
HAL Id: tel-03885469
https://theses.hal.science/tel-03885469v1

Submitted on 5 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimised tableau algorithms for reasoning in the
description logic ALC extended with link keys

Khadija Jradeh

To cite this version:
Khadija Jradeh. Optimised tableau algorithms for reasoning in the description logic ALC ex-
tended with link keys. Other [cs.OH]. Université Grenoble Alpes [2020-..], 2022. English. �NNT :
2022GRALM021�. �tel-03885469�

https://theses.hal.science/tel-03885469v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Informatique
Unité de recherche : Laboratoire d'Informatique de Grenoble

Algorithmes de tableau optimisés pour le raisonnement dans la
logique de description ALC étendue avec des clés de liage

Optimised tableau algorithms for reasoning in the description logic
ALC extended with link keys

Présentée par :

Khadija JRADEH
Direction de thèse :

Manuel ATENCIA ARCAS
 Université Grenoble Alpes

Directeur de thèse

Chan LE DUC
 Université Sorbonne Paris Nord

Co-directeur de thèse

Rapporteurs :
MADALINA CROITORU
Professeur des Universités, UNIVERSITE DE MONTPELLIER
NATHALIE PERNELLE
Professeur des Universités, UNIVERSITE SORBONNE PARIS NORD

Thèse soutenue publiquement le 12 juillet 2022, devant le jury composé de :

MADALINA CROITORU
Professeur des Universités, UNIVERSITE DE MONTPELLIER

Rapporteure

NATHALIE PERNELLE
Professeur des Universités, UNIVERSITE SORBONNE PARIS NORD

Rapporteure

JERÔME GENSEL
Professeur des Universités, UNIVERSITE GRENOBLE ALPES

Président

CASSIA TROJAHN DOS SANTOS
Maître de conférences HDR, UNIVERSITE TOULOUSE 2 - JEAN
JAURES

Examinatrice

Invités :

Contents

1 Introduction 10
1.1 Context . 10

1.1.1 Knowledge representation on the semantic web 10
1.1.2 Interlinking RDF graphs . 11
1.1.3 Link keys . 12

1.2 Problem statement . 12
1.3 Contribution . 13
1.4 Organisation . 15

2 Preliminaries 16
2.1 Introduction . 16
2.2 The description logic ALC and its extensions 16

2.2.1 Syntax and Semantics of ALC . 16
2.2.2 Reasoning problems and services . 18
2.2.3 Reduction of ontology entailment to ontology consistency 18
2.2.4 Extension of ALC with inverse roles I 19

2.3 Tableau algorithms for reasoning in ALC . 19
2.4 Conclusion . 20

3 Literature Review 21
3.1 Reasoning in description logics with ontological constraints 21

3.1.1 Tableau algorithms for reasoning in description logics 22
3.1.2 Reasoning with keys . 22

3.1.2.1 Reasoning with keys in a separate set of constraints 22
3.1.2.2 Reasoning with keys as a new concept constructor 24
3.1.2.3 Link keys cannot be reduced to keys 24
3.1.2.4 Conclusion . 24

3.1.3 Reasoning with rules . 24
3.1.3.1 Reasoning with DL-safe rules 25
3.1.3.2 Conclusion . 26

3.1.4 Reasoning with correspondences . 26
3.1.4.1 Conclusion . 28

3.2 The complexity of reasoning in the description logic ALC and its simple ex-
tensions . 28
3.2.1 Conclusion . 30

3.3 Summary . 30

2

4 A 2EXPTIME tableau algorithm for reasoning in the description logic ALC with
link keys and individual equalities 31
4.1 Introduction . 31
4.2 The description logic ALC+LK . 32
4.3 Reduction of ontology entailment to ontology consistency 33
4.4 Tableau algorithm for ALC+LK . 34

4.4.1 Preprocessing . 34
4.4.2 Blocking . 34
4.4.3 Clashes . 35
4.4.4 Completion rules . 36

4.5 Examples . 38
4.6 Properties of the method . 41

4.6.1 Some properties of derived ontologies 41
4.6.2 Termination . 42
4.6.3 Soundness . 43
4.6.4 Completeness . 48
4.6.5 Complexity . 50

4.7 Conclusion . 51

5 A worst-case optimal EXPTIME algorithm for reasoning in the description logic
ALC with link keys and individual equalities 52
5.1 Introduction . 52
5.2 A compressed tableau for the description logic ALC+LK 53
5.3 A non-directed algorithm for the description logic ALC+LK 59
5.4 Examples . 62
5.5 Properties of the algorithm . 64

5.5.1 Soundness . 64
5.5.2 Completeness . 68
5.5.3 Complexity . 71

5.6 Conclusion . 75

6 A worst-case optimal EXPTIME tableau algorithm for reasoning in the description
logic ALC extended with link keys and individual equalities 76
6.1 Introduction . 76
6.2 A Compressed Tableau for the logic ALC+LK 76
6.3 Compressed Tableau Algorithm . 78
6.4 Examples . 97
6.5 Properties of the algorithm . 99

6.5.1 Soundness . 99
6.5.2 Completeness . 102
6.5.3 Complexity . 107

6.6 Extending ALC+LK with inverse roles . 108
6.7 Conclusion . 109

3

7 Implementation and Evaluations 110
7.1 Introduction . 110
7.2 StaréLK architecture . 110

7.2.1 Datasets, ontologies, and alignments parser module 111
7.2.2 Link keys parser module . 111
7.2.3 Reasoning module . 112

7.3 Evaluations . 113
7.3.1 Correctness of StaréLK . 113

7.3.1.1 Experimental goals . 113
7.3.1.2 Experimental setting and results 113

7.3.2 Impact of link key reasoning on data interlinking 114
7.3.2.1 Experimental goals . 115
7.3.2.2 Experimental setting and results 116

7.4 Conclusion . 118

8 Conclusion and Perspectives 119
8.1 Summary and Conclusion . 119
8.2 Future Work . 120

9 Appendix 122
9.1 Extending the description logic ALC with inverse roles 122

Bibliography 128

4

List of Algorithms

1 Tableau algorithm for ALC+LK ontology consistency checking 36

2 Algorithm for pruning compressed tableau . 61
3 Compressed algorithm for ALC+LK ontology consistency checking 61

4 init algorithm . 82
5 matchCore algorithm . 83
6 matchTriple algorithm . 86
7 matchMerge algorithm . 89
8 check algorithm . 93
9 Compressed tableau algorithm for ALC+LK ontology consistency checking 97

5

List of Figures

2.1 Completion rules for ALC. 20

4.1 Completion rules for ALC+LK. 37
4.2 Derived ABox corresponding to A6 in Example 6. 44
4.3 Left: Canonical interpretation corresponding to the derived ABox of Figure 4.2. 45

5.1 Graphical representation of the triple τ . 54
5.2 A star-type made up of 3 triples. 54
5.4 An invalid and a valid star-type built from O. 56
5.5 The star-types σa and σb satisfy the condition of λ through the star-types σd

and σe. 58
5.6 A pair of ABoxes generated upon the application of non-deterministic rule in

the standard tableau algorithms. 59
5.7 A pair of star-types generated upon the application of non-deterministic rule in

the compressed tableau algorithm. 60
5.8 Valid star-types that do not satisfy ({〈P,Q〉} linkkey 〈C,D〉). 63
5.9 A compressed tableau CT = 〈〈Λ0,Λ1,Λ2〉,Ω〉 for O. 64

6.1 The figure on the right hand side is not saturated star-type while figure on the
left hand side is saturated. 77

6.2 Completion rules applied on a star-type σ. 79
6.3 Link key and equality rules applied to star-types in Λ0. 80
6.4 Application of matchCore algorithm . 83
6.5 When there is a triple is ρ′ ∈ σ′ and ρ′ 6∈ σ the algorithm creates a ρ′-successor

of σ′ and adds it to Λ. 87
6.6 A part of the pre-compressed tableau before and after applying Algorithm 6. . . 87
6.7 matchMerge transforms the predecessors of star-types σ ⊕ σ′={τ1, τ2} 90

7.1 StaréLK architecture. 111
7.2 The components of StaréLK reasoning module. 112
7.3 Data interlinking pipeline based on link key inference. 115

9.1 Matching function between star-types, (ω, ρ) ∈ Ω(σ, τ). 123

6

Acknowledgement
I like first to thank the reviewers, Mme Madalina Croitoru and Mme Nathalie Pernelle for

their valuable reviews and comments. I would like to thank Mme Madalina Croitoru, also, for
the support and the encouragement she gave me during the thesis follow-up meetings. I want
to thank Mme Cassia Trojahn Dos Santos for being on the jury and for providing me the op-
portunity to do my post-doctoral research with her. Also, I am very thankful to the president of
the jury M. Jérôme Gensel for all the interesting discussions.

I also like to express my sincere gratitude to my thesis director Manuel Atencia Arcas, for
the encouragement, and the pieces of advice he has provided throughout my thesis in both sci-
entific and personal manners. It was a great opportunity to work with you. I would like to thank
my co-supervisor, Chan Le Duc, for the huge amount of knowledge he passed to me and for
always insisting to bring out the best version of me.

I sincerely thank the mOeX team members for their support and encouragement. Espe-
cially, Jérôme Euzenat for his guidance, feedback, and comments which helped me to shape
and improve my research. Also, I thank Jérôme David for all the help on both scientific and
personal aspects. I also like to thank my colleagues and friends at mOeX, Yasser and Andreas,
who made my journey richer and more joyful.

I am deeply grateful to my family and especially to my mother, Samira, and my father,
Mahmoud, for their continuous care and love. Thank you for always being beside me no matter
the distance that have separated between us. I would never have done it without you.

For my friends, Mayssam, Samarmar, and Zainab thank you for being my second family. I
would never find friends as supportive and caring as you.

For my partner, Shadi, thank you for always being there for me. For your patience, support,
and love which gave me the strength to carry on my pursuit of the Ph.D. degree.

7

Resumé
Les graphes de connaissances (KG) sont sans cesse utilisés par différentes organisations pour
représenter des entités du monde réel sous la forme d’un graphe. Ils peuvent utiliser une couche
ontologique pour décrire les classes et les propriétés des entités représentées. Les graphes
de connaissances RDF sont des graphes de connaissances qui transmettent au modèle RDF.
L’interconnexion des graphes de connaissances RDF consiste à identifier différents IRIs ap-
partenant à différents graphes de connaissances RDF et faisant référence à la même entité du
monde réel. Cela facilite l’intégration et l’interopérabilité des données en combinant différentes
descriptions d’entités présentes dans différents graphes de connaissances.

Il existe différentes méthodes pour aborder la tâche d’interconnexion des graphes de con-
naissances RDF. Les clés de liage font partie de ces méthodes. Elles sont utilisées pour in-
terconnecter des graphes de connaissances RDF décrits à l’aide de différentes ontologies. Les
clés de liage spécifient les propriétés à comparer pour décider si deux entités appartenant à des
classes différentes et présentes dans des graphes de connaissances différents sont les mêmes.

Les clés de liage peuvent être exprimées sous forme d’axiomes logiques, et il est donc
possible de les combiner avec des ontologies et des alignements d’ontologies pour effectuer
un raisonnement logique. Dans cette thèse, nous avons pour objectif d’étudier le problème du
raisonnement avec des clés de liages. Pour étudier formellement ce problème, nous modélisons
les graphes de connaissances RDF, les ontologies et les alignements d’ontologies en utilisant la
logique de description ALC. Nous choisissons la logique de description ALC comme langage
de base pour le raisonnement. ALC couvre de nombreuses capacités de modélisation utilisées
pour la représentation des connaissances et permet une extension plus facile à des logiques
de description plus expressives. Nous étendons ALC avec des clés de liage et des égalités
individuelles, la logique de description résultante est appelée ALC+LK. Nous montrons que
l’implication des clés de liage peut être réduite à la vérification de la cohérence des clés de
liage sans avoir besoin d’introduire la négation des clés de liage.

Ensuite, nous concevons un algorithme pour décider de la cohérence de l’ontologie ALC+LK.
Nous avons prouvé que l’algorithme est correct, complet et qu’il se termine toujours. Cet algo-
rithme s’exécute en 2EXPTIME. Cependant, il existe des algorithmes EXPTIME pour raisonner
en ALC et les règles de complétion ajoutées pour traiter les clés de liage et les égalités ne
nécessitent pas plus de puissance de calcul que celle de ALC.

À la lumière de ce qui précède, nous concevons un algorithme correct, complet et opti-
mal dans le pire des cas pour le raisonnement en ALC+LK. Cet algorithme est inspiré de
l’algorithme du tableau comprimé, qui permet d’obtenir le résultat de complexité optimale
EXPTIME. Cependant, cet algorithme a un comportement non dirigé qui entrave son implé-
mentation.

Enfin et surtout, nous proposons un algorithme de tableau correct, complet et optimal dans
le pire des cas pour le raisonnement dans la logique de description ALC avec des individus et
des clés de liaison. Cet algorithme, contrairement à celui non dirigé, est dirigé par l’application
de règles de complétion. Cela évite la génération de structures inutiles et facilite son implé-
mentation. Nous implémentons cet algorithme et fournissons un certain nombre d’expériences
de preuve de concept qui démontrent l’importance du raisonnement avec des clés de liage pour
la tâche d’interconnexion des données.

8

Abstract
Knowledge Graphs (KGs) are unceasingly used by different organisation to represent real-

world entities in the form of a graph. They may use an ontological layer for describing the
classes and properties of the represented entities. RDF knowledge graphs are knowledge graphs
that convey to the RDF model. RDF knowledge graph interlinking is the task of identifying
different IRIs belonging to different RDF knowledge graphs and referring to the same real-
world entity. This facilitates data integration and interoperability by combining different entity
descriptions present in different knowledge graphs.

There exist different methods for addressing the task of interlinking RDF knowledge graph.
Link keys are among these methods. They are used for interlinking RDF knowledge graphs
described using different ontologies. Link keys specify the properties to be compared to decide
whether two entities belonging to different classes and present in different knowledge graphs
are the same.

Link keys can be expressed as logical axioms, and, thus, it is possible to combine them with
ontologies, and ontology alignments to perform logical reasoning. In this thesis, we aim to
study the problem of reasoning with link keys. To formally investigate this problem, we model
RDF knowledge graphs, ontologies, and ontology alignments using the description logic ALC.
We choose the description logic ALC as a base language for reasoning. ALC covers many
modeling capabilities used for knowledge representation and allows for a more easy extension
to more expressive description logics. We extend ALC with link keys and individual equalities,
the resulting description logic is called ALC+LK. We show that link key entailment can be
reduced to link key consistency checking without the need of introducing the negation of link
keys.

Then we design an algorithm for deciding the consistency of ALC+LK ontology. We
have proved that the algorithm is sound, complete, and always terminates. This algorithm
runs in 2EXPTIME. However, there exist EXPTIME algorithms for reasoning in ALC and the
completion rules added for handling link keys and equalities require no more computational
power than that of ALC.

In the light of the above, we design a sound, complete, worst-case optimal algorithm for
reasoning in ALC+LK. This algorithm is inspired by the compressed tableau algorithm, which
allows obtaining the EXPTIME optimal complexity result. However, this algorithm has a non-
directed behaviour which obstruct its implementation.

Last but most importantly, we propose a sound, complete, and worst-case optimal tableau
algorithm for reasoning in the description logic ALC with individuals and link keys. This al-
gorithm, in contrast to the non-directed one, is directed by the application of completion rules.
This avoids the generation of useless structures and facilitates its implementation. We imple-
ment this algorithm and provide a number of proof-of-concept experiments that demonstrates
the importance of reasoning with link keys for the data interlinking task.

9

Chapter 1

Introduction

“ . . . when you connect data together, you get power”. Tim Berners-Lee

In this chapter, we define RDF graphs interlinking problem and link keys in Section 1.1. We
introduce the problem of reasoning with link keys in Section 1.2. We present the contribution
of the thesis in Section 1.3. Finally, we give the outline of the thesis in Section 1.4.

1.1 Context
The Semantic Web (SW) is an extension of the World Wide Web (WWW) through standards
set by the World Wide Web Consortium (W3C). The Resource Description Framework (RDF)
is a W3C standard model for data representation. The RDF Schema (RDFS) and the Ontology
Web Language (OWL) are W3C standard languages for representing knowledge about this
data. This knowledge adds meaning to the data and allow to easily exchange and combine data
belonging to different platforms.

1.1.1 Knowledge representation on the semantic web
A Knowledge Graph (KG) is a representation of structured data in the form of entities and
relations between them. This data is represented in a way that machines can read, “understand”,
and extract facts from. RDF graphs are knowledge graphs that comply with the RDF model. In
RDF, data is represented in the form of triples. A triple is formed of a subject, a predicate, and
an object. Subjects and predicates are resources, but objects can be either resources or literals.
Resources are identified by Internationalised Resources Identifiers (IRIs).

RDF graphs are usually described using ontologies. These ontologies allow for a fluent
representation of various types of data descriptions: data schema, taxonomies, and vocabular-
ies. These vocabularies are usually composed of a set of concepts (or classes) that represent
the kinds of objects in the domain of knowledge and a set of relations (or properties, roles)
that represent the relations between concepts in the domain of knowledge. They are expressed
using the standards in the semantic web stack: RDFS and OWL. Moreover, OWL has explicit
formal semantics based on Description Logics (DLs).

10

1.1.2 Interlinking RDF graphs
RDF graphs are often created independently of each other. As a result, they may contain dif-
ferent IRIs that refer to the same real-world entity but are not explicitly related by owl:sameAs
property. The owl:sameAs property links two different IRIs that refer to the same real-world
entity. Linking these IRIs allows RDF graphs to complement each other. The problem of
linking different entities across different graphs is called data interlinking. There have been
different methods to address the problem of data interlinking. These methods fall into two
main categories: numerical and logical.

Numerical approaches reduce the task of data interlinking into a similarity computation
task. While the logical approaches define a set of rules or axioms, which state what makes two
entities equal. They can be re-used within a given domain and can be used to profit from logical
reasoning.

Numerical approaches calculate the similarity between two different entities that belong
respectively to the given pair of RDF graphs. The similarity between two entities is calculated
by similarity functions, based on the property values of the given pair of entities. The entities
that are similar enough are considered identical and are linked by owl:sameAs property. Some
of the numerical approaches like Silk [1] enable user to specifying the conditions that entities
must fulfil to be linked. Others, like Limes [2] are fully automatic.

Logical approaches are, in turn, divided into rule and key-based approaches. Rule-based
approaches use rules to derive identity links from the input RDF graphs and their ontologies [3,
4, 5].

Key-based approaches aim at extracting a set of keys. Each key consists of a set of prop-
erties and a class, the properties allow to uniquely identify an instance that belongs to the
specified class. According to this definition, two instances that have the same values for the
properties of a key are considered the same. More precisely, a key has the form

({p1, ..., pk} key C)

where p1, · · · , pk are properties and C is a class. An example of a key is the following:

({creator, title} key Work) (1.1)

stating that whenever two instances of the class Work share values for role creator and for role
title, respectively, then they denote the same entity.

To use key-based approaches to interlink a pair of datasets, candidate keys are first extracted
from datasets and then the best candidate keys are selected according to different quality mea-
sures [6, 7, 8]. When the RDF graphs are described using the same ontology, keys can be
directly used for interlinking these RDF graphs.

But to interlink RDF graphs that are described using different ontologies, keys need to
be combined with ontology alignments [9] that relate the properties and classes. Thus, the
limitation of using keys for interlinking two RDF graphs is the necessity of having the same
ontology describing both graphs, or to have an alignment between their ontologies. Link keys
overcome this limitation.

11

1.1.3 Link keys
Link keys are axioms used to interlink a pair of RDF graphs described using different on-
tologies [10]. Link keys are reminiscent of EGDs [11]. But EGDs have been proposed in the
relational database theory, while link keys are adapted to the specificities of the RDF model and
to the task of interlinking RDF graphs described using different ontologies expressed in RDF-
S/OWL. Contrary to the relational model, in RDF, properties do not relate objects to literal
values only, but also to other objects. Additionally, properties may not be functional.

A link key between two RDF graphs G1 and G2 is an expression of the form

({〈P1, Q1〉, . . . , 〈Pn, Qn〉} linkkey 〈C,D〉)

where 〈C,D〉 is a pair of concepts belonging respectively to G1 and G2 and 〈P1, Q1〉, . . . , 〈Pn, Qn〉
is a non-empty sequence of pairs of properties where for each 〈Pi, Qi〉 in {〈P1, Q1〉, . . . , 〈Pn, Qn〉},
Pi belongs to G1 andQi belongs to G2. It states that if two entities belonging respectively to the
concepts C and D share at least one value for each pair of the possibly multivalued properties
〈Pi, Qi〉 then they are the same. An example of a link key is:

({〈creator, auteur〉, 〈title, titre〉} linkkey 〈NonFiction,Essai〉) (1.2)

stating that whenever an instance of the class NonFiction and an instance of the class Essai,
share values for roles author and auteur, and for roles title and titre, respectively, they denote
the same entity.

This type of link key is called in-link key. There exists another type of link keys called
eq-link key that, in contrast in-link key, necessitates that two entities belonging respectively
to the concepts C and D must share all the values for each pair of properties included in
{〈P1, Q1〉, . . . , 〈Pn, Qn〉} to be considered the same [12]. In this thesis, we only consider in-
link keys.

Link keys can be constructed by domain experts or automatically extracted from two datasets [10,
13, 14]. Once obtained link keys can be given to a link generating tool such as [3] to generate
the set of identity links.

1.2 Problem statement
Ontologies and ontology alignments are logical axioms that constraint the RDF graphs and link
keys between these RDF graphs have to be consistent with these constraints as well. Link keys
are logical axioms and can be combined with ontologies and ontology alignments to perform
logical reasoning. Checking the consistency of link keys can be done by examining wether
the satisfaction of a link key violates the logical axioms present in the ontologies or ontology
alignments.

Reasoning with link keys is beneficial for the task of data interlinking and can complement
link key extraction. Detecting inconsistent link keys reduce the number of identity links estab-
lished between entities that refer to different real-world objects (false-positive links) and thus
they are not relevant for the interlinking task.

Reasoning with link keys allows to check the consistency of simple (Example 1, Link
key 1.2) or complex link keys (Example 1, Link key 1.8). Complex link keys are link keys
composed of complex properties or complex concepts.

The following example illustrates this. Knowledge is modelled in description logics.

12

Example 1. Consider two RDF graphs G1 and G2 about books. In G1’s schema the main
class is Work and contains a subclass NonFiction. creator and title are a key in this ontology
for the Work class as described in (1.1). In G2’s schema , there is a class Essai with auteur,
lecteur and titre roles and classes of people such as Philosophe. An alignment between G1’s
and G2’s schemas tells us that an NonFiction is more general than a Essai which has at least
one Philosophe as lecteur (e.g. reader), that creator is equivalent to auteur and that title is
equivalent to titre. This can be expressed in description logics as:

NonFiction v Work (1.3)
title ≡ titre (1.4)

creator ≡ auteur (1.5)
NonFiction w Essai u ∃lecteur.Philosophe (1.6)

The key can be expressed as a link key:

({〈creator, creator〉, 〈title, title〉} linkkey 〈Work,Work〉) (1.7)

The set of statements (1.3–1.7) is sufficient for generating some links. However, for a user, it is
not easy to find this out and a program requires a lot of inferences. It is thus useful to find more
direct link keys entailed: they will be easier to check by a user and can be directly processed
by a link generator. For instance, the link key (1.8) is entailed by (1.3–1.7):

({〈creator, auteur〉, 〈title, titre〉} linkkey
〈NonFiction,Essai u ∃lecteur.Philosophe〉) (1.8)

though the more simple link key (1.2) is not entailed.

The problem is that there exists no specific reasoning algorithm to do reasoning with link
keys.

Reasoning with link keys is challenging. Modeling link keys directly in description logics,
the basis of OWL language is not possible. Modeling link keys in description logics requires
to impose the equalities on property values which is not possible. Extending description logics
with link keys is thus necessary to express link keys. As a result, we cannot use the existing
reasoning mechanisms for description logics to do reasoning with link keys. Reasoning with
link keys requires to develop a new reasoning mechanism or extend one of the existing algo-
rithms for handling link keys. Moreover, in contrast to checking satisfaction of axioms which
requires individual examination, checking the consistency of link keys necessitates to check a
set of individuals satisfying the condition of these link keys.

1.3 Contribution
In this thesis, we study the problem of reasoning in the description logic ALC extended with
link keys, which we call ALC+LK. We denote by an ALC+LK ontology, a knowledge base
composed of a set of data assertions, vocabularies, and link keys. More precisely, an ALC+LK
ontology is composed of three components 〈A, T ,LK〉. The ABox A is composed a set of
ALC concept and role assertions, this ABox represents the triples contained in RDF graphs.

13

The TBox T is composed of a set of GCIs. This TBox represents the ontologies of RDF graphs.
Finally, the LKBox LK is composed of a set of ALC link keys.

We have chosen the description logic ALC as a base language since it is sufficiently expres-
sive to support many fundamental constructors for web ontologies. It contains many modeling
capabilities including concept disjointness, domain and range of roles. It provides a solid basis
for extending to more expressive logics allowing to do reasoning with link keys in the future.

We have shown that:

1. Link key entailment can be reduced to consistency checking without the need of intro-
ducing the negation of link keys and that reasoning with link keys is decidable. Moreover,
we have designed an algorithm for deciding the consistency of ALC+LK ontology. This
algorithm extends the standard tableau algorithm for reasoning in ALC with rules deal-
ing with link keys. To ensure its termination, it uses anywhere blocking. It is sound,
complete and runs in 2EXPTIME. However, reasoning the description logic ALC is
EXPTIME [15], and the completion rules added for dealing with link keys requires no
more expressive reasoning power than that of ALC. These rules do not introduce any
new source of complexity besides the one coming from the interaction between the dis-
junction and existential rules for ALC (discussed in Section 3.1.1 of Chapter 3). Thus
we argue that reasoning in ALC+LK can be done in EXPTIME.

2. To achieve the EXPTIME optimal complexity, we adopted the compressed tableau ap-
proach. We first designed a non-directed algorithm for reasoning in ALC+LK. The
algorithm is called non-directed because it is not oriented by the application of rules.
This algorithm is sound, complete, and has an EXPTIME complexity. Since reasoning
the description logic ALC is EXPTIME [15] and this algorithm has an EXPTIME com-
plexity, this algorithm is a worst-case optimal algorithm.

3. After proving that the complexity of reasoning in ALC+LK is EXPTIME. We have
designed a compressed tableau algorithm for reasoning in ALC+LK. This algorithm
is also sound, complete and has an EXPTIME complexity. However, in contrast to the
non-guided algorithm mentioned above, this algorithm applies a set of completion rule.
By doing this, it avoids the unnecessary generations done in the non-guided algorithm
and only generates what is implied by the completion rules, which makes it practical for
implementation.

4. We have implemented the compressed tableau algorithm for reasoning in ALC+LK. We
have carried out a set of experiments which demonstrates the usefulness of reasoning
with link keys for the data interlinking task.

Moreover, we have done a preliminary study on the combination of the description logic ALCI
and link keys (Chapter 6). We have defined a finite exponential structure for representing
an ALCI+LK ontology and proved that we can extract a model from this representation.
This representation extends that of an ALC+LK ontology used by the compressed tableau
algorithm for reasoning in ALC+LK. This is the first step toward designing a compressed
tableau algorithm for ALCI+LK.

14

1.4 Organisation
Below we provide an overview of how the thesis is organized, along with the main contributions
of each chapter.

• Chapter 2: Preliminaries
We introduce and define the necessary vocabularies and notions required to understand
the thesis.

• Chapter 3: Related Work
We present the state-of-the-art algorithms for reasoning with keys and rules in description
logics. We also position the work done in this thesis among them.

• Chapter 4: A tableau algorithm for reasoning in the description logic ALC with link
keys and equalities
We introduce the logic ALC+LK, which extends the description logic ALC with equali-
ties and link keys. We show that link key entailment can be reduced to consistency check-
ing without the need of introducing the negation of link keys. We designed a 2EXPTIME

tableau-based algorithm for deciding the consistency of an ALC+LK ontology. We
prove that this algorithm is sound, complete and always terminates.

• Chapter 5: Reasoning in the description logic ALC+LK is ExpTime
We prove that the consistency checking problem in ALC+LK has a lower complexity
than 2EXPTIME by providing a sound and complete algorithm that runs in EXPTIME.
This algorithm is worst-case optimal. It is inspired by the compressed tableau algorithm
for the description logic SHIQ [16]. Similarly to [16], it uses an exponential struc-
ture called compressed tableau for representing ontology models, this guarantees that its
complexity is EXPTIME.

• Chapter 6: A worst-case optimal tableau algorithm for the description logic ALC
with individuals and link keys
We introduce a worst-case optimal tableau algorithm for reasoning in the description
logic ALC+LK. This algorithm reduces the inefficiency of the algorithm described in
Chapter 5. To the contrary of the previous algorithm, this algorithm is guided by a set of
ALC, link keys and equality completion rules, which reduces dramatically the size of the
compressed tableau being constructed.

• Chapter 7: Implementation and experiments
We describe the implementation of StaréLK, the software implementing the optimal
tableau algorithm for the description logic ALC+LK presented in Chapter 6, and ex-
plain its architecture. Then we report on a proof-of-concept evaluation that show the
usefulness of reasoning with link keys for the task of data interlinking.

• Chapter 8: Conclusion and future work
We provide a summary of the thesis and discuss the different directions for future work.

15

Chapter 2

Preliminaries

“Syntax is merely a necessary device by which we attach semantics to the representation, and
it makes little sense to claim that a representation formalism is semantically more powerful

merely because it has more syntactical constructs” [17]

In this chapter, we present the preliminaries required to understand this thesis. We start by
giving brief definitions on ontologies and description logics. Then we introduce the description
logic ALC. Finally, we explain the standard tableau algorithm for reasoning in the description
logic ALC.

2.1 Introduction
Ontologies are used in computer science communities, particularly in Artificial Intelligence
(AI), as one of the important knowledge representation formalisms. Ontologies can be defined
using different knowledge representation formalisms like glossaries, thesauri, taxonomies, meta-
data, XML, schemas, and data models. But, more interestingly, ontologies can be represented
using a formal language (logic). Description logics are decidable fragments of first-order logic
and have been traditionally and extensively used as the formal languages for describing ontolo-
gies.

2.2 The description logic ALC and its extensions
In description logics, the domain of knowledge is described by concept and role descriptions,
i.e. expressions that are built from atomic concepts and atomic roles using the constructors
provided by the particular description logic. Below we give the syntax and semantics of the
ALC family of description logics.

2.2.1 Syntax and Semantics of ALC
Every family of description logics is described by the syntax and semantics of its logical con-
structors. The syntax is the set of well-formed and meaningful expressions constructed from a
set of atomic expressions and a set of rules, while the semantics determines the meanings be-
hind these expressions. The logical constructors in ALC are concept conjunction, disjunction,
negation, and universal and existential quantification.

16

Definition 1 (Syntax of ALC). Let C be a set of concept names (also called atomic concepts),
R be a set of role names (also called atomic roles). The set of ALC concepts descriptions over
C and R is inductively defined as follows:

• every concept name is an ALC description.

• > (the top concept) and ⊥ (the bottom concept) are ALC descriptions.

• Given two concept names C,D ∈ C and a role name R ∈ R, CuD (conjuction), CtD
(disjuction), ¬C (negation), ∀R.C (universal role quantification) and ∃R.C (existential
role quantification) are also ALC descriptions.

Description Logics separate an ontology into two components, an assertional part called
the ABox and a terminological part called the TBox. The ABox represents knowledge about
a concrete situation while the TBox represents knowledge about the structure of the domain.
More precisely, an ABox represents knowledge about specific individuals in the domain and
the relation between them. An ABox, thus, contains two types of assertions, the first one is
called concept assertions and the second one is called role assertions. The TBox contains a
finite set of concept descriptions, called terminological axioms (or simply, axioms). An axiom
is an introduction of the names of new concepts and new roles, or an assertion of a subsumption
relationship between the concepts.

Definition 2 (ABox). Let I be a set of individual names. For a, b ∈ I, C a possibly complex
ALC concept in C and R ∈ R a role name, an expression of the form C(a) is called an ALC
concept assertion and R(a, b) is called an ALC role assertion. A finite set of ALC concept and
role names is called an ALC ABox (or simply, an ABox).

Definition 3 (TBox). For C and D possibly complex ALC concepts, an expression of the form
C v D is called an ALC general concept inclusion (GCI). C ≡ D is an abbreviation of
C v D and D v C. A finite set of GCIs is called an ALC TBox (or simply, a TBox).

A TBox is called acyclic iff no concept name uses itself.

Definition 4 (Knowledge base). A knowledge base is a pair 〈A, T 〉 made up of an ABox A and
a TBox T .

In this thesis, we use the word ontology to refer to a knowledge base made up of an ABox
and a TBox.

To give the semantics of ALC concepts and roles, interpretations are used. An interpre-
tation is formed of an interpretation domain containing a set of individuals. An interpretation
fixes for each concept name, its extension, i.e., indicating which of the elements belong to
which concepts. It fixes, as well, for each role name its extension, which pair of elements are
related to which roles.

Definition 5 (Semantics of ALC). An interpretation I = (∆I , ·I) is composed of a non-empty
set ∆I , called the domain of I, and a valuation function ·I which maps every concept name in
C to a subset of ∆I , every role name in R to a subset of ∆I ×∆I .

This valuation function is extended to concepts in such a way that, for all concepts C,D
and for every role name R in R, the following is fulfilled:

17

• >I = ∆I ,

• ⊥I = ∅,

• (C uD)I = CI ∩DI ,

• (C tD)I = CI ∪DI ,

• (¬C)I = ∆I \ CI ,

• (∀R.C)I = {x ∈ ∆I | ∀y.〈x, y〉 ∈ RI ⇒ y ∈ CI} and

• (∃R.C)I = {x ∈ ∆I | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}.

An interpretation I satisfies an ABox assertion C(a) if aI ∈ CI , an Abox assertion R(a, b)
if 〈aI , bI〉 ∈ RI . Given an ABox assertion α, I |= α denotes that I satisfies α. I is a model of
an ABox A if it satisfies every ABox assertion in it.

An interpretation I satisfies a GCI C v D, denoted by I |= C v D, if CI ⊆ DI . I is a
model of a TBox T if I satisfies every GCI in T .

An interpretation I is a model of an ontology O composed of an ABox A and a TBox T if
I is a model of T and A.

2.2.2 Reasoning problems and services
The precise syntax and semantics of description logics, together with their nice computational
properties, make them amenable to automated inference. Three basic types of reasoning tasks
for ALC namely, concept satisfiability, ontology satisfiability, and the more general task of
entailment. Given an ALC ontology O, concept satisfiability is the task of checking whether
C, a possibly complex concept, is satisfiable w.r.t. O. This means to check if there is a model
I for O s.t. CI 6= ∅. The second one is checking the satisfiability (or consistency) of a given
ontology. Given an ontology O, O is satisfiable if it has a model. The last and most general
one is ontology entailments. Entailment of a TBox or ABox statement, α, α is entailed by O,
written as O |= α, if each model for O is also a model for α.

2.2.3 Reduction of ontology entailment to ontology consistency
In ALC, ontology entailment of GCIs, concept assertions, is reducible to ontology consistency
checking. Indeed, given an ALC ontology O = 〈A, T 〉, two conceptsC,D and two individuals
a, b:

1. O |= C v D iff 〈A ∪ {(C u (¬)D)(x)}, T 〉 is inconsistent

2. O |= C(a) iff 〈A ∪ {(¬)C(a)}, T 〉 is inconsistent

where x is an individual not present in O. Notice that ontology entailment of role assertions
(R(a, b)) may require considering negation of roles, which go beyond ALC expressivity.

As a consequence, all the reasoning problems mentioned above can be reduced to knowl-
edge base or ontology consistency, i.e, we can use a knowledge base consistency technique to
answer this reasoning questions. The most famous reasoning technique is the tableau-based
technique.

18

2.2.4 Extension of ALC with inverse roles I
The fact that a family of description logics includes inverse role is normally indicated by the
letter I in its name. Adding inverse roles to the description logic ALC will enlarge the scope
of reasoning applications.

Definition 6 (Inverse roles). For a role name R, R− is an inverse role. The set of roles is
R ∪ {R− | R ∈ R}.

The semantics of inverse role is (R−)I := {〈a, b〉 ∈ ∆I ×∆I |〈b, a〉 ∈ (R)I}.
In the description logic ALCI, inverse roles can occur in existential and universal restric-

tions, for example, ∃r−.(∀s.(∃R.A u ∀s−.B)) is an ALCI concept.

2.3 Tableau algorithms for reasoning in ALC
The idea behind the tableau-based approach is proving the consistency of a knowledge base by
demonstrating the existence of a suitable witness of its consistency. Given a knowledge base
K formed of an Abox A and a TBox T , a witness of consistency is an interpretation I that
represent a model for the input knowledge base (I |= K). This model can be represented as a
graph whose nodes represent the individuals of the model. The labels of these nodes represent
the set of concepts satisfied by the individuals. The labels of the edges between two nodes
represent the roles between these two individuals.

The algorithm works on a set of ABoxes, initialized with the input ABox A. Each ABox
represents a possible model for the input ontology. A set of completion rules (Figure 2.1) that
explicate the semantics of K is applied on ABoxes contained in this set. The new ABoxes are
copies of the original one plus some new assertions. There are two types of rules: deterministic
and non-deterministic rules. The deterministic rules are →u, →∀, →∃, and →v. The non-
deterministic rules is→t. Upon each application of a completion rule transforms the an ABox
is replaced by one or two ABoxes.

The interaction between the →∃ and the →v might lead to a non-termination problem.
Given, for example, an ontology composed of a TBox {A v ∃r.A}, and an ABox {A(a)}.
The algorithm first applies →v rule which will create two ABoxes A′ and A′′. The first
one A′ contains A(a) and ∼A(a) and thus it is not clash-free. The second one A′′ contains
A(a), R(a, t), A(t). The individual t satisfy the condition of the→v through A v ∃r.A. The
application of →v on t will in turn generate two new ABoxes. Similarly, this will create a
new individual which satisfy the condition of the→v and so forth. In order to avoid the non-
termination problem, the tableau algorithm uses a technique called blocking. This technique
detects repetitions “loops” in partially constructed models. When an individual is blocked the
rules generating individual are not longer applicable on it. This technique guarantees the ter-
mination of a tableau algorithm and preserves its soundness and completeness.

19

Rule→u
Condition: A contains (C1 u C2)(s), but it does not contain both C1(s) and C2(s).
Action: A′ := A ∪ {C1(s), C2(s)}
Rule→t
Condition: A contains (C1 t C2)(s), but neither C1(s) nor C2(s).
Action: A′ := A ∪ {C1(s)}, A′′ := A ∪ {C2(s)}
Rule→∀
Condition: A contains (∀R.C)(s) and R(s, t), but it does not contain C(t).
Action: A′ := A ∪ {C(t)}
Rule→∃
Condition: A contains (∃R.C)(s) but there is no individual name t such that A contains R(s, t) and C(t), and s
is not blocked.
Action: A′ := A ∪ {R(s, t), C(t)} where t is an individual not occurring in A.
Rule→v
Condition: T contains C v D and there is an individual name s such that A does contain neither ∼C(s) nor
D(s).
Action: A′ := A ∪ {∼C(s)}, A′′ := A ∪ {D(s)}

Figure 2.1 – Completion rules for ALC.

An ABox that contains a clash is called closed and otherwise it is called open. A tableau to
which no rule can be applied is called complete, the term complete comes from the inability to
apply any completion rule on it (detailed explanations of closed, open and complete ABox are
given in the next chapter). If the algorithm was able to build a complete and open ABox, then
this ABox represent a witness for the consistency of K. In this case, the algorithm returns true.
Otherwise, the algorithm concludes that K is inconsistent and returns false.

2.4 Conclusion
In this chapter, we have explained the syntax and semantics of the ALC family of description
logics, which allows to formally describe the ontologies of a specific domain. We have high-
lighted its main reasoning problems as well as its extension with inverse roles. Then we have
presented the standard tableau algorithm for the description logic ALC. In the next chapter, we
will present the state-of-art algorithms for reasoning with keys and rules in description logics.

20

Chapter 3

Literature Review

“ The question of whether a computer can think is no more interesting than the question of
whether a submarine can swim." Edsger W. Dijkstra

There have been different methods proposed to do reasoning in description logics. Among
these methods, we discuss the approaches that allow to do reasoning with keys, as link keys
are generalisation of keys. We also study the approaches that allow to do reasoning with rules,
as link keys can be modelled using rules. Furthermore, since link keys are axioms that hold
between a pair of different ontologies, we also study the methods that have been proposed
to do reasoning with correspondences. Finally, we present an overview of the complexity of
reasoning in the description logic ALC and some of its simple extensions.

3.1 Reasoning in description logics with ontological constraints
Keys are widely used in modeling databases and RDF datasets. More interestingly, the nature
of keys made them suitable for addressing the problem of data interlinking. A key is the set of
properties that uniquely identify the instances of a given concept. Given an ontology O, a key
κ over O has the following form

({p1, ..., pk} key C)

where p1, . . . , pk are roles and C is a concept in O. An interpretation I satisfies κ if

∀δ, η, x1, · · · , xn ∈ ∆I , δ, η ∈ CI ∧
∧

1≤i≤k
((δ, xi) ∈ pIi ∧ (η, xi) ∈ pIi)⇒ δ = η.

However, when the datasets are described using different ontologies, alignments providing
correspondences between the roles and concepts of different ontologies, must be used to per-
form data interlinking. Different approaches integrating keys to description logics have been
proposed. Some of these approaches are concerned with proving the decidability of a specified
family of description logics extended with keys, or establishing the lower bound complexity of
the extended logic. More interestingly, other approaches provide a reasoning mechanism for
the extended logic. There exists a variety of reasoning approaches for checking the satisfaction
of a description logic family. These approaches includes consequence-based approaches [18],
automata-based approaches [19]. However, the most popular one is the tableau based approach
(Subsection 3.1.1 and Subsection 2.3 of Chapter 2 for a detailed explanation).

21

3.1.1 Tableau algorithms for reasoning in description logics
The tableau approach is a technique for deciding the consistency problems in description logics.
There exist efficient tableau algorithms implementing the tableau-based approach such as Pel-
let [20], Hermit [21], and Racer [22]. To check the consistency of an ontology, tableau-based
algorithms apply a set of completion rules implied by the semantics of constructs contained in
the given description logic family to derive a complete and clash-free ABox. A complete ABox
is an ABox to which no more completion rule is applicable and a clash-free ABox is an ABox
that contains no contradictions. This ABox represents a model of the input ontology and can be
represented by a completion graph. In the presence of cyclic TBoxes, the termination of these
algorithms is ensured by using a blocking technique. Among other completion rules for the
description logic ALC, there exists ∃-rule and t-rule which respectively handle the existential
restrictions and concept disjunction. The existential rule (∃-rule) can generate an exponential
number of new individuals contained in the derived ABoxes. The non-deterministic rule (t-
rule) can generate an exponential number of ABoxes derived from the input ABox A. The
interaction between these rules is usually responsible for the doubly exponential complexity of
the standard tableau algorithm for description logic families containing these constructs [23].

There exists, as well, a compressed tableau algorithm [16]. This algorithm, in contrast to the
standard tableau algorithm, has an exponential complexity for the description logic SHOIQ.
The description logic SHOIQ is an expressive family of description logics formed of the
following constructors which extends ALC with transitive roles, role hierarchy, nominals, in-
verse roles, and qualified number restrictions. This method uses a star-type for representing a
group of similar individuals. Similar individuals are equal individuals or individuals satisfying
the same set of concepts and have the same connections to other individuals. The algorithm
reduces the exponential complexity raised by handling disjunctions. When dealing with a dis-
junction, the algorithm instead of duplicating the whole current structure which aims to rep-
resent a model, generates just a new star-type to be chosen if needed. This behaviour allows
reducing global non-determinism to local non-determinism.

3.1.2 Reasoning with keys
Keys have been integrated to description logics families in two ways. The first adds keys into
a separate set of constraints called key box [24, 25, 26, 27]. While others model keys by a
new concept constructor called a path-functional dependency (PFD) [28], or special primitive
concepts [29].

3.1.2.1 Reasoning with keys in a separate set of constraints

DLR is an expressive description logic family particularly suited for modeling database schemas.
It generalises the description logic ALCQI, which extends ALC with inverse roles and car-
dinality restrictions. In [24], the authors show that identification constraints and functional
dependencies can be captured by DLR logic. They prove that unary keys, i.e. keys that con-
tain only a single property, can be modeled through number restrictions. Non-unary keys, on
the contrary, cannot be represented in DLR. They proved that the consistency checking in
DLR is EXPTIME-complete. This approach reduces the problem of reasoning in DLR to the
problem of reasoning in the description logic CIQ [30] and then uses the existing inference
methods for CIQ. In [25], the authors extend the DLR logic with a formalisation of database

22

keys named DLRkey. They proved that reasoning in DLRkey can be reduced to reasoning
in DLR by expressing keys as DLR assertions. It follows that the worst-case computational
complexity of DLRkey is EXPTIME-complete, as it is the case for DLR.

The main reason for this complexity result is the reducing the problem of reasoning in
DLRkey into the problem of verifying keys, and testing the satisfiability of DLR of a possibly
exponential number of knowledge bases of polynomial size. Also, the authors do not provide
any reasoning algorithm for the proposed logic.

In [26], Calvanese et al. extend DLR with a formalisation of database keys and present an
algorithm for reasoning over it. The extended logic is called DLRifd. A DLRifd knowledge
base K is a set of T ∪A ∪ F assertions where T ∪A is a DLR knowledge base and F a set
of identification and functional dependency assertions. A functional dependency is a constraint
that specifies the relationship between two sets of attributes where one set can accurately de-
termine the value of the other sets. An identification assertion (or key) on a concept has the
form:

(id C [i1]R1, ..., [ih]Rh)

where C is a concept, each Rj is a relation, and each ij denotes one component of Rj . This
assertion states that two instances of C cannot agree on the participation to R1, ..., Rh via com-
ponents i1, ..., ih, respectively. They also provide a reasoning procedure for DLRifd that takes
as input a DLRifd knowledge base K, and tries to find a saturated ABox As that represents a
model for K. This reasoning procedure has the same complexity result as [25]. In addition, this
procedure is not implemented.

Lutz et al. introduce in [27] the ALCOK(D) family of description logics that contain keys
composed of features, i.e. functional roles whose values belong to a concrete domain. Adding
concrete domains to description logics allows to describe concrete features of instances like
name or age. They provide a tableau algorithm for deciding ALCOK(D)-concept satisfiability
with respect to boolean restricted key boxes, i.e. key boxes restricted to a boolean combina-
tion of concept names. This tableau algorithm starts with an initial data structure induced by
the input concept and then repeatedly applies completion rules to it. The completion rules
are enriched with Rch and Rp rules. The Rch rule is a non-deterministic rule that guesses
if an individual satisfies the concept present in the key. This rule is necessary to ensure the
completeness of the algorithm. The Rp rule handles equalities between individuals. The com-
plexity of this algorithm is NEXPTIME. The authors have also identified several undecidable
cases, which are all related to the presence of a concrete domain.

There exists, as well, a set of algorithms, based on the chase technique, for query answering
in the presence of Tuple and Equality Generating Dependencies (TGDs, and EGDs). TGDs are
similar to Horn rules with existentially-quantified variables in the head. EGDs are a general-
isation of functional dependencies [11]. The chase technique modifies the individuals present
in the knowledge base by a set of chase steps until all dependencies are satisfied. However,
problems arise from the combination of EGDs and TGDs, because for simple types of EGDs,
the implication problem for EGDs and TGDs, and the query answering problem are undecid-
able [31]. Hence, there exists no algorithm for which implication can be decided or queries can
be answered using finite resources.

23

3.1.2.2 Reasoning with keys as a new concept constructor

In [28], the authors introduce keys as a new constructor called path-functional dependency
(PFD). PFD is a more general form of functional dependency constraint for semantic data
models. They show that full integration of keys and functional dependencies in the families of
description logics that include inverse roles is undecidable. They provide syntactic restrictions
on occurrences of PFDs and on the syntax of the PFD constructor itself which guarantees decid-
ability. More precisely, they show that allowing PFDs within the scope of monotone concept
constructors on the right-hand side of inclusion dependencies leads to decidable implication
problems. Moreover, they show that reasoning with unrestricted PFDs and inverse roles is
undecidable.

In [29], the authors present a sound and complete mechanism for modeling keys and func-
tional dependencies. However, the family of description logics they used has very limited
expressivity. It lacks general inclusion axioms and inverse roles are not taken into account.

Finally, we would like to point out that it is possible to model keys using owl:hasKey
construct contained in OWL 2. However, the semantics of owl:hasKey is restricted to being
applied to only named individual and not to other individuals.

3.1.2.3 Link keys cannot be reduced to keys

It is possible to express keys as link keys. Certainly, ({P1, ..., Pn} key C) is equivalent to
({〈P1, P1〉, ..., 〈Pn, Pn〉}) linkkey 〈C,C〉. However, link keys are not necessarily expressible as
keys. Consider, for instance, the link key λ = (〈P,Q〉 linkkey 〈>,>〉). Among all the possible
keys κ1, κ2, and κ3 built from the properties P and Q for > there is no key that has the same
model as λ. Indeed, let κ1 = (P key >), κ2 = (Q key >) and κ3 = (〈P,Q〉 key >) . Consider
now the interpretation I defined by P I = {(a, u), (b, u)} and QI = {(a, v), (b, v)} where
a, b, u, v are different domain individuals. Then I 6|= κi (i = 1, 2, 3) whereas I |= λ.

3.1.2.4 Conclusion

The algorithms given in Chapters 4, 5, and 6 allow to do reasoning with link keys formed from
multiple property pairs which is not the case for non-unary keys in [24], and unlike [29] these
algorithms allow to do reasoning with general inclusion axioms, and unlike [24, 25, 26] these
algorithms allow to do reasoning with concept disjunction. Furthermore, in contrast to [27],
the algorithm given in Chapter 6 is implemented and has an EXPTIME complexity. Finally and
above all, since link keys cannot be expressed as keys, we cannot directly use the approaches
described above for reasoning with keys to reason with link keys.

3.1.3 Reasoning with rules
A logical rules is an implication between an antecedent and a consequent:

B1, · · · , Bn → H

where H is called consequent or head and B1, · · · , Bn is called antecedent or body. It states
that whenever the conditions specified in the antecedent hold, the conditions specified in the
consequent must hold as well. The Semantic Web Rule Language (SWRL) is a combination of

24

OWL description logic (SROIQ) and logical rules. Such a combination increases the expres-
sivity of OWL, by allowing to express arbitrary axioms. However, SWRL is undecidable [33].
The reason behind SWRL’s undecidability is based on the ability to encode the infinite tiling
domino problem [34] in SWRL.

1. Description Logics Rules: SWRL rules that can be expressed with OWL 2, i.e. OWL
family of ontologies that are based on SROIQ DL.

2. DL-safe Rules: SWRL rules that have variable assignment constraints.

3.1.3.1 Reasoning with DL-safe rules

A DL-safe rule is a logical rule of the form

B1, · · · , Bn → H

where H and Bi are DL-atoms. A DL-atom is an atom of the form C(a), R(a, b) where C and
R are respectively a concept and a role in the input ontology. DL-safe rules are rules applied
to only known individuals. For that they necessitate that each variable in the body of the rule
is bound to a non-DL atom, i.e. an atom that does not occur in the input ontology. Adding this
non-DL atom concept assertion for each explicitly named individual in the input knowledge
base ensures that the variables are bound to only individuals present in the input knowledge
base, and not to new individuals created due to the presence of existential axioms. The effect
of the DL-safety restriction varies according to the nature of the application. In some appli-
cations, the scope of reasoning is limited to known individuals like information retrieval. In
such applications, the impact of DL-safety restriction is not serious and DL-safe rules can infer
most of the possible conclusions. In contrast, in applications like natural language processing,
requiring intensional reasoning, i.e. reasoning exploiting the conceptual schema (which cre-
ates unnamed individuals), DL-safety is a serious restriction involving since many conclusions
involve unnamed individuals.

In [35], the authors present a decidable algorithm for reasoning in OWL-DL with DL-safe
rules. This algorithm is based on resolution calculus. Resolution calculus is widely used for
theorem proving in first-order logic. To prove the correctness of a statement, the resolution
calculus adds its negation to the sets of axioms that are known to be true. It then uses a set of
inference rules to show that this leads to a contradiction. This algorithm reduces a knowledge
base to a positive disjunctive datalog program [36, 37], leading to the same set of ground facts
as the knowledge base. This algorithm runs in EXPTIME-complete.

The variables occurring in the body of a DL-safe rule can only be bound to named in-
dividuals. However, this is not a general restriction of link keys, but link keys made-up of
ALC concepts and roles are only satisfied by named individuals (Lemma 4 of Chapter 6).
As a result, in ALC+LK link keys can be modelled as DL-safe rule. Consider the link key
λ = ({〈P1, Q1〉, · · · , 〈Pn, Qn〉} linkkey 〈C,D〉), λ can be transformed into the following rule
DL-safe rule r:

P1(x, u), Q1(y, u), · · · , Pn(x, t), Qn(y, t), C(x), D(y), O(x), O(y)→ x ≈ y

where O is a non-DL atom and x, y, u, · · · , t are variables bound to named individuals.

25

The DL-safety restriction does not allow to model link keys containing inverse roles. Since,
in the presence of inverse roles, link keys can be satisfied by new individuals not occurring in
the initial ABox. The body and the consequent of a link key rule, in this case, contain unnamed
objects. Let λ = ({〈P−, Q−〉} linkkey 〈C,D〉) be a link key, where P− and Q− are the inverse
of the named roles P and Q and let r be the DL-safe rule of λ:

r : P−(x, t), Q−(y, t), C(x), D(y), O(x), O(y)→ x ≈ y

where O is a non-DL atom. Let I be an interpretation defined by CI = {a}, DI = {b},
P I = {(u, a)} and QI = {(u, b)} where u is an old (known) individual and a, b are new
(unknown) individuals. Since P I = {(u, a)} and QI = {(u, b)} we get that (P−)I = {(a, u)}
and (Q−)I = {(b, u)}, I |= λ. However, a and b cannot be bound to the variables of r. Link
keys composed of inverse roles have been shown useful for the data interlinking task [38].

3.1.3.2 Conclusion

Link keys can be modeled as unrestricted SWRL rules (since they can be modeled as DL-safe
rules), however, this will lead to the undecidability of reasoning with link keys. The restricted
decidable fragments of SWRL rules are description logic Rules and DL-safe rules. Link keys
cannot be modeled as description logic Rules, as they cannot be expressed in OWL2. The
reason behind this is the inability of OWL2 to connect the values of the properties specified in
a link key and say that they are the same. To the contrary, link keys made up of ALC concepts
and roles can be modelled as DL-safe rules, but this not the case for description logic languages
containing inverse roles. The compressed tableau algorithm for the description logic ALC+LK
given in Chapter 6 can be extended. We discuss in Chapter 6, the first steps toward designing a
compressed tableau algorithm for the description logic ALCI+LK.

3.1.4 Reasoning with correspondences
A Distributed System (DS) is composed of a set of ontologies, and these ontologies are in-
terconnected by correspondences. An ontology correspondence determines the relationship
between concepts and properties of different ontologies. Link keys are axioms that decide
whether two individuals present in possibly two different ontologies are equal or not. The
problem of reasoning with link keys can be thus seen as a problem of reasoning in a distributed
system.

Reasoning in a distributed system can be done using centralized or decentralized reasoning
approaches. The reasoning algorithms introduced above are centralized, i.e. they assume that
the complete knowledge is contained in a single system and all reasoning steps are carried out
on this system. In this thesis, as well, we do centralized reasoning. In which we merge a set of
ALC ontologies, and a set of link keys into a single knowledge base and we carry the reasoning
procedure on it.

In contrast to the centralised reasoning algorithms, there exist other decentralized reasoning
algorithms. The decentralized algorithms perform a set of reasoning tasks, each task is done in a
separate knowledge base. The result of each reasoning task is propagated among the distributed
system through bridge rules. There have been different approaches proposed to do reasoning
in a distributed system [39, 40, 41, 42]. The decentralized approaches respect privacy and
allow for information hiding by requiring only local reasoning rather than global reasoning that

26

requires the global reasoner to access each knowledge base of the system. More importantly,
it supports languages specificity, since it combines different local reasoning procedures, each
supporting the local ontology language. However, these approaches usually suffer from poor
performance due to the massive amount of message exchanges between the different local
reasoners and checking solving queries which require to access the global ontology.

In [39], the authors introduce the notion of Distributed description logic (DDL). A DDL
knowledge base consists of a set of description logic Information Systems (IS) each possibly
equipped with a set of TBoxes, and a set of DDL alignments between them. DDL alignments
are encoded using bridge rules. These bridge rules describe the correspondences between the
different IS in the DDL. They extended the reasoning mechanisms on IS described using one
common schema to the case of a DDL. To avoid the propagation of local inconsistencies pre-
sented on a single IS or inconsistencies in the bridge rules to the global system, they introduced
a set of interpretations which limit the effect of inconsistent local TBoxes in the desired way.
They proved that reasoning in DDL can be translated to description logic reasoning. This re-
quires that each ontology contained in DDL is contained in some decidable family of descrip-
tion logic and that the description logic supports qualified existential restriction and general
theories, SHIQ TBoxes. This necessitates the existence of a local reasoner for at least one
local ontology of the DDL system that supports reasoning in SHIQ.

In [40], the authors propose a tableau algorithm for reasoning on DDL ontologies with
restricted bridge rules. The distributed TBoxes in the DDL must be acyclic and the restricted
bridge rules do not allow for individual and complex concept. The basic idea behind this
algorithm is the translation the satisfiability problem with respect to a DDL ontology into a set
of several local satisfiability problems with respect to local ontologies. This algorithm has been
implemented in a software called DRAGO and many approaches [43, 44] exploit successfully
the reasoning algorithm implemented in DRAGO to test the correspondences which are created
by different matching systems. The main drawback of this algorithm is the need of having a
tableau-based reasoning for local ontologies.

There exist other decentralized system called Integrated Distributed description logics (IDDL)-
based systems. These systems are very different from those based on DDL. In IDDL-based sys-
tems, the reasoner takes into account the correspondences between ontologies for deciding the
local consistency of each ontology. These systems have higher computational complexity than
the DDL-based systems since they check each model of mappings against all local ontologies.

In [45], the authors design an algorithm for reasoning on an IDDL system composed of
SROIQ ontologies. This algorithm searches for the valid settings from which extended on-
tologies with a consistent ontology alignment can be built from the input system. If the al-
gorithm cannot find any such configuration then the input IDDL system is inconsistent. This
system is decidable when the consistency of the local description logics is decidable. Moreover,
in contrast to [39], the expressiveness of local knowledge bases does not need to be known as
long as local reasoners can handle at least ALC. The complexity of this algorithm is bounded
by a double exponential function in the size of the alignments and the authors themselves de-
clared that their algorithm is intractable.

In [42], an algorithm for reasoning on a network of aligned ontologies possibly including
link keys was developed. This reasoner allows reasoning in a decentralized manner under the
IDDL semantics [41]. This algorithm uses two sub-algorithms. The first one allows the prop-
agation equalities. These equalities are either individual equalities of individuals belonging
to ontologies in the network, or equalities resulting from applying link key correspondences.

27

The second algorithm allows the propagation of concept unsatisfiabilities from one ontology
to the other via concept correspondences. The main algorithm terminates when the ontologies
and the alignment are no longer modified. This algorithm is executed by a global reasoner.
To represent knowledge propagation through the network, the global reasoner sends different
assertions/axioms to local reasoners located on different sites. The local reasoners check the
entailment and the consistency of the local ontologies. The global reasoner and each local rea-
soner use HermiT [46] as OWL reasoners. The communication between the global reasoner
and all local reasoners is based on OWLLink [47]. This algorithm runs in polynomial time in
the size of the network if each check of entailment or consistency occurring in the algorithms
is considered an oracle. The algorithm has been implemented and integrated within a reasoner
called Draon [48]. The authors have carried out a set of experiments and reported good run
time results. To achieve better performance results, the authors introduce a new semantics of
correspondences: given a correspondence C → D, the unsatisfiability of D implies unsatisfia-
bility of C, rather than concept subsumption as usual, where C and D belong to the concepts
of two different ontologies in the network.

3.1.4.1 Conclusion

The nature of link keys makes them adequate for reasoning in a IDDL-based systems. However,
the doubly exponential complexity of [45] restricts us from extending to deal with link keys.
In addition, the soundness of [42] cannot be established when ontologies that allow for inverse
roles or when the correspondences are equipped with the standard semantics. The restriction
on inverse roles does not allow for merging individuals which are not in the initial ABox. This
is not the case for the extendable EXPTIME compressed algorithms given in Chapters 5 and 6.

3.2 The complexity of reasoning in the description logic ALC
and its simple extensions

The complexity of the standard tableau methods for reasoning in the description logic ALC
with general TBox is 2EXPTIME [21]. The sources of complexity in the tableau algorithms are
the creation of possibly an exponential number of new ABoxes upon the application of non-
deterministic rules (or-branching), and the exponential expansion of the model upon the appli-
cation of the existential rule for satisfying the existential quantifiers (and-branching). Below,
we report on some works that discuss the complexity of deciding consistency in the description
logic ALC with general TBoxes.

In [15], the authors proved that the lower bound complexity for concept satisfiability in
ALC with general TBoxes is EXPTIME-complete. This lower bound complexity for concept
satisfiability in ALC was proved by reducing the existence of winning strategies for Infinite
Boolean Game (IBG). In [49], the authors proposed the first worst-case optimal EXPTIME

tableau algorithm for reasoning in an ALC knowledge base. This algorithm is worst-case op-
timal because it matches the lower bound was achieved for the description logic ALC with
general TBoxes. This algorithm works on a prefixed formulae e:C where e is a string corre-
sponding to a particular world in the underlying model built by the tableau and C is a set of
concepts. The reason behind this complexity result is computation reuse for both concept sat-
isfiability and unsatisfiability. The main idea behind computation reuse is learning from local

28

proofs of unsatisfiability by permanently caching them and by temporary caching of satisfiable
witnesses. A set of concepts C in e:C is not processed if it has already been shown to be satisfi-
able in e or in any other model e′ where e′ < e. A set of concepts C in e:C is not processed if it
is unsatisfiable in any of the underlying models. They have discussed as well the effect of sev-
eral optimizations like propositional backjumping, simplification, or semantic branching on the
complexity. Propositional backjumping skips over the concepts that have already contributed
to unsatisfiability. Simplification allows to simplify the structure of concepts at any level of
nesting of connectives, this is done by reducing the substructure that is already contained in the
ontology. Semantic branching chooses the common disjuncts between the alternative branches
of the search tree and applies the disjunction rule on the basis of these disjuncts. This allows
to detect recurrence of an unsatisfiable disjunct and thus avoids reconsidering them. They have
as well defined their own optimization including modal backjumping, which allows to skip the
branching points visited by the algorithm before to the prefix that has been proven unsatisfiable.
However, to the best of our knowledge, this algorithm has not been implemented and thus these
optimization techniques are not utilized.

The authors of [21], present a refinement of the tableau reasoning algorithms called hy-
pertableau. This algorithm tries to curb the sources of inefficiency in the tableau reasoning
algorithms. For the complexity arriving from the application of existential rules, the algorithm
uses anywhere pairwise blocking, which allows extending the set of possible blockers that pro-
hibits the application of existential rules. For the second origin of complexity coming from
the application of non-deterministic rule, the algorithm relies on hyperresolution calculus. The
algorithm behaves as follows, it first preprocesses the input knowledge base into a set of DL-
clauses, that are universally quantified implications containing description logic concepts and
roles as predicates. The main derivation rule for DL-clauses is hyperresolution which means
that an atom from the consequent of a DL-clause is derived only if all atoms from the DL-
clause antecedent can be matched to already derived consequences. This algorithm allows to
do reasoning in the description logic SHOIQ+. The authors first believed that anywhere
blocking will improve the worst-case complexity for SHOIQ+, however, this is not the case
([21], pages 213 to 216). Despite its 2EXPTIME complexity, the algorithm has performance
improvements over state-of-the-art reasoners on several famous ontologies such as Gazetteer
and GALEN.

We now report on the complexity results of some simple extensions of ALC [15]. Reason-
ing in the description logics ALCI and ALCQ which respectively extend ALC with inverse
roles and qualifying number restrictions are EXPTIME-complete. The complexity of reasoning
in the description logic ALCIQ with general TBoxes is the same.

However, concept satisfiability and subsumption in the description logic ALCOI which
extend ALCI with nominals are EXPTIME-hard without TBoxes. Also, concept satisfiability
in the description logic ALCOIQ is NEXPTIME-complete whether or not TBoxes are present.
There are even some extensions of ALC in which satisfiability and subsumption are undecid-
able. The first one is the extension of ALC with so-called role value maps (RVMs). The second
one is the extension of ALC with concrete domains, called ALC(D). The proofs of undecid-
ability are based on the reduction of an undecidable version of the tiling problem and on the
reduction from the halting problem of two-register machines respectively.

29

3.2.1 Conclusion
Anywhere blocking which is used in [21] is used in all our reasoning algorithms. However, it is
not the reason behind the reduction of the algorithm complexity from 2EXPTIME to EXPTIME.
Indeed, the algorithm given in Chapter 4 has a 2EXPTIME complexity which is not the case
for the EXPTIME algorithms given in Chapters 5 and 6. These algorithms are inspired by the
EXPTIME compressed tableau algorithm for reasoning in the description logic SHOIQ [16].
They introduce an efficient way to handle non-determinism, which is one of the main objectives
of the techniques used in [49, 21]. Instead of duplicating the whole completion tree being
constructed upon the application of non-deterministic rules, as it is the case for the standard
tableau algorithms, the algorithms given in Chapters 5 and 6, only duplicate the part of the tree
that is concerned with non-determinism.

Moreover, the lower bound complexity for reasoning in the description logic ALC is EX-
PTIME-complete. This means that there exists an EXPTIME algorithm for reasoning in ALC
and all EXPTIME problems can be polynomially reduced to ALC. The algorithms proposed in
Chapters 5 and 6 have an EXPTIME complexity and they are worst-case optimal. Since other-
wise, there must exist a polynomial algorithm for reasoning in ALC+LK. Since all EXPTIME

problems can be polynomially reduced to ALC then, in this case, PTIME = EXPTIME , which
contradicts the result PTIME < EXPTIME .

We would also like to point out that despite the undecidability results of reasoning with
concrete domain [15, 27], it is absence does not seem to present a limitation of reasoning with
link keys (Chapter 7).

3.3 Summary
Link keys are axioms for deciding the equality between two individuals that possibly belong to
different ontologies. Link keys are a generalization of keys. There exist several algorithms to
do reasoning with keys in description logics including [26, 27]. However, link keys cannot be
reduced to keys and these algorithms cannot be directly used to do reasoning with link keys.
Link keys can be also expressed as logical rules. There exist many algorithms that allows to
do reasoning with rules in description logics among them [35]. However, it leads to undecid-
ability results. There also exist decentralized algorithms for reasoning with ontological cor-
respondences including [42], however, this algorithm is not sound when the correspondences
are equipped with the standard semantics and it cannot be extended to deal with inverse roles.
The next chapter will introduce a new family of description logic, where the description logic
ALC is extended with individual equalities, inequalities, and link keys. Moreover, it provides
a sound and complete reasoning algorithm for this new logic.

30

Chapter 4

A 2EXPTIME tableau algorithm for
reasoning in the description logic ALC
with link keys and individual equalities

4.1 Introduction
Link keys can be expressed as logical axioms, and, together with other kinds of knowledge such
as ontologies and ontology alignments, may entail new link keys. Checking the entailment of
new link keys necessitates to perform reasoning. Reasoning with link keys requires represent-
ing the knowledge enriched with link keys in a precise and clear manner. For this aim, in this
chapter we introduce the description logic ALC+LK which extends ALC with link keys and
individual equalities. Individual equalities are a requirement of the presence of link keys.

We show that link key entailment can be reduced to consistency checking without the need
of introducing the negation of link keys. This means to decide if a link key λ is entailed by an
ontology O = 〈A, T ,LK〉 consisting of a set A of assertional axioms, a set T of terminological
axioms, and a set LK of link key axioms, is equivalent to checking if O with the negation of
λ, represented as a set of assertional axioms, is inconsistent, i.e. it does not have a model.
Based on this reduction we present, in this chapter, an algorithm to decide the consistency of an
ALC+LK ontology. This algorithm is a tableau-based algorithm which extends the standard
tableau algorithm for reasoning in ALC [50] by adding completion rules to handle link keys
and equalities. Moreover, we investigate the theoretical properties of the algorithm. We show
that this algorithm terminates and it is sound and complete. For proving the soundness of the
algorithm, we use unravelled interpretations because the canonical ALC interpretations may
not satisfy link keys.

The remainder of this chapter is organized as follows. Section 4.2 provides gives the defi-
nitions required to understand the syntax and semantics of ALC+LK. Section 4.3 reduces link
keys entailment to link key consistency checking. Section 4.4 presents the tableau algorithm
for the description logic ALC+LK. Section 4.5 provides examples of its use. Section 4.6
gives and proves the theoretical properties of the algorithm. Finally, we conclude the chapter
in Section 4.7.

31

4.2 The description logic ALC+LK
The description logic ALC+LK extends ALC with link keys made up of ALC concepts
and role names and individual equalities. The syntax and semantics of the description logic
ALC+LK extends the syntax and semantics of ALC as defined below.

Definition 7 (Syntax of ALC+LK). Let C, R and I be non-empty sets of concept names, role
names and individuals, respectively. The syntax of ALC+LK extends the one given for ALC
in Definition 1 of Chapter 2 by equality and inequality assertions and ALC link key expression.
An equality assertion has the form a ≈ b and inequality assertions has the form a 6≈ b where
a, b are individuals in I. An ALC link key (simply called link key) is an expression of the form

({〈P1, Q1〉, . . . , 〈Pn, Qn〉} linkkey 〈C,D〉)

such that 〈C,D〉 is a pair of ALC concepts and {〈P1, Q1〉, . . . , 〈Pn, Qn〉} is a non-empty se-
quence of pairs of role names in R. An LKBox is a finite set of link keys.

A triple O = (A, T ,LK), where T is a TBox, A is an ABox extended with equality and
inequality assertions and LK is an LKBox, is called an ALC+LK ontology.

By abuse of notation, we will write

({〈Pi, Qi〉}ni=1 linkkey 〈C,D〉)

instead of
({〈P1, Q1〉, . . . , 〈Pn, Qn〉} linkkey 〈C,D〉).

Below we define the semantics of ALC+LK.

Definition 8 (Semantics of ALC+LK). An interpretation I = (∆I , ·I) is a model of an
ALC+LK ontology O = 〈A, T ,LK〉 if I is a model of 〈A, T 〉, I is a model of every equality
and inequality assertion in A, and I is a model of the LKBox LK. I is a model of 〈A, T 〉 if
satisfies every role and concept assertion in A, every GCI in T as defined in Definition 5 of
Chapter 2. I is a model of every equality and inequality assertion in A if it satisfy as well every
equality and inequality assertion in A:

a ≈ b if aI = bI

a 6≈ b if aI 6= bI

and I is a model of the LKBox LK if I satisfies every link key in LK.
An interpretation I satisfies a link key ({〈Pi, Qi〉}ni=1 linkkey 〈C,D〉), which will be de-

noted by I |= ({〈Pi, Qi〉}ni=1 linkkey 〈C,D〉), if

∀δ, η, x1, · · · , xn ∈ ∆I ,

δ ∈ CI ∧ η ∈ DI ∧
∧

1≤i≤n
((δ, xi) ∈ P I

i ∧ (η, xi) ∈ QI
i)⇒ δ = η

An ontology O is consistent if there exists a model of O, i.e. there is a model of T , A and
LK. An ontology O entails a GCI, an ABox assertion or a link key α, written O |= α, if every
model of O satisfies α.

32

We use |S| to denote the cardinality of a set S. Given an ALC+LK ontology O =
〈A, T ,LK〉, we denote by sub(O) = sub(A, T ,LK) the set of all sub-concepts occurring
in A, T and LK. The size of an ontology O is denoted by ||O|| = ||A||+ ||T ||+ ||LK|| where
||A|| is the size of all assertions, ||T || the size of all GCIs and ||LK|| the size of all link keys. It
holds that |sub(O)| is polynomially bounded by ||O|| since if a concept is represented as string
then a sub-concept is a substring.

Finally, given two individuals s, t in I, we define the label of s as L(s) = {C ∈ sub(O) |
C(s) ∈ A} and the label of 〈s, t〉 as L(s, t) = {R ∈ R | R(s, t) ∈ A}. We assume hereafter,
without loss of generality, that the individuals of all ABoxes are labelled in this way.

4.3 Reduction of ontology entailment to ontology consistency
In ALC+LK, ontology entailment of GCIs, concept assertions, equality and inequality state-
ments, and link keys is reducible to ontology consistency checking. Indeed, given an ALC+LK
ontology O = 〈A, T ,LK〉, two concepts C,D and two individuals a, b:

O |= C v D iff 〈A ∪ {(C u ¬D)(x)}, T ,LK〉 is inconsistent
O |= C(a) iff 〈A ∪ {¬C(a)}, T ,LK〉 is inconsistent
O |= a ≈ b iff 〈A ∪ {a 6≈ b}, T ,LK〉 is inconsistent
O |= a 6≈ b iff 〈A ∪ {a ≈ b}, T ,LK〉 is inconsistent

where x is a new individual not present in O. Notice that ontology entailment of role assertions
may require considering negation of roles, which go beyond ALC+LK expressivity.

This result can be extended to link keys. It is not necessary to express link key negation,
but sufficient to provide an ABox witnessing this negation. Lemma 1 below proves that link
key entailment can be reduced to consistency checking: given a link key λ, O |= λ if and only
if 〈A ∪A′, T ,LK〉 is inconsistent, where A′ represents the negation of λ.

Lemma 1 (Reduction of ontology entailment to consistency). Let O = 〈A, T ,LK〉 be an
ALC+LK ontology. It holds that

O |= ({〈Pi, Qi〉}ni=1 linkkey 〈C,D〉) iff 〈A ∪A′, T ,LK〉 is inconsistent

with A′ = {C(x), D(y), x 6≈ y} ∪ ⋃n
i=1{Pi(x, zi), Qi(y, zi)} and x, y, z1, · · · , zn are new

individuals not present in O.

Proof. Let λ = ({〈Pi, Qi〉}ni=1 linkkey 〈C,D〉). Assume first that O |= λ. Let us show that
O′ = 〈A ∪A′, T ,LK〉 is inconsistent. By contradiction, assume that O′ has a model I. Since
A ⊆ A ∪ A′, then I must be a model of O too. Moreover, since I is a model of O′, I must
be a model of A′, which means that xI ∈ CI , yI ∈ DI , 〈xI , zIi 〉 ∈ P I

i , 〈yI , zIi 〉 ∈ QI
i and

xI 6= yI . This implies that I 6|= λ. Thus, we have a model I of O such that I 6|= λ. Therefore,
O 6|= λ, which contradicts the assumption.

Assume now that O 6|= λ. Let us show that O′ = 〈A ∪ A′, T ,LK〉 is consistent. Since
O 6|= λ, then there exists an interpretation I such that I |= O and I 6|= λ (otherwise λ would
be entailed). Since I 6|= λ, by the semantics of link keys, there exists δ, δ′, δ1, . . . , δn ∈ ∆I

such that δ ∈ CI , δ′ ∈ DI , (δ, δ1) ∈ P I
1 , (δ′, δ1) ∈ QI

1 , . . . , (δ, δn) ∈ P I
n , (δ′, δn) ∈ QI

n and
δ 6= δ′. Let us extend I by defining xI = δ, yI = δ′, zI1 = δ1, . . . , z

I
n = δn. Then, I is a model

of A′. I is still a model of O. Therefore, I is a model of O′ and, thus, O′ is consistent.

33

Thanks to Lemma 1, ontology entailment in ALC+LK can be reduced to ontology consis-
tency. The following section describes a tableau algorithm for checking the consistency of an
ontology in ALC+LK.

4.4 Tableau algorithm for ALC+LK
The algorithm to decide if an ontology with link keys O0 = 〈A0, T ,LK〉 is consistent, starts
with A0 and applies the completion rules listed in Figure 4.1, guided by T and LK. The
completion rules generate new ABoxes. If no more rule is applicable to a generated ABox and
this ABox does not contain any obvious contradiction (called clash) then there exists a model
of O0 that can be built from the ABox, otherwise no model exist. This algorithm is based
on the standard tableau algorithm for reasoning in ALC [50] to which we have added specific
completion rules for dealing with link keys.

More precisely, we use A to denote a set of ABoxes and 〈A, T ,LK〉 is a generalised
ontology to be used by the method. At the beginning, A is initialised with A0 = {A0}.
〈A, T ,LK〉 is said to be consistent if there exists A ∈ A such that 〈A, T ,LK〉 is consistent.

The application of a completion rule transforms the set of ABoxes into another set of
ABoxes. There are two types of rules: deterministic and non-deterministic rules. Each ap-
plication of a deterministic rule replaces an ABox A ∈ Ak by a new ABox A′ ∈ Ak+1.
However, the application of a non-deterministic rule replaces an ABox A ∈ Ak by several new
ABoxes A′1 . . .A′n ∈ Ak+1.

The algorithm then generates a sequence of sets of ABoxes:

A0,A1,A2, . . . (4.1)

such that Ak+1 is obtained from Ak by applying a completion rule. An ontology 〈A, T ,LK〉
with A ∈ Ak is called a derived ontology from 〈A0, T ,LK〉 and A a derived ABox. Such a
derived ABox A, and the corresponding ontology, is called complete if no completion rule is
applicable.

4.4.1 Preprocessing
As usual, to ease the description of the completion rules, we start with a preprocessing step.
All concepts occurring in the initial ontology are expressed into negation normal form (NNF),
i.e. negation only occurs in front of concept names. Any ALC-concept can be transformed to
an equivalent one in NNF by using De Morgan’s laws and the duality between existential and
universal restrictions. In addition, all concepts occurring in all link keys are in NNF as well.
Note that the NNF of a concept C can be computed in polynomial time in the size of C [51].
For a concept C, ∼C will denote the negation normal form of ¬C.

4.4.2 Blocking
As for ALC with GCIs, blocking (cycle detection) is necessary to ensure the termination of
the algorithm. We use anywhere blocking, the main idea behind this kind of is to extend the
set of potential blockers for an individual than its predecessors (as it is the case for ancestor
blocking). This kind of blocking allows to reduce the size of the constructed models.

34

Before giving the definition of blocking, we make a distinction between old and new in-
dividuals. Let Ok = 〈Ak, T ,LK〉 be an ALC+LK ontology with set of individuals I 6= ∅.
Assume that Ok is derived from an initial ontology O0 = 〈A0, T ,LK〉 with a set of individuals
I0. We have I0 ⊆ I . An individual a ∈ I is called old if a ∈ I0, and new otherwise. New
individuals result from applying specific rules (in Figure 4.1,→∃ is the only such rule). We will
write I = Iold] Inew where Iold = I0 and Inew = I \ I0. In particular, O0 has old individuals
only, and no new individuals.

We assume that there is a total order over Iold = {s1, . . . , sn}with si < sj for all 1 ≤ i < j ≤ n.
If a rule adds a new individual s to an ABox, then < is extended by setting si < s for all
1 ≤ i ≤ n and t < s if t was added to the ontology prior to s. By construction, < is a total
order over I = Iold] Inew.

For the sake of simplicity, we assume that, if an equality assertion x ≈ y or an inequality
assertion x 6≈ y belongs to A0 then x < y. This has no impact on consistency checking because
≈ and 6≈ are symmetric.

Definition 9 (Order and equivalence among individuals). Let O = 〈A, T ,LK〉 be an ALC+LK
ontology with a set of individuals I and an order relation < over I . For each individual s ∈ I ,
we use s+ to denote the transitive closure of s with respect to the relation ≈ (appearing in as-
sertions), i.e. s+ is the smallest set such that s ∈ s+, and if c ≈ b ∈ A or b ≈ c ∈ A with some
c ∈ s+ then b ∈ s+. The function e(s) associates to each individual s the smallest element of
s+ with respect to the order relation <.

Below we give the definition of a blocked individual.

Definition 10 (Blocking). Let Ok = 〈Ak, T ,LK〉 be a derived ALC+LK ontology with a set
of individuals I = Iold] Inew. An individual s ∈ Inew is blocked by an individual t ∈ Inew if
t < s and L(s) ⊆ L(t). We denote by b(s) the least individual (with respect to the total order
<) that blocks s.

Notice that only new individuals may be blocked. Also, given a blocked element s ∈ Inew,
the existence and uniqueness of b(s) is guaranteed by the fact that < is a finite strict total order
(and, thereby, a well-order), so the set of blocking elements of s, which is not empty, has a least
element in < which is unique. The following lemma proves that b(s) is always non blocked.

Lemma 2. Let Ok = 〈Ak, T ,LK〉 be a derived ALC+LK ontology with a set of individuals
I . If s ∈ I is a blocked individual then b(s) is not blocked.

Proof. By contradiction, assume that b(s) is blocked by an individual t ∈ I . Then, t < b(s)
and L(b(s)) ⊆ L(t). Since s is blocked by b(s), we have b(s) < s and L(s) ⊆ L(b(s)). Hence,
t < b(s) < s and L(s) ⊆ L(t), which contradicts the definition of b(s).

4.4.3 Clashes
Clashes are atomic contradictions. Given an ontology with link keys O = 〈A, T ,LK〉, we will
say that A contains a clash if one of the two following situations occurs:

• ¬-clash: {A(s),¬A(s)} ⊆ A for some individual name s and a concept name A, or

• 6≈-clash: {x 6≈ y} ⊆ A with x ∈ y+ for some individuals x, y.

35

If A contains no clash, we say that A, and O, is clash-free.
The case when {⊥(s)} ⊆ A, for some individual s, will be considered a ¬-clash too

(implicitly, {⊥ v ¬>} ⊆ T and >(t) ∈ A for all t). We will write A → ¬-clash and A →
6≈-clash if A contains, respectively, a ¬-clash or a 6≈-clash.

4.4.4 Completion rules
Completion rules transform the ABox of a generalised ontology. They leave the TBox and
LKBox unchanged. This transformation is monotonic, i.e. it only adds new assertions and
never removes anything from the ontology.

Figure 4.1 shows the list of completion rules of the algorithm. They are standard completion
rules for reasoning in ALC together with three more rules to deal with link keys (→chooseLK1,
→chooseLK2 and→LK) and a rule to handle equality (→≈). The→LK rule translates the seman-
tics of link keys. The→chooseLK1 and→chooseLK2 rules make it explicit whether two individuals
a and b that satisfy the condition of a link key should be set as equal or not. Certainly, given
an interpretation I, the absence of an assertion C(a) (resp. D(b)) from an ontology does not
necessarily imply that aI /∈ CI (resp. bI /∈ DI). For this purpose, we need to add ∼C(a)
(resp. ∼D(b)) explicitly.

Contrary to [52], the→≈ rule does not remove any assertion from ABoxes. It just makes
L(x) = L(y), L(x, z) = L(y, z), L(z, x) = L(z, y) for some individual z if x ≈ y belongs to
the ABox A.

A derived ABox is closed if it is either complete or contains a clash. A generalised ontol-
ogy 〈Ak, T ,LK〉 is called closed if each A ∈ Ak is closed. A closed generalised ontology
〈Ak, T ,LK〉 is called successful if there exists A ∈ Ak which is complete and clash-free.

At this point, we have all the necessary elements to present the algorithm for checking
ontology consistency. Algorithm 1 below returns YES if it builds a successful generalised
ontology 〈Ak, T ,LK〉 from a generalised ontology 〈{A0}, T ,LK〉, and NO otherwise.

Algorithm 1: Tableau algorithm for ALC+LK ontology consistency checking
Input : An ALC+LK ontology 〈A0, T ,LK〉
Output: Consistency of 〈A0, T ,LK〉

1 Initialize a set of ABoxes A = {A0} ;
2 while there is a completion rule r in Figure 4.1 which is applicable to an individual s

in some A ∈ A do
3 Apply r to s;

4 if there is a clash-free ABox A ∈ A then
5 return YES;

6 else
7 return NO;

and completeness of the algorithm. Soundness guarantees that if the algorithm derives a
successful generalised ontology Ok from O0, then O0 is consistent (Proposition 5).

Before proving termination, soundness and completeness of the algorithm, we illustrate it
with examples.

36

Rule→u
Condition: A contains (C1 u C2)(s), but it does not contain both C1(s) and C2(s).
Action: A′ := A ∪ {C1(s), C2(s)}
Rule→t
Condition: A contains (C1 t C2)(s), but neither C1(s) nor C2(s).
Action: A′ := A ∪ {C1(s)}, A′′ := A ∪ {C2(s)}
Rule→∀
Condition: A contains (∀R.C)(s) and R(s, t), but it does not contain C(t).
Action: A′ := A ∪ {C(t)}
Rule→∃
Condition: A contains (∃R.C)(s) but there is no individual name t such that A contains R(s, t) and C(t), and s
is not blocked.
Action: A′ := A ∪ {R(s, t), C(t)} where t is an individual not occurring in A. Set x < t for all individuals x in
A.
Rule→choose

Condition: T contains C v D and there is an individual name s such that A does contain neither ∼C(s) nor
D(s).
Action: A′ := A ∪ {∼C(s)}, A′′ := A ∪ {D(s)}
Rule→chooseLK1

Condition: LK contains ({〈Pi, Qi〉}n
i=1 linkkey 〈C,D〉), and there exist individual names x, y, z1, . . . , zn

such that Pi(x, zi), Qi(y, zi) ∈ A for 1 ≤ i ≤ n and {C(x),∼C(x)} ∩ A = ∅ Action: A′ := A ∪ {C(x)},
A′′ := A ∪ {∼C(x)}
Rule→chooseLK2

Condition: LK contains ({〈Pi, Qi〉}n
i=1 linkkey 〈C,D〉), and there exist individual names x, y, z1, . . . , zn such

that Pi(x, zi), Qi(y, zi) ∈ A for 1 ≤ i ≤ n and {D(y),∼D(y)} ∩A = ∅
Action: A′ := A ∪ {D(y)}, A′′ := A ∪ {∼D(y)}
Rule→LK

Condition: LK contains ({〈Pi, Qi〉}n
i=1 linkkey 〈C,D〉), and there exist individual names x, y, z1, . . . , zn such

that C(x), D(y), Pi(x, zi), Qi(y, zi) ∈ A for 1 ≤ i ≤ n, and A ∩ {x ≈ y, y ≈ x} = ∅
Action: A′ := A ∪ {x ≈ y} if x < y, and A′ := A ∪ {y ≈ x} otherwise.
Rule→≈
Condition: A contains y ≈ x (with y 6= x), and Σ ∩ A 6= ∅,Σ \ A 6= ∅ where Σ is one of the following sets of
assertions: {C(x), C(y)}, {R(x, z), R(y, z)}, {R(z, x), R(z, y)}, for some concept C, or some individual z and
some role R
Action: A′ := A ∪ Σ.

Figure 4.1 – Completion rules for ALC+LK.

37

4.5 Examples
This section provides a few examples of the use of the tableau-based algorithm described in
Section 4.4. Example 2, derived from [52], illustrates a link inference. Example 3 shows the
effect of the new →chooseLK rule. Examples 4 and 5 show how the validity and non validity
of the link keys of Example 1 may be obtained. Though the language used in Example 1 is
slightly more expressive, as it covers role name equivalence, but it can be rewritten as an ALC
ontology to take these into account. Finally, Example 6 shows the effect of blocking and will
be further used to illustrate the proofs of properties in Section 4.6.

Each example displays the initial entailment to check (when applicable), the initial knowl-
edge base corresponding to the reduction of the problem to a unsatisfiability test and the ap-
plication of the rules of the algorithm. Each line corresponds to the application of a rule to an
ABox. It identifies the rule applied, the resulting ABox and the clashes (¬, 6≈) or completion
(2) of the ABox.

Example 2 (Chained link generation).

Entailment: (〈P,R〉 linkkey 〈C,D〉), (〈Q,S〉 linkkey 〈E,F 〉),
C(a), P (a, c), E(c), Q(c, v), D(b), R(b, d), F (d), S(d, v) |= a ≈ b

Initial knowledge base:

A0 = {C(a), P (a, c), E(c), Q(c, v), D(b), R(b, d), F (d), S(d, v), a 6≈ b}
T = ∅

LK = {(〈P,R〉 linkkey 〈C,D〉), (〈Q,S〉 linkkey 〈E,F 〉)}

Algorithm:

A0 →LK A1 := A0 ∪ {c ≈ d}
A1 →≈ A2 := A1 ∪ {P (a, d), E(d), Q(d, v), R(b, c), F (c), S(c, v)}
A2 →LK A3 := A2 ∪ {a ≈ b} 6≈

The unique closed ABox contains a clash. Hence, the entailment is valid.

Example 3 (ChooseLK in action).

Entailment: (〈P,Q〉 linkkey 〈C,D〉), (〈P,R〉 linkkey 〈C,¬D〉)
C(a), P (a, v), P (a, w), Q(b, v), R(b, w) |= a ≈ b

Initial knowledge base:

A0 = {C(a), P (a, v), P (a, w), Q(b, v), R(b, w), a 6≈ b}
T = ∅

LK = {(〈P,Q〉 linkkey 〈C,D〉), (〈P,R〉 linkkey 〈C,¬D〉)}

38

Algorithm:

A0 →chooseLK2 A01 := A0 ∪ {D(b)}
A02 := A0 ∪ {¬D(b)}

A01 →LK A03 := A01 ∪ {a ≈ b} 6≈
A02 →LK A04 := A02 ∪ {a ≈ b} 6≈

All closed ABoxes contain a clash. Hence, the entailment is valid.

Example 4 (Link key inference). This is the inference of the link key (1.8) given in Example 1
(the concepts and role names correspond to the initials of those of the example). The example is
not expressed in ALC because it contains role equivalence statements. However, an equivalent
ALC+LK ontology may be obtained through rewriting the ontology. Here, we encode it by
duplicating the ABox statements containing the equivalent properties.

Entailment: (〈C,C〉, 〈T, T 〉 linkkey 〈W,W 〉), N v W,T ≡ T ′, C ≡ A,N w E u ∃L.P |=
(〈C,A〉, 〈T, T ′〉 linkkey 〈N,E u ∃L.P 〉)
Initial knowledge base:

A0 = {N(d), C(d, v), T (d, w), A(d, v), T ′(d, w), (E u ∃L.P)(b), A(b, v),
T ′(b, w), C(b, v), T (b, w), d 6≈ b}

T = {N v W,N w E u ∃L.P}
LK = {(〈C,C〉, 〈T, T 〉 linkkey 〈W,W 〉)}

Algorithm:

A0 →u A1 := A0 ∪ {E(b), (∃L.P)(b)}
A1 →∃ A2 := A1 ∪ {L(b, v′), P (v′)}
A2 →choose A21 := A2 ∪ {(¬E t ∀L.¬P)(b)}

A22 := A2 ∪ {N(b)}
A21 →t A211 := A21 ∪ {(¬E)(b)} ¬

A212 := A21 ∪ {(∀L.¬P)(b)}
A212 →∀ A213 := A212 ∪ {(¬P)(v′)} ¬
A22 →choose A221 := A22 ∪ {¬N(d)} ¬

A222 := A22 ∪ {W (d)}
A222 →choose A2221 := A222 ∪ {¬N(b)} ¬

A2222 := A222 ∪ {W (b)}
A2222 →LK A2223 := A2222 ∪ {d ≈ b} 6≈

All closed ABoxes contain a clash. Hence, the entailment is valid.

39

Example 5 (Link key non inference). This is the non-inference of the link key (1.2) in Ex-
ample 1. The same comments as in Example 4 apply. For readability, we adopted an ABox
numbering scheme different from that of other examples in which only the path leading to a
complete and clash-free ABox is numbered.

Entailment: (〈C,C〉, 〈T, T 〉 linkkey 〈W,W 〉), N v W,T ≡ T ′, C ≡ A,N w E u ∃L.P |=
(〈C,A〉, 〈T, T ′〉 linkkey 〈N,E〉)
Initial knowledge base:

A0 = {N(d), C(d, v), T (d, w), A(d, v), T ′(d, w), E(b), A(b, v), T ′(b, w), C(b, v),
T (b, w), d 6≈ b}

T = {N v W,N w E u ∃L.P}
LK = {(〈C,C〉, 〈T, T 〉 linkkey 〈W,W 〉)}

Algorithm:

A0 →choose A∗ := A0 ∪ {¬N(d)} ¬
A1 := A0 ∪ {W (d)}

A1 →choose A∗ := A1 ∪ {N(b)}
A2 := A1 ∪ {(¬E t ∀L.¬P)(b)}

A2 →t A∗ := A2 ∪ {¬E(b)} ¬
A3 := A2 ∪ {(∀L.¬P)(b)}

A3 →choose A4 := A3 ∪ {¬N(b)}
A∗ := A3 ∪ {W (b)}

A4 →choose A∗ := A4 ∪ {¬N(v)}
A5 := A4 ∪ {W (v)}

A5 →choose A6 := A5 ∪ {N(v)}
A∗ := A5 ∪ {(¬E t ∀L.¬P)(v)}

A6 →choose A∗ := A6 ∪ {¬N(w)}
A7 := A6 ∪ {W (w)}

A7 →choose A8 := A7 ∪ {N(w)}
A∗ := A7 ∪ {(¬E t ∀L.¬P)(w)}

A8 →chooseLK2 A∗ := A8 ∪ {W (b)}
A9 := A8 ∪ {¬W (b)} 2

A9 is a complete and clash-free derived ABox. Hence, the entailment is invalid.

Example 6 (Knowledge base consistency). This example is particular, since it is only con-
cerned with the consistency of a knowledge base. It is used in the remainder for illustrating the
proofs.

40

Initial knowledge base:

A0 = {(∃W.(∃R.> u ∃P.∃R.> u ∃Q.∃R.>))(a), P (s, a), Q(a, s)}
T = ∅

LK = {(〈R,R〉 linkkey 〈>,>〉)}

Algorithm:

A0 →∃ A1 := A0 ∪ {W (a, b), (∃R.> u ∃P.∃R.> u ∃Q.∃R.>)(b)}
A1 →u A2 := A1 ∪ {(∃R.>)(b), (∃P.∃R.> u ∃Q.∃R.>)(b)}
A2 →u A3 := A2 ∪ {(∃P.∃R.>)(b), (∃Q.∃R.>)(b)}
A3 →∃ A4 := A3 ∪ {R(b, c),>(c)}
A4 →∃ A5 := A4 ∪ {P (b, d), (∃R.>)(d)} b blocks d
A5 →∃ A6 := A5 ∪ {Q(b, e), (∃R.>)(e)} b blocks e 2

The unique closed ABox is complete and clash-free. Hence, the initial knowledge base is
consistent.

Figure 4.2 (p. 44) displays the derived ABox corresponding to A6.

4.6 Properties of the method
We establish the termination (Section 4.6.2), soundness (Section 4.6.3), completeness (Sec-
tion 4.6.4) and complexity (Section 4.6.5) of the proposed method (Algorithm 1). But first, we
have to introduce properties which are necessary for the proof of soundness and completeness
(Section 4.6.1).

4.6.1 Some properties of derived ontologies
The following lemma shows a property of an ABox which is derived by completion rules.

Lemma 3. Let Ok = 〈Ak, T ,LK〉 be a derived ALC+LK ontology with a set of individuals
I = Iold] Inew. It holds that

1. If R(a, c), S(b, c) ∈ Ak and a 6= b then a, b, c ∈ Iold.

2. If (a ≈ b) ∈ Ak then a, b ∈ Iold.

3. If (a 6≈ b) ∈ Ak then a, b ∈ Iold.

Proof. Assume first that the →≈ rule was not used in the derivation of Ak. In this case, by
the behaviour of the→∃ rule, the only kinds of role assertions that may be included in Ak are:
R(u, v) with u, v ∈ Iold,R(u, s) with u ∈ Iold and s ∈ Inew, andR(s, t) with s, t ∈ Inew, where
R is a role name. Therefore, (∗) if R(u, v) ∈ Ak and v ∈ Iold then u ∈ Iold. Also, since the→∃

41

rule always adds new individual names, we have (∗∗) if R(u, s), S(v, s) ∈ Ak and u 6= v then
s ∈ Iold. Item 1 of the lemma follows from (∗) and (∗∗).

Now, assume that (x ≈ y) ∈ Ak. If (x ≈ y) ∈ A0 then x, y ∈ Iold. Assume that
(x ≈ y) 6∈ A0. Then x ≈ y was added to A by applying the→LK rule. This means that there are
C,D, P1, Q1, z1, . . . , Pn, Qn, zn such that ({〈Pi, Qi〉}ni=1 linkkey 〈C,D〉), Pi(x, zi), Qi(y, zi) ∈
Ak. The same argument as used above allows to conclude that x, y ∈ Iold.

Assume now that the→≈ rule was used in the derivation of Ak. Imagine that this derivation
was

A0 → A1 → . . .→ Ak

and that An →≈ An+1 (for 0 ≤ n ≤ k− 1) was the first application of the→≈ rule. As before,
the only role assertions that An may include are: R(u, v) with u, v ∈ Iold, R(u, s) with u ∈ Iold
and s ∈ Inew, and R(s, t) with s, t ∈ Inew where R is a role name. Also, if (x ≈ y) ∈ An then
x, y ∈ Iold. By the behaviour of the→≈ rule, the same holds in An+1. Then, the same holds in
Ak too, and the same argument used before proves Item 2 of the lemma.

Finally, since no completion rule adds an inequality assertion to a derived ontology, Item 3
holds too.

Lemma 4 is a consequence of Lemma 3 simply stating that the→LK rule can only be applied
to individuals of A0.

Lemma 4. Let Ok = 〈Ak, T ,LK〉 be a derived ALC+LK ontology with set of individuals I =
Iold]Inew. If there are distinct individuals x, y, z1, . . . , zn ∈ I withC(x), D(y), Pi(x, zi), Qi(y, zi) ∈
Ak for 1 ≤ i ≤ n, then x, y, z1, . . . , zn ∈ Iold.

Proof. This is a direct consequence of Lemma 3, more precisely of the proof of Item 2.

This lemma may seem surprising. It owes to the fact that, contrary to constraints such as
role-value-maps [53], link keys work backwards: they take advantage of role value equality to
identify role bearers. Role-value-maps take advantage of role bearer equality to identify role
values. Hence, as soon as there cannot be role equality among individuals generated by the
tableau method, these individuals (in Inew) cannot be identified.

This does not render link keys useless: on the contrary, their role is to identify individuals
among the ABox, not those generated by the method.

4.6.2 Termination
To prove termination of Algorithm 1, we need to prove that it returns YES or NO after perform-
ing a finite number of ontology transformations, i.e. the loop between Lines 2-3 in Algorithm 1
is finite.

Proposition 1 (Termination). Let O0 be an ALC+LK ontology. Algorithm 1 terminates on
O0.

Proof. There are three factors that can affect the termination of Algorithm 1: the generation
of new ABoxes by the non deterministic rules (→t,→chooseLK1,→chooseLK2 and→choose), the
generation of new assertions by all rules and especially of new individuals by the→∃ rule, and
the possible non monotonically increasing behaviour of these rule application. We address the
three issues.

42

First, Algorithm 1 adds an assertion to an ABox when a completion rule is applicable,
and never removes anything from them. This behavior of Algorithm 1 is a consequence of
the completion rules. Hence the ABoxes can only grow. Similarly, the number of generated
ABoxes can only increase. Now let us proove that these are bounded.

Let Ak be a set of ABoxes built by Algorithm 1 from an ALC+LK ontology O0 =
〈A0, T ,LK〉. It holds that each ABox A ∈ Ak contains (i) the initial assertions coming from
〈A0, T ,LK〉, (ii) individuals I = Iold] Inew, (iii) concept assertions C(x) associated to each
individual x, and (iv) role assertions R(x, y) associated to two individuals x, y. Let ` = ||O0||,
we have |sub(O0)| ≤ O(`). By the blocking condition, we have L(d) 6= L(d′) for all new
individuals d, d′ ∈ Inew with d 6= d′. Since L(d) ⊆ sub(O0), we obtain |I| ≤ O(2`). Hence,
|A| ≤ O(2`) for all A ∈ Ak.

Finally, the number of generated ABoxes is bounded. From each ABox A, for each indi-
vidual d and each concept C ∈ L(d) or an axiom C v D there is at most one new ABox that
is created and added by the→t,→chooseLK1,→chooseLK2 and→choose rules. Moreover, when an
application of a nondeterministic rule to an individual d in A due to a concept C ∈ L(d) leads
to add a new ABox A′, C no longer triggers another application by the same nondeterministic
rule to the individual d in A′ copied from A. Therefore, the number of generated ABoxes is
bounded by |I|`×|I| ≤ O(22`).

Hence, Algorithm 1 can only generate a generalised ontology comprising a finite number
of bounded-size ABoxes and it only adds assertions and never removes anything from the
generalised ontology. Therefore, Algorithm 1 terminates.

4.6.3 Soundness
Since Algorithm 1 is a decision procedure, it is sound if it is ensured that when it returns YES
the input ontology is consistent. Thus, for soundness, we have to prove that, if Algorithm 1 is
able to derive a successful generalised ontology Ok = 〈Ak, T ,LK〉, then O0 = 〈A0, T ,LK〉
has a model. For this, we will use A ∈ Ak to define an interpretation I = 〈∆I , ·I〉, and show
that I is a model of O0.

As usual, derived ABoxes containing a clash do not represent models. One may define I
by interpreting all individuals in A as themselves, and then, for every concept name A, s ∈ AI

iff A(s) ∈ A, and, for every role name R, 〈s, t〉 ∈ RI iff s is not blocked and R(s, t) ∈ A, or
s is blocked and R(b(s), t) ∈ A. This simple interpretation, called the canonical interpretation
[54], is used in the case of ALC. It also builds a model of O0 in case of complete clash-free
non blocked derived ABoxes.

It turns out that this does not work for complete clash-free blocked derived ABoxes. Indeed,
it may lead to a situation where I does not satisfy a link key even though A is complete. This
is illustrated by Example 7.

Example 7 (Inadequacy of the canonical interpretation). Figure 4.2 depicts the single derived
ABox A6 at the end of Example 6. d and e are labelled with ∃R.>, but they do not have
R-offspring since they are blocked by b which is also labelled by ∃R.>. The canonical inter-
pretation I associated with such a situation would simply be defined such that 〈dI , cI〉 ∈ RI ,
〈eI , cI〉 ∈ RI (and of course 〈bI , cI〉 ∈ RI). It is depicted in the left-hand side of Figure 4.3.
The problem is that I does not satisfy LK because d, e and b are different, through they all
share a value for role R.

43

s a

b

cd e

Iold

∃W.(∃R.> u ∃P.∃R.> u ∃Q.∃R.>)

∃R.> u ∃P.∃R.> u ∃Q.∃R.>, ∃R.>, ∃P.∃R.>, ∃Q.∃R.>

∃R.>∃R.>

blocked by b blocked by b

Q

P W

RP Q

Figure 4.2 – Derived ABox corresponding to A6 in Example 6.

It is complete, clash-free and blocked. In order to overcome the problem of Example 7, we
will consider a different interpretation I, that we call the unravelled interpretation.

It is inspired from the unravelling technique used in [55] to devise a (possibly infinite)
tree-like model from a derived ABox for the expressive description logic SHIQ.

We will show that the unravelled interpretation is a model of O0 independently from whether
the derived ABox is blocked or not.

The unravelled interpretation associates paths to individuals in Ak. These paths are se-
quences of names of individuals in the derived ABox. For instance, p = 〈a, b, c〉 is such a path.
Its last element (c) is called its tail and we write tail(p) = c; its first element (a) is called its
root. A path containing only one element is called a root path.

Below we give the formal definition of the unravelled interpretation.

Definition 11 (Unravelled interpretation). Let O0 = 〈A0, T ,LK〉 be an ALC+LK ontology;
let Ak be a complete and clash-free ABox derived from O0 with set of individuals I = Iold]
Inew. The interpretation I = 〈∆I , ·I〉 of O0 unravelled from Ak (or unravelled interpretation
from Ak) is defined as follows:

1. ∆I is the smallest set of paths built as follows:

(a) ∆I contains a path pa = 〈e(a)〉 for each a ∈ Iold. In this case, aI = pa.
(b) For each p ∈ ∆I such that R(tail(p), a) ∈ Ak, a ∈ Inew and a is not blocked, ∆I

contains a path p′ = 〈p, a〉.
(c) For each p ∈ ∆I such that R(tail(p), a) ∈ Ak, a ∈ Inew and a is blocked, ∆I

contains a path p′ = 〈p, b(a)〉.

2. For each concept name A, AI = {p ∈ ∆I | A(tail(p)) ∈ Ak}

3. For each role name R,

RI = {〈pa, pb〉 ∈ ∆I ×∆I | R(a, b) ∈ Ak} ∪
{〈p, p′〉 ∈ ∆I ×∆I | p′ = 〈p, a〉, R(tail(p), a) ∈ Ak, a is not blocked} ∪
{〈p, p′〉 ∈ ∆I ×∆I | p′ = 〈p, b(a)〉, R(tail(p), a) ∈ Ak, a is blocked}

From Definition 23, individuals of Iold are assigned a root path and equivalent individuals
are interpreted as the same root path. Each individual of Inew generates paths in the unravelled
interpretation obtained by concatenating the path associated to their ancestor in the application

44

s a

b

cd e

Q

P W

RP
Q

R

R

〈s〉 〈a〉

〈a, b〉

〈a, b, c〉〈a, b, b〉

〈a, b, b, c〉〈a, b, b, b〉

Q

P W

R
P,Q

R
P,Q

Figure 4.3 – Left: Canonical interpretation corresponding to the derived ABox of Figure 4.2.

of the →∃ rule to its name if it is not blocked and the name of its blocking node otherwise.
Hence, each path in the domain ∆I of the unravelled interpretation is rooted at a path corre-
sponding to an old individual of the ontology, i.e. an individual of A0.

It is possible to display the unravelled interpretation as an edge-labelled directed graph such
that each element of ∆I is a node and there is an edge between two nodes if the pair of nodes
belongs to the interpretation of a relation. Edges are labelled by the set of roles in which the
corresponding pair appears. Figure 4.3 (right) displays such a graph.

The domain of the unravelled interpretation ∆I may be infinite because, as illustrated in
Example 7, paths for blocked nodes may end with one of their ancestor in the derived ABox.

Example 7 (Unravelled interpretation). If I is the unravelled interpretation from A6 of Exam-
ple 6, I interprets d and e as the same path individual 〈a, b, b〉. In this way, the link key is
satisfied by I. The unravelled interpretation I is depicted at the right-hand side of Figure 4.3
as a graph. It is a tree, albeit infinite, rooted in a root node (〈a〉). Actually, the graph of unrav-
elled interpretations corresponds to the image of a forest made of trees whose branches extend
to the sky, while underground their roots can be connected and interleaved in an arbitrary way.
Notice that 〈a, b, b〉, 〈a, b, b, b〉, 〈a, b, b, b, b〉 . . . belong to ∆I , i.e. ∆I is infinite. Also note that,
there is no pair of elements of ∆I have the same value for R because, at each stage of the tree,
the R-value is different: 〈a, b, c〉, 〈a, b, b, c〉, 〈a, b, b, b, c〉 . . . Hence, the link key cannot apply.

It does not satisfy LK since d, e and b have a common R-value and are different. Right:
Unravelled interpretation from the same derived ABox. It is infinite but satisfies LK since all
R-values are different due to different prefixes.

The unravelled interpretation from Ak is not an interpretation of Ok, as it does not interpret
individuals in Inew, but it is an interpretation of O0. Proposition 5 shows that it is a model of
O0.

The argument of the proof goes as follows: The interpretation unravelled from 〈Ak, T ,LK〉
satisfies the ALC ontology 〈A0, T 〉. By Lemma 4, link keys only apply to statements involving
individuals of A0. Since the derived ABox Ak is complete, it contains the result of the applica-
tion of all link keys (individuals from A0 cannot be blocked). Unravelling does two things: (a)
merging all A0 individuals related by ≈, and (b) expanding blocked individuals into (possibly
infinite) trees. Hence, in both cases, all link keys are satisfied because no different individuals
satisfy the link key conditions.

45

Proposition 2 (Soundness). If Algorithm 1 derives a successful generalised ontology from an
ALC+LK ontology O0, then O0 is consistent.

Proof. Let O0 = 〈A0, T ,LK〉 be an ALC+LK ontology and Ok = 〈Ak, T ,LK〉 be the suc-
cessful generalised ontology derived from O0. This means that there exists a complete and
clash-free ABox Ak ∈ Ak.

To prove the lemma, we show that the unravelled interpretation I = 〈∆I , ·I〉 from Ak

according to Definition 23 is a model of O0. Recall that I = Iold] Inew where Iold is the set of
the individuals in O0 and I is the set of all individuals in Ok.

Apart from equalities x ≈ y ∈ A0, an application of the→LK rule can add a new equality
while no rule can remove any equality. Therefore, each transitive closure a+ for some indi-
vidual a changes monotonically, i.e. a+(Ak−1) ⊆ a+(Ak) for every individual a where a+(X)
denotes the transitive closure a+ defined over an ABox X (cf. Definition 9). In the sequel, we
write a+ for a+(Ak). We rely on the following claims:

a ∈ Iold =⇒ aI = e(a)I = pe(a) (4.2)
a ∈ Iold =⇒ a+ ⊆ Iold =⇒ e(a) ∈ Iold (4.3)
a ∈ Inew =⇒ a+ = {a} (4.4)

Ak is complete and clash-free =⇒

L(x) = L(e(x)), and
L(x, y) = L(e(x), e(y))

(4.5)

The claim (4.2) is due to Definition 23 while the claims (4.3) and (4.4) are direct consequences
of Lemma 3(2). The claim (4.5) is a consequence of the non-applicability of the→≈ rule.

To prove that I is a model of 〈A0, T ,LK〉, we have to prove that I satisfies all assertions
in A0, all GCIs in T and all link keys in LK.

Assume a ≈ b ∈ A0. This implies that a, b ∈ Iold and a, b ∈ a+. By the claim (4.2),
aI = pe(a) and bI = pe(b). Since, a, b ∈ a+ then e(a) = e(b), and we have aI = bI = pe(a).
Thus aI = bI .

Assume that R(a, b) ∈ A0. This implies that a, b ∈ Iold. We have aI = e(a)I = pe(a) and
bI = e(b)I = pe(b) due to the claim (4.2), and R(e(a), e(b)) ∈ Ak due to the claim (4.5). By
Definition 23, 〈pe(a), pe(b)〉 ∈ RI , and thus 〈aI , bI〉 ∈ RI .

Assume a 6≈ b ∈ A0 with a < b. We have a, b ∈ Iold due to Lemma 3. By the claim
(4.2), we have aI = e(a)I = pe(a) and bI = e(b)I = pe(b). By contradiction, assume that
pe(a) = pe(b). This implies that e(a) = e(b) and thus b ∈ a+, which is a 6≈-clash. This
contradicts clash-freeness of Ak. Therefore, pe(a) 6= pe(b) and aI 6= bI .

Assume E(w) ∈ A0. To show wI ∈ EI , we need to show a stronger claim:

For all p ∈ ∆I , if C(tail(p)) ∈ Ak then p ∈ CI (4.6)

Indeed, E(w) ∈ A0 and the claim (4.5) imply E(e(w)) ∈ Ak. In addition, E(w) ∈ A0 and the
claim (4.3) imply that w, e(w) ∈ Iold. By the definition of I, there is some p ∈ ∆I such that
p = wI = e(w)I and tail(p) = e(w). From the claim (5.1), we obtain wI ∈ EI . We now show
the claim (5.1). Let us proceed by induction on the length of the concept C.

1. Assume that C = A with a concept name A and C(tail(p)) ∈ Ak. We have CI = AI =
{p′ ∈ ∆I | A(tail(p′)) ∈ Ak} by the definition of I. Hence, A(tail(p)) ∈ Ak implies
p ∈ AI .

46

2. Assume that C = C1 u C2 and C(tail(p)) ∈ Ak. Since Ak is complete then the→u rule
is not applicable, hence C1(tail(p)) ∈ Ak, C2(tail(p)) ∈ Ak. By induction hypothesis,
p ∈ CI

1 and p ∈ CI
2 . Then, p ∈ CI

1 ∩ CI
2 = (C1 u C2)I .

3. Assume that C = C1 t C2 and C(tail(p)) ∈ Ak. Since Ak is complete then the→u rule
is not applicable, hence C1(tail(p)) ∈ Ak or C2(tail(p)) ∈ Ak. By induction hypothesis,
p ∈ CI

1 or p ∈ CI
2 . Then, p ∈ CI

1 ∪ CI
2 = (C1 t C2)I .

4. Assume now that C = ∀R.D and C(tail(p)) ∈ Ak.

Let p′ ∈ ∆I such that (p, p′) ∈ RI . From the definition of I, we consider the following
two cases:

• R(tail(p), t) ∈ Ak and t is not blocked with t = tail(p′). Since Ak is complete,
the→∀ rule is not applicable, thus D(t) ∈ Ak. By induction hypothesis, p′ ∈ DI .
Hence, p ∈ CI .

• R(tail(p), t) ∈ Ak and t is blocked with b(t) = tail(p′). Since Ak is complete,
the →∀ rule is not applicable, thus D(t) ∈ Ak. Since tail(p′) blocks t, we have
L(t) ⊆ L(tail(p′)), and thus D(tail(p′)) ∈ Ak. By induction hypothesis, p′ ∈ DI .
Hence, p ∈ CI .

5. Assume that C = ∃R.D and C(tail(p)) ∈ Ak. Since tail(p) is never blocked and
Ak is complete, the →∃ rule is not applicable, and thus there exists t ∈ I such that
R(tail(p), t) ∈ Ak, D(t) ∈ Ak. By claim (4.5), we have R(e(tail(p)), e(t)), D(e(t)) ∈
Ak. By the claims (4.2), (4.4) and Definition 23, e(tail(p)) = tail(p), and thus, R(tail(p),
e(t)), D(e(t)) ∈ Ak. We distinguish the following two cases:

• Assume that e(t) is not blocked. By the definition of I and R(tail(p), e(t)) ∈ Ak,
there is some p′ ∈ ∆I such that tail(p′) = e(t) and (p, p′) ∈ RI . Moreover, since
D(e(t)) ∈ Ak and tail(p′) = e(t), by induction hypothesis, p′ ∈ DI . Hence,
p ∈ CI .

• Assume that e(t) is blocked. According to the definition of I and R(tail(p), e(t)) ∈
Ak, there is some p′ ∈ ∆I such that tail(p′) = b(e(t)) and (p, p′) ∈ RI . We
have D(e(t)) ∈ Ak implies D(b(e(t))) ∈ Ak. By induction hypothesis, we have
p′ ∈ DI . Hence, p ∈ CI .

6. Assume that C = ∼D and C(tail(p)) ∈ Ak. We have to show that p /∈ DI . We proceed
by induction on the length of D. If D is a concept name then D(tail(p)) /∈ Ak since Ak

is clash-free. By the definition of DI , p /∈ DI . Assume that D = C1 u C2. This implies
that ∼D = ∼C1 t ∼C2. Due to completeness, Ak must contain either ∼C1(tail(p)) or
∼C2(tail(p)). By induction hypothesis, we have p /∈ CI

1 or p /∈ CI
2 . Hence, p /∈ CI

1 ∩CI
2 ,

and thus p /∈ DI . Analogously, we can prove for the case of D = C1 t C2.

Now assume that D = ∃R.E. This implies that ∼D = ∀R.∼E. Let p′ ∈ ∆I with
(p, p′) ∈ RI . By Item 4, we have showed that p ∈ ∼DI , and thus p /∈ DI . Analogously,
we can prove for the case of D = ∀R.E.

We now show that I satisfies all GCIs in T . Let C v D ∈ T and p ∈ CI . We have to
show p ∈ DI . Due to the completeness of Ak, i.e. the→choose rule is not applicable, we have

47

either ∼C(tail(p)) ∈ Ak or D(tail(p)) ∈ Ak. If ∼C(tail(p)) ∈ Ak, then p /∈ CI due to Item 6,
which contradicts p ∈ CI . Hence, D(tail(p)) ∈ Ak and thus, p ∈ DI .

We now show that I satisfies link keys in LK. Assume that λ = ({〈Pi, Qi〉}ni=1 linkkey
〈C,D〉) ∈ LK. Let us prove that I satisfies λ. Let p, q, p1, . . . , pn ∈ ∆I such that p ∈ CI ,
q ∈ DI , and (p, pi) ∈ P I

i and (q, pi) ∈ QI
i for 1 ≤ i ≤ n. We have to prove that p = q. Since

Ak is complete, then neither the→chooseLK1 rule nor the→chooseLK2 rule may be applied, which
means that Ak contains either C(tail(p)) or ∼C(tail(p)), and either D(tail(q)) or ∼D(tail(q)).
If ∼C(tail(p)) ∈ Ak or ∼D(tail(q)) ∈ Ak then p /∈ CI or q /∈ DI by the claim (5.1), which
contradicts p ∈ CI or q ∈ DI . Therefore, C(tail(p)) ∈ Ak, D(tail(q)) ∈ Ak. We consider the
following cases:

Assume that tail(pi) ∈ Iold for all 1 ≤ i ≤ n. We obtain tail(p), tail(q) ∈ Iold, Pi(tail(p), tail(pi)),
Qi(tail(q), tail(pi)) ∈ Ak from the definition of I, (p, pi) ∈ P I

i and (q, pi) ∈ QI
i . Since Ak

is complete, the satisfaction of the link key implies tail(p) = tail(q). Hence, ptail(p) = ptail(q).
From p = ptail(p) and q = ptail(q), we obtain p = q.

Assume that tail(pi) ∈ Inew for some 1 ≤ i ≤ n. From the definition of I, (p, pi) ∈ P I
i and

(q, pi) ∈ QI
i , we obtain pi = 〈p, tail(pi)〉 = 〈q, tail(pi)〉. Thus, p = q.

4.6.4 Completeness
Since Algorithm 1 is a decision procedure, Algorithm 1 is complete if it is ensured that when
the initial ontology is consistent, the algorithm returns YES. Thus, for completeness, we have
to prove that if the initial ontology 〈A0, T ,LK〉 is consistent then Algorithm 1 is able to build
a successful generalised ontology 〈A, T ,LK〉.

Proposition 3 (Completeness). If an ALC+LK ontology O0 is consistent, then Algorithm 1
derives a successful generalised ontology from O0.

Proof. Assume that O0 = 〈A0, T ,LK〉 and that I = 〈∆I , ·I〉 is a model of O0. We show
that Algorithm 1 can build a generalised ontology 〈Ak, T ,LK〉 with a complete and clash-free
ABox Ak ∈ Ak.

We maintain a function π which associates each individual s of an ABox Ak ∈ Ak to an
individual in ∆I , i.e. π(s) ∈ ∆I .

After applying a completion rule, we must update π in such a way that π satisfies the
following conditions:

C(s) ∈ Ak implies π(s) ∈ CI or π(b(s)) ∈ CI (4.7)

R(s, t) ∈ Ak implies 〈π(s), π(t)〉 ∈ RI or 〈π(s), π(b(t))〉 ∈ RI (4.8)
s 6≈ t ∈ Ak implies π(s) 6= π(t) (4.9)
s ≈ t ∈ Ak implies π(s) = π(t) (4.10)

According to Proposition 1, Algorithm 1 always terminates at some An. Thanks to the
function π with Conditions (4.7-4.10) which helps to choose a “good" ABox Ak among several
ABoxes Ak at each step k ≤ n, we will show that there is an ABox An ∈ An which is mapped
to ∆I by π such that 〈An, T ,LK〉 is clash-free.

Assume that there exists such a function π. We show that An is complete and clash-free.
When Algorithm 1 terminates, An must be complete. Assume that A(s),¬A(s) ∈ An. By
Condition (4.7), we have π(s) ∈ AI and π(s) ∈ (¬A)I . It is not possible since I is a model. If

48

x 6≈ x ∈ An then π(x) 6= π(x) due to Condition (4.9), which is a contradiction. Assume that
x 6≈ y ∈ An with x ∈ y+. This implies that π(x) 6= π(y) and there are x ≈ x1, · · · , xn ≈ y ∈
An. From Condition (4.10), we obtain π(x) = π(y) which is a contradiction. Therefore, An is
clash-free.

Now, let us define π. For each s ∈ Iold, there is some sI ∈ ∆I since I is a model of O0. We
define π(s) = sI , and π(s) = π(s′) if s ≈ s′ ∈ A0. Let R(s, t) ∈ A0. We have s, t ∈ Iold, and
thus π(s), π(t) are defined. This implies that 〈π(s), π(t)〉 ∈ RI since I is a model of O0. For
individual assertions, it holds that s 6≈ t ∈ A0 implies π(s) 6= π(t) since I is a model of O0,
and s ≈ t ∈ A0 implies π(s) = π(t) by the definition of π. Let C(s) ∈ A0. We have s ∈ Iold,
and thus π(s) is defined. This implies that π(s) ∈ CI since I is a model of C. Therefore,
Conditions (4.7-4.9) are verified for A0.

In the sequel, we consider each possible transformation performed by a completion rule
on Ak. Assume that there is an ABox Ak ∈ Ak such that π(s) ∈ ∆I for each individual s
occurring in Ak, and π satisfies Conditions (4.7-4.10).

• The→u rule is applied to (C1uC2)(s) ∈ Ak. Thus, C1(s), C2(s) ∈ Ak+1. By Condition
(4.7) and π(s) ∈ ∆I , we have π(s) ∈ (C1 u C2)I . We obtain π(s) ∈ CI

1 and π(s) ∈ CI
2

since π(s) ∈ (C1 u C2)I = CI
1 ∩ CI

2 . Therefore, Condition (4.7) is preserved.

• The →∃ rule is applied to ∃R.C(s) ∈ Ak where s is not blocked. Thus, the rule adds
an individual t and C(t), R(s, t) to Ak. Thus, C(t), R(s, t) ∈ Ak+1. By Condition (4.7)
and π(s) ∈ ∆I , we have π(s) ∈ (∃R.C)I . Since I is a model of (∃R.C), there is some
t′ ∈ ∆I such that 〈π(s), t′〉 ∈ RI and t′ ∈ CI . If t is not blocked, we define π(t) = t′.
Thus, Condition (4.7) and (4.8) are preserved. If t is blocked by b(t), we define π(t) =
π(b(t)). From Condition (4.8), we obtain 〈π(s), π(t)〉 ∈ RI . Moreover, L(t) ⊆ L(b(t))
implies C(b(t)) ∈ Ak+1. From Condition (4.7), it follows π(b(t)) = π(t) ∈ CI . Hence,
Conditions (4.7) and (4.8) are preserved.

• The →∀ rule is applied to ∀R.C(s) ∈ Ak. If s is blocked then ∀R.C(b(s)) ∈ Ak and
π(s) = π(b(s)). Hence, it suffices to consider s that is not blocked. By Condition (4.7)
and π(s) ∈ ∆I , we have π(s) ∈ (∀R.C)I . Assume that there is an individual t in Ak such
that R(s, t) ∈ Ak. In this case, the rule adds C(t) to Ak. Thus, C(t) ∈ Ak+1. Assume
that t is not blocked, by Condition (4.8) and π(s) ∈ ∆I , we have 〈π(s), π(t)〉 ∈ RI .
Since I is a model of ∀R.C, we obtain π(t) ∈ CI . Thus, Condition (4.7) is preserved.
Assume that t is blocked by b(t). We define π(t) = π(b(t)). We have L(t) ⊆ L(b(t)),
and thus, C(b(t)) ∈ Ak+1. From Condition (4.7), it follows π(b(t)) = π(t) ∈ CI .
Hence, Condition (4.7) is preserved.

• The→LK rule is applied to individuals x, y, zi withC(x), D(y) ∈ Ak, Pi(x, zi), Qi(y, zi) ∈
Ak for 1 ≤ i ≤ m. According to Lemma 4, we have x, y, zi ∈ Iold for 1 ≤ i ≤ n. Thus
they are not blocked. By Condition (4.7) and (4.8), we have π(x) ∈ CI , π(y) ∈ DI ,
〈π(x), π(zi)〉 ∈ P I

i and 〈π(y), π(zi)〉 ∈ QI
i for 1 ≤ i ≤ n.

The →LK rule adds x ≈ y to Ak. We obtain (x ≈ y) ∈ Ak+1. Since I is a model of
O0, I must satisfy the link key. Hence, xI = yI , and thus π(x) = π(y). Therefore,
Condition (4.10) is preserved.

• The →≈ rule is applied when (x ≈ y) ∈ Ak. It makes L(x) = L(y) and L(x, y) =
L(e(x), e(y)). This rule does not change individuals, Condition (4.9) and Condition

49

(4.10) are preserved. If it adds C(x) to Ak when C(y) ∈ Ak (or vice versa) then Con-
dition (4.7) is preserved since π(x) = π(y) and π(y) ∈ CI imply π(x) ∈ CI . If it adds
R(x, z) (resp. R(z, x)) to Ak when R(y, z) ∈ Ak (resp. R(z, y)) then Condition (4.8)
is preserved since π(x) = π(y) and 〈π(y), π(z)〉 ∈ RI (resp. 〈π(z), π(y)〉 ∈ RI) imply
〈π(x), π(z)〉 ∈ RI (resp. 〈π(z), π(x)〉 ∈ RI).

• The→t rule is applied to (C1 t C2)(s) ∈ Ak. It transforms Ak to Ak+1 with C1(s) ∈
Ak+1, and adds a new ABox A′k+1 with C2(s) ∈ A′k+1. By Condition (4.7) and π(s) ∈
∆I , we have π(s) ∈ (C1 t C2)I , and thus, either π(s) ∈ CI

1 or π(s) ∈ CI
2 . Assume that

π(s) ∈ CI
1 . In this case, we choose Ak+1 including s with π(s) ∈ CI

1 . This implies that
Condition (4.7) is preserved in Ak+1. Assume that π(s) ∈ CI

2 . In this case, we choose
A′k+1 including C2(s).This implies that Condition (4.7) is preserved in A′k+1.

• The→choose rule is applied to (∼C t D)(s) ∈ Ak with C v D ∈ T . In the same way,
we can choose an ABox among Ak+1 and A′k+1 such that Condition (4.7) is preserved.

• the→chooseLK1 rule is applied to individuals x, y, zi with y < x, C(x) ∈ Ak, D(y) ∈ Ak,
Pi(x, zi), Qi(y, zi) ∈ Ak for 1 ≤ i ≤ m. This rule transforms Ak to Ak+1 with C(x) ∈
Ak+1, and adds a new ABox A′k+1 with ∼C(x) ∈ A′k+1.Since I is a model, we have
either π(x) ∈ CI or π(x) ∈ ∼CI . Assume that π(x) ∈ CI . In this case, we choose
Ak+1 including x with π(x) ∈ CI . This implies that Condition (4.7) is preserved in
Ak+1. Assume that π(x) ∈ (∼C)I . In this case, we choose A′k+1 including ∼C(x).This
implies that Condition (4.7) is preserved in A′k+1.

• the→chooseLK2 rule. Analogously.

This completes the proof of preservation of Conditions 4.7-4.10 for each application of a com-
pletion rule.

4.6.5 Complexity
Proposition 4 (Complexity). Let O0 = 〈A0, T ,LK〉 be an ALC+LK ontology. Algorithm 1
runs in doubly exponential time in the size of O0.

Proof. According to the proof of Proposition 1, Algorithm 1 generates a collection Ak of
ABoxes such that |Ak| ≤ O(22`) and |A| ≤ O(2`) for all A ∈ Ak where ` = ||〈A0, T ,LK〉||.
Since Algorithm 1 never removes anything from an intermediate ABox, the complexity is
bounded by O(22`). Therefore, it runs in deterministic doubly exponential time in the worst
case (2EXPTIME).

It is known that ALC with general concept axioms is EXPTIME-complete [56]. This re-
sult provides a lower bound of the reasoning problem in ALC+LK. The doubly exponential
complexity of Algorithm 1 is caused by the interaction between the nondeterministic behavior,
i.e. a new ABox is duplicated by non deterministic rules such as the →t rule, and exponen-
tial generation of new individuals by the →∃ rule. Moreover, we know from Lemma 4 that
the completion rules related to the application of link keys are applied only to old individuals
Iold whose cardinality is polynomial in the size of the ontology. This means that link keys are
not responsible of the doubly exponential complexity resulting from Algorithm 1. An open
question is whether EXPTIME is the tight lower bound of consistency checking in ALC+LK.

50

The following theorem is a consequence of all propositions established until now.

Theorem 5. ALC+LK consistency can be decided in doubly exponential time in the size of
ontologies.

4.7 Conclusion
In this chapter, we proposed a tableau-based algorithm for reasoning in the description logic
ALC+LK, an extension of ALC with link keys and individual equalities. This algorithm uses
anywhere blocking to guarantee its termination. We have provided the proofs of its soundness,
completeness, and termination. Reasoning in ALC+LK is more challenging than ALC. It
requires the introduction of new completion rules: the→chooseLK1,→chooseLK2, and→LK to deal
with link keys, and the→≈ rule to handle equality. Also, the canonical interpretation used for
proving the soundness of the standard ALC algorithm cannot be directly used for ALC+LK.
We have introduced the unravelled interpretation to prove it.

This algorithm has 2EXPTIME complexity. However, reasoning in the description logic
ALC with general TBoxes is EXPTIME-complete and there exist EXPTIME tableau algorithms
for reasoning in ALC [49]. The completion rules added for dealing with link keys→chooseLK1
,→chooseLK2,→LK , and→≈ do not require any additional computation complexity than those
of ALC. In the light of this, we prove in the next chapter that the complexity of reasoning in
ALC+LK is EXPTIME. This goal is achieved by designing a sound and complete algorithm for
reasoning in the description logic ALC. To achieve the EXPTIME complexity, this algorithm
uses an exponential structure for representing ontology models, this structure is inspired from
compressed tableau algorithm for the description logic SHOIQ [16].

51

Chapter 5

A worst-case optimal EXPTIME algorithm
for reasoning in the description logic ALC
with link keys and individual equalities

5.1 Introduction
In the previous chapter, we have presented a tableau algorithm that decides the consistency of
an ALC+LK ontology. This algorithm has a doubly exponential complexity. The two sources
leading to the doubly exponential complexity, as discussed in the previous chapter, are the
generation of possibly an exponential number of new ABoxes upon the application of the non-
deterministic rule and the expansion of the ABox due to the possible addition of an exponential
number of new individuals upon the application of the existential rule. However, it is known
that the consistency problem in ALC with general TBoxes is in EXPTIME-complete. In addi-
tion, the link key completion rules do not require any additional computation power than that of
ALC. In this chapter, we prove that consistency checking in ALC+LK is EXPTIME, by pro-
viding a sound, complete, and EXPTIME algorithm for reasoning in ALC+LK. This algorithm
is inspired from the compressed tableau algorithm for the description logic SHOIQ [16]. The
compressed tableau algorithm eliminates the source of complexity resulting from the appli-
cation of the non-deterministic rule. This is achieved by reducing the ABox generation into
the generation of a smaller and compact structure called star-type. This allows to reduce the
doubly exponential complexity of the standard tableau into a single exponential complexity.
We call this algorithm a non-directed algorithm because it is not guided by the application of
completion or saturation rules.

The remainder of this chapter is organized as follows. Section 5.2 provides the definitions
required to understand the compressed tableau structure. Section 5.3 presents the non-directed
compressed tableau algorithm for the description logic ALC+LK. In Section 5.4, we pro-
vide several examples and execute the algorithm on them. Section 5.5 gives and proves the
theoretical properties of the algorithm. We provide our concluding remarks in Section 5.6.

52

5.2 A compressed tableau for the description logic ALC+LK
This section introduces an exponential structure, called compressed-tableau, for representing a
model of an ALC+LK ontology. Before digging into the definition of the compressed tableau
and its components we first give the definition of ontology subconcepts. This definition is used
by the algorithm and in the proofs.

Given an ALC+LK ontology O, the set sub(O) includes all sub-concepts occurring in the
axioms or assertions of ontology O. If an axiom or assertion is viewed as a string then each
element in sub(O) can be viewed as a substring. This implies that the cardinality of sub(O) is
bounded by a polynomial function in the size of O.

Definition 12 (Subconcepts of O). Given an ALC+LK ontology O = 〈A, T ,LK〉 with a set
of individuals I, the set of subconcepts of O is denoted by sub(O) and defined as the smallest
set including all concept names such that:

1. if C v D ∈ T then ∼C tD ∈ sub(O);

2. if ({〈P1, Q1〉, . . . , 〈Pn, Qn〉} linkkey 〈C,D〉) ∈ LK then C,D ∈ sub(O);

3. if C(a) ∈ A then C ∈ sub(O);

4. if C ∈ sub(O) then ∼C ∈ sub(O);

5. if C1 t C2 ∈ sub(O) or C1 u C2 ∈ sub(O) then C1, C2 ∈ sub(O);

6. if ∃R.C ∈ sub(O) or ∀R.C ∈ sub(O) then C ∈ sub(O);

7. if a ∈ I then {a} ∈ sub(O)

A compressed tableau consists of a set of layers each of which is composed of star-types.
A star-type represents a set of semantically similar individuals and their neighbours. The intu-
ition behind a star-type σ is to group similar individuals and their neighbours together in one
structure. Similar individuals are either named equal individuals (ex. a ≈ b) or anonymous in-
dividuals satisfying the same set of concepts. Moreover, a star-type needs to store connections
to other star-types which represent others sets of individuals. A star-type is composed of a set
of triples. A triple has three components: a head, a tie, and a tail. Both the head and the tail are
pairs of sets of individuals and concepts.The tie is a set of roles. A triple represent the relation
ship between a pair of sets of individuals.

Definition 13 (Triple). Let O be an ALC+LK ontology. Let I and R be the sets of individuals
and roles in O. An triple ρ = 〈〈X,U〉, P, 〈Y, V 〉〉 where 〈X,U〉 and 〈Y, V 〉 are pairs such that
X, Y ⊆ I, U, V ⊆ sub(O) and P ⊆ R. We will use TR to denote the set of all triples. Given
a triple ρ = 〈〈X,U〉, P, 〈Y, V 〉〉, the sets 〈X,U〉, P and 〈Y, V 〉 are referred to as the head, the
tie and the tail of ρ, and they will be denoted by head(ρ), tie(ρ) and tail(ρ). We also denote
headI(ρ) = X , headC(ρ) = U , tailI(ρ) = Y and tailC(ρ) = V . Finally, a cyclic triple is a triple
ρ such that head(ρ) = tail(ρ).

The following example gives an ontology O and a triple τ built from it.

Example 8 (Triple). Let O = 〈A, T ,LK〉 be an ALC+LK ontology where:

53

1. A = {A(a), B(b), R(a, b), S(a, b)},

2. T = ∅,

3. LK = ∅.
Figure 5.1 depicts the triple τ =

〈
〈{a}, {A}〉, {R, S}, 〈{b}, {B}〉

〉
built from O, where headI(τ) =

{a}, headC(τ) = {A}, tie(τ) = {R, S}, tailI(τ) = {b} and tailC(τ) = ∅.

a
A

b
B

R,S

Figure 5.1 – Graphical representation of the triple τ .

A triple τ is called dummy if tie(τ) = ∅, tail(τ) = ∅, and non dummy otherwise.
A star-type is a set of triples having the same head.

Definition 14 (Star-type). Let O be an ALC+LK ontology. A subset σ ⊆ TR is said to be
a star-type if for all ρ, ρ′ ∈ σ, head(ρ) = head(ρ′). We will denote the set of all star-types by
Σ(O). Given σ ∈ Σ(O), the core of σ, denoted by core(σ), is the head of any triple in σ. If
core(σ) = 〈X,U〉, we will denote coreI(σ) = X and coreC(σ) = U . A star-type σ ∈ Σ(O) is
said to be nominal if coreI(σ) 6= ∅.
Example 9. Figure 5.2 depicts a star-type σ made up of 3 triples:

1. ρ1 = 〈〈{a}, {∃S.A,∀S.D}〉, {R}, 〈{b}, {C,E}〉〉,

2. ρ2 = 〈〈{a}, {∃S.A,∀S.D}〉, {R}, 〈{c}, {C,F}〉〉, and

3. ρ3 = 〈〈{a}, {∃S.A,∀S.D}〉, {S}, 〈{t}, {D,A}〉〉.
core(σ) = 〈{a}, {∃S.A,∀S.D}〉 and σ is nominal because coreI(σ) = {a} 6= ∅.

D,A

t

∃ S.A, ∀ S.D

a

C,E

b

C,F

c

R R

S

Figure 5.2 – A star-type made up of 3 triples.

54

Notice that we would need a very specific star-type that has just one dummy triple. Such a
star-type is also called dummy (see Figure 5.3a).

A, B

a

(a) A dummy star-type made-up of one dummy
triple.

A, B

a

(b) A simplified representation of the dummy star-
type in Figure 5.3a.

For the sake of simplicity we will represent a dummy star-type by a single node as shown
in Figure 5.3b.

To ensure termination of the algorithm in the presence of GCIs we need to define blocking
(Definition 16). To define blocking, we need to have an order between star-types. We define the
order between star-types in a similar way that defines the order between individuals since star-
types represent a set of equal individuals and their neighbours. For that, we introduce the notion
of a layer (Definition 15). Layers will provide the order between star-types in a compressed
tableau.

Definition 15 (Star-type Layer). Let O be an ALC+LK ontology. Let Λ = 〈Λk〉nk=0 be a
finite sequence of sets of star-types, i.e. Λk ⊆ Σ(O) for 0 ≤ k ≤ n. Then Λk will be referred to
as a star-type layer or simply a layer.

Definition 16 (Blocked star-type). Let O be an ALC+LK ontology. Let Λ = 〈Λk〉nk=0 be a
sequence of layers. Let σ′ ∈ Λi for some 1 < i ≤ n. We say that σ′ is blocked by a star-type
σ ∈ Λk if 0 < k < i and coreC(σ′) ⊆ coreC(σ).

The definition of a valid star-type is given in Definition 17. Conditions 1–5 capture the
semantics of ALC constructors. Condition 6 is needed because ALC+LK allows to express
equality assertions. Conditions 7 and 8 ensure that valid star-types do not contain any con-
tradiction. Condition 9 is required to satisfy the role assertions present in A. Notice that no
condition translates the semantics of link keys. This is because a link key does not apply to
one, but several star-types.

Definition 17 (Valid star-type). Let O = (A, T ,LK) be an ALC+LK ontology. Let σ be a
star-type over O. The star-type σ is valid if the following properties hold:

1. If E v F ∈ T then nnf(¬E tF) ∈ coreC(σ), and nnf(¬E tF) ∈ tailC(ρ) for all ρ ∈ σ.

2. C1 u C2 ∈ coreC(σ) implies {C1, C2} ⊆ coreC(σ), and C1 u C2 ∈ tailC(ρ) implies
{C1, C2} ⊆ tailC(ρ) for all ρ ∈ σ.

3. C1 t C2 ∈ coreC(σ) implies {C1, C2} ∩ coreC(σ) 6= ∅, and C1 t C2 ∈ tailC(ρ) implies
{C1, C2} ∩ tailC(ρ) 6= ∅ for all ρ ∈ σ.

4. If ∃R.D ∈ coreC(σ) then there is a triple ρ ∈ σ such that{D,C∃R.D} ⊆ tailC(ρ) and
R ∈ tie(ρ).

55

5. If ∀R.C ∈ coreC(σ) then for every triple ρ ∈ σ, if R ∈ tie(ρ) then C ∈ tailC(ρ).

6. If a ≈ b ∈ A then {a, b}∩ coreI(σ) 6= ∅ implies {a, b} ⊆ coreI(σ), and {a, b}∩ tailI(ρ) 6=
∅ implies {a, b} ⊆ tailI(ρ) for all ρ ∈ σ

7. If a 6≈ b ∈ A then {a, b} 6⊆ coreI(σ), and {a, b} 6⊆ tailI(ρ) for all ρ ∈ σ.

8. For each concept name A, it holds that {A,∼A} 6⊆ coreC(σ), and {A,∼A} 6⊆ tailC(ρ)
for all ρ ∈ σ.

9. For each R(a, b) ∈ A if a ∈ coreC(σ) then there is exactly one triple ρ ∈ σ such that
b ∈ tailI(ρ) and R ∈ tie(ρ).

10. The number of triples of σ is bounded by |core(σ)|+ |A|.

Notice that Property 10 restricts the number of triples of a star-type such that it should be
polynomial in the size of sub(O) and O. The star-types created by the algorithm must satisfy
this property to ensure that the EXPTIME complexity of the algorithm. To define a compressed
tableau for an ALC ontology, we need to define first the transitive closure of an individual in
I. For each individual s ∈ I, we use s+ to denote the transitive closure of s with respect to
the relation ≈ (appearing in assertions), i.e. s+ is the smallest set such that s ∈ s+, and if
c ≈ b ∈ A or b ≈ c ∈ A with some c ∈ s+ then b ∈ s+.

Example 10. Consider the input ontology O where:

• A = {A(a), B(b), a≈b, C(c), R(a, c), D(d), S(b, d), E(e), T (a, e)},

• T = {A v B},

• LK = ∅.

a
A,∃ Q.F

c
C

d
D

e
E

R S

T

(a) The star-type σ is an invalid star-type built from
O.

a,b
A, B, ∃ Q.F

c
C

d
D

e
E

R S

T

F

Q

(b) A valid star-type σ satisfying the GCI A v B ∈
T , the concept ∃Q.F ∈ coreC(σ) and the equality
assertion a ≈ b ∈ A.

Figure 5.4 – An invalid and a valid star-type built from O.

In the standard tableau each individual has a unique label. In opposite, in the compressed
tableau a star-type, the same set of individuals might occur in different star-types with different
concepts of different neighbours. As a result, the relationship between a pair of individuals in

56

the standard tableau is one to one, however, in the compressed tableau an individual in one star-
type can be related to a set of other star-type containing the same individual. The relationship
between star-types is hence a one to many relationship, and has to be stored using a specific
function, which we call matching function.

Definition 18 (Matching function over a sequence of layers). Let O be an ALC+LK ontology.
Let Λ = 〈Λk〉nk=0 be a finite sequence of layers. A matching function over Λ is a function Ω
that associates a non-empty set of star-types Ω(σ, τ) ⊆ Λ to each pair (σ, τ) of a star-type
σ ∈ Λ and a non dummy triple τ ∈ σ, and satisfies:

1. For every σ ∈ Λ and τ ∈ σ, if σ′ ∈ Ω(σ, τ) then core(σ′) = tail(τ);

2. For every σ ∈ Λ and τ ∈ σ,

(a) if σ ∈ Λ0 then Ω(σ, τ) ⊆ Λ0 ∪ Λ1 ;

(b) if σ ∈ Λk and 0 < k < n then Ω(σ, τ) ⊆ Λk+1;

Definition 19 (Neighbour). A star-type σ ∈ Λi is called a ρ-successor (or successor) of ω via a
triple ρ ∈ ω if σ ∈ Ω(ω, ρ), and ω is called a ρ-predecessor (or predecessor) of σ. In this case,
if R ∈ tie(ρ) then σ is called an R-successor of ω, and ω an R-predecessor of σ. A star-type is
called a neighbor of another one if one is a successor of the other.

We are now ready to give the structure of the compressed tableau for the description logic
ALC.

Definition 20 (Compressed tableau for an ALC ontology). Let O = 〈A, T 〉 be an ALC on-
tology O. Let I be the set of individuals in O. Let Λ be a set of layers and Ω a matching
function over Λ. The pair 〈Λ,Ω〉 is said to be a compressed tableau of 〈A, T 〉 if the following
conditions are satisfied:

1. Every star-type σ ∈ Λi, 0 ≤ i ≤ n, σ is valid.

2. For every σ ∈
n⋃
i=0

Λi, σ is nominal iff σ ∈ Λ0. Moreover, each star-type in the last layer

Λn either is blocked, or dummy.

3. For every a ∈ I, there exists a unique valid nominal star-type σ ∈ Λ0 such that a ∈
coreI(σ). Furthermore, C ∈ coreC(σ) for each C(b) ∈ A with b ∈ a+.

4. For each R(a, b) ∈ A and σ, σ′ ∈ Λ0 such that a ∈ coreI(σ) and b ∈ coreI(σ′), there is a
triple ρ ∈ σ such that R ∈ tie(ρ) and σ′ ∈ Ω(σ, ρ).

After defining the compressed tableau for the description logic ALC, and before defining
the compressed tableau for the description logic ALC+LK, we must give the conditions that
guarantees the satisfaction of link keys.

Definition 21 (Star-types satisfying a link key condition). Let O = 〈A, T ,LK〉 be an ALC + LK
ontology and CT = 〈Λ,Ω〉 be a compressed-tableau of O. Let λ = ({〈Pi, Qi〉}ni=1 linkkey 〈C,D〉)
be a link key in LK.

57

1. We say that two star-types σ, σ′ ∈ Λ0 weakly satisfy the condition of λ if there exist
triples ρ1, . . . , ρn ∈ σ, ρ′1, . . . , ρ

′
n ∈ σ′ such that Pi ∈ tie(ρi), Qi ∈ tie(ρ′i) and ∅ 6=

Ω(σ, ρi) ∩ Ω(σ′, ρ′i) ⊆ Λ0

2. We say that two star-types σ, σ′ ∈ Λ0 satisfy the condition of λ if they weakly satisfy λ,
and C ∈ coreC(σ), D ∈ coreC(σ′). Furthermore, we say that λ is satisfied over Λ0 if
there does not exist any pair of star-types σ, σ′ ∈ Λ0 such that σ, σ′ satisfy λ and σ 6= σ′.

Example 11. Let O be an ALC+LK ontology where λ = ({〈P,Q〉} linkkey 〈A,B〉) is a
link key in O and let σa, σb, σd and σe be a set of star-types built from O. The star-types σa
and σb are matched to the same set of star-types σd and σe respectively through their pair of
triples of properties P and Q (Figure 5.5). These star-types, as a result, satisfy the condition of
({〈P,Q〉} linkkey 〈A,B〉). In the figures that follows, we use the rectangles to represent the
equalities between the tail of triples of some star-types and the core of others. This equality
besides the other conditions affirms the matching between the involved star-types.

σa σbσd σe

a
A

d
D

d
D

P

P

e
E

e
E

b
B

e
E

d
D

Q

Q

Figure 5.5 – The star-types σa and σb satisfy the condition of λ through the star-types σd and
σe.

A compressed tableau for an ALC+LK ontology O = (A, T ,LK) is a compressed tableau
for ALC such that every link key in LK is satisfied. We also add a condition that is necessary
to ensure completeness of the algorithm (Item 3 of Definition 22).

Definition 22 (Compressed tableau for the description logic ALC+LK). Let O = 〈A, T ,LK〉
be an ALC ontology. A compressed tableau for O is a pair CT = 〈Λ,Ω〉with Λ = 〈Λ0, · · · ,Λn〉
such that:

1. CT is a compressed tableau of 〈A, T 〉;

2. Each link key λ = ({〈Pi, Qi〉}ni=1 linkkey 〈C,D〉) ∈ LK is satisfied over Λ0;

3. If there are star-types σ and σ′ that weakly satisfy the condition of a link key λ =
({〈Pi, Qi〉}ni=1 linkkey 〈C,D〉) ∈ LK, then {C,∼C} ∩ coreC(σ) 6= ∅ and {D,∼D} ∩
coreC(σ′) 6= ∅.

58

5.3 A non-directed algorithm for the description logic ALC+LK
This section introduces a non-directed algorithm for checking the consistency of an ALC+LK
ontology. The algorithm operates on a compressed tableau of exponential size. There are
two main features in our algorithm which allow us to obtain an exponential complexity. The
first one consists in compressing similar individuals, i.e. those individuals which satisfy the
same set of concepts and have the same connections to other individuals, into a star-type. The
second one is related to handling non-determinism caused by disjunctions. When dealing with
a disjunction of the form C1 t C2, instead of duplicating the whole current structure which
aims to represent a model, our algorithm generates just a new star-type to be chosen if needed.
This behaviour allows to reduce global non-determinism to local non-determinism. If the input
ontology is consistent, the algorithm builds a compressed tableau that represents a model for
the input ontology.

Figures 5.6 and 5.7 show the difference between handling non-determinism in the standard
tableau algorithms and the compressed tableau ones. Given an individual c of label ∃R.(C1 t
C2) and a successor g of label C1 t C2. A standard tableau algorithm, upon the application
of →t-rule to the individual g, creates two duplicates of the whole completion tree under
construction (Figure 5.6). The label of g in the completion tree in the left-hand completion tree
is C1 t C2, C1 while in the right-hand side C1 t C2, C2.

In Figure 5.6, for the sake of simplifying the figure, we omit the labels of the individuals
not concerned with the non-determinism. In Figure 5.7, we do not represent the individuals
a, . . . , g since they are new individuals thus they correspond to non-nominal star-types.

a, ∃ R. (∃ R.(C1 t C2))

R

cb ,∃ R.(C1 t C2)
R

C1 t C2d fe g,

ww�→t-rule

a, ∃ R. (∃ R.(C1 t C2))

R

b c,∃ R.(C1 t C2)
R

C1 t C2, C2d e f g,

a, ∃ R. (∃ R.(C1 t C2))

R

b c,∃ R.(C1 t C2)
R

C1 t C2, C1d e f g,

Figure 5.6 – A pair of ABoxes generated upon the application of non-deterministic rule in the
standard tableau algorithms.

59

While a compressed tableau algorithm duplicates only the part of the tableau concerned
with the non-determinism (Figure 5.7). In Figure 5.7, the star-type σa is matched through its
triple of tie R to σc1 and σc2.

σa

∃ R. (∃ R.(C1 t C2))

σc1 σc2
∃ R.(C1 t C2)

∃ R.(C1 t C2) ∃ R.(C1 t C2)

C1 t C2,C1 C1 t C2,C2

Λ1

R R

R

Λ0

Figure 5.7 – A pair of star-types generated upon the application of non-deterministic rule in the
compressed tableau algorithm.

We now present an algorithm for checking consistency of an ALC+LK ontology. Given
an ALC+LK input ontology O, Algorithm 3 attempts to build a compressed tableau for O.

First, it builds the sets ΣN(O) and ΣC(O), the sets of all valid nominal and non nominal
star-types from O, respectively. Then it chooses a set of nominal valid star-types as a candidate
for Λ0. Then it checks that for each individual there is a unique star-type in Λ0 which contains
that individual, it connects star-types in Λ0 by Ω, and it checks the satisfaction of each link key
in LK.

The algorithm continues to build a layer Λi, 1 ≤ i ≤ n by adding all star-types from ΣC(O)
that are matched to Λi−1 via Ω. Finally, Algorithm 3 calls Algorithm 2 to remove all the non
blocked star-types which have no connection via one of its triples.

Algorithm 2 ensures that for each individual there is still a unique star-type in Λ0 which
contains that individual. If a valid star-type σ has a triple ρ but Ω(σ, ρ) is empty, then σ cannot
belong to a compressed tableau, and it should be removed by Algorithm 2. This process can be
performed in cascade since the removal of such a star-type σ may make Ω(σ′, ρ′) empty with
σ ∈ Ω(σ′, ρ′).

60

Algorithm 2: Algorithm for pruning compressed tableau
Input : CT = 〈Λ0, · · · ,Λn〉 with Ω over CT and a set of individuals I
Output: true/false

1 while there is a non-blocked star-type σ ∈ Λi and ρ ∈ σ with 1 ≤ i ≤ n such that
Ω(σ, ρ) = ∅ do

2 if there is a σ′ ∈ Λi−1 and ρ′ ∈ σ′ with i > 0 such that σ ∈ Ω(σ′, ρ′) then
3 Remove σ from Ω(σ′, ρ′) and Λi

4 end
5 end
6 if for each a ∈ I there is some σ ∈ Λ0 such that a ∈ coreI(σ) then
7 return true;
8 end
9 return false;

Algorithm 3: Compressed algorithm for ALC+LK ontology consistency checking
Input : O = 〈A, T ,LK〉 an ALC+LK ontology with a set of individuals I
Output: YES/NO

1 Build a set ΣN(O) of all valid nominal star-types;
2 Build a set ΣC(O) of all valid non nominal star-types;
3 foreach Λ0 ⊆ ΣN(O) such that for each a ∈ I there is exactly one star-type σ ∈ Λ0

with a ∈ coreI(σ) do
4 if for each σ ∈ Λ0 and ρ ∈ σ with a ∈ tailI(ρ), there is some σ′ ∈ Λ0 such that

core(σ′) = tail(ρ) then
5 Add σ′ to Ω(σ, ρ);
6 if each link key λ in LK is satisfied over Λ0, and for each σ ∈ Λ0 it holds

{C,∼C} ∩ coreC(σ) 6= ∅ if C occurs in λ then
7 CT ← ∅, add Λ0 to CT , and i← 0;
8 while Λi contains a non blocked star-type which has at least one triple do
9 foreach non blocked star-type σ ∈ Λ′ and triple ρ ∈ σ do

10 Add to Ω(σ, ρ) and Λi+1 all star-type σ′ ∈ ΣC(O) such that
core(σ′) = tail(ρ);

11 end
12 Add Λi+1 to CT , and i← i+ 1;
13 end
14 if pruning(CT , I) then
15 return YES;
16 end
17 end
18 end
19 end
20 return NO;

61

5.4 Examples
This section provides an example of an ALC+LK ontology shows the execution of Algorithm 3
on it.

Example 12. Let O = 〈A, T ,LK〉 be an ALC+LK ontology where:

1. A = {C(a), D(b), B(g),M(b, g), P (a, v), Q(b, v), (∃W.(∃P.> u ∃S.∃P.>))(v)}

2. T = {B v (∃P.> u ∃S.∃P.>) t ∃R.(E uD), D v ¬E}

3. LK = ({〈P,Q〉} linkkey 〈C,D〉)

We now show the execution of Algorithm 3 on O:

1. First, the algorithm builds the set of all valid star-types from the subconcepts of O
(sub(O)). Sub(O) includes, according to Definition 12, the following concepts {{a}, {g}, {b}, {v},
C,D,B,E,¬E, (∃P.>u∃S.∃P.>)t∃R.(EuD),EuD, ∃R.(EuD), ∃P.>u∃S.∃P.>,
∃P.>, ∃S.∃P.>, ∃W.(∃P.>u∃S.∃P.>),C∃R.(EuD),C∃P.>,C∃S.∃P.>,C∃W.(∃P.>u∃S.∃P.>)}.

2. Second, it builds the set of all triples TR by first taking any pair of subsets L1, L2 ⊆
sub(O), where each label L1 and L2 contains a set of individuals and a set of concepts.

We refer by Lx and L′x the alternative core labels of the star-type containing the set of
individuals x, by Lxi and L′xi the alternative labels of the ith successor of the star-type of
individuals x.

La = 〈{a}, {C}〉, Lb = 〈{b}, {D,¬E}〉,
Lg = 〈{g}, {B, (∃P.>u∃S.∃P.>)t∃R.(EuD),∃P.>u∃S.∃P.>,∃P.>,∃S.∃P.>}〉,
L′g = 〈{g}, {B, (∃P.> u ∃S.∃P.>) t ∃R.(E uD),∃R.(E uD)}〉,
Lv = 〈{v}, {∃W.(∃P.> u ∃S.∃P.>)}〉, Lab = 〈{a, b}, {C,D,¬E}〉,
Lg1 = 〈∅, {C∃P.>}〉, L′g1 = 〈∅, {E,D,¬E}〉,
Lg2 = 〈∅, {∃P.>, C∃S.∃P.>}〉,
Lv1 = 〈∅, {∃P.> u ∃S.∃P.>, C∃W.(∃P.>u∃S.∃P.>)}〉, . . .
Then it takes a subset r ⊆ R to form a triple ρ with head(ρ) = L1, tie(ρ) = r, and
tail(ρ) = L2, and adds ρ to TR. For example, it can build:

• ρ1 = 〈La, {P}, Lv〉
• ρ2 = 〈Lb, {Q}, Lv〉, ρ3 = 〈Lb, {M}, Lg〉
• ρ4 = 〈Lab, {P,Q}, Lv〉, ρ5 = 〈Lab, {M}, Lg〉
• ρ6 = 〈Lg, {P}, Lg1〉, ρ7 = 〈Lg, {S}, Lg2〉
• ρ8 = 〈L′g, {R}, L′g1〉
• ρ9 = 〈Lv, {W}, Lv1〉
• ρ10 = 〈Lg2, {P}, Lg1〉,
• ρ11 = 〈Lv1, {S}, Lg2〉, ρ12 = 〈Lv1, {P}, Lg1〉,
• ρ13 = 〈Lg1, ∅, ∅〉,
• ρ14 = 〈Lg2, ∅, ∅〉

3. From these triples, the algorithm can build the following valid star-types: σ1 = {ρ1},
σ2 = {ρ2, ρ3}, σ3 = {ρ6, ρ7}, σ4 = {ρ9}, σ5 = {ρ11, ρ12}, σ6 = {ρ10}, σ7 = {ρ13}, σ8 =
{ρ14}, σ9 = {ρ4, ρ5}. Notice that the disjunction (∃P.>u∃S.∃P.>)t∃R.(EuD) leads
to building a non-valid star-type σ = {ρ8} whose tail contains the clash {E,¬E}.

62

4. Then, the algorithm chooses Λ0 = {σ1, σ2, σ3, σ4} as shown in Figure 5.8. Then it
connects the star-types according to definition of the matching function Ω (Definition 28).
For that we have Ω(σ2, ρ3) = σ3 as core(σ3) = tail(ρ3), this match is presented by a
double edged node. In addition, Ω(σ1, ρ1) ∩ Ω(σ2, ρ2) = {σ4} as tail(ρ1) = tail(ρ2) =
core(σ4), this match is presented by a triple edged node.

5. But this Λ0 does not satisfy the link key ({〈P,Q〉} linkkey 〈C,D〉) in LK because σ1
and σ2 ∈ Λ0 they satisfy the link key condition as C ∈ coreC(σ1) and D ∈ coreC(σ2),
P ∈ tie(ρ1), Q ∈ tie(ρ2), and Ω(σ1, ρ1) ∩ Ω(σ2, ρ2) = {σ4} ⊆ Λ0 however, σ1 6= σ2.
Satisfying the link key ({〈P,Q〉} linkkey 〈C,D〉) in Λ0 requires to merge σ1 into σ2 due
to the equality assertion a ≈ b implied by the link key. For that such as choice of Λ0 is
discarded.

a b vvvgg

P
Q

g1 g2 v1

P S WM

Λ0 = {σ1, σ2, σ3, σ4}

Figure 5.8 – Valid star-types that do not satisfy ({〈P,Q〉} linkkey 〈C,D〉).

6. The algorithm now chooses another Λ0 = {σ9, σ3, σ4} as shown in layer Λ0 in Figure 5.9.

7. Then it adds non nominal star-types σ7, σ6 and σ5 to Λ1 since Ω(σ3, ρ6) = {σ7},
Ω(σ3, ρ7) = {σ6} and Ω(σ4, ρ9) = {σ5} as shown in Figure 5.9. The algorithm con-
tinues by adding non nominal star-types σ7 and σ8 to Λ2 since Ω(σ5, ρ12) = {σ7},
Ω(σ6, ρ10) = {σ7} and Ω(σ5, ρ11) = {σ8}. Note that σ7 is a neighbour for both σ5
and σ6. This phenomenon illustrates individual compression in a compressed tableau.
Moreover, we can observe that σ7 located in Λ2 is blocked by σ7 in Λ1, and σ8 in Λ2 is
blocked by σ6 in Λ1 since core(σ8) = core(σ6).

8. Finally, the algorithm calls pruning which returns true as there exists no non blocked star-
type that has no successors and thus for every individual there is still a unique star-type in
Λ0 (we have a, b ∈ coreI(σ9), g ∈ coreI(σ3) and v ∈ coreI(σ4)). The algorithm terminates
and returns YES which means that the input ontology is consistent. (see Figure 5.9)

63

a, b g g

M

P S

v v

W

P,Q

Λ0 = {σ9, σ3, σ4}

v1 v1g1 g2 g2

P P S

Λ1 = {σ7, σ6, σ5}

g2g2g1 g1g1 Λ2 = {σ7, σ8}

Figure 5.9 – A compressed tableau CT = 〈〈Λ0,Λ1,Λ2〉,Ω〉 for O.

5.5 Properties of the algorithm
The goal of this section is to establish this main result of this chapter. We begin by showing
that Algorithm 3 is sound and complete. Then we analyze complexity of Algorithm 3. This
results in termination of the algorithm. This shows that the algorithm is a decision procedure
for the consistency problem in ALC+LK.

5.5.1 Soundness
The goal of this subsection is to show that every compressed tableau represents a model of an
ontology in ALC+LK.

Lemma 5 (Soundness). If Algorithm 3 returns YES from an ALC+LK ontology O with a set
of individuals I, then O is consistent.

Proof sketch.
Assume that Algorithm 3 returns YES. Since Algorithm 3 returns YES then due to Line 14,

Algorithm 3 builds successfully a structure CT =〈Λ,Ω〉 with Λ = 〈Λ0, . . . ,Λn〉. To show that
O is consistent we first show that CT is a compressed tableau. Then we define an interpretation
I from CT and show that I is a model of the input ontology O.

To show that CT is a compressed tableau we have to show that it satisfies Items 1, 2 and
3 of Definition 22. Indeed, each star-type in CT is valid due to Line 1 of Algorithm 3. In
addition, it holds that (i) for each individual a ∈ I there exists a unique star-type σa ∈ Λ0
such that a ∈ coreI(σa) due to Line 3 in Algorithm 3, and Line 6 in Algorithm 2, (ii) Ω is
well defined over Λ0 due to Line 4, and the layers are correctly connected by Ω such that Λn

contains only blocked star-types. Therefore, CT satisfies Item 1 in Definition 22. Moreover,
due to Line 6 in Algorithm 3 each link key λ in LK is satisfied over Λ0, and if C occurs in λ
then {C,∼C}∩ coreC(σa) 6= ∅ for all star-type σa ∈ Λ0, and thus CT satisfies Items 2 and 3 in

64

Definition 22. To show that O is consistent, we define from CT an interpretation I = 〈∆I , ·I〉
by unravelling CT and show that I is a model of O. Such an interpretation associates “paths”
to star-types contained in the layers 〈Λ0, ...,Λn〉. Such a path is a sequence of star-types in CT .
For instance, p = 〈σ1, σ2, σ3〉 is such a path. Its last element (σ3) is called its last and we write
last(p) = σ3; its first element (σ1) is called its root. A path containing only one element is
called a root path. More precisely,

1. ∆I is the smallest set of paths built as follows:

(a) ∆I contains a path pσ = 〈σ〉 for each σ ∈ Λ0. In this case, we define aI = pσ for
each a ∈ coreI(σ)

(b) For each p ∈ ∆I with tail(p) ∈ Λi and each star-type σ′ ∈ Ω(tail(p), ρ) with
σ′ ∈ Λi+1 and ρ ∈ tail(p), if σ′ is not blocked then ∆I contains a path p′ = 〈p, σ′〉,
otherwise, ∆I contains a path p′ = 〈p, b(σ′)〉,

2. For each concept name A, AI = {p ∈ ∆I | A ∈ coreC(tail(p)}. For each role name R,
RI = R1 ∪R2 ∪R3 where

(a) R1 = {〈pσ, pσ′〉 ∈ ∆I ×∆I | σ′ ∈ Ω(tail(pσ), ρ), R ∈ tie(ρ)}
(b) R2 = {〈p, p′〉 ∈ ∆I ×∆I | p′ = 〈p, σ′〉, σ′ ∈ Ω(tail(p), ρ), R ∈ tie(ρ),

σ′ is not blocked}
(c) R3 = {〈p, p′〉 ∈ ∆I ×∆I | p′ = 〈p, b(σ′)〉, σ′ ∈ Ω(tail(p), ρ),

R ∈ tie(ρ), σ′ is blocked}

The following properties are direct consequences of the construction of I : (i) a path p may
be infinite since when it reaches a blocked star-type it can be extended to its blocking star-type
located at some layer Λi, and then extended to a star-type located at Λi+1, and so on; (ii) root
paths can be arbitrarily connected via Ω while non root paths whose tails are located in the
same layer are never connected via Ω; and (iii) a path never has two different prefixes. To show
that I is a model of O, we have to show that I satisfies all assertions, axioms and link keys
in O. Satisfaction of the individual and role assertions can be straightforwardly obtained from
Definitions 20 and 22 and validity of the star-types used to define I. Satisfaction of the concept
assertions and GCIs can be established by proving an intermediate result which says that : for
all p ∈ ∆I if C ∈ coreC(last(p)) then p ∈ CI . Satisfaction of link keys results from the three
properties of I mentioned above. �

Proof. Assume that Algorithm 3 returns YES. Due to Line 14, Algorithm 3 builds successfully
a structure CT = 〈Λ,Ω〉 with Λ = 〈Λ0, ...,Λn〉. First, we show that CT is a compressed
tableau, i.e. it satisfies Items 1, 2 and 3 in Definition 20. Indeed, each star-type in CT is
valid due to Lines 1-2 in Algorithm 3. In addition, it holds that (i) for each individual a ∈ I
there is a unique star-type σa ∈ Λ0 such that a ∈ coreI(σa) due to Line 3 in Algorithm 3, and
Line 6 in Algorithm 2, (ii) Ω is well defined over Λ0 due to Line 4, and the layers are correctly
connected by Ω such that Λn contains only blocked star-types. Therefore, CT satisfies Item 1 in
Definition 20. Moreover, each link key in LK is satisfied over Λ0 due to Line 6 in Algorithm 3,
and thus CT satisfies Item 2 in Definition 20. Finally, since sub(O) contains C and ¬C if
C occurs in a link key in LK, we have C ∈ coreC(σa) or ¬C ∈ coreC(σa) for all star-type
σa ∈ Λ0. Hence, CT satisfies Item 3 in Definition 20.

65

To show that O is consistent, we define from CT an unravelled interpretation I = 〈∆I , ·I〉
and prove that I is a model for O. Such an unravelled interpretation associates paths to star-
types contained in the layers Λ = 〈Λ0, ...,Λn〉 of CT = 〈Λ,Ω〉. These paths are sequences
of star-types in the compressed tableau. For instance, p = 〈σ1, σ2, σ3〉 is such a path. Its last
element (σ3) is called its tail and we write tail(p) = σ3; its first element (σ1) is called its root.
A path containing only one element is called a root path.

Definition 23 (Unravelled interpretation). Let O = 〈A, T ,LK〉 be an ALC+LK ontology. Let
CT = 〈Λ,Ω〉 be a compressed tableau for O with Λ = 〈Λ0, · · · ,Λn〉.

More precisely, I = 〈∆I , ·I〉 of O unravelled from CT is defined as follows:

1. ∆I is the smallest set of paths built as follows:

(a) ∆I contains a path pσ = 〈σ〉 for each σ ∈ Λ0. In this case, we define aI = pσ for
each a ∈ coreI(σ)

(b) For each p ∈ ∆I with tail(p) ∈ Λi and each star-type σ′ ∈ Ω(tail(p), ρ) with
σ′ ∈ Λi+1 and ρ ∈ tail(p), if σ′ is not blocked then ∆I contains a path p′ = 〈p, σ′〉,
otherwise, ∆I contains a path p′ = 〈p, b(σ′)〉,

2. For each concept name A, AI = {p ∈ ∆I | A ∈ coreC(tail(p)}

3. For each role name R, RI = R1 ∪R2 ∪R3 where

(a) R1 = {〈pσ, pσ′〉 ∈ ∆I ×∆I | σ′ ∈ Ω(tail(pσ), ρ), R ∈ tie(ρ)}
(b) R2 = {〈p, p′〉 ∈ ∆I×∆I | p′ = 〈p, σ′〉, σ′ ∈ Ω(tail(p), ρ), R ∈ tie(ρ), σ′ is not blocked}
(c) R3 = {〈p, p′〉 ∈ ∆I×∆I | p′ = 〈p, b(σ′)〉, σ′ ∈ Ω(tail(p), ρ), R ∈ tie(ρ), σ′ is blocked}

To prove that I is a model of O = 〈A, T ,LK〉, we have to prove that I satisfies all
assertions in A, all GCIs in T and all link keys in LK.

We start by proving that I satisfies all assertions in A. Assume that a ≈ b ∈ A. According
to Item 22.1, 20.1 and 17.6 there exists a star-type σ ∈ Λ0 such that a, b ∈ coreI(σ). According
to the definition of I, we have aI = pσ and bI = pσ. Thus aI = bI . Assume that R(a, b) ∈ A,
then by Item 3 in Definition 20 there exist nominal star-types σ, σ′ ∈ Λ0 such that a ∈ coreI(σ)
and b ∈ coreI(σ′). According to Item 17.9 and 20.4, there exists a triple ρ ∈ σ such that
R ∈ tie(ρ) and b ∈ tailI(ρ) and σ′ ∈ Ω(σ, ρ). By the definition of I, we have aI = pσ and
bI = pσ′ , 〈pσ, pσ′〉 ∈ RI , thus 〈aI , bI〉 ∈ RI . Assume a 6≈ b ∈ A. By Item 20.3 there exist
two star-types σ, σ′ ∈ Λ0 such that a ∈ coreI(σ) and b ∈ coreI(σ′). Suppose that aI = bI then
by the definition of I, we have a, b ∈ coreI(σ) but according to item 17.6 this is contradicts
the validity of σ. Then aI 6= bI . Assume E(w) ∈ A. To show wI ∈ EI , we need to show a
stronger claim:

For all p ∈ ∆I , if C ∈ coreC(last(p)) then p ∈ CI (5.1)

E(w) ∈ A then w ∈ I, by Item 20.3 there exists a star-type σ ∈ Λ0 such that E ∈ coreC(σ).
From the definition of the unravelled interpretation, there is some pσ ∈ ∆I such that pσ =
wI , last(pσ) = σ and E ∈ coreC(last(pσ)). So by Claim 5.1 we have wI ∈ EI .
We now show the claim 5.1. Let us proceed by induction on the length of the concept C.

66

1. Assume that C = A with a concept name A and C ∈ coreC(last(p)). We have CI =
AI = {p ∈ ∆I |A ∈ coreC(last(p))} by the definition of I. Hence, as A ∈ coreC(last(p))
so p ∈ AI .

2. Assume that C = C1 u C2 and C ∈ coreC(last(p)). We have C ∈ coreC(last(p)).
Since last(p) is valid then by Item 2 of Definition 17 we get C1 ∈ coreC(last(p)) and
C2 ∈ coreC(last(p)) then by induction hypothesis we get p ∈ CI

1 and p ∈ CI
2 then

p ∈ (C1 u C2)I .

3. Assume that C=C1 t C2 and C ∈ coreC(last(p)). We have C ∈ coreC(last(p)). Since
last(p) is valid then by Item 3 of Definition 17 we get C1 ∈ coreC(last(p)) or C2 ∈
coreC(last(p)) then by induction hypothesis we have p ∈ CI

1 or p ∈ CI
2 then p ∈ (C1 t

C2)I .

4. Assume that C = ∀R.D and C ∈ coreC(last(p)). We have to prove that p ∈ CI .

Let p′ ∈ ∆I such that 〈p, p′〉 ∈ RI . We have to prove that p′ ∈ DI . Since last(p) is valid
then by Item 5 of Definition 14 there exists a triple ρ ∈ last(p) such that R ∈ tie(ρ) and
D ∈ tailC(ρ). From the definition of I we have two cases:

(a) 〈p, p′〉 ∈ RI where last(p′) ∈ Ω(last(p), ρ) and last(p′) is not blocked. We have
D ∈ tail(ρ) and as tail(p′) ∈ Ω(last(p), ρ) we get tail(ρ) = coreC(last(p′)) then
D ∈ coreC(tail(p)), by the induction hypothesis we get p′ ∈ DI .

(b) 〈p, p′〉 ∈ RI where last(p′) is blocked by b(last(p′)). Due to the blocking con-
dition, it follows that coreC(last(p′)) ⊆ coreC(b(last(p′))) we also have tail(ρ) =
coreC(last(p′)) as last(p′) ∈ Ω(last(p), ρ), then D ∈ coreC(b(last(p′))) so by the
induction hypothesis we get p′ ∈ DI .

In both cases, we get that p ∈ CI .

5. Assume that C = ∃R.D and C ∈ coreC(last(p)). According to Item 4 in Definition 17
there is a triple ρ ∈ last(p) such that R ∈ tie(ρ) and D,C∃R.D ∈ tailC(ρ).

According to Algorithm 3 there exists a star-type last(p′) ∈ Ω(last(p), ρ). From the
definition of I we have two cases:

(a) last(p′) is not blocked and we have tailC(ρ)=coreC(last(p′)) as last(p′) ∈ Ω(last(p), ρ)
so D,C∃R.D ∈ tailC(ρ), then D,C∃R.D ∈ coreC(σ′). By induction hypothesis
p′ ∈ DI .

(b) last(p′) is blocked by b(last(p′)) then coreC(last(p′)) ⊆ coreC(b(last(p′))), and
D ∈ coreC(tail(p′)) as tailC(ρ) = coreC(last(p′)) then D ∈ coreC(b(last(p′))) so
by induction hypothesis p′ ∈ DI .

6. Assume that C = ∼D and C ∈ coreC(last(p)). We have to show that p 6∈ DI . If D is
a concept name then, due to validity of last(p), D /∈ coreC(last(p)). By the definition of
DI , we get p /∈ DI . We can proceed similarly by induction on the length of D to show
that p /∈ DI if D is not atomic concept.

67

We now show that I satisfies all GCIs in T . Let C v D and p ∈ CI we have to show that
p ∈ DI . Due to the validity of last(p) we have ∼C ∈ coreC(last(p)) or D ∈ coreC(last(p)). If
∼C ∈ coreC(last(p)) then we get p 6∈ CI ,which contradicts p ∈ CI . ThenD ∈ coreC(last(p)),
and by Claim 5.1, we get p ∈ DI .

We now show that I satisfies each link key in LK. Assume that λ = ({〈Pi, Qi〉}ni=1 linkkey
〈C,D〉) ∈ LK. Let us prove that I satisfies λ. Let p, q, p1, . . . , pn ∈ ∆I such that p ∈ CI ,
q ∈ DI , and (p, pi) ∈ P I

i and (q, pi) ∈ QI
i for 1 ≤ i ≤ n. We have to prove that p = q.

By the definition of I, we have last(p), last(q) ∈ Λ0, and last(pi) ∈ Λ0 for all 1 ≤ i ≤ n.
According to Item 3 of Defintion 22 we have C ∈ coreC(last(p)) or ∼C ∈ coreC(last(p)) and
D ∈ coreC(last(q)) or ∼D ∈ coreC(last(q)). If ∼C ∈ coreC(last(p)) or ∼D ∈ coreC(last(q))
then by Claim 5.1 we get p ∈ ∼CI and q ∈ ∼DI which contradicts p ∈ CI and q ∈ DI so
C ∈ coreC(last(p)) and D ∈ coreC(last(q)) and 〈last(p), last(pi)〉 ∈ PiI , 〈last(q), last(pi)〉 ∈
Qi

I . According to Item 2 in Definition 22, λ is satisfied. We have checked that I verifies
all assertions, axioms and link keys of O. Therefore, I is a model of O. This completes the
proof.

5.5.2 Completeness
In this subsection, we prove that the existence of a model of an ALC+LK ontology O allows
Algorithm 3 to return YES, i.e. it can build a compressed tableau for O.

Lemma 6. If an ALC+LK ontology O with a set of individuals I is consistent, then Algo-
rithm 3 returns YES from O.

Proof sketch. Since O is consistent, there is a model I = 〈∆I , ·I〉 of O. We now show that
Algorithm 3 returns YES, i.e. it finds a non empty structure CT after applying pruning to CT
by Line 14 in Algorithm 3.

1. Algorithm 3 (Lines 1-2) builds all possible valid star-types from O. Then, it puts nominal
and non nominal star-types in ΣN(O) and ΣC(O) respectively. The success of this step
does not depend on the existence of I. Line 3 chooses a subset of nominal valid star-
types Λ0 ⊆ ΣN(O) such that for each a ∈ I there is a unique star-type σ in Λ0 such that
a ∈ coreI(σ). Thanks to the existence of I, this step is always successful. Indeed, since I
is a model of O, there is some aI ∈ ∆I for each a ∈ I from which we builds a star-type
σ(aI) such that :

(a) b ∈ coreI(σ(aI)) iff b ∈ a+, and C ∈ coreC(σ(aI)) iff aI ∈ CI for each C ∈
sub(O).

(b) For each ∃R.C ∈ coreC(σ(aI)), there is an individual t ∈ ∆I such that (s, t) ∈ RI

and t ∈ CI since I is a model. If σ(aI) has already a triple ρ such that R ∈ tie(ρ)
and C ∈ coreC(σ(aI)), then we add C∃R.C to tailC(ρ). Otherwise, it adds to σ(aI)
a triple ρ with head(ρ) = 〈coreI(σ(aI)), coreC(σ(aI))〉, tie(ρ) = {R} ∪ {S ∈ R |
(s, t) ∈ SI}, and tailC(ρ) = {C,C∃R.C}. To complete it, we add to tailC(ρ) all
concept D ∈ sub(O) such that t ∈ DI , and add to tailI(ρ) all individual b ∈ I such
that bI = t.

(c) For each R(a, b) ∈ A, we have (a, b) ∈ RI since I is a model. If σ(aI) has no
triple ρ such that R ∈ tie(ρ) and b ∈ tailI(ρ), then we add to σ(aI) a triple ρ with

68

head(ρ) = 〈coreI(σ(aI)), coreC(σ(aI))〉, tie(ρ) = {R} ∪ {S ∈ R | (aI , bI) ∈ SI}.
To complete it, we add to tailC(ρ) all concept D ∈ sub(O) such that t ∈ DI , and
add to tailI(ρ) all individual b′ ∈ I such that b′I = bI .

(d) We add σ(aI) to Λ0. If there are σ(aI), σ(bI) ∈ Λ0 and ρ ∈ σ(aI) such that a ∈
coreI(σ(aI)) and b ∈ coreI(σ(bI))∩tailI(ρ), then we define Ω(σ(aI), ρ) = {σ(bI)}.

By construction, each σ(aI) is valid. By construction Λ0 satisfies the conditions of
Lines 4 and 6 in Algorithm 3.

2. From a current layer Λi, each star-type σ(s) ∈ Λi with s ∈ ∆I and each triple ρ ∈ σ(s),
Algorithm 3 can always choose all valid star-types from ΣC(O) to put on the next layer
thanks to the existence of an individual t ∈ ∆I such that (s, t) ∈ RI with R ∈ tie(ρ).
By construction, for each star-type σ(s) ∈ Λi and each triple ρ ∈ σ, there is always
some σ(t) ∈ ΣC(O) such that core(σ(t)) = tail(σ(s)). This implies that pruning returns
true when Algorithm 3 reaches a layer Λn which contains either blocked star-types, or
dummy star-types. �

Proof. Since O is consistent, there is a model I = 〈∆I , ·I〉 of O. We show that Algorithm 3
returns a compressed tableau CT = 〈Λ,Ω〉 of O with Λ = 〈Λ0, · · · ,Λn〉.

First, we show that if Algorithm 3 returns a non empty structure CT then it satisfies Items 1,
2 and 3 of Definition 20. Indeed, each star-type in CT is valid due to Lines 1-2 in Algorithm 3.
In addition, for each individual a ∈ I there is a unique star-type σa ∈ Λ0 such that a ∈ coreI(σa)
due to Line 3, Ω is well defined over Λ0 due to Line 4, and each link key in LK is satisfied over
Λ0 due to Line 6. Furthermore, the layers are correctly connected by Ω where Λn contains only
blocked or dummy star-types. We now show that Algorithm 3 returns a non empty structure
CT .

1. Lines 1 and 2 of Algorithm 3 builds two sets of valid star-types ΣN(O) and ΣC(O) as
follows. It picks up from sub(O) two subsets of concepts (recall that an individual a
is considered as a concept {a}), and from R a subset of roles for creating a triple ρ =
〈〈X,U〉, P, 〈Y, V 〉〉 where X, Y contain all individuals, and U, V contain all concepts.
As a result, this task generates the set of all triples, denoted TR. Then, for each subset
L of sub(O) and each concept of the form ∃R.C ∈ L, take a triple ρ from TR such
that head(ρ) = L and R ∈ tie(ρ), and {C,C∃R.C} ⊆ tailC(ρ) and for each role assertion
R(a, b) ∈ A such that a ∈ L, we take a triple ρ from TR such that head(ρ) = L and
R ∈ tie(ρ), and b ∈ tailI(ρ). We obtain a candidate star-type σ for validity. To check
validity of σ, the algorithm checks each property in Definition 17. Then, it puts nominal
and non nominal star-types in ΣN(O) and ΣC(O), respectively.

2. Line 3 chooses a set of valid nominal star-types Λ0 ⊆ ΣN(O) that satisfies the condition
in Lines 4 and 6 in Algorithm 3. We show that such a choice is always possible thanks
to the existence of I. For this purpose, it suffices to show that there exists such a set
Λ0 ⊆ ΣN(O) by building it from I.

Since I is a model of O, there is some aI ∈ ∆I for each a ∈ I. For each aI , we builds a
star-type σ(aI) such that :

(a) b ∈ coreI(σ(aI)) iff b ∈ a+.

69

(b) C ∈ coreC(σ(aI)) iff aI ∈ CI for each C ∈ sub(O).

(c) For each ∃R.C ∈ coreC(σ(aI)), there is an individual t ∈ ∆I such that (s, t) ∈ RI

and t ∈ CI since I is a model. If σ(aI) has already a triple ρ such that R ∈ tie(ρ)
and C ∈ coreC(σ(aI)), then we add C∃R.C to tailC(ρ). Otherwise, it adds to σ(aI)
a triple ρ with head(ρ) = 〈coreI(σ(aI)), coreC(σ(aI))〉, tie(ρ) = {R} ∪ {S ∈ R |
(s, t) ∈ SI}, and tailC(ρ) = {C,C∃R.C}. To complete it, we add to tailC(ρ) all
concept D ∈ sub(O) such that t ∈ DI , and add to tailI(ρ) all individual b ∈ I such
that bI = t.

(d) For each R(a, b) ∈ A, we have (a, b) ∈ RI since I is a model. If σ(aI) has no
triple ρ such that R ∈ tie(ρ) and b ∈ tailI(ρ), then we add to σ(aI) a triple ρ with
head(ρ) = 〈coreI(σ(aI)), coreC(σ(aI))〉, tie(ρ) = {R} ∪ {S ∈ R | (aI , bI) ∈ SI}.
To complete it, we add to tailC(ρ) all concept D ∈ sub(O) such that t ∈ DI , and
add to tailI(ρ) all individual b′ ∈ I such that b′I = bI .

(e) We add σ(aI) to Λ0.

(f) If there are σ(aI), σ(bI) ∈ Λ0 and ρ ∈ σ(aI) such that a ∈ coreI(σ(aI)) and
b ∈ coreI(σ(bI)) ∩ tailI(ρ), then we define Ω(σ(aI), ρ) = {σ(bI)}.

We now show the following properties.

• σ(aI) is valid. We have to check all properties in Definition 17. Properties 1-9
hold due to the construction of σ(aI), the proof of properties 1, 2, 3, 6, 7 and 8
concerns only the cores of star-types. Similarly, this can be shown for the tails of
the triples of the star-types.

(a) Assume that C v D ∈ T and σ(aI) with C ∈ coreC(σ(aI)). We have a ∈
CI then a ∈ DI since I is a model. Then by construction we have D ∈
coreC(σ(aI)).

(b) If C1 u C2 ∈ coreC(σ(aI)). We have a ∈ (C1 u C2)I , I is the model then
a ∈ CI

1 and a ∈ CI
2 . Then by construction we have C1 ∈ coreC(σ(aI)) and

C2 ∈ coreC(σ(aI)).
(c) If C1 t C2 ∈ coreC(σ(aI)). We have a ∈ (C1 t C2)I , I is the model then

a ∈ CI
1 or a ∈ CI

2 . Then by construction we have C1 ∈ coreC(σ(aI)) or
C2 ∈ coreC(σ(aI)).

(d) Suppose that we have a ≈ b ∈ A then b ∈ a+, by construction we have
b ∈ coreI(σ(aI)).

(e) Assume that we have a 6≈ b ∈ A and {a, b} ⊆ coreI(σ(aI)) then we have
b ∈ a+ which is a contradiction. Then by construction a, b 6⊆ coreI(σ(aI)).

(f) Assume that {A,∼A} ⊆ coreC(σ(aI)), then we have a ∈ AI and a ∈ (∼A)I
but I is a model of O, so a ∈ (∼A)I and hence by construction ∼A 6∈
coreC(σ(aI)).

For instance, we check Property 4. Since each concept ∃R.C ∈ coreC(σ(aI)) is
handled once by construction, there is a unique triple ρ added to σ(aI) such that
{C,C∃R.C} ⊆ tailC(ρ). Similarly, we can check Property 9. Hence, σ(aI) is pre-
valid. By construction, σ(aI) is also valid since if any triple is removed from σ(aI)
then σ(aI) will no longer be pre-valid.

70

• σ(aI) ∈ ΣN(O). This holds since σ(aI) is valid, and each concept and role added
to σ(aI) is contained in sub(O) and R.

• Let σ(aI), σ(bI) ∈ Λ0 with ρ ∈ σ(aI) such that b ∈ tailI(ρ). By construction,
b ∈ coreI(σ(bI)), and σ(bI) ∈ Ω(σ(aI), ρ). So Λ0 satisfies Item 1 of Definition 22.

• Λ0 satisfies Item 2, Definition 22. Let λ be a link key. If λ entails some a ≈ b then
we have aI = bI since I is a model of λ. By construction, σ(aI) = σ(bI).

3. For each non blocked star-type σ ∈ Λi with i ≥ 0 and ρ ∈ σ, algorithm 3 can deter-
mine all valid star-types σ′, and add them to Ω(σ, ρ) and Λi+1 as described in lines 8→
13 in algorithm 3. However, the algorithm can due to the non-determinism add a valid
star-type which cannot be matched to another valid star-type and it is non blocked then
Definition 28 will not be satisfied. However, the algorithm can detect by pruning, algo-
rithm 2 such star-types and removes them from the compressed tableau as well as there
predecessors, such removal may lead to remove a nominal star-type by the progressive
manner such removal may violate item 3 in Definition 20, for that the algorithm checks
again that for every individual there is a star-type. By construction, there is some t ∈ ∆I

such that tailC(ρ) = {C | C ∈ sub(O)∧t ∈ CI}. By using the same procedure described
in the previous step, it can build σ(t) such that coreC(σ(t)) = tailC(ρ). If there is some
σ′ ∈ Λi+1 such that σ′ = σ(t) then it adds σ′ to Ω(σ, ρ), otherwise, add σ(t) to Ω(σ, ρ)
and Λi+1. By construction, we have σ(t) ∈ ΣC(O).

4. Algorithm 3 can find some Λn such that each star-type σ ∈ Λn is blocked. Since there
are at most 2|sub(O)| different subsets of sub(O), the algorithm terminates when reaching
a layer Λn with n ≤ 2C1`2 such that each star-type in Λn is blocked or dummy.

5. The obtained layers of star-types 〈Λ0, · · · ,Λn〉 form a compressed tableau for O. We
have to check all conditions in Definitions 20 and 22. All conditions in Definition 20
are straightforward by construction. We show Condition 2 in Definitions 22. Let λ =
{〈Pi, Qi〉}ni=1linkkey〈C,D〉 be a link key. Assume that there are star-types σ, σ′ and
σ1, · · · , σn with ρ1, · · · , ρn ∈ σ and ρ′1, · · · , ρ′n ∈ σ′ such that C ∈ coreC(σ), D ∈
coreC(σ′) Pi ∈ tie(ρi), Qi ∈ tie(ρ′i), and σi ∈ Ω(σ, ρi) ∩ Ω(σ′, ρ′i) for 1 ≤ i ≤ n. We
have shown above that λ is satisfied over Λ0. We show Condition 3 in Definitions 22.
By construction, there are individuals t, t′ ∈ ∆I such that σ = σ(t) and σ′ = σ(t′).
Since I is a model, we have t ∈ CI or t ∈ (¬C)I , and t′ ∈ DI or t′ ∈ (¬D)I . By the
construction of σ and σ′, we have coreC(σ)∩{C,¬C} 6= ∅, and coreC(σ′)∩{D,¬D} 6= ∅.
�

5.5.3 Complexity
This subsection analyzes and provides the complexity of the Algorithm 3 for checking con-
sistency of an ontology in ALC+LK. We begin by formulating and proving a lemma which
provides fundamental elements for analyzing the complexity of the algorithm.

Lemma 7. Let O = 〈A,LK,LK〉 be an ALC+LK ontology. Let CT = 〈Λ,Ω〉 be a compressed-
tableau for O with Λ = 〈Λ0, · · · ,Λn〉. The size of CT is bounded by an exponential function
in the size of O.

71

Proof. We denote ` = ‖O‖. Hence, r = |R| ≤ `.
By construction, sub(O) is the set of all sub-concepts occurring in O and all concepts of

the form C∃R.C added by Item 4 in Definition 17. It holds that if a concept is represented as
string then a sub-concept is represented as a substring. The number of substrings build from
a string of size ` is `(` + 1)/2. Then the number of sub-concepts is bounded by `(` + 1)/2.
In addition, the number of concepts of the form C∃R.C is bounded by the number of existential
restrictions of the form ∃R.C in O, then it is bounded by `, the size of the input ontology. We
get that c = |sub(O)| ≤ `(`+ 1)/2 + ` ≤ C1`

2 where C1 = 2 for all ` ≥ 2.
We now calculate the size of a triple ρ built from O. Since the size of a concept or role is

bounded by `, the size of a triple, composed from two pairs of concepts and individuals built
from O and a set of roles denoted ‖ρ‖, is bounded by (2c`+ r`) ≤ (2C1`

3 + `2) < (2C1 + 1)`3

for all ` ≥ 2. Hence, ‖ρ‖ < C2`
3 with C2 = 2C1 + 1.

We now calculate the size of a star-type σ built from O. According to Definition 20, all star-
types in CT are valid. Due to Property 10, Definition 17, the number of triples of a valid star-
type σ is bounded by |core(σ)|+ |A| ≤ C1`

2 + ` ≤ 2C1`
2 for all ` ≥ 2. It follows that the size

of a valid star-type, denoted by ‖σ‖, is bounded by 2C1`
2‖ρ‖ ≤ C3`

5 with C3 = 2C1(2C1 + 1)
for all ` ≥ 2.

Finally, we calculate the size of the compressed tableau CT . To calculate the size of CT
we have to calculate the number of star-types in each layer Λi, denoted |Λi|, with 0 ≤ i ≤ n,
and the number of layers n. Since each valid star-type has at most 2C1`

2 triples, we obtain
|Λi| ≤ 22C1`2 . Moreover, any star-type in a layer Λk with k = 2C1`2 must be blocked since,
otherwise, there must exist k star-types whose cores are different, which is not possible. This
implies that n ≤ 2C1`2 . Hence, the size of CT is bounded by n|Λi|‖σ‖ ≤ 2C1`222C1`2C3`

5, we
have 2C1`222C1`2C3`

5 ≤ 2C`2 where C is a constant large enough. This completes the proof.

Lemma 8 (Complexity). Let O = 〈A, T ,LK〉 be an ALC+LK ontology with a set of individ-
uals I. Algorithm 3 runs in exponential time in the size of O.

Proof sketch. Algorithm 3 first builds the set of all valid star-types from O. It picks up from
sub(O) two subsets of concepts, and from R a subset of roles for building a triple. According
to Lemma 16 (in the proof), the cardinality of sub(O) and R is polynomial in the size of
O. This implies that |TR| is exponential in the size of O where TR denotes the set of all
triples. Moreover, according to Lemma 16 again, a valid star-type contains at most a polynomial
number of triples from TR. Hence, the algorithm can choose a polynomial number of triples
from TR to form a valid star-type. Thus, the complexity of this step (Lines 1-2) for building
ΣN(O) and ΣC(O), is exponential in the size of O. Then, Line 3 chooses a polynomial set Λ0
of nominal valid star-types from ΣN(O) such that for each individual a ∈ I there is a unique
star-type σa ∈ Λ0 whose core contains a. Thus, there is at most an exponential number of
different choices. The algorithm searches in ΣN(O) for establishing Ω for each nominal star-
type in Λ0, and checks all link key assertions over Λ0. Since the size of ΣN(O) is exponential,
the complexity of this step is also exponential. After this step, the algorithm traverses each
triple of each star-type of each layer Λi and ΣC(O) to build the next layer. According to
Lemma 16, the cardinality of Λi is exponential in the size of O. Hence, the complexity of this
step is exponential in the size of O. Finally, the algorithm calls pruning which traverses each
star-type of each layer Λi and removes each non-blocked star-type without successor from each

72

layer and then checks that for each individual a ∈ I there is a unique star-type in Λ0 whose
core contains a. Hence the overall complexity of the algorithm is exponential. �

Proof. Assume that CT = 〈Λ,Ω〉 is built by the algorithm 3 with Λ = 〈Λ0, · · · ,Λn〉. We
denote ` = ‖O‖. Hence, r = |R| ≤ ` and q = |I| ≤ `. We analyze the complexity of each step
of the algorithm.

1. Complexity of step 1 (lines 1 and 2): construction of ΣN(O) and ΣC(O).

(a) Construction of all subsets of sub(O): sub(O) is the set of all sub-concepts occur-
ring in O. The size of O denoted by |O| is less than `. Let c be the size of sub(O).
It holds that if a concept is represented as string then a sub-concept is represented as
a substring, then c is bounded by `(`+ 1)/2 + `, and approximated by C1`

2, where
C1 is a constant that is large enough. To build the set of all subconcepts we have to
loop over every concept s in sub(O) and add every subconcept of s to sub(O) so
the complexity of this step is C1`

2

(b) Complexity of construction of all triples: each triple is composed of two pairs of
sets of concepts and individuals and a set of roles. Building the set of subsets of
concepts and individuals and the set of all subsets of roles needs respectively 22c and
2r. Building the sets of all triples is then bounded by 22c2r ≤ 22C1`22` ≤ 22C1`2+`.

(c) Construction of all star-types: For each subset L of sub(O) and each concept of the
form ∃R.C ∈ L, take a triple ρ from TR such that head(ρ) = L andR ∈ tie(ρ), and
{C,C∃R.C} ⊆ tailC(ρ) and for each role assertion R(a, b) ∈ A for each individual
a ∈ L take a triple ρ from TR such that head(ρ) = L and R ∈ tie(ρ) and b ∈
tailI(ρ). Since c = sub(O) then complexity of this step is bounded by c × |TR|.
We obtain a candidate star-type σ and we have now to check its validity.

(d) Checking validity of a star-type σ: let Lm be a subset of sub(O), such that Lm ∈
coreC(σ) or Lm ∈ tailC(ρ), for every ρ ∈ σ. We need to check all properties in
Definition 17. For each of the properties 1, 2 and 3 we need to check the core
and the tail of each concept. Each checking task needs at most |Lm|2 + m|Lm|2
operations, where m is the number of triples in σ. Property 4 and 9 is guaranteed
by (c). Checking property 5 concerns only the core of σ needs at most m|Lm|2
operations. For property 6 and property 7 we need at most `q2 + m`q2 operations
each. Checking property 8 needs at most |Lm|2 + m|Lm|2 operations. So this step
executes in 3(|Lm|2 + m|Lm|2) + m|Lm|2 + 2(`q2 + m`q2) + (|Lm|2 + m|Lm|2) =
4|Lm|2 + 5m|Lm|2 + 2`q2 + 2m`q2 we have |Lm| ≤ C`2 and m ≤ ` then the
complexity of this step is 4C2`4 + 5`5C2 + 2`q2 + `2q2.

(e) There are at most 2n2Lm different valid star-types where Lm is the max cardinality of
a set of concepts. Because we have 2Lm different set of concepts from which we can
build 2n star-types, where n is the maximal number of existential restrictions in each
set of concepts plus the maximal number of role assertions in A so n ≤ `. Then we
have at most 2C1`2+` star-types. Then we obtain that |ΣN(O) ∪ ΣC(O)| ≤ 2C1`2+`.

2. Complexity of lines 3→22.

73

(a) Line 3 uses a vector (w1, · · · , wk) to represent a possible choice of Λ0 where each
wi corresponds to a star-type containing an individual ai. So, k ≤ q ≤ `. Moreover,
each wi takes at most 2` different values. Hence, there are at most (2`)` different
vectors (w1, · · · , wk). This implies that line 3 performs at most (2`)` operations.

(b) Lines 4-5 need to traverse each star-type σ in Λ0, each triple ρ in σ, for checking if
there exists a σ′ in Λ0 such that tail(ρ) equals core(σ′). So the complexity of this
step is bounded by |Λ0|2|σ| ≤ `2 × 2C1`

2 ≤ 2C1`
4.

(c) Lines 6-7 need to traverse each link key in LK, each pair of star-types at σ, σ′ ∈ Λ0
and respectively each triple ρ, ρ′ ∈ σ, σ′ and star-type in Ω(σ, ρ) and Ω(σ′, ρ′). So
the complexity of this step is bounded by |LK||Λ0|2|σ|2|Λ0|2 ≤ ``2(2C1`

2)2`2 ≤
4C2

1`
9.

(d) Lines 8→13: For each star-type σ in Λi and for each triple ρ ∈ σ such that the
set of tail individuals of ρ is empty, we have to check if σ can be matched to an
already existing star-type at Λi+1, otherwise we have to choose a new star-type
from ΣC(O) and add it to Λi+1. So the complexity of this step is bounded by
n|Λi|‖σ‖(|Λi+1| + |ΣC(O)|). According to Lemma 16, we have n ≤ 2C1`2 , |Λi| ≤
22C1`2 , ‖σ‖ ≤ C3`

5. In addition, we have obtained from the computing of the
complexity of Line 1 that |ΣC(O)| ≤ 2C1`2+1. Then n|Λi|‖σ‖(|Λi+1|+ |ΣC(O)|) ≤
2C1`222C1`2C3`

5(22C1`2 + 2C1`2+1) ≤ 23C1`2C3`
5 + 23C1`2+1C3`

5 ≤ 2C4`2 with C4 a
constant large enough.

(e) Lines 14→16 (Pruning): For each layer prunning checks first if there exists a non
blocked star-type with no successor, then it removes it from the current layer and
from the successors of its predecessors as well. The complexity of the first step
is bounded by n|Λi|‖σ‖2|Λi+1| ≤ (22C1`2)2 × (C3`

5)2 ≤ 24C1`2 × C2
3`

10. The
complexity of the second step is bounded by |Λi−1||σ| ≤ 22C1`2 × C1`

2.
Pruning checks as well that for every individual in I there is a star-type in Λ0 so the
complexity of this step is bounded by `2.

Then the total complexity of pruning is 24C1`2×C2
3`

10×22C1`2×C1`
2 + `2 ≤ 2C5`2

with C5 a constant large enough.

We have proved that the complexity of each step of the algorithm is bounded by 2Ci`
2 for some

constant Ci. This implies that the complexity of the algorithm is exponential in the size of O.
This completes the proof.

Theorem 6. Consistency of ALC+LK ontology can be decided in EXPTIME.

Proof of Theorem 6
Lemma 5 proved that if Algorithm 3 returns YES from an ontology in ALC+LK then this

ontology is consistent. Conversely, Lemma 6 proved that if an ontology O in ALC+LK is
consistent then Algorithm 3 returns YES. Moreover, Lemma 8 provides the complexity of
Algorithm 3 which also ensures its termination. These results prove that Algorithm 3 is a
decision procedure for the consistency problem in ALC+LK. Moreover, Lemma 8 proved that
the complexity of this algorithm is exponential in the size of an input ontology. This completes
the proof of Theorem 6. �

It is known that ALC is EXPTIME-complete [57, 58]. Therefore, EXPTIME is a lower
bound complexity for ALC+LK.

74

5.6 Conclusion
In this chapter, we presented a non-directed compressed tableau algorithm for deciding the
consistency of an ALC+LK ontology. This algorithm avoids the exponential blow-up of the
standard tableau algorithm given in Chapter 4 that results from the application of the non-
deterministic rule. It has an EXPTIME complexity. We also prove that this algorithm is
sound and complete. As a result, this algorithm proves that reasoning in the description logic
ALC+LK is EXPTIME.

However, the construction of all possible star-types from the input ontology is immense.
Also, the creation of non-nominal star-types must be uniquely done for satisfying the existen-
tial assertions. For these reasons, the proposed algorithm is not practical for implementation.
In the next chapter, we introduce a worst-case optimal tableau for reasoning algorithm for
ALC+LK based on the algorithm presented in this chapter. A tableau algorithm is directed by
the application of completion rules which, in contrast to the non-directed one, avoids unneces-
sary generation of useless star-types.

75

Chapter 6

A worst-case optimal EXPTIME tableau
algorithm for reasoning in the description
logic ALC extended with link keys and
individual equalities

6.1 Introduction
This chapter provides a worst-case optimal tableau algorithm for reasoning in the description
logic ALC+LK. Similar to the non-directed algorithm given in the previous chapter, this al-
gorithm is based on compressed tableau algorithm for the description logic SHOIQ [16] and
runs in EXPTIME. It aims at building a compressed tableau for the input ontology. In contrast
to the non-directed algorithm, it applies a set of completion rules for accomplishing its goal.
The two sources of inefficiency in the previous algorithm is the construction of all possible
star-types from the input ontology and checking their validity. This exhaustive construction of
star-types may not serve for the construction of the compressed tableau. However, the applica-
tion of completion rules reduces the unnecessary construction of star-types. The star-types are
exclusively created for satisfying concept and role assertions in the input ABox or as a result
of rule application.

The remainder of this chapter is organized as follows. Section 6.2 provides the definitions
required to understand the compressed tableau structure. Section 6.3 presents the compressed
tableau algorithm for the description logic ALC+LK. In Section 6.4, we provide an example
of an ALC+LK ontology and we execute the algorithm on it. Section 6.5 gives and proves the
theoretical properties of the algorithm. Section 6.6 provides a preliminary study on extending
the compressed tableau algorithm for ALC+LK to do reasoning in ALCI+LK. We provide
our concluding remarks in Section 6.7.

6.2 A Compressed Tableau for the logic ALC+LK
We use the same definitions of subconcepts, triples, layer, matching function, link key satis-
faction, and compressed tableau given in Section 5.2 of Chapter 5. However, we substitute the
definition of valid star-type by the definitions of saturated and clash-free star-types. A saturated

76

star-type is a star-type where no completion rule is applicable (Definition 24). A clash-free
star-type is a star-type that does not contain any contradiction (Definition 25). We also give the
definition of merging a pair of star-types that results from the application of equality or link
key rule (Definition 26).

Definition 24 (Saturated star-type). Let O = (A, T ,LK) be an ALC+LK ontology. Let
σ ∈ Σ. The star-type σ is saturated if the following hold:

1. if C uD ∈ coreC(σ) then {C,D} ⊆ coreC(σ);

2. if C tD ∈ coreC(σ) then {C,D} ∩ coreC(σ) 6= ∅;

3. if ∀R.C ∈ coreC(σ) then, for every triple τ ∈ σ, if R ∈ tie(τ) then C ∈ tailC(τ);

4. if ∃R.C ∈ coreC(σ) then there exists a triple τ ∈ σ such that C ∈ tailC(τ) and R ∈
tie(τ);

5. if C v D ∈ T then {nnf(C), D} ∩ coreC(σ) 6= ∅.

Example 13. Consider the input ontology O where:

• A = {A(a), B(b), a≈b, C(c), R(a, c), D(d), S(b, d), E(e), T (a, e)},

• T = {A v B},

• LK = ∅.

a
A, ∃ Q.F

c
C

d
D

e
E

R S

T

(a) The star-type σ is not saturated.

a,b
A,B, ∃ Q.F

c
C

d
D

e
E F

R S

T Q

(b) A saturated star-type σ satisfying the GCI A v
B ∈ T , the concept ∃Q.F ∈ coreC(σ) and the
equality assertion a ≈ b ∈ A.

Figure 6.1 – The figure on the right hand side is not saturated star-type while figure on the left
hand side is saturated.

Definition 25 (Clash-free star-type). Let O = (A, T ,LK) be an ALC+LK ontology. Let
σ ∈ Σ. σ is clash-free if the following hold:

1. if A is a concept name in O then {A,∼A} 6⊆ coreC(σ) and, for every triple τ ∈ σ,
{A,∼A} 6⊆ tailC(τ);

77

2. if a 6≈ b ∈ A then {a, b} 6⊆ coreI(σ) and, for every triple τ ∈ σ, {a, b} 6⊆ tailI(τ).

The merging operation as described below allows to merge only nominal triples.

Definition 26 (Merging of star-types). Let O be an ALC+LK ontology and Σ be a set of
star-types over O. For σ1, σ2 ∈ Σ, a set σ1 ⊕ σ2 = {ω1, ω2} resulting from merging σ1 into σ2
is defined as follows:

1. core(ωi) = core(σ1) ∪ core(σ2) for all 1 ≤ i ≤ 2;

2. ρ ∈ ωi iff

(a) either there is some ρ′ ∈ σi with tie(ρ′) = tie(ρ) and tail(ρ′) = tail(ρ);

(b) or there is some ρ′ ∈ σj with tie(ρ′) = tie(ρ), tail(ρ′) = tail(ρ), 1 ≤ i 6= j ≤ 2 such
that there are R(a, b) ∈ A, a ∈ coreI(σj), R ∈ tie(ρ′), b ∈ tailI(ρ′) and there is no
ρ′′ ∈ σi with a ∈ headI(ρ′′), R ∈ tie(ρ′′), b ∈ tailI(ρ′′).

We are now ready to present the compressed tableau algorithm for ALC+LK.

6.3 Compressed Tableau Algorithm
We present a goal-directed algorithm based on compressed tableau for checking consistency of
an ALC+LK ontology. This algorithm uses a set of completion rules to build a structure, called
pre-compressed tableau, for approximating a compressed tableau, i.e. such a pre-compressed
tableau is expanded by applying completion rules until a compressed tableau included in the
pre-compressed tableau is detected. Each completion rule corresponds to a logical constructor
defined for ALC+LK. For the sake of readability, the set of completion rules is presented as
two subsets of rules in Figures 6.2 and 6.3. The first set of rules (Figure 6.2) aims to satisfy
ALC concepts occurring in the core of a star-type while each rule in the second set (Figure 6.3)
concerns a set of star-types involved in a link keys or an equality assertion.

As mentioned previously, the compressed tableau algorithm initialises a pre-compressed
tableau and makes it evolve until a compressed tableau inside the pre-compressed tableau is
detected. The main role of the pre-compressed tableau is to maintain the neighborhood rela-
tionship between star-types when an application of a completion rule leads to add new star-
types. Note that the compressed tableau algorithm is monotonic, i.e. it adds to the current
pre-compressed tableau some new pieces of the structure such as new star-types or extension of
the matching function, and it never removes anything from the pre-compressed tableau. When
adding new star-types to the current pre-compressed tableau, the algorithm performs necessary
changes in such a way that the neighborhood relationship between star-types is re-established
over the new pre-compressed tableau. The following definition characterises a pre-compressed
tableau.

Definition 27 (Pre-compressed tableau). Let O be an ALC+LK ontology with I a set of
individuals. Let Λ = 〈Λk〉nk=0 be a finite sequence of layers. with a matching function over Λ.
A pair 〈Λ,Ω〉 is called a pre-compressed tableau of O if the following conditions are satisfied:

1. For every a ∈ I, there exists a star-type σ ∈ Λ0 such that a ∈ coreI(σ).

78

Rule→u
Condition: If C1 u C2 ∈ coreC(σ) and {C1, C2} 6⊆ coreC(σ) where σ ∈ Λi.
Action 1: create a copy σ′ of σ,
Action 2: coreC(σ′)← coreC(σ) ∪ {C1, C2},
Action 3: call matchCore(σ, σ′, i)

Rule→t
Condition: If C1 t C2 ∈ coreC(σ) and {C1, C2} ∩ coreC(σ) = ∅ where σ ∈ Λi.
Action 1: create two copies σ′ and σ′′ of σ,
Action 2: coreC(σ′)← coreC(σ) ∪ {C1} and coreC(σ′′)← coreC(σ) ∪ {C2}.
Action 3: call matchCore(σ, σ′, i) and matchCore(σ, σ′′, i)

Rule→v
Condition: If T contains C v D and nnf(∼C tD) 6∈ coreC(σ). where σ ∈ Λi

Action 1: create a copy σ′ of σ,
Action 2: coreC(σ′)← coreC(σ) ∪ {nnf(∼C tD)},
Action 3: call matchCore(σ, σ′, i)

Rule→∀
Condition: If ∀R.C ∈ coreC(σ) and there exists a triple ρ ∈ σ such that R ∈ tie(ρ) and
C 6∈ tailC(ρ) where σ ∈ Λi.
Action 1: create a copy σ′ of σ
Action 2: create a copy ρ′ of ρ, add C to tailC(ρ′), and replace ρ in σ′ with ρ′,
Action 3: call matchTriple(σ, ρ, σ′, ρ′, i)

Rule→∃
Condition: If ∃R.C ∈ coreC(σ) and there exists no triple ρ ∈ σ such that R ∈ tie(ρ) and
C ∈ tail(ρ) and σ is not blocked where σ ∈ Λi.
Action 1: create a star-type σ′, a copy of σ,
Action 2: create a triple ρ=〈core(σ), {R}, 〈∅, {C}〉〉, and add ρ to σ′,
Action 3: call matchTriple(σ, null, σ′, ρ, i)

Figure 6.2 – Completion rules applied on a star-type σ.

79

Rule→chLK1

Condition 1: σ1 and σ2 weakly satisfy the condition of ({〈Pk, Qk〉}nk=1 linkkey 〈C,D〉) where
σ1, σ2 ∈ Λ0,
Condition 2: coreC(σ1) ∩ {C,∼C} = ∅.
Action 1: create two copies σ′1 and σ′′1 of σ1,
Action 2: add C to coreC(σ′1) and ∼C to coreC(σ′′1),
Action 3: call matchCore(σ1, σ

′
1, 0) and matchCore(σ1, σ

′′
1 , 0).

Rule→chLK2

Condition 1: σ1 and σ2 weakly satisfy the condition of ({〈Pk, Qk〉}nk=1 linkkey 〈C,D〉) where
σ1, σ2 ∈ Λ0,
Condition 2: coreC(σ2) ∩ {D,∼D} = ∅.
Action 1: create two copies σ′2 and σ′′2 of σ2,
Action 2: add D to coreC(σ′2) and ∼D to coreC(σ′′2),
Action 3: call matchCore(σ1, σ

′
2, 0) and matchCore(σ2, σ

′′
2 , 0).

Rule→LK
Condition 1: σ1 and σ2 satisfy the condition of a link key λ where σ1, σ2 ∈ Λ. Condition 2:
There are no star-types σ0, σ

′
0 ∈ Λ0 such that:

• core(σ1) ⊆ core(σ0), core(σ2) ⊆ core(σ0), and each R-successor of σ1 is an R-successor of
σ0,
• core(σ1) ⊆ core(σ′0), core(σ2) ⊆ core(σ′0), and each R-successor of σ2 is an R-successor of
σ′0.

Action 1: create σ1 ⊕ σ2,
Action 2: call matchMerge(σ1, σ2, σ1 ⊕ σ2).

Rule→≈
Condition 1: A ∩ {a ≈ b : a ∈ coreI(σi) ∧ b ∈ coreI(σj) ∧ 1 ≤ i < j ≤ 2} 6= ∅. Condition 2:
There is no star-types σ0, σ

′
0 ∈ Λ0 such that:

• core(σ1) ⊆ core(σ0), core(σ2) ⊆ core(σ0), and each R-successor of σ1 is an R-successor of
σ0,
• core(σ1) ⊆ core(σ′0), core(σ2) ⊆ core(σ′0), and each R-successor of σ2 is an R-successor of
σ′0.

Action 1: create σ1 ⊕ σ2,
Action 2: call matchMerge(σ1, σ2, σ1 ⊕ σ2).

Figure 6.3 – Link key and equality rules applied to star-types in Λ0.

80

2. For every a ∈ I and every star-type σ ∈ Λ0 such that a ∈ coreI(σ),

(a) if C(a) ∈ A then C ∈ coreC(σ),

(b) if R(a, b) ∈ A then there is a triple τ ∈ σ such that R ∈ tie(τ) and b ∈ tailI(τ).

3. For every R(a, b) ∈ A, there exist σ, σ′ ∈ Λ0 such that a ∈ coreI(σ), b ∈ coreI(σ′), and
σ′ ∈ Ω(σ, τ) where τ ∈ σ, R ∈ tie(τ) and b ∈ tailI(τ).

4. For every σ ∈ Λ,

(a) if σ ∈ Λ0 then σ is nominal,

(b) if σ ∈ Λk and k ≥ 1 then σ is non-nominal and clash-free,

(c) if σ ∈ Λn and n ≥ 1 then σ is either blocked or dummy.

To initialise a pre-compressed tableau 〈Λ,Ω〉, the compressed tableau algorithm calls an-
other algorithm called init. Init (Algorithm 4) builds a set of nominal star-types and adds it
to the first layer Λ0 of Λ, also it connects star-types in Λ0 according to the definition of the
matching function Ω. Then the algorithm calls ALC and LK completion rules in Figures 6.2
and 6.3 which in turn call a set of matching algorithms matchCore (Algorithm 5), matchTriple
(Algorithm 6) and matchMerge (Algorithm 7) until there is a compressed built for the input
ontology detected by check (Algorithm 8). The main role of the matching algorithms is to
check the clash-freeness of a new star-type obtained by applying a completion rule, before
adding it to the pre-compressed tableau and to ensure that the neighbourhood relationship in
the compressed tableau is maintained after its addition. Finally, check (Algorithm 8) algorithm
examines if there is a compressed tableau contained inside the input pre-compressed tableau.
In what follows, we explain each algorithm mentioned above and give its pseudocode.

Init uses a labelling function L that associates to each individual a in the input set of indi-
viduals I a set of concepts L(a) such that C ∈ L(a) for every C(a) ∈ A.

Lemma 9. Let O = 〈A, T ,LK〉 be an ALC + LK ontology. Let I be the set of individuals in
O and L be the labelling function defined over I.

1. Algorithm 4 initializes Λ0 and Ω such that:

(a) for each individual a ∈ I there is a unique star-type σ ∈ Λ0 such that coreI(σ)={a}
and coreC(σ)=L(a).

(b) for each R(a, b) ∈ A there exists a unique triple ρ ∈ σ, σ ∈ Λ0 and a ∈ coreI(σ)
with R ∈ tie(ρ), tailI(ρ) = {b} and tailC(ρ)=L(b).

(c) for each R(a, b) ∈ A if a ∈ coreI(σ) and b ∈ coreI(ω) then ω ∈ Ω(σ, ρ), ρ is a
triple of σ where R ∈ tie(ρ) and b ∈ tailI(ρ).

2. Algorithm 4 runs in polynomial time in the size of O.

Proof. 1. (a) Due to the condition of Line 8, for each a ∈ I there exists a star-type σ such
that a ∈ coreI(σ). σ is exclusively built by Line 4 or Line 12 . Hence, σ is unique.
Then Item 1a of Lemma 9 is proved.

81

Algorithm 4: init algorithm
Input: An ABox A, a set I of individuals and a labelling function L over I.
Output: A set of nominal star-types Λ0 and a matching function Ω over Λ0.

1 Λ0 ← ∅;
2 foreach individual a ∈ I do
3 if there exists no R(a, b) in A then
4 σ ← {〈〈{a}, L(a)〉, ∅, 〈∅, ∅〉〉};
5 end
6 else
7 foreach R(a, b) ∈ A do
8 if there exists a star-type σ ∈ Λ0 such that a ∈ coreI(σ) then
9 σ ← σ ∪ {〈〈{a}, L(a)〉, {R}, 〈{b}, L(b)};

10 end
11 else
12 σ ← {〈〈{a}, L(a)〉, {R}, 〈{b}, L(b)〉〉};
13 end
14 end
15 end
16 end
17 Initialise Ω← ∅;
18 foreach role assertion R(a, b) ∈ A and σ, σ′ ∈ Λ0 do
19 if a ∈ coreI(σ) and b ∈ coreI(σ′) then
20 add σ′ to Ω(σ, ρ) where ρ is the only triple in σ such that R ∈ tie(ρ) and b ∈ tail(ρ);
21 end
22 end
23 return 〈Λ0,Ω〉;

(b) Let σ be a star-type in Λ0 with a ∈ coreI(σ). For each role assertion of the form
R(a, b) ∈ A the algorithm adds only one triple ρ to σ with tie(ρ) = {R} and
tailI(ρ) = 〈{b}, L(b)〉 as shown in Line 10 or Line 12. Item 1b of Lemma 9 is
proved.

(c) LetR(a, b) be a role assertion in A and σ, ω be two star-types such that a ∈ coreI(σ)
and b ∈ coreI(ω), due to Item 1b there exists a triple ρ ∈ σ such that R ∈ tie(ρ) and
b ∈ tailI(ρ). According to Line 21, ω is added to Ω(σ, ρ). Item 1c of Lemma 9 is
proved.

2. We now analyze the complexity of Algorithm 4. Let ` be the size of O, then the size of
A is bounded by `.

(a) Lines 2, 3 and 7 traverses the components of O. Then its complexity is bounded by
`.

(b) Line 8 traverses each star-type σ in Λ0 and each individual in coreI(σ). Since Λ0
contains a unique star-type for each individual in I. Then complexity of Line 8 is
bounded by `2.

(c) Line 18 traverses each role assertion in A and each pair of star-types σ, σ′ ∈ Λ0. It
follows that the complexity of this Line is bounded by `3.

So the complexity Algorithm 4 is bounded by `× (`+ `3) + `3× `2. Hence, Algorithm 4
runs in polynomial time in the size of O.

82

• matchCore is called for adding new star-types generated by rules that change the core of
a star-type and updating the matching function Ω to ensure that the added star-type σ′ has a
neighboor. This can lead to add new star-types. This situation is illustrated in Figure 6.4.
When a rule changes the core of σ (in the left-hand side) and transforms it to σ′ (in the right-
hand side), matchCore should transform a predecessor ω of σ into a predecessor ω′ such that
ω′ is a predecessor of σ′.

Algorithm 5: matchCore algorithm
Input: A pre-compressed tableau 〈Λ,Ω〉 with Λ = 〈Λi〉ni=0 and two star-types σ, σ′ such that

σ ∈ Λi and σ′ is a copy of σ with a modified core.
Output: Λi contains σ′, and the updated 〈Λ,Ω〉 remains a pre-compressed tableau.

1 if σ′ is clash-free then
2 Add σ′ to Λi;
3 foreach ω ∈ Λj and ρ ∈ ω with j=i−1 or j=i=0 such that σ ∈ Ω(ω, ρ) do
4 Create a copy ω′ of ω and a copy ρ′ of ρ;
5 Set tail(ρ′)← core(σ′) and replace ρ by ρ′ in ω′ ;
6 foreach ψ ∈ Λh and ν ∈ ψ with h=j−1 or h=j=i=0 such that ω ∈ Ω(ψ, ν) do
7 Add ω′ to Ω(ψ, ν);
8 end
9 foreach ν ∈ ω′ with ν 6=ρ′ do

10 Set Ω(ω′, ν)← Ω(ω, ν);
11 end
12 Add ω′ to Λj and σ′ to Ω(ω′, ρ′);
13 end
14 foreach ρ ∈ σ and ψ ∈ Ω(σ, ρ) do
15 Add ψ to Ω(σ′, ρ′) where tie(ρ′)=tie(ρ) and tail(ρ′)=tail(ρ);
16 end
17 end

ω

σ

(a) A part of the compressed tableau before the ap-
plication of Algorithm 5.

ω

σ

ω′

σ′

(b) A part of the compressed tableau after the appli-
cation of Algorithm 5.

Figure 6.4 – Application of matchCore algorithm

83

Lemma 10. Let 〈Λ,Ω〉 with Λ = 〈Λi〉ni=0 be a pre-compressed tableau. Assume that Algo-
rithm 5 takes two star-types σ and σ′ as input with σ ∈ Λi.

1. If σ′ is clash-free, then Algorithm 5 adds σ′ to Λi. In this case, each predecessor ω of σ is
changed to ω′ that is added to Λ such that ω′ is a predecessor of σ′, and each predecessor
of ω is a predecessor of ω′.

2. The updated 〈Λ,Ω〉 is a pre-compressed tableau.

3. Algorithm 5 runs in a polynomial time in the size of 〈Λ,Ω〉.

Proof. 1. If σ′ is clash-free, Line 2 of Algorithm 5 adds σ′ to Λi, i ≥ 0.

(a) Let ω be a ρ-predecessor of σ. Line 4 creates a copy ω′ of ω and a copy ρ′ of ρ.
Line 5 assigns tail(ρ′)=core(σ′) and replaces ρ ∈ ω′ by ρ′. Line 9 adds ω′ to Λj and
σ′ to Ω(ω′, ρ′) for j=i−1 if i > 0, or j=i=0. Hence, ω′ is a ρ′-predecessor of σ′.

(b) Let ψ be a ν-predecessor of ω with ψ ∈ Λh for h=j−1 if i > 0, or h=j=i=0. The
loop between Lines 6 and 8 adds ω′ to Ω(ψ, ν). Hence, ψ is a predecessor of ω′.

Therefore, Property 1. of the lemma is proved.

2. Let 〈Λ′,Ω′〉 be the structure obtained from an input 〈Λ,Ω〉 by the algorithm where Λ′ is
extended from Λ with new star-types, and Ω′ is extended from Ω for the new star-types.
First, we show that Ω′ is well defined over Λ′. Let σ0 be a star-type in Λ. If σ0 and all
its neighbors are not changed by the algorithm, then Ω′ is well defined for σ0 over Λ′.
Assume that σ0 or one of its neighbors is changed by the algorithm. Since Ω concerns
neighbors, it suffices to consider the following cases:

(a) σ0=σ and σ0 is changed to σ′0=σ′. By Property 1. of the lemma, σ′ has a prede-
cessor. Let ψ be a τ -successor of σ. By Line 15, we have Ω′(σ′, ρ′) 6= ∅ for all
ρ′ ∈ σ′.

(b) σ0 is a ρ-predecessor of σ, and σ0 is changed to σ′0. By Property 1. of the lemma,
σ′0 is a predecessor of σ′. By Line 7, each predecessor of σ0 is a predecessor of σ′0.
Moreover, by Line 10, each ν- successor of σ0 with ν 6= ρ is a ν-successor of σ′0.
Hence, Ω′(σ′0, ν) 6= ∅ for all ν ∈ σ′0 with ν 6= ρ.

(c) σ0 is a ρ-successor of σ. Algorithm 5 never changes σ0 and its successors. Thus, if
Ω(σ0, ρ) 6= ∅ then Ω′(σ0, ρ) 6= ∅ for all ρ ∈ σ0.

We now prove that 〈Λ′,Ω′〉 satisfies Properties 1, 2, 3 and 4 of Definition 27.

(a) Since the algorithm never removes anything from 〈Λ,Ω〉, it holds that 〈Λ′,Ω′〉 sat-
isfies Properties 1 and 3 of Definition 27.

(b) We now prove that 〈Λ′,Ω′〉 satisfies Property 2 of Definition 27.

i. For Property 2a, if a nominal star-type σ0 is changed to σ′0 where a ∈ coreI(σ′0)
and C(a) ∈ A then C ∈ coreC(σ′0) since C ∈ coreC(σ0) as 〈Λ,Ω〉 is a
pre-compressed tableau and the algorithm never removes any concept from
coreC(σ′0).

84

ii. For Property 2b, the proof is similar to the proof of Property 2a.

(c) We now prove that 〈Λ′,Ω′〉 satisfies Property 4 of Definition 27.

i. For Property 4a, if a star-type σ0 is changed to σ′0 ∈ Λ′0 then by Item 1 of
Lemma 10 we have σ0 ∈ Λ0. Since 〈Λ,Ω〉 is a pre-compressed tableau, we
get that σ0 is nominal. It holds that coreI(σ0) = coreI(σ′0) 6= ∅ and thus σ′0 is
nominal. This implies that Property 4a is satisfied for 〈Λ′,Ω′〉.

ii. For Property 4b, if a star-type σ0 is changed to σ′0 ∈ Λ′k, k ≥ 1 then by Item 1
of Lemma 10 we have σ0 ∈ Λk, k ≥ 1. Since 〈Λ,Ω〉 as is a pre-compressed
tableau, we get that σ0 is non-nominal. It holds that coreI(σ0) = coreI(σ′0) = ∅,
we get σ′0 is non-nominal. Besides, by Item 1 of Lemma 11, σ′0 is clash-free.
This implies that Property 4b is satisfied for 〈Λ′,Ω′〉.

iii. For Property 4c, if a dummy star-type σ0 is changed to σ′0 then σ′0 is also
dummy since Algorithm 5 never adds a new triple or changes the tie and tail of
a dummy triple. This implies that Property 4c. of Definition 27 is also satisfied
for 〈Λ′,Ω′〉.

We have proved that Ω′ is well defined over Λ′ and all properties of Definition 27 are
verified. Therefore, 〈Λ′,Ω′〉 is a pre-compressed tableau.

3. We now analyze the complexity of Algorithm 5. Since the non loop lines in the algorithm
need to traverse only components of a star-type or equality assertions, the complexity of
these lines is polynomial in the size of 〈Λ,Ω〉. We analyze the complexity of the loops.

(a) The loop between Lines 3 and 13 traverses all star-types of a layer Λj and its neigh-
bors. Hence, the number of iterations of this loop is bounded by |σ| × |Λ|2 where
|σ| is the greatest number of triples of a star-type, and |Λ| is the greatest number of
star-types of a layer.

(b) The two loops between Lines 6 and 8, and Lines 9 and 11 traverses all star-types
of a layer Λh and its neighbors, or all triples of a star-type. Hence, the number of
iterations of these loops is also bounded by |σ| × |Λ|2.

(c) Since, the two loops between Lines 6 and 8, and Lines 9 and 11 are nested in the
loop between Lines 3 and 13, the total number of iterations of this loop is bounded
by 2|σ|2 × |Λ|4.

(d) Finally, the loop between Lines 14 and 16 visits all neighbors of a star-type. Hence,
the number of iterations of this loop is bounded by |σ| × |Λ|2.

As a result, the complexity of the loops in Algorithm 5 is bounded by 3|σ|2 × |Λ|4. This
means that the complexity of Algorithm 5 is polynomial in the size of 〈Λ,Ω〉.

• matchTriple is called by rules for adding new star-types generated by rules that change the
tail of a triple of a star-type, and updating the matching function Ω to ensure that the added
star-type σ′ has a neighbour. This is illustrated in Figures 6.5 and 6.6. Figure 6.5 shows the
behaviour of the algorithm when a star-type σ′ (the transformation of an input star-type σ) of
triple ρ′ is added to Λ and ρ′ 6∈ σ. Figure 6.6 shows when a rule changes the tail of a triple ρ in a

85

star-type σ (in the left-hand side), σ is transformed to σ′ where ρ is replaced by the transformed
triple ρ′ (in the right-hand side), matchTriple should transform a ρ-successor ω of σ into ω′, a
ρ′-successor of σ′.

Algorithm 6: matchTriple algorithm
Input: A pre-compressed tableau 〈Λ,Ω〉 with Λ = 〈Λi〉ni=0, two star-types σ, σ′ with

σ ∈ Λi and two triples ρ ∈ σ, ρ′ ∈ σ′ where σ′ is copy of σ such that ρ ∈ σ is
replaced with ρ′ ∈ σ′ and ρ′ is a copy of ρ with a modified tail.

Output: Λi contains σ′, and the updated 〈Λ,Ω〉 remains a pre-compressed tableau.
1 if σ′ is clash-free then
2 Add σ′ to Λi;
3 foreach star-type τ ∈ Λj, j=i−1 or j=i=0 and triple ν ∈ τ such that σ ∈ Ω(τ, ν)

do
4 add σ′ to Ω(τ, ν);
5 end
6 if ρ = null then
7 if i = n and there is no individual in tailI(ρ′) then
8 Add an empty layer Λn+1 to Λ;
9 end

10 Create a star-type ω such that core(ω) = tail(ρ′), and tie(ρ′′) = ∅, tail(ρ′′) = ∅
for all ρ′′ ∈ ω;

11 Add ω to Λi+1 and Ω(σ′, ρ′);
12 end
13 else
14 foreach ω ∈ Ω(σ, ρ) do
15 Create a copy ω′ of ω and set core(ω′)← tail(ρ′);
16 Add ω′ to Ω(σ′, ρ′) and Λj where j=i+1 or j=i=0;
17 foreach ν ∈ ω′ do
18 Set Ω(ω′, ν)← Ω(ω, ν ′) where tie(ν) = tie(ν ′) and tail(ν) = tail(ν ′);
19 end
20 foreach ν ∈ σ′ such that ν 6= ρ′ do
21 Set Ω(σ′, ν)← Ω(σ, ν);
22 end
23 end
24 end
25 end

In the following figure, the pre-compressed tableau on the left-hand side figure shows three
star-types σ, ω a successor σ and a successor of ω. Algorithm 6 changes as shown in the right-
hand side of the figure ω to ω′ and adds ω′ to Λ. Besides, ω′ is now a successor of σ′ and the
successor of ω is now a successor of ω′.

86

σ σ′

ρ′
ω

Figure 6.5 – When there is a triple is ρ′ ∈ σ′ and ρ′ 6∈ σ the algorithm creates a ρ′-successor of
σ′ and adds it to Λ.

σ

ω
ρ

σ

ω

σ′

ρ′

ω′
ρ

Figure 6.6 – A part of the pre-compressed tableau before and after applying Algorithm 6.

Lemma 11. Let 〈Λ,Ω〉 with Λ = 〈Λi〉ni=0 be a pre-compressed tableau. Assume that Algo-
rithm 6 takes two star-types σ and σ′ and two triples ρ ∈ σ, ρ′ ∈ σ′ as input with σ ∈ Λi.

1. If σ′ is clash-free, then Algorithm 6 adds σ′ to Λi.

(a) If ρ′ /∈ σ, then Algorithm 6 creates a star-type ω′ and adds it to Λi+1 such that ω′ is
an ρ′-successor of σ′.

(b) Otherwise, each ρ-successor ω of σ is changed to ω′ that is added to Λ such that ω′

is a ρ′-successor of σ′, and each R-successor of ω is an R-successor of ω′.

2. The updated 〈Λ,Ω〉 is a pre-compressed tableau.

3. Algorithm 6 runs in a polynomial time in the size of 〈Λ,Ω〉.

Proof. 1. If σ′ is clash-free, Line 2 of Algorithm 6 adds σ′ to Λi, i ≥ 0.

(a) If ρ′ 6∈ σ this means that the Algorithm performs Line 7 to Line 12. According
to Line 7 if i=n and tailI(ρ′) 6= ∅ the algorithm adds a new layer Λi+1 and adds
it to Λ. After, Lines 10 and 11 of the algorithm creates a star-type ω′ such that
core(ω′)=tail(ρ′) and adds ω′ to Λi+1 and Ω(σ′, ρ′). Hence, ω′ is a ρ′-successor of
σ′.

(b) Otherwise, let ω be a ρ-successor of σ. Line 15 of the algorithm creates a copy ω′ of
ω with core(ω′)=tail(ρ′) and Line 16 adds it to Λj, j=0 or j=i=0 and to Ω(σ′, ρ′).

87

Hence, ω′ is a ρ′-successor of σ. Since ω′ is a copy of ω of modified core we
have for every triple ν ′ ∈ ω there exists a triple ν ∈ ω′ with tie(ν)=tie(ν ′) and
tail(ν)=tail(ν ′). The loop between Lines 20 to 22 in the algorithm assigns Ω(ω, ν ′)
to Ω(ω′, ν). Hence, each R-successor of ω is now an R-successor of ω′.

Therefore, Property 1 of the lemma is proved.

2. Let 〈Λ′,Ω′〉 be the structure obtained from an input 〈Λ,Ω〉 by the algorithm where Λ′ is
extended from Λ with new star-types and Ω′ is extended from Ω for the new star-types.
First, we show that Ω′ is well defined over Λ′. Let σ0 be a star-type in Λ. If σ0 and all
its neighbours are not changed by the algorithm, then Ω′ is well defined for σ0 over Λ′.
Assume that σ0 or one of its neighbours is changed by the algorithm. Since Ω concerns
neighbours, it suffices to consider the following cases:

(a) σ0 = σ and σ0 is changed to σ′0 = σ′. Property 1a of Lemma 11 for every triple ρ in
σ′ there is a ρ-successor of σ′. By the loop from Line 17 to 19 each ν-predecessor
of σ becomes a ν ′-predecessor of σ′.

(b) σ0 is a ρ-predecessor of σ. Algorithm 6 never changes σ0 and adds σ′ to Ω(σ0, ρ).

(c) σ0 is a ρ-successor of σ and σ0 is changed to σ′0. By Property 1.b. of the lemma, σ′

is a predecessor of σ′0 and each R-successor of σ0 is an R-successor of σ′0.

We now prove that 〈Λ′,Ω′〉 satisfies Properties 1, 2, 3 and 4 of Definition 27.

(a) Since the algorithm never removes anything from 〈Λ,Ω〉, it holds that 〈Λ′,Ω′〉 sat-
isfies Properties 1. and 3. of Definition 27.

(b) We now prove that 〈Λ′,Ω′〉 satisfies Property 2 of Definition 27.

i. For Property 2a, if a nominal star-type σ0 is changed to σ′0 such that a ∈
coreI(σ′0) and C(a) ∈ A then C ∈ coreC(σ′0) since C ∈ coreC(σ0) as 〈Λ,Ω〉
is a pre-compressed tableau and the algorithm never remove any concept from
coreC(σ′0).

ii. For Property 2b, the proof is similar to the proof of Property 2a.

(c) We now prove that 〈Λ′,Ω′〉 satisfies Property 4 of Definition 27.

i. For Property 4a, if a star-type σ0 is changed to σ′0 ∈ Λ′0 then by Item 1 of
Lemma 11 we have σ0 ∈ Λ0. Since 〈Λ,Ω〉 is a pre-compressed tableau, we
get that σ0 is nominal. It holds that coreI(σ0) = coreI(σ′0) 6= ∅ and thus σ′0 is
nominal. This implies that 〈Λ′,Ω′〉 satisfies Property 4a.

ii. For Property 4b, if a star-type σ0 is changed to σ′0 ∈ Λ′k, k ≥ 1 then by Item 1
of Lemma 11 we have σ0 ∈ Λk, k ≥ 1. Also, σ0 is non-nominal as 〈Λ,Ω〉
as is a pre-compressed tableau and since coreI(σ0) = coreI(σ′0) = ∅ then σ′0
is non-nominal. Besides, by Item 1 of Lemma 11 we get that σ′0 is clash-free.
This implies that〈Λ′,Ω′〉 satisfies Property 4b of Definition 27.

iii. For Property 4c. of Definition 27, if a dummy star-type σ0 is changed to σ′0 then
σ′0 is also dummy since Algorithm 6 never adds a new triple or changes the tie
and tail of a dummy triple. This implies that 〈Λ′,Ω′〉 satisfies Property 4c of
Definition 27.

88

We have proved that Ω′ is well defined over Λ′ and all properties of Definition 27
are verified. Therefore, 〈Λ′,Ω′〉 is a pre-compressed tableau.

3. We now analyze the complexity of Algorithm 6. Since the non loop lines in the algorithm
need to traverse only components of a star-type, its neighbours or the equality assertions
in A, the complexity of these lines is polynomial in the size of 〈Λ,Ω〉. We analyze the
complexity of the loops.

(a) The loop between Lines 3 and 5 traverses each star-type τ in Λi−1 or Λ0 and each
triple in τ . Hence the number of iteration in this loop is bounded by (|Λ0|+|Λi−1|)×
|τ |, where |τ | is the greatest number of triples of a star-type and |Λ| is the greatest
number of star-types of a layer.

(b) Line 14 traverses all the successors of σ, hence the number of iteration in this loop
is bounded by 2|σ||Λ|.

(c) The loop between Lines 17 and 19 traverses each triple of a star-type. Hence the
number of iteration in this loop is bounded by |σ|.

(d) The loop between Lines 20 and 22 traverses all the triples of a star-type. Hence the
number of iteration in this loop is bounded by |σ|.

Thus the complexity of the loops are all bounded polynomial in the size of 〈Λ,Ω〉. This
means that the complexity of Algorithm 6 is polynomial in the size of 〈Λ,Ω〉.

•matchMerge is called for adding new star-types generated by rules that merges two star-types
and updating the matching function Ω. This situation is illustrated in Figure 6.7. When a rule
merges two star-types σ and σ′ (in left-hand side) into a star-type σ⊕σ′ (in the right-hand side),
the predecessors of σ and σ′ are transformed into new predecessors of σ ⊕ σ′.

Algorithm 7: matchMerge algorithm
Input: A pre-compressed tableau 〈Λ,Ω〉 with Λ = 〈Λi〉ni=0, two star-types σ, σ′ ∈ Λ0 and a set of

star-types σ ⊕ σ′
Output: Λ0 contains σ ⊕ σ′ and the updated 〈Λ,Ω〉 remains a pre-compressed tableau.

1 foreach clash-free star-type τ ∈ σ ⊕ σ′ do
2 Add τ to Λ0;
3 foreach ρ ∈ τ and ρ′ ∈ ω with ω ∈ {σ, σ′} such that tie(ρ) = tie(ρ′) and tail(ρ) = tail(ρ′) do
4 Set Ω(τ, ρ)← Ω(ω, ρ′);
5 end
6 foreach ω′ ∈ Λ0 and ρ ∈ ω′ such that ω ∈ Ω(ω′, ρ) with ω ∈ {σ, σ′} do
7 Create a copy ψ of ω′, create a copy ρ′ of ρ, set tail(ρ′) = core(τ) and replace ρ by ρ′ in ψ ;
8 Add ψ to Λ0 and add τ to Ω(ψ, ρ′) ;
9 foreach τ ′ ∈ Λ0 and ν ∈ τ ′ such that ω′ ∈ Ω(τ ′, ν) do

10 Add ψ to Ω(τ ′, ν) ;
11 end
12 foreach ν ∈ ψ such that ν 6= ρ′ do
13 Set Ω(ψ, ν)← Ω(ω′, ν);
14 end
15 end
16 end

89

σ σ′

(a)

σ σ′τ1 τ2

(b)

Figure 6.7 – matchMerge transforms the predecessors of star-types σ ⊕ σ′={τ1, τ2}

Lemma 12. Let 〈Λ,Ω〉 with Λ = 〈Λi〉ni=0 be a pre-compressed tableau. Assume that Algo-
rithm 7 takes two star-types σ, σ′ ∈ Λ0 as input.

1. For each clash-free star-type τ in σ ⊕ σ′, Algorithm 7 adds τ to Λ0. In this case, each ρ-
predecessor ω′ of σ or σ′ is changed to ψ with a new triple ρ′ such that τ is a ρ′-successor
of ψ, tail(ρ′) = core(τ), and each predecessor of ω′ is a predecessor of ψ.

2. The updated 〈Λ,Ω〉 is a pre-compressed tableau.

3. Algorithm 7 runs in a polynomial time in the size of 〈Λ,Ω〉.

Proof. 1. Line 2 of the algorithm adds each clash-free star-type τ in σ⊕ σ′ to Λ0. Let ω′ be
a ρ-predecessor of σ or σ′. In Line 7, the algorithm creates a copy ψ of ω′ and replaces
ρ with ρ′ such that tail(ρ′) = core(τ) and adds it to Λ0 and adds τ to Ω(ψ, ρ′). Hence, ψ
be a ρ′-predecessor of τ . Let τ ′ be a ν-predecessor of ω′ with τ ′ ∈ Λ0. The loop between
Lines 9 and 11 adds ψ to Ω(τ ′, ν). Hence, τ ′ is a predecessor of ψ.

2. Let 〈Λ′,Ω′〉 be the structure obtained from an input 〈Λ,Ω〉 by the algorithm where Λ′ is
extended from Λ with new star-types, and Ω′ is extended from Ω for the new star-types.
First, we show that Ω′ is well defined over Λ′. Let σ0 be a star-type in Λ. If σ0 and all

90

its neighbours are not changed by the algorithm, then Ω′ is well defined for σ0 over Λ′.
Assume that σ0 or one of its neighbours is changed by the algorithm. Since Ω concerns
neighbours, it suffices to consider the following cases:

(a) σ0=σ and σ0 is changed to σ′0 ∈ σ ⊕ σ′. By Property 1. of the lemma, σ′0 has a
predecessor. Let ψ be a ρ-successor of σ. By Line 4, we have Ω′(σ′0, ρ′) 6= ∅ for all
ρ′ ∈ σ′0 such that tail(ρ′) = tail(ρ) and tie(ρ′) = tie(ρ).

(b) σ0=σ′, analogously.

(c) σ0 is a ρ-predecessor of σ or σ′, and σ0 is changed to σ′0. By Property 1. of the
lemma, σ′0 is a predecessor of τ in σ⊕σ′ and each predecessor of σ0 is a predecessor
of σ′0. Moreover, by the loop between Lines 12 and 14, each ν-successor of σ0 with
ν 6= ρ′ is a ν-successor of σ′0. Hence, Ω′(σ′0, ν) 6= ∅ for all ν ∈ σ′0 with ν 6= ρ.

(d) σ0 is a ρ-successor of σ or σ′. The algorithm never changes σ0 and its successors.
Thus, if Ω(σ0, ρ) 6= ∅ then Ω′(σ0, ρ) 6= ∅ for all ρ ∈ σ0.

We now prove that 〈Λ′,Ω′〉 satisfies Properties 1, 2, 3 and 4 of Definition 27.

(a) Since the algorithm never removes anything from 〈Λ,Ω〉, it holds that 〈Λ′,Ω′〉 sat-
isfies Properties 1 and 3 of Definition 27.

(b) We now prove that 〈Λ′,Ω′〉 satisfies Property 2 of Definition 27.

i. We first prove that Property 2a holds in 〈Λ,Ω〉.
A. If a star-type σ0 = σ is changed to σ′0 ∈ σ ⊕ σ′ where a ∈ coreI(σ′0)

and C(a) ∈ A. If a ∈ coreI(σ) we get that a ∈ coreI(σ0) and thus C ∈
coreC(σ0) as 〈Λ,Ω〉 is a pre-compressed tableau and the algorithm never
removes any concept from coreC(σ′0). Otherwise, if a ∈ coreI(σ′) then
C ∈ coreC(σ′) as 〈Λ,Ω〉 is a pre-compressed tableau and according to
Definition 26, C ∈ coreC(σ′0).

B. If σ0 = σ′, analogously.
ii. For Property 2b, the proof is similar to the proof of Property 2a.

(c) We now prove Item 4 of Definition 27.

i. For Property 4a, if σ0 = σ and σ0 is changed to σ′0 ∈ Λ′0. It holds that σ ∈
Λ0 and since 〈Λ,Ω〉 is a pre-compressed tableau, we get that σ is nominal.
Besides, according to Definition 26 it holds that coreIσ0 ⊆ coreIσ

′
0 6= ∅. We

get that σ′0 is nominal. Analogously, if σ0 = σ′.
ii. Property 4b and 4c hold since Algorithm 7 never adds a star-type to Λk ∈

Λ, k ≥ 1.

We have proved that Ω′ is well defined over Λ′ and all properties of Definition 27 are
verified. Therefore, 〈Λ′,Ω′〉 is a pre-compressed tableau.

3. We now analyze the complexity of Algorithm 7. Since the non loop lines in the algorithm
need to traverse only components of a star-type, its neighbours or the equality assertions
in A, the complexity of these lines is polynomial in the size of 〈Λ,Ω〉. We analyze the
complexity of the loops.

91

(a) The loop between Lines 3 and 5 traverses all triples of star-types σ, σ′ and all triples
of the star-types in σ ⊕ σ′. Hence, the number of iterations of this loop is bounded
by |σ|4 where |σ| is the greatest number of triples of a star-type.

(b) The loop between Lines 6 and 15. Line 6 traverses all star-types of the layer Λ0, all
their triples and successors. Hence, the number of iterations of performed by this
line is bounded by |Λ0|3|σ|. Similarly, the complexity of the loop between Lines 9
and 11 is also bounded by |Λ0|3|σ|. The complexity of the loop between Lines 12
and 14 is bounded by |σ|. Hence, the number of iterations of these loops is also
bounded by |Λ0|6|σ|3 where |Λ0| is the greatest number of star-types of in Λ0.

As a result, the complexity of the loops in Algorithm 7 is bounded by |σ|4 × (1 + |Λ0|6).
This means that the complexity of Algorithm 7 is polynomial in the size of 〈Λ,Ω〉.

Finally, check verifies if some subset Σ′ of Λ0 of size |I| allows to build a compressed
tableau involved in the current pre-compressed tableau.

Lemma 13. Let 〈Λ,Ω〉 be a pre-compressed tableau of an ALC+LK ontology O. Let I be the
set of individuals in O.

1. Algorithm 8 returns true with O, I and 〈Λ,Ω〉 as input iff there exists a compressed
tableau 〈Λ′,Ω′〉 of O included in 〈Λ,Ω〉.

2. Algorithm 8 runs in polynomial time in the size of 〈Λ,Ω〉.

Proof. 1. “=⇒": Assume that Algorithm 8 returns true with O, I and 〈Λ,Ω〉, where Λ =
{Λk}nk=0.

Let 〈Λ′,Ω′〉, where Λ′ = {Λ′k}nk=0, be the structure built by the algorithm. For that
we have to prove that Ω′ is well-defined over Λ′ and each condition in Definition 32
is satisfied by 〈Λ′,Ω′〉. By construction, 〈Λ′,Ω′〉 is included in 〈Λ,Ω〉, i.e. for every
k ∈ {0, . . . , n}, Λ′k ⊆ Λk, and Ω′ is a restriction of Ω, i.e. for every σ, σ′ ∈ Λ′ and τ ∈ σ,
if σ′ ∈ Ω′(σ, τ) then σ ∈ Ω(σ, τ). Let us first prove that Ω′ is indeed a matching function
over Λ′. First, we have to prove that there is no star-type σ ∈ Λ′ and no non dummy
triple τ ∈ σ such that Ω′(σ, τ) = ∅. By contradiction, imagine that such σ and τ exist.
Then, there exists l ∈ {0, . . . , n} such that σ ∈ Λ′l. Since the algorithm returns true, the
while loop of Line 15 is executed for every layer Λ′k (k = n, . . . , 0), in particular, for l.
Since σ and τ satisfy the condition of the while loop, then its body is executed, i.e. σ is
removed from Λ′l, which contradicts the fact that σ ∈ Λ′l.
Now, Condition 1 of Definition 28 holds because Ω is a matching function and it extends
Ω′. Let us prove that Condition 2 holds. Let σ ∈ Λ′, τ ∈ σ and σ′ ∈ Ω′(σ, τ). The star-
type σ′ is added to Ω′(σ, τ) either in Line 6 of the algorithm, which implies σ, σ′ ∈ Λ′0,
or in Line 10, which implies σ ∈ Λ′k and σ′ ∈ Λ′k+1 for all k ∈ {0, . . . , n− 1}.
Therefore, Condition 2 holds. This proves that Ω′ is a matching function over Λ′.
We check now each of the conditions of Definition 32.

(a) We first prove that Condition 1 of Definition 32 is satisfied in 〈Λ′,Ω′〉 by showing
that conditions 1 to 5 of Definition 30 are all satisfied in 〈Λ′,Ω′〉.

92

Algorithm 8: check algorithm
Input: An ALC+LK ontology O = 〈A, T ,LK〉, a set I of individuals and a pre-compressed

tableau 〈Λ,Ω〉 of O, where Λ = {Λk}nk=0.
Output: true if there exists a compressed tableau 〈Λ′,Ω′〉 included in 〈Λ,Ω〉 and false

otherwise.
1 Λ′k ← ∅ for every k ∈ {0, . . . , n}, Λ′ ← 〈Λ′0, . . . ,Λ′n〉,Ω′ ← ∅;
2 Let 〈a1, . . . , am〉 be an enumeration of I;
3 foreach 〈σ1, . . . , σm〉 such that, for every i ∈ {1, . . . ,m}, either σi = null or σi ∈ Λ0, σi is

saturated and clash-free, and there exists a unique j ∈ {1, . . . ,m} such that ai ∈ coreI(σj)
do

4 Λ′0 ← {σi : 1 ≤ i ≤ m and σi 6= null};
5 if for every σ ∈ Λ′0 and ρ ∈ σ such that tailI(ρ) 6= ∅ there exists σ′ ∈ Λ′0 such that

σ′ ∈ Ω(σ, ρ) then
6 extend Ω′ by letting σ′ ∈ Ω′(σ, ρ) for every σ, σ′ ∈ Λ′0 and ρ ∈ σ such that tailI(ρ) 6= ∅

and σ′ ∈ Ω(σ, ρ);
7 if none of the rules of Figure 6.3 can be applied in Λ′0 then
8 if n ≥ 1 then
9 foreach k = 0, . . . , n− 1 do

10 add σ′ to Λ′k+1 and extend Ω′ by letting σ′ ∈ Ω′(σ, ρ) for every σ ∈ Λ′k,
σ′ ∈ Λk+1 and ρ ∈ σ such that tailI(ρ) = ∅ and σ′ ∈ Ω(σ, ρ);

11 end
12 end
13 k ← n;
14 while k ≥ 0 do
15 while there exists a star-type σ ∈ Λ′k such that σ is non blocked and not

saturated, or there exists a non-dummy triple ρ ∈ σ such that Ω′(σ, ρ) = ∅ do
16 remove σ from Λ′k;
17 remove σ from Ω′(σ′, ρ′) for every σ′ ∈ Λ′l, where l = max(k − 1, 0), and

ρ′ ∈ σ′ such that σ ∈ Ω′(σ′, ρ′);
18 end
19 k ← k − 1 ;
20 end
21 if for every individual a ∈ I there exists a star-type σ in Λ′0 such that a ∈ coreI(σ)

then
22 return true;
23 end
24 end
25 end
26 end
27 return false;

93

i. For every star-type σ in Λ′, σ is added to Λ′ by Line 4 or 10. If σ is added
to Λ′ by Line 4 then it satisfies the condition of Line 3, which means that σ
is clash-free and saturated. If σ is added to Λ′ by Line 10 then σ ∈ Λ′k for
some k = 1, . . . , n. In this case, σ is saturated or blocked because, if σ is not
saturated and not blocked then it is removed from Λ′k by Line 16. In addition,
since σ ∈ Λk and k ≥ 1, then, by Item 4b of Definition 27, σ is clash-free.

ii. “=⇒": Assume that σ ∈ Λ′0. Then, σ is added to Λ′0 by Line 4, which means
that σ satisfies the condition of Line 3. Thus, coreI(σ) 6= ∅, i.e. σ is nominal.
“⇐=": Assume that σ ∈ Λ′ and that σ is nominal. We have to prove that
σ ∈ Λ′0. We proceed by contradiction. Assume that σ 6∈ Λ′0. Then, there exists
k ∈ {1, . . . , n} such that σ ∈ Λ′k. This implies σ ∈ Λk. Since 〈Λ,Ω〉 is a
pre-compressed tableau, then, by Item 4a of Definition 27, it follows that σ is
non-nominal, which is a contradiction. Therefore, σ ∈ Λ′0.

iii. By Lines 3 and 4, Algorithm 8 starts with a first layer such that for every in-
dividual there exists a unique star-type in it that contains the individual in its
core. The algorithm never adds new star-types to this first layer, but may re-
move some of them (Line 16). However, since the algorithm returns true, then
the condition of Line 21 is satisfied. This means that no star-type is removed
from the first layer. Therefore, for every a ∈ I, there exists a unique start type
σa ∈ Λ′0 such that a ∈ coreI(σa).

iv. Assume that C(a) ∈ A. By 1(a)iii above, there exists a unique σa ∈ Λ′0 such
that a ∈ coreI(σa). Now, since 〈Λ′,Ω′〉 is included in 〈Λ,Ω〉, then σa ∈ Λ0.
Since 〈Λ,Ω〉 is a pre-compressed tableau, then, by Condition 2a of Defini-
tion 27, it follows C ∈ coreC(σa).

v. Assume R(a, b) ∈ A. By 1(a)iii above, there exist two unique star-types
σa, σb ∈ Λ′0 such that a ∈ coreI(σ) and b ∈ coreI(σb). In addition, since
〈Λ′,Ω′〉 is included in 〈Λ,Ω〉, which is a pre-compressed tableau, then by Con-
dition 2b of Definition 27, there exists a triple τ ∈ σa such that R ∈ tie(τ) and
b ∈ tailI(τ). Since the algorithm returns true, the condition of Line 5 is sat-
isfied, and, by Line 6, it follows that there exists a star-type σ′ ∈ Λ′0 such
that σ′ ∈ Ω′(σa, τ). Since Ω′ is matching function, then tailI(τ) = coreI(σ′).
Therefore, b ∈ coreI(σ′) which implies σ′ = σb as σb is the only star-type that
contains b in its core. Thus, σb ∈ Ω′(σa, τ).

(b) We prove respectively below, that Condition 2, 3 and 4 of Definition 32 are satisfied
in 〈Λ,Ω〉. We proceed by contradiction.

i. Suppose that Condition 2 is not satisfied, this means that there is an equality
assertion a ≈ b ∈ A and there exist two star-types σ, σ′ ∈ Λ such that a ∈
coreI(σ), b ∈ coreI(σ′) and σ 6= σ′. Which means that the Condition 1 of→≈
rule is satisfied. In addition, since σ and σ′ are the unique star-types such that
a ∈ coreI(σ), b ∈ coreI(σ′) (by Item 1(a)iii), then Condition 2 of →≈ is also
satisfied. Which is not possible since the condition of Line 7 in Algorithm 8 is
satisfied. Then Condition 2 is satisfied.

ii. Suppose that condition 3 is not satisfied, this means that there is a link key λ =
({〈Pk, Qk〉}nk=1 linkkey 〈C,D〉) ∈ LK and there exist two star-types σ, σ′ ∈
Λ such that σ and σ′ weakly satisfy the condition of λ and {C, nnf(C)} ∩

94

coreC(σ) = ∅ or {D, nnf(D)} ∩ coreC(σ′) = ∅. This means that the conditions
of→chLK1 or→chLK2 are satisfied. Which is not possible since the condition
of Line 7 in Algorithm 8 is satisfied. Then condition 3 is satisfied.

iii. Suppose that condition 3 is not satisfied, this means that there a link key λ =
({〈Pk, Qk〉}nk=1 linkkey 〈C,D〉) ∈ LK and there exist two star-types σ, σ′ ∈ Λ
such that σ and σ′ satisfy the condition of λ and σ 6= σ′. This means that
Condition 1 of →LK-rule is satisfied. In addition, Condition 2 of →LK-rule
is satisfied since star-types in Λ′0 are unique (by Item 1(a)iii), then there exists
no star-type σ0 such that core(σ) ⊆ core(σ0) and core(σ′) ⊆ core(σ0). Which
is not possible since the condition of Line 7 in Algorithm 8 is satisfied. Then
condition 4 is satisfied.

“⇐=": Suppose that there is a compressed tableau 〈Λ′′,Ω′′〉 included in 〈Λ,Ω〉. We have
to prove that Algorithm 8 returns true. Assume that Λ′′

0 = {σ1, . . . , σm}. Imagine that
the loop of Line 3 does not reach 〈σ1, . . . , σm〉. This means that the algorithm returns
true with another tuple of star-types, so we are done. So assume that the loop in Line 3
reaches 〈σ1, . . . , σm〉. The condition of the loop is satisfied by 〈σ1, . . . , σm〉 because
〈Λ′′,Ω′′〉 is a compressed tableau and it is included in 〈Λ,Ω〉. Let us prove that, for
this tuple, the condition of Line 21 is satisfied. We proceed by contradiction. Assume
that the condition is not satisfied. This means that there exists i ∈ {1, . . . ,m} such that
σi is removed from the first layer. This must happen in Line 16, which means that the
condition of Line 15 is satisfied. Thus, σi is non blocked and not saturated, or there exists
a non-dummy triple τ ∈ σi such that Ω′(σi, τ) = ∅. Since σi ∈ Λ′′

0 , then it is saturated,
so it must be that there exists a non-dummy triple τ ∈ σi such that Ω′(σi, τ) = ∅. Also,
since Ω′′ is a matching function, then Ω′′(σi, τ) 6= ∅, so there exists a star-type σ′ ∈ Λ′′
such that σ′ ∈ Ω′′(σi, τ). We have σ′ ∈ Ω(σi, τ) too because Ω′′ is a restriction of Ω.
Then, either in Line 6 or Line 10, it is set σ′ ∈ Ω′(σi, τ). If Ω′(σi, τ) = ∅ this means
that σ′ is removed from Ω′(σi, τ) by Line 16. We proceed using the same argument
on the successors of σ′ until we reach the layer Λn−1. Suppose that there exists a star-
type σ′n−1 ∈ Λ′n−1 a direct or indirect successor of σ′ through Ω′′ such that σ′n−1 is
removed from Λ′n−1. This means that either σ′n−1 is not saturated or there exits a triple
τ ′n−1 such that Ω′(σ′n−1, τ

′
n−1) = ∅. Since σ′n−1 ∈ Λ′′

n−1 then it is saturated. Since Ω′′ is a
matching function, then Ω′′(σ′n−1, τ

′
n−1) 6= ∅, so there exists a star-type σ′n ∈ Λ′′ such that

σ′n ∈ Ω′′(σ′n−1, τ
′
n−1). We have σ′n ∈ Ω(σ′n−1, τ

′
n−1) too because Ω′′ is a restriction of Ω.

Then, either in Line 6 or Line 10, it is set σ′n ∈ Ω′(σ′n−1, τ
′
n−1). If Ω′(σ′n−1, τ

′
n−1) = ∅ this

means that σ′n is removed from Ω′(σi, τ) by Line 16. We have σ′n ∈ Λ′′n then it is either
dummy or blocked and it will not be removed by Line 16 as the conditions of Line 15 are
not satisfied.

2. We now analyze the complexity of Algorithm 8. We denote by ` the size of the ontology
O, i.e., `=|O| and by c is the size of the sub-concepts of O, i.e., c=|sub(O)|.

(a) We first calculate the complexity of Line 3 of the algorithm. In Line 3, the algo-
rithm uses a vector 〈σ1, · · · , σk〉 to represent a possible choice of Λ′0 where each σi
corresponds to a star-type containing an individual ai ∈ I. Hence, k ≤ `. More-
over, each σi takes at most 2c different values. Hence, there are at most 2c` different
vectors 〈σ1, · · · , σk〉. Line 3 also checks the saturation and clash-freeness of each

95

star-type in 〈σ1, · · · , σk〉. We respectively analyze below the complexity of each
task:

i. The task of checking if a star-type is saturated needs to traverse the components
of the star-type and the GCIs in T . Since, |T | ≤ |O|, then the complexity of
this task is bounded by `‖σ‖, where ‖σ‖ is the size of a star-type σ in Λ.

ii. The task of checking if a star-type is clash-free needs to traverse the compo-
nents of a star-type and the equality assertions in A. Since, |A| ≤ |O|, then the
complexity of this task is bounded by `‖σ‖.

(b) Lines 5 and 6 iterate over every star-type σ in Λ′0, every triple ρ ∈ σ and the set of
ρ-successors of σ in Λ′0. Thus the complexity of this task is bounded by |Λ′0|2|σ|,
where |Λ′0| is the greatest number of star-types in Λ′0 and |σ| is the number of triples
in σ.

(c) Line 7 traverses each subset {ω1, . . . , ωp} where ωi ∈ Λ′0, p ≤ q and q is the
greatest number of star-types involved in a link key. Then it checks if there is
a rule in Figure 6.3 applicable on {ω1, . . . , ωp}. The number of different sets of
size p is bounded by |Λ′0|p. Checking the applicability of rules in Figure 6.3 on
{ω1, . . . , ωp} necessitates to traverse equality assertions in A, the link keys in LK
and each star-type in {ω1, . . . , ωp}. Thus the complexity of this task is bounded by
|Λ′0|p(|A|+ |LK|)‖σ‖ ≤ `2|Λ′0|p‖σ‖.

(d) Line 9 iterates over each layer Λ′k, 1 ≤ k ≤ n in Λ′. Line 10 iterates over every star-
type σ in Λ′k, every triple ρ ∈ σ and every ρ-successor of σ. Thus the complexity of
the loop between Line 9 and 10 is bounded by n2|Λ′k||σ|.

(e) The loop in Line 14 executes n times the loop in Line 15. Line 15 iterates over
every non-blocked star-type σ ∈ Λk, k ≤ n, checks if it is saturated and checks
every ρ-successor of σ where ρ ∈ σ. The task of checking if σ is blocked needs to
check every layer Λk in Λ and each star-type ω in Λk. Thus the complexity of this
task is bounded by n|Λk|‖σ‖(n|Λk|‖σ‖+ `‖σ‖).

(f) Finally, Line 21 iterates over every individual a ∈ I and every star-type σ ∈ Λ′0 thus
the complexity of this line is bounded by `2‖σ‖.

Since the size of 〈Λ′,Ω′〉 is bounded by the size of 〈Λ,Ω〉. Then the complexity of
Algorithm 8 is polynomially bounded by the size of 〈Λ,Ω〉.

We now give the main algorithm which as previously explained checks the consistency of
an ALC+LK ontology O. Algorithm 9 returns Yes when O is consistent and No otherwise.

96

Algorithm 9: Compressed tableau algorithm for ALC+LK ontology consistency checking
Input: an ALC + LK ontology O = 〈A, T ,LK〉, the set I of individuals in O and the

labelling function L defined over I.
Output: Returns Yes if O is consistent and No otherwise.

1 〈Λ0,Ω〉 ← init(A, I, L),Λ←− [Λ0], processedALC ← ∅, processedLK ← ∅ ;
2 changed← true;
3 while changed is true do
4 changed← false;
5 if check(A,LK, 〈Λ,Ω〉) then
6 return Yes;
7 end
8 if there exists a star-type σ in Λi, i ≥ 0 and a saturation rule r in Figure 6.2 such that r

can be applied on σ and σ 6∈ processedALC then
9 add σ to processedALC;

10 apply r to σ;
11 changed← true;
12 end
13 foreach {ω1, · · · , ωn} with ωi ∈ Λ0, {ω1, · · · , ωn} 6∈ processedLK and n is the greatest

number of star-types involved in a link key do
14 while there exists a rule r in Figure 6.3 applicable to {ω1, · · · , ωn} do
15 apply r to {ω1, · · · , ωn};
16 changed← true;
17 end
18 add {ω, · · · , ωn} to processedLK;
19 end
20 end
21 return No;

6.4 Examples
Example 14. We show the execution of algorithm 9. The following example checks the infer-
ence of a chained link generation. It also shows how the algorithm deals with non-determinism
and how the blocking mechanism works.

Entailment:
(〈P,R〉 linkkey 〈A,B〉), (〈Q,S〉 linkkey 〈C,D〉), C(a), P (a, c), C(c),

Q(c, e), B(b), R(b, d), D(d), S(d, e),∃T.(∃U.E t ∃V.(∃U.E))(e) |= a ≈ b.

Initial knowledge base:
A={A(a), P (a, c), C(c), Q(c, e), B(b), R(b, d), D(d), S(d, e),∃T.(∃U.Et∃V.(∃U.E))(e), a 6≈
b},
T = ∅, and
LK = {(〈P,R〉 linkkey 〈A,B〉), (〈Q,S〉 linkkey 〈C,D〉)}
Algorithm:

1. Algorithm 9 sets processedALC ← ∅, processedLK ← ∅ and calls Algorithm 4 (init) as
shown in Line 1. Algorithm 4 builds star-types from A and adds them to Λ0 and connects

97

them by Ω. We get Λ0={σa, σb, σc, σd, σe} where σa = {{〈{a}, {A}〉, P,
〈{c}, {C}〉}}, σb = {{〈{b}, {B}〉, R, 〈{d}, {D}〉}}, σc = {{〈{c}, {C}〉, Q, 〈{e},
{∃T.(∃U.Et∃V.(∃U.E))}〉}}, σd = {{〈{d}, {D}〉, S, 〈{e}, {∃T.(∃U.Et∃V.(∃U.E))}〉}},
σe = {{〈{e}, {∃T.(∃U.Et∃V.(∃U.E))}〉, ∅, 〈∅, ∅〉}}. Then it connects the star-types ac-
cording to the matching function Ω. We get that σc and σd are successors of σa and σb
respectively and σe is a common successor of σc and σd. As σe is not saturated since→∃-
rule is applicable to σe as ∃T.(∃U.E t ∃V.(∃U.E)) ∈ coreC(σ), no compressed tableau
built for O by Algorithm 8. Now, Algorithm 9 performs Line 8 and checks if there is a
rule in Figure 6.2 or Figure 6.3 applicable on star-types in Λ.

2. σe is not saturated since →∃-rule is applicable to σe as ∃T.(∃U.E t ∃V.(∃U.E)) ∈
coreC(σe). According to action 1 and 2 of→∃-rule, a new copy σ1

e of σe is created and
a triple {〈{e}, {∃T.(∃U.E t∃V.(∃U.E))}〉, T, 〈∅,∃U.E t∃V.(∃U.E)〉} is added σ1

e . By
action 3 of the rule (Algorithm 6), σ1

e is added to Λ0 as it is clash-free. σ1
e is now a new

successor of σc and σd. Also new layer Λ1 is added to Λ and a successor ω1 of σ1
e with

core(ω1) = 〈∅,∃U.E t ∃V.(∃U.E)〉 is built and added to Λ1.

3. ω1 is not saturated since→t-rule is applicable to ω1 as ∃U.Et∃V.(∃U.E) ∈ coreC(ω1).
According to action 1 and 2 of→t-rule, two new copies ω1

1 and ω2
1 of ω1 with core(ω1

1) =
〈∅, {∃U.E t∃V.(∃U.E),∃U.E}〉 and core(ω2

1) = 〈∅, {∃U.E t∃V.(∃U.E),∃V.(∃U.E)}〉
are built. By action 3 (Algorithm 5), ω1

1 and ω2
1 are added to Λ1 as they are clash-free.

Also, two predecessors σ11
e and σ12

e of ω1
1 and ω2

1 respectively are built and added to Λ0.
This shows that when Algorithm 9 encounters a disjunction between two concepts it does
not duplicate the whole structure being built, but it builds instead two copies of the star-
type containing this disjunction. In this way, global nondeterminism is reduced to local
nondeterminism.

4. ω1
1 is not saturated since→∃-rule is applicable ω1

1 as ∃U.E in coreC(ω1
1). According to

action 1 and 2 of →∃-rule, a new star-type ω11
1 is created. By action 3 (Algorithm 6),

ω11
1 added to Λ1. Besides, a new layer Λ2 is added to Λ and a successor ψ1 of ω1

1 with
core(ψ1) = 〈∅, {E}〉 is built and added to Λ2.

5. ω2
1 is not saturated since→∃ rule is applicable to ω2

1 since ∃V.(∃U.E) ∈ coreC(ω2
1). Ac-

cording to action 1 and 2 of→∃-rule, a new star-type ω21
1 is with a triple {〈∅, {∃V.(∃U.E)}〉,

V, 〈∅, {∃U.E}〉} is added σ1
e . By action 3 (Algorithm 6), ω21

1 is added to Λ1 and a suc-
cessor ψ1 is added to Λ2. ψ1 is blocked by ω1

1 as coreC(ψ1) ⊆ coreC(ω1
1). Now there is no

rule in Figure 6.2 applicable on star-types in Λ and the algorithm checks if there exists
a rule in Figure 6.3 applicable to some sets of star-types in Λ0.

6. →LK is applicable to {σc, σd, σe} as σc and σd satisfy the link key (〈Q,S〉 linkkey 〈C,D〉)
through the same successors σe. Then the algorithm applies→LK to {σc, σd,
σe}. According to action 1 of→LK a new star-type σcd where σcd = {{〈{c, d},
{C,D}〉, Q, 〈{e}, {E}〉}, {〈{c, d}, {C,D}〉, S, 〈{e}, {E}〉}} is created. By action 3 (Al-
gorithm 7), σcd is added to Λ0. Besides, two new star-types predecessors σ′a and σ′b are
created and added to Λ0 where σ′a = {{〈{a}, {A}〉, P, 〈{c, d}, {C,D}〉}} and σ′b =
{{〈{b}, {B}〉, R, 〈{c, d}, {C,D}〉}}. So σcd becomes a successor of σ′a and σ′b.

98

7. Now,→LK rule is applicable to {σ′a, σ′b, σcd} since σ′a and σ′b satisfy the link key (〈P,R〉 linkkey 〈A,B〉)
through the same successor σcd. According to action 1 of→LK a new star-type σ′ab is cre-
ated where σ′ab = {{〈{a, b}, {A,B}〉, P, 〈{c, d}, {C,D}〉}, {〈{a, b}, {A,B}〉, R, 〈{c, d}, {C,D}〉}}.
But σ′ab is not added to Λ0 by action 3 (Algorithm 7). This because σ′ab is not clash-free
as a 6≈ b ∈ A and {a, b} ⊆ coreI(σ′ab).

Now check returns false and there is no rule in Figure 6.2 or Figure 6.3 applicable on star-types
in Λ and there is no compressed tableau built for O. Hence, the entailment is valid.

Check returns false because for every set of star-types {τ1, · · · , τk}, k ≤ 5 built from Λ0
by Line 3 of Algorithm 8, either →LK is applicable to {τ1, · · · , τk′}, k′ ≤ k with the link key
(〈Q,S〉 linkkey 〈C,D〉) or (〈P,R〉 linkkey 〈A,B〉) and hence the condition of Line 7 of Algo-
rithm 8 is not satisfied.

6.5 Properties of the algorithm

6.5.1 Soundness
Lemma 14 (Soundness). Let O be an ALC+LK ontology. If there exists a compressed tableau
of O then O is consistent.

Proof. Let O = 〈A, T ,LK〉 be an ALC+LK ontology. Let I and R be the sets of individuals
and roles of O.

Let us assume that there exists a compressed tableau CT = 〈Λ,Ω〉 of O, where Λ =
〈Λk〉nk=0. We consider the set Path of all paths of star-types in Λ, i.e. Path = {〈σ1, . . . , σm〉 |
m ≥ 1 and σk ∈ Λ for 1 ≤ k ≤ m}. If p ∈ Path, last(p) denotes the last element of p and
length(p) denotes its length; if p, p′ ∈ Path, p ·p′ denotes the concatenation of p and p′. If a ∈ I
then, by (3) of Definition 30, there exists a unique star-type σa ∈ Λ0 such that a ∈ coreI(σ).
We denote 〈σa〉 ∈ Path by pa.

We define an interpretation I = 〈∆I , ·I〉 from CT in the following way:

1. ∆I is inductively defined as follows:

(a) pa ∈ ∆I for every a ∈ I;

(b) if p ∈ ∆I and there exist τ ∈ last(p) and σ ∈ Λ such that σ ∈ Ω(last(p), τ) then, if
σ is not blocked then p · 〈σ〉 ∈ ∆I , otherwise, p · 〈b(σ)〉 ∈ ∆I .

2. For every a ∈ I, aI = pa.

3. For every concept name A in O, AI = {p ∈ ∆I | A ∈ coreC(last(p))}.

4. For every role name R ∈ R, RI = ∆R
1 ∪∆R

2 ∪∆R
3 , where

∆R
1 ={(pa, pb) : a, b ∈ I and there exists τ ∈ σa such that σb ∈ Ω(σa, τ) and

R ∈ tie(τ)}
∆R

2 ={(p, p · 〈σ〉) : p ∈ ∆I , σ ∈ Λ, σ is not blocked and there exists τ ∈ last(p)
such that σ ∈ Ω(last(p), τ) and R ∈ tie(τ)}

∆R
3 ={(p, p · 〈b(σ)〉) : p ∈ ∆I , σ ∈ Λ, σ is blocked and there exists τ ∈ last(p)

such that σ ∈ Ω(last(p), τ) and R ∈ tie(τ)}

99

Let us prove that I is indeed an interpretation. We only need to prove that ∆I 6= ∅ and that,
for every R ∈ R, RI ⊆ ∆I ×∆I .

Since I 6= ∅, then, there exists at least one individual a ∈ I. Thus, by (1.a), pa ∈ ∆I .
Therefore, ∆I 6= ∅. Now, let R ∈ R. By (1.a), ∆R

1 ⊆ ∆I ×∆I . By (1.b), ∆R
2 ⊆ ∆I ×∆I and

∆R
3 ⊆ ∆I ×∆I . This implies ∆R

1 ∪∆R
2 ∪∆R

3 ⊆ ∆I ×∆I . Therefore, RI ⊆ ∆I ×∆I .
Let us prove that I is a model of O, i.e. I satisfies all the assertions of A, all the GCIs of

T and all the link keys of LK. We start by proving that I satisfies all the assertions of A.
Assume that a ≈ b ∈ A. By the definition of I, aI = pa and bI = pb, where pa = 〈σa〉,

pb = 〈σb〉 and σa and σb are the unique star-types of Λ0 such that a ∈ coreI(σa) and b ∈
coreI(σb). Since CT is a compressed tableau, by (2) of Definition 32, we have σa = σb. This
implies pa = pb. Therefore, aI = bI , i.e. I |= a ≈ b.

Assume that a 6≈ b ∈ A. We proceed by contradiction. Assume I 6|= a 6≈ b. This means
aI = bI . Then, by the definition of I, pa = pb. Thus, σa = σb, where σa and σb are the unique
star-types of Λ0 such that a ∈ coreI(σa) and b ∈ coreI(σb). Let σ = σa = σb. Therefore, σ ∈ Λ
and a, b ∈ coreI(σ). By (2) of Definition 25, σ is not clash-free. This contradicts the fact that
CT is a compressed tableau, so it must be I |= a 6≈ b.

Assume that R(a, b) ∈ A. Since CT is a compressed tableau, by (5) of Definition 30,
there exists τ ∈ σa such that σb ∈ Ω(σa, τ) and R ∈ tie(τ). Then, by the definition of I,
(pa, pb) ∈ RI . Also, aI = pa and bI = pb. Therefore, (aI , bI) ∈ RI , which is the same as
I |= R(a, b).

Assume C(a) ∈ A. To prove I |= C(a), we use the following:

For every p ∈ ∆I , if E ∈ coreC(last(p)) then p ∈ EI (†)

Assume that (†) is true. Since C(a) ∈ A, by (4) of Definition 30, we have that C ∈ coreC(σa).
Then, C ∈ coreC(last(pa)). By (†), pa ∈ CI . Since aI = pa, we have aI ∈ CI , i.e. I |= C(a).

We now show that I satisfies all GCIs in T . Let C v D ∈ T . Let p ∈ CI . Since CT =
〈Λ,Ω〉 is a compressed tableau and last(p) ∈ Λ, by (1) of Definition 30, last(p) is saturated.
Since C v D ∈ T , by (5) of Definition 24, then nnf(C) or D belongs to coreC(last(p)). If
nnf(C) ∈ coreC(last(p)), by (†), p ∈ (nnf(C))I . This contradicts p ∈ CI because (nnf(C))I =
(¬C)I and (¬C)I ∩ CI = ∅. Therefore, it must be D ∈ coreC(last(p)). Then, by (†), p ∈ DI .
This proves I |= C v D.

Finally, we show that I satisfies all link keys in LK. Let λ = ({〈Pi, Qi〉}ni=1 linkkey
〈C,D〉) ∈ LK. Let p, q, r1, . . . , rn ∈ ∆I such that p ∈ CI , q ∈ DI , and (p, ri) ∈ P I

i and
(q, ri) ∈ QI

i for 1 ≤ i ≤ n. We have to prove that p = q.
Assume that there exists i0 ∈ {1, . . . , n} such that length(ri0) ≥ 2. Then, (p, ri0) ∈ ∆Pi0

2 ∪
∆Pi0

3 and (q, ri0) ∈ ∆Qi0
2 ∪ ∆Qi0

3 . Therefore, there exist σ, σ′ ∈ Λ such that ri0 = p · 〈σ〉 and
ri0 = q · 〈σ′〉. Then, p · 〈σ〉 = q · 〈σ′〉, and, thus, p = q.

Assume that length(ri) = 1 for every 1 ≤ i ≤ n. Then, (p, ri) ∈ ∆Pi
1 and (q, ri) ∈ ∆Qi

1 for
every 1 ≤ i ≤ n. Therefore, there exist a, b1, . . . , bn ∈ I and τ1, . . . , τn ∈ σa such that p = pa,
ri = pbi

, σbi
∈ Ω(σa, τi) and Pi ∈ tie(τi) for 1 ≤ i ≤ n, and there exist c, d1, . . . , dn ∈ I and

τ ′1, . . . , τ
′
n ∈ σa such that q = pc, ri = pdi

, σdi
∈ Ω(σa, τ ′i) and Qi ∈ tie(τ ′i) for 1 ≤ i ≤ n.

Therefore, pbi
= pdi

for 1 ≤ i ≤ n. Since, for any x ∈ I, px = 〈σx〉, then σci
= σdi

for 1 ≤ i ≤ n. Let σi = σbi
= σdi

for 1 ≤ i ≤ n. Then, σi ∈ Ω(σa, τi) ∩ Ω(σc, τ ′i), thus
Ω(σa, τi) ∩ Ω(σc, τ ′i) 6= ∅ for 1 ≤ i ≤ n. Then, σa and σc weakly satisfy the condition of λ.
Since CT = 〈Λ,Ω〉 is a compressed tableau, by (3) of Definition 32, we have {C, nnf(C)} ∩

100

coreC(σa) 6= ∅ and {D, nnf(D)} ∩ coreC(σb) 6= ∅. Assume that nnf(C) ∈ coreC(σc). Then, by
(†), we have p ∈ (nnf(C))I , which contradicts p ∈ CI . Thus, it must be C ∈ coreC(σa). In
a similar manner, D ∈ coreC(σc). Therefore, σa and σc satisfy the condition of λ. By (4) of
Definition 32, σa = σc. This implies pa = pc, thus p = q.

It remains to prove (†). Let p ∈ ∆I and assume E ∈ coreC(last(p)). We have to prove that
p ∈ EI . We will proceed by induction on the length of E, but, before anything else, note that,
since CT = 〈Λ,Ω〉 is a compressed tableau, then last(p) is saturated and clash-free.

1. Assume E = A, where A is a concept name. We have A ∈ coreC(last(p)). By the
definition of I, AI = {p ∈ ∆I | A ∈ coreC(last(p))}. Therefore, p ∈ AI .

2. Assume E = E1uE2. We have that E1uE2 ∈ coreC(last(p)). Since last(p) is saturated,
then E1, E2 ∈ coreC(last(p)). By induction hypothesis, p ∈ EI

1 and p ∈ EI
2 , which

implies p ∈ (E1 u E2)I , thus p ∈ EI .

3. Assume E = E1 t E2. We have that E1 t E2 ∈ coreC(last(p)). Since last(p) is
saturated, then {E1, E2} ∩ coreC(last(p)) 6= ∅. Therefore, E1 ∈ coreC(last(p)) or
E2 ∈ coreC(last(p)). By induction hypothesis, p ∈ EI

1 or p ∈ EI
2 , which implies

p ∈ (E1 t E2)I , thus p ∈ EI .

4. Assume E = ∀R.D. We have ∀R.D ∈ coreC(last(p)). Let p′ ∈ ∆I such that (p, p′) ∈
RI . We have to prove that p′ ∈ DI . Since (p, p′) ∈ RI , by the definition of I, there are
three possibilities :

(a) There exist a, b ∈ I and τ ∈ σa such that (p, p′) = (pa, pb), σb ∈ Ω(σa, τ) and
R ∈ tie(τ).

(b) There exist σ ∈ Λ and τ ∈ last(p) such that σ is non blocked, (p, p′) = (p, p · σ),
σ ∈ Ω(last(p), τ) and R ∈ tie(τ).

(c) There exist σ ∈ Λ and τ ∈ last(p) such that σ is blocked, (p, p′) = (p, p · b(σ)),
σ ∈ Ω(last(p), τ) and R ∈ tie(τ).

Consider the case (b). Since last(p) is saturated, ∀R.D ∈ coreC(last(p)) and R ∈ tie(τ),
then D ∈ tailC(τ). Now, since D ∈ tailC(τ) and σ ∈ Ω(last(p), τ), by (1) of Defini-
tion 28, D ∈ coreC(σ). Therefore, D ∈ coreC(last(p′)). By the induction hypothesis,
p′ ∈ DI . This ends the proof in this case. The proof in the case (a) is similar. Con-
sider (c). We can proceed like in (b) to obtain D ∈ coreC(σ). Since σ is blocked, then
coreC(σ) ⊆ coreC(b(σ)). Therefore, D ∈ coreC(σ), thus D ∈ coreC(last(p′)). By the
induction hypothesis, p′ ∈ DI .

5. Assume E = ∃R.D. We have ∃R.D ∈ coreC(last(p)). We have to prove that p ∈
(∃R.D)I , i.e. there exists p′ ∈ ∆I such that p′ ∈ DI and (p, p′) ∈ RI . Since last(p) is
saturated, there exists a triple τ ∈ last(p) such that R ∈ tie(τ) and D ∈ tailC(τ). Then,
τ is not dummy, and, thus, Ω(last(p), τ) is not empty, i.e. there exists σ ∈ Λ such that
σ ∈ Ω(last(p), τ). By the definition of Ω, tailC(τ) = coreC(σ). Thus, D ∈ coreC(σ).
There are two cases: σ is blocked or not. Assume that σ is not blocked and let p′ = p·〈σ〉.
By the definition of I, (p, p′) ∈ RI . Also, D ∈ coreC(last(p′)). By the induction
hypothesis, it follows p′ ∈ DI . Therefore, p ∈ (∃R.D)I . Assume that σ is blocked and

101

let p′ = p · 〈b(σ)〉. By the definition of I, (p, p′) ∈ RI . Since coreC(σ) ⊆ coreC(b(σ)),
it follows D ∈ coreC(b(σ)), and, thus, D ∈ coreC(last(p′)). By the induction hypothesis,
p′ ∈ DI . Therefore, p ∈ (∃R.D)I .

6. Assume E = ¬D. We have ¬D ∈ coreC(last(p)). Assume that D is a concept name.
Since last(p) is clash-free, thenD 6∈ coreC(last(p)), and, by the definition of I, it follows
p 6∈ DI , i.e. p ∈ (¬D)I . If D is not a concept name, we can proceed by induction on the
length of D to prove that p ∈ (¬D)I .

6.5.2 Completeness
Lemma 15 (Completeness). Let O = 〈A, T ,LK〉 be an ALC+LK ontology with I a set of
individuals. If O is consistent, then Algorithm 9 answers Yes with O as input.

Proof. Assume that there is a model I = 〈∆I , ·I〉 of O. First, we prove that Algorithm 9
answers Yes if it builds successfully a pre-compressed tableau 〈Λ,Ω〉 which involves a com-
pressed tableau. Since 〈Λ,Ω〉 evolves monotonically, if there is a compressed tableau involved
in 〈Λ,Ω〉 at a moment, then Algorithm 8 can detect it whenever Algorithm 8 is called later
according to Lemma 13. Moreover, Algorithm 8 is called by each iteration of the loop in Al-
gorithm 9, and there is at least one iteration of the loop executed. This implies that if there is
a compressed tableau, then it is detected by Algorithm 8 which makes Algorithm 9 return Yes.
It remains to prove that Algorithm 9 can build a compressed tableau involved in 〈Λ,Ω〉.

For this purpose, we use Lemmas 10, 11, 12 to guarantee that 〈Λ,Ω〉 preserves pre-compressed
tableau structure when it is expanded by applying rules in Figures 6.2 and 6.3. In addition, we
need a function π that associates a non-empty subset X ⊆ ∆I to some star-type σ in 〈Λ,Ω〉,
i.e. π(σ) = X . This function allows to maintain clash-freeness of the star-types of the domain
of π when expanding 〈Λ,Ω〉 by rules. For that, π needs to preserve the following conditions
when applying a rule:

For each σ ∈ Λ, if C ∈ coreC(σ) then π(σ) ⊆ CI (6.1)

For each σ ∈ Λ, if a, b ∈ coreI(σ) ∩ I then {aI} = {bI} = π(σ) (6.2)

If a 6≈ b ∈ A, {a, b} ∩ coreI(σ) 6= ∅ with σ ∈ Λ, then {aI , bI} 6⊆ π(σ) (6.3)
For each σ, σ′ ∈ Λ, if σ′ ∈ Ω(σ, ρ) and R ∈ tie(ρ) then (6.4)

x ∈ π(σ), y ∈ π(σ′) imply 〈x, y〉 ∈ RI

For each σ, σ′ ∈ Λ such that π(σ) = π(σ′), a ∈ coreI(σ) ∩ coreI(σ′), (6.5)
it holds that either core(σ) ⊆ core(σ′) or core(σ′) ⊆ core(σ)

Assume that such a function π exists. We show that execution of rules leads to obtaining a
subset Σ of the domain of π which forms a compressed tableau.

We use S = 〈σ1, . . . , σn〉 to denote a sequence of star-types included in the domain of π
such that σi is transformed into σi+1 by applying a rule in Figures 6.2 and 6.3. We denote
head(S) = σ1 if σ1 is created from “scratch" by the algorithm (via Init or matchTriple), and
tail(S) = σn if σn is transformed into a star-type with clash, or no rule which is applicable to

102

σn or leads to changing Ω of σn. Note that a star-type may be transformed into another star-
type which exists already in the current 〈Λ,Ω〉. A sequence S is called final if no rule which
is applicable to tail(S) or leads to changing Ω of tail(S), and non final otherwise. We use Σ to
denote the set of tail(S) for all final S. Note that Σ is well defined since tail(S) always exists
for all final sequence S due to termination of Algorithm 9 and non-applicability of the rules to
the whole Σ. We prove the following properties.

For each σ ∈ Σ, σ is clash-free (6.6)
For each σ ∈ Σ and non dummy ρ ∈ σ, there is some σ′ ∈ Σ s.t. σ′ ∈ Ω(σ, ρ) (6.7)
For each a ∈ I, there is a final sequence S such that (6.8)

a ∈ coreI(head(S)) and a ∈ coreI(tail(S))
For each a ∈ I, there is a unique σ ∈ Σ such that a ∈ coreI(σ) (6.9)

We show Property (6.6). Let σ ∈ Σ. Due to Condition (6.1), it is not possible that
{A,¬A} ⊆ coreC(σ) since otherwise π(σ) ⊆ AI , π(σ) ⊆ ¬AI and π(σ) 6= ∅. Assume
that σ ∈ Σ and a, b ∈ coreI(σ). Due to Condition (6.2) we have aI = bI ∈ π(σ). If a 6≈ b ∈ A
then {aI , bI} 6⊆ π(σ) due to Condition (6.3). Therefore, σ is clash-free.

We show Property (6.7). Let σ ∈ Σ. By Lemmas 10, 11 and 12, for each non dummy ρ ∈ σ
it holds that Ω(σ, ρ) 6= ∅. Let ω1 ∈ Ω(σ, ρ) such that there is some rule which is applicable to
ω1. Due to Lemmas 10, 11 and 12 and Property (6.6), ω1 is transformed into ω2 without clash
and ω2 ∈ Ω(σ, ρ). By applying the same argument for ωi with i ≥ 2, we obtain a final sequence
S = 〈· · · , ω1, · · · , ωn〉 such that ωn ∈ Ω(σ, ρ). Hence, Property (6.7) is proved.

We now show Property (6.8). For each individual a ∈ I, Algorithm 4 generates a star-type
σa with a ∈ coreI(σa). We initialize S to 〈σa〉. Let σi ∈ S such that a ∈ coreI(σi), σi is
clash-free and aI ∈ π(σi). If there is some rule is applicable to ωi, then ωi is transformed into
ωi+1 such that a ∈ coreI(σi+1) (monotonicity). We add σi+1 to S. This implies that there is a
sequence S that is final and a ∈ coreI(tail(S)).

Let’s prove Property (6.9). Let S = 〈σ1, · · · , σn〉 be a sequence of star-types as defined
above with a ∈ coreI(σi) for all i. We show that every rule transforms σi to a unique σi+1.
Indeed, the non-deterministic rule such as Rule→t, Rule→chLK1 , Rule→chLK2 can lead to
transforming σi to 2 different star-types σi+1 and σ′i+1 with C1 ∈ core(σi+1), C2 ∈ core(σ′i+1)
and C1 6= C2. However, this is not possible due to Condition (6.5). This implies that S is
unique.

The merging rules Rule→LK and Rule→≈ can lead to transforming σi to 2 different star-
types σi+1 and σ′i+1, with core(σi+1) = core(σ′i+1). Since core(σi+1) = core(σ′i+1), according to
Item 2b of Definition 26, and due to the non-applicability of rules and the definition of merging,
we obtain that σi+1 = σ′i+1.

We now show that Σ forms a compressed tableau.

1. Clash-freeness. This a consequence of Property (6.6).

2. Non-applicability of the rules in Figures 6.2 and 6.3. For the rules in Figure 6.2, non-
applicability is due to the definition of Σ. For Rule→chLKi

, i ∈ {1, 2} and Rule→LK in
Figure 6.3, if all star-types involved in a link key λ are contained in Σ and λ is applicable,
then Algorithm 9 does not terminate. Thus, non-applicability of the rules in Figure 6.3
over Σ is ensured as well. The same argument can be used for Rule→≈.

103

3. Interpretation of individuals. We show that for each a ∈ I, there is a unique σ ∈ Σ such
that a ∈ coreI(σ). Indeed, for each individual a ∈ I Algorithm 4 generates a star-type σ
with a ∈ coreI(σ). Due to Property (6.8), there is a sequence S such that head(S) = σ
and tail(S) ∈ Σ. Since Algorithm 9 never removes anything, we have a ∈ coreI(tail(S)).
Due to Property (6.9), tail(S) is unique in Σ.

4. Satisfaction of concept assertions. We show that for each assertion C(a) ∈ A there is
a star-type σ ∈ Σ such that a ∈ coreI(σ) and C ∈ coreC(σ). Indeed, for each assertion
C(a) Algorithm 4 generates a star-type σ with C ∈ coreC(σ) and a ∈ coreI(σ). Due
to Property (6.8), there is a sequence S such that head(S) = σ and tail(S) ∈ Σ. Since
Algorithm 9 never removes anything, we have a ∈ coreI(tail(S)) and a ∈ coreC(tail(S)).

5. Satisfaction of role assertions. We show that for each assertion R(a, b) ∈ A there are
two star-types σ, σ′ ∈ Σ such that a ∈ coreI(σ), b ∈ coreI(σ′) and σ′ is an R-successor
of σ. Indeed, for each assertion R(a, b) Algorithm 4 generates a star-type ω with ν ∈ ω
such that a ∈ coreI(ω), b ∈ tailI(ν) and R ∈ tie(ν). Due to Property (6.8), there is a final
sequence S such that ω = head(S), tail(S) ∈ Σ with a ∈ coreI(tail(S)), R ∈ tie(ρ) and
b ∈ tailI(ρ) for some ρ ∈ tail(S). Due to Property (6.7), there is some σ′ ∈ Σ such that
σ′ ∈ Ω(tail(S), ρ). By the definition of Ω, we have b ∈ coreI(σ′).

6. We show Condition 4 in Definition 32. Assume there is a link key λ involves σ1, σ2 and
other star-types such that all of them are contained in Σ. Due to the definition of link keys
and the absence of inverse roles, we have σ1 and σ2 must be nominal with a ∈ coreI(σ1)
and b ∈ coreI(σ2) for some individuals a, b. Due to non-applicability of Rule→LK over
Σ,

there is a nominal star-type ω such that core(σ1) ⊆ core(ω) and core(σ2) ⊆ core(ω). If
ω ∈ Σ then, by Property (6.9) we have σ1=σ2=ω. Assume ω /∈ Σ. There are 3 sequences
Sσ1 , Sσ2 and Sω containing σ1, σ2 and ω respectively such that tail(Sσ1), tail(Sσ2), tail(Sω) ∈
Σ by definition. Due to Property (6.9) we have tail(Sσ1)=tail(Sσ2)=tail(Sω)=σ1=σ2.

7. We show Condition 2 in Definition 32. Assume that a ≈ b ∈ A and there are nominal σ1
and σ2 with a ∈ coreI(σ1) and b ∈ coreI(σ2). We can use the same argument for proving
Condition 4.

8. Condition 3 in Definition 32 is a consequence of non-applicability of Rule→chLKi over
Σ.

9. Well-definedness of matching function. This a consequence of Property (6.7).

Before proving presevation of Conditions (6.1-6.5), we have to prove that these condition
hold for the initial state. When Algorithm 4 creates a nominal star-type σa for each individual
a ∈ I, we define π(σa) = {aI}. Hence, aI ∈ CI for all C(a) ∈ A and Conditions (6.1-6.5)
are satisfied since I is a model. If Algorithm 4 adds a non dummy triple ρ to σa by Line 20 for
some R(a, b) ∈ A with R ∈ tie(ρ) and b ∈ tailI(ρ), then σb ∈ Ω(σa, ρ). Let x ∈ π(σa) and
y ∈ π(σb). By the definition of π, we have x = aI and y = bI . Since I is a model we have
〈x, y〉 = 〈aI , bI〉 ∈ RI . This implies that Conditions (6.4) is also satisfied.

We now show that Conditions (6.1-6.5) above are preserved when extending π after each
application of rules.

104

1. Rule →u is applied to σ ∈ Λi due to C u D ∈ coreC(σ). According to the rule and
Lemma 10, a copy σ′ of σ with C,D ∈ coreC(σ′) is created and added to Λi. We define
π(σ)=π(σ′), and π(ω)=π(ω′) for each neighbor ω of σ which is changed to ω′.

(a) We show that Condition (6.1) is preserved. We have C u D ∈ coreC(σ) ⊆ π(σ),
and thus π(σ) ⊆ (C u D)I by Condition (6.1). Since I is a model, we have
(CuD)I ⊆ CI and (CuD)I ⊆ DI . This implies that π(σ) ⊆ CI and π(σ) ⊆ DI .
By definition, we have π(σ)=π(σ′), and thus π(σ′) ⊆ CI and π(σ′) ⊆ DI .

(b) Conditions (6.2) and (6.4) are preserved since the algorithm never removes anything
and π(σ)=π(σ′).

(c) Condition (6.3) is preserved since this rule does not add or remove any individual
and π(σ)=π(σ′).

(d) We show that Condition (6.5) is preserved. Let ω be a star-type such that π(ω) is
defined. Assume core(ω) ⊆ core(σ). We have core(ω) ⊆ core(σ) ⊆ core(σ′).
Assume core(σ) ⊂ core(ω). This implies that there are two different nominal se-
quences S=〈σ1, · · · , σk〉 and S ′=〈ω1, · · · , ωk′〉 such that σ1=ω1, σk=σ and ωk′=ω.
Hence, there is some max(k, k′) ≥ h > 1 such that core(ωj)=σj with j ≤ h and
core(σh+1) 6⊆ ωh+1 and core(ωh+1) 6⊆ σh+1, which is caused by a non-deterministic
rule. This contradicts Condition (6.5). Therefore, core(σ) ⊆ core(ω) implies
core(σ)=core(ω), and thus we obtain core(ω) ⊆ core(σ) ⊆ core(σ′).

2. Rule →t is applied to σ ∈ Λi due to C1 t C2 ∈ coreC(σ). According to the rule and
Lemma 10, two copies σ1 and σ2 of σ with Cj ∈ coreC(σj) is created and added to Λi

with 1 ≤ j ≤ 2. Due to Condition 6.1, we have π(σ) ⊆ (C1 t C2)I . Since I is a model,
we have (C1 t C2)I = CI

1 ∪ CI
2 . Since π(σ) 6= ∅ we have π(σ) ∩ CI

j 6= ∅ for some
1 ≤ j ≤ 2. Thus, we define π(σj) = (π(σ) ∩ CI

j) ∪ {aI} if π(σ) ∩ CI
j 6= ∅ for some

a ∈ coreI(σ). We have π(σj) ⊆ π(σ) since aI ∈ π(σ) and π(σ) ∩ CI
j ⊆ π(σ).

(a) We show that Condition (6.1) is preserved. Assume D ∈ coreC(σj). If D ∈
coreC(σ) then π(σj) ⊆ π(σ) ⊆ DI due to Condition (6.1). IfD=Cj then π(σj)=π(σ)∩
CI
j ⊆ DI .

(b) We show that Condition (6.2) is preserved. Let a, b ∈ coreI(σj). This implies
that a, b ∈ coreI(σ) since coreI(σj)=coreI(σ). Due to Condition (6.2), we have
aI=bI ∈ π(σ). By definition, aI=bI ∈ π(σj).

(c) Condition (6.4) is preserved because π(σj) ⊆ π(σ).

(d) We show that Condition (6.3) is preserved. Assume {a, b}∩coreI(σj) 6= ∅. This im-
plies that {a, b} ∩ coreI(σ) 6= ∅ since coreI(σj) = coreI(σ). Due to Condition (6.2),
we have {a, b} 6⊆ π(σ). By definition, we have π(σj) ⊆ π(σ). This implies that
{a, b} 6⊆ π(σj).

(e) Note that π is defined for one star-type σj with some 1 ≤ j ≤ 2. Hence, to show
Condition (6.5), we can use the same argument for the case of Rule→u.

3. Rule →∃ is applied to σ ∈ Λi due to ∃R.C ∈ coreC(σ) (i.e. σ is not blocked). The
rule creates a copy σ′ of σ, and adds new triple ρ to σ′ such that tie(ρ) = {R} and

105

tail(ρ) = {C}. Lemma 11 affirms that Algorithm 6 adds to Λ the created star-type σ′

and an ρ-successor ω of σ′. We define π(σ′) = π(σ). If ω is not defined yet, we define
π(ω) = CI . Since I is a model, we have π(ω) = CI 6= ∅. Thus, Conditions 6.1, 6.2,
6.4 and 6.3 are satisfied for the extension π(σ′) = π(σ). They are also satisfied for the
extension π(ω) since π(ω) = CI and π(ω) is fresh. For Condition (6.5), we can use the
same argument.

4. Rule→∀ is applied to σ ∈ Λi due to ∀R.C ∈ coreC(σ) and a triple ρ ∈ σ withR ∈ tie(ρ).
The rule creates a copy σ′ of σ, a copy ρ′ of ρ, adds C to tail(ρ′) and replaces ρ by ρ′

in σ′. Then, Algorithm 6 adds σ′ to Λ. By Lemma 11, for each ρ-successor ω of σ, the
algorithm creates also a copy σ′ of σ, performs the change core(ω′) = tail(ρ′) and adds
σ′ to Λ such that ω′ is an ρ′-successor of σ′. We define π(σ′) = π(σ) and π(ω′) = π(ω).

By definition, π(σ) 6= ∅, π(ω) 6= ∅. Thus, there are x ∈ π(σ) and y ∈ π(ω). Due
to Condition (6.4), we have 〈x, y〉 ∈ RI for all x ∈ π(σ) and y ∈ π(ω). Due to
Condition (6.1), we have x ∈ (∀R.C)I . Since I is a model, we have y ∈ CI . Hence,
π(ω) ⊆ CI . This implies that Condition (6.1) is preserved. The other conditions are
preserved since π(σ′) = π(σ) and π(ω′) = π(ω). For Condition (6.5), we can use the
same argument for the case of Rule→u.

5. Rule→≈ is applied to σ1, σ2 ∈ Λ due to a ∈ coreI(σ1), b ∈ coreI(σ2) and a ≈ b ∈ A, and
thus σ1, σ2 ∈ Λ0. The rule creates a set σ1 ⊕ σ2 containing two star-type σ0 and σ′0 such
that core(σ0)=core(σ′0)=core(σ1) ∪ core(σ2) with triples and Algorithm 7 adds them to
Λ such that each successor of σi, i ∈ {1, 2} is a successor of τ ∈ {σ0, σ

′
0}. Moreover, for

each τ ∈ {σ0, σ
′
0}, Algorithm 7 creates a copy ω′ of each ρ-predecessor ω of σi, creates

a copy ρ′ of ρ, sets tail(ρ′)=core(τ), replaces ρ by ρ′ in ω′ and adds it to Λ such that
τ is a ρ′-successor of ω′ due to Lemma 12. We now define π(τ) = π(σ1) ∪ π(σ2) and
π(ω′) = π(ω). Analogously, we can check all Conditions (6.1), (6.2), (6.3) and (6.4) .
For Condition (6.5), we can use the same argument for the case of Rule→u.

6. Rule→chLK1 is applied to σ1, σ2, · · · , σn ∈ Λ and change σ1, σ2. The condition of link
key implies that σ1, σ2 ∈ Λ0.

This rule creates 2 copies σ1 and σ2 of σ, and add C to core(σ1) and ∼C to core(σ2).
Then, we define π(σj) = (π(σ) ∩ CI

j) ∪ {aI} if π(σ) ∩ CI
j 6= ∅ for some a ∈ coreI(σ)

where Cj = C and Cj = ∼C. We can use the same arguments as those for Rule→t to
show that all conditions are preserved. Note that π is defined for one star-type σj with
some 1 ≤ j ≤ 2. For Condition (6.5), we can use the same argument for the case of Rule
→u.

7. Rule→chLK2 is applied to σ1, σ2, · · · , σn ∈ Λ and change σ1, σ2. Analogously.

8. Rule →LK is applied to σ1, σ2, · · · , σn ∈ Λ and change σ1, σ2 with a link key λ. The
condition of link key implies that σ1, σ2 ∈ Λ0. We can use the same argument as given
for Rule→≈.

106

6.5.3 Complexity
This subsection analyzes and provides the complexity of Algorithm 9. Lemmas 16 is funda-
mental for analyzing the complexity of Algorithm 4, 5, 6, 7, 8, and 9.

Lemma 16 (Size of a compressed tableau). Let O = 〈A, T ,LK〉 be an ALC+LK ontology.
Let 〈Λ,Ω〉 be a pre-compressed tableau for O with Λ=〈Λ0, · · · ,Λn〉. The size of 〈Λ,Ω〉 is
bounded by an exponential function in the size of O.

Proof. We denote by ` the size of O. By construction, sub(O) is the set of all sub-concepts
occurring in O and their negated form. It holds that if a concept is represented as a string then
a sub-concept is represented as a substring. Then the size of sub(O), denoted by c is bounded
by 2× (`× (`+ 1)/2), c ≤ 2× `× (`+ 1)/2 ≤ c1`

2 where c1 is a constant large enough.
In addition, since the size of a concept or role is bounded by `, the size of a triple, denoted

‖ρ‖, is bounded by (2c` + `). Hence, ‖ρ‖ ≤ c2`
3 with c2 = 2c1 + 1. We now calculate the

number of triples in a star-type σ where σ ∈ Λ. For every triple ρ ∈ σ, ρ is added to σ by init
algorithm due to a role assertion in A or by→∃-rule due to an existential concept in coreC(σ).

This is also the case for star-types generated by the merging operation defined in Defini-
tion 26. Suppose that there exists a triple ρ ∈ ωi, if tailI(ρ) = ∅, this means that there exists a
triple ρ′ ∈ σi with tie(ρ′) = tie(ρ) and tail(ρ′) = tail(ρ) (by Item 2a of Definition 26). Thus
ρ′ is added to σi by →∃-rule, thus ρ′ is the unique triple in σi satisfying a concept assertion
in core(σi). As a result, ρ is the unique triple in ωi satisfying the same concept assertion in
core(ωi).

Now, suppose that there exists a triple ρ ∈ ωi, such that R ∈ tie(ρ) and b ∈ tail(ρ)
(tailI(ρ) 6= ∅), this means that there is some triple ρ′ ∈ σi with tie(ρ′) = tie(ρ) and tail(ρ′) =
tail(ρ) or ρ′ ∈ σj with tie(ρ′) = tie(ρ) and tail(ρ′) = tail(ρ), 1 ≤ i 6= j ≤ 2 and there is no
ρ′′ ∈ σi with a ∈ headI(ρ′′), R ∈ tie(ρ′′), b ∈ tailI(ρ′′). We get that for each role assertion
R(a, b) ∈ A there is a unique triple ρ ∈ ωi where R ∈ tie(ρ) and b ∈ tail(ρ).

We get that the number of triples in a star-type σ is bounded by the number of role assertions
in A and existential concepts in core(σ). We get that the number of triples in σ is bounded by
c1`

2 + `.
It follows that the size of a star-type, denoted by ‖σ‖, is bounded by (c1`

2 +`)×‖ρ‖ ≤ c3`
5

with c3 a constant large enough.
To calculate the size of 〈Λ,Ω〉 we have to first calculate the size of each layer Λi, 0 ≤

i ≤ n and then the number of layers in Λ. We now determine the size of each layer Λi,
denoted |Λi|, with 0 ≤ i ≤ n. Since each star-type has at most c1`

2 + ` triples, we obtain
|Λi| ≤ 2c1`2+`. Moreover, any star-type in a layer Λk with k = 2c1`2 must be blocked since,
otherwise, there must exist k star-types whose cores are different, which is not possible. This
implies that n ≤ 2c1`2 where n is the number of layers. Hence, the size of Λ is bounded by
n× ‖Λi‖ × ‖σ‖ ≤ 2c1`2 × 2c1`2+` × c3`

5 ≤ 2C`2 for C a constant large enough. This ends the
proof.

Lemma 17 (Complexity). Let O = 〈A, T ,LK〉 be an ALC+LK ontology with a set of indi-
viduals I. Algorithm 9 runs in exponential time in the size of O.

Proof. Assume that 〈Λ=〈Λi〉ni=0,Ω〉 is the pre-compressed tableau built by Algorithm 9. We
denote by ` the size of O, i.e., ‖O‖=`. We analyze the complexity of each step.

107

1. Line 1 of the algorithm calls init which according to Item 2 of Lemma 9 runs in polyno-
mial time in `.

2. Line 5 calls check which according to Item 2 of Lemma 13 runs in polynomial time in
the size of 〈Λ,Ω〉.

3. Line 8 traverses each layer in Λi ∈ Λ and each star-type σ in Λi, i ≥ 0 such that there
exists a rule r in Figure 6.2 applied on σ and σ is not in processedALC. Checking if there is
a rule r in Figure 6.2 necessitates only to traverse the components of σ, the set of GCIs in
T . Checking if σ belongs to processedALC is bounded by the size of processedALC which
is bounded by the number of star-types in Λ. The application of r on σ in Line 10 of
the algorithm involves calling matchCore algorithm once if r is→v rule or→u-rule and
twice if r is→t-rule and calling once and matchTriple algorithm if r is→∀ or→∃-rule.
According to Item 3 of Lemma 10, Item 3 of Lemma 11 and Item 3 of Lemma 12, each
of these algorithms runs in polynomial time in the size of 〈Λ,Ω〉.
Then the complexity of the loop between Lines 8 and 12 is bounded by a polynomial
time in the size of 〈Λ,Ω〉.
• Lines 13 traverses each set {ω1, . . . , ωn} where ωi ∈ Λ0 and n is the greatest number
of star-types involved in a link key and {ω1, . . . , ωn} is not in processedLK. The number
of different sets of star-types of size n in Λ0 and the size of processedLK is bounded by
|Λ0|n.

So the complexity of Lines 13 is bounded by |Λ0|n×|Λ0|n. Line 14 checks if their exists
a rule r in Figure 6.3 applicable on {ω1, . . . , ωn}. Then its complexity is bounded by
2n(|LK|+|A|). The application of r on {ω1, . . . , ωn} in Line 15 of the algorithm involves
calling twice matchCore if r is→chLK1 or→chLK2 and once matchMerge if r is→LK
or →≈. Each of these algorithms runs in polynomial time in the size of 〈Λ,Ω〉. Then
the complexity of the loop between Lines 13 and 19 is bounded by |Λ0|2n × 2n(|LK| +
|A|) × f(|Λ|) where f(|Λ|) is a polynomial function that bounds the complexity of
matchCore and matchMerge. By Lemma 16, |Λ| and |Λ0| are bounded an exponential
function in the size of O. Moreover, the number of iterations of the loop at Line 3 is
bounded max(|processedALC|, |processedLK|) ≤ max(|Λ|, |Λ0|n). Hence, it follows that
Algorithm 9 runs in exponential time in the size of O.

By Lemma 16 we have that the size of 〈Λ,Ω〉 is bounded by an exponential function in the
size of O. Since Algorithm 9 runs in polynomial time in the size of 〈Λ,Ω〉. It follows that
Algorithm 9 runs in exponential time in the size of O.

6.6 Extending ALC+LK with inverse roles
The compressed tableau algorithm given in Section 6.3 is inspired from the compressed tableau
for the description logic SHOIQ [16]. This supports it extension for reasoning with link keys
in more expressive description logics. In particular, extending ALC+LK with inverse roles
will increase the scope of applications of link key reasoning. Link keys containing inverse
properties are relevant for interlinking a pair of datasets which uses opposite ways to express a
fact. For example the link key ({〈parent−, enfant〉} linkkey 〈Person, Personne〉) is relevant

108

for linking a pair of datasets using the respectively the properties parent and enfant to express
the relation between a child and his parent.

Adding inverse roles to ALC+LK necessitates to express the bi-directional relations be-
tween individuals. This translates into modifying the matching between star-types in the con-
text of compressed tableau. The first step for extending the compressed tableau algorithm with
inverse roles is to change the definition of the matching function and the definitions using it.
We give in the appendix all the necessary definitions that allows for defining the compressed
tableau for an ALCI+LK ontology. We also prove that a model from the compressed tableau
defined for ALCI+LK can be extracted. These are the first steps towards extending the algo-
rithm given in Section 6.3 for reasoning in ALCI+LK.

It is worth mentioning that, in contrast to ALC+LK, in ALCI+LK new individuals (non-
nominal star-types) can satisfy the condition of a given link key. This is due to the fact they can
be matched to the same set of named individuals (nominal star-types). As a result, reasoning in
ALCI+LK will force to merge these new star-types.

6.7 Conclusion
This chapter provides a worst-case optimal tableau algorithm for deciding the consistency of
an ALC+LK ontology. This algorithm is based on the compressed tableau algorithm for the
description logic SHOIQ [16] and it is directed by the application of a set of completion rules
including link keys and equality rules. The following chapter explains the implementation of
this algorithm and provides a number of proof-of-concept evaluations.

109

Chapter 7

Implementation and Evaluations

“ When I am working on a problem, I never think about beauty. I think only of how to solve
the problem. But when I have finished, if the solution is not beautiful, I know it is wrong.”

B. Fuller

7.1 Introduction
In this chapter, we describe the architecture of StaréLK, the reasoner that implements the com-
pressed tableau algorithm for the description logic ALC+LK given in Chapter 6. Then we
report on a pair of sets of experiments. The first one aims at testing the different functionalities
of the algorithm, notably, the ALC and LK completion rules, matching, and blocking. The sec-
ond one aims at showing the usefulness of reasoning with link keys for detecting inconsistent
link keys, before using them for a specific data interlinking task.

7.2 StaréLK architecture
StaréLK 1 is an open-source software written in Java. It is inspired from Staré 2, the reasoner
that implements the compressed tableau algorithm the compressed tableau for SHOIQ [16].
The reasoner architecture is divided into three complementary modules (Figure 7.1). The first
module (Subsection 7.2.1) is concerned with parsing the union of the input datasets, ontologies
and ontology alignments. The second module (Subsection 7.2.2) parses the input link keys. The
third part (Subsection 7.2.3) implements the compressed tableau algorithm given in Chapter 6.
The reasoner uses the OWL API and the ALIGNMENT API to parse the inputs.

1https://github.com/anonymousReasoner/Stare
2https://github.com/cleduc/stare

110

Reasoning Module

Link keys
Parsing link

key module

Parsing data sets

,ontologies & alig

-nments module

OWL API Alignment API

ABox TBox LKBox

The union

of the input

datasets,

ontologies &

alignments

communicates

input

Figure 7.1 – StaréLK architecture.

7.2.1 Datasets, ontologies, and alignments parser module
This module takes as input a file containing the union of the pair of datasets D1 and D2, ontolo-
gies, and their alignments (in .rdf or .owl extension). The use of a unique namespace for each
dataset guarantees their secure fusion

For parsing the input, this module uses the OWL API which is a Java API that has been used
as a reference implementation for creating, manipulating, and serialising OWL Ontologies [59].
Since the ontologies and the alignments are combined into one schema, this module does not
use the ALIGNMENT API.

For instance, OWLManager class from the OWL API provides a point of convenience for
creating an OWLOntologyManager with the standard parsers, storers, etc. This manager is used
to load an OWL ontology from a specified file. The input is transformed by this module into
two objects the ABox and TBox. These objects are given to the reasoner along with the LKBox
from the parsing link key module to perform reasoning.

7.2.2 Link keys parser module
This module loads an input set of link keys. This module uses the ALIGNMENT API that allows
for expressing and sharing ontology alignments. Link keys are integrated into the ALIGNMENT

API. The Alignment API uses the EDOAL format to express alignments. EDOAL is an Ex-
pressive and Declarative Ontology Alignment Language that allows for representing ontology
alignments [60]. Link keys are described in EDOAL by specifying their properties and classes.

111

Note that the ALIGNMENT API uses, as well, the OWL API for executing some of its func-
tionalities. The input set of link keys is described in EDOAL (.rdf extension). The input is
transformed by this module into LKBox. The LKBox will be given to the reasoning module.

7.2.3 Reasoning module
This module takes the ABox and TBox from the datasets, schemas, and alignments parser mod-
ule and the LKBox from the link keys parser module. It implements the compressed tableau
algorithm given in Chapter 6. In turn, this module is made-up of three modules (Figure 7.2).
The first one is the initialisation module which implements Algorithm 4. The second module
is the rule application module and the last one is the checking module. The matching module
which implements Algorithms 5, 6, and 7, is embedded into the rule application module. The
checking module implements Algorithm 8.

Initialization

module

Rule application

module

Matching module

Checking module

ABox

TBox

LKBox

ALC & LK
completion rules

Reasoning module

is used

input

Figure 7.2 – The components of StaréLK reasoning module.

The implementation of these modules necessitates creating several java classes such as the
Linkkey, Startype, Layer, and Match classes. In the initialisation module, the first layer
of the pre-compressed tableau is built. This layer contains a set of nominal star-types each
corresponding to an individual contained in the input ontology. Moreover, this module is re-
sponsible for the matching the nominal star-types built. This module passes the pre-compressed
tableau containing the first layer and the initialised matching function to the rule application
module.

The second module is responsible for rule application. The application of ALC rules is
exclusively done in the Startype class. The application of LK rules is exclusively done
in the Linkkey class. The update of the matching function is done in the Match class.
The rules changing the core of star-types and thus concerning predecessors call the method

112

matchingCore. The rules changing the triple of star-types and thus concerning successors
call the method matchTriple. The merging rules call the method matchMerge. These
matching functions belong to the Match class.

The rule application module communicates constantly with the checking module by ex-
changing the pre-compressed tableau until the checking module detects a compressed tableau
inside the pre-compressed tableau or until there are no more rules to be applied by the rule
application module.

7.3 Evaluations
In this section we first test the different functionalities of the reasoner. Then we explain how
to integrate link key reasoning in the data interlinking pipeline and we carry out some proof of
concept experiments to show the usefulness of this integration for data interlinking.

7.3.1 Correctness of StaréLK
We aim at checking the correctness of StaréLK. The purpose is to test whether the reasoner
matches the expected requirements and to ensure that it is defect free.

7.3.1.1 Experimental goals

To check whether the reasoner meets the requirements it is necessary to check its ability to suc-
cessfully run the algorithm for checking the satisfiability of ALC+LK. Mainly, it is necessary
to check that the completion rules for ALC+LK and the corresponding matching algorithms
are executed successfully and correctly. More precisely, we aim at testing the various ALC
rules and the corresponding matching algorithms (matchCore and matchTriple) and testing the
various LK rules and the corresponding matching algorithms (matchCore and matchMerge).

7.3.1.2 Experimental setting and results

In order to test if the reasoner meets the requirement we choose the ontologies that stimulate the
application of ALC+LK completion rules. These ontologies force the algorithm to apply ALC
completion rules that concerns both the cores and the tail of the triples of star-types. These rules
call, in turn, respectively matchCore and matchTriple algorithms. These ontologies, as well,
force the algorithm to apply the→LK rule and the corresponding matchMerge rule.

We have transformed each of the ontologies of Examples 12 and 14 into respectively two
files. The first one contains the ABox and TBox axioms (.owl extension) and the second one
contains the LKBox (.rdf extension). We launched the reasoner with them. The files are avail-
able at 3. Example 14 consists of a consistent ontology. Example 12, to the contrary, consists
of an inconsistent ontology. Similar to the previous one, it forces the algorithm to apply both
ALC and LK completion rules and the corresponding matching algorithms. Both examples
force the algorithm to create several layers (as a consequence of applying the→∃-rule) and to
deploy the blocking technique.

3https://github.com/anonymousReasoner/Stare/tree/main/test

113

Experiment 1. (Running Example 12) We have launched the reasoner with the input ontology
and the link key files. The reasoner returned the correct expected answer true which means
that the input ontology is consistent. It succeeded to detect a compressed tableau from the
constructed pre-compressed tableau. The pre-compressed tableau contains three layers. The
first layer is nominal, containing a saturated star-type for each individual, and satisfy the link
keys in LK. The star-types of the third layer are blocked by star-types of the second layer. Each
star-type in the pre-compressed tableau is either dummy, blocked or matched to a non-empty
set of star-types.

Experiment 2. (Running Example 14) We have launched the reasoner with the input ontology
and the link keys files. The reasoner returned the correct answer false which means that the
input ontology was inconsistent. It succeeded to build a pre-compressed tableau of three layer
build the expected number of layers where: The first layer is nominal, containing a saturated
star-type for each individual. However, the link keys are not satisfied. The star-types of the
third layer are blocked by star-types of the second layer. Each star-type in the pre-compressed
tableau is either dummy, blocked or matched to a non-empty set of star-types.

All the functionalities of the reasoner including blocking, which ensures the termination of
the algorithm, are tested and proved to work properly. The reasoner returned the correct and
expected answers in both experiments.

7.3.2 Impact of link key reasoning on data interlinking
Link keys are used for data interlinking. Link keys can be extracted from RDF datasets. For
extracting link keys, a link key extraction algorithm such as [13] iterates over a pair of RDF
datasets (or simply datasets) D and D′ to generate another set containing individual pairs and
the maximal set of properties on which they share values. After, it derives the set of candidate
link keys LK by replacing each pair of individuals by their types. The quality of the extracted
candidate link keys is assessed by the algorithm according to some quality measures like cov-
erage and accuracy. Based on these measures, the best link keys are selected.

However, the extraction algorithms are based on the syntactic equality between the values
of properties of the entities contained in D and D′. This comes from the fact that the more
the entities share values of properties the more likely they are the same. However, they do not
make use of the ontologies O, O′ of the datasets D and D′, nor the alignments between them.
The ontologies O and O′ constrain the datasets D and D′ and the link keys must between D and
D′ must follows the constraints O and O′. Since the extraction algorithms do not make use of S,
S′, nor the alignments then among the extracted link keys there might exist some inconsistent
link keys w.r.t O, O′ or the alignment between them.

Figure 7.3 shows how link key reasoning can be integrated into the data interlinking pipeline.
The aim of this integration is to detect inconsistent link keys returned by the extraction algo-
rithm and to expel them from the link keys used for the data interlinking task.

In module 1 the ontologies O, O′, and the alignments between them are unified into one
TBox T . Similarly, in module 2, the datasets D and D′ are unified into one ABox A. A and
T now are given to the consistency checking module that checks separately the consistency of
each link key in LK. It is worse noting that if a set of link keys are mutually consistent this
does not mean that this set of link keys is consistent (Experiment 4).

114

It is possible, as well, to check the validity of each subset of link keys obtained from LK.
This can be done by first building the subsets of LK and then to launch the reasoner for check-
ing the validity of each subset. This approach has an exponential complexity in the size of the
input set of link keys. The reason behind this complexity is the exponential number of subsets
of link keys built from the input set of link keys. However, usually, the number of link keys
extracted from datasets is not usually huge, thus the exponential complexity of this approach is
not real a limitation.

For our experiments we use the link key extraction algorithm given in [14], in which the
authors propose a method to extract link keys based on pattern structure. [14] is implemented
in a software named Linkex 4.

D D’

Link key candidate extraction

Checking the consistency of 〈A, T ,LK〉

Alignments bet-
ween O & O’

O O’

T

A
Link key candidates LK

Consistent link key candidates

D D’

Link generation

Links

Module 1
Module 2

Input

Intermediate input/output

Output

Procedure

Figure 7.3 – Data interlinking pipeline based on link key inference.

7.3.2.1 Experimental goals

Some of the extracted link keys can have good coverage or discriminability, however, they
might be inconsistent link keys w.r.t the ontologies of the datasets or their alignments. We
check the consistency of the extracted link keys w.r.t the ontologies and alignments that governs
the data. Detecting inconsistent link keys is useful for data interlinking. Since, it decreases the
number of false-positive links established by inconsistent link keys.

4https://gitlab.inria.fr/moex/linkex

115

7.3.2.2 Experimental setting and results

For our aim, we follow the pipeline of Figure 7.3. First, we run the extraction algorithm on
the pair of given datasets. We specify that the output of this step is a set of link keys described
in EDOAL. Then we combine both datasets along with their ontologies and ontology align-
ments and launch the reasoner with them and the extracted link keys. For the first experiment
(Experiment 3) we choose an interlinking task from the data interlinking track of the Ontol-
ogy Alignment Evaluation Initiative (OAEI) [61]. In this experiment, the datasets contain pairs
of properties such as age and houseNumber. These properties might agree on their values,
however, they have different semantics. Since modeling data type properties exceeds the ex-
pressivity of ALC+LK we model them as object properties. Modeling data type properties as
object properties does not affect checking the satisfaction of link keys. Checking the satisfac-
tion of link keys requires only checking the equality between property values which translates
to checking the equality between individuals.

We have performed another experiment on handcrafted datasets (Experiment 4). Experi-
ment 4 allows to find an inconsistent link key even if there is no alignment available between
the input datasets ontologies. This inconsistent link key introduces an equality violating the
ontology of one of the input datasets.

Experiment 3. The datasets D1 and D2 contain descriptions of the instances of classes Person
and Address (see Table 7.1).

Dataset Triples Instances Properties

D1
5801 Person:500 Person:8

Address:500 Address:5

D2
6230 Person:500 Person:8

Address:500 Address:5

Table 7.1 – Statistics on datasets D1 and D2.

A Person instance is described by the datatype properties givenName, state, surname, da-
teOfBirth, socSecurityId (ssid), phone_number, age and the object property hasAddress. An
Address instance is described by the datatype properties street, houseNumber, postCode, isIn-
Suburb6 and the object property hasAddress.

We have launched the link extraction algorithm on D1 and D2. It returns a set of candidate
link keys. We choose three candidate link keys among the extracted ones. The first link key
has a poor discriminability, the second one has a poor coverage while the last is formed from
properties that have different meanings. We have launched the reasoner to check the consis-
tency of each candidate link key w.r.t D1, D2 and their ontologies and ontology alignments. The
candidate link keys and the result of consistency checking are present in Table 7.2.

candidate link key Consistent
k1 ({〈street, street〉}〈Address,Address〉) true
k2 ({〈phone_number, phone_number〉, 〈ssid, ssid〉}〈Person, Person〉) true
k3 ({〈age, houseNumber〉}〈Person,Address〉) false

Table 7.2 – The link keys between D1 and D2 (Experiment 3).

116

The candidate link keys k1 and k2 are consistent w.r.t D1, D2 and their ontologies and
ontology alignments. The third link key k3 is inconsistent, since it states that whenever two
instances of the classes Person and Address have the same values for the property pair age and
houseNumber then they are the same. If this candidate link key is selected for interlinking D1
and D2 it will generate equality links between instances of classes Person and Address, that are
disjoint classes. For instance it would have linked the entities Person3581 and Address3040
since they have the same value for the property age and house number.

Different organisations may express the data in different manners. For example, in the
following experiment, the datasets use two different ways to represent entities. The first dataset
uses two classes Male and Female while the second dataset uses only one class, the Person
class.

Experiment 4. The first dataset D1 describes entities of Male and Female classes, these classes
are disjoint. The second dataset D2 is made-up of only one class, the Person class. In D1, the
instances of both Male and Female class are described using the properties firstName, name,
and birthY. In D2, the instances of both Person class are described using the properties prénom,
nom, and annéeN.

Among the instances contained in D1 and D2, the instances a1 from the Female class, a5
from the Male class and instance b3 from share the same first name Charlie which is a common
name for both male and females. They share, as well, the same values for the family name and
the birth date.

s firstName name birthY
a1 Charlie Smith 2010
a2 Liam Johnson 2009
a3 Benjamin Williams 2011
a4 Elijah Brown 2011

(a) Male

s firstName name birthY
a5 Charlie Smith 2010
a6 Amy Davis 2008
a7 Annafise Lopez 2011
a8 Mitchell Wilson 2010

(b) Female

Table 7.3 – D1 is made up of Male and Female classes.

s prénom nom annéeN
b1 Liam Johnson 2007
b2 Lucas White 2011
b3 Charlie Smith 2010
b4 Amy Davis 2008

Table 7.4 – D2 is made up of only the Person class.

We have launched the link key extraction algorithm on D1 and D2, it returns a set of candi-
date link keys. We have launched the reasoner to check the consistency of each candidate link
key. The candidate link keys and the result of consistency checking are present in Table 7.5.
The link keys k1 and k2 are consistent with respect to D1 and D2 and their ontologies.

However, both link keys are not consistent with respect to D1 and D2 and their ontologies.
The first link key k1 = ({〈firstName, prénom〉, 〈name, nom〉, 〈birthY, annéeN〉}, 〈Female, Pe-
rson〉) links entity a1 and entity b3. The second link key k2 = ({〈firstName, prénom〉, 〈name,

117

candidate consistent
k1 ({〈firstName, prénom〉, 〈name, nom〉, 〈birthY, annéeN〉}, 〈Female, Person〉) true
k2 ({〈firstName, prénom〉, 〈name, nom〉, 〈birthY, annéeN〉}, 〈Male, Person〉) true

Table 7.5 – The result of experiment 4.

nom〉, 〈birthY, annéeN〉}, 〈Female, Person〉) links entity a5 and entity b3. The reasoner re-
turns false since after it merging the entities a1 and b3 and a5 and b3, it should merge a1 and a5.
However, the entities a1 and a5 belong respectively to the disjoint classes Male and Female and
thus they cannot be merged.

These experiments show that reasoning with link keys is beneficial for discarding incon-
sistent link keys. These link keys are inconsistent with respect to the ontologies and ontology
alignments of the input pair of datasets. These link keys, if used, would generate inconsistent
links between different entities. We have also noticed that the reasoner was able to detect in-
consistent link keys even if there is no alignment available between the ontologies of the input
datasets (Experiment 4).

7.4 Conclusion
We explain the architecture of the reasoner that implements the compressed tableau algorithm
given in Chapter 6. Then perform two sets of experiments. The first type of experiments tests
the functionalities of the algorithm including the completion rules, matching, and blocking.
These experiments reveal that the reasoner work as expected. The second kind of experiments
checks the consistency of link keys extracted by a link key extraction algorithm. It shows the
importance and relevance of reasoning with link keys for the data interlinking task.

118

Chapter 8

Conclusion and Perspectives

“ You have your way. I have my way. As for the right way, the correct way, and the only way, it
does not exist”.

Friedrich Nietzsche

Data interlinking is a crucial task for enriching and completing RDF graphs present on the
semantic web. Link keys are among the proposed methods to address the problem of inter-
linking RDF graphs. In this thesis, we studied the problem of reasoning with link keys. We
have designed several algorithms for reasoning with link keys and implement a worst-case op-
timal tableau algorithm for reasoning with link keys. In what follows, we summarize the main
achievements of this thesis and then we give various directions for the future work.

8.1 Summary and Conclusion
We have first introduced the description logic ALC+LK, this logic extends ALC by individual
equalities and link keys LK. This logic is used to perform reasoning with link keys, in particu-
lar for checking link keys consistency.

Reducing link key entailment to link key consistency checking In Chapter 4, we show that
link key entailment can be reduced to link key consistency checking without introducing the
negation of link keys. More precisely, we have proved that an ontology entails a link key when
this ontology extended by a set of role and concept assertions presenting a witness for this link
key negation is inconsistent.

Reasoning in the description logic ALC+LK is decidable In Chapter 4, we extend that stan-
dard tableau algorithm for reasoning with the description logic ALC by adding completion
rules for handling link keys and equalities. This algorithm uses anywhere blocking to extend
the potential blockers of an individual, resulting in reduced-sized models. We show that this
algorithm terminates and that it is sound and complete. The complexity of this reasoning al-
gorithm is 2EXPTIME. This shows that reasoning with link keys in the description logic ALC
is decidable. We have also noticed that the completion rules added for handling link keys and
equalities do not require additional computational power than that of ALC.

119

Proving that the complexity of reasoning with link keys is EXPTIME In Chapter 5, we
provide an EXPTIME algorithm for reasoning in the ALC+LK. This complexity result was
achieved by adapting the compressed tableau algorithm [16] to perform reasoning in ALC+LK.
This complexity result shows that reasoning in ALC+LK has the same complexity as reason-
ing in ALC and supports the applicability of reasoning with link keys in practice.

Designing and implementing an EXPTIME tableau algorithm for reasoning in the de-
scription logic ALC+LK In Chapter 6, we present a worst-case optimal tableau algorithm for
reasoning in the description logic ALC+LK. This algorithm is directed by the application of
completion rules and is implemented (Chapter 7). The application of completion rules allows
for easy and practical implementation of the algorithm.

Testing the impact of reasoning with link keys on the data interlinking task In Chapter 7,
we have carried out a set of experiments for evaluating the impact of reasoning with link keys
on the task of data interlinking. It turns out that the reasoning with link keys is useful for
the task of data interlinking. In particular, given a pair of RDF graphs, their ontologies, and
ontology alignments, the reasoner was capable of detecting inconsistent link keys, generated
by a link key extraction algorithm, w.r.t the input data, ontologies, and ontology alignments.
These link keys should be discarded and not used for interlinking the given pair of RDF graphs.

8.2 Future Work
We summarize below the various directions for future work.

Extending the tableau algorithm for the description logic ALC and link keys to more
expressive families of description logics Extending the description logic ALC+LK will in-
crease the range of the applications using reasoning with link keys. Notably, we would like to
study the extension of the description logic ALC+LK with inverse roles and role composition.

Merging link key extraction and reasoning One interesting direction would be to integrate
a reasoning mechanism in the link key extraction process. This will avoid extracting link keys
that are inconsistent w.r.t the RDF graphs, ontologies, or ontology alignments. However, de-
signing a sound and complete reasoning procedure to be integrated with the link key extraction
process is not straightforward. It requires to perform on the fly checking of rule application and
clash-detection.

Optimising StaréLK Despite of its theoretical worst-case optimal complexity, the algorithm
suffers from practical performance issues. Optimization techniques such as absorption, back-
jumping, and caching are used in a wide variety of standard tableau algorithms such as [49, 21]
and can be adopted to improve the performance of StaréLK.

Reasoning with large ABoxes Reasoning with large ABoxes is immense. Moreover, not all
the data contained in the ABox serves for checking the consistency of an input link key. One
approach would be to select the part of the ABox that helps for checking the satisfaction of one
particular link key. Also, we would like to stress the fact that for checking the consistency of

120

a link key w.r.t the knowledge available it is sufficient to artificially introduce the negation of
this link key.

Finally, we would like to assess the impact of reasoning with link keys by carrying out the
following experiments.

Supervised calculation of the reduction of false-positive links Detecting inconsistent link
keys will decrease the number of incorrect identity links established between different entities
(false-positive links). We would like to evaluate the percentage of this reduction w.r.t a refer-
ence set of identity links.

Experimenting with real datasets Last but not least, we plan to conduct a series of exper-
iments on real datasets such as INSEE and Geonames.

121

Chapter 9

Appendix

As discussed before, extending ALC+LK with inverse roles will increase the scope of appli-
cations of reasoning with link keys. In the presence of inverse roles, link keys maybe satisfied
by named individuals that do not occur in the input ABox. In this case, link keys cannot be
anymore expressed as DL-safe rules and the corresponding reasoning algorithms such as [35]
cannot be used to do reasoning with link keys.

9.1 Extending the description logic ALC with inverse roles
In what follows we give the necessary definitions that allow to introduce the compressed tableau
for an ALCI+LK ontology. Defining a compressed tableau is a first step towards designing
a compressed tableau algorithm for reasoning in ALCI+LK. Once such an algorithm exists,
it is guaranteed to be sound. Such an algorithm is sound because have proved that an inter-
pretation representing a model for the input ontology can be always extracted from the defined
compressed tableau (Lemma 18).

The definitions of star-type, layer and saturated and clash-free star-types are remained un-
altered. The definition of the matching function varies, since in the presence of inverse roles,
relations between star-types are now bi-directional (Figure 9.1).

Definition 28 (Matching function over a sequence of layers). Let O be an ALCI+LK ontol-
ogy. Let Λ = 〈Λk〉nk=0 be a finite sequence of layers. A matching function over Λ is a function
Ω that associates each pair (σ, τ) where σ is a star-type in Λ and τ is a non dummy triple in σ
to a non-empty set {(σ1, τ1), · · · , (σm, τm)} where σi ∈ Λ and τi ∈ σi for all 1 ≤ i ≤ m and
that satisfies:

1. for every σ ∈ Λ and τ ∈ σ, if (σ′, τ ′) ∈ Ω(σ, τ) then tail(τ) = core(σ′), tie(τ) = tie−(τ ′)
and tail(τ ′) = core(σ);

2. for every σ ∈ Λ and τ ∈ σ, if (σ′, τ ′) ∈ Ω(σ, τ) then (σ, τ) ∈ Ω(σ′, τ ′);

3. for every σ ∈ Λ and τ ∈ σ, if (σ′, τ ′) ∈ Ω(σ, τ) then

(a) if σ ∈ Λ0 then σ′ ∈ Λ0 ∪ Λ1;

(b) if σ ∈ Λk and 0 < k < n then σ′ ∈ Λk−1 ∪ Λk+1.

122

a
A

σ

τ

ρ

ωd
D

Q

d
D

b
B

Q−

Figure 9.1 – Matching function between star-types, (ω, ρ) ∈ Ω(σ, τ).

As a consequence, the neighbourhood definition is modified.

Definition 29 (Neighbour). A star-type σ is called a ρ-successor (or successor) of ω via a triple
ρ ∈ ω if there exits a triple τ ∈ σ such that (σ, τ) ∈ Ω(ω, ρ), and ω is called a ρ-predecessor
(or predecessor) of σ. In this case, if R ∈ tie(ρ) then σ is called an R-successor of ω, and ω
an R-predecessor of σ. A star-type is called a neighbour of another one if one is a successor of
the other.

Based on these definitions we now introduce the compressed tableau for an ALCI ontology.
This definition uses the new definition of the matching function. Note that Item 5, related to
role assertions, is modified with respect to its alternative in the compressed tableau definition
for an ALC ontology.

Definition 30 (Compressed tableau of an ALCI ontology). Let O = 〈A, T ,LK〉 be an
ALCI+LK ontology. Let I be the set of individuals of O. Let Λ be a set of layers and Ω a
matching function over Λ. The pair 〈Λ,Ω〉 is said to be a compressed tableau of 〈A, T 〉 if the
following conditions are satisfied:

1. Every σ ∈ Λ is clash-free and, unless it is blocked, saturated.

2. For every σ ∈ Λ, σ is nominal if and only if σ ∈ Λ0.

3. For every a ∈ I, there exists a unique star-type σa ∈ Λ0 such that a ∈ coreI(σa).

4. For every C(a) ∈ A, C ∈ coreC(σa).

5. For every R(a, b) ∈ A, there exist σ, σ′ ∈ Λ0 and τ ∈ σ, τ ′ ∈ σ′ such that a ∈ coreI(σ),
b ∈ coreI(σ′), (σ′, τ ′) ∈ Ω(σ, τ) and R ∈ tie(τ).

The definition of star-types satisfying a link key condition is also modified.

Definition 31 (Star-types satisfying a link key condition). Let O = 〈A, T ,LK〉 be an
ALCI+LK ontology, and 〈Λ,Ω〉 a pre-compressed tableau of O. Let λ = ({〈Pi, Qi〉}ni=1 linkkey 〈C,D〉) ∈
LK and σ, σ′ ∈ Λ.

1. We say that σ, σ′ weakly satisfy the condition of λ if there exist τ1, . . . , τn ∈ σ and
υ1, . . . , υn ∈ σ′ such that, for every 1 ≤ i ≤ n, Pi ∈ tie(τi), Qi ∈ tie(υi) and there exist
σ′′ ∈ Λ and τ ′1, υ

′
1, . . . , τ

′
n, υ

′
n ∈ σ′′ such that (σ′′, τ ′i) ∈ Ω(σ, τi) and (σ′′, υ′i) ∈ Ω(σ′, υi).

123

2. We say that σ and σ′ satisfy the condition of λ if they weakly satisfy the condition of λ,
C ∈ coreC(σ) and D ∈ coreC(σ′).

We now give the definition of a compressed tableau for an ALCI+LK ontology O =
(A, T ,LK). A compressed tableau for O is a compressed tableau for the ALCI ontology
〈A, T 〉 such that every link key in LK and every equality assertion in A is satisfied.

Definition 32 (Compressed tableau of an ALCI+LK ontology). Let O = 〈A, T ,LK〉 be
an ALCI+LK ontology. A compressed tableau of O is a pair CT = 〈Λ,Ω〉 that satisfies the
following conditions:

1. CT is a compressed tableau of 〈A, T 〉;

2. for every a ≈ b ∈ A and every σ, σ′ ∈ Λ, if a ∈ coreI(σ) and b ∈ coreI(σ′) then σ=σ′;

3. for every ({〈Pk, Qk〉}nk=1 linkkey 〈C,D〉) ∈ LK and every σ, σ′ ∈ Λ, if σ and σ′ weakly
satisfy the condition of ({〈Pk, Qk〉}nk=1 linkkey 〈C,D〉), then {C, nnf(C)}
∩ coreC(σ) 6= ∅ and {D, nnf(D)} ∩ coreC(σ′) 6= ∅;

4. for every ({〈Pk, Qk〉}nk=1 linkkey 〈C,D〉) ∈ LK and every σ, σ′ ∈ Λ, if σ and σ′ satisfy
the condition of ({〈Pk, Qk〉}nk=1 linkkey 〈C,D〉), then σ=σ′.

In what follows we prove that, given an ALCI+LK ontology and a compressed tableau for
this ontology, a model for this ontology can be extracted its compressed tableau.

Lemma 18 (Model extraction). Let O be an ALCI+LK ontology. If there exists a com-
pressed tableau of O then O is consistent.

Proof. Let O = 〈A, T ,LK〉 be an ALCI+LK ontology. Let I and R be the sets of individuals
and roles of O.

Let us assume that there exists a compressed tableau CT = 〈Λ,Ω〉 of O, where Λ =
〈Λk〉nk=0. We consider the set Path of all paths of star-types in Λ, i.e. Path = {〈σ1, . . . , σm〉 |
m ≥ 1 and σk ∈ Λ for 1 ≤ k ≤ m}. If p ∈ Path, last(p) denotes the last element of p and
length(p) denotes its length; if p, p′ ∈ Path, p ·p′ denotes the concatenation of p and p′. If a ∈ I
then, by (3) of Definition 30, there exists a unique star-type σa ∈ Λ0 such that a ∈ coreI(σ).
We denote 〈σa〉 ∈ Path by pa.

We define an interpretation I = 〈∆I , ·I〉 from CT in the following way:

1. ∆I is inductively defined as follows:

(a) pa ∈ ∆I for every a ∈ I;

(b) if p ∈ ∆I and there exist τ ∈ last(p), σ ∈ Λ and τ ′ ∈ σ such that (σ, τ ′) ∈
Ω(last(p), τ), then, if σ is not blocked then p ·〈σ〉 ∈ ∆I , otherwise, p ·〈b(σ)〉 ∈ ∆I .

2. For every a ∈ I, aI = pa.

3. For every concept name A in O, AI = {p ∈ ∆I | A ∈ coreC(last(p))}.

124

4. For every role name R ∈ R, RI = ∆R
1 ∪∆R

2 ∪∆R
3 , where

∆R
1 ={(pa, pb) : a, b ∈ I and there exist τ ∈ σa, τ ′ ∈ σb such that (σb, τ ′) ∈

Ω(σa, τ) and R ∈ tie(τ)}
∆R

2 ={(p, p · 〈σ〉) : p ∈ ∆I , σ ∈ Λ, σ is not blocked and there exist τ ∈ last(p),
τ ′ ∈ σ such that (σ, τ ′) ∈ Ω(last(p), τ) and R ∈ tie(τ)}

∆R
3 ={(p, p · 〈b(σ)〉) : p ∈ ∆I , σ ∈ Λ, σ is blocked and there exist τ ∈ last(p),

τ ′ ∈ σ such that (σ, τ ′) ∈ Ω(last(p), τ) and R ∈ tie(τ)}

Let us prove that I is indeed an interpretation. We only need to prove that ∆I 6= ∅ and that,
for every name R ∈ R, RI ⊆ ∆I ×∆I .

Since I 6= ∅, then, there exists at least one individual a ∈ I. Thus, by (1.a), pa ∈ ∆I .
Therefore, ∆I 6= ∅. Now, let R ∈ R. By (1.a), ∆R

1 ⊆ ∆I ×∆I . By (1.b), ∆R
2 ⊆ ∆I ×∆I and

∆R
3 ⊆ ∆I ×∆I . This implies ∆R

1 ∪∆R
2 ∪∆R

3 ⊆ ∆I ×∆I . Therefore, RI ⊆ ∆I ×∆I .
Let us prove that I is a model of O, i.e. I satisfies all the assertions of A, all the GCIs of

T and all the link keys of LK. We start by proving that I satisfies all the assertions of A.
Assume that a ≈ b ∈ A. By the definition of I, aI = pa and bI = pb, where pa = 〈σa〉,

pb = 〈σb〉 and σa and σb are the unique star-types of Λ0 such that a ∈ coreI(σa) and b ∈
coreI(σb). Since CT is a compressed tableau, by (2) of Definition 32, we have σa=σb. This
implies pa= pb. Therefore, aI = bI , i.e. I |= a ≈ b.

Assume that a 6≈ b ∈ A. We proceed by contradiction. Assume I 6|= a 6≈ b. This means
aI=bI . Then, by the definition of I, pa = pb. Thus, σa = σb, where σa and σb are the unique
star-types of Λ0 such that a ∈ coreI(σa) and b ∈ coreI(σb). Let σ=σa=σb. Therefore, σ ∈ Λ
and a, b ∈ coreI(σ). By (2) of Definition 25, σ is not clash-free. This contradicts the fact that
CT is a compressed tableau, so it must be I |= a 6≈ b.

Assume that R(a, b) ∈ A. Since CT is a compressed tableau, by (5) of Definition 30, there
exist τ ∈ σa, τ ′ ∈ σb such that (σb, τ ′) ∈ Ω(σa, τ) and R ∈ tie(τ). Then, by the definition of
I, we have (pa, pb) ∈ RI . Also, aI = pa and bI = pb. Therefore, (aI , bI) ∈ RI , which is the
same as I |= R(a, b).

Assume C(a) ∈ A. To prove I |= C(a), we use the following:

For every p ∈ ∆I , if E ∈ coreC(last(p)) then p ∈ EI (†)
Assume that (†) is true. Since C(a) ∈ A, by (4) of Definition 30, we have that C ∈ coreC(σa).
Then, C ∈ coreC(last(pa)). By (†), pa ∈ CI . Since aI = pa, we have aI ∈ CI , i.e. I |= C(a).

We now show that I satisfies all GCIs in T . Let C v D ∈ T . Let p ∈ CI . Since CT =
〈Λ,Ω〉 is a compressed tableau and last(p) ∈ Λ, by (1) of Definition 30, last(p) is saturated.
Since C v D ∈ T , by (5) of Definition 24, then nnf(C) or D belongs to coreC(last(p)). If
nnf(C) ∈ coreC(last(p)), by (†), p ∈ (nnf(C))I . This contradicts p ∈ CI because (nnf(C))I =
(¬C)I and (¬C)I ∩ CI = ∅. Therefore, it must be D ∈ coreC(last(p)). Then, by (†), p ∈ DI .
This proves I |= C v D.

Finally, we show that I satisfies all link keys in LK. Let λ = ({〈Pi, Qi〉}ni=1 linkkey
〈C,D〉) ∈ LK. Let p, q, r1, . . . , rn ∈ ∆I such that p ∈ CI , q ∈ DI , and (p, ri) ∈ P I

i and
(q, ri) ∈ QI

i for 1 ≤ i ≤ n. We have to prove that p=q.
Assume that there exists i0 ∈ {1, . . . , n} such that length(ri0) ≥ 2. Then, (p, ri0) ∈ ∆Pi0

2 ∪
∆Pi0

3 and (q, ri0) ∈ ∆Qi0
2 ∪ ∆Qi0

3 . Therefore, there exist σ, σ′ ∈ Λ such that ri0 = p · 〈σ〉 and
ri0 = q · 〈σ′〉. Then p · 〈σ〉 = q · 〈σ′〉, and, thus, p = q (and σ = σ′).

125

Assume that length(ri) = 1 for every 1 ≤ i ≤ n. Then, (p, ri) ∈ ∆Pi
1 and (q, ri) ∈

∆Qi
1 for every 1 ≤ i ≤ n. Therefore, there exist a, b1, . . . , bn ∈ I, τ1, . . . , τn ∈ σa and

τ ′1 ∈ σb1 , . . . , τ
′
n ∈ σbn such that p = pa, ri = pbi

, (σbi
, τ ′i) ∈ Ω(σa, τi) and Pi ∈ tie(τi) for

1 ≤ i ≤ n, and there exist c, d1, . . . , dn ∈ I, υ1, . . . , υn ∈ σc and υ′1 ∈ σd1 , . . . , υ
′
n ∈ σdn such

that q = pc, ri = pdi
, (σdi

, υ′i) ∈ Ω(σc, υi) and Qi ∈ tie(υi) for 1 ≤ i ≤ n. Therefore, pbi
= pdi

for 1 ≤ i ≤ n. Since px = 〈σx〉 for any x ∈ I, then σbi
= σdi

for 1 ≤ i ≤ n.
Let σi = σbi

= σdi
for 1 ≤ i ≤ n. Then, (σi, τ ′i) ∈ Ω(σa, τi) and (σi, υ′i) ∈ Ω(σc, υi).

Then, σa and σc weakly satisfy the condition of λ. Since CT = 〈Λ,Ω〉 is a compressed
tableau, by (3) of Definition 32, we have {C, nnf(C)} ∩ coreC(σa) 6= ∅ and {D, nnf(D)} ∩
coreC(σb) 6= ∅. Assume that nnf(C) ∈ coreC(σc).

Then, by (†), we have p ∈ (nnf(C))I , which contradicts p ∈ CI . Thus, it must be C ∈
coreC(σa). In a similar manner, D ∈ coreC(σc). Therefore, σa and σc satisfy the condition of λ.
By (4) of Definition 32, σa = σc. This implies pa = pc, thus p = q.

It remains to prove (†). Let p ∈ ∆I and assume E ∈ coreC(last(p)). We have to prove that
p ∈ EI . We will proceed by induction on the length of E, but, before anything else, note that,
since CT = 〈Λ,Ω〉 is a compressed tableau, then last(p) is saturated and clash-free.

1. Assume E = A, where A is a concept name. We have A ∈ coreC(last(p)). By the
definition of I, AI = {p ∈ ∆I | A ∈ coreC(last(p))}. Therefore, p ∈ AI .

2. Assume E = E1uE2. We have that E1uE2 ∈ coreC(last(p)). Since last(p) is saturated,
then E1, E2 ∈ coreC(last(p)). By induction hypothesis, p ∈ EI

1 and p ∈ EI
2 , which

implies p ∈ (E1 u E2)I , thus p ∈ EI .

3. Assume E = E1 t E2. We have that E1 t E2 ∈ coreC(last(p)). Since last(p) is
saturated, then {E1, E2} ∩ coreC(last(p)) 6= ∅. Therefore, E1 ∈ coreC(last(p)) or
E2 ∈ coreC(last(p)). By induction hypothesis, p ∈ EI

1 or p ∈ EI
2 , which implies

p ∈ (E1 t E2)I , thus p ∈ EI .

4. Assume E = ∀R.D. We have ∀R.D ∈ coreC(last(p)). Let p′ ∈ ∆I such that (p, p′) ∈
RI . We have to prove that p′ ∈ DI .

Since (p, p′) ∈ RI , by the definition of I, there are three possibilities :

(a) There exist a, b ∈ I, τ ∈ σa and τ ′ ∈ σb such that (p, p′) = (pa, pb), (σb, τ ′) ∈
Ω(σa, τ) and R ∈ tie(τ).

(b) There exist σ ∈ Λ, τ ∈ last(p) and τ ′ ∈ σ such that σ is non blocked, (p, p′) =
(p, p · 〈σ〉), (σ, τ ′) ∈ Ω(last(p), τ) and R ∈ tie(τ).

(c) There exist σ ∈ Λ, τ ∈ last(p) and τ ′ ∈ σ such that σ is blocked, (p, p′) =
(p, p · 〈b(σ)〉), (σ, τ ′) ∈ Ω(last(p), τ) and R ∈ tie(τ).

Consider the case (b). Since last(p) is saturated, ∀R.D ∈ coreC(last(p)) and R ∈ tie(τ),
then D ∈ tailC(τ). Now, since D ∈ tailC(τ) and (σ, τ ′) ∈ Ω(last(p), τ), by (1) of Defi-
nition 28, D ∈ coreC(σ). Therefore, D ∈ coreC(last(p′)). By the induction hypothesis,
p′ ∈ DI . This ends the proof in this case. The proof in the case (a) is similar. Con-
sider (c). We can proceed like in (b) to obtain D ∈ coreC(σ). Since σ is blocked, then
coreC(σ) = coreC(b(σ)). Therefore, D ∈ coreC(b(σ)), thus D ∈ coreC(last(p′)). By the
induction hypothesis, p′ ∈ DI .

126

5. Assume E = ∃R.D. We have ∃R.D ∈ coreC(last(p)). We have to prove that p ∈
(∃R.D)I , i.e. there exists p′ ∈ ∆I such that p′ ∈ DI and (p, p′) ∈ RI .

Since last(p) is saturated, there exists a triple τ ∈ last(p) such that R ∈ tie(τ) and
D ∈ tailC(τ). Then, τ is not dummy, and, thus, Ω(last(p), τ) is not empty, i.e. there
exists σ ∈ Λ and a triple τ ′ ∈ σ such that (σ, τ ′) ∈ Ω(last(p), τ).

By the definition of Ω, tailC(τ) = coreC(σ). Thus, D ∈ coreC(σ). There are two cases: σ
is blocked or not. Assume that σ is not blocked and let p′ = p·〈σ〉. By the definition of I,
(p, p′) ∈ RI . Also, D ∈ coreC(last(p′)). By the induction hypothesis, it follows p′ ∈ DI .
Therefore, p ∈ (∃R.D)I . Assume that σ is blocked and let p′ = p · 〈b(σ)〉. By the
definition of I, (p, p′) ∈ RI . Since coreC(σ) = coreC(b(σ)), it follows D ∈ coreC(b(σ)),
and, thus, D ∈ coreC(last(p′)). By the induction hypothesis, p′ ∈ DI . Therefore,
p ∈ (∃R.D)I .

6. Assume E = ¬D. We have ¬D ∈ coreC(last(p)). Assume that D is a concept name.
Since last(p) is clash-free, thenD 6∈ coreC(last(p)), and, by the definition of I, it follows
p 6∈ DI , i.e. p ∈ (¬D)I . If D is not a concept name, we can proceed by induction on the
length of D to prove that p ∈ (¬D)I .

This shows that an interpretation representing a model for the input ontology can be always
constructed from the compressed tableau. The next step is to design a compressed tableau al-
gorithm that builds this compressed tableau. We believe that the compressed tableau algorithm
given in Chapter 6 can be adapted for reasoning in ALCI+LK. Apparently, the matching al-
gorithms have to be changed to perform matching according to the new definition of matching
(Definition 28).

127

Bibliography

[1] Julius Volz, Christian Bizer, Martin Gaedke, and Georgi Kobilarov. Silk - a link discovery
framework for the web of data. In LDOW, 2009.

[2] Axel-Cyrille Ngonga Ngomo and Sören Auer. Limes: A time-efficient approach for large-
scale link discovery on the web of data. In Proceedings of the Twenty-Second Interna-
tional Joint Conference on Artificial Intelligence - Volume Volume Three, IJCAI’11, page
2312–2317. AAAI Press, 2011.

[3] Fatiha Saïs, Nathalie Pernelle, and Marie-Christine Rousset. L2R: A Logical Method for
Reference Reconciliation. In Twenty-Second AAAI Conference on Artificial Intelligence,
page 2007, Vancouver, British Columbia, Canada, July 2007.

[4] Mustafa Al-Bakri, Manuel Atencia, Jérôme David, Steffen Lalande, and Marie-Christine
Rousset. Uncertainty-sensitive reasoning for inferring sameas facts in linked data. In
Gal A. Kaminka, Maria Fox, Paolo Bouquet, Eyke Hüllermeier, Virginia Dignum, Frank
Dignum, and Frank van Harmelen, editors, ECAI 2016 - 22nd European Conference on
Artificial Intelligence, 29 August-2 September 2016, The Hague, The Netherlands - In-
cluding Prestigious Applications of Artificial Intelligence (PAIS 2016), volume 285 of
Frontiers in Artificial Intelligence and Applications, pages 698–706. IOS Press, 2016.

[5] Norbert Fuhr. Probabilistic datalog: Implementing logical information retrieval for ad-
vanced applications. J. Am. Soc. Inf. Sci., 51:95–110, 2000.

[6] Dezhao Song and Jeff Heflin. Automatically generating data linkages using a domain-
independent candidate selection approach. In Proceedings of the 10th International Con-
ference on The Semantic Web - Volume Part I, ISWC’11, page 649–664, Berlin, Heidel-
berg, 2011. Springer-Verlag.

[7] Houssameddine Farah, Danai Symeonidou, and Konstantin Todorov. Keyranker: Auto-
matic rdf key ranking for data linking. In Proceedings of the Knowledge Capture Confer-
ence, K-CAP 2017, New York, NY, USA, 2017. Association for Computing Machinery.

[8] Manel Achichi, Mohamed Ben Ellefi, Danai Symeonidou, and Konstantin Todorov. Auto-
matic Key Selection for Data Linking. In EKAW: Knowledge Engineering and Knowledge
Management, volume LNCS of Knowledge Engineering and Knowledge Management,
pages 3–18, Bologne, Italy, November 2016. Springer International Publishing.

[9] Jérôme Euzenat and Pavel Shvaiko. Ontology matching. In Springer Berlin Heidelberg,
2013.

128

[10] Manuel Atencia, Jérôme David, and Jérôme Euzenat. Data interlinking through robust
linkkey extraction. In Proceedings of the Twenty-First European Conference on Artificial
Intelligence, ECAI’14, page 15–20, NLD, 2014. IOS Press.

[11] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases: The Logical
Level. Addison-Wesley Longman Publishing Co., Inc., USA, 1st edition, 1995.

[12] Jérôme Euzenat Manuel Atencia, Jérôme David. On the relation between keys and link
keys for data interlinking. 2012.

[13] Manuel Atencia, Jérôme David, Jérôme Euzenat, Amedeo Napoli, and Jérémy Vizzini.
Link key candidate extraction with relational concept analysis. Discrete Applied Mathe-
matics, 273:2–20, 2020.

[14] Nacira Abbas, Jérôme David, and Amedeo. Napoli. Discovery of link keys in rdf data
based on pattern structures: Preliminary steps.

[15] Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. An Introduction to Description
Logic. Cambridge University Press, 2017.

[16] Chan Le Duc, Thinh Dong, Myriam Lamolle, and Aurélien Bossard. Raisonnement
fondé sur un tableau compressé pour les logiques de description. In Acte des journées
d’intelligence artificielle fondamentale, 2016. https://www.supagro.fr/jfpc_
jiaf_2016/Articles.IAF.2016/LeDuc_IAF_2016.pdf.

[17] Database applications semantics.

[18] David Tena Cucala, Bernardo Cuenca Grau, and Ian Horrocks. Consequence-based Rea-
soning for Description Logics with Disjunction, Inverse Roles, Number Restrictions, and
Nominals. 2018.

[19] Diego Calvanese, Domenico Carbotta, and Magdalena Ortiz. A practical automata-based
technique for reasoning in expressive description logics. In Proceedings of the Twenty-
Second International Joint Conference on Artificial Intelligence - Volume Volume Two,
IJCAI’11, page 798–804. AAAI Press, 2011.

[20] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz.
Pellet: A practical owl-dl reasoner. Web Semant., 5(2):51–53, jun 2007.

[21] B. Motik, R. Shearer, and I. Horrocks. Hypertableau reasoning for description logics.
Journal of Artificial Intelligence Research, 36:165–228, Oct 2009.

[22] Volker Haarslev and Ralf Möller. Racer: An owl reasoning agent for the semantic web.
Proceedings of the International Workshop on Applications, Products, and Services of
Web-based Support Systems, 18, 01 2003.

[23] Martin Buchheit, Francesco M. Donini, and Andrea Schaerf. Decidable reasoning in
terminological knowledge representation systems. J. Artif. Int. Res., 1(1):109–138, dec
1993.

129

https://www.supagro.fr/jfpc_jiaf_2016/Articles.IAF.2016/LeDuc_IAF_2016.pdf
https://www.supagro.fr/jfpc_jiaf_2016/Articles.IAF.2016/LeDuc_IAF_2016.pdf

[24] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and Ric-
cardo Rosati. Description logic framework for information integration. In KR, 1998.

[25] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Keys for free in de-
scription logics. In Franz Baader and Ulrike Sattler, editors, Proceedings of the 2000 In-
ternational Workshop on Description Logics (DL2000), Aachen, Germany, August 17-19,
2000, volume 33 of CEUR Workshop Proceedings, pages 79–88. CEUR-WS.org, 2000.

[26] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Identification con-
straints and functional dependencies in description logics. In Proceedings of the 17th
International Joint Conference on Artificial Intelligence - Volume 1, IJCAI’01, page
155–160, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[27] Carsten Lutz, Carlos Areces, Ian Horrocks, and Ulrike Sattler. Keys, nominals, and con-
crete domains. J. Artif. Int. Res., 23(1):667–726, jun 2005.

[28] David Toman and Grant E. Weddell. On keys and functional dependencies as first-class
citizens in description logics. In IJCAR, 2006.

[29] Alexander Borgida and Grant E. Weddell. Adding uniqueness constraints to description
logics (preliminary report). In DOOD, 1997.

[30] Giuseppe De Giacomo and Maurizio Lenzerini. Tbox and abox reasoning in expressive
description logics. In Proceedings of the Fifth International Conference on Principles of
Knowledge Representation and Reasoning, KR’96, page 316–327, San Francisco, CA,
USA, 1996. Morgan Kaufmann Publishers Inc.

[31] D.S. Johnson and A. Klug. Testing containment of conjunctive queries under functional
and inclusion dependencies. Journal of Computer and System Sciences, 28(1):167–189,
1984.

[32] Phokion G. Kolaitis, Jonathan Panttaja, and Wang-Chiew Tan. The complexity of data
exchange. In Proceedings of the Twenty-Fifth ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database Systems, PODS ’06, page 30–39, New York, NY, USA,
2006. Association for Computing Machinery.

[33] Ian Horrocks and Peter F. Patel-Schneider. A proposal for an owl rules language. In
Proceedings of the 13th International Conference on World Wide Web, WWW ’04, page
723–731, New York, NY, USA, 2004. Association for Computing Machinery.

[34] Jarkko Kari. On the undecidability of the tiling problem. In SOFSEM, 2008.

[35] Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for owl-dl with rules. Web
Semant., 3(1):41–60, jul 2005.

[36] Ullrich Hustadt. Reducing shiq- description logic to disjunctive datalog programs. pages
152–162. AAAI Press, 2004.

[37] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reasoning for description logics around-
shiq in a resolution framework. 2004.

130

[38] Link key extraction under ontological constraints.

[39] Alexander Borgida and Luciano Serafini. Distributed description logics: Directed domain
correspondences in federated information sources. In OTM, 2002.

[40] Luciano Serafini and Andrei Tamilin. Drago: Distributed reasoning architecture for the
semantic web. In ESWC, 2005.

[41] Antoine Zimmermann and Chan Le Duc. Reasoning with a network of aligned ontologies.
In RR, pages 43–57, 2008.

[42] Jérémy Lhez, Chan Le Duc, Thinh Dong, and Myriam Lamolle. Decentralized Reasoning
on a Network of Aligned Ontologies with Link Keys. In JIAF 2019 - 13èmes Journées
d’Intelligence Artificielle Fondamentale, pages 1–10, Toulouse, France, July 2019.

[43] Christian Meilicke, Heiner Stuckenschmidt, and Andrei Tamilin. Improving automati-
cally created mappings using logical reasoning. In Proceedings of the 1st International
Conference on Ontology Matching - Volume 225, OM’06, page 61–72, Aachen, DEU,
2006. CEUR-WS.org.

[44] C. Meilicke, H. Stuckenschmidt, and Andrei Tamilin. Repairing ontology mappings.
In Proceedings of the 22nd National Conference on Artificial Intelligence - Volume 2,
AAAI’07, page 1408–1413. AAAI Press, 2007.

[45] Antoine Zimmermann and Chan Le Duc. Reasoning on a network of aligned ontologies.
In Georg Lausen Diego Calvanese, editor, Proc. 2nd International conference on web
reasoning and rule systems (RR), volume 5341 of Lecture notes in computer science,
pages 43–57, Karlsruhe, Germany, November 2008. Springer Verlag. zimmermann2008b.

[46] Rob Shearer, Boris Motik, and Ian Horrocks. Hermit: A highly-efficient owl reasoner. In
in Proceedings of the 5th International Workshop on OWL: Experiences and Directions
(OWLED, pages 26–27.

[47] Thorsten Liebig, Marko Luther, Olaf Noppens, and Michael Wessel. Owllink. Semant.
Web, 2(1):23–32, jan 2011.

[48] Chan Le Duc, Myriam Lamolle, Antoine Zimmermann, and Olivier Curé. Draon: A
distributed reasoner for aligned ontologies. In Informal Proceedings of the 2nd Inter-
national Workshop on OWL Reasoner Evaluation (ORE-2013), Ulm, Germany, July 22,
2013, pages 81–86, 2013.

[49] Giuseppe De Giacomo, Francesco Donini, and Fabio Massacci. Exptime tableaux for alc.
pages 107–110, 01 1996.

[50] Manfred Schmidt-Schauß and Gerd Smolka. Attributive concept descriptions with com-
plements. Artificial Intelligence, 48(1):1–26, 1991.

[51] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2007.

131

[52] Maroua Gmati, Manuel Atencia, and Jérôme Euzenat. Tableau extensions for reasoning
with link keys. In 11th ISWC workshop on ontology matching (OM), pages 37–48, Kobe,
Japan, October 2016. No commercial editor. gmati2016a.

[53] Manfred Schmidt-Schauß. Subsumption in KL-ONE is undecidable. In Proc. 1st confer-
ence on the Principles of Knowledge Representation and Reasoning (KR), pages 421–431.
Morgan Kaufmann, 1989.

[54] Franz Baader, Martin Buchheit, and Bernhard Hollunder. Cardinality restrictions on con-
cepts. Artificial Intelligence, 88(1-2):195–213, 1996.

[55] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for expressive de-
scription logics. In Proceedings of the International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning (LPAR 1999). Springer, 1999.

[56] Vaughan R. Pratt. A practical decision method for propositional dynamic logic. In Pro-
ceedings of the tenth annual ACM symposium on Theory of Computing, pages 326–337,
1978.

[57] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with com-
plements. Artificial Intelligence, 48(1):1–26, 1991.

[58] Giuseppe De Giacomo and Maurizio Lenzerini. Tbox and abox reasoning in expressive
description logics. In Proceedings of the International Workshop on Description Logics,
pages 37–48. CEUR Workshop, 1996.

[59] Matthew Horridge and Sean Bechhofer. The owl api: A java api for working with owl 2
ontologies. In Proceedings of the 6th International Conference on OWL: Experiences and
Directions - Volume 529, OWLED’09, page 49–58, Aachen, DEU, 2009. CEUR-WS.org.

[60] Jérôme David, Jérôme Euzenat, François Scharffe, and Cássia Trojahn dos Santos. The
alignment api 4.0. Semant. Web, 2(1):3–10, jan 2011.

[61] Ontology alignment evaluation initiative.

132

	Introduction
	Context
	Knowledge representation on the semantic web
	Interlinking RDF graphs
	Link keys
	Problem statement
	Contribution
	Organisation
	Preliminaries
	Introduction
	The description logic ALC and its extensions
	Syntax and Semantics of ALC
	Reasoning problems and services
	Reduction of ontology entailment to ontology consistency
	Extension of ALC with inverse roles I

	Tableau algorithms for reasoning in ALC
	Conclusion
	Literature Review
	Reasoning in description logics with ontological constraints
	Tableau algorithms for reasoning in description logics
	Reasoning with keys
	Reasoning with keys in a separate set of constraints
	Reasoning with keys as a new concept constructor
	Link keys cannot be reduced to keys
	Conclusion
	Reasoning with rules
	Reasoning with DL-safe rules
	Conclusion
	Reasoning with correspondences
	Conclusion
	The complexity of reasoning in the description logic ALC and its simple extensions
	Conclusion
	Summary
	A 2ExpTime tableau algorithm for reasoning in the description logic ALC with link keys and individual equalities
	Introduction
	The description logic ALC+LK
	Reduction of ontology entailment to ontology consistency
	Tableau algorithm for ALC+LK
	Preprocessing
	Blocking
	Clashes
	Completion rules

	Examples
	Properties of the method
	Some properties of derived ontologies
	Termination
	Soundness
	Completeness
	Complexity
	Conclusion
	A worst-case optimal ExpTime algorithm for reasoning in the description logic ALC with link keys and individual equalities
	Introduction
	A compressed tableau for the description logic ALC+LK
	A non-directed algorithm for the description logic ALC+LK
	Examples
	Properties of the algorithm
	Soundness
	Completeness
	Complexity
	Conclusion
	A worst-case optimal ExpTime tableau algorithm for reasoning in the description logic ALC extended with link keys and individual equalities
	Introduction
	A Compressed Tableau for the logic ALC+LK
	Compressed Tableau Algorithm
	Examples
	Properties of the algorithm
	Soundness
	Completeness
	Complexity
	Extending ALC+LK with inverse roles
	Conclusion
	Implementation and Evaluations
	Introduction
	 StarLK architecture
	Datasets, ontologies, and alignments parser module
	Link keys parser module
	Reasoning module

	Evaluations
	Correctness of StarLK
	Experimental goals
	Experimental setting and results
	Impact of link key reasoning on data interlinking
	Experimental goals
	Experimental setting and results

	Conclusion
	Conclusion and Perspectives
	Summary and Conclusion
	Future Work
	Appendix
	Extending the description logic ALC with inverse roles

	Bibliography

