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Abstract

Advances in computing power have made high-fidelity numerical simulations of
complex flows possible. However, due to the high computational cost associated
with CFD simulations of unsteady flows, the use of accurate high-fidelity simulations
makes the application of state-of-the-art control strategies ever more challenging.
In this thesis, we propose different solutions to reduce the computational cost of
the optimization problem, allowing the use of control strategies on the basis of
detailed simulations, or combined with data-driven low-fidelity simulations, leading
to a multi-fidelity approach. Control of high-fidelity simulations is performed
using adjoint equations, which provide the fastest path to solution. However
the sequential nature of adjoint-based optimization methods leads to an increase
in time to solution. To reduce this time, we propose an algorithm allowing the
parallelization on the time domain of the direct-adjoint problem. To enable the use
of low-fidelity simulations in the optimization problem, we investigate dimensional
reduction via Petrov-Galerkin projection methods combined with orthogonal
interpolation on the Grassmann manifold and its tangent space. Finally a dynamics
identification strategy based on system identification and clustering is proposed to
identify the dominant dynamics existing in a flow and their mutual interactions.
Insight on the underlying dynamics in a flow could play an important role in the
choice of the optimization strategy and the possibility to use reduced-order models.
All the methods are validated on two dimensional incompressible fluid flows, and
implemented in a numerical Navier-Stokes solver with immersed boundaries.

Keywords: computational fluid dynamics; optimisation algorithms; adjoint-based
methods; reduced order models; system identification; time parallelization.





Résumé

L’utilisation de simulations numériques haute-fidélité d’écoulements complexes a
été rendue possible par les récentes avancées en matière de puissance de calcul.
Cependant, le coût élevé de calcul, associé aux simulations CFD d’écoulements
instationnaires de haute fidélité, rend l’application de stratégies de contrôle de
pointe de plus en plus difficile. Dans cette thèse, nous proposons différentes
méthodes de réduction du coût de calcul des procédures d’optimisation permettant
d’utiliser des stratégies de contrôle sur la base de simulations détaillées, ou
combinées avec des simulations basse-fidélité pilotées par des données, conduisant
à une approche multi-fidélité. Le contrôle des simulations haute-fidélité est effectué
à l’aide d’équations adjointes qui permettent de déterminer le chemin le plus direct
vers la solution. Cependant, la séquentialité des méthodes adjointes entraîne une
augmentation du temps de résolution. Afin de réduire ce temps, nous proposons
un algorithme de parallélisation temporelle du problème direct-adjoint. De plus,
l’utilisation de simulations de basse-fidélité est rendue possible par la réduction
dimensionnelle via des méthodes de projection de Petrov-Galerkin combinées à
une interpolation sur le manifold de Grassmann et son espace tangent. Enfin, une
stratégie d’identification des dynamiques basée sur la localisation et le regroupement
de systèmes est proposée. La compréhension des dynamiques sous-jacentes aux
écoulements peut faciliter le choix de stratégies d’optimisation et d’utilisation de
modèles d’ordre réduit. Toutes ces méthodes ont été mises en place dans un solveur
numérique Navier-Stokes bidimensionnel à frontières immergées.

Mots clés: computational fluid dynamics; algorithmes d’optimisation; méthode
adjointes; modelès d’ordre réduit; identification des systèmes; parallélisation tem-
porelle.
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1.1 Motivation

Numerical simulations of multiphysics and multiscale phenomena in fluid mechanics
have advanced remarkably over the past decades due to the growth in computing
power and infrastructures. Complex physical processes involved in the engineering
industry, such as complex turbulent flows, including interfaces, shocks, and flames
can now be simulated and predicted with an astonishing degree of fidelity and accu-
racy. However, in the current era in which awareness of climate change imposes ever
more stringent restrictions on pollutants/emission resulting in an increasing demand
for cleaner energy while minimising the waste in resources, it is just as crucial to be
able to extract relevant optimization and control strategies dedicated to improving
the performance and efficiency of the underlying industrial processes [71].

Flows encountered in energy conversion systems are often turbulent and are gov-
erned by the interaction of different physical and chemical phenomena, affecting the
amount of emitted pollutants (NOx, SOx, CO, soot etc. [57]). The reduction of emis-
sions and waste products can be achieved by acting on the parameters governing
the physics of the system, ensuring that the system operates at the desired optimal
condition. Effective flow control strategies can be achieved by small control effort,
as an example figure 1.1 shows the smoke visualization of the jet injected from a
flush nozzle into crossflow [109], highlighting the differences between (a) the uncon-
trolled flow, (b) the response of the transverse jet to sinusoidal excitation and (c)
the response to square wave excitation. One application of jets in crossflow is in di-
lution or primary air jet injection in gas turbine combustor, making this application
relevant for NOx control.
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In the case of unsteady and complex flow scenarios of interest, the number
of model parameters and the large dimensionality of the objective function make
the optimization procedure very complex. Therefore, reduced-order models or
approximated equations are commonly used to replace the high fidelity model.
By simplifying the function evaluation one allows the application of conventional
control strategies [111, 197]. This approach also reduces the cost of the opti-
mization algorithm such that multiple queries are possible in a short time period.
While effective, the limited fidelity of the approaches in use today results in a
stagnation of the improvements. The following arguments will therefore justify
a multi-fidelity approach in order to increase the efficiency of the optimization
process while maintaining the low cost of the algorithm: (i) resorting to model
reduction amounts to replacing the exact solution of the high-fidelity model by an
approximation which results in added uncertainties in the value of the functional
and in the resulting optimization algorithm, therefore augmenting the fidelity
of the forward solution, when necessary, will allow the optimization result to be
more reliable, (ii) during the past few decades the focus has been directed towards
building and designing computational paradigms dedicated to solving complex flow
regimes with measurable success and improved efficiency; it is then beneficial to
the computational science community to propose a strategy to make use of these
accurate simulations through the optimization process.

However, in order to achieve this goal two main challenges need to be addressed:

• In order to perform the optimization on the basis of high-fidelity simulations,
the solver need to be coupled with sophisticated control strategies, often
leading to prohibitive computational costs. Although advances in computing
capability and software have made Computational Fluid Dynamics (CFD) a
valuable tool in determining control strategies in a limited number of appli-
cations [101, 103, 105, 55, 141, 2], as of yet, the application of high-fidelity
control strategies to ever more complex systems of equations remains vastly
unexplored.

• In order to successfully perform a multi-fidelity optimization, the reduced order
models need to be predictive and robust with changing operating conditions.
Despite recent efforts, most state-of-the-art reduced-order models fall short
when highly unsteady and turbulent flow cases are considered [117].

In this thesis we propose different solutions to enable the use of control and
optimization strategies on the basis of detailed simulations provided by the CFD,
by (i) providing solutions to speed up the optimisation procedure, and (ii) propos-
ing predictive Reduced-Order Model (ROM)s applicable over a variable range of
parameter regime.
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Figure 1.1: Effect of forcing at the nozzle inlet, for a jet in cross flow set-up, relevant
for the injection process. (a) unforced jet, (b) jet forced with sine wave excitation,
(c) jet forced with square wave excitation. Image reproduced from [109].

1.2 Control and optimization strategies

In the context of fluid dynamics, control and optimization strategies aim to modify
a flow in order to match a desired output. The variables otherwise solved in the
forward integration are in the context of control and optimization problems referred
to as the state variables, q. In addition to the state variables, a set of parameters,
g, is also defined constituting the control or design variables. The cost functional,
J , refers to the function that is ultimately optimized. Finally, a set of constraints is
described by the governing equations and side conditions that the state and control
variables have to satisfy. Therefore, the resulting optimization problem can be
formulated as:

Optimize : J (q, g)

While :
∂q

∂t
= F (q, g, t) for (0 ≤ t ≤ T ) ,

(1.1)

which is completed by defining the appropriate initial conditions. Functional F
denotes an integro-differential operator.
Control strategies can be divided into (i) passive control [68, 76] and (ii) active
control techniques [42, 210, 63], where the former are constant in time and the
latter depend on a time varying component (actuator). Independent of the type of
control, due to the nonlinearities and unsteadiness present in the equations governing
the flow, optimisation algorithms need to be employed to extract the most effective
control regime.

Two major types of optimization methods in use today are (i) gradient-based
methods and (ii) derivative free methods. In the following we briefly describe these
methods and highlight their shortcoming when applied to high-fidelity simulations.

1.2.1 Gradient-based optimization

Gradient-based optimization methods reach the optimum by incrementally moving
the design point to improve the value of the objective function based on a local
model. The design point is iteratively moved along a descending direction until
a minimum is reached. The descending direction is approximated by a first-order
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(gradient), or second-order (Hessian) Taylor series expansions. Optimization algo-
rithms which follow this approach rely on the knowledge of the local form of the
cost function and are hence called descend direction methods.

Common methods in extracting the gradient are analytical or use finite differ-
ences. However, the subtleties associated with the numerical approach and the
complexity of the governing equations, make extracting the analytical expression of
the gradient impossible without a suitable (often complex) mathematical formula-
tion. In the case of finite differences, the large parameter spaces make this approach
prohibitively expensive for large problems, making the cost of the computation of
the gradient proportional to the number of design variables, and can also be easily
overwhelmed by numerical noise. A suitable alternative is the use of adjoint-based
algorithms.

1.2.1.1 Adjoint-based methods

Adjoint-based methods allow the determination of the gradient at a cost compa-
rable to a single function evaluation, regardless the number of design parameters.
The adjoint equations are derived from the application of variational principle to an
unconstrained optimization problem, to which the constraints (the equations gov-
erning the problem) are added to the cost function (Lagrangian) using the method
of Lagrangian multipliers, allowing the extraction of the location where the contour-
line of the cost functional is aligned with the contour-line of the constraint [112].
Adjoint-based algorithms are then used to transform a constrained problem into
an unconstrained alternative, allowing the use of a vast range of optimization tech-
niques, otherwise inapplicable. The gradient is then computed in the form of alge-
braic expressions based on the problem’s Lagrangian multipliers or adjoint variables.
Once derived, the adjoint equations are solved backward in time, providing gradient
or sensitivity information about the optimization problem.

Originally arising as part of a design algorithm for fluid sys-
tems [162, 100, 103, 173], adjoint methods have been applied to aero- and
thermo-acoustic applications [105, 120, 187]. These areas provide a suitable
application for adjoint-based methods, which are inherently linear, since they
too are dominated by linear dynamics. Recently, nonlinear problems have also
been tackled, within the context of optimal control of separation on a realistic
high-lift airfoil or wing, enhancement of mixing efficiency, minimal turbulence
seeds and shape optimization to name a few [143, 186, 168, 69]. The same
techniques have also been recently incorporated into reactive and multi-phase
simulations [60, 25, 119, 23, 38, 87, 86, 67].

The formalism leading to the definition of the adjoint equation and the resulting
optimality condition as well as its application on incompressible fluid flows is
presented in chapter 2.

While very efficient and flexible, these algorithms still suffer from a great many
challenges. On the algorithmic side, a key challenge is associated with the unsteadi-
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Figure 1.2: Graphical representation of the checkpointing procedure. Image repro-
duced from [193].

ness of the flow and the integration of the reverse problem. The evolution of the
adjoint variable is governed by a linear, variable-coefficient dynamical system with
a general structure similar to the forward problem, except that the adjoint is inte-
grated backward in time. The variable-coefficient nature of the adjoint equations
dictates that the solution of the forward integration is needed at each time step
of the adjoint problem. This solution must be either stored in memory or recal-
culated from forward solutions at specifically chosen time instants, referred to as
checkpoints. In large scale high-fidelity simulations, relevant in engineering applica-
tions, many time steps are usually required for each forward integration, leading to
excessive memory requirements to store the solutions.

Checkpointing schemes in which only a small number of time steps is stored
provide a remedy. In this approach, the solution is stored at carefully chosen check-
points, and during the backward integration of the adjoint equations, the discarded
intermediate solutions are then restored by starting anew the forward integration
from the respective checkpoint. A schematic of the checkpointing procedure, show-
ing the coarser checkpoints, is given in figure 1.2. Various checkpointing algo-
rithms exist which aim to optimize the number of stored points in memory and
the time required for the respective forward integration to access the intermediate
solutions [201].

In unsteady cases, the use of checkpointing algorithms increases the computa-
tional costs nearly by a factor of three. In addition, the overall time to solution
increases proportionally, since these operations (forward and backward integrations)
are executed sequentially. This cost cannot be circumvented, since the adjoint
equations need to be solved in order to gain access to derivative information.
Therefore, each iteration of the optimization algorithm is at best twice the cost of
a full CFD calculation (forward integration).

A way to speed up the optimization problem is parallelization. When dealing
with complex unsteady problems, spatial parallelization has been widely adopted.
However sometimes spatial parallelization is not feasible or it has reached its max-
imum efficiency, hence a time parallelization can be introduced in the resolution of
the problem.
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Figure 1.3: An overview over important contributions to time parallel methods.
Image reproduced from [75].

1.2.1.2 Parallel-in-time algorithms

Time parallel integration has been an active area of research, which started with the
pioneering work of Nievergelt (1965). The existing space-time parallel methods can
be divided into four main categories: (i) methods based on multiple shooting, (ii)
methods based on domain decomposition and waveform relaxation, (iii) methods
based on multigrid, and (iv) direct time parallel methods [75]. An overview of time
parallel methods is given in figure 1.3.

Direct time parallel methods are based on direct solvers in space-time and do
not rely on iterations. In this thesis, we will consider the linear ParaExp algorithm
proposed by Gander and Güttel [73]. This method is based on an overlapping time
domain decomposition, where the time domain is decomposed in partitions and the
linear problem is split into subproblems on overlapping intervals. In particular,
the linear initial-value problem is separated in its homogeneous and inhomogeneous
equations, proving that the method performs well when the existing inhomogeneity
is hard to integrate, which is a common scenario in complex flows. The major gain
obtained by the employment of this algorithm is given by the use of exponential
integrators to solve the homogeneous equations resulting from the separation of
the original problem. An extension of the linear ParaExp algorithm to nonlinear
problems has been introduced by Gander [74] and its application on nonlinear Partial
Differential Equation (PDE) has been proposed by Kooij [113].

The use and the adaptation of the ParaExp algorithm for optimization purposes
based on the gradient information has been studied by Skene et al. [193], who
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Figure 1.4: (a) convex function; (b) nonconvex function. For nonconvex functions,
local minima make it challenging for gradient-based optimization. Image reproduced
from [27].

proposed different strategies for the parallelization of the direct-adjoint loop. In their
work, they proposed two algorithms to accelerate the computation of the gradient
for a nonlinear forward problem. The first nonlinear algorithm proposed applies
the nonlinear parallel algorithm proposed by Kooij to the forward problem and the
linear ParaExp to the adjoint. The nonlinear forward equation has to be linearized
through an iterative procedure in order to use the parallel integrator, and these
iterations proved to reduce the performance of the algorithm.

The second algorithm adopts a hybrid approach, solving the nonlinear forward
equation in serial and applying the linear ParaExp to the nonlinear adjoint equa-
tions. This algorithm does not need iterations and proved to reach the maximum
speedup with a smaller number of processors and it will be employed in this thesis.
However, the characteristics of the governing equations of interest to this work,
and in particular, the divergence free constraint (incompressibility effect) as well as
the nonlinearity and the unsteadiness of the flow, make direct application of the
existing parallel-in-time algorithms not straightforward.

In chapter 3 we address these underlying issues, proposing an adaptation of the
hybrid algorithm by Skene et al. to algebraic differential equations. The algebraic
nature of the linear adjoint equations rising from the incompressible Navier-Stokes
equation, and the divergence free constraint, makes the use of exponential time
integrators (and therefore ParaExp) nontrivial. In our method we reformulate
the homogeneous adjoint momentum equation following the Exponential Block
Krylov (EBK) method used for the exponential integration of incompressible
Navier-Stokes equation by Kooij [114]. The algorithm is then applied on a
two-dimensional incompressible flow optimization problem, using both passive and
active control.

Although gradient-based algorithms are very efficient in finding a local optimum,
they suffer from few shortcomings which limit their application to unsteady complex
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flow configurations:

• gradient-based optimization techniques based on adjoints tend to diverge when
applied to complex configurations in presence of turbulence.

• Gradient-based algorithms show low performances when optimising an objec-
tive function with multiple local minima. As an example, figure 1.4 shows
two functions to be minimized, the function on the left (1.4 (a)) is convex,
i.e. it has one global minimum, while the function on the right (1.4 (b)) is
nonconvex and includes multiple minima [27]. When applied to nonconvex
functions, gradient-based algorithms could get stuck into local minima, and
the convergence to a global optimum is not guaranteed.

One way to avoid the divergence of the adjoint equations in presence of turbu-
lence, the gradient can be obtained using ROMs, solving the adjoint of only the
coherent part of the flow included in the low-fidelity model. In this way, chaos is
excluded and the adjoint equation is guaranteed to converge. Although the solution
of the adjoint equation will then be an approximate gradient, it can be used to iden-
tify the direction towards the optimum. The resulting optimization algorithm falls
under the category of multi-fidelity optimization procedures, that will be discussed
later.

Alternatively, derivative-free optimization methods can be employed to ensure
the convergence of the algorithm to the global optimum of nonconvex functions,
even in the presence of turbulence.

1.2.2 Derivative-free optimization

Derivative free methods are specially useful for situations where multiple objectives
are present, the optimization problem has many local minima, or access to gradient
information is non-trivial or not feasible.

The procedure adopted by all derivative-free methods is based on the determi-
nation of the next points to evaluate in the design parameters space (search space).
One way of helping the algorithm escape eventual local minima and ensuring the
convergence of the optimization algorithm to the global minimum is the use of ran-
domization. Randomization can be inferred at each optimization iteration, using
random numbers during the search of the next candidate point, leading to stochas-
tic algorithms, or it can be used to initialize and modify a collection of points in
the design space defined as a population of individuals [112]. In this section we
briefly explain these two main optimization strategies. For complete reviews of
derivative-free optimization algorithms, the reader is referred to the recent works by
Larson [116] and Rios [176].

1.2.2.1 Stochastic algorithms

Stochastic methods operate by iteratively moving a single design point in the feasible
space of the objective function until a global minimum is reached, similarly to gra-
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dient descend algorithms. In some cases, stochasticity is added to the conventional
gradient-based descent algorithms (noisy descent) to increase the performance for
large nonlinear optimisation problems, helping the algorithm traverse past saddle
points [89]. In other algorithms, the randomization is directly used in the search
of the new candidate point. Used this way, the stochasticity of the random search
is controlled and slowly reduced advancing with the iterations, forcing the search
to converge to a minimum. Starting the search with a high stochasticity allows
the algorithm to escape local minima. Algorithms such as simulated annealing,
cross-entropy method, natural evolution strategies and Covariance matrix adapta-
tion, belong to the class of stochastic algorithms where probability distributions
are used to sample the search space in order to move the design point towards the
optimum. Each one of these algorithms employs a different strategy to sample or
update these distribution functions [112]. In a series of lecture notes, Koumoutsakos
and Müller [115] highlight some applications of stochastic algorithms to flow control,
in particular the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [85]
which has been applied to multi-objective optimization of automated profile design
for compressor blades. The stochastic nature of these optimization algorithms also
proves to be advantageous when considering robustness and optimality of the de-
sign in the presence of noise and uncertainties. However, due to the large number
of function evaluations needed to converge, most of the optimization is performed
for steady actuation or by the use of low-fidelity models.

1.2.2.2 Population methods

While stochastic methods use stochasticity to move one single design point toward
the optimum of the objective function, population methods spread a collection of
points (otherwise known as individuals) over the search space, in order to increase
the chances that the samples are close to the best regions. Large number of indi-
viduals distributed in the design space and exchanging information about its local
shape allows the algorithm to escape local optima [112]. Most population methods
are stochastic in nature and they are usually easy to parallelise. Genetic algorithms,
particle swarm optimization, etc. belong to this class of methods. An efficient class
of generic algorithms based on the surrogate management framework [135] has been
applied to optimise cardiovascular geometries. Hansen et al. [85] also demonstrate
various examples of such algorithms applied to a variety of engineering problems
ranging from aerodynamics and turbo-machinery to microtechnology, showing their
suitability for optimization cases characterised by noise and multimodality in the
absence of gradient information.

While an efficient class of generic algorithms based on the surrogate manage-
ment framework [135, 136, 137] and artificial neural networks [161] have been
used for optimization in fluid mechanics, mainly in the area of aerodynamic shape
optimization, derivative-free optimization methods could require many function
evaluations, for training purposes for example. When detailed simulations of
complex turbulent phenomenon are concerned, each function evaluation commands



10 Chapter 1. Introduction

a full (potentially unsteady) CFD computation, making the global optimization
procedure very expensive and impractical.

One way of speeding up the optimization process is to substitute the high-fidelity
model with a low-fidelity counterpart when searching for the next promising design
point during the optimization iterations.

1.2.3 Multi-fidelity optimization

While it is desirable to optimise a design using only the high-fidelity model, as
discussed earlier, in cases where high-fidelity simulations prove to be too expen-
sive, lower-fidelity models may provide valuable information that can accelerate
the optimization process. The lower-fidelity models may be simplified physics
models, or approximate models generated using methods such as response surfaces
[84, 133, 189, 213], reduced-order models ROMs [6], or coarse discretisations [3].

The resulting optimization algorithm falls under the category of multi-fidelity
optimization procedures. To be robust, multi-fidelity optimisation algorithms, ap-
plicable to unsteady multi-physics flow problems, must rely on accurate low-fidelity
models. The more accurate the low-fidelity model, the less need for high-fidelity
function calls. To increase the accuracy of the low-fidelity model, system identifi-
cation can be used in order to discover and locate the dominant dynamics existing
in a fluid. Additional information on the underlying physical mechanisms governing
the flow can be used to define the optimization strategy (design parameters, sensor
placement) and to build adapted low-fidelity models.

1.2.3.1 Surrogate models – low-fidelity representative of the objective
function

One suitable alternative to reduce the cost of function evaluations is based on a
response surrogate model, designed to be smooth, that is able to approximate the
objective function in the design space. Performing the optimisation procedure on
a surrogate surface limits the number of calls to the expensive high-fidelity model.
One example of these optimisation methods relies on kriging models [104]. This
model predicts the value of the design point using stochastic processes based on
Gaussian random function. This model has proven to be flexible enough to han-
dle nonlinear and multimodal functions. Alternatively, the surrogate model can
be constructed using interpolation models based on polynomials [48, 166, 165] or
Radial Basis Function (RBF) [22, 84, 170]. Studies have shown that, independent
of the type of RBF, convergence can be achieved without further assumptions on
the objective function. Although surrogate surfaces can be used in the context of
multi-fidelity optimization to reduce the cost of the optimization procedure, they
carry no information regarding the dynamics of the flow, but only the objective
function and they will not be treated in this thesis.
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1.2.3.2 Reduced-order models – low-fidelity representative of the high-
fidelity simulation

Another class of low-fidelity models are physically based models that leverage infor-
mation from the flow structures and governing equations. Although these models
can not be used to replace the surrogate surface, they can be combined with high-
fidelity simulations to reduce the cost of local function or gradient evaluation at
the selected design point. Following this approach, when a new promising point is
identified through an optimization algorithm (stochastic or following the descend
direction), a ROM can be used for evaluating the function or the gradient.

Certain advantages can come from replacing the high-fidelity model with a ROM:
(i) the cost of evaluating the function of the gradient is much lower than the high-
fidelity model, accelerating the overall optimization algorithm; (ii) in cases where
gradient information can not be directly extracted from the flow, such as in tur-
bulent flows, the ROM is able to evaluate an approximate gradient; (iii) even in
circumstances where the gradient can be extracted using the adjoint methodology,
in practice, incorporating adjoint information inside an existing high-fidelity solver
is a challenging task. In these cases an approximate gradient computed using ROMs
reduces the cost of extracting the gradient information.

ROMs can be categorized into physical based models, based on the knowledge of
the underlying governing equations which are projected on a lower dimensional sub-
space, and models that use input-output data or system identification [122, 123, 121].

One of the features of most turbulent flows, is the existence of coherent struc-
tures. Although, the flow itself is non-deterministic due to the presence of chaos,
deterministic behaviour can be attributed to these coherent structures. As an exam-
ple, figure 1.5 shows a photograph of the von Karman vortex shedding generated by
the Rishiri Island, compared to the two dimensional flow around a cylinder at low
Reynolds number, suggesting the existence of coherent spatial features that capture
the dominant dynamics of the flow.

Physical based models are able to capture the principal characteristics of the
high-fidelity Full-Order Model (FOM), potentially leading to high speedup. Projec-
tion based ROM are used to reduce the dimension of the system of linear or nonlinear
equations governing the physical phenomenon, leveraging the data from the detailed
simulation (or experimental data) using data-decomposition techniques. Data de-
composition techniques have received considerable attention in the community due
to their ability to provide physical explanations for dynamical flow processes by ex-
tracting the relevant energy-dominated or frequency-dominated modes to form the
basis for the projection-based methods.

Some of the most used techniques to extract these modes have been summarized
and applied in the reviews by Taira et al. [194, 196]. Among these techniques
are Proper Orthogonal Decomposition (POD) [192, 11, 92], Dynamic Mode
Decomposition (DMD) [185], and greedy reduced basis [130, 126] and Empirical
Interpolation Method (EIM) [14, 45, 159] with its generalized version [128, 129, 21].
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Figure 1.5: Von Kármán vortex street generated by the Rishiri Island in Hokkaido,
Japan (top: photograph from NASA, 2001; STS-100); cylinder wake at a low
Reynolds number (bottom). Image reproduced from [196].

Through these procedures, the most energetic modes are extracted, which then
form a hierarchical basis for describing the flow.

POD, also known as Karhunen-Loève expansion and Prinicipal-Component
Analysis (PCA), is a linear procedure to extract uncorrelated modes from a flow.
The resulting features (modes) are then used to define a orthogonal basis that
optimally approximates the high-dimensional data. Despite the common use of
projection-based models, they can suffer from a few shortcomings. One important
limitation of such models is the lack of predictability when highly nonlinear and
especially turbulent configurations are considered. Secondly, the truncation of the
expansion ignores the cumulative effect of truncated scales on the retained degrees
of freedom, making the model-reduced system prone to detrimental long-term in-
stabilities [172].

Different methods have been proposed to overcome these problems and im-
prove the stability of the Galerkin projection method stabilizing the inner prod-
ucts [108, 13, 179] introducing numerical dissipation via closure models [13, 17,
96, 97, 190, 203], including a numerical model for the pressure [72, 92, 155], using
eddy viscosity [9, 18, 163], performing nonlinear Galerkin projection [134, 188], and
perform Petrov-Galerkin projection [64, 208, 41].

In their basic form, projection based ROMs scale with the dimensionality of
the underlying high-fidelity simulation and are therefore efficient for primarily
linear and steady problems. To further improve the computational efficiency
and the dimension of the reduced models, empirical techniques were proposed
for capturing the non-linearities and evaluate the non-linear terms at a subset of
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points [14, 21, 41, 45, 128, 150, 149, 159, 129]. Among these, Carlberg et al. [41]
proposed the GNAT method, where the error made by the truncation process
is included when defining the coefficients of the remaining modes, and therefore
improves the performance of the reduced model. This method is based on a fully
discrete Petrov-Galerkin projection, proving an a priori stability. In addition, a
second level of approximation is added to the model reduction to approximate the
tensors involved in the Petrov-Galerkin projection using a gappy POD technique,
further reducing the dimension of the online stage.

The low-fidelity models obtained with projection based ROM mentioned reduce
the computational cost of the simulations by dimensionally reducing the high-
fidelity model. However these methods lack of robustness to varying parameters.
Therefore, when considering changes in the parameter space a new ROM must
be rebuilt. This is particularly disadvantageous in control applications, where
design parameters are modified at each optimization iteration or the function has
to be evaluated at new operating points. To enhance adaptivity of projection
based ROM, Amsallem et al. [5, 4] proposed an interpolation on a tangent space
of the Grassmann manifold as an alternative method for adapting precomputed
orthogonal bases to new physical or modeling parameters.

The GNAT dimensional reduction methodology and the interpolation on the
Grassmann manifold and its tangent space are employed in this thesis (chapter 4)
to construct an optimised POD basis, and its respective ROM for fixed and variable
operating conditions.

1.2.4 Data-driven model reduction and identification of inherent
flow dynamics:

Together with data-driven projection-based models, described earlier, system
identification can be utilized to estimate the unknown parameters driving the
underlying predetermined basis, leading to models that are particularly suited for
control applications, since, by design, the dynamics taken into account are part of
the input-output behavior of the system. Used in this context, the identification
process is used to replace other methods which aim to add nonlinearities to an
inherently linear basis such as Discrete Empirical Interpolation Method (DEIM)
or GNAT. Following this approach [123] once the data-driven reduced basis is
extracted and truncated, machine learning strategies are used to identify the
nonlinearities through mode coupling.

Dynamical data obtained numerically or experimentally can, on the other hand,
be utilized to infer the equations governing the existing dynamics, which has been
shown to scale to high-dimensional systems [29]. The identification of the dynamics
existing in a dynamical system provides physical insight and interpretability into
the system’s behaviour. Two important challenges in analysing a dynamical
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complex system are the existing nonlinearities and the lack of known governing
equations for many modern realistic systems. For example in industrial applications
involving phenomena such as turbulence and combustion, usually described by
high-dimensional systems, finding patterns to determine the dominant behaviour is
not trivial, motivating the need for automated model discovery techniques.

System identification has been employed to discover the underlying equations
governing a physical system or completing them with closure models. Methods for
data-driven discovery of dynamical systems include equation-free modeling [110], ar-
tificial neural networks [81], nonlinear regression [200], empirical dynamical model-
ing [209], normal form identification [132], nonlinear Laplacian spectral analysis [77],
modeling emergent behaviour [177], automated inference of dynamics [50], and more
recently sparse regression [29, 43, 181, 180]. Their application has been extended to
incorporate the effect of control, where a small deviation in the design parameters
can produce fundamentally different system behaviour [66, 31, 107], increasing the
robustness of these model to varying parameters.

As already mentioned, in many regimes, the dynamics of the flow, usually de-
scribed by complex partial differential equations, are governed by only a few non-
linear terms, allowing the production of simpler lower-fidelity models capable of
predicting the main features of said system. Identifying and locating the different
dynamics present in complex physical systems and eventually understand how they
affect the overall solution can increase the accuracy of the numerical model em-
ployed. Therefore, the identification process can alternatively be used directly to
discover dominant dynamics in the flow as proposed by [35]. Following this approach,
in chapter 5, we propose a strategy to identify and classify the dominant dynamics
existing in a flow. The equation governing the flow (incompressible Navier-Stokes)
is directly analysed on the discrete spatio-temporal domain. The active terms in the
equation governing the dynamics, at discrete locations of the domain, are then iden-
tified using sparse regression techniques. Coupling the identification procedure with
clustering algorithm, we are finally able to identify the dominant dynamics of the
flow, spatially locate them and determine how they interact one another. Additional
insight on the mechanism governing a system and eventually their interactions can
have a significant role in the selection of the design parameters, the placement of
the sensors, and the possibility to replace the high-fidelity simulation with ROMs,
allowing a more detailed understanding of the effect of the control and then reducing
the complexity of the problem.

1.3 Outline of the thesis

In this introduction chapter, the main challenges encountered when applying
optimization algorithms to complex dynamical systems have been presented. The
main objective of this thesis is to explore and propose different solutions to ease
the use of control and optimization strategies, otherwise unfeasible due to the
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high-computational cost associated with high-fidelity simulations.

Before introducing the methods used to accelerate the solution to the optimiza-
tion problem, the formal derivation of the optimality system for gradient-based
optimization methods, is given in chapter 2. In this chapter, the gradient is
extracted using the adjoint equations. The adjoint equations are derived from the
incompressible Navier-Stokes equations, for two-dimensional fluid flows applica-
tions. Following the discretized-then-differentiate approach, the discrete adjoint
equations are extracted and implemented in a numerical solver with immersed
boundaries capabilities. The numerical code is then validated by imposing both
passive and active control for unsteady fluid systems.

In chapter 3 we introduce parallel-in-time techniques and extend the hybrid
algorithm proposed by Skene et al. [193] to the incompressible Navier-Stokes
equations. The original algorithm is modified to incorporate the divergence-free
constraint into the momentum equation, therefore to reformulate the Algebraic
Differential Equation (ADE) governing the inverse problem in the form of a PDE.
This operation is required to allow the use of exponential integrators, that represent
the main source of time gain in the algorithm. Our algorithm is first validated,
studying the convergence of the exponential time integrator, its performance is
then evaluated on passive and active control.

While these first two chapter are closely related to each other and focus on
gradient-based optimization techniques, the rest of the thesis aim to propose
methodologies that can be employed for both gradient-based and derivative-free
optimizations, approaching multi-fidelity optimization.

Chapter 4 investigates modal decomposition and projection-based ROM. We
use the GNAT method to build a reduced-order model based on spatial POD modes
and add an adaptive capability by performing the interpolation on a tangent space
to the Grassmann manifold.

Finally, in chapter 5 we propose a data-based strategy to identify dominant
dynamics existing in a system. In this chapter, we introduce sparse regression for
dynamical systems based on Sparse Identification of Nonlinear Dynamics (SINDy)
algorithm. The clustering is done by using network science and graph partitioning.
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2.1 Introduction

The use of adjoint-based techniques for flow control and optimization has been
an important research area for many years. Originally arising as part of a design
algorithm for fluid systems, with the work of Pironneau [162] and later Jameson
and co-workers [100, 101, 103, 173], adjoint-based methods have been widely used
in fluid mechanics, with applications in acoustic and thermo-acoustics [105, 120],
dominated by linear dynamics, and more recently to nonlinear systems and reactive
and multiphase flows [186, 168, 69, 60, 25, 119, 23, 38, 87, 86, 67].

In the context of fluid mechanics, the optimization problem aims to find the op-
timal value for a set of design parameters to manipulate the flow to reach a desired
output. This is effectively a minimisation problem, most commonly nonlinear, in-
cluding a set of constraints. In this chapter we first introduce the general constrained
optimization problem and how to solve it using gradient-based techniques §2.2.

The most common ways in computing the gradient, such as analytical differ-
entiation or finite-difference, are proved to be inefficient, or even numerically non-
realizable, when applied to large problems and high-dimensional design space, due
to the large number of function evaluations needed. To overcome this difficulty, we
adopt adjoint-based techniques, which allow the determination of the gradient at a
cost of a single function evaluation, regardless of the number of design parameters.
In section §2.3 we formally derive the continuous adjoint equations by using a vari-
ational approach. In Section §2.4 the discrete adjoint methodology is described and



18 Chapter 2. Adjoint-based optimization

applied to the case of incompressible Navier-Stokes equations with immersed bound-
ary forces (a two-dimensional, finite volume, python solver [52] used throughout this
work). Finally the results obtained are presented in section §2.5.

2.2 Optimisation problems

The goal of any optimisation problem is the minimisation or maximisation of an
objective function (cost functional) J (q, g), where q are the state variables and g
are the control or design variables, subject to a set of constraints F(q, g, t). Using
this formalism, the generic constrained optimisation problem can be formulated as

min
g

J (q, g)

s.t. F(q, g, t) = 0 for 0 ≤ t ≤ T .
(2.1)

The set of equations described above is completed by defining initial conditions and
boundary conditions when appropriate.

One class of optimisation algorithms used to optimise the above problem, rely
on gradient (first-order) or Hessian (second-order) information in order to identify
a descent direction in the objective function phase-space to progressively move to-
wards the optimum. These classes of algorithms are commonly known as “descent
direction methods". Gradient-based methods (as a sub-category of such algorithms)
are therefore iterative and rely on the knowledge of the gradient of the cost function
J with respect to the control parameters g. In these methods the design point is
modified at each iteration taking a step in the descending direction, approximated
by the local value of the gradient (compute the Hessian can be too costly), un-
til a minimum is reached. Analytical derivation of the local gradient of the cost
functional in complex systems, due to the numerical artifacts such as the meshing
process and discretisation, and the complexity of the governing equation is usually
impossible, hence different numerical techniques should be used to approximate the
gradient [49, 83].
A straightforward approach to compute the gradient is to use finite differences to
approximate the gradient numerically, incrementing one control variable gk at a
time, with k = 1, 2, . . . ,K, K being the number of parameters,

dJ
dgk
≈ J (q (g + ∆gkek) , g + ∆gkek)− J (q (g) , g)

∆gk
, (2.2)

where q (g) is obtained by solving the state equation F(q, g, t) = 0. The computa-
tion of the gradient using this strategy requires K+1 solutions of the state equation
which is, in general, nonlinear and computationally expensive.
Another option is to differentiate equations (2.1) with respect to the control variables
g using the chain-rule to get the total derivative of the cost function

dJ
dg

=
∂J
∂q

∂q

∂g
+
∂J
∂g

, (2.3)
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where dq/dg is the sensitivity and its computation using finite differences requires
again K + 1 solutions of the state equations.
Alternatively, the state equation in (2.1) can be differentiate with respect to g to
obtain the following sensitivity equation

∂F

∂q

∂q

∂g
+
∂F

∂g
= 0. (2.4)

Using the sensitivity equation (2.4) to compute the gradient dJ /dg in equation
(2.3) requires the resolution of a linear equation for each parameter gk.

All the methods proposed above make the computation of the gradient propor-
tional to the number of control variables in g, making the use of these approaches
very expensive or even unfeasible for large problems and high-dimensional design
spaces. An efficient alternative for the computation of sensitivities is the construc-
tion and use of adjoint equations.

2.3 Adjoint-based algorithms

Adjoint equations are derived from the application of variational principle to an un-
constrained optimization problem, for a detailed classification of various differential
equations and their respective adjoint equations see Cao et al.[37]. In the context of
this thesis, we consider general ADE, where the incompressible formulation of the
Navier-Stokes equations imposes the equality constraints, the state variables are the
velocity and pressure field. The constrained optimization problem for such algebraic
differential equations, with its initial conditions, can be written as

min
g

J (q, g), where J (q, g) ≡
∫ T

0
J(q, g, t) dt, (2.5.1)

s.t. F(q, q̇, g, t) = 0 for 0 ≤ t ≤ T, and G(q(0), g) = 0. (2.5.2)

Fréchet-differentiating equations (2.5.1) and (2.5.2) with respect to g, we arrive at

dJ
dg

=

∫ T

0

(
∂J

∂q

dq

dg
+
∂J

∂g

)
dt, (2.6.1)

where the sensitivity dq/dg is determined by

∂F

∂q

dq

dg
+
∂F

∂q̇

dq̇

dg
+
∂F

∂g
= 0 for 0 ≤ t ≤ T, (2.6.2)

and

∂G

∂q(0)

dq(0)

dg
+
∂G

∂g
= 0. (2.6.3)

For the application of adjoint-based algorithms, the constrained problem has
to be transformed into an unconstrained alternative. This transformation can be
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achieved using the method of Lagrangian multipliers, where an auxiliary function
known as the Lagrangian, or augmented cost function, is defined as

L(q, g,λ,λ0) = J (q, g)−
(
〈λ†,F(q, q̇, g, t)〉 − 〈λ†0,G(q(0), g)〉

)
(2.7)

here (·)† denote the conjugate transpose and λ(t) and λ0 are the so-called Lagrange
multipliers or adjoint variables. The inner products are defined as

〈a,b〉 =

∫ T

0
[a,b]dt, (2.8)

[a,b] =

{∫
Ω aHb dV Continuous case,

aHb Discrete case.
(2.9)

Note that if the constraints in equation (2.5.2) hold, the value of the Lagrangian and
the cost functional coincide, as well as their respective gradients, for an arbitrary
choice of λ(t) and λ0. Setting the variation of the Lagrangian with respect to the
independent variables q(t), g and λ(t) leads to the optimality system consisting of

dL
dλ

= 0 state equation (constraints);

dL
dq

= 0 adjoint equation;

dL
dg

= 0 optimality condition.

Substituting the definition of the Lagrangian (2.7) into this system and computing
the derivatives we get to

• the state equation:

dL
dλ

= F(q, q̇, g, t) = 0 for 0 ≤ t ≤ T ,
dL
dλ0

= G(q(0), g) = 0;
(2.10)

• the adjoint equation and its initial condition:

dL
dq

=
∂J

∂q
λ†
∂F

∂q
+
∂

∂t

(
λ†
∂F

∂q̇

)
= 0 for 0 ≤ t ≤ T ,

λ†(T )
∂F

∂q̇

∣∣∣∣
T

= 0,

λ†(0)
∂F

∂q̇

∣∣∣∣
0

− λ†0
∂G

∂q(0)
= 0;

(2.11)

• and finally to ∂L/∂g, hence the gradient:

dL
dg

=
dJ
dg
−
∫ T

0

λ†
(
∂F

∂q

dq

dg
+
∂F

∂q̇

dq̇

dg
+
∂F

∂g

)
dt

− λ†0
(

∂G

∂q(0)

dq(0)

dg
+
∂G

∂g

)
.

(2.12)
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Substituting equation (2.6.1) into equation (2.12) and integrating by parts the term
λ†(∂F/∂q̇)(dq̇/dg), after some manipulations we arrive at

dL
dg

=

∫ T

0

[(
∂J

∂q
− λ†∂F

∂q
+
∂

∂t

(
λ†
∂F

∂q̇

))
dq

dg
+
∂J

∂g
− λ†∂F

∂g

]
dt−

−
[
λ†
∂F

∂q̇

dq

dg

]T
0

− λ†0
(

∂G

∂q(0)

dq(0)

dg
+
∂G

∂g

)
.

(2.13)

It can readily be noticed that the gradient dL/dg can be made independent of dq/dg

by using the adjoint system in equation (2.11). Note that the adjoint equation is
also an algebraic differential equation. The backward solution in effect provides
gradient or sensitivity information about an optimization problem, using the opti-
mality condition (referred to as the Karush-Kuhn-Tucker equation) that links the
result from the adjoint evolution equation to the optimal control strategy. Finally,
the gradient reads

dJ
dg

=

∫ T

0

(
∂J

∂g
− λ†∂F

∂g

)
dt− λ†0

∂G

∂g
. (2.14)

Solving simultaneously for g, q(t) and λ(t) using the optimality sys-
tem (2.10),(2.11),(2.14) and setting dJ /dg = 0, leads to the so-called one-shot
method. In the case of numerical simulations of unsteady flows, the resulting prob-
lem becomes computationally intractable due to the large dimensionality of the
resulting system. Instead, an iterative approach is usually preferred, where the di-
rect equation (2.10) is solved forward in time, the adjoint equation (2.11) is then
initialised using the direct solution and solved backward, from the final time to the
initial time. Finally, the gradient can be computed by using equation (2.14). Once
the gradient has been extracted, it can be used to perform a step of a gradient
descent algorithm, the procedure is then repeated until a local minimum is reached.

While very efficient and flexible, these algorithms still suffer from many chal-
lenges. On the algorithmic side, a key challenge is associated with the unsteadiness
of the flow and the integration of the reverse problem. The evolution of the adjoint
variable is governed by a linear, variable-coefficient dynamical system with a gen-
eral structure similar to the forward problem, except that the adjoint is integrated
backward in time. The variable-coefficient nature of the adjoint equations dictates
that the solution of the forward integration is needed at each time step of the ad-
joint problem. This solution must be either stored in memory or recalculated from
forward solutions at specifically chosen time instants, referred to as checkpoints.
Checkpointing schemes in which only a small number of time steps is stored provide
a remedy. In this approach, the solution is stored at carefully chosen checkpoints,
and during the backward integration of the adjoint equations, the discarded inter-
mediate solutions are then restored by starting anew the forward integration from
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the respective checkpoint. In unsteady cases, the use of checkpointing algorithms
increases the computational costs nearly by a factor of three [202].

2.3.1 Continuous versus discrete adjoint equations

In the previous section, the procedure for deriving the adjoint equations are high-
lighted, starting from the continuous direct equations and applying a variational
principle to the unconstrained optimization problem and setting the first variations
with respect to all involved dependent variables to zero to achieve the optimal-
ity condition. This results in governing equations for the direct (primal) and the
adjoint variables, together with appropriate boundary conditions, initial conditions,
and optimality expressions. The optimization problem arising from these continuous
equations can not be solved exactly, hence some finite-dimensional approximations
have to be performed. Two different approaches coexist in the literature to obtain
the discrete form of the adjoint equation, known as continuous (differentiate-then-
discretize) and discrete (discretize-then-differentiate) approaches. It is important to
mention that, while theoretically both converge to the analytic solution in the limit
of infinite grid resolution, the two methods can lead to different discrete approxi-
mations of the solution, as the discrete differentiation and discretization operators
do not necessarily commute [191].

Continuous
primal

problem

Discrete
primal

problem

Continuous
adjoint
problem

Discrete
adjoint
problem

Discrete
adjoint
problem

Differentiate

Differentiate

D
iscretize

D
iscretize

Figure 2.1: Schematics of the two different possible paths to derive the discrete
adjoint problem. Orange arrows: differentiate-then-discretize (or continuous) ap-
proach; Blue arrows: discretize-then-differentiate (or discrete) approach.

The differentiate-then-discretize approach starts from the continuous form of the
adjoint equations which subsequently have to be discretized and implemented [102,
20, 205]. Using this procedure the continuous adjoint equations obtained do not
depend on the solver and can be discretized on an appropriate grid (chosen by
the requirement of the adjoint equation solely), which may be different from the
one used for the forward problem. This can also be particularly useful in shape



2.4. Governing equations and numerical framework 23

optimization problems, where the grid usually changes from one iteration to the next.
However, handling the boundary conditions, as well as the stability and convergence
of the method remain critical issues [78]. This process, in particular for complex
governing equations and/or optimization objectives, is very cumbersome and error-
prone, leading eventually to inconsistent gradient of a continuous functional.

In the second approach, the equations of the forward problem are first discretized
and then differentiated to obtain the discrete adjoint equations. One common way
to create the adjoint code associated with the discrete primal equations is using
Automatic Differentiation (AD) [184]. This approach often leads to overly inflated,
and thus very inefficient and ultimately impractical codes. Alternatively, Fosas de
Pando et al. [53] implemented and validated an approach that extracts linearized
and adjoint information directly from a nonlinear simulation code. Following this
approach, the nonlinear modules are linearized and trans-conjugated, such that by
producing the adjoint of a graph, the adjoint solution is produced, leading to the
exact gradient of the discrete objective function. In this manner, the adjoint in-
formation is simply extracted from the already existing nonlinear simulation code,
avoiding significant additional programming effort, and exploiting the discretiza-
tion schemes of the original solver, causing it to run as efficiently (and parallel) as
the original code; the adjoint code is simply embedded in the nonlinear simulation
code. In addition, modifications to the code, such as the addition of reactive flow
simulation capabilities, are automatically reflected on the adjoint side by local dif-
ferentiation of the added modules/subroutine, usually by means of complex step
differentiation. This strategy has shown great promise in reducing trailing edge
noise and improving airfoil shape design in an aeroacoustic application [53] as well
as extracting the mechanism governing the frequency response of an M-flame to
the surrounding acoustic wave [23], and has been adopted here for extracting the
discretised adjoint equations.

2.4 Governing equations and numerical framework

In this section, the differential algebraic equations that arise from the spatial dis-
cretization of the Navier–Stokes equations for incompressible flow are presented.
Without loss of generality, we consider the projection-based immersed boundary
method introduced by [195] and implemented in the nonlinear solver [52]. This
method is proposed for incompressible flows over obstacles with prescribed surface
motion. One of the advantages of this fractional step approach is that the boundary
forces are determined implicitly without any constitutive relations allowing larger
time steps, during the time integration process, compared to alternative implemen-
tations. Symmetry and positive-definiteness of the system are preserved such that
the conjugate gradient method can be used to solve for the flow field.

Following this approach, the physical domain is extended by embedding these
obstacles and introducing localized volume forces at the boundaries such that the
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boundary conditions are satisfied. In continuous form, we have

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u+

∫
B
f(ξ(s, t))δ(ξ(s, t)− x) ds, (2.15.1)

∇ · u = 0, (2.15.2)

u(ξ(s, t)) =

∫
Ω
u(x, t)δ(ξ(s, t)− x) dx = uB(s, t), (2.15.3)

on the domain Ω × [0, T ], together with the initial condition at t = 0 given by
u(x, 0) = u0 and suitable boundary conditions at ∂Ω. In the above, ν is the
kinematic viscosity of the fluid, the last term in equation (2.15.1) represents the
contribution of the localized forces f at the surface of the obstacle B described
by ξ(s, t) and δ is the Dirac delta function. Similar to the role of the pressure p in
fulfilling the incompressibility constraint (equation (2.15.2)), the localized forces f
are introduced such that the velocity field at the boundary of the surfaces coincides
with the prescribed value uB(ξ, t) (equation (2.15.3)). In the following, we consider
initial and boundary conditions that are parameterized by the vector of design vari-
ables g, which we seek to optimize the given objective function.
Equations (2.15.1)–(2.15.3) are discretized in space using the finite volume method
on a Cartesian grid with a staggered arrangement for the velocity and pressure vari-
ables. A set of Lagrangian points is introduced at the surface of the obstacles, and
the boundary forces are then applied on these points to satisfy the no-slip constraint
along the surface of the immersed bodies. In particular, we have

F(q, q̇, g, t) ≡
(

Mu̇+ N(u, g) + Qφ− Lu+ b1(g)

Q†u+ b2(g)

)
= 0 for 0 ≤ t ≤ T , (2.16.1)

u(0)− u0(g) = 0, (2.16.2)

where u and φ = (p,f)T are now the discrete representation of the velocity, pressure
and boundary forces, respectively. In the above, M is the mass matrix, N(u, g)

and L are the discretized advection and diffusion operators, respectively, and Q

represents the discretized gradient and interpolation operators that are respectively
applied to the pressure and the localized forces. Finally, the boundary terms b1 and
b2 arise from the spatial discretization of the diffusion operator and the constraints,
i.e. incompressibility and no-slip boundary condition at the obstacles. Note that
in these equations the dependency on the design variables g has been indicated
explicitly.

The above system of equations can be recast into the form given in equa-
tion (2.5.2) by introducing the state vector q = (u,φ)T . The temporal discretiza-
tion of the governing equations (forward problem) is carried out using the implicit
Crank-Nicholson method for the viscous terms and the explicit second order Adams-
Bashforth scheme for the convective terms. The fully discrete forward equations in
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matrix form are then[
1

∆tM− 1
2L Q

Q† 0

](
un+1

φ

)
=

((
1

∆tM + 1
2L
)
un − 3

2N(un, gn) + 1
2N(un−1, gn−1)

0

)
+

+

(
b1

b2

)
for 0 ≤ t ≤ T , (2.17.1)

u(0)− u0(g) = 0. (2.17.2)

This system of equations is solved by following the fractional step method [47, 160,
44], the reader is referred to [195] for further details.

2.4.1 Discrete adjoint Navier-Stokes equations

Using the discrete form of the equations presented in (2.16), the discrete adjoint
equations, following the formalism presented in (2.11) with the inner product (2.9),
are

M
dũ

dt
−
(
−L +

∂N

∂u

†
)
ũ−Qφ̃+

∂J

∂u

†
= 0, (2.18.1)

−Q†ũ+
∂J

∂φ

†
= 0 for 0 ≤ t ≤ T , (2.18.2)

and ũ(T ) = 0. (2.18.3)

The adjoint variable is λ† = (ũ†, φ̃†), where ũ and φ̃ are, respectively, the adjoint
velocity field and adjoint pressure and localized forces. In the derivation, it has
been taken into account that M is independent of time and the operators M and
L are symmetric. The adjoint equations are again a system of algebraic differential
equations and they are integrated backwards in time starting from t = T once the
forward (direct) solution has been computed. These equations have been imple-
mented in the nonlinear numerical code, maintaining the temporal discretization
used for the forward problem in equation (2.17). Note that the discrete nonlinear
advection operator N(u, g) in (2.16) is time dependent. Its discrete adjoint N† must
be linearized at each time step around the direct solution and then used according
to the chosen temporal discretization scheme.
Once the two equations (2.16, 2.18) are solved, the gradient is given by

dJ
dg

=

∫ T

0

(
∂J

∂g
− ũ†

(
db1

dg
+
∂N

∂g

)
− φ†db2

dg

)
dt+ ũ†(0)M

du0

dg
. (2.19)

2.5 Application to flow configurations

The numerical code with immersed boundary capabilities, solving both the forward
and the backward equations presented in the previous sections, has been tested and
validated on different optimization problems. In this section we show the results
obtained for two optimization problems, testing both steady and unsteady actuation.
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Figure 2.2: Flow around a cylinder at Re = 200. (a) Vorticity contours and im-
mersed boundary points. (b) Schematic of Lagrangian points (blue) versus the
background Cartesian grid.

The difference between the two applications relies in the time dependency of the
control variables g. These test cases have been chosen for the purpose of validating
and testing the performance of the parallel-in-time algorithm, that will be presented
in chapter 3.

2.5.1 Drag reduction – steady actuation

The first system considered here is the two-dimensional flow around a cylinder at
Re = 200. This regime is characterized by the appearance of a von Karman vortex
street, the vorticity contours of the uncontrolled case are shown in figure 2.2a, along
with the immersed boundary points defining the surface of the cylinder. The spatial
discretization of the domain must be uniform and refined in the proximity of the
cylinder to ensure the stability of the solution [178], and to prevent penetration
of streamlines the arc length ∆s between the Lagrange points are selected to be
approximately equal to the size of the neighboring Cartesian cells ∆x, as shown in
figure 2.2b. The evolution of the drag coefficient is shown in figure 2.3. As expected
in this regime, after the initial transient, the drag coefficient converges to the average
value of 0.032 with oscillations of amplitude 0.001 and a frequency corresponding
to the shedding frequency of the cylinder St = 0.19. Once the simulation reaches
steady state, t ≈ 41, the optimization procedure is initiated. The actuation is ob-
tained by inducing a blowing/suction control on the surface of the cylinder, allowing
the vertical and horizontal velocities at each Lagrangian point to act as actuators.
Since the velocity on the Lagrangian points are mathematically described by a delta
function, a smoothing filter is applied on the resulting velocity profiles to avoid dis-
continuities between neighboring points. The discrete cost functional to minimize
is then defined as the sum of the squares of the drag coefficient Cd = 2fx, where fx
are the dimensionless boundary forces in the streamwise direction. In addition, a
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Figure 2.3: Drag coefficient Cd, with the red line signifying the location where
actuation starts, t = 41s.

penalization of the control variables g is added to keep their value sufficiently small,
resulting in

J (q,g) =
1

T

∫ T

0
C2
d dt+ α ‖g‖2. (2.20)

The solution of the optimization process is presented in figure 2.4. The resulting
velocity profile in figure 2.4a shows blowing and suction effects on the back of the
cylinder, for a better visualization the same profile is shown along the surface of
the cylinder in figure2.4b. The actuation results in a reduction of the objective
functional J(q,g) and of the amplitude of the drag coefficient oscillations in time
Cd(t), respectively presented in table 2.1 and figure 2.5. The actuation reduces
not only the average drag but also the amplitude of the oscillations around this
average. There is a slight change in the frequency of the oscillations due to the
steady actuation.

g = 0 g = gopt
J (q,g) 3.987 1.700

Table 2.1: Value of the cost functional before and after the actuation process.

2.5.2 Total pressure loss – unsteady actuation

One of the main causes of aerodynamic losses in turbomachinary is due to vortices
generated at the tip of the blades as they interact with the outside casing [56]. These
vortices are promoted by the pressure gradient on the surface of the blades, as well
as the relative motion between the blade tip and the casing of the the rotor. In
this section, we present an optimization problem with unsteady actuation inspired
by this phenomenon. The objective is to determine whether modifications of the
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Figure 2.4: The resulting optimal actuation. (a) Profile of the boundary velocities;
(b) Profile of the boundary velocities (red) projected on the cylinder surface as a
reference (black).
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Figure 2.5: The resulting cost functional. Drag coefficient Cd without the actuation
(black) and with the optimal control (red).
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Figure 2.6: Schematic of a rotor of an axial compressor, and the numerical domain
in the red box with one blade (periodic boundary conditions on the horizontal axis
simulate a series of blades). The upper boundary moves with a constant velocity
and the dynamic roughness is added on its profile.

casing of the rotor (in the form of a small perturbation or roughness) would be able
to suppress the generation of such vortices. This actuation is of relevance since it is
reproducible in real-scale applications with relatively minimal effort.

Figure 2.6 shows the rotor of an axial compressor that rotates with a certain
angular velocity around the axis. In order to simplify the description of this complex
phenomenon, the domain considered for the numerical simulations consists of a
section of a single unit of the casing and blade geometry, defined as a square domain
with periodic boundary conditions in the streamwise direction, as shown in the
sketch of figure 2.6. The blade is represented by a vertical wall defined by the
immersed boundaries and covers 90% of the vertical direction. Periodic boundary
conditions in the streamwise direction simulate the series of blades. Curvature effects
are neglected in this setup. The relative motion between the casing and the blade
is enforced by applying a uniform horizontal velocity on the top boundary (casing)
instead of the Lagrangian points to avoid the update of the location of points at
each time-step in the case of moving immersed boundaries.

Perturbations on the casing are replicated by adding a roughness on the top
boundary. In order to reduce the dimension of the optimization problem, the rough-
ness is considered to have the shape of a Gaussian function, and its width and
amplitude is optimized via the optimization process. In addition, the roughness is
assumed to have the characteristics of a dynamic roughness element.

Dynamic roughness elements have been investigated by [99] and further explored
by [138] and [95]. In this approach, the roughness elements are modeled using lin-
earized boundary conditions representing oscillating bumps with simple geometries.
The roughness element is approximated by the streamwise and wall-normal velocity
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distribution as

u(x, y, t)|w = −H(x, y, t)U
′
0(x) ,

v(x, y, t)|w = Ḣ(x, y, t) ,
(2.21)

where H denotes the height of the roughness, varying in space and time, U ′0(x)

represents the wall-normal derivative of the mean velocity profile at the wall, and Ḣ
is the derivative of the height with respect to time. Since, the shape of the roughness
is Gaussian, its height H can be expressed as

H(x, y, t) = ε exp

(
−(x− µ(t))2

2σ2

)
, (2.22)

where ε is the height of the curve’s peak, σ is its standard deviation or width, and
µ(t) denotes the center of the Gaussian moving with the upper boundary. The
control vector is then defined as g = [ε, σ].

The objective of this optimization process is to extract the most optimal mod-
ulation on the casing which will result in a maximum reduction of the average
pressure loss across the blade, or in other words, finding the optimal value for g

that minimizes the cost functional

J (q,g) =
1

T

∫ T

0
∆p+ α

(
‖uN (g, t)‖2 + ‖vN (g, t)‖2

)
dt , (2.23)

where ∆p is the spatial average of the total pressure loss around the blade and
uN (g, t) and vN (g, t) are the respective horizontal and vertical boundary conditions
imposed on the top of the domain, depending on the control parameters g. The
time interval chosen for the optimization is one period of the roughness motion. At
t = 0 the Gaussian is centered at x = 0, and at t = T it is at x = 1.

g = [0, 0] g = [0.095, 0.184]

J (q,g) 2.000 1.982

Table 2.2: Pressure loss minimization, listing the cost functional before and after
the actuation.

The effect of the unsteady actuation is highlighted in table 2.2 by comparing the
resulting pressure loss to the uncontrolled setup, resulting in a 1% improvement.
The resulting effect on the evolution of the average pressure gradient across the
blade, ∆p, is also shown in figure 2.7. This figure shows that the presence of the
roughness exerts a large influence on the oscillation frequency of the average pressure
signal. While in the uncontrolled setup the pressure oscillated with a frequency
proportional to the relative difference between the width of the domain and the gap
between the blade and the casing surface, in the case with unsteady control the
pressure oscillates with the same frequency as the passing of the roughness element.
In addition, the actuation increases the amplitude of the oscillations fourfold. The
maximum amplitude is reached when the roughness is at x = 0.35, shortly before
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Figure 2.7: Evolution of the average pressure loss in time, comparison of the base
case (black line), and the case with actuation (red line).

reaching the gap. The lowest amplitude, however, is encountered when the roughness
is at x = 0.77 before reaching the outlet. Due to the respective frequencies of the
pressure signal in the controlled and uncontrolled scenarios, the optima of both
curves nearly coincide. Therefore, in order to assess the quantitative differences of
the two cases, vorticity and pressure distributions are compared at the maximum
and the minumum of the curve describing the pressure loss of the controlled regime,
as highlighted by the dashed lines in figure 2.7.

The spatial distributions of pressure and vorticity profiles are displayed in fig-
ures 2.8 and 2.9, at the maximum and the minimum, respectively.

At the time where the average pressure is at its maximum (corresponding to
figure 2.8(d)), a large difference between the pressure distribution on the two sides
of the blade is noticeable, whereas in figure 2.9(d), corresponding to the point in
time where the average pressure is at its minumum, the pressure distribution across
the blade is more homogeneous. When comparing the uncontrolled cases in the same
two time instances, the main difference is the value of the pressure at the tip of the
blade, which appears stronger in the figure 2.8(c) than in figure 2.9(c). However,
the pressure distribution along the two sides of the blade seems mostly unaffected.
The reason for an overall change in the pressure distribution can be deduced by
analyzing the distribution of the vorticity inside the domain. In the uncontrolled
case, a vortex is developed on the tip of the blade, which ultimately sheds with a
frequency similar to the frequency of the average pressure loss. Due to the periodic
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Figure 2.8: Vorticity profile and pressure distribution for t = 0.35: (a) uncontrolled
vorticity, (b) controlled vorticity, (c) uncontrolled pressure, (d) controlled pressure.
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Figure 2.9: Vorticity profile and pressure distribution for t = 0.77: (a) uncontrolled
vorticity, (b) controlled vorticity, (c) uncontrolled pressure, (d) controlled pressure.
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boundary conditions, this vortex reenters the domain and creates a series of vortex
pairs developing on the suction side of the blade. The shedding process is entirely
suppressed by the presence of the roughness. Instead, vorticity is created as the
roughness enters and leaves the domain, respectively, leading to a larger vortical
structure.

2.6 Conclusions

We investigated the application of gradient-descent algorithms to unsteady fluid op-
timization problems and introduced adjoint-based methods, proven to be the most
efficient way to extract the gradient for such systems. The derivation of the adjoint
equations for gradient extraction was developed using control theory notions, to
finally get to the discrete form of the optimality system of equations. The gradient
extraction procedure has been implemented in our Navier-Stokes with immersed
boundaries solver, adding control and optimization capabilities to the original nu-
merical code. The adjoint solver has been tested and validated on both steady and
unsteady actuation of two-dimensional fluid flows. Despite the relatively small size
of the fluid systems addressed here and the total absence of checkpointing strategies
to reduce the computational cost, the total time spent to reach the optimum and
complete the optimization procedure was quite significant compared to the time
of one function evaluation. The principal cause for this large time to solution is
that each iteration of the optimisation algorithm is at best twice the cost of a full
CFD calculation (forward integration). In unsteady cases, the use of checkpointing
algorithms increases this cost to almost three times. In addition, the overall time
to solution increases proportionally, since these operations (forward and backward
integrations) happen sequentially. While the cost of the calculation can not be
circumvented (adjoint equations need to be solved in order to have access to the
derivative information), strategies can be adopted to reduce the overall time to so-
lution, such that, ideally, once the forward problem has reached the final time, the
gradient is also available. In the next chapter we will introduce parallel-in-time tech-
niques and we propose an algorithm applied to the direct Navier-Stokes equations
and its adjoint system.
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3.1 Introduction

In the previous chapter we introduced adjoint-based methods and described the
procedure of using them in order to extract the gradient in the context of the control
and the optimization of incompressible flows. This process can be prohibitively
slow due to sequential nature of the method (direct-adjoint loop), the unsteadiness
of the system and the nonlinearity of the Navier-Stokes equations used here. For
nonlinear unsteady forward problems, the adjoint equations are built by performing
a linearization of the nonlinear operators around the direct solution, meaning that
the full direct solution has to be stored in memory for the whole time interval
considered. To reduce this considerable memory cost, checkpointing algorithms can
be used, to save the direct solution just at certain checkpoints in time and solve
the direct-adjoint loop between them [82]. While reducing the memory cost, the
use of checkpointing in unsteady cases increases the computational costs nearly by
a factor of three. Different strategies can be adopted to speed up the calculation
of the optimization loop, such as reduced order models or spatial parallelisation.
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However sometimes these techniques can not be used or the benefit obtained by
their employment is not significant.
In this chapter we introduce parallelisation in time as an alternative to speed up
the resolution of the direct-adjoint loop. In section §3.2 we give a brief overview of
parallel-in-time methods and in particular we focus on the ParaExp algorithm and
the hybrid serial-direct-parallel-adjoint algorithm introduced by Skene et al..
Finally, modification to the existing algorithms due to the use of incompressible
Navier-Stokes equations are also described. In particular, exponential integrators
and the projection needed to include the incompressibility constraint are introduced
in section §3.3. In addition, the resulting parallel in time algorithm is applied to the
optimization problems already showed in the previous chapter. The performance of
the parallel algorithm is evaluated for a single gradient extraction.

3.2 State-of-the-art and background

Time-parallel integration has been an active area of research, which started with
the pioneering work of Nievergelt [151]. A brief account of development and im-
plementation of various parallel-in-time algorithms can be found in [75] and [157].
The existing space-time parallel methods can be divided into four main categories:
(i) methods based on multiple shooting, (ii) methods based on domain decompo-
sition and waveform relaxation, (iii) methods based on multigrid, and (iv) direct
time-parallel methods. While most of these efforts concentrated on accelerating the
integration of the direct(forward) simulations, some efforts also considered incor-
porating a direct-adjoint optimization procedure, such as Maday et al. [131] and
Skene et al. [193]. Here, we will concentrate on accelerating the adjoint equations
using a parallel-in-time approach introduced by Gander and Güttel [73]. While the
applicability of this parallel-in-time methodology to adjoint-based optimization has
been analyzed by Skene et al. [193], and multiple possible algorithms have been
suggested, the system of equations considered here add multiple layers of intricacy
which have not been addressed in previous studies. One such challenges is due to
the complexity of the problem, i.e. the nonlinear unsteady Navier-Stokes equations,
compared to Burgers’ equation studied previously. However, the main difficulty is
due to the algebraic-differential nature of the governing equations (owing to the
divergence-free constraint), which makes the application of the exponential time
integrator nontrivial and also leads to an algebraic formulation of the adjoint equa-
tions. For the parallel-in-time strategy to be relevant for real scale applications,
these underlying issues need to be properly addressed, thus motivating the work
presented here.

3.2.1 ParaExp algorithm

The ParaExp algorithm, proposed by Gander and Güttel [75] belongs to the category
of the direct time-parallel methods. It is based on an overlapping time-domain
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decomposition. Considering a linear initial value problem

q̇(t) = Aq(t) + A(t), q(0) = q0, t ∈ [0, T ], (3.1)

where A is a linear time independent square operator, q is the state variable and A

is a source term. The time domain is decomposed into smaller segments of size ∆T

and the linear initial-value problem is separated into subproblems on overlapping
time intervals. In particular, the initial-value problem is split into

• the homogeneous problem:

q̇H(t) = AqH(t), qH(0) = q0, (3.2)

• and the inhomogeneous problem:

q̇I(t) = AqI(t) + A(t), qI(0) = 0, (3.3)

The solution of the original problem (3.1) is then obtained by the superposition of
the solutions of the two subproblems as

q(t) = qI(t) + qH(t). (3.4)

When solved in parallel, the inhomogeneous component of the problem with zero
initial condition is simultaneously solved in each segment. Once the proper boundary
conditions at the end of each time segment are evaluated, the homogeneous problem
is then integrated up to the final time T , this process is illustrated schematically in
figure 3.1. For each processor we solve:

• the inhomogeneous problem, for j = 1, . . . , p, as:

q̇I,j(t) = AqI,j(t) + A(t), qI,j(Tj−1) = 0, t ∈ [Tj−1, Tj ] (3.5)

• and the homogeneous problem, for j = 1, . . . , p

q̇H,j(t) = AqH,j(t) (3.6)

qH,j(Tj−1) =

{
q0, t ∈ [T0, T ] if j = 1;

qI,j(Tj−1), t ∈ [Tj−1, T ] otherwise.
(3.7)

The complete result consists of the superposition of the final solutions of each seg-
ment, as illustrated in figure 3.1, and given by

q(t) = qI,k(t) +
k∑
j=1

qH,j(t), t ∈ [Tk−1, Tk]. (3.8)

Integrating the homogeneous problem in time can be expensive and time consuming,
therefore, fast time integrators such as, exponential time integrator, are essential in
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Figure 3.1: Overlapping time decomposition of an initial-value problem into four
inhomogeneous problems with zero initial guess (solid red curves) and four homoge-
neous problems (dashed blue curves), the latter are exponentially propagated. The
solution of the original problem is obtained by summation of all these curves [73].

order to speed up the process. The exact solution of the homogeneous initial-value
problem in equation (3.2) solved by the exponential time integrator is then,

qH(t) = exp(tA)q0. (3.9)

To benefit from this method, the computation of the matrix exponential and the
propagation of the solution in time has to be faster than the integration of the
inhomogeneous subproblems. More details on exponential integrators and the
approximation of the matrix exponential will be discussed in section §3.3.

Among the existing algorithms, ParaExp shows great promise due to the following
advantages: this method performs particularly well if the existing inhomogeneity is
difficult to integrate, which is a common scenario in complex unsteady flows. In
addition, it allows the use of any existing serial time integration method. Moreover,
this direct method is non-iterative and requires a single communication between
processors at the end of the algorithm. As a result, the achieved parallel efficiency
is higher than the maximal achievable parallel efficiency of the (Krylov-enhanced)
parareal algorithms, and in particular the algorithm by Farhat et al. [65] for linear
initial-value problems, which require more than a single iteration in general. Due to
these advantages, this method is employed in this study for time-parallelism of the
adjoint equation. Although ParaExp has been mainly applied to linear systems, an
extension of the algorithm to a simplified nonlinear problem is now also available [74].

3.2.2 Hybrid serial-direct-parallel-adjoint algorithm

Parallel-in-time algorithms have been mostly employed in accelerating the primal
(forward) problem. Some applications to the optimization procedure is also avail-
able, in particular, in the recent work of Skene et al. [193], where algorithms are
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proposed based on the linear ParaExp algorithm developed by Güttel [73] and its
extension to nonlinear PDE by Kooij [113].

In their study Skene et al., investigated various strategies of accelerating both
the forward (nonlinear) problem and the backward (linear) problem by using vari-
ous combinations of ParaExp for the linear problems and its nonlinear adaptation
by Kooij [113]. In particular, they proposed two algorithms to accelerate the res-
olution of the optimization problem raising from nonlinear forward problems. The
first algorithm solves the nonlinear problems in parallel using the method of Kooij.
The nonlinear term is linearised using an iterative procedure and its average Jaco-
bian is added as a forcing term to improve the stability of the equation and ensure
convergence. Once the nonlinear equation is linearised, the ParaExp algorithm is
used for the time integration. The theoretical scaling analysis conducted by Skene
et al. proved that the the iterations required to converge the nonlinear forward
problem, slows the algorithm down when few processors are used. This cost can be
overcome however by increasing the number of processors. In addition, depending
on the type of nonlinearity, the forward problem might not reach convergence at all.
Alternatively, the second algorithm (hybrid) solves the nonlinear direct equation in
series and concentrates the parallelization on the linear adjoint. This algorithm on
the other hand reaches the maximum speedup with a smaller number of processors.
Therefore, in this work, we concentrate on accelerating the linear part of the opti-
mization algorithm concerned with time integration of the adjoint equations with
algebraic constraint, resulting in a hybrid serial-direct-parallel-adjoint algorithm.
For this purpose, as illustrated in figure 3.2, the direct problem is solved in serial,
while accounting for appropriate time partitioning, and the adjoint problem is split
into its homogeneous and inhomogenous components. The resulting inhomogeneous
algebraic adjoint equation, in general form, solved backward in time by processor
p ∈ {N, . . . 1} on [Tp, Tp−1], is

∂J

∂q
− λ†I,p

∂F

∂q
+
∂

∂t

(
λ†I,p

∂F

∂q̇

)
= 0 (3.10.1)

λI,p(Tp) = 0. (3.10.2)

Once the inhomogeneous equation is integrated down to Tp−1 by processor p, this
processor initializes and solves the homogeneous problem, given below, for the time
partition [Tp−1, 0],

− λ†H,p
∂F

∂q
+
∂

∂t

(
λ†H,p

∂F

∂q̇

)
= 0, (3.11.1)

λH,p(Tp) = λI,p(Tp). (3.11.2)

Finally, the solution of the full adjoint problem is given by adding the contribu-
tion from all the processors. Note that all processors except for p = 1 solve the
homogeneous problem. Once processor p solves the direct problem up to Tp the last
time solution is communicated as an initial condition to the next processor, which
will continue integrating the forward problem further in time. In the meantime,
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Figure 3.2: A schematic of a direct-adjoint loop with three processors, using a
parallel-in-time procedure. Solid lines follow the forward evolution of the direct
equation (top) and backward integration of the inhomogeneous adjoint equations on
the three processors (bottom). Once the direct and inhomogeneous adjoint equations
are solved, the direct solution is communicated (red lines) to each processor to
initialize the homogeneous adjoint equation. This equation is then solved up to T0

(dashed blue lines) by each processor.
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processor p solves the inhomogeneous adjoint problem (with zero initial condition)
backward in time, as demonstrated in (3.10.2).

The application of this parallel-in-time strategy to the problem of interest to
this work, presented by equation (2.18), results in the following inhomogeneous and
homogeneous set of equations (for a generic processor p) respectively,

M† ˙̃uI,p +
(
Nu(u)† − L + A†1,u(u, g)

)
ũI,p + Qφ̃I,p + J†u = 0 (3.12.1)

Q†ũI,p − J†φφ̃I,p = 0 for Tp−1 ≤ t ≤ Tp, and λI(Tp) = 0, (3.12.2)

and

M† ˙̃uH,p +
(
Nu(u)† − L

)
ũH,p + Q ˜φH,p = 0 (3.12.3)

Q†ũH,p = 0 for 0 ≤ t ≤ Tp−1, and λH,p(Tp−1) = λI,p(Tp−1), (3.12.4)

A non-uniform time partitioning is used in order to ensure the simultaneity of the
resolution of the direct problem and the adjoint inhomogeneous problems and pre-
vent waiting time between processors. The analytic expression for the time partition
is given by

Tp = T

 1−
(

k
k+1

)p
1−

(
k
k+1

)N
 . (3.13)

In this equation Tp is the final time of processor p, T is the total final time, N is
the number of processors and k = τ †I /τI is the ratio between the time taken per
time unit for the inhomogeneous adjoint and the direct solve. Further details on
the time partitioning can be found in [193]. When the direct problem is solved by
the last processor N, the inhomogeneous equations are almost completely solved on
the antecedent time partitions. The non-uniform time partitioning assigns a smaller
time interval to the last processor, so that the time to solve the inhomogeneous
adjoint on this time partition is ensured to be short. The initial conditions needed
to solve the homogeneous equations is then made available to each processor to
integrate the homogeneous problem until T = 0. The total time to solution is
therefore,

TN = TτI + (TN − TN−1) τ †I + TN−1τ
†
H , (3.14)

where the terms are the time needed to solve the direct equation on the full time
interval, the inhomogeneous adjoint on the last time partition [TN , TN−1] (purple
line in figure 3.2) and the homogeneous adjoint on [TN−1, 0] by the last processor.
The resolution of the adjoint problem requires the knowledge of the direct state
at each time step. While the inhomogeneous equation is solved on the same time
partition as the forward problem and maintains the same discretization scheme, the
homogeneous equation is solved on [0, Tp−1]. Due to the time partitioning described
in figure 3.2, the generic processor p does not have access to the full direct solution
up until T = 0. This solution must therefore be distributed to all processors,
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Figure 3.3: A schematic of the algorithm highlighting the communication between
processors. Red lines represent the communication operations.
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resulting in an unavoidable increase of time to solution. To reduce this one-time
cost, each processor communicates a fraction of the direct solution to all. The
submatrices are then stacked together and used by each processor to perform a
linear interpolation on the coarser exponential time grid. The N − 1 homogeneous
adjoint equations are solved simultaneously and their solution is then stack to the
corresponding inhomogeneous adjoint solution. The original ParaExp computes
the total solution as a superposition of the solution computed by each processor,
however, in cases where the size of the problem is large, the resulting communication
can become rather expensive. When applied to the adjoint equation, the knowledge
of the total solution is required only to compute the gradient. As a result, the partial
gradients can be computed locally by each core using the optimality condition (2.19)
and finally distributed to all processors and summed. This approach is employed
both for the gradient and the value of the cost functional and reduces the size
of the communication considerably, a schematic of the communications is given in
figure 3.3.
The efficiency of this parallel-in-time algorithm relies mainly on the speed of the
time integrator used for solving the homogeneous adjoint problems, the last term of
(3.14). Using the same time integrator as that of the inhomogeneous equations leads
to an unavoidable increase of the resolution time. A way to overcome this problem
is to use an exponential integrator to solve the homogeneous adjoint problems.

3.3 Exponential time integrators

As mentioned in the previous section, the bottleneck of time acceleration using
the proposed parallel-in-time procedure is the cost associated with integrating the
homogeneous problem on each processor. Exponential time integrators can be em-
ployed to reduce this cost due to their superior accuracy with a minimal number
of time-steps, and are directly applicable since the solution of the homogeneous
problem can be expressed analytically in terms of the matrix exponential of the
state-matrix. Remaining in the context of this work, we consider the linear initial
value problem (3.1) and its exact solution

q(t) = q0e
−tA +

∫ t

0
e−(t−τ)AA(τ)dτ . (3.15)

Different methods were proposed in the literature to solve this equation numerically
by approximating the integrand. An interesting review of exponential integrators
for semi-linear and linear problems can be found in the work of Hochbruck [91]
and Minchev [140]. The homogeneous form of equation (3.1), and in our case, the
homogeneous adjoint introduced in (3.11.1), reduces to

dq

dt
= Aq,

q(0) = q0,
(3.16)
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and its solution can be expressed in terms of the matrix exponential of the state
matrix as

q = exp [(∆t) A] q0, (3.17)

where A is the system state matrix (or Jacobian). Here, matrix A is assumed to
be time independent. Direct access to A becomes challenging as the dimension
of the discretized problem increases. In such cases the exponential matrix is
approximated directly using two categories of methods: projection-based methods
and polynomial-interpolation-based methods.

3.3.1 Projection-based methods

Projection based methods approximate the matrix exponential on the orthogonal,
lower dimensional Krylov subspace of ∆tA [182, 183], defined by the power iteration
as

Km(A, q) ≡ span
{
q,Aq,A2q, . . . ,Am−1q

}
, (3.18)

where m is the dimension of the subspace and m� n, with n the dimension of the
operator A, and q is the vector propagated to the solution for ∆t. This subspace
is ill-conditioned, and vectors become linearly dependent with increasing m. The
orthogonal basis of the Krylov subspace Km can be computed using the Arnoldi
algorithm [8] that creates a set of orthogonal basis that span Km. The procedure
starts by building v1 = q/‖q‖ and iteratively produces an orthonormal basis Vm =

[v1, v2, . . . , vm] of the Krylov subspace Km via a modified Gram-Schmidt iterative
process. The lower-dimensional representation of A is expressed as A ≈ VmHmVT

m,

Algorithm 1 Arnoldi algorithm
1: Given v1, with ‖v1‖ = 1

2: for j = 1, . . . ,m do
3: for i = 1, . . . ,m do
4: hij = (Avj ,vi)

5: end for
6: wj = Avj −

∑j
i=1 hijvi

7: hj+1,j = ‖wj‖
8: if hj+1,j = 0 then
9: stop

10: end if
11: vj+1 = wj/hj+1,j

12: end for

where Hm = VT
mAmVm is the m ×m upper Hessenberg matrix computed in the

Arnoldi algorithm, representing the projection of matrix A onto Km. Finally, since
VT
m(∆tA)Vm = ∆tHm, and the Krylov subspace associated to A and ∆tA are the

same, the matrix exponential is approximated as

exp(∆tA) ≈ Vm exp(∆tHm)VT
m, (3.19)
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Based on this, equation (3.17) can be reformulated in a matrix-free form as

exp(∆tA)q ≈ βVm exp(∆tHm)ê1. (3.20)

where β = ‖q‖2, and ê1 is the first unit basis vector, as q is orthogonal to all the
Vm except for the first column. For further details on the approximation of the
matrix exponential operator using Krylov subspaces, refer to [182] and [90].

3.3.2 Polynomial interpolation based methods

Polynomial interpolation based methods, on the other hand, consist of New-
ton interpolation of the matrix exponential propagator, exp(A)q or φ(A)q,
where φ(z) = (ez − 1) /z [33]. Once this function is obtained on a defined
set of interpolation points {ξj}Nj=0, the matrix exponential is approximated as,
exp(A)q = Aφ(A)q. One of the critical aspect of this method is therefore the
choice of the interpolation points, from which the convergence of the approximation
depends. Leja points [16, 33, 34, 10, 171] are convenient in these applications
because they guarantee maximal and superlinear convergence while being indepen-
dent of the degree of interpolation. In other words, the degree of the interpolant
polynomial can be increased without recomputing the previous terms. When the
matrix exponential is large and sparse, the interpolation on Leja points is more
convenient than Krylov projection methods due to a lower memory cost.

3.3.3 Projection on Navier-Stokes equations

The homogeneous algebraic adjoint equation presented in (3.11) has to be reformu-
lated for an exponential time integrator to be applicable. An additional projection
procedure needs to be devised to include the constraint in equation (3.11.1) and to
reformulate the equation in the form of a partial differential equation presented in
(3.16) (without a constraint). The divergence-free constraint of the incompressible
formulation of the governing equations, along with the constraint formed by no-
slip conditions on the immersed boundaries makes the application of such schemes
non-trivial. To accommodate these constraints, the momentum equation must be
reformulated [114]. To this end, the semi-discrete homogeneous adjoint system given
in (3.12.3) and (3.12.4), for a generic processor p, with appropriate initial conditions,
multiplied by Q†M†−1 and differentiated with respect to time, gives

Q† ˙̃uH,n = Q†M†−1
(
L−Nu(un)†

)
ũH,n + Q†M†−1Qφ̃H,n, (3.21.1)

Q†ũH,n = 0. (3.21.2)

Substituting (3.21.2) in (3.21.1) and solving for φ̃H,n, results in

φ̃H,n = −
(
Q†M†−1Q

)−1
Q†M†−1

(
L−Nu(un)†

)
ũH,n. (3.22)
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This formulation for φ̃H,n is then used in (3.21.1) to get the projection of the mo-
mentum equation onto the subspace defined by the constraints (3.21.2). The ho-
mogeneous adjoint equation (3.12.3) and its projected initial condition are then
rewritten as

˙̃uH,n = P
(
L−Nu(un)†

)
ũH,n,

ũH,n(Tp) = P ũIn(Tp).
(3.23)

with the associated projection operator

P =

[
M†−1 −M†−1Q†

(
Q†M†−1Q

)−1
Q†M†−1

]
. (3.24)

Using this projection (3.23) allows the application of an exponential integrator. It
should however be noted that the right-hand side of equation (3.23) depends on
time, whereas the system matrix A is considered to be independent of time. In this
case, the exact solution of the linear initial value problem (3.17) should be

q = exp

(∫ t

0
A(un(τ))dτ

)
q0. (3.25)

In order to use the exact solution given in (3.17), the transconjugate advection
operator Nu(un)† is updated at each time iteration and is considered piecewise-
constant in time. The accuracy of the method is further discussed in section 3.4.
The computation and storage of the projection operator in (3.3.3) is not practical,
therefore a fractional step method [47] has to be added into the Arnoldi algorithm
everytime the product Avj is computed (see algorithm 1). To avoid large memory
cost, the approximation of the matrix exponential is done by Krylov projection,
that allows a matrix-free implementation.

3.4 Results

In this section, the convergence of the Krylov-based exponential time integrator is
investigated, then the performance of the parallel-in-time adjoint algorithm is pre-
sented using the cases presented in section §2.5: (i) drag reduction of a flow around
a cylinder, and (ii) reducing pressure loss across a blade using boundary control. In
the first case, steady actuation is imposed using immersed boundary forces and in
the second case, unsteady actuation is performed at a domain boundary, introduc-
ing new challenges for the parallel-in-time algorithm, which will be discussed in the
following. The efficiency of the parallelization and the decrease of the computational
cost has been evaluated for a single gradient extraction (one direct-adjoint loop).

3.4.1 Temporal Energy Growth – examining the exponential time
integrator

Before discussing the performance of the parallel-in-time optimization algorithm,
the convergence of the Krylov-based exponential time integrator is assessed and
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Figure 3.4: Temporal energy growth: vorticity field in a lid driven cavity at Re =

1000.

compared to the original explicit second-order Adams-Bashforth method. As men-
tioned in the previous sections, the exponential time integrator is applied to the
homogeneous part of the equation only. Therefore, the optimization problem has to
be designed such that the resulting adjoint equation becomes homogeneous and can
be integrated by either integration method independently. Optimizing the initial
condition of the forward flow solver, such that an energy norm, G(T ), at a selected
time T is maximized offers an ideal test case. In this approach, the optimization
procedure aims at maximizing the ratio between an energy norm at t = T and t = 0,
resulting in the following cost functional

J (q, g) =
(g · g)

(q(T ) · q(T ))
, (3.26)

where g = q(0) is the control parameter (the optimal initial condition), and the
energy is computed with a simple `2-norm, using the full state vector. Since the
cost functional does not depend on the time evolution of the forward problem, the
first term of the adjoint equation (2.11) is equal to zero, resulting in a homogeneous
problem. The exponential integrator can therefore be used to propagate the entire
equation backward in time. The optimization is applied to a case of a lid driven
cavity at Re = 1000 on a very short time interval in order to analyze the conver-
gence of the two time integrators, the vorticity field of the flow is represented in
figure 3.4. It should be noted, however, that due to the presence of the convection
term (a nonlinear operator), the solution of the adjoint problem is dependent on the
forward problem. In order to remove the errors due to the forward integration of the
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Figure 3.5: Convergence history of time integrators: (black) Explicit Adam-
Bashforth method; (red) Krylov-based exponential Euler method.

primal problem from the convergence of the adjoint equation, the primal problem is
integrated once using the most refined ∆t. This solution is then stored and used to
linearize the advection operator for the adjoint equations when the time step is in-
creased. The convergence results obtained using the exponential integrator and the
explicit Adam-Bashforth method are displayed in figure 3.5. The `2-error is com-
puted using the difference between the final solution of the adjoint equation q†(0),
from each time integration, and the reference solution, from a highly refined simula-
tion. The optimization is performed without time parallelism, in order to focus on
the time integrator. The errors due to the parallel-in-time algorithm will be assessed
in the following sections. This figure shows the explicit Adam-Bashforth method
converging with a first-order slope, which is less than the expected second-order
convergence. This deterioration is caused by the presence of immersed boundary
forces and the use of fractional step to solve the direct problem. As expected, the
exponential integrator shows a convergence rate that increases when ∆t is refined.
This behavior allows the use of a coarser time-step without affecting the accuracy
of the final solution.

3.4.2 Drag reduction – steady actuation

The parallel-in-time algorithm is applied on the flow around a cylinder at Re = 200,
the optimization procedure and the results have already been shown in chapter 2,
the vorticity contour is shown again in figure 3.6 for reference. In this chapter,
we study the performance of the temporal parallelization on a single direct-adjoint
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Figure 3.6: Drag reduction: vorticity field of the flow around a cylinder at Re = 200.

loop. The performance of the parallel-in-time algorithm is shown in figure 3.7. Here,
the total time to solution is represented for both the serial and the parallel cases.
For a direct comparison, no checkpointing algorithm is included (the solution of the
forward integration at each time-step is accessible on memory). As a result, the
time necessary to integrate the adjoint equation “in serial” is the same as that of
the forward problem, leading to twice the cost. The figure shows that using the
parallel-in-time algorithm, the time needed to compute the gradient converges to a
value very close to the time needed for simply solving the direct problem, as the
number of processors is increased. In other words, the value of the cost functional
and the gradient are obtained almost at the same time as the end of the forward
integration, resulting in a reduction of 94.5% of the total time of the optimization
process. The efficiency of the parallel algorithm, however, depends on the size of
the optimization problem. As mentioned in section 3.2.2, the time partitioning is
non-uniform and each processor solves the direct problem and the inhomogeneous
adjoint on a shorter time interval than the previous processor. Increasing the num-
ber of processors involved in the resolution of the system reduces the number of
time steps assigned to the last threads, reaching a limit where the time partition is
smaller than the minimum time-step needed to solve the equation. In the case of
the cylinder, the maximum number of processors that can be used is N = 8. When
eight processors are used, the algorithm assigns three time-steps to the last core,
which is the minimum allowed to form the advection term in equation (2.16). For
N > 4 the figure shows a loss of efficiency of the algorithm, beyond this point, the
time needed to communicate the direct solution to each core overwhelms the time
saved by time parallelism.

The accuracy of the resulting gradient using the parallel-in-time algorithm is
shown in figure 3.8. The gradient obtained using the serial adjoint algorithm (with-
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Figure 3.7: Performance of the parallel-in-time algorithm (red line) compared to
the serial counterpart (black line) reported for a single iteration of the optimization
loop, using steady control.
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Figure 3.8: Accuracy of the estimated gradient computed for a single optimization
loop: —, Adams-Bashforth method; —, exponential integrator without interpola-
tion; — Exponential integrator with interpolation.
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out the parallel-in-time treatment) is used as the reference in computing the error.
Two major differences of the parallel-in-time implementation and its serial coun-
terpart are that, firstly, in the parallel-in-time algorithm, the problem is separated
into the homogeneous and inhomogeneous equations and an exponential integrator
is used to propagate the solution of the homogeneous problem backward in time.
In addition, in order to speed-up the adjoint loop, larger time steps are used to
integrate the homogeneous problem. The latter step necessitates an interpolation
of the forward problem from a finer resolution in time (used by the lower-order time
integrator) on the coarser grid used by the exponential time integrator. This inter-
polation can impact the accuracy of the final optimization algorithm. In order to
assess the ramification of each of these steps on the overall accuracy, three different
implementations of the parallel-in-time algorithm are compared in figure 3.8. In the
first implementation, highlighted by the black line in the figure, the homogeneous
adjoint equations are solved using the same time integrator and time discretization
as the inhomogeneous equations. Therefore, the error accrued due to the interpo-
lation step and the change in the time integrator is eliminated. As expected, the
final solution remains the same as the original gradient, independent of the num-
ber of processors. In the second implementation, denoted by the blue line, the
homogeneous equations are solved using the exponential time integrator but the
same time discretization as the inhomogeneous problem, removing the error due
to interpolation. The exponential integrator is more accurate than its counterpart
resulting in a small error between the two solutions. This error increases as the
number of processors increase since a larger portion of the problem is solved using
the exponential integrator. Finally, in the last implementation (the implementation
suggested in this study), denoted by the red line, the homogeneous equations are
solved using the exponential time integrator on larger time intervals compared to
the inhomogeneous equations. This figure shows that the error due to interpolation
(the difference between the blue and red curves) decreases when increasing the num-
ber of processors. Due to a non-uniform time partitioning, smaller portions of the
time domain are integrated using the exponential time integrator as the number of
processors increase, causing the error due to interpolation to saturate.

3.4.3 Total pressure loss – unsteady actuation

We consider again the optimization problem proposed in section §2.5.2, representing
an approximation of the flow in a section of a single unit of the casing and blade
geometry of a coaxial turbomachine. The flow is dominated by the presence of
vortices generated at the tip of the blade due to the distribution of the pressure
on the faces of the blade and the pressure difference across them (figure 3.9, these
vortices represent a source of energy loss that we aim to minimize. The optimization
is performed by introducing a shape modification on the surface of the casing acting
as a roughness and modelled with a gaussian shape. The design variables g are
then the width and the height of the roughness which moves with respect to the
blade with uniform velocity. The design variables, and therefore the gradient, are
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Figure 3.9: Total pressure loss: vorticity profile and pressure distribution for t =

0.35. (a) uncontrolled vorticity, (b) uncontrolled pressure.

here time dependent, adding an additional dimension to the operators acting in the
optimality system of equations presented in chapter 2.

While the resolution and the simultaneity of the forward-adjoint (inhomoge-
neous) loop is unchanged, the optimality condition (equation (2.19)) used to com-
pute the gradient, is now time-dependent, increasing the size of the operators needed
for the gradient extraction. The performance of the parallel-in-time algorithm eval-
uated for one iteration of the optimization algorithm, is shown in figure 3.10. As in
the previous case, for N > 4, the time needed for the communication of the direct
solution to all processors exceeds the time saved by the time partitioning and no im-
provement is accomplished by the parallel-in time procedure. The time to solution
reduces towards a maximum of 58% of the total serial time. The magnitude of the
gain obtained here is less significant than for the previous case, because of the use
of unsteady control. Here, each processor builds the operators needed to solve this
equation for its time partition, resulting in additional time. The time required to
construct the operators is unavoidable and increases with the time interval chosen
for the simulation. It is also the main cause of efficiency loss for the parallel-in-time
algorithm with unsteady control. Nonetheless, the additional gain obtained by us-
ing the parallel-in-time algorithm is non-negligible, even in the presence of unsteady
control.
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Figure 3.10: Performance of the parallel-in-time algorithm (red line) compared to
the serial counterpart (black line) reported for a single iteration of the optimization
loop, using unsteady control.
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3.5 Conclusions

In this chapter we presented an algorithm for accelerating gradient-based optimiza-
tion problems. The algorithm is the extension of the parallel-in-time algorithm for
direct-adjoint loops by Skene et al. [193] to the two-dimensional Navier-Stokes equa-
tion with immersed boundaries. The pressure and boundary forces are treated by
introducing a projection operator to allow the exponential integration of the linear
homogeneous adjoint equations using Krylov subspace projection methods.
The performance of this method has been tested on two different optimization cases
using steady and unsteady control for one gradient evaluation. In both cases the
time to solution has been significantly reduced, following a trend consistent with the
numerical and theoretical results derived by Skene et al.[193]. Better results have
been observed for the steady control optimization. In this case, the time required to
solve the adjoint-loop converged asymptotically to the time needed to solve the direct
equation in serial, suggesting that the computation of the gradient can be obtained
with a negligible additional penalty in overall time. The use of time-dependent
control has proven to affect the efficiency of the parallel-in-time procedure. In this
case, the gain obtained by using the proposed algorithm is appreciable, but less
substantial.
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4.1 Introduction

Numerical simulations of multiphysics and multiscale phenomena in fluid mechan-
ics have advanced remarkably over the past decades. Complex physical processes,
including among others multiphase and reactive flows, aero-acoustics, and turbu-
lence, can now be simulated with an astonishing degree of fidelity and accuracy,
and many industrial, technological, and fundamental problems have greatly bene-
fited from computational sciences. However, in order to remain predictive, these
computations rely on time consuming operations. In control and optimization ap-
plications, where quick access to the final solution is necessary, or many function
evaluations are required, these simulations become too slow or costly, motivating
the development and use of reduced-order models in their stead.

Projection-based model reduction methods are possible candidates for reducing
the system of nonlinear equations, governing the evolution of the flow. However,
in their basic form, such models scale with the dimensionality of the underlying
high-fidelity simulation and are therefore efficient for primarily linear and steady
problems. One possible approach is to leverage the data from the detailed simulation
by employing data-decomposition techniques such as POD [192, 11, 92], DMD [185],
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and greedy reduced basis [130, 126] and EIM [14, 45, 159] with its generalized
version [128, 129, 21]. The advantage of the POD approach over alternate basis
functions, for example the reduced-basis method [98], is the ability of the modes
to adequately represent the physics of the system and to minimize sensitivities to
operating conditions. Since this approach is based on a sequence of flow snapshots,
it is equally applicable to experiments and numerical simulations. Through this
procedure, the most energetic modes are extracted, which then form a hierarchical
basis for describing the flow. Alternatively, POD has been also employed in Data
Assimilation (DA) to reconstruct the flow from incomplete (gappy) numerical and
experimental dataset [32, 128, 142], and sensor placement for control applications [7,
14, 45, 127, 207].

One of drawbacks of model reduction techniques is the commonly ad hoc trunca-
tion of the basis functions. Once truncated, the information in the discarded basis is
lost, resulting in prediction errors and lack of robustness in the resulting model. As
an alternative, Carlberg et al. [41] proposed the Gauss-Newton with approximated
tensors GNAT method, which aims at optimising the model coefficients using the
estimated error from the discarded basis. This reduction technique, is shown to
perform satisfactorily in both structural-dynamics and CFD problems and is chosen
as model reduction strategy for the following chapter.

Despite their increase in efficiency by dimensionally reducing the original prob-
lem, projection-based methods lack robustness when considering changes in the
parameter space, where commonly a new ROM must be built for each new set of
parameters. This is particularly disadvantageous in control applications, where de-
sign parameters are modified at each optimization iteration. A way to overcome this
obstacle and to make the reduced-order model adaptable to parameter changes, is
to interpolate and create a new set of orthogonal basis for the new operating point.
However, the direct interpolation of orthogonal basis does not necessarily result in
a new set of orthogonal basis. An alternative to standard interpolation is therefore
an interpolation in a vector space, based on differential geometry and in particular
on the Grassmann manifold and its tangent space [4, 5].

This interpolation strategy together with the GNAT methodology is employed
in this chapter in order to construct an optimised POD basis, and its respective
ROM for a variable operating condition.

The chapter is structured as follows: in sections §4.2 and §4.3 we introduce a brief
overview of projection-based model reduction methods and snapshot POD, respec-
tovely. The Grassmann manifold is briefly presented in §4.4. The modes obtained
with the snapshot POD method are then used to build the GNAT-ROM in section
§4.6, and finally the performance of the algorithm applied to an incompressible flow
and its adaptativity are shown and analysed in the results section §4.7.
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4.2 Projection-based model reduction

Model reduction techniques aim to reduce the dimensions of a high-dimensional
problem using a lower dimensional approximation that captures the main physical
features of the original system. The generic nonlinear dynamical system, governed
by a semi-discretized system of equations, can be written as

dq(x, t)

dt
= f(q(x, t)) (4.1)

where q ∈ Rn is the time-dependent unknown state vector discretized on a spatial
grid of dimension Nx and f(q(t)) is a generic nonlinear term. The physical system
might include different variables k, generating a high-order dimensional coupled
system of size n = k ×Nx, which will be referred to as a full order model (FOM).
Projection-based model reduction methods rely on the assumption that the unknown
state vector can be correctly approximated by projecting it on a low-dimensional
affine trial subspaceW ⊂ Rn spanned by a matrix Φ ∈ Rn×nw , with nw � n, whose
columns Φi ∈ Rn with i = 1, 2, . . . , nw are the time invariant basis for the subspace.
The reduced-order state vector can then be formulated as a linear combination of
this spatial basis, also known as Galerkin expansion

q̃(x, t) ≈
nw∑
i=1

Φi(x)ai(t) = Φ(x)a(t), (4.2)

where ai(t) are the expansion coefficients containing information on the time evo-
lution of each element of this basis. Substituting (4.2) into (4.1), we obtain a
reduced-order system of equations

Φ(x)
da(t)

dt
= f(Φ(x)a(t)). (4.3)

This system is formed by n nonlinear equations and nw � n unknowns, and is hence
overdetermined. Therefore, nw constraints have to be introduced by enforcing the
orthogonality of the residual of the system on a test subspace L ⊂ Rn spanned by
Ψ ∈ Rn×nw . The projection of (4.3) on a chosen test subspace L leads to a system
of nw nonlinear equations and nw unknowns, representing a generic reduced-order
model (ROM) obtained by projection methods

ΨTΦ(x)
da(t)

dt
= ΨTf(Φ(x)a(t)), (4.4)

where the inner product 〈Ψ,Φ〉 = ΨTΦ is used. It should be noted that in the case
where the left subspace is chosen to have Ψ = Φ, then this projection lies under
the class of Galerkin projections, otherwise if Ψ 6= Φ, it describes a Petrov-Galerkin
projection. More details on the latter will be provided in section §4.5.
The construction of the ROM is made with an offline-online strategy. During the of-
fline phase, the FOM data are acquired and the time-invariant spatial operators and
basis needed in (4.4) are computed. This phase usually requires high computational
costs. Afterwards, during the online phase, the nonlinear ROM (4.4) is integrated
in time. A survey of projection-based method can be found in [15, 46, 156].
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Figure 4.1: Schematic of snapshot-POD. Temporal snapshots are collected and then
a singular value decomposition is employed to extract the POD basis U and the
singular values Σ.

4.3 Snapshot proper-orthogonal-decomposition

In most complex fluid systems, the dominant dynamical features of the flow can be
encoded in low-dimensional patterns, known in the literature as coherent structures.
Coherent structures are organized spatial features, and their existence in turbulent
flows have been widely studied since the second half of the last century [36, 124].
The presence of these structures in fluid flows suggests the possibility of reducing
the complexity and the dimension of a high-dimensional flow regime by expressing
its dynamical behaviour as a combination of dominant dynamical features.

Proper orthogonal decomposition POD, also known as Karhunen-Loève expan-
sion and Prinicipal-Component Analysis (PCA), is a linear procedure to extract
uncorrelated modes from a flow. The resulting features (modes) are then used to
define a basis that optimally approximates the high-dimensional data [19, 199]. In
the method of snapshots, introduced by Sirovich [192], large dimensional discrete
data, that can be obtained from both numerical simulations or experiments, are
first collected and then used to identify optimal modes. A snapshot is the instanta-
neous flow vector field resulting from a complex fluid system. For an unsteady flow,
we consider a set of samples Y, forming the discrete state vectors yi, collected at
different time instants ti, i = 1, . . . , nt,

Y =

 | | |
y1 y2 · · · ynt

| | |

 , (4.5)

with Y ∈ Rn×nt , and each column yi = y(ti) ∈ Rn, and n the dimension of
the high-dimensional system, tipically n � nt. One possible procedure to extract
orthogonal basis from a set of snapshots is the SVD [80], which provides a unique
matrix decomposition of Y,

Y = UΣV†, (4.6)
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where U ∈ Rn×n and V ∈ Rnt×nt have orthogonal columns, called respectively left
and right singular vectors, and Σ ∈ Rn×nt is a diagonal matrix. The elements on
the diagonal, called singular values, are nonnegative and ordered from the largest to
the smallest. When n� nt the last rows of Σ are equal to zero. The SVD provides
a low-rank approximation of the original data, where the rank is defined by the
first k singular values and the respective vectors of the matrix decomposition while
ignoring the rest. This approximation is proven to be optimal as it minimizes the
`2-norm of the approximation error. In the case where k is equal to the number
of non zero elements of Σ, the approximation is exact. From a physical point
of view, when SVD is applied on a set of fluid flow snapshots, U represents the
orthogonal spatial modes that form the basis (coherent structures), the singular
values σi = diag(Σ) are the weights or the energies of each mode, and V contains
the time history of the approximated data. A schematic of this methodology is
given in figure 4.1.

POD is often used to generate an optimal orthogonal basis for the trial subspace
W to approximate solutions of a nonlinear FOM. Following the method of snapshots
previously introduced, the snapshots qi = q(x, ti) are collected at discrete time
levels ti, where i = 1, . . . , nt, during the offline phase. Usually the mean flow q(x) is
subtracted from the dataset to extract modal structures related to the fluctuations.
The number of collected snapshots nt has to be chosen to ensure that the important
fluctuation of the flow are well resolved in time. This difference can be expressed
as a linear combination of orthogonal spatial modes Φj(x) and time dependent
expansion coefficients aj(t)

q(x, t)− q(x) ≈
k∑
j=1

Φj(x)aj(t). (4.7)

Here, x represents the spatial domain. The modes obtained from SVD are orthog-
onal with respect to the inner product∫∫

Ω
(Φi)

TΦjdV = 〈Φi,Φj〉 = δij , (4.8)

δij is the Kronecker delta defined as

δij =

{
1 if i = j,
0 if i 6= j.

(4.9)

The orthogonality of the basis functions Φ enable us to use the approximation given
in (4.7). As a result, the temporal coefficients aj(t) can be computed as

aj(t) = 〈q(x, t)− q(x),Φj〉. (4.10)

Finally, the high-dimensional flow can be approximated by using a finite number of
POD modes (k) as

q̃(x, t) = q(x) +

k∑
j=1

Φj(x)aj(t), (4.11)
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reducing the size of the problem, n (dependent on the size of the grid and the number
of variables), to the number of POD modes selected in the truncation, with k � n.
The rank of the approximation k is usually determined using an energy criterion,
such that the selected modes capture most of the energy of the flow, typically 99%

of the total energy : ∑k
i=1 σ

2
i∑nt

i=1 σ
2
i

> 0.99, (4.12)

where k ≤ nt.
These steps are summarized in algorithm 2.

Algorithm 2 POD basis computation
Input Snapshot matrix Y ∈ Rn×nt

Output Φ(x) ∈ Rn×nw

1: Compute SVD: Y = UΣVT

2: Choose basis dimensions nw ∈ {1, 2, . . . , nt}
3: Truncate basis Φ(x) ∈ Rn×nw

Algorithm 2 is applied to a flow over a circular cylinder in order to extract the
dominant coherent structures through POD modes. This flow has been widely used
in fluid mechanics to investigate bluff body flows both numerically and experimen-
tally [54, 153, 152, 125]. Here we consider a two-dimensional flow over a cylinder at
Re = 200, non-dimensionalised based on the diameter of the cylinder. At this regime
the flow exhibits the von Kármán shedding wake. This time periodic wake is easily
distinguishable and its time evolution suggests the existence of a limit-cycle and
its associated coherent structures that can be represented using a low-dimensional
dynamical system.

We collect 380 velocity snapshots over 2 shedding periods and we remove the
mean flow. An illustration of a vorticity snapshot without the mean flow is reported
in figure 4.2a. The POD modes are extracted from the snapshots representing the
fluctuations q(x, t) − q(x), by performing a singular value decomposition. Fig-
ure 4.2b shows the singular values in descending magnitude order. We observe that
the first modes capture most of the total energy, suggesting that a small number of
modes is sufficient to reconstruct an accurate approximation of the original high-
dimensional flow (4.11). Due to the oscillatory nature of the flow the modes appear
in pairs. For simplicity, figure 4.2c shows only the first 4 modes. The coherent
structures of the flow fluctuations are visible in the spatial shape of the dominant
modes and represent the symmetry and periodicity of the flow.
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Figure 4.2: Results of the SVD on a sample of snapshots. (a) an example of a
vorticity snapshot, (b) singular values, (c) POD modes.

4.4 Variable parameter ROM - Grassmann manifold

The procedure described in the previous section might perform well for a set of
parameters for which the data was collected and reduced. However these reduced-
order models commonly lack predictability and therefore robustness as the given set
of parameters change. In order to accommodate varying parameters, the reduction
process can be applied to a range of parameters separately and a model can be
deduced for each case. Then a dedicated interpolation procedure is required in
order to ensure predictability and robustness across a continuous range of sample
parameters for the construction of the basis functions. Standard interpolation of a
set of orthogonal basis does not necessarily preserve orthogonality. Ansallem et al. [5]
proposed an interpolation strategy based on the Grassmann manifold and its tangent
space at a point in order to adapt ROMs to new operating points while preserving
the orthogonality property of the interpolated basis, which will be adopted and
demonstrated here.

Consider NR distinct ROMs constructed with the same number of POD basis
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Φj ∈ Rn×nw . The number of distinct models NR is in fact the number of parameters
(or operating points) λj considered in the interpolation procedure. Each of these
subspaces W belongs to the Grassmann manifold G(n, nw), and can be considered
as a point on the manifold, represented by its basis Φj (figure 4.3). The subspaces
are then projected on a flat constraint-free space TW0 , tangent to the manifold at a
reference point W0, where standard interpolation techniques can be easily applied.
This interpolation method for ROM adaptation is proven to be robust with respect
to the choice of the reference point as long as all the other operating points used in
the process lay in the neighborhood of the reference point [4]. Each subspace Wj is
mapped to a matrix Γj using a logarithm map and is represented by a point χj(

I −Φ0Φ
T
0

)
Φj

(
ΦT

0 Φj

)−1
= UjΣjV

T
j (4.13.1)

Γj = Uj tan−1 (Σj)V
T
j . (4.13.2)

Matrix Γ∗ corresponding to the target operating point λ∗, is then computed by
interpolation of the matrices Γj , using Lagrangian polynomial interpolation

Γ∗ =

NR−1∑
j=1

Γj

NR−1∏
k=1
k 6=j

λ∗ − λk
λj − λk

 . (4.14)

Finally, the interpolated matrix Γ∗ representing χ̃ ⊂ TW0 is exponentially mapped
back on the Grassmann manifold into the target subspace W∗ spanned by Φ∗,
corresponding to the set of POD basis needed for the construction of a projected
reduced-order model for a new operating point λ∗

Γ∗ = U∗Σ∗V ∗
T

(4.15.1)

Φ∗ = Φ0V
∗ cos Σ∗ +U∗ sin Σ∗. (4.15.2)

The procedure used to perform the interpolation is given in algorithm 3, while a
schematic of the mapping between the manifold and its tangent space at a point is
shown in figure 4.3.

Algorithm 3 Interpolation on a tangent space of the Grassmann manifold
Input Set of parameters Λ : {λ0, λ1, . . . , λNR−1}, corresponding POD basis Φ :

{Φ0,Φ1, . . . ,ΦNR−1}
Output POD for new parameter Φ∗, λ∗ /∈ Λ

1: Select a point W0 of the manifold as a reference and origin point for the inter-
polation

2: Logarithmically map Φj ∈ Φ − Φ0 onto the tangent space using a thin SVD
(4.13)

3: Perform Lagrangian interpolation of matrices Γj (4.14)
4: Compute Φ∗ by exponentially mapping Γ∗ to the Grassmann manifold (4.15)
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Figure 4.3: Interpolation of four subspaces using the Grassmann manifold G(nw, n)

and its tangent space Tλ0 at the point W0. The subspaces are mapped onto the
tangent space to perform the interpolation, then the resulting point χ̃ is projected
back onto the manifold using an exponential mapping.

We apply this interpolation procedure on a two-dimensional flow over a circular
cylinder, analysed previously, where the Reynolds number is chosen as the variable
parameter. The flow is simulated for Re = {100, 120, 140, 160, 180, 200}, the snap-
shots are collected over two shedding periods and the modes are built independently
for each set of data using the snapshot-POD introduced in section §4.3. Figure 4.4
shows the lift coefficients and the first modes for each value of the Reynolds num-
ber. We aim to recover the POD basis needed to construct a reduced-order model
at Re∗ = 150, by interpolating between the existing data-points. The reference and
origin point for the tangent constraint-free space is selected to be Re0 = 140 and
each set of basis Φj ∈ Rn×nw is truncated with nw = 20. The resulting POD modes
Φ∗ ∈ Rn×nw spanning the target subspace W∗ at Re∗ = 150 are computed using
algorithm 3, and the results are shown in figure 4.5. The obtained basis can be then
used in any projection-based model reduction technique, allowing the creation of a
reduced-order model without having to collect the snapshots from the FOM.
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Figure 4.4: Training set of modes used for the interpolation for different Reynolds
numbers. Left column: lift coefficient, the time interval used for the extraction of
the modes is highlighted in red; center: horizontal velocity first POD mode; right:
vertical velocity first POD mode.
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Figure 4.5: First POD modes for horizontal and vertical velocity field at Re∗ = 150.
(Left): data-based POD modes extracted from the SVD of the training FOM data;
(center): POD modes obtained with the interpolation on the Grassmann manifold
and its tangent space at Re0 = 140, using NR = 6; (right): error between the
data-based and the interpolated modes.
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4.5 Galerkin and Petrov-Galerkin projection

In section §4.2, we introduced projection-based model reduction methods. Using
this technique the full-order model is projected on a low-dimensional trial space W
by using a Galerkin expansion of the original high-dimensional data. Orthogonality
between the high-fidelity model and a low-dimensional test space L is then enforced
to extract the evolution equations governing the dimensionally reduced model, i.a.
the expansion coefficients a(t) as

ΨTΦ(x)
da(t)

dt
= ΨTf(Φ(x)a(t)). (4.16)

Φ ∈ Rn×nw is the basis spanning W, usually computed by using the method of
snapshots and employing the orthogonal properties of the POD basis, and Ψ ∈
Rn×nw is the basis for the test subspace L.

When Ψ = Φ, the test basis is equal to the trial basis L = W, resulting in
Galerkin projection. In particular, since the POD basis is orthogonal we have
ΦTΦ = I and the reduced-order equation become

da(t)

dt
= ΦTf(Φ(x)a(t)). (4.17)

The velocity fields can then be expressed by using a Galerkin expansion

u(t,x) =
k∑
j=0

Φj(x)aj(t). (4.18)

Here, Φ are POD modes, and a0 = 1 and Φ0 denoting the mean field. Plug-
ging (4.18) into the incompressible Navier-Stokes equations to perform a Galerkin
projection gives

∂

∂t

k∑
j=0

Φjaj +

k∑
j=0

Φjaj · ∇
k∑
j=0

Φjaj = −∇p+
1

Re
∇2

k∑
j=0

Φjaj , (4.19.1)

∇ ·
k∑
j=0

Φjaj = 0. (4.19.2)

The continuity equation (4.19.2) is automatically satisfied by each POD mode as
well as boundary conditions. To recover the reduced-order model, we enforce the
orthogonality to obtain the evolution equation for the expansion coefficients

dai
dt

=

k∑
j=0

−Re−1〈Φi,∇2Φj〉+

k∑
j=0

k∑
s=0

〈−Φi,Φj · ∇Φs〉. (4.20)

Pressure can be neglected in the Galerkin projection of an incompressible flow, since
it is seen as a constraint on the modal amplitude, and it is then considered as a La-
grange multiplier and can be computed from the velocity field yielding the pressure-
Poisson equation. More details on the pressure-term representation in Galerkin
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projection methods can be found in the work of Noack [154, 155] and Holmes [93].
Bergmann et al. [17] has also proposed a method to include the pressure basis to
improve the stability of POD models.

Galerkin projection is commonly used in literature especially on problems
governed by linear dynamics. However, Galerkin-based ROMs are proven to lack
robustness when applied to nonlinear time dependent problems. The limitation of
this approach can be attributed to the ad hoc truncation of the Galerkin basis.
The truncation of the expansion ignores the cumulative effect of truncated scales
on the retained degrees of freedom, making the model-reduced system prone to
detrimental long-term instabilities. Different methods have been proposed to
overcome these problems and improve the stability of the Galerkin projection
method introducing numerical dissipation via closure models [96, 97], including a
numerical model for the pressure [92, 155], using eddy viscosity [9, 18, 163, 190].
To further improve the computational efficiency and the dimension of the reduced
models, empirical techniques were proposed for capturing the non-linearities and
evaluate the non-linear terms at a subset of points [14, 21, 45, 128, 150, 149, 159, 129].

In the following we focus on an alternative a priori stabilization technique based
on Petrov-Galerkin projection and tensors approximation, proposed by Carlberg et
al. [40, 41]. In Petrov-Galerkin projection, the test space L is chosen to be different
than the trail space W, hence Φ 6= Ψ. Reformulating equation (4.16) in terms of
residuals

ΨTR(a(t)) = 0, (4.21)

the test basis is Ψ = JΦ and J = ∂R(a(t))/∂(Φa(t)) is the non-linear Jacobian.
One of the advantages of Petrov-Galerkin projection compared to Galerkin is
that it performs a projection at the fully discrete level, computing a solution that
minimizes the `2-norm of the time discrete residuals. For a detailed comparison
between the two projection methods, the reader is referred to [39].
The dimension of the reduced-order-models obtained both with Galerkin and
Petrov-Galerkin projection still scales with the large n-dimensional full-order-
model, making the storage of the matrices and the computation of the matrix
products costly. In their proposed method GNAT, Carlberg et al. [40, 41] apply a
tensors approximation based on gappy data reconstruction [61] to select a subset
of points where the nonlinearities of the flow are concentrated. Using this method,
the final ROM dimensions depend only on the number of points selected by the
algorithm.

The GNAT method showed good results in terms of dimensionality reduction
and accuracy of the approximation for nonlinear problems where Galerkin projection
showed instability. In the next sections we provide an overview of the GNAT method
along with the results obtained for a two-dimensional incompressible flow.
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4.6 Gauss-Newton with approximated tensors

The Gauss-Newton with approximated tensor GNAT method, introduced by Carl-
berg [40, 41], is a nonlinear model reduction method for discrete nonlinear static
and dynamical problems. The method is based on a Least-Squares Petrov-Galerkin
(LSPG) projection, where the test basis is chosen to minimize the `2-norm of the
residual at each Newton iteration. The minimization is then associated with a
gappy POD procedure [61], which is least-square optimal, to approximate the non-
linear residual and Jacobian at each iteration, introducing a sample mesh of relevant
points to be used in the online stage and reducing the dimension associated to the
least-square problem.

4.6.1 Least-squares Petrov-Galerkin projection

The first step of the GNAT method consists of a dimensionality reduction obtained
with the use of a Petrov-Galerkin projection. We consider the generic nonlinear
time dependent semi-discrete full-order model, introduced in (4.1) in residual form

R(q(x, t)) = 0, (4.22)

where q ∈ Rn is the state, R : Rn → Rn is a nonlinear mapping, and the initial
condition is q(0) = q0. Following the procedure given in the previous section for
the Petrov-Galerkin projection, a first projection on the affine trial space W ⊂ Rn,
spanned by POD basis Φ ∈ Rn×nw , is performed to reduce the dimensions of (4.22).
The basis is computed with the snapshots-POD technique.

The snapshots collection procedure used to compute the POD basis Φ is chosen
to be Y = {q(n) − q(0)|n = 1, . . . , nt}, where q(0) is the initial condition.
This projection leads to an approximated solution q̃ on the trial subspace q(0) +W

q̃ = q(0) + Φqw, (4.23)

where q(0) ∈ Rn is an initial guess at Newton iteration k = 0 (usually taken to be
the optimal solution of the previous time-step) and qw ∈ Rnw are the generalized co-
ordinates of the state, optimized at each Newton iteration by residual minimization.
Substituting (4.23) into (4.22) and enforcing the orthogonality of the test subspace
L nonlinear residual, we get

ΨTR(q(0) + Φqw) = 0. (4.24)

The residual minimization problem used to compute q̃ reads

min
q̃∈q(0)+W

‖R(q̃)‖2. (4.25)

GNAT solves the nonlinear least-square problem using a Gauss-Newton iterative
method, seeking a solution that is discrete optimal at each time step. The test
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subspace L is chosen to minimize the error between the reduced-order and the full-
order solutions, i.e. to minimize the error in the search direction

s(k) = arg min
a∈Rnw

‖Φa− J (k)−1
R(k)‖Θ. (4.26)

For a nonlinear problem, the Jacobian arising at each iteration is usually not
symmetric positive definite (SPD). In [40] the authors give a mathematical proof
that justifies the use of a Petrov-Galerkin projection, with L = J (k)W, which then
changes from one Newton iteration to another. The least-square problem (4.26)
therefore becomes

s(k) = arg min
a∈Rnw

‖J (k)Φa+R(k)‖2, (4.27.1)

q(k+1)
w = q(k)

w + α(k)s(k), (4.27.2)

where the computed search directions are optimal for Θ = J (k)TJ (k), and α is the
step length computed with the use of a line search algorithm. The Petrov-Galerkin
projection defined in this way, produces the following reduced Newton iterations for
each time step, k = 1, . . . ,K of the Newton iteration

ΦTJ (k)TJ (k)Φs(k) = −ΦTJ (k)TR(k), (4.28.1)

q(k+1)
w = q(k)

w + α(k)s(k), (4.28.2)

where K is defined by a stopping convergence criterion based on the residual er-
ror. The above equation then substitutes the general equation for the least-square
problem (4.27). As mentioned in the previous section, the computational cost asso-
ciated with the resolution of the nonlinear least square problem (4.27) scales with
the large dimensions n of the full-order model, because of the dimensions of the
two-dimensional tensors J (k)Φ and R(k) involved in the resolution of the normal
equation. To additionally reduce the dimensions of the Gauss-Newton iterations,
GNAT introduces a hyper-reduction step based on data reconstruction techniques.

4.6.2 Tensors approximation and hyper-reduction

The large dimensions of the matrices in equation (4.27) can lead to computational
bottleneck, that can be handled by constructing approximations for these large
operators. GNAT employs the gappy POD data reconstruction technique [61], orig-
inally used for image reconstruction, to approximate these operators. This tech-
nique acts like a masked projection, by selecting a small subset of the full dimen-
sional data in order to obtain a smaller system to solve. The subset is defined as
I ≡ {I1, I2, . . . , Ini} with ni � n, and it includes the indices for the selected sample
points where the nonlinear operators are evaluated. In this way a sample matrix
defined as Z ≡ Z(I) ∈ Rn×ni can be used to approximate J (k)Φ and R(k) at each
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Gauss-Newton iteration

R̃(k) = arg min
x∈range(ΦR)

‖ZR(k) − Zx‖2, (4.29.1)

J̃ (k)Φ = arg min
x∈range(ΦJ )

‖ZJ (k)Φ− Zx‖2. (4.29.2)

The approximated tensors lie in the low-dimensional subspaces spanned by ΦR

and ΦJ , computed by using snapshots POD on the nonlinear residuals and column-
reduced Jacobian snapshots collected during the resolution of problem (4.27). Dif-
ferent strategies to collect these snapshots in order to meet the consistency require-
ment for the approximation are provided in [40]. Finally substituting the reduced
operators in equation (4.27) we get the dimensionally reduced GNAT iterations

s(k) = arg min
a∈Rnw

‖AZJ (k)Φa+ BZR(k)‖2, (4.30.1)

q(k+1)
w = q(k)

w + α(k)s(k), (4.30.2)

where A = [ZΦJ ]+ and B = ΦT
JΦR [ZΦR]+ can be computed “a priori” during the

offline stage. In particular, A ∈ RnJ×ni , B ∈ RnJ×ni , and nJ is the number of POD
basis used to approximate the column-reduced Jacobian. Also ni is the size of the
subset I and the superscript “+” denotes the Moore-Penrose pseudo-inverse.
The Jacobian matrix arising from CFD simulations is usually sparse, therefore the
dimension of the problem can be further reduced by considering only its nonzero
elements. Another set J , containing the nj indices of the nonzero elements of the
Jacobian, is then introduced. The reduced state is then computed as Z

T
Zq ∈ Rnj

with nj � n, and Z ≡ Z(J ) denoting a masking operator. The final reduced-order
least-square problem can be then reformulated as

s(k) = arg min
a∈Rnw

‖AC(k)a+ BD(k)‖2, (4.31.1)

q(k+1)
w = q(k)

w + α(k)s(k), (4.31.2)

where C(k) = ZJ(Z
T
Zq̃(k))Z

T
ZΦ and D(k) = ZR(Z

T
Zq̃(k)). The dimension of

the least-squares problem in (4.31) depends only on the size of the chosen subset
of points I. Therefore, the cost of the online stage is considerably smaller then the
cost of the full-order model (4.22). A summary of the algorithm used in GNAT is
provided in figure 4.6. For the details on the determination of the index sets I and
J the reader is referred to [41].
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R(q) = 0

Model 1

Petrov-Galerkin projection

s(k) = arg min
a∈Rnw

‖J (k)Φa+R(k)‖2
q(k+1)
w = q(k)

w + α(k)s(k)

Model 2

Tensors approximation

s(k) = arg min
a∈Rnw

‖AC(k)a+ BD(k)‖2
q(k+1)
w = q(k)

w + α(k)s(k)

Model 3

Figure 4.6: A schematic of the GNAT method. Model 1 corresponds to the FOM
simulation. Model 2 is the first dimensional reduction performed by a Petrov-
Galerkin Least-Square problem. Model 3 is the online phase involving a tensors
approximation on a subset of points selected with the use of a greedy algorithm.

4.7 Results

In this section, the GNAT method is first tested on a two dimensional flow around
a cylinder at Re = 200, then the interpolation via the Grassmann manifold and its
tangent space at a point is applied to recover the basis for a new operating point.
The resulting basis is then used to build a reduced-order model following the GNAT
procedure.

4.7.1 Reduced-order model - GNAT

We consider the two dimensional flow around a cylinder at Re = 200. The objective
is to construct a reduced order model capable of reproducing the resulting lift and
drag coefficient. The system is discretized over a cartesian non-uniform staggered
grid of size Nx = 382× 382 = 146689. The immersed boundary method, described
in section §2.4 is used to capture the cylinder shape. For this purpose nIB = 96

Lagrangian points are employed. The dimension of the state vector, including the
immersed boundary points, is n = 437581, where n = nu+nv+np+2nIB represents
respectively the dimension of the discretized horizontal and vertical velocity, along
with pressure on the cartesian grid, as well as, horizontal and vertical velocities on
the surface points.
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(c) Spatial POD modes for horizontal and vertical velocity.

Figure 4.7: Results of the SVD on a sample of incremental snapshots for the GNAT
method. (a) an example of a vorticity snapshot; (b) singular values, highlighted
in red are modes selected for the projection, preserving the 99% of the energy; (c)
incremental POD modes.

The snapshots are collected during the training FOM simulation (model 1) and
the POD modes are computed using the method of snapshots introduced in sec-
tion §4.3. In particular, we collect nt = 340 snapshots over two shedding periods.
Note that GNAT is an incremental method, therefore, the snapshots are collected
as Y = {q(n)− q(0)|n = 1, . . . , nt}, where q(0) is the initial condition, and the POD
modes represent the solution increment at each time step of the FOM simulation.
This way of collecting data affects the shape of the modes and the corresponding
singular values. Figure 4.7a shows an example of an incremental snapshot. Here, in
contrast to the case where the mean is removed, the singular values are not in pair
resulting in non symmetrical mode shapes, shown in 4.7c. The modes are truncated
to preserve the 99% of the total energy (4.12), leading to a matrix Φw ∈ Rn×nw ,
with nw = 16. The chosen modes are highlighted in red in figure 4.7b.

When the POD modes are collected, a Petrov-Galerkin projection (4.28) is
employed leading to the first dimensional reduction (model 2). Model 2 has size
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Figure 4.8: Greedy points selection. (a) Subset of points I used for the hyper-
reduction; (b) selection of the triad points, (u, v, p), on a cartesian staggered grid.

n × nw, which still scales with the dimension of the high-dimensional problem.
During this stage the residuals R(k) and the column-reduced Jacobian J (k)Φw

arising at each Gauss-Newton iteration “k” are stored and then approximated in
the corresponding low-dimensional subspace spanned by ΦR and ΦJ . A small
subset of the full dimensional domain is then selected by using the Gappy-POD
technique to further reduce the dimension of the system, leading to model 3.

The greedy algorithm is employed to select nG points inside the domain. The
numerical solver employed for the simulations is spatially discretized on a staggered
grid, where pressure is defined at the center of the cell and the velocity components
on its boundaries, as indicated in figure 4.8b. The greedy algorithm selects the
triad points at the center of the cell and the respective edges as highlighted in
figure 4.8b. The indices representing the corresponding triad (u, v, p) are then
added to the subset I. In order to avoid numerical instabilities, the algorithm is
enforced to select points in a window 2 ≤ x ≤ 20 excluding points that are too
close to the cylinder or to the outflow boundary. Figure 4.8a shows the subset of
final selected points. It can be noticed that these points lie where the truncated
high order modes have the largest foot-print. The hyper-reduction step is then
accomplished and the online problem (4.31) can be solved.

The performance of this reduction is assessed by the capability of the model
to predict the lift and drag coefficients accurately (figure 4.9). The solver employs
immersed boundary points to represent the cylinder surface. The lift and drag
coefficients are then computed from the exact value of the velocity at the Lagrangian
points. These points were excluded from the greedy point selection used for the
construction of Model 3. In addition, the capability of the reduced-order model
in reconstructing the full flow field is also assessed by comparing the reconstructed
velocity profile to the exact value at a random point inside the domain (figure 4.10).
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Figure 4.9: Reproduction of the lift (a) and drag coefficients (b) for model 2 and
model 3, using GNAT compared to the high-dimensional model (model 1).
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Figure 4.10: GNAT results: Reproduction of the horizontal velocity for a random
point in the domain.

The time-averaged relative error,

1

nt

nt∑
n=1

‖q(·, tn)− q̃(·, tn)‖2
‖q(·, tn)‖2

, (4.32)

using modes 2 and 3 is reported in table 4.1. Here q is the FOM flow field solution
and q̃ is the reconstructed solution of the ROM. The error obtained with the full
GNAT method is one order of magnitude higher than the one obtained with the
simple Petrov-Galerkin projection. However, the dimension of the Gauss-Newton
iteration has been reduced from n× nw to ni × ni leading to a consistent reduction
of the computational time (table 4.2).

model 2 model 3
error 0.003 0.028

Table 4.1: Time-averaged `2-error (4.32) of the approximation for model 2 and
model 3.
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model 1 model 2 model 3
wall-time 121 s 118 s 97 s

Table 4.2: Wall time for each level of approximation of acGNAT.

4.7.2 Variable Parameter GNAT

In this section, we build ROMs for a set of parameters and apply the interpolation be-
tween subspaces using the Grassmann manifold and its tangent space (section §4.4)
to construct a ROM for a new operating point.

We consider again a two dimensional flow around a cylinder. The variable pa-
rameter is the Reynolds number. The flow is evaluated for six values of the Reynolds
number, and the POD modes Φj ∈ Rn×nw are obtained using the incremental snap-
shots collection procedure. Twenty modes are retained for each parameter and then
used to perform the interpolation procedure. The snapshots are collected for two
shedding periods for all Reynolds numbers. Figure 4.11 shows the lift coefficient
and the corresponding first mode of the horizontal and vertical velocity, obtained
by using an incremental snapshot collection procedure.

The different values of the Reynolds number Re used for the interpolation are
given in table 4.3. To examine the impact of the sampling set on the interpolated
solution, we incrementally increase the number of operating points involved in the
interpolation. The new operating point is Re∗ = 150, not included in the set. The
reference point needed to build the tangent space to the Grassmann manifold is
chosen to be close enough to the new operating point and has been set to Re0 = 140

for all the interpolations performed.

The shape of the first modes obtained with the interpolation on the Grass-
mann manifold and its tangent space at Re0 = 140 using NR = 6 are reported
in figure 4.12. The first column represents the data-based modes, computed by
performing SVD on the original snapshots. The shape of the interpolated modes
is comparable to the data-based one. The third column shows low values for the
difference between the two, however the contour lines are not smooth due to the
difference in frequency of the flows used for the interpolation(figure 4.11).

To evaluate the impact of the interpolation on the reconstructed ROM at the
new operating point, the modes obtained using the different set of parameters are
plugged into model 2 of GNAT. The performance is checked on the reconstruction
of the lift and drag coefficients at the surface of the cylinder. The results of the
reduction are compared to the FOM and the data-based ROM (figure 4.13). From
the figure, it can be noted that the addition of operating points in the parameter
set used for the interpolation does not improve significantly the accuracy of the
approximation.

The relative errors in time for the different approximations are evaluated using
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Re Re0

NR = 2 {140, 160} 140
NR = 3 {120, 140, 160} 140
NR = 4 {120, 140, 160, 180} 140
NR = 5 {100, 120, 140, 160, 180} 140
NR = 6 {100, 120, 140, 160, 180, 200} 140

Table 4.3: Training set of operating points Re used in the interpolation procedure
for different NR.

the `2-norm formulation as

err(t) =
‖q(x, t)− q̃(x, t)‖2

‖q(x, t)‖2
, (4.33)

where q̃ is the reduced solution. The evolution in time of this error for all the
parameters considered is shown in figure 4.14. The lowest error is found to be the one
for NR = 3, that corresponds to Reynolds numbers close to the new operating point.
The quality of the approximation deteriorates when moving away from this value.
As a matter of fact, we chose a uniform distribution for the parameters selection,
receding both from Re0 and Re∗. The approximation accuracy could be improved
changing the distribution of the operating points selected for the interpolation and
employing an adaptive addition of points during the process.
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Figure 4.11: Set of modes used for the interpolation for different Reynolds numbers.
The snapshots are collected using an incremental strategy. (Left): lift coefficient,
the time interval used for the extraction of the modes is highlighted in red; (center):
horizontal velocity first POD mode; (right): vertical velocity first POD mode.
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Figure 4.12: First incremental POD modes for horizontal and vertical velocity fields
at Re∗ = 150, with NR = 6. (Left), data-based POD modes extracted by performing
an SVD on the data; (center), POD modes obtained with the interpolation of the
Grassmann manifold and its tangent space at Re0 = 140; (right), error between the
data-based and interpolated modes.
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Figure 4.13: Interpolation of reduced-order models: reconstruction of lift coeffi-
cient Cl (left column) and drag coefficient Cd (right column) using different sets of
operating points NR given in table 4.3.
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Figure 4.14: Relative error in time in `2 for the approximated flow using model 2 of
the GNAT method for Re∗ = 150 using the interpolated modes obtained from the
training dataset in table 4.3 and the data-based modes.
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4.8 Conclusions

In this chapter we gave an overview of projection-based techniques to reduce the
dimension of unsteady problems. These methods rely on the possibility of reducing
the dimension of a high-dimensional problem by combining its dominant dynamical
features, or coherent structures, using a Galerkin expansion on a lower-dimensional
subspace spanned by a set of orthogonal basis. Galerkin and Petrov-Galerkin pro-
jections have been studied and compared [39], finally the Gauss-Newton with ap-
proximated tensors method [41] has been chosen as a reference for building an
equation-based reduced-order model. GNAT has been tested on a two-dimensional
flow around a cylinder at Re = 200 to reconstruct significant flow features such as
drag and lift coefficients.

The results obtained show an accurate reproduction of the flow with a dimen-
sional reduction of the order of 93%. However, such models are not robust as model
parameters change. The capability of the model to adapt to varying parameters has
been tested by introducing an interpolation strategy between operating points. The
interpolation used here is based on the Grassmann manifold and its tangent space
at a point and it has been used to reconstruct a reduced model for a new operat-
ing point laying between the interpolating set. The results obtained are promising
but further improvement could be obtained by optimizing the distribution and the
number of the operating points used in the interpolation.
The employment of reduced-order models, eventually able to adapt to parameter
variations, can significantly reduce the computational time for flow optimization
and control applications. For example in derivative-free optimization algorithms,
where the cost function has to be evaluated for different operating points in the
design space, and in gradient descent algorithms where the values of the control
parameters are changed at each iteration.
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5.1 Introduction

With advances in computing power, larger and more accurate simulations are being
performed, capable of capturing detailed interactions of various physical phenomena
present in the flow. One of the main products of such expensive calculations is the
resulting data, which is also increasing in size, opening the door to data-driven
analysis, such as system identification and machine learning techniques.

This abundant data can be utilized to infer the equations governing the existing
dynamics, which has been shown to scale to high-dimensional systems [30]. This
approach had merit following the argument that dominant physical processes,
present in a complex system, can vary and might not be well described by the
same equation. For example, depending on the application and regime of interest,
the Navier-Stokes equation can be simplified using nondimensional parameters
and modified to neglect the effect of compressibility and modeled using turbulence
models. Identifying and locating the different dynamics present in complex physical
systems and eventually understanding how they affect the overall solution can
increase the accuracy of the numerical model employed.
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In many regimes, the dynamics of physical systems, usually described by complex
partial differential equations, are governed by only a few nonlinear terms, allowing
the production of simpler models capable of predicting the main features of the
underlying system. The determination of these structures inherent in such physical
systems can be accomplished through the use of data-driven models and system
identification [35].

System identification is sometimes considered as a black-box approach (the fi-
delity of the identification process was described by Wiener [206]), where the dy-
namics are determined by identifying the response of the overall flow process. In this
form, in contrast to the projection-based models discussed previously this approach
ignores the subtleties of the underlying dynamics in the modelling process and uses
no information regarding the existing structures. However, in an alternative ap-
proach (gray-box), information regarding the dynamics of the flow is included in
the identifications process. Used this way, system identification is utilised to esti-
mate the unknown parameters, which derive the underlying predetermined model.
This method results in models that are particularly suited for control applications,
since, by design, the dynamics taken into account are part of the input-output be-
haviour of the system. Linear system identification [204], has been applied in flow
control [88, 94]. However, its application to nonlinear problems has proven to be
very challenging leading to instabilities in the case of unsteady measurements [94].

Nonlinear algorithms are then employed to determine the existing nonlinear
correlation between the underlying structures, and ultimately result in a more pre-
dictive model suitable for unsteady and nonlinear environments. Recently, Brunton,
Proctor & Kutz [30] introduced the SINDy, which identifies parsimonious nonlin-
ear models from data. Using this approach, nonlinear dynamics are represented
as a linear combination of candidate nonlinear functions, as a result the method is
readily extended to incorporate known physical constraints [122], leading to the in-
tended gray-box approach, mentioned above, and has been applied recently in fluid
mechanics [123], showing great promise.

In this chapter we propose a data-driven dynamics identification procedure re-
alized by coupling sparse linear regression with network partitioning used for clus-
tering purposes. The chapter is organized as follow, the SINDy algorithm is shortly
described in section §5.2. The proposed procedure for dynamics identification is in-
troduced in section §5.3. An introduction of network science is given in section §5.4,
with a particular focus on network partitioning based on the Leicht-Newman net-
work, summarized in section §5.4.2. The validation of the clustering algorithm and
the results obtained with the proposed method are showed in section §5.4.3 and §5.5.

5.2 Equation identification - SINDy algorithm

The SINDy algorithm, proposed by Brunton et al. [30], leverages advances in ma-
chine learning and sparsity techniques to discover the governing equations from data
measurements, without having any a priori information on the form of the expected
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model. Considering the generic nonlinear dynamical system of the form of

dy(t)

dt
= f(y(t)), (5.1)

the system identification procedure aims to determine the form of the unknown
generic nonlinear term f(y(t)) by using the information extracted from the time
dependent data y(t) ∈ Rn. The time history of the data is collected and stored in a
matrix Y ∈ Rnt×n, with each row containing the state vector yi = y(ti) collected at
different time instants i = 1, . . . , nt. A second matrix contains the time derivatives
of Y collected a the same time instants. If not directly available, the derivatives
can be computed numerically using a finite difference scheme, resulting in the set of
two matrices below

Y =


yT (t1)

yT (t2)
...

yT (tnt)

 , Ẏ =


ẏT (t1)

ẏT (t2)
...

ẏT (tnt)

 . (5.2)

The right hand side of the equation f(y(t)) is then formulated as a linear combina-
tion of linear and nonlinear candidate functions of the columns of Y. The candidate
functions can assume any mathematical form, therefore, a library Θ(Y) can be built
from polynomial of any order or trigonometric terms. For partial differential equa-
tions, this library might also include partial derivatives and external forcing. An
example of such a collection can be:

Θ(Y) =

 | | | |
1 Y YP2 · · · sin(Y) · · ·
| | | |

 . (5.3)

The nonlinear governing equation (5.1) can then be rewritten as

Ẏ = Θ(Y)Ξ, (5.4)

where the unknown nonlinear term on the right hand side is now defined as a
linear combination of the nonlinear candidate functions included in the library, and
Ξ = [ξ1 ξ2 · · · ξn] represents the matrix containing the coefficients ξi of the linear
combination.

Knowing that only few of these nonlinear terms affect the dynamics of the system
and are therefore active in the operator representing f , the nonzero coefficients in
Ξ can be identified by using any sparse regression problem. One option is to use
the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm [198]

ξ = argmin
ξ′
‖Θξ′ − ẏ‖2 + λ‖ξ′‖1, (5.5)

where the solution is penalized in `1 to promote sparsity. There are several ways
to identify the active terms of the library of candidate functions, enhancing the
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sparsity of the solution. Among these methods are the sequentially thresholded
least squares (STLSQ) [211], the sparse relaxed regularized regression (SR3) [212],
the stepwise sparse regression (SSR) [24] and Bayesian approaches [158].

When matrix Ξ of the linear combination coefficients has been determined, the
model for the evolution equations (5.1) is constructed as

ẏ = ΞT
(
Θ(yT )

)T . (5.6)

This algorithm has been used for different applications such as identification of
partial different equations [181, 180, 106], model reduction [123, 122, 121], dynamics
identification [35], and control [31, 66, 107]. It will be used in this chapter to identify
the existing dynamics in a flow, as detailed in section §5.3.

5.3 SINDy applied to the Navier-Stokes equation

In this paragraph we propose a method to discover dominant dynamics governing
a fluid flow, by coupling the results of sparse linear regression with a community
identification strategy that will be described in detail in section §5.4.2.

Consider the incompressible Navier-Stokes equation without external forcing

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u,

∇ · u = 0,
(5.7)

where ∂u
∂t + u · ∇u are the inertial forces, −∇p the pressure forces, and ∇2u the

viscous force. The magnitudes of these terms determine the importance of such
forces in different regions of the flow, allowing the identification of different regimes.
For each discrete spatial point of the domain, the coefficients in front of these terms
govern the behaviour of the system at that location. These local coefficients can be
identified by using a data-driven approach similar to SINDy, described below.

Consider a two dimensional incompressible flow, governed by (5.7) with u ≡
(u, v), the momentum equation can be rewritten as a coupled system of equations
for the horizontal and vertical velocity

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
, (5.8.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
. (5.8.2)

The procedure starts with the collection of the discrete state q = (u, p) ∈ Rn for
a discrete number of time iterations nt. A subset of spatial points of the domain
I ∈ RNp is selected randomly, forming j = 1, . . . , Np data matrices Yj ∈ Rn×nt .
The spatial partial derivatives up to the second order are then computed using
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Figure 5.1: Vorticity field for a flow around a cylinder, Re = 200, selection of three
random points in the domain.

numerical differentiation at each point. The state and the spatial derivatives are
nonlinearly combined to form the terms existing in the Navier-Stokes momentum
equation (5.8), creating a library of candidate functions for each point j

Θ(q) =

[
∂p

∂x
,
∂p

∂y
,

1

Re

∂2u

∂x2
,

1

Re

∂2u

∂y2
,

1

Re

∂2v

∂x2
,

1

Re

∂2v

∂y2
,

u
∂u

∂x
, v
∂u

∂y
, u
∂v

∂x
+ v

∂v

∂y

]
.

(5.9)

The Np libraries of candidate functions are then used in the corresponding sparse
linear regression algorithm to identify the active terms and their coefficients as in
equation (5.5) of the SINDy algorithm.

We apply the algorithm to a two dimensional flow around a cylinder at Re = 200.
Figure 5.1 shows the vorticity field of the flow, three random points are selected at
different distances from the wake generated behind the cylinder.

After the regression, the points selected are defined by a set of coefficients indi-
cating the active terms of the library of candidate function, and therefore the local
active dynamics at their location. Figure 5.11 shows the result of the regression
for the three selected points. The different active coefficients for each point suggest
that these three regions might be governed by different dynamics.

Applying this strategy to a large set of random points, allows us to identify the
existing dynamics on the domain as a whole. However this information needs to be
classified in order to provide some physical insight. To this end, we would need to
introduce a strategy which would allow us to regroup the points based on similar
dynamical behaviour. For this purpose, we introduce a clustering strategy based
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Figure 5.2: Identified active terms of the library of candidate functions for three
random points.

on the relative euclidian distance on the subspace spanned by the set of terms de-
fined in the library, in order to find communities in the flow that share the same
dynamics. The algorithm chosen for the clustering procedure is the Leicht-Newman
network, based on modularity optimization, and is introduced in the following sec-
tion. One of the advantages of Leicht-Newman network is that it does not need an
a priori knowledge on the number and size of the final clusters. This is a necessary
requirement, which allows the identification process to remain user independent.

5.4 Clustering algorithms

In the context of machine learning, clustering algorithms belong to the unsupervised
learning techniques. The goal of a clustering algorithms is to identify groups of
data, sharing similar meaningful features within the original dataset. The partition
in different clusters is done by assigning a label for each data point of the dataset.

Consider a set of data points xj ∈ Rn, at the end of the clustering process each
of these points will be provided a label yj , where j = 1, ...,m with m the size of the
dataset. Several clustering algorithms exist today in the literature, among the most
common are k-means, dendograms, and Gaussian Mixture models algorithms [26, 27,
28, 169]. In the following we focus on a class of clustering algorithms which rely on
identifying communities using networks.
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(a) (b) (c)

(d) (e)

Figure 5.3: Graphic representation of nodes and edges of a network. (a) nodes; (b)
nodes connected by a simple edge; (c) nodes connected by a directed edge; (d) nodes
connected by weighted edges; (e) node with a self-edge.

5.4.1 Networks

Networks, also called graphs in the literature, aim to find statistical properties
among the components of a system, understand the manner by which these compo-
nents interact, and eventually predict the behaviour of the system [145], through the
identified interaction pattern. A network is a structure composed of a set of points,
called nodes or vertices, linked together by a set of edges, graphically represented by
lines. The edges of a network can be associated with weights, defining the impor-
tance of the connection between the nodes. In addition, the graph can take account
of the directivity (or direction) of the edges, when the connection between two nodes
is possible in one direction and not the opposite. A simple classification of networks
can then be resumed in weighted, directed or undirected graphs. Directed graphs
can also be cyclic, allowing self loops or edges from one node to itself, or acyclic
when self loops are not allowed. Figure 5.3 shows the graphical representation of
nodes and different types of edges which can exist in the network.

The structure of a network is mathematically described by its adjacency matrix
A, where for a network composed of N nodes, this matrix is A ∈ RN×N . In the
case of an unweighted graph with N nodes and E edges the adjacency matrix is
given by

Aij =

{
1 if (i, j) ∈ E,
0 otherwise,

(5.10)

where the pair of indices (i, j) indicates a pair of nodes. When the graph is weighted
and the weight of each edge is wij , with (i, j) the pair of nodes connected to each
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Figure 5.4: Example of an undirected unweighted acyclic graph. (a) graph repre-
sentation; (b) corresponding symmetric adjacency matrix.

other, the adjacency matrix is defined as

Aij =

{
wij if (i, j) ∈ E,
0 otherwise.

(5.11)

The degree of a vertex is defined as the summation of the number of edges connected
to that vertex

ki =
N∑
j=1

Aij , (5.12)

where Aij is the element of an unweighted adjacency matrix. In the case where
the adjacency matrix is weighted we talk about the strength of a vertex. For di-
rected networks we can distinguish between in-degree and out-degree, respectively
the number of ingoing and outgoing edges connected to a vertex

kini =
N∑
j=1

Aij ,

koutj =

N∑
i=1

Aij .

(5.13)

The adjacency matrix of an undirected graph is symmetric. When self-connecting
edges are allowed their contribution appears on the diagonal of the matrix, which
is always empty for acyclic graphs. Figure 5.4 shows an example of an undirected
unweighted and acyclic graph composed of N = 7 nodes. The edges are represented
with the same width, meaning that they have the same weight. The adjacency
matrix reported on the right has empty diagonal and it is symmetrical with respect
to the diagonal. The elements highlighted in red represent the active connections
between the nodes (edges). For more details regarding network construction, the
reader is referred to the review papers [1, 59, 145] and books [12, 144, 58].
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Figure 5.5: Example of an agglomerative hierarchical clustering scheme applied for
four data points. The dendogram on the right shows how the process generates a
summary of a hierarchical clustering. Image reproduced from [27]

Networks show community structure [51], where vertices belonging to the same
community are represented with high density of connections. In general, nodes be-
longing to the same community have features in common. This property, eventually
coupled with graph sparsification where less important edges are removed, thereby
promoting connections amongst nodes of the same group, allows the use of network
science for clustering purposes.

5.4.2 Community detection - Leicht-Newman network

The presence of community structures in networks provides additional knowledge on
the system of interest, aiming to identify different groups of nodes showing similar
properties and therefore highly linked to one another. The problem of community
detection is quite challenging. Starting from an apparently random graph, the first
approach would be to separate the graph into two densely connected communities of
equal size. However in real complex networks the number or the size of the existing
communities are not known a priori.

Techniques like hierarchical clustering can be employed to discover how a net-
work breaks down into communities based on the existing connections between its
vertices. These methods are based on the assumption that a random network does
not exhibit community structures, and they are classified into agglomerative and
divisive methods.

In agglomerative methods the procedure starts with a network with no edges but
one connection between two vertices with high similarity, then edges are iteratively
added between the other nodes of the network, creating a complete hierarchical
graph that can be represented by a dendrogram, as shown in figure 5.5.
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In divisive methods, on the other hand, the real network with its original con-
nections is considered. Then, the edges between the least similar pairs of nodes are
removed iteratively. Divisive methods for hierarchical clustering have been widely
studied by Newman who initially used the concept of betweenness [70], where high
values are attributed to edges between communities and low values to those lying
inside the same community [79, 148]. Following this method, the betweenness score
is first computed for all the edges, then the edge with the highest betweenness is
removed from the network modifying the structure of the graph and consequentially
requiring a new computation of the betweenness for the remaining edges. The al-
gorithm is then repeated until a stopping criteria is satisfied. To impose a stopping
criteria, a new measure of the quality of the division of a network called modularity
is introduced [146, 148]. Modularity is defined as the number of edges connecting
nodes belonging to the same community minus the expected number of edges in an
equivalent network with random connections. For community detection, the value
of the modularity has to be positive and ideally large. Large values of modularity
indicates that the number of edges existing within the same community is higher
than the expected number on the basis of chance, emphasising more important con-
nections inside the same cluster of nodes. The community detection process can
then be posed as a modularity maximization problem.

Consider a network containing n vertices with edges between node i and node j
represented by the elements of the adjacency matrix Aij . The network is supposed to
be initially divided in two groups following a divisive procedure. The corresponding
expected number of edges between the nodes, if the edges are randomly placed, is
kikj/2m, where k is the degree of freedom of a node defined in (5.12) and m =∑

i ki/2 is the total number of edges in the network [147]. The modularity matrix
can then be defined as

Bij = Aij −
kikj
2m

. (5.14)

The modularity is given by

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δcicj , (5.15)

where δij is the Kronecker delta and ci is the community to which node i belongs.
The modularity Q is then maximized over possible divisions of the network into
communities, and its maximum value corresponds to the best estimate of the true
communities. The maximization of the modularity can be done by using spectral
methods [147], focusing on the eigenvectors of the modularity matrix B. This pro-
cedure is similar to the spectral partitioning used in graph partitioning [164]. The
spectral optimization method of Newman [147] has proven to give excellent results
with low computational costs for applications to undirected networks. Before the
introduction of the Leicht & Newman network, this method was employed indis-
tinctly for undirected and directed networks, ignoring the directions of the edges
and discarding information about the structure of the network.
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Figure 5.6: Example of an directed weighted cyclic graph. (a) graph representation;
(b) corresponding asymmetric adjacency matrix: the edges have different weights
highlighted with different shades of red, the contribution of self-loops appears on
the diagonal.

In [118], Leicht & Newman propose an extension of the spectral method to
directed networks, now taking into account the directions of the edges. Figure 5.6
gives an example of a weighted directed network, with the corresponding adjacency
matrix. In this case the degrees of the nodes involved in (5.14) are replaced by the
in- and out-degrees defined in (5.13). The modularity matrix then becomes

Bij = Aij −
kini k

out
j

m
, (5.16)

and the modularity for the considered directed network is

Q =
1

m

∑
ij

(
Aij −

kini k
out
j

2m

)
δcicj , (5.17)

here ci denotes the communities and m =
∑

ij Aij =
∑

i k
in
i =

∑
j k

out
j . Notice that

for directed networks the modularity matrix B is not symmetrical as opposed to
the adjacency matrix A. This lack of symmetry affects the eigenvalues computed
by the spectral method.

A directed network composed of n nodes is initially subdivided into two commu-
nities, where a vector s of labels is introduced. The labels are set to be si = +1 when
i belongs to one group and si = −1 when it belongs to the other, then

∑
i s

2
i = n,

δcicj = 1
2(sisj + 1) and (5.17) is recast as

Q =
1

2m

∑
ij

(
Aij −

kini k
out
j

2m

)
(sisj + 1)

=
1

2m

∑
ij

siBijsj =
1

2m
sTBs.

(5.18)
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The first operation to be done is to restore the symmetry of the problem, adding
the transpose of the modularity matrix B to equation (5.18), resulting in

Q =
1

4m
sT
(
B + BT

)
s, (5.19)

where B + BT is symmetric. Following the strategy used in [147], the label vector
s can be rewritten as a linear combination of the eigenvectors of B + BT , such
that s =

∑
i aivi, and vi’s are eigenvectors corresponding to the eigenvalues βi, and

ai = vTi · s. The modularity can then be reformulated as

Q =
∑
i

aiv
T
i

(
B + BT

)∑
j

ajvj

=
∑
i

βi
(
vTi · s

)2 . (5.20)

Assuming that the eigenvalues are labeled in decreasing order: β1 ≥ β2 ≥ · · · ≥ βn,
the maximum of Q obtained by the maximization of equation (5.20) is found when
the vector s is parallel to the leading (largest) eigenvector v1. This solution is
however unachievable, since the elements of s are restricted to be si = ±1. Therefore
s is instead chosen to be as close as possible to the first eigenvector of B + BT . The
maximization problem (5.20) is reformulated as the maximization of the product
vT1 ·s. Since the eigenvectors are orthogonal to each other, the terms corresponding
to the lower eigenvalues are equal to zero and they can be ignored. Considering
i = 1, . . . , n elements of the first eigenvector v(1)

i , if v(1)
i > 0 then si = +1, and if

v
(1)
i < 0 then si = −1. In the limit of v(1)

i = 0 then si = ±1 is imposed. This
process assigns a label to each node of the network, dividing all the nodes into
the two communities closest to the truth. An additional stage of fine tuning is
added at the end of this process by moving the vertices between communities to
further increase the value of the modularity until a maximum is reached. Once the
first two communities are detected, with G = 2 being the number of communities,
a repeated bisection strategy is used. The algorithm is applied again for each of
these communities in order to eventually divide them into two corresponding sub-
communities and so forth until no further division increases the value of the total
modularity of the system as represented in figure 5.7. Giving a label g to one of these
two community, the subdivision within g will generate a change in the modularity
defined as

∆Q =
1

2m

∑
i,j∈g

(Bij +Bji)
sisj + 1

2
−
∑

i, j ∈ g (Bij +Bji)


=

1

4m

∑
i,j∈g

(Bij +Bji)− δij
∑
k∈g

(Bik +Bki)

 sisj
=

1

4m
sT
(
B(g) + B(g)T

)
s,

(5.21)
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Figure 5.7: Repeated bisection following the Leicht-Newman network procedure
(a) the network is initially divided in two communities (5.20) (bisection I); (b)
the community on the left is in turn further divided in two communities using the
generalized formulation of the modularity for multiple groups (5.21) (bisection II).

where B(g) is the submatrix of the original modularity matrix B for the community g.
The method consists then in maximizing ∆Q by applying the spectral partitioning
method described earlier to all the existing communities G, and adding a fine-
tuning step at the end of each subdivision until ∆Q ≤ 0. The community detection
procedure is summarized in algorithm 4, and an example of the repeated bisection
procedure is illustrated in figure 5.7.

For further details on community identification methods and in particular on
the modularity maximization via spectral method, the reader is referred to the
work of Newman et al. [146, 79, 147, 118].

As mentioned previously, the numerical procedure for dynamical identification is
done in two stages. The dominant dynamics are first identified in the full domain us-
ing sparse linear regression, described in section §5.3. Then, the points are clustered
in different communities by using the Leicht-Newman network. In this section, in
order to validate the Leicht-Newman network for community detection on its own, a
stochastic model that does not involve the linear regression step is considered. The
full procedure, combining linear regression and community identification, is then
analysed in the following section.

5.4.3 Stochastic model of turbulent axisymmetric wakes behind a
bluff body

To validate the Leicht-Newman network for community detection, we consider the
stochastic model of a turbulent wake generated by the flow around an axisymmetric
bluff body at high Reynolds numbers, proposed by Rigas et al. [175, 174], where
large-scale structures responsible for symmetry breaking in a wake at high Reynolds
numbers (Re ∼ 2× 105) are first investigated experimentally (figure 5.8a illustrates
the experimental setup used in [175]). The results show that the magnitude of the
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Algorithm 4 Modularity optimization for community detection in directed Leicht-
Newman networks
Input Adjacency matrix A ∈ Rn×n
Output Communities labels ci ∈ {1, . . . , G} for each node of the network i =

1, . . . , n

1: Compute modularity matrix: B (5.17)
2: Restore symmetry by adding B + BT

3: Find most positive eigenvalue β1 and the corresponding eigenvector v1 of B+BT

4: if v(1)
i > 0 then

5: si = +1

6: else if v(1)
i < 0 then

7: si = −1

8: end if
9: Fine-tune: move vertices between assigned communities

10: for g = 1, . . . , G do
11: while ∆Q > 0 do
12: Subdivide community g by maximizing (5.21)
13: Fine-tune within g
14: end while
15: end for

asymmetry of the wake in the turbulent regime can be quantified by the position
of the centre-of-pressure (CoP) at the base of the bluff body. The time evolution
of the position of the CoP is calculated from pressure measurements from 64 static
pressure taps at the base of the bluff body, space averaged on the base surface A

R(t) =
1

D

∫
p(t)dA

∫
p(t)xdA. (5.22)

Here, x represents the cartesian coordinate of the CoP and D is the bluff body
diameter. When CoP lies at the center of the surface A, the flow is symmetric,
while departure from this value produces an asymmetry in the wake. As reported
in figure 5.8b, the probability density function (PDF) of the CoP position on A

shows that the CoP spends most of the time at a non-zero radial location, while
preserving a uniform distribution on the angle. Therefore the wake is asymmetric,
but by long-time averaging an axisymmetric pressure field is obtained.

The dynamics of the turbulent wake can be modelled by a nonlinear two-
dimensional Langevin equation [174], extending the weakly nonlinear models of
laminar and linearly stable axisymmetric wakes, which have been proven to lose
spatial symmetry in the azimuthal direction due to a supercritical pitchfork bifur-
cation [62, 139]

ẋ = αx+ λx|x|2, (5.23)

when α > 0. In the turbulent adaptation of the laminar model (5.23), the effect of
the turbulent background fluctuations is taken into account as stochastic forcing ξ
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(a) (b)

Figure 5.8: Experimental configuration for the axisymmetric wake used in [175].
(a) the bluff body is mounted from the wind tunnel ceiling. (b) Center of Pressure
probability distribution.

and added to the deterministic system as independent white noise{
ẋ = αx+ λx

(
x2 + y2

)
+ σξx(t),

ẏ = αy + λy
(
x2 + y2

)
+ σξy(t),

(5.24)

where σ2 is the variance of the random forcing, taken to be rotationally symmetric
σ ≡ σx ≡ σy. In polar coordinates (r, φ), with r =

√
x2 + y2 being the amplitude

and φ = tan−1(y/x) the phase, the Langevin system (5.24) becomes independent of
the phase, ṙ = αr + λr3 +

σ2

2r
+ σξr,

φ̇ =
σ

r
ξφ.

(5.25)

Consider x as the coordinates of the CoP, the polar coordinate (r, φ) now repre-
sents the distance from the center of the round surface of the bluff body and the
corresponding angle. The temporal evolution of the location of the CoP can then
be described by (5.25).
Starting from this model, we aim to use Leicht-Newman clustering algorithm to
reconstruct the PDF of the evolution of the CoP. As already mentioned, the PDF
resulting from the polar Langevin in equation (5.25) is symmetric with respect to
the phase, making this case unfavourable for clustering purposes.

The original Langevin system is then modified by adding a nonlinear term in
the evolution equation for the phase. Notice that this modification has no physical
meaning and it does not reflect the real dynamics of the CoP. The purpose here
is to promote a bimodal behaviour that will be finally identified by the clustering
algorithm. ṙ = αr + λr3 +

σ2

2r
+ σξr,

φ̇ =
σ

r
ξφ+γ sin2(φ).

(5.26)

The coefficients of the Langevin equation are obtained from the experimental
data [174] and γ = 10. The system of equations (5.26) is solved for n = 3 × 106
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Figure 5.9: Probability distribution for the evolution of the Center of Pressure
obtained by the modified system (5.26).

iterations, the PDF for the evolution of the CoP coordinates is shown in figure 5.9
and presents two well defined high density regions.

The spatial coordinates (r, φ) are stored for each time step and they are fed
into a k-means algorithm to create a first set of N = 200 small clusters using
euclidean distance on the surface. The purpose of using the Leicht-Newman network
is to identify communities among these clusters in order to consider the trajectory
followed during the motion and understand how and how often the CoP moves from
one region to another.

The clusters are then selected to be the nodes of a graph, the edges being the
transitions of the trajectory from one cluster to the other. These crossings can
happen multiple times and in opposite directions, self-edges are allowed and used
when the CoP does not move to a different cluster. The graph obtained is weighted,
directed, and cyclic, and the weights of the edges take into account the number of
transitions between the initial subdivisions of the domain.

The corresponding weighted asymmetric adjacency matrix is fed into the Leicht-
Newman algorithm to discover communities among the nodes. The detected com-
munities are showed and compared to the original histogram in figure 5.10. The
algorithm is able to find high density regions that are slightly different than the
ones highlighted in the histogram. This is due to the additional information on the
trajectory of the motion described by the stochastic model, showing not only how
many times the CoP falls into a certain cluster but also giving a statistical insight
on what cluster it is more likely to move towards.
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(a)

(b)

Figure 5.10: Community identification. (a) Initialization of 200 clusters with the
k-means algorithm; (b) Communities identified by the Leicht-Newman network.



100 Chapter 5. Data-driven identification of inherent flow dynamics

5.5 Combining regression and clustering procedures for
dynamical identification

In this section the regression algorithm (based on SINDy) presented in section §5.3
is combined with the clustering algorithm presented above, resulting in a dynamical
identification procedure, suing the underlying Navier-Stokes equation.

To assess the algorithm, the same case as considered in section §5.3: the two
dimensional flow around a cylinder at Re = 200 is analysed. The vorticity field of
the flow is shown in figure 5.11, and the domain is defined for −2 ≤ x ≤ 30 and
−9 ≤ y ≤ 9.

We aim to discover the different dynamics existing in the flow using the proce-
dure introduced in section §5.3. The discrete state is collected for nt = 340 time
iterations, covering one full shedding period. The grid is staggered and refined
around the cylinder and its wake, and the surface of the cylinder is defined by
Lagrangian points. In staggered grids the pressure is defined at the center of the
cells, while the velocity components are defined on its boundaries. To be able to
define all the variables at the same location, the velocity field is interpolated at the
center of each cell before selecting the points. A subset I of Np = 3000 points is
selected inside the domain. The cartesian points inside the cylinder surface and the
immersed boundary points are excluded from the procedure. The relative distance
between the points in the subset is twice the minimum cell size, inducing a higher
concentration of points in the regions where the grid is refined.

When the points are selected, the temporal spatial derivatives are numerically
approximated and the library of candidate function is created. In particular, a
library of candidate function is defined for each point in the subset.

Θ(q(j)) =
[

p(j)
x , p(j)

y ,

1

Re
u(j)
xx ,

1

Re
u(j)
yy ,

1

Re
v(j)
xx ,

1

Re
v(j)
yy ,

uu(j)
x , vu(j)

y , uv(j)
x + vv(j)

y

]
.

(5.27)

For simplicity, the subscript indicates the partial derivative, for j = 1, . . . , Np points.
The temporal evolution of the flow at each point can be rewritten as

q̇(j) = Θ(q(j))Ξ(j), (5.28)

where Ξ(j) are the coefficients of the polynomial combination for the generic point
j ∈ I. The identification of the active terms of the polynomial combination is
performed by using a Sequential Threshold Ridge Regression (STRidge) introduced
in [181] and adapted for group sparsity. In this algorithm, the classic Ridge regres-
sion

ξ = argmin
ξ′
‖Θξ′ − q̇‖2 + λ‖ξ′‖2, (5.29)

is followed by a recursive penalization in `0, removing coefficients smaller than a
certain threshold to avoid overfitting.
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Figure 5.11: Vorticity field for a flow around a cylinder, Re = 200.

After the regression, each point is represented in the coefficient subspace by its
coordinates Ξ(j), and is set to be a node of the Leicht-Newman network. The edges
are defined according to their relative distance in the coefficient subspace. The edges
are automatically removed when the distance between a pair of points is higher than
a certain value. Here, this value is set to the 10% of the maximum distance among
all the points included in the procedure.
The communities identified by the Leicht-Newman network are shown in figure 5.12a.
Three main clusters emerge from the community detection, defining a free stream
region (blue-green) where the flow is not perturbed by the presence of the cylinder, a
central region behind the cylinder (violet) where the von Karman street is evolving,
and an intermediate layer (orange) between the two. As we move away from the
cylinder along the positive direction of the x-axis, the central and the intermediate
clusters start to merge, due to the reduced intensity of the vorticity field. The
rearranged adjacency matrix of the final clusters is shown in figure 5.12b. Here, we
detect the three clusters, each highlighted in its corresponding color. The adjacency
matrix shows correlations between clusters (gray areas), meaning that the dynamics
governing each cluster can affect the other and that the clusters are not strictly
independent. As an example, in figure 5.12 we show the active coefficients recovered
by the linear regression for three points belonging to the different clusters. To
generate the figure, each set of coefficients has been normalized with respect to its
maximum value. In the wake, right behind the cylinder, all the terms on the right
hand side of the Navier-Stokes equation are active, while moving away from the
wake, the viscous forces reduce their intensity until they deactivate. In the free
stream the pressure and the inertial forces are active, but their values are much
smaller than their corresponding values in the other clusters. For comparison, the
numerical values of the coefficients for these points are reported in table 5.1.
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Figure 5.12: Dynamics identification on a two dimensional flow around a cylinder
at Re = 200. (a) the selected points are divided in three main communities shar-
ing same dynamics; (b) rearranged adjacency matrix showing correlations between
communities; (c) example of active coefficients identified for points belonging to
different communities, in the figure the values are normalized for each point.
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Cluster 1 Cluster 2 Cluster 3
u v u v u v

px 0.013 0.89 1.015

py 0.002 0.89 0.879

1
Reuxx 0.135

1
Reuyy 0.135

1
Revxx 0.361

1
Revyy 0.361

uux 0.02 0.97 0.946

vuy 0.946

uvx 0.004 0.97 1.035

vvy 0.899

Table 5.1: Numerical values of the identified coefficients for points belonging to
different communities.
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5.6 Conclusions

In this chapter we proposed a procedure to identify the dominant dynamics exist-
ing in a flow. The proposed procedure combines sparse linear regression for system
identification and network partitioning to cluster the identified regimes. Information
regarding the dynamics of the flow has been included in the identification process
by the introduction of a costumized library of candidate functions. In this way, the
dynamics at each point of the domain was well defined by the parameters recov-
ered with the regression step. These dynamics were then regrouped using network
science, and in particular community detection with the Leicht-Newman network.
The advantage in using the Leicht-Newman network to identify different groups of
dynamics is that the number or the size of the communities must not be known a
priori.

The procedure has been validated on a two dimensional flow around a cylinder,
showing promising preliminary results. When applied on more complex systems, this
procedure could improve the quality of the description of the flow, by allowing the
employment of different models and approximations for different regimes existing in
the flow. For example, the equations describing the system can be dimensionally
reduced by employing different ROMs when the dynamics affecting the full flow are
spatially well identified. On the other hand, in control applications the information
on the interactions between different dynamics can have a significant role in the
selection of the design parameters, allowing a more detailed understanding of the
effect of the control and then reducing the complexity of the problem.

Figure 5.13: Two dimensional slice of a three dimensional boundary layer flow,
Re = 1× 105, Ma = 0.2.
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Applications on more complex flows are being evaluated. In the next stage,
the algorithm will be performed on an unperturbed boundary layer at steady state
for Re = 1 × 105 and Ma = 0.2. Figure 5.13 represents the horizontal velocity
field on a two dimensional slice. This data was generated using a three-dimensional
compressible Navier-Stokes solver and kindly provided by Athanasios T. Margaritis.
More complex flow scenarios including transitional and turbulent boundary layers
at higher Mach numbers are envisioned as the following steps.





Chapter 6

Conclusions and perspectives

This thesis studies and proposes different strategies to combine CFD with state-
of-the-art optimization methods, overcoming the bottleneck given by the high
computational time associated to the optimization procedure. The proposed algo-
rithms can be employed both on derivative-free and gradient-based optimization,
and they can eventually be used to combine the two methodologies, leading to
hybrid and multi-fidelity optimization strategies. The formalism leading to the
derivation of the optimality problem for gradient-based algorithms is presented and
applied in chapter 2 using adjoint techniques. The computational performance of
this algorithm is investigated and its resolution is accelerated by the implemen-
tation of a parallel-in-time algorithm relying on Krylov-based exponential time
integrator in chapter 3. Additionally, the thesis contains two data-driven methods
that can be employed to ease the optimization problem. Chapter 4 presents
projection-based ROMs, considering the problems related to the stabilization of
Galerkin projection methods and the adaptivity required for parameters variation.
Finally, in chapter 5 we introduced a data-driven algorithm used to identify
dominant dynamics in a flow, combining system identification with clustering
algorithms. The numerical simulations used throughout the thesis are done using a
two-dimensional incompressible Navier-Stokes solver with immersed boundaries [52].

Concerning gradient-based optimization, and in particular adjoint-based algo-
rithms, to extract the gradient, the computational cost associated with the opti-
mization procedure can be reduced employing ROMs for the forward and backward
problems. The use of ROMs on unsteady and nonlinear dynamical systems implies
neglecting some information about the flow, and leads to the extraction of an ap-
proximated gradient. As an alternative, to allow the use of adjoint equations with
high-fidelity simulations, in chapter 3 we propose a time parallelization strategy,
able to reduce the time to solution. The algorithm proposed here is the extension
of the hybrid direct-serial-adjoint-parallel algorithm introduced by Skene et al. [193]
to ADEs, such as incompressible Navier-Stokes equations.

The performance of the parallel algorithm and the reduction of the overall
time to solution is evaluated on adjoint-based optimization problems in chapter 2,
involving passive (steady) and active (unsteady) control. In the case of steady
control for drag reduction, we were able to almost completely eliminate the time
needed for the gradient extraction. Increasing the number of processors involved
in the problem, the gradient is extracted almost at the same time as the cost
function, cutting the total time to solution for one direct-adjoint loop almost
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by half. When unsteady control is imposed, i.e. the design variables are time
dependent, the algorithm becomes less efficient, but still the gain in compute time
is still appreciable. The reduced gain obtained with unsteady control is due to the
time dependency of the operators involved in the optimality system and it can not
be improved further.

Both derivative-free and gradient-based optimization algorithms improve their
solution iteratively, by moving the design variable towards the optimum. This in-
volves multiple function evaluations, in our case represented by a full, computation-
ally expensive CFD unsteady simulation. While it is desirable to optimise a design
using only the high-fidelity model, in cases where high-fidelity simulations prove to
be too expensive, lower-fidelity models may provide valuable information that can
accelerate the optimisation process. Chapter 4 investigates ROMs based on Galerkin
and Petrov-Galerkin projection, to approximate the high-fidelity simulation with a
low-fidelity counterpart. However, these methods proved to lack robustness when
considering changes in the parameter space. We built a ROM for a two dimensional
incompressible flow around a cylinder at variable Reynolds numbers using the GNAT
algorithm proposed by Carlberg et al. [41]. The results obtained show an accurate
reproduction of the flow with a dimensional reduction of 93%. In addition an in-
terpolation on the tangent space to the Grassmann manifold was implemented to
make the ROM adaptive to parameter changes.

Using ROMs in optimization algorithms, derivative-free or gradient-based,
drastically reduces the cost of evaluating the function or the gradient, accelerating
the optimization procedure. The solution to a robust multi-fidelity optimization
algorithm, applicable to unsteady multi-physics flow problems, lies in the accuracy
of the low-fidelity model. The more accurate the low-fidelity model, the less need
for high-fidelity function calls.

In the first chapters of the thesis we proposed methodologies directly ap-
plicable to the optimization problem, however another study was conducted to
discover the underlying dynamics governing a fluid flow. As repeatedly stated
throughout the thesis, in many regimes, the dynamics of the flow are governed
by few dominant dynamical features. The capability to identify and locate the
different dynamics present in a complex system can help improve the optimization
procedure. In chapter 5 we developed an algorithm capable to identify the active
terms in the Navier-Stokes equation governing the behaviour of the flow. The
algorithm combines sparse linear regression for system identification with clustering
algorithm. As a result, we were able to identify the dynamics existing in a two
dimensional flow and the interaction occurring between them, while more complex
flow applications are currently being explored. In control applications, additional
insight on the mechanism governing a system and eventually their interactions can
have a significant role in the selection of the design parameters, the placement
of the sensors, and the possibility to replace the high-fidelity simulation with
ROMs, allowing a more detailed understanding of the effect of the control and then
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reducing the complexity of the problem.

Whilst this thesis has met the objective of proposing strategies to reduce the
computational cost associated with state-of-the-art optimisation techniques, further
studies can be conducted. The algorithms presented here showed promising results
on the applications proposed, however in order to apply them to real large-scale
problems, we need to enable the extension of these methods to three dimensional
complex flows.

To exploit the computational power, the parallel-in-time algorithm could be ap-
plied in combination with spatial parallelization, making the most of every processor
available. Additionally, this method could be employed in hybrid optimization al-
gorithms, combining gradient-based and stochastic derivative-free algorithms, to
accelerate the extraction of the gradient when needed as proposed by Quiros et
al. [167].

The ROMs investigated in chapter 4 can be extended to multiple parameters
variation and included in the optimization problem. In particular, for adjoint-based
algorithm, building the ROM for the inverse problem is not trivial, while the use
of a ROM for the direct problem is straightforward. The application of ROMs to
stochastic derivative-free optimization is more evident, however the interpolation
of the basis on the tangent space to the Grassmann manifold could be improved
using an adaptive strategy. When the function on a new operating point has to be
evaluated, and this evaluation is done by using a high-fidelity simulation, this point
can be added to the interpolation dataset to incrementally improve the quality of
the interpolated ROM.

Additional investigations have to be done for the dynamics identification
algorithm, to validate it on more complex flows, and increasing its robustness
with respect to complex dynamics, different regimes, turbulence and the effect of
compressibility.

Further research should be concentrated on how to include all the presented
methods in a hybrid/multi-fidelity dynamic optimization algorithm, capable of en-
abling and disabling these tools when possible.
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