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Introduction

The field of cavity optomechanics explores the mutual interaction of electromagnetic radiation and mechanical vibrations. This coupling originates from optical forces exerted by light carrying a momentum, such as the radiation pressure initially postulated by Kepler in 1619 and experimentally demonstrated in 1901 by Lebedew [START_REF] Lebedew | Untersuchungen über die Druckkräfte des Lichtes[END_REF], and Nichols and Hulls [START_REF] Nichols | A Preliminary Communication on the Pressure of Heat and Light Radiation[END_REF]. The principle of stimulated emission described by Einstein in 1917 [START_REF] Einstein | On the quantum theory of radiation[END_REF], and the optical pumping process proposed by Kastler in 1950 [START_REF] Kastler | Quelques suggestions concernant la production optique et la détection optique d'une inégalité de population des niveaux de quantifigation spatiale des atomes. Application à l'expérience de Stern et Gerlach et à la résonance magnétique[END_REF], experimentally proven with the help of Brossel and Winter in 1952 [START_REF] Brossel | Gréation optique d'une inégalité de population entre les sous-niveaux Zeeman de l'état fondamental des atomes[END_REF], and demonstrated for the amplification of light by Theodore Maiman in a ruby crystal in 1960 [START_REF] Maiman | Stimulated Optical Radiation in Ruby[END_REF], have led to the emergence of the laser. This allowed to highlight the trapping and control of dielectric particles, via Ashkin's experiments in 1978 [START_REF] Ashkin | Trapping of Atoms by Resonance Radiation Pressure[END_REF], as well as the optical cooling of atomic motion, via the work of Stenholm in 1986 [START_REF] Stenholm | The semiclassical theory of laser cooling[END_REF]. Braginsky then studied the dynamical effect of radiation pressure in the context of interferometers, and revealed, in the 1970s, the possibility to induce damping or amplification of mechanical motion, using an optical cavity to enhance the optical force [START_REF] Braginski | Ponderomotive Effects of Electromagnetic Radiation[END_REF]. The first implementation of an optomechanical cavity in the optical domain with a suspended back mirror of a Fabry-Perot cavity is conducted in 1983 by Dorsel et al., with an observation of an optical bistability due to the radiation pressure [START_REF] Dorsel | Optical Bistability and Mirror Confinement Induced by Radiation Pressure[END_REF].

The first application proposed by Braginsky concerns the large scale interferometers used for gravitational wave detection, to precisely detect the deformation of macroscopic suspended mirrors (measured strain sensitivity below 10 -22 Hz -1/2 for the advanced LIGO [START_REF] Collaboration | Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light[END_REF]). With the evolution of the microfabrication processes, the prospect of drastically increasing the optomechanical interaction by miniaturizing the cavities down to the micro-and nanometric scales was born. This allowed the observation and control of the quantum state of a mechanical resonator, but also the development of various ultrasensitive sensors based on optomechanical transduction. The underlying motivation of this thesis work is indeed the silicon integration of an optomechanical cavity for sensing applications.

Cavity optomechanics

The basic physical principle of the optomechanical coupling is explained in the context of an optical cavity coupled to a mechanical resonator. The consequences of this interaction on the mechanical dynamics are then discussed.

Physical principle

A generic optomechanical system, consisting of an optical cavity and a mechanical resonator of respective frequency ω cav and ω m , is considered. As an illustration, the Fabry-Perot with a movable back mirror (or attached to a mechanical resonator) is sketched in Fig. 1. All the optomechanical cavities are often compared to this basic setup, which has been extensively studied since its first implementation by Dorsel et al. [START_REF] Dorsel | Optical Bistability and Mirror Confinement Induced by Radiation Pressure[END_REF]. Before starting the discussion, the important properties of optical cavities are introduced:

• The resonance frequencies ω cav = 2πf cav = 2πc/λ cav , where c is the velocity of light and λ cav is the resonance wavelength (which depends, for the Fabry-Perot, on the distance between the two mirrors), • The quality factor Q opt = f cav /κ, where κ is the optical cavity decay rate or linewidth (or cavity bandwidth, related to the optical resonance peak width), quantifies the optical losses, and how narrow a given resonance peak is,

• The optical finesse F is fully related to the optical losses (independent of the cavity length or size), and quantifies how narrow a given resonance peak is in comparison to the spectral distance with other resonances. For a Fabry-Perot, it can be seen as the number of round-trips of light within the cavity.

In the same way, the mechanical dynamics is characterized by various important parameters:

• The resonance frequency ω m = 2πf m ,

• The quality factor Q m = f m /γ m , where γ m is the mechanical damping rate or linewidth, which quantifies the mechanical dissipation losses,

• The effective mass m eff , defined as the mass that is effectively interacting with the driving force.

By exciting this cavity with an incident laser at optical resonance, a strong intra-cavity energy is induced, enhancing the radiation pressure force exerted by the light on the back mirror. This force consists of a momentum transfer between the photons (light elementary particles) and the mechanical resonator. The latter's position is modulated around its equilibrium position, perturbing the optical resonance condition, related to the distance between the two mirrors. The stored intra-cavity energy is then also modulated. A mutual dependency between light and mechanical vibrations is thus observed, by means of an energy transfer between the radiation field and the oscillator: one can hence speak of coupling between the optical cavity and the mechanical resonator.

Considering the modulation of the optical resonance frequency with the mechanical motion, this coupling, denoted by g om , is defined as:

g om = 1 2π ∂ω cav ∂u m (1)
where u m is the mechanical displacement amplitude. This interaction is termed dispersive as it induces dynamical changes in the spectral response of the optical cavity. g om is expressed in Hz/m, for an optical frequency shift per unit of mechanical displacement. A similar quantity can be defined:

g 0 = x ZPF g om = g om h 2m eff ω m (2) 
x where h = h/2π is the reduced Planck constant, x ZPF is the mechanical zero-point fluctuation amplitude that quantifies the displacement amplitude of the mechanical resonator at its lowest energy state. g 0 is the vacuum optomechanical coupling rate that quantifies the interaction of a single photon with a single phonon (mechanical elementary particle), and usually serves as a criterium to compare multiple optomechanical systems independently of the mechanical resonator. This quantity is expressed in Hz unit, and is used later on in this introduction to compare miscellaneous setups from the literature. In the case of the Fabry-Perot with a movable mirror, g om ∝ ω cav /L cav [START_REF] Cohadon | Cooling of a Mirror by Radiation Pressure[END_REF], where L cav is the cavity length. This basic expression illustrates an important property verified by all optomechanical setups: the optomechanical interaction (g 0 , without loss of generality) increases when reducing their physical dimensions. This explains the trend to the micro-and nano-miniaturization observed in the optomechanical community in the past two decades, and justifies the underlying motivation of this thesis work.

Multiple dissipative optomechanical interactions also occur in systems where the optical losses are modulated by the mechanical motion (due to light scattering, absorption, or evanescent incident coupling fluctuations). Several illustrations of this particular scheme are also given in the following list of optomechanical setups.

Consequences of the optomechanical couplings

The optical force does not directly drive the mechanical resonator, but disturbs its motion, initially induced by a given force or, alternatively, by the thermal fluctuations of its surrounding environment (thermomechanical noise). The optomechanical couplings induce a dependency of this mechanical spectrum with the intra-cavity energy, and thus with the incident laser power. The effect of the optical force on the mechanical dynamics is called the dynamical backaction. There are two main consequences of these interactions:

• The optical spring effect: the optical force changes the mechanical stiffness of the resonator, and therefore its resonance frequency (similar to the electrostatic spring effect with micro-electro-mechanical resonators [START_REF] Nemirovsky | A methodology and model for the pull-in parameters of electrostatic actuators[END_REF]).

• The optomechanical damping rate: the optical force is responsible for an optomechanical damping rate that adds to the intrinsic mechanical damping. This rate is either positive or negative, inducing, respectively, a cooling or an amplification (heating) of the mechanical motion.

Both quantities depend on the optical detuning ∆ = ω L -ω cav between the laser emission frequency, denoted by ω L , and the optical cavity resonance frequency ω cav , with maxima at non-zero detuning. Their amplitude is strongly dependent on the ratio κ/ω m (cavity bandwidth over the mechanical resonance frequency). The mechanical motion indeed modulates the intracavity optical field, which induces, in spectral terms, a series of motional sidebands at ±nω m around the incident laser emission frequency. In most optomechanical experiments, only the first order sidebands are relevant (weak perturbation regime [START_REF] Aspelmeyer | Cavity optomechanics[END_REF], see Fig. 2). The amplitude of these sidebands represents in practice the measurable optical signal induced by the mechanical motion. One can observe (in Fig. 2) that if κ ≫ ω m , the mechanical sidebands remain in the vicinity of the laser emission frequency, and are barely discernible for every optical detuning. This situation is termed the unresolved sideband regime. In the opposite situation (κ ≪ ω m ), the sidebands are well-separated from the carrier. This situation is the resolved sideband regime. This last configuration enables larger optomechanical effects. The optomechanical damping rate can be understood in terms of energy transfer between the optical and mechanical resonators. The optical force results in an energy transfer between the mechanical resonator and the optical field. This exchange can occur in both ways. A xi detuned laser induces asymmetry between the sidebands' amplitudes. For a blue detuned laser (∆ > 0 in frequency units, see Fig. 2 (a)), the laser is transferring its energy to the mechanical resonator. The mechanical motion is heated (or amplified). For a red detuned laser, (∆ < 0 in frequency units, see Fig. 2 (b)), the energy transfer occurs from the mechanical resonator to the optical field. The optical force counteracts the motion: the mechanical resonator is cooled (or damped). The interest of the resolved sideband regime becomes more intuitive: the imbalance between the two sidebands is higher, with one of them almost suppressed.

Figure 2. Schematic illustration of the energy transfer in optomechanical cavities in the case of a (a) mechanical mode amplification with a blue-detuned laser and (b) mechanical mode cooling with a red-detuned laser, in the resolved sideband regime (κ ≪ ω m ). Based on [START_REF] Aspelmeyer | Cavity optomechanics[END_REF].

In the case of amplification, the mechanical overall damping is reduced by the optomechanical interaction. Above a threshold incident optical power, the damping is fully compensated by the optical force and the mechanical oscillations saturate at a fixed amplitude. A steadystate is reached: the optomechanical cavity enters in the self-induced (or self-sustained, or backaction induced) oscillation regime, characterized by a narrow frequency response. In this regime, depending on the detuning, the steady-state amplitude can take multiple stable values (dynamical multistability), but the optical force can also induce parametric instability, and even chaotic mechanical behavior (random motion) for sufficiently high optical power [START_REF] Aspelmeyer | Cavity optomechanics[END_REF][START_REF] Gardiner | Quantum Noise[END_REF][START_REF] Elste | Quantum noise interference and backaction cooling in cavity nanomechanics[END_REF].

Optomechanical cooling is an interesting technique for quantum control of a mechanical oscillator near its ground energy state. The effective mechanical damping decrease is physically related to a decrease of the phonon number. In the ideal case without any thermal excitation of the mechanical resonator by its surrounding environment, the minimum achievable phonon number n min , in the presence of a purely dispersive interaction, is proportional to (κ/ω m ) 2 in the resolved sideband regime, or to κ/ω m in the unresolved situation [START_REF] Aspelmeyer | Cavity optomechanics[END_REF][START_REF] Gardiner | Quantum Noise[END_REF][START_REF] Elste | Quantum noise interference and backaction cooling in cavity nanomechanics[END_REF]. This scheme is therefore only possible in the resolved sideband regime (otherwise n min ≫ 1). In the presence of a dissipative interaction, the problem is trickier, and cooling schemes also exist without a good resolution of the motional sidebands [START_REF] Yan | Dissipative optomechanical coupling between a single-wall carbon nanotube and a high-q microcavity[END_REF][START_REF] Weiss | Strong-coupling effects in dissipatively coupled optomechanical systems[END_REF][START_REF] Weiss | Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems[END_REF][START_REF] Liu | Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics[END_REF][START_REF] Tagantsev | Dissipative versus dispersive coupling in quantum optomechanics: Squeezing ability and stability[END_REF][START_REF] Mehmood | Force sensing in a dissipative optomechanical system in the presence of parametric amplifier's pump phase noise[END_REF].

It should be noticed that there are various other underlying optomechanical effects not mentioned here, such as the static bistability, or in the strong coupling regime (g 0 ≫ κ): the normal mode splitting or the optomechanical induced transparency [START_REF] Aspelmeyer | Cavity optomechanics[END_REF]. The optical spring effect and optomechanical damping rate remain however the most studied by the setups from the literature, such as those listed in the following.

Optomechanical setups

Considering the large variety of optomechanical cavities, the most emblematic setups are selected and briefly described with their underlying motivation. The reader can refer to previous reviews [START_REF] Aspelmeyer | Cavity optomechanics[END_REF][START_REF] Kippenberg | Cavity Optomechanics: Back-Action at the Mesoscale[END_REF] or the given references for further details.

Suspended mirrors

The most basic implementation of an optomechanical cavity consists of suspending the back-mirror of a Fabry-Perot cavity. Following the studies on gravitational wave detectors, the first realization of this setup has been carried out by Dorsel et al. with an observation of the optical bistability on a massive mirror of 60 mg [START_REF] Dorsel | Optical Bistability and Mirror Confinement Induced by Radiation Pressure[END_REF], and led to first implementations of optomechanical cooling of similar suspended mirrors (see for instance the work of Cohadon [START_REF] Cohadon | Cooling of a Mirror by Radiation Pressure[END_REF]). With the development of microelectronic processes, major efforts have been made in the integration of highly reflective coatings deposited on suspended resonators, to achieve both a high finesse optical cavity, and a high mechanical quality factor. Further radiation pressure cooling experiments have been performed on beam geometries (doubly [START_REF] Arcizet | High-Sensitivity Optical Monitoring of a Micromechanical Resonator with a Quantum-Limited Optomechanical Sensor[END_REF][START_REF] Arcizet | Radiation-pressure cooling and optomechanical instability of a micromirror[END_REF][START_REF] Arcizet | Mesure optique ultrasensible et refroidissement par pression de radiation d´un micro-résonateur mécanique[END_REF] or simply [START_REF] Gröblacher | Radiationpressure self-cooling of a micromirror in a cryogenic environment[END_REF][START_REF] Cole | Monocrystalline Al_xGa_1-xAs heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime[END_REF] clamped, see, respectively, Fig. 3 (a) and(b)). To increase the optomechanical interaction, different strategies have been applied to reduce the effective mass. Among them are the localized highly reflective coating on a bridge geometry [START_REF] Gröblacher | Radiationpressure self-cooling of a micromirror in a cryogenic environment[END_REF][START_REF] Cole | Monocrystalline Al_xGa_1-xAs heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime[END_REF], the micropillar on a suspended membrane [START_REF] Kuhn | A micropillar for cavity optomechanics[END_REF][START_REF] Kuhn | Free-space cavity optomechanics in a cryogenic environment[END_REF], and the trampoline resonator (see [START_REF] Kleckner | Optomechanical trampoline resonators[END_REF] Fig. 3 (c),(d) and (e)). Despite all the efforts deployed on these suspended mirrors, the effective mass remains in the order of 0.1 -1 µg (several orders of magnitude higher compared to the following setups), with quality factors around 10 4 (except for the trampoline resonator for which Q m reaches 10 6 ), which limits the achievable mechanical displacement sensitivity. [START_REF] Arcizet | High-Sensitivity Optical Monitoring of a Micromechanical Resonator with a Quantum-Limited Optomechanical Sensor[END_REF]. (b) Simply clamped beam (or cantilever) of Gröblacher et al. [START_REF] Gröblacher | Radiationpressure self-cooling of a micromirror in a cryogenic environment[END_REF]. (c) Bridge resonator with a localized highly reflective coating, by Gröblacher et al. [START_REF] Gröblacher | Observation of strong coupling between a micromechanical resonator and an optical cavity field[END_REF]. (d) Micropillar on a suspended membrane of Kuhn et al. [START_REF] Kuhn | A micropillar for cavity optomechanics[END_REF]. (e) Trampoline resonator of Kleckner et al. [START_REF] Kleckner | Optomechanical trampoline resonators[END_REF].
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Nanometric resonator inside an optical cavity

To overcome the limitations imposed by the suspended back mirror-based Fabry-Perot, one can dispose a partially reflective mechanical resonator between two static mirrors. In this situation, the optomechanical interaction occurs with the perturbation of the intra-cavity field by the mechanical element. The main interest of this geometry in regard to the previous one is the possibility to optimize the optical finesse independently of the mechanical quality factor. Mechanical resonator inside an optical cavity from the literature: (a) silicon nitride membrane-in-the-middle setup, with a bulk Fabry-Perot cavity [START_REF] Wilson | Cavity optomechanics with high-stress silicon nitride films[END_REF], or fiber based devices with (b) a carbon-based nanorod of Favero et al. [START_REF] Favero | Fluctuating nanomechanical system in a high finesse optical microcavity[END_REF], (c) a silicon nitride trampoline resonator of Reinhardt et al. [START_REF] Reinhardt | Ultralow-noise SiN trampoline resonators for sensing and optomechanics[END_REF], (d) silicon nitride stripes of Rochau et al. [START_REF] Rochau | Dynamical backaction in an ultrahigh-finesse fiber-based microcavity[END_REF], and (e) silicon carbide nanowires of Fogliano et al. [START_REF] Fogliano | Mapping the cavity optomechanical interaction with subwavelength-sized ultrasensitive nanomechanical force sensors[END_REF].

The pioneer experiment of Jayich et al. used a thin silicon nitride membrane (50 nm thick) characterized by high quality factors (10 6 ) in a middle of a bulk Fabry-Perot made of two highly reflective concave mirrors [START_REF] Jayich | Dispersive optomechanics: a membrane inside a cavity[END_REF]. This membrane-in-the-middle (MIM) architecture is an excellent platform for exploring the quantum states of the membrane with the possibility of quantum nondemolition measurement of its ground state, by exploiting the optomechanical cooling and the strong quadratic optomechanical coupling (defined in this situation by ∂ 2 ω cav /∂z 2 , see [START_REF] Milburn | Quantum nondemolition measurements via quadratic coupling[END_REF][START_REF] Deng | Quantum nondemolition measurement of microwave photons using engineered quadratic interactions[END_REF][START_REF] Yanay | Quantum backaction and noise interference in asymmetric two-cavity optomechanical systems[END_REF]). This geometry has been reproduced multiple times in the literature in a bulk Fabry-Perot cavity to study its potential for optomechanical cooling, for instance by Wilson et al. (see Fig. 4 (a)), who dealt with the coupling efficiency between the optical and mechanical modes (mode overlap) to enhance the interaction [START_REF] Wilson | Cavity optomechanics with high-stress silicon nitride films[END_REF][START_REF] Wilson | Cavity optomechanics with stoichiometric SiN films[END_REF]. To further increase the coupling, a huge variety of high to ultra-high finesse (10 4 -10 5 ) fiber-based systems have been developed, xiv with highly reflective coated fiber concave end facets, and with various mechanical resonators: silicon nitride membranes [START_REF] Flowers-Jacobs | Fiber-cavity-based optomechanical device[END_REF][START_REF] Shkarin | Optically mediated hybridization between two mechanical modes[END_REF], carbon-based nanorods (see Fig. 4 (b)) [START_REF] Favero | Fluctuating nanomechanical system in a high finesse optical microcavity[END_REF], silicon nitride trampoline (see Fig. 4 (c)) [START_REF] Reinhardt | Ultralow-noise SiN trampoline resonators for sensing and optomechanics[END_REF], silicon nitride stripes (see Fig. 4 (d)) [START_REF] Rochau | Dynamical backaction in an ultrahigh-finesse fiber-based microcavity[END_REF], or silicon carbide (SiC) nanowires (see Fig. 4 (e)) [START_REF] Fogliano | Mapping the cavity optomechanical interaction with subwavelength-sized ultrasensitive nanomechanical force sensors[END_REF]. The MIM setup is the main focus of this thesis work.

Suspended whispering gallery mode resonators

The previous geometries tend more and more towards fibered approaches, considering the small optical modal volume enhancing the optomechanical interaction. Considering this trend, silicon integrated optical whispering gallery mode microcavities have been of great interest to exploit the effect of optical forces. First demonstrations of radiation pressure driven mechanical oscillations have been performed with microtoroid [START_REF] Rokhsari | Radiation-pressure-driven micro-mechanical oscillator[END_REF][START_REF] Carmon | Temporal Behavior of Radiation-Pressure-Induced Vibrations of an Optical Microcavity Phonon Mode[END_REF], with cooling of the mechanical motion using dynamical backaction (see Fig. 5 (a)) [START_REF] Schliesser | Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction[END_REF][START_REF] Schliesser | Resolvedsideband cooling of a micromechanical oscillator[END_REF][START_REF] Schliesser | Resolvedsideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit[END_REF]. A suspended ring resonator can also exhibit high optomechanical interaction using the optical gradient force resulting from the presence of an optical field gradient (see Fig. 5 (b)). Similar structures have been developed ever since, such as the microdisk [START_REF] Ding | High frequency gaas nano-optomechanical disk resonator[END_REF] and the microsphere [START_REF] Park | Resolved-sideband and cryogenic cooling of an optomechanical resonator[END_REF][START_REF] Jiang | Chip-based silica microspheres for cavity optomechanics[END_REF] (see Fig. 5 (c) and(d)). Note that the microsphere geometry has also been studied within a cantilever-like pendulum setup [START_REF] Madugani | Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light[END_REF][START_REF] Li | Characterization and Testing of a Micro-g Whispering Gallery Mode Optomechanical Accelerometer[END_REF]. The efficiency of these microcavities comes from their low masses in the nanogram range and to their ability to confine high optical power densities in a small volume. Their high mechanical resonance frequencies (10 2 -10 3 MHz) combined with the ultra high optical quality factors (10 8 for microtoroids) allow easy access to the resolved sideband regime that is essential for optomechanical cooling. [START_REF] Schliesser | Resolvedsideband cooling of a micromechanical oscillator[END_REF], (b) ring resonator [START_REF] Rosenberg | Static and dynamic wavelength routing via the gradient optical force[END_REF], (c) microdisk [START_REF] Ding | High frequency gaas nano-optomechanical disk resonator[END_REF], and (d) microsphere [START_REF] Jiang | Chip-based silica microspheres for cavity optomechanics[END_REF].

xv

Near-field cavity optomechanics

Another way to take advantage of the excellent optical properties of the previous systems consists of approaching a mechanical resonator into the vicinity of a high quality factor optical microcavity, inducing an optomechanical interaction through the evanescent near field of the guided mode. High interaction has been shown with a low mass (in the picogram range) nanostring coupled to a microtoroid (see Fig. 6 (a)) [START_REF] Anetsberger | Near-field cavity optomechanics with nanomechanical oscillators[END_REF], or nanobeam coupled to a microdisk (see Fig. 6 (b)) [START_REF] Schilling | Near-Field Integration of a SiN Nanobeam and a SiO 2 Microcavity for Heisenberg-Limited Displacement Sensing[END_REF] (see also the work of Leoncino with a beam coupled to a ring resonator [START_REF] Leoncino | Optomechanical transduction applied to M/NEMS devices[END_REF]). The gradient optical force can also play an important role in these systems, inducing a dispersive, but also a dissipative (or reactive) coupling, with a modulation of the optical losses by the mechanical motion. It has been demonstrated by a pioneer experiment with a nanomechanical beam waveguide coupled to a microdisk (see Fig. 6 (c)) [START_REF] Li | Reactive cavity optical force on microdiskcoupled nanomechanical beam waveguides[END_REF]: the motion of the beam induces a variation of the coupling efficiency between the guided modes of the waveguide and the disk, resulting in a modulation of the evanescent optical field gradient. Both couplings have also been achieved with a graphene membrane coupled to a microsphere (see Fig. 6 (d)) [START_REF] Cole | Evanescent-Field Optical Readout of Graphene Mechanical Motion at Room Temperature[END_REF]. These near-field optomechanical setups are excellent platforms to exploit the optomechanical interaction, but their realization using microelectronic technologies remains a major challenge as they require the integration of surfaces spaced by a gap below λ/10 (approximately the evanescent decay length) [START_REF] Schilling | Near-Field Integration of a SiN Nanobeam and a SiO 2 Microcavity for Heisenberg-Limited Displacement Sensing[END_REF][START_REF] Li | Reactive cavity optical force on microdiskcoupled nanomechanical beam waveguides[END_REF]. [START_REF] Anetsberger | Near-field cavity optomechanics with nanomechanical oscillators[END_REF], (b) thin nanomechanical beam coupled to a microdisk [START_REF] Schilling | Near-Field Integration of a SiN Nanobeam and a SiO 2 Microcavity for Heisenberg-Limited Displacement Sensing[END_REF], (c) nanomechanical beam waveguide coupled to a microdisk [START_REF] Li | Reactive cavity optical force on microdiskcoupled nanomechanical beam waveguides[END_REF], and graphene membrane coupled to a microsphere [START_REF] Cole | Evanescent-Field Optical Readout of Graphene Mechanical Motion at Room Temperature[END_REF].

Photonic crystal-based systems

Photonic crystals are optical structures with a periodical distribution of the refractive index. They can be made in one, two or three dimensions. In two dimensions, the fabrication often consists of etching holes on a thin film. The propagation of an optical wave within these structures is governed by their geometrical characteristics: the spatial period and the hole sizes. Depending on these, light in specific wavelength ranges is allowed to propagate along the lateral or transverse directions. It is then possible to manipulate the propagating light by modifying the geometrical properties: introducing a local defect (disruption of the periodicity) enables its confinement in a localized sub-wavelength size area, inducing a high quality factor (Q ≈ 10 5 -10 6 ) optical resonance. A suspended two dimensional defect photonic crystal then provides an ideal platform for cavity optomechanics. Pairs of periodically patterned suspended doubly clamped beams (zipper-like cavity, see Fig. 7 (a)) [START_REF] Eichenfield | A picogramand nanometre-scale photonic-crystal optomechanical cavity[END_REF] have presented an excellent optomechanical transduction with a large optical spring effect. Split-beam nanocavities (see Fig. 7 (a)) have shown a great potential of controlling the dispersive and dissipative optomechanical interactions by varying the distance between the input tapered fiber (used to couple the incident light into the optical resonance mode) and the cavity [START_REF] Hryciw | Tuning of nanocavity optomechanical coupling using a near-field fiber probe[END_REF]. The defect is induced, in the two previous cases, by the gap between the two beams. Another structure is the photonic crystal slab characterized by a periodic distribution on a suspended membrane. Large optomechanical coupling rates have been achieved with a slotted slab (see Fig. 7 (c)) [START_REF] Safavi-Naeini | Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity[END_REF][START_REF] Winger | A chip-scale integrated cavity-electrooptomechanics platform[END_REF]. Another common way to create a defect in these structures is to omit three holes along a line of the lattice (L3 cavity, see Fig. 7 (d) and(e)). Dispersive and dissipative interactions have been demonstrated with such a suspended slab over a waveguide (see Fig. 7 (d)) [START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF][START_REF] Tsvirkun | Optomechanics in hybrid fully-integrated two-dimensional photonic crystal resonators[END_REF]. To further benefit from the optical power density localized in this defect, the MIM setup has been somewhat reproduced by adding a doubly clamped beam in this sub-wavelength size area, creating a beam-in-cavity structure, and inducing a strong interaction between the optical mode and the femtogram resonator (see Fig. 7 (e)) [START_REF] Sun | Femtogram Doubly Clamped Nanomechanical Resonators Embedded in a High-Q Two-Dimensional Photonic Crystal Nanocavity[END_REF]. Finally, to fully exploit the coupling, one can also confine the mechanical mode with a periodic acoustic shield (phononic crystal) around the photonic crystal (see Fig. 7 (g)) [START_REF] Chan | Laser cooling of a nanomechanical oscillator into its quantum ground state[END_REF][START_REF] Chan | Optimized optomechanical crystal cavity with acoustic radiation shield[END_REF]. This hybrid setup is often termed phoxonic or optomechanical cystal. This last setup is of great interest in the optomechanical community due to the strong dispersive interactions observed [START_REF] Chan | Laser cooling of a nanomechanical oscillator into its quantum ground state[END_REF][START_REF] Chan | Optimized optomechanical crystal cavity with acoustic radiation shield[END_REF][START_REF] Eichenfield | Optomechanical crystals[END_REF][START_REF] Safavi-Naeini | Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab[END_REF][START_REF] Gomis-Bresco | A one-dimensional optomechanical crystal with a complete phononic band gap[END_REF][START_REF] Li | Optomechanical crystal nanobeam cavity with high optomechanical coupling rate[END_REF][START_REF] Jiang | Lithium niobate piezooptomechanical crystals[END_REF][START_REF] Ren | Two-dimensional optomechanical crystal cavity with high quantum cooperativity[END_REF]. [START_REF] Eichenfield | A picogramand nanometre-scale photonic-crystal optomechanical cavity[END_REF], (b) split-beam nanocavity [START_REF] Hryciw | Tuning of nanocavity optomechanical coupling using a near-field fiber probe[END_REF], (c) suspended slotted slab [START_REF] Safavi-Naeini | Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity[END_REF], (d) L3 defect slab suspended over a waveguide [START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF][START_REF] Tsvirkun | Optomechanics in hybrid fully-integrated two-dimensional photonic crystal resonators[END_REF], (e) suspended L3 defect slab (the inset focus on the defect) [START_REF] Gavartin | Optomechanical Coupling in a Two-Dimensional Photonic Crystal Defect Cavity[END_REF], (f) beam-in-cavity (doubly clamped beam in a L3 defect) [START_REF] Sun | Femtogram Doubly Clamped Nanomechanical Resonators Embedded in a High-Q Two-Dimensional Photonic Crystal Nanocavity[END_REF], and (g) optomechanical crystal [START_REF] Chan | Laser cooling of a nanomechanical oscillator into its quantum ground state[END_REF].
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Comparison between the selected setups

The previously selected optomechanical setups are compared to each other in Table 1, based on the data gathered from the given references.

Setups

λ F f m Q m m eff g 0 (nm) (MHz) (ng) (Hz)

Suspended mirrors

Doubly clamped beam [START_REF] Arcizet | High-Sensitivity Optical Monitoring of a Micromechanical Resonator with a Quantum-Limited Optomechanical Sensor[END_REF][START_REF] Arcizet | Radiation-pressure cooling and optomechanical instability of a micromirror[END_REF][START_REF] Arcizet | Mesure optique ultrasensible et refroidissement par pression de radiation d´un micro-résonateur mécanique[END_REF] 1064 3 × 10 4 0.814 1 × 10 4 1.9×10 5 -Cantilever [START_REF] Gröblacher | Radiationpressure self-cooling of a micromirror in a cryogenic environment[END_REF][START_REF] Cole | Monocrystalline Al_xGa_1-xAs heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime[END_REF] 1064 2.3×10 3 0.557 10 3 125 -Bridge with localized coating [START_REF] Gröblacher | Observation of strong coupling between a micromechanical resonator and an optical cavity field[END_REF] 1064 1.4×10 4 0.947 6.7×10 145 3.3×10 5

Micropillar [START_REF] Kuhn | A micropillar for cavity optomechanics[END_REF][START_REF] Kuhn | Free-space cavity optomechanics in a cryogenic environment[END_REF] 1064 4.1×10 4 3.7 10 6 10000 -Trampoline [START_REF] Kleckner | Optomechanical trampoline resonators[END_REF] 1064 4.0×10 4 0.01 9.4×10 100 -

Nanometric resonator inside an optical cavity

SiN membrane (bulk cavity) [START_REF] Wilson | Cavity optomechanics with high-stress silicon nitride films[END_REF][START_REF] Wilson | Cavity optomechanics with stoichiometric SiN films[END_REF] 

Suspended whispering gallery mode resonators

Microtoroid [START_REF] Schliesser | Resolvedsideband cooling of a micromechanical oscillator[END_REF] 970 10 5 73.5 10 5 10 -Ring resonator [START_REF] Rosenberg | Static and dynamic wavelength routing via the gradient optical force[END_REF] 1549 5.6×10 3 5-20 ---Microdisk [START_REF] Ding | High frequency gaas nano-optomechanical disk resonator[END_REF] 1535 -336 10 2 22.1 8.0×10 3 Microsphere [START_REF] Jiang | Chip-based silica microspheres for cavity optomechanics[END_REF] 800 -89.54 5.3×10 --

Near-field cavity optomechanics

Nanostring/microtoroid [START_REF] Anetsberger | Near-field cavity optomechanics with nanomechanical oscillators[END_REF] 1550 2.3×10 5 8.0 4.0×10 0.0049 1.4×10 5 Nanobeam/microdisk [ 

Photonic crystal-based systems

Zipper cavity [START_REF] Eichenfield | A picogramand nanometre-scale photonic-crystal optomechanical cavity[END_REF] 1550 10 4 -10 5 8 10 2 (air) 0.043 1.5×10 6 Split-beam nanocavity [START_REF] Hryciw | Tuning of nanocavity optomechanical coupling using a near-field fiber probe[END_REF] 1522 -10.5 ---Slotted slab [START_REF] Safavi-Naeini | Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity[END_REF] 1570 7.6×10 3 151 7.5×10 0.020 3.2×10 3 Slab over a waveguide [START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF][START_REF] Tsvirkun | Optomechanics in hybrid fully-integrated two-dimensional photonic crystal resonators[END_REF] 1563 -2.22 2 × 10 3 0.117 1.4×10 4 Beam-in-cavity [START_REF] Sun | Femtogram Doubly Clamped Nanomechanical Resonators Embedded in a High-Q Two-Dimensional Photonic Crystal Nanocavity[END_REF] 1548 -904 1.2×10 3 × 10 -5 10 4 Optomechanical crystal [START_REF] Chan | Optimized optomechanical crystal cavity with acoustic radiation shield[END_REF] 1545 -5100 6.8×10 10 -4 1.1×10 

Optomechanical sensors

Cavity optomechanics has aroused a great interest in the past two decades for sensing. The major applications are detailed below, with a brief overview of several realizations from the literature. For a more exhaustive study, the reader can refer to several reviews [START_REF] Hu | Optomechanical sensing with on-chip microcavities[END_REF][START_REF] Metcalfe | Applications of cavity optomechanics[END_REF][START_REF] Li | Cavity optomechanical sensing[END_REF].

Displacement sensing

Displacement sensing is the most straightforward application on which all other concepts presented in the following are based. Optomechanical cavities offer highly sensitive platforms to measure the mechanical displacement of a resonator in the frequency domain. The most efficient setups are the integrated microcavities (whispering gallery mode resonator and photonic crystal-based systems), with demonstrated sensitivities at room temperature of 10 -20 m/ √ Hz (mechanical motion amplitude normalized by the measurement bandwidth) with a microtoroid in vacuum [START_REF] Schliesser | Resolvedsideband cooling of a micromechanical oscillator[END_REF] (see Fig. 5 (a)), 10 -17 m/ √ Hz with a microdisk at ambiant pressure [START_REF] Ding | High frequency gaas nano-optomechanical disk resonator[END_REF] (see Fig. 5 (c)) and 10 -18 m/ √ Hz with a photonic crystal nanobeam cavity in water environment [START_REF] Zhang | Femtogram scale high frequency nano-optomechanical resonators in water[END_REF].

Mass sensing

The reduction of the dimensions of the mechanical resonator is accompanied by a strong sensitivity of its intrinsic properties to an external disturbance. A mass m d deposited on its surface, for instance, induces a shift of the resonance frequency of a factor m d f m /2m eff [START_REF] Li | Cavity optomechanical sensing[END_REF]. The optomechanical interaction provides the opportunity of all-optical mass sensing, in contrast to the micro-electro-mechanical sensors which frequently combine an optical readout with a piezoelectric mechanical excitation [START_REF] Li | Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications[END_REF]. In the self-sustained oscillation regime i.e. above the incident power threshold of regenerative mechanical oscillations, a stable radiation pressure driven mechanical microtoroid has been used as a sensing platform to detect 0.5 to 2.5 µm diameter polyethylene microbeads deposited on its surface with a silica probe (see Fig. 8 (a)) [START_REF] Liu | Mass Sensing With Optomechanical Oscillation[END_REF][START_REF] Liu | Sub-pg mass sensing and measurement with an optomechanical oscillator[END_REF]. The deposited mass induces a shift of the optomechanical oscillator frequency with a highest sensitivity of 1.38 kHz/pg, measured on the 5 th mechanical vibration mode. The sensor also enables a detection of sequential deposits with a mass detection limit of 150 fg. A similar approach has been proposed with a microsphere optomechanical cavity (see Fig. 8 (b)) [START_REF] Yu | Cavity optomechanical spring sensing of single molecules[END_REF]. The working principle slightly differs: the optomechanical oscillator is characterized by a strong optical spring effect inducing a dependency of the mechanical resonance frequency with the laser detuning. The optical resonance frequency shift induced by a particule binding is then directly transducted into a frequency shift of the mechanical motion. This optical spring technique has allowed the detection of silica microbeads as small as 11.6 nm in radius (as proof of concept and for calibration of the sensitivity), but also of 66 kDa ≈ 10 -19 g bovine serum albumin proteins with a high signal to noise ratio of 16.8. The limit of detection is estimated at 3.9 kDa ≈ 6.4 × 10 -21 g with a signal to noise ratio above unity [START_REF] Yu | Cavity optomechanical spring sensing of single molecules[END_REF]. The first technique has been reproduced for detection of volatile organic compound analytes adsorbed on a cantilever-like nanomechanical resonator coupled to a racetrack ring resonator, with an estimated sensitivity of 208 Hz/ag for the toluene (organic species) mass loading (see Fig. 8 (d)) [START_REF] Maksymowych | Optomechanical spring enhanced mass sensing[END_REF]. These selected sensors pave the way for optomechanical detection of single molecules for chemical analysis. Due to the all-optical sensing principles, these optomechanical mass sensors are mainly limited by the laser source linewidth that can be strongly reduced with frequency stabilization techniques [START_REF] Wu | 0.26-Hz-linewidth ultrastable lasers at 1557 nm[END_REF]. These are of practical interest for cavity optomechanics-based sensors, and are therefore studied in this thesis work. Note that many electro-assisted optomechanical setups (often termed nano-opto-electro-mechanical sensors in the literature) have also shown interesting results for mass spectrometry [START_REF] Sansa | Optomechanical mass spectrometry[END_REF]. Working principle of the microsphere sensor for single protein molecule (bovine serum albumin or BSA) optical spring detection. Typical measured spectrograms with evidence of protein binding induced optomechanical oscillator frequency shift [START_REF] Yu | Cavity optomechanical spring sensing of single molecules[END_REF]. (c) Detection of volatile organic compound analytes adsorbed on a cantilever-like nanomechanical resonator coupled to a racetrack ring resonator, using the optical spring effect. Graph: Typical measured mechanical frequency shifts at various optical detunings [START_REF] Maksymowych | Optomechanical spring enhanced mass sensing[END_REF].

Force sensing

The optomechanical cavities are highly sensitive force sensors with high time resolution through the use of low mass, high frequency (> 10 MHz) and high quality factor mechanical resonators. The force exerted on the latter can be easily extracted from the optically measured spectral response. The sensitivity is determined by the mechanical displacement resolution of the optomechanical transduction scheme mainly limited by the thermal forces exerted on the resonator. Values close to 130 aN/ √ Hz have been measured with an optical microdisk evanescently coupled to a resonant cantilever (see Fig. 9 (a)) [START_REF] Doolin | Multidimensional optomechanical cantilevers for high-frequency force sensing[END_REF]. Many reasearches also focus on the strong coupling between a superconducting cavity (using a capacitive-inductive electrical circuit) and a mechanical resonator and on how to use dynamical backaction to improve the sensitivity of the force sensor [START_REF] Weber | Force sensitivity of multilayer graphene optomechanical devices[END_REF][START_REF] Regal | Measuring nanomechanical motion with a microwave cavity interferometer[END_REF][START_REF] Regal | From cavity electromechanics to cavity optomechanics[END_REF], down to, for instance, 22 aN/ √ Hz with a graphene membrane (see Fig. 9 (b)) [START_REF] Weber | Force sensitivity of multilayer graphene optomechanical devices[END_REF]. Optomechanical torque sensing using torsional mechanical resonance modes is an active field as well, with for example the photonic split-beam nanocavity previously presented (see Fig. 7 (b)) [START_REF] Wu | Dissipative and dispersive optomechanics in a nanocavity torque sensor[END_REF], or with the near-field system displayed in Fig. 9 Figure 9. Cavity optomechanical force sensing. (a) Optical microdisk evanescently coupled to a resonant cantilever, with an example of a measured force noise density extracted from the thermomechanical spectral response [START_REF] Doolin | Multidimensional optomechanical cantilevers for high-frequency force sensing[END_REF]. (b) Superconducting cavity coupled to a graphene membrane, with a measured force sensitivity as a function of the photon number within the cavity [START_REF] Weber | Force sensitivity of multilayer graphene optomechanical devices[END_REF]. (c) Optomechanical torque sensing with an optical microdisk evanescently coupled to a torsional nanomechanical resonator, with typical measured linear and angular thermal spectra [START_REF] Kim | Approaching the standard quantum limit of mechanical torque sensing[END_REF].

(c). Finally, as a more fundamental approach, the optomechanical cavities allow the control and trapping of nano-size objects [START_REF] Millen | Optomechanics with levitated particles[END_REF] (see for instance the levitation of a nanodiamond with a single nitrogen-vacancy [START_REF] Neukirch | Multidimensional single-spin nano-optomechanics with a levitated nanodiamond[END_REF] or of silicon nanorods [START_REF] Kuhn | Full rotational control of levitated silicon nanorods[END_REF]), enabling a precise optical monitoring of the forces exerted on them.

High resolution scanning probe microscopy

The scanning probe microscopy techniques aim to precisely analyse and observe surfaces of species using a scanning probe. One of them is the atomic force microscopy. It consists of measuring the phase change of a light beam reflected on a cantilever with a sharp tip that is scanning a surface of interest. Because of the close proximity between the probe and the specimen, contact forces (van der Waals, capillary, electrostatic, Casimir, ...) induce a deflection or a shift of frequency of the cantilever resonator. One can also impose a mechanical oscillation with a piezo-electric element and measure the amplitude variation due to the contact forces exerted on the probe. With this method, the mechanical resonator cannot be miniaturized below the laser beam size (typically a few micrometers) which limits the achievable bandwidth and sensitivity. The optomechanical interaction can overcome this limitation through the use of high frequency nanometric mechanical resonators. In this perspective, cantilevers with mechanical resonance frequencies between 2-3 MHz and 70 MHz, designed with a nanoscale sharp tip (probe), and evanescently coupled to a microdisk resonator have been developed (see Fig. 10 (a)) [START_REF] Srinivasan | Optomechanical Transduction of an Integrated Silicon Cantilever Probe Using a Microdisk Resonator[END_REF][START_REF] Liu | Wide cantilever stiffness range cavity optomechanical sensors for atomic force microscopy[END_REF]. This setup can also serve to measure an absorption spectrum, by exploiting the photothermal excitation induced by the absorption of a second laser source by the sample of interest (see Fig. 10 (b)) [START_REF] Chae | Nanophotonic Atomic Force Microscope Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale[END_REF]. Recently, suspended ring resonators with a similar sharp probe, exhibiting an ultrahigh resonance frequency of 117 MHz have been fabricated and characterized (see Fig. 10 (c)) [START_REF] Allain | Optomechanical resonating probe for very high frequency sensing of atomic forces[END_REF]. At last, the prospects of optomechanical cavities using magnetic materials to detect magnetic forces exerted on the mechanical resonator (magnetic force microscopy) have also been explored (see Fig. 10 (d)) [START_REF] Fischer | Spin detection with a micromechanical trampoline: towards magnetic resonance microscopy harnessing cavity optomechanics[END_REF]. [START_REF] Srinivasan | Optomechanical Transduction of an Integrated Silicon Cantilever Probe Using a Microdisk Resonator[END_REF], (b) similar system used for atomic force microscopy to detect photothermal induced resonances [START_REF] Chae | Nanophotonic Atomic Force Microscope Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale[END_REF], and (c) High frequency suspended ring resonator with a sharp probe [START_REF] Allain | Optomechanical resonating probe for very high frequency sensing of atomic forces[END_REF]. (d) Micromechanical trampoline membrane resonator with a magnetic grain which could be used in the middle of a Fabry-Perot for optomechanical magnetic force microscopy [START_REF] Fischer | Spin detection with a micromechanical trampoline: towards magnetic resonance microscopy harnessing cavity optomechanics[END_REF].

Cavity optomechanical magnetometry

Magnetometers are essential components for various applications from medicine to material analysis. The most advanced technique, widely used in fundamental research, is the superconducting quantum interference device. It is however a costly and complex method, requiring cryogenic cooling. Alternatives have been developed to remove the need for cryogenics: optomechanical cavities represent an additional approach for the measurement of ultra weak magnetic fields. One can mention the works on whispering gallery mode resonators [START_REF] Forstner | Cavity Optomechanical Magnetometer[END_REF][START_REF] Forstner | Ultrasensitive Optomechanical Magnetometry[END_REF][START_REF] Yu | Optomechanical Magnetometry with a Macroscopic Resonator[END_REF][START_REF] Zhu | Polymer encapsulated microcavity optomechanical magnetometer[END_REF][START_REF] Li | Ultrabroadband and sensitive cavity optomechanical magnetometry[END_REF], such as the microtoroid with a magnetostrictive material deposited on its surface: immersing this system in a permanent magnetic field induces a strong deformation of this material, and thus a shift of the mechanical resonance frequency of the microtoid, detected by optomechanical transduction (see Fig. 11 (a)) [START_REF] Forstner | Cavity Optomechanical Magnetometer[END_REF][START_REF] Forstner | Ultrasensitive Optomechanical Magnetometry[END_REF]. This technique has enabled a magnetic field sensitivity of 400 nT/ √ Hz, which has been recently drastically enhanced down to 26 pT/ √ Hz [START_REF] Li | Ultrabroadband and sensitive cavity optomechanical magnetometry[END_REF]. Torque magnetometry has also been demonstrated with the photonic crystal split-beam nanocavity designed to exhibit particular torsional mechanical modes (see Fig. 11 (b)) [START_REF] Wu | Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry[END_REF].

Inertial sensing

By taking advantage of their very high sensitivity to mechanical displacements, optomechanical cavities are ideal for broad bandwidth inertial detection. The concept is essentially based on the development of a mechanical resonator sensitive to an acceleration or a rotation in a given direction. This mechanical resonator is usually designed with a high dimension contrast between a wide test mass suspended with tiny arms: one of the first cavity optomechanics-based systems consists of a membrane of very large dimensions (150 µm × 60 µm × 400 nm) suspended with nanoscale tethers, coupled to a zipper-like photonic crystal optomechanical cavity (see Fig. 12 (a)) [START_REF] Krause | A high-resolution microchip optomechanical accelerometer[END_REF]. This system has achieved an acceleration resolution (minimum measurable relative accelaration variation) as small as 10 µg/ √ Hz, where g = 9.81 m/s 2 is the gravitational acceleration on Earth, over a bandwidth above 20 kHz. Excellent results have been demonstrated with a fused silica fiber-based Fabry-Perot with a suspended test mass and a sensivity of -D) deposited on its surface to strongly increase the expansion of the optomechanical cavities under a magnetic field exerted by a localized coil [START_REF] Forstner | Ultrasensitive Optomechanical Magnetometry[END_REF]. (b) Photonic crystal split-beam nanocavity sensitive to magnetic torque resulting from a permanent RF magnetic field in the z direction created by a coil [START_REF] Wu | Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry[END_REF].

Figure 12. Cavity optomechanical inertial sensing. (a) High dimensions test mass (150 µm ×60 µm × 400 nm) suspended with nanotethers, mechanically coupled to a zipper-like photonic crystal optomechanical cavity (on the upper part of the mass) [START_REF] Krause | A high-resolution microchip optomechanical accelerometer[END_REF]. (b) Fiber-based Fabry-Perot with a suspended monolithic fused silica test mass [START_REF] Cervantes | High sensitivity optomechanical reference accelerometer over 10 kHz[END_REF][START_REF] Gerberding | Optomechanical reference accelerometer[END_REF].

ng/

√ Hz over a bandwidth of 10 kHz (see Fig. 12 (a)) [START_REF] Cervantes | High sensitivity optomechanical reference accelerometer over 10 kHz[END_REF][START_REF] Gerberding | Optomechanical reference accelerometer[END_REF]. Another research group has reported the performances of whispering gallery mode resonator-based optomechanical setups (cantilever-like microsphere) for acceleration sensing in the µg/ √ Hz range [START_REF] Li | Characterization and Testing of a Micro-g Whispering Gallery Mode Optomechanical Accelerometer[END_REF][START_REF] Li | Field Evaluation of a Portable Whispering Gallery Mode Accelerometer[END_REF]. Lately, similar results have also been reported with a suspended slotted photonic cystal slab [START_REF] Huang | A Chip-Scale Oscillation-Mode Optomechanical Inertial Sensor Near the Thermodynamical Limits[END_REF]. Note that optomechanical gyroscopes have also been théoretically considered [START_REF] Davuluri | Gyroscope with two-dimensional optomechanical mirror[END_REF][START_REF] Li | Optomechanical gyroscope simultaneously estimating the position of the rotation axis[END_REF].

Other applications

This list represents a selection of sensing applications based on cavity optomechanics. One can cite ultrasound sensors, with for instance the versatile suspended microdisk of Basiri-Esfahani et al. sensitive to pressure noises between 8 and 300 µPa/ √ Hz [START_REF] Basiri-Esfahani | Precision ultrasound sensing on a chip[END_REF]. Optomechanical cavities are also good candidates for atomic clock applications [START_REF] Rocheleau | Enhancement of mechanical Q for low phase noise optomechanical oscillators[END_REF][START_REF] Zheng | Feedback and harmonic locking of slot-References type optomechanical oscillators to external low-noise reference clocks[END_REF][START_REF] Bon | Optomechanical coupling in a quartz crystal resonator for cryogenic clocks[END_REF]. Finally, quantum enhanced optomechanics are one of the most active research areas in optomechanical sensing. It seeks for quantum noise reduction to the standard quantum limit, defined as the minimum achievable level of quantum noise in optical experiments [START_REF] Aspelmeyer | Cavity optomechanics[END_REF][START_REF] Li | Cavity optomechanical sensing[END_REF].

Underlying motivations and outline of the work

This thesis deals with the development of optomechanical spectroscopic cavities in the midinfrared (IR) wavelength range (between 3 and 12 µm). Indeed, in this spectral range, detectors have a degraded detectivity compared to visible or even near-IR (between 0.8 and 3 µm) detectors. The optomechanical interaction is a method of choice for transduction. This technique could allow to overcome this problem via the pump-probe method in the mid-IR and the visible ranges respectively. It could also allow to obtain a better spectral resolution of the absorption lines of gaseous molecules and to reach very good detection limits for a large selection of chemical species. This work also extends the field of cavity optomechanics to the mid-IR range, opening the latter to various sensing applications.

The membrane-in-the-middle (MIM) system, composed of a membrane suspended in a Fabry-Perot cavity, is chosen as it is particularly well suited for this application. An optomechanical microcavity based on this architecture is designed with a reproducible microfabrication process in silicon technology. They are designed specifically for the detection of carbon dioxide (CO 2 ), via the measurement of the mechanical resonance frequency shift induced by the absorption losses, minimizing the impact of the optical spring effect. The concept is similar to the previously presented optical spring mass sensors. The limit of detection in the case of traces of CO 2 is numerically estimated at several tens of ppb (parts per billion), based on analytical analyses coupled with multiphysics finite element simulations. In parallel to these developments, and in order to better define the characteristics of such a system, a new type of hybrid MIM cavity using lensed Fiber Bragg Gratings and dielectric mirrors in the near-IR region (1.55 µm) is implemented. The thermomechanical motion of commercial silicon nitride (SiN or Si 3 N 4 ) membranes is characterized using an external cavity laser diode stabilized on our fiber-based optomechanical cavities. A special attention is given to optical frequency stabilization techniques (especially the Pound-Drever-Hall method) given their practical interest for sensors based on optomechanical cavities of high finesse (or at least of high quality factor). A complete analysis of the frequency stability, as well as the optical, thermal and mechanical behavior of this system is performed, and its use as a sensor is considered. The final microcavity is based on Bragg multilayer mirrors (in amorphous silicon and silicon dioxide) designed at 4.23 µm (main absorption line of the CO 2 ). The MIM cavities integrated with a Si 3 N 4 membrane are fabricated at the CEA-Leti cleanroom platform. Finally, a generic model of the whole optomechanical interactions (dispersive and dissipative) is proposed and validated on concrete cases taken from the literature, by comparison with existing measurements. These developments lead to complete expressions of the dynamic optomechanical effects (optical spring effect and optomechanical damping). An illustrated outline is diplayed in Fig. 13.

In chapter one, the two setups are theoretically and numerically studied using transfer matrix formalisms: the mid-IR micrometric cavities and the near-IR millimetric fiber-based cavities. The linear optical properties of each system are then extracted. The free vibration and harmonic behavior of circular and rectangular membranes, used in the, respectively, micrometric and millimetric cavities, are theoretically described, with Finite-Element Modeling (FEM) simulations of the mode shapes. The tools introduced here serve as a basis for understanding the following practical studies.

Chapter two gives the major experimental characterizations performed on the near-IR fiberbased cavities. A frequency stabilization technique allows to dynamically measure the thermomechanical response of commercial silicon nitride membranes. Various intrinsic properties of the MIM setup are studied (such as the effect of the membrane equilibrium position on the optical resonance condition, on the measured mechanical spectrum and on the optomechanical xxiv couplings). The performance of the stabilization is also highlighted through continuous measurements of the thermomechanical spectrum over several days. The potential of this system for sensing applications is discussed.

The silicon integration work is detailed in chapter three. The developed fabrication strategy is explained with all the characterizations and observations performed during the clean room process. The interest of the method in comparison to the only other work from the literature, to the best of our knowledge, that deals with the integration of the MIM cavity is discussed. The concept of spectroscopic trace-gas sensor with an optical spring transduction is presented. Its performance is estimated with theoretical and numerical considerations.

Finally, as a perspective, chapter four outlines the theoretical framework to describe the optomechanical setups with the three optomechanical interactions: dispersive, but also intrinsic dissipative (related to the optical losses within the cavity medium) and external dissipative (related to the optical losses at the input or output ports of the cavity). The complex general expressions of the optomechanical effects (optical spring effect and optomechanical damping) are deduced. Various working regimes are highlighted and two experimental setups presented in the literature, corresponding to one of these regimes, are considered to illustrate the calculations and ascertain their validity in concrete situations. The model will serve for future sensing applications based on the three optomechanical interactions.

Scientific communications

Most of these thesis works have been published in scientific journals or presented in conferences:

• J. Baraillon 

CHAPTER

I

The membrane-in-the-middle optomechanical setup

In the perspective of the silicon integration of the MIM system at micrometric scale, in the mid-infrared, for gas spectroscopic applications (see chapter III), the intrinsic characteristics of this optomechanical setup are presented. The linear optical theory using a standard transfer matrix formalism is applied on these mid-infrared cavities to derive the usual properties of the MIM system: resonance condition, decay rates and optomechanical couplings.

To easily experimentally asess these properties and to work on frequency stabilization methods (see chapter II), an equivalent external near-infrared Fiber Bragg Grating (FBG) based MIM cavity is studied. The concept of the FBG is presented with an analytical tool to describe its optical response. Typical optical and optomechanical behaviors are presented using a similar propagation matrix formalism. Although the FBG parameters cannot be accurately determined in practice, the configurations that give good agreement between measurements and theory are outlined. Finally the vibration theory of suspended membranes, for two geometries, squared and circular, which are used in our, respectively, near-infrared and mid-infrared MIM cavities, is introduced. The usual free vibration modal analysis is conducted to derive the mode shapes, and the mechanical behavior in the presence of a harmonic external excitation is described. The tools given in this chapter serve as a basis of understanding for the two following chapters. 

I.1 Linear optical theory in the mid-infrared region

The MIM system consists of a thin dielectric membrane between the two highly reflective mirrors of a Fabry-Perot cavity. Considering a cavity length much lower than the Rayleigh length of the incident laser beam, one can legitimely assume that the electromagnetic field in the vicinity of the cavity is represented by the plane wave theory. Following the approach of D.Z. Wilson [START_REF] Wilson | Cavity optomechanics with high-stress silicon nitride films[END_REF], an one dimensional matrix formalism is used to understand the influence of the membrane on the linear optical features of the system: the reflection and transmission responses, the optical resonance condition, the decay rates and finally the optomechanical couplings. The analysis conducted here is fully analytical, except for the optical resonance condition, which involves a semi-analytical solving. However, as the calculations usually require a large number of matrix operations, all the results are computed using a custom MATLAB script.

Keeping in mind the gas spectroscopy applications, the study focuses on a specific wavelength region, the mid-IR range, between 3 µm and 12 µm. The 4.23 µm wavelength is chosen as it corresponds to the first absorption line of the carbon dioxyde (CO 2 ) [124]. This gas is naturally abundant in the air and can be used to characterize our optomechanical spectroscopic cavity. The effect of optical absorption within the intra-cavity medium is then discussed. The properties described here, especially the influence of the membrane position relatively to the cavity mirrors, remains similar in other wavelength ranges, for instance in the near-infrared, between 0.8 and 3 µm, where this system is usually studied [START_REF] Wilson | Cavity optomechanics with high-stress silicon nitride films[END_REF][START_REF] Reinhardt | Ultralow-noise SiN trampoline resonators for sensing and optomechanics[END_REF][START_REF] Rochau | Dynamical backaction in an ultrahigh-finesse fiber-based microcavity[END_REF][START_REF] Jayich | Dispersive optomechanics: a membrane inside a cavity[END_REF][START_REF] Wilson | Cavity optomechanics with stoichiometric SiN films[END_REF][START_REF] Shkarin | Optically mediated hybridization between two mechanical modes[END_REF][START_REF] Thompson | Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane[END_REF][START_REF] Sankey | Strong and tunable nonlinear optomechanical coupling in a low-loss system[END_REF][START_REF] Karuza | Optomechanical sideband cooling of a thin membrane within a cavity[END_REF][START_REF] Purdy | Observation of radiation pressure shot noise on a macroscopic object[END_REF][START_REF] Karuza | Optomechanically induced transparency in a membranein-the-middle setup at room temperature[END_REF][START_REF] Karuza | Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment[END_REF][START_REF] Lee | Multimode optomechanical dynamics in a cavity with avoided crossings[END_REF][START_REF] Stambaugh | From membrane-inthe-middle to mirror-in-the-middle with a high-reflectivity sub-wavelength grating: From membrane-in-the-middle to mirror-in-the-middle[END_REF][START_REF] Sonar | Strong thermomechanical squeezing in a far-detuned membrane-in-themiddle system[END_REF]. In this section, we lay the theoretical foundations for designing the silicon-integrated micrometer cavities and for interpreting the experimental results.

I.1.1 Transfer matrix formalism

The methodology dedicated to the propagation of an electromagnetic wave in a stratified medium introduced, for instance, in the book of Max Born and Emil Wolf [START_REF] Born | Principles Of Optics[END_REF] or the one from G. Brooker [START_REF] Brooker | Modern Classical Optics[END_REF], is followed. One uses the same notations as Max Born and Emil Wolf. The detailed development of the solving method, starting from the Maxwell equations, is presented in appendix A. Here we focus on the physical assumptions leading to the matricial relations.

Characteristic matrix of a homogeneous medium

We consider a plane, time-harmonic electromagnetic wave propagating along the z direction, through a homogeneous (i.e. in which the optical index is spatially invariant) amagnetic medium without any charge and current (see Fig. I.1). The components of the electromagnetic fields are denoted E i and H i with i = x, y or z. The case of a Transverse Electric (TE) wave is considered: the light is linearly polarized with its electric vector perpendicular to the plane of incidence (x, y) (E z = E y = 0). The results are also given for a Transverse Magnetic (TM) wave (magnetic vector perpendicular to the plane of incidence i.e. H z = H y = 0). An arbitrary polarized wave is a linear combination of a TE and a TM wave. One can easily demonstrate using the Maxwell equations that a standard solution for the electromagnetic fields can be writen, under all these assumptions: -ωt) where (U (z), V (z), W (z)) are the possibly complex field amplitudes and k is the wave vector amplitude. A complete description of the electromagnetic field is given by the amplitudes (U, V ), as the third one is linearly dependent to U (see appendix A). Our objective is to relate the two amplitudes of the incident field as a function of those after propagation over an arbitrary distance z in the medium. It can be written, in matrix form: 

(I.1) E x = U (z) e i(ky-ωt) (I.2) H y = V (z) e i(ky-ωt) (I.3) H z = W (z) e i(ky
U 0 V 0 = M (z) U (z) V (z) (I.4)
where (U 0 , V 0 ) are the incident field amplitudes and M (z) is the characteristic matrix of the medium.The latter is written, for an homogeneous medium and a TE wave:

M (z) =    cos(ϕ) - i p sin(ϕ) -ip sin(ϕ) cos(ϕ)    where p = ϵ 0 µ 0 n cos(θ) ϕ(z) = nk 0 z cos(θ) (I.5)
where ϕ is the phase shift undergone by the field after propagation in this medium, ϵ 0 , µ 0 are, respectively, the permittivity and permeability of vacuum, θ is the angle of incidence between the wave vector and the z axis, n is the optical index of the medium and k 0 = w 0 /c is the wave vector amplitude in vacuum. For a TM wave, the relationship is still valid, with p replaced by

q = µ 0 ϵ 0 n cos(θ) (I.6)
In the case of a normal incidence (i.e. θ = 0), the matrix is identical for TE and TM waves, and reads: A stratified medium can be seen as a stack of homogeneous layers (i.e. of constant index). Consider two adjacent homogeneous media, the first one from z = 0 to z = z 1 and the second one from z = z 1 to z = z 2 . Following the previous analysis, one have:

M (z) =    cos(nk 0 z) - i p sin(nk 0 z) -ip sin(nk 0 z) cos(nk 0 z)    , where p = ϵ 0 µ 0 n. (I.7)

Characteristic matrix of a stratified medium

U 0 V 0 = M 1 (z 1 ) U (z 1 ) V (z 1 ) = M 1 (z 1 )M 2 (z 2 -z 1 ) U (z 2 ) V (z 2 ) (I.8)
This result is generalized in the case of an arbitrary number N of homogeneous media in a row:

U 0 V 0 = M 1 (z 1 )M 2 (z 2 -z 1 ) ... M N (z N -z N -1 ) U (z N ) V (z N ) (I.9)
Finally the characteristic matrix of a stratified medium, in the case of a TE polarized wave, is given by:

M = N j=1    cos(ϕ j ) - i p j sin(ϕ j ) -ip j sin(ϕ j ) cos(ϕ j )   
where p j = ϵ 0 µ 0 n j cos(θ j )

ϕ j = n j k 0 L j cos(θ j ) (I.10)
where n j , L j , are, respectively, the optical index and the thickness of the homogeneous medium j, θ j is the angle of incidence on the medium j, and ϕ j is the phase shift undergone by the electromagnetic field after propagation in this medium. In the case of a normal incidence (i.e. θ j = 0), the matrix is identical for TE and TM waves, and reads:

M = N j=1    cos(ϕ j ) - i p j sin(ϕ j ) -ip j sin(ϕ j ) cos(ϕ j )   
where

p j = ϵ 0 µ 0 n j ϕ j = n j k 0 L j (I.11)

Reflection and transmission coefficients

The thickness of our stratified medium is denoted L. A normal incidence is considered. In absence of contra-propagative wave in z = L, one can define the reflection and transmission complex coefficients r and t as follows:

U (0) = (1 + r) U in (I.12) V (0) = p 0 (1 -r) U in (I.13) U (L) = t U in (I.14) V (L) = p S t U in (I.15)
where:

(I. [START_REF] Elste | Quantum noise interference and backaction cooling in cavity nanomechanics[END_REF])

p 0 = ϵ 0 µ 0 n 0 , (I.17) p S = ϵ 0 µ 0 n S .
n 0 , n S are the optical indices of the media, respectively, in z < 0 and z > L and U in is the incident transverse electric field amplitude (or the incident transverse magnetic field amplitude for TM polarization). The reflection and transmission coefficients are then deduced from the elements m ij of the characteristic matrix M :

(I. 

I.1.2 Characteristic matrix of the system

The transfer matrix formalism is now used to describe the propagation of an electromagnetic wave in the MIM setup. This system can be seen as a stratified medium composed of 5 layers: the two dielectric mirrors, the thin membrane, and the two air domains surrounding the membrane. The formalism is applied to the concrete case of our mid-IR optomechanical cavities, in order at the end to numerically estimate the performance of an optomechanical cavity for gas spectroscopy application in chapter III. The results can be easily adapted to the near-IR region (see the work of D.Z. Wilson [START_REF] Wilson | Cavity optomechanics with high-stress silicon nitride films[END_REF]), for instance for our fiber-based cavities presented in the next section. The optical behaviors described here remain valid whatever the system or the wavelength region, with discrepancies depending on the optical properties of the material composing the MIM cavity. A schematic of the MIM setup in the mid-IR region is displayed in Fig 

Optical response of the dielectric mirrors

Each dielectric mirror (or Bragg mirror) is an one dimensional photonic crystal. Each can be seen as a stratified sub-medium of N alternating layers of two different materials: one of high index n H and thickness L H and the other of low index n L and thickness L L , deposited on a substrate. The characteristic matrix of one mirror reads:

M mirror = M L N j=1 M H M L (I.20)
where N is the number of bi-layers, M H and M L are the characteristic matrices of, respectively, the high index and low index materials. Note that a supplementary low index layer is considered. This is not conventional [START_REF] Fink | A dielectric omnidirectional reflector[END_REF][START_REF] Hood | Characterization of high-finesse mirrors: Loss, phase shifts, and mode structure in an optical cavity[END_REF], but this choice is justified by the materials used for our integrated devices -silica (SiO 2 ) and amorphous silicon (a-Si)-deposited on a silicon substrate: the last low-index silica layer is essential for the direct wafer bonding steps. Please refer to the fabrication process detailed in chapter III of this manuscript.

In practice, the mirrors are designed at a specific working Bragg wavelength λ 0 . Quarterwave thick layers (λ 0 /4n j where j = L or H) are usually chosen, to induce constructive interferences between waves reflected at each layer interface. Considering that property, the previous matrix relationship can be strongly simplified at the Bragg wavelength:

M mirror =      0 (-1) N +1 p L n H n L N (-1) N +1 p L n L n H N 0      (I.21)
The analytical reflection and transmission of the Bragg mirror are then deduced for λ = λ 0 , using equations (I.18) and (I. [START_REF] Weiss | Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems[END_REF]):

(I.22) r mirror = 1 - n 2 L n 0 n S n L n H 2N 1 + n 2 L n 0 n S n L n H 2N , (I.23) t mirror = -2 n 2 L n S - n L n H N 1 + n 2 L n 0 n S n L n H 2N ,
where n 0 and n S are the optical indices of, respectively, the air and the substrate. The properties of the a-Si/SiO 2 mirrors, which serve as a reference for the numerical simulations presented in this section, are summarized in Table I.1. The number of bi-layers N and the index contrast ∆n determine the reflectivity of the mirrors as well as the spectral bandwidth. With high ∆n, a large bandwidth is generated, and high reflectivity can be achieved with a low amount of layers. The spectral behavior of the multilayer mirror, as well as the influence of the index contrast and the number of layers are displayed in Fig. 

Characteristic matrix of the MIM setup

Since the system is split into 5 layers, its characteristic matrix is simply the product of the matrix of each domain:

M MIM = M mirror M air1 M membrane M air2 M mirror (I.24)
where:

M j =    cos(ϕ j ) - i p j sin(ϕ j ) -ip j sin(ϕ j ) cos(ϕ j )    (I.25)
and j refers to the propagation domain (mirror, air1 on the left side, membrane or air2 on the right side, see Fig. I.3), with the corresponding constant terms p j and phase shifts ϕ j (see equation (I.11)). For the membrane and the air domains, these angular terms read (I.26)

ϕ 1 = k(z m -L m /2), (I.27) ϕ m = kn m L m , (I.28) ϕ 2 = k(L cav -z m -L m /2),
where L m , n m and z m are respectively the membrane thickness, optical index and position within the cavity (relatively to the input mirror, see Fig. I.3) and L cav is the cavity length. The mirror matrices are identical because they are equivalently distributed. The propagation of the wave within the subtrate is not taken into account. Parasitic interferences occurs because of the silicon/air interfaces, assuming that the thickness of the substrate is lower that the coherence lenght of the laser source. To prevent them from affecting the optical response of the cavity, a quarter-wavelength thick (λ/4n) silicon nitride anti-reflective coating is added on both sides of the cavity, at each silicon/air interface. at the end of the fabrication process (see chapter III). The substrate thickness and these anti-reflective coating have been included in the formalism but they do not influence the optical behaviors described hereafter. In order to simplify the discussion, they are not considered in the following. This matrix treatment is fully analytical but involves a large number of matrix products depending on the number of layers in the dielectric mirrors. This formalism is therefore implemented on MATLAB, to quickly calculate the optical response, the optical resonance condition, the cavity spectral finesse and the optomechanical couplings, for various wavelengths, material properties and system geometries.

I.1.3 Optical cavity resonance condition

Using the formalism previously detailed, the optical response and resonance condition are determined. Since it affects the thicknesses of the air domains on its both side, the influence of the membrane position is discussed. Our particular example is used as an illustration: the optical cavity is composed of the same a-Si/SiO 2 mid-infrared multilayer mirrors, and designed at λ 0 = 4.23 µm. The reference MIM cavity properties are given in Table I These geometrical properties are similar to the fabricated silicon integrated devices. The choice of a cavity length close to 4λ 0 /2 will be discussed later on. No optical absorption by the membrane itself is taken into account, but the influence of an absorption in the cavity medium will be discussed. Unless otherwise stated, the values used for the simulations and the figures are those detailed in Tables I.1 and I.2. 

MIM optical response

The characteristic matrix given by equation (I.24) is computed for multiple wavelengths, to calculate the optical spectrum. The complex reflection and transmission coefficients (see equations (I.18) and (I. [START_REF] Weiss | Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems[END_REF])) are deduced from the matrix coefficients. The membrane position z m is also considered as a variable parameter, as it strongly influences the optical behavior. The z-axis origin is defined in Fig. I.3 (z = 0 corresponds to a membrane bonded at the input mirror of the cavity). The figure I.5 shows the optical response of our cavity in reflection and transmission, and, for qualitative purpose, the effect of slight displacement of the membrane along the cavity axis. The spectral behavior is similar to that of a Fabry-Perot cavity: a resonance effect periodically occurs, at optical frequencies at which light exhibits constructive interferences after each roundtrip within the cavity. Each mode frequency is spaced by a number of the free spectral range, given by ∆ν FSR = c/2L cav in frequency unit, for the basic Fabry-Perot (see Fig. As the highly reflective mirrors induce a high cavity finesse and thus a low linewidth, many computational points are needed to precisely resolve the optical peak. Therefore the resonance condition illustrated on this figure is determined using a trichotomy algorithm on the wavelength, to strongly reduce the needed amount of calculation points. It consists of finding the x-value (the resonance wavelength in our case) of the maximum (or minimum) of a function with an unique slope sign change (the optical response in transmission (or reflection)). It is similar to the dichotomy algorithm where an initial interval is divided into two parts, delimited by three calculation points. Two more points (and thus two more intervals) are added which allows to strongly reduce the overall computation time. For each iteration, the matrix product is compiled and the transmission (or reflection) values at each delimiting point are calculated. By comparing them, a new smaller interval, containing the resonance wavelength of interest, is deduced for the next iteration. The algorithm continues until a given threshold (or precision), is reached (arbitrary low). Three different optical peaks are presents in the mirror bandwidth for our specific optical cavity configuration (see Fig. I.5 (a) and (b)). A label has been arbitrary attributed to each mode, for comparison with the following figures. As already shown in previous studies from the literature [START_REF] Wilson | Cavity optomechanics with high-stress silicon nitride films[END_REF][START_REF] Jayich | Dispersive optomechanics: a membrane inside a cavity[END_REF][START_REF] Wilson | Cavity optomechanics with stoichiometric SiN films[END_REF][START_REF] Thompson | Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane[END_REF], the amplitude of variation of the resonance frequency with the membrane position is mainly determined by the membrane reflectivity. This property is verified with an analytical analysis. 

Derivation of the optical resonance condition

In order to easily derive an analytical expression of the optical resonance condition, one can simplify the characteristic matrix given by equation (I. [START_REF] Arcizet | High-Sensitivity Optical Monitoring of a Micromechanical Resonator with a Quantum-Limited Optomechanical Sensor[END_REF], by considering a constant spectral behavior of the mirrors in their optical bandwidths. Each mirror matrix is then equal to the matrix at the Bragg wavelength (see equation I.21):

M mirror = M mirror (λ = λ 0 ) = 0 a b 0 , (I.29)
where a = 1/b = ((-1) N +1 /p L ).(n H /n L ) N . One can further simplify the problem by gathering the three middle matrices M air1 , M membrane and M air2 into one:

N middle = M air1 M membrane M air2 = N 11 N 12 N 21 N 22 . (I.30)
where N ij are the coefficients of the resulting product. Using ab = 1, the characteristic matrix reads:

M MIM = M mirror N middle M mirror = N 22 a 2 N 21 b 2 N 12 N 11 = (m ij ) i,j=1,2 , (I.31)
where m ij are the MIM matrix elements. The complex transmission coefficient of the MIM setup t MIM is determined using the equation I.19, and is written t MIM = 2n S /D where D is the denominator (the expression is long but the demonstration is straightforward). D is split into its real and imaginary parts Re and Im. At optical resonance, the phase of the transmitted electromagnetic wave is a multiple of π, reflecting the presence of constructive interferences:

(I.32) Arg(t MIM ) = mπ ⇔ -arctan Im Re = mπ ⇔ Im = 0.
Using ab = 1 and the fact that a 4 >> 1 and after several manipulations and simplifications, the following equation is found:

(I.33) (1 -n 2 m ) 2 sin 2 (ϕ m ) cos(ϕ 1 -ϕ 2 ) = n m (1 -n 2 m ) sin(2ϕ m ) sin(ϕ 1 + ϕ 2 ) + (1 -n 4 m ) sin 2 (ϕ m ) cos(ϕ 1 + ϕ 2 )
where ϕ 1 , ϕ m and ϕ 2 are the phase shift undergone by the electromagnetic field after propagation through, respectively, the first air domain , the membrane, and the second air domain. It is finally possible to make an essential property of the membrane apparent. Thanks to the same formalism applied on solely the membrane layer, combined with equation (I.18), one can easily determine the expression of the complex reflection coefficient of the membrane:

(I.34) r m = (1 -n 2 m ) sin(ϕ m ) (n 2 m + 1) sin(ϕ m ) -2in m cos(ϕ m )
One last manipulation of equation (I.33), using this last relation, and the expressions of the phase shifts ϕ 1 , ϕ m and ϕ 2 (see equations (I.26), (I.27) and (I.28)), leads us to the resonance condition of the MIM setup, through the following transcendental equation:

(I.35) |r m |cos (2k r (z m -L/2)) = cos (k r (L cav -L m ) -Arg(r m ))
where k r = 2π/λ r is the resonant wave vector amplitude. Solving this equation allows us to deduce the resonance wavelength λ r as a function of the membrane position z m . The resonance optical frequency in Hz is denoted f r = c/λ r . The amplitude of variation of the resonance condition is indeed directly linked to the reflectivity of the membrane, as previously mentioned. To solve this equation, a numerical analysis is done, by means of a basic dichotomy algorithm. To verify the validity this transcendental equation commonly used in the literature [START_REF] Wilson | Cavity optomechanics with high-stress silicon nitride films[END_REF][START_REF] Jayich | Dispersive optomechanics: a membrane inside a cavity[END_REF][START_REF] Thompson | Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane[END_REF], the solution is compared to the resonance condition deduced from our trichotomy algorithm (i.e. the full matrix product, taking into account each layer matrix within the mirrors) in Fig. I.7, for two different cavity lengths. The length of the second cavity is chosen higher than around 11λ 0 /2 (not exactly, as the free spectral range of a MIM cavity sligthly differs from the basic Fabry-Perot). This second cavity will serve multiple time in the following to highlight the influence of a larger L cav on various properties. An amplitude difference is observed between the two curves (see Fig. I.7 (a)). This can be attributed to the propagation of the electromagnetic waves inside the mirrors which has not been taken into account by the transcendental equation. They are indeed characterized by a penetration depth [START_REF] Brovelli | Simple analytical expressions for the reflectivity and the penetration depth of a bragg mirror between arbitrary media[END_REF][START_REF] Stanley | Ultrahigh finesse microcavity with distributed bragg reflectors[END_REF]. This property is related to the spatial coordinate where the light is effectively reflected by the mirrors. It is responsible for a non-negligible effective cavity length which affects the resonance condition. In our situation, this penetration depth is equal to 0.52 µm (L depth ≈ λ 0 /4∆n, see [START_REF] Stanley | Ultrahigh finesse microcavity with distributed bragg reflectors[END_REF]). However, the transcendental equation remains therefore valid for many membrane positions within a longer cavity, where this lenght has a negligible influence (see Fig. I.7 (b)). Previous studies from the literature usually have reported sufficiently long optical cavity (several tens of micrometers) compared to their working wavelength at 700 nm (visible range) or 1.55 µm (near-infrared range), which justifies the use of equation (I.35) [33, 35-38, 42, 44, 125-133]. In this thesis work, micrometric MIM cavities are studied (L cav < 10 µm), at a working wavelength of 4.23 µm (mid-IR range). The design of these optomechanical cavities is therefore done using our trichotomy algorithm to take this non-negligible penetration depth into account.

Influence of the optical parameters

The influence of the optical parameters on the resonance condition is now studied. Small variations from the test case are considered. The resonance condition is represented as a function of the membrane position, normalized by the cavity length in Fig. I.8. The effects of the membrane thickness and the cavity length on its variation amplitude are also displayed. The amplitude of variation of the resonance condition increases with the membrane thickness L m , until a maximum is reached. It is related to the membrane reflectivity, which periodically varies with L m with a quarter-wavelength period (see Fig. I.9). Reducing the cavity length slowly increases the amplitude of variation of the resonance wavelength with the membrane position. The period is not modified relatively to λ 0 . 

I.1.4 Optical losses

An overview of the influence of the membrane position on the cavity bandwidth and finesse is done, with a discussion on the effect of an intracavity optical absorption on the optical response.

Cavity bandwidth and spectral finesse

As stated in the introduction, the cavity bandwidth or overall dacay rate κ is defined as the full width at half maximum of a specific resonance peak. This quantity quantifies the overall optical losses. Physically speaking, it is related to the cavity finesse F which can be assimilated as the average number of round-trips before a given photon leaves the cavity:

F = δν FSR κ (I.36)
On the spectral response, it indicates the sharpness of a given peak, and how it is isolated from other resonance modes. The optical quality factor Q opt is however only linked to the width of a given peak:

Q opt = f r κ . (I.37)
Note that κ -1 is also physically related to the photon lifetime in the cavity. κ can be split into two contributions: the external κ e and intrinsic decay rates κ i , related to the losses, respectively, at the input or output ports (i.e. the mirrors), and directly in the cavity medium. One have:

κ = κ e + κ i (I.38)
The cavity bandwidth is estimated using similar calculation methods with the matrix formalism, as previously explained. This quantity and the corresponding finesse are represented as a function of the membrane position within the cavity in Fig. I.10, for the two different cavity lengths. A pseudo-periodic behavior occurs while moving the membrane away from the middle of the cavity. The overall losses are mostly external i.e. due to the transmission of the mirrors (no absorption losses by the mirror materials considered). This effect has been observed in previous studies from the literature [START_REF] Wilson | Cavity optomechanics with high-stress silicon nitride films[END_REF][START_REF] Reinhardt | Ultralow-noise SiN trampoline resonators for sensing and optomechanics[END_REF][START_REF] Rochau | Dynamical backaction in an ultrahigh-finesse fiber-based microcavity[END_REF][START_REF] Jayich | Dispersive optomechanics: a membrane inside a cavity[END_REF][START_REF] Wilson | Cavity optomechanics with stoichiometric SiN films[END_REF][START_REF] Shkarin | Optically mediated hybridization between two mechanical modes[END_REF][START_REF] Thompson | Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane[END_REF][START_REF] Sankey | Strong and tunable nonlinear optomechanical coupling in a low-loss system[END_REF][START_REF] Karuza | Optomechanical sideband cooling of a thin membrane within a cavity[END_REF][START_REF] Purdy | Observation of radiation pressure shot noise on a macroscopic object[END_REF][START_REF] Karuza | Optomechanically induced transparency in a membranein-the-middle setup at room temperature[END_REF][START_REF] Karuza | Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment[END_REF][START_REF] Lee | Multimode optomechanical dynamics in a cavity with avoided crossings[END_REF][START_REF] Stambaugh | From membrane-inthe-middle to mirror-in-the-middle with a high-reflectivity sub-wavelength grating: From membrane-in-the-middle to mirror-in-the-middle[END_REF][START_REF] Sonar | Strong thermomechanical squeezing in a far-detuned membrane-in-themiddle system[END_REF]. It is related to a confinement of the light in a smaller sub-cavity volume: the modulation amplitude increases while reducing the sub-cavity length. The nearest mirror becomes a preferential output (or external loss) port for the intracavity light. The periodic variation is, in the same way as for the resonance condition, induced by the membrane position relatively to nodes and anti-nodes of the stationnary intracavity field. To give a more quantitative analysis, the maximum modulation amplitude of the cavity bandwidth is dennoted ∆κ, and the equivalent quantity in finesse term ∆F. The finesse amplitude is expressed relatively to a reference value F 0 with the membrane exactly in the middle of the cavity. For the two cavity lengths, and the same resonance around the working wavelength λ 0 = 4.23 µm, the loss properties of the cavities are regrouped in Table I. [START_REF] Einstein | On the quantum theory of radiation[END_REF]. The relative finesse variation is increased while increasing the cavity length, which is intuitive, as the spatial period of the intracavity stationnary wave is the same for both cavities (identical resonance wavelength). We stress that we consider a perfect system, and we do not take into account any absorption, diffusion, or other kinds of losses. In practice these mechanisms have a strong influence on the losses, depending on the setup, especially with higher cavity length. Intuitively, one can therefore expect a higher cavity overall decay rate (or lower finesse) for a higher cavity length (the formalism predicts an opposite behavior). The effect of intracavity absorption are going to be briefly studied. But the other kind of losses, which can be strongly increased by the length of the cavity, cannot be all easily included. This illustrates the limit of the one-dimensional formalism, which cannot precisely estimate the overall losses. However, with such an approach, one has a good feeling on how the membrane position impacts them (in the same manner as with the resonance condition). It will allow us to estimate the dissipative optomechanical couplings in the next sections.

Influence of optical absorption

The effect of optical absorption within the cavity on the response of the MIM setup is described. Following the same approach as before, the effects of the membrane position on the induced intrinsic decay rate are detailed. Let us consider a cavity medium containing a gas mixture with a certain concentration of CO 2 . As described later in the manuscript, because of its strong absorption strength in these ranges of wavelengths, this gas usually serves in practice as a toy case or reference for spectroscopic sensors [START_REF] Hodgkinson | Optical gas sensing: a review[END_REF]. The optical properties of the medium are summarized in Table I Given these properties, the overall cavity losses is numerically calculated (by including an imaginary optical index within the air domain matrices), and the intrinsic decay rate is isolated by substract the loss without any absorption. The results are shown in As expected, a higher cavity length induces higher intrinsic losses. It is mainly related to a higher effective interaction length between the light beam and the gas molecules. The order of magnitude remains similar as the cavity finesse of both cavities are close, with our model. The membrane slightly modulates the intrinsic decay rate, as for κ, with an envelop characterized by a increase of κ i when moving the membrane away from the middle. The amplitude seems to strongly depend on the gas concentration (pay attention to the logarithmic scale). Note that the optical contrast, in transmission for instance (not represented here), varies between 25 % for c gas = 1 ppm and 99.8 % for c gas = 0.001 ppm, depending on the membrane position. Higher gas concentration could drastically reduce the contrast and could make difficult the measurement of a signal in transmission or reflection. This remark is important as this imposes a saturation limit of our future cavity enhanced absorption sensor, presented in chapter III. It means that this futur sensor could only be used for measuring low trace gas concentrations (for carbon dioxyde, characterized by a high absorption coefficient). But it could be extended to another gas with a lower absorption strength and, therefore, a higher saturation level.

I.1.5 Optomechanical couplings

The optomechanical interaction strengths are estimated using the linear optical theory. The deduced values correspond to achievable optomechanical couplings, in a dynamical configuration. The complex underlying dynamical effects are not discussed in this section (see chapter IV). The dispersive and dissipative couplings are discussed separately, using the previous analysis.

Dispersive optomechanical coupling

The dispersive interaction is related to the shift of the optical resonance frequency with the position of the membrane along the cavity length. It is quantified by g om defined as:

(I.39) g om = ∂ω cav ∂z m
In the same way as in the previous section, the trichotomy algorithm is compared with the transcendental equation, for two different cavity lengths, in ) is applied. A first remark is the periodic variation of the coupling with the membrane position. This intrinsic property of the MIM cavity is at the origin of the presence of a quadratic optomechanical coupling. As discussed in the introduction, the quadratic coupling (∂ 2 λ r /∂z 2 m ) can be potentially high enough (in the membrane position ranges where a linear variation of the dispersive coupling occurs) to allow quantum nondemolition measurements of the ground state of the membrane with sufficiently high optical cavity finesse. This situation corresponds to a non-linear interaction hamiltonian between the optical and mechanical field. The reader can refer to several articles that deals with this subject out of scope of this manuscript [START_REF] Milburn | Quantum nondemolition measurements via quadratic coupling[END_REF][START_REF] Deng | Quantum nondemolition measurement of microwave photons using engineered quadratic interactions[END_REF][START_REF] Yanay | Quantum backaction and noise interference in asymmetric two-cavity optomechanical systems[END_REF]. The penetration depth is still responsible for a small error in the amplitude of variation of g om , with a lower impact for higher cavity length. One can now observe that this coupling is characterized by an asymmetry with z m . Moving the membrane away from the middle enhanced the dispersive optomechanical interaction. This effect is more significant for higher cavity length. It is at the origin of the so-called membrane-at-the-edge (MATE) systems which takes advantage of this property by creating a mirror/membrane assembly to minimize the space between both [START_REF] Purdy | Cavity optomechanics with si3n4 membranes at cryogenic temperatures[END_REF][START_REF] Dumont | Flexuretuned membrane-at-the-edge optomechanical system[END_REF]. Besides Dumont et al. have tried to benefit more from this property by adding a "pusher" on the membrane to induce a flexural stress on it and reduce even more the distance between the mechanical resonator and the input mirror [START_REF] Dumont | Flexuretuned membrane-at-the-edge optomechanical system[END_REF]. A similar approach of the MATE systems is followed for our external fiber-based optomechanical cavity, presented in the next section and chapter II. At last, reducing the cavity length also drastically increases g om . It is by the way related to the trend towards miniaturization in the optomechanical research community. However, depending on the application, a compromise has to be found with the MATE effect to optimize the coupling as required. The evolution of g om as a function of the membrane position for each of the three optical modes of our specific cavity, and the influence of small variations of the optical parameters, are represented in Fig. I.13. A direct comparison with the figure I.8 allows for a better understanding. Increasing the membrane thickness enhances the MATE effect, still until a maximum is reached, corresponding to the maximum membrane reflectivity at our working wavelength (see Fig. I.9). The maxima of the dispersive coupling are proportional to the reflectivity of the membrane [START_REF] Jayich | Dispersive optomechanics: a membrane inside a cavity[END_REF], and therefore vary sinusoidally with the thickness. Reducing the cavity length, as already discussed, also enhances the dispersive optomechanical coupling. The coupling is estimated at 5 GHz/nm, high in comparison to other hybrid MIM setup [33, 35-38, 42, 44, 125-133], due to, as already discussed, the micrometric cavity length and the mid-infrared working wavelength. 

Dissipative optomechanical couplings

Similarly, the overall dissipative optomechanical strength, denoted by κ om , is defined as the shift of the overall decay rate with the position of the membrane along the cavity length: As stated before, we expect that the formalism allows a realistic estimation of the modulation amplitudes induced by the movement of the membrane. The maxima of the coupling, although low compared to the dispersive coupling, follow the same trend: they increase by decreasing the dimensions of the system. The MATE effect is also observed on the dissipative curves with a pseudo-periodic behavior, enhanced by increasing the cavity length.

The overall dissipative coupling of the three modes, as well as the effect of the optical parameters, is presented in Fig. I.15. Similar behaviors occurs for each mode. The maximas of the dissipative coupling is also proportional to the membrane reflectivity and therefore varies sinusoidally with the thickness (still until a maximum, see Fig. I.9) [START_REF] Dumont | Flexuretuned membrane-at-the-edge optomechanical system[END_REF]. The effect of cavity length has already been discussed, but a slight change does not drastically enhance the coupling value. Finally, we end this analysis by a description of the nature of dissipative couplings. The overall dissipative coupling, as already stated, is due to a modulation of losses that are mainly external i.e. localized at the mirrors. However, the intrinsic losses due an intracavity gas absorption is also modulated by the membrane position. One can then distinguish the internal dissipation term from the external term. An intrinsic dissipative coupling can thus be calculated in the presence of optical absorption in the cavity medium. It is defined as:

(I.41)

κ i om = ∂κ i ∂z m
The intrinsic decay rate previously isolated from the overall losses (see Fig. As expected the value of the coupling strongly depends on the gas absorption. The cavity length has an opposite effect on this coupling: κ i om increases with the effective interaction length between the light beam and the gas molecules. As a last remark, we point out that the dissipative coupling values (κ om and κ i om ) are low of at least three order of magnitude compared to the dispersive strength (g om ). Strictly speaking, the quantities (1/κ i )κ i om and (1/ω cav )g om should be compared, noting for instance that (1/κ i )κ i om ≪ (1/ω cav )g om , but the discussion could not go further given the imprecision in the estimation of the optical losses i.e. κ i and κ e (limits of the formalism previously discussed). This illustrates nevertheless a particular optomechanical regime. It will influence the potential optically induced effect on the mechanical dynamics. This point is theoretically discussed in more detail in chapter IV of this manuscript.

I.2 A fiber-based MIM cavity in the near-infrared region

To experimentally assess the properties of the micrometric MIM setup and to work on the frequency stabilization methods, an equivalent easy-to-implement fiber-based optomechanical setup, in the near-IR region, is developed. All the characterizations performed on our devices are presented in chapter II. This section focuses on the basic physical concepts and the theoretical predictions of the optical and optomechanical behaviors.

The cavity is based on a novel hybrid external Fabry-Perot interferometer made of two different type of mirrors: a FBG and a dielectric mirror. Various cavity configurations (two FBGs, one FBGs in front of a concave dielectric mirror, two lensed FBGs, one lensed FBGs in front of a plane dielectric mirror) are considered, a specific one having been retained for our application. A similar matrix formalism is used to describe the linear optical behavior of such MIM cavities. The analysis should be considered as quantitative (especially for the estimation of the couplings) and is shorter than in the previous section, the behaviors being very close to our integrated system. The main differences comes from the cavity dimensions, in the millimeter/centimeter range (compared to the micrometric scale), the mirrors used, and the near-IR wavelength range (compared to the mid-IR).

I.2.1 Introduction to Fiber Bragg Gratings

A FBG is a distributed Bragg reflector inscribed on the core of an optical fiber. In order to understand the spectral behavior of such a system, the basic FBG theory is briefly overviewed based on several textbooks and articles from the literature. In particular, the reader can refer to the article of T. Erdogan [START_REF] Erdogan | Fiber grating spectra[END_REF] and the book of Kogelnik [START_REF] Kogelnik | Theory of Optical Waveguides[END_REF].

A FBG is characterized by a continuous variation of the optical index of the fiber core, with a period Λ, along a certain distance L FBG , typically in the millimeter range (see Fig. I.17). One can assume that the effective index is described by

n eff (z) = neff + δn eff (1 + ν cos(Kz + Φ))
where

K = 2π Λ (I.42)
where neff is the effective index of the guided mode of interest, δn eff is the amplitude of variation, ν is the fringe visibility of the index change and Φ is the grating chirp or phase shift.

To describe the propagation of the guided mode along the grating and obtain informations on the spectral behavior of the FBG, the usual method is the coupled mode theory. In this theory, as explained by Erdogan, the transverse electric field is written as a superposition of guided modes labeled j: (I. [START_REF] Flowers-Jacobs | Fiber-cavity-based optomechanical device[END_REF])

⃗ E t (x, y, z, t) = j [A j (z) exp (iβ j z) + B j (z) exp (-iβ j z)].⃗ e jt (x, y) exp (-iωt)
where A j and B j are the slowly varying amplitudes of respectively the propagating and counterpropagating modes labeled j, β j is the corresponding propagation constant, and ⃗ e jt (x, y) describes the spatial modes that might also describe the cladding or radiation modes. For the specific case of a Bragg grating, the dominant interaction is the reflection of mode of amplitude A into a counter-propagating mode of amplitude B. The previous expression can be simplified by retaining only the amplitudes of these modes. In this situation, using the Helmholtz equation for a guided electromagnetic field and the coupling coefficient between two modes, the coupled mode equations are deduced:

(I.44) dR dz = iσR(z) + iκS(z) (I.45) dS dz = -iσS(z) -iκ * S(z)
where R(z) = A(z) exp (iδz -ϕ/2), S(z) = B(z) exp (-iδz + ϕ/2), σ and κ are, respectively, the coupling (between the propagating and counter-propagating modes) and the self-coupling coefficients. Note that in the full treatment, these coupled equations are complex to treat as these last two parameters are z-dependent. However, by neglecting the rapidly oscillating z dependencies (since they contribute little to the growth and decay of the electromagnetic field amplitudes, please refer to [START_REF] Erdogan | Fiber grating spectra[END_REF][START_REF] Kogelnik | Theory of Optical Waveguides[END_REF]), one can neglect them for FBGs. This system can be written as a differential matrix equation which can be solved by finding the eigenvalues of the matrix and defining an eigenvector basis, to find the general expression of the mode amplitudes. Then, by denoting R 1 , S 1 and R 2 , S 2 the amplitudes at respectively z = z 1 and z = z 2 (see Fig. I.17), the following matrix relation is deduced: where:

R 2 S 2 = p q * q p *
(I.47) p = cosh(γ B ∆z) -i σ γ B sinh(γ B ∆z) (I.48) q = i κ γ B sinh(γ B ∆z)
and where all the grating parameters are:

• the detuning δ = β - π Γ = πn eff 1 λ - 1 λ D ,
• the design wavelength λ D = 2πn eff Λ,

• σ = 2π λ δn eff , • γ B = √ κ2 -σ2 ,
• the self-coupling coefficient σ = δ + σ,

• the coupling coefficient κ = π λ νδn eff between the propagating and counter-propagating mode,

• ∆ z = z 2 -z 1 = L FBG .
From this matrix relationship, the link between the mode amplitudes A 2 , B 2 (in z = z 2 ) and

A 1 , B 1 (in z = z 1 , see Fig. I.17) is deduced: A 2 B 2 = p e -iδ(z 2 -z 1 )
q * e i(ϕ-δ(z 2 +z 1 )) q e i(δ(z 2 +z 1 )-ϕ)

p * e iδ(z 2 -z 1 )

A 1 B 1 (I.49)
For a spatially uniform FBG, considering ϕ = 0, the reflectivity is therefore expressed as:

R FBG = B 1 A 1 2 = -κ sinh(γ B L FBG ) σ sinh(γ B L FBG ) -iγ B cosh(γ B L FBG ) 2 (I.50)
The design wavelength λ D , where the reflectivity of the grating is maximized, is mainly fixed by the period of the FBG. The spectral bandwidth and the maximum reflectivity depend on the grating length L FBG and on the effective index modulation depth δn eff . As an illustration, the theoretical spectral responses of three FBGs with slightly different properties are displayed in Fig. I.18. One can observe that a decrease of the physical length induces a lower maximum reflectivity and a small increase of the spectral bandwidth (see FBG 1 and 2), while an increase of the index modulation amplitude induces an increase of both the reflectivity and bandwidth (see FBG 1 and 3). 

I.2.2 The FBG-based Fabry-Perot cavities

Given the FBG optical behaviors previously described, various MIM configurations based on them are presented. All have been considered during this thesis, with their advantages and drawbacks. All the studied variants are schematically represented in Fig. I. [START_REF] Weiss | Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems[END_REF]. Each configuration is qualitatively described.

The first one (see Fig. I.19 (a)) consists of two identical FBGs inscribed at the end of a fiber, with a cleaved end-facet, facing each other. This approach allows a cavity length minimization, as it is mainly fixed by the distance between the edges of each grating. However, the coupling efficiency between the free-space beam and the guided mode of one of the fibers is poor because of the high divergence of light out of the fibers (due to the high numerical aperture). This limits the achievable optical contrast and finesse. To overcome this issue, one can work with the same FBG in front of a concave dielectric mirror (see Fig. I. 19 (b)). The fiber tip in this case should be placed at the center of curvature of the mirror, in order to maximize the coupling efficiency between the back-reflecting light and the guided mode. However, the cavity length is set by the radius of curvature of the mirrors (typically in the centimeter range). The alignement procedure in this case is hard to set up, due to the high sensitivity to angular misalignements. The third approach (see Fig. I.19 (c)) could facilitate this procedure: it consists of two lensed FBGs facing each other. Multiple types of lenses can be designed and fabricated on fiber tips [START_REF] Park | Microlens for efficient coupling between LED and optical fiber[END_REF][START_REF] Lin | A lensed fiber workstation based on the elastic polishing plate method[END_REF][START_REF] Kong | Lensed photonic crystal fiber obtained by use of an arc discharge[END_REF][START_REF] Tseng | Lensed plastic optical fiber employing hyperbolic end filled with high-index resin using electrostatic force[END_REF][START_REF] Park | Analysis of design and fabrication parameters for lensed optical fibers as pertinent probes for sensing and imaging[END_REF], but this study focuses on the GRIN one's, that are commonly used to improve fiber-to-fiber or laser-to-fiber coupling efficiency [START_REF] Palais | Fiber coupling using graded-index rod lenses[END_REF][START_REF] Emkey | Analysis and evaluation of graded-index fiber lenses[END_REF][START_REF] Gilsdorf | Single-mode fiber coupling efficiency with gradedindex rod lenses[END_REF][START_REF] Van Buren | Foundations for low-loss fiber gradient-index lens pair coupling with the self-imaging mechanism[END_REF][START_REF] Zickar | MEMS compatible micro-GRIN lenses for fiber to chip coupling of light[END_REF][START_REF] Jung | Numerical analysis of gradient index lens-based optical coherence tomography imaging probes[END_REF]. These lenses are characterized by a varying optical index along the axial direction, enabling a periodic sinusoidal control of the beam waist and divergence. By properly choosing the length of the lens (quarter-pitch GRIN), one can "collimate" (or should we say: control the beam waist size and location of the light getting out of the fiber to ensure a plane wave behavior along a higher distance). This enables a high coupling efficiency, with higher freedom on the distance between each fiber assembly. However, the cavity length is mainly fixed by the distance between the lens end-facet and the grating (around 7.5 mm for each of our lensed fibers: the cavity length is then at least 15 mm).

The last configuration (see Fig. I.19 (d)) can help to reduce by half this limitation, by means of a plane dielectric mirror instead of the second lensed FBG. A second advantage, in comparison to the first three setups, is the potentiel easier operation with a suspended membrane in the middle of the cavity. With a plane mirror, we can easily construct a membrane-on-mirror assembly, with a passive alignement between the mechanical element and the mirror. This strongly simplifies the final alignement procedure as it requires six degrees of freedom (six less than the others for which the three elements have to be aligned independently). Since our main objective is to develop the measurement methods on a easily implemented system for a futur usage as a sensor, the last configuration is chosen. The advantages and drawbacks discussed here are summarized in Table I.5.

I.2.3 Optical resonance condition and optomechanical couplings

The linear optical behavior of the external lensed FBG-based Fabry-Perot and MIM cavities (based on this last geometry) is analysed using an equivalent matrix formalism than the one used for our mid-IR system. The optical resonance condition and the optomechanical couplings are deduced for two different specific configurations.

The linear propagation matrix formalism

The first formalism uses the whole electromagnetic field, and allowed us to find analytically the transcendental equation widely used in the literature, unlike the second one. For this reason, the transfer matrix formalism seemed to be more suitable for the micrometric cavities. In the case of FBG, their behavior can be written by the particular matrices from the coupled mode theory (see equations (I.49)), taking into account only the electric field amplitudes. The equivalent second formalism is therefore more appropriate. It is still based on a multilayer analysis. The system is splitted into different layers of constant optical index divided by dioptres. The incident electric field amplitude is split into a transmitted and reflected part. The field amplitude in a specific layer is a superposition of these amplitudes weighted by the Fresnel reflection and transmission coefficients. The resulting propagation matrices linking the field amplitudes are easier to demonstrate than the previous one (see standard texbooks [START_REF] Bass | Handbook of Optics, Third Edition Volume I: Geometrical and Physical Optics, Polarized Light, Components and Instruments(Set)[END_REF]). Two homogeneous media are considered, with the field amplitudes of a incident wave in normal incidence, in both directions (see Fig. I.20). The following matrix relationship can be shown: 

E + 1 (z 1 ) E - 1 (z 1 ) = 1 t 21 e iϕ 2 r 12 e -iϕ 2 r 12 e iϕ 2 e -iϕ 2 E + 2 (z 2 ) E - 2 (z 2 )
where

ϕ 2 = n 2 k(z 2 -z 1 ), (I.51)
and r ij and t ij are the Fresnel reflection and transmission coefficients, defined as:

(I.52) r ij = n j -n i n i + n j , (I.53) t ij = 2n i n i + n j .
This formalism is applied on our fiber-based system, using a matrix for each sub-layer, and the characteristic matrix of the FBG given by the equation I.49. Note that the FBG matrix has been demonstrated in the opposite direction (i.e. the output field amplitude as a function of the input amplitudes). However, since the FBG is symmetric, its optical behavior is also symmetric, and the A i /B i amplitudes can be replaced either by

E + 1 /E - 1 or by E + 2 /E - 2 .
The matrix is therefore valid in both directions. The characteristic propagation matrix of the full MIM system is then given by: 

M MIM = M FBG M fiber M gap M GRIN M air1 M m M air2 M mirror , (I.54)
where

M mirror = N i M L M H , (I.55)
and M i are the matrix of domain i (FBG, fiber, gap, GRIN, air1, membrane, air2, and low or high-index material within the mirror, see Fig. I.21). For the air gap and the GRIN lens, an anti-reflecting coating is taken into account. It has been deposited in practice to prevent from any unwanted interferences with reflected fields at the air/lens interfaces. Note that the membrane is passively aligned to the dielectric mirror, in practice, using a piezo-electric spacer between both (see chapter II for more detail on this material). It serves as a active electrical component to precisely move the membrane along the cavity axis through the deformation of the piezo. However, it imposes a minimum distance (the thickness of the spacer) between the back mirror and the membrane. Note that an opposite z-axis is considered, in comparison to the mid-IR cavities, for convenience and coherence with the measurements (the piezo element is indeed used to move the membrane away from the back mirror, and cannot be used in the other direction, see chapter II). All the theoretical and experimental results assume this convention of a membrane displacement in the direction indicated in the figure I.21. The incident E in , the reflected E refl , and the transmitted E trans electric field amplitudes are linked by the following relationship:

E in E refl = M MIM E trans 0 . (I.56)
Experimentally, only the reflected light inside the fiber is measurable (using an optical circulator upstream of the FBG). This theoretical analysis focuses then on the response spectra in reflection, given by: 

R

Optical spectrum of the lensed FBG-based external Fabry-Perot

The optical response of the FBG-based external Fabry-Perot cavity is presented. Two sets of parameters (config. 1 and 2) are considered to describe the FBG (see Table I.6). An imaginary part is added to the detuning parameter: the loss coefficient L, to take into account every kind of losses within the FBG (δ = β -π/L + iL). The chosen material properties of the dielectric mirror are given in Table I.7. The optical index values, as well as the FBG configurations, are chosen to reproduce the measured optical responses of each element. For the FBGs, the intrinsic properties, except for the length of the grating, are difficult to measure. We know however that the manufacturer have saturated the effective index modulation amplitude on a high distance along the fiber axis (typically around 10 mm) to achieve high reflectivity in a relative broad bandwidth [START_REF] Othonos | Fiber bragg gratings[END_REF]. The real material properties of the commercial fused silica multilayer mirror used in practice are not given by the supplier. The parameters used for this numerical analysis are then chosen to reproduce a typical experimental setup. Please refer to chapter II for more detail on the FBG fabrication process, and on the properties of each component of our fiber-based cavities. The spectral responses in reflection of the FBGs (with all the media, between the end of the grating and the end-facet of the GRIN lens, taken into account) and the Bragg mirror are represented in Fig. I.22 (a), (b) and (c). The reflectivity are above 92 % for the FBGs and above 99 % for the dielectric mirror, in their respective bandwidth (see the two previous tables). A resonant cavity can be constructed with these two highly reflective components. The resulting Fabry-Perot response is computed using the propagation matrix formalism (without the membrane matrix, see equation I.54) and is represented in Fig. I.22 (c) and (d), for each photo-inscribed FBG set of parameters (config. 1 and 2). A resonance effect occurs, especially close to the FBG bandwidth edge, where the transmission of the FBG is starting to increase. In this situation a resonance peak appears with high quality factor in the 10 6 -10 7 range. Note that the more the peak is localized inside the FBG bandwidth, the more the contrast is reduced. It is mainly due to the low transmission of the FBG inside the bandwidth and to the low finesse of such a cavity (F < 100).

Resonance condition and decay rate of the MIM setup

The membranes used for the measurements are commercial silicon nitride (SiN) or stoichiometric silicon nitride (Si 3 N 4 ) membranes of square geometry with various dimensions (see chapter II). Typical geometric (only the thickness matters in our one-dimensional model) and optical parameters are considered for our theoretical description, summarized in Table I Once again the periodic variations of the resonance condition and of the overall decay rate, specific to the MIM system, appear as a function of z m . For the first set of parameters, the bandwidth is lower, which results in slightly higher sensitivity of the resonance condition with the membrane position. For the second set of parameters, the resonance peak is localized closer to the FBG bandwidth edge, which results in a higher cavity bandwidth variation with z m , due to a variation of the FBG reflectivity. For both configurations, the orders of magnitude are similar, and correspond, as we will see in next chapter, to typical situation encountered in our practical devices.

Optomechanical couplings

The dispersive (g om ) and overall dissipative coupling (κ om are deduced as a function of the membrane position by finite difference derivation of, respectively, the resonance condition and the cavity bandwidth. Both couplings are represented in First, the MATE effect already discussed in the previous section is confirmed, especially through the asymmetry of the dispersive coupling. With this lensed FBG-based optomechanical cavity, the membrane is indeed closer to the back mirror. As we are working with macroscopic cavities, in the millimeter range, the effect is enhanced compared to the microscopic cavities. The dissipative curve is characterized by a particular pseudo-periodic behavior, similar to the one observed in Fig. I.15 or I.14. In more quantitative terms, the dispersive coupling is in the MHz/nm range, while the dissipative one is around 0.1 -0.5 MHz/nm. These predicted relative resonance conditions, cavity bandwidths, and optomechanical couplings serve as a good estimation of the achievable orders of magnitude with practical systems. Although the FBG parameters (especially the effective index modulation amplitude and the visibility) strongly influence the position of the resonance peaks, they do not drastically change these optical and optomechanical properties, for equivalent FBG reflectivity and bandwidth. We believe that the FBG physical length has a higher influence, because of the FBG penetration depth that quantifies, as for the mid-IR Bragg mirrors, the propagation thickness at which the electromagnetic wave is effectively reflected. This is at the origin of an effective cavity length, higher than the initial one. It has been shown that the higher is the reflectivity of the grating, the lower is the penetration length [START_REF] Barmenkov | Effective length of short fabry-perot cavity formed by uniform fiber bragg gratings[END_REF]. In our situation, this length is equal to 5 -6 mm, which is not negligible, in comparison to the sum of the GRIN lens length and the air domain thickness. Even if the FBG real parameters are not precisely known, the coherence between this theoretical analysis and the measurements is shown in chapter II.

I.3 Membrane mechanical dynamics

In addition to the basic optical properties of the MIM setup for our two approaches, the tools to understand the mechanical behavior are given. An analytical description of the mechanical resonator dynamics is presented. It focuses on the membrane vibration theory, which is a very specific model deduced from the vibration theory of solids. The cases of rectangular and circular membranes are detailed as both geometries are studied in this work: the rectangular for the external lensed FBG-based MIM cavities, and the circular for the micrometric silicon integrated MIM cavities. The tools presented here are essential to understand the dynamical behaviors of such mechanical resonators. In particular, it helps us to identify the mechanical resonance modes in practical experiments.

The usual method is followed to describe the membrane vibration problem, based on standard textbooks and articles [START_REF] Timoshenko | Vibration Problems In Engineering[END_REF][START_REF] Hauer | A general procedure for thermomechanical calibration of nano/micro-mechanical resonators[END_REF]. It first starts with a mode shape analysis for both geometries, to finally give the general solution in the presence of an external harmonic excitation.

I.3.1 Free vibration of rectangular membranes

A membrane is a particular plate geometry characterized by a thickness much smaller than its other dimensions. The equation of transverse vibration of a suspended rectangular membrane

(dimensions a × b in the (O x , O y ) space, L m ≪ a, b, see Fig. I.26
) characterized by a high intrinsic tensile stress, and without any driven external force, is given by [START_REF] Timoshenko | Vibration Problems In Engineering[END_REF][START_REF] Hauer | A general procedure for thermomechanical calibration of nano/micro-mechanical resonators[END_REF]:

ρ S ∂ 2 u(x, y, t) ∂t 2 -T L ∇ 2 u(x, y, t) = 0, (I.58)
where ∇ 2 in the Laplacien operator, ρ S = ρ V .L m is the surfacic mass (with ρ V the volumic mass), T L = T .L m is the tensile strength per unit of thickness and u(x, y, t) is the transverse deflection in the out of plane direction (z axis). Because of the membrane anchoring on a silicon substrate, the boundary condition imposes a null transverse displacement (at every time) and velocity along the edges. A modal development u(x, y, t) = Ψ(x, y) e iωt is often suitable to solve this kind of vibration problem. An Helmholtz equation is then derived: 

∇ 2 Ψ + ω 2 c 2 meca Ψ = 0, (I.59)
where c meca = T L /ρ S = T /ρ V is the velocity of vibration wave within the membrane. This eigenvalue equation can be solved by separation of variables, looking for solutions written as:

Ψ(x, y) = X(x)Y (y) (I.60)
By injecting this type of function in the eigenvalue equation, one easily demonstrate that Ψ(x, y) = U e i(αx+βy) where U is a constant. The following relation is found:

ω 2 c 2 mbrn = α 2 + β 2 .
(I.61)

One can further simplify the analytical expression of the solutions by developing the complex exponential into product of cosine and sine functions. Considering the boundary conditions Ψ(0, y) = Ψ(a, y) = Ψ(x, 0) = Ψ(x, b) (origin at a membrane corner), the spatial mode are given by

Ψ mn (x, y) = A sin(α m x) sin(β n y), (I.62)
where A is a constant, α m = mπ/a, β n = nπ/b, and m, n are non-zero natural integers. An important property is the orthogonality of the eigenmodes:

< Ψ mn , Ψ rs >= a 0 b 0 Ψ mn Ψ rs dxdy = ab 4 δ mn δ rs , (I.63)
where δ mn = 1 if m = n and 0 otherwise. Finally, the resonance frequencies of the membrane (without any environment damping) are deduced using equation (I.61):

ω mn = 2πf mn = π T L ρ S m 2 a 2 + n 2 b 2 . (I.64)
The resonance frequency depends on the material mass, the intrinsic tensile stress and the dimensions. In order to visualize the mechanical behavior, multiples mechanical mode shapes are represented in Finally, the general solution of the mechanical transverse displacement without any external force is given by a superposition of all the eigenmodes, that forms a vectorial basis: where A mn and B mn are given by the initial conditions.

I.3.2 Free vibration of circular membranes

The starting point for a circular membrane (radius a in the (O r , O θ ) space, L m ≪ a, see Fig. I.28) is the same as for rectangular geometries (see equation (I.58)). The transverse deflection in the out of plane direction (z axis) is denoted u(r, θ, t) . The boundary condition imposes a null displacement (at every time) and velocity at the edges. The Laplacian operator ∇ 2 f in polar coordoninates reads:

∇ 2 f = ∂ 2 f ∂r 2 + 1 r ∂f ∂r + 1 r 2 ∂ 2 f ∂θ 2 (I.66)
A modal analysis is still performed by looking at solutions written as u(r, θ, t) = Ψ(r, θ) e iωt . The mode shapes verify this eigenvalue equation:

∂ 2 Ψ ∂r 2 + 1 r ∂Ψ ∂r + 1 r 2 ∂ 2 Ψ ∂θ 2 + ω 2 c 2 meca Ψ = 0, (I.67)
The separation of variables is also used, looking for solutions written as: The method is more detailed than for rectangular membranes, as the final solutions have a more complex form. One can inject this function in equation (I.67) and divide on both sides by RΘ. By noting that the resulting relationship is an equality between a function of the variable r, and a function of θ, two properties are demonstrated. First, the periodicity of Θ is deduced (Θ(θ + 2π) = Θ(θ)). It can be writen: ..

Ψ(r, θ) = R(r)Θ(θ) (I.68)
Θ(θ) = A e imθ
R + 1 r . R + λ 2 - m 2 r 2 R = 0, (I.70)
where λ = ω/c meca . The general solutions can be written

R(r) = BJ m (λr) + CY m (λr), (I.71)
where J m and Y m are the m th order Bessel functions of, respectively, the first and second kind, and B, C are two constants. To avoid the divergence of R(r) when r = 0, one has C = 0. Thus:

R(r) = BJ m (λr) (I.72)
The boundary condition at r = a implies that:

R(r = a) = 0 ⇒ J m (λa) = 0. (I.73)
This last relation represents the eigenfrequency equation without air damping. The resonance frequencies are then given by:

ω mn = 2πf mn = α mn a T L ρ S where J m (α mn ) = 0 (I.74)
where α mn is the n th zero of the m th order Bessel function of first kind J m . For instance, the first three zeros of the zeroth function J 0 are 2.405, 5.520 et 8.654. The resonance frequencies of the three first mechanical modes for m = 0 (first three axisymmetric modes) are then approximately given by: The general form of the mode shapes can be written:

ω 01 = 2.
Ψ mn (r, θ) = Ψ (0) mn J m (λ mn r) e imθ (I.78)
where m ∈ N, n ∈ N * , λ mn = α mn /a with J m (λ mn a) = 0, and Ψ (0) mn is a normalization constant given by 1/J m (η max ), where η max corresponds to the argument at which J m is maximum. By developing the complex exponential, the following eigenfunctions are found:

Ψ mn (r, θ) = A mn Ψ C mn (r, θ) + B mn Ψ S mn (r, θ), (I.79)
where:

Ψ C mn (r, θ) = J m (λ mn r) cos(mθ) (Cosine mode) (I.80) Ψ S mn (r, θ) = J m (λ mn r) sin(mθ) (Sine mode) (I.81)
Once again, in order to visualize the mechanical behavior, multiple mechanical mode shapes are represented in Fig. I.29, with the corresponding resonance frequencies, calculated using FEM simulations with COMSOL Multiphysics. The mechanical mode is solely axisymmetric for m = 0. Note that for all modes, the shape function corresponds to superposition of two orthogonal modes (cosine mode and sine mode). This orthogonality implies that:

a 0 2π 0 Ψ I mn Ψ J ps rdθdr = π a 2 2 J 2 m+1 (λ mn a) Ψ (0) mn δ IJ δ mp δ ns (I.82)
where I, J = C, S (cosine or sine). This result allows a normalization of the mechanical mode shapes. Finally, the general solution describing the free vibration of circular membrane, is given by the superposition of all the mode shapes:

(I.83) w(r, θ, t) = ∞ m=0 ∞ n=0 A mn Ψ mn (r, θ) e iω (s) mn t
or, by developing the complex exponentials, using equations (I.79), and defining new constants:

(I.84a) w(r, θ, t) = ∞ m=0 ∞ n=0 (B mn cos(ω (s) mn t) + C mn sin(ω (s) mn t)) Ψ C mn (r, θ) + (D mn cos(ω (s) mn t) + E mn sin(ω (s) mn t)) Ψ S mn (r, θ) ,
where A mn , B mn , C mn , D mn and E mn are deduced from the initial conditions. 

I.3.3 Harmonic mechanical behavior

Given the previously demonstrated mode shape expressions, for both geometries, the effect of an external harmonic excitation on the mechanical behavior of the membrane is now discuss. It can be modeled by adding a supplementary surfacic force density (or pressure) f (x, y, t) in the vibration equation [START_REF] Timoshenko | Vibration Problems In Engineering[END_REF][START_REF] Hauer | A general procedure for thermomechanical calibration of nano/micro-mechanical resonators[END_REF]:

ρ S ∂ 2 u ∂t 2 -T L ∇ 2 u = f (x, y, t). (I.85)
As the eigenfunctions form a basis of the vectorial space, this equation is projected on the (m, n) eigenmode, and the harmonic equation is deduced. However, mechanical resonators are always characterized by several losses, which forces us to consider a supplementary damping term. This prevents the model from diverging at resonance frequency, in the Fourier space. The harmonic oscillator differential equation directly follows:

m mn eff ümn + γ mn umn + k mn u mn = F mn (t), (I.86)
where m mn eff = α mn ρ S is the effective modal mass, k mn = m mn eff ω 2 mn is the modal stiffness constant, γ mn = ω mn /Q mn is the modal damping coefficient, Q mn is the modal quality factor, α mn = Ψ 2 mn and F mn (t) = Fmn e iωt is the harmonic force. α mn is determined using the orthogonality of the mode shapes, given by equation (I.63) and (I.82), for, respectively, the squared and circular geometries:

The membrane-in-the-middle optomechanical setup

α mn = ab 4 for squared membrane, π a 2 2 J 2 m+1 (α mn )Ψ (0)
mn for circular membrane, (I.87)

The effective mass, for a squared membrane, is then constant for all modes, and will be denoted by m eff . One then has:

m eff = m phys 4
for squared membrane, (I.88)

m mn eff = m phys 2 J 2 m+1 (α mn )Ψ (0) mn for circular membrane, (I.89)
where m phys is the physical mass. The silicon nitride material, of volumic mass ρ V = 3170 kg/m 3 , is considered [161]. The effective mass of each commercial squared membrane used in our lensed FBG-based MIM cavities setup (see chapter II) are given in Table I.9. The effective mass for various circular geometries fabricated in the CEA-Leti cleanroom platform for our micrometric MIM cavities (see chapter III) are given in Table I.10 and Fig. I.30. They are computed in COMSOL (for the circular geometry), using the method of Bradley Hauer, with the following relation [START_REF] Hauer | A general procedure for thermomechanical calibration of nano/micro-mechanical resonators[END_REF]:

m mn eff = 1 max(Ψ mn ) 2 θ r z ρ mn V (r)|Ψ mn (r)| 2 dV (I.90)
where ρ mn V is the modal volumic mass. Finally, in the Fourier space, the frequency behavior of the displacement amplitude is given by: 

Geometry (a

U mn (ω) = χ mn F mn m eff = Fmn m mn eff (ω 2 mn -ω 2 -iγ mn ω) , (I.91)
where χ m = m eff U mn /F mn is the mechanical susceptibility. This quantity is important as it serves in the thermomechanical calibration of every measured mechanical spectrum. Note that some mechanical eigenmodes are degenerates for the squared membrane, as represented on Fig. I.27. It means that they are characterized by the same resonance frequency. In practice, an harmonic external force at this frequency will excite both modes, which will result in superposition of the mode shapes with overlapping coupling between both [START_REF] Timoshenko | Vibration Problems In Engineering[END_REF]. However, under certain conditions, such as particular membrane constraints or damping of the environment, a removal of degeneracy can occurs, which will influence this coupling mechanism.

Observation of removal of degeneracy on specific modes of a squared membrane have by the way been observed with our near-IR optomechanical cavities (see chapter II).

The tools and results detailed in this chapter serve as a basis of understanding for the two following chapters. The first one focuses on the near-IR external lensed FBG-based MIM cavities, with a completed characterization of the devices, using the rectangular membrane analytical study. The optical and optomechanical measured features are confronted with those predicted with theory. The second one deals with the mid-IR silicon integrated micrometric cavities, for which the linear optical analysis, as well as the mechanical theory, are used as a starting point to design an optomechanical cavity for trace-gas detection.

CHAPTER

II

A macroscopic approach: external fiber-based optomechanical cavity

Our proof of concept of the MIM setup in the near-IR region is presented. In order to experimentally assess the characteristics of such a system, and to work on the measurement methods, a new kind of millimetric external fiber-based optomechanical cavity is developed. As already introduced, the system is hybrid: it is composed of a lensed FBG as an input mirror, a silicon nitride membrane (low stress SiN or high stress stoichiometric Si 3 N 4 ), and a broadband dielectric mirror.

The Pound-Drever-Hall (PDH) method [START_REF] Black | An introduction to pound-drever-hall laser frequency stabilization[END_REF], largely used in the optomechanical community [START_REF] Jayich | Dispersive optomechanics: a membrane inside a cavity[END_REF][START_REF] Schliesser | Resolvedsideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit[END_REF][START_REF] Anetsberger | Near-field cavity optomechanics with nanomechanical oscillators[END_REF][START_REF] Regal | From cavity electromechanics to cavity optomechanics[END_REF][START_REF] Lee | Multimode optomechanical dynamics in a cavity with avoided crossings[END_REF][START_REF] Gröblacher | Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity[END_REF][START_REF] Xu | Observation of optomechanical buckling transitions[END_REF][START_REF] Rossi | Measurement-based quantum control of mechanical motion[END_REF][166][START_REF] Ranfagni | Vectorial polaritons in the quantum motion of a levitated nanosphere[END_REF][START_REF] De Los Ríos | Strong optomechanical coupling at room temperature by coherent scattering[END_REF], is implemented using an electro-optic modulator for the phase modulation, to stabilize our laser source on the resonance of the optical cavity. A detailed analysis of the noise spectrum and the frequency stability of our devices is presented. Using this stabilized experimental bench and our novel fiber-based MIM cavities, thermomechanical noise characterization of the silicon nitride membranes are performed. Measurements are essentially done in vacuum (1×10 -5 mbar), but also in air environment. A complete analysis of the optical, thermal, and mechanical behaviors is conducted. The long term optomechanical stability is discussed. Various perspectives of our lensed FBG-based optomechanical cavities are then considered. The offset sideband locking technique [START_REF] Thorpe | Laser frequency stabilization and control through offset sideband locking to optical cavities[END_REF][START_REF] Livas | Frequencytunable pre-stabilized lasers for LISA via sideband locking[END_REF][START_REF] Feng | Laser frequency locking with second-harmonic demodulation[END_REF][START_REF] Milani | Multiple wavelength stabilization on a single optical cavity using the offset sideband locking technique[END_REF], which enables large bandwidth tunability without altering the frequency stability, is introduced. It could be applied in many optomechanical systems. This system could also serve as a basis for various sensing applications. A discussion is finally made to understand the interest of our device in this way. 

II.1 Fiber-based optomechanical cavities

As quickly presented in the introduction, the past two decades have seen the appearance of numerous fibered optomechanical systems for various applications. We propose to briefly review in more details some of these works, which are grouped into three categories: the high finesse optomechanical microcavities, the FBG-based systems, and the microstructured optical cavities on fiber tip. ). On the bottom: optical spring effect and optomechanical damping of the (3,3) mechanical resonance mode [START_REF] Shkarin | Optically mediated hybridization between two mechanical modes[END_REF]. (e) On the top: picture of a cavity (43.8 µm long) used for a SI 3 N 4 MIM setup (finesse between 30000 and 195000). On the bottom: associated optical spring effect and optomechanical damping measured on the second harmonic flexural mode [START_REF] Rochau | Dynamical backaction in an ultrahigh-finesse fiber-based microcavity[END_REF].

High-finesse cavity optomechanics

All these cavities are based on Bragg coated concave fiber end facets formed by CO 2 laser machining (laser ablation of the fiber ends). The radius of curvature varies between 140 and 300 µm. The small spacing between fiber ends (between 50 and 80 µm) combined with the high mirror reflectivity (above 99.99 %) allows to construct high finesse optical cavities (between 10 3 and 10 5 ). These setups are thus an excellent basis for cavity optomechanics, especially for the "nanomechanical resonator in the middle" system, where the mechanical element does not drastically affect the optical properties of the cavity. Research has been conducted on carbon nanorods [START_REF] Favero | Fluctuating nanomechanical system in a high finesse optical microcavity[END_REF] and nanotubes [START_REF] Stapfner | Cavity-enhanced optical detection of carbon nanotube brownian motion[END_REF] 1 (d) and (e)), and various exotic properties, such as the hybridization between two mechanical modes [START_REF] Shkarin | Optically mediated hybridization between two mechanical modes[END_REF] or backaction cooling of the mechanical mode of interest using combined dispersive and dissipative optomechanical interactions [START_REF] Rochau | Dynamical backaction in an ultrahigh-finesse fiber-based microcavity[END_REF]. A recent study has also presented a precise 3D mapping of the optomechanical interaction and the optical force by moving a subwavelength sized nanowire in the middle of fiber-based microcavity [START_REF] Fogliano | Mapping the cavity optomechanical interaction with subwavelength-sized ultrasensitive nanomechanical force sensors[END_REF]. The systems mentioned here are well suitable for the exploration of the mechanical element's quantum signature: as already stated in the previous chapter, the MIM setup is especially adapted for quantum nondemolition measurements of the phonon number using the high quadratic dispersive optomechanical coupling [START_REF] Milburn | Quantum nondemolition measurements via quadratic coupling[END_REF][START_REF] Deng | Quantum nondemolition measurement of microwave photons using engineered quadratic interactions[END_REF][START_REF] Yanay | Quantum backaction and noise interference in asymmetric two-cavity optomechanical systems[END_REF]. Their systems are composed of highly reflective (90 % or above) FBG designed at the end of a fiber, which serves as a static input mirror of a Fabry-Perot cavity at λ = 1550 nm. The back mirror is always a suspended metallic mirror (rectangular or beam structure). It should be noticed that contrary to the previously presented cavities, the optical finesse in this situation is relatively low (of the order of unity), due to a lower FBG reflectivity, in comparison to the ultralow loss Bragg coated fiber tips. In their first configuration, the light is focusing on the micromechanical resonator by means of a lens (section of a graded index fiber, with a length of 0.45 pitch) spliced to the end facet of the fiber (see Fig. II.2 (a)) [START_REF] Zaitsev | Forced and self-excited oscillations of an optomechanical cavity[END_REF]. Selfsustained oscillations above a certain input threshold have been observed, which confirmed a theoretical model that predicts a dominant optomechanical coupling mechanism: the heating of the metallic mirror due to optical absorption [START_REF] Zaitsev | Nonlinear dynamics of a microelectromechanical mirror in an optical resonance cavity[END_REF]. This bolometric self-excited oscillation regime has also been observed in their second configuration, with the metallic beam directly fixed on the polished fiber end (see Fig. II.2 (b)) [START_REF] Baskin | Optically induced self-excited oscillations in an on-fiber optomechanical cavity[END_REF]. More complex phenomena, such as mechanical synchronization, have also been studied with this last cavity [START_REF] Shlomi | Synchronization in an optomechanical cavity[END_REF][START_REF] Buks | Self-excited oscillation and synchronization of an on-fiber optomechanical cavity[END_REF]. This effect has also been observed on the first configuration placed in an optical fiber ring cavity (see Fig. II.2 (c)) [START_REF] Buks | Mode locking in an optomechanical cavity[END_REF]. To the best of our knowledge, these are the only studies on FBG-based optomechanical cavities. These systems exploit the fiber-air interface as a input mirror of a low finesse Fabry-Perot cavity and a metallic output mirror coated on a facet of a microstructured mechanical resonator (or directly a metallic resonator) as a back mirror. They all simplify the alignement issues of previously presented setups (except for the last FBG-based cavity), by designing a self-aligned optical cavity. Note that this list is not exhaustive: these systems are part of an active research field on various kinds of sensors [START_REF] Xiong | Multifunctional integration on optical fiber tips: challenges and opportunities[END_REF]. For instance, an anchored cantilever structured on a fiber tip could serve in atomic force microscopy (see Fig. II.3 (a)) [START_REF] Iannuzzi | Monolithic fiber-top sensor for critical environments and standard applications[END_REF], while a similar fiber-to-air interface in front of microstructured mechanical cantilever coated with a metallic layer and anchored on the fiber. This system could be used for atomic force microscopy [START_REF] Iannuzzi | Monolithic fiber-top sensor for critical environments and standard applications[END_REF]. (b) On the left: scanning electron microscope picture of a suspended circular resonator with two arms, structured at the end of a fiber and coated with a metallic layer. On the right: example of optically measured mechanical response, under different concentrations of hydrogen in the surrounding air [START_REF] Ma | Optical fiber tip acoustic resonator for hydrogen sensing[END_REF]. (c) Micrographs of a dual-nanoweb on a fiber tip used for investigation of optomechanical nonlinearity effects. [START_REF] Butsch | Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber[END_REF]. (d) Polymer cantilever on a donut-shaped diaphragm coated with a metallic layer and self-aligned with the fiber end interface using a ceramic ferrule. This system is used for biological sensing (Listeria food pathogen sensing) [START_REF] Li | Label-free ferrule-top optical fiber micro-cantilever biosensor[END_REF]. (e) Schematic representation of two fiber accelerometer assemblies with finite element modelisation of the mechanical behavior of each resonator [START_REF] Bruno | Opto-mechanical labon-fiber accelerometers[END_REF]. (f) Schematic representation of an external Fabry-Perot between a fiber-air interface and a metallic cantilever based diaphragm, used as a highly sensitive microphone for photoacoustic detection of NO in nitrogen [START_REF] Lauwers | An all-optical photoacoustic sensor for the detection of trace gas[END_REF].
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circular resonator with two support arms is used as a highly sensitive hydrogen sensor (see Fig. II.3 (b)) [START_REF] Ma | Optical fiber tip acoustic resonator for hydrogen sensing[END_REF]. Biological sensing has been demonstrated with a polymer cantilever (also coated with a metallic layer) on a donut-shaped diaphragm (see Fig. II.3 (d)) [START_REF] Li | Label-free ferrule-top optical fiber micro-cantilever biosensor[END_REF]. A similar setup, with a metallic cantilever based diaphragm, is used as a highly sensitive microphone in a photoacoustic scheme for NO detection in nitrogen (see Fig. II.3 (f)) [START_REF] Lauwers | An all-optical photoacoustic sensor for the detection of trace gas[END_REF]. Accelerometers have also been assembled using a support groove assembly (see Fig. II.3 (e)) [START_REF] Bruno | Opto-mechanical labon-fiber accelerometers[END_REF]. Finally, some more fundamental measurements, such as investigation of optomechanical nonlinearity effects in a dual-nanoweb suspended on a fiber end, have also been performed (see Fig. II.3 (c)) [START_REF] Butsch | Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber[END_REF]. In our situation, a new kind of hybrid FBG-based optomechanical MIM cavity using a passively aligned membrane on a dielectric mirror assembly is developed as a proof of concept in the near-IR region (λ = 1550 nm). The optomechanical properties of this system are investigated by implementing frequency stabilization techniques widely used the cavity optomechanics research field, but also in sensing applications, in some of the systems previously mentioned. Our system is besides considered as a sensor as well.

II.2 The external fiber-based membrane-in-the-middle system

Our hybrid optomechanical MIM cavity based on an external fiber Fabry-Perot is deeply explained in this section. A brief overview of the FBG fabrication techniques is given. The commercial lensed FBG, as well as the silicon nitride membranes commonly used in various optomechanical setups are then described in detail. Finally, our complete system with the passively aligned membrane-on-mirror assembly is presented.

II.2.1 Fabrication of Fiber Bragg Gratings

The fabrication of FBG is based on optical writing on the core of a fiber. This induces a periodic modulation of the optical index and generates the grating of interest. The two main techniques are briefly described using the standard literature [START_REF] Othonos | Fiber bragg gratings[END_REF][START_REF] Vasil'ev | Fibre gratings and their applications[END_REF]. The first one is based on an indirect writing of an interference pattern on a photosensitive optical fiber. A usual method consists of splitting an incident ultraviolet (UV) light (excimer laser) into two beams using a beamsplitter, which are then recombined on the fiber with a certain angle between them. This angle determines the period of the interference pattern. An equivalent technique consists of sending an incident UV light on a phase mask that serves as a diffractive element. The two first-order diffracted beams interfere to construct the inscription pattern by creating a periodic intensity distribution on the fiber. The mask in silica glass is designed to suppress the zeroth and other diffraction orders. This technique allows the fabrication of gratings with variable period along the fiber length, but suffers from the impossibility to adjust the properties of the FBG after manufacturing the mask. The second one is a direct writing or step-by-step method and is based on a radiation directly focused on the fiber core. It consists of mechanically displacing a photosensitive fiber with respect to the continuous UV focused beam. One can also use a focused IR source (CO 2 or CO laser) or a localised electric discharge to induce a local heating that changes the optical index profile because of mechanical (deformation of stress) or chemical (local changes in the composition) modifications of the fibre, which can also be non-photosensitive. The inscription is usually followed by thermal annealing in H 2 environment to reduce erasing effects. This technique is more flexible as it enables writing of arbitrary profiles. Note that multiple types of gratings exist depending on the induced optical index variation along the fiber axis, such as apodized grating, chirped FBG, π-FBG (with a π phase shift in the middle of the grating) or superstructure with multiple uniform gratings in series. Once again, the reader can refer to the standard textbooks on FBG [START_REF] Erdogan | Fiber grating spectra[END_REF][START_REF] Othonos | Fiber bragg gratings[END_REF].

II.2.2 The lensed Fiber Bragg Gratings: spectral characterization and properties

An important part of our optomechanical cavities is the lensed FBG. This element has two main purposes. First, it serves as a highly reflective input mirror, using the grating itself. Then, it allows the light to be collimated out of the fiber. This last function is essential as it considerably increases the coupling efficiency of the back-propagating light with the guided mode of the fiber. It strongly reduces the external losses of our optical cavities. In this section, we present this element, its spectral characterization, and numerically analyse its interest in terms of coupling efficiency, using ABCD matrix formalism to describe the propagation of gaussian beams within our final setup. 

Name

General description

For our application, commercial uniform FBGs from Raysung Photonics are used. They are designed at a working wavelength of 1.55 µm, with a spectral bandwidth of 0.5 nm, and a maximum reflectivity above 94 % ± 5 %. The general properties of the FBGs are summarized in Table II.2. Note that they have been protected using an acrylate recoating after the inscription. In order to collimate light out of the fiber, a GRIN lens is bound directly on the fiber tip. It is a conventional quarter-pitch GRIN lens designed to generate a beam size of 0.2 mm at a working distance between 0.5 and 1 mm. Its properties are also summarized in Table II.2. The whole lensed fiber assembly with the acrylated coated FBG is protected using a 0.4 mm thick, 7 mm long, glass coating. A schematic is displayed on Fig. II.4.

Spectral characterization of the lensed FBG

The FBG is designed to exhibit a high reflectivity at the working wavelength with a 0.5 nm bandwidth. Combining this high reflectivity with a large optical bandwidth requires a high physical length, and a saturation of the effective index variation. We do not know and cannot precisely measure the exact value for our devices, but δn is typically around 10 -3 -10 -4 . In addition, they are inscribed on PM fibers, and are designed to exhibit the desired spectral response for a polarization of the guided mode on the slow axis direction. The FBG is still operational on the fast axis, with slightly different Bragg wavelength, bandwidth and maximum reflectivity. The optical response of 10 lensed FBGs at our disposal from the same manufacturing process (their inscription technique is confidential) is characterized. The optical bench is presented on Fig. II.5 (a). The tunable laser source is a 1.55 µm Tunics (T100S-HP) from Yenista, combined with an optical component tester from EXFO (CT400). This unit contains a 3 dB coupler to split the input laser signal into a characterization beam (on the output fiber port) and a reference beam for the signal measured by an integrated photodetector. To extract the signal reflected by the FBG, a PM optical circulator (CIR1550PM-APC, Thorlabs) is used. It is a 3 ports non-reciprocating fiber coupler device designed to exhibit two paths for the light with minimal loss (around 0.5 dB): port 1 to port 2 or port 2 to port 3. It is unidirectional, meaning that only these two paths can be used while others are characterized by a high loss ratio of 50 dB. The isolation for both unwanted channels (port 2 to port 1 or port 1 to port 3) is 60 dB. The insertion losses are around 0.6 dB, and are taken into account to extract the FBG response. Note that the fiber coupled connectors are APC type (Angled Physical Contact), made of angled polished ferrule (≈ 8°) to prevent from any parasitic reflected light in the fibers (except for all photodetectors used in this work, which are basic FC-PC type, without any angle). Unless otherwise stated, these connectors are used for all passive components described in this manuscript, to prevent from any unwanted interferences that could perturb the measured signals.

The spectral behaviors in reflection of the 10 lensed FBGs are summarized on Fig. II.5 (b) and (c). A label is attributed for each component. The response of the first FBG is highlighted, and the responses of the others are displayed for comparison purpose. The Bragg wavelength and optical bandwidth slightly change between all devices (see Table II.2). The reflectivity is estimated around 94 % ± 5 % with a lower reflectivity for samples 09 and 10. These spectral responses and our predictions using the propagation matrix model (see Fig. 

Coupling efficiency with a facing plane mirror

The GRIN lens is used to collimate light out of the fiber. This element is critical to drastically reduce the coupling losses in our hybrid optical cavities. In order to understand the interest, the external coupling efficiency of light reflected on a plane mirror, placed in front of the lensed fiber, with the guided mode of the fiber, is numerically determined. To do so, ABCD matrices (or Ray transfer matrices) are used [START_REF] Brooker | Modern Classical Optics[END_REF][START_REF] Yariv | Optical Waves in Crystals: Propagation and Control of Laser Radiation[END_REF]. This tool has been originally developed to calculate the propagation of light rays through multiple optical components in the paraxial approximation. It has been extended to a gaussian beam, to calculate its propagation through the same optical elements. The q complex parameter is defined as follows:

1 q = -i λ πw 2 + 1 R (II.1)
where w is the beam radius (or waist) and R is the radius of curvature. This parameter describes the state of the gaussian beam at a specific spatial position. The A, B, C, D coefficients of a specific optical system allow us to write the output complex parameter denoted by q f , as a function of the input parameter q i , according to the following relationship [START_REF] Brooker | Modern Classical Optics[END_REF][START_REF] Yariv | Optical Waves in Crystals: Propagation and Control of Laser Radiation[END_REF]:

q f = Aq i + B Cq i + D (II.2)
For each basic optical element (interface, thin/thick lens, mirror, free space, ...), adapted A, B, C, D coefficients can be attributed. The usual components are well described using this formalism in the literature [START_REF] Brooker | Modern Classical Optics[END_REF][START_REF] Yariv | Optical Waves in Crystals: Propagation and Control of Laser Radiation[END_REF]. For the GRIN lens ABCD matrix, the reader can refer to various studies from the literature that deal with fiber-to-fiber or laser-to-fiber coupling efficiency enhancement [150-152, 154, 155, 189]. These matrices are exploited in our specific situation: a GRIN lensed fiber facing a perfectly reflective plane mirror is considered, as represented on Fig. II.6. Note that taking into account a full reflection on a perfectly aligned mirror is equivalent to duplicating the system with a symmetrical configuration. This formalism is adapted for this kind of coupling issue in the gaussian approximation of the guided mode of the fiber, valid in the weak guidance case. The small difference in index between the core and the cladding of an optical fiber (of the order of a few percent) allows us to make this approximation [START_REF] Kogelnik | Theory of Optical Waveguides[END_REF]. One can therefore consider that the output beam of the fiber is gaussian and apply the formalism to calculate the coupling efficiency. The ABCD matrix of our system is given by the product of characteristic matrices of each domain and interface, after one round trip:

(II.3) A B C D = M gap M back 21 M GRIN M back 32 M cav M mirror M cav M 23 M GRIN M 12 M gap ,
where the domain matrices are given by

M gap = 1 d gap 0 1 , (II.4) M GRIN =    cos(gL G ) 1 g sin(gL G ) -g sin(gL G ) cos(gL G )    , (II.5) M cav = 1 d cav 0 1 , (II.6) M mirror = 1 0 0 1 , (II.7)
and the interface matrix between domain i and j of respective optical index n i and n j is given by

M ij = 1 0 0 n i /n j . (II.8)
It is important to point out that the interface matrices are essential to ensure the continuity of the beam waist and curvature between each domain. Note that the index at the interface for this lens depends on the beam radius. Note also that the intermediate waist and radius of curvature at a specific location can easily be determined using a partial ABCD matrix product. The evolution of the beam shape is easily deduced by calculating all intermediate matrices (see Fig.

II.7 (a)).

Knowing the initial and final q parameters, one can demonstrate the coupling efficiency η between two gaussian beams or, in our case, between a gaussian beam and the guided mode of the fiber (labeled by i, j), which is defined as the normalized overlap integral:

(II.9) η = Ψ i Ψ f dS 2 |Ψ i | 2 dS |Ψ j | 2 dS
, where:

Ψ i,j = Ψ 0,i,j exp - r 2 w i,j (z) 2 -ik r 2 2R i,j (z) -ikz , (II.10)
is the shape function of the gaussian beam of waist w i,j (z) and radius of curvature R i,j (z) at the position z on the optical axis. Considering that, the analytical expression of η, without any misalignment, is deduced [START_REF] Palais | Fiber coupling using graded-index rod lenses[END_REF][START_REF] Emkey | Analysis and evaluation of graded-index fiber lenses[END_REF][START_REF] Gilsdorf | Single-mode fiber coupling efficiency with gradedindex rod lenses[END_REF][START_REF] Van Buren | Foundations for low-loss fiber gradient-index lens pair coupling with the self-imaging mechanism[END_REF][START_REF] Zickar | MEMS compatible micro-GRIN lenses for fiber to chip coupling of light[END_REF][START_REF] Jung | Numerical analysis of gradient index lens-based optical coherence tomography imaging probes[END_REF][START_REF] Yuan | General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses: Errata[END_REF][START_REF] Marcuse | Loss analysis of single-mode fiber splices[END_REF][START_REF] Zhang | Coupling efficiency between ball lens capped laser diode chip and single mode fiber[END_REF]:

η = 4 w i w j   1 w 2 i + 1 w 2 i 2 + k 2 4 1 R i + 1 R j 2   .
(II.11) The symmetrical curve, in the negative region, is represented to visualize the full beam width. The limit between the lensed fiber assembly and the free space region is displayed. (b) Coupling efficiency of this system, with and without a GRIN lens.

The coupling efficiency is represented in Fig. II.7 (b). It is numerically calculated using this analytical expression and the ABCD formalism to deduce the final beam waist w f and radius of curvature R f . The field diameter of the guided mode in the fiber given in Table II.2 is considered, with a waist location at the fiber tip. For comparison, the coupling efficiency without any lens is also represented, to clearly visualize the interest of the GRIN lens. As an important remark, for a typical air domain length (space between the GRIN lens and the dielectric mirror) around 5 mm, the coupling efficiency is estimated at 89.55 %. This loss is the main limitation of our optical resonance contrast. The effective overall coupling loss is indeed given by η times the number of round trips i.e. the cavity finesse. Depending on the reflectivities of the mirror and the FBG, the constrast will be drastically reduced. Perfectly aligned systems have been considered for our calculations. With small adjustments, one can use the same formalism to estimate the impact of misalignment of the fiber relatively to the optical mirror. It serves to analytically estimate the sensitivity to lateral and angle misalignments, as presented in many other studies on fiber coupling with gradient index lenses [START_REF] Palais | Fiber coupling using graded-index rod lenses[END_REF][START_REF] Emkey | Analysis and evaluation of graded-index fiber lenses[END_REF][START_REF] Gilsdorf | Single-mode fiber coupling efficiency with gradedindex rod lenses[END_REF][START_REF] Van Buren | Foundations for low-loss fiber gradient-index lens pair coupling with the self-imaging mechanism[END_REF][START_REF] Zickar | MEMS compatible micro-GRIN lenses for fiber to chip coupling of light[END_REF][START_REF] Jung | Numerical analysis of gradient index lens-based optical coherence tomography imaging probes[END_REF][START_REF] Yuan | General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses: Errata[END_REF]. The membrane can also be added to the previous analysis, with two supplementary interface matrices and one propagation matrix within it. However it induces negligeable discrepancies on the coupling efficiency as the membrane thickness is relatively small (between 30 and 50 nm) compared to the wavelength and to the full system dimension in the mm range. Note however that one can somewhat benefit from controlled angle misalignments: some studies have indeed explored the possibility to tune the quadratic coupling specific to the MIM system, already discussed in the previous chapter, by tilting the membrane relatively to the optical axis [START_REF] Sankey | Strong and tunable nonlinear optomechanical coupling in a low-loss system[END_REF][START_REF] Karuza | Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment[END_REF].

II.2.3 Silicon nitride membranes: geometrical properties

With the main optical element now detailed, the mechanical resonator is presented. The membranes used in our optical cavities are commercial silicon nitride membranes of squared geometries from Norcada When deposited on a silicon substrate using a Plasma Enhanced Chemical Vapor Deposition (PECVD) process, the silicon nitride (SiN) is naturally tensile, with an intrinsic tensile strength around 200 -300 MPa. Using a Low Pressure Chemical Vapor Deposition (LPCVD) technique, one can further increase the in-plane tension by depositing a silicon nitride in its stoichiometric form (Si 3 N 4 ). The tensile stress is in this case typically of the order of a few GPa. For our commercial membranes, Norcada ensures a tensile strength below 250 MPa for the low-stress SiN, compared to 1 GPa for the Si 3 N 4 . The properties of these membranes are summarized in Table II.3. These membranes are well adapted for cavity optomechanics considering their high quality factor in a vacuum environment (10 6 at MHz resonance frequencies, at ambiant temperature [START_REF] Zwickl | High quality mechanical and optical properties of commercial silicon nitride membranes[END_REF]). Some research groups have attributed these high values to an "absorption" of the intrinsic mechanical losses (also called "dissipation dilution", see [START_REF] Tsaturyan | Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution[END_REF][START_REF] Fedorov | Generalized dissipation dilution in strained mechanical resonators[END_REF]) by the in-plane pre-tension, allowing them (by tuning this property) to potentially increase the quality factor until 10 7 [START_REF] Unterreithmeier | Damping of nanomechanical resonators[END_REF][START_REF] Schmid | Damping mechanisms in high-$q$ micro and nanomechanical string resonators[END_REF][START_REF] Yu | Control of material damping in high-$q$ membrane microresonators[END_REF] or even 10 8 by patterning photonic crystal membranes [START_REF] Tsaturyan | Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution[END_REF]. Using these resonators in the MIM system with low loss optical mirrors allows to reach both a high mechanical quality factor and a high optical finesse. The high intrinsic tension of the stoichiometric silicon nitride membrane induces high mechanical resonance frequencies, in the MHz range, which drastically increases the Q × f product. As a result, it induces high mechanical coherence and optomechanical cooperativity, which quantifies the capability of a given system to exchange energy between photons and phonons [START_REF] Aspelmeyer | Cavity optomechanics[END_REF]. They have therefore sparked considerable interest in the optomechanical community for quantum applications and sensing [START_REF] Aspelmeyer | Cavity optomechanics[END_REF].

II.2.4 Optical cavity with passively aligned membrane-on-mirror

The assembly process of our hybrid MIM optical cavity using a passively aligned membrane directly bound to a broadband dielectric mirror is detailed. All the components used to build the system are described. The two alignment setups are presented, using either a compact custom manual 5-axis positioner or a vacuum compatible equivalent with high resolution piezocontrolled linear stages.

Cavity construction

As already stated in section I.2, the lensed FBG-based cavity is a MIM setup based on a hybrid external fiber Fabry-Perot interferometer. This optomechanical cavity is similar to the setups of Eyal Buks presented in section II.1. A schematic is displayed in Fig. II.9. One of our highly reflective lensed FBGs is used as an input mirror, in front of a broadband dielectric back mirror to build a basic Fabry-Perot. The back mirror is a 0.5 or 1 inch diameter fused silica broadband dielectric mirror (respectively, BB05-E04 or BB1-E04, Thorlabs), with a reflectivity above 99 % between 1280 and 1600 nm. A UV curing adhesive (Polytec UV 2195) is used to fixed the suspended silicon nitride membrane to a low voltage ring (or squared) piezoelectric chip (respectively PA44LEW or PA4GKH5W, Thorlabs). The piezoelectric chip is then UV glued directly to the dielectric mirror, in order to passively align the membrane relatively to the back mirror. The properties of the piezoelectric chips and of the dielectric mirror are detailed in Table II.4 and II.5, respectively. The main usage of the piezoelectric components is to precisely move the membrane along the cavity axis. It is critical for the MIM setup considering the periodic variation of the dispersive optomechanical coupling with the membrane position within the cavity. They are used to estimate the potential dynamical coupling by looking at the variation of the optical resonance frequency with the position. A geometrical configuration maximising the coupling could be therefore found, in order to increase the mechanical signal-to-noise ratio. These components could also serve to excite the membrane mechanical mode of interest by applying an alternative voltage at the resonance frequency of the mechanical mode of interest. However, they are very limited by their capacitance, which induces, combined with the impedance, a complicated electrical filtering at high frequencies.

Alignment setups and procedure

The alignment of the lensed FBG relatively to the membrane-on-mirror assembly is done using two different custom setups:

• The first one is dedicated to the measurements with 0.5 inch diameter dielectric mirrors in air environment. The lensed FBG is maintained on a V-groove fiber clamp (HFF001, Thorlabs), itself fixed to a manual 3-axis stage (MicroBlock MBT616D/M, Thorlabs) with 4 mm range differential adjusters. A fixed platform bracket is added on the positioner. The membrane-on-mirror assembly is placed in a 13.5 mm long lens tube (SM05L05, Thorlabs) and in a kinematic flexure stage mount (HMM001 with a RMS adapter plate HMA001, and a thread adapter SM05RMS, Thorlabs) with two 3°range manual angle adjusters. This approach has the advantage of compactness, and ensures a coarse prealignment thanks to the platform directly fixed to the 3-axis positioner. This compact 5-axis alignment system also reduces the sensitivity to parasitic vibrations and thermal fluctuations (thermal stability of the whole object close to 1 µm/°C, which minimizes mechanical drifts with time) compared to an approach with each element (lensed FBG and membrane-on-mirror assembly) on different supports. However, the manual differential adjusters are characterized by a limited resolution. • The second one is especially developed for the vacuum measurements. The elements of the first approach are mainly composed of anodized aluminum not designed for a usage in low pressure environment. A vacuum compatible setup has therefore been constructed: the lensed FBG is maintained on a steel GRIN lens holder (561-GR, Newport) on a short rail, itself fixed to a high resolution open loop 3-axis piezo-positioner (superposition of 3 linear stages Q-522.230, PI). Each stage is characterized by a 2.6 mm travel range and a 4 nm resolution. They are also suitable for low pressure working conditions. The membraneon-mirror assembly is placed on a stainless steel lens tube (SM1L05V for 1 inch mirror only, Thorlabs) which is fixed into a kinematic mount with 3 angle adjusters with 5 µrad resolution (POLARIS-K05T6 for 0.5 inch mirrors or POLARIS-K1T for 1 inch mirrors in lens tubes, Thorlabs). This positioner is attached using a 1 inch diameter cylindrical post, in front of the piezo-controlled 3-axis positioner. This approach ensures a better stability and displacement resolution, thanks to the piezo servo motors. The dielectric mirror is characterized by a large optical bandwidth (320 nm) compared to the FBG bandwidth (0.5 nm). This served as a reference for the alignment of the membrane-onmirror assembly and the lensed FBG: the main objective is indeed to maximise the signal reflected by the broadband mirror and coupled back into the fiber, outside of the FBG bandwitdh. The alignment is performed with a laser close to one of the FBG bandwidth edges, in order to increase the signal outside of the band relatively to the signal directly reflected by the fiber grating.

II.2.5 Optical study of the optomechanical cavities

Basic optical characterizations of the MIM cavities in reflection are now presented. The behaviors are similar from one alignment setup to another. The spectra presented in this section should be considered for qualitative comparison with the theoretical predictions, and as quantitative for the estimation of typical values of the free spectral range δν FSR , the contrast C R , the quality factor Q opt and the finesse F of our optical resonator. An external cavity diode laser from Toptica (DL pro) with 0.23 nm maximum wavelength tunability is used, as well as a photodetector (FEMTO, OE-300-IN-01) for the measurement. We do not focus on the specifications of these elements, as this is especially important in section II.3, to justify their usage for the frequency stabilization. To extract the signal in reflection, the same PM optical circulator (CIR1550PM-APC, Thorlabs) is used. The signal measured by the photodetector is acquired with the laser controller's internal oscilloscope (DLC-pro, see next section). The measurement setup is schematically represented in Fig. II.12. Using our laser source, wavelength scans are done on multiple optomechanical cavities. These lensed FBG-based MIM cavities differ from each other with the membrane (see Table II.3) and the lensed FBG used (which have similar optical properties, see Fig. II.5). The distance between the GRIN lens end-facet and the dielectric mirror remains around 5 mm. The large range spectra for four of our cavities, close to one of the FBG spectral edges (similar behaviors occur at the opposite edge), are displayed in Fig. II.13. For comparison, the spectral response of the lensed FBG alone is also represented on the first graph. These measurements should be qualitatively compared to the predicted spectra in Figs. I.22 and I.23. The expected behavior is confirmed: a highly contrasted resonance peak appears where the FBG reflectivity is starting to decrease. The contrast is strongly reduced with the emission wavelength of the laser entering the FBG bandwidth. The free spectral range δν FSR is quantified by calculating the mean value of the distance between our peak of interest, indicated by a red arrow on each graph, and the nearest neighboring peaks. The value is between 1.8 and 2.4 GHz, and remains in this range for all our devices. We now focus on the resonance peak. For each cavity, the contrast C R and the cavity bandwidth κ are quantified, by fitting the reflection spectrum around the resonance of interest with the following Lorentzian-shape function:

R fit = 1 - C R (κ/2) 2 (κ/2) 2 + ∆ 2 ,
(II.12) where ∆ is the detuning bewteen the laser and the cavity. The quality factor Q opt and the optical finesse F are then deduced using equations (I.37) and (I.36). The parameters are indicated on each graph. The contrast, on these examples, varies between 79 and 96 %, the optical quality factor is in the 10 6 -10 7 range, and the optical finesse varies is between 30 and 150. These values are once again typical, and similar from one device to another. They also might vary with the membrane position, which can introduce intrinsic losses while moving along the cavity axis. This effect is at the origin of the so-called dissipative coupling, and is further discussed, with the associated optomechanical characterizations, in section II.4.

II.3 Frequency stabilization of the system

Before focusing on the optomechanical characterizations, our main work on frequency stabilization techniques is presented. These techniques are essential for designing a sensor based on an optical cavity of high quality factor. It enables long term stability and maintains the performance and sensitivity over time. The Pound-Drever-Hall (PDH) technique is implemented [START_REF] Black | An introduction to pound-drever-hall laser frequency stabilization[END_REF], in the near-IR region, on our external fiber-based MIM cavities. Note that we also theoretically and experimentally explored more advanced techniques to stabilize the laser source out of the resonance, with minor modifications of the basic PDH [START_REF] Thorpe | Laser frequency stabilization and control through offset sideband locking to optical cavities[END_REF][START_REF] Livas | Frequencytunable pre-stabilized lasers for LISA via sideband locking[END_REF][START_REF] Feng | Laser frequency locking with second-harmonic demodulation[END_REF][START_REF] Milani | Multiple wavelength stabilization on a single optical cavity using the offset sideband locking technique[END_REF]. They are presented in section II.5.1, using all the tools detailed here.

II.3.1 Pound-Drever-Hall technique: principle

The PDH technique aims to stabilize a given laser frequency on a reference optical cavity. It is, in particular, applied to gravitational-wave detection [START_REF] Gretarsson | Effects of mode degeneracy in the ligo livingston observatory recycling cavity[END_REF][START_REF] Izumi | Self-amplified lock of an ultra-narrow linewidth optical cavity[END_REF]; but it is also widely used for sensing applications, especially with fiber-based devices with FBG, because it enables a phase interrogation of the optical resonator of interest [START_REF] Chow | Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications[END_REF], for measurements of strain [START_REF] Liu | Ultra-high-resolution large-dynamic-range optical fiber static strain sensor using Pound-Drever-Hall technique[END_REF][START_REF] Huang | Swept optical SSB-SC modulation technique for highresolution large-dynamic-range static strain measurement using FBG-FP sensors[END_REF][START_REF] Chen | Sub-Nano-Strain Multiplexed Fiber Optic Sensor Array for Quasi-Static Strain Measurement[END_REF][START_REF] Chen | Ultrahigh resolution optical fiber strain sensor using dual Pound-Drever-Hall feedback loops[END_REF][START_REF] Huang | DFB fiber laser static strain sensor based on beat frequency interrogation with a reference fiber laser locked to a FBG resonator[END_REF][207] or ultrasound [START_REF] Guo | Highly Stabilized Phase-Shifted Fiber Bragg Grating Sensing System for Ultrasonic Detection[END_REF][START_REF] Barnes | Broadband Vibration Detection in Tissue Phantoms Using a Fiber Fabry-Perot Cavity[END_REF], but also for chemical and gas sensing [START_REF] Li | Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique[END_REF][START_REF] Zheng | Cavityenhanced Absorption Spectroscopy in the Near-and Mid-infrared for Gas Sensing[END_REF], and with whispering gallery mode microresonators for nanoparticle detection for instance [START_REF] Swaim | Detection of nanoparticles with a frequency locked whispering gallery mode microresonator[END_REF]. The list is not exhaustive. This method is widespread in optomechanical experiments as it gives a straightforward optical readout of the phase fluctuations induced by mechanical vibrations [START_REF] Jayich | Dispersive optomechanics: a membrane inside a cavity[END_REF][START_REF] Schliesser | Resolvedsideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit[END_REF][START_REF] Anetsberger | Near-field cavity optomechanics with nanomechanical oscillators[END_REF][START_REF] Regal | From cavity electromechanics to cavity optomechanics[END_REF][START_REF] Lee | Multimode optomechanical dynamics in a cavity with avoided crossings[END_REF][START_REF] Gröblacher | Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity[END_REF][START_REF] Xu | Observation of optomechanical buckling transitions[END_REF][START_REF] Rossi | Measurement-based quantum control of mechanical motion[END_REF][166][START_REF] Ranfagni | Vectorial polaritons in the quantum motion of a levitated nanosphere[END_REF][START_REF] De Los Ríos | Strong optomechanical coupling at room temperature by coherent scattering[END_REF]. In this section, based on the paper of Erik D. Black [START_REF] Black | An introduction to pound-drever-hall laser frequency stabilization[END_REF], the physical principle of the technique is briefly explained, giving tools of understanding to easily apply it and find the optimal experimental configuration. The aim of this technique is to measure the frequency detuning between a given laser source and a reference resonant optical cavity. A basic Fabry-Perot interferometer, whose optical response in reflection, represented in dark in Fig. II.15, is very similar to the one of our MIM setup, is considered. The idea is to find a way to measure the derivative of the signal (in blue), whose sign informs us on which side the laser frequency is located relatively to the resonance frequency. To do so, this laser is phase modulated to generate sidebands around a carrier at the emission wavelength, and sent into the cavity. A photodetector placed in reflection measures the optical power, which leads to a beat pattern oscillating at multiple frequencies that correspond to an integer number of times the modulation frequency f p . The term oscillating at exactly f p can be isolated using a mixer for the demodulation process, in series with a low-pass filter. The resulting signal is directly proportional to the derivative of the reflection spectrum. The linear part can therefore be used as an error signal to slightly and dynamically ajdust the laser frequency with a Proportional-Integral-Derivative (PID) corrector. The closed loop stabilizes the laser frequency on the resonance optical frequency, and corrects any fluctuations up to a limit, mainly fixed by the chosen integration (depending on the lock-in unit) and PID bandwidths.

Mathematical and physical considerations

A conceptual schematic of a typical experimental setup to lock a laser on a reference Fabry-Perot cavity is displayed in To properly understand the mechanisms at play, some mathematical considerations are needed. The complex electric field amplitude of a phase modulated incident laser, for a plane wave, reads:

E in (t) = E 0 e i(ωt+β sin(ωpt)) , (II.13)
where β and ω p = 2πf p are respectively the modulation depth and the angular frequency. With the Jacobi-Anger expansion (using Fourier series of the exponential term), one can develop the field into a carrier term and multiple sidebands at nω p (with n a integer), weighted by the Bessel functions of first kind J n (β):

E in (t) = E 0 n∈Z J n (β) e i(ω+nωp)t . (II.14)
where J -n = (-1) n J n . The modulation depth should be not confused with the modulation rate τ mod which quantifies in practice the ratio of optical energy distributed between a given sideband and the carrier. This point is discussed later on. In most experimental situations, only the first two sidebands around the carrier are of primary interest, and the others can be neglected. This assumption, used by Erik D. Black in his paper, is valid for the first order PDH method, considering the amplitude of the Bessel functions. However, it may be necessary to keep the second and the third sidebands for second order PDH, as detailed in the section II.5.1. Under this assumption, the modulated field reads:

E in (t) = E 0 [J 0 (β) e iωt +J 1 (β) e i(ω+ωp)t -J 1 (β) e i(ω-ωp)t ], (II.15)
where the relation J -1 = -J 1 has been used. Our incident laser is the composition of three different frequencies. The complex reflection coefficient R(ω) of our basic Fabry-Perot, in the presence of a non-modulated input field, is written as:

R(ω) = r 1 -e iϕω 1 -r 2 e iϕω where ϕ ω = 2kL cav = ∆ δν FSR , ∆ = ω -ω cav , (II.16)
where r is the mirror complex reflection coefficient (we assume identical cavity mirrors), k is the wave vector, L cav is the cavity length, δν FSR is the free spectral range and ω cav is the cavity resonance angular frequency. In the presence of our phase modulated beam, the reflected field corresponds to the superposition of the three independant beams, weighted by the reflection response at the corresponding optical frequency:

E ref = E 0 [R(ω)J 0 (β) e iωt +R(ω + ω p )J 1 (β) e i(ω+ωp)t -R(ω -ω p )J 1 (β) e i(ω-ωp)t ].
(II.17)

In practice, the optical power is measured using a photodetector. It is given by where the "DC" term, related to the spectral response of the cavity in the presence of a phase modulated incident laser, reads:

P ref = E ref E * ref ,
(II. [START_REF] Weiss | Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems[END_REF])

P DC ref = E 2 0 J 2 0 (β)|R(ω)| 2 + E 2 0 J 2 1 (β)(|R(ω + ω p )| 2 + |R(ω -ω p )| 2 ),
and the oscillating terms are given by: (II.20)

P cos ref = 2E 2 0 J 0 (β)J 1 (β)Re[χ PDH (ω)], (II.21) P sin ref = 2E 2 0 J 0 (β)J 1 (β)Im[χ PDH (ω)],
where Re and Im stand for, respectively, the real and imaginary parts, and finally:

(II.22) χ PDH (ω) = R(ω)R * (ω + ω p ) -R * (ω)R(ω -ω p ).
χ PDH (ω) is the measurable quantity from which the detuning between our laser source and the optical cavity resonance frequency is deduced. A demodulation process is required to extract the real or imaginary part. To do so, the oscillator used for the modulation, a phase shifter to compensate for any delays between the oscillator and the reflected signal, and a mixer, which multiplies our measured optical power with the oscillating reference at ω p , are used. The resulting signal of interest, isolated with a low-pass filter, is a superposition of both ω p terms, and represents the error signal for the PDH closed loop:

ϵ(t) = |E 0 | 2 J 0 (β)J 1 (β) Re[χ PDH (ω)] cos(ϕ PDH ) + Im[χ PDH (ω)] sin(ϕ PDH ) , (II.23)
where ϕ PDH is the phase difference between our reference oscillator and the reflected signal, fixed by the phase shifter. This element is critical in practice as it influences the error signal amplitude, and ensures a null value when the laser source is tuned at resonance. Depending on this phase matching, and on the frequency regime (ω p < κ or ω p > κ, where κ is the cavity bandwidth or full width at half maximum), the cosine or the sine term is predominant. Several practical examples are now considered to illustrate the shape of the optical response in the presence of our phase modulated input beam and the corresponding error signal, for multiple modulation parameters. The influence of the cavity bandwitdh on the sensitivity of the locking technique is then discussed. In the following, the input power is denoted 

P in = |E 0 | 2 .

Influence of the modulation parameters

The relative "DC" term, or reflection response, is displayed as a function of the optical detuning, for three modulation frequency regimes in Fig. II.17 (a), (b) and (c). A typical cavity bandwidth of 40 MHz, and a modulation depth of β ≈ 1.08 are chosen. In the high frequency regime (see Fig. (c)), two sidebands clearly appear and strongly modify the response. The relative height of the peaks depends on the modulation depth which determines the distribution of the optical energy between the carrier and the sidebands (the modulation rate is then given by τ mod = J 1 (β) 2 /J 0 (β) 2 ≈ 41 %). As the modulation frequency decreases, the sidebands are gradually hidden within the carrier, and their influence on the optical response becomes negligible in the low modulation frequency regime (see Fig. The dynamical bandwidth (spectral width of the linear part) is typically between 0.1κ and 0.2κ, depending on the modulation frequency. This low range cannot be drastically changed with the frequency regime, or the modulation parameters. This is the main limitation of the PDH technique: the closed loop is not able to correct frequency fluctuations above this range. The slope of the error signal corresponds to the sensitivity of the error signal to any frequency fluctuations. It mainly depends on the modulation parameters: the modulation depth β and frequency f p . As represented in Fig. II.18 (a), an optimal modulation depth exists, where the slope is maximized. The value is β ≈ 1.08 and corresponds to a situation where the optical power in the sidebands is around half the power in the carrier. This optimum depth does not depend on the modulation frequency or on the cavity bandwidth. In this situation, the influence of the modulation frequency on the slope is represented in Fig. II.18 (b). The low and high modulation frequency regimes clearly appear. As explained by Erik D. Black [START_REF] Black | An introduction to pound-drever-hall laser frequency stabilization[END_REF], in the low modulation frequency regime, the error signal is linear with f p , and can be approximated by:

ϵ(t) ≈ βP in d|R| 2 d∆ f p , (II.24)
whereas in the high modulation frequency regime, it remains approximately constant with f p :

ϵ(t) ≈ -8J 0 J 1 βP in κ ∆. (II.25)
In the first case, it is proportional to the derivative of the optical response, whose sign informs us on which side the laser is relatively to the optical resonance. In the second case, it is directly proportional to the detuning. These behaviors will be experimentally confirmed and analyzed (see section II.3.3).

Influence of the cavity bandwidth

The error signal slope is inversely proportional to the cavity bandwidth (see Fig. II. [START_REF] Weiss | Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems[END_REF] and equation (II.25)). This property is mostly verified at high modulation frequencies (f p ≥ κ). It is somewhat intuitive as a high finesse optical cavity has an obviously higher phase sensitivity. In this case, the resonance signal can be however subjected to strong fluctuations induced by the environment (thermal, but also mechanical, depending on the stability of the alignment setup). One can also expect the PDH stabilization to be more difficult to set up, especially because the dynamical bandwith of the error signal (linear part range) is strongly limited by κ. To extend this bandwidth, other methods exist with a slight modification of the usual PDH technique [START_REF] Thorpe | Laser frequency stabilization and control through offset sideband locking to optical cavities[END_REF][START_REF] Livas | Frequencytunable pre-stabilized lasers for LISA via sideband locking[END_REF][START_REF] Feng | Laser frequency locking with second-harmonic demodulation[END_REF][START_REF] Milani | Multiple wavelength stabilization on a single optical cavity using the offset sideband locking technique[END_REF]. One of these is empirically studied in the context of this work for similar reasons, and is presented in section II.5.1. Three modulation frequency regimes are considered: f p = 0.25κ (blue thin curve), f p = κ (red curve) and f p = 3κ (green thick curve). A modulation depth of β ≈ 1.08 is chosen.

II.3.2 Implementation of the closed loop: experimental setup

The experimental setup of the PDH closed loop applied for the stabilization of the laser source on our external fiber MIM optomechanical cavities is presented. The stabilization procedure implemented with all our devices is detailed.

Laser source

Our laser source is a commercial grating-stabilized and tunable external-cavity diode laser from Toptica (DL pro), controlled by a dedicated unit (DLC-pro). It is a highly coherent laser diode emitting at 1.55 µm. The emission wavelength can be tuned by a coarse adjuster over typically 100 nm. The controller maintains a constant working temperature around 20 °C, and current below 200 mA. The emission wavelength can also be fine tuned by adjusting both parameters. The laser includes a diffraction grating (in reflection): the first diffraction order is reflected and focused back into the 100 µm long laser resonator. The rear facet and the grating form a new resonator with a higher length (a few cm), a considerably smaller free spectral range, and highest finesse. This induces a linewidth reduction below typically 100 kHz. It also allows to continuously adjust the emission frequency as it strongly depends on the angle orientation of the grating relatively to the light path. This is done by a piezo actuator controlled by a continuous voltage from 0 to 140 V with a sensitivity around 0.2045 GHz/V. It corresponds to a fine tunability window of 28.63 GHz in frequency or 0.23 nm in wavelength. The laser properties are summarized in Table II.6. The laser head includes an optical isolator to prevent any back reflected light from destabilizing or even damaging the optical source (65 dB extinction). It also contains a fiber coupling unit (Fiberdock, Toptica) mounted and pre-aligned by the manufacturer. It allows us to couple the light into single-(or multi-) mode fibers, thanks to a focusing lens (focal of 15 mm). It is characterized by a coupling efficiency of 77 % with a typical SMF-28 fiber (it depends on the fiber numerical aperture). Note that it has sometimes been needed to manually re-adjust the alignment of the unit to maximize the output power. The maximum optical power achievable after the optical isolator and the fiber coupling unit is around 34 mW.

Name

High bandwidth photodetector

The PDH technique requires a photodetector to measure the signal reflected by our optical cavities, and oscillating at the phase modulation frequency. The detection bandwidth should be high enough to handle the oscillating frequency. Considering our cavity bandwidth varying between 20 and 100 MHz, and the higher error signal sensitivity in the high modulation frequency regime (f p > κ), a low noise 200 MHz bandwidth photoreceiver from Femto (OE-300-IN-01) is used. It consists of a InGaAs PIN photodiode covering the 900 and 1700 nm wavelength range, and a transimpedance with adjustable gain from 10 2 to 10 8 V/A with variable frequency bandwidth and noise performance. There are two operation modes depending on whether we are more interested in low noise (low noise mode) or high bandwidth (high speed mode). In practice only the gains from 10 2 to 10 4 V/A are used to keep a cut-off frequency above at least 80 MHz. For higher gain, it decreases below 14 MHz which prevents us to work in the high modulation frequency regime for most of our optical cavities. The performances and properties, for each operation mode and configuration used in practice are summarized in Table II 

The high-frequency lock-in amplifier

The modulation and demodulation schemes are controlled by a high frequency LIA (referenced UHFLI, Zurich Instruments). The main requirement is to be able to measure and generate a signal oscillating up to at least 150 MHz, considering the typical bandwitdhs of our cavities as discussed in the previous section. It enables us to dynamically monitor the phase shift between the modulating and the measured signal reflected by our optical cavity. It includes 8 oscillators and 8 demodulation channels, and a PID unit to generate the correction signal from the filtered demodulated signal. The piezo-electric element (of our optical cavities) is also controlled using one of the 4 auxiliary outputs to precisely move the membrane along the cavity axis. The basic properties of the LIA are summarized in Table II.8.

Presentation of the optical bench

The optical bench used to implement the PDH closed loop is schematically represented in Fig. II.20 (a). An electro-optic modulator (EOM) is needed to generate the desired phase modulated input beam. Considering the different bandwidths and frequency regimes previously discussed, a low frequency EOM (MPZ-LN, iXblue) is used to modulate the laser at frequencies below 150 MHz. It consists of a lithium niobate (LiNbO 3 ) crystal exhibiting an electro-optic effect (i.e. the refractive index is function of the applied electric field amplitude). Consequently, the phase is directly controlled by this local field in the crystal. Note that it is characterized by a half-wave voltage V π (i.e. voltage required for inducing a phase change of π) of 3.5 V (at 50 kHz). This EOM is supplied by an oscillating signal from the LIA at the required frequency. The maximum output amplitude is fixed by the LIA (±1.5 V) which limits the achievable modulation depth. In order to reach the optimal modulation depth discussed earlier, a RF amplifier (DR-VE-0. A controller (FPC562, Thorlabs) is added between the laser source and the EOM, to ensure the light polarization corresponds to the one of the EOM. A good adjustment maximises the optical signal out of this passive component (with or wihout any electric field applied). Directly after the modulator follows another passive element: the PM optical circulator (CIR1550PM-APC, Thorlabs), already described in section II.2.5. Note that the working polarization is the same as for the EOM (slow axis pass and fast axis blocked). This component is well suited to measure the reflected signal from our fiber-based optical cavities. Another polarization controller is added before the cavity to maximize the reflected signal in the FBG bandwidth. It ensures that we work on the slow axis, but could also allow us to work on the fast axis where the FBG exhibits a slightly different response (different bandwidth and Bragg wavelength). The reflected signal, redirected by the circulator, is measured by the high bandwidth photoreceiver. The oscillator, the phase shifter, low-pass filter and PID controller are included in the high frequency LIA, as mentioned before, and are used to generate and isolate the PDH error through the y or x component of the demodulated signal. The correction is fed into the laser controller. The Analog Remote Control (ARC) is a multiplication factor that adjusts its amplitude and converts it into an offset. The resulting external signal is added to the initial laser piezo voltage (that controls the diffraction grating within the laser) to correct the emission wavelength.

Stabilization procedure

To fully understand the stabilization scheme, the procedure to set up the closed loop is detailed, with an illustrative example on one of our cavities. The measurements presented here are used for qualitative purpose, to clarify the technique. The upper blue curve is the DC signal, the middle red curve is the error signal, and the lower green curve is the phase difference between the oscillator used for the modulation and the measured signal. Each step of the procedure is indicated above the graphs.

• Firstly, based on the experimental bench illustrated in Fig. II.20, a continuous forward and backward wavelength scan is set up around the resonance peak. The phase modulation is activated by sending an oscillating signal at f p from the LIA to the EOM. The DC signal is retrieved using a demodulation at low frequency (≤ 100 mHz). The error signal is extracted, through a second demodulation of the reflected signal, measured by the photoreceiver. To do so, the same oscillator as for the modulation is used. The resulting demodulated signal can be written R e iφ where R = x + iy is the amplitude, and φ is the phase shift between this oscillator and the measured signal. This phase shift φ is adjusted to ensure, for instance, a 0 phase shift at optical resonance to maximise the error signal amplitude on the y component. This is equivalent to centering the 180°phase jump at resonance around 0. Note that the choice of y or x component is arbitrary. To maximise the error amplitude on the x component, one just has to add a 90°offset on the optimized phase value.

• Then, while keeping the continuous scan, the linear part of the error signal is fitted to extract the positive and negative slopes around 0, depending on the scan direction. The PI corrector properties (the derivative part is not necessary) are then chosen accordingly:

• The proportional term is P PDH = ±sgn(φ)/s err where s err is the error slope,

• The integral term is I PDH = 2πδf PI P PDH where δf PI is the correction bandwidth. It corresponds to the correction speed i.e. the maximum frequency fluctuations the PDH closed loop will be able to correct. • The continuous scan is set off and the emission wavelength is slightly moved to the optical resonance frequency, until the DC signal become lower than a defined voltage threshold.

• Finally, the correction signal is fed into the laser controller, the ARC conversion is performed, and the laser is locked on the optical resonance. If the frequency locking is not efficient, the previous threshold is reduced, and the last two steps are repeated. The important point is to ensure the sign of the P PDH always matches the opposite sign of the error slope.

When the lock is set up, the PI parameters can be adjusted to reduce the frequency noise. To find the optimal values, a noise analysis, detailed in section II.3.4, is performed. These four steps are automated with a homemade python script. This code handles the communication between the computer, the laser controller and the LIA. It serves as a basis for all measurements performed on the stabilized optomechanical cavities, and presented in section II.4.

II.3.3 Error signal analysis

In order to establish the optimal modulation configuration to improve the sensitivity of the PDH closed loop, the evolution of the error slope with the modulation depth and frequency is experimentally analysed. The uncertainties on the error slope estimation is then discussed.

Optimal experimental modulation configuration

The first two steps of the previous procedure (phase shift adjustment and linear fit of the demodulated signal) are repeated for multiple modulation depths and frequencies. The results on one of our optical cavities are summarized in For this measurement, the cavity bandwidth is κ = 50.1 MHz, the finesse is F ≈ 50 and the input power is 5.48 mW. We take into account a loss of 86.7 % due to losses at the fiber connectors and to the presence of a fiber coupler between the circulator and the photodetector, used to prevent from any voltage saturation.

The theoretical prediction of the error slope is also displayed (black curves) by considering the cavity bandwidth of κ = 50.1 MHz and an input power of P in = 5.48 mW measured right before the cavity. Note that for some measurements, including this one, a fiber coupler is added between the circulator and the photodetector (that allows 14 % of transmission on the port used). It avoids a voltage saturation after amplification at the transimpedance. Considering this coupler and the losses occuring at the fiber connectors and the passive components, a total transmission efficiency of 13.3 % is measured between the cavity output and the photodetector. This loss is taken into account in the theoretical calculation of the curves represented in Fig. II.23. Good agreement between measurements and theory is found, with discrepancies that can be attributed to uncertainties, in practice, in the determination of the error sensitivity, but also of the penetration depth which depends on the amplification gain of the RF amplifier between the LIA and the EOM. However, the same behaviors are observed: first, one can clearly identify an optimal range for the modulation depth, between β = 1 to β = 1.5. From one cavity to another, the location remains the same, but the local behavior in this range can slightly change. For this reason, the chosen modulation depth varies, but remains close to the theoretical optimum value of β = 1.08. Then, regarding the modulation frequency behavior, we still identify two regimes at low and high frequencies, delimited by a transition regime around the cavity bandwidth κ. One can identify the linear behavior at low frequency, as well as the asymptotic one at high frequency. This error signal analysis is performed before any frequency stabilization of the laser source on each of our optical cavities. This allows the system to be placed in an ideal situation to improve its sensitivity to frequency fluctuations induced on the optical resonance. Typical values, extracted on our specific example, are given on Table II.9. The error sensitivity quantifies the measured signal variation induced by an optical resonance frequency shift. It is converted into an optical power using the photodetector gain (10 2 V/A) and the responsivity in Table II.7. The frequency shift is converted into wavelength unit using ∆f = (c/λ 2 )∆λ, where λ = 1.55 µm. In the end, we have: Once again for this example, the transmission efficiency of 13.3 % is taken into account between the output port of the cavity and the photodetector (the measured value is divided by 13.3 % to retrieve the sensitivity of our cavity itself). These values are typical, and stay in the same order of magnitude from one cavity to another, as it mainly depends on the cavity bandwidth, similar between all our devices.

(II.26) s W/m err = c λ 2 s W/Hz err = c λ 2 G PD R PD s V/

Uncertainty on the sensitivity estimation

The sensitivity -or error signal slope-measurement is based on the averaging of several slopes determined by multiple linear regressions in a row, in a fixed time acquisition range, during the forward/backward wavelength scan around the resonance of interest. The resulting value s V/V err in V/s, is first converted in V/V -for measured voltage per unit of voltage applied to the laser piezo-by determining the time needed for a given voltage scan amplitude. The sensitivity per unit of frequency shift s V/Hz err is deduced, using the laser piezo sensitivity s

Hz/V L : s V/Hz err = s V/V err s Hz/V L . (II.27)
The main source of uncertainty arises from this last conversion: δs Hz/V L is the uncertainty in the conversion of the laser piezo scan amplitude from voltage to frequency units (estimated in Table II.6). Consequently, by differentiation of the previous equation, the uncertainty on the error sensitivity is deduced:

δs V/Hz err = δs Hz/V L s Hz/V L s V/Hz err . (II.28)
Using the values given in Table II.6, the uncertainty of 4.9 % on the slope value is quantified.

The results in each unit are summarized in Table II.9.

II.3.4 Noise analysis

With the optimal modulation parameters (frequency and depth), one can optimize the locking efficiency by adjusting the corrector properties when the closed loop is set on. A noise analysis on the reflected signal can therefore be performed.

Noise spectrum

In the following, the features of the corrector are written as:

(II.29) P adjust = c PI P PDH (II.30)

I adjust = 2πδf PI P adjust ,
where c PI is a multiplication factor and P PDH is the initial proportional term of the corrector calculated from the error slope, as explained in the previous section, from the slope of the error signal. After setting on the closed loop, c PI is swept (between 0.8 and 8 -9), as well as the corrector bandwidth f PI (between 100 Hz and 1 kHz), while measuring the power spectral density (PSD) of the reflected signal, denoted by S m , in V 2 /Hz unit. The bandwidth cannot be chosen above 1 kHz because of a resonance of the laser piezo in the kHz range. For each (c PI , δf PI ), the PSD is retrieved by demodulating the signal measured by the photodetector with a second oscillator of the LIA at f p + f , where f p is the phase modulation frequency and f varies between 0.1 Hz and 200 kHz. The resulting PSD is the noise spectrum of the reflected signal. As an exemple, a noise analysis performed on one of our fiber optomechanical cavities (with a Si 3 N 4 membrane) is displayed in Fig. II.24. From one cavity to another, the discrepancies between each optimized noise spectrum are negligible. For each parameter adjustment, the "DC" and error signals are controlled to verify whether the lock is still active, before any PSD acquisition. Every measured PSD in V 2 /Hz is converted into frequency PSD in Hz 2 /Hz (cavity resonance frequency shift normalized by the integration bandwidth) using the error signal sensitivity (slope of the linear part). Considering these spectra as pure noise -consistent with our application where the measurable quantity of interest oscillates at higher frequencies-one can identify three frequency regimes. First, the low frequency regime (below 50 Hz) is associated with the efficiency of the locking. It quantifies the low frequency noise of the system: the physical origins of this noise are the long term drift of the laser source and the cavity, due to thermal bath temperature fluctuations. The intermediate regime (between 50 and 100 kHz) is characterized by acoustic noises and resonances of the laser piezo, which could be reduced by using an efficient vibration-damping optical table. Finally, the high frequency regime (> 100 kHz) corresponds to the noise floor for the measurement of the optical resonance frequency fluctuations (oscillating above 100 kHz) induced by any sources. In particular, in this regime, above the frequency range of this noise The noise spectra without the correction closed loop is displayed on (d) for comparison purposes. For this example, the cavity bandwidth is around κ = 42.1 MHz, the modulation frequency is f p = 75 MHz (high modulation frequency regime: f p /κ = 1.78), and the modulation depth is close to the optimal value of β = 1.08.

analysis, one can observe the quantity of interest (if higher than the continuous background): the thermomechanical spectrum of the membrane (see section II.4). The important part, for this study, is the low frequency regime, that can be optimized by tuning the corrector parameters to improve the efficiency of the PDH locking over time. Comparison between figures II.24 (a) and (b) allows to visualize the effect of c PI which reduces the low frequency noise floor, while the bandwidth δf PI reduces its standard deviation (see figures II.24 (b) and (c)). These effects are limited. If c PI is increased too much (proportional term of the corrector too high), the noise drastically increases, and the lock is easily lost. In the same way, the bandwidth cannot be chosen too close to the kHz range because of the laser piezo fundamental resonance. For this example, the optimal parameters were c P I = 5 and δf PI = 500 Hz for which the frequency noise floor is at 4 kHz/ √ Hz, between 0.1 Hz and 10 Hz. The typical noise spectrum in this situation ("PDH on"), is compared to the spectra without feeding the laser piezo with the correction signal ("PDH off") in Fig. II.24 (d). The PDH technique is intended to stabilize the system over long term. One can indeed clearly see a decrease of the low frequency noise (below 50 Hz) of almost 2 decades, which indicates a stabilization between the laser and the cavity frequency drifts. In addition, it has a negligible influence on the background noise in the high frequency regime (background estimated at 300 Hz/ √ Hz above 100 kHz, with a stabilized cavity). This stabilized setup is then suitable for long-term measurement and for future sensing applications, which would require long acquisition time and a long-term stability. Note that one can further improve the efficiency of the lock by adding a second correction channel, for instance on the laser temperature whose bandwidth is not limited by the laser piezo resonances, or on another piezo that controls a second integrated mirror (depending on the construction of the external cavity diode laser used) [START_REF] Arcizet | Mesure optique ultrasensible et refroidissement par pression de radiation d´un micro-résonateur mécanique[END_REF][START_REF] Verlot | Etude des effets de pression de radiation et des limites quantiques du couplage optomécanique[END_REF].

Allan deviation

The Allan deviation is an estimator of the frequency of phase stability of an oscillator [START_REF] Allan | Statistics of atomic frequency standards[END_REF][START_REF] Allan | Time and Frequency (Time-Domain) Characterization, Estimation, and Prediction of Precision Clocks and Oscillators[END_REF][START_REF] Howe | Properties of signal sources and measurement methods[END_REF]. To complete the analysis with noise PSD, this tool allows to quantify more precisely the long term drifts, which seems appropriate to qualify the PDH stabilization. After introducing the mathematical tools, we use it to illustrate the interest of the previously presented frequency noise optimization. We are using the same notations as in the article of Howe et. al. and in the "IEEE Standard Definitions" [START_REF] Howe | Properties of signal sources and measurement methods[END_REF]217]. The instantaneous output signal V (t) measured by the photodetector can be written:

V (t) = (V 0 + σ V (t)) sin(2πν 0 t + ϕ V (t)) (II.31)
where V 0 is the nominal peak amplitude, σ V (t) is the deviation from this nominal amplitude, ν 0 is the nominal frequency and ϕ V (t) is the phase deviation from the nominal phase 2πν 0 t (see "Annex A" in [217]). We define the phase instability x(t) as a normalized instantaneous phase deviation:

x(t) = ϕ V (t) 2πν 0 (II.32)
The instantaneous normalized frequency deviation or fractional frequency is then given by:

y(t) = dx dt (II.33)
The Allan deviation, denoted by σ y (τ ), is defined as a two-sample deviation. τ represents the sampling time. In practice, by denoting the frequency samples as (y k ) k∈N (measured within a time interval of τ ), it is given by the following quadratic sum [START_REF] Howe | Properties of signal sources and measurement methods[END_REF]217]:

σ y (τ ) = 1 2 < [y k+1 + y k ] 2 > ≈ 1 2(M -1) M -1 k=2 (y k+1 -y k ) 2 (II. 34 
)
where M is the number of frequency samples. It is then more convenient to write it in terms of time measurements:

σ y (τ ) ≈ 1 2(N -2)τ 2 N -1 k=2 (x k+2 -2x k+1 + x k ) 2
(II. [START_REF] Reinhardt | Ultralow-noise SiN trampoline resonators for sensing and optomechanics[END_REF] where (x k ) k∈N (measured with a time interval of τ ) are the N time samples. They represent, within a multiplying factor, the phase samples. In order to quantify the Allan deviation with better confidence, the overlapping estimator has been introduced [START_REF] Howe | Properties of signal sources and measurement methods[END_REF]:

σ y (mτ ) ≈ 1 2(mτ ) 2 (N -2m) N -2m-1 k=0 (x k+2m -2x k+m + x k ) 2 (II.36)
In this last relation, we have considered that there is no dead time between each sample. All the samples are spaced apart by an integer times the sampling time τ . This last expression is used to calculate the Allan deviation on the PDH error signal to quantify the frequency stability of our setup. The error signals of two different cavities are acquired during a given time. The previously presented frequency noise optimization (see Fig. II.24) has only been performed one of these two cavities. On the second one, the correction parameters are chosen according to the fit of the error during the forward/backward wavelength scan around the resonance peak of interest. The x samples are retrieved from the signal V mixer (t) at the output of the mixer. With a proper adjustment of the phase shift between the oscillator and the mixer, this signal can be written:

V mixer (t) = V (t) cos(2πν 0 t) (II.37) = (V 0 + σ V (t)) 2 sin(ϕ V (t)) + (V 0 + σ V (t)) 2 sin(2π(2ν 0 )t + ϕ V (t)) (II.38)
The low-pass filter isolates the first term of this last equation, denoted by V demod (t):

V demod (t) = (V 0 + σ V (t)) 2 sin(ϕ V (t)) ≈ V 0 + σ V (t) 2 ϕ V (t) (II.39)
where small phase fluctuations are considered. The (x k ) k∈N samples are then determined using equation (II.32)

x k = ϕ V (t) 2πν 0 = V demod (kτ ) 2πν 0 V 0 /2 (II.40)
ν 0 corresponds in our situation to the modulation frequency f p . The dataset (V demod (mτ )) contains time acquisition of the error signal with a sample rate of 10 ms during 27 h, with the laser maintained at optical resonance. The Allan deviations are then computed (on both cavities, with and without the frequency noise optimization) using the overlapping method, and are displayed in Fig. II.25. This long time acquisition allows us to determine the Allan deviation almost until the integration time of τ = 10 5 s. Note that for the non-optimized stabilization, the stabilization could only be maintained for 12 h. For both situations, an instability of 4×10 -10 ø is measured, below 10 3 s. It means that two observations of the error, made at a one-second interval, are characterized by a relative instability of 4 × 10 -10 . The observed 1/τ slopes can be interpreted as a flicker noise phase modulation [START_REF] Howe | Properties of signal sources and measurement methods[END_REF]217], originating from electrical devices used in our experimental setup. No white noise frequency modulation (slope in 1/ √ τ ) is observed. No long-term instability is observed, except for the non-optimized stabilization, starting from τ = 10 3 s, with a flicker noise frequency modulation, followed by a trace of a potential random walk frequency modulation behavior (slope in √ τ ) [START_REF] Howe | Properties of signal sources and measurement methods[END_REF]217]. These measurements illustrate the interest of the previously presented frequency noise optimization for improving the long-term stability of our setup. The previously presented frequency noise optimization has only been performed one of these two cavities. The nominal frequency i.e. the phase modulation frequency is, for both cases, 75 MHz. These deviations are calculated from a 27 h and a 12 h time acquisition of the error signals with the PDH stabilization activated, for, respectively, the optimized and non-optimized situation.

II.4 Optomechanical measurements with a stabilized optical cavity

Using the PDH scheme, a frequency stabilized system that directly measures, through the error signal, any fluctuations induced by any sources on the optical resonance frequency, such as the mechanical displacement of the membrane, is set up. The thermomechanical noise of the resonator induced by local temperature fluctuations is measured. By isolating the mechanical spectrum of the silicon frame, the mechanical modes of the membrane are identified. A complete characterization of these optomechanical cavities is performed. The couplings are estimated with static characterization and the dispersive one is quantified with dynamical measurements. The influence of various parameters, such as the membrane position or environment pressure, is studied, mostly on the fundamental, but also on higher order mechanical modes. The long-term mechanical stability is finally investigated.

II.4.1 Presentation of the optomechanical bench

As already stated in the presentation of the optical cavity setups, to minimize air damping, the measurements are mainly carried out in vacuum environment. In this section, the vacuum chamber where the vacuum compatible fiber based cavities are disposed is presented. The complete experimental bench based on the frequency stabilization setup is also detailed.

Vacuum bench

Our vacuum setup is disposed in a stainless steel cylindrical chamber. Pictures of the vacuum bench are displayed on Fig. II.26. It is composed of a stardard KF 40 air feedthrough, two vacuum compatible fiber coupled feedthroughs, and six sub-D15 hermetic connectors for 2 vacuum compatible 3-axis piezopositioners (Physics Instruments). Note that this chamber has been originally designed for fiber characterization of integrated optomechanical devices in a previous work, and there was a need to precisely position 2 fibers relatively to grating couplers on a given chip [START_REF] Taurel | Theoretical and experimental study of optical coupling in optomechanical systems[END_REF]. For our application, only one 3-axis piezo-positioner is used, for the lensed FBG alignment relatively to the membrane-on-mirror assembly (see Fig. II.11). An electrical input on two pins of one of the unused sub-D15 connectors is manually added to feed the piezo-electric material on which the membrane is attached, with two electrical cables (positive bias and mass). This piezo element is directly attached inside the vacuum chamber on the corresponding pins of the connector. The chamber stands on an anti-vibration table and a stainless steel column (not present in the picture) is manually added under the air tube to damp its vibrations which induce fast frequency drifts on the optical measurements. The vacuum chamber and the pump are designed to reach a pressure of 10 -5 mbar. Two different vacuum pumps are used, with similar performances: a TPS-flexy turbo pumping system with a primary pump (to reach a pressure around 1 mbar) coupled to a turbomolecular pump reference Turbo-V84 FS pump from Agilent, or reference TMH 071 P from Pfeiffer. The pump is controlled by a dedicated electrical unit connected to a pressure gauge. A mechanical leakage controller is also added before the air feedthrough of the chamber, in order to realize measurements under multiple pressure levels.

Mechanical characterization setup

The mechanical characterization setup is schematically represented on An electrical piezo control unit is added. As already stated, the objective is to apply a constant voltage on the piezo material to induce its mechanical deformation and precisely move the membrane along the cavity axis. An auxiliary output of the LIA is needed to generate a positive bias below 10 V. The voltage is then amplified using an open-loop piezo controller (MDT694B, Thorlabs), characterized by a gain of 10, and finally feed to the piezo-electric element (signal between 0 and 100 V). For the mechanical spectrum measurements, a second channel is used, with another oscillator of the LIA to demodulate the measured signal above the modulation frequency f p . The phase difference between this second ocillator and the signal measured by the photodetector does not matter as only the R component is of practical interest. As the error signal is proportional to optical detuning between the laser source and the optical cavity when the PDH lock is activated, signals ocillating at f + f p , where f > 100 kHz (see section II.3.4), correspond to frequency fluctuations induced by any sources on the optical resonance frequency. Physically speaking, the optical phase fluctuations of the field reflected by the cavity are indirectly measured. In particular, the signal at a given mechanical mode resonance frequency f m is the mechanical displacement amplitude for this specific mode of the membrane.

II.4.2 Methodology and mechanical calibration

A methodology for the thermomechanical characterization is followed for each of our optomechanical cavities. Preliminary static measurements related to the influence of the membrane position on the optical resonance condition and cavity bandwidth are first carried out. They represent a rough estimation of the potentially achievable dispersive and dissipative optomechanical couplings. The mechanical spectra of the resonance modes are finally calibrated with a thermomechanical model described here.

Static measurements: resonance condition

Using the piezo electric material, the membrane is slightly and precisely moved along the cavity axis. The resonance response in reflection can therefore be recorded for each position, in order to observe the evolution of the optical resonance condition, as well as the evolution of the optical losses, represented by the cavity bandwidth. Figure II.28 represents an observation of the variation of the resonance wavelength shift ∆λ cav (relatively to the initial position, without any voltage applied on the piezo electric chip), and of κ, with the membrane relative position. For qualitative purposes, the optical spectrum for positions of extremum values is displayed. These curves can be compared to the predicted ones in Fig. I.24. An excellent agreement is found between the theoretical and measured curve shapes. ). For qualitative purposes, the measured optical response as a function of the optical detuning for multiple membrane positions is displayed on the insets. The units are arbitrary, but the x-scale is identical between each inset, for comparison. The position of the peak for z m = 0 is indicated with a dashed line. Fits of the optical response are performed to quantify the cavity properties (red lines).

On all our devices, one of the main properties of the MIM setup is confirmed: the periodic variation of the resonance wavelength and overall cavity losses with the membrane position. The period is close to 0.75 µm i.e. a half-wavelength range which is coherent with the theory. As already stated in chapter I, it illustrates the position of nodes and antinodes of the stationary intra-cavity field. The amplitude of variation is always around 3 -4 pm in wavelength for the resonance condition (a bit lower than the predictions for the two sets of parameters (see Fig. ), which can be attributed to the alignment and fiber coupling configurations that are not completly preserved when moving the membrane along the cavity axis. This induces a variation of the effective cavity length that changes the resonance condition. This is besides the main source of the variation of the intrinsic losses observed on the cavity bandwith curve (see Fig.

II.28 (b)

). More importantly, as already discussed in chapter I, our setup is actually very similar to a MATE system [START_REF] Purdy | Cavity optomechanics with si3n4 membranes at cryogenic temperatures[END_REF][START_REF] Dumont | Flexuretuned membrane-at-the-edge optomechanical system[END_REF], considering the lens assembly length above 7 mm. This geometrical property, as expected, results in this slight asymmetry in the variation of resonance condition. The cavity length in the cm range is also high in comparison to other fiber-based optomechanical cavities from the literature [34, 36, 37, 43, 44, 173-176, 178, 179], which enhances this effect (maximum variation of the resonance condition inversely proportional to the cavity length [START_REF] Dumont | Flexuretuned membrane-at-the-edge optomechanical system[END_REF]). The derivatives of the resonance condition and the decay rate are calculated by point-by-point finite difference of the previous measurements. These curves cannot be assimilated to the dispersive and overall dissipative optomechanical couplings, due to the purely optical nature of the characterization where the membrane is considered as a static plane object. However it serves as a coarse estimation of the achievable orders of magnitude with dynamical measurements. The evolution of each derivative is displayed in Fig. II.29, and can be compared to the predicted curves shown in Fig. I.25. Note that on both curves, unwanted border effects occur, indicated by the grey areas. For low membrane positions (low voltage applied on the piezo), this could be attributed to transitory behavior of the piezo, while for high membrane positions (high voltage applied on the piezo), to the local temperature rise due to the Joule heating of the piezo. These are assumptions and one can also potentially attribute these border effects to numerical issues. Dotted black lines are added to visualize the approximative expected curves in these domains. Once again, an excellent agreement is found between the predicted and measured curve shapes. The MATE behavior is confirmed, for our example, on the dispersive derivative curve. The asymmetry in amplitude clearly appears with extreme values around -2.6 MHz/nm and 1.8 MHz/nm. These values remain very similar from one cavity to another as the cavity length is almost constant (L cav mostly depends on the lensed FBG itself). The membrane thickness does not drastically change the values considering the high L cav . Moreover, only two thicknesses are available (30 and 50 nm) which limits a potential comparative study. The asymmetry effect is negligible on the dissipative derivative curve. The decay rate variation is mainly due to intrinsic optical losses, due to misalignement, and therefore to a lower coupling efficiency between the light in free space focalised by the GRIN lens and the guided mode of the fiber. The external losses do not depend on the mechanical displacement. Two maxima around 0.6 MHz/nm in absolute value are located around each absolute maximum of the dispersive curve. The dissipative derivative seems to cancel itself when the dispersive one is the strongest. These measurements indicate potential dispersive and dissipative interactions, and help us identify ideal membrane positions to optimize the dynamical couplings i.e. the optical sensitivity to mechanical vibrations.

Thermomechanical calibration

While the PDH closed loop is set up, the laser is maintained at the optical resonance frequency of the cavity, and the error signal directly measures any fluctuations induced on this frequency. In order to measure the thermomechanical spectrum, a demodulation of the photoreceiver signal is performed, at frequencies above the phase modulation frequency. The resulting signal passes into a low-pass filter, and is finally normalized by the cut-off frequency or demodulation bandwidth (resolution bandwidth), denoted in the following by δf demod . The extracted quantity S V is an optical PSD in V 2 /Hz. Every measured optical PSD is fitted using a thermomechanical model, following the method described in the paper of B.D. Hauer et al. [START_REF] Hauer | A general procedure for thermomechanical calibration of nano/micro-mechanical resonators[END_REF]. This fit is important as it gives a physical meaning of all the characterization performed in this work, and presented in this section. The random thermal motion of the mechanical resonator is derived using the fluctuation-dissipation theorem which results from the equipartition theorem [START_REF] Hauer | A general procedure for thermomechanical calibration of nano/micro-mechanical resonators[END_REF]: every quadratic degree of freedom contributes in energy to k B T /2, where k B is the Boltzmann constant and T the temperature. The external force in this case is generated by random fluctuations of the thermal environment (Langevin thermal force), which is described by a white noise S F (constant with respect to frequency) given by:

S F = 4k B T ω m m eff Q m . (II.41)
As already stated in section I.3.3, the mechanical harmonic displacement of a given resonance mode is related to the mechanical susceptibility χ m (ω). The thermal PSD S th directly follows:

S th (ω) = 4k B T m eff ω m /Q m (ω 2 m -ω 2 ) 2 + ω 2 (ω m /Q m ) 2 (II.42)
In practice, other sources of noise, which are also assumed to be white, have to be taken into account. The fitting model S fit of our experimental voltage PSD then reads

S fit (ω) = S N + α ω m /Q m (ω 2 m -ω 2 ) 2 + ω 2 (ω m /Q m ) 2 (II.43)
where S N is the constant noise PSD and α is a conversion factor. This model is applied to each measurement with ω m , Q m , α and S N as fit parameters. This α factor is the most important parameter of the model as it allows a conversion of the measured PSD from voltage to mechanical displacement units, and therefore a calibration of the mechanical PSD. It is relatively easy in a PDH configuration, where the detuning between the laser and the cavity remains null. This last remark can be justified with several equations, to confirm the interest of the factor α, and relate it to the coupling strength g om . A voltage thermal fluctuation measured by our photodetector is thus considered and denoted by δV where s 0 = 4k B T /m eff . Therefore the displacement spectrum is given by

S m [m/ √ Hz] = 1 s err g om S V = 1 α/s 0 S V [V/ √ Hz]
(II.47)

Using the thermomechanical fit, the dispersive optomechanical coupling value can be quantified. The value obtained by this dynamical measurement is compared in the next sections to the estimation by the previous static analysis. A "trust-region algorithm" is used to fit our measurements. The precision of the estimation of the mechanical parameters is 0.02 to 0.2 Hz for the frequency, 10 % of Q m for the quality factor, and in the order of 2 % of g om for the dispersive coupling. The calibration does not require any dissipative coupling, as the error signal indirectly measures the optical phase changes i.e. the shifts of the optical resonance frequency.

II.4.3 Thermomechanical characterization

The thermomechanical characterizations are conducted using the optimized frequency stabilized external lensed FBG-based MIM optomechanical cavities in vacuum environment (pressure between 10 -6 and 10 -5 mbar). The empirical method used to identify the resonance modes of the membranes within the parasitic thermal spectrum of the silicon frame is explained. Several examples of characterization on multiple modes and membranes are then presented.

Identification of the membrane mechanical modes

Before any calibration, the membrane resonance peaks have to be identified within the parasitic silicon frame thermal resonances. Large range frequency sweeps are performed to observe multiple modes and determine the fundamental one. However the silicon frame is with different geometries and in-plane intrinsic tension. It consists of the acquisition of two large frequency range spectra using PDH stabilization on two different optical cavities: one with the lensed FBG aligned on the silicon frame and the other on the membrane surface (see schematics on insets of each graph). For both spectra ((a) frame and (b) membrane itself), the demodulation bandwidth is chosen high enough (between 200 and 300 Hz), to quickly perform the identification, and with a large amount of measurement points, to be sure to sufficiently resolve every resonance peak. These are coarse preliminary spectra only used for the determination of the resonant frequencies. The first spectrum (a) corresponds to the thermomechanical noise of the frame, while the second one (b) is the thermal spectrum of interest. Comparison between both spectra leads to identification of the mechanical modes of the membrane. The lower identified frequency corresponds to the fundamental mode, and the value is used to determine the intrinsic in-plane tension (in Pa) using formula (I.64) (see Table II.10). The calculated tension is compared with the supplier values (see Table II.3). One can indeed confirm the coherence of the characterization with these data. Other modes are also identified and the gap from the fundamental is compared with the theoretical gap (see Fig.
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I.27 and Table II.10).

An excellent agreement is found between measurements and theory. The FEM simulated mode shapes are represented on each graph. Note that the removal of degeneracy is observed on some modes and will be discussed later on, however, because of the high integration bandwidth which strongly broadens each resonant peak, they cannot be seen on these spectra.

Various observations of fundamental thermomechanical spectra

The Brownian motion of multiple membranes with various geometries can then be studied. The study first focuses on the fundamental mode. Thus, the measured spectrum near the fundamental resonance frequency of: are displayed. Each spectrum is fitted (black curves) using the thermomechanical model (see equation (II.43) and converted from voltage to displacement unit using the α coefficient. The deduced mechanical parameters are gathered, with the dispersive optomechanical coupling and the white background noise floor S N in Table II.11. The dispersive single-photon coupling strength g 0 is calculated using the relation given in the introduction:

g 0 = g om x ZPF = g om h 2m eff f m , (II.48)
where h is the reduced Planck constant, and x ZPF is the mechanical zero-point fluctuation amplitude that quantifies the displacement amplitude of the fundamental mode at its lowest energy state (achievable by reducing the number of phonons i.e. the mode temperature [START_REF] Aspelmeyer | Cavity optomechanics[END_REF]).

As stated in the introduction, g 0 quantifies the interaction of a single photon with a single phonon, and allows to compare several optomechanical systems independently of the mechanical resonator.

The three displayed spectra are characterized by a high signal to noise ratio of more than two decades. A discrepancy can be observed with the resonance frequencies found by the previous large range analysis, and comes from mechanical resonance frequency drifts (see sections II.4.4 and II.4.5). The values remain however coherent with the internal stress calculated before (see Table II.10). The quality factor values vary between 10 3 and 10 5 which is coherent with a previous characterization performed on the Norcada's membranes [START_REF] Zwickl | High quality mechanical and optical properties of commercial silicon nitride membranes[END_REF]. The dispersive optomechanical couplings are in the MHz/nm range, as expected by the static estimation, with higher values due to the dynamical nature of the characterization. The deduced vacuum coupling strenghts are relatively low compared to other fiber optomechanical cavities (see Table II.1). This is explained by the low optical finesse (F ≈ 50 -100), but also mostly by the high dimensions of the system (cm range). The constant white noise is given as an indication and estimated in the 10 -10 V/ √ Hz range. This background noise is generally underestimated because of the fitting range greatly reduced around the resonance of interest. We could in practice have measured the mechanical PSDs on a bigger frequency range, but the acquisition time would have rapidly increased to keep the frequency resolution constant for each spectrum. For this reason, S N is not converted into meter units, as it is not representative of the actual noise floor. Although this value is not reliable, it does not influence the measured resonance frequency, quality factor, nor the conversion factor α. This quantity can be finally estimated on several spectra, such as in Fig. II.34 for the Si 3 N 4 membrane (0.5 × 0.5 mm × 50 nm), where one can distinguish a constant floor of 10 -7 V/ √ Hz, that corresponds in displacement unit to 10 -2 pm/ √ Hz. This value slightly varies from one cavity to another. Higher order modes and removal of degeneracy Some higher order mechanical resonances are investigated on the last Si 3 N 4 membrane (1 × 1 mm 2 × 50 nm). Two spectra of two higher resonance modes are displayed in [START_REF] Lebedew | Untersuchungen über die Druckkräfte des Lichtes[END_REF][START_REF] Einstein | On the quantum theory of radiation[END_REF]. A clear removal of degeneracy is observed in the second case. This removal of degeneracy is somewhat controlled using the piezo material whose deformation is not perfectly symmetrical, which induces a variation of the membrane constraints. The effective in-plane tension perceived by each mode may vary, which differently modifies each resonance frequency. This phenomenon is studied and further discussed in section II.4.4. Note that this effect is also observed in the case of the 1 st degenerate mode, with a lower frequency shift between the two mechanical modes. Due to the difficulty to clearly differentiate the two peaks, and especially to control the removal of degeneracy, no such response is displayed in this manuscript. The thermomechanical model (see equation II.43) seems well adapted in the case of the 1 st degenerate mode, but is clearly not for the second response. A double peak model is therefore used to fit the PSD, without considering any mode coupling terms between each meachnical mode: Table II.12. Deduced parameters on the higher mode spectra of the Si 3 N 4 membrane.

Material

S fit, 2 (ω) = S N + α 1 ω m,1 /Q m,1 (ω 2 m,1 -ω 2 ) 2 + ω 2 (ω m,1 /Q m,1 ) 2 + α 2 ω m,2 /Q m,2 (ω 2 m,2 -ω 2 ) 2 + ω 2 (ω m,2 /Q m,2 ) 2 (II.49)
where α i , ω m,i , Q m,i are the mode dependent fit parameters. Two dispersive couplings are thus deduced, one for each mode. For this specific example, this model is effective as the two frequencies are sufficiently far from each other (lower mode coupling). Consequently, the dispersive coupling values are in the same order of magnitude than the previous measurements. However, a 10 times higher coupling is extracted in the case of the 1 st spectrum, which can be attributed to the degenerate nature of the mode that potentially increases the coupling efficiency between the optical and the mechanical mode. The basic function used to fit the spectrum does not consider the two mechanical contributions occuring at the same frequency.

A more complex model should be used, to take into account the mechanical mode coupling between both, which is not negligible when the resonance frequencies are close enough to each other. In this situation, the extracted g om can be seen as an effective dispersive coupling: each mode is coupled to the intra-cavity optical field and contributes to the optomechanical interaction, which induces a higher coupling value. The effect of environment pressure is briefly studied, using the manual leakage controller. Measurements of the thermomechanical spectrum are performed using our stabilized optomechanical cavities under several values of pressure in the vacuum chamber. The results for the case of a Si . Until P = 1 mbar, an exponential decreasing of 2 decades is observed for the amplitude at resonance starting from P = 10 -3 mbar, of 0.5 kHz for the resonance frequency starting from P = 10 -4 mbar, and of 2 orders of magnitude for the quality factor starting from P = 10 -3 -10 -2 mbar. This behavior is intuitive and coherent with other studies [START_REF] Naesby | Effects of pressure on suspended micromechanical membrane arrays[END_REF].

Influence of the environment pressure

II.4.4 Influence of the membrane position

The MIM arrangement features a periodic behavior of the optomechanical couplings with the membrane position along the cavity axis. When the mechanical resonator is disposed at a node of the stationary intracavity field, the dispersive coupling vanishes. This intrinsic property is dynamically verified using the piezo material to precisely move the membrane across several nodes.

The periodic optomechanical extinctions

The fundamental thermomechanical spectrum is measured for each membrane position and the mechanical parameters are extracted, for all our optomechanical cavities. The PDH stabilization can be maintained between each acquisition if the optical frequency shift induced by the piezo deformation is small enough (i.e. if the applied voltage step is sufficiently low). As an illustration, the results for the SiN membrane (0.5 × 0.5 mm 2 × 30 nm) are displayed in Fig. II.38. The voltage applied to the piezo material is converted to a membrane relative displacement using the piezo sensitivity s V2m (see Table II.4). In this example, the membrane is moved by almost λ/2. One can observe two extinctions of the optical PSD, spaced by 0.4 µm, that is to say λ/4 (see Fig. II.38 (b)). The amplitude at resonance is periodically reduced by 2 decades, which reflects the position of a node and an antinode of the stationary intracavity field. It dynamically indicates the vanishing of the dispersive coupling predicted by the static measurements (see Fig. II.29). One can also observe a linear decrease of the resonance frequency, potentially due to two different effects. The most probable source is a local variation of the thermal environment due to Joule heating of the piezo when applying a high voltage. This effect is further discussed in section II.4.5. The second possibility is a variation of the membrane constraints induced by the piezo deformation, already discussed in the previous section on the removal of degeneracy. Due to the UV curing bonding process and depending on the undergone clamping force, the deformation of the piezo is not properly linear. As the membrane is fixed to it with the same process, it potentially induces variation of the membrane constraints. Both hypotheses could explain the observed linear dependency of the resonance frequency on the applied voltage. The corresponding quality factor remains however of the same order of magnitude for all the membrane positions. A similar behavior is confirmed on all our optomechanical cavities with minor differences. Figure II.39 represents the variation of the mechanical properties of the Si 3 N 4 membrane (1 × 1 mm 2 × 50 nm) as a function of its position along the corresponding cavity axis. In this case, the maximum relative displacement is almost one wavelength. The resonance frequency also linearly decreases, while the quality factor remains constant. The resonance amplitude curve slighlty differs from the previous example: two extinction "regimes" are distinguished, spaced approximately of one quarter-wavelength. The periodic behavior is still present, but with a larger extinction range. This is mainly due to a lower signal to noise ratio with this specific membrane geometry. To conclude this analysis, the dispersive optomechanical coupling, deduced from the thermomechanical model, is plotted as a function of the membrane relative position in As already stated, the evolution of the coupling with the membrane position remains similar with the same maximum values between each of our cavities, as the cavity length is constant. The main discrepancy between all of our devices is the minimum distance z 1 between the membrane center and the back mirror, which slightly changes between all. The behavior of the dispersive coupling with z m is mirrored on the evolution of the amplitude at resonance already described in Fig. II.38 and II.39: two clear extinctions for the SiN g om , and 2 extinction regimes with lower coupling values for the Si 3 N 4 g om . One can also observe the MATE intrinsic property through the asymmetry of the coupling (also discussed on the section II.4.2 on static measurements).

Effects on the removal of degeneracy

This periodic feature specific to the MIM setup is also investigated on a higher order and degenerate mechanical mode. The study focuses on the (3,1)/(1,3) mode of a Si 3 N 4 membrane, presented in the previous section, because of the clear removal of degeneracy. The evolution of the corresponding optical PSD, measured with one of our optical cavities, with the membrane relative position, is displayed in This figure should be considered as qualitative, to get an insight on an interesting feature: the influence of the membrane position along the cavity axis on the removal of degeneracy. The second expression (see equation (II.49)) is used to fit each measurement, and extract the mechanical parameters, as well as the couplings. The linear decrease of the resonance frequency observed in the previous analysis on the fundamental mode also occurs for each mode with two different sensitivities (i.e. slopes). Consequently, for a given applied voltage on the piezo material, one resonance mode is more shifted than the other, and the frequency gap between the two modes varies. Therefore the removal of degeneracy is in a way controlled by the membrane position. One can see once again that the fit is not well suitable when the two peaks are really close to each other (hence the clear discontinuity of ∆f m around ∆z m = 0. 

II.4.5 Stability of the optomechanical signal

All the measurements presented in the previous section confirm the intrinsic properties of the MIM/MATE setup in our fiber-based optomechanical cavities. The stability of the optomechanical signal, for a low-stress SiN and a high-stress Si 3 N 4 membrane, is finally investigated. The PDH closed loop allows us to maintain the laser emission frequency at the optical resonance over several days. 200 acquisitions of the thermomechanical spectrum are performed, always checking if the laser is still maintained at optical resonance. To do so, the "DC" and error signals are recorded during one minute, between each measurement. A given acquisition lasts approximately 24 min. The entire characterization lasts around 83. They are therefore twice as big. At first glimpse, these stress variations might originate from thermal heating of membranes or surrounding pressure variation. However, the thermal time constant of the membrane with its silicon frame is rather close to 4 × 10 4 s since the variation takes hours without any mechanical stabilization observed. In addition, the pressure variation cannot result in a frequency drift with such a slope. A quick calculation of the internal stress with the pressure leads to a 10 -3 mbar variation over 83 h for the SiN membrane for instance. Such a variation has not been observed when measuring the quality factor (see Fig.

II.44 (b)).

Moreover, as the pressure relative variation is proportional to the frequency relative variation it would mean a nominal pressure around 30 mbar, which is also inconsistent with the pressure levels set between 10 -6 and 10 -5 mbar.

The stress and its behavior with time depend on several parameters that are the thickness and deposition conditions (temperature, gas ratio, deposition rate, annealing). Adsorbed contam- inants at the membrane surface can also induce a superimposed surface stress. A desorption mechanism occurs when the membranes are placed under vacuum, which may explain the stress variation and the frequency changes. A thermal effect has also been observed on the "DC" optical signal: above a certain input optical power threshold (which depends of the optical cavity bandwidth, but typically around 0.5 mW at the input port of the cavity), the optical response is perturbed and the contrast, as well as the cavity bandwidth, are reduced during the first moments of PDH frequency stabilization. This is probably due to a variation of the reflectivity or absorption of the FBG or the dielectric mirror used as a back mirror, not designed for such use in resonant cavities. This illustrates a limit of our system, which could be easily overcome by working below this optical power threshold, or with back mirrors made of more adapted highly reflective coatings [START_REF] Hood | Characterization of high-finesse mirrors: Loss, phase shifts, and mode structure in an optical cavity[END_REF], or even better: of crystalline coatings which are well suitable for cavity optomechanics considering their ultralow optical losses [START_REF] Cole | Tenfold reduction of brownian noise in high-reflectivity optical coatings[END_REF][START_REF] Cole | High-performance near-and mid-infrared crystalline coatings[END_REF]. Depending on the application, one could optimize the sensitivity of our system to mechanical displacements, which is mainly fixed by the input laser optical power P in , the optical contrast C R and the ratio between the modulation frequency f p and the cavity bandwidth κ. These last two parameters are indeed modified by a thermal drift, which indicates a decrease of the intracavity optical energy. All these effects are observed on multiple of our optomechanical cavities. It was necessary to study these drifts to get an insight of the measurable resonance frequency or quality factor shifts potentially induced by the optical force. This is even more important considering the relatively low finesse of our cavities. The optically induced effects on the mechanical dynamic (especially the optical spring effect) are in consequence considerably low and most likely below the limit of detection, depending on the duration of the experiment. These effects are estimated with our system, using the usual theoretical expressions (see [START_REF] Aspelmeyer | Cavity optomechanics[END_REF] and chapter IV), calculated by solely condidering the influence of the radiation pressure force. Typical optical (κ = 50 MHz) and mechanical (SiN or Si 3 N 4 membrane for the three geometries) characteristics and multiple dispersive optomechanical coupling values (g om = 1 -50 MHz) are considered. As expected, both optomechanical effects are very low (far below 1 Hz). The radiation pressure force has therefore a limited influence on these fiber cavities. The input optical power has no significant effect, other than the thermal effects observed, on the optical PSD or on the thermomechanical spectrum. Note however that a supplementary force, known as the bolometric force, can be induced by such thermal effects, whenever an optical absorption by the mechanical element occurs. The group of Eyal Buks has demonstrated various optomechanical features based on this thermal phenomenon [START_REF] Zaitsev | Forced and self-excited oscillations of an optomechanical cavity[END_REF][START_REF] Baskin | Optically induced self-excited oscillations in an on-fiber optomechanical cavity[END_REF][START_REF] Buks | Mode locking in an optomechanical cavity[END_REF][START_REF] Zaitsev | Nonlinear dynamics of a microelectromechanical mirror in an optical resonance cavity[END_REF][START_REF] Shlomi | Synchronization in an optomechanical cavity[END_REF][START_REF] Buks | Self-excited oscillation and synchronization of an on-fiber optomechanical cavity[END_REF].

II.5 Perspectives

We would like to conclude on an advanced stabilization techniques that can be of interest for our application: the offset sideband method with carrier suppression [START_REF] Thorpe | Laser frequency stabilization and control through offset sideband locking to optical cavities[END_REF][START_REF] Livas | Frequencytunable pre-stabilized lasers for LISA via sideband locking[END_REF][START_REF] Milani | Multiple wavelength stabilization on a single optical cavity using the offset sideband locking technique[END_REF]. This technique is of practical interest for optomechanical sensors based on optically induced effects on the mechanical dynamics, as it allows PDH stabilization with wavelength tunability on every detuning between the source and the cavity (on a given resonance peak). An experimental demonstration of this technique is presented and confronted to the theory. The potential sensing applications with our near-IR devices are finally discussed.

II.5.1 The offset sideband method with carrier suppression

A wide bandwidth technique for stabilizing the laser frequency on various detuning of the optical resonance response is theoretically studied and experimentally implemented. The method does not require any additional passive optical element than the basic PDH, and allows a large adjustment of the optical detuning between the laser and the reference optical cavity. It is of practical interest for cavity optomechanics because it could eliminate the need for two laser sources with the pump-probe method (1 detuned laser exciting the optomechanical resonator and 1 PDH stabilized laser for mechanical motion detection). 

Mathematical and physical consideration

To fully understand the offset sideband method [START_REF] Thorpe | Laser frequency stabilization and control through offset sideband locking to optical cavities[END_REF][START_REF] Livas | Frequencytunable pre-stabilized lasers for LISA via sideband locking[END_REF][START_REF] Feng | Laser frequency locking with second-harmonic demodulation[END_REF][START_REF] Milani | Multiple wavelength stabilization on a single optical cavity using the offset sideband locking technique[END_REF], the simplified calculation presented in section II.3.1 is completed, following the approach described by Thorpe et. al. [START_REF] Thorpe | Laser frequency stabilization and control through offset sideband locking to optical cavities[END_REF] and Feng et. al. [START_REF] Feng | Laser frequency locking with second-harmonic demodulation[END_REF]. For the basic PDH, only the first order error signal resulting from the beat pattern between the carrier and the first phase modulation sidebands induced by the optical power measurement is of practical interest. For the low modulation depth used in practice (β < 1.5), the amplitude of the higher order sidebands (given by the Bessel function J n (β) (n ≥ 2) times the input optical power) are negligible with respect to the carrier and the first sidebands. However, this advanced technique seeks to lock our laser source on one of the sidebands, to control the optical detuning through the phase modulation frequency ω p = 2πf p . To easily control this locking scheme in practice, one can understand the necessity to remove any unwanted beat pattern with the carrier, which will maintain the laser at optical resonance. The carrier amplitude being proportional to J 0 (β), this situation corresponds to the first zero of J 0 , indicated by the red dashed line in Fig. II.45, where the higher order sidebands are not negligible anymore. Consequently, the initial error signal calculations are further developed taking into account the second and third order sidebands, to derive the modified "DC" optical power, as well as the terms oscillating at ω p and 2ω p . The higher order terms are not provided, as they require additional sidebands. They are not useful for our study. The same basic experimental setup as sketched in Fig. II.16 is used. Following the same approach as in section II.3.1, the reflected field in the presence of a phase modulated input laser reads where the "DC" term, related to the spectral response of the cavity in the presence of a phase modulated incident laser, reads:

E ref = E 0 [R(ω)J 0 (β) e iωt + R(ω + ω p )J 1 (β) e i(ω+ωp)t -R(ω -ω p )J 1 (β) e i(ω-ωp)t + R(ω + 2ω p )J 2 (β) e i(ω+2ωp)t +R(ω -2ω p )J 2 (β) e i(ω-2ωp)t + R(ω + 3ω p )J 3 (β) e i(ω+3ωp)t -R(ω -3ω p )J 3 (β) e i(ω
P DC ref = E 2 0 J 2 0 (β)|R(ω)| 2 + E 2 0 J 2 1 (β)(|R(ω + ω p )| 2 +|R(ω -ω p )| 2 ) + E 2 0 J 2 2 (β)(|R(ω + 2ω p )| 2 +|R(ω -2ω p )| 2 ) + E 2 0 J 2 3 (β)(|R(ω + 3ω p )| 2 +|R(ω -3ω p )| 2 ), (II.53)
and the oscillating terms, after some mathematical manipulations, are given by: (II.54)

P ωp ref = 2E 2 0 3 n=0 J n (β)J n+1 (β)(Re[χ n (ω)] cos(ω p t) + Im[χ n (ω)] sin(ω p t)), (II.55) P 2ωp ref = -E 2 0 J 1 (β)(Re[ζ(ω)] cos(2ω p t) + Im[ζ(ω)] sin(2ω p t)) + 2E 2 0 1 n=0 J n (β)J n+2 (β)(Re[ξ n (ω)] cos(2ω p t) + Im[ξ n (ω)] sin(2ω p t)),
and finally:

(II.56) χ n (ω) = R(ω + nω p )R * (ω + (n + 1)ω p ) -R * (ω -nω p )R(ω -(n + 1)ω p ), (II.57) ζ(ω) = R(ω -ω p )R * (ω + ω p ), (II.58) ξ n (ω) = R(ω + nω p )R * (ω + (n + 2)ω p ) -R * (ω -nω p )R(ω -(n + 2)ω p ).
Once again a cosine and a sine term are found in the oscillating signal. The "DC" and ω p terms contain the basic expression demonstrated in section II.3.1 (see equations II.19, II.20 and II.20), and are slightly modified due to the influence of higher order sidebands. Similarly to the basic PDH, the cosine (or sine term) of the 2ω p signal is isolated using the phase shifter, the mixer at the second harmonic, and the low-pass filter (see Fig. II.16). The resulting signal can serve as an error to lock the laser on one of the first order sidebands. Instead of developing the calculation as for the basic PDH, we are going to illustrate the technique by comparing these calculations with an experimental demonstration on a lensed FBG-based MIM cavity.

Experimental demonstration

The optical cavity used for the demonstration is characterized by a bandwidth κ of 35 MHz, an optical quality factor Q opt of 1.1 × 10 7 , an optical finesse around 78 and an optical contrast 0.86. The effect of a phase modulation on the "DC" response in reflection is illustrated and compared to the theory (see equation (II.53)) in Fig. II.46. At high phase modulation depth, the second order sidebands (and even the third order sidebands for high modulation frequencies) are visible. The depth is chosen to maximise the first order sideband amplitude and minimize the carrier amplitude, in order to maximise the amplitude of the signal measured by the photodetector and oscillating at 2ω p . The latter indeed mostly depends on J 1 (β) (see equation (II.55)). The carrier is almost suppressed: it is clearly visible on the last two graphs for f p = 100 MHz. Good agreement is found between measurements and theory. Discrepancies are observed on the position of the sidebands: this is mainly due to the uncertainty in the conversion of the x-axis from voltage to frequency or wavelength units (already discussed in section II.3.3). The sideband method intends to lock the laser source on one of the first order sidebands, indicated by vertical dashed lines on each graph in Fig. II.46. One can observe that stabilization on every detuning between the laser and the optical cavity seems to be feasible. To illustrate Comparison between the measurements (acquired with the LIA) of the "DC" signal in reflection with the demodulated and filtered error signal, and the theoretical second order error signal ϵ sin, 2 normalized by the incident power P in (only the sine terms of equation (II.55)), for multiple phase modulation frequencies f p . A strong modulation depth is applied (β ≈ 2.2) to suppress the carrier signal. The dashed lines indicate the linear behaviors of the error signal with the detuning between the laser and the optical cavity. The two linear parts can be potentially used to stabilized the laser at non-zero detuning.

the technique, the second order error signal (term oscillating at 2ω p , see equation (II.55)) is extracted using the LIA, by performing a forward/backward wavelength scan around the optical resonance peak. We focus in the following on the sine term of equation (II.55)), denoted ϵ sin, 2 , which is, as we are going to see, of practical interest for our stabilization purpose. We compare the theoretical error signal with the temporal acquisition with the LIA in Fig. II.47, for multiple phase modulation frequencies. Once again, an excellent agreement is found between theory and measurements. Two linear parts can be well distinguished on the error signals. These can serve to correct the laser frequency at a positive or negative non-zero detuning that cancels the error. This stabilization is implemented, by following the same procedure as for the basic PDH (see section II.3). To sum up:

• The phase shift is adjusted during the continuous wavelength scan around the peak of interest.

• The linear parts of the error signal are extracted to determine the correction parameters (proportional and integral terms).

• The wavelength scan is disabled and the laser wavelength is slightly adjusted to the desired detuning that cancels the error.

• The closed loop is activated by feeding the laser with a correction signal.

The sign of the chosen proportional term determines the lock point (positive or negative detuning). As an illustration, a time acquisition of the "DC" and error signal during the laser wavelength adjustment, followed by a one minute acquisition during the stabilization is displayed in Fig. II.48, for a modulation frequency of 37.8 MHz. One can observe the error signal maintained around 0, while the cavity signal is maintained on one of the two first order sidebands generated by the EOM. This stabilization has been demonstrated at various detunings i.e. at various modulation frequencies f p from 10 MHz (0.29κ) to 100 MHz (2.86κ). This demonstration shows the feasibility of stabilizing the laser source at multiple optical detunings. It is also possible to adjust the emission wavelength in a same closed loop by changing the modulation frequency, while maintaining the stabilization. This is possible only if the modulation frequency is adjusted step by step, with a sufficiently low step value to keep the error on its linear part. This makes this method of practical interest for cavity optomechanics: it could simplify the widely used pump-probe method. This scheme aims to excite the optomechanical cavity with a detuned high-power laser source (to optically affect mechanical dynamics), and to sense the mechanical motion with a second laser source stabilize at optical resonance with a basic PDH (see for instance the thesis of D.J. Wilson [START_REF] Wilson | Cavity optomechanics with high-stress silicon nitride films[END_REF]). The offset sideband method could allow to excite and sense with an unique laser source, using the error signal to measure the optical phase fluctuations induced by the mechanical displacement, simarly to the basic PDH. By comparing Fig. II.17 with the theoretical curves in Fig. II.47, one can observe that the same error sensitivity (slope of the linear part) seems to be achievable with a laser stabilized at a non-zero detuning. Measurements of the the thermomechanical spectrum of our membranes have indeed been performed with this technique, with the same signal-to-noise ratio. As already stated in section II.4.5, the radiation pressure has a limited effect on the mechanical dynamics with our millimetric fiber-based setups. No significant behavior with optical detuning has then been observed on the mechanical response.

The experimental demonstration illustrated in this section is mainly qualitative to confirm the feasability of the technique. A more quantitative study is needed to determined if similar frequency noise performances than the basic PDH are achievable, but previous studies have demonstrated low frequency noises around 10 Hz/ √ Hz above 1 Hz [START_REF] Milani | Multiple wavelength stabilization on a single optical cavity using the offset sideband locking technique[END_REF] or even 1 Hz/ √ Hz above 1 Hz [START_REF] Feng | Laser frequency locking with second-harmonic demodulation[END_REF]. In our situation, we have demonstrated that the basic PDH allows us to maintain our laser source locked at optical resonance over several days with a frequency noise maintained at 4 kHz/ √ Hz between 0.1 Hz and 10 Hz and at 300 Hz/ √ Hz above 100 kHz, while continuously monitoring the thermomechanical noise of 30 nm thick silicon nitride membranes. One could then expect long-term stability on various optical detunings, which is of practical interest for sensors based on optomechanical transduction, such as the gravimetric (or mass) spectrometer or the thermal sensors.

II.5.2 Optomechanical sensing

In the prospect of optomechanical sensing [START_REF] Li | Cavity optomechanical sensing[END_REF], various concrete applications could benefit from our lensed FBG-based MIM architecture. Among them, inertial [START_REF] Krause | A high-resolution microchip optomechanical accelerometer[END_REF] (accelerometer/gyrometer), high resolution displacement and ultrasound [START_REF] Basiri-Esfahani | Precision ultrasound sensing on a chip[END_REF] sensing, with an optimized mechanical resonator design and geometry, seem to be relevant applications. However, our configuration is particularly promising for two other reasons.

Firstly, a neutral mass spectrometer with a nano resonator used as a gravimetric sensor has been demonstrated [START_REF] Sage | Neutral particle mass spectrometry with nanomechanical systems[END_REF]. Our system could be used likewise for measuring several modal resonances of the membrane. The mechanical resonance frequency stability σ f and the limit of detection (LOD) are roughly estimated from the SNR with the expressions:

σ f = (1/2Q m ) × (1/SNR) × 1/τ
where τ is the integration time, and LOD = 2m eff × σ f , where m eff is the effective mass [START_REF] Ekinci | Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems[END_REF][START_REF] Sansa | Frequency fluctuations in silicon nanoresonators[END_REF]. SiN membranes (low stress, 30 nm thick) exhibit a typical frequency stability close to 10 -5 leading to a limit of detection (LOD) close to 0.12 pg/ √ Hz. The frequency stability is extracted from the thermomechanical noise, which is the predominant noise floor. It is necessary to decrease the size of both the cavity and the suspended membrane to improve the LOD. This setup would be efficient with ultra-thin membranes that could be made in Si or SiN below 10 nm or 2D-materials like graphene. Resonators with large suspended graphene membranes [START_REF] Akbari | Large suspended monolayer and bilayer graphene membranes with diameter up to 750 um[END_REF] have recently been demonstrated. Such a system can be a good tradeoff between low LOD and a large capture section of molecules to analyze. An array of suspended membranes with spatial multiplexing could be included into the system to increase the analysis throughout. Secondly, optomechanical setups have also been used for thermal sensing [START_REF] Varesi | Photothermal measurements at picowatt resolution using uncooled micro-optomechanical sensors[END_REF][START_REF] Blaikie | A fast and sensitive room-temperature graphene nanomechanical bolometer[END_REF][START_REF] Laurent | 12um-pitch electromechanical resonator for thermal sensing[END_REF]. In the same way, the MIM structure is also a good alternative for building a resonant bolometer. Based on the frequency stability expected with our device, the minimum detectable stress is close to 18 kPa. If we consider a differential relative dilatation (SiN versus Si) of α = 10 -6 K -1 , [START_REF] Retajczyk | Elastic stiffness and thermal expansion coefficients of various refractory silicides and silicon nitride films[END_REF][START_REF] Watanabe | Linear thermal expansion coefficient of silicon from 293 to 1000 k[END_REF] the smallest detectable temperature variation would be close to 100 mK (stress σ = Eα∆T where E is the Young modulus). This rough estimation gives a first insight on the possible performance. To develop a real bolometer matrix, we have to adapt the MIM setup to work in the mid-infrared (mid-IR, 3 -15 µm) range. The membrane should have a good mid-IR absorption and the mechanical anchoring should have sufficient thermal insulation to ensure a reasonable thermal time constant (typically 60 µs per pixel).

CHAPTER

III

Silicon integrated mid-IR membrane-in-the-middle system

The intrinsic properties of the MIM setup has been experimentally assessed with the millimetric scale near-IR fiber-based cavities. The integration of this system at micrometric scale can strongly enhance the optomechanical interaction. This could be useful for the most fundamental applications of cavity optomechanics, but also for sensors based on this interaction. In this perspective, MIM optomechanical cavities are designed and realized for the first time in the mid-IR region for gas spectroscopic applications. This chapter is organized as follows.

First, a fabrication process to integrate this system on silicon wafer, in the mid-IR region, for a potential usage in gas spectroscopy is proposed and developed. The design of the micrometric MIM cavities using the transfer matrix formalism introduced in chapter I is presented. The fabrication process with all the monitoring characterizations is detailed, with a comparison with the unique study, reported in the literature, that treats with the integration of this optomechanical setup.

Then, the two optomechanical characterization benches are presented. The first one exploits a second bandwidth of the silicon integrated mirrors, in the near-IR, and uses the stabilization scheme presented in chapter II for measuring the mechanical spectra. The second one uses mid-IR components (source, detector and optics) to excite the optical cavity at the design wavelength. The respective objectives of both approaches are detailed.

Finally, the concept of optical spring detection of gas molecules with the micrometric optomechanical cavities is presented. The sensor is based on the previously studied MIM setup, with an absorbing intracavity medium. The effect of this optical absorption on the mechanical dynamics is discussed. Multi-physics FEM simulations are performed to understand the mechanical behavior of a membrane in a closed air-filled cavity. The performance of the spectroscopic optomechanical gas sensor is finally numerically estimated. 

III.1 Presentation of the mid-infrared integrated optomechanical cavity

The silicon integration of the mid-IR optomechanical cavities requires complex fabrication operations using various microelectronic manufacturing processes on 200 mm diameter silicon wafer in a clean room environment. Preliminary studies are first conducted to establish the most suitable Bragg mirror materials for our application, both in terms of their optical and structural properties. The fabrication process of the MIM cavities is designed based on these selected materials, with the aim of suspending a Si 3 N 4 membrane between two of these multilayer mirrors, via two successive wafer direct molecular bondings. In this section, this silicon integration work is detailed. The most common cleanroom processes are not always detailed; we only focus on their specific use in the fabrication of the optomechanical cavities. The reader can refer to standard articles and textbooks for an introduction to deposition [START_REF] Choy | Chemical vapour deposition of coatings[END_REF], photolithography [START_REF] Landis | Nano Lithography[END_REF] or etching processes [START_REF] Köhler | Distinctive features of microtechnical etching[END_REF].

III.1.1 Integrated membrane-in-the-middle cavity

In almost all the works from literature presented so far in this manuscript, the MIM setup is a hybrid assembly of multiple elements. This approach lacks the potential for large number production, and size reduction to increase the optomechanical interaction, offered by integrated optomechanical setups i.e. suspended microdisks [START_REF] Ding | High frequency gaas nano-optomechanical disk resonator[END_REF], suspended ring resonators [START_REF] Rosenberg | Static and dynamic wavelength routing via the gradient optical force[END_REF][START_REF] Taurel | Theoretical and experimental study of optical coupling in optomechanical systems[END_REF], whispering gallery mode resonators coupled to a nanomechanical beam waveguide [START_REF] Li | Reactive cavity optical force on microdiskcoupled nanomechanical beam waveguides[END_REF][START_REF] Huang | Reactive-coupling-induced normal mode splittings in microdisk resonators coupled to waveguides[END_REF][START_REF] Fu | Normal mode splitting due to quadratic reactive coupling in a microdisk-waveguide optomechanical system[END_REF][START_REF] Madugani | Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light[END_REF], ring resonators coupled to a micromechanical resonator [START_REF] Huang | A dissipative self-sustained optomechanical resonator on a silicon chip[END_REF], phoxonic crystal systems [START_REF] Chan | Optimized optomechanical crystal cavity with acoustic radiation shield[END_REF], and finally photonic crystal (PhC) systems [START_REF] Hryciw | Tuning of nanocavity optomechanical coupling using a near-field fiber probe[END_REF][START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF][START_REF] Wu | Dissipative and dispersive optomechanics in a nanocavity torque sensor[END_REF]. As described in section I.2, fiber-based MIM devices have achieved low cavity length, the smallest being the recent 10 µm long high finesse fiber-based MIM cavity of Fogliano et. al., formed by a suspended silicon carbide nanowire between two Bragg coated concave fiber end facets [START_REF] Fogliano | Mapping the cavity optomechanical interaction with subwavelength-sized ultrasensitive nanomechanical force sensors[END_REF]. However, this hybrid system, as well as the other MIM systems, requires a custom and complex alignment setup. [START_REF] Hornig | Monolithically integrated membrane-in-the-middle cavity optomechanical systems[END_REF]. The fabrication is adapted from several previous works of the same group on hollow Bragg waveguides [START_REF] Epp | Hollow bragg waveguides fabricated by controlled buckling of si/SiO 2 multilayers[END_REF] and integrated high finesse curved-mirror-based Fabry-Perot cavities [START_REF] Allen | High-finesse cavities fabricated by buckling self-assembly of a-si/SiO 2 multilayers[END_REF][START_REF] Bitarafan | Thermomechanical characterization of on-chip buckled dome fabry-perot microcavities[END_REF]. To the best of our knowledge, this is the only work on the integration of the MIM setup. Their fabrication process is briefly summarized for comparison with our own strategy. The description is largely based on [START_REF] Hornig | Monolithically integrated membrane-in-the-middle cavity optomechanical systems[END_REF], without any detail on the deposition or etching conditions, but further details can be found in the given references [START_REF] Hornig | Monolithically integrated membrane-in-the-middle cavity optomechanical systems[END_REF][START_REF] Epp | Hollow bragg waveguides fabricated by controlled buckling of si/SiO 2 multilayers[END_REF][START_REF] Allen | High-finesse cavities fabricated by buckling self-assembly of a-si/SiO 2 multilayers[END_REF][START_REF] Bitarafan | Thermomechanical characterization of on-chip buckled dome fabry-perot microcavities[END_REF]. The reader an refer to Fig. III.1. It starts with the successive deposition of a 3-period amorphous silicon/silicon dioxide (a-Si/SiO 2 ) Bragg mirror, a thin (30 nm SiO 2 barrier layer (for a following etch), a sacrificial a-Si layer, a stiochiometric silicon nitride layer (Si 3 N 4 , the future membrane), a low adhesion fluorocarbon layer, and finally a 4.5-period tantalum pentoxide/silicon dioxyde (Ta 2 O 5 /SiO 2 ) Bragg mirror. The samples are then placed on a hot plate and subjected to an empirically optimized heating process to induce loss of adhesion of the fluorocarbon layer, resulting in a "buckling" delamination, curving the top mirror due to the compressive internal stress of the materials. An Inductively Coupled Plasma Reactive Ion Etching process is used to create vertical holes through this mirror and the Si 3 N 4 layer. A second etch step is carried out to selectively remove the exposed sacrificial a-Si through these access holes, releasing the membrane. Finally, 3 additional periods of Ta 2 O 5 /SiO 2 are sputtered to increase the cavity finesse. The resulting effective cavity length (at the center of the curved mirror) is around 5λ/2 ≈ 3.9 µm (λ = 1.55 µm in their situation) taking into account the air gaps (3.2 µm), the penetration depth of the mirrors and the membrane thickness. While they have successfully performed thermomechanical characterizations of the suspended membrane (see Fig. III.1 (c) for an example of a measured optical PSD), no clear dispersive coupling has been extracted from the thermomechanical calibration. They estimated it around 25 GHz/nm with the transfer matrix formalism, which corresponds to a vacuum coupling strength at g 0 = 0.1 MHz (m eff = 0.1 ng). This value is two order of magnitude higher than the best resonator-in-the-middle setups (with a membrane and a fiber-based cavity, see Table 1 in the introduction), which proves the interest of micro-integration.

The study of the group of R.G. DeCorby has been reported in 2020, halfway through the duration of this thesis. We propose an alternative approach for the integration of the MIM setup. Our process is inspired by fabrication methods of micro-electro-mechanical systems developed at CEA-Leti for many years, and is based on two direct molecular bonding processes [START_REF] Reiche | Direct Wafer Bonding[END_REF]. It consists of the following main steps (see Fig. III.2):

• Two Bragg mirrors are fabricated with multiple deposits in a row, on two separated silicon substrates (see section III.1.2), • An intermediate stack is deposited on a third wafer, with a thin Si 3 N 4 layer burried between two thick silica layers; a first cavity is etched on this stack, to expose the silicon nitride to the outside, following a repeated patterned (with various cross-section dimentions) on the entire wafer surface (see section III.1.5), • A first silica/silica direct wafer bonding assembles a Bragg mirror on this stack (see section III.1.6), • The intermediate substrate is removed and the membrane is released with a second etched aligned with the burried cavities (see section III.1.7), • Finally, a second silica/silica direct wafer bonding assembles the resulting object with a second Bragg mirror, forming multiple integrated MIM cavities of various cross-section (see section III.1.8).

First, the mirror design, the fabrication process, and the characterizations are detailed. The design of the mid-IR micrometric optomechanical cavities is then presented. Each fabrication step previously listed, as well as the main monitoring characterizations, are explained. At the end of this section, the advantages and drawbacks of our fabrication strategy and the features of our cavity are finally compared to the work of the R.G. DeCorby's group. An important remark is that the objective of this work was not only the integration of the MIM system, but also its dimensioning and its first realization in the mid-IR range, for a potential use for spectroscopic applications. 

III.1.2 Mirrors material properties and fabrication process

The Bragg mirror are is an essential element of the silicon integrated MIM optomechanical setup. The choice of the materials is critical as it gives a general orientation to the whole fabrication process. The selection criteria, the fabrication process and various structural characterizations realized on the multilayer mirrors are detailed. In particular, the effect of a 700 °C is studied. Indeed, this annealing is realized later on on the mirrors at specific steps of the fabrication process of the optomechanical cavities, prior to each molecular bonding, especially for drying, but not only (please refer to sections III.1.6 and III. 1.8). As this annealing is essential for the process, this section also focuses on how it affects the optical and stress properties of the materials, as well as the optical response of the mirror.

Material properties

The choice of the two mirror materials and the deposition process is based on several requirements:

• They must be dielectric materials, adapted to microelectronic fabrication processes.

• They must present a high index contrast at the design wavelength, to achieve a high reflectivity with a low amount of deposited layers.

• Ideally, they must be low stress materials, to limit the bow of the wafer resulting from the deposition of the stack on the silicon substrate (a plane-parallel Fabry-Perot configration is sought).

• The deposition process of the whole mirror has to be realized with a limited time between each deposition. It prevents any adsorption of water molecules, or any oxidation of the surfaces, to ensure a good layer interface quality. Note that the latter also depends on the deposit conditions [START_REF] Choy | Chemical vapour deposition of coatings[END_REF].

Based on these criteria, the Chemical Vapor Deposition (CVD) techniques [START_REF] Choy | Chemical vapour deposition of coatings[END_REF], widely used in the CEA-Leti cleanroom platform, are chosen. Two materials are selected, with specific deposition conditions: the amorphous silicon (a-Si) deposited with Low-Pressure CVD (LPCVD) (in a silane (SiH 4 ) gas environment) at 525 °C, and the silicon dioxyde (SiO 2 ) deposited with Plasma Enhanced CVD (PECVD) at 400 °C. These methods take advantage of chemical reaction of gaseous reactants in a plasma or gas environment to homogeneously deposit a pure and stable solid layer on a given substrate. The temperature and the deposition time determine the thickness of the layer, depending on the material. Note that the PECVD technique enables deposition on one side of the wafer, and the LPCVD technique on both sides. The design wavelength and material properties are indicated in Table III The thickness of each layer within the mirror, as already explained in chapter I, is determined by λ 0 /4n, where n is the real part of the optical index. The material optical indices (n, as well as the imaginary part k) are each characterized by ellipsometry on two reference wafers (see Fig. III.3). This method is an optical measurement technique to characterize changes in polarization after reflection on a sample [START_REF] Fujiwara | Introduction to Spectroscopic Ellipsometry[END_REF]. Using adapted fitting model (depending on the material and the deposit thickness), one can retrieve the optical indices of the given sample. Two ellipsometer are used: RC2 from Woollam (for UV / Visible / near-IR ranges) and IR-VASE also from Woollam (infrared). The effect of the 700 °C thermal annealing of the reference sample is studied. No drastic change of the optical indices due this thermal annealing is observed, except at higher wavelength (λ > 8 µm). The optical index at λ 0 = 4.23 µm is 1.3966 for the silicon dioxyde, and 3.4495 for the amorphous silicon, which imposes the thicknesses of the mirror layers: 762 nm for the SiO 2 and 302 nm for the a-Si. These are target layers but one does not need a nanometer precision of deposition. A numerical study, using the transfer matrix formalism presented in chapter I, has demonstrated a random error between 0 and ±10 % on each thickness layer does not strongly impact the mirror bandwidth or maximum reflectivity.

In addition, due to the large mirror bandwidth (> 2.8 µm, see section I.1), the target Bragg wavelength always remains in the mirror bandwidth. This can be explained by an offsetting effect: a positive error on a given layer (higher thickness) is potentially compensated by a negative error on a second layer (lower thickness). Note that the precision of the ellipsometry for the estimation of the imaginary part k is 10 -2 . The absorption of the layers hence cannot be precisely determined with this technique. One can only state that k is lower than 10 -2 at the working wavelength for both materials. Note that previous works from the literature have estimated the imaginary coefficient in the 10 -4 range for the SiO 2 [START_REF] Kischkat | Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon References dioxide, aluminum nitride, and silicon nitride[END_REF]. This value is strongly dependent on the deposit conditions. 

Fabrication process and structural characterizations

The fabrication process is sketched in Fig. III.4. The starting substrate for all the different processes is a 725 µm thick silicon double-side polished (DSP) substrate. The mirror fabrication starts with a 1.2 µm thick oxidation on both sides, followed by a deoxidization of the front side. This backside layer serves as a preliminary bow compensation (induced by the mirror stack). PECVD and LPCVD of SiO 2 and a-Si layers are then alternated. 11 layers are deposited (6 SiO 2 and 5 a-Si, see section I.1). The a-Si thick layers on the backside results from the sum of all the LPCVD of a-Si within the mirror. The time between each deposit is minimized, to limit the contact of each deposited layer with the air environment of the clean room. This contributed to a good interface quality between SiO 2 and a-Si. The resulting wafer is annealed at 700 °C, prior to each molecular bonding (please refer to sections III.1.6 and III.1.8). A Scanning Electron Microscope (SEM) provides a high resolution visualization of microstructured objects, based on the electron-matter interaction, with a gray scale depending on the atomic number of the species of interest [START_REF] Mcmullan | Scanning electron microscopy 1928-1965[END_REF]. The multilayer stack is observed using a SEM before and after the thermal annealing, to visualize potential thermally induced defects (due to a variation of the material stress). No significant difference is observed. A side view is displayed in 

Spectral response characterization

The mirror spectral response in reflection is easily measured by Fourier-Transform Infrared (FTIR) spectroscopy. This technique exploits a Michelson interferometer with a black body source. The input beam is collimated on a half-wave plate, which is split into two beams. Each beam is reflected by a mirror, and they finally interfer each other after a second propagation through the half-wave plate. Moving one of the two mirrors induces a propagation delay between the two optical paths. An inteferogram is then obtained by measuring the signal with a detector as a function of the optical path difference. It is converted into a spectrum by Fourier transformation. The studied sample is disposed at the output port of the Michelson interferometer. The light is focused on it and is measured either in transmission or in reflection. This last configuration requires a minimum inclinaison angle of the sample (13°) to redirect the beam to the detector. The measurement is performed with a FTIR cavity in a vacuum environment to avoid the carbon dioxyde absorption, its main absorption lines being within the mirror bandwidth [124]. The reflection value is deduced by comparison with a reference gold sample (reflectivity denoted by R Au ). The reflectivity value cannot be precisely measured in the mirror bandwidth, due to the high reflectivity of our gratings. The measured spectral responses, with and without the 700 °C thermal annealing, are displayed in Fig. III.7. Measurements are performed on the wafer center and border, but no significant difference is observed. The theoretical response is deduced with the matrix formalism presented in chapter I, by taking into account the dispersion (variation of the optical index with the wavelength) measured by ellipsometry (see Fig. III.3). A good agreement is found between the theoretical curves and the measurements. The main spectral bandwidth corresponds perfectly in the first case, but is slightly affected on the edges due to the annealing. The behavior at the working wavelength is not affected. We note the discrepancies of the spectral response below 3 µm between measurements and theory. This strongly depends on the reference gold sample: the thickness as well as the rugosity difference between our mirrors and the gold mirror can drastically affects the behaviors out of the mirror bandwidth, especially when the reflectivity is low, due to optical path differences at the output port of the Michelson interferometer. This is not critical for our application as solely the high reflectivity bandwidth is of practical interest, in the vicinity of the design wavelength. 

III.1.3 Design of the mid-IR membrane-in-the-middle cavity

Before detailing the fabrication process of the entire device, the optical design methodology of the mid-IR MIM optomechanical cavities, as well as the geometrical and mechanical properties of the fabricated membranes are presented.

Optical and optomechanical properties

The matrix formalism presented in chapter I, setion I.1, is a fast and efficient method to modelize the optical behaviors of the mid-IR cavities. The design of the MIM cavities in the mid-IR range relies on a numerical procedure (automated by a custom MATLAB script): it ensures that the optical cavity is resonant at the working wavelength, with a membrane position along the cavity axis maximising the dispersive optomechanical coupling. The same notations as before are used. The first step is to select the membrane thickness L m . Considering the theoretical analysis presented in chapter I, three L m are selected in the first demi-period of the membrane reflectivity coefficient r m as a function of L m (see Fig. III.8 (a)). Then, a small initial cavity length is chosen (L cav = N λ/2 where N = 4 i.e. L cav ≈ 8.46 µm). In this situation, the resonance condition as a function of the membrane position (see the dotted line in Fig. III.8 (b), for a 300 nm thick membrane) exhibits local minima corresponding to the nodes of the stationnary intra-cavity field. As already stated in chapter I, when the membrane is disposed at these locations, the cavity optical behavior is the same as for the basic Fabry-Perot (by taking into account the penetration lengths of the mirrors): the optical resonance occurs at the working wavelength λ 0 and the membrane has no influence. The dispersive optomechanical interaction cannot therefore occur at λ = λ 0 . The optimization process consists of adjusting the cavity length by calculating the difference between λ 0 and the resonance wavelength maximising the coupling g om = dλ r /dz m . L cav is adjusted accordingly to ensure λ 0 maximizes g om . This procedure is repeated until the wavelength difference reaches a given precision (arbitrary low). The resulting resonance condition is displayed in (fundamental mode of a 50 µm diameter membrane), 10 times higher than the best fiber-based MIM setups (see Table 1 in the introduction). The membrane working position on our example is indicated with a vertical red line and the working wavelength with a horizontal dashed line. Each thickness is related to a specific geometrical configuration of the MIM cavity. They are summarized in Table III.2. For each membrane thickness, the deposit and etch steps of each layer are adapted. There are then three different fabrication splits. 

Thickness

Membrane material, geometrical and mechanical properties

The membrane material and geometrical properties are given in Table III.3. Using the analytical description of the free vibration of circular membranes detailed in section I.3.2, the first three resonance frequencies of the membrane are determined for each fabricated geometry. They are summarized in Table III. [START_REF] Kastler | Quelques suggestions concernant la production optique et la détection optique d'une inégalité de population des niveaux de quantifigation spatiale des atomes. Application à l'expérience de Stern et Gerlach et à la résonance magnétique[END_REF]. The multiple diameters are all fabricated using a photolithography mask specifically designed for this thesis work. Some of the deposition and etching steps are divided into 3 splits, one for each membrane thickness. 

Name

III.1.4 Photomask levels

Nano-photolithography aims to build a specific pattern on a functional layer, usually a photosensitive polymer resist deposited on the wafer, using a subtractive process to remove non-selected material. The image of the pattern is projected on the polymer using a pre-built photomask, inducing photochemical reaction which enables the dissolution of the exposed area (positive resist), or prevent it (negative resist) [START_REF] Landis | Nano Lithography[END_REF]. The pattern is then reproduced on the resist, and bare areas on the entire wafer surface are exposed to further processes (deposit or etch). In our case, a positive resist is used for each photolithography process, solely for etching a specific pattern on this intermediate wafer. This pattern imposes the lateral dimensions of the vertical optical cavity and the membrane. The photomask is characterized by three different levels, used at specific steps of the optomechanical cavity fabrication. A 2 mm side single elementary cell of each level is sketched in Fig. III.9. These cells are repeated on the entire mask surface, to insolate to whole wafer surface during the lithographic process. The black dotted lines indicate the limit of the final chips. Levels (a) and (b) are used for the two cavity etchs and the membrane release, whereas the level (c) serves as marks (etch on the backside of a substrate) to locate the burried cavity. This last level also contains marks to precisely cut the wafer into 2 mm side chips later on. Each level is composed of circles of various diameter, between 50 and 600 µm. The shapes at the borders are characterized by circles with channels continuously linked to the neighboring chips. Their main usage, discussed in section III.3, is to allow the insertion of an absorbing gas on both sides of the suspended membrane. The process of cutting the 200 mm wafer into 2 × 2 mm chips opens these channels to allow the inlet and outlet of the gas. This justifies the location of the channels at the borders, and the continuity with neighboring chips. Note that the channels on the cavity photomask levels are not overlapped, to ensure, after its release, that the membrane is sufficiently clamped on both sides (for the border cavities). The cavity medium in the middle of the chips are not in contact with the outside. Each photomask also includes three alignment marks. Those marks are essential for the fabrication since they ensure that each photolithography is aligned with the others. Each cavity, processed at different step on both side of the membrane are then correctly overlapped. The alignment precision is around 15 µm. The lateral dimensions of every cavity (circles) on the second cavity photomask level have been increased by 15 µm, to guarantee the circularity of the cavity section, even in the presence of any unwanted misalignment.

III.1.5 Intermediate wafer fabrication and characterization

The wafer with the intermediate stack serves as a basis of fabrication for the suspended silicon nitride membrane. Several deposition and etch processes on this wafer also determine the cavity length and the membrane position along the vertical cavity axis. The fabrication process of this wafer and the characterizations performed are presented in this section. 

Fabrication process

The fabrication process of the intermediate wafer is schematically represented in Fig. III.10, to clarify to following explanation. The starting point is the same as the mirrors (see Fig. III.4 (a)): an oxidation, followed by a front side deoxidization of a 725 µm thick DSP silicon wafer. This back side thermal silica also serves as a small bow compensation. Then, the following steps are realized:

• The first step consists on building the basis for the realisation of the suspended membrane (to fully understand this step, see the whole stack sketched in Fig. III.10 (a)). A first 500 nm oxidation serves as a barrier layer (also termed stop layer) for a substrate removal in future steps. We then alternate between 100 nm thick a-Si layers (LPCVD, 525 °C) and a 3.1 to 3.6 µm (depending on the split, see Table III.2) thick SiO 2 layer (PECVD, 480 °C). The first a-Si protects the silica layer during the second cavity etch, right before the second molecular bonding. The second one serves as a barrier for the same etch, to protect the following silicon nitride layer. This partial stack is annealed at 800 °C to prepare it for the 200, 300 or 400 thick Si 3 N 4 deposit (LPCVD, 780 °C). We once again alternate between 100 nm thick a-Si layers and a 4.2 to 4.7 µm (depending on the split, see Table III.2) thick SiO 2 layer (same process as the first silica layer). The first a-Si (stop layer) protects the silicon nitride layer, and the last one protects the silica, during the first cavity etch (before the first molecular bonding). An important step, not represented here, is the Chemical-Mechanical Polishing (CMP) of the last silica layer, before the last a-Si deposition. This process smooths the SiO 2 surface by combining chemical and mechanical actions [START_REF] Luo | Material removal mechanism in chemical mechanical polishing: theory and modeling[END_REF]. It reduces the surface rugosity and facilitates the first molecular bonding. Since 100 nm of the silica is removed during this polishing, the thickness of the last silica deposit is adjusted accordingly. This CMP has to be realized at this step of the fabrication as it cannot be realized on a patterned wafer.

• The second step (see Fig. III.10 (b)) is the removal of two backside layers: the amorphous silica, but more importantly the stoichiometric silicon nitride. The whole stack mainly deposited on the front side of the substrate obviously induces a strong bow, even with the low compensation on the backside, due to the thickness difference. A strong compressive stress is induced by the thick silica layer (stress in the order of several hundred of MPa).

To overcome this issue, the Si 3 N 4 strong tensile strength (in the order of 1 GPa) could be used. However, the effect is negligeable on the actual stack, as the silicon nitride is present on both side of the wafer. To benefit from this intrinsic tensile property, the layer on the back side is removed. As a typical example, the bow in both direction (X and Y) varies from 150 µm to 100 -110 µm, for a 300 nm thick Si 3 N 4 layer. This is low enough for the next photolithography, using a 4 µm thick photoresist and the first level of the mask (see , the a-Si protecting layer is etched using a a-Si selective (with respect to silicon nitride) wet process with two steps using two different species diluted in distilled water: a 1 % concentrated hydrogen fluoride (HF) (pre-etch) and a 25 % concentrated tetramethylammonium hydroxide (TMAH) solution.

Characterization of the stack by ellipsometry

The deposit thickness are characterized by ellipsometry. As the total number of layers makes the theoretical fit model too complex, the measurements have first been performed at an intermediate step, right after the deposition of the second a-Si layer on the silicon nitride (see Fig. III.10 (a)). With supplementary layers, the fit is unprecise. The extracted values for a 300 nm thick Si 3 N 4 are given in Table III. [START_REF] Brossel | Gréation optique d'une inégalité de population entre les sous-niveaux Zeeman de l'état fondamental des atomes[END_REF]. The measured values are close to the targeted values, especially for the thick silica layer. The second silica layers (for each split) cannot not be precisely estimated with ellipsometry, due to the large number of layers. One can estimate those by measuring them on reference wafers only Table III.5. Ellipsometry measurements on a one of the three splits, for the 300 nm thick Si 3 N 4 . The measurements are performed after the second a-Si deposition, on the stoichiometric silicon nitride.

used during the second silica deposit process. The measurements are summarized in Table III. [START_REF] Maiman | Stimulated Optical Radiation in Ruby[END_REF].

The target is deduced from the Table III.2, by deduct the 100 nm thick a-Si layer. A 200 nm gap is observed, due to an error in the target layers requested during the deposit process. This error is ours, but does not impact the proper functioning of the optomechanical cavity: the operating point should be slightly shifted. The resonance wavelength of our integrated cavities is then estimated between 4238.0 nm and 4356.2 nm, corresponding to an error between 0.19 % and 3.0 % from the target. Keeping in mind the gas spectrocopy application, one can observe that this wavelength range remains in the first absorption line of the carbon dioxyde (between 4.18 and 4.42 µm). The dispersive coupling value remains close to 5 GHz/nm. Ellipsometry measurements on a one of the three splits, for the 300 nm thick Si 3 N 4 , and performed on a reference wafer only used for the second silica deposit.

Layer

III.1.6 First molecular bonding and locating/cutting marks

After introducing the concept of direct wafer molecular bonding, the fabrication steps of the first bonding and the backside etch of the locating and cutting marks are detailed.

Introduction to direct wafer molecular bonding

Microelectronic clean room processes often require to realize direct molecular bonding between two wafers, for various reasons (for instance for a structure packaging or encapsulation or for the transfer of a material separately grown with an epitaxial process). It consists of the adhesion of two flat and polished surfaces caused by different forces: the capillary force, the electrostatic force between charged objects and the Van der Walls forces due to molecular or atomic chemical interactions [START_REF] Reiche | Direct Wafer Bonding[END_REF]. Impurities within materials can also be responsible for solid bridging at the interface, and hydrogen bonding can also occur between hydroxy (OH) molecules when the distance between the two surfaces is sufficiently low [START_REF] Reiche | Direct Wafer Bonding[END_REF].

The optomechanical cavity fabrication requires two direct bondings of silica surfaces. Each bonding is composed of six steps:

• A drying annealing of each surface above 180 °C to desorb water molecules under atmospheric pressure, resulting in Si-OH based molecules on the silica surfaces,

• A planarization of the surfaces using a CMP step, or a simple chemical preparation for patterned surfaces (a roughness below 0.5 nm is required),

• The initial direct bonding process: it consists of approaching the two surfaces to allow the previously mentioned forces to ensure their adhesion (in vacuum or air environment),

• A pre-control of the adhesion using a Scanning Acoustic Microscope (SAM) (ultrasound imaging of the burried cavities and the potential burried bonding defects),

• A second annealing to consolidate the OH-based SiO 2 -SiO 2 chemical bonds,

• A final control of the adhesion with a second SAM image to observe the effect of the second annealing.

These steps should be realized within five days after the first annealing to avoid any degradation of the prepared surfaces that would interfere with the initial direct bonding. The bow of each wafer must be ideally below 120 µm to ensure an efficient initial bonding.

In the particular case of our cavities, the first annealing aims to another function. Our multilayer mirrors, presented in section III.1.2, are composed of silica and amorphous silicon. The a-Si material deposited by a PECVD process is hydrogenated (a-Si:H) due to the silane (SiH 4 ) gas precursor. An annealing of this a-Si allows this hydrogen to desorb from it. If this phenomenon occurs during the consolidation annealing (last step of the molecular bonding process), it can strongly impact the adhesion of the surfaces and induce large defects between the two surfaces.

To prevent this issue, the first annealing also serves for degassing, to limit this effect after the consolidation step. The maximum temperature for the a-Si/SiO 2 multilayer mirrors annealing has been selected with preliminary studies: 700 °C, during 3 h. Above this value, the stress induced on the mirrors is too high to keep their structural quality. Note that above 550 °C the amorphous silicon becomes polyscrystalline, which is not critical for our application (same optical index at the working wavelength, see Fig. III.3).

Fabrication process

The following steps are realized:

• This bonding procedure (see The mirrors are then polished with a CMP step (once again, the last oxide thickness is adapted to take into account the removed matter due to the CMP). The roughness of this layer is measured (with an atomic force microscope) around 0.14 nm, below the required 0.5 nm. The intermediate wafer is only chemically prepared (due to the etched pattern). The initial bonding is performed in a vacuum environment (medium vacuum, around 10 -4 mbar) with a coarse alignment from the notch (not critical at this stage), and the following consolidation annealing is realized at 400 °C (3 h). The SAM images before and after the consolidation, see Fig. III.12, do not reveal noticeable large annealing induced defect.

• The next step (see Fig III.11 (b)) is to locate the burried cavities. Firstly, the substrate of the intermediate wafer is partially removed with a mechanical backgrinding process. We keep enough silicon (around 77 µm) to ensure the front side can support further processes, especially above the cavities where thick membranes appears during the grinding (one have to consider the higher aspect ratio given by the 600 µm diameter membranes for a thickness around 81 µm). The edge of the resulting object is removed by 2 mm to prevent the weakened borders (due to the bonding and the initial substrate shape) to disrupt the steps that follow. The burried marks are then revealed by, first, a lithographic process to isolate a large squared area (side around 0.5 mm, see insets in Fig. III.11 (b)) close to the estimated location of the marks (using a coarse alignment from the notch), and, then, by an etch of the layers, with a visual control, at each interface, to verify that the burried marks are visible enough. One just need to remove the substrate, the 500 nm box oxide and the protecting a-Si layer to visualize these marks with sufficient contrast.

• Finally, after removing the resist on the front side, those alignement marks are used to realize, on a resist deposited on the back side of the mirror substrate, a photolithography (using the photomask level displayed in 

III.1.7 Release of the membrane

The release of the membrane is the most critical step. As we progress in these few steps, the structure becomes more and more weakened, especially in the vicinity of the cavities and the membranes. Each fabrication process at this stage is carefully handled.

Fabrication process

The three main steps are schematically represented in Fig. III.13:

• It starts with a final substrate backgrinding, using the 500 nm thick burried oxide as a barrier layer (or stop layer). The box is then removed by deoxidization. The last photolithography (using the last photomask level, see • The a-Si and the SiO 2 are then removed by a dry etch process (using the last a-Si as a barrier layer) and the resist is stripped (see Fig. • Finally, the last critical step consists of a wet etch of the last a-Si with an End Point Detection (EPD) monitoring [START_REF] Köhler | Distinctive features of microtechnical etching[END_REF] (see Fig. tracking of the etch by looking at the emission spectrum of the structure: this spectrum is characterized by emission lines specific to each material. New lines appear, indicating that new materials are etched, while the initial lines are vanishing (indicating the material is completely removed). In our case, the continuous monitoring is done through the a-Si line disappearing, as well as the Si 3 N 4 /SiO 2 lines that should be detected at the end of the step. The evolution of the reflectivity during the etch can also be monitored to detect interfaces between materials. Combined with the selective chemical procedure (TMAH), it ensures the silicon nitride membrane is not affected. However the wet etch is an isotropic process, and overteching can appear on the a-Si under the membrane anchoring (on both sides i.e. also during the etch of the a-Si layer on the other side of the membrane). It may weaken them. The SEM observations presented at the end of this section confirm this effect. This a-Si etch ends the release of the Si 3 N 4 membrane.

III.13 (c)). It consists of a continuous optical

A pilot wafer used to validate all the clean room processes presented so far has been successfully fabricated and serves for preliminary structural (SEM and depth profiles) but also for optomechanical characterizations (see section III.2.1). This wafer contains a suspended membrane above a multilayer mirror.

Depth profile characterizations

After the final substrate backgrinding, an unwanted deflection can be observed, especially on the larger membranes due to two factors. The most intuitive is the pressure difference between the outside at atmospheric pressure (P 0 ≈ 10 5 Pa) and the unknown inner pressure inside the burried cavity. The second one is the effect of the compressive silica thick layer. After the photolithography (see In order to investigate the phenomenom, a second depth profile analysis is performed after the release of the Si 3 N 4 membrane (after the last a-Si etch, see Fig. III.15 (c)). These membranes are only affected by the differential pressure load. The same depth is obviously observed for the 600 µm diameter hole at 4.61 µm with a flat profile (in the middle of the hole) consistent with the first observation: the largest membranes are still bonded at the bottom of the cavities. The deflection of the 50 µm hole is measured at 193 nm. We notice that their is an uncertainty on the position of the probe relatively to the axis of the hole (hard to quantify), which induces inaccuracy of the measured deflection. Further measurements are also performed on other The depth profile characterization of this wafer are supplemented with an optical profilometry mesurement (SENSOFAR). The pilote wafer is cut on the front side into 20 mm squared chips. The process breaks the membranes at the periphery of each chip as the Si 3 N 4 layers on the front side of the structure are directly in contact with the cutting blade through the channels. However, all the other membranes remain intact. The measurements are performed on all diameters (except for the 600 µm diameter membranes, only disposed at two edges of every chip). The measurements are displayed in . Each diameter is studied, except the 50 and 100 µm for which the value is too close to the resolution of the measurement (≈ 100 nm). The retrieved deflections, from stylus and optical profilometry, are summarized is Table III.7. From this point, a quantitative discussion can be done. To do so, the approximated analytical expression of the maximum deflection u 0 of a circular plate under an uniform differential pressure δP demonstrated by S. Timoshenko and H. Hencky [START_REF] Timoshenko | Theory of Plates and Shells[END_REF][START_REF] Hencky | On the stress state in circular plates with vanishing bending stiffness -uber den spannungszustand in kreisrunden platten mit verschwindender biegungssteifigkeit[END_REF] is used: Extracted deflections δZ and deduced inner pressure (P inner ) within the burried cavities, for each membrane diameter, and 300 nm thick membranes (-: not measured, dir. : direction, Mbrn bonded: membrane bonded at the bottom of the cavity). For the Y direction with the optical profilometer, two measured are given due to the assymetry of the profiles (deflection according to the left/right trench borders). The inner pressure is deduced using equation (III.1). For the optical profilometry, the mean value of the deflection in both directions is used.

u 0 = 0.662 r m 3 δP r m E L m , (III.1)
where E is the Young modulus of the plate material. For the Si 3 N 4 , E ≈ 212.5 GPa (mean value of the hot pressed trisilicon tetranitride E ≈ 30.82×10 6 psi, where "psi" is the "pound per square inch" unit, see page 367 of [249]). Using the previous relation, the differential pressure is expressed as a function of the deflection:

δP = u 3 0 E L m 0.662 3 r 4 m (III.2)
The deduced inner pressures from the stylus and optical profilometry measurements, using this last relationship, for our 300 nm thick membranes are given in Table III.7. A mean value of the value in each direction is used for the optical profilometry. We consider the optical measurement less precise for two reasons. First, the assymetry in the Y profile (maybe due to a bad calibration of the profilometer in this specific direction) induces uncertainty. Then, the optical index differences between the layers (SiO 2 and Si 3 N 4 ) induces optical path and reflectivity discrepancies. Yet the deduced pressures remain coherent between both characterizations: the vacuum conditions in the burried cavities have not been maintained after the molecular bonding process. This may be due to degassing of the neighbouring materials during the annealings (such as the amorphous silicon of the mirror, but also the surrounding oxide), inside the burried cavities, inducing an increase of the inner pressure. These observations make us wonder about the interest of the vacuum conditions during the bonding processes. To take advantage of this (for reducing the effect of the air damping on the membrane dynamics), it would be necessary to control the inner pressure using materials without degasing or getters with adsorptions properties to maintain constant the inner pressure [START_REF] Benvenuti | Decreasing surface outgassing by thin film getter coatings[END_REF][START_REF] Benvenuti | A novel route to extreme vacua: the nonevaporable getter thin film coatings[END_REF][START_REF] Lee | A study on wafer level vacuum packaging for MEMS devices[END_REF][START_REF] Sparks | Chip-level vacuum packaging of micromachines using NanoGetters[END_REF][START_REF] Hofmann | High-Q MEMS Resonators for Laser Beam Scanning Displays[END_REF]. This last point is discussed in the conclusion of the silicon integration work. Note that, considering a mean inner pressure of 0.976 bar (deduced from the stylus profilometry), the corresponding deflection for a 600 µm diameter membrane is estimated, using the first relation, at 5.28 µm, which is coherent with the depth measurement: a depth of 4.61 µm has been measured. It corresponds to a partial membrane deflection, due to the bonding of the membrane at the bottom of the cavity.

SEM observations

On Fig. III.17 are displayed SEM images of the Si 3 N 4 membranes suspended over an a-Si/SiO 2 multilayer mirror. A cutted chip is used for this observation. The first image (see Fig. III.17 (a)) is a 200 µm diameter membrane in the middle of the chip, where the trench edges are visible. In order to visualize the different layers and the channels, the second image of a 50 µm diameter hole at the periphery of the chip (see Fig.

III.17 (b)) is observed. As already stated, the membranes at the periphery of the chips are broken by the cutting process, as the Si 3 N 4 layers on the front side of the structure are directly in contact with the cutting blade through the channels. The SEM pictures of such cavity allows, however, to observe several interesting details. One can see that the upper cavity has a higher diameter than the burried cavity. This is due to the design of our photomasks: as described in Fig. III.1.5, to guarantee the circularity of the cavity cross section even in the presence of a misalignement between the two photolithographies, each diamater of the second photomask have been increased of 15 µm. The alignment is however excellent in our situation. The upper and inner channels are visibles, without any overlapping. The SiO 2 top layer, as well as the Si 3 N 4 broken membrane and the mirror SiO 2 top layer are indicated. A close-up view of the same hole (see Fig. III.17 (c)) allows us to identify the Si 3 N 4 membrane layer, the a-Si back barrier layer and the SiO 2 burried layer bonded on the mirror. The overetch of the amorphous silicon, due to the isotropic nature of the wet etch, is visible. This might weaken the membrane anchoring, resulting in mechanical losses (lower mechanical quality factor). One can expect this effect to be negligible considering the depth of this overetch below 100 nm compared to the membrane diameters at least above 50 µm. To visualize the whole stack, a side view of an intentionaly broken 100 µm diameter membrane in the middle of the chip is dispayed (see Fig.

III.17 (d))

. To do so, we have manually cleaved inside on a suspended membrane and rotated the chip by 90°. The SiO 2 top and bottom layers, the Si 3 N 4 membrane and the 11 alternating a-Si/SiO 2 layers of the Bragg mirror can be identified. A trapezoidal cross-section of the cavity, due to the anisotropic nature of the dry etch, can be seen.

III.1.8 Second molecular bonding and end of the process

The last two steps of the fabrication are schematically represented in ) is annealed at 500 °C (drying). The same direct bonding procedure as before is followed, with a consolidation annealing at 400 °C. • Finally, the substrate of the second mirror is grinded (until 300 µm) to thin the wafer for the cutting process, the weakened edge is removed by 2 mm, and a silicon nitride (PECVD, 300 °C) is deposited on the back side of each substrate (see Fig.

III.18 (b)).

These two layers (one on each substrate) serve as anti-reflective coating to prevent any unwanted reflection at the silicon-air interfaces from inducing parasitic interferences. The thickness is chosen at λ 0 /4n = 566 nm (n SiN ≈ 1.868 at the working wavelength λ 0 ). This last step ends the process.

The resulting object is composed of burried vertical Fabry-Perot cavities of circular crosssection with diamater varying between 50 and 600 µm, composed of two a-Si/SiO 2 multilayer mirrors with stoichiometric silicon nitride membranes suspended in the middle. The wafer is finally cut into 20 mm squared chips using the cutting marks on the back side of the first mirror as guidelines.

III.1.9 Conclusion of the silicon integration work

A fabrication process has been developed to integrate the MIM setup on a silicon substrate. The two bonding processes have been sucessfully realized without noticeable burried defect, in the entire wafer surface. Revealing the burried alignment marks has been considered as a critical step with an uncertainty on the structural and shape conservation of the burried marks after the bonding. However, it has gone very well with sufficient contrast for the photolithographic steps. The release of the membrane by the successive removal of the intermediate wafer substrate, the second thick SiO 2 layer and the last a-Si barrier layer, reveals the first drawback of our fabrication process: it does not seem to be well suitable for large membranes (d m ≥ 500 µm). On the other hand, the smallest membranes are always present at the end of the process. The phenomenon causing the failure seems to be the differential pressure load. The latter has been roughly estimated and the value obtained is coherent with the process. To improve the fabrication of larger membranes, it will be necessary to thicken them in order to reduce their mechanical reaction force (the deflection being inversely proportional to 3 √ L m , see equation (III.1)). However, this thickening will be at the expense of the optical properties of transparency: our aim is to minimize the loss in the membrane and optimize the dispersive coupling to improve the optomechanical transduction mechanisms, in the context of gas spectroscopy application.

The maximum deflection (after the first bonding process) is theoretically estimated (using equation (III.1)) under perfect vacuum conditions (i.e. δP = 10 5 Pa) at 2.43 µm for a 150 µm diameter, and 300 nm thick Si 3 N 4 membrane (562 nm for a 50 µm diameter membrane, which is low compared to the transverse dimensions). This value is small enough in comparison to the depth of the cavity behind the membrane (around 3.27 µm). In this situation, all the membranes with diameter below 150 µm are still suspended after their release. After the second bonding process, the pressure equilibrium between the two sides of the mechanical resonator should reduce this deflection to zero, allowing a good vacuum environment within the MIM cavities. To overcome the increase of the pressure probably due to degassing of the materials surronding the encapsulated cavities, one could also add getter layers that adsorb the gas inside the cavities, to maintain constant the inner pressure [START_REF] Benvenuti | Decreasing surface outgassing by thin film getter coatings[END_REF][START_REF] Benvenuti | A novel route to extreme vacua: the nonevaporable getter thin film coatings[END_REF][START_REF] Lee | A study on wafer level vacuum packaging for MEMS devices[END_REF][START_REF] Sparks | Chip-level vacuum packaging of micromachines using NanoGetters[END_REF][START_REF] Hofmann | High-Q MEMS Resonators for Laser Beam Scanning Displays[END_REF]. These materials are especially used for vacuum packaging of micro-electro-mechanical systems at wafer level [START_REF] Lee | A study on wafer level vacuum packaging for MEMS devices[END_REF][START_REF] Sparks | Chip-level vacuum packaging of micromachines using NanoGetters[END_REF][START_REF] Hofmann | High-Q MEMS Resonators for Laser Beam Scanning Displays[END_REF], and could be of practical interest to fabricate sealed MIM optomechanical cavities with low air damping for fundamental applications.

This fabrication process drastically differs from the previous work proposed by the group of R.G. DeCorby and presented in section III.1.1 [START_REF] Hornig | Monolithically integrated membrane-in-the-middle cavity optomechanical systems[END_REF]. Our optical cavity is in a planeparallel configuration, which is optically unstable, but still adapted for micrometric dimensions. Their buckled, dome-shaped multilayer mirror creates a plane-concave (or hemispherical) cavity, optically stable (light periodically refocussed). They have however to precisely control the dome shape to ensure a good passive optical alignment. Then, although it relies on a larger number of technological steps, no thermal empirical process is used, and could a priori be more easily reproduced. This reproducibility has indeed been proven: in addition to the partially finished pilot wafer (for experimental testing purposes), four other 200 mm diameter wafers have followed the same steps, and the fabrication has continued smoothly until the end of the process. Their membrane release process, however, has the advantage of not inducing unwanted deflection due to a differential pressure load. Their mechanical resonators exhibits nevertheless a low quality factor (Q m < 100) due to the particular geometry that is easily influenced by the viscous damping. We believe our fabrication process allows better mechanical response similar to the commercial silicon nitride membranes commonly used for the bulk MIM setup [START_REF] Zwickl | High quality mechanical and optical properties of commercial silicon nitride membranes[END_REF]. Finally, vacuum sealed cavities are not feasible with their method, unlike ours.

III.2 Optomechanical characterizations

The membrane-on-mirror assembly (partially finished pilot wafer, see Fig. III.13 (c)) and the final devices can be characterized both in the near-IR and the mid-IR wavelength regions. The a-Si/SiO 2 mirrors indeed exhibit a second bandwidth in the near-IR, center at λ 0 /4, where λ 0 is the Bragg wavelength. Optomechanical cavities are manually constructed with a membrane-on-mirror chip aligned with a multilayer mirror. The near-IR external cavity diode laser source (see chapter II), or a mid-IR quantum cascade laser (QCL) source could be used for the characterizations. This section qualitatively presents the objectives of these upcoming characterizations.

III.2.1 Near-IR optomechanical upcoming characterizations

The near-IR characterizations consist of adapting the optomechanical bench with the PDH stabilization scheme (see chapter II) to the a-Si/SiO 2 multilayer mirror-based MIM cavities. After a preliminary observation of the spectral response of the mirror in the near-and mid-IR, the optical bench is presented.

Mirror spectral response in the near-IR

In • The membrane-on-mirror assembly (also measured with a FTIR spectrometer).

Only the spectral behavior matters in the measured spectra: the amplitude should be considered as arbitrary to an unsuitable acquisition on the reference gold sample. In addition, there are optical path differences between this reference and our samples, especially with the membraneon-mirror assembly chip. As expected by the theory, the mirrors, designed at 4.23 µm, exhibit a second bandwidth in the near-IR, center at λ near-IR = λ 0 /4 = 1.06 µm. Physically speaking, the high and low index layer thicknesses are 4 times λ near-IR /4n i (where n i is the high or low index), inducing constructive inteferences between waves reflected at each layer interface (in the same way as in the mid-IR). The tunability range (1.5 to 1.6 µm) of the external cavity diode laser from Toptica used in chapter II is indicated by a grey area. The emission range is located at an edge of the near-IR bandwidth. One can observe that the bandwidth of the mirror alone is blue shifted in practice, placing this tunability range where the reflectivity is starting to decrease. However, the membrane-on-mirror assembly spectral response remains closer enough to be used in the chosen near-IR bandwidth, which is of practical interest. The discrepancies between the last two measured spectra is probably mainly due to the consolidation annealing undergone by the pilot wafer after the first wafer molecular bonding and before releasing the membrane (see section III. 1.6). This annealing has indeed not been applied on the mirror alone.

A low optical quality factor is then expected for the manually aligned cavities for a large part of the near-IR laser tunability range due to the reflectivity decrease observed on the mirror spectra. However, the lower wavelengths (between 1500 and 1510 nm) could allow us to achieve high optical quality factor resonances with the manually aligned cavities, and potentially high finesse with the final micrometric cavities. ) consists of using a PM GRIN lensed fiber (50-1550PM-APC, Thorlabs) to collimate light on an 2 cm side a-Si/SiO 2 mirror chip. This element is fixed on a SM1 threaded ring with an UV curing adhesive (on the corners of the chip) and is aligned with the collimator using a 3-axis kinematic mount (POLARIS-K1T, Thorlabs) to maximise the measured reflected signal. The second element (membraneon-mirror assembly) is fixed with the same process on a SM2 threaded ring with a one inch diameter hole and aligned with the fiber collimator using a second 3-axis kinematic mount (POLARIS-K2T, Thorlabs) in front of the mirror. The light is then collimated on the substrate of the membrane-on-mirror assembly. The collimator is maintained on a GRIN lens holder, itself fixed on the same high resolution 3-axis piezo postionner than the one used in chapter II. This alignment setup is vacuum compatible, and compact enough to be placed in the vacuum chamber.

Presentation of the optical bench

• The second one (see Fig. III.20 (b)) consists of coupling this PM GRIN lensed fiber collimator into a single mode GRIN fiber collimator (50-1550A-APC, Thorlabs), using a 5-axis positioner. The same 3-axis kinematic mounts are disposed between those two, following the same procedure for the alignement. The difference is that the reflected and the transmitted signal must be maximised. This approach has indeed the advantage of measuring the signal transmitted by the cavities. However, it does not fit, as it is, in our vacuum chamber.

The near-IR optical fiber-based bench developed for the lensed FBG-based MIM cavities (see chapter II) with the external cavity diode laser source can be used for the characterization. The main interest in regard to the mid-IR range is the possibility to perform PDH measurements The main objective will be to measure the thermomechanical spectra of the membranes-on-mirror assembly and to identify the mechanical modes of the membrane, to finally estimate the achievable dispersive optomechanical coupling. One could also think of using the lensed FBG as an input mirror to characterize the silicon integrated membrane-on-mirror assembly, in the same way as in chapter II. However, the thermomechanical noise is estimated, in air environment, for a 50 µm diameter membrane (best case scenario, with m eff = 0.335 ng, Q m = 40 (see section III.3.2), f m = 8.599 MHz), around 3.96 fm.

The minimum detectable mechanical displacement with our lensed FBG-based optomechanical cavities has been estimated between 1 and 10 fm, and cannot be improved, due to the high cavity length in the cm range. The mechanical limit of detection is then not sufficiently low. 

III.2.2 Mid-IR optomechanical upcoming characterizations

The mid-IR characterizations consists of using a QCL source, designed at 4.23 µm, to excite the silicon integrated optomechanical cavities. Working in the mid-IR imposes us to construct a second characterization bench, with adpated optics and detectors. This section presents the main objectives of these measurements, as well as the preliminary characterizations performed on the source and the incident beam. As in the near-IR, we have not yet gone further in the characterization, but the future objectives are still detailed.

Quantum cascade laser source

A quantum cascade laser (QCL) is a semiconductor laser with an emission wavelength between 3 and 25 µm. The amplification in these laser is achieved through various energy transitions in a stack of mulitple quantum well heterostructures [START_REF] Faist | Quantum Cascade Laser[END_REF][START_REF] Sirtori | GaAs/AlxGa1-xAs quantum cascade lasers[END_REF][START_REF] Razeghi | High-performance inp-based mid-ir quantum cascade lasers[END_REF]. Emitted optical powers lie typically between 1 and 100 mW. The emission wavelength is slightly tunable over several cm -1 (i.e. several nm) through adjustment of the injection current and the operating temperature. Our continuous QCL has been designed with an emission frequency of 4.23 µm (2364 cm -1 ) by AdTech. It is packaged in a high heat load housing, a sealed collimated housing with an integrated Peltier cooler. The laser is controlled with a dedicated current and temperature controller (ITC4002QCL, Thorlabs). To dissipate heat even at high power, the QCL is placed on a copper liquid cold plate, connected to a chiller via a sealed fluidic circuit (see Fig. III.22). A thin layer of thermal grease is added between the laser and the copper to ensure a good thermal conductivity between both. The chiller maintains the water circulating in this plate at It should be noticed that this heavy cooling system is necessary for our laser which presents thermalization problems due to a malfunction of the packaging. The other lasers used by the laboratory can be sufficiently thermalized with a heatsink and a small fan. In our situation, to ensure a stable laser emission at 20 °C, this chiller is essential. The output optical power and the emission frequency are characterized with a powermeter (PM400, Thorlabs) and a FTIR spectrometer, respectively (see Fig. 

Laser isolation and spatial filtering

Our goal is to use the QCL to characterize optical cavities made with our highly reflective silicon integrated mirrors. Light will then potentially be reflected to the emitting source. To avoid destabilizing (frequency or intensity noise, mode hopping, ...) or even damaging the source, an optical isolator must be used. Such a component has been designed for our application at 4.23 microm by Thorlabs. It is a magneto-optic device that preferentially transmits light along a single direction, shielding upstream optics from back reflections. The response of the isolator is optimized for a given light polarization by means of two integrated polarizers. The angular position of the input polarizer along the optical axis has to be adjusted to maximize the output transmission (up to 70 %, for an isolation around 30 dB for our specific device). The isolator is illustrated in For an unknown reason, due to the strong coherence of the QCL, this isolator induces a speckle effect on the incident beam: we have indeed observed, with an IR camera (Onca, Xenics), granular interferences that degrades the quality of the output laser beam. To reduce the parasitic interferences and facilitate the alignment of the cavity, a spatial filter is needed. Two differents methods have been implemented: ). This approach allows to achieve higher output optical power (transmission roughly estimated between 10 and 15 %). The second approach is retained as it strongly reduces the optical losses. The output beam is then closer to a gaussian beam, without visible impurities that would induce parasitic interferences.

Presentation of the optical bench

The bench used for the alignment and the optical characterization of the silicon integrated optomechanical cavities in the mid-IR is sketched in The IR camera or a mid-IR photodetector is used either in reflection using a CaF 2 beamsplitter (BSW511, Thorlabs), or in transmission. The mid-IR photodetector is a four-stage thermoelectrically cooled photovoltaic detector based on a mercury cadmium telluride (MCT) heterostructure with spectral range between 3 and 5 µm (PVI-4TE-5, Vigo). It is characterized by a responsivity of 1.4 A/W and a DC detectivity at 5 µm around 1.5 × 10 11 cm √ Hz/W, for a working temperature at 195 K. A high frequency preamplifier (DC-200 MHz, PIP, Vigo) controls the detector (supply voltage, bias voltage, voltage offset, variable gain from 0.5 to 30 V/V. The thermoelectric cooler and the preamplifier are controlled by a dedicated unit (PTCC-01-BAS, Vigo). The size of MCT active area is 0.5 × 0.5 mm 2 , which imposes us to use a plano-convex lens (CaF 2 , f = 40 mm, LA5370-E, Thorlabs) to focus the light on it. To prevent any damage due to long exposition to high optical power density, an optical density (1 or 10 % of transmission) can be added (with a flip mount) to reduce the optical power. The IR camera allows a first coarse alignment, while alignment with the MCT is more precise. The methodology is the same as for the near-IR experimental setup: the reflected (or transmitted) signal is maximised by moving the output mirror with a kinematic mount with 3 angular adjusters. Then the membrane-on-mirror assembly is disposed in front of the back mirror of the cavity and is aligned with the same criterium. The optical mount of this assembly is disposed on two linear stages, one on top of the other, to move the chip along the entire surface (to switch from one cavity/membrane to another). With the optimal alignment, concentric circular fringes should be visible with the IR camera, with an interfringe dependent on the cavity length.

These measurements will allow us to confirm first an optical resonance effect in the mid-IR with our manually aligned silicon integrated cavities, and finally with the final microcavities. The second objective is to perform measurements of thermomechanical noise spectra of our membranes. A first method consists of exciting the resonant cavity with the QCL and demodulating the signal measured by the MCT detector around the theoretically estimated resonance frequencies (which justify the need of a high frequency preamplifier of the photodetector). This method requires however a good stability of the optical signal. A second method would be to adapt the stabilization measurement methods used in the near-IR (see chapter II) to our mid-IR source. A discussion is led in this way in the conclusion of this manuscript.

III.3 Optical spring sensing of gas molecules absorption

The mid-IR micrometric MIM cavities might be a potential platform for trace-gas detection with optomechanical transduction. In this section, the concept is explained, using theoretical expressions of the optically induced effects on the mechanical dynamics. Multiphysics FEM simulations of the mechanical behavior of the circular membranes in a closed air-filled cavity are presented. The performance of the spectroscopic optomechanical gas sensor is finally estimated.

III.3.1 Principle of the new trace gas detection technique

Gas detectors are commonly used in many applications for instance in industrial safety, environmental analysis for greenhouse gases detection or health-care for breath-gas monitoring. The most common techniques usually exploit the optical absorption of gas in the mid-IR region. These optical gas sensors are based on direct measurement of the absorption, and the performance of these often relies solely on the pathlength (i.e. effective interaction length between light and gas). Long path optical cells have then been developed, as well as lower volume multipath cells, using reflective surfaces to strongly enhance this interaction length between the gas and the laser beam. Microstructured fibers also use an optimized guided mode inside a long fiber to maximize the interaction. The three main techniques to detect trace-gas are [START_REF] Hodgkinson | Optical gas sensing: a review[END_REF]:

• The nondispersive infrared spectroscopy, which uses a broadband source to fully integrate the absorption peak of the gas of interest,

• The photoacoustic spectroscopy (PAS), which uses a resonant acoustic cell to strongly increase the pressure signal emitted by thermal desexcitation of gas molecules,

• The Cavity Enhanced Absorption Spectroscopy (CEAS) or Cavity Ringdown Spectroscopy (CRDS), which uses a resonant optical cavity of high finesse to strongly increase this interacting length (effective length defined as the cavity length times the optical finesse).

The performance of some techniques, such as the PAS, also strongly depends on the electrical responsivity of the detector (the microphones in the case of PAS [START_REF] Glière | Downsizing and silicon integration of photoacoustic gas cells[END_REF]). Our work is part of the improvement of the current PAS sensors [START_REF] Duraffourg | Measurement apparatus based on optical detection of the motion of an opto-mechanical cavity[END_REF], manufactured by our laboratory. In a previous project, these microphones were replaced, as a first proof of concept, by optical microphones using low-finesse Fabry-Perot cavities microstructured on fiber tips, showing an interesting potential of an all-optical PAS sensor using two laser sources, respectively in the near-IR and mid-IR [START_REF] Lauwers | An all-optical photoacoustic sensor for the detection of trace gas[END_REF]. In the present work, a new kind of CEAS sensor using the optomechanical coupling to indirectly measure the optical absorption is introduced. The sensor is based on the MIM architecture (see Fig. III.29 (a)): the optomechanical interaction of dispersive or dissipative nature modifies the mechanical properties of the membrane through the optical spring effect and the optomechanical damping which are strongly dependent on the optical losses [START_REF] Aspelmeyer | Cavity optomechanics[END_REF][START_REF] Baraillon | Linear analytical approach to dispersive, external dissipative, and intrinsic dissipative couplings in optomechanical systems[END_REF]. Consequently, by modulating the laser frequency around an absorption wavelength of an intracavity gas, we modulate the intrinsic optical losses and therefore the mechanical properties of the membrane (amplitude of vibration, mechanical resonance frequency and quality factor, see Fig. III.29 (b)). Quantifying the variation of these parameters by means of an optical readout of the mechanical motion allows us to measure the gas concentration. This technique is potentially not limited by any electrical responsivity, and its all-optical nature ensures a fast response (wide bandwidth). We will demonstrate that it could potentially lead, in comparison to other gas sensors, to improved sensitivity and long- To properly understand the involved mechanisms, several relationships must be introduced. The MIM setup, theoretically and experimentally studied in chapters I and II respectively, is considered. The optomechanical interactions induce a sligth modification of the thermal mechanical PSD of the membrane, still modeled by a harmonic oscillator (see equation (II.42)) [START_REF] Aspelmeyer | Cavity optomechanics[END_REF][START_REF] Baraillon | Linear analytical approach to dispersive, external dissipative, and intrinsic dissipative couplings in optomechanical systems[END_REF]:

S m (ω, ∆) = 4k B T ω m Q m 1 |m eff (ω 2 m -ω 2 -iωγ m ) + Σ(ω, ∆)| 2 , (III .3) 
where ∆ = ω L -ω cav is the optical detuning (ω L and ω cav are, respectively, the laser source and optical cavity resonance angular frequencies) and Σ(ω, ∆) is the optically induced modification of the mechanical dynamics (sometimes termed the optomechanical self-energy) given by [START_REF] Aspelmeyer | Cavity optomechanics[END_REF][START_REF] Baraillon | Linear analytical approach to dispersive, external dissipative, and intrinsic dissipative couplings in optomechanical systems[END_REF] Σ(ω, ∆) = m eff (2ωδω m (ω, ∆) -iωγ opt (ω, ∆)), (III.4)

where δω m is the optical spring affect and γ opt is the optomechanical damping. These last two terms represent the shifts of, respectively, the mechanical resonance frequency and damping induced by the optomechanical coupling. For this analysis, we assume this result, for solely the dispersive interaction, and neglect the dissipative optomechanical couplings to simplify the discussion (this point is discussed later in section III.4). These expressions are described in depth in chapter IV, in a more general situation where all kind of optomechanical couplings (dispersive and dissipative) are taken into account. Various theoretical studies have demonstrated an analytical description of these two phenomena, starting from the input-output formalism [START_REF] Aspelmeyer | Cavity optomechanics[END_REF][START_REF] Baraillon | Linear analytical approach to dispersive, external dissipative, and intrinsic dissipative couplings in optomechanical systems[END_REF][START_REF] Marquardt | Quantum theory of cavity-assisted sideband cooling of mechanical motion[END_REF]261]:

δω m (ω, ∆) = g 2 ω m ω ∆ + ω (κ/2) 2 + (∆ + ω) 2 + ∆ -ω (κ/2) 2 + (∆ -ω) 2 ,
(III.5)

γ opt (ω, ∆) = g 2 ω m ω κ 2 1 (κ/2) 2 + (∆ + ω) 2 - 1 (κ/2) 2 + (∆ -ω) 2 , (III.6)
where

g = g 0 √ ncav = x ZPF g om √ ncav = g om √ ncav h 2m eff ω m (III.7)
is the dispersive optomechanical coupling strength (which depends on the laser intensity), g 0 and x ZPF are, respectively, the single photon coupling strength and the mechanical zero-point fluctuation amplitude previously defined (see the introduction of this manuscript), and ncav is intracavity photon number, given by:

ncav = κ e (κ/2) 2 + ∆ 2 P in hω L (III.8)
where κ = κ e + κ i is the overall cavity decay rate, κ e , κ i are, respectively, the external and intrinsic decay rates (see chapter I), P in is the input laser optical power. The expressions of the optomechanical effects reflect the modulation of the cavity frequency by the movement of the mechanical resonator, inducing optical motional sidebands at ∆ = ω ± ω m (for more details, please refer to the chapter IV). An effective mechanical resonance frequency ω eff m and an effective mechanical damping γ eff m are then defined as

ω eff m (ω, ∆) = ω m + δω m (ω, ∆), (III.9) γ eff m (ω, ∆) = γ m + γ opt (ω, ∆), (III.10)
As already discussed in chapter I, κ e is related to the loss at the input or output mirror, while κ i quantifies the intrinsic losses within the cavity. Gas absorption along the cavity medium is one of them. These equations reveal that the optically induced effects on the mechanical dynamics (optical spring and optomechanical damping) depend on this gas absorption.

To get a quantitative insight of the impact of optical absorption, a practical situation is considered: the silicon integrated micrometric mid-IR MIM cavities fabricated at the CEA-Leti cleanroom platform (see section III.1). A typical set of optical, mechanical, and optomechanical parameters, summarized in Table III.8, is used to illustrate the technique. The external cavity decay rate is easily written as a function of the mirror reflectivity [START_REF] Ismail | Fabry-perot resonator: spectral line shapes, generic and related airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity[END_REF]:

κ e = 2 × - ln(R mirror ) 2L cav /c = ln(R mirror ) L cav /c , (III.11)
where c is the light velocity. The factor 2 is due to the presence of two identical mirrors. The gas absorption leads to the following intrinsic decay rate:

κ i = α g c gas (L cav -L m ) F/2π 2L cav /c , (III.12)
where c gas is the gas concentration (in ppm, part per million) and F is the optical finesse. Physically speaking, we considered an effective absorption losses that are increased by the number N cav of round-trips of the intracavity photons, or in the same way, by the cavity finesse [START_REF] Born | Principles Of Optics[END_REF]. All these tools allow us to visualize the effects of optical absorption on the mechanical dynamics. In 

F = 2πN cav = π √ R mirror /(1 -R mirror )

Optomechanical parameters

Dispersive optomechanical coupling g om 5 GHz/nm (see section III.1.3)

Table III.8. Optical, mechanical and optomechanical parameters used as an example to simulate the influence of gas absorption on the mechanical dynamics.

Each quantity is plotted with and without optical absorption within the cavity medium containing a gas mixture with a concentration of 0.2 ppm of CO 2 . The output optical response contrast and full width at half maximum, related to the overall optical losses are obviously reduced (see . Due to the dispersive nature of the coupling, these effects are more relevant when the laser is slightly detuned from the optical cavity resonance. The changes induced by the optomechanical interaction and the gas absorption on the mechanical effective damping are quite low. This is explained by the fact that our system is in the unresolved sideband regime (κ ≫ ω m , see the introduction) [START_REF] Aspelmeyer | Cavity optomechanics[END_REF]. This regime is easily accessible as it does not require ultra-low finesse optical cavity. However, the optomechanical effects are of lower amplitude. Finally, the actual measurable quantity, namely the optical spectrum at mechanical resonance, also depends on optical absorption (see III.30 (e)). This initial observation allows to select the relevant parameters for the sensor. In practice, as demonstrated during characterization of the fiber-based devices presenetd in chapter II, we have access to the optical PSD. Three parameters can be monitored according to the gas absorption: the optical PSD at mechanical resonance, the mechanical quality factor and the mechanical resonance frequency. Given the low relative variation of the mechanical damping, and the unprecision of the quality factor estimation (see section II.4.2), only the optical PSD at mechanical resonance and the effective mechanical resonance frequency are retained. Prior to quantifying the sensitivity of each parameter to optical absorption (see section III.3.3), a numerical study of the mechanical behavior of the fabricated membrane is presented. 

III.3.2 Dynamics of a membrane in a closed air-filled cavity

The integrated MIM system imposes a particular geometry. It can be seen as a coupled system: a vibrating membrane in a closed air-filled cylindrical cavity. This problem involves two physics: the mechanical vibration of the membrane, described by the equation (I.58), and the dynamics of the fluid inside a cavity, inducing a viscous damping, and described by the Navier-Stokes equations [START_REF] Bruneau | Fundamentals of Acoustics[END_REF]. The 2D geometry is sketched in Fig. III.31. Considering the symmetry of the geometry, only the axisymmetric mechanical modes are studied. To do so, we consider that the transverse shape of the pressure fields remains unchanged on both sides of the membrane. This complex problem has been studied many times in the literature, in the case of a simpler geometry where the membrane is one of the walls of the cavity (in this case, p 1 or p 2 (see Fig. III.31) is replaced by the pressure outside the cavity, assumed constant). One solving method is to discretize the system in the r-direction into a finite number of r i coordinate points, and in the z-direction (cavity axis) into a finite number of z i points, and to approximate each of the partial derivatives as weighted sums of all the partial derivatives at each point (differential quadrature method, see [START_REF] Eftekhari | A differential quadrature procedure for free vibration of circular membranes backed by a cylindrical fluid-filled cavity[END_REF]). Another more classical method is to solve the problem in a multimodal way by considering a receiver (the membrane) -reflector (the cavity, which counteract to the mechanical motion) system [START_REF] Rajalingham | Vibration of circular membrane backed by cylindrical cavity[END_REF]. The eigenfrequencies can also be obtained by using the Rayleigh-Ritz quotient, i.e. the ratio between the deformation energy and the sum of the kinetic energies of the membrane and the incompressible fluid [START_REF] Amabili | Ritz method and substructuring in the study of vibration with strong fluid-structure interaction[END_REF][START_REF] Amabili | Eigenvalue problems for vibrating structures coupled with quiescent fluids with free surface[END_REF][START_REF] Jeong | Hydroelastic vibration of a circular plate submerged in a bounded compressible fluid[END_REF][START_REF] Tariverdilo | Free vibration of membrane/bounded incompressible fluid[END_REF]. The variational principle can also be applied to determine the natural frequencies, by calculating the Lagrangian of the coupled system and considering that the variation of the latter after an arbitrary time is zero [START_REF] Tariverdilo | Free vibration of membrane/bounded incompressible fluid[END_REF]. This list is not exhaustive, but the methods quickly introduced here regularly appear in the literature. In our case, we make usage of FEM simulations, which allow us to estimate the mechanical parameters (eigenfrequencies and quality factors) in a simple and fast way. This study is introductory, with the aim of quantifying the mechanical properties as a function of the geometric parameters of the membrane (and therefore of the cavity). The coupled system of a circular membrane within a closed cylindrical cavity filled with air is considered. By restricting ourselves to the study of the axisymmetric modes, we can realize, on COMSOL, a 2D study with axial symmetry. This considerably reduces the memory needed to solve our multiphysics model. The two physics used are the vibration model of a membrane characterized by an initial pre-stress in the plane z = 0 (the intrinsic tension T = 1 GPa), while the second solves the full linear Navier-Stokes equations (thermo-viscous acoustic model) [START_REF] Bruneau | Fundamentals of Acoustics[END_REF][START_REF] Kampinga | Viscothermal acoustics using finite elements -analysis tools for engineers[END_REF][START_REF] Nijhof | Viscothermal wave propagation[END_REF]. The boundary between the two physics is located at the membrane. Its edges are assumed to be embedded (equivalent, in Comsol, to an absence of mechanical motion in all directions). For the cavity, the closed aspect imposes Neumann type conditions at the edges i.e. a zero partial pressure variation at the interfaces r = a, z = L 1 and z = -L 2 . The choice of the mesh is mainly limited by the boundary layers at the interfaces (membrane and cavity walls), defined as the areas where the viscous effects are the most important. The thicknesses of the boundary layers (fluid velocity and temperature) are given by [START_REF] Bruneau | Fundamentals of Acoustics[END_REF]:

δ v (f ) = µ v 2πρ 0 f and δ τ (f ) = κ th /c p 2πρ 0 f , (III.13)
where µ v , ρ 0 , κ th and c p are, respectively, the dynamic (or shear) viscosity, the density, the thermal conductivity and the heat capacity at constant pressure of the fluid, and f the fre-quency (in our situation, it refers to the resonance frequency of the membrane). In the case of air at ambiant temperature and pressure, we have µ v = 18.54 µPa s, ρ 0 = 1.161 kg/m 3 , κ th = 26.38 mW K -1 m -1 and c p = 1.007 kJ kg -1 K -1 [161]. The resonance frequency f 01 of the fundamental mode (first axisymmetric mode) of a membrane of diameter d m = 50 µm is of the order of 8.6 MHz. At this frequency, the boundary layer thicknesses in an air medium are: The viscous effects are then mostly important at a distance of 0.5 µm from the edges of the cavity and from both sides of the membrane. This value imposes size limits on each element of the mesh, to observe the effect of the fluid on the mechanical dynamics. The boundary layer mesh consists of 3 elements of identical thickness. A quick study shows that increasing the number of elements above 3 in the boundary layers has no influence on the mechanical response of the membrane. The thickness of these elements is adapted according to the boundary layer thicknesses, quantified before any simulation with a different membrane geometry (δ v and δ τ are inversely proportional to the square root of the resonance frequency). The rest of the mesh is made of triangular elements of minimum thickness δ v /3 and maximum thickness δ v . An overview of the mesh used is given in figure III.32 (a). The axis of symmetry is indicated.

δ v (f 01 ) = 0.
The COMSOL model first solves the static displacement of the diaphragm due to the pre-stress (this step is not really necessary in the case of a in-plane tension, but one could add any arbitrary pre-stress in any direction). A frequency study is then performed by considering an uniform harmonic excitation on the whole membrane, to preferentially excite the fundamental mode (the other axisymmetric modes being also partly excited). The mechanical spectrum is deduced by determining the movement of the center of the membrane in r = 0 along the axis of the cavity (maximum movement in the case of the fundamental mode) according to the excitation frequency. The resonance frequency, corresponding to the maximum mechanical deflection, is then deduced. The quality factor is calculated using the width at half height of the resonance peak (Q m = f m /δf ). Note that it is also possible to determine this factor using the slope of the mechanical phase shift between the excitation force and the induced motion (Q m = (f m /2) × ∂ϕ/∂f | fm ). These two methods require a good resolution of the mechanical spectrum by choosing enough calculation points on a suitable frequency range. The cavity inner pressure is set to 1 bar.

The fundamental mechanical resonance frequency and quality factor are extracted as a function of the thickness and for a 50 µm and a 100 µm membranes, and depicted in 

III.3.3 Limit of detection and responsivities

The previous analysis allows us to quantify the mechanical parameters of the membranes in the presence of a viscous damping in a closed air-filled cylindrical cavity. One membrane thickness and three membrane diameters are selected, corresponding to the best case scenario for the integration of the MIM setup (lower membranes deflection induced by the differential pressure load during the process, see section III.1) and, as we will see, for the LOD and the responsivity of the optomechanical gas sensor. The deduced properties for the 200 nm thick, and 50, 100 and 150 µm diameter membranes are summarized in Table III.9. The other optical, mechanical and optomechanical properties are those summarized in Table III The shifts induced by the gas absorption on every physical quantity described in Fig. III.30 are quantified by three responsivities, corresponding to 3 ways of measuring the gas concentration:

• R Sopt [µW/( √ Hz ppm)] = δ S opt /δc gas : the optical spectrum responsivity,

• R ω [Hz/ppm] = δω eff m /δc gas : the resonance frequency responsivity, • R γ [Hz/ppm] = δγ eff m /δc gas : the damping responsivity. These responsivities quantify the sensitivity of the parameters to the gas absorption. It has been observed that the effective mechanical damping has a negligible influence on the mechanical dynamics (due to the unresolved sideband regime, see section III.3.1). Besides the optical spectrum at mechanical resonance is not precisely measured in practice (refer to the lensed FBGbased optomechanical cavities measurements presented in chapter II). These two parameters are not relevant. For this reason, the discussion is hence focused on the mechanical resonance frequency variation. Similarly to the optomechanical mass sensors presented in the introduction, our spectroscopic optomechanical cavity is then based on the optical spring sensing of gas absorption. Unlike gravimetric sensors, we are only interested in absorption: in our specific case, it is a matter of exciting the CO 2 molecules in their ro-vibrational energy levels with a laser tuned to the absorption peak of interest. There is therefore no accretion of molecules that would influence the mechanical properties of the membrane and thus induce a shift of its resonance frequency. To estimate the LOD of this new detection scheme, one need to consider the frequency noises (which depend on the experimental setup), which impose the lowest detectable mechanical resonance frequency shift. There are multiple sources of noises in practice such as, among others, the 1/f noise or Flicker noise (from the electrical components of the setup) which is higher at low frequency, or the vibration noise perturbing the optical alignment. For our high frequency measurements, there are two main noise sources to consider: the mechanical and laser source frequency noises, which are respectively fixed by the mechanical quality factor (f m /Q m ≈ 20 kHz) and the laser spectral linewidth. The latter is the fundamental limitation of optical frequency stabilization schemes, such as the PDH method (see section II.3). Intuitively, these methods cannot correct long-term frequency fluctuations with amplitudes below the laser linewidth. Interestingly, they aim to drastically reduce this second noise using an ultrahigh finesse reference optical cavity [START_REF] Wu | 0.26-Hz-linewidth ultrastable lasers at 1557 nm[END_REF]. One can notice that similar techniques also exist for mid-IR laser, such as distributed-feedback QCL: linewidth reduction from the MHz range to 1 -10 kHz has indeed been demonstrated [START_REF] Shehzad | 10khz linewidth midinfrared quantum cascade laser by stabilization to an optical delay line[END_REF]. For the following discussion, a worst case scenario is considered with a laser linewidth of 120 kHz. The overall frequency noise is given by the quadratic sum of the frequency noises i.e. approximately 120 kHz (≈ √ 20 2 + 120 2 ). The horizontal red line indicates this frequency noise. One can observe that the required optical powers to detect a mechanical frequency shift within this frequency noise, at low gas concentration, is high (between 30 and 40 mW for a concentration of 100 ppb). This value could be reduced by increasing the optical finesse (higher mirror reflectivity, thanks to a higher amount of layers within the mirror) to increase the optical spring effect. We define the 1σ-LOD of our optomechanical trace gas sensor as the minimal detectable mechanical frequency shift induced by the gas absorption, at 1σ level, where σ is the overall frequency noise. As an illustration of the extraction procedure of the LOD and the responsivity, the same curves are displayed in the vicinity of the frequency noise, for an input optical power of 40 mW, for two membrane diameters (50 and 150 µm), in Fig. III.34. The frequency responsivity is quantified by means of a linear regression. The 1σ LOD is estimated by looking at the concentration corresponding to the noise floor, related to the minimum frequency shift measurable in practice. In this example, the LOD is 83 ppb with a responsivity of 1.29 kHz/ppb for the 50 µm diameter membrane, and 303 ppb with a responsivity of 0.278 kHz/ppb for the 150 µm diameter membrane. Finally, the LOD is represented as a function of the input laser optical power in Fig. III.36 (a), for the three diameters. It decreases when increasing the optical power. For the highest diameter (150 µm), it is higher of around a half decade for optical power above 20 mW, due to the higher effective mass (see Table III.9). One can observe that the LODs are almost identical for the two lower diameters (50 and 100 µm). This is explained by the mechanical parameters of each membrane (see Table III.9): the effective mass is twice as big for the 100 µm diameter, whereas its resonance frequency is two times lower. Consequently, the vacuum dispersive coupling strength g 0 (defined, for instance, in the introduction) is the same for both membranes. For P in = 5 mW, the gap between these two curves is starting to increase. By further decreasing the optical power, it continues to increase until a limit corresponding to the resonance frequency difference (the optical spring effect becomes negligible). The best LOD are estimated for the two lower diameters at 60 ppb for an input optical power of 50 mW. To quantify the efficiency of the sensor, one need to take into account its frequency responsivity, related to the sensitivity of the mechanical resonance frequency to gas absorption. To do so, we define a figure-of-merit (FoM), as a LOD normalized by the optical power P in , the cavity contrast C R , the mechanical quality factor Q m , the optical finesse F (or the intracavity photon number F/2π), and finally the single photon dispersive coupling strength g 0 :

(III.15) FoM = LOD P in C R Q m (F/2π)g 0 = 2LOD P in C R Q m g om 1 -R mirror √ R mirror 2m eff ω m h [ppb/W.Hz]
This proposed quantity can be used to quantify the efficiency of any spectroscopic gas sensor based on cavity optomechanics transduction scheme. It is displayed as a function of the input optical power in Fig. III.36 (b). One can now discern a difference between the two lower diameters: the 50 µm diameter optomechanical spectrocopic cavity exhibits indeed a slightly higher mechanical quality factor (see Table III.9). This FoM has the same puropose of the noise equivalent absorption of gas sensing technique [START_REF] Hodgkinson | Optical gas sensing: a review[END_REF]: it should be used as a criterium to compare future spectroscopic optomechanical sensors, independently of the mechanical, optical and optomechanical features of the setups. 

III.4 Conclusion

In this chapter, the silicon integration of the MIM architecture has been presented. A novel fabrication process using typical microelectronics clean room technologies has been developped and has shown great potential for the realization of this optomechanical setup at the micrometric scale in the mid-IR region, with an excellent reproducibility. A continuous monitoring at multiple fabrication steps has allowed us to identify a crucial point: the process is well suitable for low diameter membranes (d m ≤ 150 µm). This is of practical interest for cavity optomechanics applications where a smaller membrane induces higher mechanical resonance frequencies and lower effective masses. The resulting one-photon dispersive coupling strength is then enhanced. Furthermore, we have highlighted the feasibility of fabricating micrometerscale vacuum-sealed MIM cavities with low air damping, which is essential for improving the optomechanical signal-to-noise ratio.

Practical applications could also benefit from this work. We have indeed shown with numerical considerations that our silicon integrated MIM systems could serve as an efficient new CEAS gas sensor with optomechanical transduction, using an optical spring detection scheme of gas absorption in the cavity medium. LOD of 60 ppb is estimated (in the best case scenario) in the case of carbon dioxyde trace gas detection (best LOD is 16 ppb at this wavelength, see Table 8 in [START_REF] Hodgkinson | Optical gas sensing: a review[END_REF]).

In the mid-IR, one could improve the performances by exploiting two bandwidths of the fabricated multilayer mirrors: one in the mid-IR region, in the vicinity of the absorption peak of the species of interest, and a second one in the visible or near-IR range (located at half the design Bragg wavelength). Two lasers could then be used: a first one in the mid-IR to induce the changes in the mechanical dynamics (using the optical spring effect), and the second one in the visible or near-IR range to sense the mechanical vibrations. The second emission wavelength should also correspond to a resonance wavelength of the optical cavity, to benefit from a dispersive optomechanical interaction, hence enhancing the sensitivity of the optical probe to mechanical displacements. This pump-probe method could prevent the performance of the sensor to be limited by the degraded detectivity of photodetectors in the mid-IR compared to visible or even near-IR detectors.

This technique could also be adapted to other wavelength ranges, for instance in the near-IR. The absorption lines are nevertheless lower: for example, the ammonia (NH 3 ) gas molecule is characterized by an absorption coefficient of 2.4 × 10 -7 cm -1 /ppm at a wavelength of 1.532 µm [124], that is to say 10 3 lower than the absorption peak of the carbon dioxyde at 4.23 µm. However, in this spectral range, the optical sources are more easily controlled, more optically and thermally stable and more widely tunable than the QCL (or the interband cascade laser) in the mid-IR, and the frequency stabilization techniques, such as the PDH, are easy-to-implement and commonly used for sensing applications [START_REF] Chow | Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications[END_REF][START_REF] Liu | Ultra-high-resolution large-dynamic-range optical fiber static strain sensor using Pound-Drever-Hall technique[END_REF][START_REF] Huang | Swept optical SSB-SC modulation technique for highresolution large-dynamic-range static strain measurement using FBG-FP sensors[END_REF][START_REF] Chen | Sub-Nano-Strain Multiplexed Fiber Optic Sensor Array for Quasi-Static Strain Measurement[END_REF][START_REF] Chen | Ultrahigh resolution optical fiber strain sensor using dual Pound-Drever-Hall feedback loops[END_REF][START_REF] Huang | DFB fiber laser static strain sensor based on beat frequency interrogation with a reference fiber laser locked to a FBG resonator[END_REF][207][START_REF] Guo | Highly Stabilized Phase-Shifted Fiber Bragg Grating Sensing System for Ultrasonic Detection[END_REF][START_REF] Barnes | Broadband Vibration Detection in Tissue Phantoms Using a Fiber Fabry-Perot Cavity[END_REF][START_REF] Li | Investigation and cancellation of residual amplitude modulation in fiber electro-optic modulator based frequency modulation gas sensing technique[END_REF][START_REF] Zheng | Cavityenhanced Absorption Spectroscopy in the Near-and Mid-infrared for Gas Sensing[END_REF][START_REF] Swaim | Detection of nanoparticles with a frequency locked whispering gallery mode microresonator[END_REF]. The optical finesse can also be easily improved considering the huge efforts to develop ultralow loss mirrors in the near-IR, with crystalline coatings for instance [START_REF] Cole | Tenfold reduction of brownian noise in high-reflectivity optical coatings[END_REF][START_REF] Cole | High-performance near-and mid-infrared crystalline coatings[END_REF]. The prospects of extending this technique to other emission ranges are therefore interesting, but it is of course necessary to conduct an in-depth study to get a more quantitative insight of the achievable performances. This optomechanical sensor has finally the advantage of giving a better spectral resolution of the absorption lines of gaseous molecules than other gas detection techniques, and could potentially allow us to reach very good detection limits for a wide selection of chemical species.

CHAPTER

IV

Cavity optomechanics with dispersive and dissipative couplings

In this chapter, as a perspective of this work, we look for a generic theory of cavity optomechanics in the limit of a semi-classical approach. The dissipative interaction, which could also be exploited in the case of a spectroscopic gas sensor with optomechanical transduction, as presented in section III.3, is divided into an external and intrinsic contribution. Even though other studies have already given an insight of the resulting effects [START_REF] Yan | Dissipative optomechanical coupling between a single-wall carbon nanotube and a high-q microcavity[END_REF][START_REF] Weiss | Strong-coupling effects in dissipatively coupled optomechanical systems[END_REF][START_REF] Weiss | Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems[END_REF][START_REF] Liu | Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics[END_REF][START_REF] Tagantsev | Dissipative versus dispersive coupling in quantum optomechanics: Squeezing ability and stability[END_REF][START_REF] Mehmood | Force sensing in a dissipative optomechanical system in the presence of parametric amplifier's pump phase noise[END_REF], it has been experimentally demonstrated in two photonic crystal (PhC) systems [START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF][START_REF] Wu | Dissipative and dispersive optomechanics in a nanocavity torque sensor[END_REF] that the two kinds of dissipative coupling, related either to external or to internal optical losses (κ e or κ i ), have both non-negligible influence on the mechanical dynamics. We therefore extend the usual framework based on the formalism used to describe purely dispersive optomechanical coupling and give a general description of optomechanical interactions in the presence of dispersive, external, and intrinsic dissipative couplings. The proposed extension can be used in various future applications where the distinction between the two dissipative couplings is necessary. In particular, we consider this work as a detailed perspective of all the practical studies presented in the last two chapters, as it aims to give extended tools for future cavity optomechanics-based sensing applications. We refer throughout to the PhC systems of Wu et al. [START_REF] Wu | Dissipative and dispersive optomechanics in a nanocavity torque sensor[END_REF] and of Tsvirkun et al. [START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF] to illustrate our calculations and ascertain their validity in concrete situations. The work presented here is largely based on our paper in Physical Review A [START_REF] Baraillon | Linear analytical approach to dispersive, external dissipative, and intrinsic dissipative couplings in optomechanical systems[END_REF].

IV.1 Coupled equations of motion

In this section, we introduce the coupled equations of motion in the presence of the three optomechanical couplings. They represent the basis of any model aiming to describe the mutual interaction between electromagnetic radiations in an optical cavity and mechanical vibrations. The generic theory developed here is only valid in the linear case, i.e. for small mechanical displacements (first-order perturbations). We consider a generic optomechanical system, constituted by an optical and a mechanical resonator of respective resonance frequencies ω c and ω m . The optical input-output relation is first used to introduce the three optomechanical couplings. The harmonic oscillator model is then used to describe the mechanical behavior. The optical element is considered to be a one-port cavity in which the light can be coupled in or out by the same side. Typical one-port optical systems are a Fabry-Perot system with one partially reflective mirror and one perfectly reflective mirror (see figure IV.1 (c)) [START_REF] Arcizet | Radiation-pressure cooling and optomechanical instability of a micromirror[END_REF], all-pass ring resonators [START_REF] Huang | A dissipative self-sustained optomechanical resonator on a silicon chip[END_REF], and whispering gallery mode resonators coupled to an optical fiber [START_REF] Madugani | Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light[END_REF]. The temporal dynamic of the intracavity complex field amplitude a(t) is governed by the input-output relation [START_REF] Aspelmeyer | Cavity optomechanics[END_REF][START_REF] Gardiner | Quantum Noise[END_REF]:

ȧ(t) = - κ(u m ) 2 -i(ω L -ω c (u m )) a(t) + κ e (u m )s in (t) (IV.1)
where u m (t) is the temporal mechanical amplitude; κ e and κ i are, respectively, the external and intrinsic photon decay rates; κ = κ e + κ i is the overall cavity decay rate; ω L is the input laser angular frequency; and s in is the input laser flux. The field amplitude is normalised such that |a| 2 = n cav stands for the number of intracavity photons. As in most optomechanical systems, the optical frequency ω c depends on the mechanical amplitude u m . Besides, because of the dissipative interactions, we also consider that the decay rates κ e and κ i depend on u m . We thus introduce the dispersive coupling g om , external dissipative coupling κ e om , and intrinsic dissipative coupling κ i om which correspond to a shift of, respectively, the cavity resonance frequency, the external decay rate, and the intrinsic decay rate due to the mechanical oscillator motion, which are defined using the first-order Taylor expansion as

ω c (u m ) = ω c0 + g om u m (t) , (IV.2) κ e (u m ) = κ e0 + κ e om u m (t) , (IV.3) κ i (u m ) = κ i0 + κ i om u m (t) , (IV.4)
where ω c0 , κ e0 , and κ i0 are, respectively, the optical bare cavity (i.e. without any optomechanical interaction) angular frequency, and external and intrinsic loss rates. It is important to remark that while quadratic coupling can be relevant in some situations, such as in the MIM setup where a purely dispersive quadratic coupling could lead to quantum nondemolition measurement of the mechanical ground state [START_REF] Milburn | Quantum nondemolition measurements via quadratic coupling[END_REF][START_REF] Deng | Quantum nondemolition measurement of microwave photons using engineered quadratic interactions[END_REF][START_REF] Yanay | Quantum backaction and noise interference in asymmetric two-cavity optomechanical systems[END_REF], it is beyond the scope of this chapter and we will focus only on the effects induced by the three first-order couplings. The mechanical element is still modeled as a harmonic oscillator with intrinsic damping γ m = ω m /Q m (with Q m the mechanical quality factor) and effective mass m eff . The dynamical temporal behavior of the mechanical complex amplitude is governed by the equation [START_REF] Aspelmeyer | Cavity optomechanics[END_REF][START_REF] Hauer | A general procedure for thermomechanical calibration of nano/micro-mechanical resonators[END_REF] 

üm (t) + γ m u m (t) + ω 2 m u m (t) = F L (t) m eff + F opt (t) m eff , (IV.5)
where F L (t) represents the thermal Langevin force arising from the thermal fluctuations and responsible for the Brownian motion of the mechanical resonator, and F opt (t) is the optical force induced by the intracavity field.

In order to derive the coupled optomechanical equations of motion, we expand and linearize the input-ouput relation for the intracavity field. Consider the mean steady-state value of the field amplitude ā and mechanical displacement ūm and their respective temporal fluctuations δa(t) and δu m (t) such that

a(t) = (ā + δa(t)) e -iω L t , (IV.6) u m (t) = ūm + δu m (t). (IV.7)
Second-order terms such as δa(t)δu m (t) are neglected. We consider a continuous input flux s in = sin e -iω L t with sin constant. We define:

• ∆ = ∆ 0 -g om ūm the effective optical detuning (with ∆ 0 = ω L -ω c0 ),

• κe0 = κ e0 + κ e om ūm the effective external photon decay rate, • κi0 = κ i0 + κ i om ūm the effective intrinsic photon decay rate, • κ = κe0 + κi0 the effective overall photon decay rate. where Fopt represents the mean optical force responsible for the change in the detuning and the decay rates. Note that a nonlinear effect named static bistability arises because of the impact of the mean mechanical displacement on the optical parameters: under certain conditions, equations IV.9 and IV.10 have multiple solutions, giving rise to several stable behaviors, which have been studied in dispersive and dissipative optomechanical systems [START_REF] Ghobadi | Quantum optomechanics in the bistable regime[END_REF][START_REF] Sete | Controllable nonlinear effects in an optomechanical resonator containing a quantum well[END_REF][START_REF] Kyriienko | Optomechanics with cavity polaritons: Dissipative coupling and unconventional bistability[END_REF]. In addition, the field and displacement fluctuations obey the following differential equations: While the purely dispersive terms remain unchanged [START_REF] Aspelmeyer | Cavity optomechanics[END_REF][START_REF] Marquardt | Quantum theory of cavity-assisted sideband cooling of mechanical motion[END_REF]261], we can observe that the dissipative couplings give rise to supplementary terms proportional to the mechanical displacement fluctuations. As observed in a previous study on dissipative optomechanical systems [START_REF] Weiss | Strong-coupling effects in dissipatively coupled optomechanical systems[END_REF], and in contrast to the dispersive case which is a purely cavity assisted coupling proportional to the intracavity steady-state field ā, the dissipative terms are also proportional to the drive flux s in . Because we distinguish the intrinsic and external components, we trace this effect back to the external dissipative coupling.

δa(t) = - κ 2 + i ∆ δa(t) - κ e om + κ i om 2 + ig om ā - κ e om 2 √
In our model, the optical cavity is assumed to be a one-port system. For multi-port optical systems, the model can still be valid by defining different optical loss rates. We also did not consider any external modulation of the input field, which may add additional terms to the previous equations.

IV.2 Output optical response

In order to fully understand the basic optical behavior of an optomechanical system with the three couplings, the mean steady-state output optical response is studied. The optical loss regimes are defined and their influence on the mechanically induced optical power oscillations is analyzed. To this end, the mean output optical response has to be determined. As we are condidering a one-port optical cavity, there is a single output photon flux s out (see IV.1). The input-output relation for this output flux is given by: (IV.13) s out (t) = κ e (u m )a(t) -sin .

After linearization of this relation, the mean steady-state value of the optical flux sout is deduced by means of IV.9:

(IV.14) sout = κe0 -κ/2 + i ∆ κ/2 -i ∆ sin .
The mean steady-state output response, defined as R out = |s out /s in | 2 , reads:

(IV.15) R out = (κ e0 -κ/2) 2 + ∆2 (κ/2) 2 + ∆2 .
Practically speaking, R out is similar to the typical reflection response of a one-port Fabry-Pérot cavity (with one mirror partially and the other one perfectly reflective). The mechanically induced optical oscillations are represented by dR out /du m , which is given by:

(IV.16) dR out du m = g om ∂R out ∂ ∆ + κ e om ∂R out ∂κ e + κ i om ∂R out ∂κ i ,
where the derivatives of R out are given by: (IV.17)

∂R out ∂ ∆ = 2 ∆(1 -R out ) (κ/2) 2 + ∆2 , (IV.18) ∂R out ∂κ e = (κ/2 -κe0 ) -(κ/2)R out (κ/2) 2 + ∆2 , (IV.19) ∂R out ∂κ i = (κ e0 -κ/2) -(κ/2)R out (κ/2) 2 + ∆2 .
In the following sections, we first present a qualititative analysis of each derivative term under different values of the external decay rate κe0 , and identify which optomechanical interaction (namely, dispersive, intrinsic, and external) is enhanced depending on the considered optical loss regime. We then conduct the analysis with a more quantitative approach, with different values of the optomechanical coupling rates g om , κ e om , and κ i om to understand their relative impact on the amplitude of the mechanically induced mean optical power oscillations.

IV.2.1 Influence of the optical loss regime

The variations of the mean optical response, given by the three derivatives previously calculated, with the three quantities of interest, namely, the optical detuning ∆, the external loss rate κe , and the intrinsic loss rate κi , allow us to identify the optical loss regimes. They are displayed as a function of the detuning ∆ and the external decay rate κe in Fig. IV.2. All the plots have been normalized with the maximum value between ∂R out /∂ ∆, ∂R out /∂κ e , and ∂R out /∂κ i , and the detuning ∆ and external decay rate κe0 have been normalized with the overall decay rate κ, such that the previous analysis is general and independent of the quality of the optical cavity i.e. independent of κ. The influence of the external cavity decay rate κe0 is shown in Figs. IV.2 (a), (b) and (c), highlighting the most important discrepancy between the dispersive and dissipative derivatives: the dispersive behavior is characterized by two off resonant sidebands whereas the dissipative (both intrinsic and external) behavior is characterized by a single resonant maximum. We can thus identify three particular optical loss regimes and compare the detuning dependency of the three derivatives within each of them: For the six plots, the amplitudes are normalized with the maximum value between the three derivatives and therefore dimensionless. The comparison made here is purely qualitative and is independent of the value of κ.

In the critically coupled regime (see figure IV.2 (e)), the dispersive variation (blue curve) of the mean optical response is the predominant mechanism, with the highest impact at off resonance detunings. It confirms the interest of this regime in purely dispersive optomechanical systems in which this interaction is strongly enhanced. It also justifies that the two dissipative optomechanical couplings are not considered in the common theoretical model. However, since the dissipative contribution is not negligible, we will see in the next section that it also induces various effects on the mean optical power oscillations.

In the undercoupled regime (see figure IV.2 (d)), intrinsic losses (κ i0 ) are higher and the external dissipative variation (red curve) is the predominant mechanism. As a result, on resonance ( ∆ = 0), a small variation of the intrinsic cavity decay rate κi will not have a strong influence on the optical output response R out , in contrast to a small variation of external cavity decay rate κe which can have a significant impact. In [START_REF] Wu | Dissipative and dispersive optomechanics in a nanocavity torque sensor[END_REF], the system is in this undercoupled regime (κ = 31 GHz and κe0 = 1 GHz, i.e. κe0 = 0.03κ), and the authors indeed observed a strong dependence of the mean optical response on the external decay rate.

In the overcoupled regime, the detuning dependency of the intrinsic (respectively, external) dissipative variations is identical to the detuning dependency of the external (respectively, intrinsic) dissipative variations in the undercoupled regime, due to the mathematical symmetry between equations IV.18 and IV.19. Note that for the last two regimes, the dispersive variation is negligible. The dispersive derivative of the mean optical response (∂R out /∂ ∆) is always an off-resonance effect associated with two sidebands. These sidebands correspond to dynamical effects (cooling or amplification of the mechanical oscillations [START_REF] Aspelmeyer | Cavity optomechanics[END_REF][START_REF] Marquardt | Quantum theory of cavity-assisted sideband cooling of mechanical motion[END_REF]261] where ∆max = κ/ √ 12 is the detuning of maximum slope of the mean optical response, which is determined by making ∂ 2 R out /∂ ∆2 equal to zero. The maximum of each variation of the mean optical response is consequently inversely proportional to the overall cavity decay rate κ, which highlights the interest of working in the resolved sideband regime (κ ≪ ω m ) to increase optical sensibility towards mechanical displacement. We see that no matter the value of the optical cavity decay rate, the dissipative variations (both external and intrinsic) of the output response in the corresponding optical loss regime (respectively, undercoupled and overcoupled) are always more than three times higher (16/3 √ 3 ≈ 3.1) than the dispersive one in the critically coupled regime. It emphasizes the interest of dissipative coupling optical readout of the mechanical motion (for classical applications), in the corresponding optical loss regime. Our basic study helps to clearly identify these three regimes. The plots of Fig. IV.2 qualitatively summarize the steady-state optical behavior, common to all optomechanical systems with the three couplings. In practice, however, we measure the optical power and have access to the total variation of the optical power response. It is at this point that a quantitative study, taking into account the coupling values g om , κ e om , and κ i om , is necessary.

∂R out ∂ ∆ max = 2(1 -R out ( ∆ = ± ∆max )) κ κe0 = κ/2 = 3 √ 3 4κ , (IV.20) ∂R out ∂κ e max = (κ/2 -κe0 ) -(κ/2)R out ( ∆ = 0) (κ/2) 2 κe0 ≪ κ = 4 κ , (IV.21) ∂R out ∂κ i max = (κ e0 -κ/2) -(κ/2)R out ( ∆ = 0) (κ/2) 2 κe0 ≫ κ = 4 κ , (IV .22) 

IV.2.2 Mean optical power oscillations

The dependence of the mean optical power oscillations of our generic system on the optical detuning and external cavity decay rate is quantitatively studied based on different optomechanical coupling configurations. To this end, we define the output power as P out = R out P in with P in the input power. Based on equation IV.16, the total derivative of the optical response is the sum of each partial derivative weighted by the optomechanical coupling values. Therefore the mechanically induced mean optical power oscillations are given by dP out /du m = P in dR out /du m in W/m. Note that we actually use an input power of 1 mW and thus the µW/pm unit of measurement for convenience.

Wu et al. [93]

Tsvirkun et al. [START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF] g om (GHz/nm) 1, 1 -1, 8 0, 62 -1, 52 κ e om (GHz/nm) 0, 002 -0, 003 0, 13 -0, 33 κ i om (GHz/nm) 0, 3 -0, 5 0, 01 -5, 64 κ/ω m 10 3 10 3 -10 4 Table IV.1 summarizes the typical absolute coupling values and corresponding sideband parameter κ/ω m measured by Wu et. al in one of their PhC split-beam nanocavities [START_REF] Hryciw | Tuning of nanocavity optomechanical coupling using a near-field fiber probe[END_REF][START_REF] Wu | Dissipative and dispersive optomechanics in a nanocavity torque sensor[END_REF] and by Tsvirkun et al. in their PhC slab suspended over an input waveguide [START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF][START_REF] Tsvirkun | Optomechanics in hybrid fully-integrated two-dimensional photonic crystal resonators[END_REF]. The best optomechanical systems are designed for dispersive optomechanical cooling applications in the resolved sideband regime and achieved κ = 0.02 ω m [START_REF] Aspelmeyer | Cavity optomechanics[END_REF]. However, based on both the measurements of Wu et al. and Tsvirkun et al., we notice that the sideband factor κ/ω m has no impact on the achievable dispersive and dissipative coupling values. The amplitude of mechanically induced mean optical power oscillations is not influenced by this parameter, but only by the value of κ itself i.e. by the quality of the optical cavity. It is also independent of the mechanical resonator properties (resonant frequency ω m , quality factor Q m and effective mass m eff ). However, the sideband regime influences the optically induced effects on the mechanical properties (see last section). Figure IV.4 represents the mechanically induced mean optical power oscillations dP out /du m as a function of the optical detuning and the external loss rate for five optomechanical coupling configurations (the coupling values are given in the figure). These are related to five different coupling regimes with strong physical behavior discrepancies both on the mean optical behavior and on the dynamical effects that we will analyze in the last section. We set κ = 10 3 ω m = 1 GHz (based on one of the devices of Tsvirkun et al. [START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF][START_REF] Tsvirkun | Optomechanics in hybrid fully-integrated two-dimensional photonic crystal resonators[END_REF]). In this case the maximum absolute power oscillations are around 4 µW/pm, for g om , κ e om and κ i om at 1 GHz/nm, and that this value increases linearly when decreasing κ (0.4 mW/pm for κ = 10 ω m = 10 MHz). Figure IV.4 (a) illustrates a mostly dispersive case where the strongest mean optical power oscillations arise at critical coupling and off resonant detuning. We consider relatively low dissipative couplings in comparison to g om , which explains the low power oscillations in the undercoupled and overcoupled regime. However, we observe an asymmetry in the amplitude of the dispersive sidebands due to the nonzero dissipative couplings. Indeed, the comparison with figure IV.2 reveals that the dissipative mechanisms induce, on resonance, a negative (or positive, depending of the sign of the couplings) amplification of the power oscillations which are added to or subtracted from the dispersive sidebands. This effect is responsible for the strong asymmetry of the five plots. Figures IV.4 (b) and (d) show the influence of a stronger, respectively, external and intrinsic dissipative coupling, with the same dispersive coupling value.

We observe an amplification of the asymmetry in the critically coupled regime. The highest power oscillations in these two cases are achievable on resonance in the undercoupled (for higher external dissipative coupling) or overcoupled (for higher intrinsic dissipative coupling) regime. The five plots of figure IV.4 summarize all the physical situations it is possible to encounter when measuring the mean optical response of an optomechanical setup. Our analysis reveals that the optical loss regime and the optomechanical coupling configuration have a strong influence on the optical behavior. As pointed out in [START_REF] Wu | Dissipative and dispersive optomechanics in a nanocavity torque sensor[END_REF], the tools introduced here can be used to identify the magnitudes of each coupling in practical optomechanical experiments. To achieve this, one must fit the optical power oscillations at mechanical resonance by means of equations IV.16 to IV.19 to estimate the relative contribution (i.e. the coupling strengths g om , κ i om , and κ i om ) of each optomechanical coupling process. These tools have been used by Wu et al. and Tsvirkun et al. in their own systems, the observed detuning behaviors of which correspond to specific cases in our analysis. As this basic model uses the general expression of the mean output optical response, it is very general and can thus be applied to a large variety of systems. However, to fully understand the physical phenomena induced by the three types of coupling in an optomechanical device, we need to analyze the mechanical dynamic and determine the optically induced effects on the mechanical properties.

IV.3 Mechanical spectrum

In the following, we investigate the dynamical properties of the mechanical resonator. We first use the input-output relation (see equation IV.11) in order to obtain the Fourier transform of the intracavity field fluctuations. After calculating the optical force in the presence of dispersive and dissipative couplings, the mechanical response is determined, from which the general expressions of the optical spring effect and optomechanical damping are extracted. Finally, the theoretical optical spectrum in a concrete case is compared with previous measurements from Tsvirkun et al. [START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF].

IV.3.1 General expression of the optomechanical effects

From now on, we work in the Fourier space and choose the convention a(ω) = +∞ -∞ a(t) e -iωt . The Fourier transform of equation IV.11 allows us to write the fluctuations of the intracavity field as (IV.23) δa(ω) = δa disp (ω) + δa e diss (ω) + δa i diss (ω) , with δa disp (ω), δa e diss (ω), and δa i diss (ω) the fluctuations induced by, respectively, the dispersive, the external dissipative, and the intrinsic dissipative coupling given by (IV.24)

δa disp (ω) = -ig om χ eff cav (ω) ā δu m (ω) , (IV.25) δa e diss (ω) = κ e om (κ/2 -κe0 -i ∆) 2κ e0 χ eff cav (ω)āδu m (ω) (IV.26) δa i diss (ω) = - κ i om 2 χ eff cav (ω) ā δu m (ω) .
Here we recognize in each term the effective cavity response in the presence of optomechanical interaction χ eff cav (ω) = [κ/2 -i( ∆ + ω)] -1 which is due to the filtering role of the resonant optical cavity [START_REF] Aspelmeyer | Cavity optomechanics[END_REF]. The three couplings lead to an optical force F opt (t) the fluctuations of which can be described by the backaction force operator [START_REF] Elste | Quantum noise interference and backaction cooling in cavity nanomechanics[END_REF][START_REF] Li | Reactive cavity optical force on microdiskcoupled nanomechanical beam waveguides[END_REF], which in the case of a constant input flux (i.e. sin (t) = sin ) is written:

(IV.27) δF opt (t) = -hg om (ā * δa(t) + āδa * (t)) -ih κ e om + κ i om 2 s in √ κe0 (δa * (t) -δa(t)) .
The first term corresponds to the dispersive optical force and is linked to the intracavity photon energy, which varies with mechanical displacement. The second term is the dissipative optical force, analogous to a viscous force and originating from the photons leaking out of the cavity via external or intrinsic dissipation mechanisms. This general expression leads to a linear relation between the Fourier transforms of the optical force and displacement fluctuations. The effective mechanical susceptibility χ eff m defined by δu m (ω, ∆) = χ eff m (ω, ∆)F L (ω) is thus determined by: (IV.28)

χ eff m (ω, ∆) = 1 m eff (ω 2 m -ω 2 -iωγ m ) + Σ(ω, ∆) , (IV.29) where Σ(ω, ∆) = - δF opt δu m
is the optomechanical self-energy [START_REF] Aspelmeyer | Cavity optomechanics[END_REF]. We can introduce the optical spring effect δω m and optomechanical damping γ opt with the relation Σ = m eff (2ωδω m -iωγ opt ). These two quantities are then expressed as

δω m (ω, ∆) = - 1 2ωm eff Re δF opt δu m , (IV.30) γ opt (ω, ∆) = 1 ωm eff Im δF opt δu m , (IV.31)
where Re and Im, respectively stand for real and imaginary parts. Because the optical force is composed of three forces induced by each coupling, the optically induced effects are composed of three terms proportional to g 2 om , (κ e om ) 2 , and (κ i om ) 2 corresponding, respectively, to the purely dispersive, external dissipative, and intrinsic dissipative situation. However, as the intracavity field fluctuations depend on the three couplings at the same time (see equations IV.24, IV.25 and IV.26), there are also "interferences" between them which lead to intertwined terms proportional to g om κ e om , g om κ i om and κ e om κ i om (see appendix). The sum of the contributions of the purely dispersive, external and intrinsic dissipative, and crossing terms leads to the overall optical spring effect and optomechanical damping in the presence of the three couplings: with dR out /du m given by equation IV. [START_REF] Elste | Quantum noise interference and backaction cooling in cavity nanomechanics[END_REF]. The mechanical PSD is given by the fluctuation dissipation theorem [START_REF] Aspelmeyer | Cavity optomechanics[END_REF][START_REF] Hauer | A general procedure for thermomechanical calibration of nano/micro-mechanical resonators[END_REF]:

(IV.
(IV.35) S m (ω, ∆) = 4k B T ω m Q m |χ eff m (ω)| 2

IV.3.2 Limit cases and usual dispersive terms

We now discuss the general expression given on equations IV.32 and IV.33.

The purely dispersive optomechanical effects

In particular, for the purely dispersive situation, the dissipative couplings are neglected, and we recover the usual expressions of the optical spring effect and optomechanical damping [START_REF] Aspelmeyer | Cavity optomechanics[END_REF] δω m (ω, ∆) = g 2 is the dispersive optomechanical coupling strength, and x ZPF is the mechanical zero-point fluctuation amplitude that quantifies the displacement amplitude of the fundamental mode at its lowest energy state (achievable by reducing the number of phonons i.e. the mode temperature [START_REF] Aspelmeyer | Cavity optomechanics[END_REF]). As already stated in this manuscript, g 0 quantifies the interaction of a single photon with a single phonon, and allows to compare multiple optomechanical systems independently of the mechanical resonator.

IV.3.3 Validity of the model in a concrete situation

Each other cases is accessible experimentally in principle. However, few practical studies have studied the three optomechanical couplings [START_REF] Hryciw | Tuning of nanocavity optomechanical coupling using a near-field fiber probe[END_REF][START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF][START_REF] Wu | Dissipative and dispersive optomechanics in a nanocavity torque sensor[END_REF], and no empirical study on the effects of optical loss and sideband regimes on the optomechanical response has confirmed the possibility of experimentally accessing these regimes. For this reason, and in order to give a physical insight of our model, we choose to analyze one of the practical systems. To this end, we examine several optomechanical configurations in the undercoupled and unresolved sideband regimes and consider the measurements of Tsvirkun et al. on their PhC mechanical resonator suspended over an optical waveguide [START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF].

The parameters associated with their devices are given in table IV.2. The mechanical quality factor is chosen in the range Q m ∼ 2000 -3000 [START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF][START_REF] Tsvirkun | Optomechanics in hybrid fully-integrated two-dimensional photonic crystal resonators[END_REF]. The optical decay rates are adjusted according to their measurements. Tsvirkun et al. studied the same mechanical mode (labeled M1) in various configurations depending of the width w wg of the input waveguide. In order to remain coherent with their measurements, we take into account a proportionality factor in our theoretical optical spectrum and define a corrected optical spectrum S p in W/Hz as: S p (ω m , ∆) = (ηβ 2 g ti A) 2 R S opt (ω m , ∆) , (IV.39)

Tsvirkun et. al explain that "η = 0.8 is the coupling efficiency between the laser output and the lens focusing the beam onto the grating coupler, β = 0.035 is the coupling efficiency into (and out of) the access waveguide, A = 25 is the signal amplification, g ti = 1400 V/W is the transimpedance gain of the photodetector and R = 50 Ω" (see [START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF] for more details). In the following, S p is considered as the optical PSD for the sake of clarity. We apply our model to these systems and compare it to the measurements in figures IV.6 and IV.7. The associated dispersive and dissipative optomechanical couplings (from their measurements) are indicated in the figures for each configuration. The optical spring effect, i.e. the variation of the mechanical resonance frequency with the optical detuning, is compared in Figs. IV.6 (a) (from [START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF]) and (c) (analytical expression). Good agreement is found between our model and the experimental results with a similar detuning dependency and the same order of magnitude of 5 kHz for δω m . This maximum variation of the mechanical resonance frequency occurs close to optical resonance, which is the signature of an important dissipative behavior.

The optical PSD at mechanical resonance frequency S p (ω m , ∆) (with ω m depending on ∆) as a function of the normalized optical detuning is compared in Fig. IV.6 (b) (from [START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF]) and (d) (analytical expression). The insets show the contribution of each optomechanical coupling on the mechanically induced optical response oscillations (i.e. the three terms g om ∂R out /∂ ∆, κ i om ∂R out /∂κ i , and κ e om ∂R out /∂κ e , see equations IV.16 to IV.18). The discrepancy on optical resonance between the insets of measurements and theory for the external dissipative contribution (i.e. κ e om ∂R out /∂κ e ) is due to a Fano modification of the optical response in the experiments. We do not consider this effect as it has no impact on the optomechanical effects [START_REF] Wu | Dissipative and dispersive optomechanics in a nanocavity torque sensor[END_REF]. The detuning dependency is governed by the external decay rate regime i.e. the value of κe , and the order of magnitude is mostly governed by the decay rates, the input power, and the mechanical properties. As the last two are fixed, the decay rates are adjusted (see table IV.2). The overall optical loss rate κ is kept close to 0.1 -1 nm [START_REF] Tsvirkun | Optomechanics in hybrid fully-integrated two-dimensional photonic crystal resonators[END_REF]. The external loss rate κe is determined by looking at the contribution of each coupling on dR out /du m and by comparing it to the measurements of Tsvirkun et al. (see insets of figures IV.6 (b) and (d)). Good agreement is found in the detuning dependency of the optical PSD on mechanical resonance between measurements and theory, with a single, slightly optically detuned sideband due to the comparable dispersive and external dissipative optomechanical coupling values in the undercoupled regime. The orders of magnitude of the optical PSD are comparable with a maximum close to 150 fW/Hz. In order to study situations with various optomechanical configurations, we compare multiple optical spectra on mechanical resonance in figure IV. [START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF] and (c) from theory) and optical PSD at mechanical resonance frequency S p (ω m , ∆) with ω m depending on ∆ ((b) from [START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF] and (d) from theory) as a function of the normalized optical detuning ∆/κ for an input waveguide width w wg = 450 nm. The colorbar of figure (a) is not considered as we are only comparing the variation of the mechanical resonance frequency. The insets show the contribution (in Hz -1 ) of each coupling on dR out /du m (g om ∂R out /∂ ∆ in blue, κ i om ∂R out /∂κ i in red and κ e om ∂R out /∂κ e in yellow). Tsvirkun et al. determined it experimentally by fitting the optical spectrum on mechanical resonance with equation IV.16, which allows them to identify the coupling strengths.

different input waveguide width. For each situation, we follow the same procedure as before, and find the best κ and κe by comparing the contribution of each coupling on mechanically induced optical response oscillations in theory and in practice. For each optomechanical coupling configuration, the system is in the undercoupled regime, and the corresponding decay rates are given in Table IV.2. Once again, the orders of magnitude of the optical spectra are in good agreement with the measurements, and the detuning dependencies follow the same behaviors, which validates our analytical model. [START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF] and (b) from theory), w wg = 450 nm ((c) from [START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF] and (d) from theory) and w wg = 500 nm ((e) from [START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF] and (f) from theory). The insets show the contribution (in Hz -1 ) of each coupling on dR out /du m (g om ∂R out /∂ ∆ in blue, κ i om ∂R out /∂κ i in red, and κ e om ∂R out /∂κ e in yellow). Note that the discrepancy on optical resonance between the insets of measurements and theory for the external dissipative contribution (i.e. κ e om ∂R out /∂κ e ) is due to a Fano modification of the optical response in practice [START_REF] Wu | Dissipative and dispersive optomechanics in a nanocavity torque sensor[END_REF].

IV.4 Conclusion

In this chapter, we have extended the theoretical framework used to describe optomechanical systems to the general case of a simultaneously dispersive, external dissipative, and intrinsic dissipative coupling scheme. While the previous theoretical studies did not consider clearly the effect induced by the presence of the three couplings [START_REF] Elste | Quantum noise interference and backaction cooling in cavity nanomechanics[END_REF][START_REF] Weiss | Strong-coupling effects in dissipatively coupled optomechanical systems[END_REF][START_REF] Weiss | Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems[END_REF], we have highlighted, by means of a complete description of the mean optical output response, the interest of the three optical loss regimes and the detuning dependency of the mechanically induced optical power oscillations in various optomechanical coupling configurations. The mechanical spectrum and the usual optomechanical effects (optical spring effect and optomechanical damping) have been investigated. In particular, we have revealed the existence of intertwined terms due to "interferences" between the couplings. The optical spectrum has been calculated in a concrete example and comparisons with previous measurements have shown excellent agreement. This study can be used in future optomechanical experiments to quantify the three couplings and understand their relative influence on the optical and mechanical responses.

As a conclusion, we want to point out the interest of our model for practical devices. The optomechanical coupling implies a reciprocal dependence of the mechanical response on the optical properties. This effect can be exploited in a sensor, which is even more interesting in the presence of the three couplings. If, for example, a disturbance (a perturbation) of interest induces optical losses, the mechanical properties (effective frequency and effective quality factor) as well as the dissipative coupling values will be affected accordingly. Our model (including the mean optical power oscillations and the description of the mechanical dynamics) can thus allow a better understanding of the mechanisms involved and a proper assessment of the sensitivity of every parameter to such disturbance. We believe all the theoretical tools introduced in this chapter will benefit future studies and also serve as modeling tools for designing practical optomechanical devices, such as accelerometers, optical signal processing devices, force sensors, bio-photonic sensors [START_REF] Metcalfe | Applications of cavity optomechanics[END_REF], and, as developed in this work, gas spectroscopic sensor.

General conclusion and perspectives

The underlying motivation of this thesis work was the study of the MIM optomechanical setup, with the aim of its integration on 200 mm diameter silicon wafers, in the mid-IR, for gas sensing applications.

The linear optical properties of these micrometer cavities in the IR medium were first studied with a standard transfer matrix formalism [START_REF] Wilson | Cavity optomechanics with high-stress silicon nitride films[END_REF][START_REF] Born | Principles Of Optics[END_REF][START_REF] Brooker | Modern Classical Optics[END_REF]. In particular, it has enabled to demonstrate the periodic variation of the optical resonance condition and the dispersive optomechanical coupling with the equilibrium position of the membrane, specific to the MIM system. The influence of the membrane reflectivity on the amplitude of variation of these properties, and on their asymmetry (MATE geometry) has been detailed. We have highlighted the importance of the penetration depths of the mirrors: the usual transcendental equation describing the optical resonance condition cannot be used at the micrometer scale where these depths are not negligible. A fast numerical solution method, taking into account all the layers of Bragg mirrors composing the optical cavity, has been implemented to design the silicon integrated systems. Except for optical absorption in the cavity medium, this basic formalism cannot easily include scattering or other types of losses. Therefore, it cannot accurately estimate the overall decay rate. However, with such an approach, one can have a good feeling of the impact of the membrane position on these losses. A dissipative optomechanical coupling, related to a modulation of the optical losses with the membrane displacement, has then also been deduced. Finally, we have extracted the intrinsic contribution in the presence of an absorbing intra-cavity gas. To experimentally assess the intrinsic properties of this optomechanical device, a millimetric fiber-based cavity MIM has been designed. Several cavity configurations have been considered and experimentally studied: with two FBGs, one FBG with a concave dielectric mirror, two lensed FBGs or one lensed FBG with a flat dielectric mirror. The last configuration was chosen, given the high coupling efficiencies achievable, and its ease of implementation. An equivalent matrix formalism, adapted to model light propagation in FBGs, has been used to extract the resonance condition and to estimate the optomechanical couplings in typical situations. In practice, the near-IR optomechanical cavity consists of a commercial high quality factor silicon nitride membrane with a variable square geometry, in the middle of an optical cavity formed by a GRIN lensed FBG, designed at 1.55 µm, in front of a plane broadband dielectric mirror. We have constructed a passively aligned membrane-to-mirror assembly using a piezoelectric material as a spacer between the membrane and the plane mirror. Optical contrasts between 79 and 96 %, quality factors from 10 6 to 10 7 , and cavity finenesses between 30 and 150 have been obtained. The PDH stabilization technique has been implemented to maintain an external-cavity diode laser at an optical resonance of our cavities. An analysis of the error signal sensitivity to determine the optimal experimental modulation configuration has been conducted and have shown good agreement with the theory. Typical sensitivities are around 30 mW/pm of optical power (reflected by the cavity) fluctuations per unit of optical resonance wavelength shift. An optimization procedure has allowed us to achieve a low frequency noise of 4 kHz/ √ Hz between 0.1 Hz and 10 Hz corresponding to a noise reduction of 2 decades compared to the non-stabilized situation. The high frequency background noise is estimated at 300 Hz/ √ Hz above 100 kHz, with a stabilized cavity. While this PDH closed loop is set up, the error signal measures any fluctuations induced by any sources on the optical resonance frequency (indirect measurement of the optical phase fluctuations). In particular, we have measured and calibrated the thermomechanical noise of low and high stress silicon nitride membranes of three different geometries in a vacuum environment (pressure between 10 -6 and 10 -5 mbar). A fast empirical method to identify the resonance frequencies of the membrane (between 300 kHz and 1 MHz) by isolating the thermomechanical response of the silicon frame has been developed. Mechanical quality factors are measured between 10 3 and 10 5 , depending on the geometries and the intrinsic in-plane tension, which is coherent with previous characterizations. The dispersive optomechanical coupling g om has been measured between 2 and 10 MHz/nm (vacuum dispersive coupling rate g 0 between 13.4 and 17.4 Hz), depending mechanical modes, but also up to 46 MHz/nm (g 0 around 67.2 Hz) for a degenerate mode with high mechanical overlap. These vacuum coupling strengths are relatively low compared to other fiber-based MIM cavities (in the order of 10 3 Hz) [START_REF] Rochau | Dynamical backaction in an ultrahigh-finesse fiber-based microcavity[END_REF][START_REF] Fogliano | Mapping the cavity optomechanical interaction with subwavelength-sized ultrasensitive nanomechanical force sensors[END_REF][START_REF] Flowers-Jacobs | Fiber-cavity-based optomechanical device[END_REF][START_REF] Shkarin | Optically mediated hybridization between two mechanical modes[END_REF][START_REF] Stapfner | Cavity-enhanced optical detection of carbon nanotube brownian motion[END_REF]. This is explained by the low optical finesse (F ≈ 50 -150 in comparison to, in the best case scenario, 10 5 ) [START_REF] Rochau | Dynamical backaction in an ultrahigh-finesse fiber-based microcavity[END_REF][START_REF] Shkarin | Optically mediated hybridization between two mechanical modes[END_REF], but also mostly by the large dimensions of the system (cm range). The minimum measurable mechanical displacement with our stabilized optomechanical cavities is between 10 -15 and 10 -14 m/ √ Hz. We have experimentally study the influence of the membrane rest position on the thermomechanical spectrum using the piezo spacer to slightly change this position. In particular, the MIM/MATE specific optomechanical behavior has been dynamically verified through observations of periodic extinctions of the optical PSD and the optomechanical coupling. We have also shown the possibility of tuning the removal of degeneracy of a higher order mechanical mode, by changing, using the piezo deformation, how the membrane stresses (in-plane tension and edge embedding) are perceived by each mechanical mode. Last but not least, we have demonstrated the excellent stability of the setup through continuous measurements of the thermomechanical spectrum over several days, with the laser maintained at optical resonance with the PDH method, without low frequency noise degradation (in the kHz/ √ Hz range between 0.1 Hz and 10 Hz). Our stabilized lensed FBG-based MIM system then offers a highly stable platform for sensing purpose, which would require long acquisition time and long-term stability. Finally, the offset sideband method with carrier suppression has been theoretically and experimentally demonstrated, with minor modifications of the basic PDH. This technique could strongly simplify the pump-probe method widely used in cavity optomechanics, by exciting and sensing the optomechanical cavity with an unique laser source stabilized at a non-zero optical detuning, with an error sensitivity, at first glance, very similar to the basic PDH. Thermomechanical spectrum measurements with the same signal-to-noise ratio have indeed been performed. At last, two potential sensing applications of our lensed FBG-based setups have been considered: gravimetric sensing with an estimated sensitivity around 0.12 pm/ √ Hz, and thermal sensing with minimum detectable temperature variation close to 100 mK. The performances could be increased by adapting the mechanical resonator to the target application.

Mid-IR optomechanical cavities are a promising extension of the MIM system, at a micrometer scale. A clean room fabrication process, inspired by fabrication methods of micro-electromechanical systems developed at CEA-Leti for many years, has been established to integrate the MIM setup on a silicon substrate, through two direct wafer molecular bondings. The micrometric cavities are composed of a stoichiometric silicon nitride membrane (Si 3 N 4 ) between two Bragg multilayer mirrors made of amorphous silicon (a-Si) and silicon dioxyde (SiO 2 ). They have been designed with the transfer matrix formalism, for three different membrane thick-nesses, with the aim of maximising the dispersive optomechanical interaction (g om estimated at 5 GHz/nm). We have shown the reproducibility of this fabrication process by manufacturing 4 different wafers, with three different designs. This process is not suitable for large diameter membranes (d m ≥ 500 µm) due to the differential pressure load induced on membranes after their realease and the first bonding in vacuum environment. In addition, the inner pressure has not been maintained in the burried cavities due to degassing of surronding materials. One could add getter layers that adsorb the inner gas to maintain the vacuum conditions [START_REF] Benvenuti | Decreasing surface outgassing by thin film getter coatings[END_REF][START_REF] Benvenuti | A novel route to extreme vacua: the nonevaporable getter thin film coatings[END_REF][START_REF] Lee | A study on wafer level vacuum packaging for MEMS devices[END_REF][START_REF] Sparks | Chip-level vacuum packaging of micromachines using NanoGetters[END_REF][START_REF] Hofmann | High-Q MEMS Resonators for Laser Beam Scanning Displays[END_REF]. We then expect this process to be well suitable to fabricate sealed MIM optomechanical cavities with low air mechanical damping, for membrane diameter below 150 µm.

The two optomechanical benches, used for the characterizations of the partially finished membrane-on-mirror assembly and the final microcavities, have been introduced. The first one consists of exploiting a second bandwidth of the multilayer mirrors, in the near-IR, centered at 1.06 µm, to characterize the thermomechanical spectrum of circular silicon nitride membranes with the PDH stabilization scheme developed for the fiber-based optomechanical cavities. The second bandwidth has been experimentally confirmed with FTIR spectrometry. Preliminary measurements of transmitted signals through the integrated mirrors have shown that these a-Si/SiO 2 Bragg mirrors does not exhibit strong optical losses (absorption of scattering). First observations of resonances in the near-IR have been made. While no further characterization has been performed in this wavelength region, a high quality factor, and even a high finesse optical cavity should be feasible. Then, a second bench has been developed, in the mid-IR range, with a QCL source at 4.23 µm. The source and output beam have been characterized and clean-up using a spatial filter to eliminate the speckle effect induced by the optical isolator. The characterization bench with adapted optics and detectors (IR camera and MCT detector with a high bandwith) has been presented. The main objective is to observe an optical resonance in this mid-IR range, and to perform direct mechanical spectrum measurements in an air environment. One could also adapt the PDH stabilization bench to the mid-IR range. An equivalent scheme could be used to stabilize the QCL on a mid-IR optical resonance. Due to the lack of EOM in the mid-IR, the phase modulation is replaced by a small modulation of the injection current to induce a frequency modulation of the source (see Fig. IV.8). A recent study has indeed implemented a PDH stabilization of a QCL (emission wavelength at 4.5 µm) on a 10 3 finesse Fabry-Perot cavity with a 4 MHz modulation of the injection current, for CEAS applications [START_REF] Yang | Mid-infrared cavity-enhanced absorption sensor for ppb-level n2o detection using an injection-current-modulated quantum cascade laser[END_REF]. This scheme is more challenging in the mid-IR due a dependency of the optical power with the injection current. However, it is still feasible and this first demonstration is promising for future applications of cavity optomechanics in the mid-IR.

Cavity optomechanical spring sensing of gas molecules absorption based on these micrometric MIM cavities has finally been studied theoretically and numerically. The concept is inspired by optomechanical mass sensors: it consists of detecting absorption of an intracavity gas minimizing the optical spring effect induced by the radiation pressure on the mechanical membrane. Unlike gravimetric sensors, we are only interested in absorption: there is not any accretion of molecules on the mechanical resonator that would influence its dynamical properties. Our aim is to excite the carbon dioxide (CO 2 ) molecules in their ro-vibrational energy levels with a laser tuned on the absorption peak of interest. The micrometric cavities have then been designed at 4.23 µm, close the main absorption line of CO 2 . The optical finesse and the dispersive optomechanical coupling have been estimated, respectively, at 10 4 and 5 GHz/nm. We have quantified, by means of multiphysics FEM simulations of the dynamical behavior of the membrane in a close air-filled cavity, the fundamental resonance frequencies f m , quality factor Q m and effective masses of circular membranes of various dimensions. In particular, we have estimated, with an inner air at atmospheric pressure (worst case scenario), f m in the MHz range, Q m between 10 and 50 and m eff between 0.335 and 3.019 ng, depending on the membrane diameter (d m ∈ [START_REF] Ding | High frequency gaas nano-optomechanical disk resonator[END_REF][START_REF] Palais | Fiber coupling using graded-index rod lenses[END_REF] µm and thickness L m = 200 nm). For our micrometric cavity, and a 50 µm diameter, 200 nm thick membrane, the vacuum dispersive coupling rate has been evaluated around g 0 = 12.1 kHz (100 times higher than the bulk MIM setups [START_REF] Wilson | Cavity optomechanics with high-stress silicon nitride films[END_REF][START_REF] Jayich | Dispersive optomechanics: a membrane inside a cavity[END_REF][START_REF] Wilson | Cavity optomechanics with stoichiometric SiN films[END_REF] and 10 times higher than the best fiber-based MIM setups [START_REF] Favero | Fluctuating nanomechanical system in a high finesse optical microcavity[END_REF][START_REF] Reinhardt | Ultralow-noise SiN trampoline resonators for sensing and optomechanics[END_REF][START_REF] Flowers-Jacobs | Fiber-cavity-based optomechanical device[END_REF]). For this specific geometry, and typical experimental frequency noises, the LOD of the trace-gas sensing technique has been quantified at 83 ppb (pert per billion) with a responsivity of 1.29 kHz/ppb, corresponding to a mechanical resonance frequency shift induced by gas absorption in the cavity medium. A figure of merit has finally been defined as an equivalent LOD in ppb/W Hz normalized all the important parameters that influence the transduction scheme: the optical power, the optical contrast, the mechanical quality factor, the optical finesse, and finally the single photon coupling strength g 0 . This quantity will serve as a criterium to compare future cavity optomechanical spectoscopic sensors, independently of the mechanical, optical and optomechanical properties of the setups.

As a perspective of this work, the theoretical framework used to describe dispersive optomechanical systems have been extended to the general case of a simultaneously dispersive, external dissipative, and intrinsic dissipative coupling scheme. These two dissipative contributions, related to a modulation, by the mechanical displacement, of the optical losses ocurring at either the input/output ports of the optical cavity or in the cavity medium, has shown non-negligible dynamical effects in recent photonic crystal-based experimental systems. This clear distinction between external and intrinsic interactions has allowed us to identify several optical loss regimes, enhancing specific coupling mechanisms. The mechanical dynamics has been studied in order to derive the general expression of the optical spring effect and optomechanical damping, in the presence of the three interactions. These analytical expressions are complex to analyze. We have however highlighted 45 limit cases, each corresponding to a specific sideband regime, optical loss regime, and optomechanical coupling configuration, where some terms predominate over others. Our model has finally been applied on a photonic crystal optomechanical setup from the literature [START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF], corresponding to several limit cases. Comparisons with their measurements in various concrete situations have shown excellent agreements. We consider these calculations will serve as an interesting modeling tool for designing cavity optomechanical sensor based on these three interactions, especially gas spectrocopic cavities developed in this work, which could also exploit a dissipative interaction. This thesis work represents an interesting and promising advance in the field of cavity optomechanics and optical sensors. Firstly, the silicon integration work carried out to fabricate vacuum sealed micrometric MIM cavities will benefit the most fundamental optomechanical applications. Mechanical quality factors close to the values measured on commercial silicon nitride membranes (10 5 -10 6 ) are expected. In the near-IR, with adapted multilayer mirrors, the optical finesse could also easily reach the best finesse achived with fiber cavities (10 5 ). Secondly, the field of cavity optomechanics is extended to the mid-IR range, offering many perspectives for sensor applications. I personally consider that the frequency stabilization techniques studied during this thesis are essential for such sensors, using an optomechanical transduction, and, more generally, requiring long acquisition time and long-term stabilization. Since optomechanical effects mainly occur with a detuned laser, the offset sideband method is of great interest for this type of sensor. Easily implemented on mastered optical sources such as external cavity laser diodes, it could also be applied to QCLs in the mid-IR for future optomechanical spectroscopic cavities or bolometers. I believe that future applied developments of optomechanical sensors will necessarily have to take these considerations into account.

APPENDIX
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Detailed development of the transfer matrix formalism

We follow the methodology dedicated to the propagation of an electromagnetic wave in a stratified medium introduced, for instance, in the book of Max Born and Emil Wolf [START_REF] Born | Principles Of Optics[END_REF] or the one from G. Brooker [START_REF] Brooker | Modern Classical Optics[END_REF]. We aim to demonstrate the transfer matrix formalism used in chapter I. We use the same notations as Max Born and Emil Wolf.

The basic electromagnetic equations

The Maxwell equations describing the propagation of an electromagnetic wave in a medium without any charge and current read:

⃗ ∇. ⃗ E = 0 (A.1) ⃗ ∇. ⃗ H = 0 (A.2) ⃗ ∇ × ⃗ E = -µ ∂ ⃗ H ∂t (A.3) ⃗ ∇ × ⃗ H = ϵ ∂ ⃗ E ∂t (A.4)
where ϵ and µ are respectively the permittivity and permeability of the material. Assuming a non magnetic material, we have µ = µ 0 , where µ 0 is the permability of vacuum. We consider a plane wave propagating in the medium, in the z direction. We consider a monochromatic wave and a harmonic behavior, with the mathematical convention ⃗ E = ⃗ E exp (kz -ωt) where ⃗ k is the wave vector. The components of the electromagnetic fields are denoted E i and H i with i = x, y or z. We assume at first the wave is TE, but the formalism can be easily extended to TM field [START_REF] Brooker | Modern Classical Optics[END_REF]. We will see that the results are equivalent in normal incidence. In the TE case, there is no electric field component in the z direction (E z = 0). As the wave is plane, a second component is null, for instance E y (the treatment is equivalent with E x ). Using these assumptions results in the following differential equations: These equations reveal that the fields only depend on the y and z variable. By combining (A.5), (A.7) and (A.10), we deduce the wave equation for the transverse component of the electric field:

∂ 2 E x ∂y 2 + ∂ 2 E x ∂z 2 + n 2 k 2 0 E x = 0 (A.11)
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General expressions of the optomechanical effects

The general expressions of each term of the optical spring effect δω m and optomechanical damping γ opt given, respectively, by equations IV.32 and IV.33 are calculated here thanks to the method described in chapter IV. The terms due to purely dispersive, external, and intrinsic dissipative situations are given in the following: Finally, the intertwined terms linked to "interference" between the couplings are given in the following: 

δω disp m (ω, ∆) =

Abstract *

This thesis deals with the development of optomechanical spectroscopic cavities in the midinfrared wavelength range (mid-IR, between 3 and 12 µm). Indeed, in this spectral range, detectors have a degraded detectivity compared to visible or even near infrared detectors. The optomechanical interaction is a method of choice for transduction. This technique could allow to overcome this problem via the pump-probe method in the mid-IR and the visible ranges respectively. It could also allow to obtain a better spectral resolution of the absorption lines of gaseous molecules and to reach very good detection limits for a large selection of chemical species. This work finally extends the field of cavity optomechanics to the MIR range, opening the latter to various sensor applications. The thesis has been organized according to a classical approach, starting with a general theoretical study. A generic model of the whole optomechanical interactions (dispersive and dissipative) has been proposed and validated on concrete cases taken from the literature, by comparison with existing measurements. These developments have led to complete expressions of the dynamic optomechanical effects (optical spring effect and optomechanical damping). The "membrane-in-the-middle" (MIM) system, composed of a membrane suspended in a Fabry Perot cavity, has been chosen as it is particularly well suited for this application. We have designed an optomechanical microcavity based on this architecture and a microfabrication process in silicon technology. They have been designed specifically for the detection of carbon dioxide (CO 2 ), via the measurement of the mechanical resonance frequency shift induced by the absorption losses minimizing the impact of the optical spring effect. The limit of detection in the case of traces of CO2 is numerically estimated between 10 and 100 ppb (parts per billion), based on analytical analyses coupled with multiphysics finite element simulations. In parallel to these developments, and in order to better define the characteristics of such a system, we have implemented a new type of hybrid MIM cavity using lensed Fiber Bragg Gratings and dielectric mirrors in the near-infrared region (near-IR, 1.55 µm). We have characterized on a dedicated bench the thermomechanical mot ion of commercial silicon nitride (SiN or Si 3 N 4 ) membranes using an external cavity laser diode stabilized (with the Pound-Drever-Hall method) on our fiber optomechanical cavities. A complete analysis of the frequency stability, as well as the optical, thermal and mechanical behavior of this system has been performed, and its use as a sensor is considered. The theoretical model also allows a better experimental understanding of the different types of couplings at play. We then assembled a macroscopic MIM optomechanical cavity in the mid-IR with multilayer Bragg mirrors (composed of amorphous silicon and silica). The final microcavity is indeed based these specific mirrors. The MIM cavities integrated with a Si 3 N 4 membrane are currently in fabrication at the CEA-Leti cleanroom platform. * Résumé en français au verso.

Figure 1 .

 1 Figure 1. Schematic illustration of the generic Fabry-Perot optical cavity with one movable mirror. The mechanical displacement u m and intrinsic damping γ m are introduced.

Figure 3 .

 3 Figure 3. Suspended mirrors of various geometries: (a) Doubly clamped beam of Arcizet et al. [24]. (b) Simply clamped beam (or cantilever) of Gröblacher et al. [27]. (c) Bridge resonator with a localized highly reflective coating, by Gröblacher et al. [32]. (d) Micropillar on a suspended membrane of Kuhn et al. [29]. (e) Trampoline resonator of Kleckner et al. [31].

Figure 4 .

 4 Figure 4. Mechanical resonator inside an optical cavity from the literature: (a) silicon nitride membrane-in-the-middle setup, with a bulk Fabry-Perot cavity[START_REF] Wilson | Cavity optomechanics with high-stress silicon nitride films[END_REF], or fiber based devices with (b) a carbon-based nanorod of Favero et al.[START_REF] Favero | Fluctuating nanomechanical system in a high finesse optical microcavity[END_REF], (c) a silicon nitride trampoline resonator of Reinhardt et al.[START_REF] Reinhardt | Ultralow-noise SiN trampoline resonators for sensing and optomechanics[END_REF], (d) silicon nitride stripes of Rochau et al.[START_REF] Rochau | Dynamical backaction in an ultrahigh-finesse fiber-based microcavity[END_REF], and (e) silicon carbide nanowires of Fogliano et al.[START_REF] Fogliano | Mapping the cavity optomechanical interaction with subwavelength-sized ultrasensitive nanomechanical force sensors[END_REF].

Figure 5 .

 5 Figure 5. Suspended whispering gallery mode resonators from the literature: (a) microtoroid [48], (b) ring resonator[START_REF] Rosenberg | Static and dynamic wavelength routing via the gradient optical force[END_REF], (c) microdisk[START_REF] Ding | High frequency gaas nano-optomechanical disk resonator[END_REF], and (d) microsphere[START_REF] Jiang | Chip-based silica microspheres for cavity optomechanics[END_REF].

Figure 6 .

 6 Figure 6. Near-field optomechanical setups from the literature: (a) doubly clamped nanostrings coupled to microtoroid resonator[START_REF] Anetsberger | Near-field cavity optomechanics with nanomechanical oscillators[END_REF], (b) thin nanomechanical beam coupled to a microdisk[START_REF] Schilling | Near-Field Integration of a SiN Nanobeam and a SiO 2 Microcavity for Heisenberg-Limited Displacement Sensing[END_REF], (c) nanomechanical beam waveguide coupled to a microdisk[START_REF] Li | Reactive cavity optical force on microdiskcoupled nanomechanical beam waveguides[END_REF], and graphene membrane coupled to a microsphere[START_REF] Cole | Evanescent-Field Optical Readout of Graphene Mechanical Motion at Room Temperature[END_REF].

Figure 7 .

 7 Figure 7. Photonic crystal-based optomechanical systems from the literature: (a) zipper cavity[START_REF] Eichenfield | A picogramand nanometre-scale photonic-crystal optomechanical cavity[END_REF], (b) split-beam nanocavity[START_REF] Hryciw | Tuning of nanocavity optomechanical coupling using a near-field fiber probe[END_REF], (c) suspended slotted slab[START_REF] Safavi-Naeini | Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity[END_REF], (d) L3 defect slab suspended over a waveguide[START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF][START_REF] Tsvirkun | Optomechanics in hybrid fully-integrated two-dimensional photonic crystal resonators[END_REF], (e) suspended L3 defect slab (the inset focus on the defect)[START_REF] Gavartin | Optomechanical Coupling in a Two-Dimensional Photonic Crystal Defect Cavity[END_REF], (f) beam-in-cavity (doubly clamped beam in a L3 defect)[START_REF] Sun | Femtogram Doubly Clamped Nanomechanical Resonators Embedded in a High-Q Two-Dimensional Photonic Crystal Nanocavity[END_REF], and (g) optomechanical crystal[START_REF] Chan | Laser cooling of a nanomechanical oscillator into its quantum ground state[END_REF].

Figure 8 .

 8 Figure 8. Cavity optomechanical mass sensing. (a) Radiation-driven microtoroid as a sensing platform to detect polyethylene microbeads. Graph on the left: shift of the optomechanical oscillator frequency (fundamental and 5 th modes) as a function of the mass deposited on its surface. Graph on the right: Influence of a sequential deposit of microbeads on the mechanical spectrum [82]. (b)Working principle of the microsphere sensor for single protein molecule (bovine serum albumin or BSA) optical spring detection. Typical measured spectrograms with evidence of protein binding induced optomechanical oscillator frequency shift[START_REF] Yu | Cavity optomechanical spring sensing of single molecules[END_REF]. (c) Detection of volatile organic compound analytes adsorbed on a cantilever-like nanomechanical resonator coupled to a racetrack ring resonator, using the optical spring effect. Graph: Typical measured mechanical frequency shifts at various optical detunings[START_REF] Maksymowych | Optomechanical spring enhanced mass sensing[END_REF].

Figure 10 .

 10 Figure10. Cavity optomechanical atomic force microscopy: (a) cantilever with a sharp probe tip coupled to a microdisk[START_REF] Srinivasan | Optomechanical Transduction of an Integrated Silicon Cantilever Probe Using a Microdisk Resonator[END_REF], (b) similar system used for atomic force microscopy to detect photothermal induced resonances[START_REF] Chae | Nanophotonic Atomic Force Microscope Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale[END_REF], and (c) High frequency suspended ring resonator with a sharp probe[START_REF] Allain | Optomechanical resonating probe for very high frequency sensing of atomic forces[END_REF]. (d) Micromechanical trampoline membrane resonator with a magnetic grain which could be used in the middle of a Fabry-Perot for optomechanical magnetic force microscopy[START_REF] Fischer | Spin detection with a micromechanical trampoline: towards magnetic resonance microscopy harnessing cavity optomechanics[END_REF].

Figure 11 .

 11 Figure 11. Cavity optomechanical magnetometry. (a) Microtoroid cavity with a magnetostrictive material (Terfenol-D) deposited on its surface to strongly increase the expansion of the optomechanical cavities under a magnetic field exerted by a localized coil[START_REF] Forstner | Ultrasensitive Optomechanical Magnetometry[END_REF]. (b) Photonic crystal split-beam nanocavity sensitive to magnetic torque resulting from a permanent RF magnetic field in the z direction created by a coil[START_REF] Wu | Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry[END_REF].

Figure 13 .

 13 Figure 13. Illustrated outline of the thesis work. Chapter one presents theoretical and numerical studies on the MIM setups, in the mid-IR and near-IR. Chapter two presents the millimetric fiberbased setup used to experimentally assess the basic optomechanical properties. Chapter three details the silicon integration work, and the concept of the spectroscopic gas sensor with optomechanical transduction based on these micrometric cavities. Chapter four extends the usual optomechanical theory to a situation where all the couplings (dispersive and dissipative) are taken into account.
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 A Figure A. Schematic representation of (a) the mid-infrared silicon integrated and (b) the near-infrared lensed FBG-based optomechanical cavities, with the several mode shapes of the membrane with the corresponding geometry ((c) circular and (d) squared).

Figure I. 1 .

 1 Figure I.1. Schematic of a homogeneous medium.

Figure I. 2 .

 2 Figure I.2. Schematic of a stratified medium.
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Figure I. 3 .

 3 Figure I.3. Schematic representation of the MIM setup in the mid-IR region, with a-Si/SiO 2 dielectric mirrors and soichiometric silicon nitride membrane (Si 3 N 4 ). The optical indices of each layer, as well as the incident, transmitted, and reflected electromagnetic field amplitudes are indicated on the schematic.

Figure I. 4 .

 4 Figure I.4. Spectral behavior of a Bragg multilayer mirror. (a) Spectral response in reflection for multiple index contrasts ∆n. The case ∆n = 2.0528 corresponds to the SiO 2 /a-Si layers (Table I.1, blue curve), and the two others are characterized by the same number of layers with lower high-index and higher low-index (by 0.2 for the red curve and by 0.8 for the yellow curve), with adapted layer thickness. (b) Mirror bandwidth δλ mirror as a function of ∆n for N = 11. (c) Spectral response in reflection for multiple numbers of layers N . (c) Maximum reflectivity and minimum transmission (in the bandwidth, at the bragg wavelength) as a function of N for ∆n = 2.0528.

Figure I. 5 .

 5 Figure I.5. Optical response of the mid-infrared MIM cavity in the full mirror bandwidth, (a) in reflection and (b) in transmission. Illustration of the effect of the membrane position on the resonance peak, (c) in reflection and (d) in transmission.

  I.5 (a) and (b)). The main discrepancy arises with the thin, low reflective membrane which creates two sub-cavities, coupled through the membrane transmission. The resonance frequencies depend on its position (see Fig. I.5 (c) and (d)) relatively to nodes and anti-nodes of the stationnary intra-cavity electromagnetic field. At nodes and anti-nodes, the membrane has a low influence, whereas it induces strong variations between them. It follows a periodic behavior of the resonance frequency with the membrane position, as shown in Fig. I.6.

Figure I. 6 .

 6 Figure I.6. Resonance condition of the MIM setup for three different modes around the working wavelength. The resonance frequency f r is normalized by the free spectral range f r /∆ν FSR as a function of the membrane position z m normalized by the resonance wavelength λ r .

Figure I. 7 .

 7 Figure I.7. Comparaison of the resonance conditions (in wavelength) found by the trichotomy algorithm (applied on a direct matrix product) and by solving the analytical transcendental equation, to find the resonance condition of the MIM setup. Influence of a large difference in cavity length on this resonance condition ((a) L cav = 8.24 µm and (b) L cav = 31.65 µm).

Figure I. 8 .

 8 Figure I.8. Influence of the optical parameters ((b) membrane thickness and reflectivity, and (c) small difference in cavity length, where L 1 = 8.24 µm) on the resonance condition f r /δν FSR . We represent 3 resonant modes on (a) and focus around the working wavelength. Each resonance condition is plotted as a function of the membrane position normalized by the cavity length.

Figure I. 9 .

 9 Figure I.9. Si 3 N 4 membrane reflection coefficient r m as a function of its thickness L m .

Figure I. 10 .

 10 Figure I.10. Cavity bandwidth ((a) and (c)) of the second mode (see Fig I.6) and finesse ((b) and (d)) as a function of the membrane position normalized by the cavity length z m /L cav , and influence of a large difference in cavity length.

  Fig. I.11, for multiple gas concentration, and for our two cavity lengths.

Figure I. 11 .

 11 Figure I.11. Intrinsic decay rate as a function of the membrane position along the cavity length for multiple gas concentration, and influence of a large difference in cavity length.

  Fig. I.12. A local derivation (pointby-point finite difference) of the optical resonance condition as a function of the membrane position (see Fig. I.7

Figure I. 12 .

 12 Figure I.12. Dispersive optomechanical coupling g om as a function of the membrane position normalized by the cavity length z m /L cav . We compare the couplings found by the trichotomy algorithm (applied on a direct matrix product) and by solving the analytical transcendental equation. Influence of a large difference in cavity length on this coupling ((a) L cav = 8.24 µm and (b) L cav = 31.65 µm).

Figure I. 13 .

 13 Figure I.13. Influence of the optical parameters ((b) membrane thickness and reflectivity, and (c) small difference in cavity length) on the dispersive optomechanical coupling g om . We represent 3 resonant modes on (a) and focus on the second mode (around the working wavelength). Each coupling is plotted as a function of the membrane position normalized by the cavity length z m /L cav .

(

  It is also estimated by simple point-by-point derivation of κ as a function of z m (see Fig. I.10). The effect of a large difference in cavity length on the evolution of this coupling as a function of the membrane position is shown in Fig. I.14.

Figure I. 14 .

 14 Figure I.14. Overall dissipative optomechanical coupling κ om as a function of the membrane position normalized by the cavity length z m /L cav and influence of a large difference in cavity length on this coupling ((a) L cav = 8.24 µm and (b) L cav = 31.65 µm).

  I.11) is derivated by point-by-point finite difference, for each membrane position and gas concentration, and for the two cavity lengths. The result is shown in Fig. I.16.

Figure I. 15 .

 15 Figure I.15. Influence of the optical parameters ((b) membrane thickness and reflectivity, and (c) small difference in cavity length) on the overall dissipative optomechanical coupling κ om , without any optical absorption within the cavity. We represent 3 resonant modes on (a) and focus on the second mode (around the working wavelength). Each coupling is plotted as a function of the membrane position normalized by the cavity length z m /L cav .

Figure I. 16 .

 16 Figure I.16. Intrinsic dissipative coupling (in the presence of intra-cavity optical absorption) as a function of the membrane position along the cavity length for multiple gas concentration, and influence of a large difference in cavity length.

Figure I. 17 .

 17 Figure I.17. Schematic representation of the FBG principle with the corresponding effective index variation along the fiber axis.

Figure I. 18 .

 18 Figure I.18.Examples of theoretical spectra of three FBG with slightly different properties. FBG 1 is characterized by a bandwidth of 0.5 nm in wavelength, while FBG 3 is characterized by a bandwidth 1 nm. The visibility is equal to 1.

Figure I. 19 .

 19 Figure I.19. Schematic representation of the FBG-based cavity geometries considered: (a) Two FBGs facing each other; (b) A FBG facing a concave mirror; (c) Two lensed FBG (with gradientindex (GRIN) lenses) facing each other; (d) A lensed FBG facing a plane mirror. The last one is the chosen configuration.

Figure I. 20 .

 20 Figure I.20. Schematic representation of the propagation of an electric field between two homogeneous media.

Figure I. 21 .

 21 Figure I.21. Schematic representation of the external lensed FBG-based MIM cavity, with the different propagation domains.

Figure I. 22 .

 22 Figure I.22. Optical spectrum in reflection of the lensed FBG ((a): configuration 1 and (b): configuration 2), (c) the dielectric mirror, and the hybrid Fabry-Perot for L air = 5 mm ((d): configuration 1 and (e): configuration 2).

Figure I. 23 .

 23 Figure I.23. Optical spectrum in reflection of the lensed FBG-based MIM cavities for three membrane positions z m , and both sets of parameters ((a): configuration 1 and (b): configuration 2). L air designates the distance between the GRIN lens and the dielectric mirror.

Figure I. 24 .

 24 Figure I.24. (a), (b) Resonance wavelength shift ∆λ cav (in orange) and (c), (d) cavity bandwidth κ (in green) of the lensed FBG-based MIM cavities as a function of the membrane position z m normalized by the Bragg wavelength λ 0 = 1.55 µm, for both sets of parameters ((a), (c): configuration 1 and (b), (d): configuration 2).

  Fig. I.25.

Figure I. 25 .

 25 Figure I.25. (a), (b) Dispersive optomechanical coupling g om (in orange) and (c), (d) overall dissipative optomechanical coupling κ om (in green) of the lensed FBG-based MIM cavities as a function of the membrane position z m normalized by the Bragg wavelength λ 0 = 1.55 µm, for both sets of parameters ((a), (c): configuration 1 and (b), (d): configuration 2).

Figure I. 26 .

 26 Figure I.26. Schematic representation of a squared suspended membrane.

  Fig. I.27 (for the squared case i.e. a = b), with the corresponding resonance frequencies. They are computed with FEM simulations on COMSOL Multiphysics, using the membrane model with clamped edges and in-plane tension. The mode shapes are normalized.

Figure I. 27 .

 27 Figure I.27. Eight first normalized mechanical mode shapes of a resonant squared membrane with the corresponding resonance frequency. Some modes are degenerates. The (m, n) index have been displayed for each mode shape.

Figure I. 28 .

 28 Figure I.28. Schematic representation of a circular suspended membrane.

  where A is a constant and m ∈ Z. (I.69) Then the R function verifies the following Bessel differential equation:

Figure I. 29 .

 29 Figure I.29. Six first normalized mechanical mode shapes of a resonant circuar membrane with the corresponding resonance frequency. The (m, n) index have been displayed for each mode shape.

  × b × L m ) m eff (ng) 0.5 × 0.5 mm 2 × 30 nm 5.94 0.5 × 0.5 mm 2 × 50 nm 9.91 1 × 1 mm 2 × 50 nm 39.63

Figure I. 30 .

 30 Figure I.30. Effective masses of the first mode of the circular silicon nitride membrane, for all geometries fabricated at the CEA-Leti cleanroom platform.

Figure B .

 B Figure B. Picture of the external lensed FBG-based optomechanical MIM setup.

  Fig. II.1 displays examples from the literature of high to ultra-high finesse fiber based optomechanical cavities.

Figure II. 1 .

 1 Figure II.1. Examples of high finesse optomechanical cavities, based on two fiber Bragg coated concave end facets. (a) Carbon-based nanorod (attached onto a silicon lever) in the middle of a cavity (42 µm long with a finesse around 5000 at λ = 780 nm) [34]. (b) On the left: carbon nanotube in the middle of a cavity (42 µm long with a finesse around 24500 at λ = 780 nm). On the right: Scanning electron microscopy of the 19.7 µm long, 6 -8 nm diameter carbon nanotube at rest and excited at mechanical resonance [173]. (c) SiN membrane in the middle of a cavity at λ = 1550 nm (80 µm long with a finesse below 20000) [43]. (d) On the top: schematic of a SiN MIM setup at λ = 1550 nm (70 µm long with a finesse below 100000). On the bottom: optical spring effect and optomechanical damping of the (3,3) mechanical resonance mode[START_REF] Shkarin | Optically mediated hybridization between two mechanical modes[END_REF]. (e) On the top: picture of a cavity (43.8 µm long) used for a SI 3 N 4 MIM setup (finesse between 30000 and 195000). On the bottom: associated optical spring effect and optomechanical damping measured on the second harmonic flexural mode[START_REF] Rochau | Dynamical backaction in an ultrahigh-finesse fiber-based microcavity[END_REF].

  in the middle of such cavities (see Fig. II.1 (a) and (b)), with optical measurement of the Brownian motion. Other groups worked on the introduction of a high quality factor silicon nitride membrane: the first study on this fiber-based MIM setup (see Fig. II.1 (c)) performed observations of the dynamical backaction with dispersive optomechanical interaction, with an optically induced mechanical resonance frequency shift (optical spring effect) and optomechanical damping [43]. Similar configurations have been constructed since, with the associated dynamical backaction observations (see Fig. II.

Figure II. 2 .

 2 Figure II.2. Examples of FBG-based optomechanical cavities, at λ = 1550 nm. (a) External fiber Fabry-Perot with fixed focusing lensed FBG (microlens made on a graded index fiber) and micromechanical metallic mirror (focusing length of 40 µm, finesse of 10) [174]. (b) On-fiber external FBG based Fabry-Perot with a metallic suspended mirror (cavity length of 10 mm, finesse of 2) [175]. (c) Same gradient index focusing (GIF) lensed FBG based optomechanical cavity integrated in a fiber ring optical cavity (more details of the experimental setup in [176]).

Fig. II. 3

 3 displays examples of microstructured self-aligned cavities on a fiber tip, for various applications.

Figure II. 3 .

 3 Figure II.3.Examples of microstructured self-aligned cavities on fiber tip. (a) Scanning electron microscopy (on the left) and schematic (on the right) of a monolithic external fiber cavity based on a fiber-to-air interface in front of microstructured mechanical cantilever coated with a metallic layer and anchored on the fiber. This system could be used for atomic force microscopy[START_REF] Iannuzzi | Monolithic fiber-top sensor for critical environments and standard applications[END_REF]. (b) On the left: scanning electron microscope picture of a suspended circular resonator with two arms, structured at the end of a fiber and coated with a metallic layer. On the right: example of optically measured mechanical response, under different concentrations of hydrogen in the surrounding air[START_REF] Ma | Optical fiber tip acoustic resonator for hydrogen sensing[END_REF]. (c) Micrographs of a dual-nanoweb on a fiber tip used for investigation of optomechanical nonlinearity effects.[START_REF] Butsch | Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber[END_REF]. (d) Polymer cantilever on a donut-shaped diaphragm coated with a metallic layer and self-aligned with the fiber end interface using a ceramic ferrule. This system is used for biological sensing (Listeria food pathogen sensing)[START_REF] Li | Label-free ferrule-top optical fiber micro-cantilever biosensor[END_REF]. (e) Schematic representation of two fiber accelerometer assemblies with finite element modelisation of the mechanical behavior of each resonator[START_REF] Bruno | Opto-mechanical labon-fiber accelerometers[END_REF]. (f) Schematic representation of an external Fabry-Perot between a fiber-air interface and a metallic cantilever based diaphragm, used as a highly sensitive microphone for photoacoustic detection of NO in nitrogen[START_REF] Lauwers | An all-optical photoacoustic sensor for the detection of trace gas[END_REF].

Figure II. 4 .

 4 Figure II.4. Schematic representation of the lensed FBG with polarization-maintaining (PM) fiber (in blue) and quarter-pitch collimating gradient index (GRIN) lens. The whole assembly is protected with a glass coating.

Figure II. 5 .

 5 Figure II.5. (a) Experimental setup for the characterization of the spectrum of the lensed FBG in reflection (FC-PC/FC-APC: Fiber Coupled connectors with Physical Contact/Angled Physical Contact, PM: Polarization Maintaining, PD: Photodetector). (b), (c) Reflection response of the 10 lensed FBG (LFBG)s relatively to the reference signal measured by the CT400. The LFBGs are labeled from 01 to 10. The response of the LFBG01 is highlighted and the others displayed for comparison purpose. The circulator insertion losses are taken into account and removed from the measured signal.

  I.24) yield good agreements.

Figure II. 6 .

 6 Figure II.6. Schematic representation of the propagation of the beam through the lensed fiber assembly and the free space. The three domains used for the ABCD formalism are indicated, with their corresponding optical index (n c : index of the fiber core).

Figure II. 7 .

 7 Figure II.7. (a)Evolution of the waist of a gaussian beam propagating in the lensed fiber assembly and reflected back by an optical mirror, for three different cavity lengtsh, using the ABCD formalism. The symmetrical curve, in the negative region, is represented to visualize the full beam width. The limit between the lensed fiber assembly and the free space region is displayed. (b) Coupling efficiency of this system, with and without a GRIN lens.

  [192]. As represented on Fig. II.8, they are made of a thin silicon nitride film (30 to 50 nm) deposited on a thick silicon frame (250 µm). The chips' dimensions are 5 × 5 mm with a squared hole of various dimensions where the thin film is suspended. Five geometries are used, and with two kinds of silicon nitride with different internal tensile stresses.

Figure II. 8 .

 8 Figure II.8. (a) Photography of a 1 × 1 mm Si 3 N 4 membrane (Norcada) packaged in a capsule. (b) Schematic representation of the membrane on its silicon frame (with the etched pit facing up).

Figure II. 9 .

 9 Figure II.9. Schematic representation of the external MIM cavity. The UV curing adhesive points on each angle (or side) of the frame of the membrane are not represented here.

Figure II. 10 .

 10 Figure II.10. Pictures of the system with the first alignment setup, used in air. ((a): wide field, (b): zoom on the optical cavity).

Figure II. 11 .

 11 Figure II.11. Pictures of the system with the second alignment setup, mainly used in vacuum. ((a): wide field, (b): zoom on the optical cavity).

Figure II. 12 .

 12 Figure II.12. Experimental setup for the optical study of the external fiber-based MIM optomechanical cavity (ECDL: external cavity diode laser, FBG: fiber bragg grating, FC-PC/FC-APC: Fiber Coupled connectors with Physical Contact/Angled Physical Contact, OI: Optical isolator, PD: photodetector, PolC: polarization controller, PM: polarization maintaining).

Figure II. 13 .

 13 Figure II.13. Typical optical spectra in reflection for 4 lensed FBG-based MIM cavities, close to one of the spectral edges of the FBG. The cavities differ from each other with the membrane (indicated above each graph) and the lensed FBG used. On (a), we displayed the response of the LFBG alone, for comparison. The laser frequency and the reflection response are in arbitrary units. The resonance peak of interest is indicated by a red arrow.

Figure II. 14 .

 14 Figure II.14. Focus on the resonance peak of interest on the typical optical spectra in reflection for 4 lensed FBG-based MIM cavities, as a function of the wavelength detuning between the laser source and the resonance wavelength. The cavities are the same as those in Fig. II.13. The reflection response is in arbitrary units.

Figure II. 15 .

 15 Figure II.15. Fabry-Perot optical response in reflection R cav (in dark) and derivative (in blue) as a function of the optical detuning normalized by the cavity bandwidth ∆/κ.

  Fig. II.16.

Figure II. 16 .

 16 Figure II.16. Conceptual schematic of the PDH locking technique between a laser and a reference Fabry-Perot cavity (EOM: electro-optic modulator, PD: photodetector, PID: proportional-integralderivative).

Figure II. 17 .

 17 Figure II.17. (a), (b), (c): Optical response in reflection for a constant (black curve) and a phase modulated (blue curve) input beam. (d), (e), (f): Corresponding sine error signal (red curve).(g), (h), (i):Corresponding cosine error signal (red curve). We represented the linear fit on the sinusoïdal error signal. Each column corresponds to a modulation frequency regime: f p = 0.25κ ((a), (d), (g)), f p = κ ((b), (e), (h)) and f p = 3κ ((c), (f), (i)). A cavity bandwidth of κ = 40 MHz and a modulation depth of β ≈ 1.08 (or a modulation rate of τ mod = J 1 (β) 2 /J 0 (β) 2 ≈ 41 %) are considered.

  (a)). The error signal is divided into a sine and cosine term, respectively denoted by ϵ sin and ϵ cos . They are represented as a function of the optical detuning in Fig.II.17 (d) to (i). In the low modulation frequency regime (see Fig.(d) and (g)), the cosine term is predominant in amplitude but both signals can serve as an error signal, within the limit of the linear part. In the high (see Fig.(f) and (i)) modulation frequency regime, the linear part of the sine term is of higher amplitude, which makes it more suitable for the stabilization. In the intermediate (see Fig.(e) and (h)) regime, the amplitude difference is not clear, and both signal could be used.

Figure II. 18 .

 18 Figure II.18. Error signal slope (linear part of ϵ sin /P in ) as a function of (a) the modulation depth in the high modulation frequency regime f p = 3κ and (b) the modulation frequency for the optimal depth β ≈ 1.08. A cavity bandwidth of κ = 40 MHz is considered.

Figure II. 19 .

 19 Figure II.19. Error signal slope (linear part of ϵ sin /P in ) as a function of the cavity bandwidth κ.Three modulation frequency regimes are considered: f p = 0.25κ (blue thin curve), f p = κ (red curve) and f p = 3κ (green thick curve). A modulation depth of β ≈ 1.08 is chosen.

  1-MO, iXblue) is added. It enables a 26 dB amplification of signals oscillating at up to 200 MHz. Both elements are illustrated in Fig. II.20 (b).

Figure II. 20 .

 20 Figure II.20. (a) Experimental setup for the PDH stabilization of the external fiber-based MIM optomechanical cavity (ARC: analog remote control, AMP: amplifier, ECDL: external-cavity diode laser, EOM: electro-optic modulator, FBG: fiber bragg grating, FC-PC/FC-APC: Fiber Coupled connectors with Physical Contact/Angled Physical Contact, OI: Optical isolator, PD: photodetector, PID: proportional-integral-derivative, PolC: polarization controller, PM: polarization maintaining). (b) Photography of the electro-optic phase modulator with the RF amplifier.

Figure II. 21 .Figure II. 22 .

 2122 Figure II.21. Overview of the cavity response. (a) Large scan around the resonance of interest (35 V of laser piezo scan amplitude corresponds to 7.16 GHz in frequency i.e. 57.3 pm in wavelength). (b) Focus on the resonance peak of highest contrast. The red curve is a fit of the optical response used to estimate the contrast (C R = 97 %), the cavity bandwidth (κ = 53.6 MHz) and the optical quality factor (Q opt = 7.2 × 10 6 ). The finesse is around 50. (c) Optical cavity response without and with phase modulation of the input laser beam, as a function of the detuning in frequency unit. The modulation frequency and depth are respectively 75 MHz and 1.08. Note that this measurement is performed in vacuum environment (P = 5 × 10 -5 mbar).

  Fig. II.23.

Figure II. 23 .

 23 Figure II.23. Measured error signal slope as a function of (a) the modulation depth for a modulation frequency f p = 1.15κ and (b) the modulation frequency for the modulation depth β ≈ 1.4.For this measurement, the cavity bandwidth is κ = 50.1 MHz, the finesse is F ≈ 50 and the input power is 5.48 mW. We take into account a loss of 86.7 % due to losses at the fiber connectors and to the presence of a fiber coupler between the circulator and the photodetector, used to prevent from any voltage saturation.

Figure II. 24 .

 24 Figure II.24. Low frequency noise spectra of the error signal under multiple correction configurations. The unit is in kHz/ √ Hz which corresponds to a shift of the optical resonance frequency normalized by the demodulation bandwidth. Two parameters are swept: the proportional factor c PI and the correction bandwidth δf PI . We displayed 4 configurations on each subfigure (a), (b), (c) and (d).The noise spectra without the correction closed loop is displayed on (d) for comparison purposes. For this example, the cavity bandwidth is around κ = 42.1 MHz, the modulation frequency is f p = 75 MHz (high modulation frequency regime: f p /κ = 1.78), and the modulation depth is close to the optimal value of β = 1.08.

Figure II. 25 .

 25 Figure II.25. Allan deviations of PDH error signals of two different lensed FBG-based MIM cavities.The previously presented frequency noise optimization has only been performed one of these two cavities. The nominal frequency i.e. the phase modulation frequency is, for both cases, 75 MHz. These deviations are calculated from a 27 h and a 12 h time acquisition of the error signals with the PDH stabilization activated, for, respectively, the optimized and non-optimized situation.

Figure II. 26 .

 26 Figure II.26. Pictures of the vacuum bench ((a): wide field, (b): focus on the vacuum chamber).

Fig. II. 27 .

 27 It is based on the PDH bench presented on Fig. II.20 with some additional elements.

Figure II. 27 .

 27 Figure II.27. Experimental setup for the optomechanical characterization of the stabilized external fiber-based MIM cavity (ARC: analog remote control, AMP: amplifier, ECDL: external-cavity diode laser, EOM: electro-optic modulator, FBG: fiber bragg grating, FC-PC/FC-APC: Fiber Coupled connectors with Physical Contact/Angled Physical Contact, OI: Optical isolator, PD: photodetector, PID: proportional-integral-derivative, PolC: polarization controller, PM: polarization maintaining).

Figure II. 28 .

 28 Figure II.28. Measured (a) resonance wavelength shift ∆λ cav (in orange) and (b) cavity bandwidth or full width at half maximum κ (in green) as a function of the membrane relative position ∆z m along the cavity axis. The initial position (∆z m = 0) is the situation without any voltage applied on the piezo-electric material (minimum position z 1 = 3.25 mm + L m /2, see Fig. I.21). For qualitative purposes, the measured optical response as a function of the optical detuning for multiple membrane positions is displayed on the insets. The units are arbitrary, but the x-scale is identical between each inset, for comparison. The position of the peak for z m = 0 is indicated with a dashed line. Fits of the optical response are performed to quantify the cavity properties (red lines).

  I.24 (a) and (b)), but values in the same order of magnitude) and varies around 100 MHz for the losses (coherent with predictions with the second set of paremeters, see Fig. I.24 (b)). One can observe on multiple cavities a small decrease of the resonance wavelength (see Fig. II.28 (a)

Figure II. 29 .

 29 Figure II.29. Derivative of the measured (a) resonance condition (d∆λ cav /dz m , in orange) and (b) decay rate (dκ/dz m , in green) as a function of the membrane relative position ∆z m along the cavity axis. The initial position (∆z m = 0) is the situation without any voltage applied on the piezo-electric material (minimum position z 1 = 3.25 mm + L m /2, see Fig. I.21). The grey areas represent the border effects discussed in the main text (transitional behavior, thermal effect or numerical issues). The black dotted lines represent the approximated expected curves in these domains.

Figure II. 30 .

 30 Figure II.30. Identification of the resonant mechanical modes of a SiN membrane (square geometry 0.5 × 0.5 mm × 30 nm). (a) Measured reference thermomechanical spectrum of the silicon frame (in blue) and (b) of the SiN membrane (in gray). The mechanical modes of interest (i.e. of the membrane) are identified by comparison with the reference spectrum and shown with red arrows. The shapes of each identified mode, simulated by FEM simulation, are represented. A schematic of the optical cavity is displayed on the insets for each measurement.

Figure II. 31 .

 31 Figure II.31. Identification of the resonant mechanical modes of a Si 3 N 4 membrane (square geometry 1 × 1 mm × 50 nm). (a) Measured reference thermomechanical spectrum of the silicon frame (in blue) and (b) of the Si 3 N 4 membrane (in gray). The mechanical modes of interest (i.e. of the membrane) are identified by comparison with the reference spectrum and shown with red arrows. The shapes of each identified mode, simulated by FEM simulation, are represented. A schematic of the optical cavity is displayed on the insets for each measurement.

•

  A SiN membrane (0.5 × 0.5 mm 2 × 30 nm) on Fig. II.32, • A Si 3 N 4 membrane (0.5 × 0.5 mm 2 × 50 nm) on Fig. II.33, • A Si 3 N 4 membrane (1 × 1 mm 2 × 50 nm) on Fig. II.34.

Figure II. 32 .

 32 Figure II.32. Thermomechanical spectrum of a SiN membrane (0.5 × 0.5 mm 2 × 30 nm) near the fundamental resonance frequency, (a) in V/ √ Hz and (b) converted into pm/ √ Hz. The black curve is the thermomechanical fit.

Figure II. 33 .

 33 Figure II.33. Thermomechanical spectrum of a Si 3 N 4 membrane (0.5 × 0.5 mm 2 × 50 nm) near the fundamental resonance frequency, (a) in V/ √ Hz and (b) converted into pm/ √ Hz. The black curve is the thermomechanical fit.

Figure II. 34 .

 34 Figure II.34. Thermomechanical spectrum of a Si 3 N 4 membrane (1 × 1 mm 2 × 50 nm) near the fundamental resonance frequency, (a) in V/ √ Hz and (b) converted into pm/ √ Hz. The black curve is the thermomechanical fit.

  Fig. II.35 and II.36. The deduced properties are summarized in TableII.12.

Figure II. 35 .

 35 Figure II.35. Thermomechanical spectrum of a Si 3 N 4 membrane (1×1 mm 2 ×50 nm), (a) in V/ √ Hz and (b) converted into pm/ √ Hz near the 1 st degenerate mode (2,1)/(1,2). The black curve is the thermomechanical fit.

Figure II. 35

 35 Figure II.35 is a thermomechanical spectrum of the degenerate mode (2, 1)/(1, 2), while figure II.35 represents the mechanical response of the second degenerate mode (3, 1)/[START_REF] Lebedew | Untersuchungen über die Druckkräfte des Lichtes[END_REF][START_REF] Einstein | On the quantum theory of radiation[END_REF]. A clear removal of degeneracy is observed in the second case. This removal of degeneracy is somewhat controlled using the piezo material whose deformation is not perfectly symmetrical, which induces a variation of the membrane constraints. The effective in-plane tension perceived by each mode may vary, which differently modifies each resonance frequency. This phenomenon is studied and further discussed in section II.4.4. Note that this effect is also observed in the case of the 1 st degenerate mode, with a lower frequency shift between the two mechanical modes. Due to the difficulty to clearly differentiate the two peaks, and especially to control the removal of degeneracy, no such response is displayed in this manuscript. The thermomechanical model (see equation II.43) seems well adapted in the case of the 1 st degenerate mode, but is clearly not for the second response. A double peak model is therefore used to fit the PSD, without considering any mode coupling terms between each meachnical mode:

Figure II. 36 .

 36 Figure II.36. Observation of a removal of degeneracy. Thermomechanical spectrum of the second degenerate mode (3,1)/(1,3) of a Si 3 N 4 membrane (1 × 1 mm 2 × 50 nm), (a) in V/ √ Hz and (b) converted into pm/ √ Hz. The black curve is the double mode thermomechanical fit.

Figure II. 37 .

 37 Figure II.37. (a) Influence of the pressure in the vacuum chamber (P ) on the fundamental thermomechanical spectrum of a Si 3 N 4 membrane (0.5 × 0.5 mm 2 × 50 nm). (b), (c), (d) Respectively the optical PSD√ S m at resonance, the resonance frequency, and the quality factor as a function of the environment pressure P .

3 N 4

 34 membrane are summarized on Fig. II.37. Measurements are done under six pressure levels, from 10 -5 to 1 mbar (see Fig. II.37 (a)), and each mechanical parameter (amplitude at resonance, frequency and quality factor) is extracted using the basic fitting model (see Fig. II.37 (b), (c), and (d))

Figure II. 38 .

 38 Figure II.38. Observation of the periodic optical PSD extinctions on a SiN membrane (0.5 × 0.5 mm 2 × 30 nm): (a) Influence of the voltage (V piezo ) applied to the piezo material (or the membrane relative position ∆z m ) on the fundamental optical PSD. Two extinctions are highlighted in red. Only the thermomechanical fit curves are displayed. (b), (c), (d) Respectively the optical PSD √ S m at resonance, the resonance frequency, and the quality factor as a function of V piezo or ∆z m .

Figure II. 39 .

 39 Figure II.39. Observation of the periodic optical PSD extinctions on a Si 3 N 4 membrane (1×1 mm 2 × 50 nm): (a), (b), (c) Respectively the mechanical spectrum √ S m at resonance, the fundamental resonance frequency, and the corresponding quality factor as a function of the relative membrane position ∆z m .

Figure II. 40 .

 40 Figure II.40. Dispersive optomechanical coupling g om as a function of the relative membrane position ∆z m , deduced from the dynamical measurements, using the thermomechanical model ((a) SiN membrane (0.5 × 0.5 mm 2 × 30 nm) and (b) Si 3 N 4 membrane (1 × 1 mm 2 × 50 nm)).

  Fig. II.40, for the two optomechanical cavities analysed in Fig. II.38 and II.39.

  Fig. II.41.

Figure II. 41 .

 41 Figure II.41. Influence of the membrane relative position ∆z m within the cavity on the thermomechanical spectrum of a degenerate mode (3,1)/(1,3) of a Si 3 N 4 membrane (1 × 1 mm 2 × 50 nm). The black curves are the double peak thermomechanical fits.

Figure II. 42 .

 42 Figure II.42. Influence of the membrane relative position ∆z m within the cavity on the removal of degeneracy between modes (3,1) and (1,3) of a Si 3 N 4 membrane (1 × 1 mm 2 × 50 nm). (a) Relative resonance frequency gap ∆f m = f m1 -f m2 and (b) dispersive optomechanical coupling of both mode, as a function of ∆z m .

  4 µm). The relative frequency gap ∆f m = f m1 -f m2 and the dispersive optomechanical coupling of each mode are plotted as a function of ∆z m on Fig. II.42. The linear variation of ∆f m is confirmed (see (a)). The initial frequency gap is first progressively extinguished until ∆z m = 0.3 µm, to finally continuously increase, in absolute terms. One can once again observe the periodic behavior as well as the asymmetry of the optomechanical couplings (see (b)), of the same order of magnitude, with 2 extinction regimes, similar to the fundamental mode (see Fig. II.40 (b)).

  3 h, for each membrane. These measurements demonstrate an excellent stability without frequency noise degradation (low frequency noise maintained in the kHz/ √ Hz range). The first and last optical PSD acquisitions are compared to each other in Fig. II.43 (a) for the low stress SiN and (b) for the high stress Si 3 N 4 . The optical PSD at resonance is shown as a function of time in Fig. II.43 (c) and (d). A linear drift of the mechanical resonance frequency with time is observed (see Fig. II.44 (a)). This trend is most probably due to the tensile stress variations during the experiments. A frequency shift of δf = 530 Hz and 1200 Hz after 83 h is measured for, respectively, the SiN and the Si 3 N 4 membranes. In other words, the slope of the frequency relative variations are close to δf /f 11 = 2.05 × 10 5 h -1 for the SiN and 1.85 × 10 5 h -1 for the Si 3 N 4 . The corresponding relative in-plane tension variations are proportional to these relative frequency variations (see equation (I.64)):

Figure II. 43 .

 43 Figure II.43. Long-term stability of the optomechanical signal. Two acquisitions of the optical PSD in V/ √ Hz of: (a) a SiN membrane (0.5×0.5 mm 2 ×30 nm), and (b) a Si 3 N 4 membrane (0.5×0.5 mm 2 × 50 nm), near the fundamental resonance frequency, at different times of the same PDH stabilization closed loop. The black curves are the thermomechanical fits. (c), (d) Extracted optomechanical signal at mechanical resonance for, respectively, the SiN and the Si 3 N 4 membranes, as a function of time.

Figure II. 44 .

 44 Figure II.44. (a) Extracted resonance frequency shift ∆f m and (b) mechanical quality factor Q m for both membranes, as a function of time.

Figure II. 45 .

 45 Figure II.45. First four Bessel functions of first kind J n as a function of the modulation depth β. The red dashed line indicates the first zero of J 0 (β).

Figure II. 46 .

 46 Figure II.46. Comparison between the measurements (acquired with the laser controller oscilloscope) of the DC signal in reflection and the theoretical optical power in reflection P DC ref normalized by the incident power P in (calculated with 3 modulation sidebands, see equation (II.53)), with and without a phase modulation of the incident laser, for multiple modulation frequencies f p . A strong modulation depth is applied (β ≈ 2.2) to suppress the carrier signal. The vertical dashed lines indicate the detuning of potential lock points with a second order PDH.

Figure II. 47 .

 47 Figure II.47.Comparison between the measurements (acquired with the LIA) of the "DC" signal in reflection with the demodulated and filtered error signal, and the theoretical second order error signal ϵ sin, 2 normalized by the incident power P in (only the sine terms of equation (II.55)), for multiple phase modulation frequencies f p . A strong modulation depth is applied (β ≈ 2.2) to suppress the carrier signal. The dashed lines indicate the linear behaviors of the error signal with the detuning between the laser and the optical cavity. The two linear parts can be potentially used to stabilized the laser at non-zero detuning.

Figure II. 48 .

 48 Figure II.48. Experimental demonstration of the offset sideband locking of our laser source on one of our fiber-based optical cavities. The "DC" and error signals are acquired using the LIA. In this example, the modulation frequency is fixed at 37.8 MHz.

Figure C .

 C Figure C. Scanning Electron Microscope image of an integrated 200 µm diameter Si 3 N 4 membrane suspended on a a-Si/SiO 2 multilayer mirror.

Figure III. 1 .

 1 Figure III.1. First microfabrication of an integrated membrane-in-the-middle cavity (all the images and the graph from [238]). (a) Schematical representation of the buckled dome shape MIM cavities. (b) Microscope image of a final MIM cavity. The "flower" shape is the membrane, and the circular interference fringes are due to the curve profile of the upper mirror. The six etched holes serve for the release of the membrane. (c) Measured optical PSD of the membrane and identification of three membrane mode shapes (predicted with multiphysics FEM simulation using COMSOL). Thermomechanical calibration have also been done on the fundamental mode at 10.5 MHz (see Fig. 6 (b) in [238]).

Figure III. 2 .

 2 Figure III.2. Schematic representation of the micrometric cavities with the two bonding interfaces.

Figure III. 3 .

 3 Figure III.3. Influence of a 700 °C thermal annealing on the real (n) and imaginary (k) optical indices of the mirror materials ((a) SiO 2 and (b) a-Si), measured by ellipsometry (dots: before annealing, line: after). The red line indicates the design wavelength. k is at least below the measurement precision of 10 -2 .)

  Fig. III.5 (a) to visualize the good interface between each layer. With a 10°inclinaison angle (see Fig. III.5), we see the top surface of the mirror. This observation serves as a rough and localized observation of the potential defects on the top SiO 2 layer. The images made on miscaleneous samples do not reveal any noticeable defect, either at the interfaces or on the top surface.

Figure III. 4 .

 4 Figure III.4. Process flow for the a-Si/SiO 2 multilayer mirror fabrication. Note that the PECVD processes are performed in a row (limited time between each deposition).

Figure III. 5 .

 5 Figure III.5. A SEM image of a a-Si/SiO 2 multilayer mirror, deposited by PECVD process ((a) side view, (b) side view with a 10°inclinaison angle, to observe the local surface).

Figure III. 6 .

 6 Figure III.6. (a) Top schematic view of a 200 mm diameter silicon wafer with the X and Y direction, defined from the notch, and corresponding side view for a (b) positive and a (c) negative bow (either along the X or Y direction).

Figure III. 7 .

 7 Figure III.7. Spectral response in reflection of the fabricated a-Si/SiO 2 multilayer mirror measured with a FTIR spectrometer, (a) before and (b) after a 700°thermal annealing. The y values are given as a function of a reference gold (Au) sample. The measurements are performed in vacuum, with an incidence angle of 13°. The theoretical curves are calculated by taking into account this angle of incidence, as well as the dispersion (with and without thermal annealing, see Fig. III.3). The red line indicates the design wavelength.

  Fig. III.8 (b) (full line). The membrane position is chosen to maximise the corresponding dispersive optomechanical coupling to the estimated value of 5 GHz/nm (see Fig. III.8 (c)). This value is high (in comparison to our fiber-based setups). The best vacuum dispersive coupling rate is estimated at g 0 = 12.1 kHz

Figure III. 8 .

 8 Figure III.8. Illustration of the design procedure. (a) Selection of three membrane thicknesses L m (x-values of the red points) in the range defined by the first maxima of the membrane reflectivity |r m | 2 as a function of L m . (b) Example (for a 300 nm thick Si 3 N 4 membrane) of cavity length L cav adjustment to ensures the design wavelength λ 0 (indicated by a horizontal dashed line) corresponds to a maximum of variation of the optical resonance condition as a function of the membrane position along the cavity z m . (c) Dispersive optomechanical coupling g om as a function of the membrane position after the cavity length adjustment.

Figure III. 9 .

 9 Figure III.9. Schematic representation of a single cell of the three photomask levels: (a) for the first cavity etch, (b) for the second cavity etch and membrane release, and (c) for locating the burried cavities on the back side of a substrate. The last level also contains marks for cutting the 200 mm diameter wafer into 2 mm side chips. The black dotted lines indicate the limit of the elementary cell: the final cutting process is performed along them. These cells are repeated on the entire surface of the mask. The micrometric cavity is sketched to locate the concerned fabrication steps, for each photomask.

Figure III. 10 .

 10 Figure III.10. Process flow for the intermediate wafer fabrication, with the first cavity etch. The starting point is the same as for the mirrors (see Fig. III.4 (a)). The photomask level used is sketched in Fig. III.9 (a).

  Fig. III.9 (a)). • The third step (see Fig. III.10 (c)) consists of removing the a-Si and SiO 2 first cavity layer with a dry etch. A stripping step then removes the resist. • Finally (see Fig. III.10 (d))

  Fig III.11 (a)) is applied using a multilayer mirror (see Fig. III.4 (b)) and the intermediate wafer (see Fig. III.10 (d)). The mirror is annealed at 700 °C (3 h) for the degassing and drying, and the intermediate wafer at 500 °C (3 h).

Figure III. 11 .

 11 Figure III.11. Process flow for the first SiO 2 -SiO 2 bonding between a mirror wafer (see Fig. III.4 (b)) and the intermediate wafer (see Fig. III.10 (d)), with the locating and cutting marks lithography and etch on the back side of the mirror substrate. The photomask level used is sketched in Fig. III.9 (c).

  Fig. III.9 (c)). The latter is followed by a dry etch of the a-Si and the SiO 2 (see Fig III.11 (c)). This last step serves to locate the burried cavities from outside, and to add marks to cut the wafer in 2 mm side chips at the end of the fabrication.

Figure III. 12 .

 12 Figure III.12. SAM images (a) before and (b) after the consolidation annealing at 400 °C. The barely visible white shapes on both images correspond to the etched pattern. No noticeable defect is introduced during the annealing.

  Fig. III.9 (b)) is then realized with an alignement on either the released marks or the marks on the backside of the mirror substrate (see Fig. III.13 (a)).

  III.13 (b)).

Figure III. 13 .

 13 Figure III.13. Process flow for final substrate back-grinding and for the release of the membrane (second cavity etch). The photomask level used is sketched in Fig. III.9 (b).

  Fig. III.13 (a)), circular patterns on the whole surface are visible on the front side of the structure. Using a stylus profilometer (P16C from KLA Tencor), one can then measure the deflection of the a-Si -SiO 2 -Si 3 N 4 membrane by moving a probe on the surface along the axis of a hole. The method is illustrated on a 600 µm diameter hole at the periphery of a given elementary cell of the photoinduced pattern (see Fig. III.14 (a)). A depth around 4.63 µm is measured on this specific example, with a profile that suggests the membrane is bonded to the bottom of the cavities (flat profile in the middle). This value corresponds to the depth of the burried cavity (first etch see Fig. III.10). This flat profile is only observed for the 600 and 500 µm diameter membranes. At this stage of the fabrication, one cannot distinguish the influence of the differential pressure load and the compressive stress induced by the silica.

Figure III. 14 .

 14 Figure III.14. Post-photolithography stylus profilometry of a 600 µm diameter a-Si -SiO 2 -Si 3 N 4 membranes (see Fig. III.13 (a)) on the border of the an elementary cell of the photoinduced pattern. (a) Photography of the probe above the measured membrane and channels. (b) Thick membrane depth profiles. The membrane diameter and the maximum measured deflection are indicated. The flat profile suggests these high diameter membranes are bonded to the bottom of the cavity.

Figure III. 15 .

 15 Figure III.15. Post-etching (removal of the last a-Si layer on the 300 nm thick Si 3 N 4 membrane) stylus profilometry of a 600 µm ((a) and (b)) and 50 µm ((c) and (d)) diameter membranes at the periphery of an elementary cell of the etched pattern. (a), (c) Photography of the probe above the measured membrane and channels. The dotted lines indicate the direction of the probe displacement. (b), (d), (e), (f) Si 3 N 4 depth profiles. The membrane diameter and the maximum measured deflection are indicated.

  Fig. III.16. The profiles are acquired in two directions , X and Y (see Fig. III.16 (a)) and are focused in the vicinity of the membrane itself to visualize and quantify the deflection (see Fig. III.16 (b) and (c)). Two deflection values are extracted in the Y direction due to an assymetry of the profile (see Fig. III.16(c))

Figure III. 16 .

 16 Figure III.16. Post-etching (last a-Si layer on the 300 nm thick Si 3 N 4 membrane) optical profilometry of all the membrane diameters in a middle of a chip. (a) Microscope image (×10) of a 200, 300, 400 and 500 µm diameter membranes (from the top to the bottom). (b), (c) Trench depth profiles in the vicinity of the suspended membrane, to visualize and quantify the deflection induced by the differential pressure, measured in the (b) X and (c) Y directions.

Figure III. 17 .

 17 Figure III.17. SEM images of the integrated Si 3 N 4 (300 nm) membranes suspended on a a-Si/SiO 2 mirror. (a) Top view of a 200 µm diameter membrane, far from the chip borders. (b) Top view of a 50 µm diameter membrane, close to a border, broken by the cutting process. (c) Zoom on the same broken membrane, to observe the different layers below the membrane. (d) Side view of an intentionaly broken (by manually cleaving a burried cavity) 100 µm diameter membrane, with an overview of all the deposited layers, including those within the mirror.

  Fig. III.18: • Using a second multilayer mirror, the second wafer molecular bonding is performed (see Fig. III.18 (a)). The mirrors are annealed at 700 °C (drying and degassing), whereas the membrane-on-mirror assembly (see Fig. III.13 (c)

Figure III. 18 .

 18 Figure III.18. Process flow for second molecular bonding, the wafer thinning and the anti-reflective coating deposition on both sides.

Figure III. 19 .

 19 Figure III.19. Spectral response from 1 to 8 µm of (a) the Bragg a-Si/SiO 2 multilayer mirror in theory (transfer matrix formalism, with the dispersion taking into account), (b) the same mirror measured with a FTIR spectrometer, and (c) of a silicon nitride membrane suspended over the same mirror measured with a FTIR spectrometer. Only the spectral behavior matters in the last two measurements: the amplitude should be considered as arbitrary due to an unsuitable reference acquisition.

  Two similar alignment setups, illustrated in Fig. III.20, are used: • The first one (see Fig. III.20 (a)

Figure III. 20 .

 20 Figure III.20. Pictures of the near-IR optomechanical bench to characterize the membrane-onmirror assembly, with (a) a unique GRIN lensed PM fiber measuring the reflected signal, or (b) an incident GRIN lensed PM fiber coupled to an output single mode (SM) GRIN lensed fiber, to measure both the reflected and transmitted signals.

Figure III. 21 .

 21 Figure III.21. Experimental setup for the optomechanical characterization of the stabilized silicon integrated MIM cavities in the near-IR (ARC: analog remote control, AMP: amplifier, ECDL: external-cavity diode laser, EOM: electro-optic modulator, FC-PC/FC-APC: Fiber Coupled connectors with Physical Contact/Angled Physical Contact, OI: Optical isolator, PD: photodetector, PID: proportional-integral-derivative, PolC: polarization controller, PM: polarization maintaining, SM: single mode).

Figure III. 22 .Figure III. 23 .

 2223 Figure III.22. Pictures of characterizations of the output optical power (with a powermeter, on the left) and the emission wavenumber (using a FTIR spectrometer, on the right) of the 4.23 µm QCL.

  III.22). The black body source of the FTIR is replaced by this external source, and the Michelson interferometer is used to reconstruct the spectral behavior of the laser source. The optical power and the emission wavenumber are displayed as a function of the injection current for various operating temperatures in Fig.III.23. 

  Fig. III.24.

Figure III. 24 .

 24 Figure III.24. Picture of the mid-IR optical isolator.

Figure III. 25 .

 25 Figure III.25. Schematic representations and pictures of the free-space ((a), (b)) and the fiberbased ((c), (d)) spatial filters.

Figure III. 26 .

 26 Figure III.26. Observation of the beam leaving the free-space spatial filter, with an IR camera, for various pinhole diameters d ph . One can observe the speckle effect on the beam leaving the optical isolator on the top left observation.

Figure III. 27 .

 27 Figure III.27. Observation of the beam leaving the fiber-based spatial filter, with an IR camera, at 60 cm of the output collimator.

  Fig. III.28.

Figure III. 28 .

 28 Figure III.28. Experimental setup for the optomechanical characterization of the silicon integrated MIM cavities in the mid-IR (QCL: quantum cascade laser, MCT: mercury cadmium telluride, OI: Optical isolator).

Figure III. 29 .

 29 Figure III.29. Principle of the CEAS with optomechanical transduction. (a) Schematic representation of the MIM setup used for trace-gas sensing. (b) Sketch of the influence of an optical intracavity absorption within the cavity medium on the spectrum of the mechanical resonator.

  term stability, thanks to optical stabilization techniques (such as the PDH, see sections II.3 and II.4.5).

  Fig. III.30 are represented, as a function of the optical detuning ∆ : • The optical response in reflection R out , • The thermal mechanical PSD S m at mechanical resonance, • The effective mechanical resonance frequency ω eff m , • The effective mechanical damping γ eff m , • The optical PSD at mechanical resonance S opt .

  Fig. III.30 (a)). However, we would like to stress that there is a direct dependency of the mechanical resonance amplitude with the gas concentration (see Fig. III.30 (b)), as well as the mechanical properties (see Fig. III.30 (c) and (d))

Figure III. 30 .

 30 Figure III.30. Impact of intracavity gas absorption on (a) the optical response in reflection R opt , (b) the mechanical PSD of the membrane at mechanical resonance relatively to the thermomechanical noise amplitude without optomechanical interaction, (c) the relative shift of the mechanical resonance frequency due to the optical spring effect, (d) the normalized relative shift of the mechanical damping due to the optomechanical damping, and (e) the optical PSD at mechanical resonance, as a function of the optical detuning ∆ normalized by the external cavity bandwidth κ e . S 0 = 3.66 fm/ √ Hz is the mechanical PSD at mechanical resonance without optomechanical interaction.

Figure III. 31 .

 31 Figure III.31. 2D schematic representation of the coupled system of a vibrating membrane inside a closed air-filled cavity. p 1 and p 2 are the pressure field on both sides of the membrane, and u is the transverse membrane deflection along the z-direction.

  54 µm and δ τ (f 01 ) = 0.65 µm (III.14)

  Fig. III.32 (b) and(c). The resonance frequencies does not drastically differ from those deduced from the free vibration problem. A slight increase of f m is observed when reducing the thickness L m , which indicates that the lighter membranes are easily influenced by the pressure fields. This effect is somehow confirmed on the quality factors curves: Q m linearly increases with L m . Intuitively, the viscous damping has a higher impact for the lower thicknesses. The Q m values are low: in the[START_REF] Arcizet | Radiation-pressure cooling and optomechanical instability of a micromirror[END_REF][START_REF] Allain | Optomechanical resonating probe for very high frequency sensing of atomic forces[END_REF] range for the 50 µm diameter membranes, and in the[START_REF] Dorsel | Optical Bistability and Mirror Confinement Induced by Radiation Pressure[END_REF][START_REF] Deng | Quantum nondemolition measurement of microwave photons using engineered quadratic interactions[END_REF] range for the 100 µm diameter membranes. As an illustration, two spectra for L m = 200 nm are displayed in Fig.III.32 (d) and (e). Two resonance modes are visibles for the two diameters, and the third one appears on the 100 µm diameter membrane spectra. The mode shapes are not perturbed by the fluid dynamics.

Figure III. 32 .

 32 Figure III.32. 2D axisymmetric FEM simulations of the membrane dynamics in an air-filled closed cavity. (a) Overview of the mesh used. (b) Mechanical resonance frequency f m and (c) quality factor Q m as a function of the membrane thickness L m , for two different diameters. (d) and (e) Mechanical spectrum, corresponding to the displacement in the z-direction of the membrane center as a function of the excitation frequency, for the two diameters (as an illustration).

Figure III. 33 .

 33 Figure III.33. Shift of the effective resonance frequency as a function of the gas concentration for a 50 µm diameter membrane, for various incident laser optical powers.

Figure III. 34 .

 34 Figure III.34. Shift of the effective resonance frequency as a function of the gas concentration for a (a) 50 µm and a (b) 150 µm diameter membrane, for a incident laser optical power of 40 mW, close to the frequency noise. The curve for a 100 µm diameter membrane is not displayed because it is very similar to the 50 µm membrane one. The frequency responsivity R ω (slope of the linear fit) as well as the LOD are indicated.

Figure III. 35 .

 35 Figure III.35. Frequency responsivity (slope of the linear fit) of the optomechanical gas sensor as a function of (a) the effective mass and (b) the mirror reflectivities. The red area on the left graph indicates the range of effective masses for the fabricated membrane at the CEA-Leti cleanroom platform. The red vertical line on the right graph indicates the fabricated mirror reflectivity, estimated by the transfer matrix formalism.

Figure III. 36 .

 36 Figure III.36. (a) LOD and (b) FoM as a function of the incident laser optical power P in , for three membrane diameters, and a thickness of 200 nm.

Figure IV. 1 .

 1 Figure IV.1. Schematic illustration of the generic Fabry-Perot optical cavity with one movable mirror. The important quantities, namely, the normalized intracavity field amplitude (a), the input and output photon flux (s in and s out ), the external and intrinsic optical decay rates (κ e and κ i ), the mechanical displacement (u m ), the mechanical intrinsic damping (γ m ), the optical resonance frequency ω c , and the three first-order optomechanical couplings (g om , κ e om , and κ i om ), are introduced.

  Under the assumption of small mechanical displacement fluctuations, we can use the first-order expansionκ e (u m ) = √ κe0 1 + κ e om 2κ e0 δu m (t) , (IV.8)in the optical input-output relation IV.1. We linearize equations IV.1 and IV.5 by means of all the definitions previously introduced to obtain equations IV.9 to IV.12. The mean intracavity field and displacement amplitudes are given by

•Figure IV. 2 .

 2 Figure IV.2. Derivatives of the mean optical response amplitude as a function of the normalized detuning ∆/κ. Influence of the normalized external cavity decay rate κe0 /κ on (a) ∂R out /∂ ∆ (blue curve), (b) ∂R out /∂κ i0 (yellow curve), and (c) ∂R out /∂κ e0 (red curve). Comparison between the three derivative amplitudes in the (d) undercoupled regime, (e) critically coupled regime (yellow and red curves are overlapping), and (f) overcoupled regime.For the six plots, the amplitudes are normalized with the maximum value between the three derivatives and therefore dimensionless. The comparison made here is purely qualitative and is independent of the value of κ.

Figure IV. 3 .

 3 Figure IV.3. Absolute maximum of the derivatives of the mean optical response as a function of the normalized external cavity decay rate κe /κ. The y axis is normalized such that y values are independent of κ.

Figure IV. 4 .

 4 Figure IV.4. Mechanically induced mean optical power oscillations as a function of the normalized detuning ∆/κ and the normalized external cavity decay rate κe /κ for different optomechanical coupling configurations, in the unresolved sideband limit κ = 10 3 ω m with ω m = 1 MHz (based on one of the devices of Tsvirkun et al.[START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF][START_REF] Tsvirkun | Optomechanics in hybrid fully-integrated two-dimensional photonic crystal resonators[END_REF]).

Figure IV. 4 (

 4 Figure IV.4 (a) illustrates a mostly dispersive case where the strongest mean optical power oscillations arise at critical coupling and off resonant detuning. We consider relatively low dissipative couplings in comparison to g om , which explains the low power oscillations in the undercoupled and overcoupled regime. However, we observe an asymmetry in the amplitude of the dispersive sidebands due to the nonzero dissipative couplings. Indeed, the comparison with figure IV.2 reveals that the dissipative mechanisms induce, on resonance, a negative (or positive, depending of the sign of the couplings) amplification of the power oscillations which are added to or subtracted from the dispersive sidebands. This effect is responsible for the strong asymmetry of the five plots. Figures IV.4 (b) and (d) show the influence of a stronger, respectively, external and intrinsic dissipative coupling, with the same dispersive coupling value. We observe an amplification of the asymmetry in the critically coupled regime. The highest power oscillations in these two cases are achievable on resonance in the undercoupled (for higher external dissipative coupling) or overcoupled (for higher intrinsic dissipative coupling) regime. Figure IV.4 (c) illustrates the case where the three optomechanical couplings are at the same level(Tsvirkun et al. were close to this situation in one of their devices, see Figure3 (d)in[START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF]). Finally, figure IV.4 (e) shows the dissipative case in which dispersive optomechanical coupling is negligible in comparison to the two other couplings, almost completely extinguishing the dispersive detuning sidebands in the critically coupled regime. In the last two situations, working in the undercoupled or overcoupled regime will induce the same strong optical power oscillations on optical resonance. The sign of each coupling can also induce other discrepancies, but the behavior does not drastically change. The absolute mean optical power oscillations remain in the same order of magnitude, but maximum absolute values can arise at different detuning values in the critically coupled regime.

6 (

 6 e. 11 GHz (Fig. IV.5) 0.18 nm i.e. 22 GHz (Fig. IV.6 (a), (b)) 1.55 nm i.e. 190 GHz (Fig. IV.6 (c), (d)) 0.72 nm i.e. 88 GHz (Fig. IV.IV.6 (e), (f))

7 .Figure IV. 6 .

 76 Figure IV.6. Optical spring effect ((a) from[START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF] and (c) from theory) and optical PSD at mechanical resonance frequency S p (ω m , ∆) with ω m depending on ∆ ((b) from[START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF] and (d) from theory) as a function of the normalized optical detuning ∆/κ for an input waveguide width w wg = 450 nm. The colorbar of figure (a) is not considered as we are only comparing the variation of the mechanical resonance frequency. The insets show the contribution (in Hz -1 ) of each coupling on dR out /du m (g om ∂R out /∂ ∆ in blue, κ i om ∂R out /∂κ i in red and κ e om ∂R out /∂κ e in yellow). Tsvirkun et al. determined it experimentally by fitting the optical spectrum on mechanical resonance with equation IV.16, which allows them to identify the coupling strengths.

Figure IV. 7 .

 7 Figure IV.7. Optical PSD at mechanical resonance frequency (S p (ω m , ∆) with ω m depending on ∆) as a function of the normalized optical detuning ∆/κ for different input waveguide widths: w wg = 350 nm ((a) from[START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF] and (b) from theory), w wg = 450 nm ((c) from[START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF] and (d) from theory) and w wg = 500 nm ((e) from[START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF] and (f) from theory). The insets show the contribution (in Hz -1 ) of each coupling on dR out /du m (g om ∂R out /∂ ∆ in blue, κ i om ∂R out /∂κ i in red, and κ e om ∂R out /∂κ e in yellow). Note that the discrepancy on optical resonance between the insets of measurements and theory for the external dissipative contribution (i.e. κ e om ∂R out /∂κ e ) is due to a Fano modification of the optical response in practice[START_REF] Wu | Dissipative and dispersive optomechanics in a nanocavity torque sensor[END_REF].

Figure IV. 8 .

 8 Figure IV.8. Experimental setup for the optomechanical characterization of the silicon integrated MIM cavities with a PDH stabilization of the mid-IR source (QCL: quantum cascade laser, MCT: mercury cadmium telluride, OI: Optical isolator).

  /2 -κe0 ) + 2 ∆2 κe0 Q(ω) -κ ∆ P (ω) , -state intracavity photon number and P , Q, R and S correspond to sums or differences of the Lorentzian shape effective cavity responses |χ eff cav (±ω)| 2 , with χ eff cav (ω) = [κ/2 -i( ∆ + ω)] -1 , weighted or not with detuning terms ∆ ± ω according toP (ω) = |χ eff cav (ω)| 2 + |χ eff cav (-ω)| 2 , Q(ω) = ( ∆ + ω)|χ eff cav (ω)| 2 + ( ∆ -ω)|χ eff cav (-ω)| 2 , R(ω) = ( ∆ + ω)|χ eff cav (ω)| 2 -( ∆ -ω)|χ eff cav (-ω)| 2 , S(ω) = |χ eff cav (ω)| 2 -|χ eff cav (-ω)| 2 .
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Table 1 .

 1 Comparison between the selected optomechanical setups.

Table I . 1 .

 I1 Properties of the Bragg mirror materials, used for the simulations. The index value comes from characterization of materials deposited in the CEA-Leti cleanroom platform (see chapter III).

Table I . 2 .

 I2 .2. Properties of the MIM optical cavity in the MIR region, used for the simulations.

	Name	Symbol	Value/Description
	Cavity length	L cav	8.24 µm
	Membrane material	Si 3 N 4	Stoichiometric silicon nitride
	Membrane optical index n m	1.8779
	Membrane thickness	L m	200 nm

Table I .3. Maximum

 I modulation amplitude, induced by the membrane position, of the cavity bandwidth ∆κ, and the equivalent quantity in finesse term ∆F, relatively to the reference finesse F 0 (membrane in the exact middle of the cavity) for the two cavity lengths L cav . κ 0 designates the cavity bandwidth when the membrane is exactly in the middle of the cavity.

	L cav (µm)	κ 0 (MHz)	∆κ (MHz) F 0	∆F/F 0
	8.24	300	960	1.9 × 10 4	31.6 %
	31.65	200	350	5.2 × 10 4	51.9 %

  .4.

	Name	Symbol	Value/Description
	Gas	CO 2	Carbon dioxyde
	Wavenumber	σ 0	2364.07 cm -1
	Absorption coefficient	α CO 2 = α gas	3.3 × 10 -4 cm -1 ppm -1 [124]

19 High coupling efficiency ? Easy to align ? Cavity length range Easy to set up with a membrane in the middle ?

  

	Two FBGs					
	facing each	(a)	✗	✗	µm range	✗
	other					
	A FBG facing a concave mirror	(b)	✓	✗	Typically 2 -3 cm	✗
	Two lensed					
	FBGs facing	(c)	✓	✓	> 15 mm	✗
	each other					
	A lensed FBG					
	facing a plane	(d)	✓	✓	> 7.5 mm	✓
	mirror					
	Table I.5. Advantages, drawbacks and properties of each external FBG-based Fabry-Perot cavity.

Table I .6.

 I Properties of the lensed FBG, used for the simulations. Two sets of parameters are considered.

	MIM =	m 21 m 11	2	,		(I.57)
	where m ij are the matrix coefficients of M MIM .				
	Properties	Symbol	Value
	Bragg wavelength	λ 0				1550 nm
	Effective index modulation amplitude	δn eff		1.894 × 10 -3
	GRIN Anti-reflecting coating reflectivity R AR			0.1 %
					Config. 1 Config. 2
	FBG length	L FBG		10 mm	8 mm
	Visibility	ν			0.3	0.2
	Loss coefficient	L			0.05	0.19
	Maximum reflectivity	R max		98.5 %	92.8 %
	FBG bandwidth	δλ			0.6 nm	0.45 nm
	Properties	Symbol	Value
	Bragg wavelength	λ 0			1550 nm
	High optical index	n H			2.8
	High-index material thickness	L H			138 nm
	Low optical index	n L			1.5
	Low-index material thickness	L L			258 nm
	Substrate optical index	n S			1.4440 (Fused silica)
	Number of layers	N			12
	Maximum reflectivity	R max			99.7 %
	Mirror bandwidth	δλ			782 nm
	Table I.7. Properties of the dielectric mirror, used for the simulations. The index is chosen to
	reproduce the optical spectral response of the commercial fused silica mirrors used in experiments (see
	Table II.5).				

  .8.

	Name	Symbol	Value/Description
		Frame	
	Material	Si	Silicon
	Thickness	-	250 µm
		Membrane	
	Material	SiN	Silicon nitride
	Optical index at λ 0 n m	1.9963
	Thickness	L m	50 nm
	Table I.8. Membrane geometrical properties.

Table I .9. Effective

 I 

mass of the squared silicon nitride membrane, for various geometries used in our lensed FBG-based MIM cavities.
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Table II . 1 .

 II1 Comparison between the high finesse fiber based optomechanical cavities. The parameters are the wavelength (λ), the cavity length L cav , the optical finesse, the resonance frequency f m and the quality factor Q m of the mechanical mode of interest, the dispersive optomechanical coupling g om and the dispersive single-photon coupling strength g 0 . Note that the article of Rochau et. al also measured a dissipative coupling of 0.1 MHz/nm.

	Favero, 2009 [34]	780	42	215	0.474 5 × 10 3	0.47
	Flowers-						
	Jacobs,	1550 80	1.5 × 10 4	5.21	6.13 × 10 4 3.0	3502
	2012 [43]						
	Stapfner, 2013 [173]	780	42	2.45 × 10 4 0.51	250	0.001
	Shkarin, 2014 [44]	1550 70	1 × 10 5	5.09	5 × 10 5	0.76	1050
	Rochau, 2021 [36]	1550 43.8	1.95 × 10 5 0.932 1.97 × 10 5 0.18	1000
	Fogliano, 2021 [37]	767	10	10 2 -10 4	0.027 2700	6.5	2.6×10 6

Fiber Bragg Grating-based cavity optomechanics

Fig. II.2 displays examples of FBG-based optomechanical cavities, developed by the group of Eyal Buks.

Table II .
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	Name	Symbol	Value/Description	Picture
	Supplier		Thorlabs	
		BB05-E04 or BB1-E04	
	Substrate material		Fused silica	
	Diameter		0.5 or 1 inch	
	Bandwidth limit		1280 -1600 nm	
	Reflectivity	R mirror	> 99 %	

4. Piezoelectric chip properties. We used two different chips during this thesis: a ring geometry (PA44LEW) and a square geometry (PA4GKH5W).

Table II.5. Broadband dielectric mirror properties. We used two different sizes with the same optical properties during this thesis: 0.5 inch (BB05-E04) and 1 inch (BB1-E04).

  and contains a constant "DC" term and a beat pattern with terms oscillating at ω p and 2ω

p : (II.18) P ref = P DC ref + P cos ref cos(ω p t) + P sin ref sin(ω p t) + (2ω p terms)

Name Symbol Value/Description Picture

  .7.

	Name	Symbol	Value/Description	Picture
	Supplier		Femto	
	Reference		OE-300-IN-01
	Type		PIN Photodiode
	Material		InGaAs	
	Wavelength		900 -1700 nm
	Responsivity	R PD	0.95 A/W	
	Low noise mode	
	Gain setting (V/A)	G PD	10 2	10 3
	Upper cut-off frequency NEP ( √ Hz)		200 MHz 180 pW	80 MHz 22 pW
	Integrated input noise		4.9 µW	380 nW
	High speed mode	
	Gain setting (V/A)	G PD	10 3	10 4
	Upper cut-off frequency NEP ( √ Hz)		175 MHz 132 pW	80 MHz 6.3 pW
	Integrated input noise		3.0 µW	285 nW
	Supplier		Zurich Instruments
	Reference		UHFLI	
	Frequency range Input noise amplitude		0 -600 MHz 4 nV/ √ Hz
	Output amplitude range		±1.5 V	
	Auxiliary output amplitude range	±10 V	

Table II.7. High bandwidth photoreceiver properties.

Table II . 8

 II8 

. High frequency Lock-In Amplifier (LIA) properties.

  V, th . It is related to the cavity frequency fluctuations δf cav through (II.44) δV V, th = s err δf cav , = s err g om δz m , where s err is the error signal sensitivity in V/Hz and δz m is the mechanical displacement.where S m is the mechanical PSD in m 2 /Hz. Using the previous relationship and equations II.42 and II.43, the fit parameter α can be understood as a conversion factor of the PSD from units of V 2 /Hz to m 2 /Hz:

			The
	measured voltage PSD then reads		
	S V, th = s 2 err g 2 om S m ,	(II.45)
	α/s 0	= s 2 err g 2 om	(II.46)
	[V 2 /m 2 ]		

Table II .

 II 11. Deduced parameters on the fundamental mode spectra of the three membranes.

			SiN	Si 3 N 4	
	Geometry	0.5 × 0.5 mm 2 × 30 nm 0.5 × 0.5 mm 2 × 50 nm 1 × 1 mm 2 × 50 nm
	f m (kHz)		328.4	780.2	396.7
	Q m		4.7 × 10 4	1.1 × 10 5	2.93 × 10 3
	g om (MHz/nm)	2.57	6.44	9.49
	g 0 (Hz) S N (V/ √	Hz)	13.4 2.28 × 10 -10	16.8 9.84 × 10 -11	17.4 2.08 × 10 -10

  Measuring the optical powerP ref = E ref E *ref using a photodetector in reflection generates a beat pattern between the carrier and all the sidebands considered. Consequently, P ref contains a constant "DC" term and terms oscillating at ω p , 2ω p and 3ω p :

		(II.51)
	-3ωp)t ].	
	P ref = P DC ref + P	(II.52)

ωp ref + P 2ωp ref + (3ω p terms),
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Table III . 1 .

 III1 .1. The influence on the bow is discussed later on in this section. Design wavelength and integrated mid-IR Bragg mirror materials.

	Name	Symbol	Value/Description
	Bragg wavelength	λ 0	4.230 µm
	Bragg wavenumber	σ 0	2364.07 cm -1
	High-index material	a-Si	Amorphous silicon (LPCVD): n H = 3.4495
	Low-index material	SiO 2	Silicon dioxyde (PECVD): n L = 1.3966
	Substrate material	Si	Silicon

Table III . 2 .

 III2 Geometrical characteristics of the designed optomechanical cavities. Three microfabrication splits result from this design.

		L cav (nm)	e 1 (nm)	e 2 (nm)	Sketch of the
	L m (nm)				MIM cavity
	200	8241	4572	3469
	300	8160	4488	3373
	400	8098	4411	3288

Table III . 4 .

 III4 Theoretical mechanical resonance frequencies of the first three modes of a circular Si 3 N 4 membrane, for various geometries fabricated at the CEA-Leti cleanroom platform. We used equation I.74 with an in-plane tension of 1 GPa and a mass density of 3170 kg/m 3 .

Table III .6.

 III 

		Initial	Minimum	Maximum	Mean
		target	value	value	value
		(nm)	(nm)	(nm)	(nm)
	SiO 2	4388	4531.9	4749.9	4625.0

Table III .7.

 III 

						P inner (bar)
	50	0.193	0.959	below the resolution	-
	100	-	-	below the resolution	-
				X dir.	Y dir.	
	150	-	-	0.246	0.466 / 0.188	0.998
	200	-	-	0.543	0.759 / 0.225	0.997
	300	1.37	0.989	1.06	1.45 / 0.61	0.995
	400	2.36	0.982	1.85	2.27 / 1.19	0.992
	500	-	-	2.72	2.99 / 1.96	0.991
	600	4.61	Mbrn bonded	only broken membranes	-
	Mean P inner (bar)	0.976	Mean P inner (bar)	0.995

d m (µm) Stylus profilo. Optical profilo. δZ (µm) P inner (bar) δZ (µm)

Table III . 9 .

 III9 .8. Mechanical parameters deduced from the FEM study for the three selected membrane diameters.

	Name	Symbol		Value/Description
	Membrane thickness	L m		200 nm	
	Membrane diameter	d m	50 µm	100 µm	150 µm
	Mechanical resonance frequency f m = ω m /2π 8.599 MHz 4.299 MHz 2.870 MHz
	Mechanical quality factor	Q m	40	20	10
	Effective mass	m eff	0.335 ng	0.671 ng	3.019 ng

  ). Conversely the maximum of each dissipative derivative (∂R out /∂κ e and ∂R out /∂κ i ) always occurs on resonance. However, depending on the optical loss regime, two off resonance local maxima appear (close to the critically coupled regime, see red and yellow curves in figure IV.2 (e)), giving rise to new working sidebands. These are related to new optical detunings for which cooling or amplification of the mechanical motion can occur[START_REF] Weiss | Strong-coupling effects in dissipatively coupled optomechanical systems[END_REF]. Figure IV.3 represents the maximum amplitude of the derivatives of R out as a function of the external cavity decay rate. These maximum amplitudes are given by

Table IV .

 IV 

1. Optomechanical coupling absolute values and sideband factor measured by Wu et al.

[START_REF] Wu | Dissipative and dispersive optomechanics in a nanocavity torque sensor[END_REF] 

and Tsvirkun et al.

[START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF]

.

  Finally, in practical experiments, we have access to the optical PSD S opt (ω, ∆) in W 2 /Hz, related to the mechanical PSD S m (ω, ∆) in m 2 /Hz by

	δω m = δω disp m + δω diss,e m	+ δω diss,i m	+ δω disp,diss,e m	+ δω disp,diss,i m	+ δω diss,e,diss,i m	32)
	γ opt = γ disp opt + γ diss,e opt	+ γ diss,i opt + γ disp,diss,e opt	+ γ disp,diss,i opt	+ γ diss,e,diss,i opt	(IV.33)
	S opt (ω, ∆) = P 2 in	dR out du m	2	S m (ω, ∆) ,	(IV.34)

  ω m ω ( ∆ + ω)|χ eff cav (ω)| 2 +( ∆ -ω)|χ eff cav (-ω)| 2 , (IV.36)

	γ opt (ω, ∆) = g 2 ω m ω κ 2	|χ eff cav (ω)| 2 -|χ eff cav (-ω)| 2 ,	(IV.37)
	where						
	g = g 0 ncav = x ZPF g om	√	ncav = g om	√	ncav	h 2m eff ω m	(IV.38)

Table IV . 2 .

 IV2 Mechanical and optical parameters used to describe the PhC devices of Tsvirkun et al. All parameters have been retrieved from[START_REF] Tsvirkun | Integrated III-V Photonic Crystal -Si waveguide platform with tailored optomechanical coupling[END_REF][START_REF] Tsvirkun | Optomechanics in hybrid fully-integrated two-dimensional photonic crystal resonators[END_REF] (mechanical mode labeled M1), except for κ and κe , which have been deduced for each configuration.

  General expressions of the optomechanical effects δω disp,diss,eRésuméCette thèse porte sur le développement de cavités spectroscopiques optomécaniques dans la gamme des longueurs d'onde moyen infrarouge (mid-IR, entre 3 and 12 µm plus spécifiquement). En effet dans cette gamme spectrale, les détecteurs ont une détectivité dégradée par rapport aux détecteurs dédiés aux bandes visible et proche infrarouge. L'interaction optomécanique est une méthode de transduction de choix qui exploite l'interaction réciproque d'une cavité optique résonnante et d'un résonateur mécanique. Cette technique pourrait en effet permettre de pallier le problème de détectivité via la méthode de pompe -sonde respectivement dans le mid-IR et le visible. Elle pourrait également permettre d'obtenir une meilleure résolution spectrale des lignes d'absorption des molécules gazeuses et d'atteindre de très bonnes limites de détection pour une large sélection d'espèces chimiques. Enfin, ces travaux étendent le domaine des cavités optomécaniques à la gamme du mid-IR, ouvrant ce dernier à diverses applications capteurs. La thèse a été organisée selon une approche classique en commençant par une étude théorique générale. Une modélisation générique de l'ensemble des interactions optomécaniques (dispersive et dissipative) a été donc proposée et validée sur des cas concrets tirés de la littérature, par comparaison avec des mesures existantes. Ces développements ont permis d'aboutir notamment à des expressions complètes des effets optomécaniques dynamiques induits (effet de ressort optique et amortissement optomécanique). Le système « membrane-inthe-middle » (MIM) composé d'une membrane suspendue au sein d'une cavité Fabry Perot a été choisi, puisque particulièrement adapté pour l'application visée. Nous avons dimensionné une microcavité optomécanique basée sur cette architecture et construit un procédé de microfabrication en technologie silicium. Elles ont été conçues spécifiquement pour la détection du dioxyde de carbone (CO 2 ), via la mesure de décalage de la fréquence de résonance mécanique induit par les pertes par absorption minimisant l'impact de l'effet de ressort optique. La limite de détection dans le cas de traces de CO 2 est estimée numériquement entre 10 et 100 ppb (partie par milliard), via des analyses analytiques couplées à des simulations multiphysiques par éléments finis. En parallèle de ces développements, et afin de mieux cerner les caractéristiques d'un tel système, nous avons mis en oeuvre un nouveau type de cavité MIM hydride utilisant des réseaux de Bragg fibrés et lentillés et des miroirs diélectriques dans le proche infrarouge (NIR, 1.55 µm). Nous avons caractérisé sur un banc dédié le mouvement thermomécanique de membranes commerciales en nitrure de silicium (SiN ou Si 3 N 4 ) à l'aide d'une diode laser à cavité externe asservie optiquement (via la méthode Pound-Drever-Hall) sur nos cavités optomécaniques fibrées. Une analyse complète de la stabilité fréquentielle, ainsi que du comportement optique, thermique et mécanique de ce système a été réalisée, et son utilisation en tant que capteur est également envisagé. Le modèle théorique permet d'ailleurs de mieux appréhender les différents types couplages en jeu expérimentalement. En conclusion, des applications concrètes de ces cavités ont été envisagées. Une cavité optomécanique macroscopique de type MIM dans la gamme mid-IR a ensuite été assemblée avec des miroirs de Bragg multicouches (alternances de silicium amorphe et silice fabriquées en salle blanche) ad-hoc, la micro-cavité finale étant basée sur l'utilisation de ces multicouches spécifiques. Les micro-cavités MIM pour le moyen infrarouge intégrant une membrane Si 3 N 4 sont en cours de fabrication.

			m			(ω, ∆) =	hg om κ e om 2m ef f	ncav ωκ e0	-	κκ e0 4	P (ω) + ∆ Q(ω) ,	(B.8)
	δω disp,diss,i m	(ω, ∆) =	hg om κ i om 4m ef f	ncav ωκ e0	-	κ(κ/2 + κe0 ) 2	P (ω) + ∆ Q(ω) ,	(B.9)
	δω diss,e,diss,i m	(ω, ∆) =	hκ e om κ i om 8m ef f	ncav ωκ e0	κ(κ/2 -2κ e0 ) + 2 ∆2 2κ e0	Q(ω) -∆κ P (ω) ,	(B.10)
	and							
			γ disp,diss,e om	(ω, ∆) =	hg om κ e om 2m ef f	ncav ωκ e0	κ ∆ S(ω) + κe0 R(ω) ,	(B.11)
		γ disp,diss,i om	(ω, ∆) =	hg om κ i om 4m ef f	ncav ωκ e0	κ ∆ S(ω) + (2κ e0 + κ) R(ω) ,	(B.12)
	γ diss,e,diss,i om	(ω, ∆) =		hκ e om κ i om 4m ef f	ncav ωκ e0	(κ(κ/2 -2κ e0 ) + 2 ∆2 )κ 4κ e0	S(ω) + 2 ∆ R(ω) .	(B.13)
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Sideband regime, optical loss regime, and optomechanical coupling configuration

The full expressions of the optomechanical effects (given in Appendix B) are complex to analyze. Depending on the optical and mechanical characteristics of the system under study, some terms will predominate over others and the full expressions can be simplified. More precisely there are three major properties to consider:

• the sideband regime defined by the relative difference between the overall optical loss κ and the mechanical resonance frequency ω m ,

• the loss regime defined by the relative difference between the intrinsic and external decay rates, respectively, κi and κe ,

• the optomechanical coupling configuration defined by the relative difference between the dispersive, the intrinsic, and external dissipative couplings, respectively, g om , κ i om , and κ e om .

Figure IV.5. Schematic representation of limit cases in optomechanical systems with the three types of couplings. There are three properties to consider: the sideband regime, the optical loss regime, and the optomechanical coupling configuration. This leads to 45 limit case situations.

All the possible limit cases are represented in Fig. IV.5. There are 45 limit case situations, characterized by a sideband regime, an optical loss regime, and a coupling configuration, with various impacts on the optical and mechanical dynamics.

where k 2 0 = ω 2 c 2 is the wave vector amplitude in vacuum, n = √ ϵ r is the optical index, ϵ r = ϵ/ϵ 0 is the relative permittivity and ϵ 0 is the permittivity in vacuum. We have used the relation ϵ 0 µ 0 c 2 = 1 with c the light velocity. For the TM polarization, a common wave equation is found for the H x component of the magnetic field. One of the solving methods of this eigenvalue problem is the separation of variables. We then search for solutions of the form E x (y, z) = Y (y)U (z). This allows us to rewrite equation (A.11) so that each of two variables occurs on a different side. Each term is then constant:

where K is a constant. We intentionally skip the discussion on the sign of the constant term: only this situation prevents a divergence of the final solution as we are working in a nonamplifying medium. Let K 2 = k 2 0 α 2 with α another constant. The Y function is therefore a complex exponentiel, and the electric field reads:

The magnetic field components H y and H z directly follow:

Using (A.5), (A.7) and (A.10), we deduce the following relations between the field amplitudes U , V and W :

Combining the last two equations, we derive a system of two coupled first order differential equations for U and V :

Finally, we can mix them to obtain two second order differential equations:

Particular solutions in an homogeneous medium

In the case of a homogeneous medium (see Fig. A.1), where the optical index does not depend on the position, they are simplified:

Since the functions U and V each satisfy a linear differential equation of the second order, it follows that they can each be written as a linear combination of particular solutions, denotes by (U 1 , U 2 ) and (V 1 , V 2 ). The latters necessarily verify the coupled equations (A. [START_REF] Weiss | Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems[END_REF]) and (A.20): 

is invariant with respect to z. (U 1 , V 1 ) and (U 2 , V 2 ) then necessary form a vectorial basis of all the solutions. A convenient choice is the particular solutions

Characteristic matrix of a homogeneous medium

In this way, all solutions of electromagnetic amplitudes (U, V ) such that U (0) = U 0 and V (0) = V 0 can be expressed as linear combinations of the previous functions. Hence, in matrix form:

A more convenient matrix relationship will be used, linking the initial amplitude (U 0 , V 0 ) to (U (z), V (z)). To this end, we just have to notice that the determinant of N (z) is constant and equal to its value in z = 0 i.e. |N (z)|= 1. We then invert the previous matrix equation:

We denote the optical phase Φ(z) for the complex field amplitude U in the homogeneous medium. For a plane wave, we have:

where θ is the angle of incidence between the wave vector and the z axis. Thus, we have:

Using the relations U ′ = iωµ 0 V and µ 0 ϵ 0 c 2 = 1, we deduce the general expression of the solutions:

where A and B are constant. Then, using the initial conditions, we have:

The expressions of the particular solutions U 1 , U 2 , U 3 et U 4 , used to define the characteristic matrix of the medium, directly follow:

Finally, by denoting:

we define the characteristic matrix M (z) of the homogeneous medium:

where

For a TM wave, the relationship is the same, with p replaced by

In the case of a normal incidence (i.e. θ = 0), the matrix reads:

where p = ϵ 0 µ 0 n (A.50) 

Characteristic matrix of a stratified medium

A stratified medium (see Fig. A.2) can be seen as a stack of homogeneous layers (i.e. of constant index). Consider two adjacent homogeneous media, the first one from z = 0 to z = z 1 and the second one from z = z 1 to z = z2. Following the previous analysis, we have:

We generalize this result in the case of an arbitrary number N of homogeneous media:

Finally the characteristic matrix of a stratified medium, in the case of a TE polarized wave, is given by:

where p j = ϵ 0 µ 0 n j cos(θ j )

where n j , L j , are, respectively, the optical index and the thickness of the homogeneous medium j, θ j is the angle of incidence on the medium j, and ϕ j is the phase shift undergone by the electromagnetic field after propagation in this medium. In the case of a normal incidence (i.e. θ j = 0), the matrix is identical for TE and TM waves, and reads:

Reflection and transmission coefficients

We denote L the thickness of our stratified medium and consider a normal incidence. In absence of contra-propagative wave in z = L, we can define the reflexion and transmission complex coefficients r and t as follows: