represents the complex amplitude gain of the periodic Floquet eigenmode over one period T, having q(X , t+T)=
µq(X , t). A representation of the Floquet multipliers on the complex plane (µr, µi) is present in figure 4.10 for a periodic

Floquet multiplier µ Floquet eigenvalue σ

Divergence mode 1.0679 0.22044
Flutter modes 0.9158±0.1310i −0.26113±0.4766i

Table 4.4 – Divergence and flutter Floquet multipliers and corresponding eigenvalues for Re= 20000, α= 0◦ and
Ks = 0.
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θ Ω mz(q f )

Divergence mode 1 0.2176 0.2304
Flutter mode 0.1238−0.9923i 0.4394+0.3149i −0.6929+0.5689i

Table 4.5 – Solid components and the associated aerodynamic moment coefficient of the divergence and flutter
eigenmodes for a Floquet FSI linear stability analysis at Re= 20000, α= 0◦ and Ks = 0.

flow at α = 0◦ and Re = 20000, where we found a period of T = 0.298, as reported in the chapter 2. The grey zone
corresponds to the unstable region, where the modulus of the Floquet multipliers

∣∣µ
∣∣ is larger than one. The Floquet

multipliers located on the µr axis are real and associated to synchronous Floquet eigenmodes, that do not break the time
periodicity of the periodic flow solution, while the complex Floquet multipliers introduce a phase shift on the periodic flow
solution. The complex Floquet eigenvalue σ can be retrieved using the identity µ= eσT .

Three Floquet multipliers are highlighted, two of then in yellow corresponding to the flutter Floquet multipliers and
a red one corresponding to the divergence Floquet multiplier. A summary of the FSI Floquet eigenvalues is present in
table 4.4. The black circles represent the remaining Floquet multipliers, which are stable, excepting a static one, located
at (µr, µi)= (1, 0). The latter is associated to the fact that the time derivative of the periodic flow solution,

[
∂q f ,b/∂t, 0, 0

]T ,
corresponds to an eigenvector of the Floquet FSI eigenproblem, associated to the eigenvalue σ= 0.

The results show the presence of an unstable real eigenmode, the divergence mode. This eigenmode is associated
to the amplification of the linear perturbation during the vortex shedding period. Since the eigenmode is synchronous,
no phase shift of the periodic flow field is observed after the evolution of the associated perturbation during one period.
The spatial structure of the divergence eigenmode fluid component is depicted in figure 4.11 for the initial instant of
the period. The streamwise velocity field of this divergence mode is displayed with a coloured map. The isocontours of
the spanwise vorticity of the periodic flow are superimposed using solid black lines for positive values and dashed black
lines for the negative values. The eigenmode is normalised with respect to the angular displacement component, such
that |θ| = 1. We note that the spatial structure is mainly located in the wake of the airfoil. In particular, the spatial
structure starts by being located near the trailing edge of the airfoil, in the zones dominated by the shear stress in the
instantaneous solution of the periodic flow. As the eigenmode is convected, the regions of important values tend to be
located at the core of the spanwise vortices. In the case of the divergence mode, all solid components are real, as depicted
in table 4.5, along with the associated aerodynamic moment.

Concerning the flutter eigenmode, the corresponding Floquet multiplier is located in the stable region where
∣∣µ

∣∣< 1.
We note that in this case, the Floquet multiplier is complex (see table 4.4), corresponding to an asynchronous eigenmode
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Figure 4.11 – Instantaneous streamwise velocity field U of the fluid component of the divergence Floquet eigenmode
at Re = 20000, α = 0◦ and Ks = 0. The black isocontours represent the spanwise vorticity of the corresponding
instant of the periodic flow (Ωz =±20 and Ωz =±2).
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Figure 4.12 – Instantaneous streamwise velocity field U of the fluid component of the flutter Floquet eigenmode
at Re = 20000, α= 0◦ and Ks = 0: real and imaginary parts on the top and bottom plots, respectively. The black
isocontours represent the spanwise vorticity of the corresponding instant of the periodic flow (Ωz =±20 andΩz =±2).

that introduces a phase shift on the base periodic flow evolution at each period. The solid components of the flutter
eigenmode are reported in table 4.5 for the Floquet multiplier with µi > 0. The spatial structure of the real and imaginary
parts of the fluid component are presented in figure 4.12. Both real and imaginary parts present a similar spatial
structure as the divergence eigenmode, with a presence mainly on the wake of the airfoil.

4.3.2 Harmonic content of the divergence Floquet eigenmode over a period

In order to understand the importance of the divergence eigenmode during the complete vortex shedding period, this
divergence mode is injected as the initial perturbation of the linearised equations, and a time-integration is performed
during one period. The exponential growth rate of the eigenmode is counteracted by an additional term −λMq, added to
the linearised equations, as presented in equation 1.31 (page 35).

The mean and first harmonic components of the divergence eigenmode are noted q0 and q1, respectively, with
q0 = [

U0, p0, θ0,Ω0]
and q1 = [

U1, p1, θ1,Ω1]
. The spatial structure of the streamwise velocities U0 and U1 is presented

in figure 4.13. The solid lines correspond to the mean recirculation zone at the rear of the airfoil associated to the
periodic flow limit cycle. Concerning the mean component, we observe the deviation of the streamwise velocity field from
the streamwise axis for x& 1.2. The same behaviour is found on the mean flow field (see figure 4.1). For the Floquet
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Figure 4.13 – Spanwise vorticity field of the mean component (left) and the real part of the first harmonic (right) of
the fluid component of the divergence Floquet eigenmode at Re= 20000, α= 0◦ and Ks = 0. The black lines represent
the time-averaged recirculation zone.
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Figure 4.14 – Evolution of the solid components of the divergence Floquet eigenmode and the corresponding
aerodynamic moment coefficient, over one vortex shedding period at Re= 20000, α= 0◦ and Ks = 0. The dashed
horizontal lines represent the mean values.

θ Ω mz(q f )

Mean 1 2.2044 ·10−1 2.8431 ·10−1

1st harmonic 1.3696 ·10−5 + (6.6685 ·10−5)i −1.3956 ·10−3 + (3.0349 ·10−4)i −2.6292 ·10−2 + (1.1250 ·10−1)i

Table 4.6 – Mean and first harmonic components of the solid components and the corresponding aerodynamic
moment coefficient of the divergence Floquet eigenmode for Re= 20000, α= 0◦ and Ks = 0.

eigenmode, this deviation is associated to the mean component of the flow unsteadiness that is taken into account during
the computation of U0.

Concerning the first harmonic component, we observe that U1 is not symmetric in the cross-stream direction with
respect to the x-axis. This loss of symmetry is associated to the nontrivial values of the solid components, in particular
the angular displacement, responsible for the deviation of the airfoil from its equilibrium position during one cycle of the
vortex shedding oscillation. We further note that the first harmonic spatial structure is non negligible, when compared to
the magnitude values of the mean component. This suggests that the terms neglected during the derivation of the mean
flow formulation (section 1.4.4) are in fact non-negligible.

The evolution of the solid components and the aerodynamic moment during one period is presented in figure 4.14.
The curves start from the previous values reported in table 4.5 for the divergence eigenmode associated to the first
instant of the periodic flow. The three curves present a sinusoidal shape. We note that the angular displacement and the
aerodynamic moment signals are in antiphase, i.e., with a phase shift of 180◦.

Associated to the above signals, the mean and first harmonic component values are present in table 4.6. Concerning
θ and Ω, we note that their first harmonic content is almost negligible, when compared to the values of the mean
components. In contrast, the first harmonic content of the aerodynamic moment is non-negligible. This is in accordance
with the fact that the first harmonic of the fluid eigenmode component (on the right of figure 4.13) is also non-negligible.

4.3.3 Comparison with the mean flow eigenvalues/eigenmodes

We proceed to the comparison between the eigenvalues of both FSI analyses as well as to the comparison between the
mean component of the divergence Floquet eigenmode, described previously, and the divergence eigenmode obtained with
a mean flow FSI analysis (classical formulation), for the same fluid and structure parameters.

The eigenvalues of both FSI analyses of both analysis are compared in table 4.7. Both analyses present a very good
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Mean flow analysis (classical formulation) Floquet analysis

Divergence mode 0.21893 0.22044
Flutter modes −0.23940±0.50841i −0.26112±0.47663i

Table 4.7 – Comparison between the FSI eigenvalues from a mean flow analysis and from a Floquet analysis for
Re= 20000, α= 0◦ and Ks = 0.
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Figure 4.15 – Comparison of the streamwise velocity field between the divergence eigenmode of a mean flow analysis
(left) and the mean component of the divergence eigenmode of the Floquet FSI analysis (right), at Re= 20000, α= 0◦

and Ks = 0.

agreement between the different results. The Floquet analysis has a slightly more unstable divergence mode and a more
stable flutter mode, when compared to the mean flow analysis.

The differences on the divergence mode are further explored by comparing the mean component of the divergence
Floquet eigenmode and the divergence eigenmode of a mean flow FSI analysis. For that, we compare the streamwise
velocity of these quantities, in figure 4.15. In the case of the mean flow eigenmode, we recall that the normalisation is
such that

∣∣∣θ
∣∣∣=

√
θHθ = 1. In that way, both fields present a unitary angular displacement component. The difference

between the two fields can be noted on their spatial structure. The mean flow FSI eigenmode (on the left) has a spatial
structure that starts on the second half of the airfoil and continues through the wake. In contrast, the mean component of
the Floquet eigenmode (on the right) is deviated on the wake of the airfoil for x& 1.2. As noted before, the same behaviour
is found on the mean flow field (see figure 4.1). The deviation can be attributed to the Reynolds stress components of the
periodic flow, that are taken into account on the Floquet analysis. Further, we note that the symmetry break with respect
to the x-axis is not visually perceptible for the mean flow eigenmode, whereas it can be discerned for the mean component
of the Floquet eigenmode.

4.3.4 Comparison with the nonlinear simulations

We end the chapter with a comparison between the stability results and the two-dimensional nonlinear aeroelastic
simulations. These simulations are used in the following chapter to describe the nonlinear dynamics of the coupled
system. In this section, we are interested in comparing the exponential growth rate of the angular displacement that can
be observed on an initial phase of the nonlinear simulations, with the linear growth rate predicted by the mean flow FSI
and Floquet FSI analyses.

Figure 4.16 depicts the evolution in time of the angular displacement in a log scale. The nonlinear simulations are
initialised from an instant of a purely-fluid time-marching simulation, with an initial angular displacement and velocity
of zero. The exponential growth of θ is illustrated by the dashed red line, with a slope of λnl = 0.22. The comparison with
the linear analyses is made in table 4.8. Observing the values, we conclude that the divergent behaviour of the airfoil is
quite well predicted by the linear analyses conducted in this chapter. Further, we report in table 4.9 the same results for
four different values of Ks, used in the next chapter. For the larger value of Ks, no exponential growth is observed in the
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Figure 4.16 & Table 4.8 – On the left, exponential growth of the angular displacement observed in nonlinear FSI
simulations at Re= 20000 and Ks = 0. On the right, comparison between the exponential growth of the nonlinear
FSI simulation, λnl , and the divergence eigenvalues from mean flow and Floquet linear stability analyses at
Re= 20000, α= 0◦ and Ks = 0.

Kdim
s Ks λnl Mean Flow divergence eigenvalue Floquet divergence eigenvalue

0.080 1.390 — — —
0.020 0.347 0.12323 0.12362 0.12713
0.005 0.087 0.19619 0.19583 0.19764
0.000 0.000 0.21910 0.21893 0.22044

Table 4.9 – Comparison between the exponential growth of the nonlinear FSI simulations, λnl , and the unstable
divergence eigenvalues from the mean flow FSI and Floquet FSI linear stability analyses at Re= 20000 and α= 0◦

for four different values of structural stiffness.

nonlinear simulations (as it will be detailed in the next chapter), which is in accordance with the fact that no divergence
eigenmode is found. For the remaining values of Ks (0.347, 0.087 and 0), a very good agreement is found between the
nonlinear exponential growth of θ and the values of the divergence eigenvalue of the linear analyses.

With the present results in mind, we describe in the next chapter the fluid–structure nonlinear behaviour in time, for
different structure parameters and for different Reynolds numbers.
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Chapter 5

Nonlinear FSI temporal simulations

In the previous chapter, the onset of a fluid–structure instability on a NACA0012 airfoil mounted on a torsional spring
system was characterised via linear analyses. With these tools, a divergence behaviour of the airfoil from the equilibrium
position at α= 0◦ was predicted. Since the governing fluid–structure equations are inherently nonlinear, the unrestrained
linear exponential growth of the instability becomes at some point unrealistic. At this point, the influence of the nonlinear
terms becomes important, modifying and saturating the perturbation growth.

In this chapter, we perform temporal simulations of the pitching airfoil coupled to the flow equations to investigate
the different nonlinear regimes that may arise on the fluid–structure system. In a first part, we illustrate the different
equilibrium positions admissible for the fluid–structure system that can be retrieved from the quasi-steady equilibrium
positions of the fluid–structure system, given by the aerodynamic moment curve evolution with the angle of attack, for
Re = 20000. In a second part, different nonlinear regimes are identified, varying the structural stiffness and keeping
the Reynolds number constant. In a third part, we further explore the existence of self-sustained oscillating states and
characterise the vibration amplitude that results from the nonlinear saturation. Herewith, a bifurcation diagram is
sketched, where we identify different stable branches for the same values of structural stiffness. Finally, we explore the
different regimes appearing for Re≥ 50000, keeping the structural parameters constant. This increase in the Reynolds
number ultimately leads to a global limit cycle oscillation around α= 0◦, commonly known in the literature as laminar
separation flutter.

5.1 Introduction

The present chapter tries to shed light on the emergence of the laminar separation flutter phenomenon, firstly reported
in the wind tunnel experimental investigation conducted by Poirel et al. (2008). They demonstrated the existence of
self-sustained limit cycle oscillations within the Reynolds number range of 45000 ≤ Re ≤ 130000. This limit cycle is
characterised by a Strouhal frequency around St= 0.06 and a maximum amplitude of oscillation of αmax ≈ 5.5◦, around
the equilibrium position at α= 0◦. The authors suggested that the loss of stability of the airfoil at its equilibrium position
and, consequently, the dynamics of the pitch oscillations, were governed by the laminar separation of the boundary layer
over the airfoil, either due to a trailing edge separation or to the presence of a Laminar Separation Bubble (LSB). The
presence of the pitch oscillations was demonstrated for three different values of structural stiffness, Ks, including the
case of Ks = 0, showing that the oscillations are both driven and limited by the aerodynamic forces, and can thus sustain
even without the presence a structural spring. These aerodynamic loadings result from the flow behaviour patterns of
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laminar separation, transition, and reattachment processes that alternate between either side of the wing.
The phenomenon was numerically reproduced by Poirel et al. (2011), where two-dimensional coupled time-marching

aeroelastic simulations were performed for 50000<Re< 150000. The authors adopted a purely two-dimensional laminar
fluid model and a URANS fluid model, the latter associated to a SST k–ω turbulence model with a low-Reynolds-number
correction. The investigation confirmed that the laminar separation of the boundary layer near the trailing edge plays a
critical role in initiating and sustaining the pitch oscillations. For this reason, the phenomenon is labelled as Laminar
Separation Flutter (LSF). The authors also showed that the turbulence viscosity tended to inhibit the existence of
the instability. In subsequent studies, this instability was investigated by Barnes et al. (2016, 2018), where Implicit
Large-Eddy Simulations (ILES), coupled with the structural dynamics, were performed. Among the findings, the authors
found the existence of the limit cycle oscillation beyond the initial Reynolds number range investigated by Poirel et al.
(2008), 77000 ≤ Re ≤ 200000, at which the pitch instability was observed after imposing an initial disturbance on the
airfoil incidence. They also reported a reduction on the size of the LSB with the increase of the Reynolds number.

The influence of the structural stiffness was investigated in more detail in Barnes et al. (2019) for Re= 77000 and
Re= 110000, where the LSF is shown to persist over several orders of magnitude of structural rigidity. The effect of the
structural rigidity at a fixed Reynolds number exhibited a similar behaviour as the effect of Reynolds number at a fixed
stiffness. More precisely, both parameters influence the timing of transition events relative to the pitch limit-cycle, with
for example, at high stiffness values, a turbulent reattachment that occurs at a later phase of the cycle.

Finally, although the phenomenon can be observed with only the pitch degree of freedom, several analysis were made
afterwards regarding the same case, but considering both pitch and heave degrees of freedom. These studies include the
experiments of Poirel et al. (2012, 2014), numerical LES simulations from Yuan et al. (2013), among others.

Concerning the lower Reynolds number regimes, no studies were found that addressed the different nonlinear regimes
that may exist. For the lower limit cases at Re ≈ 50000, the above literature reports negligible oscillations of the FSI
configuration around α= 0◦. In this way, the present chapter aims at investigating the temporal nonlinear behaviour
of a NACA0012 airfoil with a pitch degree of freedom on Reynolds numbers regimes below and above 50000. Related
with the subject, Zhu et al. (2020) recently performed an experimental study to describe the flow-induced instability of
an elastically mounted wing at Re = 50000. However, the elastic centre was located at mid-chord and the amplitude
oscillations were observed up to 120◦.

The chapter is organized as follows. In section 5.2, we discuss the quasi-static equilibrium positions admissible by the
structure for Re= 20000, based on the evolution of the mean flow aerodynamic moment curve with the static angle of
attack, as a prelude of the nonlinear simulations. In section 5.3, different nonlinear regimes for Re= 20000 are explored
using Navier–Stokes two-dimensional time-marching simulations. Next, in section 5.4, a bifurcation diagram is sketched,
mapping the possible stable solutions as function of the structural stiffness. In section 5.5.1, we fix the Reynolds number
to 50000, in order to illustrate the corresponding quasi-static equilibrium points admissible by the structure. Finally, in
section 5.5, the nonlinear simulations are used to characterise the different regimes present for Re≥ 50000.

5.2 Quasi-steady equilibrium positions for mean flow solutions from 2D
simulations at Re= 20000

In the previous chapter, we show that the airfoil equilibrium point at α= 0◦ could be statically unstable for Re= 20000,
if the structural stiffness is sufficiently low with respect to its nominal value. This is discussed with both mean flow and
Floquet FSI analyses (see section 4.3.4, page 155). These analyses are conducted at a null incidence angle, hereafter
denoted α1 = 0◦. We denote this equilibrium state as the primary quasi-steady equilibrium point.
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Figure 5.1 – Quasi-steady equilibrium positions for mean flow from 2D simulations at Re= 20000. On the left,
evolution of the aerodynamic moment coefficient with the angle of attack (black line), associated to fixed incidence
simulations at Re= 20000. On the right, evolution of the admissible equilibrium points with the structural stiffness
(black line). The red lines and the blue dots represent the different values of structural stiffness considered and the
corresponding quasi-steady equilibrium points, respectively. The highlighted admissible secondary equilibrium
positions are Ks = 0 (α2 = 3.64◦), Ks = 0.087 (α2 = 3.44◦) and Ks = 0.347 (α2 = 2.72◦).

In this section, we demonstrate that, depending on the structural stiffness coefficient, a second point of equilibrium
may appear, hereafter denoted α2. Formally, both quasi-steady equilibrium points are found from equation 1.24 (page 30),
which states that the quasi-steady airfoil incidence, αb, is fixed by the ratio between the aerodynamic moment coefficient
of a mean flow at this incidence and the structural stiffness, such that

αb =−mz
(
qb

)

Ks
. (5.1)

In order to illustrate these equilibria, the curve mz–αb, already presented in figure 2.9 (page 79), is revisited in this
section in figure 5.1a. We recall that the mean flow is issued from a time-averaged solution of two-dimensional simulations,
where for each simulation the airfoil incidence is fixed at αb. Four different values of structural stiffness are considered in
the following analysis, represented by the red straight lines. We choose these particular values to illustrate the different
nonlinear regimes that can be found, as it will be detailed next. We first note that all four red lines intersect the mz–αb

curve at αb ≡α1 = 0◦, the primary equilibrium position, represented by one of the blue dots. Then, depending on the value
of Ks chosen, a second equilibrium may arise from the intersection of these lines with the mean aerodynamic moment
curve. The second equilibrium point can be found for all cases, except for the highest Ks considered, Ks = 1.390, where the
only intersection with the mean aerodynamic moment curve is located at the origin. For the three other cases, a second
equilibrium is found, with an increasing value of α2 as Ks decreases.

Alternatively, the equilibrium points can be found by directly sketching the admissible values of Ks as function of αb,
as presented in figure 5.1b. The computation of these points is based on equation 5.1, represented by the black line. We
note that is equation is not defined for Ks = 0. In this case, the equilibrium points are such that the associated mz

(
qb

)
is

also null. Concerning the values at αb = 0◦, they correspond to an equilibrium position for every Ks value, since mz
(
qb

)

is null.
Along the axis αb = 0◦, one finds the primary equilibrium points, α1. Based on the primary analysis of the previous

chapters, these points are represented by the solid black line in the case of being linearly stable (Ks& 0.75), or by the
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dashed black line in the case where they were found to be linearly unstable. The exact position of this threshold was
discussed in the previous chapter, being well approximated by the slope of mz at αb = 0◦. The four values of Ks chosen for
the following discussion are represented by the vertical red lines.

A summary of the considered values of structural stiffness and the corresponding quasi-steady equilibrium points is
present in table 5.1. Finally, we note that, since the airfoil is symmetric, the possible second equilibrium points are also
found for the negative values of αb, not represented in the previous figures.

5.3 Different FSI nonlinear regimes for Re= 20000

In this section, we carry out numerical simulations of the pitching airfoil interacting with the two-dimensional flow
solution of the incompressible Navier–Stokes equations at Re= 20000 for the four values of structural stiffness reported in
the previous paragraph. The remaining structural parameters are reported in table 1.3 (page 25). All simulations started
from an instantaneous solution of a fixed incidence two-dimensional time-marching simulation at α= 0◦. Therefore, the
solid components of the nonlinear simulations were also initialised at α= 0◦ and Ω= 0. As described in chapter 2, the
fixed incidence simulations present a periodic vortex shedding at the rear of the airfoil, vibrating at a fast time scale
frequency. As expected, this phenomenon is also observed in the fluid–structure nonlinear simulations. Additionally,
we describe in the following paragraphs the behaviour of the angular displacement and velocity with time. We note
that, depending on the phase of the vortex shedding phenomenon on the instantaneous flow field considered for the
initialisation of the nonlinear simulations, the angular displacement could evolve to either positive or negative values.
For the initial conditions considered, a positive incidence was always observed on the initial phase of the simulations.

In the following sections, we revisit the definitions of Hθ and HΩ, introduced in chapter 1 in order to evaluate the
effect of the fast time scale oscillations, associated to the vortex shedding frequency, on the solid components. This enables
us to evaluate the importance of these terms on the nonlinear simulations. Further, the computation of these terms
enables us to discuss the validity of the hypotheses made on the linear stability formulation, where the terms associated
to the fast time scale oscillations of the solid components were neglected.

With that in mind, we first define the ratio between the fast time scale harmonic component of the angular displace-
ment and aerodynamic moment coefficient. This ratio can be estimated using equation 1.22 (page 29), which we will
denote H theory

θ
. At the same time, we can calculate this ratio using the fundamental harmonic components of the angular

displacement and aerodynamic moment, α1 and m1
z, coming from the nonlinear simulations, which we will denote Hsimul

θ
.

In both cases, the fast time scale frequency is fixed by the vortex shedding frequency of the nonlinear simulations, ωV S ,
having:

H theory
θ

= 1
Is

(−ω2
V S +2ωV Sωnζi+ω2

n
) and Hsimul

θ = α1

m1
z

,

Kdim
s (Nm) 0.080 0.020 0.005 0.000

Ks 1.390 0.347 0.087 0.000

α1 0.00◦ 0.00◦ 0.00◦ 0.00◦

α2 — ±2.72◦ ±3.44◦ ±3.64◦

Table 5.1 – Primary and secondary equilibrium points, α1 and α2, respectively, retrieved from the static mean
aerodynamic moment curve as function of the angle of attack (see figure 5.1b) for Re = 20000 as function of the
structural stiffness.
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where ωn =
√

Ks/Is and ζ= Ds/ (2Isωn). Then, we also define the ratio between the fast time scale harmonic component of
the angular velocity and aerodynamic moment coefficient

H theory
Ω

=ωV SH theory
θ

and Hsimul
Ω = Ω1

m1
z

.

In practice, we will be interested in their magnitude. With that in mind, we proceed to describe the different nonlinear
regimes.

5.3.1 Regime R1: weak oscillations around α= 0◦

In the first case considered, we fix the value of the structural stiffness at Ks = 1.390. The time history associated to
the angular displacement, angular velocity and aerodynamic moment coefficient is present in figure 5.2. In this case, we
observe that the angular displacement oscillates around α= 0◦, with an amplitude of order 10−4. Therefore, we label the
regime where this case is found as a weak oscillation regime around α= 0◦.

The weak oscillations around the zero angle of attack are due to the fact that the value of Ks is sufficiently high,
restraining the movement of the structure. This result confirms the stable behaviour of the primary equilibrium point,
α1 = 0◦, predicted by the linear stability results. On the close-up present in the angular displacement figure, we can
note a minor deviation from the null value, with an order of magnitude of 10−4. Due to its small value, we neglect this
deviation and consider that the mean angular position is at α= 0◦. Further, we note that all the sketched quantities
present periodic behaviour, vibrating at the fundamental frequency of ωV S = 21.041. This value is in very good agreement
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Figure 5.2 & Table 5.2 – Regime R1: time history of the angle of attack (top left), the angular velocity (top right)
and the aerodynamic moment coefficient (bottom left) for a two-dimensional coupled time-marching simulation
at Re = 20000 and Ks = 1.390. The table on the bottom right compares the values of Hθ and HΩ, evaluated at
ωV S = 21.041, the vortex shedding frequency, for the theoretical estimation and for the nonlinear simulations.
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with the vortex shedding frequency found for the static simulations at αb = 0◦ (ωV S = 21.085, see table 2.1, page 73).
Therefore, we conclude that a time-marching simulation carried out at a static angle of αb = 0◦ represents a very good
approximation of the limit cycle oscillation found at Ks = 1.390.

We can quantify the importance of the solid vibrations at the vortex shedding frequency on the nonlinear dynamics
with the help of the transfer functions Hθ and HΩ. We report their magnitude in table 5.2, for the theoretical prediction
and for the nonlinear simulations. We first note that both the theoretical values and the values coming from the nonlinear
simulations are in very good agreement. Second, we observe that the magnitude of the transfer function associated
to the fast time scale oscillations of the angular displacement, Hθ, presents an order of magnitude of 10−4, while the
magnitude of the transfer function associated to the angular velocity has an order of magnitude 10−2. With these orders
of magnitude, we expect the contributions of the fast time fluctuations of the angular displacement to the linear stability
analysis formulation to be negligible for the primary equilibrium point. At the same time, we also expect the contributions
of the angular velocity to be negligible, even if they present a substantial bigger value. This was confirmed at the end of
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Figure 5.3 – Regime R1: phase diagrams at Re= 20000 and Ks = 1.390: angle of attack versus angular velocity,
α–Ω, (first row), angle of attack versus aerodynamic moment coefficient, α–mz, (second row) and angular velocity
versus aerodynamic moment coefficient, Ω–mz, (third row). A general view is present on the left, with a zoom on the
right. The transient regime is represented by the grey lines, while the last vortex shedding cycle is represented by the
black lines. The blue dots represent the quasi-static equilibrium point, α1 = 0◦, while the red arrows represent the
direction of the time evolution.

162 Chapter 5 – Nonlinear FSI temporal simulations



Section 5.3 – Different FSI nonlinear regimes for Re= 20000

the last chapter, where a good agreement between the nonlinear exponential growth of the angular displacement and the
static eigenvalue growth rate of the linear stability analyses was found.

In addition to the time histories present above, we plot in figure 5.3 three phase diagrams based on α, Ω and mz. We
sketch with a black line the last vortex shedding cycle, while the transient behaviour from the initial condition to the
converged limit cycle is represented by a grey line. The blue dot represents the primary equilibrium point. We employ on
the left side of the figure a scale that we keep constant when analysing the remaining nonlinear regimes, while a zoom at
the origin is present in the right side of the figure.

From the zoomed figures, we first note that the α–Ω evolution presents an ellipse form, with their major and minor
axes aligned with the figure axes. This indicates us that the time signals of α and Ω are in quadrature, i.e., they have a
phase shift of 90◦. This value comes naturally from their relation: Ω= dθ/dt =−dα/dt. Further, we note that the time
direction, represented by the red arrow indicates that the phase diagram evolves on a anticlockwise direction. This is a
consequence of considering α and Ω positive when rotating in opposite directions, i.e., α is positive when rotating on the
clockwise direction, while Ω is positive when rotating on the anticlockwise direction.

Analysing the zoom on the α–mz phase diagram, we can conclude that the aerodynamic moment and the angular
displacement are in phase, since their evolution over one vortex cycle oscillation (black line) is concentrated on a straight
line of slope inferior to 90◦. Finally, due to the phase relation between angular displacement and velocity, we obtain a
Ω–mz phase diagram with a quadrature phase evolution. This time, since Ω and mz are positive when rotating in the
same direction (anticlockwise), the phase diagram evolves on a clockwise direction.

A three-dimensional representation of the phase diagram of these three quantities is present in figure 5.7, with a
comparison with the case at Ks = 0.347, analysed in the following paragraphs.

5.3.2 Regime R2: weak oscillations around α 6= 0◦

For the second case, we lower the value of the structural stiffness to Ks = 0.347. The time history associated to the
angular displacement, angular velocity and aerodynamic moment coefficient is present in figure 5.4. In this example, and
contrary to the cases in regime R1, we observe an exponential departure of the structure from its initial condition at
α= 0◦, with no associated frequency. This is in accordance with the linear stability analyses performed in the previous
chapter (see table 4.6, page 154), where an unstable static eigenmode was found. After this initial transient regime, we
observe that the angular displacement tends to a static position around 2.72◦. With a close observation of the zoom
present in the angular displacement figure, we actually see that this apparent static position corresponds to a weak
oscillation of α, with an amplitude of order 10−3. This oscillation has a periodic behaviour, vibrating at the fundamental
frequency of ωV S = 19.337. This high frequency oscillation is also found on the angular velocity and aerodynamic moment
time evolutions. As the regime R1, this regime is considered to be a limit cycle oscillation. This frequency value is in
very good agreement with the vortex shedding frequency found for the static simulations at αb = 2.72◦ (ωV S = 19.214, see
figure 2.9, page 79). We also note that this mean equilibrium angle is predicted by the quasi-steady secondary equilibrium
point, located at α2 = 2.72◦ and identified by the horizontal dashed line on the angular displacement evolution.

The final limit cycle oscillation around α= 2.72◦ is characterised by an angular velocity that oscillates around a null
value, as expected. At the same time, the aerodynamic moment signal is also periodic in time, even if we observe that its
oscillation amplitude has increased substantially, when compared the value found for the case on the regime R1. This
increase in the aerodynamic moment amplitude oscillations follows the conclusions made in chapter 2, where we report
an increase of this amplitude for static time-marching simulations, as the angle increases (see figure 2.8, page 78). The
aerodynamic moment tends to a mean value of mz =−0.0165, similar to the mean aerodynamic moment of time-marching
simulations at the quasi-steady secondary equilibrium point (mz (qb)=−0.0167), confirming the equality in equation 5.1.
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The importance of the solid vibrations at the vortex shedding frequency on the nonlinear dynamics is quantified
with the help of Hθ and HΩ, whose magnitude is reported in table 5.3. As for the regime R1, both the theoretical values
and the values coming the nonlinear simulations are in very good agreement, with a slight increase on their numerical
values. In view of these results, we expect the contributions coming from the fast time scale solid components to the
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Figure 5.4 & Table 5.3 – Regime R2: time history of the angle of attack (top left), the angular velocity (top right)
and the aerodynamic moment coefficient (bottom left) for a two-dimensional coupled time-marching simulation
at Re= 20000 and Ks = 0.347. On the angle of attack evolution, the horizontal dashed lines represent the quasi-
static equilibrium points, α1 = 0◦ and α2 = 2.72◦. The red dots highlight the instants A and B. The table on the
bottom right compares the values of Hθ and HΩ, evaluated at ωV S = 19.337, the vortex shedding frequency, for the
theoretical estimation and for the nonlinear simulations.
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Figure 5.5 – Regime R2: spanwise vorticity field of two instants of a two-dimensional coupled time-marching
simulation at Re= 20000 and Ks = 0.347, for the instant A (left) and for the instant B (right), identified on figure 5.4.
The yellow dots over the airfoil surface represent the different separation and reattachment points.
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linear stability analysis formulation to be negligible for the secondary equilibrium point. The linear stability analysis of
this secondary equilibrium point is made in the next chapter.

In figure 5.4 two time instants are highlighted, labelled A and B, corresponding to a maximum and a minimum of
the aerodynamic movement magnitude, respectively. The instants are therefore separated by T/2 time units, T being
the period of the vortex shedding. The instantaneous flow solutions associated to these two instants are illustrated in
figure 5.5, by the spanwise vorticity field. A coherent vortex shedding can be observed in both instants on the wake of the
airfoil. The black lines, representing different streamlines, illustrate the topology of the flow structure, in particular on
the second half of the airfoil, where the boundary layer of the upper surface is separated from Xd = 0.46 onwards, on
both instants. Both instants present a boundary layer on the upper surface that does not reattach to the airfoil surface.
Between the airfoil surface and the separated boundary layer, a main recirculation bubble is formed, rotating on the
clockwise direction. Further, instant A presents a reattachment point at X = 0.94. This reattachment creates a smaller
recirculation bubble, rotating on an anticlockwise direction, formed above the trailing edge.
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Figure 5.6 – Regime R2: phase diagrams at Re= 20000 and Ks = 0.347: angle of attack versus angular velocity,
α–Ω, (first row), angle of attack versus aerodynamic moment coefficient, α–mz, (second row) and angular velocity
versus aerodynamic moment coefficient, Ω–mz, (third row). A general view is present on the left, with a zoom on the
right. The transient regime is represented by the grey lines, while the last vortex shedding cycle is represented by
the black lines. The blue dots represent the quasi-static equilibrium points, α1 = 0◦ and α2 = 2.72◦, while the red
arrows represent the direction of the time evolution.
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Figure 5.7 – Regimes R1 and R2: three-dimensional phase diagrams of the angle of attack, the angular velocity
and the aerodynamic moment coefficient, α–Ω–mz, at Re= 20000 for Ks = 1.390 (left, corresponding to regime R1)
and Ks = 0.347 (right, corresponding to regime R2). The transient regime is represented by the grey line, while the
last vortex shedding cycle is represented by the black line. The small arrow on the left figure highlights the position
of the limit cycle.

In addition to the time histories present above, we plot in figure 5.6 the three phase diagrams based on α, Ω and mz.
As done previously, we sketch with a black line the last vortex shedding cycle, while the transient behaviour from the
initial condition to the converged limit cycle is represented by a grey line. This time, the blue dots represent both the
primary and secondary equilibrium points.

From the left figures, we can first confirm that the airfoil evolves from the static position at α= 0◦ towards the angle
α= 2.72◦. As explained before, the angular displacement evolves towards positive values rather than the negative ones
due to the choice of the initial instant to initialise the nonlinear simulations and its phase in the vortex shedding cycle.
Both positive and negative angular displacement evolutions correspond theoretically to the same phenomenon, due to the
symmetry of the problem.

From the right figures, we can obtain the same conclusions regarding the phase shift between α, Ω and mz as the
ones made for the case at Ks = 1.390 (regime R1): α and Ω have a phase shift of 90◦, α and mz are in phase and Ω and
mz also have a phase shift of 90◦. We also note that the quasi-steady aerodynamic moment of the second equilibrium
point is now negative, respecting equation 5.1.

A three-dimensional representation of the phase diagram of these three quantities is present in figure 5.7. The curve
that represents the last vortex shedding cycle (black curve) is in a plane surface, corresponding to a limit cycle oscillation.
When comparing the regimes R1 and R2, we note that the second limit cycle has a higher amplitude of oscillation in all
three directions, in particular in the aerodynamic moment and angular velocity directions.

5.3.3 Regime R3: strong oscillations around α 6= 0◦

For the third case, we lower the value of the structural stiffness to Ks = 0.087. The time history associated to the
angular displacement, angular velocity and aerodynamic moment coefficient is present in figure 5.8. Similarly to the case
of the previous regime, an initial exponential growth is observed on the initial incidence evolution, corresponding to the
departure of the structure from the initial condition at α= 0◦. A very good agreement is found between this exponential
growth and the growth rate of the static eigenmode found on the linear stability analyses of the primary equilibrium point
(see table 4.6). However, in contrast to the previous case, we observe that, after this exponential growth, the airfoil starts
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Figure 5.8 & Table 5.4 – Regime R3: time history of the angle of attack (top left), the angular velocity (top right)
and the aerodynamic moment coefficient (bottom left) for a two-dimensional coupled time-marching simulation at
Re= 20000 and Ks = 0.087. On the angle of attack evolution, the horizontal dashed lines represent the quasi-static
equilibrium points, α1 = 0◦ and α2 = 3.44◦. The table on the bottom right compares the values of Hθ and HΩ,
evaluated at ωV S,1 = 7.854 and ωV S,2 = 16.151, the two vortex shedding frequencies, for the theoretical estimation
and for the nonlinear simulations.

to oscillate around a mean angle of α= 3.34◦. When comparing this mean angle to the quasi-steady secondary equilibrium
point, at α2 = 3.44, we have a deviation of 0.1◦. Further, the angular displacement oscillations have an amplitude with
an order of magnitude of 1 and vibrate at a very low frequency, ωFSI = 0.428, when compared to the vortex shedding
frequency present in the aerodynamic moment signal. As detailed in the next paragraphs, the vortex shedding frequency
of the FSI simulations varies along the low frequency cycle of the airfoil incidence, on the range 7.854.ωV S . 16.151. In
a addition to this variation, we note that the frequencies in this range are lower than the frequency found for the static
time-marching simulations at αb = 3.44◦ (ωV S = 19.040, see figure 2.9, page 79).

We can have a better understanding of the frequencies present on the above time signals by sketching them on the
frequency space, with the help of a FFT. This is done in figure 5.9. We highlight the low frequency and two vortex shedding
frequencies with the vertical dashed lines. The spectral density estimation of the angular displacement (top left) presents
a distinct peak at ωFSI = 0.428. For higher frequencies, this spectral density estimation presents a decreasing behaviour
as the higher frequencies are not felt by the angular displacement of the structure. In particular, no significant peak is
observed at the vortex shedding frequencies highlighted.

Concerning the aerodynamic moment spectrum (bottom left), the low frequency ωFSI also appears as the dominant
frequency. However, a wide range of high frequencies is present. We delimit this zone by a lower and higher vortex
shedding frequency, representing two local peaks, ωV S,1 = 7.854 and ωV S,2 = 16.151, respectively. These high frequencies
are associated to the vortex shedding phenomenon, that could be already viewed on the temporal evolution of mz. The
wide range of high frequencies is associated to the variation of the vortex shedding frequency along the (low frequency)
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Figure 5.9 & Table 5.5 – Regime R3: spectral density estimation of the angle of attack (top left), the angular
velocity (top right) and the aerodynamic moment coefficient (bottom left), for a two-dimensional coupled time-
marching simulation at Re= 20000 and Ks = 0.087. The vertical dashed lines highlight the low frequency and the
vortex shedding frequencies, with values reported in the table (bottom right).

oscillation of the airfoil incidence, as discussed later. In the spectral density estimation of the angular velocity (top right),
the three frequencies ωFSI , ωV S,1 and ωV S,2 can be discerned, even if the vortex shedding frequencies present a much
lower spectral density estimation value when compared to the one associated to ωFSI .

Due to the presence of these two incommensurable frequencies (ωFSI and ωV S), this regime no longer corresponds to
a limit cycle oscillation. Further, with no periodicity or quasi-periodicity on the sketched time signals, and with a wide
range of significant frequencies on the spectral representation, we categorise this regime as being a chaotic attractor, also
known as a strange attractor. Indeed, some resemblance is found to the Lorenz attractor (Lorenz, 1963), a classical system
of ordinary differential equations that presents chaotic solutions for certain parameter values and initial conditions. In
the present case, we observed that solution of two different nonlinear simulations, at the same Ks, diverge from each other
after some amount of time, even if they start from the same initial condition. This divergence is typical of deterministic
chaotic systems, when a small error is introduced either on the initial condition or on the time evolution process. In the
present case, the error is likely coming from the numerical resolution and the machine precision approximation.

The values of the spectral density estimation at the two vortex shedding frequencies are used to compute the
magnitudes of the transfer functions Hsimul

θ
and Hsimul

Ω
. These values are compared with the theoretical values,

∣∣∣H theory
θ

∣∣∣
and

∣∣∣H theory
Ω

∣∣∣, also evaluated at ωV S,1 and ωV S,2, in table 5.4. Contrary to the previous regimes, a small discrepancy is
found between the theoretical values and the values obtained from the nonlinear simulations. Further, their magnitude
is higher that the ones reported in the previous Ks cases, where no low frequency oscillations were found.

In addition to the time and spectral representations presented, we plot in figure 5.10 the phase diagrams based on α, Ω
and mz, with a two-dimensional representation on the left and the three-dimensional view on the bottom right. The black
line represents the last low frequency oscillation, while the grey line represents all the previous time evolution. Since we
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Figure 5.10 – Regime R3: phase diagrams at Re= 20000 and Ks = 0.087: angle of attack versus angular velocity,
α–Ω, (top left), angle of attack versus aerodynamic moment coefficient, α–mz, (middle left) and angular velocity
versus aerodynamic moment coefficient, Ω–mz, (bottom left). The transient regime is represented by the grey
lines, while the last low frequency cycle is represented by the black lines. The blue dots represent the quasi-static
equilibrium points, α1 = 0◦ and α2 = 3.44◦, while the red arrows represent the direction of the time evolution. The
red dots highlight different instants on the ascending (C instants) and descending (D instants) phases of the angle
of attack. On the bottom right, a three-dimensional phase diagram for α–Ω–mz.

are in the presence of a chaotic attractor, the black line does not correspond to a closed curve as in the previous limit cycle
oscillations. The red dots highlight different time instants, labelled Ci and D i (i ∈ [1, 2, 3, 4]), whose corresponding flow
fields are explored later. These two sets of instants are placed on the ascending and descending phases of the angular
displacement evolution in time. In particular, the instants C4 and D2 are placed at α= 3.44◦, the value of the secondary
equilibrium angle at this Ks.

The oscillation of the airfoil around the secondary equilibrium position α2 = 3.44◦ can be clearly observed in the
α–Ω phase diagram. Qualitatively, we can note that no fast time oscillations of the black curve are observed in the
horizontal direction, coherent with the fact that the frequency spectrum of the angular displacement does not present
significant peaks on the high frequency zone (in particular at ωV S,1 and ωV S,2). In contrast, several fast time oscillations
are observed in the vertical direction, associated to the harmonic content of the angular velocity spectrum on the high
frequency zone.

The phase diagram of α–mz enables us to identify that the ascending phase of the angular displacement is associated
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Figure 5.11 – Regime R3: spanwise vorticity field of several instantaneous solutions of a two-dimensional coupled
time-marching simulation at Re= 20000 and Ks = 0.087. On the left, for the ascending phase of the angle of attack.
On the right, for the descending phase of the angle of attack. The position of the instants on a phase diagram is
identified on figure 5.10.

to larger high frequencies (in particular, ωV S,2), while the descending phase is associated to lower high frequencies (in
particular, ωV S,1). The time evolution of the black curve can be understood with the red arrows scheme, illustrating the
above conclusions. Further, we note that in the descending angular displacement phase, where the lower high frequencies
are found, we have larger values of |Ω|, when compared to the ascending phase. As a consequence, the low frequency
oscillation is characterised by an ascending phase slower than the descending phase. A close-up near α= 3.44◦ is made,
to identify the location of different instants, analysed in the following paragraph.

Figure 5.11 presents the spanwise vorticity field of two sets of instants. The instants C1 to C4, on the left, are located
on the ascending phase of the angular displacement. In this case, the flow is characterised by an organised vortex
shedding, placed close to the wake axis, similar to the vortex shedding present on the wake of an airfoil at a static
incidence (see for instance figure 2.1, page 72). The frequency at which these structures are shed corresponds to the
higher frequency of vortex shedding present in the spectrum of mz (ωV S,2 = 16.151). In contrast, the instants D1 to D4, on
the right, are located on the descending phase of the angular displacement. We note in this case that the vortex shedding
has a more disorganised character, with the main vortex structures more distanced from each other and from the wake
axis. The frequency at which these structures are shed corresponds to the lower frequency of vortex shedding present in
the spectrum of mz (ωV S,1 = 7.854).

When comparing the two vortex shedding frequencies, we observe that ωV S,1 is almost half of ωV S,2. This suggests
that, for the period of time that the airfoil incidence is decreasing, we are in the presence of a period-doubling. This
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Figure 5.12 & Table 5.6 – Regime R4: time history of the angle of attack (top left), the angular velocity (top right)
and the aerodynamic moment coefficient (bottom left) for a two-dimensional coupled time-marching simulation
at Re= 20000 and Ks = 0. On the angle of attack evolution, the horizontal dashed lines represent the quasi-static
equilibrium points, α1 = 0◦ and α2 = 3.64◦. The table on the bottom right reports the values of Hθ and HΩ,
evaluated at ωV S,1 = 7.384 and ωV S,2 = 10.303, the two vortex shedding frequencies, for the nonlinear simulations.

period-doubling phenomenon was also found recently by Marquet et al. (2022) for a NACA0012 airfoil in stall conditions
at Re = 5000 and α≈ 8◦. Related to the emergence to this phenomenon, we can also categorise the particular pattern
formed by the shed of the vortical structures. This is done by comparing the present results to the vast literature
on the benchmark case of the oscillating circular cylinder. The different patterns of vortex formation observed for an
oscillating cylinder are usually classified as function of the amplitude and frequency of oscillation (Williamson et al., 1988;
Govardhan et al., 2000; Williamson et al., 2008). They can be defined, for example, as 2S indicating 2 single vortices
formed per cycle, 2P meaning 2 pairs of vortices formed per cycle and P +S compromising a pair of vortices and a single
vortex per cycle. Firstly, observing the instants C1 to C4, we can observe the shed of 2 single vortices per cycle. Therefore,
we can classify the classic vortex shedding phenomenon as being a 2S regime. In contrast, by observing in detail the
instants D1 to D4, we can observe the shed of 2 pairs of vortices per cycle. In between, a narrow zone of positive vorticity
(in red) can be observed. We conclude that, based on the classical identification of the patterns of vortex formation, we are
in the presence of a regime in between the P and the P +S modes. We recall that this regime is only observed for a small
period of time, when the airfoil incidence is decreasing.

5.3.4 Regime R4: intermittent switching strong oscillations

For the fourth case, we consider the limiting case of Ks = 0. In this case, since no structural stiffness is present, the
restoring force acting on the airfoil, counterbalancing the incidence or decrease of the angle of attack, comes entirely from
the fluid. The time history associated to the angular displacement, angular velocity and aerodynamic moment coefficient
is present in figure 5.12. Similarly to the case of regime R3, an initial exponential growth is observed on the incidence
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Figure 5.13 & Table 5.7 – Regime R4: spectral density estimation of the angle of attack (top left), the angular
velocity (top right) and the aerodynamic moment coefficient (bottom left), for a two-dimensional coupled time-
marching simulation at Re= 20000 and Ks = 0. The vertical dashed lines highlight the low frequency, its harmonics
and the vortex shedding frequencies, with values reported in the table (bottom right).

evolution, corresponding to the departure of the structure from the initial condition at α= 0◦, with a very good agreement
between this exponential growth and the growth rate of the static eigenmode found on the linear stability analyses of
the primary equilibrium point (see table 4.6). As the angle increases, the nonlinear exponential growth saturates and
the airfoil starts to oscillate around a mean angular displacement of α= 2.73◦, with a low frequency of ωFSI = 0.324.
This mean angle, calculated for the first five low frequency oscillations (45 < t < 142), is substantially different from
the quasi-steady secondary equilibrium point, α2 = 3.64◦, represented by the horizontal dashed lines in the angular
displacement evolution. This low frequency oscillation can also be perceived on the angular velocity and aerodynamic
moment evolutions. Additionally, the latter presents a high frequency oscillation, associated to the vortex shedding.

We note that the amplitude of the oscillations is high enough to cause the airfoil incidence to switch from the positive
angular displacement oscillations to the negative ones. This intermittent jump of the oscillations between the two
attractors, resemblances once again to the Lorenz attractor behaviour, having a chaotic character.

The spectral density estimation of the above time evolutions is present in figure 5.13, with the help of a FFT. This
spectral density estimation is made for the time period where the airfoil incidence oscillates around the positive incidence
attractor. Concerning the FFT of the angular displacement (top left), we note that the main peaks correspond to the
fundamental frequency of the low oscillations (ωFSI = 0.324) and its first and second harmonics. From there, the spectral
estimation presents a decreasing behaviour as the higher frequencies are not felt by the angular displacement of the
structure. An exception is made for two frequency values on the high frequency range, which we also highlight with
the vertical dashed lines. These two frequencies are more clearly identified on the spectral density estimation of the
angular velocity (top right) and aerodynamic moment (bottom left). The lower vortex shedding frequency, ωV S,1 = 7.854,
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Figure 5.14 – Regime R4: phase diagrams at Re= 20000 and Ks = 0: angle of attack versus angular velocity, α–Ω,
(top left), angle of attack versus aerodynamic moment coefficient, α–mz, (middle left) and angular velocity versus
aerodynamic moment coefficient, Ω–mz, (bottom left). The transient regime is represented by the grey lines, while
the last low frequency cycle is represented by the black lines. The blue dots represent the quasi-static equilibrium
points, α1 = 0◦ and α2 = 3.44◦, while the red arrows represent the direction of the time evolution. On the right, a
three-dimensional phase diagram for α–Ω–mz.

is associated to the descending phase of the airfoil incidence on the low frequency cycle, while the higher vortex shedding
frequency, ωV S,2 = 10.303, is associated to its ascending phase.

The values of the spectral density estimation at the two vortex shedding frequencies are used to compute the
magnitudes of the transfer functions Hsimul

θ
and Hsimul

Ω
. In this case, with Ks equal to zero, the theoretical values are

not defined, since the natural frequency of the structure, ωs, is zero and the damping factor, ζ, tends to infinity as Ks

tends to zero. We report the values of Hsimul
θ

and Hsimul
Ω

for the two vortex shedding frequencies, ωV S,1 and ωV S,2 in
table 5.6. Their magnitude is higher that the ones reported for regimes R1 and R2, where no low frequency oscillations
were found. We observe that they have the same magnitude order as the transfer functions associated to the regime R3.

In addition to the time and spectral representations presented, we plot in figure 5.14 the phase diagrams based on α,
Ω and mz, with a two-dimensional representation on the left and the three-dimensional view on the right. The black line
represents the last low frequency oscillation, on the positive side of α, while the grey line represents all the previous time
evolution. Since we are in the presence of a chaotic attractor, the black line does not correspond to a closed curve as in the
limit cycle oscillation of regimes R1 and R2. We can observe that the grey line encircles the two attractors, corresponding
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Figure 5.15 – Regime R5: time history of the angle of attack and the aerodynamic moment coefficient (left) and
corresponding spectral density estimation (right) for a two-dimensional coupled time-marching simulation at
Re= 20000 and Ks = 0.078. On the angle of attack evolution, the horizontal dashed lines represent the quasi-static
secondary equilibrium point, α2 = 3.48◦. On the spectral density estimations, the vertical dashed lines highlight the
low frequency (ωFSI = 0.437) and the vortex shedding frequency (ωV S = 19.067) and its harmonic.

to the quasi-steady secondary equilibrium points at α2 =±3.44◦ (blue dots).

The oscillation of the airfoil around the secondary equilibrium position α2 = 3.44◦ can be clearly observed in the α–Ω
phase diagram. This phase diagram enables us to qualitatively note that no fast time oscillations of the black curve
are observed in the horizontal direction, while fast time oscillations are observed in the vertical direction. This is in
accordance with the local peaks found on the spectral density estimation of the angular velocity on the high frequency
range, in particular at ωV S,1 and ωV S,2.

Concomitantly, the phase diagram of α–mz enables us to associate the ascending phase of α to the higher high
frequency, ωV S,2, while the descending phase is associated to the lower high frequency, ωV S,1. Further, the phase diagram
of Ω–mz enables us to see that the high values of Ω (found on the descending phase of α) are associated to the high
amplitude variations of the aerodynamic moment. These high amplitude bursts of the aerodynamic moment could already
be seen in its time evolution in figure 5.12.

5.3.5 Regime R5: quasi-periodic oscillations

In the previous paragraphs, four different regimes for the FSI time-marching simulations are identified, depending on
the value of the structural stiffness. In the following paragraphs, we aim at further explore the different solutions that
may appear as function of this parameter.

The first four FSI regimes are obtained by initialising the FSI time-marching simulations with an instantaneous
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flow solution of a time-marching simulation performed at the static incidence of α = 0◦. As a consequence, the solid
components of the FSI simulations are initialised at a null value, α= 0◦ and Ω= 0. In these four regimes, two of them
present a low frequency oscillation. To find the next regime, a different initialisation technique is used. We start from
a FSI solution of the case at Ks = 0.261 (regime R2), where no low frequency oscillation is found and we progressively
decrease the value of Ks. With this continuation strategy, both the fluid and the solid components are initialised with the
values of the previous FSI time-marching simulation, performed at a higher Ks value.

We start by analysing the case at Ks = 0.078. The time history associated to the angular displacement and aerodynamic
moment coefficient is present on the left of figure 5.15, with their corresponding spectral density estimation on the
right. The angular displacement presents a low frequency oscillation around a nonzero angle of attack of α = 3.48◦

and with moderate amplitude around 0.5◦. In contrast, the aerodynamic moment presents a high frequency oscillation
,which is modulated by a low frequency. In both spectral estimations, two incommensurable frequencies are discerned,
a low frequency ωFSI , associated the airfoil oscillation and a high frequency ωV S , associated to the vortex shedding
phenomenon. This regime results from the destabilisation of the limit cycle oscillation found on regime R2. These types of
bifurcation are usually denominated as Neimark–Sacker bifurcation (Kuznetsov, 2006). Therefore, due to the presence of
these two incommensurable frequencies (ωFSI and ωV S), this regime is labelled as a quasi-periodic oscillation. Additional
cases in this regime are considered in the next section, where a global vision of all the regimes for Re= 20000 is given.

Summary of the five regimes at Re= 20000

In this section we described five regimes associated to the nonlinear dynamics of an airfoil structure with a pitch
degree of freedom, immersed in a two-dimensional Navier–Stokes flow. Each regime is associated to a different value of the
structural stiffness of the torsional spring. Table 5.8 summarises some figures associated to the different computations.
The first two regimes (R1 and R2) were characterised by weak incidence oscillations of the structure, at the vortex
shedding frequency. In the first regime, these oscillations were observed around the primary equilibrium point α1 = 0◦,
while in the second regime the airfoil incidence oscillated around the secondary equilibrium point α2 = 2.72◦. In contrast,
the last three regimes (R3, R4 and R5) presented large amplitude oscillations of the airfoil incidence, at a low frequency.
The first lines of table 5.8 compare the fundamental frequency of this oscillation, ωFSI , with the frequency of the structure
in vacuum, ωs (given by equation 1.11, page 23). The comparison can only be made for the regimes R3 and R5, where
the same order of magnitude is found between these two frequencies, with a larger values for the FSI time-marching
simulations.

Regime R1 R2 R3 R4 R5

Kdim
s (Nm) 0.080 0.020 0.005 0.000 0.0045

Ks 1.390 0.347 0.087 0.000 0.078

Solid frequency in vacuum ωs 0.602 0.301 0.139 — 0.130
Nonlinear low frequency ωFSI — — 0.428 0.324 0.437

Quasi-steady secondary equilibrium α2 — 2.72◦ 3.44◦ 3.64◦ 3.48◦

Mean incidence of nonlinear simulations α 0.00◦ 2.72◦ 3.34◦ 2.73◦ 3.50◦

Table 5.8 – Summary of the first four nonlinear FSI regimes found at Re = 20000 as function of the structural
stiffness Ks: comparison between the structural frequency in vacuum, ωs, and the FSI oscillations, ωFSI and
comparison between the quasi-steady second equilibrium position and the averaged incidence obtained from the
two-dimensional coupled simulations.
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Table 5.8 also compares the second equilibrium angle, obtained in section 5.2, with the averaged incidence of the FSI
time-marching simulations. The comparison is pertinent for the four last regimes where a departure from α= 0◦ was
observed. For the regimes R2 and R5, the values present a very good agreement. In contrast, in regimes R3 and R4,
where the chaotic behaviour is found, a deviation from the prediction α2 started to appear.

5.4 Bifurcation diagram of the nonlinear dynamics for Re= 20000 as func-
tion of the structural stiffness

In this section, we aim at mapping the different regimes in a bifurcation diagram as function of the structural stiffness.
For that, we sketch in figure 5.16 a bifurcation diagram with the averaged minimum and maximum amplitudes associated
to the different FSI simulations carried out for Re= 20000. In the horizontal axis, one finds the bifurcation parameter, Ks,
while in the vertical axis, one finds different quantities associated to the angular displacement, as explained next. The
first four values of Ks studied previously are highlighted by the vertical dashed lines. Due to the symmetry of the present
problem, the results found on the range α> 0◦ for the regimes R2, R3 and R5 are symmetrised to the range α< 0◦.

We start by representing with the black curve the admissible equilibrium positions, given by the structure equation
for static incidences. This curve is already presented in figure 5.1b, with its numerical values given by equation 5.1. Next,
we represent by the blue crosses the results from the FSI time-marching oscillations initialised from the fixed incidence
solution at α= 0◦. In the cases where no low frequency oscillations are found (i.e., the cases with a high value of Ks,
regimes R1 and R2), the crosses represent the minimum and maximum values of the angular displacement over the
high frequency oscillation cycle. As noted in figures 5.2 and 5.4, these oscillations have a very small amplitude. As a
consequence, for a fixed Ks value, the maximum and minimum values are almost superposed. In contrast, for the regimes
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Figure 5.16 – Bifurcation diagram, representing the variation of the averaged maximum and minimum pitch
amplitude on the low frequency oscillations with the structural stiffness for Re= 20000. The blue crosses represent
the pitch amplitude oscillations of the nonlinear simulations started from a static position solution at α= 0◦ and
Ω= 0. The red crosses represent the pitch amplitude oscillations of the nonlinear simulations, where a continuation
strategy is implemented, decreasing Ks, with the initial condition corresponding to the instantaneous solution from
the previous nonlinear simulation. The vertical dashed lines represent the four cases analysed previously. The
black line corresponds to the admissible equilibrium points predicted from the quasi-steady aerodynamic moment
coefficient curve, see figure 5.1b. On the right, the numbers 1 to 6 identify the structural stiffness values of the red
branch analysed in figures 5.17 and 5.18.
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Figure 5.17 – Phase diagrams of the angular displacement versus the angular velocity, α–Ω, at Re= 20000 for the
different Ks values identified by the numbers 1 to 6 on figure 5.16. The red lines correspond to one low frequency
oscillation cycle, while the red arrows represent the direction of the time evolution.

R3 and R4, where a low frequency oscillation of α is found, the crosses represent its averaged minimum and maximum
values. These oscillations have a large amplitude, as seen in the previous section, represented by the blue shaded region.

The FSI solutions associated to the second initialisation strategy, where a continuation between FSI simulations is
made, are represented by the red crosses. These solutions can be seen in the general view, on the left, or in the zoom
made on the right of figure 5.16. The continuation strategy is started from the case at Ks = 0.261 and ends at Ks = 0.009.

As the Ks is decreased in the red branch, we start by noting that the obtained solutions do not present significant
oscillations of the angular displacement, corresponding to the regime R2. This is observed in the range between the first
initial solution (Ks = 0.261) and the red crosses labelled 1 (Ks = 0.113). In this Ks range, we have a first set of solutions,
in the blue crosses, corresponding to the chaotic regime R3, with large incidence oscillations at a low frequency, and a
second set of solutions, in the red crosses, corresponding to the limit cycle regime R2, with small incidence oscillations
vibrating at the frequency of the vortex shedding. We also note that the red crosses are placed slightly above the static
equilibrium curve, in black.

As the value of the structural stiffness continues to decrease, we observe the emergence of an oscillation of the angular
displacement. These oscillations, represented by the red shaded region, are associated to a low frequency oscillation,
with a frequency value around ωFSI = 0.44. The amplitude of the oscillations increases up to the Ks value number 4
and decreases between the Ks values 4 and 6. The last pair of red crosses, at Ks = 0.009 represents again a limit cycle
oscillation, where no low frequency is present and all quantities oscillate at the vortex shedding frequency. In contrast to
the chaotic behaviour found on solutions of the blue branch, the solutions on the red branch, presenting a low frequency
oscillation, represent the quasi-periodic regime R5 described previously. In view of this results, we conclude that for
this Ks range, we observe the coexistence of chaotic and quasi-periodic solutions for the same values of the structural
parameters.

This quasi-periodicity is associated to the two incommensurable frequencies ωV S and ωFSI . The phase diagram α–Ω

Chapter 5 – Nonlinear FSI temporal simulations 177



Section 5.4 – Bifurcation diagram of the nonlinear dynamics for Re= 20000 as function of the structural stiffness

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

α(◦)

−3.35

3.80
Ω

−0.0025

−0.0025

mz

−0.04

0.04

1: K s = 0.113

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

α(◦)

−3.35

3.80
Ω

−0.0025

−0.0025

mz

−0.04

0.04

2: K s = 0.096

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

α(◦)

−3.35

3.80
Ω

−0.0025

−0.0025

mz

−0.04

0.04

3: K s = 0.078

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

α(◦)

−3.35

3.80
Ω

−0.0025

−0.0025

mz

−0.04

0.04

4: K s = 0.061

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

α(◦)

−3.35

3.80
Ω

−0.0025

−0.0025

mz

−0.04

0.04

5: K s = 0.043

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

α(◦)

−3.35

3.80
Ω

−0.0025

−0.0025

mz

−0.04

0.04

6: K s = 0.026

Figure 5.18 – Three-dimensional phase diagrams of the angular displacement, the angular velocity and the
aerodynamic moment coefficient, α–Ω–mz, at Re= 20000 for the different Ks values identified by the numbers 1 to
6 on figure 5.16. The red line corresponds to one low frequency oscillation cycle, that evolves over a toric surface for
the numbers 2 to 6.

for the Ks values corresponding to labels 1 to 6 is present in figure 5.17. The red line illustrates the evolution of α and Ω
over one low frequency oscillation cycle. The first case (Ks = 0.113) still represents a periodic limit cycle oscillation, as
the case of regime R2 presented previously, where the low frequency is not present yet. The quasi-periodicity can then
be viewed on the solutions 2 to 6, where the fast time scale oscillations (associated to ωV S) are mainly observed in the
vertical direction, i.e., on the signal of the angular velocity. Further, we note that the fast time scale oscillation presents
the same harmonic form in both the ascending and descending phases of the angular incidence, in contrast with the
chaotic regimes, where two different frequencies were found for these two phases.

The variation of α, Ω and mz and their dependence can be simultaneously viewed in the three-dimensional phase
diagram, as present in figure 5.18. In the first case (Ks = 0.113), the periodic limit cycle oscillation can be found on a
plane surface, i.e., in a two-dimensional phase space. At the same time, the solutions with lower Ks values, corresponding
to the quasi-periodic oscillations, evolve along the three phase space directions. Their trajectory in the phase space
corresponds to a curve that can be found along the surface of a torus. Due to the incommensurability between the low and
high frequencies, the ending point of this curve never corresponds to its starting point. We can see that the dimensions of
the toric surface increases from the solutions 2 to 4 and decreases from the solutions 4 to 6.

Finally, table 5.9 summarises the values of the magnitude of the transfer functions Hθ and HΩ, computed for the
theoretical prediction and for the nonlinear simulations, both evaluated at the vortex shedding frequency, also reported.
These values enable us to have an idea if the solid contributions associated to the fast time scale vibrations will have an
effect on the linear stability analyses, in particular, on the linear stability analysis made for the secondary equilibrium
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Kdim
s (Nm) Ks ωFSI ωV S

∣∣∣H theory
θ

∣∣∣
∣∣Hsimul

θ

∣∣
∣∣∣H theory

Ω

∣∣∣
∣∣Hsimul

Ω

∣∣

1 0.0065 0.113 — 19.124 0.00070 0.00071 0.01348 0.01369
2 0.0055 0.096 0.434 19.082 0.00071 0.00072 0.01360 0.01383
3 0.0045 0.078 0.437 19.067 0.00070 0.00071 0.01353 0.01374
4 0.0035 0.061 0.441 19.028 0.00073 0.00079 0.01381 0.01484
5 0.0025 0.043 0.442 19.001 0.00072 0.00074 0.01370 0.01409
6 0.0015 0.026 0.442 18.963 0.00073 0.00072 0.01378 0.01354

Table 5.9 – Summary of the values of Hθ and HΩ for the structural stiffness values identified by the numbers 1 to
6 on figure 5.16, on the red branch, evaluated at the vortex shedding frequency, for the theoretical estimation and
for the nonlinear simulations.

point, present in the next chapter.

We first note that both the theoretical values and the values coming the nonlinear simulations are in very good
agreement. Second, we observe that the magnitude of the transfer function associated to the fast time scale oscillations
of the angular displacement, Hθ, presents an order of magnitude of 10−4, while the magnitude of the transfer function
associated to the angular velocity has an order of magnitude 10−2. With these orders of magnitude, we expect the
contributions of the fast time fluctuations of the angular displacement to the linear stability analysis formulation to be
negligible for the secondary equilibrium point. At the same time, we also expect the contributions of the angular velocity
to be negligible, even if they present a substantial bigger value.

5.5 Reynolds number effect on the FSI nonlinear dynamics for fixed struc-
tural parameters

In the remaining part of this chapter, we investigate the different nonlinear solutions appearing at Re≥ 50000. The
aim is to characterise and understand the onset of an additional regime, labelled R6, the laminar separation flutter,
characterised by a global oscillation of the airfoil around a zero angle of incidence. This analysis is made by fixing the
structural parameters and by varying Reynolds number. In a first part, we describe difficulties in finding the quasi-steady
equilibrium points from a two-dimensional mean flow curve at Re = 50000. In a second part, the results from the
nonlinear simulations are presented for Re≥ 50000 and compared with the literature.

5.5.1 Quasi-steady equilibrium positions for mean flow solutions from 2D simulations at
Re= 50000

In this section, we try to identify the different quasi-steady equilibrium points from the mean flow curve at Re= 50000.
For that, we apply the same reasoning made in section 5.2 for Re= 20000 to the case at Re= 50000. The curve mz–αb

already presented in figure 2.9, page 79, is revisited in this section in figure 5.19. The different black marks represent
the different time-marching computations made at fixed incidences. Three values of structural stiffness are represented
by the red slopes, corresponding to the values used in the experimental investigation of Poirel et al. (2008). As noted
in chapter 2, the mz–αb curve presents a strong discontinuity from α= 1.8◦ to α= 1.9◦, associated to a change in the
topology of the flow. For this reason, the task of finding the second equilibrium position becomes extremely difficult for the
two-dimensional simulations. However, for the time- and spanwise-averaged solution issued from the three-dimensional
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Figure 5.19 – Evolution of the two-dimensional mean aerodynamic moment coefficient, associated to fixed incidence
simulations, with the angle of attack (black line), for Re= 50000. The red lines represent the values of structural
stiffness used in Poirel et al. (2008): Kdim

s = 0, 0.15 and 0.3Nm.

simulations, no discontinuity is observed, and the second equilibrium positions are well retrieved, and further explored in
chapter 6, section 6.3.

5.5.2 Regime R6: laminar separation flutter

In this section, we carry out two-dimensional coupled time-marching simulations for different values of Reynolds
number. In this regard, an initial Reynolds number of Re= 50000 is considered, corresponding to the experimental value
of Poirel et al. (2008), where the phenomenon was systematically studied and reported for the first time in the literature.
The Reynolds number is progressively increased to Re= 128200, corresponding to the value of the upper limit for the
laminar separation flutter reported by Poirel et al. (2008). The structural parameters taken into account in this section
are reported in table 1.1 (page 23), except for the value of Kdim

s . The latter is fixed at Kdim
s = 0.3Nm in order to have a

comparison with the literature data for the considered Reynolds number range.
The simulations for Re ≤ 80000 are started from instantaneous solutions at the corresponding Reynolds number

of fixed two-dimensional time-marching simulations at α= 0◦, as done in section 5.3. For Re > 80000, a continuation
strategy is used, where the FSI simulations are started from the instantaneous FSI solutions at the previous Reynolds
number.

The divergent departure of the airfoil from its equilibrium position α= 0◦ was studied in chapter 4. This divergent
behaviour is found for the different simulations carried out in this section. Figure 5.20 presents the angular displacement
evolution and the phase diagram α–Ω for four different Reynolds numbers, where the divergent behaviour is found on
the first three cases. In the first case, at Re= 50000, the airfoil oscillations occur around two nonzero angular positions,
mainly located in the zones α> 0◦ and α< 0◦. The time evolution occurring on the zone α< 0◦ is highlighted by the green
line. This case is similar to the case analysed in section 5.3.4 at Re= 20000 and Ks = 0, corresponding to the regime R4.
For some low frequency oscillation cycles, the incidence amplitude is large enough to cause the oscillations jump from
the positive to the negative incidence regions. As the Reynolds number increases, this amplitude is expected to increase.
Further, for a critical Reynolds number, the positive and negative incidence low frequency cycles are expected to collide,
giving rise to a global oscillation around the zero angle of incidence. This regime is labelled R6 and corresponds to the
laminar separation flutter phenomenon.

The collision of two limit cycles that merge into a bigger limit cycle is often obtained from a homoclinic bifurcation. This
type of bifurcation was studied for example in simpler nonlinear dynamical systems, as the Van der Pol oscillator (Datta,
2017). In view of the present data, we suggest that the emergence of the laminar separation flutter with the Reynolds
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Figure 5.20 – Transition between regimes R4 and R6: time history (left) and phase diagram of the angular
displacement versus the angular velocity, α–Ω, (right), for Kdim

s = 0.3Nm and four different Reynolds numbers:
Re= 50000, Re= 64000, Re= 80,000 and Re= 117000. The red dots represent the position of the snapshots sketched
in figure 5.22, while the red arrows represent the direction of the time evolution in the phase diagrams. The green
curve for Re= 50000 highlights the period of time where an oscillation around a negative angular position is found.

number increase is caused by a homoclinic bifurcation. We consider that a rigorous investigation on this matter merits of
being explored in future works.

Although Poirel et al. (2008) reported global oscillations starting at Re= 45000, the Re threshold discrepancy between
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Figure 5.21 – Evolution of the averaged maximum and minimum pitch amplitude (left) and the pitch angular
frequency (right) with the Reynolds number for Kdim

s = 0.3Nm, associated to the laminar separation flutter
phenomenon: the present results, with the black circles, the two-dimensional results from Lapointe et al. (2011),
with the green triangles, and the experimental data from Poirel et al. (2008), with the blue diamonds.

the experiments and the present results is likely linked, from one side, to the experimental sensitivity to flow perturbations
and, from the other side, to the two-dimensional numerical model used for the present coupled simulations. Indeed,
chapter 1 reported that, for the fixed airfoil case at α= 0◦, the flow became unstable to three-dimensional perturbations
around Re≈ 30000. Not only the airfoil in this case is moving, the Re number is considerable higher. However, this does
not invalidate the present results, obtained with a two-dimensional model, as the flow is mainly two-dimensional for a
considerable portion of the airfoil surface.

In the second Reynolds number considered, Re= 64000, the global oscillations of the airfoil incidence around α= 0◦

are clear. These global oscillations, identified as the regime R6, correspond to the phenomenon described in the literature
as the laminar separation flutter (LSF). We denote the averaged amplitude of oscillation by αLSF , with a value of
αLSF = 4.65◦ for this Re. Associated to the global oscillations, we have the frequency of the laminar separation flutter,
denoted ωLSF , with a value of ωLSF = 0.425. Two additional cases are considered, at Re= 80000 and Re= 117500, where
the laminar separation flutter is also observed.

The LSF phenomenon is further characterised in the range 64000≤Re≤ 128200. Figure 5.21 presents the evolution
of the mean maximum amplitude of the LSF αLSF and the corresponding frequency ωLSF , as function of the Reynolds
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Figure 5.22 – Spanwise vorticity field of four snapshots of two-dimensional coupled time-marching simulations for
Kdim

s = 0.3Nm at Re= 50000 (top left), Re= 64000 (top right), Re= 80000 (bottom left) and Re= 117500 (bottom
right). The instants position in time is identified in figure 5.20. The yellow dots over the airfoil surface represent the
separation and reattachment points.
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number. The results are compared with the experimental data from Poirel et al. (2008) (blue diamonds) and with the
two-dimensional coupled time-marching simulations present in Lapointe et al. (2011) (green triangles). A reasonable
agreement is found with both references. Concerning the amplitude curve, the low frequency oscillations are characterised
by a first sub-regime, where αLSF increases with the Reynolds number, corresponding to the first Reynolds numbers
studied. From there, a second sub-regime is found, where the amplitude of the LSF oscillations decrease. These two
sub-regimes are also identified on the frequency curve. In the first sub-regime, the LSF frequency presents a monotonic
decrease, up to Re ≈ 95000. Although the good agreement of αLSF on this sub-regime, the present results show an
increase of ωLSF on the second sub-regime, while the reference data shows a plateau.

The spanwise vorticity field associated to instantaneous solutions at four Reynolds numbers is presented in figure 5.22.
These instants are located on a maximum value of α during a low oscillation cycle, having a zero angular velocity. Their
exact position on the time history is highlighted by the red dots in figure 5.20. Concerning the case at Re= 50000, we
observe the formation of a recirculation zone on the upper surface of the airfoil for the range 0.46< X < 0.88. From this
position, a second smaller bubble is formed above the trailing edge of the airfoil. For this particular time instant, the
vortex shedding structures on the wake of the airfoil present a well organised arrangement, similar to a classic vortex
shedding of a fixed incidence simulation. Concerning the case at Re= 64000, we observe the presence of several bubbles
along the upper surface, starting at X = 0.37. Further, we report the separation of the boundary layer of the lower
surface, at X down

d = 0.97. The same topological behaviour is found on the upper and lower surfaces for Re= 80000 and
Re= 117500. We note that, for the instants considered, the structure of the vortex shedding becomes more disorganised as
the Reynolds number increases. Concomitantly, we observe that the boundary layer thickness decreases as the Reynolds
number increases.

Conclusions

In this chapter, we analyse the nonlinear dynamics of a NACA0012 airfoil mounted on a torsional spring and immersed
in a two-dimensional Navier–Stokes flow. The different regimes are investigated firstly by fixing the Reynolds number at
Re= 20000 and varying the structural stiffness of the airfoil. Initially, five regimes are identified. In a first regime, we
find that the structural stiffness is high enough to “hold” the structure at the position α= 0◦. This regime is characterised
by pitch oscillations of negligible amplitude, at the frequency of the vortex shedding phenomenon, around the primary
equilibrium position. In a second regime, at a lower Ks, we characterise the cases where the structure tends to a steady
equilibrium position at a nonzero angle of attack. We also find negligible pitch oscillations at the frequency of the vortex
shedding phenomenon. The third and fourth regimes, obtained for even lower values of Ks, are characterised by a chaotic
fluid–structure dynamics, with high-amplitude low-frequency pitch oscillations around a nonzero mean angle of incidence.
In the latter regime, the pitching dynamics switches between oscillations around positive and negative (time-averaged)
angle of incidence. An additional nonlinear regime is found using a different initialisation strategy, where quasi-periodic
oscillations are found. Therewith, a bifurcation diagram is sketched as function of the Ks parameter, identifying different
branches for the same structural parameters. In particular, for a finite range of structural stiffness values, a bistable
behaviour is identified characterised by the coexistence of chaotic and quasi-periodic solutions. For this Reynolds number,
we do not observe a fluid–structure dynamics characterising the so-called laminar separation flutter, i.e., a symmetric
high-amplitude low-frequency pitching oscillations around the zero angle of incidence. This is coherent with the existing
literature, that only reports this phenomenon for higher values of Re.

In a second part of chapter 5, we fix the structure parameters in accordance with the literature (in particular, the
value of the structural stiffness is fixed to 0.3Nm), and we investigate the emergence of the laminar separation flutter
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as the Reynolds number increases. For the Reynolds number Re= 50000, we observe an intermittent dynamics of the
pitching oscillation around opposite mean values of the angle of incidence, as for the case in regime R4, described for
Re= 20000. By increasing the Reynolds number to Re= 64000, the laminar separation flutter appears. The evolution of
the pitching amplitude and low frequency with the Reynolds number is finally described, showing a good agreement with
both experimental and numerical results reported in the literature.

In the following chapter, we continue the linear analysis made in the previous chapter, applying it to the second
equilibrium position. The aim will be to use the linear analysis to possibly explain the emergence of the quasi-periodic
solutions reported in this chapter for a closed range of Ks values.
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Chapter 6

Secondary aeroelastic instability

In the previous chapter, several nonlinear regimes were described for the self-sustained pitch oscillations of a
NACA0012 airfoil on the low-to-moderate Reynolds number regime, using a two-dimensional Navier–Stokes model. The
behaviour of these regimes depends on the values of the structural stiffness and on the Reynolds number.

In this chapter, we propose to investigate the linear stability of the second equilibrium position (α 6= 0◦) which has
been described in the previous chapter. For the first described regime, this second equilibrium may be stable since it
was observed using temporal simulations of the governing equations. We wish here to confirm the stability of that case
and determine whether the flutter mode can be found unstable in the remaining cases. This chapter is divided into two
parts. In the first part, we investigate the stability of the second equilibrium position via both mean flow and Floquet FSI
analyses for Re= 20000, using two-dimensional simulations for the computation of the mean and periodic flow solutions.
In the second part, we perform a mean flow FSI analysis for the equilibrium points given by time- and spanwise-averaged
solutions issued from three-dimensional simulations at Re= 50000.

6.1 Linear stability analyses around mean and periodic flow solutions at
Re= 20000

In this section, we perform the linear stability of the second equilibrium solution (α 6= 0◦) for the Reynolds number
Re= 20000 and various structural stiffness coefficients. The linear stability of mean flows is first investigated using the
classical formulation (equations 1.33, page 37) and the Reynolds stress formulation (equation 1.40, page 42) introduced in
chapter 1. A Floquet analysis around the time-periodic solution is then performed.

The incidence of the equilibrium states where the linear stability analyses are carried out were presented in the
previous chapter, in section 5.2. From the equilibrium relation (equation 1.24, page 30) between the aerodynamic moment
mz and the restoring elastic couple, we obtain that the incidence of the airfoil at an equilibrium position, denoted αb,
satisfies

αb =−mz
(
qb

)

Ks
, (6.1)

where Ks is the structural stiffness. As explained in previous chapter, for the angle α1 = 0◦, the mean flow solution qb

is symmetric and the aerodynamic moment vanishes. This is the primary equilibrium state. On the other hand, α2

represents the secondary equilibrium position around which we carry out the linear stability analyses of this chapter.
Apart from the value of Ks, fixed by the above expression, the remaining parameters taken into account for the structural
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Figure 6.1 – On the left, evolution of the two-dimensional mean aerodynamic moment coefficient, associated to fixed
incidence simulations, with the angle of attack (black line), for Re= 20000. On the right, evolution of the admissible
equilibrium points with the structural stiffness (black line). The red lines and the blue dots represent the different
values of structural stiffness considered and the corresponding quasi-steady equilibrium points, respectively. The
grey zone indicates the closed range of Ks values where a quasi-periodic solution is found in the temporal FSI
simulations. The highlighted admissible secondary equilibrium positions are Ks = 0 (α2 = 3.64◦), Ks = 0.087
(α2 = 3.44◦) and Ks = 0.347 (α2 = 2.72◦).

system are reported in table 1.1 (page 23).

In figure 6.1a, we recall the mz–αb curve, where we highlight with the red slope three of the Ks cases studied in
the previous chapter, each one illustrating a different nonlinear regime. At the same time, we recall in figure 6.1b the
admissible values of Ks for the second equilibrium states as function of the angle of attack. The blue dots represent the
corresponding second equilibrium positions, fixing the incidence at which the linear stability analyses are carried out. The
case Ks = 0.347 (in regime R2) corresponds to the highest structural stiffness considered for which a second equilibrium
position is possible. In this case, the coupled time-marching simulations show a convergence of the angular displacement
to a weak amplitude high frequency limit cycle oscillation. The mean angular displacement matches the equilibrium
position predicted by equation 6.1 (α2 = 2.72◦). For the case Ks = 0.087 (in regime R3), the coupled time-marching
simulations show the emergence of a low frequency oscillation of the angular displacement around a mean angle slightly
inferior to the value α2 = 3.44◦, predicted by equation 6.1. The case Ks = 0 (in regime R4) represents the limiting case
where no structural stiffness is considered. For this case, the quasi-steady equilibrium position is found at the angle
where the aerodynamic moment is again zero, i.e., α2 = 3.64◦. As the previous Ks, the coupled time-marching simulations
show a limit cycle oscillation, but with a higher amplitude when compared to the previous Ks case. A larger discrepancy is
found between the equilibrium position and the mean angular displacement from the nonlinear simulations. Further, the
amplitude of the angular oscillations is high enough to cause a jump in the mean angular oscillations, from the positive
incidence side to the negative.

In addition to these three regimes, the grey zone in figure 6.1 highlights the closed range of Ks values where a
quasi-periodic regime R5 is found in the temporal FSI simulations. In the following paragraphs, we try to predict the
emergence of this phenomenon with the linear stability analyses.

In the first part of this section, we conduct our analysis around the different mean flow solutions issued from two-
dimensional simulations found for each equilibrium angle, using the classical formulation. For that, the Krylov–Schur
method described in section 3.2.1 (page 117) is used, allowing the computation of any fluid–structure eigenpair (σ, q)
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Figure 6.2 – Classical formulation of the mean flow linear stability analysis at Re = 20000 and α2 = 3.44◦,
corresponding to a structural stiffness of Ks = 0.087. On the left, the eigenvalue spectrum representation close to the
origin0 The bigger red and yellow circles represent the divergence and flutter eigenvalues, respectively. On the right,
the streamwise velocity of the real part of the divergence eigenmode (top) and of the real and imaginary parts of the
flutter eigenmode (centre and bottom, respectively). The black isocontour lines represent the streamlines enclosing
the recirculation zone of the corresponding mean flow solution.

in the spectrum, depending on the prescribed shift parameter. We recall that the eigenmode can be decomposed into

its fluid and solid components as q =
[
q f , θ,Ω

]T
. In a second part, the same exercise is carried out for the Reynolds

stress formulation, highlighting the differences between the two approaches. In the third part, a Floquet FSI linear
stability analysis is conducted around the periodic flow field for each equilibrium angle. We rely on the method described
in appendix B for the computation of the leading Floquet multipliers µ and associated eigenpairs (σ, q). We recall that
the Floquet eigenmode can be decomposed into its fluid and solid components as q = [

q f , θ,Ω
]T . As done in chapters 3

and 4, the hat notation •̂ is dropped from the eigenmodes in order to simplify the notations.

6.1.1 Classical formulation of the mean flow linear stability analyses

The classical formulation of the mean flow stability analysis is used to study the stability of different secondary
equilibrium points. We start by analysing the three cases at α2 = 2.72◦, 3.44◦ and 3.64◦, followed by the equilibrium
points on the Ks range where the quasi-periodic nonlinear solutions were observed in the previous chapter. We seek
to identify the linear eigenmodes associated to the structure, namely the divergence and flutter modes, described in
chapters 3 and 4 in the case of the primary equilibrium angle.

We start by presenting the results associated to the incidence α2 = 3.44◦, corresponding to the intermediate value of
structural stiffness Ks = 0.087. At this angle of attack, the coupled time-marching simulations predicted either a chaotic
solution or a quasi-periodic solution, vibrating at a low frequency. We expect to predict the linear onset of the latter
solution.

On the left of figure 6.2, we present the eigenvalue spectrum. We first note that the divergence eigenvalue is found
on the stable side of the spectrum, at σ=−0.0167, close to the marginal stability position at the origin of the spectrum.
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The real part of the streamwise velocity component U of the corresponding eigenmode is presented on the top right
of figure 6.2. The black isocontour lines represent the streamlines of the mean flow solution encompassing the time-
averaged recirculation region that can be found for this angle of attack. We note the presence of the negative values of U ,
represented by the blue colour, starting on the separated shear layer of the upper surface, towards the wake of the airfoil.
The negative values of U are also significant inside the recirculation bubble, where the mean flow vortex structures are
present. At the same time, the positive values of U (red colour) are mainly found on the lower half of the wake of the
airfoil, starting at the rear of the trailing edge, and below the vortex structures of the recirculation zone.

Similarly to the divergence eigenvalue, the flutter eigenvalue is also present in the stable side of the spectrum, at
σ=−0.1840+0.5408i. The real and imaginary parts of the streamwise velocity component U of the corresponding flutter
eigenmode are presented on the centre and bottom right of figure 6.2. The real part of U is characterised by an initial
positive region (in red) on the location of the mean flow attached boundary layer of the upper surface, from the leading
edge up to the separation point. From there, we observe an inversion of the sign of U , from the location of the mean flow
separation point to the wake of the airfoil. The positive values of U can also be found on the “dead air” region of the
mean flow and on the lower half of the airfoil wake, at the rear of the trailing edge. Additionally, a dipole-like spatial
structure is found with a centre at the leading edge of the airfoil, with significant values of U on the inviscid zones of the
mean flow field. The imaginary part of U presents a similar spatial structure as the divergence eigenmode, except for
the sign inversion at the wake for x ≈ 2, associated to the low frequency oscillation character of the flutter eigenvalue.
Finally, we note that, even if the flutter eigenvalue is stable, its frequency (ω= 0.541) compares reasonably well with the
low frequencies found for both the quasi-periodic (ωFSI = 0.435) and chaotic (ωFSI = 0.428) solutions of the nonlinear
simulations.

Two mean flow linear stability analyses are also carried out for the other Ks cases, Ks = 0.347 and Ks = 0. A summary
of the obtained eigenvalues is present in table 6.1. For the case at Ks = 0.347, the flutter eigenvalue is stable. This is
coherent with the fact that the nonlinear simulations do not present a low frequency oscillation (regime R2). Further, in
this case the divergence eigenvalue is found to coalesce with a stable static eigenvalue, leading to a pair of low frequency
complex conjugate eigenmodes, located on the stable side of spectrum. Concomitantly, the case at Ks = 0 also presents a
flutter eigenvalue that is stable. Even if a chaotic nonlinear solution was found in the previous chapter for regime R4, a
stable limit cycle oscillation (i.e., a solution only vibrating at the vortex shedding frequency) has also found. This can be
discerned at the end of the red branch in figure 5.16, page 176. Therefore, the presence of a stable flutter mode in the
linear stability results is coherent with the nonlinear results.

In order to study the emergence of the quasi-periodic solutions observed in the nonlinear simulations of the previous
chapter (appearing in the range Ks ∈ [0.026−0.113]), we conduct different mean flow analyses for the range of structure

Kdim
s (Nm) 0.020 0.005 0.000

Ks 0.347 0.087 0.000
α2 2.72◦ 3.44◦ 3.64◦

ωFSI (quasi-periodic) — 0.435 —
ωFSI (chaotic) — 0.428 0.324
Divergence eigenvalue — −0.0167 −0.0578
Flutter eigenvalue −0.2541+0.5105i −0.1840+0.5408i −0.1773+0.5135i

Table 6.1 – Classical formulation of the mean flow linear stability analysis at Re = 20000: summary of the
divergence and flutter eigenvalues for three different second equilibrium positions. Comparison with the frequency
of the nonlinear simulations found for the quasi-periodic and chaotic branches.
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Figure 6.3 – Classical formulation of the mean flow linear stability analysis at Re= 20000: evolution of the growth
rate of the divergence eigenvalue (upper left, in red) and flutter eigenvalue (upper right, in yellow) with the value
of Ks. On the bottom, evolution of the frequency of the flutter eigenvalue with Ks, with the low frequency of the
quasi-periodic solutions represented by the squares.

stiffness of Ks ∈ [0−0.15]. The evolution of the growth rate and frequency of both divergence and flutter eigenvalues as
function of Ks is present in figure 6.3. We can observe that the growth rate of the divergence eigenvalue remains negative
for the Ks range considered, decreasing as Ks decreases, or equivalently, as the secondary equilibrium angle increases.
At the same time, we observe that the growth rate of flutter eigenvalue is also negative for all the Ks values. Further,
we observe that this growth rate remains constant as the Ks changes, with no visible effect of the emergence of the low
frequency oscillation present on the nonlinear simulations. Concerning the frequency of the flutter mode, on the bottom
the figure, we observe a decrease of its value as Ks decreases.

In view of the present results, we observe that the linear stability analysis does not predict the low frequency
emergence, present in the nonlinear simulations, in particular, the emergence of the quasi-periodic oscillations. This fact
can be associated to several reasons. First, this disagreement can be associated to the hypotheses made in chapter 1, on
the derivation of the mean flow equations. In particular, we highlight the hypothesis made on the angular displacement
and velocity components, whose fast time scale contributions were considered small for the computation of the mean
flow solution. The effect of these contributions on the structural oscillation were estimated in the previous chapter with
the help of the transfer functions Hθ and HΩ. The transfer function associated to the angular displacement presented
values with an order of magnitude of 10−4 for the range where the quasi-periodic solutions were observed (see for instance
table 5.9). However, the HΩ presented an order of magnitude of 10−2. We will not test the validity of that assumption in
the following sections.

Second, the disagreement between the linear predictions and the nonlinear simulations can be associated to the
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hypotheses made on the derivation of the linearised equations of the mean flow. For the classical formulation, this
derivation was made from the linearised equations of the Floquet eigenproblem. In particular, we highlight in red the
three terms neglected in equation 1.32 (page 36), two of them containing a fast time scale contribution coming from the
angular velocity component:

σÛ + Ω̂
[
ez ×Ub

]
+

([
Û −Ûw

]
·∇

)
Ub +

([
Ub −Uw

]
·∇

)
Û −∇·σ

(
Û , p̂

)

+ Ω̂ f t
[
ez ×Ub, f t

]+ ([
Û f t −Ûw, f t

] ·∇)
Ub, f t +

(
Ub, f t·∇

)
Û f t= 0 .

The fast time scale contribution of the angular velocity component is directly found on the first term, and indirectly found
on the second one, as part of the fast time scale contribution of rigid-body velocity field, Ûw, f t. The strength of these
hypotheses can be tested by comparing the present results with the results from a Floquet analysis, in which these terms
are present. This is done in a subsequent section on this chapter.

Third, the disagreement between the linear predictions and the nonlinear simulations can be associated to the
fact that in the classical formulation of the mean flow eigenproblem, we do not take into account the variation of the
divergence of the Reynolds stress tensor with respect to the state variables. This is taken into account in the Reynolds
stress formulation, introduced in section 1.5.2, page 40. The influence of this term is tested in the following section.

6.1.2 Reynolds stress formulation of the mean flow linear stability analyses

We continue our investigation by comparing the two proposed formulations for the mean flow linear stability analysis,
introduced in sections 1.4.4 and 1.5.2. We recall from the system 1.40 (page 42) that the difference between the two
formulations is the inclusion of the linearisation of divergence of the Reynolds stress tensor with respect to the state
variables on the momentum equation, denoted f . We consider that this term only depends on the angular displacement
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Figure 6.4 – Spatial distribution of the streamwise and cross-stream components of the divergence of the Reynolds
stress for α= 3.39◦ (top plots) and α= 3.44◦ (centre plots) and corresponding difference (bottom plots).
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component θ and we approximate the quantity f via a finite difference scheme for two fixed angular displacements, such
that

f
(
U , p, θ,Ω

)
≈ f

(
θ
)
= θ ∂g

∂θ

∣∣∣∣
θ=θb

≈ θ g(θb +δθb)− g(θb)

δθb
,

where g =∇·[U f t ⊗U f t
]

is the divergence of the Reynolds stress tensor. The inclusion of this term modifies the fluid–
structure Jacobian matrix, L, in particular the term that represents a unitary angular displacement of the airfoil structure,
vθ, highlighted in red:

L=




L f

(
Ub

)
(vθ−) vΩ

0 0 1

mT −Ks −Ds




.

The streamwise and cross-stream fields of g for two different angles of attack are represented in figure 6.4, in the top
and centre figures. The two considered incidences are distanced of 0.05◦. Their finite difference is also represented on the
bottom figures, for α= 3.44◦, corresponding to a backward finite difference scheme. We can first note that the streamwise
component of g is mainly concentrated near the trailing edge, for both incidences. On the other hand, the cross-stream
component presents important values along the upper and lower sides of the wake. This behaviour is also observed on the
finite difference between the two fields presented on the bottom figures.

We now compare results of the two mean flow formulations for the intermediate case at α2 = 3.44◦ (Ks = 0.087, where
both regimes R3 and R5 are found). On the left of figure 6.5, we present the eigenvalue spectra for the classical (circles)
and Reynolds stress (triangles) formulations. First, we note that the inclusion of the Reynolds stress term has a stabilising
effect on the divergence eigenvalue (red marks). A coalescence of the divergence mode with a stable static eigenvalue
occurs and they become a pair of low frequency eigenvalues, located on the stable side of the spectrum.

Concerning the flutter eigenvalue (yellow marks), we observe a more unstable eigenmode for the Reynolds stress
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Figure 6.5 – Comparison between the classical formulation (circles) and the Reynolds stress formulation (triangles)
of the mean flow linear stability analysis at Re = 20000 and α2 = 3.44◦, corresponding to a structural stiffness
of Ks = 0.087. On the left, the eigenvalue spectrum representation close to the origin. The red and yellow circles
represent the divergence and flutter eigenvalues, respectively. On the right, the streamwise velocity of the real
and imaginary parts of the flutter eigenmode. The black isocontour lines represent the streamlines enclosing the
recirculation zone of the corresponding mean flow solution.
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Figure 6.6 – Comparison between the classical formulation (circles) and the Reynolds stress formulation (triangles)
of the mean flow linear stability analysis at Re= 20000: evolution of the growth rate of the divergence eigenvalues
(left) and flutter eigenvalues (right) with the value of Ks. On the bottom, evolution of the frequency of the flutter
eigenvalue with Ks, with the low frequency of the quasi-periodic solutions represented by the squares.

formulation, even if it remains on the stable side of the spectrum. Further, we note that the frequency is slightly higher
for this new formulation. The real part of the streamwise velocity component U of the flutter eigenmode is presented on
the top right of figure 6.5. As in the previous formulation, we note the presence of the negative values of U , represented by
the blue colour, on the wake of the airfoil. However, the positive valued region (red colour) is extended from the abscissa of
the separation boundary layer point up to the recirculation vortex zone, in contrast with the previous formulation where
the positive valued region is mainly located on the first half of the airfoil. Concerning the imaginary part, the topology of
the streamwise velocity for both formulations is similar. However, the Reynolds stress formulation presents the signature
of the additional term, present on the wake of the airfoil, below and above the wake streamwise axis. This form resembles
the spatial distribution of the terms that are included in this formulation, represented in the lower plots of figure 6.4.

To better understand the influence of this term for different equilibrium positions, we continue our investigation by
performing different mean flow analyses across the Ks range previously studied (Ks ∈ [0−0.15]). The evolution of the
growth rate of both the degenerated divergence and flutter eigenvalues as function of Ks is present on the upper side of
figure 6.6. As previously noted, the growth rate of the degenerated divergence mode has lower values for the Reynolds
stress formulation. The values remain roughly constant across the Ks range considered. At the same time, we observe
that the growth rate of the flutter eigenvalue has higher values for all the Ks values, when compared to flutter eigenvalues
of the classical formulation. Further, we note that, as Ks decreases from the higher value considered (Ks = 0.15) to the
lower limit of the observed quasi-periodic solutions (Ks = 0.026), the growth rate of the flutter eigenvalue increases. For
the remaining range, Ks ∈ [0−0.026], we observe a slight decrease of the growth rate of the flutter eigenvalue as Ks
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decreases. Concerning the evolution of the frequency of the flutter mode, on the bottom the figure, we observe larger
values for the Reynolds stress formulation compared to the classical formulation. We also observe larger discrepancies
when compared to the low frequency of the quasi-periodic solutions, even if both frequencies remain on the same order of
magnitude.

Although the flutter eigenvalues are located on the stable side of the spectrum, the account for the Reynolds stress
term appears to have a destabilising effect, with a sensitivity to the value of Ks, and hence to the equilibrium position. The
fact that the maximum value of the growth rate of the flutter eigenvalue is located on the lower Ks limit of the nonlinear
quasi-periodic oscillations may be due to two reasons. First, the stability analyses are made around an equilibrium
position given by the aerodynamic moment curve associated to the mean flow field at static positions. As observed in
figure 5.16, a slight difference can be noted between the incidence of the mean flow fields at static incidences and the
mean incidence of the quasi-periodic solutions. We propose in a future work to carry out the mean flow stability analyses
around a mean flow issued from the time-averaged solutions of the quasi-periodic simulations. A second cause for the
shift on the location of the maximum value of the growth rate of the flutter eigenvalue may be the finite difference scheme
considered in this section for the computation of the additional Reynolds stress term. A backward finite difference scheme
was used. For a future work, we propose to explore a central finite difference scheme to avoid this shift on the growth rate
evolution.

Since the mean flow analyses do not provide conclusive results on the appearance of a flutter instability that might
explain the quasi-periodic oscillations observed in the temporal simulations, we now perform a Floquet analysis of the
periodic solutions at the quasi-steady secondary equilibrium positions.

6.1.3 Floquet linear stability analyses

We extend the linear stability analysis to periodic flow solutions via a Floquet FSI linear stability analysis. The
periodicity of the flow is associated to the high frequency vortex shedding phenomenon. As described in section 1.3.2
(page 28), the high frequency fluctuations of the flow field are reflected in the aerodynamic moment exerted on the airfoil.
However, no resonant interaction between the fluctuation of the periodic aerodynamic moment and the airfoil oscillation
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Figure 6.7 – Floquet multipliers on the complex plane (µr, µi) for the Floquet FSI analysis at Re= 20000 on the
secondary equilibrium point: on the left, Ks = 0.347 (α2 = 2.72◦), on the centre, Ks = 0.087 (α2 = 3.44◦), on the right,
Ks = 0 (α2 = 3.64◦). The yellow circles represent the flutter Floquet multipliers The unstable region outside the unit
circle

∣∣µ
∣∣> 1 is represented by the grey zone.
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Figure 6.8 – Instantaneous streamwise velocity of the flutter Floquet eigenmode for Re= 20000, α2 = 3.44◦ and
Ks = 0.087: real and imaginary parts on the top and bottom plots, respectively. The black isocontours represent the
spanwise vorticity of the corresponding instant of the periodic flow (Ωz =±20 and Ωz =±2).

exists, the fast time scale amplitude of the latter being consequently very small. Still, the high frequency (nonlinear)
aerodynamic fluctuations may play a role in the destabilisation process of the flutter mode. As shown in chapter 1, the
classical formulation of the mean flow stability analysis can be derived from the Floquet analysis of the periodic flow and
neglecting some terms (equation 1.32, page 36, already recalled in this chapter). These terms correspond to the mean
value of the quadratic interactions between high frequency components of the Floquet eigenmodes and the periodic flow.
To assess their role in the destabilisation process, the Floquet FSI linear stability analysis is carried out around the
periodic flow fields found at the static incidences 2.72◦, 3.44◦ and 3.64◦.

As a reminder, we note that it is usual to describe the Floquet growth/decay over a period T via the Floquet multipliers
µ= eσT. This quantity represents the complex amplitude gain of the periodic Floquet eigenmode over one period, i.e.,
q(X , t+T)=µq(X , t), where q represents the fluid–structure Floquet eigenmode.

Figure 6.7 presents the Floquet multipliers on the complex plane for the three equilibrium points considered. The
Floquet multipliers associated to the flutter eigenvalues are highlighted with the bigger yellow circles. The unstable
region is represented by the grey zone, where

∣∣µ
∣∣> 1. All represented Floquet multipliers, including the ones associated

to the flutter mode are found on the stable region
∣∣µ

∣∣< 1. Although several static eigenmodes are located on the µr axis,
the Floquet multiplier associated to the divergence eigenmode is not clearly discerned from the remaining stable static
Floquet multipliers. This is due to the fact that the numerical method implemented here has a poor convergence rate
for stable Floquet multipliers far from the marginal line

∣∣µ
∣∣ = 1. We also note that no Floquet multiplier is found at

(µr, µi)= (1, 0), in contrast to the results at the primary equilibrium position (see figure 4.10, page 151). This is due to the
fact that the time derivative of the periodic flow solution,

[
∂q f ,b/∂t, 0, 0

]T , no longer corresponds to an eigenvector of the
Floquet FSI eigenproblem, associated to the eigenvalue σ= 0.

Concerning the flutter mode, its instantaneous streamwise velocity component (real and imaginary parts) associated
to the initial periodic flow instant is depicted in figure 6.8, for the intermediate case at α2 = 3.44◦ (Ks = 0.087). The black
isocontour lines correspond to the spanwise vorticity associated to the instantaneous solution of the periodic flow. The
flutter eigenmode is normalised with respect to its angular displacement component θ, such that |θ| = 1. Both real and
imaginary components are characterised by significant values on the core of the instantaneous vortex shedding structures
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Ks α2 Floquet multiplier µ Eigenvalue σ θ Ω mz(q f )

0.347 2.72 0.9502+0.1198i −0.1321+0.3835i −0.7241+0.6897i −0.1678−0.3675i −0.2972−0.0305i
0.087 3.44 0.9507+0.1020i −0.1357+0.3240i −0.6907+0.7231i −0.1405−0.3220i −0.2709+0.0206i
0.000 3.64 0.9458+0.1362i −0.1365+0.4294i −0.1877+0.9822i −0.3986−0.2089i −0.2658−0.0053i

Table 6.2 – Summary of the Floquet multipliers, eigenvalues, solid components of the eigenmodes and aerodynamic
moment coefficients for the flutter mode at Re= 20000 for the three equilibrium positions considered.

of the periodic flow. These values increase in magnitude, as the instability is convected downstream. Interestingly, no
significant values are found on the vortex shedding formation region, immediately after the trailing edge of the airfoil,
as opposed to the flutter Floquet eigenmode found for the primary equilibrium angle (see figure 4.12, page 153). The
physical interpretation of this Floquet eigenmode and its link with the flutter mode identified in the mean flow analysis
would deserve a better investigation, for instance by following the work by Benetti Ramos et al. (2021).

Table 6.2 summarises the main scalar results associated to the flutter mode for the three incidences. The first two
columns identify the three cases considered. The third column presents the Floquet multipliers located on the side µi > 0
of the spectra. The corresponding eigenvalues σ are reported in the forth column. Their real part remain approximatively
constant for the three values of stiffness, while significant changes are observed in their frequency. The fifth and sixth
columns present the solid components of the flutter eigenmode. The last column presents the aerodynamic moment
associated to the fluid component of the flutter Floquet eigenmodes. We note that the values present in the last three
columns depend on the instantaneous Floquet eigenmode considered along the period of the flow field around which the
stability is studied, as well as on its normalisation.

We observe that the flutter eigenmodes of the Floquet FSI analysis present a higher growth rate and a lower frequency
that the ones associated to the mean flow FSI analysis. However, all the computed eigenvalues are located on the stable
side of the spectrum. For the case Ks = 0.087, we conclude that the onset of the quasi-periodic solution, associated
to the low angular oscillation frequency, is not explained by the above linear stability analysis, as in the case of both
formulations of the mean flow analyses.

6.2 Mean flow linear stability analyses at Re= 50000

In this section, we reconsider the case at Re= 50000, where the DNS simulations at different angles of attack were
carried out. The Reynolds number corresponds to one of the main values present on the literature at which the laminar
separation flutter phenomenon was firstly observed (Poirel et al., 2008). In that way, in this section we perform different
mean flow FSI linear stability analyses around the mean flow solutions issued from the three-dimensional simulations.
The mean flow is obtained by averaging the three-dimensional solutions in time and in the spanwise direction. The
mean flow characteristics were detailed in section 2.2 (page 88), in particular for the angles αb > 0◦ where the second
equilibrium positions are found. Only the classical formulation associated to the mean flow analysis is presented in this
section, as the DNS simulations are not sufficiently close in incidence to compute the additional Reynolds stress term
with a finite difference method.

In the first part of this section, we describe the values of the second equilibrium positions for the present case, that
can be found on the aerodynamic moment curve associated to the mean flow solutions issued from 3D simulations. In a
second part, we present the results of the mean flow analyses using the classical formulation.
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Figure 6.9 – Evolution of the mean flow aerodynamic moment coefficient, associated to fixed incidence three-
dimensional simulations, with the angle of attack (black line), for Re = 50000. The red slopes represent the two
values of structural stiffness used: Ks = 1.395, for α2 = 1◦ and Ks = 0.071, for α2 = 1.5◦.

6.3 Quasi-steady equilibrium positions for mean flow solutions from 3D
simulations

The second equilibrium points can be found in a similar way as described previously, i.e., as a solution of the equality
αb = −mz

(
qb

)
/Ks. For the three-dimensional case, the number of simulations performed was limited. Therefore, the

equilibrium points are defined at fixed angular positions, where the aerodynamic moment is known and the structural
stiffness is derived. The simulations were carried out for angles up to αb = 2◦, with a step of 0.5◦.

Figure 6.9 presents the evolution of the aerodynamic moment associated to the time- and spanwise-averaged solution
as function of the angle of attack. From the available simulations, three angles of attack are selected: the cases at
α2 = 0.5◦, 1◦ and 1.5◦. The corresponding values of the structural stiffness are then computed from the fixed angle α2

and associated aerodynamic moment and are represented by the red slopes in the figure. Since the cases α2 = 0.5◦ and
α2 = 1◦ present the same slope, their structure rigidity at the equilibrium point is the same. These cases present the
highest value of Ks for which the second equilibrium point can be found, with a value of Ks = 1.395 (Kdim

s = 0.502Nm).
On the other hand, the case at α2 = 1.5◦ almost corresponds to the limiting case of a zero structural stiffness, with a
value of Ks = 0.071 (Kdim

s = 0.026Nm). The case at α2 = 2◦ is not considered, since a negative structural stiffness would
be required for the structural equilibrium equation to be satisfied.

6.3.1 Classical formulation of the mean flow linear stability analyses

In this section, we present the results associated to a mean flow FSI stability analysis for α2 = 0.5◦, 1◦ and 1.5◦, using
a classical formulation. These results are present in figure 6.10, with the spectrum representation of the FSI eigenvalues
near the origin on the left and the real and imaginary parts of the streamwise velocity field associated to the flutter mode
on the right. We recall that the corresponding mean flow solutions are described in section 2.2.3 and can be observed
in figure 2.32 (page 99). For the first equilibrium incidence (α2 = 0.5◦, Ks = 1.395), the mean flow is characterised by a
separation of the boundary layer on both lower and upper surfaces of the airfoil. The linear stability results are present
on the top of figure 6.10. The spectrum is characterised by several stable eigenvalues. In particular, we identify the
divergence eigenmode, along the real axis, located at σ=−0.0268. At the same time, one finds the flutter mode (yellow
circle) also on the stable side of the spectrum at σ = −0.1102+0.6709. We represent the eigenvalue of the structure
equation in vacuum with the black cross (σs =−0.0231+0.6028i). As already noted previously, the fluid has the effect
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of stabilising the flutter mode and increasing its frequency. Concerning the spatial structure of the real and imaginary
parts of the streamwise velocity associated to the flutter mode (on the top right), both parts are similar to the flutter
mode discussed in figure 6.2. In particular, we highlight the change in sign of the real part of streamwise velocity near
the trailing edge, as well as the dipole-like spatial structure found with a centre at the leading edge of the airfoil, with
significant values of U on the inviscid zones of the mean flow field. Concerning the imaginary part, we observe significant
values only from the second half of the airfoil up to the airfoil wake.

For the equilibrium incidence at α2 = 1◦ (Ks = 1.395), the results are present on the centre of figure 6.10. The mean
flow solution is characterised by a laminar separation bubble, present on the upper surface of the airfoil for the range
0.56< X < 1, while the boundary layer on the lower surface remains attached for the entire chord length (see figure 2.32).
The spectrum is also characterised by several stable eigenvalues. However, the divergence mode has coalesced with a
stable static eigenvalue, leading to a pair of low frequency complex conjugate eigenvalues, located on the stable side of
spectrum. The flutter eigenvalue (yellow circle) is located at σ=−0.1139+0.6628, near the eigenvalue of the structure
equation at σs =−0.0231+0.6028i (black cross). The corresponding spatial structure of the real and imaginary parts
of the streamwise velocity are present on the right of the figure. We highlight the change in sign of the streamwise
velocity around the location of the separation point of the boundary layer on the upper surface of the associated mean
flow solution.

Next, we present the results associated to a mean flow FSI stability analysis for the case α2 = 1.5◦ (Ks = 0.071),
with the results present on the bottom of figure 6.10. Similar to the previous angle of attack considered, the mean
flow solution is characterised by a laminar separation bubble, present on the upper surface of the airfoil for the range
0.51< X < 1, while the boundary layer on the lower surface remains attached for the entire chord length. Additionally, we
reported in chapter 2 the emergence of a secondary separation and reattachment, present inside the laminar separation
bubble. Observing the fluid–structure spectrum, all eigenvalues are again found on the stable side of the spectrum.
Concerning the divergence eigenvalues, a coalesced complex pair of eigenvalues is found, as in the case at α2 = 1◦, but at
a significantly lower growth rate. The flutter eigenvalue, located at σ=−0.0518+0.2889i, is characterised by a lower
frequency, when compared to the flutter eigenvalue of the previous analyses. At the same time, the decrease of Ks leads
to an increase of its growth rate, although the eigenmode is still stable. We note the proximity of the flutter eigenvalue to
the structure eigenvalue (σs =−0.0232+0.1345i). The real and imaginary parts of the streamwise velocity of the flutter
mode are represented on the bottom right of figure 2.32. The spatial structure of both parts resembles to the flutter mode
at α2 = 1◦.

With all the eigenvalues present on the stable side of the spectrum, we conclude that a linear stability analysis
performed under the present hypotheses could not predict the quasi-periodic dynamics that precedes the laminar
separation flutter.
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Figure 6.10 – Classical formulation of the mean flow linear stability analysis at Re= 50000 and different secondary
equilibrium positions: the equilibrium at α2 = 0.5◦ (top plots), at α2 = 1◦ (centre plots) and α2 = 1.5◦ (bottom plots).
On the left, we represent the eigenvalue spectrum close to the origin. The bigger red and yellow circles represent
the divergence and flutter eigenvalues, respectively. The black crosses represent the eigenvalues of the structure in
vacuum. On the right, we represent the real and imaginary parts of the streamwise velocity of the flutter eigenmode.
The black isocontour lines represent the streamlines enclosing the recirculation zone of the corresponding mean flow
solution.
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Conclusions and perspectives

This thesis represents an effort towards a better understanding of the laminar separation flutter phenomenon,
characterised by self-sustained pitch oscillations of a NACA0012 airfoil in a low-to-moderate Reynolds number regime.
This is accomplished with the help of several specifically designed linear and nonlinear methods, such as global linear
stability analysis, Floquet stability analysis and coupled time-marching simulations.

Theoretical and numerical methods for fluid–structure linear stability analyses

In this thesis, the study of the fluid–structure instabilities is grounded on several theoretical and numerical develop-
ments, introduced in chapters 1 and 3. Chapter 1 starts with the presentation of the governing equations of the flow
dynamics, the Navier–Stokes equations, in a non-inertial frame of reference, which provides a foundation for the linear
stability analyses framework. In turn, the airfoil structure is modelled as a rigid body mounted on a linear torsional
spring-damped system. The core of this chapter is presented afterwards, where we derive the equations associated to the
linear stability analyses. There, we introduce a decomposition of the fluid and solid variables into a slow and fast time
scale components and we proceed to make several hypotheses on the latter components of the solid variables, based on the
response of the structure to fast time scale forcing oscillations, coming from the aerodynamic moment coefficient. With
that, we first arrive to a system of linear stability equations describing the infinitesimal fluid–structure perturbations
around a periodic flow state (Floquet stability analysis). We then continue with several hypotheses in order to arrive to
the equations of the mean flow linear stability analyses. In this case, two different formulations are introduced, one of
them taking into account the variation of the divergence of the Reynolds stress tensor with the angular displacement.

Following the theoretical developments of the mean flow stability analyses, introduced in chapter 1, we present in
chapter 3 several methods to arrive to the eigenpairs of a mean flow eigenvalue problem. These methods are applied to
the case at Re = 50000 and α= 0◦, also explored in Negi et al. (2021). We start with a classical Krylov–Schur method
relying on a shift-and-invert transformation, allowing the computation of all eigenvalues present on a particular region of
the fluid–structure spectrum. This method is based on the exact formulation of the mean flow eigenvalue problem, where
the inversion of the fluid–structure Jacobian is obtained by solely inverting the fluid Jacobian and by some additional
matrix-vector product operations. This allows the identification of an unstable static mode, which we label divergence
mode, responsible for the divergent departure of the structure from its primary equilibrium point at α = 0◦. This is
confirmed by a quasi-steady approximation, where a negative aerodynamic stiffness is found. A second eigenvalue is
identified, on the stable side of the spectrum, which we label flutter mode, due to the proximity of its frequency with the
frequency of the laminar separation flutter phenomenon, reported in the literature. The association of the latter mode to
the structure is better understood with the introduction of the fluid transfer function, defined as the ratio between the
aerodynamic moment of a linearised fluid response to the solid motion and the angular displacement. The computation of
the fluid transfer function near the obtained fluid–structure eigenvalues enables to understand the effect of the flow on
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the coupled instability, in particular the importance of some stable hydrodynamic eigenmodes. Based on this information,
a second method for computing the fluid–structure eigenvalues is then introduced, relying on the transformation of the
original eigenproblem into a reduced-size nonlinear eigenproblem, solved via a Newton iterative procedure, where at
each nonlinear iteration, the exact value of the fluid transfer function has to be calculated. We end the chapter with the
implementation of an approximative model for computing the fluid–structure eigenmodes, based on the approximation
of the fluid transfer function by a sum of rational functions. The denominator of the rational functions is based on two
stable hydrodynamic eigenmodes, found to have a paramount influence on the behaviour of the fluid transfer function.

Flow behaviour in a low-to-moderate Reynolds number regime

The linear stability analyses on this thesis were carried out around a base equilibrium solution that corresponds to
either a mean flow or a periodic flow with a fixed incidence. These solutions are characterised in chapter 2, where no
interaction between the fluid and the wing was taken into account. In that way, chapter 2 is devoted to the description of
the flow field around a NACA0012 profile wing and the corresponding aerodynamic forces acting on it from a Reynolds
number of Re= 1000 to Re= 65000, at different angles of attack. We start by describing the onset of a vortex shedding
oscillation at α= 0◦ on the wake of a NACA0012 airfoil via two-dimensional Navier–Stokes computations. This is followed
by the description of the mean flow and the periodic flow solutions appearing at different incidences, corresponding to
the base equilibrium solutions of the linear stability analyses present in subsequent chapters. The flow being purely
two-dimensional, we then investigate the emergence of three-dimensional instabilities in the airfoil spanwise direction, by
the means of a hydrodynamic Floquet stability analysis. For the considered incidence, α= 0◦, the first instabilities arise
around Re= 30000 for a wavenumber of β= 50 via a mode B instability. In a second part of this chapter, we conducted
Direct Numerical Simulations at Re= 50000 for five angles of attack, between 0◦ and 2◦, in order to characterise both
instantaneous and spectral properties of the flow field. In particular, these simulations enable to compute a time- and
spanwise-averaged solution, later used in the mean flow stability analyses, accounting for the three-dimensional effects
present on the flow field at this Reynolds number. We end the chapter with an investigation of the behaviour of the
aerodynamic moment coefficient associated to the time- and spanwise-averaged flow fields as function of the angle of
attack. The initial negative slope of this coefficient, at α= 0◦, indicates that a divergent instability could be present on
the fluid–structure system, depending on the value of the structural stiffness of the torsional spring. The aerodynamic
moment coefficient for each angular displacement is decomposed into its frictional and pressure components. The latter is
evaluated using an alternative approach, based on the spatial distribution of the different terms of the Navier–Stokes
equations, rather than the classic approach based on a stress integration over the fluid–solid interface.

In these purely fluid explorations, no particular restrictions are imposed to the static angle of attack, which was fixed
for each simulation. However, when the torsional degree of freedom of the structure is introduced in the subsequent
chapters, the admissible equilibrium incidences are fixed by the relation between the mean aerodynamic moment at
fixed incidences and the structural stiffness, as α= mz

(
qb

)
/Ks. In particular, as a consequence of the behaviour of the

aerodynamic moment for small incidences, two equilibrium positions are identified: a primary equilibrium position, at
α1 = 0◦, and a second equilibrium position, α2, found for the lower values of the structural stiffness. These equilibrium
positions are then studied in the subsequent chapters using both linear and nonlinear analyses.

Linear analysis: onset of a divergent behaviour of the structure

After the identification of an unstable static eigenvalue at α1 = 0◦ during the discussion of the different methods
used to solve a mean flow analysis (chapter 3), this primary instability of the fluid–structure system is described in
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detail in chapter 4. We start the chapter with a description of both divergence and flutter eigenmodes using a classical
formulation of mean flow linear stability analysis (introduced in chapter 1). The presence of an unstable zero-frequency
mode confirms the results obtained in the mean flow linear stability analysis of Negi et al. (2021). We then investigate the
effect of different parameters on the behaviour of these modes. This includes a variation of the structural parameters,
the aeroelastic centre, the Reynolds number and the thickness of the airfoil. Concerning the variation of the structural
stiffness, Ks, we observe a stabilisation of the divergence mode as Ks is increased. A similar behaviour is found when
the structural damping is increased, however with the static eigenmode remaining on the unstable side of the spectrum.
The variation of the Reynolds number enables to conclude that the destabilisation of the divergence mode appears at
Re= 32000, for the nominal values of the structural parameters. This threshold appears at a higher Reynolds number as
the thickness of the airfoil is decreased. At the end of the chapter, the linear analysis is extended to a periodic flow field,
using a Floquet analysis. Although no significant changes are noted on the eigenvalues, a clear difference is noted between
the divergence eigenmode of the mean flow analysis and the mean component of the Floquet divergence eigenmode,
highlighting the importance of taking into account a periodic flow solution for a FSI linear stability analysis.

Nonlinear analysis: coupled time behaviour beyond the linear divergence onset

After the onset of a divergent behaviour of the structure incidence, nonlinear simulations are required to describe
the subsequent evolution of the fluid–structure dynamics. In that sense, the nonlinear behaviour of the fluid–structure
system beyond a linear hypothesis is explored in chapter 5, using two-dimensional coupled time-marching simulations.
The aim is to reproduce some of the results of the investigations present in the literature on the laminar separation
flutter phenomenon for Re≥ 50000 (Poirel et al., 2008, 2011; Barnes et al., 2016, 2018), as well as to explore the nonlinear
regimes at lower Reynolds numbers, that ultimately lead to the global limit cycle oscillations observed in the literature.
To our knowledge, no investigation in the literature has addressed this latter objective.

In a first part of chapter 5, we describe different regimes of the fluid–structure system at a Reynolds number of 20000,
by varying the structural stiffness parameter. The first regime, observed for the highest values of Ks, is characterised
by pitch oscillations of negligible amplitude around the primary equilibrium position at α = 0◦. The second regime,
obtained for lower values of Ks, is also characterised by negligible pitch oscillations occurring this time around the
secondary equilibrium position at a nonzero angle of incidence (α 6= 0◦). The third and fourth regimes, obtained for even
lower values of Ks, are characterised by a chaotic fluid–structure dynamics, with high-amplitude low-frequency pitch
oscillations around a nonzero mean angle of incidence. In the latter regime, the pitching dynamics switches between
oscillations around positive and negative (time-averaged) angles of incidence. In between these four regimes, an additional
nonlinear regime was found using a different initialisation strategy, characterised by a quasi-periodic behaviour, i.e.,
characterised by a high frequency associated to the vortex shedding phenomenon and a low frequency associated to
the pitch oscillations. Therewith, a bifurcation diagram is sketched as function of the Ks parameter, identifying the
coexistence of different branches. In particular, for a finite range of structural stiffness values, a bistable behaviour is
identified characterised by the coexistence of chaotic and quasi-periodic solutions. The emergence of these quasi-periodic
solutions is then investigated in the last chapter using a linear stability framework. For this Reynolds number, we
do not observe a fluid–structure dynamics characterising the so-called laminar separation flutter, i.e., a symmetric
high-amplitude low-frequency pitching oscillations around the zero angle of incidence.

In a second part of chapter 5, we fix the structure parameters in accordance with the literature (in particular, the
value of the structural stiffness is fixed to 0.3Nm), and we investigate the emergence of the laminar separation flutter
as the Reynolds number increases. For the Reynolds number Re = 50000, we observe an intermittent dynamics of
the pitching oscillation around opposite mean values of the angle of incidence, as for the third regime described for
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Re= 20000. By increasing the Reynolds number to Re= 64000, the laminar separation flutter appears. The evolution of
the pitching amplitude and low-frequency with the Reynolds number is finally described, showing a good agreement with
both experimental and numerical results reported in the literature.

Linear analysis: stability of the second equilibrium position

The thesis ends with an investigation of the linear stability analysis of the second equilibrium position, in chapter 6.
We investigate the linear stability of the second equilibrium position (α 6= 0◦), around which several nonlinear regimes
were identified in chapter 5. For the regime at Re= 20000 which converges to a static incidence, this second equilibrium
is confirmed to be stable, with both the flutter and divergence modes located on the stable side of the fluid–structure
spectrum. This is confirmed by both mean flow and Floquet linear analyses. Subsequently, we carry out a mean flow
analysis using a classical formulation for a range of equilibrium incidences where both chaotic and quasi-periodic solutions
were found. However, the low frequency flutter mode is found to remain on the stable side of the spectrum. To understand
these contradictory results obtained with nonlinear temporal simulations and linear mean flow analyses, we discussed
and reconsidered some of the assumptions underlying the linear mean flow analysis. The first one concerns the high
frequency aerodynamic flow unsteadiness that is (obviously) neglected when considering a mean flow analysis. The
derivation of the governing equations performed in chapter 1 suggested that these high frequency oscillations of the
periodic (purely-hydrodynamic) flow may play a role in the linearised low-frequency fluid–structure dynamics, even
if no resonance was found between the two frequencies. To assess their influence for the present case, we performed
a Floquet analysis of the periodic flow (instead of a mean flow analysis) for the equilibrium solutions at α 6= 0◦ and
parameters for which quasi-periodic and chaotic dynamics were previously observed. The results indicate that the high
frequency oscillations neglected in the mean flow analysis tend to destabilise the flutter eigenmode. However, this sole
effect cannot explain its destabilisation. A second hypothesis is investigated, concerning the inclusion of the Reynolds
stress term in the equations of the mean flow eigenproblem. In particular, we restrict our analysis to the variation of
this term with the angular perturbation. The results show a destabilisation effect in the flutter eigenvalue, even if the
flutter eigenvalue remains on the stable side of the spectrum. A maximum on the flutter growth rate evolution with
the equilibrium incidence is found in the range where the quasi-periodic solutions were observed. We conclude that the
inclusion of the Reynolds stress term in the perturbation dynamics has an important effect, which would be pertinent to
be addressed in future investigations. In particular, the inclusion of the remaining terms of the Reynolds stress variation
on the mean flow eigenproblem equations, namely the effect of the fluid variable perturbations, can be achieved using a
RANS turbulence model. This investigation is started in appendix E and discussed briefly in the perspectives. Finally, in
the second part of this last chapter, we investigate the linear stability of three equilibrium positions at Re= 50000, using
the time- and spanwise-averaged flow solutions issued from the Direct Numerical Simulations at α 6= 0◦. With all the
eigenvalues present on the stable side of the spectrum, we conclude that a linear stability analysis performed under the
present hypotheses could not predict the quasi-periodic dynamics that precedes the laminar separation flutter.

Perspectives

Several points on this manuscript deserve to be further investigated in future works.
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Figure 10 – Mean flow FSI linear stability analysis of the RANS mean flow using the Spalart–Allmaras turbulence
model and the Baş–Çakmakçıoğlu turbulence transition model at Re = 50000, α = 0◦ and Kdim

s = 0.15Nm: on
the left, the eigenvalue spectrum representation close to the origin. The bigger red and yellow circles represent
the divergence and flutter eigenvalues, respectively. On the right, the streamwise velocity U of the real part
of the divergence eigenmode (top) and of the real and imaginary parts of the flutter eigenmode (centre and
bottom, respectively). The black isocontour lines represent the streamlines enclosing the recirculation zone of the
corresponding mean flow solution.

Flow description in low-to-moderate Reynolds number regimes

From a purely fluid point of view, the work presented in chapter 2 could be enriched in several directions. First, it
would be interesting to characterise the onset of the vortex shedding via a purely-hydrodynamic linear stability analysis
at low incidences, as classically done for the case of the circular cylinder. Several difficulties in this path were already
highlighted in section 2.1.1, related to the strongly convective character of the instability, with the first attempts to
predicting this threshold reported in appendix C. Second, it would be interesting to further characterise the onset of the
three-dimensional perturbations using a Floquet analysis for non-zero incidence angles, as started in appendix C. While
the present work reports the first instabilities appearing at Re= 30000 for α= 0◦ via a mode B instability, this transition
to a three-dimensional state was reported in the literature to take place via a mode C instability for (α, Re)= (12.5◦, 1082)
and (α, Re)= (15◦, 730), on a NACA0015 airfoil (Deng et al., 2017). One can note the gap between these two investigations,
both in terms of Reynolds number and in terms of incidence. In future investigations, it would be interesting to continue
the investigations of appendix C and describe the transition from the mode B to the mode C, as the incidence increases,
as well as characterise the threshold Reynolds number, that is expected to vary significantly as the incidence increases.

Fluid–structure investigations

Concerning the fluid–structure temporal simulations, these were conducted in this thesis using a two-dimensional
Navier–Stokes model. Firstly, it would be interesting to investigate if all the regimes observed at Re = 20000 would
still exist using a URANS or a three-dimensional modelling. From a numerical point of view, we suggest to use a more
efficient strategy for the temporal scheme, based for example on an incremental projection algorithm, as done for the
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Direct Numerical Simulations of the present thesis. Secondly, it would be interesting to explore the unstable branches of
the bifurcation diagram present in chapter 5. This can be achieved by using methods adapted to capture these unstable
solutions, in particular periodic and quasi-periodic solutions, as the Time Spectral Method (Mavriplis et al., 2011) or a
Chebyshev-based time-spectral method (Ekici et al., 2020). Third, it would be interesting to explore even lower Reynolds
number regimes. As reported in chapter 2, the stability derivative associated to the aerodynamic moment coefficient
becomes negative even before the onset of a vortex shedding. This indicates that a divergent instability could be present
on the fluid–structure system before the onset of the unsteadiness on the flow field, depending on the value of the torsional
spring stiffness. In preliminary investigations at α = 6.4◦, not reported in this thesis, we found the transition from
a homoclinic orbit around the secondary equilibrium position to a steady solution at the primary equilibrium as the
Reynolds number decreases, at a threshold of Re= 1430. We consider that this case represents an interesting dynamic
system, presenting different unexplored regimes that can be further investigated in future works.

Reynolds-averaged Navier–Stokes modelling

Concerning the fluid–structure linear stability analysis, the difficulties found on the last chapter of this thesis enable
us to identify possible paths for improving the linear predictions in future works. In particular, we suggest the exploration
of the mean flow linear stability analysis using a RANS modelling, where the effect of the neglected terms associated to
the Reynolds stress linearisation is taken into account. In particular, a RANS formulation presents a methodological
advantage, since it takes into account the variation of the divergence of the Reynolds stress tensor with respect to all
state variables. Further, this is independent of the choice for the model closure. The first steps on this investigation are
reported in appendix E, using a Spalart–Allmaras closure model. Further, the laminar-turbulent transition of the flow
field is obtained via an algebraic transition model, namely the Baş–Çakmakçıoğlu (BC) model. The results of a mean flow
fluid stability analysis around the primary equilibrium point at Re= 50000 are displayed in figure 10. As noted, we are
able to capture the unstable divergence eigenmode, as in the analysis presented in chapters 3 and 4. However, we show in
appendix E that more work needs to be done in order to capture the laminar-turbulent transition for the cases at α 6= 0◦

and, in particular, to capture the evolution of the aerodynamic moment with the angle of attack where the secondary
equilibrium positions would be found.

Resolvent-based analysis

Finally, a different idea, not tested in this thesis, would be to investigate the effect of an external forcing noise on
the flutter mode. Indeed, the stable flutter mode is close to the zero growth rate axis, so that a large amplification
of the pitching oscillations close to its frequency can be expected under the action of external noise. The resolvent
analysis, classically applied in aerodynamics (Sipp et al., 2010), can be extended to describe some instabilities arising in
fluid–structure interaction problems, either in the framework of parallel flows (Luhar et al., 2015) or in the framework of
non-parallel flows (Pfister et al., 2022).
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Appendix A

Notes on the fluid model derivation and
the airfoil geometry generation

A.1 Additional notes on the fluid model derivation

The present section serves as auxiliary guide to the derivations used in chapter 1, during the change of reference
frame of the Navier–Stokes equations. A similar demonstration is presented in Jallas (2018), Moulin (2020) and Benetti
Ramos (2020). For a compressible framework, see also Kračmar et al. (2014); Galdi et al. (2019, 2020).

We start by noting from the rule chain that, for a generic scalar function β, the following equalities hold:





∂β

∂x
= ∂β

∂X
∂X
∂x

+ ∂β

∂Y
∂Y
∂x

⇔ ∂β

∂x
= cos(θ)
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∂X
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∂β

∂y
= ∂β

∂X
∂X
∂y

+ ∂β

∂Y
∂Y
∂y

⇔ ∂β

∂y
= sin(θ)

∂β
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+cos(θ)

∂β

∂Y
.

(A.1a)

(A.1b)

Recalling the rotation matrix definition in equation 1.1, page 18, the above equations directly give us the relation of the
pressure gradient between the two frames of reference, as stated in the following Identity.

Identity 1. (pressure term)
x
∇Tp(x, t)=R

X
∇Tp(X , t)

The x and X notations over the nabla operator indicate the variables with which the space derivatives are made.

Identity 2. (continuity term)
x
∇ ·u(x, t)=

X
∇ ·U(X , t)

The equality can be demonstrated by recalling that U(x, t)=RT u(X , t):

x
∇ ·u(x, t)= ∂x [u(x, t)]+∂y [v(x, t)]+∂z [w(x, t)]

= cos(θ)∂X [u(X , t)]−sin(θ)∂Y [u(X , t)]+sin(θ)∂X [v(X , t)]+cos(θ)∂Y [v(X , t)]+∂Z [w(X , t)]

= ∂X [cos(θ)u(X , t)+sin(θ)v(X , t)]+∂Y [−sin(θ)u(X , t)+cos(θ)v(X , t)]+∂Z [w(X , t)]

= ∂X [U(X , t)]+∂Y [V (X , t)]+∂Z [W(X , t)]=
X
∇ ·U(X , t)�

(A.2)
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Identity 3. (convective term1)
x
∇ ·[ρu⊗u

]=R
X
∇ ·[ρU ⊗U

]

This identity is valid for the compressible convection term, which can be simplified at the end to an incompressible
hypothesis. One can start by decomposing the above operation into a sum of outer products:

x
∇ ·[ρu⊗u

]= ρu
(

x
∇ ·u

)

︸ ︷︷ ︸
1st term

+
(
u·

x
∇

)
ρu

︸ ︷︷ ︸
2nd term

. (A.3)

Concerning the first term (null for incompressible flows), one will find:

ρu
(

x
∇ ·u

)
= ρu

(
X
∇ ·U

)
=RρU

(
X
∇ ·U

)
. (A.4)

For the second term, one will find:
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) + w∂z
(
ρw

)




=




u
[
cos(θ)∂X

(
ρu

)−sin(θ)∂Y
(
ρu

)] + v
[
sin(θ)∂X

(
ρu

)+cos(θ)∂Y
(
ρu

)] + w∂Z
(
ρu

)

u
[
cos(θ)∂X

(
ρv

)−sin(θ)∂Y
(
ρv

)] + v
[
sin(θ)∂X

(
ρv

)+cos(θ)∂Y
(
ρv

)] + w∂Z
(
ρv

)

u
[
cos(θ)∂X

(
ρw

)−sin(θ)∂Y
(
ρw

)] + v
[
sin(θ)∂X

(
ρw

)+cos(θ)∂Y
(
ρw

)] + w∂Z
(
ρw

)




=



∂X

(
ρu

)
[cos(θ)u+sin(θ)v] + ∂Y

(
ρu

)
[−sin(θ)u+cos(θ)v] + w∂Z

(
ρu

)

∂X
(
ρv

)
[cos(θ)u+sin(θ)v] + ∂Y

(
ρv

)
[−sin(θ)u+cos(θ)v] + w∂Z

(
ρv

)

∂X
(
ρw

)
[cos(θ)u+sin(θ)v] + ∂Y

(
ρw

)
[−sin(θ)u+cos(θ)v] + w∂Z

(
ρw

)




=



∂X

(
ρu

)
U + ∂Y

(
ρu

)
V + ∂Z

(
ρu

)
W

∂X
(
ρv

)
U + ∂Y

(
ρv

)
V + ∂Z

(
ρv

)
W

∂X
(
ρw

)
U + ∂Y

(
ρw

)
V + ∂Z

(
ρw

)
W


=

(
U ·

X
∇

)
ρu =R

(
U ·

X
∇

)
ρU .

(A.5)

Substituting these two terms on equation A.3, one find the required property:

RρU
(

X
∇ ·U

)
+R

(
U ·

X
∇

)
ρU =R

X
∇ ·[ρU ⊗U

]
� (A.6)

Identity 4. (strain rate tensor term2)
x
∇ ·[

x
∇ u+ (

x
∇ u)T ]=R

X
∇ ·[

X
∇U + (

X
∇U)T ]

Lets start by proving that
x
∇ u+ (

x
∇ u)T =

X
∇U + (

X
∇U)T . From Identity 1, the nabla operator can be rearranged as

x
∇=

(
x
∇T

)T
=

(
R

X
∇T

)T
=

X
∇RT . (A.7)

1The following convention is used for the outer product: ai ⊗ b j = Ci j , with ai and b j the components of two vector fields and Ci j the entry
corresponding to the ith line and jth column of a matrix.

2The following convention is used for the gradient of a vector field: ∇a= ai, j ei ⊗ e j , with a a vector field defined on an orthonormal coordinate basis[
e1, e2, e3

]T . Concomitantly, the divergence of a 2nd order tensor (matrix), C, is defined as ∇·C = Ci j, j ei . The notation comma followed by a subscript
denotes the partial differentiation with respect to the corresponding coordinate of that subscript.
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Since u =RU , one readily obtains that
x
∇ u+ (

x
∇ u)T =

X
∇U + (

X
∇U)T . From here, since that for the divergence of a matrix

C one has ∇·C =R∇·C (Identity 3), the identity is retrieved by writing:

x
∇ ·[

X
∇U + (

X
∇U)T ]=R

X
∇ ·[

X
∇U + (

X
∇U)T ]� (A.8)

Identity 5. (frame velocity development) d(X−XEC )
dt =−Ω× (X − XEC)− ẊEC

This identity is used in equation 1.4, on page 20. We start by noting that the coordinates in the relative frame
(attached to the airfoil) are transformed into the absolute one with the equality (X − XEC)=RT (x− xEC). Then, one has

d
(
R[θ(t)]T (x− xEC)

)

dt
= dRT

dθ
dθ
dt

(x− xEC)+RT d(−xEC)
dt

. (A.9)

Noting that dθ/dt ≡Ω and Ω= [0, 0,Ω]T (angular velocity), the first term is developed as

dRT

dθ
dθ
dt

(x− xEC)=




−sin(θ) cos(θ) 0
−cos(θ) −sin(θ) 0

0 0 0


ΩR (X − XEC)

=




0 1 0
−1 0 0

0 0 0


Ω (X − XEC)

=Ω




(Y −YEC)
− (X − XEC)

0


=−Ω× (X − XEC) .

(A.10)

On the other hand, the second term of equation A.9 corresponds to the pure translation velocity of the elastic centre of the
rigid airfoil and can be explicitly posed as:

−RT d(xEC)
dt

=−RT




−U∞

0
0


=−U∞




−cos(θ)
sin(θ)

0


=−ẊEC . (A.11)

Assembling both terms, one arrives to

d(X − XEC)
dt

=−Ω× (X − XEC)− ẊEC� (A.12)

A.2 Airfoil geometry generation

NACA 4-digit airfoil

The shape of the NACA airfoils was developed by the National Advisory Committee for Aeronautics (NACA)—ancestor
of the National Aeronautics and Space Administration (NASA) agency—during the late 1920s and into the 1930s3. In a
four-digit series, the first digit represents the maximum camber as percentage of the chord, the second digit represents

3See https://history.nasa.gov/SP-4305/guide.htm.
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Section A.3 – Relation between the convection term of the mean flow Navier–Stokes momentum equation and the quantity
Q

the position of the maximum camber in tenths of the chord from the leading edge, and the last two integers represent the
maximum thickness of the airfoil, in percent of the chord. From the first two digits of the designation “NACA0012”, one
infers that the profile has no camber, being symmetric with respect to the chord line. The last two digits indicate that the
airfoil has a ratio of 12% between its thickness and chord length.

The coordinates of a symmetrical airfoil shape are given by

(x, y)=
(
x, ±5t

[
0.2969

p
x−0.126x−0.3516x2 +0.2843x3 −0.1036x4])

, (A.13)

with t the maximum thickness as a fraction of the chord (given by the last two digits of the NACA four-digit) divided by
100. Note that at x = 1 (the trailing edge of the airfoil), the thickness is zero, corresponding to a sharp trailing edge. On a
future work, one may test a minor modification of the trailing edge, by rounding the trailing edge and avoiding the sharp
edge. This modification can, for example, improve the convergence rate of the numerical simulations, namely on RANS
computations, where the distance to the airfoil must be accurately calculated.

Eppler E387 airfoil

This airfoil geometry is used on the validations of the RANS models, in section E.2.4, page 230. The Eppler E387
airfoil belong to a family of airfoil generated using an inverse design approach. In particular, the airfoil shape is obtained
by specifying a target pressure distribution about airfoil at different angles of attack (Eppler, 1990). The coordinates of
the Eppler E387 were exported from the UIUC airfoil coordinates database website4, with which a spline interpolating
these points was generated, using a python language code (van Rossum et al., 2009). The sharp trailing edge was rounded
to avoid numerical issues associated to the mesh tolerance procedure. The generation of the mesh followed the steps
described in section 1.7.3, page 48 for the NACA airfoil.

A.3 Relation between the convection term of the mean flow Navier–Stokes
momentum equation and the quantity Q

The following demonstration explains the equivalence stated in equation 2.13, page 106, which states:

∫

Ω

[(U ·∇)U] ·∇φM dΩ=
��
���

���
�:0∫

Γ

φM [(U ·∇)U] dΓ , −
∫

Ω

φM∇· [(U ·∇)U] dΩ

=
∫

Ω

2φMQ dΩ .

(A.14a)

(A.14b)

The overbar notation, identifying U as a mean flow velocity field, is dropped to simplify the notation. In this expression,
the border integrals on Γ are zero, since the potential function is null at infinity and the convection term is null on the
airfoil border. Developing the term present on the right side volume integral of equation A.14a gives:

∇· [(U ·∇)U]≡∇U : (∇U)T = (∂xU)2 + (∂yV )2 + (∂zW)2 +2∂xV∂yU +2∂xW∂zU +2∂yW∂zV . (A.15)

4See https://m-selig.ae.illinois.edu/ads/coord_database.html.
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On the other hand, the quantity Q is defined as

Q = 1
2

(∥∥Ωr∥∥2 −
∥∥S

∥∥2
)

with





Ωr = 1
2

(
∇U − (∇U)T

)
,

S = 1
2

(
∇U + (∇U)T

)
,

(A.16a)

(A.16b)

where Ωr and S correspond to the antisymmetric/skew-symmetric (rotation tensor) and symmetric (shear strain tensor)
parts of ∇U , respectively5. Their development is given by:

∥∥Ωr∥∥2 = 1
2
Ω·Ω= 1

2
(
(∂yU)2 + (∂xV )2 + (∂zU)2 + (∂xW)2 + (∂zV )2 + (∂yW)2

)−∂yU∂xV −∂zU∂xW −∂zV∂yW ,

‖S‖2 = 1
2

(
(∂xU)2 + (∂yV )2 + (∂zW)2 + (∂yU)2 + (∂xV )2 + (∂zU)2 + (∂xW)2 + (∂zV )2 + (∂yW)2

)+∂yU∂xV +∂zU∂xW +∂zV∂yW ,

(A.17a)

(A.17b)
where Ω is the vorticity vector. After subtracting the latter quantities, one obtains the development present in equation
A.15, which enables to conclude that

∇· [(U ·∇)U]=−2Q . (A.18)

In that way, the equality A.14 is demonstrated, having

∫

Ω

[(U ·∇)U] ·∇φM dΩ=
∫

Ω

2φMQ dΩ�

A.4 Linearisation of the SUPG and grad-div stabilisations

In this section, we define the linearisation of the SUPG and grad-div terms. Due to time constrains during the writing
process of this manuscript, only the main lines of the linearisation are presented. We recall from equation 1.57 that, for
each element, the SUPG stabilisation reads

τSUPGR·
[(

Uh −uh
w·∇

)
vh

]
,

where R represents the strong residual of the Navier–Stokes moment equation. The linearisation of this term with respect
to the fluid velocity state variable reads

∂
{
τSUPGR·

[(
Uh −uh

w·∇
)
vh]}

∂U
= ∂τSUPG

∂U

[
R·

[(
Uh −uh

w·∇
)
vh

]]
+τSUPG

∂R

∂U
·
[(

Uh −uh
w·∇

)
vh

]
+τSUPGR·

(
∇vh

)
. (A.19)

Concomitantly, the linearisation of the SUPG stabilisation with respect to the fluid pressure state variable reads

∂
{
τSUPGR·

[(
Uh −uh

w·∇
)
vh]}

∂p
= τSUPG

∂R

∂p
·
[(

Uh −uh
w·∇

)
vh

]
. (A.20)

5For a tensor of order 2 (i.e., a matrix), a skew-symmetric matrix has the property AT =−A, while a symmetry matrix has the property A=AT .
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The same reasoning can be made for the grad-div term. Further, one must also perform this linearisation for the
Spalart–Allmaras equation, in the case of using a RANS model.
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Appendix B

Notes on several numerical aspects

The appendix is centred on some of the numerical aspects that were solved in this thesis. In particular, the first
section is devoted to the numerical inversion of a matrix, while the second section is devoted to the numerical approach
for solving the Floquet eigenproblem.

B.1 Numerical inversion of a matrix

One of the numerical challenges concerns the inversion of the matrices obtained in the different methods in this thesis.
For that, we present in the following paragraphs, two approaches used in this thesis for the inversion of a system, posed
as Ax= b: a direct approach and an iterative approach.

B.1.1 Direct approach for matrix inversion

In a first approach, one performs a direct inversion of A, providing the exact solution x=A−1b after a finite amount of
elementary operations. The accuracy of direct methods can be limited by the condition number of A, κ(A)= ‖A‖ ·

∥∥A−1∥∥.
Therefore, the exact solution is obtained for well-conditioned matrices (low κ), within a tolerance margin caused by the
rounding errors. However, ill-conditioned matrices can produce erroneous solutions (see Rump (2013) for further details).

The most common method for a direct inversion is the LU factorisation, where the matrix to be inverted is decomposed
as a product of a lower triangular matrix, L, and an upper triangular matrix, U (Duff et al., 2007). The linear system
is then solved by forward and back substitutions of the systems Ly = b and Ux = y, respectively. The use of this
approach usually passes through an already implemented library, such as UMFPACK (Davis, 2002), SuperLU (Li,
2005) or MUMPS (Amestoy et al., 2001), which takes advantage of both matrix sparsity and parallel layout and covers
complex-valued systems.

However, this approach becomes infeasible as the size of the system increases. This increase is usually associated to an
increase on the number of elements of the space discretisation and/or to an increase on the order of the polynomial degree
of the finite element functions used. The main limitation associated to this size increase is the storage requirements for L
and U, making the use of a direct procedure prohibitive for the bigger matrix systems to be solved in this thesis (e.g., in
the DNS simulations). To bypass these obstacles, a different approach, based on an iterative resolution, is presented in
the next paragraphs.
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B.1.2 Iterative approach for matrix inversion

In this second approach, the inversion of A is obtained by iteratively improve the approximate solution until a given
tolerance is satisfied. The term iterative method refers to a wide range of techniques, most of them classified either as
stationary or nonstationary methods. In short, the former methods are older and simpler to understand and to implement,
but usually not as effective as the latter, nonstationary methods.

In an iterative method, one starts with a guess solution x0 (often just the zero vector) and successively refines this
guess in order to obtain a more accurate approximation to the linear system at each step (Simoncini et al., 2007). The
power of most iterative methods lies in the cheapness of each iteration, since it only involves matrix-vector product
operations (with A and/or AH). Moreover, the A matrix does not need to be explicitly available—and therefore assembled
and stored—, as one only has to be able to apply the matrix-vector operation through a given function. In practice, the
iterative method may be much more complicated than the multiplication of a vector by a sparse matrix. For example, this
operation may include the application of a preconditioning strategy, which may also require the solution of a large linear
systems, as detailed below.

Most of the current iterative methods are based on the Krylov subspace, introduced in the 1950s (Hestenes et al.,
1952), in which the approximate solution is searched, based on an optimality condition (Saad, 2003). This subspace can
be defined as

K k(A, r0)= span
{
r0, Ar0, A2r0, . . . , Ak−1r0

}
, (B.1)

where r0 = b−Ax0. The approximate solution at stage k will be such that

xk ∈ x0 +K k(A, r0) . (B.2)

The use of this iterative approach is often performed inside a Newton iteration1, for example for time spectral methods,
or at each time step, for time-marching schemes.

One of the most popular schemes present in the literature is the Generalised Minimum Residual Method (GM-
RES) (Saad et al., 1986), an Arnoldi-based method2 applicable to general unsymmetrical systems. This technique
minimises the residual norm over all vectors in x0 +K k(A, r0).

Since the dimension of the subspace increases at each linear iteration, there is an increase amount of storage needed
as the number of linear GMRES iterations increases. This obstacle is often bypassed in the literature by either restarting
the Krylov sequence (Baker et al., 2005) or truncating the Arnoldi orthogonalization.

Finally, the rate at which an iterative method converges depends greatly on the spectrum of the matrix to be inverted.
Hence, iterative methods usually involve a second matrix—a preconditioner—that transforms the matrix A into one with
a more favourable spectrum, i.e., a matrix with a lower condition number (Barrett et al., 1994). This transformation will
increase the cost of each linear iteration. However, the use of a good preconditioner will improve the linear convergence,
overcoming the extra cost associated to the construction of the preconditioner at each Newton iteration or time step
and its application at each linear iteration. Further, in the present thesis, the construction of the preconditioner for
the time-marching of the DNS simulations is based on the deterioration of its relative performance, as explained in
section 1.8.4 (page 67). Therefore, its construction is not required at each time step. Different preconditioning strategies
are introduced in the following paragraphs.

1The synergistic combination of Newton-type methods for solving nonlinear equations and Krylov subspace methods to tackle each Newton correction
is often labelled as Jacobian-free Newton–Krylov methods (Knoll et al., 2004), used for example in Time Spectral Methods.

2The Arnoldi method is a procedure for constructing an orthogonal basis of the Krylov subspace K k(A, r0).
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B.1.3 Preconditioning strategies

The original problem Ax= b can be transformed into an equivalent problem, based on a right preconditioning, as:

AP−1Px= b ⇔
{

AP−1 y = b
Px = y

, (B.3)

or based on a left preconditioning as
P−1Ax=P−1b . (B.4)

The preconditioner strategy may also be applied to both left and right sides of A, leading to the so-called symmetric
preconditioners. One well-known example is the symmetric successive over-relaxation (SSOR) preconditioner (Habetler
et al., 1961).

Theoretically, both systems give the same solution as the original system as long as the preconditioner matrix P is
nonsingular. However, in practice, one has to be cautious with the termination criterion of the linear iterations, since
that, for the left preconditioner, the preconditioned residual norm is evaluated as

∥∥rP
k

∥∥=
∥∥P−1rk

∥∥, whereas for the right
preconditioner, it corresponds to the true residual

∥∥rP
k

∥∥= ‖rk‖ (Ghai et al., 2018). In general, if P is well-conditioned,
both spectra of AP−1 and P−1A are identical and the two approaches converge to the same solution. The details of the
preconditioner implementation for the time-marching of the DNS simulations are present in section 1.8.4 (page 67)

B.2 Numerical method for solving the Floquet eigenproblem

In this section, we present the numerical approach to obtain the Floquet multipliers associated to a Floquet eigenprob-
lem. This general approach is here applied to a fluid–structure problem.

The equations governing a periodic flow and the corresponding linearised Floquet FSI eigenproblem are presented
in sections 1.4.1 and 1.4.3 (pages 31 and 34). One of the most used methods to compute the Floquet multipliers is to
compute the eigenvalues of the monodromy matrix Φ, also called propagator. This matrix is defined as the operator that
propagates a perturbation at an arbitrary initial time q′(t) over a period T of the vortex shedding phenomenon, such that

q′(t+T)=Φq′(t) . (B.5)

The matrix Φ can be obtained by time-marching the linearised equations 1.27 (page 33) over one period for Ndof linearly
independent initial perturbations (Peletan et al., 2013), where Ndof represents the number of degrees of freedom of the
space discretised equations. However, this approach is infeasible due to the size of the present problem (cf. table 1.5,
page 49). Alternatively, Φ can be approximated by a low-dimensional matrix, based on an Arnoldi algorithm (Arnoldi,
1951), present in algorithm 1. The method is based on the idea of creating a vector basis that is used to construct the
low-dimensional approximation of Φ. The resulting basis, formed by the vectors v j, is a basis of the Krylov subspace, as
proved in Saad (2011), page 131, with a basis size of Nbasis. In order to obtain the Nbasis vectors of the Krylov subspace
basis, the linearised equations 1.27 are solved Nbasis times, over one period. This is illustrated by the first step, in line 2,
that consists in time-marching the linearised equations over one vortex shedding period, represented by the operator Φ̃.
This is accomplished using the numerical scheme presented in section 1.7.10. As initial condition at j = 1, we impose

a unitary angular displacement, i.e., v1 =
[
q′

f ,1, θ′1,Ω′
1

]T
= [0, 1, 0]T . The resulting vector w is then normalised using

a Gram–Schmidt process. The coefficients hi, j correspond to the nonzero entries of an upper Hessenberg matrix, H,
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representing the low-dimensional approximation of Φ 3.
The normalisation in line 9 corresponds to the discrete norm of the FSI vector, which can be written as

‖w‖ = qH
f M f q f +θHθ+ΩHΩ . (B.6)

The low-dimensional approximation of Φ is given in equation 6.9 of Saad (2011) by

V HΦV = H , (B.7)

where V is the Ndof ×Nbasis matrix whose column vectors are the Krylov basis vectors. The Hessenberg matrix has a
size of Nbasis ×Nbasis. The complete spectrum of the latter matrix is computed using LAPACK (Anderson et al., 1999).
The leading eigenvalues of Φ, are therefore approximated by the eigenvalues of the low-dimensional matrix H, noted
σ

Nbasis
H . At the same time, the original eigenvectors are approximated by the so-called Ritz approximate eigenvectors

q̂Nbasis
H , calculated from the eigenvectors of the Hessenberg matrix, denoted yH :

σ≈σNbasis
H ,

q̂ ≈ q̂Nbasis
H =V yH .

(B.8a)

(B.8b)

The number of Ritz eigenpairs (σNbasis
H , q̂Nbasis

H ) usually represents a small fraction of size of the original problem, Ndof .
However, it constitutes a good approximation of the corresponding eigenpairs of Φ, with the quality of the approximation
increasing with the increase of Nbasis. The reconstructed eigenmodes are associated to the arbitrary initial time used in
the time integration over one period. For the simulations present in this thesis, the number of Arnoldi vectors is fixed at
Nbasis = 50 for the computations at α= 0◦ and at Nbasis = 80 for the computations at α 6= 0◦, such that the eigenvalues of
interest converge to five significant digits.

Algorithm 1 Arnoldi method with modified Gram–Schmidt orthogonalisation
1: for j = 1, 2, . . . , Nbasis do
2: Time-marching linearised equations: w← Φ̃v j
3: Modified Gram–Schmidt orthogonalisation:
4: for i = 1, 2, . . . , j do
5: hi, j = (w, vi)
6: w← w−hi, jvi
7: end for
8: j+1, j entry of the Hessenberg matrix:
9: h j+1, j = ‖w‖

10: Normalisation of the next initial condition:
11: v j+1 ← w/h j+1, j
12: end for

3A Hessenberg matrix is a square matrix, which is almost triangular. Mathematically, we define an upper Hessenberg matrix to have hi j = 0 for all
i, j with i > j+1.
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Appendix C

Stability analysis of a NACA0012 airfoil at
low incidences

This appendix reports some additional results on both linear stability analysis around a base flow solution and a
hydrodynamic Floquet stability analysis around a period flow solution.

C.1 Base flow linear stability analysis: onset of the vortex shedding

This section appears associated to the discussion of chapter 2, page 71, when the emergence of the vortex shedding
phenomenon was described. In this section, some preliminary results are reported, where we use a base flow linear
stability analysis to predict the onset of the vortex shedding phenomenon on the wake of a NACA0012 airfoil at low
incidences. The results are only briefly discussed, due to the time constraints associated to the writing of the present
thesis.

The formulation of the base flow linear stability analysis is similar to the classical formulation of the mean flow analysis,
derived in section 1.4.4, page 35. However, instead of using a mean flow solution, we use a base flow solution computed
using a Newton method, following the traditional approach in stability analysis of fluid flows (see for instance Fabre et al.
(2019a)).

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
0

4

8

12

Re

α(◦)

Figure C.1 – Evolution of angle of attack of the critical Reynolds number, for which an unstable mode in a base
flow linear stability analysis emergences.
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Figure C.2 – On the left, spatial distribution of the unstable eigenmode associated to the direct LSA (top) and
adjoint LSA (bottom) for Re = 6000 and α = 0◦. On the right, the values of these fields and the corresponding
sensitivity, along the wake axis (y= 0).

Figure C.1 maps the critical Reynolds number as function of the incidence. For high incidences, as the case of α= 10◦,
the critical Reynolds number is as low as Re= 660. This value is in agreement with the literature data (see for instance
figure 3.8 of Rolandi (2021)). As the incidence decreases, the critical Reynolds number increases. For the case α= 0◦, the
critical Reynolds number is estimated to be around Re= 6200. However, this value varies with the outlet distance, as
the instability is highly convected downstream. The present computations use a domain outlet at Lx = 20. However, no
convergence of the eigenvalues was found with the increase of the outlet distance. To study this phenomenon, we sketch
on the left side of figure C.2 the marginal eigenmode found from a direct linear stability analysis and the associated
adjoint mode. The structural sensitivity, calculated as in Giannetti et al. (2007), is depicted in figure C.3 for an outlet
domain at Lx = 4. On the right side of figure C.2, we sketch the values of these fields along the wake axis (y= 0). We can
see that the sensitivity has an order of magnitude of 1 along the entire wake axis. Therefore, we can see that a base flow
linear stability analysis will not be appropriate for computing the emergence of the vortex shedding phenomenon, even
if the domain was largely extended. Two zone with important values of the sensitivity are found: a first zone near the
trailing edge of the airfoil, similar to the wavemaker zone found at the rear of a circular cylinder, and a second zone on
the wake of the airfoil, whose position varies with Lx.

Some preliminary results, not present here, show that the onset of the vortex shedding for cases where the instability

−0.5

0.5

0 1 2 3 4
−0.46

0.46

x

y

Figure C.3 – Sensitivity field associated to the leading eigenmode of a stability analysis conducted at Re= 6000
and α= 0◦.
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is highly convected downstream could be predicted using a complex mapping strategy (Sierra et al., 2020).

C.2 Hydrodynamic Floquet stability analysis: onset of three-dimensional
instabilities

This section reports some additional results on the Floquet stability analysis around a periodic flow field, in particular
for the angles of α= 5◦ and α= 6◦. The results for the case at α= 0◦ are reported in section 2.1.5 (page 84) for different
Reynolds numbers, with the first instability appearing around Re= 30000.

For the case at α = 5◦, the three-dimensional instabilities appear around Re = 7000. The results are present in
figure C.4. In particular, we observe the evolution of the absolute value of the leading Floquet multipliers as function of
the spanwise wavenumber β, for three Reynolds numbers. The Floquet multipliers correspond to synchronous Floquet
eigenmodes. The corresponding spanwise velocity of the Floquet eigenmode for Re= 7000 and β= 50 is also represented
in the figure. We note that its spatial structure has an even RT-symmetry, as the case of the mode B of the cylinder and
the NACA0012 case at α= 0◦, analysed in section 2.1.5. Further, we report the emergence of a branch of modes of type C
(period-doubling) for Re= 7500. All the modes on this branch are stable.

In order to study the transition between an instability due to a mode B towards an instability due to a mode C, we do
the same exercise for α= 6◦. The results are present in figure C.5. By observing the evolution of the absolute value of
the leading Floquet multipliers as function of the spanwise wavenumber β, for three Reynolds numbers, we see that a
marginal Floquet multiplier is found around Re= 5500 and β= 70. This time, the represented branches are associated to
synchronous Floquet eigenmodes of type C, where a period doubling can be observed on the eigenmode spatial structure.
The emergence of this mode C is coherent with the literature results that reported three-dimensional instabilities of type
C for higher angles of attack. For example, Samuthira Pandi et al. (2019) reports the three-dimensional instability of type

Figure C.4 – Hydrodynamic Floquet stability analysis at α= 5◦ for three different Reynolds numbers: evolution of
the magnitude of the Floquet multipliers with the forcing spanwise wavenumber (top right) and spanwise velocity of
the most unstable Floquet eigenmode at Re= 7000 and β= 50.
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Figure C.5 – Hydrodynamic Floquet stability analysis at α= 6◦ for three different Reynolds numbers: evolution of
the magnitude of the Floquet multipliers with the forcing spanwise wavenumber (top right) and spanwise velocity of
the most unstable Floquet eigenmode at Re= 5500 and β= 50.

C for (α, Re)= (10◦, 1280.9) on an Eppler 61 airfoil, while Deng et al. (2017) reports them for (α, Re)= (12.5◦, 1082) and
(α, Re)= (15◦, 730) on a NACA0015 airfoil.
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Appendix D

Notes on the approximation of the fluid
transfer function via a Taylor expansion

In this appendix, we expose the different attempts that we conducted during this thesis, where we aim at approximat-
ing the fluid transfer function, present in chapters 3 and 4. The objective is to inform the future readers of the techniques
that did not work on the present thesis. We only report the formulation used, due to the time constraints associated to
the writing of the present thesis.

D.0.1 Taylor expansion of the fluid transfer function around origin

In this section, we present an approximation of the fluid transfer function around origin, which corresponds to the
quasi-steady approximation at higher orders. For that, we recall the development previously presented in equation 1.45c,
approximating the resolvent operator by a Taylor expansion around σ= 0, by assuming a small perturbation δσ:

mT(
δσM f −L f

)−1 (vθ+δσvΩ)θ

≈mT
[
−L−1

f −δσL−1
f M f L

−1
f −δσ2

(
L−1

f M f

)2
L−1

f −δσ3
(
L−1

f M f

)3
L−1

f + . . .
]

(vθ+δσvΩ)θ

≈mT
[
−L−1

f vθ −
(
L−1

f vΩ+L−1
f M f L

−1
f vθ

)
δσ −

((
L−1

f M f

)2
L−1

f vθ+L−1
f M f L

−1
f vΩ

)
δσ2

]
θ

−mT
[((

L−1
f M f

)3
L−1

f vθ+
(
L−1

f M f

)2
L−1

f vΩ
)
δσ3 + . . .

]
θ .

We note that, in the first line, we used the identity δσθ =Ω. In this development, in addition to the added inertia, added
damping and added stiffness coefficients defined in equations 3.22c, we obtain the added coefficients for the higher orders,
defined as

ai = mT
(
L−1

f M f

)i
L−1

f vθ+mT
(
L−1

f M f

)i−1
L−1

f vΩ , (D.1)

where the subscript •i denotes the new order considered. The problem 3.1 can be approximated at order n as

n∑
i=3

(
aiσ

i
)
+ (Is + Ia)σ2 + (Ds +Da)σ+ (Ks +Ka)= 0. (D.2)
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D.0.2 Taylor expansion of the fluid transfer function around complex value

Instead of doing the Taylor development of the resolvent operator around zero, we could also consider the development
around a nonzero complex value σ0, such that σ=σ0+δσ. We start by noting that the term σM f −L f can be developed as

σM f −L f =
[
δσM f +

(
σ0M f −L f

)]= (
σ0M f −L f

)[(
σ0M f −L f

)−1
δσM f + 1

]
.

In this way, the Taylor expansion around σ=σ0 +δσ reads:

mT
[(
σ0M f −L f

)−1
δσM f + 1

]−1 (
σ0M f −L f

)−1 (vθ+σ0vΩ+δσvΩ)θ

≈mT
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σ0M f −L f
)−1
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)−2
M2

f + . . .
](
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≈mT
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R f (σ0)−δσR f (σ0)M f R f (σ0)+δσ2 (

R f (σ0)M f
)2
R f (σ0)+ . . .

]
(vθ+σ0vΩ+δσvΩ)θ .

We can identify the added coefficients as

Ka =−mT [
R f (σ0) (vθ+σ0vΩ)

]
,

Da =−mT [−R f (σ0)M f R f (σ0) (vθ+σ0vΩ)+R f (σ0)vΩ
]

,

Ia =−mT
[(
R f (σ0)M f

)2
R f (σ0) (vθ+σ0vΩ)−R f (σ0)M f R f (σ0)vΩ

]
,
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.

(D.3a)

(D.3b)

(D.3c)

(D.3d)

The problem 3.1 can be approximated at order n as

n∑
i=3

(
aiσ

i
)
+ (Is + Ia)σ2 + (Ds +Da)σ+ (Ks +Ka)= 0. (D.4)
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Appendix E

Mean flow fluid–structure analysis based
on RANS aerodynamic model

In this appendix, we summarise some of the work done on a different aerodynamic model for the present thesis. We
decided to include this investigation as an appendix for two reasons: (i) in order to not overload the main chapters of this
thesis and (ii) due to a lack of time to describe the last part of this investigation, where the reader will find some figures
that are not commented.

In the main chapters of this thesis, we studied the fluid–structure instability arising on an airfoil with a pitch degree
of freedom at transitional Reynolds numbers. In particular, a mean flow FSI linear stability analysis for both a primary
equilibrium position, at α = 0◦, and secondary equilibrium position, at α 6= 0◦, was performed. The mean flow was
obtained from either two or three-dimensional time-marching simulations.

Alternatively, we consider in this chapter a different aerodynamic model, with which we describe the mean flow
field at the transitional Reynolds number of Re= 50000: the Reynolds-Averaged Navier–Stokes (RANS) equations. The
laminar-turbulent transition of the flow field is either obtained via a numerical transition behaviour of the Spalart–
Allmaras (SA) model, upon correct choice of the boundary free-stream condition, or via an algebraic transition model,
namely the Baş–Çakmakçıoğlu (BC) model.

In that way, the objectives of this chapter are threefold: first, we present the formulation associated to the computation
of a RANS mean flow solution, and we validate some numerical aspects, for the mean flow computations and for the
mean flow LSA analyses. Second, we provide a physical description of the mean flow solution at α= 0◦, following the two
approaches for modelling the laminar-turbulent transition. Third, we carry out a mean flow linear stability analysis at
α= 0◦, first for a purely-hydrodynamic formulation, followed by the FSI formulation, with the obtained RANS mean flow
solution. Forth, we describe the mean flow fields for α> 0◦, namely the evolution of the mean flow aerodynamic moment
with the incidence.

E.1 Problem description

E.1.1 Reynolds-averaged Navier–Stokes equations

The Reynolds-Averaged Navier–Stokes (RANS) approach has become a very common tool used in industry, as practical
flows in aerospace applications have a partial or fully turbulent character. Instead of solving all the turbulent scales with a
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DNS, a RANS simulation is based on the decomposition of the instantaneous flow quantities into their time-averaged and
instantaneous fluctuating quantities, where the latter correspond to the small turbulent scales, which are not resolved,
but modelled. The scale of the turbulent motions being far larger than the supra-molecular scale, the Navier–Stokes model
remains valid in the turbulent regime. Although the concept of turbulence has evolved during the last decade, Hinze
(1975) has delineated it in the following way:

Turbulent fluid motion is an irregular condition of flow in which the various quantities show a random
variation with time and space coordinates, so that statistically distinct average values can be discerned.

The study of turbulent flows is complex due to their inherent properties of unsteadiness, three-dimensionality and
sensitivity to perturbations. To tackle these difficulties, a statistical approach, introduced by Reynolds (1895), has
become the most suited form to treat this problem. The decomposition of the flow field as the sum of a mean value and a
fluctuation can be posed as

q f (X , t)= q f (X )+q′
f (X , t) , (E.1)

where the mean flow q f (X ) can be defined, under the hypothesis of ergodicity1, as

q f (X )= lim
T→∞

1
T

T∫

0

q f (X , Y , Z, t) dt . (E.2)

The fluctuation q′
f has, by definition, a zero time average, i.e., q′ f = 0. Under the scope of the present thesis, we also

make the hypothesis that the mean flow is statistically homogeneous in the ez-direction, which reads

q f (X , Y )= lim
T,Z→∞

1
Z

Z∫

0

1
T

T∫

0

q f (X , Y , Z, t) dtdZ . (E.3)

Since the RANS computations are conducted in a two-dimensional domain, the ez-component of the different vectorial
quantities is omitted from the notation. After introducing the Reynolds decomposition on equations 1.5 and averaging the
result, ones arrives to the RANS equations:

([
U −Uw

]
·∇

)
U −∇·σ

(
U , p

)
+∇·

[
U ′⊗U ′

]
= 0 ,

∇·U = 0,

(E.4a)

(E.4b)

with U(X , t)=
[
U , V

]T
the mean flow velocity, with a null component on the spanwise direction, Uw =U∞

[
−cos

(
θ
)
, sin

(
θ
)]T

the mean rigid-body velocity field and U ′⊗U ′ the Reynolds stress tensor. These equations form a system which is not
closed, contrary to the Navier–Stokes equations. Additional modelling is therefore necessary in order to close the problem.
The Reynolds stresses represent extra terms—six in three dimensions, three in two dimensions, since the tensor is
symmetric—composed of one-point correlations of velocity fluctuations. These additional terms appear as a consequence
of the nonlinearity of the convective term, but can be viewed as a diffusive flux, justifying their designation as stresses.
The trace of this tensor is twice the turbulent kinetic energy, k = 1

2

(
U ′U ′+V ′V ′

)
.

Based on the RANS equations, one can extend the reasoning to the Unsteady Reynolds-Averaged Navier–Stokes

1Ergodicity implies that time average (obtained from a sufficiently long realisation) and ensemble average (obtained from a set of realisations) are
equivalent. See (Frisch, 1995, p. 49) for further insight.
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equations (URANS). Indeed, while equation E.1 is mathematically well defined, one could never respect the limit
requirement on T, present in equations E.2 and E.3. In practice, it is sufficient to consider T much longer relative to
the maximum period of the fluid fluctuation. Further, there are some flows for which the mean flow may contain a slow
variation with time that are not turbulent in nature, as a mean vortex shedding phenomenon. In that sense, equation E.1
can be modified to accommodate such application:

q f (X , t)= q f (X , t)+q′
f (X , t) . (E.5)

Following this decomposition, ones arrives to the URANS equations:

∂U
∂t

+Ω×U +
([

U −Uw

]
·∇

)
U −∇·σ

(
U , p

)
+∇·

[
U ′⊗U ′

]
= 0 ,

∇·U = 0,

(E.6a)

(E.6b)

where, this time, Uw =Ω× (X −XEC)+ ẊEC . Due to time constrains during the writing process of this manuscript, all
the results present in this appendix are for RANS computations.

In order to compute all the mean flow properties of the turbulent flow under consideration, one has to make further
assumptions on the Reynolds stress unknowns. We proceed by posing an extra hypothesis over the Reynolds stress, intro-
duced by Boussinesq, sought to mimic the molecular gradient-diffusion process. The Boussinesq hypothesis (Boussinesq,
1877; Schmitt, 2007), often called the “Boussinesq approximation”—which leads to confusion with a completely different
concept associated with natural convection—states that small-scale turbulent stress should be linearly proportional to the
mean (large-scale) strain rates. In this regard, it can be hypothesised that, for incompressible fluids, the nondimensional
Reynolds stress tensor can be approximated as2

U ′⊗U ′ ≈ −2νtS
(
U

)
+ 2

3
k1 , (E.7)

where νt is the turbulent eddy viscosity. The RANS equations can therefore be posed as

([
U −Uw

]
·∇

)
U +∇p−2∇·[ (ν+νt)S

(
U

)]= 0 ,

∇·U = 0.

(E.8a)

(E.8b)

The closure of the model is presented next. Henceforward, the notation • is dropped to simplify the notation.

E.1.2 Spalart–Allmaras closure model

The resulting RANS equations represent a system that ultimately need to be supplemented with a turbulence model
closure, as the Baldwin–Lomax model (Baldwin et al., 1978), the k–ω model (Wilcox, 1994), the k–ε model (Jones et al.,
1972), the SST k–ω model (Menter, 1993, 1994) or the Spalart–Allmaras (SA) model (Spalart et al., 1992, 1994), among
others. A summary of the main turbulence models from the literature can be found on the online Turbulence Modelling
Resource provided by NASA (Rumsey, 2021). These closures were often built to model a fully turbulent flow. In the present
case, where the flow field remains laminar over a large portion of the airfoil surface (including in the separation zone),

2Consider c = 1 and U∞ = 1 for the nondimensionalisation of the present variables.
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the traditional RANS approaches fail to capture the location and extent of the transition region and consequently, fail to
capture the laminar separation phenomenon. In order to overcome this problem, aerodynamicists have tried to either
complement the RANS turbulence models with further equations, dedicated to the prediction of the laminar-turbulent
transition onset, or to adjust the turbulence models and their initial conditions, without further additional equations.
We first introduce in this section a modified version of the SA model, with which the laminar-turbulent transition can
be predicted upon careful choice of the inlet conditions. An alternative option is proposed in the next section, where an
additional transitional model is considered.

The SA model is referred to as a one-equation model since it involves only one additional transport equation for the
calculation of the turbulence eddy viscosity, the turbulent kinetic energy being taken into account on the pressure term.
This form of transport equation is attractive due to its simplicity of implementation and less demanding computational
requirements, when compared to other models as the k–ω or the k–ε. The model has been shown to be accurate for most
attached and mildly separated aerodynamic flows (Celić et al., 2006; Freeman et al., 2014).

The original model was proposed by Spalart et al. (1992, 1994) with originally four versions, the first one applicable
only to free shear flows and a last one applicable to viscous flows configurations past solid bodies and with laminar
regions and a specified turbulent transition location. In subsequent investigations, the SA model was improved in order
to increase numerical stability and to describe natural laminar-turbulent transition. The modified model used in the
present thesis is based on the modifications introduced by Olivier (2008), Allmaras et al. (2012) and Crivellini et al. (2013,
2014) and is detailed on the appendix A of Franceschini (2019). The main modifications of the SA model aim to increase
the numerical convergence and stability of the discrete system of equations, by ensuring the positivity of certain terms of
the model, as the Spalart–Allmaras turbulent variable ν̃. The additional Spalart–Allmaras equation reads:

∂ν̃

∂t
+ ([U −Uw] ·∇) ν̃= s+∇·(η∇ν̃)

, (E.9)

where s represents a nonlinear source term and η a diffusion coefficient. The relation between the turbulent variable and
the turbulent eddy viscosity is given by

νt = fv1max(0, ν̃) , (E.10)

whereas the diffusion coefficient and production terms are defined with the help of χ= ν̃/ν as

η=
{

ν(1+χ)/σ, χ≥ 0
ν(1+χ+χ2)/σ, χ< 0

. (E.11)

The nonlinear source term s is composed by the sum of three terms, the production, the cross-diffusion and the destruction
terms, given by

s =
{

cb1Ω̃ν̃ + cb2
σ

‖∇ν̃‖2 − fwcw1
ν̃2

d2 , χ≥ 0
cb1Ων̃gn + cb2

σ
‖∇ν̃‖2 + cw1

ν̃2

d2 , χ< 0
. (E.12)

The remaining functions are defined as

Ω̃=Ω+ ν̃

κ2d2 fν2 with Ω=
√
‖∇×U‖2 , (E.13)

fν2 = 1− χ

1+χ fν1
, (E.14)

fν1 =
χ3

χ3 + c3
ν1

, (E.15)
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fw = g

[
1+ c6

w3

g6 + c6
w3

]1/6

, (E.16)

g = r+ cw2(r6 − r) , (E.17)

gn = 1− 1000χ2

1+χ2 , (E.18)

and

r∗ = ν̃

S̃κ2d2
, r =





rmax, r∗ < 0
r∗, 0≤ r∗ < rmax

rmax, r∗ ≥ rmax

, (E.19)

with the constants defined as

σ= 2/3, cb1 = 0.1355, cb2 = 0.622, κ= 0.41, cw1 = cb1/κ2 + (1+ cb2)/σ , cw2 = 0.3, cw3 = 2, cwν1 = 7.1, and rmax = 10.
(E.20)

The variable d represents the distance to the wall3. The variable Ω is modified with a user defined parameter M, to
numerically avoid performing the square root of numbers with an order of magnitude of the machine precision, such that:

Ω=
√
‖∇×U‖2 +M2 −M .

This parameters is fixed at 10−4. We note that the function Ω is differentiable and retains the properties Ω> 0 and Ω= 0
for ∇×U = 0.

An additional modification, proposed by Spalart et al. (2020) is taken into account, where the constant cw2, responsible
for controlling the skin friction, becomes a variable depending on the fluid space as

cw2 = cw4 +
cw5(

χ/40+1
)2 , (E.21)

with cw4 = 0.21 and cw5 = 1.5.
The additional initial and boundary conditions associated to the SA transport equation can be posed as

ν̃(X , 0)= ν̃0(X ) X ∈Ω f ,

ν̃(X , t)= ν̃∞ X ∈Γin ,

ν̃(X , t)=0 X ∈Γw ,

∇ν̃·n∞ =0 X ∈Γout ,

(E.22a)

(E.22b)

(E.22c)

(E.22d)

where ν̃0 is an initial condition field and ν̃∞ is the inlet value condition. The latter was originally fixed around 3ν
to 5ν, as the target applications were fully turbulent, with a flow that was essentially turbulent everywhere vorticity
exits. Subsequent works have noticed that the SA model, due to a purely numerical artefact, was able to capture a
laminar-turbulent transition when ν̃∞ is sufficiently small (Rumsey, 2007). Other models, as the k–ε model, has shown a
similar transition behaviour (Rumsey et al., 2006). The presence of a laminar separation bubble on over an airfoil was
studied by Crivellini et al. (2013, 2014) by decreasing the ν̃∞ up to zero. This approach is illustrated in the preliminary
results, in section E.2.3, page 228.

3The numerical computation of the distance is based on the Poisson equation method. See for instance (Tucker, 2003).
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E.1.3 Turbulence transition model

Instead of taking advantage of a purely numerical feature of the SA model for capturing the laminar separation,
one can introduce a turbulence transition model with the aim of controlling the turbulence production on the field. In
a general sense, the RANS transition models can be divided into two main class of models. In a first class, one finds
models built from first principles and physical arguments, as the kT–kL–ω model of Walters et al. (2008), based on
the concept of laminar kinetic energy. In a second class, one finds models based on the combination of experimental
correlations with locally formulated transport equations. These models include the γ–Reθt model for the SST k–ω
turbulence closure (Menter et al., 2006; Langtry et al., 2006, 2009; Menter et al., 2015) or for the Spalart–Allmaras
closure (Medida et al., 2011; D’Alessandro et al., 2017b,a), among others. The comparison between different RANS based
transition models can be found in Abdollahzadeh et al. (2017); Kim et al. (2019); Lopes et al. (2020).

The aforementioned models need the resolution of additional transport equations, usually associated to an additional
computational expense. An alternative option is the use of algebraic models, known as zero-equation models, where the
transition is controlled by a scalar equation depending on several flow field characteristics. In the present thesis, we
implemented the Baş–Çakmakçıoğlu (BC) model, originally proposed in Baş et al. (2013); Çakmakçıoğlu et al. (2018)
and modified in Çakmakçıoğlu et al. (2020); Mura et al. (2020). The idea is to multiply the production term s in the
Spalart–Allmaras equation E.9, by an intermittency function, γBC , responsible for damping the turbulence production
until some transition onset criterion is achieved. The intermittency function, valued between 0, enforcing no production
in SA equation, and 1, unchanged the SA production, is defined as

γBC = 1−e(−pτ1−pτ2) , (E.23)

where the τ1 and τ2 are defined as

τ1 =
max(Reθ−Reθc, 0)

χ1Reθc
,

τ2 =max
(
χ2
νt

ν
, 0

)
,

(E.24a)

(E.24b)

and the momentum thickness Reynolds numbers defined as

Reθ =
d2S

2.193ν
,

Reθc = 803.73(Tu∞+0.6067)−1.027 ,

(E.25a)

(E.25b)

with χ1 = 0.002, χ2 = 50 and Tu∞ = 0.1% calibration constants. The critical momentum thickness Reynolds number, Reθc,
is based on an empirical correlation based on zero pressure gradient flat plate from Menter et al. (2006). The value of ν̃∞

can be set between 0.015ν and 0.025ν. We fix it to its lower value. The Tu∞ represents the freestream turbulent intensity,
in percent. Originally, in other RANS models, as the SST k–ω, this value is calculated locally using the turbulent kinetic
energy, k, to then be injected in the transition models. However, the SA model does not have the ability to calculate the
local turbulent kinetic energy and thus the local Tu∞. Inspired by Medida (2014), which coupled the SA model with a
γ–Reθt transition model, the authors of the BC model considered a constant Tu∞ over the entire field.
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Figure E.1 & Table E.1 – On the left, visualisation of the RANS mesh on the wake of the airfoil (top) and near
the trailing edge (bottom), where the trace of the Hessian of Spalart–Allmaras variable, which corresponds to its
Laplacian, ∇2ν̃, is depicted. On the right, the number triangles of a typical RANS mesh for Re= 50000 and α= 0◦,
along with the size of the P2, P1, and RANS FEM spaces.

E.2 Numerical aspects and preliminary results

E.2.1 Meshes for two-dimensional RANS computations

We present here the numerical strategy for constructing the two-dimensional mesh for RANS computations. The
generation of the RANS meshes follows the same principles detailed in chapter 1, excepting the fact that the mesh is now
adapted in the complete domain, namely on the wake of the airfoil up to the outlet boundary, as present in figure E.1.
This decision is mainly due to the stiffness of the Spalart–Allmaras model, when considering ν̃∞ = 0. More precisely, the
sharp variations of ν̃ need to be accurately approximated for the computations to converge. Since the mesh procedure is
based on the Hessian of the considered fields, we decided to represent one of its components: the trace of the Hessian
associated to ν̃, which corresponds to the Laplacian of ν̃. Along with the adapted mesh, this field near the trailing edge
region is depicted on the bottom left of figure E.1, for Re= 50000 and α= 0◦. One can see that the adaptation procedure
has refined in the zones where ∇2ν̃ has a high absolute value.

The general dimensions of the domain are identical to the two-dimensional computations, except the height of the first
cell, fixed to 10−5, with an expansion ratio of 1.075, so that y+ ∼O(1) for the flow regimes in the present manuscript. The
anisotropic factor is fixed at 20. A summary of the main figures for the Re= 50000 and α= 0◦ case is present in table E.1.
The computations for different incidences were carried out by changing the boundary condition associated to the airfoil
velocity. The adaptation to the corresponding fields is made such that the number of triangles is kept roughly constant
(±10000 triangles).

E.2.2 Mesh convergence

The convergence of the RANS meshes is exemplified here for a numerical simulation using the SA-BC model for
Re = 50000 and α= 0◦. Table E.2 summarises the details of the three meshes compared and their associated results.
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Mesh # triangles
Anisotropic

factor CD Lrecirc X up
d Divergence mode Flutter mode

MRANS
0 132380 106 0.020093 0.067609 0.672192 0.195026 −0.157012+0.536747i

MRANS
1 192780 20 0.020097 0.067704 0.664279 0.194638 −0.157101+0.536985i

MRANS
2 290174 10 0.020097 0.067716 0.666270 0.194451 −0.157208+0.536636i

Table E.2 – Convergence of the mean flow RANS properties and corresponding FSI eigenvalues for the SA-BC
model at Re= 50000 and α= 0◦.

Three different values of anisotropic factor were used in the mesh adaptation process: a first one fixed at 106, leading to a
fully anisotropic mesh, and two lower values (20 and 10), leading to less “squeezed” cells and therefore meshes with a
higher number of elements. For reference, an isotropic mesh corresponds to the value of 1. In regards to the present
results, all three meshes present and adequate spatial resolution in order to capture the flow behaviour. However, it was
observed that the Newton method (presented next) used to obtain the RANS solutions has numerically harder to converge
when an excessive anisotropy on the mesh was considered. For that reason, mesh MRANS

1 has chosen, as represented the
best equilibrium between the number of elements and the anisotropic factor.

E.2.3 Newton method

The steady RANS system can be put as
RRANS

(
q f

)= 0 . (E.26)

This system represents a nonlinear time-independent problem, that can be solved with the help of a Newton method,
similar to the systems solved in section 1.7.8 (page 58). However, as the initial solution is generally not sufficiently near
the searched solution, a relaxation coefficient, 0< γNewton ≤ 1, is added to the method. As γNewton tends to 1, the Newton
tends to an exact the Newton method. At the nonlinear iteration i, the state vector correction of the next iteration, δqi+1

f ,

0 4 8 12 16 20 24 2810−13

10−11

10−9

10−7

10−5

Newton it.

∥∥RRANS
∥∥

Figure E.2 – Evolution of the RANS equations residual with the nonlinear Newton iterations at Re= 50000 for
two cases: case 1 (solid line), for a computation from α= 0◦ to α= 0.05◦, with a relaxation parameter of γNewton = 1;
case 2 (dashed line), for a computation from α= 0◦ to α= 0.11◦, with a relaxation parameter of γNewton = 0.5. The
absolute tolerance, represented by the dashed grey line is fixed at 10−12.
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Figure E.3 – Variation of the abscissa of the upper boundary layer separation point, on the left, and variation of
CD , CD f and CD p coefficients, on the right, with ν̃∞, for the SA model at Re= 50000 and α= 0◦.
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Figure E.4 – On the left, variation of the C f distribution over the airfoil upper surface with ν̃∞. On the right, the
corresponding fields of νt/ν, with the yellow dots representing the separation positions.

is computed by solving a linear system posed as

∂RRANS

∂q f

∣∣∣∣∣
q f =qi

f

δqi+1
f =−RRANS

(
qi

f

)
. (E.27)

The solution of the next nonlinear iteration is then computed as qi+1
f = qi

f +γNewtonδqi+1
f . The conclusion of the algorithm

is based on the absolute discrete norm of the nonlinear residual, which is required to be inferior to 10−12.
An example of the nonlinear convergence with the iteration number is depicted in figure E.2 at Re= 50000 for two

cases: case 1 (solid line), for a computation from α = 0◦ to α = 0.05◦, with a value of γNewton = 1 for the relaxation
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parameter; case 2 (dashed line), for a computation from α= 0◦ to α= 0.11◦, with a value of γNewton = 0.5. The relaxation
parameter is essential, as the case two did not converge for γNewton = 1.

The solution of the SA-BC model is obtained from an initial solution using the SA model with ν̃∞ = 0. In turn, the SA
model solution for ν̃∞ = 0 is obtained by slowly decreasing the ν̃∞ from a fully turbulent case at ν̃∞ = 3ν, towards the
null value. This descent is illustrated in figure E.3, where, on the left figure, the abscissa of the separation point of the
upper boundary layer, X up

d , is sketched as function of ν̃∞. This separation point does not exist for the cases ν̃∞ > 10−8ν

and tends to X up
d = 0.67 as ν̃∞ tends to zero. The associated drag coefficient, CD , is depicted in figure E.3b, where the

corresponding friction and pressure components, CD f and CD p, respectively, are also presented. One can see that, for high
turbulent cases, the drag coefficient is dominated by the frictional component, as the boundary layer is mostly turbulent.
As ν̃∞ tends to zero, the emergence of the separation is accompanied with an increase of the pressure component and a
decrease of the frictional component, up to the case ν̃∞ = 0, where both contributions are of equal importance.

Figure E.4 shows the νt/ν fields for eight different values of ν̃∞ and their corresponding skin friction distribution
C f over the upper surface. A zoom of the C f , on the second half of the airfoil enables to identify the curve associated to
ν̃∞ > 10−8ν as the first one with a negative C f , near the trailing edge, coherent with the emergence of the separation
points on the airfoil surface.

E.2.4 Spalart–Allmaras model validation

The validation of the Spalart–Allmaras model is made with respect to one of the validation cases present in Crivellini
et al. (2014): the Eppler E387 airfoil, at Re = 100000 and α= 6◦. The mesh was generated in a similar way as for the
NACA0012 airfoil, detailed previously, using the data set points for the airfoil present in McGhee et al. (1988). The trailing
edge was rounded up at X = 0.98, due to numerical reasons. For the case ν̃∞ = 0, the pressure coefficient distribution, Cp,
on the airfoil surface is depicted on the left of figure E.5. The present results, in the blue line, are in good agreement with
the ones from Crivellini et al. (2014), represented by the red lines. Additionally, experimental data from McGhee et al.
(1988) is also depicted by the black circles. The major difference is present on the upper surface around X = 0.6, where
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Figure E.5 – Validation of the Spalart–Allmaras model on the Eppler E387 airfoil at Re = 100000 and α= 6◦:
on the left, the Cp distribution over the airfoil for the present results (solid blue line), for Crivellini et al. (2014)
(dashed red lines) and for experimental data from McGhee et al. (1988) (black circles). On the right, the νt/ν field
for the cases ν̃∞ = 0 and ν̃∞ = 10−13ν, with the yellow dots representing the separation and reattachment positions
of the former case.
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a plateau of the Cp is found. The constant value is associated to the presence of a recirculation bubble, which length
is underestimated by the numerical simulations. The νt/ν field of the present simulation is depicted on the top right
of figure E.5, where a zoom on this separated zone was made. The recirculation bubble is illustrated by the isolines of
velocity. The separation, present at X up

d = 0.37 is followed by a transition to a turbulence regime, where the values of νt/ν
start to increase, followed by a turbulent reattachment at X up

r = 0.68.

To illustrate the sensitivity of the SA model to ν̃∞, the same representation is present on the bottom right of figure E.5,
for ν̃∞ = 10−13ν. In this case, a recirculation zone is not present since the boundary layer does not separate and the
transition of the boundary layer occurs while the flow is attached to the airfoil surface.
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Figure E.6 & Table E.3 – Effect of the τSUPG definition on the RANS FSI spectrum at Re = 50000 and α= 0◦:
the black crosses represent the τSUPG,1 definition from Tezduyar et al. (1992) and the red triangles the τSUPG,2
definition from Codina (2000). The table presents the divergence and flutter eigenvalues, along with the respective
absolute error of their real and imaginary parts.
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Figure E.7 & Table E.4 – Effect of the hK definition on the RANS FSI spectrum at Re = 50000 and α = 0◦:
the black crosses represent the hK ,1 definition from Franceschini (2019) and the red triangles the hK ,2 definition
corresponding to the local minimum edge length. The table presents the divergence and flutter eigenvalues, along
with the respective absolute error of their real and imaginary parts.
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E.2.5 Influence of the SUPG stabilisation and hK definition

In this section, we discuss the influence of the SUPG stabilisation and corresponding hK definition on the mean flow
FSI linear stability analysis around the NACA0012 airfoil for the SA model with ν̃∞ = 0, Re= 50000 and α= 0◦. The two
definitions of τSUPG tested are given by equations 1.58 and 1.59 (page 54). Their influence in only tested on the linear
stability results, with fixed mean flow for all tests. A spectrum representation of the results is present in figure E.6,
with a comparison of the divergence and flutter eigenvalues in table E.3. The spectrum shows no difference between
the presented eigenvalues for the two stabilisations, where the absolute error has a magnitude of 10−3 for the both
eigenvalues. The definition of τSUPG,1 is employed in the rest of this appendix.

The same analysis is made for the two definitions of hK , given by equations 1.60 and 1.61 (page 54), where the
spectrum is present in figure E.7 and the divergence and flutter eigenvalues present in table E.4. This time, the choice
of hK has a clear influence on the eigenvalues other than the divergence and flutter ones. The hK ,1 definition tends
to stabilise the eigenvalues with a higher frequency and to slightly destabilise the eigenvalues near the ω = 0 axis.
Concerning the two FSI eigenvalues, a small influence is noted, with the absolute error of order 10−3. The definition of
hK ,2 is employed in the rest of this appendix.

E.3 RANS mean flow description for Re= 50000 and α= 0 ◦

In this section, the flow over a NACA0012 airfoil at Re= 50000 and α= 0◦ is considered. In particular, the searched
flow field is a steady solution of the RANS equations. The main difficulty in the computation of the mean flow solution
passes trough the correct description of the laminar separation over the airfoil surface, as observed in the time- and
spanwise-averaged solutions of the DNS simulations present in chapter 2. In order to achieve this flow laminarity over
most part of the airfoil surface, two techniques are used and analysed throughout this chapter.

First, the Spalart–Allmaras closure model is used, without additional equations for transition modelling. The proper
description of the laminar separation and subsequent transition of the separated boundary layer over the airfoil is
obtained by considering a null boundary free-stream condition on the Spalart–Allmaras equation. As recognized by
Rumsey (2007), the SA model, is able to describe a turbulent transition of a separated flow, if the boundary free-stream
condition for ν̃ (the Spalart–Allmaras equation variable) is sufficiently small.

In a second part, the flow laminarity is obtained via the introduction of the Baş–Çakmakçıoğlu (BC) transition model.
The BC model tries to take into account the laminar to turbulent transition characteristics of the flow with the inclusion
of an intermittency function. The role of this intermittency function is to trigger the transition of the flow by controlling
the production term in the Spalart–Allmaras equation.

E.3.1 Mean flow for SA model with ν̃∞ = 0

This section is dedicated to the mean flow description using the SA closure model and setting the free-stream Spalart–
Allmaras variable to zero, i.e., ν̃∞ = 0. The final solution is obtained from a fully turbulent initial solution at the same
Reynolds number. Then, the ν̃∞ is carefully decreased from its original value ν̃∞ = 3ν to ν̃∞ = 0. This numerical process
is described in section E.2.

The spanwise vorticity of the mean flow field is presented in figure E.8. The black lines represent the streamlines
enclosing the recirculation zone at the rear of the airfoil. The flow remains attached from the leading edge to the point
Xd = 0.668, where a laminar separation occurs. This separation occurs at the same abscissa on the upper and lower sides
of the symmetric airfoil as the incidence is zero. This separation is represented by the yellow dots on the figure. From this
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Figure E.8 – Spanwise vorticity field of the RANS mean flow for Re= 50000 and α= 0◦, using the SA model with
ν̃∞ = 0. The yellow dots over the airfoil surface represent the separation points.
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Figure E.9 – Quantity νt/ν, on the left, and the production term of the SA model, on the right, for the RANS mean
flow at Re= 50000 and α= 0◦, using the SA model with ν̃∞ = 0.
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Figure E.10 – Comparison of the C f distribution, on the left, and −Cp distribution, on the right, between the
RANS mean flow using the SA model with ν̃∞ = 0 (solid blue lines) and the mean flow issued from 3D simulations
(dashed black lines) for Re= 50000 and α= 0◦.

point, a separated boundary layer emerges on both sides of the airfoil. These layers encounter each other at the rear of
the airfoil, for X = 1.068. As a consequence, a recirculation zone. If one compares the present mean flow with the mean
flow from the two-dimensional time-marching simulations, where no turbulence model is taken into account (figure 4.1,
page 143), we can clearly see the difference in the wake zone, due to the fact that the RANS simulations do not that into
account the vortex-shedding phenomenon. The use of URANS for computing a mean flow solution is not present here due
to time constrains on the writing process of this manuscript.

In order to better understand the laminar-turbulent transition appearing on the separated boundary layer, the ratio
νt/ν and the production term in the SA model are sketched in figure E.9. The former characterises the relative importance
of the turbulent eddy-viscosity modelled, with respect to the fluid kinematic viscosity. We first confirm that these terms
tend to zero as we approach the airfoil surface. This is a natural behaviour, as the turbulent ceases to exist at the wall.
Additionally, the eddy viscosity also tends to zero on the cross-stream direction, where the perturbation of the flow field
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Figure E.11 – Spanwise vorticity field of the RANS mean flow for Re= 50000 and α= 0◦, using the SA-BC model.
The yellow dots over the airfoil surface represent the separation points.
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Figure E.12 – Quantity νt/ν, on the left, and the production term of the SA model, on the right, for the RANS mean
flow at Re= 50000 and α= 0◦, using the SA-BC model.

10−5

γBC

1

0.8 1.0 1.2 1.4
−0.07

0.07

x

y

−0.001

γBC sP

0.001

0.8 1.0 1.2 1.4
−0.07

0.07

x

y

Figure E.13 – Intermittency function, on the left, and the product of the intermittency function with the production
term of the SA model, on the right, of the RANS mean flow for Re= 50000 and α= 0◦, using the SA-BC model.

due to the presence of the airfoil tends to zero. In contrast, the ratio νt/ν is high on the wake of the airfoil, where the flow
is turbulent. The presence of this turbulence is a direct consequence of the production term sP , depicted on the right of
figure E.9. We suggest in a future work to compare the sP term with the production of turbulent kinetic energy from the
DNS simulations (see equation 22 of Mettot et al. (2014)).

In figure E.10, we compare the C f and Cp distributions of the RANS SA model with the DNS data. We find a very
good agreement for this angle of attack.

E.3.2 Mean flow for SA-BC model

The same procedure done in the previous paragraph is made here for the RANS SA-BC model, with the results present
in figures E.11 to E.14. The results are qualitatively the same. In particular, we sketch the intermittency function in
figure E.13 and we see that the intermittency only has values on the wake of the airfoil. Along the boundary layers, the
flow remains completely laminar.
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Figure E.14 – Comparison of the C f distribution, on the left, and −Cp distribution, on the right, between the
RANS mean flow using the SA-BC model (solid blue lines) and the mean flow issued from 3D simulations (dashed
black lines) for Re= 50000 and α= 0◦.

E.4 RANS mean flow FSI linear stability analysis for Re= 50000 and α= 0 ◦

We compare in figure E.15 the purely-hydrodynamic spectrum of a mean flow linear stability analysis, using the two
different mean flow solutions analysed previously. Even if qualitatively the two mean flow solutions were the same, we
observe a significant difference in the linear stability analysis results, in particular on the region of the high frequencies
of the spectrum. We note that an unstable mode is present on the right spectrum, corresponding to a hydrodynamic linear
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Figure E.15 – Hydrodynamic linear stability analysis of the RANS mean flow: spectrum for Re= 50000 and α= 0◦

using the SA model with ν̃∞ = 0, on the left, and using the SA-BC model, on the right.
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Figure E.16 – Real part of the streamwise velocity and ˆ̃ν SA model variable of the vortex shedding eigenmode from
a hydrodynamic mean flow linear stability analysis around the RANS SA-BC mean flow at Re= 50000 and α= 0◦.
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stability analysis around the mean flow of a RANS SA-BC formulation. The unstable mode is associated to the vortex
shedding instability. In view of these results, a mean flow from URANS computations can be computed with the SA-BC,
whose associated results are not present here due to time constrains associated to the writing process of this manuscript.

We continue our analysis with the SA-BC model. Figure E.17 presents a fluid–structure spectrum, already present in
the conclusion of this thesis (page 203), for the nominal values of the structure parameters. We can observe the presence
of an unsteady divergence mode, while the flutter mode is stable. These results are in accordance with the analyses made
in chapters 3 and 4. The spatial distribution of the divergence and flutter modes is present in the following figures. Due
to the lack of time in the writing process of this thesis, these results are not commented.

The fluid–structure modes can also be computed using a quasi-laminar approximation (Mettot et al., 2014). In this
analysis, the perturbation on the Spalart–Allmaras variable is not considered. However, we take into account the value of
νt on the linearised momentum equations. This approximation results in a problem of the same size as the mean flow
problems solved in the main chapters of this thesis. The quasi-laminar fluid–structure spectrum is present in figure E.20.
We note that both divergence and flutter eigenvalues are still well predicted with this simplification. Their numerical
values are compared in table E.5.
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Figure E.17 – Mean flow FSI linear stability analysis of the RANS mean flow using the SA-BC model: spectrum
for Re= 50000 and α= 0◦.

Mean flow model SA-BC SA-BC quasi-laminar From 3D simulations

Divergence eigenvalue 0.1879 0.1948 0.2238
Flutter eigenvalue −0.1584+0.5350i −0.1590+0.5363i −0.1435+0.5245i

Table E.5 – Summary of the divergence and flutter eigenvalues obtained for: a RANS FSI mean flow analysis
around a mean flow computed with a SA-BC model, a RANS FSI quasi-laminar mean flow analysis around the
same mean flow and the results from the FSI analysis around a mean flow issued from 3D simulations, taken from
table 4.2 (page 150).
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Figure E.18 – Real part of the streamwise velocity and ˆ̃ν SA model variable of the divergence eigenmode from a
mean flow FSI linear stability analysis around the RANS SA-BC mean flow at Re= 50000 and α= 0◦.
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Figure E.19 – Real (top figures) and imaginary (bottom figures) parts of the streamwise velocity and ˆ̃ν SA model
variable of the flutter eigenmode from a mean flow FSI linear stability analysis around the RANS SA-BC mean
flow at Re= 50000 and α= 0◦.

E.5 RANS mean flow description for Re= 50000 and α> 0 ◦

In a first part, we describe the evolution of the mean flow aerodynamic moment with the angle of attack for the
SA model, using ν̃∞ = 0. The main results are present in figure E.21. One can see that the predicted curve tends to
deviate from the three-dimensional data (blue crosses) as the angle of attack increases, with a smaller zone where the
aerodynamic moment is negative. In contrast, the evolution of the aerodynamic curve for the SA-BC model predicts a
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Figure E.20 – Quasi-laminar mean flow FSI linear stability analysis of the RANS mean flow using the SA-BC
model: spectrum for Re= 50000 and α= 0◦.
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larger negative zone, as present in figure E.22.
As a first step for a future work, we fix the incidence at α= 1.5◦ on the SA-BC model and we modify the value of ν̃∞

up until the point where the aerodynamic moment of this “improved” SA-BC model matches the value of mean flow issued
from the DNS simulations. The value of ν̃∞ has increased from its baseline value of ν̃∞ = 0.015ν up to ν̃∞ = 0.672ν. This
process is made manually, but it can be made with a variational data-assimilation procedure, as done in the investigation
of one of our colleges in an ONERA internship (Al Jamous, 2021).

The values of the pressure component of the aerodynamic moment local contribution along the airfoil surface for the
SA-BC and the “improved” SA-BC are sketched in figure E.23. Additionally, we also sketch the pressure distribution. We
note that by only optimising the global value of the aerodynamic moment, we manage to obtain a very good agreement
between the “improved” model and the DNS mean flow for the local quantities sketched.

With this value of ν̃∞, we sketch in figure E.24 the aerodynamic moment as function of the incidence, that presents a
better agreement with the DNS data than the previous unmodified models.
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Figure E.21 – mz evolution with the incidence of the RANS mean flow for Re= 50000, using the SA model with
ν̃∞ = 0.
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Figure E.22 – mz evolution with the incidence of the RANS mean flow for Re= 50000, using the SA-BC model.
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Figure E.23 – Comparison of the mp
z and Cp distributions over the upper surface of the airfoil between the mean

flow using a SA-BC model (solid blue line), using the “improved” SA-BC, where ν̃∞ = 0.672ν (solid red line) and the
3D results (black dashed line).
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Figure E.24 – mz evolution with the incidence of the RANS mean flow for Re= 50000, using a modified SA-BC
model, where ν̃∞ = 0.672ν.
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