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de recherche originales et construit des questions qui allient profondeur et élégance. Le dynamisme,
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tous points de vue. Je pense notamment aux nombreuses discussions avec Christian, François,
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6.5 Détection de rupture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



Resume

Nicolas Verzelen, PhD
Tenured Research associate

INRAE, UMR MISTEA
Bâtiment 21
2, place Pierre Viala
F-34060 Montpellier, France

Born April 15, 1983
French citizen

Nicolas.Verzelen@inrae.fr

Professional Experience

2009– Tenured Research associate in Statistics within INRAE.
2006–2009 PhD fellow and Teaching assistant at Université Paris-Sud.
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Chapter 1

Introduction

1.1 Scientific Trajectory.

My PhD thesis [T1] was about graph selection in Gaussian graphical models. Since these graphs are
expressed as the supports of the parameter vectors of some linear regression models [156], I became
interested in the minimax analysis of sparse high-dimensional linear regression model [A25].

After the completion of my PhD in 2008, this led me to start working on various minimax
estimation problems in high-dimensional linear regression models [A26]. At roughly the same time,
I was hired as a research scientist in statistics within INRAE1. In this context, I started discussing
and collaborating with plant scientists, agronomists, and fellow statisticians within my institute.
This lead me to several applied works [A22] as well as some collaborations in functional data
analysis [A23, A27] that were motivated by the analysis of high-throughput phenotypic analysis,
such as growth curves of plants under hydric stress. Since that period, I really enjoy working on
toy and stylized statistical models in order to provide a theoretical basis to practical questions in
biology such as heritability estimation in genetics [A14] –see Section 2.3.

My recent research interests have been greatly reshaped by two events. First, Ery Arias-Castro
invited me to collaborate with him on community detection problems [A20, A21]. He introduced
me to the fields of network analysis and clustering that are central in this manuscript. Second,
I have been invited to the MIRES consortium. This interdisciplinary group of anthropologists,
geneticists, ecologists, statisticians seeks to provide methods for the analysis of seed exchange
networks. Although I have few publications on this topic (but see [A19]), I have been devoting
a significant part of my scientific activity to this topic and to the related research projects (see
my resume) through informal discussions, consulting, teaching, student supervision. . . Some of the
statistical questions within these applied projects pertain to network analysis and more generally to
unsupervised learning. Hence, those are along the lines of my theoretical work. As this manuscript
is mostly dedicated to my contributions in mathematical statistics, I do not discuss further my
interdisciplinary activities.

In the period 2014–2018, I have been very fortunate to have fruitful and rewarding collaborations
on three research directions corresponding to Chapters 2–4: Alexandra Carpentier introduced me
to the problem of complexity estimation, which led to our joint works on sparsity testing [A5,
A8]. Together with Olga Klopp, we also tackled the problem of sparse graphon estimation [A9,
A16]. And with Christophe Giraud, we have provided a general analysis of convex relaxations of

1INRAE is a National Institute for Agricultural Research and Environment. I belong to the Applied Mathematics
and Computer Science Department.
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14 CHAPTER 1. INTRODUCTION

K-means [A13] for both point and graph clustering.

In the last years, I had the pleasure to participate to the supervision of three PhD students
Solène Thépaut, Yann Issartel (both jointly with C. Giraud), and Emmanuel Pilliat (jointly with
A. Carpentier and J. Salmon). At the same time, I have moved my interests to other unsupervised
problems such as change-point detection [P3, P4] or seriation/ranking problems –see Chapter 5.

Some final words. Most of my mathematical works are grounded in minimax theory. Since my
PhD, I have been developing a taste for establishing tight minimax lower and upper bounds for
statistical and machine learning questions. Beyond this mathematical inclination, I believe that
pinpointing such bounds allows one to form an intuition on the relevant quantities and on the
important hypotheses for tackling real-world problems.

1.2 Organization of the manuscript.

The manuscript is organized in four chapters which can be read almost independently. Chapter 2
is dedicated to detection and functional estimation problems mostly in the Gaussian sequence
model and in the high-dimensional linear regression model. As a common thread in this chapter, I
comment the techniques for establishing the minimax lower bounds. The next chapter is dedicated
to network analysis2. I mostly describe my joint works on community detection and graphon
estimation. Chapter 4 deals with clustering problems. Its organization slightly differs from the
other chapters. Starting with a description of my own results on K-means, I provide an account
of the-state-of-the art in clustering rates for Gaussian mixtures. This allows me to introduce a few
open questions and conjectures I am currently interested in. Finally, in Chapter 5, I describe some
recent results and research directions in change-point detection and seriation.

Since the purpose of this manuscript is mainly to give an account of my research results in the
last ten years, I would like to stress that I do not fully discuss the related literature and that the
bibliography is sometimes partial.

1.3 Notation

Throughout this manuscript, c, c′ refer to positive universal constants. For two quantities u and v,
u . v means that u ≤ cv for some constant c > 0. I write u � v, when we have both u . v and
v . u. For a vector θ, ‖θ‖q stands as usual for its lq norm for q ∈ (0,∞]. Besides, ‖θ‖0 stands for
the number of non-zero components of θ.

Matrices such as A or X are usually written in bold format. Their Frobenius and operator norms
are respectively denoted ‖.‖F and ‖.‖op. I introduce other matrix norms along the manuscript.

2clustering problems on networks are in fact postponed to Chapter 4.



Chapter 2

Signal Detection and Functional
estimation

2.1 Introduction

Estimation in high-dimensional linear regression models has sparked a lot of interests in the last
twenty years [190, 98, 38]. It has lead to fundamental contributions such as compressed sensing
theory and analyses of Lasso-type procedures. More generally, these new ideas have spread much
beyond this specific model and have had a deep impact in the fields of statistics and machine
learning.

Estimation of the regression parameter θ∗ in the sparse linear regression model is more or less
understood since the works of Candès and Tao [47] and Bickel et al. [22]. This chapter is mainly
dedicated to related problems where we do not aim at estimating θ∗ completely, but we rather seek
to have partial information on θ∗. This includes the problem of testing θ∗ = 0 (signal detection),
testing whether θ∗ belongs to some specific class, or more generally of estimating a low-dimensional
function f(θ∗) of θ∗ (functional estimation). Example of functional problems include a specific
component θ∗i of θ∗ [43, 120], the lq norm ‖θ∗‖q of θ∗ [105, 143], or the signal-to-noise ratio [A14,
118, 69].

In this chapter, I will mostly focus the discussion on two toy models: the Gaussian sequence
model and the random design Gaussian linear regression model.

Definition 2.1 (Gaussian sequence model). We observe a response vector Y ∈ Rn sampled from
the model

Y = θ∗ + ε , (2.1)

where ε ∼ N (0, σ2In) and θ∗ ∈ Rn is an unknown vector.

Definition 2.2 (Random design Gaussian linear regression model). Let the response vector Y and
the covariate matrix X be such that

Y = Xθ∗ + ε , (2.2)

where the noise ε is Gaussian ε ∼ N (0, σ2In), the parameter θ∗ ∈ Rp is unknown, and the design
matrix X ∈ R×p is such that the rows are i.i.d. distributed with Xi ∼ N (0,Σ) for some covariance
matrix Σ.

15
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As we want to emphasize the role played by the sparsity of the parameter θ∗ in both models,
we introduce, for an integer k, the collection B0[k] of k-sparse vectors

B0[k] := {θ ∈ Rp : ‖θ‖0 ≤ k} . (2.3)

In the Gaussian sequence model, we use, with a slight abuse of notation, the same notation B0[k]
for the corresponding subset of k-sparse vectors of Rn.

The contributions I describe in this chapter come within the following research program: (i)
understanding the optimal rate of testing and estimation for important classes of problems. This
includes understanding the role played the sparsity of θ∗ on the optimal rate. For this purpose, we
adopt a minimax framework. (ii) If possible, introducing a polynomial-time procedure achieving
the optimal rate; (iii) If possible also, proposing procedures that are adaptive to the unknown
sparsity, which means that they achieve the optimal rate (which depends on ‖θ∗‖0) without prior
knowledge on ‖θ∗‖0; (iv) investigating the role played by the knowledge of nuisance parameters
such as the noise level σ or the covariance Σ of the covariates.

Organization of the chapter. I will first provide a brief introduction to the minimax framework
in both test and functional estimation. After this, I will present five (series) of contributions on
related problems. The first one dates back to 2010. Together with Y. Ingster and A. Tsybakov [A28],
we characterize the minimax separation distance in the fundamental problem of signal detection
(that is testing θ∗ = 0) in the sparse linear regression model. The results and techniques are now
classical. Section 2.3 is based on a joint work [A14] with E. Gassiat on signal-to-noise ratio (SNR)
estimation in linear regression model. Aside from the practical motivations in genetics, this problem
is interesting because it unveils the key role played by the knowledge of the design distribution on its
difficulty. Section 2.4 is dedicated to the twin problems of testing and estimating the sparsity ‖θ∗‖0
in the Gaussian sequence model and linear regression model. It is based on two joint works with A.
Carpentier [A5, A8]. Given the pervasive role of sparsity, this is an important problem per se, but
it is also connected to questions of adaptation for confidence regions [96]. From a mathematical
viewpoint, it is an emblematic testing problem where both the null and alternative hypotheses are
composite, and ont wants to quantify how the size of the null hypothesis has an impact on the
difficulty of the testing problem. The next section takes its root on Efron’s [76, 78, 74, 75] works on
large-scale multiple testing problem. Revisiting many classical data sets, Efron advocates that, in
many multiple testing problems, the null distribution is often wrongly chosen and needs in fact to be
estimated from the data. This leads to procedures that simultaneously estimate parameters of the
null and perform multiple tests on the same data. Efron has proposed a Bayesian approach but there
was, until now, no frequentist evidence of the feasibility of such a simultaneous hypothesis learning
and hypothesis testing problem. Recasting it as a functional estimation problem in Gaussian
sequence model, A. Carpentier, S. Delattre, E. Roquain and myself provide a characterization of
the regimes where it is or it is feasible both when the alternative hypotheses are one-sided [A4]
and two-sided [A1]. Also, we move slightly away from Gaussian sequence model of Definition 2.1
by allowing some components Yi to have almost arbitrary distributions, in the spirit of Huber’s
contamination model [112]. These works [A1, A4] combine some ideas of minimax estimation
together with the machinery of false-discovery rate control. Finally, the last section is devoted to
a joint recent work with my former PhD student S. Thépaut [P2]. Observing a rectangular matrix
hidden in some Gaussian noise, we want to estimate its effective rank which expresses as a ratio of
Schatten norms1. We characterize the minimax estimation rate for this functional.

1The q-Schatten norm of a matrix is defined as the lq norm of its singular values
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2.1.1 Detection and minimax separation distances

In this report, we mostly rely on the minimax paradigm to asses the optimality of a specific
procedure. For testing problems, the usual counterpart of this minimax risk is the notion of
minimax separation distance. As this notion is central in a significant part of my works, I take
some time to define them here. Most of the material described here can be found in textbooks [198,
188], although the terminology may differ between research papers in statistics or machine learning.

Let us consider an abstract parametric model {Pθ∗ , θ∗ ∈ Θ}, but one can think of the Gaussian
sequence model (Definition 2.1) for concreteness. Suppose that are given two subsets of parameters
Θ0,Θ1 ⊆ Θ such that Θ0 ∩ Θ1 = ∅. Based on an observation Y ∼ Pθ∗ for some unknown θ∗, we
consider a testing problem of the hypothesis H0 : {θ∗ ∈ Θ0} against the alternative H1 : {θ∗ ∈ Θ1}.

Risk of a test. Given a test2 T , one can define its risk R(T ; Θ0; Θ1) by

R(T ; Θ0; Θ1) := sup
θ∈Θ0

Pθ[T = 1] + sup
θ∈Θ1

Pθ[T = 0] . (2.4)

It corresponds to the sum of the maximum type I and type II error probabilities. Let us pause
to discuss this choice of risk measure. As we consider the sum of the two types of errors in (2.4),
this definition breaks the asymmetry between the two error terms. In practice, we may prefer
considering a as measure of risk the type II error probability supθ∈Θ1

Pθ[T = 0] while restricting
our attention to test whose size is less or equal to some fixed given α. In fact, one can readily adapt
the minimax testing theory to this error measure, see e.g. [16] in the Gaussian sequence model.
Still, we keep working with the risk (2.4) as it is slightly easier to handle.

Minimax risk of a test. Coming back to (2.4), we define the minimax risk of the testing problem
as the infimum R∗(Θ0; Θ1) = infT R(T ; Θ0; Θ1) where the infimum is taken over all possible tests.
If this minimax risk is close to 0, this entails that exists a test whose type I and II error probabilities
are close to zero. Conversely, a random guess test T is a test which samples 0 or 1 independently
of the observations Y . By definition, it risk equals one. If the minimax risk is close to one, this
entails that the risk of all possible tests is as bad as that of a random guess test. If we work in an
asymptotic setting, where Θ0 and Θ1 are allowed to vary with n, we say that a (sequence of) tests
Tn is asymptotically powerful if R(Tn; Θ0; Θ1)→ 0. This also entails that R∗(Θ0; Θ1)→ 0. We say
that all tests Tn are asymptotically powerless (or equivalently that the two hypotheses Θ0 and Θ1

merge asymptotically) if R∗(Θ0; Θ1)→ 1.

Minimax separation distance. Unfortunately, the risk measure R(T ; Θ0; Θ1) is not adequate
per se is many situations. Consider for instance a signal detection problem in the Gaussian sequence
model (Definition 2.2) with Θ0 = {0} and Θ1 = Rn \ {0}. For any test T , R(T ; Θ0; Θ1 \ Θ0) is
higher than one because Θ1 contains parameters that are arbitrarily close to zero. Indeed, the test
T either suffers from a high type I error probability or from a high type II error probability in
the vicinity of Θ0. Intuitively, the behavior of T in the vicinity of Θ0 is not that relevant, as the
primary objective of the statistician is (i) T accepts the null when θ∗ ∈ Θ0 and (ii) rejects the null
when θ∗ differs enough from Θ0. For this reason, we may want to quantify the risk of T outside the
vicinity of Θ0. Let us suppose that the parameter set Θ is endowed with a pseudo-distance d(., .).
Given θ′ ∈ Θ, we define the distance d(θ′; Θ0) = infθ∈Θ0 d(θ′, θ) of θ′ to Θ0. Then, for ρ > 0, define

2Here, a test T is a measurable function that maps the observation Y to {0, 1}
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Θ1[ρ] = {θ ∈ Θ1 : d(θ,Θ0) > ρ} the subset of all alternative parameters that lie at a distance a
least ρ from the null hypothesis. Then, for a fixed ρ, we define the risk

R(T ; Θ0; Θ1; ρ) := sup
θ∈Θ0

Pθ,σ[T = 1] + sup
θ∈Θ1[ρ]

Pθ,σ[T = 0] , (2.5)

where we compute the type II error probability over the restricted parameter set Θ1[ρ]. By definition
this risk R(T ; Θ0; Θ1; ρ) is a non-increasing function of ρ. Then, for a fixed γ ∈ (0, 1), the separation
distance ργ [T ; θ; Θ1] of the test T is defined by

ργ [T ; Θ0; Θ1] = inf{ρ > 0 : R(T ; Θ0; Θ1; ρ) ≤ γ} . (2.6)

Finally, we define the minimax separation distance ρ∗γ [Θ0; Θ1] = infT ργ [T ; Θ0; Θ1] as the infimum
of all tests T of the separation distance. Intuitively, ρ∗γ [Θ0; Θ1] is the smallest distance ρ to the
null hypothesis such that there exists a test which deciphers Θ0 from Θ1[ρ] with a high confidence.
Alternatively, ρ∗γ [Θ0; Θ1] quantifies how far the parameter θ∗ should be from the null hypothesis so
that, under Pθ∗ , a suitable test will reject the null with high probability.

To finish with some terminology, when the null hypothesis Θ0 = {0} is simple, the testing prob-
lem is sometimes referred as a signal detection problem and the corresponding minimax separation
distance is referred as the detection boundary. This boundary interprets as the minimal magnitude
of the signal to detect its existence.

Some comments on the testing minimax lower bound proof techniques. If the two
hypotheses in the testing problems are simple, that is Θ0 = {θ0} and Θ1 = {θ1}, then the minimax
risk R∗(Θ0; Θ1) nicely expresses as the total variation distance between Pθ0 and Pθ1 . Indeed,

R∗(Θ0; Θ1) = inf
T
Pθ0 [T = 1]+Pθ1 [T = 0] = 1−sup

T

[
Pθ0 [T = 0]−Pθ1 [T = 0]

]
= 1−‖Pθ0 −Pθ1 ‖TV ,

so that lower bounding the minimax risk amounts to upper bounding the total variation distance
between ‖Pθ0 −Pθ1 ‖TV . In many situations, the total variation norm is not easy to handle. In turn,
one then upper bounds it by a more suitable discrepancy measures such as Hellinger distance, the
Kullback-Leibler discrepancy (by Pinsker’s inequality), or the χ2 divergence (by Cauchy-Schwarz
inequality).

If the hypotheses are now composite, one can always lower bound the minimax risk by taking
two specific parameters θ0 ∈ Θ0 and θ1 ∈ Θ1. Unfortunately, this does not allow to capture the
difficulty of problem when at least one of the two parameter sets is large.

When the alternative hypothesis is composite, a standard work-around is to introduce a prior
measure µ supported on Θ1 and to replace the supremum over θ ∈ Θ1 in the definition of the risk
by an integral over µ. This leads us to

R∗(Θ0; Θ1) ≥ inf
T

[
Pθ0 [T = 1] +

∫
Pθ[T = 1]µ(dθ)

]
= 1− ‖Pθ0 −P1‖TV , (2.7)

where we define P1 =
∫
Pθ µ(dθ) the marginal distribution of Y when θ is sampled according to µ.

The challenge is then (i) to upper bound the total variation distance between Pθ0 and the mixture
distribution P1 and (ii) to build a suitable prior measure µ on Θ1 to maximize this upper bound.
Unfortunately, the Kullback-Leibler discrepancy or the Hellinger distance are sometimes difficult to
compute when a mixture distribution is involved3. In this case, it is sometimes easier to work with

3This is for instance the case in the toy problem of signal detection in the Gaussian sequence model
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the χ2 divergence. For any θ ∈ Θ1, define the likelihood ratio Lθ = dPθ /dPθ0 and the integrated
likelihood ratio L =

∫
Lθµ(dθ). By definition of the likelihood, we have

2‖Pθ0 −P‖TV = Eθ0 [|L− 1|]

≤
[
Eθ0

[
(L− 1)2

]]1/2
=
(
Eθ0 [L2]− 1

)1/2
, (2.8)

where Eθ0 [L2] =
∫
Eθ0 [LθLθ′ ]µ(dθ)µ(dθ′). In summary, the minimax risk R∗(Θ0; Θ1) is close to

one (and no test performs much better than random guess), provided that, for a suitable prior µ,
the second moment Eθ0 [L2] is close to one. This approach, coined as the second moment method,
is really powerful and allowed to recover tight bound the minimax separation distances for many
problems since the seminal works of Ingster [114–116]. In particular, the detection boundaries for
signal detection described in Section 2.2 proceed from this approach.

Unfortunately, the second moment method may lead to over-optimistic minimax lower bounds
for two reasons:

(a) Cauchy-Schwarz inequality in (2.8) is too rough, or equivalently the χ2 divergence between
probability measures can be much higher than their total variation distance. One work-
around is to apply Cauchy-Schwarz inequality to truncated version of the likelihood in order
to control its second moments. Up to our knowledge, this idea has been originally introduced
by Ingster [117]. We further discuss this idea and rely on this approach in Section 3.1 for the
problem of community detection.

(b) The second moment approach is particularly suited to signal detection problem where the
null hypothesis is simple and the alternative hypothesis is composite. For composite-composite
testing problems, it is still possible to lower bound the minimax risk R∗[Θ0,Θ1] by picking a
single parameter θ0 ∈ Θ0. Unfortunately, the resulting minimax lower bound cannot account
for the size and the complexity of both Θ0 and Θ1 and will lead to suboptimal lower bounds.
For this purpose, we would like to build two prior measures µ0 and µ1 on Θ0 and Θ1 with
corresponding marginal measure P0 =

∫
Pθ µ0(dθ) and P1 =

∫
Pθ µ1(dθ) which would, argu-

ing as in (2.7), lead to R∗(Θ0; Θ1) ≥ 1−‖P0−P1‖TV . However, this total variation distance
turns out to be much more delicate to upper bound than in (2.7) because it now involves the
distance between two mixture distributions. For instance, the likelihood ratio L = dP1/dP0

now involves a ratio of two integrals and its second moment cannot be explicitly computed
even in the simple Gaussian sequence model.

The works described in Section 2.3–2.6 all fall within this class of models where we have to rely on
composite-composite problems for the minimax lower bound. We briefly discuss the mathematical
techniques to deal with this issue in the corresponding sections.

2.1.2 Functional Estimation

.
Still considering an abstract parametric model {Pθ∗ , θ∗ ∈ Θ} while having in mind the Gaussian

sequence model for illustration purpose, we are also given a function f : Θ→ X , where X is typically
of much lower dimension than the original parameter size, the prominent example being X = R.
A functional estimation problem is that of estimating f(θ∗). In the Gaussian sequence model,
prominent examples are the linear function f(θ) =

∑
i θi or the lq norm f(θ) = ‖θ‖q.

Estimation of functionals of non-parametric or high-dimensional models has a long history
that dates back to 70’s and is still vivid – see e.g. [105, 106, 129, 199, 200, 61, 113, 46, 45,
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139, 26, 71, 145]. Provided that the functional is smooth enough and under some additional
conditions, Koltchinskii and collaborators [132, 133, 130] have introduced a general bias reduction
approach that ensures a near parametric rate of convergence. By contrast, estimation of non-smooth
functionals or estimation of smooth functional on non-open subsets (such as B0[k]) is usually dealt
with using case-by-case methods. Despite this, some general techniques turn out to be fruitful in
many cases: the methods of fuzzy hypotheses for deriving minimax lower bounds, or more recently
the polynomial approximation and moment matching techniques [199, 122, 46, 143]. I describe the
former below and will explain the latter later in the chapter.

Impossibility results and connection with minimax testing. The method of fuzzy hypothe-
ses provides a simple connection between functional estimation problems and testing problems–see
again textbooks such as [188] for more details. For a simple functional where X = R, we define, for
any a ∈ R, the parameter set Θa = f−1({a}). If we want to prove that any estimator f̂ of f(θ∗)
suffers from an error δ, it suffices to prove that there exist a and b with |b− a| ≥ 2δ such that the
minimax risk of testing H0 : {θ∗ ∈ Θa} against H1 : {θ∗ ∈ Θb} is high. Indeed, let us build a test
T̃ such that T̃ = 0 if |f̂ − a| ≤ δ. Then, one deduces

sup
θ∗∈Θa∪Θb

Pθ∗ [|f̂ − f(θ∗)| ≥ δ] ≥ max

[
sup
θ∗∈Θa

Pθ∗ [T̃ = 1], sup
θ∗∈Θb

Pθ∗ [T̃ = 1]

]
≥ 1

2
R[T̃ ; Θa,Θb] ≥

1

2
R∗[Θa,Θb] .

As a consequence, lower bounding the error for estimating f(θ∗) expresses as the minimax risk
of a testing problem where the composite hypotheses correspond to slices of the function f . It
turns out many impossibility results for functional estimation are proved using this approach. For
some functional estimation problems involving e.g. non-smooth functionals, one needs to rely on
composite-composite hypothesis testing problems as described in the previous subsection to recover
the tight minimax rate.

2.2 Signal detection in sparse Linear regression

This section is mainly based on a joint work [A28] with Y. Ingster and A. Tsybakov. We consider the
prototypical problem of signal detection in the possibly sparse linear regression model Y = Xθ∗+ ε
(see Definition 2.2). More formally, we aim at testing the null hypothesis H0 : {θ∗ = 0} (no signal)
against specific alternatives. As we are interested in situations where the regression parameter
θ∗ is possibly sparse, we consider alternative hypotheses of the form Hk : {θ∗ ∈ B0[k] \ {0}}.
To define the separation distance as in (2.6), we introduce, for any ρ > 0, the parameter set
B0[k, ρ] = {θ ∈ B0[k] : ‖θ‖2 ≥ ρ} of k-sparse vectors whose norm is higher than ρ.

We first focus on the simpler case where the noise level σ is known and the covariates are
independent (Σ = Ip in Definition 2.2). Our aim is then (i) to characterize the minimax separation
distance ρ∗γ [k] as a function of (k, p, n, σ) and (ii) to build a detection procedure which achieves this
optimal separation, this simultaneously for all k.

Before stating the main result, let us make two observations. First, the naive estimator θ̂ of
θ∗ based on the empirical correlations satisfies θ̂ = 1

nXTY = 1
nXTXθ∗ + 1

nXT ε is, in expectation,
equal to θ∗. Intuitively, its distribution can be compared to N (θ∗, 1

nσ
2Ip). In fact, under the null

(θ∗ = 0), conditionally to ε, we even have σ
√
nθ̂/‖ε‖2 ∼ N (0, σ2Ip/n). In light of this, it may be

tempting to apply the same testing methodologies as in the Gaussian sequence model [61, 72, 16].
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In the dense case (large k) we may want to reject the null when ‖θ̂‖22 is large. In the sparse case, we
may want to apply an Higher-Criticism approach [72], that is rejecting the null, when the number
Nt of coordinates such that |θ̂i| > t is unusually high, this for at least one threshold t > σ/

√
n.

A second observation is that ‖Y ‖22, in expectation, equals n‖θ‖22 + nσ2 so that a unusual value
of ‖Y ‖22 may indicate the presence of the signal. It turns out that a combination of these three
statistics simultaneously achieves the minimax separation distance ρ∗γ [k], this for a wide collection
of sparsities k.

Theorem 2.3 ([A28]). Consider an asymptotic setting where p→∞, n→∞ (with log3(p) = o(n))
and where the sparsity k = p1−β for some β ∈ (0, 1).

� If β ∈ (1/2, 1) (highly sparse alternative), then
ρ∗2γ [k]

σ2 � k log(p)
n ∧ 1√

n

� If β ∈ (0, 1/2](dense alternative), then
ρ∗2γ [k]

σ2 �
√
p
n ∧

1√
n

In the highly-sparse regime, when k log(p) �
√
n, it is even possible to characterize the tight

leading constant in the minimax separation distance instead of simply giving an expression up to a
multiplicative constant, as in this theorem. The minimax lower bound is proved using the classical
second moment technique described in the previous section, although recovering the tight constant
requires a truncated version.

Unknown noise level σ. Among the three statistics that achieve the minimax separation dis-
tance, the test based on ‖Y ‖22 crucially requires the knowledge of σ2. Indeed, the corresponding
test rejects for large values of [‖Y ‖22 − nσ2]/σ2. Hence, mimicking its performances would require
to plug an estimator σ̂ satisfying σ̂2 − σ2 = oP(n−1/2) which is unfortunately not feasible in a
high-dimensional situation. It turns out that, when σ is unknown, the corresponding square mini-

max separation distance respectively becomes of the order of k log(p)
n (for β ∈ (1/2, 1)) and

√
p
n (for

β ∈ (0, 1/2]) –see [A28]. In comparison to the known σ setting, we observe that the distance 1/
√
n

(which was achieved by the statistic ‖Y ‖22) is not achievable anymore. Importantly, these rates
k log(p)/n and

√
p/n are derived under stronger restrictions on p. In particular, the k log(p)/n rate

is achievable by the higher criticism test only if k log(p) = o(n). In a related work, [A26] I have
been interested in minimax estimation and testing in the so-called ultra-high dimension regime
where k log(p) exceeds n. In particular, it is proved that, in this regime, the minimax separation
distance is of the order of exp(ck log(p)/n) for some constant c > 04. In other words, the minimum
signal strength has to be exponentially higher in this k log(p) > n regime than the usual bound
k log(p)/n.

Related literature and later works. The work [6] appeared simultaneously to ours and pro-
vides a similar characterization of the detection rate in Theorem 2.3. As an aside, some of the
techniques described here turned out to be useful for the construction of adaptive confidence re-
gion [164] of θ∗. More recently, Mukherjee and sen [160] have provided a delicate analysis of the
risk when the parameter θ∗ is in the vicinity of the detection boundary.

Other signal detection problems. Together with different colleagues, I have also worked on re-
lated signal detection problems in the functional linear regression model [A23], in Gaussian Markov
fields [A10, A15], or in two-sample models [A6].

4The result is stated for k ≤ p1/3, but the proof holds almost verbatim for k = p1/2−δ with δ > 0
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2.3 Signal to Noise Ratio estimation

This section is mainly based on a joint work [A14] with E. Gassiat.

Motivation. As in the previous section, consider the random design high-dimensional linear
regression model (2.2). Assume that we have detected the existence of the signal (θ∗ 6= 0), then the
next step would be to estimate the magnitude of the signal. Define the signal-to-noise ratio (SNR)
or equivalently the proportion of explained variation by

SNR∗ :=
E
[
‖XT

1 θ
∗‖22
]

σ2
=
‖Σ1/2θ∗‖22

σ2
and η∗ :=

E[‖XT
1 θ
∗‖22]

Var (Y1)
=

SNR∗

1 + SNR∗
. (2.9)

The latter functional η∗ interprets as the ratio of variance of the signal to the total amount of
variance of Y . For low-dimensional linear regression models (p� n), the functional η∗ is estimated
by the coefficient of determination, which is routinely computed in data analyses. Obviously, the
(vanilla version of) coefficient of determination cannot be used when n < p. Our interest in this
functional is mainly motivated by heritability estimation problems in quantitative genetics. In
such studies, the response variable is a phenotype measured on n individuals and the predictor
matrix X are genetic markers on each of these individuals. Then, the heritability of a phenotype
is quantified by the proportion of explained variation. Usually, the number p of genetic markers
greatly exceeds the number n of individuals. To handle this high-dimensional setting, researchers
have assumed that the phenotype can be explained by a small number k of markers, which has
spurred interests for statistical methods exploiting the sparsity of θ∗. However, in some complex
human traits, it appeared that there was a huge gap (which has been called the “dark matter” of
the genome) between the genetic variance explained by populations studies and the one obtained
by genome wide associations studies (GWAS), see [153], [180] or [102]. To explain this gap, it has
been hypothesized that some traits might be “highly polygenic”, meaning that the corresponding
regression coefficient vector θ∗ may not be considered as sparse. As a consequence, sparsity-based
methods would be questionable in this situation. In [A14], we have been interested in characterizing
the minimax risk for η∗ when θ∗ belongs to sparsity classes B0[k] for k ranging from 1 to p.

Related literature. If the noise level σ in the model (2.2) is known, then the simple estimator
η̂ = 1−nσ2/‖Y ‖22 is easily shown to be n−1/2-consistent. For this reason, estimating η∗ only makes
sense if σ is unknown and we assume it henceforth. Most of the recent literature at the time of [A14]
assumed that the covariance matrix Σ of the covariates (see definition (2.1)) was known and was
equal to the identity matrix Ip. In that setting, Dicker [69] and Janson et al. [118] introduced
suitable U -statistics of the form

T =
Y T
(
XXT − tr(XXT )In/n

)
Y

n2
. (2.10)

In a high-dimensional asymptotic regime where p/n→ c ∈ (0,∞), they proved that T−‖Σ1/2θ∗‖22 =
(σ2+‖Σ1/2θ∗‖22)OP (1/

√
n). The striking consequence of those results, is that is possible to estimate

η∗ in a high-dimensional regime, even when p � n, and this without any sparsity assumption on
θ∗.

Minimax and adaptive minimax risk for η∗. In [A14], we make three contributions: first,
when Σ is known, we characterize the minimax convergence risk for η∗ as a function of (n, p, k)
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where we recall that k ∈ [1, p] is the sparsity of θ∗. For instance, if p ∈ [n, n2], the minimax risk
(in squared error) is of the order of

min

[
1

n
+
k2 log2(p)

n2
,
p

n2

]
, (2.11)

and is achieved by either a sparse estimator based on the square-root Lasso if k is small (sparse
regime) or by some transformation of the statistic T is k is large (dense regime). In practice, the
sparsity parameter k is unknown. Our second contribution is an adaptive estimator that combines T
and the square-root Lasso. This new estimator, simultaneously achieves the minimax risk (2.11) of
all sparsity k, up to a multiplicative log(p) factor. This log(p) price is then proved to be unavoidable
for adaptation to unknown sparsity.

Unknown distribution of the design. The previous results suggest that η∗ can be consistently
estimated even in the dense setting (e.g. k = p) as long as p � n2. However, the covariance
matrix Σ is certainly not known in many practical situations, such as in heritability distribution.
Unfortunately, none of the known dense estimators works in this regime. For instance, for general
Σ, the U -statistic T 5 converges to ‖Σθ∗‖22 instead of the desired signal level ‖Σ1/2θ∗‖22. Our last
contribution is to show, that when Σ is unknown (but is still nicely conditioned), it is impossible
to estimate consistently the heritability as long as p ≥ n1+κ for any κ > 0 arbitrarily small. In
comparison to the known Σ case where consistent estimation is possible as long as p � n2, here
we cannot handle a non-sparse high-dimensional setting.

Intuitively, the proof of the last impossibility result relies on the fact that, even when p is
higher than n, one can consistently estimates the functional θ∗TΣqθ∗ for q = 2, 3, 4, . . . by suitable
U -statistics. However, this is not the case for the signal level θ∗TΣθ∗, which corresponds to q = 1.
Hence, the key idea of the proof is too build two collections of parameters (θ∗,Σ) ∈ B1 and
(θ∗,Σ) ∈ B2 such that: (i) the first ’moments’ θ∗TΣqθ∗ for q = 2, 3, . . . , cκ are the same in (B1)
and (B2) while (ii) θ∗TΣθ∗ differs in (B1) and in (B2). Thanks to (i), we are able to show that
is impossible to decipher whether the true parameters belong to (B1) or (B2). Thanks to (ii), we
deduce that an error in the testing problem {(θ∗,Σ) ∈ B1} against {(θ∗,Σ) ∈ B2} implies an error
for the estimation of η∗.

Subsequent works and a conjecture. More recently, Kong and Valiant [135] have improved
our results for unknown Σ into several directions. On the positive side, they made use of the
intuition behind the minimax lower bound to estimate θ∗TΣθ∗ by a linear combination of unbiased
estimators of θ∗TΣqθ∗, for q = 2, . . . , q∗. This allows them, for any fixed ζ ∈ (0, 1), to build
an estimator η̂ of η∗ achieving |η̂ − η∗| ≤ ζ provided that n ≥ ψ1(1/δ)p1−1/ log(1/δ) (under some
additional assumptions). On the negative side, they proved that the dependency in 1/ log(1/δ)
cannot be improved. Their proof is based on our strategy except that the sets B1 and B2 and the
corresponding prior distributions are more delicately chosen. Interestingly, Kong and Valiant also
extend their method to estimate the SNR in logistic regression.

Whereas the case of known Σ covariance is mostly understood, there remains some open ques-
tions for unknown design distribution in a high-dimensional regime p = n1+κ for κ > 0 fixed. One
the positive side, a plug-in approach based on the square-root Lasso achieves a square error of the
order of

max

[
1

n
+
k2 log2(p)

n2
, 1

]
. (2.12)

5When Σ is known, the idea is to whiten the covariance by computing X̃ = XΣ−1/2 then compute T with (Y, X̃).
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On the negative side, we are only able to prove the corresponding lower bound either for k � √p
or for k = p. For k ∈ [

√
p, p], we conjecture that the upper bound (2.12) is nearly tight, but we do

not manage yet to prove the matching lower bound.

2.4 Sparsity testing and Estimation

This section is based on two joint works with A. Carpentier [A5, A8]. They fall within the wider
research program of estimating/testing the complexity of a parameter. This objective may be
tackled for differents reasons. First, complexity estimation allows to assess the relevance of specific
parameter estimation approaches. For instance, inferring the smoothness of a function allows to
justify the use of regularity-based procedures. Second, the construction of adaptive confidence
regions is related to complexity testing problem since the size of an adaptive confidence region
should depend on the complexity of the unknown parameter [109]. Finally, in some practical
applications, the primary objective is rather to evaluate the complexity of the parameter than the
parameter itself. This is for instance the case in some heritability studies where the goal is to
decipher whether a trait is multigenic or “highly polygenic” which amounts to inferring whether a
high-dimensional regression parameter is sparse or dense [186, 153].

In [A8], we first deal with this problem in the Gaussian sequence model (Definition 2.1) and
we consider the twin objectives of (i) estimating the number ‖θ∗‖0 of non-zero components of θ∗

and (ii) given some non-negative integer k0, testing whether ‖θ∗‖0 ≤ k0 or ‖θ∗‖0 > k0. The former
problem is referred as sparsity estimation and the latter as sparsity testing.

Since the functional ‖θ∗‖0 is not even continuous with respect to θ∗, quantifying the perfor-
mances of an estimator T̂ with respect to an error of the form |T̂ − ‖θ∗‖0| does not really make
sense as the maximum risk of such an estimator is necessarily high, for instance if θ∗ has many
very small components. As the formalization of the error measures for sparsity estimation is more
intricate, I mostly describe here the result for sparsity testing.

Minimax separation distances. Here, I specialize the general presentation of minimax separa-
tion distance to the sparsity testing problem. Given a non-negative integer k0 and a positive integer
∆ such that k0 + ∆ ≤ n, we consider the problem testing the null hypothesis Hk0 : {θ∗ ∈ B0[k0]}
against the alternative {θ∗ ∈ B0[k0 + ∆] \ B0[k0]}. We quantify the distance of θ∗ to the null hy-
pothesis using d2(θ∗,B0[k0]) := infu∈B0[k0] ‖θ∗−u‖2. Then, for any ρ > 0, the corresponding subset
of alternative hypotheses where we remove parameters θ∗ that are ρ-close to the null is defined by

B0[k0 + ∆, k0, ρ] := {θ ∈ B0[k0 + ∆] : d2(θ,B0[k0]) ≥ ρ} . (2.13)

Then, we define as in (2.6) the separation distance ργ(T ; k0,∆) of a test T as the minimal distance
ρ to the null hypothesis such that the test T has a risk smaller than γ. Finally, ρ∗γ [k0,∆] =
infT ργ(T ; k0,∆) stands for the minimax separation distance. In other words, ρ∗γ [k0,∆] is the
minimal distance to B0[k0] for a parameter θ∗ in B0[k0 + ∆] to be reliably detected.

Contribution. In [A8], our contribution is threefold:

(a) When σ (the noise level) is known, we provide a tight characterization of the the minimax
separation distance ρ∗γ [k0,∆] for all integers k0 and all ∆ > 0– see Table 2.1. Besides, we
introduce a procedure which is simultaneously minimax over all alternatives {θ∗ ∈ B0[k0 +
∆] \ B0[k0]} for ∆ ∈ [1, n− k0]. From Table 2.1, we observe that, for k0 ≤

√
n, the minimax
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Table 2.1: Square minimax separation distances (in the �γ sense) when the noise level σ is known
for all k0 ∈ [0, n− 1] and ∆ ∈ [1, n− k0].

k0 ∆ ρ∗2γ [k0,∆]/σ2

k0 ≤
√
n 1 ≤ ∆ ≤

√
n ∆ log

(
1 +

√
n

∆

)
√
n < ∆ ≤ n− k0

√
n

k0 >
√
n 1 ≤ ∆ ≤

√
n1/2k0 ∆ log

(
1 + k0

∆

)
√
n1/2k0 ≤ ∆ ≤ k0 ∆

log2
(

1+
k0
∆

)
log
(

1+
k0√
n

)
k0 ≤ ∆ ≤ n− k0

k0

log
(

1+
k0√
n

)

separation distance ρ∗γ [k0,∆] is similar to the detection one ρ∗γ [0,∆], hence the size of the null
hypothesis does not have an impact on the difficulty of the problem. For larger k0 and for
large ∆, ρ∗γ [k0,∆] is much larger than its counterpart ρ∗γ [0,∆] and is almost proportional to
the size k0.

(b) In the more realistic setting where the noise level σ is unknown, the minimax separation
distance ρ∗γ,var[k0,∆] is established and minimax adaptive tests are exhibited. Interestingly,
it is proved that the sparsity testing problem under unknown noise level is no more difficult
than under known noise level for small ∆. For large ∆, the knowledge of σ plays an important
role.

(c) We reformulate the sparsity estimation problem as a multiple testing problem where we si-
multaneously consider all nested hypotheses Hq for q ∈ [0, n]. Introducing a multiple testing

procedure which is simultaneously optimal over all q, we derive an estimator k̂ which is less
than or equal to ‖θ∗‖0 with high probability and is also closest to ‖θ∗‖0 in a minimax sense.
Interestingly, this property is valid uniformly for all possible θ∗ ∈ Rn and avoid us to rely
on any particular assumption on the parameter. More generally, this perspective also pro-
vides a general roadmap to handle the problem of complexity estimation using simultaneous
separation distances.

Some aspects of the proof techniques. As explained in Section 2.1.1, the second moment
method is particularly suited when we consider a simple null hypothesis test as in signal detection.
To prove a minimax lower bound that depends on both k0 and ∆ (as in the regime k0 ≥

√
n in

Table 2.1), we build two prior distribution µ0 and µ1 on B0[k0] and B0[k0 + ∆] respectively and we
need to show that the total variation distance between the corresponding marginal distributions
P0 =

∫
Pθ µ0(dθ) and P1 =

∫
Pθ µ1(dθ) is small. In a seminal work, Lepski et al. [143] have shown

that it is possible to control the distance between P0 and P1 it terms of the moments of µ0 and
µ1. More precisely, if we write mq(µ) =

∫
θqµ(dθ), then the total variation distance between P0

and P1 is small provided that (i) µ0 and µ1 have a bounded support and (ii) mq(µ0) = mq(µ1)
for all q = 1, . . . , c log(n) –see also [46] for a related explanation. Then, the challenge is to build
suitable measures µ0 and µ1 that satisfy (i) and (ii) while being respectively supported on B0[k0]
and {θ ∈ B0[k0 + ∆] : d2(θ,B0[k0] ≥ ρ}. This approach is sometimes referred as the moment
matching method and turns out to be fruitful in many modern problems [199, 200].
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Conversely, our optimal tests rely on some integrals of the empirical characteristic function of Y
which, at least in expectation, approximate the non-continuous function f(θ) =

∑n
i=1 1θi 6=0. This

differs from typical estimators of non-smooth functionals which are rather based on the so-called
polynomial approximation techniques (e.g. [106, 46, 143]). The latter technique amounts to build
a best polynomial approximation of the non-smooth function and plug unbiased estimators of the
moments into this polynomial.

One possible weakness of our work is that it is not robust against departures from the Gaus-
sian distribution. In fact, the minimax separation distances in Table 2.1 only hold for Gaussian
noise. When the noise distribution is unknown (but say sub-Gaussian), our statistics based on the
empirical characteristic function of the data are not trustable. We conjecture that the minimax
distances should differ by polylogarithmic factors in this setting.

Extension to linear regression models. In the subsequent work [A5], we have considered the
sparsity testing problem for the high-dimensional linear regression model (Definition 2.2). We have
provided a tight characterization of the separations distances when the covariates are independent
(Σ = Ip in Definition 2.2). For general and unknown covariance matrix Σ, we have some partial
results. Unfortunately, getting a tight characterization (with the correct logarithm) in all regimes
seems out of reach with our current techniques.

2.5 Multiple testing with unknown distribution

This section is mainly based on two joint works [A1, A4] with A. Carpentier, S. Delattre, and
E. Roquain. While these contributions are mainly motivated by multiple testing considerations,
a significant part of the challenge amounts to estimating some functional in a sparse Gaussian
sequence model and to evaluate to what extent the estimation error of these functionals perturbs
the testing problem.

Toy multiple testing model. In large-scale data analysis, the practitioner routinely faces the
problem of simultaneously testing a large number n of null hypotheses. In the last decades, an
impressive amount of multiple testing procedures have been developed –see, e.g., [70]. Theoretically-
founded control of the amount of false rejections are provided notably by controlling the false
discovery rate (FDR), that is, the average proportion of errors among the rejections, as done by the
famous Benjamini-Hochberg procedure (BH), introduced by [19]. A prototypical multiple testing
model can be recast in the Gaussian sequence model. Suppose that we observe independent random
Yi, with i = 1, . . . , n. For each i = 1, . . . , n, we consider the testing problem.

H0,i : {Yi ∼ N (0, σ2)} against H1,i : {Yi ∼ N (θ∗i , σ
2) with θ∗i 6= 0} . (2.14)

Then, the multiple-testing problem is exactly equivalent to variable selection, that is selecting the
support S∗ = {i, θ∗i 6= 0} of θ∗ in the Gaussian sequence model. Importantly, works in variable
selection [40, 41] and in multiple testing (e.g. [170]) differ with respect to the loss function under
consideration, the multiple testing literature being more focused on FDR or FWER6. A slight
variation of (2.14) can also be considered to handle distribution-free alternatives.

H0,i : {Yi ∼ N (0, σ2)} against H1,i : {Yi � N (0, σ2)} . (2.15)

It is well known [19] that the celebrated Benjamini-Hochberg procedure controls the FDR in (2.15)
and exhibits optimal power in (2.14).

6family-wise error rate
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Efron’s model for multiple testing problems with unknown null distributions. However,
the two testing models (2.14,2.15) as well as the FDR controlling procedures developed in the
multiple testing literature rely on the fact that the null distribution of the test statistics is known
– it corresponds to N (0, σ2) above. This is in plain contrast with common practice, where the
null distribution is often mis-specified. This phenomenon, pointed out in a series of pioneering
papers by Efron [76, 78, 75, 77] and studied further in [183, 181, 12, 175, 176] is illustrated in
Figure 2.1 for four classical datasets. As one can see, the theoretical null distribution N (0, 1)
does not faithfully describe the overall behavior of the measurements. As a result, using this
theoretical null distribution into a standard multiple testing procedure (e.g., BH) can lead to an
important resurgence of false discoveries. Markedly, this effect is sometimes more severe than
simply ignoring the multiplicity of the tests (see [M1]), and thus the benefit of using a multiple
testing correction can be lost. One hypothesized reason for this gap between the theoretical and
empirical null distributions is data often come from raw measurements that have been “cleaned”
via many sophisticated normalization processes in which case the practitioner has no prior belief in
the null distribution. Hence, the null distribution is implicitly defined as the “background noise”
of the measurements and searching signal in the data boils down to make some assumption on this
background (typically Gaussian) and find outliers, defined as items that significantly deviate from
the background. This occurs for instance in astrophysics datasets [182, 157, 184].

To address these issues, Efron popularized the concept of empirical null distribution, that is,
of a null distribution estimated from the data, in the works [76, 78, 75, 77, 79] notably through
the two-group mixture model and the local fdr method. Therein, an important message is that
a significant improvement can already be obtained by replacing the theoretical null N (0, 1) by a
Gaussian N (θ, σ2) with unspecified scaling parameters θ and σ. This type of techniques is widely
used nowadays, mostly in genomics [4, 121, 205, 62] but also in other applied fields, such as neuro-
imaging, see, e.g., [140]. However, when available, the theoretical FDR controlling properties often
rely on stringent assumptions on the underlying mixture model (parameters fixed with n, specific
alternatives and existence of suitable parameter estimators), which are not met in general.

In [A4] and [A1], we introduce frequentist counterparts of Efron’s model, which are more in
line with (2.14) and (2.15). The situations are quite contrasted depending on whether we focus on
two-sided hypotheses or on one-sided alternatives.

2.5.1 One-side tests and minimum effect estimation [A4]

Two one-sided contamination models. In the one-sided case where observations Yi under
the alternative hypothesis tend to take higher values than under the null, defining an identifiable
model is much easier than in the general problem. In fact, the counterpart of (2.14) corresponds
to a model

Yi = µ∗ + γ∗i + εi, 1 ≤ i ≤ n , (2.16)

where the εi’s are i.i.d. N (0, σ2) distributed, whereas µ∗ ∈ R and γ∗ ∈ Rn+ are unknown. Upon
defining the mean vector θ∗ = µ∗ + γ∗, we come back to the Gaussian sequence model, where
µ∗ = mini θ

∗
i is the minimum coordinate of the vector θ∗. Equipped with (2.16), the multiple-

testing hypotheses writes as

H0,i : {θ∗i = µ∗} against H1,i : {θ∗i > µ∗} .

Observe that the null distribution corresponding H0,i is unknown as the minimum θ∗i is unknown.
Within this model, the number of alternative hypotheses (also called the number of contaminated
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Figure 2.1: Histograms of the test statistics (rescaled to be all marginally standard Gaussian), for
three datasets presented by Efron: [103] (top-left); [107] (top-right); [197] (bottom-left); and [31]
(bottom-right). The solid curve is the standard Gaussian density. Pictures reproducible from the
vignette [M1].

data) equals the number of non-zero entries of γ∗, that is its sparsity. For this purpose, we consider,
for an integer k ∈ [0, n− 1],

Mk =

{
γ∗ ∈ Rn+ :

n∑
i=1

1{γ∗i >0} ≤ k

}
. (2.17)

In what follows, we refer to the model (2.16) as Gaussian One-Sided Gaussian Contamination
(gOSC) model. We focus on the following related twin problems

(i) Estimating the null distribution, that is estimating the minimum functional f(θ∗) = mini θ
∗
i =

µ∗ in the model (2.16). In that respect, the alternative hypotheses play the role of a nuisance
parameter. More precisely, we want to characterize the minimax convergence risk

R[k, n] = inf
µ̂

sup
(µ∗,γ∗)∈R×Mk

Eµ∗,γ∗
[
|µ̂− µ∗|

]
, (2.18)

as well as exhibiting optimal procedures.

(ii) Plugging such a suitable estimator µ̂ of the null distribution into a BH procedure and evalu-
ating its performances.

Furthermore, we consider a more general One-Sided Contamination (OSC) model, where the
hypotheses are of the form H ′0,i : {Yi ∼ N (µ∗, σ2)} against H ′1,i : {Yi � N (µ∗, σ)}. Here, �
stands for the stochastic domination. In that setting, µ∗ = mini E[Yi]. As we defined the minimax
estimation risk R[k, n] for (gOSC), we define its counterpart R[k, n] in the OSC model.
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Minimax estimation of µ∗. First, we characterize these two minimax risks by deriving matching
(up to numerical constants) lower and upper bounds, this uniformly over all numbers k of contam-
inated data. The results are summarized in Table 2.2 below. For k ≤

√
n, the rate is parametric

in both models. For k ∈ (
√
n, n/2), one-sided contaminations lead to some

√
log(k2/n) gain over

the risk k/n we could have expected as k is the number of nuisance parameters. Assuming that
the contaminations are Gaussian leads to an additional logarithmic gain. For k ∈ [n/2, n− 1], the
minimax risks are more intricate, but the optimal rate still converges to 0 even as the proportion
n−k
n of non-contaminated samples goes to 0 slowly enough. In other words, it is still possible to es-

timate consistently the minimum value µ∗ (or equivalently the null) even if a really tiny proportion
of the observations follows the null hypothesis. Let us make a few comments on the mathematical
techniques. The minimax lower bound for gOSC is based on moment matching techniques as in
the previous section, whereas the one for OSC relies on techniques pertaining to robust estima-
tion. The main challenge is to introduce an optimal test for gOSC. In a nutshell, we first compute
the empirical Laplace transform of the data that we plug into a large collection of Chebychev’s
polynomials.

General bound 1 ≤ k ≤ 2
√
n 2

√
n ≤ k ≤ n/2 n/2 ≤ k ≤ n− 1

R[k, n]
log( n

n−k )
log1/2(1+ k2

n
)

n−1/2 k/n

log1/2(k2/n)

log( n
n−k )

log1/2 n

R[k, n]
log2
(

1+
√

k
n−k

)
log3/2

(
1+( k√

n
)2/3
) n−1/2 k/n

log3/2(k2/n)

log2( n
n−k )

log3/2 n

Table 2.2: Minimax estimation risks of µ∗.

Application to multiple testing with unknown parameters. Let us now come back to
Efron’s model. In [A4], we show that some minor modification of the quantile-based estimators µ̂
and σ̂7 introduced for OSC model, can be used to estimate the null distribution and then to rescale
the p-values. We can then be suitably combined with classical multiples testing procedures such
as Benjamini-Hochberg (BH) procedure. As long as the proportion of true alternative hypotheses
is bounded away from 1 (say it is smaller than 0.9), then the empirical procedure enjoys the same
nice properties as the oracle BH procedure that would know the parameters in advance: the false
discovery rate (FDR) and the true discovery proportion (TDP) are similar for both procedures.

2.5.2 General alternatives and FDR control under unknown null distribu-
tion [A1]

In [A1], we consider a more general two-sided multiple testing model with unknown null distribution.
More formally, we observe a random vector Y = (Yi)1≤i≤n in Rn whose distribution is denoted by
P = ⊗ni=1Pi. For identifiability purpose, we assume that more than half of the Pi’s follow the same
(null) distribution Gaussian distribution while the others are “contaminated” and can be arbitrary.

7we also consider the case of unknown variance in [A4]
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Hence, the null distribution parameters (µ∗, σ∗) are defined as the unique parameters such that

n0(P ) =

n∑
i=1

1Pi=N (µ∗,σ∗2) > n/2 .

Our testing problem is then a counterpart of (2.15) where the null distribution is unknown. This
provides a general and simple setting to address the following question:

When the null distribution is unknown, is it possible to build a procedure that both controls the
FDR at the nominal level and has a power asymptotically mimicking the oracle?

Here, what we call the oracle procedure corresponds to the classical Benjamini-Hochberg (BH)
procedure the statistician would have carried out if an oracle had given them the true values µ∗

and σ∗.
On the feasibility side, estimating µ∗ and σ falls into the classical problem of estimating the

mean and the variance in a variation of Huber’s contamination model and is well understood. For
instance, the empirical median µ̂ is well known to be optimal. Similarly, σ̂ is to be estimated by
a combination of empirical quantiles. Here, the challenge is to study how the estimation error of
(µ̂, σ̂) propagates when using the rescaled p-values p̂i based on these parameters instead of the
oracle p-values p∗i one would compute if the null was known in advance. The main results are
summarized in the next theorem.

Theorem 2.4. Consider an asymptotic setting where n goes to infinity. Let kn be an upper bound
of the number of true discoveries (aka contaminations)

(i) for a sparsity parameter kn � n/ log(n), there exists no sequence of procedures asymptotically
mimicking the oracle.

(ii) for a sparsity parameter kn � n/ log(n), the sequence of plug-in BH procedures
(BHα(µ̂, σ̂))α∈(0,1) is asymptotically mimicking the oracle, for the scaling (µ̂, σ̂) given by stan-
dard robust estimators.

Contrary to one-sided alternatives, it is now only possible to build a procedure that performs
a well as the oracle only if the proportion of true discoveries (contaminations) is smaller than
1/ log(n). When the proportion of contaminations is higher than 1/ log(n), then the multiple
testing procedure either suffers from a high FDR or is much more conservative than the oracle BH
procedure. As an extension, we also consider in [A1] general null distributions (beyon the Gaussian
case) that are known up to a location parameter µ∗.

2.6 Schatten norm estimation of rectangular matrices

To conclude this chapter, we move away from the Gaussian sequence and the high-dimensional
linear regression models to matrix problems. The following material is based on the joint work [P2]
with my PhD student Solène Thépaut. Consider the signal plus noise model. We observe a matrix
Y such that

Y = A + E , (2.19)

Here, A stands for the p×q unobserved signal matrix and E is a p×q noise matrix with independent
entries following a standard normal distribution. Without loss of generality, we assume that p ≥
q. Data of this form arise in many statistical problems such as network analysis (Chapter 3)
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or clustering (Chapter 4). In the previous sections, we emphasized the key role of sparsity for
estimating or testing a vector θ∗. Although entry-wise sparsity is relevant in some matrix problems,
low-rank properties on A are underlying many statistical procedures. For instance, PCA or more
generally singular value thresholding methods (see e.g. [51, 95]) are proved to estimate well low-
rank matrices A. Besides, when the matrix Y is sampled from a Gaussian mixture model with K
groups or from Stochastic block model with K groups, then the rank of A is at most K.

In light of the ubiquity of the low-rank assumption, we focus our attention on estimating specific
quantities of A that are related to its rank. On the one hand, checking the rank or the effective rank
of A allows to assess the relevance of low-rank based procedures. On the other hand, evaluating
the rank (or the effective rank) of A may also be an objective per se to characterize the complexity
of the signal matrix A. For the specific case of stochastic block models (defined in Chapter 4),
there are significant works that aim at estimating/testing the number of groups– see e.g. [52, 141].
More generally, estimating the rank of a noisy matrix can help selecting the number of components
in PCA [58, 125].

In [P2], we do not aim at estimating/testing the exact rank of A, but we rather focus on some
measures of effective ranks. Before introducing these quantities and explaining their interest, we
need to define the Schatten norm of a matrix. Given a p×q matrix A, we write κ1(A) ≥ κ2(A) . . . ≥
κq(A) ≥ 0 for its ordered sequence of singular values. For any s ≥ 1, the s-Schatten norm of A is
defined as the ls norm of its sequence of singular values, that is

‖A‖ss =

q∑
i=1

κsi (A) . (2.20)

For s =∞, we define ‖A‖∞ = κ1(A) as the operator norm of A. Other classical examples involve
the Frobenius norm (‖A‖2) or the trace norm (‖A‖1). Let us briefly explain how these Schatten
norms are related to effective rank measures.

Effective Rank of a matrix. Since the rank of a matrix is very sensitive to small perturbations,
it is difficult to estimate it from Y. Furthermore, a full rank matrix A may have only few large
singular values together with many small singular values. For such a matrix, the rank is poorly
informative of the structure of A. As an alternative, various notions of effective ranks have been in-
troduced. In particular, some of these notions of effective rank are at the heart of high-dimensional
or infinite-dimensional probabilistic results. For instance, in [131], Koltchinskii and Lounici con-
sider, for a non-negative symmetric matrix Σ, the measure tr[Σ]/‖Σ‖∞ = ‖Σ‖1/‖Σ‖∞. For a
rectangular matrix A, one can think of two extensions of this index, depending on whether we
work directly with the singular values of A or with the singular values of the square matrix ATA.

ER1,∞(A) =
‖A‖1
‖A‖∞

; ER2,∞(A) = ER1,∞(ATA) =
‖A‖22
‖A‖2∞

. (2.21)

More generally, if we borrow the formalism of diversity measures in ecology [126], we can introduce,
for any positive s > 0 different from 1, the Hill’s effective number [126] of singular values, which
interprets as a Renyi entropy of the sequence of singular values

ER1,s(A) =

(
‖A‖s
‖A‖1

)s/(1−s)
; ER2,s(A) = ER1,s(A

TA) =

(
‖A‖2s
‖A‖2

)2s/(1−s)
. (2.22)

When all the non-zero singular values of A are equal, all these effective rank indices are equal to
the true rank of A. However, these measures differ in the way they treat heterogeneous values



32 CHAPTER 2. SIGNAL DETECTION AND FUNCTIONAL ESTIMATION

for the singular values. In short, smaller values of s in ER1,s(A) and ER2,s(A) are more prone to
take into account smaller singular values in the effective rank. See [126] and references therein for
further discussions.

Our results. As a warm-up, we consider the Frobenius norm ‖A‖2 and we prove that the simple

quadratic estimator (‖Y‖22− pq)
1/2
+ , where x+ = max(x, 0) achieves the optimal risk (pq)1/4. Inter-

estingly, this risk (pq)1/4 cannot be improved by any estimator even if the matrix A is additionally
known to be of rank at most one. Then, we establish that a non-linear transformation of κ1(Y)
estimates ‖A‖∞ = κ1(A) with the same optimal error (pq)1/4.

Regarding general even norms ‖A‖2k where k is any integer, we first remark that ‖A‖2k2k =
tr[(ATA)2k] is a polynomial with respect to the entries of A. This allows us to build an unbiased
estimator Uk of ‖A‖2k2k based on Hermite polynomials. Relying on the invariance of ‖A‖2k2k by left
and right orthogonal transformations, we establish that this estimator has a simple expression as
an algebraic combination of monomials of the form tr[(YY)l] so that the estimator Uk can be
efficiently computed. One of our main result is a general variance upper bound for Uk, which

allows us to prove that the estimator (Uk)
1/(2k)
+ achieves the optimal risk (pq)1/4 uniformly over all

matrices A.
Regarding general norms ‖A‖s where s ≥ 1 is not an even integer, we first exhibit a simple

plug-in estimator based on a linear transformation of the empirical singular values (κi(Y)) that
achieves a much higher error of the order q1/s(pq)1/4 (compare with (pq)1/4 for even Schatten

norms). Our second main result is a minimax lower bound of order q1/s

logs(q)(pq)1/4 stating that
it is impossible to estimate non-even Schatten norms at a much faster rate. Using polynomial
approximation techniques that approximate ‖A‖s by a linear combination of even Schatten norms
‖A‖2k2k, we are able to close this logarithmic gap between our upper and lower minimax bounds.

Finally, we extend our analysis to a signal plus noise model with a general subGaussian noise
distribution. Quite surprisingly, we establish that the convergence rates of our estimators remain
almost unchanged, despite the fact that the definition of Uk heavily depends on the sequence of
moments of the normal distribution. However, the analysis turns out to be much more involved in
comparison to Gaussian case. Finally, we are able to come back to the initial problem of effective
rank estimation and to construct suitable optimal estimators.

In this work [P2], we characterized the minimax risk for Schatten norms and effective ranks
estimation. We argued why estimating the effective rank of a matrix can be more appealing in
some situations than estimating its ranks. Still, testing hypotheses of the form {Rank(A) ≤ k}
against {Rank(A) > k} remains a really interesting problem for the future.

Open Problem 2.1. Establishing the minimax separation distances for rank test as we did for the
sparsity testing problem [A8].



Chapter 3

Network Analysis

This chapter is dedicated to the statistical analysis of network data although some of the contri-
butions specifically pertaining to clustering are postponed to chapter 4. We focus our attention to
two contrasted problems: community detection [A3, A20, A21] and graphon estimation [A9, A16].

In both cases, we observe the adjacency matrix A of an undirected random graph with n nodes.
Hence, A ∈ {0, 1}n×n is a symmetric matrix whose terms on the diagonal are all equal to zero.
The problem of community detection is that of testing whether the network is homogeneous (in
some sense to be defined) or if there exists a set of nodes that are unusually connected. With the
formalism of the previous chapter, this interprets as a signal detection problem in a random graph.
Detecting the existence of a signal is, in some way, the least ambitious objective that we can aim
for. In [A3, A20, A21], we precisely pinpoint the minimum expected density of the community
(a.k.a. the minimum signal strength) which makes it detectable by a suitable test. Whereas for
dense graphs, the mathematical tools and the desired bounds do not differ much from comparable
problems in Gaussian noise, the analysis of sparse graphs requires specific probabilistic tools.

Moving away from community detection, we also consider the problem of estimating the distri-
bution of A only assuming that this distribution is invariant by any permutation of the nodes. This
corresponds to assuming that A is sampled from a graphon [150]. Our goal is therefore to estimate
this graphon1. In [A16], we characterize the minimax estimation of rate of sparse graphons with
respect to the δ2-distance, which interprets as a counterpart of the Frobenius distance for matrices.
In [A9], we consider graphon estimation with respect to the cut distance, which is more grounded in
graph theory. This second contribution is rather appealing from a graph-theoretic and probabilistic
point of view, as trivial estimators turn out to be optimal.

3.1 Community Detection

This section is mostly dedicated to two joint contributions with E. Arias-Castro [A20, A21]. Ob-
serving an n × n adjacency matrix, we consider a toy testing problem where we want to decipher
whether A is sampled from an Erdös-Renyi random graph with connection probability p0 or if,
for some subset S ⊂ [n] of size m, the connection probability between nodes in S equals p1 > p0,
in which case S is referred as the community. We focus on situations where the community size
m, if it exists, is much smaller than n. The specific instance of this problem where p0 = 1/2 and
p1 = 1 is a randomized version of the planted clique problem and is central in complexity theory [7].
Besides, this average planted clique problem has been recently used for establishing computational

1The definition of graphon is postponed to Section 3.2

33
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lower bounds for statistical problems – see the seminal work [20] on sparse PCA. Here, we consider
the more general version of community detection where p0 and p1 are arbitrary.

More generally, our problem fits within the more general field of model testing for random
graphs. This encompasses the problem of detecting a latent geometry [37] or testing the number of
groups of a stochastic block models [91, 14, 25, 141] and its generalization [123]. The settings and
mathematical tools in our works significantly differ from the latter references mainly because we
focus on a regime where the size m of the community is much smaller than n. Nevertheless, there
exist some connections between our problem and that of recovering the communities in a stochastic
block models with a large K = n/m number of communities [33, 54].

Let us define our problem with the minimax formalism of the previous chapter. We consider an
asymptotic framework where m,n → ∞, and p0, p1 may also change. Given a test T , we consider
as before the maximum risk

Rn(T ) = P0(T = 1) + max
|S|=m

PS(T = 0) , (3.1)

where P0 is the distribution under the null and PS is the distribution under the alternative where
S indexes the community. We say that a sequence of tests (Tn) for a sequence of problems (An)
is asymptotically powerful (resp. powerless) if Rn(Tn) → 0 (resp. → 1). Practically speaking,
a sequence of tests is asymptotically powerless if it does not perform substantially better than
any guessing that ignores the adjacency matrix A. In [A20, A21], we establish the fundamental
statistical (information theoretic) difficulty of detecting a community in a network by providing
the conditions on (n, m, p0, p1) under which there exist asymptotically powerful tests.

3.1.1 Dense regime

We first focus on the quasi-normal regime where mp0 is either bounded away from zero, or tends
to zero slowly, specifically,

log

(
1 ∨ 1

mp0

)
= o

[
log
( n
m

)]
. (3.2)

It encompasses the case where p0 is constant. Because of its importance in describing the tails
of the binomial distribution, the relative entropy or Kullback-Leibler divergence of Bern(p1) to
Bern(p0) — appears our results. Hp0(p1) = p1 log(p1p0 ) + (1− p1) log(1−p1

1−p0 )

Theorem 3.1. Assuming that m� log(n) and (3.2) hold, all tests are asymptotically powerless if

p1 − p0√
p0

m2

n
→ 0, and lim sup

mHp0(p1)

2 log(n/m)
< 1. (3.3)

Conversely, if any of the two conditions is not satisfied, then it is possible to build a powerful test.
The test is the combination of the two natural tests that arise in the related problem of submatrix
detection [39] and much of the work in that field [6, 44, A28]. First, the total degree test rejects for
large values of the total number of edges in the graph A∗ :=

∑
1≤i<j≤n Ai,j . Through Chebyshev

inequality, one easily show that the test based on A∗ is asymptotically powerful if p1−p0√
p0

m2

n →∞.

Second, we consider the scan test that rejects for large values of A∗m := max|S|=mAS where AS :=∑
i,j∈S,i<j Ai,j is the number of edges in the graph induced by S. By Chernoff’s bound together

with an union bound, we derive that this test is asymptotically powerful if lim inf
mHp0 (p1)

2 log(n/m) > 1.
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Unknown p0 and adaptation to unknown m. We also consider the situation, common in
practice, where p0 is unknown. We derive the corresponding lower bound in this situation and
design a combination of two tests that achieve this bound. While the scan test can be easily
adapted to unknown by plugging a suitable estimator of p0, this is not the case the total degree
test. For this reason, we have to work with the second moment of the degree distribution to craft
a so-called degree-variance test.

On computational-statistical trade-offs. In the setting where m � n2/3 for known p0, and
m � n3/4 for unknown p0, this detection boundary is achieved by the total degree test and the
degree variance test, respectively, which can be computed in polynomial-time. Otherwise, there is
a large discrepancy between the information theoretic detection boundary, achieved by the scan
test, and what polynomial tests are shown to achieve, which is not surprising since average planted
clique is a specific instance of our problem. Subsequently to our work, there has been an effort
towards establishing computational lower bounds for community detection by a reduction to the
planted clique regime (p0 = 1/2, p1 = 1) – see [104] and recent series of works of Brennan and
Bresler [33, 36].

On the proof arguments. Following the general strategy for proving impossibility results in
test problems (see Chapter 2), we may be tempted to use a second moment strategy. For N =

(
n
m

)
,

define the mixture distribution Q = N−1
∑

S:|S|=m PS . Write the likelihood L = N−1
∑

S:|S|=m LS
where LS = dPS /dP0. We need to prove that that the total variation distance, or equivalently,
E0[|L − 1|] goes to zero. If we use, as it is often case, Cauchy-Schwarz inequality and bound the
second moment E0[(L− 1)2], this will unfortunately lead to a loose conditions for impossibility of
detection. For this reason, we have to rely on a adaptive truncated second moment. This argument
was introduced, up to our knowledge, by Ingster in the 90’s (see also [39]) and we consider an
adaptive version here. The idea is to introduce, for each S, and event ΓS and to work with the
truncated likelihood L̃ = N−1

∑
S:|S|=m L̃S where L̃S = LS1ΓS

, where ΓS is the complementary

event of ΓS . Then, since L̃ ≤ L, simple algebra and the definition of LS leads to

E0[|L−1|] ≤ E0[L− L̃]+E1/2
0 [(1− L̃)2] = N−1

∑
S:|S|=m

PS(ΓS)+
[
E0[L̃2]−1+

2

N

∑
S:|S|=m

PS(ΓS)
]1/2

.

With this bound in mind, it suffices to choose an event ΓS with small probability so that PS(ΓS) =
o(1) (uniformly in S) while enforcing the second truncated moment E0[L̃2] to be close to one. In
this relatively dense situation, we choose a complementary event ΓS = ∩m`=1 supT⊂S, |T |=lAT ≤ ζ(`)
for some suitable function ζ. In other words, we remove the event of small probability, where a
subgraph induced by some T ⊂ S has a unusually high density.

3.1.2 Sparse regime

In a subsequent work [A20] with E. Arias-Castro, we focus on the sparse regime where p0 ≤ 1
m

(
m
n

)c0
for some constant c0 > 0. Here, sparse implies that mp0 ≤ 1. In those sparse regimes, a combination
of the scan test and the total degree test is still asymptotically powerful when the condition (3.3) is
not satisfied. However, it turns out that it is possible to detect the presence of the subgraph below
the threshold (3.3). Informally, the main reason for this is that sparse Erdos-Renyi random graphs
are much less homogeneous that their counterparts, so that it becomes possible to detect a subtle
signature of the signal by looking at the geometry of the graph.
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In these regimes, it is helpful to parametrize our problem with λ0 = np0 and λ1 = mp1 and
κ ∈ (0, 1) such that m = nκ. Note that these quantities λ0, λ1, and κ may vary with n. We
illustrate our results in two emblematic regimes. They can be summarized as follows.

Regime 1: λ0 = (n/m)α with fixed 0 < α < 1. Compared to the setting in our previous work
[A21], the total degree test remains a contender, scanning over subsets of size exactly m as in A∗m
does not seem to be optimal anymore, all the more so when p0 is small. Instead, we scan over
subsets of a wider range of sizes, using

A‡n =
m

sup
`=m/un

A∗k
k

, (3.4)

where un = log log(n/m). We call this the broad scan test. In analogy with the dense case [A21],
we find that a combination of the total degree test and the broad scan test based on (3.4) is
asymptotically optimal in the following sense. When κ > 1+α

2+α , the total degree test is asymptotically

powerful when λ1 � n(1+α)/2

m1+α and the two hypotheses merge asymptotically when λ1 � n(1+α)/2

m1+α .
When κ < 1+α

2+α , that is for smaller m, there exists a sequence of increasing functions ψm such that
the broad scan test is asymptotically powerful when lim inf(1− α)ψm(λ1) > 1 and the hypotheses
merge asymptotically when lim sup(1 − α)ψm(λ1) < 1. In summary, we establish the existence of
a sharp threshold ψm(.) for detection2 in this sparse regime.

Regime 2: λ0 > 0 and λ1 > 0 are fixed. The poissonian regime where λ0 and λ1 are assumed
fixed is depicted on Figure 3.1. When λ1 > 1, the broad scan test is asymptotically powerful.
When λ0 > e and λ1 < 1, no test is able to fully separate the hypotheses. In fact, for any fixed
(λ0, λ1) a test based on the number of triangles has some nontrivial power (depending on (λ0, λ1)),
implying that the two hypotheses do not completely merge in this case or more precisely that the
total variation distance between P0 and Q (as defined in the previous subsection) is bounded away
from 0 and 1. The case where λ0 < e is not completely settled. No test is able to fully separate
the hypotheses if λ1 <

√
λ0/e. The largest connected component test is optimal up to a constant

when λ0 < 1 and a test based on counting subtrees of a certain size bridges the gap in constants
for 1 ≤ λ0 < e, but not completely. When λ0 is bounded from above and λ1 = o(1), the two
hypotheses merge asymptotically.

On the proof techniques. In comparison to the dense case, both the feasibility and the impos-
sibility results are more challenging. In particular, the second regime (λ0 and λ1 fixed) requires to
control the behavior of multi-type poissonian branching processes to understand the geometry of
the connected components and the number of subtrees of the graph under the alternative hypoth-
esis. Along these lines, the corresponding events ΓS in the the truncated second moment have to
be carefully crafted in terms of the number of large subtrees inside the subgraph induced by S.

Open Problem 3.1. Establish the tight detection threshold in Figure 3.1 in the regime λ0 < e and
λ1 < 1.

3.1.3 Extension to inhomogeneous random graphs

While the above statistical problem is elegant, one may opt that the real-world networks are much
less homogeneous than a typical realization of an Erdos-Renyi random graph. In particular, the

2Although the exact form of this threshold ψm(.) is implicit, we show that detection occurs at λ1 � (1− α)−1.
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Figure 3.1: Detection diagram in the poissonian asymptotic where λ0 and λ1 are fixed and m = nκ

with 0 < κ < 1/2.

degree distribution of nodes in real networks is far from that of binomial distribution and may
exhibit for instance power laws [163].

In a recent joint work [A3] with K. Bogerd, R. Castro, and R. van der Hofstad, we partially
extend our results to the more general problem of detecting a small community in an already
inhomogeneous random graph. In a size n inhomogeneous random graph, we are given a symmetric
matrix p = (pij) ∈ [0, 1]n×n and each edge is sampled independently with probability pij , that
is P0[Aij = 1] = pij . Here we consider the scenario where, under the null hypothesis, the edge
probabilities pij have a so-called rank-1 structure. That is, we assume that each vertex i ∈ [n]
is assigned a weight θi ∈ (0, 1) and that the edge probabilities are given by pij = θiθj . This is
probably one of the simplest models for inhomogeneous random graphs possible. Note that this
model is very similar to the degree-corrected stochastic block model [206], except that, under the
null, there is only only single group. Furthermore, there are strong connections between this null
model and the configuration model [163]. Under the alternative, there exists a subset S ⊂ [n] of
size m such that the connection probability between two nodes of S is higher by a factor ρS > 1,
that is PS [Aij = 1] = ρSθiθj if i, j ∈ S where PS [Aij = 1] = θiθj if i /∈ S or j /∈ S.

The detection problem now amounts to deciphering whether an adjacency matrix A has been
sampled according to P0 or to PS for some S ⊂ [n], without knowing in advance the weights θi.
Provided that (i) the community size m is small enough and (ii) the heterogeneity maxi θi/mini θi is
mild, we are able to identify the threshold ρ∗S at which it is possible to distinguish both hypotheses.
The corresponding optimal test is a variation of the scan test that accounts for the heterogeneity
of the connection probabilities.

3.2 Graphon Estimation

Whereas the previous section focused on parametric random graph model with few parameters, we
move to non-parametric models of random graphs. This section is based on two joint works [A9,
A16] with O. Klopp and A. Tsybakov. In the 2000’s, Lovász and many of his coauthors (see e.g. [150,
151]) have introduced graphons as the limit of a graph sequences. Quite interestingly, Aldous-
Hoover-Kallenberg’s representation theorem [150, 66] implies that any random graph distribution
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can be represented by a graphon, through the use of W -random graphs defined below. For those
reasons, one may interpret graphons as an universal class for random graph distribution.

There are several equivalent ways of defining graphons [150]. Here, we consider a graphon as a
symmetric measurable functions W : [0, 1]2 → [0, 1]. Henceforth, we write W for the collection of
all possible graphons. Given a graphon W0, a W -random graph with n nodes is sampled as follows:
first, one samples ξ1, . . . , ξn are unobserved (latent) i.i.d. random variables uniformly distributed
on [0, 1]. Those represent the hidden labels of those n nodes. Then, given those labels, we build
the n×n symmetric probability matrix Θ0 by (Θ0)ij = W0(ζi, ζj) if i 6= j and (Θ0)ii = 0. Finally,
we sample the symmetric adjacency matrix A: the observations Aij for 1 ≤ j < i ≤ n are assumed
to be independent Bernoulli random variables with success probabilities (Θ0)ij .

For a fixed graphon W0, the expected number of edges of the corresponding W -random graph is
of the order of 0.5n2

∫
W0(x, y)dxdy � n2. To better handle sparse networks, it has been proposed

to modify this model by the introduction of a sparsity parameter ρn. In this sparse W -random
graph model, the probability matrix Θ0 is now built as

(Θ0)ij = ρnW0(ξi, ξj) for i 6= j (3.5)

where ρn > 0 is the scale parameter that can be interpreted as the expected proportion of non-zero
edges. Then, the adjacency matrix A is sampled as above as an inhomogeneous random graph with
probability matrix Θ0. This sparse W -random graph model was considered in [201, 196, 24, 23]
among others. We can summarize the generating process of graph as follows

W0 → Θ0 → A . (3.6)

In [A16], we have been interested in the two related problems of inferring the probability matrix
Θ0 and the graphon W0 from a single observation of the adjacency matrix A. We first describe
estimation in Frobenius/δ2 norm, before moving to a weaker distance, called the cut distance.

3.2.1 Sparse Graphon estimation

Estimating the probability matrix Θ0. First, we study optimal rates of estimation of the
probability matrix Θ0 under the Frobenius norm from a sample A. We estimate Θ0 by a block-
constant matrix and we focus on deriving oracle inequalities with optimal rates. Estimating Θ0

by a K ×K block constant matrix is equivalent to fitting a stochastic block model with K classes.
Estimation of Θ0 has already been considered by [51, 201] but convergence rates obtained there
are far from being optimal. Gao et al. [90] have established the minimax estimation rates for Θ0

on classes of block constant matrices and on classes of smooth matrices. Their analysis is restricted
to the dense case corresponding to ρn = 1 when dealing with model (3.5).

For a fixed integer K and a threshold ρn, let Θ̂
ρn

be the least-square estimator of Θ0 among
K-block constants matrices whose maximum entry is smaller than ρn. In the following result, we
consider the matrix Θ0 as fixed (or equivalently we work conditionally to ζ1, . . . , ζn)

Theorem 3.2 ([A16]). If maxij |(Θ0)ij | ≤ ρn, then the restricted least-square estimator Θ̂
ρn

sat-
isfies

E
[

1

n2
‖Θ̂

ρn −Θ0‖2F
]
.

1

n2
‖Θ0 −Θ∗‖2F + ρn

(
log(K)

n
+
K2

n2

)
, (3.7)

where Θ∗ is the best approximation of Θ0 by a K-block constants
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Conversely, (3.7) is shown to be minimax optimal when Θ0 is a K-block constant matrix. In
particular, we recover the right dependency with respect to both the number K of blocks and the
scale parameter ρn. As a corollary of (3.7), we recover minimax non-parametric rates for estimating
Θ0 if, up to a permutation of its rows and columns, Θ0 is smooth. See also [89] for related and
almost simultaneous results.

Graphon estimation in δ2 distance. In the W -random graph model, the ultimate objective
is to estimate the graphon function W0 rather than the probability matrix Θ0. Unfortunately,
contrary to Θ0, the graphon W0 is not identifiable. We recall the following result [150, Sect.10].
Two graphons U and W in W are called weakly isomorphic if there exist measure preserving maps
φ, ψ: [0, 1] → [0, 1] such that Uφ = Wψ almost everywhere. Here Uφ(x, y) = U(φ(x), φ(y)).
Two graphons U and W define the same probability distribution if and only if they are weakly
isomorphic. Hence, we could only hope to estimate W in the corresponding quotient space W̃.
Then, the counterpart of the l2 distance in the corresponding quotient space W̃ is defined [150,
Ch.8,13] as

δ2
2(W,W ′) := inf

τ∈M

∫ ∫
(0,1)2

|W (τ(x), τ(y))−W ′(x, y)|2dxdy , (3.8)

where M is the set of all measure-preserving bijections τ : [0, 1]→ [0, 1].
Given a symmetric n × n matrix Θ, we can easily transform it as a graphon function WΘ by

WΘ(x, y) = Θdnxe,dnye for any (x, y) ∈ (0, 1). From a practical perspective, if we have built a

suitable estimator Θ̂ of Θ0, it is natural to estimate W0 by W
Θ̂/ρn

, since we have no additional

information of W0 other than the fact that Θ0 has been sampled according to (3.5).
As an important estimation class, consider the collection W[K] of k-step functions that is

the subset of graphons W ∈ W such that, for some Q ∈ RK×Ksym and some φ : [0, 1] → [K],
W (x, y) = Qφ(x),φ(y) for all x, y ∈ [0, 1]. In fact, W[k] stands for the collections of all graphons
corresponding to a stochastic block model with at most K groups. The following proposition
controls the risk of our estimator on the class of k-steps graphons.

Proposition 3.3 ([A16]). Assume that the graphon W0 ∈ W[K]. The graphon W
Θ̂
ρn
/ρn

estimated

the restricted least squares estimator with K groups satisfies

E
[
δ2

2

(
W

Θ̂
ρn
/ρn
,W0

)]
.

[
1

ρn

(
K2

n2
+

log(K)

n

)
+

√
K

n

]
. (3.9)

Comparing (3.9) with (3.7), we observe an additional error term of the order of
√
K/n, called

the agnostic error. The error term would arise even if we had observed perfectly the matrix Θ0.
Intuitively, it comes from the fact that Θ0 in (3.5) is a sample from W0 where we do not observe
the design ξ1, . . . , ξn. Although this term seems unavoidable, the main technical challenge is to
prove a matching minimax lower bound (3.9). Indeed, the definition of the δ2 distance involves an
infimum over all measure-preserving bijection τ , so that it is delicate to show that a collection of
graphons are

√
K/n-distant in δ2

2 distance. See Lemma 8 in [A16] for the minimax lower bound
matching the risk bound (3.9).

As a closing remark, we point out that the least-square estimators considered in [A16] suffer
from an exponential complexity. Polynomial-time procedures such as those based on singular value
thresholding unfortunately achieve slower convergence rates –see e.g. [A9]. While a computational-
statistical tradeoff is not formally proved, this is somewhat expected given the conjectured compu-
tational lower bounds for clustering stochastic-block models with a large number of groups [54].
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3.2.2 Graphon estimation in cut distance

In the previous subsection, we were interested in estimating the probability matrix Θ0 in Frobenius
norm and the graphon function W0 in the corresponding δ2-distance. While these two loss functions
are sensible for matrices and bivariate functions, they do not reflect particular structural similarities
between the graphs. For this purpose, Frieze and Kannan [86] have introduced another notion of
distance, called the cut distance. The cut norm of a matrix B = (Bij) ∈ Rn×n is defined by

‖B‖� =
1

n2
max
S,T⊂[n]

∣∣∣ ∑
i∈S,j∈T

Bij

∣∣∣.
In other words, ‖B‖� corresponds (up to to a renormalization) to the maximal sum of entries over
all submatrices of B. Then, the cut distance d�(G,G′) between two graphs G and G′ defined on
the same set of nodes and with adjacency matrices A and A′ is defined as the cut norm ‖A−A′‖�.
Denoting eG(S, T ) the number of edge between nodes in S and T in the graph G, the cut distance
d(G,G′) is the supremum over all S, T of |eG(S, T ) − eG′(S, T )|/n2. In other words, d�(G,G′)
is small if the restrictions of G and G′ to all subsets S, T have similar edge densities. Similarly,
we define the cut norm of a graphon W ∈ W by ‖W‖� = sup

S,T⊂[0,1]
|
∫
S×T

W (x, y)dxdy|, where the

supremum is taken over all measurable subsets S and T . Since the graphons W are not identifiable,
we consider the metric induced by ‖ · ‖� on the quotient space W̃+ defined by

δ�(W1,W2) = inf
τ∈M
‖W1 −W τ

2 ‖� , (3.10)

where we take the infimum in the set M of all measure-preserving bijections τ : [0, 1]→ [0, 1] and
W τ (x, y) = W (τ(x), τ(y)).

The cut distance is also a cornerstone in the graph limit theory introduced by Lovász and
Szegedy [151] and further developed in, e.g. [29, 30]. In particular, this theory states that graphons
can be interpreted as limits (with respect to δ�) of graph sequences. Besides, convergence in δ� is
equivalent to other structural properties such as the convergence of all homomorphisms numbers.
Given a simple graph F with q nodes and a graphon W0, the homomorphisms number t(F,W0)
is the probability that a size q subgraph of W -random graph (3.5) contains the edge set F . As
a consequence, the homomorphisms numbers t(F,W0) and t(F,W ′0) are close when the expected
number of subgraphs F for a size n random graph G sampled from W0 is close to that of a size n
random graph sampled from W ′0. It has been established that convergence in the cut distance is
equivalent to convergence of homomorphism numbers for all simple graphs F (see Theorem 11.5
in [150] for more details). Hence, estimating well the graphon W0 in the cut distance allows to
estimate well the number of small patterns induced by W0.

The metric δ� is dominated by the previous metric δ2 so that convergence in cut metric is
weaker than convergence in δ2. One of the striking consequences of the celebrated Szemerédy’s
regularity Lemma [185] states that an adjacency matrix sampled from a W -random graph model
converges to the true graphon W0 in cut distance, this at an uniform rate over all graphons. More
precisely, fix a graphon W0 in W and let A denote the adjacency matrix of a size n random graph
sampled from W0 (as in (3.6) but with ρn = 1). With high probability, the empirical graphon
WA built from the adjacency matrix A satisfies δ�[W0,WA] . 1/

√
log(n), this uniformly over all

possible W0.

Our contribution. In [A9], we investigate to what extent the δ� convergence rate can be im-
proved for specific classes of graphon such a K-steps graphons and how to craft an optimal estima-
tor. From a practical perspective, the problem turns out to be a trivial one, as we establish that
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the empirical graphon WA turns out to be minimax optimal simultaneously over all classes W[K].
Recall that W[K] is the collection of graphons corresponding to stochastic block models with at
most K groups. In practice, it could be disappointing that the raw data are already optimal with
respect to the cut distance, whereas they perform really badly with respect to the δ2 distance. This
is why we also prove that a singular value thresholding estimator is still optimal with respect to the
cut metric δ� while achieving the best known rate in δ2-distance in the class of polynomial-time
estimators. Our main result is a characterization of the minimax convergence rate over the class
W[K].

Theorem 3.4 ([A9]). For any K ≥ 2, we have

inf
f̂

sup
W0∈W[K]

EW0

[
δ�

(
Ŵ ,W0

)]
� min

(√
K

n log(K)
,

1√
log(n)

)
. (3.11)

The rate (3.11) is achieved by the empirical graphon WA. In some way, the purpose of [A9]
is twofold: first, we provide a matching minimax lower bound for the universal 1/

√
log(n) rate.

Second, we prove how graphons with a simpler structure, that is belonging to W[k], are to be
estimated at as faster rate than the universal convergence rate.

From a technical perspective, the tools needed for deriving optimal cut distance rates differ
from those used for the δ2-distance. The proof relies among other things on a careful application
of Szemerédi’s regularity lemma to distorted versions of the graphon, together with Khintchine’s
inequality.

Discussion and open problems. Graphon estimation is arguably an interesting and challeng-
ing problem. Unfortunately, there are some important limitations from a practical perspective,
the main one being that a suitable estimator Ŵ of a graphon W0 is possibly hard to interpret. To
illustrate this issue, we move to a slightly different definition of graphons. A graphon is now defined
by a triplet (Ω, µ,W ), where (Ω, µ) is a probability space and W : Ω× Ω → [0, 1] is a measurable
bivariate function. In the previous definition (Ω, µ) was restricted to be the unit segment [0, 1]
endowed with the Lebesgue measure λ. It turns out than any such graphon (Ω, µ,W ) is weakly-
isomorphic to some ([0, 1], λ,W ′) for some W ′–see [150]. Since graphons are only identifiable up to
a weak isomorphism, it was therefore not restrictive to focus our attention to representatives with
the latent space [0, 1] as we did in this chapter (and as done in most of the literature in graphon es-
timation). However, this general latent space perspective on graphons raises an important problem.
Even if the graphon W is a simple function on a latent space Ω, it is possible that all the equivalent
graphons W ′ on [0, 1] are really erratic. As a consequence, a good estimation of the graphon (e.g.
with respect to the δ2 metric) on [0, 1] is possibly not insightful to understand the random graph
model. As a simple example, consider a random geometric graph on [0, 1]d with d ≥ 2. While
there exists a simple graphon representation on the latent space [0, 1]d, any representation on [0, 1]
is irregular. This suggests that a most important question in graphon estimation is to find some
informative latent space (Ω, µ) to represent the graph. Second, this raises the question of defin-
ing suitable non-parametric class for graphons. In classical non-parametric estimation on [0, 1],
smoothness classes (e.g. Hölder’s class) are particularly suited. For this reason, optimal estimation
rates have been studied for such classes in [90] and in our own work [A9]. However, this class does
not capture simple random graph models with latent space dimension higher than 1. In summary,
the most important challenges to make the graphon estimation framework applicable seem the lack
of a suitable approximation theory and the problem of finding a suitable representation.
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Chapter 4

Clustering

4.1 Introduction

The problem of clustering is that of grouping similar ”objects”. Depending on the context, these
objects can be points in a metric space, nodes of a graph,. . . Clustering serves many purposes in
data analysis, including data visualization, data compression, dimension reduction, . . .

This diversity of motivations has spurred long and vivid research streams at the crossroads of
statistics and theoretical computer science. In this chapter, I only focus on a single perspective,
which is referred as the ”hidden partition”1 problem. Informally, this perspective postulates that
there exists an unknown true underlying partition G∗ = (G∗1, . . . , G

∗
K) of these n objects in K

groups. The data-set X is assumed to have been sampled according to a distribution PG∗ . Then,
the goal is to recover this hidden partition G∗ from X. Within this formalism, we can summarize
the data generating process and the statistical objectives as follows

G∗ →
PG∗

X→ Ĝ .

Given a given partition G∗ = (G∗1, . . . , G
∗
K) and a ∈ [n], k∗(a) stands for index of the group of the

a-th object. This viewpoint includes some of the most popular clustering probabilistic models such
as Gaussian mixture models (GMM) or Stochastic block models (SBM) defined below.

Definition 4.1 ((conditional) Gaussian Mixture Model (GMM)). Let µ1, . . . , µK ∈ Rp and Σ1,. . . ,
ΣK ∈ Rp×p be K vectors and K covariance matrices. Fix a partition G∗ with K groups. Then, the
data matrix X = (X1, . . . , Xn)T ∈ Rn×p has independent rows that satisfy Xa ∼ N (µk∗(a),Σk∗(a))
for all a = 1, . . . , n.

The above model differs from the usual definition of Gaussian mixtures because the partition
G∗ is considered as fixed, whereas it is usually assumed that the partition G∗ has been sampled
according to some expected proportions π∗ = (π∗1, . . . , π

∗
K). One may interpret Definition 4.1 as a

specific instance of the classical Gaussian mixture model where we work conditionally on on the
hidden labels.

The problem of recovering the partition G∗ from X is identifiable if all the (µk,Σk)’s are distinct
for k = 1, . . . ,K. In this chapter, we focus our attention on settings where the µk’s are all distinct
and we want to build upon the differences in the means to recover the partition.

Definition 4.2 ((conditional) Stochastic Block Models (SBM)). Let Q ∈ [0, 1]K×Ksym denote a sym-
metric matrix of probabilities. Fix a partition G∗ with K groups. The data matrix X ∈ {0, 1}n×n

1also called planted partition.

43
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corresponds to the adjacency matrix of an undirected simple graph, that is X is symmetric and its
diagonal is zero. The Xa,b’s are independent and Xa,b ∼ B(Qk∗(a),k∗(b)) for 1 ≤ a < b ≤ n.

As previously, this slightly differs from the usual definition of SBM [110], as the partition
G∗ is considered as fixed and not sampled according to some proportions π∗. When the matrix
Q = (α−β)IK+βJK where JK is the constant matrix with 1’s and 0 < β < α < 1, this corresponds
to the so-called affiliation model where nodes within the same group are connected with a higher
probability α, whereas the connection probability β between nodes in distinct groups is lower. In
the sequel, we say more generally that the model is assortative if the diagonal terms of Q are larger
than non-diagonal terms, so that the nodes in the same group tend to be more connected than
nodes in a different group. If we pick β > α in the previous matrix Q, then the corresponding
graph will be nearly K-partite, in the sense that there are more edges between groups than within
groups. In fact, it is possible to sample various forms of random graphs by playing with with
the matrix Q. For general Q, two nodes in the same group share the property that at least, in
expectation, they are similarly connected to all the other nodes. In turns out that the problem of
recovering G∗ from X is identifiable if and only if the all the rows of Q are distinct.

In both these models, the general objective is to estimate from the raw data X a partition Ĝ
which is as close as possible to the true partition G∗. If possible, the corresponding procedure should
run in polynomial time with respect to the size (K,n, p) of the problem. For both the Gaussian
mixture models and the stochastic block models, this problem has attracted a lot of interest.
Many different procedures have been studied including spectral clustering [149, 142], semi-definite
programs [158, 5], Loyd’s algorithms [152] or more generally iterative [93] algorithms. For SBMs,
more specific procedures tailored for sparse graphs such as [28, 3] have also been proposed –see the
survey [2].

Organization of the chapter. I will first describe in depth a joint work [A13] with C. Giraud,
where we study the behavior of a convex relaxation of the K-means algorithm both for general
GMMs and SBMs. Interestingly, this fairly general method achieves nearly optimal clustering
errors in almost all regimes. Then, Section 4.3 is more specifically dedicated to the case where the
number of K of groups is large. This section differs from the rest of the manuscript as I mostly
describe open problems and conjectures, although a joint work [A11] with J. Banks, C. Moore,
J. Xu, and R. Vershynin is mentioned. Section 4.4 is dedicated to the slightly different problem
of variable clustering that we addressed with F. Bunea, C. Giraud, X. Luo, and M. Royer [A7].
Finally, I discuss an older joint work with E. Arias-Castro on sparse clustering [A17].

In this chapter, my hope is to provide a clear picture of the state-of-the-art in GMM clustering.
I find this field especially interesting because (i) it shares deep connections with other statistical
problems (e.g. density estimation in GMM), (ii) it provides some intuitions on other related clus-
tering problems (e.g. block Ising models), and (iii) there exist many open problems when additional
structure is added (e.g. sparsity).

4.2 Analysis of relaxed K-means for GMM and SBM

This section is mainly based on [A13].
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4.2.1 K-means and relaxed K-means

When the objects we want to cluster correspond to vectors in a Euclidean space, one of the most
standard clustering approach is based on the minimization of the K-means criterion [147]. Writing
Xa ∈ Rp for the object a ∈ [n], the K-means criterion of a partition G = (G1, . . . , Gk) of [n] is
defined as

Crit(G) =

K∑
k=1

∑
a∈Gk

∥∥∥∥Xa −
1

|Gk|
∑
b∈Gk

Xb

∥∥∥∥2

2

, (4.1)

where ‖.‖2 is the Euclidean norm. The criterion (4.1) quantifies the dispersion of each group.
Hence, a smaller value of the criterion indicates that the partition is more homogeneous. A K-
means procedure then aims at finding a partition Ĝ that minimizes, at least locally, the K-means
criterion (4.1). Unfortunately, this minimization problem is NP-hard [10].

In practice, one often resorts to iterative minimization procedures such as Lloyd’s algorithm [147]
and its variants [8], but those are only proved to converge to a local minimum of (4.1), unless the
initialization is close enough to the global one. As an alternative, Peng and Wei [168] have suggested
to relax the K-means criterion to a Semi-Definite Program (SDP) followed by a rounding step. The
resulting program is provably solvable in polynomial time.

Let us describe this convex criterion. We denote X ∈ Rn×p, the n× p matrix whose a-th row is
given by Xa (as in Definition 4.1). Any partition G of [n] can be encoded by a so-called partnership
matrix B ∈ Rn×n such that Bab = 0 if and only if a and b belong to distinct groups of G and
Bab = 1/|Gk| if a and b are in the same group Gk. For a fixed number K of groups, the collection
of all partnership matrices when G spans all possible partitions may be described as

P =
{

B ∈ Rn×n : symmetric, B2 = B, tr(B) = K, B1 = 1, B ≥ 0
}
.

Here, B ≥ 0 means that all entries of B are nonnegative and 1 is the constant vector whose coordi-
nates are all equal to one. Peng and Wei [168] have established that minimizing the criterion (4.1)
turns out to be equivalent to maximizing 〈XXT ,B〉 over the space P of partnership matrices.

The constrain set P is non-convex which is expected as K-means is NP-hard [10]. Still, we are
in good position to convexify the criterion now that K-means is expressed as a linear maximization
problem. Indeed, Peng and Wei [168] suggest to drop the condition B2 = B in the set P

C =
{

B ∈ Rn×n : Positive Semi Definite, tr(B) = K, B1 = 1, B ≥ 0
}
.

Hence, the corresponding semi-definite program (SDP) is defined as

B̂ ∈ arg max
B∈C

〈XXT , B〉. (4.2)

B̂ does not necessarily correspond to a partition. An additional step is therefore needed to round
B̂ into a proper partnership matrix. If B̂ is close enough to the matrix B∗ corresponding to the
true partition G∗, then the rows of B̂ corresponding to the same groups in G∗ should be similar.
This is why we choose the final rounding step to be done by applying a clustering algorithm to the
rows of B̂. For technical reasons, we resort here to an approximate K-medoids2 on the rows of B̂
(as in [82]) which can be performed efficiently [49]. This two-step procedure is referred henceforth
as relaxed K-means.

2K-medoid is the counterpart of K-means where the square Euclidean norm in (4.1) is replaced by the Euclidean
norm
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One may interpret the exact K-means minimization problem as the maximum likelihood esti-
mator of G∗ in a Gaussian mixture model (Definition 4.1), where all the covariance matrices are
identical and proportional to the identity matrix. Still, the K-means criterion and its relaxation
do not pertain to a particular hidden partition model and are applied in various contexts. The
purpose of our work [A13] is to show that the relaxed K-means is highly versatile and lead to near
optimal clustering performances for two different emblematic models: Gaussian mixture models
and stochastic block models.

4.2.2 Clustering Gaussian mixtures

In this subsection, we consider general Gaussian mixture models as defined in Definition 4.1. All
the results can be safely extended to subGaussian mixtures – see [A13].

Our goal is to quantify the ability of a clustering procedure to recover the hidden partition G∗.
One may aim at establishing that Ĝ = G∗ with high probability, that is at exactly recovering G∗.
Unfortunately, this objective is sometimes too demanding when the groups do not differ that much.
For this reason, we introduce the following loss function

err(Ĝ,G∗) = min
π∈SK

1

2n

K∑
k=1

∣∣∣G∗k 4 Ĝπ(k)

∣∣∣ , (4.3)

where ∆ stands for the symmetric difference and SK is the collection of permutation of [K]. Hence,
err(Ĝ,G∗) quantifies the proportion of misclassified objects in Ĝ. To simplify the exposition, we as-
sume throughout that the true partition is approximately balanced, that is mink |G∗k| � maxk |G∗k| �
n/K – see [A13] for a general treatment. In such a case, if we pick Ĝ uniformly at random, then its
loss is of the order of (K− 1)/K. We say that a procedure achieves approximate recovery when the
loss err(Ĝ,G∗) is strictly smaller than this quantity in the sense that err(Ĝ,G∗) ≤ α(K − 1)/K
for some fixed α ∈ [0, 1). We are interested in finding the minimal separation condition between
the groups to be able to achieve approximate recovery and when approximate recovery is possible
to achieve the smallest possible error.

For this purpose, we need to introduce some sort of signal-to-noise ratio s2 of the clustering
problem. Intuitively, the larger the Euclidean distance between two centers ∆jk = ‖µk − µj‖2,
the more easily we can recover the partition. The difficulty of the clustering problem also depends
on the covariance matrices Σk’s. We introduce two quantities to quantify the noise level: the
maximum operator and Frobenius norms σ2 = maxk ‖Σk‖op and ν2 = maxk ‖Σk‖F .

Actually, as shown in Theorem 4.3 below, the misclassification error of the relaxed K-means
decreases exponentially fast with the signal-to-noise ratio

s2 =
∆2

σ2
∧ n∆4

Kν4
. (4.4)

To ease the interpretation, one may consider the spherical case Σ1 = . . . = ΣK = σ2Ip, in which

case s2 simplifies as s2 = ∆2

σ2 ∧ n∆4

Kpσ4 . We explain below the intuition behind (4.4).

4.2.2.1 Equal trace case

In the following theorem, we assume that tr[Σ1] = tr[Σ2] = . . . = tr[ΣK ].

Theorem 4.3 (Equal Trace case [A13]). If the signal-to-noise ratio s2 satisfies s2 & K, then,
with high-probability, the proportion of misclassified points by the relaxed K-means estimator (4.2)
satisfies err(Ĝ,G∗) ≤ e−c′s2.
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A few comments are in order. Theorem 4.3 ensures partial recovery as soon as s2 & K. If

we introduce the effective ranks RΣ as the ratio RΣ = ν4

σ4 =
maxk=1,...,K |Σk|2F
maxk=1,...,K |Σk|2op

, then Theorem 4.3

guaranties approximate recovery as soon as s2 & K, or equivalently

∆2

σ2
&

(
1 ∨

√
RΣ

n

)
K , (4.5)

and then the misclassification error is upper bounded by e−c
′s2 ≤ e−cK with high probability.

In [A13], we advocate why, at least in the spherical case Σ1 = . . . = ΣK = σ2Ip, the exponential

rate e−c
′s2 is essentially optimal. Recall that s2 = ∆2

σ2 ∧ n∆4

Kpσ4 . Since the clustering problem only

makes sense if ∆ & σ (otherwise even the Bayes classifier is not able to achieve approximate

recovery), then we have s2 = ∆2

σ2 in the low-dimensional setting n ≥ Kp and s2 = n∆4

Kpσ4 in the

high-dimensional setting n ≤ Kp. In the former case, the rate e−c
′∆2/σ2

turns out to correspond to
the miss-classification error of the oracle procedure that knows the mean parameters before hand.
In the high-dimensional case, the rate e−c

′n∆4/(Kpσ4) corresponds to the optimal classification error
in the arguably simpler case of supervised classification, where the statistician is also given the
hidden labels of the n observations and has to to classify a new observation. As a consequence,
the misclassification error e−cs

2
cannot be improved. This has been later formalized in a proper

minimax lower bound by [161] in the specific case K = 2. When the number of groups K is
considered as as constant, the signal condition s2 & K cannot be improved as s2 = o(1) would lead
to a trivial error.

We temporarily leave aside the discussion of the possible sub-optimality of the condition s2 & K
when the number of components K is large. This aspect of the problem remains partially ill-
understood and certainly involves computational-statistical trade-offs [A11]. This will be the topic
of Section 4.3.

Comparison with the literature. Lu and Zhou [152] provide exponential missclassification

error for the Lloyd algorithm under the requirement ∆2

σ2 & K2
(

1 ∨ pK
n

)
which is stronger than

(4.5) in a high-dimensional setting. In the low-dimensional setting, Lu and Zhou are able to recover
the optimal asymptotic constant inside the exponential whereas the constant c′ in Theorem 4.3 is
suboptimal. See also [161] for more recent results on Lloyd’s algorithm that allow to also handle the
high-dimensional setting. To the best of our knowledge, our result was the first of this kind for an
SDP. In an independent and simultaneous work, Fei and Chen [83] have derived a similar in spirit
result in the very precise setting where the groups are of equal size, but their signal requirement is
again stronger than (4.5), especially in a high-dimensional setting.

Now assume that the common covariance matrix Σ = Σ1 = . . .Σk is not spherical. In that case,
relaxed K-means still achieves the exponential error e−c

′s2 , but it seems possible to achieve faster
rates, at least for large sample size. Indeed, when the parameters µk’s and Σ are known, the error
of the Bayes classifier will depend on the Mahalanobis distance d2

Σ(µk, µl) = (µk−µl)TΣ−1(µk−µl)
rather than ∆2/σ2 = mink 6=l ‖µk−µl‖2/‖Σ‖op. Hence, the optimal rate of decay should involve dΣ

instead of ∆2/σ2, at least when the sample size is large. This is an active and stimulating direction
of research [53, 64]. Theorem 4.3 entails that relaxed K-means is able to cope with non-spherical
covariances, but K-means is certainly not able to build upon the geometry of covariance as in the
Mahalanobis distance.
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4.2.2.2 Unequal trace case

In the previous subsection, we assumed that all the mixtures had the same dispersion, in the sense
that tr[Σ1] = . . . = tr[Σk]. If we do not assume this anymore, the K-means criterion (4.1) is
biased. This is a well known phenomenon3: K-means may tend to cut wide groups into severals
subgroup and merge smaller groups together. Recall that the exact K-means (which is NP -hard)
problem can be expressed as the linear matrix maximization problem B̂K ∈ arg maxB∈P〈XXT ,B〉.
In order to have some intuition on its behavior, one may consider the population counterpart of
K-means where one replaces XXT by its expectation, that is BK ∈ arg maxB∈P〈E[XXT ],B〉.
Unfortunately, this population K-means solution BK may differ from the oracle solution B∗ which
corresponds to the hidden partition G∗. Indeed, it is not much difficult to show that the B∗ ∈
arg maxB∈P〈E[X]E[XT ],B〉. Looking closely at the population and the oracle programs, one sees
that those two differ because E[XXT ] = E[X]E[XT ] + Γ, where Γ is diagonal matrix such that
Γaa = tr[Σk∗(a)]. If all the traces are equal, then Γ is proportional to the identity and it is therefore

benign in the maximization of 〈E[X]E[XT ]+Γ,B〉. Unfortunately, when Γ has very high variations
(different traces), this can highly bias the behavior of the K-means. To handle this issue, we propose
in [A7, A13] to correct the relaxedK-means criterion by considering B̂c ∈ arg maxB∈C〈XXT−Γ̂,B〉,
where Γ̂ is a suitable estimator of Γ. If we knew the true partition G∗ in advance, we could easily
estimate the tr(Σk)’s by plug-in. Unfortunately, this is not possible as G∗ is precisely our goal.
Still, a rough estimator Γ is sufficient to counter the bias, so that simple polynomial-time estimators
of Γ are sufficient for our purpose –see [A7, A13] for the details.

Theorem 4.4 (Unequal trace case). Assume that, for all k = 1, . . . ,K, ‖Σk‖op tr[Σk] .
n

log(n)‖Σk‖2F . If the signal-to-noise ratio s2 satisfies s2 & K, then, with high-probability, the pro-

portion of misclassified points by corrected relaxed K-means satisfies err(Ĝ,G∗) ≤ e−c′s2.

This condition on the covariances is mild: it allows covariance matrices whose singular values
decay fast towards zero or conversely covariance matrices whose condition number is bounded by
n/ log(n). Provided that this condition is satisfied, then the corrected relaxed K-means achieves
the same error bounds as in the equal trace case.

4.2.3 Recovery bounds for Stochastic Block models

We temporarily leave aside Gaussian mixture models and now turn to the Stochastic Block Models
(SBM) described in Definition 4.2. We apply the relaxed K-means procedure to the adjacency
matrix X to recover the unknown partition.

Let us first provide some intuition on why the K-means criterion seems suited to recovering
the partition G∗ in a SBM. For two nodes a and b in the same group Gk, the expectation E[Xa:]
of the a-th row matches the one of the b-th row to the exception of the a and b coordinates. As
a consequence, up to the symmetries and up to mild changes, the distribution of the n rows of X
is qualitatively not that different from a mixture of subGaussian distributions, for which K-means
is expected to work well. From a graph perspective, (relaxed) K-means applied to the adjacency
matrix X will tend to group together nodes that share similar pattern of connectivity.

As in the previous subsection, we still assume for the sake of presentation that the true partition
is approximately balanced, that is mink |G∗k| � n/K. Again, to ease the exposition we assume
in Theorem 4.5 below that the maximum connection probability L = maxk,l Qk,l satisfies L ≥
log(n)/n. The interesting case of sparser graphs L ∈ (1/n, log(n)/n) is also handled in [A13], but

3see e.g. https://en.wikipedia.org/wiki/K-means_clustering

https://en.wikipedia.org/wiki/K-means_clustering
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the definition of the relaxed K-means criterion needs to be slightly modified to prevent the criterion
to select too unequal groupe sizes.

Similarly to the sub-Gaussian setting, we define the minimum distance between two groups as

∆2 := min
j 6=k

∆2
jk ; ∆2

jk :=
∑
`

n

K
(Qk` −Qj`)

2 =
n

K
‖Qk: −Qj:‖22 , (4.6)

which represents the signal strength in our analysis. Note that ∆2 corresponds to the minimum
square Euclidean distance between the expected rows E[Xa] and E[Xb] where a and b belong to
distinct groups of the SBM. Since the sparsity parameter L plays the role of a proxy for the variance
(in analogy to σ2 for Gaussian mixtures), we consider the SNR s2 = ∆2/L.

The next theorem provides a recovery bound for relaxed K-means in stochastic block models.
In contrast to the Gaussian mixture setting, no correction is needed to debias the criterion.

Theorem 4.5. Assume that L & log(n)/n. Provided that s2 & K, then, with high probability, the
proportion of misclassified nodes satisfies err(Ĝ,G∗) ≤ e−c′s2.

The statement Theorem 4.5 is quite similar to 4.3. Both theorems states that at least the SNR
s2 is higher than K, then the missclassification error is smaller than e−c

′s2 .

An SDP not tied to the assortative case. We recall that an assortative SBM is a model
where the connection probabilities (Qkk) inside a group is higher than the connection probabilities
(Qkl) between distinct groups. All previous SDP methods used for SBM clustering take their origin,
in some way or others, in Goemans-Williamson SDP relaxation of max-cut problem [101], which
is tailored to the assortative case. In contrast, (4.2) is derived as a convex relaxation of K-means
and can handle a wide range of settings going beyond the assortative case usually handled by SDP
algorithms.

Assortative case. Still, to start the discussion, we explicit our rate and our SNR in the toy
assortative model, where Q = qJK + (p − q)IK with p < q. In this case, s2 = 2n(p − q)2/(pK),
and we obtain the same rate of exponential decay as in [82, 92, 3, 57, 204], but without the tight
constants of [92, 204] in the exponential rate. Yet, we stress that we are also able to deal with
groups with unknown size. Besides, Theorem 4.5 ensures perfect recovery for

(p− q)2

p
&
K(K ∨ log(n))

n
. (4.7)

matching the best known results (up to constants) for polynomial-time algorithms [54]. When

K ≤ log(n), this condition matches the information theoretical condition (p−q)2
p & K log(n))

n [54]
but, for larger larger K, there is a multiplicative gap of the order of log(n)/K which is conjectured
to be unavoidable for polynomial-time procedures [33, 3].

Partial recovery for general models. To the best of our knowledge, outside the assortative
case, the only other exponentially decaying misclassification error is stated in [3] for a quite different
procedure. Abbe and Sandon only focus on the sparse regime Q = Q0/n where Q0 is a fixed matrix
and n→∞. The results are not completely comparable, because we obtain faster convergence rates
(at least by a factor K inside the exponential) but those hold under stronger signal condition than
those of [3]. We again emphasize that Theorem 4.5 is also valid in denser regimes than that of [3].
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To conclude this section, we recall the bottom line of our work [A13]. The generic relaxed
K-means procedure is able to achieve near state-of-the art recovery bounds, this for all forms of
matrices Q, beyond the classical assortative case and even in the challenging sparse case where the
connection probability are smaller than log(n)/n.

4.3 Large K asymptotic

We now come back to the Gaussian mixture model (Definition 4.1) and discuss the difficulty of
recovering the hidden partition G∗ when the number of K groups is large. As this asymptotic
with respect to K is still poorly understood, we focus on the toy model of iso-volumetric spher-
ical covariance matrices Σ = Σ1 = . . . = Σk = σ2Ip with a nearly balanced partition, that is

mink |G∗k| � n/K. In this case, our signal-to-noise ratio simplifies as s2 = ∆2

σ2 ∧ n∆4

pKσ4 .

In Theorem 4.3, we stated that, as soon s2 & K, the relaxed K-means estimator Ĝ achieves a
misclassification error of the order of e−c

′s2 . We argued that the error e−c
′s2 cannot be improved

as it matches the optimal error for arguably simpler problems such as supervised classification.
However, the signal condition s2 & K needs to be discussed. Two questions are in order: (i) What
is the information-theoretical minimum signal condition for approximate recovery and what is the
corresponding optimal classification error? (ii) Is there a gap between the information-theoretical
minimum signal and performances of polynomial-time procedures? Although these twin questions
have been much investigated for SBM problems, this is less the case for Gaussian mixtures. Besides,
the situation turns out to be much more complex. Contrary to the remainder of the manuscript,
the purpose of this section is mainly to discuss open problems and to introduce a few conjectures.

4.3.1 Information-theoretical threshold

Before addressing the questions (i) and (ii), let us make a detour with the related problem of
parameter estimation in Gaussian mixtures models. Contrary to the previous section, we consider
here the usual (non-conditional) definition of the Gaussian mixture models where one observes a
sample from a random vector with density f =

∑K
k=1 πkφµk . Here, φµk stands for the density of

the Gaussian distribution with mean µk and covariance σ2Ip. Given an n-sample of f , the goal is
to estimate the parameters (πk, µk) of the model. Contrary to the clustering problem, parameter
estimation can be dealt with without any separation condition between the µk’s. The minimax
rate for estimating these parameters has recently been tightly characterized by Doss et al. [73] and
turns out to be really slow. In fact, even in dimension 1 (p = 1), the sample size n has to be
exponentially larger with respect to K to estimate well the parameters. This is not unexpected
as, for very close means µk, it is really challenging to disentangle the different components of the
mixtures. This has spurred a recent line of research in theoretical computer science, where the
aim is estimate4 the parameters with a polynomial sample size (n = poly(p,K))5 under suitable
conditions on the parameters µk’s. In particular, the objective is to characterize the minimal
separation between the µk’s which is needed to be able to estimate the parameters with polynomial
sample size. Note that, if we are able to approximately estimate the parameters, then a simple plug-
in classifier will be able to achieve approximate recovery provided that the separation distance ∆ is
large enough. In fact, Regev and Vijayaraghavan [173] have shown the following phase transition
phenomenon: if s2 . log(K), then an exponentially large (inK) sample size is necessary for accurate

4In this literature, approximate estimation should be understood as estimating the parameters up to an error
which is small compared to the separation distance.

5poly(a, b) is any finite-degree polynomial with respect to a and b.
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mean estimation. Conversely, if s2 & log(K) is large and n is large (n ≥ poly(K, p)), then an
exponential-time procedure is able to estimate approximately the parameters. More recently, Kwon
and Caramanis [138] have improved this by showing that s2 & log(K) is sufficient for approximate
parameter estimation as long as n & K3p –see also [177] for related results. Although none of these
results are able to handle the high-dimensional case, this and other informal arguments lead us to
make the following conjecture for Question (i) above.

Conjecture 4.1 (Information-Theoretical threshold for Clustering).

(a) If s2 & log(K), then, exact K-means satisfies err(Ĝ,G∗) ≤ e−cs2 with high probability.

(b) Conversely, if s2 . log(K), then no clustering procedure achieves partial recovery.

If true, this conjecture would extend the result of [138, 173] in two ways: first it would entail
that the log(K) threshold is valid in arbitrary dimension p (which can be even larger than n).
Second, it would prove that the optimal error rate remains driven by e−c

′s2 above the threshold.

4.3.2 Polynomial-time threshold

Taking for granted that Conjecture 4.1 is true, one may then wonder whether the gap between
the condition s2 & K for relaxed K-means and the information-theoretical threshold s2 & log(K)
is intrinsic or not. Alternatively, is there a computational-statistical tradeoff that prevents any
polynomial-time clustering procedure to achieve approximate recovery below the threshold s2 & K?
With this level of generality, this conjecture turns out to be false. Consider for instance the case
where n � K = p � log(n). In that situation, it is not hard to show that a simple distance
clustering method that groups together points at a distance smaller than σ2[p + c

√
K log(n) +

c log(n)] for a large constant c achieves perfect recovery provided that6 s2 = ∆2/σ2 &
√
K log(n)

which is much smaller than K. Building upon this intuition, Vempala and Wang [189] have shown
that in a large sample size asymptotic n & p3K2 log(pK), one may project the data onto a low-
dimensional subspace and apply a simple distance clustering method to achieve perfect recovery
under the condition ∆2/σ2 &

√
K log(n) + log(n). In fact, it turns out that even the

√
K threshold

can be beaten by polynomial-time procedures provided that the sample size is large enough. Indeed,
in the related problem of parameter estimation, some recent works [67, 111, 136] have shown that,
for any fixed ε > 0, a separation condition ∆/σ ≥ Kε is sufficient for approximately estimating
the means in polynomial-time, provided that the sample size is larger than n ≥ poly(p,K1/ε).
This implies that, if s2 = ∆2/σ2 ≥ Kε ∨

√
log(n), then perfect clustering is possible as long as

n ≥ poly(p,K1/ε). Their procedures share connections makes heavy use of high-moment estimation.
In summary, when the sample size is really large, there does not seem to exist a significant gap
between polynomial-time and non-polynomial time methods, although procedures that seem to
fill the gap do not proceed from distance-clustering ideas but rely on Gaussian mixture density
estimation techniques.

In contrast, none of the aforementioned result is valid in a high-dimensional setting where
p & n. In fact, the problem seems to be qualitatively different in this regime. As an example, we
have considered in [A11] an asymptotic toy problem7 where both p and n go to infinity while n/p
converges to a constant α ∈ (0,∞). K is fixed but should be considered as large. Then, we consider
a K-group mixture model with common covariance matrix Σ = Ip and where the means µ1, . . . µK ∈
Rp are sampled in the following way: for each i = 1, . . . , p, the vectors (µ1,i, µ2,i, . . . , µK,i) are

6recall that for n ≤ p, we have s2 = ∆2/σ2

7Actually, this work also deals with other statistical problems such as sparse PCA or submatrix localization.
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independent and follow the Gaussian distribution N (0, ρ/p(IK −K−1JK)) so that the means µk’s
are constrained to satisfy

∑K
k=1 µk = 0. Equipped with this notation, we have E[‖µk − µl‖22] = 2ρ.

Then, the counterpart s2 of signal-to-noise ratio s2 of the previous section where we replace ∆ by

the expected distance and n/p by its limit simplifies as s2 = 2ρ∧ 4ρ2α
K . In [A11], we are interested in

the slightly different problem of testing whether the matrix X ∈ Rn×p has been sampled according
to this model against the alternative that X is made of i.i.d. standard normal entries.

Theorem 4.6 (Theorem 3 in [A11]). Define ρupper = 2
√
K log(K)/α+ 2 log(K) and

ρlower =
√

2(K − 1) log(K − 1)/α for K > 3. Then, detection is possible when ρ > ρupper and
detection is impossible when ρ < ρlower.

With our parametrization s2, the condition ρ > ρupper corresponds to s2 & log(K) and therefore
matches the positive part of Conjecture 4.1. The minimax lower bound only matches the conjecture
when α ≤ K/ log(K) which corresponds to n ≤ pK/ log(K).

What is particularly appealing with this toy model is that the columns ot the matrix X are
independent normal and that their covariance matrix is a rank K-perturbation of the identity
matrix. In this asymptotic setting where p/n converges to a constant, the behavior of the spectrum
of X is predicted by the so-called BBP phase transition [13] in random matrix theory. In particular,
tests based on the largest singular values of X cannot achieve detection if ρ

√
α < K − 1, whereas

the largest singular value of X achieves detection if ρ
√
α > K − 1. For α ≤ 1 (which corresponds

to p > n), then one can reparametrize this condition to s2 ≥ K − 1. Obviously, this does not
perclude the existence of a test which is not based on the largest singular values, but in this high-
dimensional setting, this seems difficult to improve over the spectral methods. See also [144] for
other non-rigorous physical arguments that support this conjecture. This leads us to the following
conjecture for partial recovery.

Conjecture 4.2 (Statistical-computational gap). In a high dimensional setting where p ≥ nK, no
polynomial-time procedure is able to achieve partial recovery when s2 . K.

Obviously, we cannot reasonably hope to solve this conjecture unconditionally. Still, one could
hope to build upon the recent series of work of Brennan and Bresler [33, 34, 36, 35] to establish a
computational lower bound conditionally to the hardness of planted clique.

To conclude this section, we come back to the low-dimensional case. We explained that a
condition of the form s2 & Kε with ε ∈ (0, 1/2) is sufficient for partial recovery in polynomial time
provided that the sample size n is large enough. The exact dependency of this minimal sample
size seems really challenging to pinpoint. Still, the available polynomial procedures [67, 111, 136]
that beat the s2 & K boundary are really tailored to the Gaussian mixture density. In particular,
resort to high-empirical moments of the data. In some ways, these procedures rely on the density
of the distribution to estimate the parameters. This contrasts with typical clustering procedure
such as K-means which only depends on the distance between the points. Hence, one may wonder
whether the condition s2 & K becomes a barrier for polynomial-time algorithms if we are working
in another model where only the distances matter. A good candidate for this approach is the
so-called semi-random model [27] perspective, where an adversary is allowed to modify the data
but in a specific way which agrees with the hidden partition. This framework has been fruitfully
applied to stochastic block models [159].

Awasthi and Vijayaraghavan have recently introduced in [11] such a suitable semi-random model
for Gaussian mixtures. Given the partition G∗ and the unperturbed observations X, the adversary
is allowed to modify each row Xa by possibly moving it closer to the mean µk∗(a). More specifically,
the adversary picks some αa ∈ [0, 1] and defines Ya = µk∗(a) + αa(Xa − µk∗(a)). The statistician
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is then given the matrix Y ∈ Rn×p of perturbed observations of X. Obviously, this semi-random
model completely breaks down the distribution of the Gaussian mixture model, while not making
the clustering problem much more difficult. In some way, this could allow us to decipher the
clustering viewpoint from the density estimation perspective.

In their paper, Awasthi and and Vijayaraghavan [11] establish that a suitable variant of Lloyd’s
algorithm achieves partial recovery in the semi-random model when s2 & K log(n) and the sample
size n is large. It seems possible to extend some of the arguments in a high-dimensional setting.
This leads us to the following stimulating conjecture.

Conjecture 4.3 (Statistical-computational gap for the semi-random model). No polynomial-time
procedure is able to achieve partial recovery in the semi-random model of [11] when s2 . K.

4.4 Variable clustering

In this section, we move from point clustering and graph clustering to a slightly different problem
which is referred to as variable clustering. The material described in this section mainly comes
from [A7].

The problem of variable clustering is that of identifying similar variables in a n-dimensional
random vector X = (X1, . . . , Xn) based on a p-sample8 of the vector X. Here we do not require that
two similar variables are highly-correlated but rather that they tend to share the same covariance
with all the remaining variables. In [A7], we introduce a planted partition model, called G∗-block
covariance model to formalize this problem.

Given a partition G∗, we associate a membership matrix A ∈ Rp×K defined by Aak = 1 if
a ∈ G∗k, and Aak = 0 otherwise.

Definition 4.7 (G∗-block covariance Model). Consider an n-dimensional mean zero random vector
X with covariance matrix Ω. For a partition G∗ of [n], we say that X has a G∗-block covariance
structure if

Ω = AC∗AT + Γ , (4.8)

where A is relative to G∗, C∗ is a symmetric K ×K matrix, and Γ is a diagonal matrix.

With this property (4.8), for any two distinct coordinate (a, b) ∈ [n], we have Ωa,b = C∗k∗(a),k∗(b).
In other words, the covariance between any two variables only depends on the groups of these two
variables. This structure of block-constant covariance matrix has been observed to hold, empirically,
in a number of recent studies on the parcelation of the human brain, for instance [134, 100, 63,
202]. See also some real-world applications in [A7].

Connection with SBM. In some way, the definition of G∗-block covariance models is a co-
variance analogue of the stochastic block model. Indeed, with the notation of Definition 4.2, the
expected adjacency matrix turns out to decompose as E[X] = AQAT −Diag(AQAT ) because the
diagonal of X is zero. Hence, the expected matrix of observation is a block-constant matrix (up to
the diagonal). By contrast, in the G∗-block models, the covariance matrix of the random vector X
is a block constant matrix (up to the diagonal).

Let us briefly provide two examples of G∗-block covariance models to illustrate the versatility
of the model.

8It is more standard to write n for the sample size and p for the number of variables. Here, we exchange both
notation for reasons of coherence to be explained later.
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4.4.1 G∗-Latent Model

In a latent factor model, the components of X that belong to the same group can be decomposed
as a sum of common latent factor (at the group level) and an uncorrelated fluctuation (at the
individual level). More precisely, we have the following decomposition

Xa = Zk∗(a) + Ea , (4.9)

where Cov(Zk(a), Ea) = 0 and the individual fluctuations Ea are uncorrelated. Writing Γ for the
diagonal covariance matrix of E and C∗ for the k × k covariance matrix of Z, one easily checks
that that a G∗-latent model is a G∗-block covariance model.

Conversely, if X has a G∗ block covariance structure and is normally distributed, then X can
also be written as a G∗-latent model provided that C∗ � 0. Note that C∗ is not necessarily
semi-definite positive in (4.8).

G∗-Latent Models and Gaussian mixture models with random means. Consider a Gaus-
sian G∗-latent model whose covariance matrix Γ of E in (4.9) is block constant, ie there exists
γ ∈ RK+ such that Γaa = γk∗(a). Suppose that we observe a p-sample of X which is gathered in a

p× n matrix X. We also write Z ∈ RK×p for the corresponding latent factor models. It turns out
that, conditionally to Z, X is distributed as a p-dimensional Gaussian mixture model with partition
G∗, means µk = (Zk,1,Zk,2, . . . ,Zk,p)

T and covariances Σk = γkIp. As a consequence, recovering
the hidden partition in a Gaussian G∗-latent model is equivalent to recovering the partition in a
spherical Gaussian mixture models with random means9. Note that, depending on C∗, the means
µk’s may exhibit particular geometries.

4.4.2 Ising Block Model

Beyond normal distributions, G∗-block covariance models encompass other models that do not
exhibit a latent structure. The Ising Block Model has been proposed in [21] for modelling social
interactions. Here, the joint distribution of X ∈ {−1, 1}n is given by

f(x) =
1

κα,β
exp

[ β
2p

∑
a∼b

xaxb +
α

2p

∑
a�b

xaxb

]
, (4.10)

where κα,β is a normalizing constant, and the notation a ∼ b means that both a and b belong to
the same group of a partition G∗. The variables Xa may for instance represent the votes of U.S.
senators on a bill [15]. For α > β, the density (4.10) models the fact that senators belonging to the
same political group tend to share the same vote. By symmetry of the density f , the covariance
matrix Ω of X decomposes as a G∗-block covariance model Ω = AC∗AT + Γ where Γ is diagonal.

4.4.3 Recovery bounds for G∗-block covariance models

In [A7], we introduce several metrics to quantify the distance between components that do not
belong to the same group G∗. For the sake of conciseness, we discuss here one such distance
∆(C∗), which is mostly relevant when C∗ is semi-definite positive. We define

∆2(C∗) = min
j 6=k

C∗jj + C∗kk − 2C∗jk (4.11)

9In fact, this analogy was already made (but without formalization) when discussing the results of [A11] in the
previous section.
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If X is also a G∗-latent model as in (4.9), then ∆(C∗) = minj 6=k E[(Zj − Zk)2] is the minimum
expected distance between the latent factors.

Given a p-sample X ∈ Rn×p of X, our goal is to recover the hidden partition G∗ of variables
from the data. In light of the analogy between Gaussian G∗-latent models and Gaussian mixture
models, it is tempting to apply a corrected version of relaxed K-means as in Section 4.2.2.2. The
correction of the K-means criterion is not required if the matrix Γ in (4.8) is proportional to the
identity, but is important when the noise levels Γjj vary too much. To ease the presentation, we
assume in the next theorem that the true partition G∗ is approximately balanced.

Theorem 4.8 (Theorem 5.3 in [A7]). Assume that the random vector X is sub-Gaussian and has
a G∗-block covariance structure (4.8). Provided that

∆2(C∗) & ‖Γ‖op

[√
K(log(n) ∨K)

np
+

log(n) ∨K
p

]
, (4.12)

then corrected relaxed K-means perfectly recovers the partition G∗ with high probability.

Since the above theorem applies to Gaussian G∗-latent model and since those can be interpreted
as Gaussian mixture models (section 4.4.1), we can rewrite Condition (4.12) with the notation of
Theorem 4.3. Indeed, the expected distance between the means is p∆2(C∗). With this notation,

the counterpart of s2 is s∗2 = p∆2(C∗)
‖Γ‖op ∧

np∆(C∗)
K‖Γ‖op . Then, (4.12) is equivalent to Condition s∗2 &

[K ∨ log(n)], which also corresponds to the regime of perfect reconstruction in Theorem 4.3. In
summary, both Theorems 4.3 and 4.8 conclusions are consistent.

Still, Theorem 4.8 applies beyond G∗-latent model and, in particular is also valid for Ising block
Models (4.10).

From a minimax viewpoint, Condition (4.12) turns out to be minimax optimal, at least when
K ≤ log(n). For larger K, relaxed K-means seem to be sub-optimal by an additional K term.
Again, this is consistent with the state-of-knowledge in Gaussian mixture modelling and the dis-
cussion in Section 4.3.

As a final point, we mention that the work [A7] on variable clustering precedes [A13]. Retro-
spectively, one may wonder whether it is not possible to establish partial recovery bounds in the
spirit of Theorem 4.3 for general G∗-block covariance models.

Conjecture 4.4. In the setting of Theorem 4.8, the penalized relaxed K-means estimator achieves
err(Ĝ,G∗) ≤ e−c′s∗2 with high probability, provided that s∗2 & K.

4.5 Detection thresholds for sparse GMM

In Section 4.2, we discussed the versatility and near-optimality of the K-means algorithm and its
relaxations. Consider a Gaussian mixture model (as in Definition 4.1) with a common non spherical
matrix Σ = Σ1 = . . . = ΣK . It was already pointed out that K-means is able to achieve good
performances with respect to the distance ∆2/σ2 = minj,k ‖µj−µk‖22/‖Σ‖op, but it does not adapt
to the larger Mahalanobis distance minj,k[µj − µk]TΣ−1[µj − µk], on which the Bayes classifier is
based. Another possible weakness of K-means, or more generally of classical distance clustering
algorithms, is that they are not adaptive to specific structures of the data. For instance, in some
high-dimensional clustering problems, it is hypothesized that the differences µk − µj are sparse,
which means that the two groups k and j only differ through a few features. The latter problem
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is referred in the literature as sparse clustering. Hopefully, one would hope to build upon this
structural assumption to improve the clustering error. Arguably, K-means (or classical spectral
clustering algorithms) will not be able to deal efficiently with sparsity as these algorithms are
invariant with respect to any rotation of the data.

This section is mainly devoted to a joint work with E. Arias-Castro [A17]. There, we provide
some intuition on the sparse clustering problem through the prism of signal detection and feature
selection in a sparse Gaussian mixture model. We consider a testing problem where, given a sample
X1, . . . , Xn of p-dimensional random vector X, we want to test whether X is sampled according to
a two-class Gaussian mixture distributions or from a single Gaussian distribution. More formally,
we consider the general testing problem

H0 : X1, . . . , Xn
iid∼ N (µ,Σ) , for some µ ∈ Rp, and Σ � 0 ; (4.13)

versus

H1 : X1 . . . , Xn
iid∼ πN (µ0,Σ) + (1− π)N (µ1,Σ) , for some Σ � 0, µ0 6= µ1 ∈ Rp, and π ∈ (0, 1).

(4.14)
We are specifically interested in settings where the difference in means ∆µ := µ1 − µ0 is k-sparse.
Arguably, the detection problem is simpler than the clustering problem, as in low-dimension (e.g.
p = 1), one is able to decipher a mixture of two gaussian when ∆µ arbitrarily small (provided that
the sample size is large enough), whereas partial recovery of the unknown corresponding partition
is possible only if ∆µ = Ω(1). Still, the qualitative difference between detection and clustering
become much thinner in high-dimensional sparse regimes.

It turns out that the detection problem of (4.13) against (4.14) depends a lot on the knowledge
of the covariance matrix Σ. We first discuss the case of known covariance and then turn to the
unknown covariance.

4.5.1 Known Covariance

In this subsection, we assume that Σ is known and that the problem is high-dimensional. We aim at
characterizing the minimum signal-to-noise ratio R0 = ∆µ>Σ−1∆µ in Mahalanobis distance which
allows to decipher (4.13) from (4.14). This quantity is called the minimax detection distance, in
accordance with the formalism of Chapter 2. The results are summarized in Table 4.1 below.

Sparsity regimes Minimax detection distances Near-optimal test

k ≤
n

log(ep/n)

[
k log(ep/k)

n

]1/2
Top sparse eigenvalue

n

log(ep/n)
≤ k ≤ (np)ζ/2

k log(ep/k)

n
Top sparse eigenvalue

k ≥ √np
√
p/n Top eigenvalue

Table 4.1: Minimax detection distances and near-optimal tests as a function of the sparsity k when
Σ is known and p ≥ n. The minimax detection distances are expressed in terms of the signal-to-
noise ratio R0 = ∆µ>Σ−1∆µ. Here, ζ denotes any arbitrary constant in (0, 1). The top and top
sparse eigenvalues are referring to the eigenvalues of a (modified version) of the empirical covariance
matrix

Some comments are in order. First, for k ≥ √np, the detection rate
√
p/n corresponds, up to

reparametrization, to s2 � 1 with the signal-to-noise ratio formalism of Section 4.2. This entails,
that in the dense high-dimensional regime, detection arises roughly at the same time as partial
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recovery of the partition. Besides, sparsity does not play a role in this regime as the detection
distance is the same as for k = p.

For smaller k, the optimal detection rate is achieved by the top sparse eigenvalue of a modified
empirical covariance matrix. Unfortunately, no algorithm is known for computing it in polynomial
time. In [A17], we provide some polynomial time testing procedures (in the spirit of sparse PCA),
but those suffer from suboptimal performances by a factor which can be as large as

√
k. This is

not completely unexpected as this problem shares the same taste as sparse PCA.
In the last years, there has been a renewed interest in this two-group model of sparse clustering

(with Σ = Ip). In particular, it was recently shown that this gap between polynomial-time methods
and minimax ones turns out to be unavoidable [148].

4.5.2 Unknown Covariance

When the covariance matrix Σ is unknown, we first prove that, when p� n, the minimax detection
rate for the Mahalanobis distance is exponentially large, even in the simplest situation where
k = 1. This entails that, even for one-sparse differences, detection is not possible even for very
large Mahalanobis distance. This is due to the fact that p � n, the covariance matrix cannot be
efficiently estimated so that the direction of higher variation Σ−1/2∆µ is difficult to localize. For
this reason, we consider the weaker loss function R1 = ‖∆µ‖42/[∆µTΣ∆µ] ≤ R0, and we established
the minimax detection distance for (4.13) against (4.14). Although I do not reproduce here the
precise results, three interesting phenomenons can be mentioned. First, this minimax detection
distance highly depends on the symmetry of mixture that is whether π = 1/2 or π 6= 1/2 in (4.14),
the asymmetric case π 6= 1/2 being much easier. Second, a computational-statistical trade-off seems
to arise, even when k = p (no sparsity). Third, the minimax optimal tests are based on a new
approach which aims at finding the direction on which the first absolute moment is the highest
possible. Recently, this approach has been used by Davis et al. [64] (see their Appendix E) to
achieve optimal clustering rate in non-sparse clustering with unknown covariance matrix Σ.

In the last year, recent works have unveiled interesting phenomenons in (non-sparse) clustering
with unknown common covariance Σ. In particular, a computational gap seems to arise when
p ∈ [n, n2] and when the objective is to recover the cluster at the optimal rate in Mahalanobis
distance –see [64]. These results to not overlap much with our own work as we were rather interested
in the weaker metric R1 ≤ R0

10 but focus on a higher-dimensional setting p� n. In any case, there
remain many open problems to understand the optimal clustering rates and their counterpart with
polynomial-time procedures when one considers a possibly-sparse mixture with unknown covariance
matrix.

A closing comment from the application side

This manuscript is mainly dedicated to my work on mathematical statistics. Still, as a research
scientist within INRAE, I am also involved and exposed to practical clustering and bi-clustering
problems (e.g. in [A19]) mostly with assessments of cultivated biodiversity11 and with seed exchange
networks.

Although my own theoretical works are mainly concerned with K-means, SDP relaxation of
K-means or, to a less extent, spectral clustering algorithms, I do not tend to apply these methods,
but rather focus on likelihood-based methods optimized by variational-EM algorithms.

10Recall that R0 is the Mahalanobis distance.
11https://forgemia.inra.fr/nicolas.verzelen/blockmodels4inventories

https://forgemia.inra.fr/nicolas.verzelen/blockmodels4inventories


58 CHAPTER 4. CLUSTERING

The main reason for this is that clustering or bi-clustering problems do not arise alone. In
practice, the dataset to cluster is coming along with many control and explanatory covariates.
Although there has been a recent interest in SDP formulation and spectral methods that use
side information, the available methods are much less versatile than the machinery on likelihood
maximization techniques [155]. See for instance the econetwork package12.

12https://plmlab.math.cnrs.fr/econetproject/econetwork

https://plmlab.math.cnrs.fr/econetproject/econetwork


Chapter 5

Other unsupervised-learning
Problems

This last chapter is dedicated to other unsupervised learning problems that I have been interested
in in the last few years. In some ways, this chapter is much more heterogeneous than the previous
ones: the models, the objectives, and the techniques highly differ from one problem to another.
Still, all these problems have in common the fact that we aim to recover some latent labels in
some objects. In clustering, these hidden labels correspond to a partition of the objects. Here,
we consider different objectives: recovering a partition with side-information on its form (change-
point detection/segmentation problems), recovering a permutation of the objects (seriation/ranking
problems).

The first section is mainly dedicated to change-point detection and is based on two joint works
with M. Fromont, M. Lerasle, P. Reynaud-Bouret [P4] and with E. Pilliat and A. Carpentier [P3].
In the second section, I shortly discuss a recent work on seriation [P1] (with C. Giraud and Y.
Issartel) together with some on-going work on ranking problems.

5.1 Change-point detection

Change-point detection has a long history that comes back to the seminal work of Wald [191] and
lead to flourishing lines –see [187, 165] for recent surveys. Earlier work were mainly devoted to
the problems of detecting and localizing change in the mean of univariate time series. Important
applications e.g. in genomics [166] or finance have spurred a recent trend towards the detection of
variations in more complex times series that live in a high-dimensional space [124] or even belong to
a non-Euclidean space [59]. In this section, I describe two recent joint works. In the first one [P4],
we focus on the toy model of Gaussian univariate mean change-point detection, and derive the
tight optimal rates for detection and localization of the change-points. In the second one [P3], we
introduce a strategy for general change-point problems and we apply it to several settings including
changes in a high-dimensional mean vector, changes in the covariance matrix, or non-parametric
changes in the distribution. . . In each case, this allows us to derive the tight optimal conditions for
change-point detection.

59
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5.1.1 Optimal univariate mean-Change-point detection and Localization

Let us consider the prototypical problem of univariate change-point analysis. Let Y =
(Y1, . . . , Yn) ∈ Rn denote a random vector with

Yi = θ∗i + εi , i = 1, . . . , n , (5.1)

where θ∗ = (θ∗1, . . . , θ
∗
n) in Rn and the noise random vector ε = (ε1, . . . , εn) is made of independent

standard Gaussian random variables. Given Y , the objective is to find the coordinates at which
the mean vector θ∗ is varying –those are called change-points. Since we consider θ∗ as a piece-wise
constant vector, we may define it through its change-points. There exists an integer 0 ≤ K ≤ n−1,
a vector of integers τ∗ = (τ∗1 , . . . , τ

∗
K) satisfying 1 = τ∗0 < τ∗1 < . . . < τ∗K < τ∗K+1 = n + 1,

a vector µ = (µ1, . . . , µK+1) in RK+1 satisfying µk 6= µk+1 for all k in {1, . . . ,K} such that
θ∗i =

∑K+1
k=1 µk1τ∗k−1≤i<τ

∗
k
. See Figure 5.1 below. Then, τ∗k is called the position of the k-th change-

point and ∆k = µk+1 − µk is called the height of the k-th change-point. We focus here on the
situation where the number of change-points K is unknown but is larger than one –see [P4] for the
specific case K ≤ 1.

Figure 5.1: Change-points τ∗k−1, τ∗k , τ∗k+1 of the vector θ∗. Here, ∆k stands for the height of the

k-th change-point and rk =

√
(τ∗k+1−τ

∗
k )(τ∗k−τ

∗
k−1)

τ∗k+1−τ
∗
k−1

for the corresponding length.

With this notation, our objective is to build an estimator τ̂ of τ∗ of the change-points. Such an
estimator is to be analyzed from two related but distinct perspectives: detection and localization.

(a) We say that the vector τ̂ detects a true change-point τ∗k if there exists an index l such that
τ̂l ∈ [(τ∗k−1 + τ∗k )/2; (τ∗k + τ∗k+1)/2], i.e. τ̂l is closer to τ∗k than any other true change-point.
Conversely, we say that τ̂ detects a spurious change-point if there exist τ∗k , τ̂l and τ̂l′ such
that both τ̂l and τ̂l′ are close to τ∗k , in the sense that they belong to [(τ∗k−1 + τ∗k )/2; (τ∗k +
τ∗k+1)/2]. The challenge is then to build an estimator τ̂ which, with high probability, detects
all significant true change-points and does not detect any spurious change-point. For this
purpose, we need to introduce the energy Ek of a true change-point τ∗k .

Ek = |∆k|

√
(τ∗k+1 − τk∗)(τ∗k − τ∗k−1)

τ∗k+1 − τ∗k−1

. (5.2)

Up to multiplicative factor, E2
k � ∆2

k[(τ
∗
k+1 − τk∗) ∧ (τ∗k − τ∗k−1)] is the square change-

point height times the distance of τ∗k to the closest change-point. Intuitively, E2
k is the

bias that we suffer if we estimate θ∗ by a piece-wise constant vector with change-points in
(τ∗1 , τ

∗
2 , . . . , τ

∗
k−1, τ

∗
k+1, . . . , τ

∗
K). Similar notions of energies of a change-point often appear in

the literature [194, 87, 85].
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(b) If a true change-point τ∗k has been detected, then one would aim at localizing it as best as
possible, that is at having the distance dH,1(τ̂ , τ∗k ) = mini=1,...,|τ̂ | |τ̂i − τ∗k | between τ∗k and the
closest estimated change-point as small as possible. This quantity dH,1(τ̂ , τ∗k ) is referred as
the localization error of τ̂ for τ∗k . Aside from the localization error of a specific change-point,
one also may be interested in more global localization error such as the Hausdorff error or
the Wasserstein error which respectively correspond to the supremum and the sum of the
localization errors.

State of the art. It was recently proved in Wang et al. [194] that as long as the minimum energy
mink=1,...,K E2

k is large compared1 to log(n), then all true change-points are detected, and those
are uniformly localized at the rate log(n)/[mink ∆2

k] –see also [87, 195, 85] for related results. If all
change-points are equi-spaced and the jump size ∆2

k are of the same order, these energy condition
and localization turn out to be minimax optimal up to log(n) terms [194]. Interestingly, such near
optimal properties are achieved by both the penalized least-square estimators and greedy methods
based on the CUSUM statistic [194].

Our contribution. In [P4], we establish the tight minimal condition for change-point detection
as well as the tight localization rate for a significant change-point. In particular, we close the
logarithmic gaps between the known minimax lower and upper bounds. Besides, both detection
and localization properties are still proved to hold in settings where we allow for an arbitrarily large
number of nuisance change-points that have a low energy. More precisely, we first establish that a
change-point τ∗k is significant and therefore can be detected as long as

E2
k & log

(
n

(τ∗k+1−τ
∗
k )∧(τ∗k−τ

∗
k−1)

)
. (5.3)

This condition turns out to minimax. In comparison to the log(n) condition of [194], the logarithm
term in (5.3) can be much smaller. For instance, if all the change-points are nearly equi-spaced, it
simplifies as E2

k & log(K). Besides, our procedures detects change-points satisfying (5.3) even in
the presence of other change-points with a very small energy.

Regarding the localization error, we establish a transition phenomenon from a regional to a local
problem. As soon as the energy of a true change-point τ∗k satisfies (5.3), then it can be localized
at the rate 1/(∆2

k). Besides, the localization errors of all significant change-points can behave like
independent sub-exponential random variable. This allows us to recover the tight localization errors
(with the right logarithm) for a specific change-point (dH,1(τ̂ , τ∗k )), for Hausdorff distance, and for
Wasserstein distance.

We introduce two procedures achieving all these optimality properties. The first one is a penal-
ized least-squares type estimator with a multiscale penalty that promote equi-spaced change-points
positions. As the corresponding penalty is additive, this estimator is easily computed by (pruned)
dynamic programming [128]. In contrast to the BIC-type penalty studied recently in [194], this
allows us to recover the optimal logarithmic terms. As an alternative to the penalized least-squares
estimator, we promote a two-step bottom-up aggregation method based on the aggregation of
many CUSUM tests. It is shown to satisfy the same optimality property as the previous penalized
procedure while enjoying a quasi-linear computational complexity.

1In fact, the results in [194, 87, 195, 85] are slightly weaker than that, because they consider the smaller Emin =
mink |∆k|mink |τ∗k+1 − τ∗k |1/2 which is smaller than mink Ek
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5.1.2 Optimal change-point detection for general problems

We now turn to more general change-point problems beyond the previous toy model. In the
most general form, we consider a sequence Y = (Y1, Y2, . . . , Yn) in some measured space Yn. For
t = 1, . . . , n, we write Pt for the marginal distribution of Yt. We are also given a functional Γ
mapping the probability distribution Pt to some space V. With this formalism, the purpose of
change-point analysis is to detect changes in the sequence (Γ(P1),Γ(P2), . . . ,Γ(Pn)) in Vn and to
estimate the positions of these changes.

Up to our knowledge, this general framework encompasses most offline change-point detection
problems. For Gaussian mean univariate change-point setting, we have Y = R, the distribution
Pt corresponds to the normal distribution with mean θt ∈ R and variance σ2 and Γ(Pt) = θt. In
the (heteroscedastic) mean univariate change-point problem, the distribution Pt is not necessarily
Gaussian and, in particular, the variance of Yt is allowed to vary with t. Still, one is only interested
in detecting variations of Γ(Pt) =

∫
xdPt = E[Yt]. By contrast, in the variance univariate change-

point problems, one focuses on changes in the variance of Yt. This can be done by considering
Γ(Pt) =

∫
x2dPt − [

∫
xdPt]2 = Var(Yt). If one is interested in possibly nonparametric changes in

the distributions, then the functional Γ is simply taken to be the identity map. In semi-parametric
quantile change-point detection [127], the univariate distributions Pt can be arbitrary whereas Γ(Pt)
is a quantile of Pt.

Extending the notation of the previous subsection, we define an integer 0 ≤ K ≤ n − 1 and a
vector of integers τ∗ = (τ∗1 , . . . , τ

∗
K) satisfying 1 = τ0 < τ1 < · · · < τK < τK+1 = n + 1 such that

Γ(Pt) is constant over each interval [τk, τk+1 − 1] and Γ(Pτk−1) 6= Γ(Pτk). In [P3], we introduce a
generic approach for estimating τ∗.

In a nutshell, our generic procedure is based on a bottom-up aggregation of local
homogeneity tests. This idea is to compute homogeneity tests Tl,r of the hypothesis
{Γ(Pt) is constant on [l-r,l+r)}, this is for a suitable collection of scales r and locations l. Then,
we aggregate all these tests Tl,r to build τ̂ by adding locations l such that Tl,r = 1 for some r
and such that, at all smaller scales r′, we did not find any change point at positions l′ such that
[l′ − r′, l′ + r′)∩ [l− r, l+ r) 6= ∅. Interestingly, we are able to translate properties of the collection
of tests (Tl,r) into properties of the corresponding estimator τ̂ of τ∗. In particular, a control of
the family-wise-error rate (FWER) of (Tl,r) implies that τ̂ does not estimate any spurious change-
points. Conversely, control of type II error probabilities of some specific tests (Tl,r) imply that τ̂
detects specific change-points. The idea of bottom-up aggregation of local homogeneity tests is not
new and related (but still different) procedures have been introduced e.g. in [137, 48]. Nevertheless,
none of these procedures come up with statistical guarantees, except in the toy model of Gaussian
mean univariate change-point discussed in the previous subsection.

In summary, we are able to reduce the problem of change-point detection to multiple homogene-
ity testing. In fact, rather than general homogeneity tests, we are more interested in two-sample
testing problems of the form {Γ(Pt) is constant on [l-r,l+r)} against {Γ(Pl+r) = . . . = Γ(Pl−1) 6=
Γ(Pl) = . . . = Γ(Pl−r)}. Hence, change-point detection mostly boils down to optimal multiple
two-sample testing.

As an application of the generic procedure, we apply in [P3] our methodology to sparse high-
dimensional Gaussian mean change-point model, high-dimensional covariance change-point models
and non-parametric change-point model. In each case, we derive the tight minimal energy condi-
tions for the detection of change-points and we show that our procedure achieves detection under
these minimal conditions. Thereby, we improve previous results [167, 193, 48] in the literature.
Interestingly, our methodology allows for the presence of nuisance low energy change-points (as in
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the previous subsection) that are not to be detected, but do not either perturb the detection of
significant change-points.

5.1.3 Research directions

Localization in general change-point problems. The generic procedure of the previous sub-
section leads to tight minimal detection properties in various settings. Unfortunately, it does not
seem to exhibit optimal localization errors in general –recall the difference between detection and
localization explained in Section 5.1.1. A second refinement step needs to be added in the procedure
to yield minimax localization errors. In the univariate mean change-point problem of Section 5.1.1,
there is a simple transition from detection to localization errors in the parametric rate 1/∆2

k. For
more complex change-points problems, the situation is certainly trickier – see e.g. [192] for localiza-
tion error in change-point detection in network time series. As a simple example, consider a mean
multivariate problem where the θ∗i ’s are now p-dimensional multivariate vectors. In that case, a
change-point can be detected as long as the difference ∆k between the means at a true change-
point τ∗k is large enough in Euclidean norm. For very large values of the corresponding energy
min(τ∗k − τ∗k−1, τ

∗
k+1− τ∗k )‖∆k‖22, not only can the change-point be detected, but the direction of ∆k

can also be estimated, so that projecting the data on the corresponding estimated direction ∆̂k,
one can hope to localize the change-point at the parametric rate 1/‖∆k‖22. In contrast, if the signal
strength is much lower, the change-point is able to be detected, but the direction ∆k cannot be
localized. For this reason, the localization error of dH,1(τ̂ , τ∗k ) is expected to be much higher than
1/‖∆k‖22 in this case and should in particular depend on p. Hence, we expect the optimal localiza-
tion error to exhibit several regimes. In light of this, we doubt that it is possible to craft a generic
procedure that achieves the optimal localization errors in various problems. Still, pinpointing the
tight localization error in emblematic problems is an exciting open problem.

Open Problem 5.1 (Localization of change-points). Derive the tight localization error for sparse
high-dimensional mean change-point problems and covariance change-point problems.

Segmentation on general graphs. In some way, one can interpret the problem of change-point
detection as a very specific instance of clustering problem where the clusters are constrained to be
intervals of [n]. This explains why change-points can be detected and the unknown partition can be
partially reconstructed under much weaker separation conditions than for Gaussian mixture models
(see Chapter 4) where there is no constraint on the partition. Between these two extreme settings
where the partition is completely arbitrary (Gaussian mixture models) or is extremely constrained
(change-point detection), it would be really exciting to investigate the general problem of signal
segmentation on a graph.

Open Problem 5.2 (Segmentation on general graphs). Consider an undirected graph G = ([n], E)
with n vertices. For each vertex i = 1, . . . , n, one observes Yi ∼ N (θ∗i , Ip), with unknown mean
θ∗i ∈ Rp. Let G∗ = (G∗1, . . . , G

∗
K) denote the partition of [n] that groups together identical values

of θ∗i . Provided that the partition G∗ has a small boundary on the graph G, what is the minimal
difference between the means so that one is able to partially recover G∗? What is the minimum
reconstruction error of G∗?

In the univariate case (p = 1), the denoising version of this problem where one aims at estimating
θ∗ in l2 distance has attracted a lot of attention and is now well understood –see e.g. [81]. In contrast,
there are much fewer results on the segmentation error – but see [203]. Even in the univariate case,
the minimal separation condition for approximate recovery remains unknown when the number of
groups K is larger than 2.
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5.2 Seriation and localization in 1-dimensional space

Suppose that we are given n objects and that we observe a noisy affinity matrix A = (Aij)1≤i,j≤n,
which provides similarity measurements between pairs of objects. These may correspond to real
valued scores or to binary information, as when the matrix A encodes a similarity graph.

In [P1], we consider the 1D latent localization problem, where we seek to recover the 1D latent
positions of n objects from A. Such problems arise in archeology for relative dating of objects or
graves [174], in 2D-tomography for angular synchronization [179, 60], in bioinformatics for reads
alignment in de novo sequencing [171], in computer science for time synchronization in distributed
networks [99, 80], or in matchmaking problems [32].

In such 1D latent models [108], the symmetric affinity matrix A is assumed to be sampled as
follows. Aii = 0 (by convention) and

Aij = f(x∗i , x
∗
j ) + Eij , for 1 ≤ i < j ≤ n , (5.4)

where
(i) x∗1, . . . , x

∗
n are n unobserved latent positions spread on the unit sphere C in R2,

(ii) f : C × C → [0, 1] is unobserved, symmetric, decreasing with the geodesic distance d(x, y), and
(iii) [Eij ]1≤i<j≤n are some independent sub-Gaussian random variables.

This non-parametric framework is very flexible for fitting pairwise affinity data. It encompasses
the circular random geometric graph models and the toroidal statistical seriation models defined
below. The main difference with the graphon model, discussed in Chapter 3, is that the function
f is constrained to be decreasing with the distance.

Definition 5.1 (Random Geometric Graph [65, 68, 169, 97]). Let C denote the unit sphere in R2

endowed with the geodesic distance d. In the circular random geometric graph model, the edges
are sampled independently with probability P[Aij = 1] = g(d(x∗i , x

∗
j )), where g : [0, π] 7→ [0, 1] is a

non-increasing function and x∗1, . . . , x
∗
n ∈ C are the latent positions of the nodes on the sphere.

Definition 5.2 (Toroidal R-Matrices and Statistical toroidal Seriation). A Robinson matrix (R-
matrix) is any symmetric matrix B ∈ Rn×n whose entries decrease when moving away from the
diagonal, i.e. such that Bi,j ≥ Bi+1,j and Bi,j ≥ Bi,j−1, for all 1 ≤ j ≤ i ≤ n. A matrix F is
called a pre-R matrix, when there exists a permutation σ ∈ Σn of [n], such that Fσ = [Fσ(i),σ(j)]i,j
is an R-matrix. The noisy seriation problem [84] amounts to find, from a noisy observation of a
pre-R matrix F, a permutation σ∗ such that Fσ∗ is a R-matrix. This problem appears in genomic
sequencing [94], in interval graph identification [88], and in envelope reduction for sparse matrices
[17]. Here, we are interested in a variation of problem where we consider the consider the set [n] as a
torus with the corresponding distance d(i, j) = min(|j−i|, |n+i−j|) for any 1 ≤ i, j ≤ n. A toroidal
R-matrix is any symmetric matrix B whose entries decrease when moving away from the diagonal
with respect to the toroidal distance: Bi,j ≥ Bi+1,j when d(i, j) < d(i+1, j) and Bi,j ≥ Bi,j+1 when
d(i, j) < d(i, j + 1). As above, a pre-toroidal R-matrix is defined as a permutation of a toroidal
R-matrix and the statistical seriation model is defined analogously [172]. We can recast this model
as a latent space model (5.4) on the regular grid Cn of the unit sphere C corresponding to the n-th
unit roots, endowed with the geodesic distance on C.

5.2.1 Our contribution

In [P1], our overall goal is to recover from A the latent positions x∗ = (x∗1, . . . , x
∗
n) ∈ Cn, with

some high-confidence, simultaneously for all individual positions x∗i . Since the global error of an
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estimator x̂, say d2(x̂, x∗) =
√∑n

i=1 d(x̂i, x∗i )
2, provides limited information on each individual

error d(x̂i, x
∗
i ), we focus instead on the maximum error

d∞(x̂, x∗) = max
i=1,...n

d(x̂i, x
∗
i ) . (5.5)

Unfortunately, controlling d∞(x̂, x∗) is impossible as the latent positions are not identifiable from
A. Indeed, for any bijective map ϕ : C → C, we have f(x, y) = f ◦ ϕ−1(ϕ(x), ϕ(y)) for all x, y ∈ C,
with the notation f ◦ ϕ−1(x, y) := f(ϕ−1(x), ϕ−1(y)). Even if we would enforce some strong shape
constraints, such as f(x, y) = 1 − αd(x, y) with α > 0, the distribution of the data would still
be invariant by orthogonal transformation of the latent positions2 since f(x, y) = f(Qx,Qy) for
any orthogonal transformation Q of C. Informally, our remedy is to control d∞(x̂, x∗) for some
representative x∗ of the latent positions.

In [P1], we propose some estimators x̂ achieving, with high-probability, a maximum error
d∞(x̂, x∗) of the order of

√
log(n)/n, under the assumptions that the latent positions x∗1, . . . , x

∗
n

are sufficiently spread on C and that f(x, y) is a bi-Lipschitz function of d(x, y). The
√

log(n)/n
estimation rate is shown to be optimal. To the best of our knowledge, these are the first optimal
results on maximum error d∞(x̂, x∗) in latent space models with unknown and non-parametric
affinity function f .

Our estimation procedures proceeds in two main stages: (1) we start with an initial estima-
tor x̂(1) with a global control in d1(x, y) :=

∑n
i=1 d(xi, yi) distance; (2) then, for each point, we

refine this first estimator to get a control in d∞ distance. This second step has a polynomial
computational complexity and, under appropriate assumptions, it allows to recover the desire rate
d∞(x̂(2), x∗) = O(

√
log(n)/n) provided that the have an initial control d1(x̂(1), x∗) = O(

√
n log(n)).

We propose two estimators fulfilling this requirement:
(a) a first one, which requires no additional assumptions, but which has a super-polynomial com-
putational complexity;
(b) a spectral seriation algorithm, adapted from [172], which has a polynomial computational
complexity, but for which we prove a O

(√
n log(n)

)
control only for a class of random geometric

graphs.

5.2.2 Related work and Perspectives

In the last decade, the analysis of interaction data has spurred a lot of work in machine learning
and statistics. Most of them rely on the case where the affinity function is known or belong to a
known parametric model. Our modeling assumptions in [P1], with only shape constraints on f ,
offer a more flexible setting to fit data. In this subsection, we discuss related work and perspectives
on such non-parametric models.

Seriation from pairwise affinity. In [P1], we deal with the toroidal seriation problem (see
Definition 5.2). In the vanilla seriation problem, we recall that we are given a noisy observation
A of a pre-R matrix F and we seek to find a latent order σ∗ such that Fσ∗ is a R-matrix. In
the noiseless case, this can be done efficiently by spectral methods [9] or by convex optimization
methods [84]. In the noisy case, Jannssen and Smith [119] have recently introduced as estimator
achieving maxi∈[n] |σ̂i − σ∗i | .

√
n log5(n), under some complex assumptions on the matrix F.

Although their assumptions and the setting are slightly differs from ours, the localization rates are
(up to logarithmic factors and to the scaling) comparable to ours for toroidal seriation. Beside,

2See [P1] for a proposer discussion of the identifiability issues
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Cai and Ma [42] have recently established the optimal convergence rate of σ̂ under the additional
assumption that the matrix F is Toeplitz. They also conjecture the existence a computational gap
for this Toeplitz seriation problem. In any case, the optimal convergence rate for general noisy
seriation remains unknown. Besides, the best possible performances of polynomial-time procedures
remain largely unknown.

Open Problem 5.3. For general unknown pre R-matrices F, characterizing the best estimation
error for σ∗ which is achievable by a polynomial-time procedure.

Ranking and Skills estimation. Moving away from affinity observations, we discuss a related
class of problem where we want to rank players in a game. The observations Aij now correspond
to noisy comparisons between i and j – think e.g. as the results of a match between i and j. As in
seriation problems, the goal is recover a latent order σ∗ from the noisy matrix A. Still, in contrast
to seriation problems, the expected permuted matrix Fσ∗ = E[Aσ∗ ] is assumed to be a bi-isotonic
matrix, in the sense that (Fσ∗)ij ≤ (Fσ∗)i+1j and (Fσ∗)ij ≤ (Fσ∗)ij+1. Besides, the symmetry
assumption of F in seriation is replaced by (Fσ∗)ij = 1− (Fσ∗)ji. This model introduced by Shah
et al. [178] is referred as the SST model in the literature. Estimation of the latent order σ∗ in the
SST and related models has stimulated a lot of recent works [146, 154, 50], but the best possible
performances achievable by polynomial-time methods remain unknown and it is not clear whether
there exists or not a computational gap for this problem [146]. I am currently working on related
questions with A. Carpentier and E. Pilliat.

Open Problem 5.4. In the SST model, characterizing the best estimation error for σ∗ which is
achievable by polynomial-time procedures.

As a side remark, let us mention that there exist several parametric counterparts to the ranking
problems in the SST model, the most popular being the Bradley-Luce-Terry (BLT) model [32].
According to that model the observations Aij are independent Bernoulli outcomes with mean
f(x∗i , x

∗
j ) = φ(x∗i − x∗j ), where x∗i ∈ R represents the skill of individual i and φ(x) = ex/(1 + ex) is

the sigmoid function. The estimation of the permutation σ∗ or of the skills x∗i ’s can be efficiently
performed using a spectral algorithm or two-steps variants of it [55, 162, 56]. In particular, these
polynomial time procedures are shown to achieve the exact minimax rates and the problem does
not exhibit any computational gap. However, the function f is known in BLT, which makes the
problem significantly easier than SST model.
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[26] Lucien Birgé and Pascal Massart. “Estimation of integral functionals of a density”. In: The
Annals of Statistics 23.1 (1995), pp. 11–29.

[27] Avrim Blum and Joel Spencer. “Coloring random and semi-random k-colorable graphs”.
In: Journal of Algorithms 19.2 (1995), pp. 204–234.

[28] Charles Bordenave, Marc Lelarge, and Laurent Massoulié. “Nonbacktracking spectrum of
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[61] Olivier Collier, Laëtitia Comminges, and Alexandre B Tsybakov. “Minimax estimation of
linear and quadratic functionals on sparsity classes”. In: arXiv preprint arXiv:1502.00665
(2015).

[62] ENCODE Project Consortium et al. “Identification and analysis of functional elements in
1% of the human genome by the ENCODE pilot project”. In: Nature 447.7146 (2007),
p. 799.

[63] R Cameron Craddock, G Andrew James, Paul E Holtzheimer, Xiaoping P Hu, and He-
len S Mayberg. “A whole brain fMRI atlas generated via spatially constrained spectral
clustering”. In: Human brain mapping 33.8 (2012), pp. 1914–1928.

[64] Damek Davis, Mateo Diaz, and Kaizheng Wang. “Clustering a mixture of gaussians with
unknown covariance”. In: arXiv preprint arXiv:2110.01602 (2021).

[65] Yohann De Castro, Claire Lacour, and Thanh Mai Pham Ngoc. “Adaptive estimation of
nonparametric geometric graphs”. In: Mathematical Statistics and Learning 2.3 (2020),
pp. 217–274.

[66] Persi Diaconis and Svante Janson. “Graph limits and exchangeable random graphs”. In:
Rend. Mat. Appl. (7) 28.1 (2008), pp. 33–61. issn: 1120-7183.

[67] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. “List-decodable robust mean es-
timation and learning mixtures of spherical gaussians”. In: Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing. 2018, pp. 1047–1060.

[68] Josep Diaz, Colin McDiarmid, and Dieter Mitsche. “Learning random points from geometric
graphs or orderings”. In: Random Structures & Algorithms 57.2 (2020), pp. 339–370.

[69] Lee H. Dicker. “Variance estimation in high-dimensional linear models”. In: Biometrika
101.2 (2014), pp. 269–284. issn: 0006-3444.

[70] Thorsten Dickhaus. Simultaneous statistical inference. With applications in the life sciences.
Springer, Heidelberg, 2014, pp. xiv+180. isbn: 978-3-642-45181-2; 978-3-642-45182-9.

[71] David L. Donoho and Michael Nussbaum. “Minimax quadratic estimation of a quadratic
functional”. In: J. Complexity 6.3 (1990), pp. 290–323. issn: 0885-064X.

[72] David Donoho and Jiashun Jin. “Higher criticism for detecting sparse heterogeneous mix-
tures”. In: Ann. Statist. 32.3 (2004), pp. 962–994. issn: 0090-5364.

[73] Natalie Doss, Yihong Wu, Pengkun Yang, and Harrison H Zhou. “Optimal estimation of
high-dimensional location Gaussian mixtures”. In: arXiv preprint arXiv:2002.05818 (2020).

[74] Bradley Efron. “Correlation and large-scale simultaneous significance testing”. In: J. Amer.
Statist. Assoc. 102.477 (2007), pp. 93–103. issn: 0162-1459.

[75] Bradley Efron. “Doing thousands of hypothesis tests at the same time”. In: Metron - In-
ternational Journal of Statistics LXV.1 (2007), pp. 3–21.

[76] Bradley Efron. “Empirical Bayes estimates for large-scale prediction problems.” English.
In: J. Am. Stat. Assoc. 104.487 (2009), pp. 1015–1028. issn: 0162-1459; 1537-274X/e.

[77] Bradley Efron. “Large-scale simultaneous hypothesis testing: the choice of a null hypoth-
esis.” English. In: J. Am. Stat. Assoc. 99.465 (2004), pp. 96–104. issn: 0162-1459; 1537-
274X/e.



72 BIBLIOGRAPHY

[78] Bradley Efron. “Microarrays, empirical Bayes and the two-groups model”. In: Statist. Sci.
23.1 (2008), pp. 1–22. issn: 0883-4237.

[79] Bradley Efron, Robert Tibshirani, John D. Storey, and Virginia Tusher. “Empirical Bayes
analysis of a microarray experiment”. In: J. Amer. Statist. Assoc. 96.456 (2001), pp. 1151–
1160. issn: 0162-1459.

[80] Jeremy Elson, Richard M. Karp, Christos H. Papadimitriou, and Scott Shenker. “Global
Synchronization in Sensornets”. In: LATIN 2004: Theoretical Informatics. Ed. by Mart́ın
Farach-Colton. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 609–624. isbn:
978-3-540-24698-5.

[81] Zhou Fan and Leying Guan. “Approximate `0-penalized estimation of piecewise-constant
signals on graphs”. In: The Annals of Statistics 46.6B (2018), pp. 3217–3245.

[82] Yingjie Fei and Yudong Chen. “Exponential error rates of SDP for block models: Beyond
Grothendieck’s inequality”. In: IEEE Transactions on Information Theory 65.1 (2018),
pp. 551–571.

[83] Yingjie Fei and Yudong Chen. “Hidden integrality of SDP relaxations for sub-Gaussian
mixture models”. In: Conference On Learning Theory. PMLR. 2018, pp. 1931–1965.

[84] Fajwel Fogel, Rodolphe Jenatton, Francis Bach, and Alexandre d’Aspremont. “Convex re-
laxations for permutation problems”. In: Advances in Neural Information Processing Sys-
tems. 2013, pp. 1016–1024.

[85] Klaus Frick, Axel Munk, and Hannes Sieling. “Multiscale change point inference”. In: Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology) 76.3 (2014), pp. 495–
580.

[86] Alan Frieze and Ravi Kannan. “Quick approximation to matrices and applications”. In:
Combinatorica 19.2 (1999), pp. 175–220. issn: 0209-9683.

[87] Piotr Fryzlewicz. “Tail-greedy bottom-up data decompositions and fast multiple change-
point detection”. In: The Annals of Statistics 46.6B (2018), pp. 3390–3421.

[88] Delbert Fulkerson and Oliver Gross. “Incidence matrices and interval graphs”. In: Pacific
journal of mathematics 15.3 (1965), pp. 835–855.

[89] Chao Gao, Yu Lu, Zongming Ma, and Harrison H Zhou. “Optimal estimation and comple-
tion of matrices with biclustering structures”. In: The Journal of Machine Learning Research
17.1 (2016), pp. 5602–5630.

[90] Chao Gao, Yu Lu, and Harrison H Zhou. “Rate-optimal graphon estimation”. In: The
Annals of Statistics 43.6 (2015), pp. 2624–2652.

[91] Chao Gao and Zongming Ma. “Minimax rates in network analysis: Graphon estimation,
community detection and hypothesis testing”. In: Statistical Science 36.1 (2021), pp. 16–
33.

[92] Chao Gao, Zongming Ma, Anderson Y. Zhang, and Harrison H. Zhou. “Achieving Optimal
Misclassification Proportion in Stochastic Block Models”. In: J. Mach. Learn. Res. 18.1
(Jan. 2017), pp. 1980–2024. issn: 1532-4435.

[93] Chao Gao and Anderson Y Zhang. “Iterative algorithm for discrete structure recovery”. In:
arXiv preprint arXiv:1911.01018 (2019).

[94] Gemma C Garriga, Esa Junttila, and Heikki Mannila. “Banded structure in binary matri-
ces”. In: Knowledge and information systems 28.1 (2011), pp. 197–226.



BIBLIOGRAPHY 73

[95] Matan Gavish and David L Donoho. “The optimal hard threshold for singular values is
4/
√

3”. In: IEEE Transactions on Information Theory 60.8 (2014), pp. 5040–5053.
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Chapter 6

Résumé en Français

Ce chapitre propose une version résumée en langue française du manuscrit d’habilitation.

6.1 Parcours scientifique

Ma thèse de doctorat [T1] portait sur l’inférence de graphes dans les modèles graphiques
gaussiens. Puisque l’estimation de ces graphes peut se reformuler en termes de sélection
de variables dans des modèles de régression linéaire [156], je me suis rapidement intéressé
à l’analyse minimax des modèles de régression linéaire parcimonieux en grande dimen-
sion [A25].

Après l’achèvement de mon doctorat en 2008, j’ai commencé à travailler sur divers
problèmes d’estimation minimax en statistique en grande dimension. J’ai été notamment
intéressé par la compréhension des régimes de très haute dimension [A26] pour lesquels
les vitesses optimales d’estimation et de test changent de forme.

À la même époque, j’ai été recruté comme chercheur en statistique à MISTEA au sein
de l’INRAE. Dans ce contexte, j’ai commencé à discuter et à collaborer avec des biologiste,
agronomes et collègues statisticiens au sein de mon institut. Cela m’a conduit à plusieurs
travaux appliqués [A22] ainsi qu’à quelques collaborations en analyse de données fonction-
nelles [A23, A27]. Celles-ci étaient motivés par l’analyse de phénotypes complexes (ex:
courbe de croissance de plantes) qui est une thématique prioritaire pour l’INRAE. Depuis
cette période, j’ai gardé un goût prononcé pour les modèles statistiques suffisamment
simples pour être analysables mais assez complexes pour capturer les grandes lignes des
problèmatiques concrêtes. A titre d’exemple, on peut citer l’estimation de l’héritabilité en
génétique grâce à l’estimation du niveau de signal dans des modèles de régression linéaire
en grande dimension [A14] – voir la section 2.3.

Mes intérêts de recherche récents ont été fortement remodelés par deux rencontres.
Premièrement, Ery Arias-Castro m’a invité à collaborer avec lui sur des problèmes de
détection de communautés [A21, A20]. Il m’a également introduit aux domaines de
l’analyse de réseau et du clustering qui sont tous les deux centraux dans cette thèse.
Deuxièmement, j’ai été invité à participer au consortium MIRES. Ce groupe interdisci-
plinaire d’anthropologues, de généticiens, d’écologues et de statisticiens cherche à fournir
des méthodes pour l’analyse des réseaux d’échange de semences. Bien que j’aie peu de pub-
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lications sur ce sujet (mais voir [A19]), j’y ai consacré une part importante de mon activité
scientifique par le biais de discussions informelles avec des chercheur·e·s et étudiant·e·s, la
réalisation de tutoriaux,. . . Certaines des questions statistiques relatives à cette thématique
concernent l’analyse de réseaux et plus généralement l’apprentissage non supervisé et re-
joignent ainsi mes travaux plus théoriques. Comme cette thèse décrit principalement mes
thavaux mathématiques, je ne détaille pas plus cette activité.

Au cours de la période 2014–2018, j’ai eu la chance d’avoir des collaborations
fructueuses et enrichissantes sur trois directions de recherche qui correspondent aux
chapitres 2–4: Alexandra Carpentier m’a initié au problème de l’estimation de la com-
plexité, ce qui a conduit à notre travail commun sur les tests de sparsité [A8, A5]. Avec
Olga Klopp, nous avons par ailleur abordé le problème de l’estimation des graphons parci-
monieux [A16, A9]. Avec Christophe Giraud, nous avons enfin fourni une analyse de la
relaxation convexe du critére K-means [A13], ce tant pour du clustering de points que
pour du clustering de graphe.

Ces dernières années, j’ai eu le plaisir de participer à l’encadrement de trois doctorants:
Solène Thépaut, Yann Issartel (tous deux conjointement avec C. Giraud), et Emmanuel
Pilliat (conjointement avec A. Carpentier et J. Salmon). Parallèlement, mes intérêts sci-
entifiques ont évolué vers d’autres problèmes non supervisés tels que la détection de rup-
tures [P3, P4] ou les problèmes de sériation/classement qui sont décrits dans le chapitre 5.

Quelques mots sur ma démarche mathématique. La plupart de mes travaux
mathématiques s’inscrivent fortement dans la théorie minimax. Depuis mon doctorat,
ma démarche scientifique vise, pour un problèmes donné, à identifier la notion de signal
et à établir des majorations et minorations précises du risque minimax associé en interro-
geant notamment le rôle joué par la connaissance de certains paramêtres de nuisance (ex:
le niveau de bruit, la distribution du bruit). Au-delà de mes penchants mathématiques,
je suis convaincu que ce type d’analyse permet de se forger une intuition sur les quantités
pertinentes et les hypothèses importantes pour la résolution de problèmes pratiques.

Organisation. Ce résumé est organisé en quatre sections qui peuvent être lues de
manière presque indépendante. La première est dédiée aux problèmes de détection et
d’estimation de fonctionnelles principalement dans les modèle de séquences gaussiennes et
de régression linéaire. La section suivante est consacrée à l’analyse de réseaux, notamment
la détection des communautés et l’estimation des graphons. Les deux dernières sections
portent sur le clustering et la détection de ruptures. J’en profite pour glisser quelques
éléments de mon projet de recherche.

6.2 Détection et estimation de fonctionnelles

L’estimation dans les modèles de régression linéaire en grande dimension a suscité beau-
coup d’intérêt au cours des vingt dernières années [38, 98, 190]. Elle a donné lieu à des con-
tributions fondamentales telles que la théorie du compressed sensing. Plus généralement,
les idées développées se sont répandues bien au-delà de ce modèle spécifique et ont eu un
impact profond en statistique et en apprentissage automatique.
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Les aspects essentiels de l’estimation du paramètre de régression θ∗ dans le modèle
de régression linéaire parcimonieux sont compris depuis une quinzaine d’années [22, 47].
Cette section est principalement consacrée à des problèmes connexes pour lesquels on
désire soit tester si θ∗ = 0 (détection de signal), tester si θ∗ appartient à une classe
spécifique, ou plus généralement estimer une fonction simple f(θ∗) de θ∗ (estimation de
fonctionnelle). Parmi les fonctionnelles classiques, on peut à penser à une coordonnée
spécifique θ∗i de θ∗ [43, 120], ce afin d’estimer l’effet d’une covariable tout en prenant en
compte les autres covariables, ou alors à la norme lq de θ∗ [105, 143], ou bien encore au
rapport signal/bruit [69, 118, A14].

Dans cette section, j’axe principalement la discussion sur les deux modèles jouets
suivants: le modèle de séquence gaussienne Y = θ∗ + ε et le modèle de régression linéaire
gaussien Y = Xθ∗+ ε. Dans la suite, n désigne la taille de l’échantillon et p le nombre de
covariables (pour la régresson linéaire).

Les contributions décrites dans cette section suivent l’organisation générale suivante:
(i) pour le problème de test et d’estimation considéré, déterminer les vitesses minimax
notamment en fonction de la parcimonie de θ∗; (ii) Si possible, proposer une procédure en
temps polynomial permettant d’atteindre la vitesse optimale; (iii) Si possible également,
proposer une procédure qui s’adapte à la parcimonie inconnue, c’est-à-dire atteigne la
vitesse optimale (qui dépend du nombre ‖θ∗‖0 de composantes non nulles) sans connais-
sance préalable de ‖θ∗‖0; (iv) étudier le rôle joué par la connaissance ou non de paramètres
de nuisance tels que le niveau de bruit σ ou la covariance Σ entre les covariables.

6.2.1 Détection de signal

Le premier travail est assez ancien. En collaboration avec Y. Ingster et A. Tsybakov [A28],
nous avons caractérisé la distance de séparation minimax pour le problème de détection de
signal (c’est-à-dire le test de l’hypothèse nulle θ∗ = 0) en régression linéaire parcimonieuse
à design gaussien. En d’autres termes, nous avons quantifié le niveau de signal E[‖Xθ∗‖22]
minimum nécessaire pour réussir à détecter avec grande probabilité la présence de signal.
Le procédure utilisée est une combinaison de statistiques du χ2, du Higher-Criticism [72]
et d’une U -statistique.

6.2.2 Estimation du SNR

En collaboration avec E. Gassiat, nous nous sommes intéressés [A14] à l’estimation du
rapport signal/bruit (SNR) E[‖Xθ∗‖22]/σ2 dans le modèle de régression linéaire en grande
dimension. Cette quantité est notamment centrale en génétique quantitative pour car-
actériser l’héritabilité d’un caractère phénotypique. Si le vecteur θ∗ de paramètre est très
parcimonieux (ex: ‖θ∗‖0 log(p) ≤

√
n), alors on peut simplement estimer θ∗ avec une

méthode de type square-root Lasso [18] et utiliser un estimateur plug-in pour le SNR.
Cet estimateur simple atteint la vitesse paramétrique en n−1/2. Néanmoins, pour certains
phénotype complexes (ex [153]), le caractère parcimonieux du vecteur θ∗ correspondant a
été remis en cause. Ceci pose alors la question d’estimer le SNR lorsque ‖θ∗‖0 est possi-
blement grand, voir ‖θ∗‖0 = p, auquel cas il devient impossible d’obtenir une estimation
précise de θ∗. Dans ce cadre, Dicker [69] a proposé une U -statistique, qui tout au moins
lorsque les covariables sont indépendantes, estime à la vitesse paramétrique le SNR dans
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le régime p � n. Notre contribution dans [A14] est double: (i) nous avons d’abord car-
actérisé la vitesse minimax d’estimation du SNR en fonction de ‖θ∗‖0, p, n et construit
une procédure adaptative à la parcimonie inconnue. De façon intéressante, il est possible
d’estimer le SNR de façon consistante tant que p = o(n2), ceux même en l’absence de
parcimonie. (ii) Nous avons montré que, lorsque la covariance entre les covariables est
inconnue, alors il devient impossible d’estimer de façon consistante le SNR lorsque p� n
en l’absence d’hypothèse de parcimonie.

Cela illustre le rôle central tenu par la connaissance des paramètres de nuisance (ici la
loi du design) sur la difficulté de certains problèmes d’estimation de fonctionnelles.

6.2.3 Test et estimation de parcimonie

Avec A. Carpentier, nous nous sommes intéressés à la problématique générale d’estimation
de la complexité d’un signal. De nombreuses procédures statistiques modernes cherchent
à utiliser la structure sous-jacente du signal (ex: la parcimonie d’un vecteur, la régularité
d’une fonction, le faible rang d’une matrice) pour améliorer les propriétés d’inférence ou
de prédiction. Estimer/Tester la complexité revient alors à essayer d’inférer/tester ce
niveau de parcimonie, cette régularité, ce rang. . . Dans le cadre des modèles de séquence
gaussienne et de régression linéaires, nous avons ainsi considérer les problèmes de test et
d’estimation de la parcimonie ‖θ∗‖0 du vecteur de paramètres [A8, A5].

D’un point de vue mathématique, il s’agit d’un problème de test emblématique pour
lequel les hypothèses nulles et alternatives sont toutes deux composées. Au contraire du
problèmes de détection de signal pour lequel l’hypothèse nulle est simple, la difficulté du
problème de test d’hypothèses {‖θ∗‖0 ≤ k0} contre {‖θ∗‖0 = k0 + ∆} dépend de la taille
de ces deux espaces de paramètres. Dans [A8], nous avons caractérisé la distance minimax
de séparation d’hypothèse pour tout k0 ≥ 0 et tout ∆ > 0 dans le modèle de séquence
gaussienne. Notamment, lorsque la parcimonie de l’hypothèse nulle est faible (k0 ≤

√
n),

la distance de séparation minimax ne dépend pas de k0. En revanche, pour k0 >
√
n,

les distance de séparation dépendent de façon subtiles de k0 et de ∆. Nous obtenons
également des résultats partiels dans le modèles de régression linéaire [A5].

La construction du résultat d’impossibilités repose sur des méthodes dites de ’moment
matching’ tel qu’introduites par Lepski et al. [143]: nous contruisons deux loi a prioris µ0

et µ1 sur les ensemble de parametres correspondant aux hypothèses nulles et alternatives
respectivement. Si ces deux mesures ont leur log(n) premiers moments égaux, alors on
peut montrer qu’il est impossible de tester si θ∗ a été tiré selon µ0 et µ1. L’enjeu devient
alors de construire de telles mesures µ0 et µ1 telles que µ1 se concentre sur des valeurs de
paramêtres θ∗ le plus éloignés possible de l’hypothèse nulle.

6.2.4 Tests multiples avec distribution nulle inconnue

Le dernier travail vise à donner une justification théorique aux travaux d’Efron en tests
multiples. En réexaminant de nombreux jeux de données classiques, Efron [74, 75, 77]
a fait valoir que, dans de nombreux cas, la distribution nulle utilisée pour réaliser un
test multiple est mal choisie et doit en fait être re-estimée à partir des données. En
conséquence, le statisticien doit à partir des même données à la fois inférer des paramètres
de l’hypothèse nulle et réaliser l’ensemble des test multiples. Efron considère un cadre
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statisque similaire au modèle de séquence gaussienne: Y = θ∗ + ε avec ε ∼ N (0, σ2In)
et σ inconnu. On cherche tester les hypothèse H0,i : θ∗i = θ0 contre H1,i : θ∗i > θ0 (tests
unilatéraux) ou H ′1,i : θ∗i 6= θ0 (tests bilatéraux). La difficulté est que la valeur de référence
θ0 est inconnue et doit être estimée au même titre que σ.

Dans ses travaux, Efron a proposé une approche bayésienne mais il n’y avait, jusqu’à
présent, aucune analyse fréquentiste de ce problème. A. Carpentier, S. Delattre, E.
Roquain et moi-même considérons d’abord le problème de l’estimation de ces paramètres
θ0 et σ et nous montrons ensuite dans quels cas l’erreur d’estimation est assez faible pour
qu’une méthode de Benjamini-Hochberg basée sur un plug-in des estimateurs a des per-
formances contrôlées. Réciproquement, nous montrons dans quel cas, il est impossible de
construire une procédure de tests multiples aussi performante que si la distribution nulle
était connue à l’avance. Nous traitons à la fois le cas des alternative unilatérales [A4] et
bilatérales [A1].

Nous nous éloignons également du modèle de séquence gaussienne en permettant aussi
aux distributions alternatives d’être non gaussiennes. Dans ce cadre, l’estimation des
paramètres θ0 et σ se rapproche du cadre des modèles de contamination de Huber [112] en
statistiques robustes. Les arguments utilisés combinent des idées d’estimation minimax
robuste avec des des mécanismes de contrôle du taux de fausses découvertes (FDR).

6.3 Analyse de réseaux

Cette section est dédiée à l’analyse statistique de graphe. On observe la matrice
d’adjacence A ∈ {0, 1}n×n d’un graphe aléatoire simple non orienté à n noeuds. On
s’intéresse à deux objectifs bien distincts: (i) détecter si le graphe est homogène ou s’il
existe des groupes de noeuds inhabituellement connectés [A21, A3, A20] et (ii) estimer la
distribution de A de façon non-paramétrique [A16, A9].

6.3.1 Détection de communautés

Le problème de détection de communauté parfois appelé problème du sous-graphe planté
est le suivant. Sous l’hypothèse nulle, on observe un graphe d’Erdös-Renyii dont la prob-
abilité de connection est p0. Sous l’hypothèse alternative, il existe un sous-ensemble de
m noeuds (ici m � n) dont la probabilité de connection entre eux vaut p1 > p0. Une
instance particulière de ce problème avec p0 = 1/2 et p1 = 1 correspond à une version
aléatoire du problème de la clique plantée, qui est central en théorie de la complexité [7].

En collaboration avec E. Arias-Castro, nous avons caractérisé l’ensemble des valeurs
de (p0, p1,m) pour lequel il est possible de détecter avec certitude l’existence de cette
communauté. Lorsque le graphe est relativement dense [A21] (p0 est assez grand par
rapport a 1/m), alors le problème n’est pas structuellement très différent du problème de
la détection de sous-matrices gaussiennes [39] et les tests optimaux correspondant calculent
soit le nombre total d’arêtes, soit le nombre maximum d’arêtes dans les sous-graphes à m
noeuds (test de scan). En revanche, lorsque le graphe est plus parcimonieux [A20], alors
il existe des procédure plus subtiles de détection de communautés qui s’appuient sur la
géométrie des graphes d’Erdös-Renyii et le comportement de processus de branchement
de poissons multi-types.



86 CHAPTER 6. RÉSUMÉ EN FRANÇAIS

6.3.2 Estimation de graphons

A l’opposé de modèles d’Erdös-Renyii ou de problèmes à trois paramètres (p0, p1,m), nous
considérons le problème d’estimation de la distribution de A sous l’unique hypothèse que
cette distribution est échangeable, c’est à dire invariante par permutation des noeuds. Les
travaux d’Aldous-Hoover et de Diaconis-Jansson [66] ont montré que la distribution de
A peut alors être caractérisée par un graphon [150], qu’on considére comme une fonction
mesurable W : [0, 1] × [0, 1] → [0, 1]. Le modèle aléatoire correspondant, dit du W -
graphe aléatoire, stipule que (a) on tire uniformément pour chaque noeud i une étiquette
ξi ∈ [0, 1], puis (b) pour chaque paire de noeuds i et j, on tire une arête avec probabilité
W [ξi, ξj ].

Avec O. Klopp et A. Tsybakov, nous considérons le problème d’estimation du graphon
W lorsque lorsque la matrice A est tirée selon un tel modèle de W -graphe aléatoire pos-
siblement parcimonieux, c’est à dire que la probabilité de connection vaut ρnW [ξi, ξj ]
où ρn est possiblement petit. Nous étendons les résultats précédents de Gao et al. [90]
dans deux directions différentes: premièrement, nous caractérisons la vitesse minimax
d’estimation de la matrice (W [ξi, ξj ])i,j en norme de Frobenius, ce pour toute valeur
ρn. Deuxièmement, nous établissons la vitesse optimale d’estimation du graphon W
en distance δ2 qui s’interpréte comme une distance l2 entre fonctions. La difficulté
de ce deuxième résultat provient du fait que les graphons souffrent de graves soucis
d’identifiabilité. Pour rendre le problème identifiable, la distance δ2 est donc définie sur
des classes d’équivalence [150] de graphons pour une certaine notion dite d’isomorphisme
faible. Il est alors difficile de minorer la distance δ2 entre des classes d’équivalence, ce qui
rend la preuve des minorations minimax assez technique.

Dans [A9], O. Klopp et moi-même considérons l’estimation de graphons par rapport à
la distance cut. En comparaison de δ2, cette métrique a la vertu de mieux traduire des pro-
priétés structurelle du graphe telles que des nombres d’homomorphismes. Le travail [A9]
est plus intéressant d’un point de vue conceptuel que pratique. Nous y démontrons en effet
qu’un estimateur trivial (i.e. prendre les donnée brutes A sans les lisser) s’avère être quasi-
toujours optimal. Néanmoins, les estimateurs classiques basés sur le seuillage de valeurs
singulières de A sont également optimaux. Estimer au mieux un graphon en distance cut
est donc trivial en pratique. Notre résultat principal est une caractérisation fine de la
vitesse optimale d’estimation d’un graphon pour cette métrique cut, lorsque le graphon
correspond à un modèle à blocs stochastique (voir la section suivante pour la définition).
La preuve utilise notamment des variations du lemme de régularité de Szemerédi [185].

6.4 Clustering

6.4.1 Modèle à Partition Plantée

Les problèmes de clustering consistent à regrouper des ”objets” similaires. Ces objets peu-
vent être des points dans un espace métrique, les noeuds d’un graphe, des courbes,. . . Ces
problèmes ont suscité des travaux très divers tant en statistique qu’en informatique
théorique. Dans cette thèse, on s’intéresse unique à la perspective probabilitiste, dite
de la partition cachée ou plantée. De manière informelle, cette perspective postule qu’il
existe une vraie partition inconnue G∗ = (G1, . . . , GK) de ces n objets en K groupes.
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L’ensemble de données X est alors supposé avoir été tiré selon une distribution PG∗ dont les
caractéristiques dépendent de G∗. L’objectif est donc de retrouver cette partition cachée
G∗ à partir d’une observation X de PG∗ . Dans ce formalisme, nous pouvons résumer le
processus de génération des données et d’analyse statistique comme suit

G∗ →
PG∗

X→ Ĝ .

Etant donnée une partition G∗ de [n] et a ∈ [n], on note dans la suite k∗(a) pour le groupe
du a-ième objet. Certains des modèles probabilitistes les plus classiques de clustering
s’inscrivent dans ce cadre. Par exemple, on peut citer les modèles de mélange gaussien
(GMM) ou les modèles à blocs stochastiques (SBM) définis ci-dessous.

Définition 6.1 (Modèle de mélange gaussien (GMM) conditionnel). Soient K vecteurs
µ1, . . . , µK ∈ Rp, K matrices de covariance Σ1,. . . , ΣK ∈ Rp×p et une partition G∗ de
[n] en K groupes. Pour a = 1, . . . , n, les lignes Xa de X = (X1, . . . , Xn)T ∈ Rn×p sont
indépendantes et satisfont Xa ∼ N (µk∗(a),Σk∗(a)).

Cette définition diffère légérement du cadre classique des mélanges gaussiens car la
partition G∗ est considérée comme fixe au lieu d’avoir été tirée selon une loi multinomiale.

Définition 6.2 (Modèles à blocs stochastiques (SBM) conditionnel). Soient Q ∈
[0, 1]K×Ksym une matrice symétrique de probabilités et G∗ une partition de [n]. La matrice
X ∈ Rn×n correspond à la matrice d’adjacence d’un graphe simple non orienté, c’est-à-
dire que X est symétrique et sa diagonale est nulle. Pour tout 1 ≤ a < b ≤ n, les Xa,b

sont indépendants et satisfont Xa,b ∼ B(Qk∗(a),k∗(b)).

Comme précédemment, ceci diffère légèrement de la définition habituelle des SBM [110]
car la partition G∗ est considérée fixe. Lorsque la matrice Q vaut Q = (α− β)IK + βJK
où JK est la matrice constante 1 et 0 < β < α < 1, on obtient le modèle classique, dit
d’affiliation, pour lequel la probabilité α de connection intra-groupe est plus grande que la
probabilité β inter-groupes. Plus généralement, le problème de clustering est identifiables
pour des matrices Q générales dès lors que toutes les lignes de Q sont distinctes.

Dans ces deux modèles, l’objectif général est d’estimer à partir des données brutes
X une partition Ĝ qui est aussi proche que possible de la vraie partition G∗. Si pos-
sible, la procédure correspondante doit s’exécuter en temps polynomial par rapport à
la taille (K,n, p) du problème. Ce problème a suscité beaucoup d’intérêt tant pour les
modèles de mélange gaussien que pour les modèles à blocs stochastiques. De nombreuses
procédures différentes ont été étudiées, notamment des méthodes spectrales [142, 149],
des programmes semi-définis [5, 158], les algorithmes de Loyd [152] ou plus généralement
les algorithmes itératifs [93]. Pour les SBM, des procédures plus spécifiquement adaptées
aux graphes parcimonieux telles que [3, 28] ont également été proposées –voir l’article de
synthèse d’Abbe [2].

6.4.2 Analyse d’une version convexifiée de K-means

Lorsque les objets que l’on souhaite regrouper correspondent à des vecteurs dans un espace
euclidien, l’une des approches de clustering les plus courantes est basée sur la minimisation
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du critère K-means [147]. En écrivant Xa ∈ Rp pour l’objet a ∈ [n], le critère K-means
d’une partition G = (G1, . . . , Gk) de [n] est défini comme suit

Crit(G) =

K∑
k=1

∑
a∈Gk

∥∥∥∥Xa −
1

|Gk|
∑
b∈Gk

Xb

∥∥∥∥2

2

, (6.1)

où ‖.‖2 est la norme euclidienne. Comme la minimisation exacte du critère est NP-
dure [10], on a en pratique souvent recours à procédures de minimisation itérative telles
que l’algorithme de Lloyd [147] et ses variantes [8], mais ces procédures ne convergent
que vers un minimum local du critère, à moins que l’initialisation ne soit suffisamment
proche du minimum global. Comme alternative, Peng et Wei [168] ont proposé de relâcher
le critère K-means en un programme semi-défini (SDP) suivi d’une étape d’arrondi. La
procédure correspondante est calculable en temps polynomial.

Dans un travail joint [A13] avec C. Giraud, nous avons étudié cette version SDP
de K-means aussi bien pour les GMM que pour les SBM. Dans ces deux modèles nous
caractérisons la proportion d’individus mal classés et nous montrons que celle-ci décroit
exponentiellement vite avec le rapport signal/bruit (voir la définition dans le chapitre 4).

Pour être plus concret, considérons un GMM avec une partition G∗ équilibrée (|G∗k| �
n/K) et une matrice de covariance commune Σ1 = . . . = ΣK = σ2Ip, le cas général étant
traité dans [A13]. Notons ∆2 = minj 6=k ‖µj − µk‖22 la distance entre groupes. On définit
alors le niveau de signal

s2 =
∆2

σ2
∧ n∆4

Kpσ4
.

Nous établissons que, si s2 & K, alors, avec grande probabilité, la proposition d’individus
mal classés dans la partition estimée est plus petite que e−c

′s2 où c′ > 0. Cette erreur de
classification est optimale (à constante c′ près) [161]. L’intérêt de ce résultat par rapport
à la littérature existante est qu’il est valables dans un cadre général, incluant des matrices
de covariance différentes et possiblement non sphériques et des cadres de grande dimension
p� n.

6.4.3 Clustering avec K grand

Néanmoins, la condition (s2 & K) de signal nécessaire pour notre résultat de convergence
exponentiel de l’erreur n’est pas minimale. Notamment, il est connu [173] que, tout au
moins en petite dimension (p � n), il est possible de construire un estimateur Ĝ dont
l’erreur de classification est meilleure qu’une partition tirée au hasard, dès que le SNR
satisfait s2 & log(K). Nous conjecturons que l’estimateur exact K-means qui minimise
exactement (6.1) atteint une erreur en e−c

′s2 dès que s2 & log(K).

En revanche, la méthode correspondante souffre d’une complexité exponentielle. Tout
au moins en grande dimension (lorsque p est au moins de l’ordre n), nous conjecturons
également que la condition de signal s2 & K ne peut pas être affaiblie pour des procédures
de complexité polynomiale. Ce point est notamment discuté dans un travail joint [A11]
avec J. Banks, C. Moore, J. Xu, et R. Vershynin.
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6.5 Détection de rupture

J’ai récemment consacré deux travaux à la détection de ruptures avec M. Fromont, M.
Lerasle et P. Reynaud-Bouret d’une part [P4] et avec E. Pilliat et A. Carpentier [P3]
d’autre part. Dans ce résumé, je décris essentiellement le premier.

Considérons le modèle prototypique de détection de ruptures univariées Y = θ∗+ ε où
θ∗ = (θ∗1, . . . , θ

∗
n) est dans Rn et ε est un bruit gaussien standard. A partir de Y , l’objectif

est de trouver les points de ruptures, c’est à dire les coordonnées où le vecteur moyenne
θ∗ varie. Par reparamétrisation, il existe un entier 0 ≤ K ≤ n − 1, un vecteur d’entiers
τ∗ = (τ∗1 , . . . , τ

∗
K) satisfaisant 1 = τ∗0 < τ∗1 < . . . < τ∗K < τ∗K+1 = n + 1, et un vecteur

µ = (µ1, . . . , µK+1) dans RK+1 satisfaisant µk 6= µk+1 pour tout k dans {1, . . . ,K} tel que
θ∗i =

∑K+1
k=1 µk1τ∗k−1≤i<τ

∗
k
. Voir la figure 6.1. Alors, τ∗k est appelé la position du k-ième

saut et ∆k = µk+1 − µk est appelé la hauteur du k-ième saut.

Figure 6.1: Sauts τ∗k−1, τ∗k , τ∗k+1 du vecteur θ∗. Ici, ∆k corresponds à la hauteur du
k-ième saut et rk = (τ∗k+1 − τk∗) ∧ (τ∗k − τ∗k−1) à sa longueur correspondante.

Avec ces notations, notre objectif est de construire un estimateur τ̂ de τ∗ des positions
de saut qui soit optimal tant en terme de détection des sauts qu’en terme de localisation
des sauts:

(a) On dit qu’un estimateur τ̂ détecte un vrai saut τ∗k s’il existe un saut estimé τ̂l qui est
plus proche de τ∗k qu’il ne l’est de n’importe quel autre saut. Inversement, on dit que
τ̂ détecte à tort un saut s’il existe deux sauts estimés τ̂l et τ̂l′ qui sont proches d’un
même saut τ∗k . Le défi consiste alors à construire un estimateur τ̂ qui, avec grande
probabilité, détecte tous les vrais sauts significatifs tout n’en détectant aucun à tort.
À cette fin, nous introduisons l’énergie E2

k = ∆2
k[(τ

∗
k+1− τk∗)∧ (τ∗k − τ∗k−1)] d’un vrai

saut comme le carré de la hauteur saut multiplié par la distance de τ∗k au saut le
plus proche. Dans [P4], nous caractérisons les conditions minimales sur l’énergie du
saut qui permettent de détecter le saut.

(b) Si un véritable saut τ∗k a été détecté, on cherche à le localiser le mieux possible, c’est-
à-dire à minimiser la distance dH,1(τ̂ , τ∗k ) = mini=1,...,|τ̂ | |τ̂i − τ∗k | entre τ∗k et le saut
estimé le plus proche. Cette quantité dH,1(τ̂ , τ∗k ) est appelée erreur de localisation
de τ̂ pour τ∗k . Outre l’erreur de localisation d’un saut spécifique, nous caractérons
dans [P4] la vitesse optimale pour les erreurs de Hausdorff et de Wasserstein, qui
correspondent respectivement au supremum et à la somme des erreurs de localisation.

Nous construisons également dans [P4] deux procédures de détection de ruptures qui
sont à la fois optimale en détection et en localisation. La première procédure est basée



90 CHAPTER 6. RÉSUMÉ EN FRANÇAIS

sur une versions pénalisée de l’estimateur des moindres carrés tandis que la deuxième est
une méthode d’agrégation de tests locaux dont le coût computationnel est quasi-linéaire.

Dans [P3], nous étendons cette analyse à des modèles plus généraux incluant la
détection de ruptures pour des séries temporelle multivariée ou la détection de ruptures
non-paramétrique.

Dans le futur, je compte m’intéresser avec mes collègues au problème de segmentation
sur graphe qui peut s’interpréter comme un continuum entre le clustering classique et la
détection de ruptures.

Problème ouvert 6.1 (Segmentation sur un graphe général). Considérons un graphe
non orienté G = ([n], E) avec n sommets. Pour chaque sommet a = 1, . . . , n, on observe
Ya ∼ N (θ∗a, Ip) de moyenne inconnue θ∗a ∈ Rp. Soit G∗ = (G∗1, . . . , G

∗
K) la partition de

[n] qui regroupe les valeurs identiques de θ∗a. Sous réserve que la partition G∗ ait une
petite frontière sur le graphe G, quelle est la différence minimale entre les moyennes pour
que l’on soit capable de reconstruire partiellement G∗? Quelle est l’erreur minimale de
reconstruction de la partition G∗?

Remarquons que si G est un graphe ligne, alors il s’agit d’un problème de détection de
ruptures multivariées. Si G est un graphe complet (ou alors un graphe sans arête), alors
ce problème est équivalent à problème de clustering dans un modèle de mélange gaussien
tel que décrit dans la section précédente.

Bien que le problème d’estimation du vecteur θ∗ soit relativement bien compris, au
moins dans le cas univarié [81], il n’existe que des résultats très partiels en ce qui concerne
l’estimation de la partition G∗ –voir par exemple [203].
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