
HAL Id: tel-03884550
https://theses.hal.science/tel-03884550v1

Submitted on 5 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterization of translational mechanisms in
astrocytes
Marc Oudart

To cite this version:
Marc Oudart. Characterization of translational mechanisms in astrocytes. Neurobiology. Sorbonne
Université, 2022. English. �NNT : 2022SORUS296�. �tel-03884550�

https://theses.hal.science/tel-03884550v1
https://hal.archives-ouvertes.fr


 
 
 

  

 
Sorbonne Université 

 
Ecole doctorale n° 158 – Cerveau Cognition Comportement (ED3C) 

 
Centre Interdisciplinaire de Recherche en Biologie (CIRB), Collège de France 

 
Equipe de recherche – Physiologie et physiopathologie de l’unité gliovasculaire  

 
 
 

Characterization of translational 
mechanisms in astrocytes 

 
 

Par Marc Oudart 
 
 

Thèse de doctorat de Neurosciences et sciences cognitives 
 
 

Dirigée par Martine Cohen-Salmon 
 
 
 
 
 

Présentée et soutenue publiquement le 28 septembre 2022 
 

Devant un jury composé de : 
 
Alain Trembleau, PU, Institut de Biologie Paris Seine    Président 
 
Jimena Baleriola, DR, Achucarro Basque Center for Neuroscience   Rapportrice 
 
Olivier Namy, DR, Institut de Biologie Cellulaire Intégrative   Rapporteur 
 
Hervé Le Hir, DR, Institut de Biologie de l’Ecole Normale Supérieure  Examinateur 
 
Célia Plisson-Chastang, CR, Laboratoire de Biologie Moléculaire Eucaryotes Examinatrice 
 
Clément Chapat, CR, Ecole Polytechnique      Invité 
 
Martine Cohen-Salmon, DR, Collège de France     Directrice de thèse 
  



 

 
 



Remerciements

Je voudrais remercier les membres du jury pour avoir engagé une discussion passionnante lors de la

soutenance  ainsi  que  mes  rapporteurs,  Clément  Chapat  et  Jimena  Baleriola,  pour  leur  lecture

attentive de ce manuscrit.

Merci à Clément Chapat de s’être plongé dans le monde des astrocytes lors de mes comités de suivi

de thèse et de notre collaboration fructueuse.  Merci  également à Cyril  Hanus pour ses précieux

retours sur ma thèse lors des 2 CSI.

Martine, tu m’as engagé sur un projet ambitieux au départ car avec une approche ouverte où on ne

savait pas trop ce qu’on allait trouver. Et finalement on a trouvé RACK1 (grâce à toi) et ça a été le

jackpot. Même si je croyais que rien ne se passait dans cette souris au début, on a été très content

d’obtenir de beaux résultats. Ce qui est bien avec toi c’est que tu nous assures un article tôt dans la

thèse comme ça  on peut  s’engager  sur  quelque chose de plus  risqué sur  la  suite.  Notre  papier

AstroDot est toujours aussi utilisé. Je pense que tu m’appris à être le scientifique que je suis devenu

aujourd’hui dans l’efficacité et la rigueur de travail.

J’ai vraiment eu l’impression d’avoir créé le laboratoire aux côtés de Martine, Anne-Cécile, Noémie et

Alice. Je me suis approprié tous les aspects du labo et ça m’a beaucoup plu. Ça va être dur de partir

dans un labo inconnu !

Je suis content d’avoir pu partager ça avec toi Anne-Cécile. J’ai toujours pu discuter avec toi au labo

ou autour d’une bière. Merci de m’avoir aussi bien accueilli.

J’aimerais aussi remercier Noémie et Alice avec qui j’ai partagé une bonne partie de ma thèse, on a

partagé des projets, des soirées, un mariage et en restera pleins de bons souvenirs. Merci Noémie

pour ces parties de jeux de société et toutes ces soirées. Merci Alice pour tous ces gouters  ! Vous

m’avez bien intégré au CIRB.

Je  remercie  tous  mes  étudiants  qui  étaient  honnêtement  de  supers  étudiants  et  qui  ont  tous

contribué dans ma thèse. Robin a été le 1er suivi d’Ines, vous m’avez grandement aidé dans l’étude

des ARNs associés à RACK1. Katia tu m’as aidé sur tous les aspects du projet et enfin Mathis tu t’es

pris au jeu du volume astrocytaire et à m’embêter (merci pour ton initiation au wordle, lewdle, globle

et compagnie)!

J’aimerais remercier la nouvelle (pas si nouvelle) génération du labo. Leila avec qui j’ai partagé 2

semaines dans le labo de Schuman où on s’est bien amusé à peindre des gateaux de Noël, à manger



de la choucroute et du Glüwein et des trucs bizarres. Merci Katia pour ton aide sur mes projets.

Désolé  si  je  t’embête tout  le  temps sur  ton accent  mexicain  et  sur  ta taille,  tu  parles  très bien

français ! On peut compter sur toi dans le labo et tu es d’un très grand soutien. Merci à toutes les

deux  pour  les  gouters  revivifiants.  Merci  Rodrigo  pour  tes  histoires  passionnantes  et  ta  bonne

humeur. Merci Barbara avec tes blagues un peu bizarres.

Je tiens aussi à remercier Xabi, on s’entendait bien et j’avais plaisir à discuter avec toi. Merci Romain

et tes humeurs toujours aussi marquantes, on s’est bien amusé avec toi au labo (à coup d’AstroDot

h24). Merci aussi à Emma, vous étiez là au tout début de ma thèse et c’était une chouette entrée en

matière.

En dehors du labo je veux remercier mes potes de Bordeaux : Alex, Tommy, Raph, Rémi et Arnaud.

Vous êtes merveilleux. Le confinement s’est beaucoup mieux passer grâce à nos visios jusqu’à 2h du

mat’ le samedi à jouer à la belotte. Vous êtes toujours là et vous êtes ma famille.

Je remercie aussi ma famille : ma mère, mon beau-père, mon père, Véronique et ma sœur. Je n’ai pas

été présent pour vous pendant ces 4 ans de thèse mais vous avez toujours été là et c’est grâce à vous

si j’ai pu aller à Paris et faire une thèse dans les meilleures conditions.

Merci à Carole qui me supporte tous les jours et m’écoute parler IP et blot à longueur de journée

sans jamais décrocher. Merci !

Merci à mes colocs Laure et Quentin, vous m’avez supporté au jour le jour pendant 4 ans et j’ai

beaucoup aimé notre cohabitation et les soirées jeux. Merci aussi aux potes d’Ulm : Brieuc, Alban,

Lucas, Victor et Coline pour toutes nos soirées à l’ENS et les sorties le weekend !

Je voudrais remercier aussi toute l’équipe Rouach et plus particulièrement : Rachel, tu es la personne

la plus gentille du monde, tu es d’un soutien sans faille.  Eléonore, merci pour ces soirées et ces

moments au club med et ton aide pour le patch (heureusement que tu es là)  ! Merci aussi à Jeff ,

Giam et Josien, il  est facile de discuter avec vous et vous êtes toujours à l’écoute. Merci au trio

Noémie, Flora et Anna qui m’ont tout de suite intégré. Merci aussi à Augustin pour tous les moments

qu’on a partagé en M2 et après et avec Adam. Merci aussi au reste de l’équipe, Pascal tu es toujours

prêt à aider, Julien, Charles, Elena, Isabelle, Noémie C, Armelle, Nathalie, Jérome, Danijela, Daria,

David et Glenn.

Merci aussi aux anciens de l’équipe Joliot Edmond et Irène.



Merci à nos voisins Belen et Alessya avec qui on a partagé de bons moments à la retraite étudiante,

Richard, David et Gilles.

Merci à Camille ! On a partagé énormément de choses et de soirées. Tu es venue jusque dans mon

labo pour me sortir et m’introduire à tout le CIRB. Tu as créé mon cercle d’amis au Collège. Tu as

toujours été à l’écoute tout en me confrontant sur mes décisions telle une vraie amie.

Enfin, je tenais à remercier les potos du bâtiment B. Vous m’avez accepté parmi vous en un clin d’œil

malgré la séparation des bâtiments. J’ai tellement de bons souvenirs (et des souvenirs de ne plus me

souvenir)  avec  Pierre,  P-E,  Juliette,  Sonia,  Camille,  Marie,  Emma et  Solène.  Vous  êtes  tellement

bienveillant et ça a vraiment contribué à me sentir bien au Collège. Merci aussi à Noémie Brassard,

Maëla, Camille Curantz, Camille Compère, Omar, Beetsi, Théo, Shayan, Sabrina, Isabelle, Brenna et

chacha. 





1 
 

Publication list 
Research articles 

Oudart, M., Avila-Gutierrez, K., Moch, C., Dossi, E., Milior, G., Boulay, A.-C., Gaudey, M., 
Moulard, J., Lombard, B., Loew, D., Bemelmans, A.-P., Rouach, N., Chapat, C., Cohen-Salmon, M. 
(2022). Translational regulation by RACK1 in astrocytes represses KIR4.1 expression and regulates 
neuronal activity. Under review. In BioRxiv: https://doi.org/10.1101/2022.07.16.500292. Presented 
in this thesis. 

Tortuyaux, R., Avila-Gutierrez, K., Oudart, M., Mazaré, N., Mailly, P., Deschemin, J.-C., Vaulont, 
S., Escartin, C., and Cohen-Salmon, M. (2022). Physiopathological changes of ferritin mRNA 
density and distribution in hippocampal astrocytes in the mouse brain. 2022.04.01.486678. BioRxiv 
https://doi.org/10.1101/2022.04.01.486678. Not presented here. I contributed in the development of 
the main method used in this study: AstroDot. 

Mazaré, N., Oudart, M., Moulard, J., Cheung, G., Tortuyaux, R., Mailly, P., Mazaud, D., 
Bemelmans, A.-P., Boulay, A.-C., Blugeon, C., Jourdren, L., Le Crom, S., Rouach, N., Cohen-
Salmon, M. (2020a). Local Translation in Perisynaptic Astrocytic Processes Is Specific and 
Changes after Fear Conditioning. Cell Reports 32, 108076. 
https://doi.org/10.1016/j.celrep.2020.108076. Not presented here. I helped in the experiments and 
analyses. I contributed in the reviewing process. 

Oudart, M.*, Tortuyaux, R.*, Mailly, P.*, Mazaré, N., Boulay, A.-C., and Cohen-Salmon, M. 
(2020). AstroDot – a new method for studying the spatial distribution of mRNA in astrocytes. J Cell 
Sci 133. https://doi.org/10.1242/jcs.239756. *: co-authors. Presented in this thesis. 

Reviews 

Mazaré, N., Oudart, M., and Cohen-Salmon, M. (2021). Local translation in perisynaptic and 
perivascular astrocytic processes – a means to ensure astrocyte molecular and functional polarity? 
Journal of Cell Science 134, jcs251629. https://doi.org/10.1242/jcs.251629. Presented in this thesis 
in appendix. I contributed in the RNA-binding protein part and in the writing. 

Cohen‐Salmon, M., Slaoui, L., Mazaré, N., Gilbert, A., Oudart, M., Alvear‐Perez, R., Elorza‐Vidal, 
X., Chever, O., and Boulay, A. (2020). Astrocytes in the regulation of cerebrovascular functions. 
Glia glia.23924. https://doi.org/10.1002/glia.23924. Not presented here. 

Protocols 

Mazaré, N., Oudart, M., Cheung, G., Boulay, A.-C., and Cohen-Salmon, M. (2020b). 
Immunoprecipitation of Ribosome-Bound mRNAs from Astrocytic Perisynaptic Processes of the 
Mouse Hippocampus. STAR Protocols 1, 100198. https://doi.org/10.1016/j.xpro.2020.100198. Not 
presented here. I contributed in writing the protocol and in the figures. 

  



2 
 

  



3 
 

Abbreviations 
 
 
Aβ : Amyloid beta 
AchE : Acetylcholinesterase 
AD : Alzheimer’s disease 
AHA : Azidohomoalanine 
AGO : Argonaute 
ALS : Amyotrophic Lateral Sclerosis 
AMPAR : α-amino-3-hydroxy-5-methyl-4-
isoxazoleproprionic acid receptor 
ANL : Azidonorleucine 
APA : Alternative Polyadenylation 
AQP4 : Aquaporin 4 
ATP : Adenosine Triphosphate 
BBB : Blood Brain Barrier 
BDNF : Brain Derived Neurotrophic Factor 
BG : Bergmann Glia 
BONCAT : Bioorthogonal Non-canonical 
Amino Acid Tagging 
Ca2+ : Calcium ion 
CDS : Coding Sequence 
CLIP : Cross-linking immunoprecipitation 
CNS : Central Nervous System 
CSF : Cerebrospinal Fluid 
CPEB1 : Cytoplasmic Polyadenylation 
element-binding protein 1 
CUIC : CIS-element upstream of the initiation 
codon 
CX30 : Connexin 30 
CX43 : Connexin 43 
Da : Dalton 
DNA : Desoxyribonucleic Acid 
DSH : Dishevelled 
EC : Endothelial Cell 
ECM : Extracellular Matrix 
eIF : Eukaryotic Initiation Factor 
EM : Electron Microscopy 
ER : Endoplasmic Reticulum 
FAK : Focal Adhesion Kinase 
FASS : Fluorescence Activated Synaptosome 
Sorting 
FISH : Fluorescence in situ Hybridization 
FMRP : Fragile X Mental Retardation Protein 
FRAP : Fluorescence Recovery After 
Photobleaching 
FTO : Fat-mass and Obesity Associated 
Protein 
FUNCAT : Fluorescence non-canonical 
Amino Acid Tagging 

FUS : Fused Sarcoma 
FXS : Fragile X Syndrome 
GABA : γ-Aminobutyric Acid 
GECI : Genetically Encoded Calcium 
Indicators 
GFAP : Glial Fibrillary Acidic Protein 
GFP : Green Fluorescent Protein 
GLAST : Glutamate Aspartate Transporter 
GLT1 : Glutamate Transporter 1 
GluR : Glutamate Receptor 
GNP : Granule Neural Progenictors 
GPCR : G-Protein Coupled Receptor 
GS : Glutamine Synthetase 
GTP : Guanosine Triphosphate 
GVU : Gliovascular Unit 
HuR : Human Antigen R 
IRES : Internal Ribosome Entry Site 
ITAF : IRES Trans-acting Factor 
K+ : Potassium ion 
KH : K-homology 
KIR4.1 : Potassium Inward Rectifier 4.1 
KO : Knock Out 
LARP4 : La-related Protein 4 
LTD : Long Term Depression 
LTP : Long Term Potentiation 
m6A : N6-Methyladenosine 
MetRS : Methionine tRNA Synthetase 
MBP : Myelin Basic Protein 
MCT : Monocarboxylate Transporter 
MFC : Multi-Factor Complex 
MOG : Myelin Oligodendrocyte Glycoprotein 
MS : Mass Spectrometry 
NGF : Nerve Growth Factor 
NMDAR : N-Methyl-D-Aspartate Receptor 
NRP1 : Neuropilin 1 
NSC : Neural Stem Cell 
Nt : Nucleotide 
NVU : Neurovascular Unit 
OPC : Oligodendrocyte Precursor Cell 
P : Postnatal day 
PABP : PolyA Binding Protein 
PAP : Perisynaptic Astrocytic Processes 
PC : Purkinje Cell 
PeMP : Peripheral Microglial Processes 
PGE : Prostaglandin E 
PIP2/3 : Phosphatidylinositol bis/triphosphate 
PKC : Protein Kinase C 



4 
 

PLA : Phospholipase A or Proximity Ligation 
Assay 
PLP : Proteolipid Protein 
PNS : Peripheral Nervous System 
POE : Purity of Essence 
pSILAC : pulsed Stable Isotope Labeling by 
Amino Acid in Cell Culture 
PUF6 : Pumillo 
PvAP : Perivascular Astrocytic Processes 
PTZ : Pentylenetetrazol 
QBM : Quaking Binding Motif 
QKI : Quaking 
QRE : Quaking Response Element 
RACK1 : Receptor for Activated C Kinase 1 
RBP : RNA-binding Protein 
RER : Rough Endoplasmic Reticulum 
RF : Release Factor 
RNA : Ribonucleic Acid 
mRNA : messenger RNA 
miRNA : micro RNA 

rRNA : ribosomal RNA 
tRNA : transfer RNA 
RNP: Ribonucleoparticle 
hnRNP : heterogeneous RNP 
RP : Ribosomal Protein 
RQC : Ribosome Quality Control 
RRM : RNA Recognition Motif 
S : Svedberg 
Sema3A : Semaphorin 3A 
SERBP1 : Plasminogen Activator Inhibitor 1 
SG : Stress Granule 
SHH : Sonic Hedgehog 
TCA : Tricyclic Antidepressant 
TDP43 : TAR DNA-binding Protein 43 
TOM : Translocase of the Outer Membrane 
TRAP : Translating Ribosome Affinity 
Purification 
UTR : Untranslated Region 
VGLUT1 : Vesicular Glutamate Transporter 1 
ZBP1 : ZIP-code Binding Protein 1 

  



5 
 

Figures and Tables 
 

Introduction 

Figure 1. Cells of the central nervous system (CNS). ................................................................. 13  

Figure 2. Astrocytes through the history. .................................................................................... 15  

Figure 3. Astrocytes have non-overlapping domains. ................................................................. 17  

Figure 4. Astrocyte functions at the synapse, at the blood vessels and at the network level. .... 25 

Figure 5. Astrocytic potassium channel KIR4.1 has crucial roles in the brain.......................... 28 

Figure 6. RNAs are transported and locally translated in neurons. .......................................... 32 

Figure 7. Local translation in neurons, radial glia and oligodendrocytes. ................................. 36 

Figure 8. Local translation occurs in PvAPs and in PAPs. ......................................................... 39 

Figure 9. Local translation occurs in other cell models.  ............................................................ 41  

Figure 10. Ribosome biogenesis occurs in the nucleus but some RPs are locally translated. .... 47 

Figure 11. Eukaryotic cytoplasmic translation. .......................................................................... 48  

Figure 12. Translation is regulated by CIS and TRANS-acting elements. ................................. 53 

Figure 13. mRNAs are compacted into granules and transported along the cytoskeleton. ...... 55 

Figure 14. RACK1 structure allows multiples partners and has free and ribosome-bound 

functions.  .................................................................................................................................... 64  

Figure 15. RACK1 participates in neuronal functions and CNS development. ........................ 66 

 

Supplementary results 

Figure 1. RACK1 in astrocytes is not involved in pentylenetetrazol (PTZ)-induced acute 

epilepsy. ....................................................................................................................................... 82  

Figure 2. RACK1 is not involved in depressive-like behavior. ................................................... 84 

Figure 3. Kcnj10 5’UTR is predicted to be recruited by RNA binding proteins (RBP) and 

RACK1 binds to some of them. .................................................................................................. 89  

Figure 4. Western blot analyses of astrocytic-specific protein study in RACK1 cKO mice 

versus RACK1 fl/fl control mice in different compartments. .................................................... 92 

Figure 5. RACK1 associates differently with astrocytic mRNAs during development. ............ 96 

Figure 6. Identification of polysome binding proteins in PvAPs by TRAP MS.  ....................... 98 

 

Tables 

Table 1. List of candidate RBPs interacting with RACK1 of Kcnj10. ………………………....90 



6 
 

 
  



7 
 

Table of Contents 
 
Publication list ................................................................................................................................ 1  

Abbreviations .................................................................................................................................. 3  

Figures and Tables .......................................................................................................................... 5  

Introduction .................................................................................................................................. 11  

I. The central nervous system contains key cells: Astrocytes ..................................................... 12  

I.a) Astrocytes are integrated glial cells ................................................................................. 12  

I.b) Astrocytes are rising stars: from depreciation to high interest .......................................... 13  

I.c) Astrocytes display unique properties ............................................................................... 15  

I.c.i. Astrocytes increase their contact surface with a bushy morphology .......................... 16 

I.c.ii. Astrocytes have non-overlapping domains ............................................................... 16  

I.c.iii. Astrocytes are electrically non-excitable cells but communicate with calcium .......... 18 

I.c.iv. Astrocytes form a connecting network through gap junctions ................................... 19 

I.d) Astrocyte’s polarity connects blood vessels and neurons ................................................. 20  

I.d.i. Astrocytes display perivascular endfeet and regulate vascular functions ................... 20 

I.d.ii. Astrocytes regulate synaptic functions with perisynaptic processes (PAP) ................ 21 

I.e) Astrocytes express a critical protein for brain homeostasis: KIR4.1 ................................. 25 

I.e.i. KIR4.1 is a major potassium channel in astrocytes ................................................... 25  

I.e.ii. KIR4.1 regulates potassium homeostasis in PAPs and PvAPs................................... 26 

I.e.iii. KIR4.1 is perturbed in several neurological diseases ................................................ 26  

I.f) Other brain cellular interactions ...................................................................................... 28  

II. Local translation is a mechanism for cell polarity .................................................................. 30  

II.a) Local translation studies focused on neurons ................................................................... 30  

II.a.i. First insights ............................................................................................................ 30  

II.a.ii. RNA, ribosomes and maturation organelles are templates for local translation ......... 31 

II.a.iii. Local translation participates in the growth cone guidance.................................... 32 

II.a.iv. Local translation participates in synaptic plasticity ................................................... 33  

II.b) Local translation in radial glia regulates cortical development ..................................... 34 

II.c) Myelin coding RNA are transported in oligodendrocyte sheaths ...................................... 35 

II.d) Local translation occurs in perisynaptic and perivascular processes of astrocytes ......... 37 

II.d.i. Local translation sets molecular heterogeneity in Perivascular Astrocytic Processes 
(PvAP) 37 

II.d.ii. Local translation in Perisynaptic Astrocytic Processes (PAPs) is dynamic ................ 38 

II.e) Local translation in microglia remains poorly understood................................................ 40  

II.f) Outside the brain, local translation occurs also in non-complex cells ............................... 40 

II.g) Local translation occurs in sub-cellular organelles ....................................................... 42  

II.h) Multiplication of tools to study local translation .......................................................... 42  

III. A fundamental biological process coordinated by multiple partners: Translation ................. 45 



8 
 

III.a) From nucleus to cytoplasm: Translation involves proteins and RNAs .......................... 45 

III.a.i. Ribosomes are composed of two subunits and four ribosomal RNA (rRNA) ............ 45 

III.a.ii. Ribosome biogenesis and assembly occur in the nucleus but some ribosomal 
proteins are locally translated ................................................................................................ 46  

III.a.iii. RNA sequences are recognized before translation ................................................. 48  

III.b) Translation is regulated by RNAs and proteins ............................................................ 49  

III.b.i. CIS-acting elements involve sequences in the RNA ................................................. 49  

III.b.ii. TRANS-acting elements involve multiple proteins ............................................... 50  

III.b.iii. RNA granules transport and compact RNAs and proteins ..................................... 54 

III.b.iv. Signaling pathways regulate translation in development, plasticity and diseases ... 56 

III.b.v. Other translation regulation mechanisms involve microRNAs (miRNA), codon 
usage and m6A modifications................................................................................................. 57  

III.b.vi. In astrocytes, mechanisms of translation are not understood ................................. 58  

IV. Receptor for activated C kinase 1 (RACK1) is a multifaceted protein involved in translation 
regulation ...................................................................................................................................... 60  

IV.a) RACK1 structure allows multiple protein interactions ................................................. 60  

IV.b) RACK1 is a signaling hub and interacts with ribosomes .............................................. 60  

IV.b.i. RACK1 is involved in cell physiology ..................................................................... 60  

IV.b.ii. RACK1 regulates translation in interaction with ribosomes .................................. 61 

IV.c) RACK1 in the CNS participates in development and synaptic plasticity ...................... 65 

IV.d) RACK1 expression is modified in diseases .................................................................. 67  

IV.d.i. Expression of RACK1 is altered in cancers .............................................................. 67  

IV.d.ii. RACK1 is involved in neurological disorders ....................................................... 68  

Objectives ..................................................................................................................................... 71  

Experimental results ...................................................................................................................... 73  

I. AstroDot – a new method for studying the spatial distribution of mRNAs in astrocytes ......... 75 

Summary ................................................................................................................................... 75  

II. Translational regulation by RACK1 in astrocytes represses KIR4.1 expression and regulates 
neuronal activity ........................................................................................................................... 77  

Summary ................................................................................................................................... 77  

Supplementary results ................................................................................................................... 79  

I. RACK1 in astrocytes is not involved in pentylenetetrazol (PTZ)-induced acute epilepsy ....... 81 

II. RACK1 is not involved in depressive-like behavior tested with the forced-swimming test ..... 83 

III. A model for RACK1 translation regulation on Kcnj10 mRNA 5’UTR ................................ 84 

IV. Western blot analyses of astrocytic-specific proteins in RACK1 cKO mice versus RACK1 
fl/fl control mice in different brain areas and astrocytic compartments .......................................... 90  

V. RACK1 associates differently with astrocytic mRNAs during development........................... 93 

VI. Identification of polysome binding proteins in PvAPs by TRAP MS ................................... 96 

General discussion ...................................................................................................................... 100  

I. RNAs are distributed in astrocytes and microglia (related to Article 1) ................................ 101 



9 
 

I.a) AstroDot enables RNA distribution studies in healthy and disease-related astrocytes .... 101 

I.b) AstroDot enables RNA distribution studies in microglia ................................................ 102  

I.c) AstroDot is not suitable for RNA distribution in neurons ............................................... 102  

I.d) Single RNA or RNA granules? ...................................................................................... 102  

II. Regulation of translation occurs in astrocytes (related to RACK1 Article 2) ........................ 103 

II.a) Multiple protein partners are associated with astrocytic polyribosomes (related to figure 1)
 103 

II.b) Apart from RACK1, what other protein from the TRAP-MS screen could be 
investigated (related to figure 1)? ............................................................................................ 104  

II.c) RACK1 is associated with polyribosomes and RNAs in astrocytes (related to figure 2 and 
3) 105 

II.d) RACK1 cKO mouse is a good model to study impact of translation regulation on 
astrocyte physiology (related to figure 4) ................................................................................. 106  

II.e) RACK1 regulates Kcnj10 on its 5’UTR (related to figure 5) ......................................... 107 

II.f) RACK1 regulates astrocyte volume (related to figure 5)................................................ 108  

II.g) RACK1 regulates neuronal transmission (related to figure 6)..................................... 108 

III. RACK1 roles are quite specific......................................................................................... 110  

IV. In RACK1 cKO mice, other alterations could be considered ..............................................111  

V. What are the roles of local translation and translation regulation in astrocytes ?....................111 

VI. Are astrocytic local translation mechanisms heterogeneous? ............................................. 112  

VII. On the complexity of the proteome regulation .................................................................. 113  

Appendix .................................................................................................................................... 115  

Bibliography ............................................................................................................................... 116  

 

  



10 
 

 

 
  



11 
 

 
 

 

 

 

 

 

 

 

 

Introduction  



12 
 

I. The central nervous system contains key cells: 
Astrocytes 

In mammals, the nervous system can be divided between the peripheral nervous system (PNS) 

including nerves and ganglia and the central nervous system (CNS) including the brain and the spinal 

cord. The brain is a complex organ composed of the cerebrum (or telencephalon, the main part of the 

brain divided into 2 hemispheres controlling emotions, senses or voluntary movement for instance), 

the cerebellum (at the back of the brain, responsible for movement coordination and balance for 

instance) and the brain stem connecting the brain to the spinal cord (involved in cardiac and 

respiratory functions) (Fig. 1, left) (Purves et al., 2012).  

I.a) Astrocytes are integrated glial cells 

In the CNS, different cell types are interdependent and include the neurons, the glial cells and the 

blood vessels (Fig. 1, right). Neurons are electrically excitable cells that communicate through 

synapses. Neurons are very complex cells with processes receiving information, the dendrites, and a 

process responsible for collecting and transmitting the information, the axon. Of note, axons can be 

very long, up to millimeters and centimeters (for instance, a neuron located in our spinal cord can 

extend its axon to innervate our toes). Neurons come up with very different morphologies and can be 

excitatory or inhibitory. The communication between neurons is called the synapse and consists in a 

presynaptic axon terminal apposed to a postsynaptic dendritic bouton. The electric nervous signal or 

action potential in the axon reaches the presynaptic terminal, is converted in the synaptic cleft (the 

space between 2 neurons) in a chemical signal as a release of neurotransmitters and neuromodulators. 

These molecules bind to receptors at the postsynaptic terminal of dendrites and this chemical 

signaling is converted back into an electrical pulse. The neuronal cell body integrates the different 

signaling from its dendrites to send another message through its axon etc… (Purves et al., 2012). The 

neuronal transmission also involves glial cells and will be developed later. 

Glial cells consist in astrocytes, microglia, oligodendrocytes (Fig. 1, right) and ependymal cells. 

Astrocytes participate in regulating neuronal and cerebrovascular functions will be developed later. 

Microglia are small ramified cells involved in particular in the brain immunity. They are highly 

dynamic cells and react when the brain is injured (trauma, stroke, epilepsy, infection, 

neurodevelopmental and neurodegenerative diseases). Microglia reactivity consists in proliferation 

and migration toward the injured site (infection site, leaky blood brain barrier, cell death, amyloid 

beta plaque). Microglia are also involved in the synaptogenesis during development. They participate 

in synaptic pruning (remove of the excess of synapses during development) by phagocyting weak 
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synapses or tagging them to be phagocyted by astrocytes. Microglia functions are reviewed in (Wolf 

et al., 2017). Oligodendrocytes are also ramified cells participating in the myelin sheath formation 

around axons of neurons. The myelin is a lipid insulating axons for the nerve signal to be transmitted 

faster. Oligodendrocytes produce myelin wrapped in sheaths around the axons. The spaces between 

each myelin segments are called ‘Noeud de Ranvier’ or node of Ranvier. Hence, the action potentials 

in axons ‘jump’ from node to node, called saltatory conduction, increasing the information 

transmission speed which was an evolutionary advantage. Oligodendrocytes participate also in the 

metabolic support of neurons through channels in the myelin sheath by exporting lactate or pyruvate. 

Oligodendrocytes physiology is reviewed in (Simons and Nave, 2016). Finally, ependymal cells are 

located in the borders of the brain ventricles (large cavities in the middle of the brain containing the 

cerebrospinal fluid (CSF)), regulate the CSF flow with cilia and support neurogenesis. 

Ependymocytes roles are reviewed in (Del Bigio, 2010).  

Although some teams evaluated the glial cells to be 10 times more numerous than neurons in the 

human brain (Allen and Barres, 2009), recent studies with new fractionation techniques computed 

glial cells as numerous as the neurons in the human brain and 35% in the mouse brain (von Bartheld 

et al., 2016; Herculano-Houzel, 2014).  

 

Figure 1. Cells of the central nervous system (CNS). (Left) The CNS contains the brain and the 

spinal cord whereas the PNS contains the peripheral nerves. (Right) Neurons interplay with glial 

cells in the brain: microglia, oligodendrocytes and astrocytes. The CNS is highly vascularized (right). 

I.b) Astrocytes are rising stars: from depreciation to high 
interest 

Astrocytes and glia in general were discovered after neurons in 1858 by Rodolph Virchow (1821-

1902) (Hubbard and Binder, 2016). He referred to neuroglia as a cement, a cell-free glue to support 
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the nerve cells. Neuroglia was considered as cells with the silver-chromate staining technique of 

Camillo Golgi (1843-1926) in the 1870s when he drew stellate cells (astrocytes). Importantly, Golgi 

already assumed a metabolic support role of astrocytes because of the astrocytic endfeet contacting 

blood vessels. The word astrocyte (from ancient greek ‘’, star and ‘’, cell) was used by 

Michael von Lenhossék (1863-1937) in 1893 and comes from their star shape with Golgi staining 

(Fig. 2, left). Nowadays, we would consider a ‘bushy’ shape rather than a star shape. Indeed, the 

Golgi astrocyte staining only show the intermediate filament structure whereas the staining of 

fluorescent reporter mouse lines with the astrocyte cytoplasm filled with the fluorescent protein show 

a high  morphological complexity (Fig. 2, right) (Verkhratsky and Nedergaard, 2018). Santiago 

Ramon y Cajal (1852-1934) described astrocyte morphology with its own astrocyte-specific gold and 

mercury chloride-sublimate staining technique. He described astrocyte heterogeneity as well as 

potential functional roles of astrocytes in the control of blood flow (Hubbard and Binder, 2016). 

However, astrocyte functions were still unknown and they were still considered as ‘glue’ despite 

Golgi and Cajal hypotheses. 

As electrically non-excitable cells, scientists lacked tools to study these cells. In 1980s and 1990s, 

studies on astrocytes described ions channels and receptors (Kettenmann et al., 1984) as well as their 

propensity to communicate with calcium waves (Cornell-Bell et al., 1990). However, astrocytes were 

still considered as passive supporting cells compared to neurons. We had to wait until the late 1990s 

for Ben Barres (1957-2017), a pioneer in glial cell biology, to describe astrocytes as active players in 

the brain physiology in the development, neuronal communications and diseases (Allen and Barres, 

2009). From his studies, the astrocyte community has grown to be almost as valued as the neuron one. 

However, still today, astrocytes roles are not well understood especially at the vascular interface 

although Golgi described endfeet in the 1870s! The neural community remains neuron-centered and 

I think it is time to start integrating all brain cells if we want to tackle fundamental and applied long 

lasting unresolved questions.  
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Figure 2. Astrocytes through the history. (Left) Drawing of Ramon y Cajal (1852-1934) of astrocytes 

stained with modified Golgi techniques. The astrocytes processes correspond to the intermediate 

filaments GFAP. Astrocytes were already shown to contact blood vessels. (Right) EGFP-filled 

astrocytes in the cortex (outer layer of the brain). Astrocytes have, in fact, a bushy morphology with 

ramified processes and totally ensheath blood vessels. Adapted from (Verkhratsky and Nedergaard, 

2018). 

I.c) Astrocytes display unique properties 

Astrocytes are considered the most numerous glial cells in the brain although recent studies have 

highlighted that this statement could be wrong. Oligodendrocytes would be the most abundant (75%) 

in the white matter (deep in the brain, with a high density in axons) as well as in the grey matter (at 

the brain surface with neuronal cell bodies) in the human brain compared to astrocytes (20%) and 

microglia (5%) (von Bartheld et al., 2016; Pelvig et al., 2008). However, numbers of glial cells could 

depend on the brain region and on the species. Astrocyte morphology complexity increases with 

evolution especially in the human brain where astrocytes display a larger domain, a larger cell body 

and more processes than its mouse counterpart (Oberheim et al., 2006, 2009). 

For a complete review of astrocytic functions read “Physiology of Astroglia” of Alexei Verkhratsky 

and Maiken Nedergaard (Verkhratsky and Nedergaard, 2018). The following sections only point out 

what I think are the most important and interesting functions. 
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I.c.i. Astrocytes increase their contact surface with a bushy morphology 

Astrocyte morphology described in Golgi and Cajal drawings reveals only part of the entire cell. In 

fact, the protein stained by this technique is the intermediate filament expressed in astrocytes and 

radial glia: glial fibrillary acidic protein (GFAP). The GFAP staining reveals the soma and only large 

processes of astrocytes. Bushong et al. calculated that it only accounts for 15% of the entire volume 

(Bushong et al., 2002). When filled with a cytoplasmic dye, either by pipette loading or in transgenic 

mice, astrocytes look like a bush. We understand the multitude of cells and processes an astrocyte can 

contact when we look at this bushy structure (Fig. 2, right) (Verkhratsky and Nedergaard, 2018). 

This bushy structure is heterogeneous between brain regions as well as inside the same region. In the 

cerebellum, resident astrocytes are called Bergmann glia, in the retina, Müller cells and in the 

hypophyse (a hormone-secreting gland near the hypothalamus deep in the brain), pituicytes. Within 

the brain, astrocytes can be protoplasmic (bushy structure with a lot of processes) in the grey matter, 

fibrous (fewer processes but longer) in the white matter, pial at surfaces and perivascular around 

blood vessels. In terms of processes length, protoplasmic have 50 µm ramified processes whereas 

fibrous have long 300 µm less complex processes (Verkhratsky and Nedergaard, 2018). Within one 

region of the brain such as the hippocampus (a region involved in memory formation and spatial 

navigation), astrocytes are bigger in the CA3 than the CA1 regions. Molecular signatures of astrocytes 

determine their heterogeneity. Recent studies investigating the astrocytic molecular identities (Batiuk 

et al., 2020) revealed a more complex heterogeneity than expected in the brain. For instance, GFAP 

is expressed at high levels in the hippocampus, contrary to the cortex (Zhang et al., 2019b). The 

molecular identity of an astrocyte population could match the neuronal network they are integrated 

in.  

I.c.ii. Astrocytes have non-overlapping domains 

Astrocytes overlap in a restricted manner. In the hippocampus, a well-known structure in the 

cerebrum involved in memory and space navigation, protoplasmic astrocytes only overlap with their 

very fine processes by 4.6% in average of their volume (Fig. 3) (Bushong et al., 2002; Ogata and 

Kosaka, 2002). It is considered that protoplasmic astrocytes have exclusive domains meaning that 1 

astrocyte controls all contacted neuronal fibers in its domain. Fibrous astrocytes in the white matter 

do not have such exclusivity and can extensively overlap. Although the non-overlapping domains 

have been described 20 years ago, the physiological relevance of this property remain unclear.  

However, it is now clear that astrocyte domains undergo changes in different neuropathologies such 

as traumas, strokes and neurodegenerative diseases (Sofroniew and Vinters, 2010). Astrocytes in 

neurological disorders become reactive underlying morphological, functional and molecular changes. 
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These changes appear to be dependent on the context and the brain region and are highly 

heterogeneous (Escartin et al., 2021). For instance, in epilepsy, reactive astrocytes in the epileptic foci 

increase their processes to overlap with neighbors domains (Oberheim et al., 2008). Disorganized 

astrocytic domains may account for neuronal susceptibility. Interestingly, not in every cases reactive 

astrocytes overlap their domains, for instance in Alzheimer’s disease (Oberheim et al., 2008). 

 

Figure 3. Astrocytes have non-overlapping domains. (Upper 

panel) Green protoplasmic astrocyte only overlap with 4.6% 

of very fine processes volume (yellow part) with the red 

neighbor cells. (Lower panel) 3D reconstruction of the 

overlapping. Adpated from (Bushong et al., 2002). 
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I.c.iii.  Astrocytes are electrically non-excitable cells but communicate 
with calcium 

Unlike neurons, astrocytes can not be excitable electrically. It means that they do not convey messages 

through action potentials. Their membrane can depolarize (increase in the membrane potential) and 

hyperpolarize (decrease in the membrane potential) (Membrane potential are changes in the cation 

and anion composition between intra and extracellular spaces near the membrane and can be 

measured by electrodes) but never triggers high voltage pics and astrocytes are considered electrically 

passive cells (Verkhratsky and Nedergaard, 2018). However, astrocytes main way of communication 

is through calcium ions (Ca2+). The calcium is coming from outside the cell or from internal storage. 

For instance, neurotransmitters released in the synapse from presynaptic terminals bind receptors in 

the astrocyte process at the synaptic level. G-protein coupled receptors (GPCR) signaling will convert 

phosphatidylinositol bisphosphate (PIP2) into phosphatidylinositol triphosphate (PIP3) by 

phosphorylation. PIP3 can bind to its receptor (inositol triphosphate IP3R) at the endoplasmic 

reticulum (ER) surface. The activation of IP3R by PIP3 will release Ca2+ from the ER to the cytoplasm 

because the concentration of Ca2+ is very high in the ER compared to the intracellular space. The 

elevation of intracellular Ca2+ concentration will depolarize the cell (elevation of potential due to 

increase of positive charges) and trigger the release of gliotransmitters because of the calcium-

dependent fusion of vesicles (Fig. 4, left) (Agulhon et al., 2012). Gliotransmitters are 

neurotransmitters released from the astrocyte (developed later) that can influence the synaptic 

transmission. 

Another aspect of calcium communication is the neurovascular coupling. The neuronal metabolic 

support by astrocytes is regulated. The metabolic demand is directly coupled with the metabolite 

uptake of astrocytes from the blood stream. Calcium increase in the astrocyte processes after neuronal 

excitation will elevate in the whole astrocyte. In particular, it will reach the astrocyte endfeet where 

calcium increase will activate enzymes such as the phospholipase A (PLA) to contribute in the release 

of lipid derivatives as prostaglandins (PGE). PGE are vasodilators molecules activating the dilation 

of mural contractile cells and thus, of the blood vessels. An increased blood let the astrocyte to uptake 

more metabolites (Fig. 4, middle) (Petzold and Murthy, 2011).  

Therefore, astrocytes decode inputs from the environment with calcium to impact on synaptic 

plasticity and integrity (Guerra-Gomes et al., 2018) and to couple metabolic needs with blood flow 

regulation. 

Astrocytes, as bushy cells, have a complex network of ramification. Calcium transients activated by 

a synapse activation can be very localized in the arborization. Recently, microdomains have been 
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investigated as restricted spaces of functional units. These microdomains have been studied in the 

processes contacting the synapses (Lia et al., 2021) and the blood vessels (Lind et al., 2018). The 

relevance of calcium microdomains in astrocytes is still not understood but could participate in 

synaptic plasticity and cerebral blood flow regulation. 

Interestingly, Ca2+ signaling has been used to track activity of astrocytes with calcium indicators. For 

instance, the family of GCaMP proteins (the fusion of modified Green Fluorescent Protein (GFP) and 

Calmodulin (a calcium sensor protein)) belonging to the Genetically Encoded Calcium Indicators 

(GECI) has been widely used.  

I.c.iv.  Astrocytes form a connecting network through gap junctions 

Another feature of astrocytes is their connection through gap junction between each other forming a 

network of cells linked by their cytoplasm (Fig. 4, middle). Gap junctions form the channel linking 

2 connexons of 2 cells constituted by 6 connexins. Astrocytic connexins (Cx), mostly Cx43 and Cx30, 

form homotypic and heterotypic gap junction channels creating a bridge between cells allowing 

molecules <1 kiloDalton (kDa) to pass and to share metabolites and signaling molecules. This 

network allows a group of astrocytes, more or less restricted depending on the brain region, to be 

functionally coupled. The astrocyte connexins and network contribute to share nutrients (Fig. 4, 

middle, yellow lines), buffer potassium (Pannasch and Rouach, 2013) and regulate synaptic activity 

and plasticity (Han et al., 2014; Pannasch et al., 2014; Rouach et al., 2008). The aforementioned 

calcium can travel the network through gap junctions and create calcium waves (Fig. 4, middle, blue 

lines). Calcium waves are generated by the calcium and IP3 travel through gap junctions that trigger 

more calcium to be released in the next cell rather than the travel of calcium alone that would dilute 

in the network (Sanderson et al., 1994). Calcium waves in a given astrocyte network could help 

synchronize the neurons as connexins helps neuronal coordination (Chever et al., 2016). 

In addition, the astrocytic network allows the sharing of metabolites taken from the blood or from 

storage. For instance, astrocytes redistribute glucose (Fig. 4, middle, yellow lines) (180 Da) and 

lactate (90 Da) to nourish neurons and sustain neuronal activity (Giaume et al., 2010; Rouach et al., 

2008). However, a recent study showed that all astrocytes were associated with a blood vessel (Hösli 

et al., 2022), refuting the need of a metabolic coupling if every single astrocyte can take up 

metabolites from the blood. But this study shows that some astrocytes in the hippocampus were not 

associated to a blood vessel, this region being studied in the previous references. Finally, this study 

does not distinguish between arteriole, veins and capillaries that could contribute differently to 

metabolic support. 
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Another role for astrocyte coupling is potassium (K+) spatial buffering that will be further described 

in the KIR4.1 section. Because the concentration of potassium in astrocytes needs to be maintained 

low to be able to uptake K+ from the synaptic cleft, K+ is redistributed through the network to be 

diluted in the network volume and to be released at the blood vessel interface. 

Astrocytic hemichannels can create heterotypic gap junctions with hemichannels from 

oligodendrocytes. Cx43 and Cx30 from astrocyte can associate with Cx47 and Cx32 from 

oligodendrocytes respectively (Griemsmann et al., 2015). This coupling is believed to support axon 

metabolism via nutrients distribution.  

Astrocytic connexins have also hemichannel functions such as the release of ATP and glutamate to 

control neuronal activity (Sáez et al., 2003). Finally, Cx30 and Cx43 have non-channel functions that 

could mediate the synapse invasion (Clasadonte and Haydon, 2014; Pannasch et al., 2014; Ribot et 

al., 2021). 

I.d) Astrocyte’s polarity connects blood vessels and neurons 

I.d.i. Astrocytes display perivascular endfeet and regulate vascular 
functions  

Astrocytes contact blood vessels with a specialized structure, endfeet or perivascular astrocytic 

process (PvAP) (Fig. 4, right). Endfeet are large structures wrapping the blood vessels (Mathiisen et 

al., 2010). These structures are the least studied in astrocyte history. A recent study (Hösli et al., 2022) 

showed that all astrocytes connect at least 1 blood vessel with 3 blood vessels on average except in 

the hippocampus where vessel density is low and where some astrocytes (2,6%) do not contact vessels. 

Blood vessels are heterogeneous, from big arteries/veins with big PvAP to small capillaries with small 

PvAP (Wang et al., 2021). Astrocytes apposed to the vessel are called perivascular astrocytes, 

although this definition is not clear in the literature. 

Astrocyte endfeet are part of a specialized structure: the gliovascular unit (GVU) (Fig. 4, right) 

(sometimes called the neurovascular unit (NVU)). The gliovascular unit is composed, from the vessel 

lumen to the edge, by the endothelial cells (EC), an EC-secreted basal lamina (special extracellular 

matrix), mural cells (vascular smooth muscle cells for arterioles and venules, and pericytes for 

capillaries), an astrocyte-secreted basal lamina and finally PvAPs (Cohen-Salmon et al., 2020). In 

capillaries the 2 basal lamina from EC and astrocytes are fused and in big vessels, an extracellular 

space is filled with cerebrospinal fluid present between mural cells and astrocytes. 

Astrocytes-vascular functions are numerous and recapitulated in Cohen-Salmon et al. (Cohen-Salmon 

et al., 2020). The enrichment of a specific protein repertoire in the endfeet allows the astrocyte to 
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regulate vascular functions. For instance, astrocytes regulate the blood brain barrier (BBB) integrity. 

The BBB separates the blood from the brain parenchyma allowing only specific molecules to enter 

or to leave by selective transporters and pumps. For instance, a Glucose Transporter GLUT1 mediates 

glucose uptake in ECs and the Permeability GlycoProtein PgP is an efflux pump making hard the 

delivery of drugs in the CNS. The principal cell components of the BBB are endothelial cells (EC) 

tightened together by tight junctions composed by specific claudins, occludin and cadherins (Li et al., 

2022). This endothelial barrier is regulated by mural cells and astrocytes that secrete factors which 

regulate tight junction protein expression. In addition, astrocytes regulate the ion homeostasis at the 

GVU. The polarized expression of Aquaporin 4 (AQP4), a water channel, and the Inward-rectifying 

K+ channel KIR4.1 regulate water flow and potassium homeostasis (Fig. 4, right). The CSF flow in 

the brain allows clearance of waste such as protein aggregates (Aβ for instance) regulated by the 

AQP4-mediated water flow called the glymphatic system (Mestre et al., 2018). KIR4.1 mediates the 

efflux and circulation of potassium accumulated around synapses. Connexins, such as Connexin 30 

and 43 (Cx30 and Cx43) form gap junctions between astrocyte endfeet and are enriched at the 

vascular interface. Cx43 also regulates the brain immune quiescence, which is the ability for brain 

vessel to NOT recruit immune cells from the blood circulation. Deletion of Cx43 leads to aberrant 

immune recruitment in the brain parenchyma (Boulay et al., 2015a). Metabolites are taken up from 

the blood by specific transporters such as the glucose transporter GluT1 expressed in endothelial cells 

and astrocyte endfeet (Morgello et al., 1995). 

I.d.ii. Astrocytes regulate synaptic functions with perisynaptic processes 
(PAP) 

In the mouse, each astrocyte contacts up to 100,000 synapses and in the human, up to 2,000,000 

synapses (Oberheim et al., 2009) with very fine structures, compared to PvAPs, with a diameter of 

50 nm called Perisynaptic Astrocytic Processes (PAP) (Fig. 4, left). Given their size, they represent 

only 10% of the astrocyte volume but given their shape they count for 70-80% of the astrocyte surface 

area (Semyanov and Verkhratsky, 2021). 

PAPs are dynamic structures. In physiology, in the hypothalamus, PAPs can be inside the synaptic 

cleft, avoiding 2 neurons to communicate. During parturition and lactation, PAPs retract from the 

cleft and allow the synaptic transmission to stimulate the production of milk for instance (Oliet et al., 

2001, 2004). It has been shown in slices and in vivo that PAP motility depends on the synaptic activity 

(Bernardinelli et al., 2014a, 2014b). Ezrin, a protein linking the plasma membrane and the actin cortex, 

is highly expressed in the PAPs and was suspected to be involved in the PAP motility (Fig. 4, left) 

(Derouiche and Geiger, 2019). Interestingly, Ezrin mRNA is more abundant in the PAPs than the 

astrocyte soma and is locally translated at this interface supporting a functional role of ezrin in the 
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PAP dynamism regulation (Mazaré et al., 2020a). Another protein involved in PAP morphology is 

Cx30. Cx30 knock out mice display a disruption of the synapse coverage with an invasion of the 

synapse and a decrease in the synaptic strength (Pannasch et al., 2014). 

A specific pool of enriched proteins defines PAP identity and regulate neuronal functions. Astrocytes 

regulate synaptic transmission, which is related to ion homeostasis as well. Apart from Cx30 

described above, KIR4.1 is involved in the synaptic transmission regulation. As neurons rely on K+ 

to generate action potentials, buffering extracellular K+ at the synaptic level is critical to avoid 

undesired neuronal firing (we refer as neuronal firing when neurons burst) and to be able to 

communicate properly. Astrocytes regulate neuronal transmission also by releasing gliotransmitters 

(Fig. 4, left). Upon synaptic transmission, neurotransmitters secreted by the presynapse (the axon 

terminal) can be fixed by receptors in PAPs. Calcium elevation after the signaling cascade triggered 

by the receptor activation will cause gliotransmitter release from the PAP such as glutamate, ATP 

(excitatory transmitters), GABA and Glycine (inhibitory transmitters) (Agulhon et al., 2012; Araque 

et al., 2014). It has been proposed that D-serine, the chiral opposite of L-serine, can be released from 

PAPs to bind the glycine-binding site of NMDA receptors at postsynaptic dendrites and could be a 

mandatory co-agonist for NMDA dependent transmission. However, D-serine release from astrocytes 

has been the subject of controversies (astroglial D-serine (Papouin et al., 2017) or neuronal D-serine 

(Wolosker et al., 2017)) and teams have proposed that astrocytes released L-serine to neurons to 

convert it in D-serine (Martineau et al., 2014).  

Astrocytes support neurons in their metabolism and matches their metabolic demand by sensing the 

synaptic activity. Glutamate release in the synaptic cleft can bind glutamate receptors on the PAP and 

provoke glucose uptake from the blood by the neurovascular coupling seen above. The extracellular 

glucose (can be from glycogen storage as well) is converted in lactate through glycolysis in astrocytes. 

Lactate is then shuttled to neurons via Monocarboxylate Transporter (MCT) and converted into 

energy via the oxidative phosphorylation as neurons have high demands to sustain their activity (Fig. 

4, left) (Bélanger et al., 2011). The astrocyte to neuron lactate transport is necessary for long term 

synaptic plasticity and memory formation (Suzuki et al., 2011). This is the lactate shuttle hypothesis 

(Pellerin and Magistretti, 1994) still debated today (Bonvento et al., 2005) especially because neurons 

can also use glucose in an activity dependent manner and lactate enzyme are expressed in both cells 

(Bak and Walls, 2018; Ivanov et al., 2014).  

Finally, astrocytes are capable of recycling neurotransmitters (Fig. 4, left). For instance, glutamate is 

taken up from the synaptic cleft by glutamate transporters such as GLT1 and GLAST. In the cell, 

glutamate is converted into glutamine by the glutamine synthetase (GS). Glutamine is then exported 

to neurons to replenish their storage in glutamate by the glutaminase enzyme (Schousboe et al., 2014). 
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Interestingly, GS is an astrocyte specific marker supporting the fact that neurons are incapable of 

transforming glutamate into glutamine (Anlauf and Derouiche, 2013). However, they can reuptake 

glutamate directly from the cleft as well.  

Other important roles of PAPs during the brain development such as synaptogenesis will not be 

discussed here. 
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Figure 4. Astrocyte functions at the synapse, at the blood vessels and at the network level. (Left) 

Astrocytes contact synapses between 2 neurons with their perisynaptic processes (PAPs). At this level, 

astrocytes regulate neuronal transmission by releasing gliotransmitters after receptor-mediated 

Ca2+ elevation, they recycle neurotransmitters with GLT1 transporter, they regulate potassium 

homeostasis with KIR4.1 channel and participate in metabolism with lactate shuttling. PAPs are also 

motile with CX30 and ezrin proteins. (Middle) Astrocyte network mediated by connexins-forming gap 

junctions distribute metabolites such as glucose uptaken from the blood stream, and Ca2+ increased 

after neuronal activity. Ca2+ participates in the neurovascular coupling with dilation of blood vessels 

to increase nutrients uptake. (Right) Astrocytes contact blood vessels with perivascular processes 

(PvAPs) also called endfeet. PvAPs are integrated in the gliovascular unit with mural cells (Pericytes 

here), endothelial cells and basal lamina. At this level, nutrients such as glucose are transported from 

the blood to the astrocyte, potassium and water homeostasis occur with the expression of KIR4.1 and 

AQP4 channels and calcium regulates neurovascular coupling. 

I.e) Astrocytes express a critical protein for brain homeostasis: 
KIR4.1 

I.e.i. KIR4.1 is a major potassium channel in astrocytes 

The inwardly-rectifying K+ channel KIR4.1 is only expressed in glia in the central nervous system. 

KIR4.1 is a homo- or heteromeric tetramer with 4 KIR4.1 or 2 KIR4.1 and 2 KIR5.1/KIR2.1 subunits 

(Fig. 5, left) (Ohno et al., 2018). KIR4.1 has affinity for K+. It is mostly expressed in astrocytes in 

the CNS with strong expression in the PAPs and in PvAPs as described above. However, it is also 

expressed in oligodendrocyte precursor cells (OPC), Müller cells (a type of astrocyte in the retina) 

and oligodendrocytes. The kcnj10 gene coding for KIR4.1 is two times more expressed in astrocytes 

than OPC or oligodendrocytes (Zhang et al., 2014) in the cerebral cortex and is largely believed to be 

almost astrocytic-specific in the hippocampus . 

Electrophysiological properties of KIR4.1 gives resting membrane potential to astrocytes. Glia are 

highly permeable to K+ and have a very negative resting membrane potential of -85 mV. The 

membrane potential of a cell is the electrical charge difference between the outside and the inside of 

a biological lipid membrane. It is due to the difference of distribution of cations and anions on both 

sides of the membrane. This distribution is mediated by channels, pumps and transporters that can be 

passive and active (against the passive flow). It depends also on the charge of the ion: cations will be 

attracted to negative intracellular compartment and anion towards positive compartments. Ions 

movements are described by the Nernst equation taking into account the ion charge and its 
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extracellular and intracellular concentrations. In the case of K+, its equilibrium potential of -90 mV 

is very close from the astrocyte resting membrane potential highlighting that astrocytes are permeable 

to K+ with the predominance of KIR4.1 channels. Intracellular concentrations of potassium are very 

high (150 mM) and let the extracellular space almost empty (4 mM). During a neuronal excitation in 

the form of action potential, neurons release a high concentration of K+. For another action potential 

to happen, K+ must be removed to keep the extracellular concentration low. KIR4.1 is here to take 

K+ into the astrocytes. Pharmacological blockade of KIR4.1 has been traditionally performed by 

application of Barium Ba2+ (Nwaobi et al., 2016) although it blocks all the Kir family including some 

in the neurons. Recently, a more specific KIR4.1 blocker has been developed : VU0134992 (Kharade 

et al., 2018).  

 

I.e.ii. KIR4.1 regulates potassium homeostasis in PAPs and PvAPs 

KIR4.1 is highly expressed in PAPs and PvAPs. K+ is taken up by PAPs from the synaptic cleft and 

redistributed in the astrocyte network. As numerous astrocytes are coupled by gap junctions, the local 

increase of intracellular K+ will diffuse in the network (Fig. 5, right). This phenomenon is called the 

K+ spatial buffering or siphoning and helps the PAPs to have a steady K+ concentration to be able to 

take K+ again (Kinboshi et al., 2020; Nwaobi et al., 2016; Ohno et al., 2021). Another feature of the 

spatial buffering comes from the KIR4.1 expression in the PvAPs. The K+ concentration around 

blood vessels is low, and KIR4.1 at this interface has an outward flow. Therefore, the entry of 

potassium in the astrocytes can be directly released in the perivascular space (Higashi et al., 2001; 

KOFUJI and NEWMAN, 2004).  

In Müller cells in the retina, KIR4.1 co-immunoprecipitates with AQP4 (Connors and Kofuji, 2006). 

Ion homeostasis is tightly linked with water flow in the cell. Therefore it has been proposed that 

KIR4.1 and AQP4 might work together as the deficiency in KIR4.1 causes retina swelling (Pannicke 

et al., 2004). However, this might be unique to the retina as hippocampal KIR4.1 current is not 

perturbed in the AQP4 KO astrocytes (Nwaobi et al., 2016; Zhang and Verkman, 2008). KIR4.1 is 

also associated with GLT1-mediated glutamate uptake. Indeed, GLT1 relies on anti-transportation of 

Na+ permitted by the low potential of astrocytes mediated by KIR4.1. Hence, the loss of KIR4.1 leads 

to glutamate accumulation in the synapses and causes neurological diseases as described below. 

I.e.iii.  KIR4.1 is perturbed in several neurological diseases 

KIR4.1 is altered in a large amount of brain diseases from neurodevelopmental, traumas and 

neurodegenerative diseases (Fig. 5, right). KIR4.1 knock-out mouse model provokes ataxia and 

epilepsy and is lethal at post-natal day 24 (P24) (Djukic et al., 2007). Epilepsy is a disease caused by 
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the synchronized excitation or firing of a significant number of neurons included in a network. If 

targeted neurons are in the motor cortex, body tremor and movement are seen in the mouse or the 

patient. If elsewhere it can be seen as absence. KIR4.1 and kcnj10 gene expression have been studied 

in epilepsy in mice and patients where it was reduced and the reduction was proportional to the 

symptom severity (Kinboshi et al., 2020; Nwaobi et al., 2016). KIR4.1 decrease implies a reduction 

of K+ buffering. As the spatial K+ buffering is perturbed, GLT1 transporters do not work properly 

due to high extracellular K+ and the impossibility for Na+ to be released. Therefore, glutamate release 

after synaptic transmission is not uptaken by astrocytes and accumulates in the synaptic cleft. 

Accumulation of glutamate can fix neurotransmitter receptors longer and can stimulate the post 

synaptic compartment a longer time. The consequence is a constant neuronal firing. 

KIR4.1 has also been involved in the pathogenesis of Alzheimer’s disease (AD). AD is a 

neurodegenerative disease characterized by accumulative deposition of amyloid beta (Aβ) proteins 

forming plaques in the extracellular space and the formation of Tau protein tangles inside neurons. 

Aβ and tau lead to BBB and neurovascular disruptions, astrocytes and microglia reactivity, and 

neuronal death. These defects result in cognitive decline, dementia and eventually death. No curative 

treatment is available as the understanding of the disease is still limited. A KIR4.1 decrease by 60 to 

70% in post mortem human tissues has been described (Wilcock et al., 2009). This decrease is 

correlated with plaques and symptoms apparition. Even though it could only be a consequence of the 

neurovascular unit defect, loss of KIR4.1 could speed up the disease. Interestingly, AD is an increased 

factor to develop epilepsy and could correspond to the progressive decrease of KIR4.1. A recent study 

investigated the KIR4.1 expression by immunofluorescence in AD mouse model. In this model, 

KIR4.1 expression was increased by a maximum of 60% in astrocytes close to Aβ plaques compared 

to non-plaques-associated astrocytes disputing previous statements (Huffels et al., 2021).  

Accumulative evidence have shown a KIR4.1 decrease in neurodevelopmental, traumas and 

neurodegenerative diseases. Therapeutical investigations aim therefore to overexpress KIR4.1 in 

those diseases (Ohno, 2018).  

Physiological or pathological increase of KIR4.1 expression remain rare. One pathology in which 

KIR4.1 is overexpressed is depression (Fig. 5, right). Depression is a mental illness or mood disorder 

characterized by a loss of interest in activity and increased risk of suicidal behavior. In a congenic rat 

model of depression, KIR4.1 levels were increased by 50% in the lateral habenula (Cui et al., 2018), 

a small deep brain structure involved in nociception (sensation of pain), sleep-wake cycles and mood. 

Interestingly, depressive-like behavior could be repeated in overexpressing astrocytic KIR4.1 in the 

mouse habenula. Finally, silencing KIR4.1 in depressive rats rescued the depressive phenotype. In 

patients, KIR4.1 increase in post mortem tissues has been correlated with depressive disorders (Della 
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Vecchia et al., 2021; Xiong et al., 2019). Antidepressant drugs such as tricyclic antidepressants (TCA) 

and selective serotonin reuptake inhibitors (SSRI) block KIR4.1 channel to try to lower potassium 

buffering. Interestingly, antidepressants have seizure side effects and anti-epileptic drugs have 

depressive-like impacts highlighting the opposite hallmarks between epilepsy with KIR4.1 decrease 

and depression with KIR4.1 increase.  

 

Figure 5. Astrocytic potassium channel KIR4.1 has crucial roles in the brain. (Left) KIR4.1 

structure in homotetramere (4 KIR4.1) or heterotetramere (2 KIR4.1 and 2 KIR5.1). This tetramere 

is selective for the potassium ion K+. Adapted from (Ohno et al., 2021). (Right) Potassium released 

in the synaptic cleft after neuronal excitation is uptaken by PAPs. Spatial buffering of K+ is mediated 

by low K+ concentration near blood vessels and diffusion through the astrocytic network. When 

KIR4.1 is downregulated, K+ remains in the synaptic cleft leading to neuronal bursts and is 

encountered in epilepsy. When KIR4.1 is upregulated, K+ buffering is stronger and leads to post-

synaptic regime modifications encountered in depression. 

I.f) Other brain cellular interactions 

Astrocytes do not connect only with blood vessels and synapses. Astrocytes interact with all other 

brain cells (Yu and Khakh, 2022). K+ buffering by astrocytic processes around neurons cell body is 

also crucial and ion homeostasis by astrocytes is vital for the saltatory conduction on noeud de 

Ranvier to occur properly. 
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Astrocytes contact oligodendrocytes by gap junctions as connexons of both cells can interact. This 

allows metabolic support of oligodendrocytes but also to axons wrapped by oligodendrocytes 

processes (Nagy et al., 2003). Astrocytes – microglia interactions have been demonstrated in 

development in their role in synaptogenesis. Interleukin-33 secreted by astrocytes, binds to receptors 

in microglia to promote synapse engulfment and phagocytosis (Vainchtein et al., 2018). 

At the vascular levels, neurons also contact blood vessels to take up metabolites and control 

neurovascular coupling (Cauli and Hamel, 2010). Microglia also contact the vessels and can regulate 

the blood flow (Bisht et al., 2021). 

Finally, microglia can contact synapses and noeud de ranvier to sense neuronal activity and 

controlling remyelination (Ronzano et al., 2021). 

Generally, few labs investigate the communication between the brain cells. Apart from the astrocyte-

synapse and the oligodendrocyte-axon interfaces, most studies on the CNS focus on one cell type. It 

is time for neuron-, astrocyte-, microglia- and oligodendrocyte-centered lab to consider the other cells 

and the blood vessels especially in diseases that usually affect the whole system and not just one cell. 

Non-cellular elements are also of great interest such as the extracellular matrices (basal lamina around 

vessels, perineuronal nets …) and the glymphatic system. 

  

PART I in summary: 

 Astrocytes are glial cells in the central nervous system, contacting neurons, microglia and 

oligodendrocytes, and highlighted only recently 

 Astrocytes have long processes shaped in a bushy structure integrated in non-overlapping 

domains 

 Astrocytes are connected by gap junctions in a network to distribute calcium influx, 

nutrients and K+ 

 Astrocytes contact blood vessels with perivascular astrocytic processes (PvAP) to regulate 

the blood-brain-barrier integrity, ion homeostasis, neurovascular coupling and immune 

quiescence 

 Astrocytes contact synapses with perisynaptic astrocytic processes (PAP) to regulate 

synaptic transmission, ion homeostasis, neurotransmitter recycling and neuronal 

metabolism 

 KIR4.1, an astrocytic potassium channel, regulates potassium buffering at the synapse and 

is involved in epilepsy and depression 
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II. Local translation is a mechanism for cell polarity 
Local translation is the synthesis of proteins occurring at distance from the cell body or soma. The 

central dogma of protein synthesis describes the translation taking place in the soma of cells and the 

newly synthesized proteins are transported to their final destination. However, evidence have 

highlighted translation in distal part of the cell especially in ramified and complex cells such as 

neurons and astrocytes. Moreover, researchers were puzzled on how fast adaptative responses to 

environmental cues can be processed by proteins travelling long distances in the cell (see Box 1). 

We have seen in the previous section that astrocytes, and ramified cells in general, are molecularly 

polarized at their interfaces by enrichment of specific pools of proteins. The local protein synthesis is 

a mechanism to restrain the expression of some proteins that have a dedicated role at a given place. 

II.a) Local translation studies focused on neurons 

Local translation has been extensively studied in the CNS in neurons for 60 years. However, local 

translation in astrocytes has only been described for the first time in 2017 (Boulay et al., 2017) ... 

II.a.i. First insights 

In 1960, Edward Koenig and George B. Koelle investigated the regeneration of the 

acetylcholinesterase activity in distal regions of the cranial nerves (nerves are axon bundles) of cats 

after its irreversible inactivation (Koenig and Koelle, 1960). They showed that this regeneration was 

occurring faster than the time for the enzyme to be transported from the soma to the nerve. Thus, they 

hypothesized that the translation of this enzyme occurs distally in the nerves.  

The giant squid has been a study model in neuroscience for the big size of its axons (~1 mm in 

diameter), 1000 times bigger than a typical axon in the mouse (~1 µm in diameter) making it easier 

to study especially in electrophysiology. Scientists have demonstrated that isolated giant squid axons 

from their soma can incorporate radiolabeled amino acids (Giuditta et al., 1968). This incorporation 

could be blocked by translation inhibitors. 

In 1996, Hyejin Kang and Erin M. Schuman investigated local protein synthesis in rat hippocampal 

slices in the context of synaptic plasticity (Synaptic plasticity is the potentiation or depression of 

synapses according to their activity) (Kang and Schuman, 1996). Brain Derived Neurotrophic Factor 

(BDNF) – induced plasticity was significantly reduced when translation inhibitors were applied 

(anisomycin and cyclohexymide) in lesioned slices where pre or post-synaptic or both compartments 

were isolated. They concluded that local protein synthesis was required for synaptic plasticity. 
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Since then, more and more studies on local translation in axons, dendrites and growth cone in various 

contexts have been conducted. 

II.a.ii.  RNA, ribosomes and maturation organelles are templates for local 
translation 

Early on, evidence have shown the presence of RNA distally in neuronal processes (Fig. 6). For 

instance in 1988, the authors have shown the Map2 

RNA coding for a Microtubule-Associated Protein 

MAP2 in the dendrites of neurons in the developing rat 

cortex by in situ hybridization (Garner et al., 1988). 

Since then, the list of RNA transported in distal 

processes has grown by techniques such as RNA 

sequencing. For instance, the transcriptome of the 

neuropil in the hippocampus has been studied. The 

hippocampus, a brain region involved in memory and 

spatial navigation, has a stereotyped structure where 

neurons cell bodies are all stacked in a fine layer and 

their processes are sent in the neuropil where no 

neuronal cell bodies can be found (except for 

interneurons). The dissection of the neuropil and its 

transcriptomic analysis allowed the authors to find 

2,550 mRNAs enriched in neuronal processes (Cajigas 

et al., 2012). The neuropil contains also glial cells and 

blood vessels and interneurons, therefore they filtered 

out these cell’s-enriched genes by data mining of other 

datasets. More recently, the team of Erin Schuman 

identified the transcriptome of a subset of synapses: 

excitatory pre-synaptic compartment. They used a 

mouse with a fluorescent tag on vesicular Glutamate 

Transporter 1 (vGLUT1). VGLUT1 is a glutamate 

transporter responsible for the uptake of the glutamate 

into vesicles at the presynaptic terminal. The sorting of 

these terminals after synaptosome preparation by 

Fluorescence Activated Synaptosome Sorting (FASS), a derivative of FACS but for smaller particles, 

Box 1: Matters of timing! 
 

In mammalian cells, the average 

molecular motor speed is 1 µm/s. Lets 

take an extrinsic cue requiring new 

proteins at a distance of 1 mm from the 

cell body (some neuronal axons). If 

translation would only occur in the 

soma, a retrograde transport would 

take ~16 min. A transcription factor 

would activate the gene transcription 

taking another 10 min at a rate of 10-

100 nucleotide/s. Translation average 

rate is 10 amino-acids per seconds, 

thus ~1 min for its protein synthesis. 

Then the newly synthetized protein 

has to go back to the distal location by 

anterograde transport, another 16 min. 

For the first protein to arrive, ~43 

minutes had passed since the 

trigger … 

Translation is still a limited factor in 

the local translation triggering. 

Therefore, it only affects “long-term” 

protein homeostasis rather than an 

immediate regulator acting within the 

millisecond. 
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let them determine its transcriptome by sequencing (Hafner et al., 2019). A total of 468 transcripts 

was identified in vGLUT1+ pre-synaptic terminals. 

The presence of mRNA in distal processes is an important clue for local translation. Nonetheless, 

translational machinery needs to be present as well. 

Ribosomes and polyribosomes have been shown to be present in vivo by electron microscopy in the 

axon and presynaptic terminals (Shigeoka et al., 2016), in dendrites and spines (postsynaptic 

structures along dendrites in the shape of a mushroom) (Ostroff et al., 2017) and in growth cones by 

in vitro immunofluorescence (Fig. 6) (Koppers et al., 2019). 

Proteins have to undergo post-translational modifications for proper function, membrane insertion 

and secretion for instance. These modifications are brought by the endoplasmic reticulum (ER) and 

Golgi apparatus. It was a puzzling question for the local translation legitimacy as neuronal process 

are very fine and do not seem to support large structure as Golgi apparatus. However ER and Golgi 

components called Golgi outposts (not full apparatus) were observed in culture in dendrites (Horton 

and Ehlers, 2003) and axons (Fig. 6) (Merianda et al., 2009). Other studies also found that membrane 

proteins can bypass the Golgi by glycosylation processes (González et al., 2018; Hanus et al., 2016). 

 

Figure 6. RNAs are transported and locally translated in neurons. RNAs, exported from the nucleus 

to the cytosplam, are translated by ribosomes. RNAs can be transported in dendrites, axon and 

synapses of neurons to be locally translated. Post-translational modifications are mediated by golgi 

vesicles and outposts, and endoplasmic reticulum located in neuronal processes. 

II.a.iii. Local translation participates in the growth cone guidance 

During development, axons of neurons are extending to reach their target. They sense environmental 

cues to guide through the brain and sometimes reach destination far from the cell body. The tip of the 
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axon, called the growth cone, extends protrusions called lamelipodes and filopodia to sense the 

different attractive or repelling molecules to guide the axon. 

The Christine E. Holt’s team, among others, showed that local translation is required for the axonal 

growth cone guidance of retinal neurons from the frog Xenopus laevis (Fig. 7, top left). The guidance 

cue, Netrin 1, binds to DCC receptors at the growth cone membrane. Signaling cascade will activate 

the kinase Src that will phosphorylate the RNA binding protein Zipcode Binding Protein 1 (ZBP1). 

Phosphorylated ZBP1 releases its β-actin mRNA into the ribosome to be translated (Campbell and 

Holt, 2001; Jung et al., 2012; Leung et al., 2006; Lin and Holt, 2007). β-actin local translation at one 

side of the growth cone will increase cytoskeleton polymerization only at this sub-location and will 

direct the protrusions toward the Netrin-1 cue. This regulation of translation on the β-actin mRNA 

involves its 3’UTR (Leung et al., 2006, 2018). 

On the contrary, repelling cues provoke the actin cytoskeleton to collapse. Semaphorin3A (Sema3A) 

is secreted and can bind the neuropilin1 (Nrp1) on growth cones (Wu et al., 2005). The resulting 

signaling pathway leads to local translation of RhoA GTPase involved in the actin cytoskeleton 

depolymerization. The actin collapses and prevents the protrusions to continue in the Semaphorin3A 

gradient direction (Campbell et al., 2001; Jung et al., 2012; Lin and Holt, 2007). 

II.a.iv. Local translation participates in synaptic plasticity 

Synaptic plasticity is a fundamental process involved in memory formation for instance. Plasticity 

can either strengthen or weaken given synapses depending on the activity of their inputs. For instance, 

higher activity will strengthen the synapse in the long time and is part of the Long Term Potentiation 

(LTP). On the contrary, Long Term Depression (LTD) is the decrease of synaptic activity. Plasticity 

involves the recruitment or recycling of neurotransmitter receptors present at the membrane surface. 

It has been shown that local translation participates in the long-term synaptic plasticity (contrary to 

short term) by regulating receptors on site (Fig. 7, top right). Application of drugs can elicit LTD in 

the hippocampus of acute brain slices. When the neuronal somas are disconnected from their dendrites 

by micro dissecting the CA1 region of the hippocampus, the LTD in the dendrite region can still be 

elicited. This plasticity was blocked by translation inhibitors (Huber et al., 2000). A yet unknown 

protein thus mediates the level of neurotransmitter receptor internalization. Activity-dependent 

activation of receptors lead to signaling cascades affecting the level of activated initiation factors 

crucial for translation. It was shown that the activation of GABAergic neurons (inhibitory neurons) 

in the hippocampus triggers local translation in pre-synaptic terminals. When in contact with 

translational inhibitors, the LTD-induction was abolished and was dependent on the mTOR pathway 

activating initiation translation factors (Younts et al., 2016).  
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A recent study, (Sun et al., 2021) investigated the levels of translation in synapses of cultured neurons 

in basal conditions as well as after global or more local plastic conditions. After synaptic protocols 

there was an increase in the newly synthetized protein in synapses. More impressive, they were able 

to detect local translation events in single spines of dendrites by eliciting their activity by local 

calcium uncaging. 

RNA translation is often described as multiple ribosomes translating the same RNA in single file 

called polyribosomes or polysomes. However, the team of Erin Schuman investigated the relevance 

of monosome translation in neuronal processes (Biever et al., 2020). Using ribosome fractionation (a 

method based on separation between small and large subunits, monosomes and polysomes by their 

sedimentation coefficient), they showed that monosomes were in fact more abundant in the neuronal 

processes than polysomes. They also demonstrated the translational capacity of monosomes and their 

translatome (Fig. 7, top right). Among monosome-enriched transcripts (compared to polysome), 

several neurotransmitter receptors were identified suggesting a role for monosomes in synaptic 

plasticity. 

II.b) Local translation in radial glia regulates cortical 
development 

Radial glia cells are progenitor cells in the brain 

development giving rise to neurons first then to the glial 

lineage of astrocytes and oligodendrocytes. The radial 

glia are scaffold elements for the neurons that use them 

to migrate along their processes to grow the brain. 

Radial glia have a process attached to the apical side 

toward ventricles of the brain and another longer basal 

process connected to the pial surface of the brain with 

an endfoot. 

Pilaz and colleagues exploited the polarity of the radial 

glia to investigate local translation in the basal endfoot 

(Fig. 7, bottom left) (Pilaz et al., 2016). It is one of the 

first evidence for local translation in glia. In their 

experiments, the authors isolated the radial glia endfeet 

by peeling off the pial surface. With irreversible 

photoswitchable fluorophores from green to red, 

Dendra2, they showed the recovery of the green 

Box 2: Advantages of local 
translation 

 
Local translation restricts protein 

expression in space and time.  

Proteins are sometimes needed during 

a limited amount of time in a particular 

location. Transport of somatic-

encoded proteins would not allow time 

and space constraints. Furthermore, 

proteins that are involved in organelle 

degradation for instance would be 

harmful if expressed in the whole cell.

 

Local translation costs less energy 

compared to the ATP-demanding 

transport with molecular motors. In 

addition, RNA can be translated 

multiple times. Finally, replacement of 

old proteins is easier. 
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fluorescence of a Dendra2 construct fused to a 3’UTR of a gene, Ccnd2, showed to be transported 

specifically in the radial glia endfoot (Pilaz et al., 2016). It shows that specific mRNAs are transported 

in the processes and their local translation occurs in the radial glia endfoot. 

The RNA-binding protein (RBP) Fragile Mental Retardation Protein (FMRP) was shown to be 

present in endfeet and to bind to a specific local RNA repertoire. Interestingly, the knock-out (KO) of 

FMRP in the brain leads to defect in the active transport of some RNAs at the basal interface. It points 

out a mechanism for the regulation of local translation by FMRP, controlling the transport of RNA in 

processes in radial glia. 

In a preprint (Pilaz et al., 2020), the same team investigated the consequences of local translation in 

endfoot on the cortical development. They showed that the Rho-GTPase ARHGAP11A was locally 

translated in endfeet and its disruption lead to radial glia morphology defect and lamination (neuronal 

layers) perturbations. This disruption was rescued by the arghap11a mRNA on the contrary to a 

construct lacking the 5’UTR restricted to the cell body. It means that the local translation of 

ARHGAP11A in the endfoot regulates cortical development. 

II.c) Myelin coding RNA are transported in oligodendrocyte 
sheaths 

Oligodendrocytes extend long processes toward neuronal axons to wrap them with insulating myelin 

sheaths. The myelin is composed of lipids and proteins and participates in the saltatory conduction of 

the action potentials to make nervous transmission faster. Myelin contains proteins as the Myelin 

Basic Protein (MBP), the Myelin Oligodendrocyte Glycoprotein (MOG) and the ProteoLipid Protein 

(PLP).  

The myelin proteins are enriched in the sheaths. Interestingly, mbp RNA has been shown to be actively 

transported and locally translated in the sheaths (Fig. 7, bottom right) (Meservey et al., 2021; Müller 

et al., 2013). Mbp RNA is transported along the microtubules toward the myelin sheath (anterograde 

transport) thanks to molecular motors Kinesins and Dyneins (retrograde transport) (Herbert et al., 

2017). Once at the sheath, local translation of MBP depends on the axonal activity during myelin 

formation and maintenance (Müller et al., 2013; Wake et al., 2011). Nervous transmission in the axon 

releases glutamate sensed by the oligodendrocyte. Signaling cascade will activate the Fyn kinase to 

phosphorylate RBP associated with the mbp RNA such as heterogeneous ribonucleoparticles (hnRNP) 

that were repressing their translation. The phosphorylation leads to a de-repression and the local 

translation of MBP (Müller et al., 2013; Wake et al., 2011). The activity dependent local translation 

of MBP is one of the few examples in oligodendrocytes that maintains the polarity of the cell in an 
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active manner. Recently, it was shown that the 3’UTR of the mbp RNA regulates its transport and 

active translation and was the target of the RBP (Torvund-Jensen et al., 2018). 

Other myelin protein-coding mRNA have been shown to be transported in the myelin sheaths such as 

the mog mRNA. 

 

Figure 7. Local translation in neurons, radial glia and oligodendrocytes. (Top left) Netrin-1 source 

binds to DCC receptor activating Src kinase to phosphorylate the RBP ZBP1 (p-ZBP1) releasing its 

mRNA for β-actin local translation. The growth cone is guided toward Netrin-1. On the contrary, 

Semaphorin3A binds to NRP1 triggering local translation of RhoA-GTPase to depolymerize β-actin 

and avoiding Sema3A source. (Top right) Local translation occurs in pre- and post-synaptic terminals 

by polysomes and monosomes. Neuronal transmission triggers local translation to induce 

neurotransmitter recruitment at the synaptic cleft or receptor internalization both in synaptic 

plasticity. (Bottom left) FMRP regulates mRNA transport in basal processes of radial glia where 

local translation occurs. For instance, local translation in radial glia endfeet of Arghap11a regulates 

cortical development. (Bottom right) Myelin-coding mRNA are transported to myelin sheaths in 

oligodendrocytes. Neuronal activity is sensed by this cell and triggers phosphorylation of RBP by Fyn 

kinase to induce local translation of MBP. 
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II.d) Local translation occurs in perisynaptic and perivascular 
processes of astrocytes 

The enrichment of proteins in the astrocyte interfaces (seen above) is accompanied by an enrichment 

of a pool of mRNAs enriched and locally translated in the processes. Even if the transport of an 

mRNA does not involve translation necessarily, its local protein synthesis induces the molecular 

polarity of the astrocyte.  

II.d.i. Local translation sets molecular heterogeneity in Perivascular 
Astrocytic Processes (PvAP) 

One of the first example of local translation in astrocytes was shown by the lab in the PvAP and only 

very recently (Boulay et al., 2017).  

First, the authors described the pool of RNAs present in endfeet. Microvessel purification technique 

allows the mechanical isolation of the cerebral vasculature along with the endfeet detached from their 

soma due its associated with extracellular matrix (Boulay et al., 2015b). Enzyme digestion of the 

basal lamina detaches the endfeet from the vessels. The differential transcriptome analysis of both 

digested and non-digested vessels allowed to identify for the first time the pool of RNA transported 

in endfeet. Fluorescence In Situ Hybridization (FISH) confirmed the presence of a subset of genes 

such as Aqp4 mRNA coding for the water channel AQP4. AQP4, described above, is part of the 

enriched molecule in PvAP to regulate water homeostasis. 

To know if the mRNAs were locally translated, the authors performed astrocytic polyribosomes 

RNAs immunoprecipitation from isolated astrocyte endfeet. They used a transgenic mouse model, 

Aldh1l1-Rpl10a:eGFP (BacTRAP mouse) in which GFP is fused to a ribosomal protein from the 60S 

subunit, RPL10A. Translating Ribosome Affinity Purification (TRAP) (Heiman et al., 2014) of 

endfeet isolation from this mouse was performed with a GFP immunoprecipitation and the RNAs 

were identified by RNA sequencing. Among locally translated RNA in PvAP, called the endfeetome, 

we can find Aqp4 but also Kcnj10 coding for the potassium channel KIR4.1 described above, Gja1 

coding for CX43 involved in gap junction and immune quiescence and Agt coding for the 

angiotensinogen AGT involved in the neurovascular coupling (Fig. 8). Those proteins are essentials 

for vascular functions highlighting the role of local translation in the astrocyte polarity. Finally, the 

authors described global translational events in isolated PvAP with the staining of incorporated 

modified methionine. The newly synthetized proteins were not coming from the soma that is detached 

and had to come from local translation. 
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Interestingly, they described the presence of machineries for post-translational modifications in 

endfeet such as the endoplasmic reticulum and Golgi apparatus by electron microscopy although not 

in all structures for the Golgi (Fig. 8). They also described the vicinity of synapses at the PvAP level 

confronting the stereotyped image of the 2 astrocytic interfaces separated at 2 distinct places. 

II.d.ii. Local translation in Perisynaptic Astrocytic Processes (PAPs) 
is dynamic 

The same year as the PvAP local translation paper, the team of Joseph D. Dougherty described the 

local translatome (locally translated mRNAs) in PAPs (Sakers et al., 2017). They showed the presence 

of ribosomes and translational events in the peripheral astrocytic arborization suggesting local 

translation in PAPs (Fig. 8). Using the TRAP technique on the BacTRAP mouse shown previously 

on synaptosomes preparation, isolated PAPs along with the synapses, they identified PAP enriched 

locally translated transcripts such as Kcnj10 coding for KIR4.1 and Slc1a2 coding for GLT1. Globally, 

this local PAP translatome corresponds to neurotransmitter (GABA and Glutamate) and fatty acid 

metabolic process. This relates to the gliotransmission properties of PAPs and its new potential roles 

in lipid regulation. 

Interestingly, the authors investigated translational regulatory mechanisms of these genes. They 

showed that the PAP enriched RNAs have longer 3’ UnTranslated Regions (3’UTRs) than PAP-

depleted ones. Among this 3’UTRs, a significant part had a motif, Quaking Response Element (QRE), 

recognized by the RNA-binding protein Quaking (QKI). This motif was responsible for the 

localization and translation regulation of the RNAs. QKI was already shown to regulate Mbp mRNA 

localization in oligodendrocytes (Li et al., 2000). Furthermore, QKI7, a QKI isoform, has been shown 

to bind Gfap mRNA in primary human cortical astrocytes to promote QKI expression (Mazaré et al., 

2021; Radomska et al., 2013). More recently, the team of Joseph D. Dougherty identified the subset 

of astrocytic mRNAs bound to QKI6, another QKI isoform (Sakers et al., 2021). QKI6 deletion lead 

to a delay in maturation of some astrocyte genes. 

We recently addressed the question of the PAP translatome dynamism (Mazaré et al., 2020a). After 

describing RNAs, ribosomes, protein maturation machinery and translational events in astrocytes 

processes close to synapses, we first characterized the PAP translatome, we called the PAPome, in the 

dorsal hippocampus with a refined TRAP technique from the bacTRAP mice (Fig. 8). Interestingly, 

some mRNAs were more translated in PAPs than in the whole astrocyte and included metabolism or 

cell signaling for instance. For example, ferritin-subunit-encoding mRNAs as Ftl1 and Fth1 could 

highlight iron homeostasis in PAPs and cytoskeleton-encoding mRNAs as Ezrin could highlight a 

role for local translation in the PAP dynamics. Surprisingly, ribosome subunits-encoding mRNAs 
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were also highly enriched in the PAPome such as Rpl4 or Gnb2l1 coding for RACK1. As shown in 

the next section, ribosome subunits are assembled together with ribosomal RNA (rRNA) in the 

nucleus. However, recent data from neurons suggested that replacement of ribosomal subunits could 

occur when proteins are too old or it could be an adaptative ribosomal stoechiometry to translate 

subsets of genes (Fusco et al., 2021). Is the PAPome dynamic ? To tackle this question, we compared 

the PAP translatome between control and fear-conditioned mice. Fear-conditioning involves memory 

formation and the dorsal hippocampus structure. A mouse is placed in cued-environment and 

electrically shocked on the paws. 24 h later, the mouse is placed again in the same cued-environment 

and freezing time is measured. The mouse remembered being shocked in that cage and froze as a 

defense mechanism. Interestingly, a subset of mRNAs from the PAPome changed upon fear-

conditioning. For instance Gnb2l1 mRNA was less associated with polysomes in PAPs and was 

redistributed in larger process and soma and RACK1 (its encoding protein) level was decreased. This 

led us to hypothesize that local translation in PAPs is dynamic and could be involved in learning and 

memory formation. Astrocyte’s functional polarity is sustained by this local translation. 

Dougherty’s lab investigated the activity dependent translation in the whole astrocyte (preprint 

Sapkota et al., 2020). 10 min after the injection of a pro-epileptic drug, pentylenetetrazol (PTZ) 

(which induce a high neuronal activity), in the bacTRAP mouse, they performed TRAP and described 

a translational profile change compared to saline-injected mice. Ex vivo, they stimulated neurons with 

Brain Derived Neurotrophic Factor (BDNF) application on slices and observed an increase in the 

global translation events in astrocytes. 

 

Figure 8. Local translation occurs in PvAPs and in PAPs. mRNAs, polysomes and endoplasmic 

reticulum are found in PvAP and PAPs. Full Golgi apparatus can be present in few PvAP whereas 

only Golgi outposts are present in PAPs. Local translation occurs in both compartments on specific 

subsets of mRNAs. 
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II.e) Local translation in microglia remains poorly understood 

As in all ramified cells, local translation should occur in microglia but has never been investigated 

yet. However, few studies brought hints toward that direction.  

The lab of Joseph D. Dougherty investigated the local translation characteristics of microglia and its 

functional relevance with the same line as the previous study in PAPs (preprint Vasek et al., 2021). 

They first showed that ribosomes and translational events occurred in microglial processes contacting 

the synapses. Next, using an inducible bacTRAP mouse specific of microglia (CX3CR1-creERT2:lxl-

RPL10a-GFP expressing GFP fused to RPL10a in microglia upon Cre recombinase activation by 

tamoxifen injection) they were able to compare the translatome of whole microglia versus peripheral 

microglia processes (PeMP). Among the PeMP enriched RNAs, some were involved in microglia 

crucial functions as immune response, cell motility, chemotaxis, phagocytosis and synapse pruning. 

As microglia is involved in immunity, they tested the microglia translation role in phagocytosing 

foreign objects. Ex vivo, in acute brain slices, the inhibition of translation by anisomycin decreased 

the microglial phagocytosis capacity of beads coated with E. coli particles. However, global 

translation and not local translation was addressed and other cells could be involved as anisomycin 

targets the whole slice. 

II.f) Outside the brain, local translation occurs also in non-
complex cells 

Local translation has been investigated in complex ramified cells because it was clearly not 

conceivable that proteins travel such a long distance in a short time to adapt to the environment. 

However, evidence of local translation were given for non-ramified cells and even single-cell 

organisms (Das et al., 2021). Almost all cells have some kind of polarity and as local translation 

sustain these polarities, it seems easier for the cell to transport RNAs that can be translated multiple 

times and be stocked than to transport proteins after a retrograde signaling pathway (see Box 1). 

In bacteria, transcription and translation are thought to be coupled as there are no organelles. However, 

studies showed that some RNAs translation was uncoupled from their synthesis and were translated 

in cell location where the protein was needed (Fig. 9, top left). For instance, the bglg RNA was 

present only at the cell poles where its protein, BglG, is present (Nevo-Dinur et al., 2011). 

The budding yeast S. cerevisiae reproduces by forming buds which stay attached to the mother cell 

until the mitosis is complete. ASH1 is a transcriptional factor involved in the mating system of the 

yeast. Its mRNA Ash1 is transcribed in the mother cell and transported in the bud via the cytoskeleton 
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(Fig. 9, top right). The phosphorylation of its RNA-binding protein (RBP) Pumillo (PUF6) leads to 

its translation in the bud (Gu et al., 2004). 

During the embryogenesis of the fly D. melanogaster, the embryo adopts a anterio-posterior axis 

early on. By FISH, studies have shown that the Bcd mRNA coding for the bicoid protein was 

polarized at the anterior part and that Osk mRNA coding for oskar protein was polarized at the 

posterior part. The local translation of these 2 RNAs determine the antero-posterior axis of the fly 

(Fig. 9, bottom left) (Kugler and Lasko, 2009). 

In mammals, not only cells in the nervous system are capable of local translation. Epithelial cells in 

the gut, enterocytes, have a strong apico-basal polarization. It was shown that mRNA localization 

was also polarized. Very interestingly, upon feeding, local translation of ribosomal proteins in the 

apical side increased the translational rate to support the increase of nutrient absorption (Fig. 9, 

bottom right) (Moor et al., 2017). 

 

Figure 9. Local translation occurs in other cell models. (Top left) In bacteria, translation can be 

decoupled from transcription to enable Bglg mRNA transport in both cell poles. (Top right) In yeasts, 

Ash1 mRNA can be transported via the cytoskeleton in the bud to be locally translated after its RBP 

PUF6 phosphorylation and regulate the mating system. (Bottom left) In oocytes of flies, bicoid mRNA 

and oskar mRNA are locally translated in the anterior and posterior part respectively to determine 
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the organism development axis. (Bottom right) Enterocytes in the intestine are polarized from the 

basal to the apical side. Upon feeding, microvilli on the apical side sense the increase of nutrients 

activating local translation of ribosomal proteins to support more translation and absorb those 

nutrients. 

II.g) Local translation occurs in sub-cellular organelles 

Translation near organelles can be seen also as local because it is efficient protein addressing (Béthune 

et al., 2019). For instance, translation of mitochondrial protein can occur at the outer membrane 

surface of mitochondria with the docking of the ribosomes to the Translocase of the Outer Membrane 

(TOM) complex (Lesnik et al., 2015). As an organelle coming from endosymbiosis, mitochondria 

have their own ribosomes and translates mitochondrial mRNAs. Translation of membrane and 

secreted proteins occurs at the Rough Endoplasmic Reticulum (RER) membrane where ribosomes 

are docked at its surface. More recently, it was shown that translation at nuclear pores regulates its 

biogenesis (Lautier et al., 2021). Endosome-associated mRNAs are also translated at the endosomal 

surface (Müntjes et al., 2021). Finally, some studies have identified translational events in the nucleus 

but these mechanisms need further investigations (Dahlberg, 2003; David et al., 2012; Reid and 

Nicchitta, 2012; Yewdell and David, 2013). 

Recently, studies have shown that local translation in synapses support mitochondria functions by 

providing its proteins (Cioni et al., 2019; Kuzniewska et al., 2020; Lee et al., 2022). Mitochondria 

proper function is essential for synaptic functions as nervous transmission is highly demanding in 

energy. Using mitochondrial translation event reporter, an unpublished study showed that translation 

inside presynaptic mitochondria was increased during synaptic activity and that its inhibition using 

chloramphenicol altered synaptic functions (Yousefi et al., 2020). Local translation of PINK1 near 

distal mitochondria support mitophagy in a controlled manner (Harbauer et al., 2022). Finally, it was 

shown that mitochondria are the energy suppliers for local translation to occur and to support synaptic 

plasticity (Rangaraju et al., 2019). In this study, authors were able to kill mitochondria in single spines 

by laser activation of mitochondria killer protein. They showed that in those mitochondria-depleted 

spines, plasticity was unable to elicit local translation as it normally does. 

II.h) Multiplication of tools to study local translation 

The tools to study protein synthesis in vitro and in vivo are recapitulated in a review from Shintaro 

Iwasaki and Nicholas T. Ingolia (Iwasaki and Ingolia, 2017). The difficulty in studying the local 

translation relies on the ‘local’ part, especially in vivo where the isolation of compartment becomes 

hard. 
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However, here are some of the techniques used to study localized protein synthesis: 

In vitro: Most work have been done in neurons because they polarize well in culture in contrast to 

astrocytes which flatten in the absence of neurons. 

- First by metabolic labeling of translation with short pulse of methionine analogs or puromycine for 

instance. The incorporation of a modified methionine such as the azidonorleucine (ANL) or the 

azidohomoalanine (AHA) in nascent chains through a mutated methionyl-tRNA synthetase (MetRS*) 

can be followed by Fluorescent non-canonical amino-acid tagging (FUNCAT) which consists in a 

click chemistry reaction detected by fluorescence (Alvarez-Castelao et al., 2017). Puromycin is an 

antibiotic protein synthesis inhibitor that incorporates into nascent chains and can be targeted by 

immunofluorescence (Gamarra et al., 2020). The short incubation time (5-10 min) in neuronal culture 

is not sufficient for nascent chains to travel a long distance. The fluorescent labelling in the neuronal 

processes reflects the local translation events. FUNCAT and puromycilation assays can be combined 

with proximity ligation assays (FUNCAT-PLA or Puro-PLA) to target only specific proteins. 

- Another way to assess local translation events by fluorescence is by using photoswichable reporters 

or Fluorescence Recovery After Photobleaching (FRAP) technique. First, the compartment has to be 

isolated by laser dissection, for instance the axon or the growth cone. The assessment of the FRAP 

fluorescence or the recovery of the green fluorescence after irreversible green to red photoswitch are 

clues for local translation as no proteins can come from the isolated rest of the cell (Ströhl et al., 

2017). 

- Boyden chambers are cylindrical inserts nested inside a well of a culture plate. The bottom of the 

insert have a membrane with a defined pore size. Neurons can be cultured on this membrane and their 

processes extend through the pores to reach the lower part. The membrane can be removed to detach 

the cell body from the processes and cultivated with heavy amino acids for 5 min. The newly 

synthetized local proteome can be assessed by Mass Spectrometry in a technique called pulsed stable 

isotope labeling by amino acid in cell culture (pSILAC) (Cagnetta et al., 2018). 

- Finally, protein synthesis reporters such as GFP flanked with 5’ and 3’ UTRs localize the RNA in 

cultured neuron processes. When mechanically detached from the cell body, local protein synthesis 

in the isolated process can be assessed by measuring the level of GFP after stimulation for instance 

(Aakalu et al., 2001). 

In vivo: Challenges are to isolate local cell specific compartments. 

- Ribo-tag or TRAP techniques consist in cell-specific tagging of ribosomal proteins with tags that 

can be immunoprecipitated. Synaptosome preparations are isolation of synapses along with the PAPs. 

Synaptosomes combined with the TRAP can help decipher local translation in synapses of certain 
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neuronal cell type (Ouwenga et al., 2018) and from PAPs (Mazaré et al., 2020a). Microvessels 

purification that isolates PvAPs can be used before the TRAP to investigate PvAP local translation 

(Boulay et al., 2017). 

- FUNCAT signals can be assessed by cell-specific metabolic labeling of translation in acute slices. 

High resolution microscopy can detect fluorescence in cellular processes (Alvarez-Castelao et al., 

2017). Likewise, puromycine can be used. However, the signal will not be specific to any cell and 

will be hard to assess in astrocytes as neurons have a strong puromycine signal compared to astrocyte 

processes. 

- For neurons, it is sometimes easy to physically separate the cell body from the processes by 

microdissection. For instance, in the cerebellum, the cell body of Purkinje cells, a type of cerebellar 

neuron, are aligned in the same layer and can be microdissected from their dendrite located in another 

layer. The local translatome can be accessed by TRAP (Kratz et al., 2014). Another team investigated 

local translated mRNA dynamics in dendrites of neurons from the CA1 region of the hippocampus 

by tissue punches within the dendritic region using a needle (Ainsley et al., 2014). No such method 

could be used for astrocytes as they do not organize in stereotypical layers with cell bodies on one 

hand and processes on the other hand. 

  PART II summary : 

 RNAs, ribosomes, endoplasmic reticulum (ER) and Golgi vesicles are present in 

neuronal dendrites, axon and synapses 

 Local translation occurs in neuronal processes, in radial glia endfoot and in myelin 

sheaths of oligodendrocytes. This local translation is dynamic 

 RNAs, polysomes, ER, Golgi vesicles and local translation are present in PAPs and 

PvAPs 

 Local translation is also taking place in non brain and non polarized cells. It is also 

encoutered in and near organelles 
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III. A fundamental biological process coordinated 
by multiple partners: Translation 

Local translation, described in the previous section, is tightly regulated to set the molecular and 

functional polarity of neurons and astrocytes for instance. The mechanisms involved in the regulation 

of local translation has, once again, almost only been addressed in neurons. It involves ribosomes, 

translation factors, RNAs and multiple protein partners. 

III.a) From nucleus to cytoplasm: Translation involves proteins 
and RNAs 

III.a.i.  Ribosomes are composed of two subunits and four ribosomal 
RNA (rRNA) 

Eukaryotic ribosomes are big complexes with 79 proteins and 4 rRNA divided into 2 subunits: the 

large subunit comprises 46 proteins and 3 rRNA and the small subunit 33 proteins and 1 rRNA. 

Ribosomes are also known as 80 S ribosomes referring to their sedimentation coefficient in Sverdberg 

units (S) when ultracentrifuged. The large subunit becomes 60 S with 28 S, 5.8 S and 5 S rRNA, and 

the small subunit becomes 40 S with its 18 S rRNA. The ribosome nomenclature for eukaryotes names 

large subunit ribosomal proteins RPLx, with RP for Ribosomal Proteins and L for large subunit, and 

x for a number and letter (e.g. RPL10a). The small subunit RP are named RPSx in the same manner. 

However, no consensus was used early on, therefore the prokaryote’s naming is different and there 

are also different names for one protein among eukaryotes. For instance, RPS15a in humans is RPS22 

in yeast and RPS8 in bacteria. Hence, a new nomenclature emerged (Ban et al., 2014) to take all the 

reigns into account. Now, for the small subunit, it is bSx for bacteria only, eSx for eukaryotes only 

and uSx for universal. For the large one, it is bLx, eLx or uLx. Although more and more used, the 

literature sticks to the old nomenclature (including this thesis). 

Ribosomal RNA (rRNA) are essential for translation as they bind messenger RNA (mRNA) and 

transfer RNA (tRNA) to facilitate their entry in the ribosome. rRNAs also form the ribosome binding 

sites, A, P, and E sites, which are ‘pockets’ in the ribosome used in the translation process. The A site, 

for aminoacyl, allows the entry of the tRNA carrying the amino acid and its recognition to the mRNA. 

The P site, for peptidyl, facilitates the elongation of the nascent chain with the formation of the 

peptidic bond. Finally, the E site, for exit, releases the amino acid free tRNA.  

Ribosomes were thought to be an invariable complex with the same RPs across the same cells 

throughout time. However, recent findings showed that the ribosome can be heterogeneous even 
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within one cell. This heterogeneity could come from a difference in the RP stoichiometry with more 

or less 1 RP, or post-translational modifications of RPs and rRNA (Emmott et al., 2019). For instance, 

the protein RACK1 has been shown to be a core RP and crystallized with the whole ribosome. 

However, RACK1 has also a free form outside the ribosome and can jump on and off the ribosome 

(Johnson et al., 2019). In cultured neurons, RACK1, RPS30, RPLP2 and RPLP0 have been shown to 

be more or less present in the ribosome according to oxydative stress (Fusco et al., 2021). Does this 

heterogeneity have a physiological effect? In a mass spectrometry study conducted in embryonic stem 

cells, RPs were shown to have different stoichiometry (Shi et al., 2017).  For instance, RPL10a had a 

stoichiometry below 1, indicating that it is not present in all ribosomes (interestingly they showed 

RACK1 with a stoichiometry of 1 in this model in contrast to Fusco et al., 2021). Ribo-seq of RPL10a-

enriched versus -depleted transcripts revealed distinct subpools of regulated mRNA potentially with 

different functional roles. 

III.a.ii. Ribosome biogenesis and assembly occur in the nucleus but 
some ribosomal proteins are locally translated 

The 80 S ribosome formation is a multi-step process involving the nucleus. Ribosomal proteins (RPs) 

are translated in a classic way: In the nucleus, the RNA polymerase 2 transcribes mRNAs coding for 

RPs that are translated by ribosomes in the cytoplasm (Fig. 10, left). However, ribosomal subunits 

assemble in the nucleus together with the rRNAs. Thus, RPs are imported back into the nucleus. The 

rRNA are transcribed in the nucleolus (sub-region of the nucleus) by the RNA polymerase 1 for the 

35 S rRNA and by the RNA polymerase 3 for the 5 S rRNA. The polycistronic 35 S rRNA is post-

processed to give the 28 S, 18 S and 5.8 S rRNA. RPs, together with pre-rRNA, assemble to form the 

pre-40 S and pre-60 S ribosomal subunits. Further maturation steps and exportation into the cytoplasm 

form the mature 40 S and 60 S subunits that can assemble on a mRNA as the 80 S ribosome. 

Importantly, RACK1, a ribosomal protein, only assembles lately with the pre-40 S particle in the 

cytoplasm. RACK1 participates in the maturation of the human pre-40 S particle and of the 18 S 

rRNA observed by high-resolution cryo-Electron microscopy (cryo-EM) (Cerezo et al., 2019; 

Larburu et al., 2016). Interestingly, the deletion of RACK1 by siRNA in human HEK293 cells slows 

down the pre-40 S maturation but does not change the 40 S subunit quantity. This late incorporation 

in ribosomes and its non-essential property in cultured human cells led to suggest that RACK1 is 

involved in translation initiation and is an accessory factor regulating translation at will. 

The nucleus mandatory step to assemble ribosomal subunits is a priori not compatible with a distal 

ribosome biogenesis. Therefore, researchers were surprised to encounter locally translated RPs in 

neurons and astrocytes processes. For instance, mRNAs coding for RPs are found in the neuropil 

local transcriptome in the hippocampus (Cajigas et al., 2012), axons of neurons in the visual cortex 
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(Shigeoka et al., 2016) and perisynaptic astrocytic processes (PAPs) in the dorsal hippocampus 

(Mazaré et al., 2020a). The lab of Christine Holt showed that RP local translation was taking place in 

the axon in neuronal culture. Interestingly, they suggested that RPs localized at the outer surface of 

the ribosome would be more distally translated than those deep inside suggesting that RP locally 

synthesized were replacing those in existing ribosomes (Fig. 10, right) (Shigeoka et al., 2019). The 

inhibition of RP local translation decreased local protein synthesis and altered axonal branching. 

Translating ribosomes are almost immobile while RPs can diffuse freely, therefore, single molecule 

tracking of RPs dynamics could reveal exchanges with polysomes (Dastidar and Nair, 2022).  

Distally translated RPs could finally play other roles. It has been shown that free ribosomal proteins 

could have extra-ribosomal functions such as tumorigenesis by activating p53, immune signaling and 

development and diseases (Zhou et al., 2015). RACK1, a scaffold protein that can associate with the 

40 S subunit, is also present in a free form. As a receptor of activated C kinase 1, it binds to the PKC 

protein and regulates multiple signaling pathways (Adams et al., 2011). RACK1 functions will be 

further detailed in the RACK1 section (part IV). 

 

Figure 10. Ribosome biogenesis occurs in the nucleus but some RPs are locally translated. (Left) 

mRNAs coding for ribosomal proteins are exported in the cytoplasm and translated into RPs. RPs are 

imported back to the nucleus to be assembled as pre-40S and pre-60S with rRNA transcribed in the 

nucleolus. These particles mature and are exported in the cytoplasm where RACK1 integrates the 40S 

subunit. Mature 40S and 60S can then be used for translation. (Right) In distal location such as in 

cell processes, some RPs are also locally translated to replace old ribosome parts and to set ribosome 

heterogeneity translating subsets of mRNAs. 



48 
 

III.a.iii. RNA sequences are recognized before translation  

The protein synthesis involves several steps and multiple partners (Fig. 11) (Browning and Bailey-

Serres, 2015). The mRNA is recruited by complexes of proteins recognizing the cap at the 5’ end: the 

eukaryotic Initiation Factor 4F (eIF4F) cap-binding complex, and the poly-Adenosine (poly-A) tail 

at the 3’ end by the Poly A Binding Protein (PABP). The interaction of these complexes with the 

mRNA allows the recruitment of the 40 S subunit along with other initiation factors, the Multi-Factor 

Complex (MFC) and the first tRNA carrying the first methionine amino acid. The 40 S subunit can 

then scan the 5’UTR of the mRNA to find the AUG start codon from 5’ to 3’. Once at the start position, 

the 60 S subunit binds the mRNA-40 S complex to form the 80 S and starts with the translation of the 

mRNA coding sequence (CDS). Interestingly, RACK1 regulates the formation of the 80 S complex. 

EIF6 is an initiation factor at 60 S surface blocking the association with the 40 S. It has been proposed 

that RACK1 binds to a kinase, PKC, to phosphorylate eIF6 and release it from the 60 S allowing the 

80 S formation (Gallo and Manfrini, 2015; Rollins et al., 2019). Then, the elongation process can 

occur: tRNA with a given amino acid can enter the A site of the ribosome. If the tRNA anticodon 

matches the mRNA codon, a peptide bond will be formed with the previous amino acid in the P site. 

The tRNA with the nascent chain will translocate from the A to the P site, and the previous empty 

tRNA from the P to the E site for its exit. When a STOP codon is recognized by release factors (RFs), 

the peptide is released for further post-translational modifications and the ribosomal subunits are 

dissociated to be reused or degraded. On a given mRNA, multiple ribosomes can participate to its 

translation at the same time forming a polysome. However, we have seen earlier that monosomes, 

only one ribosome on the mRNA, can translate too (Biever et al., 2020). 

 

Figure 11. Eukaryotic cytoplasmic translation. 5’ cap and 3’ polyA tail are recognized by eIF4F 

complex and PABP respectively to recruit further regulators. The 40S ribosomal subunit scans the 
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5’UTR of the mRNA to reach the start codon where the 60S assemble to form the 80S. While 

translating the mRNA CDS, tRNA carrying amino acids enter in the A site of the ribosome and match 

their anti-codon with the mRNA codon. When hybridized, a peptide bond is formed with the nascent 

chain in the P site and translocate in this site. The empty tRNA exit the ribosome via the E site. At the 

stop codon, the 80S is disassemble to be recycled or degraded. 

Other translation mechanisms exist in eukaryotes. It is the case of the cap-independent Internal 

Ribosome Entry Site (IRES) translation. The recognition of the beginning of the mRNA does not rely 

on the cap but on a secondary structure in the 5’UTR, called IRES, recognized by IRES trans-acting 

factors (ITAFs) (Komar and Hatzoglou, 2011). Although mostly studied in viral RNA, IRES are also 

found in some mRNA in eukaryotic cells. Interestingly, RACK1 is used by viruses to enhance the 

translation of their viral RNA. It is the case for the hepatitis C virus (Majzoub et al., 2014) and the 

poliovirus (LaFontaine et al., 2020) which contain 2 IRES. 

III.b) Translation is regulated by RNAs and proteins 

Translation is regulated at all steps in the mRNA life. Once transcribed, the mRNA is recruited by 

proteins involve in the regulation of its half-life (degradation / stabilization balance). The mRNA is 

packed in RNA granules and transported to reach a specific destination. The mRNA is stored until its 

translation. The mRNA is translated at a specific rate under specific cues. The mRNA is degraded 

under specific conditions. 

III.b.i. CIS-acting elements involve sequences in the RNA 

Translation regulation in CIS means that the regulation comes from inside the RNA. It involves 

specific mRNA sequences, mostly in the UTRs (Fig. 12, top). These sequences include motifs and 

2D conformations (loops, hairpin …) recognized by trans-acting elements to stabilize and transport 

the mRNAs. As the 5’UTR is the sequence scanned by the ribosome, it is involved mostly in the 

translation rate whereas the 3’UTR, after the coding sequence, regulates the stability and localization 

of the mRNA but also its translation efficiency. For instance, localization of the β-actin mRNA is 

Netrin1-dependent in growth cones in vitro, and relies on its 3’UTR. Deletion of the 3’UTR does not 

induce its localization upon Netrin1 application (Leung et al., 2018). The β-actin mRNA 3’UTR 

contains a zipcode sequence of 54 nucleotide (nt) forming a stem-loop including a critical sequence 

ACACCC recognized by the Zipcode Binding Protein 1 (ZBP1) (Andreassi and Riccio, 2009). In 

oligodendrocytes, the 3’UTR of  Mbp coding for a myelin protein MBP mediates Mpb localization in 

the myelin sheaths and regulate its translation upon BDNF and PTZ application in a zebrafish model 

(Torvund-Jensen et al., 2018). They used the Dendra2 system to investigate the 3’UTR of mbp. No 

specific sequence was found crucial for this mRNA metabolism but rather multiple sequences across 
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the mRNA. In astrocytes, the lab of Joseph D. Dougherty determined that a Quaking Response 

Element (QRE) was present in almost 1/3 rd of the 3’UTR of transcripts present in PAPs (Sakers et 

al., 2017). QRE is composed of 2 Quaking Binding Motifs (QBM) recognized by the RBP Quaking 

(QKI). They showed that this QRE controls transport and translation efficiency of the Sparc mRNA 

(Sakers et al., 2017). Interestingly, the QRE motif is also found in the Mbp 3’UTR mRNA (Sakers et 

al., 2021). The team of Christine E. Holt found translating mRNA coding for ribosomal proteins in 

the axons of retinal ganglion cells of the frog embryo (Shigeoka et al., 2019). In 70% of them, a motif, 

a cis-element upstream of the initiation codon (CUIC), was found in 5’UTR and contained 

YYYYTTYC (Y for pyrimidine nucleotide C or T). 

The team of Erin Schuman investigated the global 3’UTR features of mRNAs in the neuropil versus 

the somata of neurons in the hippocampus by microdissection and 3’end sequencing (Tushev et al., 

2018). They found that neuron-enriched mRNAs had longer 3’UTR in the neuropil (neuronal 

processes) than in the somata (Fig. 12, bottom). In addition, these mRNAs had multiple 3’UTRs 

isoforms compared to non-enriched mRNAs. For instance, the CaMK2a mRNA was identified with 

3 different 3’UTR isoforms: long, middle and short. With GFP reporters, the long UTR was found to 

localize GFP at distance from the cell body whereas the short one restricted it near the nucleus. 

Importantly, long 3’UTRs had longer half-lives certainly due to the increase of factor binding to 

stabilize it. Neuronal activity shortened 3’UTR certainly to allow the translation and to remove 

inhibiting factors. RNA isoforms can be created by alternative polyadenylation (APA) consisting in 

upstream or downstream polyadenylation shortening or lengthening the 3’UTR (Arora et al., 2022). 

The Bdnf mRNA has 2 sites of APA in its 3’UTR. It has been shown that the long isoform is imported 

in the dendrite whereas the short is restricted to the soma. A disruption in the long isoform leads to 

BDNF-induced protein mis-localization, disruption of dendritic spine morphology and impairment of 

plasticity (An et al., 2008). 

III.b.ii. TRANS-acting elements involve multiple proteins 

RNA-binding proteins (RBP) recognize RNA structures and sequences. 

As RBP-binding motifs and RNA secondary structures, RBPs are often binding 5’ and 3’UTRs (Fig. 

12, top). RBPs have RNA-binding domains interacting with specific nucleotide sequences or to 

secondary structures. For example, RNA Recognition Motifs (RRM) or K-homology (KH) domains 

recognize single stranded RNA and the SAM domain recognizes stem loops (Re et al., 2014). 

The Fragile-X Mental Retardation protein (FMRP) is one of the most studied RBP in the CNS. Loss 

of FMRP causes Fragile X Syndrome (FXS), a genetic disorder of mental retardation characterized 

by an autistic spectrum, seizures and dendritic spines with aberrant morphology. With a KH RNA-
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binding domain, FMRP has been shown to associate 

with more than 400 mRNAs in the neuronal dendrites of 

the hippocampic CA1 region by Cross-Linking 

Immunoprecipitation (CLIP) of FMRP (Hale et al., 

2021). Interestingly, FMRP represses the translation of 

mRNAs linked to synaptic function (Darnell et al., 

2011). A loss in FMRP destabilizes synaptic proteins 

leading to disruption in spine morphology, autism 

behavior and FXS. Furthermore, FMRP has been shown 

to regulate mRNA transport in neurons upon synaptic 

activation (Dictenberg et al., 2008). In FMRP KO mice, 

FMRP-targeted mRNAs displayed less dynamics upon 

metabotropic Glutamate Receptors (mGluRs) activation 

mediated by kinesin-dependent transport (see Box 3). 

FMRP is also expressed in astrocytes and has been 

shown to control the GLT1 protein level (Higashimori et 

al., 2016). We have seen previously that FMRP was 

associated with mRNAs in radial glia and was 

controlling their transport in the processes (Pilaz et al., 

2016). 

The amyotrophic lateral sclerosis (ALS) is a 

neurodegenerative disease resulting in the progressive loss of motor neurons that controls voluntary 

muscles. Familial or genetic causes represent 5 to 10% of ALS cases and are linked to genes coding 

for Fused Sarcoma (FUS) and TAR DNA-binding protein 43 (TARDBP or TDP43) which are 2 RBPs. 

In ALS, mutated TDP-43 and FUS are misfolded and create aggregates in the cell leading to its death. 

TDP43 has 2 RRM and FUS has 1 RRM and 1 zinc-finger motif to bind RNAs. Both proteins are 

involved in the whole life of the mRNA from its transcription and splicing to its transport and local 

translation (Lagier-Tourenne et al., 2010). It was hypothesized that mis-regulation of transport and 

translation in neurons by TDP-43 mutations would lead to neurodegeneration. TDP-43 was found to 

regulate the transport of ribosomal proteins (RP) mRNAs and thus to regulate local translation in 

axons of cortical neurons (Nagano et al., 2020). TDP-43 binds to their 5’UTR on the Terminal 

OligoPyrimidine (TOP) motif. Importantly, neuronal processes from ALS patients had reduced RP-

coding mRNAs. TDP-43 is also expressed in astrocytes and appears as inclusions in ALS. Astrocytes 

deficits due to TDP-43 misfolding could lead to motor neuron degeneration (Izrael et al., 2020), 

however, no studies have yet investigated the translation regulation of TDP-43 in astrocytes. 

Box 3: How does the mRNA know 

where to stop in the process? 

 

One puzzling question is how does an 

mRNA transported along the 

microtubule know at which place it 

should wait to trigger its translation? 

No answer has been given yet but 

scientists formulated models for 

neurons in which synapses are tagged. 

This tag anchors the mRNAs to the 

desired spine, which has a high 

activity for instance. Another model, 

formulated by Michael Doyle and 

Michael A Kiebler in 2011, describes 

the scanning of several spines by the 

mRNAs with a bidirectional transport. 

This Sushi-Belt model allows an active 

spine to stop the transport of an mRNA 

for its local translation. 
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To date, a vast number of RBPs have been studied in neurons especially in the context of 

neurodegenerative diseases (De Conti et al., 2017) but only few of them have been investigated in 

astrocytes (Mazaré et al., 2021). 

Translation machinery-interacting proteins regulate translation. 

Another level of translation regulation concerns the factors involved in the initiation and elongation 

of translation as well as ribosomal proteins themselves (Fig. 12, top). The initiation factor eIF2 is 

carrying the starting methionine amino acid when active. Phosphorylation of eIF2 leads to its 

inactivation and to protein synthesis impairment (Kapur et al., 2017). Interestingly, it was shown that 

eIF2 phosphorylation impaired protein synthesis-mediated memory formation and that its 

dephosphorylation induced memory consolidation (Sharma et al., 2020). Another initiation factor, 

eIF4E-BP (4E-BP) is crucial for the assembly of the cap-dependent complex. Mammalian Target of 

Rapamycin Complex (mTORC) phosphorylates this complex for its assembly (Kapur et al., 2017). It 

was shown that mTORC-dependent phosphorylation of 4E-BP2 regulates epileptogenesis in mice 

(Sharma et al., 2021). Another target of mTORC is the ribosomal protein RPS6. Phosphorylation of 

RPS6 (p-RPS6) has been used to evaluate neuronal activity but its molecular impact remains elusive. 

Recent studies showed that p-RPS6, rather than playing a role in the global translation rate, regulates 

the translation of subsets of mRNAs, for instance mitochondrial protein encoding mRNAs in the 

Nucleus Accumbens (Puighermanal et al., 2017) and short coding sequence mRNAs (Bohlen et al., 

2021). Finally, RACK1, a ribosomal protein located at the small subunit of ribosomes, has been 

shown to regulate translation by promoting the 80 S formation, recruiting specific mRNAs or 

participating in RNA and nascent chains quality control (Gallo and Manfrini, 2015). RACK1 roles 

will be detailed in the next section. 
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Figure 12. Translation is regulated by CIS and TRANS-acting elements. (Top) CIS-acting elements 

can be sequence motifs such as CUIC and QBM or secondary structures such as loops. TRANS-acting 

elements can be phosphorylated initiation factors (p-eIF2 and p-4EBP2), RBP (ZBP1, QKI), 

phosphorylated RPS6 (p-RPS6) and RACK1. (Bottom) Alternative polyadenylation regulates 3’UTR 

length. 3’UTR length mediates mRNAs location with short isoforms in the soma and long isoforms in 

more distal parts. Upon neuronal activity, 3’UTR is shortened to remove inhibitory elements and 

allow local translation. 

Cytoskeleton proteins regulate RNA localization. 

RNA distribution in the cell, especially in neurons, is allowed by the cytoskeleton and molecular 

motors (Fig. 13). Specifically, microtubules and actin filaments are the frames of RNA localization 

and dynamics are allowed by molecular motors: kinesins, dyneins and myosins (Buxbaum et al., 

2015). Interestingly, the link between neuronal activity and mRNA distribution is mediated by RBPs. 

For instance, FMRP has been shown to mediate mRNA transport after mGluR stimulation in a 

kinesin-dependent manner (Dictenberg et al., 2008). In FMRP KO mice, mRNA transport mediated 

by neuronal activity was abolished. In addition, FMRP has been associated with mRNA transport in 

radial glia (Pilaz et al., 2016). FMRP has been shown to interact with kinesins such as KIF3C in 

neurons and to make the link between the mRNA and microtubules (Davidovic et al., 2007). Kinesins 

‘walk’ toward the ‘+’ end of microtubules corresponding to an anterograde transport. On the contrary, 
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dyneins go retrogradely toward the ‘-’ end and are also known to carry cargoes such as mRNAs (Reck-

Peterson et al., 2018). Mbp mRNA has been shown to be transported to myelin sheaths in 

oligodendrocytes by kinesins but also by dyneins (Herbert et al., 2017). Curiously, dynein/dynactin 

complex transports Mbp mRNA anterogradely toward the sheaths in zebrafish and mammalian 

oligodendrocytes in culture. LIS1, a dynein cofactor, has been shown to be locally translated at ‘+’ 

end microtubules upon Nerve Growth Factor (NGF) stimulation in axons of cultured neurons (Villarin 

et al., 2016). Thus, mRNA can be transported to specific areas of the cell thanks to the local translation 

of molecular motor cofactors. Actin filaments are also prone to interact with mRNAs. F-actin is a 

type of actin forming a dynamic network just below the membrane to regulate neuronal spine 

morphology for instance. F-actin can act as a storage anchor for mRNAs for them to wait translation 

signals. Stabilizing or destabilizing this network in spines led to anchorage loss of β-actin mRNA in 

spines (Yoon et al., 2016). Local translation of β-actin feeds this actin network to anchor more 

mRNAs. Molecular motors on actin are myosins and make the link between the actin and mRNAs. 

Myosin-Va (Myo5a) has been shown to anchor mRNAs in fibroblast and to release them for 

translation in a calcium-dependent manner (Canclini et al., 2020). In neurons, Myo5a was found to 

regulate mRNA dynamics into dendritic spines as its silencing impairs accumulation of some mRNAs 

in this compartment (Yoshimura et al., 2006). 

III.b.iii. RNA granules transport and compact RNAs and proteins 

mRNAs do not travel alone in the cell processes but are complexed with proteins to form 

ribonucleoparticles (RNP). Even more complex, multiple RNPs travel together to form granules (Fig. 

13). Granules comprises RNAs, RBPs, ribosomal subunit 40 S (not 60 S) and enzymes (Khandjian et 

al., 2015). Granules, as RNP condensates, enable RNA protection to be transported over long 

distances on microtubules and to be docked at the final destination and wait for local translation 

signals. Granules allow the transport of a large amount of RNAs at the same distal place. 

RNA granules are heterogeneous and can be classified in different classes: 1) Processing bodies (P-

bodies) are translation repression sites that transport RNAs in physiological conditions; 2) Stress 

Granules (SG) are P-bodies that modified their composition to repress other mRNAs to focus on 

stress-response genes. They are not mobile; 3) Neuronal granules are specialized granules 

transporting mRNAs along the cell processes. They contain RNAs, RBP and ribosomes. Interestingly, 

granules can exchange proteins and RNAs. Under physiological conditions stalled RNAs are stored 

in P-bodies. Under stress conditions, stalled RNAs and P-bodies are forming stress granules with 

slightly different compositions (Kedersha et al., 2005). 

Granules are considered membrane-less organelles as they have a defined composition and density. 

These “droplets” of RNA and proteins are formed by liquid-liquid phase separation due to these strong 
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composition differences, like the nucleolus in the nucleus for instance (Langdon and Gladfelter, 2018). 

These structures are permitted by the RBP-RNA, RBP-RBP and RNA-RNA interactions. Interestingly, 

if RNAs are absent from the granules, proteins aggregate like TDP43 in ALS for instance (Huang et 

al., 2013). 

When an environmental cue such as neuronal activity occurs, the granule decondensates by post-

translational modifications and let mRNAs to be translated (Khandjian et al., 2015). For instance, 

synaptic plasticity induces granules de-condensation and the exit of synaptic proteins-coding mRNAs 

in polysomes for their translation (Krichevsky and Kosik, 2001). 

 

Figure 13. mRNAs are compacted into granules and transported along the cytoskeleton. RNAs with 

RPs and RBPs are compacted into RNA granules. They are docked on molecular motors, dyneins and 

kinesins that transport them along the cell processes via the microtubule cytoskeleton network. RNA 

granules can be stored in particular places on the actin cytoskeleton via myosins and wait for cues 

such as neuronal activity to decondensate and induce local translation. 
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III.b.iv. Signaling pathways regulate translation in development, 
plasticity and diseases 

Axonal branching is a key process for the neuron to find the right path during development. Guidance 

cues are released and sensed by the growth cone of the 

axon to be targeted at the right place. Netrin-1 and 

BDNF, for instance, bind DCC and TrkB receptors 

respectively and activate the protein kinase Src. Src will 

phosphorylate the RBP ZBP1 releasing its mRNA β-

actin into the ribosomes to be translated. Newly 

synthetized actin filament will guide the axon toward the 

netrin-1 source (Agrawal and Welshhans, 2021; Lin and 

Holt, 2007). 

Synaptic plasticity requires local protein synthesis in pre 

and post synaptic compartments. Long term depression 

(LTD), for instance, reduces the number of 

neurotransmitter receptors in dendrites for synapses that 

need less activity in a process mediated by metabotropic 

Glutamate Receptors (mGluR). Glutamate, an excitatory 

neurotransmitter, is released in the synaptic cleft and 

binds mGluR at the post synapse spine. MGluR 

activation leads to phosphorylation of the initiation 

factor eIF2α to promote translation. Among mRNAs 

translated in a phospho-eIF2α-dependent manner, 

oligophrenin1 helps the endocytosis and internalization 

of AMPA Receptors (AMPAR) reducing 

neurotransmitter receptor at the membrane (Di Prisco et 

al., 2014). 

Local translation is also altered in neurological 

disorders. For instance, in a model of nerve injury 

(where the nerve is sectioned), mTOR is locally 

translated to activate further local translation. MTOR 

mRNA is transported by nucleolin to axons based on its 

3’ UTR. When the axon is injured, mTOR signaling 

locally translates its own mRNA to amplify local 

Box 4: The local translation regula-

tion curiosities 

 

The nerve injury local translation reg-

ulation article emphasizes curious 

events : 

1- Auto regulation of its own mRNA. 

Here mTOR signaling pathways in-

crease mTOR mRNA translation in a 

feed-forward loop to amplify the trans-

lation rates. It has been reported mul-

tiple levels of translation rates feeding 

each other in a time-dependent man-

ner. 

2- Retrograde transport of transcrip-

tion factors. As seen in Box 1, axons 

can be very long and transport could 

take several minutes to reach the cell 

body for the axon tip. Why not locally 

translate cell survival molecules ? 

3- Nucleus proteins locally translated. 

As for ribosomal protein, here, nucle-

olin, is associated with chromatin in 

the nucleolus. However it has been 

found to be an RBP as well. Several 

DNA binding proteins are also found 

away from the nucleus. It can be ex-

plained by the non-canonical func-

tions of these proteins that are yet to 

determined. 
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translation. Transcription factors, such as STAT3, are also locally translated and are retrogradely 

transported to the cell body and promotes cell-survival genes transcription (Koley et al., 2019; 

Terenzio et al., 2018) (see Box 4). 

In Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease, RBPs TDP43 and FUS form 

aggregates and their functions are altered. In consequence, transport of RNA and granules are 

perturbed leading to cytoskeletal deregulation and stress granules formation (Gamarra et al., 2021).  

Finally, in Alzheimer’s disease, another neurodegenerative disease, Aβ oligomers are found in the 

extracellular space and can form Aβ plaques in the brain. Aβ was found to trigger local translation in 

axons of neurons and in particular the translation of a transcription factor ATF4 (see Box 4, point 2). 

ATF4 is retrogradely transported to the neuronal cell body to promote cell death mediated gene 

transcription (Baleriola et al., 2014; Gamarra et al., 2021). 

III.b.v. Other translation regulation mechanisms involve microRNAs 
(miRNA), codon usage and m6A modifications 

Other levels of translation regulation exist and will be briefly depicted here. 

RNA levels are dependent on miRNA activity. MiRNAs are small non-coding RNAs complementary 

to a specific sequence of specific mRNAs to repress their translation or to degrade them. The RNA-

induced silencing complex (RISC), containing AGO proteins, induces translation repression when 

miRNA recognize an mRNA. Therefore, miRNA local concentration is important in the regulation of 

local translation. Indeed, neuronal activity has been shown to induce the degradation of RISC and to 

destabilize miRNAs leading to a de-repression of the mRNA that can be locally translated (Thomas 

et al., 2018). miRNA participate also in synaptic plasticity. During LTP, more GABA Receptors 

(GABAR) are locally translated in dendrites because of miR376C transcriptional repression (Rajgor 

et al., 2020). Interestingly, miRNAs can be transferred from neurons to astrocytes to regulate astrocyte 

local proteome. For instance, miR-124a is transferred from neuron to astrocyte processes via 

exosomes and regulate GLT1 expression (Morel et al., 2013). 

Translation efficiency can be affected by codon usage bias. The redundancy of the genetic code allows 

multiple codons for the same amino acid. However, depending on the protein, the cell or the species, 

mRNA will have a preference for a specific codon for a given amino acid: it is the codon usage bias 

(Liu, 2020). This bias depends on the tRNA abundance, the GC content, the environment and other 

factors. It determines RNA level homeostasis, protein folding, ribosome speed regulation and 

secondary structure formation. Optimal codon will have fast reading whereas non-optimal codon will 

have slow reading. For instance, ribosomes reading optimal codon because tRNA availability is high 

will be fast. On the contrary, the passage over non-optimal codons because tRNAs are rare, will slow 
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down the ribosome. Optimal codons induce mRNA stability and longer half-lives. In a recent study, 

authors described an RBP, FMRP, as a sensor of these optimal codon by an unknown mechanism to 

stabilize its mRNA targets (Shu et al., 2020). Indeed, in FMRP KO, RNAs have shorter half-lives and 

the link between optimal codon and stability was disrupted. 

Finally, post-transcriptional modification of RNAs can regulate translation, for instance, the 

methylation of adenosine, N6-Methyladenosine (m6A). M6A modifications are reversible and 

mediated by methyltransferase and demethylase and can be recognized by RBP such as the YTH 

family. A study showed that a demethylase, Fat mass and obesity-associated protein (FTO), was 

locally translated in neuronal axons to modulate m6A modifications on Gap43 mRNA resulting in its 

local translation to promote axon elongation (Yu et al., 2018). 

III.b.vi. In astrocytes, mechanisms of translation are not understood 

As shown in this section, most work on local translation regulation has been performed in neurons. 

In fact, very little is known about translation mechanisms in astrocytes. Some RBPs have been 

characterized in this cell type but not all in the context of translation. In a review we recently 

published (Mazaré et al., 2021), we describe, among others, the sparse translation mechanisms we 

know in astrocytes. 

I already described FMRP in radial glial cells, astrocytes precursors, as an mRNA transporter 

modulator. FMRP has also been involved in the GLT1 protein level, an astrocytic-specific marker, 

regulation to control neuronal excitability (Higashimori et al., 2016). 

I also described Quaking as an RBP expressed in astrocytes to regulate Quaking Recognition Element 

(QRE)-containing mRNAs such as Gfap and Sparc (Radomska et al., 2013; Sakers et al., 2020). 

Recently, quaking has been shown to be determinant in the glial differentiation in neural stem cells 

(NSC) by upregulating astrocytes and oligodendrocytes genes (Takeuchi et al., 2020). 

Human antigen R (HuR) binds to AU-rich elements and stabilizes RNAs. Interestingly, HuR has been 

shown in vitro to control tardbp and fus translation by binding to their 3’UTR. These 2 mRNAs code 

for 2 other RBPs TDP43 and FUS (Lu et al., 2014). It links potentially HuR with ALS but also 

highlight a complex translation regulation with RBP regulating other RBPs. 

Another RBP, the cytoplasmic polyadenylation element binding protein 1 (CPEB1) regulates the 

3’UTR of mRNAs specifically the polyA tail. A study showed that CPEB1 could control the polyA 

tail length in a time-of-day dependent manner of mRNAs in PAPs (Gerstner et al., 2012). It reveals 

that circadian rhythm could control translational levels in astrocytes. 
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Finally, KH type-splicing regulatory protein (KSRP) destabilizes ARE-containing mRNAs such as 

cytokines to mediate inflammatory responses in cultured astrocytes (Li et al., 2012). 

 

PART III summary : 

 Ribosomes have 2 subunits with 79 RPs and 4 rRNA and assemble in the nucleus. Some 

RPs are also locally translated to integrate or replace RP in distal ribosomes 

 Translation is tightly regulated by CIS- (RNA sequences and structure) and TRANS-

acting elements (RBP, RPs, Factors and cytoskeleton) 

 RNAs are transported as RNA granules in cell processes via the cytoskeleton 

 Signaling pathways and environmental cues trigger local translation via granule 

decondensation and RBP signaling 

 Regulation of translation in astrocytes is not understood 
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IV. Receptor for activated C kinase 1 (RACK1) 
is a multifaceted protein involved in translation 
regulation 

RACK1 is one of the translation regulators studied in this thesis. RACK1 stands for Receptor of 

activated C kinase 1 because it has been first described as a protein kinase C (PKC) partner. RACK1 

is involved in multiple cell processes including translation. 

IV.a)  RACK1 structure allows multiple protein interactions 

Gnb2l1 is the gene coding for RACK1, a 36 kiloDalton (kDa) highly conserved protein found in all 

eukaryote cells. RACK1 structure is a propeller with 7 blades represented by 7 tryptophan-aspartate 

(WD) repeats (Adams et al., 2011). These blades allows RACK1 to interact with several proteins at 

the same time including itself to form a hub of signaling pathways (Fig. 14, Top). These interactions 

allow the connection between membrane receptors, signaling proteins, the ribosomes and the 

cytoskeleton. For instance, when PKC becomes active, it can bind RACK1 to stabilize its enzymatic 

property and to be shuttled to a specific cell place such as the membrane to phosphorylate its substrate 

(Adams et al., 2011). RACK1 can also interact with G-protein coupled receptors (GPCR). Once the 

receptors are triggered, RACK1 is released and shuttled to the nucleus to act on BDNF transcription 

for instance (He et al., 2010). 

RACK1 partners are multiple : kinases such as PKC and Src; translation factors such as eIF6; 

cytoskeleton-associated proteins such as β-actin and Spectrin; adhesion molecules such as integrins; 

receptors such as NMDAR and Acetylcholinesterase-Receptors (AchE-R); viral proteins (Sklan et al., 

2006). 

An interesting property of RACK1 is its capacity to associate with RNPs (Angenstein et al., 2002) as 

a core component of the 40 S ribosomal subunit (Sengupta et al., 2004). At the ribosomal level, 

RACK1 can thus link the membrane, signaling pathways, receptors and the cytoskeleton to the 

translational machinery. 

IV.b)  RACK1 is a signaling hub and interacts with ribosomes 

IV.b.i. RACK1 is involved in cell physiology 

RACK1 knock-out in mice is lethal at gastrulation stage highlighting a mandatory and developmental 

role for RACK1 (Volta et al., 2013). Interestingly, in the yeast S. cerevisiae, the knock-out of the 
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RACK1 orthologous, Asc1, is not lethal but displays abnormal responses to the environment (Gerbasi 

et al., 2004). 

Given the high number of interactors, RACK1 is involved in several fundamental cell processes 

including cell division, cell migration and adhesion, and development for instance. RACK1 is 

controlling the G0/G1 phase of the cell cycle by interacting with the G1 checkpoint in immortalized 

cell culture. Indeed, RACK1 inhibits Src activity that cannot activate the cell cycle regulators. 

Overexpression of RACK1 leads to cell cycle arrest whereas RACK1 knock-down accelerates it 

(Mamidipudi et al., 2004). In addition, RACK1 interacts with Aurora-A to mediate its 

phosphorylation causing G2 to mitosis progression (Shen et al., 2019).  

RACK1 can localize signaling molecules where it needs to be. For instance, RACK1 can bind 

integrins and bring PKC and Src to allow integrin downstream signaling mediating cell migration 

(Buensuceso et al., 2001). In glioma cells, depletion of RACK1 lead to decreased in PKC-induced 

cell adhesion and migration (Besson et al., 2002). RACK1 can bind to focal adhesion kinase (FAK), 

hotspots of cell adhesion, and bring enzymes such as the phosphodiesterase PDE4D5 to degrade the 

extracellular matrix (ECM) (Serrels et al., 2010). This pathway is used by cancer cells to invade 

tissues. In line with cell adhesion and movement, RACK1 is also involved in development, for 

instance, the closure of the neural tube in the frog Xenopus. PTK7, a planar cell polarity regulator, 

has been shown to bind RACK1 and mediate dishevelled (DSH) membrane localization through the 

recruitment of PKC necessary for the CNS development (Wehner et al., 2011). 

IV.b.ii. RACK1 regulates translation in interaction with ribosomes 

As described above, RACK1 is also part of the 40 S ribosomal subunit and is part of mRNP. The roles 

shown above can be attributed to the free form of RACK1. However some studies showed that 

ribosomal RACK1 can also act in cellular adhesion and migration. In addition, RACK1 has been 

shown to go on and off the ribosome (Johnson et al., 2019) and that it can be an adaptative parameter 

for the ribosome to changing environment (Fusco et al., 2021). The ribosomal RACK1 has been 

shown to regulate several aspects of translation (Fig. 14, bottom). 

RACK1 associates specifically with subtypes of RNAs 

RACK1 is not an RBP, as it does not have an RNA binding domain. If RACK1 would be a “basic” 

ribosomal protein, in all ribosomes, in all compartments of the cell, it would not be associated with 

specific RNAs. On the contrary, if RACK1 is not a mandatory ribosomal protein but rather adapts to 

signaling cues and acts with multiple factors, it is regulating specifically the translation of some 

mRNAs in specific contexts (Fig. 14, bottom A). 
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In vitro, in HeLa cells, the team of Stefano Biffo investigated the mRNA specificity of RACK1. With 

luciferase reporter of different 5’UTR and RACK1 rescue in RACK1 shRNA cells, they showed that 

RACK1 was more associated with IRES as previously shown but also strongly with capped RNA, 

TOP mRNAs and the polyA tail (Gallo et al., 2018). Curiously, RACK1 shRNA cells have decreased 

capped and TOP mRNA translation but no changes for the IRES reporter. They also found that 

RACK1 was bound to eIF4E, an important translation initiation factor. Next they used a construct 

where RACK1 is mutated and cannot bind the ribosome anymore (RACK1 R36D K38E (Coyle et al., 

2009)) and explored the free RACK1 functions. MutRACK1 cells diplayed deficits in cell cycle 

progression and a global inhibition of translation. 

RACK1 regulates the formation of the 80 S ribosome 

The 40 S subunit, containing RACK1, scans the 5’UTR of mRNAs to the start codon. The 60 S 

subunit is then recruited to form the 80 S and translate mRNAs into proteins. The initiation factor 

eIF6 located on the 60 S represses its association with the 40 S. RACK1 has been shown to recruit 

PKC on the ribosome to phosphorylate eIF6 and allows its dissociation from the 60 S to let the 80 S 

formation (Fig. 14, bottom C) (Ceci et al., 2003). 

RACK1 senses stalling ribosomes and regulate abberant mRNAs and nascent chains 

Stalled ribosomes occur when the ribosome block at specific sequences of the mRNA, especially at 

polyA tracts coding for poly-lysine. It is the coincidence of polyA in the mRNA and poly-lysine in 

the nascent chain that slows down the ribosome until its stalling (Yip and Shao, 2021). Polysomes 

have multiple ribosomes translating the same mRNA. Therefore, if a ribosome stall at one point, the 

following one will collide, in particular at the 40 S part which is sensed by RACK1 (Fig. 14, bottom 

D) (Yip and Shao, 2021). In particular, RACK1 mediates the Ribosome Quality Control (RQC) to 

ubiquitinylate the stalled ribosome to be adressed to the proteasome (Sundaramoorthy et al., 2017). 

RACK1 othologous in yeast, Asc1, has been shown to facilitate the degradation of the aberrant mRNA 

(Ikeuchi and Inada, 2016) as well as the elimination of the premature nascent chain by ubiquitin ligase 

(Matsuda et al., 2014). However, stalled ribosomes can also have physiological roles such as the 

targeting to the ER by ufmylation by recruiting UFL1 (Xu and Barna, 2020). One can hypothesize 

also that stalled ribosomes can be a mean to pause translation to be transported along the cell 

processes even though the full 80 S ribosome has not been seen present in RNA granules. 

Finally, in response to stress, RACK1 mediates the degradation of misfolded nascent chains by 

recruitment another partner at the ribosome, JNK, a kinase that phosphorylate an elongation factor 

eEF1A2 to promote the polypeptide proteasome-mediated degradation (Fig. 14, bottom B) (Gandin 

et al., 2013). 
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RACK1 interacts with RBP to translate specific mRNAs 

In the previous section we showed that the regulation of translation could involve RNA-binding 

proteins (RBP) carrying specific subsets of RNAs. RACK1 has been shown to interact and recruit 

RBPs at the ribosome along with kinases to mediate the phosphorylation of RBP and regulate 

translation of RBP-specific mRNAs (Fig. 14, bottom E). For instance, RACK1 interacts with ZBP1 

in neurons. RACK1, located at the 40 S surface, recruits ZBP1 with its β-actin mRNA and recruits 

the Src kinase. Src phosphorylates ZBP1, which releases its mRNA in the ribosome to be translated. 

In physiology, BDNF triggers Src activation to translate β-actin via RACK1 (Ceci et al., 2012). 

TDP43, another RBP involved in RNA granule transport and translation, has been shown to be 

recruited at the ribosome by RACK1 in neuronal cultures (Russo et al., 2017). This interaction 

represses global translation and a ribosomal loss of RACK1 revert the phenomenom. In ALS, the 

recruitment of TDP43 by RACK1 could lead to cytoplasmic inclusions deleterious for the cell. 

Plasminogen activator inhibitor 1 RNA-binding protein (SERBP1) has been shown to interact with 

RACK1 by yeast 2-hybrid (Bolger, 2017). SERBP1 and Vigilin, 2 RBPs, associate with the dengue 

virus genome and with RACK1 from the host cell to facilitate the viral replication (Brugier et al., 

2022). La-related protein 4B (LARP4B) and poly(A) binding protein 1 (PABPC1) have been shown 

to co-immunoprecipitate with RACK1 and to stimulate global mRNA synthesis (Schäffler et al., 

2010). Finally, KSRP interacts with RACK1 in a cancer paradigm although not in the context of 

translation (Bae et al., 2021). Interestingly, SERBP1, TDP43, LARP4B and KSRP are expressed in 

astrocytes. The association between RACK1 and these RBPs could play a role in this cell. 

RACK1 regulates translation of IRES-containing mRNAs 

As shown in the previous section, the specificity of RACK1 translation regulation comes also from 

its capacity to be involved in IRES-mediated translation (Fig. 14, bottom A). IRES-containing 

mRNAs are often found in viruses (hepatitis, poliovirus, dengue virus for instance) that hijack 

RACK1 for their own replication. However, IRES are not only in viral RNAs but also in mammalian 

mRNAs translated in a 5’ cap-independent manner and might also confer a RACK1-sensitivity.   

RACK1 regulates translation with miRNAs 

RACK1 has been reported to interact with the miRNA biogenesis machinery in particular with the 

previously mentioned KSRP. RACK1 interacts also with the Argonaute (AGO) protein carrying the 

miRNA in the RISC complex (Speth and Laubinger, 2014). RACK1 could recruit the RISC complex 

to the ribosomes and promote the mRNA degradation. Interestingly, the lab of Joseph D. Dougherty 

recently hypothesized a role for miRNAs and RBPs interactions in the regulation of translation in 

neurons and glia (Koester and Dougherty, 2022). Since AGO proteins are expressed in neurons and 
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astrocytes, RACK1 could interact with the RISC machinery locally and regulate mRNA stability by 

modulating miRNA activity. RACK1 could be a link between environmental cues where a receptor 

is activated and trasduces the miRNA pathway at the translational machinery by interacting with RBP, 

AGO and the 40 S. 

 

Figure 14. RACK1 structure allows multiples partners and has free and ribosome-bound functions. 

(Top) Representation of RACK1 structure with its 7 blades which are interactions domains for kinases, 

translation factors, receptors, cytoskeleton-associated proteins, viral proteins and adhesion 

molecules. (Bottom) Free and ribosome-bound roles of RACK1. RACK1 can go on and off the 

ribosome. At the ribosome level, RACK1 regulates translation: (A) RACK1 has association 

preferences with capped, TOP, IRES, polyA mRNAs. (B) RACK1 recruits JNK kinase to mediate 

misfolding protein degradation. (C) RACK1 recruits PKC to phosphorylate eIF6 and promote the 

80S formation. (D) RACK1 senses ribosome collision mediated by stalling sequences. RNA, ribosome 

and nascent chains are degraded. (E) RACK1 recognizes specific RBPs and recruits kinases to 

mediate RNA translation. 
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IV.c)  RACK1 in the CNS participates in development and 
synaptic plasticity 

RACK1 is expressed throughout all the brain with slight higher levels in the hippocampus, the cortex 

and the cerebellum in the mouse (Ashique et al., 2006).  

RACK1 has been shown to mediate calcium signaling by interacting with IP3R and enhancing its 

binding with IP3 in HEK cells (Patterson et al., 2004). Calcium signaling determines crucial functions 

in neurons for instance in synaptic plasticity. Recent findings showed the interaction between RACK1 

and a neuronal calcium channel Cav3.2 to regulate calcium entry via PKC (Gandini et al., 2021). 

The N-methyl-D-aspartate receptor (NMDAR) is a glutamate receptor found in post-synaptic 

compartments of neurons. When glutamate from the synaptic cleft binds NMDAR, it opens to let Ca2+ 

entry and to depolarize the cell. NMDAR is a heterotetramer with 2 NR1B and 2 NR2B subunits. 

RACK1 has been shown to bind the 2 NR2B subunits along with the Fyn kinase (Fig. 15, left). When 

in the RACK1/NR2B/Fyn complex, the NMDAR is not phosphorylated and Ca2+ current is limited. 

However, when a stimulus, such as cAMP/protein kinase A (Yaka et al., 2003), triggers the release of 

Fyn by RACK1, Fyn can phosphorylate NR2B to potentiate NMDAR-mediated Ca2+ currents 

involved in synaptic physiology (Yaka et al., 2002). Astrocytes do express also NMDAR and could 

be regulated by RACK1 the same way. 

RACK1 has been implicated recently in the development of the brain. The previously mentioned 

Focal Adhesion Kinase (FAK) is associated with RACK1 at focal adhesion to promote cell adhesion 

and migration. Neurite outgrowth occurs in the developing CNS and requires FAK activity. In 

neuronal culture, a team showed that RACK1 recruits AGAP2, a GTPase-activating protein, in 

growth cones to regulate FAK (Dwane et al., 2014). Indeed, when RACK1 is knocked-down, neurons 

have decreased neurite outgrowth. In addition, another team found RACK1 in association with point 

contacts, cytoskeleton anchor on the ECM, in growth cones of cultured neurons (Fig. 15, right) 

(Kershner and Welshhans, 2017a). They previously showed the regulation of the β-actin mRNA 

translation by RACK1 with ZBP1 (Ceci et al., 2012). Here, they showed the stimulation of point 

contacts, β-actin and RACK1 association in BDNF-stimulated growth cones. The right level of 

RACK1 was necessary for proper point contacts to function as either RACK1 knockdown and 

RACK1 overexpression lead to axon growth cone defects (Kershner and Welshhans, 2017a, 2017b). 

In a preprint, they pushed their investigations to demonstrate the role of RACK1 in axon guidance by 

the regulation of point contacts and translation of β-actin in growth cones after BDNF treatment 

(Kershner et al., 2019). Interestingly, RACK1 has been shown to regulate the cerebellar development. 

Using mouse cerebellum sections, authors showed that RACK1 decreased the Wnt/β-catenin 
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signaling pathway in Neural Stem Cells (NSCs) and increased Sonic hedgehog (Shh) pathway in 

Granule Neural Progenitors (GNPs) to control their proliferation and migration (Yang et al., 2019a). 

Indeed, in conditional RACK1 knock-out in NSC and GNP, the cerebellum architecture was disrupted, 

the Purkinje Cells (PC), a main type of neuron in the cerebellum, were misplaced and the Bergmann 

Glia (BG), a specialized astrocyte in the cerebellum, harbored process malformations. In addition, 

the mice had difficulty in movement control and died 3 weeks after birth. Curiously, a RACK1 knock-

out specifically in BG did not disrupt the cerebellum development accounting for an earlier role of 

RACK1 in NSCs and GNP and a defect in BG morphology by non-cell-autonomous mechanisms. 

They further demonstrated that deletion of RACK1 in PC altered synaptogenesis and altered synaptic 

plasticity at the synapse between parallel fibers coming from granules cells and PC (Yang et al., 

2019b). Corticogenesis is also regulated by RACK1. Indeed, RACK1 represses p21-mediated NSC 

senescence by interacting with the Smad signaling pathway mediated by TGFβ (Zhu et al., 2021).  

 

Figure 15. RACK1 participates in neuronal functions and CNS development. (Left) 

RACK1 binds NMDAR and Fyn kinase in a basal state where calcium entry is limited. 

When stimulated, RACK1 releases Fyn to phosphorylate NMDAR and allow more 

calcium to enter the cell regulating synapse physiology. (Right) Ribosome-bound 

RACK1 is recruited at focal adhesion point in neuronal growth cone by FAK and 

integrins making the link between the extracellular matrix (ECM) and the cytosplam. 

BDNF, a guidance molecule, binds to its receptor TrkB triggering Src kinase 

activation. Src is recruited by RACK1 on the ribosome along with the RBP ZBP1 and 

its β-actin mRNA. SRC phosphorylates ZBP1 to release the mRNA in the ribosome 

and allow actin translation promoting axonal wiring and brain development. 
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IV.d)  RACK1 expression is modified in diseases 

IV.d.i. Expression of RACK1 is altered in cancers 

RACK1 is involved in cell cycle progression, cell 

migration and adhesion. Therefore, a deregulated 

expression of RACK1 would alter these properties and 

lead in cell invasion and over proliferation. Furthermore, 

RACK1 is also upregulated during angiogenesis. Indeed, 

RACK1 has been associated with different types of 

cancers. 

RACK1 is either overexpressed or downregulated 

depending on the type of cancer and even within the 

same type. For instance, RACK1 is increased in 

melanoma, a skin cancer, and accelerate cancer 

progression by augmentation of JNK and ERK kinases 

(Campagne et al., 2017). A knock-down of RACK1 in 

mouse melanoma cells reduced their invasion capacity. 

In hepatocelular carcinomas, an epithelial cells cancer, 

RACK1 increased Nanog expression to promote self-

renewal of cancer stem cells (Cao et al., 2019). In lung 

squamous cell carcinoma, overexpressed RACK1 

interacts with FGFR and MDM2, a ubiquitin ligase, to 

degrade the tumor suppressor p53 and to inhibit cancer 

cell apoptosis (Chen et al., 2021). As shown previously, 

RACK1 induces Shh signaling in GNP. In brain tumor medulloblastoma, increased RACK1 

overactivated Shh to promote cancer (Liu et al., 2021). RACK1 has been proposed to be a therapeutic 

target by finding a molecule decreasing its expression (Langeswaran et al., 2019). 

On the contrary, RACK1 expression is decreased in gastric cancer where a virus, Helicobacter pylori, 

inhibits RACK1 inducing the integrin β1 increase and the subsequent NfκB signaling to promote 

carcinogenesis (Hu et al., 2019). RACK1 is also downregulated in pancreatic cancer (Zhang et al., 

2019a).  

RACK1 has also been well studied in the context of breast cancers. For instance, the increase of 

glucocorticoid receptors in this pathology increases RACK1 transcription to induce cell migration 

and invasion (Buoso et al., 2019). However, expression in breast cancer is variable (either higher or 

Box 5: Role of free or ribosome-

bound RACK1? 

 

Since RACK1 has free and ribosome-

bound roles it is difficult to 

discriminate which one is at play in a 

specific condition. For instance, 

RACK1 brings ribosomes at the focal 

adhesion points to regulate cell 

migration. In cancers, this feature 

could be used to create metastasis and 

regulate the translation of 

cytoskeleton proteins at invading 

points. In the CNS development, the 

ribosome-bound RACK1 could 

regulate the brain cells migration. 

To decipher these 2 functions, the use 

of the mutated RACK1 unable to fix the 

ribosome would be of importance. 
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lower) (Buoso et al., 2020). Interestingly the authors hypothesized a link between cancer cells, 

RACK1 and ribosomes where RACK1 would bring ribosomes at adhesion focal points to promote 

translation of pro-invasive molecules. In addition, cells during stress, especially during tumorigenesis, 

translate more mRNAs with IRES which, as shown previously, is regulated by RACK1. 

The difficulty of RACK1 studies in cancers is that it interacts with so many partners that it could do 

something and its contrary. RACK1 can be pro- and anti-apoptose, pro- and anti-proliferation, pro- 

and anti-migration (Einhorn, 2013; Li and Xie, 2015). To be a good cancer biomarker, further 

investigations need to be performed in elucidating RACK1 roles in different scenarios. 

IV.d.ii. RACK1 is involved in neurological disorders 

Although RACK1 mutations are not known to induce diseases because it is too important for the cell, 

RACK1 has been correlated with several neurological disorders when up- or down-regulated. For 

instance, an increased interaction of RACK1 with activated PKC has been detected in postmortem 

cortex of bipolar patients (Wang and Friedman, 2001). Curiously, this article shows RACK1 

association with PKC only in the membrane fraction although it should be everywhere. RACK1 has 

also been shown to be downregulated in Down Syndrome (Peyrl et al., 2002). These data suggest 

alteration of neuronal migration or synaptogenesis in these pathologies related to RACK1 alteration. 

In Alzheimer’s disease, inhibitory currents induced by GABAergic transmission is altered and is PKC 

dependent. Treatment of neuronal cultures with Aβ oligomers reduced RACK1 expression causing 

this inhibitory transmission alteration (Liu et al., 2011). Overexpression of RACK1 in vivo restored 

neuronal functions of Aβ-injected brains. Neuropathic pain is a disease where pain is felt in a chronic 

manner without painful stimuli due to a nerve crush for instance. A team has shown that RACK1 was 

upregulated in a neuropathic pain model in dorsal root ganglia neurons in the spinal cord (Lu et al., 

2019). Interestingly, they injected a RACK1 siRNA directly in the cerebral spinal fluid in the spinal 

cord of a neuropathic pain rat model. They observed a decrease of RACK1 by western blot at levels 

of the Sham rats and an attenuation of neuropathic pain. Huntington’s disease is a neurodegenerative 

disease characterized by aggregation of Huntingtin protein in neurons due to a polyglutamine 

expansion. Using a drosophila model, a team showed recently RACK1 in interaction with a ubiquitin 

ligase, Purity Of Essence (POE), to degrade ERK and induce polyglutamine-induced 

neurodegeneration (Xie et al., 2021). 

Finally, RACK1 has been involved in epilepsy. In a mouse model of chronic epilepsy RACK1 

expression was altered (over- and down-regulated depending on the brain region) (do Canto et al., 

2020) as well as in humans where RACK1 was found increased (Xu et al., 2015). In addition, RACK1 

has been shown to negatively regulate transcription of the voltage-gated sodium channel α subunit 

type 1 (Nav1.1) which downregulation has been associated with epilepsy (Dong et al., 2014). 
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According to the pre-cited articles, RACK1 increase in epilepsy would downregulate Nav1.1 and 

induce epilepsy. 

With RACK1 involved in cancers and several neurological disorders, one could think it could be a 

perfect target for therapeutical assays. However, no compound has yet been developed to target spe-

cifically RACK1. But even if it was the case, RACK1 has such diverse roles, alteration of its ex-

pression would compromise other functions unless the molecule is cell-specific or target a specific 

domain of RACK1 (phosphorylation, ribosome-binding) or if it targets a specific downstream path-

way of RACK1 action through its interaction with a kinase or a receptor for instance.  

 
  PART IV summary : 

 RACK1 structure allows multiple protein interactions 

 RACK1 is bound to the 40 S subunit of ribosomes and also has free roles 

 RACK1 regulates translation by associating with specific RNAs, mediating RNA and 

nascent chain quality control and recruiting RBPs 

 RACK1 participates in synaptic physiology and brain development 

 RACK1 is altered in diseases including neurological disorders but no therapeutics have 

been developed 

 RACK1 has never been addressed in astrocytes 
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Objectives 
 
The main objective of my PhD was to decipher translation regulatory mechanisms in astrocytes and 

assess their physiological consequences. I divided my work in 2 aims: 

 

Aim 1: Characterizing and quantifying RNA distribution in astrocytes in healthy and 

pathological contexts (Alzheimer’s disease) 

RNA distribution in neuronal processes has already been investigated but has been neglected in 

astrocytes. Former studies have identified pools of RNA in astrocyte processes but no tool was 

available to characterize and quantify the distribution of targeted mRNAs in this cell type. We 

developed AstroDot, a tool to visualize and quantify the distribution of virtually any RNA in 

astrocytes in mouse brain slices. For these purposes, we optimized a RNAscope FISH-based 

technique and we created an image analysis plugin on ImageJ to quantify FISH dots in 3D in 

hippocampal astrocytes based on their localization on astrocytic-specific intermediate filament GFAP. 

Importantly, we also wanted to explore if distal RNA distribution also occurred in microglia. The 

results of this study have been published in the Journal of Cell Science in 2020 (Oudart et al., 2020). 

 

Aim 2: Characterizing translation mechanisms in astrocytes and in PAPs 

The mechanisms regulating translation in astrocytes have been poorly investigated. We hypothesized 

that the regulation of astrocytic translation could regulate important brain functions. As shown in the 

introduction, translation can be regulated by proteins such as RBP, cytoskeleton or translation factors 

for instance. Here, we immunoprecipitated polysomes from astrocytes and identified the proteins 

associated by mass spectrometry. For the first time, we had access to the proteome associated with 

polyribosomes in astrocytes. The role of this proteome was assessed by focusing on one member, the 

ribosomal protein RACK1, known to regulate translation and local translation. We explored 

RACK1’s roles in astrocytes and its physiological contributions. The corresponding manuscript is 

currently under review and published as a preprint in BioRxiv (Oudart et al., 2022). 

 

In summary, my PhD provided, for the first time, tools, datasets and mechanistic views of the 

translation regulation in astrocytes in particular through the study of RACK1. This work offers new 

understandings for astrocytes physiology in the brain.  
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Experimental results  
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I. AstroDot – a new method for studying the spatial 
distribution of mRNAs in astrocytes 

Summary 

RNA transport along the cell processes has been studied in neurons to feed local translation in 

dendrites and axons. Local translation has also been shown in astrocytes PAPs and PvAPs. However, 

the RNA distribution in astrocytic processes is relatively misunderstood. Here, we developed a 

method called AstroDot to visualize RNAs in astrocytes in fixed brain slices with an optimized 

RNAscope FISH technique and to quantify their distribution in the cell in 3D with an ImageJ plugin 

developed in the lab. The plugin is using the co-immunostaining of the astrocytic-specific 

intermediate filament GFAP to attribute FISH dots in the astrocyte soma (nucleus + 2 µm), large 

processes (>0.3 µm), fine processes (<0.3 µm) or not in on GFAP processes (GFAP negative). The 

plugin has an option to study astrocyte specific RNAs in which all RNAs will be attributed to the cell. 

With AstroDot, we were able to quantify the distribution of 2 Gfap mRNA isoforms, Gfap alpha and 

Gfap delta. Our results, corroborated by qPCR studies, show that Gfap alpha RNAs are more 

abundant than delta and located more distally in hippocampal astrocytes. Next we were wondering if 

Gfap RNA distribution was altered in pathologies. Thus, we used AstroDot on an Alzheimer’s mouse 

model. We found, first, that RNA density was increased in the pathology and more dramatically when 

the astrocyte was close to an amyloid beta plaque. Second, the distributions were changed as RNAs 

were shifted toward fine processes, with stronger effects for Gfap alpha in astrocytes near plaques. 

Finally, we demonstrated for the first time, the presence of RNAs, here Rpl4, in microglial processes. 

This work has been published in Journal of Cell Science in 2020. I am co-first author with Romain 

Tortuyaux and Philippe Mailly. 

In this work, I contributed in the optimization of the FISH technique with Romain Tortuyaux, in the 

development of the AstroDot plugin with Romain Tortuyaux and Philippe Mailly and in the analysis 

of the Alzheimer’s study with Romain Tortuyaux. I also accomplished the reviews and built the 

figures. I helped writing the article with Martine Cohen-Salmon. 
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TOOLS AND RESOURCES

AstroDot – a new method for studying the spatial distribution

of mRNA in astrocytes
Marc Oudart1,2,*, Romain Tortuyaux1,2,*, Philippe Mailly2,3,*, Noémie Mazaré1,2, Anne-Cécile Boulay1,2

and Martine Cohen-Salmon1,2,‡

ABSTRACT

Astrocytes are morphologically complex and use local translation to

regulate distal functions. To study the distribution of mRNA in

astrocytes, we combined mRNA detection via in situ hybridization

with immunostaining of the astrocyte-specific intermediate filament

glial fibrillary acidic protein (GFAP). mRNAs at the level of GFAP-

immunolabelled astrocyte somata, and large and fine processes were

analysed using AstroDot, an ImageJ plug-in and the R package

AstroStat. Taking the characterization of mRNAs encoding GFAP-α

and GFAP-δ isoforms as a proof of concept, we showed that they

mainly localized onGFAP processes. In the APPswe/PS1dE9mouse

model of Alzheimer’s disease, the density and distribution of both α

and δ forms of GfapmRNA changed as a function of the region of the

hippocampus and the astrocyte’s proximity to amyloid plaques. To

validate our method, we confirmed that the ubiquitous Rpl4 (large

subunit ribosomal protein 4) mRNA was present in astrocyte

processes as well as in microglia processes immunolabelled for

ionized calcium binding adaptor molecule 1 (Iba1; also known as

IAF1). In summary, this novel set of tools allows the characterization

of mRNA distribution in astrocytes and microglia in physiological or

pathological settings.

KEY WORDS: Astrocytes, Microglia, Hippocampus, mRNA, In situ

hybridization, Immunofluorescence, ImageJ, APPswe/PS1dE9

mouse, Alzheimer’s disease, GFAP

INTRODUCTION

Astrocytes are the most abundant glial cells in the brain. Although

astrocyte characteristics vary from one region of the brain to another,

they all have a large number of processes that ramify into branches

and then secondary branchlets. Hence, protoplasmic astrocytes are

large, bushy-shaped cells with diameters of∼40–60 μm and volumes

of ∼104 μm3. Each astrocyte covers a unique domain, and (in

humans) contacts up to 2million synapses (Ogata and Kosaka, 2002).

At the synaptic interface, perisynaptic astrocyte processes (PAPs)

sense the extracellular interstitial fluid, take up neurotransmitters and

ions (Dallérac et al., 2018), and release neuroactive factors (Chever

et al., 2014; Sultan et al., 2015). Astrocytes are also in contact with

blood vessels; indeed, the latter are entirely sheathed in perivascular

astrocyte processes (PvAPs) (Mathiisen et al., 2010). The astrocytes

at this interface modulate the integrity and functions of the blood–

brain barrier, neuroinflammation (Alvarez et al., 2013; Boulay et al.,

2016), cerebral blood flow (Iadecola, 2017) and interstitial fluid

drainage (Aspelund et al., 2015). The mechanisms underlying the

synaptic and vascular influence of astrocytes are critically important,

and have attracted much research interest. Indeed, dysregulation of

astrocyte functions and their interplay with neurons and the vascular

system contributes to the development and progression of most

neurological diseases (Dossi et al., 2018; Iadecola, 2017; Verkhratsky

et al., 2015).

Recent studies of astrocyte functional polarity have suggested

that mRNA distribution and local translation regulates protein

delivery in space and time. In a previous study, we showed that local

translation is determined in PvAPs and we characterized the locally

translated molecular repertoire (Boulay et al., 2017). Local

translation has also been observed in the radial glia during brain

development (Pilaz et al., 2016) and in PAPs in the adult cortex

(Sakers et al., 2017). Interestingly, these studies showed that some

mRNAs were specifically present in low or high levels in the

astrocyte soma or processes; hence, mRNA distribution appears to

follow specific rules and meet specific needs, and may help to

regulate distal perivascular and perisynaptic functions.

To further characterize the mRNA distribution in astrocytes, we

developed a new three-dimensional in situ method for identifying

astrocyte mRNAs localized at the level of GFAP-immunolabelled

processes and quantifying themwith dedicated bioinformatics tools.

More precisely, we studied the distribution of mRNAs encoding the

astrocyte-specific GFAP-α and GFAP-δ isoforms (generated by

alternative splicing) in the CA1 and CA3 regions of the

hippocampus in wild-type (WT) mice and in the APPswe/PS1dE9

mouse model of Alzheimer’s disease (AD). We further showed that

our approach can be applied to microglia immunolabelled for

ionized calcium binding adaptor molecule 1 (Iba1; also known as

IAF1) and to all types of mRNA.

RESULTS

Gfapα and Gfapδ mRNAs are distributed in PAPs

Gfap mRNAs have been detected in distal perivascular (Boulay

et al., 2017) and perisynaptic processes (Sakers et al., 2017) of

astrocytes suggesting that local GFAP translation regulates distal

intermediate filament assembly. Although previous research

focused on the canonical isoform GFAP-α, at least 10 GFAP

isoforms (generated by alterative mRNA splicing and

polyadenylation signal selection) have been described (Hol and

Pekny, 2015; Kamphuis et al., 2012; Middeldorp and Hol, 2011;Received 27 September 2019; Accepted 9 February 2020
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Moeton et al., 2016). GFAP-δ is encoded by the same first 7 exons

as GFAP-α but has a different C-terminus (Fig. 1A). This isoform

has received special interest because it is associated with neurogenic

niches (van den Berge et al., 2010) and is expressed in glioma. The

GFAP-δ/GFAP-α ratio correlates with the malignancy grade

(Brehar et al., 2015; Choi et al., 2009; Heo et al., 2012). In fact,

GFAP-δ does not form intermediate filaments alone but integrates

the intermediate filament network only if GFAP-α and/or vimentin

are present and aggregates or collapses the network when highly

expressed in cells (Moeton et al., 2016; Perng et al., 2008). Here, we

first looked for Gfapα and Gfapδ mRNAs in PAPs. Polysomal

mRNAs were extracted by translating ribosome affinity purification

(TRAP) from adult Aldh1L1:l10a-eGFP mice, which express the

chimeric ribosomal protein Rpl10a-eGFP specifically in astrocytes

(Heiman et al., 2014). Extractions were performed either from

hippocampus (for whole-astrocyte polysomal mRNAs) or

synaptogliosome preparations (consisting of apposed pre- and

post-synaptic membranes and astrocyte PAPs), in order to extract

polysomal mRNAs contained in PAPs (Carney et al., 2014; Sakers

et al., 2017). Quantitative qPCR amplification of Gfapα and Gfapδ

mRNA was performed using specific primers (Fig. 1B). Both

isoforms were detected in whole astrocytes (mean±s.e.m.: 8.28±

1.99 arbitrary units for Gfapα and 1.38±0.20 for Gfapδ) and in the

perisynaptic processes (17.04±9.09 for Gfapα and 1.16±0.76 for

Gfapδ). For polysomal mRNAs, the Gfapα/Gfapδ ratio was

significantly higher in PAPs (40.09±24.27; n=3; P=0.05) than in

whole astrocytes (5.81±0.67), suggesting the predominance of

Gfapα in PAPs (Fig. 1B).

We next sought to visualize Gfapα and Gfapδ mRNAs in

hippocampal astrocytes. Fluorescent in situ hybridization (FISH) was

performed on 30-µm-thick free-floating adult mouse brain sections,

using specific fluorophore-coupled RNAscope® probes against Gfapα

exon 9 and Gfapδ exon 7a (Fig. 1C). Next, the astrocyte somata

and processes were labelled by GFAP immunostaining (Fig. 1C).

Importantly, the co-immunofluorescence detection of proteins depends

on the preservation of their epitopes during the protease digestion step

preceding FISH. We observed dense, continuous, GFAP-labelled

arborizations indistinguishable from GFAP immunolabelling obtained

without protease treatment (Fig. S1), which indicated that our protocol

preserved the GFAP epitopes. In line with the qPCR results presented

above, Gfapα and Gfapδ mRNA FISH signals were detected as

discrete dots in the soma and in distal astrocyte areas; Gfapα mRNA

(Fig. 1B) was more abundant thanGfapδ, which was mainly present in

the somata (Fig. 1C).

AstroDot and AstroStat: bioinformatics tools for analyzing

the mRNA distribution in astrocytes

In order to analyse the distribution of Gfapα and Gfapδ mRNAs in

astrocytes, we developed AstroDot, a dedicated ImageJ plug-in. We

had two main objectives: (i) to detect mRNA FISH dots that

localized on GFAP-immunostained astrocyte processes; and (ii) to

quantify these dots and analyse their distribution in the astrocytes.

Fig. 1. Detection of Gfapα and Gfapδ mRNAs in hippocampal astrocytes. (A) Schematic representation of mouse GFAP-α and GFAP-δ isoforms. The

positions of the qPCR and FISH probes are indicated with an asterisk. (B) PolysomalGfapα andGfapδmRNA levels in hippocampal astrocytes and perisynaptic

astrocyte processes (PAPs), determined by qPCR and normalized against 45S RNA. Statistical significance was determined in a one-way unpaired Mann–

Whitney test; n=3; *P<0.05; ns, not significant. Error bars represent s.e.m. (C) Merged and separated images of a deconvoluted confocal z-stack of a CA1

astrocyte, with FISH detection of Gfapα (in green) and Gfapδ (in red) mRNAs and co-immunofluorescence detection (IF) of GFAP (in grey). The nucleus was

stained with DAPI (in blue). Note the abundance of Gfapα mRNA FISH dots (relative to Gfapδ) in distal areas of the astrocyte. Scale bar: 10 µm.
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Fig. 2. See next page for legend.
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Confocal images of the CA1 and CA3 regions of the hippocampus

were acquired and then deconvoluted, so as to eliminate the inherent

fluorescence blurring [the point spread function (PSF)] and noise,

and to increase the resolution (Fig. 2A). Astrocytes define

individual domains, and GFAP processes do not intermingle

(Bushong et al., 2002). Using this property, regions of interest

(ROIs, i.e. the soma and processes) corresponding to individual

astrocytes were selected manually by assessing the GFAP

(intermediate filaments) and DAPI (nuclei) staining on the

Z-projection of image stacks and by defining the stack of confocal

planes for each ROI (Fig. 2B). AstroDot opens with a dialogue box

(Fig. 2C) that enables the operator to attribute: (1) a specific purpose

for each of the three fluorescence channels, e.g. ‘DAPI’ for nuclear

staining, ‘IF’ for GFAP immunofluorescence, and ‘Dots’ for FISH

dot thresholding and detection; (2) a minimum and maximum

nucleus volume; (3) a distance from the DAPI staining to define the

somatic domains; (4) a minimum astrocyte process diameter. This

value should not be less than the Voxel resolution. This dialogue

box also contains a ‘Specific mRNA’ option, which can be selected

when the studied mRNA is expressed only in the cell-type of interest

as is the case here for Gfap in astrocytes. In such situations, all

mRNA FISH dots are considered to belong to this cell type. The first

step in the analysis was calculation of the mean GFAP

immunofluorescence background, i.e. the value above which the

signal was considered to be positive. Importantly, to verify the

background homogeneity, this value was calculated on whole

images as well as on individual ROIs. In the second step, each

astrocyte nucleus was defined; given that astrocytes interact with

other brain cell types, some ROIs can contain more than one

nucleus. AstroDot was designed to optimize the recognition of

astrocyte nuclei on the basis on the GFAP immunostaining. The

putative astrocyte nucleus appears in green, and any other nuclei

appears red. A second dialogue box allows the operator to confirm

or modify AstroDot’s automatic selection by clicking on the correct

nucleus (Fig. 2D). AstroDot then starts to detect astrocyte mRNAs,

based on their localization at the level of the GFAP immunostaining.

A distance map is used to calculate the diameter of each GFAP-

immunolabelled process. Processes with a diameter greater than the

minimum distance between two confocal planes (0.3 µm, in the

present case), are defined as ‘large’, and those with a smaller

diameter as ‘fine’ (Fig. 2E). The DAPI staining and the surrounding

2 µm space corresponded here to the somatic domain of each

astrocyte. A TIF image was generated for each ROI (Fig. 2F). The

mRNA FISH dots are red if they were outside astrocytes, green if

they localize on astrocyte large processes and somata, or yellow if

they localize on astrocyte fine processes (Fig. 2F). All the results

were automatically entered on a table with the following items for

each ROI: (1) image name; (2) ROI name; (3) background intensity;

(4) astrocyte volume; (5) dot density in astrocytes; (6) percentage of

dots not in astrocytes; (7) percentage of dots in astrocyte somata;

(8) percentage of dots in astrocyte fine processes; (9) percentage of

dots in astrocyte large processes; (10) mean astrocyte process

diameter. To facilitate the statistical analysis of AstroDot data, we

developed an optional R package named AstroStat; it automatically

calculates and compares the mean±s.d. values, and produces a

summary report of the results.

Characterization of Gfapα and Gfapδ mRNAs in CA1 and CA3

hippocampal astrocytes from WT mice and the APPswe/

PS1dE9 mouse model of AD

We analysed the density and distribution of Gfapα and Gfapδ

mRNAs in CA1 and CA3 hippocampal adult astrocytes inWT adult

mice by using the AstroDot ‘Specific mRNA’ option (Fig. 3 and

Tables S2–S5). Comparison of the astrocytes in CA1 versus CA3

indicated that CA1 astrocytes had a slightly greater overall volume

but displayed processes with the samemean diameter (Fig. 3A). The

Gfapα/Gfapδ mRNA ratio was the same in the two regions

(Fig. 3B). Overall, and in line with our initial qPCR analysis

(Fig. 1B), Gfapα was 5.2 times more abundant than Gfapδ in both

CA1 and CA3 (Fig. 3C). Both mRNAs were more abundant in the

processes (Gfapα, 88.5±6.7% in CA1 and 86.7±8.1% in CA3;

Gfapδ, 73.4±11.3% in CA1 and 71.5±16.4% in CA3; mean±s.d.)

than in the soma.Gfapδwas more abundant thanGfapα in the soma

and in large processes (Fig. 3D). We next analysed the data without

considering the astrocytic-specific expression of GFAP, unselecting

the ‘Specific mRNAs’ option of AstroDot (Fig. 3E). In this case,

both Gfapα and Gfapδ mRNAs were localized on GFAP-labelled

intermediate filaments in CA1 (mean±s.d.: 59.5±9.0 for Gfapα and

74.4±11.0 forGfapδ) and CA3 (62.2±10.1 forGfapα and 74.7±12.4

for Gfapδ), suggesting that the majority of Gfap RNAs are

associated with intermediate filaments (Fig. 3E).

Astrocytes are involved in neuroinflammation, and become

reactive in virtually all pathological situations in the brain.

Astrocyte reactivity is characterized by GFAP overexpression and

morphological changes, such as process hypertrophy and

remodelling (Hol and Pekny, 2015). Hence, we next sought to

studyGfapα andGfapδmRNAs in reactive astrocytes. We chose the

example of AD, in which astrocytes undergo drastic morphological

and molecular changes that perturb their physiology (Ben Haim

et al., 2015; Burda and Sofroniew, 2014). Using the method

described above,Gfapα andGfapδmRNA FISH dots were detected

on GFAP-immunolabelled sections of CA1 and CA3 hippocampus

from 9-month-old APPswe/PS1dE9 mice (Fig. 4). We quantified

astrocytes associated with a beta-amyloid plaque (Aβ, labelled with

DAPI) or more than 30 μm from an Aβ plaque (Fig. 5 and

Tables S2–S5). As reported in the literature, CA1 and CA3

astrocytes from APP/PS1dE9 mice were larger than those from WT

mice (Fig. 5A) but had a slightly smaller process diameter (Fig. 5A).

In astrocytes not associated with Aβ, the Gfapα/Gfapδ ratio was

slightly but significantly higher (by a factor of 1.3) in CA1 and CA3

(Fig. 5B), with a higher Gfapα mRNA level in fine processes only

(Figs 4A and 5F). In contrast, theGfapδmRNAdensity was the same

as in WT mice in CA1 and CA3 (Fig. 5C). However, the distribution

of this mRNAwithin the astrocytes differed; levels in large processes

were lower (relative to theWT) in CA1 and CA3 (Fig. 5E), and levels

in fine processes were higher in CA3 only (Fig. 5F). The relative

differences in mRNA levels were greater in Aβ-associated astrocytes

(Fig. 4B); the density ofGfapαmRNAswas significantly higher than

in WT cells (5.0-fold for CA1, and 4.7-fold in CA3) or in astrocytes

not associated with Aβ (3.8-fold for CA1, and 3.7-fold in CA3)

(Fig. 5C). The distribution ofGfapαmRNA also differed, with lower

Fig. 2. AstroDot image processing. All images correspond to a single

confocal z-stack for a CA1 astrocyte. (A) Effect of deconvolution on GFAP

immunofluorescence. Left panel: raw confocal image; right panel:

deconvoluted images. (B) Selection of regions of interest (ROIs; yellow

circles). (C) AstroDot dialogue box for the definition of fluorescence channels,

the nucleus and astrocyte parameters, the threshold method for FISH dots and

the choice of the ‘Specific mRNA’ option. (D) Detection of the astrocyte

nucleus (in green) and other nuclei (in red). (E) Heat map of GFAP

immunofluorescence, used to calculate the process diameter. (F) AstroDot

interpretation of the results for Gfapα and Gfapδ mRNAs, with the ‘Specific

mRNA’ option active. Green dots are located in the soma or large GFAP-

labelled processes. Yellow dots are located in fine processes. Scale bars:

10 µm.
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levels (relative to the WT) in the soma (Fig. 5D) and in large

processes (only in CA1) (Fig. 5E) and higher levels in fine processes

in CA1 and CA3 (Fig. 5F). The same effect was observed for the

Gfapδ mRNA, with a greater abundance in Aβ-associated astrocytes

than in WT samples (3.6-fold for CA1, and 3.5-fold in CA3) or in

astrocytes far from plaques (3.3-fold for CA1, and 3.4-fold in CA3)

(Fig. 5C). The redistribution was most prominent in fine processes in

CA1 and CA3 (Fig. 5F). These results show that the density and

distribution ofGfapα andGfapδmRNAs vary markedly as a function

of the astrocyte’s reactivity status, the brain area and the proximity of

Aβ deposits.

Application of AstroDot and AstroStat to the analysis of

ubiquitous mRNAs in astrocytes and microglia

To further validate our approach, we studied the distribution of Rpl4

mRNA (a ubiquitously expressed mRNA encoding the large

subunit ribosomal protein 4) in CA1 (Fig. 6A). Interestingly,

62.52±11.77% of the Rpl4 mRNA FISH dots were localized in

astrocytes (n=67). Of these, 83.33±5.41% were present in fine

GFAP-immunolabelled processes, with 9.59±3.45% in large

GFAP-immunolabelled processes, and 7.09±4.14% in somata (all

values are mean±s.d.). This result was unexpected because Rpl4

integrates into the 60S ribosome subunit in the nucleus (Huber and

Hoelz, 2017), but was corroborated by a qPCR analysis (performed

as described above) of polysomal mRNAs extracted by TRAP from

adult Aldh1L1:l10a-eGFP mouse hippocampus or PAPs; in the

latter, Rpl4 was enriched 120-fold (P=0.05, n=3) (Fig. 6B). To

study the distribution of non-astrocyte Rpl4 mRNA FISH dots, we

performed additional, independent experiments by immunostaining

neuronal and microglial specific markers. Immunostaining of the

neuronal-specific cytoskeletal high and medium chains of the

neurofilament protein (NF-H and NF-M), the microtubule-

associated protein 2 (MAP2) and the hippocampal immature

neuron protein doublecortin (DCX) was however not preserved

enough even after a mild FISH protease pre-treatment (Fig. S2). In

contrast, as with the GFAP immunofluorescence experiments, our

FISH protocol was compatible with the detection of the microglial-

specific Iba1 protein, which was detected and remained

homogeneous throughout the somata and processes (Fig. 6C). Our

analysis of the distribution of Rpl4 mRNA in microglia (n=28)

indicated that 16.07±4.47% of the Rpl4 mRNA FISH dots were

localized in microglial processes. Of these, 37.72±9.24% were

localized in fine processes, with 27.06±10.78% in large processes

and 35.22±10.13% in somata (means±s.d.). In conclusion, this

novel set of tools allows the characterization of mRNA distribution

in astrocytes and microglia.

DISCUSSION

Although local translation has been recently described in astrocyte

processes, tools for studying the distribution of astrocyte mRNAs

were not previously available. Accordingly, we developed a

co-labelling method that combined mRNA in situ hybridization,

the immunofluorescence detection of GFAP-containing

intermediate filaments on brain slices, confocal imaging and a

bioinformatics analysis of mRNA density and distribution in

astrocytes.

A key technical obstacle to the implementation of this approach

was the risk of protein epitope degradation during the protease

digestion step that precedes in situRNA hybridization. Our previous

tests on transgenic hGfap-eGFP mouse brain sections (in which

eGFP fills the astrocyte cytoplasm; Nolte et al., 2001) indicated that

these adaptations were not sufficient to preserve eGFP (data not

shown) and thus precluded the use of this reporter mouse strain to

detect astrocytes in parallel with in situ hybridization. In contrast to

previous reports (Boulay et al., 2017; Pilaz et al., 2016), however,

our protocol preserved GFAP and enabled us to perform parallel in

situ hybridization and GFAP immunodetection. Interestingly, these

conditions also allowed us to immunodetect the microglia-specific

Fig. 3. Distribution ofGfapα andGfapδmRNAs in CA1 andCA3 hippocampal astrocytes. (A) Astrocyte volume, and process diameter. (B) TheGfapα/Gfapδ

mRNA ratio. (C) Total mRNA density: number of RNA FISH dots/µm3×100. (D) Percentages ofGfapα andGfapδmRNAs in astrocyte somata, fine processes and

large processes. (E) Percentages Gfapα and Gfapδ mRNA dots localized on GFAP when the ‘Specific mRNA’ option was not applied. In total, 175

CA1 and 94 CA3 astrocytes from 3mice and 5 slices per mousewere analysed (values are presented in Tables S2–S5). Statistical significancewas determined in

two-way unpaired Student’s t-tests. *P<0.05; ****P<0.0001; ns, not significant. Error bars represent the s.e.m.
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Fig. 4. See next page for legend.
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Iba1. In contrast to glial cells, we could not find any neuronal

immunolabelling preserved after the FISH pre-treatment. Further

efforts are therefore needed to eventually find compatible markers.

It is noteworthy that GFAP is not expressed uniformly in the

brain, and so GFAP immunolabelling is somewhat limited by its

lack of applicability to all brain regions. Nevertheless, our

optimization of the GFAP immunolabelling makes it possible to

distinguish between labelled astrocyte processes and their

secondary extensions in regions where GFAP is highly expressed

(e.g. the hippocampus, olfactory bulbs, cerebellum and

hypothalamus). Another advantage of immunolabelling GFAP

and Iba1 relates to the fact that both proteins are standard markers of

glial reactivity – a process initiated in response to immune attack,

chronic neurodegenerative disease or acute trauma (Liddelow and

Barres, 2017). Hence, GFAP and Iba1 co-immunolabelling could

therefore be used to address possible changes in mRNA distribution

in reactive astrocytes and microglia, as demonstrated here in

APPswe/PS1dE9 mice.

It was previously determined that GFAP immunolabelling

delineates only 15% of the total astrocyte volume (Bushong et al.,

2002). Nevertheless, we found that the majority of the Gfapα and

Gfapδ mRNA dots were attributed to GFAP processes. The mRNA

dots not detected in GFAP intermediate filaments probably

belonged to fine distal astrocyte processes where GFAP is less

present (e.g. PAPs). These observations suggest that the majority of

Gfap mRNAs are bound to intermediate filaments, and are

consistent with previous reports of colocalization between

mRNAs encoding collagens (Challa and Stefanovic, 2011) and

alkaline phosphatase (Schmidt et al., 2015) on one hand and

vimentin (another intermediate filament protein) on the other. Taken

as a whole, these findings suggest that intermediate filaments may

have crucial roles in the distal distribution of mRNAs.

Consequently, it is conceivable that GFAP alterations, deficiency

or upregulation (one or the other of which occurs in most

neuropathological conditions; Hol and Pekny, 2015) might greatly

modify the distribution of astrocyte mRNAs and their local

translation. In turn, these changes might alter the astrocyte

functions, particularly at their synaptic and vascular interfaces.

In order to demonstrate the applicability of our approach, we first

focused on mRNAs encoding (i) the canonical α isoform of GFAP

and (ii) the δ Cter variant, the assembly of which with GFAP-α

promotes intermediate filament aggregation and dynamic changes

(Moeton et al., 2016; Perng et al., 2008). Interestingly, the results of

our experiments in WT mice showed that Gfapδ mRNA was more

likely than Gfapα mRNA to be found in the astrocyte soma. This

finding corroborated the results of a previous in vitro study in which

the proportion of mRNA in primary astrocyte protrusions was higher

Fig. 4. Detection of Gfapα and Gfapδ mRNAs in CA1 hippocampal

APPswe/PS1dE9 astrocytes. (A) Merged and separated images of a

deconvoluted confocal z-stack of APPswe/PS1dE9 CA1 astrocytes, with FISH

detection of Gfapα mRNA (in green) and Gfapδ mRNA (in red) and co-

immunofluorescence detection of GFAP (in grey). The nucleus and an amyloid

deposit (dotted circle labelled ‘P’) are stained with DAPI (in blue). ROI #1

(yellow circle) is an astrocyte close to an Aβ deposit. ROI #2 is located more

than 60 µm from an Aβ plaque. (B) TIF images of ROI1 and ROI2 forGfapα and

Gfapδ mRNA, as analysed with AstroDot using the ‘Specific mRNA’ option.

Green dots belong to the soma and large GFAP-labelled immunofluorescent

processes. Yellow dots belong to fine processes. Scale bars: 20 µm.

Fig. 5. Comparison of Gfapα and Gfapδ mRNA densities and distributions in CA1 and CA3 hippocampal astrocytes from WT and APPswe/PS1dE9

mice. (A) Astrocyte volume and process diameter. (B) The Gfapα/Gfapδ mRNA ratio. (C) Total mRNA density: number of RNA FISH dots/µm3×100.

(D-F) Percentages of Gfapα and Gfapδ mRNA dots localized on GFAP immunostaining in astrocyte somata (D), fine processes (E) and large processes (F).

Analyses were performed on 175 CA1 WT astrocytes, 94 CA3 WT astrocytes, 127 APPswe/PS1dE9 CA1 astrocytes not associated with plaques, 78 APPswe/

PS1dE9 CA3 astrocytes not associated with plaques, 27 plaque-associated CA1 APPswe/PS1dE9 astrocytes, and 28 plaque-associated CA3 APPswe/PS1dE9

astrocytes. 3 mice per genotype and 5 slices per mouse were analysed (values are presented in Tables S2–S5). Statistical significance was determined using

two-way unpaired Student’s t-tests. *P<0.05; **P<0.001; ***P<0.001; ****P<0.0001; ns: not significant. Error bars represent s.e.m.
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forGfapα than forGfapδ (Thomsen et al., 2013). The highGfapα and

Gfapδ mRNA density observed in amyloid plaque-associated

astrocytes was also consistent with previous qPCR-based assays of

mRNA in the cortex of APPswe/PS1dE9 mice (Kamphuis et al.,

2012). Interestingly, levels of human GFAP-α and GFAP-δ isoforms

are elevated in plaque-associated astrocytes in the CA1-3 region

(Kamphuis et al., 2014). Although RNA density in fine processes

could also be secondary to the increase in GFAP filament density

linked to astrocyte reactivity, our observations of elevated mRNA

density and distribution in the fine processes of plaque-associated

astrocytes suggest that local translation of Gfapα and Gfapδ mRNA

might be a critical mechanism for regulating intermediate filament

dynamics in distal astrocyte processes during the progression of AD.

Given that the GFAP-α/GFAP-δ isoform ratio is known to strongly

influence astrocyte proliferation andmalignancy (Stassen et al., 2017;

van Bodegraven et al., 2019), our approach might constitute a

valuable tool for accurately assessing the differentiation state of

astrocytomas in preclinical and clinical settings.

Lastly, we demonstrated that our approach is applicable to any

type of mRNA and can also be used in microglia. In fact, the present

study is the first to have demonstrated that mRNAs are distributed

across microglial processes; this is an important observation in view

of the microglia’s complex morphology and motility, and its roles in

immune surveillance and synaptic remodelling in the brain

(Squarzoni et al., 2014). Our results strongly suggest that mRNA

distribution and local translation are of physiological significance in

this important neural cell type. In conclusion, our new semi-

automated in situ histological method is the first to have

characterized mRNA distribution in astrocytes and microglia.

MATERIALS AND METHODS

Mice

Aldh1L1:l10a-eGFP mice (Heiman et al., 2014) and C57BL6 WT mice

were housed under pathogen-free conditions in the animal facility at the

Centre Interdisciplinaire de Recherche en Biologie (CIRB, Colleg̀e de

France, Paris, France). The APPswe/PS1dE9 (Borchelt et al., 1997) mice

were housed in the MIRCen animal facility (CEA, Fontenay-aux-Roses,

France). All analyses were performed on 3 mice (males) per genotype.

Ethical approval

All experiments were approved by the French Ministry of Research and

Higher Education, and conducted in accordance with the host institution’s

ethical standards (Colleg̀e de France, Paris, France).

Fig. 6. Detection and characterization of Rpl4mRNA distribution in CA1 hippocampal astrocytes, microglia. (A) Left: Confocal z-stack of a CA1 astrocyte

with FISH detection of Rpl4 mRNA (in red) and co-immunofluorescence GFAP detection (in grey). The nucleus is stained with DAPI (in blue). Right:

AstroDot analysis. Green dots are located in the soma or in GFAP-immunolabelled large processes; yellow dots are located in GFAP-immunolabelled fine

processes; red dots are not localized on GFAP immunostaining (i.e. excluded RNAs). (B) The polysomal Rpl4 RNA level in hippocampal astrocytes and PAPs,

determined by qPCR and normalized against 45S RNA. Statistical significance was determined in a one-way unpaired Mann–Whitney’s test; n=3; *P<0.05.

Error bars represent s.e.m. (C) Left: confocal z-stack of a CA1 microglial cell with FISH detection ofRpl4mRNA (in red) and co-immunofluorescent Iba1 (in grey).

The nucleus was stained with DAPI (in blue). Right: AstroDot analysis. Green dots are located in the soma or Iba1-immunolabelled large processes; yellow dots

are located in Iba1-immunolabelled fine processes; red dots do not localize on Iba1 immunostaining (i.e. excluded RNAs). Scale bars: 10 µm.
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Aldh1L1:l10a-eGFP TRAP from whole astrocytes and PAPs,

and qPCR

Two hippocampi from 5-month-old mice were used for each whole-

astrocyte polysome extraction. Each synaptosome preparation was done on

four hippocampi as described in Carney et al. (2014) for perisynaptic

astrocyte extraction. Polysomes were extracted using the method described

in Boulay et al. (2019). Three independent samples were prepared for qPCR

analysis. Messenger RNAs were purified using the RNeasy Lipid tissue kit

(Qiagen). cDNA was synthesized from 100 ng of whole-astrocyte RNA or

PAP mRNA using a Reverse Transcriptase Superscript III kit (Invitrogen)

with random primers, and stored at −20°C. Next, 1 μl of cDNA suspension

was pre-amplified using SoAmp reagent (Bio-Rad), and droplet qPCR was

performed using a QX200™Droplet Digital™ PCR System (Bio-Rad). The

cDNA content was normalized against 45S RNA. TaqMan probes and

primer references are listed in Table S1. The data were analysed by applying

a one-way unpaired Mann–Whitney test. The threshold for statistical

significance was set to P<0.05.

Brain slice preparation

Nine-month-old mice were anaesthetized with a mix of ketamine and

xylazine (0.1 ml/mg) and killed by transcardiac perfusion with 1×

phosphate-buffered saline (PBS) with 4% paraformaldehyde (PFA). The

brain was removed and immersed in 4% PFA overnight at 4°C. The PFA

solution was replaced with 15% sucrose for 24 h at 4°C and, lastly, by 30%

sucrose for 24 h at 4°C. The brains were cut into 30-µm-thick coronal

sections using a Leitz microtome (1400). Sections were stored at −20°C in a

cryoprotectant solution (30% glycerol and 30% ethylene glycol in 1× PBS).

Fluorescent in situ hybridization and immunostaining

Slices were carefully washed three times with 1× PBS in a 24-well plate. For

the last wash, the 1× PBS was replaced with 7 drops of RNAscope®

hydrogen peroxide solution (Advanced Cell Diagnostics Inc.) for 10 min at

room temperature (RT); this blocked endogenous peroxidase activity, and

resulted in the formation of small bubbles. The slices were washed in Tris-

buffered saline with Tween® (50 mM Tris-Cl, pH 7.6; 150 mM NaCl, 0.1%

Tween® 20) at RT, and mounted on Super Frost+®-treated glass slides using

a paintbrush. Slices were dried at RT for 1 h in the dark, quickly (in less than

3 s) immersed in deionized water in a glass chamber, dried again for 1 h at

RT in the dark, incubated for 1 h at 60°C in a dry oven, and dried again at RT

overnight in the dark.

The slices were rehydrated by rapid immersion (for less than 3 s) in

deionized water at RT. Excess liquid was removed with an absorbent paper,

and a hydrophobic barrier was drawn. A drop of pure ethanol was applied on

the slice for less than 3 s and removed using an absorbing paper. The slides

were incubated at 100°C in a steamer, while ensuring that condensation did

not fall back on them. A drop of preheated RNAscope® 1× Target Retrieval

Reagent (Advanced Cell Diagnostics Inc.) was added to the steamer, and the

slides were left for 15 min. Next, the slides were washed three times in

deionized water at RT, and excess liquid was removed with absorbent paper.

A drop of 100% ethanol was applied for 3 min, and excess liquid was then

removed. A drop of RNAscope® Protease+ solution (Advanced Cell

Diagnostics Inc.) was applied and slices were incubated at 40°C in a humid

box for 30 min. Target retrieval treatment and RNAscope® Protease+

treatment were used to unmask the mRNAs. Lastly, the slides were washed

three times with deionized water at RT. For neuronal assays (Fig. S2),

several pre-treatment conditions were tested: no protease, Protease 3,

Protease 4 and Protease+ of the RNAscope®Multiplex Fluorescent Reagent

Kit v2 (Advanced Cell Diagnostics Inc.) during 10, 20, or 30 min.

FISHwas performed using the RNAscope®Multiplex Fluorescent Reagent

Kit v2 (Advanced Cell Diagnostics Inc.) and specific probes (Table S1; Fig.

S3), according to the manufacturer’s instructions. Following the FISH

procedure, slides were incubated with a blocking solution (0.2% normal goat

serum, 0.375% Triton X-100 and 1 mg ml−1 bovine serum albumin in 1×

PBS) for 1 h at RT, incubated with the primary antibody overnight at 4°C

(Table S1), rinsed three times with 1× PBS, and incubated with the secondary

antibody (Table S1) for 2 h at RT. Lastly, the slideswerewashed three times in

1× PBS and mounted in Fluoromount-G® and DAPI (Southern Biotech).

Imaging

Images were acquired using a Yokogawa W1 Spinning Disk confocal

microscope (Zeiss) with a 63× oil objective (1.4 numerical aperture). The

imaging conditions and acquisition parameters were the same for all slides.

The experimental PSF was obtained using carboxylate microsphere beads

(diameter: 170 nm; Invitrogen/ThermoFisher Corp.). Except for DAPI, all

channels were deconvoluted with Huygens Essential software (version

19.04, Scientific Volume Imaging, The Netherlands; http://svi.nl), using the

classic maximum likelihood estimation algorithm and a signal-to-noise ratio

of 50 (for the immunofluorescence channel) or 20 (for the FISH channel), a

quality change threshold of 0.01, and 150 iterations at most.

AstroDot and AstroStat

As shown in the Results section, AstroDot can be used to study mRNA

density and distribution not only in astrocytes but also in microglia

immunolabelled for Iba1. In addition to FISH signals, AstroDot can be used

to quantify any type of dot-shaped fluorescence signal. AstroStat was used

to analyse the AstroDot results table, using an R script. The programs can be

downloaded free of charge from https://github.com/pmailly/Astrocyte_

RNA_Analyze and https://github.com/rtortuyaux/astroStat, respectively.

For AstroDot, an image analysis plug-in was developed for the ImageJ/

Fiji software (Schindelin et al., 2012; Schneider et al., 2012), using Bio-

Format (openmicroscopy.org), mcib3D (Ollion et al., 2013), GDSC (https://

github.com) and local thickness (https://imagej.net/Local_Thickness)

libraries.

ROIs enclosing each astrocytewere drawn by hand, using the Fiji polygon

tool on the Z-projection of the stack, and using the ImageJ option ‘Max

intensity’. In the ROI Manager, the ROI names were coded as (roi_number-

z_top-z_bottom) and saved in a zip file.

AstroDot processing

The plug-in was designed to process all images in a specific folder

containing MetaMorph .nd files, and to read metadata images (channel

name, z step, etc.), deconvoluted image channels (except for DAPI), and

ROI zip files. Steps followed were as below:

1. AstroDot’s parameters (the image folder, the channel order, the

threshold method, etc.) were displayed in a dialogue box (see Fig. 2C).

2. The immunofluorescence background was estimated on whole

images using a 0.5 median filter, a binary mask (using Li’s

threshold method), and an inversion of the binary mask (Li and

Lee, 1993; Li and Tam, 1998). The immunofluorescence value was

multiplied by the inverted mask and then divided by 255. The

background value (bgThreshold) was defined as the mean intensity of

all voxels other than those with a value of zero. To ascertain the

background homogeneity, we also recommend this calculation is

performed on individual ROIs to check that values are comparable.

3. For each ROI, a substack corresponding to zTop and zBottom

(defined in the ROI name) was created for all channels.

4. For semi-automatic determination of the astrocyte or microglial cell

nucleus, DAPI fluorescence was processed by removing

DAPI potential background with a ‘remove outliers size=15’. DAPI

fluorescence was next segmented with the nuclei outline plugin from

GSD. A binary mask and a three-dimensional watershed were finally

generated to separate nucleus clusters (Otsu, 1979). An astrocyte

nucleus was selected on the basis of its high GFAP

immunofluorescence intensity, and was displayed in green. All

other detected nuclei were displayed in red. A dialogue box enabled

the user to confirm or correct the software’s choice of nuclei.

5. The GFAP immunofluorescence was processed using a 0.5 median

filter and a binary mask, using Li’s threshold method (Li and Lee,

1993). The three-dimensional local thickness of the processes was

used to generate a distance map and calculate the local process

diameters.

6. For FISH dot channel processing, a value of 500 (a manual estimation

of the background after deconvolution) was subtracted from each

voxel. A difference of Gaussian filter (kernel: 3–1) and a binary mask

were applied, using the threshold method defined in the “parameters”
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dialogue box. The mean dot size volume was computed after the

exclusion of dot clusters (volume >2 µm3). For dot clusters (which

arise when mRNAs are strongly expressed), the dot number was

calculated by dividing the cluster by the previously determined mean

dot size volume. For each dot, the mean intensity in the GFAP

immunofluorescence channel and the distance map value (the process

diameter) was calculated.

7. FISH dots were classified into one of three categories: (a) Dot 0 (in

red) was a dot in the immunofluorescence background (without using

the ‘Specific mRNA’ option only): mean GFAP immunofluorescence

intensity ≤bgThreshold; distance to the boundary of the nucleus

>2 µm. (b) Dot 1 (in yellow) was a dot in a fine process: mean GFAP

immunofluorescence intensity >bgThreshold; distance to the

boundary of the nucleus >2 µm; astrocyte process diameter <step in

the z calibration (0.3 µm). (c) Dot 2 (green) was a dot in a large

process: mean GFAP immunofluorescence intensity >bgThreshold;

distance to the boundary of the nucleus >2 µm; astrocyte process

diameter >step in the z calibration (0.3 µm); or a dot in the soma if the

distance to the boundary of the nucleus ≤2 µm. Hence, Dots 1 and 2

were inside astrocytes, and Dots 0 were outside astrocytes.

8. For each image and for each computed ROI, a .csv output table was

generated with the following headers: Image name; ROI name;

Background intensity; Astrocyte volume; Dot density inside astrocytes

(number of dots 1+number of dots 2)/astrocyte volume); Percentage of

dots outside the astrocyte (number of dots 0/total dot number);

Percentage of dots in astrocyte somata (number of dots less than 2 µm

from the boundary of the nucleus/number of dots in astrocytes);

Percentage of dots in fine processes (number of dots 1/number of

dots in astrocytes); Percentage of dots in large processes [(number of

dots 2–number of dots in somata)/number of astrocyte dots]; Mean

astrocyte diameter. For each image and each ROI, the selected

nucleus, astrocyte channel and classified dot populations were saved

as .TIF images.

Astrostat

AstroStat was designed to: (i) define the template analysis using a checkbox

(working directory, conditions to be compared, paired or unpaired analysis,

or data normality plot); (ii) pool data appropriately for each mouse; (iii) test

the normality of the data distribution of each group (using Shapiro’s test). If

there were more than 30 cells in each group, the central limit theorem was

applied; (iv) test the equality of variances (using Fisher’s test) for an

unpaired analysis; and (v) compare the means using an unpaired or paired

analysis. Student’s t-test was used for normally distributed data and equal

variances; Welch-Satterthwaite’s test for a normal data distribution and

unequal variances; Wilcoxon’s test for non-normally distributed data; for

paired analyses, a paired Student’s t-test was used for normally distributed

data; Wilcoxon signed rank test for non-normally distributed data. The

threshold for statistical significance was set to P<0.05.
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II. Translational regulation by RACK1 in astrocytes 
represses KIR4.1 expression and regulates neuronal 
activity 

Summary 

Translation regulation in neurons has been shown to be performed by RNA-binding proteins (RBPs), 

cytoskeleton and ribosome associated proteins among others. These molecules regulate crucial 

neuronal functions as well as the brain physiology. However, these mechanisms are unknown in 

astrocytes. To tackle this question, we identified the proteins associated with astrocytic polyribosomes 

by Translating Ribosome Affinity Purification (TRAP) from Aldh1l1-eGFP/Rpl10a (BacTRAP) mice 

in which GFP fused ribosomes are found only in astrocytes, followed by mass spectrometry (MS). 

This approach led us to identify 249 candidate proteins corresponding mainly to ribosomal proteins, 

ribosome-associated proteins and cytoskeleton-associated proteins. In this proteome, we further 

focused on RACK1. RACK1 is a scaffolding protein involved in several cellular functions including 

regulation of translation by its association with the 40S subunit of ribosomes. We first showed that 

RACK1 was expressed in astrocytes by FISH and immunostaining. To understand its role in 

astrocytes, we investigated its association with a restricted panel of astrocytic specific RNAs. We 

found that Kcnj10 coding for KIR4.1 and Slc1a2 coding for GLT1 were the most associated with 

RACK1 in the whole astrocyte and in perisynaptic astrocytic processes (PAPs). To further deepen our 

knowledge for RACK1’s function in astrocytes, we developed a mouse model in which RACK1 is 

deleted in astrocytes in the adult mouse (RACK1 cKO). We found that KIR4.1 was increased in both 

whole astrocyte and PAPs in the hippocampus while GLT1 levels remained unchanged. In RACK1 

KO HEK cells, we found that this KIR4.1 increase was related to a translational regulation mediated 

by sequences of the 2nd half of Kcnj10 5’UTR. Since KIR4.1 regulates ion homeostasis, water 

exchange could be at play regulating the cell volume. In the mouse, we found that RACK1 cKO 

astrocytes were bigger and had more processes. Finally, KIR4.1 regulates K+, a crucial synaptic 

function regulator and we found that RACK1 regulate neuronal transmission. Indeed, in RACK1 cKO 

mice, the depression of local field potentials of neurons due to high frequency stimulation in the 

hippocampus was less dramatic than in the control. This was not the case in low frequency stimulation 

or in the presence of a KIR4.1 specific inhibitor. In a multi electrode array experiment where 

hippocampal neurons were recorded as a network in pro epileptic conditions, RACK1 cKO neurons 

fired less frequently but with longer bursts. 

This study is under review in Cell reports. I am first author. 
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In this work, I performed the TRAP and extracts for the mass spectrometry platform. I studied the 

analysed proteome and I performed the gene ontology analysis. I performed the FISH, 

immunostainings and western blots on the different astrocytic compartments. I did the RACK1 IP and 

TRAP and qPCR assays with the help of my students. I developed and bred the RACK1 cKO model. 

Clément Chapat and Clara Moch performed all in vitro studies. I helped Anne-Cécile Boulay injecting 

the viruses for the study of astrocyte morphology. I perfused the mice. I supervised Mathis Gaudey 

for the imaging, reconstruction and analysis of the astrocyte volumes. I helped Elena Dossi and 

Giampaolo Milior for electrohysiologycal experiments. Elena Dossi and Giampaolo Milior 

performed the local field potential experiments. Elena Dossi analysed the electrophysiology data. I 

helped writing the paper with Martine Cohen-Salmon and I built the figures. 

  Supplementary tables are available on BioRxiv
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Summary 

 

The regulation of translation in astrocytes, the main glial cells in the brain, remains poorly 

characterized. We developed a high-throughput proteomic screen for polysome-associated 

proteins in astrocytes and focused on the ribosomal protein receptor of activated protein C kinase 

1 (RACK1), a critical factor in translational regulation. In astrocyte somata and perisynaptic 

astrocytic processes (PAPs), RACK1 preferentially bound to a number of mRNAs, including 

Kcnj10, encoding the inward rectifying potassium (K+) channel KIR4.1, a critical astrocytic 

regulator of neurotransmission. By developing an astrocyte-specific, conditional RACK1 knock-

out mouse model, we showed that RACK1 repressed the production of KIR4.1 in hippocampal 

astrocytes and PAPs. Reporter-based assays revealed that RACK1 controlled Kcnj10 translation 

through the transcript’s 5’ untranslated region. Upregulation of KIR4.1 in the absence of RACK1 

modified the astrocyte territory volume and neuronal activity attenuatin burst frequency and 

duration in the hippocampus. Hence, astrocytic RACK1 represses KIR4.1 translation and 

influences neuronal activity. 

 

Keywords: Astrocytes; RACK1; Translation; KIR4.1 
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Introduction 

 

Astrocytes, the main glial cells in the brain, are large and highly ramified. They project long 

processes to neurons (perisynaptic astrocytic processes, PAPs) and brain blood vessels (perivascular 

astrocytic processes, PvAPs) and dynamically regulate synaptic and vascular functions through the 

expression of specific, polarized molecular repertoires (Cohen-Salmon et al., 2021; Dallerac et al., 

2018). There are few data on the mechanisms that regulate translation in astrocytes. Translation is known 

to be mediated by cis-acting elements, including RNA motifs and secondary structures that influence 

the binding of trans-acting proteins (also known as RNA-binding proteins, RBPs) (Harvey et al., 2018). 

A few RBPs have been identified and studied in astrocytes (Blanco-Urrejola et al., 2021; Mazare et al., 

2021). For example, fragile-X mental retardation protein (FMRP) has been shown to bind and transport 

mRNAs encoding autism-related signaling proteins and cytoskeletal regulators in radial glial cells (Pilaz 

et al., 2016). The selective loss of FMRP in astrocytes was shown to dysregulate protein synthesis in 

general and expression of the glutamate transporter GLT1 in particular (Higashimori et al., 2016). In the 

mouse, the expression of a pathological form of FMRP (linked to late-onset fragile X syndrome/ataxia 

syndrome) in astrocytes was found to impair motor performance (Wenzel et al., 2019). More recently, 

mRNAs enriched in PAPs were shown to contain a larger number of Quaking-binding motifs (Sakers et 

al., 2021), and inactivation of the cytoplasmic Quaking isoform QKI-6 in astrocytes altered the binding 

of a subset of mRNAs to ribosomes (Sakers et al., 2021). Quaking was also shown to regulate the 

differentiation of neural stem cells into glial precursor cells by upregulating several genes involved in 

gliogenesis (Takeuchi et al., 2020). Another general parameter of importance in the regulation of 

translation is the composition of the translation machinery itself, including ribosomal RNAs (rRNA) 

and proteins (Gay et al., 2022; Mauro and Matsuda, 2016). This aspect had not previously been studied 

in astrocytes. Lastly, RNA distribution and local translation are important, highly conserved 

mechanisms for translational regulation in most morphologically complex cells (Besse and Ephrussi, 

2008). We and others have demonstrated that local translation occurs in astrocyte PvAPs and PAPs; this 

translation might sustain the cells’ molecular and functional polarity (Boulay et al., 2017; Mazare et al., 

2020b; Sakers et al., 2017). 



 4 

To advance our understanding of translation mechanisms in astrocytes, we identified a pool of 

polysome-associated proteins in astrocytes by combining translating ribosome affinity purification 

(TRAP) (Mazare et al., 2020a) with mass spectrometry (TRAP-MS). We then focused on receptor of 

activated protein C kinase 1 (RACK1), a highly conserved eukaryotic protein that is involved in several 

aspects of translation. RACK1 is positioned at the head of the 40S subunit in the vicinity of the mRNA 

exit channel (Gallo and Manfrini, 2015; Nilsson et al., 2004). It regulates not only ribosome activities 

(such as frameshifting and quality-control responses) but also polysome localization and mRNA 

stability (Ikeuchi and Inada, 2016; Juszkiewicz et al., 2020). In the brain, RACK1 has been mainly 

described in neurons (Kershner and Welshhans, 2017b) and is involved in local translation and axonal 

guidance and growth (Kershner and Welshhans, 2017a). The changes in RACK1 expression observed 

in several neuropathological contexts (such as bipolar disorder (Wang and Friedman, 2001), 

Alzheimer’s disease (Battaini and Pascale, 2005; Battaini et al., 1999), epilepsy (do Canto et al., 2020; 

Xu et al., 2015), addiction (McGough et al., 2004), amyotrophic lateral sclerosis (Russo et al., 2017), 

and Huntington’s disease (Culver et al., 2012)) indicate the importance of the protein’s physiological 

role in the brain. 

In the present study, we demonstrate that RACK1 associates with specific mRNAs, represses the 

translation of Kcnj10 mRNA (encoding the inward rectifying K+ channel KIR4.1), and regulates 

neuronal activity. 
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Results 

 

Identification of polysome-associated proteins in astrocytes 

We used TRAP-MS to identify polysome-associated proteins in astrocytes (Fig. 1A). Enhanced 

green fluorescent protein (eGFP)-tagged polysomal complexes were immunopurified from whole brain 

cytosolic extracts prepared from 2-month-old Aldh1l1:L10a-eGFP transgenic BacTRAP (BT) mice. 

These animals express the eGFP-tagged ribosomal protein RPL10a specifically in astrocytes (Heiman 

et al., 2008) (Fig 1A). The same experiment was performed on brain samples from C57/BL6 (wild type) 

mice, as a control (Fig 1A). A Western blot analysis of immunoprecipitated proteins showed that 

RPL10a-GFP and the ribosomal protein S6 (RPS6, a component of the 40S ribosomal subunit) were 

present in BT immunoprecipitates only – demonstrating the efficiency and specificity of TRAP-MS 

(Fig. 1B). Extracted proteins were characterized using proteomics and quantitative label-free tandem 

MS (LC-MS-MS) (Fig 1A, C).Three proteins were found only in WT extracts and 139 were found only 

in BT extracts (fold changes (FC): – or +¥), 61 proteins were enriched in WT extracts (p-value < 0.05; 

Log2 FC < -1), 106 proteins were detected in both WT and BT extracts (p-value < 0.05; -1 < Log2 FC 

< 1), and 110 proteins were enriched in BT extracts (p-value < 0.05; Log2 FC > 1) (Fig. 1C; Table 1; 

Table S1). A Gene Ontology (GO) analysis of the 249 proteins enriched or specifically identified in BT 

immunoprecipitates indicated that most were ribosomal proteins (26%) or RBPs (39.1%) involved in 

ribosome biogenesis (22.7%) and gene expression (30.9%) (Fig. 1D). We were able to identify a set of 

polysome-associated proteins in astrocytes. 

 

RACK1 associates with polysomes in astrocytes 

Among the ribosome-associated proteins preferentially extracted with TRAP-MS, we focused 

on RACK1. This protein binds to the small ribosomal subunit 40S and has a key role in the translation 

of capped, polyadenylated mRNAs (Johnson et al., 2019) (Fig. 2A). RACK1’s role in astrocytes had not 

been assessed previously. However, we recently identified Gnb2l1 mRNA (encoding RACK1) as one 

of the most highly enriched, translated mRNAs in PAPs; this finding suggested that RACK1 has an 

important role at this cellular interface (Mazare et al., 2020b); A Western blot analysis of TRAP-MS 
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immunoprecipitated proteins showed that RACK1 was specifically detected in the BT condition and 

thus confirmed the co-immunoprecipitation of RACK1 with astrocytic polysomes (Fig. 2B). We next 

characterized RACK1 expression in astrocytes, with a focus on samples from hippocampus. We used 

fluorescent in situ hybridization (FISH) to detect Gnb2l1 mRNAs in astrocytes (Fig. 2C). Since Gnb2l1 

is ubiquitous, we immunolabeled astrocytes for GFAP. The Gnb2l1 FISH dots localized on GFAP 

processes were identified using our recently developed Astrodot protocol (Oudart et al., 2020). In line 

with our previous results, Gnb2l1 mRNAs were detected somewhat in astrocyte somata but mainly in 

astrocytic processes (Mazare et al., 2020b) (Fig. 2C). We next performed immunofluorescence imaging 

of RACK1 on hippocampal sections (Fig. 2D). RACK1 was clearly detected in neurons and GFAP-

immunolabeled astrocytic soma and processes (Fig. 2D). These results suggested that RACK1 is 

expressed in astrocytes and associates with astrocytic polysomes. 

 

RACK1 associates with specific mRNAs in astrocytes and in PAPs 

We next determined which mRNAs were associated with RACK1 in astrocytes via mRNA 

immunoprecipitation (using a RACK1-specific antibody) of whole brain astrocytic cytoplasmic extracts 

prepared from 2-month-old mice. We first checked the efficiency of RACK1 immunoprecipitation on 

Western blots. Increasing levels of anti-RACK1 antibody indeed immunoprecipitated higher levels of 

RACK1 and the small subunit ribosomal protein RPS6 (Fig. 3A). We then repeated the experiment with 

the optimal quantity of RACK1 antibody, extracted the immunoprecipitated mRNAs, and analyzed them 

with qPCRs (Fig. 3B). Nonspecific mouse immunoglobulins G (IgG) were used as a negative control 

(Fig. 3B). Extracts prepared from whole brain were immunoprecipitated (Fig. 3C). RACK1 was present 

in astrocyte processes (Fig. 2D) and was preferentially translated in hippocampal PAPs (Mazare et al., 

2020b). We therefore also immunoprecipitated RACK1 in synaptogliosome preparations consisting of 

PAPs attached to synaptic neuronal membranes (Carney et al., 2014) (Fig. 3C’). Since RACK1 is 

ubiquitously expressed in the brain, we limited our analysis on a selection of astrocyte-specific mRNAs 

and focused on those detected previously in PAPs (Mazare et al., 2020b), such as Kcnj10, encoding the 

inward rectifying K+ channel KIR4.1, Slc1a2, encoding the glutamate transporter GLT1, Aqp4, encoding 

the water channel aquaporin 4, Slc1a3, encoding the glutamate transporter GLAST, and Gja1 and Gjb6, 
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encoding the gap junction proteins connexin 43 and 30, respectively. With the exception of Gjb6, all the 

tested mRNAs were immunoprecipitated more significantly by RACK1 than by IgG in whole brain (Fig. 

3C) and synaptogliosome extracts (Fig. 3C’). These results were probably influenced by the level of 

polysomal mRNAs in astrocytes and PAPs. We therefore determined the level of each polysomal mRNA 

in astrocytes and PAPs by performing TRAP and qPCRs on whole-brain extracts from 2-month-old BT 

mice (Fig. 3D, E) or on synaptogliosome extracts (Fig. 3D, E’). The mean value for each mRNA was 

then used to normalize the quantity of RACK1-immunoprecipitated mRNA (Fig. 3F) in whole brain 

(Fig. 3G) and in synaptogliosomes (Fig. 3G’). The results of these experiments suggested that Slc1a2 

and Kcnj10 were preferentially associated with RACK1 in astrocytes (Fig 3G) and in PAPs (Fig. 3G’). 

Taken as a whole, these results suggested that RACK1 associates preferentially with specific 

mRNAs in astrocytes and in PAPs. 

 

RACK1 represses the expression of Kcnj10 in astrocytes 

To gain insights into RACK1’s function in astrocytes, we generated a RACK1 conditional 

knock-out mouse model (RACK1 cKO) by crossing RACK1 fl/fl mice with Aldh1L1-CreERT2 mice 

(Fig. 4A). Two month-old Aldh1L-CreERT2: RACK1 fl/fl mice were injected with tamoxifen, to induce 

RACK1 KO in astrocytes (Fig 4A). Gnb2l1 KO in astrocytes was confirmed by PCRs on DNA extracted 

from whole brain (Fig. 4B) and by immunofluorescence assays of hippocampal sections (Fig. 4C). In 

the cKO mice, RACK1 was detected in pyramidal layer neurons but not in astrocytes immunolabelled 

for GFAP (Fig. 4C). We next sought to determine the impact of RACK1 KO in astrocytes on the level 

of GLT1 and KIR4.1 in whole hippocampus or hippocampal synaptogliosome protein extracts from 

RACK1 fl/fl and RACK1 cKO mice (Fig. 4D). Interestingly, the various extracts did not differ 

significantly with regard to the level of GLT1 but the level of KIR4.1 was significantly higher in the 

two extracts from RACK1 cKO mice (Fig. 4D). 

These results demonstrated that RACK1 deficiency in astrocytes led to a higher level of KIR4.1 

in whole astrocytes and in PAPs. 
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In cellulo translational control by RACK1 depends on the 5’ untranslated region (5’UTR) of 

Kcnj10  

RACK1 is an essential factor in translation and in ribosome quality control. It senses ribosome 

stalling on rare codons (such as CGA, coding for arginine, and AAA, coding for lysine) and can cause 

translation elongation to pause or abort. The absence of RACK1 results in the more frequent translation 

of mRNAs with stalling sequences and eventually the accumulation of peptides with frameshifts 

(Juszkiewicz et al., 2020). Since we observed RACK1-dependent downregulation of Kcnj10, we first 

hypothesized that the Kcnj10 gene’s coding sequence (CDS) is subject to a stalling event that can only 

be resolved by RACK1. To test this hypothesis, we generated Human Embryonic Kidney 293T 

(HEK293T) cells in which RACK1 expression was disrupted through a CRISPR/Cas9-based strategy 

(RACK1KO cells; Fig. 5A). We then designed a dual fluorescence reporter system in which GFP and 

mCherry fluorescent proteins were expressed in-frame from a single mRNA and were separated by the 

Kcnj10 CDS (Fig. 5B). The Kcnj10 CDS was insulated with viral P2A sequences, at which ribosomes 

skip the formation of a peptide bond without interrupting elongation (Lin et al., 2013). Complete 

translation of this cassette generates three proteins (GFP, mKIR4.1, and mCherry), and the presence of 

any stall-inducing sequences in Kcnj10 CDS would modify the translation rate prior to mCherry 

synthesis and would thus result in a sub-stoichiometric mCherry:GFP ratio. A reporter without Kcnj10 

CDS served as a negative control. The positive control was a reporter in which Kcnj10 CDS had been 

replaced by a sequence containing a stretch of consecutive lysine AAA codons (termed K20) and that 

was known to induce ribosome stalling (Fig.S1A) (Juszkiewicz and Hegde, 2017). These reporters were 

expressed in WT and RACK1KO cells, and the mCherry:GFP ratio was measured at the single-cell level 

using fluorescence-activated cell sorting (Fig. 5C, Fig. S1B). We found that RACK1KO cells displayed 

a robust elevation of the mCherry level expressed downstream of the K20 sequence, confirming that 

loss of RACK1 impairs ribosome stalling (Fig. S1B, C). In contrast, the absence of RACK1 did not 

modify the mCherry/GFP ratio of the reporter cassette containing Kcnj10 CDS, when compared with 

WT cells (Fig. 5C, D). Taken as a whole, these data indicate that the sensitivity of the Kcnj10 mRNA 

with regard to RACK1 is not mediated by a RACK1-modulated ribosomal event involving its CDS. 
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We next sought to determine whether Kcnj10’s sensitivity to RACK1 was conferred by its 

5’UTR. Two distinct 5’UTRs have been reported for Kcnj10 in the mouse (NM_001039484.1 and 

AB039879.1, hereafter referred to respectively as 5’UTR#1 and 5’UTR#2). 5’UTR#1 is composed of a 

G/C-rich first half (region 1-104, not found in other mammalian Kcnj10 orthologs) and a highly 

conserved second half (the 147-242 region which is shared with 5’UTR#2) (Fig. S2A, Fig. 5E). 

5’UTR#1 and 5’UTR#2 were inserted in the psiCHECK-2 luciferase reporter vector downstream of the 

Renilla luciferase (RLuc) CDS (Fig. 5E). A reporter harboring the 3’UTR of Kcnj10 upstream of RLuc 

was also constructed as a control. These reporters were transfected into WT and RACK1KO HEK293T 

cells, and the effect of RACK1 loss on RLuc activity for each UTR construct was calculated relative to 

an empty psiCHECK2 reporter level (control RLuc). RLuc activity was normalized against the activity 

of the co-expressed FLuc (Fig. 5F). We detected significantly greater RLuc activity when the RLuc 

reporters harboring Kcnj10 5’UTRs were expressed in RACK1KO cells (relative to expression in WT 

cells) (Fig. 5F). In contrast, no difference between WT and RACK1KO cells was observed for the RLuc-

Kcnj10 3’UTR construct – indicating that translational control by RACK1 is mediated by Kcnj10 

5’UTRs (Fig. 5F). A qPCR analysis did not show significant differences in RLuc mRNA levels under 

any conditions, which confirmed that the Kcnj10 5’UTR-mediated effect on RLuc activity was post-

transcriptional (Fig. S3A,B). Since 5’UTR#1 and 5’UTR#2 share a common 96-nucleotide region (Fig. 

S2B), we hypothesized that this sequence confers RACK1-dependent translation control. To test this 

hypothesis, we truncated the 242-nucleotide-long Kcnj10 5’UTR#1 into five overlapping fragments, 

which were inserted upstream of the RLuc sequence and expressed in WT and RACK1KO cells (Fig. 

5G). We found that both the 127-242 region and the shorter 181-242 region were sufficient to increase 

the RLuc activity in RACK1KO cells (relative to WT cells), whereas the first half (region 1-146) did not 

confer RACK1 sensitivity (Fig. 5G, H).  

Taken as a whole, these data demonstrate that RACK1’s control over the translation of Kcnj10 

mRNA depends on the Kcnj10 5’UTR rather than its CDS or 3’UTR. 

 

RACK1 regulates astrocyte volume 
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KIR4.1 is a weakly inwardly rectifying K+ channel that confers astrocytes with high K+ 

conductance. K+ influx into astrocytes is thought to be coupled to water intake, leading to transient or 

prolonged swelling (MacVicar et al., 2002; Risher et al., 2009). Thus, elevation of KIR4.1 levels in 

RACK1 cKO might be associated with a greater hippocampal astrocyte volume. We used an adeno-

associated virus (AAV) bearing the gfaABC1D synthetic promoter (derived from Gfap; (Lee et al., 

2008)) to drive the expression of the fluorescent protein tdTomato in astrocytes. AAVs were injected 

into the CA1 region of the dorsal hippocampus of adult mice (Fig. 6A). A three-dimensional (3D) 

analysis was performed on sparse labelled CA1 hippocampal astrocytes from 2-month-old WT and 

RACK1 cKO mice (Fig. 6B-F). RACK1 cKO astrocytes had a larger territory volume (Fig. 6D) and 

longer distal processes (Fig. 6F) than RACK1 fl/fl astrocytes.  

These results indicated that astroglial RACK1 is required for a correct hippocampal astrocyte 

territory volume. 

 

RACK1 regulates neuronal activity 

During their activity, neurons release large amounts of K+ at the synapses. The K+ is rapidly 

taken up by astrocytic KIR4.1 and is redistributed across the astrocytic network. This astrocytic K+ 

clearance mechanism maintains perisynaptic homeostasis and prevents neuronal hyperexcitability. 

Since we had shown that RACK1 cKO astrocytes contained high levels of KIR4.1, we sought to 

determine whether this change alters basal excitatory synaptic transmission. To this end, we stimulated 

CA1 Schaffer collateral (SC) synapses in acute hippocampal slices and thus evoked α-amino-3-hydroxy-

5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated field excitatory postsynaptic 

potentials (fEPSPs) (Fig. 7A). The size of the presynaptic fiber volley (the input) was compared with 

the slope of the fEPSP (the output). RACK1 cKO mice and control RACK1 fl/fl mice did not differ with 

regard to basal synaptic transmission (Fig. 7B). We next investigated the effect of the KIR4.1 K+ channel 

blocker VU0134992 (30 µM) and found a similar overall decrease in excitatory synaptic transmission 

in both RACK1 fl/fl and RACK1 cKO animals after 20 minutes of application (Fig. 7B). These results 

indicate that the elevated expression of astrocytic KIR4.1 K+ channels in RACK1 cKO mice does not 

modify hippocampal basal excitatory synaptic transmission evoked in the hippocampal CA1 region. 
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We reasoned that the elevated expression of KIR4.1 K+ channels in RACK1 cKO astrocytes and 

the consequent enhancement in K+ buffering capacity might have major roles during intense neuronal 

activity. To test this hypothesis, we repeatedly stimulated SCs (10 Hz, 30 s) and analyzed the fEPSPs in 

CA1 region of the hippocampus. This stimulation induced rapid synaptic facilitation and then depression 

(Fig. 7C), which results from depletion of the presynaptic glutamate pool. Facilitation was greater and 

depression was slower in RACK1 cKO slices than in RACK1 fl/fl slices (Fig. 7D). This finding indicates 

that the elevated expression of KIR4.1 K+ channels in RACK1 cKO mice sustains repetitive excitatory 

synaptic activity. Accordingly, KIR4.1 K+ channel inhibition by VU0134992 (30 µM, for 20 min) had 

more of an effect on synaptic facilitation and depression in RACK1 cKO mice than in RACK1 fl/fl mice 

(Fig. 7D). Indeed, in the presence of VU0134992, repetitive stimulation-induced facilitation and 

subsequent depression were similar in RACK1 fl/fl and RACK1 cKO mice (Fig. 7D). These results 

indicate that astrocytic RACK1 regulates neuronal activity in response to repetitive stimulation by 

controlling the expression of KIR4.1 K+ channel. 

We next tested the impact of RACK1 on recurrent burst activity. This was induced in 

hippocampal slices by incubation in a pro-epileptic artificial cerebrospinal fluid (ACSF) (Mg2+-free with 

6 mM KCl (0Mg6K ACSF)). We recorded neuronal bursts in all hippocampal regions by using the 

multi-electrode array (MEA) technique (Fig. 7E). We found that bursts were less frequent and last for 

longer in RACK1 cKO mice than in RACK1 fl/fl mice (Fig. 7F, G). Hence, the burst rate under pro-

epileptic conditions appeared to be better controlled in astrocytic RACK1 cKO mice than in RACK1 

fl/fl mice. To check whether this was due to more efficient buffering of extracellular K+ released during 

sustained activity, we recorded burst activity in RACK1 fl/fl and RACK1 cKO slices in the presence of 

VU0134992 (30 µM). In RACK1 fl/fl mice, 15-25 min of inhibition of the KIR4.1 K+ channel by 

VU0134992 was associated with a transient increase in burst frequency that was likely due to the 

neuronal depolarization caused by extracellular K+ accumulation. This was followed (after >30 min of 

VU0134992 exposure) by a long-lasting decrease in burst frequency, which probably resulted from the 

accumulation of excess extracellular K+ (Fig. 7H, top, left). There was no effect on burst duration (Fig. 

7H, bottom, left). Interestingly, this dual regulation of burst frequency was not observed in RACK1 
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cKO mice (Fig. 7H, top, right), which showed only a decrease in burst duration after >30 min treatment 

with VU0134992 (Fig. 7H, bottom, right). These results indicate that by controlling KIR4.1 expression 

and the associated K+ buffering capacity in astrocytes, RACK1 helps to modulate the firing rate when 

neuronal activity is sustained.  

Collectively, our results show that RACK1 associates with specific mRNAs in astrocytes and, 

in particular, represses the translation of Kcnj10 mRNA. This translational effect is mediated by the 

Kcnj10 gene’s 5’UTR. RACK1 cKO in astrocytes is associated with higher KIR4.1 levels overall and 

in PAPs; in turn, this affects astrocyte volume and attenuates recurrent neuronal burst activity. 

  



 13 

Discussion 

 

The objective of the present study was to investigate the molecular mechanisms that regulate 

translation in astrocytes. We developed a TRAP method for purifying polysome-associated proteins in 

astrocytes and focused on the 40S-associated protein RACK1, a critical factor in translational regulation 

(Gallo and Manfrini, 2015; Nielsen et al., 2017). We demonstrated that RACK1 interacts with specific 

mRNAs in astrocytes and PAPs, represses the translation of Kcnj10 (encoding KIR4.1), and thus impacts 

astrocyte volume and neurotransmission. 

The TRAP technique that we used to purify astrocyte polysomes was originally developed for the 

analysis of polysomal mRNAs (Doyle et al., 2008). Here, we demonstrated that TRAP was compatible 

with MS. As expected, the most abundant immunopurified proteins were ribosomal or translation 

complex-associated proteins, although other proteins were also identified. The most highly represented 

cytoskeletal associated proteins in our screen included Ckap4 (CLIMP63), an endoplasmic reticulum 

(ER) integral membrane protein that binds to microtubules and promotes ER tubule elongation 

(Vedrenne et al., 2005). Interestingly, Ckap4 has a crucial role in the dendritic organization of the ER 

in neurons (Cui-Wang et al., 2012). The cytoplasmic linker associated protein CLASP2 mediates 

asymmetric microtubule nucleation in the Golgi apparatus and is crucial for establishing the latter’s 

continuity and shape (Miller et al., 2009). CLASP2 cytoskeleton-related mechanisms have been shown 

to underlie microtubule stabilization, neuronal polarity and synapse formation and activity (Beffert et 

al., 2012). These proteins might be candidates for the regulation of translation in astrocytes. In contrast, 

our experiments did not pinpoint all the known RBPs in astrocytes; for instance, we did not detect Qki, 

which was recently shown to regulate translation in astrocytes (Radomska et al., 2013; Sakers et al., 

2021). Thus, the TRAP-MS technique probably does not give a comprehensive view of the ribosome-

associated proteome in the astrocyte. However, it is cell-specific and so might be a powerful approach 

for identifying some of the key post-transcriptional regulators in astrocytes. 

Among the astrocytic ribosome-associated proteins identified in our screen, we focused on the 

highly enriched RACK1. Interestingly, use of a selection of astrocyte-specific mRNAs enabled us to 

determine the preferential association of RACK1 with Kcnj10 and Slc1a2 mRNAs. This finding 
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indicated that RACK1-containing ribosomes associate with specific mRNAs in astrocytes and probably 

confer specific translational properties on the ribosomes. Along the same lines, it has been shown that 

ribosomes with different stoichiometries of RACK1 translate different subsets of mRNAs (Coyle et al., 

2009). RACK1 was also recently described as one of the ribosomal proteins translated in neurites and 

able to rapidly go on and off the ribosomes in neurons – suggesting strongly that RACK1-containing 

ribosomes have specific functions (Fusco et al., 2021). Taken as a whole, these data suggest that RACK1 

is involved in ribosome filtering mechanisms (Mauro and Matsuda, 2016). It remains to be seen how 

the interaction between RACK1-containing ribosomes and specific mRNAs is achieved but various 

elements might be involved in this process. RACK1 has been shown to discriminate between mRNAs 

according to their length and to promote the translation of mRNAs with a short open reading frame 

(Thompson et al., 2016). In viruses, RACK1 might mediate the translation of mRNAs with an internal 

ribosome entry site (Majzoub et al., 2014). Other studies have demonstrated that RACK1 controls 

translation by sensing 5’UTR sequences and structures (Gallo et al., 2018). 

Here, we showed that cell-selective RACK1 KO led to higher levels of KIR4.1 in astrocytes and 

in PAPs, indicating that RACK1 represses Kcnj10 translation. RACK1 has been shown to control 

important aspects of ribosome quality control by sensing stalled ribosomes on polyarginine or proline 

codons and contributing to the degradation of nascent protein chains on stalled ribosomes (Juszkiewicz 

et al., 2020; Kuroha et al., 2010; Sitron et al., 2017; Sundaramoorthy et al., 2017). We further confirmed 

this effect on a lysine AAA sequence. However, we showed that this type of mechanism does not operate 

on the Kcnj10 CDS – indicating that the increase in KIR4.1 seen after RACK1 KO is not related to a 

ribosomal readthrough mechanism. In contrast, we showed that the RACK1-mediated control of Kcnj10 

relied on specific 5’UTR sequences. It now remains to be determined how this regulatory mechanism 

operates. With regard to RACK1’s mRNA selectivity, this question reamins extremely complex because 

several mechanisms might be involved. RACK1 recruits and controls the activity of translation factors 

like the elongation factor eIF6 (Rollins et al., 2019). RACK1 is known to interact with components of 

the microRNA-induced gene silencing complex. This interaction recruits the complex to the translation 

site and facilitates gene repression (Jannot et al., 2011). Baum et al. suggested that recruitment of the 

mRNA-binding protein Scp160 to the yeast homolog (Asc1p) of RACK1 may influence the translation 
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of specific mRNAs (Baum et al., 2004). On the same lines, changes to the translation machinery 

recruited on the Kcnj10 5’UTR might occur in the absence of RACK1, which would change the 

ribosomal translational efficiency. 

In previous research, we demonstrated that the RACK1-encoding gene Gnb2l1 is preferentially 

translated in PAPs. This suggests that RACK1-ribosome composition in astrocytes is not homogenous 

and that RACK1 exerts its translational control preferentially in PAPs (Mazare et al., 2020b). We also 

determined that Kcnj10 polysomal mRNAs are present in PAPs (Mazare et al., 2020b). In neuronal 

processes, the plasticity of ribosomal protein composition involves RACK1 (Fusco et al., 2021). Here, 

we found that RACK1 was associated with Kcnj10 mRNAs in astrocytes in general but also in PAPs in 

particular. Moreover, we found that PAP levels of KIR4.1 were lower in the absence of RACK1. Taken 

as a whole, these data indicate that RACK1 regulates KIR4.1 translation not only in astrocytes in general 

but also locally in PAPs. 

KIR4.1 is a weakly inwardly rectifying K+ channel; in astrocytes, it helps to maintain the resting 

membrane potential, high K+ conductance, volume regulation, and glutamate uptake (Chever et al., 

2010; Djukic et al., 2007; Juszkiewicz and Hegde, 2017; Kucheryavykh et al., 2007; Olsen and 

Sontheimer, 2008; Seifert et al., 2009; Sibille et al., 2015). During neuronal activity, neurons release 

large amounts of K+ at the synapse. This K+ is rapidly taken up by astrocytic KIR4.1 and is then 

transported through the astrocytic network to regions with lower K+ levels. This astrocytic K+ clearance 

mechanism (known as “spatial K+ buffering” is vital for the maintenance of K+ homeostasis and the 

prevention of neuronal hyperexcitability. Defects in KIR4.1 expression or function are associated with 

various brain pathologies and with epilepsy in particular (Nwaobi et al., 2016). In mice, KIR4.1 

inactivation or reduced expression of KIR4.1 in astrocytes affects neuronal function (as indicated by a 

reduction in hippocampal short-term plasticity) and leads to ataxic seizures and early death (Sibille et 

al., 2014).  

Here, we showed that KIR4.1 overexpression did not modify basal excitatory synaptic transmission but 

was critical during sustained activity (10 Hz stimulation and recurrent bursts). Indeed, we observed 

greater facilitation and slower depression (compared with control mice) after repetitive stimulation in 
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RACK1 cKO mice. This effect was abolished upon addition of a specific KIR4.1 blocker, thus 

demonstrating that the greater facilitation and slower depression observed in RACK1 cKO were related 

to the upregulation of KIR4.1. These results are consistent with previous reports of a role for KIR4.1 in 

the 3-10 Hz frequency band but not in the baseline activity (0.1 Hz) (Chever et al., 2010; Sibille et al., 

2015). Regarding the neuronal network burst activity under pro-epileptic conditions (with 0Mg6K 

ACSF), the burst frequency was lower in RACK1 cKO than in RACK1 fl/fl mice. This finding suggests 

that the astrocytes were better able to buffer extracellular K+ through higher levels of KIR4.1, which 

enhanced the RACK1 cKO mice’s ability to control extracellular K+ levels and the firing rate. Taken as 

a whole, these data thus indicate that by modulating KIR4.1 expression, RACK1 regulates 

neurotransmission. Interestingly, a relationship between RACK1 and epilepsy has been reported 

previously, albeit without a focus on astrocytes. RACK1 was shown to repress the transcription of the 

voltage-gated sodium channel α subunit type I (SCN1A) mRNA, the downregulation of which is 

associated with epilepsy (Dong et al., 2014). In the lithium-pilocarpine rat model, RACK1 levels in the 

hippocampus are elevated after epileptic episodes (Xu et al., 2015). Furthermore, in a rat model of mesial 

temporal lobe epilepsy, RACK1 was upregulated in the granular layer dorsal dentate gyrus and 

downregulated in the ventral dentate gyrus (do Canto et al., 2020). These literature data and our present 

results suggest that RACK1 is an important factor in the regulation of neurotransmission. 

The present study focused on mechanisms of translation in astrocytes. We found that in 

astrocytes, RACK1 is a ribosomal associated protein able to interact selectively with mRNAs. We 

showed that RACK1 represses the synthesis of KIR4.1, which has a critical role in maintaining 

extracellular K+ levels in the brain. Dysfunction of KIR4.1 in rodents and humans evokes seizures and 

chronic epilepsy. Thus, through the regulation of KIR4.1 levels, RACK1 might be a therapeutic target 

in epilepsy. 
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Figure legends 

 

Figure 1: Identification of polysome-associated proteins in astrocytes 

A. Flowchart of the TRAP-MS analysis on whole brain extracts. Proteins extracted from whole 

brain in C57/Bl6 WT mice or Aldh1l1:L10a-eGFP (BT) mice were immunoprecipitated by TRAP and 

analyzed by LC-MS/MS. B. Western blot detection of Rpl10a-eGFP and RPS6 in whole brain extracts 

or TRAP immunoprecipitated proteins (IP-GFP). WT extracts were used as negative controls. C. 

Volcano plot of the TRAP-MS results. Each protein is represented by a dot. The dot size is proportional 

to the number of peptides identified by LC-MS/MS. Dots for proteins specific to or enriched in BT mice 

are represented with a color code: ribosomal proteins are given in light blue, with ribosome-associated 

proteins in red, RNA-binding proteins in purple, cytoskeleton-associated proteins in green, vesicles-ER-

Golgi-lysosome-associated proteins in orange, and other proteins in black. Five independent replicates 

were analyzed (one brain per sample). The protein distribution is represented as the Log2 FC of the 

BT/WT (x-axis) versus -Log10 adjusted p-value (y axis): Proteins identified only in WT extracts (3 

proteins) or only in BT extracts (139 proteins) (FC: – or +∞); Proteins enriched in WT or BT extracts. 

The threshold for the enrichment in WT or BT extracts is p-value < 0.05 (red line) and Log2 FC > 1 or 

< -1 (green lines). 61 proteins were enriched in WT extracts (p-value < 0.05; Log2 FC < -1), 106 proteins 

were detected with a similar abundance in WT and BT extracts (p-value < 0.05, -1 < Log2 FC < 1) and 

110 proteins were enriched in BT extracts (p-value < 0.05; Log2 FC > 1). D. A GO analysis of the 249 

proteins enriched or detected solely in BT extracts (p-value < 0.05; Log2 FC > 1) for biological processes 

(left) and molecular functions (right). The raw data are given in Table S1. 

 

Figure 2: RACK1 is associated with ribosomes in astrocytes 

A. Representation of the human 80S ribosome, generated with PyMol software 

(https://pymol.org/2/, PyMol version 2.3.4, Python 3.7) on the basis of the high-resolution cryo-EM 

structure (Natchiar et al., 2017). RPL10a is shown in green, and RACK1 is shown in black. B. Western 

blot detection of RACK1 and RPl10a-GFP in whole brain protein extracts and in TRAP-MS extracts (IP 
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GFP) in BT conditions. WT extracts were used as negative controls. C. FISH detection of Gnb2l1 

mRNAs encoding RACK1 in hippocampal astrocytes immunolabeled for GFAP. From left to right: 

Confocal microscopy image of a GFAP-immunolabeled astrocyte (in green); FISH detection of Gnb2l1 

mRNAs (red dots); merged image; AstroDot analysis of Gnb2l1 mRNA located on GFAP-positive 

processes. The green dots are located in the soma or in GFAP-immunolabeled large processes; the 

yellow dots are located in GFAP-immunolabeled fine processes. D. Confocal images of RACK1 

immunofluorescence detection (in red) in the hippocampus. Astrocytes (*) are co-immunolabeled for 

GFAP (in green). A neuron (°) is also labelled for RACK1. Scale bar: 20 µm. 

 

Figure 3: RACK1 associates with specific mRNAs in astrocytes and PAPs 

A. Western blot analysis of RACK1 immunoprecipitation in whole brain extracts from 2-month-

old mice. Increasing quantities of RACK1 antibodies (0, 2, and 5 µg) were used. Lower panel: RPS6 is 

also detected in RACK1-immunoprecipitated proteins. B. Flowchart of RNA immunoprecipitation using 

anti-RACK1 antibodies (in red) on whole brain extracts (C) or synaptogliosome extracts (C’) prepared 

from 2-month-old WT mice. Red dots on ribosomes represent RACK1. Immunoprecipitated RNAs were 

purified and screened (in qPCR assays) for a selection of astrocyte-specific mRNAs. IgG-subtracted 

signals were normalized against rRNA 18S. The data are quoted as the mean ± SD (N=5 or 6 samples; 

1 mouse brain per sample); one-sample t-test vs. 0 (except for Gjb6 whole brain experiment, One-sample 

Wilcoxon test). D. Flowchart of polysomal immunoprecipitation (TRAP) using anti GFP antibodies (in 

green) on whole brain (E) or synaptogliosomes extracts (E’) prepared from 2-month-old BT mice. 

Immunoprecipitated RNAs are purified and analyzed by qPCR for a selection of astrocyte specific 

mRNAs. Signals were normalized against rRNA 18S. The data are quoted as the mean ± SD (N=4 

samples; 1 mouse brain per sample). F. Flowchart of the normalization of the RACK1 

immunoprecipitation against mean TRAP values. Ratios were calculated for experiments on whole brain 

(G) or synaptogliosomes (G’). The data are quoted as the mean ± SD (N=5 or 6 samples; 1 mouse brain 

per sample). P values are indicated in green when Kncj10 results was the reference and in red when 

Slc1a2 results was the reference. Two-tailed unpaired t-test or a two-tailed Mann-Whitney test. ns, not 
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significant (p>0.05); *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001. The raw data are presented 

in Table S2. 

 

Figure 4: RACK1 KO in astrocytes leads to higher levels of KIR4.1 in astrocyte somata and PAPs 

A. Generation of a mouse line with RACK1 knocked out in astrocytes. Schematic representation 

of the RACK1 fl/fl and Aldh1l1-Cre/ERT2 alleles. Deletion of exon 2 in Gnb2l1 (the gene coding for 

RACK1) is induced in astrocytes by tamoxifen injection; this results in a frameshift and the premature 

termination of Gnb2l1 translation. B. PCR assays for Gnb2l1 KO in brain DNA from RACK1 fl/fl or 

Aldh1L-CreERT2/ RACK1 fl/fl tamixofen-injected mice (RACK1 cKO). Primers are indicated in (A) 

by red arrows. The 898 base-pair (bp) band corresponds to the floxed allele. The 672 bp band 

corresponds to the exon2-deleted allele. C. Confocal images of RACK1 immunofluorescence detection 

(in red) in the hippocampus in RACK1 fl/fl and RACK1 cKO mice. Astrocytes are co-immunolabeled 

for GFAP (in green). The lower panel gives a higher magnification view of the boxed area in the RACK1 

cKO images, which shows that RACK1 is specifically depleted in astrocytes (*) and is still expressed 

by neurons (°). D. Western blot detection and analysis of KIR4.1 and GLT-1 in protein extracts from 

whole hippocampus or synaptogliosomes purified from RACK1 fl/fl or RACK1 cKO mice. The data 

are quoted as the mean ± SD (N=5 samples per genotype; 1 mouse per sample); two-tailed unpaired t-

test. ns, not significant, p-value>0.05; *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001. The raw 

data are presented in Table S2. 

 

Figure 5: The 5’UTR of Kcnj10 confers RACK1 sensitivity in vitro 

A. CRISPR/CAS9-based KO of RACK1 in HEK293T cells. The Western blot for the indicated 

proteins was performed using WT and RACK1KO cell extracts. B. Topology of the reporters for flow 

cytometry analysis of Kcnj10 mRNA translation. The constructs contain GFP and mCherry separated 

by a multiple cloning site (into which the Kcnj10 CDS had been inserted) and two viral 2A sequences 

(at which ribosomes skip formation of a peptide bond, without interrupting chain elongation). C. 

Representative flow-cytometry-based assay of the fluorescence ratio in WT or RACK1KO HEK293T 

cells transfected by the constructs described in (B). D. A histogram of the data, presented as the mean ± 
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SD (N = 3); Two-tailed t-test with Welch’s correction. E. Schematic representation of the Renilla 

luciferase (RLuc) reporter constructs harboring the 5’UTR and/or 3’UTR of mouse Kcnj10 mRNA. 

These sequences were inserted in the psiCHECK2 vector, which also encodes the Firefly luciferase 

(Fluc). The “control” RLuc was generated by transfecting the empty psiCHECK2 vector. F. WT and 

RACK1KO HEK293T cells were transfected with the reporters described in (E). Luciferase activity was 

measured 24 h after transfection. RLuc values were normalized against FLuc levels, and a ratio was 

calculated for each Kcnj10 reporter relative to the empty psiCHECK2 reporter (value set to 1) for each 

population. F. A histogram of the data, presented as the mean ± SD (N = 4); unpaired Mann-Whitney 

test or unpaired t-test. G. Schematic representation of the truncated versions of the Kcnj10 5’UTR 

inserted in the RLuc reporter. Blue boxes indicated GC-rich regions (see Fig. S2B). Plasmids were 

transfected in WT and RACK1KO HEK293T cells. For each experiment, the ratio was calculated for 

each Kcnj10 reporter relative to the empty psiCHECK2 reporter (value set to 1). H. A histogram of the 

data, presented as the mean ± SD (N = 4); unpaired Mann-Whitney test. ns, not significant, p-

value>0.05; *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001. The raw data are presented in Table 

S2. 

 

Figure 6: RACK1 regulates astrocyte volume  

A. Raw confocal image of an isolated CA1 astrocyte expressing tdTomato. B-F. Imaris analysis: 

filament tracing (B); convex hull volume (C); a 3D Sholl analysis (E). D. Mean territory volume and 

filament length of RACK1 fl/fl and RACK1 cKO astrocytes. A histogram of the data, presented as the 

mean ± SD (N = 4 mice per genotype; 45 astrocytes); two-tailed t-test. F. A Sholl analysis of the 

ramification complexity of RACK1 fl/fl and RACK1 cKO astrocytes. Two-way analysis of variance. *, 

p<0.05; **, p<0.01. The raw data are presented in Table S2. 

 

Figure 7: RACK1 KO in astrocytes does not affect basal excitatory synaptic transmission but does 

alter network population activity and neuronal responses to intense stimulation 

A. Schematic representation of electrode positions used to record field excitatory postsynaptic 

potentials (fEPSP) evoked by Schaffer collateral (SC) stimulation in the CA1 region of hippocampal 
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slices. B. Input-output curves for basal synaptic transmission. Left, representative recordings in RACK1 

fl/fl mice (black) and RACK1 cKO mice before (pink) and after (blue) application of a Kir 4.1 antagonist 

(VU0134992). Scale bars: 10 ms, 0.5 mV. Right, quantification of the fEPSP slope for different fiber 

volley amplitudes after SC stimulation. (RACK1 fl/fl: n=5 slices from 4 mice; p=0.0087; RACK1 cKO: 

n=5 slices from 5 mice; repeated measures two-way ANOVA with Sidak’s correction for multiple 

comparisons). C. Top: a representative recording of fEPSPs evoked by repetitive stimulation (10 Hz, 30 

s) of CA1 SCs in RACK1 fl/fl mice under control conditions. Scale bars: 5 s, 0.2 mV. Bottom: enlarged 

view of fEPSPs evoked by the first 10 stimuli. Scale bars: 200 ms, 0.2 mV. D. Quantification of changes 

in the fEPSP slope induced by 10 Hz stimulation relative to responses measured before the onset of 

stimulation (baseline responses) in RACK1 fl/fl mice (white filled dots) and in RACK1 cKO mice (pink-

filled dots) before (black) and after (blue) application of VU0134992 (RACK1 fl/fl: n=5 from 5 mice; 

RACK1 cKO: n = 6 slices from 4 mice; repeated measures two-way ANOVA with Sidak’s correction 

for multiple comparisons). E. Schematic representation (left) and picture (right) of a hippocampal slice 

placed on a multielectrode array (MEA). Scale bar: 200 µm. F. Representative MEA recordings of burst 

activity induced in hippocampal slices of RACK1 fl/fl (black) and RACK1 cKO (pink) mice by 

incubation in Mg2+-free ACSF containing 6 mM KCl. The expanded recordings of the bursts 

(surrounded by grey rectangles) are shown on the right. Scale bars: 10 s (left)/200 ms (right), 50 µV. G. 

Quantification of burst frequency (top) and burst duration (bottom) in RACK1 fl/fl (white) and RACK1 

cKO (pink) hippocampal slices (n=15 slices from 5 mice for RACK1 fl/fl, and n=18 slices from 6 mice 

for RACK1 cKO; unpaired t-test). H. Quantification of VU0134992’s effect on burst frequency (top) 

and duration (bottom) in RACK1 fl/fl (white) and RACK1 cKO (pink) hippocampal slices (RACK1 

fl/fl: n=15 slices from 5 mice for burst frequency and duration, respectively; RACK1 cKO: n=18 slices 

from 6 mice for burst frequency and duration; repeated measures one-way ANOVA with Tukey’s 

multiple comparison test). The raw data are presented in Table S2. 

 

Table 1: The most abundant polysome-associated proteins in astrocytes, identified using TRAP-

MS 
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The raw TRAP-MS data for a selection of the most specific (+∞) or enriched (p-value < 0.05; Log2 FC 

> 1) abundant immunoprecipitated proteins in the BT condition. FC, fold-change. The first six proteins 

in each GO “molecular function” term are listed. 
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Methods 

Animal care and ethical approval 

Tg (Aldh1l1-eGFP/Rpl10a) JD130Htz (MGI: 5496674) (bacTRAP, BT) mice were obtained 

from Nathaniel Heintz’s laboratory (Rockefeller University, New York City, NY) and kept under 

pathogen-free conditions (Heiman et al., 2014). The genotyping protocol is described on the bacTRAP 

project’s website (www.bactrap.org). Tg(Aldh1l1-cre/ERT2)1Khakh (MGI:5806568) (Aldh1l1-

Cre/ERT2) mice (Srinivasan et al., 2016) were obtained from the Jackson laboratory 

(https://www.jax.org/) and B6J.Cg-Rack1tm1.1Cart/Mmucd (RACK1 fl/fl) (MMRRC 044021-UCD) from 

the mutant mouse resource and research center (MMRRC) (https://www.mmrrc.org/)(Cheng and 

Cartwright, 2018). C57BL6 WT mice were purchased from Janvier Labs (Le Genest-Saint-Isle, France). 

Mice were maintained on a C57BL6 genetic background. All experiments were performed on 2-month-

old mice. Both sexes were used for all experiments. 

Mice were kept in pathogen-free conditions. All animal experiments were carried out in compliance 

with (i) the European Directive 2010/63/EU on the protection of animals used for scientific purposes 

and (ii) the guidelines issued by the French National Animal Care and Use Committee (reference: 

2013/118). The study was also approved by the French Ministry for Research and Higher Education’s 

institutional review board (reference 21817).  

 

Tamoxifen induction of RACK1 inactivation 

Two-month-old mice received a daily intraperitoneal injection of 100 mg/kg tamoxifen solution 

in corn oil (10 mg/ml dissolved extemporaneously for 6-8h at 37°C) for 5 consecutive days and were 

analyzed 3 weeks later. For controls, RACK1 fl/fl received corn oil only (immunofluorescence; Western 

blot; qPCR), or tamoxifen (astrocyte volume study; electrophysiology) 

 

TRAP-MS 

Whole brain homogenates (one brain per sample) from 2-month-old C57Bl/6 mice (WT, 

negative control) and BT mice were submitted to TRAP by immunoprecipitating GFP-fused astrocytic 
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polyribosomes with anti-GFP antibodies and protein-G-coupled magnetic beads, as described elsewhere 

(Mazare et al., 2020a), except that 1 mg of proteins were used for the immunoprecipitation on 25 𝜇L G-

protein-coupled magnetic Dynabeads coated with anti-GFP antibodies at 4°C. At the end of the 

procedure, immunoprecipitated proteins were eluted by boiling the beads in 20 µL of 0.35 M KCl buffer 

with 5X Laemmli buffer for 5 min. Samples were run on SDS-PAGE gels (Invitrogen) without 

separation as a clean-up step and then stained with colloidal blue staining (LabSafe GEL BlueTM G 

Biosciences). Gel slices were excised, and proteins were reduced with 10 mM DTT prior to alkylation 

with 55 mM iodoacetamide. After washing and shrinking the gel pieces with 100% acetonitrile, in-gel 

digestion was performed using 0.10 µg trypsin/Lys-C (Promega) overnight in 25 mM NH4HCO3 at 30 

°C. Peptides were then extracted (using 60/35/5 acetonitrile/H2O/HCOOH) and vacuum concentrated to 

dryness. Peptides were reconstituted in injection buffer (0.3% TFA) before LC-MS/MS analysis. Five 

replicates per conditions were prepared. 

LC-MS/MS analysis: Online chromatography was performed with an RSLCnano system 

(Ultimate 3000, Thermo Scientific) coupled to a Q Exactive HF-X. Peptides were first trapped onto a 

C18 column (75 µm inner diameter × 2 cm; nanoViper Acclaim PepMapTM 100, Thermo Scientific) 

with buffer A (0.1% formic acid) at a flow rate of 2.5 µL/min over 4 min. The peptides were separated 

on a 50 cm x 75 µm C18 column (nanoViper C18, 3 µm, 100 Å, Acclaim PepMapTM RSLC, Thermo 

Scientific) at 50°C, with a linear gradient from 2% to 30% buffer B (100% acetonitrile, 0.1% formic 

acid) at a flow rate of 300 nL/min over 91 min. Full MS scans were performed with the ultrahigh-field 

Orbitrap mass analyzer in the range m/z 375–1500, with a resolution of 120,000 at m/z 200. The top 20 

intense ions were subjected to Orbitrap for further fragmentation via high energy collision dissociation 

activation and a resolution of 15,000, with the intensity threshold kept at 1.3 × 105. We selected ions 

with a charge from 2+ to 6+ for screening. The normalized collision energy was set to 27 and the 

dynamic exclusion was set to 40 s. 

Data analysis: Data were searched against the Mus musculus UniProt canonical database 

(downloaded in August 2017 and containing 16888 sequences) using Sequest HT via proteome 

discoverer (version 2.0). The enzyme specificity was set to trypsin, and a maximum of two missed 

cleavage sites was allowed. Oxidized methionine, carbamidomethyled cysteine, and N-terminal 
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acetylation were set as variable modifications. The maximum allowed mass deviation was set to 10 ppm 

for monoisotopic precursor ions and to 0.02 Da for MS/MS peaks. The resulting files were further 

processed using myProMS (Poullet et al., 2007) version 3.9.3 (https://github.com/bioinfo-pf-

curie/myproms). The false-discovery rate (FDR) was calculated using Percolator (The et al., 2016) and 

was set to 1% at the peptide level for the whole study. Label-free quantification was performed using 

peptide extracted ion chromatograms (XICs) computed with MassChroQ (Valot et al., 2011) v.2.2.1. 

For protein quantification, XICs from proteotypic peptides shared between compared conditions (TopN 

matching) with two-missed cleavages were used. Median and scale normalization at the peptide level 

was applied to the total signal, in order to correct the XICs in each biological replicate. To estimate the 

significance of the change in protein abundance, a linear model (adjusted for peptides and biological 

replicates) was used, and p-values were adjusted using the Benjamini–Hochberg FDR procedure. 

Proteins with at least three total peptides in all replicates, a two-fold enrichment and an adjusted p-value 

≤ 0.05 were considered to be significantly enriched in sample comparisons. Proteins only found in one 

condition were also considered if they matched the peptide criteria. Proteins selected with these criteria 

were further analyzed and subjected to a GO functional enrichment analysis. The raw MS proteomics 

data have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 

2019) partner repository (http://www.ebi.ac.uk/pride), with the dataset identifier PXD033121. 

 

GO analysis 

A GO analysis was performed for proteins with at least three peptides read by LC-MS/MS and 

found to be enriched in BT extracts (p-value < 0.05 and Log2 FC > 1), using UniProt bank annotations 

for the mouse (UniProt-GOA Mouse - Mus musculus). GO-term-associated p-values were computed 

with the GOTermFinder module of myProMS (Poullet et al., 2007). We analyzed biological processes 

and molecular functions (p-value threshold: 0.05). For each family, GO terms were classified manually 

according to the GO hierarchy, taking into account the number of genes from the study included in the 

highest GO. For instance, the in the “Gene Expression” category were included in the highest GO 

“Metabolic process”, and the proteins in the ‘Ribosomal proteins’ category were included in “Structural 

molecule activity”. The number of proteins in each category was expressed as a percentage of the total 
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number of proteins. These data should be taken as illustrative because some proteins have more than 

one role and so the categories overlap. 

 

RACK1 immunoprecipitation (IP) 

IP was performed according to the TRAP-MS protocol (i.e. using an anti-RACK1 antibody) but 

with some changes, as follows. Columns (bead volumes: 100𝜇L for the precleaning column, 25𝜇L for 

precleaning + IgG column, 25 𝜇L for IP column) were prepared the day before. The IP column was first 

blocked 1 h with 2% bovine serum albumin and 0.1 mg/100 µL beads of yeast tRNA in 0.15 M KCl 

buffer, rinsed with 0.15 M KCl three times and coated with 5 𝜇g of anti-RACK1 antibodies or 5 𝜇g of 

non-specific immunoglobulins IgG (negative control). 500 𝜇g of protein extract was used. The 

precleaning steps have been described elsewhere (Mazare et al., 2020a). The precleaned extract was 

incubated with IP columns for 30 min at 4°C. The beads were rinsed three times with 0.35 M KCl and 

RNA were eluted in 300 𝜇L RLT buffer (Qiagen, Hilden, Germany) for 5 min at room temperature (RT) 

and kept at -80°C until extraction. 

 

Quantitative RT-PCR 

RNA was extracted using the Rneasy kit (Qiagen, Hilden, Germany). cDNA was then generated 

using the Superscript™ III Reverse Transcriptase kit (ThermoFisher). Differential levels of cDNA 

expression were measured using the droplet digital PCR (ddPCR) system (Bio-Rad) and TaqMan® copy 

number assay probes or primers (Key resource table). Briefly, cDNA and 6-carboxyfluorescein probes 

or primers were distributed into 10,000–20,000 droplets. The nucleic acids were then PCR-amplified in 

a thermal cycler and read (as the number of positive and negative droplets) with a QX200 ddPCR system. 

The results were normalized as follows: the IgG IP results were subtracted from the RACK1 RNA IP 

results for each gene. The results were then normalized against 18S rRNA gene expression. For GFP 

RNA IP (TRAP), results were normalized against the 18S rRNA. 
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Brain slices for FISH and immunofluorescence 

Mice were anesthetized with a mix of ketamine/xylazine (80/100 mg/kg i.p.) and killed by 

transcardiac perfusion with PBS/PFA 4%. The brain was removed, incubated in 30% sucrose overnight, 

and cut into 40-µm-thick sections using a cryomicrotome (HM 450, Thermo Scientific). For long-term 

storage, slices were kept at -20°C in a cryoprotectant solution (30% ethylene glycol, 30% glycerol, 40% 

PBS). 

 

High-resolution FISH and GFAP co-immunofluorescent detection and analysis 

FISH was performed using the v2 Multiplex RNAscope technique (Advanced Cell Diagnostics, 

Inc., Newark, CA, USA). After the FISH procedure, GFAP was detected via immunofluorescence. 

Astrocyte-specific FISH dots were identified from their position on the GFAP immunolabeling image, 

using the AstroDot ImageJ plug-in. This method has been described in detail elsewhere (Oudart et al., 

2020). 

 

Immunohistochemical labeling and confocal imaging 

Immunohistochemical labeling was performed on frozen brain sections (see above) rinsed in PBS and 

incubated for 2 h at RT in blocking solution (5% normal goat serum, 0.5% Triton X-100 in PBS). 

Sections were incubated with primary antibodies diluted in the blocking solution overnight at 4°C, rinsed 

for 5 min in PBS three times, incubated with secondary antibodies diluted in blocking solution for 2 h 

at RT, rinsed for 5 min in PBS three times, and mounted in Fluoromount (Southern Biotech, 

Birmingham, AL). Brain sections were imaged on X1 or W1 spinning-disk confocal microscopes 

(Yokogawa). Images were acquired with a 40X oil immersion objective (Zeiss). For the astrocyte 

morphology study, a LSM 980 confocal (Zeiss) and a 63X oil immersion objective (Zeiss) were used. 

The antibodies used in the present study are listed in Key resource table. 
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Preparation of synaptogliosomes 

Synaptosomes were prepared as described elsewhere (Mazare et al., 2020a). All steps were 

performed at 4°C. Hippocampi (two per extract; 1 mouse) were dissected and homogenized with a tight 

glass homogenizer (20 strokes) in buffer solution (0.32 M sucrose and 10 mM HEPES in 

DNAse/RNAse-free water, with 0.5 mM DTT, protease inhibitors (cOmpleteTM, EDTA free, 1 

minitablet/10 mL), ribonuclease inhibitor (1 µL/mL, cycloheximide (CHX) 100 µg/mL freshly 

prepared). The homogenate was centrifuged at 900 g for 15 min. The pellet was discarded, and the 

supernatant was centrifuged at 16,000 g for 15 min. The new supernatant was discarded, and the pellet 

(containing synaptogliosomes) was diluted in 600 µl of buffer solution and centrifuged again at 16,000 

g for 15 min. The final pellet contained the synaptogliosomes. 

 

Western blots 

Whole hippocampi were crushed with a pestle and a mortar at -80°C. Proteins were extracted 

from the tissue powder or synaptogliosome pellets in 2% SDS (500 µl or 200 µl per sample, respectively) 

with EDTA-free Complete Protease Inhibitor (Roche), sonicated twice for 5 min or once for 5 min, 

respectively (Bioruptor UCD 200, diagenode), and centrifuged at 20,000 g for 20 min at 4°C. 

Supernatants were heated at 56°C in Laemmli loading buffer for 5 min. Protein content was measured 

using the Pierce 660 nm protein assay reagent (Thermo Scientific) and the Multiskan™ FC 

spectrophotometer (Thermo Scientific). Equal amounts of protein (whole immunoprecipitation extracts: 

10 to 20 µg for hippocampus and synaptogliosomes) were separated by denaturing electrophoresis in 

Mini-Protean TGX stain-free gels (Biorad) and then electrotransferred to nitrocellulose membranes 

using the Trans-blot Turbo Transfer System (Biorad). Membranes were hybridized as described 

previously (Ezan et al., 2012). The antibodies used in this study are listed in Key resource table. 

Horseradish peroxidase activity was visualized by enhanced chemiluminescence in a Western Lightning 

Plus system (Perkin Elmer, Waltham, MA, USA). Chemiluminescent imaging was performed on a 



 30 

Fusion FX system (Vilber). The chemiluminescence signal intensity for each antibody was normalized 

against that of stain-free membranes. 

 

Representative structure of the human 80S ribosome 

The human 80S ribosome’s representative structure was depicted using the PyMol software 

(version 2.3.4, python 3.7, https://pymol.org/2/). A high-resolution cryo-electron microscopy (EM) 

structure of the human 80S ribosome (Natchiar et. al., 2017) was obtained from the Protein Data Bank 

in Europe (code 6EK0) because the mouse 80S ribosome is not available. The chain codes can be found 

on the Protein Data Bank in Europe website. The Lz chain for RPL10a and the Sg chain for RACK1 

were selected. 

 

Cell lines and culture conditions 

HEK293T (Thermo Fisher Scientific, Waltham, MA) cells were cultured in DMEM 

supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin (P/S) (Wisent 

Technologies). Control and RACK1 KO HEK293 cells were maintained in DMEM supplemented with 

10% FBS, 1% P/S, 100 µg/mL zeocin (Thermo Fisher Scientific, R25001), and 15 µg/mL blasticidin 

(Thermo Fisher Scientific, R210-01). All cells were cultured at 37°C, in a humidified atmosphere with 

5% CO2. 

 

Plasmid constructs 

 To generate the Kcnj10 CDS containing a fluorescent reporter, a control cassette was first 

created by replacing the BspEI/KpnI segment of the pmGFP-P2A-K0-P2A-RFP (Addgene plasmids 

105686) with a linker containing a P2A site, a Flag coding sequence, and the EcoRI and NotI restriction 

sites. A gene block (Integrated DNA Technologies) encoding mKIR4.1 (AAI41089.1) without a stop 

codon was then inserted at the EcoRI/NotI sites of this control cassette in frame with both the GFP and 

mCherry coding sequences. The psiCHECK-2 vector (Promega, C8021) was used to build the dual 
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luciferase reporters with Kcnj10 UTRs. The UTR sequences of mouse Kcnj10 mRNA 

(NM_001039484.1 and AB039879.1) were synthesized as gBlocks and inserted at the NheI site of the 

psiCHECK-2 vector. The 3’UTR of the Kcnj10 mRNA (AB039879.1) was inserted as a gBlock into the 

XhoI and NotI restriction sites in the psiCHECK-2 vector downstream of the Renilla luciferase reporter 

gene. The truncated versions of the Kcnj10 5′ UTR (1-146; 127-242; 95-242; 95-191; 1-191; 181-242) 

were inserted as NheI/NheI PCR fragments into the psiCHECK-2 vector at the 5′ end of the Renilla 

luciferase gene. The sequences of the primers and gBlocks used for subcloning are listed in Key 

resource table. 

 

Flow cytometry analysis 

Transient transfection of fluorescent reporter constructs was performed using Lipofectamine 

2000 (Thermo Fisher Scientific), according to manufacturer’s instructions. In all experiments, WT and 

RACK1KO HEK293T cells were plated in 6-well plates at a concentration of 500,000 cells per well, and 

transfected with 10 ng of plasmids on the following day. The cells were then trypsinized, washed once 

with PBS and pelleted at RT at 500 g for 5 min. The cells were resuspended in 500 µl PBS containing 

10% FBS, passed through a 40 µm filter, and analyzed with a CytoFlex flow cytometer (Beckman 

Coulter). 10,000 fluorescent cells were selected for the analysis of GFP and mCherry signals. The data 

were analyzed using FlowJo software. 

 

CRISPR/cas9-mediated genome editing 

CRISPR-Cas9-mediated genome editing of HEK293 cells was performed according to the 

method described by Ran et al. (Ran et al., 2013). The DNA oligonucleotides (encoding a small guide 

RNAs (sgRNAs) cognate to the coding region of human Rack1/Gnb2l1 gene) are detailed in Key 

resource table. These oligos contained BbsI restriction sites and were annealed to create overhangs for 

cloning of the guide sequence oligos into pSpCas9(BB)-2A-Puro (PX459) V2.0 (Addgene plasmid 

62988) by BbsI digestion. To generate KO HEK293T cells, we transfected 500,000 cells with the guide 

sequence containing the pSpCas9(BB)−2A-puro plasmid. Twenty-four hours after transfection, 
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puromycin was added to the cell medium. After 72 h, puromycin-resistant cells were isolated in 96-well 

plates and cultured until monoclonal colonies were obtained. Clonal cell populations were analyzed for 

protein depletion in Western blots. 

 

Dual luciferase reporter assays 

WT or RACK1KO HEK293T cells were transfected with 20 ng per well of each psiCHECK2 

construct or the empty psiCHECK2 in a 24-well plate by using Lipofectamine 2000 (Thermo Scientific, 

11668019), according to the manufacturer’s instructions. Cells were lysed 24 h after transfection, and 

luciferase activities were measured with the Dual-Luciferase Reporter Assay System (Promega) in a 

GloMax 20/20 luminometer (Promega). The RLuc activity was normalized against the activity of co-

expressed FLuc, and the normalized RLuc values were quoted relative to the corresponding control. 

 

Viral vectors and stereotaxic injection 

Two-month-old mice were anesthetized with a mixture of ketamine (95 mg/kg; Merial) and 

xylazine (10 mg/kg; Bayer) in 0.9% NaCl and placed on a stereotaxic frame with constant body 

temperature monitoring. AAVs were diluted in PBS with 0.01% Pluronic F-68 at a concentration of 

9x1012 vg/ml and 1 µl of virus was injected bilaterally into the hippocampus at a rate of 0.1 µl/min, using 

a 29-gauge blunt-tip needle linked to a 2 µl Hamilton syringe (Phymep). The stereotaxic coordinates 

relative to the bregma were as follows: anteroposterior, ±2 mm; mediolateral: +1.5 mm; dorsoventral, -

1.5 mm. The needle was left in place for 5 min and then removed slowly. The skin was glued back in 

place, and the animals’ recovery was checked regularly for the next 24 h. After 11 days, the mice were 

sacrificed and the tissues were processed for immunofluorescence assays. 

 

Measurement of astrocyte volume 

To drive expression in astrocytes, the transgene encoding cytosolic red fluorescent protein Td 

tomato was inserted under the control of the gfaABC1D (Lee et al., 2008) into an AAV shuttle plasmid 
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containing the inverted terminal repeats of AAV2. Pseudotyped serotype 9 AAV particles were 

produced by transient co-transfection of HEK-293T cells, as described previously (Fol et al., 2016). 

Viral titers were determined by quantitative PCR amplification of the inverted terminal repeats on 

DNase-resistant particles and were expressed in vg per ml. 

Astrocytes on 100 µm brain sections were reconstructed in 3D, using IMARIS software (Oxford 

Instruments, version 9.7.2). Filaments were created with a unique starting point in the astrocyte soma 

and with seeds defined with a manual threshold, according to the fluorescence intensity. Filaments 

outside the astrocyte were removed manually. An envelope of the astrocyte territory was created using 

the convex hull plugin (Matlab). The following variables were computed and exported for analysis: 

astrocyte volume (corresponding to the envelope volume), the sum of the filament length and data for a 

3D Sholl analysis (5 µm steps). 

 

Electrophysiology 

Electrophysiological recordings were performed in the hippocampus of 3-month-old RACK1 

fl/fl (Control) and RACK1 cKO mice 3 weeks after tamoxifen injection, using ACSF in the presence or 

absence of a Kir4.1 blocker (30 µM VU0134992, Tocris, Biotechne) (Kharade et al., 2018).  

Acute hippocampal slice preparation: Acute transverse hippocampal slices (400 µm) were 

prepared as described previously (Chever et al., 2016) from 3-month-old RACK1 fl/fl or astrocytic 

RACK1 cKO mice. Briefly, slices were cut at low speed (0.04 mm/s) and at a vibration frequency of 70 

Hz in ice-cold oxygenated ACSF supplemented with sucrose (in mM: 87 NaCl, 2.5 KCl, 2.5 CaCl2, 7 

MgCl2, 1 NaH2PO4, 25 NaHCO3 and 10 glucose, saturated with 95% O2 and 5% CO2). Slices were then 

maintained at 32°C in a storage chamber containing standard ACSF (in mM: 119 NaCl, 2.5 KCl, 2.5 

CaCl2, 1.3 MgSO4, 1 NaH2PO4, 26.2 NaHCO3 and 11 glucose, saturated with 95% O2 and 5% CO2), for 

at least 1 h prior to recording. 

Field recordings: Slices were transferred to a submerged recording chamber mounted on an 

Olympus BX51WI microscope equipped for infrared-differential interference microscopy and were 
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perfused with standard ACSF at a rate of 1-2 ml/min at 32°C. Extracellular field recordings were 

performed with glass pipettes (2–5 MΩ) filled with ACSF and placed in the stratum radiatum. Stimulus 

artifacts were blanked in sample recordings. Basal excitatory synaptic transmission (input/output 

curves) was evaluated in presence of picrotoxin (100 µM), and the tissue was cut between CA1 and CA3 

to prevent the propagation of epileptiform activity. Evoked postsynaptic responses were induced by 

stimulating SCs at 0.1 Hz in the CA1 stratum radiatum. Slices underwent prolonged, repetitive 

stimulation at 10 Hz for 30 s. Responses (neuronal fEPSP slope) were binned (bin size: 1.2 s) and 

normalized against the mean baseline response measured at 0.1 Hz prior to repetitive stimulation. Both 

basal excitatory synaptic transmission and responses to repetitive stimulation were evaluated before and 

after treatment with VU0134992. Field potentials were acquired with Axopatch-1D amplifiers 

(Molecular Devices), digitized at 10 kHz, filtered at 2 kHz, and stored and analyzed on a computer using 

pCLAMP9 and Clampfit10 software (Molecular Devices). 

MEA recordings: MEA recordings were performed as described previously (Chever et al., 

2016). After a 20 min incubation in standard ACSF at 32°C, slices were stored for at least 1 h before 

recording in magnesium-free ACSF containing 6 mM KCl (0Mg6K ACSF) at 32°C. Hippocampal slices 

were then transferred onto planar MEA petri dishes (200-30 indium tin oxide electrodes, organized in a 

12×12 matrix, with an internal reference, 30 µm diameter and 200 µm inter-electrode distance; 

Multichannel Systems), kept in place with a small platinum anchor, and continuously perfused at 1-2 

ml/min with 0Mg6K ACSF at 32°C. Pictures of cortical slices on MEAs were acquired with a video 

microscope table (MEA-VMT1; Multichannel Systems). MEA_Monitor software (Multichannel 

Systems) was used to identify the location of the electrodes relative to the various regions of the 

hippocampal. Data were sampled at 10 kHz, and the slice activity was recorded at 32°C using a 

MEA2100-120 system (bandwidth: 1-3000 Hz; gain: 5x; Multichannel Systems) and MC_Rack 4.5.1 

software (Multichannel Systems). The slices’ activity was recorded in 0Mg6K ACSF before and after 

treatment with 30 µM VU0134992. Raw data on 0Mg6K ACSF-induced network burst activity was 

analyzed with MC Rack software (Multichannel Systems). Bursts were detected with the Spike Sorter 

algorithm, which sets a threshold based on multiples of the standard deviation of the noise calculated 



 35 

over the first 500 ms of recording free of electrical activity. A 5-fold standard deviation threshold was 

used to automatically detect each event. If required (after a visual check), each event could be modified 

in real-time by the operator. Bursts were defined arbitrarily as discharges lasting less than 5 s. The bursts 

were characterized by fast voltage oscillations and then slow oscillations or negative shifts. The burst 

duration was measured using Neuroexplorer software (version 4.109, Nex Technologies, USA). 

 

Statistics 

All statistical analyses were performed using GraphPad Prism software (version 8.0.2, 

GraphPad Software, Inc.). The statistical tests are listed in Table S2 and in the figure legends. For the 

analysis of qPCR and Western blot data, a t-test was applied if the data were normally distributed 

(according to the Kolmogorov-Smirnov test) and the variances were equal (according to Fisher’s test); 

if not, a Mann-Whitney test was applied. For in cellulo studies, a t-test was used with Welch's correction 

if the variances were equal; if not, a Mann-Whitney test was used. 
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Supplementary Informations 

 

Figure S1: RACK1’s stalling effect on a reporter sequence 

A. Schematic representation of the reporter constructs used to quantify ribosome stalling. The reporter 

contains GFP and mCherry separated by a sequence either lacking or containing 20 AAA lysine codons 

(K0 and K20, respectively) and surrounded by viral 2A sequences. B. A representative experiment 

monitoring the fluorescence protein ratio in WT or RACK1KO HEK293T cells transfected with the K0 

and K20 reporters. C. A histogram of the data, presented as the mean ± SD (N = 3); an unpaired Mann-

Whitney test and a two-tailed t-test with Welch’s correction. ns, not significant, p-value>0.05; ***, 

p<0.001. The raw data are presented in Table S2. 

 

Figure S2: Alignment of the 5’UTR sequences of Kcnj10 

A. The sequences were aligned using Clustal Omega and default parameters, and colored in Jalview by 

identity. B. Plot showing the GC content in the 5’UTR sequence of murine Kcnj10 mRNA. The 

schematic representation shows two GC-rich regions (blue boxes). 

 

Figure S3: RACK1’s sensitivity to Kcnj10 5’UTR is not mediated by an effect on mRNA levels 

A. Schematic representation of the Renilla luciferase (RLuc) reporter constructs harboring the 5’UTR 

of mouse Kcnj10 mRNA. These sequences were inserted in the psiCHECK2 vector, which also encodes 

the Firefly luciferase (Fluc). The “control” RLuc was generated by transfecting the empty psiCHECK2 

vector. B. The qPCR ratio of Renilla luciferase (RLuc) to firefly luciferase (Fluc) mRNA levels in WT 

and RACK1KO HEK293T cells transfected with constructs empty of harboring the 5’UTR #1 or 2 of 

mouse Kcnj10 mRNA. 

 

Table S1: The raw data for TRAP-MS and GO analyses 

1. Parameters used for the LC-MS-MS study. 2. Comparison of immunoprecipitation data in WT vs. BT 

extracts. 3. FC, fold change. GO analysis of biological processes. 4. GO analysis of molecular functions 
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Table S2: Datasets 
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Uniprot Accesion number Protein description Log2 FC (BT/WT) p-value Peptides used MW (kDa)

P62702 Rps4x

Q9D8E6 Rpl4 60S ribosomal protein L4 1,57 2,66E-67 286 47,2

P27659 Rpl3 60S ribosomal protein L3 1,65 5,67E-53 253 46,1

P62908 Rps3 40S ribosomal protein S3 1,51 3,98E-68 243 26,7

P97351 Rps3a 40S ribosomal protein S3a 1,55 3,20E-49 240 29,9

P14148 Rpl7 60S ribosomal protein L7 1,74 5,02E-69 224 31,4

P68040 Gnb2l1 Receptor of activated protein C kinase 1 1,54 2,43E-48 205 35,1

P58252 Eef2 Elongation factor 2 1,02 1,24E-09 91 95,3

Q8R1B4 Eif3c Eukaryotic translation initiation factor 3 subunit C +∞ NA 28 105,5

Q8QZY1 Eif3l Eukaryotic translation initiation factor 3 subunit L 1,31 1,24E-03 19 66,6

Q9QZD9 Eif3i Eukaryotic translation initiation factor 3 subunit I +∞ NA 17 36,5

Q8CJG0 Eif2c2 Protein argonaute-2 +∞ NA 14 97,3

P29341 Pabpc1 Polyadenylate-binding protein 1 1,83 1,08E-62 226 70,7

Q9CY58 Serbp1 Plasminogen activator inhibitor 1 RNA-binding protein 1,49 2,36E-38 127 44,7

Q60865 Caprin1 Caprin-1 1,24 1,13E-18 78 78,2

P97379 G3bp2 Ras GTPase-activating protein-binding protein 2 1,10 5,44E-15 76 54,1

Q8K310 Matr3 Matrin-3 1,05 5,50E-09 47 94,6

Q8VEK3 Hnrnpu Heterogeneous nuclear ribonucleoprotein U 1,17 2,04E-10 46 87,9

Q60875 Arhgef2 Rho guanine nucleotide exchange factor 2 1,12 2,96E-15 88 112,0

Q8BMK4 Ckap4 Cytoskeleton-associated protein 4 1,52 8,75E-22 85 63,7

Q62261 Sptbn1 Spectrin beta chain, non-erythrocytic 1 +∞ NA 49 274,2

Q9QYC0 Add1 Alpha-adducin 1,82 7,42E-04 25 80,6

Q8BRT1 Clasp2 CLIP-associating protein 2 +∞ NA 18 140,7

P13020 Gsn Gelsolin +∞ NA 13 85,9

Q68FD5 Cltc Clathrin heavy chain 1 1,11 2,28E-19 269 191,6

O54774 Ap3d1 AP-3 complex subunit delta-1 1,16 2,17E-08 125 135,1

P84091 Ap2m1 AP-2 complex subunit mu 1,23 1,36E-15 79 49,7

Q9DBG3 Ap2b1 AP-2 complex subunit beta 1,09 1,60E-04 39 104,6

Q9DCR2 Ap3s1 AP-3 complex subunit sigma-1 1,31 7,88E-08 32 21,7

Q8BSZ2 Ap3s2 AP-3 complex subunit sigma-2 1,19 3,34E-02 19 22,0

Ribosomal proteins (75)

Ribosome-associated proteins (19)

RNA binding proteins (43)

Cytoskeleton-associated proteins (20)

Vesicles - ER - Golgi - Lysosomes-associated proteins (10)

40S ribosomal protein S4, X isoform 1,72 6,99E-100 305 29,6

Gene name

Table 1
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I. RACK1 in astrocytes is not involved in 
pentylenetetrazol (PTZ)-induced acute epilepsy 

 

Introduction 

KIR4.1 mediates potassium homeostasis at the synapse. We have shown that in the RACK1 cKO 

model, in which RACK1 is deleted in the astrocytes, KIR4.1 was increased in astrocytes and in PAPs. 

This augmentation was accompanied by an overall decrease in neuronal network burst frequency and 

increase in burst duration in pro-epileptic conditions (0 Mg 6 mM K+ aCSF) ex vivo in the 

hippocampus. We wondered next if RACK1 could have a role in pro-epileptic conditions in vivo. In 

collaboration with Key-Obs (Orléans), a preclinical Contract Research Organisation (CRO), we 

performed a PTZ-induced seizure behavioral test consisting in infusing PTZ in the mouse blood 

stream and record seizure susceptibility. PTZ acts as an inhibitor of GABA-A receptor therefore 

reducing inhibitory inputs and increasing neuronal excitation. We hypothesized that KIR4.1 increased 

in the RACK1 cKO mice would protect from epilepsy by increasing the dose necessary for seizure 

induction because of a higher potassium buffering in the synapse. 

Materials and methods 

All the experiments were conducted at Key-Obs laboratory by authorized technicians, engineers or 

researchers regularly employed by the company. They were directed by a researcher of Key-Obs. 

Manipulations of animals were conducted carefully in order to reduce stress to a minimum. All the 

experiments were performed in compliance with the guidelines of the French Ministry of Agriculture 

for experiments with laboratory animals (law 2013-118). The experimental protocols have been 

approved by the internal Ethical Committee of Key-Obs SAS N° 27, registered at the French ministry 

of research. Experiments were conducted during the light phase, in standard conditions (T°= 22.0 ± 

1.5°C), with artificial light in quiet conditions (no noise except those generated by ventilation and by 

the apparatus used for experiments). Experiments were conducted blindly. The animals have not been 

subjected to other experiments before the study.  

12 adult males RACK1 cKO mice and 12 adult males RACK1 fl/fl were used.  

The animal is placed in a plastic cylinder (length 12 cm, diameter 3.5 cm) where only limited 

movement is possible and leaving the tail of the mouse outside the cylinder. A needle is inserted into 

the lateral tail vein, fixed to the vein by a piece of adhesive. PTZ (pentylenetetrazole, Sigma-Aldrich, 

France, ref p6500) solution (10 mg/ml in 0.9% NaCl) is infused using a syringe pump at a 

concentration rate of 0.25 ml/min (Fig. 1A). The following parameters were measured: dose before 

tonic seizure (body tremor), tonic-clonic seizure (extension of hind-paws) and death.  
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Results and discussion 

Results show no significant difference in all measured parameters between RACK1 cKO and RACK1 

fl/fl mice (Fig. 1B). PTZ acts on inhibitory networks via GABA-A receptor. We could hypothesized 

that potassium homeostasis does not regulate synaptic activity similarly between inhibitory and 

excitatory synapses. To tackle this question, another seizure-induced test targeting excitatory 

synapses could be used such as the pilocarpine molecule, an agonist of muscarinic acetylcholine 

receptor or kainate, a glutamate-like molecule agonist of NMDA and AMPA receptors. In addition, 

in ex vivo experiments and in the literature (Cui et al., 2018), KIR4.1 increase reduces neuronal 

bursting frequency but also changes the bursting pattern and increase the burst duration. Therefore, 

these activity changes may not be sufficient to protect against seizures in epilepsy. 

 

 

Figure 16. RACK1 in astrocytes is not involved in pentylenetetrazol (PTZ)-induced acute epilepsy. 

(A) Schematic representation of intravenous (i.v.) injection of PTZ in the mouse tail. Increase dose of 

PTZ was injected and following parameters were recorded: dose before tonic seizure (body tremor), 

tonic-clonic seizure (hind-paws extension) and death. (B) Quantifications of the doses necessary for 

the 3 parameters between RACK1 fl/fl (control) and RACK1 cKO mice. Mean ± standard deviation 

(SD). ns, p>0.05. 
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II. RACK1 is not involved in depressive-like 
behavior tested with the forced-swimming test 

 

Introduction 

In congenic depressive rats, KIR4.1 is increased in the lateral habenula (Cui et al., 2018) which is 

sufficient to generate a depressive-like behavior. KIR4.1 is also increased in post-mortem tissues of 

depressive patients (Della Vecchia et al., 2021). Therefore, we tested depression-like behavior in our 

RACK1 cKO model in which KIR4.1 is upregulated. A forced-swimming test related to depressive-

like phenotypes was performed at Key-Obs. A depressive behavior is represented as an increase in 

immobility time (giving up) and reduced swimming and climbing time.  

Materials and methods 

Experimental conditions are described in the previous chapter. 

12 adult males RACK1 cKO mice and 12 adult males RACK1 fl/fl were used.  

The experiment is carried out in glass cylinders (36 cm high, 24 cm diameter) filled with 20 cm 25°C 

water. The experiment is recorded with a camcorder, placed in front of the glass cylinders. 

Animals are placed individually in a glass cylinder containing water (Fig. 2A). They are subjected to 

a 6-min swimming test session. The behavior of the mouse is measured on each 1-min period on the 

test. 

Behavior is classified as one of three categories: 

- Immobility: defined as floating in the water without struggling and using only small 

movements to keep the head above water. 

- Swimming: defined as moving limbs in an active manner, more than required to keep the head 

above water and causing movement among quadrants of the cylinder. 

- Climbing: defined as making active movements with forepaws moving in and out of the water, 

usually directed against the side of the cylinder. 

The behavior is recorded on a camcorder and is scored at a later time by an experimenter blind to the 

treatments. 

Results and discussion 

All parameters had a high heterogeneity and no changes were statistically significant between 

RACK1 fl/fl and RACK1 cKO mice (Fig. 2B, C). Therefore, RACK1 does not seem to be involved 

in depressive-like behavior through KIR4.1 increased expression. However we performed only one 

behavioral test for depression and others exist such as the sucrose preference (depressive-like mice 

will not prefer sweet over normal water) or the learned helplessness tests (depressive-like mice will 
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not try to avoid repetitive aversive stimuli). We only tested KIR4.1 expression in hippocampus and 

whole brain and not in the lateral habenula specifically which is the area linked with negative emotion 

and is hyper functional in depression. Although some studies have linked the hippocampus to 

depression (Campbell and MacQueen, 2004), post-mortem investigations have found a decreased 

level of KIR4.1 in the hippocampus in depressive patients (Della Vecchia et al., 2021).  

 

Figure 2. RACK1 is not involved in a depressive-like behavior. (A) Schematic representation of the 

forced-swimming test. Measured parameters include swimming, wall climbing and immobility time. 

Adapted from (Abelaira et al., 2013). (B) Quantifications of the 3 parameters in RACK1 fl/fl (control) 

and RACK1 cKO mice. Mean ± SD. ns, p>0.05. (C) Representation of the time superposition over the 

6 minutes experiment of the 3 measured parameters between the 2 mice groups. 

 

III. A model for RACK1 translation regulation on 
Kcnj10 mRNA 5’UTR 

 

Introduction 

We showed that Kcnj10 5’UTR (and not the 3’UTR) was sensitive to RACK1 in a model of RACK1 

KO HEK cells. By cutting the 5’UTR into smaller pieces, we demonstrated that the regulation was 

mostly due to its 2nd part from 127 to 242 nucleotides (nt). However, it remains elusive how RACK1 

regulates Kcnj10 translation through this particular sequence. RACK1 has been shown in the 

literature to co-immunoprecipitate with some known RBPs: PABPC1, LARP4B, TARDBP (TDP43), 

EIF3H, SERBP1, KHSRP and ZBP1 (IGF2BP1). For instance, RACK1 has been shown to recruit 
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ZBP1 with its mRNA β-actin and the kinase Src at the ribosome. Src phosphorylates ZBP1 to release 

its mRNA in the ribosome and activate translation. We hypothesized that RACK1 regulates Kcnj10 

translation through the interaction of RNA-binding proteins (RBP). To test this hypothesis, we used 

RBPsuite to predict the interaction sites between several RBPs and kcnj10 mRNA. Then we used 

POSTAR3 to search for RBP – kcnj10 interaction in Cross Linking ImmunoPrecipitation (CLIP)-

sequencing data. Finally, we compiled the RBPsuite, POSTAR3 and literature data to draw an 

interaction map with STRING between RACK1 (Gnb2l1) and the RBP that were shown or predicted 

to interact with the 5’UTR of Kcnj10. 

Materials and methods 

RBP-Kcnj10 predicted interaction sites using RBPsuite 

RBPsuite (http://www.csbio.sjtu.edu.cn/bioinf/RBPsuite/) (Pan et al., 2020) is a webserver using deep 

learning from the ENCODE eCLIP-seq database of 154 RBP and scoring, using iDeepS algorithm 

(Pan et al., 2018), the prediction of the RBP binding on a given linear RNA based on its sequence and 

secondary structure. We fed RBPsuite with the FASTA sequence of Kcnj10 Mus musculus mRNA and 

searched interactions among all 154 RBPs (general model). We only present here 14 RBPs involved 

in the CNS with key physiological functions: EIF3H, EWSR1, FMR1, FUS, FXR2, G3BP1, LARP4, 

MATR3, SERBP1, STAU2, YBX3, ZBP1, KHSRP and TARDBP (references in the result section). 

RBP-Kcnj10 experimental interactions using POSTAR3 

POSTAR3 (http://111.198.139.65/index.html) (Zhao et al., 2022) is a database for exploring post-

transcriptional regulation based on sequencing data. We used the module RBP Binding Sites 

(http://111.198.139.65/RBS.html) to search for known interactions in CLIP-seq data between RBPs 

and the mouse Kcnj10 mRNA. We selected the CLIP-seq data and peak calling method where Kcnj10 

interacts with previously encountered RBP from the RBPsuite study: HITS-CLIP with CIMS and 

Piranha peak calling methods and iCLIP with CITS peak calling method. Peak calling is a 

computational method used to identify the sequences in an mRNA that have been enriched with 

aligned reads from CLIP-seq experiments. 

Interaction map between RACK1 and selected RBP using STRING 

STRING (https://string-

db.org/cgi/input?sessionId=bpg0I7L963iY&input_page_active_form=multiple_identifiers) is a 

database allowing the representation of protein-protein interactions from experimental and prediction 

data. STRING was fed with the 14 previously investigated RBPs in addition to RACK1 and PABPC1, 

a RBP known to interact with RACK1, which is not available in RBPsuite. Mouse database was 

selected. The interaction map was generated with confidence view for only experimental interactions 

with confidence score of 0.4 (medium). 

Results and discussion 
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We used the webserver RBPsuite to predict RBP interactions sites on kcnj10 mRNA (Fig. 3A). Among 

the 154 available RBPs, we selected 14 that we considered relevant because of their known roles in 

the CNS and in crucial physiological functions: EIF3H has been reported to control zebrafish 

development by regulating the translation of specific mRNAs (Choudhuri et al., 2013); EWSR1, FUS, 

MATR3 and TARDBP have been associated with Amyotrophic Lateral Sclerosis (ALS) (Barton et 

al., 2019); FMR1 and FXR2 have been associated with the Fragile X Syndrome (FXS) (Zhang et al., 

2009); G3BP1 is concentrated in stress granules and has been associated with TARDBP (Sidibé et al., 

2021); LARP4 and SERBP1 have been associated with brain cancer (Blagden et al., 2016; Kosti et 

al., 2020); STAU2 is required for dendritic spine morphology (Goetze et al., 2006); YBX3 is a known 

RBP to regulate subsets of RNAs (Cooke et al., 2019); ZBP1 is involved in growth cone orientation 

in the CNS (Lin and Holt, 2007) and KHSRP mediates neuronal development (Olguin et al., 2022). 

We showed previously that the regulation of Kcnj10 by RACK1 occurs on its 5’UTR. In Figure 3A, 

12 RBPs have a high score of predicted interaction at least in 1 of the 3 first bins (corresponding to 

5’UTR of Kcnj10). For instance, FMR1 or FMRP is predicted to interact on all the 3 first bins and 

LARP4 only on the 2nd bin. Of note, several interactions have been predicted for each RBP including 

in the CDS and the 3’UTR. We showed previously that only the 2nd half, 127 – 242 nt, of kcnj10 was 

sensitive to RACK1 corresponding to the 2nd and 3rd bins. Therefore, SERBP1 and ZBP1, having a 

high score in only the first bin on the 5’UTR, do not seem to be good candidates for the RACK1-

mediated kcnj10 regulation. In addition, KHSRP and TARDBP are predicted to only interact with 

kcnj10 at its 3’UTR. 

We next searched for known interactors of Kcnj10 by interrogating the POSTAR3 CLIP-seq database 

(Fig. 3B). We selected CLIP technologies and peak calling methods displaying previously 

investigated RBPs. Results show that FMR1 (Darnell et al., 2011), TARDBP (Lagier-Tourenne et al., 

2012) and FUS (Lagier-Tourenne et al., 2012) have already been shown to interact experimentally 

with Kcnj10 mRNA by CLIP. No indications on the targeted sequence are given, but considering the 

RBPsuite study, FMR1 and FUS are predicted to bind the 5’UTR of Kcnj10. 

To link these RBPs with RACK1, we used the STRING database to draw the interaction map between 

RACK1 and the 14 RBPs previously investigated plus PABPC1, an RBP known to interact with 

RACK1 (Fig. 3C). The map shows the physical and functional interactions known to have been 

described in experiments and displayed as confidence view (the thicker the line, the more confident 

the interaction). Dotted lines have been added to describe the interactions known in the literature. 

Results show a direct link with PABPC1, LARP4B, TARDBP, EIF3H, SERBP1, KHSRP and ZBP1 

and indirect interaction with FUS, EWSR1, FMR1, FXR2 and G3BP1. No interactions have been 

described between RACK1 and YBX3, STAU2 and MATR3. 
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The summary of these 3 studies, RBPsuite, POSTAR3 and STRING, are presented in Table 1. Among 

the 12 RBPs predicted to bind Kcnj10 5’UTR, only 2 have been shown to be in CLIP-seq data, FMR1 

and FUS, and only 4 have been shown to interact with RACK1 : LARP4B, ZBP1, SERBP1, EIF3H. 

ZBP1 and SERBP1 are only predicted to interact with the first half of Kcnj10 5’UTR which is not 

sensitive to RACK1. FMR1 and FUS have not been shown to interact with RACK1 but it could be 

because it was not investigated. Interestingly, FMR1 or FMRP has been found in the whole brain 

TRAP-MS study (RACK1 article) with 20 peptides and a BT/WT ratio of 2.5 (Table 1). FUS is not 

present in this study. LARP4B is also interesting because it has been shown to co-immunoprecipitate 

with RACK1 and is present in the TRAP-MS specifically in the BT condition with 19 peptides (Table 

1). Finally, PABPC1, as a polyA binding protein, is known to interact with the translation machinery 

including RACK1 but is not included in the RBPsuite study. FMRP is expressed in astrocytes and 

LARP4B in gliomas. 

These data allow to propose a model of kcnj10 translation regulation by RACK1 with an intermediate 

RBP. RACK1 in astrocytes could recruit FMRP or LARP4B bound to kcnj10 mRNA. To address this 

hypothesis, we could perform RACK1 immunoprecipitation (IP) followed by western blot against 

FMRP or LARP4B; or followed by mass spectrometry. However, this approach would not be 

astrocyte specific unless using a mouse expressing a GFP-tagged RACK1 specifically in astrocytes. 

This model of regulation could not be the only one as RACK1 can regulate mRNA expression with 

microRNAs as well or with RNA specific sequences. 
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Figure 3 continues next page.  
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Figure 3. Kcnj10 5’UTR is predicted to be recruited by RNA binding proteins (RBP) and RACK1 

binds to some of them. A. List of RBPs predicted to bind mouse kcnj10 mRNA. Predicted score of 

RBP binding along the Kcnj10 mRNA. Arrows indicate the predicted score for the 5’UTR. The score 

is represented along the y-axis and as colors (from purple, low score, to red, high score). The Kcnj10 

mRNA sequence on the x-axis is divided into bins (1 to 54) of 101 nucleotides (nt) each. The 5’UTR 

of Kcnj10, 242 nt, is represented in the 3 first bins (see arrows). The prediction was realized with 

RBPsuite website with the Mus musculus Kcnj10 mRNA. B. Interaction map of RBP associated with 

Kcnj10 mRNA from CLIP seq data either by HITS-CLIP (left) or iCLIP (right). For HITS-CLIP, 2 

discovery methods have been used: CIMS and Piranha. Of note, FMR1, FUS and TARDBP have been 

shown to bind Kcnj10 experimentally. Data mining using POSTAR3 website. C. STRING interaction 

map between RACK1 (Gnb2l1) and RBP predicted to bind the 5’UTR of Kcnj10 and RBP known to 

interact with RACK1 in the literature. Confidence view, experiments interaction only and 0.4 

interaction score. Interactions from literature was added in dashed lines. 
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IV. Western blot analyses of astrocytic-specific 
proteins in RACK1 cKO mice versus RACK1 fl/fl 
control mice in different brain areas and 
astrocytic compartments 

 

Introduction 

Among the panel of astrocyte-specific mRNAs tested in our study, we showed that RACK1 

preferentially associates with Kcnj10 and Slc1a2. We wondered if RACK1 could regulate the 

translation of other astrocyte-specific mRNAs also significantly associated with RACK1 (see Fig. 3 

of the RACK1 article). Since RACK1 is also associated with polysomes in PvAPs (see previous 

chapter), we also tested the impact of its absence in this specific compartment.  

Materials and methods 

Whole brains or hippocampi from adult RACK1 cKO and RACK1 fl/fl mice were collected for whole 

brain and whole hippocampus extracts or were subjected to synaptogliosome preparation described 

in the article or to brain microvessel isolation which allows the isolation of the PvAPs along with the 

Table 1. List of candidate RBPs interacting with RACK1 of Kcnj10. Expression in astrocyte 

data are available at the barres lab website (Zhang et al., 2014). FPKM: fragments per 

kilobase per million 
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vessels. 1 brain per replicate has been used. Proteins were extracted in 2% SDS and Laemmli buffer 

at 56°C and subjected to western blot analyses using specific antibodies. The chemiluminescence 

signal of the targeted protein bands was normalized against the stain free staining except for the brain 

microvessels in which the normalization was performed against Histone3 as the stain free is unreliable 

for this compartment due to low protein quantities. 

Results and discussion 

We investigated by Western blot in RACK1 cKO and RACK1 fl/fl mice the levels of KIR4.1, a 

potassium channel; GLT1 and GLAST, two glutamate transporters; Cx43 and Cx30, two gap-junction 

proteins and Aqp4, a water channel; in whole brain, whole hippocampus, brain synaptogliosomes, 

hippocampus synaptogliosomes and whole brain microvessels. This study is not exhaustive and some 

proteins were not tested in all type of extracts (Fig. 4). 

As shown in the article, KIR4.1 is increased in the hippocampus and its synaptosomes in RACK1 

cKO condition. KIR4.1 is also increased in the whole brain and brain synaptosomes when RACK1 is 

deleted from astrocytes. Interestingly, KIR4.1 remains unchanged in brain microvessels, highlighting 

a potential different role of RACK1 in PvAPs. As shown in the article, GLT1 remained unchanged in 

all extracts as well as CX43 and AQP4. CX30 is increased in hippocampus and its synaptosomes but 

not in whole brain (although there is a tendency) and its synaptosomes. Either RACK1 functions are 

heterogenous among brain regions or this higher level of Cx30 specific to the hippocampus is related 

to an astrocytic adaptation linked to the increase of KIR4.1. First, RACK1 is poorly linked to Cx30 

mRNAs (Fig. 3 of our article). Second, it has been previously shown that Cx30 regulates 

neurotransmission at the level of PAPs (Pannasch et al., 2014). Finally, GLAST is slightly increased 

in whole hippocampus. 

Despite its ubiquitous presence and its light expression in astrocytes compared to neurons, RACK1 

seems to regulate specifically the level of some proteins in astrocytes in the whole brain and 

hippocampus as well as in PAPs and PvAPs. Interestingly, in RACK1 cKO, KIR4.1 levels are higher 

in PAPs but not in PvAPs , while, as shown below, RACK1 is also associated with PvAP polysomes. 

It would be therefore interesting to further address these differences between astrocytic compartments. 

Of note, our study is limited to  few proteins because of the ubiquitous presence of RACK1 and a 

complete view of RACK1 role could be achieved by proteomic studies on RACK1 cKO isolated 

astrocytes. 
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Figure 4. Western blot analyses of astrocytic-specific protein study in RACK1 cKO mice versus 

RACK1 fl/fl control mice in different compartments. From left to right: whole brain, whole 

hippocampus, whole brain synaptosomes, whole hippocampus synaptosomes and brain microvessels. 

Studied proteins are KIR4.1, a potassium channel; GLT1, a glutamate transporter; AQP4, a water 

channel; GLAST, a glutamate transporter; CX43, a gap-junction protein and CX30, a gap-junction 

protein. KIR4.1 is increased in every extract except microvessels. CX30 is increased only in 

hippocampus and its synaptosomes and GLAST is slightly increased in hippocampus. Holes in the 

figure highlight the absence of data for specific extract and protein. Ns, not significant (p>0.05); *, 

p<0.05; ***, p<0.001. 
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V.  RACK1 associates differently with astrocytic 
mRNAs during development 

 

Introduction 

We showed that RACK1 associated preferentially with some astrocytic mRNAs in the adult mouse 

by RACK1 immunoprecipitation, especially Kcnj10 and Slc1a2. 

Astrocytes undergo morphological and molecular changes during development. In the mouse, 

astrocytes are generated before birth but mature during the early postnatal (P) days. Indeed, they 

proliferate between P0 and P7 in the cortex (Clavreul et al., 2019), undergo radical molecular changes 

between P10 and P30 and their morphology become more complex at the same time. 

We wondered whether RACK1 could have a different role in astrocytes during development. We 

looked at the changes in astrocytic RNAs association with RACK1 during development in P5, P10, 

P30 and P60 (adult) mouse brains by RACK1 immunoprecipitation (RACK1 IP). As previously, we 

normalized the RACK1 IP by the levels of RNAs present in astrocyte ribosomes obtained by TRAP. 

Materials and methods 

Brains from WT P5, P10, P30 and P60 mice were collected to be subjected to RACK1 IP and TRAP 

followed by qPCR as previously described. RACK1 IP was IgG subtracted. RACK1 IP and TRAP 

were normalized on 18S.  

Results and discussion 

To investigate the role of RACK1 in astrocytes in development, we performed qPCR analyses of a 

restricted panel of astrocyte-specific markers after RACK1 IP and TRAP in P5, P10, P30 and P60 

(adult) mice (Fig. 5). In RACK1 IP (Fig. 5A and A’), Slc1a2 coding for GLT1 remained highly 

associated with RACK1 during development but limited at P5. Overall RNAs increased their 

association with RACK1 from P5 to P60. As previously, we thought that the relative association with 

RACK1 by RACK1 IP could depend on the level of the given RNA in the ribosome. We then 

performed TRAP (Fig. 5B and B’) to normalize the RACK1 IP over the astrocyte polyribosome RNA 

level. The results of the normalization are depicted in Figure 5C and C’. At P60, kcnj10 is more 

associated with RACK1 than the other studied RNAs. At P30, it remains high but Slc1a2 is the most 

associated. At P5, except for Slc1a2 and Aqp4, the other RNAs have less affinity for RACK1. During 

development, Kcnj10 increases its association with RACK1 whereas Slc1a3 and Gja1 ones remain 

stable. Slc1a2 is quite unchanged except for an increase at P30. Gjb6 does not seem to be associated 

with RACK1 except at P30. 

RACK1 differential association with astrocytic RNAs during development could highlight a different 

regulatory mechanism at early stages. RACK1 association with Kcnj10 at P5 is limited and RACK1 
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cKO brains at this stage could display no changes in KIR4.1 levels (Also because KIR4.1 expression 

is very limited at young stages). Is RACK1 involved in astrocyte maturation for the acquisition of its 

molecular signature remain unresolved. The study on synaptogliosomes during development has not 

been performed either. The deletion of RACK1 in early postnatal days could help answer to these 

questions. 
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VI. Identification of polysome binding proteins 
in PvAPs by TRAP MS  

 

Introduction 

Previous data from the laboratory have shown that local translation occurs in PvAPs (Boulay et al., 

2017). To investigate translation regulatory mechanisms in PvAPs, we performed our previously 

optimized TRAP-MS technique on isolated gliovascular units (microvessels with associated PvAPs).  

Materials and methods 

Isolation of the gliovascular unit has been described previously and adapted by the lab (Boulay et al., 

2015b). Briefly, the purification of brain microvessels allows the isolation of the PvAPs along with 

the vessels. In the BacTRAP mouse, GFP-polyribosomes of these extracts are present only in PvAPs. 

TRAP-MS, described in the article, was performed here on 3 replicates with 4 animals per replicate. 

Results and discussion 

We performed TRAP-MS on isolated GVU in which astrocytic endfeet (PvAP) remain attached to 

blood vessels detached from their soma (Fig. 6A). The Figure 6B presents the results and show 53 

identified proteins only (compared to the whole astrocyte experiment) with more than 3 peptides and 

with p-value less than 0.05. Among them, 29 proteins were enriched or specific to the BT condition. 

We identified 23 ribosomal proteins, 1 ribosomal-associated protein (Gnb2l1/RACK1), 3 

Figure 5. RACK1 associates differently with astrocytic mRNAs during development. A. 

Flowchart of RNA immunoprecipitation using anti-RACK1 antibodies (in red) on whole brain 

extracts prepared from Postnatal day 5 (P5), P10, P30 and P60 WT mice. Red dots on 

ribosomes represent RACK1. A’. Immunoprecipitated RNAs were purified and screened (in 

qPCR assays) for a selection of astrocyte-specific mRNAs. IgG-subtracted signals were 

normalized against rRNA 18S. The data are quoted as the mean ± SD (N=3 (P5), 4 (P15 and 

P30) and 5 (P60); 1 mouse brain per sample). B. Flowchart of polysomal immunoprecipitation 

(TRAP) using anti GFP antibodies (in green) on whole brain prepared from P5, P10, P30 and 

P60 BT mice. B’. Immunoprecipitated RNAs are purified and analyzed by qPCR for a selection 

of astrocyte specific mRNAs. Signals were normalized against rRNA 18S. The data are quoted 

as the mean ± SD (N=4 samples; 1 mouse brain per sample). C and C’. Flowchart of the 

normalization of the RACK1 immunoprecipitation against mean TRAP values. The data are 

quoted as the mean ± SD. 



97 
 

cytoskeleton proteins (GFAP, Myh9 and Myh11) and 2 immunoglobulins probably related to the 

antibodies used for the immunoprecipitation (Fig. 6C). 

Despite the small size of PvAPs and the low amount of material when isolating brain microvessels, 

we were able to identify the proteome, or at least part of it, associated with PvAP polyribosomes. The 

majority of them are ribosomal proteins (RP) because they are the direct interactors of the 

immunoprecipitated RPL10a (although this RP has not been identified in the screen). Interestingly, 

RACK1 has also been identified and could highlight its potential local role in endfeet and its high 

abundance locally (see next chapter). GFAP, the astrocytic-specific intermediate filament (IF), was 

surprisingly present in this proteome. It was not present in the whole astrocyte study (not enriched or 

specific in the BT condition) and IF have never been described to bind polyribosomes contrary to 

microtubules or actin filaments. It could highlight a new translation regulation mechanism in 

astrocytes with RNA and polyribosomes transport via IF. GFAP is present in endfeet contrary to PAPs 

and it could act as a storage protein for RNA granules like actin in dendrites and neuronal spines. 

However, no molecular motors are known to bind intermediate filaments. The polyribosome 

interaction with GFAP remains to be elucidated. Finally, 2 myosins have been identified here, Myh11 

and Myh9. Myosins are molecular motors acting on actin filaments. It has been shown in neurons 

that actin filaments are stocking RNA granules in spines waiting for a trigger before translation. The 

same phenomenom could take place in endfeet even if no actin proteins have been identified in this 

study.  
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Figure 6. Identification of polysome binding proteins in PvAPs by TRAP MS. A. Flowchart of the 

TRAP-MS analysis on isolated gliovascular units (GVU). Gliovascular units were isolated by 

microvessels purification in which PvAPs remain attached. Proteins extracted from isolated GVUs in 
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C57/Bl6 WT mice or Aldh1l1:L10a-eGFP (BT) mice were immunoprecipitated by TRAP and analyzed 

by LC-MS/MS. B. Volcano plot of the TRAP-MS on GVUs results. Each protein is represented by a 

dot. The dot size is proportional to the number of peptides identified by LC-MS/MS. Dots for proteins 

specific to or enriched in BT mice are represented with a color code: ribosomal proteins are given in 

light blue, ribosome-associated proteins in red, cytoskeleton-associated proteins in green and other 

proteins in black. Three independent replicates were analyzed (4 brains per sample). The protein 

distribution is represented as the Log2 FC of the BT/WT (x-axis) versus –Log10 adjusted p-value (y-

axis). Proteins identified only in WT extracts (0 protein) or only in BT extracts (14 proteins) (FC: – 

or +∞). Proteins enriched in WT or BT extracts. The threshold for the enrichment in WT or BT 

extracts is p-value < 0.05 (red line) and Log2 FC > 1 or < -1 (green lines). 2 proteins were enriched 

in WT extracts (p-value < 0.05; Log2 FC < -1), 22 proteins were detected with a similar abundance 

in WT and BT extracts (p-value < 0.05, -1 < Log2 FC < 1) and 15 proteins were enriched in BT 

extracts (p-value < 0.05; Log2 FC > 1). C. Table of all the BT-enriched and BT-specific proteins 

identified in the TRAP-MS categorized as ribosomal proteins, ribosome-associated proteins, 

cytoskeleton-associated proteins and others. 
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General discussion  
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I. RNAs are distributed in astrocytes and 
microglia (related to Article 1) 

I.a) AstroDot enables RNA distribution studies in healthy and 
disease-related astrocytes 

In the AstroDot article 1, we were able to quantify the distribution of 2 Gfap isoforms and Rpl4 RNAs 

in astrocytes.  

Theoretically, any RNA can be investigated with this method if the FISH probe is available or can be 

designed. AstroDot could also be used in spatial transcriptomics where FISH probes are set in arrays 

and the hybridization reaction takes place at a given location of the tissue so we can retrieve its 

coordinate and its fluorescence intensity. We could uncover the heterogeneity of RNA distribution 

between different astrocytes in different brain regions However, GFAP staining is not present in all 

brain regions, for instance in the cortex. Other proteins or immunostaining protocols should be used 

for astrocyte specific markers filling the astrocyte processes like aldh1l1 or glutamine synthetase (GS). 

We were also able to find differences in RNA density and distribution of 2 Gfap RNA isoforms in a 

mouse model of Alzheimer’s disease (AD). RNA transportation along cell processes is one of the 

translation regulation mechanisms. In AD, molecular motors could be altered leading to RNA 

distribution alteration. The amount of RNAs is also changed. The availability of RNA at a given place 

of the astrocyte is directly linked with translation efficiency. Local translation in astrocytes could then 

be perturbed in AD and in neuropathologies in general. Whether this could be a causative event of 

the pathology or could accelerate its development remains to be elucidated.  

In several neurological disorders, astrocytes undergo reactivity. One hallmark of this reactivity is the 

hypertrophy of the cell by overexpression of GFAP. Because GFAP is the basis of RNA detection by 

AstroDot, its overexpression could bias the proportion of RNA detected in the cell. For instance, in 

the study of non-astrocytic-specific markers, GFAP overexpression in reactive astrocyte would extend 

in thinner processes compared to basal states and attribute an RNA at this place as in the cell in one 

condition and not the other. However, the comparison between RNAs remains valid. In addition, 

astrocyte reactivity may feature interconnection of domains (not in AD) that are normally well 

separated. It means that astrocytes territory definition, mandatory for the AstroDot analysis, would 

be complicated and one RNA could be attributed to a neighbor cell. Finally, fibrous astrocytes, located 

in the white matter, do not have such exclusive domains and it would be difficult to study RNA 

distribution in these cells for the previously mentioned reasons. 
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I.b) AstroDot enables RNA distribution studies in microglia 

A big achievement of the AstroDot study was to study RNA distribution in microglia. Local 

translation had never been addressed in microglia until this study and the more recent preprint of the 

Joseph D. Dougherty lab (Vasek et al., 2021). We found that Rpl4 mRNA was present in microglial 

processes based on the microglia-specific Iba1 staining. 

Although we did not investigate local translation directly, we can draw a parallel with neurons and 

astrocytes. This study was possible because of the proteinase resistant property of Iba1. RNA 

distribution in this cell can now be studied for multiple RNAs and in pathological contexts. 

Translation regulation mechanisms are yet to be discovered in this cell but it could regulate important 

functions such as the brain immunity. 

I.c) AstroDot is not suitable for RNA distribution in neurons 

In our tests to implement AstroDot on neurons, we faced a problem with protease sensitive neuronal 

markers such as Microtubule Associated Protein 2 (MAP2), Neurofilament medium (NFM) and 

doublecortin (DCX). DCX was the most promising one because the staining could be visible. 

However, a high background noise was making AstroDot to attribute false positive RNAs. In addition, 

DCX only labels a sub population of neurons. Nonetheless, it exists now techniques to keep 

endogeneous protein intact during the FISH staining by performing immunolabelling before the 

protease treatment. It could be used for pan neuronal markers. 

As mentioned above, cellular domains definition is mandatory for AstroDot implementation. Neurons 

do not have this property as their processes intersect to communicate through synapses. Therefore, 

AstroDot would have difficulties to attribute RNAs to the right cell. Nevertheless, we could imagine 

a sparse labeling of neurons with viral or genetic strategies where cells would be easily defined. 

Another problem we could encounter relates to the size of some neuronal processes that would be out 

of the slice. Our FISH technique works on 40 µm thick slices but has never been tested on thicker 

ones. Transparisation techniques could be helpful but has to be optimized for FISH. 

I.d) Single RNA or RNA granules? 

AstroDot is based on the detection of FISH dots. Is a FISH dot equivalent to 1 RNA as it is claimed 

by the RNAscope ACD company? I showed in the introduction that RNAs are transported along the 

cell processes in compact RNA granules. Is there only one RNA for each RNA species in the granules? 

Using molecular beacons to detect RNAs in live neurons, the team of Erin Schuman investigated the 

RNA spots intensity of 3 RNAs, β-actin, psd95 and camk2a compared to a single fluorophore spot 

hypothesizing that the spot intensity was proportional to the number of beacons hybridized to its RNA 
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(Donlin-Asp et al., 2021). They concluded that spot intensity was heterogeneous with some granules 

containing one RNA whereas others had more. In addition, on average, β-actin had 1 RNA per spot 

whereas psd95 and camk2a were found in multimeric copy number states. 

In AstroDot, we compute the dot intensity parameter. It could be used in our studies to find if the 

granules have the same size in the soma or in processes; or if granules intensity change in pathological 

contexts. 

II. Regulation of translation occurs in astrocytes 
(related to RACK1 Article 2) 

II.a) Multiple protein partners are associated with astrocytic 
polyribosomes (related to figure 1) 

For the first time, we identified the proteome associated with astrocyte polyribosomes. It was the first 

time to our knowledge that TRAP was followed by protein extraction and not RNA purification. We 

had to optimize the TRAP protocol to comply especially with mass spectrometry. For instance, we 

did not add detergents in our preparations that would affect the mass spectrometer tubing (although 

liquid chromatography is used beforehand). We optimized the antibody to magnetic beads ratio to 

have a maximum yield of ribosomal proteins. Finally, we did not block the beads with BSA and yeast 

tRNA that were used to avoid non-specific RNA interactions. However we kept the optimized steps 

of empty and non-specific IgG columns during the immunoprecipitation steps (Mazaré et al., 2020b). 

Indeed, the first checking points we addressed to know if we were in the optimized conditions were: 

the western blot showing no background in the Wild type condition, the presence of the GFP protein 

in the BT mass spectrometry replicates and the presence of the vast majority of ribosomal proteins 

(RP). For this latter point, we identified 95% of all known RPs (75 out of 79 RPs). 

Whereas the choice of the 0.05 criterium for the p-value is accepted in the scientific community, the 

Log2 fold change set at 1 (fold change of 2) was arbitrary and decided with the mass spectrometry 

platform expertise. However, this fold change is considered stringent and given the fairly good 

number of identified proteins in the enriched and specific BT condition, we were confident in the 

identity of our proteome. 

Mass spectrometry studies rely on protein extraction but lack the power of RNA sequencing that have 

an additive amplification step impossible with proteins. Therefore, proteome studies need a good 

starting material quantity. Thus, we started our TRAP-MS study from the whole brain (without 

cerebellum and olfactory bulb). However, astrocytes are heterogeneous in the brain and their 

translation regulation mechanisms could be different from one brain region to another. It could be 
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interesting to investigate this proteome heterogeneity by dissecting brain regions and, if the quantity 

of material is not sufficient, pool different animals. Here, we investigated the common regulation 

mechanisms performed by the average astrocyte. 

As shown in the supplementary results, we performed the TRAP-MS protocol on isolated gliovascular 

units to investigate the proteome bound to perivascular astrocytic processes (PvAP) polyribosomes. 

But, the article on RACK1 studied the role of this protein in PAPs. Therefore, we could have 

performed the TRAP-MS on PAPs to see if known RBPs or translators regulators are also present at 

this interface. 

When we started this study, we hypothesized to find astrocytic specific translation regulators that 

would be first, easy to study and second, able to explain the cellular differences with other cells such 

as neurons. However, and this is consistent with the literature, no such protein could be found. It 

means that cells have acquired conserved and common mechanisms to regulate their proteome. The 

cell specificities rely more on the identity and expression levels of the mRNAs. 

II.b) Apart from RACK1, what other protein from the TRAP-MS 
screen could be investigated (related to figure 1)? 

RACK1 has been chosen because it was present in the TRAP-MS studies from whole astrocytes and 

from PvAP. A previous study of the lab also determined that its RNA, gnb2l1, is more locally 

translated in PAPs than in the soma suggesting that it might regulate local translation in astrocytes. 

Finally, RACK1 is known in the literature to be an important regulator of translation. 

However, our TRAP-MS study uncovered an interesting proteome worth studying: 

- 43 RNA-binding proteins (RBPs) have been identified: Among them the well-known Fragile 

X Mental Retardation Protein (FMRP, FMR1) described in the introduction. FMRP is one of 

the best studied RBP and has been shown to promote GLT1 expression in astrocytes 

(Higashimori et al., 2016). In the supplementary results, FMRP has been hypothesized to work 

with RACK1 to control Kcnj10 expression. FMRP has multiple partners that were identified 

in this study: Nuclear fragile X mental retardation-interacting protein 2 (Nufip2) and Fragile 

X mental retardation syndrome-related protein 2 (Fxr2), 2 other RBPs. 

Caprin1 or RNA granule protein 105 (RNG105) is an RBP present in RNA granules in neurons. 

Studies showed its role in memory formation as caprin1 KO mice have memory impairment 

due to disruption of mRNA transportation in neuronal dendrites, especially neurotransmitter 

receptor-coding mRNA (Nakayama et al., 2017). Interestingly, Caprin1 has been shown to 

interact with FMRP in neuronal granules (El Fatimy et al., 2012). Caprin1 has never been 

addressed in astrocytes. 
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Matrin 3 (MATR3) is a DNA and RNA binding protein present in neuronal nucleus. MATR3 

is involved in Amyotrophic Lateral Sclerosis (ALS) and, in the pathology, can be found in 

cytoplasmic inclusions (TDP43 protein aggregations) in neurons. As suggested in a recent 

mini review (Barton et al., 2019), RBPs in astrocytes could also play a role in ALS and why 

not MATR3. 

- 20 cytoskeleton-associated proteins have been identified: Spectrin beta chain (SPTBN1) is a 

scaffold protein linking the plasma membrane to the actin cytoskeleton. Spectrin has shown 

to interplay with actin in axons (Xu et al., 2013). Interestingly, in a preprint of the lab of 

Joseph D. Dougherty, they found that Sptbn1 translation in astrocytes was increased upon 

seizure induction by PTZ (Sapkota et al., 2020). Spectrin could be of interest in storing RNA 

granules near membranes at local places. 

Tripartite Motif containing (TRIM) protein TRIM46 is a microtubule associated protein 

participating in the axonal specification during development and is associated with the axonal 

initiation segment in mature neurons (van Beuningen et al., 2015). Therefore, it regulates cell 

polarization through microtubule regulation. In astrocytes it could polarize polyribosome in 

astrocyte processes. 

Because of the TRAP preparation, only cytoplasmic content can be identified. Indeed membranes are 

removed in the first steps of the preparations. Therefore, no membrane proteins have been identified 

although polyribosomes can be anchored by receptors or transmembrane proteins. 

II.c) RACK1 is associated with polyribosomes and RNAs in 
astrocytes (related to figure 2 and 3) 

In addition to the TRAP-MS study, FISH and immunostainings showed the expression of RACK1 in 

astrocytes at the RNA and protein levels. As shown by the immunofluorescence, RACK1 staining 

was difficult to achieve and a high background remains. Indeed, an antigen unmasking protocol with 

citrate buffer at 90°C was necessary. Therefore, a study to quantify RACK1 staining in astrocyte 

processes would be laborious. We can also observe that the staining is not the same between neurons 

and astrocytes. In neurons, it is strong in the soma and weak in processes whereas in astrocytes the 

staining is almost uniformly distributed between the soma and the processes. It could highlight 

differential RACK1 roles in both cells. 

We have shown that RACK1-containing ribosomes are associated with some astrocytic-specific 

RNAs by qPCR on a restricted RNA panel. In this study, RACK1 was found to preferentially 

associates with kcnj10 and Slc1a2 compared to Aqp4, Gja1, Slc1a3 and Gjb6. We showed that 

RACK1 had specific interactions, therefore probably specific regulations toward astrocytic RNAs. 
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Given the ubiquitous feature of RACK1, we could only investigate astrocyte-specific markers. In the 

future, designing a mouse strain transgenic for a GFP-fused RACK1 under the astrocytic-specific 

promoter Aldh1l1 and performing GFP immunoprecipitation and RNAseq could allow accessing the 

whole astrocytic transcriptome associated with RACK1.  

We normalized the RACK1 immunoprecipitation by TRAP to have the ribosome occupancy of each 

RNA into account. Indeed, we thought that RACK1 associates with RNAs through the ribosome. Can 

we interpret the absolute value of the RACK1 IP/TRAP ratio? For instance, if the ratio is 1, does it 

mean that RACK1 is present in all ribosomes containing this RNA? Below 1, RACK1 would not be 

associated with all ribosomes with this RNA? However, we could find in the whole brain (Fig. 4G), 

ratios above 1. It would mean that RACK1 can associate with RNAs without the presence of 

ribosomes. Because RACK1 is unable to bind RNAs directly, it would act through an RBP or other 

translation-related proteins. Nevertheless, we wondered if these ratio values could really mean 

something by themselves. Indeed, RACK1 IP immunoprecipitates RACK1 from all cells of the tissue 

but TRAP is immunoprecipitating polysomes only from astrocytes. Therefore, the concentration of 

astrocytic RNAs is much higher in the TRAP extracts than in the RACK1 IP and we cannot compare 

them. In addition, we do not know if the polysome immunoprecipitation efficiency is the same 

between both antibodies. In summary, we can compare RNAs using this ratio but not take the absolute 

value into account. 

Finally, Gjb6 association with RACK1 seems peculiar as it is associated with it in PAPs but not in 

whole astrocytes. The regulation of this RNA by RACK1 could only occur in the PAPs. Curiously, in 

RACK1 cKO mice, CX30 (coded by Gjb6) is changed in hippocampus and hippocampus 

synaptosome and not in whole brain and brain synaptosome. We did not further investigate RACK1 

association with RNAs in hippocampus but there could be a double regulation mechanism for this 

RNA: astrocyte compartment and the brain localization. Different RBPs could be at play in different 

compartment or brain regions and differently recruited by RACK1. Or, the sequence of Gjb6 could 

undergo alternative splicing as we know that RACK1 is sensitive to some RNA features. 

II.d) RACK1 cKO mouse is a good model to study impact of 
translation regulation on astrocyte physiology (related to 
figure 4) 

We developed a mouse model in which RACK1 is deleted only in astrocytes in the adult mouse thanks 

to tamoxifen injection on Aldh1l1-creERT2;RACK1fl/fl mice. We found by PCR and by 

immunostaining a complete deletion of RACK1 from astrocytes only, 3 weeks after the first injection 

of tamoxifen although we did not quantify it. The Aldh1l1 promoter is also active in some neuronal 
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progenitors still present in the hippocampus in the adult. However, the proportion of such cells 

remains limited. Outside the brain, Aldh1l1 is also highly expressed in hepatocytes in the liver (human 

protein atlas source). We could not observe visible phenotypic alterations of our RACK1 cKO mice 

compared to RACK1 fl/fl: no more weight loss, no more anxiety, no less common mouse behaviors 

(grooming, walking by the walls, ...), no visible alterations although a thorough investigation with 

typical behavioral tests could help quantify these parameters. 

The proteins we investigated in the RACK1 cKO mice were astrocytic-specific proteins especially 

the ones for which their RNA are more associated with RACK1: KIR4.1 and GLT1. We used a closed 

approach to target proteins with important functions and for which a change in expression level would 

influence the brain physiology. However, it does not reflect the whole changes occuring in RACK1 

cKO mice. For this, we could have investigated the translatome of RACK1 cKO mouse brains by 

crossing the RACK1 mice (Aldh1l1-creERT2/RACK1fl/fl) and the bacTRAP mice (Aldh1l1-

eGFP/RPl10a) and perform TRAP-seq. For the proteome, we could FACS sort astrocytes followed 

by mass spectrometry. Finally, we could also investigate the changes in the proteins bound to 

astrocytic polyribosomes by performing TRAP-MS on Bactrap-RACK1 cKO mice. 

We characterized the increase of KIR4.1 in RACK1 cKO whole hippocampus and hippocampus 

synaptosomes by western blot. We wanted to add another method to quantify KIR4.1 increase such 

as immunofluorescence. Unfortunately, anti-KIR4.1 antibodies are giving bad stainings in 

immunofluorescence as we tested intracellular and extracellular-targeted antibodies and were not 

suitable to quantify any changes. In fact, we could not find good stainings in the literature and no 

quantifications. Super-resolution techniques as the Stimulated Emission Depletion (STED) could be 

used to quantify the increase of KIR4.1 near synapses, however we were advised by the microscopy 

platform that an increase of ~1.5-fold in expression would not be detectable by this technique. 

II.e) RACK1 regulates Kcnj10 on its 5’UTR (related to figure 5) 

As shown in the introduction, RACK1 is involved in ribosome stalling recognition to resolve blocked 

ribosomes. We first investigated this property to know if ribosomes could stall on kcnj10 coding 

sequence in vitro in HEK cells. Although we demonstrated that RACK1 was indeed involved in 

stalling, it was not this mechanism involved in kcnj10 regulation. 

Nevertheless, we demonstrated with luciferase constructs that RACK1 was attenuating kcnj10 

translation by acting on its 5’UTR and more specifically on the 2nd part (127-242 nt) of the 5’UTR. 

Interestingly when we tried to go further, we could not find a shorter sequence regulated by RACK1 

as the 95-191 nt and 181-242 nt constructs luciferase activity had also an increase in the absence of 

RACK1. Therefore, we wondered what could be the exact regulatory mechanism. As shown in the 
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supplementary results, we hypothesized that RACK1 binds to an RBP carrying Kcnj10 mRNA and 

restrict its translation.  

How to further investigate regulatory mechanisms? For the hypothesis in which RACK1 binds an 

intermediate factor, we could immunoprecipitate RACK1 and look by western blot proposed factors 

and RBPs. In addition, we could look for such changes in the above mentioned RACK1 cKO 

astrocytic translatome and proteome. 

No specific motifs have been found in kcnj10 mRNA but there could be the presence of secondary 

structures like loops or IRES recognized by RACK1 or associated RBPs. Algorithms for secondary 

structure prediction based on the mRNA sequence could be used. 

II.f) RACK1 regulates astrocyte volume (related to figure 5) 

We showed that in RACK1 cKO mice, astrocytes had a bigger volume, longer branches and more 

ramifications in distal parts of the cell. Thus, RACK1 regulates astrocyte volume and processes 

complexity. How? We hypothesized that it was related to KIR4.1 increase. Indeed, ion homeostasis 

is often related to water homeostasis to keep cell osmosis. Water flows in the astrocyte are mediated 

by AQP4 which has been shown to co-immunoprecipitate with KIR4.1 in Müller cells of the retina. 

However, this could be only the case in the retina, as AQP4 KO mice had no impact on KIR4.1 in the 

hippocampus where the astrocyte volume was investigated. Other proteins mediating fluid movement 

and controlling cell volume could be at play.  

If astrocytes are bigger, and the brain is not, it directly impacts other volumes. It could reduce 

neuronal, oligodendrocyte or microglia volumes for instance. However the most probable is that 

extracellular space near astrocytes is reduced. This parameter could be assessed by Super-resolution 

shadow imaging (SUSHI) where cells are negatively labeled, highlighting the intercellular spaces. 

This reduction could alter interstitial fluid movement, extracellular ion concentrations and neuronal 

transmission. 

II.g) RACK1 regulates neuronal transmission (related to figure 
6) 

Ex vivo, on hippocampal RACK1 fl/fl and RACK1 cKO slices, we showed by electrophysiological 

recordings that, in the absence of RACK1 in astrocytes, neuronal postsynaptic currents were higher 

in high frequency stimulations and that neuronal network bursts frequency was lower and bursts 

duration was longer in pro-epileptic conditions. Interestingly, in the 10 Hz stimulation experiment, 

the increase fEPSP slope in RACK1 cKO condition was erased when using a KIR4.1 specific blocker. 

Thus, we hypothesized that this neuronal changes were only mediated by KIR4.1.  
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Curiously, GLT1 expression was unchanged in RACK1 cKO mice despite KIR4.1 increase. Indeed, 

as shown in the introduction, KIR4.1 mediates the highly hyperpolarized resting membrane potential 

(RMP) of astrocytes allowing glutamate uptake by GLT1 because of the co-transport of Na+ in the 

cell. Does KIR4.1 increase changes the astrocytic RMP? In the lateral habenula, overexpressing 

KIR4.1 in astrocytes leads to an hyperpolarization of astrocytic RMP (Cui et al., 2018). Therefore, 

glutamate uptake would be increased in astrocytes with no change of GLT1 expression. Is it why 

neuronal transmission is changed in RACK1 cKO mice? To investigate RMP in our mouse model, 

whole cell patch clamp recording could be used. We could also measure extracellular potassium 

concentration with K+ probes. Interestingly, in CX30 KO mice, glutamate uptake was increased 

without changes in GLT1 but by a morphological invasion of PAPs in the synapse (Pannasch et al., 

2014). We could investigate the PAP morphology in our RACK1 cKO mouse model by electron 

microscopy especially because we showed a morphological change of astrocytes in this model. 

Another finding is that in basal states, meaning low frequency neuronal stimulation, KIR4.1 increase 

has no impact on synaptic transmission. It is consistent with previous models where KIR4.1 was 

predicted to only have a role when neurons were stimulated between 3 and 10 Hz and not at 0.1 and 

1 Hz (Sibille et al., 2015). Therefore, when neuronal firing is low, the amount of synaptic K+ is 

increasing modestly requiring only modest buffering. However, when the firing is high, large amount 

of K+ is released in the synapse and KIR4.1 plays here an important role for its clearance. 

The neuronal network, recorded in the MEA experiment in pro-epileptic conditions (0Mg/6K), of 

RACK1 cKO hippocampi, had less frequent but longer bursts. The 0 M Mg2+ in the aCSF alleviates 

the inhibitory clog of NMDAR receptors at post-synaptic terminals activating them and let Ca2+ 

entry to depolarize the cell. 6 mM K+ in the aCSF increases K+ concentration at the synaptic level, 

destabilizing the charge difference between inside and outside of the astrocyte unable to uptake 

glutamate efficiently. Glutamate stays in the synaptic cleft for longer time, activating post synaptic 

receptors for longer time leading to synchronous activity of neurons. In the case of KIR4.1 increase, 

synaptic K+ is taken up more efficiently as well as glutamate lowering burst frequency. Bursts 

duration is higher in RACK1 cKO. Maybe, if bursts are fewer, neurotransmitter vesicles have more 

time to recycle thus when neurons fire, a bigger amount of neurotransmitter is able to be released for 

longer time. 

The blockage of KIR4.1 in the MEA experiment first increased then decreased bursts frequency in 

the control condition. At first, when KIR4.1 is blocked, even more glutamate stays in the synapse to 

trigger firing but then, neurotransmitter vesicles stock empty, unable to follow a high frequency firing. 

Burst duration in controls is not changed. However, in RACK1 cKO condition, in the presence of the 

KIR4.1 blocker, no changes in the burst frequency have been observed. We hypothesized that the 

KIR4.1 inhibition was not complete to cancel the increased KIR4.1 expression and that the remaining 
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active channels were sufficient to buffer K+ properly. Other experiments with an increased blocker 

concentration could be done. But, bursts duration was, this time, decreased in RACK1 cKO slices. 

After 30 min, burst duration reached the same levels as the control group. KIR4.1 blocker was indeed 

acting in RACK1 cKO condition but with actions difficult to interpret. 

Neuronal transmission investigations were analyzed around KIR4.1 expression changes. Thus, what 

is the role of RACK1 in this physiology? RACK1 limits KIR4.1 expression in astrocytes. Therefore, 

RACK1 increases K+ concentration at the synapse when synaptic transmission is high. At the level 

of few neurons, RACK1 increases depression of post synaptic currents when stimulated at high 

frequency. At the level of the network level, RACK1 increases burst frequency and decreases burst 

duration in pro-epileptic conditions. If neuronal transmission is controlled by astrocytic RACK1, we 

could ask whether it has a role in synaptic plasticity and cognitive functions such as memory. LTP 

and LTD protocols in RACK1 cKO brain could be performed and memory tests such as the novel 

object recognition or the Morris water maze tests could be used. In the supplementary results we 

already showed that RACK1 was not involved in depression and PTZ-induced seizures. 

III. RACK1 roles are quite specific 
While conducting the western blot studies on RACK1 cKO brains, we were at first surprised by the 

little changes the inhibition of RACK1 induced in astrocytes. At least for the proteins we investigated. 

Despite RACK1’s roles in several crucial functions in translation and other cell functions, its deletion 

in adult astrocytes did not induce a phenotype in the mouse, the astrocytes were not that changed and 

almost only KIR4.1 was increased by a ~1.5 fold. It first indicates that RACK1 plays specific roles 

in the cell, it is not just a passive ribosomal protein and that it can be considered as an adaptive and 

accessory protein for the ribosome. This statement is corroborated by the recent paper of the Erin 

Schuman’s team in which they showed that RACK1 is incorporating the ribosome rapidly in neuronal 

processes as well as after oxydative stress. 

Nonetheless, if RACK1 was deleted early on during development, it could have probably more impact 

on the brain physiology. 

Apart from the depression model, no physiological conditions have been shown to increase KIR4.1 

expression in the literature. Since KIR4.1 is crucial for synaptic transmission, the RACK1 cKO model 

is of great interest for neuronal physiology studies. 
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IV. In RACK1 cKO mice, other alterations could 
be considered 

RACK1 integrates the pre-40S particle late in the maturation process of ribosomes subunits and its 

deletion in vitro does not change the 40S quantity (Cerezo et al., 2019). However, since RACK1 is 

regulating the 80S formation, it could alter the ribosome subunit/monosome/polysomes stoichiometry 

in astrocytes. We could use ribosome fractionation to investigate the relative changes in each fraction 

to see if there is a shift toward one fraction in RACK1 cKO mice. The RACK1 deletion is only in 

astrocytes and other cells could hide such changes. Thus fractionation could be performed on isolated 

sorted astrocytes which would be challenging to achieve. 

As RACK1 has also non-ribosomal functions, they could be affected in RACK1 cKO brains. How to 

decipher the RACK1-free VS RACK1-ribosome bound roles? Some teams have mutated the residues 

by which RACK1 binds to the 40S of ribosomes (RACK1 R36D K38E) (Coyle et al., 2009). We 

could inject this construct by viral strategies for instance with an astrocytic-driven promoter in 

RACK1 cKO mice to rescue non ribosomal functions that could have been affected. In these mice, 

we would explore if the neuronal transmission is still affected. 

V. What are the roles of local translation and 
translation regulation in astrocytes ? 

Neuronal local translation is involved in synaptic plasticity, axonal wiring, spatial and temporal 

restriction of proteins among others. But what are the roles for local translation in astrocytes? Given 

the relatively recent findings of its occurrence in this cell, no answers have been brought yet. 

Nonetheless, it would be a hard question to tackle because the manipulation of local translation in 

astrocytes is not easy. Majority of studies in neurons have been done in vitro where neurons polarize 

with nice processes that can be targeted. Astrocytes in vitro do not polarize unless cocultured with 

neurons. Maybe, works can be achieved by laser dissecting astrocyte processes contacting neurons in 

cultures and apply different molecular stimuli or by electrically stimulating neurons nearby and 

investigating the isolated astrocyte process. However, astrocytes do not form PAPs in vitro. In 

addition, the vascular interface is not present. Attempts in reproducing PvAPs with blood vessel and 

mural cells in culture are in progress in the field. Microfluidic systems could be of use to investigate 

local translation in astrocyte processes. Boyden chambers with astrocytes on the membrane and 

neurons at the bottom could be used also where processes could be pealed off. 

We now know the identity of locally translated RNAs in PAPs and PvAPs, thus we can guess local 

translation roles through these translatomes. In PAPs, it could regulate synaptic transmission through 
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the local translation of KIR4.1 for instance, or iron homeostasis through ferritins. In PvAPs, it could 

regulate water homeostasis with AQP4, or PvAP formation with MLC1 (Gilbert et al., 2021). To 

investigate local translation roles in astrocytes one strategy would consist to inhibit it. But how? To 

date, we do not know specific molecular motors or adaptor proteins that would be restricted in PAPs 

or PvAPs. Another strategy would consist in finding paradigms in which these local translations 

change. For instance, we used the fear-conditioning paradigm to test the role of local translation in 

memory formation in the dorsal hippocampus (Mazaré et al., 2020a). During exercise, the blood flow 

is increased in the brain. TRAP experiments on trained mice could reveal role of local translation in 

controlling blood flow. We could also place mice in rich environments to stimulate their brain and 

look if local translation in PAPs could regulate synaptic plasticity. Finally, the investigations of local 

translation in neuropathologies could also bring some answers for instance if the disease impact blood 

vessels or neurons such as in Alzheimer’s disease. 

These considerations are also valid for the translation regulation mechanisms. In the end, the proteins 

regulating local translation are the one regulating astrocytic functions at its interfaces, therefore 

regulating the brain physiology. Because the cells have to adapt constantly to their environment, the 

regulation of local translation is of crucial interest. Through RACK1, we found that it could regulate 

neuronal transmission. RACK1 or its partners could be modulated according to the firing state of 

neurons at a given moment. We could also ask what are the regulatory mechanisms in PvAPs or also 

in development where gene expression is drastically changed. 

Finally, in our study of RACK1 roles in astrocytes, we did not investigate local translation regulation 

but global translation regulation as RACK1 KO is affecting the whole cell. The local part in our 

studies is tedious to address. We rely on interfaces isolation to study the impact locally. We rely also 

on enriched molecules in PAPs and PvAPs to hypothesize a local role. For instance, Gnb2l1 coding 

for RACK1 has been shown by the lab to be much more translated in PAPs and PvAPs than in the 

soma of astrocytes. Therefore RACK1 could have a prominent role locally where ribosomes need to 

adapt by regulating their proteome. 

VI. Are astrocytic local translation 
mechanisms heterogeneous? 

As described in the introduction, astrocytes are heterogeneous across the brain and interact with 

structures molecularly heterogeneous as well. For instance, we have glimpses that the perivascular 

and the perisynaptic translatome are different. But we can also imagine that the processes contacting 

venules, arterioles or capillaries have different pools of mRNA since they contact interfaces 

molecularly different. On the synaptic level, PAPs contact excitatory and inhibitory synapses which 
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are themselves different depending on the nature of neurotransmitters. In addition, different neuronal 

networks are present in different brain regions. How to tackle this local translation heterogeneity 

question? First, we can dissect the different brain regions, for instance cortex, hippocampus, striatum 

and cerebellum, from BacTRAP mice and perform TRAP-seq on synaptosome preparations and 

microvessels purifications to target locally translated mRNAs. The excitatory and inhibitory synapses 

display differences in terms of proteins, especially neurotransmitters and membrane proteins as well 

as at the level of the PAP (Takano et al., 2020). TRAP on synaptosomes from BacTRAP mice would 

immunoprecipitate polyribosomes from both excitatory and inhibitory-associated PAPs. To 

investigate them separately, the BacTRAP mouse could be crossed either with a vGLUT1 (vesicular 

glutamate transporter, excitatory) or a vGAT (vesicular GABA transporter, inhibitory) fluorescent 

reporter mouse. This way, fluorescence activated synaptosome sorting (FASS) could be performed 

on both mice to either sort the excitatory or the inhibitory synapses (Hafner et al., 2019) along with 

their PAPs. TRAP could then be performed on these extracts to obtain the translatome of PAPs in 

either of these two conditions. The major issues would be first, the low material quantity after FASS 

to perform TRAP and second, the fact that maybe the PAPs do not stay along with the synapses during 

the sorting. Next, the translatome of 1 PAP of 1 astrocyte could not be the same as another PAP from 

the same astrocyte, for instance if it is associated with a different dendrite or if the neuronal activities 

are distinct. Single PAP translatome, if this technique would be invented, could reveal local translation 

heterogeneity within the same astrocyte in the future. Maybe, the PAP content could be aspirated by 

nano-pipettes for instance. Finally, we do not have, yet, techniques to isolate the other interfaces of 

the astrocyte such as the astrocyte-oligodendrocyte or the astrocyte-astrocyte interfaces. 

VII. On the complexity of the proteome 
regulation 

During this PhD, I realized how complex and with how much diversity, a cell can regulate its 

proteome. From the DNA to the protein, regulation steps are everywhere: regulation of transcription 

with transcription factors, epigenetic marks, histone condensation; then mRNA life with 

stabilization/degradation mechanisms, transport, miRNA, alternative splicing, shortening or 

lengthening; then regulation of translation with translation factors, RBPs, RNA motifs and secondary 

structures, m6A modifications, codon usage bias; and finally post translational modifications with 

Golgi apparatus, endoplasmic reticulum, glycosylation, sumoylation, multimere conformations. 

When studying gene expression in a cell, we understand now how different a transcriptome, a 

translatome and a proteome can be because of all these regulatory mechanisms. Despite their powerful 

implications, transcriptome analyses should not be considered as granted as they do not reflect the 
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cell phenotype and even if an RNA is not in the top modified ones in a transcriptome comparing 2 

conditions, it does not mean it does not have great implications in the physiology. 
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REVIEW

Local translation in perisynaptic and perivascular astrocytic

processes – a means to ensure astrocyte molecular and

functional polarity?
Noémie Mazaré1,2, Marc Oudart1,2 and Martine Cohen-Salmon1,2,*

ABSTRACT

Together with the compartmentalization of mRNAs in distal regions of

the cytoplasm, local translation constitutes a prominent and

evolutionarily conserved mechanism mediating cellular polarization

and the regulation of protein delivery in space and time. The

translational regulation of gene expression enables a rapid response

to stimuli or to a change in the environment, since the use of pre-

existing mRNAs can bypass time-consuming nuclear control

mechanisms. In the brain, the translation of distally localized mRNAs

has been mainly studied in neurons, whose cytoplasmic protrusions

may bemore than 1000 times longer than the diameter of the cell body.

Importantly, alterations in local translation in neurons have been

implicated in several neurological diseases. Astrocytes, the most

abundant glial cells in the brain, are voluminous, highly ramified cells

that project long processes to neurons and brain vessels, and

dynamically regulate distal synaptic and vascular functions. Recent

research has demonstrated the presence of local translation at

these astrocytic interfaces that might regulate the functional

compartmentalization of astrocytes. In this Review, we summarize

our current knowledge about the localization and local translation of

mRNAs in the distal perisynaptic and perivascular processes of

astrocytes, anddiscuss their possible contribution to themolecular and

functional polarity of astrocytes.

KEY WORDS: Local translation, mRNA distribution, Astrocyte

Introduction

Although it was long thought that translation occurs in the vicinity

of the nucleus, it is now known that mRNAs can also be transported

to and translated in distal cell compartments as part of a process that

helps to regulate protein delivery in space and time (Holt and

Schuman, 2013). The first evidence for compartmentalized mRNA

localization was published in 1983; it was found that actin mRNA

was present in different regions of the ascidian egg (Jeffery et al.,

1983). Since then, mRNA localization and local translation have

been observed in a number of cell types, and particularly in cells

with complex morphologies. The best-characterized example is the

neuron, which can grow an axon of up to 1 m in length (Biever et al.,

2019; Glock et al., 2017; Holt et al., 2019). mRNA localization and

local translation has been observed at active synapses in neurons of

the sea slug Aplysia and were shown to contribute to synaptic

plasticity (Si et al., 2003). Local protein translation has also been

observed in dissected squid giant axons (Mathur et al., 2018). In

Drosophila, mRNA transport in synapses is linked to synaptic

plasticity (Kuklin et al., 2017). In vertebrates, local translation was

first described in isolated axons from rabbits and cats (Koenig, 1965a,

b, 1967a,b), and has been intensively studied in recent years – notably

after the development of a number of techniques for tracking local

translation events in vitro and in vivo (Holt et al., 2019). Overall, the

diversity observed in animal models suggests that local translation is

an evolutionarily conserved mechanism for the functional

polarization of cells.

In glial cells, mRNA localization was first observed in the 1980s;

through in situ hybridization, the distal distribution of mRNAs

coding for myelin-binding protein (which is crucial for building

myelin sheaths) was observed in spinal cord sections from mice

infected with a demyelinating virus (Kristensson et al., 1986).

A later study demonstrated the presence of carbonic anhydrase II

mRNA in the processes of primary cultured oligodendrocytes

(Ghandour and Skoff, 1991). mRNA isoform transcripts encoding

the amyloid precursor protein and Tau protein (both implicated in

the pathology of Alzheimer’s disease) have also been detected in

primary oligodendrocyte processes (Garcia-Ladona et al., 1997;

LoPresti et al., 1995). More recently, several research groups have

demonstrated that mRNA localization and local translation also

occur in astrocytes – the most abundant population of glial cells in

the mammalian brain (Boulay et al., 2017; Sakers et al., 2017;

Mazare et al., 2020a).

Astrocytes are voluminous, morphologically complex cells. They

are highly ramified and polarized, and bear processes that form

branches, secondary branches and terminations in contact with

blood vessels and neurons (Fig. 1). In the CA1 region of the

hippocampus, between 60% and 90% of the synapses are contacted

by extremely thin (<50 nm) perisynaptic astrocytic processes

(PAPs) (Reichenbach et al., 2010). The number of PAPs varies

from one region of the brain to another (Ventura and Harris, 1999).

At the synaptic interface, astrocytes regulate synaptic transmission

(Dallerac et al., 2013; Ghezali et al., 2016). In fact, PAPs can sense

changes in the composition of the perisynaptic extracellular space

and thus can prevent prolonged neuronal activation and

excitotoxicity by clearing ions and neurotransmitters that are

released from the synapse (Dallerac et al., 2018). PAPs are

equipped with transporters (such as glutamate transporters) and

channels, which tightly control perisynaptic homeostasis (Murphy-

Royal et al., 2017). PAPs also release neuroactive factors and

influence synaptic functions by dynamically modulating synaptic

coverage (Bernardinelli et al., 2014; Pannasch et al., 2011). Finally,

PAPs orchestrate synaptogenesis during development and in the
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mature brain (Allen and Eroglu, 2017; Chung et al., 2015; Stogsdill

and Eroglu, 2017). At the vascular interface, perivascular astrocytic

processes (PvAPs, often called endfeet) form a continuous layer

around the brain vessels (Mathiisen et al., 2010; McCaslin et al.,

2011). The dimensions of PvAPs vary greatly (from 8 to 198 µm2) –

even along the same vessel (Wang et al., 2020). On average, each

astrocyte has 3.5 PvAPs (with a range from 1 to 7), which originate

from one or more ramifications and that wrap around vessels

(Bindocci et al., 2017). Via the PvAPs, astrocytes control several

brain vascular functions, including the integrity of the blood–brain

barrier, the homeostasis between the brain and the immune system,

the transfer of metabolites and the regulation of cerebral blood flow

(Alvarez et al., 2013; Cohen-Salmon et al., 2020). As in PAPs, most

of the perivascular functions of astrocytes rely on a specific

molecular repertoire that is enriched in PvAPs (Cohen-Salmon

et al., 2020). For instance, thewater channel aquaporin 4 (Aqp4) and

the inward-rectifying K+ channel Kir4.1 (encoded by KCNJ10)

have critical roles in the regulation of perivascular homeostasis

(Amiry-Moghaddam and Ottersen, 2003; Cohen-Salmon et al.,

2020). Interestingly, PvAPs are sometimes contiguous with PAPs;

this proximity might be critical for coupling the neuronal and

vascular activities of astrocytes (Boulay et al., 2017) (Fig. 1).

The way astrocytes develop and maintain their high level of

polarity has not been characterized. The recent discovery of local

translation in the distal compartments of astrocytes strongly

suggests that (as in neurons) this mechanism might underpin their

functional polarity. Local translation requires mRNA transport,

mRNA binding to the translation machinery and (for membrane

and secreted proteins) proper folding and post-translational

modifications. Here, we review the literature on RNA distribution,

the detection of local translation in astrocytes, the subcellular

organization of astrocytes at the perineuronal and perivascular

interfaces, and the machinery for local translation. We conclude

with a discussion on open questions in this new field of research.

Detection of mRNA in distal areas of the astrocyte

Several examples of local mRNA distribution in astrocytes had been

described prior to the discovery of local translation. The analysis

of protrusions obtained from primary cultures of astrocytes in a

Boyden chamber (a cell culture device allowing cells to extend

processes in vitro) provided an initial genome-wide assessment of

mRNA localization in these structures (Thomsen et al., 2013a).

Glt1a and Glt1b (also known as Slc1a2a and Slc1a2b) mRNAs

were found to be differentially distributed; these mRNAs encode

isoforms of the glutamate transporter 1 (GLT1), the most prominent

glutamate transporter in astrocytes and which is responsible for

glutamate uptake from the extracellular space in the brain (Murphy-

Royal et al., 2017). Elevated amounts ofGlt1amRNAwere found in

the processes, whereas the Glt1b isoform was more restricted to the

cell soma (Berger et al., 2005), suggesting that the composition and

functions of GLT1 oligomers might differ in these two regions of

the cell (Berger et al., 2005; Chen et al., 2004). A diurnal change in

the distribution of fatty acid binding protein 7 (Fabp7) mRNA has

been detected in mouse hippocampal PAPs, indicating that FABP7

might mediate diurnal changes in neuronal plasticity (Gerstner et al.,

2012). mRNA encoding the glial fibrillary acidic protein (GFAP)-α

isoform was preferentially detected in primary astrocyte

protrusions, whereas mRNA encoding the GFAP-δ isoform was

found in the soma (Thomsen et al., 2013b; Moeton et al., 2016). We

recently confirmed these results in GFAP-immunolabelled

hippocampal sections by combining mRNA detection (via in situ

hybridization) with an in silico approach to quantify mRNAs in the

somata, large processes and fine processes (Oudart et al., 2020).

Changes in the distribution and density of Gfap mRNAs have also
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Fig. 1. Comparison of perivascular and perisynaptic astrocytic processes. Schematic representation of an astrocyte extending PAPs towards a

synapse, comprising the pre- and the post-synapse. Astrocytes also send PvAPs towards blood vessels; together with mural cells, endothelial cells and the basal

lamina, the PvAPs form the gliovascular unit. Synapses can be located adjacent to PvAPs (centre). A confocal microscopy image of an astrocyte filled with eGFP

is shown on the left. The astrocyte comes from the pyramidal layer of the hippocampus in a transgenic mouse line expressing GFP under the control of the

astrocyte-specific Gfap promoter. The synapses are labelled with the pre- and post-synaptic markers VGluT1 and Homer1. Scale bar: 10 µm. The inset

shows PAPs in contact with synapses. On the right, a confocal microscopy image of a hippocampal astrocyte from a transgenic mouse expressing eGFP under

the control of the Gfap promoter is shown. The astrocyte extends a PvAP (boxed area) that wraps around the blood vessel (labelled with isolectin B4; IB4).

Scale bar: 10 µm. The inset highlights an astrocyte PvAP surrounding the blood vessel. The electron micrograph below the scheme shows a PvAP contiguous

with PAPs: two synapses are abutting a PvAP around a blood vessel. Confocal images were taken by N.M.
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been detected in a mouse model of Alzheimer’s disease, suggesting

that astrocyte mRNA transport is dysregulated in this pathology

(Oudart et al., 2020). Interestingly, the assembly of GFAP-δ with

GFAP-α promotes intermediate filament aggregation and dynamic

changes (Moeton et al., 2016; Perng et al., 2008). Thus, the

differential distribution of GFAP-α versus -δ-encoding mRNA

might regulate intermediate filament dynamics in distal astrocyte

processes.

The motility of mRNAs was recently assessed in vivo in radial

glial cells (Pilaz et al., 2016). The latter are the progenitors of both

neurons and astrocytes, and possess a basal process that emanates

from the cell body, extends up to 450 µm away and terminates in an

endfoot in contact with the meninges (Rakic, 2007). This basal

process serves as a scaffold for the migration of excitatory neurons

during early development (Nadarajah et al., 2001). TheMs2 system,

which allows the movement of mRNA to be tracked in vivo

(Bertrand et al., 1998), was used to study Ccnd2 mRNA (encoding

cyclin D2) in organotypic slices from embryonic mice (Pilaz et al.,

2016). This work showed the active localization of the Ccnd2

mRNA in the radial glia endfeet. Finally, three later studies used

high-resolution in situ hybridization and RNA sequencing to

demonstrate the presence of mRNAs in purified PvAPs (Boulay

et al., 2017) and PAPs (Sakers et al., 2017; Mazare et al., 2020a)

(see below).

Detection of local translation events in astrocytes

The localization of mRNAs in astrocytic distal processes raises the

question of their translational status. To address this issue, Pilaz

et al. linked a Dendra2 photoconvertible reporter to the Ccnd2 3′

untranslated region (UTR) and tracked the translation of this mRNA

in radial glia endfoot preparations; green Dendra2 was irreversibly

photoconverted to red, and time-lapse imaging over the following

45 min revealed a steady increase in green fluorescence recovery in

the endfeet, suggesting de novo synthesis (Pilaz et al., 2016). Local

translation of the Gja1 mRNA, which encodes connexin 43 (Cx43;

an astrocyte gap junction protein strongly expressed in PvAPs), has

been measured in an ex vivo assay (Boulay et al., 2017). Cx43 is

known to have a very dynamic life cycle, with a turnover time of 1.5

to 5 h (Fallon and Goodenough, 1981; Laird et al., 1995, 1991).

Freshly isolated PvAPs attached to the surface of mechanically

purified brain vessels (Boulay et al., 2015) were treated with

cycloheximide (an inhibitor of protein synthesis) for 6 h. The level

of Cx43 (assessed via western blots) was lower upon cycloheximide

treatment than in untreated samples, indicating that Cx43 turnover

in PvAPs relies on local translation (Boulay et al., 2017). Other

recently developed techniques for visualizing local translation

in astrocytes include the use of modified amino acid analogues,

such as homopropargylglycine (HPG), or tRNA analogs (e.g.

puromycin). The methionine analogue HPG inserts into the nascent

protein chain and can be subsequently detected by a chemoselective

ligation (‘click’) reaction with a fluorescent protein reporter

(Horisawa, 2014). The aminoglycoside antibiotic puromycin,

which can be detected by immunofluorescence, mimics tRNA-

Tyr; it incorporates into the ribosome A binding site and induces the

premature termination of translation by ribosome-catalysed covalent

incorporation into the C-terminal of the nascent peptide (Schmidt

et al., 2009; Pestka, 1971; Pestka and Brot, 1971). An HPG protein

synthesis assay of freshly purified brain vessels gave a strong signal

in the co-purified PvAPs (Boulay et al., 2017). Another study

reported that, after incubating acute brain slices with puromycin,

∼73% of the puromycin puncta were located more than 9 µm away

from the centre of the cortical astrocyte nucleus, suggesting that

translation occurs more in distal processes than in the soma (Sakers

et al., 2017). More recently, quantification of the puromycin signal

in hippocampal PAPs on acute brain sections showed that

immunolabelled synapses that are found within 1 µm of

puromycin- and GFP-labelled astrocytic ribosome signals

accounted for ∼3% of all synapses contacted by eGFP-labelled

astrocytic ribosomes. Although this proportion is not large and

might be due to technical issues related to the low level of

puromycin incorporated into astrocytes, these results indicate the

presence of local translation in PAPs (Mazare et al., 2020a).

Identification of ribosome-bound mRNAs in astrocyte

processes

To further analyse translation in PvAPs and PAPs, several recent

studies focused on ribosome-bound mRNAs in astrocyte processes

(Fig. 2). All the studies were based on the use of a transgenic

mouse expressing the chimeric ribosomal protein L10A tagged to

GFP under the control of the Aldh1l1 astrocyte-specific promoter

(Aldh1l1:L10A–eGFP) and the purification of eGFP-tagged

polysomes by so-called translating ribosome affinity purification

(TRAP) (Doyle et al., 2008; Heiman et al., 2014, 2008). Importantly,

this transgenic model has also been instrumental in the visualization

of ribosomes in PAPs and PvAPs (Boulay et al., 2017; Mazare et al.,

2020a; Sakers et al., 2017). Our initial study enabled the

identification of the most abundant ribosome-bound mRNAs in

PvAPs from whole brain (Boulay et al., 2017) (Fig. 2A). First, we

extracted total mRNAs from purified brain vessels and brain vessels

that had been partially depleted of PvAPs by basal lamina digestion.

The comparison of these two samples allowed us to identify mRNAs

that were relatively abundant in PvAPs, compared to the vascular

compartment. Second, we investigated the ribosome-bound status of

these mRNAs by comparing ribosome-bound mRNAs from whole

astrocytes or PvAPs that were extracted by TRAP from either whole-

brains or purified brain vessels from Aldh1l1:L10A–eGFP mice.

Only mRNAs detected in both preparations were considered, since

all mRNAs present in PvAPs should also be detected in whole

astrocytes. The intersection between the total mRNA preparation and

the TRAP preparation allowed us to identify 28 mRNAs that

constituted the ‘endfeetome’, that is, the pool of most abundant

ribosome-bound mRNAs in PvAPs (Boulay et al., 2017). Some of

these mRNAs encoded proteins involved in vascular functions, such

as Aqp4, Kir4.1 and Cx43 – all of which are transmembrane proteins

known to have crucial roles in blood–brain barrier homeostasis.More

details on the functions of these proteins can be found in a recent

review (Cohen-Salmon et al., 2020). Interestingly, a comparison of

total mRNAversus ribosome-boundmRNAs in PvAPs indicated that

some PvAP mRNAs were not bound to ribosomes and so might

remain silent after their transport (Boulay et al., 2017). Although the

ribosome-bound status of an mRNA does not necessarily reflect its

translation, as ribosome-bound mRNAs can also be silent if they are

compacted in granules, our results were the first to highlight potential

translation events in a distal compartment ofmature astrocytes. Given

that transcripts in the endfeetome are known to have critical roles in

the regulation of the brain vascular systems, we hypothesized that

local translation may be crucially involved in maintaining the

vascular functions of astrocytes (Boulay et al., 2017). In a second

study, a similar subtractive approach was used to identify ribosome-

bound mRNAs that were abundant in PAPs from the cortex (Sakers

et al., 2017) (Fig. 2B). Here, the pool of ribosome-bound mRNAs in

PAPs was extracted by performing TRAP on Aldh1l1:L10A–eGFP

purified cortical synaptoneurosomes, which in addition to PAPs

comprise the pre- and post-synaptic compartments of neurons
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Fig. 2. Identification of ribosome-bound mRNAs in the perivascular and perisynaptic processes of astrocytes. (A) Identification of ribosome-bound

mRNAs present in PvAPs and highly expressed in astrocytes in the whole brain. The experimental set up used in Boulay et al. (2017) to analyse ribosome-bound

mRNAs in PvAPs from thewhole brain. mRNAs from blood vessels (including the basal lamina, endothelial cells and mural cells) were mechanically purified from

whole brain and thereby retained the PvAPs. They were then compared with mRNAs extracted from blood vessels after the basal lamina was enzymatically

digested to remove PvAPs. mRNAs found to be more abundant in the preparation that retained PvAPs were identified. In parallel, translating ribosome affinity

purification (TRAP) was applied to mechanically isolated blood vessels from whole brains of Aldh1l1:L10a–eGFP mice, which express an eGFP fusion to the

ribosomal protein L10A specifically in astrocytes, in order to extract ribosome-boundmRNAs from PvAPs (second row). This preparation was then comparedwith

the set of ribosome-bound mRNAs from whole astrocytes (extracted from whole brains using TRAP). Ribosome-bound mRNAs that were more abundant in

PvAPs than in whole astrocytes were selected and then compared with ribosome-boundmRNAs in PvAPs. The overlapping mRNAs constituted the endfeetome,

a set of highly expressed, ribosome-bound mRNAs in PvAPs. (B) Identification of ribosome-bound mRNAs present in PAPs and highly enriched in the

synaptoneurosomes of the cortex. The experimental design used by (Sakers et al., 2017) to analyse ribosome-bound mRNAs in perisynaptic processes (PAPs)

from the cortex. mRNAs from cortical synaptoneurosomes (including the PAP, pre-synapse and postsynapse) were purified and compared with mRNAs from

whole cortices and the mRNAs that were more abundant in synaptoneurosomes were determined. In parallel, TRAP was used to extract the set of ribosome-

bound mRNAs from cortical PAPs (the PAP-TRAP fraction, second row), and the latter were compared with mRNAs from whole cortical synaptoneurosomes to

determine the mRNAs that are more abundant in the PAP-TRAP fraction. Next, mRNAs that were more abundant in synaptoneurosomes were compared with

ribosome-bound mRNAs from PAPs; and overlap between the two sets yielded a set of ribosome-bound mRNAs present in PAPs and highly enriched in

astrocytes. (C) Identification of the entire pool of ribosome-boundmRNAs enriched in PAPs of the dorsal hippocampus. The experimental design used byMazaré

et al. (2020a) to analyse ribosome-bound mRNAs that are more abundant in PAPs compared with their levels in whole astrocytes from the dorsal hippocampus.

Starting with synaptogliosomes from dorsal hippocampi and whole dorsal hippocampi, a refined TRAP protocol was used to collect ribosome-bound mRNAs

present in PAPs or whole astrocytes. The overlap between the two sets yielded the entire pool of ribosome-bound mRNAs that were enriched in PAPs from the

dorsal hippocampus.
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(Sakers et al., 2017). The authors first compared the transcriptomes

of total brain cortex and synaptoneurosomes, in order to identify

mRNAs that were abundant in the latter structures. In parallel,

they performed TRAP extraction on Aldh1l1:L10A–eGFP

synaptoneurosomes and compared purified mRNAs with total

mRNAs extracted from synaptoneurosomes, in order to identify

ribosome-bound mRNAs that were highly abundant in PAPs (Sakers

et al., 2017). Comparison of the two lists allowed the identification of

224 abundant ribosome-bound mRNAs in astrocyte PAPs (Sakers

et al., 2017). These mRNAs coded for (1) proteins involved in

glutamate metabolism, GABA metabolism and the biosynthesis of

unsaturated fatty acids, (2) cytoskeletal proteins, such as ezrin, which

might have a role in PAP remodelling (Lavialle et al., 2011), and (3)

synaptogenic factors, such as the secreted protein acidic and rich in

cysteine (Sparc), which regulates the synapse number (Lopez-Murcia

et al., 2015). Taken as a whole, these two studies identified a set of

ribosome-bound mRNAs that were more abundant in PvAPs and

PAPs than in whole astrocytes. The results thus suggest that mRNA

distribution and local translation could sustain the polarity of

astrocytes at the perisynaptic and perivascular interfaces (Boulay

et al., 2017; Sakers et al., 2017).

Despite these promising results, these initial studies focused

solely on mRNAs that were either highly expressed in or were

specific to astrocytes. In fact, the technical limitations of the TRAP

protocol prevented the detection of ubiquitous transcripts. Further

work was thus required to characterize the entire pool of local

ribosome-bound mRNAs at the perisynaptic and perivascular

interfaces. To overcome limitations of the two previous studies,

we recently refined the TRAP protocol by adding additional

precleaning and blocking steps that reduced the background noise

caused by unspecific mRNA binding (Mazaré et al., 2020a)

(Fig. 2C). The use of this protocol eliminated contamination by

neuronal mRNA and enabled us to extract a pool of 844 astroglial

ribosome-bound mRNAs in PAPs from dorsal hippocampus

synaptogliosomes. It should be noted that our extraction protocol

differed slightly from that used in the synaptoneurosome study by

Sakers et al. because we did not include ultracentrifugation on

discontinuous Percoll–sucrose density gradients (Westmark et al.,

2011). By analogy with the above-mentioned ‘endfeetome’ in

PvAPs, we referred to this repertoire as the ‘PAPome’ (Mazare et al.,

2020a). Interestingly, our study revealed a wholly new, and

unexpected, set of enriched ribosome-bound transcripts in PAPs

compared to those found previously (Sakers et al., 2017); the most

abundant mRNAs encoded ubiquitous proteins involved in iron

homeostasis, translation, the cell cycle and the cytoskeleton

[notably ezrin, as also identified by Sakers et al. (2017)] (Mazaré

et al., 2020a). Remarkably, a large proportion of ribosome-bound

transcripts in PAPs encoded ribosomal proteins and elongation

factors (Mazaré et al., 2020a), which is reminiscent of observations

in neuronal processes (Deglincerti and Jaffrey, 2012; Giustetto

et al., 2003; Moccia et al., 2003; Shigeoka et al., 2019). Overall, our

results strongly suggest that local translation in PAPs might be

sustained by local synthesis of the translation machinery, with either

the de novo assembly of translational complexes or the replacement

of damaged proteins, as recently suggested for ribosomal proteins in

axons (Shigeoka et al., 2019).

The subcellular organization of local protein synthesis and

maturation in astrocytes

To become functional, most secreted and membrane proteins must

undergo post-translational modifications. In PvAPs, most of the

endfeetome mRNAs encode membrane proteins that require folding

and/or glycosylation as they pass through the endoplasmic

reticulum (ER) and the Golgi. Accordingly, we observed smooth,

rough and mixed ERs in all PvAPs (Fig. 3). A full Golgi was also

detected in 7% of PvAPs, and these specific PvAPs might therefore

contain the same canonical translation machinery as the soma

(Boulay et al., 2017). PAPs are extremely thin structures (<50 nm in

diameter) (Reichenbach et al., 2010), and their subcellular

organization has not yet been fully explored. However, by using

ER Golgi
Golgi

particles

Protein Mitochondria RibosomemRNA

PAP

PvAP

Synapse

Vessel

Post

Pre

Mural cell

Endothelial

cell

Key

Fig. 3. Subcellular organization of

perisynaptic and perivascular astrocytic

processes.Astrocytes extend PAPs towards

the synapse and PvAPs towards blood

vessels. The astrocytic ER forms a

continuous network that is in contact with

both PAPs and PvAPs. PvAPs also contain

rough ER to which ribosomes are bound, as

well as mitochondria, ribosomes, mRNAs

and mRNA-ribosome complexes that

translate new proteins. A Golgi is observed in

∼7% of the PvAPs in the cortex and the

hippocampus. In contrast, PAPs only contain

small Golgi particles (pGolt particles), and

small round mitochondria can also be

observed.
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an adeno-associated virus strategy, we were able to show that 32%

of the hippocampal glutamatergic synapses in an astrocyte territory

are contacted by PAPs containing ERGIC-53 (also known as

LMAN1), an integral membrane protein located in the intermediate

region between the ER and the Golgi (Mazare et al., 2020a).

Furthermore, expression of the Golgi tracker pGolt (Mikhaylova

et al., 2016) was detected in PAPs surrounding 38% of the

glutamatergic synapses, suggesting the existence of detached Golgi

particles (possibly outposts) in PAPs (Mazare et al., 2020a) (Fig. 3).

A recent electron microscopy study provided evidence for ER in

PvAPs and PAPs, and showed that the contact between the ER and

mitochondria in PvAPs changed upon brain injury (Göbel et al.,

2020). The authors suggested that the subcellular organization of

astrocyte processes might be dynamically regulated (Göbel et al.,

2020). Finally, to go further, it would be useful to determine

whether polysomes and/or monosomes are present in PvAPs as well

as PAPs. Indeed, monosomes display specific translational

properties (Heyer and Moore, 2016) and have been shown to

translate key synaptic transcripts in dendrites and axons (Biever

et al., 2020).

Overall, the subcellular organization of PvAPs and PAPs is

heterogenous; it is likely that the full functional diversity of

translational and post-translational mechanisms in these structures

has yet to be discovered (Rangaraju et al., 2017).

The molecular bases of translation in astrocytes

Local translation is mediated by cis-acting elements that include

RNA motifs and secondary structures influencing the binding of

trans-acting proteins, also known as RNA-binding proteins (RBPs)

(Harvey et al., 2018). RNA-binding motifs are mostly present in

UTRs in general and the 3′UTR in particular. Interestingly, a gene

can give rise to different 3′UTR isoforms through alternative

polyadenylation, which therefore modulates the ability of an mRNA

to bind to an RBP. mRNAs bind to RBPs in the nucleus and soma to

form ribonucleoparticles (RNPs, also referred to as granules).

Depending on the nature of the cis- and trans-acting elements, the

RNPs are transported along the cytoskeleton as cargo by kinesin and

dynein molecular motor complexes (Pushpalatha and Besse, 2019).

Although transcriptomic data indicate that RBPs are expressed in

astrocytes (sometimes more strongly than in neurons), their roles in

astrocytes have been poorly explored (Zhang et al., 2014) (Table 1).

Fmr1 encodes the fragile Xmental retardation protein (FMRP) and is

mutated in fragile X syndrome (FXS, a neurodevelopmental disorder

resulting in intellectual disability and autism) (Penagarikano et al.,

2007). One of the several possible functions of FMRP in neurons

is its ability to act as an RBP and silence the translation of mRNAs

encoding synaptic proteins (Darnell et al., 2011). Interestingly,

FMRP might be more strongly expressed in astrocytes than in

neurons (Table 1) (Zhang et al., 2014). It has been shown that FMRP

controls mRNA transport in radial glia PvAPs in vivo and binds

to mRNAs that encode autism-related signalling proteins and

cytoskeletal regulators (Pilaz et al., 2016). In astrocytes, the

selective loss of FMRP has been shown to dysregulate protein

synthesis in general and expression of the glutamate transporter

GLT1 (impairing neurotransmission and astrocytic glutamate uptake)

in particular (Higashimori et al., 2016). In astrocytes, the expression

of a pathological form of FMRP linked to late-onset FXS/ataxia

syndrome has been found to impair motor performance in the mouse

(Wenzel et al., 2019). These results strongly suggest that translational

control by astroglial FMRP is involved in the pathogenesis of FXS.

The RBP quaking (QKI) is also strongly expressed in glial cells

(Zhang et al., 2014). QKI was initially implicated in the regulation

of Mbp mRNA transport in oligodendrocyte processes (Li et al.,

2000; Doukhanine et al., 2010; Larocque et al., 2009; Wang et al.,

2010). Furthermore, the QKI-7 cytosolic isoform was shown to

regulate Gfap mRNA translation in human primary astrocytes

(Radomska et al., 2013). More recently, it has been demonstrated

that the ribosome-bound mRNAs that are preferentially found in

PAPs contain a larger number of QKI-binding motifs (Sakers et al.,

2017). This study also suggested that the inactivation of QKI-6

(another cytosolic isoform of QKI) in astrocytes altered the binding

of certain mRNAs (e.g. Sparc) to ribosomes and thus influenced

translation (Sakers et al., 2020 preprint). The role of QKI in brain

development was recently studied in a conditional knockout (KO)

model of Qki in neural stem cells (NSCs), which showed that QKI

regulates the differentiation of NSCs into glial precursor cells by

upregulating several genes involved in gliogenesis (Takeuchi et al.,

2020). Finally, QKI has been reported as a candidate gene for

schizophrenia susceptibility (Aberg et al., 2006). Thus, as with

FXS, the regulation of QKI-mediated translation in astrocytes might

be involved in schizophrenia.

Human antigen R (HuR, also referred to as ELAV-like protein 1) is

one of the best-known RBPs in astrocytes. It binds to AU-rich

elements (AREs) and stabilizes mRNAs (Brennan and Steitz, 2001).

AlthoughHuR is predominantly located in the nucleus, it translocates

to the cytoplasm, transports the bound mRNAs to polysomes, and

promotes their translation and stabilization (Fan and Steitz, 1998).

This mode of translational regulation has been observed in vivo

following spinal cord injury (Kwan et al., 2017a) and in vitro in a

stretch injury model of primary astrocytes, in which HuR activated

the expression of inflammatory mediators such as interleukin-1β,

tumour necrosis factor (TNF), and matrix metalloproteinase 12

(Kwan et al., 2017b). Furthermore, translocation of HuR from the

nucleus to the cytoplasm has been found to upregulate the translation

of the cysteine-glutamate antiporter (Slc7a11, also known as the xCT

system), following the treatment of mouse cortical primary astrocytes

with interleukin-1β (Shi et al., 2016). HuR might therefore be a

key factor for astrocyte translation in inflammatory contexts.

Interestingly, HuR in primary astrocytes was also found to bind to

the 3′UTR of Tardbp, which encodes TDP-43, an RBP linked to

amyotrophic lateral sclerosis (ALS) (Lu et al., 2014). Finally,

experiments in a glioma cell line showed that HuR bound to and

stabilized the mRNA encoding B-cell lymphoma 2 (Bcl2, an

important regulator of cell death) by activating its translation

(Filippova et al., 2011). Consistent with this, the cytoplasmic level

of HuR is positively correlated with the tumour grade in human

glioma tissues (Bolognani et al., 2012).

Other known RBPs have been less extensively studied with

regard to their possible effects on translation in astrocytes. This is

the case for the cytoplasmic polyadenylation element binding

protein 1 (CPEB1), which regulates poly(A) tail length and binds

cytoplasmic polyadenylation elements (CPEs) in mRNA (Hake and

Richter, 1994). CPEB1 also regulates synaptic plasticity (Alarcon

et al., 2004) and binds to RNA granules in dendrites (Ohashi and

Shiina, 2020). In primary astrocytes, Fabp7 mRNA (containing

CPEs in its 3′UTR) co-immunoprecipitates with CPEB1 (Gerstner

et al., 2012). Interestingly, the length of the poly(A) tail in Fabp7

mRNA in mouse brain samples varies with the time of day, and

CPEB1 might thus have a role in the astrocyte-mediated neuronal

plasticity linked to circadian rhythm, as previously suggested

(Gerstner et al., 2012). Furthermore, CPEB1 controls the division of

rat primary astrocytes (Kim et al., 2011). Upon the stimulation of

cell division, CPEB1 is phosphorylated, binds to cyclin B1 mRNA

and lengthens the mRNA poly(A) tail; in turn, this increases the rate
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of cyclin B1 translation and activates cell proliferation (Kim et al.,

2011). The far upstream element-binding protein 2 [FUSE-binding

protein 2 (FUBP2), also known as KH type-splicing regulatory

protein (KSRP)] is an RBP that destabilizes ARE-containing

mRNAs (Bird et al., 2013). In an in vitro luciferase reporter assay,

FUBP2 was shown to downregulate the translation of cytokines.

The knockdown of FUBP2 in rat primary astrocytes induces cortical

neuron toxicity and astrocyte migration (Li et al., 2012).

In conclusion, only a few in vivo studies have been conducted

regarding astrocytic RBPs, and data on their mode of action and

their function in astrocytes are scarce. In particular, their possible

role in the regulation of local translation remains to be addressed.

Conclusions and perspectives

Local translation in astrocytes is an emerging field of research, and

many questions have yet to be addressed. First, the role of local

translation in the establishment and maintenance of the functional

polarity of astrocytes at their perivascular and perisynaptic interfaces

is still an open question. Astrocyte heterogeneity constitutes a

technical challenge in this respect. Indeed, astrocytes are diverse in

terms of both morphology – for instance with voluminous, bushy,

protoplasmic astroglia in the grey matter compared to elongated,

fibrous astroglia in the white matter – and functionality, particularly

with regard to their neuronal and vascular microenvironment

(Farmer and Murai, 2017; Miller, 2018). For instance, the

gliovascular interface greatly differs from one region of the brain

to another and from one type of vessel to another, that is, capillaries,

arteries or veins (Cohen-Salmon et al., 2020). The same reasoning

applies to PAPs, which display functional and morphological

differences throughout the brain. Another inherent difficulty in

studies of astrocytes (compared to neurons) lies in the absence of

in vitro systems in which astrocytes can reliably develop polarized

Table 1. RNA-binding proteins in astrocytes

RBP Gene

Expression level

in astrocytes/

neurons* Known roles Astrocyte studies Results Reference(s)

FMRP Fmr1 28.91/13.80 Alternative mRNA splicing;

mRNA stability; mRNA

transport (for a review, see

Davis and Broadie, 2017)

In vivo mouse radial glia

endfeet

FMRP binds autism-related mRNAs and

controls active mRNA transport in

radial glia.

Pilaz et al.,

2016

Inducible astrocyte-

specific Fmr1-KO mouse

Decrease in GLT1 protein and glutamate

uptake, resulting in increased neuronal

excitability.

Higashimori

et al., 2016

QKI Qki 319.64/32.87 mRNA export; pre-mRNA

splicing (for a review, see

Darbelli and Richard, 2016)

In vitro primary human

cortical astrocytes

QKI7 isoform binds Gfap mRNA; Gfap

mRNA contains QKE. QKI increase

leads to an elevated level of GFAP.

Radomska

et al., 2013

Astroglial QKI6 KO mouse Impaired translation of Sparc mRNA.

Increased synapse formation and

delay in astrocyte maturation.

Sakers et al.,

2020 preprint

Quaking NSC-specific KO

mouse

Quaking influences glial differentiation of

NSCs by upregulating the expression

of astrocyte and oligodendrocyte

genes.

Takeuchi et al.,

2020

HuR Elavl1 10.23/11.16 mRNA stability (for a review,

see Meisner and

Filipowicz, 2011)

In vivo mouse spinal cord

injury and in vitro stretch

model of astrocytes

HuR translocates into the astrocyte

cytoplasm upon injury. HuR increases

the level of cytokine mRNAs.

Kwan et al.,

2017a,b

In vitro primary cortical

astrocytes

IL-1 promotes HuR translocation to the

cytoplasm. Binding of HuR to the

3′UTR of xCT mRNA increases the

latter’s half-life, protein level, and

functions linked to the xCT system.

Shi et al., 2016

In vitro primary cortical

astrocytes from the

G93A SOD1 mouse

HuR’s binding to the 3′UTR of Tardbp

and Fus mRNAs controls their

translational efficiency. HuR KO in

astrocytes leads to neuronal toxicity.

Lu et al., 2014

In vitro U251 cells and

glioblastoma xenograft

HuR upregulates Bcl-2mRNA translation

and promotes cell survival.

Filippova et al.,

2011

Human glioma tissue and

cell lines

The HuR protein level is increased in

gliomas and correlates with the tumour

grade.

Bolognani

et al., 2012

CPEB1 Cpeb1 7.72/14.81 mRNA cytoplasmic

polyadenylation mRNA

transport (for a review, see

Richter, 2007)

In vivo and in vitro PAPs

from astrocytes in the

mouse hippocampus

and primary cortical

CPEB1 controls Fabp7 mRNA

translation in astrocytes via poly(A) tail

length regulation in a time-of-day

dependent manner.

Gerstner et al.,

2012

In vitro rat primary cortical

astrocytes

CPEB1 regulates cyclin B1 translation

and cell proliferation. CPEB1 KO

enhances proliferation.

Kim et al., 2011

KSRP Khsrp 14.17/19.78 Pre-mRNA splicing, mRNA

decay, microRNA biogenesis

(for a review, see Briata et al.,

2016)

In vitro primary cortical

astrocytes from KSRP-

KO and WT mice

KSRP downregulates some cytokine

mRNAs and mediates an inflammatory

response in astrocytes.

Li et al., 2012

NSC, neural stem cell; WT, wild type.

*Expressed as the mean fragments per kilobase million (FPKM) (see Zhang et al., 2014).
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interfaces with vessels and/or neurons. The emergence of new

in vitro microfluidic or organoid methods might offer greater

opportunities in the future.

If local translation does sustain astrocyte polarity, it might occur

differently in the soma and in the various processes. As mentioned

above, the three TRAP studies found clear differences in the

repertoire of ribosome-bound mRNAs between astrocyte soma and

the processes, suggesting that local translation might sustain

molecular polarity in PAPs and PvAPs (Boulay et al., 2017;

Mazare et al., 2020a; Sakers et al., 2017). One of the most striking

results obtained in our latest TRAP study of PAPs from the dorsal

hippocampus is the enrichment in several ribosome-bound mRNAs

encoding proteins of the large and small ribosomal subunits in PAPs

compared to level of these mRNAs found in whole astrocytes

(Mazare et al., 2020a). These results suggest that the ribosomal

compositions of the astrocyte soma and PAPs could differ.

Ribosomal proteins exhibit different functions in ribosomes

(Castello et al., 2012), and mutations in individual ribosomal

proteins give rise to distinct qualitative effects rather than an overall

loss of protein synthesis (Shi and Barna, 2015). Hence, differences

in ribosomal protein composition between astrocytic soma and

PAPs might have important functional consequences. This question

has yet to be resolved and will require a detailed proteomics study.

The comparison of astrocytic interfaces might be an important way

to determine the role of local translation in astrocyte polarity. PvAPs

and PAPs differ in their subcellular organization; they both contain

ER, but a full Golgi is observed only in ∼7% of PvAPs, suggesting

that protein maturation is regulated differently (even among PvAPs)

(Boulay et al., 2017). Interestingly, studies of dendrites have shown

that membrane proteins bypassing the Golgi display atypical

N-glycosylation profiles and thus probably have specific

properties (Hanus et al., 2016). A link between Golgi outposts,

microtubule branching, cell polarity and myelination was recently

observed in oligodendrocytes (Fu et al., 2019). These findings

suggest that the differences in ultrastructural organization between

PvAPs and PAPs might underpin a diversity of translational,

post-translational mechanisms and perhaps other functions yet to be

discovered. Finally, and if local translation indeed sustains astrocyte

polarity, PvAPs and PAPs might differ in the repertoire of ribosome-

bound mRNAs. This question is still unresolved because the

endfeetome has been characterized in whole brain and only

covered transcripts that were abundant in astrocytes (Boulay et al.,

2017), and the full ribosome-bound repertoire in PAPs was assessed

specifically in the dorsal hippocampus (Mazaré et al., 2020a). Our

recent refinement of the TRAP protocol now makes it possible to

compare ribosome-bound mRNAs in PAPs and PvAPs from a given

region of the brain (Mazaré et al., 2020a,b). Incidentally, this

technical refinement might also be useful for reinvestigating

ribosome-bound mRNAs in axons and dendrites because the

earlier TRAP preparations of synapses or neurites contained

astrocyte-specific mRNAs (Ouwenga et al., 2017; Shigeoka et al.,

2016). Interestingly, our study of some of the most abundant mRNAs

in the PAPome revealed differences between hippocampal PAPs and

PvAPs, suggesting that local translation might indeed govern

functional polarity (Mazaré et al., 2020a). One of the ribosome-

bound mRNAs found to be more abundant in PAPs than in PvAPs

was Rplp1, which encodes a ribosomal protein, suggesting that

PvAPs and PAPs might also differ in the composition of their

ribosomes, which might give rise to specific translational properties

(Castello et al., 2012; Shi and Barna, 2015).

Besides polarity, there is a need for further investigations into the

physiological and pathophysiological relevance of local translation

in astrocytes. Interestingly, we observed that fear-conditioning in

mice altered the levels of several enriched ribosome-bound mRNAs

in dorsal hippocampal PAPs; this hints at a physiological role of

astrocyte local translation in memory and learning and, more

generally, in the cellular response to environmental cues (Mazaré

et al., 2020a). During development, local translation in axons has a

preponderant role in growth cone guidance, axon elongation and

membrane remodelling (Wu et al., 2005; Yao et al., 2006; Campbell

and Holt, 2001; Leung et al., 2006; Ming et al., 2002; Piper et al.,

2006; Cagnetta et al., 2018; Hengst et al., 2009; Gracias et al.,

2014). Results on axonal growth cone raised the intriguing

possibility that local translation conditions the growth and

formation of PvAPs and PAPs. Dysregulation of local translation

in neurons has been linked to diseases such as FXS (Kao et al.,

2010), spinal muscular atrophy (Jablonka et al., 2001; Zhang et al.,

2003), ALS (Alami et al., 2014; Fallini et al., 2012) and

Alzheimer’s disease (Baleriola et al., 2014; Kobayashi et al.,

2017; Li and Gotz, 2017; Walker et al., 2018). Furthermore, local

translation might also be essential for the restoration of axon

outgrowth after axon injury (Koley et al., 2019). With regard to the

glia, translation of myelin basic protein in oligodendrocyte distal

cell processes in vitro is impaired by exposure to amyloid β-peptide

(Quintela-Lopez et al., 2019). We recently observed that the

distribution of mRNAs encoding the GFAP isoforms α and δ

differed in an Alzheimer’s disease mouse model, particularly in

astrocytes close to amyloid deposits (Oudart et al., 2020). As

discussed above, most of the RBPs linked to neuronal dysfunction

are also expressed in astrocytes. Alteration of astrocyte polarity is a

hallmark in neuropathology (Cohen-Salmon et al., 2020; Dossi

et al., 2018). Hence, changes in local translation in astrocytes are

likely to be linked to diseases by altering the perivascular and

perisynaptic functions of astrocytes.

In conclusion, the discovery of local translation in astrocytes

raises a new repertoire of questions, in particular regarding the way

astrocytes regulate their high level of polarity in normal and

pathological contexts. Given the critical functions of astrocytes in

the regulation of synaptic and vascular functions, characterization of

local translation in these cells might also reveal important and novel

aspects of the brain physiology.
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Mazaré, N., Oudart, M., Moulard, J., Cheung, G., Tortuyaux, R., Mailly, P.,

Mazaud, D., Bemelmans, A. P., Boulay, A. C., Blugeon, C. et al. (2020a). Local

translation in perisynaptic astrocytic processes is specific and changes after fear

conditioning. Cell Rep. 32, 108076. doi:10.1016/j.celrep.2020.108076
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Résumé

Dans le système nerveux central, les neurones sont en intéraction avec une autre population

cellulaire : les cellules gliales. Parmi ces cellules, les astrocytes intéragissent avec les synapses, lieu

de communication entre 2 neurones où elles régulent la transmission synaptique. Cette interface

s’accompagne d’un polarité moléculaire soutenue par la synthèse locale, c’est à dire au niveau de

cette interface, de protéines spécifiques. Pendant ma thèse j’ai voulu comprendre les mécanisme de

cette synthèse locale dans les astrocytes. J’ai identifié une protéine, RACK1, comme régulant la

synthèse d’un canal au potassium, KIR4.1, crucial dans la bonne transmission nerveuse. En effet,

dans une souris transgénique où RACK1 est inactivé dans les astrocytes, les propriétés synaptiques

des neurones étaient modifié dues à une modification des échanges de potassium. Ma thèse met en

lumière  de  nouveaux  mécanismes  moléculaires  des  astrocytes  dans  la  régulation  des  fonctions

cérébrales.

Abstract

In the central  nervous system, neurons interact with another cell  population :  glial  cells.

Among these cells, astrocytes interact with synapses, communication hub between 2 neurons where

they  regulate  synaptic  transmission  for  instance.  This  interface  display  a  molecular  polarity

sustained by the local synthesis, meaning at the level of this interface, of specific proteins. During

my PhD, I wanted to uncover mechanisms of this local synthesis in astrocytes. I identified RACK1

as a protein regulating the synthesis of KIR4.1, a potassium channel, crucial for the good nervous

transmission.  Indeed,  in  a  transgenic  mouse  in  which  RACK1 is  inactivated  in  astrocytes,  the

synaptiques properties of neurons were changed due to a potassium exchange modification. My

thesis highlights new molecular pathways in astrocytes in the regulation of brain functions.
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