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Apprentissage Séquentiel pour l’Allocation de Ressources
dans les Réseaux

Résumé
L’allocation de ressources dans les réseaux est un problème complexe et fondamental en informatique. Il
s’agit d’un processus dans lequel les composants d’un système de réseau visent à fournir un service plus
rapide aux demandes ou à réduire la charge de calcul ou de communication sur le système. Les principaux
facteurs qui contribuent à la complexité de ce problème sont que les demandes arrivent au système de
manière imprévisible et séquentielle et peuvent entrer en concurrence pour les différentes ressources du
réseau. L’ubiquité des problèmes d’allocation de ressources dans les réseaux a motivé des recherches
approfondies pour concevoir de nouveaux algorithmes avec des garanties prouvables. Cette thèse étudie
plusieurs instances du problème d’allocation de ressources dans les réseaux et propose des algorithmes
adaptatifs avec de fortes garanties de performances s’appuyant sur le cadre d’apprentissage séquentiel.
Premièrement, nous étudions le problème demise en cache séquentiel, dans lequel les demandes de fichiers
peuvent être servies par un cache local pour éviter les coûts de récupération à partir d’un serveur distant.
Nous étudions des algorithmes avec des garanties de performance basés sur des stratégies de descente
miroir (DM). Nous montrons que la stratégie DM optimale dépend de la diversité présente dans un lot
de demandes. Nous prouvons également que, lorsque le cache doit stocker le fichier entier, plutôt qu’une
fraction, les stratégies DM peuvent être couplées à un schéma d’arrondi aléatoire qui préserve garanties
de performance. Nous présentons de plus une extension aux réseaux de caches, et nous proposons un
algorithme adaptatif distribué.
Deuxièmement, nous étudions les caches de similarité qui peuvent répondre à une demande d’un objet
avec des objets similaires stockés localement. Nous proposons un nouvel algorithme de mise en cache de
similarité séquentiel qui utilise la descente de gradient pour naviguer dans l’espace de représentation con-
tinue des objets et trouver les objets appropriés à stocker dans le cache. Nous montrons que l’algorithme
proposé réduit les coûts de service encourus par le système pour les systèmes de diffusion vidéo à 360◦ et
les systèmes de recommandation. Par la suite, nous montrons que le problème de mise en cache de simi-
larité peut être formulé dans le cadre d’apprentissage séquentiel en utilisant un algorithme MD associée à
un arrondi aléatoire.
Troisièmement, nous présentons les réseaux de distribution d’inférence (RDI) émergents, des réseaux de
nœuds informatiques qui se coordonnent pour satisfaire les demandes d’inférence d’apprentissage automa-
tique (AA) en obtenant le meilleur compromis entre latence et précision. Nous proposons un algorithme
adaptatif distribué pour l’allocation de modèles d’AA dans un RDI : chaque nœud met à jour dynamique-
ment son ensemble local de modèles d’inférence en fonction des demandes observées au cours du passé
récent et d’un échange d’informations limité avec ses nœuds voisins.
Finalement, nous étudions l’équité du problème d’allocation des ressources réseau sous le critère d’𝛼-
fairness. Nous reconnaissons deux objectifs d’équité différents qui surgissent naturellement dans ce prob-
lème : l’objectif d’équité de tranche bien compris qui vise à assurer l’équité à chaque tranche de temps, et
l’objectif d’équité d’horizon moins exploré qui vise à assurer l’équité entre les utilités accumulées sur un
horizon temporel. Nous étudions l’équité de l’horizon avec le regret comme métrique de performance et
montrons que la disparition du regret ne peut être atteinte en présence d’un adversaire sans restriction.
Nous proposons des restrictions sur les capacités de l’adversaire correspondant à des scénarios réalistes et
un algorithme adaptatif qui garantit en effet la disparition du regret sous ces restrictions.

Mots-clés : Allocation des ressources, Apprentissage Séquentiel, Réseau informatique.



Online Learning for Network Resource Allocation

Abstract
Network resource allocation is a complex and fundamental problem in computer science. It is a process
in which components of a networked system aim to provide a faster service to demands, or to reduce the
computation or communication load on the system. The main factors that contribute to the complexity of
this problem are that the demands arrive to the system in an unpredictable and sequential fashion and may
compete for the different network resources. The ubiquity of network resource allocation problems has
motivated extensive research to design new policies with provable guarantees. This thesis investigates
several instances of the network resource allocation problem and proposes online policies with strong
performance guarantees leveraging the online learning framework.
First, we study the online caching problem in which demands for files can be served by a local cache to
avoid retrieval costs from a remote server. We study no-regret algorithms based on online mirror descent
(OMD) strategies. We show that the optimal OMD strategy depends on the request diversity present in a
batch of demands. We also prove that, when the cache must store the entire file, rather than a fraction,
OMD strategies can be coupled with a randomized rounding scheme that preserves regret guarantees. We
also present an extension to cache networks, and we propose a no-regret distributed online policy.
Second, we investigate similarity caches that can reply to a demand for an object with similar objects
stored locally. We propose a new online similarity caching policy that employs gradient descent to nav-
igate the continuous representation space of objects and find appropriate objects to store in the cache.
We provide theoretical convergence guarantees under stationary demands and show the proposed policy
reduces service costs incurred by the system for 360◦-video delivery systems and recommendation sys-
tems. Subsequently, we show that the similarity caching problem can be formulated in the online learning
framework by utilizing an OMD policy paired with randomized rounding to achieve a no-regret guarantee.
Third, we present the novel idea of inference delivery networks (IDNs), networks of computing nodes
that coordinate to satisfy machine learning (ML) inference demands achieving the best trade-off between
latency and accuracy. IDNs bridge the dichotomy between device and cloud execution by integrating
inference delivery at the various tiers of the infrastructure continuum (access, edge, regional data center,
cloud). We propose a no-regret distributed dynamic policy for ML model allocation in an IDN: each node
dynamically updates its local set of inference models based on demands observed during the recent past
plus limited information exchange with its neighboring nodes.
Finally, we study the fairness of network resource allocation problem under the 𝛼-fairness criterion. We
recognize two different fairness objectives that naturally arise in this problem: the well-understood slot-
fairness objective that aims to ensure fairness at every timeslot, and the less explored horizon-fairness
objective that aims to ensure fairness across utilities accumulated over a time horizon. We argue that
horizon-fairness comes at a lower price in terms of social welfare. We study horizon-fairness with the
regret as a performance metric and show that vanishing regret cannot be achieved in presence of an
unrestricted adversary. We propose restrictions on the adversary’s capabilities corresponding to realis-
tic scenarios and an online policy that indeed guarantees vanishing regret under these restrictions. We
demonstrate the applicability of the proposed fairness framework to a representative resource manage-
ment problem considering a virtualized caching system where different caches cooperate to serve content
requests.

Keywords: Resource allocation, Online Learning, Computer Networks.
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CHAPTER 1
Introduction

1.1 Motivation

Connectivity and ubiquity of computing devices enabled a wide spectrum of network applications
such as content delivery, interpersonal communication, and intervehicular communication. Newuse
cases (e.g., autonomous driving [1], augmented reality [2], and tactile internet [3]) require satisfy-
ing user-generated and machine-generated demand with stringent low-latency and high-bandwidth
guarantees.

Network resource allocation is utilized to provide a faster service to demands and to reduce the
computation or communication load on a networked system. This is achieved through optimization
and appropriate placement of resources at different locations in a network. However, this remains
a challenging task in many practical scenarios where different network parameters, such as latency
and operating costs may vary over time and the demands arrive to the system in an unpredictable
and sequential fashion. For instance, in small-cell mobile networks the user churn is typically very
high and unpredictable, hindering appropriate allocation of spectrum to cells [4]. Similarly, placing
content files at edge caches to balance the latency gains across the served areas is non-trivial due
to the non-stationary and fast-changing patterns of requests [5]. At the same time, the increasing
virtualization of these systems introduces cost and performance volatility, as extensivemeasurement
studies have revealed [6–8]. This uncertainty is exacerbated for services that process user-generated
data (e.g., streaming data applications) where the performance (e.g., inference accuracy) depends also
on a priori unknown input data and dynamically selected machine learning libraries [9–11].

1.2 Objective

This thesis investigates several instances of the network resource allocation problem and proposes
online policies with strong performance guarantees. We leverage the online learning framework un-
der minimal assumptions on the external environment’s behavior. Performance guarantees in the
online learning framework are established assuming the existence of an adversary; therefore, a pol-
icy designed for such adversarial setting is also robust under unpredictable environments exhibiting
no statistical regularity.

1



2 Chapter 1 — Introduction

Chapter 4

Inference Delivery Networks

Chapter 2

Exact Caching

Chapter 3

Similarity Caching

Chapter 1

Introduction


Chapter 5

Long-term Fairness in Dynamic Resource Allocation


Thesis

Online Learning for Network Resource Allocation

Chapter 6

Conclusion


Figure 1.1: Structure of the thesis

1.3 Outline of the Thesis

This thesis is split into six chapters. The first chapter provides a brief introduction to the thesis. The
second chapter revisits the problem of exact caching, in which demands for objects can be served by
a local cache or a network of caches to avoid retrieval costs from a remote server. The third chapter
deals with the similarity caching problem, inwhich demands for objects can be approximately served
with similar objects; it considers both infinite (continuous) and finite catalogs. The fourth chapter
introduces inference delivery networks, networks of computing nodes that coordinate to satisfy
ML inference requests. The fifth chapter studies the fairness dimension of the network resource
allocation problem. The final and sixth chapter provides brief concluding remarks and presents
directions for possible future research. The structure of the thesis is provided in Figure 1.1.1

1.4 Publications

1.4.1 Published

• T. Si Salem, G. Iosifidis, G. Neglia. Enabling Long-term Fairness in Dynamic Resource Allocation.
Proceedings of the ACM on Measurement and Analysis of Computing Systems (ACM SIGMETRICS),
2023.

• T. Si Salem and G. Neglia and D. Carra. Ascent Similarity Caching with Approximate Indexes.
IEEE/ACM Transactions on Networking (ToN), 2022.

1Inclusion of a chapter box represents a generalization of its system model.
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CHAPTER 2
Exact Caching

2.1 Introduction

Caches are deployed at many different levels in computer systems: from CPU hardware caches to
operating system memory caches, from application caches at clients to CDN caches deployed as
physical servers in the network or as cloud services like Amazon’s ElastiCache [14]. They aim to
provide a faster service to the user and/or to reduce the computation/communication load on other
system elements, like hard disks, file servers, etc.

The ubiquity of caches has motivated extensive research on the performance of existing caching
policies, as well as on the design of new policies with provable guarantees. To that end, most prior
work has assumed that caches serve requests generated according to a stochastic process, ranging
from the simple, memory-less independent reference model [15] to more complex models trying to
capture temporal locality effects and time-varying popularities (e.g., the shot-noise model [6]). An
alternative modeling approach is to consider an adversarial setting. Assuming that the sequence
of requests is generated by an adversary, an online caching policy can be compared to the opti-
mal offline policy that views the sequence of requests in advance. Caching was indeed one of the
first problems studied by Sleator and Tarjan in the context of the competitive analysis of online algo-
rithms [16]. In competitive analysis, the metric of interest is the competitive ratio, i.e., the worst-case
ratio between the costs incurred by the online algorithm and the optimal offline dynamic algorithm.
This line of work led to the study of metrical task systems [17], a popular research area in the al-
gorithms community [18]. Recently, Paschos et al. [19] proposed studying caching as an online
convex optimization (OCO) problem [20]. OCO considers again an adversarial setting, but the met-
ric of interest is the regret, i.e., the difference between the costs incurred over a time horizon 𝑇 by
the algorithm and by the optimal offline static solution. Online algorithms whose regret grows sub-
linearly with 𝑇 are called no-regret algorithms, as their time-average regret becomes negligible for
large 𝑇 .

2.1.1 Contributions
Single Cache. We make the following contributions in the context of the single cache problem:

• We show that caching policies based on OMD enjoy O
(√
𝑇

)
regret in the fractional setting. Most

importantly, we show that bounds for the regret crucially depend on the diversity of the request
process. In particular, the regret depends on the diversity ratio 𝑅/ℎ, where 𝑅 is the size of the
batch, and ℎ is the maximum multiplicity of a request in a given batch.

5
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• We characterize the optimality of OMD caching policies w.r.t. regret under different diversity
regimes. We observe that, for a large region of possible values of the diversity ratio, the optimum
is either OGD or OMD with a neg-entropy mirror map (OMDNE). In particular, OGD is optimal
in the low diversity regime, while OMDNE is optimal in the high diversity regime.
• OMD algorithms include a gradient update followed by a projection to guarantee that the new so-
lution is in the feasible set (e.g., it does not violate the cache capacity constraints). The projection
is often the most computationally expensive step of the algorithm. We show that efficient poly-
nomial algorithms exist both for OGD (slightly improving the algorithm in [19]) and for OMDNE.
• OMD algorithms work in a continuous space, and are therefore well-suited for the fractional set-
ting originally studied by Paschos et al. Still, we show that, if coupled with opportune rounding
techniques, they can also be used when the cache can only store a file in its entirety, while pre-
serving their regret guarantees.

Caching Network. We make the following contributions in the context of the caching network
problem:

• We revisit the general cache network setting of Ioannidis and Yeh [21] from an adversarial point
of view.
• We propose DistributedTGOnline, a distributed, online algorithm that attains 𝑂 (

√
𝑇 ) regret

with respect to an offline solution that is within a (1 − 1/𝑒)-approximation from the optimal,
when cache update costs are not taken into account.
• We also extend our algorithm to account for update costs. We show that an 𝑂 (

√
𝑇 ) regret is still

attainable in this setting, replacing however independent caching decisions across rounds with
coupled ones; we determine the latter by solving an optimal transport problem.
• Finally, we extensively evaluate the performance of our proposed algorithm against several com-
petitors, using (both synthetic and trace-driven) experiments involving non-stationary demands.

2.1.2 Organization
This chapter is organized as follows. Section 2.2 studies the single cache problem, and Section 2.3
studies the caching network problem. In detail:

Single Cache. In Section 2.2.1, we review related work to the single cache problem, then we
introduce our model assumptions in Section 2.2.2 and provide technical background on gradient
algorithms in Section 2.2.3. Section 2.2.3.3 presents our main results on the regret of OMD caching
policies and their computational complexity. A discussion about extending the model to include
cache update costs, in Section 2.2.4, is required to introduce the integral setting in Section 2.2.5.
Numerical results are presented in Section 2.2.6.
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Caching Network. In Section 2.3.1, we review related work to the caching network problem.
Our model and distributed online algorithm are presented in Sections 2.3.2 and 2.3.3, respectively.
We present our analysis of the regret under update costs in Section 2.3.4 and extend our results in
Section 2.3.5. Numerical results are presented in Section 2.3.6.

2.2 Single Cache

2.2.1 Related Work
The caching problem has been extensively studied in the literature under different assumptions on
the request process. When the requests occur according to a given stochastic process, the analysis
usually leads to complex formulas even in simple settings. For example, even the hit ratio of a
single cache managed by the LRU eviction policy under the independent reference model is hard
to precisely characterize [22, 23]. The characteristic time approximation (often referred to as Che’s
approximation) significantly simplifies this analysis by assuming that a file, in absence of additional
requests for it, stays in the cache for a random time sampled independently from requests for other
files. Proposed by Fagin [24] and rediscovered and popularized by Che et al. [25], the approximation
has been justified formally by several works [26–28] and has allowed the study of a large number
of existing [29] and new [30, 31] caching policies. It also applies to networked settings [32–35] and
to more general utilities beyond the hit ratio [36, 37], all under stochastic requests.

Online caching policies based on gradient methods have also been studied in the stochastic re-
quest setting, leading to Robbins-Monro/stochastic approximation algorithms (see, e.g., [21, 38]).
Though related to OCO, guarantees are very different than the regret metric we study here. Many
works have also explored the offline, network-wide static allocation of files, presuming demand is
known [39–41]. We differ from the work above, as we consider adversarial requests.

Caching under adversarial requests has been studied since Sleator and Tarjan’s seminal pa-
per [16] through the competitive ratio metric. An algorithm is said to be 𝛼-competitive when its
competitive ratio is bounded by 𝛼 over all possible input sequences. The problem has been gener-
alized by Manasse et al. [42] under the name 𝑘-server problem, and further generalized by Borodin
et al. under the namemetrical task systems (MTS) [17]. The literature on both the 𝑘-server and MTS
problems is vast. A recent trend is to apply continuous optimization techniques to solve these com-
binatorial problems. Bansal et al. [43] study the 𝑘-server problem on a weighted star metric space. In
the same spirit, Bubeck et al. [44] use the framework of continuous online mirror descent to provide
an 𝑜 (𝑘)-competitive algorithm for the 𝑘-server problem on hierarchically separated trees. In this
chapter, we focus on regret rather than competitive ratio as the main performance metric. Andrew
et al. [45] give a formal comparison between competitive ratio and regret and prove that there is
an intrinsic incompatibility between the two: no algorithm can have both sub-linear regret and a
constant competitive ratio. At the same time, they propose an algorithm with sub-linear regret and
slowly increasing competitive ratio.

Online convex optimization (OCO) was first proposed by Zinkevich [46], who showed that pro-
jected gradient descent attains sublinear regret bounds in the online setting. OCO generalizes previ-
ous online problems like the experts problem [47], and has becomewidely influential in the learning
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Notational Conventions R𝑅,ℎ Set of possible adversarial requests
[𝑛] Set of integers {1, 2, . . . , 𝑛} 𝑟𝑟𝑟𝑡 Batch of request at timeslot 𝑡

Caching 𝑓𝑟𝑟𝑟𝑡 Cost received at timeslot 𝑡
N Catalog set with size |N | = 𝑁 UC𝑟𝑟𝑟𝑡 Update cost of the cache at timeslot 𝑡
𝑘 Cache capacity 𝑤𝑤𝑤 /𝑤𝑤𝑤′ Service / update costs in R𝑁+
X Set of fractional cache states Online Learning
X𝛿 The 𝛿-interior of X

(
X ∩ [𝛿, 1]𝑁

)
𝑇 The time horizon

Z Set of integral cache states
(
X ∩ {0, 1}𝑁

)
𝜂 Learning rate

𝑥𝑥𝑥𝑡 Fractional cache state at timeslot 𝑡 UC𝑟𝑟𝑟𝑡 (𝑥𝑥𝑥𝑡 ,𝑥𝑥𝑥𝑡+1 ) Update cost at timeslot 𝑡
𝜁𝜁𝜁 𝑡 Integral cache state at timeslot 𝑡 Regret𝑇 (A) Regret of policy A over𝑇
𝑧𝑧𝑧𝑡 Random integral cache state at timeslot 𝑡 E-Regret𝑇 (A,Ξ) Extended regret of policy A over𝑇
𝑥𝑥𝑥∗ Optimal cache allocation in hindsight Φ(𝑥𝑥𝑥 ) Mirror map
𝑅 Number of files’ requests in a batch 𝐷Φ (𝑥𝑥𝑥, 𝑦𝑦𝑦) Bregman divergence associated to Φ
ℎ Maximum multiplicity of a requested file ΠΦ

B (𝑦𝑦𝑦) The projection onto B under 𝐷Φ

Table 2.1: Notation Summary for Section 2.2

community [20,48]. To the best of our knowledge, Paschos et al. [19] were the first to apply the OCO
framework to caching. Beside proposing OGD for the single cache, they extended it to a simple net-
worked scenario, where users have access to a set of parallel caches that store pseudo-random linear
combinations of the files. They proposed no-regret algorithms in both settings. Bhattacharjee et
al. [49] extended this work proving tighter lower bounds for the regret and proposing new caching
policies for the networked setting that do not require file coding; Mukhopadhyay and Sinha [50] ac-
counted for switching costs due to file retrievals. We depart from these works in considering OMD
algorithms, a more general request process, and allowing for integral cache states obtained through
randomized rounding.

2.2.2 System Description
The notation used across this section is provided in Table 2.1.

Remote Service and Local Cache. We consider a system in which requests for files are served
either remotely or by an intermediate cache of finite capacity; a cache miss incurs a file-dependent
remote retrieval cost. Formally, we consider a sequence of requests for files of equal size from a
catalog N = {1, 2, . . . , 𝑁 }. These requests can be served by a remote server at cost 𝑤𝑖 ∈ R+ per
request for file 𝑖 ∈ N . This cost could be, e.g., an actual monetary cost for using the network
infrastructure, or a quality of service cost incurred due to fetching latency. Costs may vary across
files, as each file may be stored at a different remote location. We denote by𝑤𝑤𝑤 = [𝑤𝑖]𝑖∈N ∈ R𝑁+ the
vector of costs and assume that𝑤𝑤𝑤 is known.

A local cache of finite capacity is placed in between the source of requests and the remote
server(s). The local cache’s role is to reduce the costs incurred by satisfying requests locally. We
denote by 𝑘 ∈ {1, 2, . . . , 𝑁 } the capacity of the cache. The cache is allowed to store fractions of files
(this assumption will be removed in Section 2.2.5). We assume that time is slotted, and denote by
𝑥𝑡,𝑖 ∈ [0, 1] the fraction of file 𝑖 ∈ N stored in the cache at timeslot 𝑡 ∈ {1, 2, . . . ,𝑇 }. The cache
state is then given by vector 𝑥𝑥𝑥𝑡 = [𝑥𝑡,𝑖]𝑖∈N ∈ X, where X is the capped simplex determined by the
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capacity constraint, i.e.,

X =

{
𝑥𝑥𝑥 ∈ [0, 1]𝑁 :

𝑁∑︁
𝑖=1

𝑥𝑖 = 𝑘

}
. (2.1)

Requests. We assume that a batch of multiple requests may arrive within a single timeslot. The
number of requests (i.e., the batch size) at each timeslot is given by 𝑅 ∈ N. A file may be requested
multiple times (e.g., by different users, whose aggregated requests form the stream reaching the
cache) within a single timeslot. We denote by 𝑟𝑡,𝑖 ∈ N the multiplicity of file 𝑖 ∈ N , i.e., the number
of requests for 𝑖 , at time 𝑡 , and by 𝑟𝑟𝑟 𝑡 = [𝑟𝑡,𝑖]𝑖∈N ∈ N𝑁 the vector of such requests, representing the
entire batch. We also assume that the maximummultiplicity of a file in a batch is bounded by ℎ ∈ N.
As a result, 𝑟𝑟𝑟 𝑡 belongs to set

R𝑅,ℎ =
{
𝑟𝑟𝑟 ∈ {0, . . . , ℎ}𝑁 :

𝑁∑︁
𝑖=1

𝑟𝑖 = 𝑅

}
. (2.2)

Intuitively, the ratio 𝑅
ℎ
defines the diversity of request batches in a timeslot. For example, when

𝑅
ℎ
= 1, all 𝑅 requests are concentrated on a single file. When 𝑅

ℎ
= 𝑁 , requests are spread evenly

across the catalog N . In general, 𝑅
ℎ
is a lower bound for the number of distinct files requested in

the batch. For that reason, we refer to 𝑅
ℎ
as the diversity ratio.1 We note that our request model

generalizes the setting by Paschos et al. [19], which can be seen as the case 𝑅 = ℎ = 1, i.e., the batch
contains only one request per timeslot. We make no additional assumptions on the request arrival
process; put differently, we operate in the adversarial online setting, where a potential adversary
may select an arbitrary request sequence {𝑟𝑟𝑟 𝑡 }𝑇𝑡=1 in R𝑅,ℎ to increase system costs.

Service Cost Objective. When a request batch 𝑟𝑟𝑟 𝑡 arrives, the cache incurs the following cost:

𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 ) =
𝑁∑︁
𝑖=1

𝑤𝑖𝑟𝑡,𝑖 (1 − 𝑥𝑡,𝑖). (2.3)

In other words, for each file 𝑖 ∈ N , the system pays a cost proportional to the file fraction (1 − 𝑥𝑡,𝑖)
missing from the local cache, weighted by the file cost 𝑤𝑖 and by the number of times 𝑟𝑡,𝑖 file 𝑖 is
requested in the current batch 𝑟𝑟𝑟 𝑡 .

The cost objective (2.3) captures several possible real-life settings. First, it can be interpreted as a
QoS cost paid by each user for the additional delay to retrieve part of the file from the server. Second,
assuming that the 𝑅 requests arrive and are served individually (e.g., because they are spread-out
within a timeslot), Eq. (2.3) can represent the load on the servers or on the network to provide the
missing part of the requested files. Our model also applies when all requests for the same file are
aggregated and served simultaneously by a single fetch operation. In this case, 𝑟𝑡,𝑖 in Eq. (2.3) should
be the interpreted as the indicator variable denoting if file 𝑖 was requested; correspondingly, 𝑅 then
indicates the total number of distinct files requested, and ℎ = 1.

1This definition of diversity is consistent with other notions of diversity, such as, e.g., the entropy; indeed the diver-
sity ratio provides a lower bound on the entropy of the normalized batch vector 𝑟𝑟𝑟𝑡

𝑅
, as 𝐸

(𝑟𝑟𝑟𝑡
𝑅

)
≥ log

(
𝑅
ℎ

)
[51, Lemma 3],

where 𝐸 (𝑝𝑝𝑝) = −∑
𝑖 𝑝𝑖 log(𝑝𝑖 ) is the entropy function.
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Online Caching Algorithms and Regret. Cache files are determined online as follows. The
cache has selected a state 𝑥𝑥𝑥𝑡 ∈ X at the beginning of a timeslot. The request batch 𝑟𝑟𝑟 𝑡 arrives, and
the linear cost 𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 ) is incurred; the state is subsequently updated to𝑥𝑥𝑥𝑡+1. Formally, the cache state
is determined by an online policy A, i.e., a sequence of mappings {A𝑡 }𝑇−1

𝑡=1 , where for every 𝑡 ≥ 1,
A𝑡 : (R𝑅,ℎ × X)𝑡 → X maps the sequence of past request batches and decisions {(𝑟𝑟𝑟 𝑠,𝑥𝑥𝑥𝑠)}𝑡𝑠=1 to the
next state 𝑥𝑥𝑥𝑡+1 ∈ X. We assume that the policy starts from a feasible state 𝑥𝑥𝑥1 ∈ X.

We measure the performance of an online algorithm A in terms of regret, i.e., the difference
between the total cost experienced by a policy A over a time horizon 𝑇 and that of the best static
state 𝑥𝑥𝑥∗ in hindsight. Formally,

Regret𝑇 (A) = sup
{𝑟𝑟𝑟 1,𝑟𝑟𝑟 2,...,𝑟𝑟𝑟 𝑡 }∈R𝑇𝑅,ℎ

{
𝑇∑︁
𝑡=1

𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 ) −
𝑇∑︁
𝑡=1

𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥∗)
}
, (2.4)

where 𝑥𝑥𝑥∗ = arg min𝑥𝑥𝑥∈X
∑𝑇
𝑡=1 𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥) is the optimal static cache state (in hindsight). Note that, by

taking the supremum in Eq. (2.4), we indeed measure regret in the adversarial setting, i.e., against
an adversary that potentially picks requests in R𝑅,ℎ trying to jeopardize cache performance.

Update Costs. An online algorithmA updating the cache state at timeslot 𝑡 may require moving
a portion of a file from a remote server to the cache to implement this update. The update cost of the
online algorithm is not explicitly modeled in our cost and regret (Eqs. (2.3) and (2.4), respectively).
We postpone the discussion of such cost in Section 2.2.4. For the moment we observe that updates
come “for free” for files requested in the current timeslot. For example, increasing the fraction 𝑥𝑡,𝑖
for some file 𝑖 such that 𝑟𝑡,𝑖 > 0, can be performed by recovering the additional part out of the
(1 − 𝑥𝑡,𝑖 ) missing fraction that needs to be retrieved to serve the file; updates can thus “free-ride” on
regular traffic, at no additional cost. We prove in Proposition 2.2.10 that the main algorithms studied
in this chapter (OGD and OMDNE) are in this regime, as they only increase current state coordinates
corresponding to files requested in the previous timeslot; as such, their update costs can be considered
to be zero.

2.2.3 Fractional Caching and Gradient-based Algorithms
Inspired by offline minimization, it is natural to design a policy that, upon seeing 𝑟𝑟𝑟 𝑡 , selects as 𝑥𝑥𝑥𝑡+1
the state that would have minimized (on hindsight) the aggregate cost up to time 𝑡 (i.e.,

∑𝑡
𝑡 ′=1 𝑓𝑟𝑟𝑟 𝑡 ′ (𝑥𝑥𝑥)).

Unfortunately, such policy has poor regret:
Proposition 2.2.1. The aggregate cost minimization policy is a policyA that selects for every timeslot
𝑡 ∈ [𝑇 − 1] the state

𝑥𝑥𝑥𝑡+1 = arg min
𝑥𝑥𝑥∈X

𝑡∑︁
𝑡 ′=1

𝑓𝑟𝑟𝑟 𝑡 ′ (𝑥𝑥𝑥). (2.5)

This policy has linear (worst-case) regret, i.e., Regret(A) = Ω (𝑇 ).
We provide a proof in Appendix 1.1. A more conservative approach, that indeed leads to sub-

linear regret, is to take gradual steps, moving in the direction of a better decision according to the
latest cost; we present algorithms of this nature in this section.
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Algorithm 2.1 Online mirror descent
Require: 𝑥𝑥𝑥1 = arg min

𝑥𝑥𝑥∈X∩D
Φ(𝑥𝑥𝑥) , 𝜂 ∈ R+

1: for 𝑡 ← 1, 2, . . . ,𝑇 do ⊲ Incur a cost 𝑓𝑟𝑟𝑟𝑡 (𝑥𝑥𝑥𝑡 ), and receive a gradient ∇𝑓𝑟𝑟𝑟𝑡 (𝑥𝑥𝑥)
2: 𝑥𝑥𝑥𝑡 ← ∇Φ(𝑥𝑥𝑥𝑡 ) ⊲ Map primal point to dual point
3: 𝑦𝑦𝑦𝑡+1 ← 𝑥𝑥𝑥𝑡 − 𝜂∇𝑓𝑟𝑟𝑟𝑡 (𝑥𝑥𝑥𝑡 ) ⊲ Take gradient step in the dual space
4: 𝑦𝑦𝑦𝑡+1 ← (∇Φ)−1 (𝑦𝑦𝑦𝑡+1) ⊲ Map dual point to a primal point
5: 𝑥𝑥𝑥𝑡+1 ← ΠΦ

X∩D (𝑦𝑦𝑦𝑡+1) ⊲ Project new point onto feasible region X
6: end for

2.2.3.1 Online Gradient Descent (OGD)

In OGD, introduced by Paschos et al. [19] for online caching, the cache is initialized with a feasible
state 𝑥𝑥𝑥1 ∈ X and updated as follows. Upon receiving a request batch 𝑟𝑟𝑟 𝑡 , the cost 𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 ) is incurred
and the next state becomes:

𝑥𝑥𝑥𝑡+1 = ΠX
(
𝑥𝑥𝑥𝑡 − 𝜂∇𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 )

)
, for all 𝑡 ∈ [𝑇 − 1], (2.6)

where ΠX ( · ) is the Euclidean projection onto X, that ensures feasibility, and 𝜂 ∈ R+ is called
the learning rate. Note that the state 𝑥𝑥𝑥𝑡+1 obtained according Eq. (2.6) is indeed a function of
{(𝑟𝑟𝑟 𝑡 ,𝑥𝑥𝑥𝑡 )} ⊂ {(𝑟𝑟𝑟 𝑠,𝑥𝑥𝑥𝑠)}𝑡𝑠=1 for every 𝑡 ≥ 1; hence, OGD is indeed an online caching policy as de-
fined in Section 2.2.2. Paschos et al. [19] show that OGD attains sub-linear regret when 𝑅 = ℎ = 1;
more specifically:

Theorem 2.2.2. ([19, Theorem 2]) When 𝑅 = ℎ = 1, the regret of OGD is bounded as follows:

Regret𝑇 (OGD) ≤ ∥𝑤𝑤𝑤 ∥∞
√︁

min(2𝑘, 2(𝑁 − 𝑘))𝑇 . (2.7)

In other words, OGD attains an O
(√
𝑇

)
regret when 𝑅 = ℎ = 1. In this chapter, we study a

broader class of gradient descent algorithms that include OGD as a special case. As we will see
below (see Theorem 2.2.7), the regret attained by OGD is not necessarily the tightest possible when
𝑅 ≠ 1 ≠ ℎ; broadening the class of algorithms we consider allows us to improve upon this bound.

2.2.3.2 Online Mirror Descent (OMD)

OMD [20, Section 5.3] is the online version of the mirror descent (MD) algorithm [52] for convex
optimization of a fixed, known function. The main premise behind mirror descent is that variables
and gradients live in two distinct spaces: the primal space, for variables, and the dual space, for gra-
dients. The two are linked via a function known as a mirror map. Contrary to standard gradient
descent, updates using the gradient occur on the dual space; the mirror map is used to invert this
update to a change on the primal variables. For several constrained optimization problems of inter-
est, mirror descent leads to faster convergence compared to gradient descent [53, Section 4.3]. OMD
arises by observing that MD is agnostic to whether the gradients are obtained from a fixed function,
or a sequence revealed adversarially.
OMD for Caching. Applied to our caching problem, OMD takes the form summarized in Algo-
rithm 2.1. In our case, both the primal and dual spaces are R𝑁 . To disambiguate between the two,
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we denote primal points by 𝑥𝑥𝑥,𝑦𝑦𝑦 ∈ R𝑁 and dual points by 𝑥𝑥𝑥,𝑦𝑦𝑦 ∈ R𝑁 , respectively. Formally, OMD is
parameterized by (1) a fixed learning rate 𝜂 ∈ R+, and (2) a differentiable map Φ : D → R, strictly
convex over D and 𝜌-strongly convex over X ∩D, where X is included in the closure of D; that is

X ⊆ closure(D). (2.8)

Function Φ is called the mirror map, that links the primal to the dual space.
Given 𝜂 and Φ, an OMD iteration proceeds as follows. After observing the request batch 𝑟𝑟𝑟 𝑡 and

incurring the cost 𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 ), the current state 𝑥𝑥𝑥𝑡 is first mapped from the primal to the dual space via:

𝑥𝑥𝑥𝑡 = ∇Φ(𝑥𝑥𝑥𝑡 ). (2.9)

Then, a regular gradient descent step is performed in the dual space to obtain an updated dual point:

𝑦𝑦𝑦𝑡+1 = 𝑥𝑥𝑥𝑡 − 𝜂∇𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 ). (2.10)

This updated dual point is then mapped back to the primal space using the inverse of mapping ∇Φ,
i.e.:

𝑦𝑦𝑦𝑡+1 = (∇Φ)−1(𝑦𝑦𝑦𝑡+1). (2.11)

The resulting primal point𝑦𝑦𝑦𝑡+1 may lie outside the constraint setX. To obtain the final feasible point
𝑥𝑥𝑥𝑡+1 ∈ X, a projection is made using the Bregman divergence associated with the mirror map Φ; that
is, instead of the orthogonal projection used in OGD, the final cache state becomes:

𝑥𝑥𝑥𝑡+1 = ΠΦ
X∩D (𝑦𝑦𝑦𝑡+1), (2.12)

where ΠΦ
X∩D ( · ) is the Bregman projection, which we define formally below, in Definition 2.2.1.

Together, steps (2.9)–(2.12) define OMD. Note that, as it was the case for OGD, 𝑥𝑥𝑥𝑡+1 is a function
of {(𝑟𝑟𝑟 𝑡 ,𝑥𝑥𝑥𝑡 )} ⊂ {(𝑟𝑟𝑟 𝑠,𝑥𝑥𝑥𝑠)}𝑡𝑠=1, hence OMD is indeed an online algorithm. Two additional technical
assumptions on Φ andD must hold for steps (2.11) and (2.12) to be well-defined.2 First, the gradient
of Φmust diverge at the boundary ofD; this, along with strict convexity, ensures the existence and
uniqueness of the Bregman projection in (2.12). Second, the image of D under the gradient of Φ
should take all possible values, that is ∇Φ(D) = R𝑁 ; this, along again with strict convexity, ensures
that ∇Φ is one-to-one and onto, so its inverse exists and Eq. (2.11) is well-defined.

Setting Φ(𝑥𝑥𝑥) = 1
2 ∥𝑥𝑥𝑥 ∥

2
2 and D = R𝑁 yields the identity mapping ∇Φ(𝑥𝑥𝑥) = 𝑥𝑥𝑥, for all 𝑥𝑥𝑥 ∈ D.

Furthermore, the Bregman divergence associated with this map is just the Euclidean distance
𝐷Φ(𝑥𝑥𝑥,𝑦𝑦𝑦) = 1

2 ∥𝑥𝑥𝑥 −𝑦𝑦𝑦∥
2
2. Thus, this Euclidean version of OMD is equivalent to OGD, and OMD can be

seen as a generalization of the OGD to other mirror maps.
To conclude our description of OMD, we define the Bregman projection [54].

Definition 2.2.1. The Bregman projection denoted by ΠΦ
X∩D : R𝑁 → X ∩D, is defined as

ΠΦ
X∩D (𝑦𝑦𝑦) = arg min

𝑥𝑥𝑥∈X∩D
𝐷Φ(𝑥𝑥𝑥,𝑦𝑦𝑦), where 𝐷Φ(𝑥𝑥𝑥,𝑦𝑦𝑦) = Φ(𝑥𝑥𝑥) − Φ(𝑦𝑦𝑦) − ∇Φ(𝑦𝑦𝑦)𝑇 (𝑥𝑥𝑥 −𝑦𝑦𝑦) (2.13)

is the Bregman divergence associated with the mirror map Φ.
2All hold for the algorithms we consider in Section 2.2.3.3.
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2.2.3.3 Analysis of Online Mirror Descent Algorithms

We present our main results regarding the application of OMD under several different mirror maps
to the online caching problems. We will be concerned with both (1) the regret attained, and (2) com-
putational complexity issues, particularly pertaining to the associated Bregman projection. Our key
observation is that the regret of different algorithms is significantly influenced by demand diversity, as
captured by the diversity ratio 𝑅

ℎ
. In particular, our analysis allows us to characterize regimes of the

diversity ratio in which OGD outperforms other mirror maps, and vice versa.

𝑞-NormMirror Maps. A natural generalization of the OGD algorithm to a broader class of OMD
algorithms is via 𝑞-norm mirror maps, whereby:

Φ(𝑥𝑥𝑥) = 1
2 ∥𝑥
𝑥𝑥 ∥2𝑞 , where 𝑞 ∈ (1, 2], and D = R𝑁 . (2.14)

It is easy to verify that Φ and D, defined as above, satisfy all technical requirements set in Sec-
tion 2.2.3.2 on a mirror map and its domain. We define OMD𝑞-norm to be the OMD Algorithm 2.1
with Φ and 𝑞 given by Eq. (2.14). Note that this map generalizes OGD, which corresponds to the
special case 𝑞 = 2. In what follows, we denote by ∥ · ∥𝑝 the dual norm of ∥ · ∥𝑞 . Then, 𝑝 ∈ [2,∞) is
such that 1

𝑝
+ 1
𝑞
= 1. Note that sometimes OMD𝑞-norm is referred to as a 𝑝-norm algorithm [48].

Regret Analysis. We begin by providing a regret bound for OMD𝑞-norm algorithms:

Theorem 2.2.3. For 𝜂 =

√√√
(𝑞−1)𝑘2

(
𝑘
− 2
𝑝 −𝑁 −

2
𝑝

)
∥𝑤𝑤𝑤 ∥2∞ℎ2( 𝑅ℎ )

2
𝑝 𝑇

, the regret of OMD𝑞-norm over X satisfies:

Regret𝑇 (OMD𝑞-norm) ≤ ∥𝑤𝑤𝑤 ∥∞ ℎ𝑘
(
𝑅

ℎ

) 1
𝑝

√︄
1

𝑞 − 1

(
𝑘
− 2
𝑝 − 𝑁 −

2
𝑝

)
𝑇 . (2.15)

The proof can be found in Appendix 1.3. We use an upper bound on the regret of general OMD
from [53, Theorem 4.2] and relate it to our setting; in doing so, we bound the diameter of X w.r.t.
Bregman divergence under Φ as well as the dual-norm ∥ · ∥𝑝 of the gradients ∇𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 ).

Comparing Theorem 2.2.3 to Theorem 2.2.2, we see that both attain an O
(√
𝑇

)
regret. A natural

question to ask when comparing the two bounds is whether there are cases where OMD𝑞-norm with
𝑞 ≠ 2 outperforms OGD (i.e., OMD2-norm). The constants in the r.h.s. of Eq. (2.15) depend on the
diversity ratio 𝑅

ℎ
; this, in turn, affects which is the optimal 𝑞, i.e., the one that minimizes the bound

in Eq. (2.15). Let 𝑞∗ = arg inf𝑞∈(1,2] ub(𝑞) be the optimal 𝑞, where ub : (1, 2] → R+ is the upper
bound in Eq. (2.15). Note that 𝑞∗ ∈ [1, 2]. Figure 2.1 shows 𝑞∗ as a function of the diversity ratio,
for different values of cache capacity 𝑘 . We observe that OGD (𝑞 = 2) is optimal for lower diversity
regimes and larger caches; when diversity 𝑅

ℎ
increases or cache capacity 𝑘 decreases, values 𝑞 < 2

become optimal. The transition from 𝑞∗ = 2 to 𝑞∗ = 1 is sharp, and becomes sharper as 𝑘 increases.
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Figure 2.1: Numerical characterization of 𝑞∗ ∈ [1, 2] as a function of the diversity ratio 𝑅/ℎ, for
different cache capacities 𝑘 expressed as fractions of the catalog size (𝑁 = 100). Given 𝑅/ℎ, the
optimal 𝑞∗ is determined as the value in [1, 2] that minimizes the upper-bound in Eq. (2.15). Higher
values of 𝑅/ℎ represent more diverse requests. Under small diversity, OGD is optimal; as diversity
increases, mirror maps for which 𝑞 < 2 attain a more favorable upper bound than OGD.

Optimality Regimes. Motivated by these observations, we turn our attention to formally charac-
terizing the two regimes underwhich optimality transitions from𝑞∗ = 2 to𝑞∗ = 1. We first determine
the upper bound on the regret for these two regimes. Indeed, by setting 𝑞 = 2 in Theorem 2.2.3, we
obtain the following bound, generalizing Theorem 2.2.2 to the case 𝑅/ℎ > 1:

Corollary 2.2.4. For 𝜂 =

√︂
𝑘 (1− 𝑘𝑁 )
∥𝑤𝑤𝑤 ∥2∞ℎ𝑅𝑇

the regret of OGD, satisfies:

Regret𝑇 (OGD) ≤ ∥𝑤𝑤𝑤 ∥∞

√︄
ℎ𝑅𝑘

(
1 − 𝑘

𝑁

)
𝑇 . (2.16)

This a direct consequence of Theorem 2.2.3 by replacing 𝑞 = 2 in Eq. (2.15). We note that, in this
result, we tighten the bound of Paschos et al. [19]: for 𝑅 = ℎ = 1, the bound in Eq. (2.16) is smaller
than the one in Theorem 2.2.2 by at least a

√
2 factor.

We also characterize the limiting behavior of OMD𝑞-norm as 𝑞 converges to 1.

Corollary 2.2.5. As 𝑞 converges to 1, the upper bound on OMD𝑞-norm regret given by Eq. (2.15) con-
verges to:

∥𝑤𝑤𝑤 ∥∞ ℎ𝑘

√︄
2 log

(
𝑁

𝑘

)
𝑇 . (2.17)

The proof can be found in Appendix 1.4. This limit is precisely the bound on the regret attained
under the neg-entropymirrormap (see Theorem 2.2.8 below). Armedwith Corollaries 2.2.4 and 2.2.5,
we can formally characterize the regimes in which either of the two strategies become dominant:
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Theorem 2.2.6. The request bound for OMD𝑞-norm in Eq. (2.15) is minimized for 𝑞 = 2, when 𝑅
ℎ
≤ 𝑘 .

In other words, when the diversity ratio is smaller than the cache size, it is preferable to update
the cache via OGD. The proof, in Appendix 1.5, establishes that the upper bound in Eq. (2.15) is
monotonically decreasing w.r.t 𝑞 in the specified interval 𝑅

ℎ
≤ 𝑘 . Our next result characterizes then

the neg-entropy (𝑞 converges to 1) mirror map outperforms OGD:

Theorem 2.2.7. The limit, as 𝑞 converges to 1, of the OMD𝑞-norm regret bound in Eq. (2.17) is smaller
than the corresponding bound for OGD (OMD𝑞-norm with 𝑞 = 2) when 𝑅

ℎ
> 2
√
𝑁𝑘 .

The proof is provided in Appendix 1.6. We stress that Theorem 2.2.7 implies the sub-optimality
of OGD in the regime 𝑅

ℎ
> 2
√
𝑁𝑘 . The experiments in Figure 2.1 suggest the bound in Theorem 2.2.7

is quite tight: for example for 𝑘 = 7 the bounds suggest 𝑞 = 1 should be optimal when 𝑅/ℎ exceeds
2
√

100 × 7 ≈ 52.9, while experiments show that it is optimal when 𝑅/ℎ exceeds 45. On the contrary,
we observe that the bound in Theorem 2.2.6 seems to be loose and the transitions we observe in
Figure 2.1 are sharper than what one would predict from the bounds.

Dual-Primal Update and Bregman Projection. Having characterized the regret of OMD𝑞-norm
algorithms, we turn our attention to implementation issues. The map to the dual space and back in
Eq. (2.9) and Eq. (2.11) (Lines 2 and 4 in Algorithm 2.1), have the following expression [55], respec-
tively:

𝑥𝑡,𝑖 = (∇Φ(𝑥𝑥𝑥𝑡 ))𝑖 = sign(𝑥𝑡,𝑖)
|𝑥𝑡,𝑖 |𝑞−1

∥𝑥𝑥𝑥𝑡 ∥𝑞−2
𝑞

, for all 𝑖 ∈ N , (2.18)

𝑦𝑡+1,𝑖 =
(
(∇Φ)−1 (𝑦𝑦𝑦𝑡+1)

)
𝑖
= sign(𝑦𝑡+1,𝑖)

|𝑦𝑡+1,𝑖 |𝑝−1

𝑦𝑦𝑦𝑡+1

𝑝−2
𝑝

, for all 𝑖 ∈ N . (2.19)

Finally, for all 𝑞 ∈ (1, 2] the Bregman projection in Eq. (2.12) (Line 5 in Algorithm 2.1) involves
solving a convex optimization problem, in general. For the OGD Algorithm however (𝑞 = 2) the
projection is the usual Euclidean projection, and can be performed in O

(
𝑁 2) steps, using the pro-

jection algorithm by Wang and Lu [56]. Specifically when 𝑅
ℎ
= 1, only a single coefficient is updated

through the gradient step (Lines 2–4 in Algorithm 2.1) per iteration, and Paschos et al. [19] provide
an algorithm that performs the projection in O (𝑁 ) time.3

2.2.3.4 Neg-Entropy Mirror Map

To conclude this section, we turn our attention to the neg-entropy mirror map that, as discussed
earlier, attains the same regret performance as OMD𝑞-norm as 𝑞 converges to 1. Beyond its improved
performance in terms of regret in the high diversity ratio regime, the neg-entropy mirror map comes
with an additional computational advantage: the Bregman projection admits a highly efficient im-
plementation.

3To be precise, the projection algorithm as presented in [19] requires at each iteration a preliminary step with com-
plexity O (𝑁 log(𝑁 )) to sort a vector of size 𝑁 , followed by O (𝑁 ) steps. However, it is possible to replace sorting by
O (log(𝑁 )) binary search and insertion operations reducing the complexity to O (𝑁 ) per iteration.
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Formally, OMD under the neg-entropy mirror map uses:

Φ(𝑥𝑥𝑥) =
𝑁∑︁
𝑖=1

𝑥𝑖 log (𝑥𝑖) , and D = R𝑁>0. (2.20)

Note that, as per the requirements in Section 2.2.3.2, X ⊆ closure(D). Also, ∇Φ indeed diverges at
the boundary of D, and ∇Φ(D) = R𝑁 , as

𝜕Φ(𝑥𝑥𝑥)
𝜕𝑥𝑖

= 1 + log𝑥𝑖, for all 𝑖 ∈ N . (2.21)

We refer to the resulting algorithm as OMDNE.

Regret Analysis. We first characterize the regret of OMDNE:

Theorem 2.2.8. For 𝜂 =

√︂
2 log(𝑁 /𝑘)
∥𝑤𝑤𝑤 ∥2∞ℎ2𝑇

, the regret of OMDNE satisfies:

Regret𝑇 (OMDNE) ≤ ∥𝑤𝑤𝑤 ∥∞ ℎ𝑘
√︁

2 log(𝑁 /𝑘). (2.22)

The proof, in Appendix 1.8, is similar to the proof of Theorem 2.2.3. Using again the general bound
of the regret of OMD algorithms in Bubeck [53, Theorem 4.2], we bound the diameter of X w.r.t. to
the Bregman divergence as well as the dual norm ∥ · ∥∞ of gradients ∇𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 ). Crucially, we observe
that OMDNE indeed attains the same regret bound as the one in Corollary 2.2.5, namely, the bound
on OMD𝑞-norm when 𝑞 converges to 1. This immediately implies the advantage of OMDNE over OGD
in high diversity ratio regimes, as described in Section 2.2.3.3 and Theorem 2.2.7.

Dual-Primal Update and Bregman Projection. As ∇Φ(𝑥𝑥𝑥) is given by Eq. (2.21), the inverse
mapping is given by

(
(∇Φ)−1 (𝑦𝑦𝑦𝑡+1)

)
𝑖
= exp(𝑦𝑡,𝑖 − 1). Hence, the map to the dual space and back in

Eq. (2.9)–Eq. (2.11) (Lines 2–4 in Algorithm 2.1) can be concisely written for all 𝑖 ∈ N as:

𝑦𝑡+1,𝑖 = exp
(
𝑥𝑡,𝑖 − 𝜂

𝜕𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 )
𝜕𝑥𝑖

− 1
)
= exp

(
log(𝑥𝑡,𝑖) − 𝜂

𝜕𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 )
𝜕𝑥𝑖

)
= 𝑥𝑡,𝑖 𝑒

−𝜂 𝜕𝑓𝑟𝑟𝑟𝑡 (𝑥𝑥𝑥𝑡 )
𝜕𝑥𝑖 . (2.23)

In other words, OMD under the neg-entropy mirror map adapts the cache state via a multiplicative
rule (namely, the one implied by the above equation), as opposed to the additive rule of OGD (see
Eq. (2.6)). In Theorem 1.2 we prove that OMD𝑞-norm when 𝑞 converges to 1 also adapts the cache
state via a multiplicative update rule; moreover, it is equivalent to OMDNE over the simplex. This
justifies why the regret bounds for the two algorithms in Eq. (2.17) and Eq. (2.22) are identical.

Finally, the projection algorithm onto the capped simplex can be implemented in
O (𝑁 + 𝑘 log(𝑘)) time for arbitrary 𝑅 and ℎ values using a waterfilling-like algorithm. The full
procedure is presented in Algorithm 2.2. The algorithm receives as input the top-𝑘 elements of
𝑦𝑦𝑦, sorted in a descending order. It then identifies via a linear search which elements exceed an
appropriate threshold and set them to one. The other elements are scaled by a constant factor to
satisfy the capacity constraint. The following theorem holds:
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Algorithm 2.2 Neg-Entropy Bregman projection onto the capped simplex
Require: 𝑁 ; 𝑘 ; ∥𝑦𝑦𝑦∥1; 𝑃 ; Partially sorted 𝑦𝑁 ≥ · · · ≥ 𝑦𝑁−𝑘+1 ≥ 𝑦𝑖 ,∀𝑖 ≤ 𝑁 − 𝑘

⊲𝑦𝑦𝑦 is the intermediate cache state, and 𝑃 is a scaling factor initialized to 1
1: 𝑦𝑁+1 ← +∞
2: for b ∈ {𝑁, . . . , 𝑁 − 𝑘 + 1} do
3: 𝑚𝑏 ← (𝑘 + 𝑏 − 𝑁 ) /

(
∥𝑦𝑦𝑦∥1 −

∑𝑁
𝑖=𝑏+1 𝑦𝑖𝑃

)
4: if 𝑦𝑏𝑚𝑏𝑃 < 1 ≤ 𝑦𝑏+1𝑚𝑏𝑃 then

⊲ Appropriate 𝑏 is found
5: for i ≥ b+1 do
6: 𝑦𝑖 ← 1/(𝑚𝑏𝑃)
7: end for
8: 𝑃 ←𝑚𝑏𝑃

9: return𝑦𝑦𝑦𝑃 ⊲𝑦𝑦𝑦𝑃 is the result of the projection
10: end if
11: end for

Theorem 2.2.9. Algorithm 2.2 returns the projection ΠΦ
X∩D (𝑦𝑦𝑦) onto the capped simplex X under the

neg-entropy Φ. It requires O (𝑁 + 𝑘 log(𝑘)) operations per OMDNE iteration, for general values of 𝑅
and ℎ, and only O (𝑘) operations, when 𝑅

ℎ
= 1.

The proof is given in Appendix 1.9. To prove this theorem, we characterize the KKT conditions
of the minimization problem. Then we show that these conditions can be checked in O (𝑘) time.
Finally, we show how maintaining 𝑦𝑦𝑦 in a partially sorted list across iterations leads to the reported
complexity results. Theorem 2.2.9 implies that OMDNE has significant computational savings when
compared to OGD (cf. Section 2.2.3.3), both when 𝑅

ℎ
= 1 and for general values of 𝑅 and ℎ.

2.2.4 Update Costs
The model presented in Section 2.2.2 can be extended by adding the cost to update the cache state
after the batch of 𝑅 requests has been served. This cost may quantify the additional load on the
server or on the network. This update cost is often called movement cost [53] or switching cost [45].
As the state changes from 𝑥𝑥𝑥𝑡 to 𝑥𝑥𝑥𝑡+1, the cache evicts part of the file 𝑖 if 𝑥𝑡+1,𝑖 < 𝑥𝑡,𝑖 and stores
additional bytes of it if 𝑥𝑡+1,𝑖 > 𝑥𝑡,𝑖 . We make the following assumptions:

1. Evictions do not engender update costs, as the cache can perform them autonomously;

2. Insertions of (part of) files which have been requested do not engender update costs, as these
files have already been retrieved by the cache in their entirety to satisfy the requests.

3. Insertions of (part of) files which have not been requested incur a cost proportional to the
fraction of file retrieved.

We can then define the update cost at time slot 𝑡 as

UC𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 ,𝑥𝑥𝑥𝑡+1) =
∑︁

𝑖∉supp(𝑟𝑟𝑟 𝑡 )
𝑤 ′𝑖 max

{
0, 𝑥𝑡+1,𝑖 − 𝑥𝑡,𝑖

}
, (2.24)
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where supp(𝑟𝑟𝑟 𝑡 ) =
{
𝑖 ∈ N : 𝑟𝑡,𝑖 ≠ 0

}
denotes the support of 𝑟𝑟𝑟 𝑡 , i.e., the set of files that have been

requested during the 𝑡-th timeslot, and 𝑤 ′𝑖 ∈ R+ is the cost to retrieve the whole file 𝑖 , and can in
general be different from the cost𝑤𝑖 appearing in (2.3).

If the update cost is introduced in the model, the extended regret can be defined as follows:

E-Regret𝑇 (A) = sup
{𝑟𝑟𝑟 1,𝑟𝑟𝑟 2,...,𝑟𝑟𝑟 𝑡 }∈R𝑇𝑅,ℎ

{
𝑇∑︁
𝑡=1

𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 ) + UC𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 ,𝑥𝑥𝑥𝑡+1) −
𝑇∑︁
𝑡=1

𝑓𝑟𝑟𝑟 𝑡 (𝑥∗𝑥∗𝑥∗)
}

(2.25)

≤ sup
{𝑟𝑟𝑟 1,𝑟𝑟𝑟 2,...,𝑟𝑟𝑟 𝑡 }∈R𝑇𝑅,ℎ

{
𝑇∑︁
𝑡=1

𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 ) −
𝑇∑︁
𝑡=1

𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥∗)
}
+ sup
{𝑟𝑟𝑟 1,𝑟𝑟𝑟 2,...,𝑟𝑟𝑟 𝑡 }∈R𝑇𝑅,ℎ

{
𝑇∑︁
𝑡=1

UC𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 ,𝑥𝑥𝑥𝑡+1)
}
. (2.26)

Equation (2.26) shows that the regret of an arbitrary online algorithm can be bounded by considering
the regret we have derived so far (Eq. (2.4)), ignoring update costs, and subsequently accounting for
an additional term corresponding to the update. Note that the optimal static allocation does not incur
any update cost. Equation (2.26) implies that any policy with O

(√
𝑇

)
regret and O

(√
𝑇

)
update cost

in expectation has also O
(√
𝑇

)
extended regret.

One of the reasons why we did not introduce directly the update cost is that, in the fractional
setting, OMD update cost is zero both for the Euclidean (OGD) and the neg-entropy (OMDNE) mirror
maps. Formally, we have:

Proposition 2.2.10. For any request batch 𝑟𝑟𝑟 𝑡 received at time slot 𝑡 ∈ [𝑇 ], the update of fractional
cache state from 𝑥𝑥𝑥𝑡 ∈ X to 𝑥𝑥𝑥𝑡+1 ∈ X obtained by OMDNE or OGD has no cost, i.e., UC𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 ,𝑥𝑥𝑥𝑡+1) = 0.

The proof is provided in Appendix 1.10. In fact, the gradient step increases the fraction 𝑥𝑡,𝑖 only
for files 𝑖 that have been requested, and the projection step reduces the fraction for all other files in
order to satisfy the capacity constraint. It follows that 𝑥𝑡+1,𝑖 −𝑥𝑡,𝑖 > 0 if and only if 𝑖 ∈ supp(𝑟𝑟𝑟 𝑡 ), and
thus UC𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 ,𝑥𝑥𝑥𝑡+1) = 0. Hence, the O

(√
𝑇

)
regret guarantees we proved in the previous sections for

OGD and OMDNE extend to the more general definition in (2.25). In the next section, we show that
update costs cannot be neglected when caches are forced to store files in their entirety.

2.2.5 Integral Caching
In the previous sections, we assumed that the cache can store arbitrarily scriptsize chunks of a
file, and this allowed us to design no-regret policies that employ fractional caching. However,
this assumption can be too strong in some applications. For example, when the catalog is com-
posed of scriptsize-sized files, the discreteness of chunks sizes cannot be neglected; moreover, the
metadata needed for each chunk can cause memory and computational overheads. These obser-
vations motivate us to study the case when the cache can only store the entire file. We refer
to this setting as the integral caching. Formally, we restrict the cache states to belong to the set
Z =

{
𝜁𝜁𝜁 ∈ {0, 1}𝑁 :

∑
𝑖∈N 𝜁𝑖 = 𝑘

}
. Note that the setZ is a restriction of the set of fractional caching

states X to its corners, i.e., Z = X ∩ {0, 1}𝑁 ; thus, we maintain the same definition of the requests
and the service cost objective in Section 2.2.2. In this setting, we allow policies to be randomized.
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This extension turns out to be necessary in order to have a sublinear regret policy; formally, we
have:

Proposition 2.2.11. Any deterministic policy restricted to select integral cache states in Z has the
following lower bound on its regret:

Regret𝑇 (A) ≥ 𝑘 (1 − 𝑘/𝑁 )𝑇 . (2.27)

To prove the proposition, we show that an adversary can exploit the deterministic nature of the
policy by continuously requesting the files that are not stored in the cache. We provide the proof in
Appendix 2.1.

We thus turn our attention to randomized policies. In particular, we focus on a special class of
randomized policies, constructed by (1) a fractional online caching policyA, i.e., of the type we have
studied so far (see Section 2.2.2), combined with (2) a randomized rounding scheme Ξ, that maps
fractional caching states to integral ones. In particular, for every 𝑡 ≥ 1 the randomized rounding
scheme Ξ : X𝑡 × Z𝑡−1 × [0, 1] → Z maps the previous fractional cache states {𝑥𝑥𝑥𝑠}𝑡−1

𝑠=1 ∈ X𝑡−1, the
current fractional cache state𝑥𝑥𝑥𝑡 ∈ X, the previous random cache states {𝑧𝑧𝑧𝑠}𝑡−1

𝑠=1 ∈ Z𝑡−1, and a source
of randomness 𝜉𝑡 ∈ [0, 1] to a new random cache state 𝑧𝑧𝑧𝑡 ∈ Z where

E[𝑧𝑧𝑧𝑡 ] = 𝑥𝑥𝑥𝑡 . (2.28)

Note that the rounding function takes into account not only the current fractional state 𝑥𝑥𝑥𝑡 , which
determines its expectation, but also the past fractional and integral states ({(𝑧𝑧𝑧𝑠,𝑥𝑥𝑥𝑠)}𝑡−1

𝑠=1); this is in
fact instrumental in attaining a sublinear extended regret (see Theorems 2.2.13 and 2.1 below).

We extend the definitions of the regret and the extended regret as follows:

Regret𝑇 (A,Ξ) = sup
{𝑟𝑟𝑟 1,𝑟𝑟𝑟 2,...,𝑟𝑟𝑟 𝑡 }∈R𝑇𝑅,ℎ

{
E

[
𝑇∑︁
𝑡=1

𝑓𝑟𝑟𝑟 𝑡 (𝑧𝑧𝑧𝑡 )
]
−

𝑇∑︁
𝑡=1

𝑓𝑟𝑟𝑟 𝑡 (𝑧𝑧𝑧∗)
}
, (2.29)

and

E-Regret𝑇 (A,Ξ) = sup
{𝑟𝑟𝑟 1,𝑟𝑟𝑟 2,...,𝑟𝑟𝑟 𝑡 }∈R𝑇𝑅,ℎ

{
E

[
𝑇∑︁
𝑡=1

𝑓𝑟𝑟𝑟 𝑡 (𝑧𝑧𝑧𝑡 ) + UC𝑟𝑟𝑟 𝑡 (𝑧𝑧𝑧𝑡 ,𝑧𝑧𝑧𝑡+1)
]
−

𝑇∑︁
𝑡=1

𝑓𝑟𝑟𝑟 𝑡 (𝑧𝑧𝑧∗)
}
, (2.30)

where the expectation is taken over the random choices of the rounding scheme Ξ, and

𝑧𝑧𝑧∗ = arg min
𝑧𝑧𝑧∈Z

𝑇∑︁
𝑡=1

𝑓𝑟𝑟𝑟 𝑡 (𝑧𝑧𝑧) (2.31)

is the optimal static integral cache state (in hindsight). By restricting our focus to such randomized
policies, we obtain a regret that is equal to the fractional caching policy’s regret. Formally, we have:

Proposition 2.2.12. Any randomized caching policy constructed by an online policyA combined with
a randomized rounding scheme Ξ has the same regret as A, i.e., Regret𝑇 (A,Ξ) = Regret𝑇 (A), given
by (2.29) and (2.4), respectively.
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The result follows from the linearity of the cost functions and the expectation operator; more-
over, the static optimum can always be selected to be integral from the integrality of the capacity
constraint and linearity of the objective function. The proof is provided in Appendix. 2.2.

Proposition 2.2.12 thus implies that regret guarantees for a fractional policyA readily transfer to
the integral regime, when coupled with rounding Ξ. Unfortunately, when considering the extended
regret (Eq. (2.30)) instead, naïve rounding policies can arbitrary evict and fetch objects to the cache
causing large update costs (see Theorem 2.2.13). Thus, unless rounding is carefully designed, we
may fail to have sublinear regret guarantees when accounting for update costs. In the next section,
we show how a randomized rounding scheme Ξ can be selected to avoid incurring large update
costs.

2.2.5.1 Rounding Schemes and Extended Regret

Online Independent Rounding. If we consider a fractional caching state𝑥𝑥𝑥𝑡 ∈ X, then a random
integral caching state 𝑧𝑧𝑧𝑡 ∈ Z with the marginal E[𝑧𝑧𝑧𝑡 ] = 𝑥𝑥𝑥𝑡 exists and can be sampled in polyno-
mial time (see, e.g., [21, 57]). Thus, a rounding scheme Ξ can be constructed with such strategy
that takes as input the current fractional cache state 𝑥𝑥𝑥𝑡 ignoring previous fractional cache states
{𝑥𝑥𝑥𝑠}𝑡−1

𝑠=1 ∈ X𝑡−1, and previous random cache states {𝑧𝑧𝑧𝑠}𝑡−1
𝑠=1 ∈ Z𝑡−1. linearWe provide pseudocode

for this procedure in Algorithm 2.3.4 Because at any time 𝑡 the random cache states are sampled
independently from previous random cache states, we refer to this rounding as online independent
rounding. Unfortunately, when considering the extended regret (2.30), any caching policy coupled
with this rounding scheme loses its O

(√
𝑇

)
regret guarantee. Formally, we have the following:

Theorem 2.2.13. Any randomized caching policy constructed by an online policy A combined with
online independent rounding as a randomized rounding scheme Ξ has linear (worst-case) extended re-
gret, i.e., E-Regret𝑇 (A,Ξ) = Ω(𝑇 ).

The proof is provided in Appendix 2.3. Online independent rounding causes frequent cache up-
dates, as it samples a new state from𝑧𝑧𝑧𝑡 ignoring the previous state𝜁𝜁𝜁 𝑡−1 sampled from𝑧𝑧𝑧𝑡−1. Intuitively,
imposing dependence (coupling) between the two consecutive random states may significantly re-
duce the expected update cost.

Online Coupled Rounding. To address this issue, our proposed online coupled rounding scheme
is described also in Algorithm 2.3, using however the same randomization source across all timeslots.
In particular, the coupling across states comes from the use of the same uniform random variable 𝜉 .
A consequence of this coupling is that the next integral state can be computed efficiently and leads
to scriptsize movement costs. Note that Algorithm 2.3 does not necessarily find an optimal cou-
pling, still it yields a sublinear update cost, and thus preserves the sublinearity of the regret. This is
formally expressed in the following Theorem:

4Algorithm 2.3 provides a linear-time variant of the algorithms proposed in [21, 57, 58]. The algorithm samples an
integral caching state without constructing a distribution and its support.
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Algorithm 2.3 Online Rounding
1: procedure Online Rounding(𝑥𝑥𝑥 ∈ X, 𝜉 ∈ [0, 1])
2: I0 = ∅
3: for 𝑖 = 1, 2, . . . , 𝑁 do

4: I𝑖 ←
{
I𝑖−1 ∪ {𝑖} if

∑𝑖
𝑗=1 𝑥 𝑗 ≥ 𝜉 + |I𝑖−1 |,

I𝑖−1 otherwise.
5: end for
6: return𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 ← ∑

𝑖∈𝐼𝑁 𝑒𝑒𝑒𝑖
7: end procedure

⊲ In online independent rounding, Online Rounding is
called with arguments (𝑥𝑥𝑥𝑡 , 𝜉𝑡 ), where 𝑥𝑥𝑥𝑡 are provided
by algorithm A and {𝜉𝑡 }𝑇−1

𝑡=1 are i.i.d., sampled u.a.r.
from [0, 1].
⊲ In online coupled rounding, a 𝜉 is sampled once u.a.r.
from [0, 1]; then, Online Rounding is called with ar-
guments (𝑥𝑥𝑥𝑡 , 𝜉), i.e., using the same 𝜉 for all𝑥𝑥𝑥𝑡 provided
by algorithm A.
⊲ Both return an integral r.v. 𝑧𝑧𝑧𝑡 s.t. E[𝑧𝑧𝑧𝑡 ] = 𝑥𝑥𝑥𝑡 , with
the expectation being over {𝜉𝑡 }𝑇−1

𝑡=1 and 𝜉 , respectively.

Theorem 2.2.14. Consider a randomized caching policy constructed by an OMD policyA with sublin-
ear regret (i.e., configured with learning rate𝜂 = Θ

(
1/
√
𝑇

)
) combined with online coupled roundingΞ in

Algorithm 2.3 (fixed 𝜉𝑡 = 𝜉 for 𝑡 ∈ [𝑇 ]). The expected movement cost of the random integral cache states
isE

[
UC𝑟𝑟𝑟 𝑡 (𝑧𝑧𝑧𝑡 ,𝑧𝑧𝑧𝑡+1)

]
= O

(√
𝑇

)
. Moreover, the extended regret is sublinear E-Regret𝑇 (A,Ξ) = O

(√
𝑇

)
.

We provide the proof in Appendix 2.5. In summary, any OMD policy combined with online
coupled rounding yields O

(√
𝑇

)
extended regret in the integral caching setting. The computational

complexity of online coupled rounding is O (𝑁 ) (see also Figure 2.2).

Online Optimally-Coupled Rounding. It is possible in general to reduce the update cost of on-
line coupled rounding. In particular, minimizing the expected update cost over all joint distributions
of the random variables 𝑧𝑧𝑧𝑡 and 𝑧𝑧𝑧𝑡+1 leads to an optimal transport problem [59]. For completeness,
we describe this rounding scheme here, though (1) it does not reduce the extended regret guaran-
tee attained by online coupled rounding (up to multiplicative constants), and (2) it has an increased
computational cost.

Formally, at each time 𝑡 the random variables𝑧𝑧𝑧𝑡 withmarginal𝑥𝑥𝑥𝑡 can be constructed by sampling
from a distribution 𝑝𝑝𝑝𝑡 with O (𝑁 ) support

{
𝜁𝜁𝜁 1
𝑡 , 𝜁𝜁𝜁

2
𝑡 , . . . , 𝜁𝜁𝜁

|𝑝𝑝𝑝𝑡 |
𝑡

}
, where 𝑝𝑡,𝑖 = P(𝑧𝑧𝑧𝑡 = 𝜁𝜁𝜁 𝑖𝑡 ) for 𝑖 ∈ [|𝑝𝑝𝑝𝑡 |].

The decomposition can be performed in O (𝑘𝑁 log(𝑁 )) steps [21]. We denote the joint probability
P

(
𝑧𝑧𝑧𝑡+1 = 𝜁𝜁𝜁

𝑗

𝑡+1,𝑧𝑧𝑧𝑡 = 𝜁𝜁𝜁
𝑖
𝑡

)
by the flow 𝑓𝑖, 𝑗 for all (𝑖, 𝑗) ∈ [|𝑝𝑝𝑝𝑡 |] × [|𝑝𝑝𝑝𝑡+1 |]. The optimal transport problem

can be described by the following linear program:

𝑓𝑓𝑓 = arg min
[𝑓𝑖, 𝑗 ] (𝑖, 𝑗 ) ∈ [ |𝑝𝑝𝑝𝑡 | ]×[ |𝑝𝑝𝑝𝑡+1 | ]

E [UC (𝑧𝑧𝑧𝑡 ,𝑧𝑧𝑧𝑡+1)] =
|𝑝𝑝𝑝𝑡 |∑︁
𝑖=1

|𝑝𝑝𝑝𝑡+1 |∑︁
𝑗=1

UC𝑟𝑟𝑟 𝑡
(
𝜁𝜁𝜁 𝑖𝑡 , 𝜁𝜁𝜁

𝑗

𝑡+1

)
𝑓𝑖, 𝑗

s.t.
|𝑝𝑝𝑝𝑡+1 |∑︁
𝑗=1

𝑓𝑖, 𝑗 = 𝑝𝑡,𝑖,

|𝑝𝑝𝑝𝑡 |∑︁
𝑖=1

𝑓𝑖, 𝑗 = 𝑝𝑡+1, 𝑗 , 𝑓𝑖, 𝑗 ∈ [0, 1],∀(𝑖, 𝑗) ∈ [|𝑝𝑝𝑝𝑡 |] × [|𝑝𝑝𝑝𝑡+1 |] .

We solve the above linear program to obtain a minimum-cost flow 𝑓𝑓𝑓 . If the random state
at time 𝑡 is 𝜁𝜁𝜁 𝑖𝑡 , then we select the new random state to be 𝜁𝜁𝜁 𝑗

𝑡+1 with (conditional) probability



22 Chapter 2 — Exact Caching

P
(
𝑧𝑧𝑧𝑡+1 = 𝜁𝜁𝜁

𝑗

𝑡+1 | 𝑧𝑧𝑧𝑡 = 𝜁𝜁𝜁 𝑖𝑡
)
=

𝑓 ∗𝑖, 𝑗
𝑝𝑡
𝑖

. Such coupling ensures that the expected update cost is minimized.
When we combine this rounding scheme with a no-regret fractional policy we obtain sublinear
extended regret (2.30):

Corollary 2.2.15. Consider an OMDpolicyA configured with learning rate𝜂 = Θ
(

1√
𝑇

)
combined with

online optimally-coupled rounding Ξ. The obtained randomized integral caching policy has sublinear
extended regret, i.e., E-Regret(A,Ξ) = O

(√
𝑇

)
.

The corollary follows from Theorem 2.2.14, because online coupled rounding constructs a feasi-
ble transportation flow (see Figure 2.3 in Appendix 2.4 for an illustration) that gives sublinear update
costs, and the optimal flow can only have lower update costs. The naïve implementation of the op-
timal transport problem has O

(
𝑁 3) time complexity, but several efficient approximations exist in

the literature [59] at the expense of losing the established guarantee.

2.2.6 Experiments

2.2.6.1 Experimental setup

Datasets. Throughout all experiments, we assume equal costs per file, i.e., 𝑤𝑖 = 𝑤 ′𝑖 = 1,∀𝑖 ∈ N .
The learning rate 𝜂∗ denotes the learning rate value specified in Corollary 2.2.4 and in Theorem 2.2.8
for OGD andOMDNE, respectively. The learning rate is selected to be𝜂∗ unless otherwisementioned.
In what follows, we distinguish the number of batches in the trace (𝐵) and the time horizon (𝑇 ).

We generate the following synthetic datasets, summarized in Table 2.2.
Fixed Popularity. Requests are i.i.d. and sampled from a catalog of 𝑁 = 200 files according to a Zipf
distribution with exponent 𝛼 = 0.8. Each batch counts a single request (𝑅 = 1). We set set the time
horizon as 𝑇 = 105. The cache capacity is 𝑘 = 100. The total number of requests is the product of
the requests in each batch (𝑅) and the number of batches (𝐵), both values are reported in Table 2.2.
Batched Fixed Popularity. Request are generated as above from a Zipf distribution with exponent 𝛼 ,
but are now grouped in batches of𝑅 = 5×103 requests. We take different exponents𝛼 ∈ {0.1, 0.2, 0.7}
for traces Batched Fixed Popularity (1), (2), and (3), respectively, in Table 2.2. The parameter 𝛼 con-
trols the diversity of the files in the request batches. If 𝛼 = 0, then each file is requested with equal
probability, corresponding to 𝑅

ℎ
→ 𝑁 (high diversity). As we increase 𝛼 , the requests become more

concentrated; this corresponds to 𝑅
ℎ
→ 1 (low diversity). Table 2.2 shows the value of ℎ observed

in each trace. In all cases, we select catalog size 𝑁 = 104, cache size 𝑘 ∈ {25, 125, 250}, and time
horizon 𝑇 = 104.
Transient Popularity. We also generate two non-stationary request traces. In these traces, we reset
the popularity distribution periodically.

In the first scenario (Partial Popularity Change traces), we still have batches of 𝑅 = 5 × 103

requests sampled from a catalog of 𝑁 = 104 files according to a Zipf distribution with parameter
𝛼 ∈ {0.1, 0.3, 0.4} for traces (1), (2), and (3), respectively. But now the popularities of a subset of files
is modified every 103 time slots. In particular the 5% most popular files become the 5% least popular
ones and vice versa. We want to model a situation where the cache knows the timescale over which
the request process changes and which files are affected (but not how their popularity changes).
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Trace 𝐵 𝑇 𝑁 𝑅 ℎ

Fixed Popularity 1.5 × 105 1.5 × 105 104 1 1
Batched Fixed Popularity (1) 104 104 104 5 × 103 2
Batched Fixed Popularity (2) 104 104 104 5 × 103 5
Batched Fixed Popularity (3) 104 104 104 5 × 103 87
Partial Popularity Change (1) 5 × 103 103 104 5 × 103 2
Partial Popularity Change (2) 5 × 103 103 104 5 × 103 6
Partial Popularity Change (3) 5 × 103 103 104 5 × 103 10
Global Popularity Change 1.5 × 105 1.5 × 105 104 1 1
Downscaled Global Popularity Change 9 × 103 9 × 103 25 1 1
Akamai CDN 1.7 × 104 102 103 5 × 104 380

Table 2.2: Trace Summary

Performance metric Definition Range
Normalized Average Cost NAC(A) = 1

𝑅𝑡

∑𝑡
𝑠=0 𝑓𝑟𝑟𝑟𝑠 (𝑥𝑥𝑥𝑠 ) [0, 1]

Normalized Moving Average Cost NMAC(A) = 1
𝑅min(𝜏,𝑡 )

∑𝑡
𝑠=𝑡−min(𝜏,𝑡 ) 𝑓𝑟𝑟𝑟𝑠 (𝑥𝑥𝑥𝑠 ) [0, 1]

Time Average Regret TAR(A) = 1
𝑡

(∑𝑡
𝑠=1 𝑓𝑟𝑟𝑟𝑠 (𝑥𝑥𝑥𝑠 ) −

∑𝑡
𝑠=1 𝑓𝑟𝑟𝑟𝑠 (𝑥∗𝑥∗𝑥∗)

)
[0, 𝑅]

Cumulative Update Cost CUC(A) = ∑𝑡
𝑠=1 UC𝑟𝑟𝑟𝑠 (𝑥𝑥𝑥𝑠 ,𝑥𝑥𝑥𝑠+1) [0,∞)

Table 2.3: Performance Metrics. All are better if lower.

Correspondingly, the time horizon is also set to 𝑇 = 103 and, at the end of each time horizon, the
cache redistributes uniformly the cache space currently allocated by those files. The cache size is
𝑘 = 50.

In the second scenario (Global Popularity Change trace) each batch counts only a single request
(𝑅 = 1) sampled from a catalog of 𝑁 = 104 files according to a Zipf distribution with exponent
𝛼 = 0.8. Every 5 × 104 time slots (or requests in this case) the popularity of each files change: file
𝑖 ∈ {1, . . . , 𝑁 } assumes the popularity of file 𝑗 = (1 + (𝑖 + 𝑁 /4) mod 𝑁 ). The cache size is 𝑘 = 200.
We also generate the Downscaled Global Popularity Change trace as a downscaled version of Global
Popularity Change trace, where the catalog size is reduced to 𝑁 = 25, the cache size to 𝑘 = 4, and
the number of requests to 9 × 103. The learning rate is set to 𝜂 = 0.01.
Akamai Trace. We consider also a real file request trace collected from Akamai Content Delivery
Network (CDN) [60]. The trace spans 1 week, and we extract from it about 8.5 × 107 requests for
the 𝑁 = 104 most popular files. We group requests in batches of size 𝑅 = 5 × 103, and we consider a
time horizon 𝑇 = 100 time slots corresponding roughly to 1 hour. The cache size is 𝑘 = 25.

Online Algorithms. Starting with the gradient based algorithms, we implemented OMDNE with
the projection defined in Algorithm 2.2. We implemented two different projection algorithms for
OGD: the one by Paschos et al. [19] for the setting 𝑅

ℎ
= 1, and the one by Wang and Lu [56] for the

general setting 𝑅
ℎ
> 1.

In addition, we implemented four caching eviction policies: LRU, LFU, W-LFU, and FTPL. LRU
and LFU evict the least recently used and least frequently used file, respectively. While LFU estimates
file popularities considering all requests seen in the past, W-LFU [61] is an LFU variant that only
considers requests during a recent time window𝑊 , which we set equal to𝑇 ×𝑅 in our experiments.
The policies LRU, LFU, and W-LFU are allowed to process individual requests. FTPL is a no-regret
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policy proposed by Mukhopadhyay and Sinha [50], which, roughly speaking, behaves as a LFU
policy whose request counters are perturbed by some Gaussian noise. Finally, we define Best Static
to be the optimal static allocation 𝑥𝑥𝑥∗, i.e., the configuration storing the 𝑘 most popular files as we
consider 𝑤𝑖 = 1,∀𝑖 ∈ N . We also define Best Dynamic to be the caching policy that stores the 𝑘
most popular files at any time for the synthetic traces (for which the instantaneous popularity is
well defined). The optimality of such policy is formally studied in [62].

Online Rounding. We also implemented the three rounding schemes described in Section 2.2.5:
(a) the online independent rounding in Algorithm 2.3, (b) the online coupled rounding in Algo-
rithm 2.3, and (c) the online optimally-coupled rounding. The rounding schemes are combined with
OGD configured with learning rate 𝜂 = 0.01 under the Downscaled Global Popularity Change trace.

Performance Metrics. We measure performance w.r.t. four metrics defined in Table 2.3. The
Normalized Average Cost NAC(A) ∈ [0, 1] corresponds to the time-average cost over the first 𝑡 time
slots, normalized by the batch size 𝑅. The Normalized Moving Average Cost NMAC(A) ∈ [0, 1] is
computed similarly, using a moving average instead over a time window 𝜏 > 0; we use 𝜏 = 500 in
our experiments. We also consider the Time Average Regret TAR(A) ∈ [0, 𝑅], which is precisely
the time average regret over the first 𝑡 time slots. Finally, when studying rounding algorithms, we
also measure and report the Cumulative Update Cost CUC(A) ∈ [0,∞).

2.2.6.2 Results

Stationary Requests. Figures 2.2 (a) and 2.2 (b) show the performance w.r.t. NAC of OGD and
OMDNE, respectively, under different learning rates 𝜂 on the Fixed Popularity trace. We observe that
both algorithms converge slower under small learning rates, but reach a final lower cost, while larger
learning rates lead to faster convergence, albeit to higher final cost. This may motivate the adoption
of a diminishing learning rate, that combines the best of the two options, starting large to enable fast
convergence, and enabling eventual fine-tuning. We show curves corresponding to a diminishing
learning rate both for OGD and OMDNE, and indeed they achieve the smallest costs. The learning
rate 𝜂∗ gives the tightest worst-case regrets for OGD and OMDNE, as stated in Theorems 2.2.4 and
2.2.8. While this learning rate is selected to protect against any (adversarial) request sequence, it
is not too pessimistic: Figures 2.2 (a) and 2.2 (b) show it performs well when compared to other
learning rates.

Figure 2.2 (c) shows the time-average regret TAR of OGD and OMDNE over the Fixed Popularity
trace. As both algorithms have sub-linear regret, their time average regret goes to 0 for 𝑇 → ∞.
Note how instead LRU exhibits a constant time average regret.

Effect of Diversity. Figure 2.3 shows the NAC performance of OMDNE and OGD on the traces
Batched Fixed Popularity (1), (2), and (3) under different cache capacities 𝑘 and exponent values 𝛼 .
We observe that OMDNE outperforms OGD in the more diverse regimes (𝛼 ∈ {0.1, 0.2}). This is
more apparent for smaller cache sizes 𝑘 . In contrast, OGD outperforms OMDNE when requests are
less diverse (𝛼 = 0.7); again, this is more apparent for larger cache size 𝑘 . These observations agree
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Figure 2.2: NAC of the different caching policies over the Fixed Popularity trace. Subfigures (a) and
(b) show the performance of OGD and OMDNE respectively under different learning rates. For small
learning rates the algorithms both converge slower but more precisely, while for larger learning
rates they converge faster, but to a higher cost. Subfigure (c) shows the time average regret of the
two gradient algorithms. When the regret is sub-linear, the time average regret converges to 0 as
𝑇 →∞.

with Theorems 2.2.7 and 2.2.6 in Section 2.2.3.3: high diversity and small cache sizes indeed favor
OMDNE.

Robustness to Transient Requests. Figure 2.4 shows the normalized average cost of OMDNE
and OGD over the Partial Popularity Change traces, evaluated under different diversity regimes.
Dashed lines indicate the projected performance in the stationary setting (if request popularities
stay fixed). Across the different diversity regimes, we find the OMDNE is more robust to popularity
changes. In (a), (b) and (c) OMDNE outperforms OGD in the non-stationary popularity setting: we
observe a wider performance gap as compared to the stationary setting.

Figure 2.4 (d) and (e) show the normalized average cost over the Global Popularity Change trace
for the policies OGD and OMDNE, respectively. We observe in Figure 2.4 (b) the NAC of OMDNE
performance degrades after each popularity change. This is a limitation due to the multiplicative
nature of OMDNE. When the algorithm learns that a file, say it 𝑖 , is not important, it can set 𝑥𝑡,𝑖
arbitrarily close to 0. If, suddenly, this content becomes popular, then OMDNE adapts slowly, due to
its multiplicative nature—remember Eq. (2.23). This is shown in Figure 2.4 (e). We can overcome this
limitation by requiring all state variables to be larger than some small 𝛿 > 0; OMDNE is then limited
to X𝛿 , the 𝛿 interior of the capped simplex X. More precisely, the 𝛿 interior of the capped simplex
is defined as X𝛿 ≜ X ∩ [𝛿, 1]𝑁 . In Figure 2.4 (f), we use 𝛿 = 10−4. This parameter indeed prevents
the algorithm from driving the fractional allocations arbitrary close to 0, improving its adaptability.
In Figure 2.4, we show the performance of FTPL [49]; we observe that this policy fails to adapt to
popularity changes. Both our mirror descent algorithms outperform competitors (Figure 2.4 (h)).
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(a) 𝑘 = 25, 𝛼 = 0.1 (b) 𝑘 = 125, 𝛼 = 0.1 (c) 𝑘 = 250, 𝛼 = 0.1

(d) 𝑘 = 25, 𝛼 = 0.2 (e) 𝑘 = 125, 𝛼 = 0.2 (f) 𝑘 = 250, 𝛼 = 0.2

(g) 𝑘 = 25, 𝛼 = 0.7 (h) 𝑘 = 125, 𝛼 = 0.7 (i) 𝑘 = 250, 𝛼 = 0.7

Figure 2.3: NAC of OMDNE and OGD evaluated under different cache sizes and diversity regimes.
We use traces Batched Fixed Popularity (1), (2), and (3) corresponding to different diversity regimes.
Figures from left to right correspond to different cache sizes 𝑘 ∈ {25, 125, 250}, while figures from
top to bottom correspond to different exponent values 𝛼 ∈ {0.1, 0.2, 0.7}. OMDNE outperforms OGD
in the more diverse regimes and for small cache sizes, while OGD outperforms for large cache sizes
and concentrated requests.

Akamai Trace. Figure 2.5 shows that the two gradient algorithms, OMDNE and OGD, perform
similarly over the Akamai Trace w.r.t. NMAC; OGD is slightly better in parts of the trace. Overall,
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(a) 𝛼 = 0.1 (b) 𝛼 = 0.3 (c) 𝛼 = 0.4 (d) NAC of OGD

(e) NAC of OMDNE (f) NAC of 𝛿-OMDNE (g) NAC of FTPL (h) NAC of the different policies.

Figure 2.4: Subfigures (a)–(c) show NAC of OGD and OMDNE evaluated under different diversity
regimes when 10% of the files change popularity over time. We use traces Partial Popularity Change
(1), (2), and (3) corresponding to the different diversity regimes. The diversity regimes are selected,
such that, in the stationary setting (dashed line): (a) OMDNE outperforms OGD, (b) OMDNE has sim-
ilar performance to OGD and (c) OMDNE performs slightly worse than OGD. OMDNE is consistently
more robust to partial popularity changes than OGD. Subfigures (d)–(h) show the NAC of the differ-
ent caching policies evaluated on the Global Popularity Change trace, where file popularity changes
every 5 × 104 iterations. While OGD adapts seamlessly to popularity changes (d), multiplicative
updates can make OMDNE less reactive (e), unless OMDNE is forced to operate over the 𝛿-interior of
X (f) (𝛿 = 10−4). Finally, our mirror descent policies outperform competitors (h).

these algorithms consistently outperform LFU, W-LFU, LRU, and FTPL. Note that these caching
policies process requests individually, while OMDNE and OGD adapt slower, freezing their state for
the entire batch size (𝑅 = 5000). Nevertheless, OMDNE and OGD still perform better.

Randomized Rounding. Figure 2.6 shows the cumulative update cost for the online independent
rounding, the online coupled rounding, and the online optimally-coupled rounding algorithms over
theDownscaled Global Popularity Change trace. All the rounding algorithms exhibit the same service
cost in expectation. The update cost of online coupled rounding and the online optimally-coupled
rounding is small, in the order of the learning rate 𝜂; moreover, we observe that online optimally-
coupled rounding yields lower update costs than the online coupled rounding. In contrast, online
independent rounding incurs a significantly larger update cost.



28 Chapter 2 — Exact Caching

Figure 2.5: NMAC of the different caching policies evaluated on the Akamai Trace. OMDNE and
OGD provide consistently the best performance compared to W-LFU, LFU, LRU, and FTPL. OGD
performs slightly better than OMD in some parts of the trace.
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Figure 2.6: Costs associatedwith the rounded integral caching over theDownscaled Global Popularity
Change trace. The normalized average costs shown in (a) are the same for the online independent
rounding, the online coupled rounding and the online optimally-coupled rounding. The cumulative
update cost of the online coupled rounding and online optimally-coupled rounding in (b) is of the
same order as in the fractional setting, while the online independent rounding in (b) gives a much
higher update cost. The reported values are averaged over 20 experiments, and the blue shaded area
represents 10% scaling of the standard deviation.

Figure 2.7 shows the fractional and (rounded) integral cache states under Downsampled Global
Popularity Change trace. Online independent rounding indeed leads to more frequent updates than
online coupled rounding, while the latter maintains a more stable cache configuration by coupling
the consecutive states and avoiding unnecessary updates.

Computational Cost. Figure 2.8 shows the time taken by both policies OMD and OMDNE to
perform 500 iterations over the Fixed Popularity trace (Figure 2.8 (a)), and the time taken to perform
50 iterations over the Batched Fixed Popularity (2) trace (Figure 2.8 (b)). We observe that OMDNE is
at least 15 times faster in computing cache states on average.
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Figure 2.7: Online rounding of fractional caching states. Visually, we see that the online independent
rounding has more frequent updates than the online coupled rounding. This leads to large update
costs. The online coupled rounding and the online optimally-coupled rounding prevents the cache
to perform unnecessary updates.

(a) 𝑅/ℎ = 1 (b) 𝑅/ℎ > 1

Figure 2.8: Runtime per iteration of OMDNE and OGD. Subfigure (a) shows the runtime per 500
iterations over the Fixed Popularity trace. Subfigure (b) shows the runtime per 50 iterations over the
Batched Fixed Popularity (2) trace.

2.2.7 Conclusion
We study no-regret caching algorithms based on OMD with 𝑞-norm and neg-entropy mirror maps.
We find that batch diversity impacts regret performance; a key finding is that OGD is optimal in low-
diversity regimes, while OMDNE is optimal under high diversity. With an appropriately designed
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rounding scheme, our O
(√
𝑇

)
bound on the regret for general OMD algorithms extends to integral

caches as well, despite the need to account for update costs in this setting.
Our numerical experiments indicate that the gap between the regimes inwhichOGD andOMDNE

are optimal, w.r.t. the diversity ratio, is narrow; this suggests that our characterization of the two
regimes can be further improved. Also OMD𝑞-norm algorithms for arbitrary values of 𝑞 ∈ (1, 2)
deserve more investigation to (1) devise strongly polynomial, efficient algorithms for their Bregman
projection, (2) characterize their update costs, and (3) compare their performance with OMDNE.
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2.3 Caching Networks

2.3.1 Related Work
Content allocation in networks of caches has been explored in the offline setting, presuming demand
is known [39, 41, 63]. In particular, Shanmugam et al. [63] were the first to observe that caching
can be formulated as a submodular maximization problem under matroid constraints and prove its
NP-hardness. Dynamic caching policies have been mostly investigated under a stochastic request
process. In particular, Ioannidis and Yeh [64] present (1) a projected gradient ascent (PGA) policy
that attains (1 − 1/𝑒)-approximation guarantee in expectation when requests are stationary and
(2) a practical greedy path replication heuristic (GRD) that performs well in many cases, but comes
without guarantee. Our work inherits all modeling assumptions on network operation and costs
from [64], but differs from it (and all papers mentioned above) by considering requests that arrive
adversarially. In our experiments, we compare our caching policy with PGA and GRD, that have no
guarantees in the adversarial setting. We also prove that GRD in particular has linear regret (see
Lemma 2.3.4).

Content placement at caches can be formulated as a submodular optimization problem [21, 63].
The offline problem is already NP-hard, but the greedy algorithm achieves 1/2 approximation ra-
tio [65]. Calinescu et al. [66] develop a (1 − 1/𝑒)-approximation through the so called continuous
greedy algorithm. The algorithm finds a maximum of the multilinear extension of the submodu-
lar objective using a Frank-Wolfe like gradient method. The solution is fractional and needs then
to be rounded via pipage [67] or swap rounding [68]. Filmus and Ward [69] obtain the same ap-
proximation ratio without the need of a rounding procedure, by performing a non-oblivious local
search starting from the solution of the usual greedy algorithm. These algorithms are suited for
deterministic objective functions. Hassani et al. [70] study the problem of stochastic continuous
submodular maximization and use stochastic gradient methods to reach a solution within a factor
1/2 from the optimum. Mokhtari et al. [71] propose then the stochastic continuous greedy algo-
rithm, which reduces the noise of gradient approximation by leveraging averaging technique. This
algorithm closes the gap between stochastic and deterministic submodular problems achieving a
(1 − 1/𝑒)-approximation ratio.

There are two kinds of online submodular optimization problems. In the first one, a.k.a. compet-
itive online setting, the elements in the ground set arrive one after the other, a setting considerably
different from ours. The algorithm needs to decide whether to include revealed elements in the
solution without knowing future arrivals. Gupta et al. [72] consider the case when this decision is
irrevocable. They give a𝑂 (log 𝑟 )-competitive algorithmwhere 𝑟 is the rank of matroid. Instead, Hu-
bert Chan et al. [73] allow the algorithm also to remove elements from the current tentative solution.
They propose a randomized 0.3178-competitive algorithm for partition matroids. In the second kind
of online submodular optimization problems, objective functions are initially unknown and are pro-
gressively revealed over 𝑇 rounds. This setting indeed corresponds to our problem, as our caching
policy needs to decide the content allocation before seeing the requests. Streeter et al. [74] present
an online greedy algorithm, combining the greedy algorithm with no-regret selection algorithm
such as the hedge selector, operating under cardinality (rather than general matroid) constraints.
Radlinski et al. [75] also propose an online algorithm by simulating the offline greedy algorithm,
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using a separate instance of the multi-armed bandit algorithm for each step of the greedy algorithm,
also for cardinality constraints. Chen et al. [76] convert the offline Frank-Wolfe variant/continuous
greedy to a no-regret online algorithm, obtaining a sublinear (1 − 1/𝑒)-regret. Chen et al. [77] use
Stochastic Continuous Greedy [71] to achieve sublinear (1 − 1/𝑒)-regret bound without projection
and exact gradient. These algorithms however operate in a continuous domain, producing fractional
solutions that require subsequent rounding steps; these rounding steps do not readily generalize to
our distributed setting. Moreover, rounding issues are further exacerbated when needing to handle
update costs in the regret.

Our work is based on the (centralized) TGOnline algorithm by Streeter et al. [78], which solves
the so-called online assignment problem. In this problem, a fixed number of 𝐾 slots is used to store
items from distinct sets: that is, slot 𝑘 = 1, 2, . . . , 𝐾 can store items from a set 𝑃𝑘 . The motivation
comes, from, e.g., placing advertisements in 𝐾 distinct positions on a website. Submodular reward
functions arrive in an online fashion, and the goal of the online assignment problem is to produce
assignments of items to slots that attain low regret. TGOnline, the algorithm proposed by Streeter
et al., achieves sublinear 1− 1/𝑒-regret in this setting. We depart from Streeter et al. by considering
both objectives as well as constraints arising from the cache network design problem. We show that
(1) when applied to this problem, TGOnline admits a distributed implementation, but also (2) we
incorporate update costs, which are not considered by Streeter et al. A direct, naïve implementation
of TGOnline to our setting would require communication between all caches at every request; in
contrast, DistributedTGOnline restricts communication only among nodes on the request path.
As an additional technical aside, we exploit the fact that an adaptation step within the TGOnline
algorithm, namely, color shuffling, can in fact happen at a reduced frequency. The latter is imperative
for bounding regret when cost updates are considered: without this adjustment, the TGOnline
algorithm of Streeter et al. attains a linear regret when incorporating update costs.

2.3.2 System Description
Following the caching network model of Ioannidis and Yeh [21], we consider a network of caches
that store items from a fixed catalog. Nodes in the network generate requests for these items, routed
towards designated servers. However, intermediate nodes can cache items and, thereby, serve such
requests early. We depart from Ioannidis and Yeh in assuming that request arrivals are adversarial,
rather than stochastic. Notation used across the paper is summarized in Table 2.4.

Caching Network. We model a caching network as a directed graph 𝐺 (𝑉 , 𝐸) of 𝑛 nodes. For
convenience, we set 𝑉 = [𝑛]. Each edge 𝑒 in the graph is represented by 𝑒 = (𝑢, 𝑣) ∈ 𝐸 ⊆ 𝑉 × 𝑉 .
We assume 𝐺 is symmetric, i.e., if (𝑢, 𝑣) ∈ 𝐸, then (𝑣,𝑢) ∈ 𝐸. A fixed set of nodes, called designated
servers, permanently store items of equal size. Formally, each item 𝑖 ∈ C, where set C is the item
catalog, is stored in designated servers D𝑖 ⊆ 𝑉 .

Beyond designated servers, all other nodes in 𝑉 are also capable of storing items. For each
𝑣 ∈ 𝑉 , let 𝑐𝑣 ∈ N denote its storage capacity, i.e., the maximum number of items it can store. Let
also S𝑣 = {(𝑣, 𝑗)}𝑐𝑣

𝑗=1 be 𝑣 ’s set of storage slots; then, 𝑠 = (𝑣, 𝑗) ∈ 𝑉 × [𝑐𝑣 ] is the 𝑗-th storage slot
on node 𝑣 . We denote the set of storage slots in the whole network by S, where S =

⋃
𝑣∈𝑉 S𝑣 , and
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Figure 2.9: A general cache network, as proposed by Ioannidis and Yeh [21]. Designated servers
store items in a catalog permanently. Requests arrive at arbitrary nodes in the network and follow
predetermined paths towards these servers; responses incur costs indicated by weights on the edges.
Intermediate nodes can serve as caches; the objective is to determine what items to store in each
cache, to minimize the overall routing cost or, equivalently, maximize the caching gain.

Notational Conventions | R𝑡 | Average number of requests per round
[𝑛] Set {1, . . . , 𝑛} 𝑤𝑢𝑣 The routing cost along edge (𝑢, 𝑣)
𝐴 + 𝑎 Union 𝐴 ∪ {𝑎} 𝐿̄ The upper bound of possible routing cost

Cache Networks 𝑓 𝑡 Caching gain at round 𝑡
𝐺 (𝑉 , 𝐸 ) Network graph, with nodes𝑉 and edges 𝐸 Online Optimization
C The item catalog 𝑇 The rounds horizon
𝑐𝑣 Cache capacity at node 𝑐 ∈ 𝑉 𝑅𝑇 𝛼-regret
(𝑣, 𝑗 ) 𝑗-th storage slot on node 𝑣 (𝑠 = (𝑣, 𝑗 ) ) E Hedge selector
S The set of storage slots 𝑊𝑊𝑊 The weight vector maintained by hedge selector
S𝑣 The set of storage slots in node 𝑣 ℓℓℓ The reward vector fed to hedge selector
S𝑝 The set of storage slots in path 𝑝 𝑚𝑠 The active color of slot 𝑠
S𝑖,𝑝 The set of storage slots in path 𝑝 storing item 𝑖 𝑀 Number of colors
𝐴 The set of item allocations I Information collected by control message
D The set of feasible allocations 𝑤

𝑝
𝑣 The cumulative cost of edges upstream of 𝑣 on path 𝑝

R𝑡 The set of requests arriving at round 𝑡 UC Update costs
𝑅 The upper bound of | R𝑡 | 𝑅̃𝑇 The extended 𝛼-regret considering update costs

Table 2.4: Notation Summary for Section 2.3

|S| = ∑
𝑣∈𝑉 𝑐𝑣 . We assume the slots in S are ordered lexicographically, i.e.,

(𝑣, 𝑗) ≺ (𝑣′, 𝑗 ′) if and only if 𝑣 < 𝑣′ or 𝑣 = 𝑣′ and 𝑗 < 𝑗 ′. (2.32)

We can describe content allocation as a set𝐴 ⊂ S×C, where 𝑎 = (𝑠, 𝑖) ∈ 𝐴 indicates that item 𝑖 ∈ C
is stored in slot 𝑠 ∈ S. The set of feasible allocations is

D = {𝐴 ⊆ S × C : |𝐴 ∩ ({𝑠} × C)| ≤ 1,∀𝑠 ∈ S} . (2.33)

This ensures that each slot is occupied by at most one item; note that the cache capacity constraint
at each node 𝑣 ∈ 𝑉 is captured by the definition of S𝑣 .
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Requests and Responses. A request 𝑟 = (𝑖, 𝑝) is determined by (a) the item 𝑖 ∈ C requested, (b)
the path 𝑝 along which the request is forwarded. A path 𝑝 is a sequence {𝑝𝑘} |𝑝 |𝑘=1 of adjacent nodes
𝑝𝑘 ∈ 𝑉 . As in Ioannidis and Yeh [21], we assume that paths are simple, i.e., they do not contain
repeated nodes, and well-routed, i.e., they terminate at a node in D𝑖 . A request (𝑖, 𝑝) is generated
at node 𝑝1 and follows the path 𝑝; when the request reaches a node storing item 𝑖 , a response is
generated. This response carries item 𝑖 to query node 𝑝1 following the reverse path. We assume
that time is slotted, and requests arrive over a total of 𝑇 ∈ N rounds. We denote by R the set of
all possible requests in the system. At each round 𝑡 ∈ [!𝑡], a set of requests R𝑡 ⊆ R arrive in the
system. Requests in R𝑡 can arrive in any order, and at any point in time within a round.5 However,
we assume that the total number of requests at each round is bounded by 𝑅, i.e., |R𝑡 | ≤ 𝑅. Note that,
when 𝑅 = 1, at most one request arrives per round.

Routing Costs. We assume request routing does not incur any cost, but response routing does.
In particular let𝑤𝑢𝑣 ∈ R+ denote the cost of routing the response along the edge (𝑢, 𝑣) ∈ 𝐸.

Then, given an allocation 𝐴 ∈ S × C, the cost of serving a request (𝑖, 𝑝) ∈ R is:

𝐶(𝑖,𝑝) (𝐴) =
|𝑝 |−1∑︁
𝑘=1

𝑤𝑝𝑘+1𝑝𝑘1
©­«𝐴 ∩


⋃
𝑘 ′∈[𝑘]

S𝑝𝑘′ × {𝑖}
 = ∅ª®¬ . (2.34)

Intuitively, Eq. (2.34) states that𝐶(𝑖,𝑝) (𝐴) includes𝑤𝑝𝑘+1𝑝𝑘 , the cost of edge (𝑝𝑘+1, 𝑝𝑘), only if no cache
preceding 𝑝𝑘+1 in path 𝑝 stores item 𝑖 . We denote by

𝐿 = max
(𝑖,𝑝)∈R

|𝑝 |−1∑︁
𝑘=1

𝑤𝑝𝑘+1𝑝𝑘 (2.35)

the maximum possible routing cost; note that this upper-bounds 𝐶(𝑖,𝑝) (𝐴), for all (𝑖, 𝑝) ∈ R, 𝐴 ∈
S × C.

The caching gain [21] of a request (𝑖, 𝑝) due to caching at intermediate nodes is:

𝑓(𝑖,𝑝) (𝐴) = 𝐶(𝑖,𝑝) (∅) −𝐶(𝑖,𝑝) (𝐴) =
|𝑝 |−1∑︁
𝑘=1

𝑤𝑝𝑘+1𝑝𝑘1
©­«𝐴 ∩


⋃
𝑘 ′∈[𝑘]

S𝑝𝑘′ × {𝑖}
 ≠ ∅ª®¬ . (2.36)

where 𝐶(𝑖,𝑝) (∅) is the routing cost in the network when all caches are empty. The caching gain
captures the cost reduction in the network due to caching allocation 𝐴.

Offline Problem. In the offline version of the cache gain maximization problem [21, 63], the re-
quest sequence {R𝑡 }𝑇𝑡=1 is assumed to be known in advance; the goal is then to determine a feasible
allocation 𝐴 ∈ D that maximizes the total caching gain. Formally, given an allocation 𝐴 ∈ S × C,
let

𝑓 𝑡 (𝐴) =
∑︁
𝑟∈R𝑡

𝑓𝑟 (𝐴), (2.37)

5Our analysis readily extends to a multiset R𝑡 , whereby the same request is submitted multiple times within the
same round. We restrict the exposition to sets for notational simplicity.
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be the caching gain at round 𝑡 . Then, the offline caching gain maximization problem amounts to:

maximize
𝐴

𝑓 (𝐴) =
𝑇∑︁
𝑡=1

𝑓 𝑡 (𝐴) =
𝑇∑︁
𝑡=1

∑︁
𝑟∈R𝑡

𝑓𝑟 (𝐴), (2.38a)

subject to 𝐴 ∈ D . (2.38b)

The following lemma implies this problem is approximable in polynomial time:

Lemma 2.3.1 ( [21, 63]). Function 𝑓 : S × C → R+ is non-decreasing and submodular. Moreover, the
feasible region D is a partition matroid.

Hence, Problem (2.38) is a submodular maximization problem under matroid constraints. It is
known to be NP-hard [21, 63], and several approximation algorithms with polynomial time com-
plexity exist. The classic greedy algorithm [79] produces a solution within 1

2-approximation from
the optimal. The so-called continuous greedy algorithm [66] further improves this ratio to 1 − 1

𝑒
. A

different algorithm based on a convex relaxation of Problem (2.38) is presented in [21,63]. The Tab-
ular Greedy algorithm [78] also constructs a 1 − 1

𝑒
approximate solution in poly-time. We describe

it in details in Appendix 3, as both TGOnline [78] and our DistributedTGOnline build on it.

Online Problem. In the online setting, requests are not known in advance, and we seek algo-
rithms that make caching decisions in an online fashion. In particular, at the beginning of round 𝑡 ,
an online algorithm selects the current allocation 𝐴𝑡 ∈ D. Requests R𝑡 ⊂ R subsequently arrive,
and the cache gain 𝑓 𝑡 (𝐴𝑡 ) is rewarded, where 𝑓 𝑡 : S × C → R+ is given by Eq. (2.37).

As in standard online learning literature [19,20], while choosing 𝐴𝑡 , the network has no knowl-
edge of the upcoming requestsR𝑡 , but can rely on past history. Formally, we seek an online algorithm
A that maps the history of past requests H 𝑡 = {R1, ..,R𝑡−1} to a new allocation, i.e., 𝐴𝑡 = A(H 𝑡 ).
In particular, we aim for an algorithm A with sublinear 𝛼-regret, given by

𝑅𝑇 = E

[
𝛼

𝑇∑︁
𝑡=1

𝑓 𝑡 (𝐴∗) −
𝑇∑︁
𝑡=1

𝑓 𝑡 (𝐴𝑡 )
]
= 𝛼

𝑇∑︁
𝑡=1

𝑓 𝑡 (𝐴∗) − E
[
𝑇∑︁
𝑡=1

𝑓 𝑡 (𝐴𝑡 )
]
, (2.39)

where 𝛼 is an approximation factor, and 𝐴∗ is the optimal solution to (the offline) Problem (2.38).
Note that the expectation is over the (possibly) randomized choices of the algorithmA; we make no
probabilistic assumptions on request arrivals {R𝑡 }𝑇𝑡=1, and wish to minimize regret in the adversarial
setting, i.e., w.r.t. to the worst-case sequence {R𝑡 }𝑇𝑡=1. Put differently, our regret bounds will be
against an arbitrarily powerful adversary, that can pick any sequence {R𝑡 }𝑇𝑡=1, as long as the total
number of requests at each round is bounded by 𝑅, i.e., |R𝑡 | ≤ 𝑅 for all 𝑡 = 1, . . . ,𝑇 .

Several remarks are in order regarding Eq. (2.39). First, the definition of the regret in Eq. (2.39),
which compares to a static offline solution, is classic. Several bandit settings, e.g., simple multi-
armed bandits [75,80,81], contextual bandits [82–84], submodular bandits [74,76,85] and, of course,
their applications to caching problems [13, 19, 49, 50], adopt this definition. In all these cases, the
dynamic, adaptive algorithm is compared to a static policy that has full hindsight of the entire trace
of actions. Nevertheless, as is customary in the context of online problems in which the offline
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Algorithm 2.4 Hedge Selector E
Require: Parameter 𝜖 ∈ R+, action set C, horizon 𝑇 ∈ N.
1: procedure E.initialize( )
2: Set𝑊𝑖 ← 1 for all 𝑖 ∈ C
3: end procedure
4: procedure E.arm( )
5: return 𝑖 ∈ C with probability 𝑝𝑖 = 𝑊𝑖∑

𝑗 ∈C𝑊𝑗

6: end procedure
7: procedure E.feedback(ℓℓℓ)
8: Set𝑊𝑖 ←𝑊𝑖𝑒

𝜖ℓ𝑖 for all 𝑖 ∈ C
9: end procedure

problem is NP-hard [76], the regret is not w.r.t. the optimal caching gain, but the gain obtained
by an offline approximation algorithm. Second, from the point of view of bandits, we operate in
the full-information feedback setting [20]: upon the arrival of requests R𝑡 , the entire function 𝑓 𝑡 :
S×C → R+ is revealed,6 as the latter is fully determined by request set R𝑡 . Third, Eq. (2.39) captures
the cost of serving requests, but not the cost of adaptation: changing an allocation from 𝐴𝑡 to 𝐴𝑡+1
changes cache content, which in turn may require the movement of items. Neglecting adaptation
costs may be realistic if, e.g., adaptation happens in off-peak hours (e.g., the end of a round occurs at
the end of a day), and does not come with the same latency requirements as serving requests in R𝑡 .
Nevertheless, we revisit this issue, incorporating update costs in the regret, in Section 2.3.4. Finally,
we stress that we seek online algorithmsA that have sublinear regret but are also distributed: each
cache 𝑣 should be able to determine its own contents using past history it has observed, as well as
some limited information it exchanges with other nodes.

2.3.3 Distributed Online Algorithm
We describe our distributed online algorithm, DistributedTGOnline, in this section. We first give
an overview of the algorithm and its adversarial guarantees; we then fill out missing implementation
details.

2.3.3.1 Hedge Selector

Our construction uses as a building block the classic Hedge algorithm7 for the expert advice problem
[20, 78, 86]. This online algorithm selects an action from a finite set at the beginning of a round. At
the conclusion of a round, the rewards of all actions are revealed; the algorithm accrues a reward
based on the action initially selected, and adjusts its decision.

In our case the set of possible actions coincides with the catalog C, i.e., the algorithm selects an
item 𝑖𝑡 ∈ C per round 𝑡 ∈ N. The hedge selector maintains a weight vector𝑊𝑊𝑊 𝑡 = [𝑊 𝑡

𝑖 ]𝑖∈C ∈ R|C| ,
where weight𝑊 𝑡

𝑖 corresponds to action 𝑖 ∈ C. The hedge selector supports two operations (see
Algorithm 2.4. The first, E.arm( ), selects an action from action set C. The second, E.feedback(ℓℓℓ𝑡 ),

6In contrast to the classic bandit feedback model, where only the reward 𝑓 𝑡 (𝐴𝑡 ) is revealed in each round 𝑡 .
7This is also known as the multiplicative weight algorithm.
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Algorithm 2.5 DistributedTGOnline
1: for each 𝑠 ∈ S do
2: for each𝑚 ∈ [𝑀] do
3: E𝑠,𝑚 .initialize().
4: end for
5: set 𝑡𝑠 = 1, choose𝑚𝑠 uniformly at random from [𝑀]
6: 𝑖𝑠 ← E𝑠,𝑚𝑠

.arm() ⊲ Sets 𝐴← {(𝑠, 𝑖𝑠 )}𝑠∈S
7: end for
8: for 𝑡 = 1, 2, ...,𝑇 do ⊲ During round 𝑡 :
9: for each 𝑟 = (𝑖, 𝑝) ∈ R𝑡 do
10: Send request upstream over 𝑝 until a hit occurs.
11: Send response carrying 𝑖 downstream, and incur routing costs.
12: Send control message upstream over 𝑝 to construct I andW, given by (2.43).
13: Send control message carrying I andW downstream over 𝑝 , and do the following:
14: for each 𝑠 ∈ S𝑝 do
15: Use I andW to construct ℓℓℓ (𝑠,𝑚𝑠 ) ∈ R | C |+ via (2.46).
16: Call E𝑠,𝑚𝑠

.feedback(ℓℓℓ (𝑠,𝑚𝑠 ))
17: end for
18: end for ⊲ At the end of round 𝑡 :
19: for each 𝑠 ∈ ⋃

(𝑖,𝑝 ) ∈R𝑡 S𝑝 do
20: if 𝑡𝑠 mod𝐾 = 0 then
21: Select𝑚𝑠 u.a.r. from [𝑀] ⊲ Shuffle color𝑚𝑠

22: end if
23: 𝑖𝑠 ← E𝑠,𝑚𝑠

.arm() ⊲ Update allocation 𝐴 at 𝑠
24: 𝑡𝑠 ← 𝑡𝑠 + 1
25: end for
26:end for

ingests the reward vector ℓℓℓ𝑡 = [ℓ𝑡𝑖 ]𝑖∈C ∈ R
|C|
+ , where ℓ𝑡𝑖 is the reward for choosing action 𝑖 ∈ C

at round 𝑡 , and adjusts action weights as described below. In each iteration 𝑡 , the hedge selector
alternates between (1) calling 𝑖𝑡 = E.arm( ), to produce action 𝑖𝑡 , (2) receiving a reward vector ℓℓℓ𝑡 ,
and using it via E.feedback(ℓℓℓ𝑡 ) to adjust its internal weight vector. In particular, E.arm( ) selects
action 𝑖 ∈ C with probability:

𝑝𝑡𝑖 =
𝑊 𝑡
𝑖∑

𝑗∈C𝑊
𝑡
𝑗

, (2.40)

i.e., proportionally to weight𝑊 𝑡
𝑖 . Moreover, when E.feedback(ℓℓℓ𝑡 ) is called, weights are updated via:

𝑊 𝑡+1
𝑖 =𝑊 𝑡

𝑖 𝑒
𝜖ℓ𝑡𝑖 , for all 𝑖 ∈ C, (2.41)

where 𝜖 > 0 is a constant. In a centralized setting where an adversary selects the vector of weights
ℓℓℓ𝑡 , the no-regret hedge selector attains an 𝑂 (

√
𝑇 ) regret for an appropriate choice of 𝜖 > 0 (see

Lemma 4.1 in Appendix 4). We use this as a building block in our construction below.

2.3.3.2 DistributedTGOnline Overview

To present the DistributedTGOnline algorithm, we first need to introduce the notion of “colors”.
The algorithm associates each storage slot 𝑠 = (𝑣, 𝑗) ∈ S with a “color” 𝑚𝑠 from set [𝑀] of 𝑀
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distinct values (the “color palette”). The online algorithm makes selections in the extended action
space S × C × [𝑀], choosing not only an item to place in a slot, but also how to color it.

This coloring is instrumental to attaining a 1 − 1
𝑒
-regret. In offline tabular greedy algorithm of

Streeter et al. [78], which we present in Appendix 3, when 𝑀 = 1, i.e., there is only one color, the
algorithm reduces to simply the locally greedy algorithm (see Section 3.1 in [78]), achieving only a 1

2
approximation ratio. When𝑀 →∞, the algorithm can intuitively be viewed as solving a continuous
extension of the problem followed by a rounding (via the selection of the color instance), in the same
spirit as the so-called ContinuousGreedy algorithm [66]. A finite size “color palette” represents a
midpoint between these two extremes. We give more insight into this relationship between these
two algorithms in Section 2.3.3.5.

In more detail, every storage slot 𝑠 ∈ S maintains (1) the item 𝑖𝑠 ∈ C stored in it, (2) an active
color 𝑚𝑠 ∈ [𝑀] associated with this slot, and (3) 𝑀 different no-regret hedge selectors {E𝑠,𝑚}𝑀𝑚=1,
one for each color. All selectors {E𝑠,𝑚}𝑀𝑚=1 operate over action set C: that is, each such selector can
have its arm “pulled” to select an item 𝑖 to place in a slot. Though every slot 𝑠 maintains𝑀 different
selectors, one for each color, it only uses one at a time. The active colors {𝑚𝑠}𝑠∈S are initially
selected u.a.r. from [𝑀], and remain active continuously for a total 𝐾 pull/feedback interactions,
where 𝐾 ∈ N; at that point,𝑚𝑠 is refreshed, selected again u.a.r., bringing another selector into play.
All in all, the algorithm proceeds as follows during round 𝑡 .

1. When a request (𝑖, 𝑝) ∈ R𝑡 is generated, it is propagated over the path 𝑝 until a hit occurs; a
response is then backpropagated over the path 𝑝 , carrying 𝑖 , and incurring a routing cost.

2. At the same time, an additional control message is generated and propagated upstream over
the entire path 𝑝 . Moving upstream, it collects information from slots it traverses.

3. After reaching designated server at the end of the path, the control message is backpropagated
over the path 𝑝 in the reverse direction. Every time it traverses a node 𝑣 ∈ 𝑝 , storage slot 𝑠 ∈ S𝑣
fetches information stored in the control message and computes a reward vector ℓℓℓ𝑡 (𝑠,𝑚𝑠). This
is then fed to the active hedge selector via E𝑠,𝑚𝑠 .feedback( ℓℓℓ𝑡 (𝑠,𝑚𝑠)).

4. At the end of the round, we check if the arm of E𝑠,𝑚𝑠 has been pulled for a total of 𝐾 times
under active color𝑚𝑠 ; if so, a new color𝑚𝑠 is selected u.a.r. from [𝑀].

5. Irrespective of whether𝑚𝑠 changes or not, at the end of the round, each slot updates its con-
tents via the current active hedge selector E𝑠,𝑚𝑠 , by calling operation E𝑠,𝑚𝑠 .arm() to choose a
new item 𝑖𝑠 to place in 𝑠 .

We define the control messages exchanged, the information they carry, and the reward vectors fed to
hedge selectors in Section 2.3.3.3. Only slots in a request’s path need to exchange messages, provide
feedback to their selectors, and (possibly) update their contents at the end of a round. Moreover,
messages exchanged are of size 𝑂 ( |𝑝 |). We allow 𝐾 ≥ 𝑇 ; in this case, colors are selected u.a.r. only
once, at the beginning of the execution of the algorithm, and remain constant across all rounds.8
Finally, note that updating cache contents at the end of a round does not affect the incurred cost;
we remove this assumption in Section 2.3.4.

8In such a case, selectors corresponding to inactive colors need not be maintained, and can be discarded.
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Our first main result is that DistributedTGOnline has a (1− 1/𝑒)-regret that grows as𝑂 (
√
𝑇 ):

Theorem 2.3.2. Consider the sequence of allocations {𝐴𝑡 }𝑇𝑡=1 produced by the DistributedTGOnline

algorithm using hedge selectors determined by Algorithm 2.4, with 𝜖 = 1
𝐿

√︃
log |C|
𝑇

. Then, for all 𝑇 ≥
log |C| and all 𝐾 ≥ 1:

E

[
𝑇∑︁
𝑡=1

𝑓 𝑡 (𝐴𝑡 )
]
≥ 𝛽 ( |S|, 𝑀) ·max

𝐴∈D

{
𝑇∑︁
𝑡=1

𝑓 𝑡 (𝐴)
}
− 2𝑅𝐿 |S|𝑀

√︁
𝑇 log |C|, (2.42)

where 𝛽 ( |S|, 𝑀) = 1 − (1 − 1
𝑀
)𝑀 −

( |S|
2
)
𝑀−1.

The main intuition behind the proof is to view DistributedTGOnline as a version of the offline
TabularGreedy that, instead of greedily selecting a single item 𝑖𝑠,𝑚 ∈ C per step, it greedily selects
an entire item vector 𝑖𝑖𝑖𝑠,𝑚 ∈ C𝑇 across all rounds, where 𝑇 is the number of rounds. To cast the
proof in this context, we define new objective functions 𝑓 and 𝐹 whose domain is over decisions
across 𝑇 rounds, as opposed to the original per time-slot functions (whose domain is only over one
round). Due to the properties of the no-regret hedge selector, and the formal guarantees of the
offline case (c.f. Theorem 3.1), these new objectives attain 1 − 1

𝑒
bound shown in Eq. (3.37), yielding

the bound on the regret. The detailed proof of this theorem is provided in Appendix 5. Note that
for 𝑀 large enough (at least Ω( |S|2)), quantity 𝛽 ( |S|, 𝑀) can be made arbitrarily close to 1 − 1/𝑒 .
Hence, Theorem 2.3.2 has the following immediate corollary:

Corollary 2.3.3. For any 𝛿 > 0, there exists an𝑀 = Θ( |S|
2

𝛿
) such that the expected (1 − 1

𝑒
− 𝛿)-regret

of DistributedTGOnline is 𝑅𝑇 ≤ 2𝑅𝐿 |S|3
𝛿

√︁
𝑇 log |𝐶 |.

DistributedTGOnline is a distributed implementation of the (centralized) online tabular
greedy algorithm of Streeter et al. [78], which is itself an online implementation of the so-called
tabular greedy algorithm [78], which we present in Appendix 3. We depart however from [78] in
several ways. First, the analysis by Streeter et al. requires that feedback is provided at every slot
𝑠 ∈ S . We amend this assumption, as only nodes along a path need to update their selectors/allo-
cations in our setting. Second, we show that feedback provided to arms can be computed in a dis-
tributed fashion, using only messages along the path 𝑝 , as described below in Section 2.3.3.3. These
two facts together ensure that DistributedTGOnline is indeed distributed. Finally, the analysis of
Streeter et al. assumes that colors are shuffled at every round, i.e., applies only to 𝐾 = 1. We extend
this to arbitrary 𝐾 ≥ 1. As we discuss in Section 2.3.4, this is instrumental to bounding regret when
accounting for update costs; the later becomes Θ(𝑇 ) when 𝐾 = 1.

2.3.3.3 Control Messages, Information Exchanged, and Rewards

The algorithm is summarized in Algorithm 2.5. We describe here the control messages, information
exchanged, and reward vectors fed to hedge selectors during the generation of a request 𝑟 = (𝑖, 𝑝) ∈
R𝑡 . Let S𝑝 =

⋃
𝑣∈𝑝 S𝑣 be the set of all slots in nodes in 𝑝 . Let also S𝑖,𝑝 = {𝑠 ∈ S𝑝 : (𝑠, 𝑖) ∈ 𝐴𝑡 } ⊆ S𝑝

be the slots in path 𝑝 that store the requested item 𝑖 ∈ C. The control message propagated upstream
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towards the designated server collects both the (a) color of every slot in S𝑖,𝑝 and (b) the upstream
cost at each node 𝑣 ∈ 𝑝 . Formally, the information collected by the upstream control message is

I = {(𝑠,𝑚𝑠)}𝑠∈S𝑖,𝑝 , and W = {𝑤𝑝
𝑣 }𝑣∈𝑝, (2.43)

where𝑤𝑝
𝑣 is the cumulative cost of edges upstream of 𝑣 on path 𝑝 , i.e.,

𝑤
𝑝
𝑣 =

∑|𝑝 |−1
𝑘=𝑘𝑝 (𝑣)𝑤𝑝𝑘+1𝑝𝑘 , (2.44)

where 𝑘𝑝 (𝑣) = {1, 2, ..., |𝑝 |} is position of 𝑣 in 𝑝 , i.e., 𝑘𝑝 (𝑣) = 𝑘 if 𝑝𝑘 = 𝑣 . Note that both |I | and |W|
are 𝑂 ( |𝑝 |).

Upon reaching the end of the path, a message carrying this collected information (I,W) is sent
downstream to every node in the path. For each slot 𝑠 ∈ S𝑝 , let:

S⪯𝑠 = {𝑠′ ∈ S𝑖,𝑝 :𝑚𝑠′ < 𝑚𝑠 or𝑚𝑠′ =𝑚𝑠, 𝑠
′ ≺ 𝑠} (2.45)

be the slots in the path 𝑝 that store 𝑖 and either (a) are colored with a color smaller than𝑚𝑠 , or (b) are
colored with𝑚𝑠 , and precede 𝑠 in the ordering given by Eq. (2.32). Note that S⪯𝑠 can be computed
having access to I. Then, the reward vector ℓℓℓ𝑟 (𝑠,𝑚𝑠) ∈ R|C|+ fed to hedge selector E𝑠,𝑚𝑠 at slot 𝑠 ∈ S𝑝
comprises the following coordinates:

ℓ𝑟𝑖′ (𝑠,𝑚𝑠) =
{

max(𝑣 ′, 𝑗 ′)∈S⪯𝑠+𝑠 𝑤
𝑝

𝑣 ′, if 𝑖′ = 𝑖
max(𝑣 ′, 𝑗 ′)∈S⪯𝑠 𝑤

𝑝

𝑣 ′, 𝑜 .𝑤 .
for all 𝑖′ ∈ C, (2.46)

which captures the marginal gain of adding an element to the allocation at time 𝑡 , assuming that
the latter is constructed adding one slot, item, and color selection at a time (following an ordering
w.r.t. colors first and slots second). This is stated formally in Lemma 5.1 in Appendix 5. Note again
that all these quantities can be computed at every 𝑠 ∈ S𝑝 having access to I andW.9

2.3.3.4 A Negative Result

We conclude this section with a negative result, further highlighting the importance of Theo-
rem 2.3.2. DistributedTGOnline comes with adversarial guarantees; our experiments in Sec-
tion 2.3.6 indicate that also works well in practice. Nevertheless, for several topologies we explore,
we observe that a heuristic proposed by Ioannidis and Yeh [21], termed GreedyPathReplication,
performs as well or slightly better than DistributedTGOnline in terms of time-average caching
gain. As we observed this in both stationary as well as non-stationary/transient request arrivals,
this motivated us to investigate further whether this algorithm also comes with any adversarial
guarantees.

Our conclusion is that, despite the good empirical performance in certain settings, Greedy-
PathReplication does not enjoy such guarantees. In fact, the following negative result holds:

9In practice, trading communication for space, the fullW can also be just computed once, at the first time request
(𝑖, 𝑝) is generated, Each 𝑣 can store their own𝑤𝑝𝑣 for paths that traverse them, and only weights of nodes storing 𝑖 need
to be included inW in subsequent requests.
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Lemma 2.3.4. Consider the online policy GreedyPathReplication due to Ioannidis and Yeh [21],
which is parametererized by 𝛽 > 0. Then, for all 𝛼 ∈ (0, 1] and all 𝛽 > 0, GreedyPathReplication
has Ω(𝑇 ) 𝛼-regret.

We prove this lemma in Appendix 7. The adversarial counterexample we construct in the proof
informed our design of experiments for which GreedyPathReplication (denoted by GRD in Sec-
tion 2.3.6) performs poorly, attaining a zero caching gain throughout the entire algorithm’s execution
(see Figure 2.11-2.13). The same examples proved hard for several other greedy/myopic policies,
even though DistributedTGOnline performed close to the offline solution in these settings. Both
Lemma 2.3.4, as well as the experimental results we present in Section 2.3.6, indicate the impor-
tance of Theorem 2.3.2 and, in particular, obtaining a universal bound on the regret against any
adversarially selected sequence of requests.

2.3.3.5 Color Palette

To provide further intuition behind the “color palette” induced by 𝑀 and the role it plays in our
algorithm, we describe here in more detail how it relates to the ContinuousGreedy algorithm, the
standard algorithm for maximizing submodular functions subject to a matroid constraint [66].

Intuitively, given a submodular function 𝑓 : Ω → R+ and a matroid constraint set D, the
ContinuousGreedy algorithm maximizes the multilinear relaxation of objective, given by

𝑓 (𝑥𝑥𝑥) = E𝑥𝑥𝑥 [𝑓 (𝐴)] =
∑︁
𝐴⊆Ω

𝑓 (𝐴)
∏
𝑖∈𝐴

𝑥𝑖

∏
𝑖∉𝐴

(1 − 𝑥𝑖). (2.47)

That is, the multilinear extension 𝑓 : [0, 1] |Ω | → R+ is the expected value of the objective assuming
that each element in A is sampled independently, with probability given by 𝑥𝑖 ∈ [0, 1], 𝑖 ∈ Ω. Con-
tinuousGreedy first obtains a fractional solution in the matroid polytope ofD. This is constructed
by incrementally growing the probability distribution parameters 𝑥𝑥𝑥 , starting from 𝑥𝑥𝑥 = 000, with a
variant of the so-called Frank-Wolfe algorithm. Then, ContinuousGreedy rounds the resulting
fractional solution via, e.g., pipage rounding [67] or swap rounding [68], mapping it to set solutions.
We refer the reader to Calinescu et al. [66] for a more detailed description of the algorithm.

In comparison, the color palette also creates a distribution across item selections, as implied
by the 𝑀 colors. When the number of colors 𝑀 approaches infinity, the selection process of Dis-
tributedTGOnline also “grows” this probability distribution (starting, again, from an empty sup-
port) infinitesimally, by an increment inversely proportional to𝑀 (see also the offline version Tabu-
larGreedy in Appendix 3). As𝑀 goes to infinity, this recovers the 1−1/𝑒 approximation guarantee
of continuous greedy [78, 87]. For any finite 𝑀 , the guarantee provided by Theorem 2.3.2 lies in
between this guarantee and 1

2 approximation of the locally greedy algorithm (𝑀 = 1).

2.3.4 Update Costs
We now turn our attention to incorporating update costs in our analysis. We denote by𝑤 ′𝑠,𝑖 the cost
of fetching item 𝑖 at storage slot 𝑠 at the end of a round. Then, the total update cost of changing an
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Algorithm 2.6 Coupled Hedge Selector
Require: Parameter 𝜖 ∈ R+, action set C, horizon 𝑇 ∈ N.
1: procedure E.initialize( )
2: Set𝑊𝑖 ← 1 and
3: 𝑝old

𝑖
← 1
| C | for all 𝑖 ∈ C

4: Pick 𝑖old u.a.r. from C
5: end procedure
6: procedure E.feedback(ℓℓℓ)
7: Set𝑊𝑖 ←𝑊𝑖𝑒

𝜖ℓ𝑖 for all 𝑖 ∈ C
8: end procedure
9: procedure E.correlated_arm( )
10: Set 𝑝new𝑖 ← 𝑊𝑖∑

𝑗 ∈C𝑊𝑗
for all 𝑖 ∈ 𝐶

11: Pick 𝑖new ← coupled_movement (𝑝𝑝𝑝old,𝑝𝑝𝑝new,𝑖old) ⊲ Marginal is 𝑝𝑝𝑝new
12: 𝑝𝑝𝑝old ← 𝑝𝑝𝑝new

13: 𝑖old ← 𝑖new

14: return 𝑖new
15: end procedure
16: procedure coupled_movement(𝑝𝑝𝑝old,𝑝𝑝𝑝new,𝑖old)
17: Compute 𝐼 = {𝑖 ∈ C : 𝑝new𝑖 − 𝑝old

𝑖
> 0}.

18: Set𝑚𝑖 ← |𝑝new𝑖 − 𝑝old
𝑖
|, for all 𝑖 ∈ C

19: Compute a feasible flow [𝛿𝑖, 𝑗 ] (𝑖, 𝑗 ) ∈C2 , where
∑
𝑗∈𝐼 𝛿𝑖, 𝑗 = 𝑚𝑖 for 𝑖 ∈ C \ 𝐼 , and

∑
𝑖∈C\𝐼 𝛿𝑖, 𝑗 = 𝑚 𝑗 for 𝑗 ∈ 𝐼 , to

transport
∑
𝑖∈C\𝐼 𝑚𝑖 mass from the

20: components in 𝐼 to the components in C \ 𝐼 .
21: 𝑝𝑝𝑝 ← 𝑝𝑝𝑝old.
22: 𝑖temp ← 𝑖old

23: for 𝑖 ∈ C \ 𝐼 do
24: for 𝑗 ∈ 𝐼 do
25: 𝑝𝑝𝑝, 𝑖temp ← elementary_𝛿movement(𝑝𝑝𝑝, 𝑖temp, 𝛿𝑖, 𝑗 , 𝑖, 𝑗 )
26: end for
27: end for
28: return 𝑖temp
29: end procedure
30: procedure elementary_𝛿movement(𝑝𝑝𝑝, 𝑖temp, 𝛿, 𝑖, 𝑗 )
31: if 𝑖temp = 𝑖 then

32: 𝑖temp, 𝑝𝑝𝑝 ←
{
𝑖, 𝑝𝑝𝑝 + 𝛿 (𝑒𝑒𝑒 𝑗 − 𝑒𝑒𝑒𝑖 ) w.p. 𝑝𝑖−𝛿

𝑝𝑖

𝑗, 𝑝𝑝𝑝 + 𝛿 (𝑒𝑒𝑒 𝑗 − 𝑒𝑒𝑒𝑖 ) w.p. 𝛿
𝑝𝑖

33: else
34: 𝑖temp, 𝑝𝑝𝑝 ← 𝑖temp, 𝑝𝑝𝑝 + 𝛿 (𝑒𝑒𝑒 𝑗 − 𝑒𝑒𝑒𝑖 )
35: end if
36: return 𝑝𝑝𝑝, 𝑖temp
37: end procedure

allocation 𝐴𝑡 to 𝐴𝑡+1 at the end of round 𝑡 is given by:

UC(𝐴𝑡 , 𝐴𝑡+1) =
∑︁

(𝑠,𝑖)∈𝐴𝑡+1\𝐴𝑡
𝑤 ′𝑠,𝑖 . (2.48)
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When such update costs exist, we need to account for them when adapting cache allocations. We
thus incorporate them in the 𝛼-regret as follows:

𝑅̃𝑇 = 𝛼

𝑇∑︁
𝑡=1

𝑓 𝑡 (𝐴∗) − E
[
𝑇∑︁
𝑡=1

𝑓 𝑡 (𝐴𝑡 ) −
𝑇−1∑︁
𝑡=1

UC(𝐴𝑡 , 𝐴𝑡+1)
]
= 𝑅𝑇 + E

[
𝑇−1∑︁
𝑡=1

UC(𝐴𝑡 , 𝐴𝑡+1)
]
. (2.49)

Note that, in this formulation, the optimal offline policy 𝐴∗ has no update cost, as it is static.
We refer to 𝑅̃𝑇 as the extended 𝛼-regret of an algorithm. This extension corresponds to adding the
expected update cost incurred by a policy A to its 𝛼-regret.

Unfortunately, the update costs of DistributedTGOnline (and, hence, its extended regret) grow
as Θ(𝑇 ) in expectation. In particular, the following lemma, proved in Appendix 6, holds:

Lemma 2.3.5. When DistributedTGOnline is parametrized with the hedge selector in Algorithm 2.4,
it incurs an expected update cost of Ω(𝑇 ) for any choice of 𝜖 ∈ R+.

Nevertheless, the extended regret can be reduced to 𝑂 (
√
𝑇 ) by appropriately modifying Algo-

rithm 2.4, the no-regret-hedge selector used in slots E𝑠,𝑚 . In particular, the linear growth in the
regret is due to the independent sampling of cache contents within each round. Coupling this selec-
tion with the presently selected content can significantly reduce the update costs. More specifically,
instead of selecting items independently across rounds, the new item can be selected from a proba-
bility distribution that depends on the current allocation in the cache. This conditional distribution
can be design in a way that the (marginal) probability of the new item is the same as in Algorithm 1,
thereby yielding the same expected caching gain. On the other hand, coupling can bias the selection
towards items already existing in the cache. This reduces update costs, especially when marginal
distributions change slowly.

The coupled hedge selector described in Algorithm 2.6 accomplishes exactly this. As seen in
line 9 of Algorithm 2.6, pulling the arm of the hedge selector is dependent on (a) the previously
taken action/selected item and (b) the change in the distribution implied by weights 𝑊𝑖 , 𝑖 ∈ C.
We give more intuition as to how this is accomplished in Appendix 6. In short, the coupled hedge
selector solves a minimum-cost flow problem via an iterative algorithm. The minimum-cost flow
problem models a so-called optimal transport or earth mover distance problem [59] from 𝑝𝑝𝑝𝑡 to 𝑝𝑝𝑝𝑡+1,
the distributions over catalog C at rounds 𝑡 and 𝑡 + 1, respectively, The resulting solution comprises
conditional distributions for “jumps” among elements in C, which are used to determine the next
item selection using the current choice: by being solutions of the minimum-cost flow problem, they
incur small update cost, while ensuring that the posterior distribution after the “jump” is indeed
𝑝𝑝𝑝𝑡+1.

Our second main result establishes that using this hedge selector instead of Algorithm 2.4 in
DistributedTGOnline ensures that the extended regret grows as 𝑂 (

√
𝑇 ).

Theorem 2.3.6. Consider DistributedTGOnline with hedge selectors E𝑠,𝑚 implemented via Algo-

rithm 2.6 parameterized with 𝜖 = 1
𝐿

√︃
log |C|
𝑇

. Assume also that colors are updated every 𝐾 = Ω(
√
𝑇 )

rounds. Then, the standard regret 𝑅𝑇 is again bounded as in Corollary 2.3.3. Moreover, the update cost
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of DistributedTGOnline is such that

E

[
𝑇−1∑︁
𝑡=1

UC(𝐴𝑡 , 𝐴𝑡+1)
]
= 𝑂 (
√
𝑇 ), (2.50)

and, as a consequence, the extended regret is 𝑅̃𝑇 = 𝑂 (
√
𝑇 ).

The proof can be found in Appendix 8. We note that the theorem requires that 𝐾 = Ω(
√
𝑇 ),

i.e., that colors are shuffled infrequently. Whenever a color changes, DistributedTGOnline, the
corresponding change in the active hedge selector can lead to sampling vastly different allocations
than the current ones. Consequently, such changes can give rise to large update costs whenever a
color is changed. The requirement that 𝐾 = Ω(

√
𝑇 ) allows for some frequency in changes, but not,

e.g., at a constant number of rounds (as, e.g., in Streeter et al. [74], where 𝐾 = 1). Put differently,
Theorem 2.3.6 allows for experiencing momentarily large update costs, as long as we do not surpass
a budget of 𝑂 (

√
𝑇 ) color updates overall. We note that the couple hedge selector in Algorithm 2.6

has the same time complexity as the hedge selector given in Algorithm 2.4, which is 𝑂 ( |C|) per
iteration.

2.3.5 Extensions
Jointly OptimizingCaching andRouting. Ourmodel can be extended to consider joint optimiza-
tion of both cache and routing decisions, following an extended model by Ioannidis and Yeh [64].
Under appropriate variable transformations, the new objective is still submodular over the extended
decision space. Moreover, the constraints over the routing decisions can similarly be cast as assign-
ments to slots. Together, these allow us to directly apply DistributedTGOnline and attain the
same 1 − 1/𝑒 approximation guarantee. We describe this extension in detail in Appendix 10.
Anytime Regret Guarantee. Our algorithm assumes prior knowledge of the time horizon 𝑇 ; this
is necessary to set parameter 𝜖 in Theorem 2.3.2. Nevertheless, we can use the well-known doubling
trick [88] to obtain anytime regret guarantees. In short, the algorithm starts from a short horizon;
at the conclusion of the horizon, the algorithm restarts, this time doubling the horizon. We show
in Appendix 11 that, by using this doubling trick, DistributedTGOnline indeed attains an𝑂 (

√
𝑇 )

regret, without requiring prior knowledge of 𝑇 . This remains true when update costs are also con-
sidered in the regret.

2.3.6 Experiments

2.3.6.1 Experimental Setting

Networks. We use four synthetic graphs, namely, Erdős-Rényi (ER), balanced tree (BT), hypercube
(HC), and a path (path), and three backbone network topologies: [89] Deutsche Telekom (dtelekom),
GEANT, Abilene. The parameters of different topologies are shown in Tab. 2.5. For the first five
topologies (ER–GEANT), weights𝑤 for each edge is uniformly distributed between 1–100. Each item
𝑖 ∈ C is permanently stored in a designated servers D𝑖 which is designated uniformly at random
(u.a.r.) from 𝑉 . All nodes in 𝑉 are also has 𝑐𝑣 storage space, which is u.a.r. sampled between 1 to
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topologies |𝑉 | |𝐸 | |Q| 𝑐𝑣 𝑤 𝑓𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑓𝑠𝑙𝑖𝑑𝑖𝑛𝑔 𝑓𝑆𝑁 𝑓𝐶𝐷𝑁
ER 100 1042 5 1-5 1-100 1569.93 1123.76 72.03 976.65
BT 341 680 5 1-5 1-100 5547.89 3211.63 220.58 3504.58
HC 128 896 5 1-5 1-100 2453.66 2045.69 152.38 1895.41

dtelekom 68 546 5 1-5 1-100 969.55 772.53 49.55 1005.24
GEANT 22 66 5 1-5 1-100 1564.02 981.60 66.50 1185.56
abilene 9 26 2 0-5 100 81.21 81.21 41.39 -
path 4 6 1 0-5 100 20.00 20.00 10.00 -

Table 2.5: Graph Topologies and Experiment Parameters. We indicate the number of nodes in each
graph (|𝑉 |), the number of edges (|𝐸 |), the number of query nodes ( |Q|), and the ranges of cache
capacities 𝑐𝑣 and edge weights𝑤 . In the last four columns we also report 𝑓𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 , 𝑓𝑠𝑙𝑖𝑑𝑖𝑛𝑔, 𝑓𝑆𝑁 , and
𝑓𝐶𝐷𝑁 : which are the caching gain attained by OFL with Stationary Request, Sliding Popularity, Shot
Noise, and CDN trace, respectively.

(a) Stationary Requests (b) Sliding Popularity

(c) Shot Noise (d) CDN trace

Figure 2.10: Request traces for different scenarios. Each dot indicates an access to an item in the cat-
alog; items are ordered in an overall increasing popularity from top to bottom. In Sliding Popularity,
popularity changes at fixed time intervals, through a cyclic shift (most popular items become least
popular). In Shot Noise, each item remains active for a limited lifetime.
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5. Requests are generated from nodes Q u.a.r. selected from 𝑉 . Given the source 𝑝1 ∈ Q and the
destination 𝑝 |𝑝 | ∈ D𝑖 of the request 𝑟 , path 𝑝 is the shortest path between them. For the remaining
two topologies (abiline and path), we select parameters in a way that is described in Appendix 9.
Demand. We consider three different types of synthetic request generation processes, and one
trace-driven. In the Stationary Requests scenario (see Figure 2.10(a), each 𝑟 = (𝑖, 𝑝) ∈ R is asso-
ciated with an exogenous Poisson process with rate 1.0, and 𝑖 is chosen from C via a power law
distribution with exponent 1.2. In the Sliding Popularity scenario, requests are again Poisson with a
different exponent 0.6, and popularities of items are periodically reshuffled (see Figure 2.10(b)). In
the Shot Noise scenario, each item is assigned a lifetime, during which it is requested according to a
Poisson process; upon expiration, the item is retired (see Figure 2.10(c)). In the CDN scenario (see
Figure 2.10(d)), we generate requests using a real-life trace from a CDN provider. The trace spans 1
week, and we extract from it about 10 × 105 requests for the 𝑁 = 103 most popular files.

For abiline and path, we replace the Poisson arrivals on the three synthetic traces (Stationary
Requests, Sliding Popularity, Shot Noise) with requests generated in a round-robin manner, as de-
scribed in Appendix 9.2. This is designed in an adversarial fashion, that leads to poor performance
for greedy/myopic algorithms.
Algorithms. We implement the following online algorithms:

• Path replication with least recently used (LRU), least frequently used (LFU), first-in-first-out (FIFO),
and random-replacement (RR) eviction policies: In all these algorithms, when responses are back-
propagated over the reverse path, all nodes they encounter store requested item, evicting items
according to one of the aforementioned policies.
• Projected gradient ascent (PGA): This is the distributed, adaptive algorithm oringinally proposed
by Ioannidis and Yeh [21]. This attains an (1−1/𝑒)-approximation guarantee in expectation when
requests are stationary, but comes with no guarantee against adversarial requests. Similar to our
setting, it also operated in rounds, at the end of which contents are shuffled.
• Greedy path replication (GRD): This is a heuristic, also proposed by Ioannidis and Yeh [21]. Though
it performs well in many cases, we prove in Appendix 6 that its (1 − 1/𝑒)-regret is Ω(𝑇 ) in the
worst case.
• DistributedTGOnline (TBGRD): this is our proposed algorithm. We implement it with both
independent hedge selector shown in Algorithm 2.4 and coupled hedge selector in Algorithm 2.6.

Unless indicated otherwise, we set 𝜖 = 0.005, number of colors 𝑀 = 100, 𝑅 = 1, and 𝐾 = 𝑇 for
TBGRD. For PGA and GRD, we explore parameters 𝛾 and 𝛽 range from 0.005-5 and 0.005-1 individually,
and pick the optimal values. In experiments where we do not measure update costs, we implement
TBGRDwith the independent hedge selector (Algorithm 2.4), as it yields the same performance as the
coupled hedge selector (Algorithm 2.6) in expectation (see also Figure 2.17(a) and 2.17(b)).

Finally, we also implement the offline algorithm (OFL) by Ioannidis and Yeh [21], and use the
resulting (1 − 1/𝑒)-approximate solution as baseline (see metrics below).
Performance Metrics. We use normalized time-average cache gain (TACG) as the metric to mea-
sure the performance of different algorithms. More specifically, leveraging PASTA [90], we measure
𝑓 𝑡𝑠 (𝐴𝑡𝑠 ) at epochs 𝑡𝑠 generated by a Poisson process with rate 1.0 for 5000 time slots, and average
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Figure 2.11: TACG of different algorithms over different topologies with Stationary Requests. The
total simulation time is 1000 time units. TBGRD, GRD, and PGA perform well in comparison to path
replication policies. However, GRD and other myopic strategies attain zero TACG over abilene and
path, the round-robin scenarios. In comparison, TBGRD and PGA still perform well.

Figure 2.12: TACG of different algorithms over different topologies with Sliding Popularity. The
total simulation time is 1000 time units. TBGRD, GRD, and PGA again outperform path replication
algorithms; GRD sometimes even outperforms the (static) OFL solution, attaining a normalized TACG
larger than one. However, GRD and several path replication algorithms again fail catastrophically
over the abilene and path scenarios, while TBGRD and PGA again attain a normalized TACG close
to one.

Figure 2.13: TACG of different algorithms over different topologies with Shot Noise. We again ob-
serve TBGRD, GRD, and PGA perform well in this non-stationary request arrival setting. Moreover,
several algorithms outperform the (static) offline solution OFL in this setting. Again, GRD and other
myopic path replication policies fail over abilene and path, while TBGRD and PGA still attain a non-
zero TACG.
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Figure 2.14: TACG of different algorithms over different topologies with CDN trace. The total simu-
lation time is 2000 time units. We again observe that TBGRD, GRD, and PGA outperform path replication
policies.

these measurements. To compare performance across different topologies, we normalize the average
by 𝑓OFL, the caching gain attained by OFL, yielding:

TACG = 1
𝑇𝑠 𝑓OFL

∑𝑇𝑠
𝑡𝑠=1 𝑓

𝑡𝑠 (𝐴𝑡𝑠 ). (2.51)

The corresponding 𝑓OFL values are reported in Table 2.5. We also measure the cumulative update
cost (CUC) of TBGRD over time under the hedge and coupled hedge selectors, i.e.,

CUC =
∑𝑇−1
𝑡=1 UC(𝐴𝑡 , 𝐴𝑡+1), (2.52)

where we measure the instantaneous update cost UC using (2.48) with weights set to 1.

2.3.6.2 Results

TACG Comparison. Figures 2.11-2.13 show the performance of different algorithms w.r.t. TACG
across multiple topologies, for different synthetic traces (Stationary, Sliding Popularity, and Shot
Noise, respectively). For GRD here, we explore parameters 𝜖 range from 0.0001-1, and pick the opti-
mal values. We observe that TBGRD, GRD, and PGA have similar performance across topologies on all
three traces for the first five topologies, with GRD being slightly higher performing than the other
two; nevertheless, on the last two topologies, that have been designed to lead to poor performance
for myopic/greedy strategies, both GRD and other myopic strategies (e.g., LFU, LRU, and FIFO) are
stymied, attaining a zero caching gain throughout. This also verifies the suboptimality of GRD stated
in Lemma 2.3.4. In contrast, TBGRD and PGA still attain a TACG close to the offline value; not sur-
prisingly RR also has a suboptimal, but non-zero gain in these scenarios as well.

The more a trace departs from stationarity, the more the performance of OFL degrades: As seen
in Tab. 2.5, the caching gain obtained by OFL consistently across the different topologies has the
highest value in the Stationary trace, then decreases as we change to CDN, Sliding Popularity SN
traces, in that order.

We also note that in the Shot Noise case several algorithms attain a normalized TACG that is
higher than 1. This indicates that the dynamic algorithms beat the static offline policy in this setting.
The above observations largely carry over to theCDN trace, shown in Figure 2.14, forwhich however
we do not consider the two round-robin demand scenarios (abilene and path), as the demand is
driven by the trace.
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(a) Average number of requests |R𝑡 | (b) Number of colors𝑀

(c) Parameter 𝜖 (d) Color update period 𝐾

Figure 2.15: TACG vs. different parameters under Stationary Request. As the average number of
requests increases, TACG decreases. Number of colors does not affect a lot. As 𝜖 increases, TACG
decreases. As color update period increases, TACG increases.

Impact of Different Parameters. We explore the effect of different parameters in TBGRD with
both stationary and sliding popularity requests in Figures 2.15 and 2.16, respectively, for five different
topologies. We plot the normalized TACG with different values of colors 𝑀 , parameter 𝜖 , color
update period 𝐾 , and average number of requests per round |R𝑡 |. For the latter, we select a round
duration of 𝐵 time units, and group all requests within a duration together in to a single request
set R𝑡 ; note that, due to stochasticity, the number of requests varies at each round 𝑡 . In general,
the normalized TACG for stationary requests is slightly higher than for sliding popularity. This
is expected, as stationary requests are easier to learn. The number of colors does not affect the
performance of algorithm a lot, shown in Figure 2.15(b) and 2.16(b). From both Figure 2.15(a), we
see that smaller request set size leads to better TACG, which again makes sense: that more frequent
cache updates are, the faster they adapt to current requests. Besides this, we see that |R𝑡 | has bigger
impact under stationary requests, while the sliding window scenario is less affected by varying this
parameter. We also observe in Figure 2.15(c) that greater 𝜖 values lead to worse performance in the
stationary setting; however in the sliding popularity setting, shown in 2.16(c), the optimal 𝜖 is at
about 0.01 for multiple topologies; this selection corresponds to a decay rate of the item selection
probability that is most appropriate for the popularity refreshing period of these traces. Finally, even
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(a) Average number of requests |R𝑡 | (b) Number of colors𝑀

(c) Parameter 𝜖 (d) Color update period 𝐾

Figure 2.16: TACG v.s. different parameter with Sliding Popularity scenario. The average number of
requests and number of colors do not affect performance significantly. The optimal 𝜖 is at about 0.01
for multiple topologies; this selection corresponds to a decay rate of the item selection probability
that is most appropriate for the popularity refreshing period of these traces. As the color update
period increases, TACG increases.

though higher 𝐾 is better on both Figure 2.15(d) and 2.16(d), we see more variability/bigger impact
of this selection in the sliding popularity trace.
Update Costs. Recall from Theorem 2.3.6 both the (independent) hedge selector and the coupled
hedge selector lead to same caching gain in expectation. This also verified experimentally by results
of Figure 2.17 (a) and (b): we observe that both hedge selectors lead to almost identical TACG on the
sliding popularity trace. We also observe that the cumulative update cost (CUC), shown 2.17(c) and
Figure 2.17(d), is vastly different across the two selectors: within the duration of the simulation, the
CUC of the hedge selector is more than 15× the CUC of the coupled hedge selector.

2.3.7 Conclusion
Wepropose a distributed, online algorithm that achieves sublinear (1−1/𝑒)-regret for the adversarial
caching gain maximization problem, even when accounting for update costs. An interesting future
research direction is to provide regret guarantees for the class of path replication algorithms. These
algorithms are appealing precisely because they do not involve updates that happen separately from
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(a) TACG of independent hedge selector
Algorithm 2.4

(b) TACG of coupled hedge selector Al-
gorithm 2.6

(c) Cumulative update cost (CUC) of in-
dependent hedge selector Algorithm 2.4

(d) Cumulative update cost (CUC) of
coupled hedge selector Algorithm 2.6

Figure 2.17: TACG and CUC of DistributedTGOnline over Sliding Popularity trace/dtelekom. The
learning rate is 𝜖 = 5×104. Values reported are averaged over 30 experiments with different random
seeds.

the normal response traffic: whenever a response packet carrying an item traverses a cache, the
latter makes a decision of whether to cache this content or not on the spot. This restricts the type
of allocations that an online algorithm can construct at any point in time, but does not incur any
additional cost beyond the one generated by response traffic. This property makes path replication
algorithms quite popular in practice [91–93]. Our proof that GreedyPathReplication has linear
regret (see Lemma 2.3.4) is a negative result in this direction. Nevertheless, determining whether a
path replication algorithm that has sublinear 𝛼-regret exists remains an interesting open problem,
from both a theoretical and practical point of view. Another important future research direction is
to consider dynamic regret [46], whereby the performance of a policy is compared to a dynamic
optimum. Dynamic regret was studied under different settings of online convex optimization [46,
94–96], multi-armed bandits [97–100], and non-stationary reinforcement learning [101–103], and
would be interesting to apply to our setting.





CHAPTER 3
Similarity Caching

3.1 Introduction

Similarity search [104] is a key building block for a large variety of applications includingmultimedia
retrieval [105–107], recommendation systems [108–110], genome study [111,112], machine learning
training [113–115], and serving [116–125]. Given a query for an object, the goal is to retrieve one or
more similar objects from a repository. In the traditional setting, a cache is used to speed up object
retrieval: once similarity search has identified the set of similar objects in the global catalog, the
system checks if some of these objects are stored in the cache memory. In this setting, the cache
performs a local exact lookup for the objects. Similarity search over the catalog can be itself a time-
consuming operation, equivalent to linearly scanning the whole catalog [126]. Moreover, if users
generating the queries are located far from the repository, they may experience long delays.

In order to solve these problems, the seminal papers [106, 108] proposed, almost at the same
time, a different use of the cache: clients’ requests are directly forwarded to the cache; then the
cache performs a similarity search over the set of locally stored objects and possibly serves the
requests without the need to forward the query to the (remote) repository. The cache thus reduces
the overall serving time at the cost of providing objects less similar than those the repository would
provide. This operation was named similarity caching, in contrast to the traditional exact caching.
As recognized in [127], the idea of similarity caching has been rediscovered a number of times
under different names: recognition caches [118, 119], approximate deduplication [121], semantic
caches [122], prediction caches [117], approximate caches [123], and soft caches [110, 128].

In practice, objects and requests are mapped to vectors in R𝑑 (called embeddings), so that the
dissimilarity cost can be represented as (a function of) a selected distance between the correspond-
ing embeddings. Examples of commonly employed distances are the 𝑝-norm, Mahalanobis or co-
sine similarity distances. For instance, in augmented reality applications we often require iden-
tifying similar objects: the image is coded into a query, i.e., an embedding in R𝑑 (e.g., set of de-
scriptors like SIFT [129], or ORB [130], or the set of activation values at an intermediate layer of
a neural network [131, 132]), and the application logic finds similar images to be returned to the
user [118–120,122]; moreover, in recommendation systems, objects are also embedded in R𝑑 with a
distance metric to capture content dissimilarity. This also the case for other potential applications
of similarity caching like 360◦ videos, where tiles at the periphery of the user’s field of view could
be approximated by neighboring tiles that are stored at the cache and can then be served with low
latency [133]. Similarity caching may then be useful in this context, specially in the future when the
number of tiles will increase and close tiles will become more similar.

53
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Figure 3.1: Cached objects’ movements in the representation space (R2) during [0,𝑇 ] when the
cache is managed by Grades. The catalog is made by the points in a 100 × 100 grid, dark shaded
areas correspond to more popular objects. Dissimilarity cost𝐶𝑑 (𝑥,𝑦) = 1/10 ∥𝑥 − 𝑦∥1, retrieval cost
𝐶𝑟 = 1, cache size 𝑘 = 50. See the description in Section 3.2.4.

3.1.1 Contributions
Continuous Catalog Similarity Caching. This work makes the following contributions in the
context of continuous catalog similarity caching:

• We propose Grades, the first similarity caching policy designed to exploit object embeddings in
R𝑑 with a distance that captures dissimilarity costs. While previous policies update the cache
state by replacing a cached object with (in general) a distant one—corresponding to “jumps” in
the representation space—Grades incrementally updates the (embedding of) each object using
a gradient descent step to progressively reduce the dissimilarity cost. Qualitatively, as shown in
Figure 3.1, the objects in the cache smoothlymove in the representation space to find their optimal
position, i.e., where they can serve numerous requests with small dissimilarity cost.
• We prove that in a stationary setting, with an opportune choice of the gradient step sizes, Grades
converges to a cache configuration that corresponds to a critical point of the service cost (likely
a local minimum).
• Our experiments based on realistic traces (made available online [134]) show that Grades out-
performs existing similarity caching policies both for 360◦ videos and recommendation systems
applications.

Finite Catalog Similarity Caching. We provide the following contributions in the context of
finite catalog similarity caching:

• We formulate the problem of 𝑘NN optimal caching taking into account both dissimilarity costs
and system costs.
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• We propose a new similarity caching policy, AÇAI (Ascent Similarity Caching with Approximate
Indexes), that (1) relies on fast, approximate similarity search indexes to decide which objects to
serve from the local datastore and which ones from the remote repository and (2) uses an online
mirror ascent algorithm to update the cache content in order to minimize the total service cost.
AÇAI offers strong theoretical guarantees without any assumption on the traffic arrival pattern.
• We compare our solution with state-of-the-art algorithms for similarity caching and show that
AÇAI consistently improves over all of them under realistic traces.

3.1.2 Organization
This chapter is organized as follows. Section 3.2 studies continuous catalog similarity caching, and
Section 3.3 studies finite-catalog similarity caching. In detail:

Continuous Catalog Similarity Caching. An overview of the related work is provided in Sec-
tion 3.2.1. We present the formal problem definition in Section 3.2.2. We introduce Grades and its
theoretical guarantees in Section 3.2.3. Finally, experimental results are presented in Section 3.2.4.

Finite Catalog Similarity Caching. We present related work in Section 3.3.1 and other relevant
background in Section 3.3.2. We provide the description of similarity caching systems and introduce
AÇAI in Section 3.3.3. We present the experimental results in Section 3.3.4.

3.2 Continuous Catalog Similarity Caching

3.2.1 Related Work
Most existing policies for similarity caches generalize well-known exact caching policies, like LRU
and LFU, to the new context, where besides the exact hits and misses, approximate hits are also
possible. For example SIM-LRU [108,116] maintains objects in an ordered queue and serves an object
from the cache if its distance to the requested object is less than a given threshold (an approximate
hit occurs). The object is then moved to the front of the queue. When no object in the cache is close
enough to the request, there is amiss. The object is then retrieved from the server and inserted at the
front of the queue, possibly evicting objects from the back. RND-LRU [108] is a variant of SIM-LRU
where the threshold is replaced by a random variable that is a function of the dissimilarity cost, i.e.,
the cost associated to the distance between a cached object and the request. As with SIM-LRU and
RND-LRU that are adaptations of LRU, 𝑞LRU-Δ𝐶 [127] modifies 𝑞LRU [29] by introducing a refresh
probability that depends on the similarity. Finally, Duel [127] is inspired by LFU, and decides which
object to evict by tracking the dissimilarity cost, i.e., the cost associated to the distance between a
cached object and the request accumulated over a given time-window.

Grades was inspired by the work from Jorge Cortés et al. on coordination algorithms for mobile
agents [135–137]). In their setting, mobile agents (e.g., drones) place themselves in the space to
be able to detect the largest number of events in the environment. Similarly, the objects in the
cache need to position themselves to optimally serve the requests appearing over the space. Despite
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similarities at a high-level, their work focuses on a two-dimensional space and needs to take into
account agents’ movement and communication constraints that do not hold in our context.

From another point of view, Grades gradient update can be considered as a generalization
of stochastic 𝑘-means algorithms, where the function we want to minimize is not necessarily the
squared Euclidean distance (as it is the case for 𝑘-means). Our proofs rely on techniques for non-
convex optimization originally proposed in [138] also to study 𝑘-means.

Online caching policies based on gradient methods have been proposed in the stochastic request
setting (see, e.g., [21, 38]), and, more recently, in the adversarial setting [19, 139]. These papers
follow a similar methodology to ours in Sections 2.2.3 and 2.2.5 in Chapter 2, where the gradient
step updates a vector of length equal to the catalog size, whose component 𝑖 (in [0, 1]) represents
which fraction of object 𝑖 should be stored in the cache or alternatively the probability to store 𝑖 in
the cache. Differently from this line of work, Grades uses the gradient step to modify the objects
in the cache and maintains a vector of size equal to the cache—then much smaller than the catalog
size.

A costly operation in any similarity search system is to find the closest object to the request. A
simple solution is to index the collection, e.g., with a tree based data structure, to find the exact clos-
est object. Unfortunately, when the number of dimensions 𝑑 of the representation space exceeds 10,
such an approach has a computational cost comparable to a full scan of the collection [126]. For this
reason a number of approximate search techniques have been developed, which trade accuracy for
speed and provide one or more points close to the request, but not necessarily the closest. Prominent
examples are the solutions based on locality sensitive hashing [140], product quantization [141,142],
pivots [143], or graphs [144]. In the experiments in this chapter, we have performed an exact simi-
larity search, but any of these approximated search techniques could be used in Grades.

The original envisaged applications of similarity caches were content-based image retrieval
(CBIR) [106] and contextual advertising [108]. In a CBIR system, given an image (used as a query),
users can query the CBIR system to obtain images that are most similar to the query by compar-
ing their visual contents. Here, a cache can respond with the most similar images that are avail-
able locally. Similarly, in the case of contextual advertising, the cache can provide ads similar
to those matching the user profile [108]. Likewise, recommender systems can leverage similarity
caches [110, 128]: a recommender system can save operating costs and decrease its response time
through recommendation of relevant contents from a cache to user-generated queries, i.e., in case of
a cache miss, an application proxy (e.g., YouTube) running close to the helper node (e.g., at a multi-
access edge computing server) can recommend the most related files that are locally cached. More
recently, similarity caches have been employed extensively for machine learning based inference
systems to store queries and the respective inference results to serve future requests, for example,
prediction serving systems [117], image recognition systems [118, 119, 121], object classification on
the cloud [122], caching hidden layer outputs of a neural network to accelerate computation [123],
network traffic classification tasks [145]. The cache can indeed respondwith the results of a previous
query that is very similar to the current one, thus reducing the computational burden and latency
of running complex machine learning inference models.
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System Model 𝜆𝑟 Arrival rate of request 𝑟
N Catalog C(S) Expected cost to serve a request
R Set of possible requests Grades
S Set of cached objects ℎ Cache size
𝑥𝑥𝑥 Cache state VC Virtual cache
𝑐 𝑓 Retrieval cost PC Physical cache
𝑐𝑑 (𝑟, 𝑧 ) Dissimilarity cost between 𝑟 and 𝑧 𝜇 (𝑦𝑉 ) Matched vector to virtual vector 𝑦𝑉
𝑐𝜃 Dissimilarity threshold 𝜌 (𝑟 ) Closest object to 𝑟 in the catalog
𝑐 (𝑟, 𝑧 ) Combined dissimilarity and retrieval cost 𝑝 Grafting probability

Table 3.1: Notation Summary for Subsection 3.2

3.2.2 System Description
We consider a similarity search system where a server answers users’ queries with the most similar
object from a locally stored catalog. In some applications, it is required to serve similar cached
objects instead of a single object. Grades can be augmented to provide 𝑘 similar answers using the
same techniques introduced in [106, 108, 146]. For example, the cache may store key-value pairs,
where the key is a past query and the value is the set of 𝑘 closest objects to the query. Upon a new
query, the cache looks for the most similar key stored locally and returns the corresponding set of
objects. However, such augmentation is of a heuristic nature; we provide a more careful treatment
in Section 3.3. The notation used across this section is provided in Table 3.1.

Requests satisfied by the server incur a retrieval cost 𝑐 𝑓 , which quantifies the delay the user
experiences to retrieve the object from the remote server, and/or the additional load for the server,
and/or the additional load for the network. Alternatively, the request may be satisfied by a similarity
cache which stores a subset of the catalog. The cache provides, in general, a less similar object than
what the server could provide, but incurs a negligible retrieval cost, as, for example, it is located
closer to the user, or uses a faster memory storage or can perform faster lookup operations on the
smaller set of stored contents.

We assume that each request or object in the catalog can be represented as a point in the 𝑑-
dimensional Euclidean spaceR𝑑 . In what follows wewill refer to such representations as embeddings
and, for the sake of simplicity, we will identify each object/request with its embedding (e.g., we will
say that object 𝑟 belongs to R𝑑 ). We assume all objects have the same size and the cache can store
up to ℎ objects.

Our model of the system is similar to the one considered in previous papers on similarity caching
in the continuous setting like [108, 127]. Let N and R denote the catalog and the set of possible
requests, respectively. Both sets may be finite or infinite, but we require them to be compact (to be
able to retrieve a closest object to a given request). The “quality" of a similarity search for 𝑟 depends
on how similar the response object 𝑦 is to the request. We assume the dissimilarity cost is quantified
by the function 𝑐𝑑 (𝑟,𝑦) = 𝑢 (∥𝑟 − 𝑦∥), where 𝑢 : R→ R+ is a non-decreasing non-negative function
and ∥ · ∥ is a norm in R𝑑 (e.g., the Euclidean one). For example Faiss (Facebook AI Similarity Search)
library [147] for multimedia retrieval supports all 𝑝-norms for 𝑝 ∈ [1,∞].

The state of the cache at time 𝑡 is given by the set of objects S𝑡 currently stored in it,
S𝑡 = {𝑦1

𝑡 , 𝑦
2
𝑡 , . . . , 𝑦

𝑘
𝑡 }, with 𝑦𝑖𝑡 ∈ R ⊂ R𝑑 . Requests arrive first at the cache. Given a re-

quest for object 𝑟𝑡 at time 𝑡 , let 𝑖𝑡 denote the index of the most similar object to the request, i.e.,
𝑖𝑡 ∈ arg min𝑖=1,...,𝑘 𝑐𝑑

(
𝑟𝑡 , 𝑦

(1)
𝑡

)
(if there are many equally similar ones we arbitrarily select one). If
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the cache satisfies the request 𝑟𝑡 , it will use content 𝑦 (𝑖𝑡 )𝑡 , and the user will incur the dissimilarity
cost 𝑐𝑑 (𝑟𝑡 ,S𝑡 ) ≜ 𝑐𝑑

(
𝑟𝑡 , 𝑦

(𝑖𝑡 )
𝑡

)
= min𝑦∈S𝑡 𝑐𝑑 (𝑟𝑡 , 𝑦), but the retrieval cost is negligible. Alternatively,

the cache can forward the request to the server, where it will be satisfied by the most similar ob-
ject in the catalog. The request will generate the retrieval cost 𝑐 𝑓 , and the user will experience the
dissimilarity cost 𝑐𝑑 (𝑟𝑡 ,N) = min𝑦∈N 𝑐𝑑 (𝑟𝑡 , 𝑦) ≤ 𝑐𝑑 (𝑟𝑡 ,S𝑡 ).

Ideally, the cache should compare the costs of serving request locally (𝑐𝑑 (𝑟𝑡 ,S𝑡 )) and from the
server (𝑐𝑑 (𝑟𝑡 ,N) + 𝑐 𝑓 ) and select the most convenient action. But, in order to evaluate 𝑐𝑑 (𝑟𝑡 ,N),
the cache would need to store locally metadata for the whole setN and find the closest object in it.
The memory and computation requirements could defeat the whole utility to have a cache. For this
reason, we consider the cache does not know 𝑐𝑑 (𝑟𝑡 ,N), but it is easy to adapt our algorithm when
it is not the case and its theoretical guarantees still hold. We demonstrate how this assumption can
be omitted in Section 3.3.

In the impossibility to compare 𝑐𝑑 (𝑟𝑡 ,S𝑡 ) with the request-dependent value 𝑐𝑑 (𝑟𝑡 ,N) + 𝑐 𝑓 , the
cache compares 𝑐𝑑 (𝑟𝑡 ,S𝑡 ) with a constant threshold value 𝑐𝜃 . If 𝑐𝑑 (𝑟𝑡 ,S𝑡 ) ≤ 𝑐𝜃 , the cache serves the
request locally, otherwise it forwards it to the server. We assume 𝑐𝜃 is set once and for all offline.
Figure 3.2 illustrates how requests are served.

As 𝑐𝑑 (𝑟𝑡 ,S𝑡 ) = 𝑐𝑑
(
𝑟𝑡 , 𝑦

(𝑖𝑡 )
𝑡

)
, the final cost to serve request 𝑟 (denoted by 𝑐 (𝑟𝑡 ,S𝑡 )) depends only

on 𝑦 (𝑖𝑡 )𝑡 :

𝑐 (𝑟𝑡 ,S𝑡 ) = 𝑐
(
𝑟𝑡 , 𝑦

(𝑖𝑡 )
𝑡

)
=

{
𝑐𝑑

(
𝑟𝑡 , 𝑦

(𝑖𝑡 )
𝑡

)
, if 𝑐𝑑

(
𝑟𝑡 , 𝑦

(𝑖𝑡 )
𝑡

)
≤ 𝑐𝜃 ,

𝑐 𝑓 + 𝑐𝑑 (𝑟𝑡 ,N) , otherwise.
(3.1)

After a request, the cache can update its state. As updates can themselves generate retrieval costs,
we restrain to reactive policies that can only update their state by inserting the object retrieved from
the server to satisfy a request.

In our setting, we assume that the two costs, 𝑐 𝑓 and 𝑐𝑑 , can be expressed in the same unit. For
instance, the two costs can quantify different aspects contributing to the overall user’s quality of
experience (QoE). The dissimilarity cost function 𝑐𝑑 (𝑟,𝑦) = 𝑢 ( | |𝑟 − 𝑦 | |) can describe the QoE loss
for the end user upon receiving a dissimilar object, while 𝑐 𝑓 can capture the QoE loss due to the
experienced delay. As in our model, the ITU-T E-model combines additively different metrics, such
as signal-to-noise-ratio, packet loss ratio, and delay, to obtain a single scalar QoE rating for voice
communications [148]. More in general, it is quite common in multi-objective resource allocation
problems to express the cost as a weighted sum of the different objective functions [149–151].

In our theoretical analysis in Section 3.2.2, we consider the case when requests arrive according
to a Poisson process and are i.i.d. distributed. In the finite case (|R | < ∞), we recover the classic
independent reference model [15], where object 𝑟 is requested with rate 𝜆𝑟 . In the continuous case,
we need to consider a spatial density of requests and objects in a setA ⊂ R are requested with rate∫
A 𝜆𝑟 d𝑟 .
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Figure 3.2: Coverage of the request space (⊂ R2) by 4 objects in the cachewith norm-2 as dissimilarity
cost. Crosses represent the objects. Each object is the closest point to requests in the corresponding
Voronoi cell delimited by the red lines. Consider a request 𝑟 falling in the Voronoi cell of an object𝑦𝑖 .
If 𝑟 is closer to 𝑦𝑖 than the critical radius 𝑅𝜃 (such that 𝑢 (𝑅𝜃 ) = 𝑐𝜃 ), 𝑟 receives 𝑦𝑖 as reply, otherwise
(it falls in the gray shaded area) it generates a miss.

Under the above assumptions, for a given cache state S = {𝑦1, 𝑦2, . . . , 𝑦𝑘}, we can compute the
corresponding expected cost to serve a request:

C(S) ≜
{∑

𝑟∈R 𝜆𝑟𝑐 (𝑟,S), finite case∫
R 𝜆𝑟𝑐 (𝑟,S) d𝑟, continuous case.

(3.2)

Finding an optimal set of objects S∗ to store in the cache that minimizes the cost C(S) is NP-
hard as it is a generalization of the problem considered in [127] (where 𝑐𝑑 (𝑟,N) = 0 for each 𝑟 ∈ R).
Nevertheless, for the continuous case, we propose a dynamic gradient descent based algorithm, that,
under the stationary request process, can achieve a stationary point of C(S). The gradient descent
based algorithm is a natural choice for the continuous setting; the algorithm takes a descent step to
decrease C(S) at each time step. Further, in Section 3.2.3.3, we describe a heuristic adaptation of the
proposed algorithm for the finite case.

3.2.3 A Gradient-based Algorithm

The key idea of our algorithm is to let the objects stored in the cache gradually “move” in the spaceR𝑑
to reach a configuration where they can be used as approximate answers for a large number of
requests (see Figure 3.1). Upon a request at time 𝑡 for 𝑟𝑡 , the most similar object in the cache, 𝑦 (𝑖𝑡 )𝑡 , is
moved in the direction opposite to the gradient of the service cost (∇𝑦𝑐 (𝑟𝑡 , 𝑦 (𝑖𝑡 )𝑡 )) proportionally to
a time-varying step-size (or learning rate) 𝜂𝑡 :

𝑦
(𝑖𝑡 )
𝑡+1 = 𝑦

(𝑖𝑡 )
𝑡 − 𝜂𝑡∇𝑦𝑐

(
𝑟𝑡 , 𝑦

(𝑖𝑡 )
𝑡

)
. (3.3)
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It is possible to prove that 𝑐 (𝑟,𝑦) is differentiable everywhere and then the gradients in (3.3) exist
with probability 1 when the request process is continuous.1 When the request process is discrete,
the probability that the gradient ∇𝑦𝑐 (𝑟𝑡 , 𝑦𝑡 ) does not exist may be non-zero, but we can then perturb
the request by a small random vector 𝜖 ∈ R𝑑 and consider ∇𝑦𝑐 (𝑟𝑡 + 𝜖,𝑦𝑡 ).

Note that the algorithm is oblivious to the request rate (𝜆𝑟𝑡 ) of the object 𝑟𝑡 . However, every time
a request is made for object 𝑟𝑡 , the most similar object in the cache (𝑦 (𝑖𝑡 )𝑡 ) is moved in the direction
of the requested object. Therefore, the algorithm dynamics are sensitive to 𝜆𝑟𝑡 .

An attentive reader may frown upon the simple algorithm (3.3). First, it potentially updates the
cache upon every request, even when 𝑐𝑑 (𝑟𝑡 , 𝑦 (1)𝑡 ) ≤ 𝑐𝜃 and the cache would not need to retrieve any
object. Second, even if 𝑦 (1)𝑡 is the embedding of an object in the catalog, 𝑦 (1)

𝑡+1 may not correspond to
any object in the catalog.

In the following sections we address all issues mentioned above. After having refined the update
rule (3.3) (Section 3.2.3.1), we prove that this idealized algorithm indeed converges to a critical point
of C(S) (Section 3.2.3.2). Then, in Section 3.2.3.3 we present a practical algorithm which (1) satisfies
all our requirements, (2) keeps the state of the cache “close” to the state of the idealized algorithm,
and () is more reactive and thus more suitable to non-stationary request processes.

3.2.3.1 Introducing a Projection

As requests are only for objects in the bounded set X, there exists a norm-2 ball with radius 𝑅—
B2(𝑅) = {𝑦 ∈ R𝑑 , ∥𝑦∥2 ≤ 𝑅})—such that X ⊂ B2(𝑅) and 𝑐 (𝑟,𝑦) = 𝑐 𝑓 for each 𝑦 ∉ B2(𝑅) and
𝑥 ∈ X. There is no advantage to store in the cache objects that do not belong to B2(𝑅) as they do
not contribute to approximate any request. We then modify (3.3) in order to make closer to B2(𝑅)
any cached object 𝑦 (1)𝑡 that the gradient update may have brought out of B2(𝑅). We write

𝑦
(1)
𝑡+1 = 𝑦

(1)
𝑡 − 𝜂𝑡𝑔

(1)
𝑡 , (3.4)

𝑔
(1)
𝑡 =


∇𝑦𝑐

(
𝑟𝑡 , 𝑦

(1)
𝑡

)
, if (𝑖 = 𝑖𝑡 ) ∧

(
𝑦
(1)
𝑡 ∈ B2(𝑅)

)
𝑓 (∥𝑦 (1)𝑡 ∥2 − 𝑅)

𝑦
(1)
𝑡

∥𝑦 (1)𝑡 ∥2
, if 𝑦 (1)𝑡 ∉ B2(𝑅),

0, otherwise,

where 𝑓 (·) is an increasing non-negative function (so that −𝑔(1)𝑡 points to the origin of the space).
For technical reasons that will be required in the proof of Theorem 3.2.2, we want 𝑓 (0) = 𝑓 ′(0) =
𝑓 ′′(0) = 𝑓 ′′′(0) = 0, and 𝑓 ′(∞) ∈ Θ(1). For these reasons, we select 𝑓 (𝑥) = d

d𝑥
𝑥4

1+𝑥2 = 2𝑥3 2+𝑥2

(1+𝑥2)2 for
the proof.

1As far as all the 𝑦 (1)𝑡 are different, ∇𝑦𝑐 (𝑟,𝑦 (𝑖𝑡 )𝑡 ) exists for all the points in 𝑥 ∈ X but at most for a measure zero set:
the set of points for which ∇𝑦𝑐𝑑 (𝑟,𝑦 (1)𝑡 ) does not exist, the points for which ∥𝑥 − 𝑦 (1)𝑡 ∥ = ∥𝑥 − 𝑦

( 𝑗 )
𝑡 ∥ for 𝑖 ≠ 𝑗 , and

finally the set of points in 𝜕{𝑥 ∈ R𝑑 : 𝑐𝑑 (𝑟,𝑦 (1)𝑡 ) > 𝑐𝜃 }, where 𝜕𝐴 denotes the boundary of the set 𝐴.
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3.2.3.2 Theoretical Guarantees

In this section we provide convergence results for the basic algorithm described in (3.4). We assume
the cache update rule generates embeddings that always correspond to objects in the catalog. More-
over, we will ignore the cost of updates made after the request is served. These two simplifications
will be removed in the next section.

It will be useful to denote the cache state as a vector 𝑦𝑦𝑦𝑡 = (𝑦𝑡,1, . . . , 𝑦𝑡,𝑘) ∈ R𝑘×𝑑 , obtained by
concatenating the embeddings of the different objects in the cache. Similarly, we define the different
costs as function of 𝑦𝑦𝑦𝑡 and then write 𝑐𝑑 (𝑦𝑦𝑦𝑡 ), 𝑐 (𝑦𝑦𝑦𝑡 ), and C(𝑦𝑦𝑦𝑡 ). We are now going to prove that
algorithm (3.4) converges almost surely to a stationary point of C(𝑦𝑦𝑦) and the trajectory of 𝑦𝑦𝑦𝑡 is
bounded almost surely.

Lemma 3.2.1. Let the learning rate 𝜂𝑡 be selected so that
∑+∞
𝑡=1 𝜂𝑡 = +∞ and

∑+∞
𝑡=1 𝜂

2
𝑡 < +∞. The

sequence (𝑦𝑦𝑦𝑡 ) is bounded almost surely.

The proof of the lemma is in Appendix 12. The lemma is used in the proof of the following
convergence result.

Theorem 3.2.2. Let the learning rate 𝜂𝑡 be selected so that
∑+∞
𝑡=1 𝜂𝑡 = +∞ and

∑+∞
𝑡=1 𝜂

2
𝑡 < +∞. If C(·)

is continuously differentiable up to the second order then

lim inf
𝑡→∞

∥∇𝑦𝑦𝑦C(𝑦𝑦𝑦𝑡 )∥2 = 0 a.s.

If C(·) is continuously differentiable up to the third order then

lim
𝑡→∞
∇𝑦𝑦𝑦𝑡C(𝑦𝑦𝑦𝑡 ) = 0 a.s.

The proof of Theorem 3.2.2 is in Appendix 13. Our proof relies on techniques for non-convex
optimization originally proposed in [138]. We think it is possible to derive similar results, under
different hypotheses, using the approach based on ordinary differential equations proposed in [152].

Theorem 3.2.2 states that the sequence (𝑦𝑦𝑦𝑡 ) converges to a critical point of C(·), i.e., a point
where the gradient is zero. This may be a saddle point, a local maximum or a local minimum of C(·).
The latter is more likely as it is the only one locally stable. The saddle points and local maxima of
C(·) are not stable, as on reaching either of these two types of points, requests that appear in the
neighborhood may perturb𝑦𝑦𝑦𝑡 and the gradient descent algorithm moves𝑦𝑦𝑦𝑡 away from these points.
Given the stochastic nature of the request process this is highly likely to happen.

3.2.3.3 Implementation

In this section we present our complete caching policy Grades, whose pseudo-code is in Algo-
rithm 3.1. Theorem 3.2.2 shows that the basic gradient update (3.4) attains a critical point of the
expected cost C(·). Nevertheless, we have assumed that this update rule always generates embed-
dings in R𝑑 that correspond to objects in the catalog. However, if the catalog has a finite number
of objects, this is unlikely to happen, as the update (3.4) can potentially generate any real vector.
Moreover, the update (3.4) may modify an object in the cache upon each request and then generate
a high load on the server and the network to retrieve the new modified objects.
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Algorithm 3.1 Grades
1: Let ℎ be the cache size and 𝑟 the object requested
2: if ( |S𝑉 ,𝑡 | < ℎ) ∧ (𝑟 ∉ S𝑉 ,𝑡 ) then ⊲ still space in cache
3: Insert 𝑟 in VC
4: Retrieve and insert 𝜌 (𝑟 ) in PC
5: 𝜇 (𝑟 ) = 𝜌 (𝑟 )
6: end if
7: 𝑦𝑉 = arg min𝑦∈S𝑉 ,𝑡

𝑐𝑑 (𝑟,𝑦)
8: Update 𝑆𝑉 ,𝑡 according to (3.4)
9: if 𝑐𝑑 (𝑟,𝑦𝑉 ) ≤ 𝑐𝜃 then ⊲ virtual hit
10: if ∥𝑟 − 𝑦𝑉 ∥ < ∥𝜇 (𝑦𝑉 ) − 𝑦𝑉 ∥ then ⊲ 𝑟 approximates 𝑦𝑉 better than 𝜇 (𝑦𝑉 )
11: Evict 𝜇 (𝑦𝑉 )
12: Retrieve and Insert 𝜌 (𝑟 ) in PC
13: 𝜇 (𝑦𝑉 ) = 𝜌 (𝑟 )
14: end if
15: Graft_Hit_Update(𝑟, 𝑆𝑉 ,𝑡 )
16: end if
17: 𝑦𝑃 = arg min𝑦∈S𝑃,𝑡 𝑐𝑑 (𝑟,𝑦)
18: 𝜉 ∼ Uniform(0, 1)
19: if 𝜉 < 𝑝 then
20: (update, 𝜔) =Graft_Miss_Update(𝑆𝑉 ,𝑡 , 𝑟 , 𝜌 (𝑟 ))
21: if update then
22: Evict 𝜔 and 𝜇 (𝜔)
23: Retrieve and Insert 𝜌 (𝑟 ) in VC and PC
24: 𝜇 (𝜌 (𝑟 )) = 𝜌 (𝑟 )
25: 𝑦𝑃 = 𝜌 (𝑟 )
26: end if
27: end if
28: end if
29: if (𝑐𝑑 (𝑟,𝑦𝑃 ) ≤ 𝑐𝜃 ) ∨ (𝜌 (𝑟 ) inserted in PC) then
30: Serve 𝑦𝑃
31: else
32: Retrieve and Serve 𝜌 (𝑟 )
33: end if

In Section 3.2.3.3 we describe how our algorithm addresses these issues. We then move on in
Section 3.2.3.3 to describe some additional features that provide a higher adaptivity of the algorithm
to deal with highly non-stationary request processes, allowing for some random insertions with
probability 𝑝 .

Dealing with Finite Catalog and Reducing Server Load. We propose to maintain a virtual
cache (VC) and a physical cache (PC). The VC only stores some metadata, but no actual object; its
use is common to other policies like 2-LRU [29] or AdaptSize [153]. The VC is sometimes called
shadow cache.

In our case the VC stores ℎ vectors in R𝑑 that are updated upon each request according to the
basic algorithm in (3.4). These vectors are the embeddings of the objects we would like to store in
the cache, but, as discussed above, such objects may not exist, or they may not have been retrieved
yet from the server. The PC contains objects from the catalog together with their embeddings.
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At a high level, the main idea behind Grades is to maintain the PC as close as possible to the VC.
We use then the current state of the VC to drive updates at the PC, i.e., object eviction and insertion.
In particular each vector 𝑦𝑉 in the VC is matched to an actual object 𝜇 (𝑦𝑉 ) in the PC and Grades
will opportunistically update 𝜇 (𝑦𝑉 ) to make it as close as possible to 𝑦𝑉 .

We now describe in details Algorithm 3.1 using the following additional notation:

• S𝑉 ,𝑡 and S𝑃,𝑡 denote the state of the VC and the PC, respectively.
• 𝜌 (𝑟 ) denotes the closest object in the catalogue to 𝑟 .

The shaded lines correspond to changes to increase algorithm adaptivity and will be discussed in
Section 3.2.3.3.

Upon a request for 𝑟 , if there is still space in the cache, we retrieve the most similar object in the
catalogue 𝜌 (𝑟 ). Grades inserts 𝑟 and 𝜌 (𝑟 ) in the VC and in the PC, respectively, and matches them
(𝜇 (𝑟 ) = 𝜌 (𝑟 )). These operations are described in lines 2–5. The cache will finally serve 𝜌 (𝑟 ).

If the cache is already full, the closest object in VC 𝑦𝑉 will be updated according to (3.4) (lines 6–
7). Upon a virtual hit, if 𝑟 is closer to 𝑦𝑉 than the currently matching object 𝜇 (𝑦𝑉 ) in the PC, Grades
takes advantage of this request to replace 𝜇 (𝑦𝑉 ) with 𝜌 (𝑟 ) (lines 9–12). In a stationary setting, the
state of VC converges to a critical point of the cost (Theorem 3.2.2) and the PC should become closer
and closer to it. Finally, the most similar object in PC is served if it is close enough to 𝑟 , or if in any
case 𝜌 (𝑟 ) has been retrieved (line 11).

Increasing Adaptivity. According to what we described above, only the closest object in VC is
updated upon a request (unless some projection back to B(𝑅) is needed). A potential problem is that
if an object 𝑟 far from any other object has been accidentally inserted in VC (and the corresponding
object 𝜌 (𝑟 ) in PC), it may never be updated and may uselessly occupy cache space. Moreover, if
at some point the request process changes abruptly, some objects in the cache that were initially
useful may find themselves too far from the new requests. Again, the gradient algorithm, by itself,
would not update such objects. To overcome this problem, we can graft to Grades a more dynamic
caching policy that occasionally (with probability 𝑝) updates the VC, hopefully evicting the least
useful object in the VC.

The “grafting” is described by the green-shaded lines in Algorithm 3.1 and has been designed
to support general cache eviction algorithms like LRU, LFU, and their variants. The grafted caching
policy internally maintains its own data structure, e.g., an ordered queue for LRU. Upon an approx-
imate hit, the hit update rule of the grafted policy is called (line 13). For example, LRU would move
the requested object (if present in the cache) to the front of the queue. Also, with probability 𝑝 ,
Grades invokes the miss update rule of the grafted policy, that may lead to select an element 𝜔 to
be evicted. Grades then updates accordingly the VC and the PC (lines 19–22).

Algorithm Complexity. A straightforward implementation of GRADES has a time complexity
of O(ℎ𝑑), where ℎ is the cache capacity and 𝑑 is the embedding dimension. This is because one has
to iterate through the ℎ objects in the cache to find the most similar object to the requested object.
However, one could use approximate nearest neighbor index, such as those based on hierarchical
navigable small worlds (HNSW) graphs [144]. Numerically, HNSW is able to answer a 10NN query
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Trace Number of requests Catalog size Dimension (𝑑)

Synthetic 2,000,000 97,969 2
360◦ videos 10,000,000 25,393 3
Amazon 908,179 63,891 100
CiteULike 2,411,819 153,277 100
Movielens 620,222 136,677 200

Table 3.2: Traces description

over a dataset with 1 million objects in a 128-dimensional space in less than 0.5 ms with a recall
greater than 97% [154]. As for the memory footprint, a typical configuration of the HNSW index
requires𝑂 (𝑑) bytes per objects, where𝑑 is the number of dimensions. For instance, in case of𝑑 = 128
dimensional vectors, the memory required to index 10 million objects is approximately 5 GB.

3.2.4 Experiments
In this section, we empirically validate our algorithm through simulations. First we demonstrate
the benefit of the algorithm by using synthetic traces. Next, to demonstrate real world applicability
of our algorithm, we use Grades in the domain of caching for 360◦ videos and recommendation
systems. We assume that the catalog coincides with the set of possible requests (N = R) and then
set 𝑐𝜃 = 𝑐 𝑓 . The retrieval cost 𝑐 𝑓 is always equal to 1. Table 3.2 summarizes the main characteristics
of the traces. Further details about the experimental setup and the properties of request traces will
be described in the corresponding subsections. To the best of our knowledge, there are no public
traces for similarity caching; we made our traces available online [134].

We compare Grades with the following algorithms.
a) Greedy is an offline static algorithm that progressively fills the cache inserting the object

that provides the largest cost saving given the set of objects already inserted. The algorithm provides
a 1

2 approximation in terms of cost savings [65].
b) LRU+ updates the cache as the classic LRU evicting the least recently used content when

needed, but it can provide approximate objects.
c) SIM-LRU [108] maintains the content in an ordered queue as LRU. It moves objects to the

front upon an approximate hit, and evicts objects from the back when needed.
d) 𝑞LRU-Δ𝐶 [127] is a variant of 𝑞LRU [29] that, upon an approximate hit, moves the object

to the front with a probability which is proportional to the service cost reduction the object has
guaranteed on the current request.

e) Duel [127], upon a request for object 𝑟 not in cache, 𝑟 is matched with an object𝑦 in the cache
in a tournament aimed at deciding if 𝑟 is a better candidate to be stored in the cache as compared
to 𝑦. The decision is made by comparing the cost savings 𝑟 and 𝑦 provide over a fixed interval of
time (𝑓 ). If the new object 𝑟 provides a larger cost saving, then 𝑟 replaces 𝑦 in the cache.
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Figure 3.3: The heatmap depicts the popularity distribution of objects in the grid. The darker regions
A and B contain the most popular content. The circles represent the final configuration produced
by the Grades policy (𝜂 = 0.64) under the trace Synthetic.

3.2.4.1 Synthetic Traces

We consider a setting similar to [127]. The catalog is made by the points of a 𝐿 × 𝐿 bi-dimensional
grid with 𝐿 = 313. The cache size ℎ = 313.2

For any two objects 𝑥 and 𝑦 on the grid we define the approximation cost to be proportional to
the norm-1 distance between the two points 𝑥 and 𝑦, in particular 𝐶𝑑 (𝑥,𝑦) = 1

10 | |𝑥 − 𝑦 | |1. In our
experiments, we observe that Grades converges to an expected cost that is slightly better than the
approximate optimal cost as computed in [127], suggesting that Grades converges very close to
optimal.

The traffic is generated under the Independent Reference Model [15]. There are two popular re-
gions 𝐴 and 𝐵 centered around coordinates (65, 65) and (220, 220), respectively; they are produced
by a mix of two Gaussian distributions. In particular, an object at (norm-1) distances 𝑑1 from the
center of 𝐴 and 𝑑2 from the center of 𝐵 is requested with probability

Pr(𝑑1, 𝑑2) ∝ 0.4 × 𝑒
−𝑑2

1
2×152

√
2𝜋 × 15

+ 0.6 × 𝑒
−𝑑2

2
2×252

√
2𝜋 × 25

.

The popularity distribution of the objects in the grid is depicted in the heat-map in Figure 3.3. Fig-
ure 3.1 corresponds to a rescaled version of the same process.

Figure 3.4 shows the performance of Grades without any graft and with different grafts (LRU+,
SIM-LRU, 𝑞LRU-Δ𝐶) for a quite large value of the grafting parameter (𝑝 = 10−2). Grades/X denotes
Grades grafted with policy X. We observe that Grades achieves the smallest cost, and by grafting

2As noted in [127], when object requests fall uniformly over the points of a 𝐿×𝐿 grid (with wrap-around conditions),
with ℎ = 𝐿 = 1 + 2𝑙 (𝑙 + 1), for some positive integer 𝑙 , an optimal cache configuration can be computed. The value
ℎ = 𝐿 = 313 results from the particular choice of 𝑙 = 12. For a non-homogeneous request process an approximate
optimal cost can be computed as well (see Appendix F in [127]).
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Figure 3.4: Expected cost C(·) incurred by different policies under the trace Synthetic. LRU+, SIM-
LRU, 𝑞LRU-Δ𝐶 (𝑞 = 10−2), Greedy, and Grades (𝜂 = 0.64, plain and grafted with 𝑝 = 10−1). Cache
size ℎ = 313.
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Figure 3.5: Effect of the grafting parameter 𝑝 on the final expected cost C(·). Grades/𝑞LRU-Δ𝐶
(𝑞 = 10−2) and Grades/SIM-LRU for different learning rates under the trace Synthetic. Cache size
ℎ = 313.

Grades with SIM-LRU we can make the initial transient faster. Figure 3.3 also shows the final cache
configuration reached by Grades: as expected, the density of the objects in the cache is higher
where the request density is higher.

The effect of the grafting parameter 𝑝 is shown in Figure 3.5 and depends on the specific grafted
policy. We see that Grades/𝑞LRU-Δ𝐶3 is relatively insensitive to the grafting up to 𝑝 = 0.05, but
for larger values of 𝑝 the cost increases, and approaches the cost of 𝑞LRU-Δ𝐶 alone (about 0.295 as
it can bee seen in Figure 3.4). This happens because, for large 𝑝 , more and more cache updates are
due to 𝑞LRU-Δ𝐶 , which, even upon an approximate hit, may introduce the requested object with
probability proportional to 𝑞. For Grades/SIM-LRU, the cost again increases as 𝑝 increases, but it is
always much smaller than the cost of SIM-LRU alone (about 0.32). The explanation is that SIM-LRU
never introduces new objects on approximate hits. Hence, as far as the current cache allocation
is providing approximate answers, the function Graft_Miss_Update in Algorithm 3.1 does not
modify the current cache allocation.

3Note that Grades grafted with 𝑝 = 𝑝′ to a 𝑞LRU-Δ𝐶 with 𝑞 = 𝑞′ is equivalent to Grades grafted with 𝑝 = 1 to a
𝑞LRU-Δ𝐶 with parameter 𝑞 = 𝑝′ × 𝑞′.
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(a)

(b) (c) (d)

Figure 3.6: Subfigure (a) shows the expected cost C(·) incurred by Grades/𝑞LRU-Δ𝐶 (𝜂 = 0.64
grafted with 𝑝 = 1 and 𝑞 = 10−3) for different initialization (uniform box, uniform grid, and request-
based depicted in (b), (c), and (d), respectively) under the trace Synthetic. Cache size is ℎ = 313. The
heatmap depicts the popularity distribution of objects in the grid.

In Figure 3.6, we study the effect of the initialization on the the performance of Grades. We
test three different initialization schemes: uniform box, uniform grid, and request-based depicted in
Figure 3.6 (b), (c), (d), respectively. We sample the initial set of objects uniformly at random without
replacement among those at the boundary (𝑥 ∈ {0, 312} or 𝑦 ∈ {0, 312}) and from the whole catalog
(313× 313 grid), respectively under the uniform box initialization and the uniform grid one. Instead,
we take the firstℎ distinct requested objects to obtain the request-based initialization. Note how these
three schemes lead to store initially in the cache progressively more popular objects. Figure 3.6 (a)
shows the three initializations provide different initial costs, with the configuration with the least
(resp. most) popular objects leading to the highest (resp. lowest) initial cost. The figure shows also
that, independently of the initial cache configuration, Grades is able to move to configurations with
smaller cost (similar to the one in Figure 3.3).

Until now, we have considered a stationary request scenario, where there is no evident advantage
from grafting a more reactive policy to Grades. In Figure 3.7 we consider a highly non-stationary
setting. At time 0, the cache is initialized as in Figure 3.3 , i.e., the cache configuration reached by
Grades after a large number of requests (a million) made from a mix of the two gaussian distri-
butions. Then, the request process changes abruptly and no more requests for objects in region 𝐴
are generated. The cache should reach a new configuration where all cached objects are located in
region 𝐵, achieving a lower cost, as now the same number of objects should cover a smaller area.
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Figure 3.7: Effect of grafting parameter 𝑝 on the expected cost C(·) in a dynamic setting for
Grades/𝑞LRU-Δ𝐶 (𝜂 = 0.64). The cache is initialized to a stationary configuration as in Figure 3.3.
Now, only requests corresponding to region B from the trace Synthetic are made. Cache sizeℎ = 313.

Figure 3.8: Expected cost C(·) incurred by the different policies under the trace Synthetic: 𝑞LRU-
Δ𝐶 (𝑞 = 10−3, 10−2), Duel , Greedy, and Grades (𝜂 = 1.28, 0.64 grafted with 𝑝 = 1 and 𝑞 = 10−3).
Cache size ℎ = 313.

Figure 3.7 shows that a higher value of 𝑝 enables faster migration of objects from region A to region
B in the cache.

Figure 3.8 shows the synergy between Grades and the grafted policy. 𝑞LRU-Δ𝐶 , Duel, and
Grades, all have parameters (𝑞, 𝜂, and 𝑓 ) that can be tuned to find an optimal trade off between
convergence speed and final cost. They can converge fast to configurations within a large neigh-
borhood of a critical point (for high 𝑞, high 𝜂, and low 𝑓 , respectively), or slowly to configurations
within a smaller neighborhood.

Experiments in [127], in a setting similar to ours, show that 𝑞LRU-Δ𝐶 achieves a worse cost-vs-
speed tradeoff than Duel. Figure 3.8 confirms that this is the case, but when 𝑞LRU-Δ𝐶 is grafted on
Grades, the resulting policy improves on top of Duel. In fact Grades/𝑞LRU-Δ𝐶 achieves a better
trade-off as it is able to converge to a cost comparable to Duel in a shorter time, or equivalently
to a smaller cost in roughly the same time. Note also that Duel’s expected cost at steady state is
noisier than Grades/𝑞LRU-Δ𝐶’s cost, showing the advantage of smoothly updating the state using
gradients.
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Figure 3.9: Expected cost C(·) incurred by the Grades/SIM-LRU under the trace Synthetic for dif-
ferent values of the approximation threshold 𝑐𝜃 . Cache size ℎ = 313, 𝑐 𝑓 = 1, 𝜂 = 0.64, 1.28 and
𝑝 = 0.001.

We now study the impact of the approximability threshold (𝑐𝜃 ) on the expected cost using the
Synthetic trace. We vary the value of 𝑐𝜃 from 0.5 to 1.4 in increments of 0.1. Figure 3.9 shows that, as
𝑐𝜃 increases, the expected cost first decreases and then increases. In fact, for 𝑐𝜃 ≪ 𝑐 𝑓 = 1, a larger 𝑐𝜃
increases the number of approximate hits and then avoids the need to pay the cost 𝑐 𝑓 to retrieve the
objects from the server. On the contrary, for 𝑐𝜃 ≫ 𝑐 𝑓 = 1, a larger 𝑐𝜃 is not beneficial, because misses
are finally less costly than approximate hits. Figure 3.9 suggests that the optimal configuration is
𝑐𝜃 ≈ 𝑐 𝑓 = 1 (in our experiments the server can always provide an exact hit). We observe that, while
this choice minimizes the cost to serve a request given the current cache configuration, the choice of
𝑐𝜃 also influences how the cache state evolves. This is because newer objects are only introduced
into the cache on misses. Therefore, the optimal value for 𝑐𝜃 could be, in principle, different.

3.2.4.2 360◦ Videos

We test our algorithms on 360◦ video traces. A 360◦ video is an immersive, spherical video [155,156].
The video is first projected on to a 2D plane to be encoded by classic 2D video encoders. The video is
divided into time segments, and each segment is further spatially divided into tiles. The VR headset
is optimized to fetch the required tiles based on the head position of the user. A system responsible
for the delivery of 360◦ videos can store the popular tiles in nearby caches [133].

We generated a sequence of tiles’ requests for 360◦ videos using the approach proposed in [157].
We took real traces from 8 videos watched by 48 users each, and then built a navigation graph for
each video, i.e., a Markov Chain that represents the spatial and temporal viewing correlations for
the video. The videos we considered have on average 207 segments, each with 25 tiles. From each
navigation graph we can generate an arbitrary number of possible views of the video. We generated
then a trace with 10,000 users as follows. At time 𝑡 = 0, each user selects one of the videos at random
and starts watching the video from a random segment of the video. The user then walks through the
navigation graph to view the complete video. Once the user reaches the last segment in the video, it
selects a new video uniformly at random (with replacement) and starts watching the selected video
from the first segment. The process is repeated till 10 million requests are generated. We assume
each tile can approximate at most 4 tiles (the adjacent ones), with a fixed dissimilarity cost 𝑐𝑑 = 0.1.
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Figure 3.10: Expected cost C(·) incurred by the different caching policies under the trace 360◦ videos.
Grades/𝑞LRU-Δ𝐶 (𝑞 = 0.01, 0.05) with 𝜂 = 1.0 and 𝑞LRU-Δ𝐶 (𝑞 = 0.01, 0.05). Cache size ℎ = 4000.

Figure 3.10 compares the performance of Grades/𝑞LRU-Δ𝐶 and 𝑞LRU-Δ𝐶 . Note that in this
setting, the representation space exhibits a very rough granularity, as the tiles of a segment cannot
be used to approximate those of another segment and each segment is decomposed in a 5 × 5 grid
of tiles. Nevertheless, Grades/𝑞LRU-Δ𝐶 shows significant improvement with respect to existing
similarity caching policies and approaches the cost of Greedy.

3.2.4.3 Machine Learning Traces

We study the performance of similarity caching under the following traces in high-dimensional
spaces.

Amazon trace. The paper [158] proposes a technique to embed the images of Amazon products in
a 100-dimensional space, where the Euclidean distance between two items captures the similarity of
the sets of users who purchased or viewed both items. We have restricted ourselves to the products
in the category “Baby” and we have assumed that a request for a given item was issued at time 𝑡 , if
a user left a review for the considered item at the same time.

CiteULike trace. The CiteULike dataset [159] contains a bipartite network of 22,715 users and
153,277 tags, where each edge represents a timestamped tag creation. The embeddings in a 100-
dimensional space are obtained using the collaborative metric learning model proposed in [160]. As
for the Amazon trace, the Euclidean distance within this space encodes the similarity between users
and items, where the items here are the tags. We generated the trace considering that an object (tag)
is requested when one user adds the corresponding tag.

Movielens trace. We have trained the RecVAE collaborative filtering model from [161] on the
Movielens dataset [162] to embed users’ rating histories in a 𝑑 = 200 dimensional space. Users with
similar rating histories are mapped to vectors close according to the Euclidean distance. We have
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Figure 3.11: The empirical distribution of pairwise distances under the trace Amazon. The distribu-
tion is computed on a random subset of the catalog containing 1000 products.

generated the trace by embedding every batch of 38 ratings from the same user (38 is the median
number of ratings across all users) and assigning it the timestamp of the latest rating in the batch.

In all previous traces similarity is captured by the Euclidean distance. We then assume the dis-
similarity cost to be proportional to the squared Euclidean distance, i.e., 𝑐𝑑 (𝑟,𝑦) = 𝑏∥𝑟 −𝑦∥22. As the
absolute value of such distance has not a clear meaning, we select the constant 𝑏 so that on average
an object can approximate a given fraction 𝛼 of the catalogue. We say that 𝑟 can approximate 𝑦 if
𝑐𝑑 (𝑟,𝑦) ≤ 𝑐 𝑓 = 1, and we call 𝛼 the approximability value. We set the cache size to ℎ = 100.

The time-average cost of different caching policies is shown in Figure 3.12 for the Amazon trace
and 10% approximability. Although an object is able to approximate only 10% of the catalog on
average, similarity caching policies significantly reduce the cost in comparison to an exact caching
policy like LRU, with 𝑞LRU-Δ𝐶 and Grades/𝑞LRU-Δ𝐶 achieving the lowest service cost.

The empirical distribution of pairwise distances in Amazon trace is shown in Figure 3.11. The
figure shows that objects are quite scattered in this high-dimensional space with mean distance of
around 85,000 between any two objects. The objects in the virtual cache are then in general far from
any object in the catalog and we could expect gradient methods to perform poorly. Nevertheless,
Figure 3.12 shows that Grades/𝑞LRU-Δ𝐶 outperforms existing similarity caching policies. Similar
results hold for the other two traces.

Finally, Figure 3.13 reports the costs obtained for the three traces under different values of ap-
proximability. As expected, the service cost reduces as the approximability becomes larger. In the
CiteULike trace, the service cost flattens rapidly (it is almost constant after 10% approximability): a
close look at the dataset shows that popular objects are clustered in a small region of space. Once the
approximability value guarantees that these objects can approximate each other, the marginal im-
provement from further increasing approximability becomes negligible. The other two traces show
instead a similar behaviour, with the service cost that is still decreasing after 20% approximability.
We also observe that the relative improvement of Grades/𝑞LRU-Δ𝐶 in comparison to 𝑞LRU-Δ𝐶
becomes larger as the approximability increases.

3.2.5 Conclusion
In this chapter, we propose Grades, a new caching policy for similarity caching systems that takes
advantage from the fact that objects and requests can many times be embedded in a continuous
metric space. Grades outperforms traditional caching policies in stationary scenarios, converging
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Figure 3.12: The time averaged cost incurred by different policies under the trace Amazon: LRU,
LRU+, SIM-LRU, 𝑞LRU-Δ𝐶 (𝑞 = 10−3) and Grades/𝑞LRU-Δ𝐶 (𝜂 = 6.9× 102, grafted with p = 1). The
level of approximability is 10%. Cache size ℎ = 100.

(a) Amazon (b) CiteULike (c) MovieLens

Figure 3.13: The average cost incurred by 𝑞LRU-Δ𝐶 (𝑞 = 10−3) and Grades/𝑞LRU-Δ𝐶 (grafted with
𝑝 = 1) under the machine learning traces. The learning rates picked for different approximability
levels are: (a) (𝜂 = 5.4×102, 6.3×102, 6.9×102, 7.7×102), (b) (𝜂 = 2.4×10−2, 2.6×10−2, 3.0×10−2, 3.2×
10−2) and (c) (𝜂 = 1.6 × 10−1, 2.7 × 10−1, 3.2 × 10−1, 3.8 × 10−1). Cache size ℎ = 100.

to provably optimal configurations under mild assumptions. Moreover, we show that Grades can be
grafted to any traditional caching policy, obtaining flexible schemes that achieve arbitrary trade-offs
between convergence speed and average costs at steady state. The performance of Grades and its
extensions are evaluated in several synthetic and realistic scenarios.
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3.3 Finite Catalog Similarity Caching

3.3.1 Related Work
Consider a remote server that stores a catalog of objects N ≜ {1, 2, . . . , 𝑁 }. A similarity search
request 𝑟 aims at finding the 𝑘 objects 𝑜1, 𝑜2, . . . , 𝑜𝑘 ∈ N that are most similar to 𝑟 given an
application-specific definition of similarity. To this purpose, similarity search systems rely on a
function 𝑐𝑑 (𝑟, 𝑜) ∈ R≥0, that quantifies the dissimilarity of a request 𝑟 and an object 𝑜 . We call such
function the dissimilarity cost; as was done in Section 3.2.2.

The server replies to each request 𝑟 with the 𝑘 most similar objects in the catalog N . As the
dissimilarity is captured by the distance in the specific metric space, these objects are also the 𝑘
closest objects (neighbors) in the catalog to the request 𝑟 (𝑘NN(𝑟,N)).4 The mapping translates the
similarity search problem in a 𝑘NN problem [163, 164]. We can also associate a dissimilarity cost to
the reply provided by server (e.g., by summing the dissimilarity costs for all objects in 𝑘NN(𝑟,N)).
This cost depends on the catalogN and we do not have control on it. In addition, there is a fetching
cost to retrieve those objects. The fetching cost captures, for instance, the extra load experienced by
the server or the network to provide the objects to the user, the delay experienced by the user or a
mixture of those costs.

A common assumption in the existing literature is that the cache can only store ℎ objects and
the index needed to manage them has essentially negligible size. We also maintain this assumption
that is justified in practice when objects have a size of a few tens of kilobytes (see the quantitative
examples in Section 3.3.2).
Caching policies. The performance of the cache depends heavily onwhich objects the cache stores.
Several papers (e.g., [110, 165]) consider the offline object placement problem: a set of objects is se-
lected on the basis of historical information about object popularity and prefetched in the cache.
But object popularity can be difficult to estimate and can change over time, specially at the level
of small geographical areas (as in the case of areas served by an edge server) [166]. Other pa-
pers [118–122, 167] present more a high-level view of the different components of the application
system, without specific contributions in terms of cache management policies (e.g., they apply mi-
nor changes to exact caching policies like LRU or LFU). Some recent papers [127, 168, 169] propose
online caching policies that try to minimize the total cost of the system (the sum of the dissimilarity
cost and the fetching cost), also in a networked context [168, 170], but their schemes apply only to
the case 𝑘 = 1, which is of limited practical interest.

To the best of our knowledge, the only dynamic caching policies conceived to manage the re-
trieval of𝑘 > 1 similar objects are SIM-LRU, CLS-LRU, and RND-LRU proposed in [108] andQCache
proposed in [107]. Next, we describe in detail these policies to highlight AÇAI’s differences and nov-
elty.

All these policies maintain an ordered list of key-value pairs where the key is a previous request
and the value is the set of 𝑘′ closest objects to the request in the catalog (in general 𝑘′ ≥ 𝑘). The
cache, whose size is ℎ, maintains a set of ℎ/𝑘′ past requests. This approach allows to decompose
the potentially expensive search for close objects in the cache (see Section 3.3.2) in two separate

4More precisely, these are the 𝑘 objects whose embeddings are closer to the embedding of 𝑟 . From now onwe identify
objects and their embeddings.
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less expensive searches on smaller sets. Upon the arrival of a request 𝑟 , the cache identifies the 𝑙
closest requests to 𝑟 among the ℎ/𝑘′ in the cache. Then, it merges their corresponding values and
looks for the 𝑘 closest objects to 𝑟 in this set including at most 𝑙 × 𝑘′ objects. If this answer is
evaluated to be good enough, then an approximate hit occurs and the answer is provided to the user,
otherwise the request 𝑟 is forwarded to the server that needs to provide all 𝑘 closest objects. The
cache state is updated following a LRU-like approach: upon an approximate hit, all key-value pairs
that contributed to the answer are moved to the front of the list; upon a miss, the new key-value pair
provided by the server is stored at the front of the list and the pair at the end of the list is evicted.

This operation is common to SIM-LRU, CLS-LRU, RND-LRU, and QCache. They differ in the
choice of the parameters 𝑘′ and 𝑙 and in the way to decide between an approximate hit and a miss.
As they assume no knowledge about the catalog at the server, they cannot compare the quality (i.e.,
the dissimilarity cost) of the answer the cache can provide with the quality of the answer the server
can provide. They need then to rely on heuristics. We emphasize that the parameters 𝑘′ and 𝑙 are
only required by the LRU-like policies and do not play a role in AÇAI’s workflow.

SIM-LRU (described in Section 3.2.1) considers 𝑘′ ≥ 𝑘 and 𝑙 = 1 and has the property that no
two keys in the cache have a dissimilarity cost lower than 𝑐𝜃 ∈ R≥0 (a given threshold), but the
corresponding hyperspheres may still intersect. CLS-LRU [108] is a variant of SIM-LRU, that can
update the stored keys (the centers of the hyperspheres) and push away intersecting hyperspheres
to cover the largest possible area of the request space. To this purpose, CLS-LRU maintains the
history of requests served at each hypersphere and, upon an approximate hit, moves the center
to the object that minimizes the distance to every object within the hypersphere’s history. When
two hyperspheres overlap, this mechanism drives their centers apart, which in turn reduces the
overlapping region. Finally, QCache [107] considers 𝑘′ = 𝑘 and 𝑙 > 1. The policy decides if the 𝑘
objects selected from the cache are an approximate hit if (1) at least two of them would have been
provided also by the server—a sufficient condition can be obtained from geometric considerations—
or (2) the distribution of distances of the 𝑘 objects from the request looks similar to the distribution
of objects around the corresponding request for other stored key-value pairs.

These policies share potential inefficiencies: (1) the sets of closest objects to previous queries are
not necessarily disjoint (but CLS-LRU tries to reduce their overlap) and then the cache may store
less than ℎ distinct objects; (2) the two-level search may miss some objects in the cache that are
close to 𝑟 , but are indexed by requests that are not among the 𝑙 closest requests to 𝑟 ; (3) the policy
takes into account the dissimilarity costs at the caches but not at the server; (4) objects are served in
bulk, all from the cache or all from the server, without the flexibility of a per-object choice. As we
are going to see, AÇAI design prevents such inefficiencies by exploiting new advances in efficient
approximate 𝑘NN search algorithms, which allows us to abandon the key-value pair indexing and
to estimate the dissimilarity costs at the server. Also AÇAI departs from the LRU-like cache updates,
considering gradient update schemes inspired by online learning algorithms [171].

3.3.2 Other Relevant Background
Indexes for approximate 𝑘NN search. Indexes are used to efficiently search objects in a large
catalog. In case of 𝑘NN, one of the approaches is to use tree-based data structures. Unfortunately, in
high dimensional spaces, e.g., R𝑑 with 𝑑 > 10, the computational cost of such search is comparable
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to a full scan of the collection [126]. Approximate Nearest Neighbor search techniques trade accuracy
for speed and provide 𝑘 points close to the query, but not necessarily the closest, sometimes with a
guaranteed bounded error. Prominent examples are the solutions based on locality sensitive hashing
[140], product quantization [141, 142], and graphs [144]. Despite being approximate, these indexes
are in practice very accurate, as showed over different benchmarks in [154].

As we are going to describe, AÇAI employs two approximate indexes (both stored at the edge
server): one for the content stored in the cache, and one for the whole catalog N stored in the re-
mote server. For the former, since cache content varies over time, we rely on a graph-based solution,
such as HNSW [144], that supports dynamic (re-)indexing with no speed loss. On various bench-
marks [154], HNSW results the fastest index, and it is able to answer a 100NN query over a dataset
with 1 million objects in a 128-dimensional space in less than 0.5 ms with a recall greater than 97%.
As for the memory footprint, a typical configuration of the HNSW index requires 𝑂 (𝑑) bytes per
objects, where 𝑑 is the number of dimensions. For instance, in case of 𝑑 = 128 dimensional vec-
tors, the memory required to index 10 million objects is approximately 5 GB. As the server catalog
changes less frequently (e.g., contextual advertising applications [108], and image retrieval appli-
cations [107]), AÇAI can index it using approaches with a more compact object representation like
FAISS [141]. FAISS is slightly slower than HNSW and does not support fast re-indexing if the catalog
changes, but it can manage a much larger set of objects. With a dataset of 1 billion objects, FAISS
provides an answer in less than 0.7 ms per query, using a GPU [141]. Practically, the global catalog
index can be fully reconstructed whenever a given predefined percentage of the catalog changes.
This operation can be done in a parallel procedure to AÇAI without hindering its normal work-
flow. When a new global catalog index is reconstructed, the state of AÇAI is modified accordingly
by redistributing the total mass on the contents that disappeared on the new introduced contents.
Moreover, the states corresponding to the disappearing (resp., appearing) items are removed (resp.,
added). As for the memory footprint, for a typical configuration (IVFPQ), FAISS is able to represent
an object with 30 bytes (independently from 𝑑): only 3 GB for a dataset with 100 million objects!

Summing up our numerical example, if each object has size 20 KB, an edge server with AÇAI
storing locally 10million objects from a catalogwith 100million objects, needs 200 GB for the objects
and only 8 GB for the two indexes. The larger the objects, the smaller the indexes’ footprint: for
example, when the server has a few Terabytes of disk space to store large multimedia objects, the
indexes’ size can be ignored.
Gradient descent approaches. Online caching policies based on gradient methods have been stud-
ied in the stochastic request setting for exact caching, with provable performance guarantees [21,38].
More recently, the authors of [169] have proposed a gradient method to refine the allocation of ob-
jects stored by traditional similarity caching policies like SIM-LRU. Similarly, the reference [168]
considers a heuristic based on the gradient descent/ascent algorithm to allocate objects in a net-
work of similarity caches. In both papers, the system provides a single similar content (𝑘 = 1). A
closely related recent work [125] considers the problem of allocating different inference models that
can satisfy users’ queries at different quality levels. The authors propose a policy based on mirror
descent, and provide guarantees under a general request process. But, their policy does not scale to
a large catalog size.

We deviate from these works by considering 𝑘 > 1, large catalog size, and the more general
family of online mirror ascent algorithms (of which the usual gradient ascent method is a particular
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Figure 3.14: Subfigure (a) illustrates AÇAI’s state adaptation. A time slot is initiatedwhen a request 𝑟𝑡
is received. A virtual (fictitious) gain𝐺 (𝑟𝑡 ,𝑦𝑦𝑦𝑡 ) and a physical gain𝐺 (𝑟𝑡 ,𝑥𝑥𝑥𝑡 ) are incurred. The virtual
cache adapts its fractional state by callingOnlineMirror Ascend to obtain a new state𝑦𝑦𝑦𝑡+1 ∈ conv(X)
employing the subgradient of the virtual gain 𝜕𝑦𝑦𝑦𝐺 (𝑟𝑡 ,𝑦𝑦𝑦𝑡 ), and the new state is randomly rounded to
a valid cache state 𝑥𝑥𝑥𝑡+1 ∈ X. Subfigure (b) depicts how AÇAI employs the two indexes (local catalog
index and global catalog index). An approximate 𝑘NN queries are performed on each index, and the
contents with the least overall costs are selected.

instance). Also our policy provides strong performance guarantees under a general request process,
where requests can even be selected by an adversary. Our analysis relies on results from online
convex optimization [20] and is similar in spirit to what done for exact caching using the classic
gradient method in [171] and mirror descent in [139]. Two recent papers [13, 50] pursued this line
of work taking into account update costs for a single exact cache.

3.3.3 System Description and AÇAI’s Design
AÇAI’s design is summarized in Figure 3.14, and the notation used across this section is provided in
Table 3.3.

3.3.3.1 Cost Assumptions

Many of the similarity caching policies proposed in the literature (including SIM-LRU, CLS-LRU,
RND-LRU, and QCache) have not been designed with a clear quantitative objective, but with the
qualitative goal of significantly reducing the fetching cost without increasing too much the dissim-
ilarity cost. Because of such vagueness, the corresponding papers do not make clear assumptions
about the dissimilarity costs and the fetching costs. On the contrary, AÇAI has been designed to
minimize the total cost of the similarity search system and we make explicit the corresponding hy-
potheses.

Our main assumption is that all costs are additive. The function 𝑐𝑑 (𝑟, 𝑜) introduced in Sec-
tion 3.3.1 quantifies the dissimilarity of the object 𝑜 and the request 𝑟 . LetA be the set of objects in
the answer to request 𝑟 : it is natural to consider as dissimilarity cost of the answer

∑
𝑜∈A 𝑐𝑑 (𝑟, 𝑜).
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Notational Conventions 𝑥𝑥𝑥 / X Cache state / Set of valid cache states
1 (𝜒 ) Indicator function set to 1 when condition 𝜒 is true 𝑡 /𝑇 Time slot / Time horizon
[𝑛] Set of integers {1, 2, . . . , 𝑛} 𝐶 (𝑟,𝑥𝑥𝑥 ) Total cost to serve request 𝑟 under 𝑥𝑥𝑥
conv(𝑆 ) Convex hull of a set 𝑆 𝐺 (𝑟,𝑥𝑥𝑥 ) Total gain to serve request 𝑟 under 𝑥𝑥𝑥

System Model CUC,𝑇 Systems’s update cost over𝑇 requests
N Catalog of 𝑁 objects 𝐺𝑇 (𝑥𝑥𝑥 ) Time-averaged caching gain
U Augmented catalog of 2𝑁 objects AÇAI
𝑥𝑖 Set to 1 when 𝑖 ∈ N is cached Φ Mirror map
ℎ Cache capacity D Domain of the mirror map
𝑟 / R Request / Request set 𝑦𝑦𝑦 Fractional cache state
𝑐 𝑓 Retrieval cost 𝜂 Learning rate
𝑐𝑑 (𝑟, 𝑜 ) Dissimilarity cost of serving object 𝑜 to request 𝑟 𝑔𝑔𝑔𝑡 Subgradient of𝐺 (𝑟𝑡 , 𝑦𝑦𝑦) at point 𝑦𝑦𝑦𝑡
𝑐 (𝑟, 𝑜 ) Overall cost of serving object 𝑜 to request 𝑟

∏Φ
𝑆
( · ) Bregman projection onto 𝑆

𝜋𝑟 𝜋𝑟
𝑖
gives the 𝑖-th closest object to 𝑟 𝑀 Freezing period

𝛼𝑟
𝑖

Cost difference between the (𝑖 + 1)-th smallest cost and the 𝑖-th smallest
cost of serving request 𝑟

𝑐𝑘
𝑑

Upper bound on the dissimilarity cost of the 𝑘-th
closest object

𝐾𝑟 The order of the largest possible cost when 𝑟 is requested. 𝜓 Static optimum discount factor
𝑘NN(𝑟, 𝑆 ) Set of 𝑘 closest objects to 𝑟 in 𝑆 ⊂ N according to 𝑐 (𝑟, · )

Table 3.3: Notation Summary for Subsection 3.2.3.3

In addition, if fetching a single object from the server incurs a cost 𝑐 𝑓 ∈ R>0, the fetching cost
to retrieve 𝑚 objects is 𝑚 × 𝑐 𝑓 . This is an obvious choice when 𝑐 𝑓 captures server or network
cost. When 𝑐 𝑓 captures the delay experienced by the user, then summing the costs is equivalent to
consider the round trip time negligible in comparison to the transmission time, which is justified
for large multimedia objects. It is easy to modify AÇAI to consider the alternative case when the
fetching cost does not depend on how many objects are retrieved. Finally, as common in other
works [127, 169], we assume that both the dissimilarity cost and the fetching cost can be directly
compared (e.g., they can both be converted in dollars). Under these assumptions, when, for example,
the 𝑘 nearest neighbors in N to the query 𝑟 (𝑘NN(𝑟,N)) are retrieved from the remote server, the
total cost experienced by the system is

∑
𝑜∈𝑘NN(𝑟,N) 𝑐𝑑 (𝑟, 𝑜) + 𝑘𝑐 𝑓 .

3.3.3.2 Cache Indexes

AÇAI departs from the key-value indexes of most the similarity caching policies. As discussed in
Section 3.3.1, such an approach was essentially motivated by the need to simplify 𝑘NN searches by
performing two searches on smaller datasets (the set of keys first, and then the union of the values
for 𝑙 keys), and may lead to potential inefficiencies including sub-utilization of the available caching
space.

The two-level search implemented by existing similarity caching policies can be seen as a naïve
way to implement an approximate 𝑘NN search on the set of objects stored locally (the local catalog
C). Thanks to the recent advances in approximate 𝑘NN searches (Section 3.3.2), we have now better
approaches to search through large catalogs with limited memory and computation requirements.
We assume then that the cache maintains two indexes supporting 𝑘NN searches: one for the local
catalog (the objects stored locally) and one for the remote catalog (the objects stored at the server).
A discussion about which approximate index is more appropriate for each catalog is in Section 3.3.2.

The local catalog index allows AÇAI to (1) fully exploit the available space (the cache stores at
any timeℎ objects and can perform a 𝑘NN search on all of them), (2) potentially find closer objects in
comparison to the non-optimized key-value search. Instead, the remote catalog index allows AÇAI
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to evaluate what objects the server would provide as answer to the request, and then to correctly
evaluate which objects should be served locally and which one should be served from the server, as
we are going to describe next.

3.3.3.3 Request Serving

Differently from existing policies, AÇAI has the possibility to compose the answer using both local
objects and remote ones. Upon a request 𝑟 , AÇAI uses the two indexes to find the closest objects from
the local catalog C and from the remote catalog N . We denote the set of objects identified by these
indexes as 𝑘NN(𝑟, C) and 𝑘NN(𝑟,N) respectively. AÇAI composes the answerA by combining the
objects with the smallest costs in the two sets. For an object 𝑜 stored locally (𝑜 ∈ C), the system only
pays 𝑐𝑑 (𝑟, 𝑜); for an object 𝑜 fetched from the remote server (𝑜 ∈ N \C), the system pays 𝑐𝑑 (𝑟, 𝑜) +𝑐 𝑓 .
The total cost experienced is

𝐶 (𝑟,A) ≜
∑︁

𝑜∈A∩𝑘NN(𝑟,C)
𝑐𝑑 (𝑟, 𝑜) +

∑︁
𝑜∈A\𝑘NN(𝑟,C)

(
𝑐𝑑 (𝑟, 𝑜) + 𝑐 𝑓

)
. (3.5)

The answer A is determined by selecting 𝑘 objects that minimize the total cost, that is

A = arg min
B⊂(𝑘NN(𝑟,C)∪𝑘NN(𝑟,N))

|B|=𝑘

𝐶 (𝑟,B). (3.6)

3.3.3.4 Cache State and Service Cost/Gain

In order to succinctly present how AÇAI updates the local catalog and its theoretical guarantee, it
is convenient to express the cost in (3.5) as a function of the current cache state and replace the set
notation with a vectorial one.

First, we define the augmented catalogU ≜ N ∪ {𝑁 + 1, 𝑁 + 2, . . . , 2𝑁 } and define the new costs

𝑐 (𝑟, 𝑖) =
{
𝑐𝑑 (𝑟, 𝑖), if 𝑖 ∈ N ,
𝑐𝑑 (𝑟, 𝑖 − 𝑁 ) + 𝑐 𝑓 , if 𝑖 ∈ U \ N .

(3.7)

Essentially, 𝑖 and 𝑖 + 𝑁 (for 𝑖 ∈ {1, . . . , 𝑁 }) correspond to the same object, with 𝑖 capturing the cost
when the object is stored at the cache and 𝑖 + 𝑁 capturing the cost when it is stored at the server.
From now on, when we talk about the closest objects to a request, we are considering 𝑐 (·, ·) as the
distance.

Note that AÇAI can easily be modified to account for heterogeneous retrieval costs by modifying
Eq. (3.7) and replacing 𝑐 𝑓 by an object dependent retrieval cost 𝑐 𝑓 ,𝑖 for every object 𝑖 ∈ N . Moreover,
we assume that the fetching cost and dissimilarity cost are added together linearly in the objective,
however our model can capture the scenario where the cost is not necessarily additive in 𝑐𝑑 and 𝑐 𝑓
by a redefinition of the second line in Eq. (3.7). In particular, we can observe that the algorithm only
requires the existence of a function 𝑐 (𝑟, 𝑖) and the particular form of this function can be arbitrary.
To streamline the presentation we considered this simplified model and the theoretical guarantees
will also hold under such modifications.
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It is also convenient to represent the state of the cache (the set of objects stored locally) as a
vector 𝑥𝑥𝑥 ∈ {0, 1}2𝑁 , where, for 𝑖 ∈ N , 𝑥𝑖 = 1 (resp., 𝑥𝑖 = 0), if 𝑖 is stored (resp., is not stored) in the
cache, and we set 𝑥𝑖+𝑁 = 1 − 𝑥𝑖 .5 The set of valid cache configurations is given by:

X ≜
{
𝑥𝑥𝑥 ∈ {0, 1}2𝑁 :

∑︁
𝑖∈N

𝑥𝑖 = ℎ, 𝑥 𝑗+𝑁 = 1 − 𝑥 𝑗 ,∀𝑗 ∈ N
}
. (3.8)

For every request 𝑟 ∈ R we define the sequence 𝜋𝑟 as the permutation of the elements of U,
where 𝜋𝑟𝑖 gives the 𝑖-th closest object to 𝑟 inU according to the costs 𝑐 (𝑟, 𝑜),∀𝑜 ∈ U. The answerA
provided by AÇAI (Eq. (3.6)) coincides with the first 𝑘 elements of 𝜋𝑟 for which the corresponding
index in 𝑥𝑥𝑥 is equal to 1. The total cost to serve 𝑟 can then be expressed directly as a function of the
cache state 𝑥𝑥𝑥 :

𝐶 (𝑟,𝑥𝑥𝑥) =
2𝑁∑︁
𝑖=1

𝑐 (𝑟, 𝜋𝑟𝑖 )𝑥𝜋𝑟𝑖 1
(
𝑖−1∑︁
𝑗=1

𝑥𝜋𝑟
𝑗
< 𝑘

)
,∀𝑥𝑥𝑥 ∈ X. (3.9)

where 1 (𝜒) = 1 when the condition 𝜒 is true, and 1 (𝜒) = 0 otherwise.
Instead of working with the cost 𝐶 (𝑟,𝑥𝑥𝑥), we can equivalently consider the caching gain defined

as the cost reduction due to the presence of the cache (as in [21, 63, 172]):

𝐺 (𝑟,𝑥𝑥𝑥) ≜ 𝐶 (𝑟, (0, 0, . . . , 0︸     ︷︷     ︸
𝑁

, 1, 1, . . . , 1︸     ︷︷     ︸
𝑁

)) −𝐶 (𝑟,𝑥𝑥𝑥), (3.10)

where the first term corresponds to the cost when the cache is empty (and then requests are entirely
satisfied by the server). The theoretical guarantees of AÇAI are simpler to express in terms of the
caching gain (Section 3.3.3.8). Observe that the caching gain is zero for any cache state when the
retrieval cost 𝑐 𝑓 = 0, and this corresponds to the setting where the remote server and the cache are
co-located and this scenario overrides the need of a cache.

The caching gain has the following compact expression (Appendix 14.3):

𝐺 (𝑟,𝑥𝑥𝑥) =
𝐾𝑟−1∑︁
𝑖=1

𝛼𝑟𝑖 min
{
𝑘 − 𝜎𝑟𝑖 ,

𝑖∑︁
𝑗=1

𝑥𝜋𝑟
𝑗
− 𝜎𝑟𝑖

}
, (3.11)

where

𝜎𝑟𝑖 ≜
𝑖∑︁
𝑗=1
1

(
𝜋𝑟𝑗 ∈ U \ N

)
, ∀(𝑖, 𝑟 ) ∈ U × R, (3.12)

𝐾𝑟 is the value of the minimum index 𝑖 ∈ U such that 𝜎𝑟𝑖 = 𝑘 , and 𝛼𝑟𝑖 ≜ 𝑐 (𝑟, 𝜋𝑟𝑖+1) − 𝑐 (𝑟, 𝜋𝑟𝑖 ) ≥ 0.
Let conv(X) denote the convex hull of the set of valid cache configurations X. We observe that

𝐺 (𝑟,𝑦𝑦𝑦) is a concave function of variable 𝑦𝑦𝑦 ∈ conv(X). Indeed, from Eq. (3.11), 𝐺 (𝑟,𝑦𝑦𝑦) is a linear
combination, with positive coefficients, of concave functions (the minimum of affine functions in𝑦𝑦𝑦).

5The vector 𝑥𝑥𝑥 has clearly redundant components, but such redundancy leads to more compact expressions in what
follows.
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Algorithm 3.2 Online Mirror Ascent (OMA)
Input: 𝜂 ∈ R+, RoundingScheme

1: procedure OnlineMirrorAscent
2: 𝑦𝑦𝑦1 ← arg min

𝑦𝑦𝑦∈conv(X)∩D
Φ(𝑦𝑦𝑦);𝑥𝑥𝑥1 ← DepRound(𝑦𝑦𝑦1)

3: for 𝑡 ← 1, 2, . . . ,𝑇 do⊲ Incur a gain𝐺 (𝑟𝑡 ,𝑦𝑦𝑦𝑡 ), and compute a subgradient𝑔𝑔𝑔𝑡 of𝐺 (𝑟𝑡 ,𝑦𝑦𝑦) at point𝑦𝑦𝑦𝑡 (Appendix 18)
4: 𝑦𝑦𝑦𝑡 ← ∇Φ(𝑦𝑦𝑦𝑡 ) ⊲ Map primal point to dual point
5: 𝑧𝑧𝑧𝑡+1 ← 𝑦𝑦𝑦𝑡 + 𝜂𝑔𝑔𝑔𝑡 ⊲ Take gradient step in the dual
6: 𝑧𝑧𝑧𝑡+1 ← (∇Φ)−1 (𝑧𝑧𝑧𝑡+1) ⊲ Map dual point to a primal point
7: 𝑦𝑦𝑦𝑡+1 ←

∏Φ
conv(X)∩D (𝑧𝑧𝑧𝑡+1) ⊲ Proj. new point onto feasible region

⊲ Select a rounding scheme
8: if RoundingScheme = DepRound then
9: if 𝑀 | 𝑡 then ⊲ Round the fractional state every𝑀 requests
10: 𝑥𝑥𝑥𝑡+1 ← DepRound(𝑦𝑦𝑦𝑡+1)
11: end if
12: else if RoundingScheme = CoupledRounding then
13: 𝑥𝑥𝑥𝑡+1 ← CoupledRounding(𝑥𝑥𝑥𝑡 ,𝑦𝑦𝑦𝑡 ,𝑦𝑦𝑦𝑡+1)
14: end if
15: end for
16: end procedure

3.3.3.5 Cache Updates

We denote by 𝑟𝑡 ∈ R the 𝑡-th request. The cache is allowed to change its state 𝑥𝑥𝑥𝑡 ∈ X to 𝑥𝑥𝑥𝑡+1 ∈ X
in a reactive manner, after receiving the request 𝑟𝑡 and incurring the gain 𝐺 (𝑟𝑡 ,𝑥𝑥𝑥𝑡 ). AÇAI updates
its state 𝑥𝑥𝑥𝑡 with the goal of greedily maximizing the gain. The update of the state 𝑥𝑥𝑥𝑡 is driven from
a continuous fractional state𝑦𝑦𝑦𝑡 ∈ conv(X), where 𝑦𝑡,𝑖 can be interpreted as the probability to store
object 𝑖 in the cache. At each request 𝑟𝑡 , AÇAI increases the components of𝑦𝑦𝑦𝑡 corresponding to the
objects that are used to answer to 𝑟𝑡 , and decreases the other components. This could be achieved
by a classic gradient method, e.g.,𝑦𝑦𝑦𝑡+1 = 𝑦𝑦𝑦𝑡 +𝜂g𝑡 , where g𝑡 is a subgradient of𝐺 (𝑟𝑡 ,𝑦𝑦𝑦𝑡 ) and 𝜂 ∈ R+ is
the learning rate (or stepsize), but in AÇAI we consider a more general online mirror ascent update
OMA [53, Ch. 4] that is described in Algorithm 3.2.6 OMA is parameterized by the function Φ( · ),
that is called the mirror map (see Section 2.2.3.2). If the mirror map is the squared Euclidean norm,
OMA coincides with the usual gradient ascent method, but other mirror maps can be selected. In
particular, our experiments in Section 3.3.4 show that the negative entropymapΦ(𝑦𝑦𝑦) = ∑

𝑖∈N 𝑦𝑖 log𝑦𝑖
with domain D = R𝑁>0 achieves better performance.

3.3.3.6 Rounding the Cache Auxiliary State

At every time slot 𝑡 ∈ [𝑡], AÇAI can use the randomized rounding scheme DepRound [173] to gen-
erate a cache allocation 𝑥𝑥𝑥𝑡+1 ∈ X from𝑦𝑦𝑦𝑡+1 ∈ conv(X), while still satisfying the capacity constraint
at any time slot 𝑡 . The cache can fetch from the server the objects that are in 𝑥𝑥𝑥𝑡+1 but not in 𝑥𝑥𝑥𝑡 .

As cache movements/updates introduce extra costs to the network operator, DepRound could
potentially cause extra update costs that grow linearly in time. To mitigate incurring large update

6Properly speaking OMA, only refers to the update of𝑦𝑦𝑦𝑡 and does not include the randomized rounding schemes in
lines 8–14.
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costs, we may avoid updating the cache state at every time slot 𝑡 ∈ [𝑡] by freezing the cache physical
state for 𝑀 ∈ [𝑡] time steps. In particular, we assume the update cost of the system to be propor-
tional to the number of fetched files, which can be upper bounded by the 𝑙1 norm of the state update:∑
𝑖∈N max{0, 𝑥𝑡+1,𝑖 − 𝑥𝑡,𝑖} ≤ ∥𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥𝑡 ∥1. Hence, if we denote by CUC,𝑇 the total update cost of the

system over the time horizon 𝑇 , then we have

CUC,𝑇 = O
(
𝑇−1∑︁
𝑡=1
∥𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥𝑡 ∥1

)
. (3.13)

When the cache state is refreshed after a call to the rounding schemeDepRound, the incurred update
cost is in the order of O (2ℎ), and CUC,𝑇

𝑇
= O

(
2ℎ
𝑀

)
. Moreover, when𝑀 = Θ

(
𝑇 𝛽

)
for 𝛽 ∈ (0, 1) it holds

CUC,𝑇
𝑇

= O
(
𝑇 −𝛽

)
, and for any 𝜖 > 0 and 𝑇 large enough

CUC,𝑇
𝑇
≤ 𝜖. (3.14)

The average update cost of the system is then negligible for large𝑇 . The parameter𝑀 reduces cache
updates at the expense of reducing the cache reactivity (see Theorem 3.3.3).

In some applications, it is possible to slightly violate the capacity constraint with small devia-
tions, as long as this is satisfied on average [151, 174, 175]. For example, there could be a monetary
value associated to the storage reserved by the cache, and a total budget available over a target time
horizon 𝑇 . In this setting, the cache may violate momentarily the capacity constraint, as far as the
total payment does not exceed the budget.

CoupledRounding (Algorithm 3.3) is a rounding approach which works under this relaxed ca-
pacity constraint and does not require state freezing with the parameter 𝑀 . At time slot 𝑡 ∈ [𝑡],
the cache decides which files to cache through 𝑁 coin tosses, where the file 𝑖 ∈ N is cached with
probability 𝑦𝑡,𝑖 , and the random state obtained is 𝑥𝑥𝑥𝑡 . By definition, the expected value of the integral
state is E[𝑥𝑥𝑥𝑡 ] = 𝑦𝑦𝑦𝑡 . The probability that the cache exceeds its storage capacity by 𝛿ℎ is given by the
Chernoff bound [176] as:

P (∥𝑥𝑥𝑥𝑡 ∥1 > (1 + 𝛿)ℎ) < 𝑒 −𝛿
2ℎ

2 , 𝛿 ∈ (0, 1], (3.15)

where the 𝑙1 norm is restricted to the first 𝑁 components of the vector, i.e., ∥𝑥𝑥𝑥 ∥1 ≜
∑
𝑖∈N |𝑥𝑖 |. In the

regime of large cache sizes ℎ ≫ 1, we observe from the Chernoff bound that the cache stores less
than (1 + 𝛿) of its capacity ℎ with high probability.

Theorem 3.3.1 (proof in Appendix 20.1) shows that the expected movement of CoupledRound-
ing is equal to the movement of the fractional auxiliary states {𝑦𝑦𝑦𝑡 }𝑇𝑡=1.

Theorem 3.3.1. If the input to Algorithm 3.3 is sampled from a random variable 𝑥𝑥𝑥𝑡 ∈ {0, 1}𝑁 with
E[𝑥𝑥𝑥𝑡 ] = 𝑦𝑦𝑦𝑡 , then we obtain as output an integral cache configuration𝑥𝑥𝑥𝑡+1 ∈ {0, 1}𝑁 satisfyingE[𝑥𝑥𝑥𝑡+1] =
𝑦𝑦𝑦𝑡+1 and E [∥𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥𝑡 ∥1] = ∥𝑦𝑦𝑦𝑡+1 −𝑦𝑦𝑦𝑡 ∥1.

Moreover, the movement of the fractional states is negligible for large 𝑇 :
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Algorithm 3.3 Coupled Rounding
Input: 𝑥𝑥𝑥𝑡 ,𝑦𝑦𝑦𝑡 ,𝑦𝑦𝑦𝑡+1 ⊲ 𝑥𝑥𝑥𝑡 satisfies E[𝑥𝑥𝑥𝑡 ] = 𝑦𝑦𝑦𝑡

1: procedure CoupledRounding
2: 𝛿 ← 𝑦𝑦𝑦𝑡+1 −𝑦𝑦𝑦𝑡 ⊲ Compute the change in distribution
3: for 𝑖 ∈ N do
4: if

(
𝑥𝑡,𝑖 = 1

)
∧ (𝛿𝑖 < 0) then

5: 𝑥𝑡+1,𝑖 ← 0 w.p. − 𝛿𝑖
𝑦𝑡,𝑖

, and 𝑥𝑡+1,𝑖 ← 1 w.p. 𝑦𝑡,𝑖+𝛿𝑖
𝑦𝑡,𝑖

6: else if
(
𝑥𝑡,𝑖 = 0

)
∧ (𝛿𝑖 > 0) then

7: 𝑥𝑡+1,𝑖 ← 0 w.p. 1−𝑦𝑡,𝑖−𝛿𝑖
1−𝑦𝑡,𝑖 , and 𝑥𝑡+1,𝑖 ← 1 w.p. 𝛿𝑖

1−𝑦𝑡,𝑖
8: else
9: 𝑥𝑡+1,𝑖 ← 𝑥𝑡,𝑖 ⊲ Keep the same state
10: end if
11: 𝑥𝑡+1,𝑖+𝑁 ← 1 − 𝑥𝑡+1,𝑖 ⊲ Update the augmented states
12: end for
13: return 𝑥𝑥𝑥𝑡+1 ⊲ Return the next physical state satisfying E[𝑥𝑥𝑥𝑡+1] = 𝑦𝑦𝑦𝑡+1
14: end procedure

Theorem 3.3.2. Algorithm 3.2, configured with the negative entropy mirror map and learning rate
𝜂 = O

(
1√
𝑇

)
, selects fractional cache states satisfying

𝑇−1∑︁
𝑡=1
∥𝑦𝑦𝑦𝑡+1 −𝑦𝑦𝑦𝑡 ∥1 = O(

√
𝑇 ). (3.16)

The proof is in Appendix 20.2. Combining the two theorems and (3.13), we also conclude that
the expected average update cost of the system E

[
CUC,𝑇
𝑇

]
is negligible for large 𝑇 .

3.3.3.7 Time Complexity

AÇAI uses OMA in Algorithm 3.2 coupled with a rounding procedure DepRound or
CoupledRounding. The rounding step may take O (𝑁 ) operations (amortized every 𝑀 requests
when DepRound is used). In practice, AÇAI quickly sets irrelevant objects in the fractional alloca-
tion vector 𝑦𝑦𝑦𝑡 very close to 0. Therefore, we can keep track only of objects with a fractional value
above a threshold 𝜖 > 0, and the size of this subset is practically of the order of ℎ.

Similarly, subgradient computation may require O (𝑁 ) operations per each component and then
have O

(
𝑁 2) complexity, but in practice, as the vector 𝑦𝑦𝑦𝑡 is sparse, calculations in Appendix 3.3.3.8

Eq. 18.151 require only a constant number of operations and complexity reduces to O (𝑁 ).
Finally, we use the negative entropy Bregman projection in [139] (line 6 of Algorithm 3.2) that

has O (𝑁 + ℎ log(ℎ)) time complexity. The O (𝑁 + ℎ log(ℎ)) is due to a partial sorting operation
while the actual projection takes O (ℎ). Again, most of the components of𝑦𝑦𝑦𝑡 are equal to 0, so that,
in practice, we need to sort much less points.



3.3 – 3.3.3 System Description and AÇAI’s Design 83

3.3.3.8 Theoretical Guarantees

The best static cache allocation in hindsight is the cache state 𝑥𝑥𝑥∗ that maximizes the time-averaged
caching gain in Eq. (3.10) over the time horizon 𝑇 , i.e.,

𝑥𝑥𝑥∗ ∈ arg max
𝑥𝑥𝑥∈X

(
𝐺𝑇 (𝑥𝑥𝑥) ≜

1
𝑇

𝑇∑︁
𝑡=1

𝐺 (𝑟𝑡 ,𝑥𝑥𝑥)
)
. (3.17)

We observe that solving (3.17) is NP-hard in general even for 𝑘 = 1 under a stationary request
process [127]. Nevertheless, AÇAI operates in the online setting and provides guarantees in terms
of the 𝜓 -regret [177]. In this scenario, the regret is defined as gain loss in comparison to the best
static cache allocation 𝑥𝑥𝑥∗ in (3.17). The𝜓 -regret discounts the best static gain by a factor𝜓 ∈ (0, 1].
Formally,

𝜓 -Regret𝑇,X (OMAΦ) = sup
{𝑟1,𝑟2,...,𝑟𝑇 }∈R𝑇

{
𝜓

𝑇∑︁
𝑡=1

𝐺 (𝑟𝑡 ,𝑥𝑥𝑥∗) − E
[
𝑇∑︁
𝑡=1

𝐺 (𝑟𝑡 ,𝑥𝑥𝑥𝑡 )
]}
, (3.18)

where the expectation is over the randomized choices of DepRound. Note that the supremum
in (3.18) is over all possible request sequences. This definition corresponds to the so called adver-
sarial analysis, imagining that an adversary selects requests in R to jeopardize cache performance.
The definition of the regret in Eq. (3.18), which compares the gain of the policy to a static offline
solution, is classic. Several bandit settings, e.g., simple multi-armed bandits [75, 80, 81], contextual
bandits [82–84], and, of course, their applications to caching problems under the full-information
setting [49,50,139,171,178], adopt this definition. In all these cases, the dynamic, adaptive algorithm
is compared to a static policy that has full hindsight of the entire trace of actions. Moreover, as is
customary in the context of online problems in which the offline problem is NP-hard [76], the regret
is not w.r.t. the optimal caching gain, but the gain obtained by an offline approximation algorithm.

Obviously, regret bounds in the adversarial setting provide strong robustness guarantees in prac-
tical scenarios. AÇAI has the following regret guarantee:

Theorem 3.3.3. Algorithm 3.2 configured with the negative entropy mirror map, learning rate 𝜂 =

1
(𝑐𝑘
𝑑
+𝑐 𝑓 )

√︂
2 log( 𝑁ℎ )

𝑇+(𝑀−1) (𝑀+𝑇 ) , and rounding scheme CoupledRounding or DepRound with freezing period

𝑀 = Θ
(
𝑇 𝛽

)
for 𝛽 ∈ [0, 1), has a sublinear (1 − 1/𝑒)-regret in the number of requests, i.e.,

(1 − 1/𝑒)-Regret𝑇,X (OMAΦ) ≤
(
1 − 1

𝑒

)
(𝑐𝑘
𝑑
+ 𝑐 𝑓 )ℎ

√︄
2 log

(
𝑁

ℎ

)
((𝑀 − 1) (𝑇 +𝑀) +𝑇 ),

where the constant 𝑐𝑘
𝑑
is an upper bound on the dissimilarity cost of the k-th closest object for any

request in R.

We first prove that the expected gain of the randomly sampled allocations 𝑥𝑥𝑥𝑡 is a (1−1/𝑒)-
approximation of the fractional gain. Then, we use online learning results [53] to bound the regret
of OMA schemes operating on a convex decision space against concave gain functions picked by an
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adversary. The two results are combined to obtain an upper bound on the (1−1/𝑒)-regret. The full
proof is available in Appendix 21.

The (1−1/𝑒)-regret of AÇAI under CoupledRounding scheme with its corresponding freezing
period𝑀 = 1 has order-optimal regret O

(√
𝑇

)
[20], whereas under the rounding scheme DepRound

with a corresponding freezing period𝑀 = Θ
(
𝑇 𝛽

)
the reduced reactivity of AÇAI is reflected by the

additional 𝑇
𝛽

2 factor in the order of the regret. Nonetheless, the expected time-average (1 − 1/𝑒)-
regret of AÇAI can get arbitrarily close to zero for large time horizon. Hence, AÇAI performs on
average as well as a (1 − 1/𝑒)-approximation of the optimal configuration 𝑥𝑥𝑥∗. This observation also
suggests that our algorithm can be used as an iterative method to solve the NP-hard static allocation
problem with the best approximation bound achievable for this kind of problems [179].

Corollary 3.3.4. (offline solution) Let 𝑦𝑦𝑦 be the average fractional allocation 𝑦𝑦𝑦 = 1
𝑇

∑𝑇
𝑖=1𝑦𝑦𝑦𝑖 of AÇAI,

and 𝑥𝑥𝑥 the random state sampled from 𝑦𝑦𝑦 through CoupledRounding or DepRound. If Algorithm 3.2
is configured with the negative entropy mirror map, and, at each iteration 𝑡 ∈ [𝑇 ], operates with
subgradients of the time-averaged caching gain (3.17), then ∀𝜖 > 0 and over a sufficiently large number
of iterations 𝑇 , 𝑥𝑥𝑥 satisfies

E [𝐺𝑇 (𝑥𝑥𝑥)] ≥
(
1 − 1

𝑒
− 𝜖

)
𝐺𝑇 (𝑥𝑥𝑥∗).

where 𝑥𝑥𝑥∗ = arg max
𝑥𝑥𝑥∈X

𝐺𝑇 (𝑥𝑥𝑥).

The proof can be found in Appendix 22.

3.3.4 Experiments
We start evaluating AÇAI in a simple scenario with a synthetic request process, for which we can
compute the optimal fractional static cache allocation. We then consider real-world catalogs and
traces and compare our solution with state of the art online policies proposed for 𝑘NN caching, i.e.,
SIM-LRU [108], CLS-LRU [108], and QCache [107] described in Section 3.3.1.

3.3.4.1 Simple Scenario

We consider a synthetic catalog as in [169] of 𝑁 = 900 objects positioned on a 30 × 30 grid. The
request process is generated according to the Independent Reference Model [15]. The objects’ pop-
ularity is represented by a Gaussian distribution. In particular, an object 𝑜 ∈ N with an 𝑙1 (norm-
1) distance 𝑑𝑜 from the center of the grid (15, 15) is requested at any time slot 𝑡 with probability

𝑝𝑜 ∝ 𝑒−
𝑑2
𝑜

2×62 . The synthetic catalog is depicted in Figure 3.15.
We consider the dissimilarity cost to be the 𝑙1 distance. We take different values for the retrieval

cost 𝑐 𝑓 ∈ {1, 2, 3, 4} and the number of neighbors 𝑘 ∈ {1, 2, 3, 4, 5}. We take the cache capacity to be
ℎ = 15. We configure AÇAI with DepRound rounding scheme.
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Figure 3.15: Synthetic catalog of objects located on a 30×30 grid. The heatmap depicts the popularity
distribution of objects in the grid.
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(a) Optimal fractional static cache allocations
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(b) AÇAI’s fractional static approximated alloca-
tions

Figure 3.16: The optimal fractional static cache allocations, and AÇAI’s fractional static approxi-
mated allocations under different values of retrieval costs 𝑐 𝑓 ∈ {1, 2, 3, 4} and number of neighbors
𝑘 ∈ {1, 2, 3, 4, 5}.

We use CVXPY [180] to find the optimal fractional static cache allocation, and AÇAI to compute
its approximation according to Corollary 3.3.4. In particular, AÇAI runs for 𝑇 = 10 000 iterations
with a diminishing learning rate 𝜂𝑡 = 2.0

𝑐 𝑓
(1 + cos( 𝜋𝑡

𝑇
)).

Results. Figure 3.16 shows the optimal fractional static cache allocations and the AÇAI’s fractional
static approximated allocations (see Corollary 3.3.4) under different retrieval costs and the number
of neighbors 𝑘 . We observe that the optimal fractional static cache allocations in Figure 3.16 (a)
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Figure 3.17: The gain of the optimal fractional static cache, its (1 − 1
𝑒
)-approximation, and the

gain obtained by AÇAI’s fractional static approximated allocations and static integral approxi-
mated allocations under different values of retrieval costs 𝑐 𝑓 ∈ {1, 2, 3, 4} and number of neighbors
𝑘 ∈ {1, 2, 3, 4, 5}. For AÇAI’s static integral approximated allocations, we report 95% confidence in-
tervals computed over 50 different runs. The gain of the fractional static approximated allocations
obtained by AÇAI overlaps with gain of the optimal fractional static cache allocations.

are symmetric, while AÇAI’s fractional static approximated allocations in Figure 3.16 (b) partially
lose this symmetry for values of 𝑘 ∈ {2, 3, 4} primarily due to the different ways a 𝑘NN query
can be satisfied over the physical catalog for such values. In fact, there are multiple objects in the
catalog with the same distance from a request 𝑟 , and AÇAI only selects a single permutation 𝜋𝑟 for
a request 𝑟 . We observe that, when the retrieval cost is higher, the allocations are more spread to
cover a larger part of the popular region. Moreover, for larger values of the number 𝑘 of objects to
be served, more mass is added to the neighborhood of cached objects, but when the number 𝑘 of
objects to be served changes from 𝑘 = 1 to 𝑘 = 2 it is not clearly observed.

In Figure 3.17, we compare the gain obtained by the optimal fractional static cache, its (1 − 1
𝑒
)-

approximation, and the gain obtained by the fractional static approximated allocations and the static
integral approximated allocations of AÇAI (obtained through DepRound). While Figure 3.16 shows
that AÇAI’s fractional static approximated allocations may differ from the optimal ones, their costs
are practically indistinguishable (the two corresponding surfaces overlap in Figure 3.17). We also
observe that rounding comes at a cost, as there is a clear gap between the gain of AÇAI’s fractional
allocations and of AÇAI’s integral ones. Still, the average gain of the integral allocations remains
close to the fractional optimum and well above the (1 − 1

𝑒
)-approximation. AÇAI then performs

much better than what guaranteed by Corollary 3.3.4 (a potential gain reduction by a factor 1 − 1
𝑒
).
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3.3.4.2 Real-World Datasets

SIFT1M trace. SIFT1M is a classic benchmark data-set to evaluate approximate 𝑘NN algo-
rithms [181]. It contains 1 million objects embedded as points in a 128-dimensional space. SIFT1M
does not provide a request trace so we generated a synthetic one according to the Independent Ref-
erenceModel [15] (similar to what done in other papers like [106,121]). Request 𝑟𝑡 is for object 𝑖 with
a probability 𝜆𝑖 independently from previous requests. We spatially correlated requests by letting 𝜆𝑖
depend on the position of the embeddings in the space. In particular, we considered the barycenter
of the whole dataset and set 𝜆𝑖 proportional to 𝑑−𝛽𝑖 , where 𝑑𝑖 is the distance of 𝑖 from the barycenter.
The parameter 𝛽 was chosen such that the tail of the ranked objects popularity distribution is sim-
ilar to a Zipf with parameter 0.9, as observed in some image retrieval systems [107]. We generated
a trace with 105 requests. The number of distinct objects requested in the trace is approximately
2 × 104.
Amazon trace. We use the same trace described in Section 3.2.4.3. We truncate the trace to the
interval [2 × 105, 3 × 105].7 The number of distinct objects requested in this trace is approximately
2 × 104.

3.3.4.3 Settings and Performance Metrics

For AÇAI, unless otherwise said, we choose the negative entropy Φ(𝑦𝑦𝑦) = ∑
𝑖∈N 𝑦𝑖 log(𝑦𝑖) as mir-

ror map (see Figure 3.23 and the corresponding discussion for other choices) and the rounding
scheme DepRound with 𝑀 = 1. The learning rate is set to the best value found exploring the
range [10−6, 10−4].

As for the state-of-the-art caching policies, SIM-LRU and CLS-LRU have two parameters,𝐶𝜃 and
𝑘′, that we set in each experiment to the best values we found exploring the ranges [𝑐 𝑓 , 2𝑐 𝑓 ] for 𝐶𝜃
and [1, ℎ] for 𝑘′. For QCache we consider 𝑙 = ℎ/𝑘 : the cache can then perform the 𝑘NN search over
all local objects.

We also consider a simple similarity caching policy that stores previous requests and the cor-
responding set of 𝑘 closest objects as key-value pairs, and manages the set of keys according to
LRU. The cache then serves locally the request if it coincides with one of the previous requests in
its memory, it forwards it to the server, otherwise. The ordered list of keys is updated as in LRU. We
refer to this policy simply as LRU.

We compare the policies in terms of their normalized average caching gain per-request, where
the normalization factor corresponds to the caching gain of a cache with size equal to the whole
catalog. In such case, the cache could store the entire catalog locally and would achieve the same
dissimilarity cost of the server without paying any fetching cost. The maximum possible caching
gain is then 𝑘𝑐 𝑓 . The normalized average gain of a policy P with cache states {𝑥𝑥𝑥𝑡 }𝑇𝑡=1 over𝑇 requests
can then be defined as:

NAG(P) = 1
𝑘𝑐 𝑓𝑇

𝑇∑︁
𝑡=1

𝐺 (𝑟𝑡 ,𝑥𝑥𝑥𝑡 ). (3.19)

7We discard the initial part of the trace because it contains requests only for a small set of objects (likely the set of
products to crawl was progressively extended during the measurement campaign in [158]).
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Figure 3.18: Caching gain for the different policies. The cache size is ℎ = 1000 and 𝑘 = 10.

3.3.4.4 Results

We consider a dissimilarity cost proportional to the squared Euclidean distance. This is the usual
metric considered for SIFT1M benchmark and also the one considered to learn the embeddings for
the Amazon trace in [158].

The numerical value of the fetching cost depends on its interpretation (delay experienced by
the user, load on the server or on the network) as well as on the application, because it needs to
be converted into the same unit of the approximation cost. In our evaluation, we let it depend on
the topological characteristics of the dataset in order to be able to compare the results for the two
different traces. Unless otherwise said, we set 𝑐 𝑓 equal to the average distance of the 50-th closest
neighbor in the catalog N .

Figure 3.18 shows how the normalized average gain changes as requests arrive and the different
caching policies update the local set of objects (starting from an empty configuration). The cache
size is ℎ = 1000 and the cache provides 𝑘 = 10 similar objects for each request. All policies reach an
almost stationary gain after at most a few thousand requests. Unsurprisingly, the naïve LRU has the
lowest gain (it can only satisfy locally requests that match exactly a previous request) and similarity
caching policies perform better. AÇAI has a significant improvement in comparison to the second
best policy (SIM-LRU for SIFT1M and CLS-LRU for Amazon).

This advantage of AÇAI is constantly confirmed for different cache sizes (Figure 3.19), different
values of the fetching cost 𝑐 𝑓 (Figure 3.20), and different values of 𝑘 (Figure 3.21). The relative
improvement of AÇAI, in comparison to the second best policy, is larger for small values of the cache
size (+30% for SIFT1M and +25% for Amazon when ℎ = 50), and small values of the fetching cost
(+35% for SIFT1M and +100% for 𝑐 𝑓 equal to the average distance from the second closest object).
Note how these are the settings where caching choices are more difficult (and indeed all policies
have lower gains): when cache storage can accommodate only a few objects, it is critical to carefully
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Figure 3.19: Caching gain for the different policies, for different cache sizes ℎ ∈
{50, 100, 200, 500, 1000, 2000} and 𝑘 = 10.
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Figure 3.20: Caching gain for the different policies and different retrieval cost. The retrieval cost 𝑐 𝑓
is taken as the average distance to the 𝑖-th neighbor, 𝑖 ∈ {2, 10, 50, 100, 500, 1000}. The cache size is
ℎ = 1000 and 𝑘 = 10.

select which ones to store; when the server is close, the costs of serving requests from the cache or
from the server are similar and it is difficult to correctly decide how to satisfy the request. Caching
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Figure 3.21: Caching gain for the different policies. The cache size is ℎ = 1000, and 𝑘 ∈
{10, 20, 30, 50, 100}.

policies performance are in general less dependent on the number 𝑘 of similar objects to retrieve
and AÇAI achieves about 10% improvement for 𝑘 between 10 and 100 when ℎ = 1000 (Figure 3.21).
Sensitivity analysis. We now evaluate the robustness of AÇAI to the configuration of its single
parameter (the learning rate 𝜂). Figure 3.22 shows indeed that, for learning rates that are two orders
of magnitude apart, we can achieve almost the same normalized average gain both for ℎ = 50 and
for ℎ = 1000.8

In contrast, the performance of the second best policies (SIM-LRU and CLS-LRU) are more sensi-
tive to the choice of their two configuration parameters 𝑘′ and𝐶𝜃 . For example, the optimal configu-
ration of SIM-LRU is 𝑘′ = 10 and𝐶𝜃 = 1.5×𝑐 𝑓 for a small cache (ℎ = 50) but 𝑘′ = 200 and𝐶𝜃 = 2×𝑐 𝑓
for a large one (ℎ = 1000). Moreover, in both cases a misconfiguration of these parameters would
lead to significant performance degradation.
Choice of the mirror map. If the mirror map is selected equal to the squared Euclidean norm,
the OMA update coincides with a standard gradient update. Figure 3.23 shows the superiority of
the negative entropy map: it allows to achieve a higher gain than the Euclidean norm map or the
same gain but in a shorter time. To the best of our knowledge, ours is the first paper that shows
the advantage of using non-Euclidean mirror maps for similarity caching problems. It is possible
to justify theoretically this result, considering the difference of subgradients norms for similarity
caching and exact caching problems (Appendix 19.1). This result does not follow from the result
in [139], where they predict for single-request batch one should always select the Euclidean mirror
map for OMA (i.e., OGA), and this is a consequence of the gradient being sparse. In the case of
similarity caching, even for 𝑘 = 1, multiple objects in the vicinity of a request can provide utility in
serving the request, i.e., the subgradient of the gain function when request 𝑟 is received is no longer
a sparse vector as in the classical caching setting.
Dissecting AÇAI performance. In comparison to state-of-the-art similarity caching policies,
AÇAI introduces two key ingredients: (1) the use of fast, approximate indexes to decide what to
serve from the local catalog and what from the remote one, and (2) the OMA algorithm to update

8Under a stationary request process, a smaller learning rate would lead to converge slower but to a solution closer
to the optimal one. Under a non-stationary process, a higher learning rate may allow faster adaptivity. In this trace, the
two effects almost compensate, but see also Figure 3.23.



3.3 – 3.3.4 Experiments 91

0.0001 1e-05 1e-06
η

0.0

0.5

1.0

N
A

G

(a) AÇAI, ℎ = 50

0.0001 1e-05 1e-06
η

0.0

0.5

1.0

N
A

G

(b) AÇAI, ℎ = 103

1 1.5 2
Cθ/cf

0.0

0.5

1.0

N
A

G

k′

10 25 50

(c) SIM-LRU, ℎ = 50

1 1.5 2
Cθ/cf

0.0

0.5

1.0

N
A

G

k′

10 20 200 1000

(d) SIM-LRU, ℎ = 103

1 1.5 2
Cθ/cf

0.0

0.5

1.0

N
A

G

k′

10 25 50

(e) CLS-LRU, ℎ = 50

1 1.5 2
Cθ/cf

0.0

0.5

1.0

N
A

G

k′

10 20 200 1000

(f) CLS-LRU, ℎ = 103

Figure 3.22: Caching gain for AÇAI for different values of 𝜂 (top). Caching gain for SIM-LRU(middle)
and CLS-LRU (bottom) for different values of the parameters (𝑘′,𝐶𝜃 ). SIFT1M trace.

the cache state. It is useful to understand how much each ingredient contributes to AÇAI improve-
ment with respect to the other policies.

To this aim, we integrated the same indexes in the other policies allowing them to serve re-
quests as AÇAI does, combining both local objects and remote ones on the basis of their costs (see
Section 3.3.3.3), while leaving their cache updating mechanism unchanged. We then compute, in the
same setting of Figure 3.21, how much the gain of the second best policy (SIM-LRU for SIFT1M and
CLS-LRU for Amazon) increases because of AÇAI request service mechanism. This is the part of
AÇAI improvement attributed to the use of the two indexes, the rest is attributed to the cache update
mechanism through OMA. We observe from Figure 3.24 that most of AÇAI gain improvement over
the second best caching policy is due to the use of approximate indexes, but OMA updates are still
responsible for 15–20% of AÇAI performance improvement under SIFT1M trace and for 20–35% for
the Amazon trace.
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Figure 3.23: Caching gain for AÇAI configured with negative entropy and Euclidean maps (SIFT1M
trace). The cache size is ℎ = 100 and 𝑘 = 10.
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Figure 3.24: AÇAI caching gain improvement in comparison to the second best state-of-the-art sim-
ilarity caching policy: contribution of approximate indexes and gradient updates. The cache size is
ℎ = 1000, and 𝑘 ∈ {10, 20, 30, 50, 100}.

Update cost. In this part, we evaluate the update cost of the different rounding schemes. We set the
cache size ℎ = 1000 and 𝑘 = 10. We run AÇAI over the Amazon trace with a learning rate 𝜂 = 10−5.

Figure 3.25 (a) gives the time-averaged number of files fetched and Figure 3.25 (b) gives the
caching gain of the different rounding schemes. We observe by increasing the cache state freezing
parameter𝑀 , the system fetches fewer files per iteration at the expense of reduced reactivity at the
start. The coupled rounding scheme achieves the best performance as it fetches fewer files without
a reduction in reactivity.

Figure 3.26 gives the instantaneous and time averaged cache occupancy of the cache using the
CoupledRounding schemewith the relaxed capacity constraint. We observe that the time averaged
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Figure 3.25: Number of fetched files (time average) and caching gain of AÇAI under different round-
ing schemes. AÇAI is run with the learning rate 𝜂 = 10−5 over the Amazon trace. The cache size is
ℎ = 1000 and 𝑘 = 10.

cache occupancy rapidly converges to the cache capacity ℎ, while the instantaneous occupancy is
kept within 5% of the cache capacity.

3.3.5 Conclusion
Edge computing provides computing and storage resources that may enable complex applications
with tight delay guarantee like augmented-reality ones, but these strategically positioned resources
need to be used efficiently. To this aim, we design AÇAI, a content cache management policy that
determines dynamically the best content to store on the edge server. Our solution adapts to the user
requests, without any assumption on the traffic arrival pattern. AÇAI leverages two key compo-
nents: (1) new efficient content indexing methods to keep track of both local and remote content,
and (2) mirror ascending techniques to optimally select the content to store. The results show that
AÇAI is able to outperform the state-of-the-art policies and does not need careful parameter tuning.

As future work, we plan to evaluate AÇAI in the context of machine learning classification
tasks [182], in which the size of the objects in the catalog is comparable to their 𝑑-dimensional
representation in the index, and, as a consequence, the index size cannot be neglected in compar-
ison to the local catalog size. Another important future research direction is to consider dynamic
regret, whereby the performance of a policy is compared to a dynamic optimum. Also, since the em-
ployed online algorithm OMA is greedy (i.e., does not keep track of the history of the requests), with
careful selection of the mirror map, it may have an adaptive regret guarantee, e.g., such guarantee
holds for OGD [46].
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Figure 3.26: Time averaged and instantaneous cache occupancy under CoupledRounding. AÇAI is
run with the learning rate 𝜂 = 10−5 over the Amazon trace. The cache size is ℎ = 1000 and 𝑘 = 10.



CHAPTER 4
Inference Delivery

Networks
4.1 Introduction

Machine learning (ML) models are often trained to perform inference, that is to elaborate predic-
tions based on input data. ML model training is a computationally and I/O intensive operation and
its streamlining is the object of much research effort. Although inference does not involve com-
plex iterative algorithms and is therefore generally assumed to be easy, it also presents fundamental
challenges that are likely to become dominant as ML adoption increases [183]. In a future where
AI systems are ubiquitously deployed and need to make timely and safe decisions in unpredictable
environments, inference requests will have to be served in real-time and the aggregate rate of pre-
dictions needed to support a pervasive ecosystem of sensing devices will become overwhelming.

Today, two deployment options for ML models are common: inferences can be served by the end
devices (smartphones, IoT equipment, smart vehicles, etc.), where only simple models can run, or
by a remote cloud infrastructure, where powerful “machine learning as a service” (MLaaS) solutions
rely on sophisticated models and provide inferences at extremely high throughput.

However, there exist applications for which both options may be unsuitable: local models may
have inadequate accuracy, while the cloud may fail to meet delay constraints. As an example, popu-
lar applications such as recommendation systems, voice assistants, and ad-targeting, need to serve
predictions from ML models in less than 200 ms. Future wireless services, such as connected and
autonomous cars, industrial robotics, mobile gaming, augmented/virtual reality, have even stricter
latency requirements, often below 10 ms and in the order of 1 ms for what is known as the tactile
Internet [3]. In enabling such strict latency requirements, the advent of Edge Computing plays a
key role, as it deployes computational resources at the edge of the network (base stations, access
points, ad-hoc servers). However, edge resources have limited capacity in comparison to the cloud
and need to be wisely used. Therefore, integrating ML inference in the continuum between end
devices and the cloud—passing through edge servers and regional micro data-centers—will require
complex resource orchestration.

We believe that, to allocate resources properly, it will be crucial to study the trade-offs between
accuracy, latency and resource-utilization, adapted to the requirements of the specific application. In
fact, inference accuracy and, in general, resource efficiency increase toward the cloud, but so does
communication latency. In this chapter, we present the novel idea of inference delivery networks
(IDN): networks of computing nodes that coordinate to satisfy inference requests achieving the

95
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best trade-off. An IDN may be deployed directly by the ML application provider, or by new IDN
operators that offer their service to different ML applications, similarly to what happens for content
delivery networks. The same inference task can be served by a set of heterogeneousmodels featuring
diverse performance and resource requirements (e.g., different model architectures [184], multiple
downsized versions of the same pre-trained model [185], different configurations and execution
setups). Therefore, we study the novel problem of how to deploy the available ML models on the
available IDN nodes, where a deployment strategy consists in two coupled decisions: (1) where
to place models for serving a certain task and (2) how to select their size/complexity among the
available alternatives.

4.1.1 Contributions
In this chapter, we first define a specific optimization problem for ML model allocation in IDNs. We
characterize the complexity of such problem and then introduce INFIDA (INFerence Intelligent Dis-
tributed Allocation), a distributed dynamic allocation policy. Following this policy, each IDN node
periodically updates its local allocation of inference models on the basis of the requests observed
during the recent past and limited information exchange with its neighbors. The policy offers strong
performance guarantees in an adversarial setting [186], that is a worst case scenario where the en-
vironment evolves in the most unfavorable way. Numerical experiments in realistic settings show
that our policy outperforms heuristics with similar complexity. Our contributions are as follows:

• We present the novel idea of inference delivery networks (IDNs).
• We frame the allocation of ML model in IDNs as an (NP-hard) optimization problem that captures
the trade-off between latency and accuracy (Section 4.3).
• We propose INFIDA, a distributed and dynamic allocation algorithm for IDNs (Section 4.4), and
we show it provides strong guarantees in the adversarial setting (Section 4.5).
• We evaluate INFIDA in a realistic simulation scenario and compare its performance both with
an offline greedy heuristic and with its online variant under different topologies and trade-off
settings (Section 4.6).

4.1.2 Organization
This chapter is organized as follows. In Section 4.2 we discuss related work and other relevant
background with respect to IDNs. We formalize the problem of allocating ML model in IDNs in Sec-
tion 4.3. We introduce our algorithm INFIDA in (Section 4.4) and discuss its theoretical guarantees
in Section 4.5. We present our experimental results in Section 4.6.

4.2 Related Work

The problem of machine learning is often reduced to the training task, i.e., producing statistical
models that can map input data to certain predictions. A considerable amount of existing works
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addresses the problem of model training: production systems such as Hadoop [187] and Spark [188]
provide scalable platforms for analyzing large amount of data on centralized systems, and even the
problem of distributing the training task over the Internet has been largely addressed recently by
many works on federated learning [189–194]. However, there is surprisingly less research on how
to manage the deployment of ML models once they have been trained (inference provisioning).

Most of the existing solutions on inference provisioning (e.g., Tensorflow Serving [195], Azure
ML [196], and Cloud ML [197]) address the scenario where inference queries are served by a data
center. Recent works [167, 198–200] propose improvements on performance and usability of such
cloud inference systems. Clipper [167] provides a generalization of TensorFlow Serving [195] to
enable the usage of different ML frameworks, such as Apache Spark MLLib [201], Scikit-Learn [202],
and Caffe [203]. The auhtors of [198] propose a reinforcement learning scheduler to improve the
system throughput. INFaaS [199] provides a real-time scheduling of incoming queries on available
model variants, and scales deployed models based on load thresholds. Last, InferLine [200] extends
Clipper to minimize the end-to-end latency of a processing pipeline, both periodically adjusting the
models allocation and constantly monitoring and handling unexpected query spikes; the solution
can be applied to any inference serving system that features a centralized queue of queries. All
these solutions address the problem of inference provisioning in the scenario where the requests
are served within a data center and are not suitable for a geographically distributed infrastructure
where resources are grouped in small clusters and network latency is crucial (e.g., Edge Computing).
For instance, none of the previous works consider the network delay between different compute
nodes, it being negligible in a data center.

For what concerns inference provisioning in constrained environments, fewer works exist. Some
solutions attempt to adapt inference to the capabilities of mobile hardware platforms through the
principle of model splitting, a technique that distributes a ML model by partitioning its execution
across multiple discrete computing units. Model splitting was applied to accommodate the hard-
ware constraints in multi-processor mobile devices [204], to share a workload among mobile de-
vices attached at the same network edge [205], and to partially offload inferences to a remote cloud
infrastructure [206], possibly coupled with early exit strategies [207] and conditional hierarchical
distributed deployment [208]. Model splitting is orthogonal to our concerns and could be accounted
for in an enhanced IDN scheme.

There has been some work on ML model placement at the edge in the framework of what is
called “AI on Edge” [209], but it considers a single intermediate tier between the edge device and
the cloud, while we study general networks with nodes in the entire cloud-to-the-edge continuum.
Our dynamic placement INFIDA algorithm could be applied also in this more particular setting, for
example in the MODI platform [210]. The work closest to ours is [211], which proposes an online
learning policy, with the premise of load balancing over a pool of edge devices while maximizing
the overall accuracy. INFIDA has more general applicability, as we do not make any assumption on
the network topology and also employ a more flexible cost model that takes into account network
delay. Another related work in this framework is VideoEdge [212], which studies how to split the
analytics pipeline across different computational clusters to maximize the average inference accu-
racy. Beside the focus on the specific video application, the paper does not propose any dynamic
allocation placement algorithm.
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Even if the problem of inference provisioning is currently overlooked in the context of distributed
systems, there exists a vast literature on the problem of content placement [213] where objects can
be stored (cached) into different nodes in order to reduce the operational cost of content delivery.
The similarities between this problem and inference provisioning inspired us in the design of Infer-
ence Delivery Networks. However, the two problems feature some crucial differences. For instance,
content placement has been extended to the case of service caching (or placement), where an entire
service can be offloaded onto nodes co-located with base-stations or mobile-micro clouds, engaging
not only storage but also computational resources and energy [214, 215]; nonetheless the prob-
lem considered in this chapter differs from the above, as inference services can run under different
configurations that lead to variable resource consumption and inference accuracy. In some sense,
traditional services provide a binary answer to any user request: the request can be satisfied if and
only if the service is deployed at the node and any two nodes deploying the service are equivalent.
In ML inference, however, several models can provide an answer but the accuracy of the answer can
be different [216].

A similar trade-off between resource usage and perceived quality typically emerges in the context
of video caching [150, 217–222], where the same video can be cached into multiple network nodes
at different qualities (or resolutions): the operator optimizes the user experience by jointly deciding
the placement of videos and their quality. These works either maximize the video quality perceived
by the user [217, 220, 221], minimize the download time [219, 222] and the backhaul traffic [218], or
minimize a combined cost [150]. Although some of the models in these papers may be adapted to
inference provisioning in IDNs, these works in general study static optimization problems under a
known request process and consider simple network topologies: a single cache [218, 219], a pool of
parallel caches [217,222], bipartite networks [150,221]. The only exception is [220], which considers
an arbitrary topology and provides some online heuristics, but ignores the service latency, which is
of paramount importance when placing interactive MLmodels (e.g., for applications like augmented
reality or autonomous driving). Instead, we propose a dynamic policy that jointly optimize inference
quality and latency and provides strong performance guarantees without requiring any knowledge
about the request process thanks to our adversarial setting (Section 4.5).

Finally, MLmodel allocation in an IDN is closely related to similarity caching considered in Chap-
ter 3. To the best of our knowledge, the literature on similarity caching has restricted itself to (1) a
single cache (except for [110,168,223]), and (2) homogeneous items with identical resource require-
ments. A consequence is that in our setting similarity caching policies would only allocate models
based on their accuracy, ignoring the trade-offs imposed by their resource requirements. Moreover,
the literature on similarity caching ignores system throughput constraints, while we explicitly take
into account that each model can only serve a bounded number of requests per second, according
to its capacity.

4.3 Inference System Design

We consider a network of compute nodes, each capable of hosting some pre-trained ML models
depending on its capabilities. Such ML models are used to serve inference requests for different
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Inference Delivery Networks 𝑟𝑟𝑟𝑡 / 𝑙𝑙𝑙𝑡 Request batch / potential available capacities
𝐺 (V, E) Weighted graph with nodes V and edges E 𝜆𝑘𝜌 (𝑙𝑙𝑙𝑡 ) /

𝑧𝑘𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥 )
Potential / effective available capacity of the model
serving 𝜌 with cost 𝛾𝑘𝜌

𝑤𝑢,𝑣 Weight of edge (𝑢, 𝑣) ∈ E 𝑍𝑘
𝜌 (𝑟𝑟𝑟𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥 ) Number of requests of type 𝜌 that can be served by the

𝑘-th smallest cost models found along path 𝑝𝑝𝑝 under
allocation 𝑥𝑥𝑥 at time slot 𝑡

N /M Tasks / models catalog 𝜅𝜌 (𝑣,𝑚) Rank of model𝑚 allocated to node 𝑣
M Models catalog 𝐾𝜌 Maximum number of models can serve 𝜌
𝑠𝑣𝑚 Size of model𝑚 ∈ M on node 𝑣 ∈ V X𝑣 / X Set of integral allocations at 𝑣 / at V
𝑎𝑚 Prediction accuracy of model𝑚 𝐶 /𝐺 The overall system cost/ allocation gain
𝑑𝑣𝑚 Average inference delay of model𝑚 at node 𝑣 INFIDA
𝑏𝑣 Allocation budget constraint at node 𝑣 Φ𝑣 Weighted negative entropy map
𝑥𝑣𝑚 Set to 1 if model𝑚 at node 𝑣 is allocated Φ Global mirror map
𝜔𝑣
𝑚 Set to 1 if model𝑚 at node 𝑣 is permanently stored 𝑦𝑣𝑚 Fractional allocation of model𝑚 at 𝑣

𝜔𝜔𝜔 / 𝑥𝑥𝑥 Minimal allocation vector/ allocation vector 𝑦𝑦𝑦𝑣 / 𝑦𝑦𝑦 Fractional allocation vector at 𝑣 / at V
𝑥𝑥𝑥𝑣 / 𝑥𝑥𝑥 Allocation vector at node 𝑣 / global allocation vector Y𝑣 / Y Set of fractional allocations at 𝑣 / at V
𝑠𝑠𝑠𝑣 Vector of model sizes at node 𝑣 𝑔𝑔𝑔𝑡 Subgradient vector of𝐺 over Y at point 𝑦𝑦𝑦𝑡
𝑝𝑝𝑝 Routing path {𝑝1, . . . , 𝑝 𝐽 } 𝑔𝑣𝑡,𝑚 Component (𝑣,𝑚) of 𝑔𝑔𝑔𝑡
𝜈 (𝑝𝑝𝑝 ) Repository node associated to the path 𝑝𝑝𝑝 PΦ𝑣

Y𝑣∩D𝑣 Projection operator onto Y𝑣 ∩ D𝑣

𝐶
𝑝 𝑗

𝑝𝑝𝑝,𝑚 Cost of serving on 𝑝 𝑗 along path 𝑝𝑝𝑝 using model𝑚 𝜂 learning rate
𝜌 Request type 𝜌 = (𝑖,𝑝𝑝𝑝 ) (task 𝑖 routed through 𝑝𝑝𝑝) 𝐵 Refresh period
R Set of all the possible request types 𝑇 Time horizon
𝑅 Total number of request types 𝑡 Time slot 𝑡 ∈ [𝑇 ]
𝑟𝑡𝜌 Number of times 𝜌 is requested during time slot 𝑡 𝐴 Regret constant
load𝑡,𝑣𝑚 (𝜌 ) Number of type-𝜌 requests served by model𝑚 at node 𝑣

during the 𝑡 -slot
𝐿max Upper bound on model capacities

𝐿𝑣𝑚 Maximum capacity of model𝑚 on node 𝑣 Δ𝐶 Upper bound on maximum serving cost difference
𝑙
𝑡,𝑣
𝜌,𝑚 Potential available capacity of𝑚 on node 𝑣 for request

type 𝜌 at time 𝑡
𝜓 Regret discount factor equal to 1 − 1

𝑒

𝛾𝑘𝜌 𝑘-th smallest cost for request type 𝜌 along its path

Table 4.1: Notation Summary for Chapter 4

classification or regression tasks.1 As shown in Figure 4.1, requests are generated by end devices and
routed over given serving paths (e.g., from edge to cloud nodes). The goal of the system is to optimize
the allocation of ML models across the network so that the aggregate serving cost is minimized. Our
system model is detailed below, and the notation used across the paper is summarized in Table 4.1.

4.3.1 Compute Nodes and Models
We represent the inference delivery network (IDN) as a weighted graph𝐺 (V, E), whereV is the set
of compute nodes, and E represents their interconnections. Each node 𝑣 ∈ V is capable of serving
inference tasks that are requested from anywhere in the network (e.g., from end-users, vehicles,
IoT devices). We denote by N = {1, 2, . . . , |N |} the set of tasks the system can serve (e.g., object
detection, speech recognition, classification), and assume that each task 𝑖 ∈ N can be served with
different quality levels (e.g., different accuracy as illustrated in Figure 4.2) and different resources’
requirements by a set of suitable modelsM𝑖 . Each task is served by a separate set of models, i.e.,
M𝑖∩M𝑖′=∅,∀𝑖, 𝑖′ ∈ N , 𝑖 ≠ 𝑖′. Catalog M𝑖 may encompass, for instance, independently trained
models or shrunk versions of a high quality model generated through distillation [225, 226]. We
denote byM= ∪𝑖∈N M𝑖 = {1, 2, . . . , |M|} the catalog of all the available models.

1We are using the term task according to its meaning in the ML community, e.g., a task could be to detect objects in
an image, to predict its future position, to recognize vocal commands.
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Figure 4.1: System overview: a network of compute nodes serves inference requests along predefined
routing paths. A repository node at the end of each path ensures that requests are satisfied even
when there are no suitable models on intermediate nodes.

Finally, every model of the catalog may provide a different throughput (i.e., number of requests
it can serve in a given time period), and therefore, support a different load (we formalize this in
Section 4.3.4).

For each compute node 𝑣 ∈ V , we denote by

𝑥𝑣𝑚 ∈ {0, 1}, for𝑚 ∈ M, (4.1)

the decision variable that indicates if model𝑚 ∈ M is deployed on node 𝑣 .2 Therefore,𝑥𝑥𝑥𝑣 = [𝑥𝑣𝑚]𝑚∈M
is the allocation vector on node 𝑣 , and 𝑥𝑥𝑥 = [𝑥𝑥𝑥𝑣 ]𝑣∈V denotes the global allocation decision.

We assume that the allocation of ML models at each node is constrained by a single resource
dimension, potentially different at each node. A node could be, for instance, severely limited by the
amount of available GPU memory, another by the maximum throughput in terms of instructions
per second. The limiting resource determines the allocation budget 𝑏𝑣 ∈ R+ at node 𝑣 ∈ V . We also
denote with 𝑠𝑣𝑚 ∈ R+ the size of model𝑚 ∈ M, i.e., the consumed amount of the limiting resource
at node 𝑣 .3 Therefore, budget constraints are expressed as∑︁

𝑚∈M
𝑥𝑣𝑚𝑠

𝑣
𝑚 ≤ 𝑏𝑣 ,∀𝑣 ∈ 𝑉 . (4.2)

2Our formulation allows each node to host multiple copies of the same model to satisfy a larger number of request.
For example, two copies of the same model can be represented as two distinct models with identical performance and
requirements.

3Note that, even when the limiting resource is the same, say computing, the budget consumed by a model may be
different across nodes, as they may have different hardware (e.g., GPUs, CPUs, or TPUs).
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(b) Pytorch pre-trained models

Figure 4.2: Example of pre-trained model catalog for the image classification task. Data from [224].

To every task 𝑖 ∈ N , we associate a fixed set of repository nodes that always run one model
capable of serving all the requests for task 𝑖 (e.g., high-performance models deployed in large data
centers). We call these models repository models and they are statically allocated. Repository models
ensure requests are satisfied even when the rest of the network is not hosting any additional model.

We discern repository models through constants 𝜔𝑣𝑚 ∈ {0, 1}, each indicating if model 𝑚 is
permanently deployed on node 𝑣 . We assume that values 𝜔𝑣𝑚 are given as input. We call the vector
𝜔𝜔𝜔 = [𝜔𝑣𝑚] (𝑣,𝑚)∈V×M the minimal allocation. Note that the presence of repositories introduce the
following constraints to the allocation vector:

𝑥𝑣𝑚 ≥ 𝜔𝑣𝑚,∀𝑣 ∈ V,∀𝑚 ∈ M . (4.3)

The set of possible allocations at node 𝑣 ∈ V is determined by the integrality constraints (4.1),
budget constraints (4.2), and repository constraints (4.3), i.e.,

X𝑣 ≜
{
𝑥𝑥𝑥𝑣 ∈ {0, 1}M : 𝑥𝑥𝑥𝑣 satisfies Eqs. (4.1)–(4.3)

}
. (4.4)

The set of possible global allocations is given as X ≜ >
𝑣∈V X𝑣 .

4.3.2 Inference Requests
We assume that every node has a predefined routing path towards a suitable repository node for
each task 𝑖 ∈ N . The routing is therefore predetermined, and our decisions only concern placement
of models (i.e., variables 𝑥𝑣𝑚).
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A routing path 𝑝𝑝𝑝 of length |𝑝𝑝𝑝 | = 𝐽 is a sequence {𝑝1, 𝑝2, . . . , 𝑝 𝐽 } of nodes 𝑝 𝑗 ∈ V such that
edge (𝑝 𝑗 , 𝑝 𝑗+1) ∈ E for every 𝑗 ∈ {1, 2, . . . , 𝐽−1}. As in [21], we assume that paths are simple, i.e.,
they do not contain repeated nodes. A request is therefore characterized by the pair (𝑖, 𝑝𝑝𝑝), where
𝑖 is the task requested and 𝑝𝑝𝑝 is the routing path to be traversed. We call the pair (𝑖, 𝑝𝑝𝑝) the request
type. We denote by R the set of all possible request types, and by R𝑖 all possible request types for
tasks 𝑖 . When a request for task 𝑖 is propagated from node 𝑝1 toward the associated repository node
𝜈 (𝑝𝑝𝑝) ≜ 𝑝 𝐽 , any intermediate node along the path that hosts a suitable model𝑚 ∈ M𝑖 can serve it.
The actual serving strategy is described in Section 4.3.5.

4.3.3 Cost Model
When serving a request of type 𝜌=(𝑖, 𝑝𝑝𝑝) ∈ R on node 𝑝 𝑗 using model 𝑚, the system experiences
an inference cost that depends on the quality of the model (i.e., on inference inaccuracy) and the
inference time. Additionally, the system experiences a network cost, due to using the path between
𝑝1 and 𝑝 𝑗 . Similarly to previous work [227], we can write the total cost of serving a request as

𝐶
𝑝 𝑗
𝑝𝑝𝑝,𝑚 = 𝑓 ((𝑝1, . . . , 𝑝 𝑗 ),𝑚). (4.5)

While our theoretical results hold under this very general cost model, in what follows—for the sake
of concreteness—we refer to the following simpler model:

𝐶
𝑝 𝑗
𝑝𝑝𝑝,𝑚 =

𝑗−1∑︁
𝑗 ′=1

𝑤𝑝 𝑗′ ,𝑝 𝑗′+1 + 𝑑
𝑝 𝑗
𝑚 + 𝛼 (1−𝑎𝑚), (4.6)

where 𝑎𝑚 and 𝑑𝑝 𝑗𝑚 are respectively the prediction accuracy (in a scale from 0 to 1) and the average
inference delay of model 𝑚 on node 𝑝 𝑗 . Indeed, the same model may provide different inference
delays, depending on the hardware capabilities of the node on which it is deployed, e.g., the type of
GPU or TPU [228]. Parameter 𝑤𝑣,𝑣 ′ ∈ R+ is the (round-trip) latency of edge (𝑣, 𝑣′) ∈ E. Parameter
𝛼 weights the importance of accuracy w.r.t. the overall latency and can be set depending on the
application.

Note that seeking cost minimization along a serving path usually leads to a trade-off: while the
network cost always increases with 𝑗 , in a typical network the service cost 𝑑𝑝 𝑗𝑚 + 𝛼 (1−𝑎𝑚) tends to
decrease, as farther nodes (e.g., data centers) are better equipped and can run more accurate models
(Figure 4.2).

4.3.4 Request Load and Serving Capacity
Let us assume that time is split in slots of equal duration. We consider a time horizon equal to𝑇 slots.
At the beginning of a slot 𝑡 , the system receives a batch of requests 𝑟𝑟𝑟 𝑡 = [𝑟 𝑡𝜌]𝜌∈R , where 𝑟 𝑡𝜌 ∈ N∪ {0}
denotes the number of requests of type 𝜌 ∈ R.

Model𝑚 ∈ M has maximum capacity 𝐿𝑣𝑚 ∈ N when deployed at node 𝑣 ∈ V , i.e., it can serve
at most 𝐿𝑣𝑚 requests during one time slot 𝑡 ∈ [𝑇 ], in absence of other requests for other models. We
do not make specific assumptions on the time required to serve a request.
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We denote by 𝑙𝑡,𝑣𝜌,𝑚 ∈ N∪ {0} the potential available capacity, defined as the maximum number of
type-𝜌 requests node 𝑣 can serve at time 𝑡 through model𝑚, under the current request load 𝑟𝑟𝑟 𝑡 and
allocation vector 𝑥𝑥𝑥𝑣𝑡 . Formally, let load𝑡,𝑣𝑚 (𝜌) denote the number of type-𝜌 requests served by model
𝑚 at node 𝑣 during the 𝑡-slot, then

𝑙𝑡,𝑣𝜌,𝑚 ≜ min
𝐿𝑣𝑚 −

∑︁
𝜌 ′∈R\{𝜌}

load𝑡,𝑣𝑚 (𝜌′), 𝑟 𝑡𝜌
 . (4.7)

The potential available capacity depends on the request arrival order and the scheduling dis-
cipline at node 𝑣 . For instance, suppose that in time slot 𝑡 , requests of two types 𝜌 = (𝑖, 𝑝𝑝𝑝) and
𝜌′ = (𝑖, 𝑝𝑝𝑝′) arrive at node 𝑣 . The arrival order and the node scheduling discipline may determine
that many requests of type 𝜌′ be served, which would leave a small 𝑙𝑡,𝑣𝜌,𝑚 available for requests of type
𝜌 . Or the opposite may happen. It is useful to define the potential available capacity also for models
that are not currently deployed at the node, as 𝑙𝑡,𝑣𝜌,𝑚 ≜ min{𝐿𝑣𝑚, 𝑟 𝑡𝜌}. The effective available capacity is
then equal to 𝑙𝑡,𝑣𝜌,𝑚𝑥𝑣𝑚 .

Our analysis in Section 4.5 considers a “pessimistic” scenario where an adversary selects both
requests and available capacities for all models but the repository ones. This approach relieves
us from the need to model system detailed operations, while our proposed algorithm (Section 4.4)
benefits from strong guarantees in the adversarial setting. In what follows, we can then consider
that values 𝑙𝑡,𝑣𝜌,𝑚 are exogeneously determined. The vector of potential available capacities at time
𝑡 ∈ [𝑇 ] is denoted by

𝑙𝑙𝑙𝑡 = [𝑙𝑡,𝑣𝜌,𝑚] (𝜌,𝑚,𝑣)∈⋃𝑖∈N R𝑖×M𝑖×V . (4.8)

As we mentioned in Section 4.3.1, any request of type 𝜌 = (𝑖, 𝑝𝑝𝑝) ∈ R can always be served by
the associated repository model at node 𝜈 (𝑝𝑝𝑝). This requirement can be expressed as follows:∑︁

𝜌∈R𝑖
𝑟 𝑡𝜌 ≤

∑︁
𝑚∈M𝑖

𝜔
𝜈 (𝑝𝑝𝑝)
𝑚 𝐿

𝜈 (𝑝𝑝𝑝)
𝑚 ,∀𝑖 ∈ N . (4.9)

Thus, at any time 𝑡 ∈ [𝑇 ] the adversary can select a request batch 𝑟𝑟𝑟 𝑡 and potential available
capacity 𝑙𝑙𝑙𝑡 from the set

A ≜
{
(𝑟𝑟𝑟, 𝑙𝑙𝑙) ∈ (N ∪ {0})R × (N ∪ {0})

⋃
𝑖∈N R𝑖×M𝑖×V :

∑︁
𝜌∈R𝑖

𝑟 𝑡𝜌 ≤
∑︁
𝑚∈M𝑖

𝜔
𝜈 (𝑝𝑝𝑝)
𝑚 𝐿

𝜈 (𝑝𝑝𝑝)
𝑚 , 𝑙𝑣𝜌,𝑚 ≤ min{𝐿𝑣𝑚, 𝑟𝜌},

∀𝑖 ∈ N , 𝑣 ∈ V,𝑚 ∈ M, 𝜌 ∈ R
}
. (4.10)

Note the constraint on potential available capacities is looser than the definition in (4.7) correspond-
ing to a more powerful adversary.
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Figure 4.3: Necessity of partial synchronization in IDN among close-by computing nodes under the
cost model in Eq. (4.6).

4.3.5 Serving Model
Given request 𝜌=(𝑖, 𝑝𝑝𝑝)∈R, let 𝐾𝜌 = |𝑝𝑝𝑝 | |M𝑖 | denote the maximum number of models that may en-
counter along its serving path 𝑝𝑝𝑝 . We order the corresponding costs {𝐶𝑝 𝑗𝑝𝑝𝑝,𝑚,∀𝑚 ∈ M𝑖,∀𝑝 𝑗 ∈ 𝑝𝑝𝑝} in
increasing order and we denote by 𝜅𝜌 (𝑣,𝑚) the rank of model𝑚 ∈ M𝑖 allocated at node 𝑣 within
the order defined above.4 If 𝑣 ∉ 𝑝𝑝𝑝 we have 𝜅𝜌 (𝑣,𝑚) = ∞.

If 𝜅𝜌 (𝑣,𝑚) = 𝑘 , then model𝑚 at node 𝑣 has the 𝑘-th smallest cost to serve request 𝜌 . We denote
the model service cost, its potential available capacity, and its effective capacity as 𝛾𝑘𝜌 , 𝜆𝑘𝜌 (𝑙𝑙𝑙𝑡 ), and
𝑧𝑘𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥), respectively:

𝛾𝑘𝜌 = 𝐶𝑣𝑝𝑝𝑝,𝑚, 𝜆𝑘𝜌 (𝑙𝑙𝑙𝑡 ) = 𝑙𝑡,𝑣𝜌,𝑚, 𝑧𝑘𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥) = 𝑥𝑣𝑚𝑙𝑡,𝑣𝜌,𝑚 . (4.11)

We assume the IDN serves requests as follows. Each request is forwarded along its serving path
and served when it encounters a model with the smallest serving cost among those that are not yet
saturated, i.e., that may still serve requests.

Since models do not necessarily provide increasing costs along the path, this serving strategy
requires that a node that runs a model 𝑚 ∈ M𝑖 and receives a request for task 𝑖 , knows whether
there are better alternatives for serving task 𝑖 upstream or not. In the first case, it will forward the
request along the path, otherwise it will serve it locally. We argue that, in a real system, this partial
knowledge can be achieved with a limited number of control messages. In fact, if node 𝑣 = 𝑝ℎ hosts
the model with the 𝑘-th cost for request (𝑖, 𝑝𝑝𝑝), it only needs information about those models that (1)
are located upstream on the serving path (i.e., on nodes 𝑝𝑙 ∈ 𝑝𝑝𝑝 with 𝑙 > ℎ), and (2) provide a cost
smaller than 𝛾𝑘𝜌 . Since the cost increases with the network latency (as illustrated in Figure 4.3), the
number of models satisfying these criteria is small in practice.5 A node needs to propagate down-

4Note that we do not consider only the models deployed in the network, but all the possible node-model pairs.
5In realistic settings (Section 4.6), we experienced that each deployed model has at most 6 better alternatives on

upstream nodes (worst case with 𝛼=1).
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stream a control message with the information about the requests it can serve and the corresponding
costs. Nodes forwarding the control message progressively remove the information about the tasks
they can serve with a smaller cost, until the control message payload is empty and the message can
be dropped. Every node 𝑣 ∈ V generates this control message whenever the available capacity of
any of the local models in 𝑣 changes.

According to the presented serving strategy, the requests load is split among the currently avail-
able models giving priority to those that provide the smallest serving costs up to their saturation.
In particular, model𝑚 with the 𝑘-th smallest cost will serve some requests of type 𝜌 only if the less
costly models have not been able to satisfy all of such requests (i.e., if

∑𝑘−1
𝑘 ′=1 𝑧

𝑘 ′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥) < 𝑟 𝑡𝜌 ). If this is

the case, model𝑚 will serve with cost 𝛾𝑘𝜌 at most 𝑧𝑘𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥) requests (its effective available capacity)
out of the 𝑟 𝑡𝜌 −

∑𝑘−1
𝑘 ′=1 𝑧

𝑘 ′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥) requests still to be satisfied. The aggregate cost incurred by the system

at time slot 𝑡 is then given by

𝐶 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥) =
∑︁
𝜌∈R

𝐾𝜌∑︁
𝑘=1

𝛾𝑘𝜌 ·min
{
𝑟 𝑡𝜌 −

𝑘−1∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥), 𝑧𝑘𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥)

}
· 1

(
𝑘−1∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥) < 𝑟 𝑡𝜌

)
. (4.12)

Note that we introduce the min{ · , · } operator, since the number of requests served by the 𝑘-th best
model cannot exceed its effective capacity 𝑧𝑘𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥). We add the indicator function 1 ( · ) to indicate
that the 𝑘-th best model does not serve any requests, in case better models (ranked from 1 to 𝑘 − 1)
are able to satisfy all of them.

4.3.6 Allocation Gain and Static Optimal Allocations
We are interested in model allocations 𝑥𝑥𝑥 that minimize the aggregate cost (4.12), or, equivalently,
that maximize the allocation gain defined as

𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥) = 𝐶 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) −𝐶 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥). (4.13)

The first term𝐶 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) on the right hand side is the service cost when only repository models
are present in the network. Since intermediate nodes can help serving the requests at a reduced
cost, 𝐶 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) is an upper bound on the aggregate serving cost, and the allocation gain captures
the cost reduction achieved by model allocation 𝑥𝑥𝑥 .

The static model allocation problem can then be formulated as finding the model allocation 𝑥𝑥𝑥∗
that maximizes the time-averaged allocation gain over the time horizon 𝑇 , i.e.,

𝑥𝑥𝑥∗ = arg max
𝑥𝑥𝑥∈X

(
𝐺𝑇 (𝑥𝑥𝑥) ≜

1
𝑇

𝑇∑︁
𝑡=1

𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥)
)
. (4.14)

This is a submodular maximization problem undermultiple knapsack constraints. In our context,
this intuitively means that the problem is characterized by a diminishing return property: adding a
model𝑚 to any node 𝑣 gives us a marginal gain that depends on the current allocation: the more the
models already deployed in the current allocation, the less the marginal gain we get by the new𝑚.
We prove submodularity in Lemma 24.2 in Appendix 24 . It is known that submodular maximization



106 Chapter 4 — Inference Delivery Networks

problems are NP-hard and cannot be approximated with a ratio better than (1 − 1/𝑒) even under
simpler cardinality constraints [179]. Under the multi-knapsack constraint, it is possible to solve
the offline problem achieving a (1 − 1/𝑒 − 𝜖)-approximation through a recent algorithm proposed
in [229].

Let us consider a model allocation 𝑥𝑥𝑥 . Within time slot 𝑡 , the 𝑘 smallest cost models along a path
𝑝𝑝𝑝 that are suitable for request type 𝜌 = (𝑖, 𝑝𝑝𝑝) can serve up to 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥) requests, where 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥)
is defined as

𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥) ≜ min
{
𝑟 𝑡𝜌 ,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥)

}
. (4.15)

The min{ · , · } operator denotes that we can never serve more than the number of requests 𝑟 𝑡𝜌 issued
by users. Observe that, being the minimal allocation 𝜔𝜔𝜔 an input parameter not dependent on our
decisions, 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) is a constant. Additionally, since the models allocated in 𝑥𝑥𝑥 always include
those allocated in𝜔𝜔𝜔 , we have 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥) ≥ 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔).

Using (4.15), we provide the following alternative formulation of the allocation gain.
Lemma 4.3.1. The allocation gain (4.13) has the following equivalent expression:

𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥) =
∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

)
︸       ︷︷       ︸
cost saving

(
𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥) − 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔)

)
.︸                                ︷︷                                ︸

additional requests

(4.16)

We prove this lemma in Appendix 25. This result tells us that the gain of a certain allocation 𝑥𝑥𝑥
can be expressed as a sum of several components. In particular, for each request type 𝜌 , the 𝑘-th
smallest cost model along the path contributes to the gain with a component (1) proportional to
its cost saving 𝛾𝑘+1𝜌 − 𝛾𝑘𝜌 with respect to the (𝑘 + 1)-th smallest cost model and (2) proportional to
the amount of additional requests that the 𝑘-th smallest cost models in allocation 𝑥𝑥𝑥 can serve with
respect to the minimal allocation𝜔𝜔𝜔 .

4.4 INFIDA Algorithm

In this section, we propose INFIDA, an online algorithm that can operate in a distributed fashion
without requiring global knowledge of the allocation state and requests arrival. In Section 4.5, we
show that INFIDA generates dynamically allocations experiencing average costs that converge to a
(1−1/𝑒−𝜖)-approximation of the optimum, which matches the best approximation ratio achievable
in polynomial time even in this online setting.

4.4.1 Algorithm Overview

On every node 𝑣 ∈ V , INFIDA updates the allocation 𝑥𝑥𝑥𝑣 ∈ X𝑣⊂{0, 1} |M| , by operating on a corre-
spondent fractional state 𝑦𝑦𝑦𝑣 ∈ Y𝑣⊂[0, 1] |M| , and the fractional allocations satisfy the budget con-
straint in Eq. (4.2). Note that, if ∥𝑠𝑠𝑠𝑣 ∥1 < 𝑏𝑣 for a node 𝑣 ∈ V , we can always consider fractional
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Algorithm 4.1 INFIDA distributed allocation on node 𝑣
1: procedure INFIDA(𝑦𝑦𝑦𝑣1= arg min

𝑦𝑦𝑦𝑣 ∈Y𝑣∩D𝑣

Φ𝑣 (𝑦𝑦𝑦𝑣), 𝑥𝑥𝑥 𝑣1=DepRound(𝑦𝑦𝑦𝑣1), 𝜂∈R+)

2: for 𝑡 = 1, 2, . . . ,𝑇 do
3: Compute 𝑔𝑔𝑔𝑣𝑡 ∈ 𝜕𝑦𝑦𝑦𝑣𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 ) through (4.18).
4: 𝑦𝑦𝑦𝑣𝑡 ← ∇Φ𝑣 (𝑦𝑦𝑦𝑣𝑡 ) ⊲ Map state to the dual space
5: ℎ̂ℎℎ

𝑣

𝑡+1 ← 𝑦𝑦𝑦𝑣𝑡 + 𝜂𝑔𝑔𝑔𝑣𝑡 ⊲ Take gradient step in the dual space
6: ℎℎℎ𝑣𝑡+1 ← (∇Φ𝑣)

−1 (ℎ̂ℎℎ𝑣𝑡+1) ⊲ Map dual state back to the primal space
7: 𝑦𝑦𝑦𝑣𝑡+1 ← PΦ𝑣

Y𝑣∩D𝑣 (ℎℎℎ𝑣𝑡+1) ⊲ Project new state onto the feasible region using Algorithm .2
8: 𝑥𝑥𝑥 𝑣𝑡+1 ← DepRound(𝑦𝑦𝑦𝑣𝑡+1) ⊲ Sample a discrete allocation
9: end for
10: end procedure

allocations that consume entirely the allowed budget; otherwise, all the allocations are set to 1 (node
𝑣 can store the whole catalog of models). Formally, if ∥𝑠𝑠𝑠𝑣 ∥1 ≥ 𝑏𝑣 then

Y𝑣 ≜
{
𝑦𝑦𝑦𝑣 ∈ [0, 1]M :

∑︁
𝑚∈M

𝑦𝑣𝑚𝑠
𝑣
𝑚 = 𝑏𝑣 ,∀𝑣 ∈ 𝑉

}
; (4.17)

otherwise, for the corner case ∥𝑠𝑠𝑠𝑣 ∥1 < 𝑏𝑣 , we have Y𝑣 ≜
{
[1]M

}
.

Each variable 𝑦𝑣𝑚 can be interpreted as the probability of hosting model𝑚 on node 𝑣 , i.e., 𝑦𝑣𝑚 =

P[𝑥𝑣𝑚 = 1] = E[𝑥𝑣𝑚] .
We define 𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) as in (4.13), replacing 𝑥𝑥𝑥 with 𝑦𝑦𝑦. Note that 𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) is a concave function

of variable𝑦𝑦𝑦 ∈ Y =
>

𝑣∈V Y𝑣 (see Lemma 28.1 in Appendix 28 ).
Within a time slot 𝑡 , node 𝑣 collects measurements frommessages that have been routed through

it (Section 4.4.2). At the end of every time slot, the node (1) computes its new fractional state𝑦𝑦𝑦𝑣 , and
(2) updates its local allocation 𝑥𝑥𝑥𝑣 via randomized rounding (Section 4.4.3). INFIDA is summarized in
Algorithm 4.1 and detailed below.
State computation. The fractional state 𝑦𝑦𝑦𝑣 is updated through an iterative procedure aiming to
maximize 𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦). This could be the standard gradient ascent method, which updates the frac-
tional state at each node as𝑦𝑦𝑦𝑣𝑡+1 = 𝑦𝑦𝑦𝑣𝑡 + 𝜂𝑔𝑔𝑔𝑣𝑡 , where 𝜂𝑡 ∈ R+ is the step size and 𝑔𝑔𝑔𝑣𝑡 is a subgradient of
𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) with respect to𝑦𝑦𝑦𝑣 .

In our work, we use OMA algorithm described in Section 2.2.3 in Chapter 2. OMA uses a func-
tion Φ𝑣 : D𝑣 → R+ (mirror map) to map 𝑦𝑦𝑦 to a dual space before applying the gradient ascent
method; then the obtained state is mapped back to the primal space (lines 3–5 of Algorithm 4.1).
OMA reduces to the classic gradient ascent method if Φ𝑣 is the squared Euclidean norm (in this case
the primal space coincides with the dual one). Instead, we use the weighted negative entropy map
Φ𝑣 (𝑦𝑦𝑦𝑣 ) = ∑

𝑚∈M 𝑠𝑣𝑚𝑦
𝑣
𝑚 log(𝑦𝑣𝑚), which is known to achieve better convergence rate in high dimen-

sional spaces when each subgradient component is bounded.6 To compute a feasible fractional state
𝑦𝑦𝑦𝑣 , we then perform a projection to the set Y𝑣 on node 𝑣 (line 6 of Algorithm 4.1). We adapt the

6Technically, the advantage in this setting derives from the infinite norm of the subgradient being independent from
the space dimension, while the Euclidean norm grows proportionally to the squared root of the space dimension [53,
Section 4.3].
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projection algorithm in Algorithm 2.2 in Chapter 2 to obtain a weighted negative entropy projection
PΦ𝑣

Y𝑣∩D𝑣 ( · ). Our adaptation is described in Appendix 26.
Allocation update. Once the fractional state 𝑦𝑦𝑦𝑣 has been updated, the final step of INFIDA is to
determine a new random discrete allocation 𝑥𝑥𝑥𝑣 and update the local models accordingly. The sam-
pled allocation 𝑥𝑥𝑥𝑣 should (1) comply with the budget constraint (4.2) on node 𝑣 and (2) be consistent
with the fractional state, i.e., E[𝑥𝑣𝑚] = 𝑦𝑣𝑚 ∀𝑚 ∈ M. To this purpose, we use the DepRound [173]
subroutine (line 7 of Algorithm 4.1).

In the remainder of this section we detail how each node computes its contribution to the global
subgradient, and the rounding strategy used to determine the discrete allocation.

4.4.2 Subgradient Computation
At the end of every time slot 𝑡 , a subgradient 𝑔𝑔𝑔𝑡 of the gain function in Eq. (4.16) at point𝑦𝑦𝑦𝑡 ∈ Y is
computed in a distributed fashion: each node 𝑣 evaluates the (𝑣,𝑚)-th component of the subgradient
for any𝑚 ∈ M as follows (see Appendix 27):

𝑔𝑣𝑡,𝑚 =
∑︁
𝜌∈R

𝑙𝑡,𝑣𝜌,𝑚 ·
(
𝛾
𝐾∗𝜌 (𝑦𝑦𝑦𝑡 )
𝜌 −𝐶𝑣𝑝𝑝𝑝,𝑚

)
· 1

(
𝜅𝜌 (𝑣,𝑚) < 𝐾∗𝜌 (𝑦𝑦𝑦𝑡 )

)
, (4.18)

where 𝐾∗𝜌 (𝑦𝑦𝑦𝑡 ) is the order of the worst needed model, i.e., the model with the highest cost that is
needed to serve all the 𝑟 𝑡𝜌 requests in the batch given the fractional state 𝑦𝑦𝑦𝑡 . Formally, 𝐾∗𝜌 (𝑦𝑦𝑦𝑡 ) ≜
min

{
𝑘 ∈ [𝐾𝜌 − 1] :

∑𝑘
𝑘 ′=1 𝑧

𝑘 ′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 ) ≥ 𝑟 𝑡𝜌

}
.

For the sake of clarity assume that the mirror map is Euclidean, and then the dual and primal
spaces collapse and𝑦𝑦𝑦𝑡 = 𝑦𝑦𝑦𝑡 . At each iteration, each component𝑦𝑡,𝑣𝑚 of the fractional allocation vector
is updated by adding a mass equal to the product of 𝜂 > 0 and the corresponding component of the
subgradient (Algorithm 4.1, line 5). Observe that 𝑔𝑣𝑚,𝑡 is the sum of different contributions, one per
each request type 𝜌 . Thanks to the indicator function, only the terms of the request types that are
served by model𝑚 on 𝑣 contribute to 𝑔𝑣𝑚,𝑡 . This contribution is proportional to the potential avail-
able capacity of model𝑚 on node 𝑣 and to the relative gain

(
𝛾
𝐾∗𝜌 (𝑦𝑦𝑦𝑡 )
𝜌 −𝐶𝑣𝑝𝑝𝑝,𝑚

)
, i.e., the cost reduction

achieved when serving request type 𝜌 with model𝑚 on 𝑣 , rather than with the worst needed model.
Then, gradient updates add more mass to the models that can contribute more to increase the gain.
On the contrary, the projection step tends to remove the added mass from all components to satisfy
the constraints. The overall effect is that fractional allocations of more (resp. less) useful models
tend to increase (resp. decrease).

The subgradient in Eq. (4.18) can be computed at each node using only information from the
control messages collected at the end of the time slot 𝑡 . The steps needed to compute the subgradient
are as follows.

1. At the end of the time slot, each node generates a control message for every received request
type 𝜌 = (𝑖, 𝑝𝑝𝑝) that is propagated along 𝑝𝑝𝑝 . The control message contains the quantity 𝑟 𝑡𝜌 ≥ 1
(the multiplicity of the request), and a cumulative counter 𝑍 initialized to zero.
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2. As the control message travels upstream, intermediate nodes add to𝑍 the local values 𝑧𝑘𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 )
(fractional effective capacity in Eq. (4.11)). These values are added following increasing values
of cost. This message is propagated until 𝑍 ≥ 𝑟 𝑡𝜌 , that is until the message reaches the 𝐾∗𝜌 (𝑦𝑦𝑦𝑡 )-
th model.

3. Once the𝐾∗𝜌 (𝑦𝑦𝑦𝑡 )-th model is detected, a control message is sent down in the opposite direction,
containing the cost 𝛾𝐾

∗
𝜌 (𝑦𝑦𝑦𝑡 )

𝜌 of the last checked model. Every node 𝑣 in the reverse direction
reads the cost value from the control message and, for each model 𝑚 ∈ M𝑖 , computes the
quantity

ℎ𝑣𝑚 = 𝑙𝑡,𝑣𝜌,𝑚 ·
(
𝛾
𝐾∗𝜌 (𝑦𝑦𝑦𝑡 )
𝜌 −𝐶𝑣𝑝𝑝𝑝,𝑚

)
. (4.19)

4. Node 𝑣 can then compute 𝑔𝑣𝑡,𝑚 in Eq. (4.18) as follows

𝑔𝑣𝑡,𝑚 =
∑︁
𝑚∈M𝑖

ℎ𝑣𝑚 .

Note that the cost in Eq. (4.6) does not necessarily increase along the path. Therefore, a traversed
node is not able to update directly the variable𝑍 when there exist upstream nodeswith lower cost. In
this case, the node simply appends the information (𝑧𝑘𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 ), 𝛾𝑘𝜌 ) to the message, and lets upstream
nodes to apply any pending update in the correct order.

4.4.3 State Rounding
Once the new fractional state 𝑦𝑦𝑦𝑡+1 is computed, each node 𝑣 independently draws a random set of
models to store locally in such a way that E[𝑥𝑥𝑥𝑣𝑡+1] = 𝑦𝑦𝑦𝑣𝑡+1. This sampling guarantees that the final
allocation 𝑥𝑥𝑥𝑣𝑡+1 satisfies constraint (4.2) in expectation. A naive approach is to draw each variable
𝑥
𝑣,𝑡+1
𝑚 independently, but it leads to a large variance of the total size of themodels selected, potentially
exceeding by far the allocation budget at node 𝑣 .

To construct a suitable allocation we adopt the DepRound procedure from [173]. The procedure
modifies the fractional state𝑦𝑦𝑦𝑣𝑡+1 iteratively: at each iteration, DepRound operates on two fractional
variables 𝑦𝑣,𝑡+1𝑚 , 𝑦

𝑣,𝑡+1
𝑚′ so that at least one of them becomes integral and the aggregate size of the

correspondingmodels 𝑠𝑣𝑚𝑦
𝑣,𝑡+1
𝑚 +𝑠𝑣

𝑚′𝑦
𝑣,𝑡+1
𝑚′ does not change. This operation is iterated until all variables

related to node 𝑣 are rounded except (at most) one, which we call residual fractional variable. This
is done in O(|M|) steps.

Note that, to satisfy E[𝑥𝑥𝑥𝑣𝑡+1] = 𝑦𝑦𝑦𝑣𝑡+1, the residual fractional variable, say it 𝑦𝑣,𝑡+1𝑚̄ , needs to be
rounded. At this point 𝑥𝑣,𝑡+1𝑚̄ can be randomly drawn. Now the final allocation can exceed the budget
bound 𝑏𝑣 by at most 𝑠𝑚̄ . These (slight) occasional violations of the constraint may not be a problem,
e.g., at an edge server running multiple applications, where resources may be partially redistributed
across different applications; they may be explicitly accounted for in the service level agreements.
If the budget bound cannot be exceeded even temporarily, the node is not able to store the model
𝑚̄, but it may still exploits the residual free resources to deploy the model that provides the best
marginal gain among those that fit the available budget. In practice, we expect the corresponding
gain decrease to be negligible.
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4.5 Theoretical Guarantees

We provide the optimality guarantees of our INFIDA algorithm in terms of the 𝜓 -regret [177]. In
our scenario, the 𝜓 -regret is defined as the gain loss in comparison to the best static allocation in
hindsight, i.e., 𝑥𝑥𝑥∗ ∈ arg max𝑥𝑥𝑥∈X

∑𝑇
𝑡=1𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥), discounted by a factor𝜓 ∈ (0, 1]. Formally,

𝜓 -Regret𝑇,X ≜ sup
{𝑟𝑟𝑟 𝑡 ,𝑙𝑙𝑙𝑡 }𝑇𝑡=1∈A𝑇

{
𝜓

𝑇∑︁
𝑡=1

𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥∗)−E
[
𝑇∑︁
𝑡=1

𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥𝑡 )
]}
,

where allocations𝑥𝑥𝑥𝑡 are computed using INFIDA and the expectation is over the randomized choices
of DepRound. Note that, by taking the supremum over all request sequences and potential available
capacities, we measure regret in an adversarial setting, i.e., against an adversary that selects, for
every 𝑡 ∈ [𝑇 ], vectors 𝑟𝑟𝑟 𝑡 and 𝑙𝑙𝑙𝑡 to jeopardize the performance of our algorithm. Obviously, we do
not expect such an adversary would exist in reality, but the adversarial analysis provides bounds on
the behavior of INFIDA in the worst case.

The adversarial analysis is a modeling technique to characterize system performance under
highly volatile external parameters (e.g., the sequence of requests 𝑟𝑟𝑟 𝑡 ) or difficult to model system
interactions (e.g., the available capacities 𝑙𝑙𝑙𝑡 ). This technique has been recently successfully used to
model caching problems (e.g., in [139, 171]). Our main result is the following (the full proof is in
Appendix 29):

Theorem 4.5.1. INFIDA has a sublinear (1 − 1/𝑒)-regret w.r.t. the time horizon 𝑇 , i.e., there exists a
constant 𝐴 such that:

(1 − 1/𝑒)-Regret𝑇,X ≤ 𝐴
√
𝑇, (4.20)

where 𝐴 ∝ 𝑅𝐿maxΔ𝐶 . 𝑅, 𝐿max, and Δ𝐶 are upper bounds, respectively, on the total number of request
types at any time slot, on the model capacities, and on the largest serving cost difference between serving
at a repository node and at any other node.

We first prove that the expected gain of the randomly sampled allocations 𝑥𝑥𝑥𝑡 is a (1−1/𝑒)-
approximation of the fractional gain. Then, we use online learning results [53] to bound the regret
of Online Mirror Ascent schemes operating on a convex decision space and against concave gain
functions picked by an adversary. The two results are combined to obtain an upper bound on the
(1−1/𝑒)-regret. The full proof and the full characterization of 𝐴 are provided in Appendix 29. in
Appendix 29.

We observe that the regret bound depends crucially on the maximum number of request types
𝑅, maximum model capacity 𝐿max and maximum serving cost difference Δ𝐶 . When considering the
cost model in Eq. (4.6), we can consider for Δ𝐶 the sum of the total latency of the heaviest path, the
parameter 𝛼 , and the largest inference delay. This result is intuitive: when these values are bigger,
the adversary has a larger room to select values that can harm the performance of the system.

As a direct consequence of Theorem 4.5.1, the expected time averaged (1−1/𝑒)-regret of INFIDA
can get arbitrarily close to zero for large time horizon. Hence, INFIDA achieves a time averaged
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expected gain that is a (1 − 1/𝑒 − 𝜖)-approximation of the optimal time averaged static gain, for
arbitrarily small 𝜖 .

Observe that INFIDA computes a different 𝑥𝑥𝑥𝑡 at every time slot. Intuitively, this allows it to “run
after” the exogenous variation of the adversarial input {𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 }𝑇𝑡=1 ∈ A𝑇 . An alternative goal that can
be achieved by INFIDA is to find a static allocation 𝑦𝑦𝑦. In order to do so, we need to (1) run INFIDA
for𝑇 time-slots, (2) based on the {𝑦𝑦𝑦𝑡 }𝑇𝑡=1 computed by INFIDA, calculate𝑥𝑥𝑥 (the exact calculation is in
Proposition 4.5.2), (3) deploy in the IDN the allocation𝑥𝑥𝑥 and keep it static, in order to avoid switches.
Obviously, we would like the quality of 𝑥𝑥𝑥 to be close to the best 𝑥𝑥𝑥∗, defined in (4.14). The following
proposition shows that the gain achieved with our 𝑥𝑥𝑥 is boundedly close to the optimum. Moreover,
since (4.14) is NP-hard, there cannot exist better bounds than the one we achieve, assuming P ≠

NP [179].

Proposition 4.5.2. (offline solution) Replace in INFIDA the allocation gain 𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) by 𝐺𝑇 (𝑦𝑦𝑦) (de-
fined in (4.14)). After 𝑇 iterations, let 𝑦𝑦𝑦 be the average fractional allocation 𝑦𝑦𝑦 = 1

𝑇

∑𝑇

𝑡=1𝑦𝑦𝑦𝑡 , and 𝑥𝑥𝑥 the
random state sampled from𝑦𝑦𝑦 using DepRound. ∀𝜖 > 0, for 𝑇 large enough, 𝑥𝑥𝑥 satisfies

E [𝐺𝑇 (𝑥𝑥𝑥)] ≥
(
1 − 1

𝑒
− 𝜖

)
𝐺𝑇 (𝑥𝑥𝑥∗), (4.21)

where 𝑥𝑥𝑥∗ = arg max𝑥𝑥𝑥∈X𝐺𝑇 (𝑥𝑥𝑥).

The proof is given in Appendix. 30.

4.6 Experimental Results

We evaluate INFIDA by simulating a realistic scenario based on the typical structure of ISP net-
works. We compare our solution with a greedy heuristic and its online variant (described below),
as the greedy heuristic is known to achieve good performance in practice for submodular optimiza-
tion [177].
Topology. We simulate a hierarchical topology similar to [230] that spans between edge and cloud,
with different capacities at each tier. We consider 5 tiers: base stations (tier 4), central offices (tiers 3,
2), ISP data center (tier 1), a remote cloud (tier 0). We assume a hierarchical geographic distribution
similar to LTE. We take the Round-Trip Time (RTT) across the different tiers as follows: tier 4 to tier
3 takes 6 ms, tier 3 to tier 2 takes 6 ms, tier 2 to tier 1 takes 15 ms, and tier 1 to tier 0 takes 40 ms.
We execute our experiments at two different scales: Network Topology I counts 24 base stations and
36 nodes in total, while Network Topology II is a simpler 5-node scenario with 2 base stations.
Processing Units. We take GPU memory of the computing nodes as the limiting budget. The node
at tier 0 can store the entire models catalog. We simulate the performance of two different processing
units: the computing nodes at tiers 0 and 1 are equipped with high-end GPUs (Titan RTX), and the
remaining tiers 2–4 have mid-tier GPUs (GeForce GTX 980). The budget of each computing tier is
given as follows: a tier-1 node has 16GB GPUs, a tier-2 node has 12GB GPUs, a tier-3 node has 8GB
GPUs, and a tier-4 node has 4GB GPUs.
Catalog and requests. We simulate performance based on state-of-the-art pre-trained models and
their pruned versions [231,232], profiled for each simulated processing unit, for a total of 10 models
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variants
of yolov4

accuracy
(mAP@0.5)

memory
(MB)

frames per second
Titan RTX GTX 980

608p 65.3 1577 41.3 14.2
512p 64.9 1185 55.5 18.9
416p 62.8 1009 73.8 25.1
320p 57.3 805 100 34.1
3.99pruned 55.1 395 209 71.0
8.09pruned 51.4 195 329 112
10.10pruned 50.9 156 371 126
14.02pruned 49.0 112 488 166
tiny-416p 38.3 187 888 302
tiny-288p 34.4 160 1272 433

Table 4.2: Catalog for variants of YOLOv4 [231] profiled on two different Processing Units. Accuracy
is for the MS COCO dataset. Values for the pruned variants are adapted from [232].

(Table 4.2). We consider a task catalog with |N | = 20 different object detection tasks. We allow
3 duplicates per model; this gives |M𝑖 | = 30 alternative models per task 𝑖 ∈ N . Note how, as
model complexity decreases, the number of frames a GPU can process per second increases, and
consequently the average inference delay decreases.

The time slot duration is set to 1 minute and requests arrive at a constant rate of 7,500 requests
per second (rps), unless otherwise said. Each request type is assigned randomly to two base stations
in tier 4. The corresponding task is selected according to two different popularity profiles: (1) in the
Fixed Popularity Profile , a request is for task 𝑖 with constant probability 𝑝 (1) = (𝑖+1)−1.2∑

𝑖′ ∈N (𝑖′+1)−1.2 (a Zipf
distributionwith exponent 1.2), while (2) in the Sliding Popularity Profile, the 𝑙-th consecutive request
is for task 𝑖 with probability 𝑝 (𝑖, 𝑙) = 𝑝 ((𝑖 + 5⌊𝑙/𝑊 ⌋) mod 20), that is, the popularity of the tasks
changes through a cyclic shift of 5 tasks every 1 hour for a request rate of 7,500 rps (𝑊 = 2.3× 107).
Static greedy. We adapt the static greedy (SG) heuristic from the cost-benefit greedy in [177]. SG
operates in hindsight seekingmaximization of the time averaged allocation gain over the whole time
horizon𝑇 , as in Eq. (4.14). Starting from an empty allocation, this policy progressively allocates the
model that provides the highest marginal gain normalized by size, among those that meet the budget
constraints. This process is repeated until either the intermediate allocation is capable of serving all
requests or none of the remaining valid allocations introduces a positive marginal gain.
Online load-aware greedy heuristic. As INFIDA is the first online policy for ML models’ allo-
cation in IDNs, there is no clear baseline to compare it with. We then propose an online heuris-
tic based on SG, which we call online load-aware greedy (OLAG). A node 𝑣 uses counters 𝜙𝑣𝑚,𝜌
to keep track of the number of times a request 𝜌 ∈ R is forwarded upstream but could have
been served locally at a lower cost compared to the repository, i.e., using a model 𝑚 ∈ M with
positive gain that we denote by 𝑞𝑣𝑚,𝜌 . For every model 𝑚, an importance weight is computed as
𝑤𝑣
𝑚=

1
𝑠𝑣𝑚

1
|R |

∑
𝜌∈R 𝑞

𝑣
𝑚,𝜌 min{𝜙𝑣𝑚,𝜌 , 𝐿𝑣𝑚}, where 𝑠𝑣𝑚 is the size of model𝑚 and min{𝜙𝑣𝑚,𝜌 , 𝐿𝑣𝑚} is the num-

ber of requests that could have been improved by𝑚. At the end of a time slot, the node selects the
model𝑚∗ with the highest importance while respecting the resource budget constraint, then sub-
tracts the quantity min{𝜙𝑣𝑚,𝜌 , 𝐿𝑣𝑚} from 𝜙𝑣𝑚∗,𝜌 and from all the 𝜙𝑣

𝑚′,𝜌 : 𝑞𝑣
𝑚′,𝜌 < 𝑞𝑣𝑚∗,𝜌 , i.e., models that
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provide a gain lower than𝑚∗. This procedure is repeated until the resource budget of the node is
consumed.
Offline INFIDA. Motivated by Proposition 4.5.2, we implemented also an offline version of INFIDA
that we call INFIDAOffline, which maximizes the time-averaged gain (4.14) over the whole time
horizon𝑇 . The potential available capacities are determined at runtime from the current allocations
and request batches (rather than by an adversary).
Performance Metrics. The performance of a policy P with the associated sequence of alloca-
tion decisions {𝑥𝑥𝑥𝑡 }𝑇𝑡=1 is evaluated in terms of the time-averaged gain normalized to the number of
requests per time slot (NTAG):

NTAG(P) =
𝑇∑︁
𝑡=1

1
𝑇 ∥𝑟𝑟𝑟 𝑡 ∥1

𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥𝑡 ). (4.22)

Moreover, we evaluate the update cost of a policy P with the associated sequence of allocation
decisions {𝑥𝑥𝑥𝑡 }𝑇𝑡=1 by quantifying the total size of fetched models over 𝑇 time slots. The update cost
is reflected by the Time-Averaged Model Updates (MU) metric defined as:

MU(P) ≜ 1
𝑇

𝑇∑︁
𝑡=2

∑︁
(𝑣,𝑚)∈V×M

𝑠𝑣𝑚 max{0, 𝑥𝑣𝑡,𝑚 − 𝑥𝑣𝑡−1,𝑚}. (4.23)

4.6.1 Trade-off between Latency and Accuracy
We first evaluate how INFIDA adapts to different trade-offs between end-to-end latency and infer-
ence accuracy by varying the trade-off parameter 𝛼 .7

Figure 4.4 shows the fractional allocation decision at each tier of the network topology for dif-
ferent values of 𝛼 (remember that the smaller 𝛼 the more importance is given to the latency rather
than to inaccuracy, see Eq. (4.6)). Models are ordered horizontally by increasing accuracy with 3
potential replicas for each model, and only the models able to serve the most popular request are
shown. Note that the tier-0 node acts as a repository and its allocation is fixed; moreover, in Fig 4.4
the repository node picks the secondmost accurate model because it provides the smallest combined
cost in Eq. (4.6).

For 𝛼 = 3 (Figure 4.4a), INFIDA allocates a considerable amount of small models (which provide
low accuracy) near the edge (tiers 1–3 and model IDs 0–18), as they can serve a larger number of
requests compared to higher quality models with low inference delay. By giving more importance
to the accuracy (𝛼 = 4) the system tends to deploy more accurate models and rarely allocates small
models (Figure 4.4b). For 𝛼 = 5, the number of models deployed on lower tiers decreases, as the
system allocates no small models in practice (model IDs 0–20) and selects instead multiple replicas
of the most accurate models (Figure 4.4c). Since higher quality models feature, in general, a lower
serving capacity (Table 4.2), Figure 4.4c suggests that a significant number of requests is served in
the cloud (Tier 0) for this value of 𝛼 .

7The inaccuracy cost is taken in 0–100, then 𝛼 picked here corresponds to 100× scaling of the parameter defined in
Eq. (4.6).
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(c) 𝛼 = 5

Figure 4.4: Fractional allocation decisions 𝑦𝑣𝑚 of INFIDA on the various tiers of Network Topology I
under Fixed Popularity Profile. We only show the allocations corresponding to the models capable
to serve the most popular request. The model IDs are sorted by increasing accuracy.

Figure 4.5 shows the average experienced inaccuracy (inaccuracy is given by 100 − mAP and
mAP is the mean average precision) and latency for different values of 𝛼 under Network Topology I
and Fixed Popularity Profile. When accuracy is not important (i.e., 𝛼 ≈ 0), INFIDA effectively achieves
very low end-to-end latency (few milliseconds) by prioritizing the deployment of small and inac-
curate models near to the edge nodes. Noticeably, the trend in both curves (decreasing inaccuracy
and increasing latency) suggests that, when higher accuracy is required, the system starts to prefer
models deployed close to the cloud, leading to a sudden change in the trade-off and to a significant
increase in latency.

In Figure 4.6 we show the normalized time-averaged gain of INFIDA compared to OLAG, SG,
and INFIDAOffline for different values of 𝛼 under the Sliding Popularity Profile. Results are shown
both for Network Topology I (Figure 4.6a) and for Network Topology II (Figure 4.6b).

The plot shows that the gain decreases by increasing 𝛼 . This is expected since the gain (4.13)
is defined as the improvement w.r.t. the repository allocation (tier 0). Therefore, when the latency
is not important, high accuracy models at tier 0 are preferred, and there is no much room for im-
provement (the optimal gain eventually tends to zero for 𝛼→+∞). Note that, in general, SG and
INFIDAOffline policies perform worse than their offline counterparts, as they pick a single alloca-
tion that is the best w.r.t. the whole sequence of requests. However, in the Sliding Popularity Profile
the best decision changes periodically, and only the online policies have the ability to adapt to such
change. Moreover, we observe that consistently INFIDAOffline has better performance than SG:
although both policies are offline, INFIDAOffline manages to provide a better allocation.
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Figure 4.5: Average latency (dashed line) and inaccuracy (solid line) costs experienced with INFIDA
for different values of 𝛼 under Network Topology I and Fixed Popularity Profile.
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Figure 4.6: NTAG of the different policies under Sliding Popularity Profile and network topologies:
(a) Network Topology I, and (b) Network Topology II.

4.6.2 Trade-off between model updates and service cost.
In this set of experiments, we evaluate how the frequency at which INFIDA updates the model
allocation affects the stability of the system. Indeed, frequent updates could lead to massive migra-
tions with an overhead on network bandwidth. As an evaluation metric, we measure the total size
of fetched models averaged over time (see the performance metric in Eq. (4.23)). We introduce 𝐵
that we call the refresh period, and we restrict INFIDA to only sample a physical allocation every
𝐵 ∈ {4, 8, 32} time slots (line 8 in Algorithm 4.1). Additionally, we experiment linear stretching of
the refresh period 𝐵 with initial period 𝐵init = 1 and target period 𝐵target = 32 in a stretching duration
of Δt = 1H. We run this experiment under Network Topology I and Sliding Popularity Profile. We set
the trade-off parameter 𝛼 = 1.

In particular, Figure 4.7a shows the update cost (MU) for different refresh periods, while Fig-
ure 4.7b shows the NTAG. Both plots include the performance of the OLAG heuristic. We observe
that, by increasing the refresh period 𝐵, the system fetches a smaller number of models, and there-
fore the update cost decreases, at the expense of reactivity. Nevertheless, even for large values of 𝐵
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Figure 4.7: (a) Models Updates (MU) and (b) NTAG of OLAG and INFIDA for different values of
refresh period 𝐵 ∈ {4, 8, 16}, and for a dynamic refresh period with initial value 𝐵init = 1, target
value 𝐵target = 32 and stretching duration Δ𝑡 = 60 (1H). The experiment is run under Network
Topology I and Sliding Popularity Profile.

INFIDA eventually exceeds OLAG in performance: this result is expected since the algorithm con-
tinues to learn on the fractional (virtual) states and only the physical allocations are delayed and
eventually catch-up for a large time horizon. On the other hand, we observe that OLAG is rela-
tively conservative in updating its allocation, as it quickly picks a sub-optimal allocation and rarely
updates it.

The previous observation motivates the use of a dynamic refresh period. By refreshing more
frequently at the start we allow the physical allocation generated by INFIDA to catch up quickly
with the fractional states as shown in Figure 4.7b: a dynamic refresh period that stretches from
𝐵init = 1 to 𝐵target = 32 attains much faster and more precise convergence. This is achieved at the
expense of a high update cost at the start, which is, however, quickly dampened until it matches the
same update cost of fixing the refresh period to 𝐵target.

4.6.3 Scalability on Requests Load
We show how the system performs under different requests loads. For this set of experiments, we
set 𝛼 = 1. Figure 4.8 compares the results for the different allocation policies.

We notice that, being INFIDAOffline and SG offline policies, they perform well when the pop-
ularity profile is static (Figure 4.8a), but deteriorate under Sliding Popularity Profile. Notably, the
performance degradation of INFIDAOffline (≈8%) is considerably limited compared to SG (≈30%),
which even gets worse when increasing the requests load.

Figure 4.8 shows that, in general, INFIDA provides a higher gain compared to the OLAG heuris-
tic. In particular, under Fixed Popularity Profile INFIDA manages to converge to the same NTAG
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Figure 4.8: NTAG of the different policies for different request rates under Network Topology I.

provided by its offline counterpart (Figure 4.8a), which is ≈10% better than the one provided by
OLAG when the load is 7,083 rps. Additionally, OLAG’s performance deteriorates when the re-
quests load increases from 7,083 rps to 10,000 rps. It is also noteworthy that OLAG visibly suffers
from perturbed performance when the popularity of the tasks changes over time (Figure 4.8b). On
the other hand, results show the robustness of INFIDA against changing request loads and popu-
larity: the algorithm preserves its performance in terms of normalized time-averaged gain for the
analyzed request loads and under both Fixed Popularity Profile and Sliding Popularity Profile, always
converging to the highest NTAG.

Last, in Figure 4.9 we evaluate separately the average latency and inaccuracy attained by the
different policies using different values of 𝛼 ∈ {0.5, 1, 2, 3, 4, 5, 6} under Fixed Popularity Profile and
Network Topology II. We observe that INFIDA and its offline counterpart INFIDAOffline consistently
provide the lowest average inaccuracy and latency under both high request load (10,000 rps) and
default request load (7,500 rps). INFIDAOffline is run with hindsight and serves as a lower bound on
the achievable latency and inaccuracy under a fixed popularity request process (as in Figure 4.8a).

4.7 Conclusion

In this chapter, we introduce the idea of inference delivery networks (IDNs), networks of computing
nodes that coordinate to satisfy inference requests in the continuum between Edge and Cloud. IDN
nodes can serve inference requests with different levels of accuracy and end-to-end latency, based
on their geographic location and processing capabilities. We formalize the NP-hard problem of
allocating ML models on IDN nodes, capturing the trade-off between latency and accuracy. We
propose INFIDA, a dynamicMLmodel allocation algorithm that operates in a distributed fashion and
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{0.5, 1, 2, 3, 4, 5, 6} under Fixed Popularity Profile and Network Topology II.

provides strong guarantees in an adversarial setting. We evaluate INFIDA simulating the realistic
scenario of an ISP network, and compared its performance under two different topologies with both
an offline greedy heuristic and its online variant. Our results show that INFIDA adapts to different
latency/accuracy trade-offs and scales well with the number of requests, outperforming the greedy
policies in all the analyzed settings.



CHAPTER 5
Long-term Fairness in

Dynamic Resource
Allocation

5.1 Introduction

Achieving fairness when allocating resources in communication and computing systems has been
a subject of extensive research, and has been successfully applied in numerous practical problems.
Fairness is leveraged to perform congestion control in the Internet [233, 234], to select transmis-
sion power in multi-user wireless networks [235, 236], and to allocate multidimensional resources
in cloud computing platforms [237–239]. Depending on the problem at hand, the criterion of fair-
ness can be expressed in terms of how the service performance is distributed across the end-users,
or in terms of how the costs are balanced across the servicing nodes. The latter case exemplifies
the natural link between fairness and load balancing in resource-constrained systems [240, 241].
A prevalent fairness metric is 𝛼-fairness, which encompasses the utilitarian principle (Bentham-
Edgeworth solution [242]), proportional fairness (Nash bargaining solution [243]), max-min fair-
ness (Kalai–Smorodinsky bargaining solution [244]), and, under some conditions, Walrasian equi-
librium [245]. All these fairness metrics have been used in different cases for the design of resource
management mechanisms [246, 247].

A common limitation of the above works is that they consider static environments. That is,
the resources to be allocated and, importantly, the users’ utility functions, are fixed and known
to the decision maker. This assumption is very often unrealistic for today’s communication and
computing systems. For instance, in small-cell mobile networks the user churn is typically very
high and unpredictable, thus hindering the fair allocation of spectrum to cells [4]. Similarly, placing
content files at edge caches to balance the latency gains across the served areas is non-trivial due
to the non-stationary and fast-changing patterns of requests [5]. At the same time, the increasing
virtualization of these systems introduces cost and performance volatility, as extensivemeasurement
studies have revealed [6–8]. This uncertainty is exacerbated for services that process user-generated
data (e.g., streaming data applications) where the performance (e.g., inference accuracy) depends also
on a priori unknown input data and dynamically selected machine learning libraries [9–11].

119
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5.1.1 Contributions
This paper makes the next step towards enabling long-term fairness in dynamic systems. We con-
sider a system that serves a set of agents I, where a controller selects at each timeslot 𝑡 ∈ N a
resource allocation profile 𝑥𝑥𝑥𝑡 from a set of eligible allocations X based on past agents’ utility func-
tions 𝑢𝑢𝑢𝑡 ′ : X → RI for 𝑡 ′ < 𝑡 and of 𝛼-fairness function 𝐹𝛼 : RI≥0 → R. The utilities might change
due to unknown, unpredictable, and (possibly) non-stationary perturbations that are revealed to the
controller only after it decides 𝑥𝑥𝑥𝑡 . We employ the terms horizon-fairness (HF) and slot-fairness (SF)
to distinguish the different ways fairness can be enforced in a such time-slotted dynamic system.
Under horizon-fairness, the controller enforces fairness on the aggregate utilities for a given time
horizon 𝑇 , whereas under slot-fairness, it enforces fairness on the utilities at each timeslot sepa-
rately. Both metrics have been studied in previous work, e.g., see [248–251] and the discussion in
Section 5.2. Our focus is on horizon-fairness, which raises novel technical challenges and subsumes
slot-fairness as a special case.

We design the online horizon-fair (OHF) policy by leveraging online convex optimiza-
tion (OCO) [20], to handle this reduced-information setting under a powerful adversarial perturba-
tion model. Adversarial analysis is a modeling technique to characterize a system’s performance
under unknown and hard to characterize exogenous parameters and has been recently successfully
used to model caching problems (e.g., in [139, 171, 252–256]). In our context, the performance of a
resource allocation policy AAA is evaluated by the fairness regret, which is defined as the difference
between the 𝛼-fairness, over the time-averaged utilities, achieved by a static optimum-in-hindsight
(benchmark) and the one achieved by the policy:

ℜ𝑇 (𝐹𝛼 ,AAA) ≜ sup
{𝑢𝑢𝑢𝑡 }𝑇𝑡=1∈U𝑇

{
max
𝑥𝑥𝑥∈X

𝐹𝛼

(
1
𝑇

∑︁
𝑡∈T

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥)
)
− 𝐹𝛼

(
1
𝑇

∑︁
𝑡∈T

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )
)}

. (5.1)

If the fairness regret vanishes over time (i.e., lim𝑇→∞ℜ𝑇 (𝐹𝛼 ,AAA) = 0), policyAAA will attain the same
fairness value as the static benchmark under any possible sequence of utility functions. A policy
that achieves sublinear regret under these adversarial conditions, can also succeed in more benign
conditions where the perturbations are not adversarial, or the utility functions are revealed at the
beginning of each slot.

The fairness regret metric (5.1) departs from the template of OCO. In particular, the scalarization
of the vector-valued utilities, through the 𝛼-fairness function, is not applied at every timeslot to
allow for the controller to easily adapt its allocations, instead is only applied at the end of the time
horizon 𝑇 . Our first result characterizes the challenges in tackling this learning problem. Namely,
Theorem 5.4.1 proves that, when utility perturbations are only subject to four mild technical condi-
tions, such as in standard OCO, it is impossible to achieve vanishing fairness-regret. Similar negative
results were obtained under different setups of primal-dual learning and online saddle point learn-
ing [257–259], but they have been devised for specific problem structures (e.g., online matrix games)
and thus do not apply to our setting.

In light of this negative result, we introduce additional necessary conditions on the adversary to
obtain a vanishing regret guarantee. Namely, the adversary can only induce perturbations to the
time-averaged utilities we call budgeted-severity or partitioned-severity constrained. These con-
ditions capture several practical utility patterns, such as non-stationary corruptions, ergodic and
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periodic inputs [249, 260–262]. We proceed to propose the OHF policy which adapts dynamically
the allocation decisions and provably achieves ℜ𝑇 (𝐹𝛼 ,AAA) = 𝑜 (1) (see Theorem 5.4.2).

The OHF policy employs a novel learning approach that operates concurrently, and in a syn-
chronized fashion, in a primal and a dual (conjugate) space. Intuitively, OHF learns the weighted
time-varying utilities in a primal space, and learns the weights accounting for the global fairness
metric in some dual space. To achieve this, we develop novel techniques through a convex conjugate
approach (see Lemmas 31.1, 31.2, and 31.4 in the Appendix).

Finally, we apply our fairness framework to a representative resource management problem in
virtualized caching systems where different caches cooperate by serving jointly the received content
requests. We evaluate the performance of OHF with its slot-fairness counterpart policy through
numerical examples. We evaluate the price of fairness of OHF, which quantifies the efficiency loss
due to fairness, across different network topologies and participating agents. Lastly, we applyOHF to
a Nash bargaining scenario, a concept that has been widely used in resource allocation to distribute
to a set of agents the utility of their cooperation [263–266].

5.1.2 Outline of Paper
The paper is organized as follows. The related literature is discussed in Section 5.2. The definitions
and background are provided in Section 5.3. The adversarial model and the proposed algorithm are
presented in Section 5.4. Extensions to the fairness framework are provided in Section 5.5. The
resource management problem in virtualized caching systems application is provided in Section 5.6.
Finally, we conclude the paper and provide directions for future work in Section 5.7.

5.2 Related Work

5.2.1 Fairness in Resource Allocation
Fairness has found many applications in wired and wireless networking [233–236, 267], and
cloud computing platforms [237–239]. Prevalent fairness criteria are the max-min fairness
and proportional fairness, which are rooted in axiomatic bargaining theory, namely the
Kalai–Smorodinsky [244] and Nash bargaining solution [243], respectively. On the other side of the
spectrum, a controller might opt to ignore fairness and maximize the aggregate utility of users, i.e.,
to follow the utilitarian principle, also referred to as the Bentham-Edgeworth solution [242]. The
Price of Fairness (PoF) [268] is now an established metric for assessing how much the social welfare
(i.e., the aggregate utility) is affected when enforcing some fairness metric. Ideally, we would like
this price to be as small as possible, bridging in a way these two criteria. Atkinson [269] proposed
the unifying 𝛼-fairness criterion which yields different fairness criteria based on the value of 𝛼 ,
i.e., the utilitarian principle (𝛼 = 0), proportional fairness (𝛼 = 1), and max-min fairness (𝛼 → ∞).
Due to the generality of the 𝛼-fairness criterion, we use it to develop our theory, which in turn
renders our results transferrable to all above fairness and bargaining problems. In this work, the
PoF, together with the metric of fairness-regret, are the two criteria we use to characterize our
fairness solution.



122 Chapter 5 — Long-term Fairness in Dynamic Resource Allocation

5.2.2 Fairness in Dynamic Resource Allocation
Several works consider slot-fairness in dynamic systems [250, 251, 270]. Jalota and Ye [250] pro-
posed a weighted proportional fairness algorithm for a system where new users arrive in each slot,
having linear i.i.d. perturbed unknown utility functions at the time of selecting an allocation, and
are allocated resources from an i.i.d. varying budget. Sinclair et al. [251] consider a similar setup,
but assume the utilities are known at the time of selecting an allocation, and the utility parameters
(number of agents and their type) are drawn from some fixed known distribution. They propose
an adaptive threshold policy, which achieves a target efficiency (amount of consumed resources’
budget) and fairness tradeoff, where the latter is defined w.r.t. to an offline weighted proportional
fairness benchmark. Finally, Talebi and Proutiere [270] study dynamically arriving tasks that are as-
signed to a set of servers with unknown and stochastically-varying service rates. Using a stochastic
multi-armed bandit model, the authors achieve proportional fairness across the service rates as-
signed to different tasks at each slot. All these important works, however, do not consider the more
practical horizon-fairness metric where fairness is enforced throughout the entire operation of the
system and not over each slot separately.

Horizon-fairness has been recently studied through the lens of competitive analysis [271–273],
where the goal is to design a policy that achieves online fairness within a constant factor from the
fairness of a suitable benchmark. Kawase and Sumita [271] consider the problem of allocating ar-
riving items irrevocably to one agent who has additive utilities over the items. The arrival of the
items is arbitrary and can even be selected by an adversary. The authors consider known utility at
the time of allocation, and design policies under the max-min fairness criterion. Banerjee et al. [272]
consider a similar problem under the proportional fairness criterion, and they allow the policies to
exploit available predictions. We observe that the competitive ratio guarantees, while theoretically
interesting, may not be informative about the fairness of the actual approximate solution achieved
by the algorithm for ratios different from one. For instance, when maximizing a Nash welfare func-
tion under the proportional fairness criterion, the solution achieves some axiomatic fairness proper-
ties [243] (e.g., Pareto efficiency, individual rationality, etc.), but this welfare function is meaningless
for “non-optimal” allocations [251], i.e., a policy with a high competitive ratio is not necessary less
fair than a policy with a lower competitive ratio. For this reason, our work considers regret as a per-
formance metric: when regret vanishes asymptotically, the allocations of the policy indeed achieve
the exact same objective as the adopted benchmark.

A different line of work [248, 249, 274–278] considers horizon-fairness through regret analysis.
Gupta and Kamble [248] study individual fairness criteria that advocate similar individuals should
be treated similarly. They extend the notion of individual fairness to online contextual decision-
making, and introduce: (1) fairness-across-time and (2) fairness-in-hindsight. Fairness-across-time
criterion requires the treatment of individuals to be individually fair relative to the past as well as
future, while fairness-in-hindsight only requires individual fairness at the time of the decision. The
utilities are known at the time of selecting an allocation and are i.i.d. and drawn from an unknown
fixed distribution. In this work, we make a similar distinction on the fairness criterion in the online
setting, where we define the horizon-fairness and slot-fairness. Liao et al. [249] consider a similar
setup to ours, with a limited adversarial model and time-varying but known utilities, and focus on
proportional fairness. They consider adversarial perturbation added on a fixed item distribution
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Table 5.1: Summary of related work under online fairness in resource allocation.

Paper Criterion HF/SF Unknown
utilities

Adversarial
utilities

Metric

[250] Weighted proportional fairness SF ✓ ✕ Regret
[251] Weighted proportional fairness SF ✕ ✕ Envy, Efficiency
[270] Proportional fairness SF ✕ ✕ Regret
[248] Individual fairness HF/SF ✕ ✕ Regret
[249] Proportional fairness HF ✕ ✓ Regret
[274] 𝛼-fairness HF ✓ ✕ Regret
[275] Envy-freeness HF ✕ ✓ Envy
[276] Weighted proportional fairness HF ✕ ✓ Envy, Pareto Efficiency
[278] Proportional fairness HF ✕ ✕ Regret
[271] Max-Min fairness HF ✕ ✓ Competitive ratio
[272] Proportional fairness HF ✕ ✓ Competitive ratio
[273] Proportional fairness HF ✕ ✕ Competitive ratio

This work Weighted 𝛼-fairness HF/SF ✓ ✓ Fairness Regret

where the demand of items generally behaves predictably, but for some time steps, the demand
behaves erratically. Our approach departs significantly from these interesting works in that we con-
sider unknown utility functions, a broader adversarial model (in fact, as broad as possible while still
achieving vanishing fairness regret), and by using the general 𝛼-fairness criterion that encompasses
all the above criteria as special cases. This makes, we believe, our OHF algorithm applicable to a
wider range of practical problems. Table 5.1 summarizes the differences between our contribution
and the related works.

5.2.3 Online Learning
Achieving horizon-fairness in our setup requires technical extensions to the theory of OCO [20].
The basic template of OCO-learning (in terms of resource allocation) considers that a decisionmaker
selects repeatedly a vector𝑥𝑥𝑥𝑡 from a convex setX, without having access to the 𝑡-th slot scalar utility
function 𝑢𝑡 (𝑥𝑥𝑥), with the goal to maximize the aggregate utility

∑𝑇
𝑡=1𝑢𝑡 (𝑥𝑥𝑥𝑡 ). The decision maker

aims to have vanishing time-averaged regret, i.e., the time-averaged distance of the aggregate utility∑𝑇
𝑡=1𝑢𝑡 (𝑥𝑥𝑥𝑡 ) from the aggregate utility of the optimal-in-hindsight allocation max𝑥𝑥𝑥∈X

∑𝑇
𝑡=1𝑢𝑡 (𝑥𝑥𝑥) for

some time horizon 𝑇 . OCO models are robust, expressive, and can be tackled with several well-
studied learning algorithms [20,48,279]. However, none of those is suitable for the fairness problem
at hand, as we need to optimize a global function 𝐹𝛼 ( · ) of the time-averaged vector-valued utilities.
This subtle change creates additional technical complications. Indeed, optimizing functions of time-
averaged utility/cost functions in learning is an open and challenging problem. In particular, Even-
Dar et al. [280] introduced the concept of global functions in online learning, and devised a policy
with vanishing regret using the theory of approachability [281]. However, their approach can handle
only norms as global functions, and this limitation is not easy to overcome: the authors themselves
stress characterizing when a global function enables a vanishing regret is an open problem (see [280,
Section 7]). Rakhlin et al. [282] extend this work to non-additive global functions. However, the 𝛼-
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fairness function considered in our work is not supported by their framework. To generalize the
results to 𝛼-fairness global functions, we employ a convex conjugate approach conceptually similar
to the approach taken in the work of Agrawal and Evanur [283] to obtain a regret guarantee with
a concave global function under a stationary setting and linear utilities. In this work, we consider
an adversarial setting (i.e., utilities are picked by an adversary after we select an allocation) that
encompasses general concave utilities, and this requires learning over the primal space as well as
the dual (conjugate) space.

5.3 Online Fairness: Definitions and Background

5.3.1 Static Fairness
Consider a system S that serves a set of agents I by selecting allocations from the set of eligible
allocations X.1 In the general case, this set is defined as the Cartesian product of agent-specific
eligible allocations’ set X𝑖 , i.e., X ≜

>
𝑖∈I X𝑖 . We assume that each set X𝑖 is convex. The utility of

each agent 𝑖 ∈ I is a concave function 𝑢𝑖 : X → R≥0, and depends, possibly, not only on 𝑥𝑥𝑥𝑖 ∈ X𝑖 ,
but on the entire vector 𝑥𝑥𝑥 ∈ X.2 The vector 𝑢𝑢𝑢 (𝑥𝑥𝑥) ≜ (𝑢𝑖 (𝑥𝑥𝑥))𝑖∈I ∈ U is the vectorized form of the
agents’ utilities, where U is the set of possible utility functions. The joint allocation 𝑥𝑥𝑥★ ∈ X is an
𝛼-fair allocation for some 𝛼 ∈ R≥0 if it solves the following convex problem:

max
𝑥𝑥𝑥∈X

𝐹𝛼 (𝑢𝑢𝑢 (𝑥𝑥𝑥)) , (5.2)

where 𝐹𝛼 is the 𝛼-fairness criterion the system employs (e.g., when 𝛼 = 1, problem (5.2) corresponds
to an Eisenberg-Gale convex problem [284]). The 𝛼-fairness function is defined as follows [269]:
Definition 5.3.1. An 𝛼-fairness function 𝐹𝛼 : U → R is parameterized by the inequality aversion
parameter 𝛼 ∈ R≥0, and it is given by

𝐹𝛼 (𝑢𝑢𝑢) ≜
∑︁
𝑖∈I

𝑓𝛼 (𝑢𝑖), where 𝑓𝛼 (𝑢) ≜
{
𝑢1−𝛼−1

1−𝛼 , for 𝛼 ∈ R≥0 \ {1},
log(𝑢), for 𝛼 = 1,

(5.3)

for every𝑢𝑢𝑢 ∈ U. Note thatU ⊂ RI≥0 for 𝛼 < 1, andU ⊂ RI
>0 for 𝛼 ≥ 1.

Note that we use the most general version of utility-based fairness where the fairness rule is
defined w.r.t. to accrued utilities (as opposed to allocated resource, only), i.e., in our system S, the
utility vector 𝑢𝑢𝑢 ∈ U can be a function of the selected allocations in X. The 𝛼-fairness function is
concave and component-wise increasing, and thus exhibits diminishing returns [285]. An increase in
utility to a player with a low utility results in a higher 𝛼-fairness objective. Thus, such an increase is
desirable to the system controller. Moreover, the rate at which the marginal increase diminishes
is controlled by 𝛼 , which is then called the inequality aversion parameter. An allocation which
maximizes the 𝛼-fairness objective is always Pareto efficient [285].

1Appendix 37 discusses the setting in which the set of agents I is unknown and agents can depart and arrive to the
system.

2For example, in TCP congestion control, the performance of each end-node depends not only on the rate that is
directly allocated to that node, but also, through the induced congestion in shared links, by the rate allocated to other
nodes [233]. Similar couplings arise in wireless transmissions over shared channels [236].
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5.3.2 Online Fairness
We consider the performance of the system S is tracked over a time horizon spanning 𝑇 ∈ N
timeslots. At the beginning of each timeslot 𝑡 ∈ T ≜ {1, 2, . . . ,𝑇 }, a policy selects an allocation
𝑥𝑥𝑥𝑡 ∈ X before 𝑢𝑢𝑢𝑡 : X → RI is revealed to the policy. The goal is to approach the performance of a
properly-selected fair allocation benchmark. We consider the following two cases:

Slot-Fairness. An offline benchmark in hindsight, with access to the utilities revealed at every
timeslot 𝑡 ∈ T , can ensure fairness at every timeslot satisfying a slot-fairness (SF) objective [250,
251, 270]. Formally, the benchmark selects the joint allocation 𝑥𝑥𝑥★ ∈ X satisfying

SF : 𝑥𝑥𝑥★ ∈ arg max
𝑥𝑥𝑥∈X

1
𝑇

∑︁
𝑡∈T

𝐹𝛼 (𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥)) . (5.4)

Horizon-Fairness. Enforcing fairness at every timeslot can be quite restrictive, and this is es-
pecially evident for large time horizons. An alternative formulation is to consider that the agents
can accept a momentary violation of fairness at a given timeslot 𝑡 ∈ T as long as in the long run
fairness over the total incurred utilities is achieved. Therefore, it is more natural (see Example 5.3.1)
to ensure a horizon-fairness criterion over the entire period T . Formally, the benchmark selects the
allocation 𝑥𝑥𝑥★ ∈ X satisfying

HF : 𝑥𝑥𝑥★ ∈ arg max
𝑥𝑥𝑥∈X

𝐹𝛼

(
1
𝑇

∑︁
𝑡∈T

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥)
)
. (5.5)

Price of fairness. Bertsimas et al. [285] defined the price of fairness (PoF) metric to quantify the
efficiency loss due to fairness as the difference between the maximum system efficiency and the
efficiency under the fair scheme. In the case of 𝛼-fairness, it is defined for some utility setU as

PoF(U;𝛼) ≜
max𝑢𝑢𝑢∈U 𝐹0(𝑢𝑢𝑢) − 𝐹0

(
𝑢𝑢𝑢max,𝛼

)
max𝑢𝑢𝑢∈U 𝐹0(𝑢𝑢𝑢)

, (5.6)

where 𝑢𝑢𝑢max,𝛼 ∈ arg max𝑢𝑢𝑢∈U 𝐹𝛼 (𝑢𝑢𝑢) and 𝐹0(𝑢𝑢𝑢) =
∑
𝑖∈I 𝑢𝑖 measures the achieved social welfare. Note

that by definition the utilitarian objective achieves maximum efficiency, i.e., PoF(U; 0) = 0. Natu-
rally, in our online setting, the metric is extended as follows

PoF(X;T ;𝛼) ≜ max𝑥𝑥𝑥∈X
∑
𝑡∈T 𝐹0 (𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥)) −

∑
𝑡∈T 𝐹0 (𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★))

max𝑥𝑥𝑥∈X
∑
𝑡∈T 𝐹0 (𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥))

, (5.7)

where𝑥𝑥𝑥★ is obtained through either SF (5.4) or HF (5.5). We provide the following example to further
motivate our choice of horizon-fairness as a performance objective. A similar argument is provided
in [286, Example 7].

Example 5.3.1 – Consider a system with two agents I = {1, 2}, an allocation set X = [0, 𝑥max]
with 𝑥max > 1, 𝛼-fairness criterion with 𝛼 = 1, even 𝑇 ∈ N, and the following sequence of utilities
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Figure 5.1: Price of Fairness under HF and SF objectives for Example 5.3.1 for 𝑥max = 3. The green
shaded area provides the set of allocation unachievable by the SF objective but achievable by the HF
objective.

{𝑢𝑢𝑢𝑡 (𝑥)}𝑇𝑡=1 = {(1 + 𝑥, 1 − 𝑥) , (1 + 𝑥, 1 + 𝑥) , . . . }. It can easily be verified that PoF = 0 for HF ob-
jective (5.5) because the HF optimal allocation is 𝑥max which matches the optimal allocation under
the utilitarian objective. However, under the SF objective (5.4) we have PoF =

𝑥max−0.5
𝑥max+2 ≈ 1 when

𝑥max is large. Remark that the two objectives have different domains of definitions; in particular, the
allocations in the set [1, 𝑥max] ⊂ X are unachievable by the SF objective because they would lead
to 𝑢𝑡,2(𝑥) ≤ 0. The HF objective achieves lower PoF (hence, larger aggregate utility), and it allows
a much larger set of eligible allocations (in particular all the allocations in the set X), as shown in
Fig. 5.1. Indeed, when the controller has the freedom to achieve fairness over a time horizon, there
is an opportunity for more efficient allocations during the system operation. This example provides
intuition on the robustness and practical importance of the horizon-fairness objective.

In the following section, we provide the description of an online learning model and our perfor-
mance metric of interest under the HF objective.

5.3.3 Online Policies and Performance Metric
The agents’ allocations are determined by an online policyAAA = {A1,A2, . . . ,A𝑇 }, i.e., a sequence
of mappings. For every timeslot 𝑡 ∈ T , A𝑡 : X𝑡 × U𝑡 → X maps the sequence of past alloca-
tions {𝑥𝑥𝑥𝑠}𝑡𝑠=1 ∈ X𝑡 and utility functions {𝑢𝑢𝑢𝑠}𝑡𝑠=1 ∈ U𝑡 to the next allocation 𝑥𝑥𝑥𝑡+1 ∈ X. We assume
the initial decision 𝑥𝑥𝑥1 is feasible (i.e., 𝑥𝑥𝑥1 ∈ X). We measure the performance of policyAAA in terms of
the fairness regret (5.8), i.e., the difference between the fairness objective experienced by AAA at the
time horizon𝑇 and that of the best static decision 𝑥𝑥𝑥★ ∈ X in hindsight. We restate the regret metric
here to streamline the presentation:

ℜ𝑇 (𝐹𝛼 ,AAA) ≜ sup
{𝑢𝑢𝑢𝑡 }𝑇𝑡=1∈U𝑇

{
𝐹𝛼

(
1
𝑇

∑︁
𝑡∈T

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)
)
− 𝐹𝛼

(
1
𝑇

∑︁
𝑡∈T

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )
)}

. (5.8)

where 𝑥𝑥𝑥★ is the HF (5.5) allocation. If the fairness regret becomes negligible for large 𝑇 , then AAA
attains the same fairness objective as the optimal static decision with hindsight. Note that under
the utilitarian objective (𝛼 = 0), this fairness regret coincides with the classic time-averaged regret
in OCO [20]. However, for general values of 𝛼 ≠ 0, the metric is completely different, as we aim to
compare 𝛼-fair functions evaluated at time-averaged vector-valued utilities.
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5.4 Online Horizon-Fair (OHF) Policy

We first present in Section 5.4.1, the adversarial model considered in this work and provide a result
on the impossibility of guaranteeing vanishing fairness regret (5.8) under general adversarial per-
turbations. We also provide a powerful family of adversarial perturbations for which a vanishing
fairness regret guarantee is attainable. Secondly, we present the OHF policy in Section 5.4.2 and
provide its performance guarantee. Finally, we provide in Section 5.4.3 a set of adversarial examples
captured by our fairness framework.

5.4.1 Adversarial Model and Impossibility Result
We begin by introducing formally the adversarial model that characterizes the utility perturbations.
In particular, we consider 𝛿𝛿𝛿𝑡 (𝑥𝑥𝑥) ≜

( 1
𝑇

∑
𝑠∈T 𝑢𝑢𝑢𝑠 (𝑥𝑥𝑥)

)
−𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥) to quantify how much the adversary

perturbs the average utility by selecting a utility function 𝑢𝑢𝑢𝑡 at timeslot 𝑡 ∈ T . Recall that 𝑥𝑥𝑥★ ∈ X
denotes the optimal allocation under HF objective (5.5). We denote by Ξ(T ) the set of all possible
decompositions of T into sets of contiguous timeslots, i.e., for every {T1,T2, . . . ,T𝐾 } ∈ Ξ(T ) it
holds T = ¤⋃𝑘∈{1,2,...,𝐾}T𝑘 and maxT𝑘 < minT𝑘+1 for 𝑘 ∈ {1, 2, . . . , 𝐾 − 1}. We define two types of
adversarial perturbations:

Budgeted-severity: VT ≜ sup
{𝑢𝑢𝑢𝑡 }𝑇𝑡=1∈U𝑇

{∑︁
𝑡∈T

∑︁
𝑖∈I

��𝛿𝑡,𝑖 (𝑥𝑥𝑥★)��} , (5.9)

Partitioned-severity: WT ≜ sup
{𝑢𝑢𝑢𝑡 }𝑇𝑡=1∈U𝑇

 inf
{T1,T2,...,T𝐾 }
∈Ξ(T )

{
𝐾∑︁
𝑘=1

∑︁
𝑖∈I

�����∑︁
𝑡∈T𝑘

𝛿𝑡,𝑖 (𝑥𝑥𝑥★)
�����+ 𝐾∑︁

𝑘=1

|T𝑘 |2∑
𝑘 ′<𝑘 |T𝑘 | + 1

} . (5.10)

Our result in Theorem 5.4.2 implies that when either VT or WT grows sublinearly in the time
horizon (i.e., the perturbations satisfy at least one of these two conditions), the regret of OHF policy
in Algorithm 5.1 vanishes over time. We provide a detailed description of conditions (5.9) and (5.10)
below.

The budgeted-severity VT in Eq. (5.9) bounds the total amount of perturbations of the time-
averaged utility. When VT = 0 the adversary is only able to select a fixed function, otherwise the
adversary is able to select time-varying utilities, while keeping the total deviation no more than
VT . Moreover, the adversary is allowed to pick opportunely the timeslots to maximize performance
degradation for the controller. This model is similar to the adversarial corruption setting considered
in [249,260], and it captures realistic scenarios where the utilities incurred at different timeslots are
predictable, but can be perturbed for some fraction of the timeslots. For instance, Internet traffic
may experience spikes due to breaking news or other unpredictable events [287].

The partitioned-severity WT in Eq. (5.10) may at first be less easy to understand than budgeted-
severity condition (5.9), but is equally important from a practical point of view. For simplicity, con-
sider a uniform decomposition of the timeslots, i.e., T𝑘 = 𝑀 for every 𝑘 ∈ {1, 2, . . . ,𝑇 /𝑀} assuming
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w.l.g. 𝑀 divides 𝑇 . Then the r.h.s. term in Eq. (5.10) can be bounded as follows:

𝑇 /𝑀∑︁
𝑘=1

|T𝑘 |2∑
𝑘 ′<𝑘 |T𝑘 | + 1 =

𝑇 /𝑀∑︁
𝑘=1

𝑀2

𝑀 (𝑘 − 1) + 1 = O
(
𝑀2 +𝑀 log(𝑇 /𝑀)

)
. (5.11)

Hence, when 𝑀 = 𝑜 (
√
𝑇 ) it holds ∑𝑇 /𝑀

𝑘=1
|T𝑘 |2∑

𝑘′<𝑘 |T𝑘 |+1 = 𝑜 (𝑇 ). Since this term grows sublinearly in
time, it remains to characterize the growth of the l.h.s. term

∑𝐾
𝑘=1

∑
𝑖∈I

��∑
𝑡∈T𝑘 𝛿𝑡,𝑖 (𝑥𝑥𝑥★)

�� in Eq. (5.10).
This term is related to the perturbations selected by the adversary, however the absolute value is
only evaluated at the end of each contiguous subperiod T𝑘 , i.e., the positive and negative deviations
from the average utilities can cancel out. For example, a periodic selection of utilities from some set
with cardinality𝑀 would have zero deviation for this term. This type of adversary is similar to the
periodic adversary considered in [260, 262], but also includes adversarial selection of utilities from
some finite set (see Example 5.4.2 in Section 5.4.3). The partitioned-severity adversary can model
real-life applications that exhibit seasonal properties, e.g., the traffic may be completely different
throughout the day, but daily traffic is self-similar [261]. This condition also unlocks the possibility
to obtain high probability guarantees under stochastic utilities (see Corollary 5.4.4).

We formally make the following assumptions:

(A1) The allocation set X is convex with diameter diam (X) < ∞.

(A2) The utilities are bounded, i.e.,𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥) ∈ [𝑢min, 𝑢max]I ⊂ RI for every 𝑡 ∈ T .

(A3) The supergradients of the utilities are bounded over X, i.e., it holds ∥𝑔𝑔𝑔∥2 ≤ 𝐿X < ∞ for any
𝑔𝑔𝑔 ∈ 𝜕𝑥𝑥𝑥𝑢𝑡,𝑖 (𝑥𝑥𝑥) and 𝑥𝑥𝑥 ∈ X.

(A4) The average utility of the optimal allocation (5.5) is bounded such that 1
𝑇

∑
𝑡∈T 𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★) ∈[

𝑢★,min, 𝑢★,max
]I ⊂ RI

>0.

(A5) The adversary is restricted to select utilities such that

min {VT ,WT } = 𝑜 (𝑇 ). (5.12)

We first show that an adversary solely satisfying the mild assumptions (A1)–(A4) can arbitrarily
degrade the performance of any policyAAA. Formally, we have the following negative result:

Theorem 5.4.1. When Assumptions (A1)–(A4) are satisfied, there is no online policy AAA attaining
ℜ𝑇 (𝐹𝛼 ,AAA) = o (1) for |I | > 1 and 𝛼 > 0. Moreover, there exists an adversary where Assumption (A5)
is necessary for ℜ𝑇 (𝐹𝛼 ,AAA) = 𝑜 (1).

The proof can be found in Appendix 32. We design an adversary with a choice over two se-
quences of utilities against two agents. We show that no policy can have vanishing fairness regret
w.r.t. the time horizon under both sequences.
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Algorithm 5.1 OHF policy
Require: X, 𝛼 ∈ R≥0,

[
𝑢★,min, 𝑢★,max

]
1: Θ←

[
−1/𝑢𝛼

★,min,−1/𝑢𝛼★,max

]I
⊲ Initialize the dual (conjugate) subspace

2: 𝑥𝑥𝑥1 ∈ X; 𝜃𝜃𝜃 1 ∈ Θ; ⊲ Initialize allocation 𝑥𝑥𝑥1 and dual decision 𝜃𝜃𝜃 1
3: for 𝑡 ∈ T do
4: Reveal Ψ𝑡,𝛼 (𝜃𝜃𝜃 𝑡 ,𝑥𝑥𝑥𝑡 ) = (−𝐹𝛼 )★ (𝜃𝜃𝜃 𝑡 ) − 𝜃𝜃𝜃 𝑡 ·𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 ) ⊲ Incur reward Ψ𝑡,𝛼 (𝜃𝜃𝜃 𝑡 ,𝑥𝑥𝑥𝑡 ) and loss Ψ𝑡,𝛼 (𝜃𝜃𝜃 𝑡 ,𝑥𝑥𝑥𝑡 )
5: 𝑔𝑔𝑔X,𝑡 ∈ 𝜕𝑥𝑥𝑥Ψ𝑡,𝛼 (𝜃𝜃𝜃 𝑡 ,𝑥𝑥𝑥𝑡 ) =

∑
𝑖∈I 𝜃𝑡,𝑖𝜕𝑥𝑥𝑥𝑢𝑡,𝑖 ⊲ Compute supergradient 𝑔𝑔𝑔X,𝑡 at 𝑥𝑥𝑥𝑡 of reward Ψ𝑡,𝛼 (𝜃𝜃𝜃 𝑡 , · )

6: 𝑔𝑔𝑔Θ,𝑡 = ∇𝜃𝜃𝜃Ψ𝑡,𝛼 (𝜃𝜃𝜃 𝑡 ,𝑥𝑥𝑥𝑡 ) =
( (
−𝜃𝑡,𝑖

)−1/𝛼 −𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )
)
𝑖∈I

⊲ Compute gradient 𝑔𝑔𝑔Θ,𝑡 at 𝜃𝜃𝜃 𝑡 of loss Ψ𝑡,𝛼 ( · ,𝑥𝑥𝑥𝑡 )

7: 𝜂X,𝑡 = diam (X)/
√︃∑𝑡

𝑠=1


𝑔𝑔𝑔X,𝑠

2

2; 𝜂Θ,𝑡 = 𝛼𝑢
−1−1/𝛼
min /𝑡 ⊲ Compute adaptive learning rates

8: 𝑥𝑥𝑥𝑡+1 = ΠX
(
𝑥𝑥𝑥𝑡 + 𝜂X,𝑡𝑔𝑔𝑔X,𝑡

)
; 𝜃𝜃𝜃 𝑡+1 = ΠΘ

(
𝜃𝜃𝜃 𝑡 − 𝜂Θ,𝑡𝑔𝑔𝑔Θ,𝑡

)
⊲ Compute a new allocation and dual decision

9: end for

5.4.2 OHF Policy
Our policy employs a convex-concave function, composed of a convex conjugate term that tracks the
global fairness metric in a dual (conjugate) space, and a weighted sum of utilities term that tracks the
appropriate allocations in the primal space. This function is used by the policy to compute a gradient
and a supergradient to adapt its internal state. In detail, we define the function Ψ𝛼 : Θ × X → R
given by

Ψ𝑡,𝛼 (𝜃𝜃𝜃,𝑥𝑥𝑥) ≜ (−𝐹𝛼 )★ (𝜃𝜃𝜃 ) − 𝜃𝜃𝜃 ·𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥), (5.13)

where Θ =

[
−1/𝑢𝛼

★,min,−1/𝑢𝛼★,max

]I
⊂ RI

<0 is a subspace of the dual (conjugate) space, and (−𝐹𝛼 )
★ is

the convex conjugate (see Definition 31.1 in Appendix) of −𝐹𝛼 given by for any 𝜃𝜃𝜃 ∈ Θ

(−𝐹𝛼 )★ (𝜃𝜃𝜃 ) =
{∑

𝑖∈I
𝛼 (−𝜃𝑖 )1−1/𝛼−1

1−𝛼 for 𝛼 ∈ R≥0 \ {1},∑
𝑖∈I − log(−𝜃𝑖) − 1 for 𝛼 = 1.

(5.14)

The policy is summarized in Algorithm 5.1. The algorithm only requires as input: the set of eligible
allocationsX, the 𝛼-fairness parameter inRI≥0, and the range

[
𝑢★,min, 𝑢★,max

]
of values of the average

utility obtained by the optimal allocation (5.5), i.e., 1
𝑇

∑
𝑡∈T 𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★) ∈

[
𝑢★,min, 𝑢★,max

]I ⊂ RI
>0. We

stress that the target time horizon𝑇 is not an input to the policy. The utility bounds𝑢𝛼
★,min and𝑢

𝛼
★,max

depend on the specific application. For example, for the virtualized caching system considered in
Section 5.6, one could simply pick a small enough 𝜖 > 0 as 𝑢𝛼

★,min, and the maximum batch size
weighted by the largest retrieval cost in the network as 𝑢𝛼★,max (see Eq. (5.27)). However, if prior
information is available to tighten this range, the performance of the algorithm is ameliorated, as
reflected in the regret bound in Eq. (5.15).

The policy uses its input to initialize the dual (conjugate) subspace Θ =

[
−1/𝑢𝛼

★,min,−1/𝑢𝛼★,max

]I
,

an allocation 𝑥𝑥𝑥1 ∈ X, and a dual decision 𝜃𝜃𝜃 1 ∈ Θ (lines 1–2 in Algorithm 5.1). At a given timeslot
𝑡 ∈ T , the allocation𝑥𝑥𝑥𝑡 is selected; then a vector-valued utility𝑢𝑢𝑢𝑡 ( · ) is revealed and in turnΨ𝑡,𝛼 ( · , · )
is revealed to the policy (line 4 in Algorithm 5.1). The supergradient 𝑔𝑔𝑔X,𝑡 of Ψ𝑡,𝛼 (𝜃𝜃𝜃 𝑡 , · ) at point
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𝑥𝑥𝑥𝑡 ∈ X, and the gradient𝑔𝑔𝑔Θ,𝑡 of Ψ𝑡,𝛼 ( · ,𝑥𝑥𝑥𝑡 ) at point𝜃𝜃𝜃 𝑡 ∈ Θ are computed (lines 5–6 in Algorithm 5.1).
The policy then finally performs an adaptation of its state variables (𝑥𝑥𝑥𝑡 ,𝜃𝜃𝜃 𝑡 ) through a descent step
in the dual space and an ascent step in the primal space through online gradient descent (OGD)
and online gradient ascent (OGA) policies,3 respectively (line 8 in Algorithm 5.1). The learning
rates (step size) used are “self-confident” [289] as they depend on the experienced gradients. Such a
learning rate schedule is compelling because it can adapt to the adversary and provides tighter regret
guarantees for “easy” utility sequences; moreover, it allows attaining an anytime regret guarantee,
i.e., a guarantee holding for any time horizon 𝑇 . In particular, OHF policy in Algorithm 5.1 enjoys
the following fairness regret guarantee.

Theorem 5.4.2. Under assumptions (A1)–(A5), OHF policy in Algorithm 5.1 attains the following
fairness regret guarantee:

ℜ𝑇 (𝐹𝛼 ,AAA) ≤ sup
{𝑢𝑢𝑢𝑡 }𝑇𝑡=1∈U𝑇


1.5 diam (X)

𝑇

√︄∑︁
𝑡∈T



𝑔𝑔𝑔X,𝑡

2
2+

𝑇∑︁
𝑡=1

𝛼


𝑔𝑔𝑔Θ,𝑡

2

2

2𝑢1+ 1
𝛼

★,min𝑇𝑡

 + O
(
min {VT ,WT }

𝑇

)
(5.15)

≤ 1.5 diam (X) 𝐿X
𝑢𝛼
★,min
√
𝑇

+
𝛼𝐿2

Θ(log(𝑇 ) + 1)

𝑢
1+ 1

𝛼

★,min𝑇
+ O

(
min {VT ,WT }

𝑇

)
(5.16)

= O
(

1
√
𝑇
+ min {VT ,WT }

𝑇

)
= 𝑜 (1). (5.17)

The proof is provided in Appendix 33. We prove that the fairness regret can be upper bounded
with the time-averaged regrets of the primal policy operating over the setX and the dual policy op-
erating over the setΘ, combinedwith an extra term that is upper boundedwithmin {VT ,WT }. Note
that the fairness regret upper bound in Eq. (5.15) can be much tighter than the one in Eq. (5.16), be-
cause the gradients’ norms can be smaller than their upper bound at a given timeslot 𝑡 ∈ T . Thanks
to its “self-confident” learning schedule [289], which dynamically adapts to the observed utilities,
our Algorithm 5.1 enjoys an any-time regret guarantee, i.e., it does not require the knowledge of the
target time horizon 𝑇 .

The result in Theorem 5.4.2 is tight, in the sense that no policy can have a fairness regret (5.8)
with better dependency on the time horizon 𝑇 . Formally,

Theorem 5.4.3. Any policyAAA incurs ℜ𝑇 (𝐹𝛼 ,AAA) = Ω
(

1√
𝑇

)
fairness regret (5.8) for 𝛼 ≥ 0.

The proof can be found in Appendix 34. We show that the lower bound on regret in online
convex optimization [20] can be transferred to the fairness regret.

We discuss in Appendix 38, the time-complexity of Algorithm 5.1 in the context of virtualized
caching system application, presented in Section 5.6.

3Note that a different OCO policy can be used as long as it has a no-regret guarantee, e.g., online mirror descent
(OMD), follow the regularized leader (FTRL), or follow the perturbed leader (FTPL) [20, 279]; moreover, one could even
incorporate optimistic versions of such policies [288], to improve the regret rates when the controller has access to
accurate predictions.
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(a) 𝑠 = 1
100 (b) 𝑠 = 1

10 (c) 𝑠 = 1
2 (d) Time-averaged utility

Figure 5.2: Subfigures (a)–(c) provide the utilities of agent 2 for different values of perturbations’
severity parameter 𝑠 ∈

{ 1
100 ,

1
10 ,

1
2
}
under the benchmark’s allocation 𝑥★. Subfigure (d) provides the

time-averaged utility of two agents. The dark dashed lines represent the utilities obtained by HF
objective (5.5).

5.4.3 Adversarial Examples
In this section, we provide examples of adversaries satisfying Assumptions (A1)–(A5), with either
VT = 𝑜 (𝑇 ) orWT = 𝑜 (𝑇 ), and of stochastic adversaries.

Example 5.4.1 – (Adversaries satisfying VT = 𝑜 (𝑇 )) Consider an adversary selecting utilities such
that

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥) = 𝑢𝑢𝑢 (𝑥𝑥𝑥) +𝛾𝛾𝛾 𝑡 ⊙ 𝑝𝑝𝑝𝑡 (𝑥𝑥𝑥), (5.18)

where 𝑢𝑢𝑢 : X → RI is a fixed utility, the time-dependent function 𝑝𝑝𝑝𝑡 : X → RI is an adversarially
selected perturbation with



𝑝𝑝𝑝𝑡

∞ < ∞, 𝛾𝛾𝛾 𝑡 ∈ RI quantifies the severity of the perturbations, and
𝛾𝛾𝛾 𝑡 ⊙ 𝑝𝑝𝑝𝑡 (𝑥𝑥𝑥) =

(
𝛾𝑡,𝑖𝑝𝑡,𝑖 (𝑥𝑥𝑥)

)
𝑖∈I is the Hadamard product. The severity of the perturbations grows

sublinearly in time 𝑇 , i.e.,
∑𝑇
𝑡=1 𝛾𝑡,𝑖 = 𝑜 (𝑇 ) for every 𝑖 ∈ I. It is easy to check that, in this setting, it

holds VT = 𝑜 (𝑇 ).
We provide a simple-yet-illustrative example of such an adversary. We take X = [0, 1] ⊂ R, two

agents I = {1, 2}, fixed utilities𝑢𝑢𝑢 (𝑥) =
(
1 − 𝑥2, 1 + 𝑥

)
, adversarial perturbations 𝑝𝑝𝑝𝑡 (𝑥) =

(
𝑎𝑖,𝑡 · 𝑥

)
𝑖∈I

where𝑎𝑎𝑎𝑡 is selected uniformly at random from [−1, 1]I for every 𝑡 ∈ T . The perturbations’ severity
is selected as 𝛾𝜉𝑡,𝑖 ,𝑖 = 𝑡−𝑠 where 𝜉𝜉𝜉𝑖 : T → T is a random permutation of the elements of T for 𝑖 ∈ I.
The performance of Algorithm 5.1 is provided in Fig. 5.2. We observe that for larger values of 𝑠 ,
corresponding to lower perturbation’s severity, the policy provides faster the same utilities as the
HF benchmark (5.5).

Example 5.4.2 – (Adversaries satisfying WT = 𝑜 (𝑇 )) Consider a multiset M𝑡 of utilities and an
adversary that selects a utility𝑢𝑢𝑢𝑡 : X → RI from it. Themultiset is updated as follows: ifM𝑡 \{𝑢𝑢𝑢𝑡 } ≠
∅,M𝑡+1 = M𝑡 \ {𝑢𝑢𝑢𝑡 }, otherwise,M𝑡 = M1. In words, the adversary selects irrevocably elements
(utilities) from the setM1, and, when all the elements are selected, the replenishedM1 is offered
again to the adversary. Consider, without loss of generality, a time horizon 𝑇 divisible by |M1 | and
the following decomposition for the period T : {1, 2, . . . , |M1 |} ∪ {|M1 | + 1, |M1 | + 2, . . . , 2 |M1 |} ∪



132 Chapter 5 — Long-term Fairness in Dynamic Resource Allocation

(a) Allocations (cyclic) (b) Allocations (u.a.r.) (c) Time-averaged utili-
ties (cyclic)

(d) Time-averaged utili-
ties (u.a.r.)

Figure 5.3: Subfigures (a)–(b) provide the allocations of different agents of cyclic and u.a.r. choice of
utilities over the setM1, respectively. Subfigures (c)–(d) provide the time-averaged utility of cyclic
and u.a.r. choice of utilities over the setM1, respectively.

· · · = T1 ∪ T2 ∪ · · · ∪ T𝑇 /|M1 | . By construction, it holds for every 𝑥𝑥𝑥 ∈ X∑︁
𝑖∈I

�����∑︁
𝑡∈T𝑘

𝛿𝑡,𝑖 (𝑥𝑥𝑥)
����� = 0, ∀𝑘 ∈ {1, 2, . . . ,𝑇 /|M1 |} , (5.19)

because when the multiset is fully consumed by the adversary, the average experienced utility is
a fixed function. When |M1 | = Θ (𝑇 𝜖) for 𝜖 ∈ [0, 1/2) it holds ∑𝑇 /|M1 |

𝑘=1
|T𝑘 |2∑

𝑘′<𝑘 |T𝑘 |+1 = O
(
𝑇 2𝜖 ) (see

Eq. (5.11)); thus, combined with Eq. (5.19) it holdsWT = 𝑜 (𝑇 ). We provide a simple example of such
an adversary. Consider X = [−1, 1], two agents I = {1, 2}, and the initial multiset

M1 = {(1−𝑥, 1−(1−𝑥)2)︸                ︷︷                ︸
repeated 10 times

, (1−(1−𝑥)2, 1−4𝑥)︸                  ︷︷                  ︸
repeated 20 times

, (1,−2𝑥)︸   ︷︷   ︸
repeated 10 times

}. (5.20)

We have |M1 | = 40 and hence WT = 𝑜 (𝑇 ). The performance of Algorithm 5.1 is provided in
Fig. 5.3 under different choice patterns overM1. We observe that the cyclic choice of utilities is more
harmful than the u.a.r. one as it leads to slower convergence. Nonetheless, under both settings, the
policy asymptotically yields the same utilities as the HF benchmark (5.5).

Example 5.4.3 – (Stochastic Adversary) Consider a scenario where𝑢𝑡,𝑖 : X → R are drawn i.i.d. from
an unknown distribution D𝑖 . Formally, the following corollary is obtained from Theorem 5.4.2.

Corollary 5.4.4. When the utilities 𝑢𝑡,𝑖 : X → R are drawn i.i.d. from an unknown distribution D𝑖 sat-
isfying Assumptions (A1)–(A4), the policy OHF in Algorithm 5.1 attains the following expected fairness
regret guarantee:

ℜ̄𝑇 (𝐹𝛼 ,AAA) ≜ sup
D𝑖 , 𝑖∈I

 E
𝑢𝑡,𝑖∼D𝑖
𝑖∈I, 𝑡∈T

[
max
𝑥𝑥𝑥∈X

𝐹𝛼

(
1
𝑇

∑︁
𝑡∈T

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )
)
− 𝐹𝛼

(
1
𝑇

∑︁
𝑡∈T

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )
)] = O

(
1
√
𝑇

)
. (5.21)

Moreover, it holds with probability one: ℜ𝑇 (𝐹𝛼 ,AAA) ≤ 0 for 𝑇 →∞.
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The proof is in Appendix 35. The expected fairness regret guarantee follows from Theorem 5.4.2
and observing that E [𝛿𝛿𝛿𝑡 (𝑥𝑥𝑥)] = 000 for any 𝑡 ∈ T and 𝑥𝑥𝑥 ∈ X. The high probability fairness regret
guarantee for large 𝑇 is obtained through Hoeffding’s inequality paired with Eq. (5.10).

Note that we provide additional examples of adversaries, in the context of the application of our
policy to a virtualized caching system, in Section 5.6.

5.5 Extensions

In this section, we first show that our algorithmic framework extends to cooperative bargaining
settings, in particular Nash bargaining [243]. Secondly, we show that our framework also extends
to the weighted 𝛼-fairness criterion.

5.5.1 Nash Bargaining
Nash bargaining solution (NBS), proposed in the seminal paper [243], is a fairness criterion for
dispersing to a set of agents the utility of their cooperation. The solution guarantees that, whenever
the agents cooperate, each agent achieves an individual performance that exceeds its performance
when operating independently. This latter is also known as the disagreement point. NBS comes
from the area of cooperative game theory, and it is self enforcing, i.e., the agents will agree to
apply this solution without the need for an external authority to enforce compliance. NBS has been
extensively applied in communication networks, e.g., to transmission power control [263], mobile
Internet sharing among wireless users [264], content delivery in ISP-CDN partnerships [265], and
cooperative caching in information-centric networks [266].

Nash bargaining can be incorporated through our fairness framework when 𝛼 = 1, and utilities
as redefined for every 𝑡 ∈ T as follows 𝑢𝑢𝑢′𝑡 (𝑥𝑥𝑥) = 𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥) − 𝑢𝑢𝑢𝑑𝑡 where 𝑢𝑑𝑖 is the disagreement point of
agent 𝑖 ∈ I. In particular, OHF provides the same guarantees. We also note that the dynamic model
generalizes the NBS solution by allowing both the utilities and the disagreement points to change
over time, while the benchmark is defined using (5.5) and 𝛼 = 1. Hence, the proposed OHF allows
the agents to collaborate without knowing in advance the benefits of their cooperation nor their
disagreement points, in a way that guarantees they will achieve the commonly agreed NBS at the
end of the horizon T (asymptotically).

5.5.2 The (𝑤𝑤𝑤, 𝛼)-Fairness
The weighted 𝛼-fairness or simply (𝑤𝑤𝑤, 𝛼)-fairness with 𝛼 ≥ 0 and𝑤𝑤𝑤 ∈ ΔI ⊂ R≥0, where ΔI is the
probability simplex with support I, is defined as [234]:

Definition 5.5.1. A (𝑤𝑤𝑤, 𝛼)-fairness function 𝐹𝑤𝑤𝑤,𝛼 : U → R is parameterized by the inequality
aversion parameter 𝛼 ∈ R≥0, weights𝑤𝑤𝑤 ∈ ΔI and it is given by 𝐹𝑤𝑤𝑤,𝛼 (𝑢𝑢𝑢) ≜

∑
𝑖∈I𝑤𝑖 𝑓𝛼 (𝑢𝑖) for every

𝑢𝑢𝑢 ∈ U. Note thatU ⊂ RI≥0 for 𝛼 < 1, andU ⊂ RI
>0 for 𝛼 ≥ 1.
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It is easy to check that our 𝛼-fairness framework captures the (𝑤𝑤𝑤, 𝛼)-fairness by simply re-
defining the utilities incurred at time 𝑡 ∈ I for agent 𝑖 ∈ I as follows: 𝑢′𝑡,𝑖 (𝑥𝑥𝑥) = 𝑤

1
1−𝛼
𝑖
𝑢𝑡,𝑖 (𝑥𝑥𝑥) for

𝛼 ∈ R≥0 \ {1}, otherwise 𝑢′𝑡,𝑖 (𝑥𝑥𝑥) =
(
𝑢𝑡,𝑖 (𝑥𝑥𝑥)

)𝑤𝑖 . Note that for 𝛼 = 1 and uniform weights, we re-
cover the Nash bargaining setting discussed previously; otherwise, we recover asymmetric Nash
bargaining in which the different weights correspond to the bargaining powers of players [290].

5.6 Application

In order to demonstrate the applicability of the proposed fairness framework, we target a representa-
tive resource management problem in virtualized caching systems where different caches cooperate
by serving jointly the received content requests. This problem has been studied extensively in its
static version, where the request rates for each content file are a priori known and the goal is to
decide which files to store at each cache to maximize a fairness metric of cache hits across different
caches, see for instance [266, 291]. We study the more realistic version of the problem where the
request patterns are unknown. This online caching model has been recently studied as a learning
problem in a series of papers [139, 171, 252–255], yet none of them handles fairness metrics.

5.6.1 Multi-Agent Cache Networks
Cache network. We assume that time is slotted and the set of timeslots is denoted by T ≜
{1, 2, . . . ,𝑇 }. We consider a catalog of equally-sized files F ≜ {1, 2, . . . , 𝐹 }.4 We model a cache
network at timeslot 𝑡 ∈ T as an undirected weighted graph 𝐺𝑡 (C, E), where C ≜ {1, 2, . . . ,𝐶} is
the set of caches, and (𝑐, 𝑐′) ∈ E denotes the link connecting cache 𝑐 to 𝑐′ with associated weight
𝑤𝑡,(𝑐,𝑐′) ∈ R>0. Let P𝑡,(𝑐,𝑐′) =

{
𝑐1, 𝑐2, . . . , 𝑐 |P𝑡,(𝑐,𝑐′ ) |

}
∈ C|P𝑡,(𝑐,𝑐′ ) | be the shortest path at timeslot 𝑡 ∈ T

from cache 𝑐 to cache 𝑐′ with associated weight𝑤 sp
𝑡,(𝑐,𝑐′) ≜

∑|P𝑡,(𝑐,𝑐′ ) |−1
𝑘=1 𝑤𝑡,(𝑐𝑘 ,𝑐𝑘+1) .

We assume for each file 𝑓 ∈ F is permanently stored at a setΛ𝑓 (C) ⊂ C of designated repository
servers. Moreover, each cache can store fractions of the file and fractions of the same file at different
caches can be additively combined.5 We denote by 𝑥𝑡,𝑐,𝑓 ∈ [0, 1] the fraction of file 𝑓 ∈ F stored at
cache 𝑐 ∈ C at timeslot 𝑡 ∈ T . The state of cache 𝑐 ∈ C is given by 𝑥𝑥𝑥𝑡,𝑐 drawn from the set

X𝑐 ≜
𝑥𝑥𝑥 ∈ [0, 1]F :

∑︁
𝑓 ∈F

𝑥 𝑓 ≤ 𝑘𝑐, 𝑥 𝑓 ≥ 1
(
𝑐 ∈ Λ𝑓 (C)

)
,∀𝑓 ∈ F

 , (5.22)

where 𝑘𝑐 ∈ N is the capacity of cache 𝑐 ∈ C, and 1(𝜒) ∈ {0, 1} is the indicator function set to 1
when condition 𝜒 is true. Thus, the state of the cache network belongs toX ≜ >

𝑐∈C X𝑐 . The system
4Note that we assume equally-sized files to streamline the presentation. Our model supports unequally-sized files

by replacing the cardinality constraint in Eq. (5.22) with a knapsack constraint and the set X𝑐 (defined in (5.22)) remains
convex.

5This is a common assumption [63, 171], which models situations where each file can be split in a large number
of small chunks and each cache can store random linear combinations of such chunks. Guarantees for this fractional
setting can be readily transferred to an integral setting through randomized rounding techniques [13, 21, 57, 253].



5.6 – 5.6.1 Multi-Agent Cache Networks 135

?

?

?

 

 

Figure 5.4: System model: a network comprised of a set of caching nodes C. A request arrives at
a cache node 𝑐 ∈ C, it can be partially served locally, and if needed, forwarded along the shortest
retrieval path to another node to retrieve the remaining part of the file; a utility is incurred by the
cache owner 𝑖 ∈ I. A set of permanently allocated files are spread across the network guaranteeing
requests can always be served.

model is summarized in Fig. 5.4, and it is aligned with many recent papers focusing on learning for
caching [13, 21, 171, 253].

Requests. We denote by 𝑟𝑡,𝑐,𝑓 ∈ N∪ {0} the number of requests for file 𝑓 ∈ F submitted by users
associated to cache 𝑐 ∈ C, during slot 𝑡 ∈ T . The request batch arriving at timeslot 𝑡 ∈ T is denoted
by 𝑟𝑟𝑟 𝑡 =

(
𝑟𝑡,𝑐,𝑓

)
(𝑐,𝑓 )∈C×F and belongs to the set

R𝑡 ≜
𝑟𝑟𝑟 ∈ (N ∪ {0})C×F :

∑︁
𝑐∈C

∑︁
𝑓 ∈F

𝑟𝑐,𝑓 ≤ 𝑅𝑡
 ,

where 𝑅𝑡 ∈ N is the total number of requests (potentially) arriving at the system at timeslot 𝑡 ∈ T .

Caching gain. We consider an agent 𝑖 ∈ I holds a set of caches Γ𝑖 (C) ⊂ C, and ¤
⋃
𝑖∈IΓ𝑖 (C) = C.

Hence, the allocation set of agent 𝑖 is given byX𝑖 =
>

𝑐∈Γ𝑖 (C) X𝑐 . Requests arriving at cache 𝑐 ∈ C can
be partially served locally, and if needed, forwarded along the shortest path to a nearby cache 𝑐′ ∈ C
storing the file, incurring a retrieval cost 𝑤 sp

𝑡,(𝑐,𝑐′) . Let 𝜙𝑡,𝑖,𝑐 ≜ arg min𝑐′∈Λ𝑖 (C)
{
𝑤

sp
𝑡,(𝑐,𝑐′)

}
and Φ𝑡,𝑖,𝑐 :{

1, 2, . . . , 𝜙𝑡,𝑖,𝑐
}
⊂ C → C be a map providing a retrieval cost ordering for every 𝑐 ∈

{
1, 2, . . . , 𝜙𝑡,𝑖,𝑐

}
,

𝑡 ∈ T , and 𝑖 ∈ I, i.e.,

𝑤
sp
𝑡,(𝑐,Φ𝑡,𝑖,𝑐 (𝜙𝑡,𝑖,𝑐 )) = min

{
𝑤

sp
𝑡,(𝑐,𝑐′) : 𝑐′ ∈ Λ𝑓 (C)

}
≥ · · · ≥ 𝑤 sp

𝑡,(𝑐,Φ𝑡,𝑖,𝑐 (2))) ≥ 𝑤
sp
𝑡,(𝑐,Φ𝑡,𝑖,𝑐 (1))) = 0. (5.23)

When a request batch 𝑟𝑟𝑟 𝑡 ∈ R𝑡 arrives at timeslot 𝑡 ∈ T , agent 𝑖 ∈ I incurs the following cost:

cost𝑡,𝑖 (𝑥𝑥𝑥) ≜
∑︁

𝑐∈Γ𝑖 (C)

∑︁
𝑓 ∈F

𝑟𝑡,𝑐,𝑓

𝜙𝑡,𝑖,𝑐−1∑︁
𝑘=1

(
𝑤

sp
𝑡,(𝑐,Φ𝑡,𝑖,𝑐 (𝑘+1)) −𝑤

sp
𝑡,(𝑐,Φ𝑡,𝑖,𝑐 (𝑘))

) (
1 −min

{
1,

𝑘∑︁
𝑘 ′=1

𝑥Φ𝑡,𝑖,𝑐 (𝑘 ′),𝑓

})
.
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This can be interpreted as a QoS cost paid by a user for the additional delay to retrieve part of
the file from another cache, or it can represent the load on the network to provide the miss-
ing file. Note that by construction, the maximum cost is achieved for a network state, where
all the caches are empty except for the repository allocations; formally, such state is given by
𝑥𝑥𝑥0 ≜

(
1

(
𝑐 ∈ Λ𝑓 (C)

) )
(𝑐,𝑓 )∈C×F ∈ X, and the cost of the agent at this state is given by

cost𝑡,𝑖 (𝑥𝑥𝑥0) =
∑︁

𝑐∈Γ𝑖 (C)

∑︁
𝑓 ∈F

𝑟𝑡,𝑐,𝑓 min
{
𝑤

sp
𝑡,(𝑐,𝑐′) : 𝑐′ ∈ Λ𝑓 (C)

}
(5.24)

=
∑︁

𝑐∈Γ𝑖 (C)

∑︁
𝑓 ∈F

𝑟𝑡,𝑐,𝑓

𝜙𝑡,𝑖,𝑐−1∑︁
𝑘=1

(
𝑤

sp
𝑡,(𝑐,Φ𝑡,𝑖,𝑐 (𝑘+1)) −𝑤

sp
𝑡,(𝑐,Φ𝑡,𝑖,𝑐 (𝑘))

)
, (5.25)

We can define the caching utility at timeslot 𝑡 ∈ T as the cost reduction due to caching as:

𝑢𝑡,𝑖 (𝑥𝑥𝑥) ≜ cost𝑡,𝑖 (𝑥𝑥𝑥0) − cost𝑡,𝑖 (𝑥𝑥𝑥) (5.26)

=
∑︁

𝑐∈Γ𝑖 (C)

∑︁
𝑓 ∈F

𝑟𝑡,𝑐,𝑓

𝜙𝑡,𝑖,𝑐−1∑︁
𝑘=1

(
𝑤

sp
𝑡,(𝑐,Φ𝑡,𝑖,𝑐 (𝑘+1)) −𝑤

sp
𝑡,(𝑐,Φ𝑡,𝑖,𝑐 (𝑘))

)
min

{
1,

𝑘∑︁
𝑘 ′=1

𝑥Φ𝑡,𝑖,𝑐 (𝑘 ′),𝑓

}
. (5.27)

The caching utility is a weighted sum of concave functions with positive weights, and thus concave
in 𝑥𝑥𝑥 ∈ X. It is straightforward to check that this problem always satisfies Assumptions (A1)–(A4).
The request batches and the time-varying retrieval costs determine whether Assumption (A5) holds.
For example, this is the case when request batches are drawn i.i.d. from a fixed unknown distribution
(see Example 5.4.3).

5.6.2 Results

Below we describe the experimental setup6 of the multi-agent cache networks problem, the request
traces, and competing policies. Our results are summarized as follows:

1. Under stationary requests and small batch sizes (leading to large utility deviations from one
timeslot to another), OHF achieves the same time-averaged utilities as the offline benchmark,
whereas OSF, a counterpart policy to OHF targeting slot-fairness (5.4), diverges and is unable
to reach the Pareto front.

2. In the Nash bargaining scenario, OHF achieves the NBS in all cases, while OSF fails when the
disagreement points are exigent, i.e., an agent can guarantee itself a high utility.

3. Widely used LFU and LRU might perform arbitrarily bad w.r.t. fairness, and not even achieve
any point in the Pareto front (hence, they are not only unfair, but also inefficient).

4. Fairness comes at a higher price when 𝛼 is increased or the number of agents is increased. This
observation on the price of fairness provides experimental evidence for previous work [285].

6Our code is publicly available at https://github.com/tareq-si-salem/Online-Multi-Agent-Cache-Networks
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(a) Cycle (b) Tree-1 (c) Tree-2 (d) Tree-3 (e) Grid (f) Abilene (g) GEANT

Figure 5.5: Network topologies used in experiments.

5. OHF is robust to different network topologies and is able to obtain time-averaged utilities that
match the offline benchmark.

6. Under non-stationary requests, OHF policy achieves the same time-averaged utilities as the
offline benchmark, whereas OSF can perform arbitrarily bad providing allocations that are
both unfair and inefficient

General Setup. We consider three synthetic network topologies (Cycle, Tree, and Grid), and
two real network topologies (Abilene and GEANT). A visualization of the network topologies is
provided in Figure 5.5. The specifications of the network topologies used across the experiments
are provided in Table 1 in the Appendix. A repository node permanently stores the entire catalog
of files. The retrieval costs along the edges are sampled u.a.r. from {1, 2, . . . , 5}, except for edges
directly connected to a repository node which are sampled u.a.r. from {6, 7, . . . , 10}. All the retrieval
costs remain fixed for every 𝑡 ∈ T . The capacity of each cache is sampled u.a.r. from {1, 2, . . . , 5},
but for the Cycle topology in which each cache has capacity 5. An agent 𝑖 ∈ I has a set of query
nodes denoted by Q𝑖 ⊂ Γ𝑖 (C), and a query node can generate a batch of requests from a catalog
with |F | = 20 files. Unless otherwise said, we consider 𝑢★,min = 0.1 and 𝑢★,max = 1.0. The fairness
benchmark refers to the maximizer of the HF objective (5.5), and the utilitarian benchmark refers to
the maximizer of HF objective (5.5) for 𝛼 = 0.

Traces. Each query node generates requests according to the following:

• Stationary trace (parameters: 𝜎, 𝑅,𝑇 , 𝐹 ). Requests are sampled i.i.d. from a Zipf distribution with
exponent 𝜎 ∈ R≥0 from a catalog of files of size 𝐹 . The requests are grouped into batches of size
|R𝑡 | = 𝑅,∀𝑡 ∈ T .

• Non-Stationary trace (parameters: 𝜎, 𝑅,𝑇 , 𝐹, 𝐷). Similarly, requests are sampled i.i.d. from a cat-
alog of 𝐹 files according to a Zipf distribution with exponent 𝜎 ∈ R≥0. Every 𝐷 requests, the
popularity distribution is modified in the following fashion: file 𝑓 ∈ F = {1, 2, . . . , 𝐹 } assumes
the popularity of file 𝑓 ′ = (𝑓 + 𝐹/2) mod 𝐹 (𝐹 is even). The requests are grouped into batches of
size |R𝑡 | = 𝑅,∀𝑡 ∈ T .

The stationary trace corresponds to the stochastic adversary in Example 5.4.3, and the non-
stationary trace corresponds to a stochastic adversary with perturbations satisfying the partitioned-
severity condition in Eq. (5.10). Two sampled traces are depicted in Figure 36.13 in the Appendix.
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Unless otherwise said, query nodes generate Stationary traces and 𝜎 = 1.2, 𝑇 = 104, 𝑅 = 50, and
𝐷 = 50.

Policies. We implement the following policies and use them as comparison benchmarks for OHF.

• The classic LRU and LFU policies. A request is routed to the cache with minimal retrieval cost
among those that store the requested file and this cache provides the content and updates its
state corresponding to a hit. Moreover, all caches with a lower retrieval cost update their state
as if a miss occurred locally. This corresponds to the popular path replication algorithm [21, 91],
equipped with LRU or LFU, adapted to our setting.
• Online slot-fairness (OSF) policy. This policy is the slot-fairness (5.4) counterpart of OHF. It is
obtained by configuring Algorithm 5.1 with dual (conjugate) subspace Θ = {(−1)𝑖∈I} (i.e., taking
𝛼 → 0), whichmakes ineffective the dual policy in Algorithm 5.1. The revealed utilities at timeslot
𝑡 ∈ T are the 𝛼-fairness transformed utilities𝑢𝑢𝑢′𝑡 ( · ) = (𝑓𝛼

(
𝑢𝑡,𝑖 ( · )

)
)𝑖∈I . The primal allocations are

still determined by the same self-confident learning rates’ schedule as OHF for a fair comparison.
The resulting policy is a no-regret policy (see Lemma 31.3 in Appendix) w.r.t. the slot-fairness
benchmark (5.4) for some 𝛼 ∈ R≥0.

Static analysis of symmetry-breaking parameters. We start with a numerical investigation of
the potential caching gains, and how these are affected by the fairness parameter 𝛼 . In Figure 5.6, we
consider the Cycle topology and different values of 𝛼 ∈ [0, 2]. We show the impact on the fairness
benchmark of varying the request patterns (𝜎 ∈ {0.6, 0.8, 1.0, 1.2}) for agent 2 under the Stationary
trace in Fig. 5.6 (a), and of varying the retrieval costs between agent 1’s cache and the repository
(𝑤 (1,3) ∈ [2.5, 4]). In Figure 5.6 (a), we observe decreasing the skewness of the popularity distribution
decreases the utility of agent 2 as reflected by the downward shift of the Pareto front. We note that,
as far as the file popularity distribution at agent 2 is close to the one at agent 1 (𝜎 = 1.2), different
values of alpha still provide similar utilities. However, in highly asymmetric scenarios, different
values of 𝛼 lead to clearly distinct utilities for each agent. We also note that higher values of 𝛼
guarantees higher fairness by that increasing the utility of agent 2. Similarly, in Figure 5.6 (b), we
observe increasing the retrieval cost for agent 1 decreases the utility achieved by the same agent, as
reflected by the leftward shift of the Pareto front; moreover, increasing the retrieval costs (higher
asymmetry) highlights the difference between different values of 𝛼 .

Online analysis of symmetry-breaking parameters. In Figure 5.7, we consider the Cycle
topology, and different values of 𝛼 ∈ {0, 1, 2}. In Figure 5.7 (a)–(b) we consider the retrieval cost
𝑤 (1,3) = 3.5 between agent 1’s cache node and the repository node. In Figure 5.7 (c)–(d) query node
of agent 1 generates Stationary trace (𝜎 = 1.2) and query node of agent 2 generates Stationary trace
(𝜎 = 0.6). We consider two fixed request batch sizes 𝑅 ∈ {1, 50}.

In Figures 5.7 (a) and (c) (for batch size 𝑅 = 1) OHF approaches the fairness benchmark’s utilities
for different values of𝛼 , but OSF diverges for values of𝛼 ≠ 0. For increased request batch size𝑅 = 50,
OHF and OSF exhibit similar behavior. This is expected under stationary utilities; increasing the
batch size reduces the variability in the incurred utilities at every timeslot, and the horizon-fairness
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(a) (b)

Figure 5.6: Pareto front and fairness benchmark’s utilities for different values of 𝛼 ∈ [0, 2] under
different request patterns (a) (𝜎 ∈ {0.6, 0.8, 1.0, 1.2}) for agent 2, and different retrieval costs (b)
between agent 1’s cache and the repository (𝑤 (1,3) ∈ [2.5, 4.0]).

and slot-fairness objectives become closer yielding similar allocations. Note that this observation
implies that OSF is only capable to converge for utilities with low variability, which is far from
realistic scenarios. LFU policy outperforms LRU and both policies do not approach the Pareto front;
thus, the allocations selected by such policies are inefficient and unfair.

Nash bargaining. In Figure 5.8, we consider the Cycle topology and 𝛼 = 1. We select different
disagreement utilities for agent 2 in {0.0, 0.5, 0.7, 0.75}, i.e., different utility values agent 2 expects
to guarantee itself even in the absence of cooperation. Note how higher values of disagreement
utilities lead to higher utilities for agent 2 at the fairness benchmark. We select 𝑢★,min = 0.01.

For a small batch size (𝑅 = 1), OHF approaches the same utilities achieved by the fairness bench-
mark for different disagreement points, whereas OSF fails to approach the Pareto front. Similarly,
for a larger batch size 𝑅 = 50, OHF approaches the fairness benchmark for different disagreement
points, but the Pareto front is reached faster than with a batch size 𝑅 = 1. OSF diverges for non-zero
disagreement points when 𝑅 = 50, because the allocation selected for some agent 𝑖 ∈ I can be
smaller than its disagreement utility (i.e., 𝑢𝑡,𝑖 (𝑥𝑥𝑥𝑡 ) − 𝑢𝑡,𝑖 < 0), while the 𝛼-fairness function is only
defined for positive arguments.

Impact of agents on the price of fairness. In Figures 5.9 and 5.10, we consider the Tree 1–
3 topology, 𝛼 ∈ {1, 2, 3}, and |I | ∈ {2, 3, 4}. Agents’ query nodes generate Stationary trace (𝜎 ∈
{1.2, 0.8, 0.6}).

In Figures 5.9 (a)–(c), we observe for increasing the number of agents, the division of utilities
differs between the fairness benchmark and utilitarian benchmark; moreover, this difference is more
evident for larger values of 𝛼 . Figure 5.9 (d) provides the price of fairness, and we observe the price
of fairness increases with the number of agents and 𝛼 . Nonetheless, under the different settings
the price of fairness remains below 4%, i.e., we experience at most a 4% drop in the social welfare
to provide fair utility distribution across the different agents. Figure 5.10 gives the time-averaged
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(a) 𝑅 = 1 (b) 𝑅 = 50

(c) 𝑅 = 1 (d) 𝑅 = 50

Figure 5.7: Time-averaged utilities of policies OHF, OSF, LRU, and LFU under Cycle topology. Sub-
figures (a)–(b) are obtained under retrieval cost𝑤 (1,3) = 3.5 for agent 1’s query node. Subfigures (c)–
(d) are obtained when agent 2’s query node generates Stationary trace (𝜎 = 0.6). Markers correspond
to iterations in

{
100, 200, . . . , 104}.

utilities obtained by running OHF for 𝛼 = 2. We observe the utilities obtained by OHF quickly
converge to the same utilities obtained by the fairness benchmark. In this figure, we also highlight
the difference between the utilities achieved by the fairness benchmark and utilitarian benchmark,
is reflected by the increasing utility gap for a higher number of participating agents.

Different network topologies. In Figure 5.11 (a), we consider the network topologies Tree,
Grid, Abilene, GEANT under Stationary trace (𝜎 ∈ {0.6, 1.0, 1.2}) and 𝛼 = 3. OHF achieves the
same utilities as the fairness benchmark across the different topologies. Note that for larger net-
work topologies agents achieve a higher utility because there are more resources available.

Impact of non-stationarity. In Figure 5.11 (b), we consider the Cycle topology and 𝛼 = 3. The
query node of agent 1 generates Non-Stationary trace, while the query node of agent 2 generates a
shuffled Non-Stationary trace, i.e., we remove the non-stationarity from the trace for agent 2 while
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(a) 𝑅 = 1 (b) 𝑅 = 50

Figure 5.8: Time-averaged utilities obtained for policies OHF, OSF, LRU, and LFU for batch sizes
(a) 𝑅 = 1 and (b) 𝑅 = 100, under Cycle network topology. Markers correspond to iterations
in

{
100, 200, . . . , 104}.

preserving the overall popularity of the requests. Therefore, on average the agents are symmetric
and experience the same utilities. We observe in Figure 5.11 (b) that indeed this is the case for OHF
policy; however, because OSF aims to insure fairness across the different timeslots the agents are
not considered symmetric and the average utilities deviate from the Pareto front (not efficient). OSF
favors agent 1 by increasing its utility by 20% compared to the utility of agent 1.

5.7 Conclusion and Future Work

In this work, we proposed a novel OHF policy that achieves horizon-fairness in dynamic resource
allocation problems. We demonstrated the applicability of this policy in virtualized caching systems
where different agents can cooperate to increase their caching gain. Our work paves the road for
several interesting next steps. A future research direction is to consider decentralized versions of the
policy underwhich each agent selects an allocationwith limited information exchange across agents.
For the application to virtualized caching systems, the message exchange techniques in [21, 255] to
estimate subgradients can be exploited. Another important future research direction is to bridge
the horizon-fairness and slot-fairness criteria to target applications where the agents are interested
in ensuring fairness within a target time window. We observed that OHF can encapsulate the two
criteria, however, it remains an open question whether a policy can smoothly transition between
them. A final interesting research direction is to consider a limited feedback scenario where only
part of the utility is revealed to the agents (e.g., bandit feedback). Our policy could be extended to
this setting through gradient estimation techniques [20].
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(a) 𝛼 = 1 (b) 𝛼 = 2 (c) 𝛼 = 3

(d) PoF

Figure 5.9: Subfigures (a)–(c) provide the average utility for different agents obtained by OHF, fair-
ness benchmark (OPT for 𝛼 ≠ 0), and utilitarian benchmark (OPT for 𝛼 = 0); and Subfigure (d)
provides the PoF for 𝛼 ∈ {0, 1, 2, 3} under an increasing number of agents in {2, 3, 4} and Tree 1–3
network topology.

(a) (b) (c)

Figure 5.10: Subfigures (a)–(c) provide the time-averaged utility across different agents obtained by
OHF policy and OPT for 𝛼 = 2 under an increasing number of agents in {2, 3, 4} and Tree 1–3
network topology.
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(a) (b)

Figure 5.11: Subfigure (a) provides the average utility of OHF and fairness benchmark under network
topologies Tree, Grid, Abilene, GEANT, Stationary trace (𝜎 ∈ {0.6, 0.8, 1.2}), and 𝛼 = 3. Subfig-
ure (b) provides the time-averaged utilities obtained for OHF, OSF and batch size 𝑅 = 50, 𝑡 ∈ T ,
under network topology Tree (a) and Non-stationary trace. The markers represent the iterations in
the set

{
100, 200, . . . , 104}.





CHAPTER 6
Conclusion

We conclude this thesis with some brief concluding remarks and present directions for possible future
research arising from the problems considered thus far.

6.1 Summary

In this thesis, we study no-regret algorithms applied to several instances of the network resource
allocation problem: exact caching in Chapter 2, similarity caching in Chapter 3, and IDNs in Chap-
ter 4. We demonstrate the versatility of gradient algorithms, that normally operate on continuous
spaces, on inherently combinatorial problems (e.g., the NP-Hard problems of similarity caching and
IDNs) when paired with an opportune randomized rounding scheme. We show in all these instances
that regret performance guarantees extend to integral (combinatorial) settings, despite the need to
account for update costs. Our extensive experimental findings support the thesis that these algo-
rithms are robust and can adapt to changing external system’s parameters (e.g., requests’ popularity
and retrieval costs). Chapter 5 provides a novel long-term online fairness framework for settings
where the agents’ utilities are subject to unknown, time-varying, and potentially adversarial pertur-
bations. We characterize the necessary conditions that a policy needs to satisfy in order to achieve
vanishing fairness-regret and prove that our proposal, OHF policy, attains this desirable objective
for any 𝛼-fairness criterion. This, in turn, renders our framework suitable for enforcing also other
important metrics, such as max-min fairness and (weighted) proportional fairness, and for tackling
cooperative game problems under the symmetric and asymmetric Nash bargaining solutions.

6.2 Future Work

The following are a number of possible future directions that follow from this thesis:

Exact Caching. The characterization of the optimality regimes of OGD and OMDNE, w.r.t. the
diversity ratio, can be further improved. Also OMD𝑞-norm algorithms for arbitrary values of𝑞 ∈ (1, 2)
deserve more investigation to (1) devise strongly polynomial, efficient algorithms for their Bregman
projection, (2) characterize their update costs, and (3) compare their performance with OMDNE.

Similarity Caching. The applicability of similarity caches to machine learning classification
tasks [182] remains an open question, when the size of the objects in the catalog is comparable
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to their 𝑑-dimensional representation in the index, and, as a consequence, the index size cannot be
neglected in comparison to the local catalog size. Another important future research direction is to
consider dynamic regret, whereby the performance of a policy is compared to a dynamic optimum.
However, since the employed OMD algorithms are greedy (i.e., the algorithms do not keep track
of the history of the requests), with careful selection of the mirror map and learning rate, adaptive
regret guarantee are attainable, e.g., such guarantee holds for OGD [46].

Inference Delivery Networks. The system model considered in Chapter 4 models potential
available capacities of allocated ML models to be fully adversarial and exogenously determined.
An interesting future direction is to consider that the adversary only selects (or perturbs) the re-
quest process, then the system evolves according to a queuing model (e.g., networked counting
queues [255]) to model more realistic scenarios.

Long-term Fairness in Dynamic Resource Allocation. A future research direction is to con-
sider decentralized versions of the policy under which each agent selects an allocation with limited
information exchange across agents. For the application to virtualized caching systems, the mes-
sage exchange techniques in Section 2.3 in Chapter 2 can be exploited to estimate subgradients in
a distributed fashion. Another important future research direction is to bridge the horizon-fairness
and slot-fairness criteria to target applications where the agents are interested in ensuring fairness
within a target time window. We observed that our policy OHF can encapsulate the two criteria,
however, it remains an open question whether a policy can smoothly transition between them. A
final interesting research direction is to consider a limited feedback scenario where only part of
the utility is revealed to the agents. Our policy could be extended to this setting through gradient
estimation techniques [20].



Appendix

1 Fractional Caching and Gradient-based algorithms

1.1 Proof of Proposition 2.2.1
Consider a catalog of files N = {1, 2}, cache size 𝑘 = 1, and equal service costs 𝑤1 = 𝑤2 = 1. The
aggregate cost minimization policyA has an arbitrary initial state 𝑥𝑥𝑥1 ∈ X. The adversary picks the
following sequence of request batches {𝑟𝑟𝑟 𝑡 }𝑇𝑡=1 = {𝑒𝑒𝑒1, 2𝑒𝑒𝑒2, 2𝑒𝑒𝑒1, 2𝑒𝑒𝑒2, . . . }, where 𝑒𝑒𝑒𝑖 = [1{ 𝑗=𝑖}] 𝑗∈{1,2}. The
aggregate cost at time slot 𝑡 for a fixed cache state 𝑥𝑥𝑥 ∈ X is given by

𝑡∑︁
𝑡 ′=1

𝑓𝑟𝑟𝑟 𝑡 ′ (𝑥𝑥𝑥) =
{
𝑡 (1 − 𝑥1) + (𝑡 − 1) (1 − 𝑥2) if 𝑡 is odd,
(𝑡 − 1) (1 − 𝑥1) + 𝑡 (1 − 𝑥2) if 𝑡 is even.

(1.1)

For any time slot 𝑡 > 1 the aggregate cost minimization policy selects the state 𝑥𝑥𝑥𝑡 that minimizes∑𝑡−1
𝑡=1 𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥). The policy A selects the following sequence of states {𝑥𝑥𝑥𝑡 }𝑇𝑡=1 = {𝑥𝑥𝑥1, 𝑒𝑒𝑒1, 𝑒𝑒𝑒2, 𝑒𝑒𝑒1, 𝑒𝑒𝑒2, . . . },

and it incurs over the time horizon 𝑇 the total cost
∑𝑇
𝑡=1 𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 ) = 𝑓𝑟𝑟𝑟 1 (𝑥𝑥𝑥1) + 2(𝑇 − 1). Consider a

different policy that permanently selects 𝑒𝑒𝑒1, such policy incurs the total cost given by
∑𝑇
𝑡=1 𝑓𝑟𝑟𝑟 𝑡 (𝑒𝑒𝑒1) =

0+2+0+2+0+· · · ≤ 𝑇 . Then the optimal static allocation𝑥𝑥𝑥∗ has cost at most𝑇 ; therefore, we obtain
a lower bound on the regret ofA as Regret𝑇 (A) ≥ 𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥1) + 2(𝑇 − 1) −𝑇 ≥ 𝑇 − 2. We conclude that
the aggregate cost minimization policy has linear regret.

1.2 Online Mirror Descent
Theorem 1.1.( [53, Theorem 4.2]) Let (1) the map Φ : D → R be a mirror map (see Section 2.2.3.2)
𝜌-strongly convex w.r.t a norm ∥ · ∥ over S ∩ D (S is a convex set), (2) the cost functions 𝑓𝑡 : S → R
be convex with bounded gradients (i.e., ∥∇𝑓𝑡 (𝑥𝑥𝑥)∥∗ ≤ 𝐿,∀𝑥𝑥𝑥 ∈ S) for every 𝑡 ∈ [𝑇 ], where ∥ · ∥∗ is
the dual norm of ∥ · ∥, (3) and the Bregman divergence 𝐷Φ(𝑥𝑥𝑥,𝑥𝑥𝑥1) be bounded by 𝐷2 for 𝑥𝑥𝑥 ∈ S where
𝑥𝑥𝑥1 = arg min𝑥𝑥𝑥∈S∩D Φ(𝑥𝑥𝑥). Then Algorithm 2.1 satisfies

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑥𝑥𝑡 ) −
𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑥𝑥) ≤
𝐷2

𝜂
+ 𝜂𝐿

2

2𝜌 𝑇 , (1.2)

where 𝑥𝑥𝑥 is a fixed point in S.1

We remark that Theorem 1.1 is expressed differently in [53], where 𝑓𝑡 = 𝑓 ,∀𝑡 ∈ [𝑇 ] (fixed cost
function). Nonetheless, as observed in [53, Section 4.6] the bound obtained in Eq. (1.2) holds as long
as the dual norms of the gradients are bounded by 𝐿.

1Note that the fixed point 𝑥𝑥𝑥 can be selected as the minimizer of the aggregate cost (i.e., 𝑥𝑥𝑥∗ ∈ arg min𝑥𝑥𝑥∈S
∑𝑇
𝑡=1 𝑓𝑡 (𝑥𝑥𝑥)).
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1.3 Proof of Theorem 2.2.3

ThemapΦ(𝑥) = 1
2 ∥𝑥 ∥

2
𝑞 , 𝑞 ∈ (1, 2] is 𝜌 = 𝑞−1 strongly convex w.r.t ∥ · ∥𝑞 overD = R𝑁 a direct result

from [292, Lemma 17], and the dual norm of ∥ · ∥𝑞 is ∥ · ∥𝑝 (Hölder’s inequality).Take S = X. The
minimum value of Φ(𝑥) over X is achieved when we spread the capacity mass 𝑘 over the decision
variable, i.e., 𝑥𝑖 = 𝑘

𝑁
, 𝑖 ∈ N . If we select 𝑥𝑥𝑥1 to be the minimizer of Φ(𝑥𝑥𝑥), then we have ∇Φ𝑇 (𝑥𝑥𝑥1) (𝑥𝑥𝑥 −

𝑥𝑥𝑥1) ≥ 0,∀𝑥𝑥𝑥 ∈ X [20, Theorem 2.2], so we obtain 𝐷Φ(𝑥𝑥𝑥,𝑥𝑥𝑥1) = Φ(𝑥𝑥𝑥) − Φ(𝑥𝑥𝑥1) − ∇Φ(𝑥𝑥𝑥1)𝑇 (𝑥𝑥𝑥 − 𝑥𝑥𝑥1) ≤
Φ(𝑥𝑥𝑥) − Φ(𝑥𝑥𝑥1). Moreover, it is easy to check that Φ is maximized at a sparse point 𝑥𝑥𝑥∗ ∈ X ∩ {0, 1}𝑁 ;
thus, we have 𝐷Φ(𝑥𝑥𝑥,𝑥𝑥𝑥1) ≤ Φ(𝑥𝑥𝑥∗) − Φ(𝑥𝑥𝑥1). By replacing 𝑥𝑥𝑥1 and 𝑥𝑥𝑥∗ with their values in the previous

equation we get Φ(𝑥𝑥𝑥1) = 1
2

((
𝑘
𝑁

)𝑞
𝑁

) 2
𝑞

= 1
2𝑘

2𝑁 −
2
𝑝 , and Φ(𝑥𝑥𝑥∗) = 1

2𝑘
2
𝑞 = 1

2𝑘
2𝑘−

2
𝑝 . Thus, we have

𝐷Φ(𝑥𝑥𝑥,𝑥𝑥𝑥1) ≤
1
2𝑘

2
(
𝑘
− 2
𝑝 − 𝑁 −

2
𝑝

)
= 𝐷2. (1.3)

Note that the maximum of ∥𝑟𝑟𝑟 ∥𝑝 is achieved when 𝑅
ℎ
components are set to ℎ, then the following

bound holds on the gradients

max
𝑟∈R
∥∇𝑓𝑟𝑟𝑟 (𝑥𝑥𝑥)∥𝑝 ≤ max

𝑟𝑟𝑟∈R
∥𝑤𝑤𝑤 ∥∞ ∥𝑟𝑟𝑟 ∥𝑝 = ∥𝑤𝑤𝑤 ∥∞ ℎ

(
𝑅

ℎ

) 1
𝑝

= 𝐿. (1.4)

The gradients are bounded in the dual norm ∥∇𝑓𝑟 (𝑥𝑥𝑥𝑡 )∥𝑝 ≤ 𝐿,∀𝑟𝑟𝑟 ∈ R.
The final bound follows by Theorem 1.1, plugging (1.4) and (1.3) in (1.2), and selecting the learn-

ing rate that achieves the tightest bound 𝜂 =

√︂
(𝑞 − 1)𝑘2

(
𝑘
− 2
𝑝 − 𝑁 −

2
𝑝

)
/
(
∥𝑤 ∥2∞ ℎ2 (

𝑅
ℎ

) 2
𝑝 𝑇

)
.

1.4 Proof of Corollary 2.2.5

Taking 𝛼 = 𝑘
𝑁

and 𝛽 = 𝑁ℎ
𝑅
, we can rewrite (2.15) to have Regret𝑇 (OMD𝑞-norm) ≤

∥𝑤𝑤𝑤 ∥∞ 𝑅𝛽
1
𝑞

√︃
𝛼2/𝑞−𝛼2

𝑞−1 𝑇 . We take the limit 𝑞 → 1, to obtain the upper bound

Regret𝑇 (OMD1-norm) ≤ lim
𝑞→1
∥𝑤𝑤𝑤 ∥∞ 𝑅𝛽

1
𝑞

√︄
𝛼2/𝑞 − 𝛼2

𝑞 − 1 𝑇 = ∥𝑤𝑤𝑤 ∥∞ 𝑅𝛽
√︃[
𝛼2/𝑞]′

𝑞=1𝑇

= ∥𝑤𝑤𝑤 ∥∞ 𝑅𝛽
√︃[
−2𝑞−2𝛼2/𝑞 log(𝛼)

]
𝑞=1𝑇 = ∥𝑤𝑤𝑤 ∥∞ 𝑅𝛼𝛽

√︁
2 log(𝛼−1)𝑇

= ∥𝑤𝑤𝑤 ∥∞ ℎ𝑘

√︄
2 log

(
𝑁

𝑘

)
𝑇 .

1.5 Proof of Theorem 2.2.6
We take the simplified version of the regret of the general class of 𝑞-norm mirror maps in Eq. (2.15),
select 𝛼 = 𝑘

𝑁
and 𝛽 = 𝑁ℎ

𝑅
, so we get Regret𝑇 (OMD𝑞-norm) ≤ ∥𝑤𝑤𝑤 ∥∞ 𝑅𝜙 (𝑞)

√
𝑇 , where 𝜙 (𝑞) ≜
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𝛽
1
𝑞

√︃
𝛼2/𝑞−𝛼2

𝑞−1 . The tightest regret bound is achieved with 𝑞∗ that minimizes 𝜙 (𝑞). We have

𝜙′(𝑞) = −𝛼2𝛽
1
𝑞

𝑞2
(
𝛼2/𝑞−2 − 1

)
+ 2(𝑞 − 1)

(
𝛼2/𝑞−2 log(𝛼) +

(
𝛼2/𝑞−2 − 1

)
log(𝛽)

)
2𝑞2(𝑞 − 1)2

√︃
𝛼2/𝑞−𝛼2

𝑞−1

. (1.5)

We study the sign (−𝐽 (𝑞)) of the derivative of the minimizer in Eq (1.5)

𝐽 (𝑞) = 𝑞2
(
𝛼2/𝑞−2 − 1

)
+ 2(𝑞 − 1)

(
𝛼2/𝑞−2 log(𝛼) +

(
𝛼2/𝑞−2 − 1

)
log(𝛽)

)
(1.6)

≥ 2𝑞(1 − 𝑞) log(𝛼) + 2(𝑞 − 1)
(
21 − 𝑞

𝑞
log(𝛼) log(𝛼𝛽) + log(𝛼)

)
(1.7)

≥ 2𝑞(𝑞 − 1)
(
(1 − 𝑞) log(𝛼) + 21 − 𝑞

𝑞
log(𝛼) log(𝛼𝛽)

)
. (1.8)

Note that (1 − 𝑞) log(𝛼) ≥ 0 and 1−𝑞
𝑞

log(𝛼) ≥ 0. We take 𝑅
ℎ
≤ 𝑘 , this gives 𝛼𝛽 ≥ 1 and 𝐽 (𝑞) ≥ 0

implying sign(𝜙′(𝑞)) = −sign(𝐽 (𝑞)) = −1. We conclude that 𝜙 (𝑞) is a decreasing function of 𝑞 ∈
(1, 2] when 𝑅

ℎ
≤ 𝑘 ; therefore, the minimum is obtained at 𝑞 = 2 for 𝑅

ℎ
≤ 𝑘 .

1.6 Proof of Theorem 2.2.7
Wehave the following regret upper bound for the𝑞-normmirror map, as𝑞 → 1 fromCorollary 2.2.5:
Regret𝑇 (OMD1-norm) ≤ ∥𝑤𝑤𝑤 ∥∞ ℎ𝑘

√︃
2 log

(
𝑁
𝑘

)
𝑇 . In [293], it is proved that the log function satisfies

log(𝑢 + 1) ≤ 𝑢√
𝑢+1 , 𝑢 ≥ 0. We take 𝑢 = 𝑁

𝑘
− 1, and note that 𝑁 ≥ 𝑘 > 0, so we get 𝑢 ≥ 0. We have the

following log
(
𝑁
𝑘

)
≤ 𝑁−𝑘√

𝑁𝑘
=

√︃
𝑁
𝑘

(
1 − 𝑘

𝑁

)
. Thus, the upper bound in Corollary 2.2.5 Eq. (2.17) can be

loosened to obtain

Regret𝑇 (OMD1-norm) ≤ ∥𝑤𝑤𝑤 ∥∞ 𝑘ℎ

√︄
2log

(
𝑁

𝑘

)
𝑇 ≤ ∥𝑤𝑤𝑤 ∥∞

√︄
2
√
𝑁𝑘ℎ2𝑘

(
1 − 𝑘

𝑁

)
. (1.9)

If we take 𝑅
ℎ
≥ 2
√
𝑁𝑘 , then this upper bound is tighter than the upper bound on the regret of OGD

in Corollary 2.2.4.

1.7 Link between Neg-entropy OMD and q-norm OMD
Theorem 1.2. The algorithm OMD1-norm defined as the limitting algorithm obtain by taking 𝑞 con-
verges to 1 of OMD𝑞-norm with learning rate 𝜂𝑞 = 𝜂 (𝑞 − 1)𝑘 , intermediate states 𝑦𝑦𝑦 (𝑞)𝑡 , and fractional
states 𝑥𝑥𝑥 (𝑞)𝑡 for 𝑡 ≥ 1 is equivalent to OMDNE configured with learning rate 𝜂 ∈ R+ over the simplex
(capped simplexX with 𝑘 = 1), when both policies are initialized with same state in R𝑁>0∩X. Moreover,
OMD1-norm has a multiplicative update rule over the capped simplex.

Proof.
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Let𝑔𝑔𝑔𝑡 = ∇𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 ) be the gradient of the cost function at time slot 𝑡 . From lines 2–3 in Algorithm 2.1
and Eq. (2.18) we obtain the following 𝑦 (𝑞)

𝑡,𝑖
= (∇Φ(𝑥𝑥𝑥𝑡 ))𝑖 + 𝜂𝑞𝑔𝑡,𝑖 = sign(𝑥𝑡,𝑖) |𝑥𝑡,𝑖 |

𝑞−1

∥𝑥𝑥𝑥𝑡 ∥𝑞−2
𝑞

− 𝜂𝑞𝑔𝑡,𝑖 for a
given 𝑞 ∈ (1, 2]. The algorithm guarantees that 𝑥𝑥𝑥𝑡 ∈ X ∩ R𝑁>0, then 𝑥𝑖 > 0,∀𝑖 ∈ N . So, we get
𝑦
(𝑞)
𝑡,𝑖

=
(𝑥𝑡,𝑖 )𝑞−1

∥𝑥𝑥𝑥𝑡 ∥𝑞−2
𝑞

−𝜂𝑞𝑔𝑡,𝑖,∀𝑖 ∈ N . Note that −𝜂𝑔𝑡,𝑖 is non-negative. The numbers 𝑝 and 𝑞 are conjugate

numbers (see Section 2.2.3.3) and satisfy 𝑞 − 1 = 1
𝑝−1 . We use Eq. (2.19) to get the expression of

𝑦
(𝑞)
𝑡+1,𝑖 as (

(𝑥𝑡,𝑖 )𝑞−1

∥𝑥𝑥𝑥𝑡 ∥𝑞−2
𝑞

− 𝜂𝑞𝑔𝑡,𝑖
)𝑝−1

(∑
𝑖∈N

(
(𝑥𝑡,𝑖 )𝑞−1

∥𝑥𝑥𝑥𝑡 ∥𝑞−2
𝑞

− 𝜂𝑞𝑔𝑡,𝑖
)𝑝 ) 𝑝−2

𝑝

=

(
(𝑥𝑡,𝑖 )𝑞−1

∥𝑥𝑥𝑥𝑡 ∥𝑞−2
𝑞

− 𝜂 (𝑞 − 1)𝑘𝑔𝑡,𝑖
)𝑝−1

(∑
𝑖∈N

(
(𝑥𝑡,𝑖 )𝑞−1

∥𝑥𝑥𝑥𝑡 ∥𝑞−2
𝑞

− 𝜂 (𝑞 − 1)𝑘𝑔𝑡,𝑖
)𝑝 ) 𝑝−2

𝑝

(1.10)

=

𝑥𝑡,𝑖 ∥𝑥𝑥𝑥𝑡 ∥ (2−𝑞)𝑞

(
1 − 𝜂 (𝑞 − 1)𝑘𝑔𝑡,𝑖

∥𝑥𝑥𝑥𝑡 ∥𝑞−2
𝑞

(𝑥𝑡,𝑖 )𝑞−1

)𝑝−1

(∑
𝑖∈N (𝑥𝑡,𝑖) (𝑞−1)𝑝

(
1 − 𝜂 (𝑞 − 1)𝑘𝑔𝑡,𝑖

∥𝑥𝑥𝑥𝑡 ∥𝑞−2
𝑞

(𝑥𝑡,𝑖 )𝑞−1

)𝑝 ) 𝑝−2
𝑝

. (1.11)

We rewrite the above expression solely in terms of 𝑝 to obtain

𝑦

(
𝑝

𝑝−1

)
𝑡+1,𝑖 =

𝑥𝑡,𝑖 ∥𝑥𝑥𝑥𝑡 ∥
(2− 𝑝

𝑝−1 )
𝑝

𝑝−1

(
1 − 𝜂𝑔𝑡,𝑖𝑘/

(
(𝑥𝑡,𝑖)

1
𝑝−1 ∥𝑥𝑥𝑥𝑡 ∥

(2− 𝑝

𝑝−1 )
𝑝

𝑝−1

))𝑝−1

(∑
𝑖∈N (𝑝 − 1) (𝑥𝑡,𝑖) (

𝑝

𝑝−1 )
(
1 − 𝜂𝑔𝑡,𝑖𝑘/

(
(𝑝 − 1) (𝑥𝑡,𝑖)

1
𝑝−1 ∥𝑥𝑥𝑥𝑡 ∥

(2− 𝑝

𝑝−1 )
𝑝

𝑝−1

))𝑝 ) 𝑝−2
𝑝

. (1.12)

Taking the limit for 𝑞 converges to 1 is equivalent to let 𝑝 diverges to +∞, so we have

𝑦𝑡+1,𝑖 ≜ lim
𝑝→+∞

𝑦

(
𝑝

𝑝−1

)
𝑡+1,𝑖 = 𝑥𝑡,𝑖𝑘

©­­­« lim
𝑝→+∞

(
1 − 𝜂𝑔𝑡,𝑖

𝑝−1

)𝑝−1

(∑
𝑖∈N 𝑥𝑡,𝑖

(
1 − 𝜂𝑔𝑡,𝑖

𝑝−1

)𝑝 ) 𝑝−2
𝑝

ª®®®¬ (1.13)

= 𝑥𝑡,𝑖𝑘
©­­« lim
𝑝→+∞

(
1 − 𝜂𝑔𝑡,𝑖

𝑝−1

)𝑝−1(∑
𝑖∈N 𝑥𝑡,𝑖

(
1 − 𝜂𝑔𝑡,𝑖

𝑝−1

)𝑝 ) ª®®¬ (1.14)

= 𝑥𝑡,𝑖𝑘
exp

(
−𝜂𝑔𝑡,𝑖

)∑
𝑖∈N 𝑥𝑡,𝑖 exp

(
−𝜂𝑔𝑡,𝑖

) ,∀𝑖 ∈ N . (1.15)

• The intermediate state of OMD1-norm in Eq. (1.15) is a multiplicative update rule identical to the
update rule of OMDNE (𝑦𝑡+1,𝑖 = 𝑥𝑡,𝑖 𝑒−𝜂𝑔𝑡,𝑖 in Eq. (2.23)) with an additional multiplicative factor

𝑘∑
𝑖∈N 𝑥𝑡,𝑖 exp(−𝜂𝑔𝑡,𝑖) .
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• For 𝑘 = 1, the intermediate state of OMD1-norm in Eq. (1.15) is feasible (i.e., 𝑥𝑥𝑥𝑡+1 = 𝑦𝑦𝑦𝑡+1 and the
projection has no effect). On the other hand, the neg-entropy projection in the case of 𝑘 = 1 is
just a normalization of the intermediate states (i.e., 𝑥𝑡+1,𝑖 = 𝑥𝑡,𝑖 𝑒

−𝜂𝑔𝑡,𝑖∑
𝑖∈N 𝑥𝑡,𝑖 exp(−𝜂𝑔𝑡,𝑖) for 𝑖 ∈ N ). Thus,

the states obtained by the two algorithms coincide.

□

1.8 Proof of Theorem 2.2.8

The neg-entropy mirror map is 𝜌 = 1
𝑘
-strongly convex w.r.t the norm ∥ · ∥1 over X ∩ D [48, Exam-

ple 2.5]. The dual norm of ∥ · ∥1 is ∥ · ∥∞. By taking 𝑝 →∞ in Eq. (1.4) we can consider as bound for
the gradient in Eq. (1.2)

𝐿 = ∥𝑤𝑤𝑤 ∥∞ ℎ. (1.16)

The initial state 𝑥𝑥𝑥1 with 𝑥1,𝑖 = 𝑘/𝑁,∀𝑖 ∈ N is the minimizer of Φ, and we have Φ(𝑥) ≤ 0,∀𝑥𝑥𝑥 ∈ 𝑋 .
Thus

𝐷Φ(𝑥𝑥𝑥,𝑥𝑥𝑥1) ≤ Φ(𝑥𝑥𝑥) − Φ(𝑥𝑥𝑥1) ≤ −Φ(𝑥𝑥𝑥1) = −
𝑁∑︁
𝑖=1

𝑘

𝑁
log

(
𝑘

𝑁

)
= 𝑘 log

(
𝑁

𝑘

)
= 𝐷2. (1.17)

The bound follows by Theorem 1.1, plugging (1.16) and (1.17) in (1.2), and selecting the learning rate

that gives the tightest upper bound, that is 𝜂 =

√︂
2 log( 𝑁

𝑘
)

∥𝑤 ∥2∞ℎ2𝑇
.

1.9 Proof of Theorem 2.2.9

We adapt the Euclidean projection algorithm in [56]. Finding the projection x = ΠΦ
X∩D (y) corre-

sponds to solving a convex problem as 𝐷Φ(x, y) is convex in x and X ∩ D is a convex set. Without
loss of generality, we assume the components of x = ΠΦ

X∩D (y) to be in non-decreasing order. Let
𝑏 ∈ N be the index of the largest component of x smaller than 1. The KKT conditions lead to con-
clude that if the components of y are ordered in ascending order, so are the components of x. In
particular, the smallest 𝑏 components of x can be obtained as 𝑥𝑖 = 𝑦𝑖𝑒𝛾 and 𝑦𝑏𝑒𝛾 < 1 ≤ 𝑦𝑏+1𝑒𝛾 , where
𝛾 is the Lagrangian multiplier associated with the capacity constraint. If 𝑏 is known, then it follows
from the capacity constraint that 𝑚𝑏 ≜ 𝑒𝛾 = 𝑘+𝑏−𝑁∑𝑏

𝑖=1 𝑦𝑖
= 𝑘+𝑏−𝑁
∥y∥1−

∑𝑁
𝑖=𝑏+1 𝑦𝑖

. We observe that necessarily

𝑏 ∈ {𝑁 − 𝑘 + 1, . . . , 𝑁 }. In fact, we cannot have 𝑏 ≤ 𝑁 − 𝑘 . If 𝑏 ≤ 𝑁 − 𝑘 , we get ∑𝑁
𝑖=𝑁−𝑘+1 𝑥𝑖 ≥ 𝑘

and the capacity constraint implies that 𝑥𝑖 = 0,∀𝑖 ≤ 𝑏, but we must have 𝑥𝑖 > 0 since x ∈ X ∩ D
and D = 𝑅𝑁>0. We can then find the value of 𝑏, but checking which number in {𝑁 − 𝑘 + 1, . . . , 𝑁 }
satisfies 𝑦𝑏𝑒𝛾 < 1 ≤ 𝑦𝑏+1𝑒𝛾 . Note that this operation only requires the largest 𝑘 components of y.
The projection corresponds to setting the components 𝑦𝑏+1, . . . , 𝑦𝑁 to 1 and multiply the other 𝑁 −𝑏
components by𝑚𝑏 . In order to avoid updating all components at each step, we can simply set the
components 𝑥𝑖 for 𝑖 > 𝑏 (those that should be set equal to 1) to 1

𝑚𝑏
. Then, at any time 𝑡 , we can

recover the value of 𝑥𝑡,𝑖 , multiplying the 𝑖-th component of the vector x by 𝑃 =
∏𝑡
𝑠=1𝑚𝑏,𝑠 , where

𝑚𝑏,𝑠 is the returned𝑚𝑏 from the Bregman projection at time step 𝑠 . For general values of 𝑅 and ℎ,
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the projection step takes O (𝑘) steps per iteration and a partial sort is required to maintain top-𝑘
components of y𝑡 sorted; this can be done using partial sorting in O (𝑁 + 𝑘 log(𝑘)) [294]. When
𝑅 = ℎ = 1, Algorithm 1 leads to only a single state coordinate update, and requires O (log(𝑘)) steps
to maintain top-𝑘 components of x𝑡 sorted online.

1.10 Proof of Proposition 2.2.10
Every time slot 𝑡 ∈ [𝑇 ], we obtain an intermediate cache state𝑦𝑦𝑦𝑡+1 through lines 2–4 in Algorithm 2.1
as 𝑦𝑦𝑦𝑡+1 = (∇Φ−1) (∇Φ(𝑥𝑥𝑥𝑡 ) − 𝜂∇𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 )). Let {𝑥𝑥𝑥𝑡 }𝑇𝑡=1 and {𝑥𝑥𝑥′𝑡 }𝑇𝑡=1 be fractional cache states obtained
by OGD and OMDNE, respectively, and {𝑦𝑦𝑦𝑡 }𝑇𝑡=1 and {𝑦𝑦𝑦′𝑡 }𝑇𝑡=1 be their intermediate fractional cache
states. In the case of OGD, or equivalently OMD configured with mirror map Φ(𝑥𝑥𝑥) = 1

2 ∥𝑥𝑥𝑥 ∥
2
2, the

intermediate fractional states have the same components as the previous cache state for files are
not requested 𝑦𝑦𝑦𝑡,𝑖 = 𝑥𝑥𝑥𝑡,𝑖 for every 𝑖 ∉ supp(𝑟𝑟𝑟 𝑡 ). Similarly, we also have 𝑦𝑦𝑦′𝑡,𝑖 = 𝑥𝑥𝑥′𝑡,𝑖 for OMDNE for
every 𝑖 ∉ supp(𝑟𝑟𝑟 𝑡 ). The Euclidean projection algorithm onto the capped simplex [56] can only set
a component of the intermediate fractional cache state to one if it exceeds it, and the remaining
components are either set to zero or reduced by a constant amount Δ =

𝑁−𝑏−𝑘+∑𝑏
𝑗=𝑎+1 𝑦𝑡+1, 𝑗

𝑏−𝑎 , where 𝑎 is
the number of components set to zero and 𝑏 is the number of components strictly less than one, and
Δ ≥ 𝑦𝑡+1,𝑎 (a KKT condition in [56]) and in turn Δ ≥ 0 because 𝑦𝑡+1,𝑖 ≥ 0 for any 𝑖 ∈ N . Therefore,
all the components 𝑖 ∉ supp(𝑟𝑟𝑟 𝑡 ) of the resulting state are decreased or at most kept unchanged.
Similarly, the neg-entropy Bregman projection onto the capped simplex sets some components to
one if they exceed it, and the remaining components are scaled by a constant 𝑚𝑏 . In our caching
setting we have 𝑦𝑡+1,𝑖 ≥ 𝑥𝑡,𝑖 for 𝑖 ∈ N in turn ∥𝑦𝑦𝑦𝑡+1∥1 ≥ 𝑘 , thus the equality constraint ∥𝑥𝑥𝑥 ∥1 = 𝑘

in the projection can be replaced by ∥𝑥𝑥𝑥 ∥1 ≤ 𝑘 . From the KKT dual feasibility condition we obtain
−𝛾 ≥ 0 and𝑚𝑏 = 𝑒𝛾 ≤ 1. Thus, we have 𝑥𝑡+1,𝑖 ≤ 𝑥𝑡,𝑖 for every 𝑖 ∉ supp(𝑟𝑟𝑟 𝑡 ). We conclude that the
update cost is zero for both policies, i.e., UC𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 ,𝑥𝑥𝑥𝑡+1) =

∑
𝑖∉supp(𝑟𝑟𝑟 𝑡 )𝑤

′
𝑖 max(0, 𝑥𝑡+1,𝑖 − 𝑥𝑡,𝑖) = 0.

2 Integral Caching

2.1 Proof of Proposition 2.2.11
Consider equal service costs 𝑤𝑖 = 1 for any 𝑖 in N . A deterministic policy denoted by A selects an
integral cache state 𝑥𝑥𝑥𝑡 fromZ for every time slot 𝑡 , and the adversary can select a request batch 𝑟𝑟𝑟 𝑡
based on the selected state. Let 𝑟𝑟𝑟 𝑡 = [1{𝑥𝑡,𝑖≠1}]𝑖∈N be the request batch selected by the adversary at
time 𝑡 , so the cost incurred at any time slot 𝑡 is 𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 ) = 𝑁 −𝑘 , and the total cost incurred byA for
the time horizon 𝑇 is

∑𝑇
𝑡=1 𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 ) = (𝑁 − 𝑘)𝑇 . For a fixed integral cache state 𝑥𝑥𝑥 ∈ Z,∑𝑇

𝑡=1 𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥) =
∑𝑇
𝑡=1

∑𝑁
𝑖=1(1 − 𝑥𝑖) (1 − 𝑥𝑡,𝑖) = 𝑇 (𝑁 − 2𝑘) +∑𝑁

𝑖=1 𝑥𝑖
∑𝑇
𝑡=1 𝑥𝑡,𝑖 . (2.18)

The best static cache state 𝑥𝑥𝑥∗ is given by 𝑥𝑥𝑥∗ = arg min𝑥𝑥𝑥∈Z
∑𝑇
𝑡=1 𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥) = arg min𝑥𝑥𝑥∈Z

∑𝑁
𝑖=1 𝑥𝑖

∑𝑇
𝑖=1 𝑥𝑡,𝑖 .

The maximum value of
∑𝑁
𝑖=1 𝑥∗,𝑖

∑𝑇
𝑡=1 𝑥𝑡,𝑖 is achieved when

∑𝑇
𝑡=1 𝑥𝑡,𝑖 =

∑𝑇
𝑡=1 𝑥𝑡, 𝑗 = 𝑇𝑘/𝑁 for every

𝑖, 𝑗 ∈ N , and in this case 𝑥𝑥𝑥∗ can be arbitrary inZ. Thus, the cost incurred by the static optimum is
upper bounded by

∑𝑇
𝑡=1 𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥∗) = 𝑇 (𝑁 − 2𝑘) +∑𝑁

𝑖=1 𝑥∗,𝑖
∑𝑇
𝑡=1 𝑥𝑡,𝑖 ≤ 𝑇 (𝑁 − 2𝑘) + 𝑇𝑘2

𝑁
. The regret ofA
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over time horizon 𝑇 is lower bounded by

Regret𝑇 (A) =
∑𝑇
𝑡=1 𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 ) −

∑𝑇
𝑡=1 𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥∗) ≥ 𝑇 (𝑁 − 𝑘) −𝑇 (𝑁 − 2𝑘) −𝑇 𝑘2

𝑁
= 𝑘

(
1 − 𝑘

𝑁

)
𝑇 . (2.19)

We conclude that the regret of any deterministic policyA is Ω(𝑇 ) compared to a static optimum
selecting the best state inZ; therefore, it also hasΩ(𝑇 ) regret compared to a static optimum selecting
the best fractional state in X, which includesZ.

2.2 Proof of Proposition 2.2.12
The expected service cost incurred when sampling the integral caching states 𝑧𝑧𝑧𝑡 from 𝑥𝑥𝑥𝑡 at each
time 𝑡 , by the linearity of 𝑓𝑟𝑟𝑟 𝑡 is E

[∑𝑇
𝑡=1 𝑓𝑟𝑟𝑟 𝑡 (𝑧𝑧𝑧𝑡 )

]
=

∑𝑇
𝑡=1 E

[
𝑓𝑟𝑟𝑟 𝑡 (𝑧𝑧𝑧𝑡 )

]
=

∑𝑇
𝑡=1 𝑓𝑟𝑟𝑟 𝑡 (E [𝑧𝑧𝑧𝑡 ]) =

∑𝑇
𝑡=1 𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 ).

The best static configuration 𝑥𝑥𝑥∗ in the fractional setting can always be selected to be integral; this is
because the objective and constraints are linear, so integrality follows from the fundamental theorem
of linear programming. Hence, the expected regret for the service cost coincides with the regret of
the fractional caching policy.

2.3 Proof of Theorem 2.2.13
We consider the catalog N = {1, 2}, cache capacity 𝑘 = 1, and equal service and update costs
𝑤𝑖 = 𝑤

′
𝑖 = 1 for 𝑖 ∈ N . A policy A selects the states {𝑥𝑥𝑥𝑡 }𝑇𝑡=1 ∈ X𝑇 . The randomized states obtained

by Ξ are {𝑧𝑧𝑧𝑡 }𝑇𝑡=1; thus, we have 𝑧𝑧𝑧𝑡 = [1, 0] w.p. 𝑥𝑡,1, and 𝑧𝑧𝑧𝑡 = [0, 1] w.p. 𝑥𝑡,2. An adversary selects the
request batch as 𝑟𝑟𝑟 𝑡 = [1{𝑖=𝑖𝑡 }]𝑖∈N aiming to greedily maximize the cost of the cache, where

𝑖𝑡 = arg min𝑖∈N {𝑥𝑡,𝑖}. (2.20)

The expected service cost at time 𝑡 is E
[
𝑓𝑟𝑟𝑟 𝑡 (𝑧𝑧𝑧𝑡 )

]
= 1 − 𝑥𝑡,𝑖𝑡 , and the expected update cost is

E
[
UC𝑟𝑟𝑟 𝑡 (𝑧𝑧𝑧𝑡 ,𝑧𝑧𝑧𝑡+1)

]
= P

(
𝑧𝑡,𝑖𝑡 = 1, 𝑧𝑡+1,𝑖𝑡 = 0

)
= P

(
𝑧𝑡,𝑖𝑡 = 1

)
P

(
𝑧𝑡+1,𝑖𝑡 = 0

)
= 𝑥𝑡,𝑖𝑡 (1 − 𝑥𝑡+1,𝑖𝑡 ). (2.21)

An update cost is incurred when 𝑖𝑡 is requested and the state changes from 𝑧𝑡,𝑖𝑡 = 1 to 𝑧𝑡+1,𝑖𝑡 =

0; we pay a unitary cost due to fetching a single file that is not requested with probability
P

(
𝑧𝑡,𝑖𝑡 = 1, 𝑧𝑡+1,𝑖𝑡 = 0

)
, and this gives the first equality. We use independence of the random vari-

ables 𝑧𝑧𝑧𝑡 and 𝑧𝑧𝑧𝑡+1 to obtain the second equality. A fixed state 𝑥𝑥𝑥 =
[ 1

2 ,
1
2
]
incurs a cost of 1

2 for every
timeslot 𝑡 ∈ [𝑇 ]. We define the instantaneous extended regret w.r.t. the fixed state𝑥𝑥𝑥 for every times-
lot 𝑡 ∈ [𝑇 ] as 𝑎𝑡 = E

[
𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 ) + UC𝑟𝑟𝑟 𝑡 (𝑧𝑧𝑧𝑡 ,𝑧𝑧𝑧𝑡+1)

]
− 𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥) = E

[
𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥𝑡 ) + UC𝑟𝑟𝑟 𝑡 (𝑧𝑧𝑧𝑡 ,𝑧𝑧𝑧𝑡+1)

]
− 1

2 . Observe
here that looking for a minimizer over X or over Z is equivalent. Because 𝑥𝑥𝑥 is not necessarily the
minimizer of the aggregate service cost

∑𝑇
𝑡=1 𝑓𝑟𝑟𝑟 𝑡 (𝑥𝑥𝑥), we can lower bound the extended regret (2.30)

as
E-Regret𝑇 (A,Ξ) ≥

∑𝑇
𝑡=1 𝑎𝑡 . (2.22)

Without loss of generality assume that 𝑇 is even so
∑𝑇
𝑡=1 𝑎𝑡 =

∑𝑇 /2
𝑘=1 (𝑎2𝑘 + 𝑎2𝑘−1), and we have∑𝑇

𝑡=1 𝑎𝑡 =

𝑇 /2∑︁
𝑘=1

(
1 − 𝑥2𝑘−1,𝑖2𝑘−1 − 𝑥2𝑘,𝑖2𝑘 + 𝑥2𝑘−1,𝑖2𝑘−1 (1 − 𝑥2𝑘,𝑖2𝑘−1) + 𝑥2𝑘,𝑖2𝑘 (1 − 𝑥2𝑘+1,𝑖2𝑘 )

)
≥ ∑𝑇 /2

𝑘=1
(
1 − 𝑥2𝑘−1,𝑖2𝑘−1 − 𝑥2𝑘,𝑖2𝑘 + 𝑥2𝑘−1,𝑖2𝑘−1 (1 − 𝑥2𝑘,𝑖2𝑘−1)

)
.
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From the definition of 𝑖2𝑘 in Eq. (2.20) we have 𝑥2𝑘,𝑖2𝑘 ≤ (1 − 𝑥2𝑘,𝑖2𝑘−1) for any 𝑘 ∈ [𝑇 /2]. Thus,∑𝑇
𝑡=1 𝑎𝑡 ≥

∑𝑇 /2
𝑘=1

(
1 − 𝑥2𝑘−1,𝑖2𝑘−1 − 𝑥2𝑘,𝑖2𝑘 + 𝑥2𝑘−1,𝑖2𝑘−1𝑥2𝑘,𝑖2𝑘

)
=

∑𝑇 /2
𝑘=1 1 − 𝑥2𝑘−1,𝑖2𝑘−1 − 𝑥2𝑘,𝑖2𝑘

(
1 − 𝑥2𝑘−1,𝑖2𝑘−1

)
≥ ∑𝑇 /2

𝑘=1
(
1 − 𝑥2𝑘−1,𝑖2𝑘−1 − 1

2
(
1 − 𝑥2𝑘−1,𝑖2𝑘−1

) )
=

∑𝑇 /2
𝑘=1

( 1
2 −

1
2𝑥2𝑘−1,𝑖2𝑘−1

)
≥ 𝑇

8 .

The second and third inequalities are obtained using 𝑥𝑡,𝑖𝑡 ≤ 1
2 for every timeslot 𝑡 ∈ [𝑇 ]; a direct

result from the definition of 𝑖𝑡 in Eq. (2.20). We combine the above lower bound with Eq. (2.22) to
obtain E-Regret𝑇 (A,Ξ) ≥ 𝑇

8 .

2.4 Family of Coupling Schemes with Sublinear Update Cost
The following theorem provides a sufficient condition for the sublinearity of the expected total up-
date cost of the random cache states {𝑧𝑧𝑧𝑡 }𝑇𝑡=1 obtained through a rounding scheme Ξ from the input
fractional states {𝑥𝑥𝑥𝑡 }𝑇𝑡=1.

Theorem 2.1. Consider an OMDAlgorithm and a joint distribution of (𝑧𝑧𝑧𝑡 ,𝑧𝑧𝑧𝑡+1) that satisfy (a) E[𝑧𝑧𝑧𝑡 ] =
𝑥𝑥𝑥𝑡 and E[𝑧𝑧𝑧𝑡+1] = 𝑥𝑥𝑥𝑡+1, and (b) E

[
UC𝑟𝑟𝑟 𝑡 (𝑧𝑧𝑧𝑡 ,𝑧𝑧𝑧𝑡+1)

]
= O (∥𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥𝑡 ∥1). This algorithm incurs an expected

service cost equal to the service cost of the fractional sequence. Moreover, if 𝜂 = Θ
(

1√
𝑇

)
, the algorithm

has also O
(√
𝑇

)
expected update cost and then O

(√
𝑇

)
extended regret.

Proof.

Consider that the sequence {𝑥𝑥𝑥𝑡 }𝑇𝑡=1 is generated by an OMD algorithm, configured with a 𝜌-
strongly convex mirror map Φ w.r.t a norm ∥ · ∥. Assume that we can find a joint distribution
of (𝑧𝑧𝑧𝑡 ,𝑧𝑧𝑧𝑡+1) satisfying E

[
UC𝑟𝑟𝑟 𝑡 (𝑧𝑧𝑧𝑡 ,𝑧𝑧𝑧𝑡+1)

]
= O (∥𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥𝑡 ∥1), where E[𝑧𝑧𝑧𝑡 ] = 𝑥𝑥𝑥𝑡 and E[𝑧𝑧𝑧𝑡+1] = 𝑥𝑥𝑥𝑡+1.

Then there exists a constant𝛾1 > 0, such that E
[
UC𝑟𝑟𝑟 𝑡 (𝑧𝑧𝑧𝑡 ,𝑧𝑧𝑧𝑡+1)

]
≤ 𝛾1 ∥𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥𝑡 ∥1. Moreover, there

exists 𝛾2 > 0, such that 𝛾 ∥𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥𝑡 ∥1 ≤ 𝛾1𝛾2 ∥𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥𝑡 ∥, and this gives

E
[
UC𝑟𝑟𝑟 𝑡 (𝑧𝑧𝑧𝑡 ,𝑧𝑧𝑧𝑡+1)

]
≤ 𝛾1𝛾2 ∥𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥𝑡 ∥ . (2.23)

As Φ is 𝜌-strongly convex w.r.t. the norm ∥ · ∥

𝐷Φ(𝑥𝑥𝑥𝑡 ,𝑦𝑦𝑦𝑡+1) = Φ(𝑥𝑥𝑥𝑡 ) − Φ(𝑦𝑦𝑦𝑡+1) − ∇Φ(𝑦𝑦𝑦𝑡+1)𝑇 (𝑥𝑥𝑥𝑡 −𝑦𝑦𝑦𝑡+1)
= Φ(𝑥𝑥𝑥𝑡 ) − Φ(𝑦𝑦𝑦𝑡+1) + ∇Φ(𝑥𝑥𝑥𝑡 )𝑇 (𝑦𝑦𝑦𝑡+1 − 𝑥𝑥𝑥𝑡 ) + (∇Φ(𝑥𝑥𝑥𝑡 ) − ∇Φ(𝑦𝑦𝑦𝑡+1))𝑇 (𝑥𝑥𝑥𝑡 −𝑦𝑦𝑦𝑡+1)

≤ −𝜌2 ∥𝑥
𝑥𝑥𝑡 −𝑦𝑦𝑦𝑡+1∥2 + 𝜂𝑔𝑇𝑡 (𝑥𝑥𝑥𝑡 −𝑦𝑦𝑦𝑡+1) ≤ −

𝜌

2 ∥𝑥
𝑥𝑥𝑡 −𝑦𝑦𝑦𝑡+1∥2 + 𝜂 ∥𝑥𝑥𝑥𝑡 −𝑦𝑦𝑦𝑡+1∥ 𝐿 ≤

𝜂2𝐿2

2𝜌 (2.24)

The above inequalities are obtained using the strong convexity of Φ and the update rule, Cauchy-
Schwarz inequality, and the inequality 𝑎𝑥 −𝑏𝑥2 ≤ max𝑥 𝑎𝑥 −𝑏𝑥2 = 𝑎2/4𝑏 as in the last step in the
proof of [53, Theorem 4.2], respectively. We have

∥𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥𝑡 ∥ ≤
√︃

2
𝜌
𝐷Φ(𝑥𝑥𝑥𝑡 ,𝑥𝑥𝑥𝑡+1) ≤

√︃
2
𝜌
𝐷Φ(𝑥𝑥𝑥𝑡 ,𝑦𝑦𝑦𝑡+1)

(2.24)
≤

√︃
2𝜂2 𝐿2

2𝜌2 ≤ 𝐿𝜂

𝜌
. (2.25)

The first inequality is obtained using the strong convexity of Φ, and the second using the gen-
eralized Pythagorean inequality [88, Lemma 11.3]. We combine Eq. (2.25) and (2.23) to obtain
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Figure 2.1: The support and distribution of the random variable |I𝑖−1 | for𝑚𝑖−1 ≥ 𝑚−𝑖 (left) and𝑚𝑖−1 <

𝑚−𝑖 (right). The blue shaded area represents the probability that |I𝑖−1 | takes the value indicated below
the corresponding image. This figure can be viewed as a subset of the rows in Figure 2.2.

E
[
UC𝑟𝑟𝑟 𝑡 (𝑧𝑧𝑧𝑡 ,𝑧𝑧𝑧𝑡+1)

]
≤ 𝛾1𝛾2 ∥𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥𝑡 ∥ ≤ 𝛾1𝛾2

𝐿𝜂

𝜌
. The total update cost is

∑𝑇−1
𝑡=1 E

[
UC𝑟𝑟𝑟 𝑡 (𝑧𝑧𝑧𝑡 ,𝑧𝑧𝑧𝑡+1)

]
≤

𝛾1𝛾2
𝐿𝜂

𝜌
𝑇 . When OMD has a fixed learning rate 𝜂 = Θ

(
1√
𝑇

)
, we obtain

∑𝑇−1
𝑡=1 E

[
UC𝑟𝑟𝑟 𝑡 (𝑧𝑧𝑧𝑡 ,𝑧𝑧𝑧𝑡+1)

]
=

O
(√
𝑇

)
. The expected service cost is E

[∑𝑇
𝑡=1 𝑓𝑡 (𝑧𝑧𝑧𝑡 )

]
=

∑𝑇
𝑡=1 𝑓𝑡 (𝑥𝑥𝑥𝑡 ) = O (𝑇 ); the first equality is ob-

tained from the linearity of the expectation operator and the function 𝑓𝑟𝑟𝑟 𝑡 , and the second equality
is obtained using the bound in Eq. (1.2) with 𝜂 = Θ

(
1√
𝑇

)
.

□

2.5 Proof of Theorem 2.2.14
Lemma 2.2 and Lemma 2.4 guarantee that Algorithm 2.3 used with an OMD algorithm satisfies the
hypothesis of Theorem 2.1 and, hence, provides sublinear extended regret.

Lemma 2.2. The random integral cache state𝑧𝑧𝑧 obtained by calling Algorithm 2.3 with fractional cache
configuration input 𝑥𝑥𝑥 ∈ X satisfies 𝑧𝑧𝑧 ∈ Z and E𝜉 [𝑧𝑧𝑧] = 𝑥𝑥𝑥 .

Proof.

We employ the shorthand notation𝑚𝑖 =
∑𝑖
𝑗=1 𝑥 𝑗 and𝑚−𝑖 = ⌊𝑚𝑖⌋. The choice of 𝜉 (see Figure 2.2)

defines 𝑘 different thresholds 𝜉, 𝜉 + 1, . . . , 𝜉 + 𝑘 − 1. For each threshold, we select the first item,
whose accumulated mass exceeds the threshold. As 𝑚𝑁 = 𝑘 , we are guaranteed to exceeds all
𝑘 thresholds, and as 𝑥𝑖 ≤ 1, we are guaranteed to select one item for each threshold. Therefore
𝑧𝑧𝑧 belongs to Z. From Algorithm 2.3 for any 𝑖 ∈ N we have P(𝑧𝑖 = 1) = P(I𝑖 \ I𝑖−1 = {𝑖}) =
P (𝑚𝑖 ≥ 𝜉 + |I𝑖−1 |).
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Figure 2.2: The random integral cache configuration obtained by calling Online Rounding given
the fractional cache state 𝑥𝑥𝑥 and 𝜉 (left). When 𝜉 is kept fixed, the probability over the initial choice
of 𝜉 the random integral cache configuration rounded from a new fractional state 𝑥𝑥𝑥′ = 𝑥𝑥𝑥 − 𝛿𝑒𝑒𝑒3 + 𝛿𝑒𝑒𝑒7
is different is illustrated by the dashed areas (right).

See Figure 2.1 (left). If𝑚𝑖−1 ≥ 𝑚−𝑖 , then |I𝑖−1 | ∈ {𝑚−𝑖 ,𝑚−𝑖 + 1} and

P (𝑚𝑖 ≥ 𝜉 + |I𝑖−1 |) = P
(
𝑚𝑖 ≥ 𝜉 + |I𝑖−1 |

�� |I𝑖−1 | =𝑚−𝑖
)
P( |I𝑖−1 | =𝑚−𝑖 )

+ P
(
𝑚𝑖 ≥ 𝜉 + |I𝑖−1 |

�� |I𝑖−1 | =𝑚−𝑖 + 1
)
P( |I𝑖−1 | =𝑚−𝑖 + 1) (2.26)

=
𝑚𝑖 −𝑚𝑖−1

(𝑚−
𝑖
+ 1 −𝑚𝑖−1)

· (𝑚−𝑖 + 1 −𝑚𝑖−1) + 0 · (𝑚𝑖−1 −𝑚−𝑖 ) = 𝑥𝑖 . (2.27)

See Figure 2.1 (right). If𝑚𝑖−1 < 𝑚−𝑖 , then |I𝑖−1 | ∈ {𝑚−𝑖 − 1,𝑚−𝑖 } and

P (𝑚𝑖 ≥ 𝜉 + |I𝑖−1 |) = P
(
𝑚𝑖 ≥ 𝜉 + |I𝑖−1 |

�� |I𝑖−1 | =𝑚−𝑖 − 1
)
P( |I𝑖−1 | =𝑚−𝑖 − 1)

+ P
(
𝑚𝑖 ≥ 𝜉 + |I𝑖−1 |

�� |I𝑖−1 | =𝑚−𝑖
)
P( |I𝑖−1 | =𝑚−𝑖 ) (2.28)

= 1 · (𝑚−𝑖 −𝑚𝑖−1) +
𝑚𝑖 −𝑚−𝑖

𝑚𝑖−1 −𝑚−𝑖 + 1 · (𝑚𝑖−1 −𝑚−𝑖 + 1) =𝑚𝑖 −𝑚𝑖−1 = 𝑥𝑖 . (2.29)

□

Lemma 2.3. Consider a fractional cache configuration𝑥𝑥𝑥′ obtained by an elementarymass movement of
𝛿 from𝑢 ∈ N to 𝑣 ∈ N for configuration𝑥𝑥𝑥 ∈ X, i.e.,𝑥𝑥𝑥′ = 𝑥𝑥𝑥−𝛿𝒆𝑢+𝛿𝒆𝑣 . Algorithm 2.3 outputs the random
integral cache configurations𝑧𝑧𝑧, and𝑧𝑧𝑧′, given the input fractional cache states𝑥𝑥𝑥 and𝑥𝑥𝑥′, respectively. The
random integral configurations satisfyE𝜉

[
∥𝑧𝑧𝑧′ − 𝑧𝑧𝑧∥1,𝑤𝑤𝑤 ′

]
≤ 2𝑘𝑁 ∥𝑤𝑤𝑤 ′∥∞ 𝛿 , where ∥𝑥𝑥𝑥 ∥1,𝑤𝑤𝑤 ′ ≜

∑
𝑖∈N |𝑥𝑖 |𝑤 ′𝑖 ,

and note that UC𝑟𝑟𝑟 𝑡 (𝑧𝑧𝑧𝑡 ,𝑧𝑧𝑧𝑡+1) ≤ ∥𝑧𝑧𝑧𝑡 − 𝑧𝑧𝑧𝑡+1∥1,𝑤𝑤𝑤 ′ .
Proof.

The probability that a random integral cache state 𝑧𝑧𝑧′ is changed w.r.t 𝑧𝑧𝑧 can be upper bounded as
P(𝑧𝑧𝑧 ≠ 𝑧𝑧𝑧′) ≤ ∑

𝑖∈N P(𝑧𝑖 ≠ 𝑧′𝑖 ). Consider w.l.g that 𝑢 < 𝑣 , then P(𝑧𝑖 ≠ 𝑧′𝑖 ) = 0 for 𝑖 ∈ N \ {𝑢,𝑢 +
1, . . . , 𝑣}, and P(𝑧𝑖 ≠ 𝑧′𝑖 ) = 𝛿 for 𝑖 ∈ {𝑢,𝑢 + 1, . . . , 𝑣}. We obtain P(𝑧𝑧𝑧 ≠ 𝑧𝑧𝑧′) ≤ 𝛿 (𝑣 − 𝑢 + 1) (e.g., see
Figure 2.2). More generally, for 𝑢 ≠ 𝑣 we have P(𝑧𝑧𝑧 ≠ 𝑧𝑧𝑧′) ≤ 𝛿 ( |𝑣 − 𝑢 | + 1). We conclude that

E
[
∥𝑧𝑧𝑧′ − 𝑧𝑧𝑧∥1,𝑤𝑤𝑤 ′

]
≤ max
(𝑧𝑧𝑧,𝑧𝑧𝑧′)∈Z2

∥𝑧𝑧𝑧′ − 𝑧𝑧𝑧∥1,𝑤𝑤𝑤 ′ · P(𝑧𝑧𝑧 ≠ 𝑧𝑧𝑧′) ≤ 2𝑘 ∥𝑤𝑤𝑤 ′∥∞ ( |𝑣 − 𝑢 | + 1)𝛿

≤ 2𝑘𝑁 ∥𝑤𝑤𝑤 ′∥∞ 𝛿.ℎ𝑒𝑟𝑒
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Figure 2.3: Coupling induced by Online Rounding Algorithm 2.3 when 𝜉 is fixed. The flow 𝑓𝑖, 𝑗 is the
joint probability P(𝑧𝑧𝑧𝑡+1 = 𝜁𝑡+1, 𝑗 ,𝑧𝑧𝑧𝑡 = 𝜁𝑡,𝑖), so that the next state is 𝜁𝑡+1, 𝑗 and the previously selected
state is 𝜁𝑡,𝑖 .

□

Lemma 2.4. The expectedmovement cost of the random integral cache states generate by Algorithm 2.3
is E𝜉

[
UC𝑟𝑟𝑟 𝑡 (𝑧𝑧𝑧𝑡 ,𝑧𝑧𝑧𝑡+1)

]
= O (∥𝑥𝑥𝑥𝑡 − 𝑥𝑥𝑥𝑡+1∥1), when 𝜉 is sampled once u.a.r. from the interval [0, 1] and

then fixed for 𝑡 ∈ [𝑇 ].

Proof.

The general fractional movement caused by a policy A changes the cache state from fractional
state 𝑥𝑥𝑥𝑡 ∈ X to 𝑥𝑥𝑥𝑡+1 ∈ X, and we denote by J =

{
𝑖 ∈ N : 𝑥𝑡+1,𝑖 − 𝑥𝑡,𝑖 > 0

}
the set of components

that have a fractional increase. We have 𝑥𝑥𝑥𝑡+1 = 𝑥𝑥𝑥𝑡 +
∑
𝑗∈J 𝜙 𝑗𝑒 𝑗 −

∑
𝑖∈N\J 𝜙𝑖𝑒𝑖 . where 𝜙𝑖, 𝑖 ∈ N is

the absolute fractional change in component 𝑖 of the cache. Remark that we have ∥𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥𝑡 ∥1,𝒘′ =∑
𝑖∈N 𝑤

′
𝑖𝜙𝑖 . From the capacity constraint we know that

∑
𝑖∈N\J 𝜙𝑖 =

∑
𝑗∈J 𝜙 𝑗 . If we want to

decompose this general fractional change to elementary operations, then we need to find a flow[
𝛿𝑖, 𝑗

]
(𝑖, 𝑗)∈(N\J)×J that moves

∑
𝑗∈J 𝜙 𝑗 mass from the components inN \J to to those in J . This

requires at most 𝑁 − 1 elementary operations. We define the map 𝜈 : N2 → N that provides an
order on the sequence of elementary operations. Let 𝑧𝑧𝑧𝜈 (𝑖, 𝑗) be the random cache state that could
have been sampled after the 𝜈 (𝑖, 𝑗)-th elementary operation where E

[
𝑧𝑧𝑧𝜈 (𝑖, 𝑗)

]
= 𝑥𝑥𝑥𝜈 (𝑖, 𝑗) , and the total

number of operations is denoted by |𝜈 | ≤ 𝑁 − 1. Note that by definition 𝑧𝑧𝑧 |𝜈 | = 𝑧𝑧𝑧𝑡+1, and we take
𝑧𝑧𝑧0 = 𝑧𝑧𝑧𝑡 . For each of these operations we pay in expectation at most 2𝑘𝑁 ∥𝑤𝑤𝑤 ′∥∞ 𝛿𝑖, 𝑗 update cost
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from Lemma 2.3. Then the total expected movement cost is:

E𝜉
[
UC𝑟𝑟𝑟 𝑡 (𝑧𝑧𝑧𝑡 ,𝑧𝑧𝑧𝑡+1)

]
≤ E𝜉 [∥𝑧𝑧𝑧𝑡+1 − 𝑧𝑧𝑧𝑡 ∥1,𝑤𝑤𝑤 ′] = E𝜉

[


∑|𝜈 |−1
𝑙=0

(
𝑧𝑧𝑧𝑙+1 − 𝑧𝑧𝑧𝑙

)



1,𝑤𝑤𝑤 ′

]
(2.30)

≤
|𝜈 |−1∑︁
𝑙=0
E𝜉

[


𝑧𝑧𝑧𝑙+1 − 𝑧𝑧𝑧𝑙



1,𝑤𝑤𝑤 ′

]
≤ ∑

𝑖∈N\J
∑
𝑗∈J 2𝑘 ∥𝑤𝑤𝑤 ′∥∞ 𝑁𝛿𝑖, 𝑗 (2.31)

= 2𝑘𝑁 ∥𝑤𝑤𝑤 ′∥∞
∑︁

𝑖∈N\J
𝜙𝑖 ≤ 𝑘𝑁 ∥𝑤𝑤𝑤 ′∥∞ ∥𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥𝑡 ∥1 . (2.32)

The update cost is thus O (∥𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥𝑡 ∥1) in expectation.

□

3 Tabular Greedy Algorithm

We present here TabularGreedy [78], a polynomial time algorithm for solving Problem (2.38)
within a (1 − 1/𝑒)-approximation. This differs from the (more common) continuous greedy al-
gorithm [66] in that it operates in the discrete rather than continuous domain, even though both
algorithms involve randomization. It serves as the basis for the online algorithm by Streeter et
al. [78]. A key departure from continuous greedy is the use of randomization via colors assigned to
each slot, which also manifest in the online version of the algorithm.

For any set 𝐴̃ ⊆ S × C × [𝑀] and vector𝑚𝑚𝑚 = [𝑚𝑠]𝑠∈S ∈ [𝑀] |S| , let:

sample𝑚𝑚𝑚 (𝐴̃) =
{
(𝑠, 𝑖) ∈ S × C : (𝑠, 𝑖,𝑚𝑠) ∈ 𝐴̃

}
. (3.33)

Intuitively, the colored allocation 𝐴̃ ⊆ S×C× [𝑀] is an allocation of items to slots, additionally pa-
rameterized by colors. Given the color vector𝑚𝑚𝑚, assigning colors to slots, sample𝑚𝑚𝑚 acts as a selector,
producing an (uncolored) allocation 𝐴 ⊆ S × C. Let 𝐹 (𝐴̃) be the expected value of 𝑓 (sample𝑚𝑚𝑚 (𝐴̃))
when each color𝑚𝑠 is selected independently and u.a.r. from [𝑀]; formally,

𝐹 (𝐴̃) = E
[
𝑓 (sample𝑚𝑚𝑚 (𝐴̃))

]
=

1
𝑀 |S|

∑︁
𝑚𝑚𝑚′∈[𝑀] |𝑆 |

𝑓 (sample𝑚𝑚𝑚′ (𝐴̃)) . (3.34)

The procedure is summarized in Algorithm .1. TabularGreedy constructs a set of triplets 𝐴̃ ⊆
S×C×[𝑀] greedily; that is, starting from an empty set, it iterates over all colors and storage slots in
an arbitrary order, and places items to (colored) slots by greedily maximizing the extended function
𝐹 . Formally, in the iteration over color𝑚 ∈ [𝑀] and slot 𝑠 ∈ 𝑆 , the algorithm extends 𝐴̃ via:

𝑖𝑠,𝑚 = arg max
𝑖∈C

{𝐹 (𝐴̃ + (𝑠, 𝑖,𝑚))} (3.35a)

𝐴̃← 𝐴̃ + (𝑠, 𝑖𝑠,𝑚,𝑚), (3.35b)
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Algorithm .1 TabularGreedy
Require: Integer𝑀 , set C, function 𝑓 . set 𝐴̃← ∅.
1:
2: for𝑚 ← 1, 2, . . . , 𝑀 do
3: for each 𝑠 ∈ S do
4: Find 𝑖𝑠,𝑚 s.t. 𝐹 (𝐴̃ + (𝑠, 𝑖𝑠,𝑚,𝑚)) ≥ max𝑖∈C 𝐹 (𝐴̃ + (𝑠, 𝑖,𝑚)) − 𝜖𝑠,𝑚
5: 𝐴̃← 𝐴̃ + (𝑠, 𝑖𝑠,𝑚,𝑚)
6: end for
7: end for
8: for each 𝑠 ∈ S do independently choose𝑚𝑠 uniformly at random from𝑀

9: end for
10: return sample𝑚𝑚𝑚 (𝐴̃)

where, for legibility, we use 𝐴̃ + 𝑜 to indicate 𝐴̃ ∪ {𝑜}. Finally, the algorithm returns allocation
𝑆 = sample𝑚𝑚𝑚 (𝐴̃), where colors in vector𝑚𝑚𝑚 are selected u.a.r. from [𝑀].

Note that the same node would not cache the same content multiple times. Indeed, as shown
in Eq. (3.35), the algorithm extends the set of triplets 𝐴̃, in the iteration over color𝑚 and slot 𝑠 , by
the maximizer (𝑠, 𝑖,𝑚) of 𝐹 (𝐴̃ + (𝑠, 𝑖,𝑚)). To be more specific, in the same node, if it is possible that
an item 𝑖 is repeatedly cached, then one of the triplets (𝑠, 𝑖,𝑚) could not be the maximizer in some
iteration, since a different item 𝑖′ could achieve greater or equal cache gain than 𝑖 . This internally
avoids duplicate cache in one nodes.

The following theorem characterizes the approximation guarantee of the solution produced by
TabularGreedy; the theorem allows for the case where the greedy item selection 𝑖𝑠,𝑚 by (3.35a) is
inexact, and the selected item is suboptimal by an offest 𝜖𝑠,𝑚 . Let 𝐴̃−𝑠,𝑚 equal 𝐴̃ just before (𝑠, 𝑖𝑠,𝑚,𝑚)
is added at iteration𝑚, 𝑠 , i.e., 𝐴̃−𝑠,𝑚 = {(𝑠′, 𝑖𝑠′,𝑚′,𝑚′) : 𝑠′ ∈ S,𝑚′ < 𝑚} ∪ {(𝑠′, 𝑖𝑠′,𝑚,𝑚) : 𝑠′ ≺ 𝑠}:
Theorem 3.1. (Theorem 13 in [295]) Suppose 𝑓 is monotone submodular. Consider an arbitrary order-
ing of colors𝑚 ∈ [𝑀] and slots 𝑠 ∈ S, and consider the sequence of sets constructed by TabularGreedy
when 𝑖𝑠,𝑚 ∈ C in Eq. (3.35a) is such that:

𝐹 (𝐴̃ + (𝑠, 𝑖𝑠,𝑚,𝑚)) ≥ max
𝑖∈C

𝐹 (𝐴̃−𝑠,𝑚 + (𝑠, 𝑖,𝑚)) − 𝜖𝑠,𝑚, (3.36)

for some 𝜖𝑠,𝑚 ≥ 0. Then, the final set in the sequence 𝐴̃ ⊆ S × C × [𝑀] satisfies:

𝐹 (𝐴̃) ≥ 𝛽 ( |S|, 𝑀) ·max
𝐴∈D

𝑓 (𝐴) −
∑︁
𝑠∈S

𝑀∑︁
𝑚=1

𝜖𝑠,𝑚, (3.37)

where 𝛽 ( |S|, 𝑀) = 1 − (1 − 1
𝑀
)𝑀 −

( |S|
2
)
𝑀−1.

The importance of accounting for inexact greedy selection lies in the fact that expecta-
tion 𝐹 is hard to compute exactly, and is typically approximated by sampling, i.e., via 𝐹 (𝐴̃) =
1
𝐿

∑𝐿
𝑙=1 𝑓 (sample𝑚𝑚𝑚𝑙 (𝑆)), were𝑚𝑚𝑚𝑙 are sampled u.a.r. The theorem implies that by selecting a large

enough𝑀 (in particular, larger thanΘ( |S|2), and 𝐿, the approximation guarantee can get arbitrarily
close to 1 − 1/𝑒 .
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4 Formal Guarantees of Hedge Selector Algorithm 2.4

Recall that, at each time 𝑡 , the hedge selector E defined by Algorithm 2.4 picks an action 𝑖𝑡 from finite
set C and subsequently observes an adversarially selected vector of rewards ℓℓℓ𝑡 = [ℓ𝑡𝑖 ]𝑖∈C ∈ R

|C|
+ ,

where ℓ𝑡𝑖 is the reward for choosing action 𝑖 ∈ C at round 𝑡 . The selector then accrues reward ℓ𝑡
𝑖𝑡
,

i.e., the reward associated with the action 𝑖𝑡 it selected previously. We note that the hedge selector
operates in the full-information (rather than the classic bandit) setting: all action rewards in C are
observed. The regret 𝑅𝑇 of hedge selector E is:

𝑅𝑇 =

𝑇∑︁
𝑡=1

ℓ𝑡𝑖∗ − E[
𝑇∑︁
𝑡=1

ℓ𝑡
𝑖𝑡
], (4.38)

where 𝑖∗ is the best selection in hindsight, i.e., 𝑖∗ = arg max𝑖∈C
∑𝑇
𝑡=1 ℓ

𝑡
𝑖 .

The following lemma is classic; we note that it follows immediately from Theorem 1.5 in Hazan
[20]. We reprove it here for completeness.

Lemma 4.1 ( [20, 86]). Assume that every action’s reward is bounded by 𝐿 ∈ R+. Let 𝜖 = 1
𝐿

√︃
log |C|
𝑇

.
Then, for all 𝑇 ≥ log |C|, the regret of hedge selector E defined by (2.40) and (2.41) is s.t.:

𝑅𝑇 ≤ 2𝐿
√︁
𝑇 log |C|. (4.39)

Proof.

Observe that for 𝑇 ≥ log |C|, we have that

𝜖 =
1
𝐿

√︂
log |𝐶 |
𝑇

∈ [0, 1
𝐿
] . (4.40)

Let Φ𝑡 =
∑
𝑖∈C𝑊

𝑡
𝑖 , 𝑝𝑝𝑝𝑡 = [𝑝𝑡𝑖 ]𝑖∈C ∈ R|C| .

Φ𝑡+1 =
∑︁
𝑖∈C

𝑊 𝑡+1
𝑖

(2.41)
=

∑︁
𝑖∈C

𝑊 𝑡
𝑖 𝑒

𝜖ℓ𝑡𝑖 ,

(4.40)
≤

∑︁
𝑖∈C

𝑊 𝑡
𝑖 (1 + 𝜖ℓ𝑡𝑖 + 𝜖2ℓ𝑡𝑖 )2), 𝑒𝑥 ≤ 1 + 𝑥 + 𝑥2,∀𝑥 ∈ [0, 1]

= Φ𝑡
∑︁
𝑖∈C

𝑝𝑡𝑖 (1 + 𝜖ℓ𝑡𝑖 + 𝜖2(ℓ𝑡𝑖 )2), 𝑝𝑡𝑖 =
𝑊 𝑡
𝑖∑

𝑗∈C𝑊
𝑡
𝑗

=
𝑊 𝑡
𝑖

Φ𝑡

= Φ𝑡 (1 + 𝜖 ⟨𝑝𝑝𝑝𝑡 , ℓℓℓ𝑡 ⟩ + 𝜖2⟨𝑝𝑝𝑝𝑡 , (ℓℓℓ𝑡 )2⟩), (ℓℓℓ𝑡 )2 = [(ℓ𝑡𝑖 )2]𝑖∈C
≤ Φ𝑡𝑒𝜖 ⟨𝑝𝑝𝑝

𝑡 ,ℓℓℓ𝑡 ⟩+𝜖2⟨𝑝𝑝𝑝𝑡 ,(ℓℓℓ𝑡 )2⟩, 1 + 𝑥 ≤ 𝑒𝑥 .

(4.41)
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So, at round 𝑇 ,

𝑒𝜖
∑𝑇
𝑡=1 ℓ

𝑡
𝑖∗ =𝑊 𝑇

𝑖∗ ≤ Φ𝑇 ≤ Φ0𝑒𝜖
∑𝑇
𝑡=1⟨𝑝𝑝𝑝𝑡 ,ℓℓℓ𝑡 ⟩+𝜖2 ∑𝑇

𝑡=1⟨𝑝𝑝𝑝𝑡 ,(ℓℓℓ𝑡 )2⟩,

𝜖

𝑇∑︁
𝑡=1

ℓ𝑡𝑖∗ ≤ ln |C| + 𝜖
𝑇∑︁
𝑡=1
⟨𝑝𝑝𝑝𝑡 , ℓℓℓ𝑡 ⟩ + 𝜖2

𝑇∑︁
𝑡=1
⟨𝑝𝑝𝑝𝑡 , (ℓℓℓ𝑡 )2⟩, take logarithm

𝑇∑︁
𝑡=1

ℓ𝑡𝑖∗ −
𝑇∑︁
𝑡=1
⟨𝑝𝑝𝑝𝑡 , ℓℓℓ𝑡 ⟩ ≤ ln |C|

𝜖
+ 𝜖

𝑇∑︁
𝑡=1
⟨𝑝𝑝𝑝𝑡 , (ℓℓℓ𝑡 )2⟩, divided by 𝜖 and rearrange.

(4.42)

Thus,

𝑅𝑇 =

𝑇∑︁
𝑡=1

ℓ𝑡𝑖∗ − E[
𝑇∑︁
𝑡=1

ℓ𝑡
𝑖𝑡
] =

𝑇∑︁
𝑡=1

ℓ𝑡𝑖∗ −
𝑇∑︁
𝑡=1
⟨𝑝𝑝𝑝𝑡 , ℓℓℓ𝑡 ⟩

(4.42)
≤ ln |C|

𝜖
+ 𝜖

𝑇∑︁
𝑡=1
⟨𝑝𝑝𝑝𝑡 , (ℓℓℓ𝑡 )2⟩ ≤ ln |C|

𝜖
+ 𝜖𝐿2𝑇, 𝑝𝑝𝑝𝑡 is probability, and ℓ𝑡𝑖 ∈ [0, 𝐿] .

(4.43)

The latter inequality yields 𝑅𝑇 ≤ 2𝐿
√︁
𝑇 log |C| as 𝜖 = 1

𝐿

√︃
ln |C|
𝑇

.
□

5 Proof of Theorem 2.3.2

We first introduce some auxiliary lemmas to describe the properties of reward vectors. For any set
𝐴̃ ⊆ S × C × [𝑀] and given color𝑚𝑚𝑚 = [𝑚𝑠]𝑠∈S at round 𝑡 , let 𝐹 𝑡 (𝐴̃,𝑚𝑚𝑚) = 𝑓 𝑡 (sample𝑚𝑚𝑚 (𝐴̃)). Let𝑚𝑚𝑚𝑡

be the vector of colors at the beginning of round 𝑡 . Let also

𝑖𝑡𝑠,𝑚 =

{
the item returned by E𝑠,𝑚 .arm() the last time it was called (including 𝑡 ), or
an arbitrary item if the selector has never been called.

(5.44)

Note that, at time 𝑡 , the selector E𝑠,𝑚 .arm() is indeed called for all slots 𝑠 on a path of a request 𝑟 ∈ R𝑡
when𝑚 =𝑚𝑡

𝑠 . Let 𝐴̃𝑡 ⊆ S × C × [𝑀] be the triplet set constructed by Algorithm 2.5 at round 𝑡 , i.e.,
the set comprising triplets

(𝑠, 𝑖𝑡𝑠,𝑚,𝑚) for all 𝑠 ∈ S and𝑚 ∈ [𝑀] .

Note that such triplets are updated at all slots in paths of requests in timeslot 𝑡 ; all other triplets
remain unaltered. We impose an ordering over all such triplets, defined by an ordering over colors
first and slots second (the latter given by Eq. (2.32)). Under this ordering, similar to 𝐴̃−𝑠,𝑚 defined
before Theorem 3.1, let 𝐴̃𝑡−𝑠,𝑚 equal 𝐴̃𝑡 just “before” (𝑠, 𝑖𝑡𝑠,𝑚,𝑚) is added at round 𝑡 ; this addition is
conceptual, presuming these triplets are “added” one-by-one under the aforementioned ordering to
construct 𝐴̃𝑡 . Under this convention,

𝐴̃𝑡−𝑠,𝑚 = {(𝑠′, 𝑖𝑡𝑠′,𝑚,𝑚) : 𝑠′ ∈ S,𝑚′ < 𝑚} ∪ {(𝑠′, 𝑖𝑡(𝑠′,𝑚),𝑚) : 𝑠′ ≺ 𝑠}.
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Lemma 5.1. At round 𝑡 , for all storage slot 𝑠 ∈ ⋃
(𝑖,𝑝)∈R𝑡 S𝑝 , the reward vector computed by Eq. (2.46),

i.e., the vector ℓℓℓ𝑟 (𝑠,𝑚𝑡
𝑠) ∈ R

|C|
+ with coordinates:

ℓ𝑟𝑖′ (𝑠,𝑚𝑡
𝑠) =

{
max(𝑣 ′, 𝑗 ′)∈S⪯𝑠+𝑠 𝑤

𝑝

𝑣 ′, 𝑖
′ = 𝑖

max(𝑣 ′, 𝑗 ′)∈S⪯𝑠 𝑤
𝑝

𝑣 ′, 𝑜 .𝑤

where 𝑟 = (𝑖, 𝑝) ∈ R𝑡 and S⪯𝑠 = {𝑠′ ∈ S𝑖,𝑝 : 𝑚𝑠′ < 𝑚𝑠 or𝑚𝑠′ = 𝑚𝑠, 𝑠
′ ≺ 𝑠}, satisfies the following

property: ∑︁
𝑟=(𝑖,𝑝)∈R𝑡 :𝑠∈S𝑝

ℓ𝑟𝑖′ (𝑠,𝑚𝑡
𝑠) = 𝐹

𝑡 (𝐴̃𝑡−
𝑠,𝑚𝑡𝑠
+ (𝑠, 𝑖′,𝑚𝑡

𝑠),𝑚𝑚𝑚𝑡 ), for all 𝑖′ ∈ C. (5.45)

Proof.

From the definition Eq. (2.36) of 𝑓𝑟 , we have that for 𝑟 = (𝑖, 𝑝) ∈ R𝑡 :

𝑓𝑟 (𝐴) =
|𝑝 |−1∑︁
𝑘=1

𝑤𝑝𝑘+1𝑝𝑘1
©­«𝐴 ∩


⋃
𝑘 ′∈[𝑘]

S𝑝𝑘′ × {𝑖}
 ≠ ∅ª®¬

=

|𝑝 |−1∑︁
𝑘=min{𝑘 ′: ∃ 𝑗∈S𝑝𝑘′ s.t. ((𝑝𝑘′ , 𝑗),𝑖)∈𝐴}

𝑤𝑝𝑘+1𝑝𝑘 = max
𝑣∈𝑝:∃ 𝑗 s.t. ((𝑣, 𝑗),𝑖)∈𝐴

𝑤
𝑝
𝑣 ,

(5.46)

where𝑤𝑝
𝑣 is the cumulative upstream cost defined in Eq. (2.44). Then,

𝐹
𝑡 (𝐴̃,𝑚𝑚𝑚) = 𝑓 𝑡 (sample𝑚𝑚𝑚 (𝐴̃))

(3.33)
=

∑︁
𝑟∈R𝑡

𝑓𝑟 (
{
(𝑠, 𝑖) ∈ S × C : (𝑠, 𝑖,𝑚𝑠) ∈ 𝐴̃

}
)

(5.46)
=

∑︁
(𝑖,𝑝)∈R𝑡

|𝑝 |−1∑︁
𝑘=min{𝑘 ′: ∃ 𝑗∈S𝑝𝑘′ s.t. ((𝑝𝑘′ , 𝑗),𝑖,𝑚𝑠 )∈𝐴̃}

𝑤𝑝𝑘+1𝑝𝑘 =
∑︁
(𝑖,𝑝)∈R𝑡

max
𝑣∈𝑝:∃ 𝑗 s.t. ((𝑣, 𝑗),𝑖,𝑚 (𝑣,𝑗 ) )∈𝐴̃

𝑤
𝑝
𝑣 .

(5.47)

Then, for 𝐴̃′ = 𝐴̃𝑡−
𝑠,𝑚𝑡𝑠
+ (𝑠, 𝑖′,𝑚𝑡

𝑠), we have

𝐹
𝑡 (𝐴̃𝑡−

𝑠,𝑚𝑡𝑠
+ (𝑠, 𝑖′,𝑚𝑡

𝑠),𝑚𝑚𝑚𝑡 ) (5.47)=
∑︁

(𝑖,𝑝)∈R𝑡 :𝑠∈S𝑝

max
((𝑣 ′, 𝑗 ′),𝑖,𝑚𝑠′ )∈𝐴̃′

𝑤
𝑝

𝑣 ′

=

{ ∑
(𝑖,𝑝)∈R𝑡 :𝑠∈S𝑝 max(𝑣 ′, 𝑗 ′)∈S⪯𝑠+𝑠 𝑤

𝑝

𝑣 ′, 𝑖
′ = 𝑖∑

(𝑖,𝑝)∈R𝑡 :𝑠∈S𝑝 max(𝑣 ′, 𝑗 ′)∈S⪯𝑠 𝑤
𝑝

𝑣 ′, 𝑜 .𝑤
=

∑︁
𝑟=(𝑖,𝑝)∈R𝑡 :𝑠∈S𝑝

ℓ𝑟𝑖′ (𝑠,𝑚𝑡
𝑠).

(5.48)

The second equality holds because of the definition of accumulate weights by Eq. (2.44) and the
fact that 𝑣 = arg min𝑣 𝑘𝑝 (𝑣) = arg max𝑣 𝑤

𝑝
𝑣 . The Third equality holds by the definitions of 𝐴̃′ and

S⪯𝑠 .
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□

If the requests inR𝑡 do not cross, it behaves same as the one request scenario. If requests do cross
each other, the reward vector calculated by storage slot (𝑣, 𝑗) is the summation of separate reward
vectors deriving from each request 𝑟 𝑡 ∈ R𝑡 . Actually, it is equivalent to calculating the reward vector
and calling operation feedback(ℓℓℓ𝑡 (𝑠,𝑚𝑠)) separately when each request arrives. We prove the above
statement by the following lemma:

Lemma 5.2. Calling feedback() with reward vector
∑𝑘
𝑖=1 ℓℓℓ𝑖 is equivalent to a sequence of 𝑘 feedback

calls, with reward vectors ℓℓℓ𝑖 .

Proof.

If we feedback a reward:
∑
𝑖 ℓℓℓ𝑖 , the weight vector in it is: ∀𝑖 ∈ C,𝑊 𝑡+1

𝑖 =𝑊 𝑡
𝑖 𝑒

𝜖
∑
𝑖 ℓ𝑖 . If we feedback

rewards ℓℓℓ𝑖 for all 𝑖 separately, in the end, the weight vector in it is: ∀𝑖 ∈ C,𝑊 𝑡+1
𝑖 = 𝑊 𝑡

𝑖

∏
𝑖 𝑒
𝜖ℓ𝑖 .

These two feedback scenario lead to same state in hedge selector.

□

Lemma 5.3. At round 𝑡 , given selected color𝑚𝑚𝑚, for 𝑠 ∉
⋃
(𝑖,𝑝)∈R𝑡 S𝑝 or𝑚 ≠𝑚𝑠 , all 𝑖′, 𝑗 ′ ∈ C, 𝐹

𝑡 (𝐴̃𝑡−𝑠,𝑚 +
(𝑠, 𝑖′,𝑚),𝑚𝑚𝑚) = 𝐹 𝑡 (𝐴̃𝑡−𝑠,𝑚 + (𝑠, 𝑗 ′,𝑚),𝑚𝑚𝑚).

Proof.

When 𝑠 ∉
⋃
(𝑖,𝑝)∈R𝑡 S𝑝 or𝑚 ≠𝑚𝑠 , according to Eq. (5.48), for all 𝑖′ ∈ C,

𝐹
𝑡 (𝐴̃𝑡−𝑠,𝑚 + (𝑠, 𝑖′,𝑚),𝑚𝑚𝑚) =

∑︁
(𝑖,𝑣)∈R𝑡

max
((𝑣 ′, 𝑗 ′),𝑖,𝑚𝑠′ )∈𝐴̃′

𝑤
𝑝

𝑣 ′ =
∑︁
(𝑖,𝑣)∈R𝑡

max
(𝑣 ′, 𝑗 ′)∈S⪯𝑠

𝑤
𝑝

𝑣 ′ . (5.49)

□ Finally, we can prove Theorem 2.3.2. Proof.

For all 𝑠 ∈ S,𝑚 ∈ [𝑀], we denote by T𝑠,𝑚 be the set of rounds where hedge selector E𝑠,𝑚 receives
reward vector in our algorithm in 𝑇 rounds, i.e., T𝑠,𝑚 = {𝑡 ∈ [𝑇 ] : 𝑣 ∈ 𝑝𝑡 ,𝑚 = 𝑚𝑡

𝑠}. For any
𝑠 ∈ S,𝑚 ∈ [𝑀], and 𝑖′ ∈ C, since hedge selectors are no-regret algorithms, let 𝑅𝑇𝑠,𝑚 be the regret
of E𝑠,𝑚 during rounds T𝑠,𝑚 . We denote 𝑙𝑡𝑖 (𝑠,𝑚) the 𝑖-th coordinate of total reward vector for hedge
selector E𝑠,𝑚 at round 𝑡 , i.e., 𝑙𝑡𝑖 (𝑠,𝑚) =

∑
𝑟=(𝑖,𝑝)∈R𝑡 :𝑠∈S𝑝 ℓ

𝑟
𝑖 (𝑠,𝑚). According to the definition of regret

in Eq. (4.38), we have

𝑅𝑇𝑠,𝑚 =
∑︁
𝑡∈T𝑠,𝑚

ℓ𝑡𝑖∗ (𝑠,𝑚) −
∑︁
𝑡∈T𝑠,𝑚

ℓ𝑡
𝑖𝑡𝑠,𝑚
(𝑠,𝑚) ≥

∑︁
𝑡∈T𝑠,𝑚

ℓ𝑡𝑖′ (𝑠,𝑚) −
∑︁
𝑡∈T𝑠,𝑚

ℓ𝑡
𝑖𝑡𝑠,𝑚
(𝑠,𝑚), (5.50)

where 𝑖∗ is the best selection in hindsight, i.e., 𝑖∗ = arg max𝑖∈C
∑
𝑡∈T𝑠,𝑚 ℓ

𝑡
𝑖 . Then, by Lemma 5.1,

∑︁
𝑡∈T𝑠,𝑚

𝐹
𝑡 (𝐴̃𝑡−𝑠,𝑚 + (𝑠, 𝑖𝑡𝑠,𝑚,𝑚),𝑚𝑚𝑚) ≥

©­«
∑︁
𝑡∈T𝑠,𝑚

𝐹
𝑡 (𝐴̃𝑡−𝑠,𝑚 + (𝑠, 𝑖′,𝑚),𝑚𝑚𝑚)

ª®¬ − 𝑅𝑇𝑠,𝑚 . (5.51)
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For 𝑡 ∈ [𝑇 ] \ T𝑠,𝑚 , all 𝑠 ∈ S,𝑚 ∈ [𝑀], 𝑖′ ∈ C, by Lemma 5.3,

𝐹
𝑡 (𝐴̃𝑡−𝑠,𝑚 + (𝑠, 𝑖𝑡𝑠,𝑚,𝑚),𝑚𝑚𝑚) = 𝐹

𝑡 (𝐴̃𝑡−𝑠,𝑚 + (𝑠, 𝑖′,𝑚),𝑚𝑚𝑚). (5.52)

Thus, for all 𝑠 ∈ S,𝑚 ∈ [𝑀], 𝑖′ ∈ C,

𝑇∑︁
𝑡=1

𝐹
𝑡 (𝐴̃𝑡−𝑠,𝑚 + (𝑠, 𝑖𝑡𝑠,𝑚,𝑚),𝑚𝑚𝑚) ≥

(
𝑇∑︁
𝑡=1

𝐹
𝑡 (𝐴̃𝑡−𝑠,𝑚 + (𝑠, 𝑖′,𝑚),𝑚𝑚𝑚)

)
− 𝑅𝑇𝑠,𝑚 . (5.53)

Taking the expectation of both sides over𝑚, and over 𝑖𝑡𝑠,𝑚 and choosing 𝑖 to maximize the right
hand side, we get

𝑇∑︁
𝑡=1

𝐹 𝑡 (𝐴̃𝑡−𝑠,𝑚 + (𝑠, 𝑖𝑡𝑠,𝑚,𝑚)}) ≥ max
𝑖∈C

(
𝑇∑︁
𝑡=1

𝐹 𝑡 (𝐴̃𝑡−𝑠,𝑚 + (𝑠, 𝑖′,𝑚))
)
− 𝜖𝑠,𝑚, (5.54)

where we define 𝐹 𝑡 (𝐴̃) = E𝑚𝑚𝑚 [E𝑖𝑡𝑠,𝑚 [𝑓
𝑡 (sample𝑚𝑚𝑚 (𝐴̃))]] and 𝜖𝑠,𝑚 = E[𝑅𝑇𝑠,𝑚].

We now define some additional notation. For any set𝐴𝐴𝐴 of vector in S × C𝑇 , define

𝑓 (𝐴𝐴𝐴) =
𝑇∑︁
𝑡=1

𝑓 𝑡 ({(𝑠, 𝑖𝑡 ) : (𝑠, 𝑖𝑖𝑖) ∈ 𝐴𝐴𝐴}), (5.55)

where 𝑖𝑖𝑖 = [𝑖𝑡 ]𝑇𝑡=1. Next, for any set 𝐴̃̃𝐴̃𝐴 ⊆ S×C𝑇×[𝑀], and given𝑚𝑚𝑚 = [𝑚𝑠]𝑠∈S , define sample𝑚𝑚𝑚 (𝐴̃̃𝐴̃𝐴) =
{(𝑠, 𝑖𝑖𝑖) ∈ {𝑠} × C𝑇 : (𝑠, 𝑖𝑖𝑖,𝑚𝑠) ∈ 𝐴̃̃𝐴̃𝐴}. Define 𝐹 (𝐴̃̃𝐴̃𝐴) = E𝑚𝑚𝑚 [E𝑖𝑖𝑖𝑠,𝑚 [𝑓 (sample𝑚𝑚𝑚 (𝐴̃̃𝐴̃𝐴))]], where 𝑖𝑖𝑖𝑠,𝑚 =

[𝑖𝑡𝑠,𝑚]𝑇𝑡=1 ∈ C𝑇 . By linearity of expectation,

𝐹 (𝐴̃̃𝐴̃𝐴) =
𝑇∑︁
𝑡=1

𝐹 𝑡 ({(𝑠, 𝑖𝑡 ,𝑚) : (𝑠, 𝑖𝑖𝑖,𝑚) ∈ 𝐴̃̃𝐴̃𝐴}). (5.56)

Analogously to 𝐴̃𝑡−𝑠,𝑚 , define 𝐴̃̃𝐴̃𝐴−𝑠,𝑚 = {(𝑠′, 𝑖𝑖𝑖𝑠′,𝑚′,𝑚′) : 𝑠′ ∈ S,𝑚′ < 𝑚} ∪ {(𝑠′, 𝑖𝑖𝑖𝑠′,𝑚,𝑚) : 𝑠′ ≺ 𝑠}. Thus,
for any (𝑠, 𝑖𝑖𝑖,𝑚) ∈ S ×C𝑇 × [𝑀], we have 𝐹 (𝐴̃̃𝐴̃𝐴−𝑠,𝑚 + (𝑠, 𝑖𝑖𝑖,𝑚)) =

∑𝑇
𝑡=1 𝐹

𝑡 (𝐴̃𝑡−𝑠,𝑚 + (𝑠, 𝑖𝑡 ,𝑚)). Combining
this with (5.54) , we get:

𝐹 (𝐴̃̃𝐴̃𝐴−𝑠,𝑚 + (𝑠, 𝑖𝑖𝑖𝑠,𝑚,𝑚)) ≥ max
𝑖′∈C

(
𝐹 (𝐴̃̃𝐴̃𝐴−𝑠,𝑚 + (𝑠, [𝑖′]𝑇 ,𝑚))

)
− 𝜖𝑠,𝑚 . (5.57)

Having proved (5.57), we can now use Theorem 3.1 to complete the proof. Define a new partition
matroid over ground set {S × C𝑇 } with feasible solutionDDD := {𝐴𝐴𝐴 ⊂ S × C𝑇 : |𝐴𝐴𝐴 ∩ ({𝑠} × C𝑇 ) | =
1,∀𝑠 ∈ S}. Let 𝐴̃̃𝐴̃𝐴 = {(𝑠, 𝑖𝑖𝑖𝑠,𝑚,𝑚) : 𝑠 ∈ S,𝑚 ∈ [𝑀]}. It is easy to verify that 𝐹 𝑡 is monotone
submodular, and 𝐹 is also monotone submodular by linearity. Thus, by Theorem 3.1,

𝐹 (𝐴̃̃𝐴̃𝐴) ≥ 𝛽 (𝑀, |S|) ·max
𝐴𝐴𝐴∈DDD
{𝑓 (𝐴𝐴𝐴)} −

∑︁
𝑠∈S

𝑀∑︁
𝑚=1

𝜖𝑠,𝑚 . (5.58)
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By definition, 𝐹 (𝐴̃̃𝐴̃𝐴) = E[∑𝑇
𝑡=1 𝑓

𝑡 (𝐴𝑡 )], and max𝐴𝐴𝐴∈DDD{𝑓 (𝐴𝐴𝐴)} ≥ max𝐴∈D{
∑𝑇
𝑡=1 𝑓

𝑡 (𝐴)}, we get

E

[
𝑇∑︁
𝑡=1

𝑓 𝑡 (𝐴𝑡 )
]
≥ 𝛽 ( |S|, 𝑀) ·max

𝐴∈D

{
𝑇∑︁
𝑡=1

𝑓 𝑡 (𝐴)
}
−

∑︁
𝑠∈S

𝑀∑︁
𝑚=1

𝜖𝑠,𝑚 . (5.59)

According to Lemma 4.1, 𝜖𝑠,𝑚 = E[𝑅𝑇𝑠,𝑚] ≤ 2𝑅𝐿
√︁
|T𝑠,𝑚 | log |C| ≤ 2𝑅𝐿

√︁
𝑇 log |C|, then

E

[
𝑇∑︁
𝑡=1

𝑓 𝑡 (𝐴𝑡 )
]
≥ 𝛽 ( |S|, 𝑀) ·max

𝐴∈D

{
𝑇∑︁
𝑡=1

𝑓 𝑡 (𝐴)
}
− 2𝑅𝐿 |S|𝑀

√︁
𝑇 log |C|. (5.60)

□

6 Proof of Lemma 2.3.5

Consider a cache network of two nodes𝑢 and 𝑣 and a catalog of two files represented by the set {1, 2}.
The cache node 𝑢 has capacity 1 and the node 𝑣 is a repository node containing the files 1 and 2.
The hedge selector is initialized with a distribution of the possible states 𝑝𝑝𝑝1 = (1/2, 1/2). According
to Algorithm 2.4, the hedge selector adds 𝜖 = Θ

(
1√
𝑇

)
fraction to the component corresponding to

the requested file, and reduces the same quantity from the other component. When the requested
files sequence is {1, 2, 1, 2, . . . }, this gives the following distributions:

{𝑝𝑝𝑝1, 𝑝𝑝𝑝2, 𝑝𝑝𝑝3, 𝑝𝑝𝑝4, . . . } = {(1/2, 1/2), (1/2 + 𝜖, 1/2 − 𝜖), (1/2, 1/2), (1/2 + 𝜖, 1/2 − 𝜖), . . . }.

The distribution 𝑝𝑝𝑝1, gives two integral states (1, 0) w.p. 1/2 and (0, 1) w.p. 1/2, and 𝑝𝑝𝑝2 can give two
integral states (1, 0) w.p 1/2 + 𝜖 and (0, 1) w.p. 1/2 − 𝜖 . The expected update cost experienced in
expectation from 𝑡 = 1 to 𝑡 = 2 is:

E
[
UC(𝐴1, 𝐴2)

]
= 1/2 (1/2 − 𝜖) + 1/2 (1/2 + 𝜖) = 1/2.

The decomposition of 𝑝𝑝𝑝3 is the same as 𝑝𝑝𝑝1. The update cost experienced in expectation from 𝑡 = 2
to 𝑡 = 3 is:

E
[
UC(𝐴2, 𝐴3)

]
= (1/2 − 𝜖) 1/2 + (1/2 + 𝜖) 1/2 = 1/2.

The sequence repeats and the same costs are obtained. The total update cost is:

E

[
𝑇∑︁
𝑡=1

UC(𝐴𝑡 , 𝐴𝑡+1)
]
=

𝑇∑︁
𝑡=1
E

[
UC(𝐴𝑡 , 𝐴𝑡+1)

]
=
𝑇

2 (6.61)

This is an update cost of Ω(𝑇 ) paid in expectation.
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Figure 7.4: A simplified instance of GRDwith linear regret. The cache can only store a single file, and
at any given moment the adversary requests the file that is not stored in the cache. GRD updates its
state greedily to store the requested file and oscillates between the two possible states. The optimal
static strategy stores one of the files permanently incurring a total cost of 𝑇 /2, while GRD incurs a
total cost 𝑇 .

7 Proof of Lemma 2.3.4

Assume a cache network formed of a designated server 𝑣 and a cache with storage capacity 𝑐𝑢 ∈ N.
The catalog C contains 2𝑐𝑢 items and, without lack of generality we assume that cache 𝑢 initially
contains the set of items {𝑐𝑢 + 1, . . . , 2𝑐𝑢}. Requests arrive only at node 𝑢, and we can identify a
request with the requested item because there is only one possible path ({𝑢, 𝑣}). The forwarding
cost between 𝑢 and 𝑣 is𝑤 ∈ R+.

We consider request sequences with one request every Δ time units and one request per round
(𝑅 = 1) and we denote by 𝑖𝑡 he item requested at time 𝑡 . Moreover, for simplicity, we assume the
time horizon 𝑇 to be proportional to 2𝑐𝑢 (𝑇 =𝑚 × 2𝑐𝑢). The service cost without caching is𝑤𝑇 .

The policy GRDmaintains a vector 𝑧𝑧𝑧𝑡 and updates it after every request as follows [21, Eq. (22)]:

𝑧𝑧𝑧𝑡+1 = 𝑧𝑧𝑧𝑡𝑒
−Δ𝛽 +𝑤𝛽𝑒𝑒𝑒𝑖𝑡 , (7.62)

where 𝑒𝑒𝑒𝑖𝑡 =
[
1{𝑖=𝑖𝑡 }

]
𝑖∈C and 𝑧𝑧𝑧0 = 000. After the request time 𝑡 GRD stores in the cache the 𝑐𝑢 items in

C that correspond to the largest 𝑐𝑢 components of 𝑧𝑧𝑧𝑡+1 at time 𝑡 . Consider the request sequence

{1, 2, . . . , 2𝑐𝑢, 1, 2, . . . , 2𝑐𝑢, . . . , 1, 2, . . . , 2𝑐𝑢}. (7.63)

Under this request sequence, GRD behaves as LRU and simply stores at any time the 𝑐𝑢 most recently
requested items. In fact, item 𝑗 is requested at time instants ℎ𝑇 + 𝑗 for ℎ ∈ {0, 1, . . . ,𝑚 − 1}. At time
𝑡 = 𝑘𝑇 + 𝑖 , item 𝑗 has been requested for the last time (𝑖 − 𝑗) mod 2𝑐𝑢 time instants earlier. The
corresponding component of the vector 𝑧𝑧𝑧𝑡+1 has the value

(𝑧𝑧𝑧𝑡+1) 𝑗 = 𝑒−𝛽Δ((𝑖− 𝑗) mod 2𝑐𝑢 ) ×
∑︁

ℎ∈{0,1,...,𝑚−1},
ℎ𝑇+ 𝑗≤𝑘𝑇+𝑖

𝑒−𝛽Δℎ .

The maximum value is achieved for 𝑗 = 𝑖 . The component becomes progressively smaller as 𝑗
decreases from 𝑖 to 1, because the first term in the product becomes smaller while the second terms
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does not change. It keeps decreasing as 𝑗 decreases from 2𝑐𝑢 to 𝑖 + 1, not only because the first term
decreases, but also because the second term decreases as less addends are considered in the sum.

As GRD behaves as LRU, when a new request 𝑖𝑡 arrives at node 𝑢, it is never found in the cache.
GRD incurs then a total service cost 𝑤𝑇 and null caching gain. At the same time, the caching gain
of any cache allocation 𝐴 (with 𝑐𝑢 different items stored at 𝑢) is 𝑤

2𝑇 , because it is able to serve half
of the requests. Then, the 𝛼-regret of GRD is at least equal to 𝛼𝑤𝑇2 . A simplified instance of GRD is
shown in Figure 7.4 to provide some intuition of our proof.

8 Proof of Theorem 2.3.6

We begin by giving some intuition behind our approach. The hedge selector in Algorithm 2.4 effec-
tively maintains a distribution 𝑝𝑝𝑝𝑡 =

[
𝑊 𝑡
𝑖∑

𝑗∈C𝑊
𝑡
𝑗

]
𝑖∈C

for every round 𝑡 . The randomized action 𝑖𝑡 taken
at time 𝑡 by the selector always satisfies E[𝑒𝑒𝑒𝑖𝑡 ] = 𝑝𝑝𝑝𝑡 by definition, where 𝑒𝑒𝑒𝑖 is the 𝑖-th basis vector.
Consider for instance, that the rewards given to the hedge selector are always uniform. Since each
action is equally important, then the distribution 𝑝𝑝𝑝𝑡 is fixed and it is the uniform distribution. Thus,
the hedge selector controlling item placements, will evict and fetch a new content with probability
1 − 1

|𝐶 |2 at each time step. Clearly, since the distribution is fixed for every time step, then these
movements are unnecessary. An optimal strategy in this scenario is to pick an action u.a.r at the
start and stick with it.

We generalize this concept by taking minimal probabilistic jumps to a new state, only when it is
necessary tomaintain a change of distribution from𝑝𝑝𝑝𝑡 to𝑝𝑝𝑝𝑡+1. This concept is known in the literature
as optimal transport or the earth mover distance [59]. The objective is to transport probability
mass from a distribution to another, while minimizing the associated metric. In this scenario, it
corresponds to a minimum-cost flow problem. We propose an iterative algorithm that builds the
optimal flow (joint distribution). By building a feasible flow at time 𝑡 from 𝑝𝑝𝑝𝑡 to 𝑝𝑝𝑝𝑡+1. Then, the
algorithm takes elementary steps that generates a sequence of random variables whose marginal
distribution is progressively closer to 𝑝𝑝𝑝𝑡+1

The proof is split in multiple parts. We first introduce Lemma 8.1 that links the hedge selector
update rule to online mirror descent [53]. This allows us to use convex optimization techniques to
provide the proof of Lemma 8.2, that gives a family of coupling schemes with sublinear update cost.

In section 8.3, we dissect the hedge selector and bound the update cost of its two components,
the coupled_movement and elementary_𝛿movement subroutines.

In some parts of the proof we switch to vector notation rather than the set notation for al-
locations. For any allocation 𝐴 ∈ S × C the corresponding allocation vector is denoted by
𝑥𝑥𝑥 = [1{(𝑠,𝑖)∈𝐴}] (𝑠,𝑖)∈S×C , and 𝑥𝑥𝑥𝑠 = [1{(𝑠,𝑖)∈𝐴}] (𝑠,𝑖):𝑖∈C . The weighted 𝑙1 norm is defined as:

| |𝑥𝑥𝑥𝑠 | |1,𝑤𝑤𝑤 ′ :=
∑︁
𝑖∈C

𝑤 ′𝑠,𝑖 |𝑥𝑠,𝑖 |. (8.64)
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With slight abuse of notation, we consider that for any 𝑠 ∈ S:

UC(𝑥𝑥𝑥𝑡𝑠,𝑥𝑥𝑥𝑡+1𝑠 ) :=
∑︁
𝑖∈C

𝑤 ′𝑖 max(0, 𝑥𝑡+1𝑖 − 𝑥𝑡𝑖 ) (8.65)

= UC(𝐴𝑡 ∩ {(𝑠, 𝑖) : 𝑖 ∈ C}, 𝐴𝑡+1 ∩ {(𝑠, 𝑖) : 𝑖 ∈ C}). (8.66)

Also, note that UC(𝑥𝑥𝑥𝑡𝑠,𝑥𝑥𝑥𝑡+1𝑠 ) ≤ ||𝑥𝑥𝑥𝑡+1𝑠 − 𝑥𝑥𝑥𝑡𝑠 | |1,𝑤𝑤𝑤 ′ .

8.1 Auxiliary Lemma
We start by introducing an auxiliary lemma.

Lemma 8.1. E.feedback(ℓℓℓ) for the hedge selector in Algorithm 2.4 updates its internal weights𝑊𝑡 to
𝑊𝑡+1 equivalently as ∇Φ(𝑊𝑊𝑊 𝑡+1) = ∇Φ(𝑊𝑊𝑊 𝑡 ) + 𝜖ℓℓℓ𝑡 where Φ(𝑊𝑊𝑊 ) = ∑

𝑖∈C𝑊𝑖 log(𝑊𝑖) and 𝜖 ∈ R+ is the
step size.

Proof.

We know that
𝜕Φ(𝑊𝑊𝑊 )
𝜕𝑊𝑖

= 1 + log(𝑊𝑖) (8.67)

From ∇Φ(𝑊𝑊𝑊 𝑡+1) = ∇Φ(𝑊𝑊𝑊 𝑡 ) + 𝜖ℓℓℓ𝑡 we have:

1 + log(𝑊 𝑡+1
𝑖 ) = 1 + log(𝑊 𝑡

𝑖 ) + 𝜖ℓ𝑡𝑖 , (8.68)

then,
𝑊 𝑡+1
𝑖 =𝑊 𝑡

𝑖 𝑒
𝜖ℓ𝑡𝑖 , (8.69)

which is exactly E.feedback(ℓℓℓ)

□

8.2 Family of Coupling Schemes with Sublinear Update Cost

The following Lemma provides a sufficient condition on the joint distribution of (𝑥𝑥𝑥𝑡𝑠,𝑥𝑥𝑥𝑡+1𝑠 ) (the family
of coupling schemes), that leads to sublinear update cost for DistributedTGOnline.

Lemma 8.2. Consider a hedge selector, shown in Algorithm 2.4, and a joint distribution of (𝑥𝑥𝑥𝑡𝑠,𝑥𝑥𝑥𝑡+1𝑠 )
that satisfies for all 𝑡 ∈ [𝑇 − 1]:

1. E[𝑥𝑥𝑥𝑡𝑠] = 𝑝𝑝𝑝𝑡 and E[𝑥𝑥𝑥𝑡+1𝑠 ] = 𝑝𝑝𝑝𝑡+1.

2. E[| |𝑥𝑥𝑥𝑡+1𝑠 − 𝑥𝑥𝑥𝑡𝑠 | |1,𝑤𝑤𝑤 ′] = 𝑂 ( | |𝑝𝑝𝑝𝑡+1 − 𝑝𝑝𝑝𝑡 | |1,𝑤𝑤𝑤 ′).

This algorithm incurs an expected update cost of the same order of the update cost of probabilities.
Selecting 𝜖 = Θ( 1√

𝑇
), 𝐾 = Ω(𝑇 ), gives a 𝑂 (𝑅𝐿

√
𝑇 ) expected update cost.
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Proof.
We know Φ(𝑊𝑊𝑊 ) = ∑

𝑖∈C𝑊𝑖 log(𝑊𝑖) is 1-strong convex w.r.t. | | · | |1 on the simplex △|C| = {𝑝𝑝𝑝 ∈
R
|C|
+ :

∑
𝑖∈C 𝑝𝑖 = 1} [53]. Thus, Φ(𝑥) − Φ(𝑦) ≤ ∇Φ(𝑥)⊤(𝑥 − 𝑦) − 1

2 | |𝑥 − 𝑦 | |
2
1.

Then, we will prove the Lemma 8.2. Recall that, as shown in Algorithm 2.5, at every 𝐾 times,
each storage slot will choose a color 𝑚𝑡

𝑠 uniformly at random from [𝑀]. At every rounds, the
corresponding hedge selector E𝑠,𝑚𝑡𝑠 will be fed a reward vector ℓℓℓ𝑡 (𝑠,𝑚𝑡

𝑠), and call E.feedback(ℓℓℓ) to
update its weight vector. In the following proof, we assume that at round 𝑡 and 𝑡 + 1, color 𝑚𝑡

𝑠

and 𝑚𝑡+1
𝑠 are chosen. The weight vector𝑊𝑊𝑊 𝑡 is the weight vector maintained by hedge selector

E𝑠,𝑚𝑡𝑠 . The probability 𝑝𝑝𝑝
𝑡 is the normalized𝑊𝑊𝑊 𝑡 . With the assumptions in Lemma. 8.2, there exist

constants 𝛼, 𝛽,𝛾 > 0, such that:

E[UC(𝑥𝑥𝑥𝑡𝑠,𝑥𝑥𝑥𝑡+1𝑠 )] ≤ E[| |𝑥𝑥𝑥𝑡+1𝑠 −𝑥𝑥𝑥𝑡𝑠 | |1,𝑤𝑤𝑤 ′] ≤ 𝛼 | |𝑝𝑝𝑝𝑡+1 −𝑝𝑝𝑝𝑡 | |1,𝑤𝑤𝑤 ′ ≤ 𝛽 | |𝑝𝑝𝑝𝑡+1 −𝑝𝑝𝑝𝑡 | | ≤ 𝛾 | |𝑊𝑊𝑊 𝑡+1 −𝑊𝑊𝑊 𝑡 | |, (8.70)
where | | · | | here is 𝑙1 norm, the second to last inequality holds because norms can bound each
other, and the last inequality holds because the inexpensive property of projection. For round 𝑡
without color update:
E[| |𝑥𝑥𝑥𝑡+1𝑠 − 𝑥𝑥𝑥𝑡𝑠 | |1,𝑤𝑤𝑤 ′] ≤ 𝛾 | |𝑊𝑊𝑊 𝑡+1 −𝑊𝑊𝑊 𝑡 | |
≤𝛾

√︁
2(Φ(𝑊𝑊𝑊 𝑡 ) − Φ(𝑊𝑊𝑊 𝑡+1) + ∇Φ(𝑊𝑊𝑊 𝑡+1)⊤(𝑊𝑊𝑊 𝑡+1 −𝑊𝑊𝑊 𝑡 )), 1-strong convexity

≤𝛾
√

2
√︁
Φ(𝑊𝑊𝑊 𝑡 ) − Φ(𝑊𝑊𝑊 𝑡+1) − ∇Φ(𝑊𝑊𝑊 𝑡 )⊤(𝑊𝑊𝑊 𝑡 −𝑊𝑊𝑊 𝑡+1) + (∇Φ(𝑊𝑊𝑊 𝑡+1) − ∇Φ(𝑊𝑊𝑊 𝑡 ))⊤(𝑊𝑊𝑊 𝑡+1 −𝑊𝑊𝑊 𝑡 ),

≤𝛾
√

2
√︂
−1

2 | |𝑊
𝑊𝑊 𝑡 −𝑊𝑊𝑊 𝑡+1 | |2 + (∇Φ(𝑊𝑊𝑊 𝑡+1) − ∇Φ(𝑊𝑊𝑊 𝑡 ))⊤(𝑊𝑊𝑊 𝑡+1 −𝑊𝑊𝑊 𝑡 ), 1-strong convexity

≤𝛾
√

2
√︂
−1

2 | |𝑊
𝑊𝑊 𝑡 −𝑊𝑊𝑊 𝑡+1 | |2 + 𝜖𝑅(ℓℓℓ𝑡 )⊤(𝑊𝑊𝑊 𝑡+1 −𝑊𝑊𝑊 𝑡 ), Lemma 8.1

≤𝛾
√

2
√︂
−1

2 | |𝑊
𝑊𝑊 𝑡 −𝑊𝑊𝑊 𝑡+1 | |2 + 𝜖𝑅 | |ℓℓℓ𝑡 | |∞ · | |𝑊𝑊𝑊 𝑡+1 −𝑊𝑊𝑊 𝑡 | |, Cauchy–Schwarz inequality

≤𝛾
√

2
√︂
(𝜖𝑅 | |ℓℓℓ𝑡 | |∞)2

2 , 𝑎𝑧 − 𝑏𝑧2 ≤ 𝑎
2

4𝑏 , 𝑎, 𝑏 > 0

=𝛾𝜖𝑅 | |ℓℓℓ𝑡 | |∞.
For round 𝑡 with color update, the cache update cost is bounded by the most expensive cache
update, i.e.,:

E[| |𝑥𝑥𝑥𝑡+1𝑠 − 𝑥𝑥𝑥𝑡𝑠 | |1,𝑤𝑤𝑤 ′] ≤ ||𝑤𝑤𝑤 ′| |∞. (8.71)
The total update cost experienced for the hedge selector associated with slot 𝑠:

𝑇−1∑︁
𝑡=1
E[UC(𝑥𝑥𝑥𝑡𝑠,𝑥𝑥𝑥𝑡+1𝑠 )] ≤

𝑇−1∑︁
𝑡=1

𝛾
𝜖𝑅 | |ℓℓℓ𝑡 | |∞

𝜌
+

∑︁
𝑡=𝐾,2𝐾,...

| |𝑤𝑤𝑤 ′| |∞ ≤ 𝛾𝜖𝑅𝐿𝑇 +
𝑇

𝐾
| |𝑤 ′| |∞, (8.72)

where 𝐿 = max(𝑖,𝑝)∈R{
∑|𝑝 |−1
𝑘=1 𝑤𝑝𝑘+1𝑝𝑘 } ≥ max𝑡≤𝑇 {| |ℓℓℓ𝑡 | |∞}. Assume that 𝐾 = Ω(

√
𝑇 ), then ∃𝑐′ > 0,

𝑇−1∑︁
𝑡=1
E[UC(𝑥𝑥𝑥𝑡𝑠,𝑥𝑥𝑥𝑡+1𝑠 )] ≤ 𝛾𝜖𝑅𝐿𝑇 +

||𝑤𝑤𝑤 | |′∞
𝑐′
√
𝑇 . (8.73)
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In order to keep the hedge selectors regret sublinear 𝑂 (
√
𝑇 ) with 𝜖 = Θ( 1√

𝑇
). The update cost for

all the slots:
𝑇−1∑︁
𝑡=1

∑︁
𝑠∈S
E[UC(𝑥𝑥𝑥𝑡𝑠,𝑥𝑥𝑥𝑡+1𝑠 )] ≤ |S|𝛾𝑅𝐿

√
𝑇 + |S| | |𝑤

𝑤𝑤 | |′∞
𝑐′
√
𝑇 . (8.74)

□

8.3 Dissection of the Coupled Hedge Selector

Assume at round 𝑡 , storage slot 𝑠 , item allocation 𝑥𝑥𝑥𝑡𝑠 with E[𝑥𝑥𝑥𝑡𝑠] = 𝑝𝑝𝑝𝑡 has a particular allocation
𝑥𝑥𝑥𝑡𝑠 . We introduce the coupling scheme modification to the hedge selector in Algorithm2.4 given
in Algorithm 2.6, which could produce 𝑥𝑥𝑥𝑡+1𝑠 satisfying conditions in Lemma. 8.2. We first provide
expected update cost of an elementary_𝛿movement subroutine call.

Lemma 8.3. The elementary_𝛿movement subroutine outputs a random integral cache configuration
𝑋 ′ with E[𝑒𝑒𝑒𝑋 ′] = 𝑝𝑝𝑝 − 𝛿𝑒𝑒𝑒𝑖 + 𝛿𝑒𝑒𝑒 𝑗 . If its input is sampled from a random variable 𝑋 with E[𝑒𝑒𝑒𝑋 ] = 𝑝𝑝𝑝 , then:

E
[
| |𝑒𝑒𝑒𝑋 − 𝑒𝑒𝑒𝑋 ′ | |1,𝑤𝑤𝑤 ′

]
= 𝛿 (𝑤 ′𝑠, 𝑗 +𝑤 ′𝑠,𝑖). (8.75)

Proof.

First part. Showing that E [𝑒𝑒𝑒𝑋 ′] = 𝑝𝑝𝑝 − 𝛿𝑒𝑒𝑒𝑖 + 𝛿𝑒𝑒𝑒 𝑗 .

E [𝑒𝑒𝑒𝑋 ′] =
∑︁

𝑙∈C\{𝑖}
𝑝𝑙E [𝑒𝑒𝑒𝑋 ′ |𝑋 = 𝑙] + 𝑝𝑖E [𝑒𝑒𝑒𝑋 ′ |𝑋 = 𝑖] (8.76)

=
∑︁

𝑙∈C\{𝑖}
𝑝𝑙𝑒𝑒𝑒𝑙 + 𝑝𝑖E [𝑒𝑒𝑒𝑋 ′ |𝑋 = 𝑖] , Line 26,Algorithm 2.6 (8.77)

=
∑︁

𝑙∈C\{𝑖}
𝑝𝑙𝑒𝑒𝑒𝑙 + 𝑝𝑖

(
𝑝𝑖 − 𝛿
𝑝𝑖

𝑒𝑒𝑒𝑖 +
𝛿

𝑝𝑖
𝑒𝑒𝑒 𝑗

)
, Line 23,Algorithm 2.6 (8.78)

=
∑︁
𝑙∈C

𝑝𝑙𝑒𝑒𝑒𝑙 − 𝛿𝑒𝑒𝑒𝑖 + 𝛿𝑒𝑒𝑒 𝑗 = 𝑝𝑝𝑝 − 𝛿𝑒𝑒𝑒𝑖 + 𝛿𝑒𝑒𝑒 𝑗 . (8.79)

Second part. The only movement that can be caused by running the subroutine is at line 23,
given that 𝑋 = 𝑖 with probability 𝑝𝑖 , we replace this value by 𝑗 with probability 𝛿

𝑝𝑖
. Hence, the

expected update cost is given by:

E[| |𝑒𝑒𝑒𝑋 − 𝑒𝑒𝑒𝑋 ′ | |1,𝑤𝑤𝑤 ′] =
𝑝𝑖𝛿

𝑝𝑖
(𝑤 ′𝑠, 𝑗 +𝑤 ′𝑠,𝑖) = 𝛿 (𝑤 ′𝑠, 𝑗 +𝑤 ′𝑠,𝑖). (8.80)

□

We now introduce lemma 8.4 providing the expected update cost of a coupled_movement sub-
routine call.
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Lemma 8.4. If the input to coupled_movement subroutine in Algorithm2.6 is 𝑖𝑡𝑠 with E[𝑒𝑒𝑒𝑖𝑡𝑠 ] = 𝑝𝑝𝑝
𝑡 , then

it outputs an item 𝑖𝑡+1𝑠 , where E[𝑒𝑒𝑒𝑖𝑡+1𝑠
] = 𝑝𝑝𝑝𝑡+1, and E𝑖𝑡𝑠 [E𝑖𝑡+1𝑠 |𝑖𝑡𝑠 [| |𝑒𝑒𝑒𝑖𝑡𝑠 − 𝑒𝑒𝑒𝑖𝑡+1𝑠

| |1,𝑤𝑤𝑤 ′]] = | |𝑝𝑝𝑝𝑡 − 𝑝𝑝𝑝𝑡+1 | |1,𝑤𝑤𝑤 ′ .

Proof.

The distribution over the catalog changes from a fractional state 𝑝𝑝𝑝𝑡 ∈ Δ|C| to 𝑝𝑝𝑝𝑡+1 ∈ Δ|C| . The
set 𝐼 =

{
𝑖 ∈ C : 𝑥𝑡+1,𝑖 − 𝑥𝑡,𝑖 > 0

}
in line 1 of Algorithm 2.6 is the set of components that have a

fractional increase, then we get:

𝑝𝑝𝑝𝑡+1 = 𝑝𝑝𝑝𝑡 +
∑︁
𝑗∈𝐼
𝑚 𝑗𝑒 𝑗 −

∑︁
𝑖∈C\𝐼

𝑚𝑖𝑒𝑖, (8.81)

where 𝑚𝑖, 𝑖 ∈ C is the absolute fractional change in component 𝑖 of the cache. The fractional
update cost is the following:

| |𝑝𝑝𝑝𝑡 − 𝑝𝑝𝑝𝑡+1 | |1,𝑤𝑤𝑤 ′ =
∑︁
𝑗∈𝐼
𝑚 𝑗𝑤

′
𝑠, 𝑗 +

∑︁
𝑗∈C\𝐼

𝑚𝑖𝑤
′
𝑠,𝑖 . (8.82)

A flow [𝛿𝑖, 𝑗 ] (𝑖, 𝑗)∈C2 is constructed to transport
∑
𝑖∈C\𝐼𝑚𝑖 mass from the components in 𝐼 to the

components in C \ 𝐼 in line 15. The expected value of the allocation generated by output variable
𝑖𝑡+1𝑠 is given by:

E[𝑒𝑒𝑒𝑖𝑡+1𝑠
] (8.79)= E[𝑒𝑒𝑒𝑖𝑡𝑠 ] +

∑︁
𝑖∈C\𝐼

∑︁
𝑗∈𝐼
𝛿𝑖, 𝑗 (𝑒𝑒𝑒 𝑗 − 𝑒𝑒𝑒𝑖) (8.83)

= 𝑝𝑝𝑝𝑡 −
∑︁
𝑖∈C\𝐼

𝑚𝑖𝑒𝑒𝑒𝑖 +
∑︁
𝑗∈𝐼
𝑚 𝑗𝑒𝑒𝑒 𝑗 = 𝑝𝑝𝑝

𝑡+1. (8.84)

The expected movements incurred when Algorithm 2.6 is executed is the following:

E[| |𝑒𝑒𝑒𝑖𝑡𝑠 − 𝑒𝑒𝑒𝑖𝑡+1𝑠
| |1,𝑤𝑤𝑤 ′]

(8.80)
=

∑︁
𝑖∈C\𝐼

∑︁
𝑗∈𝐼
𝛿𝑖, 𝑗 (𝑤 ′𝑠, 𝑗 +𝑤 ′𝑠,𝑖) =

∑︁
𝑗∈𝐼
𝑚 𝑗𝑤

′
𝑠, 𝑗 +

∑︁
𝑗∈C\𝐼

𝑚𝑖𝑤
′
𝑠,𝑖

(8.82)
= | |𝑝𝑝𝑝𝑡 − 𝑝𝑝𝑝𝑡+1 | |1,𝑤𝑤𝑤 ′ .

□

9 Adversarial Instances

In this section, we provide additional details about the topologies path and abilene. These are
motivated by the proof of Lemma 2.3.4, using round-robin schemes for which greedy/myopic online
algorithms would perform poorly.
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(a) Abilene topology (b) Path topology

Figure 9.5: Topologies used for adversarial requests.

(a) Stationary Adversarial trace (b) Sliding Popularity Adversarial
trace

(c) SN Adversarial trace

Figure 9.6: Adversarial Request models for abilene and path. Each dot indicates an access to an
item/ a request.

9.1 Topology Configuration
The abilene and path topologies are shown in Figure 9.5 (a) and (b) respectively.
Adversarial setup of abilene. We set the weight of each edge to be 𝑤 = 100. The query nodes
are {0, 5}. We put a cache at each node with a capacity selected u.a.r from the set {0, 1}, except for
nodes {0, 5} that have capacity 5. For every item in the catalog we select its source node u.a.r to be
7 or 8.
Adversarial setup of path. We set the weight of each edge to be 𝑤 = 100. The query node is 0.
We put two caches at nodes 0 and 1 with capacity 5. The whole catalog is stored at node 1.

9.2 Adversarial Traces
The adversarial traces patterns are shown in Figure 9.6. The Stationary Adversarial trace is generated
using the sequence

{0, 25, 1, 26, . . . , 24, 49, 0, 25, . . . }. (9.85)
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The Sliding Popularity Adversarial trace is generated by mixing the two sequences

𝑠1 = {𝑖 mod 5 + 5𝑘 : 𝑖 ∈ [100], 𝑘 ∈ [5]}, (9.86)
𝑠2 = {𝑖 mod 5 + 5𝑘 + 25 : 𝑖 ∈ [100], 𝑘 ∈ [5]}. (9.87)

We generate requests from 𝑠1 and 𝑠2 starting at the same time, except that we generate requests
from 𝑠1 twice as fast as 𝑠2. When we finish generating requests from a sequence we alternate the
speed. This is done once, then at the final stage we generate requests with at the same speed. The SN
Adversarial trace is generated using the same cyclic pattern as in the Sliding Popularity Adversarial
trace, with the difference that a group of 5 items arrive according to according to a homogeneous
Poisson process of rate 𝛾 = 1.

10 Jointly Optimizing Caching and Routing

In the extended model by Ioannidis and Yeh [64], a request 𝑟 = (𝑖, 𝑏) ∈ R is determined by (a) the
item 𝑖 ∈ C requested, (b) the source node 𝑏 ∈ 𝑉 of the request. For each request 𝑟 = (𝑖, 𝑏), there
exists a set of paths P(𝑖,𝑏) , which the request can follow towards a designated server inD𝑖 . The goal
is to jointly determine the content allocation as well as the paths that requests follow.

In particular, the path assignment is represented by 𝑃 = {𝑝𝑟 }𝑟∈R ∈
∏
𝑟∈R P𝑟 , where 𝑝𝑟 ∈ P𝑟 indi-

cates that request 𝑟 = (𝑖, 𝑏) ∈ R follows path 𝑝𝑟 to fetch item 𝑖 . It is easy, and natural, to write the cost
objective in terms of the content allocation 𝐴 and the routing assignment 𝑃 . However, to show that
it is a submodular assignment problem, with constrains similar to the ones we encounter in caching,
we deviate from [64] and express the objective in terms of the complementary path assignment 𝑃 .
Formally, let

𝑃 =
⋃
𝑟∈R
(P𝑟 \ {𝑝𝑟 }) ⊂

⋃
𝑟∈R
P𝑟 . (10.88)

Intuitively, given a path assignment 𝑃 , the complementary path assignment 𝑃 consists of all the
paths not taken. We can see the routing optimization constraints as a slotted assignment problem
akin to the caching problem we have studied so far in the following way. Each request 𝑟 ∈ R is
associated with exactly |P𝑟 | −1 slots. These slots are to be occupied by paths not taken. That is, each
such slot is to be occupied by a path 𝑝 in P𝑟 ; whenever such a path 𝑝 is stored in a slot, it is added
in the complementary path assignment 𝑃 . We denote by D′ the set of feasible complementary path
assignments under this setting, that is:2

D′ =
{
𝑃 ⊂

∏
𝑟∈R
P𝑟 : |𝑃 ∩ P𝑟 | ≤ |P𝑟 | − 1

}
. (10.89)

2To better cast this as an assignment problem, we would need to introduce notation for slots per request, but this is
equivalent to Eq. (10.89).
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Then, given a content allocation 𝐴 and complementary path assignment 𝑃 , the cost of serving a
request 𝑟 = (𝑖, 𝑏) is:

𝐶𝑟 (𝐴, 𝑃) =
∑︁

𝑝∈P𝑟 \𝑃

|𝑝 |−1∑︁
𝑘=1

𝑤𝑝𝑘+1𝑝𝑘1
©­«𝐴 ∩


⋃
𝑘 ′∈[𝑘]

S𝑝𝑘′ × {𝑖}
 = ∅ª®¬ . (10.90)

Similarly, the caching gain of a request 𝑟 = (𝑖, 𝑏) due to caching at intermediate nodes and path
assignment is:

𝑓𝑟 (𝐴, 𝑃) = 𝐶𝑟 (∅, ∅) −𝐶𝑟 (𝐴, 𝑃)

=
∑︁
𝑝∈P𝑟

|𝑝 |−1∑︁
𝑘=1

𝑤𝑝𝑘+1𝑝𝑘1
©­«𝑝 ∈ 𝑃 ∨𝐴 ∩


⋃
𝑘 ′∈[𝑘]

S𝑝𝑘′ × {𝑖}
 ≠ ∅ª®¬ . (10.91)

The caching gain maximization problem amounts to:

maximize
𝐴,𝑃

𝑓 (𝐴, 𝑃) =
𝑇∑︁
𝑡=1

𝑓 𝑡 (𝐴, 𝑃) =
𝑇∑︁
𝑡=1

∑︁
𝑟∈R𝑡

𝑓𝑟 (𝐴, 𝑃), (10.92a)

subject to 𝐴 ∈ D, 𝑃 ∈ D′. (10.92b)

which is a submodular maximization over an (assignment) partition matroid w.r.t. both 𝐴 and 𝑃
(complementary set of 𝑃 ). The assingment nature of the matroid follows from the representation of
complementary paths as slots “taken”; we prove submodularity below:

Lemma 10.1. Function 𝑓 : S × C ×∏
𝑟∈R P𝑟 → R+ is monotone and submodular w.r.t. both 𝐴 and 𝑃 .

Proof.

In this proof, we switch to vector notation rather than the set notation. For any content allo-
cation 𝐴 ∈ S × C, the corresponding allocation vector is denoted by 𝑥𝑥𝑥 = [1{(𝑠,𝑖)∈𝐴}] (𝑠,𝑖)∈S×C =

[𝑥 (𝑠,𝑖)] (𝑠,𝑖)∈S×C . For any complementary path assignment 𝑃 ∈ ∏
𝑟∈R P𝑟 , the corresponding

complementary path assignment 𝑃 is represented by vector ℎ̄ℎℎ = [1{(𝑟,𝑝)∉𝑃}] (𝑟,𝑝)∈∏𝑟 ∈R P𝑟 =

[ℎ̄𝑟,𝑝] (𝑟,𝑝)∈∏𝑟 ∈R P𝑟 . The caching gain of a request (𝑖, 𝑏) is:

𝑓(𝑖,𝑏) (ℎ̄ℎℎ,𝑥𝑥𝑥) =
∑︁

𝑝∈P(𝑖,𝑏 )

|𝑝 |−1∑︁
𝑘=1

𝑤𝑝𝑘+1𝑝𝑘

(
1 − (1 − ℎ̄(𝑖,𝑏),𝑝)

𝑘∏
𝑘 ′=1
(1 − 𝑥𝑝𝑘′𝑖)

)
, (10.93)

which has the same form as Eq. (2.36). By Lemma 2.3.1, 𝑓 is also monotone (non-decreasing) and
submodular w.r.t. both 𝑥𝑥𝑥 and ℎ̄ℎℎ. The feasible set for ℎ̄ℎℎ is:∑︁

𝑝∈P𝑟
ℎ̄𝑟,𝑝 = |P𝑟 | − 1,∀𝑟 ∈ R, (10.94)

which is also a partition matroid.
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□ The monotonicity of the objective implies that an optimal solution exists in which all routing slots
of the complementary path assignment are taken, so that indeed only one path is truly selected.3

This submodular maximization assignment problem can be tackled by the modified Distribut-
edTGOnline with 1 − 1/𝑒 guarantee through Cor. 2.3.3 as follows. Following [64], for each request
(𝑖, 𝑏), source node 𝑏 maintains an extra slot 𝑠 = (𝑏, 0) determining its path assignment. Correspond-
ingly, the information needed to compute the reward is from all possible paths due to Eq. (10.91),
besides its own path. The second step in the online algorithm is, thus, modified as:

• When a request (𝑖, 𝑏) is generated, (rather than one additional control message is generated to
collect and transmit information,) |P𝑖,𝑏 | additional control messages are generated, one over one
path 𝑝 ∈ P𝑖,𝑏 to collect and transmit information.

Note that the communication cost increases linearly with |P𝑖,𝑏 |. Nevertheless, it is possible that
randomization approaches akin to the ones used in [64], can lower this dependency with a corre-
sponding increase in regret; exploring this is beyond our scope.

11 Anytime Regret Guarantee

Under the doubling trick [88], the algorithm proceeds in phases. In the first phase, it sets its (short-
term) horizon to a time-window𝑊0 = 1. Whenever a phase ends (i.e., the short-term horizon ex-
pires), the algorithm resets its state, and doubles the time window, so that the short term horizon at
phase 𝑛 + 1 satisfies:

𝑊𝑛+1 = 2𝑊𝑛, for all 𝑛 ∈ {0, 1, . . . , 𝑘}.
For the sake of notational simplicity, assume that 𝑇 = 2𝑘+1 − 1 for some 𝑘 ∈ N. By Theorem 2.3.2,
DistributedTGOnline has bounded regret 𝑐

√
𝑊𝑛 at the end of each short-term horizon𝑊𝑛 , where

𝑐 is a constant independent of𝑊𝑛 . Thus,

𝑘∑︁
𝑛=0

𝑐
√︁
𝑊𝑛 = 𝑐

𝑘∑︁
𝑛=0

20.5𝑛 = 𝑐
20.5(𝑘+1) − 1
√

2 − 1
= 𝑐

20.5 log2 (𝑇+1)
√

2 − 1
= 𝑐

√
𝑇 + 1
√

2 − 1
≤
√

2
√

2 − 1
𝑐
√
𝑇 . (11.95)

In other words, using this doubling trick, we can obtain an anytime regret bound for any algorithm
designed for a fixed time horizon, while worsening the bound by a constant factor (namely,

√
2√

2−1 ).
The same argument can be used to show that the update cost is sublinear when taking update

costs in to account. In particular, the modified policy resets its state at most 𝑘 − 1 times and 𝑘 is
logarithmic in 𝑇 , thereby contributing at most an 𝑂 (log𝑇 ) term to the overall update cost.

3Note that if an optimal solution contains fewer occupied slots, one with higher caching gain can be constructucted
by adding more paths.
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12 Proof of Lemma 3.2.1

Weobserve that for𝑦 (1)𝑡 ∈ B2(𝑅), ∥𝑔(1)𝑡 ∥2 is bounded and for𝑦
(1)
𝑡 ∉ B2(𝑅), ∥𝑔(1)𝑡 ∥2 ≤ 2+2∥𝑦 (1)𝑡 ∥2, then

there exists positive constants𝐴𝑙 and 𝐵𝑙 for 𝑙 = 1, 2, 3, 4, such that for ∥𝑔(1)𝑡 (𝑟,𝑦
(1)
𝑡 )∥𝑙2 ≤ 𝐴𝑙 +𝐵𝑙 ∥𝑦

(1)
𝑡 ∥𝑙2.

We also observe that

inf{𝑦 (1)𝑡 · 𝑔
(1)
𝑡 ,∀𝑦 (1)𝑡 ∉ B2(𝑅 + 1)} > 0,∀𝑖 = 1, . . . , 𝑘 .

We will prove boundedness using the function

𝑓𝑡 =

𝑘∑︁
𝑖=1

𝜙 (∥𝑦 (1)𝑡 ∥22)

where 𝜙 (𝑥) = 1
(
𝑥 ≥ (𝑅 + 1)2

)
(𝑥 − (𝑅 + 1)2)2. There exist positive constants 𝐴 and 𝐵 such that(

𝐴0 + 𝐵0∥𝑦 (1)𝑡 ∥42
)
≤ 𝐴/𝑘 + 𝐵𝜙 (∥𝑦 (1)𝑡 ∥22).

Taking advantage of the inequality𝜙 (𝑥′)−𝜙 (𝑥) ≤ (𝑥′−𝑥)𝜙′(𝑥′)+(𝑥′−𝑥)2 applied for 𝑥 = ∥𝑦 (1)𝑡 ∥22
and 𝑥′ = ∥𝑦 (1)

𝑡+1∥22, we can derive the following inequality

𝑓𝑡+1 − 𝑓𝑡 ≤
𝑘∑︁
𝑖=1

[(
−2𝜂𝑡𝑦 (1)𝑡 · 𝑔

(1)
𝑡 + 𝜂2

𝑡 ∥𝑦
(1)
𝑡 ∥22

)
𝜙′(∥𝑦 (1)𝑡 ∥22) +

(
−2𝜂𝑡𝑦 (1)𝑡 · 𝑔

(1)
𝑡 + 𝜂2

𝑡 ∥𝑦
(1)
𝑡 ∥22

)2
]
. (12.96)

Using the inequalities above, we obtain

𝑓𝑡+1 − 𝑓𝑡 ≤
𝑘∑︁
𝑖=1

[
−2𝜂𝑡𝑦 (1)𝑡 · 𝑔

(1)
𝑡 𝜙′(∥𝑦 (1)𝑡 ∥22) + 𝜂2

𝑡

(
𝐴0 + 𝐵0∥𝑦 (1)𝑡 ∥42

)]
(12.97)

≤
𝑘∑︁
𝑖=1

[
−2𝜂𝑡𝑦 (1)𝑡 · 𝑔

(1)
𝑡 𝜙′(∥𝑦∥22)

]
+ 𝜂2

𝑡 (𝐴 + 𝐵𝑓𝑡 ) . (12.98)

We take now the conditional expectation given 𝐻𝑡 = (𝑦𝑦𝑦1,𝑦𝑦𝑦2, . . . ,𝑦𝑦𝑦𝑡 ):

E𝑥 [𝑓𝑡+1 − 𝑓𝑡 |𝐻𝑡 ] ≤
𝑘∑︁
𝑖=1

[
−2𝜂𝑡𝑦 (1)𝑡 · E𝑥

[
𝑔
(1)
𝑡

]
𝜙′(∥𝑦 (1)𝑡 ∥22)

]
+ 𝜂2

𝑡 (𝐴 + 𝐵𝑓𝑡 ) (12.99)

≤ 𝜂2
𝑡 (𝐴 + 𝐵𝑓𝑡 )., (12.100)

where the last inequality follows from 𝜙′(∥𝑦 (1)𝑡 ∥22) = 0 for 𝑦 (1)𝑡 ∈ B2(𝑅 + 1) and 𝑦 (1)𝑡 · 𝑔
(1)
𝑡 > 0 for

𝑦
(1)
𝑡 ∈ B2(𝑅 + 1).

The proof until now follows logically the same steps as in [138, Section 5.2], but 1) we did not
need to suppose that 𝑔(1)𝑡 have 𝑙-th moments bounded by ∥𝑦 (1)𝑡 ∥𝑙2, as their norm is bounded from our
definition of the algorithm, 2) we had to redefine the function 𝑓𝑡 to take into account separately each
subvector 𝑦 (1)𝑡 of 𝑦𝑦𝑦𝑡 . From (12.100) we can reason as in [138, Section 5.2] to show that {𝑓𝑡 }𝑡∈N is a
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quasi-martingale and apply convergence results for quasi-martingales [138, Section 4.4] to conclude
that 𝑓𝑡 converges almost surely to a random variable 𝑓∞ ≥ 0 with E[𝑓∞] < ∞. We want to conclude
that 𝑓∞ = 0 with probability one, and then𝑦𝑦𝑦𝑡 is bounded almost surely.

The rest of the proof differs from [138, Section 5.2]. Moving around the terms in (12.98) and
summing over 𝑡 , we obtain

∞∑︁
𝑡=1

𝑘∑︁
𝑖=1

2𝜂𝑡𝑦 (1)𝑡 · 𝑔
(1)
𝑡 𝜙′(∥𝑦∥22) ≤ 𝑓1 − 𝑓∞ +

∞∑︁
𝑡=1

𝜂2
𝑡 (𝐴 + 𝐵𝑓𝑡 ) < +∞ a.s. (12.101)

because
∑
𝑡 𝜂

2
𝑡 < ∞ and 𝑓𝑡 converges to 𝑓∞ < ∞.

Let H be the set of sequences such that 𝑓∞ > 0. For each sequence in H , 𝑓𝑡 > 𝑓∞/2 for large
𝑡 , and then there exists at least a value 𝑖𝑡 and an opportune 𝜖 > 0 such that ∥𝑦 (𝑖𝑡 )𝑡 ∥2 > (𝑅 + 1) + 𝜖 .
Then both 𝑦 (1)𝑡 · 𝑔

(1)
𝑡 and 𝜙′(∥𝑦∥22) are bounded below by positive quantities and the series in the

LHS of (12.101) diverges as
∑
𝑡 𝜂𝑡 = +∞. But we have concluded that this series converges a.s., then

P (H) = 0 and 𝑓∞ = 0 a.s.. Each sequence (𝑦𝑦𝑦1,𝑦𝑦𝑦2, . . . ) is then bounded a.s.

13 Proof of Theorem 3.2.2

We denote by 𝑦𝑡,𝑖 the 𝑖-th component of the vector 𝑦𝑦𝑦𝑡 ∈ R𝑘×𝑑 , and by 𝑦𝑖 the 𝑖-th component of a
generic vector𝑦𝑦𝑦 ∈ R𝑘×𝑑 .

We define

𝐹 (𝑥) = 𝑥4

1 + 𝑥2 , 𝐿(𝑦𝑦𝑦) =
𝑘∑︁
𝑖=1

1
(
𝑦𝑖𝑡 ∉ B2(𝑅)

)
𝐹

(
∥𝑦 (1)𝑡 ∥2 − 𝑅

)
, 𝑐 (𝑟,𝑦𝑦𝑦) = 𝑐 (𝑟,𝑦𝑦𝑦) + 𝐿(𝑦𝑦𝑦). (13.102)

We observe that ∇𝑦𝑦𝑦𝑐 (𝑟,𝑦𝑦𝑦𝑡 ) = (𝑔
(1)
𝑡 , . . . , 𝑔

(𝑘)
𝑡 ), i.e., the dynamic in (3.4) is evolving according to

the gradient of 𝑐 (𝑟,𝑦𝑦𝑦𝑡 ). Similary we define C̃(𝑦𝑦𝑦) = E𝑟 [𝑐 (𝑟,𝑦𝑦𝑦)] = C(𝑦𝑦𝑦) + 𝐿(𝑦𝑦𝑦). The function 𝐿(𝑦𝑦𝑦) is
continuously differentiable up to the third order, then C̃(𝑦𝑦𝑦) is continuously differentiable up to the
second/third order when C(𝑦𝑦𝑦) is so. Moreover, we observe that ∥∇𝑦𝑦𝑦C̃(𝑦𝑦𝑦)∥2 > 0 for 𝑦 (1) ∉ B2(𝑅) for
some 𝑖 . Then, lim inf𝑡→∞∥∇𝑦𝑦𝑦C̃(𝑦𝑦𝑦𝑡 )∥2 = 0, implies that lim inf𝑡→∞∥∇𝑦𝑦𝑦C(𝑦𝑦𝑦𝑡 )∥2 = 0.

Lemma 3.2.1 shows that the sequence 𝐻 = (𝑦𝑦𝑦1,𝑦𝑦𝑦2, . . . ) is bounded a.s. Consider a bounded
sequence 𝐻 , such that 𝑦𝑦𝑦𝑡 ∈ B2(𝑅′) for some 𝑅′ > 0. ∇𝑐 (𝑟,𝑦𝑦𝑦𝑡 ) exists a.s. and it is bounded for any
𝑥 ∈ X. By the dominated convergence theorem, it follows that we can invert the expectation and
the gradient:

E𝑥
[
∇𝑦𝑦𝑦𝑐 (𝑟,𝑦𝑦𝑦𝑡 )

]
= ∇𝑦𝑦𝑦 E𝑥

[
𝑐 (𝑟,𝑦𝑦𝑦𝑡 )

]
= ∇𝑦𝑦𝑦C̃(𝑦𝑦𝑦𝑡 ).

As C̃( · ) is continously differentiable up to the second order upon B2(𝑅′), the partial deriva-
tives are bounded, in particular, there exist two constants 𝑐1 and 𝑐2 such that |𝜕C̃(𝑦𝑦𝑦)/𝜕𝑦𝑖 | ≤ 𝑐1 and
|𝜕2C̃(𝑦𝑦𝑦)/𝜕𝑦𝑖𝜕𝑦 𝑗 | ≤ 𝑐2 for each 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑘𝑝}.
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Consider𝑦𝑦𝑦𝑡+1 = 𝑦𝑦𝑦𝑡 − 𝜂𝑡∇𝑐 (𝑟𝑡 ,𝑦𝑦𝑦𝑡 ). Using Taylor formula we can arrive to

C̃(𝑦𝑦𝑦𝑡+1) − C̃(𝑦𝑦𝑦𝑡 ) =
𝑘𝑝∑︁
𝑖=1

𝜕C̃(𝑦𝑦𝑦𝑡 )
𝜕𝑦𝑦𝑦𝑖

(𝑦𝑦𝑦𝑡+1,𝑖 −𝑦𝑦𝑦𝑡,𝑖) +
𝑘𝑝∑︁
𝑖, 𝑗=1

𝜕2C̃(𝑦𝑦𝑦𝑡 + 𝑠𝑦𝑦𝑦𝑡+1)
𝜕𝑦𝑦𝑦𝑖𝜕𝑦𝑦𝑦 𝑗

(𝑦𝑦𝑦𝑡+1,𝑖 −𝑦𝑦𝑦𝑡,𝑖) (𝑦𝑦𝑦𝑡+1, 𝑗 −𝑦𝑦𝑦𝑡, 𝑗 )
2 (13.103)

≤ −𝜂𝑡∇𝑦𝑦𝑦C̃(𝑦𝑦𝑦𝑡 ) · ∇𝑦𝑦𝑦𝑐 (𝑟𝑡 ,𝑦𝑦𝑦𝑡 ) + 𝜂2
𝑡

𝑐2𝑘𝑝

2 ∥∇𝑐 (𝑟𝑡 ,𝑦
𝑦𝑦𝑡 )∥22 (13.104)

≤ −𝜂𝑡∇𝑦𝑦𝑦C̃(𝑦𝑦𝑦𝑡 ) · ∇𝑦𝑦𝑦𝑐 (𝑟𝑡 ,𝑦𝑦𝑦𝑡 ) + 𝜂2
𝑡

𝑐2𝑐
2
1 (𝑘𝑝)2

2 . (13.105)

where 𝑠 ∈ [0, 1]. Denoting the constant 𝑐2𝑐
2
1𝑘𝑝/2 by b and summing for 𝑡 = 1, . . . ,𝑇 , we obtain

𝑇∑︁
𝑡=1

𝜂𝑡∇𝑦𝑦𝑦C̃(𝑦𝑦𝑦𝑡 ) · ∇𝑦𝑦𝑦𝑐 (𝑟𝑡 ,𝑦𝑦𝑦𝑡 ) ≤ C̃(𝑦𝑦𝑦1) − C̃(𝑦𝑦𝑦𝑇 ) +
𝑇∑︁
𝑡=1

𝜂2
𝑡 𝑏 (13.106)

≤ C̃(𝑦𝑦𝑦1) +
𝑇∑︁
𝑡=1

𝜂2
𝑡 𝑏 (13.107)

Finally, taking the expected value, and letting 𝑇 diverges, we obtain

∞∑︁
𝑡=1

𝜂𝑡 E
[
∥∇𝑦𝑦𝑦C̃(𝑦𝑦𝑦𝑡 )∥22

]
≤ E

[
C̃(𝑦𝑦𝑦1)

]
+
∞∑︁
𝑡=1

𝜂2
𝑡 𝑏 < +∞. (13.108)

The series on the LHS is then summable. It follows that
∞∑︁
𝑡=1

𝜂𝑡 ∥∇𝑦𝑦𝑦C̃(𝑦𝑦𝑦𝑡 )∥22 < +∞ a.s. (13.109)

and then we can complete the proof of the first thesis:

lim inf
𝑡→∞

∥∇𝑦𝑦𝑦C̃(𝑦𝑦𝑦𝑡 )∥2 = 0 a.s.

Consider now that C( · ) is continuously differentiable up to the third order and then its third or-
der partial derivatives are bounded overB2(𝑅′), i.e., |𝜕3C̃(𝑦𝑦𝑦𝑡 )/𝜕𝑦𝑖𝜕𝑦 𝑗 𝜕𝑦𝑙 | ≤ 𝑐3. Let 𝑎(𝑦𝑦𝑦) = ∥∇𝑦𝑦𝑦C̃(𝑦𝑦𝑦)∥22.
This is continuously differentiable up to the second order and we can then use the Taylor formula
as above, considering that

𝜕𝑎(𝑦𝑦𝑦)
𝜕𝑦𝑦𝑦𝑖

= 2
𝑘𝑝∑︁
𝑗=1

𝜕C̃(𝑦𝑦𝑦)
𝜕𝑦𝑦𝑦 𝑗

𝜕2C̃(𝑦𝑦𝑦)
𝜕𝑦𝑦𝑦𝑖𝜕𝑦𝑦𝑦 𝑗

, (13.110)

𝜕2𝑎(𝑦𝑦𝑦)
𝜕𝑦𝑦𝑦𝑖𝜕𝑦𝑦𝑦𝑙

= 2
𝑘𝑝∑︁
𝑗=1

𝜕2C̃(𝑦𝑦𝑦)
𝜕𝑦𝑦𝑦 𝑗 𝜕𝑦𝑦𝑦𝑙

𝜕2C̃(𝑦𝑦𝑦)
𝜕𝑦𝑦𝑦𝑖𝜕𝑦𝑦𝑦 𝑗

+ 𝜕C̃(𝑦
𝑦𝑦)

𝜕𝑦𝑦𝑦 𝑗

𝜕3C̃(𝑦𝑦𝑦)
𝜕𝑦𝑦𝑦𝑖𝜕𝑦𝑦𝑦 𝑗 𝜕𝑦𝑦𝑦𝑙

. (13.111)
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Then |𝜕2𝑎(𝑦𝑦𝑦)/𝜕𝑦𝑦𝑦𝑖𝜕𝑦𝑦𝑦𝑙 | ≤ 𝑐′2 = 2𝑘𝑝 (𝑐2
2 + 𝑐1𝑐3). We obtain:

𝑎(𝑦𝑦𝑦𝑡+1) − 𝑎(𝑦𝑦𝑦𝑡 ) ≤ −2𝜂𝑡
𝑘𝑝∑︁
𝑖, 𝑗=1

𝜕C̃(𝑦𝑦𝑦)
𝜕𝑦 𝑗

𝜕2C̃(𝑦𝑦𝑦)
𝜕𝑦𝑖𝜕𝑦 𝑗

𝜕𝑐 (𝑟𝑡 ,𝑦𝑦𝑦𝑡 )
𝜕𝑦𝑖

+ 𝜂2
𝑡

𝑐′2𝑐
2
1 (𝑘𝑝)2

2 . (13.112)

If we now compute the conditional expectation given the history up to 𝑡 , 𝐻𝑡 = (𝑦𝑦𝑦1,𝑦𝑦𝑦2, . . . ,𝑦𝑦𝑦𝑡 ),
we obtain

E
[
𝑎(𝑦𝑦𝑦𝑡+1) − 𝑎(𝑦𝑦𝑦𝑡 ) |𝐻𝑡

]
≤ −2𝜂𝑡

𝑘𝑝∑︁
𝑖, 𝑗=1

𝜕C̃(𝑦𝑦𝑦)
𝜕𝑦 𝑗

𝜕2C̃(𝑦𝑦𝑦)
𝜕𝑦𝑖𝜕𝑦 𝑗

𝜕C̃(𝑦𝑦𝑦𝑡 )
𝜕𝑦𝑖

+ 𝜂2
𝑡

𝑐′2𝑐
2
1 (𝑘𝑝)2

2 (13.113)

≤ 2𝑐2𝑘𝑝𝜂𝑡 ∥∇𝑦𝑦𝑦C̃(𝑦𝑦𝑦𝑡 )∥22 + 𝜂2
𝑡

𝑐′2𝑐
2
1 (𝑘𝑝)2

2 . (13.114)

Because of (13.109) and
∑
𝑡 𝜂

2
𝑡 < ∞,

∑
𝑡 E

[
𝑎(𝑦𝑦𝑦𝑡+1) − 𝑎(𝑦𝑦𝑦𝑡 ) |𝐻𝑡

]
< +∞ almost surely and a convergence

result for quasi-martingales [138, Section 4.4] implies that 𝑎(𝑦𝑦𝑦𝑡 ) converges almost surely to a random
variable 𝑎∞ with finite expected value. As 𝑎∞ > 0 if and only if ∥∇𝑦𝑦𝑦C̃(𝑦𝑦𝑦𝑡 )∥22 > 0 for large 𝑡 , it is
possible to reason as at the end of the proof of Lemma 3.2.1 and use (13.109) to conclude that 𝑎∞ = 0
almost surely. It follows that

lim
𝑡→∞
∇C̃(𝑦𝑦𝑦𝑡 ) = 0 a.s.

and this concludes the proof.

14 Equivalent Expression of the Cost Function

Lemma 14.1. Let us fix the threshold 𝑐 ∈ N ∪ {0}, 𝑟 ∈ R and 𝑖 ∈ U. The following equality holds

min
{
𝑐,

𝑖∑︁
𝑗=1

𝑥𝜋𝑟
𝑗

}
−min

{
𝑐,

𝑖−1∑︁
𝑗=1

𝑥𝜋𝑟
𝑗

}
= 𝑥𝜋𝑟

𝑖
1

(
𝑖−1∑︁
𝑗=1

𝑥𝜋𝑟
𝑗
< 𝑐

)
. (14.115)

Proof.
We distinguish two cases:

(i) When
∑𝑖−1
𝑗=1 𝑥𝜋𝑟𝑗 ≥ 𝑐 this implies that

∑𝑖
𝑗=1 𝑥𝜋𝑟𝑗 = 𝑥𝜋𝑟𝑗 +

∑𝑖−1
𝑗=1 𝑥𝜋𝑟𝑗 ≥ 𝑐 + 𝑥𝜋𝑟𝑖 ≥ 𝑐 since 𝑥𝜋𝑟𝑖 ≥ 0.

Therefore,
∑𝑖−1
𝑗=1 𝑥𝜋𝑟𝑗 ≥ 𝑐 implies that min

{
𝑐,

∑𝑖−1
𝑗=1 𝑥𝜋𝑟𝑗

}
= min

{
𝑐,

∑𝑖
𝑗=1 𝑥𝜋𝑟𝑗

}
= 𝑐 , and we have:

min
{
𝑐,

𝑖∑︁
𝑗=1

𝑥𝜋𝑟
𝑗

}
−min

{
𝑐,

𝑖−1∑︁
𝑗=1

𝑥𝜋𝑟
𝑗

}
= 0. (14.116)

(ii) When
∑𝑖−1
𝑗=1 𝑥𝜋𝑟𝑗 < 𝑐 , we have

∑𝑖
𝑗=1 𝑥𝜋𝑟𝑗 = 𝑥𝜋𝑟

𝑗
+ ∑𝑖−1

𝑗=1 𝑥𝜋𝑟𝑗 < 𝑐 + 𝑥𝜋𝑟
𝑖
≤ 𝑐 since 𝑥𝜋𝑟

𝑖
≤ 1, this

implies that min
{
𝑐,

∑𝑖
𝑗=1 𝑥𝜋𝑟𝑗

}
=

∑𝑖
𝑗=1 𝑥𝜋𝑟𝑗 and min

{
𝑐,

∑𝑖−1
𝑗=1 𝑥𝜋𝑟𝑗

}
=

∑𝑖−1
𝑗=1 𝑥𝜋𝑟𝑗 , and we have

min
{
𝑐,

𝑖∑︁
𝑗=1

𝑥𝜋𝑟
𝑗

}
−min

{
𝑐,

𝑖−1∑︁
𝑗=1

𝑥𝜋𝑟
𝑗

}
= 𝑥𝜋𝑟

𝑖
. (14.117)
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Combining Eqs. (14.116) and (14.117) yields Eq. (14.115).

□

Lemma 14.2. The cost function 𝐶 (𝑟,𝑥𝑥𝑥) given by the expression in Eq. (3.9), can be equivalently ex-
pressed as:

𝐶 (𝑟,𝑥𝑥𝑥) = −
𝐾𝑟−1∑︁
𝑖=1

𝛼𝑟𝑖 min
{
𝑘 − 𝜎𝑟𝑖 ,

𝑖∑︁
𝑗=1

𝑥𝜋𝑟
𝑗
− 𝜎𝑟𝑖

}
+

𝐾𝑟∑︁
𝑖=1

𝑐 (𝑟, 𝜋𝑟𝑖 )1
(
𝜋𝑟𝑖 ∈ U \ N

)
, (14.118)

where 𝜎𝑟𝑖 =
∑𝑖
𝑗=1 1

(
𝜋𝑟𝑗 ∈ U \ N

)
, 𝛼𝑟𝑖 = 𝑐 (𝑟, 𝜋𝑟𝑖+1) − 𝑐 (𝑟, 𝜋𝑟𝑖 ) and 𝐾𝑟 = min{𝑖 ∈ U : 𝜎𝑟𝑖 = 𝑘} for every

(𝑟, 𝑖) ∈ R ×U.

Proof.

Let 𝑐 (𝑟, 𝑜),∀(𝑟, 𝑜) ∈ R × U be a cost defined as 𝑐 (𝑟, 𝜋𝑟𝑖 ) = 𝑐 (𝑟, 𝜋𝑟𝑖 ),∀𝑖 ∈ [𝐾𝑟 ] and 0 otherwise, and
we also define 𝛼𝑟𝑖 as 𝛼𝑟𝑖 ≜ 𝑐 (𝑟, 𝜋𝑟𝑖+1) − 𝑐 (𝑟, 𝜋𝑟𝑖 ).
When 𝑖 = 1 and for any 𝑟 ∈ R, we have

𝑐 (𝑟, 𝜋𝑟𝑖 )min
{
𝑘,

𝑖−1∑︁
𝑗=1

𝑥𝜋𝑟
𝑗

}
= 0. (14.119)

Note that 𝜎𝑟1 = 0 by definition, since 𝜋𝑟1 ∈ N for any 𝑟 ∈ R. We have

−
𝐾𝑟∑︁
𝑖=1

𝛼𝑟𝑖 𝜎
𝑟
𝑖 =

𝐾𝑟∑︁
𝑖=1

𝑐 (𝑟, 𝜋𝑟𝑖 )𝜎𝑟𝑖 −
𝐾𝑟∑︁
𝑖=1

𝑐 (𝑟, 𝜋𝑟𝑖+1)𝜎𝑟𝑖 =
𝐾𝑟∑︁
𝑖=1

𝑐 (𝑟, 𝜋𝑟𝑖 )𝜎𝑟𝑖 −
𝐾𝑟∑︁
𝑖=2

𝑐 (𝑟, 𝜋𝑟𝑖 )𝜎𝑟𝑖−1 (14.120)

=

𝐾𝑟∑︁
𝑖=1

𝑐 (𝑟, 𝜋𝑟𝑖 )𝜎𝑟𝑖 −
𝐾𝑟∑︁
𝑖=1

𝑐 (𝑟, 𝜋𝑟𝑖 )𝜎𝑟𝑖−1 =
𝐾𝑟∑︁
𝑖=1

𝑐 (𝑟, 𝜋𝑟𝑖 )1{𝜋𝑟𝑖 ∈U\N} =
𝐾𝑟∑︁
𝑖=1

𝑐 (𝑟, 𝜋𝑟𝑖 )1
(
𝜋𝑟𝑖 ∈ U \ N

)
.

(14.121)

Observe that the indicator function 1{∑𝑖−1
𝑗=1 𝑥𝜋𝑟𝑗

<𝑘

} is 0 for every 𝑖 ≥ 𝐾𝑟 +1; therefore, the summation

in Eq. (3.9) can be limited to 𝐾𝑟 instead of 2𝑁 . Using Lemma 14.1 we expand the expression of
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𝐶 (𝑟,𝑥𝑥𝑥) as follows:

𝐶 (𝑟,𝑥𝑥𝑥) =
𝐾𝑟∑︁
𝑖=1

𝑐 (𝑟, 𝜋𝑟𝑖 )𝑥𝜋𝑟𝑖 1{∑𝑖−1
𝑗=1 𝑥𝜋𝑟𝑗

<𝑘

} = 𝐾𝑟∑︁
𝑖=1

𝑐 (𝑟, 𝜋𝑟𝑖 )𝑥𝜋𝑟𝑖 1
(
𝑖−1∑︁
𝑗=1

𝑥𝜋𝑟
𝑗
< 𝑘

)
(14.122)

(14.115)
=

𝐾𝑟∑︁
𝑖=1

𝑐 (𝑟, 𝜋𝑟𝑖 )
(
min

{
𝑘,

𝑖∑︁
𝑗=1

𝑥𝜋𝑟
𝑗

}
−min

{
𝑘,

𝑖−1∑︁
𝑗=1

𝑥𝜋𝑟
𝑗

})
(14.123)

(14.119)
=

𝐾𝑟∑︁
𝑖=1

𝑐 (𝑟, 𝜋𝑟𝑖 )min
{
𝑘,

𝑖∑︁
𝑗=1

𝑥𝜋𝑟
𝑗

}
−
𝐾𝑟−1∑︁
𝑖=1

𝑐 (𝑟, 𝜋𝑟𝑖+1)min
{
𝑘,

𝑖∑︁
𝑗=1

𝑥𝜋𝑟
𝑗

}
(14.124)

=

𝐾𝑟∑︁
𝑖=1

𝑐 (𝑟, 𝜋𝑟𝑖 )min
{
𝑘,

𝑖∑︁
𝑗=1

𝑥𝜋𝑟
𝑗

}
−

𝐾𝑟∑︁
𝑖=1

𝑐 (𝑟, 𝜋𝑟𝑖+1)min
{
𝑘,

𝑖∑︁
𝑗=1

𝑥𝜋𝑟
𝑗

}
(14.125)

= −
𝐾𝑟∑︁
𝑖=1

𝛼𝑟𝑖 min
{
𝑘,

𝑖∑︁
𝑗=1

𝑥𝜋𝑟
𝑗

}
= −

𝐾𝑟∑︁
𝑖=1

𝛼𝑟𝑖 min
{
𝑘 − 𝜎𝑟𝑖 ,

𝑖∑︁
𝑗=1

𝑥𝜋𝑟
𝑗
− 𝜎𝑟𝑖

}
−

𝐾𝑟∑︁
𝑖=1

𝛼𝑟𝑖 𝜎
𝑟
𝑖 (14.126)

(14.121)
= −

𝐾𝑟∑︁
𝑖=1

𝛼𝑟𝑖 min
{
𝑘 − 𝜎𝑟𝑖 ,

𝑖∑︁
𝑗=1

𝑥𝜋𝑟
𝑗
− 𝜎𝑟𝑖

}
+

𝐾𝑟∑︁
𝑖=1

𝑐 (𝑟, 𝜋𝑟𝑖 )1{𝜋𝑟𝑖 ∈U\N} (14.127)

= −
𝐾𝑟−1∑︁
𝑖=1

𝛼𝑟𝑖 min
{
𝑘 − 𝜎𝑟𝑖 ,

𝑖∑︁
𝑗=1

𝑥𝜋𝑟
𝑗
− 𝜎𝑟𝑖

}
+

𝐾𝑟∑︁
𝑖=1

𝑐 (𝑟, 𝜋𝑟𝑖 )1{𝜋𝑟𝑖 ∈U\N} (since 𝑘 − 𝜎𝑟𝐾𝑟 = 0).

(14.128)

This gives the cost function expression in Eq. (14.118).

□

Lemma 14.3. For any request 𝑟 ∈ R the caching gain function 𝐺 (𝑟,𝑥𝑥𝑥) in Eq. (3.10) has the following
expression

𝐺 (𝑟,𝑥𝑥𝑥) =
𝐾𝑟−1∑︁
𝑖=1

𝛼𝑟𝑖 min
{
𝑘 − 𝜎𝑟𝑖 ,

𝑖∑︁
𝑗=1

𝑥𝜋𝑟
𝑗
− 𝜎𝑟𝑖

}
, (14.129)

where 𝜎𝑟𝑖 =
∑𝑖
𝑗=1 1

(
𝜋𝑟𝑗 ∈ U \ N

)
, 𝛼𝑟𝑖 = 𝑐 (𝑟, 𝜋𝑟𝑖+1) − 𝑐 (𝑟, 𝜋𝑟𝑖 ) and 𝐾𝑟 = min{𝑖 ∈ U : 𝜎𝑟𝑖 = 𝑘} for every

(𝑟, 𝑖) ∈ R ×U.

Proof.

From Lemma 14.2, the cost function 𝐶 (𝑟,𝑥𝑥𝑥) can be equivalently expressed as:

𝐶 (𝑟,𝑥𝑥𝑥) = −
𝐾𝑟−1∑︁
𝑖=1

𝛼𝑟𝑖 min
{
𝑘 − 𝜎𝑟𝑖 ,

𝑖∑︁
𝑗=1

𝑥𝜋𝑟
𝑗
− 𝜎𝑟𝑖

}
+

𝐾𝑟∑︁
𝑖=1

𝑐 (𝑟, 𝜋𝑟𝑖 )1
(
𝜋𝑟𝑖 ∈ U \ N

)
. (14.130)
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Without caching the system incurs the cost 𝑘𝑐 𝑓 +
∑𝑘
𝑜∈𝑘NN(𝑟 ) 𝑐 (𝑟, 𝑜) when 𝑟 ∈ R is requested.

This is the retrieval cost of fetching 𝑘 objects and the sum of the approximation costs of the
𝑘 closest objects in N . From the definition of 𝜋𝑟 , this cost can equivalently be expressed as∑𝐾𝑟

𝑖=1 𝑐 (𝑟, 𝜋𝑟𝑖 )1
(
𝜋𝑟𝑖 ∈ U \ N

)
. Therefore, we recover the gain expression in Eq. (14.3) as the cost

reduction due to having a similarity cache. Thus, we have

𝐺 (𝑟,𝑥𝑥𝑥) = 𝑘𝑐 𝑓 +
𝑘∑︁

𝑜∈𝑘NN(𝑟 )
𝑐 (𝑟, 𝑜) −𝐶 (𝑟,𝑥𝑥𝑥) (14.131)

=

𝐾𝑟∑︁
𝑖=1

𝑐 (𝑟, 𝜋𝑟𝑖 )1
(
𝜋𝑟𝑖 ∈ U \ N

)
−

𝐾𝑟∑︁
𝑖=1

𝑐 (𝑟, 𝜋𝑟𝑖 )1
(
𝜋𝑟𝑖 ∈ U \ N

)
+
𝐾𝑟−1∑︁
𝑖=1

𝛼𝑟𝑖 min
{
𝑘 − 𝜎𝑟𝑖 ,

𝑖∑︁
𝑗=1

𝑥𝜋𝑟
𝑗
− 𝜎𝑟𝑖

}
(14.132)

=

𝐾𝑟−1∑︁
𝑖=1

𝛼𝑟𝑖 min
{
𝑘 − 𝜎𝑟𝑖 ,

𝑖∑︁
𝑗=1

𝑥𝜋𝑟
𝑗
− 𝜎𝑟𝑖

}
. (14.133)

This concludes the proof.

□

15 Supporting Lemmas for Proof of Proposition 17.1

Lemma 15.1. For every request 𝑟 ∈ R, index 𝑖 ∈ U, and fractional cache state𝑦𝑦𝑦 ∈ conv(X) the index
set defined as

𝐼 𝑟𝑖 ≜
{
𝑗 ∈ [𝑖] :

(
𝜋𝑟𝑗 ∈ N

)
∧

(
𝜋𝑟𝑗 + 𝑁 ∉ {𝜋𝑟

𝑙
: 𝑙 ∈ [𝑖]}

)}
(15.134)

satisfies the following ∑︁
𝑗∈[𝑖]

𝑦𝜋𝑟
𝑗
− 𝜎𝑟𝑖 =

∑︁
𝑗∈𝐼𝑟

𝑖

𝑦𝜋𝑟
𝑗
, (15.135)

where 𝜎𝑟𝑖 =
∑𝑖
𝑗=1 1

(
𝜋𝑟𝑗 ∈ U \ N

)
(defined in Eq. (3.12)).

Proof.

∑︁
𝑗∈[𝑖]

𝑦𝜋𝑟
𝑗
− 𝜎𝑟𝑖

(3.12)
=

∑︁
𝑗∈[𝑖]

𝑦𝜋𝑟
𝑗
−

∑︁
𝑗∈[𝑖]

1{𝜋𝑟
𝑗
∈U\N} =

∑︁
𝑗∈[𝑖]
𝜋𝑟𝑗 ∈N

𝑦𝜋𝑟
𝑗
+

∑︁
𝑗∈[𝑖]

𝜋𝑟𝑗 ∈U\N

(
𝑦𝜋𝑟

𝑗
− 1

)
=

∑︁
𝑗∈[𝑖]
𝜋𝑟𝑗 ∈N

𝑦𝜋𝑟
𝑗
−

∑︁
𝑙∈[𝑖]

𝜋𝑟
𝑙
∈U\N

𝑦(𝜋𝑟𝑙 −𝑁 )

(15.136)
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Remark that if 𝑙 ∈ [𝑖] and 𝜋𝑟
𝑙
∈ U \ N , then the object 𝜋𝑟

𝑙
− 𝑁 has a strictly smaller cost and it

appears earlier in the permutation 𝜋𝑟 , that is there exists 𝑗 < 𝑙 such that 𝜋𝑟𝑗 = 𝜋𝑟𝑙 −𝑁 . In this case,
the variable 𝑦(𝜋𝑟𝑙 −𝑁 ) cancels out 𝑦𝜋𝑟𝑗 in the RHS of (15.136). Then, we have∑︁

𝑗∈[𝑖]
𝜋𝑟𝑗 ∈N

𝑦𝜋𝑟
𝑗
−

∑︁
𝑙∈[𝑖]

𝜋𝑟
𝑙
∈U\N

𝑦(𝜋𝑟𝑙 −𝑁 ) =
∑︁
𝑗∈[𝑖]
𝜋𝑟𝑗 ∈N

𝜋𝑟𝑗 +𝑁∉{𝜋𝑟𝑙 :(𝑙∈[𝑖])∧(𝜋𝑟𝑙 ∈U\N)}

𝑦𝜋𝑟
𝑗
. (15.137)

Note that if 𝜋𝑟
𝑙

∉ U \ N (i.e., 𝜋𝑟
𝑙
∈ N ), then 𝜋𝑟𝑗 + 𝑁 ≠ 𝜋𝑟

𝑙
. Then the sets{

𝜋𝑟
𝑙

: (𝑙 ∈ [𝑖]) ∧
(
𝜋𝑟
𝑙
∈ U \ N

)}
and

{
𝜋𝑟
𝑙

: 𝑙 ∈ [𝑖]
}
coincide. Therefore, the above equality can

be simplified as follows∑︁
𝑗∈[𝑖]
𝜋𝑟𝑗 ∈N

𝑦𝜋𝑟
𝑗
−

∑︁
𝑙∈[𝑖]

𝜋𝑟
𝑙
∈U\N

𝑦(𝜋𝑟𝑙 −𝑁 ) =
∑︁
𝑗∈[𝑖]
𝜋𝑟𝑗 ∈N

𝜋𝑟𝑗 +𝑁∉{𝜋𝑟𝑙 :𝑙∈[𝑖]}

𝑦𝜋𝑟
𝑗
=

∑︁
𝑗∈𝐼𝑟

𝑖

𝑦𝜋𝑟
𝑗
. (15.138)

Eq. (15.136) and Eq. (15.138) are combined to get∑︁
𝑗∈[𝑖]

𝑦𝜋𝑟
𝑗
− 𝜎𝑟𝑖 =

∑︁
𝑗∈𝐼𝑟

𝑖

𝑦𝜋𝑟
𝑗
, (15.139)

and this concludes the proof.

□

16 Bounds on the Auxiliary Function

We define Λ : R × conv(X) → R+, an auxiliary function, that will be utilized in bounding the value
of the gain function

Λ(𝑟,𝑦𝑦𝑦) ≜
𝐾𝑟−1∑︁
𝑖=1

𝛼𝑟𝑖 (𝑘 − 𝜎𝑟𝑖 )
©­«1 −

∏
𝑗∈𝐼𝑟

𝑖

(
1 −

𝑦𝜋𝑟
𝑗

𝑘 − 𝜎𝑟
𝑖

)ª®¬ ,∀𝑟 ∈ R,𝑦𝑦𝑦 ∈ conv(X). (16.140)

The DepRound [173] subroutine outputs a rounded variable 𝑥𝑥𝑥 ∈ X from a fractional input
𝑦𝑦𝑦 ∈ conv(X), by iteratively modifying the fractional input 𝑦𝑦𝑦. At each iteration the subroutine
Simplify that is part of DepRound is executed on two yet unrounded variables 𝑦𝑖, 𝑦 𝑗 ∈ (0, 1) with
𝑖, 𝑗 ∈ N , until all the variables are rounded in O(𝑁 ) steps. Note that only𝑦𝑖,∀𝑖 ∈ N is rounded, since
𝑥𝑖 ∈ U \ N is determined directly from 𝑥𝑖−𝑁 . The random output of DepRound [173] subroutine
𝑥𝑥𝑥 ∈ X given the input𝑦𝑦𝑦 ∈ conv(X) has the following properties:

P1 E[𝑥𝑖] = 𝑦𝑖,∀𝑖 ∈ N .
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P2
∑
𝑖∈N 𝑥𝑖 = 𝑘.

P3 ∀𝑆 ⊂ N ,E [∏𝑖∈𝑆 (1 − 𝑥𝑖)] ≤
∏
𝑖∈𝑆 (1 − 𝑦𝑖) .

Lemma 16.1. The random output 𝑥𝑥𝑥 ∈ X of DepRound given the fractional cache state input 𝑦𝑦𝑦 ∈
conv(X), or the random output 𝑥𝑥𝑥 ∈ {0, 1}U of CoupledRounding given an integral cache state 𝑥𝑥𝑥′,
and fractional cache states𝑦𝑦𝑦,𝑦𝑦𝑦′ ∈ conv(X) with E[𝑥𝑥𝑥′] = 𝑦𝑦𝑦′, satisfy the following for any request 𝑟 ∈ R

E [Λ(𝑟,𝑥𝑥𝑥)] ≥ Λ(𝑟,𝑦𝑦𝑦). (16.141)
Proof.

E [Λ(𝑟,𝑥𝑥𝑥)] (16.140)= E


𝐾𝑟−1∑︁
𝑖=1

𝛼𝑟𝑖 (𝑘 − 𝜎𝑟𝑖 )
©­«1 −

∏
𝑗∈𝐼𝑟

𝑖

(
1 −

𝑥𝜋𝑟
𝑗

𝑘 − 𝜎𝑟
𝑖

)ª®¬
 =

𝐾𝑟−1∑︁
𝑖=1

𝛼𝑟𝑖 (𝑘 − 𝜎𝑟𝑖 )
©­«1 − E


∏
𝑗∈𝐼𝑟

𝑖

(
1 −

𝑥𝜋𝑟
𝑗

𝑘 − 𝜎𝑟
𝑖

)ª®¬
(16.142)

≤
𝐾𝑟−1∑︁
𝑖=1

𝛼𝑟𝑖 (𝑘 − 𝜎𝑟𝑖 )
©­«1 −

∏
𝑗∈𝐼𝑟

𝑖

(
1 −

𝑦𝜋𝑟
𝑗

𝑘 − 𝜎𝑟
𝑖

)ª®¬ = Λ(𝑟,𝑦𝑦𝑦). (16.143)

The second equality is obtained using the linearity of the expectation operator. The inequality is
obtained using [12, Lemma E.10] with 𝑆 = 𝐼 𝑟𝑖 , 𝑐𝑚 = 1

𝑘−𝜎𝑟
𝑖
, as 𝜎𝑟𝑖 < 𝑘 for 𝑖 < 𝐾𝑟 in the case when

𝑥𝑥𝑥 is the output of DepRound, and in the case when 𝑥𝑥𝑥 is an output of CoupledRounding, the
inequality holds with equality since every 𝑥𝑖 for 𝑖 ∈ N is an independent random variable.
□

17 Bounds on the Gain function

Proposition 17.1. The caching gain function𝐺 (𝑟,𝑥𝑥𝑥) defined in Eq. (3.10) has the following lower and
upper bound for any request 𝑟 ∈ R and fractional cache state𝑦𝑦𝑦 ∈ conv(X):

Λ(𝑟,𝑦𝑦𝑦) ≤ 𝐺 (𝑟,𝑦𝑦𝑦) ≤
(
1 − 1

𝑒

)−1
Λ(𝑟,𝑦𝑦𝑦). (17.144)

Proof.
We have the following

𝐺 (𝑟,𝑦𝑦𝑦) =
𝐾𝑟−1∑︁
𝑖=1

𝛼𝑟𝑖 min
𝑘 − 𝜎𝑟𝑖 ,

∑︁
𝑗∈[𝑖]

𝑦𝜋𝑟
𝑗
− 𝜎𝑟𝑖

 (15.135)
=

𝐾𝑟−1∑︁
𝑖=1

𝛼𝑟𝑖 min
𝑘 − 𝜎𝑟𝑖 ,

𝑖∑︁
𝑗∈𝐼𝑟

𝑖

𝑦𝜋𝑟
𝑗

 (17.145)

≥
𝐾𝑟−1∑︁
𝑖=1

𝛼𝑟𝑖 (𝑘 − 𝜎𝑟𝑖 )
©­«1 −

∏
𝑗∈𝐼𝑟

𝑖

(
1 −

𝑦𝜋𝑟
𝑗

𝑘 − 𝜎𝑟
𝑖

)ª®¬ (17.146)

= Λ(𝑟,𝑦𝑦𝑦), (17.147)
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and

𝐺 (𝑟,𝑦𝑦𝑦) =
𝐾𝑟−1∑︁
𝑖=1

𝛼𝑟𝑖 min
𝑘 − 𝜎𝑟𝑖 ,

∑︁
𝑗∈𝐼𝑟

𝑖

𝑦𝜋𝑟
𝑗

 (17.148)

≤
(
1 − 1

𝑒

)−1 𝐾𝑟−1∑︁
𝑖=1

𝛼𝑟𝑖 (𝑘 − 𝜎𝑟𝑖 )
©­«1 −

∏
𝑗∈𝐼𝑟

𝑖

(
1 −

𝑦𝜋𝑟
𝑗

𝑘 − 𝜎𝑟
𝑖

)ª®¬ (17.149)

= Λ(𝑟,𝑦𝑦𝑦). (17.150)

The inequalities in Eq. (17.146) and Eq. (17.149) are obtained through [12, Lemma E.7], and [12,
Lemma E.8], respectively, by setting 𝑐 = 𝑘 − 𝜎𝑟𝑖 , and 𝑞𝑖 = 1 for every 𝑖 ∈ [𝐾𝑟 − 1].

□

18 Subgradients Computation

Theorem 18.1. For any time slot 𝑡 ∈ [𝑇 ], the vectors 𝑔𝑔𝑔𝑡 given by Eq. (18.151) are subgradients of the
caching gain function 𝐺 (𝑟,𝑦𝑦𝑦) for request 𝑟𝑡 ∈ R at fractional cache state𝑦𝑦𝑦𝑡 ∈ conv(X).

𝑔𝑔𝑔𝑡 =

[(
𝑐

(
𝑟𝑡 , 𝜋

𝑟𝑡

𝑖
𝑟𝑡
∗ +1

)
− 𝑐 (𝑟𝑡 , 𝑙)

)
1

(
𝑙
𝑟𝑡
∗ ≤ 𝑖𝑟𝑡∗

) ]
𝑙∈N

, (18.151)

where 𝑖𝑟𝑡∗ ≜ max
{
𝑖 ∈ [𝐾𝑟𝑡 − 1] :

(∑𝑖
𝑗=1𝑦𝑡,𝜋𝑟𝑗 ≤ 𝑘

)
∧

(
𝑙 + 𝑁 ∉ {𝜋𝑟𝑡𝑣 : 𝑣 ∈ [𝑖]}

)}
, 𝑙𝑟𝑡∗ ≜ (𝜋𝑟𝑡 )−1 (𝑙),∀𝑙 ∈

N , and (𝜋𝑟𝑡 )−1 is the inverse permutation of 𝜋𝑟𝑡 .

Proof.

For any request 𝑟 ∈ R, the function 𝑓 (𝑟,𝑖) (𝑦𝑦𝑦) ≜ min
{
𝑘 − 𝜎𝑟𝑖 ,

∑𝑖
𝑗=1𝑦𝜋𝑟𝑗 − 𝜎

𝑟
𝑖

}
is a concave function,

i.e., a minimum of two concave functions (a constant and an affine function). The subdifferential
of the function at point𝑦𝑦𝑦, using Theorem [296, Theorem 8.2 ] is given as

𝜕𝑓 (𝑟,𝑖) (𝑦𝑦𝑦) =


000 if

∑𝑖
𝑗=1𝑦𝜋𝑟𝑗 > 𝑘,

conv
({

000,∇
(∑𝑖

𝑗=1𝑦𝜋𝑟𝑗

)})
if

∑𝑖
𝑗=1𝑦𝜋𝑟𝑗 = 𝑘,

∇
(∑𝑖

𝑗=1𝑦𝜋𝑟𝑗

)
otherwise,

(18.152)

where conv ( · ) is the convex hull of a set. Thus, a valid subgradient 𝑔𝑔𝑔(𝑟,𝑖) (𝑦𝑦𝑦) of 𝑓 (𝑟,𝑖) at point 𝑦𝑦𝑦
can be picked as

𝑔𝑔𝑔(𝑟,𝑖) (𝑦𝑦𝑦) =
{

000 if
∑𝑖
𝑗=1𝑦𝜋𝑟𝑗 ≥ 𝑘,

∇
(∑𝑖

𝑗=1𝑦𝜋𝑟𝑗

)
otherwise.

(18.153)
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Note that

𝜕

𝜕𝑦𝑙

𝑖∑︁
𝑗=1
𝑦𝜋𝑟

𝑗
= 1 (𝑦𝑙 appears in the sum and 𝑦𝑙+𝑁 = 1 − 𝑦𝑙 does not) (18.154)

= 1
( (
𝑙 ∈ {𝜋𝑟𝑣 : 𝑣 ∈ [𝑖]}

)
∧

(
𝑙 + 𝑁 ∉ {𝜋𝑟𝑣 : 𝑣 ∈ [𝑖]}

) )
(18.155)

= 1
( (
𝑙𝑟∗ ≤ 𝑖

)
∧

(
𝑙 + 𝑁 ∉ {𝜋𝑟𝑣 : 𝑣 ∈ [𝑖]}

) )
. (18.156)

The 𝑙-th component of the subgradient 𝑔𝑔𝑔(𝑟,𝑖) (𝑦𝑦𝑦) is given by

𝑔
(𝑟,𝑖)
𝑙
(𝑦𝑦𝑦) =

{
0, if

∑𝑖
𝑗=1𝑦𝜋𝑟𝑗 ≥ 𝑘,

𝜕
𝜕𝑦𝑙

∑𝑖
𝑗=1𝑦𝜋𝑟𝑗 otherwise.

(18.157)

= 1

((
𝑖∑︁
𝑗=1
𝑦𝜋𝑟

𝑗
< 𝑘 ∧ 𝑙𝑟∗ ≤ 𝑖

)
∧

(
𝑙 + 𝑁 ∉ {𝜋𝑟𝑣 : 𝑣 ∈ [𝑛]}

))
. (18.158)

For any non-negative factor 𝛼𝑟𝑖 , we have 𝜕
(
𝛼𝑟𝑖 𝑓

(𝑟,𝑖) (𝑦𝑦𝑦)
)
= 𝛼𝑟𝑖 𝜕

(
𝑓 (𝑟,𝑖) (𝑦𝑦𝑦)

)
(multiply both sides of the

subgradient inequality by a non-negative constant [53, Definition 1.2]), and using [297, Theorem
23.6] we get

𝜕𝐺 (𝑟,𝑦𝑦𝑦) = 𝜕
(
𝐾𝑟−1∑︁
𝑖=1

𝛼
𝑟𝑡
𝑖
𝑓 (𝑟,𝑖) (𝑦𝑦𝑦)

)
=

𝐾𝑟−1∑︁
𝑖=1

𝛼
𝑟𝑡
𝑖
𝜕𝑓 (𝑟,𝑖) (𝑦𝑦𝑦). (18.159)

Let 𝑖𝑟∗ ≜ max{𝑖 ∈ [𝐾𝑟 − 1] :
(∑𝑖

𝑗=1𝑦𝜋𝑟𝑗 ≤ 𝑘
)
∧

(
𝑙 + 𝑁 ∉ {𝜋𝑟𝑣 : 𝑣 ∈ [𝑖]

)
}}. Now we can define a

subgradient 𝑔𝑔𝑔𝑡 of the function 𝐺 (𝑟,𝑦𝑦𝑦) at point 𝑦𝑦𝑦𝑡 ∈ conv(X) and request 𝑟𝑡 ∈ R for any 𝑡 ∈ [𝑇 ],
where every component 𝑙 ∈ N of 𝑔𝑔𝑔𝑡 is given by

𝑔𝑡,𝑙 =

𝐾𝑟𝑡−1∑︁
𝑖=1

𝛼
𝑟𝑡
𝑖
𝑔
(𝑟𝑡 ,𝑖)
𝑙
(𝑦𝑦𝑦𝑡 ) =

𝐾𝑟𝑡−1∑︁
𝑖=1

𝛼
𝑟𝑡
𝑖
1

((
𝑖∑︁
𝑗=1
𝑦𝜋𝑟𝑡

𝑗
< 𝑘

)
∧

(
𝑙
𝑟𝑡
∗ ≤ 𝑖

)
∧

(
𝑙 + 𝑁 ∉ {𝜋𝑟𝑡𝑣 : 𝑣 ∈ [𝑛]}

))
(18.160)

=

𝐾𝑟𝑡−1∑︁
𝑖=𝑙

𝑟𝑡
∗

𝛼
𝑟𝑡
𝑖
1

((
𝑖∑︁
𝑗=1
𝑦𝜋𝑟𝑡

𝑗
< 𝑘

)
∧

(
𝑙 + 𝑁 ∉ {𝜋𝑟𝑡𝑣 : 𝑣 ∈ [𝑛]}

))
=

𝑖
𝑟𝑡
∗∑︁

𝑖=𝑙
𝑟𝑡
∗

𝛼
𝑟𝑡
𝑖
=

𝑖
𝑟𝑡
∗∑︁

𝑖=𝑙
𝑟𝑡
∗

(
𝑐 (𝑟𝑡 , 𝜋𝑟𝑡𝑖+1) − 𝑐 (𝑟𝑡 , 𝜋

𝑟𝑡
𝑖
)
)

(18.161)

=

(
𝑐 (𝑟𝑡 , 𝜋𝑟𝑡

𝑖
𝑟𝑡
∗ +1
) − 𝑐 (𝑟𝑡 , 𝑙)

)
1

(
𝑙
𝑟𝑡
∗ ≤ 𝑖𝑟𝑡∗

)
,∀𝑙 ∈ N . (18.162)

Note that in the last equality we used the definition of 𝑙𝑟𝑡∗ to obtain 𝑐 (𝑟𝑡 , 𝑙) = 𝑐 (𝑟𝑡 , 𝜋𝑟
𝑙
𝑟𝑡
∗
). This

concludes the proof.

□
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19 Supporting Lemmas for Proof of Theorem 3.3.3

19.1 Subgradient Bound
Lemma 19.1. For any time slot 𝑡 ∈ [𝑇 ], fractional cache state 𝑦𝑦𝑦𝑡 ∈ conv(X), and request 𝑟𝑡 ∈ R the
subgradients 𝑔𝑔𝑔𝑡 of the gain function in Eq. (3.11) are bounded w.r.t the norm ∥ · ∥∞ by the constant

𝐿 ≜ 𝑐𝑘
𝑑
+ 𝑐 𝑓 . (19.163)

The constant 𝑐𝑘
𝑑
is an upper bound on the dissimilarity cost of the k-th closest object for any request in

R, and 𝑐 𝑓 is the retrieval cost.

Proof.

For any time slot 𝑡 ∈ [𝑇 ] we have

∥𝑔𝑔𝑔𝑡 ∥∞ = max
{
𝑔𝑡,𝑙 : 𝑙 ∈ N

} (18.151)
= max

{
𝑐 (𝑟𝑡 , 𝜋𝑟𝑡

𝑖
𝑟𝑡
∗ +1
) − 𝑐 (𝑟𝑡 , 𝑙) : 𝑙 ∈ N

}
(19.164)

≤ 𝑐 (𝑟𝑡 , 𝜋𝑟𝑡𝐾𝑟𝑡 ) − 𝑐 (𝑟𝑡 , 𝜋
𝑟𝑡
1 ) ≤ 𝑐 (𝑟𝑡 , 𝜋

𝑟𝑡
𝐾𝑟𝑡
) (19.165)

= 𝑐 𝑓 + 𝑐 (𝑟𝑡 , 𝜋𝑟𝑡𝐾𝑟𝑡−𝑁 ) ≤ 𝑐 𝑓 + 𝑐 (𝑟𝑡 , 𝜋
𝑟𝑡
𝐾𝑟𝑡−𝑁 ) ≤ 𝑐 𝑓 + 𝑐

𝑘
𝑑
. (19.166)

□ Note that 𝐿2 ≜


𝜕𝑦𝑦𝑦𝐺 (𝑟,𝑦𝑦𝑦)

2 can be as high as

√
𝑁𝐿 and 𝑁 can be very large; moreover, the

regret upper bound is proportional to 𝐿2 instead of 𝐿 when the Euclidean map is used as a mirror
map (see [53, Theorem 4.2]). This justifies why it is preferable to work with the negative entropy
instantiation of OMA rather than the classical Euclidean setting.

19.2 Bregman Divergence Bound

Lemma 19.2. Let 𝑦𝑦𝑦∗ = arg max
𝑦𝑦𝑦∈conv(X)

∑𝑇
𝑡=1𝐺 (𝑟,𝑦𝑦𝑦) and 𝑦𝑦𝑦1 = arg min

𝑦𝑦𝑦∈conv(X)∩D
Φ(𝑦𝑦𝑦), the value of the Bregman

divergence 𝐷Φ(𝑦𝑦𝑦∗,𝑦𝑦𝑦1) associated with the negative entropy mirror map Φ is upper bounded by the
constant

𝐷 ≜ ℎ log
(
𝑁

ℎ

)
. (19.167)

Proof.

It is easy to check that 𝑦1,𝑖 =
ℎ
𝑁
,∀𝑖 ∈ N (𝑦𝑦𝑦1 has maximum entropy); moreover, we have Φ(𝑦𝑦𝑦) ≤

0,∀𝑦𝑦𝑦 ∈ conv(X). The first order optimality condition [53, Proposition 1.3] gives −∇Φ(𝑦𝑦𝑦1)𝑇 (𝑦𝑦𝑦 −
𝑦𝑦𝑦1) ≤ 0,∀𝑦𝑦𝑦 ∈ conv(X). We have

𝐷Φ(𝑦𝑦𝑦∗,𝑦𝑦𝑦1) = Φ(𝑦𝑦𝑦∗) −Φ(𝑦𝑦𝑦1) −∇Φ(𝑦𝑦𝑦1)𝑇 (𝑦𝑦𝑦∗−𝑦𝑦𝑦1) ≤ Φ(𝑦𝑦𝑦∗) −Φ(𝑦𝑦𝑦1) ≤ −Φ(𝑦𝑦𝑦1) = ℎ log
(
𝑁

ℎ

)
. (19.168)

□
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20 Update Costs

20.1 Proof of Theorem 3.3.1
First part. We show that E [𝑥𝑥𝑥𝑡+1] = 𝑦𝑦𝑦𝑡+1. Take 𝛿𝛿𝛿 ≜ 𝑦𝑦𝑦𝑡+1 −𝑦𝑦𝑦𝑡 .

If 𝛿𝑖 > 0 for 𝑖 ∈ N , then:

E
[
𝑥𝑡+1,𝑖

]
= E

[
𝑥𝑡+1,𝑖 |𝑥𝑡,𝑖 = 1

]
P(𝑥𝑡,𝑖 = 1) + E

[
𝑥𝑡+1,𝑖 |𝑥𝑡,𝑖 = 0

]
P(𝑥𝑡,𝑖 = 0) (20.169)

= 𝑦𝑡,𝑖 +
(

𝛿𝑖

1 − 𝑦𝑡,𝑖
+ 0

)
(1 − 𝑦𝑡,𝑖) = 𝑦𝑡,𝑖 + 𝛿𝑖 . (20.170)

If 𝛿𝑖 < 0 for 𝑖 ∈ N , then:

E
[
𝑥𝑡+1,𝑖

]
= E

[
𝑥𝑡+1,𝑖 |𝑥𝑡,𝑖 = 1

]
P(𝑥𝑡,𝑖 = 1) + E

[
𝑥𝑡+1,𝑖 |𝑥𝑡,𝑖 = 0

]
P(𝑥𝑡,𝑖 = 0) (20.171)

=

(
𝑦𝑡,𝑖 + 𝛿𝑖
𝑦𝑡,𝑖

)
𝑦𝑡,𝑖 + 0 = 𝑦𝑡,𝑖 + 𝛿𝑖 . (20.172)

Otherwise, when 𝛿𝑖 = 0 for 𝑖 ∈ N we have E[𝑥𝑡+1,𝑖] = E[𝑥𝑡,𝑖] = 𝑦𝑡,𝑖 = 𝑦𝑡,𝑖 + 𝛿𝑖 . Therefore we have
for any 𝑖 ∈ N

E[𝑥𝑥𝑥𝑡+1] = 𝑦𝑦𝑦𝑡 + 𝛿𝛿𝛿 = 𝑦𝑦𝑦𝑡+1. (20.173)

Second part. For any 𝑖 ∈ N , we can have two types of movements: If 𝛿𝑖 < 0, then given that 𝑥𝑡,𝑖 = 1,
we evict with probability −𝛿𝑖

𝑦𝑡,𝑖
. If 𝛿𝑖 > 0, then given that 𝑥𝑡,𝑖 = 0, we retrieve a file with probability

𝛿𝑖
1−𝑦𝑡,𝑖 . Thus the expected movement is given by:

E [∥𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥𝑡 ∥1] =
∑︁
𝑖∈N
E[|𝑥𝑡+1,𝑖 − 𝑥𝑡+1,𝑖 |] (20.174)

=
∑︁
𝑖∈N
E

[
|𝑥𝑡+1,𝑖 − 𝑥𝑡,𝑖 |

��𝑥𝑡,𝑖 = 0
]
P(𝑥𝑡,𝑖 = 0) + E

[
|𝑥𝑡+1,𝑖 − 𝑥𝑡,𝑖 |

��𝑥𝑡,𝑖 = 1
]
P(𝑥𝑡,𝑖 = 1)

(20.175)

=
∑︁
𝑖∈N

(
𝛿𝑖

1 − 𝑦𝑡,𝑖
1 (𝛿𝑖 > 0) · (1 − 𝑦𝑡,𝑖) +

−𝛿𝑖
𝑦𝑡,𝑖
1 (𝛿𝑖 < 0) · 𝑦𝑡,𝑖

)
(20.176)

=
∑︁
𝑖∈N
|𝛿𝑖 | =

∑︁
𝑖∈N
|𝑦𝑡+1,𝑖 − 𝑦𝑡,𝑖 | = ∥𝑦𝑦𝑦𝑡+1 −𝑦𝑦𝑦𝑡 ∥1 . (20.177)

20.2 Proof of Theorem 3.3.2

The negative entropy mirror map Φ is 𝜌 = 1
ℎ
strongly convex w.r.t the norm ∥ · ∥1 overD∩ conv(X)

(see [48, Ex. 2.5]), and the subgradients are bounded under the dual norm ∥ · ∥∞ by 𝐿, i.e., for any
𝑟𝑡 ∈ R, 𝑦𝑦𝑦𝑡 ∈ conv(X), and 𝑡 ∈ [𝑇 ] we have ∥𝑔𝑔𝑔𝑡 ∥∞ ≤ 𝐿 (Lemma 19.1). For any time slot 𝑡 ∈ [𝑇 − 1],
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it holds:

𝐷Φ(𝑦𝑦𝑦𝑡 ,𝑧𝑧𝑧𝑡+1) = Φ(𝑦𝑦𝑦𝑡 ) − Φ(𝑧𝑧𝑧𝑡+1) − ∇Φ(𝑧𝑧𝑧𝑡+1)𝑇 (𝑦𝑦𝑦𝑡 − 𝑧𝑧𝑧𝑡+1)
= Φ(𝑦𝑦𝑦𝑡 ) − Φ(𝑧𝑧𝑧𝑡+1) + ∇Φ(𝑦𝑦𝑦𝑡 )𝑇 (𝑧𝑧𝑧𝑡+1 −𝑦𝑦𝑦𝑡 ) + (∇Φ(𝑦𝑦𝑦𝑡 ) − ∇Φ(𝑧𝑧𝑧𝑡+1))𝑇 (𝑦𝑦𝑦𝑡 − 𝑧𝑧𝑧𝑡+1)

≤ −𝜌2 ∥𝑦
𝑦𝑦𝑡 − 𝑧𝑧𝑧𝑡+1∥21 + 𝜂𝑔𝑔𝑔𝑇𝑡 (𝑦𝑦𝑦𝑡 − 𝑧𝑧𝑧𝑡+1) (20.178)

≤ −𝜌2 ∥𝑦
𝑦𝑦𝑡 − 𝑧𝑧𝑧𝑡+1∥2 + 𝜂𝐿 ∥𝑦𝑦𝑦𝑡 − 𝑧𝑧𝑧𝑡+1∥21 (20.179)

≤ 𝜂
2𝐿2

2𝜌 . (20.180)

Eqs. (20.178)–(20.180) are obtained using the strong convexity of Φ and the update rule, Cauchy-
Schwarz inequality, and the inequality 𝑎𝑥 − 𝑏𝑥2 ≤ max𝑥 𝑎𝑥 − 𝑏𝑥2 = 𝑎2/4𝑏 as in the last step in the
proof of [53, Theorem 4.2], respectively. Moreover, for any 𝑡 ∈ [𝑇 − 1] it holds

∥𝑦𝑦𝑦𝑡+1 −𝑦𝑦𝑦𝑡 ∥1 ≤
√︄

2
𝜌
𝐷Φ(𝑦𝑦𝑦𝑡 ,𝑦𝑦𝑦𝑡+1) ≤

√︄
2
𝜌
𝐷Φ(𝑦𝑦𝑦𝑡 ,𝑧𝑧𝑧𝑡+1) −

2
𝜌
𝐷Φ(𝑦𝑦𝑦𝑡+1,𝑧𝑧𝑧𝑡+1) ≤

√︄
2
𝜌
𝐷Φ(𝑦𝑦𝑦𝑡 ,𝑧𝑧𝑧𝑡+1) (20.181)

≤

√︄
2𝜂2 𝐿

2

2𝜌2 ≤
𝐿𝜂

𝜌
. (20.182)

The above chain of inequalities is obtained through: the strong convexity of Φ, the generalized
Pythagorean inequality [53, Lemma 4.1], non-negativity of the Bregman divergence of a convex
function, and Eq. (20.180), in respective order. The learning rate is 𝜂 = O

(
1√
𝑇

)
; therefore, we finally

get

𝑇−1∑︁
𝑡=1
∥𝑦𝑦𝑦𝑡+1 −𝑦𝑦𝑦𝑡 ∥1

(20.182)
≤ 𝐿𝜂𝑇

𝜌
= O(

√
𝑇 ). (20.183)

21 Proof of Theorem 3.3.3

To prove the 𝜓 -regret guarantee: (1) we first establish an upper bound on the regret of the AÇAI
policy over its fractional cache states domain conv(X) against a fractional optimum, then (2) the
guarantee is transformed in a𝜓 -regret guarantee over the integral cache states domain X in expec-
tation.
Fractional domain guarantee. We establish first the regret of running Algorithm 3.2 with deci-
sions taken over the fractional domain conv(X). The following properties are satisfied:

(i) The caching gain function𝐺 (𝑟,𝑦𝑦𝑦) is concave over its fractional domain conv(X) for any 𝑟 ∈ R
(see Section 3.3.3.4).

(ii) The negative entropy mirror map Φ : D → R is 1
ℎ
strongly convex w.r.t the norm ∥ · ∥1 over

D ∩ conv(X) (see [48, Ex. 2.5]).
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(iii) The subgradients are bounded under the dual norm ∥ · ∥∞ by 𝐿, i.e., for any 𝑟𝑡 ∈ R, 𝑦𝑦𝑦𝑡 ∈
conv(X), and 𝑡 ∈ [𝑇 ] we have ∥𝑔𝑔𝑔𝑡 ∥∞ ≤ 𝐿 (Lemma 19.1).

(iv) The Bregman divergence𝐷Φ(𝑦𝑦𝑦∗,𝑦𝑦𝑦1) is bounded by a constant𝐷 where𝑦𝑦𝑦∗ = arg max𝑦𝑦𝑦∈conv(X)
∑𝑇
𝑡=1𝐺 (𝑟,𝑦𝑦𝑦)

and𝑦𝑦𝑦1 = arg min
𝑦𝑦𝑦∈conv(X)∩D

Φ(𝑦𝑦𝑦) is the initial fractional cache state (Lemma 19.2).

With the above properties satisfied, the regret of Algorithm 3.2 with the gains evaluated over the
fractional cache states {𝑦𝑦𝑦𝑡 }𝑇𝑡=1 ∈ conv(X)𝑇 is [53, Theorem 4.2]

Regret𝑇,conv(X) (OMAΦ) = sup
{𝑟𝑟𝑟 𝑡 }𝑇𝑡=1∈R𝑇

{
𝑇∑︁
𝑡=1

𝐺 (𝑟𝑡 ,𝑦𝑦𝑦∗) −
𝑇∑︁
𝑡=1

𝐺 (𝑟𝑡 ,𝑦𝑦𝑦𝑡 )
}

(21.184)

≤ 𝐷Φ(𝑦𝑦𝑦∗,𝑦𝑦𝑦1)
𝜂

+ 𝜂ℎ2

𝑇∑︁
𝑡=1
∥𝑔𝑔𝑔𝑡 ∥2∞ ≤

𝐷

𝜂
+ 𝜂𝐿

2ℎ𝑇

2 . (21.185)

Integral domain guarantee. Let 𝑥𝑥𝑥∗ = arg max
𝑥𝑥𝑥∈X

∑𝑇
𝑡=1𝐺 (𝑟𝑡 ,𝑥𝑥𝑥) and 𝑦𝑦𝑦∗ = arg max

𝑦𝑦𝑦∈conv(X)

∑𝑇
𝑡=1𝐺 (𝑟𝑡 ,𝑦𝑦𝑦). The

fractional cache state 𝑦𝑦𝑦∗ ∈ conv(X) is obtained by maximizing
∑𝑇
𝑡=1𝐺 (𝑟𝑡 ,𝑦𝑦𝑦) over the domain 𝑦𝑦𝑦 ∈

conv(X). We can only obtain a lower gain by restricting the maximization to a subset of the domain
X ⊂ conv(X). Therefore, we obtain:

𝑇∑︁
𝑡=1

𝐺 (𝑟𝑡 ,𝑦𝑦𝑦∗) ≥
𝑇∑︁
𝑡=1

𝐺 (𝑟𝑡 ,𝑥𝑥𝑥∗). (21.186)

Note that the components for 𝑥𝑥𝑥 and 𝑦𝑦𝑦 in U \ N are completely determined by the components in
N . Take𝜓 = 1 − 1/𝑒 . For every 𝑡 ∈ {1, 𝑀, 2𝑀, . . . , 𝑀 ⌊𝑇 /𝑀⌋} and 𝑟 ∈ R it holds

E [𝐺 (𝑟,𝑥𝑥𝑥𝑡 )]
(17.144)
≥ E [Λ(𝑟,𝑥𝑥𝑥𝑡 )]

(16.141)
≥ Λ(𝑟,𝑦𝑦𝑦𝑡 )

(17.144)
≥ 𝜓𝐺 (𝑟,𝑦𝑦𝑦𝑡 ). (21.187)

Moreover, consider the following decomposition of the time slots {1, 2, . . . ,𝑇 } = T1 ∪ T2 ∪ · · · ∪
T⌊𝑇 /𝑀⌋+1, where each T𝑖 represents the 𝑖-th freezing period, i.e., 𝑥𝑥𝑥𝑡 = 𝑥𝑥𝑥min(T𝑖 ) for 𝑡 ∈ T𝑖 . Note that
|T𝑖 | ≤ 𝑀 for 𝑖 ∈ {1, 2, . . . , ⌊𝑇 /𝑀⌋ + 1}. Now we can decompose the total expected gain of the policy
as

𝜓

𝑇∑︁
𝑡=1

𝐺 (𝑟𝑡 ,𝑥𝑥𝑥∗) −
𝑇∑︁
𝑡=1
E [𝐺 (𝑟𝑡 ,𝑥𝑥𝑥𝑡 )]

(21.186)
≤ 𝜓

𝑇∑︁
𝑡=1

𝐺 (𝑟𝑡 ,𝑦𝑦𝑦∗) −
𝑇∑︁
𝑡=1
E [𝐺 (𝑟𝑡 ,𝑥𝑥𝑥𝑡 )]

= 𝜓

𝑇∑︁
𝑡=1

𝐺 (𝑟𝑡 ,𝑦𝑦𝑦∗) −
⌊𝑇 /𝑀⌋+1∑︁
𝑖=1

∑︁
𝑡∈T𝑖
E [𝐺 (𝑟𝑡 ,𝑥𝑥𝑥𝑡 )]

(21.187)
≤ 𝜓

𝑇∑︁
𝑡=1

𝐺 (𝑟𝑡 ,𝑦𝑦𝑦∗) −𝜓
⌊𝑇 /𝑀⌋+1∑︁
𝑖=1

∑︁
𝑡∈T𝑖

𝐺 (𝑟𝑡 ,𝑦𝑦𝑦min(T𝑖 ))

= 𝜓

𝑇∑︁
𝑡=1

𝐺 (𝑟𝑡 ,𝑦𝑦𝑦∗) −𝜓
𝑇∑︁
𝑡=1

𝐺 (𝑟𝑡 ,𝑦𝑦𝑦𝑡 ) +𝜓
𝑇∑︁
𝑡=1

𝐺 (𝑟𝑡 ,𝑦𝑦𝑦𝑡 ) −𝜓
⌊𝑇 /𝑀⌋+1∑︁
𝑖=1

∑︁
𝑡∈T𝑖

𝐺 (𝑟𝑡 ,𝑦𝑦𝑦min(T𝑖 ))

(21.185)
≤ 𝜓 · Regret𝑇,conv(X) (OMAΦ) +𝜓

(
𝑇∑︁
𝑡=1

𝐺 (𝑟𝑡 ,𝑦𝑦𝑦𝑡 ) −
⌊𝑇 /𝑀⌋+1∑︁
𝑖=1

∑︁
𝑡∈T𝑖

𝐺 (𝑟𝑡 ,𝑦𝑦𝑦min(T𝑖 ))
)
. (21.188)



22 – Proof of Corollary 3.3.4 191

The first equality is obtained through a decomposition of the time slots toT𝑖 for 𝑖 ∈ {1, 2, . . . , ⌊𝑇 /𝑀⌋+
1}. It remains to bound the r.h.s of Eq. (21.188), i.e.,
𝑇∑︁
𝑡=1

𝐺 (𝑟𝑡 ,𝑦𝑦𝑦𝑡 ) −
⌊𝑇 /𝑀⌋+1∑︁
𝑖=1

∑︁
𝑡∈T𝑖

𝐺 (𝑟𝑡 ,𝑦𝑦𝑦min(T𝑖 )) =
⌊𝑇 /𝑀⌋+1∑︁
𝑖=1

∑︁
𝑡∈T𝑖

𝐺 (𝑟𝑡 ,𝑦𝑦𝑦𝑡 ) −𝐺 (𝑟𝑡 ,𝑦𝑦𝑦min(T𝑖 )) (21.189)

≤
⌊𝑇 /𝑀⌋+1∑︁
𝑖=1

∑︁
𝑡∈T𝑖

𝜕𝑦𝑦𝑦𝐺 (𝑟𝑡 ,𝑦𝑦𝑦min(T𝑖 )) ·
(
𝑦𝑦𝑦𝑡 −𝑦𝑦𝑦min(T𝑖 )

)
concavity of 𝐺 (𝑟𝑡 , ·)

≤
⌊𝑇 /𝑀⌋+1∑︁
𝑖=1

∑︁
𝑡∈T𝑖



𝜕𝑦𝑦𝑦𝐺 (𝑟𝑡 ,𝑦𝑦𝑦min(T𝑖 ))



∞



𝑦𝑦𝑦𝑡 −𝑦𝑦𝑦min(T𝑖 )




1 Hölder’s inequality

≤ 𝐿
⌊𝑇 /𝑀⌋+1∑︁
𝑖=1

∑︁
𝑡∈T𝑖

𝑡−1∑︁
𝑡 ′=min(T𝑖 )

∥𝑦𝑦𝑦𝑡+1 −𝑦𝑦𝑦𝑡 ∥1 triangle inequality and definition of 𝐿

≤ 𝐿
2

𝜌

⌊𝑇 /𝑀⌋+1∑︁
𝑖=1

∑︁
𝑡∈T𝑖

𝑡−1∑︁
𝑡 ′=min(T𝑖 )

𝜂 ≤ 𝐿
2𝜂

𝜌
·
(
𝑇

𝑀
+ 1

)
· 𝑀 (𝑀 − 1)

2 update cost upper bound in Eq. (20.182)

=
𝐿2𝜂

2𝜌 (𝑀 − 1) (𝑇 +𝑀) = ℎ𝐿2𝜂

2 (𝑀 − 1) (𝑇 +𝑀) we have 𝜌 = 1/ℎ. (21.190)

Thus, by bounding r.h.s of Eq. (21.188) in Eq. (21.190) we get

𝜓

𝑇∑︁
𝑡=1

𝐺 (𝑟𝑡 ,𝑥𝑥𝑥∗) −
𝑇∑︁
𝑡=1
E [𝐺 (𝑟𝑡 ,𝑥𝑥𝑥𝑡 )] ≤ 𝜓

(
𝐷

𝜂
+ 𝜂𝐿

2ℎ

2 𝑇 + 𝜂𝐿
2ℎ

2 (𝑀 − 1) (𝑇 +𝑀)
)

(21.191)

By selecting the learning rate 𝜂 = 1
𝐿

√︃
2𝐷

ℎ(𝑇+(𝑀−1) (𝑀+𝑇 )) =
1

(𝑐𝑘
𝑑
+𝑐 𝑓 )

√︂
2 log( 𝑁ℎ )

(𝑇+(𝑀−1) (𝑀+𝑇 )) giving the tightest
upper bound we obtain

𝜓

𝑇∑︁
𝑡=1

𝐺 (𝑟𝑡 ,𝑥𝑥𝑥∗) −
𝑇∑︁
𝑡=1
E [𝐺 (𝑟𝑡 ,𝑥𝑥𝑥𝑡 )] ≤ 𝜓𝐿

√︁
2𝐷ℎ(𝑇 + (𝑀 − 1) (𝑇 +𝑀)) (21.192)

(19.163),(19.167)
=

(
1 − 1

𝑒

)
(𝑐𝑘
𝑑
+ 𝑐 𝑓 )ℎ

√︄
2 log

(
𝑁

ℎ

)
(𝑇 + (𝑀 − 1) (𝑇 +𝑀)).

(21.193)
This concludes the proof.

22 Proof of Corollary 3.3.4

We have the following

E [𝐺𝑇 (𝑥𝑥𝑥)]
(17.144)
≥ E

[
1
𝑇

𝑇∑︁
𝑡=1

Λ(𝑟𝑡 ,𝑥𝑥𝑥𝑡 )
]
(16.141)
≥ 1

𝑇

𝑇∑︁
𝑡=1

Λ(𝑟𝑡 ,𝑥𝑥𝑥𝑡 )
(17.144)
≥ 𝜓𝐺𝑇 (𝑦). (22.194)



192 Chapter — Conclusion

We apply Jensen’s inequality to obtain

𝐺𝑇 (𝑦) ≥
1
𝑇

𝑇∑︁
𝑖=1

𝐺𝑇 (𝑦𝑦𝑦𝑖). (22.195)

It is easy to verify that 𝐺𝑇 (3.17) is concave, and has bounded subgradients under the 𝑙∞ norm over
the fractional caching domain conv(X); moreover, the remaining properties are satisfied for the
same mirror map and decision set. The regret of Algorithm 3.2 with the gains evaluated over the
fractional cache states {𝑦𝑦𝑦𝑖}𝑇𝑖=1 ∈ conv(X)𝑇 is [53, Theorem 4.2] is given by

𝑇∑︁
𝑖=1

𝐺𝑇 (𝑦𝑦𝑦∗) −
𝑇∑︁
𝑖=1

𝐺𝑇 (𝑦𝑦𝑦𝑖) = 𝑇𝐺𝑇 (𝑦𝑦𝑦∗) −
𝑇∑︁
𝑖=1

𝐺𝑇 (𝑦𝑦𝑦𝑖)
(21.185)
≤ (𝑐𝑘

𝑑
+ 𝑐 𝑓 )ℎ

√︄
2 log

(
𝑁

ℎ

)
𝑇 . (22.196)

Divide both sides of the equality by 𝑇 , and move the gain attained by AÇAI to the l.h.s to get

1
𝑇

𝑇∑︁
𝑖=1

𝐺𝑇 (𝑦𝑦𝑦𝑖) ≥ 𝐺𝑇 (𝑦𝑦𝑦∗) − (𝑐𝑘𝑑 + 𝑐 𝑓 )ℎ

√︄
2 log

(
𝑁

ℎ

)
𝑇, (22.197)

where𝑦𝑦𝑦∗ = arg max
𝑦𝑦𝑦∈conv(X)

𝐺𝑇 (𝑦𝑦𝑦).

We combine Eq. (22.194), Eq. (22.195), and Eq. (22.197) to obtain

E [𝐺𝑇 (𝑥𝑥𝑥)] ≥ 𝐺𝑇 (𝑦𝑦𝑦∗) − (𝑐𝑘𝑑 + 𝑐 𝑓 )ℎ

√︄
2 log

(
𝑁

ℎ

)
𝑇, (22.198)

and 𝐺𝑇 (𝑦𝑦𝑦∗) can only be larger than 𝐺𝑇 (𝑥𝑥𝑥∗); thus, we also obtain

E [𝐺𝑇 (𝑥𝑥𝑥)] ≥ 𝐺𝑇 (𝑥𝑥𝑥∗) − (𝑐𝑘𝑑 + 𝑐 𝑓 )ℎ

√︄
2 log

(
𝑁
ℎ

)
𝑇

. (22.199)

We conclude ∀𝜖 > 0 for a sufficiently large number of iterations 𝑇 , 𝑥𝑥𝑥 satisfies

E [𝐺𝑇 (𝑥𝑥𝑥)] ≥
(
1 − 1

𝑒
− 𝜖

)
𝐺𝑇 (𝑥𝑥𝑥∗). (22.200)

23 Additional Experiments

23.1 Redundancy
We quantify the redundancy present in the caches in Figure 23.7 (a), as the percentage of added
objects to fill the physical cache. We also show the contribution of the dangling objects to the gain
in Figure 23.7 (b), that does not exceed 2.0% under both traces.
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gling objects under Amazon trace.

Figure 23.7: Storage redundancy percentage and gain contribution for the different policies. The
cache size ℎ = 1000, and 𝑘 ∈ {10, 20, 30, 50, 100}.

23.2 Approximate Index Augmentation
We repeat the sensitivity analysis and show the caching gain when the different policies are aug-
mented with an approximate index, and are allowed to mix the best object that can be served locally
and from the server. Figure 23.8 shows the caching gain for the different caching policies and differ-
ent values of the cache size ℎ ∈ {50, 100, 200, 500, 1000} and 𝑘 = 10. Figure 23.9 shows the caching
gain for the different caching policies and different values of the retrieval cost 𝑐 𝑓 , that is taken as
the average distance to the 𝑖-th neighbor, 𝑖 ∈ {2, 50, 100, 500, 1000}. The cache size is ℎ = 1000 and
𝑘 = 10. Figure 23.10 shows the caching gain for the different caching policies and different values
of 𝑘 ∈ {10, 20, 30, 50, 100} and ℎ = 1000.

23.3 Compute Time
We provide a comparison of the compute time of the different algorithms in Figure 23.11. When
the different LRU-like policies are not augmented with a global catalog index in Figure 23.11 (a),
AÇAI experiences a higher compute time per iteration. When the different LRU-like policices are
augmented with a global catalog index in Figure 23.11 (b), AÇAI has similar compute time to the
different policies except for the simple vanilla lru policy. Nonetheless, in both settingsAÇAI compute
time remains comparable and approximately within factor 4 w.r.t the compute time of the different
policies. Due to space limitation we cannot add this figure to the main text.
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Figure 23.8: Caching gain of the different policies when augmented with the approximate index, for
different cache sizes ℎ ∈ {50, 100, 200, 500, 1000} and 𝑘 = 10.

24 Submodularity of the Gain Function

As submodularity is defined for set functions, let us associate to the gain function𝐺 ( · ) an opportune
set function as follows. Given a set 𝑆 ⊆ V ×M of pairs (𝑣,𝑚) ∈ V ×M (nodes and models), we
define the corresponding associated vector 𝑥𝑥𝑥 (𝑆) with 𝑥𝑣𝑚 (𝑆) = 1 if ((𝑣,𝑚) ∈ 𝑆 ∨ 𝜔𝑣𝑚 = 1), 𝑥𝑣𝑚 (𝑆) = 0
otherwise. Now we can define the set function 𝑓𝑡 : 2V×M → R:

𝑓𝑡 (𝑆) ≜ 𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥 (𝑆)) . (24.201)

We can also define the set function 𝐹𝑇 : 2V×𝑉 → R associated to the time-averaged gain in
Eq. (4.14) as

𝐹𝑇 (𝑆) ≜
1
𝑇

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑆) =
1
𝑇

𝑇∑︁
𝑡=1

𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥 (𝑆)) . (24.202)

We first start proving that 𝑓𝑡 is submodular in the following lemma.

Lemma 24.1. The set function 𝑓𝑡 : 2V×M → R in Eq. (24.201) is normalized (i.e., 𝑓𝑡 (∅) = 0), submod-
ular, and monotone.

Proof.

Normalization. The constructed set function is normalized (as in 𝑓𝑡 (∅) = 0), we have

𝑓𝑡 (∅) = 𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥 (∅)) = 𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) = 𝐶 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) −𝐶 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) = 0. (24.203)
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Figure 23.9: Caching gain for the different policies and different retrieval cost when augmented with
the approximate index. The retrieval cost 𝑐 𝑓 is taken as the average distance to the 𝑖-th neighbor,
𝑖 ∈ {2, 10, 50, 100, 500, 1000}. The cache size is ℎ = 1000 and 𝑘 = 10.

Submodularity. A function 𝑓𝑡 : 2V×M → R is submodular [177] if for every 𝑆′ ⊂ 𝑆′′ ⊂ V ×M
and (𝑣, 𝑚̄) ∈ (V ×M) \ 𝑆′′ it holds that

𝑓𝑡 (𝑆′′ ∪ {(𝑣, 𝑚̄)}) − 𝑓𝑡 (𝑆′′) ≤ 𝑓𝑡 (𝑆′ ∪ {(𝑣, 𝑚̄)}) − 𝑓𝑡 (𝑆′).

Let us consider (𝑣, 𝑚̄) ∈ (V ×M) \𝑆′′. We take 𝑥𝑥𝑥′, 𝑥𝑥𝑥′′, 𝑥𝑥𝑥′, and 𝑥𝑥𝑥′′ as short hand notation for 𝑥𝑥𝑥 (𝑆′),
𝑥𝑥𝑥 (𝑆′′), 𝑥𝑥𝑥 (𝑆′ ∪ {(𝑣, 𝑚̄)}), and 𝑥𝑥𝑥 (𝑆′′ ∪ {(𝑣, 𝑚̄)}), respectively.
Since 𝑆′ ⊂ 𝑆′′, we have that if 𝑥′𝑣𝑚 = 1 =⇒ 𝑥′′𝑣𝑚 = 1, and thus 𝑧𝑘𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′) ≤ 𝑧𝑘𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′′), for any 𝑘 (see
Eq. (4.11)). Therefore

𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′) ≤ 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′′),∀𝑘 ∈ [𝐾𝜌 − 1],∀𝜌 ∈ R . (24.204)

Let us denote 𝑘𝜌 ≜ 𝜅𝜌 (𝑣, 𝑚̄). Due to Eq. (24.204), ∀𝑘 ∈ [𝐾𝜌 − 1],∀𝜌 ∈ R the following inequality
holds:

min{𝑟 𝑡𝜌 − 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′′), 𝜆
𝑘𝜌
𝜌 (𝑙𝑙𝑙𝑡 )} ≤ min{𝑟 𝑡𝜌 − 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′), 𝜆

𝑘𝜌
𝜌 (𝑙𝑙𝑙𝑡 )}, (24.205)

or equivalently:

min{𝑟 𝑡𝜌 , 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′′) + 𝜆
𝑘𝜌
𝜌 (𝑙𝑙𝑙𝑡 )} − 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′′) ≤ min{𝑟 𝑡𝜌 , 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′) + 𝜆

𝑘𝜌
𝜌 (𝑙𝑙𝑙𝑡 )} − 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′).

(24.206)
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Figure 23.10: Caching gain for the different policies when augmented with the approximate index.
The cache size is ℎ = 1000, and 𝑘 ∈ {10, 20, 30, 50, 100}.

Observe that

𝑧𝑘𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′′) =


𝑧𝑘𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′′) if 𝑘 ≠ 𝑘𝜌 ,

𝑧𝑘𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′′) + 𝑥𝑣𝑚̄︸︷︷︸
=1

· 𝑙𝑡,𝑣𝜌,𝑚̄
(4.11)
= 𝑧𝑘𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′′) + 𝜆

𝑘𝜌
𝜌 (𝑙𝑙𝑙𝑡 ) if 𝑘 = 𝑘𝜌 ,

and thus

𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′′) =
{
𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′′) if 𝑘 < 𝑘𝜌

min
{
𝑟 𝑡𝜌 ,

∑𝑘
𝑘 ′=1 𝑧

𝑘 ′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′′) + 𝜆

𝑘𝜌
𝜌 (𝑙𝑙𝑙𝑡 )

}
= min{𝑟 𝑡𝜌 , 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′′) + 𝜆

𝑘𝜌
𝜌 (𝑙𝑙𝑙𝑡 )} if 𝑘 ≥ 𝑘𝜌 .

(24.207)

Note that the same equality holds between 𝑥𝑥𝑥′ and 𝑥𝑥𝑥′ since (𝑣, 𝑚̄) ∉ 𝑆′.
The marginal gain of adding pair (𝑣, 𝑚̄) ∈ V ×M to the allocation set 𝑆′′ is
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Figure 23.11: Time-averaged compute time of AÇAI and the different policies LRU, SIM-LRU, CLS-
LRU, and QCache(a) w/o an approximate global catalog index, and (b) w/ an approximate global
catalog index. Experiment run over the Amazon trace, cache size ℎ = 1000, parameter 𝑘 = 10,
𝜂 = 10−4, retrieval cost 𝑐 𝑓 is set to be the distance to the 50-th closest neighbor in N .

𝑓𝑡 (𝑆′′ ∪ {(𝑣, 𝑚̄)}) − 𝑓𝑡 (𝑆′′) = 𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′′) −𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′′)

(4.16)
=

∑︁
𝜌∈R

[
𝑘𝜌−1∑︁
𝑘=1

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

) (
𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′′) − 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔)

)
+
𝐾𝜌−1∑︁
𝑘=𝑘𝜌

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

) (
min

{
𝑟 𝑡𝜌 , 𝑍

𝑘
𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′′) + 𝜆

𝑘𝜌
𝜌 (𝑙𝑙𝑙𝑡 )

}
− 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔)

)
−
𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

) (
𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′′) − 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔)

) ]
=

∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=𝑘𝜌

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

) [ (
min

{
𝑟 𝑡𝜌 , 𝑍

𝑘
𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′′) + 𝜆

𝑘𝜌
𝜌 (𝑙𝑙𝑙𝑡 )

}
− 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔)

)
−

(
𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′′) − 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔)

) ]

=
∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=𝑘𝜌

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

) (
min

{
𝑟 𝑡𝜌 , 𝑍

𝑘
𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′′) + 𝜆

𝑘𝜌
𝜌 (𝑙𝑙𝑙𝑡 )

}
− 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′′)

)
. (24.208)

By bounding up each term of the marginal gain (24.208) as in (24.206) we get the following:

𝑓𝑡 (𝑆′′ ∪ {(𝑣, 𝑚̄)}) − 𝑓𝑡 (𝑆′′) ≤ 𝑓𝑡 (𝑆′ ∪ {(𝑣, 𝑚̄)}) − 𝑓𝑡 (𝑆′).



198 Chapter — Conclusion

We conclude that 𝑓𝑡 is a submodular set function.
Monotonicity. The function 𝑓𝑡 : 2V×M → R is monotone [177] if for every 𝑆′ ⊂ 𝑆′′ ⊂ V ×M it
holds that

𝑓𝑡 (𝑆′′) ≥ 𝑓𝑡 (𝑆′). (24.209)
We have

𝑓𝑡 (𝑆′′) − 𝑓𝑡 (𝑆′) = 𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′′) −𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′) (24.210)

=
∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

) (
𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′′) − 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥′)

)
(24.211)

≥ 0. (24.212)

The last inequality is obtained using Eq. (24.204). We conclude that 𝑓𝑡 is monotone.

□

Lemma 24.2. The set function 𝐹𝑇 : 2V×M → R in Eq. (24.202) is normalized (i.e., 𝑓𝑇 (∅) = 0),
submodular, and monotone.

Proof.

The set function 𝐹𝑇 is a nonnegative linear combination of submodular and monotone functions 𝑓𝑡
(see Lemma 24.1), then 𝐹𝑇 is also submodular andmonotone [177]. Moreover, each 𝑓𝑡 is normalized,
then it follows that 𝐹𝑇 is normalized.

□

25 Equivalent Expression of the Gain Function

Lemma 25.1. Let us fix the threshold 𝑐 ∈ N∪ {0}, request type 𝜌 ∈ R, model rank 𝑘 ∈ [𝐾𝜌], time slot
𝑡 , load vector 𝑙𝑙𝑙𝑡 and allocation vector 𝑥𝑥𝑥 . For brevity, let us denote 𝑧𝑘

′
𝜌 = 𝑧𝑘

′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥). The following formula

holds:

min
{
𝑐,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌

}
−min

{
𝑐,

𝑘−1∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌

}
= min

{
𝑐 −

𝑘−1∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 , 𝑧

𝑘
𝜌

}
· 1

(
𝑘−1∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 < 𝑐

)
. (25.213)

Proof.

We distinguish two cases:

1. When the 𝑘 − 1 less costly models have at least 𝑐 effective capacity, i.e.,
∑𝑘−1
𝑘 ′=1 𝑧

𝑘 ′
𝜌 ≥ 𝑐 , we

obtain:
𝑘∑︁

𝑘 ′=1
𝑧𝑘
′
𝜌 =

𝑘−1∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 + 𝑧𝑘𝜌 ≥ 𝑐 + 𝑧𝑘𝜌 ≥ 𝑐. (25.214)
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The last inequality is obtained using 𝑧𝑘𝜌 ≥ 0. Therefore, the left term of Eq. (25.213) becomes
𝑐 − 𝑐 = 0, and the indicator function of the right term becomes zero. Hence, Eq. (25.213) is
verified in this case.

2. When
∑𝑘−1
𝑘 ′=1 𝑧

𝑘 ′
𝜌 < 𝑐 , we obtain:

min
{
𝑐,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌

}
−min

{
𝑐,

𝑘−1∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌

}
= min

{
𝑐,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌

}
−
𝑘−1∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 = min

{
𝑐 −

𝑘−1∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 , 𝑧

𝑘
𝜌

}
.

(25.215)

Hence Eq. (25.213) is verified, being the indicator function equal to 1 in this case.

By combining Eq. (25.214) and Eq. (25.215) we obtain Eq. (25.213).

□

Lemma 25.2. The cost function given by Eq. (4.12) can be expressed as:

𝐶 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥) =
∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘𝜌 − 𝛾𝑘+1𝜌

)
min

{
𝑟 𝑡𝜌 ,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥)

}
+ 𝛾𝐾𝜌𝜌 𝑟 𝑡𝜌 . (25.216)

Proof.

The sum
∑𝑘
𝑘 ′=1 𝑧

𝑘 ′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥) for 𝑘 = 𝐾𝜌 surely includes a repository model as it sums all the models

along the path of request type 𝜌 ; thus, we have
∑𝑘
𝑘 ′=1 𝑧

𝑘 ′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥) ≥ 𝑟 𝑡𝜌 (see Eq. (4.9)) and

𝛾
𝐾𝜌
𝜌 min

𝑟 𝑡𝜌 ,
𝐾𝜌∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥)

 = 𝛾
𝐾𝜌
𝜌 𝑟

𝑡
𝜌 . (25.217)

Now we use Lemma 25.1 to express the cost function in Eq. (4.12) as a sum of the difference of
min functions.
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𝐶 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥) =
∑︁
𝜌∈R

𝐾𝜌∑︁
𝑘=1

𝛾𝑘𝜌 ·min
{
𝑟 𝑡𝜌 −

𝑘−1∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥), 𝑧𝑘𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥)

}
· 1

(
𝑘−1∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥) < 𝑟 𝑡𝜌

)
(25.218)

=
∑︁
𝜌∈R

𝐾𝜌∑︁
𝑘=1

𝛾𝑘𝜌

(
min

{
𝑟 𝑡𝜌 ,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥)

}
−min

{
𝑟 𝑡𝜌 ,

𝑘−1∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥)

})
(25.219)

(25.217)
=

∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=1

𝛾𝑘𝜌 min
{
𝑟 𝑡𝜌 ,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥)

}
−

∑︁
𝜌∈R

𝐾𝜌∑︁
𝑘=1

𝛾𝑘𝜌 min
{
𝑟 𝑡𝜌 ,

𝑘−1∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥)

}
+ 𝛾𝐾𝜌𝜌 𝑟 𝑡𝜌

(25.220)

=
∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=1

𝛾𝑘𝜌 min
{
𝑟 𝑡𝜌 ,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥)

}
−

∑︁
𝜌∈R

𝐾𝜌∑︁
𝑘=2

𝛾𝑘𝜌 min
{
𝑟 𝑡𝜌 ,

𝑘−1∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥)

}
+ 𝛾𝐾𝜌𝜌 𝑟 𝑡𝜌

(25.221)

=
∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=1

𝛾𝑘𝜌 min
{
𝑟 𝑡𝜌 ,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥)

}
−

∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=1

𝛾𝑘+1𝜌 min
{
𝑟 𝑡𝜌 ,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥)

}
+ 𝛾𝐾𝜌𝜌 𝑟 𝑡𝜌

(25.222)

=
∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘𝜌 − 𝛾𝑘+1𝜌

)
min

{
𝑟 𝑡𝜌 ,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥)

}
+ 𝛾𝐾𝜌𝜌 𝑟 𝑡𝜌 . (25.223)

□

Proof of Lemma 4.3.1.
Proof.

By using the expression Eq. (25.216) for a generic allocation vector 𝑥𝑥𝑥 and for𝜔𝜔𝜔 , we obtain:

𝐺 (𝑟𝑟𝑟, 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥) = 𝐶 (𝑟𝑟𝑟, 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) −𝐶 (𝑟𝑟𝑟, 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥) (25.224)

=
∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘𝜌 − 𝛾𝑘+1𝜌

)
min

{
𝑟 𝑡𝜌 ,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔)

}
−

∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘𝜌 − 𝛾𝑘+1𝜌

)
min

{
𝑟 𝑡𝜌 ,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥)

}
(25.225)

=
∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘𝜌 − 𝛾𝑘+1𝜌

)
·
{

min
{
𝑟 𝑡𝜌 ,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔)

}
−min

{
𝑟 𝑡𝜌 ,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥)

}}
(25.226)

=
∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

)
·
{

min
{
𝑟 𝑡𝜌 ,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥)

}
−min

{
𝑟 𝑡𝜌 ,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔)

}}
(25.227)

=
∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

) (
𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥) − 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔)

)
. (25.228)
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□
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26 Projection Algorithm

In order to project a fractional allocation𝑦𝑦𝑦′ lying outside the constraint setY to a feasible allocation
𝑦𝑦𝑦, we perform a Bregman projection associated to the global mirror map Φ : D → R, where the
Bregman divergence associated to the mirror map Φ : D → R is given by

𝐷Φ(𝑦𝑦𝑦,𝑦𝑦𝑦′) = Φ(𝑦𝑦𝑦) − Φ(𝑦𝑦𝑦′) − ∇Φ(𝑦𝑦𝑦′)𝑇 (𝑦𝑦𝑦 −𝑦𝑦𝑦′), (26.229)

and the Bregman divergences associated to the mirror maps Φ𝑣 : D𝑣 → R are also given by

𝐷Φ𝑣 (𝑦𝑦𝑦𝑣 ,𝑦𝑦𝑦′𝑣 ) = Φ𝑣 (𝑦𝑦𝑦𝑣 ) − Φ𝑣 (𝑦𝑦𝑦′𝑣 ) − ∇Φ𝑣 (𝑦𝑦𝑦′𝑣 )𝑇 (𝑦𝑦𝑦𝑣 −𝑦𝑦𝑦′𝑣 ). (26.230)

The projection operation yields a constrained minimization problem, i.e.,

𝑦𝑦𝑦 =
∏Φ
Y∩D (𝑦𝑦𝑦′) = argmin

𝑦𝑦𝑦∈Y∩D
𝐷Φ(𝑦𝑦𝑦,𝑦𝑦𝑦′). (26.231)

The global mirror map Φ : D → R is defined as the sum of the weighted negative entropy maps
Φ𝑣 : D𝑣 → R, whereD = RV×M+ is the domain of Φ, and the setD𝑣 = RV+ is the domain of Φ𝑣 for all
𝑣 ∈ V . Thus, it follows that the global Bregman divergence is the sum of the Bregman divergences
local to each node 𝑣 ∈ V , i.e.,

𝐷Φ(𝑦𝑦𝑦,𝑦𝑦𝑦′) =
∑︁
𝑣∈V

𝐷Φ𝑣 (𝑦𝑣 , 𝑦′𝑣 ) (26.232)

where 𝑦𝑦𝑦 ∈ Y =
>

𝑣∈V Y𝑣 , and 𝑦𝑦𝑦𝑣 ∈ Y𝑣 ,∀𝑣 ∈ V . In order to minimize the value 𝐷Φ(𝑦𝑦𝑦,𝑦𝑦𝑦′) for
𝑦𝑦𝑦 ∈ Y ∩ D, we can independently minimize the values 𝐷Φ𝑣 (𝑦𝑣 , 𝑦′𝑣 ) for 𝑦𝑦𝑦𝑣 ∈ Y𝑣 ∩ D𝑣 giving |V|
subproblems; for every 𝑣 ∈ V we perform the following projection

𝑦𝑦𝑦𝑣 =
∏Φ𝑣

Y𝑣∩D𝑣 (𝑦𝑦𝑦′𝑣 ) = argmin
𝑦𝑦𝑦𝑣∈Y𝑣∩D𝑣

𝐷Φ𝑣 (𝑦𝑦𝑦𝑣 ,𝑦𝑦𝑦′𝑣 ) . (26.233)

Theorem 26.1. Algorithm .2 when executed at node 𝑣 ∈ V returns ΠΦ𝑣

Y𝑣∩D𝑣 (𝑦𝑦𝑦′𝑣 ), i.e., the projection of
the vector𝑦𝑦𝑦′𝑣 onto the weighted capped simplexY𝑣 ∩D𝑣 under the weighted negative entropy Φ𝑣 (𝑦𝑦𝑦𝑣 ) =∑
𝑚∈M 𝑠𝑣𝑚𝑦

𝑣
𝑚 log(𝑦𝑣𝑚). The time complexity of the projection is O (|M| log( |M|)).

Proof.

∏Φ𝑣

Y𝑣∩D𝑣 (𝑦𝑦𝑦′𝑣 ) = argmin
𝑦𝑦𝑦𝑣∈Y𝑣∩D𝑣

𝐷Φ𝑣 (𝑦𝑦𝑦𝑣 ,𝑦𝑦𝑦′𝑣 ) (26.234)

= argmin
𝑦𝑦𝑦𝑣∈Y𝑣∩D𝑣

∑︁
𝑚∈M

𝑠𝑣𝑚

(
𝑦𝑣𝑚log

(
𝑦𝑣𝑚

𝑦′𝑣𝑚

)
− 𝑦𝑣𝑚 + 𝑦′𝑣𝑚

)
. (26.235)
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Algorithm .2Weighted negative entropy Bregman projection onto the weighted capped simplex
Require: |M|; 𝑏𝑣 ; 𝑠𝑠𝑠𝑣 ; Sorted𝑦𝑦𝑦′𝑣 where 𝑦′𝑣|M| ≥ · · · ≥ 𝑦

′𝑣
1

1: 𝑦′𝑣|M|+1 ← +∞
2: for 𝑘 ∈ {|M|, |M| − 1, . . . , 1} do

3: 𝑚𝑘 ←
𝑏𝑣−∑ |M |

𝑚=𝑘+1 𝑠
𝑣
𝑚∑𝑘

𝑚=1 𝑠
𝑣
𝑚𝑦
′𝑣
𝑚

4: if 𝑦′𝑣
𝑘
𝑚𝑘 < 1 ≤ 𝑦′𝑣

𝑘+1𝑚𝑘 then ⊲ Appropriate 𝑘 is found
5: for 𝑘′ ∈ {1, 2, . . . , 𝑘} do
6: 𝑦𝑣

𝑘 ′ ←𝑚𝑘𝑦
′𝑣
𝑘 ′ ⊲ Scale the variable’s components

7: end for
8: for 𝑘′ ∈ {𝑘 + 1, 𝑘 + 2, . . . , |M|} do
9: 𝑦𝑣

𝑘 ′ ← 1 ⊲ Cap the variable’s components to 1
10: end for
11: return𝑦𝑦𝑦𝑣 ⊲𝑦𝑦𝑦𝑣 is the result of the projection
12: end if
13: end for

We adapt the negative entropy projection algorithm in [139]. The constraints 𝑦𝑣𝑚 > 0,∀𝑚 ∈ M
are implicitly enforced by the negentropy mirror map Φ𝑣 and 𝐷Φ𝑣 (𝑦𝑦𝑦𝑣 ,𝑦𝑦𝑦′𝑣 ) is convex in 𝑦𝑦𝑦𝑣 . The
Lagrangian function of the above problem:

J (𝑦𝑦𝑦𝑣 , 𝛽, 𝜏) =
∑︁
𝑚∈M

𝑠𝑣𝑚

(
𝑦𝑣𝑚log

(
𝑦𝑣𝑚

𝑦′𝑣𝑚

)
− 𝑦𝑣𝑚 + 𝑦′𝑣𝑚

)
−

∑︁
𝑚∈M

𝛽𝑚
(
1 − 𝑦𝑣𝑚

)
− 𝜏

( ∑︁
𝑚∈M

𝑠𝑣𝑚𝑦
𝑣
𝑚 − 𝑏𝑣

)
. (26.236)

At optimal point𝑦𝑦𝑦𝑣 the following KKT conditions hold:

𝑠𝑣𝑚log(𝑦𝑣𝑚) − 𝑠𝑣𝑚log(𝑦′𝑣𝑚) + 𝛽𝑚 − 𝑠𝑣𝑚𝜏 = 0, (26.237a)
𝑦𝑣𝑚 ≤ 1, (26.237b)
𝛽𝑚 ≥ 0, (26.237c)∑︁

𝑚∈M
𝑠𝑣𝑚𝑦

𝑣
𝑚 = 𝑏𝑣 , (26.237d)

𝛽𝑚 (1 − 𝑦𝑣𝑚) = 0. (26.237e)

Without loss of generality, assume the components of 𝑦𝑦𝑦𝑣 are in non-decreasing order. Let 𝑘 be
the index of the largest component of𝑦𝑦𝑦𝑣 strictly smaller than , i.e.,

𝑦𝑣1 ≤ ... ≤ 𝑦𝑣𝑘 < 𝑦𝑣
𝑘+1 = ... = 𝑦

𝑣
|M| = 1 if𝑘 < |M|, (26.238)

𝑦𝑣1 ≤ 𝑦𝑣2 ≤ ... ≤ 𝑦𝑣|M| < 1 if𝑘 = |M|. (26.239)

The goal here is to identify a valid value for 𝑘 (number of components of𝑦𝑦𝑦𝑣 different from 1) and
𝜏 . For now assume that 𝜏 is known, so a valid 𝑘 ∈ M should satisfy the following:
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• For𝑚𝐿 = 1, ..., 𝑘 , we have from (26.237e) that 𝛽𝑚𝐿
= 0, and then from (26.237a), 𝑠𝑣𝑚𝐿

log(𝑦′𝑣𝑚𝐿
) +

𝑠𝑣𝑚𝐿
𝜏 = 𝑠𝑣𝑚𝐿

log(𝑦𝑣𝑚𝐿
) < 𝑠𝑣𝑚𝐿

log(1) = 0, and can be simplified to

𝑦′𝑣𝑚𝐿
𝑒𝜏 < 1,∀𝑚𝐿 ∈ {1, . . . , 𝑘}. (26.240)

• For𝑚𝑈 = 𝑘 + 1, ..., |M|: as 𝛽𝑚𝑈 ≥ 0 from (26.237c), we get 0 = 𝑠𝑣𝑚𝑈 log(𝑦𝑣𝑚𝑈 ) = 𝑠
𝑣
𝑚𝑈

log(𝑦′𝑣𝑚𝑈 ) −
𝛽𝑚𝑈 + 𝑠𝑣𝑚𝑈 𝜏 ≤ 𝑠

𝑣
𝑚𝑈

log(𝑦′𝑣𝑚𝑈 ) + 𝑠
𝑣
𝑚𝑈
𝜏 , and can be simplified to

𝑦′𝑣𝑚𝑈 𝑒
𝜏 ≥ 1,∀𝑚𝑈 ∈ {𝑘 + 1, · · · , |M|}. (26.241)

Consider Eqs. (26.238) and (26.239), and since for𝑚𝐿 ∈ {1, . . . , 𝑘} we have 𝑦′𝑣𝑚𝐿
𝑒𝜏 = 𝑦𝑣𝑚𝐿

(the order
is preserved), then the conditions in Eq. (26.240) are

𝑦′𝑣1 𝑒
𝜏 ≤ ... ≤ 𝑦′𝑣

𝑘
𝑒𝜏 < 1. (26.242)

If the components of 𝑦𝑦𝑦′𝑣 are ordered in ascending order, then it is enough to check if 𝑦′𝑣
𝑘
𝑒𝜏 < 1

holds for Eq. (26.242) to be true. Moreover, for 𝑚𝑈 ∈ {𝑘 + 1, . . . , |M|}, we have 𝑦𝑣𝑚𝑈 = 1 and
𝑦′𝑣𝑚𝑈 𝑒

𝜏 ≥ 1. Then, by taking 𝑦′𝑣|M|+1 ≜ +∞ (𝑘 can be equal to |M| as in Eq. (26.239)) it is enough to
check with the smallest 𝑦′𝑣𝑚𝑈 to summarize all the conditions in Eq. (26.241). Thus, all the needed
conditions can be further simplified to:

𝑦′𝑣
𝑘
𝑒𝜏 < 1 ≤ 𝑦′𝑣

𝑘+1𝑒
𝜏 .

Note that the r.h.s inequality is ignored when 𝑘 = |M| by construction (𝑦′𝑣|M|+1 = +∞).
Now we established how to verify if a given 𝑘 ∈ M is valid, what remains is to give the expression
of 𝜏 using the knapsack constraint in Eq. (26.237d):

𝑏𝑣 =

|M|∑︁
𝑚=1

𝑠𝑣𝑚𝑦
𝑣
𝑚 =

|M|∑︁
𝑚=𝑘+1

𝑠𝑣𝑚 + 𝑒𝜏
𝑘∑︁

𝑚=1
𝑠𝑣𝑚𝑦
′𝑣
𝑚 .

For a given 𝑘 ∈ M, we define

𝑚𝑘 ≜ 𝑒
𝜏 =

𝑏𝑣 −∑|M|
𝑚=𝑘+1 𝑠

𝑣
𝑚∑𝑘

𝑚=1 𝑠
𝑣
𝑚𝑦
′𝑣
𝑚

. (26.243)

Thus, a valid 𝑘 is the value satisfying the following inequalities (line 7 of Algorithm .2):

𝑦′𝑣
𝑘
𝑚𝑘 < 1 ≤ 𝑦′𝑣

𝑘+1𝑚𝑘 . (26.244)

The appropriate 𝑘 satisfying the KKT conditions is contained inM, and due to the sorting oper-
ation this gives total time complexity of O (|M| log( |M|)) per iteration. In practice, the online
mirror ascent method quickly sets irrelevant items in the fractional allocation vector𝑦𝑦𝑦′𝑣 very close
to 0. Therefore, we can keep track only of items with a fractional value above a threshold 𝜖 > 0 ,
and the size of this subset is practically≪ |M|. Therefore, the projection can be very efficient in
practice.

□
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27 Subgradient Expression

Lemma 27.1. The gain function in Eq. (4.16) has a subgradient 𝑔𝑔𝑔𝑡 at point𝑦𝑦𝑦𝑡 ∈ Y given by

𝑔𝑔𝑔𝑡 =


∑︁
𝜌∈R

𝑙𝑡,𝑣𝜌,𝑚

(
𝛾
𝐾∗𝜌 (𝑦𝑦𝑦𝑡 )
𝜌 −𝐶𝑣𝑝𝑝𝑝,𝑚

)
1

(
𝜅𝜌 (𝑣,𝑚) < 𝐾∗𝜌 (𝑦𝑦𝑦𝑡 )

) (𝑣,𝑚)∈V×M , (27.245)

where 𝐾∗𝜌 (𝑦𝑦𝑦𝑡 ) = min
{
𝑘 ∈ [𝐾𝜌 − 1] :

∑𝑘
𝑘 ′=1 𝑧

𝑘 ′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 ) ≥ 𝑟 𝑡𝜌

}
.

Proof.

The function given by 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 ) = min
{
𝑟 𝑡𝜌 ,

∑𝑘
𝑘 ′=1 𝑧

𝑘 ′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 )

}
is a minimum of two concave dif-

ferentiable functions (a constant, and a linear function). We can characterize its subdifferential
(set of all possible subgradients), using [296, Theorem 8.2], at point𝑦𝑦𝑦𝑡 ∈ Y as

𝜕𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 ) =


{
∇(∑𝑘

𝑘 ′=1 𝑧
𝑘 ′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 ))

}
if 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 ) < 𝑟 𝑡𝜌 ,

conv
({

000,∇(∑𝑘
𝑘 ′=1 𝑧

𝑘 ′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 ))

})
if 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 ) = 𝑟 𝑡𝜌 ,

{000} otherwise ,

(27.246)

where conv ( · ) is the convex hull of a set, and the gradient ∇ is given by ∇( · ) =

[ 𝜕
𝜕𝑦𝑣𝑚
( · )] (𝑣,𝑚)∈V×M . The operator 𝜕

𝜕𝑦𝑣𝑚
( · ) is the partial derivative w.r.t 𝑦𝑣𝑚 (not to be confused

with the subdifferential notation).
We restrict ourselves to the valid subgradient 𝑔̃𝑔𝑔𝑘𝜌,𝑡 ∈ 𝜕𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 ) given by

𝑔̃𝑔𝑔𝑘𝜌,𝑡 =

{
∇(∑𝑘

𝑘 ′=1 𝑧
𝑘 ′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 )) if 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 ) < 𝑟 𝑡𝜌 ,

000, otherwise.
(27.247)

Note that for every (𝑣,𝑚) ∈ V ×M we have

𝜕

𝜕𝑦𝑣𝑚

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 ) =

𝑘∑︁
𝑘 ′=1

𝜕

𝜕𝑦𝑣𝑚
𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 )

(4.11)
= 𝑙𝑡,𝑣𝜌,𝑚 · 1

(
𝜅𝜌 (𝑣,𝑚) ≤ 𝑘

)
.

The indicator variable 1
(
𝜅𝜌 (𝑣,𝑚) ≤ 𝑘

)
is introduced since the partial derivative of

∑𝑘
𝑘 ′=1 𝑧

𝑘 ′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 )

w.r.t. 𝑦𝑣𝑚 is non-zero only if model 𝑚 at node 𝑣 is among the 𝑘 best models to serve requests of
type 𝜌 (in this case, the variable 𝑦𝑣𝑚 appears once in the summation).
We obtain from Eq. (27.247)

𝑔
𝑘,𝑣
𝜌,𝑡,𝑚 =

{
𝑙
𝑡,𝑣
𝜌,𝑚 · 1

(
𝜅𝜌 (𝑣,𝑚) ≤ 𝑘

)
if 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 ) < 𝑟 𝑡𝜌 ,

0 otherwise.
(27.248)

= 𝑙𝑡,𝑣𝜌,𝑚 · 1
(
𝜅𝜌 (𝑣,𝑚) ≤ 𝑘 ∧ 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 ) < 𝑟 𝑡𝜌

)
,∀(𝑣,𝑚) ∈ V ×M . (27.249)
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By considering the subdifferential

𝜕𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 ) = 𝜕 ©­«
∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

) (
𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) − 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔)

)ª®¬ , (27.250)

and using [297, Theorem 23.6], we get

𝜕𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 ) =
∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=1

𝜕

((
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

) (
𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) − 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔)

))
. (27.251)

The constant factors
(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

)
are non-negative, so we can multiply both sides of the subgradi-

ent inequality by a non-negative constant [297, Section 23]; furthermore, the subgradient of the
constants 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) is 000. We get

𝜕𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 ) =
∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

)
𝜕

(
𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) − 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔)

)
(27.252)

=
∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

)
𝜕𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦). (27.253)

Then, a subgradient 𝑔𝑔𝑔𝑡 ∈ 𝜕𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 ) at point𝑦𝑦𝑦𝑡 ∈ Y is given by

𝑔𝑔𝑔𝑡 =
∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

)
𝑔̃𝑔𝑔𝑘𝜌,𝑡 . (27.254)
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The (𝑣,𝑚)-th component of the subgradient 𝑔𝑔𝑔𝑡 is

𝑔𝑣𝑡,𝑚 =
∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

)
· 𝑔𝑘,𝑣𝜌,𝑡,𝑚 (27.255)

=
∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=1

𝑙𝑡,𝑣𝜌,𝑚

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

)
· 1

(
𝜅𝜌 (𝑣,𝑚) ≤ 𝑘 ∧ 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 ) < 𝑟 𝑡𝜌

)
(27.256)

=
∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=𝜅𝜌 (𝑣,𝑚)

𝑙𝑡,𝑣𝜌,𝑚

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

)
· 1

(
𝑘∑︁

𝑘 ′=1
𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 ) < 𝑟 𝑡𝜌

)
(27.257)

=
∑︁
𝜌∈R

𝐾∗𝜌 (𝑦𝑦𝑦𝑡 )−1∑︁
𝑘=𝜅𝜌 (𝑣,𝑚)

𝑙𝑡,𝑣𝜌,𝑚

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

)
(27.258)

=
∑︁
𝜌∈R

𝑙𝑡,𝑣𝜌,𝑚 ·
𝐾∗𝜌 (𝑦𝑦𝑦𝑡 )−1∑︁
𝑘=𝜅𝜌 (𝑣,𝑚)

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

)
(27.259)

=
∑︁
𝜌∈R

𝑙𝑡,𝑣𝜌,𝑚

(
𝛾
𝐾∗𝜌 (𝑦𝑦𝑦𝑡 )
𝜌 − 𝛾𝜅𝜌 (𝑣,𝑚)𝜌

)
· 1

(
𝜅𝜌 (𝑣,𝑚) < 𝐾∗𝜌 (𝑦𝑦𝑦𝑡 )

)
(27.260)

(4.11)
=

∑︁
𝜌∈R

𝑙𝑡,𝑣𝜌,𝑚

(
𝛾
𝐾∗𝜌 (𝑦𝑦𝑦𝑡 )
𝜌 −𝐶𝑣𝑝𝑝𝑝,𝑚

)
· 1

(
𝜅𝜌 (𝑣,𝑚) < 𝐾∗𝜌 (𝑦𝑦𝑦𝑡 )

)
,∀(𝑣,𝑚) ∈ V ×M, (27.261)

where 𝐾∗𝜌 (𝑦𝑦𝑦𝑡 ) = min
{
𝑘 ∈ [𝐾𝜌 − 1] :

∑𝑘
𝑘 ′=1 𝑧

𝑘 ′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 ) ≥ 𝑟 𝑡𝜌

}
.

□

28 Supporting Lemmas for the Proof of Theorem 4.5.1

28.1 Concavity of the Gain Function
Lemma 28.1. The gain function given by Eq. (4.16) is concave over its domainY of possible fractional
allocations.

Proof.

Since 𝜆𝑘𝜌 is defined to be the 𝑘-th smallest cost for any 𝑘 ∈ [𝐾𝜌] (see Eq. (4.11)), then the factors
𝛾𝑘+1𝜌 −𝛾𝑘𝜌 are always non-negative. Moreover 𝑧𝑘𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) = 𝑦𝑣𝑚𝑙𝑡,𝑣𝜌,𝑚 , where 𝑣,𝑚 are such that 𝜅𝜌 (𝑣,𝑚) =
𝑘 . Therefore, 𝑍𝑘𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) is the minimum between a constant 𝑟 𝑡𝜌 and a sum

∑𝑘
𝑘 ′=1 𝑧

𝑘 ′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥) of linear

functions of𝑦𝑦𝑦. Such minimum is thus a concave function of𝑦𝑦𝑦. Therefore, the gain in Eq. (4.16) is
a weighted sum with positive weights of concave functions in𝑦𝑦𝑦, which is concave.

□
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28.2 Strong convexity of the Mirror Map
Lemma 28.2. The global mirror map Φ(𝑦𝑦𝑦) = ∑

𝑣∈V Φ(𝑦𝑦𝑦𝑣 ) = ∑
𝑣∈V

∑
𝑚∈M 𝑠𝑣𝑚𝑦

𝑣
𝑚 log(𝑦𝑣𝑚) defined over

the domain D = R
|M|×|V|
>0 is 𝜃 -strongly convex w.r.t. the norm ∥ · ∥𝑙1 (𝑠𝑠𝑠) over Y ∩ D, where

𝜃 ≜
1

𝑠max |V||M|
, (28.262)

∥𝑦𝑦𝑦∥𝑙1 (𝑠𝑠𝑠) ≜
∑︁

(𝑣,𝑚)∈V×M
𝑠𝑣𝑚 |𝑦𝑣𝑚 | (weighted 𝑙1 norm), (28.263)

and 𝑠max ≜
{
𝑠𝑣𝑚 : (𝑣,𝑚) ∈ V ×M

}
is the maximum model size. In words, this means that the mirror

map Φ’s growth is lower bounded by a quadratic with curvature 1
𝑠max |V||M| .

Proof.

We extend the proof of the strong convexity of the negative entropy w.r.t. to the 𝑙1 norm over the
simplex given in [298, Lemma 16]. The map Φ(𝑦𝑦𝑦) is differentiable overY ∩D, so a sufficient (and
also necessary) condition for Φ(𝑦𝑦𝑦) to be 𝜃 -strongly convex w.r.t. ∥ · ∥𝑙1 (𝑠𝑠𝑠) is:

(∇Φ(𝑦′𝑦′𝑦′) − ∇Φ(𝑦𝑦𝑦))𝑇 (𝑦′𝑦′𝑦′ −𝑦𝑦𝑦) ≥ 𝜃


𝑦′𝑦′𝑦′ −𝑦𝑦𝑦

2

𝑙1 (𝑠𝑠𝑠) , ∀𝑦
′𝑦′𝑦′,𝑦𝑦𝑦 ∈ Y ∩ D . (28.264)

We have

(∇Φ(𝑦′𝑦′𝑦′) − ∇Φ(𝑦𝑦𝑦))𝑇 (𝑦′𝑦′𝑦′ −𝑦𝑦𝑦) =
∑︁

(𝑣,𝑚)∈V×M
𝑠𝑣𝑚 (log(𝑦′𝑣𝑚) − log(𝑦𝑣𝑚)) (𝑦′

𝑣
𝑚 − 𝑦𝑣𝑚). (28.265)

Take 𝜇𝑣𝑚 ≜ 𝑠𝑣𝑚 (log(𝑦′𝑣𝑚) − log(𝑦𝑣𝑚)) (𝑦′𝑣𝑚 − 𝑦𝑣𝑚), and note that 𝜇𝑣𝑚 ≥ 0 (because log is an increasing
function).



𝑦′𝑦′𝑦′ −𝑦𝑦𝑦

2
𝑙1 (𝑠𝑠𝑠) =

©­«
∑︁

(𝑣,𝑚)∈V×M
𝑠𝑣𝑚 |𝑦′

𝑣
𝑚 − 𝑦𝑣𝑚 |

ª®¬
2

=
©­«

∑︁
(𝑣,𝑚)∈V×M:𝜇𝑣𝑚≠0

√︁
𝜇𝑣𝑚
𝑠𝑣𝑚 |𝑦′𝑣𝑚 − 𝑦𝑣𝑚 |√︁

𝜇𝑣𝑚

ª®¬
2

≤ ©­«
∑︁

(𝑣,𝑚)∈V×M:𝜇𝑣𝑚≠0
𝜇𝑣𝑚

ª®¬ ©­«
∑︁

(𝑣,𝑚)∈V×M:𝜇𝑣𝑚≠0
(𝑠𝑣𝑚)2

(𝑦′𝑣𝑚 − 𝑦𝑣𝑚)2

𝜇𝑣𝑚

ª®¬
=

©­«
∑︁

(𝑣,𝑚)∈V×M:𝜇𝑣𝑚≠0
𝑠𝑣𝑚 (log(𝑦′𝑣𝑚)− log(𝑦𝑣𝑚)) (𝑦′

𝑣
𝑚−𝑦𝑣𝑚)

ª®¬ ©­«
∑︁

(𝑣,𝑚)∈V×M:𝜇𝑣𝑚≠0
𝑠𝑣𝑚

𝑦′𝑣𝑚 − 𝑦𝑣𝑚
log(𝑦′𝑣𝑚) − log(𝑦𝑣𝑚)

ª®¬ .
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The inequality is obtained using Cauchy–Schwarz inequality. Take 𝑠𝑣𝑚 ≤ 𝑠max,∀(𝑣,𝑚) ∈ V ×M,
we obtain: ∑︁

(𝑣,𝑚)∈V×M:𝜇𝑣𝑚≠0
𝑠𝑣𝑚

𝑦′𝑣𝑚 − 𝑦𝑣𝑚
log(𝑦′𝑣𝑚) − log(𝑦𝑣𝑚)

≤ 𝑠max
∑︁

(𝑣,𝑚)∈V×M:𝜇𝑣𝑚≠0

𝑦′𝑣𝑚 − 𝑦𝑣𝑚
log(𝑦′𝑣𝑚) − log(𝑦𝑣𝑚)

= 𝑠max
∑︁
𝑣∈V

∑︁
𝑚∈M:𝜇𝑣𝑚≠0

𝑦′𝑣𝑚 − 𝑦𝑣𝑚
log(𝑦′𝑣𝑚) − log(𝑦𝑣𝑚)

≤ 𝑠max
∑︁
𝑣∈V

∑︁
𝑚∈M

𝑦′𝑣𝑚 + 𝑦𝑣𝑚
2

≤ 𝑠max |V||M|.

The second inequality is shown in [298, Eq. (A.16)]. We find that ∀𝑦′𝑦′𝑦′,𝑦𝑦𝑦 ∈ Y ∩ D:

1
𝑠max |V|𝑈



𝑦′𝑦′𝑦′ −𝑦𝑦𝑦

2
𝑙1 (𝑠𝑠𝑠) ≤

∑︁
(𝑣,𝑚)∈V×M:𝜇𝑣𝑚≠0

𝑠𝑣𝑚
𝑣 (log(𝑦′𝑣𝑚) − log(𝑦𝑣𝑚)) (𝑦′

𝑣
𝑚 − 𝑦𝑣𝑚) (28.266)

= (∇Φ(𝑦′𝑦′𝑦′) − ∇Φ(𝑦𝑦𝑦))𝑇 (𝑦′𝑦′𝑦′ −𝑦𝑦𝑦). (28.267)

The strong convexity constant 𝜃 is 1
𝑠max |V||M| .

□

28.3 Subgradient Bound
Lemma 28.3. For any (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ) ∈ A, the subgradients 𝑔𝑔𝑔𝑡 of the gain function in Eq. (4.16) at
point 𝑦𝑦𝑦𝑡 ∈ Y are bounded under the norm ∥ · ∥𝑙∞ ( 1

𝑠𝑠𝑠
) by 𝜎 =

𝑅𝐿maxΔ𝐶
𝑠min

, where 𝑠min ≜ min{𝑠𝑣𝑚 :
∀(𝑣,𝑚) ∈ V × M}, 𝐿max ≜ max{𝐿𝑣𝑚 : ∀(𝑣,𝑚) ∈ V × M}, 𝑅 = |R |, and Δ𝐶 ≜

max
{(∑

𝑚∈M 𝜔
𝜈 (𝑝𝑝𝑝)
𝑚′ 𝐶

𝜈 (𝑝𝑝𝑝)
𝑝𝑝𝑝,𝑚′

)
−𝐶𝑣𝑝𝑝𝑝,𝑚 : ∀(𝑖, 𝑝𝑝𝑝) ∈ R, (𝑣,𝑚) ∈ 𝑝𝑝𝑝 ×M

}
is the maximum serving cost differ-

ence between serving at a repository node 𝜈 (𝑝𝑝𝑝) and at any other node 𝑣 ∈ 𝑝𝑝𝑝 . The norm ∥ · ∥𝑙∞ ( 1
𝑠𝑠𝑠
) is

defined as

∥𝑦𝑦𝑦∥𝑙∞ ( 1
𝑠𝑠𝑠
) ≜ max

{
|𝑦𝑣𝑚 |
𝑠𝑣𝑚

: (𝑣,𝑚) ∈ V ×M
}
. (28.268)

Proof.
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We have for any 𝑡 ∈ [𝑇 ]

∥𝑔𝑔𝑔𝑡 ∥𝑙∞ ( 1
𝑠𝑠𝑠
) = max

{ |𝑔𝑣𝑡,𝑚 |
𝑠𝑣𝑚

,∀(𝑣,𝑚) ∈ V ×M
}
≤ max

{ |𝑔𝑣𝑡,𝑚 |
𝑠min

,∀(𝑣,𝑚) ∈ V ×M
}

(28.269)

(4.18)
≤ 𝐿max

𝑠min
max


∑︁
𝜌∈R

(
𝛾
𝐾∗𝜌 (𝑦𝑦𝑦𝑡 )
𝜌 −𝐶𝑣𝑝𝑝𝑝,𝑚

)
· 1

(
𝜅𝜌 (𝑣,𝑚) < 𝐾∗𝜌 (𝑦𝑦𝑦𝑡 )

)
,∀(𝑣,𝑚) ∈ V ×M


(28.270)

(4.11)
≤ 𝐿max𝑅

𝑠min
max{𝛾𝐾𝜌𝜌 − 𝛾1

𝜌 ,∀𝜌 ∈ R} ≤
𝐿max𝑅Δ𝐶
𝑠min

= 𝜎. (28.271)

□

28.4 Dual Norm
Lemma 28.4. ∥ · ∥𝑙∞ ( 1

𝑠𝑠𝑠
) is the dual norm of ∥ · ∥𝑙1 (𝑠𝑠𝑠) defined in (28.268) and (28.263), respectively.

Proof.

The dual norm ∥ · ∥∗ of ∥ · ∥𝑙1 (𝑠𝑠𝑠) is defined as (e.g., [53])

∥𝑧𝑧𝑧∥∗ ≜ sup
𝑦𝑦𝑦∈RV×M

{
𝑧𝑧𝑧𝑇𝑦𝑦𝑦 : ∥𝑦𝑦𝑦∥𝑙1 (𝑠𝑠𝑠) ≤ 1

}
,∀𝑧𝑧𝑧 ∈ RV×M . (28.272)

We thus need to show that ∥𝑧𝑧𝑧∥𝑙∞ ( 1
𝑠𝑠𝑠
) = sup𝑦𝑦𝑦∈RV×M

{
𝑧𝑧𝑧𝑇𝑦𝑦𝑦 : ∥𝑦𝑦𝑦∥𝑙1 (𝑠𝑠𝑠) ≤ 1

}
,∀𝑧𝑧𝑧 ∈ RV×M .

Consider any two vectors𝑦𝑦𝑦 and 𝑧𝑧𝑧 in RV×M . We have

𝑧𝑧𝑧𝑇𝑦𝑦𝑦 =
∑︁

(𝑣,𝑚)∈V×M
𝑦𝑣𝑚𝑧

𝑣
𝑚 =

∑︁
(𝑣,𝑚)∈V×M

(𝑠𝑣𝑚𝑦𝑣𝑚)
(
𝑧𝑣𝑚

𝑠𝑣𝑚

)
≤

∑︁
(𝑣,𝑚)∈V×M

(𝑠𝑣𝑚 · |𝑦𝑣𝑚 |)
(
|𝑧𝑣𝑚 |
𝑠𝑣𝑚

)
(28.273)

≤
(∑
(𝑣,𝑚)∈V×M 𝑠𝑣𝑚 |𝑦𝑣𝑚 |

)
max

{
|𝑧𝑣𝑚 |
𝑠𝑣𝑚

: (𝑣,𝑚) ∈ V ×M
}
= ∥𝑦𝑦𝑦∥𝑙1 (𝑠𝑠𝑠) ∥𝑧𝑧𝑧∥𝑙∞ ( 1

𝑠𝑠𝑠
) . (28.274)

Observe that

𝑦𝑦𝑦𝑇𝑧𝑧𝑧 ≤ ∥𝑧𝑧𝑧∥𝑙∞ ( 1
𝑠𝑠𝑠
) , ∀𝑦𝑦𝑦 : ∥𝑦𝑦𝑦∥𝑙1 (𝑠𝑠𝑠) ≤ 1. (28.275)

Let (𝑣∗,𝑚∗) = arg max
(𝑣,𝑚) ∈V×M

{
|𝑧𝑣𝑚 |
𝑠𝑣𝑚

}
. The equality is achieved in (28.275) when 𝑦𝑦𝑦∗ =[

sign(𝑧𝑣𝑚)
𝑠𝑣𝑚

1 ((𝑣,𝑚) = (𝑣∗,𝑚∗))
]
(𝑣,𝑚)∈V×M

. Note that ∥𝑦𝑦𝑦∗∥𝑙1 (𝑠𝑠𝑠) = 1 ≤ 1, then the supremum
in (28.272) is attained for 𝑦𝑦𝑦 = 𝑦𝑦𝑦∗ and has value ∥𝑧𝑧𝑧∥𝑙∞ ( 1

𝑠𝑠𝑠
) ; therefore, ∥ · ∥𝑙∞ ( 1

𝑠𝑠𝑠
) is the dual norm

of ∥ · ∥𝑙1 (𝑠𝑠𝑠) .

□
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28.5 Bregman Divergence Bound
Lemma 28.5. The value of the Bregman divergence𝐷Φ(𝑦𝑦𝑦,𝑦𝑦𝑦1) in Eq. (26.229) associated with the mirror
map Φ(𝑦𝑦𝑦) = ∑

𝑣∈V Φ𝑣 (𝑦𝑦𝑦𝑣 ) = ∑
𝑣∈V

∑
𝑚∈M 𝑠𝑣𝑚𝑦

𝑣
𝑚 log(𝑦𝑣𝑚) is upper bounded by a constant

𝐷max ≜
∑︁
𝑣∈V

min{𝑏𝑣 , ∥𝑠𝑠𝑠𝑣 ∥1} log
(

∥𝑠𝑠𝑠𝑣 ∥1
min{𝑏𝑣 , ∥𝑠𝑠𝑠𝑣 ∥1}

)
≥ 𝐷Φ(𝑦𝑦𝑦,𝑦𝑦𝑦1) . (28.276)

where 𝑦𝑣1,𝑚 =
min{𝑏𝑣,∥𝑠𝑠𝑠𝑣 ∥1}
∥𝑠𝑠𝑠𝑣 ∥1 ,∀(𝑣,𝑚) ∈ V ×M and 𝑠𝑠𝑠𝑣 = [𝑠𝑣𝑚]𝑚∈M for every 𝑣 ∈ V .

Proof.

We prove that 𝑦𝑦𝑦𝑣1 is the minimizer of Φ𝑣 over Y𝑣 . As Φ𝑣 is convex over Y𝑣 and differentiable in
𝑦𝑦𝑦𝑣1, 𝑦𝑦𝑦𝑣1 is a minimizer if and only if ∇Φ𝑣 (𝑦𝑦𝑦𝑣1)

𝑇 (𝑦𝑦𝑦𝑣1 − 𝑦𝑦𝑦) ≤ 0,∀𝑦𝑦𝑦𝑣 ∈ Y𝑣 [53, Proposition 1.3] (first
order optimality condition). Note that from the definition of Y𝑣 (see Section 4.4) we have for any
𝑦𝑦𝑦𝑣 ∈ Y𝑣 ∑︁

𝑚∈M
𝑠𝑣𝑚𝑦

𝑣
𝑚 = min{𝑏𝑣 , ∥𝑠𝑠𝑠𝑣 ∥1}. (28.277)

Let 𝑐 = min{𝑏𝑣,∥𝑠𝑠𝑠𝑣 ∥1}
∥𝑠𝑠𝑠𝑣 ∥1 , we get

∇Φ𝑣 (𝑦𝑦𝑦𝑣1)
𝑇 (𝑦𝑦𝑦𝑣1 −𝑦𝑦𝑦) =

∑︁
𝑚∈M

𝑠𝑣𝑚 (log(𝑐) + 1) (𝑐 − 𝑦𝑣𝑚) = (log(𝑐) + 1) (𝑐 ∥𝑠𝑠𝑠𝑣 ∥1 −
∑︁
𝑚∈M

𝑠𝑣𝑚𝑦
𝑣
𝑚) (28.278)

(28.277)
= (log(𝑐) + 1)

(
𝑐 ∥𝑠𝑠𝑠𝑣 ∥1 −

∑︁
𝑚∈M

𝑠𝑣𝑚𝑦
𝑣
𝑚

)
(28.279)

= (log(𝑐) + 1) (min{𝑏𝑣 , ∥𝑠𝑠𝑠𝑣 ∥1} −min{𝑏𝑣 , ∥𝑠𝑠𝑠𝑣 ∥1}) (28.280)
= 0. (28.281)

We confirmed that𝑦𝑦𝑦𝑣1 is a minimizer of Φ𝑣 over Y𝑣 . We have Φ𝑣 (𝑦𝑦𝑦𝑣 ) ≤ 0,∀𝑦𝑦𝑦𝑣 ∈ Y𝑣 , and using the
first order optimality condition we obtain

𝐷Φ𝑣 (𝑦𝑦𝑦𝑣 ,𝑦𝑦𝑦𝑣1)
(26.230)
= Φ𝑣 (𝑦𝑦𝑦𝑣 ) − Φ𝑣 (𝑦𝑦𝑦𝑣1) + ∇Φ𝑣 (𝑦𝑦𝑦𝑣1)

𝑇 (𝑦𝑦𝑦𝑣1 −𝑦𝑦𝑦𝑣 ) ≤ Φ𝑣 (𝑦𝑦𝑦𝑣 ) − Φ𝑣 (𝑦𝑦𝑦𝑣1) ≤ −Φ𝑣 (𝑦𝑦𝑦𝑣1) (28.282)

= min{𝑏𝑣 , ∥𝑠𝑠𝑠𝑣 ∥1} log
(

∥𝑠𝑠𝑠𝑣 ∥1
min{𝑏𝑣 , ∥𝑠𝑠𝑠𝑣 ∥1}

)
. (28.283)

Thus, we obtain∑︁
𝑣∈V

𝐷Φ𝑣 (𝑦𝑦𝑦𝑣 ,𝑦𝑦𝑦𝑣1)
(26.232)
= 𝐷Φ(𝑦𝑦𝑦,𝑦𝑦𝑦1) ≤

∑︁
𝑣∈V

min{𝑏𝑣 , ∥𝑠𝑠𝑠𝑣 ∥1} log
(

∥𝑠𝑠𝑠𝑣 ∥1
min{𝑏𝑣 , ∥𝑠𝑠𝑠𝑣 ∥1}

)
. (28.284)

□
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28.6 Bounds on the Gain Function
Upper and lower bounds on the gain function in Eq. (4.16) will be established using the following
bounding function

Λ(𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) ≜
∑︁

𝜌∈supp𝑟𝑟𝑟 𝑡

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

)
𝑟 𝑡𝜌

(
1 −

𝑘∏
𝑘 ′=1

(
1 − 𝑧𝑘 ′𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦)/𝑟 𝑡𝜌

))
1

(
𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) = 0

)
,∀𝑦𝑦𝑦 ∈ X ∪ Y,

(28.285)

where

supp𝑟𝑟𝑟 𝑡 ≜
{
𝜌 ∈ R : 𝑟 𝑡𝜌 ≠ 0

}
(28.286)

is the set of request types for which there is a non-zero number of requests in the request batch 𝑟𝑟𝑟 𝑡 .

Lemma 28.6. The gain function in Eq. (4.16) can be equivalently expressed as

𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) =
∑︁

𝜌∈supp𝑟𝑟𝑟 𝑡

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

)
min

{
𝑟 𝑡𝜌 ,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦)

}
1

(
𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) = 0

)
,∀𝑦𝑦𝑦 ∈ X ∪ Y .

(28.287)

Proof.

Remember from the definition in Eq. (4.15) that𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) = min
{
𝑟 𝑡𝜌 ,

∑𝑘
𝑘 ′=1 𝑧

𝑘 ′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦)

}
. We observe

that 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) is not a function of𝑦𝑦𝑦 and it is equal to 0, when there is no repository with model’s
rank smaller or equal to 𝑘 , and to 𝑟 𝑡𝜌 , otherwise; therefore, 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) ∈ {0, 𝑟 𝑡𝜌}.
When 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) ≠ 0, and thus 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) = 𝑟 𝑡𝜌 , the following holds

𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) − 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) = min
{
𝑟 𝑡𝜌 ,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦)

}
− 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) (28.288)

= min
{

0,
𝑘∑︁

𝑘 ′=1
𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) − 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔)

}
= 0. (28.289)

The last equality holds because
∑𝑘
𝑘 ′=1 𝑧

𝑘 ′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) − 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) ≥ 0,∀𝑦𝑦𝑦 ∈ X ∪ Y from Eq. (4.3).

Otherwise, when 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) = 0, we have 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) − 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) = 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦)
(4.15)
=

min
{
𝑟 𝑡𝜌 ,

∑𝑘
𝑘 ′=1 𝑧

𝑘 ′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦)

}
.

Hence, we can succinctly write, for any value of 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔), that

𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) − 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) = min
{
𝑟 𝑡𝜌 ,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦)

}
1

(
𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) = 0

)
. (28.290)
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Since
∑𝑘
𝑘 ′=1 𝑧

𝑘 ′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) is non negative, the previous formula implies that

𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) − 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) = 0, if 𝑟 𝑡𝜌 = 0. (28.291)

By combining Eq. (28.290) and (28.291) that

𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) − 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) = min
{
𝑟 𝑡𝜌 ,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦)

}
1

(
𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) = 0 ∧ 𝑟 𝑡𝜌 ≠ 0

)
. (28.292)

Hence, applying the above equalities on the gain expression we get

𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦)
(4.16)
=

∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

) (
𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) − 𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔)

)
(28.293)

(28.292)
=

∑︁
𝜌∈R

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

)
min

{
𝑟 𝑡𝜌 ,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦)

}
1

(
𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) = 0 ∧ 𝑟 𝑡𝜌 ≠ 0

)
(28.294)

(28.286)
=

∑︁
𝜌∈supp𝑟𝑟𝑟 𝑡

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

)
min

{
𝑟 𝑡𝜌 ,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦)

}
1

(
𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) = 0

)
. (28.295)

□

Lemma 28.7. Consider 𝑛 ∈ N, 𝑦𝑦𝑦 ∈ [0, 1]𝑛 , 𝑞𝑞𝑞 ∈ N𝑛 , and 𝑐 ∈ N. We assume that 𝑞𝑖 ≤ 𝑐,∀𝑖 ∈ [𝑛]. The
following holds

min
𝑐,

∑︁
𝑖∈[𝑛]

𝑦𝑖𝑞𝑖

 ≥ 𝑐 − 𝑐
∏
𝑖∈[𝑛]
(1 − 𝑦𝑖𝑞𝑖/𝑐). (28.296)

Proof.

We define 𝑎𝑛 ≜ 𝑐 − 𝑐
∏
𝑖∈[𝑛] (1 − 𝑦𝑖𝑞𝑖/𝑐) and 𝑏𝑛 ≜ min

{
𝑐,

∑
𝑖∈[𝑛] 𝑦𝑖𝑞𝑖

}
.

We first show by induction that, if 𝑎𝑛 ≤ 𝑏𝑛 , then this inequality holds also for 𝑛 + 1.
Base case (𝑛 = 1).

𝑎1 = 𝑐 − 𝑐 + 𝑦1𝑞1 = 𝑦1𝑞1 = min{𝑐, 𝑞1𝑦1} = 𝑏1. (28.297)

Induction step.
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𝑎𝑛+1 = 𝑐 − 𝑐
∏

𝑖∈[𝑛+1]
(1 − 𝑦𝑖𝑞𝑖/𝑐) (28.298)

= 𝑐 − 𝑐
∏
𝑖∈[𝑛]
(1 − 𝑦𝑖𝑞𝑖/𝑐) (1 − 𝑦𝑛+1𝑞𝑛+1/𝑐) (28.299)

= 𝑐 − 𝑐
∏
𝑖∈[𝑛]
(1 − 𝑦𝑖𝑞𝑖/𝑐) + (𝑐𝑦𝑛+1𝑞𝑛+1/𝑐)

∏
𝑖∈[𝑛]
(1 − 𝑦𝑖𝑞𝑖/𝑐) (28.300)

= 𝑎𝑛 + 𝑦𝑛+1𝑞𝑛+1
∏
𝑖∈[𝑛]
(1 − 𝑦𝑖𝑞𝑖/𝑐) (28.301)

≤ 𝑎𝑛 + 𝑦𝑛+1𝑞𝑛+1. (28.302)

The last inequality holds since by construction 𝑞𝑖 ≤ 𝑐 and thus 0 ≤ 𝑦𝑖𝑞𝑖/𝑐 ≤ 1, and 0 ≤∏
𝑖∈[𝑛] (1 − 𝑦𝑖𝑞𝑖/𝑐) ≤ 1. For the same reason, 0 ≤ ∏

𝑖∈[𝑛+1] (1 − 𝑦𝑖𝑞𝑖/𝑐) ≤ 1 and thus, by (28.298),
we have 𝑎𝑛+1 ≤ 𝑐 . Moreover, note that if 𝑏𝑛 = 𝑐 then 𝑏𝑛+1 = 𝑐 . Therefore:

𝑎𝑛+1 ≤ min {𝑐, 𝑎𝑛 + 𝑦𝑛+1𝑞𝑛+1} ≤ min {𝑐, 𝑏𝑛 + 𝑦𝑛+1𝑞𝑛+1} (28.303)

=

{
min

{
𝑐,

∑𝑛+1
𝑖=1 𝑦𝑖𝑞𝑖

}
= 𝑏𝑛+1, if 𝑏𝑛 ≤ 𝑐,

min {𝑐, 𝑐 + 𝑦𝑛+1𝑞𝑛+1} = 𝑐 = 𝑏𝑛+1, if 𝑏𝑛 = 𝑐,
(28.304)

and the proof by induction is completed.

□

Lemma 28.8. Consider 𝑦𝑦𝑦 ∈ [0, 1]𝑛 , 𝑞𝑞𝑞 ∈ N𝑛 , 𝑐 ∈ N and 𝑛 ∈ N. We assume that 𝑞𝑖 ≤ 𝑐,∀𝑖 ∈ [𝑛]. The
following holds

𝑐 − 𝑐
∏
𝑖∈[𝑛]
(1 − 𝑦𝑖𝑞𝑖/𝑐) ≥ (1 − 1/𝑒)min

𝑐,
∑︁
𝑖∈[𝑛]

𝑦𝑖𝑞𝑖

 . (28.305)

Proof.

Our proof follows the same lines of the proof of [299, Lemma 3.1]. We use the arithmetic/geometric
mean inequality [300] on the non-negative variables 1 − 𝑦𝑖𝑞𝑖/𝑐, 𝑖 ∈ [𝑛] to obtain:

1
𝑛

∑︁
𝑖∈[𝑛]
(1 − 𝑦𝑖𝑞𝑖/𝑐) ≥ ©­«

∏
𝑖∈[𝑛]
(1 − 𝑦𝑖𝑞𝑖/𝑐)ª®¬

1
𝑛

. (28.306)
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We reformulate the above as:

1 −
∏
𝑖∈[𝑛]
(1 − 𝑦𝑖𝑞𝑖/𝑐) ≥ 1 − ©­«1

𝑛

∑︁
𝑖∈[𝑛]
(1 − 𝑦𝑖𝑞𝑖/𝑐)ª®¬

𝑛

= 1 − ©­«1 − 1
𝑛

∑︁
𝑖∈[𝑛]

𝑦𝑖𝑞𝑖/𝑐ª®¬
𝑛

(28.307)

≥ 1 − ©­«1 − 1
𝑛

min
1,

∑︁
𝑖∈[𝑛]

𝑦𝑖𝑞𝑖/𝑐
ª®¬

𝑛

. (28.308)

To obtain the last inequality, consider that, for any number 𝑧, we have 𝑧 ≥ min{1, 𝑧}, and thus∑
𝑖∈[𝑛] 𝑦𝑖𝑞𝑖/𝑐 ≥ min

{
1,

∑
𝑖∈[𝑛] 𝑦𝑖𝑞𝑖/𝑐

}
.

The function 𝑓 (𝑧) = 1 − (1 − 𝑧/𝑛)𝑛 is concave for 𝑧 ∈ [0, 1], then, for 𝑧 ∈ [0, 1], 𝑓 (𝑧) ≥ 𝑓 (0) +
𝑧
𝑓 (1)−𝑓 (0)

1−0 = 𝑧𝑓 (1), as 𝑓 (0) = 0. Setting 𝑧 = min
{
1,

∑
𝑖∈[𝑛] 𝑦𝑖𝑞𝑖/𝑐

}
, we obtain the following:

1 −
∏
𝑖∈[𝑛]
(1 − 𝑦𝑖𝑞𝑖/𝑐)

(28.308)
≥ 1 −

(
1 − 1

𝑛
𝑧

)𝑛
≥ (1 − (1 − 1/𝑛)𝑛) 𝑧 ≥ (1 − 1/𝑒)𝑧. (28.309)

The last inequality is obtained since 1 − (1 − 1/𝑛)𝑛 decreases in 𝑛, and it is lower bounded by
1− 1/𝑒 . By multiplying both sides of the above inequality by 𝑐 ∈ N, and replacing 𝑧 with its value
we conclude the proof.

□

Lemma 28.9. for any request batch 𝑟𝑟𝑟 𝑡 and potential available capacity 𝑙𝑙𝑙𝑡 such that (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ) ∈ A, the
allocation gain 𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) has the following lower and upper bounds(

1 − 1
𝑒

)−1
Λ(𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) ≥ 𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) ≥ Λ(𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦), ∀𝑦𝑦𝑦 ∈ X ∪ Y . (28.310)

Proof.

We have the following

𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦)
(28.287)
=

∑︁
𝜌∈supp𝑟𝑟𝑟 𝑡

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

)
min

{
𝑟 𝑡𝜌 ,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦)

}
1

(
𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) = 0

)
(28.311)

(28.296)
≥

∑︁
𝜌∈supp𝑟𝑟𝑟 𝑡

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

)
𝑟 𝑡𝜌

(
1 −

𝑘∏
𝑘 ′=1

(
1 − 𝑧𝜌,𝑘 ′ (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦)/𝑟 𝑡𝜌

))
1

(
𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) = 0

)
(28.312)

(28.285)
= Λ(𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦),∀𝑦𝑦𝑦 ∈ X ∪ Y, (28.313)
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and

(1 − 1/𝑒)𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦)
(28.287)
= (1 − 1/𝑒)

∑︁
𝜌∈supp𝑟𝑟𝑟 𝑡

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

)
min

{
𝑟 𝑡𝜌 ,

𝑘∑︁
𝑘 ′=1

𝑧𝑘
′
𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦)

}
1

(
𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) = 0

)
(28.314)

(28.305)
≤

∑︁
𝜌∈supp𝑟𝑟𝑟 𝑡

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

)
𝑟 𝑡𝜌

(
1 −

𝑘∏
𝑘 ′=1

(
1 − 𝑧𝜌,𝑘 ′ (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦)/𝑟 𝑡𝜌

))
1

(
𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) = 0

)
(28.315)

(28.285)
= Λ(𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦),∀𝑦𝑦𝑦 ∈ X ∪ Y . (28.316)

Inequalities in Eq. (28.312) and Eq. (28.315) follow from Eq. (28.296) and Eq. (28.305), respectively,
by replacing 𝑐 = 𝑟 𝑡𝜌 , 𝑞𝑘 ′ = 𝜆𝑘

′
𝜌 (𝑙𝑙𝑙𝑡 ), 𝑥𝑘 ′ = 𝑧𝜌,𝑘 ′ (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦)/𝜆𝑘

′
𝜌 (𝑙𝑙𝑙𝑡 ), and 𝑛 = 𝑘 .

□

Lemma 28.10. Let the allocation 𝑥𝑥𝑥𝑣 be the random output of DepRound on node 𝑣 ∈ V given the
fractional allocation 𝑦𝑦𝑦𝑣 ∈ Y𝑣 . For any subset of the model catalog 𝑆 ⊂ M and any number 𝑐𝑚 ∈
[0, 1],∀𝑚 ∈ 𝑆 , DepRound satisfies the following:

E

[∏
𝑚∈𝑆
(1 − 𝑥𝑣𝑚𝑐𝑚)

]
≤

∏
𝑚∈𝑆
(1 − 𝑦𝑣𝑚𝑐𝑚). (28.317)

Proof.

DepRound uses a subroutine Simplify, which, given input variables 𝑦𝑚, 𝑦𝑚′ ∈ (0, 1), outputs
𝑥𝑚, 𝑥𝑚′ ∈ [0, 1] with at least one of them being integral (0 or 1). Note that the input to Simplify is
never integral since it is only called on fractional and yet unrounded variables. The property (B3)
in [173, Lemma 2.1] implies that the output variables 𝑥𝑚 and 𝑥𝑚′ satisfy the following inequality:

E[𝑥𝑚𝑥𝑚′] ≤ 𝑦𝑚𝑦𝑚′ . (28.318)

We have for any 𝑐𝑚, 𝑐𝑚′ ∈ [0, 1]:

E[(1 − 𝑥𝑚𝑐𝑚) (1 − 𝑥𝑚′𝑐𝑚′)] = E[1 − 𝑥𝑚𝑐𝑚 − 𝑥𝑚′𝑐𝑚′ + 𝑥𝑚𝑥𝑚′𝑐𝑚𝑐𝑚′] (28.319)
= 1 − 𝑦𝑚𝑐𝑚 − 𝑦𝑚′𝑐𝑚′ + E[𝑥𝑚𝑥𝑚′]𝑐𝑚𝑐𝑚′ (28.320)
≤ 1 − 𝑦𝑚𝑐𝑚 − 𝑦𝑚′𝑐𝑚′ + 𝑦𝑚𝑦𝑚′𝑐𝑚𝑐𝑚′
= (1 − 𝑦𝑚𝑐𝑚) (1 − 𝑦𝑚′𝑐𝑚′). (28.321)

where the second equality is obtained recalling that, by construction, E[𝑥𝑣𝑚] = 𝑦𝑚,∀𝑚 ∈ M
(Section 4.4.3).
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Thus, the two fractional inputs𝑦𝑚 and𝑦𝑚′ to the Simplify subroutine, return 𝑥𝑚 and 𝑥𝑚′ satisfying
the property (28.321). By induction as in the proof in [173, Lemma 2.2], we obtain for any 𝑆 ⊂ M:

E

[∏
𝑚∈𝑆
(1 − 𝑥𝑚𝑐𝑚)

]
≤

∏
𝑚∈𝑆
(1 − 𝑦𝑚𝑐𝑚) . (28.322)

Note that the above property is satisfied with equality if the components of 𝑥𝑥𝑥 ∈ {0, 1} |M| are
sampled independently with E[𝑥𝑚] = 𝑦𝑚 .
□

Lemma 28.11. Let the allocation 𝑥𝑥𝑥𝑣 be the random output of DepRound on node 𝑣 ∈ V given the
fractional allocation𝑦𝑦𝑦𝑣 ∈ Y𝑣 . The following holds

E [Λ(𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥𝑡 )] ≥ Λ(𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 ). (28.323)
Proof.
For any 𝑘′, assume𝑚 ∈ M and 𝑣 ∈ V are such that 𝜅𝜌 (𝑣,𝑚) = 𝑘′ (Section 4.3.5). Since 𝑧𝑘 ′𝜌 (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) =
𝑦𝑣𝑚𝑙

𝑡,𝑣
𝜌,𝑚 for a given (𝑚, 𝑣) ∈ M ×V , then 𝑧𝜌,𝑘 ′ (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦)/𝑟 𝑡𝜌 can be written as:

𝑧𝜌,𝑘 ′ (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦)/𝑟 𝑡𝜌 =
𝑙
𝑡,𝑣
𝜌,𝑚

𝑟 𝑡𝜌
𝑦𝑣𝑚 . (28.324)

where 𝑙
𝑡,𝑣
𝜌,𝑚

𝑟 𝑡𝜌
is a constant in [0, 1] (𝑙𝑡,𝑣𝜌,𝑚 ≤ min{𝑟 𝑡𝜌 , 𝐿𝑣𝑚} - see Section 4.3.4) that scales variable 𝑦𝑣𝑚

;therefore, by applying Lemma 28.10, we obtain the following upper bound on the bounding func-
tion. Consider for all 𝑣 ∈ V and 𝑡 ∈ [𝑇 ] that 𝑥𝑥𝑥𝑣𝑡 is the random allocation obtained by running
DepRound on the fractional allocation𝑦𝑦𝑦𝑣𝑡 , then

E [Λ(𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥𝑡 )]
(28.285)
= E


∑︁

𝜌∈supp𝑟𝑟𝑟 𝑡

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

)
𝑟 𝑡𝜌

(
1 −

𝑘∏
𝑘 ′=1

(
1 − 𝑧𝜌,𝑘 ′ (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥𝑡 )/𝑟 𝑡𝜌

))
1

(
𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) = 0

)
(28.325)

=
∑︁

𝜌∈supp𝑟𝑟𝑟 𝑡

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

)
𝑟 𝑡𝜌

(
1 − E

[
𝑘∏

𝑘 ′=1

(
1 − 𝑧𝜌,𝑘 ′ (𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥𝑡 )/𝑟 𝑡𝜌

)])
1

(
𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) = 0

)
(28.326)

≥
∑︁

𝜌∈supp𝑟𝑟𝑟 𝑡

𝐾𝜌−1∑︁
𝑘=1

(
𝛾𝑘+1𝜌 − 𝛾𝑘𝜌

)
𝑟 𝑡𝜌

(
1 −

𝑘∏
𝑘 ′=1

(
1 − 𝑧𝜌,𝑘 ′ (𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 )/𝑟 𝑡𝜌

))
1

(
𝑍𝑘𝜌 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝜔𝜔𝜔) = 0

)
(28.327)

= Λ(𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 ). (28.328)
The equality is obtained using the linearity of the expectation, and the inequality is obtained by
applying directly Lemma 28.10.
□
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29 Proof of Theorem 4.5.1

To prove the 𝜓 -regret guarantee: (1) we first establish an upper bound on the regret of the INFIDA
policy over its fractional allocations domain Y against a fractional optimum, then (2) we use it to
derive a corresponding𝜓 -regret guarantee over the integral allocations domain X.
Fractional domain regret guarantee. To establish the regret guarantee of running Algorithm 4.1
at the level of each computing node 𝑣 ∈ V , we showed that the following properties hold:

1. The function 𝐺 is concave over its domain Y (Lemma 28.1).

2. The mirror map Φ : D → R is 𝜃 -strongly convex w.r.t. the norm ∥ · ∥𝑙1 (𝑠𝑠𝑠) over Y ∩ D, where
𝜃 is equal to Eq. (28.262) (Lemma 28.2).

3. The gain function𝐺 : Y → R is 𝜎-Lipchitz w.r.t ∥ · ∥𝑙1 (𝑠𝑠𝑠) : the subgradients are bounded under
the norm ∥·∥𝑙∞ ( 1

𝑠𝑠𝑠
) by 𝜎 , i.e., the subgradient of 𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) at point 𝑦𝑦𝑦𝑡 ∈ Y is upper bounded

(∥𝑔𝑔𝑔𝑡 ∥𝑙∞ ( 1
𝑠𝑠𝑠
) ≤ 𝜎) for any (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ) ∈ A (Lemma 28.3).

4. ∥ · ∥𝑙∞ ( 1
𝑠𝑠𝑠
) is the dual norm of ∥ · ∥𝑙1 (𝑠𝑠𝑠) (Lemma 28.4).

5. The Bregman divergence𝐷Φ(𝑦𝑦𝑦∗,𝑦𝑦𝑦1) in Eq. (26.229) is upper bounded by a constant𝐷max where
𝑦𝑦𝑦∗ = arg max𝑦𝑦𝑦∈Y

∑𝑇
𝑡=1𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦) and𝑦𝑦𝑦1 = arg min

𝑦𝑦𝑦∈Y∩D
Φ(𝑦𝑦𝑦) is the initial allocation (Lemma 28.5).

Because of properties 1–5 above, the following bound holds for the regret of INFIDA over its
fractional domain Y (vector field point of view of Mirror Descent in [53, Section 4.2] combined
with [53, Theorem 4.2]):

Regret𝑇,Y = sup
{(𝑟𝑟𝑟 𝑡 ,𝑙𝑙𝑙𝑡 )}𝑇𝑡=1∈A𝑇

{
𝑇∑︁
𝑡=1

𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦∗)−
𝑇∑︁
𝑡=1

𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 )
}

(29.329)

≤ 𝐷Φ(𝑦𝑦𝑦∗,𝑦𝑦𝑦1)
𝜂

+ 𝜂

2𝜃

𝑇∑︁
𝑡=1
∥𝑔𝑔𝑔𝑡 ∥2𝑙∞ ( 1

𝑠𝑠𝑠
) ≤

𝐷max
𝜂
+ 𝜂𝜎

2𝑇

2𝜃 . (29.330)

where 𝜂 is the learning rate of INFIDA (Algorithm 4.1, line 6). By selecting the learning rate 𝜂 =

1
𝜎

√︃
2𝜃𝐷max
𝑇

giving the tightest upper bound we obtain

Regret𝑇,Y ≤ 𝜎
√︂

2𝐷max
𝜃

𝑇 . (29.331)

Integral domain regret guarantee. Note that, by restricting the maximization to the subset of
integral allocations 𝑥𝑥𝑥 ∈ X, the optimal allocation 𝑥𝑥𝑥∗ = arg max𝑥𝑥𝑥∈X

∑𝑇
𝑡=1𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥) can only lead to

a lower gain, i.e.,

𝑇∑︁
𝑡=1

𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥∗) ≤
𝑇∑︁
𝑡=1

𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦∗). (29.332)
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By taking 𝜓 = 1 − 1
𝑒
, and using the bounding function Λ defined in Eq. (28.285), with the ex-

pectation taken over the random choices of the policy (DepRound at line 8 in Algorithm 4.1) we
obtain

E

[
𝑇∑︁
𝑡=1

𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥𝑡 )
]
(28.310)
≥ E

[
𝑇∑︁
𝑡=1

Λ(𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥𝑡 )
]
(28.323)
≥

𝑇∑︁
𝑡=1

Λ(𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 )
(28.310)
≥ 𝜓

𝑇∑︁
𝑡=1

𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦𝑡 )

(29.331)
≥ 𝜓

𝑇∑︁
𝑡=1

𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦∗) −𝜓𝜎
√︂

2𝐷max
𝜃

𝑇
(29.332)
≥ 𝜓

𝑇∑︁
𝑡=1

𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥∗) −𝜓𝜎
√︂

2𝐷max
𝜃

𝑇 .

(29.333)

Thus, we have

𝜓

𝑇∑︁
𝑡=1

𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥∗) − E
[
𝑇∑︁
𝑡=1

𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥𝑡 )
]
≤ 𝜓𝜎

√︂
2𝐷max
𝜃

𝑇 . (29.334)

The above inequality holds for any sequence {(𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 )}𝑇𝑡=1 ∈ A𝑇 . Thus, the𝜓 -regret is given by

𝜓 -Regret𝑇,X
(4.20)
= sup
{𝑟𝑟𝑟 𝑡 ,𝑙𝑙𝑙𝑡 }𝑇𝑡=1∈A𝑇

{
𝜓

𝑇∑︁
𝑡=1

𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥∗) − E
[
𝑇∑︁
𝑡=1

𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥𝑡 )
]}
≤ 𝐴
√
𝑇, (29.335)

where

𝐴 = 𝜓𝜎

√︂
2𝐷max
𝜃

= 𝜓
𝑅𝐿maxΔ𝐶
𝑠min

√︁
𝑠max |V||M|

√︄
2
∑︁
𝑣∈V

min{𝑏𝑣 , ∥𝑠𝑠𝑠𝑣 ∥1} log
(

∥𝑠𝑠𝑠𝑣 ∥1
min{𝑏𝑣 , ∥𝑠𝑠𝑠𝑣 ∥1}

)
,

using the upper bounds on 𝜃 , 𝜎 , and 𝐷max determined in Lemmas 28.2, 28.3, and 28.5, respectively.
This proves Theorem 4.5.1.

30 Proof of Proposition 4.5.2

Let𝑦𝑦𝑦 be the average fractional allocation𝑦𝑦𝑦 = 1
𝑇

∑𝑇
𝑡=1𝑦𝑦𝑦𝑡 of INFIDA, and 𝑥𝑥𝑥 the random state sampled

from𝑦𝑦𝑦 using DepRound. We take 𝐺𝑇 (𝑦𝑦𝑦) = 1
𝑇

∑𝑇
𝑡=1𝐺 (𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦),∀𝑦𝑦𝑦 ∈ Y. We have

E [𝐺𝑇 (𝑥𝑥𝑥)]
(28.310)
≥ E

[
1
𝑇

𝑇∑︁
𝑡=1

Λ(𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑥𝑥𝑥)
]
(28.323)
≥ 1

𝑇

𝑇∑︁
𝑡=1

Λ(𝑟𝑟𝑟 𝑡 , 𝑙𝑙𝑙𝑡 ,𝑦𝑦𝑦)
(28.310)
≥ 𝜓𝐺𝑇 (𝑦𝑦𝑦). (30.336)

Using Jensen’s inequality we get

𝜓𝐺𝑇 (𝑦𝑦𝑦) ≥ 𝜓
1
𝑇

𝑇∑︁
𝑡=1

𝐺𝑇 (𝑦𝑦𝑦𝑡 ). (30.337)
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It straightforward to check that 𝐺𝑇 satisfies the same properties 1 (concavity) and 3 (subgradient
boundedness) as 𝐺 and the remaining properties are preserved under the same mirror map and
convex decision set. With properties 1–5 satisfied, we can apply [53, Theorem 4.2] to obtain

𝑇∑︁
𝑡=1

𝐺𝑇 (𝑦𝑦𝑦∗) −
𝑇∑︁
𝑡=1

𝐺𝑇 (𝑦𝑦𝑦𝑡 ) = 𝑇𝐺𝑇 (𝑦𝑦𝑦∗) −
𝑇∑︁
𝑡=1

𝐺𝑇 (𝑦𝑦𝑦𝑡 ) ≤ 𝜎
√︂

2𝐷max
𝜃

𝑇 . (30.338)

Dividing both sides of the above inequality by 𝑇 gives

1
𝑇

𝑇∑︁
𝑡=1

𝐺𝑇 (𝑦𝑦𝑦𝑡 ) ≥ 𝐺𝑇 (𝑦𝑦𝑦∗) − 𝜎
√︂

2𝐷max

𝜃𝑇
. (30.339)

Using the same argument to obtain Eq. (29.332), i.e., restricting the maximization to the integral
domain gives a lower value, we get

1
𝑇

𝑇∑︁
𝑡=1

𝐺𝑇 (𝑦𝑦𝑦𝑡 ) ≥ 𝐺𝑇 (𝑥𝑥𝑥∗) − 𝜎
√︂

2𝐷max

𝜃𝑇
. (30.340)

Using Eq. (30.336), and Eq. (30.340) we obtain

E [𝐺𝑇 (𝑥𝑥𝑥)] ≥ 𝜓𝐺𝑇 (𝑥𝑥𝑥∗) −𝜓𝜎
√︂

2𝐷
𝜃𝑇

. (30.341)

Thus, ∀𝜖 > 0 and over a sufficiently large running time 𝑇 for INFIDA, 𝑥𝑥𝑥 satisfies

E [𝐺𝑇 (𝑥𝑥𝑥)] ≥
(
1 − 1

𝑒
− 𝜖

)
𝐺𝑇 (𝑥𝑥𝑥∗). (30.342)

31 Technical Lemmas and Definitions

31.1 Convex Conjugate

Definition 31.1. Let 𝐹 : U ⊂ RI → R∪ {−∞, +∞} be a function. Define 𝐹★ : RI → R∪ {−∞, +∞}
by

𝐹★(𝜃𝜃𝜃 ) = sup
𝑢𝑢𝑢∈U
{𝑢𝑢𝑢 · 𝜃𝜃𝜃 − 𝐹 (𝑢𝑢𝑢)} , (31.343)

for 𝜃𝜃𝜃 ∈ RI . This is the convex conjugate of 𝐹 .
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31.2 Convex Conjugate of 𝛼-Fairness Function

Lemma 31.1. LetU =
[
𝑢★,min, 𝑢★,max

]I ⊂ RI
>0, Θ =

[
−1/𝑢𝛼

★,min,−1/𝑢𝛼★,max

]I
⊂ RI

<0, and 𝐹𝛼 : U →
R be an 𝛼-fairness function (5.3). The convex conjugate of −𝐹𝛼 is given by

(−𝐹𝛼 )★ (𝜃𝜃𝜃 ) =


∑︁
𝑖∈I

𝛼 (−𝜃𝑖)1−1/𝛼 − 1
1 − 𝛼 for 𝛼 ∈ R≥0 \ {1},∑︁

𝑖∈I
− log(−𝜃𝑖) − 1 for 𝛼 = 1,

(31.344)

where 𝜃𝜃𝜃 ∈ Θ.

Proof.

The convex conjugate of −𝑓𝛼 (𝑢) ≜ −𝑢
1−𝛼−1
1−𝛼 for 𝑢 ∈

[
𝑢★,min, 𝑢★,max

]
and 𝛼 ∈ R≥0 \ {1} is given by

(−𝑓𝛼 )★ (𝜃 ) = max
𝑢∈[𝑢★,min,𝑢★,max]

{
𝑢𝜃 + 𝑢

1−𝛼 − 1
1 − 𝛼

}
. (31.345)

We evaluate the derivative to characterize the maxima of r.h.s. term in the above equation

𝜕

𝜕𝑢

(
𝑢𝜃 + 𝑢

1−𝛼 − 1
1 − 𝛼

)
= 𝜃 + 1

𝑢𝛼
. (31.346)

The function 𝜃 + 1
𝑢𝛼

is a decreasing function in 𝑢; thus 𝜃 + 1
𝑢𝛼
≥ 0 when 𝑢 ≤

(
− 1
𝜃

) 1
𝛼 , and 𝜃 + 1

𝑢𝛼
< 0

otherwise. The maximum is achieved at 𝑢 =
(
− 1
𝜃

) 1
𝛼 . It holds through Eq. (31.345)

(−𝑓𝛼 )★ (𝜃 ) =
𝛼 (−𝜃 )1−1/𝛼 − 1

1 − 𝛼 for 𝜃 ∈
[
−1/𝑢𝛼★,min,−1/𝑢𝛼★,max

]
. (31.347)

Moreover, it is easy to check that the same argument holds for 𝑓1(𝑢) = log(𝑢) and we have

(−𝑓1)★ (𝜃 ) = −1 − log(−𝜃 ) for 𝜃 ∈
[
−1/𝑢★,min,−1/𝑢★,max

]
. (31.348)

The convex conjugate of −𝐹𝛼 (𝑢𝑢𝑢) =
∑
𝑖∈I 𝑓𝛼 (𝑢𝑖) for 𝑢𝑢𝑢 ∈ U, using Eq. (31.347) and Eq. (31.348), is

given by

(−𝐹𝛼 )★ (𝜃𝜃𝜃 ) =
∑︁
𝑖∈I
(−𝑓𝛼 )★ (𝜃𝑖) =


∑︁
𝑖∈I

𝛼 (−𝜃𝑖)1−1/𝛼 − 1
1 − 𝛼 for 𝛼 ∈ R≥0 \ {1},∑︁

𝑖∈I
− log(−𝜃𝑖) − 1 for 𝛼 = 1,

(31.349)

for 𝜃𝜃𝜃 ∈ Θ, because 𝐹𝛼 (𝑢𝑢𝑢) is separable in𝑢𝑢𝑢 ∈ U.

□
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31.3 Convex Biconjugate of 𝛼-Fairness Functions
The following Lemma provides a stronger condition on 𝜃𝜃𝜃 compared to [283, Lemma 2.2], i.e., we
restrict 𝜃𝜃𝜃 ∈ Θ instead of ∥𝜃𝜃𝜃 ∥★ ≤ 𝐿 where 𝐿 ≥ ∥∇𝑢𝑢𝑢𝐹𝛼 (𝑢𝑢𝑢)∥★ for all𝑢𝑢𝑢 ∈ U and ∥ · ∥★ is the dual norm
of ∥ · ∥.

Lemma 31.2. LetU =
[
𝑢★,min, 𝑢★,max

]I ⊂ RI
>0, Θ =

[
−1/𝑢𝛼

★,min,−1/𝑢𝛼★,max

]I
⊂ RI

<0, and 𝐹𝛼 : U →
R be an 𝛼-fairness function (5.3). The function 𝐹𝛼 can be always be recovered from the convex conjugate
(−𝐹𝛼 )★, i.e.,

𝐹𝛼 (𝑢𝑢𝑢) = min
𝜃𝜃𝜃∈Θ

{
(−𝐹𝛼 )★ (𝜃𝜃𝜃 ) − 𝜃𝜃𝜃 ·𝑢𝑢𝑢

}
, (31.350)

for𝑢𝑢𝑢 ∈ U.

Proof.

This proof follows the same lines of the proof of [283, Lemma 2.2]. Since 𝑢𝑢𝑢 ∈ U, therefore the
gradient of 𝐹𝛼 at point𝑢𝑢𝑢 is given as ∇𝑢𝑢𝑢𝐹𝛼 (𝑢𝑢𝑢) =

[
1/𝑢𝛼

𝑖

]
𝑖∈I ∈ −Θ =

[
1/𝑢𝛼

★,min, 1/𝑢
𝛼
★,max

]I
. Moreover,

it holds

min
𝜃𝜃𝜃∈Θ

{
(−𝐹𝛼 )★ (𝜃𝜃𝜃 ) − 𝜃𝜃𝜃 ·𝑢𝑢𝑢

}
= min

𝜃𝜃𝜃∈Θ

{
max
𝑢𝑢𝑢′∈U
{𝜃𝜃𝜃 ·𝑢𝑢𝑢′ + 𝐹𝛼 (𝑢𝑢𝑢)} − 𝜃𝜃𝜃 ·𝑢𝑢𝑢

}
(31.351)

= max
𝑢𝑢𝑢′∈U

min
𝜃𝜃𝜃∈Θ
{𝜃𝜃𝜃 ·𝑢𝑢𝑢′ + 𝐹𝛼 (𝑢𝑢𝑢′) − 𝜃𝜃𝜃 ·𝑢𝑢𝑢} . Minmax theorem (31.352)

We take

min
𝜃𝜃𝜃∈Θ
{𝜃𝜃𝜃 ·𝑢𝑢𝑢′ + 𝐹𝛼 (𝑢𝑢𝑢′) − 𝜃𝜃𝜃 ·𝑢𝑢𝑢} = min

𝜃𝜃𝜃∈Θ
{𝐹𝛼 (𝑢𝑢𝑢′) + 𝜃𝜃𝜃 · (𝑢𝑢𝑢′ −𝑢𝑢𝑢)}

≤ 𝐹𝛼 (𝑢𝑢𝑢′) − ∇𝐹𝛼 (𝑢𝑢𝑢) · (𝑢𝑢𝑢′ −𝑢𝑢𝑢) Because −∇𝐹𝛼 (𝑢𝑢𝑢) ∈ Θ
≤ 𝐹𝛼 (𝑢𝑢𝑢). Use concavity of 𝐹𝛼

The equality is achieved when𝑢𝑢𝑢 = 𝑢𝑢𝑢′ and the maximum value in (31.352) is attained for this value.
We conclude the proof.

□

31.4 Online Gradient Descent (OGD) with Self-Confident Learning Rates
Lemma 31.3 provides the regret guarantee of OGD oblivious to the time horizon 𝑇 and bound on
subgradients’ norm for any 𝑡 ∈ T . This adopts the idea of [289] which denominate such learning
schemes as self-confident.

Lemma 31.3. Consider a convex set X, a sequence of 𝜎-strongly convex functions 𝑓𝑡 : X →
R with subgradient 𝑔𝑔𝑔𝑡 ∈ 𝜕𝑓𝑡 (𝑥𝑥𝑥𝑡 ) at 𝑥𝑥𝑥𝑡 , and OGD update rule 𝑥𝑥𝑥𝑡+1 = ΠX

(
𝑥𝑥𝑥𝑡 − 𝜂𝑡𝑔𝑔𝑔𝑡

)
=

arg min𝑥𝑥𝑥∈X


𝑥𝑥𝑥 − (

𝑥𝑥𝑥𝑡 − 𝜂𝑡𝑔𝑔𝑔𝑡
)



2 initialized at 𝑥𝑥𝑥1 ∈ X. Let diam (X) ≜ max {∥𝑥𝑥𝑥 − 𝑥𝑥𝑥′∥2 : 𝑥𝑥𝑥,𝑥𝑥𝑥′ ∈ X}.
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Selecting the learning rates as 𝜂𝜂𝜂 : T → R such that 𝜂𝑡 ≤ 𝜂𝑡−1 for all 𝑡 > 1 gives the following regret
guarantee against a fixed decision 𝑥𝑥𝑥 ∈ X:∑︁

𝑡∈T
𝑓𝑡 (𝑥𝑥𝑥𝑡 ) − 𝑓𝑡 (𝑥𝑥𝑥) ≤ diam2(X)

𝑇∑︁
𝑡=1

(
1
𝜂𝑡
− 1
𝜂𝑡−1
− 𝜎

)
+

𝑇∑︁
𝑡=1

𝜂𝑡


𝑔𝑔𝑔𝑡

2

2 . (31.353)

• When 𝜎 > 0, selecting the learning rate schedule 𝜂𝑡 = 1
𝜎𝑡

for 𝑡 ∈ T gives∑︁
𝑡∈T

𝑓𝑡 (𝑥𝑥𝑥𝑡 ) − 𝑓𝑡 (𝑥𝑥𝑥) ≤
𝑇∑︁
𝑡=1



𝑔𝑔𝑔𝑡

2
2

𝑡𝜎
= O (log(𝑇 )) . (31.354)

• When 𝜎 = 0, selecting the learning rate schedule 𝜂𝑡 = diam(X)√︃∑𝑡
𝑠=1∥𝑔𝑔𝑔𝑠 ∥2

2

for 𝑡 ∈ T gives

∑︁
𝑡∈T

𝑓𝑡 (𝑥𝑥𝑥𝑡 ) − 𝑓𝑡 (𝑥𝑥𝑥) ≤ 1.5 diam (X)
√︄∑︁
𝑡∈T



𝑔𝑔𝑔𝑠

2
2 = O

(√
𝑇

)
. (31.355)

Proof.

This proof follows the same lines of the proof of [20]. We do not assume a bound on the gradients
is known beforehand and the time horizon 𝑇 . Take a fixed 𝑥𝑥𝑥 ∈ X. Applying the definition of
𝜎-strong convexity to the pair of points 𝑥𝑥𝑥𝑡 and 𝑥𝑥𝑥 , we have

2 (𝑓𝑡 (𝑥𝑥𝑥𝑡 ) − 𝑓𝑡 (𝑥𝑥𝑥)) ≤ 2𝑔𝑔𝑔𝑡 · (𝑥𝑥𝑥𝑡 − 𝑥𝑥𝑥) − 𝜎 ∥𝑥𝑥𝑥𝑡 − 𝑥𝑥𝑥 ∥22 . (31.356)

Pythagorean theorem implies

∥𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥 ∥22 =


ΠX (

𝑥𝑥𝑥𝑡 − 𝜂𝑡𝑔𝑔𝑔𝑡
)
− 𝑥𝑥𝑥



2
2 ≤ ∥𝑥𝑥𝑥𝑡 − 𝜂𝑡 − 𝑥𝑥𝑥 ∥

2
2 , (31.357)

Expanding the r.h.s. term gives

∥𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥 ∥22 ≤ ∥𝑥𝑥𝑥𝑡 − 𝑥𝑥𝑥 ∥22 + 𝜂2
𝑡



𝑔𝑔𝑔𝑡

2
2 − 2𝜂𝑡𝑔𝑔𝑔𝑡 · (𝑥𝑥𝑥𝑡 − 𝑥𝑥𝑥) , (31.358)

2𝑔𝑔𝑔𝑡 · (𝑥𝑥𝑥𝑡 − 𝑥𝑥𝑥) ≤
∥𝑥𝑥𝑥𝑡 − 𝑥𝑥𝑥 ∥22 − ∥𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥 ∥22

𝜂𝑡
+ 𝜂𝑡



𝑔𝑔𝑔𝑡

2
2 . (31.359)

Combine Eq. (31.356) and Eq. (31.359) and for 𝑡 = 1 to 𝑡 = 𝑇 :

2
𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑥𝑥𝑡 ) − 𝑓𝑡 (𝑥𝑥𝑥) ≤
𝑇∑︁
𝑡=1

∥𝑥𝑥𝑥𝑡 − 𝑥𝑥𝑥 ∥22 (1 − 𝜎𝜂𝑡 ) − ∥𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥 ∥22
𝜂𝑡

+
𝑇∑︁
𝑡=1

𝜂𝑡


𝑔𝑔𝑔𝑡

2

2

≤
𝑇∑︁
𝑡=1
∥𝑥𝑥𝑥𝑡 − 𝑥𝑥𝑥 ∥22

(
1
𝜂𝑡
− 1
𝜂𝑡−1
− 𝜎

)
+

𝑇∑︁
𝑡=1

𝜂𝑡


𝑔𝑔𝑔𝑡

2

2
1
𝜂0
≜ 0

≤ diam2(X)
(

1
𝜂𝑇
− 𝜎𝑇

)
+

𝑇∑︁
𝑡=1

𝜂𝑡


𝑔𝑔𝑔𝑡

2

2 . Telescoping series
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When 𝜎 > 0 and 𝜂𝑡 = 1
𝜎𝑡
, from Eq. (31.360) we have

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑥𝑥𝑡 ) − 𝑓𝑡 (𝑥𝑥𝑥) ≤ 0 +
𝑇∑︁
𝑡=1



𝑔𝑔𝑔𝑡

2
2

2𝜎𝑡 ≤ max
𝑡∈T

{

𝑔𝑔𝑔𝑡

2
2

} 𝑇∑︁
𝑡=1

1
2𝜎 ≤

max𝑡∈T
{

𝑔𝑔𝑔𝑡

2

2

}
2𝜎 H𝑇 = O (log(𝑇 )) ,

(31.360)

where H𝑇 is the 𝑇 -th harmonic number.
When 𝜎 = 0 and 𝜂𝑡 = diam(X)√︃∑𝑡

𝑠=1∥𝑔𝑔𝑔𝑠 ∥2
2

, from Eq. (31.360) we have

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑥𝑥𝑡 ) − 𝑓𝑡 (𝑥𝑥𝑥) ≤
diam (X)

2

√√√
𝑇∑︁
𝑡=1



𝑔𝑔𝑔𝑠

2
2 +

diam (X)
2

𝑇∑︁
𝑡=1



𝑔𝑔𝑔𝑡

2
2√︃∑𝑡

𝑠=1


𝑔𝑔𝑔𝑠

2

2

(31.361)

≤ 1.5 diam (X)

√√√
𝑇∑︁
𝑡=1



𝑔𝑔𝑔𝑠

2
2 = O

(√
𝑇

)
. (31.362)

Last inequality is obtained using [289, Lemma 3.5], i.e.,
∑𝑇
𝑡=1

|𝑎𝑡 |∑𝑡
𝑠=1 |𝑎𝑠 |

≤ 2
√︃∑𝑇

𝑡=1 |𝑎𝑡 |. This concludes
the proof.

□

31.5 Saddle-Point Problem Formulation of 𝛼-Fairness

Lemma 31.4. Let X be a convex set,U =
[
𝑢★,min, 𝑢★,max

]I ⊂ RI
>0, 𝑢𝑖 : X → U be a concave function

for every 𝑖 ∈ I, Θ =

[
−1/𝑢𝛼

★,min,−1/𝑢𝛼★,max

]I
⊂ RI

<0, and Ψ𝛼 : Θ × X → R be a function given by

Ψ𝛼 (𝜃𝜃𝜃,𝑥𝑥𝑥) ≜ (−𝐹𝛼 )★ (𝜃𝜃𝜃 ) − 𝜃𝜃𝜃 ·𝑢𝑢𝑢 (𝑥𝑥𝑥). (31.363)

The following holds:

• The solution of the saddle-point problem formed by Ψ𝛼 is a maximizer of the 𝛼-fairness function

max
𝑥𝑥𝑥∈X

min
𝜃𝜃𝜃∈Θ

Ψ𝛼 (𝜃𝜃𝜃,𝑥𝑥𝑥) = max
𝑥𝑥𝑥∈X

𝐹𝛼 (𝑢𝑢𝑢 (𝑥𝑥𝑥)) . (31.364)

• The function Ψ𝛼 : Θ × X → R is concave over X.

• The function Ψ𝛼 : Θ × X → R is
𝑢

1+1/𝛼
★,min
𝛼

-strongly convex over Θ w.r.t. ∥ · ∥2 for 𝛼 > 0.

Proof.
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Equation (31.364) is a direct result of Lemma 31.2. The function Ψ𝛼 is concave over X because
−𝜃𝜃𝜃 ·𝑢𝑢𝑢 (𝑥𝑥𝑥) is a weighted sum of concave functions with non-negative weights. To prove the strong
convexity ofΨ𝛼 w.r.t. ∥ · ∥2, a sufficient condition [292, Lemma 14] is given by𝜃𝜃𝜃 ′𝑇

(
∇2
𝜃𝜃𝜃
Ψ𝛼 (𝜃𝜃𝜃,𝑥𝑥𝑥)

)
𝜃𝜃𝜃
′ ≥

𝜎


𝜃𝜃𝜃 ′

2

2 for all 𝜃𝜃𝜃,𝜃𝜃𝜃
′ ∈ Θ, and it holds

𝜃𝜃𝜃
′𝑇 (
∇2
𝜃𝜃𝜃
Ψ𝛼 (𝜃𝜃𝜃,𝑥𝑥𝑥)

)
𝜃𝜃𝜃
′
=

∑︁
𝑖∈I

𝜃 ′𝑖
2 𝜕

2

𝜕𝜃𝑖
(−𝐹𝛼 )★ (𝜃𝜃𝜃 ) =

∑︁
𝑖∈I

𝜃 ′𝑖
2

𝛼 (−𝜃𝑖)1+1/𝛼
≥
𝑢

1+1/𝛼
★,min
𝛼



𝜃𝜃𝜃 ′

2
2 . (31.365)

This concludes the proof.

□

32 Proof of Theorem 5.4.1

Proof.

Consider two players I = {1, 2}, allocation set X = [−1, 1] for all 𝑡 ∈ T . We define 𝛾𝑇 ∈ [0.4, 1],
𝜓𝑇 ≜

1
𝑇

∑𝛾𝑇𝑇

𝑡=1 𝑥𝑡 . We assume w.l.g. 𝛾𝑇𝑇 is a natural number. We consider two strategies selected by
the adversary:
Strategy 1. The adversary reveals the following utilities:

𝑢𝑢𝑢𝑡 (𝑥) =
{
(1 + 𝑥, 2 − 𝑥) if 𝑡 ≤ 𝛾𝑇𝑇,
(1, 1) otherwise.

(32.366)

Under the selected utilities, the static optimum attains the following objective

OPTS1 = max
𝑥∈X

𝑓𝛼 ((1 + 𝑥)𝛾𝑇 + (1 − 𝛾𝑇 )) + 𝑓𝛼 ((2 − 𝑥)𝛾𝑇 + (1 − 𝛾𝑇 )) (32.367)

= max
𝑥∈X

𝑓𝛼 (1 + 𝛾𝑇𝑥) + 𝑓𝛼 (1 + 𝛾𝑇 − 𝛾𝑇𝑥) . (32.368)

The above objective is concave in 𝑥 . We can perform a derivative test to characterize its maximum

𝜕𝑓𝛼 (1 + 𝛾𝑇𝑥) + 𝐹𝛼 (1 + 𝛾𝑇 − 𝛾𝑇𝑥)
𝜕𝑥

=
𝛾𝑇

(1 + 𝛾𝑇𝑥)𝛼
− 𝛾𝑇

(1 + 𝛾𝑇 − 𝛾𝑇𝑥)𝛼
= 0, for 𝑥 =

1
2 . (32.369)

Thus, it holds

OPTS1 = 2𝑓𝛼 (1 + 0.5𝛾𝑇 ). (32.370)

The fairness regret denoted by ℜS1
𝑇
(𝐹𝛼 ,𝐴𝐴𝐴) under this strategy of a policy A is given by

ℜS1
𝑇 (𝐹𝛼 ,𝐴𝐴𝐴) = OPTS1 − 𝑓𝛼

(
1
𝑇

(
𝛾𝑇𝑇∑︁
𝑡=1

1 + 𝑥𝑡

)
+ 1 − 𝛾𝑇

)
− 𝑓𝛼

(
1
𝑇

(
𝛾𝑇𝑇∑︁
𝑡=1

2 − 𝑥𝑡

)
+ 1 − 𝛾𝑇

)
(32.371)

= 2𝑓𝛼 (1 + 0.5𝛾𝑇 ) − 𝑓𝛼 (1 +𝜓𝑇 ) − 𝑓𝛼 (1 + 𝛾𝑇 −𝜓𝑇 ) . (32.372)
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Strategy 2. The adversary reveals the following utilities:

𝑢𝑢𝑢𝑡 (𝑥) =
{
(1 + 𝑥, 2 − 𝑥) if 𝑡 ≤ 𝛾𝑇𝑇,
(2, 0) otherwise.

(32.373)

Under the selected utilities, the static optimum attains the following objective

OPTS2 = max
𝑥∈X

𝑓𝛼 ((1 + 𝑥)𝛾𝑇 + (1 − 𝛾𝑇 )2) + 𝑓𝛼 ((2 − 𝑥)𝛾𝑇 ) (32.374)

= max
𝑥∈X

𝑓𝛼 (2 − 𝛾𝑇 + 𝛾𝑇𝑥) + 𝑓𝛼 (2𝛾𝑇 − 𝛾𝑇𝑥). (32.375)

Similar to the previous strategy, we can perform a derivative test to characterize the maximum of
the the above objective

𝜕𝑓𝛼 (2 − 𝛾𝑇 + 𝛾𝑇𝑥) + 𝑓𝛼 (2𝛾𝑇 − 𝛾𝑇𝑥)
𝜕𝑥

=
𝛾𝑇

(2 − 𝛾𝑇 + 𝛾𝑇𝑥)𝛼
− 𝛾𝑇

(2𝛾𝑇 − 𝛾𝑇𝑥)𝛼
= 0, for 𝑥 = 1.5 − 1

𝛾𝑇
.

Therefore, it holds

OPTS2 = 2𝑓𝛼 (1 + 0.5𝛾𝑇 ). (32.376)

and the fairness regret ℜS2
𝑇
(𝐹𝛼 ,𝐴𝐴𝐴) under this strategy is

ℜS2
𝑇 (𝐹𝛼 ,𝐴𝐴𝐴) = OPTS2 − 𝑓𝛼

(
1
𝑇

(
𝛾𝑇𝑇∑︁
𝑡=1

1 + 𝑥𝑡

)
+ 2 − 2𝛾𝑇

)
− 𝑓𝛼

(
1
𝑇

(
𝛾𝑇𝑇∑︁
𝑡=1

2 − 𝑥𝑡

))
(32.377)

= 2𝑓𝛼 (1 + 0.5𝛾𝑇 ) − 𝑓𝛼 (2 − 𝛾𝑇 +𝜓𝑇 ) − 𝑓𝛼 (2𝛾𝑇 −𝜓𝑇 ). (32.378)

We take the average fairness regret 1
2
(
ℜS1
𝑇
(𝐹𝛼 ,𝐴𝐴𝐴) +ℜS2

𝑇
(𝐹𝛼 ,𝐴𝐴𝐴)

)
across the two strategies

1
2

(
ℜS1
𝑇 (𝐹𝛼 ,𝐴𝐴𝐴) +ℜ

S2
𝑇 (𝐹𝛼 ,𝐴𝐴𝐴)

)
(32.379)

= 2𝑓𝛼 (1 + 0.5𝛾𝑇 ) −
1
2 (𝑓𝛼 (2 − 𝛾𝑇 +𝜓𝑇 ) + 𝑓𝛼 (2𝛾𝑇 −𝜓𝑇 ) + 𝑓𝛼 (1 +𝜓𝑇 ) + 𝑓𝛼 (1 + 𝛾𝑇 −𝜓𝑇 )) . (32.380)

The r.h.s. of the above equation is convex in𝜓𝑇 , so its minimizer can be characterized through the
derivative as follows

𝜕𝑓𝛼 (2 − 𝛾𝑇 +𝜓 ) + 𝑓𝛼 (2𝛾𝑇 −𝜓 ) + 𝑓𝛼 (1 +𝜓 ) + 𝑓𝛼 (1 + 𝛾𝑇 −𝜓 )
𝜕𝜓

(32.381)

=
1

(2 − 𝛾𝑇 +𝜓 )𝛼
− 1
(2𝛾𝑇 −𝜓 )𝛼

+ 1
(1 +𝜓 )𝛼 −

1
(1 + 𝛾𝑇 −𝜓 )𝛼

= 0, for𝜓 = 𝛾𝑇 − 0.5. (32.382)

We replace𝜓𝑇 = 𝛾𝑇 − 0.5 in Eq. (32.380) to get

1
2

(
ℜS1
𝑇 (𝐹𝛼 ,𝐴𝐴𝐴) +ℜ

S2
𝑇 (𝐹𝛼 ,𝐴𝐴𝐴)

)
≥ 2𝑓𝛼 (1 + 0.5𝛾𝑇 ) − (𝑓𝛼 (1.5) + 𝑓𝛼 (0.5 + 𝛾𝑇 )) . (32.383)
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Figure 32.12: Assumption (A5) and fairness regret (5.8) under scenarios 1 and 2.

We take the derivative of the lower bound

𝜕2𝑓𝛼 (1 + 0.5𝛾𝑇 ) − (𝑓𝛼 (1.5) + 𝑓𝛼 (0.5 + 𝛾𝑇 ))
𝜕𝛾𝑇

=
(0.5 + 𝛾)𝛼 − (1 + 0.5𝛾)𝛼

(0.5 + 𝛾)𝛼 (1 + 0.5𝛾)𝛼 . (32.384)

Note that the sign of the derivative is determined by the numerator (0.5 + 𝛾)𝛼 − (1 + 0.5𝛾)𝛼 . It
holds (0.5 + 𝛾)𝛼 − (1 + 0.5𝛾)𝛼 < 0 for 𝛾𝑇 < 1, otherwise (0.5 + 𝛾)𝛼 − (1 + 0.5𝛾)𝛼 = 0. Hence, the
lower bound in Eq. (32.383) is strictly decreasing for 𝛾𝑇 < 1, and it holds for 𝛾𝑇 ≤ 1 − 𝜖 for 𝜖 > 0

1
2

(
ℜS1
𝑇 (𝐹𝛼 ,𝐴𝐴𝐴) +ℜ

S2
𝑇 (𝐹𝛼 ,𝐴𝐴𝐴)

)
≥ 2𝑓𝛼 (1.5 − 0.5𝜖) − (𝑓𝛼 (1.5) + 𝑓𝛼 (1.5 + 0.5𝜖)) > 0. (32.385)

In other words, the fairness regret guarantee is not attainable4 for values of 𝛾𝑇 ≤ 1 − 𝜖 for any 𝑇
and 𝜖 > 0. We can also verify that (A5) is violated when 𝛾𝑇 ≤ 1− 𝜖 for any𝑇 and 𝜖 > 0. Note that
𝛾𝑇 is defined to be in the set [0.4, 1].
Under strategy 1 we have 𝑥★ = 1

2 and it holds

1
𝑇

𝑇∑︁
𝑡=1
𝑢𝑢𝑢𝑡 (𝑥★) = (1 + 0.5𝛾𝑇 , 1 + 0.5𝛾𝑇 ), and𝑢𝑢𝑢𝑡 (𝑥★) =

{
(1.5, 1.5) if 𝑡 ≤ 𝛾𝑇𝑇,
(1, 1) otherwise.

(32.386)

Then, it holds

VT ≥ 2(1 − 𝛾𝑡 )𝛾𝑇𝑇 ≥ 2𝜖𝛾𝑇𝑇 ≥ 0.8𝜖𝑇 = Ω(𝑇 ). (32.387)

Moreover, it can easily be checked that WT = Ω(𝑇 ) because there is no decomposi-
tion {1, 2, . . . ,𝑇 } = T1 ∪ T2 ∪ · · · ∪ T𝐾 where max {T𝑘 : 𝑘 ∈ [𝐾]} = 𝑜

(
𝑇

1
2

)
under which∑𝐾

𝑘=1
∑
𝑖∈I

��∑
𝑡∈T𝑘 𝛿𝑡,𝑖 (𝑥𝑥𝑥★)

�� = 𝑜 (𝑇 ).
To conclude, when 𝛾𝑇 = 1 − 𝑜 (1), we have min{VT ,WT } ≤ VT = 𝑜 (𝑇 ); thus, Assumption (A5)
only holds when 𝛾𝑇 = 1 − 𝑜 (1) for which the vanishing fairness regret guarantee is attainable.
Figure 32.12 provides a summary of the connection between the fairness regret under scenarios 1
and 2 and Assumption (A5).

□

4Note that the fairness regret must vanish for any adversarial choice of sequence of utilities.



228 Chapter — Conclusion

33 Proof of Theorem 5.4.2

Proof.

Note that Ψ𝛼,𝑡 : Θ × X → R is the function given by

Ψ𝛼,𝑡 (𝜃𝜃𝜃,𝑥𝑥𝑥) = (−𝐹𝛼 )★ (𝜃𝜃𝜃 ) − 𝜃𝜃𝜃 ·𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥), (33.388)

where 𝐹𝛼 : U → R is an 𝛼-fairness function (5.3). From Lemma 31.3, OGD operating over the

set Θ under the 𝑢
1+1/𝛼
★,min
𝛼

-strongly convex (Lemma 31.4) cost functions Ψ𝛼,𝑡 (𝜃𝜃𝜃 𝑡 ,𝑥𝑥𝑥𝑡 ) has the following
regret guarantee against any fixed 𝜃𝜃𝜃 ∈ Θ

1
𝑇

𝑇∑︁
𝑡=1

Ψ𝛼,𝑡 (𝜃𝜃𝜃 𝑡 ,𝑥𝑥𝑥𝑡 ) −
1
𝑇

𝑇∑︁
𝑡=1

Ψ𝛼,𝑡 (𝜃𝜃𝜃,𝑥𝑥𝑥𝑡 ) ≤
1
𝑇
· 1

2

𝑇∑︁
𝑡=1

𝛼

𝑢
1+1/𝛼
★,min 𝑡



𝑔𝑔𝑔Θ,𝑡

2
2︸                    ︷︷                    ︸

ℜ𝑇,Θ

, (33.389)

From Lemma 31.2, it holds

min
𝜃𝜃𝜃∈Θ

1
𝑇

𝑇∑︁
𝑡=1

Ψ𝛼,𝑡 (𝜃𝜃𝜃,𝑥𝑥𝑥𝑡 ) = 𝐹𝛼

(
1
𝑇

𝑇∑︁
𝑡=1
𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )

)
. (33.390)

Combine Eq. (33.389) and Eq. (33.390) to obtain the lower bound

𝐹𝛼

(
1
𝑇

𝑇∑︁
𝑡=1
𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )

)
+ ℜ𝑇,Θ

𝑇
≥ 1
𝑇

𝑇∑︁
𝑡=1

Ψ𝛼,𝑡 (𝜃𝜃𝜃 𝑡 ,𝑥𝑥𝑥𝑡 ). (33.391)

From Lemma 31.3, OGD operating over the set X under the reward functions Ψ𝛼,𝑡 (𝜃𝜃𝜃 𝑡 ,𝑥𝑥𝑥) has the
following regret guarantee for any fixed 𝑥𝑥𝑥★ ∈ X:

1
𝑇

𝑇∑︁
𝑡=1

Ψ𝛼,𝑡 (𝜃𝜃𝜃 𝑡 ,𝑥𝑥𝑥★) −
1
𝑇

𝑇∑︁
𝑡=1

Ψ𝛼,𝑡 (𝜃𝜃𝜃 𝑡 ,𝑥𝑥𝑥𝑡 ) ≤
1
𝑇
· 1.5 diam (X)

√︄∑︁
𝑡∈T



𝑔𝑔𝑔X,𝑡

2
2︸                            ︷︷                            ︸

ℜ𝑇,X

, (33.392)
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Hence, we have the following

1
𝑇

𝑇∑︁
𝑡=1

Ψ𝛼,𝑡 (𝜃𝜃𝜃 𝑡 ,𝑥𝑥𝑥𝑡 ) +
ℜ𝑇,X
𝑇
≥ 1
𝑇

𝑇∑︁
𝑡=1

Ψ𝛼,𝑡 (𝜃𝜃𝜃 𝑡 ,𝑥𝑥𝑥★)

=
1
𝑇

𝑇∑︁
𝑡=1

𝐹★(𝜃𝜃𝜃 𝑡 ) −
1
𝑇

𝑇∑︁
𝑡=1

𝜃𝜃𝜃 𝑡 ·𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★) Replace Ψ𝛼,𝑡 (𝜃𝜃𝜃 𝑡 ,𝑥𝑥𝑥★) using Eq. (33.388)

≥ 𝐹★
(

1
𝑇

𝑇∑︁
𝑡=1

𝜃𝜃𝜃 𝑡

)
− 1
𝑇

𝑇∑︁
𝑡=1

𝜃𝜃𝜃 𝑡 ·𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★) Jensen’s inequality & convexity of 𝐹★

≥ 𝐹★
(
𝜃𝜃𝜃

)
− 𝜃𝜃𝜃 ·

(
1
𝑇

𝑇∑︁
𝑡=1
𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)

)
− 1
𝑇

𝑇∑︁
𝑡=1
(𝜃𝜃𝜃 𝑡 − 𝜃𝜃𝜃 ) ·𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)

≥ min
𝜃𝜃𝜃∈Θ

{
𝐹★ (𝜃𝜃𝜃 ) − 𝜃𝜃𝜃 ·

(
1
𝑇

𝑇∑︁
𝑡=1
𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)

)}
− 1
𝑇

𝑇∑︁
𝑡=1
(𝜃𝜃𝜃 𝑡 − 𝜃𝜃𝜃 ) ·𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)

= 𝐹𝛼

(
1
𝑇

𝑇∑︁
𝑡=1
𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)

)
− 1
𝑇

𝑇∑︁
𝑡=1

(
𝜃𝜃𝜃 𝑡 − 𝜃𝜃𝜃

)
·𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★). (33.393)

We combine the above equation and Eq. (33.391) to obtain

𝐹𝛼

(
1
𝑇

𝑇∑︁
𝑡=1
𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)

)
− 𝐹𝛼

(
1
𝑇

𝑇∑︁
𝑡=1
𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )

)
≤ ℜ𝑇,X

𝑇
+ ℜ𝑇,Θ

𝑇
+ 1
𝑇

𝑇∑︁
𝑡=1

(
𝜃𝜃𝜃 𝑡 − 𝜃𝜃𝜃

)
·𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)

=
ℜ𝑇,X
𝑇
+ ℜ𝑇,Θ

𝑇
+ 1
𝑇

𝑇∑︁
𝑡=1

(
𝜃𝜃𝜃 − 𝜃𝜃𝜃 𝑡

)
· 𝛿𝛿𝛿𝑡 (𝑥𝑥𝑥★)︸                       ︷︷                       ︸

Σ

(33.394)

We provide two approaches to bound the r.h.s. term Σ in Eq. (33.396), and this gives the two
conditions in Assumption (A5):
Bound 1. We can bound the r.h.s. term Σ in the above equation as follows

Σ = 𝜃𝜃𝜃 ·
𝑇∑︁
𝑡=1

𝛿𝛿𝛿𝑡 (𝑥𝑥𝑥★) −
𝑇∑︁
𝑡=1

𝜃𝜃𝜃 𝑡 · 𝛿𝛿𝛿𝑡 (𝑥𝑥𝑥★) = −
𝑇∑︁
𝑡=1

𝜃𝜃𝜃 𝑡 · 𝛿𝛿𝛿𝑡 (𝑥𝑥𝑥★) (33.395)

≤ 1
𝑢★,min

∑︁
𝑖∈I

𝑇∑︁
𝑡=1

𝛿𝑡,𝑖 (𝑥𝑥𝑥★)1{𝛿𝑡,𝑖 (𝑥𝑥𝑥★)≥0} = O (VT ) . (33.396)

Bound 2. We alternatively bound Σ as follows

Σ =

𝐾∑︁
𝑘=1

∑︁
𝑡∈T𝑘

(
𝜃𝜃𝜃 − 𝜃𝜃𝜃 𝑡

)
· 𝛿𝛿𝛿𝑡 (𝑥𝑥𝑥★) =

𝐾∑︁
𝑘=1

∑︁
𝑡∈T𝑘

(
𝜃𝜃𝜃 − 𝜃𝜃𝜃min(T𝑘 )

)
· 𝛿𝛿𝛿𝑡 (𝑥𝑥𝑥★) +

𝐾∑︁
𝑘=1

∑︁
𝑡∈T𝑘

(
𝜃𝜃𝜃min(T𝑘 ) − 𝜃𝜃𝜃 𝑡

)
· 𝛿𝛿𝛿𝑡 (𝑥𝑥𝑥★)

≤ Δ𝛼

𝐾∑︁
𝑘=1






∑︁
𝑡∈T𝑘

𝛿𝛿𝛿𝑡 (𝑥𝑥𝑥★)







1

+ 𝑢max

𝐾∑︁
𝑘=1

∑︁
𝑡∈T𝑘



𝜃𝜃𝜃min(T𝑘 ) − 𝜃𝜃𝜃 𝑡




1, (33.397)
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where Δ𝛼 = max
{

𝜃𝜃𝜃 − 𝜃𝜃𝜃 ′

∞ : 𝜃𝜃𝜃,𝜃𝜃𝜃 ′ ∈ Θ

}
. We bound the term

∑𝐾
𝑘=1

∑
𝑡∈T𝑘



𝜃𝜃𝜃min(T𝑘 ) − 𝜃𝜃𝜃 𝑡




1 in the
above equation as

𝐾∑︁
𝑘=1

∑︁
𝑡∈T𝑘



𝜃𝜃𝜃min(T𝑘 ) − 𝜃𝜃𝜃 𝑡




1 ≤ 𝐿Θ
𝐾∑︁
𝑘=1

𝜂Θ,min(T𝑘 )
∑︁
𝑡∈T𝑘

(𝑡 −min (T𝑘)) ≤ 𝐿Θ
𝐾∑︁
𝑘=1

𝜂Θ,min(T𝑘 ) |T𝑘 |
2 (33.398)

= 𝐿Θ
𝑢

1+ 1
𝛼

★,min
𝛼

𝐾∑︁
𝑘=1

|T𝑘 |2

min (T𝑘)
, (33.399)

and replacing this upper-bound in Eq. (33.397) gives

Σ ≤ Δ𝛼

𝐾∑︁
𝑘=1






∑︁
𝑡∈T𝑘

𝛿𝛿𝛿𝑡 (𝑥𝑥𝑥★)







1

+ 𝑢max𝐿Θ
𝛼

𝑢
1+ 1

𝛼

★,min

𝐾∑︁
𝑘=1

|T𝑘 |2

min (T𝑘)︸    ︷︷    ︸∑
𝑘′<𝑘 |T𝑘 |+1

= O (WT ) . (33.400)

We combine Eq. (33.396), Eq. (33.400), and Eq. (33.394) to obtain

ℜ𝑇 (𝐹𝛼 ,AAA) ≤ sup
{𝑢𝑢𝑢𝑡 }𝑇𝑡=1∈U𝑇

{
1
𝑇

(
ℜ𝑇,X +ℜ𝑇,Θ

)}
+ O

(
min {VT ,WT }

𝑇

)
(33.401)

≤ sup
{𝑢𝑢𝑢𝑡 }𝑇𝑡=1∈U𝑇


1
𝑇

©­«1.5 diam (X)
√︄∑︁
𝑡∈T



𝑔𝑔𝑔X,𝑡

2
2 +

𝛼

𝑢
1+ 1

𝛼

★,min

𝑇∑︁
𝑡=1



𝑔𝑔𝑔Θ,𝑡

2
2

𝑡

ª®¬
 + O

(
min {VT ,WT }

𝑇

)
.

(33.402)

The following upper bounds hold

𝑔𝑔𝑔Θ,𝑡

2 =







(

1(
−𝜃𝑡,𝑖

)1/𝛼 − (𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 ))
)
𝑖∈I







2

≤
√
𝐼 max

{
1

𝑢
1/𝛼
★,min

− 𝑢min, 𝑢max −
1

𝑢
1/𝛼
★,max

}
= 𝐿Θ,

𝑔𝑔𝑔X,𝑡

2 = ∥𝜃𝜃𝜃 𝑡 · 𝜕𝑥𝑥𝑥𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )∥2 ≤

1
𝑢𝛼
★,min

∥𝜕𝑥𝑥𝑥𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )∥2 ≤
𝐿X
𝑢𝛼
★,min

.

Thus, the regret bound in Eq. (33.402) can be upper bounded as

ℜ𝑇 (𝐹𝛼 ,AAA) =
1
𝑇

sup
{𝑢𝑢𝑢𝑡 }𝑇𝑡=1∈U𝑇

1.5 diam (X) 𝐿X
√
𝑇

𝑢𝛼
★,min

+ 𝛼

𝑢
1+ 1

𝛼

★,min

𝑇∑︁
𝑡=1

𝐿2
Θ

𝑡

 +
min {VT ,WT }

𝑇

≤ 1
𝑇

sup
{𝑢𝑢𝑢𝑡 }𝑇𝑡=1∈U𝑇

1.5 diam (X) 𝐿X
√
𝑇

𝑢𝛼
★,min

+ 𝛼

𝑢
1+ 1

𝛼

★,min

𝐿2
Θ(log(𝑇 ) + 1)

 +
min {VT ,WT }

𝑇

= O
(

1
√
𝑇
+ min {VT ,WT }

𝑇

)
.

This concludes the proof.
□
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34 Proof of Theorem 5.4.3 (Lower Bound)

Proof.

Consider a scenario with a single player I = {1}, X = {𝑥 ∈ R, |𝑥 | ≤ 1}, and the utility selected by
an adversary at time slot 𝑡 ∈ T is given by

𝑢𝑡 (𝑥) = 𝑤𝑡𝑥 + 1, where𝑤𝑡 ∈ {−1, +1} . (34.403)

The weight 𝑤𝑡 is selected in {−1, +1} uniformly at random for 𝑡 ∈ T . A policy A selects the
sequence of decisions {𝑥𝑡 }𝑇𝑡=1 and has the following fairness regret

E

[
max
𝑥∈X

𝑓𝛼

(
1
𝑇

𝑇∑︁
𝑡=1

𝑢𝑡 (𝑥)
)
− 𝑓𝛼

(
1
𝑇

𝑇∑︁
𝑡=1

𝑢𝑡 (𝑥𝑡 )
)]
≥ E

[
max
𝑥∈X

𝑓𝛼

(
1
𝑇

𝑇∑︁
𝑡=1

𝑢𝑡 (𝑥)
)]
− 𝑓𝛼

(
E

[
1
𝑇

𝑇∑︁
𝑡=1

𝑢𝑡 (𝑥𝑡 )
])

︸                     ︷︷                     ︸
= 0

= E

[
𝑓𝛼

(
max
𝑥∈X

1
𝑇

𝑇∑︁
𝑡=1

𝑢𝑡 (𝑥)
)]

= E

[
𝑓𝛼

(
1
𝑇

����� 𝑇∑︁
𝑡=1

𝑤𝑡,1

����� + 1
)]
(a)
≥ E

[
1
𝑇

����� 𝑇∑︁
𝑡=1

𝑤𝑡,1

�����
] (

21−𝛼 − 1
1 − 𝛼

)
(b)
≥

(
21−𝛼−1

1−𝛼

)
√

2𝑇

= Ω

(
1
√
𝑇

)
.

Inequality (a) is obtained considering 𝑓𝛼 (𝑥 +1) is concave in 𝑥 , 𝑓𝛼 (0+1) = 0, and 𝑓𝛼 (𝑥 +1) ≥ 𝑓𝛼 (2)𝑥
for 𝑥 ∈ [0, 1]. Inequality (b) is obtained through Khintchine inequality. A lower bound on the
fairness regret (5.8) can be established:

ℜ𝑇 (𝐹𝛼 ,AAA) ≥ E
[
max
𝑥∈X

𝑓𝛼

(
1
𝑇

𝑇∑︁
𝑡=1

𝑢𝑡 (𝑥)
)
− 𝑓𝛼

(
1
𝑇

𝑇∑︁
𝑡=1

𝑢𝑡 (𝑥𝑡 )
)]

= Ω

(
1
√
𝑇

)
. (34.404)

This concludes the proof.

□

35 Proof of Corollary 5.4.4

Proof.

Expected regret. When the utilities are i.i.d., we have the following

E [𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥)] = 𝑢𝑢𝑢,∀𝑡 ∈ T , (35.405)

for some fixed utility𝑢𝑢𝑢 ∈ U. In the proof Theorem 33, in particular, in Eq. (33.394) it holds

𝐹𝛼

(
1
𝑇

𝑇∑︁
𝑡=1
𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)

)
− 𝐹𝛼

(
1
𝑇

𝑇∑︁
𝑡=1
𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )

)
≤ ℜ𝑇,X

𝑇
+ ℜ𝑇,Θ

𝑇
+ 1
𝑇

𝑇∑︁
𝑡=1

(
𝜃𝜃𝜃 𝑡 − 𝜃𝜃𝜃

)
·𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★). (35.406)
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Taking the expectation of both sides gives

E

[
𝐹𝛼

(
1
𝑇

𝑇∑︁
𝑡=1
𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)

)
− 𝐹𝛼

(
1
𝑇

𝑇∑︁
𝑡=1
𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )

)]
≤ E

[
ℜ𝑇,X
𝑇
+ ℜ𝑇,Θ

𝑇

]
+ E

[
1
𝑇

𝑇∑︁
𝑡=1

(
𝜃𝜃𝜃 𝑡 − 𝜃𝜃𝜃

)
·𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)

]
.

(35.407)

The variables 𝜃𝜃𝜃 𝑡 and𝑢𝑢𝑢𝑡 are independent for 𝑡 ∈ T , thus we have

E

[
1
𝑇

𝑇∑︁
𝑡=1

(
𝜃𝜃𝜃 𝑡 − 𝜃𝜃𝜃

)
·𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)

]
= E

[(
𝜃𝜃𝜃 − 𝜃𝜃𝜃

)
·𝑢𝑢𝑢 (𝑥𝑥𝑥★)

]
= 0. (35.408)

Through Eq. (34.403), it holds

E

[
𝐹𝛼

(
1
𝑇

𝑇∑︁
𝑡=1
𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)

)
− 𝐹𝛼

(
1
𝑇

𝑇∑︁
𝑡=1
𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )

)]
= O

(
1
√
𝑇

)
. (35.409)

This concludes the first part of the proof.
Almost-sure zero-regret. Let Δ = (𝑢max − 𝑢min), T = T1 ∪ T2 ∪ · · · ∪ T𝐾 where 𝐾 = 𝑇 2/3 and
|T𝑘 | = 𝜅 = 𝑇 1/3 for 𝑘 ∈ {1, 2, . . . , 𝐾}, and let 𝛽 ∈ (0, 1/6). Employing Hoeffding’s inequality we
can bound the l.h.s. term in Eq. (5.9) for 𝑖 ∈ I as

P

(�����∑︁
𝑡∈T𝑘

𝛿𝑡,𝑖 (𝑥𝑥𝑥)
����� ≤ Δ𝑇 1/6+𝛽

)
≥ 1 − 2 exp

(
−2𝑇 1/3+2𝛽

((𝑇 − 𝜅)𝜅2/𝑇 2 + 𝜅 (𝜅/𝑇 − 1)2)

)
= 1 − 2 exp

(
−2𝑇 1/3+2𝛽

(𝜅 − 𝜅2/𝑇 )

)
(35.410)

= 1 − 2 exp
(
−2𝑇 1/3+2𝛽(
𝑇 1/3 −𝑇 −1/3) ) . (35.411)

Hence, it follows

P

(
𝐾∑︁
𝑘=1

∑︁
𝑖∈I

�����∑︁
𝑡∈T𝑘

𝛿𝑡,𝑖 (𝑥𝑥𝑥)
����� ≤ Δ𝑇 5/6+𝛽

)
≥

(
1 − 2 exp

(
−2𝑇 1/3+2𝛽(

𝑇 1/3 − 2𝑇 −1/3) )) 𝐼𝑇 2/3

≥ 1 − 2𝐼𝑇 2/3 exp
(
−2𝑇 1/3+2𝛽(
𝑇 1/3 −𝑇 −1/3) ) Bernoulli’s inequality

≥ 1 − 2𝐼𝑇 2/3 exp
(
−2𝑇 1/3+2𝛽

𝑇 1/3

)
≥ 1 − 2𝐼𝑇 2/3 exp(−2𝑇 2𝛽).

It follows from the above equation paired with Eq. (5.9)

WT = O
(
𝑇 5/6+𝛽 +𝑇 2/3

)
= O

(
𝑇 5/6+𝛽

)
, w.p. 𝑝 ≥ 1 − 2𝐼𝑇 2/3 exp(−2𝑇 2𝛽). (35.412)
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Thus, for any 𝛽 ∈ (0, 1/6) and 𝑇 →∞, it holds

WT
𝑇
≤ 0, w.p. 𝑝 ≥ 1. (35.413)

Note that given that WT ≥ 0 in Eq. (5.10), it holds lim𝑇→∞WT = 0 w.p. 𝑝 = 1. Therefore, it
follows from Theorem 33 for 𝑇 →∞

ℜ𝑇 (𝐹𝛼 ,AAA) = O
(

1
√
𝑇
+ min {VT ,WT }

𝑇

)
= O

(
1
√
𝑇
+ WT

𝑇

)
≤ 0, w.p. 1. (35.414)

This concludes the proof.

□

36 Additional Experimental Details

Table 1: Specification of the network topologies used in experiments.

Topologies |C| |E | 𝑘𝑐 |Q𝑖 |
��∪𝑓 ∈FΛ𝑓 (C)�� 𝑤 Figure

Cycle 3 3 5–5 1 1 1–2 Fig. 5.5 (a)
Tree-1–Tree-3 13 12 1–5 2–5 1 1–9 Fig. 5.5 (b)–(d)

Grid 9 12 1–5 2 1 1–7 Fig. 5.5 (e)
Abilene 12 13 1–5 2 2 1–8 Fig. 5.5 (f)
GEANT 22 33 1–5 3 2 1–9 Fig. 5.5 (g)

(a) Stationary (b) Non-Stationary

Figure 36.13: Request traces stationary (a) and non-stationary (b) configured with 𝜎 = 1.2,𝑇 = 5000,
𝐹 = 20, 𝐷 = 100. Each dot indicates a requested file.
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37 Departing and Arriving Agents

The system model in Section 5.3.3 supports departing and arriving agents. Consider a population of
agents I, the system may only observe a subset of the agents as the participating agents, I𝑡 ⊂ I at
time 𝑡 , and the utility of absent agents is simply 𝑢𝑡,𝑖 ( · ) = 0. For example, in the extreme scenario
where a single agent 𝑡 ∈ T is participating at a given time slot, the long-term fairness objective (5.5)
falls back to the slot-fairness objective (5.4), i.e., 𝐹𝛼 (

∑
𝑡∈T𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )) =

∑
𝑡∈T 𝑓𝛼

(
𝑢𝑡,𝑡 (𝑥𝑥𝑥𝑡 )

)
where the

fairness is ensured across the different agents arriving at different timeslots 𝑡 ∈ T . It is easy to
verify that even in the case when the set of agents I is unknown to the controller in advance, one
could augment the dual space with an extra dimension each time a new user appears, and the same
guarantees hold.

38 Time-Complexity of Algorithm 5.1

Algorithm 1 applied to the virtualized caching system application has a time complexity O
(
𝐶𝐹 2) ,

where𝐶 is number of caches and 𝐹 is the number of files in the catalog; the most expensive operation
in Algorithm 1 is the projection step in line 8 that corresponds to the Euclidean projection onto a
capped simplex, and this can be performed in O

(
𝐹 2) steps [56] for each cache state. Despite the high

time complexity (𝐹 is typically large), in practice solvers (e.g., CVXPY [180]) supportwarm-start that
speeds up the projection when the warm-start parameters are close to the ones of obtained by the
solution, and since Algorithm 1 is iterative and the cache states do not severely change, typically
a lower computational cost is achieved. Moreover, the proposed caching model in Section 5.6 sup-
ports request batching, where a batch includes the requests arriving between two consecutive cache
updates. Batching amortizes the computational cost of the different policies, reducing the cost per
request by the batch size (𝑅𝑡 at time slot 𝑡 ).
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